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To my children



Preface

Over the past decade there has been an explosion of developments in mixed
effects models and their applications. This book concentrates on two major
classes of mixed effects models, linear mixed models and generalized linear
mixed models, with the intention of offering an up-to-date account of theory
and methods in the analysis of these models as well as their applications in
various fields.

The first two chapters are devoted to linear mixed models. We classify lin-
ear mixed models as Gaussian (linear) mixed models and non-Gaussian linear
mixed models. There have been extensive studies in estimation in Gaussian
mixed models as well as tests and confidence intervals. On the other hand,
the literature on non-Gaussian linear mixed models is much less extensive,
partially because of the difficulties in inference about these models. However,
non-Gaussian linear mixed models are important because, in practice, one is
never certain that normality holds. This book offers a systematic approach
to inference about non-Gaussian linear mixed models. In particular, it has
included recently developed methods, such as partially observed information,
iterative weighted least squares, and jackknife in the context of mixed models.
Other new methods introduced in this book include goodness-of-fit tests, pre-
diction intervals, and mixed model selection. These are, of course, in addition
to traditional topics such as maximum likelihood and restricted maximum
likelihood in Gaussian mixed models.

The next two chapters deal with generalized linear mixed models. These
models may be regarded as extensions of the Gaussian mixed models. They are
useful in situations where responses are correlated as well as discrete or cate-
gorical. McCullagh and Nelder (1989) introduced one of the earlier examples
of such models, a mixed logistic model, for the infamous salamander mating
problem. Since then these models have received considerable attention, and
various methods of inference have been developed. A major issue regarding
generalized linear mixed models is the computation of the maximum likeli-
hood estimator. It is known that the likelihood function under these models
may involve high-dimensional integrals that cannot be evaluated analytically.
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Therefore, the maximum likelihood estimator is difficult to compute. We clas-
sify the methods of inference as likelihood-based, which include the Bayesian
methods, and nonlikelihood-based. The likelihood-based approaches focus on
developing computational methods. Markov chain Monte Carlo methods have
been used in both the likelihood and the Bayesian approaches to handle the
computations. The nonlikelihood-based approaches try to avoid the compu-
tational difficulty by considering alternative methods. These include approxi-
mate inference and estimating equations. Another challenging problem in this
area is generalized linear mixed model selection. A recently developed method,
called fence, is shown to be applicable to selecting an optimal model from a
set of candidate models.

There have been various books on mixed effects models and related topics.
The following are the major ones published in the last ten years.

1. Demidenko (2004), Mixed Models—Theory and Applications
2. McCulloch and Searle (2001), Generalized, Linear and Mixed Models
3. Sahai and Ageel (2000), Analysis of Variance: Fixed, Random and Mixed
Models
4. Verbeke et al. (2000), Linear Mixed Models for Longitudinal Data
5. Pinheiro and Bates (2000), Mixed-Effects Models in S and S-Plus
6. Brown and Prescott (1999), Applied Mixed Models in Medicine
7. Rao (1997), Variance Components Estimation: Mixed Models, Methodolo-
gies and Applications
8. Littell et al. (1996), SAS System for Mixed Models

The latest publication, book 1, provides a quite comprehensive introduction
on Gaussian mixed models and applications in problems such as tumor re-
growth, shape, and image. Book 2 emphasizes application of the maximum
likelihood and restricted maximum likelihood methods for estimation. Book
3 intensively studies the ANOVA type models with examples and computer
programs using statistical software packages. Books 4, 5, 6 and 8 are mainly
application-oriented. Many examples and case studies are available, and com-
puter programs in SAS and S-Plus as well. Book 7 presents a comprehensive
account of the major procedures of estimating the variance components, and
fixed and random effects. These books, however, do not discuss non-Gaussian
linear mixed models, neither do they present model diagnostics and model se-
lection methods for mixed models. As mentioned, non-Gaussian linear mixed
models, mixed model diagnostics, and mixed model selection are among the
main topics of this book.

The application of mixed models is vast and expanding so fast as to pre-
clude any attempt at exhaustive coverage. Here we use a number of selected
real-data examples to illustrate the applications of linear and generalized lin-
ear mixed models. The areas of application include biological and medical
research, animal and human genetics, and small area estimation. The lat-
ter has evolved quite rapidly in surveys. These examples of applications are
considered near the end of each chapter.
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The text is supplemented by numerous exercises. The majority of the prob-
lems are related to the subjects discussed in each chapter. In addition, some
further results and technical notes are given in the last section of each chap-
ter. The bibliography includes the relevant references. Three appendices are
attached. Appendix A lists the notation used in this book. Appendix B pro-
vides the necessary background in matrix algebra. Appendix C gives a brief
review of some of the relevant results in probability and statistics.

The book is aimed at students, researchers, and other practitioners who
are interested in using mixed models for statistical data analysis or doing
research in this area. The book is suitable for a course in a MS program in
statistics, provided that the sections of further results and technical notes are
skipped. If the latter sections are included, the book may be used for two
courses in a PhD program in statistics, perhaps one on linear models and the
other on generalized linear models, both with applications. A first course in
mathematical statistics, the ability to use a computer for data analysis and
familiarity with calculus and linear algebra are prerequisites. Additional sta-
tistical courses, such as regression analysis, and a good knowledge of matrices
would be helpful.

A large portion of the material in this book is based on lecture notes from
two graduate courses, “Linear Models” and “Generalized Linear Models”, that
the author taught at Case Western Reserve University between 1996 and 2001.
The author would like to thank Prof. Joe Sedransk for initiating these courses.
Grateful thanks are also due, in particular, to Prof. Partha Lahiri for his role
in drawing the author’s attention to application of mixed models to small area
estimation, and to Prof. Rudy Beran for his advice and encouragement. My
special thanks also go to Prof. J. N. K. Rao, who reviewed an earlier version of
this book and made valuable suggestions. A number of anonymous reviewers
have reviewed the earlier drafts of this book, or chapters of this book. Their
comments led to major changes, especially in the organization of the contents.
The author wishes to thank them for their time and effort that have made
the book suitable for a broader audience. Two graduate students have helped
with the data analyses that are involved in this book. In this regard, my
sincere thanks go to Ms. Zhonghua Gu and Ms. Thuan Nguyen. In addition,
the author thanks Ms. Qiuyan Xu and Ms. Zhonghua Gu for proofreading the
book and providing solutions to some of the exercises. Finally, the author is
grateful for Dr. Sean M. D. Allan for his comments that helped improve the
presentation of this preface.

Jiming Jiang
Davis, California
July, 2006
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1

Linear Mixed Models: Part I

1.1 Introduction

The best way to understand a linear mixed model, or mixed linear model in
some earlier literature, is to first recall a linear regression model. The latter
can be expressed as y = Xβ + ε, where y is a vector of observations, X is a
matrix of known covariates, β is a vector of unknown regression coefficients,
and ε is a vector of (unobservable random) errors. In this model, the regression
coefficients are considered fixed. However, there are cases in which it makes
sense to assume that some of these coefficients are random. These cases typ-
ically occur when the observations are correlated. For example, in medical
studies observations are often collected from the same individuals over time.
It may be reasonable to assume that correlations exist among the observations
from the same individual, especially if the times at which the observations are
collected are relatively close. In animal breeding, lactation yields of dairy cows
associated with the same sire may be correlated. In educational research, test
scores of the same student may be related.

Now, let us see how a linear mixed model may be useful for modeling
the correlations among the observations. Consider, for example, the example
above regarding medical studies. Assume that each individual is associated
with a random effect whose value is unobservable. Let yij denote the obser-
vation from the ith individual collected at time tj , and αi the random effect
associated with the ith individual. Assume that there are m individuals. For
simplicity, let us assume that the observations from all individuals are col-
lected at a common set of times, say, t1, . . . , tk. Then, a linear mixed model
may be expressed as yij = x′

ijβ + αi + εij , i = 1, . . . , m, j = 1, . . . , k, where
xij is a vector of known covariates; β is a vector of unknown regression co-
efficients; the random effects α1, . . . , αm are assumed to be i.i.d. with mean
zero and variance σ2; the εijs are errors that are i.i.d. with mean zero and
variance τ2; and the random effects and errors are independent. It follows
that the correlation between any two observations from the same individual
is σ2/(σ2 + τ2), whereas observations from different individuals are uncorre-
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lated. This model is a special case of the so-called longitudinal linear mixed
model, which is discussed in much detail in the sequel. Of course, this is only
a simple model and it may not capture all the correlations among the obser-
vations. Therefore, we would like to have a richer class of models that allows
further complications.

A general linear mixed model may be expressed as

y = Xβ + Zα + ε, (1.1)

where y is a vector of observations, X is a matrix of known covariates, β is
a vector of unknown regression coefficients, which are often called the fixed
effects, Z is a known matrix, α is a vector of random effects, and ε is a vector
of errors. Both α and ε are unobservable. Compared with the linear regression
model, it is clear that the difference is Zα, which may take many different
forms, thus creating a rich class of models, as we shall see. A statistical model
must come with assumptions. The basic assumptions for (1.1) are that the
random effects and errors have mean zero and finite variances. Typically,
the covariance matrices G = Var(α) and R = Var(ε) involve some unknown
dispersion parameters, or variance components. It is also assumed that α and
ε are uncorrelated.

We conclude this section with three examples illustrating the applications
of linear mixed models, with more examples to come later.

1.1.1 Effect of Air Pollution Episodes on Children

Laird and Ware (1982) discussed an example of analysis of the effect of air
pollution episodes on pulmonary function. About 200 school children were
examined under normal conditions, then during an air pollution alert, and
on three successive weeks following the alert. One of the objectives was to
determine whether the volume of air exhaled in the first second of a forced
exhalation, denoted by FEV1, was depressed during the alert.

Note that in this case the data were longitudinally collected with five
observational times common for all the children. Laird and Ware proposed
the following simple linear mixed model for analysis of the longitudinal data:
yij = βj + αi + εij , i = 1, . . . , m, j = 1, . . . , 5, where βj is the mean FEV1 for
the jth observational time, αi is a random effect associated with the ith child,
εij is an error term, and m is the total number of children. It is assumed that
the random effects are independent and distributed as N(0, τ2), the errors are
independent and distributed as N(0, σ2), and the random effects and errors are
independent. It should be mentioned that some measurements were missing
in this study. However, the above model can be modified to take this into
account. In particular, the number of observations for the ith individual may
be denoted by ni, where 1 ≤ ni ≤ 5.

Based on the model, Laird and Ware were able to analyze the data using
methods described in the sequel, with the following findings: (i) a decline in
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mean FEV1 was observed on and after the alert day; and (ii) the variances and
covariances for the last four measurements were larger than those involving
the baseline day. The two authors further studied the problem of identification
of sensitive subgroups or individuals most severely affected by the pollution
episode using a more complicated linear mixed model.

1.1.2 Prediction of Maize Single-Cross Performance

Bernardo (1996) reported results of best linear unbiased prediction, or BLUP,
of single-cross performance using a linear mixed model and genetic relation-
ship among parental inbreds. Grain yield, moisture, stalk lodging and root
lodging data were obtained for 2043 maize single crosses evaluated in the
multilocation testing program of Limagrain Genetics, from 1990 to 1994. The
objective of the study was to investigate the robustness of BLUP for iden-
tifying superior single crosses when estimates of genetic relationship among
inbreds are erroneous.

In analysis of the single-cross data, Bernardo proposed the following linear
mixed model: y = Xβ + Z0c + Z1g1 + Z2g2 + Zd + e, where y is a vector
of observed performance for a given trait (i.e., hybrid by multilocation trial
means); β is a vector of fixed effects of multilocation yield trials; c is a vector
of check effects; gj is a vector of general combining ability effects of group
j, j = 1, 2; d is a vector of specific combining ability effects; e is a vector of
residual effects; and X, Zj , j = 0, 1, 2 and Z are (known) incidence matrices
of 0s and 1s. Here c, g1, g2, and d are treated as random effects. It is assumed
that c, g1, g2, d, and e are uncorrelated with their covariance matrices modeled
according to the genetic relationship.

Based on the linear mixed model, Bernardo was able to predict the perfor-
mance of untested single crosses given the average performance of the tested
ones, using the BLUP method (see Section 2.3.1 for details). The results indi-
cated that BLUP is robust when inbred relationships are erroneously specified.

1.1.3 Small Area Estimation of Income

Large-scale sample surveys are usually designed to produce reliable estimates
of various characteristics of interest for large geographic areas. However, for
effective planning of health, social, and other services, and for apportioning
government funds, there is a growing demand to produce similar estimates
for smaller geographic areas and subpopulations for which adequate samples
are not available. The usual design-based small-area estimators (e.g., Cochran
1977) are unreliable because they are based on a very few observations that
are available from the area. This makes it necessary to “borrow strength”
from related small areas to find indirect estimators that increase the effective
sample size and thus precision. Such indirect estimators are typically based
on linear mixed models or generalized linear mixed models that provide a link
to a related small area through the use of supplementary data such as recent
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census data and current administrative records. See Ghosh and Rao (1994)
for a review.

Among many examples of applications, Fay and Herriot (1979) used a lin-
ear mixed model for estimating per-capita income (PCI) for small places from
the 1970 Census of Population and Housing. In the 1970 Census, income was
collected on the basis of a 20% sample. However, of the estimates required,
more than one-third, or approximately 15,000, were for places with popula-
tions of fewer than 500 persons. With such small populations, the sampling
error of the direct estimates is quite significant. For example, Fay and Herriot
estimated that for a place of 500 persons, the coefficient of variation of the
direct estimate of PCI was about 13%; for a place of 100 persons, that coeffi-
cient increased to 30%. In order to “borrow strength” from related places and
other sources, Fay and Herriot proposed the following linear mixed model,
yi = x′

iβ + vi + ei, where yi is the natural logarithm of the sample estimate of
PCI for the ith place (the logarithm transformation stablized the variance); xi

is a vector of known covariates related to the place; β is a vector of unknown
regression coefficients; vi is a random effect associated with the place; and
ei represents the sampling error. It is assumed that vi and ei are distributed
independently such that vi ∼ N(0, A), ei ∼ N(0, Di), where A is unknown
but Dis are known.

1.2 Types of Linear Mixed Models

There are different types of linear mixed models, and different ways of classify-
ing them. One way of classification is according to whether or not a normality
assumption is made. As will be seen, normality provides more flexibility in
modelling, while models without normality are more robust to violation of
distributional assumptions.

1.2.1 Gaussian Mixed Models

Under Gaussian linear mixed models, or simply Gaussian mixed models,
both the random effects and errors in (1.1) are assumed to be normally dis-
tributed. The following are some specific types.

1. ANOVA model. As usual, ANOVA refers to analysis of variance. Some
of the earliest (Gaussian) mixed models in the literature are of ANOVA type.
Here we consider some simple cases.

Example 1.1 (One-way random effects model). A model is called a random
effects model if the only fixed effect is an unknown mean. Suppose that the
observations yij , i = 1, . . . , m, j = 1, . . . , ki satisfy yij = µ + αi + εij for all i
and j, where µ is an unknown mean; αi, i = 1, . . . , m are random effects that
are distributed independently as N(0, σ2); εijs are errors that are distributed
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independently as N(0, τ2); and the random effects are independent of the
errors. Typically, the variances σ2 and τ2 are unknown. To express the model
in terms of (1.1), let yi = (yij)1≤j≤ki be the (column) vector of observations
from the ith group or cluster, and similarly εi = (εij)1≤j≤ki . Then, let y =
(y′

1, . . . , y
′
m)′, α = (αi)1≤i≤m, and ε = (ε′

1, . . . , ε
′
m)′. It is easy to show that

the model can be expressed as (1.1) with β = µ and suitable X and Z (see
Exercise 1.1), in which α ∼ N(0, σ2Im) and ε ∼ N(0, τ2In) with n =

∑m
i=1 ki.

One special case is when ki = k for all i. This is called the balanced case.
It can be shown that, in the balanced case, the model can be expressed as
(1.1) with X = 1m ⊗ 1k = 1mk, Z = Im ⊗ 1k, and everything else as before
(with ki = k), where ⊗ denotes the Kronecker product, defined in Appendix
B. Note that in this case n = mk.

Example 1.2 (Two-way random effects model). For simplicity, let us con-
sider the case of one observation per cell. In this case, the observations yij ,
i = 1, . . . , m, j = 1, . . . , k satisfy yij = µ + ξi + ηj + εij for all i, j, where µ is
as in Example 1.1; ξi, i = 1, . . . , m, ηj , j = 1, . . . , k are independent random
effects such that ξi ∼ N(0, σ2

1), ηj ∼ N(0, σ2
2); and εijs are independent errors

distributed as N(0, τ2). Again, assume that the random effects and errors are
independent. This model can also be expressed as (1.1) (see Exercise 1.2).
Note that this model is different from that of Example 1.1 in that, in the one-
way case the observations can be divided into independent blocks, whereas no
such division exists in the two-way case.

A general ANOVA model is defined by (1.1) such that

Zα = Z1α1 + · · · + Zsαs, (1.2)

where Z1, . . . , Zs are known matrices; α1, . . . , αs are vectors of random ef-
fects such that for each 1 ≤ i ≤ s, the components of αi are independent
and distributed as N(0, σ2

i ). It is also assumed that the components of ε are
independent and distributed as N(0, τ2), and α1, . . . , αs, ε are independent.
For ANOVA models, a natural set of variance components is τ2, σ2

1 , . . . , σ2
s .

We call this form of variance components the original form. Alternatively,
the Hartley–Rao form of variance components (Hartley and Rao 1967) is:
λ = τ2, γ1 = σ2

1/τ2, . . . , γs = σ2
s/τ2.

A special case is the so-called balanced mixed ANOVA models. An
ANOVA model is balanced if X and Zi, 1 ≤ i ≤ s can be expressed as
X =

⊗w+1
l=1 1al

nl
, Zi =

⊗w+1
l=1 1bi,l

nl , where (a1, . . . , aw+1) ∈ Sw+1 = {0, 1}w+1,
(bi,1, . . . , bi,w+1) ∈ S ⊂ Sw+1. In other words, there are w factors in the model;
nl represents the number of levels for factor l (1 ≤ l ≤ w); and the (w + 1)st
factor corresponds to “repetition within cells.” Thus, we have as+1 = 1 and
bi,s+1 = 1 for all i. For example, in Example 1.1, the model is balanced if
ki = k for all i. In this case, we have w = 1, n1 = m, n2 = k, and S = {(0, 1)}.
In Example 1.2 the model is balanced with w = 2, n1 = m, n2 = k, n3 = 1,
and S = {(0, 1, 1), (1, 0, 1)} (Exercise 1.2).
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2. Longitudinal model. These models gain their name because they are
often used in the analysis of longitudinal data. See, for example, Diggle, Liang,
and Zeger (1996). One feature of these models is that the observations may be
divided into independent groups with one random effect (or vector of random
effects) corresponding to each group. In practice, these groups may correspond
to different individuals involved in the longitudinal study. Furthermore, there
may be serial correlations within each group which are in addition to the
random effect. Another feature of the longitudinal models is that there are
often time-dependent covariates, which may appear either in X or in Z (or in
both) of (1.1). Example 1.1 may be considered a simple case of the longitudinal
model, in which there is no serial correlation within the groups. The following
is a more complex model.

Example 1.3 (Growth curve model). For simplicity, suppose that for each
of the m individuals, the observations are collected over a common set of
times t1, . . . , tk. Suppose that yij , the observation collected at time tj from
the ith individual, satisfies yij = ξi + ηixij + ζij + εij , where ξi and ηi rep-
resent, respectively, a random intercept and a random slope; xij is a known
covariate; ζij corresponds to a serial correlation; and εij is an error. For each
i, it is assumed that ξi and ηi are jointly normally distributed with means µ1,
µ2, variances σ2

1 , σ2
2 , respectively, and correlation coefficient ρ; and εijs are

independent and distributed as N(0, τ2). As for the ζijs, it is assumed that
they satisfy the following relation of the first order autoregressive process, or
AR(1): ζij = φζij−1 + ωij , where φ is a constant such that 0 < φ < 1, and
ωijs are independent and distributed as N{0, σ2

3(1 − φ2)}. Furthermore, the
three random components (ξ, η), ζ, and ε are independent, and observations
from different individuals are independent. There is a slight departure of this
model from the standard linear mixed model in that the random intercept
and slope may have nonzero means. However, by subtracting the means and
thus defining new random effects, this model can be expressed in the stan-
dard form (Exercise 1.3). In particular, the fixed effects are µ1 and µ2, and
the (unknown) variance components are σ2

j , j = 1, 2, 3, τ2, ρ, and φ. It should
be pointed out that an error term, εij , is included in this model. Standard
growth curve models do not include such a term.

Following Datta and Lahiri (2000), a general longitudinal model may be
expressed as

yi = Xiβ + Ziαi + εi, i = 1, . . . , m, (1.3)

where yi represents the vector of observations from the ith individual; Xi and
Zi are known matrices; β is an unknown vector of regression coefficients; αi

is a vector of random effects; and εi is a vector of errors. It is assumed that
αi, εi, i = 1, . . . , m are independent with αi ∼ N(0, Gi), εi ∼ N(0, Ri), where
the covariance matrices Gi and Ri are known up to a vector θ of variance
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components. It can be shown that Example 1.3 is a special case of the general
longitudinal model (Exercise 1.3). Also note that (1.3) is a special case of (1.1)
with y = (yi)1≤i≤m, X = (Xi)1≤i≤m, Z = diag(Z1, . . . , Zm), α = (αi)1≤i≤m,
and ε = (εi)1≤i≤m.

3. Marginal model. Alternatively, a Gaussian mixed model may be ex-
pressed by its marginal distribution. To see this, note that under (1.1) and
normality, we have

y ∼ N(Xβ, V ) with V = R + ZGZ ′. (1.4)

Hence, without using (1.1), one may simply define a linear mixed model by
(1.4). In particular, for the ANOVA model, one has (1.4) with V = τ2In +∑s

i=1 σ2
i ZiZ

′
i, where n is the sample size (i.e., the dimension of y). As for the

longitudinal model (1.3), one may assume that y1, . . . , ym are independent
with yi ∼ N(Xiβ, Vi), where Vi = Ri + ZiGiZ

′
i. It is clear that the model can

also be expressed as (1.4) with R = diag(R1, . . . , Rm), G = diag(G1, . . . , Gm),
and X and Z defined below (1.3).

A disadvantage of the marginal model is that the random effects are not
explicitly defined. In many cases, these random effects have practical meanings
and the inference about them may be of interest. For example, in small area
estimation (e.g., Ghosh and Rao 1994), the random effects are associated with
the small area means, which are often of main interest.

4. Hierarchical models. From a Bayesian point of view, a linear mixed
model is a three-stage hierarchy. In the first stage, the distribution of the
observations given the random effects is defined. In the second stage, the
distribution of the random effects given the model parameters is defined. In the
last stage, a prior distribution is assumed for the parameters. Under normality,
these stages may be specified as follows. Let θ represent the vector of variance
components involved in the model. Then, we have

y|β, α, θ ∼ N(Xβ + Zα, R) with R = R(θ),
α|θ ∼ N(0, G) with G = G(θ),

(β, θ) ∼ π(β, θ), (1.5)

where π is a known distribution. In many cases, it is assumed that π(β, θ) =
π1(β)π2(θ), where π1 = N(β0, D) with both β0 and D known, and π2 is a
known distribution. The following is an example.

Example 1.4. Suppose that, (i) conditional on the means µij , i = 1, . . . , m,
j = 1, . . . , ki, and variance τ2, yij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni are independent
and distributed as N(µij , τ

2); (ii) conditional on β and σ2, µij = x′
ijβ + αi,

where xij is a known vector of covariates, and α1, . . . , αm are independent
and distributed as N(0, σ2); (iii) the prior distributions are such that β ∼
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N(β0, D), where β0 and D are known, σ2 and τ2 are both distributed as
inverted gamma with pdfs f1(σ2) ∝ (σ2)−3e−1/σ2

, f0(τ2) ∝ (τ2)−2e−1/τ2
,

and β, σ2, and τ2 are independent. It is easy to show that (i) and (ii) are
equivalent to the model in Example 1.1 with µ replaced by x′

ijβ (Exercise 1.4).
Thus, the difference between a classical linear mixed model and a Bayesian
hierarchical model is the prior.

1.2.2 Non-Gaussian Linear Mixed Models

Under non-Gaussian linear mixed models, the random effects and errors are
assumed to be independent, or simply uncorrelated, but their distributions
are not assumed to be normal. As a result, the (joint) distribution of the data
may not be fully specified up to a set of parameters. The following are some
specific cases.

1. ANOVA model. Following Jiang (1996), a non-Gaussian (linear) mixed
ANOVA model is defined by (1.1) and (1.2), where the components of αi

are i.i.d. with mean 0 and variance σ2
i , 1 ≤ i ≤ s; the components of ε

are i.i.d. with mean 0 and variance τ2; and α1, . . . , αs, ε are independent.
All the other assumptions are the same as in the Gaussian case. Denote the
common distribution of the components of αi by Fi (1 ≤ i ≤ s) and that of
the components of ε by G. If the parametric forms of F1, . . . , Fs, G are not
assumed, the distribution of y is not specified up to a set of parameters. In
fact, even if the parametric forms of the Fis and G are known, as long as
they are not normal, the (joint) distribution of y may not have an analytic
expression. The vector θ of variance components is defined the same way as
in the Gaussian case, having either the original or Hartley–Rao forms.

Example 1.5. Suppose that, in Example 1.1 the random effects α1, . . . , αm

are i.i.d. but their common distribution is t3 instead of normal. Furthermore,
the εijs are i.i.d. but their common distribution is double exponential, rather
than normal. It follows that the joint distribution of yij , i = 1, . . . , m, j =
1, . . . , ki does not have a closed-form expression.

2. Longitudinal model. The Gaussian longitudinal model may also be ex-
tended to the non-Gaussian case. The typical non-Gaussian case is such that
y1, . . . , ym are independent and (1.3) holds. Furthermore, for each i, αi and
εi are uncorrelated with E(αi) = 0, Var(αi) = Gi; E(εi) = 0, Var(εi) = Ri.
Alternatively, the independence of yi, 1 ≤ i ≤ m may be replaced by that of
(αi, εi), 1 ≤ i ≤ m. All the other assumptions are the same as in the Gaussian
case. Again, in this case, the distribution of y may not be fully specified up to
a set of parameters, or, even if it is, may not have a closed-form expression.

Example 1.6. Consider Example 1.3. For simplicity, assume that the times
t1, . . . , tk are equally spaced, thus, without loss of generality, let tj = j,
1 ≤ j ≤ k. Let ζi = (ζij)1≤j≤k, εi = (εij)1≤j≤k. In the non-Gaussian case, it
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is assumed that y1, . . . , ym are independent, where yi = (yij)1≤j≤k, or, alter-
natively, (ξi, ηi, ζi, εi), 1 ≤ i ≤ m are independent. Furthermore, assume that
(ξi, ηi), ζi, and εi are mutually uncorrelated such that E(ξi) = µ1, E(ηi) = µ2,
E(ζi) = E(εi) = 0; var(ξi) = σ2

1 , var(ηi) = σ2
2 , cor(ξi, ηi) = ρ, Var(ζi) = Gi,

Var(εi) = τ2Ik, where Gi is the covariance matrix of ζi under the AR(1)
model, whose (s, t) element is given by σ2

3φ−|s−t| (1 ≤ s, t ≤ k).

3. Marginal model. This is, perhaps, the most general model among all
types. Under a marginal model, it is assumed that y, the vector of observations,
satisfies E(y) = Xβ and Var(y) = V , where V is specified up to a vector θ
of variance components. A marginal model may arise by taking the mean
and covariance matrix of a Gaussian mixed model (marginal or otherwise; see
Section 1.2.1) and dropping the normality assumption. Similar to the Gaussian
marginal model, the random effects are not present in this model. Therefore,
the model has the disadvantage of not being suitable for inference about the
random effects, if the latter are of interest. Also, because the model is so
general that not many assumptions are made, it is often difficult to assess
(asymptotic) properties of the estimators. See more discussion at the end of
Section 1.4.1.

By not fully specifying the distribution, a non-Gaussian model may be
more robust to violation of distributional assumptions. On the other hand,
methods of inference that require specification of the parametric form of the
distribution, such as maximum likelihood, may not apply to such a case.
The inference about both Gaussian and non-Gaussian linear mixed models is
discussed in the rest of this chapter.

1.3 Estimation in Gaussian Models

Standard methods of estimation in Gaussian mixed models are maximum
likelihood (ML) and restricted maximum likelihood (REML). In this section
we discuss these two methods. Historically, there have been other types of
estimation that are either computationally simpler or more robust in a certain
sense than the likelihood-based methods. These other methods are discussed
in Section 1.5.

1.3.1 Maximum Likelihood

Although the ML method has a long and celebrated history going back to
Fisher (1922), it had not been used in mixed model analysis until Hartley
and Rao (1967). The main reason was that the estimation of the variance
components in a linear mixed model was not easy to handle computationally
in the old days, although the estimation of the fixed effects given the variance
components is straightforward.
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Point estimation. Under a Gaussian mixed model, the distribution of y is
given by (1.4), which has a joint pdf

f(y) =
1

(2π)n/2|V |1/2 exp
{

−1
2
(y − Xβ)′V −1(y − Xβ)

}
,

where n is the dimension of y. Thus, the log-likelihood function is given by

l(β, θ) = c − 1
2

log(|V |) − 1
2
(y − Xβ)′V −1(y − Xβ), (1.6)

where θ represents the vector of all the variance components (involved in V ),
and c is a constant. By differentiating the log-likelihood with respect to the
parameters (see Appendix B), we obtain the following,

∂l

∂β
= X ′V −1y − X ′V −1Xβ, (1.7)

∂l

∂θr
=

1
2

{
(y − Xβ)′V −1 ∂V

∂θr
V −1(y − Xβ) − tr

(
V −1 ∂V

∂θr

)}
,

r = 1, . . . , q, (1.8)

where θr is the rth component of θ, which has dimension q. The standard
procedure of finding the ML estimator, or MLE, is to solve the ML equations
∂l/∂β = 0, ∂l/∂θ = 0. However, finding the solution may not be the end of the
story. In other words, the solution to (1.7) and (1.8) may or may not be the
MLE. See Section 1.8 for further discussion. Let p be the dimension of β. For
simplicity, we assume that X is of full (column) rank; that is, rank(X) = p

(see Section 1.8). Let (β̂, θ̂) be the MLE. From (1.7) one obtains

β̂ = (X ′V̂ −1X)−1X ′V̂ −1y, (1.9)

where V̂ = V (θ̂), that is, V with the variance components involved replaced by
their MLE. Thus, once the MLE of θ is found, the MLE of β can be calculated
by the “closed-form” expression (1.9). As for the MLE of θ, by (1.7) and (1.8)
it is easy to show that it satisfies

y′P
∂V

∂θr
Py = tr

(
V −1 ∂V

∂θr

)
, r = 1, . . . , q, (1.10)

where

P = V −1 − V −1X(X ′V −1X)−1X ′V −1. (1.11)

Thus, one procedure is to first solve (1.10) for θ̂ and then compute β̂ by (1.9).
The computation of the MLE is discussed in Section 1.6.1.

In the special case of mixed ANOVA models (Section 1.2.1.1) with the
original form of variance components, we have V = τ2In +

∑s
i=1 σ2

i ZiZ
′
i,
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hence ∂V/∂τ2 = In, ∂V/∂σ2
i = ZiZ

′
i, 1 ≤ i ≤ s. Similarly, with the Hartley–

Rao form, we have V = λ(In +
∑s

i=1 γiZiZ
′
i), hence ∂V/∂λ = V/λ, ∂V/∂γi =

λZiZ
′
i, 1 ≤ i ≤ s. With these expressions, the above equations may be further

simplified. As for the longitudinal model (Section 1.2.1.2), the specification of
(1.7)–(1.10) is left as an exercise (see Exercise 1.5).

For mixed ANOVA models (Section 1.2.1.1), asymptotic properties of the
MLE, including consistency and asymptotic normality, were first studied by
Hartley and Rao (1967). Also see Anderson (1969, 1971a), who studied asymp-
totic properties of the MLE under the marginal model (Section 1.2.1.3) with a
linear covariance structure; and Miller (1977). In these papers the authors have
assumed that the number of fixed effects (i.e., p) remains fixed or bounded as
the sample size n increases. As it turns out, this assumption is critical to en-
sure consistency of the MLE. See Example 1.7 below. Jiang (1996) considered
asymptotic behavior of the MLE when p increases with n, and compared it
with that of the REML estimator. The results hold for non-Gaussian mixed
ANOVA models (Section 1.2.2.1), which include the Gaussian case. See Sec-
tion 1.8 for more details.

Asymptotic covariance matrix. Under suitable conditions (see Section 1.8
for discussion), the MLE is consistent and asymptotically normal with the
asymptotic covariance matrix equal to the inverse of the Fisher information
matrix. Let ψ = (β′, θ′)′. Then, under regularity conditions, the Fisher infor-
mation matrix has the following expressions,

Var
(

∂l

∂ψ

)
= −E

(
∂2l

∂ψ∂ψ′

)
. (1.12)

By (1.7) and (1.8), further expressions can be obtained for the elements of
(1.12). For example, assuming that V is twice continuously differentiable (with
respect to the components of θ), then, using the results of Appendices B and
C, it can be shown (Exercise 1.6) that

E
(

∂2l

∂β∂β′

)
= −X ′V −1X, (1.13)

E
(

∂2l

∂β∂θr

)
= 0, 1 ≤ r ≤ q, (1.14)

E
(

∂2l

∂θr∂θs

)
= −1

2
tr
(

V −1 ∂V

∂θr
V −1 ∂V

∂θs

)
, 1 ≤ r, s ≤ q. (1.15)

It follows that (1.12) does not depend on β, and therefore may be denoted by
I(θ), as we do in the sequel.

We now consider some examples.

Example 1.1 (Continued). It can be shown (see Exercise 1.7) that, in this
case, (1.6) has the following expression,
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l(µ, σ2, τ2) = c − 1
2
(n − m) log(τ2) − 1

2

m∑
i=1

log(τ2 + kiσ
2)

− 1
2τ2

m∑
i=1

ki∑
j=1

(yij − µ)2 +
σ2

2τ2

m∑
i=1

k2
i

τ2 + kiσ2 (ȳi· − µ)2,

where c is a constant, n =
∑m

i=1 ki, and ȳi· = k−1
i

∑ki

j=1 yij . Furthermore,
(1.7) and (1.8) become

∂l

∂µ
=

m∑
i=1

ki

τ2 + kiσ2 (ȳi· − µ),

∂l

∂τ2 = −n − m

2τ2 − 1
2

m∑
i=1

1
τ2 + kiσ2 +

1
2τ4

m∑
i=1

ki∑
j=1

(yij − µ)2

− σ2

2τ2

m∑
i=1

(
1
τ2 +

1
τ2 + kiσ2

)
k2

i

τ2 + kiσ2 (ȳi· − µ)2,

∂l

∂σ2 = −1
2

m∑
i=1

ki

τ2 + kiσ2 +
1
2

m∑
i=1

(
ki

τ2 + kiσ2

)2

(ȳi· − µ)2.

The specification of the asymptotic covariance matrix in this case is left as an
exercise (Exercise 1.7).

Example 1.7 (Neyman–Scott problem). Neyman and Scott (1948) gave the
following example which shows that, when the number of parameters increases
with the sample size, the MLE may not be consistent. Suppose that two
observations are collected from m individuals. Each individual has its own
(unknown) mean, say, µi for the ith individual. Suppose that the observations
are independent and normally distributed with variance σ2. The problem of
interest is to estimate σ2. The model may be expressed as the following,
yij = µi + εij , where εijs are independent and distributed as N(0, σ2). Note
that this may be viewed as a special case of the linear mixed model (1.1), in
which Z = 0. However, it can be shown that the MLE of σ2 is inconsistent
(Exercise 1.8).

1.3.2 Restricted Maximum Likelihood

The problem in Example 1.7 is associated with the bias of the MLE. The MLE
of the variance components are, in general, biased. Such a bias may not vanish
as the sample size increases, if the number of the fixed effects is proportional
to the sample size. In fact, in the latter case the MLE will be inconsistent
(Jiang 1996).

Furthermore, in cases such as Example 1.7 the fixed effects are considered
as nuisance parameters, and the main interest is the variance components.
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However, with maximum likelihood one has to estimate all the parameters
involved. It would be nice to have a method that can estimate the parameters
of main interest without having to deal with the nuisance parameters. To
introduce such a method, let us revisit Example 1.7.

Example 1.7 (Continued). In this case, there are m+1 parameters, of which
the means µ1, . . . , µm are nuisance, while the parameter of main interest is σ2.
Clearly, the number of parameters is proportional to the sample size, which
is 2m. Now, instead of using the original data, consider the following simple
transformation: zi = yi1 − yi2. It follows that z1, . . . , zm are independent
and distributed as N(0, 2σ2). What makes a difference is that the nuisance
parameters are gone; they are not involved in the distribution of the zs. In
fact, the MLE of σ2 based on the new data z1, . . . , zm is consistent (Exercise
1.8). Note that, after the transformation, one is in a situation with a single
parameter, σ2, and m observations.

The “trick” in the above example is no secret: apply a transformation to
the data to eliminate the fixed effects, then use the transformed data to esti-
mate the variance component. We now illustrate the method under a general
setting.

Point Estimation. As before, we assume, w.l.o.g., that rank(X) = p. Let
A be an n × (n − p) matrix such that

rank(A) = n − p, A′X = 0. (1.16)

Then, define z = A′y. It is easy to see that z ∼ N(0, A′V A). It follows that
the joint pdf of z is given by

fR(z) =
1

(2π)(n−p)/2|A′V A|1/2 exp
{

−1
2
z′(A′V A)−1z

}
,

where and hereafter the subscript R corresponds to “restricted”. Thus, the
log-likelihood based on z, which we call restricted log-likelihood, is given by

lR(θ) = c − 1
2

log(|A′V A|) − 1
2
z′(A′V A)−1z, (1.17)

where c is a constant. By differentiating the restricted log-likelihood (see Ap-
pendix B), we obtain, expressed in terms of y,

∂lR
∂θi

=
1
2

{
y′P

∂V

∂θi
Py − tr

(
P

∂V

∂θi

)}
, i = 1, . . . , q, (1.18)

where

P = A(A′V A)−1A′ = the right side of (1.11) (1.19)

(see Appendix B). The REML estimator of θ is defined as the maximizer of
(1.17). As in the ML case, such a maximizer satisfies the REML equation
∂lR/∂θ = 0. See Section 1.8 for further discussion.
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Remark. Although the REML estimator is defined through a transforming
matrix A, the REML estimator, in fact, does not depend on A. To see this,
note that, by (1.18) and (1.19), the REML equations do not depend on A. A
more thorough demonstration is left as an exercise (Exercise 1.9). This fact
is important because, obviously, the choice of A is not unique, and one does
not want the estimator to depend on the choice of the transformation.

Example 1.7 (Continued). It is easy to see that the transformation zi =
yi1 − yi2, i = 1, . . . , m corresponds to

A =

⎛⎜⎜⎜⎝
1 −1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −1

⎞⎟⎟⎟⎠
′

.

An alternative transforming matrix may be obtained as B = AT , where T is
any m × m nonsingular matrix. But the resulting REML estimator of σ2 is
the same (Exercise 1.9).

Historical note. The REML method was first proposed by Thompson
(1962) and was put on a broad basis by Patterson and Thompson (1971).
The method is also known as residual maximum likelihood, although the ab-
breviation, REML, remains the same. There have been different derivations of
REML. For example, Harville (1974) provided a Bayesian derivation of REML.
He showed that the restricted likelihood can be derived as the marginal likeli-
hood when β is integrated out under a noninformative, or flat, prior (Exercise
1.10). Also see Verbyla (1990). Barndorff-Nielsen (1983) derived the restricted
likelihood as a modified profile likelihood. More recently, Jiang (1996) pointed
out that the REML equations may be derived under the assumption of a mul-
tivariate t-distribution (instead of multivariate normal distribution). More
generally, Heyde (1994) showed that the REML equations may be viewed as
quasi-likelihood equations. See Heyde (1997) for further details. Surveys on
REML can be found in Harville (1977), Khuri and Sahai (1985), Robinson
(1987), and Speed (1997).

Note that the restricted log-likelihood (1.17) is a function of θ only. In other
words, the REML method is a method of estimating θ (not β, because the
latter is eliminated before the estimation). However, once the REML estimator
of θ is obtained, β is usually estimated the same way as the ML, that is, by
(1.9), where V = V (θ̂) with θ̂ being the REML estimator. Such an estimator
is sometimes referred as the “REML estimator” of β.

Asymptotic covariance matrix. Under suitable conditions, the REML esti-
mator is consistent and asymptotically normal (see Section 1.8 for discussion).
The asymptotic covariance matrix is equal to the inverse of the restricted
Fisher information matrix, which, under regularity conditions, has similar ex-
pressions as (1.12):
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Var
(

∂lR
∂θ

)
= −E

(
∂2lR
∂θ∂θ′

)
. (1.20)

Further expressions may be obtained. For example, assuming, again, that V is
twice continuously differentiable (with respect to the components of θ), then
we have (Exercise 1.11)

E
(

∂2lR
∂θi∂θj

)
= −1

2
tr
(

P
∂V

∂θi
P

∂V

∂θj

)
, 1 ≤ i, j ≤ q. (1.21)

Example 1.1 (Continued). For simplicity, consider the balanced case, that
is, ki = k, 1 ≤ i ≤ m. It can be shown (Exercise 1.12) that, in this case,
the REML equations ∂lR/∂τ2 = 0 and ∂lR/∂σ2 = 0 are equivalent to the
following, {

τ2 + kσ2 = MSA,
τ2 = MSE,

(1.22)

where MSA = SSA/(m − 1), SSA = k
∑m

i=1(ȳi· − ȳ··)2, ȳi· = k−1 ∑k
j=1 yij ,

ȳ·· = (mk)−1 ∑m
i=1

∑k
j=1 yij ; MSE = SSE/m(k −1), SSE =

∑m
i=1

∑k
j=1(yij −

ȳi·)2. The REML equations thus have an explicit solution: τ̇2 = MSE, σ̇2 =
k−1(MSA−MSE). Note that these are not necessarily the REML estimators,
only the solution to the REML equations (although, in most cases, the two
are identical). The derivation of the asymptotic covariance matrix is left as
an exercise (Exercise 1.12).

1.4 Estimation in Non-Gaussian Models

The methods discussed in the previous section are based on the normality
assumption. However, the normality assumption is likely to be violated in
practice. For example, Lange and Ryan (1989) gave several examples showing
that nonnormality of the random effects is, indeed, encountered in practice.
The authors also developed a method for assessing normality of the random
effects. Due to such concerns, linear mixed models without normality assump-
tion, or non-Gaussian linear mixed models, have been considered. In this sec-
tion, we focus on estimation in the two types of non-Gaussian linear mixed
models described in Section 1.2.2, that is, the ANOVA model and longitudi-
nal model. Sections 1.4.1 and 1.4.2 discuss estimation in ANOVA models, and
Sections 1.4.3 and 1.4.4 deal with longitudinal models. It should be pointed
out that, although the methods proposed here for the two types of models are
different, it does not mean that one method cannot be applied to a different
type of model. In fact, the two methods overlap in some special cases. See the
discussion in Section 1.4.4.
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1.4.1 Quasi-Likelihood Method

In this and the next sections we discuss estimation in non-Gaussian ANOVA
models. Some remarks are made at the end of the next section on possible
extension of the method to more general models.

First we must point out that, when normality is not assumed (fully)
likelihood-based inference is difficult, or even impossible. To see this, first
note that if the distributions of the random effects and errors are not speci-
fied, the likelihood function is simply not available. Furthermore, even if the
(nonnormal) distributions of the random effects and errors are specified (up
to some unknown parameters), the likelihood function is usually complicated.
In particular, such a likelihood may not have an analytic expression. Finally,
like normality, any other specific distributional assumptions may not hold in
practice. These difficulties have led to consideration of methods other than
maximum likelihood. One such method is Gaussian-likelihood, or, as we call
it, quasi-likelihood.

The idea is to use normality-based estimators even if the data are not
really normal. For the ANOVA models, the REML estimator of θ is defined
as the solution to the (Gaussian) REML equations, provided that the solution
belongs to the parameter space. See Section 1.8 for a discussion on how to
handle cases where the solution is out of the parameter space. Similarly, the
ML estimators of β and θ are defined as the solution to the (Gaussian) ML
equations, provided that they stay in the parameter space. More specifically,
under the ANOVA model with the original form of variance components, the
REML equations are (Exercise 1.13){

y′P 2y = tr(P ),
y′PZiZ

′
iPy = tr(Z ′

iPZi), 1 ≤ i ≤ s.
(1.23)

With the same model and variance components, the ML equations are⎧⎨⎩ X ′V −1Xβ = X ′V −1y,
y′P 2y = tr(V −1),

y′PZiZ
′
iPy = tr(Z ′

iV
−1Zi), 1 ≤ i ≤ s.

(1.24)

Similarly, the REML equations under the ANOVA model with the Hartley–
Rao form of variance components are{

y′Py = n − p,
y′PZiZ

′
iPy = tr(Z ′

iPZi), 1 ≤ i ≤ s.
(1.25)

The ML equations under ANOVA model and the Hartley–Rao form are⎧⎨⎩ X ′V −1Xβ = X ′V −1y,
y′Py = n,

y′PZiZ
′
iPy = tr(Z ′

iV
−1Zi), 1 ≤ i ≤ s.

(1.26)
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In order to justify such an approach, let us first point out that, although
the REML estimator is defined as the solution to the REML equations, which
are derived under normality, normal likelihood is not the only one that can
lead to the REML equations. Jiang (1996) has pointed out that exactly the
same equations will arise if one starts with a multivariate t-distribution, that
is, y ∼ tn(Xβ, V, d), which has a joint pdf

p(y) =
Γ{(n + d)/2}

(dπ)n/2Γ (d/2)|V |1/2

{
1 +

1
d
(y − Xβ)′V −1(y − Xβ)

}−(n+d)/2

(Exercise 1.14). Here d is the degree of freedom of the multivariate t-
distribution. More generally, Heyde (1994, 1997) showed that the REML equa-
tions can be derived from a quasi-likelihood. As it turns out, the likelihood
under multivariate-t is a special case of Heyde’s quasi-likelihood. For such
a reason, the (Gaussian) REML estimation may be regarded as a method
of quasi-likelihood. Similarly, the (Gaussian) ML estimation may be justi-
fied from a quasi-likelihood point of view. For simplicity, the corresponding
estimators are still called REML or ML estimators.

Furthermore, it has been shown (Richardson and Welsh 1994; Jiang 1996,
1997a) that the REML estimator is consistent and asymptotically normal even
if normality does not hold. Furthermore, Jiang (1996) showed that the ML
estimator has similar asymptotic properties, provided that the number of fixed
effects p remains bounded or increases at a slower rate than the sample size n.
Again, the latter result does not require normality. See Section 1.8 for more
details. Therefore, the quasi-likelihood approach is, at least, well-justified from
an asymptotic point of view.

Although the method is justified for point estimation, there is a compli-
cation in assessing the variation of these estimators. Jiang (1996) derived the
asymptotic covariance matrix of the REML estimator. As for the ML estima-
tor, its asymptotic covariance matrix is the same as that obtained in Jiang
(1998b), if, for example, p remains bounded. See Section 1.8 for more details.
These results do not require normality. However, when normality does not
hold, the asymptotic covariance matrix involves parameters other than the
variance components, namely, the third and fourth moments of the random
effects and errors. To see where exactly the problem occurs, note that, accord-
ing to Jiang (1996), the asymptotic covariance matrix of the REML estimator
is given by

ΣR =
{

E
(

∂2lR
∂θ∂θ′

)}−1

Var
(

∂lR
∂θ

){
E
(

∂2lR
∂θ∂θ′

)}−1

. (1.27)

If normality holds, then lR is the true restricted log-likelihood, hence, under
regularity conditions, we have I1 = Var(∂lR/∂θ) = −E(∂2lR/∂θ∂θ′) = −I2,
therefore (1.27) reduces to the inverse of (1.20). The factor I2 only depends
on θ, whose estimator is already available. However, unlike I2, the factor I1
depends on, in addition to θ, the kurtoses of the random effects and errors.
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Similarly, by Jiang’s result (1998b), it can be shown that the asymptotic
covariance matrix of the ML estimator of ψ = (β′, θ′)′ is given by

Σ =
{

E
(

∂2l

∂ψ∂ψ′

)}−1

Var
(

∂l

∂ψ

){
E
(

∂2l

∂ψ∂ψ′

)}−1

. (1.28)

Here I2 = E(∂2l/∂ψ∂ψ′) depends only on θ, but I1 = Var(∂l/∂ψ) depends
on, in addition to θ, not only the kurtoses but also the third moments of
random effects and errors.

Note that standard procedures, including ML, REML, and those discussed
later in Section 1.5, do not produce estimators of these higher moments. There-
fore, to make the quasi-likelihood method practical, it is necessary to develop
a method of estimating the asymptotic covariance matrix of the REML (ML)
estimator. In the next section we introduce such a method.

1.4.2 Partially Observed Information

It is clear that the key issue is how to estimate I1, which we call a quasi-
information matrix (QUIM). Note that, when normality holds, QUIM is the
(true) Fisher information matrix. Traditionally, there are two ways to estimate
the Fisher information: (i) estimated information; and (ii) observed informa-
tion. See, for example, Efron and Hinkley (1978) for a discussion and compar-
ison of the two methods in the i.i.d. case. It is clear that (i) cannot be used
to estimate I1, unless one finds some way to estimate the higher moments.
Assuming that the random effects and errors are symmetrically distributed,
in which case the third moments vanish, Jiang (2003b) proposed an empirical
method of moments (EMM) to estimate the kurtoses of the random effects
and errors. See Section 2.1.2.1 for more detail. The method has a limitation,
because, like normality, symmetry may not hold in practice. When symmetry
is not known to hold, the EMM does not provide estimates of the third mo-
ments, which are involved in the ML case. As for (ii), it is not all that clear
how this should be defined in cases of correlated observations. For simplic-
ity, let us consider ML estimation with a single unknown parameter, say, φ.
Let l be the (true) log-likelihood. In the i.i.d. case, we have, under regularity
conditions,

I1 = Var
(

∂l

∂ψ

)
= E

{
n∑

i=1

(
∂li
∂φ

)2
}

, (1.29)

where li is the log-likelihood based on yi, the ith observation. Therefore, an
observed information is Ĩ1 =

∑n
i=1(∂li/∂φ|φ̂)2, where φ̂ is the ML estima-

tor. This is a consistent estimator of I1 in the sense that Ĩ1 − I1 = oP(I1)
or, equivalently, Ĩ1/I1 → 1 in probability. However, if the observations are
correlated, (1.29) does not hold. In this case, because I1 = E{(∂l/∂ψ)2}, it
might seem that an observed information would be Ĩ1 = (∂l/∂ψ|ψ̃)2, which
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is 0 if ψ̃ is the MLE (i.e., the solution to the ML equation). Even if ψ̃ is not
the MLE but a consistent estimator of ψ, the expression does not provide a
consistent estimator for I1. For example, in the i.i.d. case, this is the same as
(
∑n

i=1 ∂li/∂ψ|ψ̃)2, which, asymptotically, is equivalent to n times the square
of a normal random variable. Therefore, it is not true that Ĩ1 − I1 = oP(I1).
The conclusion is that, in the case of correlated observations, (ii) does not
work in general.

We now introduce a method that applies generally. Throughout the rest
of this section, we consider the Hartley–Rao form of variance components:
λ = τ2 and γi = σ2

i /τ2, 1 ≤ i ≤ s. Note that there is a simple transformation
between the original form and the Hartley–Rao form of variance components:⎛⎜⎜⎜⎝

λ
γ1
...

γs

⎞⎟⎟⎟⎠ =
(

1 0
0 Is/τ2

)⎛⎜⎜⎜⎝
τ2

σ2
1
...

σ2
s

⎞⎟⎟⎟⎠ , (1.30)

where 0 represents column or row vectors of zeros. By (1.30) and the results
in Appendix C, it is easy to derive an estimator of the QUIM under one form
of parameters given that under the other form.

To illustrate the basic idea, consider the following simple example.

Example 1.2 (Continued). Consider an element of the QUIM Var(∂lR/∂θ)
for REML estimation, say, var(∂lR/∂λ), where θ = (λ, γ1, γ2)′. By the result
of Jiang (2004, Example 2 in Section 5), it can be shown that ∂lR/∂λ =
{u′Bu − (mk − 1)λ}/2λ2, where u = y − µ1m ⊗ 1k with y = (yij)1≤i≤m,1≤j≤k

(as a vector in which the components are ordered as y11, . . . , y1k, y21, . . .), and

B = Im ⊗ Ik − 1
k

(
1 − 1

1 + γ1k

)
Im ⊗ Jk − 1

m

(
1 − 1

1 + γ2m

)
Jm ⊗ Ik

+
1

mk

(
1 − 1

1 + γ1k
− 1

1 + γ2m

)
Jm ⊗ Jk

= Im ⊗ Ik + λ1Im ⊗ Jk + λ2Jm ⊗ Ik + λ3Jm ⊗ Jk (1.31)

(see Appendix A for notation). Furthermore, it can be shown that (Exercise
1.15) var(∂lR/∂λ) = S1 + S2, where

S1 = E

⎧⎪⎨⎪⎩(a0 + a1 + a2)
∑
i,j

u4
ij − a1

∑
i

⎛⎝∑
j

uij

⎞⎠4

−a2

∑
j

(∑
i

uij

)4
⎫⎬⎭ , (1.32)

whereas aj , j = 0, 1, 2 and S2 depend only on θ. Thus, S2 can be estimated
by replacing the variance components by their REML estimators, which are
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already available. As for S1, it cannot be estimated in the same way for the
reason given above. However, the form of S1 [compare with (1.29)] suggests
an “observed” estimator by taking out the expectation sign and replacing the
parameters involved by their REML estimators. In fact, as m, n → ∞, this
observed S1, say, Ŝ1, is consistent in the sense that Ŝ1/S1 → 1 in probability. It
is interesting to note that S2 cannot be consistently estimated by an observed
form.

To summarize the basic idea, the elements of the QUIM can be expressed
as S1 + S2, where S1 cannot be estimated by an estimated form but can be
estimated by an observed form; S2 can be estimated by an estimated form (but
not by an observed form). Thus, we have reached a balance. We propose to use
such a method to estimate the QUIM. Because the estimator consists partially
of an observed form and partially of an estimated one, it is called a partially
observed quasi-information matrix, or POQUIM. The idea of POQUIM can
be extended to a general non-Gaussian linear mixed model. See Section 1.8
for details.

Remark. The quasi-likelihood and POQUIM methods may be extended
to the non-Gaussian marginal model. The ML and REML equations under
the Gaussian marginal model are derived in Sections 1.3.1 and 1.3.2, respec-
tively. Similar to the ANOVA case, the (quasi-) ML estimators of β and θ
are defined as the solution to the ML equations; the (quasi-) REML estima-
tor of θ is defined as the solution to the REML equation. However, because
little assumption is made under the (non-Gaussian) marginal model, it is of-
ten difficult to study asymptotic properties of the estimators. In fact, some
of the asymptotic results under the ANOVA model may not hold under the
marginal model. For example, asymptotic normality often requires indepen-
dence, to some extent, which may not exist at all under the marginal model.
When asymptotic normality of the estimator does not hold, POQUIM may
be meaningless because it is designed to estimate the asymptotic covariance
matrix, which by definition is the covariance matrix of the asymptotic (multi-
variate) normal distribution. One exception is the non-Gaussian longitudinal
model. See the discussion in Section 1.4.4.

1.4.3 Iterative Weighted Least Squares

In this and the next sections we discuss estimation in non-Gaussian longitudi-
nal models. These models have been used in the analysis of longitudinal data
(e.g., Diggle et al. 1996), where a traditional method of estimating the fixed
effects is weighted least squares, or WLS. Suppose that the observations are
collected from individuals over time. Let y denote the vector of observations,
which may be correlated, and X a matrix of known covariates. Suppose that
E(y) = Xβ, where β is a vector of unknown regression coefficients. The WLS
estimator of β is obtained by minimizing

(y − Xβ)′W (y − Xβ) , (1.33)
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where W is a known symmetric weighting matrix. As before, suppose, without
loss of generality, that X is of full column rank p. Then, for any nonsingular
W , the minimizer of (1.33) is given by

β̂W = (X ′WX)−1X ′Wy . (1.34)

As a special case, the ordinary least squares (OLS) estimator is obtained by
choosing W = I, the identity matrix. This gives

β̂I = (X ′X)−1X ′y . (1.35)

On the other hand, the optimal choice of W in the sense of minimum variance
is known to be W = V −1, where V = Var(y). This is known as the best linear
unbiased estimator, or BLUE, given by

β̂BLUE = (X ′V −1X)−1X ′V −1y . (1.36)

However, inasmuch as V is typically unknown, the BLUE is not computable.
Let us turn our attention, for now, to a different problem which is related.

The BLUE would be computable if V were known. On the other hand, it would
be easier to estimate V if β were known. For example, an unbiased estimator
of V is given by Ṽ = (y − Xβ)(y − Xβ)′. However, this is not a consistent
estimator. In fact, if V is completely unknown, there are n(n+1)/2 unknown
parameters in V , which is (far) more than the sample size n. Therefore, in such
a case, one is not expected to have a consistent estimator of V no matter what.
It is clear that some information about V must be available. For simplicity,
let us first consider a special case.

Balanced case. Suppose that the observations are collected over a common
set of times. Let yij , j = 1, . . . , k be the measures collected from the ith in-
dividual over times t1, . . . , tk, respectively, and yi = (yij)1≤j≤k, i = 1, . . . , m.
Suppose that the vectors y1, . . . , ym are independent with

E(yi) = Xiβ and Var(yi) = V0, (1.37)

where Xi is a matrix of known covariates, and V0 = (vqr)1≤q,r≤k is an unknown
covariance matrix. It follows that V = diag(V0, . . . , V0). Now the good thing
is that V may be estimated consistently, if k is fixed. In fact, if β were known,
a simple consistent estimator of V would be the following,

V̂ = diag(V̂0, . . . , V̂0), where

V̂0 =
1
m

m∑
i=1

(yi − Xiβ)(yi − Xiβ)′ . (1.38)

To summarize the main idea, if V were known, one could use (1.36) to
compute the BLUE of β; if β were known, one could use (1.38) to obtain a
consistent estimator of V . It is clear that there is a cycle, which motivates
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the following algorithm when neither V nor β is assumed known: start with
the OLS estimator (1.35) and compute V̂ by (1.38) with β replaced by β̂I ;
then replace V on the right side of (1.36) by V̂ just obtained to get the next
step estimator of β; and repeat the process. We call such a procedure iterative
weighted least squares, or I-WLS.

It can be shown that, if normality holds and the I-WLS converges, the
limiting estimator is identical to the MLE. Also see Goldstein (1986). There-
fore, the method may be regarded as quasi-likelihood. As shown later, such
a property only holds in the balanced case. As for the convergence of the I-
WLS algorithm, Jiang et al. (2006a) showed that, under mild conditions, the
I-WLS converges exponentially with probability tending to one as the sample
size increases. Such a result holds not only for the balanced case but also for
the unbalanced case discussed below.

Unbalanced case. We now consider a more general case, in which the ob-
servations are not necessarily collected over a common set of times. This
includes the cases: (i) the observations are supposed to be collected at a
common set of times but there are missing observations; and (ii) the ob-
servations are not designed to be collected over a common set of times (e.g.,
some on Monday/Wednesday/Friday and some on Tuesday/Thursday). Let
T = {t1, . . . , tk} be the set of times at which at least one observation is
collected. Then, (ii) may be viewed as a special case of (i), in which some
observations are intentionally “missed.” Therefore we may focus on case (i).

It is then more convenient to denote the observations as yij , j ∈ Ji, where
Ji is a subset of J = {1, . . . , k}, 1 ≤ i ≤ m, such that yij corresponds to the
observation collected from the ith individual at time tj . Write yi = (yij)j∈Ji

.
Suppose that y1, . . . , ym are independent with E(yi) = Xiβ, where Xi is a ma-
trix of known covariates whose jth row (j ∈ Ji) is x′

ij with xij = (xijk)1≤k≤p.
As for the covariance matrix, it follows that V = diag(V1, . . . , Vm), where
Vi = Var(yi). If the Vis are completely unknown, there are still more unknown
covariance parameters than the sample size. In such a case, again, consistent
estimation of V is not possible. Therefore, one needs to further specify the
Vis. For simplicity, we assume that for any q, r ∈ Ji, cov(yiq, yir) does not
depend on i. This includes some important cases in practice. The following is
an example.

Example 1.8. Suppose that the observation times are equally spaced. In
such a case we may assume, without loss of generality, that tj = j. Suppose
that the observations yij satisfy

yij = x′
ijβ + ξi + ζij + εij ,

i = 1, . . . , m, j ∈ Ji ⊂ T = J = {1, . . . , k}, where ξi, is an individual-specific
random effect, ζij corresponds to a serial correlation, and εij represents a
measurement error. It is assumed that the ξis are i.i.d. with mean 0 and
variance σ2

1 , and the εijs are i.i.d. with mean 0 and variance τ2. Furthermore,
the ζijs satisfy the same AR(1) model as described in Example 1.3 except
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that the ωijs are i.i.d. (not necessarily normal) with mean 0 and variance
σ2

2(1 − φ2). Also, we assume that ξ, ζ, and ε are independent. It is easy to
show that (e.g., Anderson 1971b, pp. 174)

cov(yiq, yir) = σ2
1 + σ2

2φ|q−r| + τ2δq,r ,

where δq,r = 1 if q = r and 0 otherwise. Of course, in practice, the above
covariance structure may not be known. Therefore, as a more robust approach
one may have to estimate the covariances cov(yiq, yir), and, in this case, it is
true that the latter do not depend on i.

Denote cov(yiq, yir) by vqr for any i such that q, r ∈ Ji. Let D = {(q, r) :
q, r ∈ Ji for some 1 ≤ i ≤ m and q ≤ r} and d = |D|, the cardinality of D.
We assume that D does not change with m and neither does k (otherwise, the
number of covariances changes with the sample size). Let v = (vqr)(q,r)∈D be
the vector of different covariance parameters.

We now describe the I-WLS procedure. If v were known, the BLUE of β
would be given by (1.36), which now has the expression

β̂BLUE =

(
m∑

i=1

X ′
iV

−1
i Xi

)−1 m∑
i=1

X ′
iV

−1
i yi . (1.39)

On the other hand, if β were known, a method of moments estimator of v
would be given by v̂ = (v̂qr)(q,r)∈D, where

v̂qr =
1

mqr

∑
i:q,r∈Ji

(yiq − x′
iqβ)(yir − x′

irβ) , (1.40)

and mqr = |{1 ≤ i ≤ m : q, r ∈ Ji}|. An estimator of Vi would then be V̂i =
(v̂qr)q,r∈Ji

, 1 ≤ i ≤ m. Obviously, when there are no missing observations, this
is the same as (1.38). On the other hand, when the data are unbalanced the
v̂qrs cannot be derived from the quasi-likelihood. Nevertheless, under mild
conditions v̂qr is a consistent estimator of vqr, if β is known and mqr →
∞. When both β and v are unknown, we iterate between (1.39) and (1.40),
starting with the OLS estimator. This can be formulated as follows. Let f(v)
be the right side of (1.39), and g(β) = {gqr(β)}(q,r)∈D, where gqr(β) is given
by the right side of (1.40). Then, similar to the balanced case, we have v̂(0) =
(δq,r)(q,r)∈D, where δq,r is defined in Example 1.8 above; β̂(1) = f

{
v̂(0)

}
,

v̂(1) = v̂(0); β̂(2) = β̂(1), v̂(2) = g
{

β̂(1)
}

; . . .. In general, we have

β̂(2h−1) = f
{

v̂(2h−2)
}

, v̂(2h−1) = v̂(2h−2);

β̂(2h) = β̂(2h−1), v̂(2h) = g
{

β̂(2h−1)
}

;

for h = 1, 2, . . .. Similar to the balanced case, such a procedure is called
iterative weighted least squares, or I-WLS.
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Jiang et al. (2006a) showed that, under mild conditions, the I-WLS con-
verges exponentially with probability tending to one as the sample size in-
creases. Furthermore, the limiting estimator (i.e., the estimator obtained at
convergence) is consistent and asymptotically as efficient as the BLUE.

1.4.4 Jackknife Method

Although, at convergence, the I-WLS leads to estimators of β and V , its main
purpose is to produce an efficient estimator for β. One problem with I-WLS
is that it only produces point estimators. A naive estimator of Σ = Var(β̂),
where β̂ is the I-WLS estimator of β, may be obtained by replacing V in
the covariance matrix of the BLUE (1.36), which is (X ′V −1X)−1, by V̂ , the
I-WLS estimator of V . However, such an estimator of Σ is likely to be an
underestimator of the true variation, because it does not take into account
the additional variation caused by estimating V .

Furthermore, in some cases the covariance structure of the data is specified
up to a set of parameters, that is, V = V (θ), where θ is a vector of unknown
variance components. In such cases the problems of interest may include es-
timation of both β and θ. Note that the I-WLS is developed under a non-
parametric covariance structure, and therefore does not apply directly to this
case. On the other hand, a similar quasi-likelihood method to that discussed
in Section 1.4.1 may apply to this case. In particular, the quasi-likelihood is
obtained by first assuming that the longitudinal model is a Gaussian one.
Note that, under the longitudinal model, the observations can be divided into
independent blocks (i.e., y1, . . . , ym). Therefore, asymptotic results for quasi-
likelihood estimators with independent observations may apply (see Heyde
1997). The asymptotic covariance matrix of the estimator may be estimated
by the POQUIM method of Section 1.4.2.

Alternatively, the asymptotic covariance matrix may be estimated by the
jackknife method. The jackknife method was first introduced by Quenouille
(1949) and later developed by Tukey (1958). It has been used in estimating
the bias and variation of estimators, mostly in the i.i.d. case. See Shao and
Tu (1995). In the case of correlated observations with general M-estimators of
parameters, the method was developed in the context of small area estimation
(see Jiang, Lahiri, and Wan 2002). One advantage of the method is that
it applies in the same way to different estimating procedures, including I-
WLS and quasi-likelihood, and to generalized linear mixed models as well
(see Section 3.6.2). In the following we describe such a method.

Consider the non-Gaussian longitudinal model defined in Section 1.2.2.2.
Suppose that the vector ψ = (β′, θ′) is estimated by an M-estimating proce-
dure, in which the estimator of ψ, ψ̂, is a solution to the following equation,

m∑
i=1

fi(ψ, yi) + a(ψ) = 0, (1.41)
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where fi(·, ·) and a(·) are vector-valued with the same dimension as ψ such
that E{fi(ψ, yi)} = 0, 1 ≤ i ≤ m. Such M-estimators include, for example,
ML and REML estimators as well as the limiting I-WLS estimator. Similarly,
the delete-i M-estimator of ψ, ψ̂−i, is a solution to the following equation:∑

j �=i

fj(ψ, yj) + a−i(ψ) = 0, (1.42)

where a−i(·) has the same dimension as a(·). Let Σ be the asymptotic covari-
ance matrix of ψ̂. A jackknife estimator of Σ is then given by

Σ̂Jack =
m − 1

m

m∑
i=1

(ψ̂−i − ψ̂)(ψ̂−i − ψ̂)′. (1.43)

Jiang and Lahiri (2004) showed that, under suitable conditions, the jack-
knife estimator is consistent in the sense that Σ̂Jack = Σ + OP(m−1−δ) for
some δ > 0. As is shown, the same jackknife estimator (1.43) also applies to
longitudinal generalized linear mixed models such that the same asymptotic
property holds (see Section 3.6.2).

1.5 Other Methods of Estimation

The ML and REML methods require maximization of multivariate nonlin-
ear functions, namely, the likelihood or restricted likelihood functions, or (at
least) simultaneously solving systems of nonlinear equations. Such tasks were
quite challenging computationally many years ago, when computer technology
was not as advanced. On the other hand, methods that are computationally
simpler were developed, mostly before the ML and REML methods became
popularized. Among these are analysis of variance (ANOVA) estimation, pro-
posed by C. R. Henderson for unbalanced data and minimum norm quadratic
unbiased estimation, or MINQUE, proposed by C. R. Rao. A common fea-
ture of these methods is that they do not require normality of the data. In
this section we discuss these two methods. The discussion is restricted to the
mixed ANOVA model (1.1) and (1.2).

1.5.1 Analysis of Variance Estimation

The basic idea of ANOVA estimation came from the method of moments.
Suppose that there are q variance components involved in a linear mixed
model. Let Q be a q-dimensional vector whose components are quadratic
functions of the data. The ANOVA estimators of the variance components
are obtained by solving the system of equations E(Q) = Q. The only thing
not clear at this point is how to choose Q. For balanced data the choice
is straightforward; whereas for unbalanced data it is less obvious. We first
consider the balanced case.
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1. Balanced data. For balanced data, the components of Q are determined
by the ANOVA tables (e.g., Scheffé 1959). We illustrate the method by a sim-
ple example. The general description of the rules can be found in Henderson
(1969).

Example 1.1 (continued). Consider the balanced case of Example 1.1, that
is, ki = k, 1 ≤ i ≤ m. If the αis are (fixed) treatment effects, the ANOVA table
for analyzing the treatment effects is given below, where SSA = k

∑m
i=1(ȳi· −

ȳ··)2, SSE =
∑m

i=1
∑k

j=1(yij − ȳi·)2, and SStotal =
∑m

i=1
∑k

j=1(yij − ȳ··)2.
Because there are two variance components, σ2 and τ2, the components of

Table 1.1. ANOVA table

Source SS df MS F
Treatment SSA m − 1 MSA = SSA/(m − 1) MSA/MSE
Error SSE m(k − 1) MSE = SSE/m(k − 1)
Total SStotal mk − 1

Q consist of SSA and SSE, and we have E(SSA) = (m − 1)kσ2 + (m − 1)τ2,
E(SSE) = m(k − 1)τ2. Thus, the ANOVA estimating equations are{

(m − 1)kσ2 + (m − 1)τ2 = SSA,
m(k − 1)τ2 = SSE.

The resulting ANOVA estimators are therefore σ̂2 = (MSA − MSE)/k, τ̂2 =
MSE (Exercise 1.16).

Note. It is seen that, unlike ML and REML, ANOVA estimators of the
variance components may not belong to the parameter space. For example,
in the above example, σ̂2 will be negative if MSA < MSE. This is one of the
drawbacks of the ANOVA method.

For balanced data, there is a remarkable relationship between the AVOVA
estimator and REML estimator discussed earlier. It is known that, under a
balanced mixed ANOVA model, the ANOVA estimator of θ = (τ2, σ2

i , 1 ≤ i ≤
s)′ is identical to the solution of the REML equations (e.g., Anderson 1979).
Of course, the solution to the REML equations is not necessarily the REML
estimator, because, by definition, the latter has to be in the parameter space.
On the other hand, when the solution does belong to the parameter space,
the REML and ANOVA estimators are identical. This result holds regardless
of the normality assumption (see Section 1.4.1), but it does require being
balanced (Exercise 1.16).

Unbalanced data. Henderson (1953) proposed three methods, known as
Henderson’s Methods I, II and III, for ANOVA estimation with unbalanced
data. Here we introduce the third method, which applies most broadly to
unbalanced cases. To determine the ANOVA equations, all one has to do is
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to determine the quadratic forms that are the components of Q. Henderson’s
Method III proposes to do so by decomposing the (regression) sum of squares
of residuals (SSR). Again, we illustrate the method by an example and for
more details refer the reader to Henderson’s paper.

Example 1.9. Consider a special case of the mixed ANOVA model (1.1)
and (1.2): y = Xβ+Z1α1+Z2α2+ε, where the terms are defined as in Section
1.2.1.1 except that normality is not required.

First write the model as y = Wγ+ε, where W = (X, Z) with Z = (Z1, Z2),
and γ = (β′, α′

1, α2)′. If this were a fixed effects model (i.e., linear regression),
one would have SSR = SSR(α, β) = |PW y|2 = y′PW y, where PW is the
projection matrix (see Appendix B). On the other hand, if there were no
random effects, one would have y = Xβ + ε, and the corresponding SSR
is SSR(β) = |PXy|2 = y′PXy. Thus, the difference in SSR is SSR(α|β) =
SSR(α, β) − SSR(β) = y′PZ�Xy, where Z 	 X = PX⊥Z with PX⊥ = I −
PX . Here we use the facts that PW = PX,Z = PX + PZ�X and the last
two projections are orthogonal to each other (Exercise 1.17). Thus, the first
quadratic form for ANOVA estimation is SSR(α|β).

Next, we have, similarly, SSR(α2|β, α1) = SSR(α, β) − SSR(α1, β) =
y′PZ2�(X,Z1)y, where Z2 	 (X, Z1) = P(X,Z1)⊥Z2 and PZ2�(X,Z1) = PW −
P(X,Z1) (Exercise 1.17). This is the second quadratic form for ANOVA esti-
mation.

Finally, the last quadratic form for ANOVA estimation is SSE = y′PW ⊥y.
In conclusion, the three quadratic forms for estimating σ2

1 , σ2
2 , and τ2 are

SSR(α|β), SSR(α2|β, α1), and SSE, which are the components of Q.
In order to determine E(Q), note that the expected value of each of the

above quadratic forms is a linear function of σ2
1 , σ2

2 , and τ2. Thus, all one has
to do is to determine the coefficients in those linear functions. The following
lemma may be helpful in this regard.

Lemma 1.1. Let A be any symmetric matrix such that X ′AX = 0. Under
the mixed ANOVA model (1.1) and (1.2) without the normality assumption,
the coefficient of σ2

i in E(y′Ay) is tr(AZiZ
′
i), 0 ≤ i ≤ s, where σ2

0 = τ2 and
Z0 = In.

Proof. By Appendix C we have E(y′Ay) = tr(AV ) + β′X ′AXβ = tr(AV ),
where V =

∑s
i=0 σ2

i ZiZ
′
i. Thus, E(y′Ay) =

∑s
i=0 σ2

i tr(AZiZ
′
i).

In SSR(α|β) of Example 1.9, the coefficient of σ2
i is tr(PX⊥ZiZ

′
i), i = 1, 2

and the coefficient of τ2 is tr(PZ�X) = rank(W ) − rank(X). Here we use the
identity PZ�XZi = PX⊥Zi, i = 1, 2. Similarly, in SSR(α2|β, α1) and SSE, the
coefficients for σ2

1 , σ2
2 , τ2 are 0, tr{P(X,Z1)⊥Z2Z

′
2}, rank(W )− rank{(X, Z1)},

and 0, 0, n−rank(W ), respectively, where n is the sample size (i.e., dimension
of y; Exercise 1.17).
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1.5.2 Minimum Norm Quadratic Unbiased Estimation

This method, known as MINQUE, was proposed by C. R. Rao in a series of
papers (1970, 1971, 1972). The form of the estimator in MINQUE is similar to
that of ANOVA, that is, obtained by solving a system of equations E(Q) = Q,
where Q is a vector of quadratic forms. Again, the question is: what Q?

Write θ = (σ2
i )0≤i≤s, where, as usual, σ2

0 = τ2. Consider estimation of
a linear function of θ, say, η = b′θ, where b = (bi)0≤i≤s. Suppose that the
estimator is a quadratic form in y, say, η̂ = y′Ay. If we can determine the A
here, we can subsequently determine Q. We assume that A is symmetric such
that A′X = 0, and the estimator η̂ is unbiased. By Lemma 1.1, the latter
assumption implies that

bi = tr(AZiZ
′
i), 0 ≤ i ≤ s. (1.44)

Furthermore, we have, by (1.1), η̂ = α′Z ′
∗AZ∗α, where Z∗ = (Z0, Z1, . . . , Zs),

α = (α′
0, α

′
1, . . . , α

′
s)

′ with α0 = ε. On the other hand, if αi were observable,
a method of moment estimator of σ2

i would be m−1
i

∑mi

j=1 α2
ij = m−1

i |αi|2,
0 ≤ i ≤ s, where mi is the dimension of αi with m0 = n. Thus, an
unbiased estimator of η would be η̃ =

∑s
i=0 bim

−1
i |αi|2 = α′Bα, where

B = diag(bim
−1
i Imi

, 0 ≤ i ≤ s). The reality is: η̂ is the actual estima-
tor. By Lemma 1.2 below it can be shown that, under normality, the mean
squared difference E(|η̂ − η̃|2) is equal to 2tr[{(Z∗AZ∗ − B)D}2], where
D = diag(σ2

i Imi , 0 ≤ i ≤ s). Note that (1.44) implies that E(η̂ − η̃) = 0
(Exercise 1.18). Thus, under normality, A may be chosen by minimizing
the mean squared difference between the actual estimator η̂ and “would
be” estimator η̃. Without normality, the matrix A may still be chosen this
way, with the interpretation that it minimizes a weighted Euclidean norm
tr[{(Z∗AZ∗ − B)D}2] = ‖D1/2(Z∗AZ∗ − B)D1/2‖2

2. The resulting estimator
η̂ is called the minimum norm quadratic unbiased estimator, or MINQUE, of
η. By suitably choosing b one obtains MINQUE for σ2

i , 0 ≤ i ≤ s.
However, before the minimization is performed one needs to know D or,

equivalently, σ2
i , 0 ≤ i ≤ s, which are exactly the variance components we

wish to estimate. It is suggested that the σ2
i s be replaced by some initial

values σ2
0i, 0 ≤ i ≤ s in order to compute the MINQUE. It follows that the

estimator depends on the initial values. On the other hand, the fact that
MINQUE depends on the initial values motivates an iterative procedure in
which the (current) MINQUE is used as initial values to repeat the calculation,
and repeat again. This procedure is called iterative MINQUE, or I-MINQUE.
Unlike MINQUE, I-MINQUE, if it converges, is not affected by initial values.
This is because the limiting I-MINQUE satisfies the REML equations. In other
words, I-MINQUE is identical to the REML estimator (see Section 1.4.1) if
the restriction that the latter belong to the parameter space is not imposed
(e.g., Searle et al. 1992, §11.3). However, neither MINQUE nor I-MINQUE is
guaranteed to lie in the parameter space. Brown (1976) showed that, under
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suitable conditions, I-MINQUE is consistent and asymptotically normal. For
more about MINQUE and related methods, see Rao and Kleffe (1988).

Lemma 1.2. Let A1, A2 be symmetric matrices and ξ ∼ N(0, Σ). Then,
E[{ξ′A1ξ − E(ξ′A1ξ)}{ξ′A2ξ − E(ξ′A2ξ)}] = 2tr(A1ΣA2Σ).

1.6 Notes on Computation and Software

1.6.1 Notes on Computation

1. Computation of the ML and REML estimators. From a computational
standpoint, the more challenging part of the analysis of linear mixed models
is the computation of maximum likelihood and restricted maximum likelihood
estimators. Because the likelihood or restricted likelihood functions under a
Gaussian mixed model can be expressed in closed-forms, the maximization
of these functions can be done, in principle, by standard numerical proce-
dures, such as Newton–Raphson. However, a more efficient algorithm may be
developed based on the nature of the Gaussian mixed model.

To see this, let us first consider ML estimation under a Gaussian mixed
model. Note that a general Gaussian mixed model can be expressed as (1.1),
where ε ∼ N(0, R). In many cases, the covariance matrix R is equal to τ2I,
where τ2 is an unknown positive variance and I the (n×n) identity matrix. As
for G = Var(α), there is a decomposition such that G = τ2UU ′, although the
decomposition is not unique. One that is frequently used is Cholesky’s decom-
position, in which U is lower-triangular. Another well-known decomposition
is the eigenvalue decomposition, in which U = Tdiag(

√
λ1/τ, . . . ,

√
λm/τ), T

is an orthogonal matrix, and λ1, . . . , λm are the eigenvalues of G (m is the
dimension of α). See Appendix B for more about these decompositions. Sup-
pose that G is specified up to a vector ψ of dispersion parameters; that is,
G = G(ψ). Then, U = U(ψ). Furthermore, if R is nonsingular, so is U . De-
note the conditional density function of y given α by f(y|α), and the density
function of α by f(α). Then, we have

f(y|α)f(α) =
1

(2πτ2)n/2 exp
(

− 1
2τ2 |y − Xβ − Zα|2

)
× 1

(2πτ2)m/2|U | exp
(

− 1
2τ2 |U−1α|2

)
=

1
(2πτ2)(m+n)/2|U | exp

(
− 1

2τ2 |ỹ − X̃β − Z̃α|2
)

,

where

ỹ =
(

y
0

)
, X̃ =

(
X
0

)
, Z̃ =

(
Z

U−1

)
.

For a given β, write ũ = ỹ − X̃β. According to the geometry of the least
squares, we have the orthogonal decomposition:
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|ũ − Z̃α|2 = |ũ − Z̃α̃|2 + |Z̃(α̃ − α)|2

= |ũ − Z̃α̃|2 + (α − α̃)′Z̃ ′Z̃(α − α̃),

where α̃ = (Z̃ ′Z̃)−1Z̃ ′ũ so that Z̃α̃ = PZ̃ ũ, the projection of ũ to L(Z̃), the
linear space spanned by the columns of Z̃. Note that∫

exp
{

− 1
2τ2 (α − α̃)′Z̃ ′Z̃(α − α̃)

}
dα =

(2πτ2)m/2

|Z̃ ′Z̃|1/2
.

Thus, we have∫
f(y|α)f(α)dα =

1
(2πτ2)n/2|U | · |Z̃ ′Z̃|1/2

exp
(

− 1
2τ2 |ũ − Z̃α̃|2

)
.

Also note that |U |·|Z̃ ′Z̃|1/2 = |UU ′|1/2|Z ′Z+(UU ′)−1|1/2 = |Im+UU ′Z ′Z|1/2,
and ũ− Z̃α̃ = y∗ −X∗β, where y∗ = PZ̃⊥ ỹ, X∗ = PZ̃⊥X̃ with PA⊥ = I −PA,
the projection to the linear space orthogonal to L(A). It follows that the
log-likelihood function can be expressed as

l = c − n

2
log(τ2) − 1

2
log(|Im + UU ′Z ′Z|)

− 1
2τ2 |y∗ − X∗β|2, (1.45)

where c is a constant. It is seen that, given ψ, the maximization of (1.45) is
equivalent to fitting the linear regression y∗ = X∗β+ε, where the components
of ε are i.i.d. and distributed as N(0, τ2). Thus, the maximizer of (1.45) given
ψ is given by

β̃ = (X∗′
X∗)−1X∗′

y∗

= (X̃ ′PZ̃⊥X̃)−1X̃ ′PZ̃⊥ ỹ

= P (X)−1P (y), (1.46)

here for any matrix or vector A, P (A) = X ′A − X ′Z{Z ′Z + (UU ′)−1}−1Z ′A
(see Appendix B for properties of projection matrices), and

τ̃2 =
1
n

|y∗ − X∗β̃|2

=
1
n

|PZ̃⊥(ỹ − X̃β̃)|2

=
1
n

[|y − Xβ̃|2

−(y − Xβ̃)′Z{Z ′Z + (UU ′)−1}−1Z ′(y − Xβ̃)]. (1.47)

This leads to the following algorithm. Express the log-likelihood function as
a profile log-likelihood by plugging (1.46) and (1.47) into (1.45); that is,



1.6 Notes on Computation and Software 31

lp(ψ) = c − n

2
log(τ̃2) − 1

2
log(|Im + UU ′Z ′Z|), (1.48)

where c is another constant; then maximize (1.48) with respect to ψ to find the
MLE for ψ, say, ψ̂. The MLE for β and τ2, say, β̂ and τ̂2, are thus computed by
(1.46) and (1.47) with ψ replaced by ψ̂. We use a simple example to illustrate
the algorithm.

Example 1.1 (Continued). Consider a special case of Example 1.1 with
ki = k, 1 ≤ i ≤ m. The model can be written in the standard form (1.1),
with X = 1m ⊗ 1k, β = µ, Z = Im ⊗ 1k, R = τ2Im ⊗ Ik, and G = σ2Im.
Furthermore, we have G = τ2UU ′ with U =

√
ψIm and ψ = σ2/τ2. Thus,

it is easy to show that P (X) = mk/(1 + kψ), P (y) = y··/(1 + kψ). Thus,
β̃ = µ̃ = y··/mk = ȳ··. Furthermore, it can be shown (Exercise 1.19) that

τ̃2 =
1
n

(
SSW +

SSB
1 + kψ

)
,

where SSB = k
∑m

i=1(ȳi· − ȳ··)2, SSW =
∑m

i=1
∑k

j=1(yij − ȳi·)2 with ȳi· =

k−1 ∑k
j=1 yij . It follows that the profile log-likelihood has the form

lp(ψ) = c − n

2
log(SSB + λSSW) +

n − m

2
log λ,

where λ = 1 + kψ. The maximum of lp is given by

λ̂ =
(

1 − 1
m

)
MSB
MSW

,

where MSB = SSB/(m − 1) and MSW = SSW/(n − m), or

ψ̂ =
1
k

{(
1 − 1

m

)
MSB
MSW

− 1
}

.

Thus, the MLE for τ2 is given by τ̂2 = MSW.

Now consider REML estimation under a Gaussian mixed model. Again,
assume that R = τ2In. Let A be the matrix (of full rank) corresponding to the
orthogonal transformation in REML (see Section 1.3.2). Because the REML
estimator is not affected by the choice of A, one may choose A such that, in
addition to (1.16),

A′A = In−p, (1.49)

where p = rank(X), so that

AA′ = In − X(X ′X)−1X ′

≡ P (1.50)
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(see Appendix B). Then, we have z = A′y = Hα + ζ, where H = A′Z and
ζ ∼ N(0, τ2In−p). Thus, by similar arguments, we have

f(z|α)f(α) =
1

(2πτ2)(n−p+m)/2|U | exp
(

− 1
2τ2 |z̃ − H̃α|2

)
,

where

z̃ =
(

z
0

)
, H̃ =

(
H

U−1

)
,

so that the restricted log-likelihood can be expressed as

lR = c − n − p

2
log(τ2) − 1

2
log(|Im + UU ′Z ′PZ|)

− 1
2τ2 |PH̃⊥ z̃|2, (1.51)

where α̃ = (H̃ ′H̃)−1H̃ ′z̃ so that H̃α̃ = PH̃ z̃. Given ψ, the maximizer of (1.51)
is given by

τ̃2 =
1

n − p
|PH̃⊥ z̃|2

=
1

n − p
[y′Py − y′PZ{Z ′PZ + (UU ′)−1}−1Z ′Py], (1.52)

hence the profile restricted log-likelihood has the form

lR,p(ψ) = c − n − p

2
log(τ̃2) − 1

2
log(|Im + UU ′Z ′PZ|), (1.53)

where c is another constant. The maximizer of (1.53), say, ψ̂, will be the
REML estimator of ψ; the REML estimator of τ2 is then given by (1.52) with
ψ replaced by ψ̂. Again, we consider a simple example.

Example 1.1 (Continued). In this case, P = In − n−1Jn, so that

τ̃2 =
1

n − 1

(
SSW +

SSB
1 + kψ

)
.

It follows that the restricted profile log-likelihood has the form

lR,p(ψ) = c − n − 1
2

log(SSB + λSSW) +
n − m

2
log λ,

where λ is defined earlier. This is the same as lp except that n is replaced by
n − 1 in the term that involves SSB and SSW. The maximizer of lR,p is given
by

λ̂ =
MSB
MSW

,
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or

ψ̂ =
1
k

(
MSB
MSW

− 1
)

.

The REML estimator of τ2 remains the same as τ2 = MSW.

Note that the maximizer of the (restricted) profile log-likelihood may fall
outside the parameter space of ψ, say, Ψ . For example, in Example 1.1 (con-
tinued), Ψ = [0,∞), but the maximizer of ψ obtained as the solution to the
(restricted) profile likelihood equation may be negative. (The likelihood equa-
tions are obtained by setting the derivatives equal to zero.) In such a situation,
the maximizer within Ψ lies on the boundary of Ψ , and therefore cannot be
obtained by solving the (restricted) profile likelihood equation. However, the
maximizer within the parameter space may still be obtained by searching for
the maximum along the boundary of Ψ . See, for example, Searle et al. (1992,
§8.1) for more details.

2. The EM algorithm. According to the discussion above, the key compo-
nent in the computation of ML and REML estimators is the maximization of
the profile log-likelihood, or restricted profile log-likelihood, with respect to
ψ. Note that this is a nonlinear maximization problem. Although standard
numerical procedures, such as Newton–Raphson, are available, the procedure
is often sensitive to initial values.

Alternatively, one may use the EM algorithm (Dempster et al. 1977) to
compute the MLE. The idea is to treat the random effects as “missing data.”
See Section 4.1.1 for more details. The EM algorithm is known to converge
slower than the Newton–Raphson procedure. For example, Thisted (1988, pp.
242) gave an example, in which the first iteration of EM was comparable to
four iterations of Newton–Raphson in terms of convergence speed; however,
after the first iteration, the EM flattened and eventually converged in more
than five times as many iterations as Newton–Raphson. On the other hand,
the EM is more robust to initial values than the Newton–Raphson. The two
procedures may be combined to utilize the advantages of both. For example,
one could start with the EM, which is more capable of converging with poor
initial values, and then switch to Newton–Raphson (with the simplifications
given above) after a few iterations.

1.6.2 Notes on Software

Standard routines for Gaussian mixed model analysis are available in several
major statistical packages including SAS, S-Plus, SPSS, and Stata. Here we
briefly summarize the software available in SAS and S-Plus.

The main procedure for linear mixed model analysis in SAS is PROC
MIXED, although in some cases, a similar analysis may be carried out by
PROC GLM. Note that here GLM refers to general linear models (rather than



34 1 Linear Mixed Models: Part I

generalized linear models). In fact, PROC GLM was the procedure of fitting
linear mixed models prior to the advent of PROC MIXED, and the latter has
advantages over the former on various occasions. For example, in obtaining
estimates for the fixed effects, PROC GLM computes the OLS estimator,
whereas PROC MIXED gives the empirical (or estimated) BLUE, or EBLUE,
which is (asymptotically) more efficient than the OLS estimator. See Sections
1.4.3 and 2.3.1.2. In addition, PROC GLM does not provide a valid estimate
for the standard error of the OLS estimator, because the correlations among
the observations are ignored. In contrast, the standard error estimate in PROC
MIXED for the EBLUE is more accurate, using the method of Kackar and
Harville (1984; see Section 2.3.1.3).

It should be pointed out that these analyses are for Gaussian mixed mod-
els, although some of the results do not require normality. For example,
the standard method of variance component estimation in PROC MIXED
is REML, and the standard error calculations in REML are all based on the
asymptotic covariance matrix (ACM) of the REML estimator under the nor-
mality assumption. As we know, it is inappropriate to use the ACM under
normality for non-Gaussian linear mixed models. However, new methods of
estimating the ACM for non-Gaussian linear mixed models, such as POQUIM
(see Section 1.4.2) have not been developed in SAS. On the other hand, the
(point) REML estimates, for example, are the same whether or not normality
is assumed. See Section 1.4.1. Note that the REML estimators in non-Gaussian
linear mixed models are defined as quasi-likelihood estimators, which are so-
lutions to the Gaussian REML equations. For further details about PROC
MIXED, see, for example, Littell et al. (1996).

On the other hand, S-Plus has established itself as a powerful tool for
application, research, and education. The main function in S-Plus that deals
with linear mixed effects models is lme (linear mixed effects). One of the
main advantages with S-Plus is that it offers a variety of graphic displays of
the data as well as the fitted models. Once again, we illustrate the practice
of lme using a real-life data example. For further details, see, for example,
Pinheiro and Bates (2000).

The use of both SAS PROC MIXED and S-Plus lme for analysis of linear
mixed models is illustrated in the next section.

1.7 Real-Life Data Examples

As mentioned in the preface, there is a vast literature on the applications of
linear mixed models. In this section, we consider two examples of such appli-
cations as case studies. The main goal is to illustrate the situations in which
these models may be useful, the procedures of modeling and data analysis
under the assumed models, and the interpretation of the results with respect
to the real-life problems.
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1.7.1 Analysis of Birth Weights of Lambs

Harville and Fenech (1985) presented a dataset of birth weights of lambs and
used it to illustrate the analysis of linear mixed models. The observations con-
sist of birth weights of 62 single-birth male lambs. These lambs were progenies
of 23 rams, so that each lamb had a different dam. The ages of the dams were
recorded as a covariate. A second covariate was the (distinct) population lines.
There were two control lines and three selection lines.

We record the data in Table 1.2 in a way different from Harville and Fenech
(1985), so that it better matches the linear mixed model introduced below.
In this model, the sire (ram) effects are considered random effects. These
random effects are nested within lines, and are denoted by sij , 1 ≤ i ≤ 5, j =
1, . . . , ni, where n1 = n2 = n3 = 4, n4 = 3, and n5 = 8. The sijs are assumed
independent and normally distributed with mean 0 and variance σ2

s . The age
of the dam, which is a categorical variable with three categories numbered 1
(1–2 years), 2 (2–3 years), 3 (over 3 years), is considered a fixed covariate.
Let xijk,1 = 1 if the age of the kth dam corresponding to line i and sire j is
in category 1, and xijk,1 = 0 otherwise; similarly, let xijk,2 = 1 if the age of
the kth dam corresponding to line i and sire j is in category 2, and xijk,2 = 0
otherwise. Another fixed effect is the line effect, denoted by li, i = 1, . . . , 5.
Finally, the random errors eijk, 1 ≤ i ≤ 5, 1 ≤ j ≤ ni, k = 1, . . . , nij are
added to the model to represent the variation due to the environment and
other unexplained factors. The eijks are assumed independent and normally
distributed with mean 0 and variance σ2

e , and independent of the sijs. The
last assumption may be interpreted as that the sire effects are orthogonal to
the environmental effects. Here nij is the number of measures in the (i, j) cell.
For example, n11 = 1, n13 = 6, and n42 = 2. A linear mixed model can be
expressed as

yijk = li + a1xijk,1 + a2xijk,2 + sij + eijk,

i = 1, . . . , 5, j = 1, . . . , ni, and k = 1, . . . , nij . It can be formulated in the
standard form (1.1); that is,

y = Xβ + Zs + e,

where y = (y111, y121, . . . , y585)′ is the vector of all the observations, β =
(l1, . . . , l5, a1, a2)′ is the vector of all the fixed effects, X is the matrix of co-
variates corresponding to β, s = (s11, s12, . . . , s58)′ is the vector of sire effects,
Z is the design matrix corresponding to s, and e = (e111, e121, . . . , e585)′ is the
vector of errors. For example, verify that the first row of X is (1, 0, 0, 0, 0, 1, 0);
and the 13th row of X is (0, 1, 0, 0, 0, 0, 0). Note that X is of full rank. Also
note that Z is a standard design matrix in that it consists of zeros and ones;
there is exactly one 1 in each row, and at least one 1 in each column.

The model is fitted using SAS PROC MIXED with the option REML. The
REML estimates of the two variance components, σ2

s and σ2
e , are obtained as

σ̂2
s = 0.511 and σ̂2

e = 2.996.
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Table 1.2. Lamb birth weights

Obs. 6.2 13.0 9.5 10.1 11.4 11.8 12.9 13.1 10.4
Sire 11 12 13 13 13 13 13 13 14
Line 1 1 1 1 1 1 1 1 1
Age 1 1 1 1 1 2 3 3 1
Obs. 8.5 13.5 10.1 11.0 14.0 15.5 12.0 11.5 10.8
Sire 14 21 22 22 22 22 23 24 24
Line 1 2 2 2 2 2 2 2 2
Age 2 3 2 3 3 3 1 1 3
Obs. 9.0 9.0 12.6 11.0 10.1 11.7 8.5 8.8 9.9
Sire 31 31 31 32 32 32 32 32 32
Line 3 3 3 3 3 3 3 3 3
Age 2 3 3 1 2 2 3 3 3
Obs. 10.9 11.0 13.9 11.6 13.0 12.0 9.2 10.6 10.6
Sire 32 32 32 33 33 34 41 41 41
Line 3 3 3 3 3 3 4 4 4
Age 3 3 3 1 3 2 1 1 1
Obs. 7.7 10.0 11.2 10.2 10.9 11.7 9.9 11.7 12.6
Sire 41 41 41 42 42 43 43 51 51
Line 4 4 4 4 4 4 4 5 5
Age 3 3 3 1 1 1 3 1 1
Obs. 9.0 11.0 9.0 12.0 9.9 13.5 10.9 5.9 10.0
Sire 52 52 53 53 54 55 56 56 57
Line 5 5 5 5 5 5 5 5 5
Age 1 3 3 3 3 2 2 3 2
Obs. 12.7 13.2 13.3 10.7 11.0 12.5 9.0 10.2
Sire 57 57 57 58 58 58 58 58
Line 5 5 5 5 5 5 5 5
Age 2 3 3 1 1 1 3 3

In order to obtain estimates of the fixed effects, it is important to fit the
model without intercept, because otherwise the line and age effects are not
all identifiable. The estimates of the fixed effects without intercept are given
by Table 1.3 below. It is seen that all the line effects are significantly different
from zero (in fact, positive), whereas all the age effects are not significant.
Here the level of significance is understood as 0.01. The results suggest that
whereas the (average) birth weights of lambs appear different from line to
line, there seem to be no such differences among the age groups for the dams.
This example is revisited in the next chapter, where estimates of the random
effects are obtained.

SAS PROC MIXED also provides alternative methods for fitting a linear
mixed model. For example, if the REML option is replaced by MIVQUE0,
which is a special case of MINQUE (see Section 1.5.2), the estimates of the
variance components are σ̂2

s = 0.323 and σ̂2
e = 3.116. The estimates of the

fixed effects are given by Table 1.4 below. It is observed that the estimates of
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Table 1.3. Estimates of the fixed effects (REML)

Effect Line Age Est. S.E. t-value Pr > |t|
Line 1 10.5008 0.8070 13.01 < .0001
Line 2 12.2998 0.7569 16.25 < .0001
Line 3 11.0425 0.6562 16.83 < .0001
Line 4 10.2864 0.7882 13.05 < .0001
Line 5 10.9625 0.5438 20.16 < .0001
Age 1 -0.0097 0.5481 -0.02 0.9861
Age 2 -0.1651 0.6435 -0.26 0.7989

the fixed effects using MIVQUE0 are very close to those using REML, even
though the estimates of σ2

s using the two methods are quite different.

Table 1.4. Estimates of the fixed effects (MIVQUE0)

Effect Line Age Est. S.E. t-value Pr > |t|
Line 1 10.5637 0.7730 13.67 < .0001
Line 2 12.3028 0.7277 16.91 < .0001
Line 3 10.9962 0.6134 17.93 < .0001
Line 4 10.2640 0.7484 13.72 < .0001
Line 5 10.9650 0.5255 20.86 < .0001
Age 1 -0.0109 0.5509 -0.02 0.9844
Age 2 -0.1393 0.6495 -0.21 0.8313

However, PROC MIXED does not provide an option for ANOVA estima-
tion of the variance components. If one wishes to obtain ANOVA estimates
of the variance components, one may use the GLM procedure in SAS, PROC
GLM. For example, the ANOVA estimates of the variance components us-
ing Henderson’s method III (see Section 1.5.1, which gives the same result as
Henderson’s method I in this case) are σ̂2

s = 0.764 and σ̂2
e = 2.796. Again, the

estimate of σ2
s is quite different from the ones using REML and MIVQUE0 in

PROC MIXED.

1.7.2 Analysis of Hip Replacements Data

In this section, we use a data set presented by Hand and Crowder (1996)
regarding hip replacements to illustrate the iterative WLS method of longitu-
dinal data analysis introduced in Section 1.4.3. Thirty patients were involved
in this study. Each patient was measured four times, once before the operation
and three times after, for hematocrit, TPP, vitamin E, vitamin A, urinary zinc,
plasma zinc, hydroxyprolene (in milligrams), hydroxyprolene (index), ascorbic
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acid, carotine, calcium, and plasma phosphate (12 variables). One important
feature of the data is that there is considerable amount of missing observa-
tions. In fact, most of the patients have at least one missing observation for all
12 measured variables. In other words, the longitudinal data are (seriously)
unbalanced.

We consider two of the measured variables: hematocrit and calcium. The
first variable was considered by Hand and Crowder (1996) who used the data
to assess age, sex, and time differences. The authors assumed an equicorrelated
model and obtained Gaussian estimates of regression coefficients and variance
components (i.e., MLE under normality). Here we take a robust approach
without assuming a specific covariance structure. The covariates consist of the
same variables as suggested by Hand and Crowder. The variables include an
intercept, sex, occasion dummy variables (three), sex by occasion interaction
dummy variables (three), age, and age by sex interaction. For the hematocrit
data the I-WLS algorithm converged in seven iterations. The results are shown
in Table 1.5. The first row is I-WLS estimates corresponding to, from left to
right, intercept, sex, occasions (three), sex by occasion interaction (three),
age, and age by sex interaction; the second row is estimated standard errors
corresponding to the I-WLS estimates; the third row is the Gaussian maximum
likelihood estimates obtained by Hand and Crowder (1996, pp. 106) included
for comparison.

Table 1.5. Estimates for hematocrit.

Coef. β1 β2 β3 β4 β5

I-WLS 3.19 0.08 0.65 -0.34 -0.21
s.e. 0.39 0.14 0.06 0.06 0.07
Gaussian 3.28 0.21 0.65 -0.34 -0.21
Coef. β6 β7 β8 β9 β10

I-WLS 0.12 -0.051 -0.051 0.033 -0.001
s.e. 0.06 0.061 0.066 0.058 0.021
Gaussian 0.12 -0.050 -0.048 0.019 -0.020

It is seen that the I-WLS estimates are similar to the Gaussian estimates,
especially for the parameters that are found significant. This is, of course, not
surprising, because the Gaussian and I-WLS estimators should both be close
to BLUE, provided that the covariance model suggested by Hand and Crowder
is correct (the authors believed that their method was valid in this case).
Taking into account the estimated standard errors, we found the coefficients
β1, β3, β4, β5, and β6 to be significant and the rest of the coefficients to be
insignificant, where the β1, β2, . . . are the coefficients corresponding to the
variables described in the first paragraph of this section in that order. This
suggests that, for example, the recovery of hematocrit improves over time at
least for the period of measurement times. The findings are consistent with
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those of Hand and Crowder with the only exception of β6. Hand and Crowder
considered jointly testing the hypothesis that β6 = β7 = β8 = 0 and found
an insignificant result. In our case, the coefficients are considered separately,
and we found β7 and β8 to be insignificant and β6 to be barely significant
at the 5% level. However, because Hand and Crowder did not publish the
individual standard errors, this does not necessarily imply a difference. The
interpretation of the significance of β6, which corresponds to the interaction
between sex and the first occasion, appears to be less straightforward (Exercise
1.21).

Next, we consider the calcium data. We use the same covariate variables
to assess age, sex, and time differences. In this case, our algorithm converged
in 13 iterations. The results are given in Table 1.6. The first row is I-WLS
estimates corresponding to, from left to right, intercept, sex, occasions (three),
sex by occasion interaction (three), age, and age by sex interaction; the second
row is estimated standard errors corresponding to the estimates. It is seen
that, except for β1, β3, and β4, all the coefficients are not significant (at the
5% level). In particular, there seems to be no difference in terms of sex and
age. Also, the recovery of calcium after the operation seems to be a little
quicker than that of hematocrit, because β5 is no longer significant. Hand and
Crowder (1996) did not analyze this dataset.

Table 1.6. Estimates for calcium.

Coef. β1 β2 β3 β4 β5

I-WLS 20.1 0.93 1.32 -1.89 -0.13
s.e. 1.3 0.57 0.16 0.13 0.16

Coef. β6 β7 β8 β9 β10

I-WLS 0.09 0.17 -0.15 0.19 -0.12
s.e. 0.16 0.13 0.16 0.19 0.09

1.8 Further Results and Technical Notes

1. A note on finding the MLE. By definition, the MLE is the global max-
imum of the (log-)likelihood function. A method that, in principle, ensures
finding the MLE is called the “fine grid.” The idea is to divide the parameter
space into (many) small subspaces, or grids, and compute the value of the
log-likelihood at a given point within each grid. Then, by comparing the val-
ues of the log-likelihood at those points, one obtains an approximate global
maximum of the log-likelihood. As the grid becomes finer, the approxima-
tion becomes more accurate. However, this method is impractical for the cal-
culation of MLE under linear mixed models, especially if the parameter is
multidimensional.
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Alternatively, one may look for stationary points that are solutions to the
ML equations. Several cases may occur as a result, then: (i) the solution is a
global maximum; (ii) the solution is a local maximum; and (iii) the solution
is something else (e.g., local minimum, saddle point). In case (i) the goal of
finding the MLE is achieved. In cases (ii) and (iii), the goal is not achieved,
but there is a way to separate these two cases by computing the Hessian
matrix of the log-likelihood, which is supposed to be positive definite at a
local maximum. Because one is unsure whether the solution found is a global
maximum, a complete and successful implementation of this method may
require finding all the solutions to the ML equations, comparing the values of
the log-likelihood among the solutions and with the values on the boundary
of the parameter space to identify the global maximum. Sometimes such a
procedure is also quite expensive, even impractical, especially if the number
of solutions is unknown. Some methods have been discussed in Section 1.6.1
regarding computation of the MLE. All of these methods lead to, at least, a
local maximum of the log-likelihood function. The same discussion also applies
to REML estimation.

Alternatively, Gan and Jiang (1999) proposed a statistical method for
identifying whether a given root is the global maximizer of the likelihood
function. Their method consists of a test for the global maximum or, more
precisely, a test for the asymptotic efficiency of a root to the ML equation.
Unfortunately, the Gan–Jiang test applies only to the case of i.i.d. observations
with a single (one-dimensional) parameter.

2. Note on X not of full rank. If X is not of full rank, the matrix X ′V −1X
will be singular. However, most of the results in this chapter still hold with
(X ′V −1X)−1 replaced by (X ′V −1X)−, where M− represents the generalized
inverse of matrix M (see Appendix B). For example, (X ′V −1X)−1 in the
definitions of β̂ in (1.9) and P in (1.11) can be replaced by (X ′V −1X)−.

3. Asymptotic behavior of ML and REML estimators in non-Gaussian
mixed ANOVA models. Asymptotic properties of ML estimators under the
normality assumption have been considered by Hartley and Rao (1967), An-
derson (1969, 1971a), and Miller (1977), among others. Asymptotic behavior
of REML estimators has been studied by Das (1979) and Cressie and Lahiri
(1993) under the normality assumption, and by Richardson and Welsh (1994)
and Jiang (1996, 1997a) without the normality assumption. All but Jiang
(1996, 1997a) have assumed that the rank p of the design matrix X is fixed or
bounded, which turns out to be a critical assumption. This is because, under
such an assumption, the ML and REML estimators are asymptotically equiva-
lent. On the other hand, earlier examples, including the famous Neyman–Scott
problem (Neyman and Scott 1948), showed apparent asymptotic superiority
of REML over ML in cases where the number of fixed effects increases with
the sample size. In other words, to uncover the true superiority of REML
one has to look at the case where the number of fixed effects grows with the
sample size.
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For simplicity, here we state some results for balanced mixed ANOVA
models. More general results can be found in Jiang (1996, 1997a). Here we
consider the Hartley–Rao form of variance components λ and γi, 1 ≤ i ≤ s
(see Section 1.2.1.1).

First introduce some notation for a general linear mixed model (not neces-
sarily balanced). The model is called unconfounded if (i) the fixed effects are
not confounded with the random effects and errors; that is, rank(X, Zi) > p,
∀i and X �= I; and (ii) the random effects and errors are not confounded;
that is, the matrices I and ZiZ

′
i, 1 ≤ i ≤ s are linearly independent (e.g.,

Miller 1977). The model is called nondegenerate if var(α2
i1), 0 ≤ i ≤ s are

bounded away from zero, where αi1 is the first component of αi. Note that
if var(α2

i1) = 0, αi1 = −c or c with probability one for some constant c.
A sequence of estimators λ̂n, γ̂1,n, . . . , γ̂s,n is asymptotically normal if there
are sequences of positive constants pi,n → ∞, 0 ≤ i ≤ s and a sequence of
matrices Mn such that lim sup(‖M−1

n ‖ ∨ ‖Mn‖) < ∞ such that

Mn(p0,n(λ̂n − λ), p1,n(γ̂1,n − γ1), . . . , ps,n(γ̂s,n − γs))′ D−→ N(0, Is+1).

The subscript n is often suppressed, as we do in the sequel, to simplify the
notation. Let A be as in (1.16). Define V (A, γ) = A′A +

∑s
i=1 γiA

′ZiZ
′
iA,

and V (γ) = AV (A, γ)−1A′. Note that V (γ) does not depend on the choice
of A. Let V0(γ) = b(γ)V (γ)b(γ)′, where b(γ) = (I,

√
γ1Z1, . . . ,

√
γsZs)′, and

Vi(γ) = b(γ)V (γ)ZiZ
′
iV (γ)b(γ)′, 1 ≤ i ≤ s. Furthermore, we define V0 =

In−p/λ, Vi = V (A, γ)−1/2A′ZiZ
′
iAV (A, γ)−1/2, 1 ≤ i ≤ s. Let I be the

matrix whose (i, j) element is tr(ViVj)/pipj , 0 ≤ i, j ≤ s, where pi, 0 ≤ i ≤ s
are given in the following theorem, and K the matrix whose (i, j) element is

m+n∑
l=1

(Eω4
l − 3)Vi,ll(γ)Vj,ll(γ)/pipjλ

1(i=0)+1(j=0) ,

where m =
∑s

i=1 mi and

ωl =

⎧⎪⎨⎪⎩
εl/

√
λ, 1 ≤ l ≤ n,

αi,l−n−
∑

j<i
mj

/
√

λγi, n +
∑

j<i mj + 1 ≤ l ≤ n +
∑

j≤i mj ,

1 ≤ i ≤ s,

where Vi,kl(γ) is the (k, l) element of Vi(γ), 0 ≤ i ≤ s, and mi the dimension
of αi, 1 ≤ i ≤ s.

In the balanced case, it is more convenient to use the multiple indices a =
(a1, . . . , aw+1), and bi = (bi,1, . . . , bi,w+1) ∈ Sw+1 introduced above Section
1.2.1.1. Let u, v ∈ Sw+1. Define u∨ v = (u1 ∨ v1, . . . , uw+1 ∨ vw+1), Su = {v ∈
S : v ≤ u}, mu =

∏
l:ul=0 nl, mu,S = minv∈Su mv if Su �= ∅, and mu,S = 1 if

Su = ∅. The following theorems are due to Jiang (1996).

Theorem 1.1. Let the balanced mixed ANOVA model be unconfounded,
and the variance components be positive. As n → ∞ and mi → ∞, 1 ≤ i ≤ s,
the following hold.
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(i) There exist with probability tending to one REML estimators λ̂ and γ̂i,
1 ≤ i ≤ s which are consistent, and the sequence (

√
n − p(λ̂ − λ),

√
m1(γ̂1 −

γ1), . . . ,
√

ms(γ̂s − γs))′ is bounded in probability.
(ii) If, moreover, the model is nondegenerate, the REML estimators in (i)

are asymptotically normal with p0 =
√

n − p, pi =
√

mi, 1 ≤ i ≤ s, and
M = J −1/2I, where J = 2I + K.

Theorem 1.2. Let the balanced mixed ANOVA model be unconfounded,
and the variance components be positive. As n → ∞ and mi → ∞, 1 ≤ i ≤ s,
the following hold.

(i) There exist with probability tending to one MLE that are consistent if
and only if

p

n
→ 0,

mbi∨ambi∨a,S

m2
bi

→ 0, 1 ≤ i ≤ s.

(ii) If, moreover, the model is nondegenerate, there exist with probability
tending to one MLE that are asymptotically normal if and only if

p0 ∼
√

n − p, pi ∼ √
mi, 1 ≤ i ≤ s,

and
p√
n

→ 0,
mbi∨ambi∨a,S

m
3/2
bi

→ 0, 1 ≤ i ≤ s.

When these conditions are satisfied, the MLE are asymptotically normal with
the same pi, 0 ≤ i ≤ s, and M as for the REML estimators.

The consistency of the REML (and ML) estimators in the above theo-
rems are of Cramér type (Cramér 1946), in which the existence of a sequence
of consistent roots to the REML (ML) equations is ensured with no indica-
tion of which root is consistent when the roots are not unique. On the other
hand, Hartley and Rao (1967) proved Wald consistency (Wald 1949) of the
MLE under the normality assumption. By Wald consistency it means that
the global maximizer of the likelihood function is consistent, therefore there
is no uncertainty regarding the consistent root. Jiang (1997a) considered Wald
consistency of REML estimators without assuming normality. The following
is the result for the balanced case.

Theorem 1.3. Let the balanced mixed ANOVA model be unconfounded.
As n → ∞ and mi → ∞, 1 ≤ i ≤ s, the following hold.

(i) The global maximizer of the Gaussian restricted log-likelihood θ̂ is
consistent, and the sequence (

√
n − p(λ̂−λ),

√
m1(γ̂1−γ1), . . . ,

√
ms(γ̂s−γs))′

is bounded in probability.
(ii) If, moreover, the variance components are positive and the model is

nondegenerate, the global maximizer θ̂ in (i) is asymptotically normal with
p0 =

√
n − p, pi =

√
mi, 1 ≤ i ≤ s, and M = J −1/2I, where J = 2I + K.
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Note. Unlike Theorem 1.1 and Theorem 1.2, part (i) of Theorem 1.3 does
not require positiveness of the variance components.

4. Truncated estimator. For non-Gaussian linear mixed models, the REML
estimator is defined as the solution to the (Gaussian) REML equations, if the
solution lies within the parameter space. If the solution is out of the param-
eter space, it is customary to truncate the solution at the boundary of the
parameter space. For example, for ANOVA models, let θ̇ = (τ̇2, σ̇2

1 , . . . , σ̇2
s)′

be the solution. Suppose that τ̇2 > 0, σ̇2
1 < 0, and σ̇2

i ≥ 0, 2 ≤ i ≤ s. Then,
the truncated REML estimator is (τ̇2, 0, σ̇2

2 , . . . , σ̇2
s)′.

5. POQUIM in general. We consider REML estimation. Similar results for
ML can be found in Jiang (2005a). This case is relatively simpler (compared
to ML) because only estimation of the variance components is involved. Fur-
thermore, as shown, the QUIM in this case does not involve the third moments
of the random effects and errors.

Under the ANOVA model and normality, we have (1.18), which can be
further expressed as ∂lR/∂θj = u′Bju − bj , 0 ≤ j ≤ s, where θ0 = λ, θj = γj ,
1 ≤ j ≤ s; u = y − Xβ; B0 = (2λ)−1P , Bj = (λ/2)PZjZ

′
jP , 1 ≤ j ≤ s; b0 =

(n − p)/2λ, and bj = (λ/2)tr(PZjZ
′
j), 1 ≤ j ≤ s. Note that bj = E(u′Bju),

0 ≤ j ≤ s.
Let ui = yi −x′

iβ be the ith component of u, where x′
i is the ith row of X.

The kurtoses of the random effects and errors are defined as κt = E(α4
t1) −

3σ4
t = E(α4

t1) − 3(λγt)2, 0 ≤ t ≤ s, where α0 = ε and γ0 = 1. Also, with a
slight abuse of the notation, let z′

it and ztl be the ith row and lth column of Zt,
respectively, 0 ≤ t ≤ s, where Z0 = I. Define Γ (i1, i2) =

∑s
t=0 γt(zi1t · zi2t).

Here, the dot product of vectors a1, . . . , ak of the same dimension is defined as
a1 · a2 · · · ak =

∑
l a1la2l · · · akl. Also, let mt be the dimension of αt, 0 ≤ t ≤ s

(so that m0 = n). We begin with an expression for cov(ui1ui2 , ui3ui4) as well
as one for cov(∂lR/∂θj , ∂lR/∂θk), the (j, k) element of of I1.

Lemma 1.3. We have

cov(ui1ui2 , ui3ui4) = λ2{Γ (i1, i3)Γ (i2, i4) + Γ (i1, i4)Γ (i2, i3)}

+
s∑

t=0

κtzi1t · · · zi4t, (1.54)

where zi1t · · · zi4t = zi1t · zi2t · zi3t · zi4t. Furthermore, we have

cov
(

∂lR
∂θj

,
∂lR
∂θk

)
= 2tr(BjV BkV )

+
s∑

t=0

κt

mt∑
l=1

(z′
tlBjztl)(z′

tlBkztl). (1.55)

Let f1, . . . , fL be the different nonzero functional values of
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f(i1, . . . , i4) =
s∑

t=0

κtzi1t · · · zi4t. (1.56)

Note that this is the second term on the right side of (1.54). Here by functional
value it means f(i1, . . . , i4) as a function of κ = (κt)0≤t≤s. For example, κ0+κ1
and κ2 + κ3 are different functions (even if their values may be the same for
some κ). Also, let 0 denote the zero function (of κ). Then, without using
(1.55), we have

cov
(

∂lR
∂θj

,
∂lR
∂θk

)
=

∑
i1,...,i4

Bj,i1,i2Bk,i3,i4cov(ui1ui2 , ui3ui4)

=
∑

f(i1,...,i4)=0

Bj,i1,i2Bk,i3,i4cov(ui1ui2 , ui3ui4)

+
L∑

l=1

∑
f(i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4cov(ui1ui2 , ui3ui4)

=
L∑

l=0

Sl (1.57)

with Sl, 0 ≤ l ≤ L defined in obvious ways. According to Lemma 1.3, the left
side of (1.57) depends on the higher moments only through κ. By (1.54) and
(1.56), we have

S0 = 2λ2
∑

f(i1,...,i4)=0

Bj,i1,i2Bk,i3,i4Γ (i1, i3)Γ (i2, i4), (1.58)

which depends only on θ. Furthermore, for 1 ≤ l ≤ L, write

Sl = cl

∑
f(i1,...,i4)=fl

cov(ui1ui2 , ui3ui4)

+
∑

f(i1,...,i4)=fl

(Bj,i1,i2Bk,i3,i4 − cl)cov(ui1ui2 , ui3ui4)

= Sl,1 + Sl,2,

where cl is a constant to be determined later on. By (1.54), we have

Sl,2 =
∑

f(i1,...,i4)=fl

(Bj,i1,i2Bk,i3,i4 − cl)[fl + λ2{· · ·}]

= fl

∑
f(i1,...,i4)=fl

(Bj,i1,i2Bk,i3,i4 − cl) + · · · ,

where · · · depends only on θ. If we let the coefficient of fl in the above equal
zero, we have
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cl =
1

|{f(i1, . . . , i4) = fl}|
∑

f(i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4 , (1.59)

where | · | denotes cardinality. With this choice of cl, we have

Sl,2 = λ2
∑

f(i1,...,i4)=fl

(Bj,i1,i2Bk,i3,i4 − cl){Γ (i1, i3)Γ (i2, i4)

+Γ (i1, i4)Γ (i2, i3)}
= 2λ2

∑
f(i1,...,i4)=fl

(Bj,i1,i2Bk,i3,i4 − cl)Γ (i1, i3)Γ (i2, i4),

which depends only on θ. Note that cl depends only on θ. On the other
hand, note that ui =

∑s
t=0 uit with uit =

∑mt

l=1 zitlαtl, hence E(ui1ui2) =∑s
t=0 E(ui1tui2t) =

∑s
t=0 σ2

t z′
i1tzi2t = λΓ (i1, i2). Thus, we have

Sl,1 = cl

∑
f(i1,...,i4)=fl

{E(ui1 · · ·ui4) − λ2Γ (i1, i2)Γ (i3, i4)}

= E

⎛⎝cl

∑
f(i1,...,i4)=fl

ui1 · · ·ui4

⎞⎠ − λ2cl

∑
f(i1,...,i4)=fl

Γ (i1, i3)Γ (i2, i4).

Note that
∑

f(i1,...,i4)=fl
Γ (i1, i2)Γ (i3, i4) =

∑
f(i1,...,i4)=fl

Γ (i1, i3)Γ (i2, i4),
because f(i1, . . . , i4) is symmetric in i1, . . . , i4. Therefore, we have by combin-
ing the above

Sl = E

⎛⎝cl

∑
f(i1,...,i4)=fl

ui1 · · ·ui4

⎞⎠
+2λ2

∑
f(i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4Γ (i1, i3)Γ (i2, i4)

−3λ2cl

∑
f(i1,...,i4)=fl

Γ (i1, i3)Γ (i2, i4). (1.60)

Note that cl defined by (1.59) depends on j and k; that is, cl = cj,k,l. If we
define cj,k(i1, . . . , i4) = cj,k,l, if f(i1, . . . , i4) = fl, 1 ≤ l ≤ L, then, by (1.57),
(1.58), and (1.60), it can be shown that

cov
(

∂lR
∂θj

,
∂lR
∂θk

)
= E

⎧⎨⎩ ∑
f(i1,...,i4)�=0

cj,k(i1, . . . , i4)ui1 · · ·ui4

⎫⎬⎭
+2tr(BjV BkV )

−3λ2
∑

f(i1,...,i4)�=0

cj,k(i1, . . . , i4)Γ (i1, i3)Γ (i2, i4).
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We summarize the result in terms of a theorem. Write

I1,jk = cov
(

∂lR
∂θj

,
∂lR
∂θk

)
,

which is the j, k element of the QUIM I1 = Var(∂lR/∂θ).

Theorem 1.4. For any non-Gaussian mixed ANOVA model, we have

I1,jk = 2tr(BjV BkV ) +
s∑

t=0

κt

mt∑
l=1

(z′
tlBjztl)(z′

tlBkztl)

= E

⎧⎨⎩ ∑
f(i1,...,i4)�=0

cj,k(i1, . . . , i4)ui1 · · ·ui4

⎫⎬⎭
+

⎧⎨⎩2tr(BjV BkV ) − 3λ2
∑

f(i1,...,i4)�=0

cj,k(i1, . . . , i4)Γ (i1, i3)Γ (i2, i4)

⎫⎬⎭
= I1,1,jk + I1,2,jk, (1.61)

0 ≤ j, k ≤ s, where cj,k(i1, . . . , i4) = cj,k,l, if f(i1, . . . , i4) = fl, 1 ≤ l ≤ L with

cj,k,l =
1

|{f(i1, . . . , i4) = fl}|
∑

f(i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4 . (1.62)

Of course, (1.61) can be verified directly, but the derivation above also
explains where the idea comes from, which is, after all, quite natural. Note
that 2tr(BjV BkV ) is the Gaussian covariance between ∂lR/∂θj and ∂lR/∂θk.
This means that, under normality, I1,1,jk is identical to the second term in
I1,2,jk with the negative sign removed. Of course, this can be easily verified
using (1.54). On the other hand, without normality, I1,1,jk may involve higher
moments of the random effects and errors, and this is why the expectation
is not taken inside the summation. Instead, we propose to estimate I1,1,jk

by taking out the expectation sign, and replacing any parameter involved by
its REML estimator; that is, Î1,1,jk =

∑
f(i1,...,i4)�=0 ĉj,k(i1, . . . , i4)ûi1 · · · ûi4 ,

where ĉj,k(i1, . . . , i4) is defined in the same way as cj,k(i1, . . . , i4) except with
θ replaced by θ̂, and ûi = yi − x′

iβ̂. Here θ̂ is the REML estimator of θ,
and β̂ is given by (1.9) with V = V̂ , which is V with θ replaced by θ̂. Note
that the set {(i1, . . . , i4) : f(i1, . . . , i4) = fl} does not depend on θ. It fol-
lows that ĉj,k(i1, . . . , i4) = ĉj,k,l, if f(i1, . . . , i4) = fl, 1 ≤ l ≤ L, where
ĉj,k,l = |{f(i1, . . . , i4) = fl}|−1 ∑

f(i1,...,i4)=fl
B̂j,i1,i2B̂k,i3,i4 , and B̂j,i1,i2 is

Bj,i1,i2 with θ replaced by θ̂, and so on. This is the observed part. On the
other hand, I1,2,jk only depends on θ, and therefore can be estimated by
replacing θ by θ̂. The result, denoted Î1,2,jk, is the estimated part. An esti-
mator of I1,jk is then Î1,1,jk + Î1,2,jk, hence an estimator of I1 is given by
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Î1 = Î1,1 + Î1,2, where Î1,r = (Î1,r,jk)0≤j,k≤s, r = 1, 2. Because the estimator
consists partially of an observed form and partially of an estimated one, it
is called partially observed quasi information matrix, or POQUIM. It can be
shown that, under some regularity conditions, the POQUIM estimator of I1
and the resulting estimator of ΣR are consistent. See Jiang (2005a) for details.
We now use another simple example to illustrate the POQUIM decomposition.

Example 1.1 (Continued). Consider the special case of Example 1.1 with
ki = k, 1 ≤ i ≤ m. It is easy to show that f(i1j1, . . . , i4j4) = 0, if not
i1 = · · · = i4; κ1, if i1 = · · · = i4 but not j1 = · · · = j4; and κ0 + κ1, if
i1 = · · · = i4 and j1 = · · · j4. Thus, L = 2 [note that L is the number of
different functional values of f(i1j1, . . . , i4j4)]. Define the following functions
of θ, where θ = (λ, γ1)′: t0 = 1 − γ1/(1 + γ1k) − 1/{(1 + γ1k)mk}, t1 =
(m − 1)k/{m(1 + γ1k)}, and t3 = {k(1 + γ1k)2 − (1 + γ1)2}/(k3 − 1). Then,
the POQUIM is given by Î1,st = Î1,1,st + Î1,2,st, s, t = 0, 1, where

Î1,1,00 =
t̂21 − t̂20k

4λ̂4k(k3 − 1)

⎧⎪⎨⎪⎩
∑

i

⎛⎝∑
j

ûij

⎞⎠4

−
∑
i,j

û4
ij

⎫⎪⎬⎪⎭ +
t̂20

4λ̂4

∑
i,j

û4
ij ,

Î1,1,01 =
(m − 1)(t̂1k − t̂0)

4λ̂3(1 + γ̂1k)2m(k3 − 1)

⎧⎪⎨⎪⎩
∑

i

⎛⎝∑
j

ûij

⎞⎠4

−
∑
i,j

û4
ij

⎫⎪⎬⎪⎭ ,

+
(m − 1)t̂0

4λ̂3(1 + γ̂1k)2m

∑
i,j

û4
ij ,

Î1,1,11 =
(m − 1)2

4λ̂2(1 + γ̂1k)4m2

∑
i

⎛⎝∑
j

ûij

⎞⎠4

;

Î1,2,00 =
1

2λ̂2

[
mk − 1 − 3

2
mkt̂20{(1 + γ̂1)2 − t̂3} − 3

2
mt̂21t̂3

]
,

Î1,2,01 =
(m − 1)k

2λ̂(1 + γ̂1k)

{
1 −

(
3
2

)
(t̂1k − t̂0)t̂3 + (1 + γ̂1)2t̂0

1 + γ̂1k

}
,

Î1,2,11 = − (m − 1)(m − 3)k2

4m(1 + γ̂1k)2
,

ûij = yij − ȳ··, and the t̂s are the ts with θ replaced by θ̂, the REML estimator.
The following outlines a numerical algorithm for POQUIM.

1. Determine the sets of indices Sl = {(i1, . . . , i4) : f(i1, . . . , i4) = fl}, 1 ≤ l ≤
L. Then, for each (j, k), 0 ≤ j ≤ k ≤ s, do the following.
2. Compute the constants cj,k,l given by (1.62), 1 ≤ l ≤ L. Note that the
denominator is |Sl|.
3. Compute
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Î1,1,jk =
∑

f(i1,...,i4)�=0

ĉj,k(i1, . . . , i4)ûi1 · · · ûi4 ,

where ĉj,k(i1, . . . , i4) is defined the same way as cj,k(i1, . . . , i4) above (1.62)
with θ replaced by θ̂, and ûi = yi−x′

iβ̂. Note that
∑

f((i1,...,i4)�=0 =
∑

S1
+ · · ·+∑

SL
.

4. Compute Î1,2,jk which is I1,2,jk with θ replaced by θ̂. See step 3 for the
summation.
5. Let Î1,jk = Î1,1,jk + Î1,2,jk.

All except step 1 are fairly straightforward. As for step 1, the sets may be
determined as follows. First, the index (1, 1, 1, 1) belongs to S1. Also compute
the vector v1,1,1,1 = (z1t ·z1t ·z1t ·z1t)0≤t≤s. Then, compute the vector v1,1,1,2 =
(z1t · z1t · z1t · z2t)0≤t≤s. If v1,1,1,2 = v1,1,1,1, the index (1, 1, 1, 2) belongs to
S1; otherwise, it belongs to S2, and so on.

1.9 Exercises

1.1. Show that the one-way random effects model in Example 1.1 can be
expressed as (1.1), where y is given in Example 1.1. What are X and Z in
this case?

1.2. Show that the two-way random effects model in Example 1.2 can be
expressed as (1.1). Also, show that this model is a special case of the balanced
mixed ANOVA model defined in Section 1.2.1.1.

1.3. Show that the growth curve model of Example 1.3 can be expressed
as the standard form (1.1). Note that in (1.1) the random effects are assumed
to have mean zero, therefore you may need to define some new random effects
that satisfy the basic assumptions for (1.1). Furthermore, show that Example
1.3 is a special case of the general longitudinal model (1.3).

1.4. Show that the first two stages of Example 1.4, (i) and (ii), are equiv-
alent to the (classical) linear mixed model of Example 1.1 with µ replaced by
x′

ijβ.
1.5. Specify Equations (1.7)–(1.10) for the longitudinal model Section

1.2.1.2.
1.6. Verify Equations (1.13)–(1.15).
1.7. Verify the expressions in Example 1.1 (Continued) in Section 1.3.1

for the log-likelihood and its derivatives with respect to µ, σ2, and τ2. Also,
obtain expressions for I(θ) in this particular case.

1.8. Show that in the Neyman–Scott example (Example 1.7), the MLE is
inconsistent as the number of individuals increases. Furthermore, show that
the MLE based on zi = yi1−yi2, i = 1, . . . , m [see Example 1.7 (Continued) in
Section 1.3.2], that is, the REML estimator of σ2, is consistent as m increases.

1.9. Show that the REML estimators do not depend on the choice of A;
that is, if A is replaced by B = AT , where T is any (n−p)×(n−p) nonsingular
matrix, the REML estimators will not change.
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1.10. Suppose that, under the marginal model (1.4), we have a prior for
β which is noninformative (i.e., the “density function” for β is a positive
constant, say, 1, everywhere). Note that this is an improper prior. Show that
the marginal likelihood for the variance components involved in V , obtained
by integrating out β with respect to its prior, is identical to the restricted
likelihood.

1.11. Verify Equation (1.21). Also show the following.

cov
(

∂lR
∂θi

,
∂lR
∂θj

)
=

1
2
tr
(

P
∂V

∂θi
P

∂V

∂θj

)
, 1 ≤ i, j ≤ q.

1.12. Show that, under the balanced one-way random effects model (i.e.,
Example 1.1 with ki = k, 1 ≤ i ≤ m), the REML equations for estimating σ2

and τ2 are equivalent to (1.22). Obtain the solution to these equations. Also
derive the asymptotic covariance matrix of the REML estimators.

1.13. Show that, under ANOVA models with the original form of variance
components τ2, σ2

1 , . . . , σ2
s , the REML and ML equations are given by (1.23)

and (1.24), respectively; under the Hartley–Rao form of variance components
λ, γ1, . . . , γs (see Section 1.2.1.1), the REML and ML equations are given by
(1.25) and (1.26), respectively.

1.14. Show that the REML equations derived under the multivariate t-
distribution (see Section 1.4.1) are equivalent to those derived under the mul-
tivariate normal distribution.

1 .15 ∗. Consider Example 1.2 (Continued) in Section 1.4.2.
a. Verify the expression (1.31).
b. Verify that var(∂lR/∂λ) can be expressed as S1 + S2, where S1 can be

expressed as (1.32) with the coefficients aj , j = 0, 1, 2 given below. First define
t0 = 1 + λ1 + λ2 + λ3, t1 = {(m − 1)n}/{m(1 + γ1n)}, t2 = m(n − 1)/{n(1 +
γ2m)}; m0 = mn, m1 = m, and m2 = n. Then,

a0 =
t20

4λ4 ,

a1 =
nt20 − t21

4λ4n(n3 − 1)
,

a2 =
mt20 − t22

4λ4m(m3 − 1)
.

Furthermore, define t3 = {n(1 + γ2 + γ1n)2 − (1 + γ1 + γ2)2}/(n3 − 1) and
t4 = {m(1 + γ1 + γ2m)2 − (1 + γ1 + γ2)2}/(m3 − 1). We have

S2 =
mn − 1

2λ2 − 3mnt20
4λ2 {(1 + γ1 + γ2)2 − (t3 + t4)} − 3(t21t3m + t22t4n)

4λ2 .

Hence S2 depends only on θ.
1.16. Show that, in the balanced one-way random effects model (i.e., Ex-

ample 1.1 with ki = k, 1 ≤ i ≤ m), the ANOVA estimators of σ2 and τ2
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are σ̂2 = (MSA − MSE)/k and τ̂2 = MSE. Are these estimators identical to
the solution to the REML equations in this particular case? To answer the
latter question you should not refer to the general result mentioned in Section
1.5.1.1 but, instead, derive the REML equations and see if the solution is the
same as the ANOVA estimators. When will the ANOVA estimators be identi-
cal to the REML estimators? Furthermore, suppose that the true parameters
are µ = 0.5 and σ2 = τ2 = 1.0, and the observations are normally distributed.
Evaluate empirically the probability of negative estimator (for σ2) and note
how the probability changes with the sample size. The following sample sizes
may be considered: m = 20, 40, 100, and 200, and k = 5 in all cases.

1.17. Show that, in Example 1.9, we have PW = PX +PZ�X , where the two
matrices on the right side of the equation are projections orthogonal to each
other. Also show that Z ′

iPZ�XZj = Z ′
iPX⊥Zj , i, j = 1, 2. [In fact, using the

result of Searle et al. (1992, Theorem M.1 on page 449), it can be shown that
PZ�XZj = PX⊥Zj , j = 1, 2]. Finally, verify that the coefficients for σ2

1 , σ2
2 , and

τ2 in SSR(α2|β, α1) are 0, tr{P(X,Z1)⊥Z2Z
′
2} and rank(W ) − rank{(X, Z1)},

respectively; the corresponding coefficients are 0, 0 and n − rank(W ) in SSE.
1.18. Refer to Section 1.5.2. Show that, by Lemma 1.2, E(η̂ − η̃|2) =

2tr[{(Z∗AZ∗ − B)D}2], where D = diag(σ2
i Imi , 0 ≤ i ≤ s). Also show that

E(η̂ − η̃) = 0.
1.19. Verify the expressions for β̃, τ̃2, λ̂, ψ̂, and τ̂2 in Example 1.1 (Con-

tinued) in Section 1.6.1.
1.20. Verify the expression for the restricted log-likelihood (1.51).
1.21. Interpret the result of the data analysis summarized by Table 1.5

in terms of the medical research problems considered there (see Hand and
Crowder 1996). In particular, how would you explain the significance of the
coefficient β6 to a researcher of the medical research problem?
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Linear Mixed Models: Part II

2.1 Tests in Linear Mixed Models

The previous section dealt with point estimation and related problems in lin-
ear mixed models. In this section, we consider a different type of inference,
namely, tests in linear mixed models. Section 2.1.1 discusses statistical tests
in Gaussian mixed models. As shown, exact F-tests can often be derived un-
der Gaussian ANOVA models. Furthermore, in some special cases, optimal
tests such as uniformly most powerful unbiased (UMPU) tests exist and co-
incide with the exact F-tests. Section 2.1.2 considers tests in non-Gaussian
linear mixed models. In such cases, exact/optimal tests typically do not exist.
Therefore, statistical tests are usually developed based on asymptotic theory.

2.1.1 Tests in Gaussian Mixed Models

1. Exact tests. For ANOVA models, exact F-tests can often be derived using
the following method. The original idea was due to Wald (1947). Consider the
mixed ANOVA model (1.1) and (1.2). Suppose that one wishes to test the
hypothesis H0: σ2

1 = 0. Note that the model can be written as

y = Xβ + Z1α1 + Z−1α−1 + ε, (2.1)

where α−1 = (α′
2, . . . , α

′
s)

′ and Z−1 = (Z2, . . . , Zs). Consider the quadratic
form q1 = τ−2y′PZ1�(X,Z−1)y = y′{PZ1�(X,Z−1)/τ2}y, where 	 is introduced
in Example 1.9. Note that, under the null hypothesis, we have y ∼ N(Xβ, V0),
where V0 = τ2I +

∑s
i=2 σ2

i ZiZ
′
i. Furthermore, we have(

PZ1�(X,Z−1)

τ2

)
V0 = PZ1�(X,Z−1) +

2∑
i=2

(
σ2

i

τ2

)
PZ1�(X,Z−1)ZiZ

′
i

= PZ1�(X,Z−1),

which is idempotent. Therefore, by Theorem C.1 in Appendix C, we have
q1 ∼ χ2

r1
, where r1 = rank{PZ1�(X,Z−1)} = rank{(X, Z)} − rank{(X, Z−1)}.
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Note that PZ1�(X,Z−1)X = 0 and P(X,Z) = P(X,Z−1) +PZ1�(X,Z−1), where the
two projections on the right side are orthogonal to each other (see Example
1.9 and Exercise 1.17).

On the other hand, consider the quadratic form q2 = τ−2y′P(X,Z)⊥y =
y′{P(X,Z)⊥/τ2}y. Note that y ∼ N(Xβ, V ), where V = τ2I +

∑s
i=1 σ2

i ZiZ
′
i.

Thus, we have(
P(X,Z)⊥

τ2

)
V = P(X,Z)⊥ +

2∑
i=1

(
σ2

i

τ2

)
P(X,Z)⊥ZiZ

′
i

= P(X,Z)⊥ , (2.2)

which is idempotent. Therefore, by the same theorem, we have q2 ∼ χ2
r2

, where
r2 = rank{P(X,Z)⊥} = n − rank{(X, Z)}. Note that P(X,Z)⊥X = 0. Also note
that, unlike q1, the distribution of q2 is unaffected by the null hypothesis.

Finally, because P(X,Z)⊥V PZ1�(X,Z−1) = τ2P(X,Z)⊥PZ1�(X,Z−1) = 0 by
(2.2), the two quadratic forms q1 and q2 are independent (again, this fact
does not depend on the null hypothesis; see Appendix C). It follows that

F1 =
y′PZ1�(X,Z−1)y/r1

y′P(X,Z)⊥y/r2

=
q1/r1

q2/r2
∼ Fr1,r2 . (2.3)

In words, F1 has an exact (central) F -distribution with degrees of freedom r1
and r2 for testing the hypothesis H0: σ2

1 = 0.
It should be pointed out that, for the above test to be effective one must

have Z1 	 (X, Z−1) �= ∅. For example, if L(Z1) ⊂ L(Z−1), then the test will
not work. We now consider an example.

Example 2.1 (Balanced two-way random effects model). First consider the
case where there is no interaction between the random effect factors. The
model can be expressed as

yijk = µ + ui + vj + eijk,

i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c, where uis and vjs are random effects
and eijks are errors such that uis are independent N(0, σ2

1), vjs are indepen-
dent N(0, σ2

2), eijks are independent N(0, τ2), and u, v, e are independent.
Using matrix expressions, we have

y = Xµ + Z1u + Z2v + e,

where X = 1a ⊗ 1b ⊗ 1c, Z1 = Ia ⊗ 1b ⊗ 1c, and Z2 = 1a ⊗ Ib ⊗ 1c. Clearly,
Z1 	 (X, Z2) �= ∅, thus (2.3) may be applied for testing H0: σ2

1 = 0. In this
case, we have r1 = (a+b−1)−b = a−1 and r2 = n−(a+b−1) = abc−a−b+1.
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Next, we consider the case where there is interaction between u and v. In
this case, the model can be expressed as

yijk = µ + ui + vj + wij + eijk,

i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c, where, in addition, the interactions
wijs are independent N(0, σ2

3), and u, v, w, e are independent. Similarly, the
model may be written as

y = Xµ + Z1u + Z2v + Z3w + e,

where Z3 = Ia⊗Ib⊗1c. However, neither σ2
1 = 0 nor σ2

2 = 0 can be tested using
the exact F -test derived above, because L(Zj) ⊂ L(Z3), j = 1, 2. Nevertheless,
the hypothesis H0: σ2

3 = 0 can be tested using (2.3). In this case, r1 = ab −
(a + b − 1) = (a − 1)(b − 1) and r2 = n − ab = ab(c − 1) (Exercise 2.1).

Further results on exact tests in Gaussian mixed models can be found in
Khuri et al. (1998).

2. Optimal tests. It is known that optimal tests, such as UMPU and uni-
formly most powerful invariant unbiased tests (UMPIU), exist in some special
cases of the mixed ANOVA models, assuming that normality holds. For exam-
ple, Mathew and Sinha (1988) considered a balanced mixed ANOVA model,
which can be expressed as

y = X1β1 + · · · + Xtβt + Z1α1 + · · · + Zsαs + ε, (2.4)

where the βs and αs are, respectively, vectors of fixed and random effects in the
analysis of variance; that is, they are main effects, interactions, nested effects,
and the like. (e.g., Scheffé 1959), and ε is a vector of errors. Furthermore,
assume that the random effects and errors are independent such that the
components of αi are distributed as N(0, σ2

i ), and the components of ε are
distributed as N(0, τ2). The design matrices X1, . . . , Xt and Z1, . . . , Zs are
assumed known with X1 = 1n. Let Pi, i = 1, . . . , t and Qi, i = 1, . . . , s be
projection matrices such that P1 = n−1Jn, where Jn = 1n1′

n, y′Piy the sum
of squares due to βi, 2 ≤ i ≤ t, and y′Qiy the sum of squares due to αi (as in
a fixed effects model), 1 ≤ i ≤ s (Searle 1971, §9.6). Note that each Pi (Qi)
is a Kronecker product of matrices of the form Ia, a−1Ja or Ia − a−1Ja, so
that Pi, i = 1, . . . , t and Qi, i = 1, . . . , s + 1 are orthogonal to each other,
where Qs+1 = In −

∑t
i=1 Pi −

∑s
i=1 Qi. With these notations, the likelihood

function can be expressed as

f(y) = c(θ) ×

exp

[
−1

2

{
s+1∑
i=1

ξiy
′Qiy +

t∑
i=1

ηi(S′
iy − λi)′(S′

iy − λi)

}]
, (2.5)

where c(θ) depends only on the variance components, θ = (σ2
1 , . . . , σ2

s , τ2)′;
ξi and ηi are linear functions of the variance components; SiS

′
i = Pi and
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λi = S′
iXβ, 1 ≤ i ≤ t. Here Xβ is as in (1.1) when (2.4) is written in this way.

By (2.5), it can be shown that S′
iy, i = 1, . . . , t and y′Qiy, i = 1, . . . , s+1 are

complete sufficient statistics for the parameters ξis, ηis and λis. Furthermore,
standard theory for the multiparameter exponential family (e.g., Lehmann
and Casella 1998, §1) may be applied to derive UMPU and other optimal
tests. For example, Mathew and Sinha (1988) obtained the following results.

1. Suppose that the hypothesis of interest is H0: λi = 0 versus H1: λi �= 0.
If ηi equals some ξj , say, ξ1, an exact F-test is based on y′Piy/y′Q1y; if λi is a
scalar, then this test is UMPU; if λi is multidimensional, a UMPU test does
not exist, however, the above F-test is UMPIU.

2. Suppose that the hypothesis of interest is H0: ξ1 = ξ2 versus H1: ξ2 > ξ1.
The F-test based on y′Q2y/y′Q1y is UMPU and UMPIU.

Note that, in some cases, a hypothesis such as σ2
i = 0 is equivalent to the

equality of two ξis. We consider some examples.

Example 2.2 (Balanced one-way random effects model). Consider a special
case of the one-way random effects model of Example 1.1 with ki = k, 1 ≤
i ≤ m. In this case, y′Q1y is equal to the treatment sum of squares and y′Q2y
error sum of squares, that is, y′Q1y = SSA = k

∑m
i=1(ȳi· − ȳ··)2, y′Q2y =

SSE =
∑m

i=1
∑k

j=1(yij − ȳi·)2, and S′
1y =

√
mkȳ··. Furthermore, we have

ξ−1
1 = τ2 + kσ2, ξ−1

2 = τ2, η−1
1 = τ2 + kσ2, and λ1 =

√
mkµ.

Consider the hypothesis µ = 0. Because η1 = ξ1 and λ1 is a scalar, by the
first result above, the F-test based on ȳ2

··/SSA is UMPU and UMPIU. As for
the hypothesis σ2 = 0, because it is equivalent to ξ1 = ξ2, the F-test based
on SSA/SSE is UMPU and UMPIU.

Example 2.1 (Continued). Consider the case without interaction and that
k = 1. In this case, the model can simply be expressed as

yij = µ + ui + vj + eij ,

i = 1, . . . , a, j = 1, . . . , b. In this case, we have y′Q1y = b
∑a

i=1(ȳi· − ȳ··)2 ≡
SSA, y′Q2y = a

∑b
j=1(ȳ·j − ȳ··)2 ≡ SSB, and y′Q3y =

∑a
i=1

∑b
j=1(yij − ȳi· −

ȳ·j + ȳ··)2 ≡ SSE, which correspond to ξ−1
1 = τ2 + bσ2

1 , ξ−1
2 = τ2 + aσ2

2 ,
and ξ−1

3 = τ2, respectively. Furthermore, we have S′
1y =

√
abȳ·· with η−1

1 =
τ2 + aσ2

2 + bσ2
1 and λ1 =

√
abµ.

The hypotheses σ2
1 = 0 and σ2

2 = 0 correspond to ξ1 = ξ3 and ξ2 = ξ3,
respectively. Thus, the F-tests based on SSA/SSE and SSB/SSE are, respec-
tively, optimal (i.e., UMPU and UMPIU) for testing these hypotheses. How-
ever, unlike the previous example, no exact optimal test (in the same sense)
exists for testing µ = 0, because η1 is not equal to any of the ξs.

These examples show that the results of Mathew and Sinha (1988) may be
useful in some cases to obtain optimal tests, but there are cases where these
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results do not yield optimal tests (see Exercise 2.2 for an additional example).
For more discussion on optimal tests, see Khuri et al. (1998).

3. Likelihood-ratio tests. The likelihood-ratio is a well-known method of
constructing statistical tests. The theory of likelihood-ratio tests is fully de-
veloped in the i.i.d. case (e.g., Lehmann 1999, §7.7). However, the literature
on likelihood-ratio tests in the context of linear mixed models is much less
extensive, from a theoretical point of view. Hartley and Rao (1967) was the
first paper that addressed the issue. Let ψ = (β′, θ′)′ be the vector of all the
unknown parameters involved in a Gaussian mixed model, where θ represents
the vector of variance components. Many of the hypotheses are concerned with
testing whether a subvector of θ, say, θ(1), is identical to a known vector, θ

(1)
0 .

Let θ(2) denote the subvector of θ complementary to θ(1). Then, the likelihood
function may be expressed as L(θ) = L(θ(1), θ(2)). [Note that L(θ) depends
on y and therefore should be properly denoted by L(θ|y), but we suppress
y for notational simplicity.] Let θ̂ be the (global) maximizer of L(θ|y) over
θ ∈ Θ, where Θ is the parameter space, and θ̂(2) be the (global) maximizer
of L(θ(1)

0 , θ(2)) over θ(2) ∈ Θ(2), where Θ(2) is the parameter space for θ(2).
Then, the likelihood ratio is given by

R =
L(θ(1)

0 , θ̂(2))

L(θ̂)
. (2.6)

Hartley and Rao (1967) stated without giving a proof that the asymptotic
null distribution of −2 log R is a central χ2 with r degrees of freedom, where
r is the dimension of θ(1). See Jiang (2005c) for a rigorous proof of this result,
which also applies to non-Gaussian linear mixed models (see Section 2.1.2.4).
We consider a simple example.

Example 2.3 (One-way random effects model). Consider the one-way ran-
dom effects model of Example 1.1 with normality assumption. It was shown in
Section 1.3.1 (see Example 1.1 (Continued)) that the log-likelihood function
is given by

l(µ, σ2, τ2) = c − 1
2
(n − m) log(τ2) − 1

2

m∑
i=1

log(τ2 + kiσ
2)

− 1
2τ2

m∑
i=1

ki∑
j=1

(yij − µ)2 +
σ2

2τ2

m∑
i=1

k2
i

τ2 + kiσ2 (ȳi· − µ)2,

where c is a constant, n =
∑m

i=1 ki, and ȳi· = k−1
i

∑ki

j=1 yij . Let µ̂, σ̂2 and τ̂2

be the MLE of µ, σ2, and τ2. Suppose that one is interested in testing the
hypothesis σ2 = 0. Under the null hypothesis, we have

l(µ, 0, τ2) = c − n

2
log(τ2) − 1

2τ2

m∑
i=1

ki∑
j=1

(yij − µ)2.
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The MLE under the null are µ̃ = ȳ·· and σ̃2 = n−1 ∑m
i=1

∑ki

j=1(yij − ȳ··)2,

where ȳ·· = n−1 ∑m
i=1

∑ki

j=1 yij . Thus, an expression for −2 log R can be easily
derived (Exercise 2.3).

2.1.2 Tests in Non-Gaussian Linear Mixed Models

For non-Gaussian linear mixed models, exact or optimal tests typically do
not exist. This is because under a non-Gaussian model, the distribution of
y is not fully specified, therefore it is (usually) not possible either to derive
the exact distribution of a test statistic or to study the power function of the
test. In such cases, statistical tests are usually based on asymptotic theory.
In this section, we consider asymptotic tests in non-Gaussian linear mixed
models. Please note that the results of this section also apply to Gaussian
mixed models, especially in cases where exact/optimal tests do not exist.

A basic idea of deriving an asymptotic test is the following. Consider a
non-Gaussian linear mixed model (1.1). Let ψ = (β′, θ′)′, where θ represents
the vector of variance components involved. Then ψ is the vector of all the
unknown parameters involved in the model. Suppose that an estimator of ψ,
say, ψ̂, can be obtained, which is asymptotically normal, that is, there exists
a sequence of positive definite matrices, Σ = Σn, such that

Σ−1/2(ψ̂ − ψ) −→ N(0, I), in distribution, (2.7)

where I is the (p + q)-dimensional identity matrix with p = dim(β) and
q = dim(θ). Σ is called the asymptotic covariance matrix of ψ̂. Suppose that
one wishes to test a linear hypothesis of the form

H0 : K ′ψ = c, (2.8)

where K is a known matrix of full (column) rank, say, r, and c is a known
vector. Under (2.8), (2.7) implies that

(K ′ψ̂ − c)′(K ′ΣK)−1(K ′ψ̂ − c) −→ χ2
r, in distribution. (2.9)

Thus, (2.9) can be used to test the hypothesis (2.8).
Typically, the asymptotic covariance matrix depends not only on θ but also

on some additional parameters. For example, under the mixed ANOVA model
Section 1.2.2.1, the asymptotic covariance matrix of the REML estimator
of θ = (τ2, σ2

1 , . . . , σ2
s)′ depends not only on θ but also on the kurtoses of

the random effects and errors; the asymptotic covariance matrix of the ML
estimator of ψ depends not only on θ but also on the kurtoses as well as the
third moments of the random effects and errors. (See Section 2.2.2 for more
details; note that, under normality both the third moments and the kurtoses
vanish, so there is no such problem for Gaussian mixed models.) Therefore,
for the asymptotic test (2.9) to be applicable, one has to find some way to
consistently estimate Σ, because standard procedures in mixed model analysis
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such as ML and REML do not produce estimators of higher (i.e., third and
fourth) moments of the random effects and errors. In the following we discuss
several methods of estimating Σ. Typically, when Σ in (2.9) is replaced by
a consistent estimator, say Σ̂, the asymptotic distribution on the right side
does not change. The test therefore rejects if

(K ′ψ̂ − c)′(K ′Σ̂K)−1(K ′ψ̂ − c) > χ2
r,ρ, (2.10)

where ρ is the significance level.

1. Empirical method of moments. Consider the case of the mixed ANOVA
model (1.1) and (1.2). As mentioned, the asymptotic covariance matrix of the
REML (ML) estimator involves higher moments, thus, a natural approach
would be to find consistent estimators of those higher moments. Jiang (2003)
proposed an empirical method of moments and gave a number of applications,
including estimation of the kurtoses in mixed ANOVA models. The basic idea
is the following. Let θ be a vector of parameters. Suppose that a consistent
estimator of θ, θ̂, is available. Let φ be a vector of additional parameters about
which knowledge is needed. Let ϑ = (θ′ φ′)′, and M(ϑ, y) = M(θ, φ, y) be a
vector-valued function of the same dimension as φ that depends on ϑ and y,
a vector of observations. Suppose that E{M(ϑ, y)} = 0 when ϑ is the true
vector of parameters. Then, if θ were known, a method of moments estimator
of φ would be obtained by solving

M(θ, φ, y) = 0 (2.11)

for φ. Note that this is more general than the classical method of moments,
in which the function M is a vector of sample moments minus their expected
values. In econometric literature, this is referred to as the generalized method
of moments (e.g., Hansen 1982, Newey 1985). Because θ is unknown, we re-
place it in (2.11) by θ̂. The result is called an empirical method of moments
(EMM) estimator of φ, denoted by φ̂, which is obtained by solving

M(θ̂, φ, y) = 0 . (2.12)

Note that here we use the words “an EMM estimator” instead of “the EMM
estimator”, because sometimes there may be more than one consistent esti-
mator of θ, and each may result in a different EMM estimator of φ. In general,
ML estimators may be viewed as a special kind of EMM estimator (Exercises
2.4 and 2.5). To see this, let l(ϑ; y) = l(θ, φ; y) be the log-likelihood function.
Then, the ML estimator, ϑ̂ = (θ̂′ φ̂′)′ satisfies ∂l/∂ϑ = 0, and hence φ̂, the
ML estimator of φ, satisfies

∂

∂ϑ
l(θ̂, φ; y) = 0 . (2.13)

On the other hand, (2.13) is a special case of (2.12), in which M(θ, φ, y) =
∂l/∂ϑ. Note that E(∂l/∂ϑ) = 0 when ϑ is the true vector of parameters. Jiang
(2003) showed that, under mild conditions, φ̂ is consistent.
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To apply EMM to non-Gaussian mixed ANOVA models, let θ be the vec-
tor of variance components. It is clear that a consistent estimator of θ, θ̂,
exists. For example, θ̂ can be the REML or ML estimator (e.g., Jiang 1996).
Furthermore, assume that the third moments of the random effects and errors
vanish; that is,

E(ε31) = 0 and E(α3
i1) = 0, 1 ≤ i ≤ s, (2.14)

where αi1 is the first component of αi and ε1 the first component of ε. Then,
the asymptotic covariance matrix of the REML (ML) estimator involves only
the kurtoses, in addition to the variance components [in fact, the asymptotic
covariance matrix of REML estimator does not involve the third moments
regardless of (2.14)]. For notational convenience, write σ2

0 = τ2. Then, the
(unscaled) kurtoses are defined by κ0 = E(ε41) − 3σ4

0 , κi = E(α4
i1) − 3σ4

i ,
1 ≤ i ≤ s. For any matrix A = (aij), we define ‖A‖4 = (

∑
i,j a4

ij)
1/4. Similarly,

if a = (ai) is a vector, then ‖a‖4 = (
∑

i a4
i )

1/4. Let L be a linear space,
then L⊥ represents the linear space {a : a′b = 0,∀b ∈ L}. If L1, L2 are
linear spaces such that L1 ⊂ L2, then L2 	 L1 represents the linear space
{a : a ∈ L2, a

′b = 0,∀b ∈ L1} (note that the notation is consistent with that
in Example 1.9). If M1, . . . , Mk are matrices with the same number of rows,
then L(M1, . . . , Mk) represents the linear space spanned by the columns of
M1, . . . , Mk. Let the matrices Z1, . . . , Zs be suitably ordered such that

Li �= {0}, 0 ≤ i ≤ s , (2.15)

where L0 = L(Z1, . . . , Zs)⊥, Li = L(Zi, . . . , Zs) 	 L(Zi+1, . . . , Zs), 1 ≤ i ≤
s − 1, and Ls = L(Zs). Let Ci be a matrix whose columns constitute a base
of Li, 0 ≤ i ≤ s. We define aij = ‖Z ′

jCi‖4
4, 0 ≤ j ≤ i ≤ s, where Z0 = I, the

identity matrix. It is easy to see that, under (2.15), aii > 0, 0 ≤ i ≤ s. Let ni

be the number of columns of Ci, and cik the kth column of Ci, 1 ≤ k ≤ ni,
0 ≤ i ≤ s. Define

bi(σ2) = 3
ni∑

k=1

⎛⎝ i∑
j=0

|Z ′
jcik|2σ2

j

⎞⎠2

, 0 ≤ i ≤ s.

where σ2 = (σ2
j )0≤j≤s. Let κ = (κj)0≤j≤s, and M(β, σ2, κ, y) be the vector

whose ith component is

Mi(β, σ2, κ, y) = ‖C ′
i(y − Xβ)‖4

4 −
i∑

j=0

aijκj − bi(σ2), 0 ≤ i ≤ s.

Then, by the following lemma and the definition of the Cis, it can be shown
that E{M(β, σ2, κ, y)} = 0 when β, σ2, κ correspond to the true parameters
(Exercise 2.6). Thus, a set of EMM estimators can be easily obtained by
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solving M(β̂, σ̂2, κ, y) = 0, where β̂ and σ̂2 are the REML or ML estimators.
Furthermore, the EMM estimators can be computed recursively as follows.

κ̂0 = a−1
00 d̂0 ,

κ̂i = a−1
ii d̂i −

i−1∑
j=0

(
aij

aii

)
κ̂j , 1 ≤ i ≤ s, (2.16)

where d̂i = ‖C ′
i(y − Xβ̂)‖4

4 − bi(σ̂2), 0 ≤ i ≤ s.

Lemma 2.1. Let ξ1, . . . , ξn be independent random variables such that
Eξi = 0 and Eξ4

i < ∞, and λ1, . . . , λn be constants. Then,

E

(
n∑

i=1

λiξi

)4

= 3

[
n∑

i=1

λ2
i var(ξi)

]2

+
n∑

i=1

λ4
i {Eξ4

i − 3[var(ξi)]2} .

Example 2.2 (Continued). Here we have κ0 = E(ε411) − 3τ4 and κ1 =
E(α4

1)−3σ4. The model can be written as y = Xµ+Zα+ε, where X = 1m⊗1k,
and Z = Im ⊗ 1k. Let

Dk =

⎛⎜⎜⎜⎝
1 · · · 1

−1 · · · 0
...

. . .
...

0 · · · −1

⎞⎟⎟⎟⎠
k×(k−1)

.

Then, it is easy to show that C0 = Im ⊗ Dk, C1 = Z = Im ⊗ 1k. It follows
from (2.16) that, in closed form,

κ̂0 =
1

2m(k − 1)

m∑
i=1

k∑
j=2

(yi1 − yij)4 − 6τ̂4 ,

κ̂1 =
1

mk4

m∑
i=1

(yi· − kµ̂)4 − 1
2mk3(k − 1)

m∑
i=1

k∑
j=2

(yi1 − yij)4

− 3
k2

(
1 − 2

k

)
τ̂4 − 6

k
τ̂2σ̂2 − 3σ̂4 ,

where yi· =
∑k

j=1 yij , µ̂ = ȳ··, and τ̂2, σ̂2 are the REML or ML estimators. It
can be shown (Exercise 2.7) that the EMM estimators are consistent provided
that m → ∞ and k ≥ 2.

2. Partially observed information. One important assumption that we have
made in the application of EMM is (2.14). This assumption holds, for exam-
ple, if the random effects and errors are symmetrically distributed. However,
from a practical point of view, such an assumption is not very pleasant be-
cause, like normality, symmetry may not hold in practice. On the other hand,
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a method called partially observed information was proposed in Section 1.4.2
for estimating the asymptotic covariance matrices of REML or ML estima-
tors. This method applies to a general non-Gaussian mixed ANOVA model
regardless of (2.14). We consider an example.

Example 2.2 (Continued). Suppose that one wishes to test the hypothesis
H0: γ1 = 1; that is, the variance contribution due to the random effects is
the same as that due to the errors. Note that in this case θ = (λ, γ1)′, so the
null hypothesis corresponds to (2.8) with K = (0, 1)′ and c = 1. Furthermore,
we have K ′ΣRK = ΣR,11, which is the asymptotic variance of γ̂1, the REML
estimator of γ1. Thus, the test statistic is χ̂2 = (γ̂1 − 1)2/Σ̂R,11, where Σ̂R,11
is the POQUIM estimator of ΣR,11 (see Section 1.8.5) given by

Σ̂R,11 =
Î1,11Î2

2,00 − 2Î1,01Î2,00Î2,01 + Î1,00Î2
2,01

(Î2,00Î2,11 − Î2
2,01)2

,

where Î1,st = Î1,1,st + Î1,2,st, s, t = 0, 1, and Î1,r,st, r = 1, 2 are given in
Example 1.1 (continued) in Section 1.8.5 but with γ̂1 replaced by 1, its value
under H0; furthermore, we have

Î2,00 = − (mk − 1)

2λ̂2
,

Î2,01 = − (m − 1)k

2λ̂(1 + γ̂1k)
,

Î2,11 = − (m − 1)k2

2(1 + γ̂1k)2
,

again with γ̂1 replaced by 1, where λ̂ is the REML estimator of λ (Exercise
2.8). The asymptotic null distribution of the test is χ2

1.

3. Jackknife method. For non-Gaussian longitudinal models, the asymp-
totic covariance matrix of the REML (ML) estimator may be estimated using
the jackknife method discussed in Section 1.4.4. One advantage of the jack-
knife method is that it is one-formula-works-for-all. In fact, the same jackknife
estimator not only applies to longitudinal linear mixed models, it also applies
to longitudinal generalized linear mixed models, which we discuss in Chapters
4 and 5. Let ψ be the vector of all the parameters involved in a non-Gaussian
longitudinal model, which includes fixed effects and variance components. Let
ψ̂ be the REML or ML estimator of ψ. Then, the jackknife estimator of the
asymptotic covariance matrix of ψ̂ is given by (1.43). Jiang and Lahiri (2004)
showed that, under suitable conditions, the jackknife estimator is consistent
in the sense that Σ̂Jack = Σ +OP(m−1−δ) for some δ > 0. Therefore, one may
use Σ̂ = Σ̂Jack on the left side of (2.10) for the asymptotic test. We consider
a simple example.

Example 2.4 (The James–Stein estimator). Let yi, i = 1, . . . , m be inde-
pendent such that yi ∼ N(θi, 1). In the context of simultaneous estimation of
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θ = (θ1, . . . , θm)′, it is well known that for m ≥ 3, the James–Stein estima-
tor dominates the maximum likelihood estimator, given by y = (y1, . . . , ym)′

in terms of the frequentist risk under the sum of squared error loss function
(e.g., Lehmann and Casella 1998, pp. 272-273). Efron and Morris (1973) pro-
vided an empirical Bayes justification of the James–Stein estimator. Their
Bayesian model can be equivalently written as the following simple random
effects model: yi = αi + εi, i = 1, . . . , m, where the sampling errors {εi} and
the random effects {αi} are independently distributed with αi ∼ N(0, ψ) and
εi ∼ N(0, 1), and ε and α are independent.

Now we drop the normality assumption. Instead, we assume that yi, 1 ≤
i ≤ m (m > 1) are i.i.d. with E(y1) = 0, var(y1) = ψ + 1 and E(|y1|d) < ∞
(d > 4). Then, an M-estimator for ψ, which is the solution to the ML equation,
is given by ψ̂ = m−1 ∑m

i=1 y2
i − 1. The delete-i M-estimator is ψ̂−i = (m −

1)−1 ∑
j �=i y2

j − 1. The jackknife estimator of the asymptotic variance of ψ̂ is
given by

σ̂2
jack =

m − 1
m

m∑
i=1

(ψ̂−i − ψ̂)2.

4. Robust versions of classical tests. Robust testing procedures have been
studied extensively in the literature. In particular, robust versions of the clas-
sical tests, that is, the Wald, score, and likelihood-ratio tests (e.g., Lehmann
1999, §7) have been considered. In the case of i.i.d. observations, see, Foutz
and Srivastava (1977), Kent (1982), Hampel et. al. (1986), and Heritier and
Ronchetti (1994), among others. In the case of independent but not identi-
cally distributed observations, see, for example, Schrader and Hettmansperger
(1980), Chen (1985), Silvapulle (1992), and Kim and Cai (1993). In contrast
to the independent cases, the literature on robust testing with dependent ob-
servations is not extensive. In particular, in the case of linear mixed models,
such tests as the likelihood-ratio test were studied only under the normality
assumption (e.g., Hartley and Rao 1967). Because the normality assumption
is likely to be violated in practice, it would be interesting to know if the clas-
sical tests developed under normality are robust against departure from such
a distributional assumption.

Jiang (2005c) considered robust versions of the Wald, score, and likelihood-
ratio tests in the case of dependent observations, which he called W-, S- and
L-tests, and applied the results to non-Gaussian linear mixed models. The
approach is briefly described as follows with more details given in Section 2.7.
Let y = (yk)1≤k≤n be a vector of observations not necessarily independent.
Let ψ be a vector of unknown parameters that are associated with the joint
distribution of y, but the entire distribution of y may not be known given ψ
(and possibly other parameters). We are interested in testing the hypothesis:

H0 : ψ ∈ Ψ0 (2.17)
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versus H1: ψ /∈ Ψ0, where Ψ0 ⊂ Ψ , and Ψ is the parameter space. Suppose
that there is a new parameterization φ such that, under the null hypothesis
(2. 17), ψ = ψ(φ) for some φ. Here ψ(·) is a map from Φ, the parameter space
of φ, to Ψ . Note that such a reparameterization is almost always possible, but
the key is to try to make φ unrestricted (unless completely specified, such as
in Example 2.5 below). The following are some examples.

Example 2.5. Suppose that, under the null hypothesis, ψ is completely
specified; that is, H0: ψ = ψ0. Then, under H0, ψ = φ = ψ0.

Example 2.6. Let ψ = (ψ1, . . . , ψp, ψp+1, . . . , ψq)′, and suppose that one
wishes to test the hypothesis H0: ψj = ψ0j , p + 1 ≤ j ≤ q, where ψ0j ,
p+1 ≤ j ≤ q are known constants. Then, under the null hypothesis, ψj = φj ,
1 ≤ j ≤ p, and ψj = ψ0j , p+1 ≤ j ≤ q for some (unrestricted) φ = (φj)1≤j≤p.

Example 2.7. Suppose that the null hypothesis includes inequality con-
straints: H0: ψj > ψ0j , p1 + 1 ≤ j ≤ p, and ψj = ψ0j , p + 1 ≤ j ≤ q,
where p1 < p < q. Then, under the null hypothesis, ψj = φj , 1 ≤ j ≤ p1,
ψj = ψ0j + eφj , p1 + 1 ≤ j ≤ p, and ψj = ψ0j , p + 1 ≤ j ≤ q for some
(unrestricted) φ = (φj)1≤j≤p.

Let L(ψ, y) be a function of ψ and y that takes positive values, and
l(ψ, y) = log L(ψ, y). Let L0(φ, y) = L(ψ(φ), y), and l0(φ, y) = log L0(φ, y).
Let q and p be the dimensions of θ and φ, respectively. Let ψ̂ be an estimator
of ψ, and φ̂ an estimator of φ. Note that here we do not require that ψ̂ and φ̂
be the (global) maximizers of l(ψ, y) and l0(φ, y), respectively. But we require
that ψ̂ be a solution to ∂l/∂ψ = 0, and φ̂ a solution to ∂l0/∂φ = 0.

We now loosely define matrices A, B, C, and Σ with the exact definitions
given in section 2.7: A is the limit of the matrix of second derivatives of l
with respect to θ; B is the limit of the matrix of second derivatives of l0 with
respect to φ; C is the limit of the matrix of first derivatives of θ with respect to
φ; and Σ is the asymptotic covariance matrix of ∂l/∂θ, all subject to suitable
normalizations. As shown in Section 2.7, the normalizations are associated
with sequences of nonsingular symmetric matrices G and H. The W-test is
closely related to the following quantity.

W = [ψ̂ − ψ(φ̂)]′GQ−
wG[ψ̂ − ψ(φ̂)] , (2.18)

where Q−
w is the unique Moore–Penrose inverse (see Appendix B) of

Qw = [A−1 − C(C ′AC)−1C ′]Σ[A−1 − C(C ′AC)−1C ′] .

Let Q̂−
w be a consistent estimator of Q−

w in the sense that ‖Q̂−
w − Q−

w‖ → 0
in probability. The W-test statistic, Ŵ, is defined by (2.18) with Q−

w replaced
by Q̂−

w . Similarly, we define the following:

S =

(
∂l

∂ψ

∣∣∣∣
ψ(φ̂)

)′
G−1A−1/2Q−

s A−1/2G−1

(
∂l

∂ψ

∣∣∣∣
ψ(φ̂)

)
, (2.19)
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where Q−
s is the unique Moore-Penrose inverse of

Qs = (I − P )A−1/2ΣA−1/2(I − P ) ,

and P = A1/2C(C ′AC)−1C ′A1/2. Let Â and Q̂−
s be consistent estimators of

A and Q−
s , respectively, in the same sense as above. Note that, quite often,

A only depends on ψ, of which a consistent estimator; that is, ψ̂, is available.
The S-test statistic, Ŝ, is defined by (2.19) with A and Q−

s replaced by Â and
Q̂−

s , respectively. Finally, the L-ratio for testing (2.17) is defined as

R =
L0(φ̂, y)

L(ψ̂, y)
.

Note that the L-ratio is the same as the likelihood ratio when L(ψ, y) is a
likelihood function. The L-test statistic is then −2 log R.

Jiang (2005c) showed that, under some regularity conditions, both the W-
and S-tests have an asymptotic χ2

r distribution, where the degrees of freedom
r = rank{Σ1/2A−1/2(I −P )} with P given below (2.19). As for the L-test, the
asymptotic distribution of −2 log R is the same as λ1ξ

2
1 + · · · + λrξ

2
r , where r

is the same as before, λ1, . . . , λr are the positive eigenvalues of

Ql = [A−1 − C(C ′AC)−1C ′]1/2Σ[A−1 − C(C ′AC)−1C ′]1/2 , (2.20)

and ξ1, . . . , ξr are independent N(0, 1) random variables. In particular, if Σ
is nonsingular, then r = q − p. These general results apply, in particular, to
non-Gaussian linear mixed models. See Section 2.7 for more details.

We now consider application of the robust versions of classical tests to
non-Gaussian mixed ANOVA models. The models are defined in Section 1.2.2
and the estimation problems discussed in Section 1.4. Consider the Hartley–
Rao variance components: λ = σ2

0 , γi = σ2
i /σ2

0 , 1 ≤ i ≤ s. Let γ = (γi)1≤i≤s,
and ψ = (β′ λ γ′)′. Then, ψ is a vector of parameters, which alone may
not completely determine the distribution of y. Nevertheless, in many cases,
people are interested in testing hypotheses of the form (2.17), where Ψ0 ⊂
Ψ = {ψ : λ > 0, γi ≥ 0, 1 ≤ i ≤ s}, versus H1: ψ /∈ Ψ0. We assume that there
is a new parameterization φ such that, under the null hypothesis, ψ = ψ(φ)
for some φ = (φk)1≤k≤d. Here ψ(·) is a map from Φ, the parameter space of
φ, to Ψ . More specifically, let q = p + s + 1, which is the dimension of ψ. We
assume that there is a subset of indices 1 ≤ i1 < · · · < id ≤ q such that{

ψik
(φ) is a function of φk, 1 ≤ k ≤ d, and

ψi(φ) is a constant, i ∈ {1, . . . , q} \ {i1, . . . , id}.
(2.21)

Intuitively, the null hypothesis imposes constraints on ψ, therefore there are
less free parameters under H0, and φ represents the vector of free parameters
after some changes of variables. Note that such a reparameterization almost
always exists, but the key is to try to make φ unrestricted unless completely
specified.
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When normality is assumed, the use of the likelihood-ratio test for com-
plex hypotheses and unbalanced data was first proposed by Hartley and Rao
(1967), although rigorous justification was not given. Welham and Thompson
(1997) showed the equivalence of the likelihood ratio, score, and Wald tests
under normality. On the other hand, Richardson and Welsh (1996) considered
the likelihood-ratio test without assuming normality, whose approach is simi-
lar to our L-test, but their goal was to select the (fixed) covariates. Under the
normality assumption, the log-likelihood function for estimating θ is given by

l(ψ, y) = constant − 1
2

{
n log λ + log(|V |) +

1
λ

(y − Xβ)′V −1(y − Xβ)
}

,

where V = Vγ = I +
∑s

i=1 γiVi with I being the n-dimensional identity
matrix, Vi = ZiZ

′
i, 1 ≤ i ≤ s, and |V | the determinant of V . The restricted

log-likelihood for estimating λ, γ is given by

lR(λ, γ, y) = constant − 1
2

{
(n − p) log λ + log(|K ′V K|) +

y′Py

λ

}
,

where K is any n × (n − p) matrix such that rank(K) = n − p and K ′X = 0,
and P = Pγ = K(K ′V K)−1K ′ = V −1 − V −1X(X ′V −1X)−1X ′V −1 (see
Appendix B). The restricted log-likelihood is only for estimating the variance
components. It is then customary to estimate β by the empirical best linear
unbiased estimator:

β̂ = (X ′V̂ −1X)−1X ′V̂ −1y ,

where V̂ = Vγ̂ , and γ̂ = (γ̂i)1≤i≤s is the REML estimator of γ. Alternatively,
one may define the following “restricted log-likelihood” for ψ.

lR(ψ, y) = constant

−1
2

{
(n − p) log λ + log |K ′V K| +

1
λ

(y − Xβ)′V −1(y − Xβ)
}

.

It is easy to show that the maximizer of lR(ψ, y) is ψ̂ = (β̂′ λ̂ γ̂′)′, where λ̂ and
γ̂ are the REML estimators, and β̂ is given above with V̂ = Vγ̂ . The difference
is that, unlike l(ψ, y), lR(ψ, y) is not a log-likelihood even if normality holds.
Nevertheless, it can be shown that both l(ψ, y) and lR(ψ, y) can be used as the
objective function to test (2.17) under a non-Gaussian mixed linear model.
The details are given in Section 2.7.1. We now consider an example.

Example 2.2 (Continued). In this case, we have q = 3, ψ1 = µ, ψ2 = λ =
τ2, and ψ3 = γ = σ2/τ2. Consider the hypothesis H0: λ = 1, γ > 1. Note
that under H0 we have µ = φ1, λ = 1, and γ = 1 + eφ2 for unrestricted φ1,
φ2. Thus, (2.21) is satisfied with d = 2, i1 = 1, and i2 = 3. The Gaussian
log-likelihood is given by (Exercise 2.9)
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l(ψ, y) = c − 1
2

{
mk log(λ) + m log(1 + kγ) +

SSE
λ

+
SSA

λ(1 + kγ)

+
mk(ȳ·· − µ)2

λ(1 + kγ)

}
,

where c is a constant, SSA = k
∑m

i=1(ȳi· − ȳ··)2, SSE =
∑m

i=1
∑k

j=1(yij −
ȳi·)2, ȳ·· = (mk)−1 ∑m

i=1
∑k

j=1 yij , and ȳi· = k−1 ∑k
j=1 yij . Here we have

ψ = (µ, λ, γ)′, φ = (φ1, φ2)′, and ψ(φ) = (φ1, 1, 1 + eφ2)′, where φ1 and
φ2 are unrestricted. The solution to the (Gaussian) ML equation is given by
ψ̂1 = µ̂ = ȳ··, ψ̂2 = λ̂ = MSE, and ψ̂3 = γ̂ = (1/k){(1−1/m)(MSA/MSE)−1},
where MSA = SSA/(m−1) and MSE = SSE/m(k −1). On the other hand, it
is easy to show that the solution to the ML equation under the null hypothesis
is given by φ̂1 = ȳ··, φ̂2 = log{(1/k)(1−1/m)MSA− (1+1/k)}, provided that
the term inside the logarithm is positive. Because E(MSA) = 1 + kγ > k + 1
under H0 (Exercise 2.9), it is easy to show that, as m → ∞, the logarithm is
well defined with probability tending to one.

We now specify the matrices A, C, G, and Σ under the additional
assumption that E(α3

1) = E(ε311) = 0. According to Theorem 2.4, A is
given by (2.62), and it can be shown that X ′V −1X/λn = 1/λ2(1 + kγ),
A1 =

√
k/2λ2(1 + kγ), and A2 = k2/2λ2(1 + kγ)2. Again, by Theorem 2.4,

G = diag(
√

mk,
√

mk,
√

m); C is the 3×2 matrix whose first column is (1, 0, 0)′

and second column is (0, 0, eφ2)′. Finally, Σ = A + ∆ with ∆ given by (2.63),
and it can be shown that

∆00

n
=

1
4λ4(1 + kγ)2

[κ0{1 + (k − 1)γ}2 + κ1kγ2],

∆1 =

√
k

4λ4(1 + kγ)3
[κ0{1 + (k − 1)γ} + κ1k

2γ2],

∆2 =
k

4λ4(1 + kγ)4
(κ0 + κ1k

3γ2),

where κ0 = {E(ε411)/τ4} − 3 and κ1 = {E(α4
1)/σ4} − 3.

It can be shown that, in this case, the W-test statistic reduces to

χ̂2
w =

(
2k

k − 1
+ κ̂0

)−1

mk(MSE − 1)2,

where κ̂0 is the EMM estimator of κ0 given in Example 2.2 (Continued) below
Lemma 2.1. Note that, by the consistency of κ̂0 (Exercise 2.7), we have, as
m → ∞,

2k

k − 1
+ κ̂0

P−→ 2k

k − 1
+ κ0

≥ E(ε411) − 1 > 0,
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under H0, unless ε211 is degenerate. Thus, with the exception of this extreme
case, the denominator in χ̂2

w is positive with probability tending to one un-
der the null hypothesis. By Theorem 2.4, as m → ∞, the asymptotic null
distribution of the W-test is χ2

1 (Exercise 2.10).
As it turns out, the S-test statistic is identical to the W-test statistic in

this case, and it has the same asymptotic null distribution (Exercise 2.11).
Finally, the L-test statistic is equal to

−2 log R = m(k − 1){MSE − 1 − log(MSE)}

in this case. Suppose that m → ∞ and k is fixed (k ≥ 2). Then, it can be
shown that r = 1 in this case, therefore, by Theorem 2.5, the asymptotic
null distribution of −2 log R is the same as λ1χ

2
1, where λ1 is the positive

eigenvalue of Ql given by (2.20) evaluated under H0. It can be shown that
λ1 = 1 + {(k − 1)/2k}κ0, which is estimated by 1 + {(k − 1)/2k}κ̂0. Note
that if κ0 = 0, as will be the case if the errors are normal, the asymptotic
null distribution of the L-test is χ2

1, which is the same as that for the W-
and S-tests. Interestingly, the latter result does not require that the random
effects are normal (Exercise 2.12).

2.2 Confidence Intervals in Linear Mixed Models

2.2.1 Confidence Intervals in Gaussian Mixed Models

Confidence intervals in linear mixed models include confidence intervals for
fixed effects, confidence intervals for variance components, and confidence in-
tervals for functions of variance components. Among the latter, difference and
ratio are two simple functions that are frequently used. Other functions such
as the heritability, an important quantity in genetics, may be expressed as
functions of these two simple functions. For simplicity, the term confidence
intervals for variance components is here understood as including functions of
variance components. We first consider confidence intervals under Gaussian
linear mixed models.

1. Exact confidence intervals for variance components. It is known that
in some special cases, mostly balanced cases, exact confidence intervals for
variance components can be derived. Here we do not attempt to list all such
cases where exact confidence intervals are available. For more details, see
Burdick and Graybill (1992). Instead, our approach is to introduce a basic
method used to derive exact confidence intervals, so that it may be applied
to different cases whenever applicable. The basic idea is to find a pivotal
quantity, that is, a random variable that depends on both the observations
and the variance component, for which an exact confidence interval is to be
constructed. Quite often, such a pivotal quantity is in the form of either an“F-
statistic” or a “χ2-statistic”. Here the quotes indicate that the quantity is not
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really a statistic because it involves the variance component. We illustrate the
method by examples.

Example 2.2 (Continued). Consider the Hartley–Rao form of variance com-
ponents λ = τ2 and γ = σ2/τ2. Suppose that one is interested in constructing
an exact confidence interval for γ. Consider the following quantity

F =
MSA

(1 + kγ)MSE
,

where MSA = SSA/(m−1) and MSE = SSE/m(k −1). It can be shown that,
under normality, F has an F-distribution with m − 1 and m(k − 1) degrees of
freedom (Exercise 2.13). It follows that, given ρ (0 < ρ < 1), an exact (1−ρ)%
confidence interval for γ is[

1
k

(
R
FU

− 1
)

,
1
k

(
R
FL

− 1
)]

,

where R = MSA/MSE, FL = Fm−1,m(k−1),1−ρ/2, and FU = Fm−1,m(k−1),ρ/2
(Exercise 2.13).

Example 2.3 (Continued). Suppose that the problem of interest is to con-
struct an exact confidence interval for the variance of any single observa-
tion yij ; that is, var(yij) = σ2 + τ2. Let cij , 1 ≤ j ≤ ki be constants such
that

∑ki

j=1 cij = 0 and
∑ki

j=1 c2
ij = 1 − 1/ki. Define ui = ȳi· +

∑ki

j=1 cijyij ,
1 ≤ i ≤ m. It can be shown that u1, . . . , um are independent and normally
distributed with mean µ and variance σ2+τ2 (Exercise 2.14). Thus, the quan-
tity

χ2 =
∑m

i=1(ui − ū)2

σ2 + τ2

is distributed as χ2
m−1. It follows that an exact (1 − ρ)% confidence interval

for σ2 + τ2 is [∑m
i=1(ui − ū)2

χ2
m−1,ρ/2

,

∑m
i=1(ui − ū)2

χ2
m−1,1−ρ/2

]
.

The method used in the above example for constructing an exact confi-
dence interval for σ2 + τ2 is due to Burdick and Sielken (1978). In fact, the
authors developed a method that can be used to obtain an exact confidence
interval for aσ2 + bτ2, where a, b are positive constants subject to some addi-
tional constraints. One such constraint is that b �= 0. Thus, for example, the
method cannot give an exact confidence interval for σ2 (see Exercise 2.15).
This example shows the limitation of the method used to construct exact con-
fidence intervals. In fact, no existing method is known to be able to obtain an
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exact confidence interval for σ2 in an analytic form. On the other hand, ap-
proximate confidence intervals do exist for σ2 and other variance components.
We discuss such methods next.

2. Approximate confidence intervals for variance components. Satterth-
waite (1946) proposed a method, which extended an earlier approach of Smith
(1936), for balanced ANOVA models. The goal was to construct a confidence
interval for a quantity in the form ζ =

∑h
i=1 ciλi, where λi = E(S2

i ) and S2
i is

the mean sum of squares corresponding to the ith factor (fixed or random) in
the model (e.g., Scheffé 1959). Note that many variance components can be
expressed in this form; for example, the variance of yij , σ2 + τ2, in Example
2.3 can be expressed as (1/k)E(S2

1) + (1 − 1/k)E(S2
2), where S2

1 is the mean
sum of squares corresponding to α and S2

2 that corresponding to ε. The idea
was to find an appropriate “degrees of freedom,” say, d, such that the first two
moments of the random variable d

∑h
i=1 ciS

2
i /ζ match those of a χ2

d random
variable. This approach is known as Satterthwaite’s procedure. Graybill and
Wang (1980) proposed a method that improved Satterthwaite’s procedure.
The authors called their method the modified large sample (MLS) method.
The method provides an approximate confidence interval for a nonnegative
linear combination of the λis, which is exact when all but one of the coeffi-
cients in the linear combination are zero. We describe the Graybill–Wang for
the special case of balanced one-way random effects model (Example 2.2).

Suppose that one is interested in constructing a confidence interval for
ζ = c1λ1 + c2λ2, where c1 ≥ 0 and c2 > 0. This problem is equivalent to
constructing a confidence interval for ζ = cλ1 + λ2, where c ≥ 0. A uniformly
minimum variance unbiased estimator (UMVUE, e.g., Lehmann and Casella
1998) of the quantity is given by ζ̂ = cS2

1 + S2
2 . Furthermore, it can be shown

that ζ̂ is asymptotically normal such that (ζ̂ − ζ)/
√

var(ζ̂) has a limiting

N(0, 1) distribution (Exercise 2.16). Furthermore, the variance of ζ̂ is given
by c2{2λ2

1/(m−1)}+2λ2
2/m(k −1). Again, recall that S2

j is an unbiased (and
consistent) estimator of λj j = 1, 2 (Exercise 2.16). This allows one to obtain
a large sample confidence interval for ζ as follows.[

ζ̂ − zρ/2

√
c2

(
2S4

1

m − 1

)
+

2S4
2

m(k − 1)
,

ζ̂ + zρ/2

√
c2

(
2S4

1

m − 1

)
+

2S4
2

m(k − 1)

]
, (2.22)

where 1 − ρ is the confidence coefficient. The confidence interval (2.22) is
expected to be accurate when the sample size is large, that is, when m → ∞.
However, small sample performance is not guaranteed. Graybill and Wang
proposed to modify the constants zρ/2, 2/(m − 1) and 2/m(k − 1), so that
the confidence interval will be exact when either λ1 = 0 or λ2 = 0. Their
confidence interval is given by
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ζ̂ −

√
G2

1c
2S4

1 + G2
2S

4
2 , ζ̂ +

√
H2

1 c2S4
1 + H2

2S4
2

]
,

where G1 = 1 − (m − 1)/χ2
m−1,ρ/2, G2 = 1 − m(k − 1)/χ2

m(k−1),ρ/2, H1 =
(m − 1)/χ2

m−1,1−ρ/2 − 1, and H2 = m(k − 1)/χ2
m(k−1),ρ/2 − 1. Using numer-

ical integration, Graybill and Wang compared confidence coefficients of the
MLS confidence intervals with those of Satterthwaite and Welch (Welch 1956).
They concluded that the confidence coefficients of the MLS are closer to the
nominal levels than those of Satterthwaite and Welch. As for the length of
the confidence intervals, Graybill and Wang conducted a simulation study.
The results showed that average widths of two types of MLS confidence inter-
vals, namely, the shortest unbiased confidence interval and shortest confidence
interval, are generally smaller than those of Welch’s.

Sometimes, the variance components of interest cannot be expressed as
a nonnegative linear combination of the λis. For example, in Example 2.2,
the variance σ2 = (λ1 − λ2)/k, so the coefficients in the linear combination
have different signs. It is therefore of interest to obtain confidence intervals
for ζ =

∑h
i=1 ciλi, where the cis may have different signs. Healy (1961) pro-

posed a procedure that may be used to obtain an exact confidence interval for
c1λ1−c2λ2, where c1 and c2 are nonnegative. However, the procedure requires
a randomization device. In other words, the confidence interval is not solely
determined by the data. Several authors have proposed (solely data-based)
approximate confidence intervals for ζ. For example, Ting et al. (1990) pro-
posed a procedure similar to Graybill and Wang (1980) discussed above. Note
that a large sample confidence interval such as (2.22) based on asymptotic
normality of ζ̂ does not require that the signs of the cis be the same. All one
has to do is to modify the coefficients of the large sample confidence interval
so that it performs better in small sample situations. See Ting et al. (1990) for
details. Burdick and Graybill (1992) reviewed several approximate procedures
for constructing confidence intervals for ζ. They conclude that there is little
difference in terms of performance of the proposed procedures.

Finally, one should bear in mind that, in cases of large samples, a confi-
dence interval as simple as (2.22) can be used without modification. Such a
procedure is much easier to derive and calculate. We return to this method in
the next section.

3. Simultaneous confidence intervals. Hartley and Rao (1967) derived a
simultaneous confidence region for the variance ratios γi = σ2

i /τ2, i = 1, . . . , s
(i.e., the Hartley-Rao form of variance components; see Section 1.2.1.1) in
a Gaussian mixed ANOVA model. Their derivation is based on maximum
likelihood estimation, a method that we visit again in the next section. The
Hartley–Rao confidence region is quite general, that is, it applies to a general
ANOVA model, balanced or unbalanced. On the other hand, in some spe-
cial cases different methods may result in confidence intervals that are easier
to interpret. For example, Khuri (1981) developed a method of construct-
ing simultaneous confidence intervals for all continuous functions of variance
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components in the balanced random effects model, a special case of the mixed
ANOVA model.

It should be pointed out that, provided one knows how to construct con-
fidence intervals for the individual variance components, by then Bonferroni
inequality, a conservative simultaneous confidence interval for the variance
components can always be constructed. Suppose that [Li, Ui] is a (1 − ρi)%
confidence interval for the variance component θi, i = 1, . . . , q. Then, by the
Bonferroni inequality, the set of intervals [Li, Ui], i = 1, . . . , q is a (conser-
vative) simultaneous confidence interval for θi, i = 1, . . . , q with confidence
coefficient greater than or equal to 1 −

∑q
i=1 ρi. Sometimes, the confidence

coefficient may be improved if there is independence among the individual con-
fidence intervals. For example, in the balanced normal random effects model,
let ni be the degrees of freedom associated with S2

i , the mean sum of squares
corresponding to the ith factor (fixed or random). Then, it is known that
niS

2
i /λi has a χ2 distribution with ni degrees of freedom, where λi = E(S2

i ).
Furthermore, the random variables niS

2
i /λi, i = 1, . . . , h are independent

(e.g., Scheffé 1959). It follows that a (1 − ρ)% confidence interval for λi is[
niS

2
i

χ2
ni,ρ/2

,
niS

2
i

χ2
ni,1−ρ/2

]
, (2.23)

and, furthermore, the set of intervals (2.23) with i = 1, . . . , h is a simultaneous
confidence interval for λi, i = 1, . . . , h with confidence coefficient (1−ρ)h. Note
that (1 − ρ)h ≥ 1 − hρ for any integer h ≥ 1.

4. Confidence intervals for fixed effects. For the vector of fixed effects β
in (1.1), the best linear unbiased estimator, or BLUE, is given by (1.36),
provided that the expression does not involve unknown variance components.
Furthermore, we have

Var(β̂BLUE) = (X ′V −1X)−1. (2.24)

In fact, under mild conditions, β̂BLUE is asymptotically normal with mean vec-
tor β and asymptotic covariance matrix given by the right side of (2.24). It is
known that in some special cases, mostly in the balanced situations, the right
side of (1.36) does not depend on the variance components, therefore β̂BLUE
can be used as an estimator. However, even in those cases the right side of
(2.24) typically depends on the variance components. Of course, in general,
both β̂BLUE and its covariance matrix depend on the variance components.
Therefore, to construct a confidence interval for a fixed effect, or more gen-
erally, any linear function of β, one needs to replaced the unknown variance
components by consistent estimators, for example, REML estimators. Except
for some special cases (see Example 2.8 below), the resulting confidence inter-
val will be approximate in the sense that its confidence coefficient approaches
the nominal level as sample size increases. We consider an example.
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Example 2.8. Consider the following model, which is a special case of the
so-called nested error regression model:

yij = β0 + β1xi + αi + εij , i = 1, . . . , m, j = 1, . . . , ki,

where β0, β1 are unknown regression coefficients, xis are known covariates,
αis are random effects, and εijs are errors. Suppose that the random effects
and errors are independent and normally distributed such that E(αi) = 0,
var(αi) = σ2, E(εij) = 0, and var(εij) = τ2.

It can be shown (Exercise 2.17) that, in this case, (1.36) gives the following
expressions for the BLUE,

β̂BLUE,0 =
(
∑m

i=1 dix
2
i )(

∑m
i=1 diȳi·) − (

∑m
i=1 dixi)(

∑m
i=1 dixiȳi·)

(
∑m

i=1 di)(
∑m

i=1 dix2
i ) − (

∑m
i=1 dixi)2

, (2.25)

β̂BLUE,1 =
(
∑m

i=1 di)(
∑m

i=1 dixiȳi·) − (
∑m

i=1 dixi)(
∑m

i=1 diȳi·)
(
∑m

i=1 di)(
∑m

i=1 dix2
i ) − (

∑m
i=1 dixi)2

, (2.26)

where di = ki/(τ2 + kiσ
2). It follows that, when ki = k, 1 ≤ i ≤ m (i.e., in

the balanced case), we have

β̂BLUE,0 =
(
∑m

i=1 x2
i )(

∑m
i=1 ȳi·) − (

∑m
i=1 xi)(

∑m
i=1 xiȳi·)

m
∑m

i=1 x2
i − (

∑m
i=1 xi)2

,

β̂BLUE,1 =
∑m

i=1(xi − x̄·)(ȳi· − ȳ··)∑m
i=1(xi − x̄·)2

.

It is seen that in the balanced case, the BLUE does not depend on the vari-
ance components but in the unbalanced case it does. Furthermore, β̂BLUE =
(β̂BLUE,0, β̂BLUE,1)′. It can be shown by (2.24) that

Var(β̂BLUE) =
1

τ2D

( ∑m
i=1 dix

2
i −

∑m
i=1 dixi

−
∑m

i=1 dixi

∑m
i=1 di

)
, (2.27)

where D = (
∑m

i=1 di)(
∑m

i=1 dix
2
i ) − (

∑m
i=1 dixi)2 (Exercise 2.17). So even in

the balanced case the covariance matrix of BLUE depends on the variance
components.

When the variance components involved in BLUE are replaced by their
estimators, the resulting estimator is often called empirical BLUE, or EBLUE.
It is easy to see that, under normality, EBLUE is the same as the MLE
of β, if the variance components are replaced by their MLE. It should be
pointed out that EBLUE is more complicated and, in particular, not linear
in y. Furthermore, if one replaces the variance components involved on the
right side of (2.24) by their estimators, the result would underestimate the true
variation of EBLUE. In fact, Kackar and Harville (1981) showed that EBLUE,
denoted by β̂, is still an unbiased estimator of β, that is E(β̂) = β, provided
that the data are normal and estimators of the variance components are even
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and translation invariant (see Section 2.8 for more detail). In addition, the
authors showed that, under normality

var(a′β̂) = var(a′β̂BLUE) + E{a′(β̂ − β̂BLUE)}2 (2.28)

for any given vector a. Because var(a′β̂BLUE) = a′Var(β̂BLUE)a, the first term
on the right side of (2.28) can be estimated by the right side of (2.24) with
the variance components replaced by their estimators. However, there is a
second term on the right side of (2.28) that cannot be estimated this way.
Fortunately, for constructing confidence intervals for the fixed effects, this
complication does not necessarily cause any problem, at least in the large-
sample situation. In fact, for ANOVA models, Jiang (1998b) showed that,
when the variance components are estimated by the REML estimators, the
asymptotic covariance matrix of β̂ is still given by the right side of (2.24)
(in spite of estimation of the variance components). It is known (e.g., Miller
1977) that, when the variance components are estimated by the MLE, the
asymptotic covariance matrix of β̂ is also given by the right side of (2.24).
Thus, in such cases, a (large-sample) confidence interval for a′β is given by[

a′β̂ − zρ/2{a′(X ′V̂ −1X)−1a}1/2,

a′β̂ + zρ/2{a′(X ′V̂ −1X)−1a}1/2
]
, (2.29)

where V̂ is V with the variance components replaced by their REML or ML
estimators. It is shown in section 2.3 that the complication in EBLUE becomes
important in the prediction of a mixed effect, that is, a linear combination of
fixed and random effects.

Example 2.8 (Continued). Suppose that one is interested in constructing
a confidence interval for β̂1. By (2.29) and (2.27), taking a = (0, 1)′, a large
sample confidence interval is⎡⎣β̂1 − zρ/2

(∑m
i=1 d̂i

τ̂2D̂

)1/2

, β̂1 + zρ/2

(∑m
i=1 d̂i

τ̂2D̂

)1/2
⎤⎦ ,

where d̂i = ki/(τ̂2 + kiσ̂
2), β̂1 is given by (2.26) with di replaced by d̂i ,1 ≤

i ≤ m, and D̂ is D with di replaced by d̂i, 1 ≤ i ≤ m. Here σ̂2 and τ̂2 are
understood as the REML (or ML) estimators.

2.2.2 Confidence Intervals in Non-Gaussian Linear Mixed Models

For non-Gaussian linear mixed models, exact confidence intervals for param-
eters of interest usually do not exist. Therefore, methods of constructing con-
fidence intervals will be based on large sample theory. Suppose that one is
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interested in obtaining a confidence interval for a linear function of the pa-
rameters, which may include fixed effects and variance components. Let ψ be
the vector of all fixed parameters involved in a non-Gaussian linear mixed
model. Suppose that an estimator of ψ, say ψ̂, is available which is consis-
tent and asymptotically normal; that is, (2.7) holds. If a consistent estimator
of Σ, the asymptotic covariance matrix of ψ̂, is available, say Σ̂, then, for
any linear function a′ψ, where a is a known vector, one may be able to show
that a′(ψ̂ −ψ)/

√
a′Σ̂a is asymptotically standard normal. Therefore, a large-

sample (1 − ρ)% confidence interval (0 < ρ < 1) for a′ψ is[
a′ψ̂ − zρ/2

√
a′Σ̂a, a′ψ̂ + zρ/2

√
a′Σ̂a

]
.

We now consider two special cases of non-Gaussian linear mixed models and
discuss how to estimate Σ in those cases.

1. ANOVA models. For ANOVA models, Jiang (1996) derived asymptotic
distributions of both REML and ML estimators without the normality as-
sumption. Jiang (1998b) extended these results to include estimators of fixed
effects. The main result of the latter is summarized as follows. Consider the
Hartley–Rao form of variance components (see Section 1.2.1.1). Let the nor-
malizing constants pi, 0 ≤ i ≤ s and matrices M, J be defined as in Theo-
rem 1.1 of Chapter 1. Define P = Mdiag(p0, p1, . . . , ps), Q = (X ′V −1X)1/2,
R = J 1/2T C, where

T =
(

Vi,ll(γ)E(ω3
l )

piλ
1(i=0)

)
0≤i≤s,1≤l≤n+m

,

C = λ1/2b(γ)V −1XQ−1

with Vi,ll, ωl and b(γ) defined above Theorem 1.1. Then, under suitable con-
ditions, we have (

P RQ
R′P Q

)(
θ̂ − θ

β̂ − β

)
D−→ N(0, Ip+s+1), (2.30)

where β̂ is the EBLUE with REML estimators of variance components (in
other words, β̂ is the REML estimator of β; see Section 1.3.2). Because, un-
der normality, T = 0 hence R = 0, the normalizing matrix on the left side
of (2.30) reduces to diag(P,Q) in this case. However, for non-Gaussian lin-
ear mixed models, the normalizing matrix in (2.30) may involve additional
parameters such as the third and fourth moments of the random effects and
errors. A method of estimating the higher moments, known as EMM, has been
introduced earlier (see Section 2.1.2.1), under the assumption (2.14) (which
implies E(ωl) = 0, 1 ≤ l ≤ n + m). To see how much difference there may be
if one ignores the higher moments, consider the following example.

Example 2.2 (Continued). If normality is not assumed, it can be shown,
by (2.30), that the asymptotic variance of

√
mk(λ̂ − λ) is λ2/2 + κ0, that
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is,
√

mk(λ̂ − λ) → N(0, λ2/2 + κ0) in distribution, where κ0, κ1 are defined
below (2.14). Similarly, the asymptotic variance of

√
m(γ̂−γ) is γ2/2+κ1/λ2.

Therefore, the difference in asymptotic variance from that under normality is
κ0 for the estimation of λ, and κ1/λ2 for the estimation of γ.

If (2.14) is not known to hold, the EMM may not apply. In this case, an
alternative method would be that of partially observed information introduced
in Section 1.4.2. Note that the latter method applies more generally not only
to mixed ANOVA models but also to other types of non-Gaussian linear mixed
models for estimating the asymptotic covariance matrix of the REML or ML
estimator.

2. Longitudinal models. For longitudinal models, the asymptotic covari-
ance matrix of the vector of parameters of interest, which may include fixed
effects and variance components, may be estimated using the jackknife method
introduced in Section 1.4.4 [see (1.43)]. Alternatively, the asymptotic covari-
ance matrix may also be estimated by partially observed information. See the
remark at the end of Section 1.4.2.

2.3 Prediction

There are two types of prediction problems in the context of linear mixed
models. The first is the prediction of a random effect, or, more generally, a
mixed effect. Here we focus on a linear mixed effect, which can be expressed
as η = a′α+ b′β, where a, b are known vectors, and α and β are the vectors of
random and fixed effects, respectively, in (1.1). This type of prediction problem
has a long history, starting with C. R. Henderson in his early work in the
field of animal breeding (e.g., Henderson 1948). The best-known method for
this kind of prediction is best linear unbiased prediction, or BLUP. Robinson
(1991) gives a wide-ranging account of BLUP with examples and applications.
The second type of prediction is that of a future observation. In contrast to
the first type, prediction of the second type has received much less attention,
although there are plenty of such prediction problems with practical interest
(e.g., Jiang and Zhang 2002). In the next two sections we discuss these two
types of predictions.

2.3.1 Prediction of Mixed Effect

1. Best prediction when all the parameters are known. When the fixed ef-
fects and variance components are known, the best predictor for ξ = a′α, in
the sense of minimum mean squared error (MSE), is its conditional expecta-
tion given the data; that is,

ξ̃ = E(ξ|y) = a′E(α|y) . (2.31)

Assuming normality of the data, we have, by (1.1), that
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α
y

)
∼ N

((
0

Xβ

)
,

(
G GZ ′

ZG V

))
,

where G = Var(α), R = Var(ε), and V = Var(y) = ZGZ ′ + R. It follows that

E(α|y) = GZ ′V −1(y − Xβ)

(see Appendix C). Therefore, by (2.31), the best predictor of ξ is

ξ̃ = a′GZ ′V −1(y − Xβ).

Once the best predictor of ξ = a′α is obtained, the best predictor of
η = a′α + b′β is

η̂B = b′β + a′GZ ′V −1(y − Xβ) . (2.32)

Here the subscript B refers to the best predictor.
It can be shown that, without assuming normality, (2.32) gives the best

linear predictor of η in the sense that it minimizes the MSE of a predictor
that is linear in y. See Searle et al. (1992, §7.3). The following example was
given by Mood et al. (1974, pp. 370).

Example 2.9 (IQ tests). Suppose intelligence quotients for students in a
particular age group are normally distributed with mean 100 and standard
deviation 15. The IQ, say x1, of a particular student is to be estimated by a
test on which he scores 130. It is further given that test scores are normally
distributed about the true IQ as a mean with standard deviation 5. What is
the best prediction on the student’s IQ? (The answer is not 130.)

The solution may be found by applying the method of best prediction. Here
we have y = µ+α+ε, where y is the student’s test score, which is 130; α is the
realization of a random effect corresponding to the student, so that µ + α is
the student’s true IQ, which is unobservable. The question is to predict µ+α,
a mixed effect. It is known that IQ ∼ N(100, 152) and score|IQ ∼ N(IQ, 52).
Also, µ = 100 is given. It follows that Z = 1, G = var(IQ) = 152, V =
var(score) = var(E(score|IQ))+E(var(score|IQ)) = var(IQ)+E(52) = 152+52.
Therefore, by (2.32), the best prediction of the student’s IQ is

ĨQ = µ +
152

152 + 52 (score − µ) = 127 .

2. Best linear unbiased prediction. If the fixed effects are unknown but the
variance components are known, Equation (2.32) is not a predictor. In such
a case, it is customary to replace β by β̂, its maximum likelihood estimator
under normality, which is

β̃ = (X ′V −1X)−1X ′V −1y . (2.33)

Here, for simplicity, we assume that X is of full rank p. (2.33) is also known
as the best linear unbiased estimator, or BLUE, whose derivation does not
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require normality. Henderson (1973) showed that, after β in (2.32) is replaced
by the BLUE (2.33), the resulting predictor is the best linear unbiased predic-
tor of η in the sense that (i) it is linear in y, (ii) its expected value is equal to
that of η, and (iii) it minimizes the MSE among all linear unbiased predictors,
where the MSE of a predictor η̃ is defined as MSE(η̃) = E{(η̃ − η)(η̃ − η)′}.
Again, the result does not require normality. Thus, the BLUP is given by

η̂BLUP = b′β̃ + a′GZ ′V −1(y − Xβ̃) , (2.34)

where β̃ is the BLUE given by (2.33). The vector

α̃ = GZ ′V −1(y − Xβ̃) (2.35)

is also called the BLUP of α.
Henderson’s original derivation of BLUP was based on what he called

“joint maximum likelihood estimates” of fixed and random effects. Consider
a Gaussian mixed model (1.1), where α ∼ N(0, G), ε ∼ N(0, R), and α and
ε are independent. Suppose that both G and R are nonsingular. Then, it can
be shown that the logarithm of the joint pdf of α and y can be expressed as
(Exercise 2.18)

c − 1
2
{
(y − Xβ − Zα)′R−1(y − Xβ − Zα) + α′G−1α

}
, (2.36)

where c is a constant. Henderson (1950) proposed to find the “maximum like-
lihood estimates” of β and α, treating the latter as (fixed) parameters, by
differentiating (2.36) with respect to β and α and setting the partial deriva-
tives equal to zero. This leads to Henderson’s mixed model equations:(

X ′R−1X X ′R−1Z
Z ′R−1X G−1 + Z ′R−1Z

)(
β̃
α̃

)
=

(
X ′R−1

Z ′R−1

)
y , (2.37)

the solution to which leads to (2.33) and (2.35) (Exercise 2.18). Later, Hender-
son (1963) showed that the “maximum likelihood estimates” he derived earlier
are indeed the BLUP. A more intuitive approach to show that the BLUP has
minimum mean squared error within the class of linear unbiased estimators
was given by Harville (1990). Also see Robinson (1991). In particular, this
derivation does not require normality assumptions. In other words, the BLUP
is well defined for non-Gaussian linear mixed models. The BLUP may also
be regarded as the maximum likelihood estimator of the best predictor, be-
cause, assuming that the variance components are known, the BLUP may be
obtained by replacing β in the expression of the best predictor (2.32) by its
maximum likelihood estimator under normality, that is, (2.33). Finally, Jiang
(1997b) showed that BLUP is the best predictor based on error contrasts;
that is, (2.35) is identical to E(α|A′y), where A is any n × (n − p) matrix of
full rank such that A′X = 0.

Robinson (1991) used the following example to illustrate the calculation
of BLUE and BLUP.
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Example 2.10. Consider a linear mixed model for the first lactation yields
of dairy cows with sire additive genetic merits being treated as random effects
and herd effects being treated as fixed effects. The herd effects are represented
by βj , j = 1, 2, 3 and sire effects by αi, i = 1, 2, 3, 4, which correspond to sires
A, B, C, D. The matrix R is taken to be the identity matrix, while the matrix
G is assumed to be 0.1 times the identity matrix. This would be a reasonable
assumption, provided that the sires were unrelated and that the variance ratio
σ2/τ2 had been estimated previously, where σ2 = var(αi) and τ2 = var(εij).
Suppose that the data are given below. It can be shown (Exercise 2.20) that

Herd 1 1 2 2 2 3 3 3 3
Sire A D B D D C C D D
Yield 110 100 110 100 100 110 110 100 100

the mixed model equations (2.37) are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 1 0 0 1
0 3 0 0 1 0 2
0 0 4 0 0 2 2
1 0 0 11 0 0 0
0 1 0 0 11 0 0
0 0 2 0 0 12 0
1 2 2 0 0 0 15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

β̃1

β̃2

β̃3
α̃1
α̃2
α̃3
α̃4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

210
310
420
110
110
220
500

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which have the solution

β̃ = (105.64, 104.28, 105.46)′,
α̃ = (0.40, 0.52, 0.76,−1.67)′.

3. Empirical BLUP. In practice, the fixed effects and variance components
are typically unknown. Therefore, in most cases neither the best predictor
nor the BLUP is computable, even though they are known to be best in
their respective senses. In such cases, it is customary to replace the vector
of variance components, θ, which is involved in the expression of BLUP by
a consistent estimator, θ̂. The resulting predictor is often called empirical
BLUP, or EBLUP.

Kackar and Harville (1981) showed that, if θ̂ is an even and translation-
invariant estimator and the data are normal, the EBLUP remains unbiased.
An estimator θ̂ = θ̂(y) is even if θ̂(−y) = θ̂(y), and it is translation invariant if
θ̂(y−Xβ) = θ̂(y). Some of the well-known estimators of θ, including ANOVA,
ML, and REML estimators (see Sections 1.3–1.5), are even and translation
invariant. In their arguments, however, Kackar and Harville had assumed the
existence of the expected value of EBLUP, which is not obvious because,
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unlike BLUP, EBLUP is not linear in y. The existence of the expected value
of EBLUP was proved by Jiang (1999b, 2000a). See Section 2.7 for details.

Harville (1991) considered the one-way random effects model of Example
1.1, and showed that, in this case, the EBLUP of the mixed effect, µ + αi,
is identical to a parametric empirical Bayes (PEB) estimator. In the mean-
time, Harville noted some differences between these two approaches, PEB and
EBLUP. One of the differences is that much of the work on PEB has been
carried out by professional statisticians and has been theoretical in nature.
The work has tended to focus on relatively simple models, such as the one-way
random effects model, because it is only these models that are tractable from
a theoretical standpoint. On the other hand, much of the work on EBLUP has
been carried out by practitioners such as researchers in the animal breeding
area, and has been applied to relatively complex models.

One problem of practical interest is estimation of the MSE of EBLUP.
Such a problem arises, for example, in small area estimation (e.g., Ghosh and
Rao 1994). The EBLUP method has been used in small area estimation for
estimating small area means, which are in the form of mixed effects. However,
the MSE of EBLUP is complicated. A naive estimator of MSE of EBLUP
may be obtained by replacing θ by θ̂ in the expression of the MSE of BLUP.
However, this is an underestimation. To see this, let η̂ = a′α̂ + b′β̂ denote
the EBLUP of a mixed effect η = a′α + b′β, where α̂ and β̂ are the BLUP
of α, given by (2.35), and BLUE of β, given by (2.33), with the variance
components θ replaced by θ̂. Kackar and Harville (1981) showed that, under
normality assumptions, one has

MSE(η̂) = MSE(η̃) + E(η̂ − η̃)2, (2.38)

where η̃ is the BLUP of η given by (2.34). It is seen that the MSE of BLUP
is only the first term on the right side of (2.38). In fact, it can be shown that
MSE(η̃) = g1(θ) + g2(θ), where

g1(θ) = a′(G − GZ ′V −1ZG)a ,

g2(θ) = (b − X ′V −1ZGa)′(X ′V −1X)−1(b − X ′V −1ZGa)

(e.g., Henderson 1975). It is clear that, using g1(θ̂) + g2(θ̂) as an estimator
would underestimate the MSE of η̂, because it does not take into account
the additional variation associated with the estimation of θ, represented by
the second term on the right side of (2.38). Such a problem may become
particularly important when, for example, large amounts of funds are involved.
For example, over $7 billion of funds are allocated annually based on EBLUP
estimators of school-age children in poverty at the county and school district
levels (National Research Council 2000).

Kackar and Harville (1984) gave an approximation to the MSE of EBLUP
under the linear mixed model (1.1), taking account of the variability in θ̂,
and proposed an estimator of MSE(η̂) based on this approximation. But the
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approximation is somewhat heuristic, and the accuracy of the approximation
and the associated MSE estimator was not studied. Prasad and Rao (1990)
studied the accuracy of a second-order approximation to MSE(η̂) for two
important special cases of longitudinal linear mixed models (see Section 1.2):
(i) the Fay–Herriot model (Fay and Herriot 1979), and (ii) the nested error
regression model (e.g., Battese et al. 1988). Both models are very popular in
the context of small area estimation. Recently, Das et al. (2004) extended the
result of Prasad and Rao to general linear mixed models (1.1). For example,
for Gaussian mixed ANOVA models with REML estimation of θ, Das et al.
(2004) showed that MSE(η̂) = g1(θ) + g2(θ) + g3(θ) + o(d−2

∗ ), where

g3(θ) = tr
[
{(∂/∂θ′)V −1ZGa}′V {(∂/∂θ′)V −1ZGa}H−1] , (2.39)

where H = E(∂2lR/∂θ∂θ′) and lR is the restricted log-likelihood given by
(1.17), and d∗ = min1≤i≤s di with di = ‖Z ′

iPZi‖2 and P given by (1.11).
The same result also holds for ML estimation. Based on the approximation,
the authors obtained an estimator of MSE(η̂) whose bias is corrected to the
second order. More specifically, an estimator M̂SE(η̂) was obtained such that
E{M̂SE(η̂)} = MSE(η̂) + o(d−2

∗ ). See Das et al. (2004) for details.
Alternatively, Jiang et al. (2002) proposed a jackknife method that led to

second-order approximation and estimation of the MSE of EBLUP in the case
of longitudinal linear mixed models. Denote MSE(η̃) by b(θ), where η̃ is the
BLUP given by (2.34). The jackknife estimator of the MSE of η̂ is given by
M̂SE(η̂) = M̂SAE(η̂) + M̂SE(η̃), where

M̂SAE(θ̂) =
m − 1

m

m∑
i=1

(η̂−i − η̂)2 ,

M̂SE(η̃) = b(θ̂) − m − 1
m

m∑
i=1

{
b(θ̂−i) − b(θ̂)

}
. (2.40)

Here m represents the number of clusters (e.g., number of small areas), θ̂−i

denotes an M-estimator of θ using the data without the ith cluster (e.g., the
ith small area), and η̂−i the EBLUP of η in which the fixed parameters are
estimated using the data without the ith cluster. Jiang et al. (2002) showed
that E{M̂SE(η̂)} = MSE(η̂) + o(m−1). The result holds, in particular, when
θ̂ is either the REML or the ML estimator. Furthermore, the result holds
for non-Gaussian (longitudinal) linear mixed models. In fact, the jackknife
method also applies to longitudinal generalized linear mixed models, in which
EBLUP is replaced by the empirical best predictor (EBP). See Jiang et al.
(2002) for details.

Example 2.4 (Continued). Consider, once again, the James–Stein estimator
of Example 2.4. Consider the prediction of the random effect η = α1. The
BLUP is given by η̃ = (1 − ω)y1, where ω = (1 + ψ)−1. The EBLUP is
given by η̂ = (1 − ω̂)y1. Efron and Morris (1973) used the following unbiased
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estimator, ω̂ = (m − 2)/
∑m

i=1 y2
i . Note that the MSE of η̃ is given by 1 − ω.

The jackknife estimator of the MSE of η̂ is given by

M̂SE = 1 − ω̂ +
m − 1

m

m∑
i=1

(η̂−i − η̂)2

= 1 − ω̂ + y2
1

(
m − 1

m

) m∑
i=1

(ω̂−i − ω̂)2.

Note that, because in this case 1 − ω̂ is an unbiased estimator of 1 − ω, no
bias correction is needed; that is, the second term on the right side of (2.40)
is not needed.

Example 2.11 (The baseball example). Efron and Morris (1975) considered
a Bayesian model to predict the true 1970 season batting average of each of 18
major league baseball players using the data on batting averages based on the
first 45 official at-bats. Their model can be obtained as a simple linear mixed
model by adding an unknown µ term to the previous example. The prediction
of the true season batting average of player 1 is the same as that of the mixed
effect: η = µ + α1. The best predictor of η (see Section 2.3.1.1) is given by
η̃ = µ+(1−ω)(y1 −µ). The EBLUP is given by η̂ = ȳ+(1− ω̂)(y1 − ȳ), where
ȳ is the sample mean. As for ω̂, Morris (1983) suggested a different estimator:

ω̂ = min
{

m − 3
m − 1

,
m − 3∑m

i=1(yi − ȳ)2

}
.

It can be shown that the bias of 1 − ω̂ for estimating 1 − ω, the MSE of η̃, is
o(m−1), thus, again, bias correction is not needed. It follows that the jackknife
estimator of the MSE of η̂ is

M̂SE = 1 − ω̂ +
m − 1

m

m∑
i=1

(η̂−i − η̂)2,

where η̂−i = ȳ−i + (1 − ω̂−i)(y1 − ȳ−i), ȳ−i = (m − 1)−1 ∑
j �=i yj and

ω̂−i = min

{
m − 4
m − 2

,
m − 4∑

j �=i(yj − ȳ−i)2

}
.

We return to this example later in this chapter.

2.3.2 Prediction of Future Observation

We now consider the problem of predicting a future observation under a non-
Gaussian linear mixed model. Because normality is not assumed, the approach
is distribution-free; that is, it does not require any specific assumption about
the distribution of the random effects and errors. First note that for this
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type of prediction, it is reasonable to assume that a future observation is
independent of the current ones. We offer some examples.

Example 2.12. In longitudinal studies, one may be interested in prediction,
based on repeated measurements from the observed individuals, of a future
observation from an individual not previously observed. It is of less interest to
predict another observation from an observed individual, because longitudinal
studies often aim at applications to a larger population (e.g., drugs going to
the market after clinical trials).

Example 2.13. In surveys, responses may be collected in two steps: in the
first step, a number of families are randomly selected; in the second step,
some family members (e.g., all family members) are interviewed for each of
the selected families. Again, one may be more interested in predicting what
happens to a family not selected, because one already knows enough about
selected families (especially when all family members in the selected families
are interviewed).

Therefore, we assume that a future observation, y∗, is independent of the
current ones. Then, we have E(y∗|y) = E(y∗) = xt

∗β, so the best predictor is
xt

∗β, if β is known; otherwise, an empirical best predictor (EBP) is obtained by
replacing β by an estimator. So the point prediction is fairly straightforward.
A question that is often of practical interest but has been so far neglected, for
the most part, is that of prediction intervals.

1. Distribution-free prediction intervals. A prediction interval for a single
future observation is an interval that will, with a specified coverage probabil-
ity, contain a future observation from a population. In model-based statistical
inference, it is assumed that the future observation has a certain distribution.
Sometimes, the distribution is specified up to a finite number of unknown
parameters, for example, those of the normal distribution. Then, a prediction
interval may be obtained, if the parameters are adequately estimated, and the
uncertainty in the parameter estimations is suitably assessed. Clearly, such a
procedure is dependent on the underlying distribution in that, if the distribu-
tional assumption fails, the prediction interval may be seriously off: it either
is wider than necessary, or does not have the claimed coverage probability. An
alternative to the parametric method is a distribution-free one, in which one
does not assume that the form of the distribution is known.

The problem of prediction intervals is, of course, an old one. One of the
earliest works in this field is that of Baker (1935). Patel (1989) provided a
review of the literature on prediction intervals when the future observation
is independent of the observed sample, including results based on paramet-
ric distributions and on distribution-free methods. Hahn and Meeker (1991)
reviewed three types of statistical intervals that are used most frequently in
practice: the confidence interval, the prediction interval, and the tolerance
interval. For a more recent overview, and developments on nonparametric
prediction intervals, see Zhou (1997). Although many results on prediction
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intervals are for the i.i.d. case, the problem is also well studied in some non-
i.i.d. cases, such as linear regression (e.g., Sen and Srivastava 1990, §3.8.2).
In the context of linear mixed models, Jeske and Harville (1988) considered
prediction intervals for mixed effects, assuming that the joint distribution of
α and y − E(y) is known up to a vector of unknown parameters. Thus, their
approach is not distribution-free.

Note that, even if β is unknown, it is still fairly easy to obtain a prediction
interval for y∗ if one is willing to make the assumption that the distributions
of the random effects and errors are known up to a vector of parameters
(e.g., variance components). To see this, consider a simple case: yij = x′

ijβ +
αi + εij , where the random effect αi and error εij are independent such that
αi ∼ N(0, σ2) and εij ∼ N(0, τ2). It follows that the distribution of yij is
N(x′

ijβ, σ2 + τ2). Because methods are well developed for estimating fixed
parameters such as β, σ2, and τ2 (see Section 1.3), a prediction interval with
asymptotic coverage probability 1 − ρ is easy to obtain. However, it is much
more difficult if one does not know the forms of the distributions of the random
effects and errors, and this is the case that we consider. In the following, we
propose a distribution-free approach to prediction intervals. Our results do not
require normality or any specific distributional assumptions about the random
effects and errors, and therefore are applicable to non-Gaussian linear mixed
models.

First note that to consistently estimate the fixed effects and variance com-
ponents in a linear mixed model, one does not need to assume that the random
effects and errors are normally distributed (see Section 1.4). We categorize
(non-Gaussian) linear mixed models into two classes: the standard and the
nonstandard ones. A linear mixed model (1.1), (1.2) is standard if each Zi

consists only of 0s and 1s, there is exactly one 1 in each row and at least
one 1 in each column. Our approaches are quite different for standard and
nonstandard linear mixed models.

2. Standard linear mixed models. For standard linear mixed models, the
method is surprisingly simple, and can be described as follows. First, one
throws away the middle terms in (1.1) that involve the random effects, that
is, (1.2), and pretends that it is a linear regression model with i.i.d. er-
rors: y = Xβ + ε. Next, one computes the least squares (LS) estimator
β̂ = (X ′X)−1X ′y and the residuals ε̂ = y − Xβ̂. Let â and b̂ be the ρ/2
and 1 − ρ/2 quantiles of the residuals. Then, a prediction interval for y∗ with
asymptotic coverage probability 1−ρ is [ŷ∗ + â, ŷ∗ + b̂], where ŷ∗ = x′

∗β̂. Note
that, although the method sounds almost the same as the residual method
in linear regression, its justification is not so obvious because, unlike linear
regression, the observations in a (standard) linear mixed model are not inde-
pendent. The method may be improved if one uses more efficient estimators
such as the empirical BLUE (EBLUE; see Section 2.3) instead of the LS esti-
mator. We study this in a simulated example in the sequel.



2.3 Prediction 83

Let y∗ be a future observation that we wish to predict. Suppose that y∗
satisfies a standard linear mixed model. Then, y∗ can be expressed as

y∗ = x′
∗β + α∗1 + · · · + α∗s + ε∗ ,

where x∗ is a known vector of covariates (not necessarily present with the
data), α∗rs are random effects, and ε∗ is an error, such that α∗i ∼ Fir, ≤ i ≤ s,
ε∗ ∼ F0, where the F s are unknown distributions (not necessarily normal), and
α∗1, . . . , α∗s, ε∗ are independent. According to earlier discussion, we assume
that y∗ is independent of y = (yi)1≤i≤n. It follows that the best (point)
predictor of y∗, when β is known, is E(y∗|y) = E(y∗) = x′

∗β. Because β is
unknown, it is replaced by a consistent estimator, β̂, which may be the OLS
estimator or EBLUE (e.g., Jiang and Zhang 2002, Theorem 1; Jiang 1998b).
This results in an empirical best predictor:

ŷ∗ = x′
∗β̂ . (2.41)

Let δ̂i = yi − x′
iβ̂. Define

F̂ (x) =
#{1 ≤ i ≤ n : δ̂i ≤ x}

n
=

1
n

n∑
i=1

1(δ̂i≤x) . (2.42)

Note that, although (2.42) resembles the empirical distribution, it is not one in
the classic sense, because the δ̂is are not independent (the yis are dependent,
and β̂ depends on all the data). Let â < b̂ be any numbers satisfying F̂ (b̂) −
F̂ (â) = 1 − ρ (0 < ρ < 1). Then, a prediction interval for y∗ with asymptotic
coverage probability 1 − ρ is given by

[ŷ∗ + â, ŷ∗ + b̂] . (2.43)

See Jiang and Zhang (2002). Note that a typical choice of â, b̂ has F̂ (â) = ρ/2
and F̂ (b̂) = 1 − ρ/2. Another choice would be to select â and b̂ to minimize
b̂− â, the length of the prediction interval. Usually, â, b̂ are selected such that
the former is negative and the latter positive, so that ŷ∗ is contained in the
interval. Also note that, if one considers linear regression as a special case
of the linear mixed model, in which the random effects do not appear, δ̂i is
the same as ε̂i, the residual, if β̂ is the least squares estimator. In this case,
F̂ is the empirical distribution of the residuals, and the prediction interval
(2.43) corresponds to that obtained by the bootstrap method (Efron 1979).
The difference is that our prediction interval (2.43) is obtained in closed form
rather than by a Monte Carlo method. For more discussion on bootstrap
prediction intervals, see Shao and Tu (1995, §7.3).

3. Nonstandard linear mixed models. Although most linear mixed models
used in practice are standard, nonstandard linear mixed models are also used.
First, the method developed for standard models may be applied to some of
the nonstandard cases. To illustrate this, consider the following example.
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Example 2.14. Suppose that the data are divided into two parts. For
the first part, we have yij = x′

ijβ + αi + εij , i = 1, . . . , m, j = 1, . . . , ni,
where α1, . . . , αm are i.i.d. random effects with mean 0 and distribution F1;
εijs are i.i.d. errors with mean 0 and distribution F0, and the αs and εs
are independent. For the second part of the data, we have yk = x′

kβ + εk,
k = N + 1, . . . , N + K, where N =

∑m
i=1 ni, and the εks are i.i.d. errors with

mean 0 and distribution F0. Note that the random effects only appear in the
first part of the data (and hence there is no need to use a double index for
the second part).

For the first part, let the distribution of δij = yij −x′
ijβ be F (= F0 ∗ F1).

For the second part, let δk = yk−x′
kβ. If β were known, the δijs (δks) would be

sufficient statistics for F (F0). Therefore it suffices to consider an estimator of
F (F0) based on the δijs (δks). Note that the prediction interval for any future
observation is determined either by F or by F0, depending on to which part
the observation corresponds. Now, because β is unknown, it is customary
to replace it by β̂. Thus, a prediction interval for y∗, a future observation
corresponding to the first part, is [ŷ∗ + â, ŷ∗ + b̂], where ŷ∗ = x′

∗β̂, â, b̂ are
determined by F̂ (b̂) − F̂ (â) = 1 − ρ with

F̂ (x) =
1
N

#{(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni, δ̂ij ≤ x}

and δ̂ij = yij−x′
ij β̂. Similarly, a prediction interval for y∗, a future observation

corresponding to the second part, is [ŷ∗ + â, ŷ∗ + b̂], where ŷ∗ = x′
∗β̂, â, b̂ are

determined similarly with F̂ replaced by

F̂0(x) =
1
K

#{k : N + 1 ≤ k ≤ N + K, δ̂k ≤ x}

and δ̂k = yk−x′
kβ̂. The prediction interval has asymptotic coverage probability

1 − ρ (see Jiang and Zhang 2002).
If one looks more carefully, it is seen that the model in Example 2.14

can be divided into two standard submodels, so that the previous method
is applied to each submodel. Of course, not every nonstandard linear mixed
model can be divided into standard submodels. For such nonstandard models
we consider that a different approach may need to be used.

Jiang (1998b) considered estimation of the distributions of the random
effects and errors. His approach is the following. Consider the EBLUP of
the random effects: α̂i = σ̂2

i Z ′
iV̂

−1(y − Xβ̂), 1 ≤ i ≤ s, where β̂ is the
EBLUE (see Section 2.2.1.4). The “EBLUP” for the errors can be defined as
ε̂ = y − Xβ̂ −

∑s
i=1 Ziα̂i. It was shown that, if the REML or ML estimators

of the variance components are used, then, under suitable conditions,

F̂i(x) =
1

mi

mi∑
u=1

1(α̂i,u≤x)
P−→ Fi(x), x ∈ C(Fi) ,

where α̂i,u is the uth component of α̂i, 1 ≤ i ≤ s, and
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F̂0(x) =
1
n

n∑
u=1

1(ε̂u≤x)
P−→ F0(x), x ∈ C(F0) ,

where ε̂u is the uth component of ε̂. Here C(Fi) represents the set of all
continuity points of Fi, 0 ≤ i ≤ s (see Jiang 1998b).

For simplicity, we assume that all the distributions F0, . . . , Fs are contin-
uous. Let y∗ be a future observation we would like to predict. As before, we
assume that y∗ is independent of y and satisfies a mixed linear model, which
can be expressed componentwise as

yi = x′
iβ + z′

i1α1 + · · · + z′
isαs + εi, i = 1, . . . , n.

This means that y∗ can be expressed as

y∗ = x′
∗β +

l∑
j=1

wjγj + ε∗ ,

where x∗ is a known vector of covariates (not necessarily present with the
data), wjs are known nonzero constants, γjs are unobservable random effects,
and ε∗ is an error. In addition, there is a partition of the indices {1, . . . , l} =
∪q

k=1Ik, such that γj ∼ Fr(k) if j ∈ Ik, where r(1), . . . , r(q) are distinct integers
between 1 and s (so q ≤ s); ε∗ ∼ F0; γ1, . . . , γl, ε∗ are independent. Define

F̂ (j)(x) = m−1
r(k)

mr(k)∑
u=1

1(wj α̂r(k),u≤x), if j ∈ Ik

for 1 ≤ k ≤ q. Let

F̂ (x) = (F̂ (1) ∗ · · · ∗ F̂ (l) ∗ F̂0)(x)

=
#{(u1, . . . , ul, u) :

∑q
k=1

∑
j∈Ik

wjα̂r(k),uj
+ ε̂u ≤ x}(∏q

k=1 m
|Ik|
r(k)

)
n

, (2.44)

where ∗ represents convolution (see Appendix C), and 1 ≤ uj ≤ mr(k) if
j ∈ Ik, 1 ≤ k ≤ q; 1 ≤ u ≤ n. It can be shown that

sup
x

|F̂ (x) − F (x)| P−→ 0 ,

where F = F (1) ∗ · · · ∗F (l) ∗F0, and F (j) is the distribution of wjγj , 1 ≤ j ≤ l.
Note that F is the distribution of y∗ − x′

∗β. Let ŷ∗ be defined by (2.41) with
β̂ a consistent estimator, and â, b̂ defined by F̂ (b̂) − F̂ (â) = 1 − ρ, where F̂ is
given by (2.44). Then, the prediction interval [ŷ∗ + â, ŷ∗ + b̂] has asymptotic
coverage probability 1 − ρ (see Jiang and Zhang 2002).

We conclude this section with a simulated example.

4. A simulated example. Consider the linear mixed model
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yij = β0 + β1xij + αi + εij , (2.45)

i = 1, . . . , m, j = 1, . . . , ni, where the αis are i.i.d. random effects with mean 0
and distribution F1, and εijs are i.i.d. errors with mean 0 and distribution F0.
The model might be associated with a sample survey, where αi is a random
effect related to the ith family in the sample, and ni is the sample size for the
family (e.g., the family size, if all family members are to be surveyed). The
xijs are covariates associated with the individuals sampled from the family
and, in this case, correspond to people’s ages. The ages are categorized by the
following groups: 0-4, 5-9, ..., 55-59, so that xij = k if the person’s age falls
into the kth category (people whose ages are 60 or over are not included in
the survey). The true parameters for β0 and β1 are 2.0 and 0.2, respectively.

In the following simulations, four combinations of the distributions F0,
F1 are considered. These are Case I: F0 = F1 = N(0, 1); Case II: F0 =
F1 = t3; Case III: F0 = logistic [the distribution of log{U/(1 − U)}, where
U ∼ Uniform(0, 1)], F1 = centralized lognormal [the distribution of eX −

√
e,

where X ∼ N(0, 1)]; Case IV: F0 = double exponential [the distribution of
X1 −X2, where X1, X2 are independent ∼ exponential(1)], F1 = a mixture of
N(−4, 1) and N(4, 1) with equal probability. Note that Cases II–IV are related
to the following types of departure from normality: heavy-tail, asymmetry, and
bimodal. In each case, the following sample size configuration is considered:
m = 100, k1 = · · · = km/2 = 2, and km/2+1 = · · · = km = 6. Finally, for
each of the above cases, three prediction intervals are considered. The first is
the prediction interval based on the OLS estimator of β; the second is that
based on the EBLUE of β, where the variance components are estimated
by REML (see Section 1.4.1); and the third is the linear regression (LR)
prediction interval (e.g., Casella and Berger 2002, pp. 558), which assumes
that the observations are independent and normally distributed. The third
one is considered here for comparison.

For each of the four cases, 1000 datasets are generated. First, the following
are independently generated, (i) xij , 1 ≤ i ≤ m, 1 ≤ j ≤ ki, uniformly from
the integers 1, . . . , 12 (twelve age categories); (ii) αi, 1 ≤ i ≤ m, from F1; (iii)
εij , 1 ≤ i ≤ m, 1 ≤ j ≤ ki, from F0. Then yij is obtained by (2.45) with β0, β1
being the true parameters. Because of the way that the data are generated,
condition on the xijs, the yijs satisfy (2.45) with its distributional assump-
tions. For each dataset generated, and for each of the 12 age categories, three
prediction intervals are obtained, where ρ = .10 (nominal level 90%): OLS,
EBLUE, and LR; then one additional observation is generated, which corre-
sponds to a future observation in that category. The percentages of coverage
and average lengths of the intervals over the 1000 data sets are reported.

The results are given in Table 2.1, in which the letters O, E, and L stand
for OLS, EBLUE, and LR, respectively. The numbers shown in the table are
coverage probabilities based on the simulations, in terms of percentages, and
average lengths of the prediction intervals. Note that for OLS and EBLUE the
lengths of the prediction intervals do not depend on the covariates, whereas



2.3 Prediction 87

for LR the length of the prediction interval depends on the covariate, but
will be almost constant if the sample size is large. This, of course, follows
from the definition of the prediction intervals, but there is also an intuitive
interpretation. Consider, for example, the normal case. The distribution of
a future observation y∗ corresponding to a covariate x∗ is N(β0 + β1x∗, σ2),
where σ2 = var(αi) + var(εij) is a constant. So, if the βs were known the
length of any prediction interval for y∗ would not depend on x∗. If the βs
are unknown but replaced by consistent estimators, then if the sample size
were large, one would also expect the length of the prediction interval to be
almost constant (not dependent on x∗). For such a reason, there is no need
to exhibit the lengths of the prediction intervals for different categories, and
we only give the averages over all categories.

It is seen that in the normal case there is not much difference among all
three methods. This is not surprising. The difference appears in the nonnor-
mal cases. First, the LR prediction intervals are wider than the OLS and
EBLUE ones. Second, as a consequence, the coverage probabilities for the
LR prediction intervals seem to be higher than 90%. Overall, the OLS and
EBLUE perform better than LR in the nonnormal cases. This is not surpris-
ing, because the OLS and EBLUE prediction intervals are distribution-free.
The EBLUE does not seem to do better than the OLS. This was a bit un-
expected. On the other hand, it shows that at least in this special case the
OLS, although much simpler than the EBLUE in that one does not need to
estimate the variance components, can do just as well as more sophisticated
methods such as the EBLUE.

Table 2.1. Coverage probability and average length

Coverage Probability (%)
Case I Case II Case III Case IV

x O E L O E L O E L O E L
1 90 90 90 89 89 92 90 91 93 90 90 94
2 90 90 90 89 89 91 91 91 93 89 90 96
3 88 88 88 91 91 93 90 89 92 88 89 96
4 90 90 89 91 91 93 89 89 91 89 89 97
5 89 89 89 89 89 92 90 90 92 90 90 96
6 89 89 90 89 89 92 91 91 93 90 90 97
7 89 88 89 90 90 92 90 90 93 88 89 96
8 90 90 90 90 90 92 89 89 91 90 90 97
9 90 90 91 89 89 92 89 89 91 89 89 96
10 89 89 90 91 90 93 89 89 93 88 88 95
11 90 90 90 89 89 93 89 89 92 89 89 97
12 89 89 89 89 89 92 91 91 93 89 89 96

Average Length
4.6 4.6 4.7 7.0 7.0 7.9 8.1 8.1 9.0 12.1 12.1 14.3
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2.4 Model Checking and Selection

The previous sections have been dealing with inference about linear mixed
models. For the most part, we have assumed that the basic assumptions about
the model, for example, those about the presence of the random effects and
their distributions, are correct. In practice, however, these assumptions may
also be subject to checking. Methods of model checking are also known as
model diagnostics. Sometimes, it is not clear which is the best model to use
when there are a number of potential, or candidate, models. Here being best
is in the sense that the model is not only correct but also most economical,
meaning that it is simplest among all correct models. In this section we deal
with the problems of model diagnostics and selection.

2.4.1 Model Diagnostics

Unlike standard regression diagnostics, the literature on diagnostics of lin-
ear mixed models involving random effects is not extensive (e.g., Ghosh and
Rao 1994, pp. 70–71, Verbeke and Molenberghs 2000, pp. 151–152). Limited
methodology is available, mostly regarding assessing the distribution of the
random effects and errors. For the most part, the methods may be classified
as diagnostic plots and goodness-of-fit tests.

1. Diagnostic plots. Several authors have used the idea of EBLUP or em-
pirical Bayes estimators (EB), discussed in the previous section, for diagnosing
distributional assumptions regarding the random effects (e.g., Dempster and
Ryan 1985; Calvin and Sedransk 1991). The approach is reasonable because
the EBLUP or EB are natural estimators of the random effects. In the fol-
lowing we describe a method proposed by Lange and Ryan (1989) based on a
similar idea.

One commonly used assumption regarding the random effects and errors is
that they are normally distributed. If such an assumption holds, one has a case
of Gaussian mixed models. Otherwise, one is dealing with non-Gaussian linear
mixed models. Lange and Ryan considered the longitudinal model (see Section
1.2.1.2), assuming that Gi = G, Ri = τ2Iki , i = 1, . . . , m, and developed
a weighted normal plot for assessing normality of the random effects in a
longitudinal model. First, under the model (1.3) and normality, one can derive
the best predictors, or Bayes estimators, of the random effects αi i = 1, . . . , m
(see Section 2.3.1.1 and Section 2.5.1.1), assuming that β and θ, the vector of
variance components, are known. This is given by

α̃i = E(αi|yi)
= GZ ′

iV
−1
i (yi − Xiβ),

where Vi = Var(yi) = τ2Iki + ZiGZ ′
i. Furthermore, the covariance matrix of

α̃i is given by
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Var(α̃i) = GZ ′
iV

−1
i ZiG.

Lange and Ryan proposed to examine a Q–Q plot of some standardized linear
combinations

zi =
c′α̃i

{c′Var(α̃i)c}1/2 , i = 1, . . . , m, (2.46)

where c is a known vector. They argued that, through appropriate choices
of c, the plot can be made sensitive to different types of model departures.
For example, for a model with two random effects factors, a random intercept
and a random slope, one may choose c1 = (1, 0)′ and c2 = (0, 1)′ and produce
two Q–Q plots. On the other hand, such plots may not reveal possible nonzero
correlations between the (random) slope and intercept. Thus, Lange and Ryan
suggested producing a set of plots ranging from one marginal to the other by
letting c = (1 − u, u)′ for some moderate number of values 0 ≤ u ≤ 1.

Dempster and Ryan (1985) suggested that the normal plot should be
weighted to reflect the differing sampling variances of α̃i. Following the same
idea, Lange and Ryan proposed a generalized weighted normal plot. They
suggested ploting zi against Φ−1{F ∗(zi)}, where F ∗ is the weighted empirical
cdf defined by

F ∗(x) =
∑m

i=1 wi1(zi≤x)∑m
i=1 wi

,

and wi = c′Var(α̃i)c = c′GZ ′
iV

−1
i ZiGc.

In practice, however, the fixed effects β and variance components θ are
unknown. In such cases, Lange and Ryan suggested using the ML or REML
estimators in place of these parameters. They argued that, under suitable con-
ditions, the limiting distribution of

√
n{F̂ ∗(x) − Φ(x)} is normal with mean

zero and variance equal to the variance of
√

n{F ∗(x) − Φ(x)} minus an ad-
justment, where F̂ ∗(x) is F ∗(x) with the unknown parameters replaced by
their ML (REML) estimators. See Lange and Ryan (1989) for details. This
suggests that, in the case of unknown parameters, the Q–Q plot will be ẑi

against Φ−1{F̂ ∗(ẑi)}, where ẑi is zi with the unknown parameters replaced
by their ML (REML) estimates. However, the (asymptotic) variance of F̂ ∗(x)
is different from that of F ∗(x), as indicated above. Therefore, if one wishes to
include, for example, a ±1 SD bound in the plot, the adjustment for estima-
tion of parameters must be taken into account. See Lange and Ryan (1989).
We consider an example.

Example 2.3 (Continued). Consider, again, the one-way random effects
model of Example 1.1 with normality assumption. Because αi is real-valued,
c = 1 in (2.31). If µ, σ2, τ2 are known, the EB estimator of αi is given by

α̂i =
kiσ

2

τ2 + kiσ2 (ȳi· − µ),
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where ȳi· = k−1
i

∑ki

j=1 yij , with

wi = var(α̂i) =
kiσ

4

τ2 + kiσ2 .

Therefore, in this case,

zi =
α̂i

sd(α̂i)
=

ȳi· − µ√
σ2 + τ2/ki

,

i = 1, . . . , m and

F ∗(x) =

(
m∑

i=1

kiσ
4

τ2 + kiσ2

)−1 n∑
i=1

kiσ
4

τ2 + kiσ2 1(zi≤x).

In practice, µ, σ2, and τ2 are unknown and therefore replaced by their REML
(ML) estimators when making a Q–Q plot (Exercise 2.20).

2. Goodness-of-fit tests. Recently, several authors have developed tests for
checking distributional assumptions involved in linear mixed models. Consider
a mixed ANOVA model (1.1), where for 1 ≤ i ≤ s, αi = (αij)1≤j≤mi , where
the αijs are i.i.d. with mean 0, variance σ2

i , which is unknown, and continuous
distribution Fi = Fi(· |σi); and ε = (εj)1≤j≤N , where the εjs are i.i.d. with
mean 0, variance τ2, which is unknown, and continuous distribution G =
G(· |τ); and α1, . . . , αs, ε are independent. We are interested in testing the
following hypothesis,

H0 : Fi(·|σi) = F0i(·|σi), 1 ≤ i ≤ s,

and G(·|τ) = G0(·|τ); (2.47)

that is, the distributions of the random effects and errors, up to a set of
unknown variance components σ2

1 , . . . , σ2
s , τ2, are as assumed.

Such distributional assumptions are vital in many applications of linear
mixed models, and this is true even in large sample situations. For example,
in many cases the prediction of a mixed effect is of main interest. Consider,
for example, a nested error regression model, a special case of linear mixed
models, which is useful in small area estimation (e.g., Battese et al. 1988;
Prasad and Rao 1990; Ghosh and Rao 1994; Arora, Lahiri, and Mukherjee
1997):

yij = x′
ijβ + αi + εij , i = 1, . . . , m, j = 1, . . . , ki, (2.48)

where xij is a known vector of covariates, β is an unknown vector of regression
coefficients, αi is a random effect associated with the ith small area, and εij

is an error. A mixed effect may be in the form η = x′β + αi, where x is
known. If the sample size is large (i.e., m is large), one may consistently
estimate β and even obtain an asymptotic confidence interval for it, and this
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does not rely on distributional assumptions such as normality. However, large
sample results may not help, for example, in obtaining a prediction interval
for η, because the effective sample size for estimating αi is ki, the sample
size for the ith small area, which is often very small. Therefore, unless one
knows the form of the distribution of αi (e.g., normal), an accurate prediction
interval for η cannot be obtained no matter how large m is (provided that
ki is small). To see another example, consider the estimation of the MSE of
the EBLUP. Prasad and Rao (1990) give approximation formulas for MSE
of EBLUP in the context of small area estimation, which are correct to the
order o(m−1). Although their results are asymptotic, assuming that m is large,
normality distributional assumption remains critical for the validity of their
approximations.

Jiang, Lahiri, and Wu (2001) developed an asymptotic theory of Pearson’s
χ2-test with estimated cell frequencies, and applied the method to the case
of nested error regression model (2.48) for checking the distributions of α
and ε. The procedure requires splitting the data into two parts, one used for
estimation and the other for testing, and thus raised some concerns about the
power of the test. Jiang (2001) developed a method that applies to a general
mixed ANOVA model as described above (2.47), which does not require data
splitting. The method is described below.

The procedure is similar to Pearson’s χ2-test with estimated cell probabil-
ities (e.g., Moore 1978). Let E1, . . . , EM be a partition of R, the real line. Let
an be a sequence of normalizing constants that is determined later on. Define

χ̂2 =
1
an

M∑
j=1

{Nj − Eθ̂(Nj)}2, (2.49)

where Nj =
∑n

i=1 1(yi∈Ej) = #{1 ≤ i ≤ n : yi ∈ Ej}, and θ̂ is the REML
estimator of the vector of parameters involved in the linear mixed model. De-
spite the similarity of (2.49) to Pearson’s χ2-statistic, there are several major
differences. First and most important, the observed count Nk is not a sum
of independent random variables. In Pearson’s χ2-test, one deals with i.i.d.
observations, so that Nk is a sum of i.i.d. random variables, and hence the
asymptotic result follows from the classic central limit theorem (CLT). In
a mixed linear model, however, the observations are correlated. Therefore,
the classic CLT cannot handle the asymptotics. Second, unlike Pearson’s χ2-
statistic, the normalizing constant in (2.49) is the same for all the squares in
the sum. The choice of the normalizing constants in Pearson’s χ2-test is such
that the asymptotic distribution is χ2. However, even in the i.i.d. case, the
asymptotic distribution of Pearson’s χ2-statistic is not necessarily χ2, if the
parameters are to be estimated (see Moore 1978). In fact, it may never be
χ2 no matter what normalizing constants are used. Thus, for simplicity, we
choose a unified normalizing constant an. Note that, because of the depen-
dence among the observations, an may not increase at the same rate as n,
the sample size. Third, in a linear mixed model the number of fixed effects
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may be allowed to increase with n (e.g., Jiang 1996). As a consequence, the
dimension of θ may increase with n. This shows, from another angle, that one
can no longer expect an asymptotic distribution such as χ2

M−q−1, where q is
the number of (independent) parameters being estimated.

Jiang (2001) showed that, under suitable conditions, the asymptotic dis-
tribution of χ̂2 is a weighted χ2, that is, the distribution of

∑M
j=1 λjZ

2
j , where

Z1, . . . , ZM are independent N(0, 1) random variables, and λ1 ≥ · · · ≥ λM

are eigenvalues of some nonnegative definite matrix, which depends on θ. Be-
cause the latter is unknown in practice, Jiang (2001) developed a method of
estimating the critical value of the asymptotic distribution, and showed that
P(χ̂2 > ĉρ) → ρ as n → ∞, where ρ ∈ (0, 1) is the level of the test. The esti-
mated critical value, ĉρ is determined as cρ(λ̂1, . . . , λ̂M ), where for any given
λ1 ≥ · · · ≥ λM and 0 < ρ < 1, cα(λ1, . . . , λM ) is the ρ-critical value of the
random variable ξ =

∑M
j=1 λjZ

2
j , and λ̂1 ≥ · · · ≥ λ̂M are the eigenvalues of a

matrix Σ̂n = Σn(θ̂). The definition of Σn(θ), which depends on θ, is given in
Section 2.7.

It remains to specify the normalizing constant an. Jiang (2001) noted that
the choice of an is not unique. However, in some special cases there are natural
choices. For example, in the case of linear regression, which may be regarded
as a special case of the linear mixed model [with s = 0 in (1.1)], one has
an = n. In the case of the one-way random effects model of Example 1.1, if
the kis are bounded, one has an = m. The choice is less obvious in the case
of multiple random effects factors [i.e., s > 1 in (1.1)]. Jiang (2001) proposed
the following principle that in many cases either uniquely determines an or
at least narrows the choices. Note that there are a number of integers that
contribute to the total sample size n, for example, m, k in Example 2.2; a,
b, c in Example 2.1. Usually, an is a function of these integers. It is required
that an depend on these integers in a way as simple as possible. In particular,
no unnecessary constant is allowed in the expression of an. This is called a
natural choice of an. A natural choice of an can be found by examining the
leading term in the expression of the matrix Hn + ∆n defined in Section 2.7.
The following are some special cases.

Example 2.2 (Continued). In the case of the balanced one-way random
effects model, it can be shown that Hn + ∆n = mk2{Var(h1) + o(1)}, where
h1 is some nondegenerate random vector (see Jiang 2001, Section 3). Thus,
in this case, a natural choice is an = mk2. If, in fact, k is bounded, a natural
choice would be an = m.

Example 2.1 (Continued). Suppose, for simplicity, that c = 1; that is, there
is a single observation per cell. Similarly, it can be shown that, in this case, a
natual choice is an = (ab)3/2 (see Jiang 2001, Example 4.1).
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2.4.2 Model Selection

In a way, model selection and estimation are viewed as two components of
a process called model identification. The former determines the form of the
model, leaving only some undetermined coefficients or parameters. The latter
finds estimators of the unknown parameters. A pioneering work on model
selection criteria was Akaike’s information criterion (AIC, Akaike 1972). One
of the earlier applications of AIC and other procedures such as the Bayesian
information criterion (BIC, Schwartz 1978) was determination of the orders of
an autoregressive moving-average time series model (e.g., Choi 1992). Similar
methods have also been applied to regression model selection (e.g., Rao and
Wu 1989; Bickel and Zhang 1992; Shao 1993; and Zheng and Loh 1995). It
was shown that most of these model selection procedures are asymptotically
equivalent to what is called the generalized information criterion (GIC, e.g.,
Nishii 1984). Although there is extensive literature on parameter estimation
in linear mixed models, so that one component of the model identification has
been well studied, the other component, that is, mixed model selection, has
received little attention. Only recently have some results emerged in a paper
by Jiang and Rao (2003).

Consider a general linear mixed model (1.1), where it is assumed that
E(α) = 0, Var(α) = G; E(ε) = 0, Var(ε) = R, where G and R may involve
some unknown parameters such as variance components; and α and ε are
uncorrelated. In the following we first consider the problem of mixed model
selection when the random effect factors are not subject to selection.

1. Selection with fixed random factors. Consider the model selection prob-
lem when the random part of the model (i.e., Zα) is not subject to selection.
Let ζ = Zα + ε. Then, the problem is closely related to a regression model
selection problem with correlated errors. Consider a general linear model
y = Xβ + ζ, where ζ is a vector of correlated errors, and everything else is as
above. We assume that there are a number of candidate vectors of covariates,
X1, . . . , Xl, from which the columns of X are to be selected. Let L = {1, . . . , l}.
Then, the set of all possible models can be expressed as B = {a : a ⊆ L}, and
there are 2l possible models. Let A be a subset of B that is known to contain
the true model, so the selection will be within A. In an extreme case, A may
be B itself. For any matrix M , let L(M) be the linear space spanned by the
columns of M ; PM the projection onto L(M): PM = M(M ′M)−M ′; and P⊥

M

the orthogonal projection: P⊥
M = I − PM (see Appendix B). For any a ∈ B,

let X(a) be the matrix whose columns are Xj , j ∈ a, if a �= ∅, and X(a) = 0
if a = ∅. Consider the following criterion for model selection,

Cn(a) = |y − X(a)β̂(a)|2 + λn|a|
= |P⊥

X(a)y|2 + λn|a|, (2.50)

a ∈ A, where |a| represents the cardinality of a; β̂(a) is the ordinary least
squares (OLS) estimator of β(a) for the model y = X(a)β(a) + ζ; that is,
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β̂(a) = {X(a)′X(a)}−X(a)′y, and λn is a positive number satisfying certain
conditions specified below. Note that PX(a) is understood as 0 if a = ∅. Denote
the true model by a0. If a0 �= ∅, we denote the corresponding X and β by X
and β = (βj)1≤j≤p (p = |a0|), and assume that βj �= 0, 1 ≤ j ≤ p. This is,
of course, reasonable because, otherwise, the model can be further simplified.
If a0 = ∅, X, β, and p are understood as 0. Let νn = max1≤j≤q |Xj |2 and
ρn = λmax(ZGZ ′) + λmax(R), where λmax means the largest eigenvalue. Let
â be the minimizer of (2.50) over a ∈ A, which is our selection of the model.
Jiang and Rao (2003) showed that, under suitable conditions, â is consistent
in the sense that P(â �= a0) → 0 as n → ∞, provided that

λn/νn −→ 0 and ρn/λn −→ 0. (2.51)

Note 1. If ρn/νn → 0, there always exists λn that satisfies (2.51). For
example, take λn =

√
ρnνn. However, this may not be the best choice of λn,

as a simulated example in the following shows.

Note 2. Typically, we have νn ∼ n. To see what the order of ρn may
turn out to be, consider a special but important case of linear mixed mod-
els: the mixed ANOVA model of (1.1) and (1.2). Furthermore, assume that
each Zi (1 ≤ i ≤ s) is a standard design matrix in the sense that it con-
sists only of 0s and 1s, there is exactly one 1 in each row, and at least one
1 in each column. Let nij be the number of 1s in the jth column of Zi.
Note that nij is the number of appearance of the jth component of αi. Also
note that Z ′

iZi = diag(nij , 1 ≤ j ≤ mi). Thus, we have λmax(ZGZ ′) ≤∑s
i=1 σ2

i λmax(ZiZ
′
i) =

∑s
i=1 σ2

i max1≤j≤mi nij . Also, we have λmax(R) = σ2
0 .

It follows that ρn = O (max1≤i≤s max1≤j≤mi nij). Therefore, (2.51) is sat-
isfied provided that λn/n → 0 and max1≤i≤s max1≤j≤mi

nij/λn → 0. The
following is an example not covered by the above case, because the errors are
correlated.

Example 2.15. Consider the following linear mixed model which is a special
case of the nested error regression model of (2.48); yij = β0 +β1xij +αi + εij ,
i = 1, . . . , m, j = 1, . . . , k, where β0, β1 are unknown coefficients (the fixed
effects). It is assumed that the random effects α1, . . . , αm are uncorrelated
with mean 0 and variance σ2. Furthermore, assume that the errors εijs have
the following exchangeable correlation structure: Let εi = (εij)1≤j≤k. Then,
Cov(εi, εi′) = 0 if i �= i′, and Var(εi) = τ2{(1−ρ)I+ρJ}, where I is the identity
matrix and J the matrix of 1s, and 0 < ρ < 1 is an unknown correlation
coefficient. Finally, assume that the random effects are uncorrelated with the
errors. Suppose that m → ∞, and

0 < lim inf

⎡⎣ 1
mk

m∑
i=1

k∑
j=1

(xij − x̄··)2

⎤⎦
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≤ lim sup

⎡⎣ 1
mk

m∑
i=1

k∑
j=1

x2
ij

⎤⎦ < ∞,

where x̄·· = (mk)−1 ∑m
i=1

∑k
j=1 xij . It is easy to see that, in this case, ρn ∼ k

and νn ∼ mk (Exercise 2.21).
The above procedure requires selecting â from all subsets of A. Note that

A may contain as many as 2l subsets. When l is relatively large, alternative
procedures have been proposed in the (fixed effect) linear model context,
which require less computation (e.g., Zheng and Loh 1995). In the following,
we consider an approach similar to Rao and Wu (1989). First, note that one
can always express Xβ as Xβ =

∑l
j=1 βjXj with the understanding that some

of the coefficients βj may be zero. It follows that a0 = {1 ≤ j ≤ l : βj �= 0}.
Let X−j = (Xu)1≤u≤l,u �=j , 1 ≤ j ≤ l, ηn = min1≤j≤l |P⊥

X−j
Xj |2, and δn be a

sequence of positive numbers satisfying conditions specified below. Let â be
the subset of L = {1, . . . , l} such that

(|P⊥
X−j

y|2 − |P⊥
X y|2)/(|P⊥

X−j
Xj |2δn) > 1 (2.52)

for j ∈ â. Jiang and Rao (2003) showed that, if ρn/ηn → 0, where ρn is defined
earlier, then â is consistent, provided that

δn −→ 0 and ρn/(ηnδn) −→ 0.

Example 2.15 (Continued). It is easy to show that, in this case, ηn ∼ mk.
Recall that ρn ∼ k in this case. Thus, ρn/ηn → 0 as m → ∞.

To study the finite sample behavior of the proposed model selection pro-
cedures, we consider a simulated example.

Example 2.16 (A simulated example). The model here is similar to Example
2.15 except that it may involve more than one fixed covariate; that is, β0 +
β1xij is replaced by x′

ijβ, where xij is a vector of covariates and β a vector
of unknown regression coefficients. Here we focus on the first model selection
procedure, the one defined by (2.50), which we also call GIC (e.g., Nishii
1984). We examine it by simulating the probability of correct selection and
also the overfitting (a1) and underfitting (a2) probabilities,respectively, of
various GICs for some given model parameters and sample sizes. Five GICs
with different choices of λ are considered: (1) λ = 2, which corresponds to the
Cp method; (2) λ = log n. The latter choice satisfies the conditions required
for consistency of the model selection. A total of 500 realizations of each
simulation were run.

In the simulation the number of fixed factors was l = 5 with A being
all subsets of {1, . . . , 5}. The first column of X is all ones, corresponding
to the intercept, and the other four columns of X are generated randomly
from N(0, 1) distributions, then fixed throughout the simulation. Three βs are
considered: (2, 0, 0, 4, 0)′, (2, 0, 0, 4, 8)′, and (2, 9, 0, 4, 8)′, which correspond to
a0 = {1, 4}, {1, 4, 5}, and {1, 2, 4, 5}, respectively.
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Furthermore, we consider the case where the correlated errors have varying
degrees of exchangeable structure as described in Example 2.15, where four
values of ρ were considered: 0, 0.2, 0.5, 0.8. Variance components σ and τ were
both taken to be equal to 1. We take the number of clusters (m) to be 50 and
100 and the number of repeats on a cluster to be fixed at k = 5. Table 2.2
presents the results.

Table 2.2. Selection probabilities under Example 1.10

Model ρ % correct a1 a2
λn = 2 log(n) 2 log(N) 2 log(N)

M1(m = 50) 0 59 94 41 6 0 0
.2 64 95 36 5 0 0
.5 59 90 40 9 1 1
.8 52 93 47 5 1 2

M1(m = 100) 0 64 97 36 3 0 0
.2 57 94 43 6 0 0
.5 58 96 42 3 0 1
.8 61 96 39 4 0 0

M2(m = 50) 0 76 97 24 3 0 0
.2 76 97 24 3 0 0
.5 73 96 27 4 0 0
.8 68 94 31 4 1 2

M2(m = 100) 0 76 99 24 1 0 0
.2 70 97 30 3 0 0
.5 70 98 30 2 0 0
.8 72 98 28 2 0 0

M3(m = 50) 0 90 99 10 1 0 0
.2 87 98 13 2 0 0
.5 84 98 16 2 0 0
.8 78 95 21 3 1 2

M3(m = 100) 0 87 99 13 1 0 0
.2 87 99 13 1 0 0
.5 80 99 20 1 0 0
.8 78 96 21 3 1 1

2. Selection with random factors. We now consider model selection that
involves both fixed and random effects factors. Here we consider the mixed
ANOVA model of (1.1), (1.2). If σ2

i > 0, we say that αi is in the model;
otherwise, it is not. Therefore, the selection of random factors is equivalent to
simultaneously determining which of the variance components σ2

1 , . . . , σ2
s are

positive. The true model can be expressed as

y = Xβ +
∑
i∈b0

Ziαi + ε, (2.53)
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where X = (Xj)j∈a0 and a0 ⊆ L [defined above (2.50)]; b0 ⊆ S = {1, . . . , s}
such that σ2

i > 0, i ∈ b0, and σ2
i = 0, i ∈ S \ b0.

There are some differences between selecting the fixed covariates Xj , as
we did earlier, and selecting the random effect factors. One difference is that,
in selecting the random factors, we are going to determine whether the vector
αi, not a given component of αi, should be in the model. In other words, the
components of αi are all “in” or all “out”. Another difference is that, unlike
selecting the fixed covariates, where it is reasonable to assume that the Xi

are linearly independent, in a linear mixed model it is possible to have i �= i′

but L(Zi) ⊂ L(Zi′). See Example 2.17 below. Because of these features, the
selection of random factors cannot be handled the same way.

To describe the basic idea, first note that we already have a procedure to
determine the fixed part of the model, which, in fact, does not require knowing
b0. In any case, we may denote the selected fixed part as â(b0), whether or
not it depends on b0. Now, suppose that a selection for the random part of
the model (i.e., a determination of b0) is b̂. We then define â = â(b̂). In other
words, once the random part is determined, we may determine the fixed part
using the methods developed earlier, treating the random part as known. It
can be shown that, if the selection of the random part is consistent in the
sense that P(b̂ �= b0) → 0, and given b0, the selection of the fixed part is
consistent; that is, P(â(b0) �= a0) → 0, then P(â = a0, b̂ = b0) → 1; that is,
the combined procedure is consistent.

We now describe how to obtain b̂. First divide the vectors α1, . . . , αs,
or, equivalently, the matrices Z1, . . . , Zs into several groups. The first group
is called the “largest random factors.” Roughly speaking, those are Zi, i ∈
S1 ⊆ S such that rank(Zi) is of the same order as n, the sample size. We
assume that L(X, Zu, u ∈ S \ {i}) �= L(X, Zu, u ∈ S) for any i ∈ S1, where
L(M1, . . . , Mt) represents the linear space spanned by the columns of the
matrices M1, . . . , Mt. Such an assumption is reasonable because Zi is supposed
to be “the largest,” and hence should have a contribution to the linear space.
The second group consists of Zi, i ∈ S2 ⊆ S such that L(X, Zu, u ∈ S \ S1 \
{i}) �= L(X, Zu, u ∈ S \ S1), i ∈ S2. The ranks of the matrices in this group
are of lower order of n. Similarly, the third group consists of Zi, i ∈ S3 ⊆ S
such that L(X, Zu, u ∈ S \S1 \S2 \{i}) �= L(X, Zu, u ∈ S \S1 \S2), and so on.
Note that if the first group (i.e., the largest random factors) does not exist, the
second group becomes the first, and other groups also move on. As mentioned
earlier [see below (2.53)], the selection of random factors cannot be treated
the same way as that of fixed factors, because the design matrices Z1, . . . , Zs

are usually linearly dependent. Intuitively, a selection procedure will not work
if there is linear dependence among the candidate design matrices, because of
identifiability problems. To consider a rather extreme example, suppose that
Z1 is a design matrix consisting of 0s and 1s such that there is exactly one 1 in
each row, and Z2 = 2Z1. Then, to have Z1α1 in the model means that there
is a term α1i; whereas to have Z2α2 = 2Z1α2 in the model means that there
is a corresponding term 2α2i. However, it makes no difference in terms of a
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model, because both α1i and α2i are random effects with mean 0 and certain
variances. However, by grouping the random effect factors we have divided
the Zis into several groups such that there is linear independence within each
group. This is the motivation behind grouping. To illustrate such a procedure,
and also to show that such a division of groups does exist in typical situations,
consider the following example.

Example 2.17. Consider the following random effects model,

yijkl = µ + ai + bj + ck + dij + fik + gjk + hijk + eijkl, (2.54)

i = 1, . . . , m1, j = 1, . . . , m2, k = 1, . . . , m3, l = 1, . . . , t, where µ is an
unknown mean; a, b, c are random main effects; d, f , g, h are (random) two-
and three-way interactions; and e is an error. The model can be written as

y = Xµ + Z1a + Z2b + Z3c + Z4d + Z5f + Z6g + Z7h + e,

where X = 1n with n = m1m2m3t, Z1 = Im1 ⊗ 1m2 ⊗ 1m3 ⊗ 1t, . . . , Z4 =
Im1 ⊗ Im2 ⊗1m3 ⊗1t, . . ., and Z7 = Im1 ⊗ Im2 ⊗ Im3 ⊗1t. It is easy to see that
the Zis are not linearly independent. For example, L(Zi) ⊂ L(Z4), i = 1, 2,
and L(Zi) ⊂ L(Z7), i = 1, . . . , 6. Also, L(X) ⊂ L(Zi) for any i. Suppose that
mj → ∞, j = 1, 2, 3, and t is bounded. Then, the first group consists of Z7;
the second group Z4, Z5, Z6; and the third group Z1, Z2, Z3. If t also → ∞, the
largest random factor does not exist. However, one still has these three groups.
It is easy to see that the Zis within each group are linearly independent.

Suppose that the Zis are divided into h groups such that S = S1 ∪· · ·∪Sh.
We give a procedure that determines the indices i ∈ S1 for which σ2

i > 0; then
a procedure that determines the indices i ∈ S2 for which σ2

i > 0; and so on,
as follows.

Group one: Write B = L(X, Z1, . . . , Zs), B−i = L(X, Zu, u ∈ S \ {ij}),
i ∈ S1; r = n − rank(B), ri = rank(B) − rank(B−i); R = |P⊥

B y|2, Ri =
|(PB − PB−ij )y|2. Let b̂1 be the set of indices i in S1 such that

(r/R)(Ri/ri) > 1 + r(ρ/2)−1 + r
(ρ/2)−1
i ,

where ρ is chosen such that 0 < ρ < 2. Let a01 = {i ∈ L1 : σ2
i > 0}.

Group two: Let B1(b2) = L(X, Zu, u ∈ (S \S1\S2)∪b2), b2 ⊆ S2. Consider

C1,n(b2) = |P⊥
B1(b2)y|2 + λ1,n|b2|, b2 ⊆ S2,

where λ1,n is a positive number satisfying certain conditions similar to those
for λn in (2.50) (see Jiang and Rao 2003, Section 3.3 for details). Let b̂2 be
the minimizer of C1,n over b2 ⊆ S2, and b02 = {i ∈ S2 : σ2

i > 0}.

General: The above procedure can be extended to the remaining groups.
In general, let Bt(bt+1) = L(X, Zu, u ∈ (S\S1\· · ·\St+1)∪bt+1), bt+1 ⊆ St+1,
1 ≤ t ≤ h − 1. Define
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Ct,n(bt+1) = |P⊥
Bt(bt+1)y|2 + λt,n|blt+1|, bt+1 ⊆ St+1,

where λt,n is a positive number satisfying certain conditions similar to those
for λn in (2.50). Let b̂t+1 be the minimizer of Ct,n over bt+1 ⊆ St+1, and
b0t+1 = {i ∈ St+1 : σ2

i > 0}.
It can be shown that, under suitable conditions, the combined procedure

is consistent in the sense that P(b̂1 = b01, . . . , b̂h = b0h) → 1 as n → ∞. One
property of b̂t is that it does not depend on b̂u, u < t. In fact, b̂1, . . . , b̂h can
be obtained simultaneously, and b̂ = ∪h

t=1b̂t is a consistent selection for the
random part of the model. See Jiang and Rao (2003) for details.

2.5 Bayesian Inference

A linear mixed model can be naturally formulated as a hierarchical model
under the Bayesian framework. Such a model usually consists of three levels,
or stages of hierarchies. At the first stage, a linear model is set up given the
fixed and random effects; at the second stage, the distributions of the fixed and
random effects are specified given the variance component parameters; finally,
at the last stage, a prior distribution is given for the variance components.
Before we further explore these stages, we briefly describe the basic elements
of Bayesian inference.

Suppose that y is a vector of observations and θ a vector of parameters
that are not observable. Let f(y|θ) represent the probability density function
(pdf) of y given θ, and π(θ) a prior pdf for θ. Then, the posterior pdf of θ is
given by

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

.

Getting the posterior is the goal of Bayesian inference. In particular, some
numerical summaries may be obtained from the posterior. For example, a
Bayesian point estimator of θ is often obtained as the posterior mean:

E(θ|y) =
∫

θπ(θ|y)dθ

=
∫

θf(y|θ)π(θ)dθ∫
f(y|θ)π(θ)θ

;

the posterior variance, var(θ|y), on the other hand, is often used as a Bayesian
measure of uncertainty.

In the first stage of a hierarchical linear model, it is assumed that, given
β and α,

y = Xβ + Zα + ε,
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where X and Z are known matrices, and ε has distribution F1. In the second
stage, it is assumed that (α, β) has a joint distribution F2, which depends on
some parameters of variance components. Finally, in the last stage, a prior
distribution F3 is assumed for the variance components. Note that a classical
linear mixed model essentially involves the first two stages, but not the last
one. A hierarchical model that is used most of the time is the so-called normal
hierarchy, in which it is assumed that

(1) ε ∼ N(0, R);
(2) α ∼ N(0, G), β ∼ N(b, B);
(3) (G, R) ∼ π,

where π is a prior distribution. It is often assumed that, in the second stage,
α and β are distributed independently, and b and B are known. Thus, a prior
for β is, in fact, given in the second stage. The following is an example.

Example 2.18. Consider the one-way random effects model (Example 1.1).
A normal hierarchical model assumes that (1) given µ and αi (1 ≤ i ≤ m),
yij = µ + αi + εij , j = 1, . . . , ni, where εijs are independent and distributed
as N(0, τ2); (2) µ, α1, . . . , αm are independent such that µ ∼ N(µ0, σ

2
0),

αi ∼ N(0, σ2), where µ0 and σ2
0 are known; and (3) σ2, τ2 are independent

with σ2 ∼ Inverse−χ2(a), τ2 ∼ Inverse−χ2(b), where a, b are known positive
constants, and an Inverse−χ2 distribution with parameter ν > 0 has pdf
{2−ν/2/Γ (ν/2)}x−(ν/2+1)e−1/2x, x > 0. Alternatively, the priors in (3) may
be such that σ2 ∝ 1/σ2 and τ2 ∝ 1/τ2. Note that, in the latter case, the
priors are improper.

The inference includes that about the fixed and random effects and that
about the variance components. In the following we discuss these two types
of inference, starting with the variance components.

2.5.1 Inference about Variance Components

First define the likelihood function under the Bayesian framework. Suppose
that, given α, β, and R, y ∼ f(y|α, β, R). Furthermore, suppose that, given
G, α and β are independent such that α ∼ g(α|G) and β ∼ h(β|b, B) (b,
B known). Then, the full likelihood function, or simply the likelihood, for
estimating G and R, is given by

L(G, R|y) =
∫ ∫

f(y|α, β, R)g(α|G)h(β|b, B)dαdβ, (2.55)

where the integrals with respect to α and β may be both multivariate. Note
that the difference between a likelihood and a posterior is that the prior is not
taken into account in obtaining the likelihood. We now consider two special
cases under the normal hierarchy.
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The first case is when h is a point mass (or degenerate distribution) at β.
Then, the limit of (2.55), when b = β and B → 0, reduces to

L(G, R|y) =
1

(2π)n/2|V |1/2 exp
{

−1
2
(y − Xβ)′V −1(y − Xβ)

}
(Exercise 2.22), where V = ZGZ ′ + R. This is simply the (normal) likeli-
hood function given in Section 1.3.1. Under the Bayesian framework, it is also
called the conditional likelihood, because a point mass corresponds to being
conditional on β.

The second case is when h is a noninformative, or flat, distribution, that
is, the prior for β is uniform over (−∞,∞). Note that this is an improper
prior. Nevertheless, the likelihood (2.55) does exist and has the expression

L(G, R|y) =
1

(2π)(n−p)/2|A′V A|1/2 exp
{

−1
2
z′(A′V A)−1z

}
,

where p = rank(X), z = A′y, and A is an n × (n − p) matrix such that
rank(A) = n − p and A′X = 0 (Exercise 2.23). This is exactly the (normal)
restricted likelihood function defined in Section 1.3.2. Under the Bayesian
framework, it is also called the marginal likelihood, because it has β integrated
out with respect to the noninformative prior.

Thus, without taking the prior into account, the likelihood can be used to
obtain estimators of G and R, as one does in classical situations. This method
is used later to obtain empirical Bayes estimators of the effects.

If the prior is taken into account, then the posterior for G and R can be
expressed as

π(G, R|y)

=
∫ ∫

f(y|α, β, R)g(α|G)h(β|b, B)π(G, R)∫ ∫ ∫ ∫
f(y|α, β, R)g(α|G)h(β|b, B)π(G, R)dαdβdGdR

dαdβ

=
L(G, R|y)π(G, R)∫ ∫

L(G, R|y)π(G, R)dGdR
, (2.56)

where π(G, R) is a prior pdf for G, R. The computation of (2.56) can be fairly
complicated even for a simple model (Exercise 2.24). For complex models the
computation of (2.56) is typically carried out by Markov chain Monte Carlo
(MCMC) methods.

2.5.2 Inference about Fixed and Random Effects

Similar to (2.56), the posterior for β can be expressed as

π(β|y)

=
∫ ∫ ∫

f(y|α, β, R)g(α|G)h(β|b, B)π(G, R)∫ ∫ ∫ ∫
f(y|α, β, R)g(α|G)h(β|b, B)π(G, R)dαdβdGdR

dαdGdR, (2.57)
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and the posterior for α is

π(α|y)

=
∫ ∫ ∫

f(y|α, β, R)g(α|G)h(β|b, B)π(G, R)∫ ∫ ∫ ∫
f(y|α, β, R)g(α|G)h(β|b, B)π(G, R)dαdβdGdR

dβdGdR. (2.58)

If normality is assumed, (2.57) and (2.58) may be obtained in closed forms.
In fact, in the case of normal hierarchy, we have

β|y ∼ N(E(β|y), Var(β|y)),

where E(β|y) = (X ′V −1X+B−1)−1(X ′V −1y+B−1b), Var(β|y) = (X ′V −1X+
B−1)−1; and, similarly,

α|y ∼ N(E(α|y), Var(α|y)),

where E(α|y) = (Z ′LZ + G−1)−1Z ′L(y − Xb), Var(α|y) = (Z ′LZ + G−1)−1

with L = R−1 − R−1X(B−1 + X ′R−1X)−1X ′R−1 (Exercise 2.25). It is inter-
esting to note that, when B−1 → 0, which corresponds to the case where the
prior for β is noninformative, one has E(β|y) → (X ′V −1X)−1X ′V −1y = β̃,
which is the BLUE; similarly, E(α|y) → GZ ′V −1(y − Xβ̃) (Exercise 2.26),
which is the BLUP (see Section 2.3.1.2). Thus, the BLUE and BLUP may be
regarded as the posterior means of the fixed and random effects under normal
hierarchy and a limiting situation, or noninformative prior for β.

Note that the BLUE and BLUP depend on G and R, which are unknown in
practice. Instead of assuming a prior for G and R, one may estimate these co-
variance matrices, which often depend parametrically on some variance com-
ponents, by maximizing the marginal likelihood function introduced before
(see the early part of Section 2.5.1). This is called the empirical Bayes (EB)
method. Harville (1991) showed that in the special case of the one-way ran-
dom effects model (see Example 1.1), the EB is identical to EBLUP (see
Section 2.3.1.3). From the above derivation, it is seen that this result actually
holds more generally in a certain sense. Note that when G and R in BLUE
and BLUP are replaced by estimators, the results are EBLUE and EBLUP.
However, as Harville noted, much of the work on EB has focused on relatively
simple models, whereas EBLUP has been carried out by practitioners such
as individuals in the animal breeding area and survey sampling to relatively
complex models.

2.6 Real-Life Data Examples

2.6.1 Analysis of the Birth Weights of Lambs (Continued)

In this section, we revisit the example of lamb-weight data discussed in sec-
tion 1.7.1, where estimates of the fixed effects and variance components were
obtained.
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The BLUPs of the sire effects are obtained by PROC MIXED. The results
are shown in Table 2.3. Here Standard Pred Error represents the square root of
the estimated mean square prediction error (MSPE) of the EBLUP of sij , the
jth sire effect in line i. The estimated MSPE in PROC MIXED is obtained by
substituting the REML estimates of the variance components into the formula
for the MSPE assuming known variance components. This is known as the
naive method of estimating the MSPE. As discussed earlier (see Section 2.3.1),
the naive estimates may underestimate the true MSPE. Methods that improve
the accuracy of the MSPE estimation have been proposed. See Section 2.3.1.

Table 2.3. BLUPs of the random effects

Sire Line Estimate Standard Pred Error
11 1 −0.6256 0.6693
12 1 0.3658 0.6693
13 1 0.5050 0.6156
14 1 −0.2452 0.6441
21 2 0.1750 0.6701
22 2 0.1588 0.6296
23 2 −0.0423 0.6717
24 2 −0.2914 0.6457
31 3 −0.2667 0.6184
32 3 −0.2182 0.5850
33 3 0.3212 0.6397
34 3 0.1637 0.6701
41 4 −0.2015 0.6187
42 4 0.0695 0.6454
43 4 0.1319 0.6436
51 5 0.3047 0.6356
52 5 −0.2437 0.6308
53 5 −0.1177 0.6327
54 5 −0.1549 0.6656
55 5 0.3940 0.6684
56 5 −0.6311 0.6318
57 5 0.5762 0.5913
58 5 −0.1274 0.5769

2.6.2 The Baseball Example

In this section, we revisit the Efron–Morris baseball example (Example 2.11)
and use it to illustrate methods of diagnostics in linear mixed models. This
example is chosen because of its simplicity. The dataset has been analyzed by
several authors in the past, including Efron and Morris (1975), Efron (1975),
Morris (1983), Datta and Lahiri (2000), Gelman et al. (1995), Rao (2003),
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and Lahiri and Li (2005), among others. Efron and Morris(1975) used this
dataset to demonstrate the performance of their empirical Bayes and limited
translation empirical Bayes estimators derived using an exchangeable prior
in the presence of an outlying observation. They first obtained the batting
average of Roberto Clemente, an extremely good hitter, from the New York
Times dated April 26, 1970 when he had already batted n = 45 times. The
batting average of a player is just the proportion of hits among the number
at-bats. They selected 17 other major league baseball players who had also
batted 45 times from the April 26 and May 2, 1970 issues of the New York
Times. They considered the problem of predicting the batting averages of
all 18 players for the remainder of the 1970 season based on their batting
averages for the first 45 at-bats. This is a good example for checking the effect
of an outlier on the efficiency of an EB estimation with an exchangeable prior.
Gelman et al. (1995) provided additional data for this estimation problem and
included important auxiliary data such as the batting average of each player
through the end of the 1969 season. Jiang and Lahiri (2005b) reviewed the
problem of predicting the batting averages of all 18 players for the entire 1970
season, instead of predicting the batting averages for the remainder of the
1970 season as Efron and Morris (1975) originally considered.

For the player i (i = 1, . . . , m), let pi and πi be the batting average for
the first 45 at-bats and the true season batting average of the 1970 season.
Note that pi is the direct maximum likelihood (also unbiased) estimator of πi

under the assumption that conditional on πi, the number of hits for the first
n at-bats, npi, follows a binomial distribution with number of trials n and
success probability πi, i = 1, . . . , m.

Efron and Morris (1975) considered the following standard arc-sine trans-
formation,

yi =
√

n arcsin(2pi − 1)

and then assumed the following model

yi|θi
ind∼ N(θi, 1), i = 1, . . . , m,

where θi =
√

n arcsin(2πi −1). There could be a criticism about the validity of
the above approximation. However, Efron and Morris (1975) and Gelman et
al. (1995) noted that this is not a serious concern given the moderate sample
size of 45. The data analysis by Lahiri and Li (2005) supports this conjecture.
Efron and Morris (1975) assumed exchangeability of the θis and used the two-
level Fay–Herriot model, given in Section 2.1, without any covariate and equal
sampling variances (i.e., 1).

Gelman et al. (1995) noted the possibility of an extra-binomial variation in
the number of hits. The outcomes from successive at-bats could be correlated
and the probability of hits may change across at-bats due to injury to the
player and other external reasons not given in the dataset. However, there is
no way to check these assumptions because of the unavailability of such data.
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Assuming Level 1 is reasonable, Lahiri and Li (2005) checked the validity of
the above model through graphical tools. To this end, they used the following
standardized residual,

ei =
yi − ȳ

s
,

where s2 = (m − 1)−1 ∑m
i=1(yi − ȳ)2 is the usual sample variance. Note that

marginally yi
iid∼ N(µ, 1 + A). Under this marginal model, E(ei) ≈ 0, and

var(ei) ≈ 1 + A for large m. Thus, if the model is reasonable, a plot of the
standardized residuals versus the players is expected to fluctuate randomly
around 0. Otherwise, one might suspect the adequacy of the two-level model.
However, random fluctuation of the residuals may not reveal certain system-
atic patterns of the data. For example, Lahiri and Li (2005) noted that the
residuals, when plotted against players arranged in increasing order of the pre-
vious batting averages, did reveal a linear regression pattern, something not
apparent when the same residuals were plotted against players arranged in an
arbitrary order. This is probably questioning the exchangeability assumption
in the Efron–Morris model, a fact we knew earlier because of the intentional
inclusion of an extremely good hitter.

Let pi0 be the batting average of player i through the end of the 1969
season and xi =

√
n arcsin(2pi0 − 1), i = 1, . . . , m. We plot y and θ versus x

in Figure 2.1 (a) and (b) respectively. This probably explains the systematic
pattern of the residuals mentioned in the previous paragraph. We also note
the striking similarity of the two graphs: 1(a) and 1(b). Although Roberto
Clemente seems like an outlier with respect to y, θ, or x, player L. Alvarado
appears to be an outlier in the sense that his current batting average is much
better than his previous batting average. He influences the regression fit quite
a bit. For example, the BIC for the two-level model reduced from 55 to 44 when
Alvarado was dropped from the model. Further investigation shows that this
player is a rookie and batted only 51 times through the end of the 1969 season
compared to other players in the dataset, making his previous batting average
information not very useful. The BICs for the Fay–Herriot model with and
without the auxiliary data are almost the same (54.9 and 55.3, respectively),
a fact not expected at the beginning of the data analysis. In spite of more or
less similar BIC values and the presence of an outlier in the regression, Figure
2.2 shows that EMReg did a good job in predicting the batting averages of
Clemente and Alvarado, two different types of outliers. Further details on this
data analysis are given in Lahiri and Li (2005).

2.7 Further Results and Technical Notes

1. Robust versions of classical tests. We first state the following theorems,
which also define the matrices A, B, C, and Σ introduced in Section 2.1.2.4.
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Theorem 2.1. Suppose that the following hold. (i) l(·, y) is twice contin-
uously differentiable for fixed y, and ψ(·) is twice continuously differentiable.
(ii) With probability → 1, ψ̂, φ̂ satisfy ∂l/∂ψ = 0, ∂l0/∂φ = 0, respectively.
(iii) There are sequences of nonsingular symmetric matrices {G} and {H} and
matrices A, B, C with A, B > 0 such that the following → 0 in probability,

sup
S1

∥∥∥∥∥∥G−1

(
∂2l

∂ψi∂ψj

∣∣∣∣
ψ(i)

)
1≤i,j≤q

G−1 + A

∥∥∥∥∥∥ ,

sup
S2

∥∥∥∥∥∥H−1

(
∂2l0

∂φi∂φj

∣∣∣∣
φ(i)

)
1≤i,j≤p

H−1 + B

∥∥∥∥∥∥ ,

sup
S3

∥∥∥∥∥∥G

(
∂ψi

∂φj

∣∣∣∣
φ(i)

)
1≤i≤q,1≤j≤p

H−1 − C

∥∥∥∥∥∥ ,

where S1 = {|ψ(i) − ψ0|v ≤ |ψ̂ − ψ0|v ∨ |ψ(φ̂) − ψ(φ0)|v, 1 ≤ i ≤ q}, S2 =
{|φ(i) −φ0|v ≤ |φ̂−φ0|v, 1 ≤ i ≤ p}, S3 = {|φ(i) −φ0|v ≤ |φ̂−φ0|v, 1 ≤ i ≤ q}
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and |a|v = (|a1|, . . . , |ak|)′ for a = (a1, . . . , ak)′;
(iv) D(∂l/∂ψ)|ψ0 → 0 in probability, where D = diag(di, 1 ≤ i ≤ s) with
di = ‖H−1(∂2ψi/∂φ∂φ′)|φ0H

−1‖, and

G−1 ∂l

∂ψ

∣∣∣∣
ψ0

−→ N(0, Σ) in distribution. (2.59)

Then, under the null hypothesis, the asymptotic distribution of W is χ2
r,

where W is defined in (2.18), and r = rank[Σ1/2A−1/2(I − P )] with P =
A1/2C(C ′AC)−1C ′A1/2. In particular, if Σ is nonsingular, then r = q − p.

The theorem may be extended to allow the matrices A, B, and so on. to
be replaced by sequences of matrices. Such an extension may be useful. For
example, suppose G is a diagonal normalizing matrix; then, in many cases, A
can be chosen as −G−1[E(∂2l/∂ψ∂ψ′)|ψ0 ]G

−1, but the latter may not have a
limit as n → ∞.

Extension of Theorem 2.1. Suppose that, in Theorem 2.1, A, B, C are
replaced by sequences of matrices {A}, {B}, and {C}, such that A, B are
symmetric,
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0 < lim inf[λmin(A) ∧ λmin(B)] ≤ lim sup[λmax(A) ∨ λmax(B)] < ∞,

and lim sup ‖C‖ < ∞. Furthermore, suppose that (2.59) is replaced by

Σ−1/2G−1 ∂l

∂ψ

∣∣∣∣
ψ0

−→ N(0, I) in distribution, (2.60)

where {Σ} is a sequence of positive definite matrices such that

0 < lim inf λmin(Σ) ≤ lim supλmax(Σ) < ∞,

and I is the p-dimensional identity matrix. Then, the asymptotic distribution
of W is χ2

q−p.

The proofs are given in Jiang (2002). According to the proof, one has
G[ψ̂ − ψ(φ̂)] = OP (1), hence

Ŵ = [θ̂ − θ(φ̂)]′G[Q−
w + oP (1)]G[θ̂ − θ(φ̂)]

= W + oP (1) .

Thus, by Theorem 2.1, we conclude the following.

Corollary 2.1. Under the conditions of Theorem 2.1, the asymptotic dis-
tribution of Ŵ is χ2

r, where r is the same as in Theorem 2.1. Thus, in par-
ticular, if Σ is nonsingular, r = q − p. Under the conditions of Extension of
Theorem 2.1, the asymptotic distribution of Ŵ is χ2

q−p.

We now consider the asymptotic distribution of the S-test defined in (2.19).

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied
with the following changes: (1) in (ii), that ψ̂ satisfies ∂l/∂ψ = 0 with proba-
bility → 1 is not required; and (2) in (iii), the supremum for the first quantity
(involving A) is now over |ψ(i) − ψ0|v ≤ |ψ(φ̂) − ψ(φ0)|v, 1 ≤ i ≤ q. Then,
under the null hypothesis, the asymptotic distribution of S is χ2

r, where r is
the same as in Theorem 2.1. In particular, if Σ is nonsingular, then r = q −p.

In exactly the same way, we have the following.

Extension of Theorem 2.2. Suppose that, in Theorem 2.2, A, B, and C
are replaced by {A}, {B}, and {C}, and (2.59) by (2.60), where the sequences
of matrices {A}, {B}, {C}, and {Σ} satisfy the conditions of the Extension
of Theorem 2.1. Then, the asymptotic distribution of S is χ2

q−p.

Corollary 2.2. Under the conditions of Theorem 2.2, the asymptotic dis-
tribution of Ŝ is χ2

r, where r is the same as in Theorem 2.1. Thus, in particular,
if Σ is nonsingular, r = q − p. Under the conditions of the Extension of The-
orem 2.2, the asymptotic distribution of Ŝ is χ2

q−p.

Finally, we consider the asymptotic distribution of the L-test. It is seen
that the asymptotic distributions for the W- and S-tests are both χ2. However,
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the following theorem states that the asymptotic distribution for the L-test is
not χ2 but a “weighted” χ2 (e.g., Chernoff and Lehmann 1954). Recall that
Ql is defined near the end of Section 2.1.2.4.

Theorem 2.3. Suppose that the conditions of Theorem 2.1 are satisfied
except that the third quantity in (iii) (involving C) → 0 in probability is
replaced by G[(∂ψ/∂φ)|φ0 ]H

−1 → C. Then, under the null hypothesis, the
asymptotic distribution of −2 log R is the same as λ1ξ

2
1 + · · · + λrξ

2
r , where r

is the same as in Theorem 2.1; λ1, . . . , λr are the positive eigenvalues of Ql;
and ξ1, . . . , ξr are independent N(0, 1) random variables. In particular, if Σ
is nonsingular, then r = q − p.

Again, the proofs are given in Jiang (2002). It should be pointed out that
if L(θ, y) is, indeed, the likelihood function, in which case the L-test is the
likelihood-ratio test, the asymptotic distribution of −2 log R reduces to χ2 see
Weiss 1975).

Let Q̂l be a consistent estimator of Ql. Then, by Weyl’s eigenvalue per-
turbation theorem (see Appendix B), the eigenvalues of Q̂l are consistent
estimators of those of Ql, and therefore can be used to obtain the asymptotic
critical values for the L-test.

We now specify the W-, S-, and L-tests under the non-Gaussian mixed
ANOVA model (see Section 1.2.2) with the additional assumption that

E(ε31) = 0, E(α3
i1) = 0, 1 ≤ i ≤ s . (2.61)

As it turns out, this assumption is not essential but simplifies the results
considerably. First define

A1 = (tr(V −1Vi)/2λ
√

nmi)1≤i≤s,

A2 = (tr(V −1ViV
−1Vj)/2

√
mimj)1≤i,j≤s,

A =

⎛⎝X ′V −1X/λn 0 0
0 1/2λ2 A′

1
0 A1 A2

⎞⎠ . (2.62)

Let b = (I
√

γ1Z1 · · · √
γsZs), B0 = b′V −1b, Bi = b′V −1ViV

−1b, 1 ≤ i ≤ s.
Furthermore, we define

D0,ij =
n∑

l=1

Bi,llBj,ll,

D1,ij =
n+m1∑
l=n+1

Bi,llBj,ll,

...

Ds,ij =
n+m1+···+ms∑

l=n+m1+···+ms−1+1

Bi,llBj,ll,
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where Bi,kl is the (k, l) element of Bi, 0 ≤ i, j ≤ s. The kurtoses of the errors
and random effects are defined by κ0 = (Eε41/σ4

0)−3, and κi = (Eα4
i1/σ4

i )−3,
1 ≤ i ≤ s. Let ∆1 = (∆0i/

√
nmi)1≤i≤s, ∆2 = (∆ij/

√
mimj)1≤i,j≤s, and

∆ =

⎛⎝ 0 0 0
0 ∆00/n ∆′

1
0 ∆1 ∆2

⎞⎠ , (2.63)

where ∆ij = {4λ1(i=0)+1(j=0)}−1 ∑s
t=0 κtDt,ij , 0 ≤ i, j ≤ s. Let

W = b′V −1X(X ′V −1X)−1/2,

and W ′
l be the lth row of W , 1 ≤ l ≤ n + m, where m = m1 + · · · + ms.

Theorem 2.4. Suppose that the following hold.
(i) θ(·) is three-times continuously differentiable and satisfies (2.21), and
∂θik

/∂φk �= 0, 1 ≤ k ≤ d.
(ii) Eε41 < ∞, var(ε21) > 0, Eα4

i1 < ∞, var(α2
i1) > 0, 1 ≤ i ≤ s, and (2.61)

holds.
(iii) n → ∞, mi → ∞, 1 ≤ i ≤ s, 0 < lim inf λmin(A) ≤ lim supλmax(A) < ∞,
and max1≤l≤n+m |Wl| → 0;
Then, for l(θ, y) there exist θ̂ and φ̂ such that the conditions of the Extensions
of Theorems 2.1 and 2.2 are satisfied with

G = diag(
√

n, . . . ,
√

n,
√

m1, . . . ,
√

ms)
= diag(gi, 1 ≤ i ≤ q),

H = diag(gik
, 1 ≤ k ≤ a), A is given by (2.62), C = ∂θ/∂φ, B = C ′AC,

and Σ = A + ∆, where ∆ is given by (2.63). Therefore, the asymptotic null
distribution of both χ̂2

w and χ̂2
s is χ2

q−d. The same conclusion holds for lR(θ, y)
as well.

Note that the ith row of ∂θ/∂φ is ∂θi/∂φ′, which is (0, . . . , 0) if i /∈
{i1, . . . , ia}, and (0, . . . , 0, ∂θik

/∂φk, 0, . . . , 0) (kth component nonzero) if i =
ik, 1 ≤ k ≤ a under (2.21).

Theorem 2.5. Suppose that the conditions of Theorem 2.4 are satisfied
except that, in (iii), the condition about A is strengthened to that A → A0,
where A0 > 0, and Σ → Σ0. Then, the conditions of Theorem 2.3 are
satisfied with A = A0, Σ = Σ0, and everything else given by Theorem
2.4. Therefore, the asymptotic null distribution of −2 log R is the same as∑r

j=1 λjξ
2
j , where r = rank{Σ1/2A−1/2(I − P )}, evaluated under H0 with

P = A1/2C(C ′AC)−1C ′A1/2; λjs are the positive eigenvalues of Ql given by
(2.20), again evaluated under H0; and ξjs are independent N(0, 1) random
variables. In particular, if Σ is nonsingular under H0, then r = q − d. The
same conclusion holds for lR(θ, y) as well.

The proof of Theorems 2.1–2.5 can be found in Jiang (2005c).
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It is seen from (2.63) that ∆, and hence Σ, depends on the kurtoses κi,
0 ≤ i ≤ s, in addition to the variance components σ2

i , 0 ≤ i ≤ s. One already
has consistent estimators of σ2

i , 0 ≤ i ≤ s (e.g., the ML or REML estimators).
As for κi, 0 ≤ i ≤ s, they can be estimated by the empirical method of
moments (EMM) of Jiang (2003b).

The extension of Theorem 1 and Theorem 2 without assuming (2.61) is
fairly straightforward, although the results will not be as simple. Note that
Theorems 2.1–2.3 (and their extensions) do not require (2.61). However, there
is a complication in estimating the additional parameters involved in Σ. This
is because, without (2.61), the matrix ∆ also involves the third moments of the
random effects and errors (on the off-diagonal). In such a case, the EMM of
Jiang (2003b) is not directly applicable. Alternatively, Σ can be consistently
estimated by the POQUIM method (see Sections 1.4.2 and 1.8.5), which does
not require (2.61).

2. Existence of moments of ML and REML estimators. Jiang (2000a) es-
tablished the existence of moments of ML and REML estimators under non-
Gaussian linear mixed models (see Section 1.4.1) as an application of a matrix
inequality. Let A1, . . . , As be nonnegative definite matrices. Then, there are
positive constants depending on the matrices such that for all positive num-
bers x1, . . . , xs,

Ai ≤ ci

x2
i

⎛⎝I +
s∑

j=1

xjAj

⎞⎠2

, 1 ≤ i ≤ s.

Now consider a non-Gaussian mixed ANOVA model (see Section 1.2.2.1),
where y = (yi)1≤i≤n. The ML and REML estimators are defined in Sections
1.3.1 and 1.3.2, respectively, and EBLUE and EBLUP in Sections 2.2.1.4 and
2.3.1.3, respectively.

Theorem 2.6. The kth moments (k > 0) of the ML or REML estimators
of σ2

1 , . . . , σ2
s , τ2 are finite, provided that the 2kth moments of yi, 1 ≤ i ≤ n

are finite.

3. Existence of moments of EBLUE and EBLUP. In the same paper, Jiang
(2000a) established the existence of moments of EBLUE and EBLUP as an-
other application of the same matrix inequality. Again, no normality assump-
tion is made. Note that here the only requirement for the variance components
estimators is that they are nonnegative. In the following theorem, the abbre-
viations EBLUEs and EBLUPs stand for the components of EBLUE and
EBLUP, respectively.

Theorem 2.7. The kth moments (k > 0) of EBLUEs and EBLUPs are
finite, provided that the kth moments of yi, 1 ≤ i ≤ n are finite, and the
variance components estimators are nonnegative.
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Because it is always assumed that the second moments of the data are
finite, we have the following conclusion.

Corollary 2.3. The means and MSEs of EBLUE and EBLUP exist as
long as the variance components estimators are nonnegative.

Note 1. Kackar and Harville (1984) showed that the EBLUE and EBLUP
remain unbiased if the variance components are estimated by nonnegative,
even, and translation-invariant estimators (see Section 2.3.1.3). In deriving
their results, Kackar and Harville avoided the existence of the means of
EBLUE and EBLUP. Jiang (1999b) considered a special case of linear mixed
models corresponding to s = 1 in (1.2) and proved the existence of the means.
The above corollary has solved the problem for the general case.

Note 2. The ML and REML estimators are nonnegative by their definitions
(see Section 1.4.1). However, for example, the ANOVA estimators may take
negative values (see Section 1.5.1).

4. The definition of Σn(θ) in Section 2.4.1.2. First consider the case s = 0,
that is, the case of linear regression. In this case, we have yi = x′

iβ + εi, i =
1, . . . , n, where x′

i is the ith row of X, which has full rank p, and εis are i.i.d.
errors with mean 0, variance τ2, and an unknown distribution G(·|τ). Thus,
in this case, θ = (β′, τ2)′. The matrix Σn(θ) is defined as n−1 ∑n

i=1 Var(hi),
where

hi = (1(yi∈Ek) − pik(θ))1≤k≤M −
(

n∑
i=1

∂pi(θ)
∂β′

)
(X ′X)−1xiεi

−1 − x′
i(X

′X)−1xi

n − p

(
n∑

i=1

∂pi(θ)
∂τ2

)
ε2i

with pi(θ) = (pik(θ))1≤k≤M and pik(θ) = Pθ(yi ∈ Ek). Jiang (2001) gives
a more explicit expression of Σn(θ). On the other hand, it may be more
convenient to compute Σ̂n = Σn(θ̂) by a Monte Carlo method, where θ̂ =
(β̂′, τ̂2)′ with β̂ being the least squares estimator and τ̂2 = |y −Xβ̂|2/(n− p).

We now consider another special case, the case s = 1, such that yij =
x′

ijβ + αi + εij , i = 1, . . . , m, j = 1, . . . , ki, where the αis are i.i.d. with mean
0, variance σ2, and an unknown distribution F (·|σ), εijs are i.i.d. with mean
0, variance τ2, and an unknown distribution G(·|τ), and α, ε are independent.
In other words, we consider the nested error regression model (2.48). Write
the model in the standard form y = Xβ + Zα + ε. Let θ = (β′, τ2, γ)′, where
γ = σ2/τ2. Define

Σn(θ) = a−1
n

{
m∑

i=1

Var(hi) + 2Φ′(I − R)Φ

}
,

where I is defined in Section 1.8.3, and hi, Φ, R are defined as follows. Recall
the notation introduced in Section 1.8.3. Redefine p1 = [tr{(Z ′V (γ)Z)2}]1/2.
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Recall p0 =
√

n − p. Let ρ = tr{Z ′V (γ)Z}/p0p1. Let Pij(θ) be the M ×(p+2)
matrix whose (k, r) element is

∂

∂θr

∫
{G(ck − x′

ijβ − u|τ) − G(ck−1 − x′
ijβ − u|τ)}dF (u|σ)

(θr is the rth component of θ). Let Pij [r](θ) be the rth column of Pij(θ), and
Pij [1, p](θ), the matrix, consist of the first p columns of Pij(θ). Define

Φ =
1

1 − ρ2

(
τ4 −τ2ρ

−τ2ρ 1

)(
p−1
0

∑
i,j Pij [p + 1](θ)′

p−1
1

∑
ij Pij [p + 2](θ)′

)
=

(
Φ′

0
Φ′

1

)
,

Ψ = τb(γ)V −1
γ X(X ′V −1

γ X)−1
∑
i,j

Pij [1, p](θ)′

= (Φ′
l)1≤l≤m+n,

where Vγ = V/τ2. Let Si = {l :
∑

i′<i ki′ +1 ≤ l ≤
∑

i′≤i ki′}∪{n+ i}. Write
ω(i) = (ωl)l∈Si , Vj(i, i′) = (Vj(γ)l,l′)l∈Si,l′∈Si′ , j = 0, 1, Ψ(i) = (Φ′

l)l∈Si . Let

hi =

⎛⎝ ki∑
j=1

{1(yij∈Ek) − pijk(θ)}

⎞⎠
1≤k≤M

− Ψ(i)′ω(i)

−
1∑

j=0

ω(i)′Vj(i, i)ω(i)
τ2(1−j)pj

Φj ,

where pijk(θ) = Pθ(yij ∈ Ek). Finally, let R = (rj,j′)j,j′=0,1, where

rj,j′ =
∑m

i=1 tr{Vj(i, i)Vj′(i, i)}
τ2(2−j−j′)pjpj′

.

Finally, in the case of multiple random effect factors, that is, s ≥ 2, Σn(θ) is
defined in a similar way; that is, Σn(θ) = a−1

n {
∑L

l=1 Var(hl) + 2Φ′(I − R)Φ}.
We omit the definitions of h, Φ, and R here and refer the details to Jiang
(2001, Section 4) (I is the same as before).

2.8 Exercises

2.1. Derive explicit expressions of the test statistic (2.3) (in terms of the
yijks) for the two cases considered in Example 2.1 where the exact F -test
applies: (i) testing σ2

1 = 0 under the model without interaction; and (ii) testing
σ2

3 = 0 under the model with interaction.
2.2. Consider the following random effects model,
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yijkl = µ + fi + gj + uij + vjk + wijk + eijkl

(see, e.g., Searle 1971, for notation), i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c,
l = 1, . . . , d, where µ is an unknown mean, eijkl is an error, and all the others
are random effects. Assume that the random effects and errors are independent
such that fi ∼ N(0, σ2

1), gj ∼ N(0, σ2
2), uij ∼ N(0, σ2

3), vjk ∼ N(0, σ2
4),

wijk ∼ N(0, σ2
5), and eijkl ∼ N(0, τ2). Do exact or optimal tests exist for

testing H0: σ2
2 = 0? Please explain. (Hint: Consider Result 2 of Mathew and

Sinha (1988) described in Section 2.1.1.2).
2.3. Derive an expression for −2 log R, where R is the likelihood ratio

(2.6), under the one-way random effects model of Example 2.3 for testing H0:
σ2 = 0. What is the asymptotic distribution of the likelihood-ratio test, that is,
the asymptotic distribution of −2 log R? Study empirically the (asymptotic)
size of the likelihood-ratio test and compare it with the nominal levels. For
the empirical study, let the true parameters be µ = 0.5 and τ2 = 1.0; and
consider sample sizes m = 50, 100, 200 and ki = 5 for all i in all cases.

2.4. Suppose that X1, . . . , Xn are i.i.d. observations from a population
with mean µ and variance σ2, and the problem of interest is to estimate µ. A
well-known estimator is the sample mean, µ̂ = X̄. However, because var(X̄) =
σ2/n, in order to evaluate the precision of µ̂, one needs knowledge about σ2.
Show that an EMM estimator of σ2 is given by σ̂2 = n−1 ∑n

i=1(Xi − X̄)2,
which is the same as the ML estimator when the data are normal.

2.5. Consider a linear regression model

yi = x′
iβ + εi, i = 1, . . . , n ,

where xi = (xi1, . . . , xip)′ is a vector of known covariates; β is a vector of
unknown regression coefficients that are of main interest; and ε1, . . . , εn are
i.i.d. errors with mean 0 and variance σ2. The model can be expressed as
y = Xβ + ε, where the ith row of X is x′

i. Assume that rank(X) = p. Then,
the least squares (LS) estimator of β is given by

β̂ = (X ′X)−1X ′y .

Although β is of main interest, because Var(β̂) = σ2(X ′X)−1, to find the
standard errors of the estimators one needs knowledge about σ2. Show that
an EMM estimator of σ2 is σ̂2 = n−1 ∑n

i=1(yi − x′
iβ̂)2, which, again, is the

ML estimator when normality is assumed.
2.6. Show that the estimating function M(β, σ2, κ, y) defined above (2.16)

is unbiased in the sense that E{M(β, σ2, κ, y)} = 0 when β, σ2, κ correspond
to the true parameters.

2.7. Show that the EMM estimators derived in closed form in Example
2.2 (continued) below Lemma 2.1 are consistent, provided that m → ∞ and
k ≥ 2. You may assume that σ̂2

0 and σ̂2
1 are the REML estimators and that

they are consistent.
2.8. Show that, in the balanced one-way random effects model with the

Hartley–Rao form of variance components, the POQUIM estimator of the
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asymptotic variance of the REML estimator of γ, that is, the diagonal element
of the POQUIM estimator of the asymptotic covariance matrix of the REML
estimator corresponding to γ̂, is given by Σ̂R,11 in Example 2.2 (Continued)
in Section 2.1.2.2.

2.9. This and the next three exercises concern Example 2.2 (Continued) in
Section 2.1.2.4. Verify the expression for the Gaussian log-likelihood, l(ψ, y),
given there. Show that E(MSA) = 1+kγ, therefore, under the null hypothesis,
the probability approaches one as m → ∞, so that the estimator φ̂2 is well
defined.

2.10. Continuing with the previous exercise, verify that the W-test statistic
for H0: λ = 1 and γ > 1 is given by

χ̂2
w =

(
2k

k − 1
+ κ̂0

)−1

mk(MSE − 1)2,

where κ̂0 may be chosen as the EMM estimator of κ0 given in Example 2.2
(Continued) below Lemma 2.1. Also show that 2k/(k − 1) + κ0 > 0 unless ε211
is a constant with probability one.

2.11. Continuing with the previous exercise, show that the S-test statistic
is identical to the W-test statistic in this case.

2.12. Continuing with the previous exercise, show that the L-test statistic
is equal to

−2 log R = m(k − 1){MSE − 1 − log(MSE)}

in this case. Furthermore, show that the asymptotic null distribution of the
test statistic is λ1χ

2
1, where λ1 = 1 + {(k − 1)/2k}κ0, which is estimated by

1 + {(k − 1)/2k}κ̂0. Note that the asymptotic null distribution is χ2
1 if the

errors are normal but regardless of the normality of the random effects. (Hint:
Use Theorem 2.5.)

2.13. Consider the balanced one-way random effects model of Example
2.2. Consider the Hartley–Rao form of variance components λ = τ2 and γ =
σ2/τ2. Suppose that one is interested in constructing an exact confidence
interval for γ. Consider the following quantity

F =
MSA

(1 + kγ)MSE
,

where MSA = SSA/(m − 1) and MSE = SSE/m(k − 1). Show that, under
normality, F has an F-distribution with m−1 and m(k−1) degrees of freedom.
Furthermore, show that, given ρ (0 < ρ < 1), an exact (1 − ρ)% confidence
interval for γ is [

1
k

(
R
FU

− 1
)

,
1
k

(
R
FL

− 1
)]

,

where R = MSA/MSE, FL = Fm−1,m(k−1),1−ρ/2 and FU = Fm−1,m(k−1),ρ/2.
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2.14. Consider the one-way random effects model of Example 2.3. Let cij ,
1 ≤ j ≤ ki be constants such that

∑ki

j=1 cij = 0 and
∑ki

j=1 c2
ij = 1 − 1/ki.

Define ui = ȳi· +
∑ki

j=1 cijyij , 1 ≤ i ≤ m. Prove the following.
a. The random variables u1, . . . , um are independent and normally dis-

tributed with mean µ and variance σ2 + τ2.
b. The quantity χ2 =

∑m
i=1(ui − ū)2/(σ2 + τ2) is distributed as χ2

m−1.
2.15. In Exercise 2.14, find an exact confidence interval for τ2, the variance

of the error εij .
2 .16 ∗. In the balanced one-way random effects model of Example 2.2, it

is known that a UMVU estimator of ζ = cλ1 + λ2 is ζ̂ = cS2
1 + S2

2 , where S2
1

and S2
2 are MSA and MSE, respectively, defined in Example 1.1 (continued)

in Section 1.5.1.1.
a. Show that S2

j is a consistent estimator of λj , j = 1, 2.

b. Show that (ζ̂ − ζ)/
√

var(ζ̂) converges in distribution to the standard
normal distribution.

2.17. Show that, in Example 2.8, the BLUE is given by (2.25) and (2.26)
and its covariance matrix is given by (2.27). How do these formulae compare
with the corresponding expressions under a linear regression model, that is,
those for the least squares estimators? and when do the former reduce to the
latter?

2.18. Show that, in Section 2.3.1.2, the logarithm of the joint pdf of α and
y can be expressed as (2.36). Furthermore, derive Henderson’s mixed model
equations (2.37).

2.19. For the following linear mixed models determine the order of d∗
above (2.39).

a. One-way random effects model (Example 1.1)
b. Two-way random effects model (Example 1.2)
c. Example 2.8, which is a special case of the nested error regression model
2.20. In Example 2.3 (continued) in Section 2.4.1.1, let the true parameters

be µ = −0.5, σ2 = 2.0, and τ2 = 1.0. Also, let m = 100 and ki = 5, 1 ≤ i ≤ m.
In the following, the errors are always generated from a normal distribution.

a. Generate the random effects from a normal distribution. Make a Q–Q
plot to assess normality of the random effects, using REML estimators of the
parameters.

b. Generate the random effects from a double-exponential distribution
(with the same variance). Make a Q–Q plot to assess normality of the random
effects, using REML estimators of the parameters.

c. Generate the random effects from a centralized-exponential distribution
(with the same variance). Here a centralized-exponential distribution is the
distribution of ξ−E(ξ), where ξ has an exponential distribution. Make a Q–Q
plot to assess normality of the random effects, using REML estimators of the
parameters.

d. Compare the plots in a, b, and c. What do you conclude?
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2.21. Show that, in Example 2.15, ρn ∼ k and νn ∼ mk as m → ∞ (k
may or may not go to ∞). Also show that, in Example 2.15 (continued) below
(2.37), ηn ∼ mk.

2.22. Show that, in Section 2.5.1, under normal hierarchy and when b = β
and B → 0, the likelihood (2.55) reduces to the normal likelihood of Section
1.3.1 when the prior for β is a point mass at β.

2.23. Show that, in Section 2.5.1, under normal hierarchy the likelihood
(2.55) reduces to the normal restricted likelihood of Section 1.3.21 when the
prior for β is noninformative.

2.24. Consider Example 2.18. Let the priors be such that σ2 ∝ 1/σ2,
τ2 ∝ 1/τ2, and σ2, τ2 independent. Derive the likelihood (2.55) and posterior
(2.56). Is the posterior proper (even though the priors are improper)?

2.25. Show that, under normal hierarchy, the posterior of β is multivariate
normal with E(β|y) = (X ′V −1X + B−1)−1(X ′V −1y + B−1b) and Var(β|y) =
(X ′V −1X +B−1)−1. Similarly, the posterior of α is multivariate normal with
E(α|y) = (Z ′LZ + G−1)−1Z ′L(y − Xb) and Var(α|y) = (Z ′LZ + G−1)−1,
where L = R−1 − R−1X(B−1 + X ′R−1X)−1X ′R−1.

2.26. Show that, under normal hierarchy and when B−1 → 0, which
corresponds to the case where the prior for β is noninformative, one has
E(β|y) → (X ′V −1X)−1X ′V −1y = β̃, which is the BLUE; similarly, E(α|y) →
GZ ′V −1(y − Xβ̃).
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Generalized Linear Mixed Models: Part I

3.1 Introduction

For the most part, linear mixed models have been used in situations where
the observations are continuous. However, there are cases in practice where
the observations are discrete, or categorical. For example, the number of heart
attacks of a potential patient during the past year takes the values 0, 1, 2,
..., and therefore is a discrete random variable. McCullagh and Nelder (1989)
proposed an extension of linear models, called generalized linear models, or
GLM. They noted that the key elements of a classical linear model, that is,
a linear regression model, are (i) the observations are independent, (ii) the
mean of the observation is a linear function of some covariates, and (iii) the
variance of the observation is a constant. The extension to GLM consists of
modification of (ii) and (iii) above; by (ii)′ the mean of the observation is
associated with a linear function of some covariates through a link function;
and (iii)′ the variance of the observation is a function of the mean. Note
that (iii)′ is a result of (ii)′. See McCullagh and Nelder (1989) for details.
Unlike linear models, GLMs include a variety of models that includes normal,
binomial, Poisson, and multinomial as special cases. Therefore, these models
are applicable to cases where the observations may not be continuous. The
following is an example.

Example 3.1. On January 27, 1986, hours before the launch of the space
shuttle Challenger, a three-hour teleconference was under way. The discus-
sions had focused on a single topic, that is, whether the scheduled launch
next morning should be called off, because of the unusually cold temperature
forecast for launch time, 31 degrees fahrenheit, or if it should go ahead as
scheduled. After numerous conversations, and examining data from the pre-
vious launches, a decision was made that gave the green light for the launch.

The Rogers Commission, which was formed after the Challenger disaster,
concluded that the accident was caused by the failure of an unknown number
of O-rings, which resulted in a combustion gas leak through a joint in one of
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the booster rockets. There was a total of six primary O-rings and six secondary
O-rings that were supposed to seal the field joints of the rockets. Failures of
O-rings had been reported in the previous launches and, during the three-
hour teleconference, a plot was presented that showed a possible association
between the number of O-ring failures and the temperature at launch time.
However, an important piece of information was missing. The missing data
should have indicated the many previous launches, in which there were no
O-ring failures, at all (see figures on page 946 of Dalal et al. 1989).

Dalal et al. (1989) proposed a logistic regression model, which is a special
case of GLM, to analyze the risk associated with O-ring failures in the space
shuttle. Their studies focused on the primary O-ring failures, because data
of previous launches had suggested that they were the majority of O-ring
failures. In fact, there was only one incident of secondary damage among the
23 previous launches. In other words, a substantial amount of primary O-ring
failures would have doomed the space shuttle regardless of the secondaries.
It was assumed that, given the temperature t and pressure s, the number of
thermally distressed primary O-rings X is a binomial random variable with
n = 6 and p = p(t, s). Here n denotes the total number of independent trials
and p the probability of success in a single trial. Furthermore, it was assumed
that the probability p(t, s) is associated with the temperature and pressure
through a logistic link function:

logit{p(t, s)} = α + βt + γs,

where logit(p) = log{p/(1 − p)}. Using this model, Dalal et al. calculated the
estimated probability of at least one complete joint failure at the temperature
of 31◦F and pressure of 200 psi as 13%, which is 600% higher than that at
the temperature of 60◦F and same pressure.

One element that GLMs have in common with linear models is that the
observations are assumed to be independent. In many cases, however, the
observations, or responses, are correlated, as well as discrete or categorical. For
example, if yi1, . . . , yi10 indicate whether the ith individual (person) visited a
doctor during each of the past ten years, that is, yij = 1 if the ith individual
visited a doctor within the jth year in the past, and yij = 0 otherwise, then
the responses from the same individual are likely to be correlated. On the
other hand, the responses are binary and hence not continuous. As mentioned
earlier, the linear mixed models discussed in the previous chapters do not
apply to such cases. It is clear now that what one needs is an extension of the
linear mixed model to cases where the responses are both correlated and, at
the same time, discrete or categorical. We consider such an extension next.

3.2 Generalized Linear Mixed Models

To motivate the extension, let us first consider an alternative expression of the
Gaussian linear mixed model introduced in Chapter 1. Suppose that, given
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a vector of random effects α, the observations y1, . . . , yn are (conditionally)
independent such that yi ∼ N(x′

iβ + z′
iα, τ2), where xi and zi are known

vectors, β is an unknown vector of regression coefficients, and τ2 is an unknown
variance. Furthermore, suppose that α is multivariate normal with mean 0
and covariance matrix G, which depends on a vector θ of unknown variance
components. Let X and Z be the matrices whose ith rows are x′

i and z′
i,

respectively. It is easy to see (Exercise 3.1) that this leads to the linear mixed
model (1.1) with normality and R = τ2I.

The two key elements in the above that define a Gaussian linear mixed
model are (i) conditional independence (given the random effects) and a con-
ditional distribution and (ii) the distribution of the random effects. These two
elements may be used to define a generalized linear mixed model, or GLMM.
Suppose that, given a vector of random effects α, the responses y1, . . . , yn are
(conditionally) independent such that the conditional distribution of yi given
α is a member of the exponential family with pdf

fi(yi|α) = exp
{

yiξi − b(ξi)
ai(φ)

+ ci(yi, φ)
}

, (3.1)

where b(·), ai(·), ci(·, ·) are known functions, and φ is a dispersion parameter
which may or may not be known. The quantity ξi is associated with the
conditional mean µi = E(yi|α), which, in turn, is associated with a linear
predictor

ηi = x′
iβ + z′

iα, (3.2)

where xi and zi are known vectors and β a vector of unknown parameters
(the fixed effects), through a known link function g(·) such that

g(µi) = ηi. (3.3)

Furthermore, it is assumed that α ∼ N(0, G), where the covariance matrix G
may depend on a vector θ of unknown variance components.

Note that, according to the properties of the exponential family, one has
b′(ξi) = µi. In particular, under the so-called canonical link, one has

ξi = ηi;

that is, g = h−1, where h(·) = b′(·). Here h−1 represents the inverse func-
tion (not reciprocal) of h. For example, a table of canonical links is given in
McCullagh and Nelder (1989, pp. 32). We now consider some special cases.

Example 3.2 (Normal linear mixed model). As mentioned, the normal lin-
ear mixed model (1.1), in which R = τ2I, is a special case of the GLMM,
in which the (conditional) exponential family is normal with mean µi and
variance τ2, and the link function is g(µ) = µ. Note that, in this case, the
dispersion parameter φ = τ2, which is unknown.
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Example 3.3 (Mixed logistic model). Suppose that, given the random ef-
fects α, binary responses y1, . . . , yn are conditionally independent Bernoulli.
Furthermore, with pi = P(yi = 1|α), one has

logit(pi) = x′
iβ + z′

iα,

where xi and zi are as in the definition of GLMM. This is a special case of
the GLMM, in which the (conditional) exponential family is Bernoulli, and
the link function is g(µ) = logit(µ). Note that in this case the dispersion
parameter φ = 1.

Example 3.4 (Poisson log-linear mixed model). The Poisson distribution
is often used to model responses that are counts. Supposed that, given the
random effects α, the counts y1, . . . , yn are conditionally independent such
that yi|α ∼ Poisson(λi), where

log(λi) = x′
iβ + z′

iα,

and xi, zi are as in the definition of GLMM. Again, this is a special case of
GLMM, in which the (conditional) exponential family is Poisson and the link
function is g(µ) = log(µ). The dispersion parameter φ in this case is again
equal to 1.

Note that in all three examples above the link function is canonical. How-
ever, noncanonical links are, indeed, used in practice. For example, in Example
3.3, another link function that is often used is Probit; that is, g(µ) = Φ−1(µ),
where Φ is the cdf of standard normal distribution.

Unlike GLM, the responses under a GLMM are (marginally) correlated.
For such reason, GLMM is often used to model correlated discrete or categor-
ical responses. In the following we give some examples of applications.

3.3 Real-Life Data Examples

3.3.1 The Salamander Mating Experiments

A well-known example that was also one of the first published in the context
of GLMM was in McCullagh and Nelder’s book, Generalized Linear Models
(1989, §14.5). The example involved data from mating experiments regarding
two populations of salamanders, Rough Butt and Whiteside. These popula-
tions, which are geographically isolated from each other, are found in the
southern Appalachian mountains of the eastern United States. The question
whether the geographic isolation had created barriers to the animals’ inter-
breeding was thus of great interest to biologists studying speciation.

Three experiments were conducted during 1986, one in the summer and
two in the autumn. In each experiment there were 10 males and 10 females
from each population. They were paired according to the design given by
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Table 14.3 in McCullagh and Nelder (1989). The same 40 salamanders were
used for the summer and first autumn experiments. A new set of 40 animals
was used in the second autumn experiment. For each pair, it was recorded
whether a mating occurred, 1, or not, 0.

The responses are binary and clearly correlated, so that neither linear
mixed models nor GLM would apply. McCullagh and Nelder (1989) pro-
posed the following mixed logistic model with crossed random effects. For
each experiment, let ui and vj be the random effects corresponding to the
ith female and jth male involved in the experiment. Then, on the logis-
tic scale, the probability of successful mating is modeled in term of fixed
effects+ui + vj . It was further assumed that the random effects are indepen-
dent and normally distributed with means 0 and variances σ2 for the females
and τ2 for the males. Under these assumptions, a GLMM may be formu-
lated as follows. Note that there are 40 different animals of each sex. Suppose
that, given the random effects u1, . . . , u40 for the females, and v1, . . . , v40 for
the males, the binary responses yijk are conditionally independent such that
logit{P(yijk = 1|u, v)} = x′

ijβ + ui + vj . Here yijk represents the kth binary
response corresponding to the same pair of ith female and jth male, xij is a
vector of fixed covariates, and β is an unknown vector of regression coefficients.
More specifically, xij consists of an intercept; an indicator of Whiteside female
WSf , an indicator of Whiteside male WSm, and the product WSf ·WSm, rep-
resenting an interaction.

It should be pointed out that there is a simplification of the potential
correlations among the responses. More specifically, the binary responses yijk

may not be conditionally independent given the random effects. To see this,
note that the same group of animals was involved in two of the three exper-
iments (summer and first autumn experiments). It is unclear whether serial
correlations exist between the two experiments. Note that conditional inde-
pendence is an essential part of the definition of GLMM given in the previous
section. Alternatively, one could pool the responses from the two experiments
involving the same group of animals, as suggested by McCullagh and Nelder
(1989, §4.1), so let yij· = yij1 + yij2, where yij1 and yij2 represent the re-
sponses from the summer and first autumn experiments, respectively. This
may avoid the issue of conditional independence, however, a new problem
emerges. The problem is that, given the female and male (random) effects,
the conditional distribution of yij· is not an exponential family. Note that yij·
is not necessarily binomial given the random effects, because of the potential
serial correlation. Although the (conditional) exponential family assumption
is another important part of the GLMM defined in Section 3.2, it may be
replaced by weaker assumptions. See Section 4.2.4 for details. Such an exten-
sion of GLMM is similar to the extension of Gaussian linear mixed models
to non-Gaussian ones, which we have extensively discussed in the previous
chapters.

This example is further discussed several times in the sequel.
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3.3.2 A Log-Linear Mixed Model for Seizure Counts

As mentioned earlier, Poisson distribution is often used to model responses
that are counts. However, in many cases there is overdispersion (or underdis-
persion), so that the variance of the response does not follow that of a Poisson
distribution. Thall and Vail (1990) provided an example of such cases. In Ta-
ble 2 of their article, the authors presented data from a clinical trial involving
59 epileptics. These patients were randomized to a new drug (treatment) or
a placebo (control). The number of epileptic seizures was recorded for each
patient during an eight-week period, namely, one seizure count during the
two-week period before each of four clinic visits. Baseline seizures and the
patient’s age were available and treated as covariates. An interesting feature
of this dataset is that there is apparent overdispersion, heteroscedasticity,
and within-patient correlation, as demonstrated by Table 3 of Thall and Vail
(1990). Another feature of the data is that they are longitudinal; that is, the
responses were collected over time.

Breslow and Clayton (1993) reanalyzed the data by proposing a Poisson
log-linear mixed model. They assumed that the seizure count yij for the ith
patient on the jth visit (i = 1, . . . , 59, j = 1, . . . , 4) was associated with
an individual-specific bivariate random effect (α1i, α2i), and that, given the
random effect, yij was conditionally Poisson distributed with mean µij . Fur-
thermore, the conditional mean µij satisfies

log(µij) = x′
ijβ + α1i + α2i(Visitk/10) + εij ,

where xij is a vector of covariates including indicators of the treatment, visit,
the logarithm of 1/4 times the number of baseline seizures (Base), the loga-
rithm of age (Age) and some interactions; Visitk is the visit code that equals
−3, −1, 1, and 3, respectively, for k = 1, . . . , 4, and εij is a random error that
represents overdispersion in addition to that introduced by the individual-
specific random effects. It was assumed that the random effects α1i and α2i

are bivariate normal with zero means, unknown variances, and correlation,
and that the error εij is also normal with zero mean and unknown variance.

Breslow and Clayton (1993) fitted the model, which is a special case of
GLMM introduced in the previous section, using a method of approximate
inference. This method is discussed later.

3.3.3 Small Area Estimation of Mammography Rates

One area of application of GLMM is small area estimation. In surveys, di-
rect estimates for small geographic areas or subpopulations are likely to yield
inaccurate results, because of the small sample sizes for such areas or subpop-
ulations. Therefore, it is necessary to “borrow strength” from related areas
or other sources to find more accurate estimates for a given small area or,
simultaneously, for several small areas. One method of borrowing strength is
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via statistical modeling. For continuous responses, such an idea has led to a
linear mixed model approach, in which there is a random effect corresponding
to each small area. See Ghosh and Rao (1994) and Rao (2003) for methods of
small area estimation and, in particular, the use of linear mixed models in this
field. Recently, several authors have used GLMM for small area estimation in
cases of binary responses. See, for example, Malec el al. (1997), Ghosh et al.
(1998), Jiang and Lahiri (2001). The following is a similar example given by
Jiang et al. (2001).

The Behavioral Risk Factor Surveillance System (BRFSS) is a Center for
Disease Control and Prevention coordinated, state-based random-digit-dialing
telephone survey. One data set of particular interest involved the use of mam-
mography among women aged 40 or older, from 1993 to 1995, and for areas
from three federal regional offices: Boston (including Maine, Vermont, Mas-
sachusetts, Connecticut, Rhode Island, and New Hampshire), New York (in-
cluding New York and New Jersey) and Philadelphia (including Pennsylvania,
Delaware, Washington DC, Maryland, Virginia, and West Virginia). Overall,
there are 118 health service areas (HSAs) in the region. Initial analysis of the
data suggested that mammography rates gradually increase from age groups
40–44 to 50–54, and then decrease. To catch this curvature phenomena, Jiang
et al. (2001) proposed a mixed logistic model for the proportion of women
having had mammography. Under this model, there is a random effect cor-
responding to each HSA and, given a HSA, the proportion of women having
had mammography, p, satisfies

logit(p) = β0 + β1 ∗ age + β2 ∗ age2 + β3 ∗ Race + β4 ∗ Edu + HSA effect,

where Age is grouped as 40–44, 45–49, ..., 75–79, and 80 and over; Race as
white and others; and Edu as the percentage of people in the HSA aged 25 or
older with at least a high school education.

In Jiang et al. (2001), the authors did not assume that the random ef-
fects are normally distributed. In fact, a Q–Q plot had suggested otherwise.
Nevertheless, the method that the authors used for inference about the model
which, again, is a special case of LMM, did not require such an assumption.
The method is discussed in the sequel.

3.4 Likelihood Function under GLMM

The preceding sections demonstrated the usefulness of GLMM in statistical
applications. The rest of this chapter, and also the next chapter, are devoted
to inference about these models. Unlike linear mixed models, the likelihood
function under a GLMM typically does not have a closed-form expression
(with, of course, the exception of the normal case). In fact, such a likelihood
may involve high-dimensional integrals that cannot be evaluated analytically.
To understand the computational difficulties, we consider a simple example.
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Example 3.5. Suppose that, given the random effects u1, . . . , um1 and
v1, . . . , vm2 , binary responses yij , i = 1, . . . , m1, j = 1, . . . , m2 are condi-
tionally independent such that, with pij = P(yij = 1|u, v),

logit(pij) = µ + ui + vj ,

where µ is an unknown parameter, u = (ui)1≤i≤m1 , and v = (vj)1≤j≤m2 .
Furthermore, the random effects u1, . . . , um1 and v1, . . . , vm2 are independent
such that ui ∼ N(0, σ2

1), vj ∼ N(0, σ2
2), where the variances σ2

1 and σ2
2 are

unknown. Thus, the unknown parameters involved in this model are ψ =
(µ, σ2

1 , σ2
2)′. It can be shown (Exercise 3.3) that the likelihood function under

this model for estimating ψ can be expressed as

c − m1

2
log(σ2

1) − m2

2
log(σ2

2) + µy··

+ log
∫

· · ·
∫ ⎡⎣m1∏

i=1

m2∏
j=1

{1 + exp(µ + ui + vj)}−1

⎤⎦
× exp

⎛⎝m1∑
i=1

uiyi· +
m2∑
j=1

vjy·j − 1
2σ2

1

m1∑
i=1

u2
i − 1

2σ2
2

m2∑
j=1

v2
j

⎞⎠
du1 · · · dum1dv1 · · · dvm2 , (3.4)

where c is a constant, y·· =
∑m1

i=1
∑m2

j=1 yij , yi· =
∑m2

j=1 yij , and y·j =∑m1
i=1 yij . The multidimensional integral involved in (3.4) has no closed-form

expression, and it cannot be further simplified. Furthermore, such an integral
is difficult to evaluate even numerically. For example, if m = n = 40, the
dimension of the integral will be 80. To make it even worse, the integrand
involves a product of 1600 terms with each term less than one. This makes it
almost impossible to evaluate the integral using a naive Monte Carlo method.
To see this, suppose that u1, . . . , u40 and v1, . . . , v40 are simulated random
effects (from the normal distributions). Then, the product in the integrand
(with m = n = 40) is numerically zero. Therefore, numerically, the law of
large numbers, which is the basis of the (naive) Monte Carlo method, will not
yield anything but zero without a huge Monte Carlo sample size.

The example shows that, although maximum likelihood and restricted
maximum likelihood methods have become standard procedures in linear
mixed models, likelihood-based inference in GLMM is still computationally
challenging. For such a reason, there have been several approaches to inference
about GLMM, trying either to solve, or to avoid, the computational difficul-
ties. The approach aiming at developing computational methods for the max-
imum likelihood estimation was represented by Monte Carlo EM algorithm
(McCulloch 1997; Booth and Hobert 1999) and a method of estimation by
parts (Song et al. 2003). The nonlikelihood-based computationally attractive
methods may be classified as approximate inference (Breslow and Clayton
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1993; Lin and Breslow 1996; Lee and Nelder 1996; among others) and gener-
alized estimating equation (GEE; e.g., Diggle et al. 1996, §7.5; Jiang 1998a;
Jiang and Zhang 2001). The Bayesian method based on the Gibbs sampler
is similar to the Monte-Carlo EM method (e.g., Zeger and Karim 1991). In
this chapter, we discuss the approximate inference and prediction of random
effects. Monte Carlo EM, Bayesian, and GEE methods as well as other related
topics are left to the next chapter.

3.5 Approximate Inference

3.5.1 Laplace Approximation

When the exact likelihood function is difficult to compute, approximation
becomes one of the natural alternatives. A well-known method of approximate
integrals is named after Laplace. Suppose that one wishes to approximate an
integral of the form ∫

exp{−q(x)}dx, (3.5)

where q(·) is a “well-behaved” function in the sense that it achieves its mini-
mum value at x = x̃ with q′(x̃) = 0 and q′′(x̃) > 0. Then, we have, by Taylor
expansion,

q(x) = q(x̃) +
1
2
q′′(x̃)(x − x̃)2 + · · · ,

which yields an approximation to (3.5) (Exercise 3.4),∫
exp{−q(x)}dx ≈

√
2π

q′′(x̃)
exp{−q(x̃)}. (3.6)

There is a multivariate extension of (3.6), which is more useful in our case.
Let q(α) be a well-behaved function that attains its minimum value at α = α̃
with q′(α̃) = 0 and q′′(α̃) > 0, where q′ and q′′ denote the gradient (i.e., the
vector of first derivatives) and Hessian (i.e., the matrix of second derivatives)
of q, respectively, and the notation A > 0 means that the matrix A is positive
definite. Then, we have∫

exp{−q(α)}dα ≈ c|q′′(α̃)|−1/2 exp{−q(α̃)}, (3.7)

where c is a constant depending only on the dimension of the integral (Exercise
3.4), and |A| denotes the determinant of matrix A.
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3.5.2 Penalized Quasi-Likelihood Estimation

With Laplace approximation, one may proceed as in maximum likelihood,
treating the approximated likelihood function as the true likelihood function.
The method may be illustrated under a more general framework as an approxi-
mate qausi-likelihood estimation approach. Suppose that the conditional mean
of the response yi (1 ≤ i ≤ n), given the random effects α = (α1, . . . , αm)′,
satisfies

E(yi|α) = h(x′
iβ + z′

iα), (3.8)

where β is a vector of unknown parameters (the fixed effects), xi, zi are
known vectors, and h(·) is the inverse function of a known link function g(·).
Furthermore, write µi = E(yi|α) and ηi = g(µi) = x′

iβ + z′
iα. It is assumed

that the conditional variance satisfies

var(yi|α) = ai(φ)v(µi), (3.9)

where φ is an additional dispersion parameter, ai(·) is a known function that
is often equal to φ/wi with wi being a known weight, and v(·) is a known
variance function. Note that the assumptions made so far are weaker than
that in the definition of GLMM (see section 3.2), in which it is assumed that
the conditional distribution of yi given α is a member of the exponential
family; that is, (3.1) holds.

1. Derivation of PQL. Under the additional assumption that y1, . . . , yn

are conditionally independent given α, and that α has a multivariate normal
distribution with mean 0 and covariance matrix G, that is, α ∼ N(0, G), where
G is specified up to a vector θ of dispersion parameters, a quasi-likelihood
function based on y = (y1, . . . , yn)′ may be expressed as

LQ ∝ |G|−1/2
∫

exp

{
−1

2

n∑
i=1

di − 1
2
α′G−1α

}
dα, (3.10)

where the subscript Q indicates quasi-likelihood, and

di = −2
∫ µi

yi

yi − u

ai(φ)v(u)
du

is known as the (quasi-) deviance. The term is drawn from generalized linear
models, because under the assumption that the conditional distribution of yi

given α is a member of the exponential family with conditional pdf (3.1), in
which ai(φ) = φ/wi, di is equal to the scaled difference 2φ{l(yi; yi)−l(yi; µi)},
where l(y; µ) denotes the conditional likelihood of the observation y given its
mean µ (e.g., McCullagh and Nelder 1989, §2.3).

Now, using the Laplace approximation (3.7), the logarithm of LQ, denoted
by lQ, may be expressed as
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lQ ≈ c − 1
2

log |G| − 1
2

log |q′′(α̃)| − q(α̃), (3.11)

where c does not depend on the parameters,

q(α) =
1
2

(
n∑

i=1

di + α′G−1α

)
,

and α̃ minimizes q(α). Typically, α̃ is the solution to the equation q′(α) = 0,
that is,

G−1α −
n∑

i=1

yi − µi

ai(φ)v(µi)g′(µi)
zi = 0, (3.12)

where µi = x′
iβ + z′

iα. It can be shown that

q′′(α) = G−1 +
n∑

i=1

ziz
′
i

ai(φ)v(µi){g′(µi)}2 + r, (3.13)

where the remainder term r has expectation 0 (Exercise 3.5). If we denote the
term in the denominator of (3.13) by w−1

i , and ignore the term r, assuming
that it is in probability of lower order than the leading terms, then we have a
further approximation

q′′(α) ≈ Z ′WZ + G−1, (3.14)

where Z is the matrix whose ith row is z′
i, and W = diag(w1, . . . , wn). Note

that the quantity wi is known as the GLM iterated weights (e.g., McCullagh
and Nelder 1989, §2.5). By combining the approximations (3.11) and (3.13),
one obtains

lQ ≈ c − 1
2

(
log |I + Z ′WZG| +

n∑
i=1

d̃i + α̃′G−1α̃

)
, (3.15)

where d̃i is di with α replaced by α̃.
A further approximation may be obtained by assuming that the GLM

iterated weights vary slowly as a function of the mean (Breslow and Clayton
1993, pp. 11). Then, because the first term inside the (· · ·) in (3.15) depends
on β only through W (the estimation of θ is considered later), one may ignore
this term and thus approximate lQ by

lPQ ≈ c − 1
2

(
n∑

i=1

d̃i + α̃′G−1α̃

)
. (3.16)

Equation (3.16) is related to the penalized quasi-log-likelihood, or PQL (Green
1987), as the notation has indicated, by the following observation. Recall
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that α̃ minimizes q(α) defined below (3.11). This means that, given β, α̃ is
the maximizer of lPQ. Because this maximizer depends on β, we may write
α̃ = α̃(β). For fixed θ, let β̂ be the maximizer of lPQ as a function of β. Then,
it is easy to see that β̂, α̂ jointly maximize Green’s PQL (Green 1987),

lPQ(β, α) = −1
2

(
n∑

i=1

di + α′G−1α

)
(3.17)

as a function of β and α, where α̂ = α̃(β̂). Note that lPQ(β, α) is the negative
of q(α) defined below (3.11).

2. Computational procedures. The standard method of maximizing (3.17)
involves solving a system of nonlinear equations, namely, ∂lPQ/∂β = 0 and
∂lPQ/∂α = 0, or, equivalently,

n∑
i=1

(yi − µi)xi

ai(φ)v(µi)g′(µi)
= 0, (3.18)

n∑
i=1

(yi − µi)zi

ai(φ)v(µi)g′(µi)
− G−1α = 0. (3.19)

In practice, there are often a large number of random effects involved in a
GLMM. For example, in the salamander mating experiments discussed in
Section 3.3.1, the number of random effects associated with the female and
male animals is 80. In the BRFSS survey considered in Section 3.3.3, the
number of random effects corresponding to the small areas is 118. This means
that the solution of (3.18) and (3.19) is in a high-dimensional space. In other
words, one has to simultaneously solve a large number of nonlinear equations.
It is well known that standard procedures of solving nonlinear systems such as
Newton-Raphson may be inefficient and extremely slow when the dimension
of the solution is high. In fact, even in the linear case, directly solving a large
equation system, such as the BLUP equations discussed below, may involve
inverting a large matrix, which may still be computationally burdensome. Due
to such concerns, Jiang (2000b) developed a nonlinear Gauss–Seidel algorithm
for solving (3.18) and (3.19). The author showed that the algorithm converges
globally in virtually all typical situations of GLMM.

Alternatively, Breslow and Clayton (1993) proposed an iterative procedure
for solving (3.18) and (3.19) by modifying the Fisher scoring algorithm devel-
oped by Green (1987). An attractive feature of the Breslow–Clayton procedure
is that it exploits a close correspondence with the well-known mixed model
equations (Henderson et al. 1959), which leads to the BLUP in linear mixed
models (see Section 2.3.1.2). First define a working vector ỹ = (ỹi)1≤i≤n,
where ỹi = ηi + g′(µi)(yi − µi), and where ηi and µi are evaluated at the
current estimators of β and α. Then, the solution to (3.18) and (3.19) via
Fisher scoring may be expressed as the iterative solution to the system
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X ′WX X ′WZ
Z ′WX G−1 + Z ′WZ

)(
β
α

)
=

(
X ′W
Z ′W

)
ỹ. (3.20)

It is seen that (3.20) is just (2.37) with R−1 replaced by W and y by ỹ. Note
that, because W depends on β and α, it has to be updated at each iteration.
Equivalently, the solution to (3.20) may be expressed in the following way

β = (X ′V −1X)−1X ′V −1ỹ, (3.21)
α = GZ ′V −1(ỹ − Xβ), (3.22)

where V = W−1 +ZGZ ′, assuming that inverse matrices exist. These suggest
that one may first use (3.21) to update β, and then (3.22) to update α, and
so on. Although (3.21) and (3.22) look simple, some potential computational
difficulties may still exist. To see this, note that V has dimension n, which is
the total number of observations. Thus, for a large dataset, the inversion of V
may be computationally burdensome, unless V has a certain special structure,
such as blockdiagonal.

3. Variance components. Typically, a GLMM involves a vector θ of disper-
sion parameters, or variance components. In practice, these variance compo-
nents are unknown, and therefore have to be estimated, before any inference
can be made. Note that in the above derivations θ has been held fixed. For
example, the right sides of (3.21) and (3.22) depend on θ. Therefore, these are
not estimators unless θ is known or estimated. Breslow and Clayton (1993)
proposed that one substitutes the maximizer of (3.17), say, β̃(θ) and α̃(θ), into
(3.15), and thus obtains a profile quasi-log-likelihood function. Furthermore,
the authors suggested further approximations that led to a similar form of
REML in linear mixed models (see Section 1.3.2). See Breslow and Clayton
(1993, pp. 11–12) for details.

4. Consistency of PQL estimators. It is clear that there are a number of
approximations involved in deriving the PQL. Therefore, it may not be sur-
prising to know that the approximations have brought bias to the resulting
estimators. In fact, they did. The question is whether such a bias is, in some
sense, ignorable. It is now known that the PQL estimators are inconsistent
(e.g., Jiang 1998). In other words, the bias due to the approximations will not
vanish, no matter how large the sample size. Recognizing the problem of bias,
Lin and Breslow (1996) proposed a bias correction to PQL based on second-
order Laplace approximation. The second-order approximation improves the
first-order one. As a result, the bias in PQL is significantly reduced, as was
demonstrated by Lin and Breslow. However, like the first-order method, the
second-order approximation does not eliminate the bias asymptotically. In
other words, the bias-corrected PQL estimator is still inconsistent. In fact, no
matter to what order the Laplace approximation is carried, the bias-corrected
PQL estimator will never be consistent. Of course, as the Laplace approxi-
mation is carried to even higher order, the bias may be reduced to such a
level that is acceptable from a practical point of view. On the other hand,
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one advantage of PQL is that it is computationally easy to operate. As the
Laplace approximation is carried to higher order, the computational difficulty
increases. Note that, if the computation required for an approximate method
is comparable to that for the exact (maximum likelihood) method, which is
discussed later, the approximate method may not be worth pursuing, at least
from a computational point of view.

On the other hand, there is a situation where PQL is expected to work well,
that is, the situation where the variance components are small. This is because
the Laplace approximation becomes accurate when the variance components
are close to zero. To see this, note that the Laplace approximation is, for
the most part, based on an expansion at the mode of the distribution of the
random effects. If the variance component is close to zero, the distribution of
the random effects, which is assumed normal, is concentrated near its mode
(i.e., zero). In such a case, approximation to the integral by the expansion is
accurate. In particular, the Laplace approximation gives the exact value of
the integral, if the variance component is equal to zero (Exercise 3.6). One
application of this simple fact is used in testing hypotheses of zero variance
components, which we discuss next.

3.5.3 Tests of Zero Variance Components

There is considerable interest, in practice, in testing for overdispersion, het-
eroscedasticity, and correlation among responses. In some cases, the problem
is equivalent to testing for zero variance components. Lin (1997) considered
two classes of GLMMs. The first is the so-called longitudinal GLMM, in which
the conditional mean vector µi of the responses in the ith cluster given the
random effects satisfies

g(µi) = Xiβ + Ziαi, (3.23)

where g(·) is the link function, Xi, Zi are known covariate matrices, β is a
vector of fixed effects, and αi is a q-dimensional vector of random effects whose
distribution depends on an s-dimensional vector θ of dispersion parameters.
Here for any vector a = (a1, . . . , ak)′, g(a) = (g(a1), . . . , g(ak))′. The second
class is the so-called ANOVA GLMM, in which the conditional mean vector,
µ = (µi)1≤i≤n, of the responses given the random effects satisfies the equation

g(µ) = Xβ + Z1α1 + · · · + Zsαs, (3.24)

where X is a matrix of known covariates, Z1, . . . , Zs are known design matri-
ces, β is a vector of fixed effects, α1, . . . , αs are independent vectors of random
effects such that the components of αj are i.i.d. with distribution Fj whose
mean is 0 and variance is θj . The hypothesis to be tested is H0: θ = 0, where
θ = (θ1, . . . , θs)′. Note that, under this null hypothesis, there are no random
effects involved in the GLMM, therefore the model becomes a GLM. The
first step is to obtain an approximate expansion of the quasi-log-likelihood
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function. Lin (1997) proposed using the second-order Laplace approximation
(Breslow and Lin 1995; Lin and Breslow 1996). Let l(β, θ) denote the approx-
imate quasi-log-likelihood. A global score statistic is constructed as follows,

χ2
G = Uθ(β̂)′Ĩ(β̂)−1Uθ(β̂),

where β̂ is the MLE under the null hypothesis, that is, the MLE under the
GLM, assuming that the responses are independent; Uθ(β) is the gradient
vector with respect to θ (i.e., ∂l/∂θ) and Ĩ is the information matrix of θ
evaluated under H0, which takes the form

Ĩ = Iθθ − I ′
βθI

−1
ββ Iβθ

with

Iθθ = E
(

∂l

∂θ

∂l

∂θ′

)
,

Iβθ = E
(

∂l

∂β

∂l

∂θ′

)
,

Iββ = E
(

∂l

∂β

∂l

∂θ′

)
.

Note that, given the estimator β̂ and under the null hypothesis, the informa-
tion matrix can be estimated, using the properties of the exponential family
(McCullagh and Nelder 1989, pp. 350). In fact, Lin (1997) showed that the in-
formation matrix may be estimated when the exponential-family assumption
is replaced by some weaker assumptions on the cumulants of the responses.
Furthermore, Lin (1997) established the following results. Under some regu-
larity conditions, the global score test based on χ2

G follows a χ2
s distribution

asymptotically under H0; it is a locally asymptotically most powerful test if
s = 1, and is a locally asymptotically most stringent test if s > 1 (Bhat and
Nagnur 1965).

In Lin (1997), the author also studied the problem of testing for the indi-
vidual variance component, namely, H0j : θj = 0, under the ANOVA GLMM
(3.24). However, the result is less satisfactory. Note that, unlike the test for
θ = 0, under H0j the rest of the random effects, αk, k �= j, do not vanish, so
the model does not reduce to a GLM with independent observations. In such
a case, Lin’s approach was to estimate the rest of the variance components by
PQL with a bias correction (Breslow and Lin 1995; Lin and Breslow 1996).
However, the PQL is known to result in inconsistent estimators (e.g., Jiang
1998a, Booth and Hobert 1999) and so does its bias-corrected version, which
is based on the second-order Laplace approximation. For example, the testing
method for H0j developed by Lin seems to be too conservative in terms of the
size in the case of binary responses, although the test seems to work reasonably
well when the responses are binomial means with a moderate denominator (i.
e., group size; Lin 1997, pp. 321).
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3.5.4 Maximum Hierarchical Likelihood

Lee and Nelder (1996) proposed a method, which they called maximum hi-
erarchical likelihood. The method may be regarded as an extension of PQL
(Breslow and Clayton 1993) in that it allows the random effects to have cer-
tain nonnormal distributions. Let y be the response and u an (unobserved)
random component. Lee and Nelder defined a hierarchical GLM, or HGLM,
as follows.

(a) The conditional (log-)likelihood for y given u has the GLM form

l(ξ, φ; y|u) =
yξ − b(ξ)

a(φ)
+ c(y, φ), (3.25)

where ξ denotes the canonical parameter, φ is the dispersion parameter, and
a(·) and c(·, ·) are known functions. Write µ for the conditional mean of y given
u, and η = g(µ), where g(·) is the link function for the conditional GLM. It is
assumed that the linear predictor η takes the form η = ζ + v, where ζ = x′β,
and v = v(u) for some strictly monotonic function of u.

(b) The distribution of u is assumed appropriately.

Example 3.6 (Poisson-gamma HGLM). Suppose that the distribution of y
given u is Poisson with mean µ = E(y|u) = exp(ζ)u. Then, with the log-link
function, one has η = ζ + v with v = log(u). The distribution of u is assumed
to be gamma with shape parameter ψ and mean 1.

Some may wonder how that distribution of u in Example 3.6 is picked.
This is what Lee and Nelder called conjugate distribution. They prefer to
assume such a distribution instead of normality for the random effects, and
this is the difference between HGLM and GLMM discussed earlier. To define a
conjugate HGLM, consider, for simplicity, the case where the responses may
be expressed as yij , i = 1, . . . , t, j = 1, . . . , ni, and ui is a random effect
associated with the ith cluster. Consider the canonical link function such that
ξij = ξ(µij) = ξ(g−1(ζij)) + vi with vi = ξ(ui). The hierarchical likelihood, or
h-likelihood, is defined as the logarithm of the joint density function of y and
u; that is,

h = l(ξ, φ; y|v) + l(ψ; v), (3.26)

where l(ξ, φ; y|v) =
∑

ij lij with lij given by (3.25) after replacing y and ξ by
yij and ξij , respectively, and ψ is an additional parameter. As for the second
term on the right side of (3.26), under the conjugate distribution, it is assumed
that the kernel of l(ψ; v) has the following form,∑

i

{a1(ψ)vi − a2(ψ)b(vi)}, (3.27)

where a1(·) and a2(·) are some functions. Note that the function b(·) is the
same as that in (3.24). Lee and Nelder noted that, although expression (3.27)
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takes the form of the Bayesian conjugate prior (Cox and Hinkley 1974, pp.
370), it is only for v; no priors were specified for β, φ, or ψ. By maximizing the
h-likelihood, one obtains the maximum h-likelihood estimators (MHLEs) of
the fixed and random effects, which are solutions to the following equations,

∂h

∂β
= 0, (3.28)

∂h

∂v
= 0. (3.29)

It is clear that, when normality, instead of conjugate distribution, is as-
sumed for the random effects, HGLM is the same as the GLMM of Breslow
and Clayton (1993), among others, that were discussed earlier. Furthermore,
MHLE is the same as the method of joint estimation of fixed and random
effects, which was first proposed by Henderson (1950) in the case of linear
mixed models. In the latter case, the method is known to result in the BLUE
and BLUP. See discussions in Section 2.3. In the case of GLMM, the method
of joint estimation of fixed and random effects is equivalent to the PQL of
Breslow and Clayton (1993); that is, MHLE is equivalent to PQL in the case
of GLMM. One advantage of the conjugate distribution is that the MHLE for
the random effects has a simple form on the u-scale. To see this, note that
under the assumed model, and using properties of the exponential family, one
has (∂/∂ξ)b(ξ(µ)) = µ, so that (∂/∂v)b(v) = u. Thus, by differentiating the h-
likelihood with respect to vi and letting the derivative equal zero, one obtains
the following expression,

ui =
yi· − µi· + φa1(ψ)

φa2(ψ)
, (3.30)

where yi· =
∑

j yij and µi· =
∑

j µij . Note that (3.30) is not a closed-form
expression for ui, because µi· also involves ui. Still, the expression is useful
in solving equations (3.28) and (3.29) iteratively. There is more discussion on
this in the next section.

Lee and Nelder showed that, in some cases, the conjugate MHLE for β is
the same as the (marginal) MLE for β. One such case is, of course, the normal–
normal case, or Gaussian mixed models (see Section 1.3). Another example is
the Poisson-gamma HGLM of Example 3.6 (Exercise 3.7). In general, Lee and
Nelder showed that the MHLEs of the fixed effects are asymptotically equiv-
alent to the (marginal) MLE of the fixed effects. However, the asymptotics is
in the sense that ni → ∞, 1 ≤ i ≤ t at the same rate whereas t, the number of
clusters, remains constant. Such a condition is often not satisfied in a mixed
model situation. For example, in small area estimation (e.g., Ghosh and Rao
1994), ni corresponds to the sample size for the ith small area, which may be
quite small, whereas the number of small areas t can be quite large. In fact,
as Lee and Nelder pointed out, the MHLE equations are the first-order ap-
proximation to the ML equations. Such an approximation becomes accurate
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when the cluster sizes ni become large. As for the MHLE of random effects,
Lee and Nelder showed that they are asymptotically best unbiased predictors,
under the same asymptotic assumption. The latter sometimes may not be re-
alistic, however, it would seem reasonable if the objective were to consistently
estimate the random effects. See further discussion in the next section.

3.6 Prediction of Random Effects

In many cases the problem of main interest is to estimate, or predict, the
random effects or, more generally, a mixed effect, in a GLMM. Here a mixed
effect is defined as a (possibly nonlinear) function of the fixed and random
effects. In the special case of linear mixed models, the prediction problem
has been extensively studied. See Robinson (1991). The prediction of mixed
effects was also an outstanding problem in small area estimation with binary
responses. See, for example, Jiang and Lahiri (2001). In the latter cases, the
prediction was in the context of GLMM. For the most part, there have been
two main approaches in predicting the random effects. The first approach,
which by far represents the majority of the literature in this area, is based on
joint estimation of fixed and random effects. See, for example, Breslow and
Clayton (1993), Lee and Nelder (1996), and Jiang et al. (2001a). The method
is an extension of the BLUP method in linear mixed models that was first
proposed by Henderson (1950). The second approach is a recently developed
empirical best prediction method by Jiang and Lahiri (2001, 2005a) in the
context of small area estimation. In the following sections we describe these
two methods and related results.

3.6.1 Joint Estimation of Fixed and Random Effects

1. Maximum a posterior. Jiang et al. (2001a) took another look at Hender-
son’s method of predicting the random effects in the linear mixed models
(Henderson 1950). Let y be a vector of responses, and θ a vector of dispersion
parameters. Write LJ(α, β) = f(y, α|β, θ), the joint density function of y and
α given β and θ, where α is a vector of random effects, and β a vector of fixed
effects. Because

max
α,β

LJ(α, β) = max
β

max
α

LJ(α, β),

the maximization can be in steps. In the first step one finds α̃ = α̃(β) that
maximizes LJ(α, β) for fixed β. In the second step, one finds β̂ that maximizes
LJ(α̃, β), and lets α̂ = α̃(β̂). Now consider the first step. Observe that

f(y, α|β, θ) = f(y|β, θ)f(α|y, β, θ). (3.31)

The first factor on the right side of (3.31) corresponds to the likelihood func-
tion for estimating β and θ, and the second factor to the posterior density of
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α given y (if one would like, assuming that a noninformative prior has been
assigned to α). Henderson’s (1950) idea was to find α and β that jointly max-
imize f(y, α|β, θ). Because the first factor does not depend on α, maximizing
f(y, α|β, θ) is equivalent to maximizing the posterior, and then the profile
joint density f(α̃|β, θ). Note that, although in linear mixed models the maxi-
mizers α̂ and β̂ correspond to the BLUP and BLUE, they are no longer such
predictor and estimator in nonlinear cases, such as GLMM. Still, the method
is intuitive in the sense that α̂ maximizes the posterior. For such a reason,
Jiang et al. called α̂ and β̂ maximum posterior estimators, or MPE.

2. Computation of MPE. The MPE are typically obtained by solving a
system of equations similar to (3.28) and (3.29); that is,

∂lJ
∂β

= 0, (3.32)

∂lJ
∂α

= 0, (3.33)

where lJ = log(LJ). In practice, there are often a large number of random
effects involved in a GLMM. For example, in the salamander mating problem
that was discussed earlier (McCullagh and Nelder 1989, §14.5), the number of
random effects associated with the female and male salamanders is 80. In an
NHIS problem considered by Malec et al. (1997), the number of random effects
corresponding to the small areas is about 600. This means that the first step of
MPE (i.e., the maximization of LJ(α, β) for fixed β) is over a high-dimensional
space. In other words, one has to simultaneously solve a large number of non-
linear equations (3.32) and (3.33). It is well known that standard methods of
solving nonlinear systems such as Newton–Raphson (N–R) may be inefficient
and extremely slow when the dimension of the solution is high. In fact, even
in the linear case directly solving the BLUP equations may involve inversion
of a large matrix, which can be computationally burdensome. There are other
disadvantages of N–R. First, convergence of the N–R is sensitive to the initial
values. When the dimension of the solution is high, it can be very difficult to
find the initial values that will result in convergence. Second, N–R requires
computation of partial derivatives, the analytic derivation of which can be
tedious, and errors are often made in the process as well as in programming.

Jiang (2000b) proposed a nonlinear Gauss–Seidel algorithm (NLGSA) for
computing the MPE, which is an extension of the Gauss–Seidel algorithm
in numerical analysis for solving large linear systems. We use an example to
illustrate the algorithm, and leave further details to Section 3.7.

Example 3.5 (Continued). Consider, once again, Example 3.5. To compute
the MPE, one needs to solve the following system of nonlinear equations
(Exercise 3.8),

ui

σ2
1

+
m2∑
j=1

exp(µ + ui + vj)
1 + exp(µ + ui + vj)

= yi·, 1 ≤ i ≤ m1, (3.34)
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vj

σ2
2

+
m1∑
i=1

exp(µ + ui + vj)
1 + exp(µ + ui + vj)

= y·j , 1 ≤ j ≤ m2, (3.35)

where yi· =
∑m2

j=1 yij and y·j =
∑m1

i=1 yij . Note that given the vjs, each
equation in (3.34) is univariate, which can be easily solved (e.g., by bisection
or one-dimensional N–R). A similar fact is observed in (3.35). This motivates
the following algorithm. Starting with initial values v

(0)
j , 1 ≤ j ≤ m2, solve

(3.34) with v
(0)
j in place of vj , 1 ≤ j ≤ m2 to get u

(1)
i , 1 ≤ i ≤ m1; then (3.35)

with u
(1)
i in place of ui, 1 ≤ i ≤ m1 to get v

(1)
j , 1 ≤ j ≤ m2; and so on.

It is clear that the algorithm does not require the calculation of deriva-
tives. Each step of the algorithm is easy to operate and, in fact, has a unique
solution. Finally, it can be shown that the convergence of the algorithm is
not affected by initial values. In other words, one has global convergence. See
Section 3.7.1 for details.

3. Penalized generalized WLS. Jiang (1999) extended the weighted least
squares (WLS) method in linear (mixed) models (see Section 1.4.3) to GLMMs
for estimating the fixed and random effects. He noted that the (fixed effects)
linear model is a special case of GLM (McCullagh and Nelder 1989) only when
normality is assumed. On the other hand, the definition of linear models does
not have to be associated with normality. A similar paradox exists between
the linear mixed model and GLMM, because the former does not have to be
Gaussian. See Section 1.2.2. He then extended the definition of GLMM so that
it includes a linear mixed model as a special case regardless of normality. In
the extended definition, it is assumed that, given a vector α of random effects,
which satisfy

E(α) = 0, (3.36)

the responses y1, . . . , yn are conditional independent with conditional expec-
tation

E(yi|α) = b′
i(ηi), (3.37)

where bi(·) is a known differentiable function. Furthermore, assume that (3.2)
holds, where β, xi, and zi are the same as before. Note that no assumption
of exponential family (3.1) for the conditional distribution is made here; only
the form of the conditional mean is assumed.

Now consider inference about the extended GLMM. In linear models,
which correspond to (3.37) and (3.2) with bi(x) = x2/2 and no random effect,
the parameters β may be estimated by WLS, namely, by minimizing

n∑
i=1

wi(yi − ηi)2,

where wis are weights, or, equivalently, by maximizing
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n∑
i=1

wi

(
yiηi − η2

i

2

)
.

A straight generalization of the WLS to GLMM would suggest the maximizer
of the following as the estimators of β and α:

n∑
i=1

wi{yiηi − bi(ηi)}. (3.38)

However, conditionally, the individual fixed and random effects in a GLMM
may not be identifiable. For example, in Example 3.5, we have

logit(pij) = (µ + c + d) + (ui − c) + (vj − d)

for any c and d. Of course, such a problem occurs in linear models as well, in
which case there are two remedies: reparameterization and constraints. Here
we focus on the second. A set of linear constraints on α may be expressed as
Pα = 0 for some matrix P . By Lagrange’s method of multipliers, maximizing
(3.38) subject to Pα = 0 is equivalent to maximizing

n∑
i=1

wi{yiηi − bi(ηi)} − λ|Pα|2 (3.39)

without constraints, where λ is the multiplier. On the other hand, for fixed λ
the last term in (3.39) may be regarded as a penalizer. The only thing that
needs to be specified is the matrix P . For any matrix M and vector space
V , let B(V ) = {B : B is a matrix whose columns constitute a base for V };
N (M) = the null-space of M = {v : Mv = 0}; PM = M(M ′M)−M ′, where
− means generalized inverse (see Appendix B); and PM⊥ = I − PM . Let
A ∈ B{N (PX⊥Z)}, where the ith row of X and Z are x′

i and z′
i, respectively.

The penalized generalized WLS (PGWLS) estimator of γ = (β′, α′)′ is defined
as the maximizer of

lP(γ) =
n∑

i=1

wi{yiηi − bi(ηi)} − λ

2
|PAα|2, (3.40)

where λ is a positive constant. The choice of the penalizer is explained in
Section 3.7.2.

It might appear that the method is not using the information about the
distribution of the random effects. However, as Jiang (1999) pointed out, the
only information about the distribution of α; that is, (3.36), is indeed used.
This is because the true random effects satisfy, on average, the constraint
PAα = 0. Furthermore, in PGWLS, the random effects are somewhat treated
as fixed. A question then arises as to whether the individual random effects
can be estimated consistently, because in practice there is often not sufficient
information about the individual random effects. This issue is addressed in
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Section 3.7.2, but, roughly speaking, the answer is the following. The random
effects can be consistently estimated in some overall sense, if the total number
of random effects increases at a slower rate than the sample size; that is,
m/n → 0. Another feature of PGWLS is that, unlike MPE that was discussed
earlier, here the estimation of the fixed and random effects is separated from
that of the variance components. In fact, the latter are not even defined under
the extended GLMM. Furthermore, it is shown that the consistency of the
PGWLS estimators is not affected by φ, the additional dispersion parameter,
at which the estimators are computed.

Note. The latest fact is similar to the facts that in linear models, consis-
tency of the WLS estimator is not affected by the choice of the weights; in
GLM, consistency of the generalized estimating equation (GEE) estimator is
not affected by the choice of the working covariance matrix (Liang and Zeger
1986). Furthermore, Jiang et al.(2001a) showed that, in certain large sample
situations, consistency of the MPE (see Section 3.6.1.1) is not affected by the
variance components at which the MPE are computed. Note that equations
(3.32) and (3.33) depend on θ, the vector of variance components.

The PGWLS estimators are typically obtained by solving the equations

∂lP
∂γ

= 0. (3.41)

The NLGSA proposed earlier to compute the MPE can be used here to obtain
a solution to (3.41).

3. Maximum conditional likelihood. Quite often in situations where GLMMs
are used, the information is not sufficient for some or, perhaps, all of the in-
dividual random effects. In the case where there is insufficient information
about all the random effects, consistent estimation of any individual random
effect is, of course, impossible. On the other hand, in some cases there may be
sufficient information for some of the random effects. For example, consider
the following.

Example 3.7. Suppose that, given the random effects ai, bij , 1 ≤ i ≤
m1, 1 ≤ j ≤ m2, binary responses yijk are (conditionally) independent with
logit(pijk) = µ + ai + bij , where pijk = P(yijk = 1|a, b), k = 1, . . . , r. If
m1, m2 → ∞ but r remains fixed, there is sufficient information about the ais
but not the bijs.

In situations like Example 3.7, it is desirable to develop a method that
can consistently estimate the random effects for which the data have provided
sufficient information, as well as the fixed parameters. Jiang (1999) proposed
such a method, which he called the maximum conditional likelihood. To illus-
trate the method, consider a special case, in which

η = Xβ + Zα + Uζ,
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where η = (ηi)1≤i≤n, and the random effects α = (αk)1≤k≤K and ζ =
(ζj)1≤j≤J are independent. Here ζ represents a subset of the random effects
for which there is insufficient information. Furthermore, suppose that U is a
standard design matrix (see Section 2.4.2.1, Note 2), and that ζj , 1 ≤ j ≤ J
are i.i.d. with density function ψ(·/τ), where ψ(·) is a known density and
τ > 0 an unknown scale parameter. We also assume that

f(yi|α, ζ) = f(yi|ηi), 1 ≤ i ≤ n. (3.42)

Here f(ξ2|ξ1) denotes the conditional density of ξ2 given ξ1. Let u′
i be the ith

row of U , and eJ,j the J-dimensional vector whose jth component is 1 and
other components are 0. Let Sj = {1 ≤ j ≤ n : ui = eJ,j}, and y(j) = (yi)i∈Sj ,
1 ≤ j ≤ J . Then, it is easy to show that

f(y|α) =
J∏

j=1

f
(

y(j)
∣∣∣α) , (3.43)

where

f
(

y(j)
∣∣∣α) = E

⎧⎨⎩∏
i∈Sj

f(yi|x′
iβ + z′

iα + τξ)

⎫⎬⎭ , (3.44)

and the expectation in (3.44) is taken with respect to ξ whose density function
is ψ(·). We now consider estimation of β̃ and α̃, which are reparameterizations
of β and α such that Xβ+Zα = X̃β̃+ Z̃α̃ for some known matrices X̃ and Z̃.
Because the estimation is based on (3.43), which is the likelihood conditional
on a subset of random effects, the method is referred to as the maximum
conditional likelihood, or MCL.

We assume that there are no random effects nested within ζ. In notation,
this means that zi is the same for all i ∈ Sj , say, zi = z∗j = (z∗jk)1≤k≤K ,
1 ≤ j ≤ J . Jiang (1999, Lemma 2.4) showed that there is a map β → β̃,
γ → α̃ with the following properties: (i) Xβ + Zα = X̃β̃ + Z̃α̃, where (X̃ Z̃)
is a known matrix of full rank; and (ii) z̃i = z̃∗j , i ∈ Sj for some known vector
z̃∗j , where z̃′

i is the ith row of Z̃. With this result, we have

η = Wγ̃ + Uζ,

where W = (X̃ Z̃), γ̃ = (β̃′, α̃′)′. Let ϕ = (α̃′, β̃′, τ)′. Note that, unlike γ, the
vector ϕ is identifiable. By (3.42), we have

f(y|ϕ) =
J∏

j=1

f
(

y(j)
∣∣∣ϕ) .

Furthermore, it can be shown that f
(
y(j)

∣∣ϕ) = gj(z̃∗jα̃, β̃, τ), where
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gj(s) = E

⎧⎨⎩∏
i∈Sj

f(yi|s1 + x̃′
is(2) + sr+2ξ)

⎫⎬⎭
for s = (s1, . . . , sr+2)′. Here s(2) = (s2, . . . , sr+1)′, r = dim(β̃), and x̃′

i is
the ith row of X̃. Let hj(s) = log{gj(s)}, lC(ϕ) = log f(y|ϕ), and lC,j(ϕ) =
hj(z̃∗jα̃, β̃, τ). Then, the conditional log-likelihood can be expressed as

lC(ϕ) =
J∑

j=1

lC,j(ϕ).

The MCL estimator of ϕ, ϕ̂, is defined as the maximizer of lC(ϕ). Typically,
ϕ̂ is obtained by solving the equations

∂lC
∂ϕ

= 0. (3.45)

Once again, the NLGSA proposed earlier can be used for obtaining the solu-
tion.

Jiang (1999) studied asymptotic properties of the MCL estimators. It was
shown that, under suitable conditions, with probability tending to one there
is a solution to (3.45) which is consistent.

3.6.2 Empirical Best Prediction

In this section, we restrict our attention to a special class of GLMM, the so-
called longitudinal GLMM. The characteristic of this class of models is that
the responses may be divided into independent clusters, or groups. There are
two major areas of applications of these models. The first is the analysis of
longitudinal data; the second is small area estimation. In most cases of longi-
tudinal data, the problem of main interest is the estimation of mean responses,
which are usually associated with the fixed effects in the GLMM. Such esti-
mation problems are further discussed in Section 4.2.1. On the other hand,
many problems in small area estimation are closely related to the prediction
of mixed effects (e.g., Ghosh and Rao 1994; Rao 2003).

Example 3.8. Jiang and Lahiri (2001) considered the following mixed logis-
tic model for small area estimation. Suppose that, conditional on αi, binary
responses yij , j = 1, . . . , ni are independent with logit{P(yij = 1|αi)} =
x′

ijβ + αi, where xij is a vector of known covariates and β a vector of un-
known regression coefficients. Furthermore, α1, . . . , αm are independent and
distributed as N(0, σ2), where σ2 is an unknown variance. It is easy to show
that the model is a special case of GLMM (Exercise 3.10). Here αi is a random
effect associated with the ith small area.

A mixed effect of interest is the conditional probability P(yij = 1|αi),
which may represent, for example, the proportion of women (aged 40 or older)
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having had mammography in the ith health service area (Jiang et al. 2001a).
Note that the mixed effect can be expressed as h(x′

ijβ + αi), where h(x) =
ex/(1 + ex), so, in particular, the mixed effect is a nonlinear function of the
fixed and random effects.

In the following we introduce two methods for predicting a mixed effect in
the context of small area estimation.

1. Empirical best prediction under GLMM. We first introduce a GLMM
that is suitable for small area estimation. Suppose that, conditional on a vector
of random effects, αi = (αij)1≤j≤r, responses yi1, . . . , yini

are independent
with density

f(yij |αi) = exp
[(

aij

φ

)
{yijξij − b(ξij)} + c

(
yij ,

φ

aij

)]
,

where b(·) and c(·, ·) are functions associated with the exponential family
(McCullagh and Nelder 1989, §2), φ is a dispersion parameter, aij is a weight
such that aij = 1 for ungrouped data; aij = lij for grouped data when the
average is considered as response and lij is the group size; and aij = l−1

ij when
the sum of individual responses is considered. Furthermore, ξij is associated
with a linear function

ηij = x′
ijβ + z′

ijαi

through a link function g(·); that is, g(ξij) = ηij , or ξij = h(ηij), where
h = g−1. Here xij and zij are known vectors, and β is a vector of unknown
regression coefficients. In the case of a canonical link, we have ξij = ηij .
Finally, suppose that v1, . . . , vm are independent with density fθ(·), where θ
is a vector of variance components. Let ψ = (β′, θ′)′, and ϑ = (ψ′, φ). Note
that in some cases such as binomial and Poisson the dispersion parameter φ
is known, so ψ represents the vector of all unknown parameters.

Consider the problem of predicting a mixed effect of the following form,

ζ = ζ(β, αS),

where S is a subset of {1, . . . , m}, and αS = (αi)i∈S . Let yS = (yi)i∈S ,
where yi = (yij)1≤j≤ni and yS− = (yi)i/∈S . Under the above model, the best
predictor (BP) of ζ, in the sense of minimum MSE, is given by

ζ̃ = E(ζ|y)
= E(ζ(β, αS)|yS)

=
∫

ζ(β, αS)f(yS |αS)fθ(αS)dαS∫
f(yS |αS)fθ(αS)dαS

=

∫
ζ(β, αS) exp{φ−1 ∑

i∈S si(β, αi)}
∏

i∈S fθ(αi)
∏

i∈S dαi∏
i∈S

∫
exp{φ−1si(β, v)}fθ(v)dv

,

where si(β, v) =
∑ni

j=1 aij [yijh(x′
ijβ+z′

ijv)−b{h(xijβ+zijv)}]. The dimension
of integrals involved in the denominator on the right side of (3.46) is r =
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dim(αi), and that of the numerator is at most sr, where s = |S|, the cardinality
of S. When r and s are relatively small, such integrals may be evaluated by
Monte-Carlo methods, provided that ψ (ϑ) is known. For example, suppose
that αi ∼ N{0, V (θ)}, where V (θ) is a covariance matrix depending on θ, and
that S = {i}. Then, we have

ζ̃ =
∫

ξ(β, v) exp{φ−1si(β, v)}fθ(v)dv∫
exp{φ−1si(β, v)}fθ(v)dv

≈
∑L

l=1 ζ(β, vl) exp{φ−1si(β, vl)}∑L
l=1 exp{φ−1si(β, vl)}

,

where fθ(v) is the density of N{0, V (θ)}, and v1, . . . , vL are generated inde-
pendently from N{0, V (θ)}.

Note that the BP depends on both yS and ψ, that is, ζ̃ = u(yS , ψ). Inas-
much as ψ is usually unknown, it is customary to replace ψ by a consistent
estimator, say, ψ̂. The result is called the empirical best predictor (EBP),
given by

ζ̂ = u(yS , ψ̂). (3.46)

In practice, it is desirable not only to compute the EBP but also to assess
its variation. A measure of the variation is the MSE, defined by MSE(ζ̂) =
E(ζ̂ − ζ)2. Unfortunately, the latter may be difficult to evaluate. In some
cases, an expression of the MSE of ζ̃, not that of ζ̂, may be obtained, say,
MSE(ζ̃) = b(ψ). Then, a naive estimator of the MSE of ζ̂ is obtained as b(ψ̂).
However, this is an underestimator of the true MSE. To see this, note the
following decomposition of the MSE,

MSE(ζ̂) = MSE(ζ̃) + E(ζ̂ − ζ̃)2

= b(ψ) + E(ζ̂ − ζ̃)2. (3.47)

It is clear that the naive estimator simply ignores the second term on the right
side of (3.47), and therefore underestimates the true MSE.

Jiang (2003a) developed a method based on Taylor series expansion that
gives an estimate whose bias is corrected to the second order. The method
may be regarded as an extension of the Prasad–Rao method for estimating
the MSE of EBLUP in linear mixed models (see Section 2.3.1.3). Consider,
for simplicity, the case that φ is known (e.g., binomial, Poisson), so that
b(ψ) = b(θ) in (3.47). Then, the estimator may be expressed as

M̂SE(ζ̂) = b(θ̂) + m−1{e(θ̂) − B(θ̂)}, (3.48)

where the functions e(·) and B(·) are given in Section 3.9.3. Here by second-
order correctness we mean that the estimator has the property that

E{M̂SE(ζ̂) − MSE(ζ̂)} = o(m−1). (3.49)
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Note that, if M̂SE(ζ̂) in (3.49) is replaced by the naive estimator b(θ̂), which
is the first term on the right side of (3.48), the right side of (3.49) will have
to be replaced by O(m−1). In other words, the naive estimator is correct to
the first order, not the second one.

Example 3.8 (Continued). As a special case, we consider, again, the mixed
logistic model introduced earlier. Suppose that the problem of interest is to
predict αi, the small-area specific random effect. By (3.46), the EBP is α̂i =
ui(yi·, θ̂), where yi· =

∑ni

j=1 yij , θ = (β′, σ)′,

ui(yi·, θ) = σ
E[ξ exp{si(yi·, σξ, β)}]
E[exp{si(yi·, σξ, β)}]

with si(k, v, β) = kv −
∑ni

j=1 log{1 + exp(x′
ijβ + v)} and ξ ∼ N(0, 1).

To see the behavior of ui, note that ui(yi·, θ)/σ → 0 as σ → 0. Now
consider a special case in which xij = xi, that is, the covariates are at the
small area (e.g., county) level. Then, it can be shown (Jiang and Lahiri 2001)
that, as σ → ∞,

ui(yi·, θ) −→
yi·−1∑
k=1

(
1
k

)
−

ni−yi·−1∑
k=1

(
1
k

)
− x′

iβ.

To see what the expression means, note that when n is large,
∑n−1

k=1(1/k) ∼
log(n) + C, where C is Euler’s constant. Therefore, as σ → ∞, we have
(Exercise 3.12)

ui(yi·, θ) ≈ logit(ȳi·) − x′
iβ.

Finally, it can be shown that, as m → ∞ and ni → ∞, we have

α̂i − αi = OP(m−1/2) + OP(n−1/2
i ).

Now consider the estimation of the MSE of α̂i. It can be shown (Exercise
3.13) that, in this case, the terms b(θ) and e(θ) in (3.48) have the following
expressions,

b(θ) = σ2 −
ni∑

k=0

u2
i (k, θ)pi(k, θ),

e(θ) =
ni∑

k=0

(
∂ui

∂θ′

)
V (θ)

(
∂ui

∂θ

)
pi(k, θ),

where

pi(k, θ) = P(yi· = k)

=
∑

z∈S(ni,k)

exp

⎛⎝ ni∑
j=1

zjx
′
ijβ

⎞⎠E[exp{si(z·, σξ, β)}]
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with S(l, k) = {z = (z1, . . . , zl) ∈ {0, 1}l : z· = z1 + · · · + zl = k}.
Next, we consider the prediction of the mixed effect pi = P(yij = 1|αi).

For simplicity, suppose that the covariates are at the small area level; that is,
xij = xi. Then, we have

pi =
exp(x′

iβ + αi)
1 + exp(x′

iβ + αi)
.

The EBP of pi is given by

p̂i = ui(yi·, θ̂)

= exp(x′
iβ̂)

×E exp[(yi· + 1)σ̂ξ − (ni + 1) log{1 + exp(x′
iβ̂ + σ̂ξ)}]

E exp[yi·σ̂ξ − ni log{1 + exp(x′
iβ̂ + σ̂ξ)}]

, (3.50)

where the expectations are taken with respect to ξ ∼ N(0, 1). Note that the
EBP is not pi with β and αi replaced, respectively, by β̂ and α̂i.

On the other hand, a naive predictor of pi is ȳi· = yi·/ni. Although the EBP
given by (3.50) is not difficult to compute (e.g., by the Monte Carlo method),
it does not have a closed form. So, one question is: just how much better is
the EBP than the naive predictor? To answer this question, we consider the
relative savings loss (RSL) introduced by Efron and Morris (1973). In the
current case, the RSL is given by

RSL =
MSE(p̂i) − MSE(p̃i)
MSE(ȳi·) − MSE(p̃i)

=
E(p̂i − p̃i)2

E(ȳi· − p̃i)2
, (3.51)

where p̃i is the BP of pi. It can be shown (Exercise 3.14) that the numerator
on the right side of (3.51) is O(m−1), and

the denominator =
ni∑

k=0

{
k

ni
− ui(k, θ)

}2

pi(k, θ)

≥ {ui(0, θ)}2pi(0, θ). (3.52)

If ni is bounded, the right side of (3.52) has a positive lower bound. There-
fore, RSL → 0 as m → ∞. In fact, the convergence rate is O(m−1). So, the
complication of EBP is worthwhile.

2. EBP with design consistency. An important feature of the EBP method
is that it is a model-based method. If the assumed model fails, the predictor is
no longer the EBP. In fact, the EBP may perform poorly when the assumed
model fails (see a simulated example below). In the following, we propose a
new model assisted EBP approach. The development of the method was mo-
tivated by the estimation of the mean of a finite population domain within
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a large population covered by a complex survey. Domain estimation is an
important problem encountered by many government agencies. For example,
the Bureau of Labor Statistics produces monthly estimates of unemployment
rates not only for the entire United States but also for different small and large
domains (e.g., the 50 states and the District of Columbia). A direct expansion
estimator due to Brewer (1963) and Hajek (1971) has been frequently used
in domain estimation. Such an estimator is typically design consistent under
many sampling designs in common use; that is, the estimator approaches in
probability induced by the sampling design to the true domain finite pop-
ulation mean when the domain sample size is large. The new method we
propose here also has the property of design consistency. In other words, the
new method protects the large domain estimators from possible model fail-
ure. The method essentially amounts to obtaining an EBP assuming a (linear
or generalized linear) mixed model on the commonly used design-consistent
estimator of domain means. However, no explicit model is assumed for the
unobserved units of the finite population. Under the assumed model, the pre-
dictor corresponds to the EBP. On the other hand, even under model failure,
the predictor is approximately equal to the commonly used design-consistent
estimator as long as the domain sample size is large.

We begin with a brief description of the problem of estimating a finite
population mean. More details about the problem are given in Chapter 5.
Consider a finite population divided into m domains. Let Ni be the population
size of the ith domain. Let yij denote the value of a variable of interest for
the jth unit in the ith domain. We are interested in the estimation of the i
domain finite population mean given by

Ȳi =
1
Ni

Ni∑
j=1

yij

based on a sample, say, yij , i = 1, . . . , m, j = 1, . . . , ni. Let w̃ij denote the cor-
responding sampling weights, which are defined as the inverse of the first-order
inclusion probability under the sampling design employed. When the sampling
weights vary within a domain of interest, an estimator popular among survey
practitioners is given by

ŷiw =
ni∑

j=1

wijyij ,

where wij = w̃ij/
∑ni

j=1 w̃ij . The estimator was proposed by Brewer (1963)
and Hajek (1971). Under many commonly used designs, one has

ȳiw −→ Ȳi in Pd,

as ni → ∞, where Pd is the probability measure induced by the sampling
design.
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The problem with ȳiw is that it is not very efficient for small ni. One way
to improve the efficiency is to “borrow strength” from other similar domains.
First, we need an explicit model for the sampled units, for example, a linear
mixed model or a GLMM. However, the explicit model is not needed for the
unobserved units of the finite population: only the existence of a random effect
vi is assumed, which is associated with the ith domain, such that

Em(yij |vi, ȳiw) = Em(yij |vi), (3.53)

where Em means expectation with respect to the assumed model. Assumption
(3.53) holds, for example, for the linear mixed model considered by Prasad
and Rao (1999) and for the mixed logistic model considered by Jiang and
Lahiri (2001). We define the mean squared prediction error (MSPE), which is
similar to the MSE, of an arbitrary predictor of Ȳi, say, ˆ̄Y i, as MSPE( ˆ̄Y i) =
E( ˆ̄Y i − Ȳi)2. Jiang and Lahiri (2005a) showed that, under the assumed mixed
model and the sampling design,

ˆ̄Y
BP

i =
1
Ni

Ni∑
j=1

Em{Em(yij |vi)|ȳiw}

minimizes the MSPE among the class of all predictors that depend on the data
only through ȳiw. Because an explicit model for the unobserved units is not
assumed, Em{Em(yij |vi)|ȳiw} is unknown for any unobserved unit. It follows

that ˆ̄Y
BP

i is not computable. However, we may treat the latter as an unknown
finite population mean, which can be estimated unbiasedly with respect to
the sampling design by

ˆ̄Y
EBP

i =
ni∑

j=1

wijEm{Em(yij |vi)|ȳiw},

assuming that Em{Em(yij |vi)|ȳiw} is fully specified for any observed unit yij ,

i = 1, . . . , m, j = 1, . . . , ni. Some alternative expressions of ˆ̄Y
EBP

i are the
following. We state the results as a theorem.

Theorem 3.1. We have ˆ̄Y
EBP

i = ζ̃, where ζ̃ = Em(ζ|ȳiw) with ζ =
Em(ȳiw|vi). Furthermore, we have

ζ̃ =
∫

ζi(v)f(ȳiw, v)f(v)dv∫
f(ȳiw, v)f(v)dv

,

where f(ȳiw, v), f(v) are nonnegative functions such that, under the assumed
model, f(ȳiw, v) = f(ȳiw|vi)|vi=v, the conditional density of ȳiw given vi = v,
and f(v) is the density of vi.

Note that the EBP defined above depends on ȳiw and often on θ, a vector
of unknown parameters, that is, ζ̃i = ui(ȳiw, θ) for some function ui(·, ·).
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When θ is unknown, it is replaced by θ̂, a model-consistent estimator (i.e.,
an estimator that is consistent under the assumed model). This gives the
following model-assisted EBP of Ȳi based on ȳiw:

ζ̂i = ui(ȳiw, θ̂). (3.54)

One important property of the model-assisted EBP is that it is design
consistent. More specifically, Jiang and Lahiri (2005a) showed that, under
some regularity conditions, ζ̃i agrees asymptotically with ȳiw regardless of the
model and θ, as long as ni is large. Here, the asymptotic agreement is in the
sense that ζ̃i − ȳiw → 0 in Pd, the probability measure with respect to the
design. A similar result also holds with respect to the assumed model. In other
words, the proposed model-assisted EBP is design consistent as well as model
consistent. Such a property is not possessed by the EBP discussed earlier (see
Section 3.6.2.1). See Example 3.9 below.

Similar to the MSE of the EBP discussed in Section 3.6.2.1, an estimator of
the MSPE of the model-assisted EBP can be obtained such that it is second-
order correct: that is, the bias of the MSPE estimator is o(m−1), where m is
the number of domains. See Section 3.7.4 for details.

3.6.3 A Simulated Example

We conclude this section with a simulated example to study the finite sample
performance of the model-assisted EBP introduced in Section 3.6.2.2 as well
as its MSPE estimator. We investigate the randomization-based properties
of different estimators using a limited Monte Carlo simulation experiment.
In other words, the computations of biases and MSEs in this section do not
depend on the model used to generate the fixed finite population; they are all
based on the sampling design. The first part of the simulation study focuses
on the evaluation of the model-assisted EBP proposed in the previous sec-
tion (JL) compared to a direct estimator (DIR) and an EBLUP. The second
part evaluates two different MSPE estimators of the model-assisted EBP. The
first MSPE estimator does not include the term 2gi/m needed to achieve the
second-order efficiency [see (3.67)]. The second MSPE estimator includes this
term and is second-order correct.

We consider an EBLUP (same as the empirical Bayes estimator considered
by Ghosh and Meeden 1986) of the finite population small area means Ȳi =
N−1 ∑N

j=1 yij , i = 1, . . . , m using the following nested error model for the
finite population,

yij = µ + vi + eij ,

where vis and eijs are independent with vi ∼ N(0, σ2
v) and eij ∼ N(0, σ2

e),
i = 1, . . . , m, j = 1, . . . , k. The model-assisted EBP is developed under the
assumption that the above model holds for the sampled units and the existence
of the random effects vi for the unobserved units (but otherwise making no
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additional assumption on the unobserved units of the finite population). Both
the model-assisted EBP and EBLUP use REML estimators of the variance
components σ2

v and σ2
e . Throughout the simulation we take m = 30, k = 20,

N = 200, µ = 50, and σ2
e = 1. For each finite population unit, a size measure

(x) is generated from an exponential distribution with scale parameter 200.

Table 3.1. Randomization-based average bias, MSPE and relative bias of MSPE
estimators

Average Bias MSPE (% Improvement) RB
σ2

v DIR EB JL DIR EB JL NSOC SOC
.4 −.001 −.010 −.006 .111 .040 .057 36.5 −2.0

(64.0) 49.0
.6 −.001 −.011 −.005 .111 .047 .077 19.5 12.5

(57.3) (30.3)
1 −.001 −.011 −.003 .111 .053 .096 10.2 8.7

(52.5) (13.7)
6 −.001 −.011 −.001 .111 .057 .111 7.0 6.9

(48.9) (.43)

We first investigate the performances of the model-assisted EBP and
EBLUP and the MSPE estimators of the model-assisted EBP for four dif-
ferent values of σ2

v . The finite population is generated from the above nested
error model which is most favorable to the EBLUP. For a particular simu-
lation run, we draw a sample of size k = 20 from each of the m = 30 small
areas using a probability proportional to size (PPS) with replacement sam-
pling design. Table 3.1 displays the randomization-based biases and MSPEs
of DIR, JL, and EB (or EBLUP) and the percentage of relative biases of the
two different MSPE estimators. All the results are based on 50,000 simulation
runs.

The percentage improvement is defined to be the relative gain in MSPE
over DIR expressed in percentage. DIR is the best in terms of the average
bias, followed by JL and EB. The average bias of DIR remains more or less
the same for different choices of σv. The same is true for the average MSPE.
The bias of the EBLUP does not change for a variation of σv but the MSPE
decreases with the increase of σv. The purpose of comparing the two MSPE
estimators is to understand the effect of the additional term involving gi(θ).
For each small area i = 1, . . . , 30, we calculate the relative bias (RB) of each
MSPE estimator as follows,

RB =
E(mspei) − MSPEi

MSPEi
,

where mspei is an arbitrary estimator of the true MSPEi for area i. We
then average these RBs for all the small areas and report the average relative
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bias (ARB) in Table 3.1. The performances of both MSPE estimators improve
when σ2

v increases. The contribution from the term involving gi(θ) is significant
especially for small σv. For example, this additional term brings the percentage
of relative bias of the first estimator from 36% to −2% when σv = .4, quite a
remarkable contribution! When σv is large, the effect of this additional term
diminishes.

Table 3.2. Randomization-based average bias and MSPE

Average Bias MSPE (% Improvement)
(v, e) DIR EB JL DIR EB JL
(N,N) .027 .239 .058 .118 .115 .103

(2.2) (12.9)
(DE,N) .027 .239 .051 .118 .119 .106

(−.7) (10.4)
(N,DE) .029 .254 .063 .124 .125 .108

(−1.2) (12.6)
(DE,DE) .030 .254 .057 .124 .127 .110

(−2.6) (10.8)
(EXP,N) .034 .270 .057 .124 .136 .111

(−9.8) (10.3)
(EXP,EXP) .030 .243 .051 .125 .118 .113

(5.2) (9.7)

In Table 3.2, we compare the robustness properties of our proposed estima-
tor with the EBLUP. We considered several finite populations, each generated
from a model different from the above nested error model. We generated the
finite populations from a nested error regression model (i.e., µ is replaced by
xijµ) using combinations of distributions to generate the random effect vi and
the pure error eij . We considered various combinations of normal, shifted ex-
ponential and shifted double exponentials to generated (vi, eij). In each case,
the means of vi and eij are zeros and variances σ2

v = 1 = σ2
e . In terms of

the MSPE, the proposed model-assisted EBP is a clear winner. We note that
in some situations the model-based EBLUP performs worse than the direct
estimator.

3.7 Further Results and Technical Notes

3.7.1 More on NLGSA

In this section, we give more details about NLGSA introduced in Section
3.6.1.2. Note that as long as the αs are solved from (3.33) as functions of the
βs, (3.32) can be fairly easily solved, because the number of fixed effects is
usually not very large. Thus, we focus on solving (3.33) given β.
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Suppose that the random effects are independent (and normal). This
means that G, the covariance matrix of α = (αk)1≤k≤m, is diagonal, say,
G = diag(d1, . . . , dm). Furthermore, assume a canonical link function ξi = ηi.
Write zi = (zik)1≤k≤m. Then Equations (3.33) are equivalent to

αk

dk
+

n∑
i=1

zik

ai(φ)
b′
(

x′
iβ +

m∑
l=1

xilαl

)
=

n∑
i=1

zik

ai(φ)
yi, 1 ≤ k ≤ m.

Let fk(α1, . . . , αk−1, αk+1, . . . , αm) denote the unique solution λ to the fol-
lowing equation

λ

dk
+

n∑
i=1

zik

ai(φ)
b′

⎛⎝x′
iβ + zikλ +

∑
l �=k

zilαl

⎞⎠ =
n∑

i=1

zik

ai(φ)
yi.

A recursive algorithm is characterized by

α
(t)
k = fk(α(t)

1 , . . . , α
(t)
k−1, α

(t−1)
k+1 , . . . , α(t−1)

m ), 1 ≤ k ≤ m

for t = 1, 2, . . ., or, equivalently,

α
(t)
k

dk
+

n∑
i=1

zik

ai(φ)
b′
(

x′
iβ +

k∑
l=1

zilα
(t)
l +

m∑
l=k+1

zilα
(t−1)
l

)

=
n∑

i=1

zik

ai(φ)
yi, 1 ≤ k ≤ m.

Jiang (2000b) proved the following theorem regarding the convergence of
the above NLGSA.

Theorem 3.2 (Global convergence of NLGSA). For any fixed β and
arbitrary initial values, the NLGSA converges to the unique solution α̃ = α̃(β)
to (3.3).

The proof used the global convergence theorem of Luenberger (1984). Note
that it is easy to show that, given β, (3.3) has a unique solution α̃ = α̃(β).
See Jiang (2000b) for detail.

3.7.2 Asymptotic Properties of PQWLS Estimators

In some ways, asymptotic theory regarding random effects is different from
that about fixed parameters. First, the individual random effects are typically
not identifiable [see the discussion below (3.38)]. Therefore, any asymptotic
theory must take care, in particular, of the identifiability problem. Second, the
number of random effects m should be allowed to increase with the sample size
n. Asymptotic properties of estimators of fixed parameters when the number
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of parameters increases with n have been studied by Portnoy in a series of
papers (e.g., Portnoy 1984).

To explore the asymptotic behavior of PGWLS estimators, we need to
assume that m increases at a slower rate than n; that is, m/n → 0. The case
that m/n does not go to zero is discussed in the next section. First, we explain
how the matrix PA is chosen for the penalty term in (3.40). Note that the first
term in (3.40), that is,

lC(γ) =
n∑

i=1

wi{yiηi − bi(ηi)},

depends on γ = (β′, α′)′ only through η = Xβ + Zα. However, γ cannot be
identified by η, so there may be many vectors γ corresponding to the same
η. The idea is therefore to consider a restricted space S = {γ : PAα = 0},
such that within this subspace γ is uniquely determined by η. Here we define
a map T : γ → γ̃ = (β̃, α̃)′ as follows: α̃ = PA⊥α, β̃ = β + (X ′X)−1X ′ZPAα.
Obviously, T does not depend on the choice of A. Because Xβ̃ = Xβ + Zα −
PX⊥ZPAα = Xβ + Zα, we have lC(γ) = lC(γ̃). Let

GA =
(

X Z
0 A′

)
.

The proofs of the following lemmas and theorem can be found in Jiang (1999).

Lemma 3.1. rank(GA) = p + m, where p is the dimension of β.

Corollary 3.1. Suppose that b′′
i (·) > 0, 1 ≤ i ≤ n. Then, there can be

only one maximizer of lP.

Let B be a matrix, v a vector, and V a vector space. Define λmin(B)|V =
infv∈V \{0}(v′Bv/v′v). Also, let H = (X Z)′(X Z).

Lemma 3.2. For any positive numbers bj , 1 ≤ j ≤ p and ak, 1 ≤ k ≤ m,
we have

λmin(W−1HW−1)|WS ≥ λmin(G′
AGA)

(max1≤j≤p b2
j ) ∨ (max1≤k≤m a2

k)
> 0

for any W = diag(b1, . . . , bp, a1, . . . , am).

Let Xj (Zk) denote the jth (kth) column of X (Z).

Theorem 3.3. Let b′′
i (·) be continuous, max1≤i≤n[w2

i E{var(yi|α)}] be
bounded, and

n−1
{(

max
1≤j≤p

|Xj |2
)

‖(X ′X)−1X ′Z‖2 +
(

max
1≤k≤m

|Zk|2
)}

|PAα|2

converge to zero in probability. Let cn, dn be any sequences such that
lim sup(max1≤j≤p |βj |/cn) < 1 and P(max1≤k≤m |αk|/dn < 1) → 1. Also,



154 3 Generalized Linear Mixed Models: Part I

let Mi ≥ cn

∑p
j=1 |xij | + dn

∑m
k=1 |zik|, 1 ≤ i ≤ n, and γ̂ be the maximizer of

lP over Γ (M) = {γ : |ηi| ≤ Mi, 1 ≤ i ≤ n}. Then,

n−1

⎧⎨⎩
p∑

j=1

|Xj |2(β̂j − βj)2 +
m∑

k=1

|Zk|2(α̂k − αk)2

⎫⎬⎭ −→ 0

in probability, provided that

p + m

n
= o(ω2),

where

ω = λmin(W−1HW−1)|WS min
1≤i≤n

{wi inf
|u|≤Mi

|b′′
i (u)|}

with W = diag(|X1|, . . . , |Xp|, |Z1|, . . . , |Zm|).
Corollary 3.2. Suppose that the conditions of Theorem 3.3 hold and that

(p + m)/n = o(ω2).
(i) If p is fixed and lim inf λmin(X ′X)/n > 0, β̂ is consistent.
(ii) If Zα = Z1α1 + · · ·+Zqαq, where each Zu is a standard design matrix

(see Section 2.4.2.1, Note 2), then, we have(
mu∑
v=1

nuv

)−1 mu∑
v=1

nuv(α̂uv − αuv)2 −→ 0

in probability, where αu = (αuv)1≤v≤mu
, α̂u = (α̂uv)1≤v≤mu

, and nuv is the
number of appearances of αuv in the model.

The last result shows that, under suitable conditions, the PGWLS esti-
mators of the fixed effects are consistent, and those of the random effects
are consistent in some overall sense (but not necessarily for each individual
random effect; Exercise 3.9).

Next, we consider a special class of GLMM, the so-called longitudinal
GLMM, in which the responses are clustered in groups with each group asso-
ciated with a single (possibly vector-valued) random effect. Suppose that the
random effects α1, . . . , αm satisfy E(αi) = 0. The responses are yij , 1 ≤ i ≤ m,
1 ≤ j ≤ ni, such that, given the random effects, yijs are (conditionally) inde-
pendent with E(yij |α) = b′

ij(ηij), where bij(·) is differentiable. Furthermore,
we have

ηij = µ + x′
ijβ + z′

iαi,

where µ is an unknown intercept, β = (βj)1≤j≤s (s is fixed) is an unknown
vector of regression coefficients, and xij and zi are known vectors. Such models
are useful, for example, in the context of small-area estimation (e.g., Ghosh
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and Rao 1994), in which αi represents a random effect associated with the
ith small area. Here we are interested in the estimation of µ, β as well as
vi = z′

iα, the so-called area-specific random effects. Therefore, without loss of
generality, we may assume that

ηij = µ + x′
ijβ + vi,

where v1, . . . , vm are random effects with E(vi) = 0. It is clear that the model is
a special case of GLMM. Following our earlier notation, it can be shown that,
in this case, A = 1m ∈ B(N (PX⊥Z)), S = {γ : v· = 0}, where v· =

∑m
i=1 vi.

Thus, (3.40) has a more explicit expression:

lP(γ) =
m∑

i=1

ni∑
j=1

wij{yijηij − bij(ηij)} − λ

2
mv̄2,

where v̄ = v·/m. Let

δn = min
i,j

{wij inf
|u|≤Mij

b′′
ij(u)},

λn = λmin

⎧⎨⎩
m∑

i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)′

⎫⎬⎭ ,

where x̄i = n−1
i

∑ni

j=1 xij . For the special longitudinal GLMM above, we have
the following more explicit result (see Jiang 1999a).

Theorem 3.4. Suppose that b′′
ij(·) is continuous. Furthermore, suppose

that w2
ijE{var(yij |v)}, |xij | are bounded, lim inf(λn/n) > 0, and v̄ → 0

in probability. Let cn, dn be such that lim sup{(|µ| ∨ |β|)/cn} < 1 and
P(maxi |vi|/dn < 1) → 1. Let Mij satisfy Mij ≥ cn(1+ |xij |)+dn. Finally, let
γ̂ = (µ̂, β̂′, v̂′)′ be the maximizer of lP over Γ (M) = {γ : |ηij | ≤ Mij ,∀i, j}.
Then, we have β̂ → β in probability, and

1
n

m∑
i=1

ni(âi − ai)2 −→ 0

in probability, where ai = µ+ vi and âi = µ̂+ v̂i, provided that m/n = o(δ2
n).

If the latter is strengthened to (min1≤i≤m ni)−1 = o(δ2
n), we have, in addition,

µ̂ → µ, n−1 ∑m
i=1 ni(v̂i−vi)2 → 0, and m−1 ∑m

i=1(v̂i−vi)2 → 0 in probability.

3.7.3 MSE of EBP

In this section, we give more details about the approximation and estimation
of the MSE of EBP, introduced in Section 3.6.2.1. We assume, for simplicity,
that the dispersion parameter φ is known, so that b(ψ) = b(θ) in (3.47).

First we have the following expression for b(θ),
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b(θ) = MSE(ζ̃)
= E(ζ2) − {E(ζ̃)}2

= E{ζ(β, αS)2} − [E{u(yS , θ)}]2. (3.55)

Next, we use Taylor series expansion to approximate ζ̂ − ζ̃. Suppose that
|θ̂ − θ| = O(m−1/2) in a suitable sense (say, in probability). Then, we have,
asymptotically,

ζ̂ − ζ̃ = u(yS , θ̂) − u(yS , θ)

=
(

∂u

∂θ′

)
(θ̂ − θ) + o(m−1/2).

It follows that

E(ζ̂ − ζ̃)2 = m−1E
{(

∂u

∂θ′

)√
m(θ̂ − θ)

}2

+ o(m−1). (3.56)

To obtain a further expression we use the following trick. First assume
that θ̂ is an estimator based on yS−. A consequence of this is that θ̂ is then
independent of YS , and hence a further expression for the first term on the
right side of (3.56) is easily obtained. We then argue that, if θ̂ is an estimator
based on all the data, it only makes a difference of the order o(m−1), and
therefore the same approximation is still valid.

Suppose that θ̂ = θ̂S−, an estimator based on YS−. Then, by independence,
we have

E
{(

∂u

∂θ′

)√
m(θ̂S− − θ)

}2

= E

⎛⎝E

[{(
∂u

∂θ′

)√
m(θ̂S− − θ)

}2
∣∣∣∣∣ yS = w

]∣∣∣∣∣
w=yS

⎞⎠
= E

[{
∂

∂θ′ u(w, θ)
}

VS−(θ)
{

∂

∂θ
u(w, θ)

}∣∣∣∣
w=yS

]

= E
[{

∂

∂θ′ u(yS , θ)
}

VS−(θ)
{

∂

∂θ
u(yS , θ)

}]
= eS−(θ), (3.57)

where VS−(θ) = mE(θ̂S− − θ)(θ̂S− − θ)′.
Let ζ̂1 = u(yS , θ̂S−). Combining (3.47), (3.55), and (3.57), we obtain

MSE(ζ̂1) = b(θ) + m−1eS−(θ) + o(m−1). (3.58)

Now, suppose that θ̂ is an estimator based on all data. We assume that
θ̂S− satisfies |θ̂S− − θ| = O(m−1/2) (in a suitable sense), and, in addition,
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|θ̂−θ̂S−| = o(m−1/2). To see that this latter assumption is reasonable, consider
a simple case in which one estimates the population mean µ by the sample
mean µ̂m = m−1 ∑m

i=1 Xi, where the Xis are i.i.d. observations. Then, we
have, for example, µ̂m − µ̂m−1 = m−1(Xm − µ̂m−1) = O(m−1). Also note
that µ̂m − µ = O(m−1/2), µ̂m−1 − µ = O(m−1/2). (Here all the Os are in
probability.) Note that

E(ζ̂ − ζ̂1)(ζ̂1 − ζ) = E(ζ̂ − ζ̂1)(ζ̂1 − ζ̃).

It follows, again by Taylor expansion and (3.58), that

MSE(ζ̂) = E(ζ̂ − ζ̂1)2 + 2E(ζ̂ − ζ̂1)(ζ̂1 − ζ̃) + E(ζ̂1 − ζ)2

= MSE(ζ̂1) + o(m−1)
= b(θ) + m−1e(θ) + o(m−1), (3.59)

where e(θ) is eS−(θ) with VS−(θ) replaced by V (θ) = mE(θ̂ − θ)(θ̂ − θ)′.
Having obtained a second-order approximation to the MSE, we now con-

sider the estimation of it. Note that, in (3.59), one may simply replace θ in e(θ)
by θ̂, because this results in an error of the order o(m−1) for the estimation of
the MSE. However, one cannot do this to b(θ), because the bias may not be
of the order o(m−1). In fact, quite often we have E{b(θ̂) − b(θ)} = O(m−1/2).
However, if |θ̂ − θ| = O(m−1/2) (in a suitable sense) and E(θ̂ − θ) = O(m−1),
by Taylor expansion, we have

b(θ̂) = b(θ) +
(

∂b

∂θ′

)
(θ̂ − θ)

+
1
2
(θ̂ − θ)′

(
∂2b

∂θ∂θ′

)
(θ̂ − θ) + o(m−1),

and hence

E{b(θ̂)} = b(θ) + m−1B(θ) + o(m−1),

where

B(θ) =
(

∂b

∂θ′

)
mE(θ̂ − θ)

+
1
2
E
[
{
√

m(θ̂ − θ)}′
(

∂2b

∂θ∂θ′

)
{
√

m(θ̂ − θ)}
]

.

If we define M̂SE(ζ̂) as (3.48), then it can be shown that (3.49) is satisfied.
Note that the arguments above are not a rigorous proof of (3.49) because,

for example, E{oP(m−1)} is not necessarily o(m−1). However, under regularity
conditions a rigorous proof could be given. See, for example, Jiang and Lahiri
(2001) for the case of binary responses.
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Also note that the derivation above requires θ̂, θ̂S− satisfying certain con-
ditions, namely,

|θ̂ − θ| = OP(m−1/2), |θ̂S− − θ| = OP(m−1/2),

|θ̂ − θ̂S−| = oP(m−1/2), andE(θ̂ − θ) = O(m−1). (3.60)

Then the question is: are there such estimators? A class of estimators in
GLMM that satisfy (3.60) are given by Jiang (1998). Also see Jiang and
Zhang (2001). See section 4.2 for further discussion.

3.7.4 MSPE of the Model-Assisted EBP

Recall that the MSPE is defined as MSPE(ζ̂i) = E(ζ̂i − Ȳi)2, where the ex-
pectation is taken with respect to both the sampling design and the assumed
mixed model for the units in the sample. In this section, we assume that nis
are bounded for all i. Furthermore, we assume that the model holds for the
sampled units so that (3.54) corresponds to the model-assisted EBP. Because
the model is assumed to hold, we obtain an estimator of the MSPE whose bias
is of the order o(m−1) with respect to the assumed unit level mixed model.
Under mild conditions, the bias is of the same order when an additional ex-
pectation is taken with respect to the sampling design. See Jiang and Lahiri
(2005a) for further discussion.

So throughout the rest of this section, all expectations are with respect to
the assumed model. We assume that ζi = E(Ȳi|vi), which holds, for example,
under the normal linear mixed model of Prasad and Rao (1999) and the
mixed logistic model, a special case of GLMM, of Jiang and Lahiri (2001).
By this assumption and certain regularity conditions, it can be shown that
Ȳi − ζi = OP(N−1/2

i ). Thus, we have

(ζ̂i − Ȳi)2 = (ζ̂i − ζi)2 + OP(N−1/2
i ).

Because of the above fact, we approximate MSPE(ζ̂i) by E(ζ̂i−ζi)2. Note that
here we assume that the population size Ni is much larger than m. To establish
the results in the sequel rigorously one needs to show that the neglected terms
are o(m−1). Arguments to show that, for example, E{oP(m−1)} = o(m−1),
are needed. Such results hold under suitable conditions that ensure uniform
integrability. See Jiang and Lahiri (2001, Section 5). With this approximation,
we have the following decomposition,

MSPE(ζ̂i) = MSPE(ζ̃) + E(ζ̂i − ζ̃i)2

+2E(ζ̂i − ζ̃i)(ζ̃i − ζi)2 + o(m−1). (3.61)

First, we have
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MSPE(ζ̃) = E(ζ2
i ) − E(ζ̃2

i )

= E

⎧⎨⎩
ni∑

j=1

wijE(yij |vi)

⎫⎬⎭
2

+ E{u2
i (ȳiw, θ)}

≡ bi(θ). (3.62)

Second, by the same arguments as in the previous section, we have

E(ζ̂i − ζ̃i)2 = ei(θ)m−1 + o(m−1), (3.63)

where

ei(θ) = E
{(

∂ui

∂θ′

)
V (θ)

(
∂ui

∂θ

)}
with V (θ) = mE(θ̂ − θ)(θ̂ − θ)′.

Third, to obtain an approximation for the third term on the right side of
(3.61), we make further assumptions on θ̂. Suppose that θ̂ is a solution to an
estimating equation of the following type,

M(θ) =
1
m

m∑
i=1

ai(yi, θ) = 0, (3.64)

where yi = (yij)1≤j≤ni
, ai(·, ·) is vector valued such that Eai(yi, θ) = 0 if θ is

the true vector of parameters, 1 ≤ i ≤ m. For example, it is easy to see that
the maximum likelihood estimator of θ satisfies the above. It can be shown
that if θ̂ satisfies (3.64), then

E(ζ̂i − ζ̃i)(ζ̃i − ζi) = gi(θ)m−1 + o(m−1), (3.65)

where gi(θ) = E[ωi(y, θ){E(ζi|ȳiw) − E(ζi|y)}] with

ωi(y, θ) = −
(

∂ui

∂θ′

)
A−1ai(yi, θ) + mδi(y, θ),

δi(y, θ) =
(

∂ui

∂θ′

)
A−1

(
∂M

∂θ′ − A

)
A−1M(θ)

+
1
2

(
∂ui

∂θ′

)
A−1

{
M ′(θ)(A−1)′E

(
∂2Mj

∂θ∂θ′

)
A−1M(θ)

}
+

1
2
M ′(θ)(A−1)′ ∂2ui

∂θ∂θ′ A
−1M(θ),

A = E(∂M/∂θ′). Here y represents the vector of all the data; that is,
y = (yij)1≤i≤m,1≤j≤ni , Mj the jth component of M , and (bj) a vector with
components bj .

Combining (3.61)–(3.63) and (3.65), we obtain the approximation
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MSPE(ζ̂i) = bi(θ) + {ei(θ) + 2gi(θ)}m−1 + o(m−1). (3.66)

Finally, if we define

M̂SPE(ζ̂i) = bi(θ̂) + {êi(θ) + 2gi(θ̂) − B̂i(θ)}m−1, (3.67)

where

Bi(θ) = m

{(
∂bi

∂θ′

)
E(θ̂ − θ) +

1
2
E(θ̂ − θ)′

(
∂2bi

∂θ∂θ′

)
(θ̂ − θ)

}
,

and êi(θ), B̂i(θ) are estimators of ei(θ), Bi(θ) given below, then, under suitable
conditions, we have

E{M̂SPE(ζ̂i) − MSPE(ζ̂i)} = o(m−1).

It remains to obtain estimators for ei(θ) and Bi(θ). First, we have the
following alternative expressions,

ei(θ) = tr{V (θ)G1(θ)},

Bi(θ) =
(

∂bi

∂θ

)′
v(θ) +

1
2
tr{V (θ)G2(θ)},

where v(θ) = mE(θ̂ − θ), V (θ) = mE(θ̂ − θ)(θ̂ − θ)′,

G1(θ) = E
(

∂ui

∂θ

)(
∂ui

∂θ

)′
and G2(θ) =

∂2di

∂θ∂θ′ .

Gj(θ) can be estimated by a plug-in estimator; that is, Gj(θ̂), j = 1, 2. As for
v(θ) and V (θ), we propose to use the following sandwich-type estimators,

V̂ (θ) = m

(
m∑

i=1

∂ai

∂θ′

∣∣∣∣
θ=θ̂

)−1 ( m∑
i=1

âiâ
′
i

)(
m∑

i=1

∂a′
i

∂θ

∣∣∣∣
θ=θ̂

)−1

, (3.68)

v̂(θ) =
1
m

m∑
i=1

Â−1
(

∂ai

∂θ′

∣∣∣∣
θ=θ̂

)
Â−1âi

−1
2
Â−1

{
1
m

m∑
i=1

â′
i(Â

−1)′ĤjÂ
−1âi

}
, (3.69)

where âi = ai(yi, θ̂),

Â =
1
m

m∑
i=1

∂ai

∂θ′

∣∣∣∣
θ=θ̂

,

Ĥj =
1
m

m∑
i=1

∂2ai,j

∂θ∂θ′

∣∣∣∣
θ=θ̂

,

and, as before, (bj) represents a vector whose jth component is bj . The deriva-
tions of (3.68) and (3.69) are given in Jiang and Lahiri (2005a).
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3.8 Exercises

3.1. Show that, under the assumption made in the first paragraph of Sec-
tion 3.2, the vector of observations, y = (y1, . . . , yn)′, has the same distribution
as the Gaussian linear mixed model (1.1), where α ∼ N(0, G), ε ∼ N(0, τ2I),
and α and ε are independent.

3.2. Suppose that, in Example 3.3, the conditional distribution of yi given
α is binomial(ki, pi) instead of Bernoulli, where ki is a known positive integer,
and pi is the same as in Example 3.3. Show that, with a suitable link function,
this is a special case of GLMM. What is the dispersion parameter φ in this
case? And what is ai(φ)?

3.3. Show that the likelihood function under the GLMM in Example 3.5
is given by (3.4).

3.4. Derive the Laplace approximation (3.6). What is the constant c in
(3.7)? Please explain.

3.5. Verify (3.13) and obtain an expression for r. Show that r has expec-
tation zero.

3.6. Consider the following simple mixed logistic model, which is a special
case of GLMM. Suppose that, given the random effects α1, . . . , αm, binary
responses yij , i = 1, . . . , m, j = 1, . . . , n are conditionally independent with
conditional probability pij = P(yij = 1|α), where α = (αi)1≤i≤m, such that
logit(pij) = µ + αi, where logit(p) = log{p/(1 − p)} and µ is an unknown
parameter. Furthermore, suppose that the random effects α1, . . . , αm are in-
dependent and distributed as N(0, σ2), where σ2 is an unknown variance.
Show that, when σ2 = 0, the approximation (3.15) is identical to the ex-
act log-likelihood function under this model. What about the approximation
(3.16), that is, the penalized quasi log-likelihood? Is it identical to the exact
log-likelihood when σ2 = 0?

3.7. Consider the Poisson-gamma HGLM of Example 3.6. Show that in
this case the HMLE for β is the same as the (marginal) MLE for β.

3.8. Show that, in the case of Example 3.5, the equations (3.33) reduce to
(3.34) and (3.35).

3.9. Consider the following simple mixed logistic model. Given the random
effects α1, . . . , αm, responses yij , i = 1, . . . , m, j = 1, . . . , k, are conditionally
independent with logit(pij) = µ + αi, where pij = P(yij = 1|α). Specify the
conditions of Corollary 3.2 as well as the conclusion.

3.10. For the same example in Exercise 3.9, specify the conditions of The-
orem 3.4 as well as the conclusion.

3.11. Verify that the mixed logistic model of Example 3.8 is a special case
of GLMM.

3.12. Consider the behavior of EBP in Example 3.8 (Continued) in section
3.6.2.1. Show that, with xij = xi, one has, as σ → ∞, ui(yi·, θ) ≈ logit(ȳi·) −
x′

iβ.
3.13. Consider estimation of the MSE of α̂i in Example 3.8 (Continued)

in section 3.6.2.1. Show that, in this case, the term b(θ) in (3.48) can be



162 3 Generalized Linear Mixed Models: Part I

expressed as

b(θ) = σ2 −
ni∑

k=0

u2
i (k, θ)pi(k, θ),

where

pi(k, θ) = P(yi· = k)

=
∑

z∈S(ni,k)

exp

⎛⎝ ni∑
j=1

zjx
′
ijβ

⎞⎠E[exp{si(z·, σξ, β)}]

with S(l, k) = {z = (z1, . . . , zl) ∈ {0, 1}l : z· = z1 + · · · + zl = k}.
3.13. Show that the numerator on the right side of (3.51) is O(m−1).



4

Generalized Linear Mixed Models: Part II

4.1 Likelihood-Based Inference

As mentioned in Section 3.4, the likelihood function under a GLMM typically
involves integrals with no analytic expressions, and therefore is difficult to
evaluate. For relatively simple models, the likelihood function may be evalu-
ated by numerical integration techniques. See, for example, Hinde (1982), and
Crouch and Spiegelman (1990). Such a technique is tractable if the integrals
involved are low-dimensional. The following is an example.

Example 4.1. Suppose that, given the random effects α1, . . . , αm, binary
responses yij , i = 1, . . . , m, j = 1, . . . , k are conditionally independent such
that logit(pij) = x′

ijβ + αi, where β is a vector of unknown regression coeffi-
cients, and pij = P(yij = 1|α). Furthermore, the random effects αi, 1 ≤ i ≤ m
are independent and distributed as N(0, σ2). It can be shown (Exercise 4.1)
that the log-likelihood function under this model can be expressed as

l(β, σ2) =
m∑

i=1

∫
1√

2πσ2
exp

⎧⎨⎩
k∑

j=1

sij(yi, v, β) − v2

2σ2

⎫⎬⎭ dv, (4.1)

where yi = (yij)1≤j≤k and

sij(yi, v, β) = yij(x′
ijβ + v) − log{1 + exp(x′

ijβ + v)}.

It is clear that only one-dimensional integrals are involved in the log-likelihood
function. Such integrals may be evaluated numerically. More specifically, sup-
pose that f(x) is a univariate function and one wishes to numerically evaluate
the integral

I =
∫

f(x)dx.

The integral may be approximated by
∑L

l=1 f(xl)∆l, where A = x0 < x1 <
· · · < xL = B, ∆l = xl −xl−1, and A < 0, B > 0 such that the absolute values
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of A, B are sufficiently large and those of ∆ls are sufficiently small. This is,
perhaps, the simplest numerical integration algorithm, but it by no mean
is the most efficient (Exercise 4.2). In fact, some more efficient algorithms
have been developed to numerically evaluate a one-dimensional integral. For
example, one of the standard approaches in numerical integration is called
Gaussian quadrature. Consider an approximation to an integral as follows,∫ b

a

w(x)f(x)dx ≈
N∑

j=1

wjf(xj).

Here the wjs and xjs are called weights and abscissas, respectively. A feature of
Gaussian quadrature is that it chooses the weights and abscissas such that the
above approximation is exact if f(x) is a polynomial. It is easy to understand
that such a choice will be dependent on the function w(x). For example, for
w(x) = 1, N = 10, the weights and abscissas are determined below for a ten-
point Gauss–Legendre integration. Here the abscissas are symmetric around
the midpoint of the range of integration, x∗ = (a + b)/2, expressed as x∗ and
x∗ ± d · uj , j = 1, . . . , 5, where d = (b − a)/2 and uj is given by 0.148874,
0.433395, 0.679410, 0.865063, 0.973907 for j = 1, 2, 3, 4, 5 up to the sixth
decimal. Similarly, the weights are equal for symmetric abscissas, and for x∗

and x∗±d·uj , j = 1, . . . , 5 the corresponding weights are 0, 0.295524, 0.269267,
0.219086, 0.149451, 0.066671. Other functions w(x) that are commonly used
include w(x) = 1/

√
1 − x2, −1 < x < 1 (Gauss–Chebyshev), w(x) = e−x2

,
−∞ < x < ∞ (Gauss–Hermite), and w(x) = xαe−x, 0 < x < ∞ (Gauss–
Laguerre), where α is a positive constant. See, for example, Press et al. (1997)
for more details. Numerical integration routines such as Gaussian quadrature
have been implemented in SAS (NLMIXED), Stata, and MIXOR.

However, numerical integration is generally intractable if the dimension
of integrals involved is greater than two. Alternatively, the integrals may be
evaluated by Monte Carlo methods. It should be pointed out that, for prob-
lems involving irreducibly high-dimensional integrals, naive Monte Carlo usu-
ally does not work. For example, the high-dimensional integral in Example
3.5 cannot be evaluated by a naive Monte Carlo method. This is because a
product of, say, 1600 terms with each term less than one is numerically zero.
Therefore, an i.i.d. sum of such terms will not yield anything but zero with-
out a huge simulation sample size! In the following sections, we introduce
methods developed by researchers using advanced Monte Carlo techniques for
computing the maximum likelihood estimators in GLMM.

4.1.1 A Monte Carlo EM Algorithm for Binary Data

McCulloch (1994) considered a threshold model, in which the response ui

(i = 1, . . . , n) represents an unobserved continuous variable and one only
observes yi = 1(ui>0), that is, whether or not ui exceeds a threshold which,
without loss of generality, is set to 0. Furthermore, it is assumed that
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u = Xβ + Z1α1 + · · · + Zsαs + ε, (4.2)

where β is a vector of unknown fixed effects, α1, . . . , αs are independent vec-
tors of random effects such that αr ∼ N(0, σ2

rImr ), 1 ≤ r ≤ s, and X,
Z1, . . . , Zs are known matrices. As usual, here ε represents a vector of errors
that is independent of the random effects and distributed as N(0, τ2In). It is
easy to show that the model is a special case of GLMM with binary responses
(Exercise 4.3). The problem of interest is to estimate the fixed parameters β,
σ2

r , 1 ≤ r ≤ s as well as to predict the realized values of the random effects.
McCulloch proposed to use an EM algorithm for inference about the model.
Before introducing the method, we give a brief overview of the EM algorithm
and its application in linear mixed models.

1. The EM algorithm. A key element in the EM algorithm is the so-called
“complete data”. Usually, these consist of the observed data, denoted by y,
and some unobserved random variables, denoted by ξ. For example, ξ may
be a vector of missing observations or a vector of random effects. The idea is
to choose ξ appropriately so that maximum likelihood becomes trivial for the
complete data. Let w = (y, ξ) denote the complete data, which are assumed
to have a probability density f(w|θ) depending on a vector θ of unknown
parameters. In the E-step of the algorithm, one computes the conditional
expectation

Q{θ|θ(k)} = E
{

log f(w|θ)|y, θ(k)
}

,

where θ(k) is the estimated θ at step k (the current step). Note that Q is
a function of θ. Then, in the M-step, one maximizes Q{θ|θ(k)} with respect
to θ to obtain the next step estimator θ(k+1). The process is iterated until
convergence. For more details, see, for example, Lange (1999). Laird and Ware
(1982) applied the EM algorithm to estimation of the variance components in
a Gaussian mixed model. Suppose that, in (4.2), u is replaced by y; that is,
the observed data follow a Gaussian mixed model. The complete data then
consist of y, α1, . . . , αs. The log-likelihood based on the complete data has
the following expression,

l = c − 1
2

{
n log(τ2) +

s∑
r=1

mr log(σ2
r) +

r∑
r=1

α′
rαr

σ2
r

+
1
τ2

(
y − Xβ −

s∑
r=1

Zrαr

)′ (
y − Xβ −

s∑
r=1

Zrαr

)}
,

where c does not depend on the data or parameters. Thus, to complete the
E-step, one needs expressions for E(αr|y) and E(α′

rαr|y), 1 ≤ r ≤ s. By the
theory of multivariate normal distribution, it is easy to show (Exercise 4.4)

E(αr|y) = σ2
rZ ′

rV
−1(y − Xβ), (4.3)
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E(α′
rαr|y) = σ4

r(y − Xβ)′V −1ZrZ
′
rV

−1(y − Xβ)
+σ2

rmr − σ4
rtr(Z ′

rV
−1Zr), 1 ≤ r ≤ s, (4.4)

where V = Var(y) = τ2In +
∑s

r=1 σ2
rZrZ

′
r. Once the E-step is completed, the

M-step is straightforward because

(σ2
r)(k+1) = m−1

r E(α′
iαi|y)|β=β(k),σ2=(σ2)(k) , 1 ≤ r ≤ s, (4.5)

β(k+1) = (X ′X)−1X ′
{

y −
s∑

q=1

ZqE(αq|y)|β=β(k),σ2=(σ2)(k)

}
, (4.6)

where σ2 = (σ2
j )1≤j≤s.

vspace2mm
2. Monte Carlo EM by Gibbs sampler. To apply the EM algorithm to

the threshold model, the complete data consist of u, α1, . . . , αs. The proce-
dure is very similar to that for Gaussian mixed models with y replaced by
u. However, there is one major difference: the observed data are y, not u,
which is not normal. As a result, expressions (4.3) and (4.4) no longer hold.
In fact, no analytic expressions exist for the left sides of (4.3) and (4.4) in this
case. In some simple cases, the conditional expectations may be evaluated
by numerical integration, as discussed earlier. However, for more complicated
random effects structure (e.g., crossed random effects), numerical integration
may be intractable. McCulloch (1994) proposed using a Gibbs sampling ap-
proach to approximate the conditional expectations. The Gibbs sampler is a
special case of the Metropolis–Hastings algorithm, a device for constructing
a Markov chain with a prescribed equilibrium distribution π on a given state
space. At each step of the algorithm, say, state i, a new destination state j
is proposed; that is, sampled, according to a probability density pij = p(j|i).
Then, a random number is drawn uniformly from the interval [0, 1] to deter-
mine if the proposed stage is acceptable. Namely, if the random number is
less than

r = min
(

πjpji

πipij
, 1
)

,

the proposed stage is accepted. Otherwise, the proposed step is declined, and
the chain remains in place. See, for example, Gelman et al. (2003) for more
detail. Here r is called the acceptance probability. In the case of the Gibbs
sampler, one component of the sample point will be updated at each step.
If the component to be updated is chosen at random, then it can be shown
that the acceptance probability is one (e.g., Lange 1999, pp. 332). However,
in practice, the updates of the components are typically done according to
the natural order of the components. The following outlines how the Gibbs
sampler is used to generate a sample from the conditional distribution of u|y
(see McCulloch 1994). For each 1 ≤ i ≤ n,
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1. Compute σ2
i = var(ui|uj , j �= i), ci = Cov(ui, u−i), where u−i = (uj)j �=i,

and µi = E(ui|uj , j �= i) = x′
iβ + c′

i(u−i −X−iβ), where X−i is X with its ith
row x′

i removed. Note that ci is an (n − 1) × 1 vector. Then,
2. Simulate ui from a truncated normal distribution with mean µi and

standard deviation σi. If yi = 1, simulate ui truncated above 0; if yi = 0,
simulate ui truncated below 0.

Using the algorithm, McCulloch (1994) analyzed the salamander mating
data (McCullagh and Nelder 1989, §14.5) and obtained the MLE of the pa-
rameters under a GLMM.

4.1.2 Extensions

1. MCEM with Metropolis–Hastings algorithm. The Monte Carlo EM method
(MCEM method) described above has one limitation: that is, it applies only
to the case of binary responses with a probit link and normal random effects.
McCulloch (1997) extended the method in several ways. First, he used the
Metropolis–Hastings algorithm instead of Gibbs to generate random samples
for the MCEM. This allowed him to relax the dependency of his earlier results
on the normal (mixed model) theory. More specifically, he considered a GLMM
with a canonical link function such that

f(y|α, β, φ) = exp
{

yiηi − b(ηi)
a(φ)

+ c(yi, φ)
}

, (4.7)

where ηi = x′
iβ + z′

iα with xi and zi known, and a(·), b(·), and c(·, ·) are
known functions. Furthermore, it is assumed that α ∼ f(α|θ). Here, as usual,
y and α denote the vectors of responses and random effects, respectively, and
β, θ and φ the vectors of fixed effects, variance components, and additional
dispersion parameter. Then, the main computational issue is to evaluate the
conditional expectations E[log{f(y|α, β, φ)}|y] and E[log{f(α|θ)}|y]. It can be
shown that, at the kth step of any cycle, the acceptance probability of the
Metropolis–Hastings algorithm is given by

rk =
∏n

i=1 f(yi|α∗, β, φ)∏n
i=1 f(yi|α, β, φ)

,

where α denotes the previous draw from the conditional distribution of α|y,
and α∗ is a candidate draw whose k component is u∗

k, a generated new value,
and the other components are the same as those of α. An advantage of this
expression is that it does not depend on the distribution of α; only the con-
ditional distribution of y|α is involved. Thus, for example, the normality as-
sumption is no longer important here.

2. Monte Carlo Newton–Raphson procedure. As the Newton–Raphson pro-
cedure is also widely used in maximum likelihood estimation, a Monte Carlo
analogue of the Newton–Raphson algorithm (MCNR) was also developed. It
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can be shown (Exercise 4.5) that the ML equations for estimating β, θ, and
φ may be expressed as

E
[

∂

∂β
log{f(y|α, β, φ)}

∣∣∣∣ y] = 0, (4.8)

E
[

∂

∂φ
log{f(y|α, β, φ)}

∣∣∣∣ y] = 0, (4.9)

E
[

∂

∂θ
log{f(α|θ)}

∣∣∣∣ y] = 0. (4.10)

Equation (4.10) is often fairly easy to solve. For example, if the random effects
are normally distributed, the left side of (4.10) has an analytic expression. On
the other hand, the left sides of (4.8) and (4.9) typically involve conditional
expectations of functions of α given y. To evaluate this expression, McCulloch
(1997) used a scoring technique. First Taylor-expand the left side of (4.7) as
a function of β around the true β and φ, just as in the derivation of the
Newton–Raphson algorithm. Then, the conditional expectation is taken. By
a similar derivation as in McCullagh and Nelder (1989, pp. 42), one obtains
an iterative equation of the form

β(m+1) = β(m) + [E{X ′W (m)X|y}]−1X ′E[W (m)G(m){y − µ(m)}|y],

where G = ∂η/∂µ = diag(∂ηi/∂µi) [see (4.7)],

W−1 = diag

{(
∂ηi

∂µi

)2

var(yi|α)

}
,

and the superscript (m) means evaluation at β(m) and φ(m).

3. Simulated ML. Finally, a method of simulated maximum likelihood
(SML) was proposed. As noted earlier, a naive Monte-Carlo method often
does not work here (see the discussion below Example 4.1). McCulloch (1997)
proposed using a method called importance sampling. The idea is the follow-
ing. Suppose that one needs to evaluate an integral of the form

I(f) =
∫

f(x)dx

for some function f(x) ≥ 0. Note that the integral may be expressed as

I(f) =
∫

f(x)
h(x)

h(x)dx

= E
{

f(ξ)
h(ξ)

}
,

where h is a pdf such that h(x) > 0 if f(x) > 0, and ξ is a random variable
with pdf h. Thus, if one can generate a sequence of i.i.d. samples ξ1, . . . , ξK

with the pdf h, one can approximate the integral by
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Ep(f) ≈ 1
K

K∑
k=1

f(ξk)
h(ξk)

.

See Gelman et al. (2003) for more details.
In the current situation, the likelihood function can be written as

L(β, φ, θ|y) =
∫

f(y|α, β, φ)f(α|θ)dα

=
∫

f(y|α, β, φ)f(α|θ)
g(α)

g(α)dα

≈ 1
K

K∑
k=1

f(y|α(k), β, φ)f(α(k)|θ)
g(α(k))

,

where α(k), k = 1, . . . , K are generated i. i. d. random vectors with (joint)
pdf h. Note that this gives an unbiased estimator of the likelihood function
regardless of g. The question then is how to choose g, which is called the
importance sampling distribution. We use an example to illustrate the above
methods, including the choice of g in SML.

Example 4.2. McCulloch (1997) used the following example to illustrate
the MCEM, MCNR and SML methods. It is a special case of Example 4.1
with x′

ijβ = βxij ; that is, there is a single covariate xij and β is a scalar. The
likelihood function can be expressed as

L(β, σ2|y) =
m∏

i=1

∫ ⎡⎣ k∏
j=1

exp{yij(βxij + u)}
1 + exp(βxij + u)

⎤⎦ exp(−u2/2σ2)
(2πσ2)1/2 du.

For MCEM and MCNR, the acceptance probability for the Metropolis–
Hastings algorithm is given by

rk = min

⎡⎣1,

m∏
i=1

exp{yi·(α∗
i − αi)}

n∏
j=1

1 + exp(βxij + αi)
1 + exp(βxij + α∗

i )

⎤⎦ ,

where yi· =
∑k

j=1 yij . Furthermore, for the MCNR iterations, one has µ =
(µij)1≤i≤n,1≤j≤k with µij = h(βxij + αi) and h(x) = ex/(1 + ex), and W =
diag(Wij , 1 ≤ i ≤ n, 1 ≤ j ≤ k) with Wij = µij(1 − µij). As for SML, there
is a question of what to use for g, the importance sampling distribution. In a
simulation study, McCulloch used the distribution N(0, σ2), which is the same
as the distribution of the random effects, as g. In other words, g is chosen as
the pdf of the true distribution of the random effects. Even given such an
advantage, SML still seems to perform poorly in this simple example.

On the other hand, both MCEM and MCNR performed reasonably well in
two simulated examples, including the one discussed above (McCulloch 1997,
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Section 6). In the concluding remark of the paper, the author further noted
that MCEM and MCNR may be followed by a round of SML, which “usually
refines the estimates and also gives accurate estimates of the maximum value
of the likelihood.” We recall this interesting observation later. The simulation
results also show that the PQL estimator (Breslow and Clayton 1993) may
perform poorly compared to MCEM or MCNR, which is not surprising given
the inconsistency of the PQL estimator (see Section 3.5.2.4).

4.1.3 MCEM with I.I.D. Sampling

In this and the next sections, we introduce MCEM methods developed by
Booth and Hobert (1999). Unlike McCulloch (1994, 1997), who used Markov
chains to generate Monte Carlo samples, Booth and Hobert used i.i.d. sam-
pling to construct Monte Carlo approximations at the E-step. More specifi-
cally, the authors used two methods to generate the Monte Carlo samples. The
first is importance sampling; the second is rejection sampling. Furthermore,
they suggested a rule for automatically increasing the Monte Carlo sample size
as the algorithm proceeds, whenever necessary. This latter method is known
as automation. We first introduce the two methods of generating i.i.d. Monte
Carlo samples, and leave the automated method to the next section.

1. Importance sampling. The importance sampling was introduced earlier
with the SML method, where we pointed out that an important issue for im-
portance sampling is how to choose g, the importance sampling distribution.
In McCulloch (1997), the author did not give a general suggestion on what g
to use, but in a simulated example he used the true distribution of the ran-
dom effects as g. Of course, such a choice would not be possible in practice,
but it did not work well anyway, as the simulation results showed. Booth and
Hobert suggested a multivariate-t distribution that matches (approximately)
the mode and curvature of the conditional distribution of the random effects
given the data. They noted that the E-step is all about the calculation of
Q{ψ|ψ(l)} = E[log{f(y, α|ψ)}|y; ψ(l)], where ψ = (β′, φ, θ′)′ and l represents
the current step. The expected value is computed under the conditional dis-
tribution of α given y, which has density

f(α|y; ψ) ∝ f(y|α; β, φ)f(α|θ). (4.11)

There is a normalizing constant involved in the above expression, which is
the (marginal) density function f{y|ψ(l)}. (This is why ∝ is used instead of
=.) However, as the authors pointed out, the constant does not play a role
in the next M-step, because it depends only on ψ(l), whereas the next-step
maximization is over ψ. Let α∗

1, . . . , α
∗
K be an i.i.d. sample generated from g,

the importance sampling distribution. Then, we have the approximation

Q{ψ|ψ(l)} ≈ 1
K

K∑
k=1

wkl log{f(y, α∗
k|ψ)}, (4.12)



4.1 Likelihood-Based Inference 171

where wkl = f{α∗
k|y; ψ(l)}/g(α∗

k), known as the importance weights. The right
side of (4.12) is then maximized with respect to φ in the M-step to obtain
ψ(l+1). Note that the right side of (4.12) is not a completely known function
(of φ), but subject to an unknown constant which is f{y|ψ(l)}. However, as
noted earlier, this constant makes no difference in the M-step, therefore we
simply ignore it. In other words, the function that is actually maximized is
the right side of (4.12) with f{y|ψ(l)} replaced by 1.

As for the importance sampling distribution g, Booth and Hobert proposed
using a multivariate t-distribution whose mean and covariance matrix match
the Laplace approximations of the mean and covariance matrix of f(α|y; ψ).
An m-multivariate t-distribution with mean vector µ, covariance matrix Σ,
and d degrees of freedom has the joint pdf

g(x) =
Γ{(m + d)/2}
(πd)m/2Γ (d/2)

|Σ|−1/2
{

1 +
1
d
(x − µ)′Σ−1(x − µ)

}−(m+d)/2

,

−∞ < x < ∞. It remains to determine µ, Σ, and d. To this end, write
f = f(α|y; ψ) = c exp{l(α)}, where c is the unknown normalizing constant.
Then, the mode of f , α̃, is the solution to l(1)(α) = 0, where l(1) represents the
vector of first derivatives. This is the Laplace approximation to the mean (e.g.,
de Bruijn 1981, §4). Similarly, the Laplace approximation to the covariance
matrix is −l(2)(α̃)−1, where l(2) represents the matrix of second derivatives.
However, Booth and Hobert did not offer a guideline for choosing the degree
of freedom d and noted that the optimal choice of d would be a topic of further
investigation. In the simulation studies that the authors conducted, d = 40
was used for the degrees of freedom.

2. Rejection sampling. Alternatively, i.i.d. samples may be generated from
f(α|y; ψ) by multivariate rejection sampling as follows (Geweke 1996, §3.2).
Write the conditional density as f = cf1f2, where c is the normalizing con-
stant, and f1, f2 are the two factors on the right side of (4.11). (i) First draw
α from f2 and, independently, u from the Uniform[0, 1] distribution. (ii) If
u ≤ f1(α)/τ , where τ = supα f1(α), accept α. Otherwise, return to (i). Note
that f1 corresponds to a likelihood function under a GLM. Therefore, τ can
be found using the iterative WLS procedure for fitting the GLMs (McCullagh
and Nelder 1989, pp. 206). Furthermore, it can be shown that τ need not
change at each step of the MCEM algorithm (Booth and Hobert 1999, pp.
271–272).

4.1.4 Automation

One question in using the Monte Carlo methods is to determine the Monte
Carlo sample size (MC size). This is particularly important in MCEM, because
the process is often time consuming. As noted by Wei and Tanner (1990), it is
inefficient to start with a large MC size when the current approximation is far
from the truth. On the other hand, at some point, one may need to increase
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the MC size, if there is evidence that the approximation error is overwhelmed
by the Monte Carlo error. It is clear that the key is to evaluate the relative
size of the Monte Carlo error with respect to the approximation one, so that
one knows when is the right time to increase the MC size and by how much.

Booth and Hobert (1999) propose an automated method that at each
iteration of the MCEM determines the appropriate MC size. They first obtain
an approximation to the variance of the estimator at the lth iteration (see
below). Then, at the (l+1)th iteration, they construct an approximate 100(1−
a)% confidence region (0 < a < 1) for ψ

(l+1)
∗ , which maximizes Q{ψ|ψ(l)}. If

the previous estimator ψ(l) lies within the region, the EM step is swamped by
Monte Carlo errors. This means that the MC size K needs to increase. The
proposed amount of increase in K is K/r, where r is a positive integer chosen
by the researcher. The authors claim that they had been successfully using
the method by choosing r ∈ {3, 4, 5} with a = 0.25. Again, the optimal choice
of a and r is subject to further investigation.

We now explain how to construct an approximate confidence region for
ψ

(l+1)
∗ given ψ(l). Denote the right side of (4.12) by Qm{ψ|ψ(l)}. Because

ψ(l+1) maximizes Qm, under regularity conditions, one has Q
(1)
m {ψ(l+1)|ψ(l)} =

0, where f (j) denotes the jth derivative (vector or matrix), j = 1, 2. Thus, by
Taylor expansion, we have

0 ≈ Q(1)
m {ψ

(l+1)
∗ |ψ(l)} + Q(2)

m {ψ
(l+1)
∗ |ψ(l)}{ψ(l+1) − ψ

(l+1)
∗ }.

This gives an approximation

ψ(l+1) ≈ ψ
(l+1)
∗ − [Q(2)

m {ψ
(l+1)
∗ |ψ(l)}]−1Q(1)

m {ψ
(l+1)
∗ |ψ(l)},

which suggests that, given ψ(l), ψ(l+1) is approximately normally distributed
with mean ψ

(l+1)
∗ and covariance matrix[

Q(2)
m {ψ

(l+1)
∗ |ψ(l)}

]−1
Var

[
Q(1)

m {ψ
(l+1)
∗ |ψ(l)}

]
×
[
Q(2)

m {ψ
(l+1)
∗ |ψ(l)}

]−1
. (4.13)

(Note that, under regularity conditions, the matrix of second derivatives is
symmetric.) An estimate of the covariance matrix is obtained by replacing
ψ

(l+1)
∗ in (4.13) by ψ(l+1), and approximating the middle term in (4.13) by

1
K2

K∑
k=1

w2
kl

[
∂

∂ψ
log{f(y, αk|ψ(l+1))}

] [
∂

∂ψ
log{f(y, αk|ψ(l+1))}

]′
.

The MCEM methods using i.i.d. samples have the following advantages
over those using Markov chains (McCulloch 1994, 1997). First, the assessment
of the Monte Carlo errors is straightforward. Note that such an assessment
is critical to the automated method. A related theoretical advantage is that
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conditions for the central limit theorem used in the normal approximation
in the i.i.d. case is much easier to verify than under a Markov chain. As for
the comparison of the two methods, Booth and Hobert found that rejection
sampling is more efficient in a small sample (i.e., data) situation, whereas
importance sampling works better in a large sample case. In terms of com-
putational speed, the authors showed that for the same example that was
considered by McCulloch (1997), the rejection sampling and importance sam-
pling methods are about 2.5 times and 30 times faster, respectively, than the
Metropolis–Hastings sampling method of McCulloch (1997).

It is interesting to note that McCulloch (1997) also used importance sam-
pling in his SML method, but reported poor performance nevertheless. One
possible explanation is that the choice of the importance sampling distribu-
tion, g, made a difference. In the simulation study of McCulloch (1997), the
author used the (marginal) distribution of the random effects as g, whereas in
Booth and Hobert (1999), the authors used a multivariate-t distribution that
approximately matched the mean and covariance matrix of the conditional
distribution of α given y. Note that the latter is the distribution from which
one wishes to sample. It is possible that the multivariate-t had provided a bet-
ter approximation than the marginal distribution of α. One may also note that
Booth and Hobert used importance sampling between the iterations of EM
algorithm, whereas McCulloch used it in SML as a one-time solver to the ML
problem. In fact, McCulloch also reported better performance of SML when
the latter was used as a follow-up to his MCEM or MCNR, which somehow
is inline with Booth and Hobert’s findings.

In conclusion, there have been some good advances in computing the max-
imum likelihood estimators in GLMM using Monte Carlo EM algorithms. On
the other hand, the procedures are still computationally intensive as com-
pared to the approximate inference methods introduced in the previous chap-
ter. However, with the fast developments of computer hardware and technol-
ogy, it is very probable that computation of the exact MLE in GLMM will
eventually become a routine operation. On the other hand, some important
theoretical problems regarding the MLE remain unsolved. For example, the
salamander mating data has been analyzed by many authors, whereas some
others used the same model and data structure for simulation studies. See,
for example, McCullagh and Nelder (1989), Karim and Zeger (1992), Drum
and McCullagh (1993), Lin and Breslow (1996), Lin (1997), Jiang (1998a),
and Jiang and Zhang (2001). In particular, McCulloch (1994) and Booth and
Hobert (1999) have used MCEM algorithms to compute the MLE for this
dataset. However, one fundamental question has yet to be answered: suppose
that the numbers of salamanders involved in the experiments increase, and
that the assumed GLMM is correct. Is the MLE consistent? The answer is
not obvious at all.
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4.1.5 Maximization by Parts

Although MCEM methods have been a main approach in likelihood-based
inference about GLMM, alternative procedures have also been proposed. In
this section, we introduce a method proposed by Song et al. (2005), which they
called maximization by parts (MBP). Again, the objective was to overcome
some of the computational difficulties in maximum likelihood estimation. One
of these difficulties is the computation of the second derivatives of the log-
likelihood function. For example, the Newton–Raphson procedure requires
calculations of both the first and second derivatives. If the likelihood function
is complicated, the derivation and calculation of its derivatives, especially the
second derivatives, can be both analytically and computationally challenging.
The following is an example.

Example 4.3 (The Gaussian copula). A d-variate Gaussian copula distri-
bution is defined as a d-variate distribution whose cdf is given by

C(u1, . . . , uk|Γ ) = Φd,Γ {Φ−1(u1), . . . , Φ−1(ud)},

0 < u1, . . . , ud < 1, where Γ is a (d×d) correlation matrix, Φd,Γ and Φ denote
the cdfs of Nd(0, Γ ) and N(0, 1), respectively. It follows that the (joint) pdf
of the Gaussian copula is given by

c(u1, . . . , ud|Γ ) = |Γ |−1/2 exp
{

1
2
w′(I − Γ−1)w)

}
, (4.14)

where z = (wj)1≤j≤d with wj = Φ−1(uj) (Exercise 4.6). Suppose that one ob-
serves d-dimensional independent vectors y1, . . . , yn such that yi = (yij)1≤j≤d

follows a d-variate Gaussian copula distribution with cdf

F (yi|θ) = C{F1(y1|θ1), . . . , Fd(yd|θd)|Γ},

where Fj(·|θj) is a univariate cdf and θj is an unknown vector of parameters
associated with Fj , 1 ≤ j ≤ d (e.g., Song 2000). Here θ represents the vector of
all the different parameters involved in θj , 1 ≤ j ≤ d, and Γ . Then (Exercise
4.6), the joint pdf of yi is given by

f(yi|θ) = c{F1(yi1|θ1), . . . , Fd(yid|θd)|Γ}
d∏

j=1

fj(yij |θj), (4.15)

where fj(·|θj) = (∂/∂yij)Fj(yij |θj). Furthermore, the marginal cdf of yij is
Fj(·|θj) and fj(·|θj), respectively (Exercise 4.6). Thus, the likelihood function
under the assumed model can be expressed as

L(θ) =
n∏

i=1

⎡⎣c{F1(yi1|θ1), . . . , Fd(yid|θd)|Γ}
d∏

j=1

fj(yij |θj)

⎤⎦ .
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As noted by Song et al. (2005), it is fairly straightforward to compute the
first derivatives of the log-likelihood l(θ) = log{L(θ)}, but it is much harder
to derive analytically the second derivatives of l.

The idea of MBP is very easy to illustrate. Write the log-likelihood function
as

l(θ) = lw(θ) + le(θ). (4.16)

Let l̇ denote the vector of first (partial) derivatives. Then, the likelihood equa-
tion

l̇(θ) = 0 (4.17)

can be written as

l̇w(θ) = −l̇e(θ). (4.18)

Here the θs on both sides of (4.18) are supposed to be the same, but they do
not have to be so in an iterative equation, and this is the idea of MBP. The
initial estimator θ̂(1) is a solution to l̇w(θ) = 0. Then, use the equation

l̇w{θ̂(2)} = −l̇e{θ̂(1)} (4.19)

to update to get the next step estimator θ̂2, and so on.
It is easy to see that, if the sequence

θ̂(l), l = 1, 2, . . . (4.20)

converges, the limit, say, θ∗, satisfies (4.17). Furthermore, Jiang (2005b) ob-
served the following. The left side of (4.17), evaluated at the sequence (4.20),
has absolute values

|l̇e(θ̂1) − l̇e(θ̂0)|, |l̇e(θ̂2) − l̇e(θ̂1)|, |l̇e(θ̂3) − l̇e(θ̂2)|, . . . . (4.21)

Suppose that the function le(·) is at least locally uniformly continuous. Con-
sider the distances between consecutive points in (4.20):

|θ̂1 − θ̂0|, |θ̂2 − θ̂1|, |θ̂3 − θ̂2|, . . . (4.22)

(here θ̂0 serves as a “starting point”). If (4.22) shows sign of decreasing, which
will be the case if the sequence is indeed convergent, (4.21) is expected to do
the same. This means that the left side of (4.17) decreases in absolute value
along the sequence (4.20). Note that, because the MLE satisfies (4.17), the
absolute value of the left side of (4.17), evaluated at an estimator, may be used
as a measure of “closeness” of the estimator to the MLE; and the efficiency
of the estimator is expected to increase as it gets closer to the MLE.

From a practical standpoint, the most important issue regarding MBP
seems to be the decomposition (4.16). We now use an example to illustrate.
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Example 4.3 (Continued). For the Gaussian copula model, one decompo-
sition of the log-likelihood has

lw(θ) =
n∑

i=1

d∑
j=1

log{fj(yij |θj)},

le(θ) =
1
2

{
n∑

i=1

zi(θ)′(Id − Γ−1)zi(θ)

}
,

where the jth component of zi(θ) is Φ−1{Fj(yij |θj)}, 1 ≤ j ≤ d. It is clear
that lw corresponds to the log-likelihood under a model with independent
observations, and le is the difference between the real log-likelihood and the
“working” independent log-likelihood.

In general, a condition for a good choice of lw is the so-called information
dominance. In other words, l̈w needs to be larger than l̈e in a certain sense
(Song et al. 2005, Theorem 2). However, because l̈ is difficult to evaluate,
this condition is not easy to verify. On the other hand, the argument above
suggests a potentially practical procedure to verify that one has had a good
choice of lw, that is, to let the procedure run for a few steps. If the sequence
(4.22) shows sign of decreasing, even if not after every step, it is an indication
that a good choice has been made. This is because the same argument then
shows that the left side of (4.17) decreases in absolute value along the sequence
(4.20), hopefully to zero.

Another condition for choosing lw is that l̇w(θ) = 0 is an unbiased es-
timating equation, or, alternatively, that θ̂1 is a consistent estimator. This
condition is satisfied in the Gaussian copula model (Exercise 4.7).

The MBP method is potentially applicable to at least some class of
GLMMs. It is suggested that the hierarchical log-likelihood of Lee and Nelder
(1996; see our earlier discussion in Section 3.5.4) may be used as lw. How-
ever, if the random effects in the GLMM are normally distributed, this will
lead to a biased estimating equation. In fact, the solution to such an equation
may not be consistent (Clayton 1996; Jiang 1999c). The choice of lw or the
performance of MBP with the proposed hierarchical log-likelihood lw remain
unclear to date.

Assuming that MBP is applicable to GLMM, the next question is how
much does MBP help. As noted earlier, the procedure has a computational
advantage in situations where l̈ is much more difficult to deal with (numerically
or analytically) than l̇. The Gaussian copula model provides a good example.
Now let us consider a GLMM example.

Example 4.4. Suppose that, given the random effects ui, 1 ≤ i ≤ a and vj ,
1 ≤ j ≤ b, yij are conditionally independent such that

logit{P(yij = 1|u, v)} = β0 + β1xij + ui + vj ,
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where u = (ui)1≤i≤a, v = (vj)1≤j≤b, xij is a known covariate, and β0 and β1
are unknown coefficients. Furthermore, suppose that the random effects are
independent with ui ∼ N(0, σ2), vj ∼ N(0, τ2). It is more convenient to use
the following expressions: ui = σξi, vj = τηj , where ξ1, . . . , ξa and η1, . . . , ηb

are i. i. d. N(0, 1) random variables. Then, the log-likelihood function under
this GLMM has the following expression,

l = c + log

⎡⎣∫ · · ·
∫

exp

⎧⎨⎩
a∑

i=1

b∑
j=1

φij(yij , β, σξi, τηj)

−1
2

a∑
i=1

ξ2
i − 1

2

b∑
j=1

η2
j

⎫⎬⎭ dξ1 · · · dξadη1 · · · dηb

⎤⎦ ,

where c is a constant, and

φij(yij , β, ui, vj) = yij(β0 + β1xij + ui + vj)
− log{1 + exp(β0 + β1xij + ui + vj)}.

For simplicity, let us assume that the variance components σ and τ are known,
so that β0 and β1 are the only unknown parameters. It can be shown that the
first and second derivatives of l have the following forms (Exercise 4.8):

∂l

∂βs
=

∫
· · ·

∫
exp{· · ·}ψsdξdη∫

· · ·
∫

exp{· · ·}dξdη
,

∂2l

∂βs∂βt
=

∫
· · ·

∫
exp{· · ·}ψs,tdξdη∫

· · ·
∫

exp{· · ·}dξdη

−
[∫ · · ·

∫
exp{· · ·}ψsdξdη∫

· · ·
∫

exp{· · ·}dξdη

]
×
[∫ · · ·

∫
exp{· · ·}ψtdξdη∫

· · ·
∫

exp{· · ·}dξdη

]
,

s, t = 0, 1, where dξ = dξ1 · · · dξa, dη = dη1 · · · dηb,

ψs =
a∑

i=1

b∑
j=1

∂φij

∂βs
,

ψs,t =

⎛⎝ a∑
i=1

b∑
j=1

∂φij

∂βs

⎞⎠⎛⎝ a∑
i=1

b∑
j=1

∂φij

∂βt

⎞⎠
+

a∑
i=1

b∑
j=1

∂2φij

∂βs∂βt
.

Now the fact is, the integrals involved in l̇ are equally difficult to evaluate
as those involved in l̈. (Note that these are (a + b)-dimensional integrals.)
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Nevertheless, new integrals do emerge in l̈; that is, there are three different
integrals in l̇, and six different ones in l̈. In general, if there are p unknown
parameters, there may be as many as p + 1 different integrals in l̇, and as
many as p + 1 + p(p + 1)/2 = (1/2)(p + 1)(p + 2) different integrals in l̈. If p
is large, it is quite a saving in computation, provided that any single one of
the integrals (involved in l̇) can be evaluated.

4.1.6 Bayesian Inference

GLMM can be naturally formulated in a Bayesian framework, and thus ana-
lyzed using the Bayesian methods. The main difference in the model is that
a (joint) prior is assumed for β and G, the covariance matrix of α. For ex-
ample, a flat prior is sometimes used; that is, π(β, G) ∝ constant. The main
objective of Bayesian inference is to obtain the posteriors for β, G, and α. In
the following, we first describe the method for a special class of GLMM, the
so-called longitudinal GLMMs.

Suppose that there are m independent clusters such that, within the ith
cluster, the responses yij , j = 1, . . . , ni are conditionally independent given a
d-dimensional vector αi of random effects with conditional density

f(yij |αi) = exp
{

yijθij − b(θij)
φ

+ c(yij , φ)
}

, (4.23)

where φ is a dispersion parameter, and the functions b(·) and c(·, ·) are the
same as before. Furthermore, let µij = E(yij |αi) and assume that

g(µij) = x′
ijβ + z′

ijαi, (4.24)

where g is the link function, and xij and zij are known vectors. The ran-
dom effects αi is assumed to be distributed as N(0, G). So far, no Bayesian
modeling has come into play.

The model is completed by assuming that (β, G) has a joint prior density
π(β, G). The joint posterior for β and G is then given by (Exercise 4.9)

f(β, G|y) =
∏m

i=1

∫
f(yi|β, αi)f(αi|G)π(β, G)dαi∫ ∏m

i=1

∫
f(yi|β, αi)f(αi|G)π(β, G)dαidβdG

, (4.25)

where yi = (yij)1≤j≤ni , f(yi|β, αi) is the conditional density of yi given β and
αi, and

f(αi|G) =
1

(2π)d/2|G|1/2 exp
(

−1
2
α′

iG
−1αi

)
.

It is easy to see that, if π(β, G) is a flat prior (i.e., constant), the numerator
in (4.25) is simply the likelihood function. Similarly, the posterior for αi is
given by
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f(αi|y) =
∫

f(yi|αi, β)f(αi|G)π(β, G)dβdG∫
f(yi|αi, β)f(αi|G)π(β, G)dαidβdG

. (4.26)

The posteriors (4.25) and (4.26) are typically numerically intractable, es-
pecially when the dimension of αi, d, is greater than one. Therefore, Monte
Carlo methods were proposed to handle the computation. For example, Zeger
and Karim (1991) used the Gibbs sampler to evaluate the posteriors. The
Gibbs sampler was introduced in section 4.1.1.2. In this case, the procedure
calls for drawing samples from the following conditional distributions: [β|α, y],
[G|α], and [α|β, G, y]. The first conditional distribution can be approximated
by a multivariate normal distribution, if the sample size is large. The mean of
the multivariate normal distribution is the MLE obtained by fitting a GLM
of yij on xij using z′

ijαi as offsets (e.g., McCullagh and Nelder 1989). The
covariance matrix of the multivariate distribution is the inverse of the Fisher
information matrix, also obtained by fitting the GLM. However, in small sam-
ples the normal approximation may not be adequate. In such a case rejection
sampling (see section 4.1.3.2) was used by Zeger and Karim to generate ran-
dom samples. As for the second conditional distribution, it is known that
if π(G) ∝ |G|−(d+1)/2, the posterior for G−1 is a Wishart distribution with
m − d + 1 degrees of freedom and parameters S =

∑m
i=1 αiα

′
i (e.g., Box and

Tiao 1973). Thus, a random sample from the posterior of G can be drawn
by first generating a standard Wishart random matrix with m − d + 1 de-
grees of freedom (e.g., Odell and Feiveson 1996), say, W , and then computing
G = (T ′WT )−1, where T is the Choleski decomposition of S−1 satisfying
S−1 = T ′T (see Appendix B). Finally, the third conditional distribution is
the most difficult to generate. Zeger and Karim (1991) again used rejection
sampling for this step. They used the idea of matching the mode and cur-
vature of a multivariate Gaussian distribution. Note that a similar method
was used by Booth and Hobert in their importance sampling procedure for
MCEM (see Section 4.1.3.1).

In a related work, Karim and Zeger (1992) applied the Gibbs sampler to
analyze the salamander mating data. Note that the GLMM for the salamander
data is different from the above longitudinal GLMM in that the random effects
are crossed rather than within clusters. See Section 4.4.3 for more details.

An important issue in Bayesian analysis is the propriety of the posterior
(e.g., Hobert and Casella 1996). The issue was not addressed in Zeger and
Karim (1991) nor in Karim and Zeger (1992). Ghosh et al. (1998) considered
a class of longitudinal GLMMs useful in small area estimation, and provided
sufficient conditions that ensure the propriety of the posterior. As in Zeger
and Karim (1991), it is assumed that the observations come from m strata
or local areas, and there are ni observations, yij , j = 1, . . . , ni from the ith
stratum. Again, the yij are conditionally independent with conditional density

f(yij |θij , φij) = exp
{

yijθij − b(θij)
φij

+ c(yij , φij)
}

, (4.27)
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where φij is known. Furthermore, the natural parameters θijs satisfy

h(θij) = x′
ijβ + αi + εij , (4.28)

where h is a known function, αis are the random effects and εijs are errors.
It is assumed that the αis and εijs are independent with αi ∼ N(0, σ2

1) and
εij ∼ N(0, σ2

0). It is easy to see that (4.28) is more restrictive than (4.24).
On the other hand, unlike (4.23), (4.27) allows φij to be dependent on i and
j, which may incorporate weights in the observations (e.g., McCullagh and
Nelder 1989, pp. 29). As for the prior, Ghosh et al. (1998) assumed that
β, σ2

1 , and σ2
0 are mutually independent with β ∼ Uniform(Rp) (p < m),

σ−2
1 ∼ Gamma(a/2, b/2), and σ−2

0 ∼ Gamma(c/2, d/2), where a Gamma(λ, ν)
distribution has pdf f(u) ∝ uν−1e−λu, u > 0. The following theorem was
proved by Ghosh et al. (1998).

Theorem 4.1. Suppose that a, c > 0, n−p+d > 0, and m+ b > 0, where
n =

∑m
i=1 ni is the total sample size. If∫ θij

θ̄ij

exp
{

θyij − b(θ)
φij

}
h′(θ)dθ < ∞

for all yij and φij > 0, where (θ̄ij , θij) is the support of θij , the (joint) posterior
of the θijs given y is proper.

The same authors also considered the so-called spatial GLMM with a
Bayesian formulation. A spatial GLMM is such that the random effects corre-
sponding to contiguous areas would have stronger (positive) correlation than
noncontiguous areas. Sufficient conditions were also given that ensure pro-
priety of the posterior under a spatial GLMM. See Ghosh et al. (1998) for
details.

We conclude this section with an example of small area estimation using
hierarchical Bayesian GLMM.

Example 4.5 (The National Health Interview Survey). Malec et al. (1997)
published a study involving small area estimation using data from the National
Health Interview Survey (NHIS). The NHIS is a multistage interview survey
conducted annually for the National Center for Health Statistics to provide
health and health care information for the civilian and noninstitutionalized
population in the United States. The 1985–1994 NHIS sample involved about
200 primary sampling units (PSUs), selected from a stratified population of
1983 PSUs. Each PSU consists essentially of a single county or a group of
contiguous counties. Within each sampled PSU, groups of households are ag-
gregated into areal segments and sampled. Each year there is a new sample
of approximately 50,000 households, or about 120,000 individuals. For more
information about the design of the NHIS, see Massey et al. (1989).

Although the NHIS emphasizes national estimates, there is also a need for
estimates for small geographical areas or subpopulations. For example, Lieu et
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al. (1993) used data from the 1988 NHIS child health supplement to compare
access to health care and doctors for different races of children aged 10–17.
Such problems are known as small area estimation because usually the sam-
ple sizes for the small geographical areas or subpopulations are fairly small.
Clearly, the usual design-based estimator, which uses only the sample survey
data for the particular small area of interest, is unreliable due to relatively
small samples that are available from the area. Many methods exist for infer-
ence about small areas based on the idea of “borrowing strength.” See Rao
(2003) for an overview.

Most of the variables in the NHIS are binary. In this particular study
(Malec et al. 1997), the binary variable Y indicates whether the individual
has made at least one visit to a physician within the past year (Y = 1), or
otherwise (Y = 0). Other available data include, for each sampled individual,
demographic variables such as age, race, and sex; socioeconomic variables such
as highest education level attained and presence of a telephone; and location
of residence. The main interest of this study is to provide an estimate of a
population proportion for a small geographical area or subpopulation. Such
an estimate is directly associated with an estimate of the total. For example,
to estimate the proportion of males in Iowa who have made at least one visit
to a doctor within the past year, one estimates the total Θ of male Iowans
who have made such visits and divide Θ by the total number of male Iowans,
which is assumed to be known.

It is assumed that each individual in the population belongs to one of
K mutually exclusive and exhaustive classes based on the individual’s so-
cioeconomic/demographic status. Let Yijk denote a binary random variable
for individual j in cluster i, class k, where i = 1, . . . , L, k = 1, . . . , K, and
j = 1, . . . , Nik. Furthermore, given pik, the Yijks are independent Bernoulli
with P(Yijk = 1|pik) = pik. A vector of M covariates, Xk = (Xk1, . . . , XkM )′,
is assumed to be the same for each individual j in cluster i, class k such that

logit(pik) = X ′
kβi,

where βi = (βi1, . . . , βiM )′ is a vector of regression coefficients. Moreover, it
is assumed that, conditional on η and Γ , the βis are independent with

βi ∼ N(Giη, Γ ),

where each row of Gi is a subset of the cluster-level covariates (Zi1, . . . , Zic)
not necessarily related to Xk, η is a vector of regression coefficients, and Γ
an M ×M positive definite matrix. Finally, a reference prior distribution π is
assigned to η and Γ such that

π(η, Γ ) ∝ constant.

Specifically, for the NHIS problem considered by Malec et al. (1997), the
authors proposed the following model in which
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X ′
kβi = α + βi1X0k + βi2X15,k + βi3X25,k + βi4X55,k

+βi5YkX15,k + βi6YkX25,k + βi7Zk,

where Yk and Zk are indicator variables corresponding to gender and race,
such that Yk = 1 if class k corresponds to male and Zk = 1 if class k corre-
sponds to white; Xa,k = max(0, Ak − a) with Ak being the midpoint of the
ages within class k [e.g., if class k corresponds to black females ages 40–45,
then X15,k = max(0, 42.5 − 15)]. The authors indicated that the model is de-
veloped based on visual displays of the relationships between the log-odds of
the presence/absence of at least one doctor visit within the past year and age,
for each race by sex class, using the SAS forward stepwise logistic regression
procedure PROC LOGISTIC.

The objective here is to make an inference about a finite population pro-
portion P for a specified small area and subpopulation, expressed as

P =

∑
i∈I

∑
k∈K

∑Nik

j=1 Yijk∑
i∈I

∑
k∈K Nik

.

Alternatively, one may consider the total of the small area or subpopulation,

Θ =

(∑
i∈I

∑
k∈K

Nik

)
P

=
∑
i∈I

∑
k∈K

Nik∑
j=1

Yijk.

Let ys denote the vector of sampled observations. Then, because E(Yijk|pik) =
pik, the posterior mean of Θ can be expressed as

E(Θ|ys) =
∑
i∈I

∑
k∈K

∑
j∈sik

yijk +
∑
i∈I

∑
k∈K

∑
j /∈sik

E(pik|ys)

=
∑
i∈I

∑
k∈K

∑
j∈sik

yijk +
∑
i∈I

∑
k∈K

(Nik − nik)E(pik|ys),

where sik denote the set of sampled individuals in cluster i and class k that
has size nik, and

pik =
exp(X ′

kβi)
1 + exp(X ′

kβi)
.

Similarly, the posterior variance of Θ can be expressed as

var(Θ|ys) =
∑
i∈I

∑
k∈K

(Nik − nik)E{pik(1 − pik)|ys}

+var

{∑
i∈I

∑
k∈K

(Nik − nik)pik

∣∣∣∣∣ ys

}
.
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Note that the posteriors f(β, η, Γ |ys), where β = (βi)1≤i≤L, do not have
simple closed-form expressions. Malec et al. used the Gibbs sampler (see Sec-
tion 4.1.1.2) to evaluate the posterior means and variance above. See Malec
et al. (1997; pp. 818) for more details.

4.2 Estimating Equations

The general framework of estimating functions was set up by V. P. Godambe
some 30 years before that of generalized linear mixed models (Godambe 1960).
In Godambe (1991), the author viewed the approach as an extension of the
Gauss–Markov theorem. An estimating function is a function, possibly vector
valued, that depends both on y = (yi)1≤i≤n, a vector of observations, and θ, a
vector of parameters. Denoted by g(y, θ), the estimating function is required
to satisfy

Eθ{g(y, θ)} = 0 (4.29)

for every θ. For simplicity, let us first consider the case that y1, . . . , yn are
independent with E(yi) = θ, a scalar. Let G denote the class of estimating
functions of the form

g(y, θ) =
n∑

i=1

ai(θ)(yi − θ),

where ai(θ) are differentiable functions with
∑

i ai(θ) �= 0. Then, an extension
of the Gauss–Markov theorem states the following (Godambe 1991).

Theorem 4.2. If var(yi) = σ2, 1 ≤ i ≤ n, g∗ =
∑n

i=1(yi −θ) is an optimal
estimating function within G and the equation g∗ = 0 provides ȳ, the sample
mean, as an estimator of θ.

The equation

g(y, θ) = 0 (4.30)

to be solved for θ is called an estimating equation. In Theorem 4.2, the op-
timality is in the following sense, which was also introduced by Godambe.
Note that for (4.30) to be used as an estimating equation, the corresponding
estimating function should be as close to zero as possible, if θ is the true
parameter. In view of (4.29), this means that one needs to minimize var(g).
On the other hand, in order to distinguish the true θ from a false one, it
makes sense to maximize ∂g/∂θ, or the absolute value of its expected value.
When both are put on the same scale, the two criteria for optimality can be
combined by considering

var(g)
{E(∂g/∂θ)}2 = var(gs), (4.31)
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where gs = g/E(∂g/∂θ) is a standardized version of g. Thus, the optimality
in Theorem 4.2 is in the sense that

var(g∗
s ) ≤ var(gs) for any g ∈ G.

Now consider a multivariate version of the estimating function. Let y be a
vector of responses that is associated with a vector x of explanatory variables.
Here we allow x to be random as well. Suppose that the (conditional) mean
of y given x is associated with θ, a vector of unknown parameters. For nota-
tional simplicity, write µ = Eθ(y|x) = µ(x, θ), and V = Var(y|x). Here Var
represents the covariance matrix, and Var or E without subscript θ means to
be taken at the true θ. Let µ̇ denote the matrix of partial derivatives; that is,
µ̇ = ∂µ/∂θ′. Consider the following class of vector-valued estimating functions
H = {G = A(y − µ)}, where A = A(x, θ), such that E(Ġ) is nonsingular. The
following theorem can be established.

Theorem 4.3. Suppose that V is known, and that E(µ̇′V −1µ̇) is non-
singular. Then, the optimal estimating function within H is given by G∗ =
µ̇′V −1(y − µ), that is, with A = A∗ = µ̇′V −1.

Here the optimality is in a similar sense to the univariate case. Define the
partial order of nonnegative definite matrices as A ≥ B if A − B is nonneg-
ative definite. Then, the optimality in Theorem 4.3 is in the sense that the
estimating function G∗ maximizes, in the partial order of nonnegative definite
matrices, the generalized information criterion

I(G) = {E(Ġ)}′{E(GG′)}−1{E(Ġ)}, (4.32)

where Ġ = ∂G/∂θ′. It is easy to see that (4.32) is, indeed, the Fisher informa-
tion matrix when G is the score function corresponding to a likelihood – that
is, G = ∂ log(L)/∂θ, where L is the likelihood function – and this provides
another view of Godambe’s criterion of optimality. Also, (4.32) is equal to
the reciprocal of (4.31) in the univariate case, so that maximizing (4.32) is
equivalent to minimizing (4.31). The proof of Theorem 4.3 is given in Section
4.6.1.

4.2.1 Generalized Estimating Equations (GEE)

In the case of longitudinal GLMM, the optimal estimating function according
to Theorem 4.3 can be expressed as

G∗ =
m∑

i=1

µ̇′
iV

−1
i (yi − µi),

where yi = (yij)1≤j≤ni , µi = E(yi), and Vi = Var(yi). Here, as in the earlier
sections, the covariates xi are considered fixed rather than random. The corre-
sponding estimating equation is known as the generalized estimating equation,
or GEE (Liang and Zeger 1986), given by
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m∑
i=1

µ̇′
iV

−1
i (yi − µi) = 0. (4.33)

In (4.33), it is assumed that Vi, 1 ≤ i ≤ m are known because, otherwise,
the equation cannot be solved. However, the true Vis are unknown in prac-
tice. Note that, under a GLMM, the Vis may depend on a vector of variance
components θ in addition to β; that is, Vi = Vi(β, θ), 1 ≤ i ≤ m. If a GLMM
is not assumed and neither is any other parametric model for the covariances,
the Vis may be completely unknown. Liang and Zeger proposed to use “work-
ing” covariance matrices instead of the true Vis to obtain the GEE estimator.
For example, one may use the identity matrices that correspond to a model
assuming independent errors with equal variance. The method is justified in
the following sense. As is shown by Liang and Zeger, under some regularity
conditions, the resulting GEE estimator is consistent despite that the working
covariances misspecify the true Vis. However, the estimator based on working
Vis may be inefficient as compared to that based on the true Vis.

Alternatively, one may replace the Vis in (4.33) by their consistent esti-
mators, say, V̂is. For example, under a GLMM, if θ is replaced by a

√
m-

consistent estimator, say, θ̂ [i.e.,
√

m(θ̂ − θ) is bounded in probability], the
resulting GEE estimator is asymptotically as efficient as the GEE estimator
based on the true Vis. (Of course, the latter is not an estimator unless the Vis
are known.) This means that

√
m(β̂ − β) has the same asymptotic covariance

matrix as
√

m(β̃ − β), where β̂ is the solution to (4.33) with θ replaced by θ̂,
and β̃ is that with the true Vis (e.g., Liang and Zeger 1986). However, to find
a

√
m-consistent estimator one typically needs to assume a parametric model

for the Vis, which increases the risk of model misspecifications. Even under a
parametric covariance model, the

√
m-consistent estimator may not be easy

to compute, especially if the model is complicated. In the next section, we
propose another alternative that offers a more robust and computationally
attractive solution.

The GEE method has been used in the analysis of longitudinal data, in
which β is often the problem of main interest. Although, under the GLMM
assumption, β may be estimated by likelihood-based methods (see Section
4.1), there are some concerns about such methods. First, as discussed earlier,
the likelihood based methods are computationally intensive, and therefore
may be intractable for analysis involving variable selection (see Section 4.3).
Second, the efficiency of the likelihood-based methods may be undermined
in the case of model misspecification, which often occurs in the analysis of
longitudinal data. For example, in longitudinal studies there often exists serial
correlation among the repeated measures from the same subject. Such a serial
correlation may not be taken into account by a GLMM. Note that, under
the GLMM assumption, the repeated measures are conditionally independent
given the random effects, which means that no (additional) serial correlation
exists once the values of the random effects are specified. We consider an
example.



186 4 Generalized Linear Mixed Models: Part II

Example 4.6. Consider the salamander mating example discussed earlier
(see Section 3.3.1). McCullagh and Nelder (1989) proposed a GLMM for an-
alyzing the data, in which random effects corresponding to the female/male
animals were introduced. The dataset and model have been extensively stud-
ied. However, in most cases it was assumed that a different set of animals
(20 for each sex) was used in each mating experiment, although, in reality,
the same set of animals was repeatedly used in two of the experiments (Mc-
Cullagh and Nelder 1989, §14.5). Furthermore, most of the GLMMs used in
this context (with the exception of, perhaps, Jiang and Zhang 2001) assumed
that no further correlation among the data exists given the random effects.
However, the responses in this case should be considered longitudinal, be-
cause repeated measures were collected from the same subjects (once in the
summer, and once in the autumn of 1986). Therefore, serial correlation may
exist among the repeated responses even given the random effects (i.e., the
animals). In other words, the true correlations among the data may not have
been adequately addressed by the GLMMs.

The GEE method is computationally more attractive than the likelihood-
based methods. More important, GEE does not require a full specification of
the distribution of the data. In fact, consistency of the GEE estimator only
requires correct specification of the mean functions; that is, µi, 1 ≤ i ≤ n.
Of course, for the estimator to maintain the (asymptotic) optimality (in the
sense of Theorem 4.3), the covariance matrices Vi, 1 ≤ i ≤ n also need to
be correctly specified (and consistently estimated), but such assumptions are
still much weaker than the full specification of the distribution. For example,
the GEE method is applicable to cases beyond the scope of GLMM, such as
Example 4.6 above (see Jiang and Zhang 2001). See Section 4.2.4 below for
more examples. On the other hand, so far the majority of the literature on
(correct) specification of the Vis has been using parametric models for the
variance–covariance structure of the data in order to obtain a

√
m-consistent

estimator of θ (see earlier discussion). Such a method is sensitive to model
misspecifications, and may be difficult to operate computationally, say, under
a GLMM. Because of such concerns, a different approach is proposed in the
next section.

4.2.2 Iterative Estimating Equations

As noted earlier, to obtain the optimal GEE estimator, one needs to know the
true covariance matrices Vi in (4.33). In this section, we propose an iterative
procedure, which allows one to obtain an estimator that is asymptotically as
efficient as the optimal GEE estimator without knowing the true Vis. The
method is an extension of the I-WLS method introduced in Section 1.4.3.
Note that WLS is the special case of GEE in linear models (Exercise 4.10).
We describe the extension below under the assumption of a semiparametric
regression model and then discuss its application to longitudinal GLMMs.
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We consider a follow-up study conducted over a set of prespecified visit
times t1, . . . , tb. Suppose that the responses are collected from subset i at the
visit times tj , j ∈ Ji ⊂ J = {1, . . . , b}. Let yi = (yij)j∈Ji . Here we allow
the visit times to be dependent on the subject. This enables us to include
some cases with missing responses, but not in an informative way. The lat-
ter case is considered in Section 4.5.3. Let Xij = (Xijl)1≤l≤p represent a
vector of explanatory variables associated with yij so that Xij1 = 1. Write
Xi = (Xij)j∈Ji = (Xijl)i∈Ji,1≤l≤p. Note that Xi may include both time-
dependent and independent covariates so that, without loss of generality, it
may be expressed as Xi = (Xi1, Xi2), where Xi1 does not depend on j (i.e.,
time) whereas Xi2 does. We assume that (Xi, Yi), i = 1, . . . , m are indepen-
dent. Furthermore, it is assumed that

E(Yij |Xi) = gj(Xi, β), (4.34)

where β is a p × 1 vector of unknown regression coefficients and gj(·, ·) are
fixed functions. We use the notation µij = E(Yij |Xi) and µi = (µij)j∈Ji

. Note
that µi = E(Yi|Xi). In addition, denote the (conditional) covariance matrix
of Yi given Xi as

Vi = Var(Yi|Xi), (4.35)

whose (j, k)th element is vijk = cov(Yij , Yik|Xi) = E{(Yij−µij)(Yik−µik)|Xi},
j, k ∈ Ji. Note that the dimension of Vi may depend on i. Let D = {(j, k) :
j, k ∈ Ji for some 1 ≤ i ≤ n}.

Our main interest is to estimate β, the vector of regression coefficients.
According to the earlier discussion, if the Vis are known, β may be estimated
by the GEE (4.33). On the other hand, if β is known, the covariance matrices
Vi can be estimated by the method of moments as follows. Note that for any
(j, k) ∈ D, some of the vijks may be the same, either by the nature of the data
or by the assumptions. Let Ljk denote the number of different vijks. Suppose
that vijk = v(j, k, l), i ∈ I(j, k, l), where I(j, k, l) is a subset of {1, . . . , m},
1 ≤ l ≤ Ljk. For any (j, k) ∈ D, 1 ≤ l ≤ Ljk, define

v̂(j, k, l) =
1

n(j, k, l)

∑
i∈I(j,k,l)

{Yij − gj(Xi, β)}{Yik − gk(Xi, β)}, (4.36)

where n(j, k, l) = |I(j, k, l)|, the cardinality. Then, define V̂i = (v̂ijk)j,k∈Ji
,

where v̂ijk = v̂(j, k, l), if i ∈ I(j, k, l).
The main points of the previous paragraph may be summarized as follows.

If the Vis were known, one could estimate β by the GEE; on the other hand,
if β were known, one could estimate the Vis by the method of moments. It
is clear that there is a cycle here, which motivates the following iterative
procedure. Starting with an initial estimator of β, use (4.36), with β replaced
by the initial estimator, to obtain the estimators of the Vis; then use (4.33) to
update the estimator of β and repeat the process. We call such a procedure
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iterative estimating equations, or IEE. If the procedure converges, the limiting
estimator is called the IEE estimator, or IEEE. It is easy to see that IEE is
an extension of I-WLS discussed in Section 1.4.3.

In practice, the initial estimate of β may be obtained as the solution to
(4.33) with Vi = I, the identity matrix (with the suitable dimension).

As in the case of I-WLS, one may conjecture about linear convergence of
IEE as well as asymptotic efficiency of IEEE in the sense that the latter is
asymptotically as efficient as the optimal GEE estimator obtained by solving
(4.33) with the true Vis. In Section 4.5.2 we give conditions under which these
conjectures are indeed true.

To apply IEE to a longitudinal GLMM, we denote the responses by yij ,
i = 1, . . . , m, j = 1, . . . , ni, and let yi = (yij)1≤j≤ni . We assume that each
yi is associated with a vector of random effects αi that has dimension d such
that (4.24) holds. Furthermore, we assume that the responses from different
clusters y1, . . . , ym are independent. Finally, suppose that

αi ∼ f(u|θ), (4.37)

where f(·|θ) is a d-variate pdf known up to a vector of dispersion parameters
θ such that Eθ(αi) = 0. Let ψ = (β′, θ′)′. Then, we have

E(yij) = E{E(yij |αi)}
= E{h(x′

ijβ + z′
ijαi)}

=
∫

h(x′
ijβ + z′

iju)f(u|θ)du,

where h = g−1. Let Wi = (Xi Zi), where Xi = (x′
ij)1≤j≤ni , Zi = (z′

ij)1≤j≤ni .
For any vectors a ∈ Rp, b ∈ Rd, define

µ1(a, b, ψ) =
∫

h(a′β + b′u)f(u|θ)du.

Furthermore, for any ni × p matrix A and ni × d matrix B, let C = (A B),
and gj(C, ψ) = µ1(aj , bj , ψ), where a′

j and b′
j are the jth rows of A and B,

respectively. Then, it is easy to see that

E(yij) = gj(Wi, ψ). (4.38)

It is clear that (4.38) is simply (4.34) with Xi replaced by Wi, and β replaced
by ψ. Note that here, because Wi is a fixed matrix of covariates, we have
E(yi|Wij) = E(yij). In other words, the longitudinal GLMM satisfies the
semiparametric regression model introduced above, hence IEE applies.

The IEE approach is marginal in that it does not make use of an explicit
model involving the random effects; only the expression (4.38) is needed. The
advantage of this approach is robustness. For example, it does not require that
the random effects α1, . . . , αm are independent, neither does it require a para-
metric expression, such as (4.38), for the variance and covariance. A method
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relying on fewer assumptions is usually more robust to model misspecifica-
tions. Also note that the independence assumption regarding y1, . . . , ym is eas-
ier to check than the same assumption about the random effects α1, . . . , αm,
because the yis are observed. The disadvantage of the marginal approach is
that it does not provide estimates of the random effects, which are of interest
in some cases. For example, in small area estimation (e.g., Rao 2003), the ran-
dom effects are associated with the small area means, which are often of main
interest. See Lee and Nelder (2004) for an overview with discussions on the
use of random effects models and marginal models. We consider an example.

Example 4.7. Consider a random-intercept model with binary responses.
Let yij be the response for subject i collected at time tj . We assume that given
a subject-specific random effect (the random-intercept) αi, binary responses
yij , j = 1, . . . , k are conditionally independent with conditional probability
pij = P(yij = 1|αi), which satisfies logit(pij) = β0 + β1tj + αi, where β0, β1
are unknown coefficients. Furthermore, we assume that αi ∼ N(0, σ2), where
σ > 0 and is unknown. Let yi = (yij)1≤j≤k. It is assumed that y1, . . . , ym are
independent, where m is the number of subjects.

It is easy to show that, under the assumed model, one has

E(yij) =
∫ ∞

−∞
h(β0 + β1tj + σu)f(u)du

≡ µ(tj , ψ),

where h(x) = ex/(1 + ex), f(u) = (1/
√

2π)e−u2/2, and ψ = (β0, β1, σ)′. Write
µj = µ(tj , ψ), and µ = (µj)1≤j≤k. We have

∂µj

∂β0
=

∫ ∞

−∞
h′(β0 + β1tj + σu)f(u)du,

∂µj

∂β1
= tj

∫ ∞

−∞
h′(β0 + β1tj + σu)f(u)du,

∂µj

∂σ
=

∫ ∞

−∞
h′(β0 + β1tj + σu)uf(u)du.

Also, it is easy to see that the yis have the same (joint) distribution, hence
Vi = Var(yi) = V0, an unspecified k × k covariance matrix, 1 ≤ i ≤ m. Thus,
the GEE equation for estimating ψ is given by

m∑
i=1

µ̇′V −1
0 (yi − µ) = 0,

provided that V0 is known. On the other hand, if ψ is known, V0 can be
estimated by the method of moments as follows,

V̂0 =
1
m

m∑
i=1

(yi − µ)(yi − µ)′.
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The IEE procedure then iterates between the two steps when both V0 and ψ
are unknown, starting with V0 = I, the k-dimensional identity matrix.

The mean function µj above involves a one-dimensional integral, which
can be approximated by a simple Monte Carlo method, namely,

µj ≈ 1
L

L∑
l=1

h(β0 + β1tj + σξl),

where ξl, l = 1, . . . , L are independent N(0, 1) random variables generated by
a computer. Similar approximations can be obtained for the derivatives. The
Monte Carlo method is further explored in the next section.

The GEE (or IEE) method considered so far applies only to the situation
where the responses are independently clustered. In other words, the covari-
ance matrix of the data is blockdiagonal. However, such a block-diagonal
covariance structure may not always exist. For example, when the GLMM in-
volves crossed random effects, such as in the salamander mating example, the
data cannot be independently clustered. In the following sections we discuss
some GEE-type estimators that apply to GLMMs in general, that is, without
requiring a blockdiagonal covariance structure for the data.

4.2.3 Method of Simulated Moments

The method of simulated moments, or MSM, has been known to econome-
tricians since the late 1980s. See, for example, McFadden (1989) and Lee
(1992). The method applies to cases where the moments cannot be expressed
as analytic functions of the parameters, and therefore direct computation of
the method of moments (MM) estimators is not possible. These moments are
then approximated by Monte Carlo methods, and this is the only difference
between MSM and MM. To develop a MSM for GLMMs, let us first consider
a simple example.

Example 4.8. Let yij be a binary outcome with logit{P(yij = 1|α)} =
µ + αi, 1 ≤ i ≤ m, 1 ≤ j ≤ k, where α1, . . . , αm are i.i.d. random effects
with αi ∼ N(0, σ2), α = (αi)1≤i≤m, and µ, σ are unknown parameters with
σ ≥ 0. It is more convenient to use the following expression: αi = σui, 1 ≤
i ≤ m, where u1, . . . , um are i.i.d. N(0, 1) random variables. It is easy to show
(Exercise 4.11) that a set of sufficient statistics for µ and σ are yi· =

∑k
j=1 yij ,

1 ≤ i ≤ m. Thus, we consider the following MM estimating equations based
on the sufficient statistics,

1
m

m∑
i=1

yi· = E(y1·),

1
m

m∑
i=1

y2
i· = E(y2

1·).
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It is easy to show (Exercise 4.11) that E(y1·) = kE{hθ(ζ)} and E{y2
1·} =

kE{hθ(ζ)}+k(k −1)E{h2
θ(ζ)}, where hθ(x) = exp(µ+σx)/{1+exp(µ+σx)}

and ζ ∼ N(0, 1). It is more convenient to consider the following equivalent
equations.

y··
mk

= E{hθ(ζ)}, (4.39)

1
mk(k − 1)

m∑
i=1

(y2
i· − yi·) = E{h2

θ(ζ)}, (4.40)

where y·· =
∑m

i=1 yi·. Let u1, . . . , uL be a sequence of N(0, 1) random variables
generated by a computer. Then, the right sides of (4.39) and (4.40) may
be approximated by L−1 ∑L

l=1 hθ(ul) and L−1 ∑L
l=1 h2

θ(ul), respectively. The
equations then get solved to obtain the MSM estimators of µ and σ.

To see how the MSM estimators perform, a small simulation study is
carried out with m = 20 or 80 and k = 2 or 6. The true parameters are
µ = 0.2 and σ2 = 1.0. The results in Table 4.1 are based on 1000 simulations,
where the estimator of σ2 is the square of the estimator of σ.

Table 4.1. Simulated mean and standard error

Estimator of µ Estimator of σ2

m k Mean SE Mean SE
20 2 0.31 0.52 2.90 3.42
20 6 0.24 0.30 1.12 0.84
80 2 0.18 0.22 1.08 0.83
80 6 0.18 0.14 1.03 0.34

To describe the general procedure for MSM, we assume that the condi-
tional density of yi given the vector of random effects α has the following
form,

f(yi|α) = exp[(wi/φ){yiξi − b(ξi)} + ci(yi, φ)], (4.41)

where φ is a dispersion parameter, and wis are known weights. Typically,
wi = 1 for ungrouped data; wi = ni for grouped data if the response is an
average, where ni is the group size; and wi = 1/ni if the response is a group
sum. Here b(·) and ci(·, ·) are the same as in the definition of GLMM. As for
ξi, we assume a canonical link, that is, (3.2) with ηi = ξi. Furthermore, we
assume that α = (α′

1, . . . , α
′
q)

′, where αr is a random vector whose components
are independent and distributed as N(0, σ2

r), 1 ≤ r ≤ q. Furthermore, Z =
(Z1, . . . , Zq), so that Zα = Z1α1 + · · · + Zqαq. The following expression of α
is sometimes more convenient,

α = Du, (4.42)
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where D is blockdiagonal with the diagonal blocks σrImr
, 1 ≤ r ≤ q, and

u ∼ N(0, Im) with m = m1 + · · · + mq. First assume that φ is known. Let
θ = (β′, σ1, . . . , σq)′. Consider an unrestricted parameter space θ ∈ Θ = Rp+q.
This allows computational convenience for using MSM because, otherwise,
there will be constraints on the parameter space. Of course, this raises the
issue of identifiability, because both (β′, σ1, . . . , σq)′ and (β′,−σ1, . . . ,−σq)
correspond to the same model. Nevertheless, it is enough to make sure that β
and σ2 = (σ2

1 , . . . , σ2
q )′ are identifiable. In fact, in Section 4.5.4, we show that,

under suitable conditions, the MSM estimators of β and σ2 are consistent,
therefore, the conditions also ensure identifiability of β and σ2.

We first derive a set of sufficient statistics for θ. It can be shown (Exercise
4.12) that the marginal density of y can be expressed as

L =
∫

exp

{
c + a(y, φ) +

b(u, θ)
φ

− |u|2
2

+

(
n∑

i=1

wixiyi

)′ (
β

φ

)

+

(
n∑

i=1

wiziyi

)′ (
D

φ

)
u

}
du, (4.43)

where c is a constant, a(y, φ) depends only on y and φ, and b(u, θ) depends
only on u and θ. It follows that a set of sufficient statistics for θ is given by

Sj =
∑n

i=1 wixijyi, 1 ≤ j ≤ p,
Sp+l =

∑n
i=1 wizi1lyi, 1 ≤ l ≤ m1,

...
Sp+m1+···+mq−1+l =

∑n
i=1 wiziqlyi, 1 ≤ l ≤ mq,

where Zr = (zirl)1≤i≤n,1≤l≤mr , 1 ≤ r ≤ q. Thus, a natural set of MM equa-
tions can be formulated as

n∑
i=1

wixijyi =
n∑

i=1

wixijEθ(yi), 1 ≤ j ≤ p, (4.44)

mr∑
l=1

(
n∑

i=1

wizirlyi

)2

=
mr∑
l=1

Eθ

(
n∑

i=1

wizirlyi

)2

, 1 ≤ r ≤ q. (4.45)

Although the Sjs are sufficient statistics for the model parameters only when φ
is known (which, of course, includes the special cases of binomial and Poisson
distributions), one may still use Equations (4.44) and (4.45) to estimate θ
even if φ is unknown, provided that the right-hand sides of these equations
do not involve φ. Note that the number of equations in (4.44) and (4.45) is
identical to the dimension of θ.

However, for the right sides of (4.44) and (4.45) not to depend on φ, some
changes have to be made. For simplicity, in the following we assume that Zr,
1 ≤ r ≤ q are standard design matrices in the sense that each Zr consists
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only of 0s and 1s, and there is exactly one 1 in each row and at least one 1
in each column. Then, if we denote the ith row of Zr by z′

ir = (zirl)′
1≤l≤mr

,
we have |zir|2 = 1 and, for s �= t, z′

srztr = 0 or 1. Let Ir = {(s, t) : 1 ≤ s �=
t ≤ n, z′

srztr = 1} = {(s, t) : 1 ≤ s �= t ≤ n, zsr = ztr}. Then, it can be shown
(Exercise 4.13) that

mr∑
l=1

Eθ

(
n∑

i=1

wizirlyi

)2

=
n∑

i=1

w2
i Eθ(y2

i ) +
∑

(s,t)∈Ir

wswtE(ysyt). (4.46)

It is seen that the first term on the right side of (4.46) depends on φ, and
the second term does not depend on φ (Exercise 4.13). Therefore, a simple
modification of the earlier MM equations that will eliminate φ would be to
replace (4.45) by the following equations,∑

(s,t)∈Ir

wswtysyt =
∑

(s,t)∈Ir

wswtEθ(ysyt), 1 ≤ r ≤ q. (4.47)

Furthermore, write u = (u′
1, . . . , u

′
q)

′ with ur = (url)1≤l≤mr
. Note that ur ∼

N(0, Imr ). Then, the right side of (4.44) can be expressed as

X ′
jWE{e(θ, u)},

where Xj is the jth column of X, W = diag(wi, 1 ≤ i ≤ n), and e(θ, u) =
{b′(ξi)}1≤i≤n with ξi =

∑p
j=1 xijβj +

∑q
r=1 σrz

′
irur (Exercise 4.14). Similarly,

the right side of (4.47) can be expressed as

E{e(θ, u)′WHrWe(θ, u)},

where Hr is the n×n symmetric matrix whose (s, t) entry is 1{(s,t)∈Ir}. Thus,
the final MM equations that do not involve φ are given by

n∑
i=1

wixijyi = X ′
jWE{e(θ, u)}, 1 ≤ j ≤ p,∑

(s,t)∈Ir

wswtysyt = E{e(θ, u)′WHrWe(θ, u)}, 1 ≤ r ≤ q, (4.48)

where the expectations on the right-hand sides are with respect to u ∼
N(0, Im). In order to solve these equations, we approximate the right-hand
sides by a simple Monte Carlo method. Let u(1), . . . , u(L) be generated i.i.d.
copies of u. Then, the right sides of (4.48) can be approximated by the Monte
Carlo averages; that is,
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X ′
jW

[
1
L

L∑
l=1

e{θ, u(l)}
]

, 1 ≤ j ≤ p,

1
L

L∑
l=1

e{θ, u(l)}′WHrWe{θ, u(l)}, 1 ≤ r ≤ q. (4.49)

In conclusion, (4.48) with the right sides approximated by (4.49) are the MSM
equations for estimating θ. Note that, quite often, the expressions inside the
expectations on the right sides of (4.48) only involve some components of u.
This means that one does not need to generate the entire vector u, and thus
reduce the computation. We consider another example.

Example 4.9. The following example was considered by McGilchrist (1994)
and Kuk (1995) in their simulation studies. Suppose that, given the ran-
dom effects u1, . . . , u15, which are independent and distributed as N(0, 1),
responses yij , i = 1, . . . , 15, j = 1, 2 are conditionally independent such that
yij |u ∼ binomial(6, πij), where u = (ui)1≤i≤15, logit(πij) = β0 + β1xij + σui

with xi1 = 2i − 16 and xi2 = 2i − 15. The MSM equations for estimating β0,
β1, and σ take the following form (Exercise 4.15),

15∑
i=1

(yi1 + yi2) =
6
L

L∑
l=1

15∑
i=1

(πi1l + πi2l),

15∑
i=1

(xi1yi1 + xi2yi2) =
6
L

L∑
l=1

15∑
i=1

(xi1πi1l + xi2πi2l),

15∑
i=1

yi1yi2 =
36
L

L∑
l=1

15∑
i=1

πi1lπi2l, (4.50)

where πijl = h(β0 +β1xij +σuil) with h(x) = ex/(1+ex), and uil, 1 ≤ i ≤ 15,
1 ≤ l ≤ L are random variables generated independently from an N(0, 1)
distribution.

Finally, we discuss how to estimate the standard errors of the MSM estima-
tors. Define ψ̂ = (β̂′, |σ̂1|, . . . , |σ̂q|)′, where θ̂ = (β̂′, σ̂1, . . . , σ̂q)′ is the MSM es-
timator of θ. Write the MSM equations as M̂ = M̃(θ̂), where M̃ is the vector of
simulated moments. Similarly, let M(θ) denote the vector of moments. We as-
sume, without loss of generality, that σr ≥ 0, 1 ≤ r ≤ q for the true θ. Because
for large m and L, the simulated moments approximate the corresponding mo-
ments, and ψ̂ is a consistent estimator of θ, we have, by Taylor expansion, M̂ =
M̃(θ̂) ≈ M(θ̂) = M(ψ̂) ≈ M(θ)+Ṁ(θ)(ψ̂ − θ) ≈ M(θ)+Ṁ(θ)J−1(θ)(ϕ̂−ϕ),
where Ṁ(·) is the matrix of first derivatives, ϕ = (β′, σ2

1 , . . . , σ2
q )′, ϕ̂ is the

corresponding MSM estimator of ϕ, and J(θ) = diag(1, . . . , 1, 2σ1, . . . , 2σq).
Thus, an approximate covariance matrix of ϕ̂ is given by

Var(ϕ̂) ≈ J(θ){Ṁ(θ)−1}Var(M̂){Ṁ(θ)−1}′J(θ). (4.51)
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In practice, J(θ) can be estimated by J(ψ̂), and Ṁ(θ) can be estimated by
first replacing θ by ψ̂ and then approximating the moments by simulated
moments, as we did earlier. As for Var(M̂), although one could derive its
parametric form, the latter is likely to involve φ, the dispersion parameter
which is sometimes unknown. Alternatively, the covariance matrix of M̂ can
be estimated using a parametric bootstrap method as follows. First generate
data from the GLMM, treating ϕ̂ as the true θ. The generated data are a
bootstrap sample, denoted by y∗

i,k, 1 ≤ i ≤ n, 1 ≤ k ≤ K. Then, compute
the vector of sample moments based on the bootstrap sample, say, M̂∗

k , 1 ≤
k ≤ K. A bootstrap estimate of Var(M̂) is then given by V̂ar(M̂) = (K −
1)−1 ∑K

k=1

(
M̂∗

k − ¯̂
M∗

)(
M̂∗

k − ¯̂
M∗

)′
, where ¯̂

M∗ = K−1 ∑K
k=1 M̂∗

k . To see
how the method works, we revisit Example 4.9.

Example 4.9 (Continued). A simulation study was carried out for the model
considered here with L = 100. Two sets of true parameters were considered:
(i) σ2 = 1.0 and (ii) σ2 = 2.0, and in both cases β0 = 0.2, β1 = 1.0. The
results based on 1000 simulations are summarized in Table 4.2 and compared
with the approximate restricted maximum likelihood (AREML) estimator of
McGilchrist (1994) and the iterative bias correction (IBC) estimator of Kuk
(1995). The numbers in parentheses are averages of the estimated SEs. The
AREML method is similar to the PQL of Breslow and Clayton (1993) dis-
cussed in Section 3.5.2. For the most part, the method is based on a link
between BLUP and REML (e.g., Speed 1991) and a quadratic approxima-
tion to the conditional log-density of the responses given the random effects.
The IBC method iteratively corrects the bias of PQL, which results in an
asymptotically unbiased estimator. However, the latter method may be com-
putationally intensive.

It appears that MSM is doing quite well in terms of the bias, especially
compared with AREML. On the other hand, the standard errors of MSM
estimators seem larger than those of AREML and IBC estimators. Finally,
the estimated SEs are very close to the simulated ones, an indication of good
performance of the above method of standard error estimation.

Table 4.2. Comparison of estimators

Average of Estimators SE of Estimator
True Parameter MSM AREML IBC MSM AREML IBC
β0 = .2 .20 .25 .19 .32 (.31) .31 .26
β1 = .1 .10 .10 .10 .04 (.04) .04 .04
σ2 = 1.0 .93 .91 .99 .63 (.65) .54 .60
β0 = .2 .21 .11 .20 .42 (.37) .35 .36
β1 = .1 .10 .10 .10 .05 (.05) .05 .05
σ2 = 2.0 1.83 1.68 1.90 1.19 (1.04) .80 .96
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4.2.4 Robust Estimation in GLMM

Although the MSM estimators are consistent, simulation results suggested
that these estimators may be inefficient in the sense that the variances of the
estimators are relatively large. In this section, we propose an improvement of
the MSM.

We first give an extension of GLMM. Recall that in a GLM (McCullagh
and Nelder, 1989), it is assumed that the distribution of the response is a
member of a known exponential family. Thus, for a linear model to fit within
the generalized linear models, one may have to assume that the distribution
of the response is normal. However, the definition of a linear model does not
require normality, and many of the techniques developed in linear models do
not require the normality assumption. Therefore, GLMs, as defined, do not
extend linear models in a full sense.

In view of this, we consider a broader class of models than the GLMM,
in which the form of the conditional distribution, such as the exponential
family, is not required. The method can be described under an even broader
framework. Let θ be a vector of parameters under an assumed model. Suppose
that there is a vector of base statistics, say, S, which typically is of higher
dimension than θ. We assume that the following conditions are satisfied.

(i) The mean of S is a known function of θ.
(ii) The covariance matrix of S is a known function of θ, or at least is

consistently estimable.
(iii) Certain smoothness and regularity conditions hold.

Let the dimension of θ and S be r and N , respectively. If only (i) is
assumed, an estimator of θ may be obtained by solving the following equation,

BS = Bu(θ), (4.52)

where B is a r × N matrix and u(θ) = Eθ(S). This is called the first-step
estimator, in which the choice of B is arbitrary. It can be shown (see Section
4.6.5) that, under suitable conditions, the first-step estimator is consistent,
although it may not be efficient. To improve the efficiency, we further require
(ii). Denote the first-step estimator by θ̃, and consider a Taylor expansion
around the true θ. We have θ̃ − θ ≈ (BU)−1Q(θ), where U = ∂u/∂θ′ and
Q(θ) = B{S − u(θ)}. Note that Q(θ̃) = 0. Denote the covariance matrix of S
by V . Then, we have

Var(θ̃) ≈ {(BU)−1}BV B′{(BU)−1}′.

By Theorem 4.3, the optimal B is U ′V −1. Unfortunately, this optimal B
depends on θ, which is exactly what we wish to estimate. Our approach is to
replace θ in the optimal B by θ̃, the first-step estimator. This leads to what
we call the second-step estimator, denoted θ̂, and obtained by solving

B̃S = B̃u(θ), (4.53)
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where B̃ = U ′V −1|θ=θ̃. It can be shown that, under suitable conditions, the
second-step estimator is consistent and asymptotically efficient in the sense
that its asymptotic covariance matrix is the same as that of the solution to
the optimal estimating equation, that is, (4.52) with B = U ′V −1.

Note. It might appear that one could do better by allowing B in (4.52)
to depend on θ, that is, B = B(θ). However, Theorem 4.3 shows that the
asymptotic covariance matrix of the estimator corresponding to the optimal
B(θ) is the same as that corresponding to the optimal B (which is a constant
matrix). Therefore, the complication does not result in a real gain.

We now consider an extended version of GLMMs. Suppose that, given a
vector α = (αk)1≤k≤m of random effects, responses y1, . . . , yn are conditionally
independent such that

E(yi|α) = h(ξi), (4.54)
var(yi|α) = ai(φ)v(ηi), (4.55)

where h(·), v(·), and ai(·) are known functions, φ is a dispersion parameter,

ξi = x′
iβ + z′

iα, (4.56)

where β is a vector of unknown fixed effects, and xi = (xij)1≤j≤p, zi =
(zik)1≤k≤m are known vectors. Finally, we assume that

α ∼ Fϑ, (4.57)

where Fϑ is a multivariate distribution known up to a vector ϑ = (ϑr)1≤r≤q

of dispersion parameters. Note that we do not require that the conditional
density of yi given α is a member of the exponential family, as in the original
definition of GLMM (see Section 3.2). In fact, as shown, to obtain the first-step
estimator, only (4.54) is needed.

To apply the method to the extended GLMMs, we need to first select
the base statistics. By similar arguments as in the previous section, a natural
choice may be the following,

Sj =
n∑

i=1

wixijyi, 1 ≤ j ≤ p,

Sp+j =
∑
s�=t

wswtzskztkysyt, 1 ≤ k ≤ m. (4.58)

In fact, if Z = (zik)1≤i≤n,1≤k≤m = (Z1 · · ·Zq), where each Zr is an n × nr

standard design matrix (see Section 4.2.3), 1 ≤ r ≤ q, then, if one chooses
B = diag(Ip, 1′

m1
, . . . , 1′

mq
), one obtains the MM eqnations of Jiang (1998a).

Thus, the latter estimators are a special case of the first-step estimators.
However, the following examples show that the second-step estimators can be
considerably more efficient than the first-step ones.
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Example 4.10 (Mixed logistic model). Consider the following mixed lo-
gistic model. Suppose that, given the random effects α1, . . . , αm, binary re-
sponses yij , 1 ≤ i ≤ m, 1 ≤ j ≤ ki are conditionally independent such that
logit{P(yij = 1|α)} = µ + αi, where α = (αi)1≤i≤m and µ is an unknown pa-
rameter. Furthermore, suppose that the αis are independent and distributed
as N(0, σ2), where σ2 is unknown.

It is easy to see that the base statistics (4.58) reduce to y·· and y2
i· − yi·,

1 ≤ i ≤ m, where yi· =
∑ni

j=1 yij and y·· =
∑m

i=1 yi·.
A special case of this model is Example 4.8, in which ki = k, 1 ≤ i ≤ m,

that is, the data are balanced. In fact, it can be shown that, in the latter case,
the first-step estimators are the same as the second-step ones, and therefore
are optimal (Exercise 4.17). However, when the data are unbalanced, the first-
step estimator is no longer optimal. To see this, a simulation was carried out,
in which m = 100, ni = 2, 1 ≤ i ≤ 50, and ni = 6, 51 ≤ i ≤ 100. The true
parameters were chosen as µ = 0.2 and σ = 1.0. The results based on 1000
simulations are summarized in Table 4.3, where SD represents the simulated
standard deviation, and the overall MSE is the MSE of the estimator of µ
plus that of the estimator of σ. There is about a 43% reduction of the overall
MSE of the second-step estimator over the first-step one.

Table 4.3. Simulation results: mixed logistic model

Method of Estimator of µ Estimator of σ Overall
Estimation Mean Bias SD Mean Bias SD MSE
1st-step .21 .01 .16 .98 −.02 .34 .15
2nd-step .19 −.01 .16 .98 −.02 .24 .08

Because the first- and second-step estimators are developed under the
assumption of the extended GLMM, the methods apply to some situations
beyond (the classical) GLMM. The following is an example.

Example 4.11 (Beta-binomial). If Y1, . . . , Yl are correlated Bernoulli ran-
dom variables, the distribution of Y = Y1 + · · · + Yl is not binomial, and
therefore does not belong to the exponential family. Here we consider a spe-
cial case. Let p be a random variable with a beta(π, 1−π) distribution, where
0 < π < 1. Suppose that, given p, Y1, . . . , Yl are independent Bernoulli(p) ran-
dom variables, so that Y |p ∼ binomial(l, p). Then, it can be shown (Exercise
4.18) that the marginal distribution of Y is given by

P(Y = k) =
Γ (k + π)Γ (l − k + 1 − π)
k!(l − k)!Γ (π)Γ (1 − π)

, 1 ≤ k ≤ l. (4.59)

This distribution is called beta-binomial(l, π). It follows that E(Y ) = lπ and
Var(Y ) = φlπ(1 − π), where φ = (l + 1)/2. It is seen that the mean function
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under beta-binomial(l, π) is the same as that of binomial(l, π), but the variance
function is different. In other words, there is an overdispersion.

Now, suppose that, given the random effects α1, . . . , αm, which are inde-
pendent and distributed as N(0, σ2), responses yij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni

are independent and distributed as beta-binomial(l, πi), where πi = h(µ+αi)
with h(x) = ex/(1 + ex). Note that this is not a GLMM under the classical
definition of Section 3.2, because the conditional distribution of yij is not a
member of the exponential family. However, the model falls within the ex-
tended definition, because

E(yij |α) = lπi, (4.60)
var(yij |α) = φlπi(1 − πi). (4.61)

If only (4.60) is assumed, one may obtain the first-step estimator of (µ, σ),
for example, by choosing B = diag(1, 1′

m). If, in addition, (4.61) is assumed,
one may obtain the second-step estimator. To see how much difference there
is between the two, a simulation study was carried out with m = 40. Again,
an unbalanced situation was considered: ni = 4, 1 ≤ i ≤ 20 and ni = 8,
21 ≤ i ≤ 40. We took l = 2, and the true parameters µ = 0.2 and σ = 1.0.
The results based on 1000 simulations are summarized in Table 4.4. Again, we
see about 36% improvement of the second-step estimator over the first-step
one.

Table 4.4. Simulation results: Beta-binomial

Method of Estimation of µ Estimation of σ Overall
Estimation Mean Bias SD Mean Bias SD MSE
1st-step .25 .05 .25 1.13 .13 .37 .22
2nd-step .25 .05 .26 1.09 .09 .25 .14

The improvements of the second-step estimators over the first-step ones in
the precedent examples are not incidental. It can be shown that the second-
step estimators are asymptotically optimal in the sense described earlier and,
in particular, more efficient than the first-step estimators. See Section 4.6.5
for more details.

4.3 GLMM Selection

Recently, Jiang et al. (2006b) developed a general method, called fence, that
potentially applies to a broad class of model selection problems, including
GLMM selection problems.
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4.3.1 A General Principle for Model Selection

The essential part of this procedure is a quantity QM = QM (y, θM ), where
M indicates the candidate model, y is an n × 1 vector of observations, θM

represents the vector of parameters under M , such that E(QM ) is minimized
when M is a true model and θM the true parameter vector under M . Here
by true model we mean that M is a correct model but not necessarily the
most efficient one. For example, in regression model selection, a true model is
one that contains at least all the variables whose coefficients are nonzero, but
the model remains true if an additional variable is added, whose coefficient
is zero. We use the terms “true model” and “correct model” interchangeably.
Below are some examples of QM .

1. Maximum likelihood (ML) model selection. If the model specifies the
full distribution of y up to the parameter vector θM , an example of QM is the
negative of the log-likelihood under M ; that is,

QM = − log{fM (y|θM )}, (4.62)

where fM (·|θM ) is the joint probability density function (pdf) of y with respect
to a measure ν under M , given that θM is the true parameter vector. To see
that E(QM ) is minimized when M is a true model and θM the true parameter
vector under M , let f(y) denote the true pdf of y. Then, we have

−E(QM ) =
∫

log{fM (y|θM )}f(y)ν(dy)

=
∫

log{f(y)}f(y)ν(dy) +
∫

log
{

fM (y|θM )
f(y)

}
f(y)ν(dy)

≤
∫

log{f(y)}f(y)ν(dy) + log
{∫

fM (y|θM )
f(y)

f(y)ν(dy)
}

=
∫

log{f(y)}f(y)ν(dy), (4.63)

using the concave-function inequality. The lone term on the right side of (4.63)
is equal to −E(QM ) when M is a true model and θM the true parameter vector.

2. Mean and variance/covariance (MVC) model selection. If the model is
only specified by the mean and covariance matrix of y, it is called a mean and
variance/covariance model, or MVC model. In this case, we may consider

QM = |(T ′V −1
M T )−1T ′V −1

M (y − µM )|2, (4.64)

where µM and VM are the mean vector and covariance matrix under M , and
T is a given n × s matrix of full rank s ≤ n. To see that E(QM ) is minimized
when µM = µ, VM = V , where µ and V denote the true mean vector and
covariance matrix, note that
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E(QM ) = tr{(T ′V −1
M T )−1T ′V −1

M V V −1
M T (T ′V −1

M T )−1}
+|(T ′V −1

M T )−1T ′V −1
M (µM − µ)|2. (4.65)

The first term is the trace of the covariance matrix of the weighted least
squares (WLS; see Section 1.4.3) estimator of β with the weight matrix W =
V −1

M in the linear regression y = Tβ + ε, where E(ε) = 0 and Var(ε) = V .
Because the covariance matrix of the WLS estimator is minimized when W =
V −1 (i.e., VM = V ), the first term on the right side of (4.65) is minimized
when VM = V . On the other hand, the second term is zero when µM = µ.

3. Extended GLMM selection. Consider the problem of selecting an ex-
tended GLMM, introduced by Jiang and Zhang (2001), in which only the
conditional mean of the response given the random effects is parametrically
specified. It is assumed that, given a vector α of random effects, the responses
y1, . . . , yn are conditionally independent such that

E(yi|α) = h(x′
iβ + z′

iα), (4.66)

1 ≤ i ≤ n, where h(·) is a known function, β is a vector of unknown fixed
effects, and xi, zi are known vectors. Furthermore, it is assumed that α ∼
N(0, Σ), where the covariance matrix Σ depends on a vector ψ of variance
components. Now the question is: how to select the function h(·), the fixed
covariates (which are components of xi), and the random effects factors (which
correspond to subvectors of α). In other words, we have a problem of selecting
a model for the conditional means.

For such a purpose, let βM and ψM denote β and ψ under M , and
gM,i(βM , ψM ) = E{hM (x′

iβM + z′
iΣ

1/2
M ξ)}, where hM is the function h un-

der M , ΣM is the covariance matrix under M evaluated at ψM , and the
expectation is taken with respect to ξ ∼ N(0, Im) (which does not depend on
M). Here m is the dimension of α and Im the m-dimensional identity matrix.
We consider the following,

QM =
n∑

i=1

{yi − gM,i(βM , ψM )}2. (4.67)

It is easy to see that the QM given above satisfies the basic requirement:
E(QM ) is minimized when M is a true model and θM = (β′

M , ψ′
M )′ is the

true parameter vector under M . In fact, (4.67) corresponds to the QM in
MVC model selection (see above) with T = I, the identity matrix. Note that,
because V is not parametrically specified under the assumed model, it should
not get involved in QM . Therefore, (4.67) is a natural choice for QM . Also
note that, although (4.67) may be regarded as a residual sum of squares, the
responses are correlated in the current situation.

An important issue in model selection is to control the dimensionality
of the model, because otherwise the “bigger” model always wins. Here the
dimension of a model M , |M |, is defined as the dimension of θM . A model is
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called optimal if it is a true model with the smallest dimension. Let θ̂M be
defined as above. Let M̃ ∈ M be such that Q̂M̃ = minM∈M Q̂M , where M
represents the set of candidate models. We expect, at least in a large sample,
that M̃ is a correct model. The question is: are there other correct models in
M with smaller dimension than M̃?

To answer this question, we need to know what the difference Q̂M − Q̂M̃ is
likely to be when M is a true model, and how different the difference might be
when M is an incorrect model. Suppose that M∗ is a correct model. If M is
also a correct model, an appropriate measure of the difference Q̂M −Q̂M∗ is its
standard deviation, denoted σM,M∗ . On the other hand, if M is an incorrect
model, the difference Q̂M − Q̂M∗ is expected to be much larger than σM,M∗

(see arguments in Section 4.5.6). This leads to the following procedure. For
simplicity, let us first consider the case that M̃ is unique.

1. Find M̃ such that Q̂M̃ = minM∈M Q̂M .
2. For each M ∈ M such that |M | < |M̃ |, compute σ̂M,M̃ , an estimator of
σM,M̃ . Then, M belongs to M̃−, the set of “true” models with |M | < |M̃ | if

Q̂M ≤ Q̂M̃ + σ̂M,M̃ . (4.68)

3. Let M̃ = {M̃} ∪ M̃−, m0 = minM∈M̃ |M |, and M0 = {M ∈ M̃ : |M | =
m0}. Let M0 be the model in M0 such that Q̂M0 = minM∈M0 Q̂M . M0 is the
selected model.

The quantity Q̂M̃ + σ̂M,M̃ serves as a “fence” to confine the true models
(with dimensions smaller than |M̃ |) and exclude the incorrect ones. For such
a reason, the procedure is called fence. Note that the fence depends on M ;
that is, for different M the fence is different. The following outlines an effective
algorithm for the fence. Let d1 < d2 < · · · < dL be all the different dimensions
of the models M ∈ M.

The Fence Algorithm
(i) Find M̃ .
(ii) Compute σ̂M,M̃ for all M ∈ M such that |M | = d1; let M1 = {M ∈ M :
|M | = d1 and (4.68) holds}; if M1 �= ∅, stop. Let M0 be the model in M1
such that Q̂M0 = minM∈M1 Q̂M ; M0 is the selected model.
(iii) If M1 = ∅, compute σ̂M,M̃ for all M ∈ M such that |M | = d2; let
M2 = {M ∈ M : |M | = d2 and (4.68) holds}; if M2 �= ∅, stop. Let M0 be
the model in M2 such that Q̂M0 = minM∈M2 Q̂M ; M0 is the selected model.
(iv) Continue until the program stops (it will at some point).

In short, the algorithm may be described as follows. Check the candidate
models, from the simplest to the most complex. Once one has discovered a
model that falls within the fence and checked all the other models of the same
simplicity (for membership within the fence), one stops.

In the case that M̃ is not unique, all one has to do is to redefine M̃ in
step 3 of the fence as M̃ = {M ∈ M : |M | = |M̃ |, Q̂M = Q̂M̃} ∪ M̃−.
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An extension of the fence that takes into account the issue of consistency
is given by the same steps 1–3 above with (4.68) replaced by

Q̂M ≤ Q̂M̃ + cnσ̂M,M̃ , (4.69)

where cn is a sequence that → ∞ slowly as n → ∞. A similar effective
algorithm can be outlined.

The key to the fence is the calculation of σ̂M,M̃ in step 2. Although for
consistency (see Section 4.5.6) it is not required that σ̂M,M∗ be a consistent
estimator of σM,M∗ , as long as the former has the correct order, in practice, it
is desirable to use a consistent estimator whenever possible. This is because,
even if σ̂M,M∗ has the correct order, there is always a constant involved, which
may be difficult to choose. A smaller constant is apparently to the benefit
of larger models and thus results in overfitting; on the other hand, a larger
constant would be in favor of smaller models, and hence prompts underfitting.
Therefore, to balance the two sides, the best way would be to use a consistent
estimator of σM,M∗ , so that one need not worry about the constant. Here
consistency is in the sense that σ̂M,M∗ = σM,M∗ + o(σM,M∗) or, equivalently,
σ̂M,M∗/σM,M∗ → 1, in a suitable sense (e.g., in probability). In Section 4.5.6
we consider a special case, in which the data are clustered, and show how to
obtain σ̂M,M̃ .

4.3.2 A Simulated Example

We consider the following simulated example of GLMM selection. Suppose
that three models are being considered.

Model I: Given the random effects α1, . . . , αm, binary responses yij , i =
1, . . . , m, j = 1, . . . , k are conditionally independent such that

logit(pij) = β0 + β1xi + αi,

where pij = P(yij = 1|α); β0, β1 are fixed parameters; xi = 0, 1 ≤ i ≤
[m/2] and xi = 1, [m/2] + 1 ≤ i ≤ m ([x] represents the integer part of x).
Furthermore, the random effects are independent and distributed as N(0, σ2).

Model II: Same as Model I except that β1 = 0.
Model III: Same as Model I except that β0 = β1 = 0.

We first study the consistency of the MVC and ML model selection proce-
dures in the situation where the data are generated from one of the candidate
models. In other words, a true model belongs to the class of candidate mod-
els. Throughout the simulation studies, T was chosen as a block-diagonal
matrix with Ti = T1, 1 ≤ i ≤ m, where T1 is a k × l matrix with l = [k/2],
whose entries are generated from a Uniform[0, 1] distribution, and then fixed
throughout the simulations. The simulation results are summarized in Ta-
ble 4.5. The columns for MVC and ML are probabilities of correct selection,
reported as percentages estimated empirically from 100 realizations of the
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simulation. The numbers in parentheses are the percentages of selection of
the other two models in order of increasing index of the model.

Table 4.5. Simulation results: consistency

True Model m k l β0 β1 σ cn MVC ML
I 100 4 2 −.5 1 1 1 82(5,13) 94(3,3)
I 200 4 2 −.5 1 1 1.1 97(1,2) 99(0,1)
II 100 4 2 −.5 NA 1 1 87(4,9) 88(5,7)
II 200 4 2 −.5 NA 1 1.1 93(4,3) 98(2,0)
III 100 4 2 NA NA 1 1 87(3,10) 91(2,7)
III 200 4 2 NA NA 1 1.1 96(0,4) 91(1,8)

We next study robustness of the MVC and ML fence procedures in the case
where no true model (with respect to ML) is included in the candidate models.
We consider one such case, in which the binary responses yij are generated
as follows. Suppose that (X1, . . . , Xk) has a multivariate normal distribution
such that E(Xj) = µ, var(Xj) = 1, 1 ≤ j ≤ k, and cor(Xs, Xt) = ρ, 1 ≤
s �= t ≤ k. Then, let Yj = 1(Xj>0), 1 ≤ j ≤ k. Denote the joint distribution
of (Y1, . . . , Yk) by NB(µ, ρ) (here NB refers to “Normal-Bernoulli”). We then
generate the data such that y1, . . . , ym are independent, and the distribution
of yi = (yij)1≤j≤k follows one of the following models.

Model A: yi ∼ NB(µ1, ρ1), i = 1, . . . , [m/2], and yi ∼ NB(µ2, ρ2),
i = [m/2] + 1, . . . , m, where µj , ρj , j = 1, 2 are chosen to match the means,
variances, and covariances under Model I. Note that one can do so because
the means, variances and covariances under Model I depend only on three
parameters, whereas there are four parameters under Model A.

Model B: yi ∼ NB(µ, ρ), i = 1, . . . , m, where µ and ρ are chosen to match
the mean, variance, and covariance under Model II. Note that, under Model
II, the mean, variance, and covariance depend on two parameters.

Model C: Same as Model B except that µ and ρ are chosen to match the
mean, variance, and covariance under Model III. Note that, under Model III,
the mean is equal to 1/2, the variance is 1/4, and the covariance depends on
a single parameter σ.

If the data are generated from Model A, Model I is a correct model with
respect to MVC; similarly, if the data are generated from Model B, both
Model I and II are correct with respect to MVC; and, if the data is generated
from Model C, Models I–III are all correct in the sense of MVC. However,
no model (I, II, or III) is correct from a ML standpoint. The simulation
results are summarized in Table 4.6, in which β∗

0 , β∗
1 , and σ∗ correspond

to the parameters under the models in Table 4.5 with the matching mean(s),
variance(s), and covariance(s). The columns for MVC and ML are probabilities
of correct selection, reported as percentages estimated empirically from 100
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realizations of the simulation. The numbers in parentheses are the percentages
of selection of the other two models in order of increasing index of the model.
β∗

0 , β∗
1 and σ∗ are the matching parameters.

Table 4.6. Simulation results: robustness

True Model m k l β∗
0 β∗

1 σ∗ cn MVC ML
A 100 4 2 −.5 1 1 1 83(7,10) 91(5,4)
A 200 4 2 −.5 1 1 1.1 97(2,1) 99(0,1)
B 100 4 2 −.5 NA 1 1 80(3,17) 91(4,5)
B 200 4 2 −.5 NA 1 1.1 95(3,2) 97(3,0)
C 100 4 2 NA NA 1 1 83(8,9) 86(4,10)
C 200 4 2 NA NA 1 1.1 91(1,8) 90(1,9)

Summary: It is seen in Table 4.5 that the numbers increase as m increases
(and cn slowly increases), a good indication of consistency. With the exception
of one case (III/200), ML outperforms MVC, which is not surprising. What
is a bit of surprise is that ML also seems quite robust in the situation where
the true model is not one of the candidate models (therefore the objective
is to select a model among the candidates that is closest to the reality). In
fact, Table 4.6 shows that even in the latter case, ML still outperforms MVC
(with the exception of one case: again, III/200). However, one has to keep
in mind that there are many ways that a model can be misspecified, and
here we only considered one of them (which misspecifies a NB as a GLMM).
Furthermore, MVC has a computational advantage over ML, which is impor-
tant in cases such as GLMM selection. Note that the computational burden
usually increases with the sample size; on the other hand, the larger sample
performance of MVC (i.e., m = 200) is quite close to that of ML.

A compromise would be to use MVC in cases of a large sample, and ML
in cases of a small or moderate sample. Alternatively, one may use MVC for
an initial round of model selection to narrow down the number of candidate
models, and ML for a final round of model selection. For example, one may
use MVC for steps 1 and 2 of the fence (see Section 4.3.1) to identify the
subclass M̃, and then apply ML (with steps 1–3) within M̃ to identify the
optimal model.

In Sections 4.4.2 and 4.4.3 we further illustrate the fence method using
real-life data examples.

4.4 Real-Life Data Examples

4.4.1 Fetal Mortality in Mouse Litters

Brooks et al. (1997) presented six datasets recording fetal mortality in mouse
litters. Here we consider the HS2 dataset from Table 4 of their paper, which



206 4 Generalized Linear Mixed Models: Part II

reports the number of dead implants in 1328 litters of mice from untreated
experimental animals.

The data may be considered as being summaries of the individual responses
yij , i = 1, . . . , 1328, j = 1, . . . , ni, where ni is the size of the ith litter; yij = 1
if the jth implant in the ith litter is dead, and yij = 0 otherwise. The total
number of responses is N =

∑1328
i=1 ni = 10, 533. For simplicity, the nis are

considered nonrandom.
Brooks et al. (1997) used a beta-binomial model to model the correlation

among responses from the same litter. Here we consider an GLMM for the
same purpose. Suppose that, given the random effects α1, . . . , αm, the binary
responses yij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni are conditionally independent such that

logit{pr(yij = 1|α)} = µ + αi ,

where µ is an unknown parameter. Furthermore, suppose that the αi’s are
independent and distributed as N(0, σ2), where σ2 is an unknown variance.
Note that here m = 1328 and αi is a random effect associated with the ith lit-
ter. The problem of interest then is to estimate the parameters µ and σ. Jiang
and Zhang (2001) analyzed the data using the robust estimation method in-
troduced in Section 4.2.4. Their first- and second-step estimates of µ are, with
estimated standard errors in parentheses, -2.276 (0.047) and -2.296 (0.047),
respectively. Both analyses have found the parameter µ highly significant with
almost the same negative value. However, in this case, a parameter of greater
interest is σ, the standard deviation of the litter effects. The first- and second-
step estimates of σ are given by, with estimated standard errors in parentheses,
0.644 (0.059) and and 0.698 (0.057), respectively. Again, in both cases, the
parameter was found highly significant, an indication of strong within-group
correlations. The values of the first- and second-step estimates of σ differ
slightly. Thus, we adopt the second-step estimate because it is supposed to be
more efficient.

Furthermore, the within-group correlation between the binary responses
can be estimated as follows. For any j �= k, we have

cov(yij , yik) = E(yijyik) − E(yij)E(yik)
= E{h2(µ + σξ)} − {Eh(µ + σξ)}2,

where h(x) = ex/(1 + ex) and ξ ∼ N(0, 1). Thus, we have

cov(yij , yik) =
∫

h2(µ + σx)
1√
2π

e−x2/2dx

−
{∫

h(µ + σx)
1√
2π

e−x2/2dx

}2

. (4.70)

The integrals involved in (4.70) can be evaluated by numerical integrations.
Namely, if |h(x)| ≤ 1, then for any δ > 0,
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−∞
h(x)

1√
2π

e−x2/2dx ≈
(

δ√
π

) N−1∑
n=−N+1

ψ
(√

2nδ
)

e−n2δ2
.

See Goodwin (1949), who also evaluated the accuracy of this approximation.
For example, for h(x) = ex/(1 + ex) with δ = 0.7 and N = 7, the approxima-
tion error is less than 7.33 × 10−9. The estimated covariance between yij and
yik (j �= k) is then given by (4.70) with µ = −2.296 and σ = 0.698.

4.4.2 Analysis of Gc Genotype Data: An Application of the Fence
Method

Human group-specific component (Gc) is the plasma transport protein for
Vitamin D. Polymorphic electrophoretic variants of Gc are found in all hu-
man populations. Daiger et al. (1984) presented data involving a series of
monozygotic (MZ) and dizygotic (DZ) twins of known Gc genotypes in order
to determine the heritability of quantitative variation in Gc. These included
31 MZ twin pairs, 13 DZ twin pairs, and 45 unrelated controls. For each
individual, the concentration of Gc was available along with additional infor-
mation about the sex, age, and Gc genotype of the individual. The genotypes
are distinguishable at the Gc structural locus, and are classified as 1–1, 1–2,
and 2–2.

Lange (2002) considered three statistical models for the Gc genotype data.
Let yij represent the Gc concentration measured for the jth person who is
one of the ith identical twin pair, i = 1, . . . , 31, j = 1, 2. Furthermore, let
yij represent the Gc concentration measured for the jth person who is one
of the (i − 31)th fraternal twin pairs, i = 32, . . . , 44, j = 1, 2. Finally, Let yi

represent the Gc concentration for the (i− 44)th person among the unrelated
controls, i = 45, . . . , 89. Then, the first model, Model I, can be expressed as

yij = µ1−11(gij=1−1) + µ1−21(gij=1−2) + µ2−21(gij=2−2)

+µmale1(sij=male) + µageaij + εij , i = 1, . . . , 44, j = 1, 2,

where gij , sij , and aij represent the genotype, sex, and age of the jth person
in the i twin pair (identical or fraternal), and εij is an error that is further
specified later. If we let xij denote the vector whose components are 1(gij=1−1),
1(gij=1−2), 1(gij=2−2), 1(sij=male), and aij , and β denote the vector whose
components are µ1−1, µ1−2, µ2−2, µmale and µage, then the model can be
expressed as

yij = x′
ijβ + εij , i = 1, . . . , 44, j = 1, 2. (4.71)

Similarly, we have

yi = µ1−11(gi=1−1) + µ1−21(gi=1−2) + µ2−21(gi=2−2)

+µmale1(si=male) + µageai + εi, i = 45, . . . , 89,
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where gi, si, and ai are the genotype, sex, and age of the (i − 44)th person
in the unrelated control group, and εi is an error that is further specified. Let
xi denote the vector whose components are 1(gi=1−1), 1(gi=1−2), 1(gi=2−2),
1(si=male), and ai, and β be the same as above; then we have

yi = x′
iβ + εi, i = 45, . . . , 89. (4.72)

We now specify the distributions for the errors. Let εi = (εi1, εi2)′, i =
1, . . . , 44. We assume that εi, i = 1, . . . , 89 are independent. Furthermore, we
assume that

εi ∼ N

([
0
0

]
, σ2

tot

[
1 ρident

ρident 1

])
, i = 1, . . . , 31,

where σ2
tot is the unknown total variance, and ρident the unknown correlation

coefficient between identical twins. Similarly, we assume

εi ∼ N

([
0
0

]
, σ2

tot

[
1 ρfrat

ρfrat 1

])
, i = 32, . . . , 44, (4.73)

where ρfrat is the unknown correlation coefficient between fraternal twins.
Finally, we assume that

εi ∼ N(0, σ2
tot), i = 45, . . . , 89.

The second model, Model II, is the same as Model I except under the
constraint ρfrat = ρident/2; that is, in (4.73) ρfrat is replaced by ρident/2.

The third model, Model III, is the same as Model I except under the
constraints µ1−1 = µ1−2 = µ2−2; that is, in (4.71) and (4.72) we have

x′
ijβ = µ + µmale1(sij=male) + µageaij + εij ,

x′
iβ = µ + µmale1(si=male) + µageai + εi.

Thus, under Model I, the parameters are

θI = (µ1−1, µ1−2, µ2−2, µmale, µage, σ
2
tot, ρident, ρfrat)′ (8 − dimensional);

under Model II, the parameters are

θII = (µ1−1, µ1−2, µ2−2, µmale, µage, σ
2
tot, ρident)′ (7 − dimensional);

and, under Model III, the parameters are

θIII = (µ, µmale, µage, σ
2
tot, ρident, ρfrat)′ (6 − dimensional); .

It is clear that all three models are Gaussian mixed models, which are
special cases of GLMMs. We apply the fence method to this dataset to select
an optimal model from the candidate models. More specifically, we consider
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ML model selection (see Section 4.3.1.1). Note that, because Models II and
III are submodels of Model I (in other words, Model I is the full model), we
may take M̃ as Model I. The analysis resulted in the following values for Q̂M :
Q̂I = 337.777, Q̂II = 338.320, and Q̂III = 352.471. Furthermore, we obtained
σ̂II,I = 1.367 and σ̂III,I = 4.899. Thus, Model II is in the fence and Model III
is out. In conclusion, the analysis has selected Model II as the optimal model.
This result is consistent with the finding of Lange (2002), who indicated that
a “likelihood ratio test shows that there is virtually no evidence against the
assumption ρfrat = ρident/2.”

4.4.3 The Salamander-Mating Experiments: Various Applications
of GLMM

Finally, we revisit the salamander-mating experiments discussed in Section
3.3.1. These data have been analyzed by numerous authors, and several dif-
ferent models have been proposed.

Lin and Breslow (1996) considered the following mixed logistic model,
which is a special case of GLMM. Following the approach of Drum and Mc-
Cullagh (1993), they assumed that a different group of animals (20 female and
20 male; 10 from each population) had been used in each experiment. Thus,
the female random effects can be denoted by αf,1, . . . , αf,60, and the male
random effects αm,1, . . . , αm,60. It was assumed that the αf,is are independent
with mean 0 and variance σ2

f , the αm,js are independent with mean 0 and
variance σ2

m, and the αf,is and αm,js are independent. Furthermore, let pij

denote the conditional probability of successful mating given the effect of the
ith female and jth male; that is, pij = P(yij = 1|αf,i, αm,j). Lin and Breslow
(1996) assumed that

logit(pij) = x′
ijβ + αf,i + αm,j ,

where xij is a vector of covariates consisting of the following components:
an intercept, an indicator WSf for WS female (1 for WS and 0 for RB), an
indicator WSm for WS male (1 for WS and 0 for RB), and the interaction
WSf × WSm; that is,

x′
ijβ = β0 + β1WSf + β2WSm + β3WSf × WSm. (4.74)

Lin and Breslow fitted the model using three different methods. These are PQL
(see Section 3.5.2) and its biased corrected versions (first and second order).
The latter methods were developed to reduce the bias of PQL. See Breslow and
Lin (1995) and Lin and Breslow (1996) for details. The results are summarized
in Table 4.7, where CPQL1 and CPQL2 represent, respectively, the first-order
and second-order bias-corrected PQL, and the numbers in parentheses are
estimated standard errors.

Booth and Hobert (1999) used the MCEM method to obtained the maxi-
mum likelihood (ML) estimates of the parameters under an equivalent model.
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Their covariate vector xij consisted of four indicators of different combinations
of crossing: W/W for Whiteside female and Whiteside male, W/R for White-
side female and Rough Butt male, R/W for Rough Butt female and Whiteside
male, and R/R for Rough Butt female and Rough Butt male. Then, by not-
ing the following simple relationships between the new indicators and the ones
used by Lin and Breslow (1996),

W/W = WSf × WSm,

W/R = WSf × (1 − WSm),
R/W = (1 − WSf) × WSm,

R/R = (1 − WSf) × (1 − WSm),

it is easy to obtain the association between the regression coefficients as β0 =
βR/R, β1 = βW/R−βR/R, β2 = βR/W−βR/R, and β3 = βR/R−βR/W−βW/R+
βW/W. The estimates of Booth and Hobert (1999) are included in Table 4.7
as comparison. The authors did not report the standard errors.

Also included in this table are the Bayes estimates obtained by Karim and
Zeger (1992) using Gibbs sampling. The authors reported the median, and
5th and 95th percentiles of the posteriors of the parameters. The posterior
medians are used as point estimates. The standard errors of the estimators of
the regression coefficients are obtained using the following method. Because
the posterior distributions for the βs are asymptotically normal, the interval
between the 5th and 95th percentiles is approximately median plus/minus
the standard error. This implies that the standard error is approximately the
difference between the 95th and 5th percentiles divided by 2 × 1.645 = 3.29.
The standard errors for the variance estimators are more complicated because
the posteriors of the variances σ2

f and σ2
m are skewed.

Table 4.7. Estimates of parameters: PQL and bias-corrected PQL, ML and Bayes

Method Intercept WSf WSm WSf × WSm σ2
f σ2

m

PQL .79(.32) −2.29(.43) −.54(.39) 2.82(.50) .72 .63
CPQL1 1.19(.37) −3.39(.55) −.82(.43) 4.19(.64) .99 .91
CPQL2 .68(.37) −2.16(.55) −.49(.43) 2.65(.64) — —
ML 1.03 −2.98 −.71 3.65 1.40 1.25
Bayes 1.03((.43) −3.01(.60) −.69(.50) 3.74(.68) 1.50 1.36

It is seen that the interaction is highly significant regardless of the methods
used. In fact, this can also be seen from a simple data summary. For example,
for the summer experiment, the percentages of successful mating between the
female and male animals from the two populations are 70.0% for WS–WS,
23.3% for WS–RB, 66.7% for RB–WS, and 73.3% for RB–RB. Thus, the
percentage for WS-RB is much lower than all three other cases, which have
similar percentages. Another factor that was found highly significant in all
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cases is WSf . Interestingly, its male counterpart, WSm was found insignificant
using all methods. It appeared that female animals played more significant
roles than their male partners, and the (fixed) effects of male animals are
mainly through their interactions with the females.

An assumption that has been used so far is that a different group of ani-
mals had been used in each experiment. Of course, this is not true in reality.
However, the situation gets more complicated if this assumption is dropped.
This is because there may be serial correlations not explained by the animal-
specific random effects among the responses. See Example 4.6. Due to such
considerations, Jiang and Zhang (2001) considered an extended version of
GLMM for the pooled responses. More specifically, let yij1 be the observed
proportion of successful matings between the ith female and jth male in the
summer and fall experiments that involved the same group of animals (so
yij1 = 0, 0.5 or 1), and yij2 be the indicator of successful mating between
the ith female and jth male in the last fall experiment that involved a new
group of animals. It was assumed that, conditional on the random effects,
uk,i, vk,j , k = 1, 2, i, j = 1, . . . , 20, which are independent and normally dis-
tributed with mean 0 and variances σ2

f and σ2
m, respectively, the responses

yijk, (i, j) ∈ P , k = 1, 2 are conditionally independent, where P represents
the set of pairs (i, j) determined by the design, u, and v represent the female
and male, respectively; 1, . . . , 10 correspond to RB, and 11, . . . , 20 to WS.
Furthermore, it was assumed that the conditional mean of the response given
the random effects satisfies one of the two models below: (i) (logit model)
E(yijk|u, v) = h1(x′

ijβ + uk,i + vk,j), (i, j) ∈ P , k = 1, 2, where x′
ijβ is given

by (4.71), and h1(x) = ex/(1 + ex); (ii) (probit model) same as (i) with h1(x)
replaced by h2(x) = Φ(x), where Φ(·) is the cdf of N(0, 1). Note that it is not
assumed that the conditional distribution of yijk given the random effects is a
member of the exponential family. The authors then obtained the first-step es-
timators (see Section 4.2.4) of the parameters under both models. The results
are given in table 4.8. The numbers in parentheses are the estimated standard
errors, obtained from Theorem 4.9 in Section 4.5.5 under the assumption that
the binomial conditional variance is correct. If the latter assumption fails, the
standard error estimates are not reliable but the point estimates are still valid.

Table 4.8. First-step estimates with standard errors

Mean Function β0 β1 β2 β3 σf σm

Logit 0.95 −2.92 −0.69 3.62 0.99 1.28
(0.55) (0.87) (0.60) (1.02) (0.59) (0.57)

Probit 0.56 −1.70 −0.40 2.11 0.57 0.75
(0.31) (0.48) (0.35) (0.55) (0.33) (0.32)
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Earlier, Karim and Zeger (1992) took an alternative approach by consider-
ing a GLMM with correlated random effects. In their Model B, the correlations
among the responses are still solely due to the random effects (i.e., no serial
correlations given the random effects), but the random effect for an animal is
bivariate: a second random effect representing the season is added. This al-
lows different but correlated effects for an animal used in two experiments. In
addition, a season indicator is added to the fixed covariates. More specifically,
their model can be expressed as

logit(pijk) = x′
ijβ + β4FALL + z′

kui + z′
kvj ,

where pijk = P(yijk = 1|ui, vj), yijk is the indicator of successful mating
between the ith female and jth male in the kth experiment, x′

ijβ is the same
as (4.71), and FALL is the indicator of the fall season (0 for summer, 1 for
fall). Here k = 1 (fall) or 2 (summer). Thus, FALL = 1 if k = 1 and FALL = 0
if k = 2. Note that the second group of animals was only used in the fall, for
whom FALL is identical to 1. Furthermore, z′

k = (1, FALL), ui = (ui,1, ui,2)′,
vj = (vj,1, vj,2)′, where u, v correspond to female and male, respectively. Thus,
for the first group of animals, the random effect for the ith female is ui,1 for
the summer, and ui,1 + ui,2 for the fall; whereas for the second group, the
random effect for the ith female is ui,1 + ui,2. We have similar expressions
for the male random effects. Finally, it was assumed that the uis and vjs are
independent and bivariate normal such that ui ∼ N(0, Σf), vj ∼ N(0, Σm),
where Σf = (σf,rs)1≤r,s≤2 and Σm = (σm,rs)1≤r,s≤2 are unknown covariance
matrices. Karim and Zeger used Gibbs sampling to approximate the posterior
distributions, assuming flat priors for both β and Σs. Although there was an
issue of propriety of the posteriors when using flat priors (see discussion in
Section 4.1.6), the problem did not seem to have occurred numerically in this
case. The results of the posterior median, and 5th and 95th percentiles are
given in Table 4.9. Note that the coefficient β4 of the newly added seasonal

Table 4.9. Median and 5th and 95th percentiles of the posteriors

Parameter β0 β1 β2 β3 β4

Median 1.49 −3.13 −.76 3.90 −.62
Percentiles .51,2.62 −4.26,−2.20 −1.82,.23 2.79,5.16 −1.51,.28
Parameter σf,11 σf,12 σf,22 — —
Median 1.92 −2.17 3.79 — —
Percentiles .32,5.75 −6.46,−.26 1.03,9.53 — —
Parameter σm,11 σm,12 σm,22 — —
Median 1.25 .27 .23 — —
Percentiles .28,3.62 −.73,.88 .01,1.46 — —

indicator is insignificant at the 5% level; the variance of ui,2, the seasonal
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female random effect, is significant, and the variance of vj,2, the seasonal
male random effect, is barely significant at the 5% level.

It is remarkable that, although the models of Jiang and Zhang (2001) and
Karim and Zeger (1992, Model B) are different from those of Lin and Breslow
(1996), Booth and Hobert (1999), and Karim and Zeger (1992, Model A), the
conclusions about the significance of the regression coefficients as well as their
signs are essentially the same.

Finally, Jiang et al. (2006b) applied the fence method (see Section 4.3)
to the salamander mating data. They considered the problem of selecting an
extended GLMM (see Section 4.2.4) in this case. Following Jiang and Zhang
(2001), we pool the data from the two experiments involving the same group
of salamanders, so let yij1 be the observed proportion of successful matings
between the ith female and jth male in the two experiments. Let yij2 be the
indicator of successful mating between the ith female and jth male in the last
experiment involving a new set of animals.

We assume that given the random effects, uk,i, vk,j , k = 1, 2, i, j =
1, . . . , 20, which are independent and normally distributed with mean 0 and
variances σ2 and τ2, respectively, the responses yijk, (i, j) ∈ P , k = 1, 2 are
conditionally independent, where P represents the set of pairs (i, j) deter-
mined by the design, which is partially crossed; u and v represent the female
and male, respectively; 1, . . . , 10 correspond to RB, and 11, . . . , 20 correspond
to WS. Furthermore, we consider the following models for the conditional
means.

Model I: E(yijk|u, v) = h1(β0 +β1WSf +β2WSm +β3WSf ×WSm +uk,i +
vk,j), (i, j) ∈ P , k = 1, 2, where h1(x) = ex/(1 + ex); WSf is an indicator for
WS female (1 for WS and 0 for RB), WSm is an indicator for WS male (1 for
WS and 0 for RB) and WSf × WSm represents the interaction.

Model II: Same as Model I except dropping the interaction term.
Model III: Same as Model I with h1 replaced by h2, where h2(x) = Φ(x),

the cdf of N(0, 1).
Model IV: Same as Model III except dropping the interaction term.

The models are special cases of the extended GLMMs introduced in Section
4.2.4. See Section 4.3.1 for a special application of the fence in this case. We
apply the fence method (with cn = 1) discussed in the latter section to this
case. The analysis has yielded the following values of Q̂M for M = I, II, III,
and IV: 39.5292, 44.3782, 39.5292, 41.6190. Therefore, we have M̃ = I or III.
If we use M̃ = I, then σ̂M,M̃ = 1.7748 for M = II and σ̂M,M̃ = 1.1525 for
M = IV. Therefore, neither M = II nor M = IV falls within the fence. If we
use M̃ = III, then σ̂M,M̃ = 1.68 for M = II and σ̂M,M̃ = 1.3795 for M =
IV. Thus, once again, neither M = II nor M = IV is inside the fence. In
conclusion, the fence method has selected both Model I and Model III (either
one) as the optimal model. Interestingly, these are exactly the models fitted
by Jiang and Zhang (2001) using a different method, although the authors
had not considered it a model selection problem. The eliminations of Model
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II and Model IV are consistent with many of the previous studies (e.g., Karim
and Zeger 1992; Breslow and Clayton 1993; Lin and Breslow 1996), which
have found the interaction term significant, although the majority of these
studies have focused on logit models. As by products of the fence procedure,
the estimated regression coefficients and variance components under the two
models selected by the fence are given in Table 4.10.

Table 4.10. Estimates of parameters for the salamander mating data

Model β0 β1 β2 β3 σ τ

I 1.00 −2.96 −0.71 3.62 0.97 1.24
III 0.90 −2.66 −0.64 3.25 1.08 1.49

4.5 Further Results and Technical Notes

4.5.1 Proof of Theorem 4.3

By Theorem 2.1 of Heyde (1997), to establish the optimality of G∗, it suffices
to show that {E(Ġ)}−1E(GG∗′

) is a constant matrix for all G ∈ H. Let
G = A(y − µ) ∈ H. We have

E(GG∗′
) = E{A(y − µ)(y − µ)′V −1µ̇}

= E[AE{(y − µ)(y − µ)′|x}V −1µ̇]
= E(Aµ̇).

On the other hand, we have Ġ = Ȧ(y − µ) − Aµ̇. Thus,

E(Ġ) = E{Ȧ(y − µ)} − E(Aµ̇)
= E{ȦE(y − µ|x)} − E(Aµ̇)
= −E(Aµ̇).

Therefore, {E(Ġ)}−1E(GG∗′
) = −I, where I is the identity matrix, and this

proves the theorem.

4.5.2 Linear Convergence and Asymptotic Properties
of IEE

1. Linear convergence. We adapt a term from numerical analysis. An itera-
tive algorithm that results in a sequence x(m), m = 1, 2, . . . converges linearly
to a limit x∗, if there is 0 < ρ < 1 such that supm≥1{|x(m) − x∗|/ρm} < ∞
(e.g., Press et al. 1997).
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Let L1 = max1≤i≤n maxj∈Ji
sij with sij = sup|β̃−β|≤ε1

|(∂/∂β)gj(Xi, β̃)|,
where β represents the true parameter vector, ε1 is any positive constant, and
(∂/∂β)f(β̃) means (∂f/∂β)|β=β̃ . Similarly, let L2 = max1≤i≤n maxj∈Ji wij ,
where wij = sup|β̃−β|≤ε1

‖(∂2/∂β∂β′)gj(Xi, β̃)‖. Also, let V = {v : λmin(Vi) ≥
λ0, λmax(Vi) ≤ M0, 1 ≤ i ≤ n}, where λmin and λmax represent the smallest
and largest eigenvalues, respectively, and δ0 and M0 are given positive con-
stants. Note that V is a nonrandom set.

An array of nonnegative definite matrices {An,i} is bounded from above
if ‖An,i‖ ≤ c for some constant c; the array is bounded from below if A−1

n,i

exists and ‖A−1
n,i‖ ≤ c for some constant c. A sequence of random matrices

is bounded in probability, denoted by An = OP(1), if for any ε > 0, there
is M > 0 and N ≥ 1 such that P(‖An‖ ≤ M) > 1 − ε, if n ≥ N . The
sequence is bounded away from zero in probability if A−1

n = OP(1). Note that
the definition also applies to a sequence of random variables, considered as a
special case of random matrices. Also, recall that p is the dimension of β and
R the dimension of v. We make the following assumptions.

A1. For any (j, k) ∈ D, the number of different vijks is bounded, that is,
for each (j, k) ∈ D, there is a set of numbers Vjk = {v(j, k, l), 1 ≤ l ≤ Ljk},
where Ljk is bounded, such that vijk ∈ Vjk for any 1 ≤ i ≤ n with j, k ∈ Ji.

A2. The functions gj(Xi, β) are twice continuously differentiable with re-
spect to β; E(|Yi|4), 1 ≤ i ≤ n are bounded; and L1, L2, max1≤i≤n(‖Vi‖ ∨
‖V −1

i ‖) are OP(1).
A3 (Consistency of GEE estimator). For any given Vi, 1 ≤ i ≤ n bounded

from above and below, the GEE equation (4.33) has a unique solution β̂ that
is consistent.

A4 (Differentiability of GEE solution). For any v, the solution to (4.33),
β(v), is continuously differentiable with respect to v, and supv∈V ‖∂β/∂v‖ =
OP(1).

A5. n(j, k, l) → ∞ for any 1 ≤ l ≤ Ljk, (j, k) ∈ D, as n → ∞.

The proof of the following theorem can be found in Jiang et al. (2006a).

Theorem 4.4. Under assumptions A1–A5, P(IEE converges) → 1 as
n → ∞. Furthermore, we have P[supm≥1{|β̂(m) − β̂∗|/(pη)m/2} < ∞] → 1,
P[supm≥1{|v̂(m) − v̂∗|/(Rη)m/2} < ∞] → 1 as n → ∞ for any 0 < η <

(p ∨ R)−1, where (β̂∗, v̂∗) is the (limiting) IEEE.

Note 1. It is clear that the restriction η < (p∨R)−1 is unnecessary (because,
for example, (pη1)−m/2 < (pη2)−m/2 for any η1 ≥ (p ∨ R)−1 > η2), but linear
convergence would only make sense when ρ < 1 (see the definition above).

Note 2. The proof of Theorem 4.4 in fact demonstrated that for any δ > 0,
there are positive constants M1, M2, and integer N that depend only on δ
such that, for all n ≥ N ,
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P

[
sup
m≥1

{
|β̂(m) − β̂∗|

(pη)m/2

}
≤ M1

]
> 1 − δ,

P
[
sup
m≥1

{
|v̂(m) − v̂∗|
(Rη)m/2

}
≤ M2

]
> 1 − δ.

2. Asymptotic behavior of IEEE. In Section 4.2.2 we conjectured that the
(limiting) IEEE is asymptotically as efficient as the optimal GEE estimator
obtained by solving (4.33) with the true Vis. The theorems below show that
this conjecture is, indeed, true. The proofs can be found in Jiang et al. (2006a).
The first result is about consistency of IEEE.

Theorem 4.5. Under the assumptions of Theorem 4.4, the IEEE (β̂∗, v̂∗)
is consistent.

To establish the asymptotic efficiency of IEEE, we need to strengthen
assumptions A2 and A5 a little. Let L2,0 = max1≤i≤n maxj∈Ji

‖∂2µij/∂β∂β′‖,
L3 = max1≤i≤n maxj∈Ji dij , where

dij = max
1≤a,b,c≤p

sup
|β̃−β|≤ε1

∣∣∣∣ ∂3

∂βa∂βb∂βc
gj(Xi, β̃)

∣∣∣∣ .
A2′. Same as A2 except that gj(Xi, β) are three-times continuously differ-

entiable with respect to β, and that L2 = OP(1) is replaced by L2,0 ∨ L3 =
OP(1).

A5′. There is a positive integer γ such that n/{n(j, k, l)}γ → 0 for any
1 ≤ l ≤ Ljk, (j, k) ∈ D, as n → ∞.

We also need the following additional assumption.

A6. n−1 ∑n
i=1 µ̇′

iV
−1
i µ̇i is bounded away from zero in probability.

Let β̃ be the solution to (4.33) with the true Vis. Note that β̃ is efficient,
or optimal in the sense discussed in Section 4.2, but not computable, unless
the true Vis are known.

Theorem 4.6. Under assumptions A1, A2′, A3, A4, A5′ and A6, we have√
n(β̂∗ − β̃) → 0 in probability. Thus, asymptotically, β̂∗ is as efficient as β̃.

Note. The proof of Theorem 4.6 also reveals the following asymptotic ex-
pansion,

β̂∗ − β =

(
n∑

i=1

µ̇′
iV

−1
i µ̇i

)−1 n∑
i=1

µ̇′
iV

−1
i (Yi − µi) +

oP(1)√
n

, (4.75)

where oP(1) represents a term that converges to zero (vector) in probability.
By Theorem 4.6, (4.72) also holds with β̂∗ replaced by β̃, even though the
latter is typically not computable. In the next section, we look at a case
where an “exact” version of (4.72), that is, the equation without the term
oP(1)/

√
n, holds for β̃.
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4.5.3 Incorporating Informative Missing Data in IEE

In Section 4.2.2, we introduced IEE without taking into account the infor-
mation about the missing data process, which is often available. We now
extend the IEE method so that it incorporates such information. We consider
a follow-up study, in which the responses are denoted by Yit, 0 ≤ t ≤ T with
Yi0 being the measurement just prior to the start of the follow-up. Again, let
Xi = (X ′

it)0≤t≤T denote a matrix of explanatory variables associated with the
ith subject, where Xit = (Xitl)1≤l≤p. We assume that Xi is completely ob-
served, 1 ≤ i ≤ m. As in Section 4.2.2, we assume a semiparametric regression
model:

E(Yit|Xi) = gt(Xi, β). (4.76)

The notations µij and µi are defined here similarly to those in Section 4.2.2,
with Ji = {0, 1, . . . , T}. Furthermore, we assume that, in addition to Yit and
Xi, measures are to be made on a vector of time-dependent covariates Vit,
0 ≤ t ≤ T . Let Wi0 = (X ′

i0, . . . , X
′
iT , Yi0, V

′
i0)

′, and Wit = (Yit, V
′
it)

′, 1 ≤ t ≤
T . The notation W̄it denotes {W ′

i0, . . . , W
′
i(t−1)}′, that is, the vector of all the

data up to time t − 1.
Define Rit = 1 if subject i is observed at time t, that is, if both Yit and

Vit are observed, and Rit = 0 otherwise. We assume that Yit and Vit are both
observed or both missing, and Ri0 = 1. We also assume that, once a subject
leaves the study, the subject will not return. This means that Rit = 1 implies
Ri(t−1) = 1, . . . , Ri1 = 1. The following assumptions are made regarding the
missing process Rit,

P{Rit = 1|Ri(t−1) = 1, W̄it, Yi} = P{Rit = 1|Ri(t−1) = 1, W̄it}.

Also, denoting the right side of the above by λit, we have λit ≥ δ and
λit = λit(W̄it, ϑ), where δ is some positive constant, and ϑ an unknown vec-
tor of parameters. See Robins et al. (1995) for a discussion of these condi-
tions. The authors also proposed a maximum partial likelihood estimator for
ϑ, which does not depend on the estimation of the other parameters. This
fact is important to the derivation of IEE below. Write πit =

∏t
s=1 λis, and

∆it = π−1
it Rit. Define Ỹit = ∆itYit. According to Lemma A.1 of Robins et al.

(1995), we have E(Ỹit|Xi) = E(Yit|Xi) = µit. Also, let Ṽi = Var(Ỹi|Xi), where
Ỹi = (Ỹit)0≤t≤T . Then, according to Section 4.2.1, when ϑ and Ṽis are known,
the following estimating equation is optimal,

m∑
i=1

µ̇′
iṼ

−1
i (Ỹi − µi) = 0. (4.77)

If ϑ is unknown, because Ỹi depends on ϑ, that is, Ỹi = Ỹi(ϑ), we replace ϑ

by ϑ̂, the maximum partial likelihood estimator, to get Ŷi = Ỹi(ϑ̂). Thus, the
estimating equation becomes
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m∑
i=1

µ̇′
iṼ

−1
i (Ŷi − µi) = 0. (4.78)

Note that there is no need to deal with the ϑ involved in Ṽi, because the latter
is unspecified anyway (which is an advantage of this method).

The only real difference between Equations (4.33) and (4.75) is that Yi

is replaced by Ŷi (Vi and Ṽi are unspecified anyway). Thus, a very similar
iterative procedure can be applied. Namely, given the Ṽis, an estimator of β
is obtained by solving (4.75); given β, the Ṽis are estimated (by the method
of moments) in the same way as (4.36) except that Yij is replaced by Ŷij ,
1 ≤ i ≤ n, j ∈ Ji = {0, 1, . . . , T}; and iterate between the two steps. Once
again, we call such a procedure IEE. Note that ϑ̂ is unchanged during the
iterations. This is because, as mentioned earlier, the estimation of ϑ does not
depend on that of β and Vis. Therefore, there is no need to get ϑ involved in
the iterations.

Suppose that ϑ̂ is a
√

m-consistent estimator. Sufficient conditions for the
latter property can be found in Robins et al. (1995). Then, under regularity
conditions similar to A1–A5 in the previous Section, linear convergence of the
IEE as well as consistency of the limiting estimator, say, β̂∗, can be estab-
lished. However, the result for the asymptotic distribution of β̂∗ is different.
More specifically, let β̃ be the solution to (4.75), where the Ṽis are the true
conditional covariance matrices. Unlike Theorem 4.6, it is no longer true that√

m(β̂∗ − β̃) → 0 in probability. In fact, the asymptotic covariance matrix
of β̂∗ is different from that of β̃. Here is another way to look at it. Suppose
that β is the true parameter vector. If the Ṽis are replaced by consistent esti-
mators, the substitution results in a difference of oP(

√
m) on the left side of

(4.75). However, if Ỹi is replaced by Ŷi, 1 ≤ i ≤ m, the difference is OP(
√

m),
if ϑ̂ is

√
m-consistent. A difference of oP(

√
m) will maintain both the consis-

tency and the asymptotic distribution; a difference of OP(
√

m) will maintain
the consistency but change the asymptotic distribution. For more details, see
Jiang and Wang (2005).

A similar result was obtained by Robins et al. (1995; Theorem 1). In
fact, the authors showed that the asymptotic covariance matrix of their GEE
estimator with estimated missing probabilities (by ϑ̂) is “smaller” than that
of the GEE estimator with the true missing probabilities. In other words, the
GEE estimator with the estimated missing probabilities is asymptotically at
least as efficient as that with the true missing probabilities (see the discussion
on page 110 of the above reference). Also see Ying (2003, section 2).

4.5.4 Consistency of MSM Estimator

In this section, we give sufficient conditions for the asymptotic identifiability
of the parameters ϕ = (β′, σ2

1 , . . . , σ2
q )′ under the GLMM of Section 4.2.3 as

well as consistency of the MSM estimator ϕ̂. Here the asymptotic process is



4.5 Further Results and Technical Notes 219

such that n → ∞ and L → ∞, where n is the (data) sample size and L the
Monte Carlo sample size.

We first give a lemma that establishes convergence of the simulated mo-
ments to the corresponding moments after suitable normalizations. Let Q be
the set of row vectors v whose components are positive integers ordered de-
creasingly (i.e., if v = (v1, . . . , vs), we have v1 ≥ · · · ≥ vs). Let Ql be the
subset of vectors in Q, whose sum of the components is equal to l. For ex-
ample, Q2 = {2, (1, 1)}, Q4 = {4, (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}. For v ∈ Q
and v = (v1, . . . , vs), define b(v)(·) = b(v1)(·) · · · b(vs)(·), where b(k)(·) repre-
sents the kth derivative. For 1 ≤ r ≤ q, 1 ≤ u ≤ n, let Ir,u = {1 ≤ v ≤ n :
(u, v) ∈ Ir}, Jr = {(u, v, u′, v′) : (u, v), (u′, v′) ∈ Ir, (zu, zv)′(zu′ , zv′) �= 0}.
Let S = ∪q

r=1Ir = {(u, v) : 1 ≤ u �= v ≤ n, z′
uzv �= 0}.

Lemma 4.1. Suppose that (i) b(·) is four times differentiable such that

lim sup
n→∞

max
1≤i≤n

max
v∈Qd

E|b(v)(ξi)| < ∞, d = 2, 4;

(ii) the sequences {anj}, 1 ≤ j ≤ p and {bnr}, 1 ≤ r ≤ q are chosen such that
the following converge to zero when divided by a2

nj ,

n∑
i=1

wix
2
ij ,

∑
(u,v)∈S

wuwv|xujxvj |, (4.79)

1 ≤ j ≤ p, and the following converge to zero when divided by b2
nr,

∑
(u,v)∈Ir

wuwv,

n∑
u=1

wu

⎛⎝ ∑
v∈Ir,u

wv

⎞⎠2

,
∑

(u,v,u′,v′)∈Jr

wuwvwu′wv′ , (4.80)

1 ≤ r ≤ q. Then, the following converges to zero in L2 when divided by anj ,

n∑
i=1

wixij{yi − Eθ(yi)},

1 ≤ j ≤ p, and the following converges to zero in L2 when divided by brn,∑
(u,v)∈Ir

wuwv{yuyv − Eθ(yuyv)},

1 ≤ r ≤ q.

The proof is given in Jiang (1998a). We now define the normalized mo-
ments, simulated moments, and sample moments. Let

MN,j(θ) = a−1
nj

n∑
i=1

wixijE{b′(ξi)},
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M̃N,j = (anjL)−1
n∑

i=1

wixij

L∑
l=1

b′(ξil),

M̂N,j = a−1
nj

n∑
i=1

wixijyi,

1 ≤ j ≤ p, where ξil = x′
iβ + z′

iDu(l), and u(1), . . . , u(L) are generated in-
dependently from the m-dimensional standard normal distribution. Here the
subscript N refers to normalization. Similarly, we define

MN,p+r = b−1
nr

∑
(u,v)∈Ir

wuwvE{b′(ξu)b′(ξv)},

M̃N,p+r = (bnrL)−1
∑

(u,v)∈Ir

wuwv

L∑
l=1

b′(ξul)b′(ξvl),

M̂N,p+r = b−1
nr

∑
(u,v)∈Ir

wuwvyuyv,

1 ≤ r ≤ q. Let Anj , 1 ≤ j ≤ p and Bnr, 1 ≤ r ≤ q be sequences of positive
numbers such that Anj → ∞ and Bnr → ∞ as n → ∞. Let θ̂ be any θ ∈
Θn = {θ : |βj | ≤ Anj , 1 ≤ j ≤ p; |σr| ≤ Bnr, 1 ≤ r ≤ q} satisfying

|M̃N(θ) − M̂N| ≤ δn, (4.81)

where M̃N(θ) is the (p + q)-dimensional vector whose jth component is
M̃N,j(θ), 1 ≤ j ≤ p + q, M̂N is defined similarly, and δn → 0 as n → ∞.
For any vector v = (vr)1≤r≤s, define ‖v‖ = max1≤r≤s |vr|.

Theorem 4.7. Suppose that the conditions of Lemma 4.1 are satisfied.

a. Let εn be the maximum of the terms in (4.76) divided by a2
nj and the

terms in (4.77) divided by b2
nr over 1 ≤ j ≤ p and 1 ≤ r ≤ q. If εn/δ2

n → 0, θ̂
exists with probability tending to one as n → ∞.

b. If, furthermore, the first derivatives of Eθ(yi) and E(yuyv) (u �= v)
with respect to components of θ can be taken under the expectation sign; the
quantities

sup
‖θ‖≤B

E{b′(ξi)}4, E

{
sup

‖θ‖≤B

|b′′(ξi)|
}

, E

{
sup

‖θ‖≤B

|b′′(ξu)b′′(ξv)|
}

,

1 ≤ i ≤ n, (u, v) ∈ S are bounded for any B > 0; and

lim inf
n→∞ inf

‖ϕ̃−ϕ‖>ε
|MN(θ̃) − MN(θ)| > 0 (4.82)

for any ε > 0, there exists a sequence {dn} such that, as n, L → ∞ with
L ≥ dn, ϕ̂ is a consistent estimator of ϕ.
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Note that condition (4.79) ensures the identifiability of the true θ. Sim-
ilar conditions can be found in, for example, McFadden (1989) and Lee
(1992). Suppose that the function MN(·) is continuous and injective. Then,
inf‖ϕ̃−ϕ‖>ε |MN(θ̃) − MN(θ)| > 0. If the lower bound stays away from zero as
n → ∞, then (4.79) is satisfied. We consider an example.

Example 4.8 (Continued). Suppose that σ2 > 0, m → ∞ and k remains
fixed and k > 1. Then, it can be shown (Exercise 4.16) that all the conditions
of Theorem 4.7 are satisfied in this case. In particular, we verify condition
(4.79) here. Note that in this case MN(·) does not depend on n. Write M1(θ) =
E{hθ(ζ)}, M2(θ) = E{h2

θ(ζ)}. It is easy to show that supµ |M1(θ)−M2(θ)| →
0 as σ → ∞ and supµ |M2

1 (θ) − M2(θ)| → 0 as σ → 0. Therefore, there
exist 0 < a < b and A > 0 such that inf θ̃ /∈[−A,A]×[a,b] |M(θ̃) − M(θ)| > 0,
where M(θ) = (M1(θ), M2(θ))′. By continuity, it suffices to show that M(·)
in injective. Let 0 < c < 1 and consider the equation

M1(θ) = c. (4.83)

For any σ > 0, there is a unique µ = µc(σ) that satisfies (4.80). The function
µc(·) is continuously differentiable. Write µc = µc(σ), µ′

c = µ′
c(σ). By (4.80),

one has

E
[

exp(µc + σζ)
{1 + exp(µc + σζ)}2 (µ′

c + ζ)
]

= 0. (4.84)

Now consider M2(θ) along the curve determined by (4.80); that is, Mc(σ) =
M2(µc, σ). We use the following covariance inequality. For continuous func-
tions f . g and h with f and g strictly increasing and h > 0, we have∫

f(x)g(x)h(x)dx

∫
h(x)dx >

∫
f(x)h(x)dx

∫
g(x)h(x)dx,

provided that the integrals are finite. By (4.81) and the covariance inequality,
we have

M ′
c(σ) = 2E

[
{exp(µc + σζ)}2

{1 + exp(µc + σζ)}3 (µ′
c + ζ)

]
> 0.

The injectivity of M(·) then follows.
The constant dn in Theorem 4.7 can be determined by the proof of the

theorem, given in Jiang (1998a).

4.5.5 Asymptotic Properties of First and
Second-Step Estimators

In this section, we specify the conditions in (iii) of Section 4.2.4, which are
sufficient for the existence, consistency, and asymptotic normality of the first-
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and second-step estimators. Note that the results proved here do not require
the assumptions of GLMM in Section 3.2 or its extended version in Section
4.2.4.

Let the responses be y1, . . . , yn, and let Θ be the parameter space. First,
note that B, S, and u(θ) in (4.52) may depend on n, and hence in the sequel we
use the notation Bn, Sn, and un(θ). Also, the solution to (4.52) is unchanged
if Bn is replaced by C−1

n Bn, where Cn = diag(cn,1, . . . , cn,r), cn,j is a sequence
of positive constants, 1 ≤ j ≤ r, and r is the dimension of θ. Write Mn =
C−1

n BnSn, and Mn(θ) = C−1
n Bnun(θ). Then the first-step estimator θ̃ = θ̃n

is the solution to the equation

Mn(θ) = Mn. (4.85)

Consider Mn(·) as a map from Θ, the parameter space, to a subset of Rr. Let
θ denote the true θ everywhere except when defining a function of θ, such as
in (4.82), and Mn(Θ) be the image of Θ under Mn(·). For x ∈ Rr and A ⊂ Rr,
define d(x, A) = infy∈A |x − y|. Obviously, Mn(θ) ∈ Mn(Θ). Furthermore, if
Mn(θ) is in the interior of Mn(Θ), we have d(Mn(θ), M c

n(Θ)) > 0. In fact, the
latter essentially ensures the existence of the solution to (4.82).

Theorem 4.8. Suppose that, as n → ∞,

Mn − Mn(θ) −→ 0 (4.86)

in probability, and

lim inf d{Mn(θ), M c
n(Θ)} > 0. (4.87)

Then, with probability tending to one, the solution to (4.82) exists and is in
Θ. If, in addition, there is a sequence Θn ⊂ Θ such that

lim inf inf
θ∗ /∈Θn

|Mn(θ∗) − Mn(θ)| > 0, (4.88)

lim inf inf
θ∗∈Θn,θ∗ �=θ

|Mn(θ∗) − Mn(θ)|
|θ∗ − θ| > 0, (4.89)

then, any solution θ̃n to (4.82) is consistent.

Proof. The solution to (4.82) exists and is in Θ if and only if Mn ∈ Mn(Θ).
Inequality (4.84) implies that there is ε > 0 such that d{Mn(θ), M c

n(Θ)} ≥ ε
for large n. Thus, P{Mn /∈ Mn(Θ)} ≤ P{|Mn − Mn(θ)| ≥ ε}. Therefore, θ̃n

exists with probability tending to one.
We now show that θ̃n is consistent. By (4.85), there is ε1 > 0 such that,

for large n, P(θ̃n /∈ Θn) ≤ P{|Mn(θ̃n) − Mn(θ)| ≥ ε1}. On the other hand, by
(4.86), there is ε2 > 0 such that, for large n and any ε > 0, P(|θ̃n − θ| ≥ ε) ≤
P(θ̃n /∈ Θn)+P{|Mn(θ̃n)−Mn(θ)| ≥ ε2ε}. The result follows by the fact that
Mn(θ̃n) = Mn with probability tending to one and the above argument.
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The following lemmas give sufficient conditions for (4.83)–(4.86). Let Vn

be the covariance matrix of Sn.

Lemma 4.2. (4.83) holds provided that, as n → ∞,

tr(C−1
n BnVnB′

nC−1
n ) −→ 0.

Lemma 4.3. Suppose that there is a vector-valued function M0(θ) such
that Mn(θ) → M0(θ) as n → ∞. Furthermore, suppose that there exist ε > 0
and Nε ≥ 1 such that y ∈ Mn(Θ) whenever |y−M0(θ)| < ε and n ≥ Nε. Then
(4.84) holds. In particular, if Mn(θ) does not depend on n, Mn(θ) = M(θ),
say, then (4.84) holds provided that M(θ) is in the interior of M(Θ), the image
of M(·).

Lemma 4.4. Suppose that there are continuous functions fj(·), gj(·),
1 ≤ j ≤ r, such that fj{Mn(θ)} → 0 if θ ∈ Θ and θj → −∞, gj{Mn(θ)} → 0
if θ ∈ Θ and θj → ∞, 1 ≤ j ≤ r, uniformly in n. If, as n → ∞,

lim sup |Mn(θ)| < ∞,

lim inf min[|fj{Mn(θ)}|, |gj{Mn(θ)}|] > 0, 1 ≤ j ≤ r,

then there is a compact subset Θ0 ⊂ Θ such that (4.85) holds with Θn = Θ0.
Write Un = ∂un/∂θ′. Let Hn,j(θ) = ∂2un,j/∂θ∂θ′, where un,j is the jth

component of un(θ), and Hn,j,ε = sup|θ∗−θ|≤ε ‖Hn,j(θ∗)‖, 1 ≤ j ≤ Ln, where
Ln is the dimension of un.

Lemma 4.5. Suppose that Mn(·) is twice continuously differentiable, and
that, as n → ∞,

lim inf λmin(U ′
nB′

nC−2
n BnUn) > 0,

and there is ε > 0 such that

lim sup
max1≤i≤r c−2

n,i(
∑Ln

j=1 |bn,ij |Hn,j,ε)2

λmin(U ′
nB′

nC−2
n BnUn)

< ∞,

where bn,ij is the (i, j) element of Bn. Furthermore suppose, for any compact
subset Θ1 ⊂ Θ such that d(θ, Θ1) > 0, that

lim inf inf
θ∗∈Θ1

|Mn(θ∗) − Mn(θ)| > 0,

as n → ∞. Then (4.86) holds for Θn = Θ0, where Θ0 is any compact subset
of Θ that includes θ as an interior point.

The proofs of these lemmas are fairly straightforward.

Example 4.8 (Continued). As noted in Example 4.10, both the first and
second-step estimators of θ = (µ, σ)′ correspond to Bn = diag(1, 1′

m). Then it
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can be shown that, by choosing Cn = diag{mk, mk(k − 1)}, the conditions of
Lemmas 4.2–4.5 are satisfied.

We now consider the asymptotic normality of the first-step estimator. We
say that an estimator θ̃n is asymptotically normal with mean θ and asymptotic
covariance matrix (Γ ′

nΓn)−1 if Γn(θ̃n − θ) −→ N(0, Ir) in distribution. Let
λn,1 = λmin(C−1

n BnVnB′
nC−1

n ) and λn,2 = λmin{U ′
nB′

n(BnVnB′
n)−1BnUn}.

Theorem 4.9. Suppose that (i) the components of un(θ) are twice con-
tinuously differentiable; (ii) θ̃n satisfies (4.82) with probability tending to one
and is consistent; (iii) there exists ε > 0 such that

|θ̃n − θ|
(λn,1λn,2)1/2 max

1≤i≤r
c−1
n,i

⎛⎝ Ln∑
j=1

|bn,ij |Hn,j,ε

⎞⎠ −→ 0

in probability; and (iv)

{C−1
n BnVnB′

nC−1
n }−1/2[Mn − Mn(θ)] −→ N(0, Ir) (4.90)

in distribution. Then θ̃ is asymptotically normal with mean θ and asymptotic
covariance matrix

(BnUn)−1BnVnB′
n(U ′

nB′
n)−1. (4.91)

Proof. Write sn(θ) = Sn − un(θ). By Taylor expansion, it is easy to show
that, with probability tending to one,

0 = C−1
n Bnsn(θ) − C−1

n Bn(Un + Rn)(θ̃n − θ), (4.92)

where the jth component of Rn is (1/2)(θ̃n − θ)′Hn,j(θ(n,j)), and θ(n,j) lies
between θ and θ̃n, 1 ≤ j ≤ Ln. Write Wn = C−1

n BnVnB′
nC−1

n . Then, by (4.87)
and (4.89), we have

W−1/2
n C−1

n Bn(Un + Rn)(θ̃n − θ) −→ N(0, Ir) in distribution.

Also, we have W
−1/2
n C−1

n Bn(Un + Rn) = (Ir + Kn)W−1/2
n C−1

n BnUn, where

Kn = W−1/2
n C−1

n BnRn(W−1/2
n C−1

n BnUn)−1.

On the other hand, it is easy to show that ‖Kn‖ ≤ (λn,1λn,2)−1/2‖C−1
n BnRn‖,

and

‖C−1
n BnRn‖2 ≤ r

4
|θ̃n − θ|2 max

1≤i≤r
c−2
n,i

⎛⎝ Ln∑
j=1

bn,ij |Hn,j,ε

⎞⎠2

.

The result then follows.
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Sufficient conditions for existence, consistency, and asymptotic normality
of the second-step estimators can be obtained by replacing the conditions of
Theorems 4.8 and 4.9 by corresponding conditions with a probability state-
ment. Let ξn be a sequence of nonnegative random variables. We say that
lim inf ξn > 0 with probability tending to one if for any ε > 0 there is δ > 0
such that P(ξn > δ) ≥ 1 − ε for all sufficiently large n. Note that this is
equivalent to ξ−1

n = OP (1). Then, for example, (4.85) is replaced by (4.85)
with probability tending to one.

Note that the asymptotic covariance matrix of the second-step estimator
is given by (4.88) with Bn = U ′

nV −1
n , which is (U ′

nVnUn)−1. This is the same
as the asymptotic covariance matrix of the solution to (4.52) [(4.82)] with the
optimal B (Bn). In other words, the second-step estimator is asymptotically
optimal.

4.5.6 Further Results of the Fence Method

1. Estimation of σM,M∗ in the case of clustered observations. Clustered
data arise naturally in many fields, including analysis of longitudinal data
(e.g., Diggle et al. 1996) and small area estimation (e.g., Rao 2003). Let yi =
(yij)1≤j≤ki

represent the vector of observations in the ith cluster, and y =
(yi)1≤i≤m. We assume that y1, . . . , ym are independent.

Furthermore, we assume that QM is additive in the sense that

QM =
m∑

i=1

QM,i, (4.93)

where QM,i = QM,i(yi, θM ). We consider some examples.

Example 4.12. For ML model selection (Section 4.3.1.1), because, for clus-
tered data, fM (y|θM ) =

∏m
i=1 fM,i(yi|θM ), where fM,i(·|θM ) is the joint pdf

of yi under M and θM , we have

QM = −
m∑

i=1

log{fM,i(yi|θM )}.

Thus, (4.90) holds with QM,i = − log{fM,i(yi|θM )}.

Example 4.13. Now consider the case of MVC model selection (Section
4.3.1.2). If we choose T = diag(T1, . . . .Tm), where Ti is ki×si and 1 ≤ si ≤ ki,
we have

QM =
m∑

i=1

|(T ′
iV

−1
M,iTi)−1T ′

iV
−1
M,i(yi − µM,i)|2,

where µM,i and VM,i are the mean vector and covariance matrix of yi under
M and θM . Thus, (4.90) holds with QM,i = |(T ′

iV
−1
M,iTi)−1T ′

iV
−1
M,i(yi −µM,i)|2.
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Example 4.14. Note that the QM defined for extended GLMM selection
(Section 4.3.1.3) always satisfies (4.90), even if the data are not clustered.

Denote, with a little abuse of the notation, the minimizer of E(QM ) over
θM ∈ ΘM by θM . Let M∗ denote a correct model. The following lemma gives
approximations to E(Q̂M − Q̂M∗)2 in two different situations.

Lemma 4.6. Suppose that the following regularity conditions are satisfied:
i) E(∂QM/∂θM ) = 0, and tr{Var(∂QM,i/∂θM )} ≤ c for some constant c; ii)
there is a constant BM such that QM (θ̃M ) > QM (θM ), if |θ̃M | > BM ; iii)
there are constants cj > 0, j = 1, 2, 3 such that E(|θ̂M − θM |8) ≤ c1m

−4,
E(|∂QM/∂θM |4) ≤ c2m

2, and

E

⎛⎝ sup
|θ̃M |≤BM

∥∥∥∥∥ ∂2Q̃M

∂θM∂θ′
M

∥∥∥∥∥
4
⎞⎠ ≤ c3m

4;

and iv) there are constants a, b > 0 such that am ≤ var(QM − QM∗) ≤ bm,
if M �= M∗; v) for any incorrect model M , we have E(QM − QM∗) = O(m).
Then, we have E(Q̂M − Q̂M∗)2 = var(QM − QM∗){1 + o(1)} = O(m), if M is
correct; and E(Q̂M − Q̂M∗)2 = var(QM − QM∗) + O(m2) = O(m2), if M is
incorrect.

The proof is omitted (see Jiang et al. 2006b). Note that (i) is satisfied if
E(QM ) can be differentiated inside the expectation; that is, ∂E(QM )/∂θM =
E(∂QM/∂θM ). Also note that (ii) implies that |θ̂M | ≤ BM .

Because a measure of the difference Q̂M − Q̂M∗ is its L2-norm, ‖Q̂M −
Q̂M∗‖2 =

√
E(Q̂M − Q̂M∗)2, Lemma 4.6 suggests a difference between a true

model and an incorrect one: If M is a true model, Q̂M −Q̂M∗ may be measured
by σM,M∗ =

√
var(QM − QM∗) = sd(QM − QM∗); otherwise, Q̂M − Q̂M∗ is

expected to be much larger because sd(QM − QM∗) = O(
√

m).
Furthermore, it is not difficult to obtain an estimator of σM,M∗ . By (4.90)

and independence, we have

σ2
M,M∗ =

m∑
i=1

var(QM,i − QM∗,i)

=
m∑

i=1

[E(QM,i − QM∗,i)2 − {E(QM,i) − E(QM∗,i)}2]

= E

[
m∑

i=1

(QM,i − QM∗,i)2 −
m∑

i=1

{E(QM,i) − E(QM∗,i)}2

]
.

Thus, an estimator of σ2
M,M∗ is the observed variance given by

σ̂2
M,M∗ =

m∑
i=1

(Q̂M,i − Q̂M∗,i)2 −
m∑

i=1

{Ê(QM,i) − Ê(QM∗,i)}2, (4.94)
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where Q̂M,i = QM,i(yi, θ̂M ), Q̂M∗,i = QM∗,i(yi, θ̂M∗), and

Ê(QM,i) = EM∗,θ̂M∗ {QM,i(yi, θ̂M )},

Ê(QM∗,i) = EM∗,θ̂M∗ {QM∗,i(yi, θ̂M∗)},

where the expectations are with respect to yi under model M∗ and evaluated
at θ̂M∗ . Again, we consider some examples.

Example 4.12 (Continued). In the case of ML model selection, we have

E(QM,i) = −
∫

log{fM,i(yi|θM )}fi(yi)ν(dyi),

E(QM∗,i) = −
∫

log{fi(yi)}fi(yi)ν(dyi),

Ê(QM,i) = −
∫

log{fM,i(yi|θ̂M )}fM∗,i(yi|θ̂M∗)ν(dyi),

Ê(QM∗,i) = −
∫

log{fM∗,i(yi|θ̂M∗)}fM∗,i(yi|θ̂M∗)ν(dyi).

Therefore,

Ê(QM,i) − Ê(QM∗,i) =
∫

log

{
fM∗,i(yi|θ̂M∗)

fM,i(yi|θ̂M )

}
fM∗,i(yi|θ̂M∗)ν(dyi).

Example 4.13 (Continued). In the case of MVC model selection, we have

E(QM,i) = tr{(T ′
iV

−1
M,iTi)−1T ′

iV
−1
M,iViV

−1
M,iTi(T ′

iV
−1
M,iTi)−1}

+|(T ′
iV

−1
M,iTi)−1T ′

iV
−1
M,i(µM,i − µi)|2, (4.95)

and E(QM∗,i) = tr{(T ′
iV

−1
M∗,iTi)−1}. Thus, Ê(QM,i) is given by (4.92) with

µM,i replaced by µ̂M,i = µM,i(θ̂M ), VM,i by V̂M,i = VM,i(θ̂M ), µi by
µ̂M∗,i = µM∗,i(θ̂M∗), and Vi by V̂M∗,i = VM∗,i(θ̂M∗); and Ê(QM∗,i) =
tr{(T ′

i V̂
−1
M∗,iTi)−1}.

Example 4.14 (Continued). In the case of clustered data, this is a special
case of Example 4.13 (continued) with T = I, the identity matrix.

2. Consistency of the fence. We now give conditions for the consistency of
the fence procedure. The results given below do not require that the data be
clustered.

We assume that the following A1–A4 hold for each M ∈ M, where, as be-
fore, θM represents a parameter vector at which E(QM ) attains its minimum,
and ∂QM/∂θM , and so on. represent derivatives evaluated at θM . Similarly,
∂Q̃M/∂θM , and so on. represent derivatives evaluated at θ̃M .

A1. QM is three-times continuously differentiable with respect to θM ; and
the following holds,
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E
(

∂QM

∂θM

)
= 0. (4.96)

A2. There is a constant BM such that QM (θ̃M ) > QM (θM ), if |θ̃M | > BM .
A3. The equation ∂QM/∂θM = 0 has an unique solution.
A4. There is a sequence of positive numbers an → ∞ and 0 ≤ γ < 1 such

that

∂QM

∂θM
− E

(
∂QM

∂θM

)
= OP(aγ

n),

∂2QM

∂θM∂θ′
M

− E
(

∂2QM

∂θM∂θ′
M

)
= OP(aγ

n),

lim inf
1
an

λmin

{
E
(

∂2QM

∂θM∂θ′
M

)}
> 0,

lim sup
1
an

λmax

{
E
(

∂2QM

∂θM∂θ′
M

)}
< ∞,

and there is δM > 0 such that

sup
|θ̃M −θM |≤δM

∣∣∣∣∣ ∂3Q̃M

∂θM,j∂θM,k∂θM,l

∣∣∣∣∣ = OP(an), 1 ≤ j, k, l ≤ pM ,

where pM is the dimension of θM .

In addition, we assume the following. Recall that cn is the constant used
in (4.69).

A5. cn → ∞; for any true model M∗ and incorrect model M , we have
E(QM ) > E(QM∗),

lim inf
(

σM,M∗

a2γ−1
n

)
> 0,

cnσM,M∗

E(QM ) − E(QM∗)
−→ 0.

A6. σ̂M,M∗ > 0 and σ̂M,M∗ = σM,M∗OP(1) if M∗ is true and M incorrect;
and σM,M∗ ∨ a2γ−1

n = σ̂M,M∗OP(1) if both M and M∗ are true.

Note. Equation (4.93) is satisfied if E(QM ) can be differentiated inside
the expectation; that is, ∂E(QM )/∂θM = E(∂QM/∂θM ). Also note that A2
implies that |θ̂M | ≤ BM . To illustrate A4 and A5, consider the case of clustered
responses (see earlier discussions). Then, under regularity conditions, A4 holds
with an = m and γ = 1/2. Furthermore, we have σM,M∗ = O(

√
m) and

E(QM ) − E(QM∗) = O(m), provided that M∗ is true, M is incorrect, and
some regularity conditions hold. Thus, A5 holds with γ = 1/2 and cn being
any sequence satisfying cn → ∞ and cn/

√
m → 0. Finally, A6 does not require
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that σ̂M,M∗ be a consistent estimator of σM,M∗ , only that it has the same order
as σM,M∗ . However, see our earlier discussion.

Lemma 4.8. Under A1–A4, we have θ̂M − θM = OP(aγ−1
n ) and Q̂M −

QM = OP(a2γ−1
n ).

Recall that M0 is the model selected by the fence (see Section 4.3.1). The
following theorem establishes the consistency of the fence.

Theorem 4.10. Under assumptions A1–A6, we have with probability
tending to one that M0 is a true model with minimum dimension.

The proofs of Lemma 4.8 and Theorem 4.10 are omitted (see Jiang et al.
2006b).

4.6 Exercises

4.1. Show that in Example 4.1, the log-likelihood function under the as-
sumed model is given by (4.1).

4.2. Write a simple routine based on the simple algorithm to numerically
evaluate the likelihood function in Example 4.1. Use simulated data for the
evaluation.

4.3. Show that the threshold model introduced at the beginning of Section
4.1.1 is a special case of GLMM with binary responses.

4.4. Using the results of Appendix C, verify expressions (4.3) and (4.4)
in the E-step of the maximum likelihood estimation under a Gaussian mixed
model. Also verify the M-step (4.5) and (4.6).

4.5. Verify the expressions (4.7)–(4.9).
4.6. Consider Example 4.3 on the Gaussian copula distribution.
a. Verify that the joint pdf of the Gaussian copula is given by (4.14).
b. Show that the marginal cdf and pdf of yij are Fj(·|θj) and fj(·|θj),

respectively.
c. Verify that the joint pdf of yi is given by (4.15).
4.7. Verify that, in Example 4.3 (Continued), the likelihood equation under

the working independence model is unbiased; that is, Eθ{l̇w(θ)} = 0.
4.8. Verify the expressions of partial derivatives in Example 4.4.
4.9. Verify that in Section 4.1.6, the (joint) posterior of β and G under

the assumed model is given by (4.25).
4.10. Consider the following linear model for longitudinal data: y1, . . . , ym

are independent with E(yi) = Xiβ and Var(yi) = Vi, where yi = (yij)j∈Ji and
Xi is a matrix of fixed covariates (see Section 1.4.3). Show that in this case,
the GEE estimator is the same as the WLS estimator of Section 1.4.3, that
is, (1.43), with W = V −1, where V = diag(V1, . . . , Vm), provided that the Vis
are nonsingular and

∑n
i=1 X ′

iV
−1
i Xi is nonsingular.

4.11. Show that in Example 4.8, a set of sufficient statistics for µ and
σ are y1·, . . . , ym·. Also verify the following: E(y1·) = nE{hθ(ξ)}, E(y2

1·) =
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nE{hθ(ξ)}+n(n−1)E{h2
θ(ξ)}, where hθ(x) = exp(µ+σx)/{1+exp(µ+σx)}

and ξ ∼ N(0, 1).
4.12. Show that under the GLMM of Section 4.2.3, the marginal density

of y can be expressed as (4.43). Therefore, a set of sufficient statistics for θ is
given by the Sj , 1 ≤ j ≤ p + m below (4.43), where m = m1 + · · · + mq.

4.13. Verify (4.46). Also show that the first term on the right side of (4.46)
depends on φ, and the second term does not depend on φ.

4.14 This exercise has two parts.
(i) Show that the right side of (4.44) can be expressed as

X ′
jWE{e(θ, u)},

where Xj is the jth column of X, W = diag(wi, 1 ≤ i ≤ n), and e(θ, u) =
{b′(ξi)}1≤i≤n with ξi given by (3.2) with ηi = ξi.

(ii) Show that the right side of (4.47) can be expressed as

E{e(θ, u)′WHrWe(θ, u)},

where Hr is the n × n symmetric matrix whose (s, t) entry is 1{(s,t)∈Sr}.
4.15. Verify that in Example 4.9, the MSM equations are given by (4.50).
4.16. Show that all the conditions of Theorem 4.7 are satisfied in the case

of Example 4.8, provided that σ2 > 0, m → ∞ and k remains fixed and
k > 1. You may skip condition (4.79) inasmuch as it has been verified in
Section 4.5.4.

4.17. Consider the base statistics given in Example 4.10. Show that in
the special case of Example 4.8 (i.e., ki = k, 1 ≤ i ≤ m), (4.39) and (4.40)
correspond to the first-step estimating equation (4.52) with B = diag(1, 1′

m).
Show that this B is, in fact, optimal in the sense of Section 4.2.4. Note that
in this case the optimal B does not depend on θ. In other words, the first-step
estimators are the same as the second-step ones in this case.

4.18. Verify the marginal distribution of Y in Example 4.11, that is, (4.59).
Also verify the mean and variance expressions of Y .
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List of Notations

(The list is in alphabetical order.)
a ∧ b: = min(a, b).
a ∨ b: = max(a, b).
a′: transpose of vector a.
dim(a): the dimension of vector a.
|A|: the determinant of matrix A.
λmin(A): the smallest eigenvalue of matrix A.
λmax(A): the largest eigenvalue of matrix A.
tr(A): the trace of matrix A.
‖A‖: the spectral norm of matrix A defined as ‖A‖ = {λmax(A′A)}1/2.
‖A‖2: the 2-norm of matrix A defined as ‖A‖2 = {tr(A′A)}1/2.
rank(A): the (column) rank of matrix A.
A1/2: the square root of a nonnegative definite matrix A defined in Ap-

pendix B.
L(A): the linear space spanned by the columns of matrix A.
PA: the projection matrix to L(A) defined as PA = A(A′A)−A′, where A−

is the generalized inverse of A (see Appendix B).
PA⊥ : the projection matrix with respect to the linear space orthogonal to

L(A), defined as PA = I − PA, where I is the identity matrix.
If A is a set, |A| represents the cardinality of A.
Cov(ξ, η): the covariance matrix between random vectors ξ and η, defined

as Cov(ξ, η) = (cov(ξi, ηj))1≤i≤k,1≤j≤l, where ξi is the ith component of ξ, ηj

is the jth component of η, k = dim(ξ), and l = dim(η).
D−→: convergence in distribution.

diag(A1, . . . , Ak): the block-diagonal matrix with A1, . . . , Ak on its diag-
onal; note that this also includes the diagonal matrix, when A1, . . . , Ak are
numbers.

In: the n-dimensional identity matrix.
Jn: the n × n matrix of 1s, or Jn = 1n1′

n.
J̄n: = n−1Jn.
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N(µ, Σ): the multivariate normal distribution with mean vector µ and
covariance matrix Σ.

MSA: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, MSA = SSA/(k − 1).
MSE: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, MSE = SSE/m(k − 1).
1n: the n-dimensional vector of 1s.
10

n: = In.
11

n: = 1n.
∂ξ/∂η′: when ξ = (ξi)1≤i≤a, η = (ηj)1≤j≤b, this notation means the matrix

(∂ξi/∂ηj)1≤i≤a,1≤j≤b.
∂2ξ/∂η∂η′: when ξ is a scalar, η = (ηj)1≤j≤b, this notation means the

matrix (∂2ξ/∂ηj∂ηk)1≤j,k≤b.
SSA: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, SSA = k

∑m
i=1(ȳi·−ȳ··)2.

SSE: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, SSE =
∑m

i=1
∑k

j=1(yij −
yi·)2.

Var(ξ): The covariance matrix of random vector ξ defined as Var(ξ) =
(cov(ξi, ξj))1≤i,j≤k, where ξi is the ith component of ξ and k = dim(ξ).

(Xi)1≤i≤m: when X1, . . . , Xm are matrices with the same number of
columns, means the matrix that combines the rows of X1, . . . , Xm, one af-
ter the other.

(yi)1≤i≤m: when y1, . . . , ym are column vectors, this notation means the
column vector (y′

1, . . . , y
′
m)′.

(yij)1≤i≤m,1≤j≤ni
: in the case of clustered data, where yij , j = 1, . . . , ni

denote the observations from the ith cluster, this notation represents the vec-
tor (y11, . . . , y1n1 , y21, . . . , y2n2 , . . . , ym1, . . . , ymnm)′.

yi·, ȳi·, y·j , ȳ·j , y·· and ȳ··: in the case of clustered data yij , i = 1, . . . , m,
j = 1, . . . , ni, yi· =

∑ni

j=1 yij , ȳi· = n−1
i yi·, y·· =

∑m
i=1

∑ni

j=1 yij , ȳ·· =
(
∑m

i=1 ni)−1y··; in the case of balanced data yij , 1 ≤ i ≤ a, j = 1, . . . , b, yi· =∑b
j=1 yij , ȳi· = b−1yi·, y·j =

∑a
i=1 yij , ȳ·j = a−1y·j , y·· =

∑a
i=1

∑b
j=1 yij ,

ȳ·· = (ab)−1y··.
y|η ∼: the distribution of y given η is ...; note that here η may represent

a vector of parameters or random variables, or a combination of both.
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Matrix Algebra

B.1 Kronecker Products

Let A = (aij)1≤i≤m,1≤j≤n be a matrix. Then, for any matrix B, the Kronecker
product, A ⊗ B is defined as the partitioned matrix (aijB)1≤i≤m,1≤j≤n. For
example, if A = Im and B = 1n, then A ⊗ B = diag(1n, . . . , 1n). Below are
some well-known and useful properties of Kronecker products:

2mm
(i) (A1 + A2) ⊗ B = A1 ⊗ B + A2 ⊗ B.
(ii) A ⊗ (B1 + B2) = A ⊗ B1 + A ⊗ B2.
(iii) c ⊗ A = A ⊗ c = cA, where c is a real number.
(iv) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.
(v) (A ⊗ B)′ = A′ ⊗ B′.
(vi) If A is partitioned as A = [A1 A2], then [A1 A2]⊗B = [A1⊗B A2⊗B].

However, if B is partitioned as [B1 B2], then A ⊗ [B1 B2] �= [A ⊗ B1 A ⊗ B2].
(vii) (A1 ⊗ B1)(A2 ⊗ B2) = (A1A2) ⊗ (B2B2).
(viii) If A, B are nonsingular, so is A ⊗ B, and (A ⊗ B)−1 = A−1 ⊗ B−1.
(ix) rank(A ⊗ B) = rank(A)rank(B).
(x) tr(A ⊗ B) = tr(A)tr(B).
(xi) If A is m × m and B is k × k, then |A ⊗ B| = |A|m|B|k.
(xii) The eigenvalues of A ⊗ B are all possible products of an eigenvalue

of A and an eigenvalue of B.

B.2 Matrix Differentiation

If A is a matrix whose elements are functions of θ, a real-valued variable,
then ∂A/∂θ represents the matrix whose elements are the derivatives of the
corresponding elements of A with respect to θ. For example, if

A =
(

a11 a12
a21 a22

)
, then

∂A

∂θ
=

(
∂a11/∂θ ∂a12/∂θ
∂a21/∂θ ∂a22/∂θ

)
.
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If a = (ai)1≤i≤k is a vector whose components are functions of θ =
(θj)1≤j≤l, a vector-valued variable, then ∂a/∂θ′ is defined as the matrix
(∂ai/∂θj)1≤i≤k,1≤j≤l. Similarly, ∂a′/∂θ is defined as the matrix (∂a/∂θ′)′.

The following are some useful results.

(i) (Inner-product) If a, b, and θ are vectors, then

∂(a′b)
∂θ

=
(

∂a′

∂θ

)
b +

(
∂b′

∂θ

)
a.

(ii) (Quadratic form) If x is a vector and A is a symmetric matrix, then

∂

∂x
x′Ax = 2Ax.

(iii) (Inverse) If the matrix A depends on a vector θ and is nonsingular,
then, for any component θi of θ,

∂A−1

∂θi
= −A−1

(
∂A

∂θi

)
A−1.

(iv) (Log-determinant) If the matrix A above is also positive definite, then,
for any component θi of θ,

∂

∂θi
log(|A|) = tr

(
A−1 ∂A

∂θi

)
.

B.3 Projection

For any matrix X, the matrix PX = X(X ′X)−1X ′ is called the projection
matrix to L(X) (see Appendix A). Here it is assumed that X ′X is nonsingular;
otherwise, (X ′X)−1 will be replaced by (X ′X)−, the generalized inverse (see
the next section).

To see why PX is given such a name, note that any vector in L(X) can be
expressed as v = Xb, where b is a vector of the same dimension as the number
of columns of X. Then, we have PXv = X(X ′X)−1X ′Xb = Xb = v, that is,
PX keeps v unchanged.

The orthogonal projection to L(X) is defined as PX⊥ = I − PX , where I
is the identity matrix. Then, for any v ∈ L(X), we have PX⊥v = v − PXv =
v − v = 0. In fact, PX⊥ is the projection matrix to the orthogonal space of X,
denoted by L(X)⊥.

If we define the projection of any vector v to L(X) as PXv, then, if v ∈ L,
the projection of v is itself; if v ∈ L(X)⊥, the projection of v is zero (vector).
In general, we have the orthogonal decomposition v = v1 + v2, where v1 =
PXv ∈ L(X), v2 = PX⊥v ∈ L(X)⊥ such that v′

1v2 = v′PXPX⊥v = 0, because
PXPX⊥ = PX(1 − PX) = PX − P 2

X = 0.
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The last equation recalls an important property of a projection matrix;
that is, any projection matrix is idempotent; that is, P 2

X = PX .

Example B.1. If X = 1n (see Appendix A), then PX = 1n(1′
n1n)−11′

n =
n−1Jn = J̄n. The orthogonal projection is thus In − J̄n. It is easy to verify
that J̄2

n = J̄n and (In − J̄n)2 = In − J̄n.
Another useful result involving projections is the following. Suppose that

X is n × p such that rank(X) = p, and V is n × n and positive definite. For
any n × (n − p) matrix A such that rank(A) = n − p and A′X = 0, we have

A(A′V A)−1A′ = V −1 − V −1X(X ′V −1X)−1X ′V −1. (B.1)

Equation (B.1) may be expressed in a different way: PV 1/2A = I − PV −1/2X ,
where V 1/2 and V −1/2 are the square root matrices of V and V −1, respectively
(see Section B.5). In particular, if V = I, we have PA = I − PX = PX⊥ . If
X is not of full rank, (B.1) holds with (X ′V −1X)−1 replaced by (X ′V −1X)−

(see below).

B.4 Generalized Inverse

For any matrix A, whether it is nonsingular or not, there always exists a
matrix A− satisfying AA−A = A. Such an A− is called a generalized inverse
of A. Note that here we use the term “a generalized inverse” instead of “the
generalized inverse”, because such an A− may not be unique. Two special
kinds of generalized inverse are often of interest.

Any matrix A− satisfying

AA−A = A and A−AA− = A−

is called a reflexible generalized inverse of A. Given a generalized inverse A− of
A, one can produce a generalized inverse that is reflexible by A−

r = A−AA−.
If the generalized inverse is required to satisfy the following conditions,

known as the Penrose conditions, (i) AA−A = A, (ii) A−AA− = A−, (iii)
AA− is symmetric, and (iv) A−A is symmetric, it is called the Moore–Penrose
inverse. In other words, a reflexible generalized inverse that satisfies the sym-
metry conditions (iii) and (iv) is the Moore–Penrose inverse. It can be shown
that for any matrix A, its Moore-Penrose inverse exists and is unique. See
Searle (1971; Section 1.3) for more details.

B.5 Decompositions of Matrices

There are various decompositions of a matrix satisfying certain conditions.
Two of them are most relevant to this book.

The first is Choleski’s decomposition. Let A be a nonnegative definite
matrix. Then, there exists an upper-triangular matrix U such that A = U ′U .
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An application of Choleski decomposition is the following. For any k×1 vector
µ and k×k covariance matrix V , one can generate a k-variate normal random
vector with mean µ and covariance matrix V . Simply let ξ = µ+U ′η, where η
is a k×1 vector whose components are independent N(0, 1) random variables,
and U is the upper-triangular matrix in the Choleski’s decomposition of V .

Another decomposition is the eigenvalue decomposition. For any k × k
symmetric matrix A, there exists an orthogonal matrix T such that A =
TDT ′, where D = diag(λ1, . . . , λk), and λ1, . . . , λk are the eigenvalues of
A. In particular, if A is nonnegative definite, in which case the eigenvalues
are nonnegative, we define D1/2 = diag(

√
λ1, . . . ,

√
λk), and A1/2 = TD1/2T ′,

called the square root matrix of A. It follows that (A1/2)2 = A. If A is positive
definite, then we write A−1/2 = (A1/2)−1, which is identical to (A−1)1/2. Thus,
for example, an alternative way of generating the k-variate normal random
vector is to let ξ = µ + V 1/2η, where η is the same as above.

B.6 The Eigenvalue Perturbation Theory

If A and B are symmetric matrices, whose eigenvalues, arranged in decreasing
orders, are α1 ≥ · · · ≥ αk and β1 ≥ · · · ≥ βk, respectively, then Weyl’s
perturbation theorem states that

max
1≤i≤k

|αi − βi| ≤ ‖A − B‖.

An application of Weyl’s theorem is the following. If An is a sequence of sym-
metric matrices such that ‖An − A‖ → 0 as n → ∞, where A is a symmetric
matrix, then the eigenvalues of An converge to those of A as n → ∞.
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Some Results in Statistics

C.1 Multivariate Normal Distribution

A random vector ξ is said to have a multivariate normal distribution with
mean vector µ and covariance matrix Σ, or ξ ∼ N(µ, Σ), if the (joint) pdf of
ξ is given by

f(x) =
1

(2π)k/2|Σ|1/2 exp
{

−1
2
(x − µ)′Σ−1(x − µ)

}
, x ∈ Rk,

where k is the dimension of ξ. Below are some useful results.

1. For any matrices r × k matrix A and s × k matrix B, Aξ and Bξ are
independent if and only if AΣB′ = 0.

2. If

ξ =
(

ξ1
ξ2

)
, µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

then the conditional distribution of ξ1 given ξ2 is

N
(
µ1 + Σ12Σ

−1
22 (ξ2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21

)
.

Note that Σ21 = Σ′
12.

C.2 Quadratic Forms

Let ξ be a random vector such that E(ξ) = µ and Var(ξ) = Σ. Then, for any
nonrandom symmetric matrix A, we have

E(ξ′Aξ) = µ′Aµ + tr(AΣ).

If ξ ∼ N(0, Σ), ξ′Aξ is distributed as χ2
r if and only if AΣ is idempotent

and r = rank(A).
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If ξ ∼ N(µ, Σ), then ξ′Aξ and b′ξ are independent if and only if b′ΣA = 0;
ξ′Aξ and ξ′Bξ are independent if and only if AΣB = 0, where B is another
nonrandom symmetric matrix.

Furthermore, if ξ ∼ N(µ, Σ), then

cov(ξ′Aξ, b′ξ) = 2b′ΣAµ,

cov(ξ′Aξ, ξ′Bξ) = 4µ′AΣBµ + 2tr(AΣBΣ).

Finally, if ξ ∼ N(0, Σ), then the distribution of ξ′Aξ is χ2
r, where r =

rank(A), if and only if AΣ is idempotent.
For more details, see Searle (1971, Section 2.5).

C.3 OP and oP

A sequence of random vectors (including random variables), ξn, is said to be
bounded in probability, denoted by OP(1), if for any ε > 0, there is M > 0
such that P(|ξn| > M) < ε, n = 1, 2, . . .. If an is a sequence of positive
numbers, the notation ξn = OP(an) means that ξn/an = OP(1).

A sequence of random vectors (including random variables), ξn, is oP(1) if
|ξn| converges to zero in probabilirty. If an is a sequence of positive numbers,
the notation ξn = oP(an) means that ξn/an = oP(1).

Some important results regarding OP and oP are the following.

1. If there is a number k > 0 such that E(|ξn|k) is bounded, then ξn =
OP(1); similarly, if E(|ξn|k) ≤ can, where c is a constant and an a sequence
of positive numbers, then ξn = OP(a1/k

n ).
2. If there is a number k > 0 such that E(|ξn|k) → 0, then ξn = oP(1);

similarly, if E(|ξn|k) ≤ can, where c is a constant and an a sequence of positive
numbers, then ξn = oP(bn) for any sequence bn > 0 such that b−1

n a
1/k
n → 0.

3. If there are sequences of vectors {µn} and nonsingular matrices {An}
such that An(ξn − µn) converges in distribution, then ξn = µn + OP(‖A−1

n ‖).

C.4 Convolution

If X and Y are random variables with cdfs F and G, respectively, the cdf of
X + Y is given by

F ∗ G(z) =
∫

F (z − y)dG(y),

which is called the convolution of F and G. In particular, if F and G have
pdfs f and g, respectively, the pdf of X + Y is given by

f ∗ g(z) =
∫

f(z − y)g(y)dy,
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which is called the convolution of f and g.
The definition can be extended to the sum of more than two random

variables. Let Fj (fj) denote the cdf (pdf) of Xj , 1 ≤ j ≤ k. Then, the cdf of
X1 + X2 + X3 is F1 ∗ F2 ∗ F3 = F1 ∗ (F2 ∗ F3); the pdf of X1 + X2 + X3 is
f1 ∗ f2 ∗ f3 = f1 ∗ (f2 ∗ f3), and so on.

C.5 Exponential Family and Generalized Linear Models

The concept of generalized linear models, or GLM, is closely related to that of
the exponential family. The distribution of a random variable Y is a member
of the exponential family, if its pdf or pmf can be expressed as

f(y; θ) = exp
{

yθ − b(θ)
a(φ)

+ c(y, φ)
}

, (C.1)

where a(·), b(·) and c(·, ·) are known functions, θ is an unknown parameter,
and φ is an additional dispersion parameter, which may or may not be known.
Many of the well-known distributions are members of the exponential family.
These include normal, Gamma, binomial and Poisson distributions.

An important fact regarding the exponential family is the following rela-
tionship between the mean of Y and θ,

µ = E(Y ) = b′(θ).

In many cases, this establishes an 1–1 correspondence between µ and θ. An-
other relationship between θ, φ, and the variance of Y is

var(Y ) = b′′(θ)a(φ).

The following is an example.

Example C.1. Suppose that Y ∼ binomial(n, p). Then, the pmf of Y can
be expressed as (C.1) with

θ = log
(

p

1 − p

)
, b(θ) = n log(1 + eθ), a(φ) = log

(
n
y

)
.

Note that in this case φ = 1. It follows that b′(θ) = neθ/(1+eθ) = np = E(Y ),
b′′(θ) = neθ/(1 + eθ)2 = np(1 − p) = var(Y ).

McCullagh and Nelder (1989) introduced GLM as an extension of the
classical linear models. Suppose that

(i) The observations y1, . . . , yn are independent;
(ii) The distribution of yi is a member of the exponential family, which can
be expressed as
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fi(y) = exp
{

yθi − b(θi)
ai(φ)

+ ci(y, φ)
}

,

(iii) the mean of yi, µi, is associated with a linear predictor ηi = x′
iβ through

a link function, that is,
ηi = g(µi),

where xi is a vector of known covariates, β is a vector of unknown regression
coefficients, and g(·) is a link function.

Assumptions (i)–(iii) define a GLM. By the properties of the exponential
family mentioned above, θi is associated with ηi. In particular, if

θi = ηi,

the link function g(·) is called canonical.
The function ai(φ) typically takes the form ai(φ) = φ/wi, where wi is a

weight. For example, if the observation yi is the average of ki observations
(e.g., a binomial proportion, where ki is the number of Bernoulli trials), then
wi = ki.
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Jiang, J. and Wang, Y.-G. (2005), Iterative estimating equations for longitudinal
data analysis with informative missing observations, unpublished manuscript.

Jiang, J. and Zhang, W. (2001), Robust estimation in generalized linear mixed
models, Biometrika 88, 753–765.

Jiang, J. and Zhang, W. (2002), Distributional-free prediction intervals in mixed
linear models, Statistica Sinica 12, 537–553.

Jiang, J., Jia, H., and Chen, H. (2001), Maximum posterior estimation of ran-
dom effects in generalized linear mixed models, Statistica Sinica 11, 97–120.

Jiang, J., Lahiri, P. and Wan, S. (2002), A unified jackknife theory for empirical
best prediction with M-estimation, Ann. Statist. 30, 1782–1810.

Jiang, J., Lahiri, P. and Wu, C. H. (2001), A generalization of Pearson’s χ2

goodness-of-fit test with estimated cell frequencies, Sankhyā A 63, 260–276.
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