

Undergraduate Texts in Mathematics

Editorial Board
S. Axler

K.A. Ribet

For other titles Published in this series, go to
http://www.springer.com/series/666

Glenn H. Hurlbert

Linear Optimization

The Simplex Workbook

123

All rights reserved.

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection

or dissimilar methodology now known or hereafter developed is forbidden.

to proprietary rights.

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written

not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are

with any form of information storage and retrieval, electronic adaptation, computer software, or by similar

Springer is part of Springer Science+Business Media (www.springer.com)

Glenn H. Hurlbert
School of Mathematical and Statistical Sciences
Arizona State University
Tempe, AZ 85287-1804
USA
hurlbert@asu.edu

Editorial Board:
S. Axler K. A. Ribet
Mathematics Department Mathematics Department
San Francisco State University University of California at Berkeley
San Francisco, CA 94132 Berkeley, CA 94720
USA USA
axler@sfsu.edu ribet@math.berkeley.edu

ISBN 978-0-387-79147-0 e-ISBN 978-0-387-79148-7
DOI 10.1007/978-0-387-79148-7
Springer New York Dordrecht Heidelberg London

© Springer Science+Business Media, LLC 2010

Mathematics Subject Classification (2000): Primary: 90-01, Secondary: 05-01, 15-01, 52-01, 91-01

Library of Congress Control Number: 2009936080

Dedication

To Karen, for her constant love and support.
To Calvin and Kate, for patiently waiting for Daddy to play.
To Uncle Frank, who would have loved to read it.
To Mom, my teaching model.

Preface

The Subject

A little explanation is in order for our choice of the title Linear Opti-
mization1 (and corresponding terminology) for what has traditionally been
called Linear Programming. The word programming in this context can be
confusing and/or misleading to students. Linear programming problems
are referred to as optimization problems but the general term linear pro-
gramming remains. This can cause people unfamiliar with the subject to
think that it is about programming in the sense of writing computer code.
It isn’t. This workbook is about the beautiful mathematics underlying the
ideas of optimizing linear functions subject to linear constraints and the
algorithms to solve such problems. In particular, much of what we dis-
cuss is the mathematics of Simplex Algorithm for solving such problems,
developed by George Dantzig in the late 1940s.

The word program in linear programming is a historical artifact. When
Dantzig first developed the Simplex Algorithm to solve what are now called
linear programming problems, his initial model was a class of resource al-
location problems to be solved for the U.S. Air Force. The decisions about
the allocations were called ‘Programs’ by the Air Force, and hence the term.
Dantzig’s article2 is a fascinating description of the origins of this subject
written by the person who originated many of the ideas. Included is a de-
scription of how Tjalling Koopmans (who won a Nobel Prize in economics
for his work in decision science) suggested shortening Dantzig’s description
‘programming in a linear structure’ to ‘linear programming’ during a walk
on the beach with Dantzig. Also included is a note that, at the time, ‘code’
was the word used for computer instructions and not ‘program’.

To be clear to potential and current students that this is a mathemat-
ics course requiring a background in writing proofs and not a computer
coding class, we prefer the terminology linear optimization. We do look at
computer algorithms but focus on the underlying mathematics. A small
amount of computer coding (for example, simple MAPLE) programs will
be very useful, but writing code is not the central purpose of the course.
The shorthand LP has been used to refer to both the general subject of

1I’m not that original — there are at least a dozen books that use this terminology.
2G. Dantzig, Linear Programming, Operations Research 50 (2002), 42–47.

viii Preface

linear programming as well as specific instances of linear programs. To
distinguish, in our notation, LO (linear optimization) refers to the general
class of optimizing linear functions subject to linear constraints while LOP
(linear optimization problem) refers to specific instances of such problems.
Furthermore, using the optimization term brings the subject in line with
other, closely related fields that are increasingly called Optimization (Non-
linear, Quadratic, Convex, Integer, Combinatorial).

The Simplex Algorithm is the focus of study in this book. In par-
ticular, we do not discuss Karmarkar’s Algorithm or Khachian’s Ellipsoid
Algorithm or more general interior-point approaches to solving LOPs. The
main reason for this is that, as I hope you’ll experience, the Simplex Al-
gorithm leads to richer connections with linear algebra, geometry, combi-
natorics, game theory, probability, and graph theory. Furthermore, in the
post-optimality analysis that occurs in economic modeling and in Integer
Optimization, the Simplex Algorithm plays a central role.

Terminology

Besides the usage of LOP and ILOP, we introduce other quirks into
the language, mostly for handiness and consistency and occasionally for
fun. For example, we discuss four kinds of linear combinations, based on
whether or not the extra affine and conic conditions hold, so it makes sense
to use the similar notations lspan, aspan, nspan, and vspan for linear,
affine, conic, and convex (both affine and conic) combinations, respectively.
In particular, lspan makes more sense in this scheme than does span, the
more common term found in linear algebra texts. Geometric hulls get the
same treatment, with lhull, ahull, nhull, and vhull, respectively. For fun
we use the term FLOP (Fractional LOP) when we need to distinguish a
LOP from being an ILOP. Indeed, the first step in solving an ILOP is to
relax the integer constraints to allow for rationals and find the resulting
floptimal solution, which is used as a first approximation to the iloptimal
solution. The term BLOP refers to an ILOP whose variables are binary
(either 0 or 1).3 Also, when we discuss game theory, we talk about the
GLOP (Game LOP) derived from a game. We don’t go too much farther
down the self-parody road — hopefully there is no SLOP in the book.

I think we’re also the first LO book to use the term parameter in place of
nonbasic variable. That must be worth some kind of award, right? Actually,
I stole it from virtually every linear algebra text ever written.

Chapter Flow

Outlandish as it may seem, someone studying from this text will need
to start with Chapter 1, followed by Chapter 2. After that, there are many
directions of travel.

If and when you wish to study geometry, you’ll want to learn Chapter
3 before Chapter 8, but you can pretty much learn them whenever you

3Thus it is quite natural for many academics to be interested in BO.

Preface ix

want. No other chapter uses Chapter 3 explicitly, although it does offer
very beneficial intuition that permeates almost every other chapter. This
is why it is placed so early. Chapter 8, however, isn’t necessary for much
(unless one continues on to study graduate level optimization), but does
use material from Chapter 7 (and Section 8.4 needs Chapter 6) — and is
kind of fun.

Chapter 4 is really the heart of the course. Everything feeds off of
duality. This is why we derive the dual immediately in Section 1.1. Spend-
ing extra time here pays dividends later, as everything thereafter depends
critically upon it.

The material of Chapter 5 is useful for learning the tip of the how-
this-is-done-in-the-real-world iceberg. The ability to state and work with
everything in matrix form is a very useful skill in general, and in particular
comes in handy in Chapter 12. Thus it does not need to be studied before
any other chapter (if at all, as it is not essential material otherwise — in
fact, Chapter 5 is only crucial to proving Theorem 12.1.4).

Chapter 6 puts Chapter 4 in general context, and is required for all
subsequent chapters.

Chapter 7 contains material that is necessary for Chapter 8. Chapter 9
is not needed by anyone who doesn’t want to have a good time. Chapter 10
is required by Chapter 11, and Section 12.4 is key for Chapter 13. Chapters
7–13 offer the greatest flexibility for studying your favorite topics within a
semester’s time. Of course, you could slow down, spend extra time on the
exercises, and complete the whole book in two semesters. Have at it!

A visual description of the above dependencies is given below.

Book Format and Usage

It is not difficult to notice that this text is different from most, and not
just because I can’t resist even the lamest of jokes,4 so it may be worth
some discussion on why this is so, what benefits this may have for you, and
how best to take advantage of the new format.

First and foremost, a great deal of information is missing, information
that typically is included in mathematics texts. Having spent most of your

4Most of these require my age to understand anyway.

x Preface

life reading from such texts, you may be used to being fed facts and algo-
rithms, and well used to memorizing them in order to reproduce them on
exams. But I believe that you are capable of much more: of deriving results,
in fact, discovering them through experimentation, of making conjectures,
of proving theorems, of solving problems and checking them yourself, and
of asking creative questions. That’s what this format is all about, giving
your professor the opportunity to lead you through the kinds of experiences
that will develop your skills in each of these areas, helping you become a
highly critical thinking machine,5 able to wrestle with complex problems
in all areas of society, rather than just someone who went to college and
remembers a few math facts.

You may find that your classroom environment may also differ from
the norm. Many professors who use this will ask their students to par-
ticipate more in discussion, rather than simply listen to lectures. Some
may even ask their students to make daily presentations of the theorems
they’ve proven, the exercises and workouts they’ve solved, and the algo-
rithms they’ve written, in order to create an environment in which the
students become responsible for their own learning, questioning each other
for understanding, while the professor acts as a facilitator. Such an envi-
ronment may be upsettingly abnormal to you initially, but I promise you
will warm to it (indeed, embrace it) in time.

This form of discourse centers more on the learning than the teaching,
and those who engage in it deeply are affected (infected?) for life. My
hope is that you are enticed enough, not only by the material, but by the
interesting problems, challenging questions, and your professor’s invitation
to question, challenge, wonder, experiment, guess, and argue, to throw
your energies in this new direction so as to be stirred to the point that
it transforms the way you think about everything, from mathematics and
science, to politics and religion, to sports and fine arts. Be inquisitive, be
skeptical, be critical, be creative, and keep thinking.

Keep in mind, this isn’t some crazy, new, experimental pedagogy. This
approach is as old as it gets, predating all forms of formal classroom teach-
ing. It has come to be known by many names through the years: the So-
cratic Method, Discovery-Based Teaching, the Moore Method, and Inquiry-
Based Learning, among others. There are maybe two central tenets that
identify the philosophy.

• A thing isn’t true because someone says so or because it’s written in
a book, but because it is reasoned to be true.

• One doesn’t master something by hearing or seeing it, but by doing
it.

So what else can you do outside of the classroom in order to master this
material? Some students find that keeping a journal, separate from their
class notes, that holds all their proofs and solutions, can be quite useful.

5You can even wear a cape: leap tall buildings, etc.

Preface xi

This is especially true if one uses a word processor (LATEX is certainly best,
whether using AMSTeX on Linux, MiKTeX through WinEdt or Scientific
Word on Windows, or even with TeXShop on MacOS, although Microsoft
Word, with its Equation Editor should suffice), since the work can continue
to be edited and organized to follow the text. Also, do the workouts as you
read along, such as the very first one:

Workout 0 What pattern is there regarding Section 3 of each chapter?

The point of doing them as you go is partly to help you learn the material
by making sure you read the stuff (I can remember undergraduate books
that I wouldn’t read at all, instead just solving the exercises required for
homework by mimicking the examples — what kind of comprehension does
that foster?), and partly to help you learn the process of experimenting,
conjecturing, clarifying, strategizing, proof writing, and generalizing. That
will serve you long after you forget the Complementary Slackness Theorem.

On the other hand, you can simply distract yourself with the trivia
contest that floats throughout the book, signified by the ◦ in the margins.
Of course, you have to swear not to Google anything if you want to win.

Index

Just a small note about the Index. I believe that index entries should
signify what’s memorable, not important — importance should be indicated
by the page references instead. So in this era of inclusivity, I’ve thrown in
the kitchen sink. The main reason for this is that I don’t know how your
memory works. It doesn’t help you if you can’t find tractor pull because
it’s only listed under theological tractor pull and you couldn’t remember
the obvious connection to theology. So the index is fattened by including
various permutations of words. Also, even though tractor pull is not central
to the theory of linear optimization, in 25 years when you’re trying to
show your kids a nice example of how the theory works and all you can
remember is that awesome example with the tractor pull, you’ll thank me.
Plus, this adds an extra page to the book, which increases its cost by .037/c.
With about 2.7 million readers annually, my 1% commission generates an
extra deluxe cheeseburger per year, which in turn helps me satisfy the
requirements of Problem 1.1.1 for that day. While the entries are many,
I did make an effort to restrict the page references of the most common
terms to their most important instances.

With regard to the fonts you’ll encounter, theorems (in their full names)
are in italics, and page numbers that refer to definitions are in bold. (You’ll
notice that theorems and definitions find their way into the margins for
easy location.) Italicized page numbers denote appearances in theorems,
while sans serif numbers signal inclusion in workouts and exercises, and
roman fonts cite regular occurrences of the term. With regard to the order
of terms, mathematical symbols come first (numbers, then capital letters,
then lower case letters), followed by As,6 and then standard words.

6Short for Acronyms.

xii Preface

Thanks

I wish to express my gratitude to many people who have helped bring
this project to fruition. First and foremost is Garth Isaak, who really helped
me get the ball rolling in many ways and contributed a number of great
ideas at the start. Rob Hochberg and Nate Dean were excellent sounding
boards for crazy ideas, some of which found their way onto these pages
and some of which didn’t. The National Science Foundation was instru-
mental for funding the time for me to get the bulk of it up and going.
Several semesters worth of students tested early versions of the material,
and Josh Maximoff and Ben Hester in particular combed through many
exercises carefully. Other students, Sriram Penumatcha, Jake Hawkes, and
Josh Wolfe, developed WebSim with me, and Jennifer Broatch organized
the assessment of the book’s methods for the NSF. Much appreciation goes
to Harry Lucas and the Educational Advancement Foundation for support-
ing conferences and workshops dedicated to the pedagogical approach of
R.L. Moore, in particular, the Legacy of Moore Conferences at the Uni-
versity of Texas, and the Inquiry-Based Learning Workshops run by Stan
Yoshinobu, Ed Parker, Carl Leinart, and Jenny Smith. I will even thank
Mike Starbird for many a conversation more fruitful to me than he might
imagine. Francis Su’s MAA PREP Workshop on Combinatorial Geometry
and Mike Jones’s MAA Short Course on Game Theory were quite beneficial
as well. Several colleagues piloted versions of the course at various stages of
development and offered significant feedback, including Dan Biebighauser,
Nancy Childress, Steven Dunbar, Mark Ellingham, Gary Gordon, Donovan
Hare, and Attila Sali. Many thanks are due to those who helped me with
foreign language translations: Hélène Barcelo, Airat Bekmetjev, Anthony
Chambers, Gil Kalai, Vikram Kamat, Irina Long, Rose Sau Lugano, Mkam-
buri Lyabaya, Faris Odish, Andrea Richa, Derar Serhan, Nandor Sieben,
and Jennifer Tom, and especially to Klaus Lagally, Dominik Wujastyk, and
Rajiv Monsurate for their assistance with LATEX language packages (and
to Renate Mittelmann for loading things for me). Of course, I really also
need to thank Don, not only for creating TEX in the first place, but also◦
for the excellent sense of taste and humor displayed in his own texts, not
that I stole any ideas or anything. The Coffee Buzz, Lilo’s Coffee Haus,
The Harem, Bunna Coffee & Tea Market, Steve’s Espresso, Extreme Bean
Coffee Co., and Gold Bar Espresso deserve much credit for comfortable and
creative writing environments (sorry if your copy has any coffee stains on
it). Finally, the tremendous group at Springer deserves a raise for putting
up with me: Vaishali Damle, Frank Ganz, Marcia Bunda, Frank McGuckin,
and players to be named later.7

Feedback

Thanks to the many students and professors and editors (in particular,
Christopher Curioli) who combed through this book before its printing, the

7I might trade for some draft picks.

Preface xiii

text would have been perfect if not for me. Any errors in typography or
content that remain are clearly the fault of some guy I met on the bus
one day who distracted me, scattering errors of varying types throughout
the book. If you tell me about them I’ll be sure to let him know if I ever
happen to see him again. I will also try to correct them before the 7th

edition. From my web site (search for Hurlbert math homepage), click on
the LinOpt logo and scroll down to the Submit Feedback link. You can
search to see if your idea has already been posted, and otherwise post it
by Chapter, Section, and Type of Error for others to see, and it will be on
queue for the next revision.

Disclaimer

This material is based upon work supported by the National Science
Foundation under Grant No. 0443087. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the National Science Foundation.

Contents

Preface vii

1 Introduction 1
1.1 The Diet Problem . 1
1.2 The Matching Problem . 4
1.3 Un Problema de la Práctica 7
1.4 Standard Form and the Dual 8
1.5 Exercises . 12

2 The Simplex Algorithm 29
2.1 Geometric Lens . 29
2.2 Algebraic Lens . 32
2.3 � ��

�
� ��	
� . 37

2.4 Infeasible Basis . 38
2.5 Shortcut Method . 41
2.6 Infeasibility . 45
2.7 Unboundedness . 47
2.8 Cycling . 48
2.9 The Fundamental Theorem 49
2.10 Exercises . 50

3 Geometry 59
3.1 Extreme Points . 59
3.2 Convexity . 61
3.3 小试牛刀 . 64
3.4 Carathéodory’s Theorem . 65
3.5 Exercises . 67

4 The Duality Theorem 73
4.1 Primal-Dual Relationship 73
4.2 Complementary Slackness Conditions 77
4.3 Jizoezi, Jizoezi, Jizoezi . 79
4.4 Finding Optimal Certificates 80
4.5 Exercises . 82

xv

xvi Contents

5 Matrix Environment 89
5.1 Format and Dictionaries . 89
5.2 Simplex Phases and Advantages 91
5.3 ŇĚĆŸŽ ŽĘŮ . 97
5.4 Basic Coefficients . 98
5.5 Exercises . 100

6 General Form 107
6.1 Nonstandard Duals . 107
6.2 General Simplex and Phase 0 110
6.3 Plus de Pratique . 113
6.4 General Duality and Slackness 113
6.5 Exercises . 115

7 Unsolvable Systems 119
7.1 Infeasible Certificates . 119
7.2 Inconsistency . 122
7.3 i�� a���� ��� . 124
7.4 Unsolvable Subsystems . 124
7.5 Exercises . 126

8 Geometry Revisited 129
8.1 Helly’s Theorem . 129
8.2 Permutation Matrices . 131
8.3 Pratique de Novo . 134
8.4 Cones . 134
8.5 Exercises . 137

9 Game Theory 145
9.1 Matrix Games . 145
9.2 Minimax Theorem . 147
9.3 Bitte Praxis . 150
9.4 Saddles . 151
9.5 Exercises . 155

10 Network Environment 163
10.1 Shipping . 163
10.2 Trees . 167
10.3 Nilai! . 172
10.4 Integrality . 173
10.5 Exercises . 174

11 Combinatorics 183
11.1 Matchings . 183
11.2 Covers . 185
11.3 もっと練習しましょう . 188
11.4 Systems of Distinct Representatives 189

Contents xvii

11.5 Exercises . 190

12 Economics 195
12.1 Shadow Prices . 195
12.2 Reduced Costs . 200
12.3 Gyakoroljon egy Kicsit . 202
12.4 Dual Simplex . 203
12.5 Exercises . 206

13 Integer Optimization 209
13.1 Cutting Planes . 209
13.2 Branch-and-Bound . 215
13.3 Posledn�� Praktika . 221
13.4 Integer Certificates . 222
13.5 Exercises . 223

A Linear Algebra Review 231

B Equivalence of Auxiliary and Shortcut Methods 235

C Complexity 241
C.1 P versus NP . 241
C.2 Examples . 243
C.3 LO Complexity . 244

D Software 247
D.1 WebSim . 247
D.2 Algorithms . 248
D.3 MAPLE . 250

Index 257

Chapter 1

Introduction

1.1 The Diet Problem

Problem 1.1.1 Imagine that your entire class is allowed to eat from the
following menu. A hamburger, a chicken sandwich, a fish sandwich, and
a deluxe cheeseburger (water will be your only beverage). The game is
that your meal must satisfy certain percentages of the USRDA of Vitamin
A, Vitamin C, Calcium, and Iron, and the winner will be the person who
consumes the fewest calories. The table below contains all the necessary
information regarding percentages of USRDA and number of calories for
each item and for the requirements. Keep in mind that, while you must
buy whole number amounts of each item, you are allowed to eat fractional
amounts of each item. To add excitement, the winner will receive what
Carol Merrill is hiding behind door number 3. ◦

%A %C %Calc %Iron Calories

Hamburger 4 4 10 15 250
Chicken 8 15 15 8 400
Fish 2 0 15 10 370
Cheeseburger 15 6 30 20 490

Requirements 10 10 15 15

For example, if one ate the chicken and the cheeseburger, that would
amount to the percentages of 23, 21, 45, and 28, along with 890 calories.
Another could eat exactly half of that, but then would fail the Iron re-
quirement, needing 2 more percentage points. Eating an extra one tenth of
the cheeseburger would make up that difference, increasing her total calorie
intake to 494, a great improvement over 890. Still better, a third person
could decide on eating two fifths of each of the hamburger, chicken, and
cheeseburger. This satisfies the four requirements with only 456 calories.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 1, c© Springer Science+Business Media LLC 2010

2 Chapter 1. Introduction

Workout 1.1.2 Find a menu that satisfies the requirements while consum-
ing fewer than 456 calories.

How low can one go? Is it possible to consume fewer than 400 calories
under these conditions? Less than 350? Before we try to answer this, let
us first try to set the problem in more precise mathematical terms.

If we set y1 through y4 to be the amounts consumed of hamburger
through cheeseburger, respectively, then we come upon the following obser-
vations. The total percentage of Vitamin A eaten is 4y1 +8y2 +2y3 +15y4.
By the above discussion, this quantity should be at least 10. We can carry
out the same analysis on the other nutrients as well, and in fact, the quan-
tity we would like to minimize is 250y1+400y2+370y3+490y4, the number
of calories consumed. So we can succinctly display our challenge mathe-
matically as follows.

Problem 1.1.3

Minimize w = 250y1 + 400y2 + 370y3 + 490y4

subject to 4y1 + 8y2 + 2y3 + 15y4 ≥ 10
4y1 + 15y2 + 6y4 ≥ 10

10y1 + 15y2 + 15y3 + 30y4 ≥ 15
15y1 + 8y2 + 10y3 + 20y4 ≥ 15

and y1 , y2 , y3 , y4 ≥ 0

Notice that we haven’t forgotten how difficult (actually unsightly) it is
to consume a negative amount — these nonnegativity constraints arenon-

negativity/
problem

constraint

quite common in many similar problems and shouldn’t be neglected. The
other constraints, called problem constraints, are all linear inequalities
(linear referring to the absence of terms like y1y3 and y2

4 in the sum), the
only types of inequalities we will consider here. The final building block
of this (and every) linear optimization problem (LOP) is what we call theLOP

objective function, and we often reserve a separate variable for it, say w.
objective
function

As we begin to formalize the LOP in this way, it becomes easier to
think about answering the problem of how low we can go with calories.
For example, if we multiply the third constraint by 15 we see that 150y1 +
225y2 + 225y3 + 450y4 ≥ 225. This leads to the following lower bound.

w = 250y1 + 400y2 + 370y3 + 490y4
≥ 150y1 + 225y2 + 225y3 + 450y4
≥ 225.

Carefully, let’s think of why we can reason that w ≥ 150y1 + 225y2 +
225y3 + 450y4. It is not simply because 250 ≥ 150, and so on, but because
we know that y1 ≥ 0, and so on. Because of both of these two facts, we
have 250y1 ≥ 150y1, and so on.

1.1. The Diet Problem 3

We can improve our lower bound to 350 by multiplying the first, second,
and fourth constraints each by 10, and then adding them together. Check
closely to see that these next inequalities hold true.

w = 250y1 + 400y2 + 370y3 + 490y4
≥ 230y1 + 310y2 + 120y3 + 410y4
= 10(4y1 + 8y2 + 2y3 + 15y4)

+10(4y1 + 15y2 + 6y4)
+10(15y1 + 8y2 + 10y3 + 20y4)

≥ 10(10) + 10(10) + 10(15).
= 350.

With just a minor adjustment (use 11 in place of the second and third
10s), 375 becomes a slightly better lower bound. Can you push the lower
bound above 400?

Workout 1.1.4 Find a lower bound that is greater than 375 calories.

At this point, it seems we are splashing in the same kind of water we
started in. It is nice to know the answer lies somewhere between 375 and
456, but we are resorting to hit-or-miss guessing. It works up to a point,
say, right about here. Certainly, if the LOP involved many more variables
or constraints, we’d have had to abort much sooner. The aim of this scroll
is to consider precisely this kind of analysis and see where it leads us.
Soon, it will lead us to an algorithmic solution by the famous Simplex
Algorithm, to the theory of Duality, and to a myriad of fascinating and
powerful applications. While we were considering lower bounds, we were in
the process of building the very similar LOP, known as its dual, below.

Problem 1.1.5

Maximize z = 10x1 + 10x2 + 15x3 + 15x4

subject to 4x1 + 4x2 + 10x3 + 15x4 ≤ 250
8x1 + 15x2 + 15x3 + 8x4 ≤ 400
2x1 + 15x3 + 10x4 ≤ 370

15x1 + 6x2 + 30x3 + 20x4 ≤ 490

and x1 , x2 , x3 , x4 ≥ 0

Notice the similarities, as well as the subtle differences, between Prob-
lems 1.1.3 and 1.1.5. We will discuss their dual relationship in detail in
Chapter 4. For now be amazed that if z∗ is the maximum z under these con-
ditions, and w∗ is the minimum w subject to its constraints, then z∗ = w∗!
This impressive result is called the Strong Duality Theorem 4.1.9 and it
plays a most central role in this course. It has surprising and powerful
implications in fields as dissimilar as Game Theory, Linear Algebra, Com-
binatorics, Geometry, and Economics.

4 Chapter 1. Introduction

Workout 1.1.6 (Weak Duality Theorem) Suppose that the set of yi

satisfies the constraints of Problem 1.1.3 and produces the objective value w.
Suppose also that the set of xj satisfies the constraints of its dual Problem
1.1.5 and produces the objective value z. Use all the constraints together to
prove that z ≤ w.

Now to satisfy your curiosity, let’s present the solution. The winner will
consume roughly 424.156 calories (exactly w∗ = 766450/1807) by eating
y∗1 = 535/1807 of the hamburger, y∗2 = 810/1807 of the chicken sandwich,
y∗3 = 0 of the fish sandwich, and y∗4 = 630/1807 of the cheeseburger deluxe
(see Exercise 2.10.6). (We use the star superscript to connote optimal
values.) One of the charming qualities of Linear Optimization is that we
can be easily convinced of the minimality of this particular solution without
showing any of the details which led to its discovery. We simply multiply
the first constraint by x∗1 = 27570/1807, the second by x∗2 = 24880/1807,
and the fourth by x∗4 = 16130/1807, and then add them up (we could say
that we also multiply the third constraint by x∗3 = 0). How these figures
were obtained is for future lectures.

What is significant is that, while the yis offer a proposed optimal solu-
tion, the xjs provide a certificate of their optimality. The existence ofcertificate

certificates is a hallmark of Linear Optimization. While finding optimal
solutions may be time consuming, checking their optimality is trivial. The
same cannot be said of Calculus, for example — how do you know your
answer is correct without redoing the problem?

One final note: observe that the diet solution included only rational
values for the y∗i s, x∗j s and w∗ = z∗. This is no coincidence. While poly-
nomials of degree at least two in one variable with integer coefficients can
have irrational roots (e.g., x2 − 2), linear functions can only have rational
roots. Likewise, Cramer’s Rule (recall your Linear Algebra here!) gives a
formula for the solution of a multivariable linear function in terms of ra-
tios of determinants. Thus if the coefficients are integers only then so are
the determinants, and hence the solutions can only be rational. How this
relates to solutions of LOPs we will see in Chapter 5.

1.2 The Matching Problem

Problem 1.2.1 The Mathematics Department has 10 courses it would like
to offer during a particular time slot. Luckily, there are 10 professors avail-
able to teach at that time. They, and their qualifications are: Aguilera,
Math 401, 402, 407, and 409; Backman, Math 400, 403, 404, 405, and◦
408; Carter, Math 404 and 406; Dykstra, Math 404 and 406; Elster, Math
400, 402, 403, 405, and 408; Fernandez, Math 402, 404, and 406; Gooden,
Math 401, 406, 407, and 409; Hernandez, Math 404 and 406; Innis, Math
402 and 406; and Johnson, Math 402 and 404. How many of these courses
can the department actually offer at that time?

It is a bit difficult to digest all of that information in one gulp. One

1.2. The Matching Problem 5

way of presenting the information visually is as a bipartite graph A graph graph

is a pair (V,E), where V is a set of vertices and E is a set of edges, each
vertex

edge

edge being an unordered pair of two vertices. The graph is bipartite if V

bipartite
graph

can be split into two parts with every edge containing a vertex from each
part. Those of you familiar with that term may also be familiar with this
Matching Problem. For others, you simply list the professors in a vertical
column on the left side of a sheet of paper (go ahead and do it!), list the
courses in a vertical column on the right side, and draw a line connecting
each professor to each of the classes he or she can teach. It’s still a mess,
isn’t it? What if, by sheer fancy, you listed the professors in the order B, E,
H, J, D, F, I, C, A, and G, and the courses in the order 5, 8, 0, 3, 4, 2, 6, 7,
9, and 1? (Try it!) Now something interesting might pop out at you. Notice
that the four courses 5, 8, 0, and 3 have among them only the 2 professors
B and E who are qualified to teach them, so some two of those courses
cannot be offered. Also, A and G are the only professors able to teach 7, 9,
and 1, so another course will be lost. So far we know at least three classes
cannot be offered, and without too much trouble you can probably find a
way to match 7 different professors to 7 different courses, thus answering
the question. Such a pairing of professors and courses corresponds to what
we call a matching in the corresponding bipartite graph: a set of edges matching

that share no endpoints.

Workout 1.2.2 Find a matching of size 7 in the above bipartite graph.

Likewise, one can see that, among the 6 professors H, J, D, F, I, and C,
the only courses they are qualified to teach are 4, 2, and 6, so some three
of these professors will not be able to teach. We call the set {B, E, A, G,
4, 2, 6} a cover because every pair (X,j), where professor X is qualified cover

to teach course 400 + j, involves at least one of the members of that set.
(Technically, a set of vertices is a cover if every edge has at least one of
its endpoints in the set.) It is no coincidence that the size of this set is 7.
Rather it is a consequence of the König–Egerváry Theorem 11.2.8, which
itself is a consequence of the Duality Theorem, surprise, surprise. We will
see this theorem later in the course as well.

Workout 1.2.3 Use the definitions of matching and cover to prove that
the size of any matching in a bipartite graph is at most the size of any
cover.

Of course, with a larger problem, it may not be so easy to spot the kind
of thing we spotted here. Let’s see if there is another way to represent the
information we are given. Instead of listing the courses vertically, list them
horizontally so that we can define a 10× 10 matrix C, with C(i, j) = 1 if
the professor whose initial is the ith letter of the alphabet is qualified to
teach course 400 + j, and C(i, j) = 0 otherwise.

6 Chapter 1. Introduction

C 0 1 2 3 4 5 6 7 8 9
1 0 1 1 0 0 0 0 1 0 1
2 1 0 0 1 1 1 0 0 1 0
3 0 0 0 0 1 0 1 0 0 0
4 0 0 0 0 1 0 1 0 0 0
5 1 0 1 1 0 1 0 0 1 0
6 0 0 1 0 1 0 1 0 0 0
7 0 1 0 0 0 0 1 1 0 1
8 0 0 0 0 1 0 1 0 0 0
9 0 0 1 0 0 0 1 0 0 0
10 0 0 1 0 1 0 0 0 0 0

We know the total number of courses a particular professor teaches at
this time is at most 1. Let’s define a set of variables xi,j (1 ≤ i ≤ 10,
0 ≤ j ≤ 9) which take on the value xi,j = 1 if professor i ends up teaching
course 400 + j, and xi,j = 0 otherwise. Then we can translate the above
observation into the linear inequality x1,1 + x1,2 + x1,7 + x1,9 ≤ 1. But this
interpretation doesn’t rule out x1,4 = 1, for example.

Let’s write this inequality more generally as c1,0x1,0 + c1,1x1,1 + . . . +
c1,9x1,9 ≤ 1, with the interpretation that professor i teaches course 400 + j
if and only if both xi,j = ci,j = 1. In this way, each row of C determines a
constraint, and by similar considerations, each column does the same. Like-
wise, if we add up every possible product ci,jxi,j , we get the total number
of courses that will be taught, and this is what we want to maximize. Thus
we have modeled the problem by the following LOP.

Problem 1.2.4

Max. z =
∑10

i=1

∑9
j=0 ci,jxi,j

s.t.
∑9

j=0 ci,jxi,j ≤ 1 for 1 ≤ i ≤ 10
∑10

i=1 ci,jxi,j ≤ 1 for 0 ≤ j ≤ 9

& xi,j ≥ 0 for 1 ≤ i ≤ 10, 0 ≤ j ≤ 9.

Notice that the values xi,j = 1/6 for each variable yield a feasible so-
lution to Problem 1.2.4 producing an objective value of 31/6. How can
anyone teach a sixth of a class, and how can 5.166... classes be offered? It
seems there should be one last constraint included in the statement of the
problem, that being each variable xi,j should be an integer (that xi,j ≤ 1
is already implied).

Integer Optimization is a subject which deals with the same programs
as Linear Optimization, but with the added constraint that every variable
must be an integer. We will not deal with integer linear optimization prob-
lems (ILOPs) here, but you can imagine in calculus trying to maximize aILOP

continuous function of one variable, but restricting your attention to integer

1.3. Un Problema de la Práctica 7

values in the domain. The true maximum of 1000 might occur at x = 1/2,
but the function near 1/2 might be so spiked that it quickly drops below
zero, so fast that f(x) < 0 for every .1 < |x − 1/2| < 50. Finally, the
function rises to an eventually constant level of 6. In this case, maybe the
integer maximum over the interval [0, 100] is 6, far lower than 1000, and
maybe it occurs at x = 100, nowhere near 1/2. Although we are looking
only at linear objective functions, we are also involving many (sometimes
thousands of) variables, so it should not be surprising that the integer op-
timum can be so unrelated to the true optimum. For example, consider the
following simple LOP below.

Problem 1.2.5

Max. z = x1 + 1000x2

s.t. x1 + 625x2 ≤ 500

& x1 , x2 ≥ 0

Workout 1.2.6 Prove that Problem 1.2.5 attains its linear maximum of
800 at (0, .8), but its integer maximum of only 500 is far off at (500, 0).
[HINT: Would graphing help?]

Have we set this up enough so that what we are about to say is truly
amazing? It turns out to be a consequence of the Integrality Theorem
(Theorem 10.4.1) that our Matching Problem (Problem 1.2.4) has a linear
maximum solution involving only integer-valued xi,j — that is, in this case,
because this problem has a particularly nice structure, the Integrality The-
orem says that the integer constraints are quite unnecessary! How different
in nature from the Diet Problem this is. We will see this theorem toward
the end of the course, and again, it will be a simple observation of the
workings of the Simplex Algorithm in a particular setting.

1.3 Un Problema de la Práctica

Consider the following LOP.

Problem 1.3.1

Max. z = x1 + x2

s.t. 3x1 + 5x2 ≤ 90
9x1 + 5x2 ≤ 180

x2 ≤ 15

& x1 , x2 ≥ 0

8 Chapter 1. Introduction

Workout 1.3.2

a. Graph the constraints of Problem 1.3.1.

b. Recall from Calculus where in the domain maxima are al-
lowed to occur. Which of these can be ruled out in this
case?

c. Use parts a and b and a little algebra to find the values of
x∗1, x∗2 and z∗.

1.4 Standard Form and the Dual

Now let’s discuss some terminology. Problem 1.3.1 is one which we will refer
to as being in standard form. There are three reasons for this. First, it isstandard

form a maximization rather than minimization problem. Second, all the linear
inequalities have the linear combination of variables less than or equal to a
constant, as opposed to greater than or equal to, or equal to. Third, every
variable is nonnegative. As the course progresses, we will consider variations
on each of these themes; minimization problems, equality constraints, and
variables which can take on negative values. We will always group the
components of the problem as above; the objective function, followed by
the problem constraints, followed by the nonnegativity constraints.

Minimization LOPs are not significantly different from maximization
LOPs for the simple reason that a change of variable converts one to the
other. For example, let v = −z. Then max z = − min v. Likewise,
any inequality

∑
ajxj ≥ b can rewritten as

∑
−ajxj ≤ −b, so reversing

an inequality is not difficult. In fact, restricting our attention solely to
equalities (still with all variables nonnegative) may seem like a qualitative
change in our format, but this too is not so different. With the introduction
of another inequality, one can convert an equality to standard form as
follows. Given

∑
ajxj = b, we can replace it by the pair

∑
ajxj ≤ b

and
∑
ajxj ≥ b, the latter of the pair then reversed as discussed. Any

inequality
∑
ajxj ≤ b can be converted to the equality

∑
ajxj + s = b

with the introduction of what we call a slack variable s, which itselfslack/
problem
variable

must be nonnegative. (Variables which are original to the LOP are called
problem variables.)

So far, it seems that any problem we start out with can be put into
standard form without much trouble. Is this true? Any explicit upper
bound on a nonnegative variable, such as in Problem 1.3.1, can be consid-
ered merely as one of the problem constraints. An explicit lower bound of
xj ≥ l can be converted to x′j ≥ 0 via the substitution x′j = xj − l (in
which case the substitution must be carried out in the objective function
and problem constraints as well). If a variable xj has no explicit lower
bound, but does have an explicit upper bound xj ≤ l, then we use the
substitution x′j = l− xj ≥ 0. In any of these cases the variable xj is called
restricted, while if xj has neither an explicit upper or lower bound then itrestricted/

free
variable

is called free. In this last case, we can use the substitution xj = x+
j − x−j ,

1.4. Standard Form and the Dual 9

with x+
j ≥ 0 and x−j ≥ 0. Thus it is true that any linear problem can be

altered so as to be in standard form.

Workout 1.4.1 Convert Problem 1.3.1 into the form of equalities with free
variables. [MORAL: The form of equalities with free variables is not as general

as the standard form of inequalities with restricted variables.]

Problem 1.4.2

Min. z = x2

s.t. −2x1 + 3x2 ≥ 12
6x1 + 5x2 = 30

& x2 ≥ 0

Workout 1.4.3 Write Problem 1.4.2 in standard form.

Workout 1.4.4 Solve Problem 1.4.2. [HINT: It may be easiest to do in its

original form.]

We will often use vectors and matrices to convey information, and unless
otherwise stated, all vectors will be of the column variety. Thus every
problem in standard form (written in summation form),

Maximize z =
∑n

j=1 cjxj

subject to
∑n

j=1 ai,jxj ≤ bi for 1 ≤ i ≤ m

and xj ≥ 0 for 1 ≤ j ≤ n

(1.1)

can be written in matrix form as

Max. z = cTx

s.t. Ax ≤ b

& x ≥ 0 ,

(1.2)

where cT = (c1, . . . , cn), x = (x1, . . . , xn)T, b = (b1, . . . , bm)T, 0 is the

(n × 1) column vector of all zeros, and A = [ai,j] is the (m× n) matrix of
coefficients in the problem constraints.

Workout 1.4.5 Write the matrix A and vectors c, x and b for the stan-
dard form version of Problem 1.3.1.

10 Chapter 1. Introduction

Before we try to solve Problem 1.3.1, let’s continue our habit of looking
for estimates. We call a point (vector, solution) x feasible if it satisfies all(in)feasible

point/
solution

the problem and nonnegativity constraints, and infeasible otherwise. (An
infeasible problem is one that has no feasible points — its constraints

infeasible/
unbounded

problem

are unsolvable. An unbounded problem is a feasible problem with no
optimum.) Thus, we can say that we are trying to maximize the function
z = z(x) over all feasible points x. (We will also call a particular objective
value feasible if it is equal to z(x) for some feasible x.) If we denote this

feasible
objective

value

maximum by z∗, then z∗ ≥ z(x) for all feasible x. In Problem 1.3.1, since
the point x = (10, 12)T is feasible and z(10, 12) = 22, we get z∗ ≥ 22.
In contrast, it doesn’t help to compute z(10, 13) = 23 because the point
(10, 13)T is infeasible. It cannot, then, help us to determine if z∗ ≥ 23 or if
z∗ ≤ 23.

In order to get an upper bound we might notice that z = x1 + x2 ≤
12x1 +11x2, because from x1, x2 ≥ 0 follow both 12x1 ≥ x1 and 11x2 ≥ x2.
We didn’t just pull 12 and 11 out of a hat: 12x1 + 11x2 = (3x1 + 5x2) +
(9x1 + 5x2) + (x2). From here, we can use the problem constraints to
say (3x1 + 5x2) + (9x1 + 5x2) + (x2) ≤ 90 + 180 + 15 = 285. All of this
implies z = z(x) ≤ 285 for all feasible x, which means z∗ ≤ 285. A better
upper bound would be found by lowering the estimate 12x1 + 11x2 on z,
for example,

z = x1 + x2 =
1
12

[12x1 + 12x2]

≤ 1
12

[(3x1 + 5x2) + (9x1 + 5x2) + 2(x2)]

≤ 1
12

[300] = 25 ,

so that z∗ ≤ 25.
Here, we just used the multipliers y1 = 1

12 , y2 = 1
12 , and y3 = 1

6 ,dual
multipliers respectively, on the problem constraints 1, 2, and 3. Because each of these

multipliers was nonnegative, none of the inequalities got turned around.
We could hope to use the following analysis as a general upper bound.

z = x1 + x2 ≤ (3y1 + 9y2)x1 + (5y1 + 5y2 + y3)x2

= y1(3x1 + 5x2) + y2(9x1 + 5x2) + y3(x2)
≤ y1(90) + y2(180) + y3(15) = w.

For this we would need the coefficients in the first inequality to either
increase or stay the same, that is 1 ≤ 3y1 + 9y2 and 1 ≤ 5y1 + 5y2 +
y3. Under these conditions, we would be clever to find which nonnegative
multipliers would produce the smallest upper bound w. In other words, we
have constructed the following LOP.

1.4. Standard Form and the Dual 11

Problem 1.4.6

Min. w = 90y1 + 180y2 + 15y3

s.t. 3y1 + 9y2 ≥ 1
5y1 + 5y2 + y3 ≥ 1

& y1 , y2 , y3 ≥ 0

Problem 1.4.6 is called the dual to Problem 1.3.1, which we will often primal/
dual
problem/
variable

refer to as the primal problem. The variables belonging to each will also be
named primal and dual, respectively.1 In general, we can write the primal
and dual problems, written in summation form,

z, cj , xj

w, bi, yi

ai,j

Primal

Max. z =
∑n

j=1 cjxj

s.t.
∑n

j=1 ai,jxj ≤ bi (1 ≤ i ≤ m)

& xj ≥ 0 (1 ≤ j ≤ n)

Dual

Min. w =
∑m

i=1 biyi

s.t.
∑m

i=1 ai,jyi ≥ cj (1 ≤ j ≤ n)

& yi ≥ 0 (1 ≤ i ≤ m)

in matrix form as

c, x

b, y

A

Max. z = cTx

s.t. Ax ≤ b

& x ≥ 0

Min. w = bTy

s.t. ATy ≥ c

& y ≥ 0 .

Then, for every primal-feasible x and dual-feasible y, we have

Inequality 1.4.7 Weak
Duality
Theorem

z =
n∑

j=1

cjxj ≤
n∑

j=1

(m∑

i=1

ai,jyi

)

xj =
m∑

i=1

(n∑

j=1

ai,jxj

)

yi ≤
m∑

i=1

biyi = w .

This means that z∗ ≤ w∗, because the inequality holds for every pair of
feasible values z and w, z∗ and w∗ being one particular case. This primal-
dual relationship can be expressed more succinctly as

z = cTx ≤ yTAx ≤ yTb = w .

It is important that we remember that these inequalities can only be used
when both x and y are feasible (in particular, nonnegative — see Exercise
1.5.9)!

1While the meaning of the primal variables is given in the problem, the meaning of
the dual variables is not as transparent, but is discussed in Chapter 12.

12 Chapter 1. Introduction

It is also instructive to note that, because of weak duality, if we ever
come across x and y that satisfy cTx = yTb, then we know we have found
both z∗ and w∗. While such x and y can be found by solving the respective
primal and dual LOPs, we will see in Chapter 4 that, once x∗ has been
found, we can produce the certificate of optimality y∗ without solving the
dual (see Exercise 1.5.10).

1.5 Exercises

Practice

1.5.1 Write each of the following LOPs in standard form.

a.

Max. z = 2x1 − 3x2

s.t. x1 + 2x3 ≤ 5
−4x1 + x2 + 3x3 ≤ 8
−x1 + 4x2 − 9x3 ≥ 3

3x2 + 3x3 ≤ 5

& x1 , x2 , x3 ≥ 0

b.
Min. w = −5y1 + y2

s.t. 3y1 + 4y2 ≤ −3
y1 − 2y2 ≤ −2

6y1 ≤ 1

& y1 ≥ 0

c.

Min. w = 4y1 − 6y2 − 2y3

s.t. −2y1 + 3y3 = 5
y2 − 2y3 ≤ 7

& y1 , y2 , y3 ≥ 0

1.5. Exercises 13

1.5.2 Consider the following LOP P .

Max. z = 4x1 + 8x2

s.t. x1 − x2 ≤ −1
2x1 − x2 ≤ 5
−3x1 − x2 ≤ −3

2x1 + x2 ≤ 7
10x1 + x2 ≤ 20

& x1 , x2 ≥ 0

Decide whether each of the following solutions are feasible or infeasible.

a. x = (2, 3)T;
b. x = (1, 4)T;
c. x = (0, 7)T.
d. Graph the set of points that satisfy the constraints of P .

1.5.3 Consider the following LOP P .

Max. z = 3x1 + 3x2 + 3x3

s.t. −5x1 + x3 ≤ −1
4x1 + 5x2 + 6x3 ≤ 14

− 3x3 ≤ 1
x1 − 7x2 − x3 ≤ −5

& x1 , x2 , x3 ≥ 0

Decide whether each of the following solutions are feasible or infeasible.

a. x = (73, 34, 0)T/33;
b. x = (55, 62, 166)T/109;
c. x = (1, 1, 1)T.
d. Draw the set of points that satisfy the constraints of P .

[HINT: First reduce the number of constraints by discarding re-

dundant ones (constraints that are implied by a collection of

other constraints).] [MORAL: A little 3-dimensional drawing

and visualization never hurt anyone!]

1.5.4 Consider the following LOP P .

Max. z = 2x1 − 3x2 + 4x4 − x5

s.t. x1 + x2 + 3x5 ≤ 2
2x1 + x4 − x5 ≤ 6

x3 + 2x4 + 3x5 ≤ 4

& x1 , x2 , x3 , x4 , x5 ≥ 0

14 Chapter 1. Introduction

Decide whether each of the following solutions are feasible or infeasible.

a. x = (11, 0, 0, 0, 4)T/3;

b. x = (2, 0, 0, 2, 0)T;

c. x = (0, 2, 0, 2, 0)T.

1.5.5 Consider the following LOP P .

Max. z = 3x1 + 4x2

s.t. 2x1 − 3x2 ≤ 3
4x1 + x2 ≤ 6
x1 + x2 ≤ 5

& x1 , x2 ≥ 0

a. Find a primal feasible solution x and its corresponding ob-
jective value z = z(x).

b. Write the LOP D that is dual to P .

c. Find a dual feasible solution y and its corresponding ob-
jective value w = w(y).

d. What upper and lower bounds do parts a and c produce for
z∗?

1.5.6 Repeat Exercise 1.5.5 N times, each with a different modestly sized
LOP of your own design. [MORAL: Many exercises in the book can be repeated

by the reader simply by making up a new LOP.]

1.5.7 Consider the following LOP P

Max. z = 5x1 + 5x2 + 5x3

s.t. x1 + 2x2 + 3x3 ≤ 4
4x1 + 3x2 + 2x3 ≤ 1

& x1 , x2 , x3 ≥ 0

a. Write the matrices A,b, c which correspond to P .

b. Write the LOP D that is dual to P .

c. Prove, for this particular P and D, that z ≤ w, as in
Inequality 1.4.7. Explain each step.

1.5.8 Repeat Exercise 1.5.7 N times, each with a different modestly sized
LOP of your own design. Try LOPs for which the number of variables is
different from the number of problem constraints.

1.5. Exercises 15

1.5.9 Consider the following LOP.

Max. z = x1 + 2x2 + 3x3 + 4x4

s.t. x1 + 3x2 + x3 + 4x4 ≤ 6
x1 + 7x2 + 3x3 + 9x4 ≤ 12
x1 + 6x2 + 5x3 + 9x4 ≤ 8

& x1 , x2 , x3 , x4 ≥ 0

a. Find the dual multipliers that yield the following constraint.

x1 + 2x2 + 3x3 + 4x4 ≤ 2

b. Does it follow from part a that z∗ ≤ 2?

[MORAL: Multipliers of standard form LOP constraints must be nonnegative!]

1.5.10 Consider the following LOP P .

Max. z = −12x1 − 11x2 − 13x3

s.t. −x1 + x2 ≤ −2
− x2 − x3 ≤ −3

x1 + x3 ≤ 5

& x1 , x2 , x3 ≥ 0

a. Write the LOP D that is dual to P .
b. Consider the point x = (2, 0, 3)T.

(i) Show that x is P -feasible.
(ii) Find z(x).

c. Consider the point y = (12, 13, 0)T.
(i) Show that y is D-feasible.
(ii) Find w(y).

d. Use parts b and c to find z∗.
e. Consider the point y = (13, 14, 1)T.

(i) Show that y is D-feasible.
(ii) Find w(y). [MORAL: a given LOP may have several op-

timal solutions.]

1.5.11 Consider the following LOP P .

Max. z = 5x1 + 3x2

s.t. x1 + 2x2 ≤ 14
3x1 − 2x2 ≤ 18
x1 − 2x2 ≥ −10

& x1 , x2 ≥ 0

16 Chapter 1. Introduction

a. Graph the system of constraints of P .

b. Draw the following lines on your graph in part a. (These
are usually referred to as level curves in Calculus, orlevel

curves/
contour

lines

contour lines in cartography.)

(i) z = 12 (i.e., 5x1 + 3x2 = 12);
(ii) z = 24;
(iii) z = 36.

c. Plot the following points on your graph in part a:

(i) x = (2, 3)T;
(ii) x = (4, 6)T;
(iii) x = (8, 3)T.

d. Find x∗ and z∗.

e. Write the LOP D that is dual to P .

f. Find y∗. [HINT: Find dual-feasible y such that w(y) = z∗.]

1.5.12 Repeat Exercise 1.5.11 N times, each with a different LOP of your
own design, having 2 variables and 3 constraints. [NOTE: You may want to

reverse-engineer this — that is, derive the constraints from a graph you draw.]

You will need to choose your own objective lines to draw (two are enough),
and find which points are important to plot.

1.5.13 Write the dual of the following LOP.

Max. z =
∑n

j=1 cjxj

s.t.
∑n

j=1 ajxj ≤ b

xj ≤ 1 (1 ≤ j ≤ n)

& xj ≥ 0 (1 ≤ j ≤ n)

Challenges

1.5.14 Consider the following LOP P .

Max. z = − 2x2

s.t. x1 + 4x2 − x3 ≤ 1
−2x1 − 3x2 + x3 ≤ −2

4x1 + x2 − x3 ≤ 1

& x1 , x2 , x3 ≥ 0

a. Write the dual D of P .

b. Show that y = (2, 3, 1)T is D-feasible.

1.5. Exercises 17

c. Use part b to show that P is infeasible.

d. Show that y(t) = (2t, 3t, t)T is D-feasible for all t ≥ 0.

e. Use part d to prove that D is unbounded.

[MORAL: Simple certificates like y are very powerful tools in LO.]

1.5.15 Repeat part a N times, each with a different LOP of your own
design.

a. Let P be a LOP in standard max form and let D be its
dual LOP. Write D in standard max form as D′ and let
Q′ be its dual. Finally, write Q′ in standard max form as
Q. Compare P and Q.

b. Prove a statement about the relationship between P and Q
in general.

1.5.16 Consider the problem: Max. cTx s.t. Ax = b (note that x is free).

a. Let V = {vi}ki=1 be a basis for the nullspace of A. Write all
solutions to Ax = b in terms of V . [HINT: Recall Gaussian

elimination.]

b. Use part a to prove that if cTvi = 0 for all 1 ≤ i ≤ k then
every feasible point is optimal.

c. Prove that if Ax = b is feasible then there is some v and
feasible x0 such that x0 + tv is feasible for all t ∈ R.

d. Use part c to prove that if cTvi �= 0 for some 1 ≤ i ≤ k
then the problem is unbounded.

e. Use parts b and d to prove that every such problem is either
infeasible, optimal or unbounded.

1.5.17 Write pseudocode for an algorithm that takes as input a LOP with
n variables and m constraints and outputs its dual LOP.

Modeling

1.5.18 A factory manufactures two products, each requiring the use of
three machines. The first machine can be used at most 70 hours; the second
machine at most 40 hours; and the third machine at most 90 hours. The
first product requires 2 hours on machine 1, 1 hour on machine 2, and
1 hour on machine 3; the second product requires 1 hour on machines 1
and 2 and 3 hours on machine 3. The profit is $40 per unit for the first
product and $60 per unit for the second product. Write a LOP that will
compute how many units of each product should be manufactured in order
to maximize profit.

18 Chapter 1. Introduction

1.5.19 A birchwood table company has an individual who does all its fin-
ishing work and it wishes to use him in this capacity at least 36 hours each
week. By union contract, the assembly area can be used at most 48 hours
each week. The company has three models of birch tables, T1, T2 and T3.
T1 requires 1 hour for assembly, 2 hours for finishing, and 9 board feet of
birch. T2 requires 1 hour for assembly, 1 hour for finishing and 9 board
feet of birch. T3 requires 2 hours for assembly, 1 hour for finishing and 3
board feet of birch. Write a LOP that will compute how many of each model
should be made in order to minimize the board feet of birchwood used.

1.5.20 The State of Florida must make two types of ballots, A and B,
which they will use for an election, using three types of materials: construc-
tion paper, tissue paper, and ink. Ballot A uses 210 cm2 of construction
paper, 35 cm2 of tissue paper, and 3 tsp of ink, and generates 7 chads.◦
Ballot B uses 190 cm2 of construction paper, 55 cm2 of tissue paper, and 2
tsp of ink, and generates 3 chads. The State must generate at least 70, 000
chads, but only 2.8 million cm2 of construction paper, .63 million cm2 of
tissue paper, and 35 thousand tsp of ink are available. Moreover, construc-
tion paper costs 23 cents per 100 cm2, tissue paper costs 2 cents per 100
cm2, and ink costs 15 cents per tsp. Assuming that the State of Florida
wishes to minimize its cost, write down the associated LOP.

1.5.21 Farmer Brown has 50 acres on which she can grow arugula or
broccoli. Each acre of arugula requires $10 in capital costs and uses 5 hours
of labor. Each acre of broccoli requires $7 in capital costs and uses 3 hours
of labor. Labor is $6 per hour. The sale of arugula yields $200 per acre and
the sale of broccoli yields $80 per acre.

a. Suppose that $1950 is available for capital expenses and
labor. Formulate a LOP whose solution determines how
much of each should be planted in order to maximize profit.

b. Reformulate if, in addition, only $450 of the funds in (a)
are available for capital costs.

c. Which of the LOPs in parts a or b will have a larger max-
imum? Why?

d. Write down the duals for each of a and b.

e. Which of the duals will have a larger minimum? Why?

1.5.22 Eumerica makes bottled air at three plants in Vienna, Athens, and
Moscow, and ships crates of their products to distributors in Venice, Frank-
furt, and Paris. Each day the Athens plant produces 25 thousand crates,
while Vienna can produce up to 18 thousand, and Moscow can produce up
to 15 thousand. In addition, Venice must receive 14 thousand and Paris
must receive 22 thousand crates, while Frankfurt can receive up to 19 thou-
sand. The company pays Arope Trucking to transport their products at the
following per-crate Eurodollar costs.

1.5. Exercises 19

120 Vienna to Frankfurt 240 Venice to Paris
100 Frankfurt to Athens 250 Paris to Venice
120 Athens to Frankfurt 290 Frankfurt to Venice
150 Frankfurt to Paris 270 Venice to Moscow
130 Paris to Athens 280 Moscow to Frankfurt
160 Athens to Vienna

Eumerica would like to tell Arope which shipments to make between
cities so as to minimize cost. Write the ILOP that solves this problem.

1.5.23 CarbonDating.com keeps a database of their clients and their love
interests (for unrealism, we assume symmetry: if A loves B then B loves
A). Annette loves David, John and Warren, Kathy loves Bill, John and ◦
Regis, Monica loves Bill, David and Warren, Teresa loves Bill, John and
Regis, and Victoria loves David, Regis and Warren. A marriage of a woman
and a man is good if the couple love each other. The company would like
to find as many pairwise disjoint, good marriages as possible. Write the
corresponding ILOP.

1.5.24 The Police Chief of Gridburg decides to place 15 policemen at the
15 street corners of his town, as shown in the map below. A policeman has
the ability to see the activity of people on the streets leading from his street
corner, but only as far as one block. The Mayor fires the Chief for spending
over budget, and hires Joseph Blough to make sure that every street can be
seen by some policeman, using the fewest possible policemen. Write Joe’s
ILOP that solves this problem.

1.5.25 The Commerce Secretary of Gridburg decides to place 3 hot dog
vendors on the 3 East-West streets of Gridburg (see the map above). The
Hotdogger’s Union requires that no two vendors can be on street blocks that
share an intersection. The Mayor fires the Secretary for not generating
enough commerce in town, and hires Anna Benannaugh to place the maxi-
mum number of vendors, subject to union rules. Write Anna’s ILOP.

1.5.26 Consider the following six committees of students. Committee 1:
Clifford, Kara; Committee 2: Ben, Donyell, Jake, Rebecca; Committee 3: ◦
Clifford, Kara, Sue; Committee 4: Ben, Jake, Kara, Nykesha, Rebecca;
Committee 5: Clifford, Sue; Committee 6: Kara, Sue. Each committee
must choose a representative to send to the school Senate, but the Senate
requires that no person represent more than one committee. Write the ILOP
that computes whether or not this is possible.

20 Chapter 1. Introduction

1.5.27 Öreg MacDonald owns 1, 000 acres of land and is contemplating◦
conserving, farming, and/or developing it. His annual considerations are
as follows. It will only cost him $1 per acre in registration fees to own
conservation land, and he will reap $30 per acre in tax savings. Farming
will cost him $50 per acre for seeds, from which he can earn $190 per acre
by selling vegetables. He can earn $290 per acre by renting developed land,
which costs $85 per acre in permits. Öreg has only $40, 000 to use, and is
also bound by having only 75 descendants, each of whom can work at most
2, 000 hours. How should he apportion his acreage in order to maximize
profits, if conservation, farming, and development uses 12, 240, and 180
hours per acre, respectively? Write the appropriate LOP that solves this.

1.5.28 Biff has infestations of crickets, ants, and moths in his house. He
estimates that there are 50 ounces of crickets, 20 ounces of ants, and 15
ounces of moths, and realizes that they must be removed before his girlfriend
Muffy arrives in an hour. He could buy cockroaches, a pound of which would
cost 48/c and eat 5 ounces of ants and 3 ounces of moths in an hour. He
could also purchase a pound of black widow spiders that would eat 6 ounces
of crickets, 3 ounces of ants, and 2 ounces of moths per hour for 73/c. A
pound of scorpions would eat 8 ounces of crickets and 4 ounces of ants per
hour and would cost Biff 56/c. His final choice is to spend 93/c for a pound
of rough green snakes that would eat 11 ounces of crickets and 1 ounce of
moths per hour. Formulate Biff’s LOP.

1.5.29 Aussie Foods Co. makes three different emu pet foods in 10-kg
bags. The Premium bag is a mixture of 5 kgs of kiwi fruit, 2 kgs of wattle
leaves, 2 kgs of boab seeds, and 1 kg of ground diamond weevil, and AFC
makes a profit of 91/c per bag sold. The Regular bag mixes 4, 4, 0, and 2
kgs of kiwi, wattle, boab, and diamond, respectively, making 84/c for AFC.
The corresponding numbers for the Bargain bag are 1, 2, 3, 4, and 73/c,
respectively. The weekly supply available to AFC is 1, 000 kgs of kiwi fruit,
1, 200 kgs of wattle leaves, 1, 500 kgs of boab seeds, and 1, 400 kgs of ground
diamond weevil. Write the ILOP that Aussie Foods should solve in order
to maximize their weekly profit. (Would the LOP have relevance to them?)

1.5.30 Consider the matrix A, below.
⎛

⎜
⎜
⎝

3 0 −2
−1 4 0

2 −3 1
0 −2 1

⎞

⎟
⎟
⎠

During a probability calculation, Carlos realizes he needs to approximate
the vector Ax by something simpler, for every probability vector x. In
particular, he needs to satisfy Ax ≥ x0J4, where Jk is the vector of k ones.Jk

Write a LOP that finds the maximum of all such x0 that that Carlos can
use.

1.5. Exercises 21

1.5.31 Kingsbury’s butcher is asked to grind up several cuts of meat to ◦
form a blend of equal parts of proteins and fats. The butcher, being consci-
entious, wishes to do this at least cost per pound of meat purchased. The
following table gives fat and protein contents and costs in dollars.

Rib Thigh Breast Rump Calf Forearm Neck
%Protein 19 20 16 17 19 16 17

%Fat 16 18 25 23 11 28 20
cost/lb .69 .98 1.39 1.29 1.19 1.50 1.65

a. Write a LOP that will compute the amounts of meat and
how much the butcher should charge.

b. Usually the butcher has extra fat available free per pound.
How does this alter the LOP? (Does this LOP have an
obvious solution?)

1.5.32 The Hendrix factory buys bags of sand and produces sand castles. ◦
Each sand castle requires one bag of sand and the factory has a production
capacity of 3, 000 sand castles per quarter year. However, sand is available
in different amounts and sand castles are required for sale or distribution
in different amounts each quarter. Furthermore, storing sand castles is
expensive and carrying them over from one quarter to the next is to be
minimized. At the beginning of the year, 3, 000 sand bags are available and
at least this many must be left over at the end of the year. The availability
of sand bags and requirements for sand castles per quarter is as follows:

sand bags sand castles
available required

quarter for purchase for sale
1 5, 000 1, 000
2 3, 000 4, 000
3 1, 000 3, 000
4 2, 000 1, 500

There is storage room available for 10, 000 sand bags or 2, 000 sand
castles or any combination in this ratio. (That is, in quarter q, if Bq

and Cq respectively represent the number of sand bags and sand castles on
hand at the end of the quarter, then Bq + 5Cq ≤ 10, 000. Here we ignore
bottlenecks during a quarter.)

Write down an ILOP that will compute purchases of sand bags and the
number of sand castles made for each quarter, minimizing carryover of sand
castles, subject to the availability and requirement constraints.

1.5.33 Hal’s Refinery can buy two types of gasoline. Boosch Oil has avail- ◦
able, at $60 per barrel, 130, 000 barrels of 92 octane gasoline with vapor
pressure 4.6 psi and sulfur content 0.58%. Chayni Oil has available, at $70
per barrel, 140, 000 barrels of 85 octane gasoline with vapor pressure 6.5 psi
and sulfur content 0.40%. Hal needs to blend these two to produce at least

22 Chapter 1. Introduction

200, 000 barrels of a mixture with octane between 87 and 89, with vapor
pressure at most 6.0 psi and sulfur content at most 0.50%. Formulate a
LOP to determine the proportions of each type he should use to minimize
his cost.

1.5.34 The system of equations

x1 + 4x2 − x3 = 2
−2x1 − 3x2 + x3 = 1
−3x1 − 2x2 + x3 = 0

4x1 + x2 − x3 = −1

has no solution. A ‘best’ approximate solution minimizes the error ac-
cording to some measure. For a given (x′1, x

′
2, x

′
3) the error e1 in the first

equation is e1 = 2− x1 − 4x2 + x3 and similarly for the errors e2, e3, e4 for
the other rows.

a. Write a LOP that will compute the best L1 approximation,
which minimizes the sum of the absolute values of the er-
rors.

b. Write a LOP that will compute the best L∞ approximation,
which minimizes the maximum absolute value of an error.

[HINT: Creating a new variable that is an upper bound on both ei and on −ei

makes it an upper bound on |ei|]

1.5.35 The streets of Old Yorktown are set up in an orthogonal grid, with◦
parallel North-South streets every tenth of a mile and parallel East-West
streets every tenth of a mile. Three subway systems eminate from the cen-
ter, taking passengers about the town in the following manner. The Red
trains travel in the direction of the vector (11, 4)T and its negative, making
station stops at integer multiples of it (in tenths of a mile units). The Yel-
low and Blue trains travel along integer multiples of (9, 13)T and (8,−5)T,
respectively. The subway lines are coordinated so that every color can stop
at each station. For example, one could take any combination of 3 Red,
−2 Yellow (meaning the opposite direction), and 5 Blue trains in order to
reach the station 5.5 miles East and 3.9 miles South of center (coordinates
(55,−39)T). Kate lives at (−35, 6)T, her brother Calvin at (20, 23)T, and
they are planning to meet for lunch at Le Café Barphe in Central Station
for lunch.

a. Their reservation allows them only enough time to travel for at most
6 stops. Set up the ILOPs that must be solved in order to minimize
the walking distances along the streets from their houses to nearby
subway stations.

b. Suppose it is Sunday, so they have no time constraints and the Yellow
subway isn’t running. Set up the ILOP to solve this case.

1.5. Exercises 23

1.5.36 Melissa has 9 Christmas packages to deliver to her neighbors. Three
are wrapped in red paper, three in green, and three in blue. She enlists her
three children to help carry the packages and, of course, they insist on each
having a package of each color. Furthermore, whoever has the heaviest
packages will complain, so Melissa wants to split up the packages so that
the heaviest and lightest set of three differ in weight by as little as possi-
ble. Write the ILOP she must solve in order to achieve this, supposing that
the weights of the red packages are 50oz, 37oz, and 33oz, the weights of
the green packages are 62oz, 55oz, and 24oz, and the weights of the blue
packages are 48oz, 44oz, and 29oz. [HINT: Consider a BLOP.]

1.5.37 Two warehouses have canned tomatoes on hand and three stores
require more in stock, as described in the table below.

Warehouse Cases on hand Store Cases required
I 100 A 75
II 200 B 125

C 100

The cost (in cents) of shipping between warehouses and stores per case is
given in the following table.

A B C
I 10 14 30
II 12 20 17

a. Set up an ILOP to minimize the total shipping cost.

b. Reformulate part a, assuming the cases required at Store
B are only 60 and introducing a disposal activity at the
warehouses at a loss of 5/c per case disposed.

c. Reformulate part a, assuming that the cases available at
Warehouse I are only 90 and introducing a purchase activ-
ity from outside sources at a cost of 45/c per case.

d. Write down the duals to the LOPs obtained by ignoring
the integrality constraints (the LOP relaxations) for each
of parts a, b and c.

e. Generalize part a to r warehouses and s stores with cost ckl

to ship from Warehouse k to Store l. Denote the cases on
hand at Warehouse k by bWk and the requirements at Store
l by bSl .

f. What happens in part e if the total cases on hand in the
warehouses is not equal to the total requirements at the
stores?

1.5.38 Curly, Larry, and Moe have to pay Huey, Dewey, and Louie monies ◦

24 Chapter 1. Introduction

of varying amounts, which are under dispute. Below is a chart of what HDL
claims CLM owe them.

H D L
C 200 150 420
L 240 200 450
M 100 80 370

In order to settle the dispute, a judge decided that CLM will each pay one
of HDL in such a way that each of HDL will receive something. Write an
ILOP that solves how the payments should be made so that the amount of
money paid in total is maximized. [HINT: Consider a BLOP.]

1.5.39 When the gates open at Sidney Planet amusement park, the pa-◦
trons all rush to the Spaced Out Center. One path goes through Mikey
Moose Square. The path from the entrance to the square can handle up to
500 patrons and the path from the square to the center can handle at most
400 patrons. Patrons can also go from the entrance via Gumbo’s Restau-
rant and then Large World Park with the path on the first leg handling up
to 300 patrons, the second leg only 100 patrons and the third leg at most
400 patrons. There are also paths from Gumbo’s to the square and from
the square to the park handling no more than 100 and 300 patrons, respec-
tively. Formulate an ILOP whose solution will give the maximum number
of patrons who can get to the Center without exceeding path capacity. See
if you can determine the answer by drawing a small diagram.

1.5.40 In the game of Odds and Evens, Pete and Repete simultaneously◦
put out either one or two fingers. If the total number of fingers shown is
even then Repete pays Pete one dollar for each finger shown. If the total is
odd then Pete pays Repete three dollars. The game will be played repeatedly.
Pete will randomly show one finger with probability x1 and two fingers with
probability x2. Formulate a LOP to determine the probabilities that will
maximize the minimum expected gain for Pete. That is, determine x1 and
x2 so that the minimum of the two expected gains, one for each of Repete’s
pure strategies, is as large as possible.

1.5.41 Chamique, Diana, Lisa, Sheryl and Yolanda are to be seated at one◦
of three tables (labeled 1, 2, and 3) for dinner. There are certain pairs who
are not willing to sit together: Chamique and Diana, Diana and Lisa, Lisa
and Sheryl, Sheryl and Yolanda, and Yolanda and Chamique. Formulate an
integer system of inequalities with variables A,B,C,D,E taking on possible
values 1,2,3 whose solutions correspond to feasible seatings. [HINT: You will

need to introduce extra variables.]

1.5.42 Pat has the following cash flow over the first four months of the◦
year (negative indicates loss which must be covered).

Month J F M A
Cash Flow −200 300 −50 100

1.5. Exercises 25

He or she can borrow up to $400 on an equity line of credit at a rate of 20%
per month (due at the end of the month) and invest excess funds earning
10% per month. Formulate a LOP whose solution determines how much he
or she should borrow and how much he or she should carry over in excess
each month in order to maximize his or her worth at the end of the four
months?

1.5.43 Anthony wants to make a cassette tape of Sallie’s favorite songs
and compiles the following list.

4:35 Sonny & Cher I Got You, Babe
2:30 The Monkees Your Auntie Grizelda
1:50 Tiny Tim Tiptoe Through the Tulips
2:09 The Partridge Family Come On Get Happy
2:15 Kermit the Frog Being Green
2:35 The Archies Bicycles, Roller Skates and You
2:07 The Sugar Bears Happiness Train
2:26 Jimmy Osmond Long Haired Lover From Liverpool
3:20 Tony Orlando and Dawn Tie a Yellow Ribbon Round the

Old Oak Tree
2:32 Paul Anka Having My Baby
4:13 George Segal If You Like-a-Me
1:41 Hee Haw Gospel Quartet Turn Your Radio On
3:30 Van McCoy Do the Hustle
2:56 Bay City Rollers Saturday Night
3:05 Rick Dees Disco Duck
5:45 Kajagoogoo Too Shy
3:38 Madonna Like a Virgin
4:16 New Kids on the Block Hangin’ Tough
4:31 Vanilla Ice Ice Ice Baby
3:23 Billy Ray Cyrus Achy Breaky Heart
2:50 Right Said Fred I’m Too Sexy
1:00 Barney I Love You
2:57 William Shatner Lucy in the Sky with Diamonds
4:28 Hanson Mmm...Bop
4:41 Celine Dion My Heart Will Go On
3:41 Kenny Chesney She Thinks My Tractor’s Sexy
3:33 Britney Spears Oops, I Did it Again
3:09 Bob the Builder Can We Fix It
0:35 Ashlee Simpson Pieces of Me (live SNL version)

a. Write the ILOP Anthony needs to solve in order to fit
the most music onto a cassette with two 30-minute sides.
[HINT: Consider a BLOP.]

b. Sammy reminds Anthony that he needs to add the 3:03
VeggieTales “Hairbrush Song” and that he should put it all
on one 80-minute CD. Revise the above ILOP accordingly.

26 Chapter 1. Introduction

1.5.44 Anders Johnson is running for President of his homeowners asso-◦
ciation. There are three issues on the minds of other homeowners: yard
maintenance, house colors, and swimming pool usage. Conservative in-
terpretations of association rules outline such things as maximum grass
height, allowable house colors, and owner-only use, while liberal interpreta-
tions allow for overgrown hedges, creative color combinations, and use by
extended family and friends. When polled on a specific issue, individual
association members rated their personal interpretation on a scale from −1
(most liberal) to 1 (most conservative), giving an overall profile p ∈ [−1, 1]3.
Some of the other members have banded together along common attitudes to
form special interest groups. For example, the 99-member Dolphin Boosters
would be happy with a candidate in the [−1,−.5]× [−.7,−.2]× [.3, .8] range
because they like to have swim practice more than work on their houses,
and enjoy having most of the pool to themselves. Likewise, the 44 Stepford
Wives want the neighborhood properly color coordinated, and so would ap-
prove of a candidate in the [−.7, .4]× [.2, .7]× [−.5, .5] range, while the 52
Gambinos would like a candidate in the [−.6, 0]× [0, 1]× [−.8,−.3] range so
they can invite the whole Family. Furthermore, the 89-member Inclusivity
Club, the 59-member Gardeners Guild, and the 42 Aging Lappers would pre-
fer a candidate in the [0, .7]× [−.3, .3]× [−1,−.6], [.3, 1]× [−.5, .5]× [−.7, .7],
and [−.6, .4]× [−1, .3]× [.5, 1] ranges, respectively. Assuming there to be no
homeowner belonging to two of these groups, write the ILOP Anders should
solve in order to figure out where he should position himself to earn the
approval of the most members.

Projects

1.5.45 Write your own modeling exercise from an experience or situation
in your own life (at a grocery store, at a baseball game, watching garbage
trucks, getting on an airplane, surfing the web, putting away your clothes,
registering for classes, driving, typing, etc.).

1.5.46 Present the role of the U.S. Air Force in the development of Linear
Optimization.

1.5.47 Write a short biography on one of the following mathematicians,
including their relationship with Linear Optimization: Kenneth Arrow, Eve-
lyn Martin Lansdowne Beale, Garrett Birkhoff, Robert Bixby, Robert Bland,
Constantin Carathéodory, Abraham Charnes,William Cooper, George Dant-
zig, René Descartes, Robert Dilworth, Jenö Egerváry, József Farkas, Lester
Ford, Jean Fourier, Ragnar Frish, Ray Fulkerson, David Gale, Ralph Go-
mory, Philip Hall, Eduard Helly, Frank Hitchcock, Alan Hoffman, Leonid
Kantorovich, Narendra Karmarkar, William Karush, Leonid Khachian,
Victor Klee, Dénes König, Joseph Kruskal, Tjalling Koopmans, Harold
Kuhn, Carlton Lemke, Wassily Leontief, Hermann Minkowski, George Min-
ty, Oscar Morgenstern, Theodore Motzkin, John Nash, Arkady Nemirovsky,

1.5. Exercises 27

John von Neumann, William Orchard-Hayes, Tyrell Rockafellar, Paul Sam-
uelson, Lloyd Shapley, Naum Shor, Stephen Smale, George Stigler, Eva
Tardos, Albert Tucker, Charles de la Vallé Poussin, Roger Wets, Philip
Wolfe, Marshal Wood, Susan Wright.

1.5.48 Present the problem of P versus NP.

Chapter 2

The Simplex Algorithm

2.1 Geometric Lens

Refer again to Problem 1.3.1. In Figure 2.1 below we draw the region
bounded by its 3 problem constraints and 2 nonnegativity constraints. This
is called the feasible region (or feasible set) since it contains precisely feasible

region/setall of the feasible points.1 For any feasible region S, a feasible point x is
in its interior if it is the center of some ball (of the same dimension as

interior/
boundary/
extreme/
exterior
point

S) contained entirely in S (i.e., there is some small enough ε > 0 so that
every point within distance ε from x is in S). Otherwise, x is said to be on
the boundary of S. A boundary point x is an extreme point of S if no
line segment, with x as its center, has both its endpoints in S. Finally, x
is exterior to S if it is infeasible. In Figure 2.1, (10, 11) is in the interior,
(10, 12) and (5, 15) are on the boundary, and (10, 13) is an exterior point.
Of these four, only (5, 15) is an extreme point. We label a boundary line
Li if it arises from constraint i (note that the nonnegativity constraints are
included, in order).

A feasible region S will be called bounded if there is a large enough (un)-
bounded
region

integer K so that S is contained in the region defined by |xj | ≤ K for all
j. Otherwise, S is unbounded. In Figure 2.1, the value K = 30 suffices
to show that the feasible region is bounded (20 is the smallest such K that
works). We can see that, in two dimensions, every feasible region will be
a polygon (including its interior), unless of course it is unbounded. That
is because every constraint cuts R

2 in half, so to speak. In fact, we call
any region defined as the solution set of a single linear inequality a half-
space. Similarly, in R

n, that is, when a LOP involves n problem variables, half-space

each feasible region is what is known as a polyhedron (“many sides”),
polyhed-
ron/
polytope

in particular a polytope if it is bounded. A polyhedron is more precisely
defined as the intersection of finitely many half-spaces. We say that F is a

1While the terms set and region can be used interchangeably, we try to reserve the
term set (resp. region) for the algebraic (resp. geometric) collection of vectors (resp.
points) that satisfy the constraints — thus the region is the geometric realization of the
set.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 2, c© Springer Science+Business Media LLC 2010

30 Chapter 2. The Simplex Algorithm

Figure 2.1: Feasible region for LOP 1.3.1

face of a polyhedron P if there is some half-space H = {x | aTx ≤ b} ⊇ P(k-
)face/facet such that F = P ∩ ∂H , where ∂H = {x | aTx = b} denotes the boundary

of H . In this case H is called the supporting hyperplane of F . A k-face
supporting
hyperplane

of P is a face of dimension k, and a facet is a face of dimension one less
than that of P .

Workout 2.1.1 Consider the LOP P in Problem 1.4.2.

a. Draw the feasible region for P .

b. Find x∗ and z∗.

[MORAL: Although the boundedness of a linear problem’s feasible region implies

the existence of an optimal solution, such boundedness is not a requirement for

optimality.]

We also have made note of the line z = 20, or x1 + x2 = 20, in Figure
2.1. The line z = 15 would be parallel, but closer to the origin, while the
parallel line z = 25 doesn’t intersect S, which implies that z∗ < 25. Thus,
we would like to think of the objective function as a whole family of parallel
lines (or hyperplanes if we are in higher dimensions), and we could solve
the problem if we knew which of them corresponded to the highest z-value
while still intersecting S.

Workout 2.1.2 Devise a LOP whose feasible region contains no extreme
points and is

a. unbounded.

2.1. Geometric Lens 31

b. optimal.

[MORAL: Not every polyhedron has extreme points. In particular, it is possible

for a LOP to be optimal not at an extreme point.]

Workout 2.1.3 Let S be the feasible region of a LOP. Prove that if an
interior point of S is optimal then every point of S is optimal.

Note that the following more general statement is true (see Exercise
2.10.32): if x0 is an optimal point that is interior to the face F of S then
every point of F is optimal.

Workout 2.1.4 Let S be the feasible region of a LOP. Prove that if S is
bounded then one of its extreme points is optimal. [HINT: Use the above

generalized statement.]

We also note that the hypothesis that S is bounded can be weakened
by requiring only that S contains an extreme point (see Exercise 8.5.31).
[MORAL: Except in degenerate cases one need only consider extreme points when

looking for optima!]

Another way of thinking about this is through a calculus lens (the ar-
gument is not too dissimilar from above). For simplicity assume that S
is bounded. Pick any line through S and parametrize it by the variable
t. Then the objective function becomes a linear function of t as well, and
because S is bounded we maximize the function z = z(t) over the line seg-
ment L defined by the interval t ∈ [α, β]. Bounded functions have maxima
only at critical points and endpoints, and because continuous linear func-
tions rule out nondifferentiable points, the maximum of z on L occurs at
an endpoint (even in the case of stationary points). Such an endpoint is a
boundary point of S. Thus we may assume that an optimal point is never
an interior point of any line segment in S; i.e., an extreme point. We leave
it to the reader to fill in more careful and general details.

From Figure 2.1, then, it is clear that z∗ = 24 at x∗ = (15, 9)T. We will
use the notation x∗ in the general case to indicate the point (or one of the
points) where z∗ occurs. What we have discussed implicitly is a method
(the Graphic Method) which reduces the search for the “best” point from Graphic

Methodan (uncountably) infinite set to a search from a finite set of extreme points.

Workout 2.1.5 Why is the set of extreme points of a polytope finite?

If we have in hand the list of all extreme points of S, then we simply can
check through them all to see which yields a maximum. Unfortunately, that
list might be rather large (typically exponentially large, in terms of n), and
so we may not have time to check them all. (In practical terms, even with 50
variables, never mind the tens of thousands or more encountered in common
applications, we don’t have time!) In addition, how is one to compute all
the extreme points of S? (See Section 3.1.) Thus the geometric discussion
doesn’t as yet give us a real method for solving a linear problem, although

32 Chapter 2. The Simplex Algorithm

one hopes you’ll agree that it gives us plenty of insight into the nature of its
solutions. The interplay between the algebraic Simplex Algorithm (hang
on, it’s coming) and its geometric underpinnings would make Descartes
both excited and proud.

Problem 2.1.6

Max. z = 226x1 + 219x2

s.t. 197x1 + 185x2 ≤ 9, 650
202x1 + 178x2 ≤ 9, 595
186x1 + 190x2 ≤ 9, 502
191x1 + 196x2 ≤ 9, 781
177x1 + 205x2 ≤ 9, 661

& x1 , x2 ≥ 0

Workout 2.1.7 Consider Problem 2.1.6. Draw its corresponding feasible
region and use your drawing to find its maximum. [HINT: Would a MAPLE

plot help?]

Problem 2.1.8

Max. z = 2x1 + 3x2 + x3 + 2x4

s.t. x1 + 6x2 + 5x3 + 3x4 ≤ 85
4x1 + 2x2 + 6x3 + x4 ≤ 72
7x1 + 4x2 + x3 + 4x4 ≤ 91
3x1 + x2 + 5x3 + 6x4 ≤ 83

& x1 , x2 , x3 , x4 ≥ 0

Workout 2.1.9 Consider Problem 2.1.8. Draw its corresponding feasible
region and use your drawing to find its maximum.

[MORAL: We need algebraic methods to solve linear problems.]

2.2 Algebraic Lens

We begin by rewriting the problem constraints of Problem 1.3.1 as equalities
by introducing a new slack variable for each constraint. We call them slack
variables because they pick up the slack, so to speak; that is, they take on
whatever values are necessary to create equalities (notice that each slack
variable must be nonnegative). In fact, it is a bit handier if we solve for
each slack variable. Then Problem 1.3.1 can be written as follows.

2.2. Algebraic Lens 33

Dictionary 2.2.1

Max. z = 0 + x1 + x2

s.t. x3 = 90 − 3x1 − 5x2

x4 = 180 − 9x1 − 5x2

x5 = 15 − x2

& xj ≥ 0 1 ≤ j ≤ 5

We call this formulation a dictionary, and it has the property that dictionary

the set of all variables is split in two, those on the left side (ignoring the
nonnegativity constraints) appearing exactly once. Other than the objec-
tive variable z, the variables on the left-hand side of a given dictionary
will be called basic (the set of which is called the basis), and those on (non)basic

variable

(initial)
basis

the right will be called nonbasic (also referred to as parameters). One

parameter

should notice that the initial basis of a LOP in standard form is always the
set of slack variables. As we will see, further bases will be some mixture of
problem and slack variables.

Another way of recording the same information is in a tableau, which

tableau
is obtained from a dictionary by first rewriting each equation with all its
variables on the left-hand side, constants on the right, and then writing
the augmented matrix of coefficients of that system. By convention, the
row for the objective function is written last. Thus, Problem 1.3.1 has the
following tableau, corresponding to the above dictionary.

Tableau 2.2.2
⎡

⎢
⎢
⎣

3 5 1 0 0 0 90
9 5 0 1 0 0 180
0 1 0 0 1 0 15
−1 −1 0 0 0 1 0

⎤

⎥
⎥
⎦

Notice that we have ordered the columns in increasing fashion according
to subscripts, with z coming last. We have included the dividing lines only
as a visual aid to separate problem variables from slack, constraints from
objective function, and left sides of the equations from right. The far right
column will be referred to as the b-column, and the bottom row is called b-column

the objective row. One can typically spot the basic variables easily in
objective
row

a tableau by finding the simple columns (there are degenerate examples):
the columns of the basis form a permutation of the columns of an identity
matrix (or a positive multiple of one, as we will see later).

Workout 2.2.3 Consider the linear problem P from Exercise 1.5.10.

a. Write the initial dictionary for P .

b. Write the initial tableau for P .

34 Chapter 2. The Simplex Algorithm

By a solution we will mean any set of values of the xj that satisfy(basic)
solution the problem constraints when written as equalities. Thus we can refer to

either feasible or infeasible solutions, feasible being the case in which the
nonnegativity constraints also hold. A solution is basic if it corresponds
to the values one gets from a dictionary by setting all the parameters to
zero. For example, Dictionary 2.2.1 yields the basic (feasible) solution
x = (0, 0 | 90, 180, 15)T, with value z = 0 (again, the divider distinguishes
decision variables from slack).

Workout 2.2.4 Consider the linear problem P from Exercise 1.5.10.

a. Find an infeasible basic solution to P .

b. Find a feasible nonbasic solution to P .

When we need to discuss the distinction between basic and nonbasic
variables, we will use the shorthand notations β for the set of subscripts ofβ, π

basic variables and π for the set of subscripts of parameters. For example,
Dictionary 2.2.1 has β = {3, 4, 5} and π = {1, 2}. We call a dictionary or
tableau feasible if its corresponding basic solution is feasible (and infea-(in)feasible

basis/
dictionary/

tableau/
problem

sible otherwise). We say a linear problem is feasible if it has a feasible
tableau (and infeasible otherwise). Whenever a tableau is infeasible we
will say that we are in Phase I of the Simplex Algorithm; Phase II if

Phase I/II

the tableau is feasible. A basis or tableau or dictionary is optimal if the

optimal
basis/

dictionary/
tableau
problem

corresponding basic solution is optimal, and a problem is optimal if it has
an optimal solution. The Simplex Algorithm, which recognizes such things,
will halt at this stage (except for the chance of degeneracy — see Exercise
1.5.4 and Section 2.8).

One might notice from Dictionary 2.2.1 that an increase in x1 from its
basic value of zero would bring about a corresponding increase in the value
of z. But since changes in x3 and x4 also would occur, we must be careful
not to increase x1 too much. If x2 is held at zero, then because x3 and x4

must remain nonnegative we obtain the following restrictions on x1.

90− 3x1 ≥ 0 and 180− 9x1 ≥ 0 .

The second restriction is the strongest, requiring x1 ≤ 20.
Thus, we might increase x1 all the way up to 20, thereby decreasing x4

all the way to 0. That has the ring of making x1 basic and x4 nonbasic, so
we may as well solve the second equation for x1 and substitute the result
into the remaining equations. This produces the new basis β(1) = {1, 3, 5},
parameter set π(1) = {2, 4}, and dictionary below. (The superscripted (1),
in general (k), serves to indicate the values after the first, in general kth,
modification; thus superscript (0) will denote original information.)

2.2. Algebraic Lens 35

Dictionary 2.2.5

Max. z = 20 + .444x2 − .111x4

s.t. x3 = 30 − 3.333x2 + .333x4

x1 = 20 − .555x2 − .111x4

x5 = 15 − x2

& xj ≥ 0 1 ≤ j ≤ 5

Notice that we have rounded the fractions with denominator 9, so this
dictionary is really only an approximation. We might rather maintain ex-
actness by clearing the denominator and writing the following.

Dictionary 2.2.6

Max. 9z = 180 + 4x2 − x4

s.t. 9x2 = 270 − 30x2 + 3x4

9x1 = 180 − 5x2 − x4

9x5 = 135 − 9x2

& xj ≥ 0 1 ≤ j ≤ 5

Here we have the basic solution x(1) = (20, 0 | 30, 0, 15)T with z(1) =
20. All of this, of course, corresponds to performing a pivot operation2 pivot

operation(suitably modified to clear fractions) on the entry of 9 in row 2, column 1,
of Tableau 2.2.2, resulting in Tableau 2.2.7. The notation we use to denote
this is 1 	→ 4, since x1 replaces x4 in the basis. The 9 is referred to as the
basic coefficient since it is the coefficient of all the basic variables and z basic

coefficientin the dictionary.

Tableau 2.2.7
⎡

⎢
⎢
⎣

0 30 9 −3 0 0 270
9 5 0 1 0 0 180
0 9 0 0 9 0 135
0 −4 0 1 0 9 180

⎤

⎥
⎥
⎦

Workout 2.2.8 Write the row operations that transformed Tableau 2.2.2
to Tableau 2.2.7.

By similar analysis on Tableau 2.2.7, an increase in z is incurred by an
increase in x2, but only so far as x2 ≤ min{270/30 = 9, 180/5 = 36, 135/9 =
15}, in order to maintain the feasibility of the next basic solution. Thus
we arrive at Dictionary 2.2.9 and Tableau 2.2.10, with β(2) = {1, 2, 5},
π(2) = {3, 4}, x(2) = (15, 9 | 0, 0, 6)T, and z(2) = 24.

2See Appendix A.

36 Chapter 2. The Simplex Algorithm

Dictionary 2.2.9

Max. 30z = 720 − 4x3 − 2x4

s.t. 30x3 = 270 − 9x3 + 3x4

30x1 = 450 + 5x3 − 5x4

30x5 = 135 + 9x3 − 3x4

& xj ≥ 0 1 ≤ j ≤ 5

Tableau 2.2.10
⎡

⎢
⎢
⎣

0 30 9 −3 0 0 270
30 0 −5 5 0 0 450
0 0 −9 3 30 0 180
0 0 4 2 0 30 720

⎤

⎥
⎥
⎦

Workout 2.2.11 Write the row operations that transformed Tableau 2.2.7
to Tableau 2.2.10.

Now, you may have noticed the wonderful way the objective function
is written in Dictionary 2.2.9. It says that z = (720 − 4x3 − 2x4)/30,
which means that if x3 or x4 takes on any value other than zero, then
z < 720/30 = 24. Therefore z cannot be increased! Hence z∗ = 24 and
x∗ = (15, 9 | 0, 0, 6)T.

These are the workings of the Simplex Algorithm (Tableau Environ-
ment) in the simplest case (Phase II): given a feasible tableau, find a pa-
rameter whose increase from zero will increase z. That is, find a negative
entry in the objective row (not including the rightmost, which can be neg-
ative at times), and pivot in the same column as that entry. This will be
known as the pivot column, and if it is column j then xj will be known aspivot

column
entering
variable

the entering variable, since it is entering the basis. In row i, if ai,j is the
coefficient of xj and bi is the rightmost entry, then we know that bi/ai,j is
an upper bound on the value of the entering variable xj whenever ai,j > 0.
(Notice that bi ≥ 0 because the tableau is feasible.) When ai,j < 0, the
quantity bi/ai,j is a lower, rather than upper bound (when ai,j = 0 the
variable xj is absent from the constraint corresponding to the current row
i, so no bound of either type arises). Thus, we pivot in that row (pivotpivot row

row) which forces the tightest restriction. That is, in pivot column j we
pivot on ai,j when ai,j > 0 and the “b-ratio” bi/ai,j is minimum amongb-ratio

positive ai,j (in the case of a tie we will choose that variable having the
least subscript) — which we call the smallest nonnegative ratio andsmallest

nonnega-
tive

ratio

denote by snr(b1/a1,j, . . . , bm/am,j). The basic variable corresponding to
the pivot row will be called the leaving variable, since it leaves the basis

leaving
variable

during the pivot. An important observation to make is that the resulting
tableau is also feasible because of this judicious choice. Therefore, we can
continue to use the Phase II Algorithm.

It may be that we have several choices for a pivot column. One way
to decide would be always to choose the leftmost (where the subscript j is

2.3. � ��
�
� ��	
� 37

least). Another would be always to choose the most negative of coefficients
because that would force z to increase at the highest rate. A third might
be actually to compute which of the allowable pivots results in the highest
z-value, and pivot accordingly. We call these the Least Subscript (LS), Least

Subscript/
Most
Negative/
Greatest
Increase
Implement-
ation

Most Negative (MN), and Greatest Increase (GI) Implementations,
respectively, and we will not discuss their comparative merits here. It turns
out that none of them requires fewer pivots than any other on all problems,
or even on average. We will use the Least Subscript Implementation in this
text. It has one advantage of being the simplest, and another of guaran-
teeing termination of the algorithm (see Section 2.8).

Workout 2.2.12 For each of the implementations above, give an example
of a LOP for which the chosen implementation requires fewer pivots than
the other implementations. [HINT: One can consider two variable programs like

that in Figure 2.1 geometrically. What determines the first feasible basis in each

case.]

It can be said that the general strategy of Phase II is to find, with
respect to the basis, an entering variable that improves the objective value
before finding an leaving variable that most restricts the entering one. That
is, add a good variable to the basis before removing a bad one!

Workout 2.2.13 Write the correct Simplex pivot operation i 	→ k for the
following tableau.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5 0 2 0 0 8 7 0 6
0 0 0 21 0 7 −3 0 0 35
7 −2 0 0 0 0 6 0 0 13
0 13 0 −5 7 0 −2 0 0 0
0 7 7 15 0 0 1 0 0 25
0 12 0 −6 0 0 −10 0 7 −84

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

2.3 � ��
�
� ��	
�

Consider the following LOP.

Problem 2.3.1

Max. z = 4x1 + 5x2

s.t. 14x1 + 11x2 ≤ 154
7x1 + 16x2 ≤ 112

& x1 , x2 ≥ 0

Workout 2.3.2

a. Draw the feasible region for Problem 2.3.1.

38 Chapter 2. The Simplex Algorithm

b. Write dictionary D(0), tableau T (0), basis β(0), parameters
π(0), basic solution x(0), and objective value z(0).

c. Write the first pivot operation (i 	→ j) and the correspond-
ing row operations (avoiding fractions and keeping the basic
coefficient constant).

d. Perform the first pivot and write D(1), T (1), β(1), π(1),
x(1), and z(1).

e. Write the second pivot operation and the corresponding row
operations.

f. Perform the second pivot and write D(2), T (2), β(2), π(2),
x(2), and z(2).

g. Use part f to write x∗ and z∗.

h. Plot the points x(k) on your drawing from part a and draw
an arrow from each x(k) to x(k+1).

Workout 2.3.3 What pattern emerges from the row operations found in
Workouts 2.2.8, 2.2.11 and 2.3.2ce? Specifically, write the row operation
Rk, used to modify row k while pivoting on entry ai,j (k �= i), where d is
the basic coefficient.

Workout 2.3.4

a. Write an outline (or pseudocode) for the Phase II algo-
rithm for feasible LOPs.

b. What can go wrong along the way?

2.4 Infeasible Basis

Let us return to the dual Problem 1.4.6, and rewrite it in standard form
for maximization. Let u = −w so that minw = −maxu.

Problem 2.4.1

Max. u = −90y1 − 180y2 − 15y3

s.t. −3y1 − 9y2 ≤ −1
−5y1 − 5y2 − y3 ≤ −1

& y1 , y2 , y3 ≥ 0

This problem has the following initial tableau.

Tableau 2.4.2
⎡

⎣
−3 −9 0 1 0 0 −1
−5 −5 −1 0 1 0 −1
90 180 15 0 0 1 0

⎤

⎦

2.4. Infeasible Basis 39

Of critical importance is the fact that the initial basis β(0) = {4, 5}
is infeasible. Indeed, x4 = x5 = −1. At first glance, we cannot discern
whether or not Problem 2.4.1 is feasible. In order to solve this problem we
resort to the Auxiliary Method. We already have discovered how Phase Auxiliary

MethodII of the Simplex Algorithm works, and we will use the Auxiliary Method
to develop Phase I of the algorithm. Consider the following problem.

Problem 2.4.3 (Auxiliary to Problem 2.4.1)

Max. v = −y0

s.t. −y0 − 3y1 − 9y2 ≤ −1
−y0 − 5y1 − 5y2 − y3 ≤ −1

& y0 , y1 , y2 , y3 ≥ 0

In general, the problem

Max. z =
∑n

j=1 cjxj

s.t.
∑n

j=1 ai,jxj ≤ bi (1 ≤ i ≤ m) (A)

& xj ≥ 0 (1 ≤ j ≤ n)

has the following corresponding Auxiliary Problem. Auxiliary
Problem

Max. v = −x0

s.t. −x0 +
∑n

j=1 ai,jxj ≤ bi (1 ≤ i ≤ m) (B)

& xj ≥ 0 (0 ≤ j ≤ n)

It is not difficult to see that Problem 2.4.1 is feasible if and only if
Problem 2.4.3 is optimal at v∗ = 0. In fact, such an auxiliary relationship
holds in general.

Theorem 2.4.4 Let P be a maximizing LOP in standard form whose ini-
tial basis is infeasible, and let Q be its corresponding Auxiliary Problem.
Then P is feasible if and only if Q is optimal at 0. �

Workout 2.4.5 Verify Theorem 2.4.4 for the instance of Problem 2.4.1.

Workout 2.4.6 Prove Theorem 2.4.4 in general.

The initial tableau for Problem 2.4.3 is as follows.

40 Chapter 2. The Simplex Algorithm

Tableau 2.4.7
⎡

⎣
−1 −3 −9 0 1 0 0 −1
−1 −5 −5 −1 0 1 0 −1

1 0 0 0 0 0 1 0

⎤

⎦

We can discover a feasible tableau with the pivot 0 	→ 4, which results
in the next tableau.

Tableau 2.4.8
⎡

⎣
1 3 9 0 −1 0 0 1
0 −2 4 −1 −1 1 0 0
0 −3 −9 0 1 0 1 −1

⎤

⎦

Workout 2.4.9 Suppose that xj is a (basic) slack variable in a given Aux-
iliary Problem. Show that the initial pivot 0 	→ j yields a feasible tableau if
and only if xj is a variable whose basic value in x(0) is most negative.

Since Tableau 2.4.8 is feasible we may resort to the Phase II Algorithm
we know and love. The pivot 1 	→ 0 yields the optimal tableau, below.

Tableau 2.4.10
⎡

⎣
1 3 9 0 −1 0 0 1
2 0 30 −3 −5 3 0 2
3 0 0 0 0 0 3 0

⎤

⎦

Now we know from Theorem 2.4.4 that Problem 2.4.1 is feasible since
v∗ = 0. To recover the corresponding tableau for Problem 2.4.1, we merely
restate its objective variable in terms of the parameters y2, y3, and y4
of Tableau 2.4.10. That is, we substitute 3y1 = 1 − 9y2 + y4 into u =
−90y1 − 180y2 − 15y3 to obtain 3u = −90 + 270y2 − 45y3 − 90y4. This
produces Tableau 2.4.11, below.

Tableau 2.4.11
⎡

⎣
3 9 0 −1 0 0 1
0 30 −3 −5 3 0 2
0 −270 45 90 0 3 −90

⎤

⎦

At this point, we may as well finish the problem so we can compare the
result with that of Problem 1.3.1, whose dual is Problem 1.4.6. The next
and final pivot 2 	→ 5 produces the following optimal tableau.

Tableau 2.4.12
⎡

⎣
30 0 9 5 −9 0 4
0 30 −3 −5 3 0 2
0 0 180 450 270 30 −720

⎤

⎦

2.5. Shortcut Method 41

Thus, u∗ = −24, and so w∗ = 24, which agrees with z∗ = 24. Here
we have y∗ = (4, 2, 0 | 0, 0)T/30. Compare these values with the optimal
objective row in Tableau 2.2.10. Likewise, compare the values for x∗ =
(450, 270 | 0, 0, 180)T/30 with the optimal objective row in Tableau 2.4.12.
The conclusions you draw will be used in the proof of the Duality Theorem
(Theorem 4.1.9) in Chapter 4.

Workout 2.4.13 Consider the LOP P from Exercise 1.5.10.

a. Use the Auxiliary Method to solve P . [HINT: First pivot in

x0 to replace the first slack variable.]

b. Write the LOP D that is dual to P and convert it to stan-
dard maximization form.

c. Use Phase II of the Simplex Algorithm to solve D.

d. Compare your results in parts a and c.

2.5 Shortcut Method

Observe that we could have proceeded directly from Tableau 2.4.2 to
Tableau 2.4.11 with the single pivot operation 1 	→ 4. This operation is
sort of a concatenation of the two operations 0 	→ 4 and 1 	→ 0 that were
used to solve the Auxiliary Problem 2.4.3. We would like to generalize this
observation in the hope that we could save the time and trouble of resorting
to an auxiliary problem.

Let us consider a new problem, such as Problem 2.5.1, below.

Problem 2.5.1

Max. z = 28x1 + 21x2 + 26x3

s.t. −7x1 + 2x2 + 3x3 ≤ −210
5x1 − 8x2 + x3 ≤ −305
2x1 + 4x2 − 9x3 ≤ −250

& x1 , x2 , x3 ≥ 0

If we are observant, we can notice two things about this problem. First,
if x = (t, t, t)T, then x is feasible whenever t ≥ 152.5. Second, such an x
yields z = 75t→∞ as t→∞, and so the problem is unbounded. But let’s
disregard this quick analysis for the moment (we will discuss this trick in
detail later — see Section 2.7), since it is difficult to perform on more general
linear problems, and instead concentrate on how the Auxiliary Method
handles this particular problem. Following that, we will discuss how we can
replace the Auxiliary Method by a much simpler process. The Auxiliary to
Problem 2.5.1 is the following.

42 Chapter 2. The Simplex Algorithm

Problem 2.5.2

Max. v = −x0

s.t. −x0 − 7x1 + 2x2 + 3x3 ≤ −210
−x0 + 5x1 − 8x2 + x3 ≤ −305
−x0 + 2x1 + 4x2 − 9x3 ≤ −250

& x0 , x1 , x2 , x3 ≥ 0

The corresponding sequence of auxiliary tableaux and pivots are as fol-
lows.

Tableaux 2.5.3 (Auxiliary)

x0 x1 x2 x3 x4 x5 x6 v

Tableau 0 : −1 −7 2 3 1 0 0 0 −210
−1 5 −8 1 0 1 0 0 −305
−1 2 4 −9 0 0 1 0 −250

1 0 0 0 0 0 0 1 0

Pivot 1: 0 �→ 5

Tableau 1 : 0 −12 10 2 1 −1 0 0 95
1 −5 8 −1 0 −1 0 0 305
0 −3 12 −10 0 −1 1 0 55
0 5 −8 1 0 1 0 1 −305

Pivot 2: 2 �→ 6

Tableau 2 : 0 −114 0 124 12 −2 −10 0 590
12 −36 0 68 0 −4 −8 0 3220
0 −3 12 −10 0 −1 1 0 55
0 36 0 −36 0 4 8 12 −3220

Pivot 3: 3 �→ 4

Tableau 3 : 0 −114 0 124 12 −2 −10 0 590
124 274 0 0 −68 −30 −26 0 29930

0 −126 124 0 10 −12 2 0 1060
0 −274 0 0 68 30 26 124 −29930

Pivot 4: 1 �→ 0

Tableau 4 : 114 0 0 274 −36 −32 −46 0 28820
124 274 0 0 −68 −30 −26 0 29930
126 0 274 0 −47 −57 −22 0 32755
274 0 0 0 0 0 0 274 0

2.5. Shortcut Method 43

Keep in mind that Pivot 1 was performed in order that Tableau 1 might
be feasible. By pivoting x0 into the basis, Tableau 1 will be feasible, ac-
cording to Workout 2.4.9, if and only if the leaving variable is chosen to be
that basic variable which is most negative. From that point on, we resort
to the pivoting rules of Phase II, as you can see.

Now we wish to investigate the effect of these same pivots on the original
Problem 2.5.1. But what does “same” mean? The pivots in Tableaux 2.5.3
are

0 	→ 5 , 2 	→ 6 , 3 	→ 4 , 1 	→ 0 .

By ignoring variable x0 coming into the basis at the start and leaving at
the end, we convert those pivots into

2 	→ 5 , 3 	→ 6 , 1 	→ 4 ,

which we perform on Problem 2.5.1 in Tableaux 2.5.4, below.

Tableaux 2.5.4 (Shortcut)

x1 x2 x3 x4 x5 x6 z

Tableau 0 : −7 2 3 1 0 0 0 −210
5 −8 1 0 1 0 0 −305
2 4 −9 0 0 1 0 −250

−28 −21 −26 0 0 0 1 0

Pivot 1: 2 �→ 5

Tableau 1 : −46 0 26 8 2 0 0 −2290
−5 8 −1 0 −1 0 0 305
36 0 −68 0 4 8 0 −3220

−329 0 −229 0 −21 0 8 6405

Pivot 2: 3 �→ 6

Tableau 2 : −274 0 0 68 30 26 0 −29930
−47 68 0 0 −9 −1 0 2995
−36 0 68 0 −4 −8 0 3220

−3827 0 0 0 −293 229 68 146615

Pivot 3: 1 �→ 4

Tableau 3 : 274 0 0 −68 −30 −26 0 29930
0 274 0 −47 −57 −22 0 3275
0 0 274 −36 −32 −46 0 28820
0 0 0 −3827 −2869 2386 274 2275215

Let’s spend a moment translating the rules we use in the Auxiliary
Method into rules for the Shortcut Method. Recall that the intention Shortcut

Methodof both methods is simply to produce a feasible tableau for the original
problem. In both cases we start by choosing as pivot row that row whose
b-column is most negative, in this case row 2.

44 Chapter 2. The Simplex Algorithm

In Auxiliary Pivot 2, x2 is chosen as the entering variable because of the
−8 in the objective row of Auxiliary Tableau 1, the first negative number
we see when reading left-to-right (Least Subscript rule). This corresponds
to the −8 in row 2 of both the Auxiliary and Shortcut Tableau 0, and
it translates into a Shortcut rule that chooses the variable with the least
subscript whose coefficient in the pivot row is negative.

Now take a gander at Shortcut Pivots 2 and 3 and ask yourself, could
this Shortcut rule have determined these as well?

Problem 2.5.5

Max. z = −4x1 +2x2 +16x3 +9x4 +9x5 +13x6

s.t. 2x1 −x2 +x4 +x6 ≤ 2
x1 +3x2 +4x3 +2x4 +2x6 ≤ 5

4x1 +x3 −3x4 −3x5 −2x6 ≤ −8

& x1, x2, x3, x4, x5, x6 ≥ 0

Workout 2.5.6

a. Write the LOP Q that is the Auxiliary to the LOP P in
Problem 2.5.5.

b. Use Phase II (including the special first pivot) to solve Q.
c. Write the pivots used in part b and modify them as above

to avoid the auxiliary variable x0.
d. Use the Shortcut Method on P .
e. Write the pivots used in part d and compare them to the

modified pivots in part c.

We will prove the following theorem in Appendix B.

Theorem 2.5.7 The Auxiliary and Shortcut Methods are equivalent in the
sense that, ignoring the auxiliary variable x0, they make the same sequence
of decisions for entering and leaving variables. �

If you are interested in trying to prove Theorem 2.5.7 yourself, here’s
a hint. Consider Auxiliary Pivot 2 of Tableaux 2.5.3. The variable x6 is
chosen to leave the basis because it is the variable that places the greatest
restriction on the entering x2. That is, its b-ratio of 55

12 is the smallest
nonnegative. Now consider Shortcut Pivot 2 of Tableaux 2.5.4. Here, x6 is
chosen to leave the basis because its basic value of −3220 is most negative.
Your job, should you accept it, is to determine why these two conditions
are equivalent (in the general case, of course).

The general strategy for finding a pivot in Phase I is the reverse of that
which finds the pivot in Phase II in the following sense. We now choose
a leaving variable that most violates its nonnegativity constraint before
choosing an entering variable that will have a positive basic value. In other
words, remove a bad variable from the basis before adding a good one!

2.6. Infeasibility 45

Workout 2.5.8 Write the correct Simplex pivot operation i 	→ k for the
following tableau.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−5 0 15 3 0 0 0 0 0 −7
18 0 0 −10 0 15 0 3 0 0
−7 0 0 8 0 0 15 14 0 −9

2 15 0 −4 0 0 0 6 0 22
20 0 0 6 15 0 0 −12 0 −9
−31 0 0 −47 0 0 0 63 15 206

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Workout 2.5.9

a. Write an outline (or pseudocode) for the Phase I (Shortcut)
Algorithm for LOPs with infeasible initial basis.

b. What can go wrong along the way?

2.6 Infeasibility

In putting together Phase I and Phase II Algorithms for a particular stan-
dard max form LOP, one first must determine which applies. If a given
basis is feasible then we use Phase II, while otherwise we use Phase I. In
the infeasible case we know that some variable is negative, and hence that
some variable is most negative (in the case of a tie, we shall choose that
most negative variable having the least subscript). This determines the
pivot row in the corresponding tableau. If some entry in the pivot row is
negative, then the first such determines the pivot. Now the question arises
as to what it means if no such entry exists. Consider the following LOP,
for example.

Problem 2.6.1

Max. z = 3x1 + 8x2

s.t. 5x1 − 2x2 ≤ 10
−2x1 + 3x2 ≤ 6
−4x1 − 5x2 ≤ −40

& x1 , x2 ≥ 0

One can see that after 2 pivots we obtain the following tableau.

Tableau 2.6.2
⎡

⎢
⎢
⎣

0 33 −4 0 −5 0 160
0 0 22 33 11 0 −22

33 0 5 0 −2 0 130
0 0 −17 0 −46 33 1670

⎤

⎥
⎥
⎦

46 Chapter 2. The Simplex Algorithm

At this point we find no negative entry in (the left side of) row 2 of
Tableau 2.6.2. Recall that this row is merely the row of coefficients that
represents the equality

22x3 + 33x4 + 11x5 = −22 .

Because every variable is nonnegative, the left side of the equation is non-
negative, which contradicts the equality. Thus we can only surmise that
Problem 2.6.1 is infeasible; that is, there are no values for its variables that
satisfy both its problem and nonnegativity constraints.

Now someone who doesn’t trust the arithmetic that produced Tableau
2.6.2 might then distrust this conclusion. Therefore, it would be beneficial
to produce a certificate of this result. Since every row of any tableau is
some linear combination of the rows {r(0)i } of the original tableau (see
Exercise 2.10.38), we should be able to produce the exact linear combination
necessary.

Workout 2.6.3

a. Find the linear combination of the rows of Tableau 0 of
Problem 2.6.1 that produces row 2 of Tableau 2.6.2.

b. Use part a to derive a contradiction directly from the prob-
lem and nonnegativity constraints of Problem 2.6.1.

c. Where in Tableau 2.6.2 do you see the coefficients of the
linear combination you found in part a?

Workout 2.6.4

a. Generate a LOP P in standard form with 3 variables and 4
inequalities by writing random integers as coefficients and
right-hand sides. (With fairly high probability the resulting
LOP is infeasible.)

b. Verify that the Simplex Algorithm outputs “Infeasible” on
P . (If not, return to part a and repeat.)

c. Find the linear combination of the rows of the initial tableau
of P that produces the offending row of the final tableau
from part b.

d. Use part c to derive a contradiction directly from the prob-
lem and nonnegativity constraints of P .

e. Where in the final tableau from part b do you see the coef-
ficients of the linear combination you found in part c?

We will see in Chapter 7 a way to compute infeasibility certificates
without using the infeasible tableaux that halt Phase I.

2.7. Unboundedness 47

2.7 Unboundedness

Similar concerns arise in Phase II. If we see no negatives in the (left side of
the) objective row of a feasible tableau, then we know that the tableau is
optimal. We will see in Chapter 4 how to find the certificate of optimality
without solving the dual LOP. Otherwise there is some first negative entry
in the objective row, and that determines the entering variable. If the pivot
column has a positive entry then we can find the leaving variable by the
b-ratio test. But now we ask what meaning there is in the case that no
such entry exists. Consider the following LOP, for example.

Problem 2.7.1

Max. z = 3x1 + 8x2

s.t. −5x1 + 2x2 ≤ 10
2x1 − 3x2 ≤ 6
−4x1 − 5x2 ≤ −10

& x1 , x2 ≥ 0

One can see that after 3 pivots we obtain the following tableau.

Tableau 2.7.2 ⎡

⎢
⎢
⎣

−33 0 5 0 2 0 30
−11 0 3 2 0 0 42
−5 2 1 0 0 0 10
−46 0 8 0 0 2 80

⎤

⎥
⎥
⎦

At this point we find no positive entries in column 1 of Tableau 2.7.2.
This suggests that no variables place any restriction on the value of x1, and
since increasing x1 increases z, we should find no upper bound on the LOP.
Indeed, consider the following set of values

x(t) = (2t, 10 + 5t | 0, 42 + 11t, 30 + 33t)T / 2 .

Note that x(t) satisfies all problem and nonnegativity constraints of Prob-
lem 2.7.1 whenever t ≥ 0; i.e., x(t) is feasible for all t ≥ 0. Moreoverx(t)
produces the (feasible) objective value z(t) = (80 + 46t)/2, which tends
to infinity as t→∞. Thus x(t) is a certificate that shows that Problem
2.7.1 has no finite optimum. Such problems we call unbounded. Their unbounded

problem/
tableau/
dictionary

corresponding tableaux and dictionaries are also called unbounded.

Problem 2.7.3

Max. z = 31x1 + 23x2

s.t. −7x1 + 3x2 ≤ 21
4x1 − 5x2 ≤ 20
−9x1 − 8x2 ≤ −72

& x1 , x2 ≥ 0

48 Chapter 2. The Simplex Algorithm

Workout 2.7.4 Find a certificate for the unboundedness of Problem 2.7.3.

2.8 Cycling

As is the case with all algorithms, we must be sure that the Simplex Al-
gorithm halts in all cases. Does that mean we have to test every possible
LOP? Not really. We merely have to imagine that we are given an arbitrary
LOP, say P , and show that Simplex halts on it. So let P be a fixed LOP
which, by the discussion of Section 1.4, we may assume is in standard max
form, with n variables and m problem constraints.

First notice that the Simplex Algorithm as presented is deterministic.
That is, for a particular tableau the pivot chosen by Simplex is determined
by its rules, so if that same tableau turns up again later on then the same
pivot will be chosen again. In particular, if that happens then Simplex
will continue to make the same choices as before and the algorithm will
cycle through a sequence of tableaux indefinitely. In fact, we argue that if
Simplex doesn’t halt on P then it will cycle in this manner. This is because
the number of possible tableaux of P is finite (see Workout 2.8.1, below).
Thus, if Simplex doesn’t cycle then it will halt after a finite number of
steps. Halting can be guaranteed, therefore, if cycling can be eliminated
somehow.

Workout 2.8.1 Why is the number of possible tableaux of P finite? [HINT:

Why is the number of possible bases of P finite?]

For the moment let us consider two different rules for choosing the
leaving variable in Phase II. The first is the Least Subscript (LS) rule we
have been using, and the second is the Lowest-Greatest (LG) rule. Both
rules use the least subscript for entering variable choice: x1 in Tableau 2.8.2
below. However, while LS uses least subscript for the breaking of ties in
the choice of a leaving variable (x4), LG uses the greatest subscript instead
(x7).

Tableau 2.8.2
⎡

⎢
⎢
⎣

−8 16 4 0 2 −18 0 0 0
1 −3 −1 2 0 2 0 0 0
2 0 0 0 0 0 2 0 0

−44 186 42 0 0 −48 0 2 0

⎤

⎥
⎥
⎦

Now consider the following LOP. A certificate that Problem 2.8.3 is
unbounded is given by x(t) = t(0, 5, 0, 11)T/11 and z(t) = 2793t, as one
can verify.

2.9. The Fundamental Theorem 49

Problem 2.8.3

Max. z = 24x1 + 288x2 − 270x3 + 123x4

s.t. x1 + 11x2 + 18x3 − 5x4 ≤ 0
−x1 − 3x2 + 2x3 − x4 ≤ 0

& x1 , x2 , x3 , x4 ≥ 0

Workout 2.8.4

a. Show that LS Simplex halts on Problem 2.8.3 in 2 steps.

b. Show that LG Simplex cycles on Problem 2.8.3 in 6 steps.

Note that any time cycling occurs the objective function value neces-
sarily stays fixed. Pivots that do not change the objective value are called degenerate

pivot/
tableau/
basis/
extreme
point/
LOP/
polyhedron

degenerate. Tableau, bases and extreme points associated with such a
pivot are similarly named, as are the LOP and polyhedron involved. De-
generate pivots do not signal cycling, however; they sometimes occur in
problems that don’t cycle (see Exercise 1.5.4). However, one could imagine
an algorithm watching out for the occurrence of many consecutive degen-
erate pivots in order to keep an eye out for the chance for a nondegenerate
pivot, so as to avoid cycling. A better method is simply to use LS, according
to the following theorem.

Theorem 2.8.5 The LS Simplex Algorithm halts on every LOP in stan- Bland’s
Theoremdard max form. �

2.9 The Fundamental Theorem

There are three types of people in this world: those who can
count, and those who can’t.

Now we are ready to state the Fundamental Theorem of Linear Opti-
mization.

Theorem 2.9.1 Let P be a LOP in standard max form. Then Funda-
mental
Theorema. P is either infeasible, unbounded, or it has a maximum;

b. if P has a feasible solution, then it has a basic feasible
solution; and

c. if P has an optimal solution then it has a basic optimal
solution.

Workout 2.9.2

a. Prove Theorem 2.9.1a. [HINT: Consider all the outcomes of

LS Simplex.]

50 Chapter 2. The Simplex Algorithm

b. Prove Theorem 2.9.1b. [HINT: Think about Tableaux.]

c. Prove Theorem 2.9.1c. [HINT: Think about Tableaux.]

Problem 2.9.3

Max. z = 3x1 + 7x2

s.t. −2x1 + x2 ≤ 6
−x1 + 5x2 ≤ 2
x1 − 2x2 ≤ 9

2x1 − 4x2 ≤ 9

& x1 , x2 ≥ 0

Workout 2.9.4 Consider Problem 2.9.3. Use Theorem 2.9.1 to prove that
it has an optimum (i.e., do not solve it).

2.10 Exercises

Practice

2.10.1 Draw the feasible region of the LOP in Exercise 1.5.2. Label each
boundary line by the index of the variable whose value is zero on that line.

2.10.2 Repeat Exercise 2.10.1 N times, each time with a different LOP
of your own design, having 2 variables and 3–5 constraints.

2.10.3 Draw the feasible region of the LOP in Exercise 1.5.3. Label each
boundary plane by the index of the variable whose value is zero on that line.

2.10.4 Repeat Exercise 2.10.3 N times, each time with a different LOP
of your own design, having 3 variables and 2–4 constraints.

2.10.5 Circle (or otherwise locate) the pivot entry in each of the following
tableaux, according to our LS Implementation of Simplex.

a.
⎡

⎢
⎢
⎣

3 4 0 −1 −2 0 0 0
0 2 0 0 −5 3 0 16
0 −1 3 −3 1 0 0 0
0 6 0 −1 −4 0 3 0

⎤

⎥
⎥
⎦

b.
⎡

⎢
⎢
⎢
⎢
⎣

−6 0 5 −1 0 0 2 0 −1
1 0 0 8 5 0 −3 0 7
0 0 0 −1 0 5 −4 0 −3
2 5 0 −5 0 0 −6 0 −3

−11 0 0 16 0 0 13 5 43

⎤

⎥
⎥
⎥
⎥
⎦

2.10. Exercises 51

c.
⎡

⎢
⎢
⎢
⎢
⎣

0 0 2 0 8 5 0 0 4
8 0 −5 2 0 0 0 0 0
0 8 3 6 0 −1 0 0 6
0 0 0 1 0 2 8 0 1
0 0 −1 −7 0 4 0 8 −27

⎤

⎥
⎥
⎥
⎥
⎦

2.10.6 Solve the problem formulated in Problem 1.1.3.

2.10.7 Solve Problem 2.1.6.

2.10.8 Solve Problem 2.1.8.

2.10.9 Solve the problem formulated in Exercise 1.5.18.

2.10.10 Solve the problem formulated in Exercise 1.5.19.

2.10.11 Solve the problem formulated in Exercise 1.5.20.

2.10.12 Compare the Auxiliary and Shortcut Methods on the following
infeasible LOP.

Max. z = x1 + x2 + x3

s.t. x1 + x2 + x3 ≤ 2
− 2x2 − x3 ≤ 3

−3x1 + x2 − 2x3 ≤ −5
2x1 − 6x2 ≤ 0

& x1 , x2 , x3 ≥ 0

2.10.13 Compare the Auxiliary and Shortcut Methods on N infeasible
LOPs of your own design. [HINT: You may have more luck in creating them if

you have more constraints than variables.]

2.10.14 Solve the following LOP (with the Shortcut Method, if necessary).

Max. z = x1 + 7x2

s.t. 3x1 + 2x3 ≤ 6
−2x1 + 2x2 + 4x3 ≤ 4

9x1 + 3x2 + x3 ≤ 18

& x1 , x2 , x3 ≥ 0

52 Chapter 2. The Simplex Algorithm

2.10.15 Solve the following LOP (with the Shortcut Method, if necessary).

Max. z = x1 + 6x2 + 3x3

s.t. x1 + 2x2 + 3x3 ≤ 2
2x1 − 2x2 + 4x3 ≤ 4

& x1 , x2 , x3 ≥ 0

Include a certificate of your result.

2.10.16 Solve the following LOP (with the Shortcut Method, if neces-
sary).

Max. z = x1 − 2x2 + 5x3

s.t. x1 − 2x2 ≤ 10
−2x1 − 2x3 + 3x4 ≤ −4
−x1 − x2 − 4x3 ≤ −1
−2x1 + 5x2 + 8x3 − 10x4 ≤ −5

2x1 + 2x3 + x4 ≤ 1

& x1 , x2 , x3 , x4 ≥ 0

Include a certificate of your result.

2.10.17 Solve the following LOP (with the Shortcut Method, if necessary).

Max. z = 112x1 + 125x2 + 103x3

s.t. −13x1 − 14x3 ≤ −63
−14x1 + 15x2 − 17x3 ≤ −49

11x1 − 18x2 + 16x3 ≤ −56
12x1 + 20x2 ≤ 98

& x1 , x2 , x3 ≥ 0

Include a certificate of your result.

2.10.18 Solve the following LOP (with the Shortcut Method, if necessary).

Max. z = 5x1 + 7x2

s.t. −2x1 − x2 ≤ −2
−x1 + 2x2 ≤ 4
x1 − 2x2 ≤ 1

& x1 , x2 ≥ 0

Include a certificate of your result.

2.10. Exercises 53

2.10.19 Solve the following LOP (with the Shortcut Method, if necessary).

Max. z = 12x1 + 3x2 + 12x3 − 6x4

s.t. x1 + x2 + 5x3 − 3x4 ≤ 2
7x1 + 2x3 ≤ 14
8x1 − x2 − 2x4 ≤ 16

x3 − 4x4 ≤ 5

& x1 , x2 , x3 , x4 ≥ 0

Include a certificate of your result.

2.10.20 Consider the following LOP P .

Max. z = 3x1 + 3x2 + 3x3

s.t. −5x1 + x3 ≤ −1
4x1 + 5x2 + 6x3 ≤ 14

− 3x3 ≤ 1
x1 − 7x2 − x3 ≤ −5

& x1 , x2 , x3 ≥ 0

a. Write the sequence of pivot operations i 	→ j that solves P .

b. Write β∗, π∗, x∗, and z∗.

2.10.21 For a given LOP tableau T , let T (r, c) denote the entry in row
r and column c of T . Let T be such a tableau and suppose that the rules
of the Simplex Algorithm determine the pivot entry to be T (i, j), and that
the resulting tableau is T ′. However, by accident you pivot on the entry
T (i′, j′), resulting in tableau T ′′.

a. Find the pivot entry of T ′′ that returns you to tableau T .

b. Explain how, and under what circumstances you can reach
T ′ in a single pivot.

2.10.22 Repeat Workout 2.6.4 N times, with n variables and m con-
straints, for various values of m > n. Form a general conjecture based
on your results.

2.10.23 Consider the following LOP.

54 Chapter 2. The Simplex Algorithm

Max. z = −2x1 −3x2 −x3 −2x4 −8x5 −3x6

s.t. x1 −6x2 +15x3 +13x4 −3x5 +7x6 ≤ 8
x1 +x2 +5x3 +17x6 ≤ 7
x1 +2x2 +5x3 +3x4 −4x5 +27x6 ≤ 0

−13x1 −66x2 +3x4 +9x5 +37x6 ≤ 3
−6x1 +6x2 +3x4 +47x6 ≤ 1

5x3 +57x6 ≤ 1
6x2 +5x3 +3x4 −18x5 +67x6 ≤ 5

x1 −23x4 +3x5 +77x6 ≤ 9

& x1, x2, x3, x4, x5, x6 ≥ 0

Use Theorem 2.9.1 to prove that it has an optimum (i.e., do not solve
it).

2.10.24 Repeat the following 5-step exercise N times successfully (con-
sider it a success if an optimal solution is found).

a. Create an arbitrary primal linear problem P in standard
form, using 2–6 variables and 2–6 constraints (use different
size LOPs each time).

b. Write the dual linear problem D to your problem P.

c. Solve the primal P.

d. Solve the dual D.

e. Record the optimal solutions and tableaux of each.

Describe the patterns you witness as precisely as you can. Try to write
down a conjecture about the general case.

2.10.25 Create a standard form LOP with 2 variables and 2 constraints
so that its feasible region is a quadrilateral and the Simplex Algorithm visits
all four of its extreme points.

Challenges

2.10.26 Solve Exercise 1.5.21(a).

2.10.27 Solve Exercise 1.5.21(b).

2.10.28 Solve Exercise 1.5.33.

2.10.29 Solve Exercise 1.5.39.

2.10.30 Solve Exercise 1.5.40.

2.10. Exercises 55

2.10.31 Solve Exercise 1.5.42.

2.10.32 Let S be the feasible region of a LOP and let x0 be interior to
some face F of S. Prove that if x0 is optimal then every point of F is
optimal. [HINT: See Workout 2.1.3.]

2.10.33 Prove that a variable that leaves the basis during an iteration of
Phase II of the Simplex Algorithm cannot reenter the basis during the next
iteration.

2.10.34 List all the bases for each of the following LOPs; which are fea-
sible and which are infeasible?

a.
Max. z = 4x1 + 5x2

s.t. 2x1 + x2 ≤ 6
x1 + x2 ≤ 4
x1 + 2x2 ≤ 6

& x1 , x2 ≥ 0

b.

Max. z = 3x1 + 4x2 + 5x3

s.t. 2x1 − 7x2 + 4x3 ≤ 6
x1 − 2x2 − 2x3 ≤ −4

−5x1 + x2 + 2x3 ≤ 5

& x1 , x2 , x3 ≥ 0

c.

Max. z = x1 + x2 + x3

s.t. x1 + x3 ≤ 3
3x2 − 4x3 ≤ −1
x2 ≤ 2

2x1 − x2 + 3x3 ≤ −4

& x1 , x2 , x3 ≥ 0

2.10.35

a. Given an M × N matrix A, and integers i ∈ [M], j ∈
[N], and r, s, and d > 0, write an algorithm (in code
or pseudocode) to perform the row operation Ri = (rri −
srj)/d.

56 Chapter 2. The Simplex Algorithm

b. Given a tableau T , arising from a linear problem involving
m constraints and n problem variables, write an algorithm
(in code or pseudocode) to perform a pivot on ai,j. [HINT:

What entries of T play the roles of r, s, and d?]

2.10.36

a. Given an M × N matrix A, and integers i ∈ [M], j ∈
[N], and r, s, and d > 0, write an algorithm (in code
or pseudocode) to perform the row operation Ri = (rri −
srj)/d.

b. Given a tableau T , arising from a linear problem involving
m constraints and n problem variables, write an algorithm
(in code or pseudocode) to perform a pivot on ai,j. [HINT:

What entries of T play the roles of r, s, and d?]

2.10.37 Justify the “fairly high probability” statement made in Workout
2.6.4(a).

2.10.38 Let A be a matrix and B be a matrix derived from A after some
number of pivots. Use induction to prove that every row of B is a linear
combination of the rows of A.

2.10.39 Let P be a standard form maximization LOP with integer coeffi-
cients and right-hand sides. Let T be a tableau of P derived from the initial
tableau by pivots as described in Workout 2.3.3. Let T ′ be the subsequent
tableau derived from T by pivoting on an entry having absolute value d.
Prove that the basic coefficient of T ′ is d.

2.10.40 Use Exercise 2.10.38 to prove your conjecture made in Exercise
2.10.22.

2.10.41 Let P be a standard form maximization LOP for which every
entry of A and b is positive. Use Theorem 2.9.1 to prove that it has an
optimum.

2.10.42 Let P be a standard form maximization LOP having nonnegative
b and for which some nonnegative linear combination of its constraints
yields a positive linear combination of its variables to be at most some
constant. Use Theorem 2.9.1 to prove that it has an optimum.

2.10.43 Modify Theorem 2.9.1 to allow for maximization LOPs not in
standard form. Prove your modification.

2.10.44 Write pseudocode for the Simplex Algorithm (Phase I & II for
standard max form LOPs).

2.10.45 Create a standard form LOP with 3 variables and 3 constraints
so that its feasible region has 8 extreme points and the Simplex Algorithm
visits all of them.

2.10. Exercises 57

2.10.46 Write an algorithm (in code or pseudocode) that lists every basis
of an LOP with n variables and m constraints. Can you do so in such a
way that the bases are listed in numerical order? Can you do so in such a
way that the bases are listed so that consecutive bases differ by exactly two
elements (such as by a pivot operation)?

Projects

2.10.47 Present the Big M Method for Phase I. Big M
Method

2.10.48 Present the Fourier–Motzkin Elimination Algorithm for
Phase I. Fourier–

Motzkin
Elimina-
tion
Algorithm

2.10.49 Present a proof of Bland’s Theorem 2.8.5.

2.10.50 Find an example that shows that the MN (or GI, or other) Im-
plementation can cycle.

2.10.51 Present a proof that the Perturbation Method avoids cycling. Pertur-
bation
Method

Chapter 3

Geometry

3.1 Extreme Points

We have seen how the Graphic Method works and how the Simplex Algo-
rithm works. Now we would like to explore connections between the two.
The goal of this section is to discover the relationship between basic feasible
solutions and extreme points of the feasible region. Consider the following
problem.

Problem 3.1.1

Max. z = 2x1 + 11x2

s.t. x1 + x2 ≥ 13
x1 − x2 ≤ 5

−2x1 + x2 ≤ 4
3x1 + 4x2 ≤ 92

x2 ≤ 14

& x1 , x2 ≥ 0

The drawing of its feasible region is shown in Figure 3.1. The extreme
points x(p) are labeled by the number p of Simplex pivots required to reach
them, x∗ being the extreme point of optimality. Its initial tableau is below.

Tableau 3.1.2
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 1 0 0 0 0 0 −13
1 −1 0 1 0 0 0 0 5
−2 1 0 0 1 0 0 0 4

3 4 0 0 0 1 0 0 92
0 1 0 0 0 0 1 0 14
−2 −11 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 3, c© Springer Science+Business Media LLC 2010

60 Chapter 3. Geometry

Figure 3.1: Feasible region for Problem 3.1.1, with variable and pivot labels

What are the values for x1 and x2 in the initial basic solution? Since
they both begin as parameters, each is zero. We can think of the origin
x(0) = (0, 0)T as being the intersection of the lines x1 = 0 and x2 =
0. Notice that each of the lines in Figure 3.1 has been labeled with an
appropriate variable, so as to suggest that it is the line corresponding to
that variable being zero. For example, the equality x1 + x2 = 13 implies
that the slack variable x3 = 0. So the line x1 + x2 = 13 is the same as the
line x3 = 0, illustrating why that line is labeled x3.

The point x(1) = (13, 0)T is the intersection of the lines x2 = 0 and
x3 = 0. Thus if we take x2 and x3 as parameters, this leaves x1, x4, x5,
x6, and x7 for the basis. That is, the point (13, 0)T corresponds to a basic
solution (which incidentally arises from our first pivot operation).

Likewise, pivot once again and consider the resulting basic solution. It
has parameters x3 and x4. Sure enough, the lines x3 = 0 and x4 = 0 inter-
sect at x(2) = (9, 4)T, just as the resulting tableau predicts. This particular
tableau is feasible, so its corresponding basic solution is an extreme point of
the feasible region. One more pivot takes us to the basis {1, 2, 3, 5, 7}. That
is, parameters x4 and x6 are zero; these lines intersect at x(3) = (16, 11)T.

The point X = (80, 204)T/11 corresponds to the basis {1, 2, 3, 4, 7}.
Since this point is on the infeasible side of the line x7 = 0, it must be that
x7 < 0. Thus the pivot required to travel from (16, 11)T to (80/11, 204/11)T

must be wrong according to our Simplex rules. Indeed, you can check that

3.2. Convexity 61

the pivot 4 	→ 5 violates the b-ratio rule. The correct pivot of 4 	→ 7 yields
the extreme point x(4) = (12, 14)T, which is optimal.

Workout 3.1.3 It seems clear that in two dimensions (i.e., two problem
variables), there is a one-to-one correspondence between basic solutions and
intersection points of two constraint lines. However, this is not quite true
— why? What is true, and what is the general argument in R

n? [HINT:

Recall Workouts 2.1.5 and 2.8.1.]

Surely, this is precisely what would please Descartes so. Knowing from
geometry that the optimum must occur at a extreme point, it is quite
satisfying to discover that the Simplex Algorithm spends its time jumping
from one extreme point to another.

3.2 Convexity

Let’s discuss the shapes of our feasible regions in greater detail. You might
have noticed that the 2-dimensional problems considered up to this point
all have had feasible regions sharing an interesting property. If you ran-
domly pick any feasible point and your friend arbitrarily picks any other
feasible point, then the straight line segment which joins these two points
is contained entirely in the feasible region. (Check them and see that this
is so!)

A region S is called convex if the line segment joining any two points convex
regionof S is contained entirely in S. So the statement above can be rephrased to

say that the feasible regions so far all have been convex. The question then
arises, is every feasible region convex? We claim that the answer is yes.

Workout 3.2.1 Consider the half-space R defined by 3x1 − 7x2 ≤ −12.

a. Prove that R is convex.

b. More generally, prove that the half-space defined by Σn
j=1ajxj

≤ b is convex.

Workout 3.2.2 Let S and T be two arbitrarily chosen convex regions.

a. Prove by example that S ∪ T is not always convex.

b. Prove that S ∩ T is always convex.

c. Use induction to prove that the intersection of an arbitrary
number (finite or infinite) of convex regions is convex.

d. Prove that all polyhedra are convex.

Theorem 3.2.3 Let A ∈ R
m×n, b ∈ R

m, and let S = {x ∈ R
n | Ax ≤ b}.

Then S is convex.

62 Chapter 3. Geometry

Note that Theorem 3.2.3 implies that the feasible region of any LOP in
standard form is convex. Indeed, the standard form {Ax ≤ b,x ≥ 0} is a
special instance of the form {Ax ≤ b}. In fact, the forms are equivalent
since nonnegativity constraints can be considered as part of the problem
constraints.

Workout 3.2.4

a. Use Workout 3.2.1 and 3.2.2 to prove Theorem 3.2.3.
b. Does the same hold for LOPs not in standard form?

Let L = L(x1,x2) be the line segment that joins the two points x1

and x2 in R
n (here, the superscripts do not denote exponents, but rather

merely first and second points). Can we describe L algebraically? If x1 =
(3, 5)T and x2 = (8,−1)T then the line that passes through both points is
defined by the set of all points (x1, x2)T which satisfy 6x1 + 5x2 = 43. A
parametric description can be given by those points of the form (3, 5)T +
t(5,−6)T, which can be written instead as (1−t)(3, 5)T+t(8,−1)T. Then the
substitutions t1 = 1−t and t2 = t yield the form t1x1+t2x2, with t1+t2 = 1.
Notice that the point x1 corresponds to the value t = 0 ((t1, t2) = (1, 0)),
and the point x2 corresponds to the value t = 1 ((t1, t2) = (0, 1)). So
it seems that the points on the line segment between x1 and x2 must be
defined as those which arise when both t1, t2 ≥ 0 (for example, the midpoint
(5.5, 2)T has (t1, t2) = (.5, .5)). Therefore, we equivalently and algebraically
can re-define a region (set) S to be convex if t1x1 + t2x2 ∈ S whenever x1,
x2 ∈ S, t1 + t2 = 1, and t1, t2 ≥ 0. Of course, since x1 and x2 are linearly
independent, we know from linear algebra that the region of all points of
the form t1x1 + t2x2 is all of R

2.

Workout 3.2.5 With x1 and x2 as above, consider the four points A =
(2, 6)T, B = (−2, 11)T, C = (10,−1)T and D = (25

6 ,
18
5)T.

a. For each of the points (s1, s2)T above, find the values of t1
and t2 that yield
t1x1 + t2x2 = (s1, s2)T.

b. Which of the above points lie on the line containing x1 and
x2?

c. Which of the above points lie between the rays from the
origin through x1 and x2?

d. Which of the above points lie on the line segment between
x1 and x2?

For a set X = {x1, . . . ,xk} of k points in R
n, we call the sum Σk

j=1tjx
j

a linear combination of X . If it is the case that Σk
j=1tj = 1, then welinear/

affine/
conic/
convex

combina-
tion

call the sum an affine combination of X . If instead it is the case that
each tj ≥ 0, then we call the sum a conic combination of X . Finally, if
the linear combination is both affine and conic, then we call it a convex
combination of X . (Note that for a LOP in standard form, the dual
variables are used to form conic combinations of its constraints.)

3.2. Convexity 63

Workout 3.2.6 Suppose that α and β are each convex combinations of X,
and that γ is a convex combination of α and β. Prove that γ is a convex
combination of X.

Before proceeding, let’s get more comfortable with these definitions. If
we can think of pictures in R

3 for a moment, imagine three points x1, x2,
and x3 which are linearly independent. The points (1, 0, 0)T, (0, 1, 0)T, and
(0, 0, 1)T will do fine, but you can think of another three if you wish. (In
fact, these points are completely general, as a change of basis matrix con-
verts any other example to this one.) The region of all linear combinations
of these three points consists of all of R

3. The region of all affine combina-
tions consists of the plane that contains all three points. (A 2-dimensional
linear space is a plane going through the origin. A 2-dimensional affine
space is a plane shifted way from the origin, like this one.) The region of all
conic combinations consists of all the nonnegative points of R

3. The region
of all convex combinations consists of the points on the affine plane which
lie on the triangle whose extreme points are x1, x2, and x3: the intersection
of the affine and conic spaces. Let’s test that what we have said here is
true.

Workout 3.2.7 Choose three points x1,x2,x3 ∈ R
3. Let P be the plane

containing x1,x2 and x3, and let T be the triangle having corners x1,x2 and
x3. (Since every three noncolinear points determine a plane, for the pur-
poses of this workout it may be simplest to first pick an equation

∑3
j=1 ajxj

= c and then pick x1,x2 and x3 satisfying it — what some call ‘reverse
engineering’.)

a. Pick a point γ that you know is on P but not T .

(i) Verify that t1 + t2 + t3 = 1.
(ii) Verify that one of the tjs is negative.

b. Pick a point γ that you know is on both P and T .

(i) Verify that t1 + t2 + t3 = 1.
(ii) Verify that each tj ≥ 0.

c. Pick a point τ that you know is not on P and verify that
t1 + t2 + t3 �= 1.

Workout 3.2.8 Draw the affine, conic and convex spaces determined by
x1 = (1, 5, 6)T, x2 = (7, 1, 5)T and x3 = (6, 7, 1)T.

Why is it that all the points on the interior of the triangle T formed by
x1, x2, and x3 are convex combinations of the xis? Suppose γ ∈ T and
consider the line through γ and x3. That line intersects the line segment
which joins x1 and x2 at some point which we can call δ. We know that δ
is a convex combination of x1 and x2, and that γ is a convex combination
of δ and x3. So indeed, by Workout 3.2.6, γ is a convex combination of x1,
x2, and x3.

64 Chapter 3. Geometry

Define the convex hull of a set X ⊆ R
n, denoted vhull(X), to be theconvex

hull/span smallest convex region containing X . Also define the convex span of X ,
denoted vspan(X), to be the set of all convex combinations of finitely many
points in X .

Workout 3.2.9 Use the definition of vhull and Workout 3.2.6 to prove
that, for all X ⊆ R

n, every γ ∈ vhull(X) is in vspan(X); that is, vhull(X)
⊆ vspan(X). (Note that X may be finite or infinite.)

An obvious and interesting question to pursue is whether or not vhull(X)
= vspan(X); in other words, whether or not vspan(X) ⊆ vhull(X) also
holds. To this end, define vspank(X) to be the set of all convex combina-
tions involving exactly k of the points in X . More precisely, x ∈ vspank(X)
if and only if there exist X ′ = {x1, . . . ,xk} ⊆ X such that x ∈ vspan(X ′).
In particular, vspan1(X) = X and ∪∞k=1vspank(X) = vspan(X).

Workout 3.2.10 Let C be any convex region containing the set X ⊆ R
n.

Use induction on k to prove that vspank(X) ⊆ C for all k ≥ 1. [HINT: The

technique is not too different from that used preceding Workout 3.2.9.]

Theorem 3.2.11 For every set X ⊆ R
n we have vhull(X) = vspan(X).

Workout 3.2.12 Use Workouts 3.2.9 and 3.2.10 to prove Theorem 3.2.11.

3.3 小小小试试试牛牛牛刀刀刀

Workout 3.3.1 Consider the point set X = {(5, 14)T, (9, 4)T, (16, 11)T,
(12, 14)T, (7, 8)T, (3, 10)T} ⊂ R

2.

a. Draw vhull(X).

b. Which points of X can be thrown away without altering
vhull(X)?

c. For each such point γ, find the smallest k for which γ ∈
vspank(X).

d. Can you partition vhull(X) into t triangles for

(i) t = 2?
(ii) t = 3?
(iii) t = 4?
(iv) t = 5?

e. Draw vspank(X) for each of the values

(i) k = 1.
(ii) k = 2.
(iii) k = 3.
(iv) k = 4.

3.4. Carathéodory’s Theorem 65

f. Which of the vspank(X) above are convex?
g. Find the inequalities that define the half-spaces whose in-

tersection equals vhull(X).

IfX = {x1, . . . ,xt} is a finite set of points in R
n then, for L = max{|xj

i | |
1 ≤ j ≤ t, 1 ≤ i ≤ n}, we have X ⊆ B, where B is the ‘box’ polytope
{x ∈ R

n | −L ≤ xi ≤ L, 1 ≤ i ≤ n}. However, it would be nice to find
a smaller polytope containing X , one that fits its shape better, such as
vhull(X). But is vhull(X) a polytope?

Workout 3.3.2 Let X be a finite set of points in R
n for which vhull(X)

has dimension n. Use the points in X and your method from Workout
3.3.1(g) to define a polyhedron P that contains X. [HINT: For a set S ⊂ X,

say that S qualifies if vhull(S) has dimension n − 1. What must be done with

qualifying sets?]

The problem with the construction in general is that all the points could
lie on some hyperplane h. Then we would have hS = h for all qualifying S,
making P = h. Of course, such a P is a polyhedron containing X , but it
wouldn’t be a polytope and, more importantly, it wouldn’t equal vhull(X),
which is really what we’re after in this sequence of workouts. Worse, if
vhull(X) has dimension less than n− 1, then no S qualifies, meaning P is
empty, not containing X .

3.4 Carathéodory’s Theorem

Note that vspank−1(X) ⊆ vspank(X) for every X ⊆ R
n, because including

an extra point of X with coefficient zero does not alter the convex com-
bination requirements. Thus we have that vhull(X) = ∪∞k=1vspank(X) =
limk→∞ vspank(X). It is natural then to ask if there is some finite k for
which vhull(X) = vspank(X). For example, the value k = |X | suffices in
the case that X is finite. But what about the case for infinite X? In either
case, what is the smallest such k? Does the dimension n matter? In 1907,
Carathéodory answered these questions in the following theorem.

Theorem 3.4.1 Let X ⊆ R
n. Then vhull(X) = vspann+1(X). Carathéo-

dory’s
TheoremThe result is, of course, best possible. For example, let X be any n

linearly independent points with entirely nonnegative coordinates, plus the
origin. Then the average of those n + 1 points is in vspann+1(X) but not
vspann(X). The proof is not too tricky, and uses the ideas from Workout
3.3.1c, as well as the Fundamental Theorem 2.9.1.

Proof. We already know that vspann+1(X) ⊆ vhull(X). Therefore we
need only show that vhull(X) ⊆ vspann+1(X). Let γ ∈ vhull(X). Then
for some k and some x1, . . . ,xk ∈ X we can write

γ =
k∑

j=1

tjxj with
k∑

j=1

tj = 1 (3.1)

66 Chapter 3. Geometry

and each tj ≥ 0. If we write the coordinates as xj = (xj
1, . . . , x

j
n)T and

γ = (γ1, . . . , γn)T, then we may rewrite system 3.1 as

k∑

j=1

xj
i tj = γi (1 ≤ i ≤ n) with

k∑

j=1

tj = 1 . (3.2)

Now (3.2) is a system of n+1 equations in k variables tj that has a nonneg-
ative solution. Thinking of this system as the constraints of a LOP (with
arbitrary objective function) allows us to use the Fundamental Theorem
2.9.1 (actually, the more general version of the theorem for LOPs not in
standard maximization form — see Exercise 2.10.43) to conclude that it
has a basic feasible solution. Such a solution has at most n+1 nonnegative
values because that is (an upper bound on) the size of its basis. Those
points xj for which tj = 0 therefore can be thrown out, leaving a linear
combination using at most n+ 1 points of X . Thus γ ∈ vspann+1(X). �

It is useful to consider Carathéodory’s result in contrast to what we
know about linear algebra. The maximum number of linearly independent
vectors in R

n is n, and every maximal set of such vectors has this size.
However, there is no limit to the number of convex independent vectors in
R

n — the uncountably many vectors of length 1 are one example. Moreover,
just as a linear basis for lspan(X)1, for some X ⊆ R

n, is defined to be alinear/
convex

basis
set of linearly independent vectors of maximum size, a convex basis for
vspan(X) is defined to be a set of convex independent (no one vector

convex in-
dependent

is a convex combination of the others) vectors of maximum size. While
for each X there are infinitely many linear bases for lspan(X), there is
a unique convex basis for vspan(X). From these perspectives, linear and
convex algebra/geometry are quite different.

But Carathéodory’s Theorem says that they share an interesting sim-
ilarity: for every X ⊆ R

n, each v ∈ lspan(X) can be written as a linear
combination of at most n of the vectors in X , while each v ∈ vspan(X)
can be written as a convex combination of at most n+ 1 of the vectors in
X . Still, if X is a linear basis, then there is exactly one way to write v
as such a linear combination, while if X is a convex basis, then there are
(albeit finitely) many ways to write v as such a convex combination when
|X | > n+ 1 (and just one if |X | = n+ 1).

We will come to see (and we already have seen in the Fundamental
Theorem 2.9.1) convex bases as central to the Simplex Algorithm (we are
already using the term basic solution), as well as at the heart the theory of
LO and its applications.

1The artist formerly known as span— see its definition at the beginning of the Exer-
cises.

3.5. Exercises 67

3.5 Exercises

Practice

For many of the following exercises, the following definitions will linear/
affine/
conic span,
lspan,
aspan,
nspan

be useful. Define the linear (resp. affine or conic) span of
X , denoted lspan(X) (resp. aspan(X) or nspan(X)), to be the
set of all linear (resp. affine or conic) combinations of finitely
many points in X .

3.5.1 Let X = {x1,x2,x3,x4}, where x1 = (−3,−2)T, x2 = (1, 9)T, x3 =
(7,−1)T and x4 = (15, 8)T. Let γ1 = (10, 6)T, γ2 = (11, 5)T and γ3 =
(12, 4)T. For each i determine if γi ∈ vhull(X). If so, show that γi ∈
vspan3(X), as noted by Theorem 3.4.1; if not, prove not. [HINT: Pretend

the convexity equations are the constraints of an arbitrary LOP and prove its

infeasibility, following Workout 2.6.3.] Are any of the γi ∈ vspan2(X)?

3.5.2 Let X = {x1,x2,x3,x4,x5}, where x1 = (6,−6, 3, 0,−3)T, x2 =
(−1,−6, 0, 5, 10)T, x3 = (0, 10, 1, 4, 1)T, x4 = (3, 22, 2,−3,−16)T and x5 =
(−3, 6, 0, 9, 12)T. Let γ1 = (1, 10, 2, 7, 4)T, γ2 = (0, 6, 1, 5, 4)T, γ3 = (10, 12,
9,−5, 0)T and γ4 = (−9, 22,−2, 13, 16)T. For each i answer (with proof)
the following questions.

a. Is γi a linear combination of X?

b. Is γi an affine combination of X?

c. Is γi a conic combination of X?

d. Is γi a convex combination of X?

For those γi that are in vhull(X), find the smallest t for which γi ∈
vspant(X).

3.5.3 Let X = {(1, 4)T, (2, 7)T, (8, 3)T} and w = (12, 17)T. Prove that
w ∈ aspan(X) ∩ nspan(X)− vspan(X).

3.5.4 Let X = {(−1, 3, 2)T, (1, 0,−3)T, (3,−4, 1)T, (1, 1, 3)T} and w =
(52, 37, 43)T. Prove that w ∈ aspan(X) ∩ nspan(X)− vspan(X).

3.5.5 For each of the regions R below, prove or disprove that R is convex.

a. R = {x ∈ R
n |
∑n

i=1 xi ≥ 2} for some n ≥ 1.

b. R = {x ∈ R
n |
∑n

i=1 x
2
i ≥ 22} for some n ≥ 1. (Here, the

exponents actually mean squares, rather than indices.)

c. R = {x ∈ R
n | xn >

∑n−1
i=1 xi} for some n ≥ 1.

d. R = {x ∈ R
n | x2

n >
∑n−1

i=1 xi} for some n ≥ 1. (Here, the
exponent actually means a square, rather than an index.)

68 Chapter 3. Geometry

3.5.6 State and prove an analogue of Workout 3.2.6 for linear combina-
tions.

3.5.7 State and prove an analogue of Workout 3.2.6 for affine combina-
tions.

3.5.8 State and prove an analogue of Workout 3.2.6 for conic combina-
tions.

3.5.9 Find all extreme points of vhull(X), where X = {(−5, 4), (6,−9),
(−1, 1), (8, 3), (−3,−5), (5,−2), (2, 6)}.

3.5.10 Find all extreme points of S = {x ∈ R
3 | x1+3x2+8x3 ≤ 54, 7x1+

x2 +3x3 ≤ 58, 3x1 +9x2 +x3 ≤ 50, 7x1 +9x2 +8x3 ≥ 91, 8x2 +7x2 +9x3 ≤
109}.

3.5.11 A linear region L is one having the property that ru + sv ∈ Llinear
region/hull for all u,v ∈ L and r, s ∈ R. Define the linear hull of a set X ⊆ R

n,
denoted lhull(X), to be the smallest linear region containing X. Prove that
for every set X ⊆ R

n we have lhull(X) = lspan(X).

3.5.12 An affine region A is one having the property that ru + sv ∈ Aaffine
region/hull for all u,v ∈ A and r, s ∈ R for which r+ s = 1. Define the affine hull of

a set X ⊆ R
n, denoted ahull(X), to be the smallest affine region containing

X. Prove that for every set X ⊆ R
n we have ahull(X) = aspan(X).

3.5.13 A conic region C is one having the property that ru+sv ∈ C forconic
region/hull all u,v ∈ C and r, s ≥ 0. Define the conic hull of a set X ⊆ R

n, denoted
nhull(X), to be the smallest conic region containing X.

3.5.14 For any set X ⊆ R
n prove that lhull(X) = ahull(X ∪ {0}).

3.5.15 For any set X ⊆ R
n prove that vhull(X ∪ {0}) ⊆ nhull(X).

3.5.16 Let X be a finite set of points in R
n. Modify your construction from

Workout 3.3.2 to define a polyhedron P that contains X. [HINT: Modify the

definition of qualifying.]

3.5.17 Prove that the polyhedron P constructed in Exercise 3.5.16 is a
polytope.

3.5.18 Given the polyhedron P constructed in Workout 3.3.2, use induc-
tion on |X | to prove that P ⊆ vhull(X). [HINT: Use the idea from the

paragraph preceding Workout 3.2.9.]

3.5.19 Let X be a finite set of points in R
n. Prove that vhull(X) is a

polytope.

3.5. Exercises 69

3.5.20 For a finite set X ⊂ R
2, call a region an X-triangle if it is the X-triangle

convex hull of exactly three points of X. Let X = {(103, 69), (72, 101), (33,
99), (7, 64), (27, 15), (64, 7), (103, 42)} and y = (55, 55). How many X-
triangles contain y? Which are they?

3.5.21 For a finite set X ⊂ R
3, call a region an X-tetrahedron if it is X-tetra-

hedronthe convex hull of exactly four points of X. Let X = {(655, 372, 503), (263,
174, 631), (218, 655, 264), (667, 223, 325), (347, 348, 692), (378, 579, 96), (433,
283, 23)} and y = (357, 396, 307). How many X-tetrahedron contain y?
Which are they?

3.5.22 Let X = {(2, 4)T, (11, 6)T, (5, 13)T}. Find some w ∈ R
2 such that

w ∈ aspan(X) ∩ nspan(X)− vspan(X). [HINT: See Exercise 3.5.3 and draw

the relevant region.]

3.5.23 Let X = {(2, 5, 6)T, (13, 0, 8)T, (1, 17, 4)T, (11, 1, 12)T}. Find some
w ∈ R

3 such that w ∈ aspan(X) ∩ nspan(X) − vspan(X). [HINT: See

Exercise 3.5.4. and draw the relevant region.]

3.5.24 For two sets X1, X2 ⊆ R
n, define the Minkowski sum X1+X2 = Minkowski

sum{x1 + x2 | xi ∈ Xi}. Prove that if each Xi is convex then so is X1 +X2.

3.5.25 Let x be a point of a polyhedron P . Prove that x is an extreme
point of P if and only if the region P − {x} is convex.

3.5.26 Let S = {x ∈ R
2 | 5x1 + 16x2 ≤ 80, 12x1 + x2 ≥ 10, 15x1− 11x2 ≤

9}, Z = {x ∈ Z
2 | 5x1 + 16x2 ≤ 80, 12x1 + x2 ≥ 10, 15x1 − 11x2 ≤ 9},

V = vspan(Z), and X be the set of extreme points of V .

a. Find Z.

b. Find X.

c. Write V as a system of constraints.

3.5.27 Find a family of three convex regions {F1, F2, F3} in R
2 such that

every pair {i, j} satisfies Fi ∩ Fj �= ∅, but that ∩3
i=1Fi = ∅.

Challenges

3.5.28 Let v1 = (4, 1)T, v2 = (1, 3)T, v3 = (3, 4)T, and J2 = (1, 1)T.

a. Draw vhull{v1,v2,v3}, along with the line through the ori-
gin generated by J2.

b. For each x below, find the maximum x0 that satisfies v1x1+
v2x2 +v3x3 ≥ x0J2. Add the results to your diagram from
part a.

(i) x = (2, 3, 1)T/6.
(ii) x = (0, 0, 1)T.

70 Chapter 3. Geometry

(iii) x = (1, 0, 3)T/4.
c. Use your diagram from part a to explain one way of solving

the following LOP.

Max. x = x0

s.t. x1 + x2 + x3 = 1
x0 − 4x1 − x2 − 3x3 ≥ 0
x0 − x1 − 3x2 − 4x3 ≥ 0

& x1 , x2 , x3 ≥ 0

3.5.29 Repeat Exercise 3.5.28 with v1 = (1, 2)T, v2 = (−1, 3)T, and v3 =
(−2,−1)T.

3.5.30 Repeat Exercise 3.5.26 with S = {x ∈ R
3 | x1 + 3x2 + 8x3 ≤

54, 7x1 + x2 + 3x3 ≤ 58, 3x1 + 9x2 + x3 ≤ 50, 7x1 + 9x2 + 8x3 ≥ 91}.

3.5.31 Modify the proof of Theorem 3.4.1 to prove that if X = {x1, . . . ,xk}
⊂ R

n and γ ∈ vhull(X) then γ ∈ vspank+1(X).

3.5.32 Given X = {x1, . . . ,xk} ⊂ R
n find the smallest function t = t(X)

such that vspant(X) is convex. Prove your result.

3.5.33 Let P be a polytope in R
n with extreme points X. Prove that

P = vhull(X). [NOTE: This is the converse to Workout 3.5.19.]

3.5.34 State and prove a linear analog of Carathéodory’s Theorem 3.4.1.

3.5.35 State and prove an affine analog of Carathéodory’s Theorem 3.4.1.

3.5.36 State and prove a conic analog of Carathéodory’s Theorem 3.4.1.

3.5.37 Let X = {x1, . . . ,xk} be linearly but not affinely dependent. Prove
that there is some t ∈ R

k such that
∑k

i=1 tix
i = 0 and

∑k
i=1 ti = 1.

3.5.38 Let X be linearly but not affinely dependent. Use Exercise 3.5.37
to prove that aspan(X) = lspan(X).

3.5.39 Let X be linearly but not affinely dependent. Use Exercise 3.5.38
to prove that there is some w ∈ aspan(X) ∩ nspan(X)− vspan(X). [HINT:

See Exercises 3.5.22 and 3.5.23.]

3.5.40 Let P be a polytope in R
n and x ∈ R

n. Suppose that {v1, . . . ,vn}
is linearly independent and define Pi = projWi

P and xi = projWi
x, where

Wi = (vi)⊥ denotes the vector space orthogonal to vi. Prove or disprove
the following.

a. If xi is interior to Pi for all i then x is interior to P .
b. If xi is extremal in Pi for all i then x is extremal in P .
c. If x is interior to P then xi is interior to Pi for all i.
d. If x is extremal in P then xi is extremal in Pi for all i.

3.5. Exercises 71

3.5.41 Let X ⊂ R
2 be a set of m points in convex position; that is, convex

positionno point x ∈ X is in the convex hull of X − {x}. (For example, placing
X around a circle suffices.) For any y ∈ vhull(X) find a formula for the
number of X-triangles that contain it.

3.5.42 Use Exercise 3.5.41 to find the maximum, among all X ⊆ R
2 of

size |X | = m and y ∈ vhull(X), of the number of X-triangles containing
y.

3.5.43 For a finite set X ⊂ R
n, call a region an X-simplex if it is the X-simplex

convex hull of exactly n + 1 points of X. Write an algorithm (or MAPLE

code) that takes as input the set X and a point y ∈ R
n and outputs the

number of X-simplices that contain y.

3.5.44 Prove that, given any 5 points in R
2, some 4 of them form the

corners of a convex quadrilateral.

3.5.45 Find a family of four convex regions {F1, F2, F3, F4} in R
3 such

that every triple {i, j, k} satisfies Fi ∩ Fj ∩ Fk �= ∅, but that ∩4
i=1Fi = ∅.

3.5.46 Generalize both Theorem 3.4.1 and Exercise 3.5.31 by finding the
best possible function t = t(X) so that the following statement is true. If
X = {x1, . . . ,xk} ⊂ R

n and γ ∈ vhull(X) then γ ∈ vspant(X). (The
intention here is that t ≤ min{k+ 1, n+ 1} holds for all X while, for some
X, t < min{k + 1, n + 1}.) Prove your result. [HINT: Consider Exercises

3.5.2 and 3.5.32.]

3.5.47 Let X ⊂ R
n be a set of m points in affine position; that is, no affine

positionpoint x ∈ X is in the affine hull of X − {x}. For any y ∈ vhull(X) find a
formula for the number of X-triangles that contain it.

3.5.48 Use Exercise 3.5.47 to find the maximum, among all X ⊆ R
n of

size |X | = m and y ∈ vhull(X), of the number of X-simplices containing
y.

3.5.49 Generalize Exercises 3.5.27 and 3.5.45 by finding a family of n+1
convex regions {F1, . . . , Fn+1} in R

n such that every set H ⊂ {1, . . . , n+1}
of size n satisfies ∩h∈HFh �= ∅, but that ∩n+1

i=1 Fi = ∅.

3.5.50 Write an algorithm that solves the general problem of Exercise
3.5.26.

3.5.51 Suppose that {F1, . . . , F4} is a family of four convex regions in
R

2 such that every triple {i, j, k} satisfies Fi ∩ Fj ∩ Fk �= ∅. Prove that
∩4

i=1Fi �= ∅.

72 Chapter 3. Geometry

Projects

3.5.52 Present Graham’s scan for computing the extremal points ofGraham’s
scan vhull(X) for X ⊆ R

2.

3.5.53 Present the (Perfect) Matching polytope of a graph.(Perfect)
Matching
polytope 3.5.54 Find algorithms to solve problems like Exercises 3.5.26 and 3.5.30

in R
n.

3.5.55 Present the Polyhedral Verification Problem.Polyhedral
Verification

Problem

Chapter 4

The Duality Theorem

4.1 Primal-Dual Relationship

Consider the following LOP.

Problem 4.1.1

Max. z = 22x1 + 31x2 + 29x3

s.t. x1 + 4x2 + 6x3 ≤ 73
5x1 − 2x2 + 3x3 ≤ 68

& x1 , x2 , x3 ≥ 0

As you are invited to confirm, the Simplex Algorithm produces the following
final tableau.

Tableau 4.1.2
⎡

⎣
0 22 27 5 −1 0 297

22 0 24 2 4 0 418
0 0 727 199 57 22 18403

⎤

⎦

Tableau 4.1.2 shows the optimum solution x∗ = (418, 297, 0 | 0, 0)T/22 with
corresponding optimum value z∗ = 18403/22. Likewise, consider the dual
LOP below.

Problem 4.1.3

Min. w = 73y1 + 68y2

s.t. y1 + 5y2 ≥ 22
4y1 − 2y2 ≥ 31
6y1 + 3y2 ≥ 29

& y1 , y2 ≥ 0

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 4, c© Springer Science+Business Media LLC 2010

74 Chapter 4. The Duality Theorem

Problem 4.1.3 has the following final tableau.

Tableau 4.1.4
⎡

⎢
⎢
⎣

0 22 −4 1 0 0 57
22 0 −2 −5 0 0 199
0 0 −24 −27 22 0 727
0 0 418 297 0 22 −18403

⎤

⎥
⎥
⎦

Tableau 4.1.4 shows the optimum solution y∗ = (199, 57 | 0, 0, 727)/22 with
corresponding optimum value w∗ = 18403/22.

Curiously, this data shows certain repetitions of values. It looks like the
values of x∗ show up in the final dual objective row, but switched around
a little. Likewise, the values of y∗ appear in the final primal objective row,
with a similar swap of some sort. To be more precise, the pattern seems to
be that the problem values of x∗ are the final coefficients of the dual slack
variables, while the slack values of x∗ are the final coefficients of the dual
problem variables.

Problem 4.1.5

Max. z = −22x1 −18x2 −27x3 −23x4 +16x5 −12x6

s.t. 4x1 +x2 −3x3 +2x5 +7x6 ≤ 211
6x1 +2x3 +5x4 −x5 +8x6 ≤ 189

−5x1 +4x2 −2x3 −x5 −7x6 ≤ −106
3x1 +9x2 −2x4 +x5 +4x6 ≤ 175

& x1, x2, x3, x4, x5, x6 ≥ 0

Workout 4.1.6 Consider Problem 4.1.5.

a. Use the Simplex Algorithm to solve it.

b. Without solving the dual linear problem, use the final pri-
mal tableau to find the optimal dual variable values y∗ (in-
cluding slacks).

c. Verify that y∗ is dual feasible and optimal.

It will help to articulate this perceived pattern notationally. We return
to the general descriptions of primals and duals below.

Problem 4.1.7

Max. z =
∑n

j=1 cjxj (1)

s.t.
∑n

j=1 aijxj ≤ bi (1 ≤ i ≤ m) (2)

& xj ≥ 0 (1 ≤ j ≤ n) (3)

4.1. Primal-Dual Relationship 75

Problem 4.1.8

Min. w =
∑m

i=1 biyi (4)

s.t.
∑m

i=1 aijyi ≥ cj (1 ≤ j ≤ n) (5)

& yi ≥ 0 (1 ≤ i ≤ m) (6)

In order to describe the pattern we will need to look at the optimal
primal objective row. Just as with all optimal values, let’s use c∗k for the
final coefficient of xk, as shown.

⌊

c∗1 · · · c∗j · · · c∗n c∗n+1 · · · c∗n+i · · · c∗n+m 1 z∗

⌋

Notice that there is a 1 written instead of the more general d for the coef-
ficient of z. Why did we do that?

It seems as though the pattern we have witnessed is given below.

⌊

y∗
m+1 · · · y∗

m+j · · · y∗
m+n y∗

1 · · · y∗
i · · · y∗

m 1 z∗

⌋

That is,

y∗
i = c∗n+i (1 ≤ i ≤ m) and y∗

m+j = c∗j (1 ≤ j ≤ n) . (7)

Furthermore, we have also noticed time and again that, when the primal
has an optimal solution, then so does its dual — in fact, with the same
optimal value. Quite possibly, we could take advantage of the detailed
pattern above to verify such a phenomenon in general. From (1) the value
in question is

z∗ =
n∑

j=1

cjx
∗
j . (8)

From the Weak Duality Theorem (Inequality 1.4.7) we know that if the
dual problem is feasible then its optimum is at least this value z∗. In fact
we get equality.

Theorem 4.1.9 If a linear problem P has an optimum z∗ then its dual Strong
Duality
Theorem

linear problem D has an optimum w∗; moreover, z∗ = w∗.

Proof. Because we already know that every feasible z and w satisfy z ≤ w,
we only need to find a feasible w for which w = z. For this we can turn to
the y∗i s defined in (7), and show that they satisfy inequalities (5) and (6)
as well as the equality

z∗ =
m∑

i=1

biy
∗
i . (9)

76 Chapter 4. The Duality Theorem

Workout 4.1.10 Show that the y∗i s defined in (7) satisfy (6).

One of the things we can do is write out the optimal objective row,
solving for z. With the substitutions from (7) we have

z = z∗ −
n∑

j=1

y∗m+jxj −
m∑

i=1

y∗i xn+i . (10)

Workout 4.1.11 Use equation (1) and the definition of the slack variables
xn+i to derive from equation (10) the equality

n∑

j=1

cjxj =

(

z∗ −
m∑

i=1

biy
∗
i

)

+
n∑

j=1

((
m∑

i=1

aijy
∗
i

)

− y∗m+j

)

xj . (11)

Interestingly, since these are equations that hold for any values of the
xjs, we may experiment with various choices. For example, if each xj = 1
we obtain

n∑

j=1

cj =

(

z∗ −
m∑

i=1

biy
∗
i

)

+
n∑

j=1

(
m∑

i=1

aijy
∗
i − y∗m+j

)

.

Unfortunately, that experiment tells us nothing to help us show that (5) or
(9) hold.

Workout 4.1.12 What choice of values for the xjs, plugged into (11),
show immediately that (9) holds?

Now that (9) holds, we see that (11) reduces to

n∑

j=1

cjxj =
n∑

j=1

(
m∑

i=1

aijy
∗
i − y∗m+j

)

xj . (12)

Of course, we can try similar experiments on equation (12).

Workout 4.1.13 What choice of values for the xjs, plugged into (12),
shows that

c1 =
m∑

i=1

ai1y
∗
i − y∗m+1 ?

Workout 4.1.14 Do for any ck what you did for c1 and use your results
to show that (5) holds.

Now that (5), (6) and (9) have been verified for the y∗i s, the Duality The-
orem has been proved. �

4.2. Complementary Slackness Conditions 77

Workout 4.1.15 Suppose P is a linear problem with 4 variables and 7
constraints.

a. If x∗3 is in the basis, what does that say about some optimal
objective coefficient?

(i) In turn, what does that say about some optimal dual
variable value?

(ii) In particular, what does that say about some optimal
dual constraint?

b. If x∗8 is in the basis, what does that say about some optimal
objective coefficient?

(i) In turn, what does that say about some optimal dual
variable value?

(ii) Also, what does that say about some optimal primal
constraint?

4.2 Complementary Slackness Conditions

Let us return to Problem 4.1.5 and its dual Problem 4.2.1.

Problem 4.2.1

Min. w = 211y1 + 189y2 − 106y3 + 175y4

s.t. 4y1 + 6y2 − 5y3 + 3y4 ≥ −22
y1 + 4y3 + 9y4 ≥ −18

−3y1 + 2y2 − 2y3 ≥ −27
5y2 − 2y4 ≥ −23

2y1 − y2 − y3 + y4 ≥ 16
7y1 + 8y2 − 7y3 + 4y4 ≥ −12

& y1 , y2 , y3 , y4 ≥ 0

As shown in the corresponding primal optimal Tableau 4.2.2 below, the
optimal primal value of z∗ = 11813/7 occurs at x∗ = (0, 0, 1, 0, 740, 0)T/7,
and the optimal dual value of w∗ = 11813/7 occurs at y∗ = (59, 0, 6, 0)T/7.

Tableau 4.2.2
⎡

⎢
⎢
⎢
⎢
⎣

23 −10 0 0 7 35 2 0 −3 0 0 740
53 8 0 35 0 77 4 7 1 0 0 2061
6 −9 7 0 0 7 −1 0 −2 0 0 1
−2 73 0 −14 0 −7 −2 0 3 7 0 485
360 209 0 161 0 455 59 0 6 0 7 11813

⎤

⎥
⎥
⎥
⎥
⎦

78 Chapter 4. The Duality Theorem

It is interesting to look back on the original constraints of Problem 4.1.5,
evaluated at x∗. Notice the results below.

4x∗1 + x∗2 − 3x∗3 + 2x∗5 + 7x∗6 = 211
6x∗1 + 2x∗3 + 5x∗4 − x∗5 + 8x∗6 < 189
−5x∗1 + 4x∗2 − 2x∗3 − x∗5 − 7x∗6 = −106

3x∗1 + 9x∗2 − 2x∗4 + x∗5 + 4x∗6 < 175

x∗1 , x∗2 , x∗4 , x∗6 = 0
x∗3 , x∗5 > 0

Likewise we observe below the results of plugging in y∗ into the original
constraints of Problem 4.2.1.

4y∗1 + 6y∗2 − 5y∗3 + 3y∗4 > −22
y∗1 + 4y∗3 + 9y∗4 > −18

−3y∗1 + 2y∗2 − 2y∗3 = −27
5y∗2 − 2y∗4 > −23

2y∗1 − y∗2 − y∗3 + y∗4 = 16
7y∗1 + 8y∗2 − 7y∗3 + 4y∗4 > −12

y∗2 , y∗4 = 0
y∗1 , y∗3 > 0

Notice the pattern that emerges. We know that the constraints of a
LOP pair up with the variables of its dual. In this case it seems that
every (constraint, nonnegative variable) pair is satisfied with equality for
one of them. For example, the pair (y∗1 + 4y∗3 + 9y∗4 ≥ −18, x∗2 ≥ 0) has
x∗2 = 0. Why might this be so? For an answer let’s take a closer look at the
inequalities found in the proof of the Weak Duality Theorem (Inequality
1.4.7). In this case they look like the following.

Inequality 4.2.3

z = −22x1 − 18x2 − 27x3 − 23x4 + 16x5 − 12x6

≤ (4y1 + 6y2 − 5y3 + 3y4)x1 − 18x2 − 27x3 − 23x4 + 16x5 − 12x6

≤ (4y1 + 6y2 − 5y3 + 3y4)x1 + (y1 + 4y3 + 9y4)x2 − 27x3 − 23x4

+16x5 − 12x6

≤ · · ·
≤ 211y1 + 189y2 + (−5x1 + 4x2 − 2x3 − x5 − 7x6)y3

+(3x1 + 9x2 − 2x4 + x5 + 4x6)y4
≤ 211y1 + 189y2 − 106y3 + (3x1 + 9x2 − 2x4 + x5 + 4x6)y4
≤ 211y1 + 189y2 − 106y3 + 175y4
= w

4.3. Jizoezi, Jizoezi, Jizoezi 79

Observe that when x∗ and y∗ are plugged into Inequality 4.2.3, every
inequality becomes an equality (check this!). The reason for this is that
z∗ = w∗, so that no strict inequality can be allowed along the way. Now
consider the following instance of one of the equalities that results from this
analysis of Inequality 4.2.3.

Equality 4.2.4

(4y∗
1 + 6y∗

2 − 5y∗
3 + 3y∗

4)x∗
1 + (y∗

1 + 4y∗
3 + 9y∗

4)x∗
2 + (−3y∗

1 + 2y∗
2 − 2y∗

3)x∗
3

−23x∗
4 + 16x∗

5 − 12x∗
6

= (4y∗
1 + 6y∗

2 − 5y∗
3 + 3y∗

4)x∗
1 + (y∗

1 + 4y∗
3 + 9y∗

4)x∗
2 + (−3y∗

1 + 2y∗
2 − 2y∗

3)x∗
3

+(5y∗
2 − 2y∗

4)x∗
4 + 16x∗

5 − 12x∗
6

Now Equality 4.2.4 holds if and only if

−23x∗4 = (5y∗2 − 2y∗4)x
∗
4 ,

which holds if and only if

x∗4 = 0 or − 23 = 5y∗2 − 2y∗4 .

Workout 4.2.5 Prove that every primal-dual optimal pair x∗ and y∗ sat-
isfies at least one of −5x∗1 + 4x∗2 − 2x∗3 − x∗5 − 7x∗6 = −106 or y∗3 = 0.

Consider the LOP P in Problem 4.1.7 and its dual D in Problem 4.1.8.

Theorem 4.2.6 Let x′ be P -feasible and y′ be D-feasible. Then x′ and y′ Comple-
mentary
Slackness
Theorem

are a primal-dual optimal pair if and only if both

x′j = 0 or
m∑

i=1

ai,jy
′
i = cj for all 1 ≤ j ≤ n (4.1)

and

n∑

j=1

ai,jx
′
j = bi or y′i = 0 for all 1 ≤ i ≤ m . (4.2)

Workout 4.2.7 Prove Theorem 4.2.6.

4.3 Jizoezi, Jizoezi, Jizoezi

Workout 4.3.1 Verify the Complementary Slackness Theorem 4.2.6 on
Problem 4.1.1.

80 Chapter 4. The Duality Theorem

Problem 4.3.2

Max. z = 2x1 + 4x2 + 5x3 + 8x4

s.t. x1 + x3 + 4x4 ≤ 5
−x1 + 4x2 + 2x3 − 3x4 ≤ 22
3x1 + x2 + x3 + x4 ≤ 8

x1 , x2 , x3 , x4 ≥ 0

Workout 4.3.3 Verify the Complementary Slackness Theorem 4.2.6 on
Problem 4.3.2.

Moral 4.3.4 It is possible that both parts of conditions (4.1) or (4.2) are
satisfied.

Consider the following LOP.

Problem 4.3.5

Max. z = 13x1 + 20x2 + 17x3

s.t. 8x1 + 7x2 + 9x3 ≤ 455
5x1 − x2 + 6x3 ≤ 190
4x1 + 8x2 − x3 ≤ 205
−x1 + 2x2 + 3x3 ≤ 80
−3x1 − 5x2 − 4x3 ≤ −200

& x1 , x2 , x3 ≥ 0

Workout 4.3.6 Use Theorem 4.2.6 to decide whether or not either of the
following pairs (x′,y′) are primal-dual optimal for Problem 4.3.5.

a. x′ = (0, 2300, 2205)T/79, y′ = (156, 0, 61, 0, 0)T/79.

b. x′ = (4600, 2600, 2300)T/180, y′ = (0, 753, 546, 0, 0)T/180.
c. x′ = (4895, 5280, 5445)T/275, y′ = (390, 0, 230, 465, 0)T/275.

4.4 Finding Optimal Certificates

Let us use the notation (+, 0, ∗ | +,+, 0,+, 0)T to describe any feasible
solution to a LOP with 3 variables and 5 constraints for which coordinates
labeled 0 have value 0, and coordinates labeled + (resp. *) have positive
(resp. nonnegative) value. Now the Complementary Slackness Conditions
4.1 and 4.2 can be rewritten as

x′j = 0 or y′m+j = 0 for all 1 ≤ j ≤ n (4.3)

and

x′n+i = 0 or y′i = 0 for all 1 ≤ i ≤ m . (4.4)

4.4. Finding Optimal Certificates 81

Thus, if x′ is of the form (+, 0, 0,+ | 0,+, 0)T then in order for it to be
primal optimal y′ must be of the form (∗, 0, ∗ | 0, ∗, ∗, 0)T.

Workout 4.4.1 Let x∗ be of the form (0, 0,+,+, 0 | +,+,+, 0,+, 0,+)T.
Find the form of y∗.

Now imagine you work for Varyim Portint Co. Two weeks ago you
witnessed your division boss make a report to the company president in
which he claimed a particular x′ was optimal. The president wanted proof,
and because your boss didn’t have the relevant multipliers on hand (and
didn’t know that they could be read off of the final primal tableau), he left
to go compute the dual, which took three hours because the LOP was large.
But the president needed the proof within the hour, and so fired your boss
upon his return.

Last week, your boss’s replacement found herself in the same situation,
and knowing she had the final tableau on her office desk (but not knowing
the Complementary Slackness Theorem), she left to get the optimal multi-
pliers. When she returned after 20 minutes, she also learned that she was
fired because the president was on the phone with investors who needed
the proof within 5 minutes.

Now you are the division boss, and accidentally find yourself in the same
situation. However, when you recover the multipliers on your laptop within
minutes, the president rewards you with a red cape with the letters “LO”
on the back, and commissions you to rid R

n of evil. Here’s how you must
have done it.

Suppose x′ = (418, 297, 0)T/22 is a proposed optimal solution for Prob-
lem 4.1.1. Because it has the form (+,+, 0 | 0, 0), its supposed optimal (to
Problem 4.1.3) partner y′ must have the form (∗, ∗ | 0, 0, ∗). That is, it
must be a nonnegative solution to the system of equations

⎛

⎝
y1 + 5y2 = 22

4y1 − 2y2 = 31
6y1 + 3y2 − y5 = 29

⎞

⎠ .

Since the unique solution y′ = (199, 57 | 0, 0, 727)T/22 to the above system
is nonnegative, x′ is indeed primal-optimal (and y′ is dual-optimal).

This technique can be recorded in the following theorem, which follows
easily from the Complementary Slackness Theorem 4.2.6.

Theorem 4.4.2 Let x′ be P -feasible. Then x′ is primal optimal if and
only if there is a D-feasible y′ such that both

x′j > 0 implies
m∑

i=1

ai,jy
′
i = cj for all 1 ≤ j ≤ n(4.5)

and
n∑

j=1

ai,jx
′
j < bi implies y′i = 0 for all 1 ≤ i ≤ m .(4.6)

82 Chapter 4. The Duality Theorem

Problem 4.4.3

Max. z = 5x1 + 8x2 + 15x3 + 20x4 + 13x5

s.t. x1 + 2x2 + 3x3 + 4x4 + 5x5 ≤ 17
−x1 + 3x3 − x5 ≤ 3
3x1 + 2x2 + x3 − x4 ≤ 15

& x1 , x2 , x3 , x4 , x5 ≥ 0

Workout 4.4.4 Consider Problem 4.4.3.

a. Use Theorem 4.4.2 to show that x′ = (2, 0, 1, 3, 0)T is op-
timal.

b. Use Theorem 4.4.2 to show that x′ = (0, 7, 1, 0, 0)T is not
optimal.

4.5 Exercises

Practice

4.5.1 Verify the Duality Theorem 4.1.9 on each of the following LOPs.

a.

Max. z = −211x1 −189x2 −106x3 −175x4

s.t. 4x1 +6x2 −5x3 +3x4 ≤ 22
x1 +4x3 +9x4 ≤ 18

−3x1 +2x2 −2x3 ≤ 27
5x2 −2x4 ≤ 23

2x1 −x2 −x3 +x4 ≤ 16
7x1 +8x2 −7x3 +4x4 ≤ 12

& x1, x2, x3, x4 ≥ 0

b.
Max. z = x1 + 2x2

s.t. 17x1 + 21x2 ≤ 51
x1 − 4x2 ≤ 12

3x1 + 6x2 ≤ 14

& x1 , x2 ≥ 0

4.5. Exercises 83

c.

Max. z = 2x1 − 40x2 − 42x4

s.t. 2x1 − 4x2 + x3 − 7x4 ≤ −31
x1 + 6x2 − 5x3 + 8x4 ≤ 44

3x1 − 2x2 − x3 ≤ 6

& x1 , x2 , x3 , x4 ≥ 0

4.5.2 Verify the Duality Theorem 4.1.9 on N LOPs of your own making.

4.5.3 Let S be the following system of inequalities.

−3x1 − 4x2 + 5x3 ≤ −221
x1 − 6x2 + 2x3 ≤ −253

5x1 + 4x2 − 9x3 ≤ 268
−8x1 + 3x2 + x3 ≤ −173

x1 , x2 , x3 ≥ 0

Find a corresponding standard maximization form LOP P so that S is
solvable if and only if P is optimal. Implicit in the statement that P is
optimal is the assumption that P must be feasible. Try to respond with the
kind of answer that suggests a general method.

4.5.4 Let P be the following LOP.

Max. z = 318x1 + 301x2 − 279x3 − 313x4

s.t. 51x1 − 42x2 − 46x3 + 36x4 ≤ −12
−39x1 + 56x2 + 41x3 − 58x4 ≤ 15

45x1 − 37x2 + 48x3 − 50x4 ≤ −17

& x1 , x2 , x3 , x4 ≥ 0

Find a corresponding system of linear inequalities S so that S is solvable
if and only if P is optimal. Try to respond with the kind of answer that
suggests a general method.

4.5.5 Verify the Complementary Slackness Theorem 4.2.6 on each of the
LOPs in Exercise 4.5.1.

4.5.6 Verify the Complementary Slackness Theorem 4.2.6 on each of the
LOPs in Exercise 4.5.2.

84 Chapter 4. The Duality Theorem

4.5.7 Consider the LOP Max. z = cTx s.t. Ax ≤ b, x ≥ 0, with

c =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

21
23
−27

25
−29

24

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A =

⎛

⎜
⎜
⎜
⎜
⎝

−1 4 2 0 6 −3
3 −5 1 1 0 7
8 −6 0 3 −1 −4
4 −9 2 0 6 −7
5 0 −1 1 8 5

⎞

⎟
⎟
⎟
⎟
⎠

,

and b =

⎛

⎜
⎜
⎜
⎜
⎝

220
−250
−236

281
264

⎞

⎟
⎟
⎟
⎟
⎠

.

Let x′ = (100, 410, 0, 0, 0, 0)T/7. Use the Complementary Slackness Theo-
rem to prove or disprove that x′ is optimal.

4.5.8 Let x′ = (21, 58, 29)T be a feasible solution to the LOP below.

Max. z = 3x1 + 2x2 + 2x3

s.t. 2x1 + 3x2 + 5x3 ≤ 361
2x1 + 12x2 + 3x3 ≤ 910
4x1 + x2 − x3 ≤ 113

10x1 + 2x2 + 5x3 ≤ 494

& x1 , x2 , x3 ≥ 0

a. Is x′ basic? Explain without solving.

b. Is x′ optimal? Explain without solving.

4.5.9 Consider the LOP Max. z = cTx s.t. Ax ≤ b, x ≥ 0, with

A =

⎛

⎝
8 −2 0 5
3 6 −4 0
0 7 1 −9

⎞

⎠ .

Let x′ = (0, 5, 7, 0)T and y′ = (3, 0, 4)T. Find b and c that make x′ and y′

an optimal pair.

4.5.10 Which of the following primal-dual forms could be optimal pairs?
(Note that all decision and slack variables are present; only the lines that
separate them are missing.)

a. x′ = (0,+, 0, 0,+, 0)T, y′ = (0,+,+, 0,+,+)T.

b. x′ = (0,+,+, 0,+, 0, 0,+, 0)T, y′ = (+, 0, 0,+,+, 0, 0,+, 0)T.

c. x′ = (0,+,+, 0, 0,+,+, 0, 0,+, 0, 0, 0,+,+)T,
y′ = (0, 0,+, 0,+,+,+, 0, 0,+, 0, 0,+, 0,+)T.

4.5. Exercises 85

4.5.11 Consider the following LOP.

Max. z = 3x1 + 4x2 − 5x3

s.t. 2x1 − 3x2 − x3 ≤ −10
x1 + x2 + 5x3 ≤ 10

& x1 , x2 , x3 ≥ 0

a. Use Theorem 4.4.2 to show that x′ = (0, 10, 0)T is optimal.

b. Use Theorem 4.4.2 to show that x′ = (2, 5, 0)T is not opti-
mal.

4.5.12 Here is a more brute-force method of finding optimal solutions by
using the Complementary Slackness Theorem 4.2.6. A generalization of it
will come in handy in Chapter 9. Consider the LOP in Exercise 4.4.3.

a. List all P -feasible bases.

b. Write each of their dual-basis partners.

c. List which of those are D-feasible, and write their values.
Those are the optimal pairs.

4.5.13

a. Suppose that
∑n

j=1 aijxj = bi. For what values of yi does
the inequality (

∑n
j=1 aijxj)yi ≤ biyi hold?

b. Suppose that (
∑m

i=1 aijyi)xj ≤ cjxj for every value of xj.
What is the relationship between

∑m
i=1 aijyi and cj?

Challenges

4.5.14 None of the following general LOPs are in standard form. For each
of them, write its corresponding general dual LOP directly, without convert-
ing it to standard form. [HINT: Make sure that the Weak Duality Inequality

1.4.7 still holds; use Exercise 4.5.13.]

a.

Max. z = 18x1 + 31x2 − 29x3 + 13x4

s.t. 4x1 + 2x2 + 7x3 − 3x4 ≤ 112
5x1 − 6x2 + x3 + 8x4 ≤ 137

& x1 , x2 , x4 ≥ 0

86 Chapter 4. The Duality Theorem

b.

Max. z = 201x1 + 198x2 − 229x3 − 193x4

s.t. x1 + 4x2 − 6x3 − 8x4 ≤ 27
7x1 + 5x2 − 2x4 = −32
3x1 − 9x3 − x4 ≤ 25

& x1 , x2 , x3 , x4 ≥ 0

c.
Min. w = 2y1 + 3y2

s.t. −35y1 + 42y2 = 723
54y1 + 37y2 ≥ 712
47y1 + 41y2 ≥ 736

& y1 , y2 ≥ 0

d.

Min. w = 337y1 − 402y2 + 385y3

s.t. 36y1 − 90y2 + 35y3 ≥ −9
39y1 + 48y2 − 89y3 ≥ 7
−81y1 + 42y2 + 43y3 ≥ 8

& y1 , y3 ≥ 0

e.
Max. z = 8x1 − 5x2

s.t. 18x1 − 13x2 ≤ 965
−25x1 + 20x2 = −1150

17x1 − 26x2 ≥ 808
16x1 + 15x2 ≤ 896

& x1 ≥ 0
x2 ≤ 0

4.5.15 Call a system of inequalities redundant if there are nonnegative(strongly)
redundant

system
multipliers (not all zero) that yield the inequality 0 ≤ b′ for some b′ ≥
0; call the system strongly redundant if it is redundant with b′ = 0.
Suppose that P is an optimal LOP whose constraints are strongly redundant.
Prove that its dual LOP D has infinitely many optima. [HINT: Analyze

Exercise 1.5.10.]

4.5.16 Let S be the following system of inequalities.
∑n

j=1 ai,jxj ≤ bi (1 ≤ i ≤ m)
xj ≥ 0 (1 ≤ j ≤ n)

4.5. Exercises 87

Find a corresponding standard maximization form LOP P so that S is
solvable if and only if P is optimal.

4.5.17 Let P be the following LOP.

Max. z =
∑n

j=1 cjxj

s.t.
∑n

j=1 ai,jxj ≤ bi (1 ≤ i ≤ m)

& xj ≥ 0 (1 ≤ j ≤ n)

Find a corresponding system of linear inequalities S so that S is solvable if
and only if P is optimal.

4.5.18 Let P be the following LOP.

Max. z = 30x1 − 40x2 − 42x4

s.t. 2x1 − 4x2 + x3 − 7x4 ≤ b1
x1 + 6x2 − 5x3 + 8x4 ≤ b2

3x1 − 2x2 − x3 ≤ b3

& x1 , x2 , x3 , x4 ≥ 0

a. Determine b1, b2, b3 so that x∗ = (2, 0, 0, 5)T and y∗ =
(6, 0, 6)T are primal and dual optimal, respectively. [HINT:

Use complementary slackness.]

b. Show that x∗∗ = (16, 0, 42, 15)T is also optimal with the
same values for the bi.

4.5.19 Pick an arbitrary x∗ and y∗ and create a LOP for which they are
primal and dual optimal, respectively.

4.5.20 Find a primal-dual LOP pair for which some condition (4.1) or
(4.2) is satisfied in both parts, as in Workout 4.3.3.

4.5.21 Find n and m so that x∗ = (0,+, 0,+, 0,+)T and y∗ = (+, 0,+, 0,
+, 0)T is a basic optimal pair form.

Projects

4.5.22 Present the relationship between Lagrange multipliers and LO. Lagrange
multipliers
Karmar-
kar’s
Algorithm
Ellipsoid
Algorithm

4.5.23 Present Karmarkar’s Algorithm.

4.5.24 Present the Ellipsoid Algorithm.

Chapter 5

Matrix Environment

5.1 Format and Dictionaries

We return to the matrix LO format of (1.2) in Section 1.4. Consider Prob-
lem 5.1.1, below, having initial Tableau 5.1.2.

Problem 5.1.1

Max. z = 46x1 + 15x2 + 12x3

s.t. 7x1 + x2 + 3x3 ≥ 23
2x1 + 6x2 + 8x3 ≥ 14
4x1 + 5x2 + x3 ≤ 87
9x1 + 4x2 + 3x3 ≤ 112

& x1 , x2 , x3 ≥ 0

Tableau 5.1.2
⎡

⎢
⎢
⎢
⎢
⎣

−7 −1 −3 1 0 0 0 0 −23
−2 −6 −8 0 1 0 0 0 −14

4 5 1 0 0 1 0 0 87
9 4 3 0 0 0 1 0 112

−46 −15 −12 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

Once in standard form, Problem 5.1.1 can be written in matrix form as
Max. z = cTx s.t. Ax ≤ b and x ≥ 0, where

c =

⎛

⎝
46
15
12

⎞

⎠ , A =

⎛

⎜
⎜
⎝

−7 −1 −3
−2 −6 −8

4 5 1
9 4 3

⎞

⎟
⎟
⎠ , b =

⎛

⎜
⎜
⎝

−23
−14

87
112

⎞

⎟
⎟
⎠ .

Recall that the dual LOP is Min. w = bTy s.t. ATy ≥ c and y ≥ 0, and
that weak duality is shown by z = cTx ≤ yTAx ≤ yTb = wT = w
for feasible x and y.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 5, c© Springer Science+Business Media LLC 2010

90 Chapter 5. Matrix Environment

Tableau 5.1.2 can also be represented in matrix form, but we will need
finer notation. Since the initial parameters are π = {1, 2, 3}, let’s use the no-
tation xπ = (x1, x2, x3)T and xβ = (x4, x5, x6, x7)T, with x = (x1, . . . , x7)T.xβ , xπ

Then we have

Max. z = cTxπ s.t. Axπ + Ixβ = b & x ≥ 0 . (5.1)

In fact, since the basis changes with each pivot operation, we would be
better served with more general notation.

Given basis β = {j1, . . . , jm} and parameter set π = {jm+1, . . . , jm+n}
(written so that jk < jk+1 for all k), let cβ = (cj1 , . . . , cjm)T and cπ =cβ , cπ

(cjm+1 , . . . , cjm+n)T. That is, the entries of cβ (resp., cβ) are the original
objective coefficients of the current basic variables (resp., parameters) —
note that ck = 0 for all k > n — in least subscript order. For example,
with β = {2, 3, 5, 7} we have cβ = (15, 12, 0, 0)T and cπ = (46, 0, 0)T.

Furthermore, we let B be the matrix whose columns are the columns ofB, Π

A or I that correspond to the basic variables, while Π is the corresponding
matrix for parameters. With β = {2, 3, 5, 7} as above we then have

B =

⎛

⎜
⎜
⎝

−1 −3 0 0
−6 −8 1 0

5 1 0 0
4 3 0 1

⎞

⎟
⎟
⎠ and Π =

⎛

⎜
⎜
⎝

−7 1 0
−2 0 0

4 0 1
9 0 0

⎞

⎟
⎟
⎠ .

With the initial basis β = {4, 5, 6, 7} we have B = I and Π = A.
Using this notation (5.1) becomes

Max. z = cT
βxβ + cT

πxπ s.t. Bxβ + Πxπ = b & x ≥ 0 . (5.2)

In fact, we can use (5.2) to write a dictionary corresponding to the basis β
as follows. From Bxβ + Πxπ = b we have xβ = B−1(b−Πxπ), or

xβ = B−1b−B−1Πxπ , (5.3)

provided that B is invertible!1 Then also (5.3) can be substituted into
z = cT

βxβ + cT
πxπ from (5.2) to obtain

z = cT
β(B−1b−B−1Πxπ) + cT

πxπ .

Separating out the constant and collecting terms yields

z = (cT
βB−1b)− (cT

βB−1Π− cT
π)xπ . (5.4)

Notice that evaluating (5.3) and (5.4) at xπ = 0 (setting the parameters
to zero!) produces the current basic solution xβ = B−1b and current
objective value z = zβ = cT

βB−1b.

1In standard form LOPs this is not an issue, since the original basis (all slacks) has
B = I; however, in the general form LOPs of Chapter 6 it is very much so, since there
is no full basis to begin with.

5.2. Simplex Phases and Advantages 91

Workout 5.1.3 Let β = {2, 3, 5, 7} for Problem 5.1.1.

a. Compute B−1.

b. Compute B−1b.

c. Compute B−1Π.

d. Compute cT
βB−1b.

e. Compute cT
βB−1Π− cT

π .

Because we maintain integers in our tableau by clearing the denomi-
nators (multiplying by the basic coefficient), we should do the same with
matrices in order to make fair comparisons. By Cramer’s Rule (see Ap-
pendix A) we can write B−1 = B′/| det(B)|; if B is integral then so is B′. B′

If we let dβ = | det(B)| then we can rewrite (5.3) and (5.4) as
dβ

dβxβ = B′b−B′Πxπ , (5.5)

and
dβz = (cT

βB′b)− (cT
βB′Π− dβcT

π)xπ . (5.6)

Workout 5.1.4 Let β = {2, 3, 5, 7} for Problem 5.1.1.

a. Compute dβ.

b. Compute B′.

c. Compute B′b.

d. Compute B′Π.

e. Compute cT
βB′b.

f. Compute cT
βB′Π− dβcT

π .

Workout 5.1.5 Starting from Tableau 5.1.2, and ignoring the Simplex
rules, perform the necessary pivots to obtain the basis β = {2, 3, 5, 7} (2
pivots should suffice). Compare the resulting tableau with the data from
Workout 5.1.4 and describe the relationship between them.

Workout 5.1.6 Repeat Workouts 5.1.4 and 5.1.5 with N other bases of
your own choosing.

5.2 Simplex Phases and Advantages

There is no difference in the Simplex Algorithm rules for the Matrix En-
vironment as opposed to for the Tableau Environment. At this point, the
only difference is in where to find in the matrices the information we’re
used to finding in the tableaux. We will discuss at the end of this section
why anyone might prefer matrices to tableaux.

As noted, the initial basis is β(0) = {4, 5, 6, 7}, giving B = I and Π = A;
thus xβ(0) = B′b = (−23,−14, 87, 112)T. Since the first coordinate is most

92 Chapter 5. Matrix Environment

negative, Phase I kicks the first basic variable, x4, out of β(0). Because in
the Tableau Environment we next look for the first negative in the first row
of Tableau 5.1.2, we should look for the first negative in row 1 of A — that
is where one finds the coefficients of parameters. The −7 signals that the
first parameter, x1, then enters the basis: now β(1) = {1, 5, 6, 7}.

Tableau 5.2.1
⎡

⎢
⎢
⎢
⎢
⎣

7 1 3 −1 0 0 0 0 23
0 −40 −50 −2 7 0 0 0 −52
0 31 −5 4 0 7 0 0 517
0 19 −6 9 0 0 7 0 577
0 −59 54 −46 0 0 0 7 1058

⎤

⎥
⎥
⎥
⎥
⎦

The first tableau pivot gives rise to Tableau 5.2.1. Let’s compare it to
what we compute in matrix form, below. We have

B =

⎛

⎜
⎜
⎝

−7 0 0 0
−2 1 0 0

4 0 1 0
9 0 0 1

⎞

⎟
⎟
⎠ and Π =

⎛

⎜
⎜
⎝

−1 −3 1
−6 −8 0

5 1 0
4 3 0

⎞

⎟
⎟
⎠ .

Thus dβ = 7,

B′ =

⎛

⎜
⎜
⎝

−1 0 0 0
−2 7 0 0

4 0 7 0
9 0 0 7

⎞

⎟
⎟
⎠ , B′Π =

⎛

⎜
⎜
⎝

1 3 −1
−40 −50 −2

31 −5 4
19 −6 9

⎞

⎟
⎟
⎠ ,

and B′b =

⎛

⎜
⎜
⎝

23
−52
517
577

⎞

⎟
⎟
⎠ ,

showing an uncanny resemblance to Tableau 5.2.1. The usual rules apply
— the second basic variable is replaced by the first parameter: 2 	→ 5. The
subsequent tableau and matrices corresponding to β(2) = {1, 2, 6, 7} follow.

Tableau 5.2.2
⎡

⎢
⎢
⎢
⎢
⎣

40 0 10 −6 1 0 0 0 124
0 40 50 2 −7 0 0 0 52
0 0 −250 14 31 40 0 0 2724
0 0 −170 46 19 0 40 0 3156
0 0 730 −246 −59 0 0 40 0

⎤

⎥
⎥
⎥
⎥
⎦

Also,

B =

⎛

⎜
⎜
⎝

−7 −1 0 0
−2 −6 0 0

4 5 1 0
9 4 0 1

⎞

⎟
⎟
⎠ and Π =

⎛

⎜
⎜
⎝

−3 1 0
−8 0 1

1 0 0
3 0 0

⎞

⎟
⎟
⎠ .

5.2. Simplex Phases and Advantages 93

Thus dβ = 40,

B′ =

⎛

⎜
⎜
⎝

−6 1 0 0
2 −7 0 0

14 31 40 0
46 19 0 40

⎞

⎟
⎟
⎠ , B′Π =

⎛

⎜
⎜
⎝

10 −6 1
50 2 −7

−250 14 31
−170 46 19

⎞

⎟
⎟
⎠ ,

and B′b =

⎛

⎜
⎜
⎝

124
52

2724
3156

⎞

⎟
⎟
⎠ .

Again, the resemblance to Tableau 5.2.2 is unmistakable.
By the looks of B′b, β(2) is feasible, and so the objective row is the

place to look next. Equation (5.6) can be rewritten as

(cT
βB′Π− dβcT

π)xπ + dβz = (cT
βB′b) (5.7)

so as to look more like the objective row. The parameter coefficients are
thus

cT
βB′Π− dβcT

π = (730,−246,−59)T ,

and so the second parameter, x4, enters the basis.
Now we need to look at the coefficients of x4 in B′Π, namely (−6, 2, 14,

46)T, as denominators for their partner terms in B′b. The ratios

“B′b/B′Πx4” =

⎛

⎜
⎜
⎝

−124/6
52/2

2724/14
3156/46

⎞

⎟
⎟
⎠

show that second term, 52/2, is the smallest nonnegative. Hence the sec-
ond basic variable leaves: 4 	→ 2. The subsequent tableau and matrices
corresponding to β(3) = {1, 4, 6, 7} follow.

Tableau 5.2.3
⎡

⎢
⎢
⎢
⎢
⎣

2 6 8 0 −1 0 0 0 14
0 40 50 2 −7 0 0 0 52
0 −14 −30 0 4 2 0 0 118
0 −46 −66 0 9 0 2 0 98
0 246 344 0 −46 0 0 2 644

⎤

⎥
⎥
⎥
⎥
⎦

Also,

B =

⎛

⎜
⎜
⎝

−7 1 0 0
−2 0 0 0

4 0 1 0
9 0 0 1

⎞

⎟
⎟
⎠ and Π =

⎛

⎜
⎜
⎝

−1 −3 0
−6 −8 1

5 1 0
4 3 0

⎞

⎟
⎟
⎠ .

94 Chapter 5. Matrix Environment

Thus dβ = 2,

B′ =

⎛

⎜
⎜
⎝

0 −1 0 0
2 −7 0 0
0 4 2 0
0 9 0 2

⎞

⎟
⎟
⎠ , B′Π =

⎛

⎜
⎜
⎝

6 8 −1
40 50 −7
−14 −30 4
−460 −66 9

⎞

⎟
⎟
⎠ ,

and B′b =

⎛

⎜
⎜
⎝

14
52

118
98

⎞

⎟
⎟
⎠ .

As usual, the columns of B are those of Tableau 5.1.2 that correspond to
β(3) — technically, column k of B equals column β

(3)
k of Tableau 5.1.2.

Because β(3) is feasible, we next compute the parameter coefficients

cT
βB′Π− dβcT

π = (246, 344,−46) ,

which signal that the third parameter, x5, enters the basis.
Now we need to look at the coefficients of x5 in B′Π, namely (−1,−7, 4,

9)T, as denominators for their partner terms in B′b. The ratios

“B′b/B′Πx5” =

⎛

⎜
⎜
⎝

−
−

118/4
98/9

⎞

⎟
⎟
⎠

show that fourth term, 98/9, is the smallest nonnegative. Hence the fourth
basic variable leaves: 5 	→ 7. The subsequent tableau and matrices corre-
sponding to β(3) = {1, 4, 5, 6} follow. (Look for a slight twist!)

Tableau 5.2.4
⎡

⎢
⎢
⎢
⎢
⎣

9 4 3 0 0 0 1 0 112
0 19 −6 9 0 0 7 0 577
0 29 −3 0 0 9 −4 0 335
0 −46 −66 0 9 0 2 0 98
0 49 30 0 0 0 46 9 5152

⎤

⎥
⎥
⎥
⎥
⎦

Also,

B =

⎛

⎜
⎜
⎝

−7 1 0 0
−2 0 1 0

4 0 0 1
9 0 0 0

⎞

⎟
⎟
⎠ and Π =

⎛

⎜
⎜
⎝

−1 −3 0
−6 −8 0

5 1 0
4 3 1

⎞

⎟
⎟
⎠ .

Thus dβ = 9,

B′ =

⎛

⎜
⎜
⎝

0 0 0 1
9 0 0 7
0 9 0 2
0 0 9 −4

⎞

⎟
⎟
⎠ , B′Π =

⎛

⎜
⎜
⎝

4 3 1
19 −6 7
−46 −66 2

29 −3 −4

⎞

⎟
⎟
⎠ ,

5.2. Simplex Phases and Advantages 95

and B′b =

⎛

⎜
⎜
⎝

112
577
98

335

⎞

⎟
⎟
⎠ .

Because β(4) is feasible, we next compute the parameter coefficients

cT
βB′Π− dβcT

π = (49, 30, 46) ,

which signal that we are at the optimum. Hence x∗ = (112, 0, 0 | 577, 98,
335)T/9.

Workout 5.2.5 What is the “slight twist” and why does it occur?

In order to compute z∗ we plug x∗ into the original objective function,
obtaining

z∗ = cTx∗ = cT
βxβ = cT

βB−1b = cT
βB′b/d = 5152/9 .

Workout 5.2.6

a. Calculate cT
βB′.

b. Relate your result to Tableau 5.2.4.

c. Explain your findings. [HINT: Write the dual of Problem 5.1.1

in matrix form.]

Workout 5.2.7

a. Count the number of arithmetic operations performed in
calculating Tableau 5.2.3 from Tableau 5.2.2.

b. Count the number of arithmetic operations performed in
calculating B′, B′b, B′Π and cT

βB′Π −dβcT
π .

c. Count the number of arithmetic operations performed in a
single pivot operation in the Tableau Environment, suppos-
ing the given LOP has m inequalities and n variables.

d. Count the number of arithmetic operations performed in a
single pivot operation in the Matrix Environment, suppos-
ing the given LOP has m inequalities and n variables.

e. Which would you consider to be the faster implementation
on large LOPs, Tableau or Matrix?

Let’s get one thing out in the open. Applied LOPs can be huge. While
hundreds of variables and constraints might seem large (and were considered
large fifty years ago), recently solved problems have contained millions
of variables and constraints! Thus we should keep in mind that subtle
improvements on a small scale can have tremendous implications on a large
scale.

96 Chapter 5. Matrix Environment

No one will argue that the Matrix Environment is simpler to visualize
than the Tableau Environment. The organization of the data in tableaux
is far simpler to digest. So why would anyone prefer matrices? The answer
lies in the fact that we use computers for solving large LOPs and, lacking
eyes, the computer doesn’t share our sentiments in that regard, emotional
as they can be. For computers, the relevant issues boil down to time and
space. (We’ll ignore energy, or you might think this is Physics.)

Actually, there is one other issue — correctness. As it turns out,
tableaux are what numerical analysts call unstable, which means essen-unstable

tableau tially that, because of how they’re stored and manipulated in a computer,
errors can crop into the computations. Because of this, one realizes that
if a mistake is made during a given tableau iteration then every tableau
thereafter is no longer working with the original constraints. The error
may, in fact, propogate to every row, meaning that the polyhedron defined
by the new constraints may have no relation to the original polyhedron.
How disastrous! On the other hand, if a mistake is made during a given
matrix iteration then the worst that can happen is that a poor pivot deci-
sion is made. The reason is that every new set of pivot calculations uses
the original problem information. Thus the original polyhedron remains
intact. Moreover, because of the ways in which matrices can be stored,2

the inverse of one B can be used to compute the inverse of its subsequent
B quickly (since only one basic variable is exchanged).

With regard to speed we first remind the reader that the Matrix and
Tableau Environments, assuming error-free calculations, make identical
pivot decisions. Therefore, each requires the same number of pivots to
solve a particular LOP. Hence the only possibility for a difference in speed
occurs during each individual iteration. Here there can be a marked differ-
ence in practice. At first glance, a tableau pivot operation requires roughly
m(m+n) operations, while a matrix pivot operation requires about m3 op-
erations just to invert B, never mind perform the remaining calculations.
However, knowing the inverse of one basis helps in computing the inverse of
the next basis (since only one column is different), and so it can be shown
that both methods perform on the same order of magnitude in general. At
second glance, the matrix method can be shown to be far faster in practice.
The reason for this is that practical problems tend to be sparse, meaningsparse

matrix/
tableau

that most of the entries are zero. (We will encounter many sparse problems
in Chapter 10.) It has even been reported that, on practical problems, re-
gardless of the size of a problem, only a constant number per row, maybe
as small as 10 (ten!), might be nonzero. In hindsight this tendency isn’t
so surprising, considering that variables often come in groups — type of
employee, hours of operation, materials of construction, location of office,
etc. With this in mind, we note that there are especially fast methods for

2Various triangular factorizations of B, into upper and lower triangular eta matrices
and permutation matrices, have been used over the years — we will not discuss them
here but instead refer the reader to any numerical analysis text (such as G. Golub
and C. F. Van Loan, Matrix Computations (3rd ed.), Johns Hopkins University Press,
Baltimore, 1996) that covers matrix inversion.

5.3. ŇĚĆŸŽ ŽĘŮ 97

inverting sparse matrices, methods that take on the order of linear time.
On problems as large as just a thousand variables and constraints, this
improvement is very noticeable indeed.

The final consideration of space becomes apparent on sparse problems,
since zero entries do not need to be stored in clever implementations of
matrix Simplex. On the other hand, after a number of Tableau Environ-
ment pivots, any measure of sparseness is lost, and so every entry needs to
be stored. Again, linear (in m) storage space in the matrix case compares
quite favorably with quadratic storage space in the tableau case, especially
on large problems.

We will see in Chapter 10 methods that resemble the Matrix Environ-
ment in always using original problem data.

5.3 ŇĚĆŸŽ ŽĘŮ
Here is an infeasible problem.

Problem 5.3.1

Max. z = 63x1 + 84x2 + 51x3

s.t. 3x1 + x2 ≤ 15
−x1 − 9x3 ≤ −12
−2x1 + 7x2 − 3x3 ≤ 23
x1 − 4x2 − 5x3 ≤ −22

−9x1 + 6x2 + 8x3 ≤ −14

& x1 , x2 , x3 ≥ 0

Workout 5.3.2

a. Use the Matrix Environment to solve Problem 5.3.1.

b. Where in B′ do you find a certificate of infeasibility? (Re-
call Workout 2.6.3.)

c. Explain your result from part b.

Here is an unbounded problem.

Problem 5.3.3

Max. z = −22x1 +10x2 −29x3 +16x4 +25x5

s.t. x1 +3x2 −5x3 +7x4 −4x5 ≤ −43
−6x1 −2x3 −5x4 +9x5 ≤ −48

2x1 +8x2 −8x4 +5x5 ≤ −62

& x1, x2, x3, x4, x5 ≥ 0

98 Chapter 5. Matrix Environment

Workout 5.3.4

a. Use the Matrix Environment to solve Problem 5.3.3.
b. Where in your final set of matrices do you find a certificate

of unboundedness? (Recall Workout 2.7.1.)
c. Explain your result from part b.

Here is an optimal problem.

Problem 5.3.5
Min. w = 7y1 +4y2 +2y3 +y4 +8y5 +3y6 +9y7 +5y8

s.t. −y1 −y2 +y4 +y7 ≤ 13
y1 −y3 ≥ 11

y3 −y4 −y5 +y6 ≤ −17
y2 −y6 +y8 ≤ 16

y5 −y7 −y8 ≥ −19

& y1, y2, y3, y4, y5, y6, y7, y8 ≥ 0

Workout 5.3.6 Which LOP would you rather solve, Problem 5.3.5 or its
dual? Why?

Workout 5.3.7

a. Use the Matrix Environment to solve Problem 5.3.5. (Max-
imize u = −w rather than solve its dual.)

b. Find a certificate of optimality.
c. Did you notice anything especially interesting about one of

the repeated computations in this problem?

5.4 Basic Coefficients

As noticed in the examples of Section 5.1, in particular Equations (5.5)
and (5.6), it seems as if the basic coefficient for a tableau with basis β
equals dβ = | det(Bβ)|. Of course, while the coefficient dβ does clear all
denominators, it is possible that some smaller coefficient does the same. It
is our objective now to prove that this is not the case, and also to discuss
some of its ramifications.

Theorem 5.4.1 Let dT be the basic coefficient for the tableau T having
basis β from a standard form LOP. Then dT = dβ.

Proof. We proceed by induction. Clearly the theorem is true at the start.
Now suppose that dT is the basic coefficient for the tableau T having basis
β, and that dT = dβ . Let Tβ be the submatrix of T having columns
corresponding to β (and not including the objective row). Then det(Tβ) =
ρ det(Bβ) for some ρ determined by the sequence of row operations that
transformed Bβ to Tβ.

5.4. Basic Coefficients 99

Workout 5.4.2 Use the induction hypothesis and the structure of Tβ to
show that |ρ| = dm−1

T , where m is the number of rows of T .

Likewise, let T ′ be the subsequent tableau derived from T by pivoting
from β to β′, and let T ′

β′ be the analogous submatrix of T ′. As above, we
have dm

T ′ = | det(T ′
β′)| = |ρ′ det(Bβ′)| for the analogous ρ′, whose value is

yet to be determined.
Now suppose that a is the pivot entry that transforms T to T ′.

Workout 5.4.3 Use the form of the row operations of the transformation
to prove that |ρ′| = dm−1

T ′ . [HINT: Write ρ′ in terms of ρ and use Workout

5.4.2.]

Workout 5.4.4 Use Workout 5.4.3 to finish the proof of the theorem.

�

Workout 5.4.5 Prove Theorem 5.4.1 for general form LOPs.

What is the moral of Theorem 5.4.1? One answer lies in Problem 5.3.5.
If at any stage we find dβ = 1 then the corresponding basic solution and
objective value are both integer-valued. In particular, if dβ∗ = 1 then the
optimal LO solution also solves the corresponding ILO. As you may have
discovered in Workout 5.3.7, every basic determinant has absolute value
1. For such a problem it is guaranteed that its optimal LO solution also
solves the corresponding ILO. We say a matrix is totally unimodular totally

unimodular
matrix

(TU) if every square submatrix has determinant 0, 1 or −1. Thus we
discover that, while general ILOPs are significantly more time consuming
(NP-complete — see Appendix C) than LOPs in general, for the special
class of problems having a TU constraint matrix the two problems are
identical. Before tossing this class aside as an extreme anomaly, know that
the very important subclass of network problems that we will encounter in
Chapter 10 are all of this variety. In fact, almost all problems having a TU
constraint matrix arise from networks.

Workout 5.4.6 Consider Problem 5.3.5.

a. Write its 5 × 13 constraint matrix A without first con-
verting to standard form. That is, add or subtract slack
variables as necessary.

b. Write every one of its
(
13
2

)(
5
2

)
= 780 2×2 submatrices and

compute its determinant. Well, okay, write and compute
N of them.

c. Argue that every 2× 2 submatrix of A has determinant 0,
1 or −1.

d. Suppose that every 3 × 3 submatrix of A has determinant
0, 1 or −1, and use that supposition to prove that the same
holds for every 4 × 4 submatrix. [HINT: Consider the three

cases according to the number of nonzero entries of a column

of the submatrix.]

100 Chapter 5. Matrix Environment

e. Use the ideas from part d to prove that A is TU.

Let us now make the integrality arguments above more formal. We
say a nondegenerate polyhedron is integral if each of its extreme points isintegral

polyhedron integral. Given a TU matrix A and integral b, let Qb be the polyhedron
of solutions to Sb = {Ax ≤ b,x ≥ 0}. As mentioned above, every basic
solution of Sb is integral, and hence Qb is integral. Hence, if A is TU then
Qb is integral for every integral b. In 1956 Hoffman and Kruskal proved
that the converse is also true. The proof of their result is beyond the scope
of this book.

Theorem 5.4.7 The matrix A is TU if and only if the polyhedron Qb isHoffman–
Kruskal

Theorem
integral for every integral vector b. �

Workout 5.4.8 Consider the polytope Qb for

A =

⎛

⎝
−1 −1
−1 1

1 1

⎞

⎠ and b =

⎛

⎝
−1

2
4

⎞

⎠ .

a. Show that A is not TU.

b. Show that Qb is integral.

c. Why does this example not contradict Theorem 5.4.7?

5.5 Exercises

Practice

5.5.1 Consider the LOP Max. z = cTx s.t. Ax ≤ b, x ≥ 0, with

c =

⎛

⎜
⎜
⎜
⎜
⎝

−13
11
17
−16
−19

⎞

⎟
⎟
⎟
⎟
⎠
, A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0
1 0 0 −1 0
0 −1 −1 0 0
−1 0 1 0 0

0 0 1 0 1
0 0 −1 1 0
−1 0 0 0 −1

0 0 0 −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

7
4
−2
−1

8
3
9
5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Solve it using the Matrix Environment.

5.5.2 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Problem 1.1.3

b. Problem 1.1.5

5.5. Exercises 101

c. Problem 1.2.4

d. Problem 1.2.5

e. Problem 1.3.1

f. Problem 1.4.2

g. Problem 1.4.6

5.5.3 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Exercise 1.5.1(a)

b. Exercise 1.5.1(b)

c. Exercise 1.5.1(c)

d. Exercise 1.5.2

e. Exercise 1.5.3

f. Exercise 1.5.4

g. Exercise 1.5.7

h. Exercise 1.5.8

i. Exercise 1.5.15

j. Exercise 1.5.5

k. Exercise 1.5.6

l. Exercise 1.5.10

m. Exercise 1.5.11

n. Exercise 1.5.12

o. Exercise 1.5.18

p. Exercise 1.5.19

q. Exercise 1.5.20

r. Exercise 1.5.21(a)

s. Exercise 1.5.21(b)

t. Exercise 1.5.33

u. Exercise 1.5.39

v. Exercise 1.5.40

w. Exercise 1.5.42

5.5.4 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Problem 2.1.6

b. Problem 2.1.8

c. Problem 2.3.1

102 Chapter 5. Matrix Environment

d. Problem 2.4.1

e. Problem 2.4.3

f. Problem 2.5.1

g. Problem 2.5.2

h. Problem 2.5.5

i. Workout 2.5.6(a)

j. Problem 2.6.1

k. Workout 2.6.4(a)

l. Problem 2.7.1

m. Problem 2.7.3

n. Problem 2.8.3

o. Problem 2.9.3

5.5.5 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Exercise 2.10.12

b. Exercise 2.10.13

c. Exercise 2.10.14

d. Exercise 2.10.15

e. Exercise 2.10.16

f. Exercise 2.10.17

g. Exercise 2.10.18

h. Exercise 2.10.19

i. Exercise 2.10.22

j. Exercise 2.10.23

k. Exercise 2.10.24(a)

l. Exercise 2.10.34(a)

m. Exercise 2.10.34(b)

n. Exercise 2.10.34(c)

5.5.6 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Problem 3.1.1

b. Problem 4.1.1

c. Problem 4.1.3

d. Problem 4.1.5

e. Problem 4.2.1

5.5. Exercises 103

f. Problem 4.3.2

g. Problem 4.3.5

h. Problem 4.4.3

5.5.7 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Exercise 4.5.1(a)

b. Exercise 4.5.1(b)

c. Exercise 4.5.1(c)

d. Exercise 4.5.2

e. Exercise 4.5.3

f. Exercise 4.5.4

g. Exercise 4.5.11

h. Exercise 4.5.14(a)

i. Exercise 4.5.14(b)

j. Exercise 4.5.14(c)

k. Exercise 4.5.14(d)

l. Exercise 4.5.14(e)

m. Exercise 4.5.20

5.5.8 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Problem 5.1.1

b. Problem 5.3.1

c. Problem 5.3.3

d. Problem 5.3.5

5.5.9 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Problem 6.1.1

b. Problem 6.1.3

c. Problem 6.1.4

d. Workout 6.1.5

e. Problem 6.3.3

f. Problem 6.4.7

g. Problem 6.4.8

h. Problem 6.4.13

i. Exercise 6.5.8

104 Chapter 5. Matrix Environment

5.5.10 Use the Matrix Environment to solve the following LOPs. Provide
certificates of your results.

a. Problem 7.1.4

b. Exercise 7.5.1

c. Exercise 7.5.2

d. Exercise 7.5.3

5.5.11 Prove that the following matrix A is TU.

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

5.5.12 Prove that the following matrix A is TU.

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

⎞

⎟
⎟
⎟
⎟
⎠

5.5.13 Prove that the following matrix A is TU.

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
1 0 1 1 0
0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

5.5.14 Prove that the following matrix A is TU.

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 1 0
1 0 1 1 0
1 1 1 1 0
1 1 0 0 1
0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

5.5.15 Prove that the matrix A in Exercise 5.5.1 is TU.

Challenges

5.5.16 Let β = β∗ be the optimal basis for Problem 1.1.3 (see Exercise
5.5.2(a)). Keeping γ fixed, compare the final data with the data derived
from replacing c = (10, 10, 15, 15) by

5.5. Exercises 105

a. c′ = (11, 10, 15, 15),
b. c′ = (12, 10, 15, 15), and
c. c′ = (13, 10, 15, 15).

Describe and explain the pattern you see.

5.5.17 Let β = β∗ be the optimal basis for Problem 1.1.3 (see Exercise
5.5.2(a)). Keeping β fixed, compare the final data with the data derived
from replacing b = (400, 250, 370, 490)T by

a. b′ = (400, 250, 121, 490)T,
b. b′ = (400, 250, 120, 490)T, and
c. b′ = (400, 250, 119, 490)T.

Describe and explain the pattern you see.

5.5.18 Write pseudocode that takes A, b, c and β as input and outputs
the pivot operation i 	→ j.

5.5.19 Write pseudocode for the Simplex Algorithm in the Matrix Envi-
ronment.

5.5.20 Let A be a TU matrix and let A′ be constructed from A by a pivot
operation. Prove that A′ is TU.

5.5.21 Let A be a {0,±1}-matrix such that each column has at most one
1 and at most one −1. Prove that A is TU. [HINT: See Workout 5.4.6.]

5.5.22 Let A = (ai,j) be a {0, 1}-matrix having distinct columns with the
property that every column has exactly two 1s, and such that there is some
k such that, whenever ai,j = ai′,j = 1 with i < i′, we have i ≤ k < i′. Prove
that A is TU. [For example, see Exercise 5.5.13.]

5.5.23 Let A = (ai,j) be as in Workout 5.4.6. Prove that, for every set
J of columns there is some subset J1 ⊆ J (with J2 = J − J1) so that every
row i satisfies ∣

∣
∣
∣
∣
∣

∑

j∈J1

ai,j −
∑

j∈J2

ai,j

∣
∣
∣
∣
∣
∣
≤ 1 .

5.5.24 A {0, 1}-matrix A is called interval if the 1s are found consec- interval
matrixutively in every column. Prove that interval matrices are TU. [HINT: See

Workout 5.5.14.]

Projects

5.5.25 Present Bixby’s 2002 paper, Solving real-world linear programs.

5.5.26 Present matrix decomposition ideas regarding sparse matrix inver- Cholesky
factoriza-
tion
Log Barrier
Method

sion.

5.5.27 Present the Cholesky factorization of AAT and the Log Bar-
rier Method for LO.

Chapter 6

General Form

6.1 Nonstandard Duals

Consider the following general LOP. We refer to it as general because it
contains an equality constraint, as well as the free variable x2.

Problem 6.1.1

Max. z = 36x1 − 31x2 + 37x3

s.t. 7x1 + 6x2 + 2x3 ≤ 419
−5x1 + 3x2 + 8x3 ≤ 528

3x1 − x2 = 272
− 9x2 − 4x3 ≤ 168

& x1 , x3 ≥ 0

Instead of putting Problem 6.1.1 in standard form by creating a larger
LOP with more constraints and variables, our aim is to modify the Simplex
Algorithm to handle LOPs in general form like this. First, let’s see what general

formits dual LOP must look like. For this we need to recall how dual problems
were first developed in Chapter 1, with the Weak Duality Inequality 1.4.7
in mind. First, we write down a proof of the inequality in this case, and
then decide which components of the dual are necessary for each step of
the proof to hold.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 6, c© Springer Science+Business Media LLC 2010

108 Chapter 6. General Form

Inequality 6.1.2

z = 36x1 − 31x2 + 37x3 (6.1)
≤ (7y1 − 5y2 + 3y3)x1 − 31x2 + 37x3 (6.2)
≤ (7y1 − 5y2 + 3y3)x1 + (6y1 + 3y2 − y3 − 9y4)x2 + 37x3 (6.3)
≤ (7y1 − 5y2 + 3y3)x1 + (6y1 + 3y2 − y3 − 9y4)x2

+(2y1 + 8y2 − 4y4)x3
(6.4)

= (7x1 + 6x2 + 2x3)y1 + (−5x1 + 3x2 + 8x3)y2
+(3x1 − x2)y3 + (−9x2 − 4x3)y4

(6.5)

≤ 419y1 + (−5x1 + 3x2 + 8x3)y2 + (3x1 − x2)y3
+(−9x2 − 4x3)y4

(6.6)

≤ 419y1 + 528y2 + (3x1 − x2)y3 + (−9x2 − 4x3)y4 (6.7)
≤ 419y1 + 528y2 + 272y3 + (−9x2 − 4x3)y4 (6.8)
≤ 419y1 + 528y2 + 272y3 + 168y4 (6.9)
= w . (6.10)

For inequality 6.2 to hold we need 7y1 − 5y2 + 3y3 ≥ 36, as usual. In
fact, every line is as usual except inequalities 6.3 and 6.8.

In the former case we need −31x2 ≤ (6y1 +3y2− y3− 9y4)x2. However,
if 6y1 + 3y2 − y3 − 9y4 �= −31 then we risk having −31x2 > (6y1 + 3y2 −
y3− 9y4)x2 if x2 has the appropriate sign — remember, it can be negative!
Thus the dual must have 6y1 + 3y2 − y3 − 9y4 = −31 (and thus equality
holds after multiplying by any value of x2).

In a similar vein, the latter case requires (3x1 − x2)y3 ≤ 272y3, and
since we have equality in the constraint 3x1−x2 = 272, equality holds after
multiplying by any value of y3. Therefore we can allow y3 to be free in the
dual LOP, below.

Problem 6.1.3

Min. w = 419y1 + 528y2 + 272y3 + 168y4

s.t. 7y1 − 5y2 + 3y3 ≥ 36
6y1 + 3y2 − y3 − 9y4 = −31
2y1 + 8y2 − 4y4 ≥ 37

& y1 , y2 , y4 ≥ 0

Try another example.

6.1. Nonstandard Duals 109

Problem 6.1.4

Max. z = 735x1 +658x2 +863x3 +514x4

s.t. 341208x1 −402515x2 +358922x3 −287130x4 ≤ −256312
610425x1 +383611x2 −491039x3 −523646x4 ≤ 328051
283301x1 +566242x2 +453948x3 +370066x4 = 429148
547515x1 +811028x2 −220383x3 −414116x4 = 269723
670104x1 +355367x2 −252983x3 −592604x4 ≤ −215062

& x2, x4 ≥ 0

Workout 6.1.5 Write the dual of Problem 6.1.4.

Now suppose we are given a LOP in the following general form.

Problem 6.1.6

Max. z =
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi (i ∈ IP)
∑n

j=1 aijxj = bi (i ∈ EP)

& xj ≥ 0 (j ∈ RP)

Here, IP ⊆ {1, . . . ,m} identifies those (primal) constraints that use an In-
equality, while EP = {1, . . . , m} − IP identifies those that use an Equality.
For example, in Problem 6.1.1 we have I = {1, 2, 4} and E = {3}. Likewise,
RP ⊆ {1, . . . , n} identifies those variables that are Restricted to be nonneg-
ative, while FP = {1, . . . , n} − RP will denote those that are Free. We
have R = {1, 3} and F = {2} in Problem 6.1.1. Define the analogous sets
ID, ED, RD, FD for dual LOPs, and then notice their values for Problem
6.1.3.

Problem 6.1.7

Min. w =
∑m

i=1 biyi

s.t.
∑m

i=1 aijyi ≥ cj (j ∈ ID)∑m
i=1 aijyi = cj (j ∈ ED)

& yi ≥ 0 (i ∈ RD)

Workout 6.1.8 Suppose that Problem 6.1.7 is the dual of Problem 6.1.6
(in other words the Weak Duality Inequality holds: every primal-feasible z
and dual-feasible w satisfy z ≤ w). Prove that

a. ID = RP ,

b. ED = FP ,

c. RD = IP , and

110 Chapter 6. General Form

d. FD = EP .

There are occasions (see Chapter 10) in which problems arise even more
generally, such as the following LOP.

Problem 6.1.9

Max. z = 37x1 − 51x2 − 44x3

s.t. 4x1 − x2 + 3x3 ≤ 146
−7x1 + 8x2 + 2x3 ≥ 105

9x1 + 5x2 − 6x3 = 89

& x1 ≥ 0, x3 ≤ 0

Workout 6.1.10 Write the dual of LOP 6.1.9. Explain without convert-
ing, instead using the reasoning of multipliers.

6.2 General Simplex and Phase 0

Let us return to an analysis of Problem 6.1.1. Below is its initial tableau
(we have made note of the free variable x2 as shown).

Tableau 6.2.1
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F
7 6 2 1 0 0 0 419
−5 3 8 0 1 0 0 528

3 −1 0 0 0 0 0 272
0 −9 −4 0 0 1 0 168

−36 31 −37 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Notice that one cannot write down the dictionary for Tableau 6.2.1
because only 4, 5, 7 ∈ β so far — the third constraint, because it is an
equality, delivers no basic variable (which is why we skipped over what
would have been its basic variable, x6, in the partial basis). Fear not,
however: just pick one! In fact, since both phases of the Simplex Algorithm
include mechanisms for keeping basic variables from becoming negative,
why not throw in a basic variable that you don’t care whether it is negative
or not? That is, let’s make x2 basic in the third constraint; i.e., pivot on
the −1, obtaining the next tableau.

Tableau 6.2.2
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F
25 0 2 1 0 0 0 2051
4 0 8 0 1 0 0 1344
−3 1 0 0 0 0 0 −272
−27 0 −4 0 0 1 0 −2280

57 0 −37 0 0 0 1 8432

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

6.2. General Simplex and Phase 0 111

In any LOP having equality constraints, the first part of what we will
call Phase 0 will be to fill the basis, choosing nonbasic variables (in least Phase 0

subscript order) to be basic in those constraints. As above, preference is
given to free variables in these choices. In fact, after the basis is filled, any
LOP having free variables may still have some that are nonbasic. It makes
the same sense to put those in the basis, replacing basic restricted variables
(both in least subscript order).

Workout 6.2.3 Restate Problem 6.1.1 in standard form by solving for x2

in constraint 3 and substituting its formula back into the other constraints
and objective function. Compare your result with Tableau 6.2.2 and explain.

Recall from Section 2.2 the notation i 	→ j that denotes the pivot oper-
ation which replaces the basic variable xj by the parameter xi. By i 	→ ∅
we mean the Phase 0 pivot in which xi replaces nothing because the current
basis is not full.

Workout 6.2.4 For each of the following instances of LOPs write the
pending Phase 0 pivot i 	→ j.

a. n = 6, m = 5, I = {1, 2, 4}, R = {1, 3, 4} and β =
{2, 7, 8, 10}.

b. n = 4, m = 9, I = {1, 3, 4, 6, 7, 9}, R = {3, 4} and β =
{1, 2, 5, 7, 8, 10, 11}.

c. n = 6, m = 7, I = {1, 3, 4, 7}, R = {2, 3, 6} and β =
{1, 3, 5, 7, 9, 10, 13}.

d. n = 3, m = 8, I = {2, 5, 6, 7}, R = {} and β =
{1, 2, 3, 5, 8, 9, 10}.

After Phase 0 has been completed, we will assume that every free vari-
able is in the basis, and that some basic variable is restricted (see Exercise
6.5.20). We now need to see the effect of free variables on Phases I and
II. It is useful to think in terms of Workout 6.2.3, which suggests that a
LOP with free variables is equivalent to a smaller LOP, derived from the
first but without those free variables. In that smaller LOP all pivots are
exchanges of restricted variables, and so then they should be in the original
LOP. Let’s see how this holds true.

In Phase I we first look for negative basic current values because they
signal infeasibility. But now free variables can be ignored because their
negativity is allowed. Thus Phase I will never kick a free variable out of a
basis. In Phase II, once an incoming variable is found, the ratio calculations
place upper bounds on its increasing value that are induced by preventing
basic variables from becoming negative. But not caring that free variables
go negative means that their ratios are irrelevant. Therefore Phase II will
never kick out a free variable either. One can keep floating in the back of
one’s mind, then, the guideline of the general Simplex Algorithm that all
free variables go in to the basis and never come out.

112 Chapter 6. General Form

It’s time to continue with Tableau 6.2.2 from Problem 6.1.1. Phase I
works as usual in this case since −2280 is the most negative current basic
value among restricted variables. Hence we pivot 1 	→ 7 (it looks like 6 in
the tableau, but we prefer to save x6 for the “missing” slack variable).

Tableau 6.2.5
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F
0 0 −46 27 0 25 0 −1623
0 0 200 0 27 4 0 27168
0 27 12 0 0 −3 0 −504

27 0 4 0 0 −1 0 2280
0 0 −1227 0 0 57 27 97704

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The next pivot is likewise as usual: 3 	→ 4.

Tableau 6.2.6
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F
0 0 46 −27 0 −25 0 1623
0 0 0 200 46 192 0 34264
0 46 0 12 0 6 0 −1580

46 0 0 4 0 2 0 3644
0 0 0 −1227 0 −1039 46 240215

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Finally we arrive at Phase II — Tableau 6.2.6 is feasible because x2 is
free. At this stage, x4 enters β, and while the x2 b-ratio isn’t considered
because it is negative, it wouldn’t be in any case because x2 is free. Now we
pivot 4 	→ 5 to reach the optimal tableau, with x∗ = (12864,−15808, 27168 |
34264, 0, 0)T/200 and z∗ = 1958368/200.

Tableau 6.2.7
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F
0 0 200 0 27 4 0 27168
0 0 0 200 46 192 0 34264
0 200 0 0 −12 −24 0 −15808

200 0 0 0 −4 −8 0 12864
0 0 0 0 1227 604 200 1958368

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Workout 6.2.8 Write an outline for all Phases of the general Simplex
Algorithm.

Theorem 6.2.9 Let P be a LOP in general form (Problem 6.1.6). ThenGeneral
Funda-
mental

Theorem

a. P is either infeasible, unbounded, or it has a maximum;
b. if P has a feasible solution then it has a basic feasible so-

lution; and
c. if P has an optimal solution then it has a basic optimal

solution.

Workout 6.2.10 Prove Theorem 6.2.9.

6.3. Plus de Pratique 113

6.3 Plus de Pratique

Workout 6.3.1 Use the general Simplex Algorithm to solve Problem 6.1.3
(the dual of Problem 6.1.1).

Workout 6.3.2 Use the general Simplex Algorithm to solve Problem 6.1.4
and its dual problem from Workout 6.1.5.

Problem 6.3.3

Max. z = x1 + 2x2 + 3x3 + 4x4

s.t. x1 + x2 + 2x3 + x4 ≤ 10
2x1 − x2 + x3 + x4 ≤ 20
x1 + 5x4 ≤ 30

& x1 , x4 ≥ 0

Workout 6.3.4 Use the general Simplex Algorithm to solve Problem 6.3.3
and its dual.

Workout 6.3.5 Use Workouts 6.3.1, 6.3.2 and 6.3.4 to find a pattern in
the optimal tableau/dual value relationship. [HINT: It will be useful to main-

tain the numbering of the slack variables from the standard case; that is, use slack

variables x4, x5 and x7 for Problem 6.1.1 — one can think of the nonexistent x6

as existing with constant value 0.]

6.4 General Duality and Slackness

Theorem 6.4.1 If a general linear problem P has an optimum z∗ then its General
Duality
Theorem

dual linear problem D has an optimum w∗; moreover, z∗ = w∗.

Proof. Suppose P has the form of Problem 6.1.6. ThenD is Problem 6.1.7,
satisfying the relations of Workout 6.1.8. We begin by putting Problem
6.1.6 into standard form as follows, using the transformations discussed in
Section 1.4.

Problem 6.4.2
Max. z′ =

∑
j∈RP

cjxj +
∑

j∈FP
cjx+

j −∑j∈FP
cjx−

j

s.t.
∑

j∈RP
aijxj +

∑
j∈FP

aijx+
j −∑j∈FP

aijx−
j ≤ bi (i ∈ IP)

∑
j∈RP

aijxj +
∑

j∈FP
aijx+

j −∑j∈FP
aijx−

j ≤ bi (i ∈ EP)

−∑j∈RP
aijxj −∑j∈FP

aijx+
j +

∑
j∈FP

aijx−
j ≤ −bi (i ∈ EP)

& xj , x+
j , x−

j ≥ 0 (∀j)

Workout 6.4.3 Put Problem 6.1.7 into standard minimization form using
similar transformations.

114 Chapter 6. General Form

Workout 6.4.4 Write the dual of Problem 6.4.2.

Workout 6.4.5 Compare your results from Workouts 6.4.3 and 6.4.4.

Workout 6.4.6 Use Workout 6.4.5 and the Strong Duality Theorem 4.1.9
to finish the proof.

�
Certificates of unboundedness and infeasibility (more on infeasibility in

Chapter 7) are found as before, with slight modifications involving free
variables and equality constraints. For example, y = (1,−3, 2)T certifies
that Problem 6.4.7 below is infeasible, while x = (−2t, t, t)T as t → ∞
certifies that Problem 6.4.8 below is unbounded.

Problem 6.4.7

Max. z = 6x1 + 3x2 + 5x3

s.t. 4x1 + 4x2 + 3x3 ≤ 13
2x1 + 3x2 + x3 = 8
x1 + 3x2 + x3 ≤ 3

& x2 , x3 ≥ 0

Problem 6.4.8

Max. z = 6x1 + 3x2 + 5x3

s.t. 4x1 + 4x2 + 3x3 ≤ 13
2x1 + 3x2 + x3 ≤ 8
x1 + 3x2 − x3 ≤ 3

& x2 , x3 ≥ 0

How do we go about finding certificates of optimality? The optimal
objective row of Tableau 6.2.7 of Problem 6.1.1 seems to yield y∗ = (0, 1227,
604 | 0, 0, 0)T/200 and w∗ = 1958368/200. However, because x2 is free, the
second dual constraint is an equality, and consequently y6 doesn’t exist.
(Here we are using the numbering hint from Workout 6.3.5.) Moreover,
since the third primal constraint is an equality, x6 doesn’t exist, and so its
optimal coefficient doesn’t show up in the tableau to reveal the value of the
free variable y3. Therefore the optimal objective row correctly yields y∗ =
(0, 1227, y∗3, 604 | 0, 0)T/200. In order to compute y∗3 we simply solve for it
from any of the dual constraints containing it: y∗3 = (36−7y∗1 +5y∗2−y∗5)/3
or y∗3 = 31+6y∗1+3y∗2−9y∗4 . In an arbitrary general problem, the number of
primal constraints is at least as large as the number of free dual variables, so
there will always be enough constraints to solve for the “missing” optimal
free values.

Let P be Problem 6.1.6 and D be its dual Problem 6.1.7.

6.5. Exercises 115

Theorem 6.4.9 Let x′ be P -feasible and y′ be D-feasible. Then x′ and y′ General
Comple-
mentary
Slackness
Theorem

are a primal-dual optimal pair if and only if both

x′j = 0 or
m∑

i=1

ai,jy
′
i = cj for all j ∈ RP (6.11)

and

n∑

j=1

ai,jx
′
j = bi or y′i = 0 for all i ∈ IP . (6.12)

Workout 6.4.10 Prove the General Complementary Slackness Theorem
6.4.9.

Workout 6.4.11 Generalize Theorem 4.4.2 to handle general LOPs.

Workout 6.4.12 Prove your theorem from Workout 6.4.11.

Problem 6.4.13

Max. z = −10x1 − 6x2 − x3 + 4x4 + 3x5

s.t. x1 + x2 + 3x3 + 4x4 + 5x5 ≤ 12
−x1 + x3 − x4 − x5 ≤ −5
3x1 + 2x2 + x3 − x4 ≤ 0
2x1 + 4x2 − 5x4 − 3x5 = −25

& x1 , x3 , x4 ≥ 0

Workout 6.4.14 Consider Problem 6.4.13.

a. Use your theorem from Workout 6.4.11 to show that x′ =
(2,−5, 0, 0, 3)T is optimal.

b. Use your theorem from Workout 6.4.11 to show that x′ =
(0, 8, 0, 21,−16)T is not optimal.

6.5 Exercises

Practice

6.5.1 Use the general Simplex Algorithm to solve

a. the primal LOP from Exercise 4.5.14(a).

b. the dual LOP from Exercise 4.5.14(a).

Include certificates for infeasibility, unboundedness and optimality.

116 Chapter 6. General Form

6.5.2 Use the general Simplex Algorithm to solve

a. the primal LOP from Exercise 4.5.14(b).

b. the dual LOP from Exercise 4.5.14(b).

Include certificates for infeasibility, unboundedness and optimality.

6.5.3 Use the general Simplex Algorithm to solve

a. the primal LOP from Exercise 4.5.14(c).

b. the dual LOP from Exercise 4.5.14(c).

Include certificates for infeasibility, unboundedness and optimality.

6.5.4 Use the general Simplex Algorithm to solve

a. the primal LOP from Exercise 4.5.14(d).

b. the dual LOP from Exercise 4.5.14(d).

Include certificates for infeasibility, unboundedness and optimality.

6.5.5 Use the general Simplex Algorithm to solve

a. Problem 6.1.9.

b. the dual of Problem 6.1.9.

6.5.6 Use the general Simplex Algorithm to solve the following LOP.

Min. w = y1

s.t. y2 + y3 + y4 = 1
y1 + y2 − y3 + 2y4 ≥ 0
y1 − y2 + y3 − y4 ≥ 0
y1 − 2y2 + y3 − y4 ≥ 0

& y2 , y3 , y4 ≥ 0

Include certificates for infeasibility, unboundedness and optimality.

6.5.7 Consider the matrix A, below.
⎛

⎜
⎜
⎝

3 0 −2
−1 4 0

2 −3 1
0 −2 1

⎞

⎟
⎟
⎠

a. Find the maximum value x0 such that Ax ≥ x0J4 for all
x ≥ 0 whose coordinates sum to 1.

b. Find the minimum value y0 such that ATy ≤ y0J3 for all
y ≥ 0 whose coordinates sum to 1.

6.5. Exercises 117

c. Compare your results from the two parts above.

6.5.8 Use the general Simplex Algorithm to solve n LOPs of your own
devising, as well as their dual LOPs. Include certificates for infeasibility,
unboundedness and optimality.

6.5.9 Verify Theorem 6.4.1 on the primal LOP from Exercise 4.5.14(b).

6.5.10 Verify Theorem 6.4.1 on the primal LOP from Exercise 4.5.14(c).

6.5.11 Verify Theorem 6.4.1 on Problem 6.1.1.

6.5.12 Verify Theorem 6.4.1 on Problem 6.1.4.

6.5.13 Verify Theorem 6.4.1 on any of the optimal LOPs from Exercise
6.5.8.

6.5.14 Verify Theorem 6.4.9 on the primal LOP from Exercise 4.5.14(b).

6.5.15 Verify Theorem 6.4.9 on the primal LOP from Exercise 4.5.14(c).

6.5.16 Verify Theorem 6.4.9 on Problem 6.1.1.

6.5.17 Verify Theorem 6.4.9 on Problem 6.1.4.

6.5.18 Verify Theorem 6.4.9 on any of the optimal LOPs from Exercise
6.5.8.

6.5.19 Consider the following LOP P .

Max. z = 212x1 −320x2 +273x3 −347x4 +295x5

s.t. −4x1 −2x3 +8x5 ≤ −22
2x1 +3x2 −x4 = 31

−5x2 +3x3 −2x5 ≤ 27
−7x1 −8x3 +6x4 = −38

−9x3 −2x4 +x5 ≤ −40
−x2 −3x4 −5x5 ≤ 42

& x1, x3, x4 ≥ 0

a. Find x∗ and write the Phase 0, I and II pivots that solve
P .

b. Use the General Complementary Slackness Theorem to find
the optimal certificate y∗ [do not solve the dual LOP D!].

118 Chapter 6. General Form

Challenges

6.5.20 What can you say about a LOP with as many free variables as
constraints?

6.5.21 Write the pseudocode (or code) for the general Simplex Algorithm.

6.5.22 Workout 6.2.3 suggests a method for comparing a general LOP to
a smaller LOP having no free variables. Use this idea to give another proof
of the General Strong Duality Theorem 6.4.1.

Projects

6.5.23 Present the Applegate-Cook-Dash-Espinoza paper, Exact solutions
to linear programming problems.

6.5.24 Present the equivalence of our standard form for LO to the fol-
lowing form: Min. xn s.t. Ax = 0, JT

nx = 1,& x ≥ 0, where A satisfies
AJn = 0.

Chapter 7

Unsolvable Systems

7.1 Infeasible Certificates

Recall the Fundamental Theorem of Linear Optimization (Theorem 2.9.1).
In particular, it states that there are only three kinds of linear problems:
infeasible, unbounded and optimal. Thus, if a LOP and its dual are both
feasible then they are both optimal (by the Weak Duality Theorem —
Inequality 1.4.7). Of course, the converse is far more obvious. Moreover,
weak duality also implies that any primal-dual feasible pair that satisfies
z ≥ w is an optimal pair. We record these observations in Theorem 7.1.3.

Problem 7.1.1

Max. z =
∑n

j=1 cjxj

s.t.
∑n

j=1 ai,jxj ≤ bi (1 ≤ i ≤ m)

& xj ≥ 0 (1 ≤ j ≤ n)

System 7.1.2
∑n

j=1 cjxj ≥
∑m

i=1 biyi

∑n
j=1 ai,jxj ≤ bi (1 ≤ i ≤ m)

xj ≥ 0 (1 ≤ j ≤ n)

∑m
i=1 ai,jyi ≥ cj (1 ≤ j ≤ n)

yi ≥ 0 (1 ≤ i ≤ m)

Theorem 7.1.3 Problem 7.1.1 is optimal if and only if System 7.1.2 is
solvable. �
G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 7, c© Springer Science+Business Media LLC 2010

120 Chapter 7. Unsolvable Systems

Problem 7.1.4 Consider the following LOP.

Max. z = x1 + x2 + x3 + x4 + x5

s.t. x2 + x3 + x4 ≤ 86
x1 + x2 ≤ 59

x3 + x4 + x5 ≤ 81
x2 + x3 ≤ 68

x4 + x5 ≤ 62
x1 + x2 + x3 + x4 ≤ 97
x1 ≤ 40

x3 + x4 ≤ 75

& x1 , x2 , x3 , x4 , x5 ≥ 0

Workout 7.1.5

a. Write the system S that corresponds to Problem 7.1.4.
b. Find a solution to S.
c. Use your S-solution to find optimal solutions to Problem

7.1.4 and its dual.

What many find interesting about Theorem 7.1.3 is that it “reduces” the
study of optimizing linear functions over linear systems to that of solving
linear systems. While the latter amounts to performing Phase I, do not be
fooled by thinking that the latter process is faster than Simplex — indeed,
it is slower (see Appendix C) since the number of constraints has at least
doubled (compared to the smaller of m and n). On the other hand, there
are fairly efficient implementations of the idea of working on both problems
simultaneously, collectively known as Primal-Dual methods, conveniently.
We will not discuss such methods in this text. However, Theorem 7.1.3
does illustrate the importance of understanding the (un)solvability of linear
systems, and we devote the remainder of this chapter to this aim.

Workout 7.1.6 Generalize Theorem 7.1.3 to handle general LOPs.

Let us return to the situation of infeasibility. Consider the following
problem.

Problem 7.1.7

Max. z = 216x1 − 160x2 + 254x3 + 303x4

s.t. 2x1 − 4x2 + x3 + 3x4 ≤ 22
x1 + 3x2 − 5x3 + 8x4 ≤ −17

6x1 + 4x2 + 7x4 ≤ 27
9x1 − 2x2 − x3 + 4x4 ≤ −16
−3x1 + 7x3 − 5x4 ≤ −32

& x1 , x2 , x3 , x4 ≥ 0

7.1. Infeasible Certificates 121

Note that four Simplex pivots produces the following tableau, suggesting
that Problem 7.1.7 is infeasible.

Tableau 7.1.8

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1459 0 61 130 0 73 303 0 −11732
0 0 −806 0 0 −150 61 −103 −237 0 13429
0 0 −164 61 0 −6 0 −9 −29 0 1174
0 61 292 0 0 33 0 19 68 0 −3041

61 0 131 0 0 10 0 15 28 0 −1306

0 0 −83610 0 0 −4938 0 −2527 −13619 61 560186

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

A certificate that proves Problem 7.1.7 is infeasible is given by the multipli-
ers y = (61, 130, 0, 73, 303)T, found as the coefficients of the slack variables
in the halting row of Tableau 7.1.8.

Theorem 7.1.9 Suppose that Problem 7.1.1 halts in Phase I on a row that
represents the equation

∑n+m
j=1 a′jxj = b′. Then the multipliers yi = a′n+i

(1 ≤ i ≤ m) certify that Problem 7.1.1 is infeasible.

Proof. The proof proceeds in 3 steps.

Lemma 7.1.10 Every row of a Simplex tableau is a linear combination of
the rows of the original tableau.

Workout 7.1.11 Prove Lemma 7.1.10.

Lemma 7.1.12 Let R be a row of a Simplex tableau with entries a′j (1 ≤
j ≤ n + m), with right-hand side b′. Suppose that the multipliers yi (1 ≤
i ≤ m) of the rows of the original tableau produce row R. Then yi = a′n+i

for 1 ≤ i ≤ m.

Workout 7.1.13 Prove Lemma 7.1.12.

Lemma 7.1.14 The multipliers defined in Lemma 7.1.12 produce a con-
tradiction.

Workout 7.1.15 Prove Lemma 7.1.14.

�
Note that (61, 130, 0, 73, 303)T/61 is not dual-feasible. However, it does

have a nice property — it can be used to find a certificate for dual un-
boundedness. Before explaining how, let’s create a small example to study.

Workout 7.1.16

a. Draw a diagram of an unbounded LOP D with two vari-
ables.

b. Write its corresponding dual P .

122 Chapter 7. Unsolvable Systems

c. Obtain a P -infeasible certificate y′.
d. Obtain a D-unbounded certificate y(t) = y0 + t−→y .
e. Compare y′ and −→y .
f. Is it possible that y′ = −→y ?

Workout 7.1.17 Suppose that y′ is a feasible solution to the dual D of
Problem 7.1.7. Use (61, 130, 0, 73, 303)T/61 to find a certificate for dual
unboundedness. Will your method always work in general?

7.2 Inconsistency

Back at the Varyim Portint Co.,1 one must remember to be prepared —
recall from Section 4.4 how swiftly the president can act. Without the
offending row in hand, how might one construct an infeasible certificate
for the boss on the spot? Is there a method that is independent of the
problem?

Because a LOP is infeasible precisely when its system of constraints is
unsolvable, we hereafter consider systems of constraints only. Let us now
consider the general System 7.2.1 below.

System 7.2.1 ∑n
j=1 ai,jxj ≤ bi (i ∈ I)

∑n
j=1 ai,jxj = bi (i ∈ E)

xj ≥ 0 (j ∈ R)

Suppose that System 7.2.1 (S) is unsolvable, and let P be a LOP having
S as its system of constraints. Then P is infeasible and the Simplex Algo-
rithm will halt in Phase I. What this means, according to Lemma 7.1.10, is
that some linear combination of the constraints of S produces an offending
row in the halting Simplex tableau of P . What does such a row look like?
Phase I means that the right-hand side is negative, and the halting condi-
tion means that there is no coefficient on which to pivot. For free variables,
this means that their coefficients are zero, and for restricted variables, this
means their coefficients are nonnegative. With this in mind we consider the
following alternative System 7.2.2.alternative

system
System 7.2.2 ∑m

i=1 biyi = −1

∑m
i=1 ai,jyi ≥ 0 (j ∈ R)

∑m
i=1 ai,jyi = 0 (j ∈ F)

yi ≥ 0 (i ∈ I)
1Page 81.

7.2. Inconsistency 123

Note that part of this system would be the system of constraints for
the alternative of P if the objective function for P were identically zero.
The added constraint seems to force the dual objective function to be −1.
It seems natural, then, that both systems cannot be solvable, a line of
reasoning we will explore. The following definition suggests a link between
the two systems.

Definition 7.2.3 We say that a system is inconsistent if its alternative inconsis-
tent
system

system is solvable.

The above argument almost shows that an unsolvable system is in-
consistent. Demanding that the right-hand side equals −1 instead of an
arbitrary negative is not much of a stretch: once negative, the multipliers
can be scaled to make it any negative number requested. The only thing
missing from the discussion is the restriction on some of the yis. Notice that
the presence of equalities means that some of the coefficients expected to
appear by Theorem 7.1.9 do not exist. However, those that do correspond
to values of i ∈ I, which must be nonnegative in the offending row of the
halting tableau.

Workout 7.2.4 Consider Problem 6.4.7 (P), having constraint system S.

a. Write the alternative system S′.
b. Solve S′.
c. Find the offending row that halts the Simplex Algorithm on
P .

d. Compare your answers to parts b and c.

The result of the above discussion is the following theorem, often called
the Theorem of the Alternative.

Theorem 7.2.5 A system is unsolvable if and only if it is inconsistent. Theorem
of the
AlternativeProof. It is clear that inconsistent implies unsolvable – a solution to the

alternative system serves as a certificate. While the converse has been
argued above, we offer a more direct inference using duality. Suppose that
System 7.2.1 is unsolvable and consider the following LOP, where si =
sign(bi).

Problem 7.2.6

Max. z =
∑m

i=1−xn+i

s.t.
∑n

j=1 ai,jxj + sixn+i ≤ bi (i ∈ I)
∑n

j=1 ai,jxj + sixn+i = bi (i ∈ E)

& xj ≥ 0 (j ∈ R)

xn+i ≥ 0 (1 ≤ i ≤ m)

124 Chapter 7. Unsolvable Systems

Workout 7.2.7 Use the General Fundamental Theorem 6.2.9 to prove that
Problem 7.2.6 is optimal, and that its optimum is negative.

Workout 7.2.8

a. Write the dual of Problem 7.2.6.

b. Use the General Duality Theorem 6.4.1 to draw conclusions
about its dual.

c. Use the optimal dual solution y∗ to construct a solution to
System 7.2.2.

�

7.3 i�� a���� ���
Consider the following systems.

System 7.3.1

2x1 + x2 − 3x3 = 7
−x1 + 3x2 + x3 = −3
x1 + x3 ≤ 2

2x1 + 2x2 + 3x3 ≤ 5
4x1 − 2x2 − 3x3 ≤ 6

x2 , x3 ≥ 0

Workout 7.3.2 Verify Theorem 7.2.5 on System 7.3.1.

System 7.3.3

3x1 − x2 + 2x3 − 6x4 = 21
−x1 + 9x2 − 4x3 + 2x4 ≤ −12
x1 + 4x2 − 3x3 − 5x4 = −18

4x1 + 3x2 + 3x3 − 5x4 ≤ 24
−2x1 + 5x2 − x3 + 7x4 = 19
x1 − 9x2 + 8x3 + 4x4 ≤ 14

x2 , x4 ≥ 0

Workout 7.3.4 Find all basic solutions to the alternative of System 7.3.3.

7.4 Unsolvable Subsystems

Observe that the system of constraints of Problem 7.1.7 is shown to be un-
solvable because the aggregate of its individual constraints is contradictory.
Moreover, as shown by the certificate y = (61, 130, 0, 73, 303)T, only four
(all but the third) of its constraints are necessary to derive a contradiction.

7.4. Unsolvable Subsystems 125

On closer inspection, Tableau 7.1.8 reveals (in row 4 or 5) that only three
constraints are necessary (the 2nd, 4th and 5th). One might wonder in gen-
eral how small an unsolvable subsystem can be guaranteed inside a given
unsolvable system. We can answer this soon enough. First we look back to
the General Fundamental Theorem 6.2.9.

Theorem 7.4.1 Every solvable system of r linear constraints (not includ-
ing nonnegativity constraints) has a solution with at most r nonzero vari-
ables.

Workout 7.4.2 Prove Theorem 7.4.1. [HINT: Apply the General Fundamen-

tal Theorem 6.2.9 to a LOP having the given system of constraints.]

Now we can answer the question above.

Theorem 7.4.3 If a system of linear constraints in n variables is unsolv-
able then it has a subsystem of at most n+1 constraints that is unsolvable.

Workout 7.4.4 Prove Theorem 7.4.3. [HINT: What is the value of r in the

alternative system?]

One should notice that Theorem 7.2.5 implies that exactly one of the
Systems 7.2.1 and 7.2.2 is solvable. Other theorems of this sort include the
following.

Theorem 7.4.5 Exactly one of the following two systems S and T is solv- Farkas’s
Theoremable.

S :

∑n
j=1 ai,jxj ≤ 0 (1 ≤ i ≤ m)

∑n
j=1 cjxj > 0

T :

∑m
i=1 ai,jyi = cj (1 ≤ j ≤ n)

yi ≥ 0 (1 ≤ i ≤ m)

Proof. We invent two LOPs based on S and T as follows. Let P have
objective function z =

∑n
j=1 cjxj with constraints

∑n
j=1 ai,jxj ≤ 0 for 1 ≤

i ≤ m. Let D have objective function w = 0 with constraints
∑m

i=1 ai,jyi =
cj for 1 ≤ j ≤ n and yi ≥ 0 for 1 ≤ i ≤ m. Then P and D are dual to each
other.

Now P is feasible (at x = 0), so it is either optimal or unbounded by
the General Fundamental Theorem 6.2.9. If P is unbounded then some
feasible x has z(x) > 0 (so S is solvable) and D is infeasible (so T is
unsolvable). If P is optimal then D is feasible (and so T is solvable) and,
by the Weak Duality Theorem (Inequality 1.4.7), every feasible x and y
satisfy z(x) ≤ w(y) = 0 (so S is unsolvable). �

Workout 7.4.6 Use Theorem 7.2.5 to prove Farkas’s Theorem 7.4.5.

126 Chapter 7. Unsolvable Systems

7.5 Exercises

Practice

7.5.1 Use Theorem 7.1.3 instead of the Simplex Algorithm to solve the
following LOP.

Max. z = 5x1 +4x2 +3x3 +x4 +2x5 +6x6

s.t. x1 +2x2 +3x3 +4x4 +5x5 +6x6 ≤ 7
6x1 +5x2 +4x3 +3x4 +2x5 +x6 ≤ 23

& x1, x2, x3, x4, x5, x6 ≥ 0

7.5.2 Use Theorem 7.1.3 instead of the Simplex Algorithm to solve the
following LOP.

Max. z = −2x1 + 9x2 + 5x3

s.t. 2x1 − 4x3 ≤ −7
x1 + 3x2 = 8

− 2x2 + 6x3 ≤ 9

& x1 , x2 , x3 ≥ 0

7.5.3 Use Theorem 7.1.3 instead of the Simplex Algorithm to solve N
LOPs of your own design.

7.5.4 Verify Theorems 7.2.5 and 7.4.3 on the following system.

2x1 + 3x2 ≤ 9
3x1 + 3x2 ≤ 6
−4x1 + x2 ≤ 13
−2x1 + 4x2 ≤ 2
−x1 − 2x2 ≤ −4

x1 , x2 ≥ 0

7.5.5 Verify Theorems 7.2.5 and 7.4.3 on the following system.

x1 + 4x2 − x3 = 2
−2x1 − 3x2 + x3 = 1
−3x1 − 2x2 + x3 = 0

4x1 + x2 − x3 = −1
2x1 − 3x2 + 5x3 = 2

7.5.6 Verify Theorems 7.2.5 and 7.4.3 on the following system.

7.5. Exercises 127

3x1 − 5x2 − 4x3 + 8x5 = −114
x2 − 9x3 + 2x4 + 6x6 ≤ 240

−x1 + 3x5 + 4x6 = 65
2x1 − 3x2 + x4 − 6x5 ≤ 188

7x3 + 7x4 + 2x6 ≤ −97
9x1 − 6x2 + 4x3 + x5 − x6 = 451
−6x1 − 3x4 + x5 = −312

8x1 − 4x2 + x3 ≤ 209
2x2 + 7x3 − 5x4 + x6 = 383

x2 , x3 , x6 ≥ 0

7.5.7 Verify Theorems 7.2.5 and 7.4.3 on N systems of your own devising.

7.5.8 In the definition of the alternative System 7.2.2, the first constraint
is
∑m

i=1 biyi = −1. Suppose instead we require only
∑m

i=1 biyi < 0 — then
any solution to the resulting system still certifies the unsolvability of System
7.2.1. Prove that the region of all such resulting solutions is conic.

7.5.9 Let X,Y ⊂ R
n be finite sets of points. We say that X and Y are

separable if there is some linear inequality satisfied by all the points of X separable
pointsand none of the points of Y . Prove that X and Y are not separable if and

only if there are subsets X ′ ⊆ X and Y ′ ⊆ Y , with |X ′| + |Y ′| ≤ n + 2,
that are not separable.

7.5.10 Let S be the system {Ax ≤ b, x ≥ 0}. The homogenization of homogeniz-
ationS is the system T = {Ax− x0b ≤ 0, x ≥ 0, x0 > 0}. Prove that T has a

solution if and only if S has a solution.

Challenges

7.5.11 Prove that exactly one of the following two systems S and T is
solvable. [HINT: Use a trick similar to that used to prove the Theorem of the

Alternative 7.2.5.]

S :

∑n
j=1 ai,jxj = 0 (1 ≤ i ≤ m)

xj > 0 (1 ≤ j ≤ n)

T :

∑m
i=1 ai,jyi ≥ 0 (1 ≤ j ≤ n)

∑m
i=1 ai,jyi �= 0 (some j)

7.5.12 Prove that exactly one of the following two systems S and T is
solvable. [HINT: Use a trick similar to that used to prove the Theorem of the

128 Chapter 7. Unsolvable Systems

Alternative 7.2.5.]

S :

∑n
j=1 ai,jxj < 0 (1 ≤ i ≤ m)

xj ≥ 0 (1 ≤ j ≤ n)

T :

∑m
i=1 ai,jyi ≥ 0 (1 ≤ j ≤ n)

yi ≥ 0 (1 ≤ i ≤ m)

yi �= 0 (some i)

7.5.13 Prove that exactly one of the following two systems S and T is
solvable. [HINT: Use a trick similar to that used to prove the Theorem of the

Alternative 7.2.5.]

S :

∑n
j=1 ai,jxj < 0 (1 ≤ i ≤ m)

T :

∑m
i=1 ai,jyi = 0 (1 ≤ j ≤ n)

yi ≥ 0 (1 ≤ i ≤ m)

yi �= 0 (some i)

7.5.14 Prove that Ax = 0 has a unique solution if and only if ATy = c
is solvable for every c.

7.5.15 Let S be the system

S :
n∑

j=1

ai,jxj ≤ 0 (1 ≤ i ≤ m) , xj �= 0 (some j)

and, for given c = (c1, . . . , cn)T, define the system T (c) by

T (c) :
m∑

i=1

ai,jyi = cj (1 ≤ j ≤ n) , yi ≥ 0 (1 ≤ i ≤ m) .

Prove that S is unsolvable if and only if T (c) is solvable for every c.

7.5.16 Use Theorem 7.2.5 to give a heuristic argument for your answer
to Exercise 2.10.37.

Projects

7.5.17 Investigate the probability that a random system of m inequalities
in n variables is feasible, and that a random objective function over those
systems that are feasible is optimal.Primal-

Dual
Method
Hermite
normal

form

7.5.18 Present the Primal-Dual Method.

7.5.19 Present the Hermite normal form of a matrix and its use in
solving integral systems of equations.

Chapter 8

Geometry Revisited

8.1 Helly’s Theorem

Let F be a finite family of convex regions in R
n. We say that F is k-

intersecting if every k sets of F intersect (∀G ⊆ F : |G| = k=⇒∩S∈G S �= k-inter-
secting/
full-inter-
secting
family

∅), and full-intersecting if the intersection of all the sets of F is nonempty.
For example, Figure 8.1 shows a 2-intersecting family in R

2 that is not 3-
intersecting.

Game 8.1.1 Thelma and J. J. alternate (with Thelma first) drawing dis- ◦
tinct convex regions in R

2 under the rule that the resulting family of regions
(after the first move) is 2-intersecting but (after the second move) is not
full-intersecting. A player unable to draw such a region loses the game.

For example, Figure 8.1 shows an ellipse, pentagon and line segment as
the first three regions drawn in a particular start to Game 8.1.1.

Workout 8.1.2 Who wins Game 8.1.1? [HINT: Thelma loses if she starts

with a point.]

Game 8.1.3 Thelma and J. J. alternate (with Thelma first) drawing dis-
tinct convex regions in R

2 under the rule that the resulting family of re-
gions (after the first move) is 2-intersecting and (after the second move)
3-intersecting but (after the third move) not full-intersecting. A player un-
able to do so loses the game.

Workout 8.1.4 Who wins Game 8.1.3?

Theorem 8.1.5 Let F be a finite family of convex regions in R
n. If F is Helly’s

Theorem(n+ 1)-intersecting then F is full-intersecting.

Workout 8.1.6 Prove Helly’s Theorem 8.1.5 for the case n = 1. [HINT:

Induction on |F| is one approach.]

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 8, c© Springer Science+Business Media LLC 2010

130 Chapter 8. Geometry Revisited

Figure 8.1: A 2-intersecting family of convex regions

Proof. The first part of the proof involves converting the arbitrary convex
regions Ci ∈ F into polytopes Pi ⊆ Ci such that G = {P1, . . . , Pt} is also
(n + 1)-intersecting. The strategy is to prove that if G is full-intersecting
then so is F . Also, it may be easier to prove the result for G because of the
nice structure of its regions.

Workout 8.1.7 Prove that if G is full-intersecting, with each Pi ⊆ Ci,
then so is F .

Let H ⊆ {1, . . . , t} have size n+1. The hypothesis asserts that ∩h∈HCh

�= ∅, so choose pH ∈ ∩h∈HCh. Now do the same for every such (n+1)-subset
of {1, . . . , t}. Finally, define Xh = {pH | H � h} and let Ph = vhull(Xh).
(Recall that Ph is a polytope by Workout 3.5.19.) For example, Figure 8.2
shows an instance in R

2 with 4 regions.

Workout 8.1.8 Prove that each Pi ⊆ Ci.

The final task is to show that G is full-intersecting. For this we recall
that every polytope is the intersection of a finite number of half-spaces.
This means that for each i there exists a finite system Si of inequalities
whose solution region equals Pi. Now let S be the system of inequalities
including every inequality from each system Si.

Workout 8.1.9 Let S′ be any collection of n+ 1 of the inequalities of S.
Prove that S′ is solvable.

Workout 8.1.10 Use Theorem 7.4.3 to finish the proof.

8.2. Permutation Matrices 131

Figure 8.2: Constructing polytopes inside convex regions

�

Workout 8.1.11 Finish the example from Figure 8.2 and find a point q
common to all four regions.

8.2 Permutation Matrices

Workout 8.2.1 Let P be the polyhedron defined as the region of solutions
of the following system.

5x1 − x2 ≤ 30
−x1 + x2 ≤ 7
x1 − 3x2 ≤ −8
x2 ≤ 10
−3x1 − 4x2 ≤ −24

x1, x2 ≥ 0

a. Draw a diagram of P .

b. Find all extreme points of P .

c. Write and plot the sum of the first and third constraints.

d. For each extreme point x of P write an objective function
that is maximized at x.

132 Chapter 8. Geometry Revisited

Workout 8.2.2 Let P ⊆ R
2 be a polyhedron. Prove that x∗ is an extreme

point of P if and only if it is the unique optimal solution to some linear
problem having feasible region P . [HINT: What was the moral of Workout

8.2.1c?]

Theorem 8.2.3 Let P ⊆ R
n be a polyhedron. Prove that x∗ is an extreme

point of P if and only if it is the unique optimal solution to some linear
problem having feasible region P .

Workout 8.2.4 Prove Theorem 8.2.3.

A vector is stochastic if it is nonnegative and its components sum to 1;stochastic
vector/
matrix

in other words, its components could be used as the coefficients of a convex
combination. A matrix is stochastic if each of its rows is stochastic, and
doubly stochastic (DS) if each of its rows and columns is stochastic. Adoubly

stochastic/
permuta-

tion
matrix

permutation matrix is a square {0, 1}-matrix with exactly one 1 per row
and per column. The identity matrix is an example of a permutation ma-
trix; indeed, every permutation matrix is a rearrangement of the columns
(or rows) of an identity matrix. A permutation matrix is one type of dou-
bly stochastic matrix; in fact, every integral doubly stochastic matrix is a
permutation matrix.

Workout 8.2.5 Prove that every DS matrix is square. [HINT: Sum its en-

tries.]

Workout 8.2.6 Prove that the convex combination of permutation matri-
ces is DS.

Interestingly, the converse is a 1936 theorem of König, somehow at-
tributed instead to the 1946 and 1953 work of Birkhoff and von Neumann,
respectively.

Theorem 8.2.7 Every DS matrix is a convex combination of permutationBirkhoff–
von

Neumann
Theorem

matrices.

Workout 8.2.8 Prove that every 2 × 2 doubly stochastic matrix can be
written uniquely as a convex combination of permutation matrices.

Proof. The key idea is to think of an n × n matrix as a vector in R
n2

.
The strategy is to use the DS property to impose linear constraints on such
vectors. If the extreme points of the polytope defined by the constraints
correspond to permutation matrices (the bulk of the work in the proof)
then the result follows by Exercise 3.5.33.

Workout 8.2.9 Let X = (xr,s) be an n × n DS matrix. Write the con-
straints of the system on {xr,s} that defines the DS property.

Workout 8.2.10 Prove that the polyhedron P defined in Workout 8.2.9 is
a polytope.

8.2. Permutation Matrices 133

We now proceed to show that every extreme point of P is integral, by
contrapositive. We will show that any nonintegral point of P is the center
of some line segment residing inside P . It may be illustrative to follow how
the following argument behaves on the DS matrix

x′ =

⎛

⎜
⎜
⎝

.7 .3 0 0
0 0 .4 .6
0 .6 0 .4
.3 .1 .6 0

⎞

⎟
⎟
⎠ ,

which is the center of the line segment with endpoints

x′−(.1) =

⎛

⎜
⎜
⎝

.6 .4 0 0
0 0 .5 .5
0 .5 0 .5
.4 .1 .5 0

⎞

⎟
⎟
⎠ and x′+(.1) =

⎛

⎜
⎜
⎝

.8 .2 0 0
0 0 .3 .7
0 .7 0 .3
.2 .1 .7 0

⎞

⎟
⎟
⎠ ,

for example.
Suppose that x ∈ P is not integral, and let 0 < xr1,s1 < 1. Because

of the row constraint
∑n

s=1 xr1,s = 1, there must be some s2 such that
0 < xr1,s2 < 1. Likewise, because of the column constraint

∑n
r=1 xr,s2 = 1,

there must be some r2 such that 0 < xr2,s2 < 1. This process can be
iterated, and we will stop when some index (r, s) is repeated. Moreover,
we will assume that we chose the iterated process having the shortest such
sequence of indices. Then we know that the final index is the first repeated
index, namely (r1, s1).

Workout 8.2.11 Prove that there is some k > 1 that satisfies (rk, sk) =
(r1, s1); that is, the length of the sequence is even. [HINT: Otherwise, can a

shorter sequence be found?]

Now let ε0 = min{rj , 1 − rj , sj , 1 − sj}nj=1. Then for any 0 < ε < ε0
define x+(ε) (resp. x−(ε)) by decreasing (resp. increasing) the value of each
xrj ,sj by ε, while increasing (resp. decreasing) the value of each xrj ,sj+1 by
ε.

Workout 8.2.12 Prove that x+(ε),x−(ε) ∈ P .

Thus we have shown that the line segment x−(ε)x+(ε) lies entirely in P
and has x as its center. Therefore, x is not extreme. Hence, every extreme
point of P is integral, and so corresponds to a permutation matrix.

Workout 8.2.13 Finish the proof.

�
We will see another proof of the Birkhoff–von Neumann Theorem 8.2.7

in Chapter 11 (Exercises 11.5.10 and 11.5.11), one that actually constructs
a solution.

134 Chapter 8. Geometry Revisited

8.3 Pratique de Novo

Workout 8.3.1 Let F be an (n+ 1)-intersecting family of convex regions
in R

n. In the proof of Helly’s Theorem 8.1.5,

a. how many points pI are constructed?

b. how many of those points pI are in each Pi?

Workout 8.3.2 Let X = {(1, 4,−2), (5, 2, 8), (−6, 0, 7), (9,−4, 1)} and let
P = vhull(X).

a. Find the equation for each of the four facets of P .

b. Write the system of inequalities that has P as its solution.

c. For each point x∗ ∈ X find an objective function that is
maximized (over P) at x∗, and that is different from the
one generated by the the appropriate sum (as in Workout
8.2.1).

Workout 8.3.3 Write the following matrix as a convex combination of
permutation matrices.

1
9

⎛

⎝
6 3 0
0 4 5
3 2 4

⎞

⎠

8.4 Cones

Recall from Exercise 3.5.13 that a cone (conic region) C is a region having(polyhe-
dral) cone
(polycone)

the property that ru + sv ∈ C for all u,v ∈ C and r, s ≥ 0. For example,
the positive quadrant of R

2 is a cone. For points u and v, define the ray

ray
−→uv = {u+ t(v−u) | t ≥ 0}. Of course, every cone C has the property that
−→
0v ∈ C for all v ∈ C. A polyhedral cone (polycone) is the intersection
of half-spaces, each of whose boundary contains the origin. Figures 8.3 and
8.4 show a generic cone and a polyhedral cone, respectively, in R

3.

Workout 8.4.1 Let S and T be two arbitrarily chosen cones.

a. Prove by example that S ∪ T is not always conic.

b. Prove that S ∩ T is always conic.

c. Use induction to prove that the intersection of an arbitrary
number (finite or infinite) of cones is conic.

d. Prove that all polycones are conic.

Note that a half-space whose boundary contains the origin is defined by
an inequality of the form

∑n
j=0 ajxj ≤ 0. Thus a polycone can be defined

as set of x satisfying some system Ax ≤ 0. In this formulation it is easy to
see that polycones are conic, since A(ru+sv) = rAu+sAv ≤ 0 whenever
Au ≤ 0, Av ≤ 0 and r, s ≥ 0.

8.4. Cones 135

Figure 8.3: A generic cone in R
3

Figure 8.4: A polyhedral cone in R
3

136 Chapter 8. Geometry Revisited

A ray R =
−→
0v is an extreme ray of the cone C if no line segment, withextreme

ray of cone both its endpoints in C−R, intersects R. Of course, for R to be an extreme
ray it is necessary that it lie on the boundary of C. In Figure 8.3 one can
see that every boundary ray of the generic cone is extreme, while in Figure
8.4 only the five rays (shown) through the extreme points of the pentagons
are extreme for the polycone. Naturally, these rays are on the intersections
of the bounding planes. It is interesting to note that some polycones have
no extreme rays; a cone defined by a single constraint is one such example.
We will assume here that our polycones are not so degenerate — such
cones contain a line, and hence have no extreme points (see Exercises 8.5.5,
8.5.11, and 8.5.30 — and leave the more general situation to the reader. In
particular, the point 0 is extreme.

Workout 8.4.2 Let C be the polycone defined by Ax ≤ 0, where

A =

⎛

⎝
3 −8
−7 4

2 −9

⎞

⎠ .

Find the extreme rays of C.

Lemma 8.4.3 Suppose that the LOP P

Max. z = cTx

s.t. Ax ≤ 0

is unbounded. Then the polycone C defined by Ax ≤ 0 has an extreme ray−→
0v such that cTv > 0.

Workout 8.4.4 Prove Lemma 8.4.3. [HINT: What does the basis look like

when Phase II halts?]

Notice that the polycone in Figure 8.4 can be described as the conic hull
of its extreme rays. The same is true in general; the following theorem for
cones is the analogue of Workout 3.5.19 and Exercise 3.5.33 for polytopes.

Theorem 8.4.5 Every polycone C containing no line is the conic hull ofMinkow-
ski–Weyl
Theorem

some finite set of rays
−→
0v.

Proof. We begin by rephrasing the statement as follows, using the result
of Exercise 3.5.13. For every system Ax ≤ 0 there exist points v1, . . . ,vm

such that Au ≤ 0 if and only if u =
∑m

i=1 tivi for some t1, . . . , tm ≥ 0. We
claim that the set of all extreme rays of C has this property.

Workout 8.4.6 Show that if each
−→
0vi is an extreme ray of C then any

conic combination of the vis is in C.

8.5. Exercises 137

Now suppose that u is any point satisfying Au ≤ 0, and suppose that
there is no solution to u =

∑m
i=1 tivi with each ti ≥ 0. By Farkas’s Theorem

7.4.5, there must be some c such that cTvi ≤ 0 for all 1 ≤ i ≤ m and
cTu > 0. Now consider the following LOP P .

Max. z = cTx

s.t. Ax ≤ 0

Workout 8.4.7 Use Lemma 8.4.3 and the General Fundamental Theorem
6.2.9 to prove that P is optimal at 0.

Now the fact that u is feasible and cTu > 0 implies that z∗ > 0,
contradicting the result of Workout 8.4.7. This contradiction proves that
u ∈ nspan({v1, . . . ,vm}) = nhull({v1, . . . ,vm}). �

The Minkowski–Weyl Theorem can be combined with Workout 3.5.19
and Exercise 3.5.33 to prove that every polyhedron is the Minkowski sum
of a polytope and a polycone — see Exercises 8.5.19, 8.5.20 and 8.5.36.

It is worthwhile to note that this result is an example of a theme common
to many areas of mathematics, that a structure (such as the set of solutions
to a linear differential equation or recurrence relation) can be decomposed
into its homogeneous (polycone) and particular (polytope) parts.

8.5 Exercises

Practice

8.5.1 Let x1 = (−20, 2, 15)T, x2 = (9,−6, 23)T, x3 = (−4, 9, 3)T, x4 =
(15, 11, 18)T, x5 = (−8, 16,−9)T, x6 = (1,−5, 8)T, x7 = (10, 3,−1)T,
x8 = (−6,−4,−3)T, x9 = (24,−4,−13)T, and x10 = (−7,−12,−17)T,
and define X = {x1, . . . ,x10}.

a. Prove that x3 is not an extreme point of vhull(X).

b. Prove that x4 is an extreme point of vhull(X).

c. Find all extreme points of vhull(X).

8.5.2 Let P be a polytope in R
3 with k extreme points (and that is fully

3-dimensional). At most how many facets does P have?

8.5.3 Let P be a polytope in R
4 with k extreme points (and that is full

dimensional). At most how many facets does P have?

138 Chapter 8. Geometry Revisited

8.5.4 Let P be the polyhedron defined as the region of solutions of the
following system.

−2x1 + 5x2 + 7x3 + ≤ 782
+ 8x2 − 4x3 + 9x4 ≤ 829

3x1 + + 6x3 − 1x4 ≤ 765
1x1 − 7x2 + − 8x4 ≤ −94

+ 4x2 − 3x3 − 5x4 ≤ −28
−6x1 − 9x2 + 2x3 + ≤ −87

x1 , x2 , x3 , x4 ≥ 0

a. Find all extreme points of P . [HINT: Only 12 of the 210

bases are feasible. Using one of your algorithms from Exercise

2.10.46 would help here.]

b. For each extreme point x of P write an objective function
that is maximized at x.

8.5.5 Let P ⊆ R
2 be a polyhedron. Prove that P has no extreme points if

and only if it contains a line. [HINT: Recall Workout 2.1.2.]

8.5.6 Let X = {x1, . . . ,xm} ⊂ R
2 be a set of points in convex position,

and let P = vhull(X). Let Π = {P1, . . . , Pk} be a partition of P into
X-triangles. Find k in terms of m.

8.5.7 Let X = {x1, . . . ,x5} ⊂ R
2 be a set of 5 points in convex position,

and let P = vhull(X). Compute the number of partitions of P into X-
triangles.

8.5.8 Let X = {x1, . . . ,x6} ⊂ R
2 be a set of 6 points in convex position,

and let P = vhull(X). Compute the number of partitions of P into X-
triangles.

8.5.9 Let X = {x1, . . . ,x7} ⊂ R
2 be a set of 7 points in convex position,

and let P = vhull(X). Compute the number of partitions of P into X-
triangles.

8.5.10 Let P be the polyhedron defined as the region of solutions of the
system S below.

−18x1 − 8x2 + 11x3 ≤ 9
4x1 − 20x2 + 3x3 ≤ 47

33x1 − 26x2 − 10x3 ≤ 214
−19x1 + 54x2 − 4x3 ≤ 150

Let u be a nonzero solution to the system T below.

−18x1 − 8x2 + 11x3 ≤ 0
4x1 − 20x2 + 3x3 ≤ 0

33x1 − 26x2 − 10x3 ≤ 0
−19x1 + 54x2 − 4x3 ≤ 0

Use u to find a ray in P .

8.5. Exercises 139

8.5.11 Let P ⊆ R
3 be a polyhedron. Prove that P has no extreme points

if and only if it contains a line. [HINT: See Exercises 8.5.5 and 8.5.10.]

8.5.12 Prove that the product of DS matrices is DS.

8.5.13 Write the following matrix as a convex combination of permutation
matrices.

1
12

⎛

⎝
5 3 4
4 1 7
3 8 1

⎞

⎠

8.5.14 Find all solutions to Exercise 8.5.13. [HINT: Use WebSim.]

8.5.15 Show that every cone is convex.

8.5.16 Let C be a nontrivial (contains a nonzero point) cone and define
C1 = {x ∈ C | |x| = 1}. Prove that C = ∪x∈C1

−→
0x.

8.5.17 Let C be the polycone defined by Ax ≤ 0, where

A =

⎛

⎜
⎜
⎝

−14 −11 18
−13 16 −19

15 −12 −17
5 4 −21

⎞

⎟
⎟
⎠ .

Find the extreme rays of C.

8.5.18 Find all the extreme rays in the polyhedra defined by the system of
constraints in

a. Exercise 1.5.1(c).
b. Problem 2.5.1.
c. Problem 2.7.1.
d. Problem 2.7.3.
e. Exercise 4.5.14(a).
f. Problem 6.4.8.

8.5.19 Define a ray R = −→uv to be an extreme ray of a polyhedron P if extreme
ray of
polyhedron

u is an extreme point of P and no line segment, with both its endpoints in
P −R, intersects R. The vector w = v−u is called an extreme direction

extreme
direction

of P . Find all extreme points and extreme directions (up to scalar multiples)
of the polyhedron defined by the following system.

−2x1 + x2 ≤ 11
x1 + 6x2 ≥ 60
x1 − 4x2 ≤ 30

−4x1 + 5x2 ≤ 105
3x1 + 2x2 ≥ 36

x1 , x2 ≥ 0

140 Chapter 8. Geometry Revisited

8.5.20 Find all extreme points and extreme directions (see Exercise 8.5.19)
of the polyhedron defined by the following system.

−14x1 − 11x2 + 18x3 ≤ 92
13x1 − 16x2 + 19x2 ≥ 127
15x1 − 12x2 − 17x3 ≤ 115
5x1 + 4x2 − 21x3 ≤ 108

x1 , x2 , x3 ≥ 0

8.5.21 Let Δn be the set of stochastic n-vectors, and denote by ∇ some
partition of it into simplices, such as in the diagram below for n = 3. The
vertices of Δn are denoted by X = {x1, . . . ,xn}, and the vertices of ∇,
which include the xis, are denoted by V .

A Sperner labeling of ∇ is a function ψ : V→{1, . . . , n} = N soSperner
labeling that, for every S ⊆ N , ψ(v) ∈ S whenever v ∈ vhull(XS), where XS =

{xi | i ∈ S}. In particular, ψ(xi) = i. The figure below shows an example
of a Sperner labeling on Δ3.

A simplex � ∈ ∇ is full if its vertices are labeled distinctly, using all
the numbers in N , such as the shaded triangle, above. Sperner’s LemmaSperner’s

Lemma states that every Sperner labeling of Δn contains a full simplex. Prove this
for n = 2.

8.5. Exercises 141

8.5.22 Prove Sperner’s Lemma for n = 3. [HINT: Use Exercise 8.5.21 and

meditate on the following picture.]

Challenges

8.5.23 Let P be a polytope in R
n with k extreme points (and that is full

dimensional). At most how many facets does P have? [HINT: See Exercises

8.5.2 and 8.5.3.]

8.5.24 Let F be an (n + 1)-intersecting family of convex regions in R
n.

In the proof of Helly’s Theorem 8.1.5, how many facets does each Pi have?
[HINT: See Workout 8.3.1 and Exercise 8.5.23.]

8.5.25 Consider the following LOP.

Max. z = 64x1 + 66x2 + 73x3

s.t. 35x1 + 38x2 + 11x3 ≤ 565
12x1 + 36x2 + 39x3 ≤ 520
37x1 + 13x2 + 34x3 ≤ 600

& x1 , x2 , x3 ≥ 0

a. Find a conic combination of the constraints (converted to
equalities) that is parallel to the objective function.

b. Find one that also contains x∗.

c. What does the set of all conic combinations of constraints
(converted to equalities) that pass through x∗ look like?

d. Notice that x∗ is not integral. For each value of b4 below,
add 64x1+66x2+73x3 ≤ b4 to the constraints and re-solve.

(i) b4 = 1271
(ii) b4 = 1275
(iii) b4 = 1280

e. What is the optimum if x must be integral?

142 Chapter 8. Geometry Revisited

8.5.26 Write the following matrix as a convex combination of permutation
matrices.

1
10

⎛

⎜
⎜
⎝

4 1 3 2
4 2 2 2
2 4 2 2
0 3 3 4

⎞

⎟
⎟
⎠

8.5.27 Consider the matrix A, below.
⎛

⎝
2 −3 0 1
−1 4 −1 −1

0 −2 2 −1

⎞

⎠

Let vi be the ith column of A. Find the maximum value x0 such that some
v ∈ vhull{v1, . . . ,v4} satisfies v ≥ x0J3.

8.5.28 Let X = {x1, . . . ,xm} ⊂ R
3 be a set of points in convex position,

and let P = vhull(X). Let Π = {P1, . . . , Pk} be a partition of P into X-
tetrahedron. Prove that k is not necessarily unique. [HINT: Consider the

3-dimensional cube.]

8.5.29 Let P be the polyhedron defined as the region of solutions to the
system

∑n
j=1 ai,jxj ≤ bi (1 ≤ i ≤ m). Suppose P contains a line. Show

that there is a nonzero solution to the system
∑n

j=1 ai,jxj = 0 (1 ≤ i ≤ m).
Prove the converse as well.

8.5.30 Let P be a polyhedron in R
n. Use Exercise 8.5.29 to prove that

P has no extreme point if and only if it contains a line. [HINT: See also

Exercise 1.5.16.]

8.5.31 Let S be the feasible region of a LOP and suppose that S has an
extreme point. Use Exercise 8.5.30 to prove that if the LOP is optimal then
one of the extreme points of S is optimal. [HINT: See Exercise 2.1.4.]

8.5.32 Let R be a ray of a polycone C. Prove that R is an extreme ray of
C if and only if the region C −R is convex.

8.5.33 State and prove a conic analog of Carathéodory’s Theorem 3.4.1.
(This is a repeat of Exercise 3.5.36.)

8.5.34 Consider the system of Exercise 8.5.19. Find m, k, and vectors
v1, . . . ,vm and w1, . . . ,wk so that Au ≤ b if and only if u =

∑m
i=1 rivi +

∑k
j=1 sjwj with every r1, . . . , rm, s1, . . . , sk ≥ 0 and

∑k
j=1 sj = 1.

8.5.35 Consider the system of Exercise 8.5.20. Find m, k, and vectors
v1, . . . ,vm and w1, . . . ,wk so that Au ≤ b if and only if u =

∑m
i=1 rivi +

∑k
j=1 sjwj with every r1, . . . , rm, s1, . . . , sk ≥ 0 and

∑k
j=1 sj = 1.

8.5. Exercises 143

8.5.36 Mimic the proof of the Minkowski–Weyl Theorem 8.4.5 to prove Finite
Basis
Theorem

that, for every system Ax ≤ b there exist vectors v1, . . . ,vm and w1, . . . ,wk

so that Au ≤ b if and only if u =
∑m

i=1 rivi +
∑k

j=1 sjwj with every

r1, . . . , rm, s1, . . . , sk ≥ 0 and
∑k

j=1 sj = 1. [HINT: See Exercises 8.5.34 and

8.5.35.]

8.5.37 Prove Sperner’s Lemma for all n.

Projects

8.5.38 Present the Erdős–Ko–Rado and Hilton–Milnor theorems. Erdős–Ko–
Rado
Theorem

Hilton–
Milnor
Theorem

8.5.39 Present the relationship between the Catalan numbers and the

Catalan
number

number of ways to partition vhull(X) into X-triangles.

8.5.40 Present the characterization of f-vector of convex polyhedra in

f -vector

R
n.

8.5.41 Present the Hirsch conjecture.

Hirsch
conjecture

8.5.42 Present the complexity of finding the partition of a convex polytope
in R

n into the minimum number of simplices.

8.5.43 Present the Hyperplane Separation Theorem.

Hyperplane
Separation
Theorem

Chapter 9

Game Theory

9.1 Matrix Games

Which (if any) of the players in the following game holds the advantage?

Game 9.1.1 Each of two players, Ken and Barbie, holds a large cache of ◦
dimes and quarters. At the same time, each shows the other one of their
coins. Ken wins both coins if they match; if they differ Barbie wins them.
This is repeated until one of them wins $100.

Two things are useful when analyzing Game 9.1.1. First, it is handy to
write a chart describing all possible plays and their outcomes. Consider a
matrix whose columns are indexed by Ken’s choices, whose rows are indexed
by Barbie’s choices, and whose entries are the payoffs from Barbie to Ken
or the given plays by each player. We call this the payoff matrix for the payoff

matrixgame (with respect to Ken).1 Note that if A is the payoff matrix with
respect to Ken, then −AT is the payoff matrix with respect to Barbie.

Workout 9.1.2 Write the payoff matrix A for Game 9.1.1, with respect
to Ken.

Second, it is important to ignore games of few rounds, where anything
might happen, and think instead about long games, where consistent strat-
egy yields long-term averages via Bernoulli’s Weak Law of Large Numbers, expecta-

tion/
expected
value

below. This average we call the expectation, or expected value of a
function f on a random variable X , defined by Ex[X] =

∑
X f(X)Pr[X],

where Pr[X] is the probability of the event X .

Theorem 9.1.3 Let X1, X2, . . . be independent, identically distributed Weak Law
of Large
Numbers

random variables with expectation Ex[Xi] = μ, and define Sn = 1
n

∑n
i=1Xi.

Then Ex[Sn] = μ and, for all ε > 0, Pr[|Sn − μ| < ε]→1 as n→∞. �
1Note that our presentation differs from most presentations that transpose (or, equiv-

alently, negate) the payoff matrix in order to state winnings with respect to the row
player. But we have made this choice in order to remain consistent with notations such
as yTAx.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 9, c© Springer Science+Business Media LLC 2010

146 Chapter 9. Game Theory

Workout 9.1.4 Suppose that they played 100 rounds and that, in those
rounds, Ken played 30 dimes and 70 quarters, while Barbie played 55 dimes
and 45 quarters.

a. What is the most that Ken could have won in those rounds?

b. What is the least that Ken could have won in those rounds?

c. What is the average, over all possible orders of play, that
Ken could have won in those rounds?

Workout 9.1.5

a. Suppose that Ken plays his coins randomly according to
certain percentages x = (x1, x2). Find the percentage of
dimes he must play in order to break even in the long run,
regardless of what Barbie plays.

b. Suppose that Barbie plays her coins randomly according
to certain percentages y = (y1, y2). Find the percentage of
dimes she must play in order to break even in the long run,
regardless of what Ken plays.

We’ve seen that Ken has a long-term strategy x∗ that guarantees (on
average) he won’t lose money; that is, yTAx∗ ≥ 0 for all stochastic y.
We’ve also seen that Barbie has a long-term strategy y∗ that guarantees
(on average) she won’t lose money; that is, y∗TAx ≤ 0 for all stochastic
x. Therefore if both players play their strategies then we should expect
no payoff in the long run; indeed y∗TAx∗ = 0. Of course, there may be
some payoff one way or the other in an actual playing of the game, but the
Weak Law of Large Numbers 9.1.3 says that the expected payoff per round
Ex[V (k)/k] will tend to an average of 0 when the number k of rounds tends
to infinity, supposing both players are playing optimally. This limiting value
V (A) = limk→∞ Ex[V (k)/k] is called the value of the game (having payoffgame value

matrix A). Of course, V (A) is not always zero for every A — consider a
game in which Barbie pays Ken in every possible situation — but games
with value zero are called fair. Some games are obviously fair because theyfair/

symmetric
game

are symmetric: the game doesn’t change if Ken and Barbie reverse roles.
In such a game the players have the same set of strategies and, whatever
the payoff for the play (K,B), the payoff for the play (B,K) is the opposite.
That is, the payoff matrix is anti-symmetric: AT = −A. For example,anti-

symmetric
matrix

Game 9.1.6, below, is symmetric and hence fair. (You’ll be asked to verify
this in Workout 9.3.1.)

Game 9.1.6 Let the following be the payoff matrix for a game.
⎛

⎜
⎜
⎝

0 3 −5 −2
−3 0 4 0

5 −4 0 6
2 0 −6 0

⎞

⎟
⎟
⎠

9.2. Minimax Theorem 147

It is interesting to ponder the practical considerations of playing a fair
game. For example, Game 9.1.1 is supposed to continue until someone wins
$100. Does that mean the game will never end? See Exercises 9.5.35, 9.5.36
and 9.5.37.

9.2 Minimax Theorem

Notice in Game 9.1.1 that Ax∗ = (0, 0)T, so that yTAx∗ = 0 for all stochas-
tic y. This means that Ken can reveal his randomized strategy to Barbie
and there is no way for her to use the knowledge to her advantage. Like-
wise, y∗TA = (0, 0), and so y∗TAx = 0 for all stochastic x, so she can
also safely reveal her strategy to him. Here is a game that is slightly more
general.

Game 9.2.1 Let the following be the payoff matrix, with respect to Ken,
for a game against Barbie.

⎛

⎜
⎜
⎝

−1 1 3 −1 0
−1 0 1 0 −1

0 −2 −1 −2 3
2 3 0 2 −5

⎞

⎟
⎟
⎠

In the case of Game 9.2.1, suppose that Barbie knows that Ken’s strat-
egy is to play his columns in the proportion x∗ = (12, 0, 16, 0, 5)T/33. Be-
cause Ax∗ = (36,−1,−1,−1)T/33, Barbie would be unwise to ever risk a
big pay-out by playing her first row. However, she could play her remain-
ing rows without caution since they share a common expected value. For
example she could play solely row 3. Because any stochastic combination
of these values is at least −1/33, Ken’s strategy guarantees himself at least
that much of a win per round, on average.

Similarly, if Ken knows that Barbie will play her rows in the proportion
y∗ = (0, 13, 14, 6)T/33, then since y∗TA = (−1,−10,−1,−16,−1)/33, Ken
would be wise to avoid his second and fourth columns, playing only his
columns 1, 3 and 5 in any stochastic manner. For example he could play
row 5 only. Barbie’s strategy guarantees her losses to be at most −1/33
per round, on average. Hence the value of Game 9.2.1 is exactly −1/33.

Let’s move on to discuss how one might find such strategies x∗ and y∗.
We say that a strategy x (or y) is pure if one of its entries is a 1 and pure/mixed

strategythe rest are 0; it is mixed otherwise. The key observation is the following
lemma.

Lemma 9.2.2 Given any strategy x there exists a pure strategy yx that
minimizes the value of yTAx over all stochastic y.

Proof. As we have seen above, the notion is to pick the smallest value out
of b = Ax. Formally, let the vector ui be the pure strategy with its 1 in
position i. Then uT

i Ax = bi. Now define bx = mini bi.

148 Chapter 9. Game Theory

Workout 9.2.3 Prove that every stochastic vector y satisfies yTAx ≥ bx.

Thus the pure response is given by yx = ui∗ , where i∗ = argmin{bi}mi=1.
�

The partner to Lemma 9.2.2 the following lemma, which we state with-
out proof.

Lemma 9.2.4 Given any strategy y there exists a pure strategy xy that
maximizes the value of yTAx over all stochastic x. �

In light of Lemma 9.2.4, Ken will consider all of his possible strategies
x and find each resulting bx. His best option, then, is to choose that x for
which bx is maximum. If we delve into the proof of Lemma 9.2.3 again,
we see that there is another way to define bx. For a finite set S recall that
its minimum min(S) equals its greatest lower bound glb(S). In the case of
S = {bi}mi=1 we have

bx = min(S) = glb(S) = max{x0 | x0 ≤ bi, i = 1, . . . ,m} . (9.1)

We can rephrase even this. Say that A is m × n. Then Equation (9.1)
becomes

bx = max{x0 | x0Jm ≤ Ax} . (9.2)

Now, since Ken seeks max bx over all stochastic x, we derive from Equation
(9.2) his GLOP (game LOP)GLOP

max{x0 | Jnx = 1, x0Jm −Ax ≤ 0, x ≥ 0} . (9.3)

For example, applying this approach to Game 9.1.1 yields the following
GLOP for Ken.

Problem 9.2.5

Max. z = x0

s.t. x1 + x2 = 1
x0 − 10x1 + 25x2 ≤ 0
x0 + 10x1 − 25x2 ≤ 0

& x1 , x2 ≥ 0

This approach is based on what is often called the Principle of Indif-
ference, meaning that, as noted in Workout 9.1.5, Ken has found a strategyPrinciple of

Indifference x and value x0 so that Barbie is indifferent regarding her response. That
is, it doesn’t matter how she plays, the result will be a payoff of x0 to Ken.
(Of course, she pulls of the same feat, making Ken indifferent as well.) The
one caveat, as described in the paragraph discussing Game 9.2.1, is that
coordinates of Ax with value higher than x0 are never played in Barbie’s
optimal strategy, so she is only indifferent among her remaining options.
In essence, this is really just a rephrasing of the Complementary Slackness
Theorem 4.2.6.

9.2. Minimax Theorem 149

Workout 9.2.6

a. Write Ken’s GLOP for Game 9.2.1.

b. Use part a to find the value of Game 9.2.1 and find Ken’s
optimal strategy.

Workout 9.2.7 Use Lemma 9.2.4 to show that Barbie’s GLOP is

min{y0 | Jmy = 1, y0Jn −ATy ≥ 0, y ≥ 0} . (9.4)

Workout 9.2.8

a. Write Barbie’s GLOP for Game 9.2.1.

b. Use part a to find the value of Game 9.2.1 and find Bar-
bie’s’s optimal strategy.

Workout 9.2.9 Let A = (ai,j) be an m× n payoff matrix, with respect to
Ken, for a game against Barbie.

a. Write Ken’s GLOP for this game using summation nota-
tion.

b. Write Barbie’s GLOP for this game using summation no-
tation.

c. Prove that these GLOPs are dual to each other.

d. Use the General Fundamental Theorem 6.2.9 to prove that
both GLOPs are optimal.

Now we can etch in stone the realization that each player can give away
their strategy without repurcussion.

Theorem 9.2.10 For every m × n matrix A there are stochastic x∗ and Minimax
Theoremy∗ such that miny yTAx∗ = maxx y∗TAx, where min and max are taken

over all stochastic m- and n-vectors, respectively.

Proof. We claim that x∗ and y∗ are the optimal strategies for Ken and
Barbie, respectively, in the game defined by payoff matrix A. By Equation
(9.3) we have Ax∗ ≥ z∗Jm (with equality in at least one coordinate by
the maximization of z∗), so that miny yTAx∗ = z∗, the optimal value of
Ken’s GLOP. Similarly, Equation (9.4) implies maxx y∗TAx = w∗, the op-
timal value of Barbie’s GLOP. By Workout 9.2.9c and the General Duality
Theorem 6.4.1, z∗ = w∗. �

Another formulation of this result is that maxx miny yTAx = miny

maxx yTAx, which can also be proven in similar fashion with the ideas
presented here; see Exercise 9.5.43.

Let’s reconsider Game 9.2.1 and it optimal strategies. In hindsight, it
makes perfect sense that x∗4 = 0. Compare column 4 to column 2 — every

150 Chapter 9. Game Theory

entry that differs is worse for Ken in column 4. Thus, if Ken plays an
optimal strategy that includes playing column 4, the strategy derived from
it by replacing every such play by column 2 can only improve his payoffs,
and thus is also optimal. We say that the jth column A·,j is dominateddominated

column by the kth column A·,k if ai,j ≤ ai,k for every 1 ≤ i ≤ m.

Workout 9.2.11 Let column k dominate column j in payoff matrix A,
and let A′ be the matrix A with its jth column removed. Compare the
duals of their respective GLOPs to conclude that the value of the game has
been preserved.

Likewise, we say that the ith row Ai,· is dominated by the kth row Ak,·dominated
row if ai,j ≥ ak,j for every 1 ≤ j ≤ n. Here the inequality is reversed because

it is Barbie who is trying to avoid paying Ken more than is necessary.

Workout 9.2.12 Let row k dominate row i in payoff matrix A, and let A′

be the matrix A with its ith row removed. Compare their respective GLOPs
to conclude that the value of the game has been preserved.

Thus the payoff matrix A for Game 9.2.1 can be reduced to the equiv-
alent payoff matrix A′, below, by removing the dominated column 4.

⎛

⎜
⎜
⎝

−1 1 3 0
−1 0 1 −1

0 −2 −1 3
2 3 0 −5

⎞

⎟
⎟
⎠

Moreover, A′ can further be reduced to A′′, below, by removing the domi-
nated row 1. ⎛

⎝
−1 0 1 −1

0 −2 −1 3
2 3 0 −5

⎞

⎠

Interestingly, row 2 did not dominate row 1 until column 4 was deleted.
While Workout 9.2.12 ensures that this operation preserves the value, it is
worth putting this near paradox in context informally. In this case, Barbie
realizes that an optimal Ken strategy will avoid column 4, and so the initial
nondomination of row 1 by row 2 is somewhat of a decoy or mirage. One can
imagine players alternating deleting dominated rows and columns several
more times, if necessary.

9.3 Bitte Praxis

Workout 9.3.1 Use LO to verify that Game 9.1.6 has value 0.

Game 9.3.2 Let the following payoff matrix define a game.
⎛

⎜
⎜
⎝

1 −1 4 0
4 −5 −3 2
−2 1 1 −2

6 −3 0 5

⎞

⎟
⎟
⎠

9.4. Saddles 151

Workout 9.3.3 Reduce Game 9.3.2 to an equivalent 2×2 game by deleting
dominated rows and columns. Then find the value of the game and both
optimal strategies. ⎛

⎜
⎜
⎝

1 −1 4 0
4 −5 −3 2
−2 1 1 −2

6 −3 0 5

⎞

⎟
⎟
⎠

Game 9.3.4 Define a game by the payoff matrix A below.
⎛

⎜
⎜
⎝

1 −1 0
2 0 −2
0 3 −1
−3 −2 4

⎞

⎟
⎟
⎠

Workout 9.3.5 Consider Game 9.3.4.

a. Find the value of the game and the optimal strategies.

b. Compute Row Barbie’s best response to Column Ken’s strat-
egy x = (15, 4, 7)T/26.

c. Compute Ken’s best response to Barbie’s strategy x = (5,
12, 19, 1)T/37.

d. Suppose that Ken and Barbie do not know how to com-
pute their optimal mixed strategies using LO, as in part a,
but that they do know how to compute their best responses
to the other’s given strategy, as in parts b and c. What
happens if they each adopt the following dynamic strategy
(called the Best Response Algorithm): play their best Best

Response
Algorithm

response to the strategy given by their opponents plays so
far? That is, if Ken has played 15 column 1s, 4 column
2s, and 7 column 3s (in any order) in his first 26 rounds,
then Barbie will play row 4 on her 27th round. [HINT:

Write MAPLE code to play a thousand or million rounds, with

an arbitrary first round.]

9.4 Saddles

Game 9.4.1 Define a game by the payoff matrix A below.
⎛

⎜
⎜
⎝

5 −4 0 −7 4
−6 −2 −2 −3 −1
−2 1 4 −7 3

3 6 −5 5 0

⎞

⎟
⎟
⎠

Workout 9.4.2 Find the value of Game 9.4.1, along with the optimal
strategies.

152 Chapter 9. Game Theory

Game 9.4.3 Panch and Jody play the following game on a matrix A.◦
Panch chooses a column and Jody chooses a row, simultaneously, deter-
mining a payoff entry in A. Then, with either player going first, players
take turns changing their decision in order to improve their payoff. They
play until one of them whacks the other.

Workout 9.4.4 Play Game 9.4.3 with the matrices from the games below,
and describe the behavior under the assumption that no one gets whacked
for a long time.

a. Game 9.3.4.

b. Game 9.4.1.

Game 9.4.5 Boris (column player) and Natasha (row player) play the fol-◦
lowing game on a matrix A. One player chooses a column (or row) and
then, after seeing the choice, the other player chooses a row (or column),
determining a payoff entry in A. They play just once.

Workout 9.4.6 Play Game 9.4.5 with the matrices from the games below,
and describe the results when Boris goes first versus when Natasha goes
first.

a. Game 9.3.4.

b. Game 9.4.1.

Given a matrix A, the entry ai,j is called a saddle point if ai,j ≥ ai,ksaddle
point for all k �= j and if ai,j ≤ ak,j for all k �= i.2 In other words, it is the

best choice in row i for the column player, and it is the best choice in
column j for the row player. Put still another way, it is the column player’s
best response to the row player’s pure strategy i, and the row player’s best
response to the column player’s pure strategy j. The difference in behavior
between the various Games played on the matrix of Game 9.3.4 and those
played on the matrix of Game 9.4.1, for example, is that the latter matrix
contains a saddle point, namely −1.

Workout 9.4.7 Write an algorithm for finding all saddle points of a ma-
trix A, or determining that none exist.

In some sense, Game 9.4.3 is the dynamic version of Game 9.4.5, in
which the players learn what their optimal strategy is by playing best re-
sponses. One can find the optimum for Game 9.4.5 on a matrix with a sad-
dle dynamically, by playing Game 9.4.3, or statically, using Workout 9.4.7
ahead of time. This is the same dynamic learning that Workout 9.3.5(d)

2It is instructive to view this definition in the context of the following MAPLE com-
mands.

with(plots): plot3d(cos(y)-cos(x),x=-Pi/2..Pi/2,y=-Pi/2..Pi/2);

9.4. Saddles 153

outlines in the context of mixed strategies. One can either play dynamically
to find (actually approximate — it is a theorem, whose proof is beyond the
scope of this book, that the best-response strategies of Workout 9.3.5(d)
converge to optimal strategies x∗ and y∗) the optimum mixed strategy, or
statically, using LO ahead of time.

We can generalize the notion of a saddle as follows. A saddle can be
thought of as a pair (i, j) of pure strategies which neither player has any
incentive to change; that is, i is a best response to j and j is a best response
to i. Similarly, a pair (x◦,y◦) of mixed strategies is called an equilibrium equilibrium

for the matrix A if y◦ is a best response to x◦ and x◦ is a best response to
y◦. Of course, this idea is not new to us: for the traditional matrix game we
have (x◦,y◦) = (x∗,y∗). As we have seen, one can reveal their equilibrium
strategy without compromising their results. Of course, not every matrix
has a saddle, although the Minimax Theorem 9.2.10 says that every matrix
has an equilibrium. The fact that equilibrium seems to mean optimal is
about to change.

In some games, what one player wins is not always equal to what the
other loses. One famous example is called the Prisoner’s Dilemma, Game Prisoner’s

Dilemma9.4.8, below. First, let’s describe the general format. Let A = (ai,j) be the
matrix of column player winnings, and B = (bi,j) be the (same size) matrix
of row player winnings. Denote by M = (A,B) the game played under
these conditions; that is, if Ken plays column c and Barbie plays row r,
then Ken wins ar,c (from some source, not necessarily Barbie) and Barbie
wins br,c (from some source, not necessarily Ken). Up to this point, we have
only played games for which B = −A. Such games are called zero-sum zero/

general-
sum
game

because A + B = 0. From now on we will study general-sum games, for
which A + B could be anything. The object M is called a bimatrix, and

bimatrix

can be written either as an ordered pair M = (A,B) of matrices or as a
matrix M = ((ai,j , bi,j)) of ordered pairs. You say potāto, I say potäto,

Game 9.4.8 Bunny and Clive are arrested on suspicion of cheating on ◦
their LO final exam. The dean presents them with the bimatrix M, below,

F U
F (70, 70) (90, 0)
U (0, 90) (20, 20)

and lays out the rules of the game. The dean will interrogate each of them
individually (and secretly) and each has the choice of being faithful (F) or
unfaithful (U) to the other, by saying nothing or turning the other in. Their
choices determine the score each will receive on their final exam.

For example, if (Clive,Bunny) choose (column,row)=(F,U), then they
score (0, 90), which would suit Bunny well but cause Clive to get expelled
(and break up with her).

Game 9.4.8 brings up two issues that were not present in zero-sum
games. First, we find an equilibrium that is not optimal — in fact the
notion of optimality no longer makes sense in this context because the

154 Chapter 9. Game Theory

players are playing on separate payoff matrices. Both players find that
being unfaithful dominates being faithful (90 and 20 are better than 70
and 0, respectively), but by both being unfaithful they each flunk their final
and lose their scholarships, a much worse outcome for each than passing the
course with a C by being faithful to each other. Second, a cooperative
game is one that allows the players to try to improve their individual(non)

cooperative
game

payoffs by forming coalitions. That can get exciting and complicated when
there are many people trying to survive on an island, for example. With
just two prisoners they could decide to cooperate in order to claim passing
scores of 70 each. But we do not allow it: our games are noncooperative.
Zero-sum games are by nature noncooperative — what’s good for one is
bad for the other in equal measure — general-sum games introduce this new
possibility. But by declaring noncooperativeness we ensure the selfishness of
the players, which results in the outcome of (20, 20) at the saddle (x◦,y◦) =
(U,U).

Two important questions remain: does every bimatrix have an equilib-
rium and, if so, how can we find it? The first can be answered by generaliz-
ing the Best Response Algorithm of Workout 9.3.5(d), which we illustrate
on the bimatrix of Game 9.4.9, with the current strategies x = (2, 5, 3)T/10
and y = (2, 1, 3, 4)T/10 for Ken and Barbie. (We shall see in Workout
9.4.10 that this example raises a third issue not present in zero-sum games,
namely, that different equilibria can yield different payoffs.)

Game 9.4.9 Let the following be a payoff bimatrix for a general-sum game.

M =

⎛

⎜
⎜
⎝

(1, 2) (−1, 3) (0,−1)
(2,−3) (0, 1) (−2,−2)
(0,−1) (3,−2) (−1, 0)
(−3, 1) (−2, 0) (4, 1)

⎞

⎟
⎟
⎠

Since Ken’s current payoff is yTAx = 12/100, he could improve upon
it by playing more often the columns corresponding to entries of yTA that
beat 12/100. He notices that the third entry of yTA = (−8,−1, 11)/10 is
98/100 larger than his current payoff, so he defines xΔ = (0, 0, 98)T/100.
Then he creates his new strategy x̂ from the weighted average

x̂ =
x + xΔ

1 + JT
3xΔ

=
(20, 50, 30)T + (0, 0, 98)T

100 + 98

= (20, 50, 128)T/198 .

In the same manner, Barbie wants to beat her current payoff of yTBx =
9/100, so she calculates Bx = (16,−7,−12, 5)T/10, yΔ = (151, 0, 0, 41)/100,
and

ŷ =
y + yΔ

1 + JT
4 yΔ

=
(20, 10, 30, 40)T + (151, 0, 0, 41)T

100 + 192

= (171, 10, 30, 81)T/292 .

9.5. Exercises 155

Note that the new payoffs ẑ = (ŷTAx̂, ŷTBx̂) are significant improvements
for each player over the old payoffs.

Denote by Δn the set of all stochastic n-vectors. Then define the im-
provement function f : Δn×Δm→Δn×Δm by f(x,y) = (x̂, ŷ). While improve-

ment
function

the sequence (x,y), f(x,y), f2(x,y), . . . may not converge to an equilib-
rium (x◦,y◦) of M, we can still use f to characterize equilibria as fixed
points of f (see Exercise 9.5.27).

Workout 9.4.10 Let x = (2, 0, 1)T/3 and y = (7, 0, 0, 1)T/8.

a. Verify that (x,y) is an equilibrium of the bimatrix M,
above.

b. Verify that f(x,y) = (x,y).

c. Repeat parts a and b for the two saddles of M.

d. Evaluate the payoffs of the three equilibria above.

This characterization is used to show that every bimatrix has at least
one equilibrium — see Exercise 9.5.27. The key ingredient is the Brouwer
Fixed Point Theorem (found in Exercise 9.5.26). It is interesting to note
that the 1994 Nobel Prize in Economics was awarded to John Nash for his
development of equilibrium theory in n-person games and for proving that
equilibria exist.

The second question is a little harder in that no efficient algorithms
are known for finding equilibria. Exercise 9.5.21 outlines one approach, a
generalization of the method of Exercise 4.5.12, based on the Principle of
Indifference, the bimatrix version of Complementary Slackness.

9.5 Exercises

Practice

9.5.1 Here we modify Game 9.1.1 somewhat. Suppose that Ken carries
pennies and quarters, while Barbie carries nickels and dimes. Let’s say that
Ken wins them if they are both persons’ most valuable or both persons’ least
valuable coins, and Barbie wins them otherwise.

a. Write the payoff matrix with respect to Ken.

b. Write Ken’s GLOP.

c. Use the Simplex Algorithm to find his optimal strategy, as
well as the value of the game.

d. Use LO to find Barbie’s optimal strategy.

9.5.2 Compare the values and optimal strategies of the following three
matrix games.

156 Chapter 9. Game Theory

a.

⎛

⎝
2 0 −1
−1 3 1
−2 −4 5

⎞

⎠

b.

⎛

⎝
1 −1 −2
−2 2 0
−3 −5 4

⎞

⎠

c.

⎛

⎝
6 0 −3
−3 9 3
−6 −12 15

⎞

⎠

9.5.3 Solve the problems below in the context of matrix games.

a. Exercise 3.5.28.

b. Exercise 3.5.29.

c. Exercise 6.5.7.

d. Exercise 8.5.27.

9.5.4 Repeat the following exercise N times.

a. For some 2 ≤ m ≤ n ≤ 5, generate an arbitrary m × n
payoff matrix A, with respect to Ken, for a game against
Barbie.

b. Write Ken’s GLOP and find the game’s value and Ken’s
optimal strategy.

c. Write Barbie’s GLOP and find the game’s value and Bar-
bie’s optimal strategy.

9.5.5 Consider Game 9.1.6.

a. Compute Ken’s optimal response to Barbie’s strategies:

(i) y′ = (1, 1, 1, 1)T/4.
(ii) y′ = (1, 0, 3, 2)T/6.

b. Compute Barbie’s optimal response to Ken’s strategies:

(i) x′ = (1, 1, 0, 1)T/3.
(ii) x′ = (4, 2, 1, 3)T/10.

9.5.6 Consider Game 9.2.1.

a. Compute Ken’s optimal response to Barbie’s strategies:

(i) y′ = (2, 1, 0, 4)T/7.
(ii) y′ = (3, 7, 5, 1)T/16.

b. Compute Barbie’s optimal response to Ken’s strategies:

(i) x′ = (1, 1, 1, 1, 1)T/5.
(ii) x′ = (1, 0, 1, 0, 1)T/3.

9.5. Exercises 157

9.5.7 Use row and column dominations to reduce the following matrix as
much as possible.

⎛

⎜
⎜
⎝

41 −88 −13 −17 0
24 −65 −51 −44 −56
−32 0 27 59 21

30 −79 −24 −32 −73

⎞

⎟
⎟
⎠

9.5.8 The childhood game of Rock-Paper-Scissors is a symmetric game,
and hence fair. (The game has two players showing each other their hand
simultaneously. A fist represents rock, a flat hand palm downward repre-
sents paper, and two fingers extended represents scissors. Rock is covered
by paper, paper is cut by scissors, and scissors is crushed by rock. For our
purposes, replace “is verbed by” with “pays $1 to”.) Use LO to deduce the
same result.

9.5.9 John and Björn are avid fantasy tennis players. They compiled the ◦
following chart of head-to-head results that Roger Federer, Rafael Nadal,
Novak Djokovic, Andy Roddick, Andy Murray, Nikolay Davydenko, James
Blake, and David Nalbandian have played against each other in their ca-
reers,3 with entries signifying the number of matches that the column player
has beaten the row player. For example, Blake has beaten Nadal 3 times,
and Nadal has beaten Blake twice.

Fed Nad Djo Rod Mur Dav Bla Nal
Fed 0 12 2 1 2 0 1 3
Nad 6 0 4 2 0 1 3 2
Djo 5 10 0 1 2 1 0 1
Rod 10 3 1 0 4 1 2 1
Mur 1 5 4 2 0 3 1 0
Dav 11 3 0 2 3 0 4 5
Bla 7 2 1 1 0 0 0 0
Nal 8 0 2 0 0 1 1 0

John and Björn each choose a player and do nothing if they have chosen the
same player. Otherwise, the winner is the one who has chosen the player
that has beaten the other person’s (the loser’s) player more often. In the
case that they tie (the players have beaten each other equally often), nothing
happens; otherwise the loser pays the winner according to one of the rules
below. They repeat these fantasy games indefinitely. For each rule, find the
value of the game to Björn, as well as his optimal strategy for achieving
that value.

a. The loser pays the winner $1.
b. The loser pays the winner the difference between the num-

ber of matches each has won against each other. For ex-
ample, whoever chooses Murray would pay whoever chooses
Djokovic $2 = 4− 2.

3Before the 2008 U.S. Open.

158 Chapter 9. Game Theory

c. The loser pays the winner the difference between the per-
centage of matches each has won against each other. For
example, whoever chooses Nalbandian would pay whoever
chooses Federer $5/11 = (8− 3)/(8 + 3).

9.5.10 Repeat Exercise 9.5.9(a) with the modified rule that, in the case
that John and Björn each chose the same player, then John pays Björn $1.

9.5.11 Repeat Exercise 9.5.9 with other sports, e.g., top ten women’s ten-
nis players, Major League Baseball teams with last year’s results, etc.

9.5.12 Consider the following version of Battleship. Lieutenant McHale◦
hides a mine under one of the points of 2× 3 grid (shown below). Captain
Binghamton, not able to see the mine, places a ship along one of the 7
horizontal or vertical lines joining two adjacent points. McHale wins $1
from Binghamton if the ship lands on the mine (in which case McHale
has the right to make appropriate sound effects), and pays Binghamton $1
otherwise. Find the game value and optimal strategies for both players.

9.5.13 Consider playing Battleship (see Exercise 9.5.12) on a 4× 5 grid.
Find the game value and optimal strategies for both players.

9.5.14 Consider playing Battleship (see Exercise 9.5.12) on a 3× 3 grid.
Find the game value and optimal strategies for both players.

9.5.15 Consider playing Battleship (see Exercise 9.5.12) on a 5× 5 grid.
Find the game value and optimal strategies for both players.

9.5.16 Use Workout 9.4.7 to find all saddle points of the following matrix.
⎛

⎜
⎜
⎜
⎜
⎝

4 2 −3 −1
−1 2 0 1

1 3 −2 0
−3 2 1 2

0 3 4 2

⎞

⎟
⎟
⎟
⎟
⎠

9.5.17 Suppose that ai,j and ar,c are both saddles in the matrix A.

a. Prove that ai,j = ar,j = ar,c = ai,c.

b. Prove that ar,j and ai,c are also saddles.

9.5.18 Construct a 5× 6 matrix with exactly three saddles.

9.5. Exercises 159

9.5.19 Let M = (A,B) be the game bimatrix below.
(

(2, 2) (1, 3)
(3, 4) (5, 1)

)

Use the Principle of Indifference to find the unique equilibrium (x◦,y◦) for
M. [HINT: Since M has no saddle, what must the entries of Bx (and of yTA)

satisfy?]

9.5.20 Prove that every 2× 2 payoff bimatrix M = (A,B) has an equilib-
rium.

9.5.21 Generalize the method of Exercise 4.5.12 to verify that Game 9.4.9
has exactly the three equilibria mentioned in Workout 9.4.10.

9.5.22 Use the method of Exercise 9.5.21 to find all equilibria of the fol-
lowing bimatrix M = (A,B).

⎛

⎝
(4, 1) (0, 2) (3, 3)
(2, 2) (3, 0) (1, 4)
(0, 5) (1, 3) (2, 1)

⎞

⎠

9.5.23 Consider the general-sum version of Exercise 9.5.9, in which each
person who chooses player X while his opponent chooses player Y wins
(from Frank) the number of dollars equal to the number of times that X beats ◦
Y . For example, if John chooses Roddick and Björn chooses Davydenko
then Frank pays John $2 and Björn $1. Find all equilibria strategy and
their corresponding game values.

9.5.24 Repeat Exercise 9.5.23 with your scenarios from Exercise 9.5.11.

9.5.25 Consider the general-sum game of Exercise 9.5.9. Find John’s and
Björn’s strategies that maximize the total amount that Frank pays them.

9.5.26 The Brouwer Fixed Point Theorem states that every continu- Brouwer
Fixed Point
Theorem

ous function on Δn has a fixed point. Prove the theorem for n = 2. [HINT:

Use the Intermediate Value Theorem on a related function.]

9.5.27 Let M = (A,B) be a payoff bimatrix for a game.

a. Prove that if (x◦,y◦) is an equilibrium for M then it is a
fixed point of the improvement function f .

b. Prove that if (x′,y′) is a fixed point of the improvement
function f then it is an equilibrium for M.

c. Prove that the improvement function f is continuous on
Δn ×Δm.

d. Use the Brouwer Fixed Point Theorem (see Exercise 9.5.26)
to prove that M has an equilibrium.

160 Chapter 9. Game Theory

Challenges

9.5.28 Let A be an m × n payoff matrix. Prove that, for any r ∈ R, the
game on A + rJ has the same optimal strategies as the game on A, with
value z∗ + r, where z∗ is the value on A.

9.5.29 Let A be an m×n payoff matrix and r ∈ R
+. Prove that the game

on rA has the same optimal strategies as the game on A, with value rz∗,
where z∗ is the value on A.

9.5.30 Analyze Game 9.1.1 with arbitrary values a and b instead of 10
and 25 cents. What is the value of the game, and what are the optimal
strategies?

9.5.31 Let x = (2, 3)T/5 and y = (1, 2, 4)T/7. Find a nonconstant 3 × 2
matrix A, having no all-zero row or column, so that x and y are Ken’s and
Barbie’s optimal strategies for the game played on A, and so that

a. A ≥ 0 and A is integral.

b. A is integral and the resulting game is fair.

9.5.32 Prove that Game 9.4.3 terminates on an entry ai,j of A if and
only if ai,j is a saddle of A.

9.5.33 Monty presents you with three doors, saying that behind one of◦
them is hidden $1, 000, and behind the other two are his brother Darryl and
his other brother Darryl, each of whom is of no value to either of you. You
choose one of the doors, let’s call it A, in hopes of winning the money. Then
Monty either opens door A and you win what is behind it, or offers you the
chance to switch to one of the other two doors, B or C. In the latter case,
he also opens one of those two, say B, to reveal one of the Darryls. Then
you make your final choice between door A and door C, winning whatever
is behind it. (Note that this differs slightly from a popularized version in
which Monty always shows a Darryl door.)

a. Model this game by a single payoff matrix. [HINT: The pure

strategies of each player must take into account the actions of

the other.]

b. Find each player’s optimal strategies and the value of the
game to you.

9.5.34 Use Sperner’s Lemma (see Exercise 8.5.21) to prove Brouwer’s
Fixed Point Theorem (see Exercise 9.5.26).

9.5.35 Let Xn ∈ {−1,+1} be chosen uniformly at random for each n ≥ 1
and denote Sn =

∑n
i=1Xi.

a. Show that Ex[|S2k+1|] = Ex[|S2k+2|] = (2k + 1)
(
2k
k

)
/4k.

9.5. Exercises 161

b. Use part a to prove that Ex[|Sn|] ∼
√

2n/π. [HINT: Use

Stirling’s formula.]

9.5.36 Given Barbie’s optimal strategy in Game 9.1.1, suppose that Ken’s
response is to always play his dime.

a. Use Exercise 9.5.35 to find the expected absolute value of
the payoff after 1, 000 plays.

b. Find the same computation for his quarter instead of his
dime.

9.5.37 Consider Ken’s and Barbie’s optimal strategies in Game 9.1.1.

a. Use Exercise 9.5.36 to find the expected absolute value of
the payoff after 1, 000 plays.

b. When does the expected absolute value of the payoff reach
$100?

9.5.38 Consider playing Battleship (see Exercises 9.5.12–9.5.15) on a s×t
grid. Find the game value and optimal strategies for both players. [HINT:

Pay attention to whether st is even or odd.]

9.5.39 Suppose Ken and Barbie simultaneously choose integers k and b
from 1 to 100. If k = b then there is no payoff. If k < b− 1 or k = b + 1
then Barbie pays Ken $1. Otherwise Ken pays Barbie $1. What is the value
of this game and what are their optimal strategies?

9.5.40 Suppose Ken and Barbie simultaneously choose integers k and b
from 1 to 100. If k = b then there is no payoff. If k < b− 1 or k = b + 1
then Barbie pays Ken $|b− k|. Otherwise Ken pays Barbie $|k − b|. What
is the value of this game and what are their optimal strategies?

9.5.41 Suppose Ken and Barbie simultaneously choose positive integers k
and b, with a payoff of k − b from Barbie to Ken.

a. Prove that this is a fair game.

b. Prove that Ken’s strategy x, with xk = 1/2k for k = 2t and
xk = 0 otherwise, provides him infinite expected payoff.

c. How do you resolve this paradox?

9.5.42 A tournament T is a set of points V , called vertices, along with tournament

a set of arrows A, called arcs, between each pair of vertices (only one arc
per pair, either pointing one way or the other, but not both) — an example
with 5 vertices is below, shown with a set of stochastic weights given to its
vertices.

162 Chapter 9. Game Theory

Given weight function W : V→R, define the function DW : V→R by
DW (v) = W (v) +

∑
u→v W (u). For example, DW (C) = .7, above. Prove

that, for every tournament T , there exists a stochastic weight function W
such that every v ∈ V has DW (v) ≥ 1/2. [HINT: See Exercise 9.5.10.]

9.5.43 Prove the following alternative version of the Minimax Theorem
9.2.10: maxx miny yTAx = miny maxx yTAx, where min and max are
taken over all stochastic vectors of the appropriate length.

Projects

9.5.44 Present the reduction of LO to matrix games.

9.5.45 Present Nash’s Theorem on the existence of equilibria for n-Nash’s
Theorem person games.

9.5.46 Present the Shapley value.Shapley
value

Chapter 10

Network Environment

10.1 Shipping

Consider the following Transshipment Problem.

Problem 10.1.1 Eumerica makes bottled air at three plants in Vienna,
Athens, and Moscow, and ships crates of their products to distributors in
Venice, Frankfurt, and Paris. Each day the Athens plant produces 23 thou-
sand crates, while Vienna can produce up to 15 thousand, and Moscow can
produce up to 20 thousand. In addition, Venice must receive 17 thousand
and Paris must receive 25 thousand crates, while Frankfurt can receive up to
27 thousand. The company pays Arope Trucking to transport their products
at the following per-crate Eurodollar costs.

100 Vienna to Frankfurt 200 Venice to Paris
120 Frankfurt to Athens 210 Paris to Venice
130 Athens to Frankfurt 260 Frankfurt to Venice
140 Frankfurt to Paris 280 Venice to Moscow
150 Paris to Athens 290 Moscow to Frankfurt
170 Athens to Vienna

Eumerica would like to tell Arope which shipments to make between
cities so as to minimize cost.

It is helpful in this case to interpret the given information visually. In
Figure 10.1, we’ve drawn the cities about where they are in the United
States — each city in the diagram is called a node . Every direct trucking node

arc
demand/
supply
cost
network
directed
graph
digraph

route from one city to another is drawn as an arc in the diagram. Each
node is labeled by its demand in the problem (we will think of a supply
as a negative demand), and each arc is labeled by the per item cost of
shipping along its route. The entire structure of nodes, arcs, demands and
costs is what we call a network. (Without the demand and cost labels, it
is just a directed graph (or digraph), and further, without direction on

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 10, c© Springer Science+Business Media LLC 2010

164 Chapter 10. Network Environment

Figure 10.1: Network for Problem 10.1.1

the arcs, the structure is called a graph; its undirected arcs are called edges
and its nodes are typically called vertices.)

Our immediate aim here is to visualize the networks that correspond
to the tableaux during each step of the Simplex Algorithm. Then we will
attempt to interpret the tableau pivot decision-making process in the net-
work environment in the hopes of being able to ignore tableaux entirely.
As in Chapter 5, where we implemented the Simplex Algorithm in the Ma-
trix Environment, the result here will not be a new algorithm, but instead
merely the same Simplex Algorithm in the Network Environment. Note
that each node A corresponds to a constraint, while each arc AB (from the
tail A to the head B) corresponds to the variable yAB whose value equalstail/head

the number of (thousands of) items shipped on the arc. We arrive at the
following general LOP.

Problem 10.1.2

Min. w = 130yAF + 170yAV i + 120yF A + 140yF P + 260yF V e + 290yMF

+150yPA + 210yPV e + 280yV eM + 200yV eP + 100yV iF

s.t. −yAF − yAV i + yF A + yPA = −23
yAF − yF A − yF P − yF V e + yMF + yV iF ≤ 27
−yMF + yV eM ≥ −20
yF P − yPA − yPV e + yV eP = 25
yF V e + yPV e − yV eM − yV eP = 17
yAV i − yV iF ≥ −15

& yall ≥ 0

We purposely ordered the constraints (rows) and variables (columns) al-
phabetically so as to make least subscript decisions easily identifiable. We
also avoid standard form here by adding or subtracting appropriate slack

10.1. Shipping 165

variables. The resulting initial tableau is as follows. (Note that the infinity
(slack) arcs are also listed alphabetically, ignoring the infinity symbol, and
that these are listed after all original (problem) arcs — keep this in mind
for later.)

Tableau 10.1.3
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 1 0 0 0 1 0 0 0 0 0 0 0 0 −23
1 0 −1 −1 −1 1 0 0 0 0 1 1 0 0 0 27
0 0 0 0 0 −1 0 0 1 0 0 0 −1 0 0 −20
0 0 0 1 0 0 −1 −1 0 1 0 0 0 0 0 25
0 0 0 0 1 0 0 1 −1 −1 0 0 0 0 0 17
0 1 0 0 0 0 0 0 0 0 −1 0 0 −1 0 −15

130 170 120 140 260 290 150 210 280 200 100 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

There are several things worth noting about Tableau 10.1.3. First, every
nonslack column has exactly one −1 and 1. Of course, this makes sense
because every column represents an arc from one node to another. Second,
this is the kind of sparse example alluded to in Section 5.2 — the density of
nonzero entries is only 2/n, where n is the number of nodes. Third, we can
think of the slack columns as arcs as well by imagining an invisible infinity
node, whose corresponding tableau row equals the negative of the sum of infinity

nodeall other node rows. The resulting tableau is below.

Tableau 10.1.4
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 1 0 0 0 1 0 0 0 0 0 0 0 0 −23
1 0 −1 −1 −1 1 0 0 0 0 1 1 0 0 0 27
0 0 0 0 0 −1 0 0 1 0 0 0 −1 0 0 −20
0 0 0 1 0 0 −1 −1 0 1 0 0 0 0 0 25
0 0 0 0 1 0 0 1 −1 −1 0 0 0 0 0 17
0 1 0 0 0 0 0 0 0 0 −1 0 0 −1 0 −15
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 0 −11

130 170 120 140 260 290 150 210 280 200 100 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The corresponding minimization problem, having only equalities, nonneg-
ative variables, and demand sum 0, is in standard network form. standard

network
formProblem 10.1.5

Min. w = 130yAF + 170yAV i + 120yF A + 140yF P + 260yF V e + 290yMF

+150yPA + 210yPV e + 280yV eM + 200yV eP + 100yV iF

s.t. −yAF − yAV i + yF A + yPA = −23
yAF − yF A − yF P − yF V e + yMF + yV iF + y∞F = 27
−yMF + yV eM − yM∞ = −20
yF P − yPA − yPV e + yV eP = 25
yF V e + yPV e − yV eM − yV eP = 17
yAV i − yV iF − yV i∞ = −15
−y∞F + yM∞ + yV i∞ = −11

& yall ≥ 0

We say that Tableau 10.1.3 is the initial reduced tableau for Problem reduced/
augmented
tableau/
network

10.1.5, while Tableau 10.1.4 is its initial augmented tableau. There may
be several reduced tableaux for a given network problem — the point is

166 Chapter 10. Network Environment

Figure 10.2: Augmented network for Problem 10.1.1

that we must remove a (any) redundant row from a tableau since it needs
to have full row rank (see Chapter 5). The initial augmented network
is Figure 10.2. Here, our concern is to include the redundancy, as we shall
soon see.

Starting from the reduced Tableau 10.1.3, we need to fill the basis using
Phase 0 (see Chapter 6). However, for networks, we will modify the Phase
0 rules by ignoring any current partial basis (some of whose coefficients
are negative, by the way) and instead pivoting in least subscript variables
greedily from scratch, without any other regard.

Workout 10.1.6 Starting with Tableau 10.1.3, use modified Phase 0 to
find the first basis.

a. At each stage, starting with no arcs, draw each basic arc
pivoted in.

b. In the third step, arc FA cannot be chosen for the basis.
Explain why not.
(i) algebraically.
(ii) visually.

c. In the sixth step, arc PA cannot be chosen for the basis.
Explain why not
(i) algebraically.
(ii) visually.

One thing we will learn that the Network Environment has in common
with the Matrix Environment is that they share their dependence on initial
information rather than current information. In both cases one can specify
any basis possible and work from there.

10.2. Trees 167

Workout 10.1.7 Let β = {AV i, FP,MF, PA, V eM,M∞} in Problem
10.1.2.

a. Draw the network corresponding to β.

b. Use Figure 10.1 to label the arcs of your result in part a by
the shipments needed to satisfy all demands. [HINT: Start

with finding the shipment across AV i, V eM or M∞ (why?).]

c. Verify your results from part b by finding the tableau asso-
ciated with basis β.

Workout 10.1.8 Let β = {AV i, FP, FV e,M∞, V i∞,∞F} in Problem
10.1.2.

a. Draw the network corresponding to β.

b. Use Figure 10.1 to label the nodes of your result in part
a so that the node labels differ by the costs of the basic
arcs. [HINT: Start anywhere with any value you like, and work

outwards.]

c. Find the tableau associated with basis β and compare it to
your results from part b as follows. For each arc not in the
basis, subtract your tail label from your head label. Then
subtract the result from the arc cost. What do you notice?

10.2 Trees

One may have noticed by now that each network basis has a very recogniz-
able structure. In this section we will describe this structure in detail.

A path (resp. chain) in a graph (resp. network) is a sequence of path

distinct vertices A0, A1, . . . , Ak for which each pair {Ai−1, Ai} (1 ≤ i ≤ k)
is an edge (resp. arc). We say that the path (resp. chain) is from A0 to
Ak, and that it has length k. Furthermore, the chain is oriented if each length

(oriented)
chain/
circuit

Ai−1Ai (as opposed to AiAi−1) is an arc. In Figure 10.2, for example,
MV eP is a chain of length 2 from M to P , and AV i∞F is an oriented
chain of length 3 from A to F . If Ak = A0 then we say instead that the
sequence is a cycle (resp. circuit) in the graph (resp. network). The

cyclecircuit is oriented when the sequence is oriented.
We say that a graph is connected if, for every pair of vertices A and

(strongly)
connected
graph/
network

B there is a path of edges that joins them. We call a network connected
when its underlying graph is connected, and strongly connected when
every ordered pair of vertices is joined by an oriented path. A (strongly)
connected component of a graph or network is a maximal set of (strongly)

(strong)
component

connected vertices. Different components necessarily share no vertices, and
there is no edge or arc that joins vertices of different components. The
following Workouts 10.2.1–10.2.6 are stated for graphs for simplicity, but
have obvious counterparts for networks.

168 Chapter 10. Network Environment

Workout 10.2.1 Prove that if a graph has exactly k components then the
removal of one of its edges results in at most k + 1 components.

An edge or arc in a graph or network whose removal increases the num-
ber of components by one is called a bridge. A graph H is a subgraph ofbridge

(spanning)
subgraph/

subnetwork

the graph G if every edge (resp. vertex) of H is an edge (resp. vertex) of G.
A subnetwork is defined analogously. We say that such a subgraph (resp.
subnetwork) spans G if every vertex of G is a vertex of H. A subgraph
or subnetwork is acyclic if it contains no cycles, and is called a tree if it

acyclic
graph/

network

(spanning)
tree

is acyclic and connected. You may have observed in Workout 10.1.6 that
each step produced a collection of trees, and that the final step resulted in
a spanning tree. Indeed, we soon will prove that every basis corresponds to
a spanning tree and vice versa (the Network Basis Theorem 10.2.7). First,
we note an immediate consequence of the definition of a tree.

Workout 10.2.2 Prove that every pair of vertices of a tree is joined by a
unique path.

The following two workouts are fundamental to the workings of the
network Simplex Algorithm.

Workout 10.2.3 Prove that every edge of a tree is a bridge.

Workout 10.2.4 Let T be a spanning tree of a connected graph G. Prove
that the addition of any edge of G not in T creates a cycle.

Next we discover the size of a tree, which will be useful in making the
connection between trees and bases. A leaf is a vertex (resp. node) incidentleaf

with exactly one edge (resp. arc), which is called pendant.
pendant
edge/arc Workout 10.2.5 Prove that every tree with at least two vertices has at

least two leaves.

Workout 10.2.6 Let T be a spanning tree of a connected graph G. Use
induction and Workout 10.2.5 to prove that the number of edges of T is
one less than the number of vertices of G.

We are now ready to prove the Network Basis Theorem.

Theorem 10.2.7 Let T be a subnetwork of a connected network N inNetwork
Basis

Theorem
standard form. Then T is a basis for N if and only if it is a spanning tree
of N .

If the network N is not connected, then we can run Simplex on each
component independently. In that case a basis will consist of one tree per
component.

Proof. Because of standard form, we know that the reduced tableau has
full row rank (equal to n−1 when there are n nodes). Indeed, suppose that

10.2. Trees 169

some linear combination of the rows equals zero:
∑n−1

i=1 αiAT
i = 0, where

AT is the network tableau. Let node vn correspond to the deleted row AT
n,

and let T be any spanning tree of N . Then if vivn or vnvi is an arc, we must
have αi = 0, since the column corresponding to the arc has only the single
nonzero entry in row i. Having αi = 0 is equivalent to deleting row AT

i .
Now T − vn has several components, and this argument can be repeated
on each one of them recursively, eventually deleting every row; i.e., every
coefficient α1 = · · · = αn−1 = 0. Hence the rows of the reduced tableau are
independent. Thus every basis has size n− 1.

Workout 10.2.8 Consider the circuit AF,AV i,MF,M∞, V i∞ from Fig-
ure 10.2. Find a linear dependence among their respective columns in
Tableau 10.1.3. [HINT: What would it take to orient the circuit?]

Workout 10.2.9 Prove that a network basis contains no circuit.

Now that we know that a network basis has no circuits, and that it
contains n − 1 arcs, we refer the reader to Exercise 10.5.10, which proves
that the basis is a spanning tree. For the converse argument, the arcs of a
spanning tree form an independent set of size n− 1, as noted above. �
Phase I. It is time, finally, to turn our attention to Phase I.

Finding Shipments. Given any spanning tree, one can discover the
amounts shipped along each of its arcs by iteratively finding the shipment
necessary along a pendant arc in order to satisfy the demand on its leaf,
and then updating the demand on its other node accordingly. For example,
in the spanning tree from Workout 10.1.7, we might begin with pendant arc
AV i. Because the parameter (missing) arcs ship zero, the original (standard
form) node V i constraint yAV i − yV iF − yV i∞ = −15 from Problem 10.1.5
reduces to yAV i = −15. Consequently, the original node A constraint
−yAF − yAV i + yFA + yPA = −23, becomes −yAF + yFA + yPA = −38.
Repeating this analysis allows one to compute the values of yPA = −38,
yFP = −13, yMF = 14, yV eM = −17 and yM∞ = −11, in that order (other
orders are possible as well, for example M∞ AV i, PA, V eM , MF and
FP).

Economic Interpretation. Another interpretation of this arithmetic is
that V i has 15 to give, and it gives it to A along a wrong way street — the
wrong way negates the 15. Once that happens, the demand at A becomes
−23 + (−15) = −38 — its supply was 23 and it just got 15 more.

Leaving and Entering Arcs. As Least Subscript prescribes, we re-
move the most negative arc, namely PA. As if in a civil war, we have blown
up one bridge, separating the country into two components, according to
Workout 10.2.1. In order to create the next spanning tree, the entering arc
must rejoin the two components. In fact, because the tableau instructions
require a negative pivot entry, in particular a sign opposite from the current
basic entry, such an arc must be oppositely directed from PA. The only
three such arcs in the network are AF , V iF , and V i∞ — note that these

170 Chapter 10. Network Environment

Figure 10.3: Phase I pivot from Workout 10.1.7

are also the only three choices in the tableau from Workout 10.1.7c. The
resulting pivot yields the spanning tree in Figure 10.3.

Economic Interpretation. The two components each have cumulative
demands. Together, {F,M,P, V e, ∞} have a demand of 27 − 20 + 25 +
17 − 11 = 38, while {A, V i} has a supply of 23 + 15 = 38. That is why
the shipment along PA was negative, and why an arc from {A, V i} to
{F,M,P, V e,∞} is needed. If no such arc exists, then the partition is a
simple certificate of infeasibility.

Phase II. Now we turn our attention to Phase II.

Finding Relative Prices. Given a feasible tree T we can choose any
node u and label it with any number xu. Then we can iterate the process
of choosing any unlabeled node u that shares an arc e with a labeled node
v. If e = uv then set xu = xv − buv to be the label on u; otherwise set
xu = xv + buv. For example, in the spanning tree from Workout 10.1.8, we
could start with label 0 at node ∞. Then each of the nodes F , M and V i
gets the label 0 also, since all three (slack) arcs ∞F , M∞ and V i∞ cost
nothing. Finally, xA = xV i − bAV i = −170, and similarly xP = 140 and
xV e = 280.

Economic Interpretation. Suppose that uv is an arc of T . Then we
should expect that the price of items sold at v would be buv more than
their corresponding price at u. That is, the cost of shipping should be
reflected in the price. Since we don’t actually know what the prices are at
any location, we can only compute prices relative to each other.

Entering Arc. Given a feasible tree T suppose we have found labels
x′1, . . . , x

′
n for the nodes v1, . . . , vn, as in Workout 10.1.8b, and let x′ =

(x′1, . . . , x
′
n)T. We write the network LOP as Min. w = bTy s.t. ATy = c,

and let y′ denote the current solution on T . Define b′ = b − Ax′, and
note that this yields b′uv = buv + x′u − x′v for every arc uv. In particular, if
uv ∈ T then b′uv = 0 by the definition of x′. On the other hand, if uv �∈ T

10.2. Trees 171

Figure 10.4: Phase II pivot from Workout 10.1.8

then y′uv = 0. Together, these facts yield b′Ty′ = 0. Also, whenever
ATy = c we have bTy = b′Ty + x′TATy = b′Ty + x′Tc, implying that
bTy′ = x′Tc. This means that bTy = bTy′ + b′Ty, which is a disguise
for w = w(y′) + b′Ty; i.e., the current objective row. Hence, the tableau
method of finding a negative entry in b′Ty corresponds to finding an arc
uv �∈ T so that buv + x′u − x′v < 0; in other words x′u + buv < x′v. The first
such arc from the spanning tree of Workout 10.1.8 is AF : −170+130 < 0. If
no such arc exists then b′Ty > 0, so that bTy ≥ bTy′ — the minimum has
been found. In fact, the verification that no such arc exists is a certificate
that the variables x′ are dual-feasible, which proves optimality because of
the equality bTy′ = x′Tc above.

Economic Interpretation. Finding such an arc means that one can re-
duce the price at v by shipping along uv instead of the route determined
by T — the price at u plus the cost along uv is less than the current price
at v. If your competitor finds the arc then their items will sell for less than
yours at v unless you include the arc in your shipping route.

Leaving Arc. By Workout 10.2.4 there exists now a unique circuit C,
as shown for our example in Figure 10.4. Consider an orientation

−→C of C
that agrees with the direction on the entering arc uv (AF). As the value
of yuv changes, the values along other arcs of C must also change in order
that the demands at the nodes on C remain satisfied. In particular, as
yuv increases by t, so does every arc whose direction agrees with

−→C , while
every arc whose direction disagrees with

−→C decreases by t. The arc whose
shipment first hits zero leaves the T . If no such arc exists, then we have
the nifty certificate of unboundedness given by letting t→∞, sending the
total cost to −∞ (the “number”, not the node). Such an oriented circuit
is called a negative cycle. negative

cycleEconomic Interpretation. Then as t more is shipped along uv, t more
is shipped on every other arc whose direction agrees with

−→C , and t less is
shipped on every arc whose direction disagrees with

−→C .

172 Chapter 10. Network Environment

It is worth reiterating that the original information labels the original
network by node demands and arc costs. Thereafter, the labels on current
spanning trees arise from the current information of arc shipments and node
prices. It is the node demands that determine the arc shipments, and the
arc costs that determine the node prices.

Workout 10.2.10 Prove that the spanning tree resulting from the pivot
operation in Figure 10.4 is optimal, and find the optimum for Problem
10.1.1.

10.3 Nilai!

Workout 10.3.1 Consider the network below.

a. Draw the initial spanning tree.

b. Starting from the spanning tree below, perform one itera-
tion of the Network Simplex Algorithm.

c. Starting from the spanning tree below, perform one itera-
tion of the Network Simplex Algorithm.

10.4. Integrality 173

Workout 10.3.2 Starting with the spanning tree from Workout 10.1.6, use
Network Simplex to solve Problem 10.1.1.

Workout 10.3.3 Starting with the spanning tree from Workout 10.1.7, use
Network Simplex to solve Problem 10.1.1.

10.4 Integrality

Surely, you have noticed by now that every basic network solution encoun-
tered so far has been integral — this can be no coincidence. Either this is
a property of all networks, or two evil professors somewhere are chuckling.
It turns out that the former is true (not that the latter isn’t . . .).

Theorem 10.4.1 Given a network LOP with integer demands, every one Integrality
Theoremof its basic solutions is integral.

For those who studied Chapter 5, especially Section 5.4, this theorem is
an application of Theorem 5.4.7 to a special case of Exercise 5.5.21. Here we
will give a more direct proof that network matrices are TU (recall: totally
unimodular means every square submatrix has determinant 0, 1 or−1), and
then give an even more straightforward proof of the Integrality Theorem
10.4.1 that avoids determinants altogether. Both of these arguments rely
on the Network Basis Theorem 10.2.7 and the shipment labeling algorithm
alluded to in the Phase I description above. Now we make this algorithm
explicit.

Lemma 10.4.2 Let T be a tree on n vertices. It is possible to order the
edges of T e1, . . . , en−1 so that every ek is a pendant edge of the subtree
T − {e1, . . . , ek−1}. Moreover, defining vk to be the leaf of ek, one can
stipulate for any vertex u of T that u �∈ {v1, . . . , vn−1}.

Workout 10.4.3 Prove Lemma 10.4.2.

First Proof. Let AT be the reduced network matrix, and let B be a
square submatrix of it. If det(B) �= 0 then the columns of B correspond
to an acyclic set of arcs, which is a collection of disjoint trees. A simple
counting argument similar to Exercise 10.5.10 shows that it is just one tree

174 Chapter 10. Network Environment

(on k vertices). Now reorder the columns by the order e1, . . . , ek−1, and
the rows by the order v1, . . . , vk−1, as guaranteed by Lemma 10.4.2. Now
it is easy to see that the reordered B is lower triangular, so its determinant
is equal to the product along its diagonal. Since its entries are always 0, 1
or −1, then so is its determinant. Hence AT is TU. �

Workout 10.4.4 Illustrate the first proof by reordering the rows and col-
umns of the submatrix corresponding to the arcs of the spanning tree in
Workout 10.1.7.

Second Proof. Let T be a spanning tree of a network. Let e1, . . . , en−1

and v1, . . . , vn−1 be as guaranteed by Lemma 10.4.2, with vn the deleted
row. Since the demand at v1 is integral, the shipment across e1 is integral.
Thus the demand at the other end of e1 is updated to remain integral.
Iterate this process (or use induction), and the result follows. �

10.5 Exercises

Practice

10.5.1 The Network Simplex Algorithm halts for each of the following
networks at the spanning tree shown. In each case use the tree to prove that
the output (infeasible, unbounded, optimal) is correct.

a.

10.5. Exercises 175

b.

176 Chapter 10. Network Environment

c.

10.5.2 Consider the network below.

a. Draw the initial spanning tree.

b. Starting from the spanning tree below, perform one itera-
tion of the Network Simplex Algorithm.

10.5. Exercises 177

c. Starting from the spanning tree below, perform one itera-
tion of the Network Simplex Algorithm.

d. Find the optimal solution.

10.5.3 Consider the network below.

a. Write its reduced tableau.

b. Without using the Network Simplex Algorithm, prove that,
regardless of the arc costs, there is only one basic feasible
solution (which is therefore optimal).

178 Chapter 10. Network Environment

10.5.4 Use a network to solve the LOP Exercise 1.5.22.

10.5.5 Use a network to solve the LOP Exercise 1.5.38.

10.5.6 Use a network to solve the LOP Exercise 1.5.39.

10.5.7 Use a network to solve the LOP Exercise 5.3.5.

10.5.8 Repeat the following 3-step exercise N times.

a. Draw an arbitrary network on 6–8 nodes (with demand sum
zero).

b. Use the Network Simplex Algorithm to solve the network.

c. Prove that the output of the algorithm is correct.

10.5.9 Let T be a connected subgraph of a graph G having n vertices. Use
Workout 10.2.6 to prove that if T has n vertices and n− 1 edges then T is
a spanning tree.

10.5.10 Let T be an acyclic subgraph of a graph G having n vertices. Use
induction and Workout 10.2.6 to prove that if T has n− 1 edges then T is
a spanning tree.

10.5.11 The degree deg(v) of a vertex v in a graph G equals the numberdegree

of edges of G incident with v. Use Workouts 10.2.3 and 10.2.5 to prove
that the number of leaves of a tree T is at least its maximum degree. [HINT:

Remove a vertex of maximum degree.]

10.5.12 Prove that
∑

v∈V (G) deg(v) = 2|E(G)|, where V (G) (resp. E(G))Hand-
shaking
Lemma

is the set of vertices (resp. edges) of G.

10.5.13 The indegree deg+(v) (resp. outdegree deg−(v)) of a node
in/out-
degree v in a digraph G equals the number of arcs of G for which v is the head

(resp. tail). Prove that every digraph G satisfies
∑

v∈G deg+(v) = |E(G)| =
∑

v∈G deg−(v), where E(G) is the set of all arcs of G.

10.5.14 Let T be a tree. Prove that every pair of maximum length paths
of T intersect.

10.5.15 Show that one can start at any node of Figure 10.1, traverse every
arc exactly once, and return to the starting node. Such a traversing is called
an Euler tour.Euler tour

10.5.16 For your tour in Exercise 10.5.15, any for every node except the
starting node, color in red the last arc left each node. Such a structure is
called a rooted spanning tree. How many rooted spanning trees are thererooted

spanning
tree

in Figure 10.1?

10.5.17 Use networks to solve Exercise 1.5.39.

10.5. Exercises 179

Challenges

10.5.18 Use networks to solve the dual to the LOP in Exercise 5.5.1.

10.5.19 Let C, r and s be the following matrices.

C =

⎛

⎝
2 4 −1 3 4
3 5 2 0 2
1 1 0 4 3

⎞

⎠ , r =

⎛

⎝
13
16
9

⎞

⎠ , s =

⎛

⎜
⎜
⎜
⎜
⎝

7
8
6
7

10

⎞

⎟
⎟
⎟
⎟
⎠

Use the Network Simplex Algorithm to solve the following LOP.

Max. z =
∑3

i=1

∑5
j=1 ci,jxi,j

s.t.
∑5

j=1 xi,j = ri (1 ≤ i ≤ 3)

∑3
i=1 xi,j = sj (1 ≤ j ≤ 5)

& xi,j ≥ 0 (∀i, j)

[HINT: Draw arcs from each of three nodes to each of 5 other nodes.]

10.5.20 Use the Network Simplex Algorithm to solve Problem 1.2.4.

10.5.21 Write an algorithm (code or pseudocode) that takes a spanning
tree and node demands (in standard network form) as input and gives all
the arc shipments as output. [HINT: A recursive algorithm may be the simplest.]

10.5.22 Write an algorithm (code or pseudocode) that takes a spanning
tree T and an arc e of T as input and computes the two components of
T − e as output.

10.5.23 Write an algorithm (code or pseudocode) that takes a spanning
tree and arc costs as input and gives all the relative node prices as output.
[HINT: A recursive algorithm may be the simplest.]

10.5.24 Write an algorithm (code or pseudocode) that takes a spanning
tree T and an arc e not in T as input and computes the circuit in T + e as
output.

10.5.25 Using the algorithms from Exercises 10.5.21–10.5.24 as proce-
dures, write an algorithm (code or pseudocode) that takes a network and
one of its spanning trees as input and performs a Network Simplex pivot to
give the subsequent spanning tree (or message of infeasible, unbounded or
optimal) as output.

180 Chapter 10. Network Environment

10.5.26 A node u in a network N is a source (resp. sink) if b(u) < 0source

sink
(resp. b(u) > 0), where b(u) = bN (u) denotes the demand at u. For given
source u and sink v in a network N define the network N ′ = Nu,v to be
identical to N except that b′(u) = b(u) + 1 and b′(v) = b(v) − 1, where
b′ = bN ′ . Construct a network N with positive arc costs and with optimal
costs w∗(N) < w∗(N ′).

10.5.27 Let W be the set of vertices of the tree T that have degree at least
3, and let d(v) = deg(v) − 2. Use Exercise 10.5.12 and Workout 10.2.6 to
prove that if the number of vertices of T is at least 2 then the number of
leaves of T equals 2 +

∑
v∈W d(v).

10.5.28 Relate the number of Euler tours in a digraph G to the number
of rooted spanning trees of G. [HINT: See Exercise 10.5.16.]

10.5.29 Let T be a tree. Prove that the intersection of three maximum
length paths of T is nonempty. [HINT: See Exercise 10.5.14.]

10.5.30 Let T be a tree. Prove that the intersection of all maximum length
paths of T is a nonempty path. [HINT: See Exercise 10.5.29.]

10.5.31 A graph is even if every node v has even degreeeven

a. Prove that a graph with an Euler tour (see Exercise
10.5.15) is connected and even.

b. Use induction to prove Euler’s Theorem, that every con-Euler’s
Theorem nected, even graph has an Euler tour.

10.5.32 A digraph is balanced if every node v has deg+(v) = deg−(v).balanced
digraph

a. Prove that a digraph with an Euler tour (see Exercise
10.5.15) is strongly connected and balanced.

b. Use induction to prove that every strongly connected, bal-
anced digraph has an Euler tour.

10.5.33 A digraph is nearly balanced if every node v has | deg+(v) −nearly
balanced deg−(v)| ≤ 1. Use Exercise 10.5.31 to prove that the arcs of any digraph can

be redirected, if necessary, so that the resulting digraph is nearly balanced.

10.5.34 Let AT = (ai,j) be a {0, 1,−1} matrix. Use Exercise 10.5.33 to
prove that AT is TU (see Section 5.4) if and only if, for every set J of
columns there is some subset J1 ⊆ J (with J2 = J − J1) so that every row
i satisfies ∣

∣
∣
∣
∣
∣

∑

j∈J1

ai,j −
∑

j∈J2

ai,j

∣
∣
∣
∣
∣
∣
≤ 1 .

10.5. Exercises 181

Projects

10.5.35 Present the Depth-First and Breadth-First Search Algorithms and
their relation to computing the components of a graph.

10.5.36 Present the Network Flow Problem and the Ford–Fulkerson Network
Flow
Problem

Algorithm.

Ford–
Fulkerson
Algorithm

10.5.37 Present Cayley’s Theorem and Prufer’s code.

Cayley’s
Theorem

Prufer’s
Code

10.5.38 Present the Matrix Tree Theorem.

Matrix
Tree
Theorem

Chapter 11

Combinatorics

11.1 Matchings

In this chapter we investigate an array of combinatorial applications of
networks, beginning with the problem of finding large matchings in bipar-
tite graphs, mentioned in Section 1.2 (see that section for relevant graph
definitions).

Problem 11.1.1 CarbonDating.com keeps a database of their clients and
their love interests (for unrealism, we assume symmetry: if A loves B then
B loves A). Annette loves David, John and Warren, Kathy loves Bill, John ◦
and Regis, Monica loves Bill, David and Warren, Teresa loves Bill, John
and Regis, and Victoria loves David, Regis and Warren. A marriage of
a woman and a man is good if the couple love each other. The company
would like to find as many pairwise disjoint, good marriages as possible.

Workout 11.1.2 Solve Problem 11.1.1.

As in Chapter 1 we can visualize the setup of Problem 11.1.1 as the
bipartite graph in Figure 11.1. In this form it is not difficult to write down
many sets of 5 marriages. In fact, it is easy to imagine a related network
by replacing each woman-man edge by an arc from woman to man, with
a supply of 1 at each woman node and a demand of 1 at each man node.
Recall from Exercise 10.5.11 that the degree of a vertex is the number of
its incident edges. A graph is k-regular if every vertex has degree k, and (k-)regular

graphis regular if it is k-regular for some k. Thus the graph in Figure 11.1 is
3-regular. Consequently, its corresponding network is feasible, regardless of
the arc costs: send 1/3 on every arc.

Workout 11.1.3 Find an integral solution to the network corresponding
to graph in Figure 11.1.

These ideas lead us to König’s Theorem 11.1.4, below. Recall from
Section 1.2 that a matching is a set of pairwise disjoint edges. A matching perfect

matchingis perfect if every vertex is in some edge of the matching.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 11, c© Springer Science+Business Media LLC 2010

184 Chapter 11. Combinatorics

Figure 11.1: Bipartite graph for Problem 11.1.1

Theorem 11.1.4 Every regular bipartite graph has a perfect matching.König’s
Theorem

Proof. Let B be a bipartite graph with bipartition U = {u1, . . . , ur},
V = {v1, . . . , vs}, and let k be its degree of regularity.

Workout 11.1.5 Prove that r = s.

Define the network N (B) to have nodes equal to the vertices of B, with
an arc uivj if and only if B has the edge {ui, vj}. Let all nodes ui (resp.
vj) have supply (resp. demand) 1, and let the arc costs be arbitrary.

Workout 11.1.6 Prove that N (B) has a feasible solution.

Workout 11.1.7 Use the Integrality Theorem 10.4.1 to finish the proof.

�

Corollary 11.1.8 The edges of every regular bipartite graph can be parti-
tioned into perfect matchings.

Workout 11.1.9 Prove Corollary 11.1.8.

Notice that we can also formulate the Problem 11.1.1 in terms of ma-
trices. Define the {0, 1}-matrix A = A(B) = (ai,j) to have a row (resp.
column) for every left (resp. right) vertex of B, with an entry of ai,j = 1 for
every edge {ui, vj} in B. Then two things stand out. First, if every entry
is divided by 3 then the resulting matrix D = A/3 is doubly stochastic.
Second, Corollary 11.1.8 yields a partition of A into permutation matrices,
such as

⎛

⎜
⎜
⎜
⎜
⎝

0 1 1 0 1
1 0 1 1 0
1 1 0 0 1
1 0 1 1 0
0 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

11.2. Covers 185

Figure 11.2: Street map for Gridburg

+

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Coincidentally, this is precisely what is claimed by the Birkhoff–von Neu-
mann Theorem 8.2.7. We revisit this theorem from a new perspective in
Exercises 11.5.10 and 11.5.11.

11.2 Covers

Problem 11.2.1 The Police Chief of Gridburg decides to place 15 police-
men at the 15 street corners of his town, as shown in the map of Figure
11.2. A policeman has the ability to see the activity of people on the streets
leading from his street corner, but only as far as one block. The Mayor fires
the Chief for spending over budget, and hires Joseph Blough to make sure
that every street can be seen by some policeman, using the fewest possible
policemen.

Workout 11.2.2 Become the new Police Chief.

Problem 11.2.3 The Commerce Secretary of Gridburg decides to place 3
hot dog vendors on the 3 East-West streets of Gridburg (see the map of
Figure 11.2). The Hotdogger’s Union requires that no two vendors can be
on street blocks that share an intersection. The Mayor fires the Secretary
for not generating enough commerce in town, and hires Anna Benannaugh
to place the maximum number of vendors, subject to union rules.

Workout 11.2.4 Become the new Commerce Secretary.

Recall from Section 1.2 that a cover C in a graph G is a set of vertices
such that every edge of G has at least one of its endpoints in C. For example,
the set of all vertices is a cover, and the job of the Police Chief of Gridburg
in Problem 11.2.1 is to place policemen at the vertices of a cover in the
Figure 11.2 graph. It is not difficult to find large covers in graphs; the
challenge is to find small ones. Similarly, it is the job of the Commerce
Secretary of Gridburg in Problem 11.2.3 to place vendors on the edges of a

186 Chapter 11. Combinatorics

matching in the Figure 11.2 graph. It is likewise not difficult to find small
matchings (such as the empty matching); the challenge is in finding large
ones.

Workout 11.2.5 Prove that every graph has |M| ≤ |C| for every matching
M and cover C.

A matchingM is maximum if no other matching contains more edgesmaximum
matching than M. The new Commerce Secretary in Problem 11.2.3 must find a

maximum matching in the Figure 11.2 graph. A cover C is minimum if
minimum

cover
no other cover contains fewer vertices than C. The new Police Chief in
Problem 11.2.1 must find a minimum cover in the Figure 11.2 graph. As
usual, we use the notationsM∗ and C∗ to denote any maximum matching
and minimum cover, respectively.

Workout 11.2.6 For each of the following two graphs, find a maximum
matching M∗ and a minimum cover C∗ possible.

a.

b.

Workout 11.2.7 Find a sequence of graphs {Gn} for which |C∗(Gn)| −
|M∗(Gn)|→∞ as n→∞.

Workout 11.2.6 illustrates that odd cycles in a graph may cause |M∗| <
|C∗|. Exercises 11.5.3 and 11.5.20 show that a graph is bipartite if and only
if it contains no odd cycles. Thus, Workouts 11.2.2 and 11.2.4 illustrate the
following theorem.

Theorem 11.2.8 Every bipartite graph has |M∗| = |C∗|.König–
Egerváry
Theorem

Proof. In light of Workout 11.2.5, we need only prove that |C∗| ≤ |M∗|.
We will do this by associating a network to a given bipartite graph. From
the optimal solution to the network we will find bothM∗ and C∗, and then
show that the inequality holds. Several illustrations along the way should
help prove the various steps.

11.2. Covers 187

Let B be a bipartite graph with left vertices L1, . . . Ls and right vertices
R1, . . . , Rt. Without loss of generality we assume that B is connected.
We define the network N = N (B) to have supply nodes L1, . . . , Ls (each
of supply 1) and demand nodes R1, . . . , Rt (each of demand 1), with two
extra “infinity” nodes L∞ (having demand s) and R∞ (having supply t).
There is a 0-cost arc LiRj ∈ N for every edge {Li, Rj} ∈ B, and there
are 0-cost arcs LiL∞ and R∞Rj in N for every 1 ≤ i ≤ s and 1 ≤ j ≤ t.
Finally, there is a special “infinity” arc R∞L∞ ∈ N , having cost −1.

Workout 11.2.9 Draw the network N0 that corresponds to the bipartite
graph B0, below.

By shipping 1 along each of the arcs LiL∞ and R∞Rj , we see that N
is feasible. Also, there are no negative cycles (since there are no oriented
circuits), and so N is bounded. Thus, by the General Fundamental The-
orem 6.2.9 and the Integrality Theorem 10.4.1, N has an optimal integral
solution S∗.

Workout 11.2.10 Find an optimal integral solution S∗
0 to the network N0.

Workout 11.2.11

a. For each feasible integral solution S to N find a corre-
sponding matching M in B.

b. For each matching M in B find a corresponding feasible
integral solution S to N .

c. Prove that the size of the matching M in B corresponding
to a feasible integral solution S to N equals the negative of
the cost of S.

Workout 11.2.12 Find a minimum cover C∗0 in B0. Compare C∗0 with
your relative prices from S∗

0 .

Given the optimal integral solution S∗, define the relative prices of the
nodes by starting with the price of 0 at L∞. By the Network Basis Theorem

188 Chapter 11. Combinatorics

10.2.7, the basis for S∗ is a spanning tree T ∗ of N , and by Exercise 10.2.2
every node v is connected to node R∞ by a unique path Pv in T ∗. Then
the relative price at v equals 0 if Pv contains L∞ and equals 1 otherwise.
Now define C∗ to be the left vertices of B whose corresponding nodes have
price 1 in T ∗ and the right vertices of B whose corresponding nodes have
price 0 in T ∗.

Workout 11.2.13 Prove that C∗ is a cover in B.

Workout 11.2.14 Finish the proof by finding an injection from C∗ into
some maximum matching of B.

�

Note that this theorem does not say that being bipartite is a requirement
for having |M∗| = |C∗|.

Workout 11.2.15 Find the smallest nonbipartite graph having |M∗| =
|C∗|.

11.3 もももっっっととと練練練習習習しししままましししょょょううう

Workout 11.3.1 Use the network methods of Section 11.1 to partition the
edges of the bipartite graph below into perfect matchings.

Workout 11.3.2 Consider the following bipartite graph B.

11.4. Systems of Distinct Representatives 189

a. Find by hand a matching M in B that is as large as pos-
sible. Argue why it is of maximum size.

b. Find by hand a set C of vertices of B, as small as possible,
so that every edge of B has at least one endpoint in C.
Argue why it is of minimum size.

11.4 Systems of Distinct Representatives

Problem 11.4.1 Consider the following six committees of students. Com-
mittee 1: Clifford, Kara; Committee 2: Ben, Donyell, Jake, Rebecca; Com- ◦
mittee 3: Clifford, Kara, Sue; Committee 4: Ben, Jake, Kara, Nykesha,
Rebecca; Committee 5: Clifford, Sue; Committee 6: Kara, Sue. Each com-
mittee must choose a representative to send to the school Senate, but the
Senate requires that no person represent more than one committee. Is this
possible?

An ordered family F = (F1, . . . , Fk) of sets has a system of distinct
representatives (SDR) E = (e1, . . . , ek) if ei ∈ Fi for every 1 ≤ i ≤ k and system of

distinct
representa-
tives

ei �= ej whenever i �= j. Thus Problem 11.4.1 is asking for an SDR, where
Fi is the set of people on Committee i.

Workout 11.4.2 Let F = (A,B,C,D,E, F,G,H), where A = {S, T, V },
B = {S.U, V }, C = {S, T,X}, D = {T,W, Y }, E = {U,W,Z}, F =
{V,X,Z}, G = {W,Y,Z} and H = {U,X, Y }. Find an SDR for F .

It is simple to see that the committees in Problem 11.4.1 have no SDR:
the union of Committees 1, 3, 5 and 6 contain only 3 people (Clifford, Kara
and Sue). Such a collection K = {F1, F3, F5, F6} is called an SDR blocker.
More formally, a collection K = {Fi | i ∈ I} is called an SDR blocker for SDR

blockerthe family F = {F1, . . . , Fk} if | ∪i∈I Fi| < |I|.

Workout 11.4.3 Use network methods to find the largest set of distinct
representatives possible in Problem 11.4.1.

190 Chapter 11. Combinatorics

Notice that the SDR blocker for Problem 11.4.1 consists of those left
vertices of its bipartite graph that are missing from its minimum cover C∗.
This suggests that, while there may be many different ways to prove that
a given set system might not have an SDR, there will always be the nice
way: find an SDR blocker (construct one from a minimum cover). This is
the set system version of the Theorem of the Alternative 7.2.5.

Theorem 11.4.4 A family of sets has no SDR if and only if it containsHall’s
Theorem an SDR blocker.

Proof. Let F = {F1, . . . , Fs} be a family of sets. Without loss of generality
we may relabel the elements so that ∪s

i=1Fi = {R1, . . . , Rt}. Now define
the bipartite graph B = B(F) as having left vertices F1, . . . , Fs and right
vertices R1, . . . , Rt, with an edge {Fi, Rj} precisely when Fi � Rj . Let
M∗ and C∗ be a maximum matching and minimum cover, respectively, in
B. By the König–Egerváry Theorem 11.2.8 and the hypothesis, we have
|C∗| = |M∗| < s. Finally, define K = {Fi | Fi �∈ C∗} = F − C∗.

Workout 11.4.5 Prove that K is an SDR blocker for F .

�

11.5 Exercises

Practice

11.5.1 Use the Network Environment to solve Problem 1.2.4.

11.5.2 How many sets of 5 good marriages are there in Problem 11.1.1?

11.5.3 Prove that a bipartite graph has no odd cycles.

11.5.4 A matching M is maximal if no larger matching contains M.maximal
matching Find a maximal matching in the graph from Workout 11.2.6b that is not

maximum.

11.5.5 What do Problems 11.2.2 and 11.2.4 have to do with the game of
Battleship? Use the König–Egerváry Theorem 11.2.8 to prove your result
from Exercise 9.5.38.

11.5.6 Let F = (A,B,C,D,E, F,G,H), where A = {T, U}, B = {S, V,
W}, C = {S, T }, D = {U, V,W, Y }, E = {X,Y }, F = {U,X}, G = {Z}
and H = {X,Y, Z}. Find an SDR or prove that none exists.

11.5.7 Let F = (A,B,C,D,E, F,G,H), where A = {T, V }, B = {T,X},
C = {S,U,W,Z}, D = {S,W, Y, Z}, E = {T, V,X}, F = {T,X}, G =
{U, Y, Z} and H = {V,X}. Find an SDR or prove that none exists.

11.5. Exercises 191

11.5.8 Let X (resp. Y) be the collection of all subsets of {1, . . . , n} of size
2 (resp. 3), where n ≥ 5. For X ∈ X define FX = {Y ∈ Y | X ⊂ Y }, and
let F = {FX | X ∈ X}. Use Hall’s Theorem 11.4.4 to prove that F has an
SDR.

11.5.9 Prove that every 2 × 2 doubly stochastic matrix can be written
uniquely as a convex combination of permutation matrices.

11.5.10 Let A = (ai,j) be a nonnegative n × n matrix whose rows and
columns sum to a fixed constant c. Define the matrix D = A/c (then
D = (di,j) is doubly stochastic — see Chapter 8). Now define the bipartite
network N = N (D) as having (left) supply nodes u1, . . . , un, each of supply
1 (representing the rows of D) and (right) demand nodes v1, . . . , vn, each of
demand 1 (representing the columns of D), with an arc uivj (of arbitrary
cost) if and only if di,j > 0.

a. Prove that N is feasible.

b. Use the Integrality Theorem 10.4.1 and part a to prove that
there is a permutation matrix P = (pi,j) so that ai,j > 0
whenever pi,j = 1. [HINT: See Workout 11.1.7.]

11.5.11 Let D be a doubly stochastic matrix and consider the following
algorithm.

1. Let A1 = D.

2. Let i = 1.

3. While vAi �= 0 do

a. Let Pi be a permutation matrix guaranteed by Lemma
11.5.10.

b. Let ti be the minimum of the entries of Ai that corre-
spond to the 1s in Pi.

c. Define Ai+1 = Ai − tiPi.
d. Increment i by 1.

a. Prove for each i that the rows and columns of Ai sum to
a fixed constant.

b. Prove that the algorithm in Exercise 11.5.11 halts by prov-
ing that the number of iterations of Step 3 is finite.

c. Prove that D is a convex combination of the Pis.

d. Use parts (a,b,c) to prove the Birkhoff–von Neumann The-
orem 8.2.7.

11.5.12 Find a 3 × 3 doubly stochastic matrix for which the number of
iterations of Step 3 in the algorithm in Exercise 11.5.11 varies depending
on the permutation matrices found in Step 3a.

192 Chapter 11. Combinatorics

Workout 11.5.1 Illustrate the algorithm in Exercise 11.5.11 on the fol-
lowing matrix.

D =

⎛

⎜
⎜
⎝

.5 .1 .2 .2

.3 .2 .2 .3

.1 .4 .3 .2

.1 .3 .3 .3

⎞

⎟
⎟
⎠

11.5.13 Provide an example of a 4 × 4 doubly stochastic matrix D that
could require 10 iterations of Step 3 in the algorithm in Exercise 11.5.11.

11.5.14 Prove that the number of iterations of Step 3 in the algorithm in
Exercise 11.5.11 is at most n2.

11.5.15 Prove that the number of iterations of Step 3 in the algorithm in
Exercise 11.5.11 is at most n2 − n+ 1.

11.5.16 Prove that if a 3 × 3 doubly stochastic matrix D can be written
as a convex combination of the permutation matrices P1, . . . ,Pk, then the
coefficients t1, . . . , tk are unique.

Challenges

11.5.17 Let A = (ai,j) be an n×n matrix. Recall (from any linear algebra
text) the definition of the determinant det(A) =

∑
σ∈Sn

sign(σ)
∏n

i=1 ai,σi ,
where Sn is the set of all permutations of {1, . . . , n} and sign(σ) is the sign
of the permutation σ. Define the permanent per(A) =

∑
σ∈Sn

∏n
i=1 ai,σi .permanent

Now consider the {0, 1}-matrix A associated with Problem 11.1.1.

a. Compute per(A).

b. Relate your answer to part a to your answer to Exercise
11.5.2.

11.5.18 Find the number of perfect matchings in the bipartite graph of
Workout 11.3.1.

11.5.19 Prove that a tree is bipartite.

11.5.20 Use Exercise 11.5.19 to prove that a graph having no odd cycles
is bipartite.

11.5.21 One way of generating a random k-regular bipartite graph is to
take the union of k random perfect matchings. The problem, however, is
that some of the matchings may share edges, so that their union is not
regular. Let k = 2 and suppose there are n vertices in each part.

a. Compute the expected number of edges two random match-
ings share. [HINT: Restate in terms of permutations.]

11.5. Exercises 193

b. Compute the probability that two random perfect match-
ings share no edges. [HINT: This requires the Principle of

Inclusion-Exclusion.]

11.5.22 A cover C is minimal if no smaller cover contains C. Find a minimal
coversequence of graphs {Gn} for which there exist minimal covers {Cn} with

|Cn|/|C∗(Gn)|→∞.

11.5.23 Use Carathéorody’s Theorem 3.4.1 and the Birkhoff–von Neu-
mann Theorem 8.2.7 to prove that every n× n doubly stochastic matrix is
a convex combination of at most n2− 2n+ 2 permutation matrices. [HINT:

It may be most useful to think in terms of the proof of Theorem 8.2.7.]

11.5.24 Prove for all n ≥ 4 that the algorithm in Exercise 11.5.11 never
requires more than n2 − 2n + 2 iterations of Step 3 on an n × n doubly
stochastic matrix D.

11.5.25 Prove for all n ≥ 4 that there exists an n × n doubly stochastic
matrices D that could require n2−2n+2 iterations of Step 3 in the algorithm
in Exercise 11.5.11.

11.5.26 Prove that if the algorithm in Exercise 11.5.11 writes the doubly
stochastic matrix D as the convex combination of the permutation matri-
ces P1, . . . ,Pk, then the coefficients t1, . . . , tk are unique, regardless of the
order that the Pi may have arisen.

11.5.27 Let M be a matching in a graph G. A path P in is called M-
alternating if P−M is a also a matching in G, and P isM-augmenting alternat-

ing/aug-
menting
path

if it is M-alternating and no edge of M touches its endpoints. Prove that
if P is an augmenting path for M then MΔP is a larger matching than
M.

11.5.28 LetM be a maximal matching of G that is not maximum. Prove
that there is an M-augmenting path. [HINT: First prove there is an M-

alternating path.]

11.5.29 Use Exercises 11.5.27 and 11.5.28 to design an algorithm for
finding a maximum matching in a graph G.

11.5.30 Use Exercise 11.5.27 to prove the König–Egerváry Theorem
11.2.8.

11.5.31 Use Hall’s Theorem 11.4.4 to prove the König–Egerváry Theorem
11.2.8. [HINT: Consider an SDR blocker K = {Fi | i ∈ I} with largest difference

δ(K) = |I | − | ∪i∈I Fi|.]

194 Chapter 11. Combinatorics

11.5.32 Consider the following matrix M = (mi,j).

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

6 3 7 1 2 9
5 0 1 8 6 4
2 7 5 3 8 1
1 4 8 0 5 3
7 2 5 9 0 6
4 9 3 6 3 7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Find a permutation matrix whose corresponding entries in M have the
greatest sum.

11.5.33 Let X (resp. Y) be the collection of all subsets of {1, . . . , n} of
size r (resp. s), where r < s ≤ n − r. For X ∈ X define FX = {Y ∈ Y |
X ⊂ Y }, and let F = {FX | X ∈ X}. Use Hall’s Theorem 11.4.4 to prove
that F has an SDR. [HINT: See Exercise 11.5.8.]

Projects

11.5.34 Present the Stable Marriage Theorem.Stable
Marriage
Theorem 11.5.35 Present Dilworth’s Theorem.

Dilworth’s
Theorem

11.5.36 Present the Hungarian Method for the Assignment prob-

Hungarian
Method

lem.

Assignment
Problem

11.5.37 Present the fractional chromatic number of a graph and its

fractional
chromatic

number

relation to LO.

Chapter 12

Economics

12.1 Shadow Prices

In this section we begin to perform sensitivity (or post-optimality) sensitivity
(post-
optimality)
analysis

analysis, which amounts to figuring out how the optimum solution might
change under small changes in the LOP. For example, an investment com-
pany might need to solve roughly the same problem every day, with only
the stock prices changing. Or maybe an airline might consider adding a new
route because the current schedule suggests that the resulting income might
outweigh its costs. Also, a production company might realize the optimal
solution isn’t valid because they forgot to include a necessary constraint —
could the new problem be solved without starting again from scratch? It
may help first to figure out what the dual variables really mean.

Consider the plight of folk legend Öreg MacDonald. ◦

Problem 12.1.1 Öreg MacDonald owns 1, 000 acres of land and is con-
templating conserving, farming, and/or developing it. His annual consid-
erations are as follows. It will only cost him $1 per acre in registration
fees to own conservation land, and he will reap $30 per acre in tax savings.
Farming will cost him $50 per acre for seeds, from which he can earn $190
per acre by selling vegetables. He can earn $290 per acre by renting devel-
oped land, which costs $85 per acre in permits. Öreg has only $40, 000 to
use, and is also bound by having only 75 descendants, each of whom can
work at most 2, 000 hours. How should he apportion his acreage in order to
maximize profits, if conservation, farming, and development uses 12, 240,
and 180 hours per acre, respectively?

The LOP he needs to solve is the following.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 12, c© Springer Science+Business Media LLC 2010

196 Chapter 12. Economics

Problem 12.1.2

Max. z = 29x1 + 140x2 + 205x3

s.t. x1 + x2 + x3 ≤ 1, 000
x1 + 50x2 + 85x3 ≤ 40, 000

12x1 + 240x2 + 180x3 ≤ 150, 000

& x1 , x2 , x3 ≥ 0

Here, x1, x2, and x3 are the amounts of land (in acres) that Öreg
will use for conservation, farming, and development, respectively. A few
Simplex pivots will reveal the optimal solution z∗ = 1251000000/10920
(about $114, 560.44) at x∗ = (3750000, 5040000, 2130000)/10920 (roughly
(343.41, 461.54, 195.05)). The optimal tableau also displays the optimal
dual solution at y∗ = (286800, 21480, 700)/10920 ≈ (26.26, 1.97, .06). But,
other than providing a certificate of optimality as primal constraint multi-
pliers, what do these dual variables mean?

Take a closer look at the third constraint. The 12 represents the an-
nual number of hours per acre required to work conservation land. The
other coefficients represent similar hours-to-acres ratios, meaning that the
dimensions of the constraint look something like

(
hours

cons acres

)

(cons acres) +
(

hours
farm acres

)

(farm acres)

+
(

hours
dev acres

)

(dev acres) ≤ hours ,

since xj is the number of acres put to the jth activity (or product).activity/
product We can analyze the second dual constraint y1 + 50y2 + 240y3 ≥ 140

similarly. The coefficients, in order, represent the ratio of acres, dollars,
and hours to farm acres, with the right-hand result of profit per farm acre.
Thus we have constraint
(acres

farm acres

)
y1+

(
dollars

farm acres

)

y2+
(

hours
farm acres

)

y3 ≥
(

profit
farm acres

)

,

giving the impression in this case that yi must be the profit per ith re-
source. Indeed, this interpretation works for the other two constraints asresource

well.
Just as the primal objective function has dimension

(
profit

cons acres

)

(cons acres) +
(

profit
farm acres

)

(farm acres)

+
(

profit
dev acres

)

(dev acres) = profit ,

12.1. Shadow Prices 197

the dual objective function has dimension

(acres)
(

profit
acre

)

+ (dollars)
(

profit
dollar

)

+ (hours)
(

profit
hour

)

= profit .

Hence we may view the primal as maximizing the profit of activities, subject
to resource constraints, and the dual as minimizing the profit of resources,
subject to activity constraints. Each constraint coefficient ai,j measures
the amount of resource i used up by one unit of activity j, and each dual
variable yi measures the worth of one unit of resource i. Let us define the
shadow price (or marginal value) of resource i to be the amount that shadow

price
(marginal
value)

the optimum objective value increases per unit increase in resource i, just
to see how this compares with our concept of worth.

Workout 12.1.3 Re-solve Problem 12.1.2 with each of the following re-
vised resource values.

a. Öreg has 999, 1, 001, and 1, 002 acres.

b. Öreg has 39, 999, 40, 001, and 40, 002 dollars.

c. Öreg has 149, 999, 150, 001, and 150, 002 hours.

d. Öreg has (simultaneously) 999 acres, 40, 001 dollars, and
150, 002 hours.

Öreg could decide to pay extra workers in order to increase the number
of hours available, but according to these calculations he would have to pay
them less than 6/c/hr to increase his profits. He could also take out a loan
to increase his available cash, which seems smart from the above results
— an 18% loan still leaves him an extra 79/c profit for every extra dollar
borrowed. It looks like his most valuable resource, as every real estate agent
will tell you, is land, although it is doubtful he can buy extra acres at less
than 26 bucks a pop. But can he simply max out his credit card and make
as much money as he wants?

Well, not so fast, take a look at what happens when he borrows $30, 000.
At this point he doesn’t farm any land. Once he passes the $70, 000 mark,
the {conserve, farm, develop} basis is no longer feasible, extra pivots are
necessary (the best idea is to perform a Dual Simplex pivot — see Section
12.4), and the optimal value stays the same. In fact, one observes that
y∗2 = 0, so more money has no extra worth. Thus we should keep in mind
that the nice formula developed in Workout 12.1.3 only applies locally, for
“small” changes in resources (if you think of thirty grand as small!).

When all is said and done, it is financially prudent for Öreg MacDonald
to take the $30, 000 loan, develop the farm, and make an extra $53, 611
($59, 011 minus interest). As Joni wrote, “They paved paradise and put up ◦
a parking lot.” At least he still has almost 179 acres of conservation.

198 Chapter 12. Economics

Theorem 12.1.4 Let P be the LOPShadow
Approxi-

mation
Theorem Max.

n∑

j=1

cjxj s.t.
n∑

j=1

ai,jxj ≤ bi (1 ≤ i ≤ m), xj ≥ 0 (1 ≤ j ≤ n)

and, for δ = (δ1, . . . , δm)T let Pδ be the LOP

Max.
n∑

j=1

cjxj s.t.
n∑

j=1

ai,jxj ≤ bi+δi (1 ≤ i ≤ m), xj ≥ 0 (1 ≤ j ≤ n) .

If P has a nondegenerate basic optimal solution z∗, then there is some ε > 0
so that, if every |δi| < ε, then Pδ has optimum zδ = z∗ +

∑m
i=1 y

∗
i δi.

Proof. It is simplest to use the matrix formulation of solutions from
Chapter 5. The optimal solution z∗ can be written as y∗Tb, occurring
at x∗ = B−1b. Adding δ to b (bδ = b + δ) results in zδ = z∗ + y∗Tδ
at xδ = x∗ + B−1δ. Since x∗ > 0 there is some ε > 0 so that if each
|δi| < ε then x∗ + B−1δ ≥ 0. Hence xδ is feasible. Since the objective row
is unchanged, xδ is optimal, with optimum zδ. �

To see an example of the boundedness of δ in the Shadow Approximation
Theorem 12.1.4, consider the following LOP, whose feasible region is shown
in Figure 12.1.

Problem 12.1.5

Max. z = 28x1 + 27x2

s.t. 6x1 + 5x2 ≤ 108
4x1 + 7x2 ≤ 113

10x1 + x2 ≤ 110
x1 + 10x2 ≤ 130

& x1 , x2 ≥ 0

Its optimal solution occurs at (191, 246)/22 ≈ (8.7, 11.2), having ba-
sis {1, 2, 5, 6}. Adding δ1 to 108 should increase the optimal value of
11, 990/22 = 545 by 4δ1, since 88/22 = 4 is the appropriate shadow price.
But δ1 cannot be too large for this to hold.

Note that a negative δ1 moves the first constraint line toward the origin
in a parallel fashion. This has the effect of sliding the optimal point up and
to the left, until it reaches the x1 + 10x2 ≤ 130 constraint boundary, when
δ1 = −19/3. As δ1 decreases further the optimal point slides along the line
x1 + 10x2 = 130 instead, with basis {1, 2, 4, 5}, changing the rate at which
the optimum value decreases (the new shadow price is 253/55).

Similarly, for positive δ1 the optimal point slides down and to the right
until it reaches the 10x1 + x2 ≤ 110 constraint when δ1 = 4. Now a
slightly different phenomenon occurs: as δ1 increases further we find that

12.1. Shadow Prices 199

Figure 12.1: Feasible region for LOP 12.1.5

the optimal point stays fixed at the basis {1, 2, 3, 6}, incurring no more
objective increase. This coincides with the new shadow price of 0, as the
constraint is redundant now.

In both cases we witness the restricted range of δ in Theorem 12.1.4, as
well as the necessity of the optimal solution being nondegenerate — in the
degenerate cases, the rate of change in z∗ depends on which direction you
move.

Furthermore, one sees from the tableau that a change by δi in bi adds
δi(B−1)i (the column of the optimal tableau T ∗ corresponding to the ith

slack variable xn+i) to b∗ (this is similar to our Phase II analysis). For ex-
ample, a change in 108 incurs alterations in x∗ = (191, 246 | 0, 0, 264, 209)T/
22 by the appropriate portion of (7,−4 | 0, 0,−66, 33)T/22. Thus if we ex-
pect xδ to remain feasible we must have (again, just like our Phase II ratio
calculations)

191 + 7δ1 ≥ 0 ,
246− 4δ1 ≥ 0 ,

264− 66δ1 ≥ 0 , and
209 + 33δ1 ≥ 0 ,

which implies that

−19/3 = max{−191/7,−209/33} ≤ δ1 ≤ min{246/4, 264/66} = 4 ,

the bounds we obtained geometrically, above.

200 Chapter 12. Economics

Workout 12.1.6

a. Draw the appropriate diagram to verify the bounds on δ1
claimed in the above paragraphs.

b. Provide similar analyses for changes to 113, 10, and 12,
both geometrically and algebraically.

How does one take advantage of Theorem 12.1.4? In the case that δ is
small enough, we know that the optimal basis is still optimal and we use
the theorem and go home happy. We will know that δ is small enough if xδ

is feasible, and a quick check of B−1bδ will tell us whether or not this is so.
For example, if δ1 = −3 above then xδ = B−1bδ = (258, 50, 170, 6)T/22 ≥ 0
and zδ = cTxδ = 11726/22 (= z∗+y∗Tδ), and these are the optimal values
for the new problem.

But if xδ is infeasible — for example, if δ1 = 6 above then xδ =
(222,−13, 233, 42)T/22 — then what shall we do? One option is to take the
problem home along with your laundry on the weekend and hope your folks
do that for you also. Another option is to read about the Dual Simplex
Algorithm in Section 12.4. It turns out that we won’t have to start the new
problem over from scratch. Instead, it is likely in general that the old opti-
mal point is fairly close to the new optimal point, and so a few well chosen
pivots from the old optimal point might get us there quickly. (This is often
referred to as a hot start.) But if we use the Primal Simplex Algorithm we
know and love, we’ll have to pass through Phase I and Phase II, possibly
taking a long time (although the current problem luckily only requires one
more pivot). Dual Simplex has a better idea.

Workout 12.1.7 Illustrate the above discussion using the extended tableau
below.

Tableau 12.1.8
⎡

⎢
⎢
⎢
⎢
⎣

6 5 1 0 0 0 0 108 1 105 114
4 7 0 1 0 0 0 113 0 113 113

10 1 0 0 1 0 0 110 0 110 110
1 10 0 0 0 1 0 130 0 130 130

−28 −27 0 0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Workout 12.1.9 Interpret the dual variables for Problem 1.1.3 appropri-
ately. Use them to calculate the marginal values) of the USRDAs.

12.2 Reduced Costs

So far we have considered changes in the b-column (resources). Now we
consider changes in the objective function coefficients (profits or costs per
activity). Be careful here: when we work with a minimization problem we
need to remember that the objective function coefficients are held in b.

12.2. Reduced Costs 201

Problem 12.2.1 Biff has infestations of crickets, ants, and moths in his
house. He estimates that there are 50 ounces of crickets, 20 ounces of ants,
and 15 ounces of moths, and realizes that they must be removed before his
girlfriend Muffy arrives in an hour. He could buy cockroaches, a pound of
which would cost 48/c and eat 5 ounces of ants and 3 ounces of moths in
an hour. He could also purchase a pound of black widow spiders that would
eat 6 ounces of crickets, 3 ounces of ants, and 2 ounces of moths per hour
for 73/c. A pound of scorpions would eat 8 ounces of crickets and 4 ounces
of ants per hour and would cost Biff 56/c. His final choice is to spend 93/c
for a pound of rough green snakes that would eat 11 ounces of crickets and
1 ounce of moths per hour.

Workout 12.2.2 Write Biff’s LOP and find his optimal solution. Make
note of the optimal objective coefficients b∗.

Workout 12.2.3 Resolve Problem 12.2.1 with 47/c cockroaches instead.

Note the decrease of one unit in b∗1 resulting from the cost reduction of
1/c in cockroaches. Will another penny decrease force another pivot because
b∗1 will be negative (and thus not be optimal)?

Workout 12.2.4 Resolve Problem 12.2.1 with 46/c cockroaches instead.

It seems reasonable that an appropriate cost reduction in snakes might
put them in the optimal basis as well.

Workout 12.2.5 Resolve Problem 12.2.1 with 92/c snakes instead.

Now we define the reduced cost of optimal nonbasic activity i (decision reduced
costvariable yi) in a minimization LOP P to be the amount that the objective

coefficient bi must be reduced in order that yi is basic in some optimal
solution of P . From the above workouts, the reduced costs seem to be
related to b∗.

Workout 12.2.6 Resolve Problem 12.2.1 with (93 − ε)/c snakes instead.
For what value of ε is the originally optimal basis β∗ = {2, 3, 6} degenerate?
[HINT: Treat ε as a new variable (like y0) by introducing an extra 0th column in

WebSim.]

Theorem 12.2.7 For a given minimization LOP P , the reduced cost of Reduced
Cost
Theorem

variable yi is equal to the value of the optimal objective coefficient b∗i .

(Note that the theorem even holds when i ∈ β∗, since in that case
b∗

i = 0 and the ith cost needs no reduction because i is already in the
optimal basis.)

Proof. For optimal parameters, one could use the WebSim idea of Workout
12.2.6 and note that the ε-column is the negative of the w-column. ε-column

Workout 12.2.8 Carry out the proof using this WebSim idea.

202 Chapter 12. Economics

An alternative proof uses the matrix formulation from Chapter 5, where,
for a maximization problem, cT

βB−1Π− cT
π calculates the nonbasic coeffi-

cients of c∗ when β = β∗. For a minimization problem the calculation looks
like bT

βB−1Π− bT
π .

Workout 12.2.9 Carry out the proof using this matrix formulation.

�

Note that reducing any or all costs of optimal parameters by less than
their individual reduced costs maintains the optimality of y∗, and conse-
quently incurs no changes in w∗. However, as we can see from the matrix
calculation bT

βB−1Π−bT
π , any change in the cost of an optimal basic vari-

able affects every entry of b∗. For example, if spiders become too expensive,
Biff might have to buy cockroaches or snakes instead, right? In fact, he’ll
buy both if spiders cost more that 74/c. How do we find that critical cut-
off? This leads us to define the increased cost of optimal basic activity iincreased

cost (decision variable yi) in a minimization LOP P to be the amount that the
objective coefficient bi must be increased in order that the current optimal
basis β∗ becomes suboptimal. Understand, however, that it is not neces-
sary that i leaves β∗, as this cannot be controlled (maybe i can never be
optimal basic), only that β∗ changes (see Workout 12.3.3, for example).

Workout 12.2.10 Resolve Problem 12.2.1 with

a. 74/c spiders instead.

b. 57/c scorpions instead.

In each case, compare the resulting objective row to the original b∗. Where
in the tableau do you find the difference between the two? Use your result
to find the increased costs of spiders and scorpions.

Workout 12.2.11 State and prove the Increased Cost Theorem.Increased
Cost

Theorem The moral of these discussions is that one should pay attention to the
reduced and increased costs of an optimal solution — when they are near
zero it means that a significant change may be around the corner: either a
nonbasic activity is about to be cheap enough to include, or a basic activity
is almost expensive enough to potentially exclude. Get ready to pivot!

12.3 Gyakoroljon egy Kicsit

Problem 12.3.1 Aussie Foods Co. makes three different emu pet foods in
10-kg bags. The Premium bag is a mixture of 5 kgs of kiwi fruit, 2 kgs of
wattle leaves, 2 kgs of boab seeds, and 1 kg of ground diamond weevil, and
AFC makes a profit of 91/c per bag sold. The Regular bag mixes 4, 4, 0,
and 2 kgs of kiwi, wattle, boab, and diamond, respectively, making 84/c for
AFC. The corresponding numbers for the Bargain bag are 1, 2, 3, 4, and

12.4. Dual Simplex 203

73/c, respectively. The weekly supply available to AFC is 1, 000 kgs of kiwi
fruit, 1, 200 kgs of wattle leaves, 1, 500 kgs of boab seeds, and 1, 400 kgs of
ground diamond weevil.

Workout 12.3.2 Consider Problem 12.3.1

a. What numbers of bags should AFC produce of each kind
in order to maximize their weekly profit (assuming that all
they make is sold1)?

b. What are the shadow prices of each commodity?

c. The following per-kg market prices are found at obscure-
foods.com: 15/c (kiwi), 12/c (wattle), 13/c (boab), and 15/c
(diamond). What should AFC do?

d. Use MAPLE to illustrate your answers.

The same concepts regarding changes in the objective function can be
applied to maximization problems. One can define the increased profit increased

profitof activity j (decision variable xj) in a maximization LOP P to be the
amount that the objective coefficient cj must be increased in order that xj

is basic in some optimal solution of P . Likewise, the reduced profit of reduced
profitactivity j (decision variable xj) in a maximization LOP P is the amount

that the objective coefficient cj must be reduced in order that the current
basis β∗ becomes suboptimal.

Workout 12.3.3 What are the increased and reduced profits of each type
of emu food bag in Problem 12.3.1? Illustrate your results with MAPLE .

12.4 Dual Simplex

The previous sections have identified situations in which a given problem
must be re-solved after slight modifications. These include changes in the
values of A, b, and c, as well as the introduction of new variables and
constraints (see Exercises 12.5.15, 12.5.18, and 12.5.16). This section de-
scribes the Dual Simplex Algorithm in order to handle solving the modified
problems more efficiently than solving them from scratch. Starting with a
given point other than the origin, especially one that is potentially near-
optimal, is often referred to as a hot start. We’ll see another opportunity hot start

for its use in Chapter 13, in particular, with the addition of new con-
straints (called cutting planes). First, let’s continue with Problem 12.1.5,
with the case of δ1 = 5. The optimal Tableau 12.4.1 for the original prob-
lem determines the starting Tableau 12.4.2 for the modified problem, since
5(−4,−66, 7, 33, 88)T gives the difference in the b-column.

1Wouldn’t that be a nice assumption to make in the real world!

204 Chapter 12. Economics

Tableau 12.4.1
⎡

⎢
⎢
⎢
⎢
⎣

0 22 −4 6 0 0 0 246
0 0 −66 44 22 0 0 264

22 0 7 −5 0 0 0 191
0 0 33 −55 0 22 0 209
0 0 88 22 0 0 22 11990

⎤

⎥
⎥
⎥
⎥
⎦

Tableau 12.4.2
⎡

⎢
⎢
⎢
⎢
⎣

0 22 −4 6 0 0 0 226
0 0 −66 44 22 0 0 −66

22 0 7 −5 0 0 0 226
0 0 33 −55 0 22 0 374
0 0 88 22 0 0 22 12430

⎤

⎥
⎥
⎥
⎥
⎦

Workout 12.4.3 Verify that B−1bδ (with β = {1, 2, 5, 6}) makes the ap-
propriate calculation.

Now hearken back to the glorious learnings of Section 4.4, where we
discovered the primal-dual pairings of bases. Since β∗

P = {1, 2 | 5, 6} for
Problem 12.1.5, we have β∗

D = {1, 2} for its dual. In general, for a set
S ⊆ [t] and integer k, denote by S + k the set {s + k | s ∈ S}, and by S
its complement [t] − S = {s ∈ [t] | s /∈ S}. Then if β∗

P = J ∪ (I + n) for a
primal problem P having n decision variables and m inequalities, its dual
problem D has β∗

D = I ∪ (J +m). In fact, we can extend the primal-dual
basis pairings to define, for any primal basis βP = J ∪ (I + n), its dual
basis partner βD = I ∪ (J +m).dual basis

partner
Workout 12.4.4 Suppose the LOP P has 7 variables and 12 inequalities.
Find the dual basis partner of βP = {2, 3, 5, 7 | 8, 9, 10, 14, 16, 17, 18, 19}.

It is instructive to look at the dual Tableau 12.4.5, corresponding to the
basis βD = {1, 2} for the dual of the modified primal.

Tableau 12.4.5
⎡

⎣
22 0 66 −33 −7 4 0 88
0 22 −44 55 5 −6 0 22
0 0 −66 374 226 226 22 −12430

⎤

⎦

The similarities of values in Tableaux 12.4.2 and 12.4.5 are striking. It’s
a little tricky to write down the pattern correctly, but let’s try. First we need
some notation. For any h ∈ [m+n] define the function f : [m+n]→[m+n]
by f(h) = m+ h if h ≤ n and f(h) = h− n if h > n. Notice that h ∈ βP

if and only if f(h) /∈ βD, where βD is the dual basis partner of βP . (Make
note also that f−1(k) = n + k if k ≤ m and f−1(k) = k −m if k > m.)
Denote by TP (resp. TD) the primal (resp. dual) tableau with basis βP

(resp. βD), and let r(h) (resp. s(k)) be the row of tableau TP (resp. TD)
in which xh (resp. yk) is basic. Then what we observe, respectfully, is the
following theorem.

12.4. Dual Simplex 205

Theorem 12.4.6 With the notation as described above, for all h ∈ βP and Primal-
Dual
Correspon-
dence
Theorem

all k ∈ πP we have TP
r(h),k = −TD

s(f(k)),f(h). Moreover, the basic value of xh

in TP equals the objective coefficient of yf(h) in TD, and the basic value of
yf(k) in TD equals the objective coefficient of xk in TP .

We defer the proof to Exercise 12.5.21. Note that the correspondence
actually holds for all h, k ∈ [n + m]. However, it’s only relevent in the
range mentioned since all values other than the basic coefficients are zero
elsewhere.

Workout 12.4.7 Verify Theorem 12.4.6 on the following example for

Max. z = 85x1 + 51x2 + 76x3

s.t. x1 + 4x2 + 3x3 ≤ 13
3x1 + 9x2 − 8x3 ≤ 18
−5x1 − 7x2 ≤ −20

8x1 + 2x2 + x3 ≤ 28
−4x1 + 6x3 ≤ 15

& x1 , x2 , x3 ≥ 0

a. β = {1, 2, 3, 4, 5}.
b. β = {1, 2, 4, 5, 8}.
c. β = {1, 2, 3, 5, 8}.

The second part of Theorem 12.4.6 implies that the basic solution yβD

is dual feasible. That is because the objective coefficients in TP are non-
negative, which, in turn, is due to the fact that only the b-column of TP

differs from the optimal tableau T ∗. Thus, the pivots on TD are already
in Phase II. For example, we would pivot next on the 7 in Tableau 12.4.5.
But by Primal-Dual Correspondence again, that is equivalent to pivoting
on the −7 in Tableau 12.4.2. Holy cow! This means that we don’t need to
actually pivot in the dual, we can merely reinterpret the dual Phase II rule
in the primal tableau. Instead of pivoting on the positive entry in column k
of TD that has the smallest b-ratio, we can simply pivot on its dual partner
in TP — that is, on the negative entry in row r(f−1(h)) having the greatest
c-ratio. This is the Dual Simplex Algorithm.2 c-ratio

After one Dual Simplex pivot on Tableau 12.4.2 we arrive at the optimal
solution z∗ = 35706/66 at x∗ = (657, 690 | 66, 0, 0, 1023)T/66 for the above
modification of Problem 12.1.5 with δ1 = 5.

Workout 12.4.8 Use the Dual Simplex Algorithm to solve the modification
of Problem 12.1.5 with δ = (16, 16, 0, 0)T.

2If we use the least subscript rule in the dual, we end up with an unusual interpre-
tation of it in the primal, in which the slack variables have precedence over the decision
variables. It will be easier to maintain the usual ordering in the primal, inferring the
unusual one in the dual. This will cause no harm, since the least-subscript rule works
on any given ordering, simply by thinking of such an ordering with relabeled subscripts.

206 Chapter 12. Economics

12.5 Exercises

Practice

12.5.1 Consider Problem 5.5.17. Find the reduced cost of each of its menu
items.

12.5.2 Consider Problem 1.5.18.

a. Describe the meaning of its dual variables.

b. Find the shadow prices of each.

c. Suppose the factory could pay for extra hours on one of
the machines at $20/hour. Which machine would they rent
and for how long?

12.5.3 Consider Problem 1.5.19.

a. Describe the meaning of its dual variables.

b. Find the shadow prices of each.

c. Which should the company increase in order to decrease
the amount of wood used, the number of hours required for
finishing or the number of hours available for assembly?
What should it be increased to?

12.5.4 Consider Problem 1.5.20.

a. Describe the meaning of its dual variables.

b. Find the shadow prices of each.

12.5.5 Consider Problem 1.5.21(a).

a. Describe the meaning of its dual variables.

b. Find the shadow prices of each resource.

c. If Farmer Brown could buy extra acreage for planting, what
is the maximum cost per acre she should pay? In that case,
how much should she buy?

d. If Farmer Brown could take out a loan to pay for extra
capital and labor, what is the maximum interest rate she
should pay? In that case, how much should she borrow?

e. How much less profitable must arugula become (while broc-
coli profits remain fixed) in order that Farmer Brown begins
converting some arugula acreage to broccoli?

f. How much more profitable must broccoli become (while aru-
gula profits remain fixed) in order that Farmer Brown be-
gins converting some arugula acreage to broccoli?

12.5. Exercises 207

g. Draw a graph that shows the region of arugula and broccoli
profits per acre in which Farmer Brown makes no crop
changes.

12.5.6 Consider Problem 12.1.5. What bounds on ε1 and ε2 are required
in order that changes to c1 and c2 by those respective amounts (cεj = cj +εj)
do not change the optimal basis?

12.5.7 Use the Dual Simplex Algorithm in Problem 1.5.18 from the hot
start at the following bases (write the constraints in the order of the ma-
chines for the bases to make sense).

a. β = {1, 3, 4}.
b. β = {2, 4, 5}.

12.5.8 Use the Dual Simplex Algorithm in Problem 1.5.19 from the hot
start at the following bases (write the finishing constraint first for the bases
to make sense).

a. β = {3, 5}.
b. β = {4, 5}.

12.5.9 Use the Dual Simplex Algorithm in Problem 1.5.20 from the hot
start at the following bases (write the constraint in the order of chads,
construction paper, tissue paper, and ink for the bases to make sense).

a. β = {3, 4, 5, 6}.
b. β = {1, 3, 4, 6}.

12.5.10 Use the Dual Simplex Algorithm in Problem 1.5.21(b) from the
hot start at the following bases (write the constraints in the order of acreage,
total expenses, and capital expenses for the bases to make sense).

a. β = {2, 3, 5}.
b. β = {1, 2, 4}.

12.5.11 Use the Dual Simplex Algorithm in Problem 12.3.1 from the hot
start at the following bases (order the constraints by kiwi, wattle, boab, and
weevil for the bases to make sense).

a. β = {1, 4, 5, 6}.
b. β = {1, 2, 4, 7}.
c. β = {3, 5, 6, 7}.

12.5.12 Use the Dual Simplex Algorithm in Problem 12.1.1 (order the
constraints by land, money, and hours) from the hot start required after
modifying b by

a. δ1 = −350.

208 Chapter 12. Economics

b. δ2 = 31, 000.

12.5.13 Use the Dual Simplex Algorithm in Problem 12.1.5 from the hot
start required after modifying b by

a. δ3 = −20.

b. δ4 = −20.

c. δ1 = δ2 = 15.

Challenges

12.5.14 Consider Problem 12.3.1. What bounds on ε are required in order
that changes to c by ε do not change the optimal basis ; i.e., if c is replaced
by cε = c + ε then β∗

ε = β∗? (See Exercise 12.5.6.)

12.5.15 Devise an algorithm or strategy for re-solving a LOP with modi-
fied A.

12.5.16 Devise an algorithm or strategy for re-solving a LOP with a new
variable.

12.5.17 Give various reasons (in business or science or wherever) why
new variables may need to be added to a LOP after it has been solved.

12.5.18 Devise an algorithm or strategy for re-solving a LOP with a new
constraint.

12.5.19 Give various reasons (in business or science or wherever) why
new constraints may need to be added to a LOP after it has been solved.

12.5.20 Write pseudocode for the Dual Simplex Algorithm.

12.5.21 Prove Theorem 12.4.6.

Projects

12.5.22 Present the economic application of the Hyperplane Separation
Theorem.

12.5.23 Present the economic notion of Pareto efficiency.Pareto
efficiency

12.5.24 Present the Nobel Prize winning work of Kenneth Arrow.

Chapter 13

Integer Optimization

13.1 Cutting Planes

In this chapter we investigate integer linear optimization problems (ILOPs).
We may find it useful to denote the set of all integers by Z and those that
are nonnegative by N. The relaxation of an ILOP P is the fractional LOP relaxation

(FLOP)1 Q that is identical to P but without the integer constraints. For a
FLOPmaximization ILOP, its FLOP provides an upper bound (floptimal value)

floptimal/
iloptimal
value

on its optimum (iloptimal value) for sure. But we learned from Problem
1.2.5 that such an upper bound can be horrible.

Instead, we can find the optimal integer solution fairly quickly by rewrit-
ing the constraint in terms of x2: x2 ≤ (500− x1)/625. But since x2 must
be an integer we can replace the right side by its floor �(500−x1)/625� = 0.
Thus we can add this new constraint to the problem without losing any of
the original integer feasible points. In the new system we find 0 ≤ x2 ≤ 0,
which means that every feasible solution has x2 = 0, so we may as well
delete x2 from the ILOP entirely. Now we must maximize x1 subject to
0 ≤ x1 ≤ 500. Pretty obvious answer there.

The ease with which we solved that is misleading — no fast algorithm for
solving such problems is known.2 However, the techniques we will learn here
tend to work well in practice, but in the worst case could take exponentially
many steps to complete. Of course, the same can be said of the Simplex
Algorithm!

The first technique is related to the argument we gave above for gener-
ating a new constraint that holds for all integer feasible solutions but that is
not explicitly stated. Such a constraint is called a valid inequality by al- valid

inequality/
cutting
plane

gebraists, and a cutting plane by geometers, because of its two important

1There are other, lesser-known, related acronyms, in addition to LOP, BLOP, FLOP,
GLOP, and ILOP, such as IHOP(it’s not “International”, you just can’t order 2.5 pan-
cakes off the menu) and JLOP (the Jennifer Lopez Problem).

2Fast means that it runs in time bounded by some polynomial of the input size (see
Appendix C). If you discover a fast algorithm, let me know — I’d be glad to share the
million dollars from the Clay Institute with you.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 13, c© Springer Science+Business Media LLC 2010

210 Chapter 13. Integer Optimization

properties:

(1) every integer feasible solution satisfies the new constraint,
and
(2) the (noninteger) optimum solution violates the new con-
straint.

It really does cut away the old optimum without harm to the integer system.
The hope is that the new LOP has an integer optimum and, if not, we cut
away over and over again until it does. This is the favorite method of
Freddy, Jason, and Leatherface.◦

Here is a more interesting example.

Problem 13.1.1

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35

& x1 , x2 ∈ N

Just as in Section 2.1, we can draw this in two dimensions, list the 12
feasible integer points, and pick the one having the greatest objective value
(see Figure 13.1). But of course this isn’t a reasonable method in general
because the number of such points is usually too large — remember that
we don’t even have enough time to list all the extreme points, never mind
all the interior integral points.

However, one might notice that the multipliers y = (3, 1)T/10 yield
the valid inequality 4x1 + 3x2 ≤ �149/10� = 14, while the multipliers
y = (1, 2)T/25 yield the valid inequality x1 + x2 ≤ �108/25� = 4. Thus the
optimum for Problem 13.1.1 is the same as for Problem 13.1.2, below.

Problem 13.1.2

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
4x1 + 3x2 ≤ 14
x1 + x2 ≤ 4

& x1 , x2 ∈ N

Now the multipliers y = (0, 0, 2, 2) certify that z∗ ≤ 36; in fact, z∗ =
36 at x∗ = (2, 2). These results come from solving the LOP below, the
relaxation of Problem 13.1.2.

13.1. Cutting Planes 211

Figure 13.1: Feasible region for the relaxation of Problem 13.1.1

Problem 13.1.3

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
4x1 + 3x2 ≤ 14
x1 + x2 ≤ 4

& x1 , x2 ≥ 0

Figure 13.1 shows the optimum solution to the relaxation of Problem
13.1.1, at x = (97, 119)T/50, while Figure 13.2 shows the effect of the two
cuts on it. I hope that you’re curious enough to wonder how they were
found. We follow the method of Gomory that lets the Simplex Algorithm
find them for us. We begin with the optimal tableau for Problem 13.1.1.

Tableau 13.1.4
⎡

⎣
50 0 9 −7 0 97
0 50 −7 11 0 119
0 0 34 18 50 1922

⎤

⎦

The optimal solution occurs at x = (97, 119)T/50, which, for those of
you who’ve studied number theory, is nonintegral. By taking a closer look
at the final equation containing x1, we will be able to derive a new valid

212 Chapter 13. Integer Optimization

Figure 13.2: Optimal cuts for Problem 13.1.1

inequality. Indeed, we may rewrite 50x1 + 9x3 − 7x4 = 97 as

50(x1 − x4 − 1) = 47− 9x3 − 43x4 . (13.1)

Since x3, x4 ≥ 0, the right-hand side of (13.1) is at most 47 and, in particu-
lar, strictly less than 50. Moreover, it is a multiple of 50, and so is at most
0. Hence we know that every feasible integer solution satisfies

−9x3 − 43x4 ≤ −47 , (13.2)

and so we add this valid constraint to our system. Note that we do not need
to solve the revised problem from scratch; let’s use a hot start instead. We
simply introduce a new slack variable x5 (with the same basic coefficient of
50) into (13.2) and slide the resulting equality into Tableau 13.1.4 to obtain
the following.

Tableau 13.1.5
⎡

⎢
⎢
⎣

50 0 9 −7 0 0 97
0 50 −7 11 0 0 119
0 0 −9 −43 50 0 −47
0 0 34 18 0 50 1922

⎤

⎥
⎥
⎦

Two pivots return the tableau to its initial, standard form in Tableau
13.1.6, revealing the new cut in terms of the decision variables (see Figure
13.3): 8x1 + 9x2 ≤ 36. We call this the decision form (as opposed to thedecision/

original
form

original form) of the valid inequality or cutting plane.

13.1. Cutting Planes 213

Figure 13.3: First cut for Problem 13.1.1

Tableau 13.1.6
⎡

⎢
⎢
⎣

11 7 1 0 0 0 38
7 9 0 1 0 0 35
8 9 0 0 1 0 36

−10 −8 0 0 0 1 0

⎤

⎥
⎥
⎦

Of course, we don’t want to pivot in this direction; we’d rather use the
Dual Simplex Algorithm (see Section 12.4) on Tableau 13.1.5. To pivot in
the negative row, we consider the c-ratios −34/9 and −18/43 and choose
the one closest to zero. The pivot 4 	→ 5 results in the temporarily optimal
(optimal for the relaxed problem) tableau below.

Tableau 13.1.7
⎡

⎢
⎢
⎣

43 0 9 0 −7 0 90
0 43 −8 0 11 0 92
0 0 9 43 −50 0 47
0 0 26 0 18 43 1636

⎤

⎥
⎥
⎦

Since the relaxed optimal solution x = (90, 92 | 0, 47, 0))T/43 is again
nonintegral, we employ Gomory’s trick again. We write 43x2−8x3+11x5 =
92 as 43(x2 − x3 − 2) = 6− 35x3 − 11x5, and derive the valid inequality

−35x3 − 11x5 ≤ −6 (13.3)

from the knowledge that 6 − 35x3 − 11x5 is a multiple of 43 that is less
than 43, and hence at most zero. As before, we slip this and the new slack

214 Chapter 13. Integer Optimization

Figure 13.4: Second cut for Problem 13.1.1

into Tableau 13.1.7 (WebSim is really great for this — right click on the
entry of the last constraint and last slack variable, then select Add Row
and Column After) and follow Dual Simplex. Here we have Tableau 13.1.8,
followed by Tableau 13.1.9.

Tableau 13.1.8
⎡

⎢
⎢
⎢
⎢
⎣

43 0 9 0 −7 0 0 90
0 43 −8 0 11 0 0 92
0 0 9 43 −50 0 0 47
0 0 −35 0 −11 43 0 −6
0 0 26 0 18 0 43 1636

⎤

⎥
⎥
⎥
⎥
⎦

Tableau 13.1.9
⎡

⎢
⎢
⎢
⎢
⎣

35 0 0 0 −8 9 0 72
0 35 0 0 11 −8 0 76
0 0 0 35 −43 9 0 37
0 0 35 0 11 −43 0 6
0 0 0 0 8 26 35 1328

⎤

⎥
⎥
⎥
⎥
⎦

Workout 13.1.10 Confirm that the new cut is 11x1 +8x2 ≤ 40, as shown
in Figure 13.4.

It’s difficult to tell whether anything was shaved off, but indeed there
was. It may take forever if we can barely see the cuts, but be patient, some
cuts are big and some are small.

13.2. Branch-and-Bound 215

Workout 13.1.11 Use MAPLE to draw the current feasible region.

Once again the relaxed optimum is not integral, so we need to find
another cut. Before doing so, however, we should pause to notice a pattern
in the tableaux that could save us the trouble of thinking. Consider an
entry Tr,j, other than the basic coefficient d, of the new row r in a tableau
T that corresponds to a newly determined cut derived from row i of T . By
the manner in which we discovered the cut, Ti,j + Tr,j equals the greatest
multiple of d that is at most Ti,j . That is, Tr,j = −(Ti,j mod d). (Careful
— this is different from −Ti,j mod d: e.g., −(2 mod 7) = −2, while −2
mod 7 = 5.)

We should also take note of some of the decisions we’ve made so far. As
we found in defining pivoting rules (least subscript, etc.), we have choices
here that may matter none in theory but may matter some in practice. For
example, at present, xk is nonintegral for each k ∈ {1, 2, 3, 4}, so we are free
to derive the valid equality 35x7 −

∑6
j=1(Ti,j mod 35)xj = −(b′i mod 35)

from each of the current equalities
∑6

j=1 Ti,jxj = b′i, i = 1, . . . , 4. The rule
we have been following is to choose row argmaxi{b′i mod d}; that is, the
row i whose right-hand side needs the most subtraction. This is merely a
heuristic that seems to behave well in practice. In this case, we cut from
row 2.

Workout 13.1.12 Finish solving Problem 13.1.1.

a. Write each of the valid inequalities along the way, in orig-
inal and decision form.

b. Write the sequence of pivots i 	→ j.

c. Use MAPLE to draw the final feasible region with all the
cutting planes.

13.2 Branch-and-Bound

We return to Problem 13.1.1 (call it P) in order to consider a different
method for finding its optimal integer solution. We first make note of the
floptimal solution, which we denote x̂∗ = (97, 119)/50. The essence of
the Branch-and-Bound technique is in splitting (branching) the problem
(feasible region) into two subproblems (subregions), say those points with
large x1 value and those with small x1 value. A natural split between large
and small might be the value of x̂∗1, but because of integrality this amounts
to x1 ≥ 2 in one case and x2 ≤ 1 in the other. Thus we are led to solve the
following two subproblems (PA and PB, respectively).

216 Chapter 13. Integer Optimization

Problem 13.2.1 (PA)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≥ 2

& x1 , x2 ∈ N

Problem 13.2.2 (PB)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≤ 1

& x1 , x2 ∈ N

It will certainly be the case that the optimal value in P is the maxi-
mum of the optimal values in PA and PB — we haven’t lost any integer-
feasible solutions (see Figure 13.5). Let’s now look at the relaxations of
these ILOPs.

Workout 13.2.3 For each of the Problems 13.2.1 and 13.2.2, add the ap-
propriate constraints to the floptimal tableau of Problem 13.1.1 and use the
Dual Simplex Algorithm to solve them.

First, PA has x̂∗ = (14, 16)T/7 with ẑ∗ = 268/7. Nicely, x̂∗1 is integral,
although x̂∗2 is not. However, we can split this time along x̂∗2, which in
essence means x2 ≥ 3 in Problem 13.2.4 (PAA) and x2 ≤ 2 in Problem
13.2.5 (PAB), below.

Problem 13.2.4 (PAA)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≥ 2

x2 ≥ 3

& x1 , x2 ∈ N

13.2. Branch-and-Bound 217

Figure 13.5: Splitting Problem 13.1.1 in two

Problem 13.2.5 (PAB)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≥ 2

x2 ≤ 2

& x1 , x2 ∈ N

Workout 13.2.6 For each of the Problems 13.2.4 and 13.2.5, add the ap-
propriate constraints to the floptimal tableau of Problem 13.2.1 and use the
Dual Simplex Algorithm to solve them.

Now we see that PAA is infeasible, which means that PA has the same
integer optimum as PAB. Also, PAB has floptimum ẑ∗ = 416/11 at
x̂∗ = (24, 22)T/11, which means we’re going to have to branch on PAB as
well. But let’s not go too far too fast; we’ll remember to do this later.

Second, we go back to Problem 13.2.2 to see that PB has x̂∗ = (9, 28)T/9
with ẑ∗ = 314/9. Repeating the same branching technique on x2, we build
the two subproblems PBA and PBB below, with x2 ≥ 4 and x2 ≤ 3,
respectively.

218 Chapter 13. Integer Optimization

Problem 13.2.7 (PBA)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≤ 1

x2 ≥ 4

& x1 , x2 ∈ N

Problem 13.2.8 (PBB)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≤ 1

x2 ≤ 3

& x1 , x2 ∈ N

Workout 13.2.9 For each of the Problems 13.2.7 and 13.2.8, add the ap-
propriate constraints to the floptimal tableau of Problem 13.2.2 and use the
Dual Simplex Algorithm to solve them.

Now because PBA is infeasible, we know that the optimal solution
to PB is the optimal solution to PBB. This “half” of the branching of
Problem 13.1.1 is therefore complete, and we may return our thoughts to
Problem PAB. Recall that PAB has floptimum ẑ∗ = 416/11 at x̂∗ =
(24, 22)T/11, so it’s time to branch on x1 again. The new Problems PABA
and PABB will include constraints x1 ≥ 3 and x1 ≤ 2, respectively.

Problem 13.2.10 (PABA)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≥ 2

x2 ≤ 2
x1 ≥ 3

& x1 , x2 ∈ N

13.2. Branch-and-Bound 219

Problem 13.2.11 (PABB)

Max. z = 10x1 + 8x2

s.t. 11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35
x1 ≥ 2

x2 ≤ 2
x1 ≤ 2

& x1 , x2 ∈ N

Workout 13.2.12 For each of the Problems 13.2.10 and 13.2.11, add the
appropriate constraints to the floptimal tableau of Problem 13.2.5 and use
the Dual Simplex Algorithm to solve them.

By the way, where’s the Bound in Branch-and-Bound? Well, here it
comes. Because PABA has a fractional optimal solution, it looks like we
need to branch on it. However, its floptimal value is only 250/7 < 36,
the iloptimal value of PABB, and its iloptimal value can only be smaller.
Hence the optimal solution to PA equals that of PAB.

Furthermore, the iloptimal value in PA (36) exceeds that in PB (34),
and so the optimal solution to P resides in PA; that is, P has optimal
solution z∗ = 36 at x∗ = (2, 2)T.

Figure 13.6 shows the branching diagram (rooted tree — see Section
10.2 and Exercise 10.5.16) used to keep track of the ILOPs in the Branch-
and-Bound Algorithm on Problem 13.1.1. Note the manner in which we
traversed the tree, solving the ILOPs P , PA, PB, PAA, PAB, PBA,
PBB, PABA, and PABB in that order. This particular traversal is known
as the Breadth-First Search Algorithm (BFS) . Starting with the root Breadth-

First
Search
Algorithm

node P in the queue, BFS repeats the following process: add the descen-
dants of the head of the queue to the back of the queue and delete the head
of the queue. This is the kind of search an army might employ along the
streets of a city, splitting up the troops at a corner to send down each of the
streets to broaden their control. Another well-known traversal is called the
Depth-First Search Algorithm (DFS), which recursively uses DFS on Depth-

First
Search
Algorithm

its descendants. In this case, if the tree in Figure 13.6 was the entire tree,
then DFS would produce the search order P , PA, PAA, PAB, PABA,
PABB, PB, PBA, and PBB. This is the kind of search a person might
use in a city, going as deeply as possible and then retracing steps — in fact,
this is how backtracking algorithms operate. But Figure 13.6 isn’t the backtrack-

ingentire tree: PABA was pruned instead of branched on because it didn’t
beat the bound of PABB. Notice, however, that DFS doesn’t reach PABB
until PABA is branched on, and so in this case, BFS saves us extra effort.
There are also cases in which DFS saves more effort than BFS, but most
evidence suggests that BFS typically performs better than DFS.

Workout 13.2.13 How many extra ILOPs would the DFS implementation
of the Branch-and-Bound Algorithm need to solve in Problem 13.1.1?

220 Chapter 13. Integer Optimization

Figure 13.6: Branching tree for Problem 13.1.1

13.3. Posledn�� Praktika 221

Figure 13.7: Feasible regions of the terminal LOPs for Problem 13.1.1

Recall the definition of a leaf of a tree on page 168. In Figure 13.6
the leaves are the LOPs PAA, PBA, PBB, PABA, and PABB. We call
these the terminal LOPs of the Branch-and-Bound Algorithm, and note terminal

LOPthat they are distinguished by being either infeasible, bound, iloptimal, or
unbounded (see Exercise 13.5.28). Figure 13.7 shows the feasible regions of
the terminal LOPs of the above. The main point of the Branch-and-Bound
Algorithm is that the union of these regions contains all integer feasible
points of Problem 13.1.1.

13.3 Posledn�� Praktika

Consider the following ILOP.

Problem 13.3.1

Max. z = 62x1 + 83x2

s.t. 11x1 + 7x2 ≤ 360
4x1 + 8x2 ≤ 275

& x1 , x2 ∈ N

Workout 13.3.2 Use the Cutting Plane Algorithm to solve Problem 13.3.1.

Workout 13.3.3 Use the Branch-and-Bound Algorithm to solve Problem
13.3.1.

222 Chapter 13. Integer Optimization

13.4 Integer Certificates

The act of certifying ILOPs is not quite as simple as in the case of FLOPs.
However, it is not so complex, either, merely more lengthy. Whereas a
FLOP requires only a single multiplier y∗ to certify a given x∗ and z∗, an
ILOP requires a sequence or set of multipliers to certify the sequence or set
of FLOPs that cutting planes or branching generates to solve it. For this
reason we usually use the term proof rather than certificate, as in cutting
plane proof or branch-and-bound proof.cutting

plane/
branch-

and-bound
proof

In the Branch-and-Bound Algorithm case, the branching tree provides
the outline of the proof. It proves that the union of the feasible regions of
the terminal FLOPs contains all the integer feasible points of the original
ILOP. Thus we only need to certify each terminal FLOP, which is done in
the usual way, whether infeasible, optimal or unbounded.

In the Cutting Plane Algorithm case, the dual multiplier y∗ of the final
LOP will not convince your boss, who will wonder why you added all those
extra constraints to his original ILOP. You must therefore justify each cut-
ting plane to her. Thus a cutting plane proof is a sequence of multipliers
ŷi that justify each new valid constraint ai ≤ bi (in decision form), along
with the final y∗.

For example we can see from the work of Section 13.1 and Workout
13.1.12 that the following multipliers generate the following valid inequali-
ties (using the floor function because of the fact that x is integral).

multipliers ŷi valid inequalities ai ≤ bi
(9, 43)T/50 8x1 + 9x2 ≤ �1847/50� = 36
(35, 0, 11)T/43 11x1 + 8x2 ≤ �1726/43�= 40
(0, 0, 11, 27)T/35 11x1 + 9x2 ≤ �1476/35�= 42
(0, 0, 0, 3, 1)T/11 4x1 + 3x2 ≤ �162/11� = 14
(0, 0, 5, 0, 0, 5)T/12 5x1 + 5x2 ≤ �250/12� = 20
(0, 0, 0, 0, 0, 10, 2)T/5 10x1 + 8x2 ≤ 36

Workout 13.4.1 Give a cutting plane proof for your solution in Workout
13.3.2.

Consider the following system of constraints from Problem 13.1.1.

System 13.4.2
11x1 + 7x2 ≤ 38
7x1 + 9x2 ≤ 35

10x1 + 8x2 ≥ 37

x1 , x2 ∈ N

Notice that System 13.4.2 is fractionally feasible (recall that Problem
13.1.1 has floptimum ẑ∗ = 1922/50 = 38.44 at x̂∗ = (97, 119)T/50) but
integer infeasible. Indeed, we just proved that if 11x1 + 7x2 ≤ 38, 7x1 +
9x2 ≤ 35, and x ∈ N, then 10x1 + 8x2 ≤ 36. In fact, with x′ = (2, 2)T

13.5. Exercises 223

in hand, having z(x′) = 36, we have that Problem 13.1.1 is iloptimal at
x′ if and only if System 13.4.2 is integer infeasible. This leads us to the
following theorem.

Theorem 13.4.3 Let P be the ILOP

max{cTx | Ax ≤ b, x ∈ N
n} ,

with c ∈ Z
n, and St be the system

{Ax ≤ b, cTx ≥ t, x ∈ N
n} .

Then P is iloptimal if and only if there is some k ∈ Z such that

a. there is some P-feasible x′ with cTx′ = k and

b. the system Sk+1 is infeasible.

Workout 13.4.4 Prove Theorem 13.4.3.

More interesting is the following sequence of derivations from System
13.4.2 (after putting it into standard form with ≤s).

multipliers ŷi valid inequalities ai ≤ bi
(8, 0, 7)T/18 x1 ≤ �45/18� = 2
(0, 0, 1, 2)T/8 −x1 − x2 ≤ �−33/8� = −5
(1, 2, 0, 0, 25)T/17 0 ≤ −1

Workout 13.4.5 Explain how the multipliers above were found.

Theorem 13.4.6 If S is a an integer-unsolvable system then there is a Integer
Farkas
Theorem

cutting plane proof of the inequality 0 ≤ −1.

Workout 13.4.7 Prove Theorem 13.4.6.

13.5 Exercises

Practice

13.5.1 Give an example of an ILOP that is floptimal but not iloptimal.

13.5.2 How many ILOPs were avoided by bounding in Workout 13.3.3?

13.5.3 Solve Exercise 1.5.37(a) with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.4 Solve Exercise 1.5.37(b) with

224 Chapter 13. Integer Optimization

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.5 Solve Exercise 1.5.37(c) with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.6 Solve Exercise 1.5.38 with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.7 Solve Problem 1.2.5 with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.8 Solve Problem 1.5.1(a) over the integers.

a. Use the Cutting Plane Algorithm.

b. Use the Branch-and-Bound Algorithm.

13.5.9 Solve the following ILOP with

Max. z = 10x1 + 8x2

s.t. 11x1 + 5x2 ≤ 36
5x1 + 9x2 ≤ 34

& x1 , x2 ∈ N

a. the Cutting Plane Algorithm.

(i) write each valid inequality in original and decision form,
(ii) write the sequence of pivots, and
(iii) write the final optimality certificate and use MAPLE to

graph the relevant constraints.

b. the Branch-and-Bound Algorithm.

(i) draw the decision tree,
(ii) include for each node (LOP) its label and floptimal

solution, and
(iii) use MAPLE to graph (and label) the resulting feasible

regions of each leaf node.

13.5. Exercises 225

13.5.10 Consider the following ILOP.

Max. z = 89x1 − 66x2 + 74x3

s.t. 6x1 − 14x2 + 10x3 ≥ 13
−4x1 + 14x2 − 2x3 ≥ 31

2x1 + x3 ≤ 9
−10x1 + 14x2 + 2x3 ≤ 53

& x1 , x2 , x3 ∈ N

a. Solve it using the Cutting Plane Algorithm.

b. Solve it using the Branch-and-Bound Algorithm.

13.5.11 Consider the following ILOP.

Max. z = 109x1 + 116x2

s.t. 3x1 + 4x2 ≥ 17
7x1 + 5x2 ≤ 43
6x1 − 8x2 ≤ 19
9x1 − 6x2 ≥ 25

& x1 , x2 ∈ N

a. Solve it using the Cutting Plane Algorithm.

b. Solve it using the Branch-and-Bound Algorithm.

13.5.12 Consider the following ILOP.

Max. z = 502x1 + 628x2 − 551x3

s.t. 3x1 + 2x2 − x3 ≤ 14
−3x1 + 18x2 − 4x3 ≥ 51

3x1 − 3x2 + 4x3 ≥ 24
−3x1 + 2x3 ≤ 6

& x1 , x2 , x3 ∈ N

a. Solve it using the Cutting Plane Algorithm.

b. Solve it using the Branch-and-Bound Algorithm.

13.5.13 For each of the ILOPs below, give a 0 ≤ −1 proof of integer
unsolvability.

a. Exercise 13.5.1.

b. Exercise 13.5.10.

c. Exercise 13.5.11.

226 Chapter 13. Integer Optimization

d. Exercise 13.5.12.

13.5.14 For each of the ILOPs below, provide a certificate of its optimality
by proving the integer unsolvability (with a 0 ≤ −1 proof) of its system of
constraints after the addition of the constraint z(x) ≥ z∗ + 1.

a. Exercise 13.5.8.

b. Exercise 13.5.20.

c. Exercise 13.5.19.

d. Exercise 13.5.18.

e. Exercise 13.5.17.

f. Problem 13.3.1.

g. Exercise 13.5.27.

h. Exercise 13.5.9.

Challenges

13.5.15 Describe the branching tree of an infeasible ILOP. Explain. [HINT:

See Exercises 13.5.1, 13.5.10, 13.5.11, and 13.5.12.]

13.5.16 Describe the branching tree of an unbounded ILOP. Explain.

13.5.17 Consider the following ILOP.

Max. z = 23x1 + 60x2 + 31x3 + 44x4

s.t. 6x1 + 2x2 + 3x4 ≤ 338
5x1 − x2 + 9x3 + 4x4 ≤ 254
2x1 + 5x3 + 6x4 ≤ 238
x1 + 2x2 + 2x3 + 3x4 ≤ 170

3x1 + 5x2 + x3 + 2x4 ≤ 210

& x1 , x2 , x3 , x4 ∈ N

a. Solve it using the Cutting Plane Algorithm.

b. Solve it using the Branch-and-Bound Algorithm.

13.5.18 Solve the following ILOP (as in Exercise 13.5.9) with

Max. z = 6x1 + 5x2

s.t. 9x1 + 4x2 ≤ 36
5x1 + 8x2 ≤ 40

& x1 , x2 ∈ N

13.5. Exercises 227

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.19 Consider the following ILOP.

Max. z = 73x1 + 36x2 + 85x3

s.t. 5x1 + 8x2 + 3x3 ≤ 140
x1 + 2x2 + 9x3 ≤ 165

6x1 + 4x2 + 7x3 ≤ 143
2x1 + 7x2 + 3x3 ≤ 112

& x1 , x2 , x3 ∈ N

a. Solve it using the Cutting Plane Algorithm.

b. Solve it using the Branch-and-Bound Algorithm.

13.5.20 Solve Problem 4.5.8 over the integers.

a. Use the Cutting Plane Algorithm.

b. Use the Branch-and-Bound Algorithm.

13.5.21 Solve Problem 12.3.1 over the integers.

a. Use the Cutting Plane Algorithm.

b. Use the Branch-and-Bound Algorithm.

13.5.22 Solve Problem 1.2.4 with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.23 Solve Exercise 1.5.35(a) with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.24 Solve Exercise 1.5.35(b) with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.25 Solve Exercise 1.5.36 with

a. the Cutting Plane Algorithm.

b. the Branch-and-Bound Algorithm.

13.5.26 Solve Problem 8.5.25 over the integers.

228 Chapter 13. Integer Optimization

a. Use the Cutting Plane Algorithm.

b. Use the Branch-and-Bound Algorithm.

13.5.27 Consider the following ILOP.

Max. z = 62x1 + 59x2 + 66x3

s.t. 11x1 + 7x2 + 2x3 ≤ 210
4x1 + 5x2 + 8x3 ≤ 185
6x1 + x2 + 9x3 ≤ 173

& x1 , x2 , x3 ∈ N

a. Solve it using the Cutting Plane Algorithm.

b. Solve it using the Branch-and-Bound Algorithm.

13.5.28 Given an ILOP P , prove that a LOP in the branching tree for P is
terminal if and only if it is infeasible, bound, integer optimal, or unbounded.
[HINT: This is an analogue of the Fundamental Theorem of Linear Optimization

2.9.1.]

13.5.29 Write pseudocode for finding a single cutting plane.

13.5.30 Write pseudocode for the Cutting Plane Algorithm.

13.5.31 Prove that the tableau remains integral throughout the Cutting
Plane Algorithm. [HINT: Check the determinant.]

13.5.32 Write pseudocode for traversing a binary tree using BFS.

13.5.33 Write pseudocode for traversing a binary tree using DFS.

13.5.34 Use Exercise 13.5.32 to write pseudocode for the BFS implemen-
tation of the Branch-and-Bound Algorithm.

13.5.35 Use Exercise 13.5.33 to write pseudocode for the DFS implemen-
tation of the Branch-and-Bound Algorithm.

13.5.36 Devise a tree that could potentially be a branching tree of some
ILOP, with the property that the DFS implementation of the Branch-and-
Bound Algorithm visits fewer nodes than the BFS implementation; in par-
ticular, DFS prunes off ILOPs that BFS would otherwise solve.

13.5.37 Let On,k be the polytope
∑n

i=1 |xi| ≤ k (the generalized octahe-
dron).

a. Compute the number of integer points in O3,k.

b. Use your answer to part a to calculate the volume of O3,1 in R
3.

13.5. Exercises 229

c. Repeat parts a and b in R
n.

Projects

13.5.38 Present the finiteness of the Cutting Plane Algorithm.

13.5.39 Present the Chvátal rank of a polytope. Chvátal
rank

13.5.40 Present the Branch-and-Cut Algorithm for solving ILOPs.
Branch-
and- Cut
Algorithm

13.5.41 Present the the Nearest Vector and Shortest Vector Prob-

Nearest/
Shortest
Vector
Problem

lems.

13.5.42 Present the the Subset Sum Problem.

Subset
Sum
Problem

Appendix A

Linear Algebra Review

Our purpose here is to review briefly some of the necessary concepts from
Linear Algebra that are used in Linear Optimization. This is not meant to
be a tutorial but instead a refresher.

We assume familiarity with augmented matrices (which we coin aug-
mats for short) and how they represent systems of linear equations. For augmat

example, System A.1 is represented by AugMat A.2, below.

System A.1

5x1 − 1x3 + 2x4 − 3x5 = 19
4x1 + 6x2 − 1x4 = 27
−7x1 − 3x2 + 8x3 + 9x5 = −11

AugMat A.2
⎛

⎝
5 0 −1 2 −3 19
4 6 0 −1 0 27
−7 −3 8 0 9 −11

⎞

⎠

As a method of solving System A.1, one could use Gaussian elimination
on AugMat A.2 as follows. First, subtract 4/5 of the first row from the
second row and add 7/5 of the first row to the third row, obtaining AugMat
A.3, below.

AugMat A.3
⎛

⎝
5 0 −1 2 −3 19
0 6 4/5 −13/5 12/5 59/5
0 −3 33/5 14/5 24/5 78/5

⎞

⎠

Using the notation Ri (upper case) to denote row i of the resulting augmat
and rj (lower case) to denote row j of the previous augmat, we write the
two row operations as row

operation
G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 A, c© Springer Science+Business Media LLC 2010

232 Appendix A. Linear Algebra Review

R1 = r1
R2 = r2 − (4/5)r1
R3 = r3 + (7/5)r1 .

A handy simplification, visually as well as computationally, involves avoid-
ing fractions. The row operations

R1 = r1
R2 = 5r2 − 4r1
R3 = 5r3 + 7r1

(A.1)

produce AugMat A.4, below.

AugMat A.4
⎛

⎝
5 0 −1 2 −3 19
0 30 4 −13 12 59
0 −15 33 14 24 78

⎞

⎠

The corresponding system of equations is as follows.

System A.5

5x1 − x3 + 2x4 − 3x5 = 19
+ 30x2 + 4x3 − 13x4 + 12x5 = 59
− 15x2 + 33x3 + 14x4 + 24x5 = 78

Systems A.1 and A.5 are equivalent in the sense that they have the sameequivalent
system set of solutions. Indeed, what holds for one set of equations holds for any

linear combination of them, so any solution of System A.1 is a solution of
System A.5. The reverse is true as well since the row operations (A.1) can
be inverted by solving for the rj :

r1 = R1

r2 = (R2 + 4R1)/5
r3 = (R3 − 7R1)/5 .

(A.2)

One can check that row operations (A.2) convert AugMat A.4 back to
AugMat A.2.

What is nice about the conversion of System A.1 to System A.5 is that
the latter is slightly simpler, having eliminated x1 from two of its equations.
One can continue to simplify, as below.

R1 = r1
R2 = r2
R3 = 2r3 + r1

(A.3)

AugMat A.6
⎛

⎝
5 0 −1 2 −3 19
0 30 4 −13 12 59
0 0 70 15 60 215

⎞

⎠

233

R1 = 70r1 + r3
R2 = 70r2 − 4r3
R3 = r3

AugMat A.7
⎛

⎝
350 0 0 155 −150 1545

0 2100 0 −970 600 3270
0 0 70 15 60 215

⎞

⎠

We can uniformize the sight of AugMat A.7 by multiplying each row ap-
propriately, giving rise to AugMat A.8.

AugMat A.8
⎛

⎝
210 0 0 93 −90 927

0 210 0 −97 60 327
0 0 210 45 180 645

⎞

⎠

This form yields the solution
⎛

⎝
x1

x2

x3

⎞

⎠ =
1

210

⎡

⎣

⎛

⎝
927
327
645

⎞

⎠−

⎛

⎝
93
−97

45

⎞

⎠x4 −

⎛

⎝
−90

60
180

⎞

⎠x5

⎤

⎦(A.4)

for any values of x4 and x5 whatsoever.
Other forms of the same solution set can be given as well. For exam-

ple, one can solve for x1, x3 and x5 in terms of x2 and x4. This can be
accomplished from AugMat A.8 using the row operations

R1 = (2r1 + 3r2)/7
R2 = r2
R3 = 2(r3 − 3r2)/7

(A.5)

to produce Augmat A.9.

AugMat A.9
⎛

⎝
60 90 0 −15 0 405
0 210 0 −97 60 327
0 −180 60 96 0 −96

⎞

⎠

This form determines the solution
⎛

⎝
x1

x3

x5

⎞

⎠ =
1
60

⎡

⎣

⎛

⎝
405
−96
327

⎞

⎠−

⎛

⎝
90

−180
210

⎞

⎠ x2 −

⎛

⎝
−15

96
−97

⎞

⎠ x4

⎤

⎦(A.6)

for any values of x2 and x4.

234 Appendix A. Linear Algebra Review

If it is a mystery how row operations (A.5) were devised so as to make
AugMat A.9 uniform, the mystery should be cleared up by rewriting the
row operations as

R1 = (60r1 + 90r2)/210
R2 = r2
R3 = (60r3 − 180r2)/210

(A.7)

and comparing this form with the values of AugMat A.9.
The action of clearing all but one of the entries in a column of an

augmat is called a pivot operation. Writing pivot operations cleverly aspivot
operation in (A.7) is the subject of Section 2.2. Proving that the clever form of them

maintains both the uniformity and integrality of augmats is the subject
of Section 5.4, and the arguments are based on the knowledge of certain
determinants. That knowledge includes the following theorem.

Theorem A.10 Let M be an n×n invertible matrix and let b be a lengthCramer’s
Rule n vector. Denote by Mj the matrix obtained from M by replacing its jth

column by b. Then the solution to the system Mx = b is given by

xj =
|Mj|
|M| , (1 ≤ j ≤ n) .

Appendix B

Equivalence of Auxiliary
and Shortcut Methods

The goal of this appendix is to compare two methods used in Phase I of
the Simplex Algorithm, namely, the Auxiliary Method of Section 2.4 and
the Shortcut Method of Section 2.5. The two methods look quite different
but turn out to be equivalent in a certain, precise way.

Let’s return to Problem 2.5.1 (B.1), below.

Problem B.1

Max. z = 28x1 + 21x2 + 26x3

s.t. −7x1 + 2x2 + 3x3 ≤ −210
5x1 − 8x2 + x3 ≤ −305
2x1 + 4x2 − 9x3 ≤ −250

& x1 , x2 , x3 ≥ 0

Its auxiliary is the following LOP.

Problem B.2

Max. v = −x0

s.t. −x0 − 7x1 + 2x2 + 3x3 ≤ −210
−x0 + 5x1 − 8x2 + x3 ≤ −305
−x0 + 2x1 + 4x2 − 9x3 ≤ −250

& x0 , x1 , x2 , x3 ≥ 0

We recall the sequence of tableaux and pivots that solve Problem B.2.
Note that we have numbered the tableaux somewhat oddly. We also have
left some space where columns may appear or disappear.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 B, c© Springer Science+Business Media LLC 2010

236 Appendix B. Equivalence of Auxiliary and Shortcut Methods

Tableaux B.3 (Auxiliary Method)

x0 x1 x2 x3 x4 x5 x6 v

T0 : −1 −7 2 3 1 0 0 0 −210
−1 5 −8 1 0 1 0 0 −305
−1 2 4 −9 0 0 1 0 −250

1 0 0 0 0 0 0 1 0

P1: 0 	→ 5

T1 : 0 −12 10 2 1 −1 0 0 95
1 −5 8 −1 0 −1 0 0 305
0 −3 12 −10 0 −1 1 0 55
0 5 −8 1 0 1 0 1 −305

P3: 2 	→ 6

T3 : 0 −114 0 124 12 −2 −10 0 590
12 −36 0 68 0 −4 −8 0 3220
0 −3 12 −10 0 −1 1 0 55
0 36 0 −36 0 4 8 12 −3220

P5: 3 	→ 4

T5 : 0 −114 0 124 12 −2 −10 0 590
124 274 0 0 −68 −30 −26 0 29930

0 −126 124 0 10 −12 2 0 1060
0 −274 0 0 68 30 26 124 −29930

P6: 1 	→ 0

T6 : 114 0 0 274 −36 −32 −46 0 28820
124 274 0 0 −68 −30 −26 0 29930
126 0 274 0 −47 −57 −22 0 32755
274 0 0 0 0 0 0 274 0

Keep in mind that Pivot P1 was performed in order that Tableau T1
might be feasible. By pivoting x0 into the basis, Tableau T1 will be feasible,
according to Workout 2.4.9, if and only if the leaving variable is chosen to
be that basic variable which is most negative. From that point on, we resort
to the pivoting rules of Phase II, as you can see.

Now we wish to take a moment to investigate the effect of these same
pivots on the original Problem B.1. To do this, we extend the AuxiliaryExtended

Method Method as follows. Consider each pivot xl 	→ xk as two pivots xl 	→ x0

and x0 	→ xk. These two pivots have the same effect of exchanging xk

and xl, while leaving x0 basic. But by splitting each pivot in two we will
be able to analyze individually each decision of choosing an entering or
leaving variable. In addition, we will include in the tableaux the columns
and objective rows of both objective variables z and u. What we produce
is the following sequence.

237

Tableaux B.4 (Extended Method)

x0 x1 x2 x3 x4 x5 x6 z v

T0 : −1 −7 2 3 1 0 0 0 0 −210
−1 5 −8 1 0 1 0 0 0 −305
−1 2 4 −9 0 0 1 0 0 −250

0 −28 −21 −26 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0

P1: 0 	→ 5

T1 : 0 −12 10 2 1 −1 0 0 0 95
1 −5 8 −1 0 −1 0 0 0 305
0 −3 12 −10 0 −1 1 0 0 55
0 −28 −21 −26 0 0 0 1 0 0
0 5 −8 1 0 1 0 0 1 −305

P2: 2 	→ 0

T2 : −10 −46 0 26 8 2 0 0 0 −2290
1 −5 8 −1 0 −1 0 0 0 305

−12 36 0 −68 0 4 8 0 0 −3220
21 −28 0 −229 0 −21 0 8 0 6405
8 0 0 0 0 0 0 0 8 0

P3: 0 	→ 6

T3 : 0 −114 0 124 12 −2 0 0 0 590
0 −3 12 −10 0 −1 0 0 0 55

12 −36 0 68 0 −4 12 0 0 3220
0 −399 0 −522 0 −21 0 12 0 1155
0 36 0 −68 0 4 0 0 12 −3220

P4: 3 	→ 0

T4 : −124 −274 0 0 68 30 26 0 0 −29930
0 −47 68 0 0 −9 −1 0 0 2995

12 −36 0 68 0 −4 −8 0 0 3220
522 −3827 0 0 0 −293 −229 68 0 146615
68 0 0 0 0 0 0 0 68 0

P5: 0 	→ 4

T5 : 124 274 0 0 −68 −30 −26 0 0 29930
0 −126 124 0 10 −12 2 0 0 1060
0 −114 0 124 12 −2 −10 0 0 590
0 −9082 0 0 522 −304 −218 124 0 37600
0 −274 0 0 68 30 26 0 124 −29930

P6: 1 	→ 0

T6 : 124 274 0 0 −68 −30 −26 0 0 29930
126 0 274 0 −47 −57 −22 0 0 3275
114 0 0 274 −36 −32 −46 0 0 28820

9082 0 0 0 −3827 −2869 −2386 274 0 2275215
274 0 0 0 0 0 0 0 274 0

238 Appendix B. Equivalence of Auxiliary and Shortcut Methods

Now you can see why we numbered the tableaux in the Auxiliary Method
the way we did. Also, you can see that Pivot P3 in the Auxiliary sequence
became Pivots P2 and P3 in the Extended sequence. Likewise, Pivot P5 in
the Auxiliary sequence became Pivots P4 and P5 in the Extended sequence.

Before proceeding, let’s spend a moment translating the rules we used
in the Auxiliary Method into rules for the Extended Method. In both cases
we start by choosing the row whose b-column was most negative, in this
case row 2.

In Auxiliary Pivot P3, x2 was chosen as the entering variable because of
the −8 in the objective row of Tableau T1, the first negative number we see
when reading left-to-right (Least Subscript rule). This corresponds to the
8 in row 2 of Tableau T1, or the −8 in row 2 of Tableau T0. Neglecting the
auxiliary variable x0, this translates into a rule which chooses the variable
with the least subscript whose coefficient in the prior row is negative.

Next, in Auxiliary Pivot P3, x6 was chosen as the leaving variable be-
cause it was the variable which placed the greatest restriction on x2. That
is, its b-ratio of 55

12 was smallest and nonnegative. As we will soon see, 55
12

was the smallest for the same reason that −3220 was the most negative
in Tableau T2. That is to say, x6 was chosen as the leaving variable in
Extended Pivot P3 because −3220 was most negative in Tableau T2. From
there, we argue as before.

Hence we have developed rules of pivoting which are always in terms
of the even numbered tableaux. This suggests that we can skip the odd
numbered tableaux by combining the two pivot operations x0 	→ xk and
xl 	→ x0 into the single exchange xl 	→ xk. The method for finding a pivot
in Phase I is now the reverse of that which finds the pivot in Phase II in the
following sense. Instead of deciding upon an entering variable first, followed
by a leaving variable, we now choose a leaving variable first, then an entering
variable. The rule for choosing the leaving variable is to pick that basic
variable whose value is most negative. The entering variable is that with
the least subscript whose coefficient in the pivot row is negative. It is these
rules, translated from the Auxiliary Method, which give us the Shortcut
Method for Phase I, below. Notice that we no longer need a column or row
for the auxiliary objective variable u since these are (virtually) unchanged
throughout the sequence of even tableaux. Also, we do not need a column
for x0 since it is never basic.

Tableaux B.5 (Shortcut Method)

x1 x2 x3 x4 x5 x6 z

T0 : −7 2 3 1 0 0 0 −210
5 −8 1 0 1 0 0 −305
2 4 −9 0 0 1 0 −250

−28 −21 −26 0 0 0 1 0

P2: 2 	→ 5

239

T2 : −46 0 26 8 2 0 0 −2290
−5 8 −1 0 −1 0 0 305
36 0 −68 0 4 8 0 −3220

−28 0 −229 0 −21 0 8 6405

P4: 3 	→ 6

T4 : −274 0 0 68 30 26 0 −29930
−47 68 0 0 −9 −1 0 2995
−36 0 68 0 −4 −8 0 3220

−3827 0 0 0 −293 229 68 146615

P6: 1 	→ 4

T6 : 274 0 0 −68 −30 −26 0 29930
0 274 0 −47 −57 −22 0 3275
0 0 274 −36 −32 −46 0 28820
0 0 0 −3827 −2869 2386 274 2275215

Having taken it on faith that achieving a minimum of 55
12 was equivalent

to having −3220 be most negative, we would like now to justify that claim
in the general setting.

Let’s say that at some stage of the Auxiliary Method we have a feasible
tableau, a portion of which, including the incoming variable and the b-
column, is shown below.

a · b
c · d
e · f

For example, it could be the first three rows of Tableau T1. Since this is a
feasible tableau, we know that b, d, f ≥ 0. Let’s suppose that the Auxiliary
Method tells us to pivot on the entry a, although c and e were also under
consideration. Thus a, c, e > 0 and 0 ≤ b

a <
d
c .

This portion of the corresponding tableau during the Extended Method
is identical, and let’s say that the bottom row includes the basic auxiliary
variable x0. Since x0 is basic, −f was most negative in the previous Ex-
tended tableau, and so f > 0 as well. The Extended Method mandates
that we pivot on the entry e, resulting in the following tableau.

0 · be− af
0 · de− cf
e · f

Suppose now that de− cf < 0. Then the Extended Method would tell
us to pivot in that row unless be − af were more negative. This would
be in contrast to the Auxiliary choice of pivoting in the top row. But
de − cf < 0 implies that d

c < f
e , and b

a < d
c implies that b < ad

c . Hence
b − d < d

c (a − c) < f
e (a − c), which implies that e(b − d) < f(a − c), or

240 Appendix B. Equivalence of Auxiliary and Shortcut Methods

be − af < de − cf . Since this whole argument is reversible, we can make
the following statement. Let b, d ≥ 0, a, c, e, f > 0, and d

c < f
e . Then

be − af < de − cf if and only if b
a < d

c . This means that the assertion
that the Auxiliary and Shortcut Methods make the same choice of leaving
variable is a correct one. (The proof is not entirely complete. One must
allow for the possibility of equality with the tie-breaking decision made by
the Least Subscript rule.) We record this as the following theorem.

Theorem B.6 The Auxiliary and Shortcut Methods are equivalent in the
sense that, ignoring the auxiliary variable x0, they make the same sequence
of decisions for incoming and outgoing variables. �

Workout B.7 Complete the proof of Theorem B.6, taking into account
equality and tie-breaking considerations.

Appendix C

Complexity

Our aim here is to give the reader a brief and informal introduction to the
running time complexity of algorithms. There are excellent places to learn
about the subject more formally and in greater detail, so we’ll just offer a
taste as it relates to LO.

C.1 P versus NP

The question of whether or not P = NP is something every undergradu-
ate mathematician or computer scientist should know about.1 While the
famous million-dollar question is whether or not P = NP, the infamous
hundred-forint joke is that P = NP if and only if N = 1 or P = 0. While a
bit of an oversimplification, one can think of modern day cryptosystems as
being dependent on the assumption that P �= NP. So what are P and NP?2

Without getting into discussions of Turing machines and models of com-
putation, we simply describe NP as the set of computational problems whose NP

problemsolutions can be verified in time that is bounded by a polynomial in the size
of its input.3 This is something we are quite familiar with by now, as our
certificates for the infeasibility, unboundedness, or optimality of a particu-
lar LOP are as fast as could be, putting LO in NP. Many computational
problems have three versions, namely, the recognition, evaluation, and recogni-

tion/
evaluation/
optimiza-
tion
versions

optimization versions. The recognition version asks whether there exists
an object satisfying certain conditions (a feasible solution) — it is a Yes-No
question. The evaluation version finds the value of the optimal feasible so-

1It is considered the Holy Grail of theoretical computer science, and the Clay Mathe-
matical Institute offers $1 million for its solution, as one of its seven Millennium Problems
(see http://www.claymath.org/millennium).

2While most people guess correctly that P stands for polynomial, it is not the case
that NP stands for not polynomial — instead it means nondeterministic polynomial,
which comes from an alternative definition that allows for machines to make random
choices.

3The phrase in the size of the input will be dropped hereafter, although we will
continue to mean it.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 C, c© Springer Science+Business Media LLC 2010

242 Appendix C. Complexity

lution, given some objective function, and the optimization version finds
the optimal feasible solution. With regard to a LOP or ILOP, the objects
are real or integer vectors, the constraints are linear, and the objective
function is linear.

When we speak of the complexity of a problem, we mean (usuallycomplexity

the best) upper bound on the running time of the best algorithm that
solves every instance of the problem, with polynomial (in particular linear,
quadratic, etc.) and exponential being the main distinctions, although there
are certainly others (e.g., subexponential, factorial). It turns out that the
three versions above have the same complexity — in the sense that the ratio
of the running times of any pair of them is bounded by a polynomial —
provided that the number of digits required to represent the optimal cost is
bounded by a polynomial. The provision pretty well takes care of everything
we care about, but for LOPs again points to the importance of the floptimal
value’s denominator (optimal basic coefficient); that is, we care that none of
the basic determinants has exponentially many digits. We see immediately
that LINEAR FEASIBILITY and INTEGER FEASIBILITY are in NP because,
for any solution x, Ax can be calculated in polynomial time (notice here
that the size of the input must include the size of the entries of A, not merely
its dimensions), and then trivially compared to b to determine feasibility.
It follows by duality that LO is in NP. However, note that it does not
follow that IO is in NP, since optimality and infeasibility certificates might
not always be polynomial in length (many of the Challenge exercises from
Chapter 13 exemplify this!). In fact, IO is an example of an NP-hardNP-hard

problem, one that is at least as hard (see reduction, below) as any in NP.
Next we describe P as the set of computational problems whose solutionsP problem

can be calculated in polynomial time (certainly P ⊆ NP). For example, the
multiplication of two n-digit integers is calculated by the usual algorithm
in at most 2n2 steps, counting single-digit multiplications and additions.
Thus, MULTIPLICATION ∈ P. Since MULTIPLICATION is verification for
FACTORING, we have FACTORING ∈ NP. Interestingly, it is not known
if FACTORING ∈ P.4 Here, the input size is the number of binary digits,
so if n has k digits, then the näıve algorithm of checking every integer up
to
√
n for divisibility could need to make 2k/2 tests (or roughly (2

k)2k/2

if restricting its domain to primes, supposing it had such a list). More
interesting, it was discovered recently5 that RECOGNIZING COMPOSITES

∈ P — that is, it was discovered how to recognize in polynomial time that
a number can be factored without finding a factor.

There are certain problems in NP that are hardest in the class. To
describe these we introduce oracles, which are like little black boxes thatoracle

give answers in unit time. We say that a problem B reduces to problem
reduction A if B can be solved in polynomial time using an oracle for A. Thus the

complexity of B is not harder than that of A (it is possible that a fast
4The seeming computational difficulty of FACTORING is the basis for the security of

the RSA cryptosystem.
5M. Agrawal, N. Kayal, and N. Saxena, Primes is in P, Ann. Math. 160 (2004),

781793.

C.2. Examples 243

algorithm for solving B exists that doesn’t use the oracle). The problem A
is NP-complete if every problem in NP reduces to A. In other words, it is NP-

completean NP-hard problem that is also in NP. It is one of the remarkable beauties
of complexity theory that such problems exist. Of course, if one can show
that some NP-complete problem is in P, then P = NP.

C.2 Examples

Given a graph G, a Hamilton cycle in G is a cycle that contains all of the Hamilton
cyclevertices of G. If the edges of G are weighted, then the weight of a subgraph

weight
H is the sum of the weights of the edges of H . The MWHC Problem (also
called the TRAVELING SALESPERSON Problem) asks if there is a Hamilton
cycle of weight less than w. The problem is in NP because a set of edges
of G can be verified to be a Hamilton cycle or not and its weight can be
calculated, both in linear time. However, there are potentially (n − 1)!/2
Hamilton cycles in G, so checking each one of them for weight less than
w is not a polynomial algorithm. Unfortunately, there is no better idea at
present.

A similar sounding problem is MWST, which asks if there is a spanning
tree of G having weight less than w. Since there are potentially nn−2

spanning trees of G,6 a number which far exceeds (n − 1)!/2 (the ratio is
close to en/n

√
2πn for large n), one might expect that MWST fares no better

than MWHC. It is in NP for the same reason, but it turns out that MWST

∈ P, while MWHC is NP-complete! In fact, both problems are special cases
of INTEGER FEASIBILITY (forcing INTEGER FEASIBILITY, and hence IO,
to be NP-hard), with the total unimodularity of MWST making it a special
case of LINEAR FEASIBILITY, which we will see is in P in Section C.3.

Another classic problem is k-COLORING, in which one asks if it is pos-
sible to assign to each vertex of a graph one of k colors so that the colors
of adjacent vertices differ. For 2-COLORING, one shouldn’t simply test all
2n possible colorings; instead it is not hard to show that the following
(quadratic) algorithm decides if G can be 2-colored. Pick any vertex of G
to be the only vertex of the queue Q, color it red (as opposed to blue), and
repeat the following task. Take the first vertex v ∈ Q, remove v from Q,
and for each of its adjacent vertices u, add u to the end of Q and either
color u the opposite of v if it doesn’t conflict with the other colored vertices
that are adjacent to u, or halt and return that G is not 2-colorable. If
every vertex gets colored then halt and return that G is 2-colorable. Thus
2-COLORING ∈ P. Unfortunately, no analogous algorithm is known for 3-
COLORING; in fact, 3-COLORING is NP-complete. It is also another special
case of IO.

As noted, IO is NP-hard. In fact, even its restriction to binary variables
(BO) is NP-hard. However, 2-COLORING is a special case of BO that is in
P. We see in Chapter 10 another case of IO that is in P, namely, NETWORK

6A result of Cayley — see Exercise 10.5.37.

244 Appendix C. Complexity

OPTIMIZATION. Therefore someone who builds a cryptosystem based on
an NP-complete problem must be careful not to accidentally use one of its
instances that lies in P.7 As a final example, we mention the SUBSET SUM

Problem, which asks if some subset of a set of n integers adds up to k. This
is an NP-complete problem, also a special case of IO. But suppose each
number on the list is at least k/t, for some fixed t. Then there are at most
a polynomial number (

∑t−1
i=1

(
n
i

)
= O(nt)) of subsets that need checking, a

disaster for security.
There are abundantly more interesting and natural problems to include,

and a vast literature on modern developments in the field. Papadimitriou8

is a good place to start.

C.3 LO Complexity

Is the Simplex Algorithm polynomial? Let’s suggest not. Consider the
3-dimensional cube, the convex hull of the eight binary triples. The edges
of this polytope form the graph Q3, whose vertices are the extreme points
of the cube, and it is not difficult to construct a Hamilton cycle H in it.
Imagine now a plane tangent to the cube at the origin gets pushed gently
through the cube. If the cube is a kind of elastic clay, then the topologist in
you might be able to stretch it in such a way that the next vertex that the
plane touches is the one that follows the origin along H . Really, you may
be able to continue this argument, stretching carefully in order to preserve
the corresponding vertex orders. If so, you have constructed an instance
of a LOP having 3 variables and 3 constraints on which Simplex makes
23 − 1 pivots in finding the optimum. Indeed, one can carefully extend the
argument with 3 replaced by n everywhere, showing that Simplex can take
exponential time. Theoretically, then, it is a horrible failure.

What makes it such a practical success is that such pathological exam-
ples as these seem to be rare, apparently never experienced in applications.
As mentioned in Chapter 5, Simplex tends to run very fast on average,
often in linear time.

In terms of theoretical complexity, it wasn’t until Khachian’s Ellipsoid
Algorithm in 1979 that we learned that LO ∈ P. The Ellipsoid Algorithm
solves LINEAR FEASIBILITY in polynomial time by surrounding the feasible
region by a sequence of ever shrinking ellipsoids. It halts either when an
ellipsoid’s center is feasible or when polynomially many ellipsoids have been
constructed. In the latter case, the final ellipsoid has too small a volume
to contain a feasible point, showing that the feasible region is empty. The
technical calculations again involve the largest possible basic determinant
the given constraint matrix could have. Unfortunately, this great theoret-
ical success is a practical flop — its typical running time compares very

7See D. Gutfreund, R. Shaltiel and A. Ta-Shma, If NP languages are hard on the
worst-case, then it is easy to find their hard instances, Comput. Complexity 16 (2007),
no. 4, 412–441.

8C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

C.3. LO Complexity 245

poorly against Simplex.
A different polynomial algorithm that continues to compete with Sim-

plex was invented in 1984 by Karmarkar. Unlike the exterior approach
of Khachian, Karmarkar’s Algorithm is an interior approach. It now be-
longs to a more general class of interior-point methods called central path
following algorithms that solve more general problems including CONVEX

OPTIMIZATION (okay, add COP to the acronym list) and more. Karmarkar
solves LO by first converting a given LOP to one with a special form that
is feasible and which has minimum 0 if and only if the original problem
is feasible. The algorithm generates a sequence of feasible points whose
objective values don’t always shrink, but do so over many iterations. After
polynomially many iterations the resulting value is either small enough that
it must be 0, since all basic determinants are bounded by some constant,
or returns that the optimum is positive.

More details and precise descriptions of both of these polynomial algo-
rithms can be found in a number of other texts. Neither algorithm pays
attention to the combinatorial structure of the feasible region, giving run-
ning times that depend on the entries. Roughly, an algorithm is strongly
polynomial if it is polynomial in the number, not the size of the entries. In strongly

polynomial
algorithm

that respect it is more of a combinatorial algorithm, and neither Khachian’s
nor Karmarkar’s qualifies. It is still unknown whether such an algorithm
exists for LO.

The wonderful behavior exhibited by the supposedly bad Simplex Al-
gorithm begs the question about problems in NP: are they almost always
polynomial, or polynomial on average, in the same sense that Simplex is?
Levin9 and others10 explore this direction.

9L. Levin, Average case complete problems, SIAM J. Computing 15 (1986), 285–286.
10Special issue on worst-case versus average-case complexity (O. Goldreich and S. Vad-

han, eds.), Comput. Complexity 16 (2007), no. 4.

Appendix D

Software

In this appendix we discuss various software that is useful for the course.
Many instructors like using professional solvers such as CPLEX, LINGO,
QSopt, CLP, and others, but we do not address them here. Instead, we
restrict our attention to what we’re using to supplement this text, namely
WebSim and MAPLE, and refer you to three outstanding web sites for learn-
ing more about the incredible variety of excellent software available for
solving optimization problems of all types.

• INFORMS (The Institute for Operations Research and the Manage-
ment Sciences):
www.informs.org

• COIN-OR (Computational Infrastructure for Operations Research):
www.coin-or.org

• Hans Mittelmann’s Decision Tree for Optimization Software:
plato.asu.edu/guide.html (also includes his fantastic Benchmarks:
plato.asu.edu/bench.html)

Outside of solving LOPs, one may be interested in visualizing the poly-
hedra that form their feasible regions. We show some of the ways this can
be done with MAPLE in Section D.3. However, a very nice software designed
specifically for this purpose is POLYMAKE.1

D.1 WebSim

WebSim is merely a web-based tool for performing integer pivots on an
array. Because we use it to solve LOPs, as well as systems of linear

1See www.math.tu-berlin.de/polymake.

G. H. Hurlbert, Linear Optimization, Undergraduate Texts in Mathematics,

DOI: 10.1007/978-0-387-79148-7 D, c© Springer Science+Business Media LLC 2010

248 Appendix D. Software

(in)equalities, there are a few bells and whistles included to facilitate its
use for this purpose.

First, from my web site (search for Hurlbert math homepage), click on
the WebSim logo. There you will find everything you need regarding how
to use it. The best approach is to click on Download and use it on your
own machine, so that you don’t have to worry about an Internet connection
while using it. You will find advice on which browser works best and how
to set its preferences, some tips on how to use WebSim efficiently (which
you can contribute to if you have some neat ideas), and a list of known
bugs (that you should also contribute to if you find troubles).

There are several ways to enter a tableau into WebSim. One can enter
each entry by hand into the cells (using tabs, arrows, or your mouse) of an
array whose size you define, or paste the entire tableau at once (from the
Empty option), having copied it from MAPLE, LATEX, or Excel, for example.
In the former case you will have had the opportunity to tell WebSim whether
you are solving a LOP or system, and whether the contraints are inequalities
or equalities (with a mixture of both, pick the closest option and modify the
tableau later). WebSim will then include separating lines in the appropriate
places; in the latter case you can insert them yourself by clicking on the
lines between the buttons. Pivoting is most easily accomplished by double-
clicking on the cell of the pivot entry.

Every cell, row button, column button, and tableau button has a menu
that can be accessed by right-clicking on it. These are explained fully on the
web site, and include such things as adding, deleting, and highlighting rows
and columns, filling them with 0s or 1s, copying a tableau to a new tab or
window or to Excel, and converting a tableau to MAPLE or LATEX. One can
also change the widths of the cells to accommodate fitting large tableaux
(a frequent occurrence with the networks of Chapter 10, for example) on
your screen or seeing large numbers in the cells.

Hopefully, you will find WebSim useful in remembering how the Sim-
plex Algorithm works, merely by recalling the infamous bumper sticker
WWWD.2

D.2 Algorithms

In this section we review basic algorithmic constructions that can be useful
in the course for solving certain exercises or exploring interesting questions.
We use a version of what is often called pseudocode, which concentratespseudocode

on making the instructions clear without regard to the actual syntax of
a particular language, such as Fortran, C++, Java, or MAPLE. The next
section will illustrate how MAPLE writes some of the following algorithms
using its own symbols and structure.

2What Would WebSim Do?

D.2. Algorithms 249

Algorithm D.1

s ← 0
for i from 1 to 20 by 3 do

if i mod 2 = 0
then s ← s+ i
else s ← s− i

end if
end do
print s

Algorithm D.1 illustrates a for loop and conditional if statement,
calculating and printing the difference between the even and odd multiples
of 3 among the first 20 natural numbers: 9 (= 0− 3+6− 9+12− 15+18).

Procedure D.2

procedure modprime(m)
count ← array(m− 1)
p ← 2
while p < 1000 do

if p �= m
then count(p mod m) ← count(p mod m) + 1

end if
p ← nextprime(p)

end do
output(argmax(count))

end procedure

Procedure D.2 illustrates a while loop, taking as input the positive
integer m and returning as output the integer 1 ≤ k < m that is congruent
modulo m to the most primes under 1000. Note that the pseudocode leaves
out considerations like how the array is initialized to zero, what type of
variables m and p are, and that count and p are local, rather than global
variables. These would all need to be specific in your language of choice.
The functions nextprime and argmax are assumed here to be predefined
functions of the language or procedures you’ve already written.

Procedure D.3

procedure expo(r, e,m)
if e = 0

then output(1)
elseif e = 1 then output(r mod m)
else output(expo(r, e mod 2,m) ∗ expo(r, �e/2�,m))

end if
end procedure

250 Appendix D. Software

Procedure D.3 illustrates recursion, quickly calculating the value of re

mod m for any nonnegative integer e. Notice that the case e = 0 is included
to insure that the procedure halts, and that the case e = 1 is unnecessary.
However, we included it only to show the use of the elseif construction,
which saves nested if statements.

There is obviously much more to know about algorithms,3 including
various data structures, floating point arithmetic, parallel architectures,
etc., but really, this is about all you need for this course.

D.3 MAPLE

MAPLE is a very well known computer algebra software, available at many
universities for use by faculty and students in varying degrees of licensing.
A student version is available for reduced price for personal use; usually
most of those in my course want the software on their own laptop instead
of having to always go to the school’s computer labs. The student version
is more than sufficient for our purposes.

The use of MAPLE is, of course, completely up to your instructor. In the
text I have included workouts and exercises that allow one to explore the
geometry, algebra, combinatorics, and probability related to LO by using a
computer algebra system with a visual component. It is certainly reasonable
to use something different than MAPLE, such as MATHEMATICA or MATLAB,
or example. The choice of MAPLE over MATHEMATICA , MATLAB , and
others was made after an extensive and thorough comparison that revealed
the most serious flaw with other systems —I don’t know how to use them.

While buying a book4 on how to learn MAPLE can be quite useful, it
might be overkill for this particular course. I have found that the combina-
tion of MAPLE’s excellent help functions and my occasional Internet queries
have been sufficient to handle everything I’ve needed so far. Do what works
for you; the following may help you get started. Help on a particular word
like Vector can be accessed by typing ?Vector. One can also click on the
Help menu to take a tour, browse the table of contents, search key words,
read the Quick Reference Card, or see the lists of packages and commands.
There are also interactive tools for plotting and building mathematical ob-
jects, tutors in various subjects, and other dropdown menus for editing,
formatting, and other operations. Surf the joint.

MAPLE can act as a calculator, and it requires punctuation to execute
code. While hitting the Enter key executes the code, hitting Shift+Enter
gives a carriage return to the next screen line without executing. Thus one
can write

3Read the classic A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley (1974) if you like.

4Such as F. Wright, Computing with Maple, Chapman & Hall/CRC (2001) or M. Abell
and J. Braselton, Maple by Example, Academic Press (2005).

D.3. MAPLE 251

y := 7:
x := 2*y;
x = %-1;

to obtain the following output.

x := 14

14 = 13

Notice how the colon suppresses output, while the semicolon displays it.
Also see that := makes assignments from right to left, while = takes no
action. The % sign stands for the most recently calculated value, which in
this case is 14. Thus x=%-1 is a statement, in this case a false one. This
can be used as a test in an if-then statement, for example.

The MAPLE code

S := [1,1]:
for i from 1 to 10 do
S := [op(S),S[-1]+S[-2]]

od:
print(S);
r := (1+sqrt(5))/2:
[seq(round((r^i)/sqrt(5)),i=1..nops(S))];

produces
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

as output. The list S is initialized to [1, 1]. Then op turns it into the
sequence 1, 1. While S[k] denotes the kth term in the list S, counting
from the left (MAPLE always starts its counting with 1 instead of 0), S[−k]
denotes the kth term in S, counting from the right. Thus the sum of the two
rightmost terms are appended to S. The brackets turn the sequence back
into the list [1, 1, 2] and the process is repeated. Finally, the command seq
creates a sequence with the given formula for the range given, where round
rounds a number to its nearest integer and nops(S) counts the number of
terms in S.

It is important to remember that lists and sequences are ordered, where-
as sets are not. The following commands and output highlight the differ-
ence.

L := [5,4,6,3,7]; L[3]; S := {5,4,6,3,7}; S[3];

L := [5, 4, 6, 3, 7]

6

S := 3, 4, 5, 6, 7

252 Appendix D. Software

5

Whenever possible, use MAPLE’s sequence-like constructions instead of
an iterative algorithm. For example, instead of writing

s := 0:
for k from 1 to 10 do
s := s+k

od:
s;

to obtain the result
55

write the following single line.

add(k,k=1..10);

Remember also that MAPLE can do algebra, after all. The command

simplify(sum(k,k=1..n));

produces the following output.

1
2
n2 +

1
2
n

This capability means that one should save all evaluations until the last
moment, since MAPLE performs exact arithmetic until you ask it to evaluate
a result numerically. For example,

y := exp(2);
evalf(y);

produces the following result.

y := e2

7.389056099

There are a number of variations of eval that apply in different circum-
stances.

Here is the way that Procedure D.2 would be written in MAPLE.

Procedure D.4

modprime := proc(m)
local count, p, x, k;
count := [seq(0,i=1..m-1)];
p := 2;
while p<1000 do
if p<>m

then count[p mod m] := count[p mod m]+1

D.3. MAPLE 253

fi;
p := nextprime(p)

od;
x := max(op(count));
for k from 1 to m-1 while count[k]<>x do od;
return k

end:

The command modprime(5) returns the value 2. Indeed, count ends at
the value [40, 47, 42, 38]. I personally enjoy writing if and do backwards to
end them. Talk about good times

When writing programs, it can be useful to execute them line by line
before grouping them together in one procedure. The Split or Join action
in the Edit menu can be useful in this regard. Also, debugging can be
facilitated with interactive debugger (usually an icon of a little bug), or
commands like printlevel and trace. Most of the time, little errors can
be found by setting printlevel:=10. When its value is 0 no output is
shown (the default value is 1), and higher and higher values show more and
more of the internal workings of your algorithm.

You may have the need at times to use functions instead of expressions.
For example, the code

z := (3*x-7*y)/5: eval(z,[x=10,y=3]);

can be written in terms of functions as follows

f := (x,y) -> (3*x-7*y)/5; f(10,3);

(If you have been testing out all these commands while reading, you will
discover that your results don’t match mine. The problem stems from
your prior values of x and y, which can be cleared with the command
unassign(’x’,’y’).)

Many times you will need to load various packages into MAPLE before
being able to compute things. For example, for most things in this course
you will need LinearAlgebra. Here is an example for building a random
tableau.

Algorithm D.5

with(LinearAlgebra):
vars := 5: cons := 4: Max := 100:
rnd := rand(-Max..Max):
A := Matrix([seq([seq(rnd(),j=1..vars)],i=1..cons)]):
B := Matrix([seq([rnd()],i=1..cons)]):
C := Matrix([[seq(rnd(),j=1..vars)]]):
R := Matrix([[A],[C]]): J := IdentityMatrix(cons+1):
S := Matrix([[B],[0]]): T := Matrix([[R,J,S]]):
Tab := convert(T,array);

254 Appendix D. Software

You can see how to glue matrices together to form larger ones. The
conversion to an array at the end allows you to copy the result into an
Empty window of WebSim.

The package combinat can be useful at times as well. In the next example
we calculate every feasible basis of a LOP.

D.3. MAPLE 255

Algorithm D.6

with(combinat,choose):
A := Matrix(rows,cols,

[[98, 45, 26, 19, 84],
[55, 88, 90, 8, 34],
[1, 1, 1, 1, 1]]);

rows := RowDimension(A):
cols := ColumnDimension(A):
b := Vector[column]([55, 55, 1]);
BETA := choose([seq(i,i=1..cols)],rows):
tetra := {}:
for j from 1 to binomial(cols,rows) do
beta := BETA[j];
B := A[1..rows,beta];
t := B^(-1).b;
if min(seq(t[i],i=1..rows))>=0
then tetra := tetra union {beta}

fi;
od:
tetra;
nops(tetra);

Of course, LinearAlgebra still needs to be loaded for this to work. But
if you have loaded it already in Algorithm D.5, you don’t need to do so
again. For those MAPLE commands you don’t recognize in Algorithm D.6,
look them up in MAPLE Help.

Probably, you will use the package plots frequently. Here are three ex-
amples to give you a feel for your array of options. Each is a different
picture of the same LOP, although Algorithm D.9 doesn’t show the objec-
tive function.

Algorithm D.7

with(plots):
plot([(210-5*x)/7, (420-12*x)/7, 25, (30-x)/2, 33-x],
x=0..35, color=[red, red, red, blue, green],
linestyle=[solid,solid,solid,solid,dash],
thickness=[1,1,1,1,3]);

Algorithm D.8

a := (210-5*x)/7: b := (420-12*x)/7: c:= 25:
f := min(a,b,c): d := (30-x)/2: g := max(d,0):
e := 33-x: plot([f,g,e], x=0..35,
color=[red,blue,green], axes=boxed);

256 Appendix D. Software

Algorithm D.9

inequal({5*x+7*y<=210, 12*x+7*y<=420, y<=25,
x+2*y>=30, x>=0, y>=0}, x=-1..36, y=-1..26,
optionsclosed=(color=red),
optionsfeasible=(color=blue),
optionsexcluded=(color=white));

In three dimensions you can write something like

a:=[4,5,13]: b:=[9,4,2]:
c:=[3,11,5]: d:=[0,2,1]:
polygonplot3d([a,b,c,a,d,b,c,d], axes=boxed);

to draw some polytopes you know the vertices of (but you need to make
sure you traverse every one of its edges in your plot list). The feasible
region of a 3-variable LOP can be displayed as follows.

Algorithm D.10

plot3d([max(0,(146*x+112*y)/18),
max(0,(-135*x+161*y)/19),
max(0,(149*x-122*y)/17),
max(0,(53*x+40*y)/21),0], x=0..20,
y=0..20, color=[red,yellow,blue,green,black],
axes=boxed);

With plot3d one can use the cursor to rotate the results in R
3, as well

as zoom in and out, or slide the figure around. You can also change how
the figure is drawn, with grid lines or dots, etc. But the absolute most
fun comes from animations. The following algorithm builds a movie that
shows an objective function of a 3-variable LOP sliding through the optimal
solution.

Algorithm D.11

T := 2:
a := max(min((56-31*x-37*y)/11,T),0):
b := max(min((52-11*x-34*y)/39,T),0):
c := max(min((60-35*x-10*y)/34,T),0):
d := max(min((t-9*x-7*y)/8,T),0):
animate(plot3d,[[0, a, b, c, d],
x=0..T, y=0..T, axes=boxed,
color=[black,red,blue,green,yellow]], t=10..20);

One can change the speed of the animation, pause it, set it to replay
continuously, and so on.

With all the above commands and others you may use, check their Help
pages for usage, variations, options, and links to related commands. Your
suggestions on more efficient or creative MAPLE programming with regard
to this course are welcome.

Index

Regarding the fonts included below, theorems (in their full names) are
in italics, and page numbers that refer to definitions are in bold. (You’ll
notice that theorems and definitions find their way into the margins for easy
location.) Italicized page numbers denote appearances in theorems, while
sans serif numbers signal inclusion in workouts and exercises, and roman
fonts cite regular occurrences of the term. Regarding the order of terms,
mathematical symbols come first (numbers, then capital letters, then lower
case letters), followed by acronyms, and then standard words.

2-Coloring Problem, 243
3-Coloring Problem, 243
A, 11, 89
B, 90
B′, 91
J, 160
Jk, 20, 69, 116, 118, 142, 148, 149,

154
N, 209
Π, 90
X-

simplex, 71
tetrahedron, 69, 142
triangle, 69, 138

Z, 209
ai,j , 11
β, 34, 90
b, 11, 89

-column, 33, 43, 203, 205, 239
-ratio, 36, 44, 47, 61, 112, 205,

238
bi, 11
c, 11, 89

-ratio, 205, 213
cβ , 90
cj , 11
cπ , 90
dβ , 91

deg, 178
det, 91
ε-column, 201
f -vector, 143
k-

Coloring Problem, 243
face, 30
intersecting family, 69, 71, 129,

129
regular graph, 183

k-regular graph, 192
n-person game, 162
π, 34, 90
vhull, 69, 70, 72, 137, 138, 142
vspan, 70
w, 11
x, 11, 89
xβ , 90
xj , 11
xπ, 90
y, 11, 89
yi, 11
z, 11
BFS, 181, 219
BLOP, viii, 23, 24, 26
CLP, 247
COIN-OR, 247
COP, 245

257

258 Index

CPLEX, 247
DFS, 181, 219
DS, 132, 132, 139
FLOP, viii, 209
GI, 37, 57
GLOP, viii, 148
IHOP, 209
ILOP, 6
INFORMS, 247
JLOP, 209
LG, 48
LINGO, 247
LOP, 2

degenerate, 49
terminal, 221

LS, 37, 48
MN, 37, 57
MWHC, 243
MWST, 243
NP

-complete, 243
-hard, 242, 243
problem, 27, 241

P problem, 27, 242
QSopt, 247
SDR, 189
SDR blocker, 189, 190, 193
SLOP, viii
TU, 99, 100, 100, 104, 105, 173, 243
WWWD, 248
ahull, 68, 68
aspan, 67
glb, 148
lhull, 68, 68
lspan, 66, 67
nhull, 68, 68
nspan, 67
per, 192
proj, 70
snr, 36
vhull, 64, 65, 68, 140, 143
vspan, 64, 65, 66

activity, 196, 200, 203
acyclic

graph, 168
network, 168

affine
combination, 62, 67
hull, 68, 68, 71
position, 71
region, 68
span, 67

Aging Lappers, 26
Aguilera, 4
air, bottled, 18, 163
Algorithm,

Best Response, 151, 154
Branch-and-Cut, 229
Breadth-First Search, 181, 219
Depth-First Search, 181, 219
Elimination, Fourier–Motzkin, 57
Ellipsoid, 87
Ford–Fulkerson, 181
Fourier–Motzkin Elimination, 57
Karmarkar’s, 87, 245
Search,

Breadth-First, 181, 219
Depth-First, 181, 219

algorithm,
backtracking, 219
central path following, 245
combinatorial, 245
polynomial, 242

strongly, 245
alternating path, 193
alternative system, 122, 123, 124,

125
Alternative, Theorem of the, 123, 127,

128, 190
analysis,

post-optimality, 195
sensitivity, 195

Annette, 19, 183
Anthony, 25
anti-symmetric matrix, 146
ants, 20, 201
ApproximationTheorem, Shadow,198
arc, 161, 163, 168–170

pendant, 168
Arope Trucking, 18, 163
Arrow, Kenneth, 26, 208
arugula, 18

Index 259

Assignment Problem, 194
association, homeowners, 26
Athens, 18, 163
augmat, 231
augmented

network, 166
tableau, 165

augmenting path, 193, 193
Aussie Foods Co., 20, 202
Auxiliary

Method, 39, 43, 44
Problem, 39, 39

Backman, 4
backtracking algorithm, 219
balanced digraph, 180

nearly, 180
Barbie, 145–151, 153–156, 160, 161
basic

coefficient, 33, 35, 38, 56, 91,
205, 212, 215

solution, 34, 34, 35, 38, 49, 59–
61, 66, 90, 99, 124, 173, 205

variable, 33, 34, 35, 43, 90, 92,
96, 110, 111, 202, 236, 238

basis, 33, 33, 34–37, 38, 43, 44, 55,
57, 60, 66, 77, 90, 91, 96,
98, 111, 136, 166, 166, 167,
168, 169, 188, 197

convex, 66
degenerate, 49
feasible, 34, 37, 55, 85, 253
infeasible, 34, 39, 45, 45, 55
initial, 33, 39, 39, 45, 90, 91
linear, 66
network, 167
optimal, 34, 104, 105, 200, 201,

202, 207, 208
partial, 110, 166
partner, dual, 85, 204, 204

Basis Theorem, Network, 168, 173,
188

Battleship, 158, 158, 161, 190
Beale, Evelyn Marin Lansdowne, 26
Ben, 19, 189
Benannaugh, Anna, 19, 185
Best Response Algorithm, 151, 154

Biff, 20, 201
Big M Method, 57
Bill, 19, 183
bimatrix, 153, 154, 155, 155, 159
Binghamton, Captain, 158
bipartite graph, 5, 5, 183, 184, 186,

188, 190, 190–192
Birkhoff, Garrett, 26
Birkhoff–von NeumannTheorem,132,

191, 193
Bixby, Robert, 26, 105
Björn, 157, 159
black widow spiders, 20, 201
Blake, James, 157
Bland’s Theorem, 49, 57
Bland, Robert, 26
blocker, SDR, 189, 190, 193
Blough, Joseph, 19, 185
boab seeds, 20, 202, 203, 207
Boosch Oil, 21
Boosters, Dolphin, 26
Boris, 152
bottled air, 18, 163
bound proof, branch-and-, 222
boundary point, 29, 31
bounded region, 29
branch-and-bound proof, 222
Branch-and-Cut Algorithm, 229
Breadth-First Search Algorithm, 181,

219
breast, 21
bridge, 168
broccoli, 18
brother Darryl, 160
Brouwer Fixed Point Theorem, 155,

159, 159, 160
Brown, Farmer, 18
Bunny, 153
butcher, Kingsbury, 21

Café Barphe, Le, 22
Calcium, 1
calf, 21
Calvin, 22
Captain Binghamton, 158
Carathéodory’s Theorem, 65, 142, 193
Carathéodory, Constantin, 26

260 Index

CarbonDating.com, 19, 183
Carlos, 20
Carter, 4
cash flow, 24
castles, sand, 21
Catalan number, 143
Cayley’s Theorem, 181, 243
Center, Spaced Out, 24
central path following algorithm, 245
Central Station, 22
certificate, 17, 222, 241

infeasible, 46, 97, 114, 121, 121,
122, 170

optimal, 4, 12, 98, 117, 196, 224,
226

unbounded, 47, 48, 114, 122, 171
unsolvable, 124

chads, 18, 207
chain, 167

oriented, 167
Chamique, 24
Charnes, Abraham, 26
Chayni Oil, 21
cheeseburger, deluxe, xi, 1
chicken sandwich, 1
Cholesky factorization, 105
Christmas, 23
chromatic number, fractional, 194
Chvátal rank, 229
circuit, 167, 169, 171, 179

oriented, 167, 171, 187
Clay Mathematical Institute, 241
Clifford, 19, 189
Clive, 153
Club, Inclusivity, 26
cockroaches, 20, 201
Code, Prufer’s, 181
coefficient, basic, 33, 35, 38, 56, 91,

205, 212, 215
column,

b-, 33
ε-, 201
dominated, 150, 151
pivot, 36, 47

combination,
affine, 62, 67

conic, 62, 67, 136, 141
convex, 62, 63, 64, 66, 67, 132,

132, 134, 142, 193
linear, 46, 46, 56, 62, 67, 121,

122
combinatorial algorithm, 245
Commerce Secretary, 19, 185
Complementary Slackness Theorem,

79, 80, 80, 84, 85, 148, 155
General, 115

complete, NP-, 243
complexity, 242
component, 167

strong, 167
CompositesProblem,Recognizing,242
cone, 134, 139

extreme ray of, 136, 136, 139
polyhedral, 134

conic
combination, 62, 67, 136, 141
hull, 68, 68, 136
region, 68
span, 67

conjecture, Hirsch, 143
connected

graph, 167
network, 167
network,

strongly, 167
constraint, 2

nonnegativity, 2
contour lines, 16
convex

basis, 66
combination, 62, 63, 64, 66, 67,

132, 132, 134, 142, 193
hull, 64, 64, 65, 68, 69, 71, 137
independent, 66
position, 71, 138, 142
region, 61
span, 64, 65

Convex Optimization Problem, 245
Cooper, William, 26
cooperative game, 154
CorrespondenceTheorem,Primal-Dual,

205, 205

Index 261

cost, 163
increased, 202, 202, 202
reduced, 201, 201, 202

Cost Theorem,
Increased, 202
Reduced, 201

cover, 5
minimal, 193
minimum, 186, 190

Cramer’s Rule, 234
crickets, 20, 201
Curly, 23
curves, level, 16
cutting plane, 203, 209, 228

decision form, 212, 215
original form, 212, 215

cutting plane proof, 222, 222, 223
cycle, 167

Hamilton, 243
negative, 171, 187

Dantzig, George, vii, 26
Darryl

brother, 160
other brother, 160

David, 19, 183
Davydenko, Nikolay, 157
decision form, 212, 215
Decision Tree, 247
degenerate

LOP, 49
basis, 49
extreme point, 49
pivot, 49
polyhedron, 49
tableau, 49

degree, 178, 180, 183
deluxe cheeseburger, xi, 1
demand, 163, 169, 170, 172, 173,

180, 183, 191
Depth-First Search Algorithm, 181,

219
Descartes, René, 26
Dewey, 23
diamond weevil, 20, 202, 203, 207
Diana, 24
dictionary, 33

feasible, 34
infeasible, 34
optimal, 34
unbounded, 47

digraph, 163
balanced, 180

nearly, 180
Dilemma, Prisoner’s, 153
Dilworth’s Theorem, 194
Dilworth, Robert, 26
dinner, 24
directed graph, 163
direction, extreme, 139, 140
distinct representatives, system of,

189, 189
Djokovic, Novak, 157
Dolphin Boosters, 26
dominated

column, 150, 151
row, 150, 151

Don, xii
Donyell, 19, 189
doubly stochastic matrix, 132, 184,

191–193
dual

basis partner, 85, 204, 204
multipliers, 10, 15, 222
problem, 11, 75, 113, 149
variable, 11, 62, 197, 206

Duality Theorem,
General, 113, 124, 149
Strong, 3, 5, 75
Weak, 11, 78, 119, 125

Dykstra, 4

edge, 5
pendant, 168

Eduard, Helly, 26
efficiency, Pareto, 208
Egerváry, Jenö, 26
EliminationAlgorithm,Fourier–Motzkin,

57
Ellipsoid Algorithm, 87
Elster, 4
emu, 20, 202
entering variable, 36, 37, 44, 47, 48,

238, 240

262 Index

entry, pivot, 50, 53, 99, 248
Environment,

Matrix, 91, 95, 96, 97, 97, 98,
100, 105, 164, 166

Network, 164, 166, 190
Tableau, 36, 91, 92, 95, 96, 97

equilibrium, 153, 153, 154, 155, 155,
159, 162

equivalent system, 232
Erdős–Ko–Rado Theorem, 143
Euler tour, 178, 180, 180
Euler’s Theorem, 180
Eumerica, 18, 163
Eurodollar, 18, 163
evaluation version, 241
even, 180
Evens, Odds and, 24
expectation, 145
expected value, 145
Extended Method, 236
exterior point, 29
extreme

direction, 139, 140
point, 29, 59, 140

degenerate, 49
ray

of cone, 136, 136, 139
of polycone, 142
of polyhedron, 139

face, 30, 55
k-, 30

facet, 30, 134, 137
Factoring Problem, 242
factorization, Cholesky, 105
fair game, 146, 157, 160, 161
family,

k-intersecting, 69, 71, 129, 129
full-intersecting, 129, 129

Family, Gambino, 26
fantasy tennis, 157
Farkas Theorem, Integer, 223
Farkas’s Theorem, 125, 137
Farkas, József, 26
Feasibility Problem,

Integer, 242, 243
Linear, 242, 243, 244

feasible
basis, 34, 37, 55, 85, 253
dictionary, 34
network, 183, 191
objective value, 10
point, 10, 11, 13, 17, 245
problem, 34, 38
region, 29, 30, 31, 50, 54, 59,

61, 132, 142, 215, 222, 244,
247

set, 29
solution, 14, 47, 49, 59, 80, 81,

109, 210, 241
tableau, 34, 43, 236
tree, 170

Federer, Roger, 157
Fernandez, 4
fingers, 24
Finite Basis Theorem, 143
fish sandwich, 1
Fixed Point Theorem, Brouwer, 155,

159, 159, 160
floptimal

solution, viii, 215, 224
tableau, 216
value, 242

floptimal value, 209
Florida, State of, 18
Flow Problem, Network, 181
flow, cash, 24
Ford, Lester, 26
Ford–Fulkerson Algorithm, 181
forearm, 21
form,

decision, 212, 215
general, 107, 112
Hermite normal, 128
original, 212, 215
standard, 8, 9, 9, 12, 39, 49, 83,

118, 164, 212
network, 165, 168

Fourier, Jean, 26
Fourier–Motzkin Elimination Algo-

rithm, 57
fractional chromatic number, 194
Frank, 159

Index 263

Frankfurt, 18, 163
Freddy, 210
free variable, 8, 111, 118, 122
Frish, Ragnar, 26
Fulkerson Algorithm, Ford–, 181
Fulkerson, Ray, 26
full-intersecting family, 129, 129
function,

improvement, 155, 159
objective, 2

Fundamental Theorem, 49
General, 112

Gale, David, 26
Gambino Family, 26
game value, 24, 146
game,

n-person, 162
cooperative, 154
fair, 146, 157, 160, 161
general-sum, 153, 159
noncooperative, 154
symmetric, 146, 157
zero-sum, 153, 153, 154

Gardeners Guild, 26
General Duality Theorem, 124, 149
general form, 107, 112
general-sum game, 153, 159
Gomory, Ralph, 26
Gooden, 4
Graham’s scan, 72
Grail, Holy, 241
graph, 5
graph,

k-regular, 183, 192
acyclic, 168
bipartite, 5, 5, 183, 184, 186,

188, 190, 190–192
connected, 167
directed, 163
regular, 183, 184

Graphic Method, 31
Greatest Implementation, Lowest-, 48
Greatest Increase Implementation, 37,

57
Gridburg, 19, 185
Guild, Gardeners, 26

Gumbo’s Restaurant, 24

Hal’s Refinery, 21
half-space, 29, 61, 65, 130, 134
Hall’s Theorem, 190
Hall, Philip, 26
hamburger, 1
Hamilton cycle, 243

Minimum Weight Problem, 243
Handshaking Lemma, 178
hard, NP-, 242, 243
head, 164
Helly’s Theorem, 129
Hendrix, 21
Hermite normal form, 128
Hernandez, 4
Hilton–Milnor Theorem, 143
Hirsch conjecture, 143
Hitchcock, Frank, 26
Hoffman, Alan, 26
Hoffman–Kruskal Theorem, 100
Holy Grail, 241
homeowners association, 26
homogenization, 127
hot start, 200, 203, 207, 208, 212
Hotdogger’s Union, 19, 185
Huey, 23
hull,

affine, 68, 68, 71
conic, 68, 68, 136
convex, 64, 64, 65, 68, 69, 71,

137
linear, 68, 68

Hungarian Method, 194
Hyperplane Separation Theorem, 143
hyperplane, supporting, 30

iloptimal
problem, 223
solution, viii
value, 209

Implementation,
Greatest Increase, 37, 57
Least Subscript, 37, 48
Lowest-Greatest, 48
Most Negative, 37, 57

improvement function, 155, 159

264 Index

Inclusivity Club, 26
inconsistent system, 123, 123
Increase Implementation, Greatest,

37, 57
increased

cost, 202, 202, 202
profit, 203, 203

Increased Cost Theorem, 202
indegree, 178, 180
independent, convex, 66
Indifference, Principle of, 148, 155,

159
inequality, valid, 209

decision form, 212, 215
original form, 212, 215

infeasible
basis, 34, 39, 45, 45, 55
certificate, 46, 97, 114, 121, 121,

122, 170
dictionary, 34
point, 10
problem, 10, 34, 49, 112, 119
solution, 121
tableau, 34

infinity node, 165
initial basis, 33, 39, 39, 45, 90, 91
Innis, 4
Institute, Clay Mathematical, 241
Integer Farkas Theorem, 223
Integer Feasibility Problem, 242, 243
integral polyhedron, 100, 100
Integrality Theorem, 173
interior point, 29

methods, 245
intersecting family,

k-, 69, 71, 129, 129
full-, 129, 129

interval matrix, 105
Iron, 1

J. J., 129
Jake, 19, 189
Jason, 210
Jody, 152
John, 19, 157, 159, 183
Johnson, 4
Johnson, Anders, 26

Joni, 197
judge, 24

König’s Theorem, 184
König, Dénes, 26
König–Egerváry Theorem, 186, 190,

190, 193
Kantorovich, Leonid, 26
Kara, 19, 189
Karmarkar’s Algorithm, 87, 245
Karmarkar, Narendra, viii, 26
Karush, William, 26
Kate, 22
Kathy, 19, 183
Ken, 145–151, 153–156, 160, 161
Khachian, Leonid, viii, 26
Kingsbury butcher, 21
kiwi fruit, 20, 202, 203, 207
Klee, Victor, 26
Koopmans, Tjalling, vii, 26
Kruskal, Joseph, 26
Kuhn, Harold, 26

label, pivot, 60
labeling, Sperner, 140
Lagrange multipliers, 87
Lappers, Aging, 26
Large Numbers, Weak Law of, 145
Large World Park, 24
Larry, 23
Law of Large Numbers, Weak, 145
leaf, 168, 168, 169, 173, 178, 180,

221
Least Subscript Implementation, 37,

48
Leatherface, 210
leaves, wattle, 20, 202, 203, 207
leaving variable, 36, 37, 43, 44, 44,

47, 236, 238, 240
Lemke, Carlton, 26
Lemma,

Handshaking, 178
Sperner’s, 140, 141, 143

length, 167
Leontief, Wassily, 26
level curves, 16
Lieutenant McHale, 158

Index 265

linear
basis, 66
combination, 46, 46, 56, 62, 67,

121, 122
hull, 68, 68
region, 68
span, 67

Linear Feasibility Problem, 242, 243,
244

lines, contour, 16
Lisa, 24
Log Barrier Method, 105
Lopez, Jennifer, 209
Louie, 23
Lowest-Greatest Implementation, 48

MacDonald, Öreg, 20
marginal value, 197, 200
matching, 5, 5

maximal, 190
maximum, 186, 190
perfect, 183, 184, 186, 192, 193

Matching polytope, 72
Perfect, 72

Mathematical Institute, Clay, 241
Matrix Environment, 91, 95, 96, 97,

97, 98, 100, 105, 164, 166
Matrix Tree Theorem, 181
matrix,

anti-symmetric, 146
doubly stochastic, 132, 184, 191–

193
interval, 105
payoff, 145, 146, 149, 160
permutation, 132, 132, 139, 184,

191–194
sparse, 96, 105
stochastic, 132

doubly, 132, 184, 191, 191–
193

totally unimodular, 99, 100, 100,
104, 105, 173, 243

maximal matching, 190
maximum matching, 186, 190
Mayor, 19, 185
McHale, Lieutenant, 158
Melissa, 23

Merrill, Carol, 1
Method,

Auxiliary, 39, 43, 44
Big M , 57
Extended, 236
Graphic, 31
Hungarian, 194
Log Barrier, 105
Perturbation, 57
Primal-Dual, 128
Shortcut, 43, 44

method, interior-point, 245
Mikey Moose Square, 24
Millenium Problems, 241
minimal cover, 193
Minimax Theorem, 149
minimum cover, 186, 190
MinimumWeightHamiltonCycleProb-

lem, 243
MinimumWeightSpanningTreeProb-

lem, 243
Minkowski sum, 69, 137
Minkowski, Hermann, 26
Minkowski–Weyl Theorem, 136
Minty, George, 26
Mittelmann, Hans, 247
mixed strategy, 147
Moe, 23
Monica, 19, 183
Monty, 160
Moose, Mikey, 24
Morganstern, Oscar, 26
Moscow, 18, 163
Most Negative Implementation, 37,

57
moths, 20, 201
Motzkin, Theodore, 26
Muffy, 20, 201
Multiplication Problem, 242
multipliers,

dual, 10, 15, 222
Lagrange, 87

Murray, Andy, 157

Nadal, Rafael, 157
Nalbandian, David, 157
Nash’s Theorem, 162

266 Index

Nash, John, 26
Natasha, 152
Nearest Vector Problem, 229
nearly balanced digraph, 180
neck, 21
negative cycle, 171, 187
Negative Implementation, Most, 37,

57
Nemirovsky, Arkady, 26
network, 99, 163

acyclic, 168
augmented, 166
basis, 167
connected, 167

strongly, 167
feasible, 183, 191
form, standard, 165, 168

Network Basis Theorem, 168, 173,
188

Network Environment, 164, 166, 190
Network Flow Problem, 181
Neumann, John von, 27
Nobel Prize, vii, 155, 208
node, 163

infinity, 165
nonbasic variable, 33
noncooperative game, 154
nonnegativity constraint, 2
normal form, Hermite, 128
number,

Catalan, 143
fractional chromatic, 194

Nykesha, 19, 189

objective
function, 2
row, 33
value, 10

Odds and Evens, 24
Oil,

Boosch, 21
Chayni, 21

Old Yorktown, 22
operation,

pivot, 35, 36, 37, 38, 40, 43,
45, 53, 56, 90, 95, 111, 111,

166, 202, 205,212, 234, 236,
244, 247

row, 231
optimal

basis, 34, 104, 105, 200, 201,
202, 207, 208

certificate, 4, 12, 98, 117, 196,
224, 226

dictionary, 34
pair, 79, 79, 84, 85, 87
problem, 34, 49, 112, 119
solution, 4, 49, 75, 81, 85, 112,

120, 132, 195, 198, 202
strategy, 148, 149, 149, 151, 152,

155, 160
tableau, 34

optimization version, 241
oracle, 242
Orchard-Hayes, William, 27
oriented

chain, 167
circuit, 167, 171, 187

original form, 212, 215
other brother Darryl, 160
outdegree, 178, 180

pair, optimal, 79, 79, 84, 85, 87
Panch, 152
Paper-Scissors, Rock-, 157
parameter, 33
Pareto efficiency, 208
Paris, 18, 163
Park, Large World, 24
partial basis, 110, 166
partner, dual basis, 85, 204, 204
Pat, 24
path, 167

alternating, 193
augmenting, 193, 193

payoff matrix, 145, 146, 149, 160
pendant

arc, 168
edge, 168

perfect matching, 183, 184, 186, 192,
193

Perfect Matching polytope, 72
permanent, 192

Index 267

permutation matrix, 132, 132, 139,
184, 191–194

Perturbation Method, 57
Pete, 24
Phase

0, 111, 111, 117, 166
I, 34, 39, 44, 45, 45, 57, 111,

120, 121, 169, 235
II, 34, 36, 37, 38, 40, 44, 44, 47,

55, 111, 122, 136, 170, 199,
205, 236

pivot
column, 36, 47
degenerate, 49
entry, 50, 53, 99, 248
label, 60
operation, 35, 36, 37, 38, 40, 43,

45, 53, 56, 90, 95, 111, 111,
166, 202, 205, 212, 234, 236,
244, 247

row, 36, 43, 45, 238
rule, 43, 48, 91, 166, 215, 238

plane,
cutting, 203, 209, 228

decision form, 212, 215
original form, 212, 215
proof, 222, 222, 223

Planet, Sidney, 24
point,

boundary, 29, 31
exterior, 29
extreme, 29, 59, 140

degenerate, 49
feasible, 10, 11, 13, 17, 245
infeasible, 10
interior, 29
saddle, 152, 153, 155, 158–160

points, separable, 127
Police Chief, 19, 185
polycone, 134, 139

extreme ray of, 142
polyhedral cone, 134
Polyhedral Verification Problem, 72
polyhedron, 29, 65, 68, 69, 96, 100,

132, 137, 140
degenerate, 49

extreme ray of, 139
integral, 100, 100

polynomial algorithm, 242
strongly, 245

polytope, 29, 65, 68, 70, 100, 130,
132, 137, 141, 143, 228, 229

Matching, 72
Perfect, 72

position,
affine, 71
convex, 71, 138, 142

post-optimality analysis, 195
Poussin, Charles de la Vellé, 27
President, 26
price, shadow, 197, 198, 203, 206
primal

problem, 11, 75, 204
variable, 11

Primal-Dual Correspondence Theo-
rem, 205, 205

Primal-Dual Method, 128
Principle of Indifference, 148, 155,

159
Prisoner’s Dilemma, 153
Prize, Nobel, vii, 155, 208
problem variable, 8, 29, 33, 74
Problem,

2-Coloring, 243
3-Coloring, 243
k-Coloring, 243
Assignment, 194
Auxiliary, 39, 39
Composites, Recognizing, 242
Convex Optimization, 245
Factoring, 242
Feasibility,

Integer, 242, 243
Linear, 242, 243, 244

HamiltonCycle,MinimumWeight,
243

Integer Feasibility, 242, 243
Linear Feasibility, 242, 243, 244
Minimum Weight

Hamilton Cycle, 243
Spanning Tree, 243

Multiplication, 242

268 Index

Nearest Vector, 229
Network Flow, 181
Polyhedral Verification, 72
Recognizing Composites, 242
Salesperson, Traveling, 243
Shortest Vector, 229
Spanning Tree, Minimum Weight,

243
Subset Sum, 229
Transshipment, 163
Traveling Salesperson, 243
Vector,

Nearest, 229
Shortest, 229

problem,
NP, 27, 241
P, 27, 242
constraint, 2
dual, 11, 75, 113, 149
feasible, 34, 38
iloptimal, 223
infeasible, 10, 34, 49, 112, 119
optimal, 34, 49, 112, 119
primal, 11, 75, 204
unbounded, 10, 47, 49, 112, 119,

136
Problems, Millennium, 241
product, 196
profit, 196, 197, 200

increased, 203, 203
reduced, 203, 203

proof,
branch-and-bound, 222
cutting plane, 222, 222, 223

Prufer’s Code, 181
pseudocode, 248
pull, theological tractor, xi
pure strategy, 147

rank, Chvátal, 229
ratio,

b-, 36, 44, 47, 61, 112, 205, 238
c-, 205, 213
smallest nonnegative, 36

ray, 134
extreme

of cone, 136, 136, 139

of polycone, 142
of polyhedron, 139

Rebecca, 19, 189
recognition version, 241
RecognizingCompositesProblem,242
reduced

cost, 201, 201, 202
profit, 203, 203
tableau, 165

Reduced Cost Theorem, 201
reduction, 242
redundant system, 86

strongly, 86
region,

affine, 68
bounded, 29
conic, 68
convex, 61
feasible, 29, 30, 31, 50, 54, 59,

61, 132, 142, 215, 222, 244,
247

linear, 68
unbounded, 29

Regis, 19, 183
regular graph, 183, 184
relaxation, 209
Repete, 24
representatives, system of distinct,

189, 189
resource, 196
Response Algorithm, Best, 151, 154
Restaurant, Gumbo’s, 24
restricted variable, 8
rib, 21
Rock-Paper-Scissors, 157
Rockafellar, Tyrell, 27
Roddick, Andy, 157
rooted spanning tree, 178
rough green snakes, 20, 201
row operation, 231
row,

dominated, 150, 151
objective, 33
pivot, 36, 43, 45, 238

Rule, Cramer’s, 234
rule, pivot, 43, 48, 91, 166, 215, 238

Index 269

rump, 21

saddle point, 152, 153, 155, 158–160
Salesperson Problem, Traveling, 243
Sallie, 25
Sammy, 25
Samuelson, Paul, 27
sand castles, 21
sandwich,

chicken, 1
fish, 1

scan, Graham’s, 72
Scissors, Rock-Paper-, 157
scorpions, 20, 201
Search Algorithm,

Breadth-First, 181, 219
Depth-First, 181, 219

Secretary, Commerce, 19, 185
seeds, boab, 20, 202, 203, 207
Senate, 19, 189
sensivity analysis, 195
separable points, 127
Separation Theorem, Hyperplane, 143
set, feasible, 29
Shadow Approximation Theorem, 198
shadow price, 197, 198, 203, 206
Shapley value, 162
Shapley, Lloyd, 27
Sheryl, 24
Shor, Naum, 27
Shortcut Method, 43, 44
Shortest Vector Problem, 229
Sidney Planet, 24
simplex, X-, 71
sink, 180
slack variable, 8, 32, 40, 60, 74, 76,

99, 112, 113, 121, 164, 199,
205, 212

Smale, Stephen, 27
smallest nonnegative ratio, 36
snakes, rough green, 20, 201
solution, 34

basic, 34, 34, 35, 38, 49, 59–61,
66, 90, 99, 124, 173, 205

feasible, 14, 47, 49, 59, 80, 81,
109, 210, 241

floptimal, viii, 215, 224

iloptimal, viii
infeasible, 121
optimal, 4, 49, 75, 81, 85, 112,

120, 132, 195, 198, 202
songs, 25
source, 180
space, half-, 29
Spaced Out Center, 24
span,

affine, 67
conic, 67
convex, 64, 65
linear, 67

spanning
subgraph, 168
subnetwork, 168
tree, 168, 168, 168, 169, 170,

172, 174, 178, 243
rooted, 178

Spanning Tree Problem, Minimum
Weight, 243

sparse
matrix, 96, 105
tableau, 96, 165

Sperner labeling, 140
Sperner’s Lemma, 140, 141, 143
spiders, black widow, 20, 201
Square, Mikey Moose, 24
Stable Marriage Theorem, 194
standard form, 8, 9, 9, 12, 39, 49,

83, 118, 164, 212
network, 165, 168

start, hot, 200, 203, 207, 208, 212
States, United, 163
Station, Central, 22
Stepford Wives, 26
Stigler, George, 27
stochastic

matrix, 132
doubly, 132, 184, 191–193

vector, 132
strategy,

mixed, 147
optimal, 148, 149, 149, 151, 152,

155, 160
pure, 147

270 Index

strong component, 167
Strong Duality Theorem, 3, 5, 75

General, 113
strongly

connected, 167
polynomial algorithm, 245
redundant system, 86

subgraph, 168
spanning, 168

subnetwork, 168
spanning, 168

Subscript Implementation, Least, 37,
48

Subset Sum Problem, 229
subway, 22
Sue, 19, 189
sum,

game,
general-, 153, 159
zero-, 153, 153, 154

Minkowski, 69, 137
supply, 163
supporting hyperplane, 30
symmetric game, 146, 157
system of distinct representatives, 189,

189
system,

alternative, 122, 123, 124, 125
equivalent, 232
inconsistent, 123, 123
redundant, 86

strongly, 86

tableau, 33
augmented, 165
degenerate, 49
feasible, 34, 43, 236
floptimal, 216
infeasible, 34
optimal, 34
reduced, 165
sparse, 96, 165
unbounded, 47
unstable, 96

Tableau Environment, 36, 91, 92, 95,
96, 97

tail, 164

Tardos, Eva, 27
tennis, fantasy, 157
Teresa, 19, 183
terminal LOP, 221
tetrahedron, X-, 69, 142
Thelma, 129
theological tractor pull, xi
Theorem,

Alternative, of the, 123, 127, 128,
190

Approximation, Shadow, 198
Birkhoff–von Neumann, 132, 191,

193
Bland’s, 49, 57
Brouwer Fixed Point, 155, 159,

159, 160
Carathéodory’s, 65, 142, 193
Cayley’s, 181, 243
Complementary Slackness, 79, 80,

80, 84, 85, 148, 155
General, 115

Correspondence,Primal-Dual, 205,
205

Cost,
Increased, 202
Reduced, 201

Cramer’s Rule, 234
Dilworth’s, 194
Duality,

General, 113, 124, 149
Strong, 3, 5, 75
Weak, 11, 78, 119, 125

Erdős–Ko–Rado, 143
Euler’s, 180
Farkas’s, 125, 137
Farkas, Integer, 223
Finite Basis, 143
Fixed Point, Brouwer, 155, 159,

159, 160
Fundamental, 49

General, 112
Hall’s, 190
Helly’s, 129
Hilton–Milnor, 143
Hoffman–Kruskal, 100
Hyperplane Separation, 143

Index 271

Increased Cost, 202
Integer Farkas, 223
Integrality, 173
König’s, 184
König–Egerváry, 186, 190, 190,

193
Marriage, Stable, 194
Matrix Tree, 181
Minimax, 149
Minkowski–Weyl, 136
Nash’s, 162
Network Basis, 168, 173, 188
Primal-Dual Correspondence, 205,

205
Reduced Cost, 201
Separation, Hyperplane, 143
Shadow Approximation, 198
Stable Marriage, 194
Weak Law of Large Numbers,

145
thigh, 21
tomatoes, 23
totally unimodular matrix, 99, 100,

100, 104, 105, 173, 243
tour, Euler, 178, 180, 180
tournament, 161
tractor pull, theological, xi
Transshipment Problem, 163
Traveling Salesperson Problem, 243
Tree

Problem, Minimum Weight Span-
ning, 243

Theorem, Matrix, 181
tree, 168

feasible, 170
spanning, 168, 168, 168, 169,

170, 172, 174, 178, 243
rooted, 178

Tree, Decision, 247
triangle, X-, 69, 138
Trucking, Arope, 18, 163
Tucker, Albert, 27

unbounded
certificate, 47, 48, 114, 122, 171
dictionary, 47

problem, 10, 47, 49, 112, 119,
136

region, 29
tableau, 47

unimodular matrix, totally, 99, 100,
100, 104, 105, 173, 243

Union, Hotdogger’s, 19, 185
United States, 163
unsolvable certificate, 124
unstable tableau, 96

valid inequality, 209
decision form, 212, 215
original form, 212, 215

value,
expected, 145
floptimal, 209, 242
game, 24, 146
iloptimal, 209
marginal, 197, 200
objective, 10
Shapley, 162

variable,
basic, 33, 34, 35, 43, 90, 92, 96,

110, 111, 202, 236, 238
dual, 11, 62, 197, 206
entering, 36, 37, 44, 47, 48, 238,

240
free, 8, 111, 118, 122
leaving, 36, 37, 43, 44, 44, 47,

236, 238, 240
nonbasic, 33
primal, 11
problem, 8, 29, 33, 74
restricted, 8
slack, 8, 32, 40, 60, 74, 76, 99,

112, 113, 121, 164, 199, 205,
212

Varyim Portint Co., 81
vector,

f -, 143
stochastic, 132

Venice, 18, 163
Verification Problem, Polyhedral, 72
version,

evaluation, 241
optimization, 241

272 Index

recognition, 241
vertex, 5, 168, 173, 178, 183, 243,

244
Victoria, 19, 183
Vienna, 18, 163
Vitamin

A, 1
C, 1

Warren, 19, 183
wattle leaves, 20, 202, 203, 207
Weak Duality Theorem, 11, 78, 119,

125
Weak Law of Large Numbers, 145
weevil, diamond, 20, 202, 203, 207
weight, 243
Wets, Roger, 27
Wives, Stepford, 26
Wolfe, Philip, 27
Wood, Marshal, 27
Wright, Susan, 27

Yolanda, 24

zero-sum game, 153

	Linear Optimization
	1 Introduction
	2 The Simplex Algorithm
	3 Geometry
	4 The Duality Theorem
	5 Matrix Environment
	6 General Form
	7 Unsolvable Systems
	8 Geometry Revisited
	9 Game Theory
	10 Network Environment
	11 Combinatorics
	12 Economics
	13 Integer Optimization
	A Linear Algebra Review
	B Equivalence of Auxiliaryand Shortcut Methods
	C Complexity
	D Software
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

