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PREFACE

This book and its companion volume Basic Real Analysis systematically develop
concepts and tools in real analysis that are vital to every mathematician, whether
pure or applied, aspiring or established. The two books together contain what the
young mathematician needs to know about real analysis in order to communicate
well with colleagues in all branches of mathematics.
The books are written as textbooks, and their primary audience is students

who are learning the material for the first time and who are planning a career in
which they will use advanced mathematics professionally. Much of the material
in the books corresponds to normal course work. Nevertheless, it is often the
case that core mathematics curricula, time-limited as they are, do not include all
the topics that one might like. Thus the book includes important topics that are
sometimes skipped in required courses but that the professional mathematician
will ultimately want to learn by self-study.
The content of the required courses at each university reflects expectations of

what students needbefore beginning specialized study andworkon a thesis. These
expectations vary from country to country and from university to university. Even
so, there seems to be a rough consensus aboutwhatmathematics a plenary lecturer
at a broad international or national meeting may take as known by the audience.
The tables of contents of the two books represent my own understanding of what
that degree of knowledge is for real analysis today.

Key topics and features of Advanced Real Analysis are that it:

• Develops Fourier analysis and functional analysis with an eye toward partial
differential equations.

• Includes chapters on Sturm–Liouville theory, compact self-adjoint operators,
Euclidean Fourier analysis, topological vector spaces and distributions, com-
pact and locally compact groups, and aspects of partial differential equations.

• Contains chapters about analysis on manifolds and foundations of probability.
• Proceeds from the particular to the general, often introducing examples well
before a theory that incorporates them.

• Includes many examples and almost 200 problems, and a separate section
“Hints for Solutions of Problems” at the end of the book gives hints or complete
solutions for most of the problems.

xi



xii Preface

• Incorporates, both in the text and in the problems but particularly in the
problems, material in which real analysis is used in algebra, in topology,
in complex analysis, in probability, in differential geometry, and in applied
mathematics of various kinds.

It is assumed that the reader has had courses in real variables and either is
taking or has completed the kind of course in Lebesgue integration that might use
Basic Real Analysis as a text. Knowledge of the content of most of Chapters I–VI
and X of Basic Real Analysis is assumed throughout, and the need for further
chapters of that book for particular topics is indicated in the chart on page xiv.
When it is necessary in the text to quote a result from this material that might
not be widely known, a specific reference to Basic Real Analysis is given; such
references abbreviate the book title as Basic.
Some understanding of complex analysis is assumed for Sections 3–4 and 6 of

Chapter III, for Sections 10–11 of Chapter IV, for Section 4 of Chapter V, for all
of Chapters VII and VIII, and for certain groups of problems, but not otherwise.
Familiarity with linear algebra and group theory at least at the undergraduate level
is helpful throughout.

The topics in the first eight chapters of this volume are related to one another
in many ways, and the book needed some definite organizational principle for its
design. The result was a decision to organize topics largely according to their role
in the studyof differential equations, even if differential equations donot explicitly
appear in each of the chapters. Much of the material has other uses as well, but
an organization of topics with differential equations in mind provides a common
focus for the mathematics that is presented. Thus, for example, Fourier analysis
and functional analysis are subjects that stand on their own and also that draw
on each other, but the writing of the chapters on these areas deliberately points
toward the subject of differential equations, and toward tools like distributions
that are used with differential equations. These matters all come together in two
chapters on differential equations, Chapters VII and VIII, near the end of in the
book.
Portions of the first eight chapters can be used as the text for a course in any

of three ways. One way is as an introduction to differential equations within a
course on Lebesgue integration that treats integration and the Fourier transform
relatively lightly; the expectation in this case is that parts of at most two or three
chapters of this bookwould be used. A secondway is as a text for a self-contained
topics course in differential equations; the book offers a great deal of flexibility
for the content of such a course, and no single choice is right for everyone. A
third way is simply as a text for a survey of some areas of advanced real analysis;
again the book offers great flexibility in how such a course is constructed.
The problems at the ends of chapters are an important part of the book. Some
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of them are really theorems, some are examples showing the degree to which
hypotheses can be stretched, and a few are just exercises. The reader gets no
indication which problems are of which type, nor of which ones are relatively
easy. Each problem can be solved with tools developed up to that point in the
book, plus any additional prerequisites that are noted.
This book seeks in part to help the reader look for and appreciate the unity of

mathematics. For that reason some of the problems and sections go way outside
the usual view of real analysis. One of the lessons about advanced mathematics
is that progress is better measured by how mathematics brings together different
threads, rather than how many new threads it generates.

Almost all of the mathematics in this book and Basic Real Analysis is at least
forty years old, and I make no claim that any result is new. The two books are
together a distillation of lecture notes from a 35-year period of my own learning
and teaching. Sometimes a problem at the end of a chapter or an approach to the
exposition may not be a standard one, but normally no attempt has been made to
identify such problems and approaches.
I amgrateful toAnnKostant andStevenKrantz for encouraging this project and

for making many suggestions about pursuing it, and to Susan Knapp and David
Kramer for helping with the readability. The typesetting was by AMS-TEX, and
the figures were drawn with Mathematica.
I invite corrections and other comments from readers. I plan to maintain a list

of known corrections on my own Web page.
A. W. KNAPP
June 2005
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GUIDE FOR THE READER

This section is intended to help the reader find out what parts of each chapter are
most important and how the chapters are interrelated. Further information of this
kind is contained in the chart on page xiv and in the abstracts that begin each of
the chapters.
Advanced Real Analysis deals with topics in real analysis that the young

mathematician needs to know in order to communicate well with colleagues
in all branches of mathematics. These topics include parts of Fourier analysis,
functional analysis, spectral theory, distribution theory, abstract harmonic analy-
sis, and partial differential equations. They tend to be ones whose applications
and ramifications cut across several branches in mathematics. Each topic can
be studied on its own, but the importance of the topic arises from its influence
on the other topics and on other branches of mathematics. To avoid having all
these relationships come across as a hopeless tangle, the book needed some
organizational principle for its design. The principle chosen was largely to
organize topics according to their role in the study of differential equations. This
organizational principle influences what appears below, but it is certainly not
intended to suggest that applications to differential equations are the only reason
for studying certain topics in real analysis.
As was true also in Basic Real Analysis, several techniques that are used

repeatedly in real analysis play a pivotal role. Examples are devices for justifying
interchanges of limits, compactness and completeness as tools for proving exis-
tence theorems, and the approach of handling nice functions first and then passing
to general functions. By the beginning of the present volume, these techniques
have become sophisticated enough so as to account for entire areas of studywithin
real analysis. The theory of weak derivatives illustrates this principle: The theory
allows certain interchanges of limits involving weak derivatives to be carried out
routinely, and the hard work occurs in translating the results into statements about
classical derivatives. The main tool for this translation is Sobolev’s Theorem,
which in turn becomes the foundation for its own theory.

Each chapter is built around one ormore important theorems. The commentary
below tells the nature of each chapter and the role of some important theorems.
Chapter I marks two transitions—from concrete mathematics done by cal-

culation to theorems established by functional analysis on the one hand, and
from ordinary differential equations to partial differential equations on the other

xv



xvi Guide for the Reader

hand. Section 2 about separation of variables is relatively elementary, introducing
and illustrating a first technique for approaching partial differential equations.
The technique involves a step of making calculations and a step of providing
justification that the method is fully applicable. When the technique succeeds,
the partial differential equation is reduced to two or more ordinary differential
equations. Section 3 establishes, apart from one detail, the main theorem of
the chapter, called Sturm’s Theorem. Sturm’s Theorem addresses the nature of
solutions of certain kinds of ordinary differential equations with a parameter.
This result can sometimes give a positive answer to the completeness questions
needed to justify separation of variables, and it hints at a theory known as Sturm–
Liouville theory that contains more results of this kind. The one detail with
Sturm’s Theorem that is postponed from Section 3 to Chapter II is the Hilbert–
Schmidt Theorem.

Chapter II is a first chapter on functional analysis beyond Chapter XII of Basic
Real Analysis, with emphasis on a simple case of the Spectral Theorem. The
result in question describes the structure of compact self-adjoint operators on a
Hilbert space. The Hilbert–Schmidt Theorem says that certain integral operators
are of this kind, and it completes the proof of Sturm’s Theorem as presented in
Chapter I; however, Chapter I is not needed for an understanding of Chapter II.
Section 4 of Chapter II gives several equivalent definitions of unitary operators
and is relevant for many later chapters of the book. Section 5 discusses compact,
Hilbert–Schmidt, and trace-class operators abstractly and may be skipped on first
reading.

Chapter III is a first chapter on Fourier analysis beyondChapters VIII and IX of
Basic Real Analysis, and it discusses four topics that are somewhat independent of
one another. The first of these, in Sections 1–2, introduces aspects of distribution
theory and the idea of weak derivatives. The main result is Sobolev’s Theorem,
which tells how to extract conclusions about ordinaryderivatives fromconclusions
about weak derivatives. Readers with a particular interest in this topic will want
to study also Problems 8–12 and 25–34 at the end of the chapter. Sections 3–4
concern harmonic functions, which are functions annihilated by the Laplacian,
and associated Poisson integrals, which relate harmonic functions to the subject of
boundary-value problems. These sectionsmaybeviewed as providing an example
of what to expect of the more general “elliptic” differential operators to be studied
in Chapters VII–VIII. The main results are a mean value property for harmonic
functions, a maximum principle, a reflection principle, and a characterization
of harmonic functions in a half space that arise as Poisson integrals. Sections
5–6 establish the Calderón–Zygmund Theorem and give two applications to
partial differential equations. The theorem generalizes the boundedness of the
Hilbert transform, which was proved in Chapters VIII–IX of Basic Real Analysis.
Historically the Calderón–Zygmund Theorem was a precursor to the theory of



Guide for the Reader xvii

pseudodifferential operators that is introduced inChapterVII. Sections 7–8 gently
introduce multiple Fourier series, which are used as a tool several times in later
chapters.
Chapter IV weaves together three lines of investigation in the area of func-

tional analysis—one going toward spaces of smooth functions and distribution
theory, another leading to fixed-point theorems, and a third leading to full-fledged
spectral theory. The parts of the chapter relevant for spaces of smooth functions
and distribution theory are Sections 1–2 and 5–7. This line of investigation
continues in Chapters V and VII–VIII. The parts of the chapter relevant for fixed-
point theorems are Sections 1, 3–6, and 8–9. Results of this kind, which have
applications to equilibrium problems in economics andmathematical physics, are
not pursued beyond Chapter IV in this book. The parts of the chapter relevant
to spectral theory are Sections 1, 3–4, and 10–11, and spectral theory is not
pursued beyond Chapter IV. Because the sections of the chapter have overlapping
purposes, some of the main results play multiple roles. Among the main results
are the characterization of finite-dimensional topological vector spaces as being
Euclidean, the existence of “support” for distributions, Alaoglu’s Theorem assert-
ing weak-star compactness of the closed unit ball of the dual of a Banach space,
the Stone Representation Theorem as a model for the theory of commutative C∗
algebras, a separation theorem concerning continuous linear functionals in locally
convex topological vector spaces, the construction of inductive limit topologies,
the Krein–Milman Theorem concerning the existence of extreme points, the
structure theorem for commutative C∗ algebras, and the Spectral Theorem for
commuting families of bounded normal operators. Spectral theory has direct
applications to differential equations beyond what appears in Chapters I–II, but
the book does not go into these applications.
Chapter V develops the theory of distributions, and of operations on them,

without going into their connection with Sobolev spaces. The chapter includes a
lengthy discussion of convolution. The main results are a structure theorem for
distributions of compact support in terms of derivatives of measures, a theorem
saying that the Fourier transforms of such distributions are smooth functions, and
a theorem saying that the convolution of a distribution of compact support and
a tempered distribution is meaningful and tempered, with its Fourier transform
being the product of the Fourier transforms.
Chapter VI introduces harmonic analysis using groups. Section 1 concerns

general topological groups, Sections 2–5 are about invariant measures on locally
compact groups and their quotients, and Sections 6–7 concern the representation
theory of compact groups. Section 8 indicates how representation theory sim-
plifies problems concerning linear operators with a sizable group of symmetries.
One main result of the chapter is the existence and uniqueness of Haar measure,
up to a scalar factor, on any locally compact group. Another is the Peter–Weyl
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Theorem, which is a completeness theorem for Fourier analysis on a general
compact group akin to Parseval’s Theorem for Fourier series and the circle group.
The proof of the Peter–Weyl Theorem uses the Hilbert–Schmidt Theorem.
Chapter VII is a first systematic discussion of partial differential equations,

mostly linear, using tools from earlier chapters. Section 1 seeks to quantify
the additional data needed for a differential equation or system simultaneously to
have existence anduniqueness of solutions. TheCauchy–KovalevskayaTheorem,
which assumes that everything is holomorphic, is stated in general and gives a
local result; for special kinds of systems it gives a global result whose proof
is carried out in problems at the end of the chapter. Section 2 mentions some
other properties and examples of differential equations, including the possibility
of nonexistence of local solutions for linear equations Lu = f when f is not
holomorphic. Section 3 contains a general theorem asserting local existence of
solutions for linear equations Lu = f when L has constant coefficients; the proof
uses multiple Fourier series. Section 5 concerns elliptic operators L with constant
coefficients; these generalize the Laplacian. A complete proof is given in this case
for the existence of a “parametrix” for L , which leads to control of regularity of
solutions, and for the existence of “fundamental solutions.” Section 6 introduces,
largely without proofs, a general theory of pseudodifferential operators. To focus
attention on certain theorems, the section describes how the theory can be used
to obtain parametrices for elliptic operators with variable coefficients.
Chapter VIII in Sections 1–4 introduces smooth manifolds and vector bundles

over them, particularly the tangent and cotangent bundles. Readers who are
already familiar with this material may want to skip these sections. Sections
5–8 use this material to extend the theory of differential and pseudodifferential
operators to the setting of smooth manifolds, where such operators arise naturally
in many applications. Section 7 in particular describes how to adapt the theory
of Chapter VII to obtain parametrices for elliptic operators on smooth manifolds.
Chapter IX is a stand-alone chapter on probability theory. Although partial

differential equations interact with probability theory and have applications to
differential geometry and financial mathematics, such interactions are too ad-
vanced to be addressed in this book. Instead three matters are addressed that are
foundational and yet at the level of this book: howmeasure theory is used tomodel
real-world probabilistic situations, how theKolmogorov Extension Theorem con-
structs measure spaces that underlie stochastic processes, and how probabilistic
independence and a certain indifference to the nature of the underlying measure
space lead to a proof of the Strong Law of Large Numbers.



NOTATION AND TERMINOLOGY

This section lists notation and a few unusual terms from elementary mathematics
and from Basic Real Analysis that are taken as standard in the text without further
definition. The items are grouped by topic.

Set theory
∈ membership symbol
#S or |S| number of elements in S
∅ empty set
{x ∈ E | P} the set of x in E such that P holds
Ec complement of the set E
E ∪ F, E ∩ F, E − F union, intersection, difference of sets⋃

α Eα,
⋂

α Eα union, intersection of the sets Eα

E ⊆ F, E ⊇ F E is contained in F , E contains F
E × F, ×s∈S Xs products of sets
(a1, . . . , an) ordered n-tuple
{a1, . . . , an} unordered n-tuple
f : E → F, x �→ f (x) function, effect of function
f ◦ g, f

∣∣
E composition of f following g, restriction to E

f ( · , y) the function x �→ f (x, y)
f (E), f −1(E) direct and inverse image of a set
countable finite or in one-one correspondence with integers
2A set of all subsets of A
BA set of all functions from B to A
card A cardinality of A

Number systems
δi j Kronecker delta: 1 if i = j , 0 if i = j(n
k

)
binomial coefficient

n positive, n negative n > 0, n < 0
Z, Q, R, C integers, rationals, reals, complex numbers
F R or C, the underlying field of scalars
max maximum of finite subset of a totally ordered set
min minimum of finite subset of a totally ordered set∑
or
∏

sum or product, possibly with a limit operation

xix



xx Notation and Terminology

[x] greatest integer ≤ x if x is real
Re z, Im z real and imaginary parts of complex z
z̄ complex conjugate of z
|z| absolute value of z

Linear algebra and elementary group theory
Rn , Cn , Fn spaces of column vectors with n entries
x · y dot product
ej j th standard basis vector of Rn

1 or I identity matrix or operator
det A determinant of A
Atr transpose of A
diag(a1, . . . , an) diagonal square matrix
Tr A trace of A
[Mi j ] matrix with (i, j)th entry Mi j

dim V dimension of vector space
0 additive identity in an abelian group
1 multiplicative identity in a group or ring
∼= is isomorphic to, is equivalent to

Real-variable theory and calculus
R∗ extended reals, reals with ±∞ adjoined
sup and inf supremum and infimum in R∗
(a, b), [a, b] open interval in R∗, closed interval
(a, b], [a, b) half-open intervals in R∗
lim supn , lim infn infn supk≥n in R∗, supn infk≥n in R∗

lim limit in R or R∗ or RN

|x | (∑N
j=1 |xj |2

)1/2
if x = (x1, . . . , xN ), scalars

in R or C
e

∑∞
n=0 1/n!

exp x , sin x , cos x , tan x exponential and trigonometric functions
arcsin x , arctan x inverse trigonometric functions
log x natural logarithm function on (0,+∞)
∂ f
∂xj

partial derivative of f with respect to j th variable

Ck(V ), k ≥ 0 scalar-valued functions on open set V ⊆ RN

with all partial derivatives continuous through
order k, no assumption of boundedness

C∞(V )
⋂∞

k=0 C
k(V )

f : V → F is smooth f is scalar valued and is in C∞(V )
homogeneous of degree d satisfying f (r x) = rd f (x) for all x = 0 in RN

and all r > 0 if f is a function f : RN−{0} → F
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Metric spaces and topological spaces
d typical name for a metric
B(r; x) open ball of radius r and center x
Acl closure of A
Ao interior of A
separable having a countable base for its open sets
D(x, A) distance to a set A in a metric space
xn → x or lim xn = x limit relation for a sequence or a net
SN−1 unit sphere in RN

support of function closure of set where function is nonzero
‖ f ‖sup supx∈S | f (x)| if f : X → F is given
B(S) space of all bounded scalar-valued functions on S
B(S,C) or B(S,R) space of members of B(S) with values in C or R
C(S) space of all bounded scalar-valued continuous

functions on S if S topological
C(S,C) or C(S,R) space of members of C(S) with values in C or R
Ccom(S) space of functions in C(S) with compact support
C0(S) space of functions in C(S) vanishing

at infinity if S is locally compact Hausdorff
X∗ one-point compactification of X

Measure theory
m(E) or |E | Lebesgue measure of E
indicator function of set E function equal to 1 on E , 0 off E
IE(x) indicator function of E at x
f + max( f, 0) for f with values in R∗
f − −min( f, 0) for f with values in R∗∫
E f dμ or

∫
E f (x) dμ(x) Lebesgue integral of f over E with respect to μ

dx abbreviation for dμ(x) for μ=Lebesgue measure∫ b
a f dx Lebesgue integral of f on interval (a, b)

with respect to Lebesgue measure
(X,A, μ) or (X, μ) typical measure space
a.e. [dμ] almost everywhere with respect to μ
ν = f dμ complex measure ν with ν(E) = ∫E f dμ
A× B product of σ -algebras
μ× ν product of σ -finite measures
‖ f ‖p L p norm, 1 ≤ p ≤ ∞
p′ dual index to p with p′ = p/(p − 1)
L p(X,A, μ) or L p(X, μ) space of functions with ‖ f ‖p <∞ modulo

functions equal to 0 a.e. [dμ]
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f ∗ g convolution
f ∗(x) Hardy–Littlewood maximal function, given by

the supremum of the averages of | f | over balls
centered at x

dω spherical part of Lebesgue measure on RN ,
measure on SN−1 with dx = r N−1 dr dω

	N−1 “area” of SN−1 given by 	N−1 =
∫
SN−1 dω


(s) gamma function with 
(s) = ∫∞0 t s−1e−t dt
ν � μ ν is absolutely continuous with respect to μ
Borel set in locally compact set in σ -algebra generated by compact sets in X

Hausdorff space X
B(X) σ -algebra of Borel sets if X is locally compact

Hausdorff
compact Gδ compact set equal to countable intersection of

open sets
Baire set in locally compact set in σ -algebra generated by compact Gδ’s in X

Hausdorff space X
M(X) space of all finite regular Borel complex

measures on X if X is locally compact Hausdorff
M(X,C) or M(X,R) M(X) with values in F = C or F = R

Fourier series and Fourier transform
cn = 1

2π

∫ π

−π f (x)e−inx dx Fourier coefficient
f (x) ∼∑∞

n=−∞ cneinx Fourier series of f , with cn as above
sN ( f ; x) =

∑N
n=−N cne

inx partial sum of Fourier series
f̂ (y) = ∫

RN f (x)e−2π i x ·y dx Fourier transform of an f in L1(RN )

f (x) = ∫
RN f̂ (y)e2π i x ·y dy Fourier inversion formula

F Fourier transform as an operator
‖F f ‖2 = ‖ f ‖2 Plancherel formula
S or S(RN ) Schwartz space on RN

1
π
limε↓0

∫
|t |≥ε

f (x−t)
t dt Hilbert transform of function f on R1

Normed linear spaces and Banach spaces
‖ · ‖ typical norm in a normed linear space
( · , · ) typical inner product in a Hilbert space,

linear in first variable, conjugate linear in second
M⊥ space of vectors orthogonal to all members of M
X∗ dual of normed linear space X
ι canonical mapping of X into X∗∗ = (X∗)∗
B(X, Y ) space of bounded linear operators from X into Y
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CHAPTER I

Introduction to Boundary-Value Problems

Abstract. This chapter applies the theory of linear ordinary differential equations to certain
boundary-value problems for partial differential equations.
Section 1 briefly introduces some notation and defines the three partial differential equations of

principal interest—the heat equation, Laplace’s equation, and the wave equation.
Section 2 is a first exposure to solving partial differential equations, workingwith boundary-value

problems for the three equations introduced in Section 1. The settings are ones where the method of
“separation of variables” is successful. In each case the equation reduces to an ordinary differential
equation in each independent variable, and some analysis is needed to see when the method actually
solves a particular boundary-value problem. In simple cases Fourier series can be used. In more
complicated cases Sturm’s Theorem, which is stated but not proved in this section, can be helpful.
Section 3 returns to Sturm’sTheorem, giving a proof contingent on theHilbert–Schmidt Theorem,

which itself is proved in Chapter II. The construction within this section finds a Green’s function for
the second-order ordinary differential operator under study; the Green’s function defines an integral
operator that is essentially an inverse to the second-order differential operator.

1. Partial Differential Operators

This chapter contains a first discussion of linear partial differential equations. The
word “equation” almost always indicates that there is a single unknown function,
and the word “partial” indicates that this function probably depends on more than
one variable. In every case the equation will be homogeneous in the sense that it
is an equality of terms, each of which is the product of the unknown function or
one of its iterated partial derivatives to the first power, times a known coefficient
function. Consequently the space of solutions on the domain set is a vector
space, a fact that is sometimes called the superposition principle. The emphasis
will be on a naive-sounding method of solution called “separation of variables”
that works for some equations in some situations but not for all equations in all
situations. This method, which will be described in Section 2, looks initially for
solutions that are products of functions of one variable and hopes that all solutions
can be constructed from these by taking linear combinations and passing to the
limit.

1
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For the basic existence-uniqueness results with ordinary differential equations,
one studies single ordinary differential equations in the presence of initial data
of the form y(t0) = y0, . . . , y(n−1)(t0) = y(n−1)0 . Implicitly the independent
variable is regarded as time. For the partial differential equations in the settings
that we study in this section, the solutions are to be defined in a region of space
for all time t ≥ 0, and the corresponding additional data give information to be
imposed on the solution function at the boundary of the resulting domain in space-
time. Behavior at t = 0 will not be sufficient to determine solutions uniquely;
we shall need further conditions that are to be satisfied for all t ≥ 0 when the
space variables are at the edge of the region of definition. We refer to these two
types of conditions as initial data and space-boundary data. Together they are
simply boundary data or boundary values.
For the most part the partial differential equations will be limited to three—the

heat equation, theLaplace equation, and thewave equation. Eachof these involves
space variables in some Rn , and the heat and wave equations involve also a time
variable t . To simplify the notation, we shall indicate partial differentiations by
subscripts; thus uxt is shorthand for ∂2u

/
∂x∂t . The space variables are usually

x1, . . . , xn , but we often write x, y, z for them if n ≤ 3. The linear differential
operator  given by

u = ux1x1 + · · · + uxnxn
is involved in the definition of all three equations and is known as the Laplacian
in n space variables.
The first partial differential equation that we consider is the heat equation,

which takes the form
ut = u,

the unknown function u(x1, . . . , xn, t) being real-valued in any physically mean-
ingful situation. Heat flows by conduction, as a function of time, in the region
of the space variables, and this equation governs the temperature on any open
set where there are no external influences. It is usually assumed that external
influences come into play on the boundary of the space region, rather than the
interior. They do so through a given set of space-boundary data. Since time and
distance squared have distinct physical units, some particular choice of units has
been incorporated into the equation in order to make a certain constant reduce
to 1.
The second partial differential equation that we consider is the Laplace

equation, which takes the form

u = 0,
the unknown function u(x1, . . . , xn) again being real-valued in any physically
meaningful situation. A C2 function that satisfies the Laplace equation on an
open set is said to be harmonic. The potential due to an electrostatic charge is
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harmonic on any open set where the charge is 0, and so are steady-state solutions
of the heat equation, i.e., those solutions with time derivative 0.
The third and final partial differential equation that we consider is the wave

equation, which takes the form

utt = u,

the unknown function u(x1, . . . , xn) once again being real-valued in any physi-
cally meaningful situation. Waves of light or sound spread in some medium in
space as a function of time. In our applications we consider only cases in which
the number of space variables is 1 or 2, and the function u is interpreted as the
displacement as a function of the space and time variables.

2. Separation of Variables

We shall describe the method of separation of variables largely through what
happens in examples. As we shall see, the rigorous verification that separation of
variables is successful in a particular example makes serious analytic demands
that bring together a great deal of real-variable theory as discussed in Chapters
I–IV of Basic.1 The general method of separation of variables allows use of a
definite integral of multiples of the basic product solutions, but we shall limit
ourselves to situations in which a sum or an infinite series of multiples of basic
product solutions is sufficient. Roughly speaking, there are four steps:

(i) Search for basic solutions that are the products of one-variable functions,
and form sums or infinite series of multiples of them (or integrals in a
more general setting).

(ii) Use the boundary data to determine what specific multiples of the basic
product solutions are to be used.

(iii) Address completeness of the expansions as far as dealing with all sets of
boundary data is concerned.

(iv) Justify that the obtained solution has the required properties.

Steps (i) and (ii) are just a matter of formal computation, but steps (iii) and (iv)
often require serious analysis. In step (iii) the expression “all sets of boundary
data” needs some explanation, as far as smoothness conditions are concerned.
The normal assumption for the three partial differential equations of interest is
that the data have two continuous derivatives, just as the solutions of the equations
are to have. Often one can verify (iii) and carry out (iv) for somewhat rougher

1Throughout this book the word “Basic” indicates the companion volume Basic Real Analysis.
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data, but the verification of (iv) in this casemay be regarded as an analysis problem
separate from solving the partial differential equation.
The condition that the basic product solutions in (i) form a discrete set, so that

the hoped-for solutions are given by infinite series and not integrals, normally
results from assuming that the space variables are restricted to a bounded set and
that sufficiently many boundary conditions are specified. In really simple situa-
tions the benefit that we obtain is that an analytic problem potentially involving
Fourier integrals is replaced by a more elementary analytic problem with Fourier
series; in more complicated situations we obtain a comparable benefit. Step (iii)
is crucial since it partially addresses the question whether the solution we seek is
at all related to basic product solutions. Let us come back to what step (iii) entails
in a moment. Step (iv) is a matter of interchanges of limits. One step consists
in showing that the expected solution satisfies the partial differential equation,
and this amounts to interchanging infinite sums with derivatives. It often comes
down to the standard theorem in real-variable theory for that kind of interchange,
which is proved in the real-valued case as Theorem 1.23 of Basic and extended
to the vector-valued case later. We restate it here in the vector-valued case for
handy reference.

Theorem 1.1. Suppose that { fn} is a sequence of functions on an interval with
values in a finite-dimensional real or complex vector space V . Suppose further
that the functions are continuous for a ≤ t ≤ b and differentiable for a < t < b,
that { f ′n} converges uniformly for a < t < b, and that { fn(x0)} converges in V
for some x0 with a ≤ x0 ≤ b. Then { fn} converges uniformly for a ≤ t ≤ b to
a function f , and f ′(x) = limn f ′n(x) for a < x < b, with the derivative and the
limit existing.

Another step in handling (iv) consists in showing that the expected solution has
the asserted boundary values. This amounts to interchanging infinite sums with
passages to the limit as certain variables tend to the boundary, and the following
result can often handle that.

Proposition 1.2. Let X be a set, let Y be a metric space, let An(x) be a
sequence of complex-valued functions on X such that

∑∞
n=1 |An(x)| converges

uniformly, and let Bn(y) be a sequence of complex-valued functions on Y such
that |Bn(y)| ≤ 1 for all n and y and such that limy→y0 Bn(y) = Bn(y0) for all n.
Then

lim
y→y0

∞∑
n=1

An(x)Bn(y) =
∞∑
n=1

An(x)Bn(y0),

and the convergence is uniform in x if, in addition to the above hypotheses, each
An(x) is bounded.
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PROOF. Let ε > 0begiven, and choose N large enough so that
∑∞

n=N+1|An(x)|
is < ε. Then∣∣∣ ∞∑

n=1
An(x)Bn(y)−

∞∑
n=1

An(x)Bn(y0)
∣∣∣ = ∣∣∣ ∞∑

n=1
An(x)

(
Bn(y)− Bn(y0)

)∣∣∣
≤

N∑
n=1

|An(x)| |Bn(y)− Bn(y0)| + 2
∞∑

n=N+1
|An(x)|

< 2ε +
N∑
n=1

|An(x)| |Bn(y)− Bn(y0)|.

For y close enough to y0, the second termon the right side is< ε, and the pointwise
limit relation is proved. The above argument shows that the convergence is
uniform in x if max1≤n≤N |An(x)| ≤ M independently of x .

In combination with a problem2 in Basic, Proposition 1.2 shows, under the
hypotheses as stated, that if X is a metric space and if

∑∞
n=1 An(x)Bn(y) is

continuous on X × (Y − {y0}), then it is continuous on X × Y . This conclusion
can be regarded, for our purposes, as tying the solution of the partial differential
equation well enough to one of its boundary conditions. It is in this sense that
Proposition 1.2 contributes to handling part of step (iv).
Let us return to step (iii). Sometimes this step is handled by the completeness

of Fourier series as expressed through a uniqueness theorem3 or Parseval’s Theo-
rem.4 But thesemethodswork in only a few examples. The tools necessary to deal
completely with step (iii) in all discrete cases generate a sizable area of analysis
known in part as “Sturm–Liouville theory,” of which Fourier series is only the
beginning. We do not propose developing all these tools, but we shall give in
Theorem 1.3 one such tool that goes beyond ordinary Fourier series, deferring
any discussion of its proof to the next section.
For functions defined on intervals, the behavior of the functions at the endpoints

will be relevant to us: we say that a continuous function f : [a, b]→ C with a
derivative on (a, b) has a continuous derivative at one or both endpoints if f ′ has
a finite limit at the endpoint in question; it is equivalent to say that f extends to a
larger set so as to be differentiable in an open interval about the endpoint and to
have its derivative be continuous at the endpoint.

Theorem 1.3 (Sturm’s Theorem). Let p, q, and r be continuous real-valued
functions on [a, b] such that p′ and r ′′ exist and are continuous and such that p

2Problem 6 at the end of Chapter II.
3Corollaries 1.60 and 1.66 in Basic.
4Theorem 1.61 in Basic.
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and r are everywhere positive for a ≤ t ≤ b. Let c1, c2, d1, d2 be real numbers
such that c1 and c2 are not both 0 and d1 and d2 are not both 0. Finally for
each complex number λ, let (SL) be the following set of conditions on a function
u : [a, b]→ C with two continuous derivatives:

(p(t)u′)′ − q(t)u + λr(t)u = 0, (SL1)

c1u(a)+ c2u
′(a) = 0 and d1u(b)+ d2u

′(b) = 0. (SL2)

Then the system (SL) has a nonzero solution for a countably infinite set of values of
λ. If E denotes this set of values, then themembersλ of E are all real, they have no
limit point inR, and the vector space of solutions of (SL) is 1-dimensional for each
such λ. The set E is bounded below if c1c2 ≤ 0 and d1d2 ≥ 0, and E is bounded
below by 0 if these conditions and the condition q ≥ 0 are all satisfied. In any
case, enumerate E as λ1, λ2, . . . , let u = ϕn be a nonzero solution of (SL) when
λ = λn , define ( f, g)r =

∫ b
a f (t)g(t) r(t) dt and ‖ f ‖r =

( ∫ b
a | f (t)|2 r(t) dt

)1/2
for continuous f and g, and normalize ϕn so that ‖ϕn‖r = 1. Then (ϕn, ϕm)r = 0
for m = n, and the functions ϕn satisfy the following completeness conditions:

(a) any u having two continuous derivatives on [a, b] and satisfying (SL2)
has the property that the series

∑∞
n=1(u, ϕn)rϕn(t) converges absolutely

uniformly to u(t) on [a, b],
(b) the only continuous ϕ on [a, b] with (ϕ, ϕn)r = 0 for all n is ϕ = 0,
(c) any continuous ϕ on [a, b] satisfies ‖ϕ‖2r =

∑∞
n=1 |(ϕ, ϕn)r |2.

REMARK. The expression converges absolutely uniformly in (a) means that∑∞
n=1 |(u, ϕn)rϕn(t)| converges uniformly.
EXAMPLE. The prototype for Theorem 1.3 is the constant-coefficient case

p = r = 1 and q = 0. The equation (SL1) is just u′′ +λu = 0. If λ happens to be
> 0, then the solutions are u(t) = C1 cos pt+C2 sin pt , where λ = p2. Suppose
[a, b] = [0, π ]. The condition c1u(0)+ c2u′(0) = 0 says that c1C1+ pc2C2 = 0
and forces a linear relationship between C1 and C2 that depends on p. The
condition d1u(π) + d2u′(π) = 0 gives a further such relationship. These two
conditions may or may not be compatible. An especially simple special case is
that c2 = d2 = 0, so that (SL2) requires u(0) = u(π) = 0. From u(0) = 0,
we get C1 = 0, and then u(π) = 0 forces sin pπ = 0 if u is to be a nonzero
solution. Thus p must be an integer. It may be checked that λ ≤ 0 leads to no
nonzero solutions if c2 = d2 = 0. Part (a) of the theorem therefore says that any
twice continuously differentiable function u(t) on [0, π ] vanishing at 0 and π

has an expansion u(t) = ∑∞
p=1 bp sin pt , the series being absolutely uniformly

convergent.

The first partial differential equation that we consider is the heat equation
ut = u, and we are interested in real-valued solutions.
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EXAMPLES WITH THE HEAT EQUATION.

(1) We suppose that there is a single space variable x and that the set in
1-dimensional space is a rod 0 ≤ x ≤ l. The unknown function is u(x, t), and
the boundary data are

u(x, 0) = f (x) (initial temperature equal to f (x)),

u(0, t) = u(l, t) = 0 (ends of rod at absolute 0 temperature for all t ≥ 0).

Heat flows in the rod for t ≥ 0, and we want to know what happens. The
equation for the heat flow is ut = uxx , and we search for solutions of the form
u(x, t) = X (x)T (t). Unless T (t) is identically 0, the boundary data force
X (x)T (0) = f (x) and X (0) = X (l) = 0. Substitution into the heat equation
gives

X (t)T ′(t) = X ′′(x)T (t).

We divide by X (x)T (t) and obtain

T ′(t)
T (t)

= X ′′(x)
X (x)

.

A function of t alone can equal a function of x alone only if it is constant, and
thus

T ′(t)
T (t)

= X ′′(x)
X (x)

= c

for some real constant c. The bound variable is x , and we hope that the possible
values of c lie in a discrete set. Suppose that c is> 0, so that c = p2 with p > 0.
The equation X ′′(x)/X (x) = p2 would say that X (x) = c1epx + c2e−px . From
X (0) = 0, we get c2 = −c1, so that X (x) = c1(epx − e−px). Since epx − e−px
is strictly increasing, c1(epx − e−px) = 0 is impossible unless c1 = 0. Thus we
must have c ≤ 0. Similarly c = 0 is impossible, and the conclusion is that c < 0.
We write c = −p2 with p > 0. The equation is X ′′(x) = −p2X (x), and then
X (x) = c1 cos px + c2 sin px . The condition X (0) = 0 says c1 = 0, and the
condition X (l) = 0 then says that p = nπ/ l for some integer n. Thus

X (x) = sin(nπx/ l),

up to a multiplicative constant. The t equation becomes T ′(t) = −p2T =
−(nπ/ l)2T (t), and hence

T (t) = e−(nπ/ l)
2t ,
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up to a multiplicative constant. Our product solution is then a multiple of
e−(nπ/ l)2t sin(nπx/ l), and the form of solution we expect for the boundary-value
problem is therefore

u(x, t) =
∞∑
n=1

cne
−(nπ/ l)2t sin(nπx/ l).

The constants cn are determined by the condition at t = 0. We extend f (x),
which is initially defined for 0 ≤ x ≤ l, to be defined for −l ≤ x ≤ l and to be
an odd function. The constants cn are then the Fourier coefficients of f except
that the period is 2l rather than 2π :

f (x) ∼
∞∑
n=1

cn sin nπx
l with cn = 1

l

∫ l
−l f (y) sin

nπy
l dy = 2

l

∫ l
0 f (y) sin

nπy
l dy.

Normally the Fourier series would have cosine terms as well as sine terms, but the
cosine terms all have coefficient 0 since f is odd. In any event, we now have an
explicit infinite series that we hope gives the desired solution u(x, t). Checking
that the function u(x, t) defined above is indeed the desired solution amounts
to handling steps (iii) and (iv) in the method of separation of variables. For
(iii), we want to know whether f (x) really can be represented in the indicated
form. This example is simple enough that (iii) can be handled by the theory
of Fourier series as in Chapter I of Basic: since f is assumed to have two
continuous derivatives on [0, l], the Fourier series converges uniformly by the
Weierstrass M test, and the sum must be f by the uniqueness theorem. Another
way of handling (iii) is to apply Theorem 1.3 to the equation y′′ + λy = 0
subject to the conditions y(0) = 0 and y(l) = 0: The theorem gives us a certain
unique abstract expansion without giving us formulas for the explicit functions
that are involved. It says also that we have completeness and absolute uniform
convergence. Since our explicit expansion with sines satisfies the requirements
of the unique abstract expansion, it must agree with the abstract expansion and
it must converge absolutely uniformly. Whichever approach we use, the result
is that we have now handled (iii). Step (iv) in the method is the justification
that u(x, t) has all the required properties: we have to check that the function in
question solves the heat equation and takes on the asserted boundary values. The
function in question satisfies the heat equation because of Theorem 1.1 and the
rapid convergence of the series

∑∞
n=1 e

−(nπ/ l)2t and its first and second derivatives.
The question about boundary values is completely settled by Proposition 1.2. For
the condition u(x, 0) = f (x), we take X = [0, l], Y = [0,+∞), y = t ,
An(x) = cn sin(nπx/ l), Bn(t) = e−(nπ/ l)2t , and y0 = 0 in the proposition;
uniform convergence of

∑ |An(x)| follows either from Theorem 1.3 or from the
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Fourier-series estimate |cn| ≤ C/n2, which in turn follows from the assumption
that f has two continuous derivatives. The conditions u(0, t) = u(l, t) = 0 may
be verified in the same way by reversing the roles of the space variable and the
time variable. To check that u(0, t) = 0, for example, we use Proposition 1.2
with X = (δ,+∞), Y = [0, l], and y0 = 0. Our boundary-value problem is
therefore now completely solved.

(2) We continue to assume that space is 1-dimensional and that the object of
interest is a rod 0 ≤ x ≤ l. The unknown function for heat flow in the rod is still
u(x, t), but this time the boundary data are

u(x, 0) = f (x) (initial temperature equal to f (x)),

ux(0, t) = ux(l, t) = 0 (ends of rod perfectly insulated for all t ≥ 0).
In the sameway as in Example 1, a product solution X (x)T (t) leads to a separated
equation T ′(t)/T (t) = X ′′(x)/X (x), and both sides must be some constant −λ.
The equation for X (x) is then

X ′′ + λX = 0 with X ′(0) = X ′(l) = 0.
We find that λ has to be of the form p2 with p = nπ/ l for some integer n ≥ 0,
and X (x) has to be a multiple of cos(nπx/ l). Taking into account the formula
λ = p2, we see that the equation for T (t) is

T ′(t) = −p2T (t).
Then T (t) has to be a multiple of e−(nπ/ l)2t , and our product solution is a multiple
of e−(nπ/ l)2t cos(nπx/ l). The form of solution we expect for the boundary-value
problem is therefore

u(x, t) =
∞∑
n=0

cne
−(nπ/ l)2t cos(nπx/ l).

We determine the coefficients cn by using the initial condition u(x, 0) = f (x),
and thus we want to represent f (x) by a series of cosines:

f (x) ∼
∞∑
n=0

cn cos nπxl .

We can do so by extending f (x) from [0, l] to [−l, l] so as to be even and using
ordinary Fourier coefficients. The formula is therefore cn = 2

l

∫ l
0 f (y) cos

nπy
l dy

for n > 0, with c0 = 1
l

∫ l
0 f (y) dy. Again as in Example 1, we can carry out step

(iii) of the method either by using the theory of Fourier series or by appealing
to Theorem 1.3. In step (iv), we can again use Theorem 1.1 to see that the
prospective function u(x, t) satisfies the heat equation, and the boundary-value
conditions can be checked with the aid of Proposition 1.2.
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(3) We still assume that space is 1-dimensional and that the object of interest
is a rod 0 ≤ x ≤ l. The unknown function for heat flow in the rod is still u(x, t),
but this time the boundary data are

u(x, 0) = f (x) (initial temperature equal to f (x)),

u(0, t) = 0 (one end of rod held at temperature 0),

ux(l, t) = −hu(l, t) (other end radiating into a medium of temperature 0),

and h is assumed positive. In the same way as in Example 1, a product solution
X (x)T (t) leads to a separated equation T ′(t)/T (t) = X ′′(x)/X (x), and both
sides must be some constant −λ. The equation for X (x) is then

X ′′ + λX = 0 with

{
X (0) = 0,
hX (l)+ X ′(l) = 0.

From the equation X ′′ + λX = 0 and the condition X (0) = 0, X (x) has to be
a multiple of sinh px with λ = −p2 < 0, or of x with λ = 0, or of sin px with
λ = p2 > 0. In the first two cases, hX (l) + X ′(l) equals h sinh pl + p cosh pl
or hl + 1 and cannot be 0. Thus we must have λ = p2 > 0, and X (x) is a
multiple of sin px . The condition hX (l) + X ′(l) = 0 then holds if and only if
h sin pl + p cos pl = 0. This equation has infinitely many positive solutions p,
and we write them as p1, p2, . . . . See Figure 1.1 for what happens when l = π .

2 4 6 8 10

-10

-7.5
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-2.5

2.5

5

7.5

FIGURE 1.1. Graphs of sinπp and −p cosπp. The graphs
intersect for infinitely many values of ±p.

If λ = p2n , then the equation for T (t) is T
′(t) = −p2nT (t), and T (t) has to be a

multiple of e−p2n t . Thus our product solution is a multiple of e−p2n t sin pnx , and
the form of solution we expect for the boundary-value problem is

u(x, t) =
∞∑
n=1

cne
−p2n t sin pnx .
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Putting t = 0, we see that we want to choose constants cn such that

f (x) ∼
∞∑
n=1

cn sin pnx .

There is no reason why the numbers pn should form an arithmetic progression,
and such an expansion is not a result in the subject of Fourier series. To handle
step (iii), this time we appeal to Theorem 1.3. That theorem points out the
remarkable fact that the functions sin pnx satisfy the orthogonality property∫ l
0 sin pnx sin pmx dx = 0 if n = m and therefore that

cn =
∫ l

0
f (y) sin pn y dy

/∫ l

0
sin2 pn y dy .

Even more remarkably, the theorem gives us a completeness result and a conver-
gence result. Thus (iii) is completely finished. In step (iv), we use Theorem 1.1 to
check that u(x, t) satisfies the partial differential equation, just as in Examples 1
and 2. The same technique as in Examples 1 and 2 with Proposition 1.2 works to
recover the boundary value u(x, 0) as a limit; this timewe use Theorem 1.3 for the
absolute uniform convergence in the x variable. For u(0, t), one new comment
is appropriate: we take X = (δ,+∞), Y = [0, l], y0 = 0, An(x) = e−p2n t , and
Bn(y) = cn sin pnx ; although the estimate |Bn(y)| ≤ 1 may not be valid for
all n, it is valid for n sufficiently large because of the uniform convergence of∑
cn sin pnx .

4) This time we assume that space is 2-dimensional and that the object of
interest is a circular plate. The unknown function for heat flow in the plate is
u(x, y, t), the differential equation is ut = uxx + uyy , and the assumptions about
boundary data are that the temperature distribution is known on the plate at t = 0
and that the edge of the plate is held at temperature 0 for all t ≥ 0. Let us use polar
coordinates (r, θ) in the (x, y) plane, let us assume that the plate is described by
r ≤ 1, and let us write the unknown function as v(r, θ, t) = u(r cos θ, r sin θ, t).
The heat equation becomes

vt = vrr + r−1vr + r−2vθθ ,

and the boundary data are given by

v(r, θ, 0) = f (r, θ) (initial temperature equal to f (r, θ)),

v(1, θ, t) = 0 (edge of plate held at temperature 0).

We first look for solutions of the heat equation of the form R(r)�(θ)T (t).
Substitution and division by R(r)�(θ)T (t) gives

R′′(r)
R(r)

+ 1

r

R′(r)
R(r)

+ 1

r2
�′′(θ)
�(θ)

= T ′(t)
T (t)

= −c,
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so that T (t) is a multiple of e−ct . The equation relating R, �, and c becomes

r2R′′(r)
R(r)

+ r R′(r)
R(r)

+ �′′(θ)
�(θ)

= −cr2.

Therefore
�′′(θ)
�(θ)

= −λ = −r
2R′′(r)
R(r)

− r R′(r)
R(r)

− cr2.

Since �(θ) has to be periodic of period 2π , we must have λ = n2 with n an
integer ≥ 0; then �(θ) = c1 cos nθ + c2 sin nθ . The equation for R(r) becomes

r2R′′ + r R′ + (cr2 − n2)R = 0.
This has a regular singular point at r = 0, and the indicial equation is s2 = n2.
Thus s = ±n. In fact, we can recognize this equation asBessel’s equation of order
n by a change of variables: A little argument excludes c ≤ 0. Putting k = √c,
ρ = kr , and y(ρ) = R(r) leads to y′′ + ρ−1y′ + (1 − n2ρ−2)y = 0, which is
exactly Bessel’s equation of order n. Transforming the solution y(ρ) = Jn(ρ)
back with r = k−1ρ, we see that R(r) = y(ρ) = Jn(ρ) = Jn(kr) is a solution of
the equation for R. A basic product solution is therefore 12a0,k J0(kr) if n = 0 or

Jn(kr)(an,k cos nθ + bn,k sin nθ)e
−k2t

if n > 0. The index n has to be an integer in order for v to be well behaved at the
center, or origin, of the plate, but we have not thus far restricted k to a discrete
set. However, the condition of temperature 0 at r = 1 means that Jn(k) has to be
0, and the zeros of Jn form a discrete set. The given condition at t = 0 means
that we want

f (r, θ) ∼ 1
2

∑
k>0 with
J0(kr)=0

a0,k J0(kr)+
∞∑
n=1

( ∑
k>0 with
Jn(kr)=0

(an,k cos nθ+bn,k sin nθ)Jn(kr)
)
.

We do not have the tools to establish this kind of relation, but we can see a hint
of what to do. The orthogonality conditions that allow us to write candidates for
the coefficients are the usual orthogonality for trigonometric functions and the
relation∫ 1

0
Jn(kr)Jn(k

′r)r dr = 0 if Jn(k) = Jn(k
′) = 0 and k = k ′.

The latter is not quite a consequence of Theorem 1.3, but it is close since the
equation satisfied by yk(r) = Jn(kr), namely

(ry′k)
′ + (k2r − n2r−1)yk = ry′′k + y′k + (k2r − n2r−1)yk = 0,
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fails to be of the form in Theorem 1.3 only because of trouble at the endpoint
r = 0 of the domain interval. In fact, the argument in the next section for the
orthogonality in Theorem 1.3 will work also in this case; see Problem 2 at the
end of the chapter. Thus put

an(r) = 1

π

∫ π

−π
f (r, θ) cos nθ dθ and bn(r) = 1

π

∫ π

−π
f (r, θ) sin nθ dθ,

so that

f (r, θ) ∼ 1
2a0(r)+

∞∑
n=1

(an(r) cos nθ + bn(r) sin nθ) for each r.

an,k =
∫ 1

0
an(r)yk(r)r dr

/∫ 1

0
yk(r)

2r drThen put

bn,k =
∫ 1

0
bn(r)yk(r)r dr

/∫ 1

0
yk(r)

2r dr .and

With these values in place, handling step (iii) amounts to showing that

f (r, θ) = 1
2

∑
k>0 with
J0(kr)=0

a0,k J0(kr)+
∞∑
n=1

( ∑
k>0 with
Jn(kr)=0

(an,k cos nθ + bn,k sin nθ)Jn(kr)
)

for functions f of class C2. This formula is valid, but we would need a result
from Sturm–Liouville theory that is different from Theorem 1.3 in order to prove
it. Step (iv) is to use the convergence from Sturm–Liouville theory, together with
application of Proposition 1.2 and Theorem 1.1, to see that the function u(r, θ, t)
given by

1

2

∑
k>0 with
J0(kr)=0

a0,k J0(kr)e
−k2t +

∞∑
n=1

( ∑
k>0 with
Jn(kr)=0

(an,k cos nθ + bn,k sin nθ)Jn(kr)e
−k2t
)

has all the required properties.

The second partial differential equation that we consider is the Laplace
equation u = 0. Various sets of boundary data can be given, but we deal
only with the values of u on the edge of its bounded domain of definition. In this
case the problem of finding u is known as the Dirichlet problem.
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EXAMPLES WITH LAPLACE EQUATION.

(1) We suppose that the space domain is the unit disk in R2. The Laplace
equation in polar coordinates (r, θ) is urr + r−1ur + r−2uθθ = 0. The unknown
function is u(r, θ), and the given boundary values of u for the Dirichlet problem
are

u(1, θ) = f (θ) (value on unit circle).

It is implicit that u(r, θ) is to be periodic of period 2π in θ and is to be well
behaved at r = 0. A product solution is of the form R(r)�(θ). We substitute
into the equation, divide by r−2R(r)�(θ), and and find that the variables separate
as

r2R′′

R
+ r R′

R
= −�′′

�
= c.

The equation for � is �′′ + c� = 0, and the solution is required to be periodic.
We might be tempted to try to apply Theorem 1.3 at this stage, but the boundary
condition of periodicity, �(−π) = �(π), is not exactly of the right kind for
Theorem 1.3. Fortunately we can handle matters directly, using Fourier series
in the analysis. The periodicity forces c = n2 with n an integer ≥ 0. Then
�(θ) = c1 cos nθ + c2 sin nθ , except that the sine term is not needed when
n = 0. The equation for R becomes

r2R′′ + r R′ − n2R = 0.

This is an Euler equation with indicial equation s2 = n2, and hence s = ±n. We
discard−n with n ≥ 1 because the solution r−n is not well behaved at r = 0, and
we discard also the second solution log r that goes with n = 0. Consequently
R(r) is a multiple of rn , and the product solution is rn(an cos nθ + bn sin nθ)
when n > 0. The expected solution of the Laplace equation is then

u(r, θ) = 1
2a0 +

∞∑
n=1

rn(an cos nθ + bn sin nθ).

We determine an and bn by formally putting r = 1, and we see that an and
bn are to be the ordinary Fourier coefficients of f (x). The normal assumption
for a boundary-value problem is that f is as nice a function as u and hence
has two continuous derivatives. In this case we know that the Fourier series
converges to f (x) uniformly. It is immediate from Theorem 1.1 that u(r, θ)
satisfies Laplace’s equation for r < 1, and Proposition 1.2 shows that u(r, θ) has
the desired boundary values. This completes the solution of the boundary-value
problem. In this example the solution u(r, θ) is given by a nice integral formula:
The same easy computation that expresses the partial sums of a Fourier series in
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terms of the Dirichlet kernel allows us to write u(r, θ) in terms of the Poisson
kernel

Pr (θ) = 1− r2

1− 2r cos θ + r2
=

∞∑
n=−∞

r |n|einθ ,

namely

u(r, θ) =
∞∑

n=−∞
r |n|
( 1
2π

∫ π

−π
f (ϕ)e−inϕ dϕ

)
einθ

= 1

2π

∫ π

−π
f (ϕ)

( ∞∑
n=−∞

r |n|ein(θ−ϕ)
)
dϕ

= 1

2π

∫ π

−π
f (ϕ)Pr (θ − ϕ) dϕ

= 1

2π

∫ π

−π
f (θ − ϕ)Pr (ϕ) dϕ.

The interchange of integral and sum for the second equality is valid because of the
uniform convergence of the series

∑∞
n=−∞ r |n|ein(θ−ϕ) for fixed r . The resulting

formula for u(r, θ) is known as the Poisson integral formula for the unit disk.

(2) We suppose that the space domain is the unit ball in R3. The Laplace
equation in spherical coordinates (r, ϕ, θ), with ϕ measuring latitude from the
point (x, y, z) = (0, 0, 1), is

(r2ur )r + 1

sinϕ
((sinϕ)uϕ)ϕ + 1

sin2 ϕ
uθθ = 0.

The unknown function is u(r, ϕ, θ), and the given boundary values of u for the
Dirichlet problem are

u(1, ϕ, θ) = f (ϕ, θ) (value on unit sphere).

The function u is to be periodic in θ and is to be well behaved at r = 0, ϕ = 0, and
ϕ = π . Searching for a solution R(r)�(ϕ)�(θ) leads to the separated equation

r2R′′ + 2r R′
R

= −�′′ + (cotϕ)�′

�
− 1

sin2 ϕ

�′′

�
= c.

The resulting equation for R is r2R′′+2r R′−cR = 0, which is an Euler equation
whose indicial equation has roots s satisfying s(s + 1) = c. The condition that a
solution of the Laplace equation be well behaved at r = 0 means that the solution
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r s must have s equal to an integer m ≥ 0. Then R(r) is a multiple of rm with m
an integer ≥ 0 and with c = m(m + 1). The equation involving � and � is then

(sin2 ϕ)
�′′ + (cotϕ)�′

�
+ �′′

�
+ m(m + 1) sin2 ϕ = 0.

This equation shows that�′′/� = c′, and as usual we obtain c′ = −n2 with n an
integer ≥ 0. Then �(θ) = c1 cos nθ + c2 sin nθ . Substituting into the equation
for � yields

(sin2 ϕ)
�′′ + (cotϕ)�′

�
− n2 + m(m + 1) sin2 ϕ = 0.

We make the change of variables t = cosϕ, which has
d

dϕ
= − sinϕ d

dt
and

d2

dϕ2
= −(cosϕ) d

dt
+ (sin2 ϕ)

d2

dt2
.

Putting P(t) = P(cosϕ) = �(ϕ) for 0 ≤ ϕ ≤ π leads to

(1− t2)
[ (1− t2)P ′′ − t P ′ + (cotϕ)(− sinϕ)P ′

P

]
− n2+m(m+ 1)(1− t2) = 0

and then to

(1− t2)P ′′ − 2t P ′ +
[
m(m + 1)− n2

1− t2

]
P = 0.

This is known as an associated Legendre equation. For n = 0, which is the
case of a solution independent of longitude θ , the equation reduces to the ordinary
Legendre equation.5 Suppose for simplicity that f is independent of longitude θ
and that we can take n = 0 in this equation. One solution of the equation for P is
P(t) = Pm(t), themth Legendre polynomial. This is well behaved at t = ±1, the
values of t that correspond to ϕ = 0 and ϕ = π . Making a change of variables,
we can see that the Legendre equation has regular singular points at t = 1 and
t = −1. By examining the indicial equations at these points, we can see that
there is only a 1-parameter family of solutions of the equation for P that are well
behaved at t = ±1. Thus�(ϕ) has to be a multiple of Pm(cosϕ), and we are led
to expect

u(r, ϕ, θ) =
∞∑
m=0

cmr
m Pm(cosϕ)

5The ordinary Legendre equation is (1− t2)P ′′ − 2t P ′ +m(m + 1)P = 0, as in Section IV.8 of
Basic.
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for solutions that are independent of θ . If f (ϕ, θ) is independent of θ , we
determine cm by the formula

f (ϕ, θ) ∼
∞∑
m=0

cm Pm(cosϕ).

The coefficients can be determined because the polynomials Pm are orthogonal
under integration over [−1, 1]. To see this fact, we first rewrite the equation for
P as ((1 − t2)P ′)′ + m(m + 1)P = 0. This is almost of the form in Theorem
1.3, but the coefficient 1 − t2 vanishes at the endpoints t = ±1. Although the
orthogonality does not then follow from Theorem 1.3, it may be proved in the
sameway as the orthogonality that is part of Theorem1.3; see Problem2 at the end
of the chapter. A part of the completeness question is easily settled by observing
that Pm is of degree m and that therefore the linear span of {P0, P1, . . . , PN }
is the same as the linear span of {1, t, . . . , t N }. This much does not establish,
however, that the series

∑
cm Pm(t) converges uniformly. For that, wewould need

yet another result from Sturm–Liouville theory or elsewhere. Once the uniform
convergence has been established, step (iv) can be handled in the usual way.

The third and final partial differential equation that we consider is the wave
equation utt = u. We consider examples of boundary-value problems in one
and two space variables.

EXAMPLES WITH WAVE EQUATION.

(1) A string on the x axis under tension is such that each point can be displaced
only in the y direction. Let y = u(x, t) be the displacement. The equation for
the unknown function u(x, t) in suitable physical units is utt = uxx , and the
boundary data are

u(x, 0) = f (x) (initial displacement),

ut (x, 0) = g(x) (initial velocity),

u(0, t) = u(l, t) = 0 (ends of string fixed for all t ≥ 0).
The string vibrates for t ≥ 0, and we want to know what happens. Searching
for basic product solutions X (x)T (t), we are led to T ′′/T = X ′′/X = constant.
As usual the conditions at x = 0 and x = l force the constant to be nonpositive,
necessarily −ω2 with ω ≥ 0. Then X (x) = c1 cosωx + c2 sinωx . We obtain
c1 = 0 from X (0) = 0, and we obtain ω = nπ/ l, with n an integer, from
X (l) = 0. Thus X (x) has to be a multiple of sin(nπx/ l), and we may take
n > 0. Examining the T equation, we are readily led to expect

u(x, t) =
∞∑
n=1

sin(nπx/ l)[an cos(nπ t/ l)+ bn sin(nπ t/ l)].
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The conditions u(x, 0) = f (x) and ut(x, 0) say that

f (x) ∼
∞∑
n=1

an sin
(
nπx
l ) and g(x) ∼

∞∑
n=1

(
nπ
l

)
bn sin

(
nπx
l

)
,

so that an and nπbn/ l are coefficients in the Fourier sine series for f and g. Steps
(iii) and (iv) in the method follow in the same way as in earlier examples.

(2) We visualize a vibrating circular drum. A membrane in the (x, y) plane
covers the unit disk and is under uniform tension. Each point can be displaced
only in the z direction. Let u(x, y, t) = U (r, θ, t) be the displacement. The
wave equation utt = uxx + uyy becomes Utt = Urr + r−1Ur + r−2Uθθ in polar
coordinates. Assume for simplicity that the boundary data are

U (r, θ, 0) = f (r) (initial displacement independent of θ ),

Ut (r, θ, 0) = 0 (initial velocity 0),

U (1, θ, t) = 0 (edge of drum fixed for all t ≥ 0).

Because of the radial symmetry, let us look for basic product solutions of the
form R(r)T (t). Substituting and separating variables, we are led to T ′′/T =
(R′′ + r−1R′)/R = c. The equation for R is r2R′′ + r R′ − cr2R = 0, and
the usual considerations do not determine the sign of c. The equation for R has
a regular singular point at r = 0, but it is not an Euler equation. The indicial
equation is s2 = 0, with s = 0 as a root of multiplicity 2, independently of c.
One solution is given by a power series in r , while another involves log r . We
discard the solution with the logarithm because it would represent a singularity at
the middle of the drum. To get at the sign of c, we use the condition R(1) = 0 and
argue as follows: Without loss of generality, R(0) is positive. Suppose c > 0,
and let r1 ≤ 1 be the first value of r > 0 where R(r1) = 0. From the equation
r−1(r R′)′ = cR and the inequality R(r) > 0 for 0 < r < r1, we see that r R′
is strictly increasing for 0 < r < r1. Examining the power series expansion for
R(r), we see that R′(0) = 0. Thus R′(r) > 0 for 0 < r < r1. But R(0) > 0 and
R(r1) = 0 imply, by the Mean Value Theorem, that R′(r) is < 0 somewhere in
between, and we have a contradiction. Similarly we rule out c = 0. We conclude
that c is negative, i.e., c = −k2 with k > 0. The equation for R is then

r2R′′ + r R′ + k2r2R = 0.

The change of variablesρ = kr reduces this equation toBessel’s equation of order
0, and the upshot is that R(r) is a multiple of J0(kr). The condition R(1) = 0
means that J0(k) = 0. If kn is the nth positive zero of J0, then the T equation is
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T ′′ + k2nT = 0, so that T (t) = c1 cos knt + c2 sin knt . From Ut (r, θ, 0) = 0, we
obtain c2 = 0. Thus T (t) is a multiple of cos knt , and we expect that

U (r, θ, t) =
∞∑
n=1

cn J0(knr) cos knt.

In step (iii), the determination of the cn’s and the necessary analysis are similar to
those in Example 4 for the heat equation, and it is not necessary to repeat them.
Step (iv) is handled in much the same way as in the vibrating-string problem.

3. Sturm–Liouville Theory

The name “Sturm–Liouville theory” refers to the analysis of certain kinds of
“eigenvalue” problems for linear ordinary differential equations, particularly
equations of the second order. In this section we shall concentrate on one theorem
of this kind, which was stated explicitly in Section 2 and was used as a tool for
verifying that themethodof separation of variables succeeded, for someexamples,
in solving a boundary-value problem for one of the standard partial differential
equations. Before taking up this one theorem, however, let us make some general
remarks about the setting, about “eigenvalues” and “eigenfunctions,” and about
“self-adjointness.”
Fix attention on an interval [a, b] and on second-order differential operators

on this interval of the form L = P(t)D2 + Q(t)D + R(t)1 with D = d/dt , so
that

L(u) = P(t)u′′ + Q(t)u′ + R(t)u.

We shall assume that the coefficient functions P , Q, and R are real-valued; then
L(ū) = L(u). As was mentioned in Section 2, the behavior of all functions in
question at the endpoints will be relevant to us: we say that a continuous function
f : [a, b]→ C with a derivative on (a, b) has a continuous derivative at one or
both endpoints if f ′ has a finite limit at the endpoint in question; it is equivalent
to say that f extends to a larger set so as to be differentiable in an open interval
about the endpoint and to have its derivative be continuous at the endpoint.
An eigenvalue of the differential operator L is a complex number c such

that L(u) = cu for some nonzero function u. Such a function u is called an
eigenfunction. In practice we often have a particular nonvanishing function r
and look for c such L(u) = cru for a nonzero u. In this case, c is an eigenvalue
of r−1L .
We introduce the inner-product space of complex-valued functions with two

continuous derivatives on [a, b] and with (u, v) = ∫ ba u(t)v(t) dt . Computation
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using integration by parts and assuming suitable differentiability of the coeffi-
cients gives

(L(u), v) =
∫ b

a
(Pu′′ + Qu′ + Ru)v̄ dt

=
∫ b

a
((u′′)(P v̄)+ (u′)(Qv̄)+ (u)(Rv̄)) dt

=
[
(u′)(P v̄)+ (u)(Qv̄)

]b
a
−
∫ b

a
(u′(P v̄)′ + (u)(Qv̄)′ − (u)(Rv̄)) dt

=
[
(u′)(P v̄)+ (u)(Qv̄)− (u)(P v̄)′

]b
a

+
∫ b

a
((u)(P v̄)′′ − (u)(Qv̄)′ + (u)(Rv̄)) dt

= (u, L∗(v))+
[
(u′)(P v̄)+ (u)(Qv̄)− u(P v̄)′

]b
a
,

where L∗(v) = Pv′′ + (2P ′ − Q)v′ + (P ′′ − Q′ + R)v. The above computation
shows that (L(u), v) = (u, L∗(v)) if the integrated terms are ignored; this
property is the abstract defining property of L∗. The differential operator L∗
is called the formal adjoint of L . We shall be interested only in the situation
in which L∗ = L , which we readily see happens if and only if P ′ = Q; when
L∗ = L , we say that L is formally self adjoint. If L is formally self adjoint,
then substitution of Q = P ′ shows that the above identity reduces to

(L(u), v)− (u, L(v)) =
[
(P)(u′v̄ − uv̄′)

]b
a
,

which is known as Green’s formula.
Even when L as above is not formally self adjoint, it can be multiplied by a

nonvanishing function, specifically
∫ t exp[(Q(s)− P ′(s))/P(s)] ds, to become

formally self adjoint. Thus formal self-adjointness by itself is no restriction on
our second-order differential operator.
In the formally self-adjoint case, one often rewrites P(t)D2 + P ′(t)D as

D(P(t)D). With this understanding, let us rewrite our operator as

L(u) = (p(t)u′)′ − q(t)u

and assume that p, p′, and q are continuous on [a, b] and that p(t) > 0 for
a ≤ t ≤ b. We associate a Sturm–Liouville eigenvalue problem called (SL)
to the set of data consisting of L , an everywhere-positive function r with two
continuous derivatives on [a, b], and real numbers c1, c2, d1, d2 such that c1 and
c2 are not both 0 and d1 and d2 are not both 0. This is the problem of analyzing
simultaneous solutions of
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L(u)+ λr(t)u = 0, (SL1)

c1u(a)+ c2u
′(a) = 0 and d1u(b)+ d2u

′(b) = 0, (SL2)

for all values of λ.
Each condition (SL1) and (SL2) depends linearly on u and u′ if λ is fixed,

and thus the space of solutions of (SL) for fixed λ is a vector space. We know6

that the vector space of solutions of (SL1) alone is 2-dimensional; let u1 and u2
form a basis of this vector space. The Wronskian matrix is

(
u1(t) u2(t)
u′1(t) u

′
2(t)

)
, and the

determinant of this matrix, namely

u1(t)u
′
2(t)− u′1(t)u2(t),

is nowhere 0. If u1 and u2 were both to satisfy the condition c1u(a)+c2u′(a) = 0
with c1 and c2 not both 0, then

(
c1
c2

)
would be a nontrivial solution of the matrix

equation (
u1(a) u′1(a)
u2(a) u′2(a)

)(
c1
c2

)
=
(
0
0

)
and we would obtain the contradictory conclusion that the Wronskian matrix at a
is singular. We conclude that the space of solutions of (SL) for fixed λ is at most
1-dimensional.
Let (ϕ1, ϕ2)r =

∫ b
a ϕ1(t)ϕ2(t) r(t) dt for any continuous functions ϕ1 and ϕ2

on [a, b], and let ‖ϕ1‖r = ((ϕ1, ϕ1)r )
1/2. The unsubscripted expressions (ϕ1, ϕ2)

and ‖ϕ1‖ will refer to (ϕ1, ϕ2)r and ‖ϕ1‖r with r = 1. Then we can restate
Theorem 1.3 as follows.

Theorem 1.3′ (Sturm’s Theorem). The system (SL) has a nonzero solution
for a countably infinite set of values of λ. If E denotes this set of values, then
the members λ of E are all real, they have no limit point in R, and the space of
solutions of (SL) is 1-dimensional for each such λ. The set E is bounded below
if c1c2 ≤ 0 and d1d2 ≥ 0, and E is bounded below by 0 if these conditions and
the condition q ≥ 0 are all satisfied. In any case, enumerate E in any fashion as
λ1, λ2, . . . , let u = ϕn be a nonzero solution of (SL) when λ = λn , and normalize
ϕn so that ‖ϕn‖r = 1. Then (ϕn, ϕm)r = 0 for m = n, and the functions ϕn
satisfy the following completeness conditions:

(a) any u having two continuous derivatives on [a, b] and satisfying (SL2)
has the property that the series

∑∞
n=1(u, ϕn)rϕn(t) converges absolutely

uniformly to u(t) on [a, b],
(b) the only continuous ϕ on [a, b] with (ϕ, ϕn)r = 0 for all n is ϕ = 0,
(c) any continuous ϕ on [a, b] satisfies ‖ϕ‖2r =

∑∞
n=1 |(ϕ, ϕn)r |2.

6From Theorem 4.6 of Basic, for example.
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REMARKS. In this section we shall reduce the proof of everything but (b)
and (c) to the Hilbert–Schmidt Theorem, which will be proved in Chapter II.
Conclusions (b) and (c) follow from (a) and some elementary facts about Hilbert
spaces, and we shall return to prove these two conclusions at the time of the
Hilbert–Schmidt Theorem in Chapter II.

PROOF EXCEPT FOR STEPS TO BE COMPLETED IN CHAPTER II. By way of
preliminaries, let u and v be nonzero functions on [a, b] satisfying (SL2) and
having two continuous derivatives. Green’s formula gives

(L(u),v)− (u, L(v)) = [(p)(u′v̄ − uv̄′)
]b
a

= p(b)
(
u′(b)v(b)− u(b)v′(b)

)− p(a)
(
u′(a)v(a)− u(a)v′(a)

)
.

Condition (SL2) says that

c1u(a)+ c2u
′(a) = 0 and c1v(a)+ c2v

′(a) = 0.

Since c1 and c2 are real, these equations yield

c1u(a)v(a)+ c2u
′(a)v(a) = 0 and c1u(a)v(a)+ c2u(a)v′(a) = 0,

as well as

c1u(a)v′(a)+ c2u
′(a)v′(a) = 0 and c1u

′(a)v(a)+ c2u
′(a)v′(a) = 0.

Subtracting, for each of the above two displays, each second equation of a display
from the first equation of the display, we obtain

c2
(
u′(a)v(a)− u(a)v′(a)

) = 0
c1
(
u(a)v′(a)− u′(a)v(a)

) = 0.and

Since c1 and c2 are not both 0, we conclude that p(a)(u′(a)v(a)−u(a)v′(a)) = 0.
A similar computation starting from

d1u(b)+ d2u
′(b) = 0 and d1v(b)+ d2v

′(b) = 0

shows that p(b)(u′(b)v(b)− u(b)v′(b)) = 0. Consequently

(L(u), v)− (u, L(v)) = 0

whenever u and v are functions on [a, b] satisfying (SL2) and having two con-
tinuous derivatives.
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Nowwecanbegin to establish the properties of the set E of numbersλ forwhich
(SL) has a nonzero solution. Suppose that ϕα and ϕβ satisfy L(ϕα)+ λαrϕα = 0
and L(ϕβ)+ λβrϕβ = 0. By what we have just seen,

0 = (L(ϕα), ϕβ)− (ϕα, L(ϕβ))

=
∫ b

a
L(ϕα)ϕ̄β dt −

∫ b

a
ϕαL(ϕβ) dt

= (−λα + λ̄β)

∫ b

a
ϕαϕ̄β r dt = (−λα + λ̄β)(ϕα, ϕβ)r .

Taking ϕα = ϕβ in this computation shows that λα = λ̄α; hence λα is real. With
λα and λβ real and unequal, this computation shows that (ϕα, ϕβ)r = 0. Thus
the members of E are real, and the corresponding ϕ’s are orthogonal. We have
seen that the dimension of the space of solutions of (SL) corresponding to any
member of E is 1-dimensional.
We shall prove that E is at most countably infinite. Let c = ( ∫ ba r(t) dt)1/2.

Any continuous ϕ on [a, b] satisfies

‖ϕ‖r =
( ∫ b

a
|ϕ(t)|2r(t) dt

)1/2 ≤ ( sup
a≤t≤b

|ϕ(t)|)
( ∫ b

a
r(t) dt

)1/2 = c sup |ϕ|.

Consider the open ball B(k;ϕ) of radius k and center ϕ in the space C([a, b]) of
continuous functions on [a, b]; themetric is givenby the supremumof the absolute
value of the difference of the functions. If ψ is in this ball, then sup |ψ −ϕ| < k,
c sup |ψ−ϕ| < ck, and ‖ψ−ϕ‖r < ck. Choose k with ck = 1

2 . Suppose that ϕα
and ϕβ correspond as above to unequal λα and λβ and that ϕα and ϕβ have been
normalized so that ‖ϕα‖r = ‖ϕβ‖r = 1. If ψ is in B(k;ϕα) ∩ B(k;ϕβ), then
‖ψ−ϕα‖r < 1

2 and ‖ψ−ϕβ‖r < 1
2 . The triangle inequality gives‖ϕα−ϕβ‖r < 1,

whereas the orthogonality implies that

‖ϕα − ϕβ‖2r = (ϕα − ϕβ, ϕα − ϕβ)r

= (ϕα, ϕα)r − (ϕα, ϕβ)r − (ϕβ, ϕα)r + (ϕβ, ϕβ)r

= 1− 0− 0+ 1 = 2.

The existence ofψ thus leads us to a contradiction, andwe conclude that B(k;ϕα)

and B(k;ϕβ) are disjoint. Since [a, b] is a compact metric space,C([a, b]) is sep-
arable as a metric space,7 and hence so is the metric subspace S =⋃α B(k;ϕα).
The collection of all B(k;ϕα) is an open cover of S, and the separability gives us

7By Corollary 2.59 of Basic.
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a countable subcover. Since the sets B(k;ϕα) are disjoint, we conclude that the
set of all ϕα is countable. Hence E is at most countably infinite.
The next step is to bound E below under additional hypotheses as in the

statement of the theorem. Let λ be in E , and let ϕ be a nonzero solution of (SL)
corresponding to λ and normalized so that ‖ϕ‖r = 1. Multiplying (SL1) by ϕ̄

and integrating, we have

λ =
∫ b

a
λ|ϕ|2r dt = −

∫ b

a
(pϕ′)′ϕ̄ dt +

∫ b

a
q|ϕ|2 dt

= −[pϕ′ϕ̄]ba + ∫ b

a
p|ϕ′|2 dt +

∫ b

a
q|ϕ|2 dt

≥ −p(b)ϕ′(b)ϕ(b)+ p(a)ϕ′(a)ϕ(a)+
∫ b

a
(|ϕ|2r)(r−1q) dt

≥ −p(b)ϕ′(b)ϕ(b)+ p(a)ϕ′(a)ϕ(a)+ inf
a≤t≤b

{r(t)−1q(t)}.

Let us show under the hypotheses c1c2 ≤ 0 and d1d2 ≥ 0 that ϕ′(a)ϕ(a) ≥ 0
and ϕ′(b)ϕ(b) ≤ 0, and then the asserted lower bounds will follow. Condition
(SL2) gives us c1ϕ(a) + c2ϕ′(a) = 0. If c1 = 0 or c2 = 0, then ϕ′(a) = 0
or ϕ(a) = 0, and hence ϕ′(a)ϕ(a) ≥ 0. If c1c2 = 0, then c1c2 < 0. The
identity c1ϕ(a) + c2ϕ′(a) = 0 implies that c21|ϕ(a)|2 + c1c2ϕ′(a)ϕ(a) = 0 and
hence −c1c2ϕ′(a)ϕ(a) = c21|ϕ(a)|2 ≥ 0. Because of the condition c1c2 < 0,
we conclude that ϕ′(a)ϕ(a) ≥ 0. A similar argument using d1d2 ≥ 0 and
d1ϕ(b)+ d2ϕ′(b) = 0 shows that ϕ′(b)ϕ(b) ≤ 0. This completes the verification
of the lower bounds for λ.
We have therefore established all the results in the theorem that are to be proved

at this time except for

(i) the existence of a countably infinite set of λ for which (SL) has a nonzero
solution,

(ii) the fact that E has no limit point in R,
(iii) the assertion (a) about completeness.

Before carrying out these steps, wemay need to adjust L slightly. We are studying
functions u satisfying L(u) + λru = 0 and (SL2), and we have established that
the set E of λ for which there is a nonzero solution is at most countably infinite.
Choose a member λ0 of the complementary set Ec and rewrite the differential
equation as M(u) + νru = 0, where M(u) = L(u) + λ0ru and ν = (λ − λ0).
Then M has properties similar to those of L , and it has the further property that 0
is not a value of ν for which M(u)+ νru = 0 and (SL2) together have a nonzero
solution. It would be enough to prove (i), (ii), and (iii) for M(u)+ νru = 0 and
(SL2). Adjusting notation, we may assume from the outset that 0 is not in E .
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The next step is to prove the existence of a continuous real-valued function
G1(t, s) on [a, b] × [a, b] such that G1(t, s) = G1(s, t), such that the operator
T1 given by

T1 f (t) =
∫ b

a
G1(t, s) f (s) ds

carries the space C[a, b] of continuous functions f on [a, b] one-one onto the
spaceD[a, b] of functions u on [a, b] satisfying (SL2) and having two continuous
derivatives on [a, b], and such that L : D[a, b]→ C[a, b] is a two-sided inverse
function to T1. The existence will be proved by an explicit construction that will
be carried out as a lemma at the end of this section. The functionG1(t, s) is called
aGreen’s function for the operator L subject to the conditions (SL2). Assuming
that aGreen’s function indeed exists, we next apply theHilbert–Schmidt Theorem
of Chapter II in the following form:

SPECIAL CASE OF HILBERT–SCHMIDT THEOREM. Let G(t, s) be a
continuous complex-valued function on [a, b] × [a, b] such that
G(t, s) = G(s, t), and define

T f (t) =
∫ b

a
G(t, s) f (s) ds

from the space C[a, b] of continuous functions on [a, b] to itself.
Define an inner product ( f, g) = ∫ ba f (t)g(t) dt and its corresponding
norm ‖ · ‖ on C[a, b]. For each complex μ = 0, define

Vμ =
{
f : [a, b]→ C

∣∣ f is continuous and T ( f ) = μ f
}
.

Then each Vμ is finite dimensional, the space Vμ = 0 is nonzero
for only countably many μ, the μ’s with Vμ = 0 are all real, and
for any ε > 0, there are only finitely many μ with Vμ = 0
and |μ| ≥ ε. The spaces Vμ are mutually orthogonal with respect
to the inner product ( f, g), and the continuous functions orthogonal
to all Vμ are the continuous functions h with T (h) = 0. Let v1, v2, . . .
be an enumeration of the union of orthogonal bases of the spaces Vμ
with ‖vj‖ = 1 for all j . Then for any continuous f on [a, b],

T ( f )(t) =
∞∑
n=1

(T ( f ), vn)vn(t),

the series on the right side being absolutely uniformly convergent.
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The theorem is applied not to our Green’s function G1 and the operator T1 as
above but to

G(t, s) = r(t)1/2G1(t, s)r(s)
1/2

T f (t) =
∫ b

a
G(t, s) f (s) ds = r(t)1/2T1(r

1/2 f )(t).and

If T ( f ) = μ f for a real number μ = 0, then we have T1(r1/2 f ) = μr−1/2 f .
Application of L gives r1/2 f = μL(r−1/2 f ). If we put u = r−1/2 f , then
we obtain μL(u) = r1/2 f = r(r−1/2 f ) = ru. Hence L(u) + λru = 0 for
λ = −μ−1. Also, the equation u = r−1/2 f = μ−1T1(r1/2 f ) exhibits u as in
the image of T1 and shows that u satisfies (SL2). Conversely if L(u)+ λru = 0
and u satisfies (SL2), recall that we arranged that 0 is not in E , so that λ has a
reciprocal. Define f = r1/2u. Application of T1 to L(u) + λru = 0 gives 0 =
u + λT1(ru) = r−1/2 f + λT1(r1/2 f ). Then T ( f ) = r1/2T1(r1/2 f ) = −λ−1 f .
We conclude that the correspondence f = r1/2u exactly identifies the vector
subspace of functions u in D[a, b] satisfying L(u) + λru = 0 with the vector
subspace of functions f in C[a, b] satisfying T ( f ) = −λ−1 f .
The statement of Sturm’s Theorem gives us an enumeration λ1, λ2, . . . of E .

We know for each λ = λn that the space of functions u solving (SL) for λ = λn
in E is 1-dimensional, and the statement of Sturm’s Theorem has selected for
us a function u = ϕn solving (SL) such that ‖ϕn‖r = 1. Define vn = r1/2ϕn
and μn = −λ−1n , so that T (vn) = μnvn and ‖vn‖ = ‖ϕn‖r = 1. Because of
the correspondence of μ’s and λ’s, the vn may be taken as the complete list of
vectors specified in the Hilbert–Schmidt Theorem. Since the ϕn’s are orthogonal
for ( · , · )r , the vn’s are orthogonal for ( · , · ).
The operator T1 has 0 kernel on C[a, b], being invertible, and the formula

for T in terms of T1 shows therefore that T has 0 kernel. Thus the sequence
μ1, μ2, . . . is infinite, and the Hilbert–Schmidt Theorem shows that it tends to
0. The corresponding sequence λ1, λ2, . . . of negative reciprocals is then infinite
and has no finite limit point. This proves results (i) and (ii) announced above.
Let u have two continuous derivatives on [a, b] and satisfy (SL2). Then u is in

the image of T1. Write u = T1( f )with f continuous, and put g = r−1/2 f . Then
u = T1( f ) = r−1/2T (r−1/2 f ) = r−1/2T (g) and (u, ϕn)r = (T (g), vn). Hence

r(t)1/2u(t) = T (g)(t)

r(t)1/2(u, ϕn)rϕn(t) = (T (g), vn)vn(t).and

The Hilbert–Schmidt Theorem tells us that the series
∑∞

n=1(T (g), vn)vn(t)
converges absolutely uniformly to T (g)(t). Because r(t)1/2 is bounded above



3. Sturm-Liouville Theory 27

and below by positive constants, it follows that the series
∑∞

n=1 (u, ϕn)rϕn(t)
converges absolutely uniformly to u(t). This proves result (iii), i.e., the com-
pleteness assertion (a) in the statement of Sturm’s Theorem, and we are done
for now except for the proof of the existence of the Green’s function G1.

Lemma1.4. Under the assumption that there is no nonzero solution of (SL) for
λ = 0, there exists a continuous real-valued function G1(t, s) on [a, b]× [a, b]
such that G1(t, s) = G1(s, t), such that the operator T1 given by

T1 f (t) =
∫ b

a
G(t, s) f (s) ds

carries the space C[a, b] of continuous functions f on [a, b] one-one onto the
spaceD[a, b] of functions u on [a, b] satisfying (SL2) and having two continuous
derivatives on [a, b], and such that L : D[a, b]→ C[a, b] is a two-sided inverse
function to T1.

PROOF. Since L(u) = pu′′ + p′u′ − qu, a solution of L(u) = 0 has u′′ =
−p−1 p′u′ + p−1qu. Fix a point c in [a, b]. Let ϕ1(t) and ϕ2(t) be the unique
solutions of L(u) = 0 on [a, b] satisfying

ϕ1(c) = 1 and ϕ′1(c) = 0, ϕ2(c) = 0 and ϕ′2(c) = 1.

Since the complex conjugate of ϕ1 or ϕ2 satisfies the same conditions, we must
have ϕ̄1 = ϕ1 and ϕ̄2 = ϕ2. Hence ϕ1 and ϕ2 are real-valued. The associated
Wronskian matrix is

W (ϕ1, ϕ2)(t) =
(
ϕ1(t) ϕ2(t)
ϕ′1(t) ϕ′2(t)

)
,

and its determinant is

detW (ϕ1, ϕ2)(t) = ϕ1(t)ϕ
′
2(t)− ϕ′1(t)ϕ2(t).

Then detW (ϕ1, ϕ2)(c) = 1 and detW (ϕ1, ϕ2)(t) satisfies the first-order linear
homogeneous differential equation

(detW (ϕ1, ϕ2))
′ = ϕ1ϕ

′′
2 − ϕ′′1ϕ2

= ϕ1(−p−1 p′ϕ′2 + p−1qϕ2)− ϕ2(−p−1 p′ϕ′1 + p−1qϕ1)

= −p−1 p′(ϕ1ϕ′2 − ϕ′1ϕ2)

= −p−1 p′ detW (ϕ1, ϕ2).
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Therefore

detW (ϕ1, ϕ2)(t) = exp
(− ∫ tc p′(s)/p(s) ds) = exp (− log p(t)+ log p(c))

= exp(log(p(c)/p(t))) = p(c)/p(t).

For f continuous, consider the solutions of the equation L(u) = f . A specific
solution is given by variation of parameters, as stated in Theorem 4.9 of Basic.
To use the formula in that theorem, we need L to have leading coefficient 1. For
that purpose, we rewrite L(u) = f as u′′ + p−1 p′u′ − p−1qu = p−1 f . The
theorem shows that one solution u∗(t) is given by the first entry of

W (ϕ1, ϕ2)(t)
∫ t

a
W (ϕ1, ϕ2)(s)

−1
(

0
p−1(s) f (s)

)
ds.

Since W (ϕ1, ϕ2)(s)−1 = (detW (ϕ1, ϕ2)(s))−1
(

ϕ′2(s) −ϕ2(s)
−ϕ′1(s) ϕ1(s)

)
, the result is

u∗(t) =
∫ t

a

−ϕ1(t)ϕ2(s)p−1(s) f (s)+ ϕ2(t)ϕ1(s)p−1(s) f (s)
p(c)/p(s)

ds

= p(c)−1
∫ t

a

(− ϕ1(t)ϕ2(s)+ ϕ2(t)ϕ1(s)
)
f (s) ds.

Define

G0(t, s) =
{
p(c)−1

(− ϕ1(t)ϕ2(s)+ ϕ2(t)ϕ1(s)
)

if s ≤ t,

0 if s > t.

This function is continuous everywhere on [a, b]× [a, b], including where s = t ,
and it has been constructed so that

u∗(t) =
∫ t

a
G0(t, s) f (s) ds =

∫ b

a
G0(t, s) f (s) ds

is a solution of u′′ + p−1 p′u′ − p−1qu = p−1 f , i.e., of L(u) = f . In particular,
the form of the equation shows that u∗ has two continuous derivatives on [a, b].
Therefore the operator

T0( f )(t) =
∫ b

a
G0(t, s) f (s) ds

carries C[a, b] into the space of twice continuously differentiable functions on
[a, b].
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The final step is to adjust G0 and T0 so that the operator produces twice
continuously differentiable functions satisfying (SL2). Fix f continuous, and
let u∗(t) = ∫ ba G0(t, s) f (s) ds. By assumption the equation L(u) = 0 has no
nonzero solution that satisfies (SL2). Thus the function ϕ(t) = x1ϕ1(t)+ x2ϕ2(t)
does not have both

c1ϕ(a)+ c2ϕ
′(a) = 0 and d1ϕ(b)+ d2ϕ

′(b) = 0
unless x1 and x2 are both 0. In other words the homogeneous system of equations(

c1ϕ1(a)+ c2ϕ′1(a) c1ϕ2(a)+ c2ϕ′2(a)
d1ϕ1(b)+ d2ϕ′1(b) d1ϕ2(b)+ d2ϕ′2(b)

)(
x1
x2

)
=
(
0
0

)
has only the trivial solution. Consequently the system given by(

c1ϕ1(a)+ c2ϕ′1(a) c1ϕ2(a)+ c2ϕ′2(a)
d1ϕ1(b)+ d2ϕ′1(b) d1ϕ2(b)+ d2ϕ′2(b)

)(
k1
k2

)
= −

(
c1u∗(a)+ c2u∗′(a)
d1u∗(b)+ d2u∗′(b)

) (∗)

has a unique solution
(
k1
k2

)
for fixed f . We need to know how k1 and k2 depend

on f . From the form of G0, we have

u∗(t) = p(c)−1
(
− ϕ1(t)

∫ t

a
ϕ2(s) f (s) ds + ϕ2(t)

∫ t

a
ϕ1(s) f (s) ds

)
.

By inspection, two terms in the differentiation drop out and the derivative is

u∗′(t) = p(c)−1
(
− ϕ′1(t)

∫ t

a
ϕ2(s) f (s) ds + ϕ′2(t)

∫ t

a
ϕ1(s) f (s) ds

)
.

Evaluation of these formulas at a and b gives

u∗(a) = u∗′(a) = 0,

u∗(b) = p(c)−1
(− ϕ1(b)

∫ b

a
ϕ2(s) f (s) ds + ϕ2(b)

∫ b

a
ϕ1(s) f (s) ds

)
,

u∗′(b) = p(c)−1
(− ϕ′1(b)

∫ b

a
ϕ2(s) f (s) ds + ϕ′2(b)

∫ b

a
ϕ1(s) f (s) ds

)
.

Thus the right side of the equation (∗) that defines k1 and k2 is of the form

−
(
c1u∗(a)+ c2u∗′(a)
d1u∗(b)+ d2u∗′(b)

)
=
(

0∫ b
a (e1ϕ1(s)+ e2ϕ2(s)) f (s) ds

)
,
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where e1 and e2 are real constants independent of f . Hence k1 and k2 are of the
form (

k1
k2

)
=
(∫ b

a (αϕ1(s)+ βϕ2(s)) f (s) ds∫ b
a (γ ϕ1(s)+ δϕ2(s)) f (s) ds

)
,

where α, β, γ, δ are real constants independent of f . The fact that
(
k1
k2

)
solves

the system (∗) means that the function v(t) given by

u∗(t)+ϕ1(t)
∫ b

a
(αϕ1(s)+βϕ2(s)) f (s) ds+ϕ2(t)

∫ b

a
(γ ϕ1(s)+δϕ2(s)) f (s) ds

satisfies c1v(a)+ c2v′(a) = 0 and d1v(b)+ d2v′(b) = 0. Put(
K1(s)
K2(s)

)
=
(
αϕ1(s)+ βϕ2(s)
γ ϕ1(s)+ δϕ2(s)

)
.

We can summarize the above computation by saying that the real-valued contin-
uous function

G1(t, s) = G0(t, s)+ K1(s)ϕ1(t)+ K2(s)ϕ2(t)

has, for every continuous f , the property that v(t) = ∫ ba G1(t, s) f (s) ds satisfies
L(v) = f and the condition (SL2).
Define T1( f )(t) =

∫ b
a G1(t, s) f (s) ds. We have seen that T1 carries C[a, b]

intoD[a, b] and that L(T1( f )) = f . Nowsuppose thatu is inD[a, b]. Since L(u)
is continuous, T1(L(u)) is in D[a, b] and has L(T1(L(u))) = L(u). Therefore
T1(L(u))− u is inD[a, b] and has L

(
T1(L(u))− u

) = 0. We have assumed that
there is no nonzero solution of (SL) for λ = 0, and therefore T1(L(u)) = u. Thus
T1 and L are two-sided inverses of one another.
Finally we are to prove thatG1(t, s) = G1(s, t). Let f and g be arbitrary real-

valued continuous functions on [a, b], and put u = T1( f ) and v = T1(g). We
know from Green’s formula and (SL2) that (L(u), v) = (u, L(v)). Substituting
the formulas f = L(u) and g = L(v) into this equality gives∫ b

a

∫ b

a
G1(t, s) f (t)g(s) ds dt =

∫ b

a
f (t)v(t) dt = (L(u), v)

= (u, L(v)) =
∫ b

a
u(s)g(s) ds =

∫ b

a

∫ b

a
G1(s, t) f (t)g(s) dt ds.

By Fubini’s Theorem the identity∫ b

a

∫ b

a
(G1(t, s)− G1(s, t))F(s, t) dt ds = 0
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holds when F is one of the linear combinations of continuous functions f (s)g(t).
We can extend this conclusion to general continuous F by passing to the limit
and using uniform convergence because the Stone–Weierstrass Theorem shows
that real linear combinations of products f (t)g(s) are uniformly dense in the
space of continuous real-valued functions on [a, b] × [a, b]. Taking F(s, t) =
G1(t, s)−G1(s, t), we see that

∫ b
a

∫ b
a (G1(t, s)−G1(s, t))2 dt ds = 0. Therefore

G1(t, s) − G1(s, t) = 0 and G1(t, s) = G1(s, t). This completes the proof of
the lemma.

HISTORICAL REMARKS. Sturm’s groundbreaking paper appeared in 1836. In
that paper he proved that the set E in Theorem 1.3′ is infinite by comparing the
zeros of solutions of various equations, but he did not address the question of
completeness. Liouville introduced integral equations in 1837.

4. Problems

1. Let pn be thenth-smallest positive real number p such thath sin pl+p cos pl = 0,
as in Example 3 for the heat equation in Section 2. Here h and l are positive con-
stants. Prove directly that

∫ l
0 sin pnx sin pmx dx = 0 for n = m by substituting

from the trigonometric identity sin a sin b = − 1
2

(
cos(a + b)− cos(a − b)

)
.

2. Multiplying the relevant differential operators by functions to make them for-
mally self adjoint, and applying Green’s formula from Section 3, prove the
following orthogonality relations:

(a)
∫ 1
−1 Pn(t)Pm(t) dt = 0 if Pn and Pm are Legendre polynomials and n = m.
The mth Legendre polynomial Pm is a certain nonzero polynomial solution
of the Legendre equation (1− t2)P ′′ −2t P ′ +m(m+1)P = 0. It is unique
up to a scalar factor. These polynomials are applied in the second example
with the Laplace equation in Section 2.

(b)
∫ 1
0 J0(knr)J0(kmr)r dr = 0 if kn and km are distinct zeros of the Bessel func-
tion J0. The function J0 is the power series solution J0(t) =

∑∞
n=0

(−1)n t2n
(n!)2

of the Bessel equation of order 0, namely t2y′′ + t y′ + t2y = 0. It is applied
in the last example of Section 2.

3. In the proof of Lemma 1.4:
(a) Show directly by expanding out u∗(t) = ∫ ta G0(t, s) f (s) ds that u∗ satisfies

L(u∗) = f .
(b) Calculate G0(t, s) and G1(t, s) explicitly for the case that L(u) = u′′ + u

when the conditions (SL2) are that u(0) = 0 and u(π/2) = 0.
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4. This problem discusses the starting point for Sturm’s original theory. Suppose
that p(t), p′(t), g1(t), and g2(t) are real-valued and continuous on [a, b] and
that p(t) > 0 and g2(t) > g1(t) everywhere on [a, b]. Let y1(t) and y2(t) be
real-valued solutions of the respective equations

(p(t)y′)′ + g1(t)y = 0 and (p(t)y′)′ + g2(t)y = 0.
Follow the steps below to show that if t1 and t2 are consecutive zeros of y1(t),
then y2(t) vanishes somewhere on (t1, t2).
(a) Arguing by contradiction and assuming that y2(t) is nonvanishing on (t1, t2),

normalize matters so that y1(t) > 0 and y2(t) > 0 on (t1, t2). Multiply the
first equation by y2, the second equation by y1, subtract, and integrate over
[t1, t2]. Conclude from this computation that

[
py′1y2 − py1y′2

]t2
t1
> 0.

(b) Taking the signs of p, y1, y2 and the behavior of the derivatives into account,
prove that p(t)y′1(t)y2(t) − p(t)y1(t)y′2(t) is ≤ 0 at t = t2 and is ≥ 0 at
t1, in contradiction to the conclusion of (a). Conclude that y2(t) must have
equaled 0 somewhere on (t1, t2).

(c) Suppose in addition that q(t) and r(t) are continuous on [a, b] and that
r(t) > 0 everywhere. Let y1(t) and y2(t) be real-valued solutions of the
respective equations

(p(t)y′)′ − q(t)y + λ1r(t)y = 0 and (p(t)y′)′ − q(t)y + λ2r(t)y = 0,
where λ1 and λ2 are real with λ1 < λ2. Obtain as a corollary of (b) that
y2(t) vanishes somewhere on the interval between two consecutive zeros of
y1(t).

Problems 5–8 concern Schrödinger’s equation in one space dimension with a time-
independent potential V (x). In suitable units the equation is

−∂2�(x, t)

∂x2
+ V (x)�(x, t) = i

∂�(x, t)

∂t
.

5. (a) Show that any solution of the form �(x, t) = ψ(x)ϕ(t) is such that
ψ ′′ + (E − V (x))ψ = 0 for some constant E .

(b) Compute what the function ϕ(t) must be in (a).

6. Suppose that V (x) = x2, so thatψ ′′ + (E− x2)ψ = 0. Putψ(x) = e−x
2/2H(x),

and show that
H ′′ − 2xH ′ + (E − 1)H = 0.

This ordinary differential equation is called Hermite’s equation.

7. Solve the equation H ′′ − 2xH ′ + 2nH = 0 by power series. Show that there
is a nonzero polynomial solution if and only if n is an integer ≥ 0, and in this
case the polynomial is unique up to scalar multiplication and has degree n. For
a suitable normalization the polynomial is denoted by Hn(x) and is called a
Hermite polynomial.
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8. Guided by Problem 6, let L be the formally self-adjoint operator

L(ψ) = ψ ′′ − x2ψ.

Using Green’s formula from Section 3 for this L on the interval [−N , N ] and
letting N tend to infinity, prove that

lim
N→∞

∫ N

−N
Hn(x)Hm(x)e

−x2 dx = 0 if n = m.



CHAPTER II

Compact Self-Adjoint Operators

Abstract. This chapter proves a first version of the Spectral Theorem and shows how it applies to
complete the analysis in Sturm’s Theorem of Section I.3.
Section 1 introduces compact linear operators from a Hilbert space into itself and characterizes

them as the limits in the operator norm topology of the linear operators of finite rank. The adjoint
of a compact operator is compact.
Section 2 proves the Spectral Theorem for compact self-adjoint operators on a Hilbert space,

showing that such operators have orthonormal bases of eigenvectors with eigenvalues tending to 0.
Section 3 establishes two versions of the Hilbert–Schmidt Theorem concerning self-adjoint

integral operators with a square-integrable kernel. The abstract version gives an L2 expansion of
the members of the image of the operator in terms of eigenfunctions, and the concrete version, valid
when the kernel is continuous and the space is compact metric, proves that the eigenfunctions are
continuous and the expansion in terms of eigenfunctions is uniformly convergent.
Section 4 introduces unitary operators on a Hilbert space, establishing the equivalence of three

conditions that may be used to define them.
Section 5 studies compact linear operators on an abstract Hilbert space, with special attention

to two kinds—the Hilbert–Schmidt operators and the operators of trace class. All three sets of
operators—compact, Hilbert–Schmidt, and trace-class—are ideals in the algebra of all bounded
linear operators and are closed under the operation of adjoint. Trace-class implies Hilbert–Schmidt,
which implies compact. The product of two Hilbert–Schmidt operators is of trace class.

1. Compact Operators

Let H be a real or complex Hilbert space with inner product1 ( · , · ) and norm
‖ · ‖. A bounded linear operator L : H → H is said to be compact if L
carries the closed unit ball of H to a subset of H that has compact closure, i.e., if
each bounded sequence {un} in H has the property that {L(un)} has a convergent
subsequence.2 The first three conclusions of the next proposition together give a
characterization of the compact operators on H .

1This book follows the convention that inner products are linear in the first variable and conjugate
linear in the second variable.

2Some books use the words “completely continuous” in place of “compact” for this kind of
operator.

34
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Proposition 2.1. Let L : H → H be a bounded linear operator on a Hilbert
space H . Then

(a) L is compact if the image of L is finite dimensional,
(b) L is compact if L is the limit, in the operator norm, of a sequence of

compact operators,
(c) L compact implies that there exist bounded linear operators Ln : H → H

such that L = lim Ln in the operator norm and the image of each Ln is
finite dimensional,

(d) L compact implies L∗ compact.

PROOF. For (a), let M be the image of L . Being finite dimensional, M is
closed and is hence a Hilbert space. Let {v1, . . . , vk} be an orthonormal basis.
The linear mapping that carries each vj to the j th standard basis vector ej in the
space of column vectors is then a linear isometry of M onto Rk or Ck . In Rk and
Ck , the closed ball about 0 of radius ‖L‖ is compact, and hence the closed ball
about 0 of radius ‖L‖ in M is compact. The latter closed ball contains the image
of the closed unit ball of H under L , and hence L is compact.
For (b), let B be the closed unit ball of H . Write L = lim Ln in the operator

norm, each Ln being compact. Since the subsets of a completemetric space having
compact closure are exactly the totally bounded subsets, it is enough to prove that
L(B) is totally bounded. Let ε > 0 be given, and choose n large enough so that
‖Ln− L‖ < ε/2. With n fixed, Ln(B) is totally bounded since Ln(B) is assumed
to have compact closure. Thus we can find finitely many points v1, . . . , vk such
that the open balls of radius ε/2 about the vj ’s together cover Ln(B). We shall
prove that the open balls of radius ε about the vj ’s together cover L(B). In
fact, if u is given with ‖u‖ ≤ 1, choose j with ‖Ln(u) − vj‖ < ε/2. Then
‖L(u)−vj‖ ≤ ‖L(u)−Ln(u)‖+‖Ln(u)−vj‖ < ‖Ln−L‖‖u‖+ ε

2 ≤ ε
2+ ε

2 = ε,
as required.
For (c), we may assume that H is infinite dimensional. Since L is compact,

there exists a compact subset K of H containing the image of the closed unit ball.
As a compact metric space, K is separable. Let {wn} be a countable dense set,
and let M be the smallest closed vector subspace of H containing all wn . Since
the closure of {wn} contains K , M contains K . The subspace M is separable:
in fact, if the scalars are real, then the set of all rational linear combinations of
the wn’s is a countable dense set; if the scalars are complex, then we obtain a
countable dense set by allowing the scalars to be of the form a+ bi with a and b
rational.
SinceM is a closed vector subspace, it is aHilbert space and has an orthonormal

basis S. The set Smust be countable since the open balls of radius 1/2 centered at
the members of S are disjoint and would otherwise contradict the fact that every
topological subspace of a separable topological space is Lindelöf. Thus let us
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list the members of S as v1, v2, . . . . For each n, let Mn be the (closed) linear
span of {v1, . . . , vn}, and let En be the orthogonal projection on Mn . The linear
operator EnL is bounded, being a composition of bounded linear operators, and
its image is contained in the finite-dimensional space Mn . Hence it is enough
to show for each ε > 0 that there is some n with ‖(1 − En)L‖ < ε. If this
condition were to fail, we could find some ε > 0 such that ‖(1− En)L‖ ≥ ε for
every n. With ε fixed in this way, choose for each n some vector un of norm 1
such that ‖(1− En)L(un)‖ ≥ ε/2. The sequence {L(un)} lies in the compact set
K . Choose a convergent subsequence {L(unk )}, and let v = lim L(unk ). For nk
sufficiently large, we have ‖v − L(unk )‖ ≤ ε/4. In this case,

‖(1− Enk )v‖ ≥ ‖(1− Enk )L(unk )‖ − ‖(1− Enk )(v − L(unk ))‖ ≥ ε
2 − ε

4 = ε
4 .

On the other hand, v is in M , and v is of the form v = ∑∞
j=1(v, vj )vj . In this

expression we have En(v) =
∑n

j=1(v, vj )vj , and these partial sums converge to
v in H . In short, limn Env = v. Then ‖(1−En)v‖ tends to 0, and this contradicts
our estimate ‖(1− Enk )v‖ ≥ ε

4 .
For (d), first suppose that the image of L is finite dimensional, and choose an

orthonormal basis {u1, . . . , un} of the image. Then L(u) =
∑n

j=1 (L(u), uj )uj =∑n
j=1 (u, L

∗(uj ))uj . Taking the inner product with v gives (u, L∗(v)) =
(L(u), v) = ∑n

j=1 (u, L
∗(uj ))(uj , v). This equality shows that L∗(v) and∑n

j=1 (v, uj )L
∗(uj ) have the same inner product with every u. Thus they must

be equal, and we conclude that the image of L∗ is finite dimensional.
Now suppose that L is any compact operator on H . Given ε > 0, use (c)

to choose a bounded linear operator Ln with finite-dimensional image such that
‖L − Ln‖ < ε. Since a bounded linear operator and its adjoint have the same
norm, ‖L∗ − L∗n‖ < ε. Since L∗n has finite-dimensional image, according to what
we have just seen, and since we can obtain such an approximation for any ε > 0,
(b) shows that L∗ is compact.

2. Spectral Theorem for Compact Self-Adjoint Operators

Let L : H → H be a bounded linear operator on the real or complex Hilbert
space H . One says that a nonzero vector v is an eigenvector of L if L(v) = cv for
some constant c; the constant c is called the corresponding eigenvalue. The set
of all u for which L(u) = cu is a closed vector subspace; under the assumption
that this subspace is not 0, it is called the eigenspace for the eigenvalue c.
In the finite-dimensional case, the self-adjointness condition L∗ = L means

that L corresponds to aHermitian matrix A, i.e., a matrix equal to its conjugate
transpose, once one fixes an ordered orthonormal basis. In this case it is shown
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in linear algebra that the members of an orthonormal basis can be chosen to
be eigenvectors of L , the eigenvalues all being real. In terms of matrices, the
corresponding matrix A is conjugate via a unitary matrix, i.e., a matrix whose
conjugate transpose is its inverse, to a diagonalmatrixwith real entries. This result
is called the Spectral Theorem for such linear operators ormatrices. A quick proof
goes as follows: An eigenvector v of L with eigenvalue c has (L−cI )(v) = 0, and
this implies that the matrix A of L has the property that A−cI has a nonzero null
space. Hence det(A− cI ) = 0 if and only if c is an eigenvalue of L . One readily
sees from the self-adjointness of L that all complex roots of det(A− cI ) have to
be real. Moreover, if L carries a vector subspace M into itself, then L carries M⊥
into itself as well. Finite-dimensionality forces A to have a complex eigenvalue,
and this must be real. Hence there is a nonzero vector u with L(u) = cu for
some real c. Normalizing, we may assume that u has norm 1. If M consists of
the scalar multiples of u, then L carries M⊥ to itself, and the restriction of L
to M⊥ is self adjoint. Proceeding inductively, we obtain a system of orthogonal
eigenvectors for L , each of norm 1.
A certain amount of this argument works in the infinite-dimensional case. In

fact, suppose that L is self adjoint. Then any u in H has

(L(u), u) = (u, L∗(u)) = (u, L(u)) = (L(u), u),

and hence the function u �→ (L(u), u) is real-valued. If u is an eigenvector in
H with eigenvalue c, i.e., if L(u) = cu, then c(u, u) = (L(u), u) is real; since
(u, u) is real and nonzero, c is real. If u1 and u2 are eigenvectors for distinct
eigenvalues c1 and c2, then u1 and u2 are orthogonal because

(c1 − c2)(u1, u2) = (c1u1, u2)− (u1, c2u2) = (L(u1), u2)− (u1, L(u2)) = 0.

If M is a vector subspace of H with L(M) ⊆ M , then also L(M⊥) ⊆ M⊥
because m ∈ M and m⊥ ∈ M⊥ together imply

0 = (L(m),m⊥) = (m, L(m⊥)).

These observations prove everything in the following proposition except the last
statement.

Proposition 2.2. If L : H → H is a bounded self-adjoint linear operator
on a Hilbert space H , then u �→ (L(u), u) is real-valued, every eigenvalue of L
is real, eigenvectors under L for distinct eigenvalues are orthogonal, and every
vector subspace M with L(M) ⊆ M has L(M⊥) ⊆ M⊥. In addition,

‖L‖ = sup
‖u‖≤1

|(L(u), u))|.
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PROOF. We are left with proving the displayed formula. Inequality in one
direction is easy: we have

sup
‖u‖≤1

|(L(u), u))| ≤ sup
‖u‖≤1,
‖v‖≤1

|(L(u), v)| = ‖L‖.

With C = sup‖u‖≤1(L(u), u)), we are therefore to prove that ‖L‖ ≤ C , hence
that ‖L(u)‖ ≤ C‖u‖ for all u. In doing so, we may assume that u = 0 and
L(u) = 0. Let t be a positive real number. Since (L2(u), u) = (L(u), L(u)), we
have

‖L(u)‖2

= 1
4

[(
L(tu+t−1L(u)), tu+t−1L(u))− (L(tu−t−1L(u)), tu−t−1L(u))]

≤ 1
4

[
C‖tu + t−1L(u)‖2 + C‖tu − t−1L(u)‖2

]
= 1

2 C
[
‖tu‖2 + ‖t−1L(u)‖2

]
,

the last step following from the parallelogram law. By differential calculus
the minimum of an expression a2t2 + b2t−2, in which a and b are positive
constants, is attained when t2 = b/a. Here a = ‖u‖ and b = ‖L(u)‖, and
thus ‖L(u)‖2 ≤ C

2

[‖L(u)‖‖u‖ + ‖L(u)‖‖u‖] = C‖L(u)‖‖u‖. Dividing by
‖L(u)‖ gives ‖L(u)‖ ≤ C‖u‖ and completes the proof.

In the infinite-dimensional case, in which we work with the operator L but
no matrix, consider what is needed to imitate the proof of the finite-dimensional
Spectral Theorem and thereby find an orthonormal basis of vectors carried by L
to multiples of themselves. In the formula of Proposition 2.2, if we can find some
u with ‖u‖ = 1 such that ‖L‖ = |(L(u), u)|, then this u satisfies ‖L‖‖u‖2 =
|(L(u), u)| ≤ ‖L(u)‖‖u‖ ≤ ‖L‖‖u‖2, and we conclude that |(L(u), u)| =
‖L(u)‖‖u‖, i.e., that equality holds in the Schwarz inequality. Reviewing the
proof of the Schwarz inequality, we see that L(u) and u are proportional. Thus u
is an eigenvector of L , and we can at least get started with the proof.
Unfortunately an orthonormal basis of eigenvectors need not exist for a self-

adjoint L without an extra hypothesis. In fact, take H = L2([0, 1])with ( f, g) =∫ 1
0 f ḡ dx , and define L( f )(x) = x f (x). This linear operator L has norm 1,

and the equality ( f, L(g)) = ∫ 1
0 x f (x)g(x) dx = (L( f ), g) shows that L is

self adjoint. On the other hand, the only function f with x f = c f a.e. for some
constant c is the 0 function. Thus we get no eigenvectors at all, and the supremum
in the formula of Proposition 2.2 need not be attained.
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The hypothesis that we shall add to obtain an orthonormal basis of eigenvectors
is that L is compact in the sense of the previous section. Each compact self-adjoint
operator has an orthonormal basis of eigenvectors, according to the following
theorem.

Theorem 2.3 (Spectral Theorem for compact self-adjoint operators). Let
L : H → H be a compact self-adjoint linear operator on a real or complex
Hilbert space H . Then H has an orthonormal basis of eigenvectors of L . In
addition, for each scalar λ, let

Hλ = {u ∈ H | L(u) = λu},
so that Hλ − {0} consists exactly of the eigenvectors of L with eigenvalue λ.
Then the number of eigenvalues of L is countable, the eigenvalues are all real,
the spaces Hλ are mutually orthogonal, each Hλ for λ = 0 is finite dimensional,
any orthonormal basis of H of eigenvectors under L is the union of orthonormal
bases of the Hλ’s, and for any ε > 0, there are only finitely many λ with Hλ = 0
and |λ| ≥ ε. Moreover, either or both of ‖L‖ and −‖L‖ are eigenvalues, and
these are the eigenvalues with the largest absolute value.

PROOF. We know from Proposition 2.2 that the eigenvalues of L are all real
and that the spaces Hλ are mutually orthogonal. In addition, the formula ‖L‖ =
sup‖u‖≤1 ‖L(u)‖ shows that no eigenvalue can be greater than ‖L‖ in absolute
value.
The theorem certainly holds if L = 0 since every nonzero vector is an eigen-

vector. Thus we may assume that ‖L‖ > 0.
Themain step is to produce an eigenvector with one of ‖L‖ and−‖L‖ as eigen-

value. Taking the equality ‖L‖ = sup‖u‖≤1 |(L(u), u))| of Proposition 2.2 into ac-
count, choose a sequence {un}with ‖un‖ = 1 such that limn |(L(un), un)| = ‖L‖.
Since the proposition shows that (L(un), un) has to be real, we may assume that
this sequence is chosen so that λ = limn(L(un), un) exists. Then λ = ±‖L‖.
Using the compactness of L and passing to a subsequence if necessary, we may
assume that L(un) converges to some limit v0. Meanwhile,

0 ≤ ‖L(un)− λun‖2 = ‖L(un)‖2 − 2λRe(L(un), un)+ λ2‖un‖2
≤ ‖L‖2 − 2λRe(L(un), un)+ λ2.

The equalities λ2 = ‖L‖2 and limn(L(un), un) = λ show that the right side tends
to 0, and thus limn ‖L(un) − λun‖ = 0. Since limn ‖L(un) − v0‖ = 0 also, the
triangle inequality shows that limλun exists and equals v0. Since λ = 0, lim un
exists and v0 = λ lim un . Consequently ‖v0‖ = |λ| lim ‖un‖ = |λ| = ‖L‖ = 0.
Applying L to the equation v0 = λ lim un and taking into account that L is
continuous and that lim L(un) = v0, we see that L(v0) = λv0. Thus v0 is an
eigenvector with eigenvalue λ, and the main step is complete.
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Now consider the collection of all orthonormal systems of eigenvectors for
L , and order it by inclusion upward. A chain consists of nested such systems,
and the union of the members of a chain is again such an orthonormal system.
By Zorn’s Lemma the collection contains a maximal element S. Let M be the
smallest closed vector subspace containing this maximal orthonormal system S of
eigenvectors. Since the collection of all finite linear combinations of members of
S is dense in M , the continuity of L shows that L(M) ⊆ M . By Proposition 2.2,
L(M⊥) ⊆ M⊥. The equality (L(u), v) = (u, L(v)) for any two members u and
v of M⊥ shows that the restriction of L to M⊥ is self adjoint, and this restriction
is certainly bounded and compact. Arguing by contradiction, suppose M⊥ = 0.
Then either L = 0 or else L = 0 and the main step above shows that L has an
eigenvector in M⊥. Thus L has an eigenvector v0 of norm 1 in M⊥ in either
case. But then S∪{v0}would be an orthonormal system of eigenvectors properly
containing S, in contradiction to the maximality. We conclude that M⊥ = 0.
Since M is a closed vector subspace of H , it satisfies M⊥⊥ = M . Therefore
M = (M⊥)⊥ = 0⊥ = H , and H has an orthonormal basis of eigenvectors.
With the orthonormal basis S = {vα} of eigenvectors fixed, consider all vα’s

for which the corresponding eigenvalue λα has |λα| ≥ ε. If α1 and α2 are two
distinct such indices, we have

‖L(vα1)− L(vα2)‖2 = ‖λα1vα1 − λα2vα2‖2
= ‖λα1vα1‖2 + ‖λα2vα2‖2 by the Pythagorean theorem

= |λα1 |2 + |λα2 |2
≥ 2ε2.

If there were infinitely many such eigenvectors vαn , the bounded sequence
{L(vαn )} could not have a convergent subsequence, in contradiction to compact-
ness. Thus only finitely many members of S have eigenvalue with absolute value
≥ ε.
Fix λ = 0, let Sλ be the finite set of members of S with eigenvalue λ, and

let Hλ be the linear span of Sλ. If v is an eigenvector of L for the eigenvalue λ
beyond the vectors in Hλ, then the expansion

v =
∑
vα∈Sλ

(v, vα)vα +
∑

vα∈S−Sλ
(v, vα)vα

shows that (v, vα) = 0 for some vα in S − Sλ. This vα must have eigenvalue λ′
different from λ, and then Proposition 2.2 gives the contradiction (v, vα) = 0. We
conclude that Hλ is the entire eigenspace for eigenvalue λ and that the eigenvalues
of the members of S are the only eigenvalues of L .
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For each positive integer n, we know that only finitely many eigenvalues λ
corresponding to members of S have |λ| ≥ 1/n. Since every eigenvalue of L
is the eigenvalue for some member of S, the number of eigenvalues λ of L with
|λ| ≥ 1/n is finite. Taking the union of these sets as n varies, we see that the
number of eigenvalues of L is countable. This completes the proof.

3. Hilbert–Schmidt Theorem

TheHilbert–Schmidt Theoremwas postponed fromSection I.3, where it was used
in connection with Sturm–Liouville theory. The nub of the matter is the Spectral
Theorem for compact self-adjoint operators on a Hilbert space, Theorem 2.3.
But the actual result quoted in Section I.3 contains an overlay of measure theory
and continuity. Correspondingly there is an abstract Hilbert–Schmidt Theorem,
which combines the Spectral Theorem with the measure theory, and then there
is a concrete form, which adds the hypothesis of continuity and obtains extra
conclusions from it.
The abstract theorem works with an integral operator on L2 of a σ -finite

measure space (X, μ), the operator being of the form

T f (x) =
∫
X
K (x, y) f (y) dμ(y),

where K (x, y) is measurable on X × X . The function K is called the kernel of
the operator.3 If f is in L2(X, μ), then the Schwarz inequality gives |T f (x)| ≤
‖K (x, · )‖2‖ f ‖2 for each x in X . Squaring both sides, integrating, and taking the
square root yields ‖T f ‖2 ≤

( ∫
X×X |K |2 d(μ×μ)

)1/2‖ f ‖2. As a linear operator
on L2(X, μ), T therefore has operator norm satisfying

‖T ‖ ≤
( ∫

X

∫
X
|K (x, y)|2 dμ(x) dμ(y)

)1/2 = ‖K‖2.
In particular, T is bounded if K is square-integrable on X × X . In this case the
adjoint of T is given by

T ∗g(x) =
∫
X
K (y, x)g(y) dμ(y)

because (T f, g) = ∫
X

∫
X K (x, y) f (y)g(x) dμ(y) dμ(x) and because the as-

serted form of T ∗ has

( f, T ∗g) = ∫X f (x)
(∫

X K (y, x)g(y) dμ(y)
)
dμ(x)

= ∫X ∫X f (x)K (y, x)g(y) dμ(y) dμ(x).

3Not to be confused with the abstract-algebra notion of “kernel” as the set mapped to 0.
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Theorem 2.4 (Hilbert–Schmidt Theorem, abstract form). Let (X, μ) be a
σ -finite measure space, and let K ( · , · ) be a complex-valued L2 function on
X × X such that K (x, y) = K (y, x) for all x and y in X . Then the linear
operator T defined by

(T f )(x) =
∫
X
K (x, y) f (y) dμ(y)

is a self-adjoint compact operator on the Hilbert space L2(X, μ) with ‖T ‖ ≤
‖K‖2. Consequently if for each complexλ = 0, a vector subspace Vλ of L2(X, μ)
is defined by

Vλ =
{
f ∈ L2(X, μ)

∣∣ T f = λ f
}
,

then each Vλ is finite dimensional, the space Vλ is nonzero for only countably
many λ, the spaces Vλ are mutually orthogonal with respect to the inner product
on L2(X, μ), the λ’s with Vλ = 0 are all real, and for any ε > 0, there are only
finitely many λ with Vλ = 0 and |λ| ≥ ε. The largest value of |λ| for which
Vλ = 0 is ‖T ‖. Moreover, the vector subspace of L2 orthogonal to all Vλ is the
kernel of T , so that if v1, v2, . . . is an enumeration of the union of orthonormal
bases of the spaces Vλ with λ = 0, then for any f in L2(X, μ),

T f =
∞∑
n=1

(T f, vn)vn,

the series on the right side being convergent in L2(X, μ).

PROOF. Theorem 2.3 shows that it is enough to prove that the self-adjoint
bounded linear operator T is compact. Choose a sequence of simple functions
Kn square integrable on X × X such that limn ‖K − Kn‖2 = 0, and define
Tn f (x) =

∫
X Kn(x, y) f (y) dμ(y). The linear operator Tn is bounded with

‖Tn‖ ≤ ‖Kn‖2, and it has finite-dimensional image since Kn is simple. By
Proposition 2.1a, Tn is compact. Since ‖T − Tn‖ ≤ ‖K − Kn‖2 and since the
right side tends to 0, T is exhibited as the limit of Tn in the operator norm and is
compact by Proposition 2.1b.

Nowwe include the overlay of continuity. The additional assumptions are that
X is a compact metric space, μ is a Borel measure on X that assigns positive
measure to every nonempty open set, and K is continuous on X × X . The
additional conclusions are that the eigenfunctions for the nonzero eigenvalues are
continuous and that the series expansion actually converges absolutely uniformly
as well as in L2. The result used in Section I.3 was the special case of this result
with X = [a, b] and μ equal to Lebesgue measure.
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Theorem 2.5 (Hilbert–Schmidt Theorem, concrete form). Let X be a compact
metric space, letμ be a Borel measure on X that assigns positive measure to every
nonempty open set, and let K ( · , · ) be a complex-valued continuous function on
X× X such that K (x, y) = K (y, x) for all x and y in X . Then the linear operator
T defined by

T f (x) =
∫
X
K (x, y) f (y) dμ(y),

is a self-adjoint compact operator on the Hilbert space L2(X, μ) with ‖T ‖ ≤
‖K‖2, and its image lies in C(X). Consequently the vector subspace Vλ of
L2(X, μ) defined for any complex λ = 0 by

Vλ =
{
f ∈ L2(X, μ)

∣∣ T f = λ f
}

consists of continuous functions, each Vλ is finite dimensional, the space Vλ is
nonzero for only countably many λ, the spaces Vλ are mutually orthogonal with
respect to the inner product on L2(X, μ), the λ’s with Vλ = 0 are all real, and for
any ε > 0, there are only finitely many λ with Vλ = 0 and |λ| ≥ ε. The largest
value of |λ| for which Vλ = 0 is ‖T ‖. If v1, v2, . . . is an enumeration of the union
of orthonormal bases of the spaces Vλ with λ = 0, then for any f in L2(X, μ),

T f (x) =
∞∑
n=1

(T f, vn)vn(x),

the series on the right side being absolutely uniformly convergent for x in X .

REMARK. The hypothesis that μ assigns positive measure to every nonempty
open set is used only to identify

∑∞
n=1 (T f, vn)vn(x) with T f (x) at every point.

Without this particular hypothesis on μ, the series is still absolutely uniformly
convergent, but its sum is shown to equal T f (x) only almost everywhere with
respect to μ.

PROOF. Given ε > 0, choose δ > 0 by uniform continuity of K such that
|K (x, y)− K (x0, y0)| ≤ ε whenever (x, y) and (x0, y0) are at distance≤ δ. If f
is in L2(X, μ) and the points x and x0 are at distance≤ δ, then (x, y) and (x0, y)
are at distance ≤ δ and hence

|T f (x)− T f (x0)| ≤
∫
X |K (x, y)− K (x0, y)|| f (y)| dμ(y)

≤ ε
∫
X | f (y)| dμ(y) ≤ ε‖ f ‖2(μ(X))1/2,

the last step following from the Schwarz inequality. This proves that T f is
continuous for each f in L2(X, μ). In particular, if T f = λ f with λ = 0,
then f = T (λ−1 f ) exhibits f as in the image of T and therefore as continuous.
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Everything in the theorem now follows from Theorem 2.4 except for the absolute
uniform convergence to T f (x) in the last sentence of the theorem.
For the absolute uniform convergence, let ( · , · ) denote the inner product in

L2(X, μ). We begin by considering the function K (x, · ) for fixed x . It satisfies
(K (x, · ), vn) =

∫
X K (x, y) vn(y) dμ(y) = (T vn)(x) = λn vn(x)

if vn is in Vλn , and Bessel’s inequality gives

N∑
n=1

|λn|2|vn(x)|2 ≤
∫
X
|K (x, y)|2 dμ(y) ≤ ‖K‖2supμ(X) (∗)

for all N and x . Since the vn form an orthonormal basis of V⊥0 ,

limN→∞
∥∥Tg −∑N

n=1 (Tg, vn)vn
∥∥
2 = 0 (∗∗)

for all g in L2(X, μ). Meanwhile, we have

(Tg, vn)vn(x) = (g, T vn)vn(x) = λn(g, vn)vn(x).

Application of the Schwarz inequality and (∗) gives
N∑

n=M
|(Tg, vn)vn(x)| =

N∑
n=M

|λn(g, vn)vn(x)|

≤
( N∑
n=M

|λn|2|vn(x)|2
)1/2( N∑

n=M
|(g, vn)|2

)1/2
≤ ‖K‖supμ(X)1/2

( N∑
n=M

|(g, vn)|2
)1/2

.

Bessel’s inequality shows that the series
∑∞

n=1 |(g, vn)|2 converges and has sum
≤ ‖g‖22. Therefore

∑N
n=M |(g, vn)|2 tends to 0 as M and N tend to infinity, and

the rate is independent of x . Consequently the series
∑∞

n=1 |(Tg, vn)vn(x)| is
uniformly Cauchy, and it follows that the series

∑∞
n=1 (Tg, vn)vn(x) is abso-

lutely uniformly convergent for x in X . Since the uniform limit of continuous
functions is continuous, the sum has to be a continuous function. Since (∗∗)
shows that

∑N
n=1(Tg, vn)vn converges in L2(X, μ) to Tg, a subsequence of∑N

n=1 (Tg, vn)vn(x) converges almost everywhere to Tg(x). Since Tg is con-
tinuous, the set where

∑∞
n=1 (Tg, vn)vn(x) = Tg(x) is an open set. The fact

that this set has measure 0 implies, in view of the hypothesis on μ, that this set is
empty. Thus

∑N
n=1 (Tg, vn)vn(x) converges absolutely uniformly to Tg(x).
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4. Unitary Operators

In CN , a unitary matrix corresponds in the standard basis to a unitary linear
transformation U , i.e., one with U ∗ = U−1. Such a transformation preserves
inner products and therefore carries any orthonormal basis to another orthonor-
mal basis. Conversely any linear transformation from CN to itself that carries
some orthonormal basis to another orthonormal basis is unitary. For the infinite-
dimensional case we define a linear operator to be unitary if it satisfies the
equivalent conditions in the following proposition.4

Proposition 2.6. If V is a real or complex Hilbert space, then the following
conditions on a linear operator U : V → V are equivalent:

(a) UU ∗ = U ∗U = 1,
(b) U is onto V , and (Uv,Uv′) = (v, v′) for all v and v′ in V ,
(c) U is onto V , and ‖Uv‖ = ‖v‖ for all v in V .

A unitary operator carries any orthonormal basis to an orthonormal basis. Con-
versely if {ui } and {vi } are orthonormal bases, then there exists a unique bounded
linear operator U such that Uui = vi for all i , and U is unitary.

REMARKS. In the finite-dimensional case the condition “UU ∗ = 1” in (a) and
the condition “U is onto V ” in (b) and (c) follow from the rest, but that implication
fails in the infinite-dimensional case. Any two orthonormal bases have the same
cardinality, by Proposition 12.11 of Basic, and hence the index sets for {ui } and
{vi } in the statement of the proposition may be taken to be the same.
PROOF. If (a) holds, then UU ∗ = 1 proves that U is onto, and U ∗U = 1

proves that (Uv,Uv′) = (U ∗Uv, v′) = (v, v′). Thus (b) holds. In the reverse
direction, suppose that (b) holds. From (U ∗Uv, v′) = (Uv,Uv′) = (v, v′) for
all v and v′, we see thatU ∗U = 1. ThusU is one-one. SinceU is assumed onto,
it has a two-sided inverse, which must then equalU ∗ since any left inverse equals
any right inverse. Thus (a) holds, and (a) and (b) are equivalent. Conditions (b)
and (c) are equivalent by polarization.
If {ui } is an orthonormal basis andU is unitary, then (Uui ,Uuj ) = (ui , uj ) =

δi j by (b), and hence {Uui } is an orthonormal set. If (v,Uui ) = 0 for all i , then
(U ∗v, ui ) = 0 for all i , U ∗v = 0, and v = U (U ∗v) = U0 = 0. So {Uui } is an
orthonormal basis.
If {ui } and {vi } are orthonormal bases, define U on finite linear combinations

of the ui by U
(∑

i ci ui
) = ∑i civi . Then

∥∥U(∑i ci ui
)∥∥2 = ∥∥∑i civi

∥∥2 =
4This book uses the term “unitary” for both real and complex Hilbert spaces. A unitary linear

operator from a real Hilbert space into itself is traditionally said to be orthogonal, but there is no
need to reject the word “unitary” for real Hilbert spaces.
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i |ci |2 = ‖∑i ci ui‖2. Hence U extends to a bounded linear operator on V ,

necessarily preserving norms. It must be onto V since it preserves norms and
its image contains the dense set of finite linear combinations

∑
i civi . Thus (c)

holds, and U is unitary.

Since unitary operators are exactly the invertible linear operators that preserve
inner products, they are the ones that serve as isomorphisms of aHilbert spacewith
itself. Theorem 2.3 and Proposition 2.6 together give us a criterion for deciding
whether two compact self-adjoint operators on a Hilbert space are related to each
other by an underlying isomorphism of the Hilbert space: the criterion is that the
two operators have the same eigenvalues, that the dimension of the eigenspace for
each nonzero eigenvalue of one operator match the dimension of the eigenspace
for that eigenvalue of the other operator, and that the Hilbert-space dimension of
the zero eigenspaces of the two operators match.

5. Classes of Compact Operators

In this section we bring together various threads concerning compact operators,
integral operators, the Hilbert–Schmidt Theorem, the Hilbert–Schmidt norm of
a square matrix, and traces of matrices. The end product is to consist of some
relationships among these notions, together with the handy notion of the trace of
an operator. Once we have multiple Fourier series available as a tool in the next
chapter, we will be able to supplement the results of the present section and obtain
a formula for computing the trace of certain kinds of integral operators. Let us
start with various notions about bounded linear operators from an abstract real
or complex Hilbert space V to itself, touching base with familiar notions when
V = Cn .
Compact linear operators were discussed in Section 1. Compactness means

that the image of the closed unit ball has compact closure in V . We know
from Proposition 2.1 that the compact linear operators are exactly those that can
be approximated in the operator norm topology by linear operators with finite-
dimensional image. The adjoint of a compact linear operator is compact. Being
themembers of the closure of a vector subspace, the compact linear operators form
a vector subspace. When V = Cn , every linear operator is of course compact.
If L is a compact linear operator, then L A and AL are compact whenever

A is a bounded linear operator. In fact, if Ln is a sequence of linear operators
with finite-dimensional image such that ‖L − Ln‖ → 0, then ‖L A − Ln A‖ ≤
‖L − Ln‖‖A‖ → 0; since Ln A has finite-dimensional image, L A is compact.
To see that AL is compact, we take the adjoint: L∗ is compact, and hence
L∗A∗ = (AL)∗ is compact; since (AL)∗ is compact, so is AL . In algebraic
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terminology the compact linear operators form a two-sided ideal in the algebra
of all bounded linear operators.
Nextwe introduceHilbert–Schmidt operators. If L is a bounded linear operator

on V and if {ui } and {vj } are orthonormal bases of V , then Parseval’s equality
gives∑

i ‖Lui‖2 =
∑

i, j |(Lui , vj )|2 =
∑

i, j |(ui , L∗vj )|2
=∑i, j |(L∗vj , ui )|2 =

∑
i, j |(L∗vj , ui )|2 =

∑
j ‖L∗vj‖2.

Application of this formula twice shows that if we replace {ui } by a different
orthonormal basis {u′i }, we get

∑
i ‖Lui‖2 =

∑
i ‖Lu′i‖2. The expression

‖L‖2HS =
∑
i

‖Lui‖2 =
∑
i, j

|(Lui , vj )|2,

which we therefore know to be independent of both orthonormal bases {ui } and
{vj }, is the square of what is called the Hilbert–Schmidt norm ‖L‖HS of L .
For the finite-dimensional situation in which the underlying Hilbert space is

Rn orCn , we can take {ui } and {vj } both to be the standard orthonormal basis, and
then the Hilbert–Schmidt norm of the linear function corresponding to a matrix
A is just

(∑
i, j |Ai j |2

)1/2
.

Our computation with ‖L‖HS above shows that
‖L‖HS = ‖L∗‖HS.

The bounded linear operators that have finite Hilbert–Schmidt norm are called
Hilbert–Schmidt operators. The name results from the following proposition.

Proposition 2.7. Let (X, μ) be a σ -finite measure space such that L2(X, μ)
is separable, and let K ( · , · ) be a complex-valued L2 function on X × X . Then
the linear operator T defined by

(T f )(x) =
∫
X
K (x, y) f (y) dμ(y)

is a compact operator on the Hilbert space L2(X, μ) with ‖T ‖HS = ‖K‖2.
REMARK. No self-adjointness is assumed in this proposition.

PROOF. If {ui } is an orthonormal basis of L2(X, μ), then the functions
(uj ⊗ ūi )(x, y) = uj (x)ui (y) form an orthonormal basis of L2(X × X, μ × μ)

as a consequence of Proposition 12.9 of Basic. Hence

(Tui , uj ) =
∫
X

∫
X K (x, y)ui (y)uj (x) dμ(x) dμ(y) = (K , (uj ⊗ ūi )).

Taking the square of the absolute value of both sides and summing on i and j ,
we obtain ‖T ‖2HS = ‖K‖22.
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Returning to an abstract Hilbert space V and the bounded linear operators on
it, let us observe for any L that

‖L‖ ≤ ‖L‖HS.
In fact, if u in V has ‖u‖ = 1, then the singleton set {u} can be extended to an
orthonormal basis {ui }, and we obtain ‖Lu‖2 ≤

∑
i ‖Lui‖2 = ‖L‖2HS. Taking

the supremum over u with ‖u‖ = 1, we see that ‖L‖2 ≤ ‖L‖2HS. Two easier but
related inequalities are that

‖AL‖HS ≤ ‖A‖‖L‖HS and ‖L A‖HS ≤ ‖A‖‖L‖HS.
The first of these follows from the inequality ‖ALui‖2 ≤ ‖A‖2‖Lui‖2 by sum-
ming over an orthonormal basis. The second follows from the first because
‖L A‖HS = ‖(L A)∗‖HS = ‖A∗L∗‖HS ≤ ‖A∗‖‖L∗‖HS = ‖A‖‖L‖HS.
Any Hilbert–Schmidt operator is compact. In fact, if L is Hilbert–Schmidt,

let {ui } be an orthonormal basis, let ε > 0 be given, and choose a finite set F
of indices i such that

∑
i /∈F ‖Lui‖2 < ε. If E is the orthogonal projection on

the span of the ui for i in F , then we obtain ‖L∗ − EL∗‖2 = ‖L − LE‖2 ≤
‖L − LE‖2HS =

∑
i ‖(L − LE)ui‖2 < ε. Hence L∗ can be approximated in

the operator norm topology by operators with finite-dimensional image and is
compact; since L∗ is compact, L is compact.
The sum of two Hilbert–Schmidt operators is Hilbert–Schmidt. In fact, we

have ‖(L+M)ui‖ ≤ ‖Lui‖+‖Mui‖ ≤ 2max{‖Lui‖, ‖Mui‖}. Squaring gives
‖(L + M)ui‖2 ≤ 4max{‖Lui‖2, ‖Mui‖2} ≤ 4(‖Lui‖2 + ‖Mui‖2), and the
result follows when we sum on i . Thus the Hilbert–Schmidt operators form a
vector subspace of the bounded linear operators on V , in fact a vector subspace
of the compact operators on V . As is true of the compact operators, the Hilbert–
Schmidt operators form a two-sided ideal in the algebra of all bounded linear
operators; this fact follows from the inequalities ‖AL‖HS ≤ ‖A‖‖L‖HS and
‖L A‖HS ≤ ‖A‖‖L‖HS.
The vector space of Hilbert–Schmidt operators becomes a normed linear space

under the Hilbert–Schmidt norm. Even more, it is an inner-product space. To see
this, let L and M be Hilbert–Schmidt operators, and let {ui } be an orthonormal
basis. We define 〈L ,M〉 = ∑i (Lui ,Mui ). This sum is absolutely convergent
as we see from two applications of the Schwarz inequality:

∑
i |(Lui ,Mui )| ≤∑

i ‖Lui‖‖Mui‖ ≤
(∑

i ‖Lui‖2
)1/2(∑

i ‖Mui‖2
)1/2 = ‖L‖HS‖M‖HS < ∞.

Substituting from the definitions, we readily check that

〈L ,M〉 =

⎧⎪⎪⎨⎪⎪⎩
∑

k∈{0,2}
i k

4 ‖L + i kM‖2HS if V is real,

3∑
k=0

i k

4 ‖L + i kM‖2HS if V is complex.
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Hence the definition of 〈L ,M〉 is independent of the orthonormal basis. It is
immediate from the definition and the above convergence that the form 〈 · , · 〉
makes the vector space of Hilbert–Schmidt operators into an inner-product space
with associated norm ‖ · ‖HS.
If L has finite-dimensional image, then L is a Hilbert–Schmidt operator. In

fact, let E be the orthogonal projection on image L , take an orthonormal basis
{ui | i ∈ F} of image L , and extend to an orthonormal basis {ui | i ∈ S}
of V ; here F is a finite subset of S. Then

∑
i∈S ‖Lui‖2 =

∑
i∈S ‖ELui‖2 =∑

i∈S ‖L∗Eui‖2 =
∑

i∈F ‖L∗ui‖2 < ∞. Thus the Hilbert–Schmidt operators
form an ideal between the ideal of compact operators and the ideal of operators
with finite-dimensional image.
Now we turn to a generalization of the trace Tr A =∑i Aii of a square matrix

A. This generalization plays a basic role in distribution theory, in index theory
for partial differential equations, and in representation theory. In this section we
shall describe the operators, and at the end of Chapter III we shall show how
traces can be computed for simple integral operators. Realistic applications tend
to be beyond the scope of this book.
Although the trace of a linear operator on Cn may be computed as the sum of

the diagonal entries of the matrix of the operator in any basis, we shall continue
to use orthonormal bases. Thus the expression we seek to extend to any Hilbert
space V is

∑
i (Lui , ui ). The operators of “trace class” are to be a subset of the

Hilbert–Schmidt operators. It might at first appear that the condition to impose for
the definition of trace class is that

∑
i (Lui , ui ) be absolutely convergent for some

orthonormal basis, but this condition is not enough. In fact, if a bounded linear
operator L is defined on a Hilbert space with orthonormal basis u1, u2, . . . by
Lui = ui+1 for all i , then (Lui , ui ) = 0 for all i ; on the other hand, ‖Lui‖2 = 1
for all i , and L is not Hilbert–Schmidt.
We say that a bounded linear operator L on V is of trace class if it is a

compact operator5 such that
∑

i |(Lui , vi )| < ∞ for all orthonormal bases
{ui } and {vi }. Since compact operators are closed under addition and under
passage to adjoints, we see directly from the definition that the sum of two trace-
class operators is of trace class and that the adjoint of a trace-class operator is
of trace class. The operator L = B∗A with A and B Hilbert–Schmidt is an
example of a trace-class operator. In fact, the operator L is compact as the
product of two compact operators; also, (Lui , vi ) = (B∗Aui , vi ) = (Aui , Bvi ),
and we therefore have

∑
i |(Lui , vi )| =

∑
i |(Aui , Bvi )| ≤

∑
i ‖Aui‖‖Bvi‖ ≤

5This condition is redundant; it is enough to assume boundedness. However, to proceed without
using compactness of L , we would have to know that L∗L has a “positive semidefinite” square root,
which requires having the full Spectral Theorem for bounded self-adjoint operators. This theorem
is not available until the end of Chapter IV. The development here instead gets by with the Spectral
Theorem for compact self-adjoint operators (Theorem 2.3).
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i ‖Aui‖2

)1/2(∑
i ‖Bvi‖2

)1/2 = ‖A‖HS‖B‖HS. The following proposition
shows that there are no other examples.

Proposition 2.8. If L : V → V is a trace-class operator on the Hilbert space
V , then L factors as L = B∗A with A and B Hilbert–Schmidt. Moreover, the
supremum of

∑
i |(Lui , vi )| over all orthonormal bases {ui } and {vi } equals the

infimum, over all Hilbert–Schmidt A and B such that L = B∗A, of the product
‖A‖HS‖B‖HS.
PROOF. First we produce a factorization. Since L is a compact operator,

L∗L is a compact self-adjoint operator, and Theorem 2.3 shows that L∗L has an
orthonormal basis of eigenvectorswi with real eigenvalues λi tending to 0. Since
λi (wi , wi ) = (L∗Lwi , wi ) = (Lwi , Lwi ), we see that all λi are ≥ 0. Define a
bounded linear operator T by Twi =

√
λi wi for all i . The operator T is self

adjoint, it has (T v, v) ≥ 0 for all v, its kernel N is the smallest closed vector
subspace containing all the wi with λi = 0, and its image is dense in N⊥. Since
N ∩ N⊥ = 0, T is one-one from N⊥ into N⊥. Thus T v �→ Lv is a well-
defined linear function from a dense vector subspace of N⊥ into V . The map
T v �→ Lv has the property that ‖Lv‖2 = (Lv, Lv) = (L∗Lv, v) = (T 2v, v) =
(T v, T v) = ‖T v‖2. Thus T v �→ Lv is a linear isometry from a dense vector
subspace of N⊥ into V . Since V is complete, T v �→ Lv extends to a linear
isometry U : N⊥ → V . This U satisfies L = UT .
Let I be the set of indices i for the orthonormal basis {wi }, and let P be the

subset with λi > 0. By polarization, U preserves inner products in carrying N⊥
into V . Extend U to all of V by setting it equal to 0 on N , so that U ∗ is well
defined. The system {wi }i∈P is an orthonormal basis of N⊥, and hence the system
{ fi }i∈P with fi = Uwi for i ∈ P is an orthonormal set in V . SinceU : N⊥ → V
is isometric, we have (wi ,U ∗ fi ) = (Uwi , fi ) = (Uwi ,Uwi ) = (wi , wi ). Since
Twi is a multiple of wi , we obtain (Twi ,U ∗ fi ) = (Twi , wi ). Therefore∑

i∈P
|(Lwi , fi )| =

∑
i∈P

|(UTwi , fi )| =
∑
i∈P

|(Twi ,U ∗ fi )|

= ∑
i∈P

|(Twi , wi )| =
∑
i∈P

(Twi , wi ).

Extend { fi }i∈P to an orthonormal basis { fi } of V ; since any two orthonormal
bases of a Hilbert space have the same cardinality, we can index the new vectors
of this set by I − P . The operators L and T have the same kernel, and thus the
sums for i ∈ P can be extended over all i in I to give∑

i∈I
|(Lwi , fi )| =

∑
i∈I

(Twi , wi ).

Define a bounded linear operator S on V by Swi = 4
√
λi wi for all i . Then

|(Swi , wj )|2 = δi j (S2wi , wi ) = δi j (Twi , wi ), and hence S is a Hilbert–Schmidt
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operator with ‖S‖2HS =
∑

i∈I (Twi , wi ). Take A = S and B∗ = US; each
of these is Hilbert–Schmidt since ‖US‖HS ≤ ‖U‖‖S‖HS, and we have B∗A =
USS = UT = L . This proves the existence of a decomposition B∗A = L .
For the bases {wi } and { fi }, we have just seen that

‖A‖HS‖B‖HS ≤ ‖S‖HS‖U‖‖S‖HS ≤ ‖S‖2HS =
∑
i∈I

(Twi , wi ) =
∑
i∈I
|(Lwi , fi )|.

But if L = B ′∗A′ is any decomposition of L as the product of Hilbert–Schmidt
operators and if {ui } and {vi } are any two orthonormal bases, we have∑

i
|(Lui , vi )| =

∑
i
|(B ′∗A′ui , vi )| =

∑
i
|(A′ui , B ′vi )

≤∑
i
‖A′ui‖‖B ′vi‖ ≤ ‖A′‖HS‖B ′‖HS.

Therefore sup
∑
i
|(Lui , vi )| ≤ inf ‖A′‖HS‖B ′‖HS,

as asserted.

If {ui } is an orthonormal basis of V and L is of trace class, we can thus write
L = B∗A with A and B Hilbert–Schmidt. We define the trace of L to be

Tr L =∑i (Lui , ui ) =
∑

i (B
∗Aui , ui ) =

∑
i (Aui , Bui ) = 〈A, B〉.

The series
∑

i (Lui , ui ) is absolutely convergent by definition of trace class. The
trace of L is independent of the orthonormal basis since it equals 〈A, B〉, and it
is independent of A and B since it equals

∑
i (Lui , ui ).

In practice it is not so easy to check from the definition that L is of trace class.
But there is a simple sufficient condition.

Proposition 2.9. If L : V → V is a bounded linear operator on the Hilbert
space V and if

∑
i, j |(Lui , vj )| <∞ for some orthonormal bases {ui } and {vj },

then L is of trace class.

PROOF. Since |(Lui , vi )| ≤ ‖L‖, we have |(Lui , vj )|2 ≤ ‖L‖|(Lui , vj )| for
all i and j , and it follows from the finiteness of

∑
i, j |(Lui , vj )| that ‖L‖2HS =∑

i, j |(Lui , vj )|2 is finite. Thus L is a Hilbert–Schmidt operator and has to be
compact.
If {ek} and { fl} are orthonormal bases, we expand ek =

∑
i (ek, ui )ui and fk =∑

j ( fk, vj )vj and substitute to obtain (Lek, fk) =
∑

i, j (ek, ui )(Lui , vj )( fk, vj ).
Taking the absolute value and summing on k gives∑

k
|(Lek, fk)| ≤

∑
i, j
|(Lui , vj )|

∑
k
|(ek, ui )( fk, vj )|.
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Application of the Schwarz inequality to the sumon k and thenBessel’s inequality
to each factor of the result yields∑

k
|(Lek, fk)| ≤

∑
i, j
|(Lui , vj )|

(∑
k
|(ek, ui )|2

)1/2(∑
k
|( fk, vj )|2

)1/2
≤∑

i, j
|(Lui , vj )|‖ui‖‖vj‖ =

∑
i, j
|(Lui , vj )| <∞,

and therefore L is of trace class.

6. Problems

1. Let (S, μ) be a σ -finite measure space, let f be in L∞(S, μ), and let Mf be the
bounded linear operator on L2(S, μ) given by Mf (g) = f g.
(a) Find a necessary and sufficient condition for Mf to have an eigenvector.
(b) Find a necessary and sufficient condition for Mf to be compact.

2. Let L be a compact operator on a Hilbert space, and let λ be a nonzero complex
number. Prove that if λI − L is one-one, then the image of λI − L is closed.

3. Prove for a Hilbert space V that the normed linear space of Hilbert–Schmidt
operators with the norm ‖ · ‖HS is a Banach space.

4. If L is a trace-class operator on a Hilbert space V , let ‖L‖TC equal the supremum
of
∑

i |(Lui , vi )| over all orthonormal bases {ui } and {vi }. By Proposition 2.8
this equals the infimum, over all Hilbert–Schmidt A and B such that L = B∗A,
of the product ‖A‖HS‖B‖HS. Prove that the vector space of trace-class operators
is a normed linear space under ‖ · ‖TC as norm.

5. If L is a trace-class operator on a complex Hilbert space V and A is a bounded
linear operator, prove that Tr AL = Tr L A and conclude that Tr(BLB−1) = Tr L
for any bounded linear operator B.

Problems 6–8 deal with some extensions of Theorem 2.3 to situations involving
several operators. A bounded linear operator L is said to be normal if LL∗ = L∗L .
6. Suppose that {Lα} is a finite commuting family of compact self-adjoint operators

on a Hilbert space. Prove that there exists an orthonormal basis consisting of
simultaneous eigenvectors for all Lα .

7. Fix a complex Hilbert space V .
(a) Prove that the decomposition L = 1

2 (L + L∗)+ i 12i (L − L∗) exhibits any
normal operator L : V → V as a linear combination of commuting self-
adjoint operators.

(b) Prove that the operators in (a) are compact if L is compact.
(c) State an extension of Theorem 2.3 that concerns compact normal operators

on a complex Hilbert space.
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8. Fix a Hilbert space V .
(a) Prove that a unitary operator from V to itself is always normal.
(b) Under what circumstances is a unitary operator compact?

Problems 9–13 indicate an approach to second-order ordinary differential equations
by integral equations in a way that predates the use of the Hilbert–Schmidt Theorem.

9. Forω = 0, show that the unique solutionu(t) on [a, b] of the equation u′′+ω2u =
g(t) and the initial conditions u(a) = 1 and u′(a) = 0 is

u(t) = cosω(t − a)+ ω−1
∫ t
a g(s) sinω(t − s) ds.

10. Let ρ(t) be a continuous function on [a, b], and let u(t) be the unique solution
of the equation u′′ + [ω2 − ρ(t)]u = 0 and the initial conditions u(a) = 1 and
u′(a) = 0. Show that u satisfies the integral equation

u(t)− ω−1
∫ t
a ρ(s) sinω(t − s)u(s) ds = cosω(t − a),

which is of the form u(t)−∫ ta K (t, s)u(s) ds = f (t), where K (t, s) is continuous
on the triangle a ≤ s ≤ t ≤ b.

11. Let K (t, s) be continuous on the triangle a ≤ s ≤ t ≤ b. For f continuous on
[a, b], define (T f )(t) = ∫ ta K (t, s) f (s) ds.
(a) Prove that f continuous implies T f continuous.

(b) Put M = max |K (t, s)|. If f has C = ∫ ba | f (t)| dt , prove inductively that
|(T n f )(t)| ≤ CMn

(n−1)! (t − a)n−1 for n ≥ 1.
(c) Deduce that the series f + T f + T 2 f + · · · converges uniformly on [a, b].

12. Set u = f + T f + T 2 f + · · · in the previous problem, and prove that u satisfies
u − Tu = f .

13. In the previous problem prove that u = f +T f +T 2 f +· · · is the only solution
of u − Tu = f .



CHAPTER III

Topics in Euclidean Fourier Analysis

Abstract. This chapter takes up several independent topics in Euclidean Fourier analysis, all having
some bearing on the subject of partial differential equations.
Section 1 elaborates on the relationship between the Fourier transform and the Schwartz space,

the subspace of L1(RN ) consisting of smooth functions with the property that the product of any
iterated partial derivative of the function with any polynomial is bounded. It is possible to make
the Schwartz space into a metric space, and then one can consider the space of continuous linear
functionals; these continuous linear functionals are called “tempered distributions.” The Fourier
transform carries the space of tempered distributions in one-one fashion onto itself.
Section 2 concerns weak derivatives, and the main result is Sobolev’s Theorem, which tells how

to recover information about ordinary derivatives from information about weak derivatives. Weak
derivatives are easy to manipulate, and Sobolev’s Theorem is therefore a helpful tool for handling
derivatives without continually having to check the validity of interchanges of limits.
Sections 3–4 concern harmonic functions, those functions on open sets in Euclidean space that

are annihilated by the Laplacian. The main results of Section 3 are a characterization of harmonic
functions in terms of a mean-value property, a reflection principle that allows the extension to all of
Euclidean space of any harmonic function in a half space that vanishes at the boundary, and a result
of Liouville that the only bounded harmonic functions in all of Euclidean space are the constants.
The main result of Section 4 is a converse to properties of Poisson integrals for half spaces, showing
that harmonic functions in a half space are given as Poisson integrals of functions or of finite complex
measures if their L p norms over translates of the bounding Euclidean space are bounded.
Sections 5–6 concern the Calderón–Zygmund Theorem, a far-reaching generalization of the

theorem concerning the boundedness of the Hilbert transform. Section 5 gives the statement and
proof, and two applications are the subject of Section 6. One of the applications is toRiesz transforms,
and the other is to the Beltrami equation, whose solutions are “quasiconformal mappings.”
Sections 7–8 concern multiple Fourier series for smooth periodic functions. The theory is

established in Section 7, and an application to traces of integral operators is given in Section 8.

1. Tempered Distributions

We fix normalizations for the Euclidean Fourier transform as in Basic: For f in
L1(RN ), the definition is

f̂ (y) = (F f )(y) =
∫

RN
f (x)e−2π i x ·y dx,

54
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with x · y referring to the dot product and with the 2π in the exponent. The
inversion formula is valid whenever f̂ is in L1; it says that f is recovered as

f (x) = (F−1 f̂ )(x) =
∫

RN
f̂ (y)e−2π i x ·y dy

almost everywhere, including at all points of continuity of f . The operator F
carries L1 ∩ L2 into L2 and extends to a linear map F of L2 onto L2 such that
‖F f ‖2 = ‖ f ‖2. This is the Plancherel formula.
The Schwartz space S = S(RN ) is the vector space of all functions f in

C∞(RN ) such that the product of any polynomial by any iterated partial derivative
of f is bounded. This is a vector subspace of L1 ∩ L2, and it was shown in Basic
that F carries S one-one onto itself. It will be handy sometimes to use a notation
for partial derivatives and their iterates that is different from that in Chapter I.

Namely,1 let Dj = ∂

∂xj
. If α = (α1, . . . , αN ) is an N -tuple of nonnegative

integers, we write |α| =∑N
j=1 αj , α! = α1! · · ·αN !, xα = xα11 · · · xαNN , and Dα =

Dα1
1 · · · DαN

N . Addition of such tuples α is defined component by component, and
we say that α ≤ β if αj ≤ βj for 1 ≤ j ≤ N . We write |α| for the total
order α1 + · · · + αN , and we call α a multi-index. If Q(x) = ∑α aαx

α is a
complex-valued polynomial on RN , define Q(D) to be the partial differential
operator

∑
α aαD

α with constant coefficients obtained by substituting, for each
j with 1 ≤ j ≤ N , the operator Dj = ∂

∂xj
for xj . The Schwartz functions are

then the smooth functions f on RN such that P(x)Q(D) f is bounded for each
pair of polynomials P and Q.
The Schwartz space is directly usable in connection with certain linear par-

tial differential equations with constant coefficients. A really simple example
concerns the Laplacian operator  = ∂2

∂x21
+ · · · + ∂2

∂x2N
, which we can write as

 = |D|2 in the new notation for differential operators. Specifically the equation

(1−)u = f

has a unique solution u in S for each f in S. To see this, we take the Fourier
transform of both sides, obtainingFu−F(u) = F f orFu−F(|D|2(u)) = F f .
Using the formulas relating the Fourier transform, multiplication by polynomials,
and differentiation,2 we can rewrite this equation as (1+ 4π2|y|2)F(u) = F( f ).
Problem1 at the end of the chapter asks one to check that (1+4π2|y|2)−1g is inS if

1Some authors prefer to abbreviate ∂
∂xj

as ∂j , reserving the notation Dj for the product of ∂j and

a certain imaginary scalar that depends on the definition of the Fourier transform.
2These, with hypotheses in place, appear as Proposition 8.1 of Basic.
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g is inS, and then existence of a solution inS to the differential equation is proved
by the formula u = F−1((1+4π2|y|2)−1F( f )). For uniqueness let u1 and u2 be
two solutions in S corresponding to the same f . Then (1−)(u1−u2) = 0, and
hence (1+ 4π2|y|2)F(u1 − u2)(y) = 0 for all y. Therefore F(u1 − u2)(y) = 0
everywhere. Since F is one-one on S, we conclude that u1 = u2.
A deeper use of the Schwartz space in connectionwith linear partial differential

equations comes about because of the relationship between the Schwartz space
and the theory of “distributions.” Distributions are continuous linear functionals
on vector spaces of smooth functions, i.e., continuous linear maps from such a
space to the scalars, and they will be considered more extensively in Chapter V.
For now, we shall be content with discussing “tempered distributions,” the dis-
tributions associated with the Schwartz space. In order to obtain a well-defined
notion of continuity, we shall describe how to make S(RN ) into a metric space.
For each pair of polynomials P and Q, we define

‖ f ‖P,Q = sup
x∈RN

|P(x)(Q(D) f )(x)|.

Each function ‖ · ‖P,Q on S is a seminorm on S in the sense that3
(i) ‖ f ‖P,Q ≥ 0 for all f in S,
(ii) ‖c f ‖P,Q = |c|‖ f ‖P,Q for all f in S and all scalars c,
(iii) ‖ f + g‖P,Q ≤ ‖ f ‖P,Q + ‖g‖P,Q for all f and g in S.

Collectively these seminorms have a property that goes in the converse direction
to (i), namely

(iv) ‖ f ‖P,Q = 0 for all P and Q implies f = 0.
In fact, f will already be 0 if the seminorm for P = Q = 1 is 0 on f .
Each seminorm gives rise to a pseudometric dP,Q( f, g) = ‖ f − g‖P,Q in

the usual way, and the topology on S is the weakest topology making all the
functions dP,Q( · , g) continuous. That is, a base for the topology consists of all
sets Ug,P,Q,n = { f | ‖ f − g‖P,Q < 1/n}.
A feature of S is that only countably many of the seminorms are relevant for

obtaining the open sets, and a consequence is that the topology ofS is defined by a
metric. The important seminorms are the ones in which P and Q are monomials,
each with coefficient 1. In fact, if P(x) =∑α aαx

α and Q(x) =∑β bβx
β , then

it is easy to check that dP,Q( f, g) ≤
∑

α,β |aαbβ |dxα,xβ ( f, g). Hence any open
set that dP,Q defines is a union of finite intersections of the open sets defined by
the finitely many dxα,yβ ’s.

3The reader may notice that the definition of “seminorm” is the same as the definition of
“pseudonorm” in Basic. The only distinction is that the word “seminorm” is often used in the
context of a whole family of such objects, while the word “pseudonorm” is often used when there is
only one such object under consideration.
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Let us digress and consider the situation more abstractly because it will arise
again later. Suppose we have a real or complex vector space V on which are
defined countably many seminorms ‖ · ‖n satisfying (i), (ii), and (iii) above.
Each seminorm ‖ · ‖n gives rise to a pseudometric d̃n on V and then to open

sets defined relative to d̃n . For any pseudometric ρ̃, the function ρ = min{1, ρ̃}
is easily checked to be a pseudometric, and ρ defines the same open sets on V as
ρ̃ does. We shall use the following abstract result about pseudometrics; this was
proved as Proposition 10.28 of Basic, and we therefore omit the proof here.

Proposition 3.1. Suppose that V is a nonempty set and {dn}n≥1 is a sequence
of pseudometrics on V such that dn(x, y) ≤ 1 for all n and for all x and y in V .
Then d(x, y) = ∑∞

n=1 2
−ndn(x, y) is a pseudometric. If the open balls relative

to dn are denoted by Bn(r; x) and the open balls relative to d are denoted by
B(r; x), then the Bn’s and B’s are related as follows:

(a) whenever some Bn(rn; x) is given with rn > 0, there exists some B(r; x)
with r > 0 such that B(r; x) ⊆ Bn(rn; x),

(b) whenever B(r; x) is given with r > 0, there exist finitely many rn > 0,
say for n ≤ K , such that

⋂K
n=1 Bn(rn; x) ⊆ B(r; x).

In the situation with countably many seminorms ‖ · ‖n for the vector space V ,
we see that we can introduce a pseudometric d such that three conditions hold:

• d(x, y) = d(0, y − x) for all x and y,
• whenever some x in V is given and an index n and corresponding number
rn > 0 are given, then there is a number r > 0 such that d(x, y) < r
implies ‖y − x‖n < rn ,

• whenever some x in V is given and some r > 0 is given, then there exist
finitely many rn > 0, say for n ≤ K , such that any y with ‖y− x‖n < rn
for n ≤ K implies d(x, y) < r .

If the seminorms collectively have the property that ‖x‖n = 0 for all n only for
x = 0, then d is a metric, and we say that the family of seminorms is a separating
family. The specific form of d is not important: in the case of S, the metric d
depended on the choice of the countable subfamily of pseudometrics and the order
in which they were enumerated, and these choices do not affect any results about
S. The important thing about this construction is that it shows that the topology
is given by some metric.
The three conditions marked with bullets enable us to detect continuity of

linear functions with domain V and range another such space W by using the
seminorms directly.

Proposition 3.2. Let L : V → W be a linear function between vector spaces
that are both real or both complex. Suppose that V is topologized by means of
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countably many seminorms ‖ · ‖V,m andW is topologized by means of countably
many seminorms ‖ · ‖W,n . Then L is continuous if and only if for each n, there
is a finite set F = F(n) of m’s and there are corresponding positive numbers δm
such that ‖v‖V,m ≤ δm for all m ∈ F implies ‖L(v)‖W,n ≤ 1.
PROOF. Let dV and dW be the distance functions in V and W . When n is

given, the second item in the bulleted list shows that there is some r > 0 such
that dW (0, w) ≤ r implies ‖w‖W,n ≤ 1. If L is continuous at 0, then there is a
δ > 0 such that dV (0, v) ≤ δ implies dW (0, L(v)) ≤ r . From the third item in
the bulleted list, we know that there is a finite set F of indices m and there are
corresponding numbers δm > 0 such that ‖v‖V,m ≤ δm implies dV (0, v) ≤ δ.
Then ‖v‖V,m ≤ δm for all m in F implies ‖L(v)‖W,n ≤ 1.
Conversely suppose for each n that there is a finite set F and there are numbers

δm > 0 form in F such that the stated condition holds. To see that L is continuous
at 0, let ε > 0 be given. Choose K and numbers εn > 0 for n ≤ K such
that ‖w‖W,n ≤ εn for n ≤ K implies dW (0, w) ≤ ε. For each n ≤ K , the
given condition on L allows us to find a finite set Fn of indices m and numbers
δm > 0 such that ‖v‖V,m ≤ δm implies ‖L(v)‖W,n ≤ 1. If ‖v‖V,m ≤ δmεn

for all m in F = ⋃
n≤K Fn , then ‖L(v)‖W,n ≤ εn for all n ≤ K and hence

dW (0, L(v)) ≤ ε. We know that there is a number δ > 0 such that dV (0, v) ≤ δ

implies ‖v‖V,m ≤ δmεn for all m in F , and then dW (0, L(v)) ≤ ε. Hence L is
continuous at 0.
Once L is continuous at 0, it is continuous everywhere because of the translation

invariance of dV and dW : dV (v1, v2) = dV (0, v2 − v1) and dW (L(v1), L(v2)) =
dW (0, L(v2)− L(v1)) = dW (0, L(v2 − v1)).

Now we return to the Schwartz space S to apply our construction and Propo-
sition 3.2. The bulleted items above make it clear that it does not matter which
countable set of generating seminorms we use nor what order we put them in; the
open sets and the criterion for continuity are still the same. The following corollary
is immediate from Proposition 3.2, the definition of S, and the behavior of the
Fourier transform under multiplication by polynomials and under differentiation.

Corollary 3.3. For the Schwartz space S on RN ,

(a) a linear functional � is continuous if and only if there is a finite set
F of pairs (P, Q) of polynomials and there are corresponding numbers
δP,Q > 0 such that‖ f ‖P,Q ≤ δP,Q for all (P, Q) in F implies |�( f )| ≤ 1.

(b) the Fourier transform mapping F : S → S is continuous, and so is its
inverse.

A continuous linear functional on the Schwartz space is called a tempered
distribution, and the space of all tempered distributions is denoted by S ′ =
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S ′(RN ). It will be convenient to write 〈T, ϕ〉 for the value of the tempered
distribution T on the Schwartz function ϕ. The space of tempered distributions
is huge. A few examples will give an indication just how huge it is.

EXAMPLES.

(1) Any function f on RN with | f (x)| ≤ (1+ |x |2)n|g(x)| for some integer n
and some integrable function g defines a tempered distribution T by integration:
〈T, ϕ〉 = ∫

RN f (x)ϕ(x) dx when ϕ is in S. In view of Corollary 3.3a, the
continuity follows from the chain of inequalities

|〈T, ϕ〉| ≤ ∫
RN

(| f (x)|(1+ |x |2)−n)((1+ |x |2)n|ϕ(x)|) dx
≤ ( ∫

RN |g(x)| dx
)(
supx {(1+ |x |2)n|ϕ(x)|}

)
= ‖g‖1‖ϕ‖P,1 for P(x) = (1+ |x |2)n.

(2)Any function f with | f (x)| ≤ (1+|x |2)n|g(x)| for some integern and some
function g in L∞(RN ) defines a tempered distribution T by integration: 〈T, ϕ〉 =∫

RN f (x)ϕ(x) dx . In fact, | f (x)| ≤ (1 + |x |2)n+N ((1 + |x |2)−N |g(x)|), and
(1+|x |2)−N |g(x)| is integrable; hence this example is an instance of Example 1.
(3) Any function f with | f (x)| ≤ (1 + |x |2)n|g(x)| for some integer n and

some function g in L p(RN ), where 1 ≤ p ≤ ∞, defines a tempered distribution
T by integration because such a distribution is the sum of one as in Example 1
and one as in Example 2.

(4) Suppose that f is as in Example 3 and that Q(D) is a constant-coefficients
partial differential operator. Then the formula 〈T, ϕ〉 = ∫

RN f (x)(Q(D)ϕ)(x) dx
defines a tempered distribution.

(5) In the above examples, Lebesguemeasure dx may be replaced by anyBorel
measure dμ(x) on RN such that

∫
RN (1 + |x |2)n0 dμ(x) < ∞ for some n0. A

particular case of interest is that dμ(x) is a point mass at a point x0; in this case,
the tempered distributions ϕ �→ 〈T, ϕ〉 that are obtained by combining the above
constructions are the linear combinations of iterated partial derivatives of ϕ at the
point x0.

(6) Any finite linear combination of tempered distributions as in Example 5 is
again a tempered distribution.

Two especially useful operations on tempered distributions are multiplication
by a Schwartz function and differentiation. Both of these definitions are arranged
to be extensions of the corresponding operations on Schwartz functions. The
definitions are 〈ψT, ϕ〉 = 〈T, ψϕ〉 and 〈DαT, ϕ〉 = (−1)|α|〈T, Dαϕ〉; in the
latter case the factor (−1)|α| is included because integration by parts requires its
presence when T is given by a Schwartz function.



60 III. Topics in Euclidean Fourier Analysis

Auseful feature of distributions in connectionwith differential equations, aswe
shall see in more detail in later chapters, is that we can first look for solutions of a
given differential equation that are distributions and then consider how close those
distributions are to being functions. The special feature of tempered distributions
is that the Fourier transform makes sense on them, as follows.
As with the operations of multiplication by a Schwartz function and differen-

tiation, the definition of Fourier transform of a tempered distribution is arranged
to be an extension of the definition of the Fourier transform of a member ψ of
S when we identify the function ψ with the distribution ψ(x) dx . If ϕ is in S,
then

∫
ψ̂ϕ dx = ∫ ψϕ̂ dx by the multiplication formula,4 which we reinterpret

as 〈F(ψ dx), ϕ〉 = 〈ψ dx, ϕ̂ 〉. The definition is
〈F(T ), ϕ〉 = 〈T, ϕ̂ 〉

for T ∈ S ′ and ϕ ∈ S. To see that F(T ) is in S ′, we have to check that
F(T ) is continuous. The definition is F(T ) = T ◦ F, and F is continuous on S
by Corollary 3.3b. Thus the Fourier transform carries tempered distributions to
tempered distributions.

Proposition 3.4. The Fourier transform F is one-one from S ′(RN ) onto
S ′(RN ).

PROOF. If T is in S ′ and F(T ) = 0, then 〈T,F(ϕ)〉 = 0 for all ϕ in S. Since
F carries S onto S, 〈T, ψ〉 = 0 for all ψ in S, and thus T = 0. Therefore F is
one-one on S ′.
If T ′ is given in S ′, put T = T ′ ◦ F−1, where F−1 is the inverse Fourier

transform as a map of S to itself. Then T ′ = T ◦ F and F(T ) = T ◦ F = T ′.
Therefore F is onto S ′.

2. Weak Derivatives and Sobolev Spaces

A careful study of a linear partial differential equation often requires attention
to the domain of the operator, and it is helpful to be able to work with partial
derivatives without investigating a problem of interchange of limits at each step.
Sobolev spaces are one kind of space of functions that are used for this purpose,
and their definition involves “weak derivatives.” At the end one wants to be
able to deduce results about ordinary partial derivatives from results about weak
derivatives, and Sobolev’s Theorem does exactly that.
We shall make extensive use in this book of techniques for regularizing func-

tions that have been developed in Basic. Let us assemble a number of these in
one place for convenient reference.

4Proposition 8.1e of Basic.
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Proposition 3.5.

(a) (Theorems 6.20 and 9.13) Let ϕ be in L1(RN , dx), define ϕε(x) =
ε−Nϕ(ε−1x) for ε > 0, and put c = ∫

RN ϕ(x) dx .

(i) If f is in L p(RN , dx) with 1 ≤ p <∞, then

lim
ε↓0
‖ϕε ∗ f − c f ‖p = 0.

(ii) If f is bounded onRN and is continuous at x , then limε↓0(ϕε∗ f )(x) =
c f (x), and the convergence is uniform for any set E of x’s such that
f is uniformly continuous at the points of E .

(b) (Proposition 9.9) If μ is a Borel measure on a nonempty open set U in
RN and if 1 ≤ p < ∞, then L p(U, μ) is separable, and Ccom(U ) is dense in
L p(U, μ).
(c) (Corollary 6.19) Suppose that ϕ is a compactly supported function of

class Cn on RN and that f is in L p(RN , dx) with 1 ≤ p ≤ ∞. Then ϕ ∗ f is of
class Cn , and Dα(ϕ ∗ f ) = (Dαϕ) ∗ f for any iterated partial derivative Dα of
order ≤ n.
(d) (Lemma 8.11) If δ1 and δ2 are given positive numbers with δ1 < δ2, then

there exists ψ in C∞com(R
N ) with values in [0, 1] such that ψ(x) = ψ0(|x |), ψ0 is

nonincreasing, ψ(x) = 1 for |x | ≤ δ1, and ψ(x) = 0 for |x | ≥ δ2.
(e) (Consequence of (d)) If δ > 0, then there exists ϕ ≥ 0 in C∞com(R

N )

such that ϕ(x) = ϕ0(|x |) with ϕ0 nonincreasing, ϕ(x) = 0 for |x | ≥ 1, and∫
RN ϕ(x) dx = 1.
(f) (Proposition 8.12) If K and U are subsets of RN with K compact, U

open, and K ⊆ U , then there exists ϕ ∈ C∞com(U ) with values in [0, 1] such that
ϕ is identically 1 on K .

In this section we work with a nonempty open subset U of RN , an index p
satisfying 1 ≤ p < ∞, and the spaces L p(U ) = L p(U, dx), the underlying
measure being understood to be Lebesgue measure. Let p′ = p/(p − 1) be the
dual index. For Sobolev’s Theorem, we shall impose two additional conditions on
U , namely boundedness forU and a certain regularity condition for theboundary
∂U = U cl−U of the open setU , but we do not impose those additional conditions
yet.

Corollary 3.6. If U is a nonempty open subset of RN , then C∞com(U ) is

(a) uniformly dense in Ccom(U ),
(b) dense in L p(U ) for every p with 1 ≤ p <∞.
PROOF. Let f in Ccom(U ) be given. Choose by Proposition 3.5e a function

ϕ in C∞com(R
N ) that is ≥ 0, vanishes outside the unit ball about the origin, and
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has total integral 1. For ε > 0, define ϕε(x) = ε−Nϕ(ε−1x). The function
ϕε ∗ f is of class C∞ by (c). If U = RN , let ε0 = 1; otherwise let ε0 be the
distance from the support of f to the complement of U . For ε < ε0, ϕε ∗ f has
compact support contained in U . As ε decreases to 0, Proposition 3.5a shows
that ‖ϕε ∗ f − f ‖sup tends to 0 and so does ‖ϕε ∗ f − f ‖p. This proves the first
conclusion of the corollary and proves also that C∞com(U ) is L p dense in Ccom(U )

if 1 ≤ p < ∞. Since Proposition 3.5b shows that Ccom(U ) is dense in L p(U ),
the second conclusion of the corollary follows.

Suppose that f and g are two complex-valued functions that are locally inte-
grable on U in the sense of being integrable on each compact subset of U . If α
is a differentiation index, we say that Dα f = g in the sense of weak derivatives
if ∫

U
f (x)Dαϕ(x) dx = (−1)|α|

∫
U
g(x)ϕ(x) dx for all ϕ ∈ C∞com(U ).

The definition is arranged so that g gives the result that one would expect
for iterated partial differentiation of type α if the integrated or boundary term
gives 0 at each stage. More precisely if f is in C |α|(U ), then the weak derivative
of order α exists and is the pointwise derivative. To prove this, it is enough to
handle a first-order partial derivative Djh for a function h inC1(U ), showing that∫
U hDjϕ dx = −

∫
U (Djh)ϕ dx for ϕ ∈ C∞com(U ), i.e., that

∫
U Dj (hϕ) dx = 0.

Because ϕ is compactly supported in U , ψ = hϕ makes sense as a compactly
supported C1 function on RN , and we are to prove that

∫
RN Djψ dx = 0. The

Fundamental Theorem of Calculus gives
∫ a
−a Djψ dxj = [ψ]

xj=a
xj=−a for a > 0,

and the compact support implies that this is 0 for a sufficiently large. Thus∫
R
Djψ dxj = 0, and Fubini’s Theorem gives

∫
RN Djψ dx = 0.

The function g in the definition of weak derivative is unique up to sets of
measure 0 if it exists. In fact, if g1 and g2 are bothweak derivatives of orderα, then∫
U (g1 − g2)ϕ dx = 0 for all ϕ in C∞com(U ). Fix an open set V having com-
pact closure contained in U . If f is in Ccom(V ), then Corollary 3.6a pro-
duces a sequence of functions ϕn in C∞com(V ) tending uniformly to f . Since
g1 − g2 is integrable on V , the equalities

∫
V (g1 − g2)ϕn dx = 0 for all n imply∫

V (g1 − g2) f dx = 0. By the uniqueness in the Riesz Representation Theorem,
g1 = g2 a.e. on V . Since V is arbitrary, g1 = g2 a.e. on U .

EXAMPLE. In the open set U = (−1, 1) ⊆ R1, the function ei/|x | is locally
integrable and is differentiable except at x = 0, but it does not have a weak
derivative. In fact, if it had g as a weak derivative, we could use ϕ’s vanishing in
neighborhoods of the origin to see that g(x) has to be −i x−2(sgn x)ei/|x | almost
everywhere. But this function is not locally integrable on U .



2. Weak Derivatives and Sobolev Spaces 63

If f has αth weak derivative Dα f and Dα f has β th weak derivative Dβ(Dα f ),
then f has (β +α)th weak derivative Dβ+α f and Dβ+α f = Dβ(Dα f ). In fact, if
ϕ is in C∞com(U ), then this conclusion follows from the computation∫

U f Dβ+αϕ dx = ∫U f Dα(Dβϕ) dx = (−1)|α| ∫U Dα f Dβϕ dx

= (−1)|α|+|β| ∫U Dβ(Dα f )ϕ dx .

If f has weak j th partial derivative Dj f and if ψ is in C∞(U ), then fψ has a
weak j th partial derivative, and it is given by (Dj f )ψ+ f (Djψ). In fact, this con-
clusion holds because

∫
U fψ(Djϕ) dx =

∫
U f Dj (ψϕ) dx−∫U f (Djψ)ϕ dx =

− ∫U (Dj f )ψϕ dx − ∫U f (Djψ)ϕ dx = − ∫U ( f (Djψ)+ (Dj f )ψ)ϕ dx .
If f has β th weak derivative Dβ f for every β with β ≤ α and ifψ is inC∞(U ),

then fψ has an αth weak derivative. It is given by the Leibniz rule:

Dα( fψ) =
∑
β≤α

α!

β!(α − β)!
(Dβ f )(Dα−βψ).

This formula follows by iterating the formula for Dj ( fψ) in the previous para-
graph.
Now we can give the definition of Sobolev spaces. Let k ≥ 0 be an integer,

and let 1 ≤ p <∞. Define

L p
k (U ) = { f ∈ L p(U )

∣∣ all Dα f exist weakly for |α| ≤ k and are in L p(U )
}
.

Then L p
k (U ) is a vector space, and we make it into a normed linear space by

defining

‖ f ‖L p
k
=
( ∑
|α|≤k

∫
U
|Dα f |p dx

)1/p
.

The normed linear spaces L p
k (U ) are the Sobolev spaces forU . All the remaining

results in this section concern these spaces.5

Proposition 3.7. If k ≥ 0 is an integer and if 1 ≤ p < ∞, then the normed
linear space L p

k (U ) is complete.

5The subject of partial differential equations makes use of a number of families that generalize
these spaces in various ways. Of particular importance is a family Hs such that Hs = L2k when s is
an integer k ≥ 0 but s is a continuous real parameter with −∞ < s <∞. The spaces Hs(RN ) are
introduced in Problems 8–12 at the end of the chapter. For an open set U , the two spaces Hs

com(U )

and Hs
loc(U ) are introduced in Chapter VIII. All of these spaces are called Sobolev spaces.
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PROOF. If { fm} is a Cauchy sequence in L p
k (U ), then for each α with |α| ≤ k,

the sequence {Dα fm} is Cauchy in L p(U ). Since L p(U ) is complete, we can
define f (α) to be the L p(U ) limit of Dα fm . For ϕ in C∞com(U ), we then have∫

U f (α)ϕ dx = ∫U (limm Dα fm)ϕ dx = limm
∫
U (Dα fm)ϕ dx,

the second equality holding since ϕ is in the dual space L p′(U ). In turn, this
expression is equal to

(−1)|α| limm
∫
U ( fm)(D

αϕ) dx = (−1)|α| ∫U ( f (0))(Dαϕ) dx,

the second equality holding since Dαϕ is in L p′(U ). Therefore f (α) = Dα f (0)

and fm tends to f (0) in L p
k (U ).

Proposition 3.8. If k ≥ 0 is an integer and if 1 ≤ p <∞, then a function f
is in L p

k (U ) if f is in L p(U ) and there exists a sequence { fm} in Ck(U ) such that

(a) limm ‖ f − fm‖p = 0,
(b) for each α with |α| ≤ k, the iterated pointwise partial derivative Dα fm is

in L p(U ) and converges in L p(U ) as m tends to infinity.

PROOF. By (b), ‖Dα( fl − fm)‖pp for each fixed α tends to 0 as l and m tend to
infinity. Summing on α and taking the pth root, we see that ‖ fl− fm‖L p

k
tends to 0.

In other words, { fm} is Cauchy in L p
k (U ). By Proposition 3.7, { fm} converges to

some g in L p
m(U ). The limit function g has to have the property that ‖ fm − g‖p

tends to 0, and (a) shows that we must have g = f . Therefore f is in L p
k (U ).

The key theorem is the following converse to Proposition 3.8.

Theorem 3.9. If k ≥ 0 is an integer and if 1 ≤ p <∞, then C∞(U )∩ L p
k (U )

is dense in L p
k (U ).

On the other hand, despite Corollary 3.6b, it will be a consequence of Sobolev’s
Theorem that C∞com(U ) is not dense in L p

k (U ) if k is sufficiently large. The proof
of the present theorem will be preceded by a lemma affirming that at least the
members of L p

k (U )with compact support inU can be approximated by members
of C∞com(U ).
In addition, the proof of the theoremwillmake use of an “exhausting sequence”

and a smooth partition of unity based on it. Since U is locally compact and
σ -compact, we can find a sequence {Kn}∞n=1 of compact subsets ofU with union
U such that Kn ⊆ Ko

n+1 for all n. This sequence is called an exhausting sequence
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for U . We construct the partition of unity {ψn}n≥1 as follows. For n ≥ 1, we use
Proposition 3.5f to choose a C∞ function ϕn with values in [0, 1] such that

ϕ1(x) =
{
1 for x ∈ K3,

0 for x ∈ (Ko
4 )
c,

ϕn(x) =
{
1 for x ∈ Kn+2 − Ko

n+1,
0 for x ∈ (Ko

n+3)
c ∪ Kn.

and for n ≥ 2,

In the sum
∑∞

n=1 ϕn(x), each x has a neighborhood in which only finitely many
terms are nonzero and some term is nonzero. Therefore ϕ = ∑∞

n=1 ϕn is a
well-defined member of C∞(U ). If we put ψn = ϕn

/
ϕ, then ψn is in C∞(U ),∑∞

n=1 ψn = 1 on U , ψ1(x) is > 0 on K3 and is = 0 on (Ko
4 )
c, and for n ≥ 2,

ψn(x)

{
> 0 for x ∈ Kn+2 − Ko

n+1,
= 0 for x ∈ (Ko

n+3)
c ∪ Kn.

Lemma 3.10. Let ϕ be a member of C∞com(R
N ) vanishing for |x | ≥ 1 and

having total integral 1, put ϕε(x) = ε−Nϕ(ε−1x) for ε > 0, and let f be a
function in L p

k (U ) whose support is a compact subset of U . For ε sufficiently
small, ϕε ∗ f is in C∞com(U ), and

lim
ε↓0
‖ϕε ∗ f − f ‖L p

k
= 0.

PROOF. As in the proof of Corollary 3.6, ϕε ∗ f has compact support contained
in U if ε < ε0, where ε0 is 1 if U = RN and ε0 is the distance of the support
of f to the complement of U if U = RN . Moreover, the function ϕε ∗ f is in
C∞(RN ) with Dα(ϕε ∗ f ) = (Dαϕε) ∗ f for each α. Thus ϕε ∗ f is in C∞com(U )

if ε < ε0. By the first remark after the definition of weak derivative, ϕε ∗ f
has weak derivatives of all orders for ε < ε0, and they are given by the ordinary
derivatives Dα(ϕε ∗ f ). For ε < ε0,

Dα(ϕε ∗ f )(x) = ∫U f (y)(Dαϕε)(x − y) dy

= (−1)|α| ∫U f (y)Dα(y �→ ϕε(x − y)) dy.

Since f by assumption has weak derivatives through order k and since y �→
ϕε(x − y) has compact support in U , the right side is equal to∫

U Dα f (y)ϕε(x − y) dy = (ϕε ∗ Dα f )(x)

for |α| ≤ k. Therefore, for ε < ε0 and |α| ≤ k, we have

‖Dα(ϕε ∗ f − f )‖p = ‖ϕε ∗ (Dα f )− Dα f ‖p.
For these same α’s, Proposition 3.5a shows that the right side tends to 0 as ε tends
to 0. Therefore ϕε ∗ f − f tends to 0 in L p

k (U ).
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PROOF OF THEOREM 3.9. Let f be in L p
k (U ). The idea is to break f into a

countable sum of functions of compact support, apply the lemma to each piece,
and add the results. The difficulty lies in arranging that each of the pieces of f
have controlled weak derivatives through order k. Thus instead of using indicator
functions to break up f , we shall use an exhausting sequence {Kn}n≥1 and an
associated partition of unity {ψn}n≥1 of the kind described after the statement of
the theorem. The discussion above concerning the Leibniz rule shows that each
ψn f has weak derivatives of all orders≤ k, and the construction shows that ψn f
has support in Ko

5 for n = 1 and in Ko
n+4 − Kn−1 for n ≥ 2.

Let ε > 0 be given, let ϕ be a member of C∞com(R
N ) vanishing for |x | ≥ 1 and

having total integral 1, and putϕε(x) = ε−Nϕ(ε−1x) for ε > 0. ApplyingLemma
3.10 to ψn f , choose εn > 0 small enough so that the function un = ϕεn ∗ (ψn f )
has support in Ko

5 for n = 1 and in Ko
n+4 − Kn−1 for n ≥ 2 and so that

‖un − ψn f ‖L p
k
< 2−nε.

Put u =∑∞
n=1 un . Each x in U has a neighborhood on which only finitely many

of the functions un are not identically 0, and therefore u is in C∞(U ). Also,

u =
∞∑
n=1

(un − ψn f )+ f since
∞∑
n=1

ψn = 1.

Since for each compact subset of U , only finitely many un − ψn f are not
identically 0 on that set, the weak derivatives of order ≤ k satisfy Dαu =∑∞

n=1 D
α(un − ψn f )+ Dα f . Hence

Dα(u − f ) =
∞∑
n=1

Dα(un − ψn f ).

Minkowski’s inequality for integrals therefore gives

‖Dα(u − f )‖p ≤
∞∑
n=1
‖Dα(un − ψn f )‖p ≤

∞∑
n=1
‖un − ψn f ‖L p

k
≤

∞∑
n=1

ε

2n
= ε.

Finally we raise both sides to the pth power, sum for α with |α| ≤ k, and extract
the pth root. If m(k) denotes the number of such α’s, we obtain

‖u − f ‖L p
k
≤ m(k)1/p ε,

and the proof is complete.
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Now we come to Sobolev’s Theorem. For the remainder of the section, the
open setU will be assumed bounded, and we shall impose a regularity condition
on its boundary ∂U = U cl − U . When we isolate one of the coordinates of
points in RN , say the j th, let us write y′ for the other N − 1 coordinates, so that
y = (yj , y′). We say that U satisfies the cone condition if there exist positive
constants c and h such that for each x in U , there are a sign ± and an index j
with 1 ≤ j ≤ N for which the closed truncated cone


x = x + {y = (yj , y
′)
∣∣ ± yj ≥ c|y′| and |y| ≤ h

}
lies inU for one choice of the sign±. See Figure 3.1. Problem 4 at the end of the
chapter observes that if the bounded open set U has a C1 boundary in a certain
sense, then U satisfies the cone condition.

yj


x

y′x

FIGURE 3.1. Cone condition for a bounded open set.

Theorem 3.11 (Sobolev’s Theorem). Let U be a nonempty bounded open set
in RN , and suppose that U satisfies the cone condition with constants c and h.
If 1 ≤ p < ∞ and k > N/p, then there exists a constant C = C(N , c, h, p, k)
such that

sup
x∈U

|u(x)| ≤ C‖u‖L p
k

for all u in C∞(U ) ∩ L p
k (U ).

REMARK. Under the stated conditions on k and p, the theorem says that the
inclusion ofC∞(U )∩L p

k (U ) into the Banach spaceC(U ) of bounded continuous
functions onU is a bounded linear operator relative to the norm of L p

k (U ). Since
C∞(U )∩ L p

k (U ) is dense in L p
k (U ) by Theorem 3.9 and sinceC(U ) is complete,

the inclusion extends to a continuous map of L p
k (U ) into C(U ). In other words,

every member of L p
k (U ) can be regarded as a bounded continuous function on

U .

PROOF. Fix g in C∞com(R
1) with g(t) equal to 1 for |t | ≤ 1

2 and equal to 0 for
|t | ≥ 3

4 . Fix x inU and its associated sign± and index j . We introduce spherical
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coordinates about x with the indices reordered so that j comes first, writing x+ y
for a point near x with

yj = ±r cosϕ,
y1 = r sinϕ cos θ1,

... (with yj omitted)

yN−1 = r sinϕ sin θ1 · · · sin θN−3 cos θN−2,
yN = r sinϕ sin θ1 · · · sin θN−3 sin θN−2,

when
0 ≤ ϕ ≤ π,

0 ≤ θi ≤ π for i < N−2,
0 ≤ θN−2 ≤ 2π.

All the points x + y with 0 ≤ ϕ ≤ �(c), where �(c) is some positive number
and 0 ≤ r ≤ h, lie in the cone 
x at x . For such ϕ’s and for 0 ≤ t ≤ 1, we define

F(t) = g
(
t
h

)
u
(
x + (±t cosϕ, t sinϕ cos θ1, . . . )

)
and expand F in a Taylor series through order k − 1 with remainder about the
point t = h. Because of the behavior of g, F and all its derivatives vanish at
t = h. Therefore F(t) is given by the remainder term:

F(t) = 1
(k−1)!

∫ t
h (t − s)k−1F (k)(s) ds.

Putting t = 0, we obtain

u(x) = 1
(k−1)!

∫ 0
h (−r)k−1 ∂k

∂rk
[
g
(
r
h

)
u
(
x + (· · · ))] dr

= (−1)k
(k−1)!

∫ h
0 rk−N ∂k

∂rk
[
g
(
r
h

)
u
(
x + (· · · ))] r N−1 dr.

We regard the integral on the right side as taking place over the radial part of the
spherical coordinates that describe the set of y’s in 
x , and we want to extend
the integration over all of 
x . To do so, we have to integrate over all values
of θ1, . . . , θN−2 and for 0 ≤ ϕ ≤ �(c). We multiply by the spherical part of
the Jacobian determinant for spherical coordinates and integrate both sides. The
integrand on the left side is constant, being independent of y, and gives a positive
multiple of u(x). Dividing by that multiple, we get

u(x) = c1
∫

x−x |y|k−N ∂k

∂rk
[
g
( |y|
h

)
u(x + y)

]
dy.
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Suppose temporarily that p > 1. With p′ still denoting the index dual to p,
application of Hölder’s inequality gives

|u(x)| ≤ c1
( ∫


x−x |y|(k−N )p′ dy
)1/p′( ∫


x−x
∣∣ ∂k
∂rk
[
g
( |y|
h

)
u(x + y)

]∣∣p dy)1/p.
The first integral on the right side is the critical one. The radius extends from
0 to h, and the integral is finite if and only if (k − N )p′ > −N > 0, i.e.,
k > N − N/p′ = N/p. This is the condition in the theorem.
The differentiation ∂k

∂rk in the second factor on the right can be expanded in
terms of derivatives in Cartesian coordinates, and then the integration can be
extended over all of U . The result is that the second factor is dominated by a
multiple of ‖u‖

L p
k
. This completes the proof when p > 1.

Now suppose that p = 1. Then the above result from applying Hölder’s
inequality is replaced by the inequality

|u(x)| ≤ c1
∥∥|y|k−N∥∥∞,
x−x

∫

x−x

∣∣ ∂k
∂rk
[
g
( |y|
h

)
u(x + y)

]∣∣ dy.
The first factor is finite if k ≥ N , and the second factor is handled as before. This
completes the proof if p = 1.

Corollary 3.12. Suppose that U is a nonempty bounded open subset of RN

satisfying the cone condition, and suppose that 1 < p <∞ and that m and k are
integers ≥ 0 such that k > m + N/p. If f is in L p

k (U ), then f can be redefined
on a set of measure 0 so as to be in Cm(U ).

PROOF. Choose by Theorem 3.9 a sequence { fi } in C∞(U )∩ L p
k (U ) such that

lim fi = f in L p
k (U ). For |α| ≤ m, we apply Theorem 3.11 to see that

sup
U
|Dα fi − Dα f j |

tends to 0 as i and j tend to infinity. Thus all the Dα fi converge uniformly. It
follows that the uniform-limit function f̃ = lim fi is in Cm(U ). Since fi → f
in L p(U ) and fi → f̃ uniformly, we conclude that f̃ = f almost everywhere.
Thus f̃ tells how to redefine f on a set of measure 0 so as to be in Cm(U ).

3. Harmonic Functions

LetU be an open set inRN . The discussionwill not be very interesting for N = 1,
and we exclude that case. A function u in C2(U ) is harmonic in U if u = 0
identically in U . Harmonic functions were introduced already in Chapter I and
investigated in connection with certain boundary-value problems. In the present
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section we examine properties of harmonic functions more generally. Harmonic
functions in a half space, through their boundary values and the Poisson integral
formula, become a tool in analysis for working with functions on the Euclidean
boundary, and the behavior of harmonic functions on general open sets becomes
a prototype for the behavior of solutions of further “elliptic” second-order partial
differential equations.
Harmonic functions will be characterized shortly in terms of a certain mean-

value property. To get at this characterization and its ramifications, we need the
N -dimensional “Divergence Theorem” of Gauss for two special cases—a ball
and a half space. The result for a ball will be formulated as in Lemma 3.13
below; we give a proof since this theorem was not treated in Basic. The argument
for a half space is quite simple, and we will incorporate what we need into the
proof of Proposition 3.15 below. For the case of a ball, recall6 that the change-
of-variables formula x = rω, with r ≥ 0 and |ω| = 1, for transforming integrals
in Cartesian coordinates for RN into spherical coordinates involves substituting
dx = r N−1 dr dω, where dω is a certain rotation-invariant measure on the unit
sphere SN−1 that can be expressed in terms of N − 1 angular variables. The
open ball of radius x0 and radius r is denoted by B(r; x0), and its boundary is
∂B(r; x0).
Lemma 3.13. If F is aC1 function in an open set onRN containing the closed

ball B(r; 0)cl and if 1 ≤ j ≤ N , then∫
x∈B(r;0)

∂F

∂xj
(x0 + x) dx =

∫
rω∈∂B(r;0)

xj F(x0 + rω)r N−2 dω.

REMARKS. The usual formula of the Divergence Theorem is
∫
U divF dx =∫

∂U (F · n) dS, where U is a suitable bounded open set, ∂U = U cl − U is its
boundary, n is the outward-pointing unit normal, F is a vector-valuedC1 function,
and dS is surface area. In Lemma 3.13, U is specialized to the ball B(r; 0), dS
is the (N − 1)-dimensional area measure r N−1 dω on the surface ∂B(r; 0) of the
ball, F is taken to be the product of F by the j th standard basis vector ej , and
ej · n is r−1xj .
PROOF. Without loss of generality, we may take j = 1 and x0 = 0. Write

x = (x1, x ′), where x ′ = (x2, . . . , xN ), and write ω = (ω1, ω
′) similarly. The

left side in the displayed formula is equal to∫
|x ′|≤r

∫√r2−|x ′|2
x1=−

√
r2−|x ′|2

∂F
∂x1

(x1, x ′) dx1 dx ′

= ∫|x ′|≤r [F(√r2 − |x ′|2, x ′)− F(−
√
r2 − |x ′|2, x ′)] dx ′.

6From Section VI.5 of Basic.
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Thus the lemma will follow if it is proved that∫
|x ′|≤r

F(
√
r2 − |x ′|2, x ′) dx ′ = ∫

|ω|=1, ω1≥0
x1F(rω)r N−2 dω (∗)

and

− ∫
|x ′|≤r

F(−
√
r2 − |x ′|2, x ′) dx ′ = ∫

|ω|=1, ω1≤0
x1F(rω)r N−2 dω. (∗∗)

Let us use ordinary spherical coordinates for ω, with

( rω1
...

rωN

)
=

⎛⎜⎜⎜⎝
r cos θ1

r sin θ1 cos θ2
...

r sin θ1··· sin θN−2 cos θN−1
r sin θ1··· sin θN−2 sin θN−1

⎞⎟⎟⎟⎠
and

dω = sinN−2 θ1 sinN−3 θ2 · · · sin θN−2 dθ1 · · · dθN−1.
The right side of (∗) is equal to∫
|ω|=1, ω1≥0

F(rω)ω1r N−2 dω

= ∫
0≤θ1≤π/2,

0≤θj≤π for 1< j<N−1,
0≤θN−1≤2π

F(rω)r N−1 cos θ1 sinN−2 θ1 sinN−3 θ2 · · · sin θN−2 dθ1 · · · dθN−1,

and we show that it equals the left side of (∗) by carrying out for the left side of
(∗) the change of variables x ′ ↔ (θ1, . . . , θN−1) given with r constant by

x ′ =
( x2

...
xN

)
=

⎛⎜⎝
r sin θ1 cos θ2

...
r sin θ1··· sin θN−2 cos θN−1
r sin θ1··· sin θN−2 sin θN−1

⎞⎟⎠ .

The Jacobian matrix is the same as for the change to spherical coordinates
(r, θ2, . . . , θN−1) except that the first column has a factor r cos θ1 instead of 1
and the other columns have an extra factor of sin θ1. Consequently

dx ′ = r N−1
(| cos θ1| sinN−2 θ1)( sinN−3 θ2 · · · sin θN−2) dθ1 · · · dθN−1.

Therefore the measures match in the two transformed sides, the sets of integration
for (θ1, . . . , θN−1) are the same, and the integrands are the same because cos θ1 =
| cos θ1|. This proves (∗). For (∗∗)wemake the same computation but the interval
of integration for θ1 is π/2 ≤ θ1 ≤ π . To get a match, the minus sign is necessary
because cos θ1 = −| cos θ1|.
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Proposition 3.14 (Green’s formula7 for a ball). Let B be an open ball in RN ,
let ∂B be its surface, and let dσ be the surface-area measure of ∂B. If u and v
are C2 functions in an open set containing Bcl, then∫

B
(uv − vu) dx =

∫
∂B

(
u
∂v

∂n
− v

∂u

∂n

)
dσ,

where n : ∂S→ RN is the outward-pointing unit normal vector.

PROOF. Apply Lemma 3.13 to F = u ∂v
∂xj
and then to F = v ∂u

∂xj
, and subtract

the results. Then sum on j .

Let	N−1 be the surface area
∫
SN−1 dω of the unit sphere inRN . A continuous

function u on an open subset U of RN is said to have the mean-value property
in R if the value of u at each point x inU equals the average value of u over each
sphere centered at x and lying in U , i.e., if

u(x) = 1

	N−1

∫
ω∈SN−1

u(x + tω) dω

for every x in U and for every positive t less than the distance from x to Uc.
The mean-value property over spheres implies a corresponding average-value

property over balls. In fact, the volume |B(t0; 0)| of the ball B(t0; 0) is given by∫ t0
0

∫
SN−1 t

N−1 dω dt = N−1t N0
∫
SN−1 dω = N−1t N0 	N−1. When the mean-value

property over spheres is satisfied and t0 is less than the distance from x toUc, we
can apply the operation Nt−N0

∫ t0
0 (—) dt to both sides of the mean-value formula

and obtain

u(x) = Nt−N0
	N−1

∫ t0

0

∫
ω∈SN−1

u(x+tω)t N−1 dω dt = 1

|B(t0; 0)|
∫
B(t0;0)

u(x+y) dy.

Proposition 3.15 (Green’s formula for a half space). Let R+ be the subset of
RN = {(x ′, xn) | x ′ ∈ RN−1 and xn ∈ R} where xn > 0. Denote its boundary by
∂R+ = RN−1, and suppose that u and v are C2 functions on an open subset of
RN−1 containing (R+)cl and that at least one of u and v is compactly supported.
Then ∫

x∈R+
(uv − vu) dx =

∫
x ′∈RN−1

(
v

∂u

∂xn
− u

∂v

∂xn

)
dx ′.

PROOF. Suppose F is a C1 function compactly supported on an open subset of
RN−1 containing (R+)cl. If 1 ≤ j ≤ N−1, then ∫R+ ∂F

∂xj
dx = 0 since the integral

7This formula is related to but distinct from the formula with the same name at the beginning of
Section I.3.
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with respect to dxj is the difference between two values of F and since these are 0
by the compactness of the support. For j = N , however, one of the boundary
terms may fail to be 0, and the result is that

∫
R+

∂F
∂xN

dx = − ∫
RN−1 F(x ′) dx ′.

Apply the j th of these formulas first to F = u ∂v
∂xj
and then to F = v ∂u

∂xj
, sum

the results on j , and subtract the two sums. The result is the formula of the
proposition.

Theorem 3.16. Let U be an open set in RN , and let u be a continuous scalar-
valued function onU . If u is harmonic onU , then u has the mean-value property
on U . Conversely if u has the mean-value property on U , then u is in C∞(U )

and is harmonic on U .

PROOF. Suppose that u is harmonic onU . We prove that u has the mean-value
property. It is enough to treat x = 0. Green’s formula, as in Proposition 3.14,
directly extends from balls to the difference of two balls.8 Thus we have∫

E (uv − vu) dx = ∫
∂E

(
u ∂v

∂n − v ∂u
∂n

)
dσ (∗)

whenever E is a closed ball Bt of radius t contained in U or is the difference
Bt − (Bε)

o of two concentric balls with ε < t . Taking E = Bt and v = 1 in (∗),
we obtain ∫

∂Bt
∂u
∂n dσ = 0. (∗∗)

Routine computation shows that the function given by

v(x) =
{ |x |−(N−2) for N > 2,

log |x | for N = 2,
is harmonic for x = 0 and has ∂v

∂r equal to a nonzeromultiple of |x |−(N−1), r being
the spherical coordinate radius |x |. If we apply (∗) to this v and our harmonic u
when E = Bt − (Bε)

o, we obtain∫
∂(Bt−(Bε )o)

(
u ∂v
∂n − v ∂u

∂n

)
dσ = 0.

Since v depends only on |x |, (∗∗) shows that the second term of the integrand
yields 0. Thus this formula becomes∫

∂(Bt−(Bε )o)
u ∂v
∂n dσ = 0.

8For the extended result, suppose that the balls have radii r1 < r2. Then u and v are defined from
radius r1 − ε to r2 + ε for some ε > 0. We can adjust u and v by multiplying by a suitable smooth
function that is identically 1 for radius ≥ r1 − 1

3 ε and identically 0 for radius ≤ r1 − 2
3 ε, and then

u and v will extend as smooth functions for radius < r2 + ε. Consequently Proposition 3.14 will
apply on each ball to the adjusted functions, and subtraction of the results gives the desired version
of Green’s formula.
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The normal vector for the inner sphere points toward the center. Hence we can
rewrite our equality as ∫

|x |=ε u
∂v
∂r dσ =

∫
|x |=t u

∂v
∂r dσ.

Since ∂v
∂r = c|x |−(N−1) with c = 0, we obtain

ε−(N−1)
∫
|x |=ε u dσ = t−(N−1)

∫
|x |=t u dσ.

On the left side, dσ = εN−1 dω, while on the right side, dσ = t N−1 dω.
Therefore ∫

|ω|=1 u(εω) dω =
∫
|ω|=1 u(tω) dω

whenever 0 < ε < t and Bt is contained in U . Dividing by 	N−1, letting ε

decrease to 0, and using the continuity of u, we see that u(0) = ∫
ω∈SN−1 u(tω) dω.

Thus u has the mean-value property.
For the converse direction suppose initially that u is in C2(U ). Define

mt (u)(x) = 	−1N−1
∫
|ω|=1 u(x + tω) dω

whenever x is in U and t is a positive number less than the distance of x to Uc.
With x fixed, the function mt (u)(x) has two continuous derivatives. We shall
show that

d2

dt2
mt (u)(x)

∣∣
t=0 = N−1u(x), (†)

the derivatives being understood to be one-sided derivatives as t decreases to 0.
If u is assumed to have the mean-value property, mt(u)(x) is constant in t , and
we can conclude from (†) that u(x) = 0. The computation of d2

dt2 mt (u)(x) is

mt(u)(x) = 	−1N−1
∫
|ω|=1 u(x1 + tω1, . . . , xN + tωN ) dω,

d
dt mt(u)(x) = 	−1N−1

∫
|ω|=1

∑N
j=1 ωj Dju(x + tω) dω,

d2

dt2 mt(u)(x) = 	−1N−1
∫
|ω|=1

∑N
j,k=1 ωjωk Dj Dku(x + tω) dω.

Letting t decrease to 0, we obtain

d2

dt2 mt (u)(x)
∣∣
t=0 = 	−1N−1

∑N
j,k=1 Dj Dku(x)

∫
|ω|=1 ωjωk dω.

If j = k, then
∫
|ω|=1 ωjωk dω = 0 since the integrand is an odd function of

the j th variable taken over a set symmetric about 0. The integral
∫
|ω|=1 ω

2
j dω is
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independent of j and has the property that N times it is equal to
∫
|ω|=1 |ω|2 dω =∫

|ω|=1 dω = 	N−1. Thus
∫
|ω|=1 ω

2
j dω = N−1	N−1, and

d2

dt2 mt(u)(x)
∣∣
t=0 = N−1

∑N
j=1 D

2
j u(x) = N−1u(x).

This proves (†) and completes the argument that a C2 function in U with the
mean-value property is harmonic.
Finally suppose that u has the mean-value property and is assumed to be

merely continuous. Proposition 3.5e allows us to choose a function ϕ ≥ 0 in
C∞com(R

N ) with ϕ(x) = ϕ0(|x |),
∫

RN ϕ(x) dx = 1, and ϕ(x) = 0 for |x | ≥ 1. Put
ϕε(x) = ε−Nϕ(ε−1x), and define uε(x) =

∫
RN u(x − y)ϕε(y) dy in the open set

Uε = {x ∈ U | D(x,Uc) > ε}. Proposition 3.5c shows that uε is in C∞(Uε),
and the mean-value property of u, in combination with the radial nature of ϕε as
expressed by the equality ϕε(tω) = ϕε(te1), forces uε(x) = u(x) for all x in Uε:

uε(x) =
∫ ε

t=0
∫
|ω|=1 u(x − tω)ϕε(tω)t N−1 dω dt

= ∫ ε

t=0	N−1u(x)ϕε(te1)t N−1 dt

= u(x)
∫

RN ϕε(y) dy = u(x).

Since ε is arbitrary, u is in C∞(U ). The function u has now been shown to be in
C2(U ), and it is assumed to have themean-value property. Therefore the previous
case shows that it is harmonic.

Corollary 3.17. If u is harmonic on an open subset U of RN , then u is in
C∞(U ).

PROOF. This follows by using both directions of Theorem 3.16.

A sequence of functions {un} on a locally compact Hausdorff space X is said
to converge uniformly on compact subsets of X if lim un = u pointwise on X
and if for each compact subset K of X , the convergence is uniform on K . For
example the sequence {xn} converges to the 0 function on (0, 1) uniformly on
compact subsets.

Corollary 3.18. If {un} is a sequence of harmonic functions on an open subset
U of RN and if {un} converges uniformly on compact subsets to u, then u is
harmonic on U .

PROOF. About any point of U is a compact neighborhood lying in U , and
the convergence is uniform on that neighborhood. Therefore u is continuous.
Each integration needed for the mean-value property occurs on a compact subset
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of U , and the uniform convergence allows us to interchange limit and integral.
Therefore the mean-value property for each un , valid because of one direction of
Theorem 3.16, implies the mean-value property for u. Hence u is harmonic by
the converse direction of Theorem 3.16.

Suppose that U is open in RN and that u is harmonic on U . If B is an
open ball in U , then

∫
U uψ dx = 0 for all ψ ∈ C∞com(B) by Green’s formula

(Proposition 3.14), since ψ and ∂ψ

∂n are both identically 0 on the boundary of B.
We shall use a smooth partition of unity to show that

∫
U uψ dx is therefore 0

for all ψ ∈ C∞com(U ). Corollary 3.19 below provides a converse; we shall use the
converse in a crucial way in Corollary 3.23 below.
The argument to construct the partition of unity goes as follows. To each point

of K = support(ψ), we can associate an open ball centered at that point whose
closure is contained in U . As the point varies, these open balls cover K , and
we extract a finite subcover {U1, . . . ,Uk}. Lemma 3.15b of Basic constructs an
open cover {W1, . . . ,Wk} of K such thatW cl

i is a compact subset ofUi for each i .
Now we argue as in the proof of Proposition 3.14 of Basic. A second application
of Lemma 3.15b of Basic gives an open cover {V1, . . . , Vk} of K such that V cli is
compact and V cli ⊆ Wi for each i . Proposition 3.5f constructs a smooth function
gi ≥ 0 that is 1 on V cli and is 0 off Wi . Then g =

∑k
i=1 gi is smooth and ≥ 0

on RN and is > 0 everywhere on K . A second application of Proposition 3.5f
produces a smooth function h ≥ 0 on RN that is 1 on the set where g is 0 and is 0
on K . Then g+h is everywhere positive onRN , and the functionsϕi = gi/(g+h)
form the smooth partition of unity that we shall use.
To apply the partition of unity, we write ψ = ∑i ϕiψ . Then each term ϕiψ

is smooth and compactly supported in an open ball whose closure is contained in
U . Consequently we have

∫
U u(ϕiψ) dx = 0 for each i . Summing on i , we

obtain
∫
U uψ dx = 0, which was what was being asserted.

Corollary 3.19. Suppose thatU is open inRN , that u is continuous onU , and
that

∫
U uψ dx = 0 for all ψ ∈ C∞com(U ). Then u is harmonic on U .

PROOF. Let B be an open ball of radius r with closure contained inU , fix ε > 0
so as to be< r , and let Bε be the open ball of radius r − ε with the same center as
B. Construct ϕε as in the proof of Theorem 3.16, and let uε = u ∗ ϕε. Suppose
that ψ is in C∞com(Bε). For t and x in RN with |t | ≤ ε, define ψt (x) = ψ(t + x).
Since ψ is supported in Bε, ψt is supported in B, and therefore∫

B u(x − t)ψ(x) dx = ∫B u(x)ψ(x + t) dx = ∫B uψt dx = 0,
the last equality holding by the hypothesis. Multiplying by ϕε(t), integrating for
|t | ≤ ε, and interchanging integrals, we obtain

0 = ∫B ∫RN u(x − t)ϕε(t)ψ(x) dt dx = ∫B uε(x)ψ(x) dx .
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Since ψ vanishes identically near the boundary of B, this identity and Green’s
formula (Proposition 3.14) together yield

∫
B ψ(x)uε(x) dx = 0 for all ψ in

C∞com(Bε). Application of Corollary 3.6a allows us to extend this conclusion to
all ψ in Ccom(Bε), and then the uniqueness in the Riesz Representation Theorem
shows that we must have uε(x) = 0 for all x in Bε. As ε decreases to 0, uε
tends to u uniformly on compact sets. By Corollary 3.18, u is harmonic in B.
Since the ball B is arbitrary in U , u is harmonic in U .

Corollary 3.20. Let U be a connected open set in RN . If u is harmonic in U
and |u| attains a maximum somewhere in U , then u is constant in U .
PROOF. Suppose that |u| attains a maximum at x0. Multiplying u by a suitable

constant eiθ , we may assume that u(x0) = M > 0. The subset E of U where
u(x) equals M is closed and nonempty. It is enough to prove that E is open. Let
x1 be in E , and choose an open ball B centered at x1, say of some radius r > 0,
that lies in U . We show that B lies in E . For 0 < t < r , Theorem 3.16 says that
u has the mean-value property

	−1N−1
∫
SN−1 u(x1 + tω) dω = u(x1) = M.

Arguing by contradiction, suppose that u(x1+ t0ω0) = u(x1) for some t0ω0 with
0 < t0 < r . Then Re u(x1 + t0ω0) < M − ε for some ε > 0, and continuity
produces a nonempty open set S in the sphere SN−1 such that Re u(x1 + t0ω) <
M − ε for ω in S. If σ is the name of the measure on SN−1, then we have

M	N−1 = Re
( ∫

SN−1 u(x1 + tω) dω
)

= ∫S Re u(x1 + tω) dω + ∫SN−1−S Re u(x1 + tω) dω

≤ ∫S (M − ε) dω + ∫SN−1−S M dω

= (M − ε)σ (S)+ Mσ(SN−1 − S)

= M	N−1 − εσ (S),

and we have arrived at a contradiction since σ(S) > 0.

Corollary 3.21. Let U be a bounded open subset of RN , and let ∂U be its
boundary. Ifu is harmonic inU and isu is continuous onU cl, then supx∈U |u(x)|=
maxx∈∂U |u(x)|.
PROOF. Since u is continuous and U cl is compact, |u| assumes its maximum

M somewhere on U cl. If |u(x0)| = M for some x0 in U , then Corollary 3.20
shows that u is constant on the component ofU to which x0 belongs. The closure
of that component cannot equal that component since RN is connected. Thus the
closure of that component contains a point of ∂U , and |u| must equal M at that
point of ∂U . Consequently supx∈U |u(x)| ≤ maxx∈∂U |u(x)|. Since every point
of ∂U is the limit of a sequence of points in U , the reverse inequality is valid as
well, and the corollary follows.
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Corollary 3.22 (Liouville). Any bounded harmonic function on RN is
constant.

REMARKS. The best-known result of Liouville of this kind is one from complex
analysis—that a bounded function analytic on all ofC is constant. This complex-
analysis result is actually a consequence of Corollary 3.22 because the real and
imaginary parts of a bounded analytic function on C are bounded harmonic
functions on R2.

PROOF. Suppose that u is harmonic on RN with |u(x)| ≤ M . Let x1 and x2
be distinct points of RN , and let R > 0. Since u has the mean-value property
over spheres by Theorem 3.16, u equals its average value over balls. Hence
u(x1) = |B(R; 0)|−1

∫
B(R;x1) u(x) dx and u(x2) = |B(R; 0)|−1

∫
B(R;x2) u(x) dx .

Subtraction gives

u(x1)−u(x2) = |B(R; 0)|−1
( ∫

B(R;x1) u(x) dx −
∫
B(R;x2) u(x) dx

)
= |B(R; 0)|−1(∫B(R;x1)−B(R;x2)u(x) dx−∫B(R;x2)−B(R;x1)u(x) dx).

Therefore

|u(x1)− u(x2)| ≤ |B(R; 0)|−1
∫
B(R;x1)B(R;x2) |u(x)| dx,

where B(R; x1)B(R; x2) is the symmetric difference (B(R; x1)− B(R; x2))∪
(B(R; x2)− B(R; x1)). Hence

|u(x1)−u(x2)| ≤ M |B(R; x1)B(R; x2)|
|B(R; 0)| = MRN |B(1; x1/R)B(1; x2/R)|

RN |B(1; 0)| .

The right side is |B(1; x1/R)B(1; x2/R)|, apart from a constant factor, and the
sets B(1; x1/R)B(1; x2/R) decrease and have empty intersection as R tends
to infinity. By complete additivity of Lebesgue measure, the measure of the
symmetric difference tends to 0. We conclude that u(x1) = u(x2). Therefore u
is constant.

In the final two corollaries let RN+1
+ be the open half space of points (x, t) in

RN+1 such that x is in RN and t > 0.

Corollary 3.23 (Schwarz Reflection Principle). Suppose that u(x, t) is har-
monic in RN+1

+ , that u is continuous on (RN+1
+ )cl, and that u(x, 0) = 0 for all

x . Then the definition u(x,−t) = −u(x, t) for t > 0 extends u to a harmonic
function on all of RN+1.
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PROOF. Define

w(x, t) =
{
u(x, t) for t ≥ 0,
−u(x,−t) for t ≤ 0.

The function w is continuous. We shall show that
∫

RN wψ dx = 0 for all
ψ ∈ C∞com(R

N+1), and then Corollary 3.19 shows that w is harmonic. Write ψ
as the sum of functions even and odd in the variable t . Since w is odd in t , the
contribution to

∫
RN wψ dx from the even part of ψ is 0. We may thus assume

that ψ is odd in t .
For ε > 0, let Rε = {(x, t) | t > ε}. It is enough to show that ∫Rε

uψ dx dt
has limit 0 as ε decreases to 0 since

∫
RN+1 wψ dx dt is twice this limit. We

apply Green’s formula for a half space (Proposition 3.15) with v = ψ on the set
Rε ⊆ RN+1 except for one detail: to get the hypothesis of compact support to be
satisfied, we temporarily multiplyψ by a smooth function that is identically 1 for
t ≥ ε and is identically 0 for t ≤ 1

2ε. Since u is harmonic in Rε, the result is that

− ∫Rε
uψ dx dt = ∫Rε

(ψu − uψ) dx dt = ∫{(x,t) | t=ε} (u ∂ψ

∂t − ψ ∂u
∂t

)
dx .

On the right side, limε↓0
∫
{(x,t) | t=ε} u

∂ψ

∂t dx = 0 since u( · , ε) tends uniformly
to 0 on the relevant compact set of x’s in RN .
Thus it is enough to prove that limε↓0

∫
{(x,t) | t=ε} ψ

∂u
∂t dx = 0. Since ψ(x, t)

is of class C2, is odd in x , and is compactly supported, we have |ψ(x, t)| ≤ Ct
uniformly in x for small positive t . Thus it is enough to prove that

lim
t↓0

∣∣∣ t ∂u
∂t

(x, t)
∣∣∣ = 0 (∗)

uniformly on compact subsets of RN .
To prove (∗), let ϕ be a function as in Proposition 3.5e, and let ϕε(x, t) =

ε−(N+1)ϕ(ε−1(x, t)). Fix x0 in RN , and define X0 = (x0, t0) and X = (x0, t).
If |X − X0| < 1

3 t0, then the mean-value property of u in RN+1
+ gives u(X) =

(u ∗ ϕ 1
3 t0
)(X). Hence we have

∂u
∂t (X) = ∂

∂t

∫
RN+1 ϕ 1

3 t0
(X − Y )u(Y ) dY

= ∫
RN+1

∂
∂t

[
( 13 t0)

−(N+1)ϕ
(
( 13 t0)

−1(X − Y )
)]
u(Y ) dY.

In the computation of the partial derivative on the right side, the variable t appears
as the last coordinate of X . Therefore this expression is equal to

( 13 t0)
−1 ∫

RN+1 (
1
3 t0)

−(N+1) ∂ϕ

∂t

(
( 13 t0)

−1(X − Y )
)
u(Y ) dY.
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Changing variables in the integration by a dilation in Y shows that this expression
is equal also to

( 13 t0)
−1 ∫

RN+1
∂ϕ

∂t

(
( 13 t0)

−1X − Y
)
u( 13 t0Y ) dY.

If we write Y = (y, s) and take absolute values, we obtain∣∣ ∂u
∂t (x0, t)

∣∣ ≤ 3t−10 ∥∥ ∂ϕ

∂t

∥∥
1 sup
|s−t0|<2t0/3,
Y near X0

|u(Y )|.

The required behavior of t ∂u
∂t follows from this estimate.

Corollary 3.24. Suppose that u(x, t) is harmonic inRN+1
+ , that u is continuous

on (RN+1
+ )cl, and that u(x, 0) = 0 for all x . If u is bounded, then u is identically 0.

REMARK. Without the assumption of boundedness, the function u(x, t) = t is
a counterexample.

PROOF. Corollary 3.23 shows that u extends to a bounded harmonic function
on all of RN+1, and Corollary 3.22 shows that the extended function is constant,
hence identically 0.

4. Hp Theory

As was said at the beginning of Section 3, harmonic functions in a half space,
through their boundary values and the Poisson integral formula, become a tool in
analysis for working with functions on the Euclidean boundary. The Poisson in-
tegral formula, which was introduced in Chapters VIII and IX of Basic, generates
harmonic functions from boundary values.
The details are as follows. Let RN+1

+ be the open half space of pairs (x, t) in
RN+1 with x ∈ RN andwith t > 0 inR1. Weview the boundary

{
(x, 0)

∣∣ x ∈ RN
}

as RN . The function

P(x, t) = Pt(x) = cN t

(t2 + |x |2) 12 (N+1)
,

for t > 0, with cN = π−
1
2 (N+1)


(
N+1
2

)
, is called the Poisson kernel for RN+1

+ .
The Poisson integral formula for RN+1

+ is u(x, t) = (Pt ∗ f )(x), where f is
any given function in L p(RN ) and 1 ≤ p ≤ ∞, and the function u is called the
Poisson integral of f .
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If f is in L p, then u is harmonic on RN+1
+ , u( · , t) is in L p for each t > 0, and

‖u( · , t)‖p ≤ ‖ f ‖p. For 1 ≤ p <∞, limt↓0 u( · , t) = f in the norm topology of
L p, while for p = ∞, limt↓0 u( · , t) = f in theweak-star topology of L∞ against
L1. In both cases, limt↓0 ‖u( · , t)‖p = ‖ f ‖p, and limt↓0 u(x, t) = f (x) a.e.; this
latter result is known as Fatou’s Theorem. When p = ∞, the a.e. convergence
occurs at any point where f is continuous, and the pointwise convergence is
uniform on any subset of RN where f is uniformly continuous.
The L p theory for p = 1 extends from integrable functions to the Banach space

M(RN ) of finite complex Borel measures. Specifically if ν is a finite complex
Borel measure on RN , then the Poisson integral of ν is defined to be the function
u(x, t) = (Pt ∗ μ)(x) =

∫
RN Pt(x − y) dν(y). Then u is harmonic on RN+1

+ ,
‖u( · , t)‖1 ≤ ‖ν‖ for each t > 0, limt↓0 u( · , t) = ν in the weak-star topology of
M(RN ) against Ccom(RN ), and limt↓0 ‖u( · , t)‖1 = ‖μ‖.
The new topic for this section is a converse to the above considerations. For

1 ≤ p ≤ ∞, we defineHp(RN+1
+ ) to be the vector space of functions u(x, t) on

RN+1
+ such that

(i) u(x, t) is harmonic on RN+1
+ ,

(ii) supt>0 ‖u( · , t)‖p <∞.
With ‖u‖Hp defined as supt>0 ‖u( · , t)‖p, the vector spaceHp(RN+1

+ ) is a normed
linear space. If f is in L p(RN ), then the facts about the Poisson integral formula
show that the Poisson integral of f is in Hp(RN+1

+ ) and its Hp(RN+1
+ ) norm

matches the L p(RN ) norm of f . For p = 1, we readily produce further examples.
Specifically if ν is any member of M(RN ), then the Poisson integral of ν is in
H1(RN+1

+ ), with the H1(RN+1
+ ) norm matching the M(RN ) norm. The theorem

of this section will say that there are no other examples.
The members of H∞(RN+1

+ ) are exactly the bounded harmonic functions in
the half space RN+1

+ , and the tool for obtaining an L∞ function on RN from
this harmonic function is the preliminary form of Alaoglu’s Theorem proved in
Basic:9 any norm-bounded sequence in the dual of a separable normed linear
space has a weak-star convergent subsequence.10 We shall use Corollary 3.24 to
see that the harmonic function has to be the Poisson integral of this L∞ function.

Theorem 3.25. If 1 < p ≤ ∞, then any harmonic function in Hp(RN+1
+ ) is

the Poisson integral of a function in L p(RN ). For p = 1, any harmonic function
inH1(RN+1

+ ) is the Poisson integral of a finite complex measure in M(RN ).

PROOF. We begin by proving that u(x, t) is bounded for t ≥ t0. For this step
we may assume that p < ∞. Theorem 3.16 shows that u has the mean-value

9Theorem 5.58 of Basic.
10The full-fledged version of Alaoglu’s Theorem will be stated and proved in Chapter IV.
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property. We know as a consequence that if B denotes the ball with center (x, t)
and radius 12 t0, then the value of u at (x, t) equals the average value over B:

u(x, t) = 1
|B|
∫
B u(y, s) dy ds.

Since the measure |B|−1 dy ds on B has total mass 1, Hölder’s inequality gives
|u(x, t)|p ≤ 1

|B|
∫
B |u(y, s)|p dy ds

≤ 1
|B|
∫
|s−t |≤ 1

2 t0

∫
y∈RN |u(y, s)|p dy ds

≤ [( 12 t0)N+1	N ]−1(N + 1)t0‖u‖pHp ,

and the boundedness is proved.
For each positive integer k, define fk(x) = u(x, 1/k) and w(x, t) =

(Pt ∗ fk)(x). Then the function wk(x, t)− u(x, t + 1/k) is
(i) harmonic in (x, t) for t > 0 sincewk and any translate of u are harmonic,
(ii) bounded as a function of (x, t) for t ≥ 0 since u(x, t + 1/k) is bounded

for t ≥ 0, according to the previous paragraph, and sincewk is the Poisson
integral of the bounded function fk ,

(iii) continuous in (x, t) for t ≥ 0 since u(x, t + 1/k) and wk(x, t) both have
this property, the latter because fk is continuous and bounded.

By Corollary 3.24, wk(x, t)− u(x, t + 1/k) = 0. That is,
u(x, t + 1/k) = ∫

RN Pt (x − y) fk(y) dy.

Now suppose p > 1, so that L p is the dual space to L p′ if p−1 + p′−1 = 1.
Since u is in Hp, ‖ fk‖p ≤ M for the constant M = ‖u‖Hp

. By the preliminary
form of Alaoglu’s Theorem, there exists a subsequence { fkj } of { fk} that is weak-
star convergent to some function f in L p. Since for each fixed t , Pt is in L1∩ L∞
and hence is in L p′ , each (x, t) has the property that

u(x, t + 1/kj ) =
∫

RN Pt (x − y) fkj (y) dy →
∫

RN Pt (x − y) f (y) dy.

But u(x, t + 1/kj ) → u(x, t) by continuity of u. We conclude that u(x, t) =∫
RN Pt (x − y) f (y) dy.
This proves the theorem for p > 1. If p = 1, the above argument falls short

of constructing a function f in L1 since L1 is not the dual of L∞. Instead, we
treat fk as a complex measure fk(x) dx . The norm of fk(x) dx in M(RN ) equals
‖ fk‖1, and thus the norms of the complex measures fk(x) dx are bounded. The
space M(RN ) is the dual of Ccom(RN ) and hence also of its uniform closure,
which is the Banach space C0(RN ) of continuous functions on RN vanishing at
infinity. Let { fkj (x) dx} be a weak-star convergent subsequence of { fk(x) dx},
with limit ν in M(RN ). Since each function y �→ Pt (x − y) is in C0(RN ), we
have limk

∫
RN Pt (x − y) fkj (y) dy =

∫
RN Pt (x − y) dν(y). This completes the

proof.
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For N = 1, every analytic function in the upper half planeR2
+ is automatically

harmonic, and one can ask for a characterization of the subspace of analytic
members of Hp(R2

+). Aspects of the corresponding theory are discussed in
Problems 13–20 at the end of the chapter.

5. Calderón–Zygmund Theorem

The Calderón–Zygmund Theorem asserts the boundedness of certain kinds of
important operators on L p(RN ) for 1 < p < ∞. It is an N -dimensional
generalization of the theorem giving the boundedness of the Hilbert transform,
which was proved in Chapters VIII and IX of Basic. We state and prove the
Calderón–Zygmund Theorem in this section, and we give some applications to
partial differential equations in the next section.

Theorem 3.26 (Calderón–Zygmund Theorem). Let K (x) be a C1 function on
RN − {0} homogeneous11 of degree 0 with mean value 0 over the unit sphere,
i.e., with ∫

SN−1
K (ω) dω = 0.

For each ε > 0, define

Tε f (x) =
∫
|t |≥ε

K (t)

|t |N f (x − t) dt

whenever 1 < p <∞ and f is in L p(RN ). Then

(a) ‖Tε f ‖p ≤ Ap‖ f ‖p for a constant Ap independent of ε and f ,
(b) lim

ε↓0
Tε f = T f exists as an L p limit,

(c) ‖T f ‖p ≤ Ap‖ f ‖p for a constant Ap independent of f .
REMARKS. If 1 ≤ p < ∞ and if p′ is the dual index to p, then the function

equal to K (t)/|t |N for |t | ≥ ε and equal to 0 for |t | < ε is in L p′ . Therefore, for
each such p, Tε f is the convolution of an L p′ function and an L p function and is
a well-defined bounded uniformly continuous function. In proving the theorem,
we shall use less about K (x) than the assumedC1 condition onRN−{0} but more
than continuity. The precise condition that we shall use is that |K (x)− K (y)| ≤
ψ(|x−y|) on SN−1 for a nondecreasing functionψ(δ) of one variable that satisfies∫ 1
0

ψ(δ)

δ
dδ <∞.

11A function F of several variables is homogeneous of degree m if F(r x) = rm F(x) for all
r > 0 and all x = 0.
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Themain steps in the proof are to show that the operator T1 equal to Tε for ε = 1
is bounded on L2 and is ofweak-type (1, 1) in the sense that

∣∣{x ∣∣ |(T1 f )(x) > ξ
}∣∣

≤ C‖ f ‖1/ξ . The remainder of the argument is qualitatively similar to the
argument with the Hilbert transform, not really involving any new ideas. We
handle matters in the following order: First we prove as Lemma 3.27 two facts
needed in the L2 analysis, second we give the proof of the boundedness of T1
on L2, third we establish in Lemmas 3.28 and 3.29 a weak-type (1, 1) result
for a wide class of operators, and fourth we show as a special case that T1 is of
weak-type (1, 1). Finally we tend to the remaining details of the proof.

Lemma 3.27. There is a constant C such that for all R ≥ 1, all ε with
0 < ε ≤ 1, and all nonzero real a and b,

(a)
∣∣∣ ∫ R

ε

sin ar dr

r

∣∣∣ ≤ C ,

(b)
∣∣∣ ∫ R

ε

(cos ar − cos br) dr
r

∣∣∣ ≤ C
(
1+ ∣∣ log(|a/b|)∣∣).

PROOF. In (a) and (b), the signs of a and b make no difference, and we may
therefore assume that a > 0 and b > 0.
In (a), the change of variables s = ar converts the integral into

∫ aR
aε

sin s ds
s .

Since s−1 sin s is integrable near 0, it is enough to consider
∫ S
0
sin s ds

s . Integration

by parts shows that this integral equals
[
1−cos s

s

]S
0 −
∫ S
0

(cos s−1) ds
s2 . The integrated

term tends to a finite limit as S tends to infinity, and the integral is absolutely
convergent. Hence (a) follows.
In (b), possibly by interchanging a and b, we may assume that c = b/a is≤ 1.

The change of variables s = ar converts the integral into
∫ aR
aε

(cos s−cos cs) ds
s . Since

|1− cos s| ≤ 1
2s
2 for all s, we have |1− cos cs| ≤ 1

2c
2s2 ≤ 1

2s
2. So the integrand

is≤ s in absolute value everywhere and in particular is integrable for s near 0. It is
therefore enough to show that

∣∣ ∫ S
1

(cos s−cos cs) ds
s

∣∣ ≤ C(1+ log(c−1)). Integration
by parts gives

∫ S
1
cos s ds

s = [ sin ss ]S1 + ∫ S1 sin s ds
s2 . The integrated term tends to a

finite limit, and the integral is absolutely convergent. Hence the term
∫ S
1
cos s ds

s

is bounded, and it is enough to handle
∫ S
1
cos cs ds

s . Putting t = cs changes this

integral to
∫ cS
c

cos t dt
t . If cS ≥ 1, the integral from 1 to cS contributes a bounded

amount, as is seen by integrating by parts, and the integral from c to 1 contributes
in absolute value at most

∫ 1
c

dt
t = log c−1. If cS ≤ 1, the integral from c to cS

contributes in absolute value at most
∫ 1
c

dt
t +

∫ 1
cS

dt
t = log c−1 + log(cS)−1 ≤

2 log c−1.

PROOF FOR THEOREM 3.26 THAT T1 IS BOUNDED ON L2. Define k(x) to be
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K (x)/|x |N for |x | ≥ 1 and to be 0 for |x | < 1. Then k is an L2 function, and
T1 f = k ∗ f . We show that T1 is bounded on L2 by showing that the Fourier
transform F k of k is an L∞ function.
If In denotes the indicator function of {|x | ≤ n}, then the sequence {k In}

converges to k in L2. By the Plancherel formula, {F(k In)} converges to F k in
L2. Thus a subsequence converges almost everywhere. To simplify the notation,
let n run through the indices of the subsequence. We have just shown that

(F k)(x) = limn
∫
|x |≤n k(x)e

−2π i x ·y dx,

the limit existing almost everywhere. Write x = rω and y = r ′ω′, where r = |x |
and r ′ = |y|. Then x · y = rr ′ cos γ , where γ = ω · ω′, and (F k)(x) is the limit
on n of∫

SN−1
∫ n
1

K (ω)

r N e−2π irr
′ cos γ r N−1 dr dω

= ∫SN−1 [ ∫ n1 e−2π irr ′ cos γ dr
r

]
K (ω) dω

= ∫SN−1 [ ∫ n1 (e−2π irr ′ cos γ−cos 2πrr ′) dr
r

]
K (ω) dω since K has

mean value 0

= ∫SN−1 [ ∫ n1 ( cos(2πrr ′ cos γ )−cos 2πrr ′) drr

]
K (ω) dω

− i
∫
SN−1

[ ∫ n
1
sin(2πrr ′ cos γ ) dr

r

]
K (ω) dω.

Let us call the terms on the right side Term I and −i Term II. The inner integral
for Term II is bounded independently of r, r ′, γ, n by Lemma 3.27a. Since K is
bounded, Term II is bounded.
The inner integral for Term I is bounded by C

(
1+ log(| cos γ |−1)), according

to Lemma 3.27b. Since K is bounded, the contribution from C by itself yields a
bounded contribution to Term I and is harmless. We are left with a term that in
absolute value is

≤ C
∫
SN−1 log(| cos γ |−1)|K (ω)| dω = C

∫
SN−1 log(| cos(ω · ω′)|−1)|K (ω)| dω.

Since K is bounded, it is enough to estimate
∫
SN−1 log(| cos(ω · ω′)|−1) dω. This

integral is independent of ω′. We introduce spherical coordinates

ω1 = cos θ1,
ω2 = sin θ1 cos θ2,

...
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and take ω′ = (1, 0, . . . , 0). The integral becomes∫
0≤θj≤π for j<N−1,

0≤θN−1≤2π

log(| cos θ1|−1) sinN−2 θ1 · · · sin θN−2 dθN−1 · · · dθ1,

which is a constant times
∫ π

0 log(| cos θ |−1) sinN−2 θ dθ . This integral in turn
is ≤ ∫ π

0 log(| cos θ |−1) dθ , whose finiteness reduces to the local integrability of
log(|x |−1) on the line. Thus Term I is bounded, and the boundedness of F k
follows.

Lemma 3.28 (Calderón–Zygmund decomposition). Let f be in L1(RN ), and
let ξ be a positive real number. Then there exists a finite or infinite disjoint
sequence {En}n≥1 of Borel subsets of RN such that

(a) for each En , there exists a ball Bn = B(rn; xn) such that the balls Bn and
B∗n = B(5rn; xn) have Bn ⊆ En ⊆ B∗n ,

(b)
∑

n |En| ≤ 5N‖ f ‖1
/
ξ ,

(c) | f (x)| ≤ ξ almost everywhere off
⋃

n En ,

(d)
1

|En|
∫
En

| f (y)| dy ≤ 5N ξ for each n.

FIGURE 3.2. Calderón–Zygmund decomposition of RN relative to a function at a
certain height. The set where the maximal function of f exceeds ξ lies in the
union of the gray balls. The gray balls have radii 5 times those of the black
balls, and the black balls are disjoint. The function | f | is ≤ ξ almost
everywhere off the union of the gray balls, and the sum of the volumes

of the gray balls is controlled.

REMARKS. In the 1-dimensional case, this result was embedded in the proof
of Theorem 8.25 of Basic. The sets En were open intervals. Extending that
argument too literally to the N -dimensional case is unnecessarily complicated
for current purposes. Instead, we settle for an nth set that contains a ball of some
radius about a point and is contained in a ball of 5 times that radius. Thus the nth
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set En consists of a black ball and part of the corresponding gray ball in Figure
3.2. The fact that En has not been precisely located makes the proof of weak-type
(1, 1) in the present section more difficult than the proof of Theorem 8.25 of
Basic.

PROOF. Let f ∗ be the Hardy–Littlewood maximal function

f ∗(x) = sup0<r<∞ |B(r; x)|−1 ∫B(r;x) | f (y)| dy,
and let E = {x | f ∗(x) > ξ}. If x is in E , then |B(r; x)|−1 ∫B(r;x) | f (y)| dy > ξ

for some r > 0. On the other hand, limr→∞ |B(r; x)|−1
∫
B(r;x) | f (y)| dy = 0

since f is integrable. Thus, for each x in E , there exists an r = rx depending on
x such that

|B(rx ; x)|−1
∫
B(rx ;x) | f (y)| dy > ξ

|B(5rx ; x)|−1
∫
B(5rx ;x) | f (y)| dy ≤ ξ.and

Since ‖ f ‖1 ≥
∫
B(rx ;x) | f (y)| dy > ξ |B(rx ; x)| = r Nx ξ |B(1; 0)|, the radii rx are

bounded. Applying theWienerCoveringLemma12 to the cover {B(rx ; x) | x ∈E}
of E , we obtain a finite or infinite sequence of points x1, x2, . . . such that the
balls B(rxn ; xn) are disjoint and

E ⊆⋃n B(5rxn ; xn). (∗)
Write rn for rxn . Put E1 = B(5r1; x1)−

⋃
j =1 B(rj ; xj ), and define inductively

En = B(5rn; xn)−
⋃n−1

j=1 Ej −
⋃

j =n B(rj ; xj ).
By inspection

(i) the sets En are disjoint,
(ii) B(rn; xn) ⊆ En ⊆ B(5rn; xn) for each n,
(iii)

⋃
n En =

⋃
n B(5rn; xn).

Property (ii) immediately yields (a). The second inclusion of (ii) gives ξ |En| ≤
ξ |B(5rn; xn)| = 5N ξ |B(rn; xn)| ≤ 5N

∫
B(rn;xn) | f (y)| dy. Summing on n and

taking into account the disjointness of the sets B(rn; xn), we obtain ξ
∑

n |En| ≤
5N
∫
⋃
n B(rn;xn) | f (y)| dy ≤ 5N‖ f ‖1. This proves (b). The two inclusions

of (ii) together yield
∫
En
| f (y)| dy ≤ ∫B(5rn;xn) | f (y)| dy ≤ ξ |B(5rn; xn)| =

5N ξ |B(rn; xn)| ≤ 5N ξ |En|, and this proves (d). Finally (∗) and (iii) together
show that E ⊆⋃n En . Therefore f

∗(x) ≤ ξ everywhere off
⋃

n En . Since

limr↓0 |B(r; x)|−1
∫
B(r;x) | f (y)| dy = f (x)

almost everywhere onRN , we see that | f (x)| ≤ ξ almost everywhere off
⋃

n En .
This proves (c).

12Lemma 6.41 of Basic.
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Lemma 3.29. Let k be in L2(RN ), and define T f = k ∗ f for f in L1 + L2.
If

(a) ‖T f ‖2 ≤ A‖ f ‖2 and
(b) there exist constants B and α > 0 such that∫

|x |≥α|y|
|k(x − y)− k(x)| dx ≤ B

independently of y,

then the operator T is of weak-type (1, 1) with a constant depending only on A,
B, α, and N .

PROOF. We are to estimate the measure of the set of x where |(T f )(x)| > ξ .
Fix f and ξ , and apply Lemma 3.28 to obtain disjoint Borel sets En and balls
Bn = B(rn; xn) and B∗n = B(5rn; xn) with Bn ⊆ En ⊆ B∗n and with the other
properties listed in the lemma. Now that the sets En have been determined, we
decompose f into the sum f = g+ b of a “good” function and a “bad” function
by

g(x) =
{ 1

|En |
∫
En

f (y) dy for x ∈ En,

f (x) for x /∈⋃n En,

b(x) =
{
f (x)− 1

|En |
∫
En

f (y) dy for x ∈ En,

0 for x /∈⋃n En.

Since
{
x
∣∣ |T f (x)| > ξ

} ⊆ {x ∣∣ |Tg(x)| > ξ/2
} ∪ {x ∣∣ |Tb(x)| > ξ/2

}
, it is

enough to prove

(i)
∣∣{x ∣∣ |Tg(x)| > ξ/2

}∣∣ ≤ C‖ f ‖1
/
ξ and

(ii)
∣∣{x ∣∣ |Tb(x)| > ξ/2

}∣∣ ≤ C‖ f ‖1
/
ξ

for some constant C independent of ξ and f .
The definition of g shows that

∫
En
|g(x)| dx ≤ ∫En | f (x)| dx for all n and

that |g(x)| = | f (x)| for x /∈ ⋃n En; therefore
∫

RN |g(x)| dx ≤
∫

RN | f (x)| dx .
Also, properties (b) and (c) of the En’s show that |g(x)| ≤ 5N ξ a.e. These two
inequalities, together with the bound ‖Tg‖2 ≤ A‖g‖2, give∫

RN |Tg(x)|2 dx ≤ A2
∫

RN |g(x)|2 dx
≤ 5N ξ A2 ∫

RN |g(x)| dx ≤ 5N ξ A2
∫

RN | f (x)| dx .

Combining this result with Chebyshev’s inequality∣∣{x ∣∣ |F(x)| > β
}∣∣ ≤ β−2

∫
RN |F(x)|2 dx
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for the function F = Tg and the number β = ξ/2, we obtain∣∣{x ∣∣ |Tg(x)| > ξ/2
}∣∣ ≤ 4

ξ 2
5N ξ A2

∫
RN
| f (x)| dx = 4 · 5N A2‖ f ‖1

ξ
.

This proves (i).
For the function b, let bn be the product of b with the indicator function of

En . Then we have b =
∑

n bn with the sum convergent in L1. Inspection of
the definition shows that ‖bn‖1 ≤ 2

∫
En
| f (y)| dy, and therefore ‖b‖1 ≤ 2‖ f ‖1.

Since T is convolution by the L2 function k and since b = ∑n bn in L
1, Tb =∑

n T bn with the sum convergent in L
2. A subsequence of partial sums therefore

converges almost everywhere. Inserting absolute values consistently with the
subsequence and then inserting absolute values around each term, we see that

|Tb(x)| ≤∑n |Tbn(x)| a.e.

Let α be the constant in hypothesis (b). The measure of
⋃

n B(5αrn; xn) is∣∣⋃
n B(5αrn; xn)

∣∣ ≤∑n |B(5αrn; xn)| =
∑

n 5
NαN |B(rn; xn)|

≤ 5NαN∑n |En| ≤ 52NαN‖ f ‖1
/
ξ.

Let X = RN −⋃n B(5αrn; xn). If we show that
∫
X |Tb(x)| dx ≤ C ′‖ f ‖1, then

we will have ∣∣{x ∣∣ |Tb(x)| > ξ/2
}∣∣ ≤ (52NαN + 2C ′)‖ f ‖1

/
ξ, (∗)

and (ii) will be proved. Put τn(X) = {x − xn | x ∈ X}. Since ∫En b(y) dy = 0
for each n,∫

X |Tb(x)| dx ≤
∑

n

∫
X |Tbn(x)| dx

=∑n

∫
X

∣∣ ∫
En
k(x − y)b(y) dy

∣∣ dx
=∑n

∫
X

∣∣ ∫
En
[k(x − y)− k(x − xn)]b(y) dy

∣∣ dx
≤∑n

∫
X

∫
En
|k(x − y)− k(x − xn)||b(y)| dy dx

x−xn→x= ∑
n

∫
En

[ ∫
τn(X)

|k(x + xn − y)− k(x)| dx]|b(y)| dy
≤∑n

∫
En

[ ∫
B(5αrn;0)c |k(x + xn − y)− k(x)| dx]|b(y)| dy.

In the nth term on the right side, y is in En ⊆ B∗n , and hence |xn − y| ≤ 5rn;
meanwhile, |x | ≥ 5αrn . Therefore |x | ≥ 5αrn ≥ α|xn − y|. The right side in the
display is not decreased by increasing the region of integration in the x variable,
and hence the right side is

≤∑n

∫
En

[ ∫
|x |≥α|xn−y| |k(x + xn − y)− k(x)| dx]|b(y)| dy

≤∑n

∫
En
B|b(y)| dy = B‖b‖1 ≤ 2B‖ f ‖1.

Therefore (∗) is proved with C ′ = 2B, and the proof of (ii) is complete.
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PROOF FOR THEOREM 3.26 THAT T1 IS OF WEAK-TYPE (1, 1). With k(x) taken
to be K (x)/|x |N for |x | ≥ 1 and to be 0 for |x | < 1, Lemma 3.29 shows that it
is enough to prove that∫

|x |≥2|y| |k(x − y)− k(x)| dx ≤ B (∗)
with B independent of y. The function k is bounded, and thus the contribution
to the integral in (∗) from the bounded set of x’s where |x | < 1 is bounded
independently of y. The set of x’s where |x − y| < 1 is a ball whose measure is
bounded as a function of y, and thus this set too contributes a bounded term to
the integral in (∗). It is therefore enough to prove that∫

|x |≥2|y|,
|x−y|≥1, |x |≥1

∣∣∣K (x − y)

|x − y|N − K (x)

|x |N
∣∣∣ dx

is bounded as a function of y. If M is an upper bound for |K |, then this expression
is

≤ ∫ |K (x − y)|∣∣ 1
|x−y|N − 1

|x |N
∣∣ dx + ∫ |K (x−y)−K (x)|

|x |N dx

≤ M
∫

|x |≥2|y|,
|x |≥1

∣∣ 1
|x−y|N − 1

|x |N
∣∣ dx + ∫

|x |≥2|y|,
|x |≥1

|K (x−y)−K (x)|
|x |N dx . (∗∗)

We use the two estimates

|x − y| ≤ |x | + |y| ≤ |x | + 1
2 |x | = 3

2 |x |
|x − y| ≥ |x | − |y| = ( 12 |x | − |y|)+ 1

2 |x | ≥ 1
2 |x |.and

The integrand in the first term of (∗∗) is equal to∣∣ 1
|x−y|N − 1

|x |N
∣∣ = ∣∣ |x |N−|x−y|N|x |N |x−y|N

∣∣ ≤ 2N ∣∣ |x |N−|x−y|N|x |2N
∣∣

≤ 2N | |x |−|x−y| |(|x |N−1+|x |N−2|x−y|+···+|x−y|N−1)
|x |2N

≤ 2N |y|(|x |N−1+|x |N−2|x−y|+···+|x−y|N−1)
|x |2N ≤ 2N ( 32 )N |y|(|x |N−1+|x |N−1+···+|x |N−1)

|x |2N

= N3N |y|
|x |N+1 .

Thus the integral in the first term of (∗∗) is
≤ N3N

∫
|x |≥max{1,2|y|}

|y|
|x |N+1 dx = N3N	N−1

∫∞
max{1,2|y|}

|y|
r N+1 r

N−1 dr

= N3N	N−1 |y|
max{1,2|y|} ≤ 1

2N3
N	N−1,
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and this is bounded independently of y.
For the second term of (∗∗), we start from the estimate∣∣ z|z| − w

|w|
∣∣ ≤ |z−w|

min{|z|,|w|} . (†)

To verify (†), we may assume that |z| ≥ |w|. Then |z|
|w| + 1 ≥ 2z·w

|z||w| because
the left side is ≥ 2 and the right side is ≤ 2. Multiplying by |z|

|w| − 1, we obtain
|z|2
|w|2 − 1 ≥ 2z·w

|w|2 − 2z·w
|z||w| . Hence 1 − 2z·w

|z||w| + 1 ≤ |z|2
|w|2 − 2z·w

|w|2 + 1, which is the
square of (†).
Using (†) and the definition and monotonicity of the functionψ that is defined

in the remarks with the theorem and that captures the smoothness of K , we have

|K (x− y)−K (x)| = ∣∣K (
x−y
|x−y| )−K ( x

|x | )
∣∣ ≤ ψ

(∣∣ x−y|x−y| − x
|x |
∣∣) ≤ ψ

( |y|
min{|x−y|,|x |}

)
.

Since |x− y| ≥ 1
2 |x |, min{|x− y|, |x |} ≥ 1

2 |x |. Thusψ
( |y|
min{|x−y|,|x |}

) ≤ ψ
( 2|y|
|x |
)
,

and the computation∫
|x |≥2|y|,
|x |≥1

|K (x−y)−K (x)|
|x |N dx ≤ ∫

|x |≥2|y|,
|x |≥1

ψ(2|y|/|x |)
|x |N dx = ∫

|z|≥1,
|z|≥1/2|y|

ψ(1/|z|)
|z|N dz

= 	N−1
∫∞
max{1,1/2|y|} ψ(1/r)r−1 dr

= 	N−1
∫ min{1,2|y|}
0 ψ(δ)δ−1 dδ

≤ 	N−1
∫ 1
0 ψ(δ)δ−1 dδ

shows that the second term of (∗∗) is bounded independently of y.

PROOF OF REMAINDER OF THEOREM 3.26. We can now argue in the same way
that the Hilbert transform was handled in Chapter IX of Basic. Since T1 has been
shown to be bounded on L2 and to be of weak-type (1, 1), the Marcinkiewicz
Interpolation Theorem given in Theorem 9.20 of Basic shows that ‖T1 f ‖p ≤
Ap‖ f ‖p for 1 < p ≤ 2 with Ap independent of f . Lemma 9.22 of Basic extends
this conclusion to 1 < p < ∞. The argument that proves Theorem 9.23a in
Basic applies here and shows that ‖Tε f ‖p ≤ Ap‖ f ‖p for 1 < p < ∞ with Ap
independent of f and ε. This proves Theorem 3.26a.
The same argument as in Lemma 9.24 of Basic shows that if f is aC1 function

of compact support on RN , then

limε↓0
∫
|y|≥ε

K (y) f (x−y) dy
|y|N

exists uniformly and in L p for every p > 1. This proves (b) of Theorem 3.26 for
the dense set of C1 functions f of compact support.
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To prove the norm convergence when we are given a general f in L p with
1 < p <∞, we choose a sequence fn in the dense set with fn → f in L p. Then

‖Tε f − Tε′ f ‖p ≤ ‖Tε( f − fn)‖p + ‖Tε fn − Tε′ fn‖p + ‖Tε′( fn − f )‖p
≤ Ap‖ fn − f ‖p + ‖Tε fn − Tε′ fn‖p + Ap‖ fn − f ‖p.

Choose n to make the first and third terms small on the right, and then choose ε
and ε′ sufficiently close to 0 so that the second term on the right is small. The
result is that Tεn f is Cauchy in L

p along any sequence {εn} tending to 0. This
proves Theorem 3.26b.
For any f in L p with 1 < p < ∞, we have just seen that Tε f → T f in L p.

Then (a) gives ‖T f ‖p = limε↓0 ‖Tε f ‖p ≤ lim supε↓0 Ap‖ f ‖p = Ap‖ f ‖p. This
proves Theorem 3.26c.

6. Applications of the Calderón–Zygmund Theorem

EXAMPLE 1. Riesz transforms. These are a more immediate N -dimensional
analog of the Hilbert transform than is the operator in the Calderón–Zygmund
Theorem. In R1, the Poisson kernel and conjugate Poisson kernel are given by

P(x, y) = Py(x) = 1

π

y

x2 + y2
and Q(x, y) = Qy(x) = 1

π

x

x2 + y2
.

The conjugate Poisson kernel Q may be obtained starting from the Poisson kernel
P by applying the Cauchy–Riemann equations in the form

∂P

∂x
= ∂Q

∂y
and

∂Q

∂x
= −∂P

∂y

and by requiring that Q vanish at infinity. The differential equations lead to the
solution

Q(x, y) =
∫ (x,y)

∞

∂P

∂x
dy.

TheHilbert transformkernelmaybe obtained by letting y decrease to 0 inQ(x, y).
The resulting formal convolution formula

H f (x) = 1

π

∫ ∞

−∞

f (x − t)

t
dt

is to be interpreted in such a way as to represent passage from the boundary values
of Py ∗ f to the boundary values of Qy ∗ f . We know that a valid way of arriving
at this interpretation is to take the integral for |t | ≥ ε and let ε decrease to 0.
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In N dimensions the Poisson kernel for RN+1
+ is

P(x, t) = Pt (x) = cN t

(|x |2 + t2)
1
2 (N+1)

, x ∈ RN , t > 0,

with cN = π−
1
2 (N+1)


(
N+1
2

)
. If wewrite xN+1 in place of t , the natural extension

of the Cauchy–Riemann equations is the system for the (N + 1)-component
function u = (u1, . . . , uN+1) given by

div u = 0 and curl u = 0,
N+1∑
i=1

∂ui
∂xi

= 0 and
∂ui
∂xj

= ∂uj
∂xi

when i = j.i.e.,

A solution is (Q1, . . . , QN , P), where

Qj (x, t) = cN xj

(|x |2 + t2)
1
2 (N+1)

, x ∈ RN , t > 0.

Imitating the procedure summarized above for the Hilbert transform, we let t
decrease to 0 here and arrive at the kernel

cN xj
|x |N+1 .

Accordingly, we define the j th Riesz transform for 1 ≤ j ≤ N by

Rj f (x) = cN lim
ε↓0

∫
|y|≥ε

yj
|y|N+1 f (x − y) dy.

The Calderón–Zygmund Theorem (Theorem 3.26) shows that Rj is a bounded
operator on L p(RN ) for 1 < p < ∞. The multiplier on the Fourier transform
side can be obtained routinely from the formula for the Fourier transform of
Pt (x), namely P̂t (y) = e−2π t |y|, by using the differential equations and letting t
decrease to 0. The result is

R̂j f (y) = − i xj|x | f̂ (y).
A sample application of the Riesz transforms is to an inequality asserting

that the Laplacian controls all mixed second derivatives for smooth functions of
compact support:∥∥∥ ∂

∂xj

∂

∂xk
ϕ

∥∥∥
p
≤ Ap‖ϕ‖p for 1 < p <∞ and ϕ ∈ C∞com(RN ).

The argument works as well for all Schwartz functions ϕ: the partial derivatives
satisfy the identity ∂

∂xj
∂
∂xk

ϕ = −Rj Rkϕ because the equality

−4π2yj yk ϕ̂(y) = −
(
− iyj
|y|
)(
− iyk
|y|
)
(−4π2|y|2) ϕ̂(y)

shows that the Fourier transforms are equal.
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EXAMPLE 2. Beltrami equation. This will be an application in which the L p

theory of the Calderón–Zygmund Theorem is essential for some p = 2. We deal
with functions on R2. Define

∂

∂z
= 1

2

( ∂

∂x
− i

∂

∂y

)
and

∂

∂ z̄
= 1

2

( ∂

∂x
+ i

∂

∂y

)
.

We shall use the abbreviations fz = ∂ f
∂z and fz̄ = ∂ f

∂ z̄ . The Cauchy–Riemann
equations, testing whether a complex-valued function on R2 is analytic, become
the single equation fz̄ = 0.
We shall use weak derivatives on R2 in the sense of Section 2. Let μ be in

L∞(R2) with ‖μ‖∞ = k < 1. In the sense of weak derivatives, the Beltrami
equation is

fz̄ = μ fz.

This equation is fundamental in dealing with Riemann surfaces, since solutions
to it provide “quasiconformal mappings” with certain properties. For simplicity
we assume that μ has compact support. We seek a solution f such that f (0) = 0
and fz − 1 is in some L p class.
The equation is solved by first putting it in another form. Let

Ph(ζ ) = − 1
π

∫
R2

( 1

z − ζ
− 1

z

)
h(z) dx dy.

The factor in parentheses is in Lq(R2) for 1 ≤ q < 2, and Hölder’s inequality
shows that Ph is therefore well defined for h in L p(R2) if p > 2. In fact, one

can show that |Ph(ζ1) − Ph(ζ2)| ≤ C‖h‖p|ζ1 − ζ2|1−
2
p , and therefore Ph is

continuous for such h. Observe that Ph(0) = 0 for all h. Also, one can show
that

(Ph)z̄ = h in the sense of weak derivatives. (∗)
However, the definition of P falls apart for p = 2. Now define

Th(ζ ) = lim
ε↓0
− 1
π

∫
|z−ζ |≥ε

h(z)

(z − ζ )2
dx dy.

The operator T is bounded on L p(R2) for 1 < p <∞ by the Calderón–Zygmund
Theorem, and we shall be interested in h as above, thus interested in p > 2. One
can show that

(Ph)z = Th in the sense of weak derivatives if h ∈ L p with p > 2. (∗∗)
Nowwecan transform theBeltrami equation. Suppose that f is aweak solution

of the Beltrami equation with f (0) = 0 and fz − 1 in L p for some p with p > 2.
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Since μ is in L∞, μ fz − μ is in L p, and since μ has compact support, μ fz is in
L p. Then fz̄ = μ fz is in L p, and P( fz̄) is defined. The function f − P( fz̄) is
analytic because (∗) shows that ∂

∂ z̄ ( f − P( fz̄)) = fz̄ − fz̄ = 0. One can easily
show that this analytic function has to be z, i.e., that

f = P( fz̄)+ z.

Differentiating with respect to z and using (∗∗), we obtain fz = T ( fz̄) + 1 =
T (μ fz)+ 1. The equation

fz = T (μ fz)+ 1 (†)

is the transformed equation.
Assuming that f is a solution of the Beltrami equation and therefore of (†),

we shall manipulate (†) a little and arrive at a formula for f . Multiply (†) by μ
and apply T to get T (μ fz) = TμTμ fz + Tμ. Adding 1 and substituting from
(†) gives

fz = TμTμ fz + Tμ+ 1.
Iteration of this procedure yields

fz = (Tμ)n fz + [1+ Tμ+ · · · + (Tμ)n−1].

We want to arrange that the first term on the right side tends to 0 in the limit
on n. The operations of P and T have together made sense only on L p for
p > 2. The linear operator g �→ μg on L p has norm ‖μ‖∞ = k < 1, and T
has norm Ap, say. It can be shown that T is unitary on L2, so that A2 = 1. The
Marcinkiewicz Interpolation Theorem does not reveal good limiting behavior for
the bounds of operators at the endpoints of an interval of p’s where it is applied,
but the Riesz Convexity Theorem13 does. Consequently we can conclude that
lim supp↓2 Ap = 1. Therefore the operator g �→ Tμg, with norm ≤ k Ap on L p

for p > 2, has norm < 1 if p is sufficiently close to 2 (but is greater than 2). Fix
such a p. Then we have

‖(Tμ)n fz‖p ≤ ‖Tμ‖n−1‖Tμ fz‖p −→ 0,

and
fz = lim

n
[1+ Tμ+ · · · + (Tμ)n−1].

The function fz−1 = limn[Tμ+· · ·+(Tμ)n−1] is certainly in L p. As a solution
of the Beltrami equation, f has fz̄ = μ fz = μ+ μ limn[Tμ+ · · · + (Tμ)n−1].

13The Riesz Convexity Theorem uses complex analysis. It was stated in Chapter IX of Basic,
but the proof was omitted.
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We saw above that any solution f of the Beltrami equation with f (0) and with
fz − 1 in L p has to satisfy f = P( fz̄)+ z. Thus our formula for f is

f = P
(
μ+ μ lim

n
[Tμ+ · · · + (Tμ)n−1]

)+ z.

Finally we can turn things around and check that this process actually gives a
solution. Define g = μ+μ limn[Tμ+· · ·+(Tμ)n−1] in L p, and put f = Pg+z.
Application of (∗) and (∗∗) gives fz̄ = g and fz = Tg + 1. Substitution of the
formula for g into these yields

fz̄ = μ+ μ lim
n
[Tμ+ · · · + (Tμ)n−1] = μ(1+ lim

n
[Tμ+ · · · + (Tμ)n−1])

= μ(1+ T (lim
n

μ+ μTμ+ · · · + μ(Tμ)n−2])) = μ(1+ Tg) = μ fz,

as required. The equality fz = Tg + 1 shows that fz − 1 is in L p, and the fact
that Ph(0) = 0 for all h shows that f (0) = (Pg + z)(0) = 0.

7. Multiple Fourier Series

Fourier series in several variables are a handy tool for local problems with linear
differential equations. One isolates a problem in a bounded subset of RN and
then reproduces it periodically in each variable, using a large period. Multiple
Fourier series for potentially rough functions is a complicated subject, butwe have
no need for it. What is required is information about Fourier series of smooth
functions. The relevant theory is presented in this section, using 2π for the period
in each variable, and a relatively simple application is given in the next section.
A more decisive application appears in Chapter VII, where we establish local
solvability of linear partial differential equations with constant coefficients.
If f is a locally integrable function onRN that is periodic of period 2π in each

variable, itsmultiple Fourier series is given by

f (x) ∼
∑
k

cke
ik·x ,

the sum being over all integer N -tuples and the coefficients ck being given by

ck = (2π)−N
∫ π

−π
· · ·
∫ π

−π
f (x)e−ik·x dx .

Let us write ZN for the set of all integer N -tuples and [−π, π ]N for the region of
integration. Such series have the following properties.
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Proposition 3.30. If f is a locally integrable function on RN that is periodic
of period 2π in each variable, then

(a) |ck | ≤ ‖ f ‖1 relative to L1([−π, π ]N , (2π)−N dx),
(b) |ck | ≤ CM |k|−M for every positive integer M if f is smooth,
(c)
∑

k∈ZN ckeik·x is smooth and periodic if |ck | ≤ CM |k|−M for every
positive integer M ,

(d) {eik·x }k∈ZN is an orthonormal basis of L2([−π, π ]N , (2π)−N dx),
(e) f (x) =∑k∈ZN ckeik·x if f is smooth.
PROOF. Conclusion (a) is evident by inspection of the definition. For (b),

integration by parts shows that any C1 periodic function f has the property that

(ikj )
∫
[−π,π ]N f (x)e−ik·x dx = ∫[−π,π ]N Dj f (x)e−ik·x dx .

Apart from the factor of (2π)−N , the right side is a Fourier coefficient, and its
size is controlled by (a). Iterating this formula, we see, in the case that f is
smooth, that the Fourier coefficients ck of f have the property that {P(k)ck}k∈ZN

is bounded for every polynomial P . Then (b) follows.
Conclusion (c) is immediate from the standard theorem about interchanging

sums and derivatives. The result (d) is known in the 1-dimensional case, and the
N -dimensional case then follows fromProposition 12.9 ofBasic. In (e), the series
converges to f in L2 as a consequence of (d), and hence a subsequence converges
almost everywhere to f . On the other hand, the series converges uniformly to
something smooth by (c). The smooth limit must be almost everywhere equal to
f , and it must equal f since f is smooth.

8. Application to Traces of Integral Operators

We return to the topic of traces of linear operators on Hilbert spaces, which was
introduced in Section II.5. That section defined trace-class operators as a subset
of the compact operators, and the trace of such an operator L is then given by∑

i (Lui , ui ), where {ui } is an orthonormal basis. The defining condition for
trace class was hard to check, but Proposition 2.9 gave a sufficient condition: if
L : V → V is bounded and if

∑
i, j |(Lui , vj )| <∞ for some orthonormal bases

{ui } and {vj }, then L is of trace class.
In this section we use multiple Fourier series to show how traces can be

computed for simple integral operators in a Euclidean setting. The setting for
realistic applications is to be a compact smooth manifold. Such manifolds are
introduced in Chapter VIII, and the present result is to be regarded as the main
step toward a theorem about traces of integral operators on smooth manifolds.14

14Traces of integral operators play a role in the representation theory of noncompact locally com-
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Proposition 3.31. Let K ( · , · ) be a complex-valued smooth function on
RN × RN that is periodic of period 2π in each of the 2N variables, and suppose
that the subset of [−π, π ]N × [−π, π ]N where K is nonzero is contained in
[−π

8 ,
π
8 ]

N × [−π
8 ,

π
8 ]

N . Define a bounded linear operator L on the Hilbert space
L2([−π, π ]N , (2π)−N dx) by

L f (x) = 1

(2π)N

∫
[−π,π ]N

K (x, y) f (y) dy.

Then L is of trace class, and its trace is given by

Tr L = 1

(2π)N

∫
[−π,π ]N

K (x, x) dx .

PROOF. For each k in ZN , the effect of L on the function x �→ eik·x is

L(eik·(·))(x) = 1

(2π)N

∫
[−π,π ]N

K (x, y)eik·y dy.

Taking the inner product in L2([−π, π ]N , (2π)−N dx) with x �→ eil·x gives

(L(eik·(·)), eil·(·)) = 1

(2π)2N

∫∫
[−π,π ]2N

K (x, y)eik·ye−il·x dy dx . (∗)

The right side is a multiple-Fourier-series coefficient of the function K , and it is
estimated by Proposition 3.30b. Proposition 3.30c shows that the corresponding
trigonometric series converges absolutely. The functions eik·x are an orthonormal
basis of L2([−π, π ]N , (2π)−N dx) as a consequence of Proposition 3.30d, and
therefore the sufficient condition of Proposition 2.9 is met for L to be of trace
class.
To compute the trace, we start from (∗) with k = l. We change variables,

letting u = y − x and v = y + x , and the right side of (∗) becomes
1

(2π)2N

∫∫
[−π,π ]2N

2−N K
(
1
2 (v − u), 12 (v + u)

)
eik·u du dv

because of the small support of K . We sum on k in ZN , moving the sum
under the integration with respect to v and recognizing the sum inside as the
sum of the multiple-Fourier-series coefficients in the u variable, i.e., the sum

pact groups and in index theory. Both these topics are beyond the scope of this book. Consequently
Chapter VIII does not carry out the easy argument to extend the Euclidean result to compact smooth
manifolds.
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of the series at the origin. Since the functions eik·u are an orthonormal basis of
L2([−π, π ]N , (2π)−N dx), the sum of the uniformly convergent multiple Fourier
series has to be the function itself. Thus we find that

Tr L = 1

(4π)N

∫
[−π,π ]N

K
(
1
2v,

1
2v
)
dv.

Replacing 1
2v by v and again taking into account the small support of K , we

obtain the formula asserted.

9. Problems

1. Check that (1 + 4π2|y|2)−1g is in the Schwartz space S if g is in S, so that
(1−)u = f is solvable in S if f is in S.

2. Show that the Schwartz space S is closed under pointwise product and convolu-
tion, and show that these operations are continuous from S× S into S.

3. If 	 is the open unit disk in R2, prove the following:
(a) The function (x, y) �→ log

(
(x2 + y2)−1

)
is in L p

1 (	) for 1 ≤ p < 2 but is
not in L21(	).

(b) The unbounded function (x, y) �→ log log
(
(x2 + y2)−1

)
is in L21(	).

4. Let 	 be a nonempty bounded open set in Rn , and suppose that there exists a
real-valued C1 function h on Rn such that h is positive on 	, h is negative on
(	cl)c, and the first partial derivatives of h do not simultaneously vanish at any
point of the boundary 	cl − 	. Prove that 	 satisfies the cone condition of
Section 2.

Problems 5–7 compute explicitly the Fourier transforms of the members of a family
of tempered distributions.

5. Show that the function |x |−(N−α) onRN is a tempered distribution if 0 < α < N .
For what values of α is it the sum of an L1 function and an L2 function?

6. Verify the identity
∫∞
0 tβ−1e−π |x |

2t dt=∫∞0 t−β−1e−π |x |
2/t dt=
(β)(π |x |2)−β .

7. Let ϕ be in S(RN ). Taking the formula F(e−π t |x |2) = t−N/2e−π |x |
2/t as known

and applying the multiplication formula, obtain the identity∫
RN e−π t |x |

2
ϕ̂(x) dx = t−N/2

∫
RN e−π |x |

2/tϕ(x) dx .

Multiply both sides by t
1
2 (N−α)−1 and integrate in t . Dropping dx from the

notation for tempered distributions that are given by functions, conclude from
the resulting formula that
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F(|x |−α) = π−
1
2 N+α
( 12 (N − α))


( 12α)
|x |−(N−α)

as tempered distributions if 0 < α < N .

Problems 8–12 introduce a family Hs = Hs(RN ) of Hilbert spaces for s real. This
is another family of spaces called Sobolev spaces. The space Hs consists of all
tempered distributions T ∈ S(RN )whose Fourier transformsF(T ) are locally square
integrable functions such that

∫
RN |F(T )|2(1 + |ξ |2)s dξ is finite, the norm ‖T ‖Hs

being the square root of this expression. The spaces Hs get larger as s decreases.

8. Let s ≥ 0 be an integer, and let T be a tempered distribution.
(a) Prove that if T is in Hs , then all distributions DαT with |α| ≤ s are L2

functions. In this situation, if T is the L2 function f , conclude that f is in
L2s (R

N ).
(b) Prove conversely that if DαT is given by an L2 function whenever |α| ≤ s,

then T is in Hs .
(c) As a consequence of (a) and (b), Hs can be identified with L2s (R

N ) if s ≥ 0
is an integer. Prove that the respective norms are bounded above and below
by constant multiples of each other.

9. (a) Prove for each s that the operator As(T ) = F −1((1 + |ξ |2)s/2F(T )) is a
linear isometry of Hs onto H0 ∼= L2, and conclude that the inner-product
space Hs is a Hilbert space.

(b) Prove that A−1s carries the subspace S(RN ) of Schwartz functions, i.e.,
tempered distributions of the form Tϕ with ϕ ∈ S(RN ), onto itself.

(c) Prove that S(RN ) is dense in Hs for all s.

10. Suppose that T is in H−s and ϕ is in S(RN ) ⊆ Hs . Prove that |〈T, ϕ〉| ≤
‖T ‖H−s‖ϕ‖Hs .

11. Conversely suppose that s is real and that T is a tempered distribution such that
|〈T, ϕ〉| ≤ C‖ϕ‖Hs for all ϕ ∈ S(RN ). Show thatF(T ) defines a bounded linear
functional on the Hilbert space L2((1+|ξ |2)s/2 dξ), and deduce that T is in H−s
with ‖T ‖−s ≤ C .

12. Let s > N/2.
(a) Prove that if the tempered distribution T given by the function ϕ ∈ S(RN )

is regarded as a member Tϕ of Hs , then ‖ϕ‖sup ≤ ‖F(ϕ)‖1 ≤ C‖Tϕ‖Hs ,

where C is the constant
( ∫

RN (1+ |ξ |2)−s dξ
)1/2

independent of ϕ.
(b) (Sobolev’s Theorem) Deduce from (a) that any member T of Hs with

s > N/2 is given by a bounded continuous function.

Problems 13–20 concern the Hardy spaces H p(R2+) for the upper half plane R2+ =
{z ∈ C | Im z > 0}. These problems use complex analysis in one variable, and some
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familiarity with the Poisson and conjugate Poisson kernels as in Chapters VIII and IX
of Basic will be helpful. The space H p(R2+) is defined to be the vector subspace of
analytic functions in the space Hp(R2+). Let f

∗ be the Hardy–Littlewood maximal
function of f on R1. Take as known the result from Basic that the Poisson integral
Py ∗ f satisfies |Py ∗ f (x)| ≤ C f ∗(x) with C independent of f and y.

13. Suppose that p satisfies 1 < p < ∞, and let H : L p(R1) → L p(R1) be the
Hilbert transform.
(a) Prove that if u0(x) is in L p(R1), then the Poisson integral of the function

u0(x)+ i(Hu0)(x) is in H p(R1).
(b) Conversely suppose that f (x + iy) is in H p(R1+). Applying Theorem 3.25,

let f (x + iy) be the Poisson integral of the member f0(x) of L p(R1+). If
Re f0 = u0, prove that Im f0 = Hu0.

14. Prove that the functions f in L2(R1)whose Poisson integrals are in the subspace
H2(R2+) of H2(R2+) are exactly the functions for which F f (x) = 0 a.e. for
x < 0.

15. Let F = ( f1, . . . , fn) be an n-tuple of analytic functions on an open subset of
C, and let ( · , · ) be the usual inner product on Cn . For a function on an open set
in C, define fz = 1

2 ( fx − i fy) and fz̄ = 1
2 ( fx + i fy), so that the condition for

analyticity is fz̄ = 0 and so that f = 4 fzz̄ . Suppose that F is nowhere 0 on an
open set. Prove for all q > 0 that

(|F |q) = q2|F |q−4|(F, F ′)|2 + 2q|F |q−4(− |(F, F ′)|2 + |F |2|F ′|2)
≥ q2|F |q−4|(F, F ′)|2 ≥ 0.

16. Suppose that u is a smooth real-valued function on an open set in RN containing
the ball B(r; x0)cl such that u ≥ 0 on B(r; x0) and u ≤ 0 on ∂B(r; x0). By
considering u+ c(|x− x0|2−r2) for a suitable c, prove that u ≤ 0 on B(r; x0)cl.

17. Let f be in H1(R2+), and define Fε : {Im z ≥ 0} → C2 for ε > 0 by Fε(z) =
( f (z + iε), ε(z + i)−2). Define gε(x) = |Fε(x)|1/2 for x ∈ R.
(a) Prove that ‖gε‖22 ≤ ‖ f ‖H1 + ε‖(x + i)−2‖1.
(b) Let gε(z) be the Poisson integral of gε(x). Show that |Fε(z)|1/2 and gε(z)

both tend to 0 as |x | or y tends to infinity in R2+.
(c) By applying the previous two problems to |Fε(z)|1/2 − gε(z) on large disks

in R2+, prove that |Fε(z)|1/2 ≤ gε(z) on R2+.

18. By Alaoglu’s Theorem let g(x) be a weak-star limit in L2(R1) of a sequence
gεn (x) with εn ↓ 0, and let g(z) be the Poisson integral of g(x).
(a) Prove that | f (z)|1/2 ≤ g(z) ≤ Cg∗(x), with g∗(x) being the Hardy–

Littlewood maximal function of g(x).
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(b) Conclude that | f (x + iy)| is dominated by the fixed integrable function
g∗(x)2 as y ↓ 0.

19. Let X be a locally compact separable metric space, let μ be a finite Borel
measure on X , and suppose that {gn} is a sequence of Borel functions on X
with |gn| ≤ 1 such that the sequence {gn(x) dμ(x)} of complex Borel measures
converges weak-star against Ccom(X) to a complex Borel measure ν. Prove that
ν is absolutely continuous with respect to μ.

20. (F. and M. Riesz Theorem) Deduce from the above facts that each member
of H1(R2+) is the Poisson integral of an L

1 function on R1.

Problems 21–24 show that the limit T f = limε↓0 Tε f defining a Calderón–Zygmund
operator T exists almost everywhere for f ∈ L p and 1 < p < ∞, as well as in
L p. Let notation be as in the statement of Theorem 3.26 and Lemma 3.29: K (x)
is a C1 function on RN − {0} homogeneous of degree 0 with mean value 0 over the
unit sphere, k(x) is K (x)/|x |N for |x | ≥ 1 and is 0 for |x | < 1. For any function
ϕ on RN , define ϕε(x) = ε−Nϕ(ε−1x). The operator Tε f is kε ∗ f . Let f ∗ be the
Hardy–Littlewood maximal function of f . Take as known from Basic that if � ≥ 0
is an integrable function on RN of the form �(x) = �0(|x |) with �0 nonincreasing
and finite at 0, then supε>0(�ε ∗ f )(x) ≤ C� f ∗(x) for some finite constant C� . Let
f be in L p with 1 < p <∞.
21. Let ϕ be as in Proposition 3.5e. Define � = T (ϕ)− k.

(a) Taking into account the fact that ϕ is in C∞com(R
N ), prove that T (ϕ) is in

C∞(RN ), and conclude that � is locally bounded.
(b) By taking into account the compact support of ϕ, prove that |�(x)| is

bounded by a multiple of |x |−N−1 for large |x |.
(c) Deduce that |�(x)| is dominated for all x by an integrable function�(x) on

RN of the form �(x) = �0(|x |) with �0 nonincreasing and finite at 0.
22. Let ϕ and � be as in the previous problem.

(a) Prove that (Tϕ)ε = Tϕε.
(b) Prove the associativity formula Tϕε ∗ f = ϕε ∗ (T f ).
(c) Deduce that ϕε ∗ (T f )− kε ∗ f = �ε ∗ f .

23. Conclude from the previous problem that there are constantsC1 andC2 indepen-
dent of f such that supε>0 |Tε f (x)| ≤ C1 f ∗(x)+ C2(T f )∗(x).

24. Why does it follow that limε↓0 Tε f (x) exists almost everywhere?

Problems 25–34 introduce Sobolev spaces in the context of multiple Fourier series. In
this set of problems, periodic functions are understood to be defined onRN and to be
periodic of period 2π in each variable. Write T for the circleR/2πZ, and letC∞(T N )

be the complex vector space of all smooth periodic functions. Let L2(T N ) be the
space of all periodic functions (modulo functions that are 0 almost everywhere) that
are in L2([−π, π ]N ). If α = (α1, . . . , αN ) is a multi-index, a member f of L2(T N )
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is said to have a weak αth derivative in L2(T N ) if there exists a function Dα f in
L2(T N ) with ∫

[−π,π]N (D
α f )ϕ dx = (−1)|α| ∫[−π,π] f Dαϕ dx

for all ϕ in C∞(T N ). Define the Sobolev space L2k (T
N ) for each integer k ≥ 0 to

consist of all members of L2(T N ) having αth derivative in L2(T N ) for all α with
|α| ≤ k. The norm on L2k (T

N ) is given by

‖ f ‖2
L2k (T

N )
= ∑
|α|≤k

(2π)−N
∫
[−π,π]N |Dα f |2 dx .

25. Prove that L2k (T
N ) is complete.

26. Prove that C∞(T N ) is dense in L2k (T
N ) for all k ≥ 0.

27. Prove for each multi-index α and each k ≥ 0 that there exists a constant Cα,k

such that
‖Dα f ‖

L2k (T
N )
≤ Cα,k‖ f ‖L2k+|α|(T N )

for all f in C∞(T N ).

28. Prove for each k ≥ 0 that there is a constant Ak such that every member f of
L2k (T

N ) has
‖ f ‖

L2k (T
N )
≤ Ak

∑
|α|≤k

sup
x∈[−π,π N ]

|Dα f (x)|.

29. Prove for each integer k ≥ 0 that there exist positive constants Bk and Ck such
that Bk

∑
|α|≤k

l2α ≤ (1+ |l|2)k ≤ Ck
∑
|α|≤k

l2α .

30. Prove that if f is periodic and locally integrable on RN with multiple Fourier
series f (x) ∼∑l∈ZN cleil·x , then f is in L2k (T

N ) if and only if∑
l∈ZN

|cl |2(1+ |l|2)k <∞.

31. With notation as in the previous problem, prove for each k ≥ 0 that there exist
positive constants Bk and Ck independent of f such that

Bk‖ f ‖2L2k (T N )
≤ ∑

l∈ZN

|cl |2(1+ |l|2)k ≤ Ck‖ f ‖2L2k (T N )

for all f in L2k (T
N ).

32. (Sobolev’s Theorem) Suppose that K is an integer with K > N/2. Prove that∑
l∈ZN (1+ |l|2)−K <∞, and deduce that any f in L2K (T

N ) can be adjusted on
a set of measure 0 so as to be continuous.
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33. Prove for each multi-index α that there exist some integer m(α) and constant Cα

such that
sup

x∈[−π,π]
|Dα f (x)| ≤ Cα‖ f ‖L2m(α)

(T N )

for all f in C∞(T N ).

34. Prove that the separating family of seminorms ‖ · ‖
L2k (T

N )
on C∞(T N ), indexed

by k, is equivalent to the family of seminorms supx∈[−π,π]N |Dα( · )(x)|, indexed
by α. Here “is equivalent to” is to mean that the identity map is uniformly
continuous from the one metric space to the other.



CHAPTER IV

Topics in Functional Analysis

Abstract. This chapter pursues three lines of investigation in the subject of functional analysis—one
involving smooth functions and distributions, one involving fixed-point theorems, and one involving
spectral theory.
Section 1 introduces topological vector spaces. These are real or complex vector spaces with a

Hausdorff topology in which addition and scalar multiplication are continuous. Examples include
normed linear spaces, spaces given by a separating family of countably many seminorms, and weak
and weak-star topologies in the context of Banach spaces. Various general properties of topological
vector spaces are proved, and it is proved that the quotient of a topological vector space by a closed
vector subspace is Hausdorff and is therefore a topological vector space.
Section 2 introduces a topology on the space C∞(U ) of smooth functions on an open subset of

RN . The support of a continuous linear functional on C∞(U ) is defined and shown to be a compact
subset of U . Accordingly, the continuous linear functionals are called distributions of compact
support.
Section 3 studies weak and weak-star topologies in more detail. The main result is Alaoglu’s

Theorem, which says that the closed unit ball in the weak-star topology on the dual of a normed linear
space is compact. In an earlier chapter a preliminary form of this theorem was used to construct
elements in a dual space as limits of weak-star convergent subsequences.
Section 4 follows Alaoglu’s Theorem along a particular path, giving what amounts to a first

example of the Gelfand theory of Banach algebras. The relevant theorem, known as the Stone
Representation Theorem, says that conjugate-closed uniformly closed subalgebras containing the
constants in B(S) are isomorphic via a norm-preserving algebra isomorphism to the space of all
continuous functions on some compact Hausdorff space. The compact space in question is the space
of multiplicative linear functionals on the subalgebra, and the proof of compactness uses Alaoglu’s
Theorem.
Sections 5–6 return to the lines of study toward distributions and fixed-point theorems. Section 5

studies the relationship between convexity and the existence of separating linear functionals. The
main theorem makes use of the Hahn–Banach Theorem. Section 6 introduces locally convex
topological vector spaces. Application of the basic separation theorem from the previous section
shows the existence of many continuous linear functionals on such a space.
Section 7 specializes to the line of study via smooth functions and distributions. The topic is

the introduction of a certain locally convex topology on the space C∞com(U ) of smooth functions of
compact support onU . This is best characterized by a universal mapping property introduced in the
section.
Sections 8–9 pursue locally convex spaces along the other line of study that split off in Section 5.

Section 8 gives the Krein–Milman Theorem, which asserts the existence of a supply of extreme
points for any nonempty compact convex set in a locally convex topological vector space. Section 9
relates compact convex sets to the subject of fixed-point theorems.

105
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Section 10 takes up the abstract theory of Banach algebras, with particular attention to com-
mutative C∗ algebras with identity. Three examples are the algebras characterized by the Stone
Representation Theorem, any L∞ space, and any adjoint-closed commutative Banach algebra
consisting of bounded linear operators on a Hilbert space and containing the identity.
Section 11 continues the investigation of the last of the examples in the previous section and

derives the Spectral Theorem for bounded self-adjoint operators and certain related families of
operators. Powerful applications follow from a functional calculus implied by the Spectral Theorem.
The section concludeswith remarks about theSpectralTheorem for unbounded self-adjoint operators.

1. Topological Vector Spaces

In this section we shall work with vector spaces over R or C, and the distinction
between the two fields will not be very important. We write F for this field of
scalars. A topological vector space or linear topological space is a vector space
X overFwith aHausdorff topology such that addition, as amapping X×X → X ,
and scalar multiplication, as a mapping F × X → X , are continuous. The
mappings that we study between topological vector spaces are the continuous
linear functions, which may be referred to as “continuous linear operators.” An
isomorphism of topological vector spaces over F is a continuous linear operator
with a continuous inverse.
The simplest examples of topological vector spaces are the spaces FN of

column vectors with the usual metric topology. Since the topologies of FN ,
FN × FN , and F × FN are given by metrics, continuity of functions defined on
any of these spaces may be tested by sequences. In particular, continuity of the
vector-space operations on FN reduces to the familiar results about limits of sums
of vectors and limits of scalars times vectors. Moreover, if L : FN → Y is
any linear function from FN into a topological vector space over F, then L is
continuous. To see this, let {e1, . . . , eN } be the standard basis of column vectors,
and let ( · , · ) be the standard inner product on FN , namely the dot product if
F = R and the usual Hermitian inner product if F = C. Write yj = L(ej ). For
any x in FN , we have

L(x) =
N∑
j=1

(x, ej )L(ej ) =
N∑
j=1

(x, ej )yj .

If {xn} is a sequence converging to x inFN , then the continuity of the inner product
forces (xn, ej ) → (x, ej ) for each j . Then L(xn) tends to L(x) in Y since the
vector space operations are continuous in Y . Hence L is continuous.
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A second class of examples is the class of normed linear spaces. These were
defined in Basic, and the continuity of the operations was established there.1

The spaces FN of column vectors are examples. Further examples include the
space B(S) of all bounded scalar-valued functions on a nonempty set S with the
supremum norm, the vector subspaceC(S) of continuous members of B(S)when
S is a topological space, the vector subspaces Ccom(S) and C0(S) of continuous
functions of compact support and of continuous functions vanishing at infinity
when S is locally compact Hausdorff, the space L p(X, μ) for 1 ≤ p ≤ ∞ when
(X, μ) is a measure space, and the space M(S) of finite regular Borel complex
measures on a locally compact Hausdorff space with the total variation norm.
Awider class of examples, which includes the normed linear spaces, is the class

of topological vector spaces defined by seminorms. Seminorms were defined in
Section III.1. If we have a family {‖ · ‖s} of seminorms on a vector space X over
F, with indexing given by s in some nonempty set S, the corresponding topology
on X is defined as the weak topology determined by all functions x �→ ‖x − y‖s
for s ∈ S and y ∈ X . A base for the open sets of X is obtained as follows: For
each triple (y, s, r), with y in X , with s one of the seminorm indices, and with
r > 0, the set

{
x
∣∣ ‖x − y‖s < r

}
is to be in the base, and the base consists of all

finite intersections of these sets as (y, s, r) varies.
In order to obtain a topological vector space from a system of seminorms, we

must ensure the Hausdorff property, and we do so by insisting that the only f
in X with ‖ f ‖s = 0 for all s is f = 0. In this case the family of seminorms is
called a separating family. Let us go through the argument that a space defined
by a separating family of seminorms is a topological vector space.

Proposition 4.1. Let X be a vector space over F endowed with a separating
family {‖ · ‖s} of seminorms. Then theweak topology determined by all functions
x �→ ‖x − y‖s makes X into a topological vector space.
PROOF. To see that X is Hausdorff, let x0 and y0 be distinct points of X . By

assumption, there exists some s such that ‖x0 − y0‖s is a positive number r . The
sets

{
x
∣∣ ‖x − x0‖s < r/2

}
and

{
y
∣∣ ‖y − y0‖s < r/2

}
are disjoint and open, and

they contain x0 and y0, respectively. Hence X is Hausdorff.
To see that addition is continuous, we are to show that if a net {(xα, yα)} is con-

vergent in X× X to (x0, y0), then {xα+ yα} converges to x0+ y0. This means that
if ‖xα−x0‖s+‖yα− y0‖s tends to 0 for each s, then ‖(xα+ yα)−(x0+ y0)‖s tends
to 0 for each s. This is immediate from the triangle inequality for the seminorm
‖ · ‖s , and hence addition is continuous. The proof that scalar multiplication is
continuous is similar.

1The definition appears in Section V.9 of Basic, and the continuity of the operations is proved in
Proposition 5.55.
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We have encountered two distinctly different kinds of examples of topological
vector spaces defined by families of seminorms. In the first kind a countable
family of seminorms suffices to define the topology. Normed linear spaces are
examples. So is the Schwartz spaceS(RN ), consisting of all smooth scalar-valued
functions onRN such that the product of any polynomial with any iterated partial
derivative of the function is bounded. The defining seminorms for the Schwartz
space are

‖ f ‖P,Q = sup
x∈RN

|P(x)(Q(D) f )(x)|,

where P and Q are arbitrary polynomials. We saw in Section III.1 that the same
topology arises if we use only the countably many seminorms for which P is
some monomial xα and Q is some monomial xβ . This family of seminorms is a
separating family because if ‖ f ‖1,1 = 0, then f = 0.
Another example of a topological vector space whose topology can be defined

by countably many seminorms is the spaceC∞(U ) of smooth scalar-valued func-
tions on a nonempty open setU ofRN with the topology of uniform convergence
on compact sets of all derivatives. The family of seminorms is indexed by pairs
(K , P)with K a compact subset ofU andwith P a polynomial, the corresponding
seminorm being ‖ f ‖K ,P = supx∈K |(P(D) f )(x)|. The Hausdorff condition is
satisfied because if ‖ f ‖K ,1 = 0 for all K , then f = 0. We shall see in the
next section that the topology can be defined by a countable subfamily of these
seminorms.
Still a third space of smooth scalar-valued functions, besides S(RN ) and

C∞(U ), will be of interest to us. This is the spaceC∞com(U ) of smooth functions on
a nonempty open U with compact support contained in U . The useful topology
on this space is more complicated than the topologies considered so far. In
particular, it cannot be given by countably many seminorms. Describing the
topology requires some preparation, and we come back to the details in Section 7.
The examples we have encountered of topological vector spaces defined by

an uncountable family of seminorms, but not definable by a countable family,
are qualitatively different from the examples above. Indeed, they lead along a
different theoretical path, as we shall see—one that takes us in the direction of
spectral theory rather than distribution theory.
The first class of such examples is the class of normed linear spaces X with

the “weak topology,” as contrasted with the norm topology. Let X∗ be the set
of linear functionals of X that are continuous in the norm topology. The weak
topology on X was defined in Chapter X of Basic as the weakest topology that
makes all members of X∗ continuous. Of course, any set that is open in the weak
topology on X is open in the norm topology. A base for the open sets in the weak
topology on X is obtained as follows: For each triple (x0, x∗, r), with x0 in X , x∗
in X∗, and r > 0, the set

{
x
∣∣ |x∗(x − x0)| < r

}
is to be in the base, and the base
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consists of all finite intersections of these sets as (x0, x∗, r) varies. The weak
topology is given by the family of seminorms ‖ · ‖x∗ = |x∗( · )|. The proof that
the weak topology is Hausdorff requires the fact, for each x = 0 in X , that there
is some member x∗ with x∗(x) = 0; this fact is one of the standard corollaries of
the Hahn–Banach Theorem. Examples of weak topologies will be discussed in
Section 3.
Similarly the weak-star topology on X∗, when X is a normed linear space,

was defined in Basic as the weakest topology on X∗ that makes all members of
X continuous. This is given by the family of seminorms ‖ · ‖x = | · (x)|. Here
the relevant fact for seeing that the topology is Hausdorff is that for each x∗ = 0
in X∗, there is some x in X with x∗(x) = 0. This is just a matter of the definition
of x∗ = 0 and depends on no theorem. Examples of weak-star topologies will be
discussed in Section 3.
The above classes of examples by no means exhaust the possibilities for topo-

logical vector spaces. Let us mention briefly one example that is not even close
to being definable by seminorms. It is the space L p([0, 1])with 0 < p < 1. This
is the vector space of all real-valued Borel functions on [0, 1] with

∫
[0,1] | f |p dx

finite, except thatwe identify two functions if they differ only on a set ofmeasure 0.
Let us see that d( f, g) = ∫[0,1] | f − g|p dx is a metric. We need only verify the
triangle inequality in the form

∫
[0,1] | f + g|p dx ≤ ∫[0,1] | f |p dx + ∫[0,1] |g|p dx .

To check this, we observe for nonnegative r that (1+ r)p− (1+ r p) is 0 at r = 0
and has negative derivative p((1+ r)p−1 − r p−1) since p − 1 is negative. Thus
(1+r)p ≤ 1+r p for r ≥ 0, and consequently |a+b|p ≤ (|a|+|b|)p ≤ |a|p+|b|p
for all real a and b. Taking a = f (x) and b = g(x) and integrating, we obtain the
desired triangle inequality. One readily shows that L p([0, 1])with this metric is a
topological vector space. On the other hand, this topological vector space is rather
pathological, as is shown in Problem 8 at the end of the chapter. For example it
has no nonzero continuous linear functionals, whereas nonzero topological vector
spaces whose topologies are given by seminorms always have enough continuous
linear functionals to separate points.2

Nowwe turn our attention to a few results valid for arbitrary topological vector
spaces.

Proposition 4.2. In any topological vector space, the closure of any vector
subspace is a vector subspace.

PROOF. Let V be a vector subspace of the topological vector space X . If x and
y are in V cl, then (x, y) is in V cl × V cl = (V × V )cl. Any continuous function

2More precisely it will be observed in Section 6 that topological vector spaces whose topologies
are given by seminorms are “locally convex,” and it will be proved in that same section that locally
convex spaces always have enough continuous linear functionals to separate points.
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f has the property for any set S that f (Scl) ⊆ f (S)cl. Applying this fact to the
addition function, we see that x+ y is in V cl since V is the image of V ×V under
addition. Thus V cl is closed under addition. Similarly V cl is closed under scalar
multiplication.

Lemma 4.3. If X is a real or complex vector space in which addition and
scalar multiplication are continuous and if {0} is a closed subset of X , then X is
Hausdorff and hence is a topological vector space.

PROOF. Since translations are homeomorphisms, it is enough to separate 0 and
an arbitrary x = 0 by disjoint open neighborhoods. Since X − {0} is open, so
is V = X − {x}. By continuity of subtraction, choose an open neighborhood U
of 0 such that the set of differences satisfies U − U ⊆ V . Then U and x + U
are open neighborhoods of 0 and x . If y is in their intersection, then y is in U ,
and y is of the form x + u for some u in U . Hence x = y − u exhibits x as in
U − U ⊆ V = X − {x}, contradiction. Thus we can take U and x + U as the
required disjoint open neighborhoods of 0 and x .

Proposition 4.4. If X is a topological vector space, if Y is a closed vector
subspace, and if the quotient vector space X/Y is given the quotient topology,3

then X/Y is a topological vector space, and the quotient map q : X → X/Y
carries open sets to open sets.

PROOF. If U is open in X , then q−1(q(U )) = ⋃
y∈Y (y + U ) exhibits

q−1(q(U )) as the union of open sets and hence as an open set. By definition
of the topology on X/Y , q(U ) is open in X/Y . Hence q carries open sets in X
to open sets in X/Y .
To see that addition is continuous in X/Y , let x1 and x2 be in X , and let E be

an open neighborhood of the member x1 + x2 + Y of X/Y . Then q−1(E) is an
open neighborhood of x1 + x2 in X . By continuity of addition in X , there exist
open neighborhoods U1 of x1 and U2 of x2 such that U1 + U2 ⊆ q−1(E). The
map q is open and linear, and hence q(U1) and q(U2) are open subsets of X/Y
with q(U1)+ q(U2) ⊆ q(q−1(E)) = E . Thus addition is continuous in X/Y .
To see that scalar multiplication is continuous in X/Y , let c be a scalar, let x be

in X , and let E be an open neighborhood of cx in X/Y . Then q−1(E) is an open
neighborhood of cx in X . By continuity of scalar multiplication in X , there exist
open neighborhoods A of c in the scalars andU of x in X such that AU ⊆ q−1(E).
Then q(U ) is an open subset of X/Y such that Aq(U ) ⊆ q(q−1(E)) = E . Hence
scalar multiplication is continuous in X/Y .
Applying Lemma 4.3, we see that X/Y is Hausdorff. Therefore X/Y is a

topological vector space.

3If q : X → X/Y is the quotient mapping, the open sets E of X/Y are defined as all subsets
such that q−1(E) is open in X .
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Proposition 4.5. If Y is an n-dimensional topological vector space over F,
then Y is isomorphic to Fn .

PROOF. Let y1, . . . , yn be a vector-space basis of Y , and let ( · , · ) and | · |
be the usual inner product and norm on Fn . If e1, . . . , en is the standard basis of
Fn , define L

(∑n
j=1 cj ej

) =∑n
j=1 cj yj . Then L is one-one and hence is onto Y .

We saw earlier in this section that L is continuous. We shall prove that L−1 is
continuous, and it is enough to do so at 0 in Y .
Assuming on the contrary that L−1 is not continuous at 0, we can find some

ε > 0 such that no open neighborhood U of 0 in Y maps under L−1 into the
open neighborhood {|x | < ε} of 0 in Fn . For each such U , find yU in U with
|L−1(yU )| ≥ ε. Define zU = |L−1(yU )|−1yU . The net {yU } tends to 0 in Y by
construction, and the numbers |L−1(yU )|−1 are bounded by ε−1. By continuity
of scalar multiplication in Y , zU has limit 0 in Y . On the other hand, the members
of Fn defined by xU = L−1(zU ) = |L−1(yU )|−1L−1(yU ) have |xU | = 1 for all
U . The unit sphere in Fn is compact, and it follows that {xU } has a convergent
subnet, say {xUμ

}, with some limit x0 such that |x0| = 1. We have L(xU ) = zU ,
and passage to the limit gives L(x0) = limμ L(xUμ

) = limμ zUμ
= 0. On the

other hand, L is one-one, and hence the equality L(x0) = 0 for some x0 with
|x0| = 1 is a contradiction. We conclude that L−1 is continuous.

Corollary 4.6. Every finite-dimensional vector subspace of a topological
vector space is closed.

PROOF. Let V be an n-dimensional subspace of a topological vector space X ,
and suppose that V cl properly contains V . Choose x0 in V cl − V , and form the
vector subspace W = V + Fx0. Then the closure of V in W , being a vector
subspace (Proposition 4.2), is W . The vector subspace W has dimension n + 1,
and Proposition 4.5 shows thatW is isomorphic to Fn+1. All vector subspaces of
Fn+1 are closed in Fn+1, and hence V is closed in W , contradiction.

Lemma 4.7. If X is a topological vector space, K is a compact subset of X ,
and V is an open neighborhood of 0, then there exists ε > 0 such that δK ⊆ V
whenever |δ| ≤ ε.

PROOF. For each k ∈ K , choose εk > 0 and an open neighborhood Uk of k
such that δUk ⊆ V whenever |δ| ≤ εk ; this is possible since scalar multiplication
is continuous at the point where the scalar is 0 and the vector is k. The open sets
Uk cover K , and the compactness of K implies that there is a finite subcover:
K ⊆ Uk1 ∪ · · · ∪Ukm . Then δK ⊆ V whenever |δ| ≤ min1≤ j≤m εkj .

Proposition 4.8. Every locally compact topological vector space is finite
dimensional.
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PROOF. Let X be a locally compact topological vector space, let K be a
compact neighborhood of 0, and let U be its interior. Suppose that we have a
sequence {ym} in X with the property that for any δ > 0, there is an integer M
such that m ≥ M implies ym lies in δK . Then the result of Lemma 4.7 implies
that {ym} tends to 0.
The sets {k+ 1

2U | k ∈ K } form an open cover of K . If {k1+ 1
2U, . . . , kn+ 1

2U }
is a finite subcover, we prove that {k1, . . . , kn} spans X . It is enough to prove that
S = {k1, . . . , kn} spans U . If x is in U , then x is in one of the sets of the finite
subcover, say kj1 + 1

2U . Write x = kj1 + 1
2u1 accordingly. The finite subcover

covers K and hence its interior U , and thus 12U is covered by 1
2 (k1 + 1

2U ), . . . ,
1
2 (kn + 1

2U ). Applying this observation to the element 12u1 of
1
2U , we see that x

is in kj1 + 1
2 (kj2 + 1

2U ) for some kj2 . Write x = kj1 + 1
2kj2 + 1

4u2 accordingly.
Continuing in this way, we see that

x is in kj1 + 1
2 kj2 + · · · + 1

2r−1 kjr + 1
2r U for each r.

Put xr = kj1 + 1
2 kj2 + · · · + 1

2r−1 kjr . This is an element of the finite-dimensional
subspace spanned by S, which is closed by Corollary 4.6; thus if {xr } converges,
it must converge to a member x0 of this subspace. Using the result of the previous
paragraph, we shall show that x − xr converges to 0. Then we can conclude that
xr converges to x , hence that x is in the span of S. To see that x − xr converges
to 0, choose l such that |δ0| ≤ 2−l implies δ0K ⊆ U . Applying the criterion of the
previous paragraph, let δ > 0 be given. ChooseM such that 2−Mδ−1 ≤ 2−l . Then
m ≥ M implies that 2−mδ−1 ≤ 2−Mδ−1 ≤ 2−l . Thus 2−mδ−1 is an allowable
choice of δ0, and we therefore obtain 2−mδ−1K ⊆ U and 2−mK ⊆ δU . For
m ≥ M , the element x − xm lies in 2−mU ⊆ 2−mK , and we have just proved that
2−mK ⊆ δU . Thus x− xm lies in δU , and the criterion of the previous paragraph
applies. Hence x − xm tends to 0. This completes the proof.

2. C∞(U ), Distributions, and Support

As was mentioned in Section III.1, distributions are continuous linear func-
tionals on vector spaces of smooth functions. Their properties are deceptively
simple-looking and enormously helpful in working with linear partial differential
equations. We considered tempered distributions in Section III.1; these are the
continuous linear functionals on the space S(RN ) of Schwartz functions on RN .
In this section we study the topology on the space C∞(U ) of arbitrary scalar-
valued smooth functions on an open subsetU ofRN , together with the associated
space of distributions.
To topologizeC∞(U ), we use the family of seminorms indexedbypairs (K , P)

with K a compact subset of U and with P a polynomial, the (K , P)th seminorm
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being ‖ f ‖K ,P = supx∈K |(P(D) f )(x)|. The resulting topology is Hausdorff,
and C∞(U ) becomes a topological vector space.
Let us see that this topology is given by a countable subfamily of these semi-

norms and is therefore implemented by a metric. It is certainly sufficient to
consider only the monomials Dα instead of all polynomials P(D), and thus the
P index of (K , P) can be assumed to run through a countable set. We make use
of a notion already used in Section III.2. An exhausting sequence of compact
subsets of U is an increasing sequence of compact sets with union U such that
each set is contained in the interior of the next set. An exhausting sequence
exists in any locally compact separable metric space. If {Kn} is an exhausting
sequence for U and if K is a compact subset of U , then the interiors Ko

n of
the Kn’s form an open cover of K , and there is a a finite subcover; since the
members of the open cover are nested, K is contained in some single Ko

n and
hence in Kn . Therefore ‖ f ‖K ,P ≤ ‖ f ‖Kn ,P

for every P , and we can discard
all the seminorms except the ones from some Kn . In short, the countably many
seminorms ‖ f ‖Kn ,xα

= supx∈Kn
|(Dα f )(x)| suffice to determine the topology of

C∞(U ). In particular, the topology is independent of the choice of exhausting
sequence.
After the statement of Theorem 3.9, we constructed a smooth partition of unity

{ψn}n≥1 associated to an exhausting sequence {Kn}n≥1 of an open subset U of
RN . Such a partition of unity is sometimes useful, and Problem 9 at the end of
the chapter illustrates this fact. The functions ψn are in C∞(U ) and have the
properties that

∑∞
n=1 ψn(x) = 1 on U , ψ1(x) > 0 on K3, ψ1(x) = 0 on (Ko

4 )
c,

and for n ≥ 2,

ψn(x)

{
> 0 for x ∈ Kn+2 − Ko

n+1,

= 0 for x ∈ (Ko
n+3)

c ∪ Kn.

Since C∞(U ) is a metric space, its topology may be characterized in terms of
convergence of sequences: a sequence of functions converges in C∞(U ) if and
only if the functions converge uniformly on each compact subset ofU and so do
each of their iterated partial derivatives
If a particular metric for C∞(U ) is specified as constructed in Section III.1

from an enumeration of some determining countable family of seminorms, then
it is apparent that a sequence of functions is Cauchy in C∞(U ) if and only if the
functions and all their iterated partial derivatives are uniformly Cauchy on each
compact subset ofU . As a consequence we can see that C∞(U ) is complete as a
metric space: in fact, let us extract limits from each uniformlyCauchy sequence of
derivatives and use the standard theorem on derivatives of convergent sequences
whose derivatives converge uniformly; the result is that we obtain a member of
C∞(U ) to which the Cauchy sequence converges.
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It is unimportant which particular metric is used for this completeness argu-
ment. The relevant consequence is that theBaireCategoryTheorem4 is applicable
to C∞(U ), and the statement of the Baire Category Theorem makes no reference
to a particular metric.
In similar fashion one checks that S(RN ), whose topology is likewise given

by countably many seminorms, is complete as a metric space.
The vector space of continuous linear functionals on C∞(U ), i.e., its continu-

ous dual, is called the space of all distributions of compact support onU and is
traditionally5 denoted by E ′(U ). The words “of compact support” require some
explanation and justification, which we come back to after giving an example.

EXAMPLE. Take finitely many complex Borel measures ρα of compact support
on U , the indexing being by the set of n-tuples α of nonnegative integers with
|α| ≤ m, and define

T (ϕ) =
∑
|α|≤m

∫
U
Dαϕ(x) dρα(x).

It is easy to check that T is a distribution of compact support on U . A theorem
in Chapter V will provide a converse, saying essentially that every continuous
linear functional on C∞(U ) is of this form.

Let us observe that the vector subspaceC∞com(U ) is dense inC∞(U ). In fact, let
{Kj } be an exhausting sequence of compact sets inU , and chooseψj ∈ C∞com(Rn)

by Proposition 3.5f to be 1 on Kj and 0 off Kj+1. If f is in C∞(U ), then ψj f is
in C∞com(U ) and tends to f in every seminorm on C∞(U ).
To obtain a useful notion of “support” for a distribution, we need the following

lemma.

Lemma 4.9. If U1 and U2 are nonempty open sets in RN and if ϕ is in
C∞com(U1 ∪ U2), then there exist ϕ1 ∈ C∞com(U1) and ϕ2 ∈ C∞com(U2) such that
ϕ = ϕ1 + ϕ2.

PROOF. Let L be the compact support of ϕ, and choose a compact set K such
that L ⊆ Ko ⊆ K ⊆ U1 ∪ U2. Then {U1,U2} is a finite open cover of K ,
and Lemma 3.15b of Basic produces an open cover {V1, V2} of K such that V cl1
is a compact subset of U1 and V cl2 is a compact subset of U2. Proposition 3.5f
produces functions g1 ∈ C∞com(U1) and g2 ∈ C∞com(U2) with values in [0, 1] such
that g1 is 1 on V cl1 and g2 is 1 on V

cl
2 . Then g = g1 + g2 is in C∞com(U1 ∪U2) and

4Theorem 2.53 of Basic.
5The tradition dates back to Laurent Schwartz’s work, in which E(U )was the notation forC∞(U )

and E ′(U ) was the space of continuous linear functionals.
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is 1 on K . If W is the open set where g = 0, then Proposition 3.5f produces a
function h in C∞com(W ) with values in [0, 1] such that h is 1 on K . The function
1 − h is smooth, has values in [0, 1], is 1 where g = 0, and is 0 on K . Hence
g+ (1− h) is a smooth function that is everywhere positive on RN and equals g
on K . Therefore the functions g1/(g + 1 − h) and g2/(g + 1 − h) are smooth
functions onRN compactly supported inU1 andU2, respectively, with sum equal
to 1 on K . If we define ϕ1 = g1ϕ and ϕ2 = g2ϕ, then ϕ1 and ϕ2 have the required
properties.

Proposition 4.10. If T is an arbitrary linear functional on C∞com(U ) and if U ′
is the union of all open subsets Uγ of U such that T vanishes on C∞com(Uγ ), then
T vanishes on C∞com(U

′).

PROOF. Let ϕ be in C∞com(U
′), and let K be the support of ϕ. The open sets

Uγ form an open cover of K , and some finite subcollection must have K ⊆
Uγ1 ∪ · · · ∪ Uγp . Lemma 4.9 applied inductively shows that ϕ is the sum of
functions in C∞com(Uj ), 1 ≤ j ≤ p. Since T is 0 on each of these, it is 0 on the
sum.

If T is inE ′(U ), the support of T is the complement of the setU ′ in Proposition
4.10, i.e., the complement of the union of all open setsUγ such that T vanishes on
C∞com(Uγ ). If T has empty support, then T = 0 because T vanishes on C∞com(U )

and C∞com(U ) is dense in C∞(U ).

Proposition 4.11. Every member T of E ′(U ) has compact support.

REMARKS. For the moment this proposition justifies using the name “distri-
butions of compact support” for the continuous linear functionals on C∞(U ).
After we define general distributions in Section V.1, we shall have to return to
this matter.

PROOF. Let {Kn} be an exhausting sequence of compact sets in U . If T is not
supported in any Kn , then there is some fn in C∞com(U − Kn) with T ( fn) = 0.
Put gn = fn/T ( fn), so that T (gn) = 1. If K is any compact subset of U , then
K ⊆ Kn for large n, and gn

∣∣
K = 0 for such n. Thus gn tends to 0 in C∞(U )

while T (gn) tends to 1 = 0 = T (0), in contradiction to continuity of T .

Similarly we can use Proposition 4.10 to define the support of a tempered
distribution T in S ′(RN ) as the complement of the union of all open setsUγ such
that T vanishes on C∞com(Uγ ). Tempered distributions need not have compact
support; for example, the function 1 defines a tempered distributionwhose support
is RN .
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In the case of tempered distributions, a little argument is required to show that
the only tempered distribution with empty support is the 0 distribution. What is
needed is the following fact.

Proposition 4.12. C∞com(R
N ) is dense in S(RN ).

REMARKS. If T in S ′(RN ) has empty support, then T vanishes on C∞com(R
N ).

Proposition 4.12 and the continuity of T imply that T = 0 on S(RN ). Thus the
only tempered distribution with empty support is the 0 distribution.

PROOF. Fix h in C∞com(R
N ) with values in [0, 1] such that h(x) is 1 for |x | ≤ 1

and is 0 for |x | ≥ 2. Define hR(x) = h(R−1x). If ϕ is in S(RN ), we shall
show that limR→∞ hRϕ = ϕ in the metric space S(RN ), and then the proposition
will follow. Thus we want limR→∞ supx∈RN |xγ Dα(ϕ − hRϕ)(x)| = 0. By
the Leibniz rule, Dα(hRϕ) = hRDαϕ +∑β<α cβ(D

α−βhR)(Dβϕ). Hence it is
enough to prove that

lim
R→∞

sup
x∈RN

|xγ (1− hR)D
αϕ| = 0

lim
R→∞

sup
x∈RN

|xγ (Dα−βhR)(Dβϕ)| = 0 for β < α.and

The first of these limit formulas is a consequence of the fact that xγ Dαϕ van-
ishes at infinity, which in turn follows from the fact that xγ (1 + |x |2)Dαϕ is
bounded, i.e., that ‖ϕ‖xγ (1+|x |2),xα is finite. For the second of these limit formu-
las, we observe from the chain rule that Dα−βhR(x) = R−|α−β|Dα−βh(R−1x).
For β < α, this function is dominated in absolute value by cαR−1. Hence
supx∈RN |xγ (Dα−βhR)(Dβϕ)| ≤ cαR−1

∑
β<α ‖ϕ‖xγ ,xβ , and the limit on R is 0.

3. Weak and Weak-Star Topologies, Alaoglu’s Theorem

Let X be a normed linear space, and let X∗ be its dual, which we know to be
a Banach space. We have defined the weak topology on X to be the weakest
topology on X making all members of X∗ continuous, i.e., making x �→ x∗(x)
continuous for each x∗ in X∗. This topology is given by the family of seminorms
‖x‖x∗ = |x∗(x)| indexed by X∗. The weak-star topology on X∗ relative to X
is the weakest topology on X∗ making all members of ι(X) continuous,6 i.e.,
making x∗ �→ x∗(x) continuous for each x in X . This topology is given by
the family of seminorms ‖x∗‖x = |x∗(x)| indexed by X . In this section we

6The symbol ι denotes the canonical map X → X∗∗ given by ι(x)(x∗) = x∗(x).
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study these topologies7 in more detail, proving an important theorem about the
weak-star topology.
We shall discuss some examples in a moment. The space X∗ is a normed linear

space in its own right, and therefore it has a well-defined weak topology. The
definitions make the weak topology on X∗ the same as the weak-star topology on
X∗ relative to X if X is reflexive, but we cannot draw this conclusion in general.
The weak topology on X is of less importance to real analysis than the weak-

star topology on X∗, and thus the main interest in the weak topology on X will
be in the case that X is reflexive. It is also true that exact conditions that interpret
the weak or weak-star topology in a particular example tend not to be useful.
Nevertheless, it may still be helpful to consider examples in order to get a better
sense of what these topologies do.
We shall discuss the examples in terms of convergence. However, the conver-

gence will involve only convergence of sequences, not convergence of general
nets. A difficulty with nets is that one cannot draw familiar conclusions from
convergence of nets even in the case of nets in the real numbers; for example, a
convergent net of real numbers need not be bounded, just eventually bounded.
In order to have it available in the discussion, we prove one fact about con-

vergence of sequences in weak and weak-star topologies before coming to the
examples.

Proposition 4.13. Let X be a normed linear space, and let X∗ be its dual space.
(a) If {xn} is a sequence in X converging to x0 in the weak topology on X , then

{‖xn‖} is a bounded sequence in R and ‖x0‖ ≤ lim infn ‖xn‖.
(b) If X is a Banach space and if {x∗n } is a sequence in X∗ converging to x∗0 in

the weak-star topology on X∗ relative to X , then {‖x∗n‖} is a bounded sequence
in R and ‖x∗0‖ ≤ lim infn ‖x∗n‖.
PROOF. For the first half of (a), let ι : X → X∗∗ be the canonical map. Since

the sequence {ι(xn)(x∗)} converges to x∗(x0) for each x∗ in X∗, {ι(xn)} is a set
of bounded linear functionals on the Banach space X∗ with {ι(xn)(x∗)} bounded
for each x∗ in X∗. By the Uniform Boundedness Theorem the norms ‖ι(xn)‖
are bounded. Since ι preserves norms as a consequence of the Hahn–Banach
Theorem, the norms ‖xn‖ are bounded. For the second half of (a), let x∗ be
arbitrary in X∗ with ‖x∗‖ ≤ 1. Then

|x∗(x0)| = lim |x∗(xn)| ≤ lim inf ‖x∗‖‖xn‖ ≤ lim inf ‖xn‖.
Taking the supremum over x∗ with ‖x∗‖ ≤ 1 and applying the formula ‖x0‖ =
sup‖x∗‖≤1 |x∗(x0)|, which is known from the Hahn–Banach Theorem, we obtain
‖x0‖ ≤ lim inf ‖xn‖.

7The weak topology on X is also called the X∗ topology of X , and the weak-star topology on
X∗ is also called the X topology of X∗.
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For the first half of (b), {x∗n } is a set of bounded linear functionals on the Banach
space X with {x∗n (x)} bounded for each x in X . Then the Uniform Boundedness
Theorem shows that the norms ‖x∗n‖ are bounded. For the second half of (b), let
x be arbitrary in X with ‖x‖ ≤ 1. Then

|x∗0 (x)| = lim |x∗n (x)| ≤ lim inf ‖x∗n‖‖x‖ ≤ lim inf ‖x∗n‖.

Taking the supremum over x and applying the definition of ‖x∗0‖, we obtain
‖x∗0‖ ≤ lim inf ‖x∗n‖.

EXAMPLES OF CONVERGENCE IN WEAK TOPOLOGIES.

(1) X = L p(S, μ) when 1 < p < ∞. Then X∗ ∼= L p′(X, μ), where p′ is
the dual index8 of p. The assertion is that a sequence { fn} tends weakly to f
in L p if and only if {‖ fn‖p} is bounded and lim

∫
E fn dμ =

∫
E f dμ for every

measurable subset E of S of finite measure. The necessity is immediate from
Proposition 4.13a and from taking the member of X∗ to be the indicator function
of E . Let us prove the sufficiency. From lim

∫
E fn dμ =

∫
E f dμ, we see that

lim
∫
S fnt dμ =

∫
S f t dμ for t simple if t is 0 off a set of finite measure. Let g

be given in L p′(S, μ), and choose a sequence {tm} of simple functions equal to 0
off sets of finite measure such that limm tm = g in the norm topology of L p′ . For
all m and n, we have∣∣ ∫

S fng dμ−
∫
S f g dμ

∣∣
≤ ∣∣ ∫S fn(g − tm) dμ

∣∣+ ∣∣ ∫S fntm dμ− ∫S f tm dμ∣∣
+ ∣∣ ∫S f (tm − g) dμ

∣∣
≤ ‖ fn‖p‖g−tm‖p′ +

∣∣ ∫
S fntm dμ−

∫
S f tm dμ

∣∣+ ‖ f ‖p‖g−tm‖p′ .
The first and third terms on the right tend to 0 as m tends to infinity, uniformly in
n. If ε > 0 is given, choose m such that those two terms are < ε, and then, with
m fixed, choose n large enough to make the middle term < ε.

(2) X = C(S) with S compact Hausdorff, C(S) being the space of continuous
scalar-valued functions on S. Then X∗ may be identified with the space M(S) of
(signed or) complex regular Borel measures on S, with the total-variation norm.9

The assertion is that a sequence { fn} tends weakly to f in C(S) if and only if
{‖ fn‖} is bounded and lim fn = f pointwise. The necessity is immediate from
Proposition 4.13a and from taking themember of X∗ to be anypointmass at a point

8The index p′ is defined by 1
p + 1

p′ = 1. This duality was proved in Theorem 9.19 of Basic
when μ is σ -finite, but it holds without this restrictive assumption on μ.

9This identificationwas obtained inBasic in Theorem 11.24 for real scalars and in Theorem 11.26
for complex scalars. The starting point for the identification is the Riesz Representation Theorem.
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of S. For the sufficiency we simply observe that any member of M(S) is a finite
linear combination of regular Borel measuresμ on S and lim

∫
S fn dμ =

∫
S f dμ

for any Borel measure μ by dominated convergence.

(3) X = C0(S)with S locally compact separable metric,C0(S) being the space
of continuous scalar-valued functions vanishing at infinity. Again the dual X∗
may be identified with the space M(S) of complex regular Borel measures on
S, with the total-variation norm. This example can be handled by applying the
previous example to the one-point compactification of S. All signed or complex
Borel measures are automatically regular in this case. A sequence { fn} tends
weakly to f in C0(S) if and only if {‖ fn‖} is bounded and lim fn = f pointwise.

EXAMPLES OF CONVERGENCE IN WEAK-STAR TOPOLOGIES.

(1) X = L p(S, μ) and X∗ ∼= L p′(S, μ) when 1 < p < ∞, p′ being the
dual index of p. This X is reflexive. Therefore the first example of convergence
in weak topologies shows that { fn} converges weak-star in L p′(S, μ) relative to
L p(S, μ) if and only if {‖ fn‖p′ } is bounded and lim

∫
E fn dμ = ∫

E f dμ for
every measurable subset E of S of finite measure.

(2) X = L1(S, μ) and X∗ ∼= L∞(S, μ) when μ is σ -finite. This X is usually
not reflexive. However, the condition for weak-star convergence is the same
as in the previous example: { fn} converges weak-star in L∞(S, μ) relative to
L1(S, μ) if and only if {‖ fn‖∞} is bounded and lim

∫
E fn dμ = ∫

E f dμ for
every measurable subset E of S of finite measure. The argument in the first
example of convergence in weak topologies can easily be modified to prove this.

(3) X = C(S) with S compact Hausdorff, and X = C0(S) with S locally
compact separable metric. Weak-star convergence of complex regular Borel
measures does not have a useful necessary and sufficient condition beyond the
definition. The notion of weak-star convergence in this situation is, nevertheless,
quite helpful as a device for producing new complex measures out of old ones.10

A theorem about theweak topology, due to Banach, is that the vector subspaces
that are closed in the weak topology are the same as the vector subspaces that are
closed in the norm topology. More generally the closed convex sets coincide in
the weak and norm topologies. We shall not have occasion to use this theorem or
mention any of its applications, and we therefore omit the proof.
The weak-star topology has results of more immediate interest, and we turn

our attention to those. Theorem 5.58 of Basic established for any separable
normed linear space X that any bounded sequence in the dual X∗ has a weak-
star convergent subsequence; this was called a “preliminary form of Alaoglu’s
Theorem.”

10Warning. Many probabilists and some other people use the unfortunate term “weak conver-
gence” for this instance of weak-star convergence.
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Theorem 4.14 Let X be a normed linear space with dual X∗.
(a) (Alaoglu’s Theorem) The closed unit ball of X∗ is compact in the weak-

star topology relative to X .
(b) If X is separable, then the closed unit ball of X∗ is a separable metric space

in the weak-star topology.

REMARKS. By (a), any net {x∗α} in X∗ with ‖x∗α‖ bounded has a subnet {x∗αμ}
and an element x∗0 in X

∗ such that x∗αμ(x) → x∗0 (x) for every x in X . By (b),
this conclusion about nets can be replaced by a conclusion about sequences if
X is separable. Thus we recover the “preliminary form” of Alaoglu’s Theorem.
The results of Section III.4 give an example of the utility of the two parts of this
theorem; together they lead to a proof that harmonic functions inHp(RN+1

+ ) are
automatically Poisson integrals of functions if p > 1 or of complex measures if
p = 1.
PROOF. Let B be the closed unit ball in X∗, let D(r) be the closed disk in C

with radius r and center 0, and let C = ×x∈X D(‖x‖). Define F : B → C by
F(x∗) =×x∈X x

∗(x). The function F is well defined since |x∗(x))| ≤ ‖x‖ for
all x∗ in B and all x in X . It is continuous as a map into the product space since
x∗ �→ x∗(x) is continuous for each x , it is one-one since x∗ is determined by
its values on each x , and it is a homeomorphism with its image by definition of
weak topology. Since C is compact by the Tychonoff Product Theorem, (a) will
follow if it is shown that F(B) is closed in C . Let px denote the projection of
C to its x th coordinate. If x and x ′ are in X and if { fα} is a net in C convergent
to f0 in C , then an equality px+x ′( fα) = px( fα)+ px ′( fα) for all α implies that
px+x ′( f0) = px( f0)+ px ′( f0) by continuity of px+x ′ , px , and px ′ . Thus the set

S(x, x ′) = { f ∈ C | px+x ′( f ) = px( f )+ px ′( f )}
is closed, and similarly the set

T (x, c) = { f ∈ C | cpx( f ) = px(c f )}
is closed. The intersection of all S(x, x ′)’s and all T (x, c)’s is the set of linear
members of C , hence is exactly F(B). Thus F(B) is closed.
For (b), we continue with B and D(r) as above, but we change C and F

slightly. Let {xn} be a countable dense set in the norm topology of X , let C =×xn
D(‖xn‖), and define F : B → C by F(x∗) = ×xn

x∗(xn). As in the
proof of (a), F is continuous. It is one-one since any x∗, being continuous, is
determined by its values on the dense set {xn}. The domain is compact by (a). The
range space C is a separable metric space and is in particular Hausdorff. Hence
B is exhibited as homeomorphic to F(B), which is a subspace of the separable
metric space C and is therefore separable.
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4. Stone Representation Theorem

In this section we begin to follow Alaoglu’s Theorem along paths different from
its use for creating limit functions andmeasures out of sequences that are bounded
in a weak-star topology. We shall work in this section with what amounts to an
example—one of themotivating examples behind a stunning idea of I.M.Gelfand
around 1940 that brings algebra, real analysis, and complex analysis together in
a profound way. The example gives a view of subalgebras of the algebra B(S)
of all bounded functions on a set S in terms of compactness. The stunning idea
that came out, on which we shall elaborate shortly, is that the mechanism in the
proof is the same mechanism that lies behind the Fourier transform on RN , that
this mechanism can be cast in abstract form as a theory of commutative Banach
algebras, and that the theory gives a new perspective about spectra. In particular,
it leads directly to the full Spectral Theorem for bounded and unbounded self-
adjoint operators, extending the theorem for compact self-adjoint operators that
was proved as Theorem 2.3. In turn, the Spectral Theorem has many applications
to the study of particular operators.
Let us first state the theorem about B(S), then discuss Gelfand’s stunning idea

about the mechanism, and finally give the proof of the theorem. We shall pursue
the Gelfand idea in Sections 10–11 later in this chapter.
We have discussed B(S) as the Banach space of bounded complex-valued

functions on a nonempty set S, the norm being the supremum norm. In this
Banach space pointwise multiplication makes B(S) into a complex associative
algebra11 with identity (namely the function 1), there is an operation of complex
conjugation, and there is a notion of positivity (namely pointwise positivity of a
function). The theorem concerns subalgebras of B(S) containing 1, closed under
conjugation, and closed under uniform limits.

Theorem 4.15 (Stone Representation Theorem). Let S be a nonempty set,
and let A be a uniformly closed subalgebra of B(S) with the properties that A
is stable under complex conjugation and contains 1. Then there exist a compact
Hausdorff space S1, a function p : S → S1 with dense image, and a norm-
preserving algebra isomorphism U of A onto C(S1) preserving conjugation and
positivity, mapping 1 to 1, and having the property that U ( f )(p(s)) = f (s) for
all s in S. If S is a Hausdorff topological space and A consists of continuous
functions, then p is continuous.

11An associative algebra A over C is a vector space with a C bilinear associative multiplication,
i.e., with an operationA×A→ A satisfying (ab)c = a(bc), a(b+c) = ab+ac, (a+b)c = ac+bc,
and a(λc) = (λa)c = λ(ac) if λ is in C and a, b, c are in A. This definition does not assume the
existence of an identity element.
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The idea of the proof is to consider theBanach-space dualA∗ and focus on those
members ofA∗ that are nonzero and respect multiplication—the nonzero contin-
uous multiplicative linear functionals on A. The ones that come immediately to
mind are the evaluations at each point: for a point s of S, the evaluation at s is given
by es( f ) = f (s), and it is a multiplicative linear functional, certainly of norm 1.
The set S1 in the theorem will be the set of all such continuous multiplicative
linear functionals, the function p will be given by p(s) = es for s ∈ S, and
the mapping U will be given by U ( f )(�) = �( f ) for each multiplicative linear
functional �.
The Banach space A ⊆ B(S), with its multiplication, is a Banach algebra in

the sense that it is an associative algebra over C, with or without identity, such
that ‖ f g‖ ≤ ‖ f ‖‖g‖ for all f and g in A. Another well-known Banach algebra
is L1(RN ). The norm in this case is the usual L1 norm, and the multiplication is
convolution, which satisfies ‖ f ∗ g‖1 ≤ ‖ f ‖1‖g‖1 for all f and g in L1(RN ).
The stunning idea of Gelfand’s is that the formula that defines U in the Stone

theorem is the same formula that gives theFourier transform in the case of L1(RN ).
Specifically the nonzero multiplicative linear functionals in the case of L1(RN )

are the evaluations at points of the Fourier transform, i.e., the mappings
f �→ f̂ (y) = ∫

RN f (x)e−2π i x ·y dx . These linear functionals are multiplicative
because convolution goes into pointwise product under the Fourier transform.
What A ⊆ B(S) and L1(RN ) have in common is, in the first place, that

they are commutative Banach algebras. In addition, each has a conjugate-linear
mapping f �→ f ∗ that respects multiplication: complex conjugation in the case
of A and the map f �→ f ∗ with f ∗(x) = f (−x) in the case of L1(RN ). These
conjugate-linear mappings interact well with the norm. The subalgebra A of
B(S) satisfies

(i) ‖ f f ∗‖ = ‖ f ‖‖ f ∗‖ for all f ,
(ii) ‖ f ∗‖ = ‖ f ‖ for all f ,

while L1(RN ) satisfies just (ii). The theory that Gelfand developed applies best
when both (i) and (ii) are satisfied, as is the case with A and also any L∞ space,
and it works somewhat when just (ii) holds, as with L1(RN ).
Another example of a Banach algebra is the algebra B(H, H) of bounded

linear operators from a Hilbert space H to itself, with the operator norm. The
conjugate-linear mapping on B(H, H) is passage to the adjoint, and (i) and (ii)
both hold. The thing that is missing is commutativity for B(H, H). However,
if we take a single operator A and its adjoint A∗, assume that A commutes with
A∗, and take the Banach algebra generated by A and A∗, then we have another
example to which the Gelfand theory applies well. The Spectral Theorem for
bounded self-adjoint operators is the eventual consequence.
The idea of considering the Banach subalgebra generated by A is a natural

one because of one’s experience in the subject of modern algebra: the study of
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all complex polynomials in a square matrix A is a useful tool in understanding a
single linear transformation, including obtaining canonical forms for it like the
Jordan form. Thus the use of an analogy with a topic in algebra leads one to a
better understanding of a topic in analysis.
In this case ideas flowed in the reverse direction as well. The multiplicative

linear functionals correspond, by passage to their kernels, to those ideals in the
algebra that are maximal.12 In effect the Banach algebra was being studied
through its space of maximal ideals. About 1960, no doubt partly because of the
success of the idea of considering the maximal ideals of a Banach algebra, the
consideration of the totality of prime ideals of a commutative ring as a space began
to play an important role in algebraic number theory and algebraic geometry.

PROOF OF THEOREM 4.15. Let S1 be the set of all nonzero continuous multi-
plicative linear functionals � on A with �( f̄ ) = �( f ). Let us see that each such
has norm 1. In fact, choose f with �( f ) = 0. Then �( f ) = �( f 1) = �( f )�(1)
shows that �(1) = 1, and hence ‖�‖ ≥ 1. For any f with ‖ f ‖sup ≤ 1, if we had
|�( f )| > 1, then |�( f )|n = |�( f n)| ≤ ‖�‖ for all n would give a contradiction as
soon as n is sufficiently large. We conclude that ‖�‖ ≤ 1.
Therefore S1 is a subset of the unit ball of the Banach-space dualA∗. We give

S1 the relative topology from the weak-star topology on A∗. Let us define the
function p : S→ S1, and in the process we shall have proved that S1 is not empty.
Every s in S defines an evaluation linear functional es in S1 by es( f ) = f (s), and
the function p is defined by p(s) = es for s in S. To see that S1 is a closed subset
of the unit ball ofA∗ in the weak-star topology, let {�α} be a net in S1 converging
to some � ∈ A∗, the convergence being in the weak-star topology. Then we have
�α( f g) = �α( f )�α(g) and �α( f̄ ) = �α( f ) for all f and g in A. Passing to the
limit, we obtain �( f g) = �( f )�(g) and �( f̄ ) = �( f ). Hence S1 is closed. By
Alaoglu’s Theorem (Theorem 4.14a), S1 is compact. It is Hausdorff since A∗ is
Hausdorff in the weak-star topology.
Certainly we have sups∈S |es( f )| = ‖ f ‖sup. Since any � in S1 has ‖�‖ ≤ 1,

we obtain
sup
�∈S1

|�( f )| = ‖ f ‖sup. (∗)

ThedefinitionofU : A→ C(S1) isU ( f )(�) = �( f ), and thismakesU ( f )(p(s))
= U ( f )(es) = es( f ) = f (s). The function U ( f ) on S1 is continuous by
definition of the weak-star topology. Because of the definition of S1, U is an
algebra homomorphism respecting complex conjugation and mapping 1 to 1.

12Checking that there are no other maximal ideals than the kernels of multiplicative linear
functionals requires proving that every complex “Banach field” is 1-dimensional, an early result in
the subject of Banach algebras and one that uses complex analysis in its proof. Details appear in
Section 10.
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Also, (∗) shows that U is an isometry. Since A is Cauchy complete, so is U (A).
ThereforeU (A) is a uniformly closed subalgebra of C(S1) stable under complex
conjugation and containing the constants. It separates points of S1 by the definition
of equality of linear functionals. By the Stone–Weierstrass Theorem, U (A) =
C(S1). SinceU is an isometry,U is one-one. ThusU is an algebra isomorphism
of A onto C(S1).
If p(S)were not dense inC(S1), thenUrysohn’s Lemmawould allow us to find

a nonzero continuous function F on C(S1) with values in [0, 1] such that F is 0
everywhere on p(S). Since U is onto C(S1), choose f ∈ A with U ( f ) = F . If
s is in S, then 0 = F(p(s)) = U ( f )(p(s)) = f (s). Hence ‖ f ‖sup = 0. By (∗),
�( f ) = 0 for all � ∈ S1. Then every � ∈ S1 has 0 = �( f ) = U ( f )(�) = F(�),
and F = 0, contradiction. We conclude that p(S) is dense.
To see that U carries functions ≥ 0 to functions ≥ 0, we observe first that

the identity �( f̄ ) = �( f ) for � ∈ S1 and the equality f̄ = f for f real together
imply that �( f ) = �( f̄ ) = �( f ) for f real. Hence f real implies �( f ) real.
If f ≥ 0, then

∥∥‖ f ‖sup − f
∥∥
sup ≤ ‖ f ‖sup. Since ‖�‖ ≤ 1, we therefore have

�(‖ f ‖sup − f ) ≤ ∥∥‖ f ‖sup − f
∥∥
sup ≤ ‖ f ‖sup. Since �(1) = 1, this says that

�( f ) ≥ 0. This inequality for all � implies that U ( f ) ≥ 0.
Finally suppose that S is a Hausdorff topological space and that A ⊆ C(S).

We are to show that p : S → S1 is continuous. If sα → s0 for a net in S, we
want p(sα)→ p(s0), i.e., esα → es0 . According to the definition of the weak-star
topology, we are thus to show that f (sα)→ f (s0) for every f in A. But this is
immediate from the continuity of f on S.

We give three examples. A fourth example, concerning “almost periodic
functions,” will be considered in the problems at the end of Chapter VI. For
this fourth example the compact Hausdorff space of Theorem 4.15 admits the
structure of a compact group, and the representation theory of Chapter VI is
applicable to describe the structure of the space of almost periodic functions.
Problems 21–25 at the end of the chapter develop the theory of Theorem 4.15

further.

EXAMPLES.

(1) A = C(S) with S compact Hausdorff. Then p is a homeomorphism of
S onto S1. In fact, p(S) is always dense in S1. Here p is continuous and S is
compact. Thus p(S) is closed and must equal S1. The map p is one-one because
Urysohn’sLemmaproduces functions taking different values at twodistinct points
s and s ′ of S and thus exhibiting es ′ and es as distinct linear functionals. Since p
is continuous and one-one from a compact space onto a Hausdorff space, it is a
homeomorphism.

(2) One-point compactification. Let S be a locally compact Hausdorff space,
and letA be the subalgebra ofC(S) consisting of all continuous functions having
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limits at infinity. For a function f , this conditionmeans that there is some number
c such that for each ε > 0, some compact subset K of S has the property that
| f (s)− c| ≤ ε for all s not in K . Then S1 may be identified with the one-point
compactification of S.

(3) Stone–Čech compactification. Let S be a topological space, and let A =
C(S). The resulting compact Hausdorff space S1 is called the Stone–Čech
compactification of S. This space tends to be huge. For example, if S =
[0,+∞), the corresponding S1 has cardinality greater than the cardinality of R.

5. Linear Functionals and Convex Sets

For this section and the next we discuss aspects of functional analysis that lead
toward the theory of distributions and toward the use of fixed-point theorems.
The topic is the role of convex sets in real and complex vector spaces—first
without any topology and thenwith an overlay of topology consistent with convex
sets. Sections 7–9 will then explore the consequences of this development, first
in connection with smooth functions and then in connection with fixed-point
theorems.
Let X be a real or complex vector space. A subset E of X is convex if for each

x and y in E , all points (1− t)x + t y are in E for 0 ≤ t ≤ 1.
Proposition 4.16. Convex sets in a real or complex vector space have the

following elementary properties:

(a) the arbitrary intersection of convex sets is convex,
(b) if E is convex and x1, . . . , xn are in E and t1, . . . , tn are nonnegative reals

with t1 + · · · + tn = 1, then t1x1 + · · · + tnxn is in E ,
(c) if E1 and E2 are convex, then so are E1 + E2, E1 − E2, and cE for any

scalar c,
(d) if L : X → Y is linear between two vector spaces with the same scalars

and if E is a convex subset of X , then L(E) is convex in Y ,
(e) if L : X → Y is linear between two vector spaces with the same scalars

and if E is a convex subset of Y , then L−1(E) is convex in X .

PROOF. Conclusions (a), (c), (d), and (e) are completely straightforward. For
(b), we induct on n, the case n = 2 being the definition of “convex.” Suppose that
the result is known for n and that members x1, . . . , xn+1 of X and nonnegative
reals t1, . . . , tn+1 with sum 1 are given. We may assume that t1 = 1. Put
s = t2 + · · · + tn+1 and y = (1− t1)−1(t2x2 + · · · + an+1xn+1). Since the reals
(1 − t1)−1t2, . . . , (1 − t1)−1tn+1 are nonnegative and have sum 1, the inductive
hypothesis shows that y is in E . Since t1 and s are nonnegative and have sum 1,
t1x1 + sy = t1x1 + · · · + tn+1xn+1 is in E . This completes the induction.
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Let E be a subset of our vector space X . We say that a point p in E is an
internal point of E if for each x in X , there is an ε > 0 such that p + δx is in
E for all scalars13 δ with |δ| ≤ ε. If p in X is neither an internal point of E nor
an internal point of Ec, we say that p is a bounding point of E . These notions
make no use of any topology on X .
Let K be a convex subset of X , and suppose that 0 is an internal point of K .

For each x in X , let

ρ(x) = inf{a > 0 | a−1x ∈ K }.
The function ρ(x) is called the support function of K . For an example let X be
a normed linear space, and let K be the unit ball; then ρ(x) = ‖x‖.
We are going to see that ρ(x) has some bearing on controlling the linear

functionals on X , as a consequence of theHahn–BanachTheorem. By the “Hahn–
BanachTheorem” here, wemean not the usual theorem for normed linear spaces14

but the more primitive statement15 from which that is derived:

HAHN–BANACH THEOREM. Let X be a real vector space, and let p be a real-
valued function on X with

p(x + x ′) ≤ p(x)+ p(x ′) and p(t x) = tp(x)

for all x and x ′ in X and all real t ≥ 0. If f is a linear functional on a vector
subspace Y of X with f (y) ≤ p(y) for all y in Y , then there exists a linear
functional F on X with F(y) = f (y) for all y ∈ Y and F(x) ≤ p(x) for all
x ∈ X .

Before discussing linear functionals in our present context, let us observe
some properties of the support function ρ(x). Properties (b), (c), and (e) in the
next lemma are the properties of the dominating function p in the Hahn–Banach
Theorem as stated above.

Lemma 4.17. Let K be a convex subset of a vector space X , and suppose
that 0 is an internal point. Then the support function ρ(x) of K satisfies

(a) ρ(x) ≥ 0,
(b) ρ(x) <∞,
(c) ρ(ax) = aρ(x) for a ≥ 0,
(d) ρ(x) ≤ 1 for all x in K ,
(e) ρ(x + y) ≤ ρ(x)+ ρ(y),
(f) ρ(x) < 1 if and only if x is an internal point of K ,
(g) ρ(x) = 1 characterizes the bounding points of K .
13The scalars are complex numbers if X is complex, real numbers if X is real.
14As in Theorem 12.13 of Basic.
15As in Lemma 12.14 of Basic.
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PROOF. Conclusions (a), (c), and (d) are immediate, and (b) follows since 0 is
an internal point of K .
For (e), let c be arbitrary with c > ρ(x) + ρ(y). We show that c−1(x + y)

is in K . Since c is arbitrary, it follows that the infimum of all numbers d with
d−1(x + y) in K is ≤ ρ(x) + ρ(y); consequently ρ(x + y) will have to be
≤ ρ(x)+ ρ(y), and (e) will be proved. Thus write c = a+ b with a > ρ(x) and
b > ρ(y). Since K is convex,

c−1(x + y) = (a + b)−1(x + y) = a
a+b a

−1x + b
a+b b

−1y

is in K , as required.
For (f), let x be an internal point of K . Then x + εx = (1 + ε)x is in K for

some ε > 0, and hence ρ(x) ≤ (1+ ε)−1 < 1.
Conversely suppose that ρ(x) < 1, and put ε = 1 − ρ(x). Fix y. Since 0 is

an internal point of K , we can find μ > 0 such that δy is in K for |δ| ≤ μ. If c is
any scalar of absolute value 1, then cμy is in K , and hence ρ(cy) ≤ μ−1. If δ is
a scalar with |δ| < εμ, write δ = c′|δ| with |c′| = 1. Then ρ(δy) = |δ|ρ(c′y) ≤
|δ|μ−1 < ε. Applying (e) gives

ρ(x + δy) ≤ ρ(x)+ ρ(δy) = (1− ε)+ ρ(δy) < (1− ε)+ ε = 1.

By definition of ρ, 1−1(x + δy) is in K , i.e., x + δy is in K . Thus x is an internal
point of K .
For (g), we can argue in the same way as with (f) to see that ρ(x) > 1

characterizes the internal points of Kc. Therefore ρ(x) = 1 characterizes the
bounding points of K .

We shall now apply the Hahn–Banach Theorem to prove the basic separation
theorem.

Theorem 4.18. Let M and N be disjoint nonempty convex subsets of a real
or complex vector space X , and suppose that M has an internal point. Then there
exists a nonzero linear functional F on X such that for some real c, Re F ≤ c
on M and Re F ≥ c on N .

PROOF. First suppose that X is real. If m is an internal point of M , then 0 is
an internal point of M −m, and we can replace M and N by M −m and N −m.
Changing notation, we may assume from the outset that 0 is an internal point of
M .
If x0 is in N , then −x0 is an internal point of M − N , and 0 is an internal

point of K = M − N + x0. Since M and N are assumed disjoint, M − N
does not contain 0; thus K does not contain x0. Let ρ be the support function
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of K ; this function satisfies the properties of the function p in the Hahn–Banach
Theorem, according to Lemma 4.17. Moreover, ρ(x0) ≥ 1 by Lemma 4.17f.
Define f (ax0) = aρ(x0) for all (real) scalars a. Then f is a nonzero linear
functional on the 1-dimensional space of real multiples of x0, and it satisfies

a ≥ 0 implies f (ax0) = aρ(x0) = ρ(ax0),

a < 0 implies f (ax0) = a f (x0) < 0 ≤ ρ(ax0).

The Hahn–Banach Theorem shows that f extends to a linear functional F on
X with F(x) ≤ ρ(x) for all x . Then F(x0) ≥ 1, and Lemma 4.17 shows that
ρ(K ) ≤ 1. Hence

F(x0) ≥ 1 and F(M − N + x0) ≤ 1.

Thus we have F(M − N + x0) ≤ F(x0), F(M − N ) ≤ 0, F(m − n) ≤ 0 for all
m in M and n in N , and F(m) ≤ F(n) for all m and n. Taking the supremum
over m in M and the infimum over n in N gives the conclusion of the theorem
for X real.
Now suppose that the vector space X is complex. We can initially regard X

as a real vector space by forgetting about complex scalars, and then the previous
case allows us to construct a real-linear F such that F(M) ≤ c ≤ F(N ). Put
G(x) = F(x)− i F(i x). Since G(i x) = F(i x)− i F(i2x) = F(i x)− i F(−x) =
F(i x)+ i F(x) = i(F(x)− i F(i x)) = iG(x), G is complex linear. The real part
of G equals F , and therefore G satisfies the conclusion of the theorem.

6. Locally Convex Spaces

In this section we shall apply the discussion of convex sets and linear functionals
in the context of topological vector spaces. A topological vector space X is said
to be locally convex if there is a base for its topology that consists of convex sets.
Let us see that any topological vector space X whose topology is given by a

family of seminorms ‖ · ‖s is locally convex. A base for the open sets consists
of all finite intersections of sets U (y, s, r) = {x ∣∣ ‖x − y‖s < r

}
with y in X , s

equal to one of the seminorm indices, and r > 0. If x and x ′ are in U (y, s, r)
and if 0 ≤ t ≤ 1, then

‖((1− t)x + t x ′)− y‖s = ‖(1− t)(x − y)+ t (x ′ − y)‖s
≤ ‖(1− t)(x − y)‖s + ‖t (x ′ − y)‖s
= (1− t)‖x − y‖s + t‖x ′ − y‖s
< (1− t)r + tr = r.
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Hence ((1−t)x+t x ′ is inU (y, s, r), andU (y, s, r) is convex. Since the arbitrary
intersection of convex sets is convex by Proposition 4.16a, every member of the
base for the topology is convex. Thus X is locally convex.
We are going to show that every locally convex topological vector space has

many continuous linear functionals, enough to distinguish any two disjoint closed
convex sets when one of them is compact. This result will in particular be
applicable to the spaces S(RN ) and C∞(U ) since their topologies are given by
seminorms.
We begin with two lemmas that do not need an assumption of local convexity

on the topological vector space.

Lemma 4.19. In any topological vector space if K1 and K2 are closed sets
with K1 compact, then the set K1 − K2 of differences is closed.

PROOF. It is simplest to use nets. Thus let x be a limit point of K1 − K2, and
let {xn} be any net in K1 − K2 converging to x . Since each xn is in K1 − K2,
we can write it as xn = k(1)n − k(2)n with k(1)n in K1 and k

(2)
n in K2. Since K1

is compact, {k(1)n } has a convergent subnet, say {k(1)nj }. Let k(1) be the limit of
{k(1)nj } in K1. Both {xnj } and {k(1)nj } are convergent, and {k(2)nj } must be convergent
because k(2)nj = k(1)nj − xnj and subtraction is continuous. Let k2 be its limit. This
limit has to be in K2 since K2 is closed, and then the equation x = k(1) − k(2)

exhibits x as in K1 − K2. Hence K1 − K2 is closed.

Lemma 4.20. Let X be any topological vector space, let K1 and K2 be
disjoint convex sets, and suppose that K1 has nonempty interior. Then there
exists a nonzero continuous linear functional F on X with Re F(K1) ≤ c and
c ≤ Re F(K2) for some real number c.
PROOF. The key observation is that any interior point of a subset E of X is

internal. In fact, if p is in Eo and x is in X , then p + δx is in Eo for δ = 0. By
continuity of the vector-space operations and openness of Eo, p+ δx is in Eo for
|δ| sufficiently small. Therefore p is an internal point.
Since K1 consequently has an internal point, Theorem 4.18 produces a nonzero

linear functional F such that

Re F(K1) ≤ c and c ≤ Re F(K2) (∗)

for some real number c. We complete the proof of the lemma by showing that F
is continuous. Let f and g be the real and imaginary parts of F . Then g(x) =
−i f (i x), and it is enough to show that f is continuous. Fix an interior point p
of K1, and choose an open neighborhood U of 0 such that p + U ⊆ K1. Then
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f (U ) ⊆ f (K1)− f (p) since f is real linear, and (∗) shows that f (U ) ≤ c− f (p).
So f (U ) ≤ a for some a > 0. If V = U ∩ (−U ), then

f (V ) = f (U ∩ (−U )) ⊆ f (U ) ∩ f (−U ) = f (U ) ∩ (− f (U )) ⊆ [−a, a],

and therefore f (εa−1V ) ⊆ [−ε, ε]. In other words, f is continuous at 0. Then
f (x + εa−1V ) ⊆ f (x)+ [−ε, ε], and f is continuous everywhere.

Theorem 4.21. Let X be a locally convex topological vector space, let K1 and
K2 be disjoint closed convex subsets of X , and suppose that K1 is compact. Then
there exist ε > 0, a real constant c, and a continuous linear functional F on X
such that

Re F(K2) ≤ c − ε and c ≤ Re F(K1).
PROOF. Lemma 4.19 shows that K1 − K2 is closed, and K1 − K2 does not

contain 0 because K1 and K2 are disjoint. Since X is locally convex, we can
choose a convex open neighborhood U of 0 disjoint from K1 − K2. Proposition
4.16c shows that K1 − K2 is convex, and Lemma 4.20 therefore applies to the
sets U and K1 − K2 and yields a nonzero continuous linear functional F such
that

Re F(U ) ≤ d and d ≤ Re F(K1 − K2)

for some real d. Since F is not zero, we can find x0 in X with F(x0) = 1. Choose
ε > 0 such that |a| < ε implies ax0 is in U . Then

d ≥ Re F(U ) ⊇ Re F({ax0
∣∣ |a| < ε} = (−ε, ε),

and hence d ≥ ε. Therefore all k1 in K1 and k2 in K2 have

Re F(k1)− Re F(k2) = Re F(k1 − k2) ≥ d ≥ ε,

so that Re F(k1) ≥ ε + Re F(k2). Taking c = infk1∈K1 Re F(k1) now yields the
conclusion of the theorem.

Corollary 4.22. Let X be a locally convex topological vector space, let K be
a closed convex subset of X , and let p be a point of X not in K . Then there exists
a continuous linear functional F on X such that

sup
k∈K

Re F(k) < Re F(p).

PROOF. This is the special case of Theorem 4.21 in which the given compact
set is a singleton set.
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Corollary 4.23. If X is a locally convex topological vector space and if p and
q are distinct points of X , then there exists a continuous linear functional F on
X such that F(p) = F(q).

PROOF. This is the special case of Corollary 4.22 in which the given closed
convex set is a singleton set.

We conclude this section with a simple result about locally convex topological
vector spaces that we shall need in the next section.

Proposition 4.24. If X is a locally convex topological vector space and Y is a
closed vector subspace, then the topological vector space X/Y is locally convex.

REMARK. X/Y is a topological vector space by Proposition 4.4.

PROOF. Let E be an open neighborhood of a given point of X/Y . Without loss
of generality, we may take the given point to be the 0 coset. If q : X → X/Y is
the quotient map, q−1(E) is an open neighborhood of 0 in X . Since X is locally
convex, there is a convex open neighborhoodU of 0 in X withU ⊆ q−1(E). The
map q carries open sets to open sets by Proposition 4.4 and carries convex sets to
convex sets by Proposition 4.16d, and thus q(U ) is an open convex neighborhood
of the 0 coset in X/Y contained in E .

7. Topology on C∞com(U )

In this section we carry the discussion of local convexity in Sections 5–6 along the
path toward applications to smooth functions. Our objective will be to topologize
the space C∞com(U ) of smooth functions of compact support on the open set U
of RN . The members of C∞com(U ) extend to functions in C∞com(R

N ) by defining
them to be 0 outside U , and we often make this identification without special
comment.
The important thing about the topology will be what it accomplishes, rather

than what the open sets are, and we shall therefore work toward a characterization
of the topology, together with an existence proof. The characterization will be
in terms of a universal mapping property, and local convexity will be part of that
property. Ultimately it is possible to give an explicit description of the open
sets, but we leave such a description for Problem 9 at the end of the chapter.
The explicit description will show in particular that the topology is given by an
uncountable family of seminorms that cannot be reduced to a countable family
except when U is empty.
Let us state the universal mapping property informally now, so that the ingre-

dients become clear. Let K be any compact subset of the given open setU ofRN ,
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and define C∞K to be the vector space of all smooth functions of compact support
on RN with support contained in K . The space C∞K becomes a locally convex
topological vector space when we impose the countable family of seminorms
‖ f ‖α = supx∈K |Dα f (x)|, with α running over all differentiation multi-indices.
Set-theoretically, C∞com(U ) is the union of all C∞K as K runs through the compact
subsets of U . The topology on C∞com(U ) will be arranged so that

(i) every inclusion C∞K ⊆ C∞com(U ) is continuous,
(ii) whenever a linear mapping C∞com(U )→ X is given into a locally convex

linear topological space X and the composition C∞K → C∞com(U ) → X
is continuous for every K , then the given mapping C∞com(U ) → X is
continuous.

It will automatically have the additional property

(iii) every inclusion C∞K ⊆ C∞com(U ) is a homeomorphism with its image.

We shall proceed somewhat abstractly, so as to be able to construct the topology
of a locally convex topological vector space out of simpler data. If (X, T ) is a
topological space and p is in X , we define a local neighborhood base for T at
p to be a collectionNp of neighborhoods of p, not necessarily open, such that if
V is any open set containing p, then there exists N inNp with N ⊆ V . If X is a
topological vector space with topology T and ifN0 is a local neighborhood base
at 0, then {p+N | N ∈ N0} is a local neighborhood base at p because translation
by x is a homeomorphism. A set is open if and only if it is a neighborhood of
each of its points. Consequently we can recover T from a local neighborhood
base N0 at 0 by this description: a subset V of X is open if and only if for each
p in V , there exists Np in N0 such that p + Np ⊆ V .

Let us observe two properties of a local neighborhood base N0 at 0 for a
topological vector space X . The first follows from the fact that X is Hausdorff,
more particularly that each one-point subset of X is closed. The property is that
for each x = 0 in X , there is some Mx in N0 with x not in Mx .

The second follows from the fact that 0 is an interior point of each member N
of N0. The property is that 0 is an internal point of N in the sense of Section 5.
The fact that interior implies internal was proved in the first paragraph of the
proof of Lemma 4.20.

We shall show in Lemma 4.25 that we can arrange in the locally convex case
for each member N of a local neighborhood base N0 at 0 to have the additional
property of being circled in the sense that zN ⊆ N for all scalars z with |z| ≤ 1.
Then we shall see in Proposition 4.26 that we can formulate a tidy necessary

and sufficient condition for a system of sets containing 0 in a real or complex
vector space X to be a local neighborhood base for a topology on X that makes
X into a locally convex topological vector space.
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Lemma 4.25. Any locally convex topological vector space has a local neigh-
borhood base at 0 consisting of convex circled sets.

PROOF. It is enough to show that if V is an open neighborhood of 0, then
there is an open subneighborhood U of 0 that is convex and circled. Since the
underlying topological vector space is locally convex, we may assume that V
is convex. Replacing V by V ∩ (−V ), we may assume by parts (a) and (c) of
Proposition 4.16 that V is stable under multiplication by−1. Since V is convex,
it follows that cV ⊆ V for any real c with |c| ≤ 1. If the field of scalars is R,
then the proof of the lemma is complete at this point.
Thus suppose that the field of scalars isC. If V is a convex open neighborhood

of 0, put
W = {u ∈ V | zu ∈ V for all z ∈ C with |z| ≤ 1}.

Then W is convex by Proposition 4.16a, and it is circled. Let us show that
W ⊇ 1

2V ∩ 1
2 iV . Thus let u be an element of 1

2V ∩ 1
2 iV , and write it as

u = 1
2v1 = 1

2 iv2 with v1 and v2 in V . Let z ∈ C be given with |z| ≤ 1, and let
x and y be the real and imaginary parts of z. The vectors ±v1 and 0 are in V ,
and V is convex; since |x | ≤ 1, xv1 is in V . Similarly −yv2 is in V . We can
write zu = 1

2 (x + iy)v1 = 1
2 (xv1)+ 1

2 (−yv2), and this is in V since V is convex.
Therefore zu is in V , and u is in U . Hence W ⊇ 1

2V ∩ 1
2 iV , as asserted.

Let U be the interior Wo of W . Then U is an open neighborhood of 0, and
we show that it is convex and circled; this will complete the proof. Let u and v
be in U . Since U is open, we can find an open neighborhood N of 0 such that
u + N ⊆ U and v + N ⊆ U . If n is in N and if t satisfies 0 ≤ t ≤ 1, then
(1− t)u + tv + n = (1− t)(u + n)+ t (v + n) exhibits (1− t)u + tv + n as a
convex combination of a member of u + N ⊆ W and a member of v + N ⊆ W ,
hence as a member of W . Therefore every member of (1− t)u + tv + N lies in
W , and U is convex.
To see that U is circled, let u and N be as in the previous paragraph with

u + N ⊆ U . If |z| ≤ 1, then u + N ⊆ W implies z(u + N ) ⊆ W since
W is circled. Hence zu + zN ⊆ W . Since zN is open, zu + zN is an open
neighborhood of zu contained in W , and we must have zu + zN ⊆ Wo = U .
Therefore U is circled.

Proposition 4.26. Let X be a real or complex vector space. If X has a
topology making it into a locally convex topological vector space, then X has a
local neighborhood base N0 at 0 for that topology such that

(a) each N in N0 is convex and circled with 0 as an internal point,
(b) whenever M and N are in N0, there is some P in N0 with P ⊆ M ∩ N ,
(c) whenever N is in N0 and a is a nonzero scalar, then aN is in N0,
(d) each x = 0 in X has some associated Mx inN0 such that x is not in Mx .
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Conversely ifN0 is any family of subsets of the vector space X such that (a), (b),
(c), and (d) hold, then there exists one and only one topology on X making X
into a locally convex topological vector space in such a way that N0 is a local
neighborhood base at 0.

PROOF. For the direct part of the proof, Lemma 4.25 shows that there is some
local neighborhood base at 0 consisting of convex circled sets. To such a local
neighborhood base we are free to add any additional neighborhoods of 0. Thus
we may take N0 to consist of all convex circled neighborhoods of 0. Then (b)
and (c) hold, and (d) holds since the topology is Hausdorff. Since 0 is an internal
point of any neighborhood of 0, (a) holds. This proves existence.
For the converse there is only one possibility for the topology T : V is open

if for each x in V , there is some Nx in N0 with x + Nx ⊆ V . This proves the
uniqueness of T, and we are to prove existence. For existence we define open sets
in this way and define T to be the collection of all open sets. The definition makes
∅ open and the arbitrary union of open sets open, and (b) makes the intersection
of two open sets open.
We shall show that the complement of any {x0} is open. Then it follows by

taking unions that X is open, so that T is a topology; also we will have proved
that every one-point set is closed. If x1 = x0, we use (d) to choose Mx0−x1 inN0

with x0− x1 not in Mx0−x1 . Then x1+ Mx0−x1 ⊆ X − {x0}. Since x1 is arbitrary,
X − {x0} is open.
With T established as a topology, let us see that every member of N0 is a

neighborhood of 0. This step involves considering the family of sets aN for
fixed N in N0 and for arbitrary positive a. If 0 < t < 1 and if n1 and n2
are in N , then (1 − t)n1 + tn2 is in N since (a) says that N is convex. Hence
(1− t)N + t N ⊆ N . If a > 0 and b > 0, then we can take t = b(a + b)−1 and
obtain a(a + b)−1N + b(a + b)−1N ⊆ N . Multiplying by a + b gives

aN + bN ⊆ (a + b)N for all positive a and b. (∗)
In particular the sets aN are nested for a > 0, i.e., 0 < a < a′ implies aN ⊆ a′N .
From these facts we can show that each N inN0 is a neighborhood of 0. Given

N , define U = ⋃0<a<1 aN . This is a subset of N by the nesting property, and
we shall prove that it is open. If x is in U , then x is in aN for some a with
0 < a < 1, and (∗) shows that x + 1

2 (1− a)N ⊆ U . By (c), 12 (1− a)N is inN0,
and therefore 12 (1−a)N can serve as a member Nx ofN0 such that x + Nx ⊆ U .
We conclude that U is open. Therefore N is a neighborhood of 0.
Next let us see that translations are homeomorphisms. If V is open and if x0

is given, we know that each x in V has an associated Nx such that x + Nx ⊆ V .
If y is in x0 + V , then x = y − x0 is in V and we see that (y − x0)+ Ny−x0 ⊆ V
and y + Ny−x0 ⊆ x0 + V . Hence x0 + V is open, and every translation is a
homeomorphism.
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Let us see that addition is continuous at (0, 0), and then the fact that translations
are homeomorphisms implies that addition is continuous everywhere. If V is an
open neighborhood of 0, then the definition of open set says that there is some
N in N0 with 0 + N ⊆ V . By (c), 12N is in N0. It is enough to prove that
( 12N , 12N ) maps into V under addition. But this is immediate from (∗) since
1
2N + 1

2N ⊆ N ⊆ V .
Next we investigate continuity of the mapping x �→ ax for a = 0. It is enough

to show that if V is open, then so is a−1V . Since V is open, every x in V has an
associated Nx in N0 such that x + Nx ⊆ V . The most general element of a−1V
is of the form a−1x with x in V , and we have a−1x + a−1Nx ⊆ a−1V . Since (c)
shows a−1Nx to be in N0, we conclude that a−1V is open.
Let us see that scalarmultiplication is continuous at (1, x), and then the fact that

x �→ ax is continuous for a = 0 implies that scalar multiplication is continuous
everywhere except possibly at (0, x). Let V be an open neighborhood of x , and
choose N in N0 with x + N ⊆ V . Since N is in N0, (c) shows that 13N is in
N0. Then 0 is an internal point of 13N by (a), and there exists ε > 0 such that
−ε ≤ c ≤ ε implies that cx is in 1

3N . There is no loss of generality in taking
ε < 1. Since 1

3N is circled by (a), cx is in 1
3N for |c| ≤ ε. Let A be the set of

scalars with |a−1| < ε. We show that scalar multiplication carries A×(x+ 1
3N )

into V . In fact, if a is in A and 1
3n1 is in

1
3N , then |a| < 2, 13an1 is in

2
3N , and

(∗) gives

a(x + 1
3n1) = (ax − x)+ (x + 1

3an1) ∈ 1
3N + (x + 2

3N ) ⊆ x + N ⊆ V .

To complete the proof of continuity of scalar multiplication, we show conti-
nuity at all points (0, x). Let V be an open neighborhood of 0 in X , and choose
N inN0 with 0+ N ⊆ V . Since 0 is an internal point of N , there is some ε > 0
such that cx is in N for real c with |c| ≤ ε. For this ε, 12εx is in

1
2N . If |z| < 1

and y is in 1
2N , then (z,

1
2εx + y) maps to 1

2 zεx + zy, which lies in 1
2N + 1

2N
since N is circled. In turn, this is contained in N by (∗) and therefore is contained
in V . So ( 12εz, x + 2ε−1y) maps into V if |z| < 1 and y is in 1

2N . Altering the
definitions of z and y, we conclude that (z, x + y)maps into V if |z| < 1

2ε and y
is in ε−1N . This proves the continuity.
Since {0} is a closed set, Lemma4.3 is applicable and shows that X isHausdorff,

hence is a topological vector space. Inside any open neighborhood V of 0 lies
some set N in U0, and

⋃
0<a<1 aN is a convex open subneighborhood of V .

Therefore the topology is locally convex.

We are almost in a position to topologize C∞com(U ). If iK denotes the inclusion
of C∞K into C∞com(U ), we shall define a convex circled subset N in C∞com(U )
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having 0 as an internal point to be in a local neighborhood base at 0 if i−1K (N ) is
a neighborhood of 0 in C∞K for every compact subset K of U . Then conditions
(a), (b), and (c) in Proposition 4.26 will be met, and an examination of the
proof of that proposition shows that we obtain a topology for C∞com(U ) in which
addition and scalarmultiplication are continuous. What is lacking is theHausdorff
property, which follows once (d) holds in Proposition 4.26. Verifying (d) requires
a construction, whose main step is given in the following lemma.

Lemma 4.27. Let X be a locally convex topological vector space, let Y be a
closed vector subspace, and let Y be given the relative topology, which is locally
convex. If N is a convex circled neighborhood of 0 in Y and x0 is a point in X
not in N , then there exists a convex circled neighborhood M of 0 in X such that
M ∩ Y = N and such that x0 is not in M .

M1

R1 M2 R2x0
Y

0 N

FIGURE 4.1. Extension of convex circled neighborhood of 0.
The lemma extends N to the set given in the figure

by M3 = R1 ∪ M2 ∪ R2.

PROOF. Since N is a neighborhood of 0 in Y and since Y has the relative
topology, there exists a neighborhood M1 of 0 in X such that M1 ∩ Y = U . We
shall adjust M1 to make it convex circled and to arrange that x0 is not in it. Since
X is locally convex, we can find a convex circled neighborhoodM2 of 0 contained
in M1. Taking a cue from Figure 4.1, define

M3 = {(1− t)n + tm2 | n ∈ N , m2 ∈ M2, 0 ≤ t ≤ 1}.

This is a neighborhood of 0 since it contains M2, and it is convex circled since N
and M2 are convex circled.
We shall prove that

M3 ∩ Y = N .

Certainly M3 ∩ Y ⊇ N . For the reverse inclusion let m3 be in M3 ∩ Y , and write
m3 = (1 − t)n + tm2 with n ∈ N , m2 ∈ M2, and 0 ≤ t ≤ 1. If t = 0, then
m3 = n is already in N . If t > 0, then m2 = t−1(m3− (1− t)n) exhibits m2 as a
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linear combination of members of Y , hence as a member of Y . Since M2 ⊆ M1,
m2 is in M1 ∩ Y = N . Therefore m3 is a convex combination of the members n
and m2 of N and must lie in N since N is convex. Consequently M3 ∩ Y = N .
If x0 lies in Y , then we can take M = M3 since x0 is by assumption not in N

and cannot therefore be in the larger set M3. If x0 is not in Y , then Proposition
4.24 says that X/Y is a locally convex topological vector space. Since x0 + Y is
not the 0 coset, we can find a convex circled neighborhood P of the 0 coset that
does not contain x0 + Y . If q : X → X/Y is the quotient map, then q−1(P) by
Proposition 4.16e is a convex circled neighborhood of 0 in X that does not contain
x0 and satisfies q−1(P) ∩ Y = Y . Therefore M = M3 ∩ q−1(P) is a convex
circled neighborhood of 0 in X that does not contain x0 and satisfies M ∩Y = N .

Proposition 4.28. Let X be a real or complex vector space, and suppose that X
is the increasing union X =⋃∞

p=1 Xp of a sequence of locally convex topological
vector spaces such that for each p, Xp is a closed vector subspace of Xp+1 and
has the relative topology. Then there exists a unique topology on X making it
into a locally convex topological vector space in such a way that

(a) each inclusion ip : Xp → X is continuous,
(b) whenever L : X → Y is a linear function from X into a locally convex

topological vector space Y such that L ◦ ip : Xp → X is continuous for
all p, then L is continuous.

This unique topology has the property that

(c) each inclusion ip : Xp → X is a homeomorphism with its image.

PROOF. Let N0 be the family of all convex circled subsets N of X having 0
as an internal point such that i−1p (N ) is a neighborhood of 0 in Xp for all p. We
shall prove that N0 satisfies the four conditions (a) through (d) of Proposition
4.26, so that X has a unique topology making it into a locally convex topological
vector space in such a way that N0 is a local neighborhood base at 0. Condition
(a) holds by definition. Condition (b) holds because the intersection of two
convex circled subsets with 0 as an internal point is again a convex circled set
with 0 as an internal point and because the intersection of two neighborhoods is
a neighborhood. Condition (c) holds because multiplication by a nonzero scalar
sends convex circled sets with 0 as an internal point into convex circled sets
with 0 as an internal point and because multiplication by a nonzero scalar sends
neighborhoods of 0 to neighborhoods of 0.
We have to prove (d) in Proposition 4.26, namely that each x0 = 0 in X has

some associated M inN0 such that x0 is not in M . Since X =
⋃∞

p=1 Xp, choose
p0 as small as possible so that x0 is in Xp0 . Since Xp0 satisfies (a) through (d) and
since x0 = 0, we can find some convex circled neighborhood Mp0 of 0 in Xp0 that
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does not contain x0. Proceeding inductively by means of Lemma 4.27, we can
find, for each p > p0, a convex circled neighborhood Mp of 0 in Xp that does not
contain x0 such that Mp ∩ Xp−1 = Mp−1. Define M = ⋃p≥p0 Mp. Then M is
convex circled since each Mp has this property. To see that 0 is an internal point
of M , we argue as follows: for each x in X , x lies in some Xp, the set Mp has 0
as an internal point since Mp is a neighborhood of 0, Mp contains all cx for c
real and small, and the larger set M contains all cx for c real and small. For each
p ≥ p0, the set i−1p (M) equals Mp, which was constructed as a neighborhood

of 0 in Xp. The intersection i
−1
k (M) = Mp ∩ Xk has to be a neighborhood of 0 in

Xk for k < p since Mp is a neighborhood of 0 in Xp, and the set M is therefore
in N0. Thus M meets the requirement of being a member of N0 that does not
contain x0, and (d) holds in Proposition 4.26.
We are left with proving (a) through (c) in the present proposition and with

proving that no other topology meets these conditions. For (a), since ip is linear,
it is enough to prove continuity at 0. Hence we are to see that if N is in N0,
then i−1p (N ) is a neighborhood of 0 in Xp. But this is just one of the defining
conditions for the set N to be in N0.
For (b), since L is linear, it is enough to prove continuity at 0. Since Y is locally

convex, the convex circled neighborhoods of 0 in Y form a local neighborhood
base. If E is such a neighborhood, we are to show that N = L−1(E) is a
neighborhood of 0 in X . The set E is convex and circled with 0 as an internal
point, and hence the same thing is true of N . Also, i−1p (N ) = i−1p L−1(E) =
(L◦ip)−1(E) is a neighborhoodof 0 in Xp since L◦ip is by assumption continuous.
Therefore N = L−1(E) is in N0, and then L−1(E) is a neighborhood of 0 in the
topology imposed on X . Hence L is continuous at 0 and is continuous.
For (c), we again use Lemma 4.27, except that this time we do not need a

point x0. We are to show that if Np0 is a neighborhood of 0 in Xp0 , then i(Np0)

is a neighborhood of 0 in the relative topology that X defines on Xp0 . Since Xp0
is locally convex, there is no loss of generality in assuming that Np0 is convex
circled. Proceeding inductively for p > p0, we use the lemma to construct a
convex circled neighborhood Np of 0 in Xp such that Np ∩ Xp−1 = Np−1. Put
N = ⋃p≥p0 Np. Arguing in the same way as earlier in the proof, we see that N
is in N0. Then i(Np0) = Xp0 ∩ N , and i(Np0) is exhibited as the intersection of
Xp0 with a neighborhood of 0 in X . This proves (c).
Finally suppose that the constructed topology on X is T and that T ′ is a second

topology making X into a locally convex topological vector space in such a way
that (a) and (b) hold. Let 1T be the identity map from (X, T ) to (X, T ′). By
(a) for T ′, the composition 1T ◦ ip : Xp → X is continuous. By (b) for T , 1T
is continuous from (X, T ) to (X, T ′). Reversing the roles of T and T ′, we see
that the identity map is continuous from (X, T ′) to (X, T ). Therefore 1T is a
homeomorphism.
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In the terminology of abstract functional analysis, one says that X in Proposi-
tion 4.28 is a strict inductive limit16 of the spaces Xp. With extra hypotheses that
are satisfied in our case of interest, one says that X acquires the LF topology17

from the Xp’s.
Now let us apply the abstract theory to C∞com(U ). If {Kp} is any exhausting

sequence of compact subsets of U , then we apply Proposition 4.28 with X =
C∞com(U ) and Xp = C∞Kp

. For the inclusion Xp ⊆ Xp+1, the restriction to C∞Kp

of the seminorms on C∞Kp+1 yields the seminorms for C
∞
Kp
, and therefore Xp has

the relative topology as a vector subspace of Xp+1. The space Xp is a closed
subspace because C∞Kp

is Cauchy complete and because complete subsets of a
metric space are closed. Thus the hypotheses are satisfied, andC∞com(U ) acquires
a unique topology as a locally convex topological vector space such that

(i) each inclusion C∞Kp
⊆ C∞com(U ) is continuous,

(ii) whenever a linear mapping C∞com(U )→ X is given into a locally convex
linear topological space X and the composition C∞Kp

→ C∞com(U ) → X
is continuous for every p, then the given mapping C∞com(U ) → X is
continuous.

Furthermore

(iii) each inclusion C∞Kp
⊆ C∞com(U ) is a homeomorphism with its image.

To complete our construction, all we have to do is show that the resulting topology
on C∞com(U ) does not depend on the choice of exhausting sequence.

Proposition 4.29. The inductive limit topology on C∞com(U ) is independent of
the choice of exhausting sequence. Consequently

(a) each inclusion C∞K ⊆ C∞com(U ) is a homeomorphism with its image,
(b) whenever a linear mapping C∞com(U )→ X is given into a locally convex

linear topological space X and the composition C∞K → C∞com(U ) → X
is continuous for every compact subset K of U , then the given mapping
C∞com(U )→ X is continuous.

16Thewords “direct limit” mean the same thing as “inductive limit,” but “inductive” is more com-
mon in this situation. The term “strict” refers to the fact that the successive inclusions
ip+1,p : Xp → Xp+1 are one-one with ip+1,p(Xp) homeomorphic to Xp . The notion of “di-
rect limit” is a construction in category theory that is useful within several different categories.
Uniqueness of the direct limit up to canonical isomorphism is a formality built into the definition;
existence depends on the particular category. For this situation the construction is taking place within
the category of locally convex topological vector spaces (and continuous linear maps). A direct-limit
construction within a different category plays a role in Problems 26–30 at the end of the chapter,
and those problems are continued at the end of Chapter VI.

17“LF” refers to “Fréchet limit.” In the usual situation the spaces Xp are assumed to be locally
convex completemetric topological vector spaces, i.e., “Fréchet spaces.” The Xp’s have this property
in the application to C∞com(U ).
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PROOF. Write X forC∞com(U )with its topology defined relative to an exhausting
sequence {Kp} of compact subsets ofU , andwriteY forC∞com(U )with its topology
defined relative to an exhausting sequence {K ′p}. If Kk is amember of the sequence
{Kp}, then Kk ⊆ K ′p for p ≥ some index p0 depending on k since the interiors
of the sets K ′p cover the compact set Kk . The inclusion Kk ⊆ K ′p is continuous
for p ≥ p0, and therefore the composition Kk → K ′p0 → Y is continuous. This
continuity for all k implies that the identity map from X into Y is continuous.
Reversing the roles of X and Y , we see that the identity map is a homeomorphism.

8. Krein–Milman Theorem

In this section we carry the discussion of local convexity in Sections 5–6 along the
path toward fixed-point theorems. Our objective will be to prove a fundamental
existence theorem about “extreme points.”
If K is a convex set in a real or complex vector space and if x0 is in K , we say

that x0 is an extreme point of K if x0 is not in the interior of any line segment
belonging to K , i.e., if

x0 = (1− t)x + t y with 0 < t < 1 and x, y ∈ K implies x0 = x = y.

Let X be a topological vector space, and let K be a closed convex subset of
X . A nonempty closed convex subset S of K is called a face if whenever � is a
line segment belonging to K , in the above sense, and � has an interior point in S,
then the whole line segment belongs to S. With this definition, x0 is an extreme
point of K if and only if the singleton set {x0} is a face.
If E is a subset of X , then the closed convex hull of E is defined to be the

intersection of all closed convex subsets of X that contain E . It may be described
explicitly as the closure of the set of all convex combinations of members of E .

Theorem 4.30 (Krein–Milman Theorem). If K is a compact convex set in a
locally convex topological vector space, then K is the closed convex hull of the
set of extreme points of K . In particular, if K is nonempty, then K has an extreme
point.

PROOF. Let X be the underlying topological vector space. We may assume,
without loss of generality, that K is nonempty. Let us see that if f is any
continuous linear functional on X , then the subset of K onwhich Re f assumes its
maximum value is a face. In fact, let S be the subset where g = Re f assumes its
maximum valuem. Then S is nonempty since K is compact and g is continuous,
and the continuity and real linearity of g imply that S is closed and convex. To
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check that S is a face, let x0 be in S, and suppose that x0 = (1 − t)x + t y with
0 < t < 1 and x, y in K . Then

m = g(x0) = (1− t)g(x)+ tg(y) ≤ m(1− t)+ tm = m.

Equality must hold throughout, and therefore g(x) = m = g(y). Hence x and y
are in S, and S is a face.
Next let us see that any face of K contains an extreme point. In fact, order the

faces by inclusion downward. The intersection of a chain of faces is nonempty
by compactness and hence is a face that provides a lower bound for the chain. By
Zorn’s Lemma there exists a minimal face S1. Arguing by contradiction, suppose
that S1 contains at least two points. Then Corollary 4.23 and the local convexity
of X yield a continuous linear functional whose real part takes distinct values at
the two points. From the previous paragraph we find that S1 contains a proper
face S. A face of a face is a face. Thus S is a face of K strictly smaller than the
minimal face S1, and we arrive at a contradiction.
Now we can complete the proof. If E denotes the closed convex hull of the

set of extreme points of K , then certainly E ⊆ K . Arguing by contradiction,
suppose that equality fails: Let x0 be in K but not in E . Then Corollary 4.22 and
the local convexity of X produce a continuous linear functional whose real part
has supremum on E strictly less than the value at x0. The first paragraph of the
proof shows that the subset of K where the real part of this linear functional takes
the value at x0 is a face of K , and the second paragraph shows that this face has
an extreme point. This extreme point is not in E , and we arrive at a contradiction.

Compact convex subsets of RN arise in practical maximum-minimum prob-
lems involving several variables, typically economic variables. Often the compact
convex set is a polyhedron, and the function to be maximized is the sum of a
constant and a linear function. The Krein–Milman Theorem produces extreme
points, and the basic techniques of the subject of linear programming show that
the maximum is attained at an extreme point and show how to find this extreme
point.
A natural place where infinite-dimensional compact convex sets arise is in the

weak-star topology on the closed unit ball of the dual of a normed linear space.
Alaoglu’s Theorem says that this set is compact, and it is certainly convex. The
Hahn–Banach Theorem is what shows that this compact convex set contains a
nonzero element when the normed linear space is nonzero.
When the whole closed unit ball is the set of interest, let us see what the

extreme points are like in certain situations. If the underlying normed linear
space is a Hilbert space, then the real part of a continuous linear functional takes
its maximum value at a single point of the closed unit ball. The upshot of this
fact is that the proof of the Krein–Milman Theorem above degenerates; Zorn’s
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Lemma is not needed, for example, to produce an extreme point. The proof
degenerates in the same way, in fact, whenever one considers some L p space
with 1 < p <∞.
The case of L∞ is more interesting. Let us work with real-valued functions

in the context of a σ -finite measure space, regarding L∞ as the dual of L1. The
extreme points of the closed unit ball are all the L∞ functions that take only the
values −1 and +1.
Similarlywe can consider the spaceC([0, 1]) of continuous functions on [0, 1].

Again let us work with real-valued functions. Suppose that this Banach space
is the dual of some normed linear space. Then the closed unit ball of C([0, 1])
forms a compact convex set in the weak-star topology. As with L∞, the extreme
points are the functions that take only the values−1 and+1. The functions have
to be continuous, however, and they are therefore constant. So we get only two
extreme points, the constant functions −1 and +1, and their closed convex hull
contains only constant functions. The conclusion is that C([0, 1]) is not the dual
of any normed linear space.
We can argue similarly with measures and L1 functions. Suppose that X is

a compact Hausdorff space. The Banach space M(X) of regular complex Borel
measures on X is the dual of C(X), and the set of nonnegative Borel measures
of total mass ≤ 1 is a closed compact subset of the unit ball in the weak-star
topology. This set has to be the closed convex hull of its extreme points. Indeed,
as is pointed out in Problem 17 at the end of the chapter, the extreme points of
this set are 0 and the point masses of mass 1 at the points of X ; the statement of
the theorem is reflected in the fact that any regular Borel measure on X with total
mass ≤ 1 is a weak-star limit of linear combinations of point masses.
We can consider similarly the space L1([0, 1]) of Borel functions on [0, 1]

integrable with respect to Lebesgue measure. Suppose that this Banach space is
the dual of some normed linear space. Then the closed unit ball of L1([0, 1])
forms a compact convex set in the weak-star topology. Problem 18 at the end of
the chapter shows that the extreme points are trying to be the functions whose
mass is concentrated at a single point, and there are none. The conclusion is that
L1([0, 1]) is not the dual of any normed linear space.
The Krein–Milman Theorem begins to show its power when applied to more

subtle closed convex subsets of a unit ball in the weak-star topology. Here is
an example that lies behind the foundations of the theory of locally compact
abelian groups.18 For concreteness we work with complex-valued functions on
the integers, i.e., doubly infinite sequences. Such a function f (n) is said to be
positive definite if

∑
j,k c( j) f ( j − k)c(k) ≥ 0 for all functions c(n) on the

integers with finite support. Positive definite functions are easily checked to

18Such groups are defined in Chapter VI.
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have f (0) ≥ 0 and | f (n)| ≤ f (0). In particular, the set K of positive definite
functions f with f (0) = 1 may be regarded as a subset of the closed unit ball
of L∞ of the integers with the counting measure, a space sometimes called �∞.
Weak-star convergence for such functions is the same as pointwise convergence,
and it follows that K is closed, hence compact. Checking the definition, we see
that K is convex. TheKrein–Milman Theorem tells us that K is the closed convex
hull of its extreme points. It is shown in Problem 20 at the end of the chapter that
the extreme points are the functions fθ (n) = einθ for real θ .
By way of introduction to the next section, let us consider one more example.

Let S be a compact Hausdorff space, and let F be any homeomorphism of S. Put
X = C(S). In the weak-star topology on M(S), the nonnegative regular Borel
measures μ with μ(S) = 1 form a compact convex subset K1 of M(S). The
Markov–Kakutani Theorem in the next section shows that there exist elements of
K1 invariant under F . The invariant such measures therefore form a nonempty
compact convex subset K of K1. According to the Krein–Milman Theorem, K is
the closed convex hull of its set of extreme points. As shown in Problem 19 at the
end of the chapter, the μ’s that are extreme points have the interesting property
that all Borel subsets that are carried onto themselves by the homeomorphism F
havemeasure 0 or 1; the usual name for this phenomenon is thatμ is ergodicwith
respect to F . Since the Krein–Milman Theorem is saying that extreme points
exist, we obtain the consequence that for each homeomorphism F of S, there is
some regular Borel measure μ with μ(S) = 1 that is ergodic with respect to F .

9. Fixed-Point Theorems

In this section we continue the discussion of convexity and local convexity. We
shall give two fixed-point theorems.

Theorem 4.31 (Markov–Kakutani Theorem). Let K be a compact convex set
in a topological vector space X , and let F be a commuting family of continuous
linear mappings carrying K into itself. Then there exists a point p in K such that
T (p) = p for all T in F.
PROOF. For each integer n ≥ 1 and member T of F, let

Tn = 1
n (I + T + T 2 + · · · + T n−1).

Let K be the family of all subsets of X that arise as Tn(K ) for some n ≥ 1 and
some T in F. Each such set is a compact convex subset of K , being the image
of a compact convex set under a continuous linear mapping that carries K into
itself. If {T (i)

ni }ri=1 is a finite subset of F and each ni is ≥ 1, then
T (1)
n1 T

(2)
n2 · · · T (r)

nr (K ) ⊆ T (1)
n1 T

(2)
n2 · · · T (r−1)

nr−1 (K ) ⊆ · · · ⊆ T (1)
n1 (K ).
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By symmetry and commutativity of the operators,

T (1)
n1 T

(2)
n2 · · · T (r)

nr (K ) ⊆⋂r
j=1 T

( j)
nj (K ).

Thus the members of K have the finite-intersection property. By compactness
their intersection is nonempty. Let p be in the intersection. We shall show that
T (p) = p for all T in F.
Arguing by contradiction, suppose that T is given inFwith T (p) = p. Choose

a neighborhood U of 0 in X such that T (p)− p is not in U . The fact that p is in
the intersection of all the sets in K implies that p is in Tn(K ) for n ≥ 1 and thus

p = n−1(I + T + T 2 + · · · + T n−1)(qn)

for some qn in K . Applying T − I to this equality, we obtain

T (p)− p = n−1(T n − I )(qn).

Since the left side is not in U , the right side is not in U . Since T n(qn) and qn are
in K , it follows that 1n (K − K ) is not contained in U for any n. But K − K is a
compact set, being the image under the subtraction mapping of the compact set
K × K , and this conclusion contradicts Lemma 4.7.

Let us return to the example at the end of the previous section. As in that
example, let S be a compact Hausdorff space, and let F be any homeomorphism
of S. Put X = C(S). In the weak-star topology on M(S), the nonnegative regular
Borel measures μ with μ(S) = 1 form a compact convex subset K1 of M(S).
The homeomorphism F acts on M(S) by the formula TF (ρ)(E) = ρ(F−1(E)).
The mapping TF is linear, and it follows from the definitions that TF satisfies
‖TF (ρ)‖M(S) = ‖ρ‖M(S). Thus TF has norm 1 and is continuous. It maps K1
into itself. PuttingF = {TF } and applying Theorem 4.31, we obtain the existence
of a nonzero F invariant measure on S. The discussion in the previous section
went on to observe that the subset K of F invariant measures in K1, which we
now know to be nonempty, is compact convex in a locally convex topological
vector space. Thus K is a set to which we can apply the Krein–Milman Theorem,
and the extreme points turn out to be the ergodic invariant measures.

Theorem 4.32 (Schauder–Tychonoff Theorem). Let K be a compact convex
set in a locally convex topological vector space, and let F be a continuous function
from K into itself. Then there exists p in K with F(p) = p.
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The proof of Theorem 4.32 is long and will be omitted.19 The power in the
result comes from its applicability to nonlinear mappings. In the special case
in which K is the closed unit ball in RN , it reduces to the celebrated Brouwer
Fixed-Point Theorem.
This kind of theorem has applications to economics, where fixed-point theo-

rems prove the existence of equilibrium points for certain systems. The theorem
does not by itself address stability of such an equilibrium point, however.
Byway of illustration, let us return to a comparatively simple situation that was

studied in Chapter IV of Basic. The usual Picard–Lindelöf Existence Theorem20

for the initial-value problem with a system y′ = f (t, y) of ordinary differential
equations assumes continuity of f and also a Lipschitz condition for f in the
y variable. A variant, the Cauchy–Peano Existence Theorem, is the subject of
problems at the end of Chapter IV of Basic. It assumes only continuity for f and
obtains existence of solutions, with uniqueness being lost. The Cauchy–Peano
result is proved using Ascoli’s Theorem and a nonobvious construction.
Ascoli’s Theorem, as we know from Section X.9 of Basic, is intimately con-

nected with compactness. Let us see how to combine Ascoli’s Theorem and the
Schauder–Tychonoff Theorem to obtain a more transparent proof of the Cauchy–
Peano result thanwas suggested in the problems at the end of Chapter IV ofBasic.
To keep the notation simple, we stick with the case of a single equation, rather
than a system. We suppose that f (t, y) is continuous on an open subset D of R2.
Let (t0, y0) be in D, and let R be a closed rectangle in D centered at (t0, y0) and
having the form

R = {(t, y) ∣∣ |t − t0| ≤ a and |y − y0| ≤ b
}
.

Suppose that | f (t, y)| ≤ M on R. Put a′ = min{a, b
M }. The theorem is that

there exists a continuously differentiable solution y(t) to the initial-value problem
y′ = f (t, y), y(t0) = y0, |t − t0| < a′.
For the proof let X be the Banach space C({t ∣∣ |t − t0| ≤ a′}), and let K be the

closure of the set

E =
{
y ∈ X

∣∣∣∣∣ (i) y(t0) = y0,
(ii) y′ is continuous for |t − t0| ≤ a′,
(iii) |y′(t)| ≤ M for |t − t0| ≤ a′

}

in the Banach space X . Condition (iii) makes E an equicontinuous family, and
(i) and (iii) together make E pointwise bounded. Lemma 10.47 of Basic shows
that the closure K is equicontinuous and pointwise bounded. Ascoli’s Theorem

19A proof may be found in Dunford–Schwartz’s Linear Operators, Part I, pp. 453–456 and
467–469.

20Theorem 4.1 of Basic.
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therefore shows that K is compact. Define a function F carrying the space K of
functions to another space of functions by

F(y)(t) = y0 +
∫ t
t0
f (s, y(s)) ds.

For y in E , we have |y(s) − y0| ≤ M |s − t0| ≤ Ma′ ≤ b, and thus (s, y(s))
is in the rectangle R. Hence F(y) satisfies (i), (ii), and (iii) and is in E . So F
carries E to itself. The formula for F makes clear that F extends to a continuous
mapping on K in the supremum-norm topology. Since F(E) ⊆ E , we obtain
F(K ) ⊆ K . The set K is compact convex in a Banach space, which is locally
convex. The Schauder–Tychonoff Theorem applies to F , and the fixed point it
produces is the desired solution.

10. Gelfand Transform for Commutative C∗ Algebras

Alaoglu’s Theorem, obtained in Section 3, leads in several directions in functional
analysis, and we now return to its ramifications for spectral theory. The Stone
Representation Theorem in Section 4 gave a concrete example of what we shall
be investigating, showing that certain subalgebras of the algebra B(S) of all
complex-valued bounded functions on a set S can be realized as the algebra of
all complex-valued continuous functions on a suitable compact Hausdorff space.
The present section is devoted to a generalization due to I.M.Gelfand of this result
to certain algebras besides B(S); a different special case of this generalizationwill
yield in the next section the Spectral Theorem for bounded self-adjoint operators
on a Hilbert space.
Recall from Section 4 that a complex Banach algebra A is a complex as-

sociative algebra having a norm that makes it into a Banach space such that
‖ab‖ ≤ ‖a‖‖b‖ for all a and b in A. We shall not consider A = 0 as a Banach
algebra. Nor shall we have any occasion to consider real Banach algebras. The
inequality concerning the norm under multiplication implies that multiplication
is continuous. If the Banach algebra has an identity, the same inequality implies
that ‖1‖ ≥ 1.
EXAMPLES.

(1) If S is a nonempty set, then the algebra B(S) of all bounded complex-valued
functions on S is a commutative Banach algebra. The function 1 is an identity.
If S has a topology, then the subalgebra C(S) of bounded continuous functions
gives another example of a commutative Banach algebra with identity.

(2) If (S, μ) is a σ -finite measure space, then pointwise multiplication and the
essential-supremum norm make L∞(S, μ) into a commutative Banach algebra
with identity.
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(3) In Euclidean space RN , the Banach space L1(RN ) with Lebesgue mea-
sure becomes a commutative Banach algebra with convolution as multiplication:
( f ∗g)(x) = ∫

RN f (x− y)g(y) dy = ∫
RN f (y)g(x− y) dy. This Banach algebra

does not have an identity. A variant of this Banach algebra may be defined using
functions on RN periodic in each variable with period 2π , the measure being
(2π)−N dx , and convolution being the multiplication. Still another variant uses
functions onZN integrable with respect to the counting measure, and convolution
is again the multiplication.

4) If H is a complex Hilbert space, then the algebra B(H, H) of all bounded
linear operators from H to itself is a Banach algebra with identity when the norm
is the operator norm and the multiplication is composition of operators.

The example of L1 is so important that one does not want automatically to
impose a condition on a Banach algebra that it contain an identity. Nevertheless,
it is always possible to adjoin an identity to a Banach algebra if one wants, as the
following proposition shows.

Proposition 4.33. Let A be a complex Banach algebra, and let

B = {(a, λ) | a is in A and λ is in C} = A⊕ C

as a vector space. Define

(a, λ)(b, μ) = (ab + λb + μa, λμ)

‖(a, λ)‖ = ‖a‖ + |λ|.and

Then B is a complex Banach algebra with identity (0, 1), and the map a �→ (a, 0)
is a norm-preserving algebra homomorphism of A onto a closed ideal in B.
REMARKS. The formula for the multiplication is motivated by expansion of

the product (a + λ)(b + μ), and the formula for the norm is motivated by the
norm of the element f dx + δ0 in M(RN ), where δ0 is a point mass of weight 1
at the origin. We omit the proof of the proposition, since we shall not pursue L1

very far from this point of view.

To proceed further, let us go back to our examples and see what can be said
about them. For B(S) in Example 1, the Stone Representation Theorem realized
certain subalgebras as C(X) for some compact Hausdorff space X . The space X
is the space of all nonzero continuous multiplicative linear functionals respecting
complex conjugation, regarded as a closed subset of the set of all continuous linear
functionals of norm ≤ 1 with the weak-star topology. Evaluations at points of S
provide examples of members of X , and X is just the closure of those evaluations.
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To what extent might multiplicative linear functionals help us understand
the other examples? For L∞ in Example 2, the notion of multiplicative linear
functional is meaningful, but it is not clear that any nonzero ones exist. At points
of the measure space of positive measure, evaluations are well defined and yield
multiplicative linear functionals. But if every one-point set of the measure space
has measure 0, then it is not clear how to proceed.
For L1 in Example 3, the answer is more decisive. The most general con-

tinuous linear functional is integration with an L∞ function, and the nonzero
continuous multiplicative linear functionals are the ones where the L∞ function
is an exponential x �→ eix ·y for some y in RN . Let us sketch the argument. If a
multiplicative linear functional � is given by the nonzero L∞ function ϕ, then the
condition �( f ∗ g) = �( f )�(g) translates into the condition∫

RN×RN
f (x)g(y)ϕ(x + y) dx dy =

∫
RN×RN

f (x)g(y)ϕ(x)ϕ(y) dx dy.

Since f and g are arbitrary, ϕ(x + y) = ϕ(x)ϕ(y) a.e. [dx dy]. Letting p be in
Ccom(RN ) and integrating this equation with p(y) gives∫

RN
p(y)ϕ(x + y) dy = ϕ(x)

∫
RN

p(y)ϕ(y) dy a.e. [dx].

The left side, upon the change of variables y �→ −y, is the convolution of a
function in Ccom(RN ) and a function in L∞(RN ). It is therefore continuous
as a function of x . On the right side some p has

∫
RN p(y)ϕ(y) dy = 0 since

ϕ is not the 0 function almost everywhere. Fixing such a p and dividing by∫
RN p(y)ϕ(y) dy, we see that ϕ(x) is almost everywhere equal to a certain
continuous function. We may therefore adjust ϕ on a set of measure 0 to be
continuous. Once adjusted, ϕ satisfies ϕ(x + y) = ϕ(x)ϕ(y) everywhere. It is
then a simple matter to see that ϕ is an exponential, as asserted.
Example 4 is something like Example 2. Suppose that A is a bounded self-

adjoint operator on the Hilbert space H . We can form the smallest subalgebra
of B(H, H) containing A and the identity, and we can look for multiplicative
linear functionals. Theorem 2.3 addresses a situation in which we can identify
such functionals. If A is compact, then the theorem gives an orthonormal basis
of eigenvectors, and every member of this algebra acts as a scalar on each eigen-
vector. So each eigenvector yields, via the corresponding set of eigenvalues, a
multiplicative linear functional. If A is not compact, however, eigenvectors need
not exist, and then it is unclear where to look to find nonzero multiplicative linear
functionals.
A series of theoretical insights now comes into play. An associative algebra

with identity need not have nonzeromultiplicative linear functionals, but it always
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has maximal ideals. These come from Zorn’s Lemma, the proper ideals being
those ideals not containing the identity. Accordingly, we shall think in terms of
maximal ideals. These turn out to be closed, because as we shall see, there is a
neighborhood of the identity where every element is invertible with an inverse
given by the sum of a geometric series. The quotient of a commutative complex
Banach algebra with identity by a (closed) maximal ideal is then a complex
Banach algebra in which every nonzero element is invertible. The remarkable
fact is that such a quotient necessarily is 1-dimensional. Then it follows that
the maximal ideals all correspond to continuous multiplicative linear functionals
after all, and their existence has been established. Let us run through the steps.
Let A be a Banach algebra with identity, at first not necessarily commutative.

If a is inA, then a right inverse to a is an element b with ab = 1. If a has a right
inverse b and if a has a left inverse c, then the two are equal as a consequence
of the associativity of multiplication: c = c1 = c(ab) = (ca)b = 1b = b. So
a has a two-sided inverse, which we call simply an inverse, and we say that a is
invertible.

Proposition 4.34. Let A be a Banach algebra with identity. If ‖a‖ < 1, then
1− a is invertible and ‖(1− a)−1‖ ≤ (1− ‖a‖)−1.
PROOF. Form

∑∞
n=0 a

n . This series is Cauchy since ‖an‖ ≤ ‖a‖n implies∥∥∑N
n=M a

n
∥∥ ≤∑N

n=M ‖a‖n ≤ ‖a‖M(1−‖a‖)−1. SinceA is complete, the series∑∞
n=0 a

n is convergent. Let b be its sum. Then we have (1 − a)
(∑N

n=0 a
n
) =(∑N

n=0 a
n
)
(1 − a) = 1 − aN+1, and hence (1 − a)b = b(1 − a) = 1. Also,

‖b‖ ≤∑∞
n=0 ‖a‖n = (1− ‖a‖)−1.

Corollary 4.35. In a Banach algebra with identity, the invertible elements
form an open set. More particularly if ‖a‖ is invertible and ‖x − a‖ < ‖a−1‖−1,
then x is invertible.

PROOF. LetU be the set of invertible elements, and let a be inU . If ‖x−a‖ <
‖a−1‖−1, then

‖a−1x − 1‖ = ‖a−1(x − a)‖ ≤ ‖a−1‖‖x − a‖ < 1,

and Proposition 4.34 shows that 1 − (1 − a−1x) = a−1x is invertible. Hence x
is invertible.

Proposition 4.36. IfA is a Banach algebra with identity andU is the open set
of invertible elements, then inversion is a continuous map of U into itself.
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PROOF. Let a be in U , and let ‖x − a‖ < ‖a−1‖−1, so that x is in U by
Corollary 4.35. Then

‖x−1 − a−1‖ = ‖x−1(x − a)a−1‖ ≤ ‖a−1‖‖x−1‖‖x − a‖,

and continuity will follow if we show that ‖x−1‖ ≤ M < ∞ for x near a.
Computation and Proposition 4.34 give

‖x−1‖ = ‖(a − (a − x))−1‖ = ‖a−1(1− (1− xa−1))−1‖ ≤ ‖a−1‖
1− ‖1− xa−1‖ ,

and the desired boundedness follows from continuity of multiplication.

Let A be a complex Banach algebra with identity. If a is in A, the spectrum
of a is the set

σ(a) = {λ ∈ C | a − λ is not invertible}.
It will be proved in Corollary 4.39 below that σ(a) is always nonempty. The
resolvent set P(a) of a is the complement of σ(a) in C. The resolvent of a is
the function

R(λ) = (a − λ)−1 from P(a) into A.

The spectral radius of a, denoted by r(a), is

r(a) = sup {|λ| ∣∣ λ is in σ(a)}.
Proposition 4.37. For a in a complex Banach algebra A with identity, σ(a)

is compact and r(a) is ≤ ‖a‖.
PROOF. The function λ �→ a − λ is continuous, and the set U of invertible

elements is open, the latter by Corollary 4.35. Thus P(a) = {λ | a − λ is in U }
is open. Hence the complement σ(a) is closed. Fix λ with λ > ‖a‖. Then
‖λ−1a‖ < 1, and therefore λ−1a − 1 is in U . Since λ = 0, a − λ is in U .
Thus λ is in P(a). It follows that σ(a) is contained in

{
λ
∣∣ |λ| ≤ ‖a‖} and that

r(a) ≤ ‖a‖. Since σ(a) is then bounded, as well as closed, σ(a) is compact.

We say that a function ϕ from an open subset V ofC into the complex Banach
algebraA is weakly analytic on V if � ◦ ϕ is an analytic function on V for every
� in the dual space A∗.

Theorem 4.38. If A is a complex Banach algebra with identity and if a is in
A, then R(λ) = (a−λ)−1 is weakly analytic on P(a)with limλ→∞ ‖R(λ)‖ = 0.
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PROOF. Let λ0 be in P(a), and let � be in A∗. Writing

a − λ = (a − λ0)
(
1− (a − λ0)

−1(λ− λ0)
)

and applying Proposition 4.34, we see that a − λ is invertible if the condition
‖(a − λ0)

−1(λ− λ0)‖ < 1 is satisfied. In this case,

(a − λ)−1 = (a − λ0)
−1∑∞

n=0 (a − λ0)
−n(λ− λ0)

n,

and the continuity of � yields

�
(
(a − λ)−1

) = ∞∑
n=0

�
(
(a − λ0)

−n−1)(λ− λ0)
n,

with the series convergent. Therefore R(λ) is weakly analytic.
To establish that limλ→∞ ‖(a − λ)−1‖ = 0, we write

(a − λ)−1 = (λ(λ−1a − 1))−1 = λ−1(λ−1a − 1)−1.

Proposition 4.34 gives

‖(λ−1a − 1)−1‖ ≤ (1− |λ|−1‖a‖)−1,

and the right side tends to 1 asλ tends to infinity. Hence limλ→∞ ‖(a−λ)−1‖ = 0.

Corollary 4.39. If A is a complex Banach algebra with identity, then σ(a) is
nonempty for each a in A.
PROOF. If σ(a) were to be empty, then every � in A∗ would have λ �→

�((a − λ)−1) entire and vanishing at infinity, by Theorem 4.38. By Liouville’s
Theorem, we would have �((a−λ)−1) = 0 for every a and λ. Since � is arbitrary,
the Hahn–Banach Theorem would give (a − λ)−1 = 0, contradiction.

Corollary 4.40 (Gelfand–MazurTheorem). The only complexBanach algebra
with identity in which every nonzero element is invertible is C itself.

PROOF. Suppose thatA is a complex Banach algebra with identity with every
nonzero element invertible. If a is given in A, σ(a) is not empty, according to
Corollary 4.39. Choose λ in σ(a). Then a − λ is not invertible. Since every
nonzero element of A is by assumption invertible, a − λ = 0. Hence a = λ.
Thus A consists of the scalar multiples of the identity.
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Corollary 4.41. If A is a commutative complex Banach algebra with iden-
tity, then the nonzero multiplicative linear functionals on A stand in one-one
correspondence with the maximal ideals of A, the correspondence being

� =
{
multiplicative
linear functional

}
−→ ker � = maximal ideal

with inverse

I =
{maximal ideal,
necessarily with
A = I ⊕ C1

}
−→ � defined by �(x, λ) = λ.

Every nonzero multiplicative linear functional is continuous with norm ≤ 1, and
every maximal ideal is closed. Every nonzero multiplicative linear functional
carries 1 into 1.

REMARKS. The proof will make use of Problem 4 in Chapter XII of Basic:
if X is a Banach space and Y is a closed subspace, then the vector space X/Y
becomes a normed linear space under the definition ‖x + Y‖ = infy∈Y ‖x + y‖,
and the resulting metric on X/Y is complete. Problem 1 at the end of the present
chapter points out that the Banach space X/Y obtained this way has the same
topology as the quotient topological vector space X/Y defined in Section 1.

PROOF. We may assume A = 0. If � is a nonzero multiplicative linear
functional, then its kernel is an ideal of codimension 1, hence is a maximal ideal.
Conversely if I is a maximal ideal, then no element of I can be invertible. Since
the set U of invertible elements is open, according to Corollary 4.35, the set I
is at positive distance from 1. Thus the closure I cl, which is an ideal, does not
contain 1. Since I is maximal, I cl = I . Thus I is closed. By the above remarks,
A/I is a complex Banach space. Its multiplication makes it into a complex
Banach algebra because if we take the infimum over y1 ∈ I and y2 ∈ I of the
right side of the inequality

‖a1a2 + I‖ ≤ ‖a1a2 + (y1a2 + a1y2 + y1y2)‖
= ‖(a1 + y1)(a2 + y2)‖
≤ ‖a1 + y1‖‖a2 + y2‖,

we obtain ‖a1a2+ I‖ ≤ ‖a1+ I‖‖a2+ I‖. The quotientA/I is also a field, being
the quotient of a nonzero commutative ring with identity by a maximal ideal. By
Corollary 4.40,A/I ∼= C. Hence I has codimension 1, andA = I⊕C1 as vector
spaces. If we define a linear functional � by �(x, λ) = λ, then we readily check
that � is multiplicative and has kernel I . To see that � is continuous, one way to
proceed is to use the Hahn–Banach Theorem: Since I is closed and 1 is not in I ,
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there exists a continuous linear functional �′ with �′(1) = 0 and �′(I ) = 0. Then
� = �′(1)−1�(1)�′, and therefore � is continuous.
This establishes the correspondence. To check that it is one-one, it is enough

to see that any nonzero multiplicative linear functional carries 1 into 1. If � is
a nonzero multiplicative linear functional, then �(a) = �(a)�(1) = �(a)�(1). If
we choose a with �(a) = 0, then we can divide and conclude that �(1) = 1.
Finally we check the norm of the nonzero multiplicative linear functional �.

If a in A has ‖a‖ ≤ 1, then |�(a)|n = |�(an)| ≤ ‖�‖‖an‖ ≤ ‖�‖‖a‖n ≤ ‖�‖.
Since n ≥ 1 is arbitrary, we must have |�(a)| ≤ 1. Taking the supremum over a,
we obtain ‖�‖ ≤ 1.

If A is a commutative complex Banach algebra with identity, we denote its
space of maximal ideals by A∗m. For A = 0, this space is nonempty by an
application of Zorn’s Lemma to the set of all proper ideals of A. Using the
identification via Corollary 4.41 ofA∗m as a set of linear functionals of norm≤ 1,
we can regard A∗m as a subset of the unit ball of the dual A∗. We give A∗m the
relative topology from the weak-star topology on A∗.

Proposition 4.42. If A is a commutative complex Banach algebra with
identity, then the weak-star topology makes the maximal ideal space A∗m into
a compact Hausdorff space.

PROOF. Corollary 4.41 identifiesA∗m with a subset of the unit ball ofA∗, which
is compact in the weak-star topology by Alaoglu’s Theorem (Theorem 4.14) and
is also Hausdorff. All we have to do is show thatA∗m is a closed subset. For each
a and b in A, the set {� ∈ A∗ | �(ab) = �(a)�(b)} is closed since the functions
� �→ �(ab) and � �→ �(a)�(b) are continuous from the weak-star topology into
C. Hence the intersection over all a and b is closed. The setA∗m is the intersection
of this set with the closed set {� ∈ A∗ | �(1) = 1} and is therefore closed.

For L1 or any other complex Banach algebraA not containing an identity, the
prescription for applying the above theory to A is to adjoin an identity and form
A⊕C, apply the results toA⊕C, and then see what happens when the identity
is removed. For Proposition 4.42, A is one of the maximal ideals in A ⊕ C.
Removing it from (A ⊕ C)∗m yields a locally compact Hausdorff space whose
one-point compactification is (A⊕ C)∗m.
It is now just a formality to obtain a mapping of any commutative com-

plex Banach algebra A with identity into C(A∗m). The Gelfand transform
a �→ â is the mapping of A into C(A∗m) given by â(�) = �(a) for each nonzero
multiplicative linear functional � on A.
In the context of a suitable subalgebra of B(S), the Gelfand transform is just

the evaluation of all nonzero multiplicative linear functionals on the members of
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the subalgebra. Such linear functionals turn out automatically to respect complex
conjugation.21 The evaluations at the points of S are a dense subset of these.
The Stone Representation Theorem says that the Gelfand transform is a norm-
preserving algebra isomorphism.
In the context of L1(RN ), the Gelfand transform is just the Fourier trans-

form. The nonzero multiplicative linear functionals are the functions �y( f ) =∫
RN f (x)e−2π i x ·y dx for y ∈ RN , i.e., �y( f ) = f̂ (y). The Gelfand transform is
the mapping of f to the resulting function of �y or of y. It is therefore exactly
the Fourier transform f �→ f̂ if we parametrize L1(RN )∗m by the variable y.
The Gelfand transform makes sense for our other two examples as well, for

L∞ and for the complex Banach algebra generated by the identity and a single
self-adjoint bounded linear operator on a Hilbert space. But we do not so far
get much insight into what the Gelfand transform does for these cases. We can
summarize all the formalism as follows.

Proposition4.43. IfA is a commutative complexBanach algebrawith identity,
then the Gelfand transform is an algebra homomorphism of norm ≤ 1 of A into
C(A∗m) carrying 1 to 1, and its kernel is the intersection of all maximal ideals of
A. Moreover, for each a and b in A,

(a) σ(a) is the image of the function â in C,
(b) r(a) = ‖̂a‖sup,
(c) r(a + b) ≤ r(a)+ r(b) and r(ab) ≤ r(a)r(b).

PROOF. The Gelfand transform is an algebra homomorphism because

âb (�) = �(ab) = �(a)�(b) = â(�)̂b(�)

for all � inA∗m. Corollary 4.41 shows that each� inA∗m has norm≤ 1, and therefore
|̂a(�)| = |�(a)| ≤ ‖a‖. Hence ‖̂a‖sup ≤ ‖a‖, and theGelfand transformhas norm
≤ 1. Corollary 4.41 shows that every nonzero multiplicative linear functional
carries 1 into 1, and therefore the Gelfand transform carries 1 into 1.
The kernel of the Gelfand transform is the set of all a in A with â(�) = 0 for

all �, thus the set of all a with �(a) = 0 for all �, thus the intersection of the
kernels of all �’s.
For (a), we observe that a is invertible if and only if aA = A, if and only if a is

not in any maximal ideal, if and only if â is nowhere vanishing. Thus a complex
number λ is in σ(a) if and only if a − λ is not invertible, if and only if â − λ is
somewhere vanishing, if and only if λ is in the image of â. This proves (a).

21The verification for an algebra as in Theorem 4.15 that the nonzero multiplicative linear
functionals automatically respect complex conjugation is embedded in the proof of Theorem 4.48
below. See the paragraph of the proof containing the display (†) and the two paragraphs that follow
it.
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Conclusion (b) is immediate from (a) and the definition of r(a), and (c) follows
from (b) and the inequalities satisfied by the supremum norm. This completes
the proof.

Proposition 4.43 isolates the real problem, which is to say something quanti-
tative about the intersection of the kernels of all maximal ideals, about σ(a), and
about r(a). For our purposes it will be enough to have the spectral radius formula
that is proved in Corollary 4.46 below.

Theorem4.44 (SpectralMappingTheorem). IfA is a complexBanach algebra
with identity, if a is in A, and if Q is any polynomial in one variable, then
Q(σ (a)) = σ(Q(a)).

REMARKS. The left side Q(σ (a)) is understood to be the image under Q of the
set σ(a), while the right side σ(Q(a)) is the spectrum of Q(a), i.e., the spectrum
of the member of A obtained by substituting a for the variable in Q.

PROOF. First we show that Q(σ (a)) ⊆ σ(Q(a)). Let λ0 be in σ(a), so that
a − λ0 is not invertible. Arguing by contradiction, suppose that Q(a) − Q(λ0)

is invertible, say with b as two-sided inverse. Let S be the polynomial
defined by Q(λ) − Q(λ0) = (λ − λ0)S(λ). Since b is a two-sided inverse of
Q(a)− Q(λ0) = (a − λ0)S(a), we have 1 = b(a − λ0)S(a) = (bS(a))(a − λ0)

and 1 = (a−λ0)(S(a)b). Thus a−λ0 has a left inverse bS(a) and a right inverse
S(a)b, and a − λ0 must be invertible, contradiction.
For the reverse inclusion σ(Q(a)) ⊆ Q(σ (a)), suppose that λ0 is in σ(Q(a)).

Let λ1, . . . , λn be the roots of Q(λ)−λ0 repeated according to their multiplicities.
Then we have Q(λ)− λ0 = c(λ− λ1) · · · (λ− λn) for some nonzero constant c.
Substitution of a for λ gives

Q(a)− λ0 = c(a − λ1) · · · (a − λn).

Since Q(a) − λ0 is by assumption not invertible, some a − λj is not invertible.
For this j , λj is in σ(a). Since λj is a root of Q(λ)−λ0, we have Q(λj )−λ0 = 0,
i.e., Q(λj ) = λ0. Hence λ0 is exhibited as Q of the member λj of σ(a).

Corollary 4.45. If A is a complex Banach algebra with identity and if a is in
A, then r(an) = r(a)n for every integer n ≥ 1.
PROOF. This follows by taking Q(λ) = λn in Theorem 4.44 and then using

the definition of the function r .

Corollary 4.46 (spectral radius formula). If A is a complex Banach algebra
with identity and if a is in A, then

r(a) = lim
n→∞‖a

n‖1/n,
the limit existing.
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PROOF. For every n, Corollary 4.45 and Proposition 4.37 give r(a)n = r(an) ≤
‖an‖ and thus r(a) ≤ ‖an‖1/n . Hence

r(a) ≤ lim inf
n

‖an‖1/n. (∗)

If |λ| < ‖a‖−1 and � is in the dual space A∗, then Proposition 4.34 yields

(1−λa)−1 =∑∞
n=0 a

nλn and therefore �((1−λa)−1) =∑∞
n=0 �(a

n)λn.

Theorem 4.38 shows that λ �→ �((1 − λa)−1) is analytic for λ−1 in P(a), and
Proposition 4.37 shows that this analyticity occurs for |λ|−1 > r(a), hence for
|λ| < r(a)−1. Therefore the power series

∑∞
n=0 �(a

n)λn is convergent for |λ| <
r(a)−1. Since the terms of a convergent series are bounded, each fixed λ within
the disk of convergence must have |�(an)||λn| ≤ M� for some constant M�. That
is,

|�(λnan)| ≤ M� (∗∗)
for all n. Each linear functional on A∗ given by � �→ �(λnan) is bounded, and
therefore the systemof such linear functionals asn varies, whichhas been shown in
(∗∗) to be pointwise bounded, satisfies‖λnan‖ ≤ M by theUniformBoundedness
Theorem. Consequently |λ|‖an‖1/n ≤ M1/n . Taking the limsup of both sides
gives |λ| lim supn ‖an‖1/n ≤ 1, and hence lim supn ‖an‖1/n ≤ |λ|−1. Since λ is an
arbitrary complex number with |λ|−1 > r(a), we obtain lim supn ‖an‖1/n ≤ r(a).
In combination with (∗), this inequality completes the proof.

The spectral radius formula gives us the following quantitative conclusion
about the Gelfand transform.

Corollary 4.47. The Gelfand transform for a commutative complex Banach
algebra A with identity is norm preserving from A to C(A∗m) if and only if
‖a2‖ = ‖a‖2 for all a in A.
PROOF. If ‖a2‖ = ‖a‖2 for all a, then induction gives ‖a2n‖ = ‖a‖2n and

thus ‖a‖ = ‖a2n‖2−n . Hence ‖a‖ = limn ‖a2n‖2−n . This limit equals r(a) by the
spectral radius formula (Corollary 4.46), and r(a) equals ‖̂a‖sup by Proposition
4.43b. Therefore ‖a‖ = ‖̂a‖sup.
Conversely if ‖̂a‖sup = ‖a‖ for all a, then r(a) = ‖a‖ by Proposition 4.43b,

and ‖a2‖ = r(a2) = r(a)2 = ‖a‖2 by Corollary 4.45.

This represents some progress. The condition ‖a2‖ = ‖a‖2 is satisfied in L∞,
and hence the Gelfand transform is a norm-preserving algebra homomorphism of
L∞ into C(A∗m). In L1 after an identity is adjoined, the condition ‖a2‖ = ‖a‖2
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is not universally satisfied, and the corollary says that the Gelfand transform, i.e.,
the Fourier transform, is not norm preserving; this conclusion has content, but
it is not a surprise. In the case of the complex Banach algebra generated by the
identity and a bounded self-adjoint operator A, the condition ‖a2‖ = ‖a‖2 is
satisfied for a = A as a consequence of Proposition 2.2 with L = A∗A, but it is
less transparent what happens with other operators in the Banach algebra that are
not self adjoint.
The final step is to bring the operation ( · )∗ into play. An involution of a

complex Banach algebra A is a map a �→ a∗ of A into itself with the properties
that the following hold for all a and b in A:

(i) a∗∗ = a,
(ii) (a + b)∗ = a∗ + b∗,
(iii) (λa)∗ = λ̄a∗ for all λ in C,
(iv) (ab)∗ = b∗a∗.

A complex Banach algebra A with involution ( · )∗ is called a C∗ algebra if
(v) ‖a∗a‖ = ‖a‖2 for all a in A.

Our examples—B(S) and certain subalgebras, L∞, L1, and B(H, H) are all
complex Banach algebras with involution. For B(S) and L∞, the involution is
complex conjugation. For L1, it is f �→ g with g(x) = f (−x), and for B(H, H)

it is adjoint. Of these examples all but L1 are C∗ algebras.
Observe that (i) and (iv) imply that the element 1, if it is present, has to satisfy

1∗ = 1 because 1 = (1∗)∗ = (11∗)∗ = 1∗∗1∗ = 11∗ = 1∗. If (v) holds also, then
(v) with a = 1 shows that ‖1‖ = 1.

Theorem 4.48. If A is a commutative C∗ algebra with identity, then the
Gelfand transform is a norm-preserving algebra isomorphism ofA onto C(A∗m),
and it carries ( · )∗ into complex conjugation.
PROOF. For any a in A, (v) gives ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖. If a = 0, then

a∗ = 0; otherwise division by ‖a‖ gives ‖a‖ ≤ ‖a∗‖. Applying this inequality
to a∗ and using (i), we obtain

‖a∗‖ = ‖a‖. (∗)

Next suppose that b is an element of A with b∗ = b. Raising to powers gives
(b2

n
)∗ = (b2

n
)∗ for n ≥ 0. Then (v) gives ‖b2n‖ = ‖(b2n−1)∗b2n−1‖ = ‖b2n−1‖2,

and induction shows that ‖b2n‖ = ‖b‖2n . Hence ‖b‖ = ‖b2n‖2−n . Taking the
limit and applying the spectral radius formula and Proposition 4.43b, we obtain

‖b‖ = lim
n
‖b2n‖2−n = r(b) = ‖b̂‖sup. (∗∗)
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The Gelfand transform is an algebra homomorphism by Proposition 4.43. If a
general a is given inA, then we can apply (∗) to a and (∗∗) to b = a∗a to obtain

‖a∗‖‖a‖ = ‖a‖2 = ‖a∗a‖ = ‖b‖ = ‖b̂‖sup = ‖â∗a‖sup
= ‖â∗ â‖sup ≤ ‖â∗‖sup‖̂a‖sup ≤ ‖a∗‖‖a‖,

the last inequality holding since the Gelfand transform has norm≤ 1 according to
Proposition 4.43. The end expressions are equal, and equality must hold through-
out. Therefore ‖̂a‖sup = ‖a‖, and the Gelfand transform is norm preserving.
Inworking toward proving that theGelfand transformcarries ( · )∗ into complex

conjugation, we first show that

b∗ = b implies i is not in σ(b). (†)

Assuming the contrary, we find that 1 is in σ(−ib). By the Spectral Mapping
Theorem (Theorem 4.44), λ+ 1 is in σ(λ− ib) for all real λ. Hence

(λ+ 1)2 ≤ (r(λ− ib))2 ≤ ‖λ− ib‖2 = ‖(λ− ib)∗(λ− ib)‖
= ‖(λ+ ib)(λ− ib)‖ = ‖λ2 + b2‖ ≤ λ2‖1‖ + ‖b2‖ = λ2 + ‖b2‖,

and 2λ+ 1 ≤ ‖b‖2 for all real λ. This is a contradiction, and (†) is proved.
Next let us deduce from (†) that

b∗ = b implies σ(b) ⊆ R. (††)

Suppose that λ = α + iβ has α and β real and β = 0. Then β−1(b − λ) =
β−1(b− α)− i . The element β−1(b− λ) has (β−1(b− α))∗ = β−1(b− α), and
(†) shows that i is not in its spectrum. Therefore β−1(b − λ) = β−1(b − α)− i
is invertible. Since β = 0, b − λ is invertible. Therefore λ is not in σ(b). This
proves (††).
Now we shall show that the Gelfand transform carries ( · )∗ into complex

conjugation. Let a be inA, and write a = 1
2 (a+a∗)+ 1

2i ((ia)+ (ia)∗) = b+ ic
with b∗ = b and c∗ = c. Then a∗ = b− ic. From (††) we know that b̂ and ĉ are
real-valued. Therefore â∗(�) = b̂(�)− i ĉ(�) = b̂(�)+ i ĉ(�) = â(�), as asserted.
Since the Gelfand transform is norm preserving, respects products, and car-

ries 1 into 1, its image is a uniformly closed subalgebra of C(A∗m). The fact
that ( · )∗ is carried into complex conjugation implies that the image is closed
under complex conjugation. The image separates points of A by definition of
equality of linear functionals. By the Stone–Weierstrass Theorem the image is
all of C(A∗m). This completes the proof.
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Among our examples, if A is a conjugate-closed Banach subalgebra of B(S)
with identity, then Theorem 4.48 reproduces the Stone Representation Theorem
(Theorem 4.15).
Second if A is L∞, Theorem 4.48 gives us something new, identifying L∞

with C((L∞)∗m). We do not get a total understanding of (L
∞)∗m, but we do get

some understanding from the fact that every ideal is contained in a maximal ideal.
We can produce an ideal in L∞ merely by specifying a measurable subset; the
ideal consists of all essentially bounded functions, modulo null functions, that
vanish on that set. As the set gets smaller, we get closer to the situation of a
maximal ideal.
Third if A is L1, Theorem 4.48 gives us no information since L1 is not a C∗

algebra. The theory of complex Banach algebras can be pursued in a direction
that specializes to more information about L1, but we shall not follow such a
route.
Fourth if A is the complex Banach algebra generated by the identity and a

bounded self-adjoint operator A on a Hilbert space H , then Theorem 4.48 is
applicable and realizes the algebra as C(A∗m). We shall see in the next section
thatA∗m can be viewed as the spectrum σ(A). However, the Hilbert space H plays
no role in this realization, and we therefore cannot expect to learn much about our
original operator from C(A∗m). For example we cannot distinguish between the
two operators onC3 given by diagonal matrices diag(1, 1, 2) and diag(1, 2, 2) on
the basis of the spectrum of each. The goal of the next section is to remedy this
defect.
Since we shall want to consider operators in B(H, H) as belonging to more

than one C∗ algebra, let us take another look at the definition of the spectrum of
an element. The spectrum of a, as a member of A, is the set of complex λ for
which (a − λ)−1 fails to exist as a member of A. Certainly if we have A1 ⊆ A2

and a is in A1, then the failure of (a − λ)−1 to exist in A2 implies the failure of
(a−λ)−1 to exist inA1. Hence the spectrum relative toA1 contains the spectrum
relative to A2. The spectrum is the smallest for A = B(H, H). The following
corollary implies that for operators A with AA∗ = A∗A, the smallest possible
spectrum is already achieved for the C∗ algebra generated by 1, A, and A∗.

Corollary 4.49. If A is a C∗ algebra with identity and if a is an invertible
element of A such that aa∗ = a∗a, then a is invertible already in the smallest
closed subalgebra A0 of A containing 1, a, and a∗.

PROOF. Since a−1a∗ = a−1(a∗a)a−1 = a−1(aa∗)a−1 = a∗a−1, the smallest
closed subalgebra A1 of A containing 1, a, a∗, a−1, and a−1∗ is commutative,
hence is a commutative C∗ algebra with identity. Form the Gelfand transform
b �→ b̂ for A1. Then â and â−1 are reciprocals, and the image of â is therefore
bounded away from 0. By the Stone–Weierstrass Theoremwe can find a sequence



160 IV. Topics in Functional Analysis

{pn(z, z̄)} of polynomial functions that converge uniformly on the compact image
of â to 1/z. Since by Theorem 4.48, the Gelfand transform is isometric for A1,
we have a−1 = lim pn(a, a∗) in A1, and a−1 is therefore exhibited as a member
of A0.

11. Spectral Theorem for Bounded Self-Adjoint Operators

The goal of this section is to expand upon Theorem 4.48 in the case of a commu-
tativeC∗ algebra of bounded linear operators on a Hilbert space in such a way that
the Hilbert space plays a decisive role. The result will be the Spectral Theorem,
and we shall see how the Spectral Theorem enables one to compute with the
operators in question. The theorem to be given here is limited to the case of a
separable Hilbert space, and the assumption of separability will be included in
all our results about general spaces B(H, H). The Spectral Theorem will enable
us to view the operators in question as multiplications by L∞ functions on an L2
space, and we therefore begin with that example.

EXAMPLE. Let (S, μ) be a finite measure space, and let H be the Hilbert space
H = L2(S, μ). For f in L∞(X, μ), define Mf : L2 → L2 by Mf (g) = f g.
The computation

‖Mf (g)‖22 =
∫
X
| f g|2 dμ ≤ ‖ f ‖2∞

∫
X
|g|2 dμ = ‖ f ‖2∞‖g‖22

shows that Mf is a bounded operator on H with ‖Mf ‖ ≤ ‖ f ‖∞. Shortly we
shall check that equality holds:

‖Mf ‖ = ‖ f ‖∞. (∗)
But first, let us observe that

Mfg = Mf Mg, Mα f+βg = αMf + βMg, M∗
f = M f̄ , M1 = I.

These facts, in combination with (∗), say that f �→ Mf is a norm-preserving
C∗ algebra isomorphism of the commutative C∗ algebra L∞(S, μ) onto the
subalgebra

M(L2(S, μ)) = {Mf ∈ B(L2(S, μ), L2(S, μ)) | f ∈ L∞(S, μ)}
of the C∗ algebra B(L2(S, μ), L2(S, μ)). The algebra M(L2(S, μ)) is called
themultiplication algebra on L2(S, μ). Returning to the verification of (∗), let
ε > 0 be given with ε ≤ ‖ f ‖∞, and let

E = {x ∣∣ | f (x)| ≥ ‖ f ‖∞ − ε
}
.
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Then 0 < μ(E) <∞, and we take g to be the function that is 1 on E and is 0 on
Ec. Then ‖g‖2 = μ(E)1/2, and

‖ f g‖22 =
∫
X
| f g|2 dμ =

∫
E
| f |2 dμ ≥ (‖ f ‖∞ − ε)2μ(E).

Therefore

(‖ f ‖∞ − ε)μ(E)1/2 ≤ ‖Mf g‖2 ≤ ‖Mf ‖‖g‖2 = ‖Mf ‖μ(E)1/2,

and ‖ f ‖∞ − ε ≤ ‖Mf ‖. Since we already know that ‖Mf ‖ ≤ ‖ f ‖∞ and since
ε is arbitrary, we conclude that (∗) holds.

Now let us consider an arbitrary bounded self-adjoint linear operator on a
separable Hilbert space. We mentioned at the end of Section 10 the two operators
onC3 given by diagonal matrices diag(1, 1, 2) and diag(1, 2, 2). TheC∗ algebras
generated by these operators are isomorphic 2-dimensional algebras, and hence
there is no way to superimpose on the setting of Theorem 4.48 the action of the
operators on the Hilbert space C3 if we consider these operators by themselves.
The operators do get distinguished, however, if we enlarge the C∗ algebra under
consideration, working instead with the 3-dimensional commutative C∗ algebra
of all diagonal matrices. In the general situation, as long as we are going to
enlarge the algebra of operators under consideration, we may as well enlarge it
as much as possible while keeping it commutative.
If H is a Hilbert space, a maximal abelian self-adjoint subalgebra in

B(H, H) is a commutative C∗ subalgebra of B(H, H) that is not contained in
any larger commutative subalgebra of B(H, H) that is closed under ( · )∗. In the
example with H = C3 in the previous paragraph, the 3-dimensional algebra of
diagonal matrices is a maximal abelian self-adjoint subalgebra.
For general H , we shall obtain a simple criterion for a subalgebra to bemaximal

abelian self-adjoint, we shall show that the multiplication algebra for an L2 space
with respect to a finite measure meets this criterion, and then we shall see that
maximal abelian self-adjoint subalgebras have a special property that will allow
us to incorporate the Hilbert space into an application of Theorem 4.48.
If T is a subset of B(H, H), let

T ′ = {A ∈ B(H, H) | AB = BA for all B ∈ T }.

The set T ′ is a subalgebra of B(H, H) containing the identity and called the
commuting algebra of T. It has the following properties:

(i) T ′ is closed in the operator-norm topology,
(ii) T ′ ⊇ T if and only if T is commutative,
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(iii) if T is stable under ( · )∗, then T ′ is stable under ( · )∗ and hence is a C∗
subalgebra of B(H, H),

(iv) a subalgebra A of B(H, H) stable under ( · )∗ is a maximal abelian self-
adjoint subalgebra of B(H, H) if and only if A′ = A.

All of these properties are verified by inspection except possibly the assertion in
(iv) thatAmaximal implies thatA′ does not strictly containA. For this assertion
letA bemaximal, and suppose that B lies inA′ but notA. SinceA is stable under
( · )∗, B∗ lies in A′, and so does B + B∗. Then B + B∗ and A together generate
a C∗ subalgebra that is commutative and strictly contains A, in contradiction to
the maximality of A. This proves (iv).

Proposition 4.50. If (S, μ) is a finite measure space, then the multiplication
algebra on L2(S, μ) is a maximal abelian self-adjoint subalgebra of the algebra
B(L2(S, μ), L2(S, μ)).
PROOF. WriteM forM(L2(S, μ)). SinceM is commutative, (ii) shows that

M′ ⊇ M. SinceM is stable under ( · )∗, (iv) shows that it is enough to prove
thatM′ ⊆M. Thus let T be inM′, and define an L2 function g by g = T (1).
If f is in L∞, then the fact that T is inM′ implies that

T f = T Mf (1) = Mf T (1) = Mf g = f g.

If the set where N ≤ |g(x)| ≤ N + 1 has positive measure, then an argument in
the example with L2(S, μ) shows that ‖T ‖ ≥ N . Since T is assumed bounded,
we conclude that g is in L∞. Therefore T f = Mg f for all f in L∞. Since L∞

is dense in L2 for a finite measure space and since T and Mg are both bounded,
T = Mg. Therefore T is exhibited as in M, and the proof that M′ ⊆ M is
complete.

We come now to the special property of maximal abelian self-adjoint subalge-
bras that will allow us to bring the Hilbert space into play when applying Theorem
4.48 to these subalgebras. If A is any subalgebra of B(H, H), a vector x in H is
called a cyclic vector for A if the vector subspace Ax of H is dense in H .

Lemma 4.51. Let H be a complex Hilbert space, let K ⊆ H be a closed vector
subspace, and let E be the orthogonal projection of H on K . IfA is a subalgebra
of B(H, H) that is stable under ( · )∗ and has the property that A(K ) ⊆ K for all
A in A, then E is in A′.
PROOF. Since A(K ) ⊆ K , AE(x) is in K for all x in H . Therefore AE(x) =

E AE(x) for all x in H , and AE = E AE . Since E∗ = E and since A is
stable under ( · )∗, A∗E = E A∗E . Consequently E A = E∗A = (A∗E)∗ =
(E A∗E)∗ = E AE = AE , and E is in A′.
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Proposition 4.52. If H is a complex separable Hilbert space and A is a
maximal self-adjoint subalgebra of B(H, H), then A has a cyclic vector.

REMARKS. The 2-dimensional subalgebras that we introduced in connection
with C3 have no cyclic vectors, as we see by a count of dimensions; however, the

full 3-dimensional diagonal subalgebra has

(
1
1
1

)
as a cyclic vector since

( a 0 0
0 b 0
0 0 c

)( 1
1
1

)
=
( a
b
c

)
.

PROOF. For each x in H , form the closed vector subspace (Ax)cl. Since the
identity is in A, x is in Ax . Since Ax is stable under A and since the members
of A are bounded operators, (Ax)cl is stable under A. The vector subspace Ax
has the property that

y ⊥ Ax implies Ay ⊥ Ax (∗)

because (Ax, By) = (y, A∗Bx) = 0 if A and B are inA. Consider orthonormal
subsets {xα} in H such thatAxα ⊥ Axβ for α = β. Such sets exist, the empty set
being one. By Zorn’s Lemma let S = {xα} be a maximal such set. This maximal
S has the property that

H = ( ∑
xα∈S

Axα
)cl
,

since otherwise we could obtain a contradiction by adjoining any unit vector in((∑
xα∈S Axα

)cl)⊥
to S and applying (∗). Since H is separable, S is countable.

Let us enumerate its members as x1, x2, . . . . Put z =
∑∞

n=1 2
−nxn . This series

converges in H since H is complete, and we shall prove that the sum z is a cyclic
vector for A.
Lemma 4.51 implies that the orthogonal projection En of H onto (Axn)cl is in

A′. Since A is a maximal abelian self-adjoint subalgebra of B(H, H), A′ = A.
Hence En is in A. Therefore Az ⊇ AEnz = A2−nxn = Axn for all n, and we
obtain (Az)cl ⊇ (∑n Axn

)cl = H . This completes the proof.

If H1 and H2 are complex Hilbert spaces, a unitary operator U from H1 to
H2 is a linear operator from H1 onto H2 with ‖Ux‖H2 = ‖x‖H1 for all x in H1.
Such an operator is invertible, and its inverse is unitary. Bymeans of polarization,
one sees that a unitary operator satisfies also the identity (Ux,Uy)H2 = (x, y)H1 ,
i.e., that the inner product is preserved. Therefore a unitary operator provides the
natural notion of isomorphism between two Hilbert spaces.
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Theorem 4.53. If H is a nonzero complex separable Hilbert space andA is a
maximal abelian self-adjoint subalgebra of B(H, H), then there exists a measure
space (S, μ) with μ(S) = 1 and a unitary operator U : H → L2(S, μ) such that

UAU−1 =M(L2(S, μ)).

REMARK. In other words, under the assumption that H is separable, any maxi-
mal abelian self-adjoint subalgebra ofB(H, H) is isomorphic to themultiplication
algebra for the L2 space relative to some finite measure.

PROOF. Applying Proposition 4.52, let z be a unit cyclic vector for A. Let
us see that the linear map of A into H given by A �→ Az is one-one. In fact, if
Az = 0, then every B in A has A(Bz) = BAz = B0 = 0. Since Az is dense in
H and A is bounded, A is 0.
We saw before Proposition 4.50 that A is a commutative C∗ algebra with

identity. By Theorem 4.48 the Gelfand transform A �→ Â is a norm-preserving
algebra isomorphism of A onto C(A∗m) carrying ( · )∗ to complex conjugation.
Define a linear functional � on C(A∗m) by

�( Â) = (Az, z)H ,

the inner product being the inner product in H . Let us see that the linear functional
� is positive. In fact, any function ≥ 0 in C(A∗m) is the absolute value squared of
some element of C(A∗m), hence is of the form | Â|2. Then

�(| Â|2) = �( Â Â) = �( Â∗A) = (A∗Az, z)H = (Az, Az)H ≥ 0.
By the Riesz Representation Theorem, there exists a unique regular Borel

measure μ on A∗m such that

�( Â) = ∫A∗m Â dμ
for all Â in C(A∗m). The measure μ has total mass equal to �(1) = �( Î ) =
(I z, z)H = ‖z‖2H = 1.
We shall now construct the unitary operator U carrying H to L2(A∗m, μ). On

the dense vector subspace Az of H , define a linear mapping U0 by

U0Az = Â ∈ C(A∗m) ⊆ L2(A∗m, μ).

This is well defined since, as we have seen, Az = 0 implies A = 0. On the vector
subspace Az, we have

‖U0Az‖2L2(A∗m)=
∫
A∗m | Â|

2 dμ=∫A∗m Â∗A dμ = �(A∗A) = (A∗Az, z)H =‖Az‖2H .
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HenceU0 is an isometry from the dense subsetAz of H into L2(A∗m). By uniform
continuity,U0 extends to an isometryU from H into L2(A∗m). As the continuous
extension of the linear functionU0,U is linear. The image ofU contains C(A∗m),
which is dense in L2(A∗m, μ), and the image is complete, being isometric with H .
Therefore the image of U is closed. Consequently U carries H onto L2(A∗m, μ)
and is unitary.
We still have to check that UAU−1 =M(L2(A∗m, μ)). If A and B are in A,

then
U AU−1(B̂) = U A(Bz) = U (ABz) = ÂB = Â B̂ = MÂ B̂.

Since U AU−1 and MÂ are bounded and since the B̂’s are dense in L
2(A∗m, μ),

U AU−1 = MÂ. Therefore UAU−1 ⊆ M(L2(A∗m, μ)). Next let T be in
M(L2(A∗m, μ)). Then T commutes with every member ofM(L2(A∗m, μ)) and
in particular with every U AU−1. Thus TU AU−1 = U AU−1T for all A in A,
andU−1TU A = AU−1TU . Since A is arbitrary inA,U−1TU is inA′. ButA is
assumed to be a maximal abelian self-adjoint subalgebra, and thereforeA′ = A.
Consequently U−1TU is in A. Say that U−1TU = A0. Then T = U A0U−1,
and T is in UAU−1. Therefore UAU−1 =M(L2(A∗m, μ)).

The Spectral Theorem for a single bounded self-adjoint operator will be an
immediate consequence of Theorem 4.53 and an application of Zorn’s Lemma.
But let us state the result (Theorem 4.54) so that it applies to a wider class of
operators—and to a commuting family of such operators rather than just one.
The first step is to define the kinds of bounded linear operators of interest. Let

H be a complex Hilbert space. A bounded linear operator A : H → H is said to
be

• normal if A∗A = AA∗,
• positive semidefinite if it is self adjoint22 and (Ax, x) ≥ 0 for all x ∈ H ,
• unitary if A is onto H and has ‖Ax‖ = ‖x‖ for all x ∈ H .

Self-adjoint operators, having A∗ = A, are certainly normal. Every operator of
the form A∗A for some bounded linear A is positive semidefinite. The definition
of “unitary”merely specializes the definition before Theorem 4.53 to the case that
H1 = H2. Unitary operators A in the present setting, according to Proposition
2.6, are characterized by the condition that A is invertible with A−1 = A∗, and
unitary operators are therefore normal.
In the case of multiplication operators Mf by L∞ functions on L2 of a finite

measure space, the adjoint of Mf is M f̄ . Then every Mf is normal, Mf is self
adjoint if and only if f is real-valued a.e., Mf is positive semidefinite if and only
if f is ≥ 0 a.e., and Mf is unitary if and only if | f | = 1 a.e.

22The condition “self adjoint” can be shown to be automatic in the presence of the inequality
(Ax, x) ≥ 0 for all x , but we shall not need to make use of this fact.
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Theorem4.54 (Spectral Theorem for boundednormal operators). Let {Aα}α∈E
be a family of bounded normal operators on a complex separable Hilbert space
H , and suppose that AαAβ = Aβ Aα and AαA∗β = A∗β Aα for all α and β. Then
there exist a finite measure space (S, μ), a unitary operator U : H → L2(S, μ),
and a set { fα}α∈E of functions in L∞(S, μ) such that U AαU−1 = Mfα for all α
in E .

PROOF. LetA0 be the complex subalgebra of B(H, H) generated by I and all
Aα and A∗α for α in E . This algebra is commutative and is stable under ( · )∗. Let
S be the set of all commutative subalgebras of B(H, H) containingA0 and stable
under ( · )∗, and partially order S by inclusion upward. The union of the members
of a chain in S is an upper bound for the chain, and Zorn’s Lemma therefore
produces a maximal element A in S. Since A is maximal, it is necessarily
closed in the operator-norm topology. Then A is a maximal abelian self-adjoint
subalgebra of B(H, H), and Theorem 4.53 is applicable. The theorem yields a
finite measure space (S, μ) and a unitary operator U : H → L2(S, μ) such that
UAU−1 = M(L2(S, μ)). For each α in E , we then have U AαU−1 = Mfα for
some fα in L∞(S, μ), as required.

In a corollary we shall characterize the spectra of operators that are self adjoint,
or positive definite, or unitary. Implicitly in the statement and proof, we make
use of Corollary 4.49 when referring to σ(A): the set σ(A) is independent of
the Banach subalgebra of B(H, H) from which it is computed as long as that
subalgebra contains I , A, and A∗. The corollary needs one further thing beyond
Theorem 4.54, and we give that in the lemma below.

Lemma 4.55. Let (S, μ) be a finite measure space, and form the Hilbert space
L2(S, μ). For f in L∞(S, μ), let Mf be the operation of multiplication by f .
Define the essential image of f to be{

λ0 ∈ C
∣∣ μ( f −1({λ ∈ C

∣∣ |λ− λ0| < ε})) > 0 for every ε > 0
}
.

Then
σ(Mf ) = essential image of f .

PROOF. To prove ⊆ in the asserted equality, let λ0 be outside the essential
image, and choose ε > 0 such that f −1({|λ − λ0| < ε}) has measure 0. Then
| f (x)− λ0| ≥ ε a.e. Hence 1/( f − λ0) is in L∞, and M1/( f−λ0) exhibits Mf−λ0
as invertible. Thus λ0 is not in σ(Mf ).
For the inclusion⊇, suppose thatMf−λ0 is invertible, with inverse T . For every

g in L∞, we have Mf−λ0Mg = MgMf−λ0 . Multiplying this equality by T twice,
we obtain MgT = T Mg. By Proposition 4.50, T is of the form T = Mh for some
h in L∞. Then we must have ( f − λ0)h = 1 a.e. Hence | f (x) − λ0| ≥ ‖h‖−1∞
a.e., and λ0 is outside the essential image. This proves the lemma.
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Corollary 4.56. Let H be a complex separable Hilbert space, let A be a normal
operator in B(H, H), and let σ(A) be the spectrum of A. Then

(a) A is self adjoint if and only if σ(A) ⊆ R,
(b) A is positive semidefinite if and only if σ(A) ⊆ [0,+∞),
(c) A is unitary if and only if σ(A) ⊆ {z ∈ C

∣∣ |z| = 1}.
PROOF. The corollary is immediate fromTheorem 4.54 as long as the corollary

is proved for any multiplication operator A = Mf by an L∞ function f on the
Hilbert space L2(S, μ). For this purpose we shall use Lemma 4.55.
In the case of (a), the operator Mf is self adjoint if and only if f is real-valued

a.e. If f is real-valued, then the definition of essential image shows that λ0 is not
in the essential image if λ0 is nonreal. Conversely if every nonreal λ0 is outside
the essential image, then to each such λ0 we can associate a number ελ0 > 0 for
which f −1({λ ∈ C

∣∣ |λ − λ0| < ελ0}) has μ measure 0. Countably many of the
open sets {λ ∈ C

∣∣ |λ − λ0| < ελ0} cover the complement of R in C, and their
inverse images under f have μ measure 0. Therefore the inverse image under f
of the union has μmeasure 0, and μ( f −1(Rc)) = 0. That is, f is real-valued a.e.
This proves (a), and the arguments for (b) and (c) are completely analogous.

The power of the Spectral Theorem comes through the functional calculus that
it implies for working with operators. We shall prove the relevant theorem and
then give five illustrations of how it is used.

Theorem 4.57 (functional calculus). Fix a bounded normal operator A on a
complex separable Hilbert space H . Then there exists one and only one way to
define a system of operators ϕ(A) for every bounded Borel function ϕ on σ(A)
such that

(a) z(A) = A for the function ϕ(z) = z, and 1(A) = I for the constant
function 1,

(b) ϕ �→ ϕ(A) is an algebra homomorphism into B(H, H),
(c) ϕ(A)∗ = ϕ(A),
(d) limn ϕn(A)x = ϕ(A)x for all x ∈ H whenever ϕn → ϕ pointwise with

{ϕn} uniformly bounded.
The operators ϕ(A) have the additional properties that

(e) ϕ(A) is normal, and all the operators ϕ(A) commute,
(f) ‖ϕ(A)‖ ≤ ‖ϕ‖sup,
(g) limn ϕn(A) = ϕ(A) in the operator-norm topology whenever ϕn → ϕ

uniformly,
(h) σ(ϕ(A)) ⊆ (ϕ(σ (A))cl,
(i) (spectral mapping property) σ(ϕ(A)) = ϕ(σ(A)) if ϕ is continuous.
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PROOF OF EXISTENCE. Apply Theorem 4.54 to the singleton set {A}, obtaining
a finite measure space (S, μ), a unitary operator U : H → L2(S, μ), and an L∞
function f A on S such that U AU−1 = MfA . Examining the proofs of Theorems
4.53 and 4.54, we see that we can take S to be a certain compact Hausdorff space
A∗m, μ to be a regular Borel measure on S, and the function f A to be the Gelfand
transform Â, therefore continuous. In the construction of Theorem 4.53, the
measure μ has the property that

∫
S |B̂|2 dμ = ‖Bz‖H for every B in A, where

z is a cyclic vector. Therefore B = 0 implies ∫S |B̂|2 dμ > 0. Since |B̂|2 is the
most general continuous function ≥ 0 on S, μ assigns positive measure to every
nonempty open set.
For any bounded Borel function ϕ on σ(A), the function ϕ ◦ f A is a well-

defined function on S since Proposition 4.43a shows that the image of Â = f A
is σ(A). The function ϕ ◦ f A is a bounded Borel function since ϕ−1 of an open
set in C is a Borel set of C and since f −1A of a Borel set of C is a Borel set of S.
Thus it makes sense to define

ϕ(A) = U−1Mϕ◦ f AU.

Then we see that properties (a) through (i) are satisfied for any given normal
A on H if they are valid in the special case of any Mf on L2(S, μ) with f
continuous, S compact Hausdorff, μ a regular Borel measure assigning positive
measure to every nonempty open set, and ϕ(Mf ) defined for arbitrary bounded
Borel functions ϕ on the image of f by

ϕ(Mf ) = Mϕ◦ f .

Properties (a) through (c) for multiplication operators are immediate, (d) follows
by dominated convergence, (e) and (f) are immediate, and (g) follows directly
from (f). We are left with properties (h) and (i).
Lemma 4.55 identifies the spectrum of a multiplication operator by an L∞

function with the essential image of the function. Using this identification, we
see that (h) and (i) follow in our special case if it is proved for f continuous that

essential image of ϕ ◦ f ⊆ (ϕ(essential image of f ))cl, ϕ bounded Borel, (∗)
essential image of ϕ ◦ f = ϕ(essential image of f ), ϕ continuous. (∗∗)

Let us see that these follow if we prove that

essential image of ψ ⊆ (image ψ)cl for ψ : S→ C bounded Borel, (†)

essential image of ψ = image ψ for ψ : S→ C continuous. (††)
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In fact, if (†) and (††) hold, then for (∗) we have

essential image(ϕ ◦ f ) ⊆ (image(ϕ ◦ f ))cl by (†) for ϕ ◦ f
= (ϕ(image f ))cl

= (ϕ(essential image f ))cl by (††) for f.

For (∗∗) we have

essential image(ϕ ◦ f ) = image(ϕ ◦ f ) by (††) for ϕ ◦ f
= ϕ(image f )

= ϕ(essential image f ) by (††) for f.

Thus it is enough to prove (†) and (††). For (†) let λ0 be in the essential
image of ψ . Then for each n ≥ 1, μ

(
ψ−1

{
λ
∣∣ |λ − λ0| < 1

n

})
> 0, and hence

ψ−1
{
λ
∣∣ |λ − λ0| < 1

n

} = ∅. Thus there exists λ = λn with λn in the image of
ψ such that |λ− λ0| < 1

n , and λ0 is exhibited as a member of (image ψ)cl.
For (††) we first show that the image of ψ lies in the essential image of ψ if

ψ is continuous. Thus let λ0 be in the image of ψ . Then ψ−1
{
λ
∣∣ |λ− λ0| < ε

}
is nonempty, and it is open since ψ is continuous. Since nonempty open sets of
S have positive μ measure, we conclude that λ0 is in the essential image of ψ .
Then

image ψ ⊆ essential image ψ by what we have just proved

⊆ (image ψ)cl by (†)

= image ψ since S is compact and ψ is continuous,

and (††) follows. This completes the proof of existence and the list of properties
in Theorem 4.57.

PROOF OF UNIQUENESS. Properties (a) through (c) determine ϕ(A)whenever ϕ
is a polynomial function of z and z̄. By the Stone–Weierstrass Theorem any con-
tinuous ϕ on a compact set such as σ(A) is the uniform limit of such polynomials,
and hence (d) implies that ϕ(A) is determined whenever ϕ is continuous.
The indicator function of a compact subset of C is the decreasing pointwise

limit of a sequence of continuous functions of compact support, and hence (d)
implies that ϕ(A) is determined whenever ϕ is the indicator function of a compact
set. Applying (b) twice, we see that ϕ(A) is determined whenever ϕ is the
indicator function of any finite disjoint union of differences of compact sets.
Such sets form23 the smallest algebra of sets containing the compact subsets of

23By Lemma 11.2 of Basic.
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σ(A). Another application of (d), together with the Monotone Class Lemma,24

shows that ϕ(A) is determined whenever ϕ is the indicator function of any Borel
subset of σ(A). Any bounded Borel function on σ(A) is the uniform limit of
finite linear combinations of indicator functions of Borel sets, and hence onemore
application of (b) and (d) shows that ϕ(A) is determined whenever ϕ is a bounded
Borel function on σ(A).

Corollary 4.58. If H is a complex separable Hilbert space, then every positive
semidefinite operator in B(H, H) has a unique positive semidefinite square root.

REMARKS. This is an important application of the Spectral Theorem and the
functional calculus. It is already important when applied to operators of the form
A∗A with A in B(H, H). For example the corollary allows us in the definition
of trace-class operator before Proposition 2.8 to drop the assumption that the
operator is compact; it is enough to assume that it is bounded.

PROOF. If A is positive semidefinite, then σ(A) ⊆ [0,∞) by Corollary 4.56b.
The usual square root function

√
on [0,∞) is bounded onσ(A), andwe can form√

A by Theorem 4.57. Then (a) and (b) in Theorem 4.57 imply that (
√
A)2 = A,

and (i) implies that
√
A is positive semidefinite. This proves existence.

For uniqueness let B be positive semidefinite with B2 = A. Because of
the uniqueness assertion in Theorem 4.57, we have at our disposal the maximal
abelian self-adjoint subalgebra of B(H, H) that is recalled from Theorem 4.53
and used to define operators ϕ(A) in the proof of Theorem 4.57. Let A0 be the
smallest C∗ algebra in B(H, H) containing I , A, and B, and extend A0 to a
maximal abelian self-adjoint subalgebra A of B(H, H). We use this A to define√
A. On the compact Hausdorff space,

√̂
A and B̂ are both nonnegative square

roots of Â and must be equal. Since the Gelfand transform for A is one-one,
B = √A.

Corollary 4.59. Let H be a complex separable Hilbert space, and let A and B
be bounded normal operators on H such that A commutes with B and B∗. Then
each ϕ(A), for ϕ a bounded Borel function on σ(A), commutes with B and B∗.

PROOF. As in the proof of the previous corollary, we have at our disposal
the maximal abelian self-adjoint subalgebra A of B(H, H) that is used to define
operators ϕ(A). We choose one containing I , A, and B. Then ϕ(A) is in A and
hence commutes with B and B∗.

Corollary 4.60. Let A be a bounded normal operator on a complex
separable Hilbert space, let ϕ2 : σ(A) → C be a continuous function,

24Lemma 5.43 of Basic.
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and let ϕ1 : ϕ2(σ (A)) → C be a bounded Borel function. Then ϕ1(ϕ2(A)) =
(ϕ1 ◦ ϕ2)(A).
REMARK. If ϕ2(z) = z̄, this corollary recovers property (c) in Theorem 4.57.

PROOF. The uniqueness in Theorem 4.57 shows that the operators ϕ(ϕ2(A))
form the unique system defined for bounded Borel functions ϕ : σ(ϕ2(A))→ C
such that z(ϕ2(A)) = ϕ2(A), 1(ϕ2(A)) = 1, ϕ �→ ϕ(ϕ2(A) is an algebra homo-
morphism, ϕ(ϕ2(A))∗ = ϕ(ϕ2(A)), and limϕn(ϕ2(A))x = ϕ(ϕ2(A))x for all x
whenever ϕn → ϕ pointwise and boundedly on σ(ϕ2(A)).
We now consider the system formed from ψ(A), specialize to functions ψ =

ϕ ◦ ϕ2, and make use of the properties of ψ(A) as stated in the existence half
of the theorem. Theorem 4.57i shows that σ(ϕ2(A)) = ϕ2(σ (A)). We have
(z ◦ ϕ2)(A) = ϕ2(A) trivially and (1 ◦ ϕ2)(A) = 1(A) = 1 by (a) for the system
ψ(A). The map ϕ �→ (ϕ ◦ ϕ2)(A) is an algebra homomorphism as a special case
of (b) forψ(A). The formula (ϕ◦ϕ2)(A)∗ = ϕ ◦ ϕ2(A) = (ϕ◦ϕ2)(A) is a special
case of (c) for ψ(A). And the formula lim(ϕn ◦ ϕ2)(A)x = (ϕ ◦ ϕ2)(A)x is a
special case of (d) for ψ(A). Therefore the system (ϕ ◦ϕ2)(A) has the properties
that uniquely determine the system ϕ(ϕ2(A)), and we must have ϕ(ϕ2(A)) =
(ϕ ◦ ϕ2)(A) for every bounded Borel function ϕ on σ(ϕ2(A)).

Corollary 4.61. If A is a bounded normal operator on a complex separable
Hilbert space, then there exists a sequence {Sn} of bounded linear operators of
the form Sn =

∑Nn
i=1 ci,n Ei,n converging to A in the operator-norm topology and

having the property that each Ei,n is an orthogonal projection of the form ϕ(A).

PROOF. Choose a sequence of simple Borel functions sn on σ(A) converging
uniformly to the function z, and let Sn = sn(A). Then apply Theorem 4.57.

Corollary 4.62. If A is a bounded normal operator on a complex separable
Hilbert space H of dimension > 1, then there exists a nontrivial orthogonal
projection that commutes with every bounded normal operator that commutes
with A and A∗. Hence there is a nonzero proper closed vector subspace K of H
such that B(K ) ⊆ K for every bounded normal operator B commuting with A
and A∗.

PROOF. This is a special case of Corollary 4.61.

This completes our list of illustrations of the functional calculus associated
with the Spectral Theorem. We now prove a result mentioned near the end of
Section 10, showing how the spectrum of an operator relates to spaces of maximal
ideals.
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Proposition 4.63. Let A be a bounded normal operator on a complex separable
Hilbert space H , and let A be the smallest C∗ algebra of B(H, H) containing I ,
A, and A∗. Then the maximal ideal space A∗m is canonically homeomorphic to
the spectrum σ(A).

PROOF. Let B �→ B̂ be the Gelfand transform for A, carrying A to C(A∗m).
Proposition 4.43a shows that the image of Â in C is σ(A), and Corollary 4.49
shows that this version of σ(A) is the same as the one obtained from B(H, H).
Therefore we obtain a map C(σ (A)) → C(A∗m) by the definition f �→ f ◦ Â.
This map is an algebra homomorphism respecting conjugation, and it satisfies
‖ f ‖sup = ‖ f ◦ Â‖sup since the function Â is onto σ(A). This equality of norms
implies that the map f �→ f ◦ Â is one-one.
To see that f �→ f ◦ Â is ontoC(A∗m), we observe that the operators p(A, A∗),

for p a polynomial in z and z̄, are dense in A since I , A, and A∗ generate A.
Using that (̂ · ) is a norm-preserving isomorphism of A onto C(A∗m), we see
that the members ̂p(A, A∗) of C(A∗m) are dense in C(A∗m). Since C(σ (A)) is
complete and f �→ f ◦ Â is norm preserving, the image is closed. Therefore
f �→ f ◦ Â carries C(σ (A)) onto C(A∗m).
Hencewe have a canonical isomorphism of commutativeC∗ algebrasC(σ (A))

and C(A∗m). The maximal ideal spaces must be canonically homeomorphic. The
maximal ideal space of C(σ (A)) contains σ(A) because of the point evaluations
but can be no larger than σ(A) since the Stone Representation Theorem (Theorem
4.15) shows that the necessarily closed image of σ(A) is dense in

(
C(σ (A))

)∗
m.

FURTHER REMARKS. A version of the Spectral Theorem is valid also for
unbounded self-adjoint operators on a complex separable Hilbert space. Such op-
erators are of importance since they enable one to use functional analysis directly
with linear differential operators, which may be expected to be unbounded. The
operator L in the Sturm–Liouville theory of Chapter I is an example of the kind
of operator that one wants to handle directly. The subject has to address a large
number of technical details, particularly concerning domains of operators, and the
definitions have to bemade just right. The prototype of an unbounded self-adjoint
operator is the multiplication operator Mf on our usual L2(S, μ) corresponding
to an unbounded real-valued function f that is finite almost everywhere; the
domain of Mf is the dense vector subspace of members of L2 whose product
with f is in L2. Just as in this example, the domain of an unbounded self-adjoint
operator is forced by the definitions to be a dense but proper vector subspace of
the whole Hilbert space. Once one is finally able to state the Spectral Theorem
for unbounded self-adjoint operators precisely, the result is proved by reducing
it to Theorem 4.54. Specifically if T is an unbounded self-adjoint operator on
H , then one shows that (T + i)−1 is a globally defined bounded normal operator.
Application of Theorem 4.54 to (T + i)−1 yields an L∞ function g such that the
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unitary operator U : H → L2(S, μ) carries (T + i)−1 to g. One wants T to
be carried to f , and hence the definition should force 1/( f + i) = g. In other
words, f is defined by the equation f = 1/g − i . One checks that the unitary
operator U from H to L2 indeed carries T to Mf . For a discussion of the use of
the Spectral Theorem in connection with partial differential equations, the reader
can look at Parts 2 and 3 of Dunford–Schwartz’s Linear Operators.

BIBLIOGRAPHICAL REMARKS. The exposition in Section 3–6 and Section
8–9 is based on that in Part 1 of Dunford–Schwartz’s Linear Operators. The
exposition in Section 7 is based on that in Treves’s Topological Vector Spaces,
Distributions and Kernels.

12. Problems

1. Let X be a Banach space, and let Y be a closed vector subspace. Take as known
(from Problem 4 in Chapter XII of Basic) that X/Y becomes a normed linear
space under the definition ‖x +Y‖ = infy∈Y ‖x + y‖ and that the resulting norm
is complete. Prove that the topology on X/Y obtained this way coincides with
the quotient topology on X/Y as the quotient of a topological vector space by a
closed vector subspace.

2. Let T : X → Y be a linear function between Banach spaces such that T (X) is
finite-dimensional and ker(T ) is closed. Prove that T is continuous.

3. Using the result of Problem 1, derive the Interior Mapping Theorem for Banach
spaces from the special case in which the mapping is one-one.

4. If X is a finite-dimensional normed linear space, why must the norm topology
coincide with the weak topology?

5. Let H be a separable infinite-dimensional Hilbert space. Give an example of a
sequence {xn} in H with ‖xn‖ = 1 for all n and with {xn} tending to 0 weakly.

6. In a σ -finite measure space (S, μ), suppose that the sequence { fn} tends weakly
to f in L2(S, μ) and that limn ‖ fn‖2 = ‖ f ‖2. Prove that { fn} tends to f in the
norm topology of L2(S, μ).

7. Let X be a normed linear space, let {xn} be a sequence in X with {‖xn‖} bounded,
and let x0 be in X . Prove that if limn x∗(xn) = x∗(x0) for all x∗ in a dense subset
of X∗, then {xn} tends to x0 weakly.

8. Fix p with 0 < p < 1. It was shown in Section 1 that the set of Borel functions
f on [0, 1] with

∫
[0,1] | f |p dx <∞, with two functions identified when they are

equal almost everywhere, forms a topological vector space L p([0, 1]) under the
metric d( f, g) = ∫[0,1] | f − g| dx . Put D( f ) = ∫[0,1] | f |p dx .
(a) Show for each positive integer n that any function f with D( f ) = 1 can be

written as f = 1
n ( f1 + · · · + fn) with D( f j ) = n−(1−p).
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(b) Deduce from (a) that if f has D( f ) = 1, then an arbitrarily large multiple of
f can be written as a convex combination of functions f j with D( f j ) ≤ 1.

(c) Deduce from (b) for each ε > 0 that the smallest convex set containing all
f ’s with D( f ) ≤ ε is all of L p([0, 1]).

(d) Why must L p([0, 1]) fail to be locally convex?
(e) Prove that L p([0, 1]) has no nonzero continuous linear functionals.

9. LetU be a nonempty open set inRN , and let {Kp}p≥0 be an exhausting sequence
of compact subsets of U with K0 = ∅. Let M be the set of all monotone
increasing sequences of integers mp ≥ 0 tending to infinity, and let E be the set
of all monotone decreasing sequences of real numbers εp > 0 tending to 0. For
each pair (m, ε) = ({mp}, {εp}

)
with m ∈ M and ε ∈ E , define a seminorm

‖ · ‖m,ε on C
∞
com(U ) by

‖ϕ‖m,ε = sup
p≥0

ε−1p
(
sup
x /∈Kp

sup
|α|≤mp

|(Dαϕ)(x)|).
Denote the inductive limit topology on C∞com(U ) by T and the topology defined
with the above uncountable family of seminorms by T ′.
(a) Verify for ϕ in C∞(U ) that ‖ϕ‖m,ε <∞ for all pairs (m, ε) if and only if ϕ

is in C∞com(U ).
(b) Prove that the identity mapping (C∞com(U ), T ) → (C∞com(U ), T ′) is

continuous.
(c) For p ≥ 0, fix ψp ≥ 0 in C∞com(U ) with

∑
p ψp = 1, ψ0 = 0 on K2, and

ψp(x)

{ = 0 for x in Kp+2 − K 0p+1,

= 0 for x in (K 0p+3)c and for x in Kp.

A basic open neighborhood N of 0 in (C∞com(U ), T ) is a convex circled set
with 0 as an internal point satisfying conditions of the following form: for
each p ≥ 0, there exist an integer np and a real δp > 0 such that a member
ϕ of C∞Kp+3 is in N ∩C∞Kp+3 if and only if supx∈Kp+3 sup|α|≤np |Dαϕ(x)| < δp.

Prove that there exists a pair (m, ε) such that ‖ϕ‖m,ε < 1 implies that
2p+1ψpϕ is in N ∩ C∞Kp+3 for all p ≥ 0.

(d) With notation as in (c), show that the function ϕ =∑p≥0 2
−(p+1)(2p+1ψpϕ)

is in N whenever ‖ϕ‖m,ε < 1. Conclude that the identity mapping from
(C∞com(U ), T ′) to (C∞com(U ), T ) is continuous and thatT andT ′ are therefore
the same.

(e) Exhibit a sequence of closed nowhere dense subsets of C∞com(U ) with union
C∞com(U ), thereby showing that the hypotheses of the Baire Category Theo-
rem must not be satisfied in C∞com(U ).

10. Prove or disprove: If H is an infinite-dimensional separable Hilbert space, then
B(H, H) is separable in the operator-norm topology.
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11. Let S be a compact Hausdorff space, let μ be a regular Borel measure on S,
and regard A = {multiplications by C(S)} as a subalgebra of M(L2(S, μ)).
Prove that the commuting algebra A′ of A within B(L2(S, μ), L2(S, μ)) is
M(L2(S, μ)).

12. Prove that if A is a bounded normal operator on a separable complex Hilbert
space H , then ‖A‖ = sup‖x‖≤1 |(Ax, x)H |.

13. Let H be a separable complex Hilbert space, let A be a commutative C∗ sub-
algebra of B(H, H) with identity, and suppose that A has a cyclic vector.
Prove that there exist a regular Borel measure μ on A∗m and a unitary operator
U : H → L2(A∗m, μ) such that

UAU−1 = {multiplications by C(A∗m)} ⊆M(L2(A∗m, μ)).

14. Let A be a bounded normal operator on a separable complex Hilbert space H ,
and let A be the smallest C∗ subalgebra of B(H, H) containing I , A, and A∗.
Suppose that A has a cyclic vector. Prove that there exists a Borel measure on
the spectrum σ(A) and a unitary mapping U : H → L2(σ (A), μ) such that

UAU−1 = {multiplications by C(σ (A))} ⊆M(L2(σ (A), μ))

and such that U AU−1 is the multiplication operator Mz .

15. Form the multiplication operator Mx on L2([0, 1]), and letA be the smallest C∗

subalgebra of B(L2([0, 1]), L2([0, 1])) containing I and Mx .
(a) Prove that the function 1 is a cyclic vector for A.
(b) Identify the spectrum σ(Mx ).
(c) Prove in the context of the functional calculus of the Spectral Theorem

that the operator ϕ(Mx ) is Mϕ for every bounded Borel function ϕ on the
spectrum σ(Mx ).

16. Let A and B be bounded normal operators on a separable complex Hilbert space
H such that A commutes with B and B∗. Let A be the smallest C∗ subalgebra
of B(H, H) containing I , A, A∗, B, and B∗.
(a) Prove that A∗m is canonically homeomorphic to the subset σ(A, B) of

σ(A)× σ(B) ⊆ C2 given by σ(A, B) = {( Â(�), B̂(�)}�∈A∗
m
.

(b) Prove under the identification of (a) that Â is identified with the function z1
and B̂ is identified with z2.

Problems 17–20 concern the set of extreme points in particular closed subsets of
locally convex topological vector spaces.

17. Let S be a compact Hausdorff space, and let K be the set of all regular Borel
measures on S with μ(S) ≤ 1. Give K the weak-star topology relative to C(S).
Prove that the extreme points of K are 0 and the point masses of total measure 1.
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18. In L1([0, 1]), suppose that f has norm 1 and that E is a Borel subset such that∫
E | f | dx > 0 and

∫
Ec | f | dx > 0. Let f1 be f on E and be 0 on Ec, and let f2

be f on Ec and be 0 on E .
(a) Prove that f is a nontrivial convex combination of ‖ f1‖−11 f1 and ‖ f2‖−11 f2.
(b) Conclude that the closed unit ball of L1([0, 1]) has no extreme points.

19. Let S be a compact Hausdorff space, and let K1 be the set of all regular Borel
measures on S with μ(S) = 1. Give K1 the weak-star topology relative to C(S).
Let F be a homeomorphism of S. Within K1, let K be the subset of members
μ of K1 that are F invariant in the sense that μ(E) = μ(F−1(E)) for all Borel
sets E .
(a) Prove that K is a compact convex subset of M(S) in the weak-star topology

relative to C(S).
(b) A member μ of K is said to be ergodic if every Borel set E such that

F(E) = E has the property that μ(E) = 0 or μ(E) = 1. Prove that every
extreme point of K is ergodic.

(c) Is every ergodic measure in K necessarily an extreme point?

20. Regard the set Z of integers as a measure space with the counting measure
imposed. As in Section 8, a complex-valued function f (n) on Z is said to be
positive definite if

∑
j,k c( j) f ( j−k)c(k) ≥ 0 for all complex-valued functions

c(n) on the integers with finite support.
(a) Prove that every positive definite function f has f (0) ≥ 0, f (−n) = f (n),

and | f (n)| ≤ f (0).
(b) Prove that a bounded sequence in L∞(Z) converges weak-star relative to

L1(Z) if and only if it converges pointwise.
(c) In view of (a), the set K of positive definite functions f with f (1) = 1 is a

subset of the closed unit ball of L∞(Z). Prove that the set K is convex and
is compact in the weak-star topology relative to L1(Z).

(d) Prove that every function fθ (n) = einθ with θ real is an extreme point of K .
(e) Take for granted the fact that every positive definite function on Z is the

sequence of Fourier coefficients of some Borel measure on the circle. (The
corresponding fact for positive definite functions on RN is proved in Prob-
lems 8–12 of Chapter VIII of Basic.) Prove that the set K has no other
extreme points besides the ones in (d).

Problems 21–25 elaborate on the Stone Representation Theorem, Theorem 4.15. The
first of the problems gives a direct proof, without using the Gelfand–Mazur Theorem,
that every multiplicative linear functional is continuous in the context of Theorem
4.15.

21. Let S be a nonempty set, and let A be a uniformly closed subalgebra of B(S)
containing the constants and stable under complex conjugation. Let C be a
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complex number with |C | > 1, let f be a member of A with ‖ f ‖sup ≤ 1, and
let � be a multiplicative linear functional on A.
(a) Show that

∑∞
n=0( f/C)

n converges and that its sum x provides an inverse to
1− ( f/C) under multiplication.

(b) By applying � to the identity (1 − ( f/C))x = 1, prove that �( f ) = C is
impossible.

(c) Conclude from (b) that ‖�‖ ≤ 1, hence that � is automatically bounded.
22. Let S be a compact Hausdorff space, and let � be amultiplicative linear functional

on C(S) such that �( f̄ ) = �( f ) for all f in C(S). Prove that � is the evaluation
es at some point s of S.

23. Let S and T be two compact Hausdorff spaces, and letU : C(S)→ C(T ) be an
algebra homomorphism that carries 1 to 1 and respects complex conjugation.
(a) Prove that there exists a unique continuous map u : T → S such that

(U f )(t) = f (u(t)) for every t ∈ T and f ∈ C(S).
(b) Prove that if U is one-one, then u is onto.
(c) Prove that if U is an isomorphism, then u is a homeomorphism.

24. Let X be a compact Hausdorff space, and letA and B be uniformly closed subal-
gebras of B(X) containing the constants and stable under complex conjugation.
Suppose thatA ⊆ B. Suppose that S, p,U and T, q, V are data such that S and
T are compact Hausdorff spaces, p : X → S and q : X → T are functions with
dense image, andU : A→ C(S) and V : B→ C(T ) are algebra isomorphisms
carrying 1 to 1 and respecting complex conjugations such that for every x ∈ X ,
(U f )(p(x)) = x for all f ∈ A and (Vg)(q(x)) = x for all g ∈ B. Prove that
there exists a unique continuous map � : T → S such that p = � ◦ q. Prove
also that this map satisfies (U f )(�(t)) = (V f )(t) for all f in A.

25. Formulate and prove a uniqueness statement to complement the existence state-
ment in Theorem 4.15.

Problems 26–30 concern inductive limits. As mentioned in a footnote in the text,
“direct limit” is a construction in category theory that is useful within several different
settings. These problems concern the setting of topological spaces and continuous
maps between them. For this setting a direct limit is something attached to a directed
system of topological spaces and continuous maps. For the latter let (I,≤) be a
directed set, and suppose that Wi is a topological space for each i in I . Suppose that
a one-one continuous map ψj i : Wi → Wj is defined whenever i ≤ j , and suppose
that these maps satisfy ψi i = 1 and ψki = ψk j ◦ ψj i whenever i ≤ j ≤ k. A direct
limit of this directed system consists of a topological space W and continuous maps
qi : Wi → W for each i in I satisfying the following universal mapping property:
whenever continuous maps ϕi : Wi → Z are given for each i such that ϕj ◦ψj i = ϕi
for i ≤ j , then there exists a unique continuousmap� : W → Z such thatϕi = �◦qi
for all i .
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26. Suppose that a directed system of topological spaces and continuous maps is
given with notation as above. Let

∐
i Wi denote the disjoint union of the spaces

Wi , topologized so that each Wi appears as an open subset of the disjoint union.
Define an equivalence relation ∼ on∐Wi as follows: if xi is in Wi and xj is in
Wj , then xi ∼ xj means that there is some k with i ≤ k and j ≤ k such that
ψki (xi ) = ψk j (xj ).
(a) Prove that ∼ is an equivalence relation.
(b) Prove that elements xi in Wi and xj in Wj have xi ∼ xj if and only if every

l with i ≤ l and j ≤ l has ψli (xi ) = ψl j (xj ).

27. Define W to be the quotient
∐

i Wi
/ ∼, and give W the quotient topology. Let

q :
∐

i Wi → W be the quotient map. Prove thatW and the system of maps q
∣∣
Wi

form a direct limit of the given directed system.

28. Prove that if (V, {pi }) and (W, {qi }) are two direct limits of the given system,
then there exists a unique homeomorphism F : V → W such that qi = F ◦ pi
for all i in I .

29. Suppose that each mapψi : Wi → Wj is a homeomorphism onto an open subset.
(a) Prove that the quotient map q :

∐
i Wi → W carries open sets to open sets.

(b) Prove that the direct limit W is Hausdorff if each given Wi is Hausdorff.
(c) Prove that the direct limit W is locally compact Hausdorff if each Wi is

locally compact Hausdorff.
(d) Give an example in which eachWi is compact Hausdorff but the direct limit

W is not compact.

30. Let I be a nonempty index set, and let S0 be a finite subset. Suppose that a locally
compact Hausdorff space Xi is given for each i ∈ I and that a compact open
subset Ki is specified for each i /∈ S0. For each finite subset S of I containing
S0, define

X (S) = (×i∈S Xi
)× (×i /∈SKi

)
,

giving it the product topology. If S1 and S2 are two finite subsets of I containing
S0 such that S1 ⊆ S2, then the inclusion ψS2S1 : X (S1) → X (S2) is a homeo-
morphism onto an open set, and these homeomorphisms are compatible under
composition. The resulting direct limit X is called the restricted direct product
of the Xi ’s with respect to the Ki ’s. Prove that X is locally compact Hausdorff
and that elements of X may be regarded as tuples (xi ) for which xi is in Xi for
all i while xi is in Ki for all but finitely many i .



CHAPTER V

Distributions

Abstract. This chapter makes a detailed study of distributions, which are continuous linear func-
tionals on vector spaces of smooth scalar-valued functions. The three spaces of smooth functions
that are studied are the space C∞com(U ) of smooth functions with compact support in an open set
U , the space C∞(U ) of all smooth functions on U , and the space of Schwartz functions S(RN ) on
RN . The corresponding spaces of continuous linear functionals are denoted by D ′(U ), E ′(U ), and
S ′(RN ).
Section 1 examines the inclusions among the spaces of smooth functions and obtains the conclu-

sion that the corresponding restriction mappings on distributions are one-one. It extends from E ′(U )

to D ′(U ) the definition given earlier for support, it shows that the only distributions of compact
support in U are the ones that act continuously on C∞(U ), it gives a formula for these in terms of
derivatives and compactly supported complex Borel measures, and it concludes with a discussion of
operations on smooth functions.
Sections 2–3 introduce operations on distributions and study properties of these operations.

Section2brieflydiscusses distributions givenby functions, and it goes on toworkwithmultiplications
by smooth functions, iterated partial derivatives, linear partial differential operators with smooth
coefficients, and the operation ( · )∨ corresponding to x �→ −x . Section 3 discusses convolution at
length. Three techniques are used—the realization of distributions of compact support in terms of
derivatives of complex measures, an interchange-of-limits result for differentiation in one variable
and integration in another, and a device for localizing general distributions to distributions of compact
support.
Section 4 reviews the operation of the Fourier transform on tempered distributions; this was

introduced in Chapter III. The two main results are that the Fourier transform of a distribution
of compact support is a smooth function whose derivatives have at most polynomial growth and
that the convolution of a distribution of compact support and a tempered distribution is a tempered
distribution whose Fourier transform is the product of the two Fourier transforms.
Section 5 establishes a fundamental solution for the Laplacian in RN for N > 2 and concludes

with an existence theorem for distribution solutions tou = f when f is any distribution of compact
support.

1. Continuity on Spaces of Smooth Functions

Distributions are continuous linear functionals on vector spaces of smooth func-
tions. Their properties are deceptively simple-looking and enormously helpful.
Some of their power is hidden in various interchanges of limits that need to be
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carried out to establish their basic properties. The result is a theory that is easy to
implement and that yields results quickly. In the last section of this chapter, we
shall see an example of this phenomenon when we show how it gives information
about solutions of partial differential equations involving the Laplacian.
The three vector spaces of scalar-valued smooth functions that we shall con-

sider in the text1 of this chapter are C∞(U ), S(RN ), and C∞com(U ), where U is a
nonempty open set inRN . Topologies for these spaces were introduced in Section
IV.2, Section III.1, and Section IV.7, respectively. Let {Kp} be an exhausting
sequence of compact subsets of U , i.e., a sequence such that Kp ⊆ Ko

p+1 for all
p and such that U =⋃∞

p=1 Kp.
The vector spaceC∞(U ) of all smooth functions onU is given by a separating

family of seminorms such that a countable subfamily suffices. The members of
the subfamilymay be taken to be ‖ f ‖p,α = supx∈Kp

|Dα f (x)|, where 1 ≤ p <∞
andwhereα varies over all differentiationmulti-indices.2 The space of continuous
linear functionals is denoted by E ′(U ), and the members of this space are called
“distributions of compact support” for reasons that we recall in a moment.
The vector space S(RN ) of all Schwartz functions is another space given by

a separating family of seminorms such that a countable subfamily suffices. The
members of the subfamily may be taken to be ‖ f ‖α,β = supx∈RN |xαDβ f (x)|,
where α and β vary over all differentiation multi-indices.3 The space of contin-
uous linear functionals is denoted by S ′(U ), and the members of this space are
called “tempered distributions.”
The vector space C∞com(U ) of all smooth functions of compact support on U

is given by the inductive limit topology obtained from the vector subspaces C∞Kp
.

The spaceC∞Kp
consists of the smooth functions with support contained in Kp, the

topology on C∞Kp
being given by the countable family of seminorms ‖ f ‖p,α =

supx∈Kp
|Dα f(x)|. The space of continuous linear functionals is traditionally4

written D ′(U ), and the members of this space are called simply “distributions.”
Since the field of scalars is a locally convex topological vector space, Proposition
4.29 shows that the members of D ′(U ) may be viewed as arbitrary sequences of
consistently defined continuous linear functionals on the spaces C∞Kp

.

1A fourth space, the space of periodic smooth functions on RN , is considered in Problems 12–19
at the end of the chapter and again in the problems at the end of Chapter VII.

2The notation for the seminorms in Chapter IV was chosen for the entire separating subfamily
and amounted to ‖ f ‖Kp ,Dα . The subscripts have been simplified to take into account the nature of
the countable subfamily.

3The notation for the seminorms in Chapter III was chosen for the entire separating subfamily
and amounted to ‖ f ‖

xα,xβ
. The subscripts have been simplified to take into account the nature of

the countable subfamily.
4The tradition dates back to Laurent Schwartz’s work, in which D(U ) was the notation for

C∞com(U ) and D ′(U ) denoted the space of continuous linear functionals.
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For the spaces of smooth functions, there are continuous inclusions

C∞com(U ) ⊆ C∞(U ) for all U,

C∞com(R
N ) ⊆ S(RN ) ⊆ C∞(RN ) for U = RN .

We observed in Section IV.2 that C∞com(U ) ⊆ C∞(U ) has dense image. Proposi-
tion 4.12 showed that C∞com(R

N ) ⊆ S(RN ) has dense image, and it follows that
S(RN ) ⊆ C∞(RN ) has dense image.
If i : A → B denotes one of these inclusions and T is a continuous linear

functional on B, then T ◦ i is a continuous linear functional on A, and we can
regard T ◦ i as the restriction of T to A. Since i has dense image, T ◦ i cannot
be 0 unless T is 0. Thus each restriction map T �→ T ◦ i as above is one-one.
We therefore have one-one restriction maps

E ′(U )→ D ′(U ) for all U,

E ′(RN )→ S ′(RN )→ D ′(RN ) for U = RN .

This fact justifies using the term “distribution” for any member of D ′ and for
using the term “distribution” with an appropriate modifier for members of E ′ and
S ′.
As in Section III.1 it will turn out often to be useful to write the effect of a

distribution T on a function ϕ as 〈T, ϕ〉, rather than as T (ϕ), and we shall adhere
to this convention systematically for the moment.5

We introduced inSection IV.2 the notion of “support” for anymember ofE ′(U ),
and we now extend that discussion to D ′(U ). We saw in Proposition 4.10 that if
T is an arbitrary linear functional on C∞com(U ) and if U ′ is the union of all open
subsetsUγ ofU such that T vanishes onC∞com(Uγ ), then T vanishes onC∞com(U

′).
We accordingly define the support of any distribution to be the complement in
U of the union of all open sets Uγ such that T vanishes on C∞com(Uγ ). If T has
empty support, then T = 0 because T vanishes onC∞com(U ) and becauseC∞com(U )

is dense in the domain of T . Proposition 4.11 showed that the members of E ′(U )

have compact support in this sense; we shall see in Theorem 5.1 that no other
members of D ′(U ) have compact support.
An example of a member of E ′(U ) was given in Section IV.2: Take finitely

many complex Borel measures ρα of compact support withinU , the indexing be-
ing bymulti-indicesαwith |α| ≤ m, and put 〈T, ϕ〉=∑|α|≤m

∫
U Dαϕ(x) dρα(x).

Then T is in E ′(U ), and the support of T is contained in the union of the supports
of the ρα’s. Theorem 5.1 below gives a converse, but it is necessary in general
to allow the ρα’s to have support a little larger than the support of the given
distribution T .

5A different convention is to write
∫
U ϕ(x) dT (x) in place of 〈T, ϕ〉. This notation emphasizes

an analogy between distributions and measures and is especially useful when more than one RN

variable is in play. This convention will provide helpful motivation in one spot in Section 3.



182 V. Distributions

Theorem 5.1. If T is a member ofD ′(U )with support contained in a compact
subset K of U , then T is in E ′(U ). Moreover, if K ′ is any compact subset of
U whose interior contains K , then there exist a positive integer m and, for each
multi-index α with |α| ≤ m, a complex Borel measure ρα supported in K

′ such
that

〈T, ϕ〉 =
∑
|α|≤m

∫
K ′
Dαϕ dρα for all ϕ ∈ C∞(U ).

REMARK. Problems 8–10 at the end of the chapter discuss the question of
taking K ′ = K under additional hypotheses.

PROOF. Let ψ be a member of C∞com(U ) with values in [0, 1] that is 1 on a
neighborhood of K and is 0 on K ′c; such a function exists by Proposition 3.5f.
If ϕ is in C∞com(U ), then we can write ϕ = ψϕ + (1 − ψ)ϕ with ψϕ in C∞K ′
and with (1− ψ)ϕ in C∞com(K

c). The assumption about the support of T makes
〈T, (1− ψ)ϕ〉 = 0, and therefore
〈T, ϕ〉 = 〈T, ψϕ〉 + 〈T, (1− ψ)ϕ〉 = 〈T, ψϕ〉 for all ϕ in C∞com(U ). (∗)
Since the inclusionC∞K ′ → C∞com(U ) is continuous, we can define a continuous

linear functional T1 onC∞K ′ by T1(φ) = 〈T, φ〉 forφ inC∞K ′ . For anyϕ inC∞com(U ),
φ = ψϕ is in C∞K ′ , and (∗) gives 〈T, ϕ〉 = 〈T, ψϕ〉 = T1(ψϕ). The continuity
of T1 on C∞K ′ means that there exist m and C such that

|T1(φ)| ≤ C
∑
|α|≤m

sup
x∈K ′

|Dαφ(x)| for all φ ∈ C∞K ′ . (∗∗)

Let M be the number of multi-indices α with |α| ≤ m.
We introduce the Banach space X of M-tuples of continuous complex-valued

functions on K ′, the norm for X being the largest of the norms of the components.
The Banach-space dual of this space is the space of M-tuples of continuous linear
functionals on the components, thus the space of M-tuples of complex Borel
measures on K ′.
We can embedC∞K ′ as a vector subspace of X bymappingφ to theM-tuple with

components Dαφ for |α| ≤ m. We transfer T1 from C∞K ′ to its image subspace
within X , and the result, which we still call T1, is a linear functional continuous
relative to the norm on X as a consequence of (∗∗). Applying the Hahn–Banach
Theorem, we extend T1 to a continuous linear functional T̃1 on all of X without
an increase in norm. Then T̃1 is given on X by an M-tuple of complex Borel
measures ρ ′α on K

′, i.e., T̃1({ fα}|α|≤m) =
∑
|α|≤m

∫
K ′ fα dρ

′
α . Therefore any ϕ in

C∞com(U ) has

〈T, ϕ〉 = T1(ψϕ) = T̃1
({Dα(ψϕ)}|α|≤m

) = ∑
|α|≤m

∫
K ′ D

α(ψϕ) dρ ′α. (†)
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The right side of (†) is continuous on C∞(U ), and therefore T extends to a
member of E ′(U ). The formula in the theorem follows by expanding out each
Dα(ψϕ) in (†) by the Leibniz rule for differentiation of products, grouping the
derivatives of ψ with the complex measures, and reassembling the expression
with new complex measures ρα .

In Chapters VII and VIII we shall be interested also in a notion related to
support, namely the notion of “singular support.” If f is a locally integrable
function on the open set U , then f defines a member Tf of D ′(U ) by

〈Tf , ϕ〉 =
∫
U
f ϕ dx for ϕ ∈ C∞com(U ).

If U ′ is an open subset of U and T is a distribution on U , we say that T equals
a locally integrable function on U ′ if there is some locally integrable function
f on U ′ such that 〈T, ϕ〉 = 〈Tf , ϕ〉 for all ϕ in C∞com(U ). We say that T equals
a smooth function on U ′ if this condition is satisfied for some f in C∞(U ′). In
the latter case the member of C∞(U ′) is certainly unique.
The singular support of a member T of D ′(U ) is the complement of the

union of all open subsets U ′ of U such that T equals a smooth function on U ′.
The uniqueness of the smooth function on such a subset implies that if T equals
the smooth function f1 on U ′1 and equals the smooth function f2 on U ′2, then
f1(x) = f2(x) for x in U ′1 ∩U ′2. In fact, T equals the smooth function f1

∣∣
U ′1∩U ′2

on U ′1 ∩U ′2 and also equals the smooth function f2
∣∣
U ′1∩U ′2 there. The uniqueness

forces f1
∣∣
U ′1∩U ′2 = f2

∣∣
U ′1∩U ′2 . Taking the union of all the open subsets on which T

equals a smooth function, we see that T is a smooth function on the complement
of its singular support.

EXAMPLE. Take U = R1, and define

〈T, ϕ〉 = lim
ε↓0

∫
|x |≥ε

ϕ(x) dx

x
for ϕ ∈ C∞com(R1).

To see that this is well defined, we choose η in C∞com(R
1) with η identically 1

on the support of ϕ and with η(x) = η(−x) for all x . Taylor’s Theorem gives
ϕ(x) = ϕ(0) + x R(x) with R in C∞(R1). Multiplying by η(x) and integrating
for |x | ≥ ε, we obtain∫

|x |≥ε
ϕ(x) dx

x = ϕ(0)
∫
|x |≥ε

η(x) dx
x + ∫|x |≥ε R(x)η(x) dx .

The first term on the right side is 0 for every ε, and therefore

〈T, ϕ〉 = ∫
R1
R(x)η(x) dx .
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It follows that T is inD ′(R1). On any function compactly supported inR1−{0},
the original integral defining T is convergent. Thus T equals the function 1/x
on R1 − {0}. Since 1/x is nowhere zero on R1 − {0}, the (ordinary) support of
T has to be a closed subset of R1 containing R1 − {0}. Therefore T has support
R1. On the other hand, T does not equal a function on all of R1, and T has {0}
as its singular support.

Starting in Section 2, we shall examine various operations on distributions.
Operations on distributions will be defined by duality from corresponding opera-
tions on smooth functions. For that reason it is helpful to know about continuity
of various operations on spaces of smooth functions. These we study now.
We begin with multiplication by smooth functions and with differentiation. If

ψ is in C∞(U ), then multiplication ϕ �→ ψϕ carries C∞com(U ) into itself and also
C∞(U ) into itself. The same is true of any iterated partial derivative operator
ϕ �→ Dαϕ. We shall show that these operations are continuous. A multiplication
ϕ �→ ψϕ need not carry S(RN ) into itself, and we put aside S(RN ) for further
consideration later.
The kind of continuity result for C∞(U ) that we are studying tends to follow

from an easy computation with seminorms, and it is often true that the same
argument can be used to handle also C∞com(U ). Here is the general fact.

Lemma 5.2. Suppose that L : C∞(U )→ C∞(U ) is a continuous linear map
that carries C∞com(U ) into C∞com(U ) in such a way that for each compact K ⊆ U ,
C∞K is carried into C∞K ′ for some compact K

′ ⊇ K . Then L is continuous as a
linear map from C∞com(U ) into C∞com(U ).

PROOF. Proposition 4.29b shows that it is enough to prove for each K that
the composition of L : C∞K → C∞K ′ followed by the inclusion of C

∞
K ′ into

C∞com(U ) is continuous, and we know that the inclusion is continuous. Fix
K , choose Kp in the exhausting sequence containing the corresponding K ′,
and let α be a multi-index. By the continuity of L : C∞(U ) → C∞(U ),
there exist a constant C , some integer q with q ≥ p, and finitely many multi-
indices βi such that ‖L(ϕ)‖p,α ≤ C

∑
i ‖ϕ‖q,βi . Since L(ϕ) has support in

K ′ ⊆ Kp and ϕ has support in K ⊆ K ′ ⊆ Kp ⊆ Kq , this inequality shows that
supx∈K ′ |Dα(L(ϕ))(x)| ≤ C

∑
i supx∈K |Dβiϕ(x)|. Hence L : C∞K → C∞K ′ is

continuous, and the lemma follows.

Proposition 5.3. If ψ is in C∞(U ), then ϕ �→ ψϕ is continuous from C∞(U )

to C∞(U ) and from C∞com(U ) to C∞com(U ). If α is any differentiation multi-index,
then ϕ �→ Dαϕ is continuous from C∞(U ) to C∞(U ) and from C∞com(U ) to
C∞com(U ).



1. Continuity on Spaces of Smooth Functions 185

PROOF. The Leibniz rule for differentiation of products gives Dα(ψϕ) =∑
β≤α cβ(D

β−αψ)(Dβϕ) for certain integers cβ . Then

‖ψϕ‖p,α ≤
∑

β≤α cβmβ‖ϕ‖p,β ,

where mβ = supx∈Kp
|Dβ−αψ(x)|, and it follows that ϕ �→ ψϕ is continuous

from C∞(U ) into itself. Taking K ′ = K in Lemma 5.2, we see that ϕ �→ ψϕ is
continuous from C∞com(U ) into itself.
Since ‖Dαϕ‖p,β = ‖ϕ‖p,α+β , the function ϕ �→ Dαϕ is continuous from

C∞(U ) into itself, and Lemma 5.2 with K ′ = K shows that ϕ �→ Dαϕ is
continuous from C∞com(U ) into itself.

We can combine these two operations into the operation of a linear partial
differential operator

P(x, D) =
∑
|α|≤m

cα(x)D
α with all cα in C

∞(U )

by means of the formula P(x, D)ϕ =∑|α|≤m cα(x)D
αϕ. It is to be understood

that the operator has smooth coefficients. It is immediate from Proposition 5.3
that P(x, D) is continuous from C∞(U ) into itself and from C∞com(U ) into itself.
An operator P(x, D) as above is said to be of order m if some cα(x) with

|α| = m has cα not identically 0. The operator reduces to an operator of the form
P(D) if the coefficient functions cα are all constant functions.
We introduce the transpose operator P(x, D)tr by the formula

P(x, D)trϕ(x) =
∑
|α|≤m

(−1)|m|Dα
(
cα(x)ϕ(x)

)
.

Expanding out the terms Dα
(
cα(x)ϕ(x)

)
by means of the Leibniz rule, we see

that P(x, D)tr is some linear partial differential operator of the form Q(x, D).
The next proposition gives the crucial property of the transpose operator.

Proposition 5.4. Suppose that P(x, D) is a linear partial differential operator
on U . If u and v are in C∞(U ) and at least one of them is in C∞com(U ), then∫

U

(
P(x, D)tru(x)

)
v(x) dx =

∫
U
u(x)

(
P(x, D)v(x)

)
dx .

PROOF. It is enough to prove that the partial derivative operator Dj with respect
to xj satisfies

∫
U (Dju)v dx = − ∫U u(Djv) dx since iteration of this formula

gives the result of the proposition. Moving everything to one side of the equation
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and putting w = uv, we see that it is enough to prove that
∫

RN IU Djw dx = 0
if w is in C∞com(U ), where IU is the indicator function of U . We can drop the
IU from the integration since Djw is 0 off U , and thus it is enough to prove that∫
RN Djw dx = 0 for w in C∞com(R

N ). By Fubini’s Theorem the integral may be
computed as an iterated integral. The integral on the inside extends over the set
where xj is arbitrary in R and the other variables take on particular values, say
xi = ci for i = j . The integral on the outside extends over all choices of the ci
for i = j . The inside integral is already 0, because for suitable a and b, it is of
the form

∫ b
a Djw dxj = [w]xj=bxj=a = 0− 0 = 0.

Next let us consider convolution, taking U = RN . We shall be interested in
the function ψ ∗ ϕ given by

ψ ∗ ϕ(x) = ∫
RN ψ(x − y)ϕ(y) dy = ∫

RN ψ(y)ϕ(x − y) dy,

under the assumption that ψ and ϕ are in C∞(RN ) and that one of them has
compact support.
A simple device of localization helps with the analysis of this function: If K

is the support of ψ , then the values of ψ ∗ ϕ(x) for x in a bounded open set S
depend only on the value of ϕ on the bounded open set of differences S − K .
Consequently we can replace ϕ by ηϕ, where η is a member of C∞com(R

N ) that
is 1 on S − K , and the values of ψ ∗ ϕ(x) will match those of ψ ∗ (ηϕ)(x) for x
in S. The latter function is the convolution of two smooth functions of compact
support and is smooth by Proposition 3.5c. Thereforeψ ∗ϕ is always inC∞(RN )

if ψ is in C∞com(R
N ) and ϕ is in C∞(RN ). We shall use this same device later in

treating convolution of distributions.

Proposition 5.5. If ψ is in C∞com(R
N ) and ϕ is in C∞(RN ), then

(a) Dα(ψ ∗ ϕ) = (Dαψ) ∗ ϕ = ψ ∗ (Dαϕ),
(b) convolution of three functions in C∞(RN ) is associative when at least

two of the three functions have compact support,
(c) convolution with ψ is continuous from C∞(RN ) into itself and from

C∞com(R
N ) into itself,

(d) convolution with ϕ is continuous from C∞com(R
N ) into C∞(RN ).

PROOF. For (a), let K be the support of ψ . Concentrating on x’s lying in a
bounded open set S, choose a function η in C∞com(R

N ) that is 1 on S − K , and
then ψ ∗ ϕ(x) = ψ ∗ (ηϕ)(x) for x in S. Proposition 3.5c says that

Dα(ψ ∗ (ηϕ))(x) = (Dαψ) ∗ (ηϕ)(x) = ψ ∗ Dα(ηϕ)(x)

for all x in RN , and consequently

Dα(ψ ∗ ϕ)(x) = (Dαψ) ∗ ϕ(x) = ψ ∗ Dαϕ(x)
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for all x in S. Since S is arbitrary, (a) follows. The proof of (b) is similar.
For (c), again let K be the support of ψ , and apply (a). Then

‖ψ ∗ ϕ‖p,α = sup
x∈Kp

|Dα(ψ ∗ ϕ)(x)| = sup
x∈Kp

|ψ ∗ (Dαϕ)(x)|

≤ sup
x∈Kp

∫
K |ψ(y)||Dαϕ(x − y)| dy∣∣ ≤ ‖ψ‖1 supz∈Kp−K |Dαϕ(z)|,

and the right side is ≤ ‖ψ‖1‖ϕ‖q,α if q is large enough so that Kp − K ⊆ Kq .
This proves the continuity on C∞(RN ), and the continuity on C∞com(R

N ) then
follows from Lemma 5.2.
For (d), Proposition 4.29b shows that it is enough to prove that ψ �→ ψ ∗ ϕ is

continuous from C∞K into C∞(RN ) for each compact set K . The same estimate
as for (c) gives

‖ψ ∗ ϕ‖p,α ≤ ‖ψ‖1‖ϕ‖q,α ≤ |K |‖ϕ‖q,α(sup
x∈K

|ψ(x)|)

if q is large enough so that Kp − K ⊆ Kq . The result follows.

2. Elementary Operations on Distributions

In this section we take up operations on distributions. If f is a locally integrable
function on the open set U , we defined the member Tf of D ′(U ) by

〈Tf , ϕ〉 =
∫
U
f ϕ dx

for ϕ in C∞com(U ). If f vanishes outside a compact subset of U , then Tf is in
E ′(U ), extending to operate on all of C∞(U ) by the same formula.
Starting from certain continuous operations L on smooth functions, we want

to extend these operations to operations on distributions. So that we can regard
L as an extension from smooth functions to distributions, we insist on having
L(Tf ) = TL( f ) if f is smooth. To tie the definition of L on distributions Tf to the
definition on general distributions T , we insist that L be the “transpose” of some
continuous operation M on functions, i.e., that 〈L(T ), ϕ〉 = 〈T,M(ϕ)〉. Taking
T = Tf in this equation, we see thatwemust have

∫
U L( f )ϕ dx =

∫
U f M(ϕ) dx .

On the other hand, once we have found a continuous M on smooth functions with∫
U L( f )ϕ dx =

∫
U f M(ϕ) dx , then we can make the definition 〈L(T ), ϕ〉 =

〈T,M(ϕ)〉 for the effect of L on distributions. In particular the operator M on
smooth functions is unique if it exists. We write L tr = M for it. In summary, our
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procedure6 is to find, if we can, a continuous operator L tr on smooth functions
such that ∫

U
L( f )ϕ dx =

∫
U
f L tr(ϕ) dx

and then to define
〈L(T ), ϕ〉 = 〈T, L tr(ϕ)〉.

We begin with the operations of multiplication, whose continuity is addressed
in Proposition 5.3. If L is multiplication by the function ψ in C∞(U ), then
we can take L tr = L because

∫
U L( f )ϕ dx =

∫
U (ψ f )ϕ dx = ∫U f (ψϕ) dx =∫

U f L tr(ϕ) if f and ϕ are in C∞(U ) and one of them has compact support. Thus
our definition of multiplication of a distribution T by ψ in C∞(U ) is

〈ψT, ϕ〉 = 〈T, ψϕ〉.

Here we assume either that T is in D ′(U ) and ϕ is in C∞com(U ) or else that T is
in E ′(U ) and ϕ is in C∞(U ). Briefly we say that at least one of T and ϕ has
compact support.
The operation of multiplication by a function can be used to localize the effect

of a distribution in a way that is useful in the definition below of convolution
of distributions. First observe that if T is in D ′(U ) and η is in C∞com(U ), then
the support of ηT is contained in the support of η; in fact, if ϕ is any member
of C∞com(U ∩ support(η)c), then ηϕ = 0 and hence 〈ηT, ϕ〉 = 〈T, ηϕ〉 = 0. In
particular, ηT is in E ′(U ). On the other hand, we lose no information about T
by this operation if we allow all possible η’s, because if T is in D ′(U ) and if ϕ
is a member of C∞com(U ) with support in a compact subset K of U , then ϕ = ηϕ

and hence 〈T, ϕ〉 = 〈T, ηϕ〉 = 〈ηT, ϕ〉.
Next we consider differentiation, which is a continuous operation by Proposi-

tion 5.3. When L gives the iterated derivative Dα of a distribution, we can take
the operation L tr on smooth functions to be (−1)|α| times Dα . The definition is
then

〈DαT, ϕ〉 = (−1)|α|〈T, Dαϕ〉.
Again we assume that at least one of T and ϕ has compact support.
Putting these definitions together yields the definition of the operation of a lin-

ear partial differential operator P(x, D)with smooth coefficients on distributions.
The formula is

〈P(x, D)T, ϕ〉 = 〈T, P(x, D)trϕ〉,
6Another way of proceeding is to use topologies on E ′(U ) andD ′(U ) such thatC∞com(U ) is dense

in E ′(U ) and C∞(U ) is dense in D ′(U ). The approach in the text avoids the use of such topologies
on spaces of distributions, and it will not be necessary to consider them.
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where P(x, D)tr is the transpose differential operator defined in Section 1. This
definition is forced to satisfy P(x, D)T = TP(x,D) f on smooth f .
For further operations let us specialize to the setting that U = RN . The first

is the operation of acting by −1 in the domain. For a function ϕ, we define
ϕ∨(x) = ϕ(−x). It is easy to check that this operation is continuous on C∞(RN )

and onC∞com(R
N ). Since

∫
RN f ∨ϕ dx = ∫

RN f ϕ∨ dx by a change of variables, the
operator L tr corresponding to L( f ) = f ∨ is just L itself. Thus the corresponding
operation T �→ T ∨ on distributions is given by

〈T ∨, ϕ〉 = 〈T, ϕ∨〉.
The operation ( · )∨ has the further property that (ϕ∨)∨ = ϕ and (T ∨)∨ = T .

3. Convolution of Distributions

The next operation, again in the setting of RN , is the convolution of two dis-
tributions. Convolution is considerably more complicated than the operations
considered so far because it involves two variables.
The method of Section 2 starts off easily enough. An easy change of variables

shows that any three smooth functions, two of which have compact support,
satisfy

∫
RN (ψ ∗ f )ϕ dx = ∫

RN (ψ)( f ∨ ∗ ϕ) dx , where f ∨(−x) = f (−x).
This means that

∫
RN L(ψ)ϕ dx = ∫

RN ψL tr(ϕ) dx , where L(ψ) = ψ ∗ f and
L tr(ϕ) = f ∨∗ϕ. Thus Section 2 says to define T ∗ f by 〈T ∗ f, ϕ〉 = 〈T, f ∨∗ϕ〉.
To handle the other convolution variable, however, we have to know that T ∗ f
is a smooth function and that the passage from f to T ∗ f is continuous, and
neither of these facts is immediately apparent. In addition, there are several cases
to handle, depending on which two of the functions f , ψ , and ϕ at the start have
compact support.
Sorting out all these matters could be fairly tedious, but there is a model for

what happens that will help us anticipate the results. We shall follow the path
that the model suggests. Then afterward, if we were to want to do so, it would
be possible to go back and see that all the arguments with transposes in the style
of Section 2 can be carried through with the tools that we have had to establish
anyway.
The model takes a cue from Theorem 5.1, which says that members of E ′(RN )

are given by integration with compactly supported complex Borel measures and
derivatives of them. In particular our definitions ought to specialize to famil-
iar constructions when they are given by compactly supported positive Borel
measures. In the case of measures, convolution is discussed in Problem 5 of
Chapter VIII of Basic. The definition and results are as follows:

(i) (μ1 ∗ μ2)(E) =
∫

RN μ1(E − x) dμ2(x) by definition,
(ii)

∫
RN ϕ d(μ1∗μ2) =

∫
RN

∫
RN ϕ(x+ y) dμ1(x) dμ2(y) for ϕ ∈ Ccom(RN ),
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(iii) μ1 ∗ μ2 = μ2 ∗ μ1,
(iv) ϕ dx∗μ is the continuous function (ϕ dx∗μ)(x) = ∫

RN ϕ(x−y) dμ(y) =∫
RN (ϕ

∨)−x dμ for ϕ ∈ Ccom(RN ), where the subscript −x refers to the
translate ht (y) = h(y + t).

The measures and the function ϕ in these properties are all assumed compactly
supported, but some relaxation of this condition is permissible. For example the
function ϕ can be allowed to be any continuous scalar-valued function on RN .
In defining convolution of distributions and establishing its properties, we shall

face three kinds of technical problems: One is akin to Fubini’s Theorem and will
be handled for E ′(RN ) by appealing to Theorem 5.1 and using the ordinary form
of Fubini’s Theorem with measures. A second is a regularity question—showing
that certain integrations in one variable of functions of two variables lead to
smooth functions of the remaining variable—and will be handled for E ′(RN ) by
Lemma 5.6 below. A third is the need to work with D ′(RN ), not just E ′(RN ),
and will be handled by the localization device T �→ ηT mentioned in Section 2.
We begin with the lemma that addresses the regularity question.

Lemma 5.6. Let K be a compact metric space, and let μ be a Borel measure
on K . Suppose that � = �(x, y) is a scalar-valued function on RN × K such
that �( · , y) is smooth for each y in K , and suppose further that every iterated
partial derivative Dα

x� in the first variable is continuous on RN × K . Then the
function

F(x) =
∫
K
�(x, y) dμ(y)

is smooth on RN and satisfies DαF(x) = ∫K Dα
x�(x, y) dμ(y) for every multi-

index α.

REMARKS. The lemma gives us a new proof of the smoothness shown in
Section 1 for ψ ∗ ϕ when ψ is in C∞com(R

N ) and ϕ is in C∞(RN ). In fact,
we write the convolution as ψ ∗ ϕ(x) = ∫

RN ϕ(x − y)ψ(y) dy and apply the
lemma with μ equal to Lebesgue measure on the compact set support(ψ) and
with F(x) = ψ ∗ ϕ(x) and �(x, y) = ϕ(x − y)ψ(y).

PROOF. In the proof we may assume without loss of generality that � is real-
valued. We begin by showing that F is continuous. If xn → x0, then the uniform
continuity of � on the compact set {xn}n≥0 × K implies that limn �(xn, y) =
�(x0, y) uniformly. Dominated convergence allows us to conclude that
limn

∫
K �(xn, y) dμ(y) =

∫
K �(x0, y) dμ(y). Therefore F is continuous.

Let B be a (large) closed ball in RN , and suppose that x is a member of B that
is at distance at least 1 from Bc. If ej denotes the j th standard basis vector of RN
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and if |h| < 1, then the Mean Value Theorem gives
�(x + hej , y)−�(x, y)

h
= ∂�

∂xj
(c, y)

for some c on the line segment between x and x + h. If ε > 0 is given, choose
the δ of uniform continuity of ∂�

∂xj
on the compact set B × K . We may assume

that δ < 1. For |h| < δ and for y in K , we have∣∣∣�(x + hej , y)−�(x, y)

h
− ∂�

∂xj
(x, y)

∣∣∣ = ∣∣∣ ∂�
∂xj

(c, y)− ∂�

∂xj
(x, y)

∣∣∣ < ε,

the inequality holding since (c, y) and (x, y) are both in B×K and are at distance
at most δ from one another. As a consequence, if L is any compact subset ofRN ,
then

lim
h→0

�(x + hej , y)−�(x, y)

h
= ∂�

∂xj
(x, y)

uniformly for (x, y) in L × K . Because of this uniform convergence we have

lim
h→0

∫
K

�(x + hej , y)−�(x, y)

h
dμ(y) =

∫
K

∂�

∂xj
(x, y) dμ(y).

The integral on the left side equals h−1[F(x + hej , y) − F(x, y)], and the
limit relation therefore shows that ∂

∂xj

∫
K �(x, y) dμ(y) exists and equals∫

K
∂�
∂xj

(x, y) dμ(y).

This establishes the formula DαF(x) = ∫K Dα
x�(x, y) dμ(y) for α equal to

the multi-index that is 1 in the j th place and 0 elsewhere. The remainder of the
proof makes the above argument into an induction. If we have established the
formula DαF(x) = ∫K Dα

x�(x, y) dμ(y) for a certain α, then the first paragraph
of the proof shows that DαF is continuous. The second paragraph of the proof
shows for each partial derivative operator Dj in one of the x variables that the
operator Dβ = Dj Dα has DβF(x) = ∫K Dβ

x�(x, y) dμ(y). The lemma follows.

For our definitions let us beginwith the convolution of twomembers ofE ′(RN ).
As indicated at the start of the section, we shall jump right to the final formula.
The justification via formulas for transpose operations can be done afterward if
desired. If we use notation that treats distributions like measures, the formula (ii)
above suggests trying

〈S ∗ T, ϕ〉 = ∫
RN

∫
RN ϕ(x + y) dT (y) dS(x) = 〈S, 〈T, ϕx 〉〉 = 〈T, 〈S, ϕy〉〉,

where the subscript again indicates a translation: ϕx(z) = ϕ(z+ x). The outside
distribution acts on the subscripted variable, and the inside distribution acts on
the hidden variable. To make this into a rigorous definition, however, we have
to check that 〈T, ϕx 〉 and 〈S, ϕy〉 are smooth, that the last equality in the above
display is valid, and that the resulting dependence on ϕ is continuous. We carry
out these steps in the next proposition.
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Proposition 5.7. Let S and T be in E ′(RN ), and let ϕ be in C∞(RN ). Then

(a) the functions x �→ 〈T, ϕx 〉 and y �→ 〈S, ϕy〉 are smooth on RN ,
(b) Dα(x �→ 〈T, ϕx 〉) = 〈T, (Dαϕ)x 〉,
(c) the function ϕ �→ 〈T, ϕx 〉 is continuous from C∞(RN ) into itself and

from C∞com(R
N ) into itself,

(d) 〈S, 〈T, ϕx 〉〉 = 〈T, 〈S, ϕy〉〉,
(e) the function ϕ �→ 〈S, 〈T, ϕx 〉〉 is continuous from C∞(RN ) into the

scalars,
(f) the formula

〈S ∗ T, ϕ〉 = 〈S, 〈T, ϕx 〉〉 = 〈T, 〈S, ϕy〉〉

determines a well-defined member of E ′(RN ) such that S ∗ T = T ∗ S,
(g) the supports of S, T , and S ∗ T are related by

support(S ∗ T ) ⊆ support(S)+ support(T ).

PROOF. Let expressions for S and T in Theorem 5.1 be

〈S, ϕ〉 =∑α

∫
RN Dαϕ(x) dρα(x) and 〈T, ϕ〉 =∑β

∫
RN Dβϕ(y) dσβ(y),

the sums both being over finite sets of multi-indices and the complex measures
being supported on some compact subset of RN . Then

〈T, ϕx 〉 =
∑

β

∫
RN Dβϕ(x + y) dσβ(y). (∗)

If we apply Lemma 5.6 with �(x, y) = Dβϕ(x + y) and treat y as varying over
the union of the compact supports of the σβ’s, then we see that each term in
the sum over β is a smooth function of x . Hence x �→ 〈T, ϕx 〉 is smooth, and
symmetrically y �→ 〈S, ϕy〉 is smooth. This proves (a).
Applying to (∗) the conclusions of Lemma 5.6 about passing the derivative

operator Dα under the integral sign, we obtain

Dα(x �→ 〈T, ϕx 〉) =
∑

β

∫
RN Dα+βϕ(x + y) dσβ(y) = 〈T, (Dαϕ)x 〉.

This proves (b).
If K denotes a subset of RN containing the supports of all the σβ’s, then

|Dα〈T, ϕx 〉| ≤
∑
β

sup
y∈K

|Dα+βϕ(x + y)|‖σβ‖,
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where ‖σβ‖ denotes the total-variation norm of σβ . Hence
sup
x∈L
|Dα〈T, ϕx 〉| ≤

∑
β

sup
z∈K+L

|Dα+βϕ(z)|‖σβ‖.

This proves (c) for C∞(RN ). Combining this same inequality with Lemma 5.2,
we obtain (c) for C∞com(R

N ).
The formula for 〈S, · 〉 and the identity (∗) together give

〈S, 〈T, ϕx 〉〉 =
∑
α,β

∫
RN

∫
RN DαDβϕx(y) dσβ(y) dρα(x)

=∑
α,β

∫
RN

∫
RN Dα+βϕ(x + y) dσβ(y) dρα(x). (∗∗)

By Fubini’s Theorem the right side is equal to∑
α,β

∫
RN

∫
RN Dα+βϕ(x + y) dρα(x) dσβ(y) = 〈T, 〈S, ϕy〉〉.

This proves (d).
Conclusion (e) is immediate from (c) and the continuity of S on C∞(RN ).

Thus S ∗ T is in E ′(RN ). The equality in (d) shows that S ∗ T = T ∗ S. This
proves (f).
Finally let L be the compact set support(S)+ support(T ), and suppose that ϕ

is in C∞com(L
c). Let d > 0 be the distance from support(ϕ) to L , and let D be the

function giving the distance to a set. Define

LS = {x | D(x, support(S)} ≤ 1
3d

LT = {x | D(x, support(T )} ≤ 1
3d.and

If xS is in LS and xT is in LT , then |xS − s| ≤ 1
3d and |xT − t | ≤ 1

3d for some
s in support(S) and t in support(T ). Thus |(xS + xT ) − (s + t)| ≤ 2

3d. Hence
xS + xT is at distance ≤ 2

3d from L . Since every member of support(ϕ) is at
distance ≥ d from L , xS + xT is not in support(ϕ). Therefore

(LS + LT ) ∩ support(ϕ) = ∅. (†)

Also, support(S) ⊆ (LS)o and support(T ) ⊆ (LT )o. Since LS contains a neigh-
borhood of support(S), Theorem 5.1 allows us to express S in terms of complex
Borel measures ρα supported in LS . Similarly we can express T in terms of
complex Borel measures σβ supported in LT . By (†) the integrand in (∗∗) is iden-
tically 0 on LS+LT , and hence 〈S, 〈T, ϕx 〉〉 = 0. Thus 〈S∗T, ϕ〉 = 0 for all ϕ in
C∞com(L

c), and we conclude that support(S ∗T ) ⊆ L = support(S)+support(T ).
This proves (g).



194 V. Distributions

Proposition 5.7 establishes facts about the convolution of two members of
E ′(RN ) as a member of E ′(RN ). If one of the two members is in fact a smooth
function of compact support, then the corresponding results about convolution of
measures suggest that the convolution should be a smooth function. The necessary
tools for carrying out a proof are already in place in Proposition 5.7 and Theorem
5.1.

Corollary 5.8. If S is in E ′(RN ), f is in C∞com(R
N ), and ϕ is in C∞(RN ), then

〈S ∗ Tf , ϕ〉 = 〈S, f ∨ ∗ ϕ〉.

Moreover, S ∗ Tf is given by the C∞ function y �→ 〈S, ( f ∨)−y〉, i.e.,

S ∗ Tf = TF with F(y) = 〈S, ( f ∨)−y〉.

REMARKS. For S in E ′(RN ) and f in C∞com(R
N ), we write S ∗ f for the

C∞com(R
N ) function F of the corollary such that S ∗ Tf = TF . The specific

formula that we shall use to simplify notation is

S ∗ Tf = TS∗ f ,

with the right side written as TS∗ f rather than TS∗Tf .

PROOF. Proposition 5.7f gives

〈S ∗ Tf , ϕ〉 = 〈S, 〈Tf , ϕx 〉〉 =
〈
S,
∫

RN f (y)ϕ(x + y) dy
〉

= 〈S, ∫
RN f (−y)ϕ(x − y) dy

〉 = 〈S, f ∨ ∗ ϕ〉. (∗)

This proves the first displayed formula. For the rest let S be written according to
Theorem 5.1 as 〈S, ψ〉 =∑α

∫
RN Dαψ dρα . Then

〈S, f ∨ ∗ ϕ〉 =∑α

∫
RN Dα( f ∨ ∗ ϕ)(x) dρα(x)

=∑α

∫
RN (Dα f ∨ ∗ ϕ)(x) dρα(x)

=∑α

∫
RN

∫
RN Dα f ∨(x − y)ϕ(y) dy dρα(x)

= ∫
RN

[∑
α

∫
RN (Dα f ∨)−y dρα(x)

]
ϕ(y) dy

= ∫
RN 〈S, ( f ∨)−y〉ϕ(y) dy,

the next-to-last equality following from Fubini’s Theorem. Combining this cal-
culation with (∗), we see that S ∗ Tf = TF with F(y) = 〈S, ( f ∨)−y〉. The
function F is smooth by Proposition 5.7a.



3. Convolution of Distributions 195

Corollary 5.9. Convolution of members of E ′(RN ) is consistent with convo-
lution of members ofC∞com(R

N ) in the sense that if f and g are inC∞com(R
N ), then

Tg ∗ Tf is given by the C∞ function Tg ∗ f , and this function equals g ∗ f .

PROOF. The first conclusion is the result of Corollary 5.8 with S = Tg.
For the second conclusion Corollary 5.8 gives Tg ∗ Tf = TF with F(y) =
〈Tg, ( f ∨)−y〉 =

∫
RN g(x) f ∨(x − y) dx = ∫

RN g(x) f (y − x) dy = (g ∗ f )(y).
Hence TTg∗ f = Tg∗ f , and the second conclusion follows.

Corollary 5.10. If T is in E ′(RN ) and ϕ is in C∞com(R
N ), then

(T ∨ ∗ ϕ)(x) = 〈T, ϕx 〉.
PROOF. Corollary 5.8 gives (T ∨ ∗ ϕ)(x) = 〈T ∨, (ϕ∨)−x 〉, and the latter is

equal to 〈T, ((ϕ∨)−x)∨〉 = 〈T, ϕx 〉.
Corollary 5.11. If S and T are in E ′(RN ) and ϕ is in C∞com(R

N ), then

〈S ∗ T, ϕ〉 = 〈S, T ∨ ∗ ϕ〉.
PROOF. Proposition 5.7f and Corollary 5.10 give 〈S ∗ T, ϕ〉 = 〈S, 〈T, ϕx 〉〉 =

〈S, T ∨ ∗ ϕ〉.
Corollary 5.12. If T is in E ′(RN ), then the map ϕ �→ T ∨ ∗ ϕ is continuous

from C∞com(R
N ) into itself and extends continuously to a map of C∞(RN ) into

itself under the definition

(T ∨ ∗ ϕ)(x) = 〈T, ϕx 〉.
The derivatives of T ∨ ∗ϕ satisfy Dα(T ∨ ∗ϕ) = T ∨ ∗Dαϕ, and also (T ∨ ∗ϕ)∨ =
T ∗ ϕ∨.
PROOF. The equality (T ∨ ∗ ϕ)(x) = 〈T, ϕx 〉 restates Corollary 5.10, and the

statements about continuity follow from Proposition 5.7c. For the derivatives we
use Proposition 5.7b to write Dα(T ∨ ∗ ϕ)(x) = Dα〈T, ϕx 〉 = 〈T, (Dαϕ)x 〉 =
(T ∨∗Dαϕ)(x). Finally (T ∨∗ϕ)∨(x)=(T ∨∗ϕ)(−x)=〈T, ϕ−x 〉=〈T ∨, (ϕ−x)∨〉
= 〈T ∨, (ϕ∨)x 〉 = (T ∗ ϕ∨)(x).
Since T ∨ ∗ ϕ is now well defined for T in E ′ and ϕ in C∞(RN ), we can use

the same formula as in Corollary 5.11 to make a definition of convolution of two
arbitrary distributions when only one of the two distributions being convolved has
compact support. Specifically if S is in D ′(RN ) and T is in E ′(RN ), we define
S ∗ T in D ′(RN ) by the first equality of

〈S ∗ T, ϕ〉 = 〈S, T ∨ ∗ ϕ〉 = 〈S, 〈T, ϕx 〉〉 for ϕ ∈ C∞com(RN ),

the second equality holding by Corollary 5.12. Corollary 5.12 shows also that
S∗T has the necessary property of being continuous onC∞com(RN ), and Corollary
5.11 shows that this definition extends the definition of S ∗ T when S and T are
in E ′(RN ).
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What is missing with this definition of S ∗ T is any additional relationship that
arises for distributions that equal smooth functions. For example:

• Does this new definition make Tf ∗ T = TT∗ f when T is compactly
supported and f does not have compact support?

• Is S ∗Tf equal to a function when f is compactly supported and S is not?
• If so, are the formulas of Corollaries 5.8, 5.9, and 5.10 valid?
• If so, can we equally well define S ∗ T by 〈S ∗ T, ϕ〉 = 〈T, S∨ ∗ ϕ〉 =
〈T, 〈S, ϕy〉〉 when T is compactly supported and S is not?

The answers to these questions are all affirmative. To get at the proofs, we
introduce a technique of localization for members of D ′(RN ). Proposition 5.13
below is a quantitative statement of what we need. We apply the technique to
obtain smoothness of functions of the form 〈S, ϕy〉 when S is in D ′(RN ) and
ϕ is in C∞com(R

N ); this step does not make use of the above enlarged definition
of S ∗ T . Then we gradually make the connection with the new definition of
convolution and establish all the desired properties.

Proposition 5.13. Let N be a bounded open set inRN . Let S be inD ′(RN ), and
let ϕ be in C∞com(R

N ). If η ∈ C∞com(RN ) is identically 1 on the set of differences
support(ϕ)− N , then 〈S, ϕy〉 = 〈ηS, ϕy〉 for y in N . Consequently y �→ 〈S, ϕy〉
is in C∞(RN ). Moreover, Dα(y �→ 〈S, ϕy〉) = 〈S, (Dαϕ)y〉, and the linear map
ϕ �→ 〈S, ϕy〉 of C∞com(RN ) into C∞(RN ) is continuous.

PROOF. Let y be in N . If x + y is in support(ϕ), then x is in support(ϕ)− N ,
and η(x) = 1. Hence η(x)ϕ(x + y) = ϕ(x + y). If x + y is not in support(ϕ),
then η(x)ϕ(x+ y) = ϕ(x+ y) because both sides are 0. Hence ηϕy = ϕy for y in
N , and 〈S, ϕy〉 = 〈S, ηϕy〉 = 〈ηS, ϕy〉. The function y �→ 〈ηS, ϕy〉 is smooth by
Proposition 5.7a, and hence y �→ 〈S, ϕy〉 is smooth on N . Since N is arbitrary,
y �→ 〈S, ϕy〉 is smooth everywhere.
For the derivative formula Proposition 5.7b gives us Dα(y �→ 〈ηS, ϕy〉) =

〈ηS, (Dαϕ)y〉 for y in N . For y in N , 〈ηS, ϕy〉 = 〈S, ϕy〉 and 〈ηS, (Dαϕ)y〉 =
〈S, (Dαϕ)y〉. Therefore Dα(y �→ 〈S, ϕy〉) = 〈S, (Dαϕ)y〉 for y in N . Since N
is arbitrary, Dα(y �→ 〈S, ϕy〉) = 〈S, (Dαϕ)y〉 everywhere.
For the asserted continuity of ϕ �→ 〈S, ϕy〉, it is enough to prove that this map

carriesC∞K continuously intoC
∞(RN ) for each compact set K . If N is a bounded

open set on which we are to make some C∞ estimates, choose η ∈ C∞com(R
N )

so as to be identically 1 on the set of differences K − N . We have just seen that
〈S, ϕy〉 = 〈ηS, ϕy〉 for all y in N . Proposition 5.7c shows that ψ �→ 〈ηS, ψy〉
is continuous from C∞com(R

N ) into C∞com(R
N ), hence from C∞K into C∞com(R

N ),
hence from C∞K into C∞(RN ). Therefore ϕ �→ 〈S, ϕy〉 is continuous from C∞K
into C∞(RN ).
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Corollary 5.14. Let S be in D ′(RN ), T be in E ′(RN ), and ϕ be in C∞com(R
N ).

Then
〈S ∗ T, ϕ〉 = 〈S, T ∨ ∗ ϕ〉 = 〈S, 〈T, ϕx 〉〉 = 〈T, 〈S, ϕy〉〉.

Moreover, Dα(S ∗ T ) = (DαS) ∗ T = S ∗ (DαT ) for every multi-index α.

REMARKS. The first two equalities follow by definition of S ∗ T and by
application of Corollary 5.12. The new statements in the corollary are the third
equality and the derivative formula. The right side 〈T, 〈S, ϕy〉〉 of the displayed
equation is well defined, since Proposition 5.13 shows that 〈S, ϕy〉 is inC∞(RN ).

PROOF. Let N be a bounded open set containing support(T ), and choose a func-
tion η ∈ C∞com(RN ) that is identically 1 on the set of differences support(ϕ)− N .
Proposition 5.7g shows that

support(T ∨ ∗ ϕ) ⊆ support(ϕ)+ support(T ∨)
= support(ϕ)− support(T )
⊆ support(ϕ)− N ,

and the fact that η is identically 1 on support(ϕ)− N implies that

(η)(T ∨ ∗ ϕ) = T ∨ ∗ ϕ. (∗)
Meanwhile, Proposition 5.13 shows that

〈S, ϕy〉 = 〈ηS, ϕy〉 (∗∗)
for all y in N , hence for all y in support(T ). Therefore

〈T, 〈S, ϕy〉〉 = 〈T, 〈ηS, ϕy〉〉 by (∗∗)
= 〈T, (ηS)∨ ∗ ϕ〉 by Corollary 5.10

= 〈ηS ∗ T, ϕ〉 by Corollary 5.11

= 〈ηS, T ∨ ∗ ϕ〉 by Corollary 5.10

= 〈S, η(T ∨ ∗ ϕ)〉 by definition

= 〈S, T ∨ ∗ ϕ〉 by (∗). (†)

For one of the derivative formulas, we have

〈Dα(S ∗ T ), ϕ〉 = (−1)|α|〈S ∗ T, Dαϕ〉 = (−1)|α|〈S, 〈T, (Dαϕ)x 〉〉.
Proposition 5.7b shows that this expression is equal to

(−1)|α|〈S, Dα〈T, ϕx 〉〉 = 〈DαS, 〈T, ϕx 〉〉,
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and the definition of convolution shows that the latter expression is equal to
〈(DαS)∗T, ϕ〉. Hence Dα(S ∗T ) = (DαS)∗T . For the other derivative formula
we have

〈Dα(S ∗ T ), ϕ〉 = (−1)|α|〈S ∗ T, Dαϕ〉 = (−1)|α|〈T, 〈S, (Dαϕ)y〉〉.

Proposition 5.13 shows that this expression is equal to

(−1)|α|〈T, Dα〈S, ϕy〉〉 = 〈DαT, 〈S, ϕy〉〉,

and step (†) shows that the latter expression is equal to

〈S, (DαT )∨ ∗ ϕ〉 = 〈S ∗ (DαT ), ϕ〉.

Hence Dα(S ∗ T ) = S ∗ (DαT ).

For S in D ′(RN ) and ϕ in C∞com(R
N ), we now define

(S∨ ∗ ϕ)(y) = 〈S, ϕy〉.

Corollary 5.8 shows that this definition is consistent with our earlier definition
when S is in the subset E ′(RN ) ofD ′(RN ). Proposition 5.13 shows that the linear
map ϕ �→ S ∗ ϕ is continuous from C∞com(R

N ) into C∞(RN ).

Corollary 5.15. Let S be in D ′(RN ), T be in E ′(RN ), and ϕ be in C∞com(R
N ).

Then

〈S ∗ T, ϕ〉 = 〈S, T ∨ ∗ ϕ〉 = 〈S, 〈T, ϕx 〉〉 = 〈T, 〈S, ϕy〉〉 = 〈T, S∨ ∗ ϕ〉,

and (S ∗ T )∨ = S∨ ∗ T ∨.
PROOF. The displayed line just adds the above definition to the conclu-

sion of Corollary 5.14. For the other formula we use Corollary 5.12 to write
〈(S ∗ T )∨, ϕ〉 = 〈S ∗ T, ϕ∨〉 = 〈S, T ∨ ∗ ϕ∨〉 = 〈S, (T ∗ ϕ)∨〉 = 〈S∨, T ∗ ϕ〉 =
〈S∨ ∗ T ∨, ϕ〉.

With the symmetry that has been established in Corollary 5.15, we allow
ourselves to write T ∗ S for S ∗ T when S is inD ′(RN ) and T is in E ′(RN ). This
notation is consistent with the equality S ∗ T = T ∗ S established in Proposition
5.7f when S and T both have compact support.
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Corollary 5.16. Suppose that S is in D ′(RN ), that f is in C∞(RN ), and that
at least one of S and f has compact support. If ϕ is in C∞com(R

N ), then

〈S ∗ Tf , ϕ〉 = 〈S, f ∨ ∗ ϕ〉.

Moreover, S ∗ Tf is given by the C∞ function y �→ 〈S, ( f ∨)−y〉, i.e.,

S ∗ Tf = TF with F(y) = 〈S, ( f ∨)−y〉.

REMARK. If both S and f have compact support, Corollary 5.16 reduces to
Corollary 5.8.

PROOF. First suppose that S has compact support. Theorem 5.1 allows us to
write S as 〈S, ψ〉 =∑α

∫
RN Dαψ dρα , with the sum involving only finitely many

terms and with the complex Borel measures ρα compactly supported. Applying
Corollary 5.15 to S ∗ Tf and using the definition of S∨ ∗ ϕ, we obtain

〈S ∗ Tf , ϕ〉 =
∫

RN f (y)(S∨ ∗ ϕ)(y) dy
= ∫

RN f (y)
∑

α

∫
RN Dαϕy(x) dρα(x) dy

= ∫
RN

∑
α

∫
RN f (y)Dαϕ(x + y) dρα(x) dy.

Since ϕ and the ρα’s are compactly supported, we may freely interchange the
order of integration to see that the above expression is equal to∑

α

∫
RN

[ ∫
RN f (y)Dαϕ(x + y) dy

]
dρα(x)

=∑α

∫
RN ( f ∨ ∗ Dαϕ)(x) dρα(x)

=∑α

∫
RN (Dα( f ∨) ∗ ϕ)(x) dρα(x)

=∑α

∫
RN

[ ∫
RN Dα( f ∨)(x − y)ϕ(y) dy

]
dρα(x)

= ∫
RN

[∑
α

∫
RN Dα( f ∨)(x − y) dρα(x)

]
ϕ(y) dy

= ∫
RN 〈S, ( f ∨)−y〉ϕ(y) dy

= 〈TF , ϕ〉,

as asserted.
Next suppose instead that f has compact support. Then

〈S ∗ Tf , ϕ〉 = 〈S, (Tf )∨ ∗ ϕ〉 = 〈S, Tf ∨ ∗ ϕ〉 = 〈S, f ∨ ∗ ϕ〉. (∗)

We are to show that this expression is equal to

〈TF , ϕ〉 = 〈T〈S,( f ∨)−y〉, ϕ〉 =
∫

RN 〈S, ( f ∨)−y〉ϕ(y) dy. (∗∗)



200 V. Distributions

We introduce a member η of C∞com(R
N ) that is identically 1 on the set of sums

support( f ∨)+ support(ϕ). Since ηS is in E ′(RN ), Corollary 5.8 shows that

〈ηS, f ∨ ∗ ϕ〉 = ∫
RN 〈ηS, ( f ∨)−y〉ϕ(y) dy =

∫
RN 〈S, η( f ∨)−y〉ϕ(y) dy.

In view of (∗) and (∗∗), it is therefore enough to prove the two identities

〈ηS, f ∨ ∗ ϕ〉 = 〈S, f ∨ ∗ ϕ〉 (†)

and ∫
RN 〈S, η( f ∨)−y〉ϕ(y) dy =

∫
RN 〈S, ( f ∨)−y〉ϕ(y) dy. (††)

Since support( f ∨ ∗ ϕ) ⊆ support( f ∨) + support(ϕ), we have η( f ∨ ∗ ϕ) =
f ∨ ∗ ϕ and therefore 〈ηS, f ∨ ∗ ϕ〉 = 〈S, η( f ∨ ∗ ϕ)〉 = 〈S, f ∨ ∗ ϕ〉. This proves
(†).
To prove (††), it is enough to show that η( f ∨)−y = ( f ∨)−y for every y in

support(ϕ). For a given y in support(ϕ), there is nothing to prove at points x
where ( f ∨)−y(x) = 0. If ( f ∨)−y(x) = 0, then f ∨(x − y) = 0 and x − y is
in support( f ∨). Hence x = y + (x − y) is in support(ϕ) + support( f ∨), and
η(x)( f ∨)−y(x) = ( f ∨)−y(x). This proves (††).

Corollary 5.17. Convolution of two distributions, one of which has compact
support, is consistent with convolution of smooth functions, one of which has
compact support, in the sense that if f and g are smooth and one of them has
compact support, then Tg ∗ Tf is given by the C∞ function Tg ∗ f and by the C∞
function Tf ∗ g, and these functions equal g ∗ f .

PROOF. We apply Corollary 5.16 with S = Tg, and we find that Tg ∗ Tf
is given by the smooth function that carries y to 〈Tg, ( f ∨)−y〉. In turn, this
latter expression equals

∫
RN g(x)( f ∨)−y(x) dx =

∫
RN g(x) f ∨(x − y) dx =∫

RN g(x) f (y − x) dx = (g ∗ f )(y). Hence Tg ∗ f = g ∗ f . Reversing the
roles of f and g, we obtain Tf ∗ g = f ∗ g = g ∗ f .

Corollary 5.18. If R, S, and T are distributions and ψ and ϕ are smooth
functions, then

(a) (T ∗ ψ) ∗ ϕ = T ∗ (ψ ∗ ϕ) provided at least two of T , ψ , and ϕ have
compact support,

(b) (S ∗ T ) ∗ ϕ = (S ∗ ϕ) ∗ T provided at least two of S, T , and ϕ have
compact support,

(c) R ∗ (S ∗ T ) = (R ∗ S) ∗ T provided at least two of R, S, and T have
compact support.
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PROOF. Let η be in C∞com(R
N ). We make repeated use of Corollaries 5.15

through 5.17 in each part. For (a), we use associativity of convolution of smooth
functions (Proposition 5.5b) to write

〈T ∗ Tψ∗ϕ, η〉 = 〈T, (ψ ∗ ϕ)∨ ∗ η〉 = 〈T, (ψ∨ ∗ ϕ∨) ∗ η〉
= 〈T, ψ∨ ∗ (ϕ∨ ∗ η)〉 = 〈T ∗ Tψ, ϕ∨ ∗ η〉
= 〈(T ∗ Tψ) ∗ Tϕ, η〉.

Thus T ∗ Tψ∗ϕ = (T ∗ Tψ) ∗ Tϕ . Since T ∗ Tψ∗ϕ = TT∗(ψ∗ϕ) and (T ∗ Tψ) ∗ Tϕ =
TT∗ψ ∗ Tϕ = T(T∗ψ)∗ϕ , we obtain T ∗ (ψ ∗ ϕ) = (T ∗ ψ) ∗ ϕ. This proves (a).
For (b), we use (a) to write

〈(S ∗ T ) ∗ Tϕ, η〉 = 〈S ∗ T, ϕ∨ ∗ η〉 = 〈S, T ∨ ∗ (ϕ∨ ∗ η)〉
= 〈S, (T ∨ ∗ ϕ∨) ∗ η〉 = 〈S, (T ∗ ϕ)∨ ∗ η〉
= 〈S, (T ∗ Tϕ)∨ ∗ η〉 = 〈S ∗ (T ∗ Tϕ), η〉.

Thus (S∗T )∗Tϕ = S∗(T ∗Tϕ). Since (S∗T )∗Tϕ = T(S∗T )∗ϕ and S∗(T ∗Tϕ) =
S ∗ TT∗ϕ = TS∗(T∗ϕ), we obtain (S ∗ T ) ∗ ϕ = S ∗ (T ∗ ϕ).
For (c), we use (b) to write

〈R ∗ (S ∗ T ), η〉 = 〈R, (S ∗ T )∨ ∗ η〉 = 〈R, (S∨ ∗ T ∨) ∗ η〉
= 〈R, S∨ ∗ (T ∨ ∗ η)〉 = 〈R ∗ S, T ∨ ∗ η〉
= 〈(R ∗ S) ∗ T, η〉.

Thus R ∗ (S ∗ T ) = (R ∗ S) ∗ T , and (c) is proved.

We conclude with a special property of one particular distribution. The Dirac
distribution at the origin is the member of E ′(RN ) given by 〈δ, ϕ〉 = ϕ(0). It
has support {0}. The proposition below shows that the differentiation operation
Dα on distributions equals convolution with the distribution Dαδ.

Proposition 5.19. If T is in D ′(RN ) and if δ denotes the Dirac distribution at
the origin, then δ ∗ T = T . Consequently Dαδ ∗ T = DαT for every multi-index
α.

PROOF. For ϕ in C∞com(R
N ), Corollary 5.14 gives 〈δ ∗ T, ϕ〉 = 〈δ, 〈T, ϕx 〉〉 =

〈T, ϕ〉, and therefore δ ∗ T = T . Applying Dα and using the second conclusion
of Corollary 5.14, we obtain Dα(δ ∗ T ) = δ ∗ (DαT ) = DαT .
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4. Role of Fourier Transform

The final tool we need in order to make the theory of distributions useful for
linear partial differential equations is the Fourier transform. Let us write F for
the Fourier transform on the various places it acts, its initial definition being
F( f )(ξ) = ∫

RN f (x)e−2π i x ·ξ dx on L1(RN ). Since the Schwartz space S(RN )

is contained in L1(RN ), this definition of F is applicable on S(RN ), and it was
shown in Basic that F is one-one from S(RN ) onto itself. We continue to use the
same angular-brackets notation forS ′(RN ) as forD ′(RN ) and E ′(RN ). Then, as a
consequence of Corollary 3.3b, the Fourier transform is well defined on elements
T of S ′(RN ) under the definition 〈F(T ), ϕ〉 = 〈T,F(ϕ)〉 for ϕ ∈ S(RN ), and
Proposition 3.4 shows that F is one-one from S ′(RN ) onto itself. On tempered
distributions that are L1 or L2 functions, F agrees with the usual definitions on
functions. For f in L1, the verification comes down to themultiplication formula:

〈F Tf , ϕ〉 = 〈Tf ,Fϕ〉 =
∫
f (x)(Fϕ)(x) dx = ∫ (F f )(x)ϕ(x) dx = 〈TF f , ϕ〉.

For f in L2, we choose a sequence { fn} in L1 ∩ L2 tending to f in L2, obtain
〈F Tfn , ϕ〉 = 〈TF fn , ϕ〉 for each n, and then check by continuity that we can pass
to the limit.
The formulas that are used to establish the effect of F on S(RN ) come from

the behavior of differentiation and multiplication by polynomials on Fourier
transforms and are

Dα(F f )(x) = F((−2π i)|α|xα f )(x)
xβ(F f )(x) = F((2π i)−|β|Dβ f )(x).and

Let us define the effect of Dα and multiplication by xβ on tempered distributions
and then see how the Fourier transform interacts with these operations. If ϕ is
in S(RN ), then Dαϕ is in S(RN ), and hence it makes sense to define DαT for
T ∈ S ′(RN ) by 〈DαT, ϕ〉 = (−1)α〈T, Dαϕ〉. The product of an arbitrary smooth
function onRN by a Schwartz function need not be a Schwartz function, and thus
the product of an arbitrary smooth function and a tempered distribution need not
make sense as a tempered distribution. However, the product of a polynomial
and a Schwartz function is a Schwartz function, and thus we can define xβT for
T ∈ S ′(RN ) by 〈xβT, ϕ〉 = 〈T, xβϕ〉. The formulas for the Fourier transform
are then

F(DαT ) = (2π i)|α|xαF(T )

F(xβT ) = (−2π i)−|β|DβF(T ).and
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In fact, we compute that 〈F(DαT ), ϕ〉 = 〈DαT,Fϕ〉 = (−1)|α|〈T, DαFϕ〉 =
(−1)|α|〈T,F((−2π i)|α|xαϕ)〉 = (2π i)|α|〈F(T ), xαϕ〉 = (2π i)|α|〈xαF(T ), ϕ〉
and that 〈F(xβT ), ϕ〉 = 〈xβT,Fϕ〉 = 〈T, xβFϕ〉 = 〈T,F((2π i)−|β|Dβϕ)〉 =
(2π i)−|β|〈F(T ), Dβϕ〉 = (−2π i)−|β|〈DβF(T ), ϕ〉.
We have seen that the restriction map carries E ′(RN ) in one-one fashion into

S ′(RN ). Therefore we can identify members of E ′(RN ) with certain members
of S ′(RN ) when it is convenient to do so, and in particular the Fourier transform
becomes a well-defined one-one map of E ′(RN ) into S ′(RN ). (The Fourier
transform is not usable, however, withD ′(RN ).) The somewhat surprising fact is
that the Fourier transform of a member of E ′(RN ) is actually a smooth function,
not just a distribution. We shall prove this fact as a consequence of Theorem
5.1, which has expressed distributions of compact support in terms of complex
measures of compact support.

Theorem 5.20. If T is a member of E ′(RN ) with support in a compact subset
K of RN , then the tempered distribution F(T ) equals a smooth function that
extends to an entire holomorphic function on CN . The value of this function at
z ∈ CN is given by

F(T )(z) = 〈T, e−2π i z·( · )〉,
and there is a positive integer m such that this function satisfies

|Dβ(F T )(ξ)| ≤ Cβ(1+ |ξ |)m

for ξ ∈ RN and for every multi-index β.

REMARK. The estimate shows that the product of 〈T, e−2π i z·( · )〉 by a Schwartz
function is again a Schwartz function, hence that the tempered distribution F(T )
is indeed given by a certain smooth function.

PROOF. Fix a compact set K ′ whose interior contains K . Theorem 5.1 allows
us to write

〈T, ϕ0〉 =
∑
|α|≤m

∫
K ′ D

αϕ0 dρα

for all ϕ0 ∈ C∞(RN ). Replacing ϕ0 by e−2π i z·( · ) gives

〈T, e−2π i z·( · )〉 =∑|α|≤m
∫
K ′ D

α
ξ e
−2π i z·ξ dρα(ξ),

which shows that z �→ 〈T, e−2π i z·( · )〉 is holomorphic inCN and gives the estimate

|Dβ
x 〈T, e−2π i x ·( · )〉| ≤

∑
|α|≤m

∫
ξ∈K ′ |Dβ

x Dα
ξ e
−2π i x ·ξ | d|ρα|(ξ) ≤ Cβ(1+ |x |)m .

Replacing ϕ0 by Fϕ with ϕ in C∞com(RN ) gives

〈F(T ), ϕ〉 = 〈T,Fϕ〉 =∑|α|≤m
∫
ξ∈K ′ D

α
ξ Fϕ(ξ) dρα(ξ)

=∑|α|≤m
∫
ξ∈K ′ D

α
ξ

∫
x∈RN e−2π i x ·ξϕ(x) dx dρα(ξ)
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=∑|α|≤m
∫
ξ∈K ′

∫
x∈RN Dα

ξ e
−2π i x ·ξϕ(x) dx dρα(ξ)

= ∫x∈RN

(∑
|α|≤m

∫
ξ∈K ′ D

α
ξ e
−2π i x ·ξ dρα(ξ)

)
ϕ(x) dx

= ∫x∈RN 〈T, e−2π i x ·( · )〉ϕ(x) dx .

Both sides are continuous functions of the Schwartz-space variableϕ on the dense
subsetC∞com(R

N ), and hence the formula extends to be valid for ϕ in S(RN ). This
proves that F(T ) is given on S(RN ) by the function x �→ 〈T, e−2π i x ·( · )〉. The
estimate on Dβ

x of this function has been obtained above, and the theorem follows.

EXAMPLE. There is an important instance of the formula of the proposition
that can be established directly without appealing to the proposition. The Dirac
distribution δ at the origin, defined by 〈δ, ϕ〉 = ϕ(0), has Fourier transform F(δ)
equal to the constant function 1 because 〈F(δ), ϕ〉 = 〈δ,F(ϕ)〉 = F(ϕ)(0) =∫

RN ϕ dx = 〈T1, ϕ〉, where T1 denotes the distribution equal to the smooth func-
tion 1. Therefore F(Dαδ) = (2π i)|α|xαT1, i.e., F(Dαδ) equals the function
x �→ (2π i)|α|xα . The formula of the proposition when T = Dαδ says that this
function equals (Dαδ)(e−2π i x ·( · )), and we can see this equality directly because
〈Dαδ, e−2π i x ·( · )〉= (−1)|α|〈δ, Dαe−2π i x ·( · )〉= (−1)|α|(−2π i)|α|xα〈δ, e−2π i x ·( · )〉
= (2π i)|α|xα .

We know that the convolution of two distributions is meaningful if one of them
has compact support. Since the (pointwise) product of two general tempered
distributions is undefined, we might not at first expect that the Fourier transform
could be helpful with understanding this kind of convolution. However, Theorem
5.20 says that there is reason for optimism: the product of the Fourier transform
of a distribution of compact support by a tempered distribution is indeed defined.
This is the clue that suggests the second theorem of this section.

Theorem 5.21. If S is in E ′(RN ) and T is in S ′(RN ), then S ∗ T is in S ′(RN ),
and F(S ∗ T ) = F(S)F(T ).

PROOF. We know that S ∗ T is in D ′(RN ), and we shall check that S ∗ T is
actually in S ′(RN ), so that F(S ∗ T ) is defined: We start with ϕ in C∞com(R

N )

and the identity 〈S ∗ T, ϕ〉 = 〈S, T ∨ ∗ ϕ〉 = 〈S∨, T ∗ ϕ∨〉. Since S has compact
support, there is a compact set K and there are constants C and m such that

|〈S ∗ T, ϕ〉 ≤ C
∑
|α|≤m

sup
x∈K

|Dα(T ∗ ϕ∨)(x)| = C
∑
|α|≤m

sup
x∈K

|T ∗ Dα(ϕ∨)(x)|

= C
∑
|α|≤m

sup
x∈K

|〈T, ((Dα(ϕ∨))∨)x 〉| = C
∑
|α|≤m

sup
x∈K

|〈T, (Dαϕ)x 〉|.
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Since T is tempered, there exist constants C ′, m ′, and k such that the right side is

≤ CC ′
∑

|α|≤m,

|β|≤m′

sup
x∈K ,

y∈RN

∣∣(1+ |y|2)k Dβ(Dαϕ)x(y)
∣∣;

in turn, this expression is estimated by Schwartz-space norms for ϕ, and thus
S ∗ T is in S ′(RN ).
Now let ϕ and ψ be Schwartz functions with ϕ and F(ψ) in C∞com(R

N ). Then

〈F(Tϕ ∗ T ), ψ〉 = 〈Tϕ ∗ T,F(ψ)〉 = 〈T, ϕ∨∗ F(ψ)〉
= 〈F(T ),F−1(ϕ∨∗ F(ψ))〉 = 〈F(T ), (F−1(ϕ∨))F−1(F(ψ))〉
= 〈F(T ),F−1(ϕ∨)ψ〉 = 〈F(T ), (F(ϕ))ψ〉 = 〈F(ϕ)F(T ), ψ〉,

the next-to-last equality following since F−1(ϕ∨) = F(ϕ) by the Fourier inver-
sion formula. Since the ψ’s with F(ψ) in C∞com(R

N ) are dense in S(RN ),

F(Tϕ ∗ T ) = F(ϕ)F(T ). (∗)

Finally let ϕ and ψ be in C∞com(R
N ). Corollary 5.18 gives Tϕ ∗ (S ∗ T ) =

(Tϕ ∗ S) ∗ T . Taking the Fourier transform of both sides and applying (∗) three
times, we obtain

F(ϕ)F(S ∗ T ) = F(Tϕ ∗ (S ∗ T )) = F((Tϕ ∗ S) ∗ T )
= F(Tϕ ∗ S)F(T ) = F(ϕ)F(S)F(T ).

Hence we have 〈F(ϕ)F(S ∗ T ), ψ〉 = 〈F(ϕ)F(S)F(T ), ψ〉 and therefore

〈F(S ∗ T ),F(ϕ)ψ〉 = 〈F(S)F(T ),F(ϕ)ψ〉 for all ϕ ∈ C∞com(RN ).

The set of functions F(ϕ) is dense in S(RN ). Moreover, if ηk → η in S(RN ),
then ηkψ → ηψ in S(RN ). Choosing a sequence of ϕ’s for which F(ϕ) tends in
S(RN ) to a function in C∞com(R

N ) that is 1 on the support of ψ , we obtain

〈F(S ∗ T ), ψ〉 = 〈F(S)F(T ), ψ〉.

Since the set of ψ’s is dense in S(RN ), we conclude that F(S ∗ T ) = F(S)F(T ).
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5. Fundamental Solution of Laplacian

The availability of distributions makes it possible to write familiar partial differ-
ential equations in a general but convenient notation. For example consider the
equationu = f inRN , where is the Laplacian. We regard f as known and u
as unknown. Ordinarilywemight think of f as some function, possiblywith some
smoothness properties, and we are seeking a solution u that is another function.
However, we can regard any locally integrable function f as a distribution Tf and
seek a distribution T with T = Tf . In this sense the equation u = f in the
sense of distributions includes the equation in the ordinary sense of functions.
In this section we shall solve this equation when the distribution on the right

side has compact support. To handle existence, the technique is to exhibit a
fundamental solution for the Laplacian, i.e., a solution of the equationT = δ,
where δ is the Dirac distribution at 0, and then to use the rules of Sections 2–3 for
manipulating distributions.7 The argument for this special case will avoid using
the full power of Theorem 5.21, but a generalization to other “elliptic” operators
with constant coefficients that we consider in Chapter VII will call upon the full
theorem.
In this sectionwe shall make use ofGreen’s formula for a ball, as in Proposition

3.14. As we observed in a footnote when applying the proposition in the proof of
Theorem 3.16, the result as given in that proposition directly extends from balls
to the difference of two balls. The extended result is as follows: If BR and Bε

are closed concentric balls of radii ε < R and if u and v are C2 functions on a
neighborhood of E = BR ∩ (Boε )

c, then∫
E
(uv − vu) dx =

∫
∂E

(
u
∂v

∂n
− v

∂u

∂n

)
dσ,

where dσ is “surface-area” measure on ∂E and the indicated derivatives are
directional derivatives pointing outward from E in the direction of a unit normal
vector.

Theorem 5.22. In RN with N > 2, let T be the tempered distribution
−	−1N−1(N − 2)−1|x |−(N−2) dx , where	N−1 is the area of the unit sphere SN−1.
Then T = δ, where δ is the Dirac distribution at 0.

REMARK. The statement uses the name f (x) dx for a certain distribution,
rather than Tf , for the sake of readability.

7Although a fundamental solution for the Laplacian is being shown to exist, it is not unique. One
can add to it the distribution Tf for any smooth function f that is harmonic in all of RN .
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PROOF. We are to prove that each ϕ in C∞com(R
N ) satisfies 〈T, ϕ〉 = 〈δ, ϕ〉,

i.e., that the second equality holds in the chain of equalities

ϕ(0) = 〈δ, ϕ〉 = 〈T, ϕ〉 = 〈T,ϕ〉 = − 1
	N−1(N−2)

∫
RN

ϕ(x) dx
|x |N−2 .

WeapplyGreen’s formula as abovewith the closed balls BR and Bε centered at the
origin, with R chosen large enough so that support(ϕ) ⊆ BoR , with u = |x |−(N−2),
and with v = ϕ. Writing r for |x | and observing that u = 0 on BR − Bε and
that ∂ϕ

∂n = −∇ϕ · xr on the boundary of Bε , we obtain∫
∂Bε

(−r−(N−2) x ·∇ϕr −((ϕ)(− d
dr (r

−(N−2))
))
εN−1 dω = ∫BR−Bε

r−(N−2)ϕ dx .

On the left side the first term has |x · ∇ϕ|/r bounded; hence its absolute value
is at most a constant times

∫
∂Bε

ε dω, which tends to 0 as ε decreases to 0. The

second term on the left side is −(N − 2)ε−(N−1) ∫
∂Bε

ϕεN−1 dω, and it tends, as
ε decreases to 0, to −(N − 2)	N−1ϕ(0). The result in the limit as ε decreases
to 0 is that

−(N − 2)	N−1ϕ(0) =
∫

RN r−(N−2)ϕ dx,

and the theorem follows.

Corollary 5.23. In RN with N > 2, let T be the tempered distribution
−	−1N−1(N − 2)−1|x |−(N−2) dx , where	N−1 is the area of the unit sphere SN−1.
If f is in E ′(RN ), then u = T ∗ f is a tempered distribution and is a solution of
u = f .

PROOF. Let δ be the Dirac distribution at 0, so thatT = δ by Theorem 5.22.
Theorem 5.21 shows that T ∗ f is a tempered distribution, and Corollaries 5.14
and 5.19 give (T ∗ f ) = (T ) ∗ f = δ ∗ f = f , as required.

BIBLIOGRAPHICAL REMARKS. The development in Sections 2–4 is adapted
from Hörmander’s Volume I of The Analysis of Linear Partial Differential
Equations.

6. Problems

1. Prove that if U and V are open subsets of RN with U ⊆ V , then the inclusion
C∞com(U )→ C∞com(V ) is continuous.

2. Prove that if ϕ is in C∞com(U ), then the map ψ �→ ψϕ of C∞(U ) into C∞com(U )

is continuous.
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3. Let U be a nonempty open set in RN . Any member TU of E ′(U ) extends to a
member T of E ′(RN ) under the definition 〈T, ϕ〉 = 〈TU , ϕ

∣∣
U
〉 for ϕ ∈ C∞(RN ).

Prove that this is truly an extension in the sense that if ϕ1 is in C∞(U ) and if ϕ
is in C∞(RN ) and agrees with ϕ1 in a neighborhood of the support of TU , then
〈T, ϕ〉 = 〈TU , ϕ

∣∣
U 〉 = 〈TU , ϕ1〉.

4. Prove the following variant of Theorem 5.1: Let K and K ′ be closed balls ofRN

with K contained in the interior of K ′. If T is a member of E ′(RN ) with support
in K , then there exist a positive integer m and members gα of L

2(K ′, dx) for
each multi-index α with |α| ≤ m such that

〈T, ϕ〉 =∑|α|≤m
∫
K ′ (D

αϕ)gα dx for all ϕ ∈ C∞(RN ).

5. Let K be a compact metric space, and let μ be a Borel measure on K . Suppose
that � = �(x, y) is a scalar-valued function on RN × K such that �( · , y) is
smooth for each y in K , and suppose further that every iterated partial derivative
Dα
1� in the first variable is continuous on RN × K . Define

F(x) = ∫K �(x, y) dμ(y).

(a) Prove that any T in E ′(RN ) satisfies 〈T, F〉 = ∫K 〈T,�( · , y)〉 dμ(y).
(b) Suppose that� has compact support inRN×K . Prove that any S inD ′(RN )

satisfies 〈S, F〉 = ∫K 〈S,�( · , y)〉 dμ(y).
6. Suppose that T is a distribution on an open set U in RN such that 〈T, ϕ〉 ≥ 0

whenever ϕ is a member of C∞com(U ) that is ≥ 0. Prove that there is a Borel
measure μ ≥ 0 on U such that 〈T, ϕ〉 = ∫U ϕ dμ for all ϕ in C∞com(U ).

7. Verify the formula of Theorem 5.22 for ϕ(x) = e−π |x |
2
, namely that∫

RN |x |−(N−2)(ϕ)(x) dx = −	N−1(N − 2)ϕ(0)
for this ϕ, by evaluating the integral in spherical coordinates.

Problems 8–11 deal with special situations in which the conclusion of Theorem 5.1
can be improved to say that a distribution with support in a set K is expressible as the
sum of iterated partial derivatives of finite complex Borel measures supported in K .

8. This problem classifies distributions on R1 supported at {0}. By Proposition
3.5f let η be a member of C∞com(R

1) with values in [0, 1] that is identically 1 for
|x | ≤ 1

2 and is 0 for |x | ≥ 1. Suppose that T is a distribution with support at {0}.
Choose constants C , M , and n such that |〈T, ϕ〉| ≤ C

∑n
k=0 sup|x |≤M |Dkϕ(x)|

for all ϕ in C∞(R1).
(a) For ε > 0, define ηε(x) = η(ε−1x). Prove for each k ≥ 0 that there is a

constant Ck independent of ε such that supx |( d
dx )

k ηε(x)| ≤ Ckε
−k .

(b) Using the assumption that T has support at {0}, prove that 〈T, ϕ〉 = 〈T, ηεϕ〉
for every ϕ in C∞(R1).



6. Problems 209

(c) Suppose that ϕ is of the form ϕ(x) = ψ(x)xn+1 with ψ in C∞(R1). By
applying (b) and estimating |〈T, ηεϕ〉| by means of the Leibniz rule and (a),
prove that this special kind of ϕ has T (ϕ) = 0.

(d) Using a Taylor expansion involving derivatives through order n and a re-
mainder term, prove for general ϕ in C∞(R1) that 〈T, ϕ〉 is a linear combi-
nation of ϕ(0), D1ϕ(0), . . . , Dnϕ(0), hence that T is a linear combination
of δ, D1δ, . . . , Dnδ.

9. By suitably adapting the argument in the previous problem, show that every
distribution on RN that is supported at {0} is a finite linear combination of the
distributions Dαδ, where δ is the Dirac distribution at 0.

10. Let the members x of RN be written as pairs (x ′, x ′′) with x ′ in RL and x ′′ in
RN−L . Suppose that T is a distribution on RN that is supported in RL . By
using a Taylor expansion in the variables x ′′ with coefficients involving x ′ and by
adapting the argument for the previous two problems, prove that T is a finite sum
of the form 〈T, ϕ〉 = ∑|α|≤n〈Tα, (Dαϕ)

∣∣
RL 〉, the sum being over multi-indices

α involving only x ′′ variables and each Tα being in E ′(RL). (Educational note:
The operators Dα of this kind are called transverse derivatives to RL . The
result is that T is a finite sum of transverse derivatives of compactly supported
distributions on RL .)

11. Using the result of Problem 9, prove the following uniqueness result to accom-
pany Corollary 5.23: if f is a distribution of compact support inRN with N > 2,
then any two tempered distributions u on RN that solve u = f differ by
a polynomial function annihilated by . Is this uniqueness still valid if u is
allowed to be any distribution that solves u = f ?

Problems 12–13 introduce a notion of periodic distribution as any continuous linear
functional on the space of periodic smooth functions on RN . Write T for the circle
R/2πZ, and let C∞(T N ) be the complex vector space of all smooth functions on
RN that are periodic of period 2π in each variable. Regard C∞(T N ) as a vector
subspace ofC∞((−2π, 2π)N ), and give it the relative topology. Then defineP ′(T N )

to be the space of restrictions to C∞(T N ) of members of E ′((−2π, 2π)N ). For S in
P ′(T N ), define the Fourier series of S to be the trigonometric series

∑
k∈ZN ckeik·x

with ck = 〈S, e−ik·x 〉.
12. Prove that the Fourier coefficients ck for such an S satisfy |ck | ≤ C(1+ |k|2)m/2

for some constant C and positive integer m.

13. Prove that any trigonometric series
∑

k∈ZN ckeik·x in which the ck’s satisfy |ck | ≤
C(1+ |k|2)m/2 for some constant C and positive integer m is the Fourier series
of some member S of P ′(T N ).

Problems 14–19 establish the Schwartz Kernel Theorem in the setting of periodic
functions. Wemake use of Problems 25–34 in Chapter III concerning Sobolev spaces
L2k (T

N ) of periodic functions. As a result of those problems, the metric on C∞(T N )
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may be viewed as given by the separating family of seminorms ‖ · ‖
L2K (T

N )
, k ≥ 0,

and C∞(T N ) is a complete metric space. The Schwartz Kernel Theorem says that
any bilinear function B : C∞(T N )× C∞(T N )→ C that is separately continuous in
the two variables is given by “integration with” a distribution on T N × T N ∼= T 2N .
The analogous assertion about signed measures is false.

14. Let B : C∞(T N )× C∞(T N )→ C be a function that is bilinear in the sense of
being linear in each argument when the other argument is fixed, and suppose that
B is continuous in each variable. The continuity in the first variable means that
for eachψ ∈ C∞(T N ), there is an integer k and there is some constantCψ,k such
that |B(ϕ, ψ)| ≤ Cψ,k‖ϕ‖L2k (T N )

for all ϕ in C∞(T N ), and a similar inequality

governs the behavior in theψ variable for each ϕ. For integers k ≥ 0 and M ≥ 0,
define

Ek,M =
{
ψ ∈ C∞(T N )

∣∣ |B(ϕ, ψ)| ≤ M‖ϕ‖
L2k (T

N )
for all ϕ ∈ C∞(T N )

}
.

(a) Prove that each Ek,M is closed and that the union of these sets on k and M
is C∞(T N ).

(b) Apply the Baire Category Theorem, and prove as a consequence that there
exist an integer k ≥ 0 and a constant C such that

|B(ϕ, ψ)| ≤ C‖ϕ‖
L2k (T

N )
‖ψ‖

L2k (T
N )

for all ϕ and ψ in C∞(T N ).

15. Let B be as in Problem14, and suppose that k andC are chosen as in Problem14b.
Fix an integer K > N/2, and define k ′ = k + K . Prove that

|B(Dαϕ, Dβψ)| ≤ C‖ϕ‖
L2
k′ (T

N )
‖ψ‖

L2
k′ (T

N )

for all ϕ and ψ in C∞(T N ) and all multi-indices α and β with |α| ≤ K and
|β| ≤ K .

16. Let B, C , K , and k ′ be as in Problem 15. Put blm = B(eil·( · ), eim·( · )) for l and
m in ZN , and for each pair of multi-indices (α, β) with |α| ≤ k ′ and |β| ≤ k ′,
define

Fα,β(x, y) =
∑

l,m∈ZN

blm(−i)|α|+|β|lαmβe−il·xe−im·y( ∑
|α′|≤k ′

l2α′
)( ∑
|β ′|≤k ′

m2β ′
)

for (x, y) ∈ T N × T N . Prove that this series is convergent in L2(T N × T N ).

17. With B, C , K , and k ′ be as in Problem 15 and with Fα,β as in Problem 16 for
|α| ≤ k ′ and |β| ≤ k ′, define
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B ′(ϕ, ψ) =
∑
|α|≤k ′,
|β|≤k ′

(2π)−2N
∫

[−π,π]N×[−π,π]N
Fα,β(x, y)(D

αϕ)(x)(Dβψ)(y) dx dy

for ϕ andψ inC∞(T N ). Prove that B ′ is well defined for all ϕ andψ inC∞(T N )

and that B ′(eil·( · ), eim·( · )) = B(eil·( · ), eim·( · )) for all l and m in ZN .

18. With B ′ as in the previous problem, prove that B ′(ϕ, ψ) = B(ϕ, ψ) for all ϕ and
ψ in C∞(T N ), and conclude that there exists a distribution S in P ′(T 2N ) such
that

B(ϕ, ψ) = 〈S, ϕ ⊗ ψ〉
for all ϕ and ψ in C∞(T N ) if ϕ ⊗ ψ is defined by (ϕ ⊗ ψ)(x, y) = ϕ(x)ψ(y).

19. Let η be a function in C∞com(R
1) with values in [0, 1] that is 1 for |x | ≤ 1

2 and
is 0 for |x | ≥ 1. For f continuous on T 1, the Hilbert transform

(H(η f ))(x) = lim
ε↓0

1

π

∫
|y|≥ε

η(x − y) f (x − y) dy

y

exists as an L2(R1) limit.
(a) Let C(T 1) be the space of continuous periodic functions onR of period 2π ,

and give it the supremum norm. Taking into account that H , as an operator
from L2(R1) to itself, has norm 1, prove that

B( f, g) = ∫ π

−π (H(η f ))(x)(ηg)(x) dx

is bilinear on C(T 1)× C(T 1) and is continuous in each variable.
(b) Prove that there is no complex Borel measure ρ(x, y) on [−π, π ]2 such that

B( f, g) = ∫[−π,π]2 f (x)g(y) dρ(x, y) for all f and g in C(T 1).



CHAPTER VI

Compact and Locally Compact Groups

Abstract. This chapter investigates several ways that groups play a role in real analysis. For the
most part the groups in question have a locally compact Hausdorff topology.

Section 1 introduces topological groups, their quotient spaces, and continuous group actions.
Topological groups are groups that are topological spaces in such a way that multiplication and
inversion are continuous. Their quotient spaces by subgroups are of interest when they areHausdorff,
and this is the case when the subgroups are closed. Many examples are given, and elementary
properties are established for topological groups and their quotients by closed subgroups.

Sections 2–4 investigate translation-invariant regular Borel measures on locally compact groups
and invariant measures on their quotient spaces. Section 2 deals with existence and uniqueness in the
group case. A left Haar measure on a locally compact group G is a nonzero regular Borel measure
invariant under left translations, and right Haar measures are defined similarly. The theorem is that
left and right Haar measures exist on G, and each kind is unique up to a scalar factor. Section
3 addresses the relationship between left Haar measures and right Haar measures, which do not
necessarily coincide. The relationship is captured by the modular function, which is a certain
continuous homomorphism of the group into the multiplicative group of positive reals. The modular
function plays a role in constructing Haar measures for complicated groups out of Haar measures for
subgroups. Of special interest are “unimodular” locally compact groups G, i.e., those for which the
left Haar measures coincide with the right Haar measures. Every compact group, and of course every
locally compact abelian group, is unimodular. Section 4 concerns translation-invariant measures on
quotient spaces G/H . For the setting in which G is a locally compact group and H is a closed
subgroup, the theorem is that G/H has a nonzero regular Borel measure invariant under the action
of G if and only if the restriction to H of the modular function of G coincides with the modular
function of H . In this case the G invariant measure is unique up to a scalar factor. Section 5
introduces convolution on unimodular locally compact groups G. Familiar results valid for the
additive group of Euclidean space, such as those concerning convolution of functions in various L p

classes, extend to be valid for such groups G.

Sections 6–8 concern the representation theory of compact groups. Section 6 develops the
elementary theory of finite-dimensional representations and includes some examples, Schur or-
thogonality, and properties of characters. Section 7 contains the Peter–Weyl Theorem, giving an or-
thonormal basis of L2 in terms of irreducible representations and concluding with an Approximation
Theorem showing how to approximate continuous functions on a compact group by trigonometric
polynomials. Section 8 shows that infinite-dimensional unitary representations of compact groups
decompose canonically according to the irreducible finite-dimensional representations of the group.
An example is given to show how this theorem may be used to take advantage of the symmetry in
analyzing a bounded operator that commutes with a compact group of unitary operators. The same
principle applies in analyzing partial differential operators.

212
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1. Topological Groups

The theme of this chapter is the interaction of real analysis with groups. We shall
work with topological groups, their quotients, and continuous group actions, all
of which are introduced in this section. A topological group is a group G with a
Hausdorff topology such that multiplication, as a mapping G × G → G, and in-
version, as amappingG → G, are continuous. Ahomomorphism of topological
groups is a continuous group homomorphism. An isomorphism of topological
groups is a group isomorphism that is a homeomorphism of topological spaces.

EXAMPLES.

(1) Any discrete group, i.e., any group with the discrete topology.

(2) The additive group R or C with the usual metric topology. The group
operation is addition, and the inversion operation is negation.

(3) The multiplicative groups R× = R − {0} and C× = C − {0}, with the
relative topology from R or C.

(4) Any subgroup of a topological group, with the relative topology. Thus, for
example, the circle

{
z ∈ C

∣∣ |z| = 1} is a subgroup of C×.
(5) Any product of topological groups, with the product topology. Thus,

for example, the additive groups RN and CN are topological groups. So is the
countable product of two-element groups, each with the discrete topology; in this
case the topological space in question is homeomorphic to the standard Cantor
set in [0, 1].

(6) The general linear group GL(N ,C) of all nonsingular N -by-N complex
matrices, with matrix multiplication as group operation. The topology is the
relative topology from CN 2 . Each entry in a matrix product is a polynomial in
the 2N 2 entries of the two matrices being multiplied and is therefore continuous;
thus matrix multiplication is continuous. Inversion is defined on the set where
the determinant polynomial is not 0 and is given, according to Cramer’s rule, in
each entry by the quotient of a polynomial function and the determinant function;
thus inversion is continuous. By (4), the general linear group GL(N ,R) is a
topological group.

(7) The additive group of any topological vector space in the sense of Section
IV.1. The additive groups of normed linear spaces are special cases.

In working with topological groups, we shall use expressions like

aU = {au | u ∈ U } and Ub = {ub | u ∈ U },
U−1 = {u−1 | u ∈ U } and UV = {uv | u ∈ U, v ∈ V }.
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In any topological group every left translation y �→ xy and every right translation
y �→ yx is a homeomorphism. The continuity of each translation follows by
restriction from the continuity of multiplication, and the continuity of the inverse
of a translation follows because the inverse of a translation is translation by the
inverse element. For an abstract topological group, we write 1 for the identity
element.
Continuity of the multiplication mapping G × G → G at (1, 1) implies, for

any open neighborhood V of the identity inG, that there is an open neighborhood
U of the identity for whichUU ⊆ V . Inversion, being a continuous operation of
order two, carries open sets to open sets; therefore if U is an open neighborhood
of the identity, so is U ∩ U−1. Combining these facts, we see that if V is an
open neighborhood of the identity, then there is an open neighborhood U of the
identity such that UU−1 ⊆ V .
Conversely if whenever V is an open neighborhood of the identity, there is an

open neighborhoodU of the identity such thatUU−1 ⊆ V , then it follows that the
mapping (x, y) �→ xy−1 is continuous at (x, y) = (1, 1). If also all translations
are homeomorphisms, then (x, y) �→ xy−1 is continuous, and it follows easily
that x �→ x−1 and (x, y) �→ xy are continuous.

Proposition 6.1. If G is a topological group, then G is regular as a topological
space.

PROOF. We are to separate by disjoint open sets a point x and a closed set
F with x /∈ F . Since translations are homeomorphisms, we may assume x to
be 1. Then V = Fc is an open neighborhood of 1, and we can choose an open
neighborhood U of 1 such that UU ⊆ V . Let us see that U cl ⊆ V . From
UU ⊆ V and 1 ∈ U , we have U ⊆ V . Thus let y be in U cl −U . Since y is then
a limit point of U and since U−1y is an open neighborhood of y, U−1y meets
U . If z is in U−1y ∩ U , then z = u−1y for some u in U , and so y = uz is in
UU ⊆ V . Thus U cl ⊆ V and U cl ∩ F = ∅. Consequently G is regular.

If H is a subgroup of G, then the quotient space G/H of left cosets aH
results from the equivalence relation that a ∼ b if there is some h in H with
a = bh. The quotient space is given the quotient topology. Quotient spaces of
topological groups are sometimes called homogeneous spaces.

Proposition 6.2. Let G be a topological group, let H be a closed subgroup,
and let q : G → G/H be the quotient map. Then q is an open map, and
G/H is a Hausdorff regular space such that the action of G on G/H given by
(g, aH) �→ (ga)H is continuous. Moreover,

(a) G separable implies G/H separable,
(b) G locally compact implies G/H locally compact,
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(c) G is compact if and only if H and G/H are compact,
(d) H normal in the group-theoretic sense implies that G/H is a topological

group.

PROOF. Let U be open. To show that q(U ) is open, we are to show that
q−1(q(U )) is open. But q−1(q(U )) =⋃h∈H Uh, which is open, being the union
of open sets. Hence q is open.
To consider the action of G on H , we start from the continuous open mapping

1 × q : G × G → G × (G/H) given by (g, a) �→ (g, aH). This descends to
a well-defined one-one mapping q̃ : (G × G)/(1 × H) → G × (G/H) given
by (g, a)(1 × H) �→ (g, aH), and the quotient topology is defined in such a
way that this is continuous. The image under q̃ of an open set is the same as
the image under 1 × q of the same open set, and this is open. Therefore q̃ is a
homeomorphism.
The mapping (g, a) �→ (ga)H is the composition of multiplication (g, a) �→

ga followed by q and is therefore continuous. Hence it descends to a continuous
map (g, a)(1 × H) �→ (ga)H . If q̃−1 is followed by this continuous map, the
resulting map is (g, aH) �→ (ga)H , which is the action of G on G/H . Hence
the action is continuous.
To see that G/H is regular, we are to separate by disjoint open sets a point x

in G/H and a closed set F with x /∈ F . The continuity of the action shows that
we may assume x to be 1H . Then M = Fc is an open neighborhood of 1H in
G/H , and the continuity of the action at (1, 1H) shows that we can choose an
open neighborhood U of 1 in G and an open neighborhood N of 1H in G/H
such that UN ⊆ M . Let us see that N cl ⊆ M . Using the identity element of U ,
we see that N ⊆ M . Thus let y be in N cl − N . Since y is then a limit point of N
and sinceU−1y is an open neighborhood of y (q being open),U−1y meets N . If
z is inU−1y ∩ N , then z = u−1y for some u inU , and so y = uz is inUN ⊆ M .
Thus N cl ⊆ M and N cl ∩ F = ∅. Consequently G/H is regular.
To see that G/H is Hausdorff, consider the inverse image under q of a coset

xH . This inverse image is xH as a subset of G, and this subset is closed in G
since H is closed and translations are homeomorphisms. Thus G/H is T1, as
well as regular, and consequently it is Hausdorff.
Conclusion (a) follows from the fact that q is open, since the image under q of

a countable base of open sets is therefore a countable base for G/H . Conclusion
(b) is similarly immediate; the image of a compact neighborhood of a point is a
compact neighborhood of the image point.
In (c), letG be compact. Then H is compact as a closed subset of a compact set,

and G/H is compact as the continuous image of a compact set. In the converse
direction let U be an open cover of G. For each x in G, U is an open cover of the
subset xH of G, which is compact since it is homeomorphic to H . Let Vx be a
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finite subcover of xH , and let

Vx = {y ∈ G | yH is covered by Vx }.
We show that Vx is open in G. Let Wx be the open union of the members of
Vx . If y is in Vx , then yh is in Wx for all h in H . For each such h, we use the
continuity of multiplication to find open neighborhoods Uh of 1 and Nh of h in
G such that Uh yNh ⊆ Wx . As h varies, the sets Nh cover H . If {Nh1, . . . , Nhm }
is a finite subcover, then each set (Uh1 ∩ · · · ∩Uhm )yNhj lies in Wx and hence so
does (Uh1 ∩ · · · ∩Uhm )yH . Thus (Uh1 ∩ · · · ∩Uhm )y lies in Vx , and Vx is open.
The definition of Vx makes Vx H = Vx , and thus q−1qVx = Xx . The open

sets Vx together cover G, and hence the open sets qVx cover G/H . Since G/H is
compact, some finite subcollection {qVx1, . . . , qVxn } covers G/H . The equality
q−1qVxj = Vxj for all j implies that {Vx1, . . . , Vxn } is an open cover of G. Then⋃n

j=1 Vxj is a finite subcollection of U that covers G. This proves (c).
In (d), suppose that H is group-theoretically normal, and let V be an open

neighborhood of 1 in G/H . Choose, by the continuity of the action on G/H , an
open neighborhoodU of 1 inG and an open neighborhood N of 1H inG/H such
that UN ⊆ V . Then qU and N are open neighborhoods of the identity in G/H
such that (qU )N ⊆ V . Hence multiplication in G/H is continuous at (1, 1).
Since the map G → G/H given for fixed aH by g �→ (ga)H is continuous,
the descended map gH �→ (gH)(aH) is continuous. Thus left translations are
continuous on G/H , and multiplication on G/H is continuous everywhere. To
see continuity of inversion on G/H , let V be an open neighborhood of 1 in
G/H , and let U be an open neighborhood of 1 in G with U−1 ⊆ q−1(V ). Then
q(U−1) ⊆ V , and inversion is continuous at the identity. Since left and right
translations are continuous on G/H , inversion is continuous everywhere. This
completes the proof.

Proposition 6.3. If G is a topological group, then
(a) any open subgroup H ofG is closed and the quotientG/H has the discrete

topology,
(b) any discrete subgroup H ofG (i.e., any subgroupwhose relative topology

is the discrete topology) is closed.

REMARK. Despite (a), a closed subgroup need not be open. For example, the
closed subgroup Z of integers is not open in the additive group R.

PROOF. For (a), if H is an open subgroup, then every subset xH of G is open
in G. Then the formula H = G − ⋃x /∈H xH shows that H is closed. Also,
since G → G/H is an open map, the openness of the subset xH of G implies
that every one-element set {xH} in G/H is open. Thus G/H has the discrete
topology.
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For (b), choose by discreteness an open neighborhood V of 1 in G such that
H ∩ V = {1}. By continuity of multiplication, choose an open neighborhood U
of 1 with UU ⊆ V . If H is not closed, let x be a limit point of H that is not
in H . Then the neighborhood U−1x of x must contain a member h of H , and h
cannot equal x since x is not in H . Write u−1x = h with u ∈ U . Then u = xh−1
is a limit point of H that is not in H , and we can find h′ = 1 in H such that h′
is in Uu. But Uu ⊆ UU ⊆ V , and so h′ is in H ∩ V = {1}, contradiction. We
conclude that H contains all its limit points and is therefore closed.

A compact group is a topological groupwhose topology is compactHausdorff.
Similarly a locally compact group is a topological group whose topology is lo-
cally compactHausdorff. Among the examples at the beginningof this section, the
following are locally compact: any group with the discrete topology, the additive
groups R and C, the multiplicative groups R× and C×, the circle as a subgroup
of C×, the additive groups RN and CN , the general linear groups GL(N ,R)

and GL(N ,C), and the additive groups of finite-dimensional topological vector
spaces. An arbitrary direct product of compact groups, with the product topology,
is a compact group. Similarly any finite direct product of locally compact groups
is a locally compact group.
A number of interesting subgroups of GL(N ,R) and GL(N ,C) are defined

as the sets of matrices where certain polynomials vanish. Since polynomials are
continuous, these subgroups are closed in GL(N ,R) or GL(N ,C). The next
proposition says that they provide further examples of locally compact groups.

Proposition 6.4. Any closed subgroup of a locally compact group is a locally
compact in the relative topology.

PROOF. Let G be the given locally compact group, and let H be the closed
subgroup. As a subgroup of a topological group, H is a topological group. For
local compactness, choose a compact neighborhoodUh in G of any element h of
H . ThenUh∩H is a compact set in H since H is closed, and it is a neighborhood
of h in the relative topology. Thus h has a compact neighborhood, and H is a
locally compact group.

EXAMPLES OF CLOSED SUBGROUPS OF GL(N ,R) AND GL(N ,C).

(1) Affine group of the line. This consists of all matrices
(
a b
0 1

)
with a and b

real and with a > 0.

(2) Upper triangular group over R or C. This consist of all matrices whose
entries on the diagonal are all nonzero, whose entries above the diagonal are
arbitrary, and whose entries below the diagonal are 0.
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(3) Commutator subgroup of previous example. This consists of all matrices
whose entries on the diagonal are all 1, whose entries above the diagonal are
arbitrary in R or C, and whose entries below the diagonal are 0.

(4) Special linear group SL(N ,F) with F equal to R or C. This consists of all
N -by-N matrices with determinant 1.

(5) Symplectic group Sp(N ,F) with F equal to R or C. This consists of all

2N -by-2N matrices g with determinant 1 such that gtr
(

0 1N
−1N 0

)
g =

(
0 1N
−1N 0

)
.

(6) Unitary groupU (N ). This consists of all N -by-N complex matrices g that
are unitary in the sense that ḡtrg = 1. The group is compact; the compactness of
the topology follows since the members of U (N ) form a closed bounded subset
of a Euclidean space. The group SU(N ) is the subgroup of all g in U (N ) with
determinant 1; it is a closed subgroup of U (N ) and hence is compact.

(7) Orthogonal group O(N ) and rotation group SO(N ). The group O(N )

consists of all N -by-N realmatrices that areorthogonal in the sense that gtrg = 1;
it is the intersection1 of the unitary group U (N ) with GL(n,R). Members of
O(N ) have determinant±1. The subgroup SO(N ) consists of those members of
O(N ) with determinant 1, i.e., the rotations. The groups O(N ) and SO(N ) are
compact.

Proposition 6.5. If G is a locally compact group, then

(a) any compact neighborhood V of 1 with V = V−1 has the property that
H =⋃∞

n=1 V
n is a σ -compact open subgroup,

(b) G is normal as a topological space.

PROOF. The set V n is the result of applying the multiplication mapping to
V × · · · × V with n factors. This mapping is continuous, and hence V n is
compact. Thus H is σ -compact. Since V nVm = Vm+n , H is closed under
multiplication. Since V = V−1, we have V n = (V−1)n = (V n)−1, and H is
closed under inversion. Thus H is a subgroup. Since V is a neighborhood of 1,
V x is a neighborhood of x . Therefore V n+1 is a neighborhood of each member
of V n , and H is open. This proves (a).
Let H be as in (a). The subspace H ofG is σ -compact and hence Lindelöf, and

Tychonoff’s Lemma2 shows that it is normal as a topological subspace. Let {xα}
be a complete system of coset representatives for H inG, so thatG =⋃α xαH is
exhibited as the disjoint union of open closed sets, each of which is topologically
normal. If E and F are disjoint closed sets in G, then E ∩ xαH and F ∩ xαH
are disjoint closed sets in xαH . Hence there exist disjoint open sets Uα and Vα
in xαH such that E ∩ xαH ⊆ Uα and F ∩ xαH ⊆ Vα . Then U = ⋃α Uα and

1This fact provides justification for using the term “unitary” in Proposition 2.6 even when F = R.
2Proposition 10.9 of Basic.
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V =⋃α Vα are disjoint open sets inG such that E ⊆ U and F ⊆ V . This proves
(b).

The final proposition of the section shows that members of Ccom(G) are
uniformly continuous in a certain sense that can be defined without the aid of
a metric.

Proposition 6.6. If G is a locally compact group and f is in Ccom(G), then
for any ε > 0, there is an open neighborhood W of the identity with W = W−1
such that xy−1 ∈ W implies | f (x)− f (y)| < ε.

PROOF. Let S be the support of f , and let ε > 0 be given. For each y in S, let
Uy be an open neighborhood of y such that x ∈ Uy implies | f (x)− f (y)| < ε/2.
Since Uy y−1 is a neighborhood of 1, we can find an open neighborhood Vy of 1
with Vy = Vy−1 and VyVy ⊆ Uy y−1. As y varies through S, the sets Vy y
form an open cover of S. Let {Vy1 y1, . . . , Vyn yn} be a finite subcover, and put
W = Vy1 ∩ · · · ∩ Vyn . This will be the required neighborhood of 1.
To see thatW has the property asserted, let xy−1 be inW . If f (x) = f (y) = 0,

then | f (x) − f (y)| < ε. If f (y) = 0, then for some k, y is in Vyk yk ⊆
Uyk y

−1
k yk = Uyk and thus | f (yk) − f (y)| < ε/2. Also, x = (xy−1)y is in

WVyk yk ⊆ Vyk Vyk yk ⊆ Uyk y
−1
k yk ⊆ Uyk and thus | f (x)− f (yk)| < ε/2. Hence

| f (x)− f (y)| < ε. Finally if f (x) = 0, then W = W−1 implies that yx−1 is in
W , the roles of x and y are interchanged, and the proof that | f (x) − f (y)| < ε

goes through as above.

Corollary 6.7. If G is a locally compact group and f is in Ccom(G), then the
map of G × G into C(G) given by (g, g′) �→ f (g( · )g′) is continuous.
PROOF. We first prove two special cases. If g0 ∈ G and ε > 0 are given,

then Proposition 6.6 produces an open neighborhood W of the identity such
that supx∈G | f (gx − f (g0x)| < ε for gg−10 in W , and hence g �→ f (g( · )) is
continuous. Applying this result to the function f̃ given by f̃ (x) = f (x−1)
and using continuity of the inversion map x �→ x−1 within G, we see that
g′ �→ f (( · )g′) is continuous.
Now we reduce the general case to these two special cases. If (g0, g′0) is given

in G × G, then

| f (gxg′)− f (g0xg
′
0)| ≤ | f (gxg′)− f (g0xg

′)| + | f (g0xg′)− f (g0xg
′
0)|

≤ sup
x∈G

| f (gx)− f (g0x)| + sup
x∈G

| f (xg′)− f (xg′0)|.

The two special cases show that the right side tends to 0 as (g, g′) tends to (g0, g′0),
and the corollary follows.
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If G is a group and X is a set, a group action of G on X is a function
G × X → X , often written (g, x) �→ gx , such that

(i) 1x = x for all x in X ,
(ii) g1(g2x) = (g1g2)x for all x in X and all g1 and g2 in G.

If G is a topological group and X has a Hausdorff topology, a continuous group
action is a group action such that the map (g, x) �→ gx is continuous. In this case
we say that G acts continuously on X . The fundamental example is the action of
G on the quotient space G/H by a closed subgroup: (g, g′H) �→ (gg′)H .
An orbit for a group action of G on X is any subset Gx of X . The action

is transitive if there is just one orbit, i.e., if Gx = X for some, or equivalently
every, x in X . This is the situation with the fundamental example above. The
action of the general linear group GL(N ,R) on RN by matrix multiplication is a
continuous group action that is not transitive; it has two orbits, one open and the
other closed.
LetG act continuously on X , fix x0 in X , and let H be the subgroup of elements

h inG with hx0 = x0. This is the isotropy subgroup at x0. It is a closed subgroup,
being the inverse image in G of the closed set {x0} under the continuous function
g �→ gx0. Proposition 6.2 shows that the quotient topology on the setG/H of left
cosets is Hausdorff. Since G/H has the quotient topology, the continuous map
G → Gx0 given by g �→ gx0 descends to a one-one continuous map G/H →
Gx0. In favorable cases the map G/H → Gx0 is a homeomorphism with its
image, and Problems 2–4 at the end of the chapter give sufficient conditions for
it to be a homeomorphism. Sometimes the ability to do serious analysis on X
depends on having the map be a homeomorphism. A case in which it is not a
homeomorphism is the action of the discrete additive line G on the ordinary line
X = R by translation.

2. Existence and Uniqueness of Haar Measure

The point of view in Basic in approaching the Riesz Representation Theorem
for a locally compact Hausdorff space X was that the steps in the construction
of Lebesgue measure work equally well with X . The only thing that is missing
is some device to encode geometric data—to provide a generalization of length.
That missing ingredient is captured by any positive linear functional onCcom(X),
but there is no universal source of interesting such functionals.
For the next few sections we shall impose additional structure on X , assuming

now that X is a locally compact group in the sense of Section 1. We shall see in
this case that a nonzero positive linear functional always exists with the property
that it takes equal values on a function and any left translate of the function.
In other words the positive linear functional has the same kind of invariance
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property under translation as the Riemann integral. The corresponding regular
Borel measure, which is Lebesgue measure in the case of the line, is called a (left)
“Haar measure” and is the main object of study in Sections 2–5 of this chapter.
Several examples of locally compact groups were given in Section 1. Among

them are the circle group, the additive group RN , and the general linear groups
GL(N ,C) andGL(N ,R), which consist of all N -by-N nonsingular matrices and
have matrix multiplication as the group operation. Proposition 6.4 showed that
any closed subgroup of a locally compact group is itself a locally compact group.
Special linear groups, unitary groups, orthogonal groups, and rotation groups are
among the examples that were mentioned.
Thus let G be a locally compact group. We shall write the group multiplica-

tively exceptwhenwe are dealingwith special exampleswhere a different notation
is more suitable. Ordinarily no special symbol will be used for a translation map
in G. Thus left translations are simply the homeomorphisms x �→ gx for g in G,
and right translations are the maps x �→ xg.
Let us consider these as special cases of what any continuous mapping does.

The notation will be clearer if we distinguish the domain from the image. Thus let
� be a continuous mapping of a locally compact Hausdorff space X into a locally
compact Hausdorff space Y . The mapping � carries subsets of X to subsets of
Y by the rule �(E) = {�(x) | x ∈ E}.
If� is a homeomorphism, it preserves the topological character of sets. Thus

compact sets go to compact sets, Gδ’s go to Gδ’s, and so on. Consequently Borel
sets map to Borel sets, and Baire sets map to Baire sets.
By contrast a scalar-valued function f on Y pulls back to the scalar-valued

function f � on X given by f �(x) = f (�(x)), with continuity being preserved.
A Borel measure μ on X pushes forward to a measure μ� on Y given by
μ�(E) = μ(�−1(E)); the measure μ� is defined on Borel sets but need not be
finite on compact sets. If � is a homeomorphism, however, then μ� is a Borel
measure, and regularity of μ implies regularity of μ�.
Of great importance for current purposes is the effect of � on integration,

where the effect is that of a change of variables. The formula is∫
X
f � dμ =

∫
Y
f dμ�

if f is a Borel function ≥ 0, for example. To prove this formula, we first
take f to be the indicator function IE of a subset E of Y . On the left side we
have I�E (x) = IE (�(x)) = I�−1(E)(x). Hence the left side equals

∫
X I

�
E dμ =

μ(�−1(E)) = μ�(E), which in turn equals the right side
∫
Y IE dμ�. Linearity

allowsus to extend this conclusion to nonnegative simple functions, andmonotone
convergence allows us to pass to Borel functions ≥ 0.
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An important consequence of the boxed formula is the formula

(F dμ)� = F�−1 dμ�.

In fact, if we set f = F�−1 IE in the boxed formula, then we obtain
∫
X F I

�
E dμ =∫

Y F
�−1 IE dμ�. Thus

∫
�−1(E) F dμ = ∫

E F
�−1 dμ� and (F dμ)�(E) =

(F dμ)(�−1(E)) = ∫
�−1(E) F dμ =

∫
E F

�−1 dμ� = (F�−1 dμ�)(E).

The Euclidean change-of-variables formula3 is a special case of the boxed
formula, and the content of the theoremamounts to an explicit identification ofμ�.
Let ϕ : U → ϕ(U ) be a diffeomorphism with detϕ′(x) nowhere 0. If y = ϕ(x),
then the formula gives dy = | detϕ′(x)| dx . Since dy = d(ϕ(x)) = (dx)ϕ−1 , the
formula is saying that (dx)ϕ−1 = | detϕ′(x)| dx . We recover the usual Euclidean
integration formula by applying the boxed formula with � = ϕ−1, X = ϕ(U ),
Y = U , dμ = dy, and dμϕ−1 = | detϕ′(x)| dx , and then by letting F = f ϕ

−1
.

The result is
∫
ϕ(U )

F(y) dy = ∫U F(ϕ(x))| detϕ′(x)| dx , as it should be.
The rule for composition for points and sets is that (� ◦ �)(x) = �(�(x))

and (� ◦ �)(E) = �(�(E)). But for functions and measures the rules are
f �◦� = ( f �)� and μ�◦� = (μ�)� . In other words, when � is followed by
� in operating on points and sets, � is again followed by � in pushing forward
measures, but � is followed by � in pulling back functions. In the special
case that X = Y = G, this feature will mean that certain expressions that we
might want to write as triple products do not automatically satisfy an expected
associativity property without some adjustment to the notation.
First consider left translation. On points, left translation Lh by h sends x to

hx , and left translation by g sends this to g(hx) = (gh)x . The behavior on
sets is similar. On functions and measures we therefore have f Lgh = f Lg Lh =
( f Lh )Lg and μLgh = μLgLh = (μLh )Lg . To obtain group actions on functions and
measures, we therefore define

(g f )(x) = f L
−1
g (x) = f (g−1x) and (gμ)(E) = μLg (E) = μ(g−1E)

for g in G. With these definitions we have g(h f ) = (gh) f and g(hμ) = (gh)μ,
consistently with the formulas for a group action.
With right translation the effect on points is that right translation by h sends x

to xh, and right translation by g sends this to (xh)g = x(hg). The behavior on
sets is similar. We want the same kind of formula with functions and measures,
and to get it we define

( f g)(x) = f (xg−1) and (μg)(E) = μ(Eg−1)

3Theorem 6.32 of Basic.
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for g in G. With these definitions we have ( f h)g = f (hg) and (μh)g = μ(hg).
These are the formulas of what we might view as a “right group action.”
A nonzero regular Borel measure on G invariant under all left translations is

called a left Haar measure on G. A right Haar measure on G is a nonzero
regular Borel measure invariant under all right translations. The main theorem,
whose proof will occupy much of the remainder of this section, is as follows.

Theorem 6.8. IfG is a locally compact group, thenG has a left Haar measure,
and it is unique up to a multiplicative constant. Similarly G has a right Haar
measure, and it is unique up to a multiplicative constant.

Before coming to the proof, we give some examples. Checking the invariance
in each case involves using the boxed formula above for some homeomorphism
�. In Euclidean situations we can often evaluate μ� directly by the change-of-
variables formula for multiple integrals. In an abelian group the left and right
Haar measures are the same, and we speak simply of Haar measure; but this need
not be true in nonabelian groups, as one of the examples will illustrate.

EXAMPLES.

(1) G = RN under addition. Lebesgue measure is a Haar measure.

(2) G = GL(N ,R). Problem 4 in Chapter VI of Basic showed that if MN is
the N 2-dimensional Euclidean space of all real N -by-N matrices and if dx refers
to its Lebesgue measure, then∫

MN

f (gx)
dx

| det x |N =
∫
MN

f (x)
dx

| det x |N

for each nonsingular matrix g and Borel function f ≥ 0. In the formula, gx is
the matrix product of g and x . Problem 10 in the same chapter showed that the
zero locus of any polynomial that is not identically zero has Lebesgue measure 0.
Thus the set where det x = 0 hasmeasure 0, andwe can rewrite the above formula
as ∫

GL(N ,R)

f (gx)
dx

| det x |N =
∫
GL(N ,R)

f (x)
dx

| det x |N ,

where dx is still Lebesgue measure on the underlying Euclidean space of all
N -by-N matrices. This formula says that dx

| det x |N is a left Haar measure on
GL(N ,R). This measure happens to be also a right Haar measure.

(3) G =
{(

a b
0 1

)}
with real entries and a > 0. Then a−2 da db is a left Haar

measure and a−1 da db is a right Haar measure. To check the first of these asser-
tions, let ϕ be left translation by

(
a0 b0
0 1

)
. Since

(
a0 b0
0 1

) (
a b
0 1

)
=
(

a0a a0b+b0
0 1

)
,
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we can regard ϕ as the vector function ϕ
( a
b

) = ( a0a
a0b+b0

)
with ϕ′

( a
b

) = ( a0 0
0 a0

)
and

∣∣ detϕ′ ( ab ) ∣∣ = a20 . Then (da db)ϕ−1 = a20 da db and (a−2 da db)ϕ−1 =
(a−2)ϕ(da db)ϕ−1 = (a0a)−2a20 da db = a−2 da db. So a−2 da db is indeed a
left Haar measure. By a similar argument, a−1 da db is a right Haar measure.

We shall begin the proof of Theorem 6.8 with uniqueness. The argument will
use Fubini’s Theorem for certain Borel measures on G, and we need to make two
adjustments to make Fubini’s Theorem apply. One is to work with Baire sets,
rather than Borel sets, so that the product σ -algebra from the Baire sets of G
times the Baire sets of G is the σ -algebra of Baire sets for G × G.4 The other is
to arrange that the spaces we work with are σ -compact. The device for achieving
the σ -compactness is Proposition 6.5, which shows that G always has an open
σ -compact subgroup H . Imagine that we understand the restriction of a left Haar
measure μ to H . We form the left cosets gH , all of which are open in G. Any
compact set is covered by all these cosets, and there is a finite subcover. That
means that any compact set K is contained in the union of finitely many cosets
gH , say in g1H ∪ · · · ∪ gnH . We can compute μ on any gH by translating the
set by g−1. This fact and the formula μ(K ) =∑n

j=1 μ(K ∩ gj H) together show
that we can compute μ(K ) from a knowledge of μ on H . Thus there is no loss
of generality in the uniqueness question in assuming that G is σ -compact.

PROOF OF UNIQUENESS IN THEOREM 6.8. As remarked above, G has a
σ -compact open subgroup H , and it is enough to prove the uniqueness for H .
Changing notation, we may assume that our given group is σ -compact. We work
with Baire sets in this argument.
Letμ1 andμ2 be left Haar measures. Then the sumμ = μ1+μ2 is a left Haar

measure, andμ(E) = 0 impliesμ1(E) = 0. By the Radon–Nikodym Theorem,5
there exists a Baire function h1 ≥ 0 such that μ1 = h1 dμ. Fix g in G. By the
left invariance of μ1 and μ, we have∫

G
f (x)h1(g

−1x) dμ(x) =
∫
G
f (gx)h1(x) dμ(x) =

∫
G
f (gx) dμ1(x)

=
∫
G
f (x) dμ1(x) =

∫
G
f (x)h1(x) dμ(x)

for every Baire function f ≥ 0. Therefore the measures h1(g−1x) dμ(x) and
h1(x) dμ(x) are equal, and h1(g−1x) = h1(x) for almost every x ∈ G (with
respect to dμ). We can regard h1(g−1x) and h1(x) as functions of (g, x) ∈ G×G,

4Proposition 11.17 of Basic.
5Theorem 9.16 of Basic.
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and these are Baire functions since the group operations are continuous. For each
g, they are equal for almost every x . By Fubini’s Theorem they are equal for
almost every pair (g, x) (with respect to the product measure), and then for almost
every x they are equal for almost every g. Pick one such x , say x0. Then it follows
that h1(x) = h1(x0) for almost every x . Thus dμ1 = h1(x0) dμ. So dμ1 is a
multiple of dμ, and so is dμ2.

Nowwe turn our attention to existence. The shortest and best-motivated known
proof dates from 1940 and modifies Haar’s original argument in two ways that we
shall mention. First let us consider that original argument, in which the setting is
a locally compact separable metric topological group. In trying to construct an
invariant measure, there is not much to work with, the situation being so general.
We can get an idea how to proceed by examining RN , where we are trying to
construct Lebesgue measure out of almost nothing. We do have some rough
comparisons of size because of the compactness. If we take a compact geometric
rectangle and an open geometric rectangle, the latter centered at the origin, the
compactness ensures that finitely many translates of the open rectangle together
cover the compact rectangle. The smallest such number of translates is a rough
estimate of the ratio of their Lebesgue measures. This integer estimate in some
sense becomes more refined as the open rectangle gets smaller, but the integer in
question grows in size also. To take this scaling factor into account, we compare
this integer ratio with the integer ratio for some standard compact rectangle as
the open rectangle gets small. This ratio of two integer ratios appears to be a
good approximation to the ratio of the measure of the general compact rectangle
to the measure of the standard compact rectangle. In fact, one easily shows that
this ratio of ratios is bounded above and below as the open rectangle shrinks
in size through a sequence of rectangles to a point. The Bolzano–Weierstrass
Theorem gives a convergent subsequence for the ratio of ratios. It turns out that
this convergence has to be addressed only for countably many of the compact
rectangles, and this we can do by the Cantor diagonal process. Then we obtain
a value for the measure of each compact rectangle in the countable set and, as
a result, for all compact rectangles. It then has to be shown that we can build a
measure out of this definition of the measure on compact rectangles.
Two things are done to modify the above argument to obtain a general proof

for locally compact groups. One is to replace the Cantor diagonal process by an
application of the Tychonoff Product Theorem. The other is to bypass the long
process of constructing a measure on Borel sets from its values on compact sets
by instead using positive linear functionals and applying the Riesz Representation
Theorem. Once an initial comparison can be made with continuous functions of
compact support, rather than compact sets and open sets, the path to the theorem
is fairly clear. It is Lemma 6.9 below that says that the initial comparison can be
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carried out with such functions. For a locally compact group G, let C+com(G) be
the set of nonnegative elements in Ccom(G).

Lemma 6.9. If f and ϕ are nonzero members of C+com(G), then there exist
a positive integer n, finitely many members g1, . . . , gn of G, and real numbers
c1, . . . , cn all > 0 such that

f (x) ≤
n∑
j=1

cjϕ(gj x) for all x .

REMARK. We let H( f, ϕ) be the infimum of all finite sums
∑

j cj as in the
statement of the lemma. The expression H( f, ϕ) is called the value of the Haar
covering function at f and ϕ.

PROOF. Fix c > ‖ f ‖sup/‖ϕ‖sup. The set U = {x | cϕ(x) > ‖ f ‖sup} is open
and nonempty, and the sets hU , for h ∈ G, form an open cover of the support
of f . Choose a finite subcover, writing

support( f ) ⊆ h1U ∪ · · · ∪ hnU.

For 1 ≤ j ≤ n, we then have

hjU = {x | h−1j x ∈ U } = {x | cϕ(h−1j x) > ‖ f ‖sup}
⊆ {x | f (x) ≤∑n

j=1 cϕ(h
−1
j x)}.

Hence
support( f ) ⊆ {x | f (x) ≤∑n

j=1 cϕ(h
−1
j x)}.

The lemma follows with gj = h−1j and with all cj equal to c.

Lemma 6.10. The Haar covering function has the properties that
(a) H(g f, ϕ) = H( f, ϕ) for g in G,
(b) H( f1 + f2, ϕ) ≤ H( f1, ϕ)+ H( f2, ϕ),
(c) H(c f, ϕ) = cH( f, ϕ) for c > 0,
(d) f1 ≤ f2 implies H( f1, ϕ) ≤ H( f2, ϕ),
(e) H( f, ψ) ≤ H( f, ϕ)H(ϕ, ψ),
(f) H( f, ϕ) ≥ ‖ f ‖sup

/‖ϕ‖sup.
PROOF. Properties (a) through (d) are completely elementary. For (e), the

inequalities f (x) ≤ ∑i ciϕ(gi x) and ϕ(x) ≤
∑

j djψ(hj x) together imply that
f (x) ≤∑i, j ci djψ(hj gi x). Therefore

H( f, ψ) ≤ inf∑i, j ci dj =
(
inf
∑

i ci
)(
inf
∑

j dj
) = H( f, ϕ)H(ϕ, ψ).

For (f), the fact that a continuous real-valued function on a compact set attains its
maximum value allows us to choose y such that f (y)=‖ f ‖sup. Then ‖ f ‖sup=
f (y) ≤ ∑j cjϕ(gj y) ≤

∑
j cj‖ϕ‖sup and hence ‖ f ‖sup

/‖ϕ‖sup ≤ ∑j cj . Tak-
ing the infimum over systems of constants cj gives ‖ f ‖sup

/‖ϕ‖sup ≤ H( f, ϕ).
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Following the outline above, we now perform the normalization. Fix a nonzero
member f0 of C+com(G). If ϕ and f are nonzero members of C+com(G), define

�ϕ( f ) = H( f, ϕ)
/
H( f0, ϕ).

After listing some elementary properties of �ϕ , we shall prove in effect that �ϕ is
close to being additive if the support of ϕ is small.

Lemma 6.11. �ϕ( f ) has the properties that

(a) 0 < 1
H( f0, f )

≤ �ϕ( f ) ≤ H( f, f0),

(b) �ϕ(g f ) = �ϕ( f ) for g in G,
(c) �ϕ( f1 + f2) ≤ �ϕ( f1)+ �ϕ( f2),
(d) �ϕ(c f ) = c�ϕ( f ) if c > 0 is a constant.

PROOF. Properties (b), (c), and (d) are immediate from (a), (b), and (c) of
Lemma 6.10. For (a), we apply Lemma 6.10e with ϕ there equal to f0 and with
ψ there equal to ϕ, and the resulting inequality is H( f, ϕ) ≤ H( f, f0)H( f0, ϕ).
Thus �ϕ( f ) ≤ H( f, f0). Then we apply apply Lemma 6.10e with f there equal
to f0, ϕ there equal to f , and ψ there equal to ϕ. The resulting inequality is
H( f0, ϕ) ≤ H( f0, f )H( f, ϕ). Thus 1/H( f0, f ) ≤ �ϕ( f ).

Lemma 6.12. If f1 and f2 are nonzero members of C+com(G) and if ε > 0 is
given, then there exists an open neighborhood V of the identity in G such that

�ϕ( f1)+ �ϕ( f2) ≤ �ϕ( f1 + f2)+ ε

for every nonzero ϕ in C+com(G) whose support is contained in V .

PROOF. Let K be the support of f1 + f2, and let F be a member of Ccom(G)

with values in [0, 1] such that F is 1 on K . The number ε > 0 is given in the
statement of the lemma, and we let δ be a positive number to be specified. Define
f = f1 + f2 + δF , h1 = f1/ f , and h2 = f2/ f , with the convention that h1 and
h2 are 0 on the set where f is 0.
The functions h1 and h2 are continuous: In fact, there is no problem on the

open set where f (x) = 0. At a point x where f (x) = 0, the functions h1 and h2
are continuous unless x is a limit point of the set where f1 + f2 is not 0. This
set is contained in K , and thus x must be in K . On the other hand, F is 1 on K ,
and hence f is ≥ δ on K . Hence there are no points x where h1 or h2 fails to be
continuous.
Let η > 0 be another number to be specified. By Proposition 6.6 let V be an

open neighborhood of the identity such that V = V−1 and also

|h1(x)− h1(y)| < η and |h2(x)− h2(y)| < η
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whenever xy−1 is in V . If ϕ ∈ C+com(G) has support in V and if positive constants
cj and group elements gj are chosen such that f (x) ≤

∑
j cjϕ(gj x) for all x ,

then every x for which ϕ(gj x) > 0 has the property that

|h1(g−1j )− h1(x)| < η and |h2(g−1j )− h2(x)| < η.

Hence

f1(x) = f (x)h1(x) ≤
∑
j

cjϕ(gj x)h1(x) ≤
∑
j

(
cj (h1(g

−1
j )+ η)

)
ϕ(gj x).

Consequently
H( f1, ϕ) ≤

∑
j

(
cj (h1(g

−1
j )+ η)

)
.

Similarly
H( f2, ϕ) ≤

∑
j

(
cj (h2(g

−1
j )+ η)

)
.

Adding, we obtain

H( f1, ϕ)+ H( f2, ϕ) ≤
∑
j

(
cj (h1(g

−1
j )+ h2(g

−1
j )+ 2η)) ≤∑

j

cj (1+ 2η)

since h1 + h2 ≤ 1. Taking the infimum over the cj ’s and the gj ’s gives

H( f1, ϕ)+ H( f2, ϕ) ≤ H( f, ϕ)(1+ 2η).

Therefore

�ϕ( f1)+ �ϕ( f2)

≤ �ϕ( f )(1+ 2η)
≤ (�ϕ( f1 + f2)+ δ�ϕ(F)

)
(1+ 2η) by (c) and (d) in Lemma 6.11

≤ �ϕ( f1 + f2)+
(
δH(F, f0)+ 2δηH(F, f0)+ 2ηH( f1 + f2, f0)

)
,

the last inequality holding by Lemma 6.11a. This proves the inequality of the
lemma if δ and η are chosen small enough that

δH(F, f0)+ 2δηH(F, f0)+ 2ηH( f1 + f2, f0) < ε.

Lemma 6.13. There exists a nonzero positive linear functional � on Ccom(G)

such that �( f ) = �(g f ) for all g ∈ G and f ∈ Ccom(G).
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PROOF. For each nonzero f in C+com(G), let Sf be the closed interval
[1/H( f0, f ), H( f, f0)]. Let S be the compact Hausdorff space

S = ×
f ∈C+com(G),

f =0

Sf .

A member of S is a function that assigns to each nonzero member f of C+com(G)

a real number in the closed interval Sf , and �ϕ( f ) is such a function, according
to Lemma 6.11a. For each open neighborhood V of the identity in G, define

EV =
{
�ϕ
∣∣ ϕ ∈ C+com(G), ϕ = 0, support(ϕ) ⊆ V

}
as a nonempty subset of S. If V ⊆ V ′, then EV ⊆ EV ′ and hence also EclV ⊆ EclV ′ .
Thus if V1, . . . , Vn are open neighborhoods of the identity, then

EclV1∩···∩Vn ⊆ EclV1 ∩ · · · ∩ EclVn .

Consequently the closed sets EclV have the finite-intersection property. Since S is
compact, they have nonempty intersection. Let � be a point of S lying in their
intersection. For � to be in EclV for a particular V means that for each ε > 0 and
each finite set f1, . . . , fn of nonzero members of C+com(G), there is a nonzero ϕ
in C+com(G) with support in V such that

|�( f j )− �ϕ( f j )| < ε for 1 ≤ j ≤ n. (∗)
On the nonzero functions in C+com(G), let us observe the following facts:

(i) �( f ) ≥ 0 and �( f0) = 1, the latter because �ϕ( f0) = 1 for all ϕ.
(ii) �( f ) = �(g f ) for g ∈ G, since for any ε > 0, |�( f ) − �(g f )| ≤

|�( f )− �ϕ( f )|+ |�ϕ( f )− �ϕ(g f )|+ |�ϕ(g f )− �(g f )| < 2ε by Lemma
6.11b if V and ϕ are as in (∗) for the two functions f and g f .

(iii) �( f1 + f2) = �( f1)+ �( f2) because if ε > 0 is given, if V is chosen for
this ε according to Lemma 6.12, and if ϕ is chosen for f1, f2, and f as in
(∗), then we have �( f1 + f2) ≤ �ϕ( f1 + f2)+ ε ≤ �ϕ( f1)+ �ϕ( f2)+ ε

≤ �( f1) + �( f2) + 3ε and �( f1) + �( f2) ≤ �ϕ( f1) + �ϕ( f2) + 2ε ≤
�ϕ( f1 + f2)+ 3ε ≤ �( f1 + f2)+ 4ε, the next-to-last inequality holding
by Lemma 6.12.

(iv) �(c f ) = c�( f ) for c > 0 because if V and ϕ are as in (∗) for ε > 0
and the two functions f and c f , then we have �(c f ) ≤ �ϕ(c f ) + ε =
c�ϕ( f )+ε ≤ c�( f )+(c+1)ε and c�( f ) ≤ c�ϕ( f )+cε = �ϕ(c f )+cε ≤
�(c f )+ (c + 1)ε.

Because of (iii) and (iv), � extends to a linear functional onCcom(G), and this linear
functional is positive by (i) and satisfies the invariance condition �( f ) = �(g f )
by (ii).
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PROOF OF EXISTENCE IN THEOREM 6.8. Fix a nonzero function f0 in C+com(G),
and let μ be the measure given by the Riesz Representation Theorem as corre-
sponding to the positive linear functional � in Lemma 6.13. If K0 is a nonempty
compact Gδ and if { fn} is a decreasing sequence in Ccom(G)with pointwise limit
IK0 , then we have

∫
G g fn dμ = ∫G fn dμ for all g ∈ G and all n. Passing to

the limit and applying dominated convergence gives
∫
G gIK0 dμ =

∫
G IK0 dμ.

Now gIK0(x) = IK0(g
−1x) = IgK0(x), and hence μ(gK0) = μ(K0) for all g.

In other words, the regular Borel measures g−1μ and μ agree on compact Gδ’s.
This equality is enough6 to force the equality g−1μ = μ for all g. Finally μ is
not the 0 measure since

∫
G f0 dμ = 1.

3. Modular Function

We continue with G as a locally compact group. From now on, we shall often
denote particular left and right Haar measures on G by dl x and dr x , respectively.
An important property of left and right Haar measures is that

any nonempty open set has nonzero Haar measure.

In fact, in the case of a left Haarmeasure, if any compact set is given, finitelymany
left translates of the given open set together cover the compact set. If the open set
had 0 measure, so would its left translates and so would every compact set. Then
the measure would be identically 0 by regularity. A similar argument applies to
any right Haar measure. We shall occasionally make use of this property without
explicit mention.
Actually, left Haar measure and right Haar measure have the same sets of

measure 0, as will follow from Proposition 6.15c below. Thus we are completely
justified in using the expression “nonzero Haar measure” above.
Fix a left Haar measure dl x . Since left translations on G commute with right

translations, dl( · g) is a left Haar measure for any g ∈ G. Left Haar measures
are proportional, and we therefore define themodular function : G → R+ of
G by

dl( · g) = (g−1) dl( · ).

Lemma 6.14. For any regular Borel measure μ on G, any g0 in G, and any p
with 1 ≤ p <∞, the limit relations

limg→g0

∫
G | f (gx)− f (g0x)|p dμ(x) = 0

limg→g0

∫
G | f (xg)− f (xg0)|p dμ(x) = 0and

6Propositions 11.19 and 11.18 of Basic.
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hold for each f in Ccom(G). In particular,

g �→ ∫
G f (gx) dμ(x) and g �→ ∫

G f (xg) dμ(x)

are continuous scalar-valued functions for such f .

PROOF. Corollary 6.7 shows that g �→ f (g( · )) is continuous from G into
C(G). Let ε > 0 be given, and choose a neighborhood N of g0 such that
supx∈G | f (gx)− f (g0x)| ≤ ε for g in N . If K is a compact neighborhood of g0,
then the set of products K support( f ) is compact, being the continuous image of a
compact subset of G×G under multiplication. It therefore has finite μmeasure,
say C . When g is in K ∩ N , we have∫

G | f (gx)− f (g0x)|p dμ(x) ≤ ε pμ(K support( f )) = Cε p,

and the first limit relation follows. Taking p = 1, we have∣∣ ∫
G f (gx) dμ(x)− ∫G f (g0x) dμ(x)

∣∣ ≤ ∫G | f (gx)− f (g0x)| dμ(x),
and we have just seen that the right side tends to 0 as g tends to g0. This proves
the first conclusion about continuity of scalar-valued functions.
For the other limit relation and continuity result, we replace f by the function

f̃ with f̃ (x) = f (x−1), and we apply to f̃ what has just been proved, taking into
account the continuity of the inversion mapping on G.

Proposition 6.15. The modular function  for G has the properties that

(a)  : G → R+ is a continuous group homomorphism,
(b) (g) = 1 for g in any compact subgroup of G,
(c) dl(x−1) and (x) dl x are right Haar measures and are equal,
(d) dr (x−1) and (x)−1 dr x are left Haar measures and are equal,
(e) dr (g · ) = (g) dr ( · ) for any right Haar measure on G.
PROOF. For (a), we take dμ(x) = dl x in Lemma 6.14 and see that the function

g �→ ∫
G f (xg) dl x =

∫
G f (x) dl(xg−1) = (g)

∫
G f (x) dl x is continuous if f

is in Ccom(G). Since there exist functions f in Ccom(G) with
∫
G f (x) dl x = 0,

g �→ (g) is continuous. The homomorphism property follows from the fact that
(hg) dl x=dl(x(hg)−1)=dl((xg−1)h−1)=(h) dl(xg−1)=(h)(g) dl x .
For (b), the image under  of any compact subgroup of G is a compact

subgroup of R+ and hence is {1}.
In (c), put dμ(x) = (x) dl x . This is a regular Borel measure since  is

continuous by (a). Since  is a homomorphism, we have∫
G f (xg) dμ(x) = ∫G f (xg)(x) dl x =

∫
G f (x)(xg−1) dl(xg−1)

= ∫G f (x)(x)(g−1)(g) dl x

= ∫G f (x)(x) dl x =
∫
G f (x) dμ(x).
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Hence dμ(x) is a rightHaarmeasure. Meanwhile, dl(x−1) is a rightHaarmeasure
because ∫

G f (xg) dl(x−1) =
∫
G f (x−1g) dl x =

∫
G f ((g−1x)−1) dl x

= ∫G f (x−1) dl x =
∫
G f (x) dl(x−1).

Thus Theorem 6.8 for right Haar measures implies that dl(x−1) = c(x) dl x for
some constant c > 0. Changing x to x−1 in this formula, we obtain

dl x = c(x−1) dl(x−1) = c2(x−1)(x) dl x = c2 dl x .

Hence c = 1, and (c) is proved.
For (d) and (e) there is no loss of generality in assuming that dr x = dl(x−1) =

(x) dl x , in view of (c). Conclusion (d) is immediate from this identity if we
replace x by x−1. For (e) we have∫
G f (x) dr (gx) =

∫
G f (g−1x) dr x=

∫
G f (g−1x)(x) dl x=

∫
G f (x)(gx) dl x

= (g)
∫
G f (x)(x) dl x = (g)

∫
G f (x) dr x,

and we conclude that dr (g · ) = (g) dr ( · ).

The locally compact group G is said to be unimodular if every left Haar
measure is a right Haar measure (and vice versa). In this case we can speak of
Haar measure on G.
In view of Proposition 6.15e, G is unimodular if and only if (t) = 1 for all

t ∈ G. Locally compact abelian groups are of course unimodular. Proposition
6.15b shows that compact groups are unimodular.
Any commutator ghg−1h−1 in G is carried to 1 by the modular function .

Consequently any group that is generated by commutators, such as SL(N ,R),
is unimodular. More generally any group that is generated by commutators,
elements of the center, and elements of finite order is unimodular; GL(N ,R) is
an example.

Theorem 6.16. Let G be a separable locally compact group, and let S and T
be closed subgroups such that S ∩ T is compact, multiplication S × T → G is
an open map, and the set of products ST exhausts G except possibly for a set of
Haar measure 0. LetT andG denote the modular functions of T and G. Then
the left Haar measures on G, S, and T can be normalized so that∫

G
f (x) dl x =

∫
S×T

f (st)
T (t)

G(t)
dls dl t

for all Borel functions f ≥ 0 on G.
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REMARK. The assumption of separability avoids all potential problems with
using Fubini’s Theorem in the course of the proof. Problems 21–22 at the end of
the chapter give a condition under which multiplication S × T → G is an open
map, and they provide examples.

PROOF. Let 	 ⊆ G be the set of products ST , and let K = S ∩ T . The group
S×T acts continuously on	 by (s, t)ω = sωt−1, and the isotropy subgroup at 1
is diag K . Thus the map (s, t) �→ st−1 descends to a map (S× T )/diag K → 	.
This map is a homeomorphism since multiplication S × T → G is assumed to
be an open map.
Hence any Borel measure on 	 can be reinterpreted as a Borel measure on

(S×T )/diag K . We apply this observation to the restriction of a leftHaarmeasure
dl x for G from G to 	, obtaining a Borel measure dμ on (S × T )/diag K . On
	, we have

dl(s0xt
−1
0 ) = G(t0) dl x,

and the action unwinds to

dμ((s0, t0)(s, t)(diag K )) = G(t0) dμ((s, t)(diag K )) (∗)
on (S × T )/diag K . Using the Riesz Representation Theorem, define a measure
dμ̃(s, t) on S × T in terms of a positive linear functional on Ccom(S × T ) by∫

S×T
f (s, t) dμ̃(s, t) =

∫
(S×T )/diag K

[ ∫
K
f (sk, tk) dk

]
dμ((s, t)(diag K )),

where dk is a Haar measure on K normalized to have total mass 1. From (∗) it
follows that

dμ̃(s0s, t0t) = G(t0) dμ̃(s, t).

The same proof as for the uniqueness in Theorem 6.8 shows that any two Borel
measures on S× T with this property are proportional, andG(t) dls dl t is such
a measure. Therefore

dμ̃(s, t) = G(t) dls dl t

for a suitable normalization of dls dl t .
The resulting formula is∫

	

f (x) dl x =
∫
S×T

f (st−1)G(t) dls dl t

for all Borel functions f ≥ 0 on 	. On the right side the change of variables
t �→ t−1 makes the right side become∫

S×T
f (st)G(t)

−1 dlsT (t) dl t,
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according to Proposition 6.15c, and we can replace	 by G on the left side since
the complement of 	 in G has measure 0 by assumption. This completes the
proof.

4. Invariant Measures on Quotient Spaces

If H is a closed subgroup of G, then we can ask whether G/H has a nonzero G
invariant Borel measure. Theorem 6.18 belowwill give a necessary and sufficient
condition for this existence, butweneed somepreparation. Fix a leftHaarmeasure
dlh for H . If f is in Ccom(G), define

f #(g) =
∫
H
f (gh) dlh.

This function is invariant under right translation by H , and we can define

f ##(gH) = f #(g).

The function f ## has compact support on G/H .

Lemma 6.17. The map f �→ f ## carries Ccom(G) onto Ccom(G/H), and a
nonnegative member of Ccom(G/H) has a nonnegative preimage in Ccom(G).

PROOF. Let π : G → G/H be the quotient map. Let F ∈ Ccom(G/H) be
given, and let K be a compact set in G/H with F = 0 off K . We first produce
a compact set K̃ in G with π(K̃ ) = K . For each coset in K , select an inverse
image x and let Nx be a compact neighborhood of x in G. Since π is open, π of
the interior of Nx is open. These open sets cover K , and a finite number of them
suffices. Then we can take K̃ to be the intersection of the closed set π−1(K )with
the compact union of the finitely many Nx ’s.
Next let KH be a compact neighborhood of 1 in H . Since nonempty open

sets always have positive Haar measure, the left Haar measure on H is positive
on KH . Let K̃ ′ be the compact set K̃ ′ = K̃ KH , so that π(K̃ ′) = π(K̃ ) = K .
Choose f1 ∈ Ccom(G) with f1 ≥ 0 everywhere and with f1 = 1 on K̃ ′. If g is in
K̃ ′, then

∫
H f1(gh) dlh is ≥ the H measure of KH , and hence f ##1 is > 0 on K .

Define

f (g) =
⎧⎨⎩ f1(g)

F(π(g))

f ##1 (π(g))
if π(g) ∈ K ,

0 otherwise.

Then f ## equals F on K and equals 0 off K , and therefore f ## = F everywhere.
Certainly f has compact support. To see that f is continuous, it suffices to

check that the two formulas for f (g) fit together continuously at points g of the



4. Invariant Measures on Quotient Spaces 235

closed setπ−1(K ). It is enough to check points where f (g) = 0. Say gα → g for
a net {gα}. We must have F(π(g)) = 0. Since F is continuous, F(π(gα)) = 0
eventually. Thus for all α sufficiently large, f (gα) is given by the first of the two
formulas. Thus f is continuous.

Theorem 6.18. Let G be a locally compact group, let H be a closed subgroup,
and let G and H be the respective modular functions. Then a necessary and
sufficient condition forG/H to have a nonzeroG invariant regular Borel measure
is that the restriction to H ofG equalH . In this case such a measure dμ(gH)

is unique up to a scalar, and it can be normalized so that∫
G
f (g) dlg =

∫
G/H

[ ∫
H
f (gh) dlh

]
dμ(gH)

for all f ∈ Ccom(G).

PROOF. Let dμ(gH) be a nonzero invariant regular Borel measure on G/H .
Using the function f ## defined above, we can define a measure dμ̃(g) on G via
a linear functional on Ccom(G) by∫

G
f (g) dμ̃(g) =

∫
G/H

f ##(gH) dμ(gH).

Since f �→ f ## commutes with left translation by G, dμ̃ is a left Haar measure
on G. By Theorem 6.8, dμ̃ is unique up to a scalar; hence dμ(gH) is unique up
to a scalar.
Under the assumption that G/H has a nonzero invariant Borel measure, we

have just seen in essence that we can normalize the measure so that the boxed
formula holds. If we replace f in the boxed formula by f ( · h0), then the left
side is multiplied byG(h0), and the right side is multiplied byH (h0). Hence
G

∣∣
H = H is necessary for existence.
Let us prove that this condition is sufficient for existence. If h in Ccom(G/H)

is given, we can choose f in Ccom(G) by Lemma 6.17 such that f ## = h. Then
we define L(h) = ∫G f (g) dlg. If L is well defined, then it is a linear functional,
Lemma 6.17 shows that it is positive, and L certainly is the same on a function as
on itsG translates. By the Riesz Representation Theorem, L defines aG invariant
Borel measure dμ(gH) on G/H such that the boxed formula holds.
Thus all we need to do is see that L is well defined if G

∣∣
H = H . We are

thus to prove that if f ∈ Ccom(G) has f # = 0, then
∫
G f (g) dlg = 0. Let ψ

be in Ccom(G). Since Fubini’s Theorem is applicable to continuous functions of
compact support, we have

0 = ∫G ψ(g) f #(g) dlg

= ∫G [ ∫H ψ(g) f (gh) dlh
]
dlg
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= ∫H [ ∫G ψ(g) f (gh) dlg
]
dlh

= ∫H [ ∫G ψ(gh−1) f (g) dlg
]
G(h) dlh by definition of G

= ∫G f (g)
[ ∫

H ψ(gh−1)G(h) dlh
]
dlg

= ∫G f (g)
[ ∫

H ψ(gh)G(h)−1H (h) dlh
]
dlg by Proposition 6.15c

= ∫G f (g)ψ#(g) dlg since G

∣∣
H = H .

By Lemma 6.17 we can choose ψ ∈ Ccom(G) such that ψ## = 1 on the image in
G/H of the support of f . Then the right side of the above display is

∫
G f (g) dlg,

and the conclusion is that this is 0. Thus L is well defined, and existence is
proved.

EXAMPLE. Let G = SL(2,R), and letH be the upper half plane in C, namely
{z | Im z > 0}. The group G acts continuously on H by linear fractional
transformations, the action being(

a b
c d

)
(z) = az + b

cz + d
.

This action is transitive since(
y1/2 xy−1/2
0 y−1/2

)
(i) = x + iy if y > 0, (∗)

and the subgroup that leaves i fixed, by direct computation, is the rotation

subgroup K , which consists of the matrices
(
cos θ − sin θ
sin θ cos θ

)
. The mapping of

G to H given by g �→ g(i) therefore descends to a one-one continuous map
of G/K onto H, and Problem 3 at the end of the chapter shows that this map
is a homeomorphism. The group G is generated by commutators and hence is
unimodular, and the subgroup K is unimodular, being compact. Theorem 6.18
therefore says thatH has aG-invariant Borel measure that is unique up to a scalar
factor. Let us see for p = −2 that the measure y p dx dy is invariant under the
subgroup acting in (∗). We have(

y1/20 x0y
−1/2
0

0 y−1/20

)
(x + iy) = y0(x + iy)+ x0 = (y0x + x0)+ iy0y. (∗∗)

If ϕ denotes left translation by the matrix on the left in (∗∗), then (dx dy)ϕ−1 =
y20 dx dy. Hence (y

−2 dx dy)ϕ−1 = (y−2)ϕ (dx dy)ϕ−1 = (y−20 y−2)(y20 dx dy) =
y−2 dx dy, and y−2 dx dy is preserved by every matrix in (∗∗). The group G is

generated by the matrices in (∗∗) and the one additional matrix
(

0 1
−1 0

)
. Since(

0 1
−1 0

)
(x + iy) = 1

(−1)(x + iy)
= −x + iy

x2 + y2
,
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0 1
−1 0

)
sends y−2 dx dy to

( y
x2+y2

)−2 | det J | dx dy, where J is the Jacobian

matrix of F(x, y) = ( −x
x2+y2 ,

y
x2+y2

)
, namely J =

(
x2−y2

(x2+y2)2
2xy

(x2+y2)2
−2xy

(x2+y2)2
x2−y2

(x2+y2)2

)
. Cal-

culation gives | det J | = (x2 + y2)−2, and therefore
(

0 1
−1 0

)
sends y−2 dx dy to

itself. Consequently y−2 dx dy is, up to a multiplicative constant, the one and
only G-invariant measure onH.

5. Convolution and L p Spaces

We turn our attention to the way that Haar measure arises in real analysis. This
section will introduce convolution, and aspects of Fourier analysis in the setting
of various kinds of locally compact groups will be touched upon in later sections
and in the problems at the end of that chapter. In most such applications of
Haar measure to Fourier analysis, one assumes that the group under study is
unimodular, even if some of its closed subgroups are not.
Thus let G be a locally compact group. We assume throughout this section

that G is unimodular. We can then write dx for a two-sided Haar measure on G.
Proposition 6.15c shows that we have

∫
G f (x−1) dx = ∫G f (x) dx for all Borel

functions f ≥ 0. We abbreviate L p(G, dx) as L p(G).

Proposition 6.19. Let G be unimodular, let 1 ≤ p <∞, and let f be a Borel
function in L p. Then g �→ g f and g �→ f g are continuous functions from G
into L p.

PROOF. Lemma 6.14 gives the result for f in Ccom(G). Proposition 11.21 of
Basic shows that Ccom(G) is dense in L p(G). Given g0 ∈ G and ε > 0, find h in
Ccom(G) with ‖ f − h‖p ≤ ε. Then

‖g f − g0 f ‖p ≤ ‖g f − gh‖p + ‖gh − g0h‖p + ‖g0h − g0 f ‖p
= 2‖ f − h‖p + ‖gh − g0h‖p by left invariance of dx

≤ 2ε + ‖gh − g0h‖p,
and hence lim supg→g0 ‖g f − g0 f ‖p ≤ 2ε. Since ε is arbitrary, we see that g f
tends to g0 f in L p(G) as g tends to g0. Similarly f g tends to f g0 in L p(G) as
g tends to g0.

A key tool for real analysis on G is convolution, just as it was with RN . On a
formal level the convolution f ∗ h of two functions f and h is

( f ∗ h)(x) =
∫
G
f (xy−1)h(y) dy =

∫
G
f (y)h(y−1x) dy.
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The formal equality of the two integrals comes about by changing y into y−1 in the
first integral and then replacing xy by y. If G is abelian, then xy−1 = y−1x ; thus
the first integral for f ∗ h equals the second integral for h ∗ f , and the conclusion
is that convolution is commutative. However, convolution is not commutative if
G is nonabelian.
To make mathematical sense out of f ∗ h, we adapt the corresponding known

discussion7 for the special case G = RN . Let us begin with the case that f and h
are nonnegativeBorel functions onG. The question iswhether f ∗h ismeaningful
as a Borel function ≥ 0. In fact, (x, y) �→ f (xy−1) is the composition of the
continuous function F : G×G → G given by F(x, y) = xy−1, followed by the
Borel function f : G → [0,+∞]. If U is open in [0,+∞], then f −1(U ) is in
B(G), and an argument like the one for Proposition 6.8 shows that ( f ◦F)−1(U ) =
F−1( f −1(U )) is in B(G × G). Then the product (x, y) �→ f (xy−1)g(y) is a
Borel function, and we would like to use Fubini’s Theorem to conclude that
x �→ ( f ∗ h)(x) is a Borel function ≥ 0. Unfortunately we do not know whether
the σ -algebras match properly, specifically whether B(G ×G) = B(G)×B(G).
On the other hand, this kind of product relation does hold for Baire sets. We

therefore repeat the above argument with nonnegative Baire functions in place of
nonnegative Borel functions. Now the only possible difficulty comes from the
fact that Haar measure onG might not be σ -finite. This problem is easily handled
by the same kind of localization argument as with the proof of uniqueness for
Theorem 6.8: Suppose thatG is not σ -compact and that f ≥ 0 is a Baire function
on G. If E is any subset of [0,+∞], then f −1(E) and f −1(Ec) are disjoint
Baire sets. Since any two Baire sets that fail to be σ -bounded have nonempty
intersection, only one of f −1(E) and f −1(Ec) can fail to beσ -bounded. It follows
that there is exactly onemember c of [0,+∞] for which f −1(c) is not σ -bounded.
So as to avoid unimportant technicalities, let us assume for all Baire functions
under discussion that this value is 0, i.e., that each Baire function considered
in some convolution vanishes off some σ -bounded set. Any σ -bounded set is
contained in some σ -compact open subgroup G0 of G, and thus the convolution
effectively takes place on the σ -compact open subgroup G0; the convolution is 0
outside G0.

Proposition 6.20. Suppose that f and h are nonnegative Baire functions on
G, each vanishing off a σ -bounded subset of G. Let 1 ≤ p ≤ ∞, and let p′
be the dual index. Then convolution is finite almost everywhere in the following
cases, and then the indicated inequalities of norms are satisfied:

(a) for f in L1(G) and h in L p(G), and then ‖ f ∗ h‖p ≤ ‖ f ‖1‖h‖p,
for f in L p(G) and h in L1(G), and then ‖ f ∗ h‖p ≤ ‖ f ‖p‖h‖1,

7The discussion in question appears in Section VI.2 of Basic.
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(b) for f in L p(G) and h in L p′(G), and then ‖ f ∗ h‖sup ≤ ‖ f ‖p‖h‖p′ ,
for f in L p′(G) and h in L p(G), and then ‖ f ∗ h‖sup ≤ ‖ f ‖p′‖h‖p.

Consequently f ∗ h is defined in the above situations even if the scalar-valued
functions f and h are not necessarily≥ 0, and the estimates on the norm of f ∗ h
are still valid. In case (b), the function f ∗ h is actually continuous.
REMARK. The proof of the continuity in (b) will show actually that f ∗ h is

uniformly continuous in a certain sense.

PROOF. The argument for measurability has been given above. The argument
for the norm inequalities is proved in the same way8 as in the special case that
G = RN . Namely, we use Minkowski’s inequality for integrals to handle (a),
and we use Hölder’s inequality to handle (b).
Now consider the question of continuity in (b). At least one of the indices

p and p′ is finite. First suppose that p is finite. We observe for g ∈ G that
g( f ∗h)(x) = ( f ∗h)(g−1x) = ∫G f (g−1xy−1)h(y) dy = ∫G(g f )(xy−1)h(y) dy
= (g f ) ∗ h(x). Then we use the bound ‖ f ∗ h‖sup ≤ ‖ f ‖p‖h‖p′ to make the
estimate, for g ∈ G, that

‖g( f ∗ h)− ( f ∗ h)‖sup = ‖(g f ) ∗ h − f ∗ h‖sup
= ‖(g f − f ) ∗ h‖sup ≤ ‖g f − f ‖p‖h‖p′ .

Proposition 6.19 shows that the right side tends to 0 as g tends to 1, and hence
limg→1( f ∗ h)(g−1x) = ( f ∗ h)x . If instead p′ is finite, we argue similarly
with right translations of h, finding first that ( f ∗ h)g = f ∗ (hg) and then that
‖( f ∗ h)g − ( f ∗ h)‖sup ≤ ‖ f ‖p‖hg − h‖p′ . Application of Proposition 6.19
therefore shows that limg→1( f ∗ h)(xg−1) = ( f ∗ h)(x).

Corollary 6.21. Convolution makes L1(G) into an associative algebra
(possibly without identity) in such a way that the norm satisfies ‖ f ∗ h‖1 ≤
‖ f ‖1‖h‖1 for all f and h in L1(G).

PROOF. The norm inequality was proved in Proposition 6.20a, and it justifies
the interchange of integrals in the calculation

(( f1 ∗ f2) ∗ f3)(x) =
∫
G

∫
G f1(y) f2(y−1z) f3(z−1x) dy dz

= ∫G ∫G f1(y) f2(y−1z) f3(z−1x) dz dy

= ∫G ∫G f1(y) f2(z) f3(z−1y−1x) dz dy under z �→ yz

= ( f1 ∗ ( f2 ∗ f3))(x),

which in turn proves associativity.

8Propositions 6.14 and 9.10 of Basic.
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We shall need the following result in proving the Peter–Weyl Theorem in
Section 7.

Proposition 6.22. Let G be a compact group, let f be in L1(G), and let h
be in L2(G). Put F(x) = ∫G f (y)h(y−1x) dy. Then F is the limit in L2(G)

of a sequence of functions, each of which is a finite linear combination of left
translates of h.

REMARK. For a comparable result in RN , see Corollary 6.17 of Basic. We
know from Proposition 6.15b that compact groups are unimodular.

For the proof we require a lemma.

Lemma 6.23. Let G be a compact group, and let h be in L2(G). For any
ε > 0, there exist finitely many yi ∈ G and Borel sets Ei ⊆ G such that the Ei
disjointly cover G and

‖h(y−1x)− h(y−1i x)‖2,x < ε for all i and for all y ∈ Ei .

PROOF. By Proposition 6.19 choose an open neighborhood U of 1 such
that ‖h(gx) − h(x)‖2,x < ε whenever g is in U . For each z0 ∈ G, we have
‖h(gz0x) − h(z0x)‖2,x < ε whenever g is in U . The set Uz0 is an open
neighborhood of z0, and such sets cover G as z0 varies. Find a finite subcover,
sayUz1, . . . ,Uzn , and letUi = Uzi . Define Fj = Uj −

⋃ j−1
i=1 Ui for 1 ≤ j ≤ n.

Then the lemma follows with yi = z−1i and Ei = F−1i .

PROOF OF PROPOSITION 6.22. Given ε > 0, choose yi and Ei as in Lemma
6.23, and put ci =

∫
Ei
f (y) dy. Then∥∥ ∫

G f (y)h(y−1x) dy −∑i ci h(y
−1
i x)

∥∥
2,x

≤ ∥∥∑i

∫
Ei
| f (y)||h(y−1x)− h(y−1i x)| dy∥∥2,x

≤∑i

∫
Ei
| f (y)| ‖h(y−1x)− h(y−1i x)‖2,x dy

≤∑i

∫
Ei
| f (y)|ε dy = ε‖ f ‖1.

6. Representations of Compact Groups

The subject of functional analysis always suggests trying to replace a mathe-
matical problem about functions by a problem about a space of functions and
working at solving the latter. By way of example, this point of view is what lay
behind our approach in Section I.2 to certain kinds of boundary-value problems
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by using the method of separation of variables. In some of the cases of separation
of variables we considered, as well as in other situations arising in nature, the
problem has some symmetry to it, and that symmetry gets passed along to the
space of functions under study. Mathematically the symmetry is captured by a
group, since the set of symmetries is associative and is closed under composition
and inversion. The subject of representation theory deals with exploiting such
symmetry, at least in cases for which the problem about functions is linear.
We shall begin with a definition and some examples of finite-dimensional rep-

resentations of an arbitrary topological group, and then we shall develop a certain
amount of theory of finite-dimensional representations under the assumption that
the group is compact. The main theorem in this situation is the Peter–Weyl
Theorem, which we take up in the next section. In Section 8 we introduce
infinite-dimensional representations because vector spaces of functions that arise
in analysis problems are frequently infinite-dimensional; in that section we study
what happens when the group is compact, but a considerable body ofmathematics
beyond the scope of this book investigates what can happen for a noncompact
group.
Historically the original representations that were studied were matrix rep-

resentations. An N -by-N matrix representation of a topological group G
is a continuous homomorphism � of G into the group GL(N ,C) of invert-
ible complex matrices. In other words, �(g) is an N -by-N invertible com-
plex matrix for each g in G, the matrices are related by the condition that
�(gh)i j =

∑N
k=1�(g)ik�(h)k j , and the functions g �→ �(g)i j are continuous.

Eventually it was realized that sticking to matrices obscures what is really
happening. For one thing the group GL(N ,C) is being applied to the space CN

of column vectors, and some vector subspaces of CN seem more important than
others when they are really not. Instead, it is better to replace CN by a finite-
dimensional complex vector space V and consider continuous homomorphisms
ofG into the groupGLC(V ) of invertible linear transformations on V . Specifying
an ordered basis of V allows one to identify GLC(V ) with GL(N ,C), and then
the homomorphism gets identified with a matrix representation. In the special
case that V = CN , this identification can be taken to be the usual identification of
linear functions andmatrices. The point, however, is that it is unwise to emphasize
one particular ordered basis in advance, and it is better to work with a general
finite-dimensional complex vector space.
Thus we define a finite-dimensional representation of a topological group

G on a finite-dimensional complex vector space V to be a continuous homomor-
phism� of G into GLC(V ). The continuity condition means that in any basis of
V the matrix entries of �(g) are continuous for g ∈ G. It is equivalent to say
that g �→ �(g)v is a continuous function from G into V for each v in V , i.e.,
that for each v in V , if �(g)v is expanded in terms of a basis of V , then each
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entry is a continuous function of g. The vector space V is allowed to be CN in
the definition, and thus matrix representations are part of the theory.
Before coming to a list examples, let us dispose of two easy kinds of examples

that immediately suggest themselves.
For anyG the trivial representation ofG on V is the representation� ofG for

which�(g) = 1 for all g ∈ G. Sometimes when the term “trivial representation”
is used, it is understood that V = C; sometimes the case V = C is indicated by
referring to the “trivial 1-dimensional representation.”
If G is a group of real or complex invertible N -by-N matrices, then G is

a subgroup of GL(N ,C), and the relative topology from GL(N ,C) makes G
into a topological group. The inclusion mapping � of G into GL(N ,C) is
a representation known as the standard representation of G. The following
question then arises: If G is such a group, why consider representations of G
when we already have one? The answer, from an analyst’s point of view, is that
representations are thrust on us by some mathematical problem that we want to
solve, and we have to work with what we are given; other representations than
the standard one may occur in the process.

EXAMPLES OF FINITE-DIMENSIONAL REPRESENTATIONS.

(1) One-dimensional representations. A continuous homomorphism of a topo-
logical group G into the multiplicative groupC× of nonzero complex numbers is
a representation because we can regard C× as GL(1,C). Of special interest are
the representations of this kind that take values in the unit circle {eiθ }. These are
calledmultiplicative characters.

(a) The exponential functions that arise in Fourier series are examples; the
group G in this case is the circle group S1, namely the quotient of R modulo the
subgroup 2πZ of multiples of 2π , and for each integer n, the function x �→ einx

is a multiplicative character of R that descends to a well-defined multiplicative
character of S1.

(b) The exponential functions that arise in the definition of the Fourier
transform on RN , namely x �→ eix ·y , are multiplicative characters of the additive
group RN .

(c) Let Jm be the cyclic group {0, 1, 2, . . . ,m−1} of integers modulo m
under addition, and let ζm = e2π i/m . For each integern and for k in Jm , the formula
χn(k) = (ζ nm)

k defines a multiplicative character χn of Jm . These multiplicative
characters are distinct for 0 ≤ n ≤ m − 1.

(d) If G is the symmetric group Sn on n letters, then the sign mapping
σ �→ sgn σ is a multiplicative character.

(e) The integer powers of the determinant are multiplicative characters of
the unitary group U (N ).

(2) Some representations of the symmetric groupS3 on three letters.
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(a) The trivial character and the sign character defined in Example 1d above
are the only multiplicative characters.

(b) For each permutation σ , let �(σ) be the 3-by-3 matrix of the
linear transformation carrying the standard ordered basis (e1, e2, e3) of C3 to
the ordered basis (eσ(1), eσ(2), eσ(3)). To check that � is indeed a representa-
tion, we start from �(σ)ej = eσ( j); applying �(τ) to both sides, we obtain
�(τ)�(σ)ej = �(τ)eσ( j) = eτ(σ ( j)) = e(τσ )( j) = �(τσ)ej , and we conclude
that �(τ)�(σ) = �(τσ). The vector e1 + e2 + e3 is fixed by each �(σ), and
therefore the 1-dimensional vector subspace C(e1+ e2+ e3) is “invariant” in the
sense of being carried to itself under �(S3).

(c) Place an equilateral triangle in the plane R2 with its center at the origin
and with vertices given in polar coordinates by (r, θ) = (1, 0), (1, 2π/3), and
(1, 4π/3). Let the vertices be numbered 1, 2, 3, and let �(σ) be the matrix of
the linear transformation carrying vertex j to vertex σ( j) for each j . Then � is
given on the transpositions ( 1 2 ) and ( 2 3 ) by

�(( 1 2 )) =
(−1/2 √

3/2√
3/2 1/2

)
and �(( 2 3 )) =

(
1 0
0 −1

)
and is given on any product of these two transpositions by the corresponding
product of the above two matrices. The eigenspaces for�(( 2 3 )) are Ce1 and
Ce2, and these subspaces are not eigenspaces for �(( 1 2 )). Consequently the
only vector subspaces carried to themselves by�(S3) are the trivial ones, namely
0 and C2. The functions on S3 of the form σ �→ �(σ)i j will play a role similar
to the role of the functions x �→ einx in Fourier series, and we record their values
here:

σ �(σ)11 �(σ)12 �(σ)21 �(σ)22

(1) 1 0 0 1
(123) −1/2 −√3/2 √

3/2 −1/2
(132) −1/2 √

3/2 −√3/2 −1/2
(12) −1/2 √

3/2
√
3/2 1/2

(23) 1 0 0 −1
(13) −1/2 −√3/2 −√3/2 1/2

(3) A family of representations of the unitary group G = U (N ). Let V
consist of all polynomials in z1, . . . , zN , z̄1, . . . , z̄N homogeneous of degree k,
i.e., having every monomial of total degree k, and let

�(g)P

⎛⎝⎛⎝ z1
...

zN

⎞⎠ ,

⎛⎝ z̄1
...

z̄N

⎞⎠⎞⎠ = P

⎛⎝g−1
⎛⎝ z1

...

zN

⎞⎠ , ḡ−1

⎛⎝ z̄1
...

z̄N

⎞⎠⎞⎠ .

Thevector subspaceV ′ ofholomorphicpolynomials (thosewith no z̄’s) is carried
to itself by all �(g), and therefore V ′ is an invariant subspace in the sense of
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being carried to itself by �(G). The restriction of the �(g)’s to V ′ is thus itself
a representation. When k = 1, this representation on V ′ may at first seem to be
the standard representation of U (N ), but it is not. In fact, V ′ for k = 1 consists
of all linear combinations of the N linear functionals⎛⎝ z1

...

zN

⎞⎠ �→ z1 through

⎛⎝ z1
...

zN

⎞⎠ �→ zN .

In other words, V ′ is actually the space of all linear functionals on CN . The
definition of � by �(g)�(z) = �(g−1z) for z ∈ CN and for � in the space of
linear functionals involves no choice of basis. The representation on V ′ when
N = 1 is the “contragredient” of the standard representation, in a sense that will
be defined for any representation in Example 6 below.

(4) A family of representations of the special unitary group G = SU(2) of

all 2-by-2 unitary matrices of determinant 1, namely all matrices
(

α β

−β̄ ᾱ

)
with

|α|2 + |β|2 = 1. Let V be the space of homogeneous holomorphic polynomials
of degree n in z1 and z2, let� be the representation defined in the same way as in
Example 3, and let V ′ be the space of all holomorphic polynomials in z of degree
n with

�′
(

α β

−β̄ ᾱ

)
Q(z) = (β̄z + α)nQ

(
ᾱz − β

β̄z + α

)
.

Define E : V → V ′ by (EP)(z) = P
( z
1

)
. Then E is an invertible linear

mapping and satisfies E�(g) = �′(g)E for all g, and we say that E exhibits �
and �′ as equivalent (i.e., isomorphic).
(5) A family of representations for G equal to the orthogonal group O(N ) or

the rotation subgroup SO(N ). Let V consist of all polynomials in x1, . . . , xN
homogeneous of degree k, and let

�(g)P

⎛⎝⎛⎝ x1
...

xN

⎞⎠⎞⎠ = P

⎛⎝g−1
⎛⎝ x1

...

xN

⎞⎠⎞⎠ .

Then � is a representation. When we want to emphasize the degree, let us write
�k and Vk . Define the Laplacian operator as usual by

 = ∂2

∂x21
+ · · · + ∂2

∂x2N
.

This carries Vk to Vk−2, and one checks easily that it satisfies �k(g) =
�k−2(g). This commutativity property implies that the kernel of  is an
invariant subspace of Vk , the space of homogeneous harmonic polynomials
of degree k.
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(6) Contragredient representation. Let G be any topological group, and let
� be a finite-dimensional representation of G on the complex vector space V .
The contragredient of � is the representation�c of G on the space of all linear
functionals on V defined by (�c(g)�)(v) = �(�(g−1)v) for any linear functional
� and any v in V .

Having given a number of examples, let us return to a general topological
group G. An important equivalent definition of finite-dimensional representation
is that� is a continuous group action ofG on a finite-dimensional complex vector
space V by linear transformations. In this case the assertion about continuity is
that the map G × V → V is continuous jointly, rather than continuous only as a
function of the first variable.
Let us deduce the joint continuity from continuity in the first variable. To do

so, it is enough to verify continuity of G × V → V at g = 1 and v = 0. Let
dimC V = N . The topology on V is obtained, as was spelled out above, by
choosing an ordered basis and identifying V with CN . The resulting topology
makes V into a topological vector space, and the topology does not depend on the
choice of ordered basis; the independence of basis follows from the fact that every
linear mapping on CN is continuous. Thus we fix an ordered basis (v1, . . . , vN )
and regard the map {ci }Ni=1 �→

∑N
i=1 civi as a homeomorphism of CN onto V .

Put
∥∥∑N

i=1 civi
∥∥ = (∑N

i=1 |ci |2
)1/2

. Given ε > 0, choose for each i between 1
and N a neighborhood Ui of 1 in G such that ‖�(g)vi − vi‖ < 1 for g ∈ Ui . If
g is in

⋂N
i=1Ui and if v =

∑
i civi has ‖v‖ < ε, then

‖�(g)v‖ ≤ ∥∥�(g)
(∑

civi
)− (∑ civi

)∥∥+ ‖v‖
≤∑ |ci |‖�(g)vi − vi‖ + ‖v‖
≤ (∑ |ci |2

)1/2
N 1/2 + ‖v‖ by the Schwarz inequality

≤ (N 1/2 + 1)ε.
This proves the joint continuity at (g, v) = (1, 0), and the joint continuity
everywhere follows by translation in the two variables separately.
A representation on a nonzero finite-dimensional complex vector space V

is irreducible if it has no invariant subspaces other than 0 and V . Every
1-dimensional representation is irreducible, and we observed that Example 2c
is irreducible. We observed also that Examples 2b and 3 are not irreducible.
A representation� on the finite-dimensional complex vector space V is called

unitary if an inner product, always assumed Hermitian, has been specified for V
and if each�(g) is unitary relative to that inner product (i.e., has�(g)∗�(g) = 1
and hence �(g)∗ = �(g)−1 for all g ∈ G). On the level of the inner product for
V , a unitary representation has the property that (�(g)u, v) = (u,�(g)∗v) =
(u,�(g)−1v) = (u,�(g−1)v).



246 VI. Compact and Locally Compact Groups

The question of whether a representation is unitary is important for analysis
because it gets at the notion of exploiting symmetries by using representation
theory. Specifically for a unitary representation the orthogonal complement U⊥
of an invariant vector subspace U is an invariant subspace because

(�(g)u⊥, u) = (u⊥,�(g−1)u) ∈ (u⊥,U ) = 0 for u⊥ ∈ U⊥, u ∈ U.

Thus when an analysis problem leads us to a unitary representation and we locate
an invariant vector subspace, the orthogonal complement will be an invariant
vector subspace also. In this way the analysis problemmay have been subdivided
into two simpler problems.
Now let us suppose that the topological groupG is compact. One of the critical

properties of such a group for representation theory is that G has, up to a scalar
multiple, a unique two-sided Haar measure, i.e., a nonzero regular Borel measure
that is invariant under all left and right translations. This result was proved in
Theorem 6.8 and Proposition 6.15b. Let us normalize this Haar measure so
that it has total measure 1. Since the normalized measure is unambiguous, we
usually write integrals with respect to normalized Haar measure by expressions
like

∫
G f (x) dx , dropping any name like μ from the notation. Also, we write

L1(G) and L2(G) in place of L1(G, dx) and L2(G, dx).
We shall want to use convolution of functions on G, and we therefore need

to confront the technical problem that the measurability in Fubini’s Theorem can
break downwith Borel measurable functions ifG is not separable. For this reason
we shall stick to Baire measurable functions, where no such difficulty occurs.9

In particular the spaces L1(G) and L2(G) will be understood to have the Baire
sets as the relevant σ -algebras.10

The prototypes for the theory with G compact are the cases that G is the circle
group S1 and that G is a finite group, such as the symmetric groupS3. The Haar
measure is 1

2π dx in the first case, where this time we retain the convention that
dx is Lebesgue measure. The Haar measure is 16 times the counting measure in
the second case, the 16 having the effect of making the total measure be 1.

Proposition 6.24. If � is a representation of a compact group G on a finite-
dimensional complex vector space V , then V admits an inner product such that
� is unitary.

9Corollary 11.16 of Basic shows that every continuous function of compact support on a locally
compact Hausdorff space is Baire measurable.

10Problem 3 at the end of Chapter XI of Basic shows for any regular Borel measure on a compact
Hausdorff space that every Borel measurable function can be adjusted on a Borel set of measure 0 to
be Baire measurable. Consequently the spaces L1(G) and L2(G) as Banach spaces are unaffected
by specifying Baire measurability rather than Borel measurability if the Borel measure is regular.
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PROOF. Let 〈 · , · 〉 be any Hermitian inner product on V , and define

(u, v) = ∫G 〈�(x)u,�(x)v〉 dx .

It is straightforward to see that ( · , · ) has the required properties.

Corollary 6.25. If � is a representation of a compact group G on a finite-
dimensional complex vector space V , then � is the direct sum of irreducible
representations. In other words, V = V1 ⊕ · · · ⊕ Vk , with each Vj an invariant
vector subspace on which � acts irreducibly.

REMARK. The “direct-sum” notation V = V1 ⊕ · · · ⊕ Vk means that each
element of V has a unique expansion as a linear combination of k vectors, one

from each Vj . If G is the noncompact group of all complex matrices
(
a b
0 1

)
, then

the standard representation ofG onC2 hasCe1 as an invariant subspace, but there
is no other invariant subspace V ′ such that C2 = Ce1 ⊕ V ′. Thus the corollary
breaks down if the hypothesis of compactness is dropped completely.

PROOF. Form ( · , · ) as in Proposition 6.24. Find an invariant subspace U =
0 of minimal dimension and take its orthogonal complement U⊥. Since the
representation is unitary relative to ( · , · ),U⊥ is an invariant subspace. Repeating
the argument with U⊥ and iterating, we obtain the required decomposition.

Proposition 6.26 (Schur’s Lemma, part 1). Suppose that � and �′ are ir-
reducible representations of a compact group G on finite-dimensional complex
vector spaces V and V ′, respectively. If L : V → V ′ is a linear map such that
�′(g)L = L�(g) for all g ∈ G, then L is one-one onto or L = 0.
PROOF. We see easily that ker L and image L are invariant subspaces of V and

V ′, respectively, and then the only possibilities are the ones listed.

Corollary 6.27 (Schur’s Lemma, part 2). Suppose � is an irreducible repre-
sentation of a compact group G on a finite-dimensional complex vector space V .
If L : V → V is a linear map such that �(g)L = L�(g) for all g ∈ G, then L
is scalar.

REMARK. This is the first place where we make use of the fact that the scalars
are complex, not real.

PROOF. Let λ be an eigenvalue of L . Then L − λI is not one-one onto, but it
does commute with �(g) for all g ∈ G. By Proposition 6.26, L − λI = 0.
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Corollary 6.28. Every irreducible finite-dimensional representation of a com-
pact abelian group G is given, up to equivalence, by a multiplicative character.

PROOF. If G is abelian and � is irreducible, we apply Corollary 6.27 with
L = �(g0) and see that �(g0) is scalar. All the members of �(G) are therefore
scalar, and every vector subspace is invariant. For irreducibility the representation
must then be 1-dimensional. Fixing a basis {v} of the 1-dimensional vector
space and forming the corresponding 1-by-1 matrices, we obtain a multiplicative
character.

EXAMPLE 1a, continued. For the circle group S1 = R
/
2πZ, we observed that

we obtain a family of multiplicative characters parametrized by the integers, the
nth such character being

x �→ einx .

The corresponding 1-dimensional representation is x �→ multiplication by einx .
In the next corollary we shall prove that the multiplicative characters are orthogo-
nal in L2(S1) in the same sense that the exponential functions are orthogonal. The
knowncompleteness of the orthonormal systemof exponential functions therefore
gives a proof, though not the simplest proof, that the exponential functions are
the only multiplicative characters of S1. A simpler proof can be constructed via
real-variable theory by making direct use of the multiplicative property and the
continuity.

EXAMPLES 2a and2c, continued. Wenoted that the trivial character and the sign
character are the only multiplicative characters of S3. These are the following
two functions of σ ∈ S3:

σ � = 1 � = sign
(1) 1 1

(123) 1 1
(132) 1 1
(12) 1 −1
(23) 1 −1
(13) 1 −1

For this example the corollary below will say that these two functions on S3,
together with the four functions listed earlier for Example 2c, form an orthogonal
set of six functions. They are not quite orthonormal since the four functions f

listed earlier have ‖ f ‖2 =
√
1
2 relative to the normalized counting measure. The

interpretation of
√
1
2 is that its square is the reciprocal of the dimension of the

underlying vector space.
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Corollary 6.29 (Schur orthogonality relations).

(a) Let� and�′ be inequivalent irreducible unitary representations of a com-
pact groupG on finite-dimensional complex vector spaces V and V ′, respectively,
and let the understood inner products be denoted by ( · , · ). Then∫

G
(�(x)u, v)(�′(x)u′, v′) dx = 0 for all u, v ∈ V and u′, v′ ∈ V .

(b) Let � be an irreducible unitary representation on a finite-dimensional
complex vector space V , and let the understood inner product be denoted by
( · , · ). Then∫

G
(�(x)u1, v1)(�(x)u2, v2) dx = (u1, u2)(v1, v2)

dim V
for u1, v1, u2, v2 ∈ V .

REMARK. The proof of (b) will make use of the notion of the “trace” of a square
matrix or of a linear map from a finite-dimensional vector space V to itself. For
an n-by-n square matrix A the trace is the sum of the diagonal entries. This is
(−1)n−1 times the coefficient of λn−1 in the polynomial det(A − λ1). Because
of the multiplicative property of the determinant, this polynomial is the same for
A as for BAB−1 if B is invertible. Hence A and BAB−1 have the same trace.
Then it follows that the trace Tr L of a linear map L from V to itself is well
defined as the trace of the matrix of the linear map relative to any basis. For
further background about the trace, see Section II.5.

PROOF. (a) Let l : V ′ → V be any linear map, and form the linear map

L = ∫G �(x)l�′(x−1) dx .

(This integration can be regarded as occurring for matrix-valued functions and
is to be handled entry-by-entry.) Because of the left invariance of dx , we obtain
�(y)L�′(y−1) = L , so that �(y)L = L�′(y) for all y ∈ G. By Proposition
6.26 and the assumed inequivalence, L = 0. Thus (Lv′, v) = 0. For the particular
choice of l as l(w′) = (w′, u′)u, we have

0 = (Lv′, v) = ∫G (�(x)l�′(x−1)v′, v) dx

= ∫G (�(x)(�′(x−1)v′, u′)u, v
)
dx = ∫G (�(x)u, v)(�′(x−1)v′, u′) dx,

and (a) results since (�′(x−1)v′, u′) = (�′(x)u′, v′).
(b) We proceed in the same way, starting from l : V → V , and obtain L = λI

from Corollary 6.27. Taking the trace of both sides, we find that

λ dim V = Tr L = Tr l,
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so that λ = (Tr l)
/
dim V . Thus

(Lv2, v1) = Tr l

dim V
(v1, v2).

Choose l(w) = (w, u2)u1, so that Tr l = (u1, u2). Then

(u1, u2)(v1, v2)

dim V
= Tr l

dim V
(v1, v2) = (Lv2, v1) =

∫
G (�(x)l�(x−1)v2, v1) dx

= ∫G (�(x)(�(x−1)v2, u2)u1, v1
)
dx = ∫G (�(x)u1, v1)(�(x−1)v2, u2) dx,

and (b) results since (�(x−1)v2, u2) = (�(x)u2, v2).

We can interpret Corollary 6.29 as follows. Let {�(α)} be a maximal set
of mutually inequivalent finite-dimensional irreducible unitary representations
of the compact group G. For each �(α), choose an orthonormal basis for the
underlying vector space, and let �(α)

i j (x) be the matrix of �
(α)(x) in this basis.

Then the functions {�(α)
i j (x)}i, j,α form an orthogonal set in the space L2(G) of

square integrable functions on G. In fact, if d(α) denotes the degree of �(α)

(i.e., the dimension of the underlying vector space), then {(d(α))1/2�(α)
i j (x)}i, j,α

is an orthonormal set in L2(G). The Peter–Weyl Theorem in the next section will
generalize Parseval’s Theorem in the subject of Fourier series by showing that
this orthonormal set is an orthonormal basis.
We can use Schur orthogonality to get a qualitative idea of the decomposi-

tion into irreducible representations in Corollary 6.25 when � is a given finite-
dimensional representation of the compact group G. By Proposition 6.24 there
is no loss of generality in assuming that � is unitary. If � is a unitary finite-
dimensional representation of G, amatrix coefficient of� is any function on G
of the form (�(x)u, v). The character or group character of � is the function

χ�(x) = Tr �(x) =
∑

j
(�(x)uj , uj ),

where {ui } is an orthonormal basis. This function depends only on the equivalence
class of � and satisfies

χ�(gxg
−1) = χ�(x) for all g, x ∈ G.

If � is the direct sum of representations �1, . . . , �n , then

χ� = χ�1
+ · · · + χ�n

.

Any multiplicative character is the group character of the corresponding
1-dimensional representation.
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EXAMPLE 4, continued. Characters for SU(2). Let�n be the representation of
SU(2) on the homogeneous holomorphic polynomials of degree n in z1 and z2. A
basis for V consists of the monomials zk1z

n−k
2 for 0 ≤ k ≤ n, and we easily check

that � of the diagonal matrix tθ = diag
(
eiθ , e−iθ

)
has zk1z

n−k
2 as an eigenvector

with eigenvalue ei(n−2k)θ . Therefore

χ�n
(tθ ) = Tr�n(tθ ) = einθ + ei(n−2)θ + · · · + e−inθ .

Every element of SU(2) is conjugate to somematrix tθ , and therefore this formula
determines χ�n

on all of SU(2).

Corollary 6.30. IfG is a compact group, then the character χ of an irreducible
finite-dimensional representation has L2 norm satisfying ‖χ‖2 = 1. If χ and χ ′
are characters of inequivalent irreducible finite-dimensional representations, then∫
G χ(x)χ ′(x) dx = 0.
PROOF. These formulas are immediate from Corollary 6.29 since characters

are sums of matrix coefficients.

Now let� be a given finite-dimensional representation ofG, andwrite� as the
direct sum of irreducible representations�1, . . . , �n . If τ is an irreducible finite-
dimensional representation of G, then the sum formula for characters, together
with Corollary 6.30, shows that

∫
G χ�(x)χτ (x) dx is the number of summands

�i equivalent to τ . Evidently this integer is independent of the decomposition of
� into irreducible representations. It is called themultiplicity of τ in �.

7. Peter–Weyl Theorem

The goal of this section is to extend Parseval’s Theorem for the circle group
S1 = R

/
2πZ to a theorem valid for all compact groups. The extension is the

Peter–Weyl Theorem. We continue with the notation of the previous section,
letting G be the group, dx be a two-sided Haar measure normalized to have
total measure one, and, in cases when G is not separable, working with Baire
measurable functions rather than Borel measurable functions.
For S1, we observed in Corollary 6.28 that the irreducible finite-dimensional

representations are 1-dimensional, hence are given by multiplicative characters.
The exponential functions x �→ einx are examples of multiplicative characters,
and it is an exercise in real-variable theory, not hard, to prove that there are no
other examples. The matrix coefficients of the 1-dimensional representations
are just the same exponential functions x �→ einx . The Peter–Weyl Theorem
specialized to this group says that the vector space of finite linear combinations
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of exponential functions is dense in L2(S1); the statement is a version of Fejér’s
Theorem for L2 but without the precise detail of Fejér’s Theorem. In view of
the known orthogonality of the exponential functions, an equivalent formulation
of the result for S1 is that {einx}∞n=−∞ is a maximal orthonormal set in L2(S1).
By Hilbert-space theory, {einx}∞n=−∞ is an orthonormal basis of L2(S1). For
general compactG, the Peter–Weyl Theorem asserts that the vector space of finite
linear combinations of all matrix coefficients of all irreducible finite-dimensional
representations is again dense in L2(G). The new ingredient is that wemust allow
irreducible representations of dimension > 1; indeed, examination of the group
S3 shows that the 1-dimensional representations are not enough. An equivalent
formulation in terms of orthonormal bases will be given in Corollary 6.32 below
and will use Schur orthogonality (Corollary 6.29).

Theorem 6.31 (Peter–Weyl Theorem). If G is a compact group, then the
linear span of all matrix coefficients for all finite-dimensional irreducible unitary
representations of G is dense in L2(G).

PROOF. If h(x) = (�(x)u, v) is such a matrix coefficient, then the following
functions of x are also matrix coefficients for the same representation:

h(x−1) = (�(x)v, u),

h(gx) = (�(x)u,�(g−1)v),
h(xg) = (�(x)�(g)u, v).

Then the closure U in L2(G) of the linear span of all matrix coefficients of
all finite-dimensional irreducible unitary representations is stable under the map
h(x) �→ h(x−1) and under left and right translation. Arguing by contradiction,
suppose thatU = L2(G). ThenU⊥ = 0, andU⊥ is closed under h(x) �→ h(x−1)
and under left and right translation.
We first prove that there is a nonzero continuous function in U⊥. Thus let

H = 0 be in U⊥. For each open neighborhood N of 1 that is a Gδ , we define

fN (x) = 1
|N | (IN ∗ H)(x) = 1

|N |
∫
G IN (y)H(y−1x) dy,

where IN is the indicator function of N and |N | is the Haar measure of N .
Since IN and H are in L2(G), Proposition 6.20 shows that fN is continuous. As
N shrinks to {1}, the functions fN tend to H in L2 by the usual approximate-
identity argument; hence some fN is not 0. Finally each linear combination of
left translates of H is in U⊥, and fN is therefore in U⊥ by Proposition 6.22.
Thus U⊥ contains a nonzero continuous function. Using translations and

scalar multiplications, we can adjust this function so that it becomes a continuous
function F1 in U⊥ with F1(1) real and nonzero. Set

F2(x) =
∫
G F1(yxy

−1) dy.
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Then F2 is continuous, F2(gxg−1) = F2(x) for all g ∈ G, and F2(1) = F1(1)
is real and nonzero. To see that F2 is in U⊥, we argue as follows: Corollary
6.7 shows that the map (g, g′) �→ F1(g( · )g′) is continuous from G × G into
C(G), and hence the restriction y �→ F1(y( · )y−1) is continuous from G into
C(G). The domain is compact, and therefore the image is compact, hence totally
bounded. Consequently if ε > 0 is given, then there exist y1, . . . , yn such that
each y ∈ G has some yj such that ‖F1(y( · )y−1) − F1(yj ( · )y−1j )‖sup < ε. Let
Ej be the subset of y’s such that j is the first index for which this happens, and
let |Ej | be its Haar measure. Then∣∣ ∫

G F1(yxy
−1) dy −∑j |Ej | F1(yj xy−1j )

∣∣
= ∣∣∑j

∫
Ej
[F1(yxy−1)− F1(yj xy

−1
j )] dy

∣∣
≤∑j

∫
Ej
|F1(yxy−1)−F1(yj xy−1j )| dy ≤∑j ε

∫
Ej
dy = ε,

and we see that F2 is the uniform limit of finite linear combinations of group
conjugates of F1. Each such finite linear combination is in U⊥, and hence F2 is
in U⊥.
Finally put

F(x) = F2(x)+ F2(x−1).

Then F is continuous and is in U⊥, F(gxg−1) = F(x) for all g ∈ G, F(1) =
2F2(1) is real and nonzero, and F(x) = F(x−1). In particular, F is not the 0
function in L2(G).
Form the continuous function K (x, y) = F(x−1y) and the integral operator

T f (x) = ∫G K (x, y) f (y) dy = ∫G F(x−1y) f (y) dy for f ∈ L2(G).

Then K (x, y) = K (y, x) and
∫
G×G |K (x, y)|2 dx dy < ∞. Also, T is not 0

since F = 0. The Hilbert–Schmidt Theorem (Theorem 2.4) applies to T as a
linear operator from L2(G) to itself, and there must be a real nonzero eigenvalue
λ, the corresponding eigenspace Vλ ⊆ L2(G) being finite dimensional.
Let us see that the subspace Vλ is invariant under left translation by g, which

we write as (L(g) f )(x) = f (g−1x). In fact, f in Vλ implies

T L(g) f (x) = ∫G F(x−1y) f (g−1y) dy = ∫G F(x−1gy) f (y) dy
= T f (g−1x) = λ f (g−1x) = λL(g) f (x).

By Proposition 6.19, g �→ L(g) f is continuous fromG into L2(G), and therefore
L is a representation of G in the finite-dimensional space Vλ. By dimensionality,
Vλ contains an irreducible invariant subspace Wλ = 0.
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Let ( f1, . . . , fn) be an ordered orthonormal basis of Wλ. The matrix coeffi-
cients for Wλ are the functions

hi j (x) = (L(x) f j , fi ) =
∫
G fj (x−1y) fi (y) dy

and by definition are in U . Since F is in U⊥, we have

0 = ∫G F(x)hii (x) dx = ∫G ∫G F(x) fi (x−1y) fi (y) dy dx
= ∫G ∫G F(x) fi (x−1y) fi (y) dx dy
= ∫G ∫G F(yx−1) fi (x) fi (y) dx dy
= ∫G [∫G F(x−1y) fi (y) dy] fi (x) dx since F(gxg−1) = F(x)

= ∫G [T fi (x)] fi (x) dx = λ
∫
G | fi (x)|2 dx

for all i , in contradiction to the fact that Wλ = 0. We conclude that U⊥ = 0 and
therefore that U = L2(G).

Corollary 6.32. If {�(α)} is a maximal set of mutually inequivalent finite-
dimensional irreducible unitary representations of a compact group G and if
{(d(α))1/2�(α)

i j (x)}i, j,α is a corresponding orthonormal set of matrix coefficients,
then {(d(α))1/2�(α)

i j (x)}i, j,α is an orthonormal basis of L2(G). Consequently any
f in L2(G) has the property that

‖ f ‖22 =
∑
α

∑
i, j

dα |( f,�(α)
i j )|2,

where ( · , · ) is the L2 inner product.
REMARK. The displayed formula, which extends Parseval’s Theorem from S1

to the compact group G, is called the Plancherel formula for G.

PROOF. The linear span of the orthonormal set in question equals the linear
span of all matrix coefficients for all finite-dimensional irreducible unitary rep-
resentations of G. Theorem 6.31 implies that the orthonormal set is maximal.
Hilbert-space theory then shows that the orthonormal set is an orthonormal basis
and that Parseval’s equality holds, and the latter fact yields the corollary.

As is implicit in the proof of Corollary 6.32, the partial sums in the expansion of
f in terms of the orthonormal set of normalizedmatrix coefficients are converging
to f in L2(G). The next result along these lines gives an analogofFejér’sTheorem
for Fourier series of continuous functions. Taking a cue from the theory of Fourier
series, let us refer to any finite linear combination of the functions�(α)

i j (x) in the
above corollary as a trigonometric polynomial.
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Corollary 6.33 (ApproximationTheorem). There exists a netT (β)of uniformly
bounded linear operators from C(G) into itself such that for every f in C(G),
T (β) f is a trigonometric polynomial for each β and limβ T (β) f = f uniformly
on G.

PROOF. The directed set will consist of pairs β = (N , ε), where N is an open
Gδ containing the identity of G and where 1 ≥ ε > 0, and the partial ordering
is that (N , ε) ≤ (N ′, ε′) if N ⊇ N ′ and ε ≥ ε′. If β = (N , ε) is given, let
|N | be the Haar measure of N , and let ψN = |N |−1 IN be the positive multiple
of the indicator function of N that makes ψN have ‖ψN‖1 = 1. Since ψN is
in L2(G), Theorem 6.31 shows that we can find a trigonometric polynomial ϕβ
such that ‖ψN − ϕβ‖2 ≤ ε. The operator T (β) will be given by convolution:
T (β) f = ϕβ ∗ f .
Since ‖ψN − ϕβ‖1 ≤ ‖ψN − ϕβ‖2 ≤ ε ≤ 1, we have ‖ϕβ‖1 ≤ 2. Therefore

the operator norm of T (β) on C(G) is ≤ 2.
To see that T (β) f converges uniformly to f , we use a variant of a familiar

argument with approximate identities. We write

‖T (β) f − f ‖sup ≤ ‖(ϕβ − ψN ) ∗ f ‖sup + ‖ψN ∗ f − f ‖sup.
The first term on the right is ≤ ‖ϕβ − ψN‖1‖ f ‖sup ≤ ‖ϕβ − ψN‖2‖ f ‖sup ≤
ε‖ f ‖sup. For the second term we have

|ψN ∗ f (x)− f (x)| = ∣∣ ∫G ψN (y)[ f (y−1x)− f (x)] dy
∣∣

≤ ∫G ψN (y)| f (y−1x)− f (x)| dy
= |N |−1 ∫N | f (y−1x)− f (x)| dy
≤ sup

y∈N
| f (y−1x)− f (x)|,

and Proposition 6.6 shows that this expression tends to 0 as N shrinks to {1}.
Finally we show that T (β) f is a trigonometric polynomial, i.e., that there are

only finitely many irreducible representations�, up to equivalence, such that the
L2 inner product (T (β) f,�i j ) can be nonzero. This inner product is equal to∫

G (ϕβ ∗ f )(x)�i j (x) dx =
∫∫

G×G ϕβ(xy−1) f (y)�i j (x) dx dy

= ∫∫G×G ϕβ(x) f (y)�i j (xy) dx dy

=∑k

∫∫
G×G ϕβ(x) f (y)�ik(x) �k j (y) dx dy

=∑k

∫
G f (y)�k j (y)

[ ∫
G ϕβ(x)�ik(x) dx

]
dy,

and Schur orthogonality (Corollary 6.29) shows that the expression in brackets
is 0 unless� is equivalent to one of the irreducible representations whose matrix
coefficients contribute to ϕβ .
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8. Fourier Analysis Using Compact Groups

In the discussion of the representation theory of compact groups in the previous
two sections, all the representations were finite dimensional. A number of appli-
cations of compact groups to analysis, however, involve naturally arising infinite-
dimensional representations, and a theory of such representations is needed. We
address this problem now, andwe illustrate how the theory of infinite-dimensional
representations can be used to simplify analysis problems having a compact group
of symmetries.
We continue with the notation of the previous two sections, letting G be the

compact group and dx be a two-sided Haar measure normalized to have total
measure one. In cases inwhichG is not separable, weworkwithBairemeasurable
functions rather than Borel measurable functions.
Recall from Section II.4 and Proposition 2.6 that if V is a complex Hilbert

space with inner product ( · , · ) and norm ‖ · ‖, then a unitary operatorU on V is
a bounded linear operator from V into itself such that U∗ is a two-sided inverse
of U , or equivalently is a linear operator from V to itself that preserves norms
and is onto V , or equivalently is a linear operator from V to itself that preserves
inner products and is onto V .
From the definition the unitary operators on V form a group. Unlike what

happens with the N -by-N unitary group U (N ), this group is not compact if V
is infinite-dimensional. A unitary representation of G on the complex Hilbert
space V is a homomorphism of G into the group of unitary operators on V such
that a certain continuity property holds. Continuity is a more subtle matter in the
present context than it was in the finite-dimensional case because not all possible
definitions of continuity are equivalent here. The continuity property we choose
is that the group action G × V → V , given by g × v �→ �(g)v, is continuous.
When � is unitary, this property is equivalent to strong continuity, namely that
g �→ �(g)v is continuous for every v in V .
Let us see this equivalence. Strong continuity results fromfixing the V variable

in the definition of continuity of the group action, and therefore continuity of
the group action implies strong continuity. In the reverse direction the triangle
inequality and the equality ‖�(g)‖ = 1 give

‖�(g)v −�(g0)v0‖ ≤ ‖�(g)(v − v0)‖ + ‖�(g)v0 −�(g0)v0‖
= ‖v − v0‖ + ‖�(g)v0 −�(g0)v0‖,

and it follows that strong continuity implies continuity of the group action.
With this definition of continuity in place, an example of a unitary repre-

sentation is the left-regular representation of G on the complex Hilbert space
L2(G), given by (l(g) f )(x) = f (g−1x). Strong continuity is satisfied according
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to Proposition 6.19. The right-regular representation of G on L2(G), given by
(r(g) f )(x) = f (xg), also satisfies this continuity property.
In working with a unitary representation � of G on V , it is helpful to define

�( f ) for f in L1(G) as a smeared-out version of the various �(x)’s for x in
G. Formally �( f ) is to be

∫
G f (x)�(x) dx . But to avoid integrating functions

whose values are in an infinite-dimensional space, we define �( f ) as follows:
The function

∫
G f (x)(�(x)v, v′) dx of v and v′ is linear in v, conjugate linear

in v′, and bounded in the sense that
∣∣ ∫

G f (x)(�(x)v, v′) dx
∣∣ ≤ ‖ f ‖1‖v‖‖v′‖.

Hilbert-space theory shows as a consequence11 that there exists a unique linear
operator �( f ) such that

(�( f )v, v′) =
∫
G
f (x)(�(x)v, v′) dx for all v and v′ in V

and that this operator is bounded with

‖�( f )‖ ≤ ‖ f ‖1.

From the existence and uniqueness of�( f ), it follows that�( f ) depends linearly
on f .
Let us digress for a moment to consider �( f ) if � happens to be finite-

dimensional. If {ui } is an ordered orthonormal basis of the underlying finite-
dimensional vector space, then the matrix corresponding to �( f ) in this basis
has (i, j)th entry (�( f )ui , uj ) =

∫
G f (x)(�(x)ui , uj ) dx . The expression

∑
i, j |(�( f )ui , uj )|2 =

∑
i, j

∣∣ ∫
G f (x)(�(x)ui , uj ) dx

∣∣2
is, on the one hand, the kind of term that appears in the Plancherel formula in
Corollary 6.32 and, on the other hand, is what in Section II.5 was called the
Hilbert–Schmidt norm squared ‖�( f )‖2HS of �( f ). It has to be independent of
the basis here in order to yield consistent formulas as we change orthonormal
bases, and that independence of basis was proved in Section II.5. Using the
Hilbert–Schmidt norm, we can rewrite the Plancherel formula in Corollary 6.32
as

‖ f ‖2 =
∑
α

dα ‖�(α)( f )‖2HS.

Unlike the formula in Corollary 6.32, this formula is canonical, not depending on
any choice of bases.

11See the remarks near the beginning of Section XII.3 of Basic.
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Returning from our digression, let us again allow� to be infinite-dimensional.
The mapping f �→ �( f ) for f in L1(G) has two other properties of note. The
first is that

�( f )∗ = �( f ∗),

where f ∗(x) = f (x−1). To prove this formula, we simply write everything out:

(�( f )∗v, v′) = (v,�( f )v′) = ∫G (v, f (x)�(x)v′) dx

= ∫G f (x)(v,�(x)v′) dx = ∫G f (x−1)(v,�(x−1)v′) dx

= ∫G f ∗(x)(�(x)v, v′) dx = (�( f ∗)v, v′).

The other property concerns convolution and is that

�( f ∗ h) = �( f )�(h).

The formal computation to prove this is

�( f ∗ h) = ∫G ∫G f (xy−1)h(y)�(x) dy dx = ∫G ∫G f (xy−1)h(y)�(x) dx dy

= ∫G ∫G f (x)h(y)�(xy) dx dy = ∫G ∫G f (x)h(y)�(x)�(y) dx dy

= �( f )�(h).

Tomake this computation rigorous, we put the appropriate inner products in place
and use Fubini’s Theorem to justify the interchange of order of integration:

(�( f ∗ h)v, v′)
=∫G ∫G f (xy−1)h(y)(�(x)v, v′) dy dx=∫G ∫G f (xy−1)h(y)(�(x)v, v′) dx dy

= ∫G ∫G f (x)h(y)(�(xy)v, v′) dx dy=∫G ∫G f (x)h(y)(�(x)�(y)v, v′) dx dy

= ∫G ∫G f (x)h(y)(�(y)v,�(x)∗v′) dx dy

= ∫G ∫G f (x)h(y)(�(y)v,�(x)∗v′) dy dx = ∫G f (x)(�(h)v,�(x)∗v′) dx

= ∫G f (x)(�(x)�(h)v, v′) dx = (�( f )�(h)v, v′).

This kindof computation translating a formal argument about�( f ) into a rigorous
argument is one that we shall normally omit from now on.
An important instance of a convolution f ∗ h is the case that f and h are

characters of irreducible finite-dimensional representations. The formula in this
case is

χτ ∗ χτ ′ =
{
d−1τ χτ if τ ∼= τ ′ and dτ is the degree of τ ,
0 if τ and τ ′ are inequivalent.
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This follows by expanding the characters in terms of matrix coefficients and
computing the integrals using Schur orthogonality (Corollary 6.29).
If f ≥ 0 vanishes outside an open neighborhood N of 1 that is a Gδ in G and

if
∫
G f (x) dx = 1, then (�( f )v−v, v′) = ∫G f (x)(�(x)v−v, v′) dx . When

‖v′‖ ≤ 1, the Schwarz inequality therefore gives

|(�( f )v−v, v′)| ≤
∫
N
f (x)‖�(x)v − v‖‖v′‖ dx ≤ sup

x∈N
‖�(x)v − v‖.

Taking the supremum over v′ with ‖v′‖ ≤ 1 allows us to conclude that

‖�( f )v − v‖ ≤ sup
x∈N

‖�(x)v − v‖.

We shall make use of this inequality shortly.
An invariant subspace for a unitary representation � on V is, just as in the

finite-dimensional case, a vector subspaceU such that�(g)U ⊆ U for all g ∈ G.
This notion is useful mainly when U is a closed subspace. In any event if U is
invariant, so is the closed orthogonal complementU⊥ since u⊥ ∈ U⊥ and u ∈ U
imply that

(�(g)u⊥, u) = (u⊥,�(g)∗u) = (u⊥,�(g)−1u) = (u⊥,�(g−1)u)

is in (u⊥,U ) = 0. If V = 0, the representation is irreducible if its only closed
invariant subspaces are 0 and V .
Two unitary representations of G, � on V and �′ on V ′, are said to be

equivalent if there is a bounded linear E : V → V ′ with a bounded inverse
such that �′(g)E = E�(g) for all g ∈ G.

Theorem 6.34. If � is a unitary representation of the compact group G on
a complex Hilbert space V , then V is the orthogonal sum of finite-dimensional
irreducible invariant subspaces.

REMARK. The new content of the theorem is for the case that V is infinite
dimensional. The theorem says that if one takes the union of orthonormal bases
for each of certain finite-dimensional irreducible invariant subspaces, then the
result is an orthonormal basis of V .

PROOF. By Zorn’s Lemma, choose a maximal orthogonal set of finite-
dimensional irreducible invariant subspaces, and letU be the closure of the sum.
Arguing by contradiction, suppose that U is not all of V . Then U⊥ is a nonzero
closed invariant subspace. Fix v = 0 inU⊥. For each open neighborhood N of 1
that is a Gδ in G, let fN be the indicator function of N divided by the measure of
N . Then fN is an integrable function ≥ 0 with integral 1. It is immediate from
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the definition of (�( fN )v, u) that�( fN )v is inU⊥ for every N and every u ∈ U .
The inequality ‖�( fN )v − v‖ ≤ supx∈N ‖�(x)v − v‖ and strong continuity of
� show that �( fN )v tends to v as N shrinks to {1}. Hence some �( fN )v is not
0. Fix such an N .
Choose by the Peter–Weyl Theorem (Theorem 6.31) a function h in the lin-

ear span of all matrix coefficients for all finite-dimensional irreducible unitary
representations such that ‖ fN − h‖2 ≤ 1

2‖�( fN )v‖
/‖v‖. Then

‖�( fN )v −�(h)v‖ = ‖�( fN − h)v‖ ≤ ‖ fN − h‖1‖v‖
≤ ‖ fN − h‖2‖v‖ ≤ 1

2‖�( fN )v‖.

Hence

‖�(h)v‖ ≥ ‖�( fN )v‖ − ‖�( fN )v −�(h)v‖ ≥ 1
2‖�( fN )v‖ > 0,

and �(h)v is not 0.
The function h lies in some finite-dimensional vector subspace S of L2(G)

that is invariant under left translation. Let h1, . . . , hn be a basis of S, and write
hj (g−1x) =

∑n
i=1 ci j (g)hi (x). The formal computation

�(g)�(hj )v = �(g)
∫
G hj (x)�(x)v dx = ∫G hj (x)�(gx)v dx

= ∫G hj (g−1x)�(x)v dx =∑n
i=1 ci j (g)

∫
G hi (x)�(x)v dx

=∑n
i=1 ci j (g)�(hi )v

suggests that the vector subspace
∑n

j=1 C�(hj )v, which is finite dimensional
and lies in U⊥, is an invariant subspace for � containing the nonzero vector
�(h)v. To justify the formal computation, we argue as in the proof of the formula
�( f ∗ h) = �( f )�(h), redoing the calculation with an inner product with
v′ in place throughout. The existence of this subspace of U⊥ contradicts the
maximality of U and proves the theorem.

Corollary 6.35. Every irreducible unitary representation of a compact group
is finite dimensional.

PROOF. This is immediate from Theorem 6.34.

Corollary 6.36. Let� be a unitary representation of the compact group G on
a complex Hilbert space V . For each irreducible unitary representation τ ofG, let
Eτ be the orthogonal projection on the sum of all irreducible invariant subspaces
of V that are equivalent to τ . Then Eτ is given by dτ�(χτ ), where dτ is the
degree of τ and χτ is the character of τ , and the image of Eτ is the orthogonal
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sum of irreducible invariant subspaces that are equivalent to τ . Moreover, if τ
and τ ′ are inequivalent, then Eτ Eτ ′ = Eτ ′Eτ = 0. Finally every v in V satisfies

v =
∑
τ

Eτ v,

with the sum an infinite sum over a set of representatives τ of all equivalence
classes of irreducible unitary representations of G and taken in the sense of
convergence in the Hilbert space.

REMARK. For each τ , the projection Eτ is called the orthogonal projection on
the isotypic subspace of type τ .

PROOF. Let τ be irreducible with degree dτ , and put E ′τ = dτ�(χτ ). Our
formulas for characters and for operators �( f ) give us the two formulas

E ′τ E
′
τ ′ = dτdτ ′�(χτ )�(χτ ′) = dτdτ ′�(χτ ∗ χτ ′) = 0 if τ � τ ′,

E ′τ
2 = d2τ �(χτ ∗ χτ ) = dτ�(χτ ) = E ′τ .

The first of these says that E ′τ E
′
τ ′ = E ′τ ′E

′
τ = 0 if τ and τ ′ are inequivalent,

and the second says that E ′τ is a projection. In fact, E
′
τ is self adjoint and is

therefore an orthogonal projection. To see the self-adjointness, we let {ui } be an
orthonormal basis of the vector space on which τ operates by unitary transfor-
mations. Then χτ

∗(x) = χτ (x
−1) =∑i (τ (x

−1)ui , ui ) =
∑

i (ui , τ (x
−1)ui ) =∑

i (τ (x)ui , ui ) = χτ (x). Therefore

E ′τ
∗ = dτ�(χτ )

∗ = dτ�(χτ
∗) = dτ�(χτ ) = E ′τ ,

and the projection Eτ ′ is an orthogonal projection.
Let U be an irreducible finite-dimensional subspace of V on which �

∣∣
U

is equivalent to τ , and let u1, . . . , un be an orthonormal basis of U . If we
write �(x)uj =

∑n
i=1�i j (x)ui , then �i j (x) = (�(x)uj , ui ) and χτ (x) =∑n

i=1�i i (x). Thus a formal computation with Schur orthogonality gives

E ′τuj = dτ
∫
G χτ (x)�(x)uj dx = dτ

∫
G

∑
i,k �kk(x)�i j (x)ui dx = uj ,

and we can justify this computation by using inner products with v′ throughout.
As a result, we see that E ′τ is the identity on every irreducible subspace of type τ .
Now let us apply E ′τ to a Hilbert space orthogonal sum V =∑ Vα of the kind

in Theorem 6.34. We have just seen that E ′τ is the identity on Vα if Vα is of type
τ . If Vα is of type τ ′ with τ ′ not equivalent to τ , then E ′τ ′ is the identity on Vα ,
and we have E ′τu = E ′τ E

′
τ ′u = 0 for all u ∈ Vα . Consequently E ′τ is 0 on Vα ,

and we conclude that E ′τ = Eτ . This completes the proof.

EXAMPLE. The right-regular representation r of G on L2(G). Let τ be an
abstract irreducible unitary representation of G, let (u1, . . . , un) be an ordered
orthonormal basis of the space on which τ acts, and form matrices relative to
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this basis that realize each τ(x). The formula is τi j (x) = (τ (x)uj , ui ). The
computation (r(g)τi j )(x) = τi j (xg) =

∑
k τik(x)τk j (g) =

∑
i ′ τi ′ j (g)τi i ′(x)

shows that the matrix coefficients corresponding to a fixed row, those with i fixed
and j varying, form an invariant subspace for r . The matrix of this representation
is [τi ′ j (g)], and thus the representation is irreducible of type τ . Since these spaces
are orthogonal to one another by Schur orthogonality, the dimension of the image
of Eτ is at least d2τ . On the other hand, Corollary 6.32 says that such matrix
coefficients relative to an orthonormal basis, as τ varies through representatives of
all equivalence classes of irreducible representations, form a maximal orthogonal
system in L2(G). The coefficients corresponding to any τ ′ not equivalent to τ

are in the image of Eτ ′ and are not of type τ . Therefore the orthogonal sum of the
spaces of matrix coefficients for each fixed row equals the image of Eτ , and the
dimension of the image equals d2τ . The corollary tells us that the formula for the
projection is Eτ f = r(dτχτ ) f . To see what this is concretely, we use the defini-
tions to compute that (Eτ f, h) = (r(dτχτ ) f, h) =

∫
G dτχτ (x)(r(x) f, h) dx =∫

G

∫
G dτχτ (x)(r(x) f )(y)h(y) dy dx = ∫

G

∫
G dτχτ (x) f (yx)h(y) dy dx =∫

G

∫
G dτχτ (x

−1) f (yx)h(y) dx dy = ( f ∗ dτχτ , h). Therefore the orthogonal
projection is given by Eτ f = f ∗ dτχτ .

Corollary 6.36 is a useful result in taking advantage of symmetries in analysis
problems. Imagine that the problem is to understand some linear operator on the
space in question, and suppose that the space carries a representation of a compact
group that commutes with the operator. This is exactly the situation with some
of the examples of separation of variables in partial differential equations as in
Section I.2. The idea is that under mild assumptions, the operator carries each
isotypic subspace to itself. Hence the problem gets reduced to an understanding
of the linear operator on each of the isotypic subspaces.
In order to have a concrete situation for purposes of illustration, let us assume

that the linear operator is bounded, has domain the whole Hilbert space, and
carries the space into itself. The following proposition then applies.

Proposition 6.37. Let T : V → V be a bounded linear operator on the Hilbert
space V , and suppose that � is a unitary representation of the compact group G
on V such that T�(g) = �(g)T for all g in G. Let τ be an abstract irreducible
unitary representation of G, and let Eτ be the orthogonal projection of V on the
isotypic subspace of type τ . Then T Eτ = EτT .

PROOF. For v and v′ in V , (T Eτ v, v
′) is equal to

(Eτ v, T ∗v′) = dτ
∫
G χτ (x)(�(x)v, T ∗v′) dx = dτ

∫
G χτ (x)(T�(x)v, v′) dx

= dτ
∫
G χτ (x)(�(x)T v, v′) dx = (EτT v, v′) dx,

and the result follows.
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EXAMPLE. The Fourier transform on L2(RN ) commutes with each member ρ
of the orthogonal groupO(N )because if f hasFourier transform f̂ , then f̂ (ρy) =∫

RN f (x)e−2π i x ·ρy dx = ∫
RN f (x)e−2π iρ−1x ·y dx = ∫

RN f (ρx)e−2π i x ·y dx says
that x �→ f (ρx) has Fourier transform y �→ f̂ (ρy). Proposition 6.37 says that
the Fourier transform carries each isotypic subspace of L2(RN ) under O(N ) into
itself. Let us return to Example 5 in Section 6, in which we dealt with the vector
space Vk of all polynomials on RN homogeneous of degree k. We saw that the
vector subspace Hk of harmonic polynomials homogeneous of degree k is an
invariant subspace under O(N ). In fact, more is true. One can show that Hk is
irreducible and that the Laplacian carries Vk onto |x |2Vk−2. It follows from the
latter fact that the space of restrictions to the unit sphere SN−1 of all polynomials
is the same as the space of restrictions to SN−1 of all harmonic polynomials,
with each irreducible representation Hk of O(N ) occurring with multiplicity 1.
Applying the Stone–Weierstrass Theorem on SN−1 and untangling matters, we
find for L2(SN−1) that the isotypic subspaces under O(N ) are the restrictions of
the members of Hk , each having multiplicity 1. Passing to L2(RN ) and thinking
in terms of spherical coordinates, we see that each relevant τ for L2(RN ) is the
representation on some Hk and that the image of Eτ is the space of L2 functions
that are finite linear combinations

∑
j h j f j (|x |) of products of a member of Hk

and a function of |x |, the members of Hk being linearly independent. According
to the proposition, this image is carried to itself by the Fourier transform. The
restriction of the Fourier transform to this image still commutes with members
of O(N ), and the idea is to use Schur’s Lemma (Corollary 6.27) to show that
the Fourier transform has to send any hj (x) f (|x |) to hj (x)g(|x |); the details are
carried out in Problem 14 at the end of the chapter. Thus we can see on the
basis of general principles that the Fourier transform formula reduces to a single
1-dimensional integral on each space corresponding to some Hk . Armedwith this
information, one can look for a specific integral formula, and the actual formula
turns out to involve an integration and classical Bessel functions.12

CONCLUDING REMARKS. Proposition 6.37 and the above example are con-
cerned with understanding a particular bounded linear operator, but realistic
applications are more concerned with linear operators that are unbounded. For
example, when the domain of a linear partial differential operator can be arranged
in such a way that the operator is self adjoint and a compact group of symmetries
operates, then one wants to exploit the symmetry group in order to express the
space of all functions annihilated by the operator as the limit of the sum of those
functions in an isotypic subspace. In mathematical physics the very hope that
this kind of reduction is possible has itself been useful, even without knowing
in advance the differential operator and the group of symmetries. The reason

12Bessel functions were defined in Section IV.8 of Basic.
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is that numerical invariants of the compact group, such as the dimensions of
some of the irreducible representations, appear in physical data. One can look
for an appropriate group yielding those numerical invariants. This approach
worked long ago in analyzing spin, it workedmore recently in attempts to classify
elementary particles, and it has been used still more recently in order to guess at
the role of group theory in string theory.

9. Problems

1. Let G be a topological group.
(a) Prove that the connected component of the identity element of G, i.e., the

union of all connected sets containing the identity, is a closed subgroup that is
group-theoretically normal. This subgroup is called the identity component
of G.

(b) Give an example of a topological group whose identity component is not
open.

2. The rotation group SO(N ) acts continuously on the the unit sphere SN−1 in RN

by matrix multiplication.
(a) Prove that the subgroup fixing the first standard basis vector is isomorphic

to SO(N − 1).
(b) Prove that the action by SO(N ) is transitive on SN−1 for N ≥ 2.
(c) Deduce that there is a homeomorphism SO(N )/SO(N − 1) → SN−1 for

N ≥ 2 that respects the action by SO(N ).

3. LetG be a separable locally compact group, and suppose thatG has a continuous
transitive group action on a locally compact Hausdorff space X . Suppose that
x0 is in X and that H is the (closed) subgroup of G fixing x0, so that there is a
one-one continuous map π of G/H onto X . Using the Baire Category Theorem
for locally compact Hausdorff spaces (Problem 3 of Chapter X of Basic), prove
that π is an open map and that π is therefore a homeomorphism.

4. Let G1 and G2 be separable locally compact groups, and let π : G1 → G2 be a
continuous one-one homomorphism onto. Prove that π is a homeomorphism.

5. Let T 2 = {(eiθ , eiϕ)}. The line R1 acts on T 2 by(
x, (eiθ , eiϕ)

) �→ (eiθ+i x , eiϕ+i x
√
2 ).

Let p be the point (1, 1) of T 2 corresponding to θ = ϕ = 0. The mapping of R1

into T 2 given by x �→ xp is one-one. Is it a homeomorphism? Explain.

6. Let G be a noncompact locally compact group, and let V be a bounded open set.
By using the fact that G cannot be covered by finitely many left translates of V ,
prove that G must have infinite left Haar measure, i.e., that a Haar measure for
a locally compact group can be finite only if the group is compact.
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7. (a) Suppose thatG is a compact group, λ is a left Haar measure, ρ is a right Haar
measure, and E is a Baire set. By evaluating

∫
G×G IE (xy) d(ρ × λ)(x, y)

as an iterated integral in each order, prove that λ(E)ρ(G) = λ(G)ρ(E).
(b) Deduce the uniqueness of Haar measure for compact groups, together with

the unimodularity, from (a) and the existence of left and right Haar measures
for the group.

8. Suppose that {Gn}∞n=1 is a sequence of separable compact groups. Let G(n) =
G1 × · · · ×Gn , and let G be the direct product of all Gn . Let μn , μ(n), and μ be
Haar measures on Gn , G(n), and G, all normalized to have total measure 1.
(a) Why is μ(n) equal to the product measure μ1 × · · · × μn?
(b) Show that μ(n) defines a measure on a certain σ -algebra of Borel sets of G

that is consistent with μ.
(c) Show that the smallest σ -algebra containing, for every n, the “certain

σ -algebra of Borel sets of G” as in (b), is the σ -algebra of all Borel sets of
G, so that μ can be regarded as the infinite product of μ1, μ2, . . . .

9. Let G be a locally compact topological group with a left Haar measure dl x , and
let � be an automorphism of G as a topological group, i.e., an automorphism
of the group structure that is also a homeomorphism of G. Prove that there is a
positive constant a(�) such that dl(�(x)) = a(�) dl x .

10. Let G be a locally compact group with two closed unimodular subgroups S and
T such that G = S × T topologically and such that T is group-theoretically
normal. Write elements of G as st with s ∈ S and t ∈ T . Let ds and dt be Haar
measures on S and T . Since t �→ sts−1 is an automorphism of T for each s ∈ S,
the previous problem produces a constant δ(s) such that d(sts−1) = δ(s) dt .
(a) Prove that ds dt is a left Haar measure for G.
(b) Prove that δ(s) ds dt is a right Haar measure for G.

11. This problem leads to the same conclusion as Proposition 4.8, that any locally
compact topological vector space overR is finite-dimensional, but it gives amore
conceptual proof than the one in Chapter IV. Let V be such a space. For each
real c = 0, let |c|V be the constant a(�) from Problem 9 when the measure is an
additive Haar measure for V and � is multiplication by c. Define |0|V = 0.
(a) Prove that c �→ |c|V is a continuous function fromR into [0,+∞) such that

|c1c2|V = |c1|V |c2|V and such that |c1| ≤ |c2| implies |c1|V ≤ |c2|V .
(b) If W is a closed vector subspace of V , use Theorem 6.18 to prove that

|c|V = |c|W |c|V/W .
(c) Using (b), Proposition 4.5, Corollary 4.6, and the formula |c|RN = |c|N ,

prove that V has to be finite-dimensional.

12. Let � be a finite-dimensional unitary representation of a compact group G on a
finite-dimensional inner-product space V . The members of the dual V ∗ are of
the form �v = ( · , v)with v in V , by virtue of the Riesz Representation Theorem
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for Hilbert spaces. Define (�v1 , �v2) = (v2, v1). Prove that the result is the inner
product on V ∗ giving rise to the Banach-space norm on V ∗, and prove that the
contragredient representation �c has �c(x)�v = ��(x)v and is unitary in this
inner product.

13. Let � and �′ be two irreducible unitary representations of a compact group
G on the same finite-dimensional vector space V , and suppose that they are
equivalent in the sense that there is some linear invertible E : V → V with
E�(g) = �′(g)E for all g ∈ G. Prove that� and�′ are unitarily equivalent in
the sense that this equality for some invertible E implies this equality for some
unitary E .

14. This problem seeks to fill in the argument concerning Schur’s Lemma in the
example near the end of Section 8. Introduce an inner product in the space
Hk of harmonic polynomials on RN homogeneous of degree k to make the
representation of O(N ) on Hk be unitary, and let {hj } be an orthonormal basis.
The representation� on Hk and its corresponding matrices [�(ρ)i j ] are given by
(�(ρ)hj )(x) = hj (ρ−1x) =

∑
i �(ρ)i j hi (x). LetF be the Fourier transform on

RN , and fix a function f (|x |) such that |x |k f (|x |) is in L2(RN ). Define a matrix
F(|y|) = [ fi j (|y|)] for each |y| by F(hj (x) f (|x |))(y) =

∑
i hi (y) fi j (|y|).

(a) Assuming that the functions f and F are continuous functions of |x |, prove
that F(|y|)[�(ρ)i j ] = [�(ρ)i j ]F(|y|) for all ρ.

(b) Deduce from (a) and Corollary 6.27 that F(h(x) f (|x |)) is of the form
h(y)g(|y|) if h is in Hk and the continuity hypothesis is satisfied.

(c) Show how the continuity hypothesis can be dropped in the above argument.

15. Making use of the result of Problem 12, show that the matrix coefficients of the
contragredient �c of a finite-dimensional representation � of a compact group
are the complex conjugates of those of � and the characters satisfy χ�c = χ�.

16. An example in Section 8 examined the right-regular representation r of a compact
group G, given by (r(g) f )(x) = f (xg), and showed that the linear span of the
matrix coefficients of an irreducible τ equals the whole isotypic space of type
τ , a decomposition of this space into irreducible representations being given by
the decomposition into rows. Show similarly for the left-regular representation
l, given by (l(g) f )(x) = f (g−1x), that the linear span of the matrix coefficients
of the irreducible τ equals the whole isotypic space of type τ c, a decomposition
of this space into irreducible representations being given by the decomposition
into columns.

17. Let G be a compact group, and let V be a complex Hilbert space.
(a) For G = S1, prove that the left-regular representation l of G on L2(G) is

not continuous in the operator norm topology, i.e., that g �→ l(g) is not
continuous from G into the Banach space of bounded linear operators on
L2(G).
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(b) Suppose that g �→ �(g) is a homomorphismofG into unitary operators onV
that is weakly continuous, i.e., that has the property that g �→ (�(g)u, v)
is continuous for each u and v in V . Prove that g �→ �(g) is strongly
continuous in the sense that g �→ �(g)v is continuous for each v in V , i.e.,
that � is a unitary representation.

18. Let G be a compact group.
(a) Let � be an irreducible unitary representation of G, and let f be a linear

combination of matrix coefficients of the contragredient�c of�. Prove that
f (1) = d Tr�( f ), where d is the degree of f .

(b) Let {�(α)} be a maximal set of mutually inequivalent irreducible unitary
representations of G, and let d(α) be the degree of �(α). Prove that each
trigonometric polynomial f on G satisfies the Fourier inversion formula
f (1) = ∑

α d
(α) Tr�(α)( f ), the sum being a finite sum in the case of a

trigonometric polynomial.
(c) Deduce the Plancherel formula for trigonometric polynomials onG from (b).
(d) If G is a finite group, prove that every complex-valued function on G is a

trigonometric polynomial.

19. Let G be a compact group.
(a) Prove that if h is any member of C(G) such that h(gxg−1) = h(x) for every

g and x in G, then h ∗ f = f ∗ h for every f in L1(G).
(b) Prove that if f is a trigonometric polynomial, then x �→ ∫

G f (gxg−1) dg is
a linear combination of characters of irreducible representations.

(c) Using the Approximation Theorem, prove that any member of C(G) such
that h(gxg−1) = h(x) for every g and x in G is the uniform limit of a
sequence of linear combinations of irreducible characters.

(d) Prove that the irreducible characters form an orthonormal basis of the
closed vector subspace of all members h of L2(G) satisfying h(x) =∫
G h(gxg

−1) dg almost everywhere.

20. Let G be a finite group, let {�(α)} be a maximal set of inequivalent irreducible
representations of G, and let d(α) be the degree of �(α).
(a) Prove that

∑
α (d

(α))2 equals the number of elements in G.
(b) Using (d) in the previous problem, prove that the number of�(α)’s equals the

number of conjugacy classes ofG, i.e., the number of equivalence classes of
G under the equivalence relation that x ∼ y if x = gyg−1 for some g ∈ G.

(c) In a symmetric group Sn , two elements are conjugate if and only if they
have the same cycle structure. InS4, two of the irreducible representations
are 1-dimensional. Using this information and the above facts, determine
how many �(α)’s there are forS4 and what degrees they have.

Problems 21–22 concern Theorem 6.16, its hypotheses, and related ideas. In the
theory of (separable) “Lie groups,” if S and T are closed subgroups of a Lie group G
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whose intersection is discrete and the sum of whose dimensions equals the dimension
of G, then multiplication S × T → G is an open map. These problems deduce
this open mapping property in a different way without any knowledge of Lie groups,
and then they apply the result to give two explicit formulas for the Haar measure of
SL(2,R) in terms of measures on subgroups.

21. LetG be a separable locally compact group, and let S and T be closed subgroups
such that the image of multiplication as a map S × T → G is an open set in G.
Using the result of Problem 3, prove that S × T → G is an open map.

22. For the group G = SL(2,R), let K =
{
kθ =

(
cos θ − sin θ
sin θ cos θ

)}
, M = {m± = ±1},

A =
{
ax =

(
ex 0
0 e−x

)}
, N =

{
ny =

(
1 y
0 1

)}
, and V =

{
vt =

(
1 0
t 1

)}
.

(a) Prove that AN is a closed subgroup and that every element of G is uniquely
the product of an element of K and an element of AN . Using Theorem 6.16,
show that the formula

�( f ) = ∫ 2π
θ=0
∫∞
x=−∞

∫∞
y=−∞ f (kθaxny)e2x dy dx dθ

defines a translation-invariant linear functional on Ccom(G).

(b) Prove that MAN is a closed subgroup and that every element
(
a b
c d

)
of G

with a = 0, and no other element of G, is a product of an element of V and
an element of MAN . Assume that the subset of elements

(
a b
c d

)
of G with

a = 0 has Haar measure 0. Using Theorem 6.16, show that the formula
�( f ) =∑m±∈M

∫∞
t=−∞

∫∞
x=−∞

∫∞
y=−∞ f (vtm±axny)e2x dy dx dv

defines a translation-invariant linear functional on Ccom(G).

Problems 23–27 do some analysis on the group G = SU(2) of 2-by-2 unitary
matrices of determinant 1. Following the notation introduced in Example 4 in
Section 6 and in its continuation later in that section, let �n be the representation
of G on the homogeneous holomorphic polynomials of degree n in z1 and z2 given

by (�n(g)P)
(
z1
z2

)
= P

(
g−1

(
z1
z2

))
. Let T = {tθ }, with tθ = diag

(
eiθ , e−iθ

)
, be the

diagonal subgroup. The text calculated that the character χn of �n is given on T by

χn(tθ ) = Tr�n(tθ ) = einθ + ei(n−2)θ + · · · + e−inθ = ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
.

Take for granted that �n is irreducible for each n ≥ 0.
23. Take as known from linear algebra that every member of SU(2) is of the form

gtθg−1 for some g ∈ SU(2) and some θ . Show that the only ambiguity in tθ is
between θ and−θ . Prove that the linear mapping ofC(G) toC(T ) carrying f in
C(G) to the function tθ �→

∫
G f (gtθg−1) dg has image all functions ϕ ∈ C(T )

with ϕ(t−θ ) = ϕ(tθ ).
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24. Reinterpret the image in the previous problem as all continuous functions on the
quotient space T/{1, ψ}, whereψ : T → T interchanges t−θ and tθ . Why is this
space compact Hausdorff? Why then can it be identified with [0, π ]?

25. Prove that there is a Borel measure μ on [0, π ] such that∫
G f (x) dx = ∫[0,π] ∫G f (gtθg−1) dg dμ(θ)

for all f in C(G).

26. Follow these steps to identify dμ(θ) in the previous problem and thereby have
a formula for integrating over G = SU(2) by first integrating over conjugacy
classes. Such a formula can be obtained by computations with coordinates and
use of the change-of-variables formula for multiple integrals, but themethod here
is shorter.
(a) Using the orthogonality relations

∫
G χn(x)χ0(x) dx = δn0, prove that∫

[0,π] dμ(θ) = 1 and that
∫
[0,π] (e

ikθ + e−ikθ ) dμ(θ) is−1 for k = 2 but is 0
for k = 1 and k ≥ 3.

(b) Extendμ to [−π, π ] by setting it equal to 0 on [−π, 0), defineμ′ on [−π, π ]
by μ′(E) = 1

2

(
μ(E) + μ(−E)), observe that μ′ is even, and check that∫

[−π,π] cos nθ dμ
′(θ) is equal to 1 for n = 0, to −1 for n = 2, and to 0 for

n = 1 and n ≥ 3.
(c) Deduce that the periodic extension of μ′ from (−π, π ] to R is given by its

Fourier–Stieltjes series dμ′(θ) = 1
2π (1− cos 2θ) dθ .

(d) (Special case ofWeyl integration formula) Conclude that∫
G f (x) dx = 1

π

∫ π

π

[ ∫
G f (gt±θg−1) dg

]
sin2 θ dθ.

27. Prove that every irreducible unitary representation of SU(2) is equivalent to
some �n .

Problems 28–32 concern locally compact topological fields. Each such is of interest
from the point of view of the present chapter because its additive group is a locally
compact abelian group and its nonzero elements form another locally compact abelian
group under multiplication. A topological field is a field with a Hausdorff topology
such that addition, negation, multiplication, and inversion are continuous. The fields
R andC are examples. Another example is the fieldQp of p-adic numbers, where p is
a prime. To construct this field, one defines on the rationalsQ a function | · |p by setting
|0|p = 0 and taking |pnr/s|p equal to p−n if r and s are relatively prime integers.
Then d(x, y) = |x− y|p is a metric onQ, and the metric space completion isQp. The
function | · |p extends continuously toQp and is called the p-adic norm. It satisfies
something better than the triangle inequality, namely |x+ y|p ≤ max{|x |p, |y|p}; this
is called the ultrametric inequality. Problems 27–31 of Chapter II of Basic show
that the arithmetic operations on Q extend continuously to Qp and that Qp becomes
a topological field such that |xy|p = |x |p|y|p. Because of the ultrametric inequality
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the subset Zp of Qp with |x |p ≤ 1 is a commutative ring with identity; it is called
the ring of p-adic integers. It is a topological ring in that its addition, negation, and
multiplication are continuous. Moreover, it is compact because every closed bounded
subset ofQp can be shown to be compact. The subset I of Zp with |x |p ≤ p−1 is the
unique maximal ideal of Zp, and the quotient Zp/I is a field of p elements.

28. Prove that every compact topological field is finite.

29. Let F be a locally compact topological field, and let F× be the group of nonzero
elements, the group operation being multiplication.
(a) Let c be in F×, and define |c|F to be the constant a(�) from Problem 9

when the measure is an additive Haar measure and� is multiplication by c.
Define |0|F = 0. Prove that c �→ |c|F is a continuous function from F into
[0,+∞) such that |c1c2|F = |c1|F |c2|F .

(b) If dx is a Haar measure for F as an additive locally compact group, prove
that dx/|x |F is a Haar measure for F× as a multiplicative locally compact
group.

(c) Let F = R be the locally compact field of real numbers. Compute the
function x �→ |x |F . Do the same thing for the locally compact field F = C
of complex numbers.

(d) Let F = Qp be the locally compact field of p-adic numbers, where p is a
prime. Compute the function x �→ |x |F .

(e) For the field F = Qp of p-adic numbers, suppose that the ring Zp of p-adic
integers has additive Haar measure 1. What is the additive Haar measure of
the maximal ideal I of Zp?

30. Consider Qp as a locally compact abelian group under addition.
(a) Prove from the continuity that any multiplicative character of the additive

group Qp is trivial on some subgroup pnZp for sufficiently large n.
(b) Tell how to define a multiplicative character ϕ0 of the additive group Qp in

such a way that ϕ0 is 1 on Zp and ϕ0(p−1) = e2π i/p.
(c) If ϕ is any multiplicative character of the additive groupQp, prove that there

exists a unique element k of Qp such that ϕ(x) = ϕ0(kx) for all x in Qp.

31. Let P = {∞} ∪ {primes}. For v in P , let Qv be the field of p-adic numbers if v
is a prime p, or R if v = ∞. For v in P , define | · |v onQv as follows: this is to
be the p-adic norm on Qp if v is a prime p, and it is to be the ordinary absolute
value on R if v = ∞. Each member of the rationals Q can be regarded as a
member of Qv for each v in P . Prove that each rational number x has |x |v = 1
for only finitely many v.

32. (Artin product formula) For each nonzero rational number x , the fact that
|x |v = 1 for only finitely many v in P shows that

∏
v |x |v is a well-defined

rational number. Prove that actually
∏

v |x |v = 1.
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Problems 33–38 concern the ring AQ of adeles of the rationals Q and the group of
ideles defined in terms of it. These objects are important tools in algebraic number
theory, and they provide interesting examples of locally compact abelian groups. Part
of the idea behind them is to study number-theoretic questions about the integers, such
as the solving of Diophantine equations or the factorization of monic polynomials
with integer coefficients, by first studying congruences. One studies a congruence
modulo each power of any prime, as well as any limitations imposed by treating
the coefficients as real. The ring AQ of adeles of Q is a structure that incorporates
simultaneously information about all congruencesmodulo each prime power, together
with information aboutR. Its definition makes use of the construction of direct limits
of topological spaces as in Problems 26–30 in Chapter IV, as well as the material
concerning p-adic numbers in Problems 29–32 above.

33. The construction of restricted direct products in Problem 30 at the end of Chap-
ter IV assumed that I is a nonempty index set, S0 is a finite subset, Xi is a locally
compact Hausdorff space Xi for each i ∈ I , and Ki is a compact open subset of
Xi for each i /∈ S0. As in that problem, for each finite subset S of I containing
S0, let

X (S) = (×i∈S Xi
)× (×i /∈SKi

)
,

giving it the product topology. Suppose that each Xi , for i ∈ I , is in fact a locally
compact group and Ki , for i /∈ S0, is a compact open subgroup of Xi . Prove
that each X (S), with coordinate-by-coordinate operations, is a locally compact
group and that the direct limit X acquires the structure of a locally compact group.
Prove also that if each Xi is a locally compact topological ring and each Ki is a
compact subring, then each X (S) is a locally compact topological ring and so is
the direct limit X .

34. In the construction of the previous problem, let I = P = {∞} ∪ {primes}
and S0 = {∞}, and form the restricted direct product of the various topo-
logical fields Qv for v ∈ P with respect to the compact open subrings Zv .
The above constructions lead to locally compact commutative rings AQ(S) for
each finite subset S of P containing S0, and the direct limit AQ is the locally
compact commutative topological ring of adeles forQ. Show that eachAQ(S) is
an open subring of AQ. Show that we can regard elements of AQ as tuples
x = (x∞, x2, x3, x5, . . . , xv, . . . ) = (xv)v∈P in which all but finitely many
coordinates xp are in Zp.

35. For each rational number x , the fact that |x |v ≤ 1 for all but finitely many v

allows us to regard the tuple (x, x, x, . . . ) as a member of AQ. Thus we may
regard Q, embedded “diagonally,” as a subfield of the ring AQ. Prove that Q is
discrete, hence closed.

36. In the setting of the previous problem, prove that AQ/Q is compact.
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37. For the ringsQv , Zv , andAQ, letQ×
v , Z

×
v , andA×Q be the groups consisting of the

members of the rings whose multiplicative inverses are in the rings. GiveQ×
v and

Z×v the relative topology. In the case of A×Q, define the topology as a restricted
direct product of the locally compact groups Q×

v for v ∈ P with respect to the
compact open subgroups Z×v . The locally compact group A×Q is called the group
of ideles ofQ. Show that the set-theoretic inclusion ofA×Q intoAQ is continuous
but is not a homeomorphism of A×Q with its image.

38. This problem constructs Haar measure on the ring AQ considered as an additive
group. As in Problem 34, S denotes any finite subset of P containing {∞}.
(a) Fix S. This part of the problem constructs Haar measure on AQ(S). For

each prime p in S, define Haar measure μp on Qp to be normalized so that
μp(Zp) = 1. Form ameasureμS onAQ(S) as follows: On the product X (S)
of R and theQp for p prime in S, use the product of Lebesgue measure and
μp. On the product Y (S) of all Zp for p /∈ S, use the Haar measure on
the infinite product of the Zp’s obtained as in Problem 8. Then AQ(S) =
X (S) × Y (S). Show that Haar measure μS on AQ(S) may be taken as the
product of these measures on X (S) and Y (S) and that the resulting measures
are consistent as S varies.

(b) Show that each measure μS defines a set function on a certain σ -subalgebra
B(S) of Borel sets of AQ that is the restriction to B(S) of a Haar measure on
all Borel subsets of AQ.

(c) Show that the smallest σ -algebra for AQ containing, for every finite S con-
taining {∞}, the σ -algebra B(S) as in (b) is the σ -algebra of all Borel sets
of AQ.

Problems 39–47 concern almost periodic functions on topological groups. Let G be
any topological group. Define a bounded continuous function f : G → C to be
left almost periodic if every sequence of left translates of f , i.e., every sequence of
the form {gn f }with (gn f )(x) = f (g−1n x), has a uniformly convergent subsequence;
equivalently the condition is that the closure in the uniform norm of the set of left
translates of f is compact. Define right almost periodic functions similarly; it will
turn out that left almost periodic and right almost periodic imply each other. Take for
granted that the set of left almost periodic functions, call it LAP(G), is a uniformly
closed algebra stable under conjugation and containing the constants. Application of
the Stone Representation Theorem (Theorem 4.15) to LAP(G) produces a compact
Hausdorff space S1, a continuous map p : G �→ S1 with dense image, and a norm-
preserving algebra isomorphism of LAP(G) onto C(S1). The space S1 is called the
Bohr compactification of G. These problems show that S1 has the structure of a
compact group and that the map of G into S1 is a continuous group homomorphism.
Application of the Peter–Weyl Theorem to S1 will give a Fourier analysis of LAP(G)

and an approximation property for its members in terms of finite-dimensional unitary
representations of G.
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39. Suppose that K is a compact group and that ι : G → K is a continuous
homomorphism.
(a) Prove that every member of C(K ) is left almost periodic and right almost

periodic on K .
(b) If F is in C(K ), let f be the function on G defined by f (x) = F(ι(x)) for

x ∈ G. Prove that f is left almost periodic and right almost periodic on G.
40. Let � be a finite-dimensional unitary representation of G, and let f be a matrix

coefficient of �. Prove that f is left almost periodic and right almost periodic.

41. Let f be left almost periodic on G, let L f be the subset of C(G) consisting of
the left translates of f , and let K f be the closure in C(G) of L f . The set K f is
compact by definition of left almost periodicity.
(a) Prove that f is left uniformly continuous in the sense that for any ε > 0,

there is a neighborhood U of {1} such that ‖g f − f ‖sup < ε for all g in U .
(b) Each member of the group G acts on L f with g0(g f ) = (g0g) f . Prove that

this operation of g0 on L f is an isometry of L f onto itself.
(c) Prove that the operation of each g0 on L f extends uniquely to an isometry

ι f (g0) of K f onto itself.

42. Let X be a compact metric space with metric d, and let 
 be the group of
isometries of X onto itself. Make 
 into a metric space (
, ρ) by defining
ρ(ϕ1, ϕ2) = supx∈X d(ϕ1(x), ϕ2(x)).
(a) Prove that 
 is compact as a metric space.
(b) Prove that 
 is a topological group in this topology, hence a compact group.
(c) Prove that the group action 
 × X → X given by (γ, x) �→ γ (x) is

continuous.

43. Let 
 f be the isometry group of K f , and consider 
 f as a compact metric space
with metric as in the previous problem.
(a) Prove that the mapping ι f : G → 
 f defined in Problem 41c is continuous.
(b) Prove that if h is in K f , then the definition Ff (h)(γ ) = (γ−1h)(1) for

γ ∈ 
 f yields a continuous function on 
 such that h(g0) = Ff (h)(ι f (g0)).
(c) Conclude from the foregoing that f is right almost periodic andhence that left

almost periodic functions can now be considered as simply almost periodic.

44. For each almost periodic function f on G, let ι f : G → 
 f be the continu-
ous homomorphism discussed in Problems 41c and 43a. Let 
 = ∏ f 
 f be
the product of the compact groups 
 f , and define ι(g) = ∏

f ι f (g), so that
ι : G → 
 is a continuous homomorphism. Problem 39b shows that if F is in
C(
), then the function h defined on G by h(x) = F(ι(x)) is almost periodic.
Prove that every almost periodic function on G arises in this way from some
continuous F on this particular 
.
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45. Let K be the closure of ι(G) in the compact group 
 in the previous problem, let
S1 be the Bohr compactification ofG, and let p : G → S1 be the continuous map
defined by evaluations at the points of G. Prove that there is a homeomorphism
� : S1→ K such that � ◦ p = ι, so that the construction of K can be regarded
as imposing a compatible group structure on the Bohr compactification of G.

46. Apply the Approximation Theorem to prove that every almost periodic function
on G can be approximated uniformly by linear combinations of matrix coeffi-
cients of finite-dimensional unitary representations of G.

47. Suppose thatG is abelian, and let p : G → K be the continuous homomorphism
of G into its Bohr compactification. Prove that the continuous multiplicative
characters ofG coincidewith the continuousmultiplicative characters of K under
an identification by p. (Educational note: It is known from “Pontryagin duality”
that if the group K̂ of continuousmultiplicative characters of the compact abelian
group K is given the discrete topology, then K is isomorphic to the compact group
of multiplicative characters of K̂ , the topology on this character group being the
relative topology as a subset of the unit ball of the dual of C(K̂ ) in the weak-
star topology. Thus K may be obtained by forming the group of continuous
multiplicative characters of G, imposing the discrete topology, and forming the
group of multiplicative characters of the result.)



CHAPTER VII

Aspects of Partial Differential Equations

Abstract. This chapter provides an introduction to partial differential equations, particularly linear
ones, beyond the material on separation of variables in Chapter I.
Sections 1–2 give an overview. Section 1 addresses the question of how many side conditions

to impose in order to get local existence and uniqueness of solutions at the same time. The
Cauchy–Kovalevskaya Theorem is stated precisely for first-order systems in standard form and
for single equations of order greater than one. When the system or single equation is linear with
constant coefficients and entire holomorphic data, the local holomorphic solutions extend to global
holomorphic solutions. Section 2 comments on some tools that are used in the subject, particularly
for linear equations, and it gives some definitions and establishes notation.
Section 3 establishes the basic theorem that a constant-coefficient linear partial differential

equation Lu = f has local solutions, the technique being multiple Fourier series.
Section 4 proves a maximum principle for solutions of second-order linear elliptic equations

Lu = 0 with continuous real-valued coefficients under the assumption that L(1) = 0.
Section 5 proves that any linear elliptic equation Lu = f with constant coefficients has a

“parametrix,” and it shows how to deduce from the existence of the parametrix the fact that the
solutions u are as regular as the data f . The section also deduces a global existence theorem when f
is compactly supported; this result uses the existence of the parametrix and the constant-coefficient
version of the Cauchy–Kovalevskaya Theorem.
Section 6 gives a brief introduction to pseudodifferential operators, concentrating on what is

needed to obtain a parametrix for any linear elliptic equation with smooth variable coefficients.

1. Introduction via Cauchy Data

The subject of partial differential equations is a huge and diverse one, and a
short introduction necessarily requires choices. The subject has its origins in
physics and nowadays has applications that include physics, differential geometry,
algebraic geometry, and probability theory. A small amount of complex-variable
theory will be extremely helpful, and this will be taken as known for this chapter.
We shall ultimately concentrate on single equations, as opposed to systems, and on
partial differential equations that are linear. After the first two sections the topics
of this chapter will largely be ones that can be approached through a combination
of functional analysis and Fourier analysis.

275
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Let us for now use subscript notation for partial derivatives, as in Section I.1.
A system of p partial differential equations in N variables for the unknown
functions u(1), . . . , u(m) consists of p expressions

Fk(u
(1), . . . , u(m), u(1)x1 , . . . , u

(m)
x1 , . . . , u(1)xN , . . . , u

(m)
xN , u(1)x1x1, . . . , u

(m)
x1x1, . . . ) = 0,

1 ≤ k ≤ p, in an open set of RN ; it is assumed that the partial derivatives
that appear as variables have bounded order. When p = 1, we speak of simply
a partial differential equation. The highest order of a partial derivative that
appears is the order of the equation or system. We might expect that it would be
helpful if the number p of equations in a system equals the numberm of unknown
functions, but one does not insist on this condition as a matter of definition. A
system in which the number p of equations equals the number m of unknown
functions is said to be “determined,” but nothing is to be read into this terminology
without a theorem. We shall work only with determined systems. The equation
or system is linear homogeneous if each Fk is a linear function of its variables.
It is linear if each Fk is the sum of a linear function and a function of the N
domain variables that is taken as known.
The classical equations that we would like to include in a more general theory

are the three studied in Section I.2 in connection with the method of separation
of variables—the heat equation, the Laplace equation, and the wave equation—
and one other, namely the Cauchy–Riemann equations. With  denoting the
Laplacianu = ux1x1 +· · ·+ uxN xN , the first three of these equations in N space
variables are

ut = u, u = 0, and utt = u.

The Cauchy–Riemann equations are ordinarily written as a system

ux = vy, uy = −vx ,
but they can be written also as a single equation if we think of u and v as real and
write f = u + iv. Then the system is equivalent to the single equation

∂ f

∂ z̄
= 0 or fz̄ = 0, where

∂

∂ z̄
= ∂

∂x
+ i

∂

∂y
.

Guided in part by the theory of ordinary differential equations of Chapter IV in
Basic, we shall be interested in existence-uniqueness questions for our equation
or system, both local and global, and in qualitative properties of solutions, such
as regularity, the propagation of singularities, and any special features. For a
particular equation or system we might be interested in any of the following three
problems:

(i) to find one or more particular solutions,
(ii) to find all solutions,
(iii) to find those solutions meeting some initial or boundary conditions.
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Problems of the third type as known as boundary-value problems or initial-
value problems.1 The method of separation of variables in Section I.2 is partic-
ularly adapted to solving this kind of problem in special situations.
For ordinarydifferential equations and systems these three problemsare closely

related, as we saw in the course of investigating existence and uniqueness in
Chapter IV of Basic. For partial differential equations they turn out to be
comparatively distinct. We can, however, use the kind of setup with first-order
systems of ordinary differential equations to get an idea how much flexibility
there is for the solutions to the system. Let us treat one of the variables x
as distinguished2 and suppose, in analogy with what happened in the case of
ordinary differential equations, that the system consists of an expression for the
derivative with respect to x of each of the unknown functions in terms of the
variables, the unknown functions, and the other first partial derivatives of the
functions. Writing down general formulas involves complicated notation that
may obscure the simple things that happen; thus let us suppose concretely that
the independent variables are x, y and that the unknown functions are u, v. The
system is then to be

ux = F(x, y, u, v, uy, vy),

vx = G(x, y, u, v, uy, vy).

With x still regarded as special, let us suppose that u and v are known when
x = 0, i.e., that

u(0, y) = f (y),

v(0, y) = g(y).

The real-variable approach of Chapter IV of Basic is not very transparent for this
situation; an approach via power series looks much easier to apply. Thus we
assume whatever smoothness is necessary, and we look for formal power series
solutions in x, y. The question is then whether we can determine all the partial
derivatives of all orders of u and v at a point like (0, 0). It is enough to see that the
system and the initial conditions determine ∂ku

∂xk (0, y) and
∂kv
∂xk (0, y) for all k ≥ 0.

For k = 0, the initial conditions give the values. For k = 1, we substitute x = 0
into the system itself and get values, provided we know values of all the variables
at (0, y). The values of u and v come from k = 0, and the values of uy and vy

1The distinction between these terms has nothing to do with the mathematics and instead is a
question of whether all variables are regarded as space variables or one variable is to be interpreted
as a time variable.

2It is natural to think of this variable as representing time and to say that the differential equation
and any conditions imposed at a particular value of this variable constitute an initial-value problem.
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come from differentiating those expressions with respect to y. For k = 2, we
differentiate each equation of the systemwith respect to x and then put x = 0. For
each equation we get a sum of partial derivatives of F , evaluated as before, times
the partial of each variable with respect to x . For the latter we need expressions
for ux , vx , uxy , and vxy ; we have them since we know ux(0, y) and vx(0, y) from
the step k = 1. This handles k = 2. For higher k, we can proceed inductively by
continuing to differentiate the given system, but let us skip the details. The result
is that the initial values of u(0, y) and v(0, y) are enough to determine unique
formal power-series solutions satisfying those initial values.
Next, under the hypothesis that F , G, f , and g are holomorphic functions of

their variables near an initial point, one can prove convergence of the resulting
two-variable power series near (0, 0). This fact persists when the number of
equations and the number of unknown functions are increased but remain equal,
andwhen the domain variables are arbitrary in number. The theorem is as follows.

Theorem 7.1 (Cauchy–Kovalevskaya Theorem, first form). Let a system of
p partial differential equations with p unknown functions u(1), . . . , u(p) and N
variables x1, . . . , xN of the form

u(1)x1 = F1(u
(1), . . . , u(p), u(1)x2 , . . . , u

(p)
x2 , . . . , u

(1)
xN , . . . , u

(p)
xN ),

... (∗)
u(p)x1 = Fp(u

(1), . . . , u(p), u(1)x2 , . . . , u
(p)
x2 , . . . , u

(1)
xN , . . . , u

(p)
xN ),

be given, subject to the initial conditions

u(1)(0, x2, . . . , xN ) = f1(x2, . . . , xN ),

... (∗∗)
u(p)(0, x2, . . . , xN ) = fp(x2, . . . , xN ).

Suppose that f1, . . . , fp are holomorphic in a neighborhood inCN−1 of the point
(x2, . . . , xN ) = (x02 , . . . , x

0
N ) and that F1, . . . , Fp are holomorphic in a neighbor-

hood inCNp of the value of the argumentu(1), . . . , u(p)xN of the Fj ’s that corresponds
to (0, x02 , . . . , x

0
N ). Then there exists a neighborhood of (x1, x2, . . . , xN ) =

(0, x02 , . . . , x
0
N ) in CN in which the system (∗) has a holomorphic solution satis-

fying the initial conditions (∗∗). Moreover, on any connected subneighborhood
of (0, x02 , . . . , x

0
N ), there is no other holomorphic solution satisfying the initial

conditions.
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We omit the proof since we shall use the theorem in this generality only as a
guide for howmuch in the way of initial conditions needs to be imposed to expect
uniqueness without compromising existence. Initial conditions of the form (∗∗)
for a system of equations (∗) are called Cauchy data.
We shall, however, make use of a special case of Theorem 7.1, where a better

conclusion is available.

Theorem 7.2. In the Cauchy–Kovalevskaya system of Theorem 7.1, suppose
that the functions Fk in the system (∗) are of the form
Fk(u

(1), . . . , u(p), u(1)x2 , . . . , u
(p)
x2 , . . . , u

(1)
xN , . . . , u

(p)
xN )

=
p∑

i=1
aiu

(i) +
p∑

i=1

N∑
j=2

ci j u
(i)
xj + hk(x1, . . . , xN )

with the ai and ci j constant and with each hj a given entire holomorphic function
onCN . Suppose further that the functions f j (x2, . . . , xN ) in the initial conditions
(∗∗) are entire holomorphic functions on CN . Then the system (∗) has an entire
holomorphic solution satisfying the initial conditions (∗∗).
This theorem is proved in Problems 6–9 at the end of the chapter without

making use of Theorem 7.1. We shall use it in proving Theorem 7.4 below,
which in turn will be applied in Section 5.
Since our interest is really in single equations and we want to allow order> 1,

we can ask whether we can carry over to partial differential equations the familiar
device for ordinary differential equations of introducing new unknown functions
to change a higher-order equation to a first-order system.
Recallwith anordinary differential equationof ordern for anunknown function

y(t) when the equation is y(n) = F(t, y, y′, . . . , y(n−1)): we can introduce
unknown functions y1, . . . , yn satisfying y1 = y, y2 = y′, . . . , yn = y(n−1),
and we obtain an equivalent first-order system y′1 = y2, . . . , y′n−1 = yn ,
y′n = F(t, y1, y2, . . . , yn). Values for y, y′, . . . , y(n−1) at t = t0 correspond to
values at t = t0 for y1, y2, . . . , yn and give us equivalent initial-value problems.
For a single higher-order partial differential equation of order m in which the

mth derivative of the unknown function with respect to one of the variables x
is equal to a function of everything else, the same kind of procedure changes a
suitable initial-value problem into an initial-value problem for a first-order system
as above. But if we ignore the initial values, the solutions of the single equation
need not match the solutions of the system. Let us see what happens for a single
second-order equation in two variables x, y for an unknown function u under the
assumption that we have solved for uxx . Thus consider the equation

uxx = F(x, y, u, ux , uy, uxy, uyy)
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with initial data

u(0, y) = f (y),

ux(0, y) = g(y).

This is another instance in which the initial data are known as Cauchy data:
the equation has order m, and we are given the values of u and its derivatives
through order m − 1 with respect to x at the points of the domain where x =
0. For this example, introduce variables u, p, q, r, s, t equal, respectively, to
u, ux , uy, uxx , uxy, uyy . With these interpretations of the variables, the given
equation becomes r = F(x, y, u, p, q, s, t), and we differentiate this identity
to make it more convenient to use. Then u yields a solution of a system of six
first-order equations, namely

ux = p,

px = r,

qx = py,

rx = Fx + pFu + r Fp + sFq + ry Fs + sy Ft ,

sx = ry,

tx = sy .

The choice here of qx = py rather than qx = s is important; we will not be able
to invert the initial-value problem without it. The initial data will be values of
u, p, q, r, s, t at (0, y), and we can read off what we must use from the above
values of u(0, y) and ux(0, y), namely

u(0, y) = f (y),

p(0, y) = g(y),

q(0, y) = f ′(y),

r(0, y) = F(0, y, f (y), g(y), f ′(y), g′(y), f ′′(y)),

s(0, y) = g′(y),

t (0, y) = f ′′(y).

If u satisfies the initial-value problem for the single equation, then the definitions
of u, p, q, r, s, t give us a solution of the initial-value problem for the system.
Let us show that a solution u, p, q, r, s, t of the initial-value problem for the

system has to make u be a solution of the initial-value problem for the single
equation. What needs to be shown is that uy = q, uxy = s, and uyy = t . We use
the same kind of argument with all three.
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For uy = q, we see from the system that (uy)x = (ux)y = py = qx , so that
(uy−q)x = 0. Therefore uy(x, y)−q(x, y) = h(y) for some function h. Setting
x = 0 gives h(y) = uy(0, y) − q(0, y) = f ′(y) − f ′(y) = 0. Thus h(y) = 0,
and we obtain uy = q.
Similarly foruxy = s, we start fromuxxy = pxy = ry = sx , so that (uxy−s)x =

0. Therefore uxy(x, y) − s(x, y) = k(y) for some function k. Setting x = 0
gives k(y) = uxy(0, y) − s(0, y) = py(0, y) − s(0, y) = g′(y) − g′(y) = 0.
Thus k(y) = 0, and we obtain uxy = s.
Finally foruyy = t , we start fromuxyy = (uxy)y = sy = tx , so that (uyy−t)x =

0. Therefore uyy(x, y)− t (x, y) = l(y) for some function l. Setting x = 0 gives
l(y) = uyy(0, y)− t (0, y) = f ′′(y)− f ′′(y) = 0. Thus l(y) = 0, and we obtain
uyy = t .
The conclusion is that the given second-order equation with two initial con-

ditions is equivalent to the system of six first-order equations with six initial
conditions. In other words the Cauchy data for the single equation lead to Cauchy
data for an equivalent first-order system. It turns out that if a single equation of
order m has one unknown function and is written as solved for the mth derivative
of one of the variables x , and if the given Cauchy data consist of the values at
x = x0 of the unknown function and its derivatives through order m − 1, then
the equation can always be converted in this way into an equivalent first-order
system with given Cauchy data. The steps of the reduction to Theorem 7.1 are
carried out in Problems 10–11 at the end of the chapter. The result is as follows.

Theorem 7.3 (Cauchy–Kovalevskaya Theorem, second form). Let a single
partial differential equation of orderm in the variables (x, y) = (x, y1, . . . , yN−1)
of the form

Dm
x u = F(x, y; u; all Dk

x D
α
y u with k < m and k + |α| ≤ m) (∗)

be given, subject to the initial conditions

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m. (∗∗)

Here α is assumed to be a multi-index α = (α1, . . . , αN−1) corresponding to the
y variables. Suppose that f (0), . . . , f (m−1) are holomorphic in a neighborhood
in CN−1 of the point (y1, . . . , yN−1) = (y01 , . . . , y

0
N−1) and that F is holomor-

phic in a neighborhood of the value of its argument corresponding to x = 0
and (y1, . . . , yN−1) = (y01 , . . . , y

0
N−1). Then there exists a neighborhood of

(x, y1, . . . , yN−1) = (0, y01 , . . . , y
0
N−1) in CN in which the system (∗) has a

holomorphic solution satisfying the initial conditions (∗∗). Moreover, on any
connected subneighborhood of (0, y01 , . . . , y

0
N−1), there is no other holomorphic

solution satisfying the initial conditions.



282 VII. Aspects of Partial Differential Equations

In the special case that F is the sumof a known entire holomorphic function and
a linear combination with constant coefficients of x , y, and the various Dk

x D
α
y u,

the steps that reduce Theorem 7.3 to Theorem 7.1 perform a reduction to Theorem
7.2. We therefore obtain a better conclusion under these hypotheses, as follows.

Theorem 7.4. Let a single partial differential equation of order m in the
variables (x, y) = (x, y1, . . . , yN−1) of the form

Dm
x u = ax+b1y1+· · ·+bN−1yN−1+

∑
0≤k<m
k+|α|≤m

ck,αD
k
x D

α
y u+h(x, y1, . . . , yN−1) (∗)

be given, subject to the initial conditions

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m. (∗∗)

Suppose that f (0), . . . , f (m−1) are entire holomorphic onCN−1 and that h is entire
holomorphic on CN . Then the equation (∗) has an entire holomorphic solution
satisfying the initial conditions (∗∗).

The steps in the reduction of this theorem to Theorem 7.2 are indicated for
N = 2 in Problem 11 at the end of the chapter, and the steps for general N
are similar. We shall make use of Theorem 7.4 to prove the existence of certain
“fundamental solutions” in Section 5.
Aswe said, in this reduction from an initial-value problem for a single equation

to an initial-value problem for a first-order system, the equation without initial
values is not always equivalent to the system without initial values. A simple
example will suffice. In the second-order setup as above, let the given equation
be uxx = −uyy + 4. That is, let F(x, y, u, ux , uy, uxy, uyy) = −uyy + 4. This
equation has u = x2 + y2 as a solution, for example. If we introduce variables
u, p, q, r, s, t as above, we find that F(x, y, u, p, q, s, t) = −t + 4, and we
obtain the system

ux = p,

px = r,

qx = py,

rx = Fx + pFu + r Fp + sFq + ry Fs + sy Ft = −sy,
sx = ry,

tx = sy .

If we put
u = x2, p = 2x, q = s = 0, r = t = 2,
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we find that this tuple (u, p, q, r, s, t) solves the system. But u = x2 is not a
solution of uxx = −uyy + 4.
There is a still more general Cauchy–Kovalevskaya Theorem than anything we

have considered, still involving local holomorphic systems, data, and solutions.
It amounts to whatever one can get by combining the Implicit Function Theorem,
the technique of reduction of order via an increase in the number of equations,
and Theorem 7.1. We omit the precise statement. The word “noncharacteristic”
is used to describe situations in which the Implicit Function Theorem applies for
this purpose.
Cauchy data are not the only kinds of initial data that one might consider.

In fact, none of the examples with separation of variables in Section I.2 used
Cauchy data. A typical example from that section is the Dirichlet problem for
the Laplacian in the unit disk. The equation can be written as uxx = −uyy , and
Cauchy data would consist of values of u(x0, y) and ux(x0, y). This amounts to
two functions on a piece of a line in the plane, and one could handle two functions
of a suitable curve in the plane after applying the Implicit Function Theorem. By
contrast, theDirichlet problem requires just a single function on the unit circle for a
unique solution. Amore apt comparison is to think of a Sturm–Liouville problem
as being an ordinary-differential-equations analog of the Dirichlet problem. A
particular Sturm–Liouville problem to compare with the Dirichlet problem for
the disk is the equation uxx = 0 with boundary conditions u(0) = u(π) = 0.
The region is a ball in 1-dimensional space, and the function is specified on the
boundary; the function is uniquely determined without specifying the derivative
on the boundary. However, if the equation is changed to uxx = −λu for some
positive constant λ, then there is a nonunique solution when λ is the square of a
nonzero integer.

2. Orientation

After this essay on what is appropriate for existence and uniqueness, let us turn to
some other aspects of partial differential equations and systems. A few principles
and observations will influence what we do in the upcoming sections of this
chapter.

The subjects of linear systems and nonlinear systems of partial differential
equations cannot be completely separated.
For example let a(x, y) and b(x, y) be given functions on an open set in R2,

and consider the single linear equation

a(x, y)ux + b(x, y)uy = 0
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for an unknown function u(x, y). If we look for curves c(t) = (x(t), y(t))
along which such a function u(x, y) is constant, the condition on c is that(
d
dt

)
u(x(t), y(t)) = 0, hence that

x ′(t)ux(x(t), y(t))+ y′(t)uy(x(t), y(t)) = 0.
One way for this equation to be satisfied is that c(t) = (x(t), y(t)) satisfy the
system

x ′(t) = a(x, y),

y′(t) = b(x, y),

of two ordinary differential equations. This system is nonlinear, and the condition
for c(t) to solve it is that c(t) be an integral curve. Thus u is a solution if it is
constant along each integral curve. If we introduce two parameters, one varying
along an integral curve and the other indexing a family of integral curves, then
we obtain solutions by letting u be any function of the second parameter. Under
reasonable assumptions, these solutions turn out to be the only solutions locally,
and thus the solution of a certain linear partial differential equation reduces to
solving a nonlinear system in fewer variables. Despite this circumstance the
partial differential equations of interest to us will be the linear ones.

As we have seen, there is a distinction between the reduction of a partial
differential equation to a first-order system of Cauchy type and the reduction of
a Cauchy problem for the equation to the corresponding Cauchy problem for the
first-order system.
One consequence is that finding a several-parameter set of solutions of a partial

differential equation may not be very helpful in solving a specific boundary-
value problem about the equation. With an eye on the wave equation, let us take
as an example a homogeneous linear equation with constant coefficients. Let
P : RN+1 → C be a polynomial such as P(x0, x1, . . . , xN ) = x20− x21−· · ·− x2N
in the case of the wave equation, x0 being the time variable. Wewrite the equation
in our notation with D as

P(D)u = 0,
understanding as usual that ∂

/
∂xj is to be substituted in P everywhere that xj

appears. If a is any (N + 1)-tuple, then (∂
/
∂xj )ea·x = ajea·x . Consequently

P(D)ea·x = P(a)ea·x , and ea·x solves the equation P(D)u = 0whenever P(a) =
0. Concretelywith thewave equation, letα be a real number, letβ = (β1, . . . , βN )

be inRN , and write x = (t, x ′). Then eαt−β·x ′ solves the wave equation whenever
α2 = |β|2. Apart from the one constraint α2 = |β|2, we obtain an N -parameter
family of solutions of the wave equation. But this family of solutions is not of
any obvious help in solving boundary-value problems such as those encountered
in Section I.2. We shall discuss this example further shortly.
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Global problems involving linear partial differential equations with constant
coefficients lend themselves to use of the Fourier transform.
The reason is that the Fourier transform carries differentiation into multipli-

cation by a function. Specifically under suitable conditions on f , the relevant
formula is F

(
∂ f
∂xj

)
(ξ) = 2π iξj (F f )(ξ) if we use ξ for the Fourier transform

variable.
Thus, at least on a formal level, to find a solution of an inhomogeneous

equation P(D)u = f , we can take the Fourier transform of both sides, obtaining
P(2π iξ)(Fu)(ξ) = (F f )(ξ). Then we divide by P(2π iξ) and take the inverse
Fourier transform. In Section III.1 we carried out the steps of this process for
the equation (1 − )u = f when f is in the Schwartz space. In this case the
polynomial is 1+4π2|ξ |2, and we found that there is a solution u in the Schwartz
space.
In practice the function P(2π iξ) may be zero in some places, and then we

have to check what happens with the division. There will also be a matter of
ensuring that the inverse Fourier transform is well defined where we want it to
be.
In Section 3 we shall use multiple Fourier series to see that a linear equation

P(D)u = f with constant coefficients and with f in C∞com(R
N ) always has a

solution in a neighborhood of a point. It is of interest also to know what happens
when f is replaced by a function with fewer derivatives or even by a distribution
of compact support. This matter is addressed in Problem 5 at the end of the
chapter.

For a linear partial differential equation of order m, the terms with differen-
tiations of total order m are especially important. Moreover, a linear equation
with variable coefficients can sometimes be studied near a point x0 of the domain
by applying a “freezing principle.”
We explain the notion of a freezing principle in a moment. We shall nowmake

use of the notation of Chapter V for linear differential operators L , often writing
an equation under study as Lu = f with f known and u unknown. Here L is
given by

L = P(x, D) =
∑
|α|≤m

aα(x)D
α

for some m, or we can write

L = P(x, Dx) =
∑
|α|≤m

aα(x)D
α
x

if the variable x of differentiation needs emphasis. It is customary to assume that
m is the order of L , in which case some aα(x)with |α| = m is not identically zero.



286 VII. Aspects of Partial Differential Equations

The domain is to be an open set in real Euclidean space, usuallyRN ; thus x varies
in that open set, and the multi-index α is an N -tuple of nonnegative integers.
The idea of a freezing principle is that the behavior of solutions of P(x, D)u =

f near x = x0 can sometimes be studied by considering solutions of the equa-
tion (P(x0, Dx)u)(x) = f (x) and making estimates for how much effect the
variability of x might have. For equations that are “elliptic” in a sense that
we define shortly, the classical approach to the equations via something called
“Gårding’s inequality” used this idea and worked well. We shall indicate a more
recent approach via “pseudodifferential operators” in Section 6 and will omit any
discussion of details concerning Gårding’s inequality in our development. The
freezing principle is somewhat concealed within the mechanism of pseudodif-
ferential operators, but it is at least visible in the notation that is used for such
operators.
As far as theorems for nonelliptic operators are concerned, the idea of a

freezing principle is meaningful but has its limitations. We have noted that linear
differential equations with constant coefficients are at least locally solvable, a
result that will be proved in Section 3. But the same is not always true for
equations with variable coefficients. In 1957 Hans Lewy gave an example in R3

involving the linear differential operator

P(x, D) = −(D1 + i D2)+ 2i(x1 + i x2)D3.

For a certain function f of class C∞ that is nowhere real analytic, the equation
P(x, D)u = f admits no solution in any nonempty open set. By contrast, if f
is holomorphic, the Cauchy–Kovalevskaya Theorem (Theorem 7.3) ensures the
existence of local solutions.
In the linear differential operator P(x, Dx) =

∑
|α|≤m aα(x)D

α
x , the terms of

highest order are of special interest; we group them and give them their own
name:

Pm(x, Dx) =
∑
|α|=m

aα(x)D
α
x .

In line with the freezing principle, when one takes a Fourier transform, one
does not apply the Fourier transform to the coefficients of L , only to the various
Dα
x ’s. Recalling that D

α
x goes into multiplication by (2π i)

|α|ξα under the Fourier
transform, we introduce the expressions3

3The Fourier transform variable ξ lies in the dual space of RN . To take maximum advantage of
this fact in more advanced treatments, one wants to identify RN with the tangent space at x to the
domain open set. Then ξ is to be regarded as a member of the dual of the tangent space of x , and
to some extent, the formalism makes sense on smooth manifolds. We elaborate on these remarks in
Chapter VIII.
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P(x, 2π iξ) =
∑
|α|≤m

aα(x)(2π iξ)
α

Pm(x, 2π iξ) =
∑
|α|=m

aα(x)(2π iξ)
α.and

These are called the symbol and the principal symbol of L , respectively.

EXAMPLES. The Laplacian, thewave operator, and the heat operator have order
m = 2, while the Cauchy–Riemann operator hasm = 1. In all these cases except
the heat operator, the symbol and the principal symbol coincide. The operators
written with the notation D are

 = x = D21 + · · · + D2N in RN (Laplacian),

∂

∂ z̄
= D1 + i D2 (Cauchy–Riemann operator),

� = D20 −x in RN+1 (wave operator),

D0 −x in RN+1 (heat operator).

The principal symbols Pm(x, 2π iξ) in each case are independent of x and are as
follows:

−4π2(ξ 21 + · · · + ξ 2N ) (Laplacian),

2π iξ1 − 2πξ2 (Cauchy–Riemann operator),

−4π2ξ 20 + 4π2(ξ 21 + · · · + ξ 2N ) (wave operator),

4π2(ξ 21 + · · · + ξ 2N ) (heat operator).

Complex analysis inevitably plays an important role in the study of partial
differential equations.
We already saw that complex analysis is useful in addressing the Cauchy

problem. The Lewy example shows that complex analysis has to play a role in
drawing a distinction between linear equations with constant coefficients, where
we always have local existence of solutions, and linear equations with variable
coefficients, where local existence can fail if the inhomogeneous term of the
equation is merely C∞. Actually, the complex analysis that enters the local
existence theorem in Section 3 for linear equations with constant coefficients
is rather primitive and can be absorbed into facts about polynomials in several
variables. Complex analysis enters in a more serious way for more advanced
theorems about partial differential equations, but we shall not pursue theorems
that go in this direction beyond one application in Section 5 of Theorem 7.4.
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Linear partial differential equations can exhibit behavior of kinds not seen in
ordinary differential equations.
Theoperator L onanopen set inRN is said to be elliptic at x if Pm(x, 2π iξ) = 0

for ξ ∈ RN only when ξ = 0. The operator L is elliptic if it is elliptic at every
point x of its domain. The Laplacian and the Cauchy–Riemann operator are
elliptic, but the wave operator and the heat operator are not. A linear ordinary
differential operator with nonvanishing coefficient for the highest-order derivative
is automatically elliptic. We shall be especially interested in elliptic operators,
which are relatively easy to handle.
In Section I.2 we considered the Dirichlet problem for the unit disk in R2,

namely the problem of finding a function u satisfying u = 0 in the interior
and taking prescribed values on the boundary. The problem was solved by the
Poisson integral formula. No matter how rough the function on the boundary
was, the solution u in the interior was a smooth function. Theorem 3.16 extended
this conclusion of smoothness, showing that solutions of u = 0 in any open
set of RN are automatically C∞. This behavior is typical of solutions of linear
elliptic differential equations with smooth coefficients.
Other partial differential equations can behave quite differently. Consider the

wave equation
((

∂
∂t

)2 − x
)
u = 0 with x ∈ Rn . We have seen that u(t, x) =

eαt−β·x is a solution if α is a number and β is a vector with α2 = |β|2. But actually
the exponential function is not important here. If f is any C2 function of one
variable, then f (αt −β · x) is a solution as long as α2 = |β|2 is satisfied: in fact,((

∂
∂t

)2−x
)
f (αt−β ·x) = f ′′(αt−β ·x)(α2−|β|2). Such a solution represents

an undistorted progressing wave; the roughness of the wave is maintained as time
progresses. Again, this kind of behavior is not exhibited by elliptic equations.
In the special case that L is of order 2 with real coefficients and a point x0 is

specified, we can make a linear change of variables in ξ to bring the order-two
terms of the operator into a certain standard form at x0 that makes the question of
ellipticity transparent. This change of variables amounts to replacing the standard
basis e1, . . . , eN used for determining the first partial derivatives D1, . . . , DN by a
new basis e′1, . . . , e

′
N and the corresponding first partial derivatives D

′
1, . . . , D

′
N .

The result is as follows.

Proposition 7.5. If L = P(x, D) is of order 2 and has real coefficients in
an open set of RN and if a point x0 is specified, then there exists a nonsingular
N -by-N real matrixM = [Mi j ] such that the definition D′j =

∑
k Mjk Dk exhibits

L at x0 as of the form κ1D′1
2 + · · · + κN D′N

2 with each κj equal to +1, −1, or 0.
The principal symbol of L at x0 is then −4π2

∑
j κjξ

′
j
2, where ξ ′j =

∑
k Mjkξk .

REMARKS. We see immediately that L is elliptic at x0 if and only if all κj
are +1 or all are −1. This is the situation with the Laplacian. In Section 4 we
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shall prove a maximum principle for certain elliptic operators of order 2 with
real coefficients, generalizing the corresponding result for the Laplacian given in
Corollary 3.20. If one κj is+1 and the others are−1, or if one is−1 and the others
are +1, the operator is said to be hyperbolic at x0; this is the situation with the
wave operator. Much is known about hyperbolic operators of this kind and about
generalizations of them, but the study of such operators remains a continuing
subject of investigation.

Lemma 7.6 (Principal Axis Theorem). If B is a real symmetric matrix, then
there exist a nonsingular real matrix M and a diagonal matrix C whose diagonal
entries are each +1, −1, or 0 such that B = M trCM .

PROOF. By the finite-dimensional Spectral Theorem for self-adjoint operators,
choose an orthogonal matrix P such that PBP−1 is some real diagonal matrix E .
Any real number is the product of a square and one of +1, −1, and 0, and thus
E = QCQ with C as in the lemma and with Q = Qtr diagonal and nonsingular.
Since P is orthogonal, P−1 = P tr, and therefore B = P trQtrCQP . This proves
the lemma with M = QP .

PROOF OF PROPOSITION 7.5. Let the principal symbol be

P2(x, 2π iξ) =
∑
|α|=2

aα(x)(2π iξ)
α = −4π2

∑
|α|=2

aα(x)ξ
α.

We rewrite this in matrix notation, viewing ξ = (ξ1, . . . , ξN ) as a column vector
and converting {aα(x)} into a matrix by defining

bj j (x) = aα(x) if α is 2 in the j th entry and 0 elsewhere,

bjk(x) = 1
2aα(x) if α is 1 in the j th and k th entries and 0 elsewhere.

Then B(x) = [bjk(x)] is a symmetric matrix, and
P2(x, 2π iξ) = −4π2

∑
j,k

bjk(x)ξjξk = −4π2ξ trB(x)ξ.

We apply the lemma to the real symmetric matrix B = B(x0) to obtain B(x0) =
M trC(x0)M with M nonsingular and with C(x0) diagonal of the form in the
lemma. Define C(x) by B(x) = M trC(x)M , write C(x) = [cjk(x)] and
M = [mjk], and put ξ ′ = Mξ . Then P2(x, 2π iξ) = −4π2ξ trB(x)ξ =
−4π2ξ tr(M trC(x)M)ξ = −4π2ξ ′ trC(x)ξ ′. If we set D′j =

∑
k Mjk Dk , then

the algebraic manipulations for the order-two part of L are the same as with
the principal symbol and show that the order-two part of the operator is given
by P2(x, D) =

∑
j,k bjk(x)Dj Dk =

∑
j,k cjk(x)D

′
j D

′
k . The matrix C(x0) is

diagonal with diagonal entries +1, −1, and 0, and the proposition follows.
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Ways are needed for making routine the passage via the Fourier transform
between differentiations and multiplications by polynomials.
We are going to be using the Fourier transform to transform any linear equation

Lu = f , at least in the constant-coefficient case, into a problem involving division
by a polynomial and inversion of a Fourier transform. It is inconvenient to check
repeatedly the technical conditions in Proposition 8.1 ofBasic that relate differen-
tiations andmultiplications by polynomials. Weak derivatives andSobolev spaces
as discussed in Chapter III, and distributions as discussed in Chapter V, all help
us handle easily the passage via the Fourier transform between differentiations
and multiplications by polynomials.

“Fundamental solutions” are useful for obtaining all solutions of a linear
partial differential equation, especially for constant-coefficient equations. In the
case of an elliptic equation, a substitute for a fundamental solution that is easier
to find is a “parametrix,” which at least reveals qualitative properties of solutions.
In Section I.3 we encountered Green’s functions in connection with Sturm–

Liouville theory. The operator L under study in that section was a second-order
ordinary differential operator, and a Green’s function was the kernel of an integral
operator T1 that we used. To understand symbolically what was happening there,
let us take r = 1 in Section I.3, and then the operator T , which is the same as the
operator T1 for r = 1 in that section, sets up a one-one correspondence between a
class of functions u and a class of functions f , the relationship being that u = T f
and Lu = f . In other words T was a two-sided inverse of L . The operator T
was of the form T f (x) = ∫ ba G(x, y) f (y) dy. If we think symbolically of taking
f to be a point mass δx0 at x0, then we find that T (δx0)(x) = G(x, x0), and the
relationship is to be L(G( · , x0)) = δx0 . In other words the Green’s function at x0
is a fundamental solution u of the equation Lu = f in the sense that application
of L to it yields a point mass at x0.
These matters can easily be made rigorous with distributions of the kind intro-

duced in Chapter V. In the case that L has constant coefficients, the notion of a
fundamental solution is especially useful because the operator L commutes with
translations. If a certain u produces Lu = δ0, then translation of that u by some
x0 produces a solution of Lu = δx0 . In short, one obtains a fundamental solution
for each point by finding it just for one point, and all solutions may be regarded
as the sum of a weighted average of fundamental solutions at the various points
plus a solution of Lu = 0. In practice we can carry out this process of weighted
average by means of convolution of distributions. Corollary 5.23 carried out the
details for the Laplacian in RN , once Theorem 5.22 had identified a fundamental
solution at 0.
In the case of the Laplacian in all of RN , Theorem 5.22 showed that a funda-

mental solution at 0 is amultiple of |x |−(N−2) if N > 2. But fundamental solutions
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are at best inconvenient to obtain for other equations, and a certain amount of
the qualitative information they yield, at least in the elliptic case, can be obtained
more easily from a “parametrix,” which is a kind of approximate fundamental
solution. To illustrate matters, consider the inhomogeneous version u = f of
the Laplace equation, which is known as Poisson’s equation. Suppose that f
is in C∞com(R

N ) and we seek information about a possible solution u. We shall
use the Fourier transform, and therefore u had better be a function or distribution
whose Fourier transform is well defined. But let us leave aside the question of
what kind of function u is, going ahead with the computation. If we take the
Fourier transform of both sides, we are led to ask whether the following inverse
Fourier transform is meaningful:

−4π2
∫

RN
e2π i x ·ξ |ξ |−2 f̂ (ξ) dξ.

Here f̂ (ξ) is in the Schwartz space, but the singularity of |ξ |−2 at the origin does
not put |ξ |−2 f̂ (ξ) into any evident space of Fourier transforms. To compensate,
we use Proposition 3.5f to introduce a functionχ ∈ C∞com(RN ) that is identically 0
near the origin and is identically 1 away from the origin. Then χ(ξ)|ξ |−2 f̂ (ξ)
has no singularity and is in fact in the Schwartz space. It thus makes sense to
define

Q f (x) = −4π2
∫

RN
e2π i x ·ξχ(ξ)|ξ |−2 f̂ (ξ) dξ,

where Q f (x) is the Schwartz function with

Q̂ f (ξ) = −4π2χ(ξ)|ξ |−2 f̂ (ξ).
Since  f is in C∞com(R

N ) and Q f is a Schwartz function, Q f and Q f are
Schwartz functions. Applying the Fourier transform operator F, as it is defined
on the Schwartz space, we calculate that

F(Q f ) = χ f̂ = F(Q f ).

Hence F(Q f − f ) = F(Q f − f ) = (χ − 1) f̂ .
The function χ − 1 on the right side is in C∞com(RN ), and it is therefore the
Fourier transform of some Schwartz function K . Since F carries convolutions
into products, we have K̂ f̂ = K̂ ∗ f , and consequently

Q = Q = 1+ (convolution by K ).

The operator of convolution by K is called a “smoothing operator” because,
as follows from the development of Chapter V, it carries arbitrary distributions of
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compact support into smooth functions. The operator Q that gives a two-sided
inverse for  except for the smoothing term is called a parametrix for .
The parametrix does not solve our equation for us, but it does supply useful

information. As we shall see in Section 5, a parametrix will enable us to see that
whenever u is a distribution solution of u = f on an open set U , with f an
arbitrary distribution onU , then u is smooth wherever f is smooth. In particular,
any distribution solution of u = 0 is a smooth function. The argument will
apply to any elliptic linear partial differential equation with constant coefficients.
A first application of the method of pseudodifferential operators in Section 6
shows that the same conclusion is valid for any elliptic linear partial differential
equation with smooth variable coefficients.

3. Local Solvability in the Constant-Coefficient Case

We come to the local existence of solutions to linear partial differential equations
with constant coefficients.

Theorem7.7. LetU be an open set inRN containing 0, and let f be inC∞(U ).
If P(D) is a linear differential operator with constant coefficients and with order
≥ 1, then the equation P(D)u = f has a smooth solution in a neighborhood of 0.

The proof will use multiple Fourier series as in Section III.7. Apart from that,
all that we need will be somemanipulations with polynomials in several variables
and an integration. As in Section III.7, let us write ZN for the set of all integer
N -tuples and [−π, π ]N for the region of integration defining the Fourier series.
We shall give the idea of the proof, state a lemma, prove the theorem from

the lemma, and then return to the proof of the lemma. The idea of the proof of
Theorem 7.7 is as follows: We begin by multiplying f by a smooth function
that is identically 1 near the origin and is identically 0 off some small ball
containing the origin (existence of the smooth function by Proposition 3.5f),
so that f is smooth of compact support, the support lying well inside [−π, π ]N .
If we regard f as extended periodically to a smooth function, we can write
f (x) = ∑k∈ZN dkeik·x by Proposition 3.30e. Let the unknown function u be
given by u(x) =∑k∈ZN ckeik·x . Then P(D)u(x) is given by

P(D)u(x) =
∑
k∈ZN

ck P(ik)e
ik·x ,

and thus we want to take ck P(ik) = dk . We are done if
dk

P(ik) decreases faster
than any |k|−n , by Proposition 3.30c and our computations. So we would like to
prove that

|P(ik)|−1 ≤ C(1+ |k|2)M for all k ∈ ZN
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and for some constants C and M , and then we would be done. Unfortunately this
is not necessarily true; the polynomial P(x) = |x |2 is a counterexample. What is
true is the statement in the following lemma, and we can readily adjust the above
idea to prove the theorem from this lemma.

Lemma 7.8. If R(x) is any complex-valued polynomial not identically 0 on
RN , then there exist α ∈ RN and constants C and M such that

|R(k + α)|−1 ≤ C(1+ |k|2)M for all k ∈ ZN .

PROOF OF THEOREM 7.7. Apply the lemma to R(x) = P(i x). Because of the
preliminary step ofmultiplying f by something, we are assuming that f is smooth
and has support near 0. Instead of extending f to be periodic, as suggested in
the discussion before the lemma, we extend the function f (x)e−iα·x to be smooth
and periodic. Thus write

f (x)e−iα·x =
∑
k∈ZN

dke
ik·x ,

and put ck = dk
R(k+α) . Since the |dk | decrease faster than |k|−n for any n,

Lemma 7.8 and Proposition 3.30c together show that
∑

k∈ZN ckeik·x is smooth
and periodic. Define

u(x) = eiα·x
∑
k∈ZN

cke
ik·x =

∑
k∈ZN

cke
i(k+α)·x .

This function is smooth but maybe is not periodic. Application of P(D) gives

P(D)u(x) =
∑
k∈ZN

ck P(i(k + α))ei(k+α)·x

= eiα·x
∑
k∈ZN

dk
R(k + α)

P(i(k + α))eik·x

= eiα·x
∑
k∈ZN

dke
ik·x = eiα·x( f (x)e−iα·x) = f (x),

and hence u solves the equation for the original f in a neighborhood of the origin.

The proof of Lemma 7.8 requires two lemmas of its own.

Lemma 7.9. For each positive integer m and positive number δ < 1
m , there

exists a constant C such that∫ 1
−1 |x − c1|−δ · · · |x − cm |−δ dx ≤ C

for any m complex numbers c1, . . . , cm .



294 VII. Aspects of Partial Differential Equations

PROOF. For 1 ≤ j ≤ m, let Ej be the subset of [−1, 1] where |x − cj |−δ is the
largest of the m factors in the integrand. The integral in question is then

≤∑m
j=1
∫
Ej
|x − c1|−δ · · · |x − cm |−δ dx

≤∑m
j=1
∫
Ej
|x − cj |−mδ dx ≤∑m

j=1
∫ 1
−1 |x − cj |−mδ dx

≤∑m
j=1
∫ 1
−1 |x − Re cj |−mδ dx ≤ m supr∈R

∫ 1
−1 |x − r |−mδ dx .

On the right side the integrand decreases pointwise with |r | when |r | ≥ 1, and
hence the expression is equal to

m sup−1≤r≤1
∫ 1
−1 |x − r |−mδ dx

= m sup−1≤r≤1
( ∫ r
−1 (r − x)−mδ dx + ∫ 1r (x − r)−mδ dx

)
= m(1− mδ)−1 sup−1≤r≤1

(
(1+ r)1−mδ + (1− r)1−mδ

)
≤ 22−mδm(1− mδ)−1.

Lemma 7.10. If R(x) is any complex-valued polynomial on RN of degree
m > 0, then |R(x)|−δ is locally integrable whenever δ < 1

m .

PROOF. We first treat the special case that xm1 has coefficient 1 in R(x) and that
integrability on the cube [−1, 1]N is to be checked. Write x ′ for (x2, . . . , xN ),
so that x = (x1, x ′). Then R(x) = xm1 +

∑m−1
j=0 x

j
1 pj (x

′), where each pj is a
polynomial. For fixed x ′, R(x1, x ′) is a monic polynomial of degree m in x1 and
factors as (x1−c1) · · · (x1−cm) for some complex numbers c1, . . . , cm depending
on x ′. Applying Lemma 7.9, we see that

∫ 1
−1 |R(x1, x ′)|−δ dx1 ≤ C . Integration

in the remaining N − 1 variables therefore gives ∫[−1,1]N |R(x)|−δ dx ≤ 2N−1C .
Turning to the general case, suppose that R(x) and a point x0 are given. We

want to see that F(x) = R(x + x0) has the property that |F(x)|−δ is integrable
on some neighborhood of the origin in RN . The function F is still a polynomial
of degree m. Let Fm be the sum of all its terms of total degree m. This cannot be
identically 0 on the unit sphere since it is a nonzero homogeneous function,4 and
thus Fm(v1) = 0 for some unit vector v1. Extend {v1} to an orthonormal basis
of RN , and define G(y1, . . . , yN ) = Fm(y1v1 + · · · + yNvN ). The function G is
a polynomial of degree m whose coefficient of ym1 is Fm(v1) and hence is not 0,
and it is obtained by applying an orthogonal transformation to the variables of
F . Therefore |G|−δ and |F |−δ have the same integral over a ball centered at the
origin. The special case shows that |G|−δ is integrable over some such ball, and
hence so is |F |−δ .

4A function Fm of several variables is homogeneous of degree m if Fm(r x) = rm Fm(x) for all
r > 0 and all x = 0.
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PROOF OF LEMMA 7.8. Let R have degreem, which we may assume is positive
without loss of generality. The function S(x) = |x |2m R( x

|x |2
)
is then a polynomial

of degree ≤ 2m, and Lemma 7.10 shows that any number δ with δ < 1
2m has

the property that |R|−δ and |S|−δ are integrable for |x | ≤ 1. Using spherical
coordinates and making the change of variables r �→ 1/r in the radial direction,
we see that∫

|x |≥1 |R(x)|−δ|x |−2N dx =
∫∞
r=1
∫
ω∈SN−1 |R(rω)|−δr−2N dω r N−1 dr

= ∫ 1r=0 ∫ω∈SN−1 |R(r−1ω)|−δ dω r N−1 dr
= ∫|x |≤1 |R(x/|x |2)|−δ dx
= ∫|x |≤1 |S(x)|−δ|x |2mδ dx

≤ ∫|x |≤1 |S(x)|−δ dx .
The right side is finite. Since (1+ |x |2)−N ≤ 1+ |x |−2N , we see that∫

RN |R(x)|−δ(1+ |x |2)−N dx <∞.

Define E = {α ∈ RN | 0 ≤ αj < 1 for all j}. By complete additivity, we can
rewrite the above finiteness condition as∫

α∈E
[∑

k∈ZN |R(k + α)|−δ(1+ |k + α|2)−N ] dα <∞.

Every pair (l, β)with l ∈ Z and β ∈ [0, 1) has (l+β)2 ≤ 2(1+ l2). Summing N
such inequalities gives |k + α|2 ≤ 2N + 2|k|2 ≤ 2N (1+ |k|2). Thus we obtain
1+ |k + α|2 ≤ 3N (1+ |k|2), (1+ |k + α|2)−N ≥ (3N )−N (1+ |k|2)−N , and∫

α∈E
[∑

k∈ZN |R(k + α)|−δ(1+ |k|2)−N ] dα <∞.

Therefore
∑

k∈ZN |R(k+α)|−δ(1+|k|2)−N is finite almost everywhere [dα]. Fix
an α for which the sum is finite. If∑

k∈ZN |R(k + α)|−δ(1+ |k|2)−N = K <∞,

then |R(k + α)|−δ(1 + |k|2)−N ≤ K for all k ∈ ZN and hence |R(k + α)|−1 ≤
K 1/δ(1+ |k|2)N/δ for all k ∈ ZN . This proves Lemma 7.8.
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4. Maximum Principle in the Elliptic Second-Order Case

In this section we work with a second-order linear homogeneous elliptic equation
Lu = 0 with continuous real-valued coefficients in a bounded connected open
subset U of RN . It will be assumed that only derivatives of u, and not u itself,
appear in the equation; in other words we assume that L(1) = 0. The conclusion
will be that a real-valued C2 solution u cannot have an absolute maximum or
an absolute minimum inside U without being constant. This result was proved
already in Corollary 3.20 for the special case that L is the Laplacian .
Let us use notation for L of the kind in Proposition 7.5 and its proof. Then L

is of the form
Lu =

∑
i, j

bi j (x)Di Dju +
∑
k

ck(x)Dku

with the matrix [bi j (x)] real-valued and symmetric. Ellipticity of L at x means
that

∑
i, j bi j (x)ξiξj = 0 for ξ = 0. Thus

∣∣∑
i, j bi j (x)ξiξj

∣∣ has a positive
minimum value μ(x) on the compact set where |ξ | = 1. By homogeneity of∣∣∑

i, j bi j (x)ξiξj
∣∣ and |ξ |2, we conclude that∣∣∑

i, j

bi j (x)ξiξj
∣∣ ≥ μ(x)|ξ |2

for some μ(x) > 0 and all ξ . The positive number μ(x) is called the modulus
of ellipticity of L at x .

EXAMPLE. Let L be the sum of the Laplacian and first-order terms, i.e.,
Lu = u +∑k ck(x)Dku. Suppose that u is a real-valued C2 function on U
and that u attains a local maximum at x0 in U . By calculus, Diu(x0) = 0 for
each i and D2i u(x0) ≤ 0, so that Lu(x0) ≤ 0. Therefore if we know that Lu(x)
is > 0 everywhere in U , then u can have no local maximum in U . To obtain
a maximum principle, we want to relax two conditions and still get the same
conclusion. One is that we want to allow more general second-order terms in L ,
and the other is that we want to get a conclusion from knowing only that Lu(x)
is ≥ 0 everywhere. The first step is carried out in Lemma 7.11 below, and the
second step will be derived from the first essentially by perturbing the situation
in a subtle way.

Lemma 7.11. Let L = ∑i, j bi j (x)Di Dj +
∑

k ck(x)Dk , with [bi j (x)] sym-
metric, be a second-order linear elliptic operator with real-valued coefficients in
an open subset U of RN such that for every x in U , there is a number μ(x) > 0
such that

∑
i, j bi j (x)ξiξj ≥ μ(x)|ξ |2 for all ξ ∈ RN . If u is a real-valued C2

function on U such that Lu > 0 everywhere in U , then u has no local maximum
in U .
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PROOF. Suppose that u has a local maximum at x0. Applying Proposition 7.5,
we can find a nonsingular matrix M such that the definition D′i =

∑
j Mi j Di

makes the second-order terms of L at x0 take the form κ1D′1
2 + · · · + κN Dk ′N

2

with each κi equal to +1, −1, or 0. Examining the hypotheses of the lemma, we
see that all κi must be +1. Hence the change of basis at x0 via M converts the
second-order terms of L into the form D′1

2 + · · · + D′N
2. The argument in the

example above is applicable at x0, and the lemma follows.

Theorem 7.12 (Hopf maximum principle). Let

L =
∑
i, j

bi j (x)Di Dj +
∑
k

ck(x)Dk,

with [bi j (x)] symmetric, be a second-order linear elliptic operator with real-
valued continuous coefficients in a connected open subset U of RN . If u is a
real-valued C2 function on U such that Lu = 0 everywhere in U , then u cannot
attain its maximum or minimum values in U without being constant.

PROOF. First we normalize matters suitably. We have
∣∣∑

i, j bi j (x)ξiξj
∣∣ ≥

μ(x)|ξ |2 with μ(x) > 0 at every point. By continuity of the coefficients and
connectedness of U , the expression within the absolute value signs on the left
side is everywhere positive or everywhere negative. Possibly replacing L by−L ,
we shall assume that it is everywhere positive:∑

i, j

bi j (x)ξiξj ≥ μ(x)|ξ |2 for all x ∈ U.

Because of the continuity of the coefficients of L , the coefficient functions are
bounded on any compact subset ofU and the functionμ(x) is bounded below by a
positive constant on any such compact set. Since u can always be replaced by−u,
a result about absolute maxima is equivalent to a result about absolute minima.
Thus we may suppose that u attains its absolute maximum value M at some x1 in
U , and we are to prove that u is constant inU . Arguing by contradiction, suppose
that x0 is a point in U with u(x0) < M .
The idea of the proof is to use x0 and x1 to produce an open ball B with Bcl ⊆ U

and a point s in the boundary ∂B of B such that u(s) = M and u(x) < M for all
x in Bcl − {s}. See Figure 7.1. For a suitably small open ball B1 centered at s,
we then produce a C2 function w on RN such that Lw > 0 in B1 and w attains
a local maximum at the center s of B1. The existence of w contradicts Lemma
7.11, and thus the configuration with x0 and x1 could not have occurred.
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x1

x2

x̃ x ′ s
B̃ B1

B

x0

FIGURE 7.1. Construction in the proof of the Hopf maximum principle.

Since U is a connected open set in RN , it is pathwise connected. Let
p : [0, 1] → U be a path with p(0) = x0 and p(1) = x1. Let τ be the first
value of t such that u(p(t)) = M ; necessarily 0 < τ ≤ 1. Define x2 = p(τ ).
Choose d > 0 such that B(d; p(t))cl ⊆ U for 0 ≤ t ≤ τ , and then fix a
point x̃ = p(t) with 0 ≤ t < τ and with |̃x − x2| < 1

2d. By definition of d,
B(d; x̃)cl ⊆ U . Let B̃ be the largest open ball contained in U , centered at x̃ , and
having u(x) < M for x ∈ B̃. Since u(x2) = M and |̃x − x2| < 1

2d, B̃ has radius
< 1

2d. Thus B̃
cl ⊆ B(d; x̃)cl ⊆ U . The construction of B̃ and the continuity of

u force some point s of the boundary ∂ B̃ to have u(s) = M . Let B be any open
ball properly contained in B̃ and internally tangent to B̃ at s. Then Bcl ⊆ B̃∪{s},
and hence u(x) < M everywhere on Bcl except at s, where u(s) = M . Write
B = B(R; x ′).
To construct B1, fix R1 > 0 with R1 < 1

2 R, and let B1 = B(R1; s). If x is
in Bcl1 , then |x − x̃ | ≤ |x − s| + |s − x̃ | ≤ R1 + 1

2d < 1
2 R + 1

2d ≤ d, and
hence Bcl1 ⊆ B(d; x̃)cl ⊆ U . Since Bcl and Bcl1 are compact subsets of U , the
coefficients of L are bounded on Bcl∪ Bcl1 , and the ellipticity modulus is bounded
below by a positive number. Let us say that

|bi j (x)| ≤ β, |ck(x)| ≤ γ, μ(x) ≥ μ > 0 for x ∈ Bcl ∪ Bcl1 .

The next step is to construct an auxiliary function z(x) on RN to be used in
the definition of w(x). Let α be a (large) positive number to be specified, and set

z(x) = e−α|x−x
′|2 − e−αR

2
.

The function z(x) is > 0 on B, is 0 on ∂B, and is < 0 off Bcl. Let us see that
we can choose α large enough to make L(z)(x) > 0 for x in B1. Performing the
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differentiations explicitly, we obtain

L(z)(x) = 2αe−α|x−x ′|2
(
2α
∑
i, j

bi j (x)(xi − x ′i )(xj − x ′j )

−
∑
k

(
bkk(x)− ck(x)(xk − x ′k)

))
≥ 2αe−α|x−x ′|2(2αμ|x − x ′|2 − (β + γ |x − x ′|)).

All points x in B1 have 12 R < |x − x ′| < 3
2 R and therefore satisfy

L(z)(x) ≥ 2αe−α|x−x ′|2(2αμ 1
4 R

2 − (β + 3
2γ R)).

Consequently we can choose α large enough so that L(z)(x) > 0 for x in B1. Fix
α with this property.
Let ε > 0 be a (small) positive number to be specified, and define

w = u + εz.

For x in B1, we have Lw = Lu + εLz > 0. Also,

w(s) = u(s)+ εz(s) = u(s) = M since s is in ∂B.

Let us see that we can choose ε to make w(x) < M everywhere on ∂B1. We
consider ∂B1 in two pieces. LetC0 = ∂B1∩Bcl. SinceC0 is a subset of Bcl−{s},
u(x) < M at every point of C0. By compactness of C0 and continuity of u, we
must therefore have u(x) ≤ M − δ on C0 for some δ > 0. Since the function
z(x) is everywhere ≤ 1− e−αR2 , any x in C0 must have

w(x) = u(x)+ εz(x) ≤ M − δ + ε(1− e−αR
2
).

By taking ε small enough, we can arrange that w(x) ≤ M − 1
2δ on C0. Fix such

an ε. The remaining part of ∂B1 is ∂B1 − C0. Each x in this set has

w(x) = u(x)+ εz(x) ≤ M + εz(x) < M.

Thus w(x) < M everywhere on ∂B1, as asserted.
Sincew(s) = M andw(x) < M everywhere on ∂B1,w attains itsmaximum in

Bcl1 somewhere in the open set B1. Since Lw > 0 on B1, we obtain a contradiction
to Lemma 7.11. This completes the proof.
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5. Parametrices for Elliptic Equations with Constant Coefficients

In this section we use distribution theory to derive some results about an elliptic
equation P(D)u = f with constant coefficients. Initially we work on RN , yet
in the end we will be able to work on any nonempty open set. We think of f as
known and u as unknown. But we allow f to vary, so that we can see the effect
on u of changing f . It will be important to be able to allow solutions that are not
smooth functions, and thus u will be allowed to be some kind of distribution.
We begin by obtaining a parametrix, which at first will be a tempered distri-

bution that approximately inverts P(D) on S ′(RN ). More specifically it inverts
P(D) on S ′(RN ) up to an error term given by an operator equal to convolution
with a Schwartz function.
At this point we can use the version Theorem 7.4 of the Cauchy–Kovalevskaya

Theorem to obtain a fundamental solution, i.e., a member u of D ′(RN ) such
that P(D)u = δ. This step is carried out in Corollary 7.15 below. Convolution
of P(D)u = δ with a member f of E ′(RN ) shows that Corollary 7.15 implies a
global existence theorem: any elliptic equation P(D)u = f with f in E ′(RN )

has a solution in D ′(RN ).
But it is not necessary, for purposes of examining regularity of solutions, to

have an existence theorem. The next step is to modify the parametrix to have
compact support. Once that has been done, the parametrix will invert P(D)
on D ′(RN ), up to a smoothing term, and we will deduce a regularity theorem
about solutions saying that the singular support of u is contained in the singular
support of f . In particular, solutions of P(D)u = 0 on RN are smooth. Finally
we localize this result to see that the inclusion of singular supports persists even
when the equation P(D) = f is being considered only on an open set U .
The starting point for our investigation is the following lemma.

Lemma 7.13. If P(D) is an elliptic operator with constant coefficients, then
the set of zeros of P(2π iξ) in RN is compact.

REMARK. The polynomial P(2π iξ) is the symbol of P(D), as defined in
Section 2. The important fact about the symbol is that the Fourier transform
satisfies F(P(D)T ) = P(2π iξ)F(T ), which follows immediately from the
formula F(DαT ) = (2π i)|α|ξαF(T ). This fact accounts for our studying the
particular polynomial P(2π iξ).

PROOF. Let P have order m, and let Z be the set of zeros of P(2π iξ) in RN .
Since P(D) is elliptic, the principal symbol Pm(2π iξ) is nowhere 0 on the unit
sphere ofRN . By compactness of the sphere, |Pm(2π iξ)| ≥ c > 0 there, for some
constant c. Taking into account the homogeneity of Pm , we see that |Pm(2π iξ)| ≥
c|ξ |m for all ξ in RN . If we write P(2π iξ) = Pm(2π iξ) + Q(2π iξ), then
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Q(2π iξ)| ≤ C |ξ |m−1 for |ξ | ≥ 1 and for some constant C . If ξ is in Z and
|ξ | ≥ 1, then we have c|ξ |m ≤ Pm(2π iξ)| = |Q(2π iξ)| ≤ C |ξ |m−1, and we
conclude that |ξ | ≤ C/c. This proves the lemma.

Fix an elliptic operator P(D), and choose R > 0 by the lemma such that all the
zeros in RN of P(2π iξ) lie in the closed ball of radius R centered at the origin.
Fix numbers R′ and R′′ with R′ > R′′ > R. Let χ be a smooth function on RN

with values in [0, 1] such that χ(ξ) is 0 when |ξ | ≤ R′′ and is 1 when |ξ | ≥ R′.
The formal computation is as follows: if we define v in terms of f by

v(x) =
∫

RN
e2π i x ·ξ

F( f )(ξ)
P(2π iξ)

χ(ξ) dξ,

then Fourier inversion gives

(P(D)v)(x) =
∫

RN
e2π i x ·ξF( f )(ξ)χ(ξ) dξ

= f (x)+
∫

RN
e2π i x ·ξ (χ(ξ)− 1)F( f )(ξ) dξ,

and the second term on the right side will be seen to be a smoothing term. Let
us now state a precise result and use properties of distributions to make this
computation rigorous.

Theorem 7.14. Let P(D) be an elliptic operator on RN with constant coef-
ficients. Then there exist a distribution k ∈ S ′(RN ) and a Schwartz function
h ∈ F−1(C∞com(R

N )) such that

P(D)k = δ + Th,

as an equality in S ′(RN ). Here δ is the Dirac distribution 〈δ, ϕ〉 = ϕ(0). Con-
sequently whenever f is in E ′(RN ), then the distribution v = k ∗ f is tempered
and satisfies P(D)v = f + (h ∗ f ).

REMARKS. The convolution operator f �→ k ∗ f is called a parametrix for
P(D) on E ′(RN ). More precisely it is a right parametrix, and a left parametrix
can be defined similarly. The operator f �→ h∗ f is called a smoothing operator
because h ∗ f is in C∞(RN ) whenever f is in E ′(RN ). To see the smoothing
property, we observe that h, as a Schwartz function, is identified with a tempered
distribution when we pass to Th . Theorem 5.21 shows that Th ∗ f is a tempered
distribution with Fourier transform F(h)F( f ). Both factors F(h) and F( f ) are
smooth functions, and F(h) has compact support. Therefore F(h ∗ f ) is smooth
of compact support, and h ∗ f is a Schwartz function.



302 VII. Aspects of Partial Differential Equations

PROOF. The function σ(ξ) = χ(ξ)/P(2π iξ) is smooth and is bounded on
RN because, in the notation used in the proof of Lemma 7.13, |P(2π iξ)| ≥
|Pm(2π iξ)|− |Q(2π iξ)| ≥ (c|ξ |−C)|ξ |m−1 and because (c|ξ |−C)|ξ |m−1 ≥ 1
as soon as |ξ | is large enough. Since σ is bounded, integration of the product of σ
and any Schwartz function is meaningful, and Tσ is therefore in S ′(RN ). Define
k = F−1(Tσ ). This is in S ′(RN ) and has F(k) = Tσ . Define h = F−1(χ − 1).
Since χ − 1 is in C∞com(RN ), h is in S(RN ).
Now let f in E ′(RN ) be given, and define v = k ∗ f . Theorem 5.21 shows

that v is in S ′(RN ) and that F(v) = F(k)F( f ) = σF( f ). Then

F(P(D)v) = P(2π iξ)F(v) = P(2π iξ)σ (ξ)F( f )
= χ(ξ)F( f ) = F( f )+ (χ(ξ)− 1)F( f ) = F( f )+ F(h)F( f ).

Taking the inverse Fourier transform of both sides yields P(D)v = f + h ∗ f
as asserted. For the special case f = δ, we have v = k ∗ δ = k, and then
P(D)k = δ + Th . This completes the proof.

The function h is the inverse Fourier transform of a member of C∞com(R
N ),

specifically h(x) = ∫
RN e2π i x ·ξ (χ(ξ) − 1) dξ . Since the integration is really

taking place on a compact set, we see that we can replace x by a complex variable
z and obtain a holomorphic function in all of CN . In other words, h extends
to a holomorphic function on CN . If we single out any variable, say x1, then
the ellipticity of P(D) implies that Dm

x1 has nonzero coefficient in P(D), and
P(D)w = h is therefore an equation to which the global Cauchy–Kovalevskaya
Theorem applies in the form of Theorem 7.4. The theorem says that the equation
P(D)w = h, in the presence of globally holomorphic Cauchy data, has not just a
local holomorphic solution but a global holomorphic one. Therefore P(D)w =
h has an entire holomorphic solution w. Let us regard w and h as yielding
distributions Tw and Th on C∞com(R

N ), so that the equation reads P(D)Tw = Th .
Subtracting this from P(D)k = δ + Th yields P(D)(k − Tw) = δ. In summary
we have the following corollary.

Corollary 7.15. If P(D) is an elliptic operator on RN with constant coeffi-
cients, then there exists e in D ′(RN ) with P(D)e = δ.

The distribution e is called a fundamental solution for P(D) in D ′(RN ).
A consequence of the existence of e is that P(D)u = f has a solution u in
D ′(RN ) for each f in E ′(RN ). This represents an improvement in the conclusion
(fundamental solution vs. parametrix) of Theorem 7.14.
Think of Corollary 7.15 as being an existence theorem. We now turn to a

discussion of the regularity of solutions. For this we do not need the existence
result, and thus we shall proceed without making further use of Corollary 7.15.
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Proposition 7.16. Let P(D) be an elliptic operator on RN with constant
coefficients. Then the tempered distribution k = F−1(Tσ ), where σ(ξ) =
χ(ξ)/P(2π iξ), is a smooth function on RN − {0}. Therefore, for any neigh-
borhood of 0, the elliptic operator P(D) has a parametrix k0 ∈ E ′(RN ) with
compact support in that neighborhood. In particular, there is a smooth function
h1 with support in that neighborhood such that whenever f is in E ′(RN ), then
the distribution v = k0 ∗ f is in E ′(RN ) and satisfies P(D)v = f + (h1 ∗ f ).

SKETCH OF PROOF. One checks that

Dβ(ξαk) = (2π i)|β|(−2π i)−|α|F−1(T
ξβDασ

).

Here ξβDασ is a C∞ function, and we are interested in its integrability. It is
enough to consider what happens for |ξ | ≥ R′, where σ(ξ) = 1/P(2π iξ). The
function 1/P(2π iξ) is bounded above by a multiple of |ξ |−m , and an inductive
argument on the order of the derivative shows that |ξβDασ | ≤ C |ξ ||β|−|α|−m for
|ξ | ≥ R′, for a constant C independent of ξ .
Take β = 0. If |α| is large enough, we see that Dασ is in L1(RN ). Then

F−1(Dασ ) = (2π i)|α|ξαk is given by the usual integral formula for F, but with
e−2π i x ·ξ replaced by e2π i x ·ξ . Therefore ξαk is a bounded continuous function
when |α| is large enough. Applying this observation to (∑n

j=1 |ξj |2l
)
k for large

enough l, we find that k is a continuous function on RN − {0}.
Next take |β| = 1 and increase l by 1, writing α′ for the new α. Then ξβDα′σ

is integrable, and it follows5 that ξα
′
k has a pointwise partial derivative of type β

and is continuous. Thus the same thing is true of k on RN − {0}.
Iterating this argument by adding 1 to one of the entries of β to obtain β ′,

we find for each β that we consider, that the functions Dβ
(∑n

j=1 |ξj |2l
′)
k and

Dβ ′(∑n
j=1 |ξj |2l

′)
k are integrable for l ′ sufficiently large, andwe deduce that Dβk

has all first partial derivatives continuous. Since β ′ is arbitrary, k equals a smooth
function on RN − {0}.
Tofinish the argument, let k and h be as inTheorem7.14, and letψ inC∞com(R

N )

be identically 1 near 0 and have support in whatever neighborhood of 0 has been
specified. If we write k = ψk+ (1−ψ)k, then k0 = ψk has support in that same
neighborhood, and T = (1 − ψ)k is of the form Th0 for some smooth function
h0, by what we have shown. Substituting k = k0+ Th0 into P(D)k = δ+ Th , we
find that P(D)k0 = δ+Th−TP(D)h0 . The function h1 = h− P(D)h0 is smooth,
and it must have compact support since P(D)k0 and δ have compact support.

Corollary 7.17. If u is in D ′(RN ) and P(D) is elliptic, then sing supp u ⊆
sing supp P(D)u, where “sing supp” denotes singular support.

5The precise result to use is Proposition 8.1f of Basic.
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REMARK. At first glance it might seem that the rough spots of P(D)u are
surely at least as bad as the rough spots of u for any D. But consider a function
on R2 of the form u(x, y) = g(y) and apply P(D) = ∂/∂x . The result is 0, and
thus sing supp u can properly contain sing supp P(D)u for P(D) = ∂/∂x . The
corollary says that this kind of thing does not happen if P(D) is elliptic.

PROOF. Let E = (sing supp P(D)u)c. By definition the restriction of P(D)u
to C∞com(E) is of the form Tψ with ψ in C∞(E). Let U be any nonempty open
set with U cl compact and with U cl ⊆ E . It is enough to exhibit a smooth
function η equal to u on U . Choose an open set V with V cl compact such that
U cl ⊆ V ⊆ V cl ⊆ E . Multiply ψ by a smooth function of compact support in E
that equals 1 on V cl, obtaining a function ψ0 ∈ C∞com(E) such that ψ0 = ψ on V .
Choose an open neighborhood W of 0 such that W = −W and such that the

set of sumsU cl+W cl is contained in V . Applying Proposition 7.16, we can write
P(D)k0 = δ+ h′ with k0 ∈ E ′(RN ) and h′ ∈ C∞com(RN ). The proposition allows
us to insist that the support of k∨0 be contained in W . Then also h

′ has support
contained in W .
We are to produce η ∈ C∞(U ) with 〈Tη, ϕ〉 = 〈u, ϕ〉 for all ϕ ∈ C∞com(U ).

Our choice of W forces k∨0 ∗ ϕ to have support in V . Hence

〈k0∗P(D)u, ϕ〉 = 〈P(D)u, k∨0 ∗ϕ〉 = 〈Tψ, k∨0 ∗ϕ〉 = 〈Tψ0, k∨0 ∗ϕ〉 = 〈k0∗ψ0, ϕ〉.

On the other hand, application of Corollary 5.14 gives

〈k0 ∗ P(D)u, ϕ〉 = 〈P(D)k0 ∗ u, ϕ〉 = 〈(δ + h′) ∗ u, ϕ〉 = 〈u, ϕ〉 + 〈h′ ∗ u, ϕ〉.

Combining the two computations, we see that 〈u, ϕ〉 = 〈k0 ∗ψ0− h′ ∗ u, ϕ〉, and
the proof is complete if we take η to be k0 ∗ ψ0 − h′ ∗ u.

The final step is to localize the result of Corollary 7.17.

Corollary 7.18. If P(D) is elliptic with constant coefficients, ifU is nonempty
and open in RN , and if u and f are members of D ′(U ) with P(D)u = f , then
sing supp u ⊆ sing supp f . Consequently if f is a smooth function on U , then
so is u.

REMARKS. For the Laplacian this result gives something beyond the results in
Chapter III: Part of the statement is that any distribution solution u ofu = 0 on
an open set U equals a smooth function on U . Previously the best result of this
kind that we had was Corollary 3.17, which says that any distribution solution
equal to a C2 function is a smooth function.
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PROOF. It is enough to prove that E ∩ sing supp u ⊆ E ∩ sing supp f for each
open set E with Ecl compact and Ecl ⊆ U . Choose ψ in C∞com(U ) with ψ equal
to 1 on Ecl. The equality 〈ψu, ϕ〉 = 〈u, ψϕ〉 = 〈u, ϕ〉 for all ϕ ∈ C∞com(E) shows
that E ∩ sing supp u = E ∩ sing suppψu. Regard ψu as in E ′(RN ), and define
g = P(D)(ψu). Both ψu and g are in E ′(RN ), and every ϕ ∈ C∞com(E) satisfies

〈g, ϕ〉 = 〈P(D)(ψu), ϕ〉 = 〈ψu, P(D)trϕ〉
= 〈u, P(D)trϕ〉 = 〈P(D)u, ϕ〉 = 〈 f, ϕ〉.

Hence E ∩ sing supp g = E ∩ sing supp f . Application of Corollary 7.17
therefore gives

E ∩ sing supp u = E ∩ sing suppψu ⊆ E ∩ sing supp g = E ∩ sing supp f,

and the result follows.

6. Method of Pseudodifferential Operators

Linear elliptic equations with variable coefficients were already well understood
by the end of the 1950s. The methods to analyze them combined compactness
arguments for operators between Banach spaces with the use of Sobolev spaces
and similar spaces of functions. Those methods were of limited utility for other
kinds of linear partial equations, but some isolated methods had been developed
to handle certain cases of special interest. In the 1960s a general theory of
pseudodifferential operators was introduced to include all these methods under
a single umbrella, and it and its generalizations are now a standard device for
studying linear partial differential equations. They provide a tool for taking
advantage of point-by-point knowledge of the zero locus of the principal symbol.
As with distributions, pseudodifferential operators make certain kinds of cal-

culations quite natural, and many verifications lie behind their use. We shall omit
most of this detail and concentrate on some of the ideas behind extending the
theory of the previous section to variable-coefficient operators.
We start with a nonempty open subsetU ofRN and a linear differential operator

P(x, D) = ∑|α|≤m aα(x)D
α whose coefficients aα(x) are in C∞(U ). If u is in

C∞com(U ), we can regard u as in C∞com(R
N ). The function u is then a Schwartz

function, and the Fourier inversion formula holds:

u(x) =
∫

RN
e2π i x ·ξ û(ξ) dξ,
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where û is the Fourier transform û(ξ) = ∫
RN e−2π i x ·ξu(x) dx . Applying P gives

P(x, D)u(x) =
∑
|α|≤m

aα(x)(2π i)
|α|
∫

RN
e2π i x ·ξ ξα û(ξ) dξ

=
∫

RN
e2π i x ·ξ

( ∑
|α|≤m

aα(x)(2π i)
|α|ξα

)
û(ξ) dξ =

∫
RN
e2π i x ·ξ P(x, 2π iξ )̂u(ξ) dξ,

where P(x, 2π iξ) is the symbol. The basic idea of the theory is to enlarge the
class of allowable symbols, thereby enlarging the class of operators under study,
at least enough to include the parametrices and related operators of the previous
section. The enlarged class will be the class of pseudodifferential operators.
In the constant-coefficient case, in which P(x, 2π iξ) reduces to P(2π iξ),

what we did in essence was to introduce an operator of the above kind, at first with
1/P(2π iξ) in the integrand in place of P(2π iξ) but then with χ(ξ)/P(2π iξ)
instead of 1/P(2π iξ) in the integrand in order to eliminate the singularities.
When we composed the two operators, the result was the sum of the identity and
a smoothing operator.
In the variable-coefficient case, the operator we use has to be more com-

plicated. Suppose that we want P(x, D)G = 1 + smoothing, with G given
by the same kind of formula as P(x, D) but with its symbol g(x, ξ) in some
wider class. If the equation in question is P(x, D)u = f , then our computation
above shows that we want to work with P(x, D)

( ∫
RN e2π i x ·ξg(x, ξ) f̂ (ξ) dξ

)
.

The effect of putting P(x, D) under the integral sign is not achieved by in-
cluding P(x, 2π iξ) in the integrand, because the product e2π i x ·ξg(x, ξ) is being
differentiated. A brief formal computation shows that Dα(e2π i x ·ξg(x, ξ)) =
e2π i x ·ξ ((Dx + 2π iξ)αg(x, ξ)), where the subscript x is included on Dx to
emphasize that the differentiation is with respect to x . Thus we want
P(x, Dx + 2π iξ)g(x, ξ) to be close to identically 1, differing by the symbol of
a “smoothing operator.” We cannot simply divide by P(x, Dx + 2π iξ) because
of the presence of the Dx . What we can do is expand in terms of degrees of
homogeneity in ξ and sort everything out. When degrees of homogeneity are
counted, ξα has degree |α| while Dx has degree 0. Expansion of P gives

P(x, Dx + 2π iξ) = Pm(x, 2π iξ)+
m−1∑
j=0

pj (x, ξ, Dx),

where Pm is the principal symbol and pj is homogeneous in ξ of degree j . No
Dx is present in Pm because degree m in ξ can occur only from terms (2π iξ)α in
(Dx + 2π iξ)α . Since the constant function of ξ has homogeneity degree 0 and
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since degrees of homogeneity add, let us look for an expansion of g(x, ξ) in the
form

g(x, ξ) =
∞∑
j=0

gj (x, ξ),

with gj homogeneous in ξ of degree −m − j . Expanding the product(
Pm(x, 2π iξ)+

∑m−1
k=0 pk(x, ξ, Dx)

)(∑∞
j=0 gj (x, ξ)

) = 1
and collecting terms by degree of homogeneity, we read off equations

Pm(x, 2π iξ)g0(x, ξ) = 1,
Pm(x, 2π iξ)g1(x, ξ)+ pm−1(x, ξ, Dx)g0(x, ξ) = 0,

Pm(x, 2π iξ)g2(x, ξ)+ pm−1(x, ξ, Dx)g1(x, ξ)+ pm−2(x, ξ, Dx)g0(x, ξ) = 0,

and so on. Dividing each equation by Pm(x, 2π iξ), we obtain recursive formulas
for the gj (x, ξ)’s, except for the problem that Pm(x, 2π iξ) vanishes for ξ = 0. To
handle this vanishing, we again have to introduce a function like χ(ξ) by which
to multiply gj , and it turns out that in order to produce convergence, χ has to be
allowed to depend on j . After the gj ’s have been adjusted, we need to assemble an
adjusted g from themand form a right parametrix, namely the pseudodifferential
operatorG corresponding to symbol g(x, ξ) such that P(x, D)G = 1+R, where
R is a “smoothing operator.”
To make all this at all precise, we need to be more specific about a class of

symbols, about the definition of the corresponding pseudodifferential operators,
about the recognition of “smoothing operators,” and about the assembly of the
symbol from the sequence of homogeneous terms.
Fix a nonempty open set U in RN , and fix a real number m, not necessarily

an integer. The symbol class known as Sm1,0(U ) and called the class of standard
symbols of order m consists of the set of all functions g in C∞(U × RN ) such
that for each compact set K ⊆ U and each pair of multi-indices α and β, there
exists a constant CK ,α,β with6

|Dα
ξ D

β
x g(x, ξ)| ≤ CK ,α,β(1+ |ξ |)m−|α| for x ∈ K , ξ ∈ RN .

Then Dα
ξ D

β
x g will be a symbol in the class S

m−|α|
1,0 (U ). Let S−∞1,0 (U ) be the

intersection of all S−n1,0(U ) for n ≥ 0.
6The symbol class Sm1,0(U ) is not the historically first class of symbols to have been studied, but

it has come to be the usual one. Classes Smρ,δ(U ) occur frequently as well, but we shall not discuss
them.
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EXAMPLES.

(1) If P(x, D) = ∑
|α|≤m aαD

α with all aα in C∞(U ), then its symbol
P(x, 2π iξ) =∑|α|≤m aα(x)(2π i)

|α|ξα is in Sm1,0(U ).

(2) If P(x, D) in Example 1 is elliptic, then the parametrix g(x, ξ) that we
construct will be in S−m1,0 (U ).

(3)With P and g formed as in Examples 1 and 2, the error term r(x, ξ) such that
P(x, Dx + 2π iξ)g(x, ξ) = 1+ r(x, ξ) will be in S−∞1,0 (U ). The corresponding
pseudodifferential operator will be a “smoothing operator” in a sense to be defined
below.

To a standard symbol g, we associate a pseudodifferential operator G =
G(x, D) first on smooth functions and then on distributions.7 The associated
G : C∞com(U )→ C∞(U ) for a symbol g ∈ Sm1,0(U ) is given by

(Gϕ)(x) =
∫

RN
e2π i x ·ξg(x, ξ)ϕ̂(ξ) dξ for ϕ ∈ C∞com(U ), x ∈ U.

One readily checks thatGϕ is indeed inC∞(U ) and thatG : C∞com(U )→ C∞(U )

is continuous. The associated G : E ′(U )→ D ′(U ) is given by8

〈G f, ϕ〉 =
∫

RN

[ ∫
U
e2π i x ·ξg(x, ξ)ϕ(x) dx

]
F( f )(ξ) dξ for f ∈ E ′(U ).

(Recall thatF( f ) is a smooth function, according to Theorem 5.20.) One readily
checks that 〈G f, ϕ〉 is well defined, that G f is in D ′(U ), and that when f = Tψ
for some ψ ∈ C∞com(U ), then G(Tψ) = TGψ .
The error term in constructing a parametrix is ultimately handled by the fol-

lowing fact: if g is a symbol in S−∞1,0 (U ), then G carries E ′(U ) into C∞(U ). For
this reason the pseudodifferential operators with symbol in S−∞1,0 (U ) are called
smoothing operators.
With the definitionsmade, let us return to the construction of a right parametrix

for the elliptic differential operator P(x, D). Let us write pm(x, ξ, Dx) for
the principal symbol Pm(x, 2π iξ) in order to make the notation uniform. The

7Pseudodifferential operators can be used with other domains, such as Sobolev spaces, in order
to obtain additional quantitative information. But we shall not pursue such lines of investigation
here. Further comments about this matter occur in Section VIII.8.

8Our standard procedure for defining operations on distributions has consistently been to define
the operation on smooth functions, to exhibit an explicit formula for the transpose operator on
smooth functions and observe that the transpose is continuous, and to use the transpose operator
to define the operator on distributions. This procedure avoids the introduction of topologies on
spaces of distributions. In the present discussion of the operation of a pseudodifferential operator
on distributions, we defer the introduction of transpose to Section VIII.6.
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recursive computation given above produces expressions gj (x, ξ) for j ≥ 0 such
that (∑m

k=0 pk(x, ξ, Dx)
)(∑∞

j=0 gj (x, ξ)
) = 1

in a formal sense. The actual gj (x, ξ)’s are not standard symbols because the
formula for gj (x, ξ) involves division by (pm(x, ξ)) j+1 and because pm(x, ξ)
vanishes at ξ = 0. However, the product χj (ξ)gj (x, ξ) is a standard symbol if χj
is a smooth function identically 0 near ξ = 0 and identically 1 off some compact
set. Thus we attempt to form the sum

g(x, ξ) =
∞∑
j=0

χj (ξ)gj (x, ξ)

and use it as parametrix. Again we encounter a problem: we find that con-
vergence is not automatic. More care is needed. What works is to define
χj (ξ) = χ(R−1j |ξ |), where χ : R → [0, 1] is a smooth function that is 0 for

|t | ≤ 1
2 and is 1 for |t | ≥ 1. One shows that positive numbers Rj tending

to infinity can be constructed so that the partial sums in the series for g(x, ξ)
converge in C∞(U × RN ) and the result is in the symbol class S−m1,0 (U ). Let G
be the pseudodifferential operator corresponding to g(x, ξ).
A little computation shows that

P(x, Dx + ξ)g(x, ξ) = 1+ r(x, ξ),

r(x, ξ) = −1+ χ0(ξ)−
∞∑
j=1

rj (x, ξ)where

rj (x, ξ) =
min{ j,m}∑
k=1

[χj−k(ξ)− χj (ξ)]pm−k(x, ξ, Dx)gj−k(x, ξ).and

The function rj (x, ξ) is in C∞(U × RN ) and vanishes for |ξ | > Rj . This fact,
the identities already established, and the construction of the numbers Rj allow
one to see that

∑∞
j=n+1 rj (x, ξ) is in S

−n
1,0(U ). Since the remaining finite number

of terms of r(x, ξ) have compact support in ξ , they too are in S−n1,0(U ) and then so
is r(x, ξ). Since n is arbitrary, r(x, ξ) is in S−∞1,0 (U ). Hence the corresponding
pseudodifferential operator is a smoothing operator. Consequently we obtain, as
an identity on C∞com(U ) or on E ′(U ),

P(x, D)G = 1+ R

with R a smoothing operator. Therefore G is a right parametrix for P(x, D).
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From the existence of a right parametrix, it can be shown that P(x, D)u = f is
locally solvable.9 If we could obtain a left parametrix, i.e., a pseudodifferential
operator H with HP(x, D) = 1 + S for a smoothing operator S, then it would
follow that singular supports satisfy

sing supp u = sing supp f whenever f is in E ′(U ) and P(x, D)u = f .

Inclusion in one direction follows from the local nature of P(x, D) in its action
on u: sing supp f = sing supp P(x, D)u ⊆ sing supp u. Inclusion in the reverse
direction uses the “pseudolocal” property of any pseudodifferential operator and
of H in particular, namely that sing supp H f ⊆ sing supp f . It goes as follows:

sing supp u = sing supp (1+ S)u = sing supp HP(x, D)u

= sing supp H f ⊆ sing supp f.
In particular, if f is in C∞com(U ), then u is in C∞(U ). Constructing a left
parametrix H with the techniques discussed so far is, however, more difficult
than constructing the right parametrix G because we cannot so readily determine
the symbol of HP(x, D) for a general pseudodifferential operator H .
Let us again work with the general theory, taking g to be in Sm1,0(U ) and

denoting the corresponding pseudodifferential operator G : C∞com(U )→ C∞(U )

by

(Gϕ)(x) =
∫

RN
e2π i x ·ξg(x, ξ)ϕ̂(ξ) dξ for ϕ ∈ C∞com(U ).

The distribution TGϕ , which we write more simply as Gϕ, acts on a function ψ
in C∞com(U ) by

〈Gϕ,ψ〉 = ∫
RN

∫
U e

2π i x ·ξg(x, ξ)ψ(x)ϕ̂(ξ) dx dξ

= ∫
RN

∫
U

∫
U e

2π i(x−y)·ξg(x, ξ)ψ(x)ϕ(y) dy dx dξ.

If we think ofψ(x)ϕ(y) as a particular kind of functionw(x, y) inC∞com(U ×U ),
then we can extend the above formula to define a linear functional G on all of
C∞com(U ×U ) by

〈G, w〉 =
∫

RN

[ ∫
U×U

e2π i(x−y)·ξg(x, ξ)w(x, y) dx dy
]
dξ.

It is readily verified that G is continuous on C∞com(U × U ) and hence lies in
D ′(U ×U ). The expression written formally as

G(x, y) =
∫

RN
e2π i(x−y)·ξg(x, ξ) dξ

is called the distribution kernel of the pseudodifferential operator G. This
expression is not to be regarded as a function but as a distribution that is evaluated
by the formula for 〈G, w〉 above.
The first serious general fact in the theory is as follows.

9More detail about this matter is included in Section VIII.8.
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Theorem 7.19. If G is a pseudodifferential operator on an open set U in RN ,
then the distribution kernel G ofG is a smooth function off the diagonal ofU×U ,
and G is pseudolocal in the sense that

sing suppG f ⊆ sing supp f for all f ∈ E ′(U ).

We give only a few comments about the proof, omitting all details. The first
conclusion of the theorem is proved by using the knowndecrease of the derivatives
of g(x, ξ). For example, to see that G is given by a continuous function, one uses
the decrease of Dα

ξ g(x, ξ) in the ξ variable to exhibit (x− y)αG, for |α| > m+N ,
as equal to a multiple of the continuous function

∫
RN e2π i(x−y)·ξDα

ξ g(x, ξ) dξ .
The second conclusion of the theorem, the pseudolocal property, can be derived
as a consequence by using an approximate-identity argument.
To establish a general theory of pseudodifferential operators, the next step is

to come to grips with the composition of two pseudodifferential operators. If we
have two pseudodifferential operatorsG and H on the open setU , then eachmaps
C∞com(U ) into C∞(U ), and their composition G ◦ H need not be defined. But the
composition is sometimes defined, as in the case that H is a differential operator
and in the case that H is replaced by ψ(x)H , where ψ is a fixed member of
C∞com(U ). Thus let us for the moment ignore this problem concerning the image
of H and make a formal calculation of the symbol of the composition anyway.
Say that G = G(x, D) and H = H(x, D) are defined by the symbols g(x, ξ)
and h(x, ξ). Substituting from the definition of H(x, D)ϕ(x) and allowing any
interchanges of limits that present themselves, we have

G(x, D)H(x, D)ϕ(x) = G(x, D)
∫

RN e2π i x ·ξh(x, ξ)ϕ̂(ξ) dξ

= ∫
RN G(x, Dx)[e2π i x ·ξh(x, ξ)]ϕ̂(ξ) dξ

=∫
RN e2π i x ·ξ

(
e−2π i x ·ξG(x, Dx)[e2π i x ·ξh(x, ξ)]

)
ϕ̂(ξ) dξ.

This formula suggests that the composition J = G ◦ H ought to be a pseudo-
differential operator with symbol

j (x, ξ) = e−2π i x ·ξG(x, Dx)[e
2π i x ·ξh(x, ξ)]

= e−2π i x ·ξ
∫

RN e2π i x ·ηg(x, η)[e2π i x ·ξh(x, ξ)] (̂η) dη.

Let us suppose that the Fourier transform of h(x, ξ) in the first variable is mean-
ingful, as it is when h( · , ξ) has compact support. Write ĥ( · , ξ) for this Fourier
transform. Then the above expression is equal to∫

RN e2π i x ·(η−ξ)g(x, η)̂h(η − ξ, ξ) dη = ∫
RN e2π i x ·ηg(x, η + ξ )̂h(η, ξ) dη.
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If we form the infinite Taylor series expansion of g(x, η + ξ) about η = 0 and
assume that it converges, we have

g(x, η + ξ) =∑α
1
α! D

α
ξ g(x, ξ) η

α.

Substituting and interchanging sum and integral, we can hope to get

j (x, ξ) =∑α
1
α!

∫
RN e2π i x ·ηDα

ξ g(x, ξ)η
α ĥ(η, ξ) dη

=∑α
(2π i)−|α|

α! Dα
ξ g(x, ξ)

∫
RN e2π i x ·η(Dα

x h) (̂η, ξ) dη.

In view of the Fourier inversion formula, we might therefore expect to obtain

j (x, ξ) =
∑
α

(2π i)−|α|

α!
Dα

ξ g(x, ξ)D
α
x h(x, ξ).

We shall see that such a formula is meaningful, but in an asymptotic sense and
not as an equality.
This discussion suggests four mathematical questions that we want to address:

(i) If we are given a possibly divergent infinite series of symbols as on the
right side of the formula for j (x, ξ) above, how can we extract a genuine
symbol to represent the sum of the series?

(ii) Put G(x, Dx + ξ)ϕ(x) = ∫
RN e2π i x ·ηg(x, η + ξ)ϕ̂(η) dη. In what sense

of ∼ is it true that G(x, Dx + ξ)ϕ(x) ∼∑α
(2π i)−|α|

α! Dα
ξ g(x, ξ)D

α
x ϕ(x)?

(iii) How can we handle the matter of compact support?
(iv) How can we show, under suitable hypotheses that take (iii) into account,

that j (x, ξ) is given by G(x, Dx + ξ)
(
h(x, ξ)

)
and therefore that we

obtain a formula from (ii) for j (x, ξ) involving ∼ ?
The path that we shall follow is direct but not optimal. In Section VIII.6 we shall
take note of an approach that is tidier and faster, but insufficiently motivated by
the present considerations.
Question (i) is fully addressed by the following theorem.

Theorem 7.20. Suppose that {mj }j≥0 is a sequence in R decreasing to −∞,
and suppose for j ≥ 0 that gj (x, ξ) is a symbol in Smj

1,0(U ). Then there exists a
symbol g(x, ξ) in Sm01,0(U ) such that for all n ≥ 0,

g(x, ξ)−
n−1∑
j=0

gj (x, ξ) is in Smn
1,0(U ).

The theorem is proved in the same way that we constructed a right parametrix
for an elliptic differential operator earlier in this section. We can now give a
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precise meaning to ∼ in terms of a notion of an asymptotic series. If {mj }j≥0
is a sequence in R decreasing to −∞, if g(x, ξ) is a symbol in Sm01,0(U ), and if

gj (x, ξ) is a symbol in S
mj

1,0(U ) for each j ≥ 0, then we write

g(x, ξ) ∼
∞∑
j=0

gj (x, ξ)

if for all n ≥ 0,

g(x, ξ)−
n−1∑
j=0

gj (x, ξ) is in Smn
1,0(U ).

If the given sequence {mj }j≥0 is a finite sequence ending with mr , we can
extend it to an infinite sequence with gj (x, ξ) = 0 for j > r , and in this case the
definition of ∼ is to be interpreted to mean that g(x, ξ) −∑r

j=0 gj (x, ξ) is the
symbol of a smoothing operator.
For (ii), we have just attached a meaning to∼. We defineG(x, Dx+ξ)ϕ(x) =∫

RN e2π i x ·ηg(x, η + ξ)ϕ̂(η) dη. The precise statement that is proved to yield the
asymptotic expansion of (ii) is the following.

Proposition 7.21. Let U be open in RN , fix g in Sm1,0(U ), and let K be a
compact subset of U . Then for any nonnegative integers M and R such that
R > m + N , there exists a constant C such that

∣∣G(x, Dx + ξ)ϕ(x)−∑|α|<n
(2π i)−|α|

α! Dα
ξ g(x, ξ)D

α
x ϕ(x)

∣∣
≤ C

{
(1+ |ξ |m) ∫|ξ+η|≤|ξ |/2 |ϕ̂(η| dη

+∑|α|=N |ξ |m−R supy
[|Dαϕ(y)|(1+ |ξ ||x − y|)−M]}

for all ϕ in C∞K , all x in K , and all ξ with |ξ | ≥ 1.

We shall not make further explicit use of this proposition. The proof of the
result is long, and we omit any discussion of it.
We turn to questions (iii) and (iv). Question (iii) is addressed by a definition

and some remarks concerning it, and question (iv) is addressed by the theorem
that comes after those remarks. Continuing with our pseudodifferential operator
G on the open setU , we say thatG isproperly supported if the subset support(G)
ofU×U has compact intersection with K×U andwithU×K for every compact
subset K of U . See Figure 7.2.
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K ⊆ U

U

FIGURE 7.2. Nature of the support of the distribution kernel
of a properly supported pseudodifferential operator. The
open set U in this case is an open interval, and the oval-
shaped region represents support(G). The shaded region

is an example of a set (U × K ) ∩ support(G).

Suppose that G is properly supported, K is compact inU , and ϕ is in C∞com(U )

with support contained in K . Introduce projections p1(x, y) = x and p2(x, y) =
y. Define L = p1

(
(U × K ) ∩ support(G)); the set L is compact since G is

properly supported and since the continuous image of a compact set is compact.
Let us see that Gϕ has support contained in L . To do so, we write ψ ⊗ ϕ for the
function (x, y) �→ ψ(x)ϕ(y), and then we have

〈Gϕ,ψ〉 = ∫
RN

∫
U

∫
U e

2π i(x−y)·ξg(x, ξ)ψ(x)ϕ(y) dy dx dξ = 〈G, ψ ⊗ ϕ〉.

If ψ is in C∞com(L
c ∩ U ), then F = p−11 (support ψ) ∩ p−12 (support ϕ) is the

compact support of ψ ⊗ ϕ, and

F ∩ support(G) ⊆ p−11 (Lc)∩ (U × K )∩ support(G) = p−11 (Lc)∩ p−11 (L) = ∅.

Thus 〈G, ψ ⊗ ϕ〉 = 0, 〈Gϕ,ψ〉 = 0, and Gϕ is supported in L .
Thus the properly supported pseudodifferential operator G carries C∞com(U )

into itself, and Lemma 5.2 shows that it does so continuously. Then G is
continuous also as a mapping of the dense vector subspace C∞com(U ) of C∞(U )

into C∞(U ). Because of the completeness of C∞(U ), G extends to a continuous
map of C∞(U ) into itself.
Similarly one checks that any properly supported pseudodifferential operator

carries E ′(U ) into E ′(U ). Therefore the composition G ◦ H of two pseudodiffer-
ential operators, whether regarded as acting on C∞com(U ) or as acting on E ′(U ),
is well defined if H is properly supported.
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Theorem 7.22. Let U be an open subset of RN .

(a) If G is a pseudodifferential operator on U , then there exists a properly
supported pseudodifferential operator G# on U such that G − G# is in S−∞1,0 (U ),
hence such that G − G# is a smoothing operator.
(b) If G and H are properly supported pseudodifferential operators onU with

symbols g in Sm1,0(U ) and h in Sm
′

1,0(U ), then G ◦ H is a properly supported

pseudodifferential operator with symbol j in Sm+m
′

1,0 (U ), and

j (x, ξ) ∼
∑
α

(2π i)−|α|

α!
Dα

ξ g(x, ξ)D
α
x h(x, ξ).

All that is needed from (b) in many cases is the following weaker statement.

Corollary 7.23. Let U be an open subset of RN . If G and H are properly
supported pseudodifferential operators on U with symbols g in Sm1,0(U ) and h in

Sm
′

1,0(U ), then G ◦ H is a properly supported pseudodifferential operator whose

symbol j (x, ξ) is in Sm+m
′

1,0 (U ) and has the property that

j (x, ξ)− g(x, ξ)h(x, ξ)

is a symbol in Sm+m
′−1

1,0 (U ).

This is enough of the general theory so that we can see how to prove a the-
orem with consequences beyond the subject of pseudodifferential operators. A
pseudodifferential operator G on U with symbol g(x, ξ) in Sm0,1(U ) is said to be
elliptic of order m if for each compact subset K of U , there are constants CK

and MK such that

|g(x, ξ)| ≥ CK (1+ |ξ |)m for x ∈ K and |ξ | ≥ MK .

In particular, an elliptic differential operator of orderm satisfies this condition. A
(two-sided) parametrix H for a properly supported pseudodifferential operator
G with symbol g ∈ Sm1,0(U ) is a properly supported pseudodifferential operator
H of order −m such that H ◦G = 1+ smoothing and G ◦ H = 1+ smoothing.

Theorem7.24. IfG is a properly supported elliptic pseudodifferential operator
of order m, then G has a parametrix H .

REMARKS. We saw in Theorem 7.19 that sing suppG f ⊆ sing supp f for f in
E ′(U ). The same argument as with the left parametrix before that theorem shows
now from the parametrix of Theorem 7.24 that sing suppG f ⊇ sing supp f and
therefore that sing suppG f = sing supp f for f in E ′(U ). In particular, solutions
of elliptic equations are smooth wherever the given data are smooth.
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PARTIAL PROOF. Let ρ : U × Rn → [0, 1] be a smooth function with the
properties that

(i) ρ equals 1 in a neighborhood of each point (x, ξ) where g(x, ξ) = 0,
(ii) for each compact subset K ofU , there is a constant TK such thatρ(x, ξ) =

0 for x in K and |ξ | ≥ TK .

We omit the verification that ρ exists and is the symbol of a smoothing operator.
Put

h0(x, ξ) = (1− ρ(x, ξ))g(x, ξ)−1.

This is a smooth function by (i), and we omit the step of checking that h0 is
in S−m1,0 (U ). Let H0 be the pseudodifferential operator with symbol h0. Apply
Theorem 7.22a to find a properly supported H #

0 whose symbol h
#
0 has h

#
0 ∼ h0.

We write h#0 = h0 + r0 with r0 in S
−∞
1,0 (U ).

Corollary 7.23 shows that H #
0G is a well-defined properly supported operator

whose symbol j0(x, ξ) is in S01,0(U ) and has the property that j0 − h#0g is in

S−11,0(U ). Since

j0 − h#0g = j0 − (h0 + r0)g = j0 − [(1− ρ)g−1 + r0]g = j0 − 1+ ρ − r0g

and since ρ and r0g are the symbols of smoothing operators, j0 − 1 must be in
S−11,0(U ). Therefore H #

0G = 1 + R for a pseudodifferential operator R whose

symbol r is in S−11,0(U ).
The equality H #

0G = 1+ R shows that R is properly supported. By Corollary
7.23, Rk is a properly supported pseudodifferential operator for all integers k ≥ 1,
and its symbol rk is in S

−k
1,0(U ). We form the asymptotic series

1− r1 + r2 − r3 + · · ·
anduseTheorems7.20 and7.22a toobtain aproperly supportedpseudodifferential
operator E whose symbol is in S01,0(U ) and has

e ∼ 1− r1 + r2 − r3 + · · · . (∗)
For any integer n ≥ 1, we have
(1− R + R2 − R3 + · · · ± Rn−1)H #

0G

= (1− R + R2 − R3 + · · · ± Rn−1)(1+ R) = 1∓ Rn. (∗∗)

Because of (∗), E − (1 − R + R2 − R3 + · · · ± Rn−1) has symbol in S−n1,0(U ).
Since the symbol j0 of H #

0G is in S
0
1,0(U ), the product(

E − (1− R + R2 − R3 + · · · ± Rn−1)
)
H #
0G has symbol in S−n1,0(U ).
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Also, (∗∗) implies that
(1− R + R2 − R3 + · · · ± Rn−1)H #

0G − 1 = ∓Rn has symbol in S−n1,0(U ).

Adding shows that

EH #
0G − 1 has symbol in S−n1,0(U ).

Since n is arbitrary, EH #
0G − 1 is a smoothing operator. Thus H = EH#

0 is a
left parametrix for G.
In similar fashion we can use the assumption “properly supported” to obtain a

right parametrix H̃ for G. We omit the details. The operators H and H̃ give us
equations

HG = 1+ S and GH̃ = 1+ S̃

for suitable properly supported smoothing operators S and S̃. Computing the
product HGH̃ in two ways shows that

HGH̃ = (1+ S)H̃ = H̃ + SH̃ = H̃ + smoothing
HGH̃ = H(1+ S̃) = H + H S̃ = H + smoothing.and

Hence H = H̃ + S0 with S0 properly supported smoothing. Consequently

GH = GH̃ + GS0 = 1+ S̃ + GS0 = 1+ smoothing,
and the left parametrix H is also a right parametrix.

BIBLIOGRAPHICAL REMARKS. The proof of Theorem 7.7 is adapted from
Taylor’s Pseudodifferential Operators, and the proof of Theorem 7.12 is taken
from the book by Bers, John, and Schechter. The approach to pseudodifferential
operators used in Section 6 is now considered outdated, and a more streamlined
approach requiring additional motivation appears in Section VIII.6.

7. Problems

1. Suppose that P(x, D) = ∑|α|≤m aα(x)D
α with each aα in C∞(	). Prove that

if P(x, D)u = 0 for all functions u ∈ Cm(	), then all the coefficients aα are 0.

2. (Harmonic measure) Let 	 be a bounded nonempty connected open subset
of RN , let ∂	 be its boundary ∂	 = 	cl − 	, and let L be an elliptic linear
differential operator on	 of the form L(u) =∑i, j bi j (x)Di Dju+

∑
k ck(x)Dku

with real-valued coefficients of class C2 such that bi j (x) = bji (x) for all i and j .
Let S be the vector subspace of real-valued continuous functions u on 	cl such
that Lu(x) = 0 for all x ∈ 	. Prove for each point p in 	 that there exists a
Borel measure μp on ∂	 with μp(∂	) = 1 such that u(p) = ∫

∂	
u(x) dμp(x)

for all u in S.
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3. This problem identifies a fundamental solution of the Cauchy–Riemann operator
in R2. It makes use of Green’s Theorem, which relates line integrals in R2 with
double integrals, for an annulus centered at the origin.
(a) For ϕ in C∞com(R

2), let P(x, y) = xϕ(x,y)
x2+y2 and Q(x, y) = yϕ(x,y)

x2+y2 . Prove that
limε↓0

∮
|(x,y)|=ε (P dx + Q dy) = 0.

(b) With P and Q as in (a), verify that ∂Q
∂x − ∂P

∂y =
yϕx−xϕy
x2+y2 .

(c) Conclude from (a) and (b) that
∫∫

R2
yϕx−xϕy
x2+y2 dx dy = 0.

(d) Repeat (a) with P(x, y) = − yϕ(x,y)
x2+y2 and Q(x, y) = xϕ(x,y)

x2+y2 , showing that
limε↓0

∮
|(x,y)|=ε (P dx + Q dy) = 2πϕ(0, 0) if the line integral is taken

counterclockwise around the circle.
(e) With P and Q as in (d), verify that ∂Q

∂x − ∂P
∂y =

xϕx+yϕy
x2+y2 .

(f) Conclude from (d) and (e) that
∫∫

R2
xϕx+yϕy
x2+y2 = −2πϕ(0, 0).

(g) Conclude from (c) and (f) that 1
2π

∫∫
R2

1
z

∂ϕ

∂ z̄ dx dy = −ϕ(0, 0).
(h) Let T be the locally integrable function 1

/
(2π z), regarded as a member of

D ′(R2). Prove that ∂
∂ z̄ (T ) = δ.

4. On R1, the Heaviside distribution H is the distribution given by the Heaviside
function H(x) equal to 1 for x ≥ 0 and to 0 for x < 0.
(a) Prove that Dx H = δ, so that H is a fundamental solution for the elliptic

operator Dx on R1.
(b) Show that the function f (x) = max{x, 0} on	 = (−1, 1) has the Heaviside

function as weak derivative on 	 and that f is in L p
1 (	) for every p with

1 ≤ p <∞.
(c) Does the restriction of the Heaviside function to 	 = (−1, 1) have a weak

derivative on 	? Why or why not?
(d) Show that the distribution H×δ onR2 given by 〈H×δ, ϕ〉 = ∫∞0 ϕ(x, 0) dx

for ϕ ∈ C∞com(R2) is a fundamental solution of the operator Dx on R2.
(e) Find the support and the singular support of the distribution H on R1 and of

the distribution H × δ on R2.

5. Let U be an open set in RN containing 0, let f be in E ′(U ), and let P(D) be
a linear differential operator with constant coefficients and with order ≥ 1. By
taking into account the theory of periodic distributions in Problems 12–13 of
Chapter V and by suitably adapting the proof that Lemma 7.8 implies Theorem
7.7, prove that the equation P(D)u = f has a distribution solution in some
neighborhood of 0.

Problems 6–9 prove the global version of the Cauchy–Kovalevskaya Theorem given
as Theorem 7.2 for the linear constant-coefficient case. The result is an ingredient
used in deriving Corollary 7.15 from Theorem 7.14. For the statement the domain
variables are t and x with x = (x1, . . . , xN ), and the unknown functions are the p
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components of a function u(t, x) with values in Cp. Write Dt for ∂
/
∂t and Dj for

∂
/
∂xj . The Cauchy problem in question is

Dtu =
∑N

j=1 Aj Dju + Bu + F(t, x),

u(0, x) = g(x),

where Aj and B are p-by-pmatrices of complex constants, F is an entire holomorphic
function from CN+1 to Cp, and g is an entire holomorphic function from CN to Cp.
The conclusion is that the unique formal power-series solution of the Cauchy problem
converges and defines an entire holomorphic function from CN+1 to Cp that solves
the problem. For a vector v = (v1, . . . , vp) in Cp, let ‖v‖∞ = max

{|v1|, . . . , |vp|}.
6. Let α denote a multi-index α = (α1, . . . , αN ) of integers ≥ 0. Prove that

α! ≤ (|α|)!, that∑|α|=l
1
α! = Nl

l! , and that
∞∑
l=0

(q+l
l

)
zl = (1− z)−q−1 if |z| < 1.

7. Show that iterated substitution into the system Dtu =
∑N

j=1 Aj Dju + Bu + F
leads to an expression for Dm

t u as the sum of two kinds of terms: For one kind,
there are 2m terms of the form

∑
T1 · · · TmDα

x u with each Ti equal to an Aji or
to B, with Dα equal to the product of the Dji for which Ti = Aji , and with the
sum taken over ji from 1 to N . For the other kind, there are

∑m−1
s=0 2

s = 2m − 1
terms with something operating on F , the terms corresponding to s being the
ones

∑
T1 · · · TsDα

x D
m−1−s
t F with each Ti , the Dα , and the sum all as above.

8. (a) How does one compute Dβ
x Dm

t u(0, 0) from the expression in the previous
problem?

(b) Why is it enough to prove, for any given r > 0, that the values Dβ
x Dm

t u(0, 0)

satisfy
∑
m≥0

∑
β

(β!m!)−1‖Dβ
x Dm

t u(0, 0)‖∞ r |β|+m <∞?

9. Choose a constant M ≥ 1 with ‖Bv‖∞ ≤ M‖v‖∞ and ‖Ajv‖∞ ≤ M‖v‖∞ for
all j . Let R be a positive number to be specified. Choose C = C(R) such
that

∑
m≥0

∑
β

(β!m!)−1‖Dm
t D

β
x F(0, 0)‖∞R|β|+m and

∑
β

(β!)−1‖Dβ
x g(0)‖∞R|β|

are both ≤ C .
(a) Among the 2m terms of the first kind in Problem 7, show that each one for

which k of them factors T1, . . . , Tm are B is≤ MmNm−kC R−(m−k)(m−k)!,
so that the sum of the contributions from the terms of the first kind to
‖Dm

t u(0, 0)‖∞ is ≤
∑m

k=0
(m
k

)
MmNm−kC R−(m−k)(m − k)!.

(b) Taking into account the result of Problem 8a, adjust the estimate in part (a)
of the present problem to bound the sum of the contributions from the terms
of the first kind to ‖Dm

t D
β
x u(0, 0)‖∞.

(c) Summing over m ≥ 0, l ≥ 0, and β with |β| = l the estimate in part (b) and
using the formulas in Problem 6, show that the contribution of the terms of
the first kind to the series in Problem 8b is finite if R is chosen large enough
so that Nr/R ≤ 1

2 and 2MrN/R < 1.
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(d) For the 2m − 1 terms of the second kind in Problem 7, replace T1 · · · Ts by
T1 · · · Tm−1, treating the missing factors as the identity I , each such factor
accompanying a differentiation Dt . If there are k factors of B, show that
the term is ≤ Mm−1(N + 1)m−1−kC R−(m−1−k)(m−1−k)!. Arguing in a
fashion similar to the previous parts to this problem, show that consequently
the contribution of the terms of the second kind to the series in Problem 8b is
finite if R is chosen large enough so that Nr/R ≤ 1

2 and 2Mr(N+1)/R < 1.

Problems 10–12 concern the reduction to a first-order system of the Cauchy problem
for a singlemth-order partial differential equation that has been solved for Dm

x u. They
generalize the discussion of a second-order equation in two variables that appeared
in Section 1 and reduce Theorems 7.3 and 7.4 to Theorems 7.1 and 7.2, respectively.
In two variables (x, y), the equation is

Dm
x u = F(x, y; u; Dxu, Dyu; D2x u, . . . ; Dm−1

x Dyu, . . . , D
m
y u),

and the Cauchy data are

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m.

10. In the case of two variables (x, y), introduce variables ui, j for i + j ≤ m. Show
that the given Cauchy problem is equivalent to the following Cauchy problem
for a first-order system

Dxu
i, j+1 = Dyu

i+1, j for i + j + 1 ≤ m,

Dxu
i,0 = ui+1,0 for 0 ≤ i < m,

Dxu
m,0 = Fx+u1,0Fu0,0+u2,0Fu1,0+(Dyu

1,0)Fu0,1+· · ·+(Dyu
1,m−1)Fu0,m

with Cauchy data

ui, j (0, y) = D j
y f

(i)(y) for i + j ≤ m, (i, j) = (m, 0),

um,0(0, y) = F(0, y; f (0)(y); f (1)(y), Dy f
(0)(y); . . . , Dm

y f
(0)(y)).

11. What changes to the setup and argument in Problem 10 are needed to handle
more variables, say (x, y1, . . . , yN−1)?

12. Back in the situation of two variables (x, y) as in Problem 10, suppose that F
is a linear combination, with constant coefficients, of u, Dxu, Dyu, . . . , Dm

y u,
plus an entire holomorphic function of (x, y), and suppose that f (0), . . . , f (m−1)

are entire holomorphic functions of y. Prove that the reduction to first order as
in Problem 10 leads to a Cauchy problem for a first-order system of the type in
Problems 6–9. Conclude that the Cauchy problem for the given mth-order equa-
tion in the situation of constant coefficients has an entire holomorphic solution.



CHAPTER VIII

Analysis on Manifolds

Abstract. This chapter explains how the theory of pseudodifferential operators extends from open
subsets of Euclidean space to smooth manifolds, and it gives examples to illustrate the usefulness of
generalizing the theory in this way.
Section 1 gives a brief introduction to differential calculus on smooth manifolds. The section

defines smooth manifolds, smooth functions on them, tangent spaces to smooth manifolds, and
differentials of smooth mappings between smooth manifolds, and it proves a version of the Inverse
Function Theorem for manifolds.
Section 2 extends the theory of smooth vector fields and integral curves from open subsets of

Euclidean space to smooth manifolds.
Section 3 develops a special kind of quotient space, called an “identification space,” suitable

for constructing general smooth manifolds, vector bundles and fiber bundles, and covering spaces
out of local data. In particular, smooth manifolds may be defined as identification spaces without
knowledge of the global nature of the underlying topological space; the only problem is in addressing
the Hausdorff property.
Section 4 introduces vector bundles, including the tangent and cotangent bundles to a manifold.

A vector bundle determines transition functions, and in turn the transition functions determine the
vector bundle via the construction of the previous section. The manifold structures on the tangent
and cotangent bundles are constructed in this way.
Sections 5–8 concern pseudodifferential operators, including aspects of the theory useful in

solving problems in other areas of mathematics. The emphasis is on operators on scalar-valued
functions. Section 5 introduces spaces of smooth functions and their topologies, and it defines
spaces of distributions; the theory has to compensate for the lack of a canonical underlying measure
on the manifold, hence for the lack of a canonical way to view a smooth function as a distribution.
Section 5 goes on to study linear partial differential equations on themanifold; although the symbol of
the differential operator is not meaningful, the principal symbol is intrinsically defined as a function
on the cotangent bundle. The introduction of pseudodifferential operators on smooth manifolds
requires new results for the theory in Euclidean space beyond what is in Chapter VII. Section 6
addresses this matter. A notion of transpose is needed, and it is necessary to understand the effect of
diffeomorphisms on Euclidean pseudodifferential operators. To handle these questions, it is useful
to enlarge the definition of pseudodifferential operator for Euclidean space and to redo the Euclidean
theory from the new point of view. Once that program has been carried out, Section 7 patches
together pseudodifferential operators in Euclidean space to obtain pseudodifferential operators on
smooth separable manifolds. The notions of pseudolocal, properly supported, composition, and
elliptic extend, and the theorems are what one might expect from the Euclidean theory. Again the
principal symbol is well defined as a function on the cotangent bundle. Section 8 contains remarks
about extending the theory to handle operators carrying sections of one vector bundle to sections of
another vector bundle, about some other continuations of the theory, and about applications outside
real analysis. The section concludes with some bibliographical material.
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1. Differential Calculus on Smooth Manifolds

The goal of this chapter is to explain how aspects of the subject of linear partial
differential equations extend from open subsets of Euclidean space to smooth
manifolds. After an introduction to manifolds and their differential calculus,
we shall see the extent to which definitions and theorems about distributions,
differential operators, and pseudodifferential operators carry over from local facts
about Euclidean space to global facts about smooth manifolds. We shall see
also how certain important systems of differential equations can conveniently be
expressed globally in terms of operators from one vector bundle to another.
The present section introduces smooth manifolds, smooth functions on them,

tangent spaces to smooth manifolds, differentials of smooth mappings between
smooth manifolds, and a version of the Inverse Function Theorem for manifolds.
We begin with the definition of smooth manifold. Let M be a Hausdorff

topological space, and fix an integer n ≥ 0. A chart on M of dimension n is a
homeomorphism κ : Mκ → M̃κ of an open subset Mκ of M onto an open subset
M̃κ of Rn; the chart κ is said to be about a point p in M if p is in the domain
Mκ of κ . We say that M is amanifold if there is an integer n ≥ 0 such that each
point of M has a chart of dimension n about it.
A smooth structure of dimension n on a manifold M is a family F of

n-dimensional charts with the following three properties:

(i) any two charts κ and κ ′ in F are smoothly compatible in the sense that
κ ′ ◦ κ−1, as a mapping of the open subset κ(Mκ ∩Mκ ′) of Rn to the open
subset κ ′(Mκ ∩ Mκ ′) of Rn , is smooth and has a smooth inverse,

(ii) the system of compatible charts κ is an atlas in the sense that the domains
Mκ together cover M ,

(iii) F is maximal among families of compatible charts on M .
A smoothmanifoldofdimensionn is amanifold togetherwith a smooth structure
of dimension n. In the presence of an understood atlas, a chart will be said to be
compatible if it is compatible with all the members of the atlas.
Once we have an atlas of compatible n-dimensional charts for a manifold M ,

i.e., once (i) and (ii) are satisfied, then the family of all compatible charts satisfies
(i) and (iii), as well as (ii), and therefore is a smooth structure. In other words, an
atlas determines one and only one smooth structure. Thus, as a practical matter,
we can construct a smooth structure for a manifold by finding an atlas satisfying
(i) and (ii), and the extension of the atlas for (iii) to hold is automatic.
Let us make some remarks about the topology of manifolds. Let M be any

manifold, let p be in M , and let κ : Mκ → M̃κ be a chart about p. Then M̃κ

is an open neighborhood of κ(p). Since Rn is locally compact, we can find a
compact subneighborhood N of κ(p) contained in M̃κ . Then κ−1(N ) is a compact
neighborhood of p in M , and it follows that M is locally compact. Since M is
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by assumption Hausdorff, M is topologically regular. By the Urysohn Metriza-
tion Theorem1 a separable Hausdorff regular space is metrizable; therefore the
topology of a manifold is given by a metric if the manifold is separable.2

We shall not assume at any stage that M is connected, and until Section 5 we
shall not assume that M is separable.
A simple example of a smooth manifold isRn itself, with an atlas consisting of

the single chart 1, where 1 is the identity function onRn . Another simple example
is any nonempty open subset E of a smoothmanifoldM , which becomes a smooth
manifold by taking all the compatible charts κ of M , replacing them by charts
κ
∣∣
Mκ∩E , and eliminating redundancies. In particular, any open subset of Rn

becomes a smooth manifold since Rn itself is a smooth manifold.
Two less-trivial classes of examples are spheres and real projective spaces.

They can be realized explicitly as metric spaces, and then one can specify an atlas
and hence a smooth structure in each case. The details of these examples are
discussed in Problems 1–2 at the end of the chapter.
Most manifolds, however, are constructed globally out of other manifolds or

are pieced together from local data. The Hausdorff condition usually has to be
checked, is often subtle, and is always important. We postpone a discussion of
this matter for the moment.
Let us consider functions on smooth manifolds. If p is a point of the smooth

n-dimensional manifold M , a compatible chart κ about p can be viewed as giving
a local coordinate system near p. Specifically if the Euclidean coordinates in
M̃κ are (u1, . . . , un), then q = κ−1(u1, . . . , un) is a general point of Mκ , and we
define n real-valued functions q �→ xj (q) on Mκ by xj (q) = uj , 1 ≤ j ≤ n.
Then κ = (x1, . . . , xn). To refer the functions xj to Euclidean space Rn , we use
xj ◦ κ−1, which carries (u1, . . . , un) to uj .
The way that the functions xj are referred to Euclidean space mirrors how

a more general scalar-valued function on an open subset of M may be referred
to Euclidean space, and then we can define the function to be smooth if it is
smooth in the sense of Euclidean differential calculus when referred to Euclidean
space. It will only occasionally be important whether our scalar-valued functions
are real-valued or complex-valued. Accordingly, we shall follow the convention
introduced in Chapter IV that F denotes the field of scalars, either R or C; either
field is allowed (consistently throughout) unless some statement is made to the
contrary.
Therefore a smooth function f : E → F on an open subset E of M is a

function with the property, for each p ∈ E and each compatible chart κ about p,

1Theorem 10.45 of Basic.
2Some equivalent conditions for separability of a smooth manifold are given in Problem 3 at the

end of the chapter.
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that f ◦ κ−1 is smooth as a function from the open subset κ(Mκ ∩ E) of Rn into
F. A smooth function is necessarily continuous.
In verifying that a scalar-valued function f on an open subset E of M is

smooth, it is sufficient, with each point in E , to check a condition for only one
compatible chart about that point. The reason is the compatibility of the charts:
if κ1 and κ2 are two compatible charts about p, then f ◦ κ−12 is the composition
of the smooth function κ1 ◦ κ−12 followed by f ◦ κ−11 .
The space of smooth scalar-valued functions on the open set E will be denoted

byC∞(E); if wewant to insist on a particular field of scalars, wewriteC∞(E,R)

or C∞(E,C). The space C∞(E) is an associative algebra under the pointwise
operations, and it contains the constants. The support of a scalar-valued function
is, as always, the closure of the set where the function is nonzero. We write
C∞com(E) for the subset ofC

∞(E) of functions whose support is a compact subset
of E . The space C∞com(E), as well as the larger space C

∞(E), separates points of
E as a consequence of the following lemma and proposition; the lemma makes
essential use of the fact that the manifold is Hausdorff.

Lemma 8.1. If M is a smooth manifold, κ is a compatible chart for M , and f
is a function in C∞com(Mκ), then the function F defined on M to equal f on Mκ

and to equal 0 off Mκ is in C∞com(M) and has support contained in Mκ .

PROOF. The set S = support( f ) is a compact subset of Mκ and is compact
as a subset of M since the inclusion of Mκ into M is continuous. Since M is
Hausdorff, S is closed in M . The function F is smooth at all points of Mκ and in
particular at all points of S, and we need to prove that it is smooth at points of the
complementU of S in M . If p is inU , we can find a compatible chart κ ′ about p
with Mκ ′ ⊆ U . The function F is 0 on Mκ ′ ∩Mκ sinceU ∩ support( f ) = ∅, and
it is 0 on Mκ ′ ∩ Mc

κ since it is 0 everywhere on M
c
κ . Therefore it is identically 0

on Mκ ′ and is exhibited as smooth in a neighborhood of p. Thus F is smooth.

Proposition 8.2. Suppose that p is a point in a smooth manifold M , that κ is
a compatible chart about p, and that K is a compact subset of Mκ containing p.
Then there is a smooth function f : M → R with compact support contained in
Mκ such that f has values in [0, 1] and f is identically 1 on K .

PROOF. The set κ(K ) is a compact subset of the open subset M̃κ = κ(Mκ) of
Euclidean space, and Proposition 3.5f produces a smooth function g inC∞com(M̃κ)

with values in [0, 1] that is identically 1 on κ(K ). If f is defined to be g ◦ κ on
Mκ , then f is in C∞com(Mκ). Extending f to be 0 on the complement of Mκ in M
and applying Lemma 8.1, we see that the extended f satisfies the conditions of
the proposition.
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EXAMPLE. This example shows what can go wrong if the Hausdorff condition
is dropped from the definition of smooth manifold. Let X be the disjoint union
of two copies of R, say (R,+) and (R,−), with each of them open in X . Define
an equivalence relation on X by requiring that every point be equivalent to itself
and also that (x,+) be equivalent to (x,−) for x = 0. The quotient space M of
X by this equivalence relation consists of the nonzero elements of one copy ofR,
together with two versions of 0, which we denote by 0+ and 0−. The topological
space M is not Hausdorff since 0+ and 0− cannot be separated by disjoint open
sets. Let R+ ⊆ M be the image of (R,+) under the quotient map, and define
R− similarly. Define κ+ : R+ → R1 and κ− : R− → R1 in the natural way, and
then κ+ and κ− together behave like an atlas of compatible charts covering M .
To proceed with a theory, it is essential to be able to separate points by smooth
functions. Smooth functions are in particular continuous, and 0+ and 0− cannot
be separated by continuous real-valued functions on M . Thus they cannot be
separated by smooth functions, and Proposition 8.2 must fail. It is instructive,
however, to see just exactly how it does fail. In the proposition let us take p = 0+,
κ = κ+, and K = {0+}. We can certainly construct a smooth function f on R+
with values in [0, 1] that is 1 on K = {0+} and has compact support L as a
subset of R+. However, L is not closed as a subset of M . When f is extended to
be 0 off R+, the extended function is not continuous, much less smooth. To be
continuous, it would have to be defined to be 1, rather than 0, at 0−.

Corollary 8.3. Let p be a point of a smooth manifold M , let U be an open
neighborhood of p, and let f be inC∞(U ). Then there is a function g inC∞(M)

such that g = f in a neighborhood of p.

PROOF. Possibly by shrinkingU , wemay assume thatU is the domain of some
compatible chart κ about p. Let K be a compact neighborhood of p contained in
U , and use Proposition 8.2 to find h in C∞(M) with compact support in U such
that h is identically 1 on K . Define g to be the pointwise product h f onU and to
be 0 offU . Then g equals f on the neighborhood K of p, and Lemma 8.1 shows
that g is everywhere smooth.

The Euclidean chain rule yields a necessary condition for a tuple of real-
valued functions to provide a local coordinate system near a point, and the Inverse
Function Theorem shows the sufficiency of the condition. The details are as in
Proposition 8.4 below. Further results of this kind appear in Problems 6–7 at the
end of the chapter.

Proposition 8.4. Let M be an n-dimensional smooth manifold, let p be in M ,
let κ be a chart about p, and let f1, . . . , fm be inC∞(Mκ ,R). In order for there to
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exist an open neighborhood V of p such that the restriction of κ ′ = ( f1, . . . , fm)
to V is a compatible chart, it is necessary and sufficient that

(a) m = n and

(b) det

[
∂( fi ◦ κ−1)

∂uj

]
= 0 at the point u = κ(p).

PROOF OF NECESSITY. Let κ ′ = ( f1, . . . , fm). If κ ′ is a compatible chart about
p when restricted to some neighborhood V of p, then κ ′ ◦ κ−1 and κ ◦ κ ′−1 are
smooth mappings on open sets in Euclidean space that are inverse to each other.
By the chain rule the products of their Jacobian matrices in the two orders are the
identity matrices of the appropriate size. Therefore m = n, and the determinant
of the Jacobian matrix of κ ′ ◦ κ−1 at κ(p) is not 0.
PROOF OF SUFFICIENCY. Let m = n. If (b) holds, then the Inverse Function

Theorem produces an open neighborhood V ′ of κ ′(p) and an open neighborhood
U ′ ⊆ M̃κ of κ(p) such that κ ′ ◦ κ−1 has a smooth inverse g mapping V ′ one-one
ontoU ′. Let V = κ−1(U ′), and define h = κ−1◦g. Then hmaps V ′ one-one onto
V and satisfies h◦κ ′ = h◦(κ ′ ◦κ−1)◦κ = κ−1◦(g◦(κ ′ ◦κ−1))◦κ = κ−1◦κ = 1.
Thus h = κ ′−1 and κ ′

∣∣
V is a chart. To see that the chart κ

′∣∣
V is compatible, let

κ ′′ be a chart in the given atlas such that V ∩ Mκ ′′ = ∅. Then κ ′ ◦ κ ′′−1 =
(κ ′ ◦ κ−1) ◦ (κ ◦ κ ′′−1) is smooth, and so is κ ′′ ◦ κ ′−1 = κ ′′ ◦ h = (κ ′′ ◦ κ−1) ◦ g.
Hence the chart κ ′

∣∣
V is compatible.

A smooth function F : E → N from an open subset E of the n-dimensional
smooth manifold M into a smooth k-dimensional manifold N is a continuous
function with the property that for each p ∈ E , each compatible M chart κ about
p, and each compatible N chart κ ′ about F(p), the function κ ′ ◦F ◦κ−1 is smooth
from an open neighborhood of κ(p) in κ(Mκ ∩ E) ⊆ Rn into Rk . The function
κ ′ ◦ F ◦ κ−1 is what F becomes when it is referred to Euclidean space. Let us
examine κ ′ ◦ F ◦ κ−1 further.
In a compatible M chart κ about p, we have used (u1, . . . , un) as Euclidean

coordinates within M̃κ , and the local coordinate functions onMκ are the members
xj of C∞(Mκ ,R) such that xj ◦ κ−1(u1, . . . , un) = uj . In a compatible N chart
κ ′ about F(p), let us use (v1, . . . , vk) as Euclidean coordinates within Ñκ ′ , and
let us denote the local coordinate functions on Nκ ′ by yi . The formula for yi is
yi ◦ κ ′−1(v1, . . . , vk) = vi . The function κ ′ ◦ F ◦ κ−1 takes values of the form
(v1, . . . , vk), and the way to extract the i th coordinate function of κ ′ ◦ F ◦ κ−1
is to follow it with yi ◦ κ ′−1. Thus when F is referred to Euclidean space, the
i th coordinate function of the result is yi ◦ F ◦ κ−1. We shall write Fi for this
coordinate function.
If F : M → N is a smooth function between smooth manifolds and if F has

a smooth inverse, then F is called a diffeomorphism.
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If M and N are smooth manifolds, then the product M× N becomes a smooth
manifold in a natural way by taking an atlas of M × N to consist of all products
κ × κ ′ of compatible charts of M by compatible charts of N . With this definition
of smooth structure for M × N , the projections M × N → M and M × N → N
are smooth and so are the inclusions M → M × {y} and N → {x} × N for any
y in N and x in M .
Fix a point p in M . The “tangent space” to M at p will be defined shortly in a

way so as to consist of all first-derivative operators on functions at p. Traditionally
one uses only real-valued functions inmaking the definition, butwe shall adhere to
our convention and allow scalars from eitherR orC except whenwe need tomake
a choice. Construction of the tangent space can be done in a concrete fashion,
using the coordinate functions xj , or it can be donewith amore abstract definition.
The latter approach, which we follow, has the advantage of incorporating all the
necessary analysis into the problem of sorting out the definition rather than into
incorporating it into a version of the chain rule valid for manifolds. In other
words the one result that will need proof will be a statement limiting the size of
the tangent space, and the chain rule will become purely a formality.
To the extent that a tangent vector at p is a first derivative operator at p,

its effect will depend only on the behavior of functions in a neighborhood of p.
Within the abstract approach, there are then two subapproaches. One subapproach
works with functions on a fixed but arbitrary open set containing p and looks at
a kind of first-derivative-at-p operation on them. The other subapproach works
simultaneously with all functions such that any two of them coincide on some
neighborhood of p. Either subapproach will work in our present context of
smooth manifolds. It turns out, however, that a similar formalism applies to
other kinds of manifolds—particularly to complex manifolds and to real-analytic
manifolds—and only the second subapproach works for them. We shall therefore
introduce the idea of the tangent space to M at p by working simultaneously with
all functions such that any two of them coincide on some neighborhood of p. The
operative notion is that of a “germ” at p.
To emphasize domains, let us temporarily write ( f,U ) for a member of

C∞(U ). We consider all such objects such that p lies inU , andwedefine ( f,U ) to
be equivalent to (g, V ) if f = g on some subneighborhood about p of the common
domainU∩V . This notion of “equivalent” is readily checked to be an equivalence
relation, and we let Cp(M) be the set of equivalence classes. An equivalence class
is called a germ of a smooth scalar-valued function at p. The set of germs inherits
addition and multiplication from that for functions. Specifically the germ of the
sum ( f,U )+(g, V ) is defined to be the germof (( f ∣∣U∩V )+(g∣∣U∩V ),U∩V ). One
has to check that this definition is independent of the choice of representatives,
but that is routine. Multiplication is handled similarly. Then one checks that the
operations on germs have the usual properties of an associative algebra over F.
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Let us sketch the argument for associativity of addition. Let three germs be given,
and let ( f,U ), (g, V ), and (h,W ) be representatives. A representative of the sum
of the three is defined on the intersection I = U ∩ V ∩W . On I , the restrictions
to I satisfy ( f + g)+ h = f + (g + h) because of associativity for addition of
functions; hence the germs of the two sides of the associativity formula are equal,
and addition is associative in Cp(M).
The algebra Cp(M) admits a distinguished linear function into the field of

scalarsF, namely evaluation at p. If a germ is given and ( f,U ) is a representative,
then the value f (p) at p is certainly independent of the choice of representative;
thus evaluation at p is well defined on Cp(M). We denote it by e. Although germs
are not functions, we often use the same symbol for a germ as for a representative
function in order to remind ourselves how germs behave. A derivation of Cp(M)

is a linear function L : Cp(M)→ F such that L( f g) = L( f )e(g)+e( f )L(g). If
the germ f is the class of a function ( f,U ), then we can define L on the function
to be equal to L on the germ, and the formula for L on a product of two functions
will be valid on the common domain of the two representative functions.
Any derivation L of Cp(M) has to satisfy L(1) = L(1 ·1) = L(1)1+1L(1) =

2L(1) and thus must annihilate the constant functions and their germs. The
derivations of Cp(M) are also called tangent vectors to M at p, and the space of
these derivations is called the tangent space to M at p and is denoted by Tp(M).
For M = Rn , evaluation of a first partial derivative at p is an example. More

generally we can obtain examples for any M as follows: Let κ be a compatible
chart with p in Mκ . The specific derivations of Cp(M) that we construct will
depend on the choice of κ . We obtain n examples

[
∂
∂xj

]
p of derivations of Cp(M),

one for each j with 1 ≤ j ≤ n, by the definition[ ∂ f
∂xj

]
p
= ∂( f ◦ κ−1)

∂uj
(κ(p)) = ∂( f ◦ κ−1)

∂uj

∣∣∣
(u1,...,un)=(x1(p),...,xn(p))

.

For f = xi , we have[∂xi
∂xj

]
p
= ∂(xi ◦ κ−1)

∂uj
(x1(p), . . . , xn(p)) = ∂ui

∂uj
(x1(p), . . . , xn(p)) = δi j .

Consequently the n derivations
[

∂
∂xj

]
p of Cp(M) are linearly independent.

Proposition 8.5. Let M be a smooth manifold of dimension n, let p be in M ,
and let κ be a compatible chart about p. Then the n derivations

[
∂
∂xj

]
p of Cp(M)

form a basis for the tangent space Tp(M) of M at p, and any derivation L of
Cp(M) satisfies

L =
n∑
j=1

L(xj )
[ ∂

∂xj

]
p
.
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PROOF. We know that the n explicit derivations are linearly independent. To
prove spanning, let L be a derivation of Cp(M), and let ( f, E) represent a member
of Cp(M). Without loss of generality, wemay assume that E ⊆ Mκ and that κ(E)
is an open ball in Rn . Put u0 = (u0,1, . . . , u0,n) = κ(p), let q be a variable point
in E , and define u = (u1, . . . , un) = κ(q). Taylor’s Theorem3 applied to f ◦κ−1
on κ(E) gives

f ◦ κ−1(u) = f ◦ κ−1(u0)+
n∑
j=1

(uj − u0, j )
∂( f ◦κ−1)

∂uj
(u0)

+∑
i, j

(ui − u0,i )(uj − u0, j )Ri j (u)

with Ri j in C∞(κ(E)). Referring this formula to M , we obtain

f (q) = f (p)+
n∑
j=1

(xj (q)− xj (p))
[
∂ f
∂xj

]
p

+∑
i, j

(xi (q)− xi (p))(xj (q)− xj (p))ri j (q)

on E , where ri j = Ri j ◦ κ on E . Because L annihilates constants and has the
derivation property, application of L yields

L( f ) =
n∑
j=1

L(xj )
[
∂ f
∂xj

]
p +
∑
i, j

(
L(xi )(e(xj )− xj (p))e(ri j )

+ (e(xi )−xi (p))L(xj )e(ri j ) + (e(xi )−xi (p))(e(xj )−xj (p))L(ri j )
)

=
n∑
j=1

L(xj )
[
∂ f
∂xj

]
p,

as asserted.

A smooth function F : E → N as above has a “differential” that carries the
tangent space to M at p linearly to the tangent space to N at F(p). We shall
define the differential, find its matrix relative to local coordinates, and establish
a version of the chain rule for smooth manifolds. Let L be in Tp(M), and
let g be in CF(p)(M). Regard g as a smooth function defined on some open
neighborhood of F(p), and define (dF)p(L) to be the member of TF(p)(N ) given
by (dF)p(L)(g) = L(g ◦ F). To see that (dF)p(L) is indeed in TF(p)(N ), we
need to check that L(g ◦ F) depends only on the germ of g and not on the choice
of representative function; also we need to check the derivation property.

3In the form of Theorem 3.11 of Basic.
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To check these things, let g and g∗ be functions representing the same germ at
F(p). Then g = g∗ in a neighborhood of F(p), and the continuity of F ensures
that g ◦ F = g∗ ◦ F in a neighborhood of p. The derivation L depends only
on a germ at p, and thus (dF)p(L)(g) depends only on the germ of g. For the
derivation property we have

(dF)p(L)(g1g2) = L((g1g2) ◦ F) = L((g1 ◦ F)(g2 ◦ F))
= L(g1 ◦ F)(g2(F(p)))+ (g1(F(p)))L(g2 ◦ F)
= (dF)p(L)(g1)(g2(F(p)))+ (g1(F(p)))(dF)p(L)(g2),

and thus (dF)p(L) is in TF(p)(N ).
The mapping (dF)p : Tp(M)→ TF(p)(N ) is evidently linear, and it is called

the differential of F at p. We may write dFp for it if there is no ambiguity; later
we shall denote it by dF(p) as well. Proposition 8.5 gives us bases of Tp(M)

and TF(p)(N ), and we shall determine the matrix of dFp relative to these bases.

Proposition 8.6. Let M and N be smooth manifolds of respective dimensions
n and k, and let F : M → N be a smooth function. Fix p in M , let κ be an
M chart about p, and let κ ′ be an N chart about F(p). Relative to the bases[ ∂

∂xj

]
p
of Tp(M) and

[ ∂

∂yi

]
F(p)

of TF(p)(N ), the matrix of the linear function

dFp : Tp(M)→ TF(p)(N ) is
[∂Fi
∂uj

∣∣∣∣
(u1,...,un)=(x1(p),...,xn(p))

]
.

REMARK. In other words it is the Jacobian matrix of the set of coordinate
functions of the function obtained by referring F to Euclidean space. Hence the
differential is the object for smooth manifolds that generalizes the multivariable
derivative for Euclidean space. Accordingly, let us make the definition

[∂Fi
∂xj

]
p
=
[∂Fi
∂uj

∣∣∣∣
(u1,...,un)=(x1(p),...,xn(p))

]
.

PROOF. Application of the definitions gives

dFp
([ ∂

∂xj

]
p

)
(yi ) =

[ ∂

∂xj

]
p
(yi ◦ F)

= ∂(yi ◦ F ◦ κ−1)
∂uj

(x1(p), . . . , xn(p))

= ∂Fi
∂uj

∣∣∣∣
(u1,...,un)=(x1(p),...,xn(p))

.
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The formula in Proposition 8.5 allows us to express any member of TF(p)(N ) in
terms of its values on the local coordinate functions yi , and therefore

dFp
([ ∂

∂xj

]
p

)
=

k∑
i=1

∂Fi
∂uj

∣∣∣∣
(u1,...,un)=(x1(p),...,xn(p))

[ ∂

∂yi

]
p
.

Thus the matrix is as asserted.

Proposition 8.7 (chain rule). Let M , N , and R be smooth manifolds, and let
F : M → N and G : N → R be smooth functions. If p is in M , then

d(G ◦ F)p = dGF(p) ◦ dFp.

PROOF. If L is in Tp(M) and h is in CG(F(p))(R), then the definitions give

d(G ◦ F)p(L)(h) = L(h ◦ G ◦ F) = dFp(L)(h ◦ G) = dGF(p)(dFp(L)(h)),

as asserted.

2. Vector Fields and Integral Curves

A vector field on an open subset U of Rn was defined in Chapter IV of Basic
as a function X : U → Rn . The vector field is smooth if X is a smooth
function. In classical notation, X is written X = ∑n

j=1 aj (x1, . . . , xn)
∂
∂xj
, and

the function carries (x1, . . . , xn) to (a1(x1, . . . , xn), . . . , an(x1, . . . , xn)). The
traditional geometric interpretation of X is to attach to each point p ofU the vector
X (p) as an arrow based at p. This interpretation is appropriate, for example, if X
represents the velocity vector at each point in space of a time-independent fluid
flow.
Taking the interpretation with arrows into account and realizing that the use

of arrows implicitly takes F = R, we see that an appropriate generalization in
the case of a smooth manifold M is this: a vector field attaches to each p in M a
member of the tangent space Tp(M). Let us make this definition more precise.
If M is a smooth n-dimensional manifold, let

T (M) = {(p, L) | p ∈ M and L ∈ Tp(M)},

and let π : T (M)→ M be the projection to the first coordinate. A vector field
X on an open subsetU of M is a function fromU to T (M) such that π ◦ X is the
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identity on U ; so X is indeed a function whose value at any point p is a tangent
vector at p. The value of X at p will be written Xp.
We shall be mostly interested in vector fields that are “smooth.” Ultimately

this smoothness will be defined by making T (M) into a smooth manifold known
as the tangent bundle of M . The local structure of this smooth manifold is easily
accessible via Proposition 8.5. That proposition shows that having a chart κ of M
singles out an ordered basis of the tangent space at each point in Mκ . Identifying
all these tangent spaces with Fn by means of this ordered basis, we obtain an
identification of {(p, L) | p ∈ Mκ and L ∈ Tp(M)} with Mκ × Fn and hence
with M̃κ ×Fn . The result is a chart for T (M) that we shall include in our atlas. It
will be fairly easy to see how these charts are to be patched together compatibly.
The problem in obtaining the structure of a smooth manifold is in proving that
T (M) is Hausdorff. Although the Hausdorff property may look evident at first
glance, it perhaps looks equally evident for the example with R+ and R− in
the previous section, and there the Hausdorff property fails. Thus some care is
appropriate. We shall study this matter more carefully in Section 3 and complete
the construction of the smooth structure on the tangent bundle in Section 4.
For now we shall proceed with a more utilitarian definition of smoothness of

a vector field. A vector field X on M carries C∞(U ), for any open subset U of
M , to a space of functions on M by the rule (X f )(p) = Xp( f ). We say that the
vector field X on M is smooth if X f is in C∞(U ) wheneverU is open in M and
f is in C∞(U ).

Proposition 8.8. Let X be a vector field on a smooth n-dimensional manifold
M . If κ = (x1, . . . , xn) is a compatible chart and if f is in C∞(Mκ), then

X f (p) =
∑
i

∂ f

∂xi
(p) (Xxi )(p) for p ∈ Mκ .

The vector field X is smooth if and only if Xxi is smooth for each coordinate
function xi of each compatible chart on M .

PROOF. The displayed formula is immediate from Proposition 8.5. To see that
if X is smooth, then Xxi is smooth on Mκ , let q be a point of Mκ and choose, by
Proposition 8.2, a function g in C∞(M) such that g = xi in a neighborhood of
q. Then ∂g

∂xj
(p) = δi j identically for p in that neighborhood of q. The displayed

formula shows that Xg(p) = Xxi (p) for p in that neighborhood. Since Xg is
smooth everywhere, Xxi must be smooth in that neighborhood of q.
Conversely suppose that each Xxi is smooth. Let f be inC∞(M). Since ∂ f

∂xi
(p)

means ∂( f ◦κ−1)
∂ui

∣∣
u=κ(p) and since f ◦ κ−1 is in C∞(M̃κ), the function p �→ ∂ f

∂xi
(p)

is inC∞(U ). Since each Xxi is inC∞(Mκ) by assumption, X f
∣∣
Mκ
is inC∞(Mκ).

Then X f must be C∞(M) because the compatible chart κ is arbitrary.
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A smooth curve c(t) on the smooth manifold M is a smooth function c from
an open interval of R1 into M . The smooth curve c(t) is an integral curve for a
smooth real-valued vector field X if Xc(t) = dct

(
d
dt

)
for all t in the domain of c.

Integral curves in open subsets of Euclidean space were discussed in Section IV.2
of Basic. We shall now transform those results into results about integral curves
on smooth manifolds.
Let M be a smooth manifold of dimension n, let κ = (x1, . . . , xn) be a com-

patible chart, and let X =
n∑
j=0

aj (x)
∂
∂xj
be the local expression from Proposition

8.8 for a smooth real-valued vector field X on M within Mκ , so that aj is in
C∞(Mκ ,R). Let c(t) be a smooth curve on U . Define bj (y) = aj (κ−1(y)) for
y ∈ M̃κ ⊆ Rn , and let y(t) = (y1(t), . . . , yn(t)) = κ(c(t)), so that y(t) is a
smooth curve on M̃κ . Then we have

Xc(t) f =
n∑
i=1

[
ai (x)

∂ f

∂xi

]
c(t)
=

n∑
i=1

(ai ◦ κ−1) ◦ (κ(c(t))
[ ∂ f
∂xi

]
c(t)

=
n∑
i=1

bi (y(t))
[ ∂ f
∂xi

]
c(t)

and

dct
( d
dt

)
( f ) = d

dt
( f ◦ c)(t) = d

dt
( f ◦ κ−1 ◦ y)(t)

=
n∑
i=1

[∂( f ◦ κ−1)
∂ui

]
u=y(t)

[dyi (t)
dt

]
t
=

n∑
i=1

[dyi (t)
dt

]
t

[ ∂ f
∂xi

]
c(t)

.

The two left sides are equal for all f , i.e., c(t) is an integral curve for X on Mκ

in M , if and only if the two right sides are equal for all f , i.e., y(t) satisfies

dyj
dt
= bj (y) for 1 ≤ j ≤ n.

The latter condition is the condition for y(t) to be an integral curve for the vector

field
n∑
j=0

bj (y)
∂
∂yj
on M̃κ in Rn . Applying Proposition 4.4 of Basic, which in turn

is an immediate consequence of the standard existence-uniqueness results for
systems of ordinary differential equations, we obtain the following generalization
to manifolds.

Proposition 8.9. Let X be a smooth real-valued vector field on a smooth
manifold M , and let p be in M . Then there exist an ε > 0 and an integral curve
c(t) defined for −ε < t < ε such that c(0) = p. Any two integral curves c and
d for X having c(0) = d(0) = p coincide on the intersection of their domains.
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As in the Euclidean case, the interest is not only in Proposition 8.9 in isolation
but also in what happens to the integral curves when X is part of a family of vector
fields.

Proposition 8.10. Let X (1), . . . , X (m) be smooth real-valued vector fields on
a smooth n-dimensional manifold M , and let p be in M . Let V be a bounded
open neighborhood of 0 in Rm . For λ in V , put Xλ =

∑m
j=1 λj X

( j). Then there
exist an ε > 0 and a system of integral curves c(t, λ), defined for t ∈ (−ε, ε)
and λ ∈ V , such that c( · , λ) is an integral curve for Xλ with c(0, λ) = p. Each
curve c(t, λ) is unique, and the function c : (−ε, ε) × V → M is smooth. If
m = n, if the vectors X (1)(p), . . . , X (n)(p) are linearly independent, and if δ is
any positive number less than ε, then c(δ, · ) is a diffeomorphism from an open
subneighborhood of 0 (depending on δ) onto an open subset of M , and its inverse
defines a chart about p.

PROOF. All but the last sentence is just a translation of Proposition 4.5 of
Basic into the setting with manifolds. For the last sentence, Proposition 4.5 of
Basic establishes that the the Jacobian matrix at λ = 0 of the function λ �→
c(δ, λ) transferred to Euclidean space is nonsingular, and the rest follows from
Proposition 8.4.

3. Identification Spaces

We saw in a 1-dimensional example in Section 1 that the Hausdorff condition
is subtle (and does not always hold) when one tries to build a smooth manifold
out of smooth charts. In Section 2 we saw that it would be desirable to obtain a
smooth manifold structure on the tangent bundle of a smooth manifold in order to
make the definition of smoothness of vector fields more evident from the smooth
structure, and the natural way of proceeding was to piece the structure together
from charts that were products of charts for the smooth manifold by mappings on
whole Euclidean spaces. The example in Section 1 serves as a reminder, however,
that we should not take the Hausdorff condition for granted in working with the
tangent bundle.
In fact, the construction in both instances appears in a number of important

situations in mathematics. One is in constructing “vector bundles” and more
general “fiber bundles” out of local data, and another is in constructing covering
spaces in the theory of fundamental groups. Still a third is in the construction of
restricted direct products4 in Problem 30 in Chapter IV.

4In fairness it should be said that restricted direct products, which involve a direct limit, are more
easily handled by the method in Chapter IV than by a construction analogous to that of the tangent
bundle.
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For a clearer picture of what is happening, let us abstract the situation. The
idea is to build complicated topological spaces out of simpler ones by piecing
together local data. For lack of a better name for the abstract construction, we
shall call the result an “identification space.” A simple example of the use of
charts in defining manifold structures will point the way to the general definition.

EXAMPLE. Suppose, by way of being concrete, that we have overlapping open
setsU1 andU2 inRn . We takeU1 andU2 as completely understood, and we want
to describe U1 ∪ U2 as a topological space. Let X be the disjoint union of U1
and U2, which we write as X = U1 � U2. By definition, X as a set is the set
of all pairs (x, i) with x in Ui , and i takes on the values 1 and 2. We identify
U1 ⊆ U1 � U2 with the set of pairs (x, 1) and U2 ⊆ U1 � U2 with the set of
pairs (y, 2). A subset E of X is defined to be open if E ∩ U1 is open in U1 and
E ∩U2 is open in U2. The resulting collection of open sets is a topology for X ,
and the embedded copies of U1 and U2 in X are open. We define (x, 1) ∼ (y, 2)
if x = y as members of Rn , and the identification space is X/∼. We give X/∼
the quotient topology, and it is not hard to see that X/∼ is homeomorphic to the
union U1 ∪U2 as a topological subspace of the metric space Rn .

Let us come to the general definition. We are given a set of topological spaces
Wi for i in some nonempty index set I , and we assume, for each ordered pair
(i, j), that we have a homeomorphism ψj i of an open subset Wji of Wi onto an
open subset Wi j of Wj (possibly with Wji and Wi j both empty) such that

(i) ψi i is the identity on Wii = Wi ,
(ii) ψi j ◦ ψj i is the identity on Wji , and
(iii) Wki ∩Wji = ψi j (Wkj ∩Wi j ), and ψk j ◦ ψj i = ψki on this set.

We form the disjoint union X =⊔i Wi , i.e., the set of pairs (x, i) with x in Wi .
We topologize X by requiring that each Wi be open in X . Then we introduce a
relation∼ on X by saying that (x, i) ∼ (y, j) ifψj i (x) = y. The three properties
(i), (ii), and (iii) show that ∼ is an equivalence relation, and X/∼ is called an
identification space. It is given the quotient topology.
Let us see the effect of this construction in the special case that we reconstruct

a general smooth n-dimensional manifold out of an atlas of its charts. If κi is a
chart in the atlas, we take Wi to be the image M̃κi of κi . With two such charts κi
and κj , define

Wji = κi (M̃κi ∩ M̃κj ), Wi j = κj (M̃κi ∩ M̃κj ), ψj i = κj ◦ κ−1i .

It is a routine matter to check (i), (ii), and (iii). The disjoint union
⊔

i κ
−1
i of

the maps κ−1i is a continuous open function from X = ⊔
i Wi onto M . Let

q : X → X/∼ be the quotient map. If (x, i) ∼ (y, j), then ψj i (x) = y and
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hence κj ◦ κ−1i (x) = y and κ−1i (x) = κ−1j (y). Thus equivalent points in X map

to the same point in M , and we obtain a factorization
⊔

i κ
−1
i = ϕ ◦ q for a

continuous open map ϕ : X/∼→ M . Since the only identifications in M are the
ones determined by the charts, i.e., the ones of the form (x, i) ∼ (y, j) as above,
ϕ is one-one and consequently is a homeomorphism. We can recover the charts
of M as well, since the restriction of q to a single Wi is one-one. The i th chart is
the function q−1 ◦ ϕ−1∣∣Mκi

: Mκi → M̃κi .

Thus an identification space is a suitable device for reconstructing a smooth
manifold from its charts. We can therefore try to use identification spaces to
build new smooth manifolds out of what ought to be their charts. Proposition
8.11 below simplifies the checking of the Hausdorff condition. Proposition 8.12
shows, under natural additional assumptions, that the identification space is a
smooth manifold if it has been shown to be Hausdorff.

Proposition 8.11. In the situation of an identification space formed from a
disjoint union X = ⊔i Wi and an equivalence relation ∼, the quotient mapping
q : X → X/∼ is necessarily open. Consequently the identification space X/∼
is Hausdorff if and only if the set of equivalent pairs in X × X is closed.

REMARKS. In applications we may expect that the given topological spaces
Wi are Hausdorff, and then their disjoint union X will be Hausdorff, and so will
X × X . In this case the theory of nets becomes a handy tool for deciding whether
the set of equivalent pairs within X×X is closed. Thus suppose we have nets with
xα ∼ yα in X and that xα → x0 and yα → y0. We are to prove that x0 ∼ y0. Let
x0 be inWi , and let y0 be inWj . SinceWi andWj are open in X , xα is eventually
inWi and yα is eventually inWj . In other words, the Hausdorff condition depends
on only two sets Wi at a time and is as follows: We may assume that xα and x0
are inWi with xα → x0, that yα and y0 are inWj with yα → y0, and that xα ∼ yα
for all α. What needs proof is that x0 ∼ y0.

PROOF. The second statement follows from the first in view of Proposition
10.40 of Basic. Thus we have only to show that the quotient map is open.
If U is open in X , we are to show that q−1(q(U )) is open in X . The direct
image of a function respects arbitrary unions, and thus q(U ) = ⋃j q(U ∩ Wj ).
Hence q−1(q(U )) =⋃j q

−1(q(U ∩Wj )), and it is enough to prove that a single
q−1(q(U ∩ Wj )) is open. Since X is the disjoint union of the open sets Wi , it
is enough to prove that each Wi ∩ q−1(q(U ∩ Wj )) is open. This intersection
is the subset of elements in Wi that get identified with elements in U ∩ Wj ,
namely ψi j (U ∩ Wi j ). Since ψi j is a homeomorphism of Wi j with Wji , the set
ψi j (U ∩ Wi j ) is open in Wji . Since Wji is open in Wi , ψi j (U ∩ Wi j ) is open in
Wi .
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Proposition 8.12. Let the topological space M be obtained as an identification
space from a disjoint union X = ⊔i Wi in which each Wi is an open subset of
Rn . Suppose that each identification ψj i : Wji → Wi j is a smooth function,
and suppose that q : X → M denotes the quotient mapping. Assume that the
set of equivalent pairs in X × X is a closed subset, so that M is a Hausdorff
space. Then M becomes a smooth n-dimensional manifold under the following
definition of an atlas of compatible charts: For each i , letUi = q(Wi ), and define
κi : Ui → Wi to be the inverse of q

∣∣
Wi
: Wi → Ui . The charts of the atlas are

the maps κi .

PROOF. The mapping q is open according to Proposition 8.11. Since Wi is
open in X , Ui = q(Wi ) is open in M . To see that q is one-one from Wi to Ui ,
suppose that two members of Wi are equivalent. We know that the members of
Wi are of the form (w, i), and the equivalence relation is given by the statement

(wi , i) ∼ (wj , j) if and only if ψj i (wi ) = wj . (∗)
In particular wi must be in the domain of ψj i , which is Wji . Then two members
of Wi , say (w, i) and (w′, i), can be equivalent only if ψi i (w) = w′. Since
ψi i is the identity function, w = w′. Therefore q is one-one on Wi and is a
homeomorphism of Wi onto the open subset Ui of M . Consequently κi is well
defined as a homeomorphism of the open subset Ui of M with the open subset
Wi of Euclidean space Rn .
We have to check the compatibility of the charts. We have

Ui ∩Uj = q(Wi ) ∩ q(Wj )

= {classes of {q(wi , i) | ψj i is defined on wi }
} = q(Wji ).

Then
κi (Ui ∩Uj ) = κi

(
(q
∣∣
Wi
)(Wji )

) = Wji ,

and similarly κj (Ui ∩Uj ) = Wi j . Hence κj ◦ κ−1i carriesWji ontoWi j . If (wi , i)
is a member of Wji , we show that

κj (κ
−1
i ((wi , i))) = (ψj i (wi ), j). (∗∗)

If we drop the second entries of our pairs, which are present only to emphasize
that X is a disjoint union, equation (∗∗) says that κj ◦κ−1i equalsψj i onWji . Since
ψj i is smooth by assumption, the verification of (∗∗) will therefore complete the
proof of the proposition. Taking (∗) into account, we have

κ−1i ((wi , i)) = q((wi , i)) = q((ψj i (wi ), j)) = κ−1j ((ψj i (wi ), j)).

Application of κj to both sides of this identity yields (∗∗) and thus completes the
proof.
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4. Vector Bundles

In this sectionwe introduce general vector bundles over a smoothmanifoldM . Of
particular interest are the tangent and cotangent bundles. The tangent bundle as
a set is to be identifiable with

⋃
p∈M Tp(M), and one realization of the cotangent

bundle as a set will be the same kind of union of the dual vector spaces T ∗p (M)

to Tp(M). To construct these bundles as manifolds, we shall form them as
identification spaces in the sense of Section 3, and that step will be carried out in
this section.
We continue with the convention of writing F for the field of scalars, which is

to be R or C. The fiber of any vector bundle will be Fn for some n, and we speak
of real and complex vector bundles in the two cases.
Let M be a smooth manifold of dimension m, and let {κ} be an atlas of

compatible charts, where κ is the map κ : Mκ → M̃κ . Denote by GL(n,F)
the general linear group of all n-by-n nonsingular matrices with entries in F. A
smooth coordinate vector bundle of rank n over M relative to this atlas consists
of a smooth manifold B called the bundle space, a smooth mapping π of B
onto M called the projection from the bundle space to the base space M , and
diffeomorphisms φκ : Mκ × Fn → π−1(Mκ) called the coordinate functions
such that

(i) πφκ(p, v) = p for p ∈ Mκ and v ∈ Fn ,
(ii) the smoothmapsφκ,p : Fn → π−1(Mκ) defined for p inMκ byφκ,p(v) =

φκ(p, v) are such that φ
−1
κ ′,p ◦ φκ,p : Fn → Fn is in GL(n,F) for each κ

and κ ′ and for all p in Mκ ∩ Mκ ′ ,
(iii) the map gκ ′κ : Mκ ∩ Mκ ′ → GL(n,F) defined by gκ ′κ(p) = φ−1κ ′,p ◦ φκ,p

is smooth.

The maps p �→ gκ ′κ(p)will be called the transition functions5 of the coordinate
vector bundle.
An atlas of compatible charts of the coordinate vector bundle may be taken to

consist of the maps (κ × 1) ◦ φ−1κ : π−1(Mκ)→ M̃κ × Fn . The dimension of B
is m + n if F = R and is m + 2n if F = C.

EXAMPLE. Data for the tangent bundle. Although we have not yet introduced
the topology on the bundle space in this instance, we can identify the functionsφκ ,
φκ ′ , and gκ ′κ explicitly. Let the local expressions for κ and κ ′ be κ = (x1, . . . , xn)

and κ ′ = (y1, . . . , yn). Let c =
( c1

...
cn

)
and d =

( d1
...
dn

)
be members of Fn . The

set π−1(Mκ) is to consist of all tangent vectors at points of Mκ , and Proposition

5The terms coordinate transformations and transition matrices are used also.
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8.5 shows that these are all expressions
∑n

j=1 cj
[

∂
∂xj

]
p, where

[
∂ f
∂xj

]
p concretely

means ∂( f ◦κ−1)
∂uj

(κ(p)). The formulas for φκ and φκ ′ are then

φκ,p(c) =
n∑
j=1

cj
[

∂
∂xj

]
p

φκ ′,p(d) =
n∑
j=1

dj
[

∂
∂yj

]
p.and

The other relevant formula is the formula for the matrix of the differential of
a smooth mapping relative to compatible charts in the domain and range. The
formula is given in Proposition 8.6 and is

dFp
([

∂
∂xj

]
p

) = n∑
i=1

[
∂Fi
∂xj

]
p

[
∂
∂yi

]
p.

We apply this formula with F equal to the identity mapping, whose local expres-
sion is κ ′ ◦ κ−1 and therefore has Fi = yi ◦ κ−1. Since the differential of the
identity is the identity, we have[

∂
∂xj

]
p =

n∑
i=1

[
∂yi
∂xj

]
p

[
∂
∂yi

]
p.

Substituting into the formula for φκ,p(c), we obtain

φκ,p(c) =
n∑
i=1

( n∑
j=1

cj
[
∂yi
∂xj

]
p

) [
∂
∂yi

]
p.

Therefore φ−1κ ′,pφκ,p(c) = d, where di =
n∑
j=1

cj
[
∂yi
∂xj

]
p =

([
∂yi
∂xj

]
p c
)
i
, and we

conclude that
gκ ′κ(p) =

[
∂yi
∂xj

]
p.

Returning to case of a general coordinate vector bundle, let us observe a simple
property of the transition functions.

Proposition 8.13. Let M be an m-dimensional smooth manifold M , fix an
atlas {κ} for M , and let π : B → M be a smooth vector bundle of rank n with
transition functions p �→ gκ ′κ(p). Then

gκ ′′κ ′(p)gκ ′κ(p) = gκ ′′κ(p) for all p ∈ Mκ ∩ Mκ ′ ∩ Mκ ′′ .

Consequently the transition functions satisfy the identities gκκ(p) = 1 for p ∈ Mκ

and gκκ ′(p) = (gκ ′κ(p))−1 for p ∈ Mκ ∩ Mκ ′ .

PROOF. We have gκ ′′κ ′(p)gκ ′κ(p) = φ−1κ ′′,pφκ ′,pφ
−1
κ ′,pφκ,p = φ−1κ ′′,pφκ,p =

gκ ′′κ(p). Putting κ = κ ′ = κ ′′ yields gκκ(p)gκκ(p) = gκκ(p); thus gκκ(p) = 1.
Putting κ = κ ′′ yields gκκ ′(p)gκ ′κ(p) = gκκ(p) = 1.
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The main abstract result about vector bundles for our purposes will be a
converse to Proposition 8.13, enabling us to construct a vector bundle from an
atlas of M and a system of smooth functions p �→ gκ ′κ(p) defined on Mκ ∩Mκ ′′ if
these functions satisfy the conditions of the proposition. This result will be given
as Proposition 8.14 below. In the case of the tangent bundle, we saw above that
gκ ′κ(p) is given by gκ ′κ(p) =

[
∂yi
∂xj

]
p. The identity gκ ′′κ ′(p)gκ ′κ(p) = gκ ′′κ(p)

follows from the chain rule, and thus the abstract result will complete the con-
struction of the tangent bundle as a smooth manifold. We shall construct the
cotangent bundle similarly.
One can equally construct other vector bundles of interest in analysis, as we

shall see, but we shall omit the details for most of these. It is fairly clear from
the example above that one can make local calculations with vector bundles by
working with the transition functions. Here is an example.

EXAMPLE. Suppose for a particular coordinate vector bundle that we have a
systemof functions fκ : M̃κ×Fn → Swith range equal to some set S independent
of κ . Let us determine the circumstances under which the system { fκ} is the local
form of some globally defined function f : B → S. A necessary and sufficient
condition is that whenever (x, v) ∈ M̃κ × Fn and (y, v′) ∈ M̃κ ′ × Fn correspond
to the same point of B, then fκ(x, v) = fκ ′(y, v′). The maps from M̃κ × Fn and
M̃κ ′ × Fn into B are φκ ◦ (κ−1 × 1) and φκ ′ ◦ (κ ′−1 × 1). Thus (x, v) and (y, v′)
correspond to the samemember of B if and only if φκ(κ

−1x, v) = φκ ′(κ
′−1y, v′).

We must have κ−1x = κ ′−1y for this equality. In this case let us put p = κ−1x =
κ ′−1y, and then it is necessary and sufficient that φκ,p(v) = φκ ′,p(v

′), hence
that φ−1κ ′,p ◦ φκ,p(v) = v′, hence that gκ ′κ(p)(v) = v′. Thus (x, v) and (y, v′)
correspond to the same point in B if and only if y = κ ′κ−1x and gκ ′κ(κ−1x)(v) =
v′. Consequently the functions fκ define a global f if and only if

fκ(x, v) = fκ ′
(
κ ′κ−1x, gκ ′κ(κ−1x)(v)

)
whenever κ ′κ−1x is defined. In the case of the tangent bundle, we saw in the
previous example that gκ ′κ =

[
∂yi (x)
∂xj

]
. Thus the condition is that

fκ(x, v) = fκ ′
(
y,
[
∂yi (x)
∂xj

]
(v)
)

whenever y = κ ′κ−1(x); here the fiber dimension n is also the dimension of the
base manifold M .

Before getting to the converse result to Proposition 8.13, let us address the
question of when, for given n, F, M , B, and π , we get the “same” coordinate
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vector bundle from a different but compatible atlas {λ} and different coordinate
functions φλ. The condition that we impose, which is called strict equivalence,
is that if we set up the transition functions corresponding to a member κ of the
first atlas and a member λ of the second atlas, namely

ḡλκ(p) = φ′λ,p
−1 ◦ φκ,p for p ∈ Mκ ∩ Mλ,

then each ḡλκ(p) lies in GL(n,F) and the function p �→ ḡλκ(p) is smooth from
Mκ ∩ Mλ into GL(n,F). In other words, strict equivalence means that the union
of the two atlases, along with the associated data, is to make π : B → M into a
coordinate vector bundle. Strict equivalence is certainly reflexive and symmetric.
Since we can discard some charts from the construction of a coordinate vector
bundle as long as the remaining charts cover M , strict equivalence is transitive.
An equivalence class of strictly equivalent coordinate vector bundles is called a
vector bundle, real or complex according as F is R or C.
With the definition of smooth structure for a smooth manifold, we were able

to make the atlas canonical by assuming that it was maximal. Every atlas of
compatible charts could be extended to one and only one maximal such atlas,
and therefore smooth manifolds were determined by specifying any atlas of
compatible charts, not necessarily a maximal one. We do not have to address
the corresponding question about vector bundles—whether the atlas of M used
in defining a coordinate vector bundle can be enlarged to a maximal atlas of M
and still define a coordinate vector bundle. The reason is that the specific vector
bundles with which we work are all definable immediately by maximal atlases of
M .
Now let us proceed with the converse result.

Proposition 8.14. If a smooth m-dimensional manifold M is given, along
with an atlas {κ} of compatible charts and a system of smooth functions
gκ ′κ : Mκ ∩ Mκ ′ → GL(n,F) satisfying the property gκ ′′κ ′(p)gκ ′κ(p) = gκ ′′κ(p)
for all p in Mκ ∩ Mκ ′ ∩ Mκ ′′ , then there exists a coordinate vector bundle
π : B → M with the functions gκ ′κ as transition functions. The result is
unique in the following sense: if π : B → M and π ′ : B ′ → M are two
such coordinate vector bundles, with coordinate functions φκ and φ′κ , then there
exists a diffeomorphism h : B → B ′ such that π ′ ◦ h = π and φ′κ = h ◦ φκ for
all charts κ in the atlas.

PROOF OF UNIQUENESS OF COORDINATE VECTOR BUNDLE UP TO FUNCTION h.
Define a diffeomorphism hκ : π−1(Mκ) → π ′−1(Mκ) by hκ = φ′κ ◦ φ−1κ , so
that hκ ◦ φκ = φ′κ . Evaluating both sides at (p,Fn) with p in Mκ , we obtain
hκ(π−1(p)) = π ′−1(p). Thus π ′ ◦ hκ = π on π−1(Mκ).
Since the map hκ,p = hκ

∣∣
π−1(p) carries π

−1(p) to π ′−1(p), we can write
hκ,p ◦ φκ,p = φ′κ,p. If p is also in Mκ ′ , then we have hκ ′,p ◦ φκ ′,p = φ′κ ′,p
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as well. Since B and B ′ are assumed to have the same transition functions,
gκ ′κ(p) = φκ ′,p

−1φκ,p = φ′κ ′,p
−1φ′κ,p; in other words, φκ ′,pgκ ′κ(p) = φκ,p and

φ′κ ′,pgκ ′κ(p) = φ′κ,p. Therefore

hκ,pφκ,p = φ′κ,p = φ′κ ′,pgκ ′κ(p) = hκ ′,pφκ ′,pgκ ′κ(p) = hκ ′,pφκ,p,

and we obtain hκ,p = hκ ′,p. Thus the functions hκ are consistently defined on
their common domains and fit together as a global diffeomorphism of B onto B ′.

PROOF OF EXISTENCE OF COORDINATE VECTOR BUNDLE. Let us construct
B as an identification space. We are writing M̃κ for κ(Mκ), and we put
M̃κ ′κ = κ(Mκ ∩ Mκ ′). Define Wκ = M̃κ × Fn and Wκ ′κ = M̃κ ′κ × Fn , and
let

ψκ ′κ(m̃, v) = (κ ′κ−1(m̃), gκ ′κ(κ
−1(m̃))(v)

)
for (m̃, v) ∈ Wκ ′κ .

We shall prove that X = ⊔κ Wκ , together with the functions ψκ ′κ , defines an
identification space B = X/∼. We have to check (i), (ii), and (iii) in Section 3.
For (i), we need that ψκκ is the identity on Wκκ = Wκ , and the computation is

ψκκ(m̃, v) = (m̃, gκκ(κ
−1(m̃))(v)

) = (m̃, v)

since gκκ( · ) is identically the identity matrix. For (ii), we need that ψκκ ′ψκ ′κ is
the identity on Wκ ′κ . The composition on (m̃, v) is

ψκκ ′
(
κ ′κ−1(m̃), gκ ′κ(κ

−1(m̃))(v)
)

= (κκ ′−1κ ′κ−1(m̃), gκκ ′(κ
′−1(κ ′κ−1(m̃)))gκ ′κ(κ

−1(m̃))(v)
)

= (m̃, gκκ ′(κ
−1(m̃))gκ ′κ(κ

−1(m̃))(v)
)
.

The second member of the right side collapses to v since gκκ ′(p)gκ ′κ(p) = 1 for
all p in Mκ . This proves (ii). For (iii), we need that ψκ ′′κ ′ ◦ ψκ ′κ = ψκ ′′κ on the
set Wκ ′′κ ∩Wκ ′κ = ψκκ ′(Wκ ′′κ ′ ∩Wκκ ′), and the composition on (m̃, v)

= ψκ ′′κ ′
(
(κ ′κ−1(m̃), gκ ′κ(κ

−1(m̃)(v)
)

= (κ ′′κ ′−1(κ ′κ−1(m̃)), gκ ′′κ ′(κ
′−1(κ ′κ−1(m̃)))gκ ′κ(κ

−1(m̃))(v)
)

= (κ ′′κ−1(m̃), gκ ′′κ ′(κ
−1(m̃))gκ ′κ(κ

−1(m̃))(v)
)

= (κ ′′κ−1(m̃), gκ ′′κ(κ
−1(m̃))(v)

)
= ψκ ′′κ(m̃, v).

This proves (iii) and completes the construction of B.



4. Vector Bundles 343

To prove that B is Hausdorff, we apply Proposition 8.11 and its remark. Thus
suppose that we have nets with xα ∼ yα in X , that xα → x0 and yα → y0, and
that xα and x0 are in Wκ and yα and y0 are in Wκ ′ . We are to prove that x0 ∼ y0.
Write xα = (m̃α, vα), x0 = (m̃0, v0), yα = (m̃′α, v

′
α), and y0 = (m̃′0, v

′
0). The

assumed convergence says that m̃α → m̃0, vα → v0, m̃ ′α → m̃ ′0, and v
′
α → v′0.

The assumed equivalence xα ∼ yα says that ψκ ′κ(m̃α, vα) = (m̃ ′α, v
′
α), i.e.,

κ ′κ−1(m̃α) = m̃ ′α and gκ ′κ(κ
−1(m̃α))(vα) = v′α,

and we are to prove that

κ ′κ−1(m̃0) = m̃ ′0 and gκ ′κ(κ
−1(m̃0))(v0) = v′0.

The functions κ ′κ−1, gκ ′κ , and κ−1 are continuous, and the only question is
whether m̃0 is in the domain of κ ′κ−1 and κ−1(m̃0) is in the domain of gκ ′κ , i.e.,
whether m̃0 is in the subset M̃κ ′κ = κ(Mκ ∩ Mκ ′) of M̃κ = κ(Mκ). Assume the
contrary. Then m̃0 is on the boundary of κ(Mκ ∩ Mκ ′) in κ(Mκ) and m̃ ′0 is on
the boundary of κ ′(Mκ ∩ Mκ ′) in κ ′(Mκ ′). So κ−1(m̃0) is on the boundary of
Mκ ∩ Mκ ′ in Mκ , and κ ′−1(m̃ ′0) is on the boundary of Mκ ∩ Mκ ′ in Mκ ′ . This
implies that κ−1(m̃0) is in Mκ but not Mκ ′ while κ ′−1(m̃ ′0) is in Mκ ′ but not Mκ .
Consequently κ−1(m̃0) = κ ′−1(m̃ ′0). Since M is Hausdorff, we can find disjoint
open neighborhoods V and V ′ of κ−1(m̃0) and κ ′−1(m̃ ′0) in M . Since κ−1 is
continuous, κ−1(m̃α) is eventually in V ; since κ ′−1 is continuous, κ ′−1(m̃ ′α) is
eventually in V ′. Then we cannot have κ−1(m̃α) = κ ′−1(m̃ ′α) eventually, hence
cannot have κ ′κ−1(m̃α) = m̃ ′α eventually, contradiction. We conclude that B is
Hausdorff.
To complete the proof, we exhibit B as a coordinate vector bundle. Let

q : X → B be the quotient map. Application of Proposition 8.12 produces a
manifold structure on B, the charts being of the form κ# = (q

∣∣
Wκ

)−1 with domain
q(Wκ). If pκ denotes the projection of Wκ on M̃κ , we define π : q(Wκ)→ M to
be the composition κ−1 pκκ#. To have π : B → M be globally defined, we have
to check consistency from chart to chart. Thus suppose that b = q(wκ) = q(wκ ′)

with wκ = (m̃κ , vκ) in Wκ and wκ ′ = (m̃κ ′, vκ ′) in Wκ ′ . We are to check that
κ−1 pκ(wκ) = κ ′−1 pκ ′(wκ ′), hence that κ−1(m̃κ) = κ ′−1(m̃κ ′). The condition
q(wκ) = q(wκ ′) means that wκ ∼ wκ ′ , which means that ψκ ′κ(wκ) = w′κ and
therefore that

(
κ ′κ−1(m̃κ), gκ ′κ(κ−1(m̃κ))(vκ)

) = (m̃κ ′, vκ ′). Examining the first
entries shows that κ−1(m̃κ) = κ ′−1(m̃κ ′). Therefore π is well defined.
The diffeomorphism φκ : Mκ ×Fn → π−1(Mκ) is given by φκ = q ◦ (κ × 1).

If p is in Mκ ∩ Mκ ′ , write v′ = φ−1κ ′,p(φκ,p(v)). Then φκ ′,p(v
′) = φκ,p(v), and

hence q(κ ′(p), v′) = q(κ(p), v). Thus (κ ′(p), v′) ∼ (κ(p), v), and

(κ ′(p), v′) = ψκ ′κ(κ(p), v) =
(
κ ′κ−1(κ(p)), gκ ′κ(κ−1(κ(p)))(v)

)
.
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Examining the equality of the second coordinates, we see that v′ = gκ ′κ(p)(v).
Therefore φ−1κ ′,p ◦ φκ,p = gκ ′κ(p), and the transition functions match the given
functions. This completes the proof.

As we mentioned after Proposition 8.13, Proposition 8.14 enables us to in-
troduce the structure of a vector bundle on the tangent bundle T (M), since the
product formula for the transition functions gκ ′κ(p) =

[
∂yi
∂xj

]
p follows from the

chain rule. The transition functions gκ ′κ(p) =
[
∂yi
∂xj

]
p are real-valued and thus can

be regarded as inGL(n,R) orGL(n,C). Thus T (M), in our construction, can be
regarded as having fiber Rn or Cn , whichever is more convenient in a particular
context. We can speak of the real tangent bundle T (M,R) and the complex
tangent bundle T (M,C) in the two cases.6

We shall make use also of the cotangent bundle T ∗(M), and again we shall
allow this to be real or complex. Members of the cotangent bundle will be called
cotangent vectors. We give two slightly different realizations of T ∗(M), one
starting from T (M) as the object of primary interest and the other proceeding
directly to T ∗(M). In both cases, T ∗(M) and T (M)will be fiber-by-fiber duals of
one another, and the transition functions will be transpose inverses of one another.
For the first construction we shall identify the dual of Tp(M) in terms of

differentials as defined inSection1. LetM ben-dimensional, letκ be a compatible
chart about p, and let f ∈ C∞(U ) be a smooth function in a neighborhood of
p. By definition from Section 1, the differential (d f )p is the linear function
(d f )p : Tp(M)→ Tf (p)(F) given by

(d f )p(L)(g) = L(g ◦ f ).
Let us take g0 : F → F to be the function g0(t) = t . Since

(d f )p
[

∂
∂xj

]
p(g0) = ∂(g0◦ f )

∂xj
(p) = g′0( f (p))

∂ f
∂xj

(p) = ∂ f
∂xj

(p),

we see that (d f )p(L)(g0) = L f for all L in Tp(M). In particular, each differential
(d f )p acts as a linear functional on Tp(M). Moreover, the elements (dxi )p,
namely the differentials for f = xi , are the members of the dual basis to the basis[

∂
∂xj

]
p of Tp(M), and we can use them to write

(d f )p =
n∑
i=1

∂ f
∂xi

(p) (dxi )p.

We postpone a discussion of the bundle structure on T ∗(M) until after the second
construction.

6Traditionally the words “tangent bundle” refer to what is being called the real tangent bundle,
and the traditional notation for it is T (M).
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For the second construction we use the algebra Cp of germs at p. Evaluation
at p is well defined on germs at p, and we let C 0p be the vector subspace of germs
whose value at p is 0. Inside C 0p , we wish to identify the vector subspace C 1p of
germs that vanish at least to second order at p. These are7 germs of functions f
with the property that | f (q)− f (p)| is dominated by a multiple of |κ(q)−κ(p)|2
in any chart κ about p when q is in a sufficiently small neighborhood of p.
Within the second construction the cotangent space T ∗p (M) is defined as the

vector space quotient C 0p /C 1p . To introduce a vector-bundle structure on T ∗(M) =⋃
p T

∗
p (M) by means of Proposition 8.14, we need to set up the local expression

for a member of the cotangent space and understand how it changes when we
pass from one compatible chart κ to another κ ′. We begin by observing for any
open neighborhoodU of p that there is a well-defined linear map f �→ d f (p) of
C∞(U ) onto T ∗p (M) given by passing from f to f − f (p) in C 0p and then to the
coset representative of f − f (p) in T ∗p (M) = C 0p /C 1p .

Proposition 8.15. Let M be a smooth manifold of dimension n, let p be in M ,
and let κ = (x1, . . . , xn) be a compatible chart about p. In either construction
of T ∗p (M), the n quantities dxi (p) form a vector-space basis of T ∗p (M), and any
smooth function f defined in a neighborhood of p has

d f (p) =
n∑
i=1

∂ f

∂xi
(p) dxi (p).

PROOF. We have already obtained this formula for the first construction. For
the second construction, we observe as in the proof of Proposition 8.5 that Taylor’s
Theorem yields an expansion for f in the chart κ about p as

f (q) = f (p)+
n∑
i=1

(xi (q)− xi (p))
∂ f
∂xi

(p)

+∑
i, j

(xi (q)− xi (p))(xj (q)− xj (p))ri j (q),

from which we obtain

d f (p) =
n∑
i=1

∂ f
∂xi

(p) dxi (p).

This establishes the asserted expansion and shows that the dxi (p) span the vector
space T ∗p (M). For the linear independence suppose that

∑n
i=1 cidxi (p) = 0 with

7If we allow ourselves to peek momentarily at the tangent space, we see that C 1p is the subspace
of all members of C 0p on which all tangent vectors at p vanish.
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the constants ci not all 0. If we define f =
∑n

i=1 ci xi in Mκ , then computation
gives ∂ f

∂xi
(p) = ci and hence d f (p) =

∑n
i=1 ci dxi (p) = 0. Thus f − f (p)

vanishes at least to order 2 at p. Since f − f (p) is linear, we conclude that
f − f (p) vanishes identically near p. Hence all coefficients ci are 0. This proves
the linear independence.

When p moves within the compatible chart κ , we can express all members of

the spaces T ∗q (M) for q in that neighborhood as
n∑
i=1

ξi (q) dxi (q), but the functions

ξi (q) need not always be of the form
∂ f
∂xi

(q) for a single function f . Nevertheless,
we can use the transformation properties of d f (p) for special f ’s to introduce a
natural vector-bundle structure on T ∗(M) by means of Proposition 8.14.

EXAMPLE. Direct construction of bundle structure on cotangent bundle. Con-
tinuingwith the direct analysis of T ∗(M), let us form the coordinate functions and
charts. Define T ∗(Mκ) =

⋃
p∈Mκ

T ∗p (M). Using Proposition 8.15, we associate
to a member (p, ξ) of T ∗(Mκ) the coordinates

(x1(p), . . . , xn(p); ξ1, . . . , ξn),

where κ(p) = (x1(p), . . . , xn(p)) and ξ =
n∑
i=1

ξi dxi (p). The coordinate func-

tion φκ is given in this notation as a composition carrying (p; ξ1, . . . , ξn) first
to (x1(p), . . . , xn(p); ξ1, . . . , ξn) and then to

n∑
i=1

ξi dxi (p). That is,

φκ(p; ξ1, . . . , ξn) =
n∑
i=1

ξi dxi (p).

If p lies in another chart κ ′ = (y1, . . . , yn), then we similarly have

φκ ′(p; η1, . . . , ηn) =
n∑
i=1

ηi dyi (p).

The formula of Proposition 8.15 shows that

dxi (p) =
n∑
j=1

∂xi
∂yj

(p) dyj (p).

Therefore

φκ(p; ξ1, . . . , ξn) =
n∑
i=1

ξi dxi (p) =
n∑
j=1

( n∑
i=1

ξi
∂xi
∂yj

(p)
)
dyj (p),
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and

φ−1κ ′ φκ(p; ξ1, . . . , ξn) =
(
p;

n∑
i=1

ξi
∂xi
∂y1

(p), . . . ,
n∑
i=1

ξi
∂xi
∂yn

(p)
)
.

In other words,

φ−1κ ′ φκ(p; ξ1, . . . , ξn) = (p; η1, . . . , ηn)

with ηj =
n∑
i=1

ξi
∂xi
∂yj

(p). This says that the row vector ( η1 · · · ηn ) is the

product of the row vector ( ξ1 · · · ξn ) by the matrix
[
∂xi
∂yj

(p)
]
. Taking the

transpose of this matrix equation, we see that the transition functions for the
cotangent bundle are to be

gκ ′κ(p) =
[
∂xi
∂yj

(p)
]tr
,

i.e., the transpose inverses of the transition functions for the tangent bundle.
In view of the boxed formula earlier in this section, a system of functions
fκ : M̃κ × Fn → S arises from a globally defined function on the cotangent
bundle if and only if

fκ(x, ξ) = fκ ′
(
y(x),

[
∂xi (y)
∂yj

]tr
(ξ)
)
,

i.e., if and only if

fκ
(
x(y),

([
∂xi (y)
∂yj

]−1)tr
(η)
) = fκ ′(y, η).

If π : B → M is a smooth vector bundle, a section of B is a function
s : M → B such that π(s(p)) = p for all p ∈ M , and the section is a smooth
section if s is smooth as a function between smooth manifolds.

Proposition 8.16. Let π : B → M be a smooth vector bundle of rank n,
let s : M → B be a section, and let κ be a compatible chart for M . Then the
coordinate function φκ has the property that φ−1κ ◦ s(p) = (p, vκ(p)) for p in Mκ

and for a function vκ( · ) : Mκ → Fn . Moreover, the section s is smooth if and
only if the function p �→ vκ(p) is smooth for every chart κ in an atlas.

PROOF. Let Pκ : Mκ × Fn → Mκ be projection to the first coordinate. Let us
check that Pκ ◦φ−1κ = π on π−1(Mκ). Suppose that p is in Mκ and φκ(p, v) = b.
Applying π gives π(b) = πφκ(p, v) = p by the defining property (i) of φκ .
Therefore φ−1κ (b) = (p, v) and Pκφ−1κ (b) = p = π(b). Since b is arbitrary in
π−1(Mκ), Pκ ◦ φ−1κ = π .
For a section s, the condition π ◦s = 1 on M therefore implies that Pκ ◦φ−1κ ◦s

= 1 on Mκ . Hence φ−1κ ◦ s(p) = (p, vκ(p)) for p in Mκ and for some function
vκ : Mκ → Fn . Since each φκ : Mκ × Fn → π−1(Mκ) is a diffeomorphism, s is
smooth if and only if each function φ−1κ ◦ s is smooth for κ in an atlas, and this
condition holds if and only if each vκ is smooth.
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EXAMPLES.

(1) Vector fields. A vector field on M is a section of the tangent bundle. In

the first example in this section, we obtained the formula φκ(p, v) =
n∑
i=1

vi
[

∂
∂xi

]
p

if p is in Mκ and v = (v1, . . . , vn). Applying φκ to the formula of Proposition

8.16, we see that s(p) = φκ(p, v(p)) =
n∑
i=1

vi (p)
[

∂
∂xi

]
p if the function v(p) is

(v1(p), . . . , vn(p)). On the other hand, Proposition 8.8 shows that any vector

field X acts by X f (p)=
n∑
i=1

∂ f
∂xi

(p)(Xxi )(p). If we regard X as our section s,

we see therefore that vi (p) = (Xxi )(p). Since s is smooth if and only if all
vi (p) are smooth, s is smooth if and only if all (Xxi )(p) are smooth. In view of
Proposition 8.8, we conclude that a vector field is smooth as a section if and only
if it is smooth in the sense of Section 2.

(2) Differential 1-forms. A differential 1-form on M is a section of the cotan-
gent bundle. Just before Proposition 8.16 we obtained the formula φκ(p, ξ) =
n∑
i=1

ξi dxi (p) if p is in Mκ and ξ = (ξ1, . . . , ξn). Applying φκ to the formula

of Proposition 8.16, we see that s(p) = φκ(p, ξ(p)) =
n∑
i=1

ξi (p) dxi (p) if the

function ξ(p) is (ξ1(p), . . . , ξn(p)). Proposition 8.16 shows that s is smooth if
and only if all the ξi (p) are smooth, and thus a differential 1-form is smooth if

and only if in each of its local expressions
n∑
i=1

ξi (p) dxi (p), all the coefficient

functions ξi (p) are smooth. In particular Proposition 8.15 gives the formula

d f (p) =
n∑
i=1

∂ f
∂xi

(p) dxi (p)whenever f is a smooth function onMκ , and therefore

d f is a smooth differential 1-form on M whenever f is in C∞(M).

5. Distributions and Differential Operators on Manifolds

The goal of Sections 5–7 is to describe the framework for extending the method
of pseudodifferential operators, as introduced in Section VII.6, from open subsets
of Euclidean space to smooth manifolds. Just as in Section VII.6 a number of
lengthy verifications are involved, and we omit them.
Several sources of examples with F = R are worth mentioning. All of

them come about in the context of some smooth manifold with some additional
structure. All of them involve differential operators, as opposed to general pseu-
dodifferential operators, at least initially. From this point of view, the reason
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for introducing pseudodifferential operators is to have tools for working with
differential operators.
The first source is the subject of “Lie groups.” A Lie group G is a smooth

manifold that is a group in such away thatmultiplication and inversion are smooth
functions. Closed subgroups ofGL(n,F) furnish examples, but not in an obvious
way. In any event, if a tangent vector at the identity is moved to arbitrary points
of G by the differentials of the right translations of G, the result is a vector
field that can be shown to be smooth and to have an invariance property relative
to left translation. We can regard this left-invariant vector field as a first-order
differential operator on G. Out of such operators we can form further differential
operators by forming compositions, sums, and so on.
A related and larger source is quotient spaces of Lie groups. Any Lie group G

is a locally compact group in the sense of Chapter VI. If H is a closed subgroup,
then the quotient G/H turns out to have a smooth structure such that the group
action G × G/H → G/H is smooth. The quotient G/H may admit differential
operators that are invariant under the action of G. For example the Laplacian
makes sense on the unit sphere Sn−1 and is invariant under rotations. The sphere
Sn−1 is the quotient of rotation groups SO(n)/SO(n− 1), and thus the Laplacian
on the sphere falls into the category of an invariant differential operator on a
quotient space of a Lie group.
A third source, overlapping some with the previous two, is Riemannian ge-

ometry. A Riemannian manifold M is a smooth manifold with an inner product
specified on each tangent space Tp(M) so as to vary smoothly with p. The
additional structure on M is called a Riemannian metric and can be formalized,
by the same process as for the tangent bundle itself, as a smooth section of a
suitable vector bundle overM . ARiemannianmanifold carries a naturalLaplacian
operator and other differential operators of interest that capture aspects of the
geometry. One way of creating Riemannian manifolds is by embedding a smooth
manifold of interest in a Riemannian manifold. For example one can embed
any compact orientable 2-dimensional smooth manifold in R3, and R3 carries a
natural Riemannian metric. The inclusion of the manifold into R3 induces an
inclusion of tangent spaces, and the Riemannian metric ofR3 can be restricted to
the manifold.
A fourth source is the field of several complex variables. TheCauchy–Riemann

operator, consisting of ∂
∂ z̄ j

in each complex variable zj , makes sense on any
open set, and the functions annihilated by it are the holomorphic functions. If a
bounded open subset ofCn has a smooth boundary, then the tangential component
of the Cauchy–Riemann operator makes sense on smooth functions defined on
the boundary. The significance of the tangential Cauchy–Riemann operator is
that the functions annihilated by it are the ones that locally have extensions to
holomorphic functions in a neighborhood of the boundary. The Lewy example,



350 VIII. Analysis on Manifolds

mentioned in Section VII.2, ultimately comes from such a construction using the
unit ball in C2.

The subject being sufficiently rich with examples, let us establish the frame-
work. Let M be an n-dimensional smooth manifold. It is customary to assume
that M is separable. This condition is satisfied in all examples of interest, and in
particular every compact manifold is separable. With the assumption of separa-
bility, we automatically obtain an exhausting sequence {Kj }∞j=1 of compact sets
such that M =⋃j K j and Kj ⊆ Ko

j+1.
We have already introduced the associative algebras C∞(M) and C∞com(M),

and these spaces of functions need to be topologized. For C∞(M), the topology
is to be given by a countable separating family of seminorms, and convergence is
to be uniform convergence of the function and all its derivatives on each compact
subset of M . The exact family of seminorms will not matter, but we need to see
that it is possible to specify one. Fix Kj . To each point p of Kj , associate a chart
κp about p and associate also a compact neighborhood Np of p lying within Mκp .
For p in Kj , the interiors No

p of the Np’s cover Kj , and we select a finite subcover
No
p1, . . . , N

o
pr . Let κp1, . . . , κpr be the corresponding charts. If ϕ is in C

∞(M),
the seminorms of ϕ relating to Kj will be indexed by a multi-index α and an
integer i with 1 ≤ i ≤ r , the associated seminorm being supx∈Npi

|Dα(ϕ ◦ κ−1pi )|.
When j is allowed to vary, the result is that C∞(M) is a complete metric space
with a metric given by countably many seminorms. If we construct seminorms by
starting from a different exhausting sequence, then there is no difficulty in seeing
that any seminorm in either construction is ≤ a positive linear combination of
seminorms from the other construction. Thus the identity mapping of C∞(M)

with the one metric to C∞(M) with the other metric is uniformly continuous.
ForC∞com(M), we use the inductive limit construction of Section IV.7 relative to

the sequence of compact subsets Kj . That is, we letC∞Kj
be the vector subspace of

functions in C∞com(M)with support in Kj , we give C∞Kj
the relative topology from

C∞(M), and then we form the inductive limit. Again the topology is independent
of the exhausting sequence, and C∞com(M) is an LF space in the sense of Section
IV.7.

The next step is to introduce distributions onmanifolds, and therewe encounter
an unpleasant surprise. In Euclidean space the effect 〈T, ϕ〉 of a distribution on
a function was supposed to generalize the effect 〈 f, ϕ〉 = ∫ f ϕ dx of integration
with a function f . The dx in the Euclidean case refers to Lebesgue measure. To
get such an interpretation in the case of amanifoldM , we have to use ameasure on
M , and theremay be no canonical one. If we drop any insistence that distributions
generalize integrationwith a function, thenwe encounter a different problem. The
problem is that the three global notions—smooth function, distribution, and linear
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functional on smooth functions—each have to satisfy certain transformation rules
as we move from chart to chart, and these transformation rules are not compatible
with having the space of distributions coincide with the space of linear functionals
on smooth functions.
There are several ways of handling this problem, andwe use one of them. What

we shall do is fix a global but noncanonical notion of integration on M satisfying
some smoothness properties. Thuswe are constructing a positive linear functional
λ on Ccom(M). We suppose given relative to each chart κ = (x1, . . . , xn) a
positive smooth function gκ(x) on M̃κ such that λ(ϕ) =

∫
M̃κ

ϕ(κ−1(x))gκ(x) dx
whenever ϕ is in Ccom(Mκ). Let κ ′ = (y1, . . . , yn) be a second chart, and put
Mκ,κ ′ = Mκ ∩ Mκ ′ . If ϕ is in Ccom(Mκ,κ ′), then we require that∫

κ(Mκ,κ′ )
ϕ(κ−1(x))gκ(x) dx =

∫
κ ′(Mκ,κ′ )

ϕ(κ ′−1(y))gκ ′(y) dy.

Substituting y = κ ′(κ−1(x)) on the right side, we can transform the right side into∫
κ(Mκ,κ′ )

ϕ(κ−1(x))gκ ′(κ ′(κ−1(x)))
∣∣ det [ ∂yi

∂xj
(x)
]∣∣ dx by the change-of-variables

formula for multiple integrals. Thus the compatibility condition for the functions
gκ is that

gκ(x) = gκ ′(y(x))
∣∣ det [ ∂yi

∂xj
(x)
]∣∣ for x ∈ κ(Mκ,κ ′), y(x) = κ ′(κ−1(x)).

Conversely if this compatibility condition on the system of gκ ’s is satisfied, we
can use a smooth partition of unity8 to define λ consistently and obtain a measure
on M . This measure is a positive smooth function times Lebesgue measure in the
image of any chart, and we refer to it as a smooth measure on M . We denote it
by μg. The key formula for computing with it is∫

M ϕ dμg =
∫
M̃κ

ϕ(κ−1(x))gκ(x) dx

for all Borel functions ϕ ≥ 0 on M that equal 0 outside Mκ .
One can prove that a smooth measure always exists,9 and there are important

cases in which a distinguished smooth measure exists. With Lie groups, for
example, a left Haar measure is distinguished. With the quotient of a Lie group
by a closed subgroup, Theorem 6.18 gives a necessary and sufficient condition for
the existence of a nonzero left-invariant Borel measure, and that is distinguished.
With a Riemannianmanifold, there always exists a distinguished smoothmeasure
that is definable directly in terms of the Riemannian metric.

8Smooth partitions of unity are discussed in Problem 5 at the end of the chapter.
9If every connected component of M is orientable, there is a positive smooth differential n-form,

and it gives such ameasure. All components are open; anynonorientable component has an orientable
double cover with such a measure, and this can be pushed down to the given manifold.
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The smooth measure is not unique, but any two smooth measures μg and μh

are absolutely continuous with respect to each other. By the Radon–Nikodym
Theorem we can therefore write dμg = F dμh for a positive Borel function F ;
the function F may be redefined on a set of measure 0 so as to be in C∞(M),
as we see by examining matters in local coordinates. Conversely if F is any
everywhere-positive member ofC∞(M), then F dμg is another smooth measure.
If we fix a smooth measure μg, we can define spaces L1com(M, μg) and

L1loc(M, μg) as follows: the first is the vector subspace of all members of
L1(M, μg) with compact support, and the second is the vector space of all
functions, modulo null sets, whose restriction to each compact subset of M
is in L1com(M, μ). It will not be necessary for us to introduce a topology on
L1com(M, μg) or on L1loc(M, μg). If we replace μg by another smooth mea-
sure dμh = F dμg, then it is evident that L1com(M, μh) = L1com(M, μg) and
L1loc(M, μh) = L1loc(M, μg).
We defineD ′(M) and E ′(M) in the expected way: D ′(M), which is the space

of all distributions on M , is the vector space of all continuous linear functionals
on C∞com(M), and E ′(M) is the vector space of all continuous linear functionals
onC∞(M). The effect of a distribution T on a function ϕ continues to be denoted
by 〈T, ϕ〉. The support of a distribution is the complement of the union of all
open subsetsU of M such that the distribution vanishes onC∞com(U ). We omit the
verification that E ′(M) is exactly the subspace of members ofD ′(M) of compact
support. It will not be necessary for us to introduce a topology on D ′(M) or
E ′(M).
With the smooth measure μg fixed, we can introduce distributions Tf corre-

sponding to certain functions f . If f is in L1loc(M, μg), we define Tf by

〈Tf , ϕ〉 =
∫
M f ϕ dμg for ϕ ∈ C∞com(M).

This is a member of D ′(M). If f is in L1com(M, μg), we define Tf by

〈Tf , ϕ〉 =
∫
M f ϕ dμg for ϕ ∈ C∞(M).

This is a member of E ′(M).

As we did in the Euclidean case in Section V.2, we want to be able to pass from
certain continuous linear operators L on smooth functions to linear operators on
distributions. With μg replacing Lebesgue measure, the procedure is unchanged.
We have a definition of L on functions, and we identify a continuous transpose
operator L tr on smooth functions satisfying the defining condition∫

M L( f )ϕ dμg =
∫
M f L tr(ϕ) dμg.
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Then we let
〈L(T ), ϕ〉 = 〈T, L tr(ϕ)〉.

For example, if L is the operator given as multiplication by the smooth func-
tion ψ , then L tr = L on smooth functions because we have

∫
M L( f )ϕ dμg =∫

M(ψ f )(ϕ) dμg =
∫
M( f )(ψϕ) dμg =

∫
M f L(ϕ) dμg. Thus the definition is

〈ψT, ϕ〉 = 〈T, ψϕ〉.
A linear differential operator L of order≤ m on amanifoldM is a continuous

linear operator from C∞(M) into itself with the property that for each point p
in M , there is some compatible chart κ about p and there are functions aα in
C∞(Mκ) such that the operator takes the form L f (q) = ∑|α|≤m aα(q)D

α f (q)
for all f in C∞(Mκ). Here if κ = (x1, . . . , xn), then Dα f (q) is by definition the
Euclidean expression Dα( f ◦ κ−1)(x1, . . . , xn) evaluated at κ(q).
If we have an expansion L f (q) =∑|α|≤m aα(q)D

α f (q) in the chart κ about p
and if κ ′ is another compatible chart about p, then a Euclidean change of variables
shows that L f (q) is of the form

∑
|β|≤m dβ(q)D

β f (q) in the chart κ ′ for suitable
smooth coefficient functions dβ .
The operator L carries the vector subspace C∞com(M) of C∞(M) into itself and

is continuous as a mapping of C∞com(M) into itself. One says that L has order m
if in some compatible chart, some coefficient function aα is not identically 0.
Let us compute how the transpose of a linear differential operator of order

m acts on smooth functions. The claim is that this transpose is again a linear
differential operator of orderm. Since linear differential operators on open subsets
of Euclidean space are mapped to other such operators by diffeomorphisms, it is
enough tomake a computation in a neighborhood of a point pwithin a compatible
chart κ about p. Evidently the operation of taking the transpose is linear and
reverses the order of operators, and we saw that multiplication by a smooth
function is its own transpose. Thus it is enough to verify that the transpose of ∂

∂xj
is a linear differential operator.
To simplify the notation in the verification, let us abbreviate 〈Tf , ϕ〉 as 〈 f, ϕ〉

when f and ϕ are smooth functions on M and at least one of them has compact
support. That is, we set 〈 f, ϕ〉 = ∫M f ϕ dμg. Let ϕ and ψ be in C∞(Mκ), and
assume that one of ϕ and ψ has compact support. With {gκ} as the system of
functions defining the smooth measure μg, we have∫

M̃κ

∂
∂xj

(
(ψ ◦ κ−1)(ϕ ◦ κ−1)gκ

)
dx = 0.

Expanding the derivative and setting hκ = gκ ◦ κ gives〈(
∂
∂xj

)tr
ϕ, ψ

〉 = 〈ϕ, ∂ψ

∂xj

〉
= ∫M̃κ

ϕ(κ−1(x)) ∂
∂xj

(ψ ◦ κ−1)(x) gκ(x) dx
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= − ∫M̃κ
ψ(κ−1(x)) ∂

∂xj

(
(ϕ ◦ κ−1)gκ

)
(x) dx

= − ∫M̃κ
gκ(x)−1ψ(κ−1(x)) ∂

∂xj

(
(ϕ ◦ κ−1)gκ

)
(x) gκ(x) dx

= − ∫M̃κ
(hκ ◦ κ−1)(x)−1(ψ ◦ κ−1)(x) ∂

∂xj

(
(ϕ ◦ κ−1)(hκ ◦ κ−1)

)
(x) gκ(x) dx .

Therefore
(

∂
∂xj

)tr
ϕ = (hκ)−1ψ ∂

∂xj
(ϕhκ), and

(
∂
∂xj

)tr
is exhibited as a linear dif-

ferential operator in local coordinates.
Certainly transpose does not increase the order of a linear differential operator.

Applying transpose twice reproduces the original operator, and it follows that the
transpose differential operator has the same order as the original.
If L is a linear differential operator acting onC∞com(M) orC∞(M), we are now

in a position to extend the definition of L to distributions. To do so, we form the
linear differential operator L tr such that 〈Lϕ,ψ〉 = 〈ϕ, L trψ〉 whenever ϕ and ψ
are smooth on M and at least one of them has compact support. If T is inD ′(M),
we define L(T ) in D ′(M) by 〈L(T ), ϕ〉 = 〈T, Lϕ〉 for ϕ in C∞com(M). If T is in
E ′(M), then we can allow ϕ to be C∞(M), and the consequence is that L(T ) is
in E ′(M). Thus L carries D ′(M) to itself and E ′(M) to itself.

Recall from Section VII.6 that a linear differential operator
∑
|α|≤m aα(x)D

α

of order m has, by definition, full symbol
∑
|α|≤m aα(x)(2π i)

|α|ξα and principal
symbol

∑
|α|=m aα(x)(2π i)

|α|ξα , with the factors of 2π i reflecting the way that
the Euclidean Fourier transform is defined in this book. When we try to extend
this definition in a coordinate-free way to smooth manifolds M , we find no ready
generalization of the full symbol, but we shall see that the principal symbol
extends to be a certain kind of function on the cotangent bundle of M .
Let L be a linear differential operator on M of order m. Fix a point p in M ,

let κ = (x1, . . . , xn) be a compatible chart about p, and let ϕ be in C∞(Mκ).
Suppose that Dα makes a contribution to L in this chart. For t > 0 and f in
C∞(Mκ), consider the expression

t−me−2π i tϕDα(e2π i tϕ f ) evaluated at p.

We are interested in this expression in the limit t → ∞. When Dα(e2π i tϕ f ) is
expanded by the Leibniz rule, each derivative that is applied to e2π i tϕ yields a
factor of t , and each derivative that is applied to f yields no such factor. Moreover,
the exponentials cancel after the differentiations. The surviving dependence on
t in each term is of the form t−r , where r ≥ m − |α|. Thus our expression
has limit 0 if |α| < m. If |α| = m, we get a nonzero contribution only when
all the derivatives from the Leibniz rule are applied to f . Thus the limit of our
expression with |α| = m is of the form cDα f (p), where c is a constant depending
on α and the germ of ϕ at p.
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Meanwhile, our expression is unaffected by replacing ϕ by ϕ − ϕ(p), and its
dependence on ϕ is therefore as a member of C 0p . A little checking shows that
our expression is unchanged if a member of C 1p is added to ϕ. Consequently our
expression, for α fixed with |α| = m, is a function on C 0p /C 1p = T ∗p (M).
Let us write a general member of T ∗p (M) as (p, ξ). We define the principal

symbol of the linear differential operator L of order m to be the scalar-valued
function σL(p, ξ) on the real cotangent bundle T ∗(M,R) given by

σL(p, ξ) f (p) = lim
t→∞ t

−me−2π i tϕ(p)L(e2π i tϕ f )(p),

where ϕ is chosen so that dϕ(p) = ξ . Reviewing the construction above, we see
that this definition is independent of f and of any choice of local coordinates.
We can compute the principal symbol explicitly if an expression for L is

given in local coordinates. With our chart κ = (x1, . . . , xn) as above, we know
from Proposition 8.15 that the differentials dx1(p), . . . , dxn(p) form a basis
of T ∗p (M). Let the expansion of the given cotangent vector ξ in this basis be
ξ = ∑

i ξi dxi (p), and define ϕ(x) = ∑
i ξi (xi − xi (p)). This function has

dϕ(p) = ξ by Proposition 8.15, and direct computation gives

σL(p, ξ) =
∑
|α|=m

aα(x)(2π i)|α|ξα if L = ∑
|α|≤m

aα(x)Dα.

In particular, σL(p, ξ) is homogeneous of degree m in the ξ variable.10

6. More about Euclidean Pseudodifferential Operators

Before introducing pseudodifferential operators on an n-dimensional separable
smooth manifold M , it is necessary to supplement the Euclidean theory as pre-
sented in Section VII.6. We need to understand the effect of transpose on a
Euclidean pseudodifferential operator and also the effect of a diffeomorphism.
First let us consider transpose. IfG is a pseudodifferential operator onU ⊆ Rn ,

we know that

〈G trψ, ϕ〉 = 〈ψ,Gϕ〉 = ∫
Rn

∫
U

∫
U e

2π i(x−y)·ξg(x, ξ)ψ(x)ϕ(y) dy dx dξ

for ϕ and ψ in C∞com(U ). If we interchange x and y and replace ξ by −ξ , we
obtain

〈G trψ, ϕ〉 = ∫
Rn

∫
U

∫
U e

2π i(x−y)·ξg(y,−ξ)ψ(y)ϕ(x) dy dx dξ.

10A function σ(p, ξ) is homogeneous of degree m in the ξ variable if σ(p, rξ) = rmσ(p, ξ)
for all r > 0 and all ξ = 0.
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The function that ought to play the role of the symbol of G tr is g(y,−ξ). It has a
nontrivial y dependence, unlike what happens with pseudodifferential operators
as defined in Section VII.6. Thus we cannot tell from this formula whether
G tr coincides with a pseudodifferential operator. Although it is possible to
cope with this problem directly, a tidier approach is to enlarge the definition
of pseudodifferential operator to allow dependence on y, as well as on x and ξ ,
in the function playing the role of the symbol. Then the transpose of one of the
new operators will again be an operator of the same kind, and one can develop
a theory for the enlarged class of operators.11 Remarkably, as we shall see, the
new class of operators turns out to be not so much larger than the original class.
Accordingly, let Sm1,0,0(U×U ) be the set of all functions g inC∞(U×U×Rn)

such that for each compact set K ⊆ U × U and each triple of multi-indices
(α, β, γ ), there exists a constant C = CK ,α,β,γ with

|Dα
ξ D

β
x D

γ
y g(x, y, ξ)| ≤ C(1+ |ξ |)m−|α| for (x, y) ∈ K and ξ ∈ Rn.

Then Dα
ξ D

β
x D

γ
y g will be a symbol in the class S

m−|α|
1,0,0 (U ×U ). Let S−∞1,0,0(U ×U )

be the intersection of all S−n1,0,0(U × U ) for n ≥ 0. A function g(x, y, ξ) in
Sm1,0,0(U × U ) is called an amplitude, and the generalized pseudodifferential
operator that is associated to it is given by12

Gϕ(x) =
∫

Rn

∫
U
e2π i(x−y)·ξg(x, y, ξ)ϕ(y) dy dξ

for ϕ in C∞com(U ). Such an operator is continuous from C∞com(U ) into C∞(U ).
The transposed operator G tr such that 〈Gϕ,ψ〉 = 〈ϕ,G trψ〉 for ϕ and ψ in
C∞com(U ) is given by

G trϕ(x) =
∫

Rn

∫
U
e2π i(y−x)·ξg(y, x, ξ)ϕ(y) dy dξ,

which becomes an operator of the same kind when we change ξ into−ξ . Because
of the displayed formula for G trϕ(x), we are led to define

〈G f, ϕ〉 =
〈
f,
∫

Rn

∫
U
e2π i(y−( · ))·ξg(y, · , ξ)ϕ(y) dy dξ

〉
11The theory for the new operators is the “tidier and faster” approach to Euclidean pseudo-

differential operators that was mentioned just before the statement of Theorem 7.20.
12The use of the word “generalized” here is not standard terminology. It would be more standard

to use some distinctive notation for the class of operators of this kind, but we have introduced no
notation for it at all.
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for f ∈ E ′(U ) and ϕ ∈ C∞com(U ). Then G f is in D ′(U ). In the special case that
g is independent of its second variable, the above formula for 〈G f, ϕ〉 reduces to
the formula for 〈G f, ϕ〉 in Section VII.6 as a consequence of Theorem 5.20 and
an interchange of limits.13

If the amplitude of G is in S−∞1,0,0(U × U ), then the generalized pseudodiffer-
ential operator G carries E ′(U ) into C∞(U ), and it is consequently said to be a
smoothing operator.
Following the pattern of the development in Section VII.6, we define a linear

functional G on C∞com(U ×U ) by the formula

〈G, w〉 =
∫

Rn

[ ∫
U×U

e2π i(x−y)·ξg(x, y, ξ)w(x, y) dx dy
]
dξ.

ThenG is continuous and hence is amember ofD ′(U×U ). The formal expression

G(x, y) =
∫

Rn
e2π i(x−y)·ξg(x, y, ξ) dξ

is called the distribution kernel of G; again it is not to be regarded as a function
but as an expression that defines a distribution.
With the insertion of the word “generalized” in front of “pseudodifferential

operator,” Theorem 7.19 remains true word for word; the distribution kernel is a
smooth function off the diagonal in U ×U , and the operator is pseudolocal.
We extend the definition of properly supported from pseudodifferential op-

erators to the generalized operators. Examining the extended definition along
with the formula for the distribution kernel, we see thatG is properly supported if
and only if G tr is properly supported. The main theorem concerning generalized
pseudodifferential operators is as follows.

Theorem 8.17. ForU open in Rn , let G be the generalized pseudodifferential
operator corresponding to an amplitude g(x, y, ξ) in Sm1,0,0(U ×U ), and suppose
that G is properly supported. Then

(a) G is the pseudodifferential operator with symbol

g(x, ξ) = e−2π i x ·ξG(e2π i( · )·ξ ) in Sm1,0(U ),

(b) the symbol g(x, ξ) has asymptotic series

g(x, ξ) ∼
∑
α

(2π i)−|α|

α!
Dα

ξ D
α
y g(x, y, ξ)

∣∣
y=x .

13This discussion therefore completes the justification of the definition of 〈G f, ϕ〉 in Section
VII.6.
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In (a) of Theorem 8.17, the fact that G is properly supported implies that G
extends to be defined on C∞(U ), and e2π i( · )·ξ is a member of this space. The
operator G̃ with symbol g(x, ξ) as in (a) is given by

G̃ϕ(x) = ∫
Rn e2π i x ·ξg(x, ξ)ϕ̂(ξ) dξ =

∫
Rn G(e2π i( · )·ξ )ϕ̂(ξ) dξ,

and the assertion in (a) is that this equals Gϕ(x). Consequently the assertion
is that if G is applied to the formula ϕ(x) = ∫

Rn e2π i x ·ξ ϕ̂(ξ) dξ , then G may
be moved under the integral sign. This interchange of limits is almost handled
pointwise for each x by Problem 5 in Chapter V, but we cannot take the compact
metric space K in that problem to be all of Rn . Instead, we take K to be a large
ball in Rn , apply the result of Problem 5, and do a passage to the limit.
The proof of (b) is long but reuses some of the omitted proof of Theorem

7.20. In the course of the argument, one obtains as a byproduct a conclusion that
does not make use of the hypothesis “properly supported.” Theorem 8.18 may
be regarded as an extension of Theorem 7.22a to the present setting.

Theorem 8.18. ForU open in Rn , let G be the generalized pseudodifferential
operator corresponding to an amplitude in Sm1,0,0(U × U ). Then there exist a
pseudodifferential operatorG1 with symbol in Sm1,0(U ) and a generalized pseudo-
differential operatorG2 corresponding to an amplitude in S

−∞
1,0,0(U×U ) such that

G = G1 + G2.

In any event, Theorem 8.17 is the heart of the theory of generalized pseu-
dodifferential operators in Euclidean space, and most other results are derived
from it. It is immediate from Theorem 8.17 that if G is a properly supported
pseudodifferential operator as in Chapter VII with symbol g(x, ξ) in Sm1,0(U ),
then so is G tr, and furthermore the symbol gtr(x, ξ) has asymptotic series

gtr(x, ξ) ∼
∑
α

(2π i)−|α|

α!
Dα

ξ D
α
x g(x,−ξ).

In the treatment of composition, the result is unchanged from Theorem 7.22b,
but the use of amplitudes greatly simplifies the proof. In fact, let G and H be
two properly supported pseudodifferential operators with respective symbols g
and h, and let htr be the symbol of H tr. Since H = (H tr)tr, we have

Hϕ(x) = ∫
Rn

∫
U e

2π i(x−y)·ξhtr(y,−ξ)ϕ(y) dy dξ for ϕ ∈ C∞com(U ).

Using Fourier inversion, we recognize this formula as saying that Ĥϕ(ξ) =∫
U e

−2π iy·ξhtr(y,−ξ)ϕ(y) dy. Substituting ψ = Hϕ in the formula Gψ(x) =∫
Rn e2π i x ·ξg(x, ξ)ψ̂(ξ) dξ therefore gives

GHϕ(x) = ∫
Rn

∫
U e

2π i(x−y)·ξg(x, ξ)htr(y,−ξ)ϕ(y) dy dξ.
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We conclude that GH is the generalized pseudodifferential operator with ampli-
tude g(x, ξ)htr(y,−ξ). Applying Theorem 8.17b and sorting out the asymptotic
series that the theorem gives, we obtain a quick proof of Theorem 7.22b.

We turn to the effect of diffeomorphisms on Euclidean pseudodifferential op-
erators. Let� : U → U # be a diffeomorphism between open subsets of Rn , and
suppose that a generalized pseudodifferential operator G : C∞com(U )→ C∞(U )

is given by

Gϕ(x) = ∫
Rn

∫
U e

2π i(x−y)·ξg(x, y, ξ)ϕ(y) dy dξ

for ϕ inC∞com(U ). We defineG# to be the operator carryingC∞com(U
#) toC∞(U #)

and given by

G#ψ = (G(ψ ◦�)) ◦�−1 for ψ ∈ C∞com(U #).

Our objectives are to see that G# is a generalized pseudodifferential operator, to
obtain a formula for an amplitude of it, and to examine the effect on symbols.
Let us put x# = �(x) and y# = �(y). Put �1 = �−1. Direct use of the

change-of-variables formula for multiple integrals gives

G#ψ(x#) = G(ψ ◦�)(x) = ∫
Rn

∫
U e

2π i(x−y)·ξg(x, y, ξ)ψ(�(y)) dy dξ

=∫
Rn

∫
U #e2π i(�1(x#)−�1(y#))·ξg(�1(x#),�1(y#),ξ)ψ(y#)| det((�1)

′(y#))| dy#dξ.

The hard part in showing that the expression on the right side is a generalized
pseudodifferential operator is to handle the exponential factor. The starting point
is the formula

�1(x#)−�1(y#) =
∫ 1
0 (�1)

′(t x# + (1− t)y#)(x# − y#) dt,

which is valid if the line segment from x# to y# lies inU # and which follows from
the directional derivative formula and the Fundamental Theorem of Calculus.
From that, one derives the following lemma.

Lemma 8.19. About each point X = (p#, q#) ofU #×U #, there exist an open
neighborhood NX and a smooth function JX : NX → GL(n,F) such that

�1(x
#)−�1(y

#) = JX (x
#, y#)(x# − y#)

for every (x#, y#) in NX .
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The lemma allows us to write e2π i(�1(x#)−�1(y#))·ξ = e2π i(x
#−y#)·JX (x#,y#)tr(ξ) for

(x#, y#) in NX . Thus locally we can convert the integrand for G#ψ(x#) into the
integrand of a generalized pseudodifferential operator. It is just a question of
fitting the pieces together. Using an exhausting sequence for U # and a smooth
partition of unity,14 one can find a sequence of points Xj and smooth functions
hj with values in [0, 1] such that hj has compact support in NXj , such that each
point ofU #×U # has a neighborhood in which only finitely many hj are nonzero,
and such that

∑
j h j is identically 1. Let Jj be the function JXj of the lemma.

Sorting out the details leads to the following result.

Theorem 8.20. If � : U → U # is a diffeomorphism between open sets in
Rn , if G : C∞com(U ) → C∞(U ) is the generalized pseudodifferential operator
with amplitude g(x, y, ξ) in Sm1,0,0(U × U ), and if G# is defined by G#ψ =
(G(ψ ◦�)) ◦�−1, then G# is the generalized pseudodifferential operator onU #

with amplitude

g#(x#, y#, η) = | det(�−1)′(x#)|
× (∑

j
h j (x#, y#)| det Jj (x#, y#)|−1g(x, y, (Jj (x#, y#)−1)tr(η))

)
in Sm1,0,0(U

# × U #), where x = �−1(x#) and y = �−1(y#). If G is properly
supported, then so is G#.

Under the assumption thatG andG# are properly supported andG has symbol
g(x, ξ), let us use Theorem 8.17 to compute the symbol of G#, starting from the
formula in Theorem 8.20. For that computation all that is needed is the values
of g#(x#, y#, η) for (x#, y#) in any single neighborhood of the diagonal, however
small the neighborhood.
In Lemma 8.19, one can arrange for a single NX , say the one for X = X1, to

contain the entire diagonal of U # × U #. The point X1 can be one of the points
used in forming the partition of unity, and the corresponding function h1 can be
arranged to be identically 1 in a neighborhood of the diagonal. Thus for purposes
of computing the symbol, we may drop all the terms for j = 1 and write the
formula of Theorem 8.20 as

g#(x#, y#, η) ≈ | det(�−1)′(x#)|| det J1(x#, y#)|−1g(x, (J1(x#, y#)−1)tr(η)).
Theorem 8.17b says that g#(x, η) ∼∑α

(2π i)−|α|
α! Dα

η D
α
y#g

#(x#, y#, η)
∣∣
y#=x# . The

term for α = 0 in Theorem 8.17 comes from taking y# = x# in g#(x#, y#, η).
The function J1 simplifies for this calculation and gives J1(x#, x#) = (�−1)′(x#).
Let us summarize.

14Smooth partitions of unity are discussed in Problem 5 at the end of the chapter.
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Corollary 8.21. If� : U → U # is a diffeomorphism between open sets inRn ,
if G : C∞com(U ) → C∞(U ) is a properly supported pseudodifferential operator
with symbol g(x, ξ) in Sm1,0(U ), and ifG# is defined byG#ψ = (G(ψ ◦�))◦�−1,
thenG# is a properly supported pseudodifferential operator onU #, and its symbol
g#(x#, η) has the property that

g#(x#, η)− g
(
�−1(x#), (((�−1)′(x#))−1)tr(η)

)
is in Sm−11,0 (U #).

7. Pseudodifferential Operators on Manifolds

With the Euclidean theory and the necessary tools of manifold theory in place,
we can now introduce pseudodifferential operators on manifolds. Let M be an
n-dimensional separable smooth manifold. A typical compatible chart will be
denoted by κ : Mκ → M̃κ , where Mκ is open in M and M̃κ is open in Rn . Fix
a smooth measure μg on M as in Section 5, and let 〈ϕ1, ϕ2〉 =

∫
M ϕ1ϕ2 dμg

whenever ϕ1 and ϕ2 are in C∞(M) and at least one of them has compact support.
A pseudodifferential operator on M is going to be a certain kind of continuous

linear operator G from C∞com(M) into C∞(M). The operator G tr : C∞com(M) →
C∞(M) such that 〈Gϕ1, ϕ2〉 = 〈ϕ1,G trϕ2〉 for ϕ1 and ϕ2 in C∞com(M) will be
another continuous linear operator of the same kind, and therefore the definition

〈G(T ), ϕ〉 = 〈T,G tr(ϕ)〉 for ϕ ∈ C∞com(M) and T ∈ E ′(M)

extends our G to a linear function G : E ′(M)→ D ′(M) in a natural way.
For any continuous linear operator G : C∞com(M) → C∞(M), the scalar-

valued function 〈Gϕ1, ϕ2〉 on C∞com(M) × C∞com(M) is continuous and linear in
each variable when the other variable is held fixed, and it follows from a result
known as the Schwartz Kernel Theorem15 that there exists a unique distribution
G in D ′(M × M) such that

〈Gϕ1, ϕ2〉 = 〈G, ϕ1 ⊗ ϕ2〉 for ϕ1 ∈ C∞com(M) and ϕ2 ∈ C∞com(M),

where ϕ1⊗ϕ2 is the function on M×M with (ϕ1⊗ϕ2)(x, y) = ϕ1(x)ϕ2(y). We
call G the distribution kernel of G. The distribution kernel Gtr of G tr is obtained
from the distribution kernel G by interchanging x and y.
In analogy with the Euclidean situation, we say that G is properly supported

if the subset support(G) of M×M has compact intersection with K ×M and with

15A special case of the Schwartz Kernel Theorem is proved in Problems 14–19 at the end of
Chapter V. This special case is at the heart of the matter in the general case.
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M×K for every compact subset K of M . In this case it follows for each compact
subset K ofM that there exists a compact subset L ofM such thatG(C∞K ) ⊆ C∞L .
Concretely the set L is p1

(
(M × K ) ∩ support(G)), where p1(x, y) = x . Then

it is immediate that G carries C∞com(M) into C∞com(M) and is continuous as such
a map. The same thing is true of G tr since the definition of proper support is
symmetric in x and y, and therefore the definition

〈G(T ), ϕ〉 = 〈T,G tr(ϕ)〉 for ϕ ∈ C∞com(M) and T ∈ D ′(M)

extends the properly supported G to a linear function G : D ′(M)→ D ′(M) in
a natural way.
A pseudodifferential operator of order ≤ m on M is a continuous linear

operator G : C∞com(M)→ C∞(M) with the property, for every compatible chart
κ , that the operator Gκ : C∞com(M̃κ)→ C∞(M̃κ) given by

Gκ(ψ) = G(ψ ◦ κ)∣∣Mκ
◦ κ−1 for ψ ∈ C∞com(M̃κ)

is a generalized pseudodifferential operator on M̃κ defined by an amplitude in
Sm1,0,0(M̃κ × M̃κ). Theorem 8.20 shows that this condition about all compatible
charts is satisfied if it holds for all charts in an atlas.
For such an operator the distribution kernel is automatically a smooth function

away from the diagonal of M × M , as a consequence of the same fact about
Euclidean pseudodifferential operators. One has only to realize that if two distinct
points of M are given, then one can find compatible charts about the points whose
domains are disjoint and whose images are disjoint; then the union of the charts
is a compatible chart, and the fact about Euclidean operators can be applied.
For a distribution on a smoothmanifold, it makes sense to speak of the singular

support as the unionof all open sets onwhich the distribution is a smooth function,
and the above fact about the distribution kernel implies that any pseudodifferential
operator G on M is pseudolocal in the sense that the singular support of G(T )
is contained in the singular support of T for every T in E ′(M).
The composition of two properly supported pseudodifferential operators on

M is certainly defined as a continuous linear operator from C∞com(M) into itself,
but a little care is needed in checking that the composition, when referred to
a compatible chart κ , is a generalized pseudodifferential operator on M̃κ . The
reason is that when G is properly supported on M , it does not follow that the
restriction of G to Mκ , i.e., to C∞com(Mκ), is properly supported, not even if M is
an open subset of Rn . To handle this problem, we start from this observation: if
G is any pseudodifferential operator onM , if V is open inM , and ifψ1 andψ2 are
in C∞com(V ), then the operator defined for ϕ in C

∞
com(V ) by ϕ �→ ψ1G(ψ2ϕ) is a

properly supported pseudodifferential operator on V ; in fact, the distribution ker-
nel of this operator is supported in the compact subset support(ψ2)×support(ψ1)
of V × V .
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This observation, the device used above for showing that distribution kernels
are smooth off the diagonal, and an argument with a partition of unity yield a
proof of the following lemma.

Lemma 8.22. If L is a properly supported pseudodifferential operator on M
of order ≤ m and K is a compact subset of Mκ for some compatible chart κ of
M , then there exist compatible charts κ0, κ1, . . . , κr with κ0 = κ , with each Mκi

containing K and, for each i ≥ 0, with a properly supported pseudodifferential
operator Li on Mκi such that L(ϕ) =

∑r
i=0 Li (ϕ) for every ϕ in C

∞
K .

PROOF. Choose K ′ compact such that ϕ ∈ C∞K implies L(ϕ) ∈ C∞K ′ , and let
ψ ≥ 0 be a member of C∞com(M) that is 1 in a neighborhood of K ′. Next choose
open neighborhoods N , N ′, N ′′ of K such that N ′′ ⊆ N ′′cl ⊆ N ′ ⊆ N ′cl ⊆ N ⊆
N cl ⊆ Mκ with N cl compact. Finally chooseψ1 ∈ C∞com(M)with values in [0, 1]
that is 1 on N ′ and is 0 on Nc. Then 1 − ψ1 is 0 on N ′ and hence has support
disjoint from K . Define ψ2 = (1− ψ1)ψ .
For each x in the compact support of ψ2, find a compatible chart containing

x with domain Vx contained in N ′′c. The sets Vx cover support(ψ2), and there
is a finite subcover V1, . . . , Vr . Since each Vi with i ≥ 1 is the domain of a
compatible chart and since Vi ∩ N ′′ = ∅, there exists a compatible chart κi
with domain Vi ∪ N ′′. Within the sets Vi , we can find open subsets Wi with W cl

i
compact in Vi such that theWi cover support(ψ2). Repeating this process, we can
find open subsets Xi with X cli compact inWi such that the Xi cover support(ψ2).
By choosing, for each i , a smooth function on∪Vi with values in [0, 1] that is 1 on
Xi and is 0 offW cl

i and by then dividing by the sum of these and a smooth function
that is positive on ∪Vi −∪Wi and is 0 in a neighborhood of support(ψ2), we can
produce smooth functions η1, . . . , ηr on ∪Vi , all ≥ 0, with sum identically 1 in
a neighborhood of support(ψ2) such that ηi has compact support in Vi . Then the
operators L0(ϕ) = ψ1L(ψ1ϕ) and, for i ≥ 1, Li (ϕ) = ηiψ2L(ψ1ϕ) have the
required properties.

If we have a composition J = GH of properly supported pseudodifferential
operators, we apply the lemma to H to write GH(ϕ) = ∑

i G(Hi (ϕ)). For
each i , all members of Hi (C∞K ) have support in some compact subset Li of
Mκi . Thus we can apply the lemma again to G and the set Li to write G as a
certain sum in a fashion depending on i . The result is that GH is exhibited on
C∞K as a sum of terms, each of which is the composition of properly supported
operators within a compatible chart. Since compositions of properly supported
generalized pseudodifferential operators in Euclidean space are again properly
supported generalized pseudodifferential operators, each term of the sum is a
pseudodifferential operator onM . Thus J = GH is a pseudodifferential operator
on M .
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We turn to the question of symbols. Aswith linear differential operators, which
were discussed in Section 5, we cannot expect a coordinate-free meaning for the
symbol of a pseudodifferential operator on the smooth manifold M , even if the
operator is properly supported. But we can associate a “principal symbol” to
such an operator in many cases, generalizing the result for differential operators
in Section 5. For a linear differential operator of order m, we saw that the
principal symbol is a smooth function on the cotangent bundle T ∗(M,R) that is
homogeneous of degree m in each fiber. For a pseudodifferential operator whose
order is not a nonnegative integer, the homogeneitymay disrupt the smoothness at
the origin of each fiber, and we thus have to allow for a singularity. Accordingly,
let T ∗(M,R)× denote the cotangent bundle with the zero section removed, i.e.,
the closed subset consisting of the 0 element of each fiber is to be removed. The
principal symbol of orderm for a properly supported pseudodifferential operator
G of order ≤ m on M will turn out to be, in cases where it is defined, a smooth
function on T ∗(M,R)× that is homogeneous of degree m in each fiber.
Let G be a pseudodifferential operator of order ≤ m on M , and let κ be

a compatible chart. Let Gκ(ψ) = G(ψ ◦ κ)∣∣Mκ
◦ κ−1 be the corresponding

generalized pseudodifferential operator on M̃κ , and let gκ(x, y, ξ)be an amplitude
for it, so that gκ(x, y, ξ) is in Sm1,0,0(M̃κ× M̃κ). Suppose that σκ(x, ξ) is a smooth
function on M̃κ×(Rn−{0}) that is homogeneous of degreem in the ξ variable for
eachfixed x in M̃κ . The functionσκ(x, ξ) is not necessarily in Sm1,0(M̃κ)because of
the potential singularity at ξ = 0, but the function τ(�x(ξ))σκ(x, ξ) is in Sm1,0(M̃κ)

if τ is a smooth scalar-valued function on Rn that is 0 in a neighborhood of 0 and
is 1 for |ξ | sufficiently large and if x �→ �x is a smooth function from M̃κ into
GL(n,F). Moreover, for any two choices of τ and �x of this kind, the difference
of the two symbols τ(�x(ξ))σκ(x, ξ) is the symbol of a smoothing operator. Fix
such a τ and �x . We say that Gκ has principal symbol σκ(x, ξ) if there is some
ε > 0 such that gκ(x, y, ξ) − τ(�x(ξ))σκ(x, ξ) is in S

m−ε
1,0,0(M̃κ × M̃κ). This

condition is independent of τ and �x . We say that the given pseudodifferential
operator G of order ≤ m has a principal symbol, namely the family {σκ(x, ξ)}
as κ varies, if this condition is satisfied for every κ and if ε can be taken to be
independent of κ .
In this case we shall show that {σκ(x, ξ)} is the system of local expressions for

a scalar-valued function on the part of the cotangent bundle of M where ξ = 0,
the dependence in the cotangent space being homogeneous of degree m at each
point of M ; consequently one refers also to this function on T ∗(M,R)× as the
principal symbol. There is no assertion that a principal symbol exists, but it will
be unique when it exists.16 Moreover, this definition agrees with the definition

16Some authors define the principal symbol more broadly—the local expression being the coset
of amplitudes for G modulo amplitudes in Sm−ε1,0,0(M̃κ × M̃κ ). This alternative definition, however,
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in Section 5 in the case of a linear differential operator on M . To see that the
functions σκ(x, ξ) correspond to a single function on T ∗(M,R)×, suppose that κ
and κ ′ are compatible charts whose domains overlap. Let κ = (x1, . . . , xn) and
κ ′ = (y1, . . . , yn). We write y = y(x) for the function κ ′ ◦ κ−1 and x = x(y)
for the inverse function κ ◦ κ ′−1. Theorem 8.18 shows that there is no loss of
generality in assuming that the local expressions for G in the charts κ and κ ′

have symbols in Sm1,0(M̃κ) and Sm1,0(M̃κ ′). Let these be gκ(x, ξ) and gκ ′(y, η).
Corollary 8.21 shows that

gκ ′(y, η)− gκ
(
x(y),

([
∂xi (y)
∂yj

]−1)tr
(η)
)

is in Sm−11,0 (κ ′(Mκ ∩ Mκ ′)). Our construction shows that

gκ ′(y, η)− τ1(η)σκ ′(y, η)

gκ
(
x(y),

([
∂xi (y)
∂yj

]−1)tr
(η)
)− τ2

([
∂xi (y)
∂yj

]−1)tr
(η)
)
σκ
(
x(y),

([
∂xi (y)
∂yj

]−1)tr
(η)
)and

are in Sm−ε1,0 (κ ′(Mκ ∩ Mκ ′)). Therefore

τ2
([

∂xi (y)
∂yj

]−1)tr
(η)
)
σκ
(
x(y),

([
∂xi (y)
∂yj

]−1)tr
(η)
)− τ1(η)σκ ′(y, η)

is in Sm−ε
′

1,0 (κ ′(Mκ ∩ Mκ ′)) for ε′ = min(1, ε). For y fixed and |η| sufficiently
large, each term in this expression has the property that its value at rη is rm times
its value at η if r ≥ 1. Then the same thing is true of the difference. Since the
condition of being in Sm−ε

′
1,0 (κ ′(Mκ ∩ Mκ ′)) says that the absolute value of the

difference at rη has to be ≤ rm−ε′ times the absolute value of the difference at η,
the difference has to be 0 for η sufficiently large. Therefore

σκ
(
x(y),

([
∂xi (y)
∂yj

]−1)tr
(η)
) = σκ ′(y, η)

for y in κ ′(Mκ ∩Mκ ′). According to a computation with T ∗(M) in Section 4, the
family {σκ(x, ξ)} satisfies the correct compatibility condition to be regarded as a
scalar-valued function on T ∗(M,R)×. In short, we can treat the principal symbol
as a scalar-valued function on the cotangent bundle minus the zero section.

does not reduce to the definition made in Section 5 for linear differential operators, and it seems
wise in the present circumstances to avoid it.
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The pseudodifferential operator G on M is said to be elliptic of order m if its
principal symbol is nowhere 0 on T ∗(M,R)×. It is a simple matter to check that
ellipticity in this sense is equivalent to the condition that all the local expressions
for the operator differ by smoothing operators17 from operators that are elliptic
of order m in the sense of Chapter VII.
Theorem 7.24 extends from Euclidean space to separable smooth manifolds:

any properly supported elliptic operator G has a two-sided parametrix, i.e., a
properly supported pseudodifferential operator H having GH = 1+ smoothing
and HG = 1 + smoothing. The proof consists of using Theorem 7.24 for each
member of an atlas and patching the results together by a smooth partition of
unity. A certain amount of work is necessary to arrange that the local operators
are properly supported. We omit the details.
As usual, the existence of the left parametrix implies a regularity result—that

the singular support of G f equals the singular support of f if f is in E ′(M).

8. Further Developments

Having arrived at a point in studying pseudodifferential operators on manifolds
comparable with where the discussion stopped for the Euclidean case, let us
briefly mention some further aspects of the theory that have a bearing on parts of
mathematics outside real analysis.

1. Quantitative estimates. Much of the discussion thus far has concerned the
effect of pseudodifferential operators on spaces of smooth functions of compact
support, and rather little has concerned distributions. Useful investigations of
what happens to distributions under such operators require further tools that
distinguish some distributions from others. A fundamental such tool is the
continuous family of Sobolev spaces denoted by Hs , or more specifically by
Hs
com(M) or Hs

loc(M), with s being an arbitrary real number.
The starting point is the family of Hilbert spaces Hs(Rn) that were introduced

in Problems 8–12 at the end of Chapter III. The space Hs(Rn) consists of all
tempered distributions T ∈ S(Rn) whose Fourier transforms F(T ) are locally
square integrable functions such that

∫
Rn |F(T )|2(1+|ξ |2)s dξ is finite, the norm

‖T ‖Hs being the square root of this expression. These spaces get larger as s
decreases. For K compact in Rn , let Hs

K be the vector subspace of all members
of Hs(Rn)with support in K ; this subspace is closed and hence is complete. IfU
is open in Rn , the space Hs

com(U ) is the union of all spaces Hs
K with K compact

17This condition takes into account Theorem 8.18, which says that the given operator differs by a
smoothing operator from an operator with a symbol. If the local operator is defined by an amplitude
and not a symbol, then ellipticity has not yet been defined for it.
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inU , and it is given the inductive limit topology from the closed vector subspaces
Hs
K . The space H

s
loc(U ) is the space of all distributions T on U such that ϕT

is in Hs
com(U ) for all ϕ in C∞com(U ); this space is topologized by the separating

family of seminorms T �→ ‖ϕT ‖Hs , and a suitable countable subfamily of these
seminorms suffices.
For U open in Rn , it is a consequence of Theorem 5.20 that each member of

E ′(U ) lies in Hs
com(U ) for some s. There is no difficulty in defining Hs

com(M)

and Hs
loc(M) for a separable smooth manifold M in a coordinate-free way, and

the result persists that E ′(M) is the union of all the spaces Hs
com(M) for s real.

We have seen that any generalized pseudodifferential operator on M carries
E ′(M) into D ′(M). The basic quantitative refinement of this result is that any
generalized pseudodifferential operator of order ≤ m carries Hs

com(M) continu-
ously into Hs−m

loc (M).

2. Local existence for elliptic operators. We have seen that a properly
supported elliptic pseudodifferential operator on a manifold has a two-sided
parametrix. The existence of the left parametrix implies the regularity result
that the elliptic operator maintains singular support. With the aid of the Sobolev
spaces in subsection (1), one can prove that the existence of a right parametrix
for an elliptic differential operator L with smooth coefficients implies a local
existence theorem for the equation L(u) = f .

3. Pseudodifferential operators on sections of vector bundles. The the-
ory presented above concerned pseudodifferential operators that mapped scalar-
valued functions on a manifold into scalar-valued functions on the manifold.
The first step of useful generalization is to pseudodifferential operators carrying
vector-valued functions to vector-valued functions; these provide a natural setting
for considering systems of differential equations. The next step of useful general-
ization is to pseudodifferential operators carrying sections of one vector bundle to
sections of another vector bundle. The prototype is the differential operator d on
a manifold, which carries smooth scalar-valued functions to smooth differential
1-forms. The latter, as we know fromSection 4, are not to be considered as vector-
valued functions on the manifold but as sections of the cotangent bundle. The
ease of adapting our known techniques to handling the operator d in this setting
illustrates the ease of handling the overall generalization of pseudodifferential
operators to sections. In considering the equation d f = 0, for example, we can
use local coordinates and write d f (p) = ∑i

∂ f
∂xi

(p) dxi (p), regarding
∂ f
∂xi
as a

coefficient function for a basis vector. If d f = 0, then each coefficient must
be 0. So the partial derivatives of f in local coordinates must vanish, and f
must be constant in local coordinates. Thus we have solved the equation in local
coordinates. When we pass from one local coordinate system to another, aligning
the basis vectors dxi requires taking the bundle structure into account, but that is a
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separate problem from understanding d locally. For a pseudodifferential operator
carrying sections of one vector bundle to sections of another, the formalism
is completely analogous. Locally we can regard the operator as a matrix of
generalized pseudodifferential operators of the kind considered earlier in this
section. One can introduce appropriate generalizations of the various notions
considered in this section and work with them without difficulty. In particular,
one can define principal symbol and ellipticity and can follow through the usual
kind of theory of parametrices for elliptic operators, obtaining the usual kind of
regularity result. In place of Hs

com(M) and Hs
loc(M), one works with spaces of

sections Hs
com(M, E) and Hs

loc(M, E), E being a vector bundle.

4. Pseudodifferential operators on sections when themanifold is compact.
Of exceptional interest for applications is the situation in subsection (3) above
when the underlying smooth manifold is compact. Here every pseudodiffer-
ential operator is of course properly supported, and the subscripts “com” and
“loc” for Sobolev spaces mean the same thing. Three fundamental tools in
this situation are the theory of “Fredholm operators,” a version of Sobolev’s
Theorem, saying that the members of Hs(M, E) have k continuous derivatives
if s > [ 12 dimM] + k + 1, and Rellich’s Lemma, saying that the inclusion of
Hs(M, E) into Ht (M, E) if t < s carries bounded sets into sets with compact
closure. An important consequence is that the kernel of an elliptic operator of
orderm carrying Hs(M, E) to Hs−m(M, F) is finite dimensional, the dimension
being independent of s; moreover, the image of Hs(M, E) in Hs−m(M, F) has
finite codimension independent of s. The difference of the dimension of the kernel
and the codimension of the image is called the index of the elliptic operator and
plays a role in subsection (5) below.

5. Applications of the theory with sections over a compact manifold M .
In this discussion we shall freely use some terms that have not been defined in the
text, puttingmany of them in quotationmarks or boldface at their first occurrence.

5a. A prototype of the theory of subsection (4) is Hodge theory, which
involves “higher-degree differential forms.” The operator d carries smooth forms
of degree k to smooth forms of degree k + 1, hence is an operator from sections
of one vector bundle to sections of another. If M is Riemannian, then the space
of differential forms of each degree acquires an inner product, and there is a
well-defined Laplacian dd∗ + d∗d carrying the space of forms of each degree
into itself. Forms annihilated by this Laplacian are called harmonic. Roughly
speaking, the theory shows that the kernel of d on the space of forms of degree
k is the direct sum of the harmonic forms of degree k and the image under d of
the space of forms of degree k − 1. Consequently “de Rham’s Theorem” allows
one to identify the space of harmonic forms with the cohomology of M with
coefficients in the field of scalars F.
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5b. For any complex manifold M , there is an operator ∂̄ on smooth differential
forms that plays the same role for the partial derivative operators ∂

∂ z̄ j
that d plays

for the operators ∂
∂xj
. The same kind of analysis as in subsection (5a), when done

for a compact complex manifold with a Hermitian metric and a Laplacian of the
form ∂̄ ∂̄∗ + ∂̄∗∂̄ , identifies, roughly speaking, a suitable space of harmonic forms
as a vector-space complement to the image of ∂̄ in a kernel for ∂̄ .

5c. For aRiemann surfaceM , a holomorphic-line-bundle version of subsection
(5b) leads to a proof18 of the Riemann–Roch Theorem, a result allowing one
to compute the dimensions of various spaces of meromorphic sections on the
Riemann surface. For a compact complexmanifold a holomorphic-vector-bundle
version of subsection (5b) leads to Hirzebruch’s generalization of the Riemann–
Roch Theorem.

5d. In place of d or ∂̄ , one may use a version of a “Dirac operator” in the above
kind of analysis. The result is one path that leads to the Atiyah–Singer Index
Theorem, which relates a topological formula and an analytic formula for the
index of an elliptic operator from sections of one vector bundle over the compact
manifold to sections of another such bundle. This theorem has a number of
applications relating topology and analysis, and the Hirzebruch–Riemann–Roch
Theorem may be regarded as a special case.

BIBLIOGRAPHICAL REMARKS. There are several books on pseudodifferential
operators, and the treatment here in Chapters VII and VIII has been influenced
heavily by three of them: Hörmander’s Volume III of The Analysis of Linear Par-
tial Differential Equations, Taylor’s Pseudodifferential Operators, and Treves’s
Volume 1 of Introduction to Pseudodifferential and Fourier Integral Operators.19

All three books use the definition f̂ (ξ) = c
∫

Rn f (x)e−i x ·ξ dx for the Fourier
transform, where c = 1 for Hörmander and Treves and c = (2π)−n/2 for Taylor.
The definition here is f̂ (ξ) = ∫

Rn f (x)e−2π i x ·ξ dx ; this change forces small dif-
ferences in the constants involved in the definition of pseudodifferential operators
and results like Theorems 7.22 and 8.17. Another difference in notation is that
these books include a power of i = √−1 in the definition of Dα , and this text
does not; inclusion of the power of i follows a tradition dating back to the work
of Hermann Weyl and seems an unnecessary encumbrance at this level.
The books by Hörmander and Treves assume extensive knowledge of material

in separate books by the authors concerning distributions; Taylor makes extensive
use of distributions and includes a very brief summary of them inChapter I. Treves

18Not the standard proof.
19Full references for these books and other sources may be found in the section References at

the end of the book.
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uses a smooth measure on a manifold in order to identify smooth functions with
distributions,20 but Hörmander does not.
The relevant sections of those books for the material in Sections VII.6, VIII.6,

and VIII.7 are as follows: Section 18.1 of Hörmander’s book, Sections II.1–II.5
and III.1 of Taylor’s book, and Sections I.1–I.5 of the Treves book.
The relevant portions of the three books for the mathematics in Section VIII.8

include the following: (1) Hörmander, pp. 90–91, Taylor, Section II.6; Treves,
pp. 16–18 and 47. (2) Taylor, Section VI.3; Treves, pp. 92–93. (3) Hörmander,
pp. 91–92; Treves, Section I.7. (4) Hörmander, Chapter XIX; Treves, Section
II.2.
A larger number of books use pseudodifferential operators for some particular

kind of application, sometimes developing a certain amount of the abstract theory
of pseudodifferential operators. Among these are Wells, Differential Analysis on
Complex Manifolds, which addresses applications (5a), (5b), and (5c) above;
Lawson–Michelsohn, Spin Geometry, which addresses application (5d) above;
and Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Os-
cillatory Integrals, which uses pseudodifferential operators to study the behavior
of holomorphic functions on the boundaries of domains in Cn , as well as related
topics. Hörmander’s book is another one that addresses application (5d), but it
does so less completely than Lawson–Michelsohn.
For a brief history of pseudodifferential operators and the relationship of

the theory to results like the Calderón–Zygmund Theorem, see Hörmander,
pp. 178–179. For more detail about how pseudodifferential operators capture
the idea of a freezing principle, see Stein, pp. 230–231.

9. Problems

1. Verify that the unit sphere M = Sn in Rn+1, the set of vectors of norm 1, can
be made into a smooth manifold of dimension n by using two charts defined as
follows. One of these charts is

κ1(x1, . . . , xn+1) =
( x1
1−xn+1 , . . . ,

xn
1−xn+1

)
with domain Mκ1 = Sn − {(0, . . . , 0, 1)}, and the other is

κ2(x1, . . . , xn+1) =
( x1
1+xn+1 , . . . ,

xn
1+xn+1

)
with domain Mκ2 = Sn − {(0, . . . , 0,−1)}.

20For a while, anyway.
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2. Set-theoretically, the real n-dimensional projective space M = RPn can be
defined as the result of identifying each member x of Sn in the previous problem
with its antipodal point −x . Let [x] ∈ RPn denote the class of x ∈ Sn .
(a) Show that d([x], [y]) = min{|x − y|, |x + y|} is well defined and makes

RPn into metric space such that the function x �→ [x] is continuous and
carries open sets to open sets.

(b) For each j with 1 ≤ j ≤ n + 1, define

κj [(x1, . . . , xn+1)] =
( x1
xj
, . . . ,

xj−1
xj

,
xj+1
xj

, . . . ,
xn+1
xj

)
on the domain Mκj =

{
[(x1, . . . , xn+1)]

∣∣ xj = 0
}
. Show that the system{

κj
∣∣ 1 ≤ j ≤ n+1} is an atlas forRPn and that the function x �→ [x] from

Sn to RPn is smooth.

3. Let X be a smooth manifold.
(a) Prove that if X is Lindelöf, or is σ -compact, or has a countable dense set,

then X has an atlas with countably many charts.
(b) Prove that if X has an atlas with countably many charts, then X is separable.

4. The real general linear group G = GL(n,R) is the group of invertible n-by-n
matrices with entries in R, the group operation being matrix multiplication. The
space of all n-by-n real matrices A may be identified with Rn2 , and GL(n,R)

is then the open set where det A = 0. As an open subset of Rn2 , it is a smooth
manifold with an atlas consisting of one chart. The coordinate functions xi j (g)
yield the entries gi j of g.
(a) Prove that matrix multiplication, as a mapping of G×G into G, is a smooth

mapping. Prove that matrix inversion, as a mapping from G into G, is
smooth.

(b) If A is a matrix with entries Ai j , identify A as a member of Tg(G) by A↔∑
i, j Ai j

[
∂

∂xi j

]
g
. Let lg be the diffeomorphism of G given by lg(h) = gh.

Define a vector field Ã by Ãg f = (dlg)1(A)( f ) if f is defined near g. Prove
that Ãg f =

∑
i, j (gA)i j

∂ f
∂xi j

(g).

(c) Prove that Ã is smooth and is left invariant in the sense of being carried to
itself by all lg’s.

(d) Show that c(t) = g0 exp t A is the integral curve for Ã such that c(0) = g0.
(e) Prove that if f is in C∞(G), then Ã f (g) = d

dt f (g exp t X)
∣∣
t=0.

5. This problem concerns the existence of smooth partitions of unity on a separable
smoothmanifoldM . Let {Kl}l≥1 be an exhausting sequence forM . For l = 0, put
L0 = K2 and U0 = Ko

3 . For l ≥ 1, put Ll = Ll+2 − Ko
l+1 and Ul = Ko

l+3 − Kl .
Each point of M lies in some Ll and has a neighborhood lying in only finitely
many Ul’s.
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(a) Using the exhausting sequence, find an atlas {κα} of compatible charts such
that each point of M has a neighborhood lying in only finitely many Mκα ’s.

(b) By applying Proposition 8.2 within each member of a suitable atlas as in
(a), show that there exists ηα ∈ C∞com(Mκα ) for each α with values in [0, 1]
such that

∑
ηα is everywhere > 0. Normalizing, conclude that there exists

ϕα ∈ C∞com(Mκα ) for each α with values in [0, 1] such that
∑

ϕα is 1
identically on M .

(c) Prove that if K is compact in M and U is open with K ⊆ U , then there
exists ϕ in C∞com(U ) with values in [0, 1] such that ϕ is 1 everywhere on K .

(d) Prove that if K is compact in M and {U1, . . . ,Ur } is a finite open cover of
K , then there exist ϕj in C∞com(Uj ) for 1 ≤ j ≤ r with values in [0, 1] such
that

∑r
j=1 ϕj is 1 on K .

Problems 6–7 concern local coordinate systems on smooth manifolds.

6. Let M and N be smooth manifolds of dimensions n and k, let p be in M ,
suppose that F : M → N is a smooth function such that dFp carries Tp(M) onto
TF(p)(N ), and suppose that λ is a compatible chart for N about F(p) such that
λ = (y1, . . . , yk). Prove that the functions y1 ◦ F, . . . , yk ◦ F can be taken as
the first k of n functions that generate a system of local coordinates near p in the
sense of Proposition 8.4.

7. Let M and N be smooth manifolds of dimensions n and k, let p be in M , suppose
that F : M → N is a smooth function such that dFp is one-one, and suppose
that ψ = (y1, . . . , yk) is a compatible chart for N about F(p).
(a) Prove that it is possible to select from the set of functions y1 ◦ F, . . . , yk ◦ F

a subset of n of them that generate a system of local coordinates near F(p)
in the sense of Proposition 8.4.

(b) Let ϕ = (x1, . . . , xn) be a compatible chart for M about p. Prove that
there exists a system of local coordinates (z1, . . . , zk) near F(p) such that
xj coincides in a neighborhood of p with zj ◦ F for 1 ≤ j ≤ n.

Problems 8–9 concern extending Sard’s Theorem (Theorem 6.35 of Basic) to sep-
arable smooth manifolds. Let M be an n-dimensional separable smooth manifold,
and let {κα} be an atlas of charts. A subset S of M has measure 0 if κα(S ∩ Mα)

has n-dimensional Lebesgue measure 0 for all α. If F : M → N is a smooth map
between smooth n-dimensional manifolds M and N , a critical point p of F is a point
where the differential (dF)p has rank < n. In this case, F(p) is called a critical
value.

8. Prove that if F : M → N is a smooth map between two smooth separable
n-dimensional manifolds M and N , then the set of critical values of F has
measure 0 in N .

9. Prove that if F : M → N is a smooth map between two separable smooth
manifolds and if dimM < dim N , then the image of F has measure 0 in N .
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Problems 10–13 introduce equivalence of vector bundles, which is the customary
notion of isomorphism for vector bundles with the same base space. Let π : B → M
and π ′ : B ′ → M be two smooth coordinate vector bundles of the same rank n with
the same field of scalars and same base space M , but with distinct bundle spaces,
distinct projections, possibly distinct atlases A = {κj } and A′ = {κ ′k} for M , distinct
coordinate functions φj and φ′k , and distinct transition functions gjk(x) and g

′
kl(x).

Let h : B → B ′ be a fiber-preserving smooth map covering the identity map of M ,
i.e., a smooth map such that h(π−1(x)) = π ′−1(x) for all x in M . For each x in M ,
define hx to be the smooth map obtained by restriction hx = h

∣∣
π−1(x); this carries

π−1(x) to π ′−1(x). Say that h exhibits π : B → M and π ′ : B ′ → M as equivalent
coordinate vector bundles if the following two conditions are satisfied:

• whenever κj and κ ′k are charts in A and A′ about a point x of M , then the map
ḡk j (x) = φ′k,x

−1 ◦ hx ◦ φj,x
of Fn into itself coincides with the operation of a member of GL(n,F),

• the map ḡk j : Mκj ∩ Mκ ′k → GL(n,F) is smooth.

The functions x �→ ḡk j (x) will be called themapping functions of h.

10. Prove for coordinate vector bundles that “equivalent” is reflexive and transitive
and that strictly equivalent implies equivalent.

11. Prove that if h exhibits two coordinate vector bundles π : B → M and
π ′ : B ′ → M as equivalent, then the mapping functions x �→ ḡk j (x) of h
satisfy the conditions

ḡk j (x)gji (x) = ḡki (x) for x ∈ Mκi ∩ Mκj ∩ Mκ ′k ,

g′lk(x)ḡk j (x) = ḡl j (x) for x ∈ Mκj ∩ Mκ ′k ∩ Mκ ′l .

12. Suppose that π : B → M and π ′ : B ′ → M are two smooth coordinate vector
bundles of the same rank n with the same field of scalars relative to atlases
A = {κj } and A′ = {κ ′k} of M .
(a) If smooth functions x �→ ḡk j (x) of Mκj ∩ Mκ ′k into GL(n,F) are given that

satisfy the displayed conditions in Problem 11, prove that there exists at
most one equivalence h : B → B ′ of coordinate vector bundles having {ḡk j }
as mapping functions and that it is given by h(φj,x (y)) = φ′k,x ḡk j (x)(y).

(b) Prove that “equivalent” for coordinate vector bundles is symmetric, and con-
clude that “equivalent” is an equivalence relation whose equivalence classes
are unions of equivalence classes under strict equivalence. (Educational
note: Therefore the notion of equivalent vector bundles is well defined.)

13. Suppose that π : B → M and π ′ : B ′ → M are two smooth coordinate vector
bundles of the same rank n with the same field of scalars relative to atlases
A = {κj } and A′ = {κ ′k} of M , and suppose that smooth functions x �→ ḡk j (x)
of Mκj ∩ Mκ ′k into GL(n,F) are given that satisfy the displayed conditions in
Problem 11.
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(a) Define a smoothmapping hkj from π−1(Mκj ∩Mκ ′k ) in B to π
′−1(Mκj ∩Mκ ′k )

as follows: If b is in B with x = π(b) inMκj∩Mκ ′k , letπj (b) = φ−1j,x (b) ∈ Fn ,
and set

hkj (b) = φ′k,x ḡk j (x)(pj (b)).

Prove that {hkj } is consistently defined as one moves from chart to chart,
i.e., that if x lies also in Mκi ∩ Mκ ′l , then hkj (b) = hli (b), and conclude that
the functions hkj piece together as a single smooth function h : B → B ′.

(b) Prove that the functions x �→ ḡk j (x) coincide with the mapping functions
of h, and conclude that the existence of functions satisfying the displayed
conditions in Problem 11 is necessary and sufficient for equivalence.



CHAPTER IX

Foundations of Probability

Abstract. This chapter introduces probability theory as a system of models, based on measure
theory, of some real-world phenomena. The models are measure spaces of total measure 1 and
usually have certain distinguished measurable functions defined on them.
Section 1 begins by establishing the measure-theoretic framework and a short dictionary for

passing back and forth between terminology inmeasure theory and terminology in probability theory.
The latter terminology includes events, random variables, expectation, distribution of a random
variable, and joint distribution of several random variables. An important feature of probability is
that it is possible to work with random variables without any explicit knowledge of the underlying
measure space, the joint distributions of random variables being the objects of importance.
Section 2 introduces conditional probability and uses that to motivate the mathematical definition

of independence of events. In turn, independence of events leads naturally to a definition of
independent random variables. Independent random variables are of great importance in the subject
and play a much larger role than their counterparts in abstract measure theory.
Section 3 states and proves the Kolmogorov Extension Theorem, a foundational result allowing

one to create stochastic processes involving infinite sets of times out of data corresponding to finite
subsets of those times. A special case of the theorem provides the existence of infinite sets of
independent random variables with specified distributions.
Section 4 establishes the celebrated Strong Law of Large Numbers, which says that the Cesàro

sums of a sequence of identically distributed independent random variables with finite expectation
converge almost everywhere to the expectation. This is a theorem that is vaguely known to the
general public and is widely misunderstood. The proof is based on Kolmogorov’s inequality.

1. Measure-Theoretic Foundations

Although notions of probability have been around for hundreds of years, it was
not until the twentieth century, with the introduction of Lebesgue integration, that
the foundations of probability theory could be established in any great generality.
The early work on foundations was done between 1929 and 1933 chiefly by A. N.
Kolmogorov and partly by M. Fréchet.
First of all, the idea is that probability theory consists of models for some

experiences in the real world. Second of all, these experiences are statistical in
nature, involving repetition. Thus one attaches probability 1/2 to the outcome

375



376 IX. Foundations of Probability

of “heads” for one flip of a standard coin based on what has been observed over
a period of time. One even goes so far as to attach probabilities to outcomes
that one can think of repeating even if they cannot be repeated as a practical
matter, such as the probability that a particular person will die from a certain kind
of surgery. But one does not try to incorporate probabilities into the theory for
contingencies that cannot remotely be regarded as repeatable. The philosopher
R. Carnap has asked, “What is the probability that the fair coin I have just tossed
has come up ‘heads’?” He would insist that the answer is 0 or 1, certainly
not 1/2. Mathematical probability theory leaves his question as something for
philosophers and does not address it.
The initial situation that is to be modeled is that of an experiment to be

performed; the experiment may be really simple, as with a single coin toss,
or it may have stages to it that may or may not be related to each other. For the
moment let us suppose that the number of stages is finite; later we shall relax
this condition. To fix the ideas, let us think of the outcome as a point in some
Euclidean space. Forcing the outcome to be a point in a Euclidean space may
not at first seem very natural for a single toss of a coin, but we can, for example,
identify “heads” with 1 and “tails” with 0 in R1. In any case, the experiment has
a certain range of conceivable outcomes, and these outcomes are to be disjoint
from one another. Initially we let 	 be the set of these conceivable outcomes. If
an outcome occurs when conditions belonging to a set A are satisfied, one says
that the event A has taken place.
We imagine that probabilities have somehow been attached to the individual

outcomes, and to aggregates of them, on the basis of some experimental data. Us-
ing a frequency interpretation of probability, one is led to postulate that probability
in the model of this experiment is a nonnegative additive set function on some
system of subsets of	 that assigns the value 1 to	 itself. Withoutmeasure theory
as a historical guide, onemight be hard pressed to postulate complete additivity as
well, but in retrospect complete additivity is not a surprising condition to impose.
At any rate, the model of the experiment within probability theory uses a

measure space (	,A, P), normally with total measure P(	) equal to 1, with
one or more measurable functions on 	 to indicate the result of the experiment.
One way of setting up (	,A, P) is as we just did—to let 	 be the set of all
possible outcomes, i.e., all possible values of the measurable functions that give
the result of the experiment. Events are then simply measurable sets of outcomes,
and the measure P gives the probabilities of various sets of outcomes. Yet this
is not the only way, and successful work in the subject of probability theory
requires a surprising indifference to the nature of the particular 	 used to model
a particular experiment.
We can give a rather artificial example right now, in the context of a single

toss of a standard coin, of how distinct 	’s might be used to model the same
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experiment, and we postpone to the last two paragraphs of this section and to
the proof of Theorem 9.8 any mention of more natural situations in which one
wants to allow distinct	’s in general. The example occurs when the experiment
is a single flip of a standard coin. Let us identify “heads” with the real number 1
and “tails” with the real number 0. Centuries of data and of processing the data
have led to a consensus that the probabilities are to be 1/2 for each of the two
possible outcomes, 1 and 0. We can model this situation by taking	 to be the set
{1, 0} of outcomes, A to consist of all subsets of 	, and P to assign weight 1/2
to each point of 	. The function f indicating the result of the experiment is the
identity function, with f (ω) = 1 if ω = 1 and with f (ω) = 0 if ω = 0. But it
would be just as good to take any other measure space (	,A, P)with P(	) = 1
and to suppose that there is some measurable subset A with P(A) = 1/2. The
measurable function f modeling the experiment has f (ω) = 1 if ω is in A and
f (ω) = 0 if not.
The problem of how to take real-world data and to extract probabilities in

preparation for defining a model is outside the domain of probability theory. This
involves a statistical part that obtains and processes the data, identifies levels of
confidence in the accuracy of the data, and assesses the effects of errors made in
obtaining the data accurately. Also it may involve making some value judgments,
such as what confidence levels to treat as decisive, and such value judgments are
perhaps within the domain of politicians. In addition, there is a fundamental
philosophical question in whether the model, once constructed, faithfully reflects
reality. This question is similar to the question of whether mathematical physics
reflects the physics of the real world, but with one complication: in physics
there is always the possibility that a single experimental result will disprove the
model, whereas probability gives no prediction that can be disproved by a single
experimental result.
Apart from a single toss of a coin, another simple experiment whose outcome

can be expressed in terms of a single real number is the selection of a “random”
number from [0, 2]. The word “random” in this context, when not qualified in
some way, insists as a matter of definition that the experiment is governed by
normalized Lebesgue measure, that the probability of picking a number within a
set A is the Lebesgue measure of A divided by the Lebesgue measure of [0, 2]. If
we take 	 to be [0, 2],A to be the Borel sets, and P to be 12 dx and if we use the
identity function as the measurable function telling the outcome, then we have
completely established a model.
The theory needed for setting up a model that incorporates given probabilities

is normally not so readily at hand, since one is quite often interested potentially in
infinitely many stages to an experiment and the given data concern only finitely
many stages at a time. In many cases of this kind, one invokes a fundamental
theorem of Kolmogorov to set up a measure space that can allow the set of
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distinguished measurable functions to be infinite in number. We shall state and
prove this theorem in Section 3.
In the meantime let us take the measure space (	,A, P) with P(	) = 1 as

given to us. We refer to (	,A, P) or simply (	, P) as a probability space.
Probability theory has its own terminology. An event is a measurable set, thus a
set in the σ -algebraA. One speaks of the “probability of an event,” which means
the P measure of the set. The language used for an event is often slightly different
from the ordinary way of defining a set. With the random-number example above,
one might well speak of the probability of the “event that the random number lies
in [1/2, 1]” when a more literal description is that the event is [1/2, 1]. It is not
a large point. The probability in either case, of course, is 1/4.
Let A and B be events. The event A ∩ B is the simultaneous occurrence of A

and B. The event A ∪ B is the event that at least one of A and B occurs. The
event Ac is the nonoccurrence of the event A. If A = ∅, event A is impossible; if
A = 	, event Amust occur. Containment B ⊆ Ameans that from the occurrence
of event B logically follows the occurrence of event A. Two events A and B are
incompatible if A ∩ B = ∅. A set-theoretic partitioning C of 	 as a disjoint
union 	 = ⋃n

k=1 Ak corresponds to an experiment C consisting of determining
which of the events A1, . . . , An occurs. And so on.
A random variable is a real-valued measurable function on 	. With the

random-number example, a particular random variable is the number selected.
This is the function f that associates the real number ω to the member ω of the
space	. The word “random” in the name “random variable” refers to the fact that
its value depends on which possibility in	 is under consideration. Some latitude
needs to be made in the definition of measurable function to allow a function
taking on values “heads” and “tails” to be a random variable, but this point will
not be important for our purposes.1 As we shall see, the random variables that
yield the result of the defining experiment of a probability model are, in a number
of important cases, coordinate functions on a set	 given as a product, and random
variables are often indicated by letters like x suitable for coordinates.2

The expectation or expected value E(x) of the random variable x is motivated
by a computation in the especially simple case that	 contains finitely many out-
comes/points and P(A) is computed for an event by adding the weights attached
to the outcomes ω of A. If ω is an outcome, the value of x at ω is x(ω), and
this outcome occurs with probability P({ω}). Summing over all outcomes, we

1We return to this point in Section 3, where it will influence the hypotheses of the fundamental
theorem of Kolmogorov.

2In his book Measure Theory Doob writes on p. 179, “An attentive reader will observe . . . that
in other chapters a function is f or g, and so on, whereas in this chapter [on probability] a function
is more likely to be x or y, and so on, at the other end of the alphabet. This difference is traditional,
and is one of the principal features that distinguishes probability from the rest of measure theory.”
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obtain
∑

ω∈	 x(ω)P({ω}) as a reasonable notion of the expected value. This sum
suggests a Lebesgue integral, and accordingly the definition in the general case is
that E(x) = ∫

	
x(ω) dP(ω). Probabilists say that E(x) exists if x is integrable;

cases in which the Lebesgue integral exists and is infinite are excluded.
There is a second way of computing expectation. When 	 is a finite set as

above, we can group all the terms in
∑

ω∈	 x(ω)P({ω}) for which x(ω) takes
a particular value c and then sum on c. The regrouped value of the sum is∑

c cP({ω | x(ω) = c}). The corresponding formula in the general case involves
the distribution of x , the Stieltjes measure μx on the Borel sets of the line R
defined by3

μx(A) = P({ω ∈ 	 | x(ω) ∈ A}).
This measure has total mass μx(R) = P(	) = 1. The notion of μx , but not the
name, was introduced in Section VI.10 of Basic. The formula for expectation in
terms of the distribution of x is E(x) = ∫

R
x dμx ; the justification for this formula

lies in the following proposition, which was proved in Basic as Proposition 6.56a
and which we re-prove here.

Proposition 9.1. If x : 	 → R is a random variable on a probability space
(	, P) and if μx is the distribution of x , then∫

	

�(x(ω)) dP(ω) =
∫

R

�(t) dμx(t)

for every nonnegative Borel measurable function � : R → R. The formula
extends to the case in which the condition “nonnegative” on � is dropped if the
integrals for �+ = max(�, 0) and �− = −min(�, 0) are both finite.

PROOF. When � is the indicator function IA of a Borel set A of R, the two
sides of the identity are P(x−1(A)) and μx(A), and these are equal by definition
of μx . We can pass to nonnegative simple functions by linearity and then to
general nonnegative Borel measurable functions � by monotone convergence.

The qualitative conclusion of Proposition 9.1 is by itself important: the ex-
pectation of any function of a random variable can be computed in terms of the
distribution of the random variable—without reference to the underlyingmeasure
space 	.
The expression for E(x) arising from Proposition 9.1 can often be written as a

“Stieltjes integral,” which is a simple generalization of the Riemann integral, and
thus the proposition in principle gives a way of computing expectations without
Lebesgue integration.4

3Naturally this notion of distribution is not to be confused with the kind in Chapter V.
4Consequently the resulting formula for expectations is handy pedagogically and is often ex-

ploited in elementary probability books.
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Although this book does not adhere to the practice, many probabilists prefer to
work with the associated monotone function for the Stieltjes measure μx , rather
than the measure itself. They refer to this monotone function as the distribution
function of x , whereas Basic would call it the distribution function of μx . When
the monotone function is absolutely continuous (for example, when it has a
continuous derivative), its derivative is called the density of the random variable
x . If x has a density fx , the formula for expectation becomes E(x) =

∫
R
t fx(t) dt .

A set of random variables is said to be identically distributed if all of them
have the same Stieltjes measure as distribution. We shall make use of identically
distributed random variables in Section 4.
Let us examine the formula in Proposition 9.1 more closely. The integral on

the left side is the expectation of the random variable � ◦ x , but the integral on
the right side is not the usual integral for an expectation. We therefore obtain the
identity ∫

R

�(t) dμx(t) =
∫

R

s dμ�◦x(s),

which is a kind of change-of-variables formula for random variables.
Although Proposition 9.1 allows us to compute the expectation of any Borel

function of a random variable in terms of the distribution of the random variable,
it does not help us whenwe have to deal with more than one random variable. The
appropriate device for more than one random variable is a “joint distribution.” If
x1, . . . , xN are random variables, define, for each Borel set A in RN ,

μx1,...,xN (A) = P
({
ω ∈ 	

∣∣ (x1(ω), . . . , xN (ω)) ∈ A
})
.

Then μx1,...,xN is a Borel measure on RN with μx1,...,xN (R
N ) = 1. It is called the

joint distribution of x1, . . . , xN . Referring to the definition, we see that we can
obtain the joint distribution of a subset of x1, . . . , xN by dropping the relevant
variables: for example, dropping xN enables us to pass from the joint distribution
of x1, . . . , xN to the joint distribution of x1, . . . , xN−1, the formula being

μx1,...,xN−1(B) = μx1,...,xN (B × R).

Proposition 9.2. If x1, . . . , xN are random variables on a probability space
(	, P) and if μx1,...,xN is their joint distribution, then∫

	

�(x1(ω), . . . , xN (ω)) dP(ω) =
∫

RN
�(t1, . . . , tN ) dμx1,...,xN (t1, . . . , tN )

for every nonnegative Borel measurable function � : RN → R. The formula
extends to the case in which the condition “nonnegative” on � is dropped if the
integrals for �+ = max(�, 0) and �− = −min(�, 0) are both finite.
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PROOF. In (a), when� is the indicator function IA of a Borel set A of RN , the
two sides of the identity are P((x1, . . . , xN )−1(A)) and μx1,...,xN (A), and these
are equal by definition of μx1,...,xN . We can pass to nonnegative simple functions
by linearity and then to general nonnegative Borel measurable functions � by
monotone convergence.

As with Proposition 9.1, the qualitative conclusion of Proposition 9.2 is by
itself important: the expectation of any function of N random variables can be
computed in terms of their joint distribution—without reference to the underlying
measure space	. For example the product of the N randomvariables is a function
of them, and therefore

E(x1 · · · xN ) =
∫

RN
t1 · · · tN dμx1,...,xN (t1, . . . , tN ).

The possibility ofmaking such computationswithout explicitly using	 has the
effect of changing the emphasis in the subject. Often it is not that one is given such-
and-such probability space and such-and-such random variables on it. Instead,
one is given some random variables and, if not their precise joint distribution, at
least some properties of it. Accordingly, we can ask, What Borel measures μ
on RN with μ(RN ) = 1 are joint distributions of some family x1, . . . , xN of N
random variables on some probability space (	, P)?
The answer is, all Borel measuresμwithμ(RN ) = 1. In fact, we have only to

take (	, P) = (RN , μ) and let xj be the j th coordinate function xj (ω1, . . . , ωN )

= ωj on RN . Substituting into the definition of joint distribution, we see that the
value of the joint distribution μx1,...,xN on a Borel set A in RN is

μx1,...,xN (A) = μ({ω ∈ RN | (x1(ω), . . . , xN (ω)) ∈ A})
= μ({ω ∈ RN | (ω1, . . . , ωN ) ∈ A}) = μ(A).

Thus μx1,...,xN equals the given measure μ.

2. Independent Random Variables

Thenotion of independence of events in probability theory is amatter of definition,
but the definition tries to capture the intuition that one might attach to the term.
Thus one seeks amathematical condition saying that a set of attributes determining
a first event has no influence on a second event and vice versa. Kolmogorov
writes,5

5In his Foundations of the Theory of Probability, second English edition, pp. 8–9.
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Historically, the independence of experiments and random variables
represents the very mathematical concept that has given the theory
of probability its peculiar stamp. The classical work of LaPlace,
Poisson, Tchebychev, Liapounov, Mises, and Bernstein is actually
dedicated to the fundamental investigation of series of independent
random variables. . . . We thus see, in the concept of independence, at
least the germof the peculiar type of problem in probability theory. . . .
In consequence, one of themost important problems in the philosophy
of the natural sciences is—in addition to thewell-knownone regarding
the essence of the concept of probability itself—to make precise the
premises which wouldmake it possible to regard any given real events
as independent.

The path to discovering themathematical condition that captures independence
of events begins with “conditional probability.” Let A and B be two events, and
assume that P(B) > 0. Think of A as a variable. The conditional probability of
A given B, written P(A | B), is to be a new probability measure, as A varies, and
is to be a version of P adjusted to take into account that B happens. These words
are interpreted to mean that a normalization is called for, and the corresponding
definition is therefore

P(A | B) = P(A ∩ B)

P(B)
.

In measure-theoretic terms, we pass from the measure space (	,A, P) to
the measure space

(
B, A ∩ B, P(( · ) ∩ B)

/
P(B)

)
. Conditional probabilities

P(A | B) are left undefined when P(B) = 0.
The intuition concerning independence of A and B is that the occurrence of B

is not to influence the probability of A. Thus two events A and B are to be inde-
pendent, at least when P(B) > 0, if P(A) = P(A | B). This condition initially
looks asymmetric, but if we substitute the definition of conditional probability,
we find that the condition is P(A) = P(A∩B)

P(B) , hence that

P(A ∩ B) = P(A)P(B).

This condition is symmetric, and it allows us to drop the assumption that
P(B) > 0. We therefore define the events A and B to be independent if
P(A ∩ B) = P(A)P(B).
As the quotation above from Kolmogorov indicates, the question whether this

definition of independence captures from nature our intuition for what the term
should mean is a deep fundamental problem in the philosophy of science. We
shall not address it further.
But a word of caution is appropriate. The assumption of mathematical inde-

pendence carries with it far-reaching consequences, and it is not to be treated
lightly. Members of the public all too frequently assume independence without
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sufficient evidence for it. Here are two examples that made national news in
recent years.

EXAMPLES.

(1) In the murder trial of a certain sports celebrity, a criminalist presented
evidence that three characteristics of some of the blood at the scene matched the
defendant’s blood, and the question was to quantify the likelihood of this match
if the defendant was not the murderer. Two of the three characteristics amounted
to the usual blood type and Rh factor, and the criminalist said that half the people
in the population had blood with these characteristics. The third characteristic
was something more unusual, and he asserted that only 4% of the population had
blood with this characteristic. He concluded that only 2% of the population had
blood for which these three characteristics matched those in the defendant’s blood
and the blood at the scene. The defense attorney jumped on the criminalist, asking
how he arrived at the 2% figure, and received a confirmation that the criminalist
had simply multiplied the probability .5 for the blood type and Rh factor by the
.04 for the third characteristic. Upon being questioned further, the criminalist
acknowledged that he had multiplied the probabilities because he could not see
that these characteristics had anything to dowith each other. The defense attorney
elicited a further acknowledgement that the criminalist was aware of no studies
of the joint distribution. The criminalist’s testimony was thus discredited, and the
jurors could ignore it. What the criminalist could have said, but did not, was that
anyway at most 4% of the population had blood with those three characteristics
because of that third characteristic alone; that assertion would not have required
any independence.

(2) In the 2004 presidential election, some malfunctions involving electronic
voting machines occurred in three states in a particular way that seemed to favor
one of the twomain candidates. One national commentatorwho pursued this story
rounded up an expert who examined closely what happened in one of the states
and came upwith a rather small probability of about .1 for themalfunction to have
been a matter of pure chance. Seeing that the three states were widely separated
geographically and that communication between officials of the different states
on Election Day was unlikely, the commentator apparently concluded in his mind
that the three events were independent. So he multiplied the probabilities and
announced to the public that the probability of this malfunction in all three states
on the basis of pure chance was a decisively small .001. What he ignored was
that the machines in the three states were all made by the same company; so the
assumption of independence was doubtful.

Of more importance for our purposes than independence of events is the notion
of independence of random variables. Tentatively let us say that two random
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variables x and y on a probability space (	, P) are defined to be independent
if {x(ω) ∈ A} and {y(ω) ∈ B} are independent events for every pair of Borel
subsets A and B of R. Substituting the definition of independent events, we see
that the condition is that

P({ω | (x(ω), y(ω)) ∈ A × B}) = P({ω | x(ω) ∈ A})P({ω | y(ω) ∈ B})
for every pair of Borel subsets of R. We can rewrite this condition in terms of
distribution functions as

μx,y(A × B) = μx(A)μy(B).

In other words, the measure μx,y onR2 agrees with the product measureμx ×μy

on measurable rectangles. The two measures must then agree on all Borel sets
of R2. Conversely if the two measures agree on all Borel sets of R2, then they
agree on all measurable rectangles. We therefore adopt the following definition:
two random variables x and y on a probability space (	, P) are independent
if their joint distribution is the product of their individual distributions, i.e., if
μx,y = μx × μy .
One can go through a similar analysis, starting from conditional probability

involving N events, and be led to a similar result for N random variables. The
upshot is that N random variables x1, . . . , xn on a probability space (	, P)
are defined to be independent if their joint distribution μx1,...,xN is the N -fold
product of the individual distributions μx1, . . . , μxN . An infinite collection of
random variables is said to be independent if every finite subcollection of them
is independent.
We can ask whether arbitrarily large finite numbers of independent random

variables exist on some probability space with specified distributions, and the
answer is “yes.” This question is a special case of the one at the end of Section 1.
If we are given N Borel measures μ1, . . . , μN on R and we seek independent
random variables with these measures as their respective individual distributions,
we form the product measure μ = μ1 × · · · × μN . Then the observation at the
end of Section 1 shows us that if we take (RN , μ) as a probability space and if
we define N random variables on RN to be the N coordinate functions, then the
random variables have μ as joint distribution. Since μ is a product, the random
variables are independent.
The question is more subtle if asked about infinitelymany independent random

variables. If, for example, we are given an infinite sequence of Borel measures
on R, we do not yet have tools for obtaining a probability space with a sequence
of independent random variables having those individual distributions.6 We can

6There is one trivial case that we can already handle. An arbitrary set of constant random
variables can always be adjoined to an independent set, and the independence will persist for the
enlarged set.
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handle an arbitrarily large finite number, and we need a way to pass to the limit.
The passage to the limit for this situation is the simplest nontrivial application of
the fundamental theorem of Kolmogorov that was mentioned in Section 1. The
theorem will be stated and proved in Section 3.
We conclude this section with two propositions about independence.

Proposition 9.3. If x1, . . . , xN are independent random variables on a proba-
bility space, then E(x1 · · · xN ) = E(x1) · · · E(xN ).
PROOF. If μx1,...,xN is the joint distribution of x1, . . . , xN , then it was observed

after Proposition 9.2 that

E(x1 · · · xN ) =
∫

RN
t1 · · · tN dμx1,...,xN (t1, . . . , tn). (∗)

The independence means that dμx1,...,xN (t1, . . . , tn) = dμx1(t1) · · · dμxN (tN ).
Then the integral on the right side of (∗) splits as the product of N integrals, the
j th factor being

∫
R
tj dμxj (tj ). This j

th factor equals E(xj ), and the proposition
follows.

Proposition 9.4. Let

x1, . . . , xk1, xk1+1, . . . , xk2, xk2+1, . . . , xk3, . . . , xkm−1+1, . . . , xkm
be km independent random variables on a probability space, define k0 = 0, and
suppose that Fj : Rkj−kj−1 → R is a Borel function for each j with 1 ≤ j ≤ m.
Then the m random variables Fj (xkj−1+1, . . . , xkj ) are independent.

REMARKS. That is, functions of disjoint subsets of a set of independent random
variables are independent.

PROOF. Put yj = (xkj−1+1, . . . , xkj ), and define y = (y1, . . . , ym) and F =
(F1, . . . , Fm). LetRj be the copyofRkj−kj−1 corresponding to variables numbered
kj−1 + 1 through kj , and regard the distribution μFj (yj )

of Fj as a measure on Rj .
What needs proof is that

μF(y) = μF1(y1) × · · · × μFm(ym). (∗)
Both sides of this expression are Borel measures on Rkm . On any product set
A = A1 × · · · × Am , where Aj is a Borel subset of Rj , we have

μF(y)(A) = P({ω | F(y(ω)) ∈ A})
= P({ω | Fj (yj (ω)) ∈ Aj for all j})
= P({ω | yj (ω) ∈ F−1j (Aj ) for all j})
=∏m

j=1 P({ω | yj (ω) ∈ F−1j (Aj )}) by the assumed independence

=∏m
j=1 P({ω | Fj (yj )(ω) ∈ Aj })

=∏m
j=1 μFj (yj )

(Aj ).



386 IX. Foundations of Probability

Consequently the two sides of (∗) are equal on all Borel sets.

EXAMPLES.

(1) If x1, x2, . . . , xN are independent random variables and F1, F2, . . . , FN are
Borel functions onR1, then F1(x1), F2(x2), . . . , FN (xN ) are independent random
variables.

(2) If x1, . . . , xN are independent random variables and if sj = x1 + · · · + xj ,
then the two random variables sj and sN − sj are independent because sj depends
only on x1, . . . , xj and sN − sj depends only on xj+1, . . . , xN .

3. Kolmogorov Extension Theorem

The problem addressed by the Kolmogorov theorem is the setting up a “stochastic
process,” a notion that will be defined presently. Many stochastic processes have
a time variable in them, which can be discrete or continuous. The process has a
set S of “states,” which can be a finite set, a countably infinite set, or a suitably
nice uncountable set. It will be sufficient generality for our purposes that the set
of states be realizable as a subset of a Euclidean space, the measurable subsets of
states being the intersection of S with the Borel sets of the Euclidean space. The
defining measurable functions tell the state at each instant of time. Accordingly,
one might want to enlarge the definition of random variable to allow the range to
contain S. But we shall not do so, instead referring to “measurable functions” in
the appropriate places rather than random variables.
Let us give one example of a stochastic process with discrete time and another

with continuous time, with particular attention to the passage to the limit that is
needed in order to have a probability model realizing the stochastic process.
In the example with discrete time, we shall assume also that the state space S is

countable. The probabilistic interpretation of the situation visualizes the process
as moving from state to state as time advances through the positive integers,
with probabilities depending on the complete past history but not the future; but
this interpretation will not be important for us. Let us consider the analysis.
In the nth finite approximation (	n,An, Pn) for n ≥ 1, the set 	n is countable
and consists of all ordered n-tuples of members of S, while An is the set of
all subsets of 	n . The measure Pn is determined by assigning a nonnegative
weight to each member of 	n , the sum of all the weights being 1. As n varies,
a consistency condition is to be satisfied: the sum over S of all the weights in
	n+1 of the (n + 1)-tuples that start with a particular n-tuple is the weight in 	n

attached to that n-tuple. The distinguished measurable functions7 that tell the

7The measurable functions are random variables in this case since S ⊆ R.
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result of an experiment are the n coordinate functions that associate to an n-tuple
ω its various entries. What is wanted is a single measure space (	,A, P) that
incorporates all these approximations. It is fairly clear that 	 should be the set
of all infinite sequences of members of S and that the distinguished measurable
functions are to be the infinite set of coordinate functions. Defining A and P is
a little harder. Each n-tuple ω(n) forms a singleton set in An , and we associate
to ω(n) the set Tn(ω(n)) of all members of 	 whose initial segment of length n is
ω(n). The members of An are unions of these singleton sets, and we associate to
any member X ofAn the union Tn(X) of the sets Tn(ω(n)) for ω(n) in X . Also, we
define P(Tn(X)) = Pn(X). In this way we identify An with a σ -algebra Tn(An)

of subsets of 	, and we attach a value of P to each member of Tn(An). Define

A′ =
∞⋃
n=1

Tn(An).

The σ -algebras Tn(An) increase with n, and it follows that the union of two
members of A′ is in A′ and that the complement of a member of A′ is in A′;
hence A′ is an algebra, and A can be taken as the smallest σ -algebra containing
A′. In the union definingA′, a set can arise frommore than one term. For example,
if a set X inAn is given and a set Y inAn+1 consists of all (n + 1)-tuples whose
initial n-tuple lies in X , then Tn(X) = Tn+1(Y ). The above consistency condition
implies that Pn(X) = Pn+1(Y ), and hence the two definitions of P on the set
Tn(X) = Tn+1(Y ) are consistent. The result is that P is well defined onA′. Since
the Tn(An) increase with n and since the restriction of P to each one is additive,
it follows that P is additive. However, it is not apparent whether P is completely
additive since themembers of a countable disjoint sequence of sets inA′might not
lie in a single Tn(An). This is the matter addressed by the Kolmogorov theorem.
For purposes of being able to have a general theorem, let us make an observa-

tion. Although the consistency condition used in the above example appears to
rely on the ordering of the time variable, that ordering really plays no role in the
above construction. We could aswell have defined an F th finite approximation for
each finite subset F of the positive integers; the above consistency condition used
in passing from F = {1, . . . , n} to F ′ = {1, . . . , n, n+1} implies a consistency for
general finite sets of indiceswith F ⊆ F ′: the result of summing theweights of all
members of	F ′ whose restriction to the coordinates indexed by F is a particular
member of	F yields the weight of the member of	F . This observation makes it
possible to formulate theKolmogorov theorem in away that allows for continuous
time.
Let us then come to the example with continuous time. The example is amodel

of Brownian motion, which was discovered as a physical phenomenon in 1826.
Microscopic particles, when left alone in a liquid, can be seen to move along



388 IX. Foundations of Probability

erratic paths; this movement results from collisions between such a particle and
molecules of the liquid. An experiment can consist of a record of the position
in R3 of a particle as a function of time. When the data are studied and suitably
extrapolated to the situation that the liquid is all of R3, one finds an explicit
formula usable to define the probability that the moving particle lies in given
subsets of R3 at a given finite set of times. Namely, for t > 0, define

pt(x, dy) = 1

(4π t)3/2
e−|x−y|

2/(4t) dy.

If 0 = t0 < t1 < t2 · · · < tn , if A0, . . . , An are Borel sets inR3, and if the starting
distribution of the particle at time 0 is a measure μ on R3, then the probability
that the particle is in A0 at time 0, A1 at time t1, . . . , An−1 at time tn−1, and An
at time tn is to be taken as∫
x0∈A0

∫
x1∈A1

· · ·
∫
xn−1∈An−1

∫
xn∈An

ptn (xn−1, dxn) ptn−1(xn−2, dxn−1)

× · · · × pt1(x0, dx1) dμ(x0),

wheretj = tj−tj−1 for 1 ≤ j ≤ n. Let F be {0, t1, . . . , tn}. Amodel describing
Brownian motion at the times of F takes 	F to be the set of functions from F
into R3, i.e., a copy of (R3)n+1, and the measurable sets are the Borel sets. The
distinguished measurable functions are again coordinate functions;8 they pick off
the values inR3 at each of the times in F . Finally the measure PF takes the value
given by the above formula on the product set A0 × · · · × An , and it is evident
that PF extends uniquely to a Borel measure on R3(n+1), the value of PF (A) for
A ⊆ Rn+1 being the integral over A of the integrand in the display above. If F ′
is the union of F and one additional time, then PF ′ and PF satisfy a consistency
property saying that if xj is integrated over all of R3, then the integral can be
computed and the result is the same as if index j were completely dropped in the
formula; this comes down to the identity∫

y∈R3

1

(4πs)3/2
1

(4π t)3/2
e−|y−z|

2/(4s)e−|x−y|
2/(4t) dy = e−|x−z|2/(4(s+t))

(4π(s + t))3/2
,

which follows from the formula
∫∞
−∞ e−πx2 dx = 1, Fubini’s Theorem, and

some elementary changes of variables. The passage to the limit that needs to
be addressed is how to get a model that incorporates all t ≥ 0 at once. The space
can be (R3)[0,+∞). An algebra A′ can be built from the σ -algebras of Borel sets

8Since their values are not in R, these measurable functions are not, strictly speaking, random
variables as we have defined them in Section 1.
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of the Euclidean spaces (R3)F , and an additive set function P can be consistently
defined on A′ so that one recovers PF on each space (R3)F . What needs to be
addressed is the complete additivity of P .
A stochastic process is nothing more than a family {xi | i ∈ I } of measurable

functions defined on a measure space (	,A, P) with P(	) = 1. The index
set I is assumed nonempty, but no other assumptions are made about it. The
measurable functions have values in a more general space S than R, but we
shall assume for simplicity that S is contained in a Euclidean space RN and
then we may take S equal to RN . Although stochastic processes generally are
interesting only when the measurable functions are related to each other in some
special way, the Kolmogorov theorem does not make use of any such special
relationship. It addresses the construction of a general stochastic process out of
the approximations to it that are formed from finite subsets of I .
The situation is then as follows. Let I be an arbitrary nonempty index set, let

the state space S be RN for some fixed integer N , and let 	 = SI be the set of
functions from I to S. We let xi , for i ∈ I , be the coordinate function from 	

to S defined by xi (ω) = ω(i). For J ⊆ I , we let xJ = {xi | i ∈ J }; this is a
function carrying 	 to SJ .
For each nonempty finite subset F of I , the image of xF is the Euclidean space

SF , in which the notion of a Borel set is well defined. A subset A of 	 will be
said to bemeasurable of type F if A can be described by

A = x−1F (X) = {ω ∈ 	 | xF ∈ X} for some Borel set X ⊆ SF .

The collection of subsets of 	 that are measurable of type F is a σ -algebra that
we denote byAF . If F and F ′ are finite subsets of I with F ⊆ F ′ and if the Borel
set X of SF exhibits A as measurable of type F , then the Borel subset X × SF

′−F

of SF
′
exhibits A as measurable of type F ′. Consequently AF ⊆ AF ′ .

LetA′ be the union of theAF for all finite F . If F and G are finite subsets of
I , then we have AF ⊆ AF∪G and AG ⊆ AF∪G , and it follows that A′ is closed
under finite unions and complements. Hence A′ is an algebra of subsets of 	.
In effect theKolmogorov theoremwill assume that we have a consistent system

of stochastic processes for all finite subsets of I . In other words, for each finite
subset F of I , we assume that we have a measure space (SF ,BF , PF ) with BF

as the Borel sets of the Euclidean space SF , with PF (SF ) = 1, and with the
distinguished measurable functions taken as the xi for i in F . The measures PF
are to satisfy a consistency condition as follows. To each X in BF , we define
a subset AX of 	 by AX = x−1F (X); this subset of 	 is measurable of type F ,
and we transfer the measure from BF to AF by defining PF (AX ) = PF (X).
The consistency condition is that there is a well-defined nonnegative additive set
function P onA′ whose restriction to eachAF is PF . The content of the theorem
is that we obtain a stochastic process for I itself.
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Theorem 9.5 (Kolmogorov Extension Theorem). Let I be a nonempty index
set, let S = RN , and let 	 = SI be the set of functions from I to S. For each
nonempty finite subset F of I , let AF be the σ -algebra of subsets of 	 that are
measurable of type F , and let A′ be the algebra of sets given by the union of
the AF for all finite F . If P is a nonnegative additive set function defined on A′
such that P(	) = 1 and P

∣∣
AF
is completely additive for every finite F , then P

is completely additive on A′ and therefore extends to a measure on the smallest
σ -algebra containing A′.
PROOF. Once we have proved that P is completely additive on A′, P extends

to a measure on the smallest σ -algebra containing A′ as a consequence of the
ExtensionTheorem.9 Let An be a decreasing sequence of sets inA′with P(An) ≥
ε > 0 for some positive ε. It is enough to prove that

⋂∞
n=1 An is not empty.

Each member ofA′ is measurable of type F for some finite F , and we suppose
that An is measurable of type Fn . There is no loss of generality in assuming that
F1 ⊆ F2 ⊆ · · · since a set that is measurable of type F is measurable of type F ′
for any F ′ containing F . Let xi , for i ∈ I , be the i th coordinate function on 	,
and let xF = {xi | i ∈ F} for each finite subset F of I . Just as in the definition of
joint distribution, we define a Borel measure μF on the Euclidean space SF by
μF (X) = P(x−1F (X)). This is a measure since P

∣∣
AF
is assumed to be completely

additive.
By definition of “measurable of type F ,” the set An is of the form

An =
{
ω ∈ 	

∣∣ xFn (ω) ∈ Xn
}

for some Borel subset Xn of the Euclidean space SFn . Since P(An) ≥ ε, the
definition of μFn makes μFn (Xn) ≥ ε. Since SFn is a Euclidean space, the
measure μFn is regular. Therefore there exists a compact subset Kn of Xn with
μF (Xn − Kn) ≤ 3−nε. Putting

Bn =
{
ω ∈ 	

∣∣ xFn (ω) ∈ Kn
}
,

we see that P(An − Bn) ≤ 3−nε. Let

Cn =
n⋂
j=1

Bn.

Each Cn is a subset of An , and the sets Cn are decreasing. We shall prove that

P(Cn) ≥ ε/2. (∗)
9Theorem 5.5 of Basic.
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The proof of (∗) will involve an induction: we show inductively for each k
that Bk = Dk ∪ Ck with P(Dk) ≤

∑k−1
j=1 3

− jε and P(Ck) ≥
(
1 −∑k

j=1 3
− j)ε.

Since 1−∑k
j=1 3

− j ≥ 1−∑∞
j=1 3

− j = 1− 1/3
1−1/3 = 1

2 , this induction will prove
(∗). The base case of the induction is k = 1. In this case we have C1 = B1. If
we take D1 = ∅, then we have B1 = D1 ∪ C1 and P(D1) ≤ 0 trivially, and we
have P(C1) ≥ (1− 1

3 )ε by construction of B1. The inductive hypothesis is that

Bk = Dk ∪ Ck with P(Dk) ≤
∑k−1

j=1 3
− jε and P(Ck) ≥

(
1 −∑k

j=1 3
− j)ε. We

know that Ak = (Ak − Bk) ∪ Bk . Since Bk+1 ⊆ Ak+1 ⊆ Ak , we can intersect
Bk+1 with this equation and then use the inductive hypothesis to obtain

Bk+1 = (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Bk)

= (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ (Dk ∪ Ck))
= (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Dk) ∪ Ck+1.

If we put Dk+1 = (Bk+1 ∩ (Ak − Bk))∪ (Bk+1 ∩ Dk), then Bk+1 = Dk+1 ∪Ck+1
and

P(Dk+1) ≤ P(Ak − Bk)+ P(Dk) ≤ 3−kε +
k−1∑
j=1
3− jε =

k∑
j=1
3− jε.

The identity Ak+1 = (Ak+1−Bk+1)∪Bk+1 and the inequalities P(Ak+1) ≥ ε and
P(Ak+1 − Bk+1) ≤ 3−k−1ε together imply that P(Bk+1) ≥ (1− 3−k−1)ε. From
Bk+1 = Dk+1 ∪ Ck+1 and P(Dk+1) ≤

∑k
j=1 3

− jε, we therefore conclude that
P(Ck+1) ≥

(
1 −∑k+1

j=1 3
− j)ε. This completes the induction, and (∗) is thereby

proved.
The set Cn is in AFn since F1 ⊆ F2 ⊆ · · · ⊆ Fn , and thus Cn is given by

Cn =
{
ω ∈ 	

∣∣ xFn (ω) ∈ Ln
}

for some Borel subset Ln of Kn in SFn . For 1 ≤ j ≤ n, we have

Bj =
{
ω ∈ 	

∣∣ xFn (ω) ∈ Kj × SFn−Fj
}
,

and the set Kj × SFn−Fj is closed in SFn for j < n and compact for j = n. Thus
Ln =

⋂n
j=1(Kj × SFn−Fj ) is a compact subset of SFn .

If F ⊆ F ′, let us identify SF ′ with the subset SF ′ × {0} of	 = SI , so that it is
meaningful to apply xF to SF

′
. Then we have xF xF ′ = xF , and xFn (Lp) makes

sense for p ≥ n.
If p ≥ q, thenwe have x−1Fp (Lp) = Cp ⊆ Cq = x−1Fq (Lq) = x−1Fp (Lq×SFp−Fq ),

and hence Lp ⊆ Lq × SFp−Fq . Application of xFq gives xFq (Lp) ⊆ Lq . If
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p ≥ q ≥ n, then the further application of xFn gives xFn (Lp) ⊆ xFn (Lq) ⊆ Ln .
Thus the sets xFn (Lp), as p varies for p ≥ n, form a decreasing sequence of
compact sets in SFn . Since P(Cp) ≥ ε/2 by (∗), Cp is not empty; thus Lp is not
empty and xFn (Lp) is not empty. Since Ln is a compact metric space,

Mn =
∞⋂
p=n

xFn (Lp)

is not empty.
Let us prove that

xFn (Mn+1) = Mn. (∗∗)
For p ≥ n + 1, we have xFn (Mn+1) ⊆ xFn (xFn+1(Lp)) = xFn (Lp). Intersecting
the right side over p gives xFn (Mn+1) ⊆ Mn . For the reverse inclusion, let m be
in Mn . Then m = xFn (�p) with �p ∈ Lp for p ≥ n+ 1. For the same �p’s, define
m ′p = xFn+1(�p). Then xFn (m

′
p) = xFn (xFn+1(�p)) = xFn (�p)) = m. The element

m ′p is in xFn+1(Lp) and hence in
⋂p

q=n+1 xFn+1(Lq). The elementsm
′
p all lie in the

compact set Lp+1, and hence they have a convergent subsequence{m ′pk }. The limit
m ′ of this subsequence is in

⋂pk
q=n+1 xFn+1(Lq) for all k, and thus m

′ is in Mn+1.
Since xFn (m

′
p) = m, we have xFn (m

′) = xFn (limk m ′pk ) = limk xFn (m
′
pk ) = m.

In other words, m lies in xFn (Mn+1). This proves (∗∗).
Using (∗∗), we shall define disjoint coordinate blocks of an element ω in 	.

Pick some m1 in M1, use (∗) to find some m2 in M2 with m1 = xF1(m2), use
(∗) to find some m3 in M3 with m2 = xF2(m3), and so on. Define ω so that
xF1(ω) = m1 and xFn−Fn−1(ω) = mn − mn−1 for n ≥ 2. Define ω to be 0 in all
coordinates indexed by I −⋃∞

n=1 Fn . Then we have

xFn (ω) = xF1(ω)+
n∑

k=2
xFk−Fk−1(ω) = m1 +

n∑
k=2

(mk − mk+1) = mn.

Thus xFn (ω) is exhibited as in Mn ⊆ Ln for all n. Hence ω is in
⋂∞

n=1 Cn , and
we have succeeded in proving that

⋂∞
n=1 Cn is not empty.

Corollary 9.6. Let I be a nonempty index set, and for each i in I let μi be a
Borel measure on R with μi (R) = 1. Then there exists a probability space with
independent random variables xi for i in I such that xi has distribution μi .

PROOF. In Theorem 9.5 let S = R, and for each finite subset F of I , define
P
∣∣
AF
to be the productmeasure

∏
i∈F μi on the Euclidean spaceRF . The theorem

makes RI into a probability space by exhibiting the consistent extension P of
all the P

∣∣
AF
’s as completely additive. Then the coordinate functions xi are the

required independent random variables.
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4. Strong Law of Large Numbers

Traditional laws of large numbers concern a sequence {xn} of identically dis-
tributed independent random variables, and we shall assume that their common
expectation E exists. Define sn = x1 + · · · + xn for n ≥ 1. The conclusion is
that the quantities 1n sn converge in some sense to E , i.e., that the xn are Cesàro
summable to E . The simplest versions of the law of large numbers assume also
that the common “variance” is finite. Let us back up a moment and define this
notion.
The variance of a random variable x with mean E is the quantity

Var(x) = E
(
(x − E)2

) = E(x2)− E2,

the right-hand equality holding since

E
(
(x − E)2

) = E(x2)− 2E(x)E + E2E(1) = E(x2)− E2.

For any random variables the expectations add since expectation is linear. For
two independent random variables x and y, the variances add since we can apply
Proposition 9.3, compute the quantities

E((x + y)2) = E(x2)+ 2E(xy)+ E(y2) = E(x2)+ 2E(x)E(y)+ E(y2)

(E(x)+ E(y))2 = E(x)2 + 2E(x)E(y)+ E(y)2,and

and subtract to obtain

Var(x + y)) = (E(x2)− E(x)2
)+ (E(y2)− E(y)2

) = Var(x)+ Var(y).
For a constant multiple c of a random variable x , we have

E(cx) = cE(x) and Var(cx) = c2Var(x).

Returning to our sequence {xn} of identically distributed independent random
variables, we therefore have E(sn) = E(x1)+ · · · + E(xn) = nE and Var(sn) =
Var(x1) + · · · + Var(xn) = nσ 2, where σ 2 denotes the common variance of the
given random variables xk . Consequently

E( 1n sn) = E and Var( 1n sn) = 1
n σ

2.

If we take our probability space to be (	, P) and apply Chebyshev’s inequality
to the variance10 of 1n sn , we obtain

1
n σ

2 =
∫
	

( 1n sn − E)2 dP ≥ ξ 2P
({| 1n sn − E | ≥ ξ}).

Holding ξ fixed and letting n tend to infinity, we obtain the first form historically
of the law of large numbers, as follows.

10Chebyshev’s inequality appears in Section VI.10 of Basic and is the elementary inequality∫
X | f |2 dμ ≥ ξ2μ

({x ∣∣ | f (x)| ≥ ξ}) valid on any measure space for any measurable f and any real
ξ > 0.
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Theorem 9.7 (Weak Law of Large Numbers). Let {xn} be a sequence of
identically distributed independent random variables with a common expectation
E and a common finite variance. Define sn = x1 + · · · + xn . Then for every real
ξ > 0,

lim
n→∞ P

({| 1n sn − E | ≥ ξ}) = 0.
The statement in words is that 1n sn converges to E in probability. With more

effort one can prove the same theorem without the hypothesis of finite variance.
As a practical matter, the fact that P

({| 1n sn − E | ≥ ξ}) tends to 0 is of
comparatively little interest. Of more interest is a probability estimate for the
event that lim 1

n sn = E . This is contained in the following theorem, whose proof
will occupy the remainder of this section.

Theorem 9.8 (Strong Law of Large Numbers). Let {xn} be a sequence of
identically distributed independent random variables whose common expectation
E exists. Define sn = x1 + · · · + xn . Then

lim
n→∞

1
n sn = E with probability 1.

Many members of the public have heard of this theorem in some form. Mis-
conceptions abound, however. The usual misconception is that if the average
1
n sn(ω) has gotten to be considerably larger than E by some point n in time, then
the chances become overwhelming that the average will have corrected itself
fairly soon thereafter. Independence says otherwise: that the future values of
the xk’s are not influenced by what has happened through time n. In fact, if
a person is persuaded that it was unreasonable for the average 1

n sn(ω) to have
gotten considerably larger than E by some time n, then the person might better
instead questionwhether the expectation E is known correctly or evenwhether the
individual xn’s are genuinely independent. If E has been greatly underestimated,
for example, not only was it reasonable for the average 1

n sn(ω) to have gotten
considerably larger than E , but it is reasonable for it to continue to do so.
The proof of Theorem 9.8 will be preceded by three lemmas.

Lemma 9.9 (Borel–Cantelli Lemma). Let {Ak} be a sequence of events in a
probability space (	, P) such that

∑∞
k=1 P(Ak) <∞. Then P

(⋂∞
n=1
⋃

k≥n Ak
)

= 0. Hence the probability that infinitely many of the events Ak occur is 0.
PROOF. Since

∑∞
k=1 P(Ak) is convergent, we have lim supn

∑∞
k=n P(Ak) = 0.

For every n, we have P
(⋂∞

n=1
⋃

k≥n Ak
) ≤ P

(⋃
k≥n Ak

) ≤∑∞
k=n P(Ak). The

left side of the inequality is independent of n, and therefore P
(⋂∞

n=1
⋃

k≥n Ak
) ≤

lim supn
∑∞

k=n P(Ak) = 0. This proves the first conclusion. Since the set⋂∞
n=1
⋃

k≥n Ak is the set of ω that lie in infinitely many of the sets Ak , the
second conclusion follows.
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Lemma 9.10. Let x be a random variable on a probability space (	, P). Then∑∞
k=1 P({|x | > k}) <∞ if and only if the expectation of |x | exists.
PROOF. Proposition 6.56b of Basic gives∫

	
|x | dP = ∫∞0 P({|x(ω)| > ξ}) dξ.

The lemma therefore follows from the inequalities
∞∑
k=1

P({|x | > k}) =
∞∑
k=0

P({|x | > k + 1}) ≤
∞∑
k=0

∫ k+1
k P({|x | > ξ}) dξ

= ∫∞0 P({|x | > ξ}) dξ ≤
∞∑
k=0

P({|x | > k}).

Lemma 9.11 (Kolmogorov’s inequality). Let x1, . . . , xn be independent ran-
dom variables on a probability space (	, P), and suppose that E(xk) = 0 and
E(x2k ) <∞ for all k. Put sk = x1 + · · · + xk . Then

P
({ω ∣∣ max(|s1|, . . . , |sn|) > c}) ≤ c−2E(s2n)

for every real c > 0.

REMARKS. It is not necessary to assume that E(x1) = 0. For n = 1, the
lemma consequently reduces to Chebyshev’s inequality.

PROOF. Let Aj be the event that j is the smallest index for which |sj | > c.
The sets Aj are disjoint, and their union is the set whose probability occurs on
the left side of the displayed inequality. Combining this fact with Chebyshev’s
inequality gives

P
({ω ∣∣ max(|s1|, . . . , |sn|) > c}) = n∑

j=1
P(Aj ) ≤ c−2

n∑
j=1

E(s2j IAj ), (∗)

where IAj is the indicator function of Aj . Since sn = sj + (sn − sj ),

E(s2n IAj ) = E(s2j IAj )+ 2E((sn − sj )sj IAj )+ E((sn − sj )
2 IAj )

≥ E(s2j IAj )+ 2E((sn − sj )sj IAj ).

The random variables sn − sj and sj IAj are independent by Proposition 9.4,
and their product has expectation 0 by Proposition 9.3 since E(sn − sj ) =∑n

i= j+1 E(xi ) = 0. Therefore E(s2n IAj ) ≥ E(s2j IAj ), and (∗) gives

P
({ω ∣∣ max(|s1|, . . . , |sn|) > c}) ≤ c−2

n∑
j=1

E(s2j IAj ) ≤ c−2
n∑
j=1

E(s2n IAj )

= c−2E(s2n I⋃
j Aj

) ≤ c−2E(sn)2,

as required.
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PROOF OF THEOREM 9.8. Let the underlying probability space be denoted by
(	, P). Subtraction of the constant E from each of the random variables xk does
not affect the independence, according to Proposition 9.4, and it reduces the proof
to the case that E = 0. Therefore we may proceed under the assumption that
E = 0. For integers k ≥ 1, define

x ′k =
{
xk where |xk | ≤ k,

0 where |xk | > k,

x ′′k =
{
0 where |xk | ≤ k,

xk where |xk | > k,
and

so that xk = x ′k + x ′′k . Define s
′
n = x ′1 + · · · + x ′n and s

′′
n = x ′′1 + · · · + x ′′n . It is

enough to show that 1n s
′
n and

1
n s

′′
n both tend to 0 with probability 1.

First we show that 1n s
′′
n tends to 0 with probability 1. Let x be a random

variable with the same distribution as the xk’s. Referring to the definition of x ′′k ,
we see that P({|x | > k}) = P({|xk | > k}) = P({x ′′k = 0}). Since E(|x |) exists
by assumption, Lemma 9.10 shows that

∑∞
k=1 P({|x | > k}) < ∞. Therefore∑∞

k=1 P({x ′′k = 0}) < ∞. By the Borel–Cantelli Lemma (Lemma 9.10), the
probability that ω lies in infinitely many of the sets {x ′′k = 0} is 0. Thus by
disregarding ω’s in a set of probability 0, we may assume x ′′k (ω) = 0 for only
finitely many k. Then s ′′n (ω) remains constant as a function of n for large n, and
we must have limn

1
n s

′′
n (ω) = 0.

Now we consider 1n s
′
n . The random variables x ′k are independent, but they

are no longer identically distributed and they no longer need have expectation 0.
However, they satisfy inequalities of the form |x ′k | ≤ k, and these in turn imply
that each E(x ′k

2) is finite. Concerning the expectations, let x be a random variable
with the same distribution as any of the xk’s. The random variable x#k equal to
x where |x | ≤ k and equal to 0 otherwise has |x#k | ≤ |x | for all k, and hence
dominated convergence yields limk E(x#k ) = E(x) = 0. Since x ′k and x#k have the
same distribution, we have limk E(x ′k) = 0. The expression E( 1n s

′
n) is a Cesàro

sum of the sequence {E(x ′k)}. Since the Cesàro sums tend to 0 when the sequence
itself tends to 0, we conclude that

lim
n
E( 1n s

′
n) = 0. (∗)

Let μ be the common distribution of the |xk |’s. The next step is to show that
∞∑
r=1
2−2r

2r−1∑
k=2r−1

E(x ′k
2) ≤ 2 ∫∞0 t dμ(t). (∗∗)

The quantity on the right is twice the common value of E(|xk |) and is finite since
we have assumed that the common expectation of the xk’s exists. Once we have
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proved (∗∗), we can therefore conclude that the quantity on the left side is finite.
To prove (∗∗), we write

∞∑
r=1
2−2r

2r−1∑
k=2r−1

E(x ′k
2) =

∞∑
r=1
2−2r

2r−1∑
k=2r−1

∫ k
0 t

2 dμ(t)

≤
∞∑
r=1
2−r
∫ 2r
0 t2 dμ(t)

≤ ∫ 10 t2 dμ(t)+ ∞∑
r=1
2−r
∫ 2r
1 t2 dμ(t).

Let us write I and II for the two terms on the right side. The estimate for II is

II =
∞∑
r=1
2−r

r∑
j=1

∫ 2 j
2 j−1 t

2 dμ(t) ≤
∞∑
r=1

r∑
j=1
2−r2 j

∫ 2 j
2 j−1 t dμ(t)

=
∞∑
j=1

∞∑
r= j

2−r2 j
∫ 2 j
2 j−1 t dμ(t) = 2

∞∑
j=1

∫ 2 j
2 j−1 t dμ(t) = 2

∫∞
1 t dμ(t).

Therefore

I+ II ≤ ∫ 10 t2 dμ(t)+ 2 ∫∞1 t dμ(t)

≤ 2 ∫ 10 t dμ(t)+ 2 ∫∞1 t dμ(t) = 2 ∫∞0 t dμ(t),

and (∗∗) is proved.
Form the sequence of random variables x∗k = x ′k − E(x ′k), and put s

∗
n =

x∗1 +· · ·+ x∗n . The x∗k are independent but no longer identically distributed. They
have expectation 0. Since

E(x∗k
2) = E

(
(x ′k − E(x ′k))

2) = E(x ′k
2)− E(x ′k)

2 ≤ E(x ′k
2),

(∗∗) shows that the x∗k have the property that
∞∑
r=1
2−2r

2r−1∑
k=2r−1

E(x∗k
2) < ∞. To

prove the theorem, it would be enough to prove that the Cesàro sums 1
n s

∗
n =

1
n s
′
n − E( 1n s

′
n) tend to 0, since we know from (∗) that limn E(

1
n s
′
n) = 0.

Changing notation, we see that we have reduced matters to proving the fol-
lowing: if {xk} is a sequence of independent random variables with expectation 0
and with

∞∑
r=1
2−2r

2r−1∑
k=2r−1

E(x2k ) <∞, (†)

and if sn denotes x1 + · · · + xn , then limn
1
n sn = 0 with probability 1.
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To prove this assertion, we apply Kolmogorov’s inequality (Lemma 9.11) for
each r ≥ 0 to the 2r−1 random variables x2r−1, x2r−1+1, . . . , x2r−1. These are
independent with expectation 0, and E(x2k ) is finite for each by (†). Their partial
sums are

s2r−1 − s2r−1−1, . . . , s2r−1 − s2r−1−1,

and the last partial sumhas E
(
(s2r−1−s2r−1−1)2

) =∑2r−1
k=2r−1 E(x

2
k ) byProposition

9.3. Kolmogorov’s inequality therefore gives, for any fixed ε > 0,

P
({max(|s2r−1− s2r−1−1|, . . . , |s2r−1− s2r−1−1|) > 2rε}) ≤ ε−22−2r

2r−1∑
k=2r−1

E(x2k ).

Summing on r and applying (†), we see that
∞∑
r=1

P
({max(2−r |s2r−1 − s2r−1−1|, . . . , 2−r |s2r−1 − s2r−1−1|) > ε}) <∞.

The Borel–Cantelli Lemma (Lemma 9.9) shows that with probability 1, there are
only finitely many r ’s for which

max(2−r |s2r−1 − s2r−1−1|, . . . , 2−r |s2r−1 − s2r−1−1|) > ε.

Fix any ω that is not in the exceptional set Aε of probability 0, and choose
r0 = r0(ω) such that

max(2−r |s2r−1(ω)− s2r−1−1(ω)|, . . . , 2−r |s2r−1(ω)− s2r−1−1(ω)|) ≤ ε

for all r ≥ r0. If n > 2r0 is given, find r such that 2r−1 ≤ n ≤ 2r − 1. Then we
have

2−r |sn(ω)− s2r−1−1(ω)| ≤ ε,

2−(r−1)|s2r−1−1(ω)− s2r−2−1(ω)| ≤ ε,

...

2−r0 |s2r0−1(ω)− s2r0−1−1(ω)| ≤ ε.

Multiplying the k th inequality by 2−k+2, summing for k ≥ 1, and applying the
triangle inequality, we obtain

n−1|sn(ω)− s2r0−1−1(ω)| ≤ 2−r+1|sn(ω)− s2r0−1−1(ω)| ≤ 4ε.

Therefore n−1|sn(ω)| ≤ 4ε + n−1|s2r0−1−1(ω)|.

Hence lim sup
n

1
n |sn(ω)| ≤ 4ε.

Ifω is not in the union
⋃∞

m=1 A1/m of the exceptional sets, then lim supn
1
n |sn(ω)|= 0. This countable union of exceptional sets of probability 0 has probability 0,

and the proof is therefore complete.



5. Problems 399

BIBLIOGRAPHICAL REMARKS. The proof of Theorem 9.5 is adapted from
Doob’s Measure Theory, and the proof of Theorem 9.8 is adapted from Feller’s
Volume II of An Introduction to Probability Theory and Its Applications.

5. Problems

1. If x is a random variable with distribution μx , find a formula for the distribution
μ|x | of |x | in terms of μ.

2. Let x1, . . . , xN be random variables on a probability space (	, P), let μx1,...,xN
be their joint distribution, and let� : RN → R be a nonnegative Borel function.
Prove that∫

R
�(t1, . . . , tN ) dμx1,...,xN (t1, . . . , tN ) =

∫
R
s dμ�◦(x1,...,xN )(s),

where μ�◦(x1,...,xN ) is the distribution of � ◦ (x1, . . . , xN ).
3. Suppose on a probability space (	, P) that {yn}∞n=1 is a sequence of random

variables with a common expectation E and with variance σ 2n , and suppose that
� : R → R is a bounded continuous function.
(a) Prove that P({|yn − E | ≥ δ}) ≤ σ 2n δ

−2 for all n.
(b) Suppose that |�| ≤ M and that δ and ε are positive numbers such that

|t − E | < δ implies |�(t)−�(E)| < ε. Prove that |E(�(yn))−�(E)| ≤
ε + 2Mσ 2n δ

−2.
(c) Prove that if limn σ

2
n = 0, then limn E(�(yn)) = �(E).

(d) Show that the argument in (c) continues to work if� is the indicator function
of an interval whose closure does not contain E . Why does the conclusion
in this case contain the conclusion of the Weak Law of Large Numbers as in
Theorem 9.7?

4. (Bernstein polynomials) This problem gives a constructive proof of the Weier-
strass Approximation Theorem by using probability theory.
(a) Fix p with 0 ≤ p ≤ 1. A certain unbalanced coin comes up “heads” with

probability p and “tails” with probability 1 − p; “heads” is scored as the
outcome 1, and “tails” is scored as the outcome 0. Set up a probability model
(	, P) for a sequence of independent coin tosses of this unbalanced coin,
and let xn be the outcome of the nth toss.

(b) Show that the expectation of the outcome of a single toss of the coin is p
and the variance is p(1− p).

(c) Let sn = x1 + · · · + xn . Show for each integer k with k ≤ n that
P({sn = k}) = (nk)pk(1− p)n−k .

(d) For continuous � : [0, 1] → R, extend � to all of R so as to be constant
on (−∞, 0] and on [1,+∞). Apply the result of Problem 3c to show that
limn

∑n
k=0�

(
k
n

)(n
k

)
pk(1− p)n−k = �(p).
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(e) Prove that the convergence in (d) is uniform for 0 ≤ p ≤ 1, and conclude
that� is the uniform limit of an explicit sequence of polynomials on [0, 1].

Problems 5–9 are closely related to the Kolmogorov Extension Theorem (Theorem
9.5) and in a sense explain the mystery behind its proof. Let X be a compact metric

space, and for each integer n ≥ 1, let Xn be a copy of X . Define 	(N ) =×N

n=1Xn ,
and let 	 = ×∞

n=1Xn . Each of 	
(N ) and 	 is given the product topology. If E

is a Borel subset of 	(N ), we can regard E as a subset of 	 by identifying E with
E × (×∞

n=N+1Xn). In this way any Borel measure on 	(N ) can be regarded as a
measure on a certain σ -subalgebra FN of the σ -algebra B(	) of Borel sets.

5. Prove that
⋃∞

n=1 Fn = F is an algebra of sets.
6. Let νn be a (regular) Borel measure on 	(n) with ν(	(n)) = 1, and regard νn

as defined on Fn . Suppose for each n that νn agrees with νn+1 on Fn . Define
ν(E) for E in F to be the common value of νn(E) for n large. Prove that ν is
nonnegative additive, and prove that in a suitable sense ν is regular on F.

7. Using the kind of regularity established in the previous problem, prove that ν is
completely additive on F.

8. In view of Problems 6 and 7, ν extends to a measure on the smallest σ -algebra
for 	 containing F. Prove that this σ -algebra is B(	).

9. Let X be a 2-point space, and let νn be 2−n on each one-point subset of 	(n), so
that the resulting ν on	 is coin-tossing measure on the space of all sequences of
“heads” and “tails.” Exhibit a homeomorphism of	 onto the standard Cantor set
in [0, 1] that sends ν to the usual Cantor measure, which is the Stieltjes measure
corresponding to the Cantor function that is constructed in Section VI.8 of Basic.

Problems 10–14 concern the Kolmogorov Extension Theorem (Theorem 9.5) and its
application to Brownian motion. If J is a subset of the index set I , a subset A of 	
will be said to be of type J if A can be described by

A = x−1J (E) = {ω ∈ 	 | xJ ∈ E} for some subset E ⊆ SJ .

As in the statement of the Kolmogorov theorem, let A′ be the smallest algebra
containing all subsets of 	 that are measurable of type F for some finite subset
F of I . Let A be the smallest σ -algebra containing A′.
10. From the fact that the collection of subsets of	 that are of type J is a σ -algebra,

prove that every set in A is of type J for some countable set J .

11. Form Brownian motion for time I = [0, T ] by means of the Kolmogorov Exten-
sion Theorem. Let C be the subset of continuous elements ω in	. Prove that C
is not in A.

12. With C as in Problem 11, prove that the only member ofA contained in C is the
empty set, and conclude that the inner measure of C relative to P is 0.
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13. Still with C as in Problem 11, suppose that E is a subset of	 of type J for some
countable J and that C ⊆ E . Prove that the set CJ of elements ω in 	 that are
uniformly continuous on J is contained in E .

14. Still with C as in Problem 11, suppose for every countable subset J of I that the
set CJ of elements ω in 	 that are uniformly continuous on J is in A and has
P(CJ ) = 1. Prove that the outer measure of C relative to P is 1.



HINTS FOR SOLUTIONS OF PROBLEMS

Chapter I

1. We start from∫ l
0 sin pnx sin pmx dx = − 1

2

∫ l
0 cos(pn + pm)x dx + 1

2

∫ l
0 cos(pn − pm)x dx .

The first term on the right is equal to

− 1
2

1
pn+pm sin(pn + pm)l = − 1

2
1

pn+pm (sin pnl cos pml + cos pnl sin pml)
= − 1

2
1

pn+pm
(− pn

h cos pnl cos pml − pm
h cos pnl cos pml

)
= 1

2h
1

pn+pm (pn+ pm) cos pnl cos pml = 1
2h cos pnl cos pml.

Similarly the second term on the right is− 1
2h cos pnl cos pml. The two terms cancel,

and the desired orthogonality follows.

2. In (a), the adjusted operator is L(u) = ((1− t2)u′)′, and Green’s formula gives

(λn − λm)

∫ 1

−1
Pn(t)Pm(t) dt = (L(Pn), Pm)− (Pn, L(Pm))

= [(1− t2)(P ′n(t)Pm(t)− Pn(t)P
′
m(t))

]1
−1,

where λn and λm are the values λn = −n(n + 1) and λm = −m(m + 1) such that
L(Pn) = λn Pn and L(Pm) = λm Pm . The right side is 0 because 1 − t2 vanishes at
−1 and 1.
In (b), the adjusted operator is L(u) = (tu′)′ + tu, and L(J0(k · )) equals −k2t if

J0(k) = 0. Green’s formula gives

(−k2n + k2m)
∫ 1
0 J0(knt)J0(kmt)t dt

= (L(J0(kn · )), J0(km · ))− (J0(kn · ), L(J0(km · )))
= [t( ddt (J0(kn · ))(t)J0(kmt)− J0(knt)

d
dt (J0(kn · ))(t)

)]1
0.

The expression in brackets on the right side is 0 at t = 1because J0(kn) = J0(km) = 0,
and it is 0 at t = 0 because of the factor t .

403
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3. With L(u) = (p(t)u′)′ − q(t)u, the formula for u∗(t) = ∫ ta G0(t, s) f (s) ds in
the proof of Lemma 4.4 is

u∗(t) = p(c)−1
(− ϕ1(t)

∫ t
a ϕ2(s) f (s) ds + ϕ2(t)

∫ t
a ϕ1(s) f (s) ds

)
.

As is observed in the proof of Lemma 4.4, the derivative of this involves terms in
which the integrals are differentiated at their upper limits, and these terms drop out.
Thus

u∗′(t) = p(c)−1
(− ϕ′1(t)

∫ t
a ϕ2(s) f (s) ds + ϕ′2(t)

∫ t
a ϕ1(s) f (s) ds

)
.

For the second derivative, the terms do not drop out, and we obtain

u∗′′(t) = p(c)−1
(− ϕ′′1(t)

∫ t
a ϕ2(s) f (s) ds + ϕ′′2(t)

∫ t
a ϕ1(s) f (s) ds

)
+ p(c)−1

(− ϕ′1(t)ϕ2(t) f (t)+ ϕ′2(t)ϕ1(t) f (t)
)
.

When we combine these expressions to form p(t)u∗′′(t) + p′(t)u∗′(t) − q(t)u∗(t),
the coefficient of

∫ t
a ϕ2(s) f (s) ds is−p(c)−1L(ϕ1) = 0, and similarly the coefficient

of
∫ t
a ϕ1(s) f (s) ds is p(c)

−1L(ϕ2) = 0. Thus

L(u∗) = p(c)−1 p(t) f (t)
(− ϕ′1(t)ϕ2(t)+ ϕ′2(t)ϕ1(t)

)
= p(c)−1 p(t) f (t) detW (ϕ1, ϕ2)(t) = f (t),

the value of detW (ϕ1, ϕ2) having been computed in the proof. This completes (a).
For (b), we can take ϕ1(t) = cos t and ϕ2(t) = sin t . Since p(t) = 1, we obtain

G0(t, s) =
{
sin t cos s − cos t sin s if s ≤ t,

0 if s > t.

The conditions u(0) = 0 and u(π/2) = 0 mean that a = 0, b = π/2, c1 = d1 = 1,
and c2 = d2 = 0 in (SL2). Thus the system of equations (∗) in the proof of Lemma
4.4 reads (

cos 0 sin 0
cos π

2 sin π
2

)(
k1
k2

)
=
( −u∗(0)
−u∗(π/2)

)
,

and we obtain k1 = −u∗(0) = 0 and k2 = −u∗(π/2) = −
∫ π/2
0 f (s) cos s ds. The

proof of Lemma 4.4 says to take K1(s) = 0 and K2(s) = − cos s. The formula for
G1(t, s) is G1(t, s) = G0(t, s)+ K1(s)ϕ1(t)+ K2(s)ϕ2(t), and therefore

G1(t, s) =
{
sin t cos s − cos t sin s

0

}
− sin t cos s =

{− cos t sin s
− sin t cos s

}
.

In particular, G1(t, s) is symmetric, as it is supposed to be!
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4. We have
∫ t2
t1

(
(py′1)

′y2− (py′2)
′y1
)
dt = ∫ t2t1 (g2− g1)y1y2 dt > 0 as a result of

the outlined steps. Since
(
(py′1)

′y2− (py′2)
′y1
) = d

dt

(
p(y′1y2− y1y′2)

)
, we conclude

that
[
p(y′1y2 − y1y′2))

]t2
t1
> 0. This proves (a).

Since y1(t1) = y1(t2) = 0, the expression p(t)y′1(t)y2(t) − p(t)y1(t)y′2(t) is
p(t2)y′1(t2)y2(t2) at t = t2. Here p(t2) > 0 and y2(t2) ≥ 0. Since y1(t2) = 0
and since y1(t) > 0 for all t slightly less than t2, we obtain y′1(t2) ≤ 0. Thus
p(t2)y′1(t2)y2(t2) ≤ 0. Similarly the same expression is p(t1)y′1(t1)y2(t1) at t = t1.
We have p(t1) > 0 and y2(t1) ≥ 0. Since y1(t1) = 0 and y1(t) > 0 for t slightly
greater than t1, we obtain y′1(t1) ≥ 0. Thus p(t1)y′1(t1)y2(t1) ≥ 0. This gives the
desired contradiction and completes (b).
Part (c) is just the special case in which g1(t) = −q(t) + λ1r(t) and g2(t) =

−q(t) + λ2r(t). The hypothesis on g2 − g1 is satisfied because g2(t) − g1(t) =
(λ2 − λ1)r(t) > 0.

5. For (a), substitute for �(x, t) and get −ψ ′′(x)ϕ(t) + V (x)ψ(x)ϕ(t) =
iψ(x)ϕ′(t). Divide by ψ(x)ϕ(t) to obtain −ψ ′′(x)

ψ(x) + V (x) = i ϕ
′(t)
ϕ(t) . The left side

depends only on x , and the right side depends only on t . So the two sides must be
some constant E . Then −ψ ′′(x)

ψ(x) + V (x) = E yields ψ ′′ + (E − V (x))ψ = 0.
For (b), the equation for ϕ is i ϕ

′(t)
ϕ(t) = E . Then ϕ′ = −i Eϕ, and ϕ(t) = ce−i Et .

6. We substitute ψ(x) = e−x
2/2H(x), ψ ′(x) = −xe−x2/2H(x) + e−x

2/2H ′(x),
and ψ ′′(x) = x2e−x

2/2H(x)− 2xe−x2/2H ′(x)+ e−x2/2H ′′(x)− e−x2/2H(x), and we
are led to Hermite’s equation.

7. Write H(x) = ∑∞
k=0 ckx

k . We find that c0 and c1 are arbitrary and that
(k + 2)(k + 1)ck+2 − (2n − 2k)ck = 0 for k ≥ 0. To get a polynomial of degree d,
we must have cd = 0 and cd+2 = 0. Since cd+2 = cd(2n − 2d)/((d + 2)(d + 1)),
this happens if and only if d = n.

8. We have L(Hn(x)e−x
2/2) = −(2n + 1)Hn(x)e−x

2/2. Define an inner product
by integrating over [−N , N ]. Then

−2(n − m)
∫ N
−N Hn(x)Hm(x)e−x

2
dx

= (L(Hn(x)e
−x2/2), Hm(x)e

−x2/2)− (Hn(x)e
−x2/2, L(Hm(x)e

−x2/2))

= [(Hn(x)e
−x2/2)′(Hm(x)e

−x2/2)− (Hn(x)e
−x2/2)(Hm(x)e

−x2/2)′
]N
−N .

As N tends to infinity, the right side tends to 0. Since n = m, we obtain the desired
orthogonality.

Chapter II

1. A condition in (a) is that f take on some value on a set of positive measure.
A condition in (b) is that f take on only countably many values, these tending to 0,
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and that the set E where f is nonzero be the countable union of sets En of positive
measure such that no En decomposes as the disjoint union of two sets of positive
measure.

2. Let vn be in image(λI − L)with vn → v, and choose un with (λI − L)un = vn .
We are to show that v is in the image. We may assume that v = 0, so that ‖vn‖ is
bounded below by a positive constant for large n. Since ‖vn‖ ≤ ‖λI − L‖‖un‖, ‖un‖
is bounded below for large n. Passing to a subsequence, we may assume either that
‖un‖ tends to infinity or that ‖un‖ is bounded.
If ‖un‖ is bounded, then we may assume by passing to a subsequence that {Lun}

is convergent, say with limit w. From λun = Lun + vn , we see that λun → w + v.
Put u = λ−1(w+ v). Then (λI − L)u = (w+ v)− lim Lun = w+ v−w = v, and
v is in the image.
If ‖un‖ tends to infinity, choose a subsequence such that {L(‖un‖−1un)} is con-

vergent, say to w. Then we have ‖un‖−1λun − L(‖un‖−1un) = ‖un‖−1vn . Passing
to the limit and using that vn → v, we see that ‖un‖−1λun → w. Applying L , we
obtain λw = L(w). Thus (λI − L)w = 0. Since λI − L is one-one, w = 0. Then
‖un‖−1λun → 0, and we obtain a contradiction since ‖un‖−1λun has norm |λ| for all
n.

3. It was shown in Section 4 that the set of Hilbert–Schmidt operators is a normed
linear space with norm ‖ · ‖HS. Since ‖L‖ ≤ ‖L‖HS, any Cauchy sequence {Ln} in
this space is Cauchy in the operator norm. The completeness of the space of bounded
linear operators in the operator norm shows that {Ln} converges to some L in the
operator norm. In particular, limn(Lnu, v) = (Lu, v) for all u and v. By Fatou’s
Lemma,

‖L‖HS =
∑

j ‖Luj‖2 =
∑

j lim infn ‖Lnuj‖2
≤ lim infn

∑
j ‖Lnuj‖2 = lim infn ‖Ln‖HS.

The right side is finite since Cauchy sequences are bounded, and hence L is a Hilbert–
Schmidt operator. A second application of Fatou’s Lemma gives

‖Lm − L‖HS =
∑

j ‖(Lm − L)uj‖2 =
∑

j lim infn ‖(Lm − Ln)uj‖2
≤ lim infn

∑
j ‖(Lm − Ln)uj‖2 = lim infn ‖Lm − Ln‖HS.

Since the given sequence is Cauchy, the lim sup onm of the right side is 0, and hence
{Lm} converges to L in the Hilbert–Schmidt norm.
4. If L and M are of trace class, then

∑
i |((L + M)ui , vi )| ≤

∑
i (|(Lui , vi )| +

|(Mui , vi )|) ≤ ‖L‖TC + ‖M‖TC. Taking the supremum over all orthonormal bases
{ui } and {vi }, we obtain the triangle inequality.
5. Once we know that Tr(AL) = Tr(L A), then Tr(BLB−1) = Tr(B−1(BL)) =

Tr(L). To prove that Tr(AL) = Tr(L A), fix an orthonormal basis {ui }. The formal
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computation is

Tr(AL) =∑j (ALuj , uj ) =
∑

j (Luj , A
∗uj ) =

∑
j

∑
i (Luj , ui )(A

∗uj , ui )

=∑j

∑
i (Aui , uj )(L

∗ui , uj ) =
∑

i

∑
j (Aui , uj )(L

∗ui , uj )

=∑i (Aui , L
∗ui ) =

∑
i (L Aui , ui ) = Tr(L A),

and justification is needed for the interchange of order of summationwithin the second
line. It is enough to have absolute convergence in some orthonormal basis, and this
will be derived from the estimate∑

i, j |(Aui , uj )(L∗ui , uj )| ≤
∑

i

(∑
j |(Aui , uj )|2

)1/2(∑
j |(L∗ui , uj )|2

)1/2
=∑i ‖Aui‖‖L∗ui‖ ≤ ‖A‖

∑
i ‖L∗ui‖.

The proof of Proposition 2.8, applied to L∗ instead of L , produces operatorsU and T ,
orthonormal bases {wi } and { fi }, and scalars λi ≥ 0 such that L∗ = UT , ‖U‖ ≤ 1,
Twi =

√
λiwi , and

∑ |(L∗wi , fi )| =
∑

(Twi , wi ). Taking ui = wi , we have
‖L∗wi‖ = ‖UTwi‖ ≤ ‖Twi‖ =

√
λi = (Twi , wi ). Hence for this orthonormal

basis,
∑ ‖L∗wi‖ ≤

∑
(Twi , wi ) =

∑ |(L∗wi , fi )|. The right side is finite since L∗
is of trace class.

6. If v is a nonzero vector in the λ eigenspace of Lα and if LβLα = LαLβ , then
LαLβ(v) = LβLα(v) = λLβv. Thus the λ eigenspace of Lα is invariant under Lβ .
We applyTheorem2.3 to the compact operator Lβ on each eigenspace of Lα , obtaining
an orthonormal basis of simultaneous eigenvectors under Lα and Lβ . Iterating this
procedure by taking into account one new operator at a time, we obtain the desired
basis.

7. In (a), the operators L+ L∗ and−i(L− L∗) are self adjoint, and they commute
since L commutes with L∗. Compactness is preserved under passage to adjoints and
under taking linear combinations, and (b) follows.

8. If U is unitary, then U ∗ = U−1. Then UU−1 = I = U−1U shows that U
is normal. Since U preserves norms, every eigenvalue λ has |λ| = 1. If U is also
compact, then the eigenvalues tend to 0. HenceU is compact if and only if the Hilbert
space is finite-dimensional.

9. The solutions of the homogeneous equation are spanned by cosωt and sinωt .
Then the result follows by applying variation of parameters.

10. Take g(s) = ρ(s)u(s) in Problem 9.

11. In (a), let t < t ′. Then

(T f )(t ′)− (T f )(t) = ∫ t ′s K (t ′, s) f (s) ds − ∫ ta K (t, s) f (s) ds

= ∫ t ′t K (t ′, s) f (s)ds + ∫ ta [K (t ′, s)− K (t, s)] f (s) ds.
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The first term on the right tends to 0 as t ′ − t tends to 0 because the integrand is
bounded, and the second term tends to 0 by the boundedness of f and the uniform
continuity of K (t ′, s)− K (t, s) on the set of (s, t, t ′) where a ≤ s ≤ t ≤ t ′.
In (b), for n = 1, we have |(T f )(t)| = ∣∣ ∫ ta K (t, s) f (s) ds

∣∣ ≤ M
∫ t
a | f (s)| ds ≤

CM as required. Assume the result for n − 1 ≥ 1, namely that |(T n−1 f )(t)| ≤
1

(n−2)!CM
n−1(t − a)n−2. Then |(T n f )(t)| = ∣∣ ∫ t

a K (t, s)(T n−1 f )(s) ds
∣∣ ≤

M
∫ t
a |(T n−1 f )(s)| ds ≤ M 1

(n−2)! CM
n−1 ∫ t

a (s−a)n−2 ds = 1
(n−1)! CM

n(t − a)n−1.
Thus the nth term of the series is ≤ 1

(n−1)! CM
n(b − a)n−1.

In (c), the uniform convergence follows from the estimate in (b) and theWeierstrass
M test.

12. The operator T is bounded as a linear operator from C([a, b]) into itself.
Because of the uniform convergence, we can apply the operator term by term to the
series defining u. The result is Tu = T f + T 2 f + T 3 f + · · · = u − f . Therefore
u − Tu = f .

13. Subtracting, we are to investigate solutions of u − T u = 0. Problem 11
showed for each continuous u that the series u + Tu + T 2u + · · · is uniformly
convergent. If u = Tu, then all the terms in this series equal u, and the only way that
the series can converge uniformly is if u = 0.

Chapter III

1. Let Dj = ∂/∂yj . Let S̃ be the vector space of all linear combinations of
functions (1+ 4π2|y|2)−nh with n a positive integer and h in the Schwartz space S.
Then Dj

(
(1+4π2|y|2)−nh) = −8nπ2yj (1+4π2|y|2)−(n+1)h+(1+4π2|y|2)−nDjh.

The first term on the right side is in S̃ because yj h is in S, and the second term on the
right side is in S̃ because Djh is in S. Thus S̃ is closed under all partial derivatives.
Since the product of a polynomial and a Schwartz function is a Schwartz function, S̃
is closed under multiplication by polynomials. Since the members of S̃ are bounded,
we must have S̃ ⊆ S. In particular, (1+ 4π2|y|2)−1g is in S if g is in S.
2. Since the Fourier transform and its inverse are continuous, it is enough to handle

pointwise product. Pointwise product is handled directly.

3. In (a), the ordinary partial derivatives are Dx
(
log((x2 + y2)−1)

) = −2x
x2+y2 and

Dy
(
log((x2 + y2)−1)

) = −2y
x2+y2 . These are also weak derivatives. In fact, use of

polar coordinates shows that they are integrable near (0, 0), hence locally integrable
onR2. If ϕ is inC∞com(	), we are to show that

∫
	
log((x2+y2)−1)Dxϕ(x, y) dx dy =∫

	

2xϕ(x,y)
x2+y2 dx dy and similarly for y. For each y = 0, the integrals over x are equal,

and the set where y = 0 is of measure 0 in 	. The argument with the variables
interchanged is similar. Thus log((x2 + y2)−1) has weak derivatives of order 1.
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In polar coordinates the pth power of
∣∣ xϕ(x,y)
x2+y2

∣∣ is r p | cos θ |p
r2p

= r−p| cos θ |p, which is
integrable near r = 0 relative to r dr for p < 2 but not p = 2.
In (b), the argument for the existence of the weak derivative of log log((x2+y2)−1)

is similar to the argument for (a), the ordinary x derivative being

−2x
(x2 + y2) log((x2 + y2)−1)

.

In polar coordinates the square of this is
4 cos2 θ

r2 log2(r−2)
, which is integrable relative to

r dr .

4. The idea is to use the Implicit Function Theorem to obtain, for each point of the
boundary, a neighborhood of the point forwhich some coordinate has the property that
the cone of a particular size and orientation based at any point in that neighborhood
lies in the region. These neighborhoods cover the boundary, and we extract a finite
subcover. Then we obtain a single size of cone such that every point of the boundary
has some coordinate where the cone lies in 	. The cones based at the boundary
points cover all points within some distance ε > 0 of the boundary, and cones of half
the height based at interior points within those cones and within distance ε/2 of the
boundary lie within the cones for the boundary points. The remaining points of the
region can then be covered by a cone with any orientation such that its vertex is at
distance < ε/2 from all its other points.

5. For 0 < α < N , |x |−(N−α) is the sum of an L1 function and an L∞ function and
hence is a tempered distribution. It is the sum of an L1 function and an L2 function
for 0 < α < N/2.

6. The second expression is converted into the first by changing t into 1/t . The
first expression is evaluated as the third by replacing t |x |2 by s.
7. The formula obtained from the first displayed identity is∫

RN (π |x |2)− 1
2 (N−α)
( 12 (N − α))ϕ̂(x) dx = ∫

RN (π |x |2)− 1
2 α
( 12α)ϕ(x) dx,

which sorts out as

π−
1
2 (N−α)
( 12 (N − α))

∫
RN |x |−(N−α)ϕ̂(x) dx = π−

1
2 α
( 12α)

∫
RN |x |−αϕ(x) dx .

8. In (a), we check directly that F(DαT ) = (2π i)|α|ξαF(T ). Since T is in Hs ,∫
RN |F(T )(ξ)|2(1 + |ξ |2)s dξ is finite. Now |ξj | ≤ |ξ | ≤ (1 + |ξ |2)1/2 for every j ,
and hence |ξα| ≤ (1+ |ξ |2)s/2 for |α| = s. Since (1+ |ξ |2)1/2 ≥ 1, (1+ |ξ |2)t/2 is
an increasing function of t , and thus |ξα| ≤ (1+ |ξ |2)s/2 for |α| ≤ s. Consequently
(2π i)|α|ξαF(T ) is square integrable for |α| ≤ s. Thus the Fourier transform of DαT
is a square integrable function for |α| ≤ s. By the Plancherel formula, DαT is a
square integrable function for |α| ≤ s.
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Let T be the L2 function f , and let DαT be the L2 function gα for |α| ≤ s.
The statement that f has gα as weak derivative of order α is the statement that∫

RN f Dαϕ dx = (−1)|α| ∫
RN gαϕ dx for ϕ ∈ C∞com(R

N ); this is proved for ψ = ϕ

by the following computation, which uses the polarized version of the Plancherel
formula twice:

(−1)|α| ∫
RN gαψ dx = (−1)|α| ∫

RN (2π i)|α|ξαF( f )F(ψ) dξ

= ∫
RN F( f )(2π i)|α|ξαF(ψ) dξ = ∫

RN F( f )F(Dαψ) dξ = ∫
RN f Dαψ dx .

Since f and its weak derivatives gα through |α| ≤ s are all in L2, f is in L2s (R
N ).

In (b), if T is given by an L2 function, then F(T ) = F( f ) is an L2 function.
Hence F(T ) is locally square integrable. We are assuming that DαT is given by an
L2 function gα for |α| ≤ s. The formulaF(gα) = F(DαT ) = (2π i)|α|ξαF(T ) shows
that ξαF( f ) is in L2 for |α| ≤ s. Now |ξ |2|F( f )|2 = ∑j |ξjF( f )|2 and similarly
|ξ |2k |F( f )|2 =∑j1,..., jk

|ξj1 · · · ξjkF( f )|2 =
∑
|α|=k

( |α|
α1,...,αN

)|ξαF( f )|2. Hence
(1+ |ξ |2)s |F( f )|2 =∑s

k=0
(s
k

)∑
|α|=k

( |α|
α1,...,αN

)|ξαF( f )|2 ≤ s!
∑
|α|≤s |ξαF( f )|2,

and f is in Hs .
For (c), in one direction the argument for (a) gives

‖ f ‖2
L2s
=∑|α|≤s ‖Dα f ‖2

L2
=∑|α|≤s ‖(2π i)|α|ξαF( f )‖2L2

≤ (∑|α|≤s (2π)
2|α|)‖(1+ |ξ |2)s/2F( f )‖2

L2
≤ (∑|α|≤s (2π)

2|α|)‖ f ‖2Hs .

In the other direction the displayed formula for (b), when integrated, gives

‖ f ‖2Hs ≤ s!
∑
|α|≤s |2π i |−|α|‖Dα f ‖2

L2
≤ s!‖ f ‖2

L2s
.

9. In (a), let T be in Hs . Then the computation

‖T ‖2Hs = ‖(1+ |ξ |2)s/2F(T )‖2L2 = ‖F −1((1+ |ξ |2)s/2F(T ))‖2L2 = ‖As(T )‖2L2
shows that As preserves norms. To see that As is onto L2, let f be in L2. Then
F( f ) is in L2 and hence acts as a tempered distribution. Then (1 + |ξ |2)−s/2F( f )
is a tempered distribution also. Since F carries S ′(RN ) onto itself, T =
F −1((1 + |ξ |2)−s/2F( f )) is a tempered distribution. This tempered distribution
has the property that As(T ) = f .
In (b), the relevant formula is that (As)−1(ϕ) = F −1((1+ |ξ |2)−s/2F(ϕ)). If ϕ is

in S(RN ), then so is F(ϕ). An easy induction shows that any iterated derivative of
(1+|ξ |2)−s/2 is a sumof products of polynomials in ξ times powers (possibly negative)
of 1+|ξ |2. Application of the Leibniz rule therefore shows that any iterated derivative
of (1 + |ξ |2)−s/2F(ϕ) is a sum of products of polynomials in ξ times derivatives of
F(ϕ), all divided by powers of 1 + |ξ |2. Consequently (1 + |ξ |2)−s/2F(ϕ) is a
Schwartz function, and so is its inverse Fourier transform.
For (c), we know that C∞com(R

N ) is dense in L2(RN ), and hence S(RN ) is dense
in L2(RN ) also. Applying the operator (As)−1, which must carry S(RN ) onto itself,
we see that S(RN ) is dense in Hs .
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10. If T is in H−s and ϕ is in S(RN ), then the definition of Fourier transform on
S(RN ), together with the Schwarz inequality, implies that

|〈T, ϕ〉| = |〈F(T ),F −1(ϕ)〉| = | ∫
RN F(T )(ξ)F −1(ϕ)(ξ) dξ |

= | ∫
RN [(1+ |ξ |2)−s/2F(T )(ξ)] [(1+ |ξ |2)s/2F −1(ϕ)(ξ)] dξ |

≤ ‖(1+ |ξ |2)−s/2F(T )‖L2‖(1+ |ξ |2)s/2F −1(ϕ)‖L2 = ‖T ‖H−s‖ϕ‖Hs .

11. For ψ in S(RN ), we have |〈F(T ), ψ〉| = |〈T,F(ψ)〉| ≤ C‖F(ψ)‖Hs =
C
( ∫

RN |F(F(ψ))(ξ)|2(1 + |ξ |2)s dξ)1/2 = C
( ∫

RN |ψ(−ξ)|2(1 + |ξ |2)s dξ)1/2 =
C‖ψ‖

L2(RN ,(1+|ξ |2)s dξ). Thus F(T ) acts as a bounded linear functional on the dense
vector subspace S(RN ) of L2(RN , (1 + |ξ |2)s dξ). Extending this linear functional
continuously to the whole space and applying the Riesz Representation Theorem for
Hilbert spaces, we obtain a function f in L2(RN , (1+ |ξ |2)s dξ) such that

〈F(T ), ψ〉 = ∫
RN ψ(ξ) f (ξ)(1+ |ξ |2)s dξ

for allψ inS(RN ). Putψ0(ξ) = f (ξ)(1+|ξ |2)s . Then ∫
RN |ψ0(ξ)|2(1+|ξ |2)−s dξ =∫

RN | f (ξ)|2(1 + |ξ |2)s dξ < ∞, and the above displayed formula shows that F(T )
agrees with the function ψ0 on S(RN ). Thus T is in H−s . To estimate ‖T ‖H−s ,
we twice use the fact that S(RN ) is dense: ‖T ‖H−s = ‖ψ0‖L2(RN ,(1+|ξ |2)−s dξ) =
‖ f ‖

L2(RN ,(1+|ξ |2)s dξ) = sup‖ψ‖
L2(RN ,(1+|ξ |2)s dξ)

≤1 |〈F(T ), ψ〉| = sup‖ϕ‖
Hs
≤1 |〈T, ϕ〉|.

Thus ‖T ‖H−s ≤ C .

12. In (a), we apply the Schwarz inequality: ‖ϕ‖sup ≤ ‖F −1(ϕ)‖1 = ‖F(ϕ)‖1 =∫
RN |[F(ϕ)(ξ)(1+ |ξ |2)s/2] [(1+ |ξ |2)−s/2]| dξ ≤ ‖Tϕ‖Hs

( ∫
RN

∣∣1+ |ξ |2∣∣−s dξ)1/2.
For (b), the last integral in (a) is finite for s > N/2. Thus we have ‖ϕ‖sup ≤

C‖Tϕ‖Hs for all ϕ in S(RN ). If T is in Hs , we know from Problem 9c that we
can find a sequence ϕk in S(RN ) such that Tϕk tends to T in H

s . For p ≤ q, we
then have ‖ϕp − ϕq‖sup ≤ C‖Tϕp − Tϕq‖Hs . Letting q tend to infinity, we see that
ϕp converges uniformly to some function f , necessarily continuous and bounded.
Let Tf be the tempered distribution given by f . We show that T = Tf . If ψ
is in S(RN ), then F(ψ) is integrable, being a Schwartz function, and the uniform
convergence of ϕp to f implies that 〈Tf ,F(ψ)〉 = limp〈Tϕp ,F(ψ)〉. On the other
hand, |〈Tϕp − T,F(ψ)〉| ≤ ‖Tϕp − T ‖Hs‖F(ψ)‖H−s , and thus 〈Tϕp ,F(ψ)〉 tends to
〈T,F(ψ)〉. Therefore 〈Tf ,F(ψ)〉 = 〈T,F(ψ)〉, and T = Tf .

13. In (a), Py ∗ (u0 + i Hu0)(x) = Py ∗ u0(x)+ i Qy ∗ u0(x) = i z̄
π |z|2 ∗ u0(x) =

((−iπ z)−1) ∗ u0(x). The left side is inHp since H is bounded on L p, and the form
of the right side shows that the result is analytic in the upper half plane. Hence the
expression is in H p.
In (b), we know that f (x + iy) = Py ∗ u0(x) + i Qy ∗ u0(x) = Py ∗ u0(x) +

i PyHu0(x). Taking the L p limit as y ↓ 0, we obtain f0 = u0 + i Hu0. Hence i Hu0
is the imaginary part of f0.
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14. According to the previous problem, the functions in H2 are those of the form
Py ∗ (u0+ i Hu0)with u0 in L2. That is, they are the functions of the form u0+ i Hu0
with u0 in L2. The operator H acts on the Fourier transform side by multiplication by
−isgn x . Hence the Fourier transforms of the functions of interest are all expressions
û0(x)+ i(−isgn x )̂u0(x) a.e. This function is 2û0(x) for x > 0 and is 0 for x < 0.
Conversely any function in L2 is the Fourier transform of an L2 function, and thus
if g is given that vanishes a.e. for x < 0, we can find u0 with û0 = 1

2g. Then
û0 + i(−isgn x )̂u0 = g.

15. The first inequality is by the Schwarz inequality, and the second inequality is
evident. For the equality we make the calculation

(|F |q) = 4 ∂
∂ z̄

∂
∂z (|F |2)q/2 = 2q ∂

∂ z̄ [(|F |2)
q
2−1 ∂

∂z (F, F)]

= 2q ∂
∂ z̄ [(|F |2)

q
2−1(F ′, F)]

= q(q − 2)(|F |2) q2−2(F, F ′)(F ′, F)+ 2q(|F |2) q2−1(F ′, F ′)
= q2|F |q−4|(F, F ′)|2 − 2q|F |q−4|(F, F ′)|2 + 2q|F |q−2|F ′|2
= q2|F |q−4|(F, F ′)|2 + 2q|F |q−4(− |(F, F ′)|2 + |F |2|F ′|2).

16. Arguing by contradiction, suppose that u(x1) > 0 with |x1 − x0| < r . For
any c > 0, the function vc(x) = u(x)+ c(|x − x0|2 − r2) has vc > 0 on B(r; x0)
and v = u ≤ 0 on ∂B(r; x0). We can choose the positive number c sufficiently small
so that vc(x1) > 0. Fix that c, and choose x2 in B(r; x0)cl where vc is a maximum.
Then x2 is in B(r; x0), and all the first partial derivatives of vc must be 0 there. Since
vc(x2) > 0, we must have D2j vc(x2) > 0 for some j , and then the presence of a
maximum for v − x at x2 contradicts the second derivative test.

17. For (a), we calculate ‖gε‖22 = ∫
R
|gε(x)|2 dx = ∫

R
|Fε(x)| dx ≤∫

R
| f (x + iε)| dx + ε

∫
R
|x + i |−2 ≤ ‖ f ‖

H1
+ ε‖(x + i)−2‖1.

In (b), the functions x �→ gε(x + iy) and x �→ Fε(x + iy) are Poisson integrals
of the functions with y replaced by y/2, and then are iterated Poisson integrals in
passing from y/2 to 3y/4 and to y. In the first case the starting function is in
L2, and in the second case the starting function is in L1. The function at 3y/4 is
then in L2 since L1 ∗ L2 ⊆ L2, and the function at y is continuous vanishing at
infinity since L2 ∗ L2 ⊆ C0(R). This handles the dependence for large x . For
large y, we refer to the proof of Theorem 3.25, where we obtained the estimate
|u(x, t)|p ≤ [( 12 t0)N+1	1]−1(N + 1)t0‖u‖pHp if u is inHp and t ≥ t0.
In (c), the functions |Fε(z)|1/2 and gε(z) are equal for z = x . Hence the continuous

function u(z) = |Fε(z)|1/2−gε(z) onR2+ vanishes at y = 0 and tends to 0 as |x |+|y|
tends to infinity. Given δ > 0, choose an open ball B large enough in R2+ so that
u(z) ≤ δ off this ball. Since the second component of Fε(z) is nowhere vanishing,
|Fε(z)|1/2 is everywhere smooth for y > 0. Problem15 shows that(|Fε(z)|1/2) ≥ 0,
and we know that gε(z) = 0 since gε is a Poisson integral. Hence u(z) ≥ 0.
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Applying Problem 16 on the ball B, we see that u(z) ≤ δ on B. Hence u(z) ≤ δ on
R2+. Since δ is arbitrary, u(z) ≤ 0 on R2+. Therefore |Fε(z)|1/2 ≤ gε(z) on R2+.

18. In (a), the fact that Py is in L2 implies that limn
∫

R
Py(x − t)gεn (t) dt =∫

R
Py(x − t)g(t) dt . Thus gεn (z) → g(z) pointwise for Im z > 0. Then we have

| f (z)|1/2 ≤ lim supn | f (z + iεn)|1/2 ≤ lim supn gε(z) = g(z). Since g(z) is the
Poisson integral of g(x), the inequality g(x + iy) ≤ Cg∗(x) is known from the given
facts at the beginning of this group of problems.
In (b), we have | f (x+iy)| ≤ C2g∗(x)2, andwe know that ‖g∗‖2 ≤ A2‖g‖2. From

Problem 17awe have ‖g‖22 ≤ lim supn ‖gεn‖22 ≤ lim supn
(‖ f ‖

H1
+ε‖(x+i)−2‖1

) =
‖ f ‖

H1
.

19. Every f in Ccom(X) has
∣∣ ∫

X f (x) dν(x)
∣∣ = limn

∣∣ ∫
X f (x)gn(x) dμ(x)

∣∣ ≤
lim supn

∫
X | f (x)||gn(x)| dμ(x) ≤

∫
X | f (x)| dμ(x). If K is compact in X , we can

find a sequence { fk} of functions≥ 0 inCcom(X) decreasing pointwise to the indicator
function of K , and dominated convergence implies that

∣∣ ∫
K dν(x)

∣∣ ≤ ∫K dμ(x). In
other words, |ν(K )| ≤ μ(K ). Separating the real and imaginary parts of ν and then
working with subsets of a maximal positive set for ν and a maximal negative set for
ν, we reduce to the case that ν ≥ 0. Since ν is automatically regular, we obtain
ν(E) ≤ μ(E) for all Borel sets E , and the absolute continuity follows.

20. Since f is in H1, it is in H1 and hence is the Poisson integral of a finite
complex Borel measure ν, and the complex measures f (x + i/n) dx converge weak-
star against Ccom(R) to ν. Meanwhile, we have | f (x + i/n)| ≤ C2g∗(x)2 for
all n. In Problem 19 take dμ(x) = C2g∗(x)2 dx . Then the complex measures
f (x+ i/n)[C2g∗(x)2]−1 dμ(x) converge weak-star to ν. Problem 19 shows that ν is
absolutely continuous with respect toC2g∗(x)2 dx . Hence ν is absolutely continuous
with respect to Lebesgue measure.

21. For (a),F(Tϕ) is the product of an L∞ function and a Schwartz function. The
rapid decrease of the Fourier transform translates into the existence of derivatives of
all orders for the function itself. Hence � is locally bounded.
For (b), any x with |x | ≥ 1 has

�(x) = limy↓0
∫
|y|≥ε

( K (x−y)
|x−y|N − K (x)

|x |N
)
ϕ(y) dy.

Hence |�(x)| is
≤ lim supy↓0

∫
|y|≥ε ϕ(y)|K (x − y)|∣∣ 1

|x−y|N − 1
|x |N
∣∣ dy + ∫

RN ϕ(y)
|K (x−y)−K (x)|

|x |N dy.

If |x | ≥ 2|y| for all y in the support of ϕ, two estimates in the text are applicable;
these appear in the proof that the hypotheses of Lemma 3.29 are satisfied:∣∣ 1

|x−y|N − 1
|x |N
∣∣ ≤ N3N |y|

|x |N+1 and |K (x − y)− K (x)| ≤ ψ
( 2|y|
|x |
)
.

The smoothness of K makesψ(t) ≤ Ct for small positive t . Since the y’s in question
are all in the compact support of ϕ, both terms are bounded by multiples of |x |−(N+1).
Conclusion (c) is immediate from (a) and (b).
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22. Part (a) is just a matter of tracking down the effects of dilations. Part (c)
follows by dilating� = Tϕ− k to obtain�ε = (Tϕ)ε − kε, by applying (a) to write
�ε = Tϕε − kε, by convolving with f , and by applying (b). Thus we have to prove
(b).
For (b), we have ϕε ∗ T f = ϕε ∗ (limδ Tδ f ). The limit is in L p, and convolution

by the L p′ function ϕε is bounded from L p to L∞. Therefore ϕε ∗ (limδ Tδ f ) equals
limδ(ϕε ∗ (Tδ f )) = limδ(ϕε ∗ (kδ ∗ f )). This is equal to limδ((ϕε ∗ kδ) ∗ f ) =
limδ((Tδϕε) ∗ f ) since ϕε is in L1. Finally we can move the limit inside since
limδ Tδϕε can be considered as an L p′ limit and f is in L p.

23. From (c), we have supε>0 |Tε f (x)| = supε>0 |kε ∗ f (x)| ≤ supε>0 |�ε ∗ f (x)|
+ supε>0 |ϕε ∗ (T f )(x)| ≤ C� f ∗(x)+ Cϕ(T f )∗(x), where C� and Cϕ are as in the
given facts at the beginning of this group of problems.

24. Taking L p norms in the previous problem and using Theorem 3.26 and the
known behavior of Hardy–Littlewood maximal functions, we obtain∥∥ sup

ε>0
|Tε f (x)|

∥∥
p ≤ C�‖ f ∗‖p + Cϕ‖(T f )∗‖p ≤ C�Ap‖ f ‖p + Cϕ Ap‖T f ‖p
≤ C�Ap‖ f ‖p + Cϕ ApCp‖ f ‖p = C‖ f ‖p,

where Ap and Cp are constants such that ‖ f ∗‖p ≤ Ap‖ f ‖p and ‖T f ‖p ≤ Cp‖ f ‖p.
We know that limε>0 Tε f (x) exists pointwise for f in the dense set C∞com(R

N ), and a
familiar argument uses the above information to give the existence of the pointwise
limit almost everywhere for all f in L p.

25. This follows from the same argument as for Proposition 3.7.

26. Fix ψ ≥ 0 in C∞com(RN ) with integral 1, and define ψε(x) = ε−Nψ(ε−1x). If
f is in L2k (T

N ), then ψε ∗ f is smooth and periodic, hence is in C∞(T N ). Suppose
it is proved that

Dα(ψε ∗ f ) = ψε ∗ Dα f for |α| ≤ k. (∗)
If we let η be the indicator function of [−2π, 2π ]N , then Proposition 3.5a shows
that limε↓0 ‖η(ψε ∗ Dα f − Dα f ))‖2 = 0 for |α| ≤ k, and then (∗) shows that
limε↓0 ‖η(Dα(ψε ∗ f )− Dα f )‖2 = 0. Hence limε↓0 ‖ψε ∗ f − f ‖

L2k (T
N )
= 0.

For (∗), the critical fact is that the smooth function ψ ∗ f is periodic. If ϕ is
periodic and ψε is supported inside [−π, π ]N , then∫
[−π,π]N

(
ψε ∗ Dα f (x)

)
ϕ(x) dx = ∫[−π,π]N ∫[−π,π]N ψε(y)Dα f (x − y)ϕ(x) dy dx

= ∫[−π,π]N ∫[−π,π]N ψε(y)Dα f (x − y)ϕ(x) dx dy

= (−1)|α| ∫[−π,π]N ∫[−π,π]N ψε(y) f (x − y)Dαϕ(x) dx dy

= (−1)|α| ∫[−π,π]N (ψε ∗ f )(x)Dαϕ(x) dx

= ∫[−π,π]N (Dα(ψε ∗ f ))ϕ dx,

and (∗) follows.
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27. We have

‖Dα f ‖2
L2k (T

N )
=∑|β|≤k (2π)

−N ∫
[−π,π]N |DβDα f |2 dx

=∑|β|≤k (2π)
−N ∫

[−π,π]N |Dα+β f |2 dx
≤∑|γ |≤k+|α| (2π)

−N ∫
[−π,π]N |Dγ f |2 dx

= ‖ f ‖2
L2k+|α|(T

N )
.

Thus we can take Cα,k = 1.
28. For each α, we have (2π)−N

∫
[−π,π]N |Dα f |2 dx ≤ (supx∈[−π,π]N |Dα f (x)|)2.

Summing for |α| ≤ k gives

‖ f ‖2
L2k (T

N )
≤∑|α|≤k (supx∈[−π,π]N |Dα f (x)|)2,

and the right side is ≤ (
∑
|α|≤k supx∈[−π,π]N |Dα f (x)|)2. Thus we can take Ak = 1.

29. Since l2j ≤ |l|2, we have l2α ≤ (|l|2)|α| ≤ (1 + |l|2)k , and the left inequality
of the problem follows with Bk equal to the reciprocal of the number of α’s with
|α| ≤ k. For the right inequality, we have 1+ |l|2 =∑|α|≤1 l

2α . Raising both sides
to the kth power gives the desired result once the right side is expanded out since
l2αl2β = l2(α+β).
30–31. For f in C∞(T N ), let f have Fourier coefficients cl . The l th Fourier

coefficient of Dα f is then i |α|lαcl , and hence ‖Dα f ‖22 =
∑

l |cl |2l2α . Consequently
‖ f ‖

L2k (T
N )
=∑l |cl |2

(∑
|α|≤k l

2α
)
. Then the estimate required for Problem 31 in the

case of functions in C∞(T N ) is immediate from the inequalities of Problem 29.
Problem26 shows thatC∞(T N ) is dense in L2k (T

N ). Let f begiven in L2k (T
N ), and

choose f (n) in C∞(T N ) convergent to f in L2k (T
N ). Since f (n) tends to f in L2, the

Fourier coefficients c(n)l of f (n) tend to those cl of f for each l. Applying Problem 29
to each f (n) and using Fatou’s Lemma, we obtain

∑
l |cl |2(1+|l|2)k ≤ Ck‖ f ‖2L2k (T N )

.

On the other hand, if f is given in L2k (T
N ) with Fourier coefficients cl , then we

can put f (n)(x) = ∑
|l|≤n cle

il·x . Since f (n) is given by a finite sum and since
Dα f (x) = ∑l cll

αeil·x in the L2 sense for |α| ≤ k, we see that f (n) converges to
f in L2k (T

N ). The left inequality of Problem 31 holds for each f (n) since f (n) is
in C∞(T N ), and the expression in the middle of that inequality for f (n) is ≤ the
corresponding expression for f . Passing to the limit, we obtain the left inequality of
Problem 31 for f .
This settles Problem 31. It shows also that if f is in L2k (T

N ), then we have∑
l |cl |2(1+ |l|2)k <∞. On the other hand, if this sum is finite, then we define f (n)

to be
∑
|l|≤n cle

il·x . Problem 31 gives us Bk‖ f (n)‖2L2k (T N )
≤∑l |cl |2(1+|l|2)k for each

n. Each Dα f (n) for |α| ≤ k is convergent to something in L2, and the completeness
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of L2k (T
N ) proved in Problem 25 shows that f (n) converges to something in L2k (T

N ).
Consideration of Fourier coefficients shows that the limit function must be f . Hence
f is in L2k (T

N ).

32. Put c = K/N > 1/2. Term by term we have
∑

l∈ZN (1 + |l|2)−(N+1)/2 ≤∑
l1∈Z · · ·

∑
lN∈Z (1+ l21)−c · · · (1+ l2N )−c =

∏N
j=1
(∑

m∈Z (1+m2)−c), and the right
side is finite since c > 1/2. This proves convergence of the sum.
Now suppose that f is in L2K (T

N ), and suppose that f has Fourier coefficients cl .
Problem 31 shows that

∑
l |cl |2(1+ |l|2)K <∞. The Schwarz inequality gives∑

l |cl | =
∑

l |cl(1+ |l|2)K/2|(1+ |l|2)−K/2

≤ (∑l |cl |2(1+ |l|2)K
)1/2(∑

l (1+ |l|2)−K
)1/2

,

and we conclude that
∑ |cl | < ∞. Therefore the partial sums of the Fourier series

of f converge to a continuous function. This continuous function has to match the
L2 limit almost everywhere, and the latter is f .

33. Let cl be the Fourier coefficients of f . If f is in L2K (T
N ) with K > N/2,

then Problem 32 shows that f is continuous and is given pointwise by the sum
of its Fourier series. The inequalities in the solution for that problem show that

| f (x)| ≤ ∑l |cl | ≤ AK
(∑

l |cl |2(1 + |l|2)−K
)1/2

. In turn, Problem 31 shows that

the right side is≤ AKC
1/2
k ‖ f ‖

L2K (T
N )
. This gives the desired estimate for α = 0 with

m(0) = K for any integer K greater than N/2. Combining this estimate with the
result of Problem 27, we obtain an inequality for all α, with m(α) = K + |α| and
Cα = AKC

1/2
K .

34. The comparisons of size are given in Problems 28 and 33. These comparisons
establish the uniform continuity of the identity map in both directions, by the proof
of Proposition 3.2. (The statement of the proposition asserts only continuity.)

Chapter IV

1. With the explicit definition of the norm topology on X/Y , we have ‖x + Y‖ ≤
‖x‖, and consequently the quotient mapping q : X → X/Y is continuous onto the
normed X/Y . Because of completeness the Interior Mapping Theorem applies and
shows that the quotient mapping carries open sets to open sets. Consequently a subset
E of X/Y in the norm topology is open if and only if q−1(E) is open. This is the same
as the defining condition for a subset of X/Y to be open in the quotient topology, and
hence the topologies match.

2. Let K = ker(T ), and let q : X → X/K be the quotient map. By linear
algebra the map T : X → Y induces a one-one linear map T ′ : X/K → Y , and
then T = T ′ ◦ q . Since K is closed in X , Proposition 4.4 shows that X/K is a
topological vector space. Since T (X) is finite dimensional and T ′ is one-one, X/K
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is finite dimensional. Proposition 4.5 implies that T ′ is continuous. Since T is the
composition of continuous maps, it is continuous.

3. Let T : X → Y be a continuous linearmap fromoneBanach space onto another,
and let K = ker T . As in Problem 2, write T = T ′ ◦ q, where q : X → X/K is
the quotient mapping. Here T ′ is one-one. Since a subset E of X/K is open if and
only if q−1(E) is open, T ′ is continuous. Problem 1 shows that the topology on X/K
comes from a Banach space structure. By the assumed special case of the Interior
Mapping Theorem, T ′ carries open sets to open sets. Therefore the composition T
carries open sets to open sets.

4. This follows from Proposition 4.5.

5. Take xn to be the nth member of an orthonormal basis. Then ‖xn‖ = 1 for all
n. Any u in H has an expansion u =∑∞

n=1 cnxn , convergent in H , with cn = (u, xn)
and

∑ |cn|2 <∞. Then {(u, xn)} tends to 0 for each u, and {xn} therefore tends to 0
weakly.

6. The weak convergence implies that limn( fn, f ) = ( f, f ) = ‖ f ‖2. Therefore
‖ fn − f ‖2 = ‖ fn‖2 − 2Re( fn, f )+ ‖ f ‖2 tends to ‖ f ‖2 − 2‖ f ‖2 + ‖ f ‖2 = 0.
7. Let the dense subset of X∗ be D. For x∗ in X∗ and y∗ in D, we have

|x∗(xn)− x∗(x0)| ≤ |(x∗ − y∗)(xn)| + |y∗(xn)− y∗(x0)| + |(y∗ − x∗)(x0)|
≤ ‖x∗ − y∗‖‖xn‖ + |y∗(xn)− y∗(x0)| + ‖x∗ − y∗‖‖x0‖
≤ (C + ‖x0‖)‖x∗ − y∗‖ + |y∗(xn)− y∗(x0)|,

whereC = supn ‖xn‖. Given x∗ ∈ X∗ and ε > 0, choose y∗ in D tomake thefirst term
on the right be < ε, and then choose n large enough to make the second term < ε.

8. For (a), let D( f ) = 1. Then t �→ ∫
[0,t] | f |p dx is a continuous nondecreasing

function on [0, 1] that is 0 at t = 0 and is 1 at t = 1. Therefore there exists a
partition 0 = a0 < a1 < · · · < an = 1 of [0, 1] such that

∫
[0,aj ]

| f |p dx = j/n for
0 ≤ j ≤ n. If f j for j ≥ 1 is the product of n and the indicator function of [aj−1, aj ],
then D( f j ) = 1

n n
p = n−(1−p), and f = 1

n ( f1 + · · · + fn).
For (b), let gj = c fj in (a), so that D(gj ) = |c|pD( f j ) = |c|pn−(1−p). Ifwe put c =

n(1−p)/p, then D(gj ) = 1. Thuswe obtain the expansion n(1−p)/p f = 1
n (g1+· · ·+gn)

with D(gj ) = 1 for each j . Since D(n(1−p)/p f ) = n1−pD( f ) = n1−p, the multiple
n(1−p)/p f of f is a convex combination of functions h with D(h) ≤ 1. Taking a
convex combination of 0 and this multiple of f shows that r f is a convex combination
of functions h with D(h) ≤ 1 if 0 ≤ r ≤ n(1−p)/p. Since supn n

(1−p)/p = +∞, every
nonnegative multiple of f is a convex combination of functions h with D(h) ≤ 1.
For (c), we scale the result of (b). The smallest convex set containing all functions

ε1/ph with D(h) ≤ 1 contains all nonnegative multiples of f . Since D(ε1/ph) =
εD(h), the smallest convex set containing all functions k with D(k) ≤ ε contains all
nonnegative multiples of f . Since f is arbitrary, this convex set is all of L p([0, 1]).
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For (d), the sets where D( f ) ≤ ε form a local neighborhood base at 0. Thus if
L p([0, 1]) were locally convex, then any convex open set containing 0 would have
to contain, for some ε > 0, the set of all f with D( f ) ≤ ε. But the only convex set
containing all f with D( f ) ≤ ε is all of L p([0, 1]) by (c). Hence L p([0, 1]) is not
locally convex.
For (e), suppose that � is a continuous linear functional on L p([0, 1]). Then we

can find some ε > 0 such that D( f ) < ε implies Re �( f ) < 1. The set of all f where
Re �( f ) < 1 is a convex set, and it contains the set of all f with D( f ) < ε. But we
saw in (c) that the only such convex set is L p([0, 1]) itself. Therefore Re �( f ) < 1
for all f in L p([0, 1]). Using scalar multiples, we see that Re �( f ) = 0 for all f .
Therefore �( f ) = 0, and the only continuous linear functional � on L p([0, 1]) is
� = 0.
9. In (a), if ϕ is compactly supported in Kp0 , then ε

−1
p supx /∈Kp

sup|α|≤mp
|Dαϕ(x)|

is 0 for p ≥ p0. Thus ‖ϕ‖m,ε is a supremum for p < p0 of finitely many expressions
that are each finite for any smooth function onU . Hence ‖ϕ‖m,ε is finite. Conversely
if ϕ is not compactly supported, then the expressions sp = supx /∈Kp

|ϕ(x)| have
0 < sp ≤ ∞ for all p. If we define the sequence ε by εp = min(p−1, sp), then εp
decreases to 0 and every sequence m has ‖ϕ‖m,ε ≥ ε−1p supx /∈Kp

|ϕ(x)| ≥ p for all p.

Since p is arbitrary, ‖ϕ‖m,ε = ∞.
For (b), we have only to show that the inclusion of C∞Kp

into (C∞com(U ), T ′) is
continuous for every p. If (m, ε) is given, we are to find an open neighborhood of 0 in
C∞Kp

such that ‖ϕ‖m,ε < 1 for all ϕ in this neighborhood. Put M = max(m1, . . . ,mp)

and δ = min(ε1, . . . , ϕp). If ϕ is supported in Kp and supx∈Kp
sup|α|≤M |Dαϕ(x)| <

δ, then ε−1r supx /∈Kr
sup|α|≤mr

|Dαϕ(x)| is 0 for r ≥ p and is< 1 for r < p. Therefore
its supremum on r , which is ‖ϕ‖m,ε, is < 1.
For (c), define mp = max{p, n1, . . . , np} for each p, and then {mp} is monotone

increasing and tends to infinity. Next chooseCp for each p by the compactness of the
support of ψp and the use of the Leibniz rule on ψpη so that whenever |Dαη(x)| ≤ c
for some η ∈ C∞(U ), all x /∈ Kp, and allαwith |α| ≤ mp, then 2p+1|Dα(ψpη)(x)| ≤
Cpc for that η, all x ∈ U , and all α with |α| ≤ mp. Choose εp to be < δp/Cp and
to be such that {εp} is monotone decreasing and has limit 0. If ‖ϕ‖m,ε < 1, then
supx /∈Kp

sup|α|≤mp
|Dαϕ(x)| < εp for all p. Taking η = ϕ in the definition of Cp, we

see that supx∈U sup|α|≤mp
2p+1|Dα(ψpϕ)(x)| ≤ Cpεp < δp. Since ψpϕ is in C∞Kp+3

and mp ≥ np, we see that 2p+1ψpϕ meets the condition for being in N ∩ C∞Kp+3 .

For (d), we see from (c) that 2p+1ψpϕ is in N for all p ≥ 0. The expansion
ϕ = ∑p≥0 2

−(p+1)(2p+1ψpϕ) is a finite sum since ϕ has compact support, and it
therefore exhibits ϕ as a convex combination of the 0 function and finitely many
functions 2p+1ψpϕ, each of which is in N . Since N is convex, ϕ is in N . This proves
the asserted continuity.
For (e), each vector subspace C∞Kp

is closed nowhere dense, and the union of these
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subspaces is all of C∞com(U ).

10. Disproof: The answer is certainly independent of H , and we can therefore
specialize to H = L2([0, 1]). The multiplication algebra by L∞([0, 1]) is isometric
to a subalgebra ofB(H, H) and is not separable. ThereforeB(H, H) is not separable.

11. Certainly A′ ⊇ M(L2(S, μ)). Let T be in A′, and put g = T (1). For
f continuous, T f = T ( f 1) = T Mf 1 = Mf T 1 = Mf g = f g = g f . If we
can prove that g is in L∞(S, μ), then T and Mg will be bounded operators equal
on the dense subset C(S) of L2(S, μ) and therefore equal everywhere. Let EN =
{x ∣∣ N ≤ |g(x)| ≤ N + 1}, and suppose that μ(EN ) > 0. We shall derive an
upper bound for N . Choose a compact set KN ⊆ EN with μ(KN ) > 0. Then
choose f in C(S) with values in [0, 1] such that f ≥ 1 on KN and

∫
S f dμ ≤

2μ(KN ). Then
∫
S |g f |2 dμ ≥ ∫KN

|g f |2 dμ = ∫
KN
|g|2 dμ ≥ N 2μ(KN ). Also,∫

S | f |2 dμ ≤ ∫
S f dμ ≤ 2μ(KN ) since 0 ≤ f ≤ 1. Therefore Nμ(KN )

1/2 ≤
‖g f ‖2 ≤ ‖T ‖‖ f ‖2 ≤

√
2 ‖T ‖μ(KN )

1/2, and we obtain N ≤ √2 ‖T ‖. This gives
an upper bound for N and shows that g is in L∞(S, μ).

12. The Spectral Theorem shows that we may assume that A is of the form Mg and
acts on H = L2(S, μ), with g in L∞(S, μ). Certainly we have sup‖ f ‖2≤1 |(Mg f, f )|
≤ ‖g‖∞. Let us prove the reverse inequality. Lemma 4.55 and Proposition 4.43 show
that ‖g‖∞ is the supremum of the numbers |λ0| such that λ0 is in the essential image
of Mg . For λ0 in the essential image, fix ε > 0 and let f1 be the indicator function of
g−1({|λ− λ0| < ε}). Then∫
S g| f1|2 dμ =

∫
|g(x)−λ0|<ε

g dμ = λ0μ
(|g(x)−λ0| < ε

)+∫|g(x)−λ0|<ε
(g−λ0) dμ.

The last term on the right is ≤ εμ
(|g(x) − λ0| < ε

)
in absolute value. Hence∫

S g| f1|2 dμ = (λ0 + ζ )μ
(|g(x) − λ0| < ε

)
with |ζ | ≤ ε. Dividing by ‖ f1‖22 =

μ
(|g(x) − λ0| < ε

)
and setting f = f1/‖ f1‖2, we obtain

∣∣ ∫
S g| f |2 dμ − λ0

∣∣ ≤ ε.
Since ε is arbitrary, λ0 is in the closure of

{
(Mg f, f )

∣∣ ‖ f ‖2 = 1
}
. Taking the

supremum over λ0 in the essential image, we obtain sup‖ f ‖2≤1 |(Mg f, f )| ≥ ‖g‖∞.
13. This is what the proof of Theorem 4.53 gives when the assumption that A is

maximal is dropped and the cyclic vector is produced by a hypothesis rather than by
Proposition 4.52.

14. Apply the previous problem. Proposition 4.63 shows that A∗m is canonically
homeomorphic to σ(A). Under this identification we want to see that U AU−1 is
multiplication by z. Thus letψ : σ(A)→ A∗m be the homeomorphism obtained from
the proposition. The solution of the previous problem and the proof of Theorem 4.53
show that U AU−1 is multiplication by Â when we work withA∗m, and it is therefore
Â◦ψ whenweworkwithσ(A). The definingproperty ofψ is that f (z) = f ◦ Â(ψ(z))
for f ∈ C(σ (A)) and z ∈ σ(A). This equation for the function f (z) = z says that
Â ◦ ψ(z) = z, and hence U AU−1 is multiplication by z on σ(A).
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15. For (a), A immediately contains all MP for arbitrary polynomials P with
complex coefficients on [0, 1]. By the Stone–Weierstrass Theorem, A contains all
operators Mf with f continuous on [0, 1]. This collection of operators is an algebra
closed under adjoints and operator limits (which are the same as essentially uniform
limits of the functions), and hence it exhausts A. If we then form A1, we obtain all
continuous functions in L2([0, 1]), and these are dense. Hence 1 is cyclic.
For (b), Proposition 4.63 says that the spectrum may be identified with σ(Mx ),

and Lemma 4.55 shows that this is [0, 1].
In (c), the system of operators Mϕ satisfies conditions (a) through (d) for the

system ϕ(Mx ) of Theorem 4.57. By uniqueness, ϕ(Mx ) = Mϕ for every bounded
Borel function on [0, 1].

17. If 0 < μ(S) < 1, then μ is a nontrivial convex combination of 0 and a
measure with total mass 1 and is therefore not extreme. Since 0 is evidently extreme,
the problem is to identify the extreme measures among those with total mass 1. If
μ is given with μ(S) = 1 and if some Borel set E has 0 < μ(E) < 1, define
μ1(A) = μ(E)−1μ(E ∩ A) and μ2 = μ(Ec)−1μ(Ec ∩ A). Then μ1 and μ2 have
total mass 1, and the equality μ = μ(E)μ1 +μ(Ec)μ2 shows that μ is not extreme.
Thus we may assume that μ takes on only the values 0 and 1. In this case the

regularity of μ implies that μ is a point mass, as is shown in Problem 6 of Chapter XI
of Basic.

18. For (a), we have f = (1 − t)‖ f1‖−11 f1 + t‖ f2‖−11 f2 with t = ‖ f2‖1. For
(b), we observe for any f in L1([0, 1]) with ‖ f ‖1 = 1 that t �→ ∫

[0,t] | f | dx is
continuous on [0, 1], is 0 at t = 0, and is 1 at t = 1. Therefore there exists some t0
with

∫
[0,t0]

| f | dx = 1
2 . The set E = [0, t0] is then a set to which we can apply (a) to

see that f is not an extreme point of the closed unit ball.

19. For the compactness of K in (a), we are to show that the set of invariant
measures is closed. Suchmeasuresμ have

∫
S f dμ =

∫
S ( f ◦F) dμ for all f ∈ C(S).

If we have a net {μn} of such measures convergent weak-star to μ, then we can pass
to the limit in the equality for each μn and obtain

∫
S f dμ =

∫
S ( f ◦ F) dμ for the

limit μ since f and f ◦ F are both continuous. If we define ν(E) = μ(F−1(E)), this
equality says that

∫
S f dμ =

∫
S f dν for every f ∈ C(S). By the uniqueness in the

Riesz Representation Theorem, μ = ν. Therefore the limit μ is invariant under F .
In (b), if μ could be extreme but not ergodic, we could find a Borel set E with

0 < μ(E) < 1 such that F(E) = E . Put μ1(A) = μ(E)−1μ(A ∩ E) and μ2(A) =
μ(Ec)−1μ(A∩ Ec). The invariance of the set E implies that μ1 and μ2 are invariant.
Since μ = μ(E)μ1 + μ(Ec)μ2, μ is exhibited as a nontrivial convex combination
of invariant measures and cannot be extreme.
For (c), the answer is “no.” Take S to be a two-point set with the discrete topology,

and let F interchange the two points. Then every measure μ on S with μ(S) = 1 is
ergodic, but only the two point masses are extreme points.

20. For (a) the assumed condition on f for the function c(n) that is nonzero at
n = 0 and is 0 elsewhere shows that f (0) ≥ 0. The condition on f for the function
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c(n) that is nonzero at 0 and k and is 0 elsewhere is that the matrix
(

f (0) f (k)
f (−k) f (0)

)
is

Hermitian and positive semidefinite. The Hermitian condition forces f (−k) = f (k),
and the condition determinant ≥ 0 then says that | f (k)|2 ≤ f (0)2.
For (b), Example 2 of weak-star convergence in Section 3 says that a necessary

and sufficient condition for a sequence { fn} in L∞ to converge to f weak-star is that
{‖ fm‖∞} be bounded, which we are assuming, and that

∫
E fn dμ → ∫

E f dμ for
every E of finite measure. Here the sets of finite measure in Z are the finite sets, and
thus the relevant convergence is pointwise convergence.
For (c), Theorem 4.14 shows that the weak-star topology on the closed unit ball of

L∞(Z) is compact metric, and therefore the topology is specified by sequences. The
convexity of K is routine, and we just have to see that K is closed. We can do this
by assuming that we have a pointwise convergent sequence whose members are in K
and by proving that the limit is in K . This too is routine.
For (d), suppose that einθ = (1−t)F1(n)+t F2(n) nontrivially. Taking the absolute

value and using (a), we have 1 ≤ (1− t)|F1(n)| + t |F2(n)| ≤ (1− t)+ t = 1, and
equality must hold throughout. Therefore |F1(n)| = |F2(n)| = 1. Suppressing the
parameter n, suppose that we have eiψ = (1− t)eiϕ1+ teiϕ2 nontrivially. Multiplying
through by e−iψ , we reduce to the case thatψ = 0. Sowe have 1 = (1−t)eiϕ′1+teiϕ′2 .
The real part is 1 = (1− t) cosϕ′1 + t cosϕ′2, and we must have cosϕ

′
1 = cosϕ′2 = 1

and eiϕ
′
1 = eiϕ

′
2 = 1. Hence F1(n) = einθ = F2(n), and n �→ einθ is an extreme

point.
For (e), the Fourier coefficientmapping from complexBorel measures on the circle

to doubly infinite sequences is linear and one-one, and we are told to assume that the
mapping carries the set of Borel measures onto the set of positive definite functions.
The value of the positive definite function at 0 is then the total measure of the circle.
Hence the question translates into identifying the extreme Borel measures of total
mass 1 on the circle. Problem 17 shows that these are the point masses.

21. For (a), the convergence is proved by showing that the partial sums form
a Cauchy sequence. For m ≤ n, we have

∥∥∑n
k=0( f/C)

k −∑m
k=0( f/C)

k
∥∥
sup =∥∥∑n

k=m+1( f/C)
k
∥∥
sup ≤

∑n
k=m+1 ‖ f/C‖ksup, and the right side tends to 0 as m and

n tend to infinity because ‖ f/C‖sup = |C |−1‖ f ‖sup < 1. So the series converges to

some x . Since
(∑n

k=0( f/C)
k
)
(1− f/C) = 1− ( f/C)n+1 and since multiplication

is continuous, the element x is a multiplicative inverse to 1− f/C .
In (b), �( f ) = C would imply �(1 − f/C) = �(1) − �( f )/C = 0. But then

0 = 0 · �(x) = �(1− f/C)�(x) = �(1) = 1 would give a contradiction.
From (b) we obtain |�( f )| ≤ 1. Taking the supremum over all f with ‖ f ‖sup ≤ 1,

we find that ‖�‖ ≤ 1. Thus � is bounded. This proves (c).
22. Problem 21 shows that � is bounded. The result follows by using the Stone

Representation Theorem and the first example after its proof.

23. If t is in T , define �u(t)( f ) = (U f )(t) for f in C(S). It is routine to check that
�t satisfies the hypotheses of Problem 22 and is therefore given by evaluation at some
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s in S. Define this s to be u(t). The proofs of (a), (b), and (c) are then straightforward.

24. This is just a matter of applying Problem 23 and tracking down the isomor-
phisms.

25. Let S be a nonempty set, and let A be a uniformly closed subalgebra of B(S)
with the properties thatA is stable under complex conjugation and contains 1. If S2 is
a compactHausdorff space and V : A→ C(S2) is an algebra isomorphismmapping 1
to 1 and respecting conjugation and if S1, p, andU are as in Theorem 4.15, then there
exists a unique homeomorphism � : S2 → S1 such that (U f )(�(s2)) = (V f )(s2)
for all f in A. Then one has to give a proof.
26. For (a), the reflexive and symmetric properties are immediate from the

definition. For the transitive property let xi ∼ xj and xj ∼ xl . Say that i ≤ k,
j ≤ k, ψki (xi ) = ψk j (xj ), j ≤ m, l ≤ m, ψmj (xj ) = ψml(xl). Choose n with
k ≤ n and m ≤ n. Application of ψnk to ψki (xi ) = ψk j (xj ) gives ψni (xi ) = ψnj (xj ),
and application of ψnm to ψmj (xj ) = ψml(xl) gives ψnj (xj ) = ψnl(xl). Therefore
ψni (xi ) = ψnl(xl), and ∼ is transitive.
For (b), suppose that ψki (xi ) = ψk j (xj ). We are to show that ψli (xi ) = ψl j (xj )

whenever i ≤ l and j ≤ l. Assume the contrary for some l. Choose m with k ≤ m
and l ≤ m. Application of ψmk to ψki (xi ) = ψk j (xj ) gives ψmi (xi ) = ψmj (xj ). On
the other hand, application of ψml to ψli (xi ) = ψl j (xj ) gives ψmi (xi ) = ψmj (xj )
since ψml is by assumption one-one. Thus we have a contradiction.

27. Suppose that we are given maps ϕi : Wi → Z with ϕj ◦ ψj i = ϕi whenever
i ≤ j . Define �̃ :

∐
Wi → Z by �̃(xj ) = ϕj (x) if xj is in Wj . The map �̃

is continuous, and the claim is that it descends to the quotient to give a map �

satisfying �(q(xj )) = �̃(xj ). To see the necessary consistency, suppose xj ∼ xl
with xl in Wl . Say that j ≤ k, l ≤ k, and ψk j (xj ) = ψkl(xl). Then we have
�̃(xj ) = ϕj (xj ) = ϕkψk j (xj ) = ϕkψkl(xl) = ϕl(xl) = �̃(xl), and the consistency is
proved. The definition of � is complete, and we have arranged that� ◦ (q∣∣

Wj
) = ϕj

for each j . This establishes existence of the map� in the universal mapping property.
Since q carries

∐
i Wi onto W , the formulas � ◦ (q

∣∣
Wj
) = ϕj force the definition we

have used for �. This establishes the uniqueness of the map � in the universal
mapping property.

28. With (V, {pi }) as a direct limit, take Z = W and ϕi = qi . Each map ϕi
carries Wi into Z , and the universal mapping property of (V, {pi }) yields a mapping
F : V → W with qi = F ◦ pi for all i . Reversing the roles of (V, {pi }) and (W, {qi }),
we obtain a mapping G : V → W with pi = G ◦ qi for all i .
With (V, {pi }) as a direct limit, take Z = V and ϕi = pi . Then the identity 1

∣∣
V

meets the condition of the universal mapping property for this situation. On the other
hand, so does G ◦ F , which carries V to itself and has pi = G ◦qi = (G ◦ F)◦ pi . By
the uniqueness that is part of the universal mapping property, G ◦ F = 1∣∣

V
. Similarly

F ◦ G = 1∣∣
W
. Thus F is a homeomorphism.

The homeomorphism F is unique because any such mapping F# must similarly
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have G ◦ F# = 1∣∣V and F# ◦ G = 1∣∣W . Thus F# must be a two-sided inverse to G,
and there can be only one such function.

29. For (a), let U be an open set in
∐

i Wi . We are to prove that q(U ) is open.
Since each Wi is open in the disjoint union, we may assume thatU ⊆ Wi for some i .
We are to prove that q−1(q(U )) is open, hence that q−1(q(U ))∩Wj is open for each
j . Thus we are to show that the set V of all xj in Wj such that xj ∼ xi for some xi in
U is open in Wj . Choose k with i ≤ k and j ≤ k. Then we have V = ψ−1k j (ψki (U )).

The hypothesis for this problem makes ψki (U ) open inWk , and then ψ
−1
k j (ψki (U )) is

open since ψk j is continuous.
For (b), we are to separate q(xi ) and q(xj ) by disjoint open sets if xi and xj are not

equivalent. Choose k with i ≤ k and j ≤ k, so that ψki (xi ) and ψk j (xj ) are both in
Wk . They are distinct in Wk by Problem 26b. Since Wk is Hausdorff, we can choose
disjoint open sets A and B in Wk with ψki (xi ) in A and ψk j (xj ) in B. Then q(A) and
q(B) are disjoint since q is one-one on Wk , and they are open by (a).
For (c), the mapping into the direct limit is continuous and open and therefore

carries compact neighborhoods to compact neighborhoods. Since the quotient map
is onto the direct limit, every point of the direct limit has a compact neighborhood.
For an example in (d), take Wi = {1, . . . , i} for each i , with ψj i equal to the

inclusion if i ≤ j . Each Wi is finite, hence compact, and the direct limit is the set of
positive integers with the discrete topology.

30. Each X (S) is Hausdorff as the product of Hausdorff spaces. The space(×i /∈SKi
)
is compact by the Tychonoff Product Theorem, and then X (S) is the

product of finitely many locally compact spaces, which is locally compact. The
Hausdorff property is handled by Problem 29b, and the final assertion is clear from
the definition.

Chapter V

1. If K is compact in U , then K is compact in V , and hence the inclusion of
C∞K into C∞com(V ) is continuous. By Proposition 4.29 the inclusion of C

∞
com(U ) into

C∞com(V ) is continuous.
2. Fix K compact large enough to contain support(ϕ). Then the map ψ �→ ψϕ is

continuous from C∞(U ) into C∞K . The inclusion of C
∞
K into C

∞
com(U ) is continuous,

and hence ψ �→ ψϕ, being a composition of continuous functions, is continuous
from C∞(U ) into C∞com(U ).

3. Let {Kj } be an exhausting sequence of compact subsets of U , and choose
ψj ∈ C∞com(U ) that is 1 on Kj and is 0 off Kj+1. For each j , the product (ϕ

∣∣
U −ϕ1)ψj

is in C∞com(U ) with support contained in the open setU ∩ (support(TU ))c. Therefore
TU ((ϕ

∣∣
U
− ϕ1)ψj ) = 0 for each j . The functions (ϕ

∣∣
U
− ϕ1)ψj tend to ϕ

∣∣
U
− ϕ1 in

the topology ofC∞(U ), and therefore TU (ϕ
∣∣
U
−ϕ1) = 0. Hence TU (ϕ

∣∣
U
) = TU (ϕ1)

as required.



424 Hints for Solutions of Problems

4. An adjustment is needed to the proof of Theorem 5.1. The proof in the text
in effect used the expressions ‖ f ‖K ′,α = supx∈K ′ |(Dα f )(x)| as seminorms together
describing the relative topology ofC∞K ′ as a subspace ofC

∞(Rn). Tomodify the proof
of the theorem, we need to see that the same relative topology results from using the
expressions ‖ f ‖K ′,α,new = ‖(Dα f )‖

L2(K ′). In one directionwe have ‖(Dα f )‖
L2(K ′) ≤

C supx∈K ′ |(Dα f )(x)|, the constant C being the L2 norm of the function 1 on K ′. In
the reverse direction we apply Sobolev’s inequality (Theorem 3.11) with U equal to
the interior of K ′. This open set satisfies the cone condition. Sobolev’s inequality
shows for k > N/2 that supx∈K ′ |(Dα f )(x)| ≤ C(

∑
|β|≤k ‖(Dα+β f )‖2

L2(K ′))
1/2. We

follow the lines of the proof of Theorem 5.1, using these new seminorms and using
linear functionals on spaces of L2 functions instead of spaces of continuous functions,
and the desired result follows.

5. For (a), we write 〈T, ϕ〉 = ∑α

∫
RN Dαϕ dρα(x) by means of Theorem 5.1.

Substitution and use of Lemma 5.6 gives

〈T, F〉 =∑α

∫
RN Dα

x

∫
K �(x, y) dμ(y) dρα(x)

=∑α

∫
RN

∫
K D

α
x�(x, y) dμ(y) dρα(x).

On the other hand,
∫
K 〈T,�( · , y)〉 dμ(y) = ∫K∑α

∫
RN Dα

x�(x, y) dρα(x) dμ(y),
and the two expressions are equal by Fubini’s Theorem.
For (b), choose a compact subset L of RN such that L × K contains support(�),

and choose η in C∞com(R
N ) that is identically 1 on L . Part (a) shows that

〈ηS, F〉 = ∫K 〈ηS,�( · , y)〉 dμ(y).

On the other hand, we have 〈ηS, F〉 = 〈S, ηF〉 = 〈S, F〉, and 〈ηS,�( · , y)〉 =
〈S, η( · )�( · , y)〉 = 〈S,�( · , y)〉, and the result follows.
6. Fix a member η of C∞com(U ) with values in [0, 1], so that ηT is a member of

E ′(U ). If ϕ is a real-valued member of C∞com(U ), then for both choices of the sign±,
η(‖ϕ‖sup ± ϕ) is a member of C∞com(U ) that is ≥ 0. Hence 〈T, η(‖ϕ‖sup ± ϕ)〉 ≥ 0,
and 〈T, η〉‖ϕ‖sup = 〈T, η‖ϕ‖sup〉 ≥ ∓〈T, ηϕ〉 = ∓〈ηT, ϕ〉, i.e., |〈ηT, ϕ〉| ≤
〈T, η〉‖ϕ‖sup. For complex-valued ϕ, such an estimate is valid for the real and
imaginary parts separately, and we conclude that ϕ �→ 〈ηT, ϕ〉 is a bounded lin-
ear functional on C∞com(U ) relative to the supremum norm. The Stone–Weierstrass
Theorem shows that C∞com(U ) is uniformly dense in the space C0(U ) of continuous
functions vanishing at “infinity” relative to U . In particular, C∞com(U ) is uniformly
dense in Ccom(U ), and ϕ �→ 〈ηT, ϕ〉 extends to a continuous linear functional on
Ccom(U ) relative to the supremumnorm. Using the continuity of this linear functional
and the denseness of C∞com(U ), we check that the extension of the linear functional to
Ccom(U ) is a positive linear functional. By the Riesz Representation Theorem it is
given by a Borel measureμη. The boundedness of the linear functional forcesμη(U )

to be finite.
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Let {Kp} be an exhausting sequence. Define ηp to be a member of C∞com(U ) with
values in [0, 1] that is 1 on K2p and is 0 off Ko

2p+1, and form the corresponding
Borel measures μp. Then the sequence {ηp(x)} is nondecreasing for each x and
has limit 1. The measures μp have to be nondecreasing on each set, and we define
μ(E) = limp μp(E) for each Borel set E . The nondecreasing limit of measures is a
measure, with the complete additivity holding by monotone convergence. We show
that 〈T, ϕ〉 = ∫U ϕ dμ for every ϕ in C∞com(U ).
For any ϕ in C∞com(U ), as soon as p0 is large enough so that K2p0 contains

support(ϕ), we have 〈ηpT, ϕ〉 = 〈T, ϕ〉 for p ≥ p0. Also, μp(E) remains constant
for each Borel subset of K2p when p ≥ p0, and hence μ(E) = μp(E) for such
subsets. Thus 〈T, ϕ〉 = 〈ηpT, ϕ〉 =

∫
U ϕ dμp =

∫
U ϕ dμ, as asserted.

7. Computation gives (e−π |x |
2
) = 4π2|x |2e−π |x |2 − 2πNe−π |x |2 . What needs

computing is
∫

RN |x |−(N−2)|x |2pe−π |x |2 dx for p = 1 and p = 0, and then one has

to sort out the result. This integral equals 	N−1
∫∞
0 r2p+1e−πr

2
dr . For p = 1 and

p = 0, the integral is elementary. Alternatively, it can be converted into a value of
the gamma function by the change of variables πr2 �→ s. In neither case does the
value of 	N−1 need to be computed.
8. Part (a) follows from the chain rule and the boundedness of each derivative of

η since (ηε)(k)(x) = ε−kη(k)(ε−1x).
For (b), if ϕ has compact support, then (1− ηε)ϕ has compact support away from

{0}. Therefore 〈T, (1 − ηε)ϕ〉 = 0, and 〈T, ϕ〉 = 〈T, (1 − ηε)ϕ〉 + 〈T, ηεϕ〉 =
〈T, ηεϕ〉. Since ϕ �→ 〈T, ϕ〉 and ϕ �→ 〈T, ηεϕ〉 are continuous and C∞com(RN ) is
dense in C∞(RN ), 〈T, ϕ〉 = 〈T, ηεϕ〉 for all ϕ in C∞(RN ).
In (c), we apply (a) and obtain

|〈T, ηεϕ〉| ≤ C
∑n

k=0 sup|x |≤M |Dk(ηεϕ)(x)| = C
∑n

k=0 sup|x |≤ε |Dk(ηεϕ)(x)|
≤ C ′

∑n
k=0
∑k

l=0 sup|x |≤ε |Dk−l(ηε)(x)(Dlϕ)(x)|
≤ C ′′

∑n
k=0
∑k

l=0 ε
l−k sup|x |≤ε |(Dlϕ)(x)|

≤ C ′′′
∑n

l=0 ε
l−n sup|x |≤ε |(Dlϕ)(x)|.

When ϕ(x) = ψ(x)xn+1, |Dlϕ(x)| ≤ c
∑l

r=0 |Dl−rψ(x)||xn+1−r |, and the supre-
mum for |x | ≤ ε is ≤ c′εn+1−l . Therefore

|〈T, ϕ〉| = |〈T, ηεϕ〉| ≤ c′C ′′′
∑n

l=0 ε
l−nεn+1−l = c′C ′′′(n + 1)ε.

The right side tends to 0 as ε decreases to 0, and thus 〈T, ϕ〉 = 0.
In (d), the Taylor expansion of a generalϕ isϕ(x) =∑n

k=0
1
k!ϕ

(k)(0)xk+ψ(x)xn+1

with ψ in C∞(R1). Applying 〈T, · 〉 to both sides and using (c), we obtain 〈T, ϕ〉 =∑n
k=0

1
k! ϕ

(k)(0)〈T, xk〉.
9. The adjustments in the argument are to (a) and (c). For (a), the estimate is

|(Dαηε(x)| ≤ C|α|ε−|α| and is again proved by the chain rule. Each differentiation



426 Hints for Solutions of Problems

introduces a factor of ε−1. For (c), Taylor’s Theorem says that the remainder term in
computing a smooth function ϕ(x) about the point 0 is∑

l1+···+lN=n+1,
all lj≥0

n+1
l1!···lN ! x

l1
1 · · · xlNN

∫ 1
0 (1− s)n ∂n+1ϕ

∂x
l1
1 ···x

lN
N

(sx) ds,

hence is of the form ∑
l1+···+lN=n+1,

all lj≥0

ψl1,...,lN (x)x
l1
1 · · · xlNN .

Thus oneworkswith a functionψ(x)xl11 · · · xlNN withψ smooth andwith
∑

j lj = n+1.
The argument for (c) in Problem 8 now can be used.

10. Aswith Problem 9, the arguments for (a) and (c) in Problem 8 need adjustment,
and this time we need to change (d) completely. For (a), we use the above function
η for RN−L , and we define ηε(x ′, x ′′) = η(ε−1x ′′). Then (a) causes no difficulties.
For (c), we need a new form of Taylor’s Theorem. The point is to treat ϕ(x ′, x ′′) as
a function of x ′′ alone, form a Taylor expansion with remainder, and carry along x ′

as a parameter. The result is that the remainder term is a sum of terms of the form
ψ(x ′, x ′′)M(x ′′), where ψ is in C∞(RN ) and M is a homogeneous monomial in the
x ′′ variables of total degree n+1. Then (c) causes no difficulties and again gives 0. In
(d), the main terms of the Taylor expansion are of the form cαDαϕ(x ′, 0)(x ′′)α , where
α is a multi-index that is nonzero only in the positions corresponding to x ′′ and has
total degree ≤ n. We introduce a linear functional Tα on C∞(RL) by the definition
〈Tα, ψ(x ′)〉 = cα〈T, ψ(x ′)(x ′′)α〉. Then Tα is continuous, and the expansion 〈T, ϕ〉 =∑
|α|≤n〈Tα, (Dαϕ)

∣∣
RL 〉 has the required form.

11. Subtracting two tempered distributions solvingu = f , we obtain a tempered
distribution u with u = 0. From F(Dαu) = (2π i)|α|ξαF(u) and F(u) = 0, we
obtain |ξ |2F(u) = 0. It follows that F(u) is supported at {0}. Problem 9 then shows
thatF(u) is a finite sum of the form∑α cαD

αδ. Taking the inverse Fourier transform
of both sides, we see that the distribution u equals a polynomial function.

12. Apply Theorem 5.1 to a member S of E ′((−2π, 2π)N ), writing it as a sum
of finitely many derivatives of complex Borel measures ρα of compact support:
〈S, ϕ〉 = ∑|α|≤m

∫
K D

αϕ dρα , where K is a compact subcube of (−2π, 2π)N . For
ϕ(x) = e−ik·x , we have supx∈K |Dα(e−ik·x )| ≤ |kα|, and therefore |〈S, e−ik·x 〉| ≤∑
|α|≤m |kα|‖ρα‖ ≤ C(1+ |k|2)m/2, where C =∑|α|≤m ‖ρα‖.
13. Change notation and suppose that |ck | ≤ C(1 + |k|2)m for all k. The series

f (x) =
∑
k

ckeik·x

(1+ |k|2)m+N+1 is then absolutely uniformly convergent, and f (x) is

continuous periodic. Define S′ ∈ E ′((−2π, 2π)N ) by

〈S′, ϕ〉 = (2π)−N
∫
[−π,π]N f (x)ϕ(x) dx .
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Let D = 1−, and define S = Dm+N+1S′. Then

〈S, e−ik·x 〉 = 〈S′,Dm+N+1(e−ik·x )〉 = (1+ |k|2)m+N+1〈S′, e−ik·x 〉
= (1+ |k|2)m+N+1(2π)−N ∫[−π,π]N f (x)e−ik·x dx

= (1+ |k|2)m+N+1 ck
(1+|k|2)m+N+1 = ck,

as required.

14. For each ϕ, the set of ψ with |B(ϕ, ψ)| ≤ ‖ϕ‖
L2k (T

N )
is the set where the

continuous function |B(ϕ, · )| is≤ some constant, and this is closed. The set Ek,M is
the intersection of such sets and is therefore closed. For eachψ , the function B( · , ψ)

is linear and continuous, and therefore there exists an integer k and a constant M for
which |B(ϕ, ψ)| ≤ M‖ϕ‖

L2k (T
N )
for all ϕ. This proves (a).

Since C∞(T N ) is complete, the Baire Category Theorem shows that some Ek,M
has nonempty interior, hence contains a basic open set, i.e., some set of the form
U = {ψ ′ ∣∣ ‖ψ ′ −ψ0‖L2s (T N )

< ε}. If ψ has ‖ψ‖
L2s (T N )

< ε, then ψ0 +ψ is in U and

thus has |B(ϕ, ψ0 + ψ)| ≤ M‖ϕ‖
L2k (T

N )
for all ϕ in C∞(T N ). Then

|B(ϕ, ψ)| ≤ |B(ϕ, ψ0 + ψ)| + |B(ϕ, ψ0)| ≤ M‖ϕ‖
L2k (T

N )
+ Cψ0,k(ψ0)‖ϕ‖L2k(ψ0)(T N )

.

The right side is ≤ M ′‖ϕ‖
L2k1

(T N )
for k1 = max{k, k(ψ0)} and M ′ = M + Cψ0,k(ψ0).

Hence |B(ϕ, ψ)| ≤ M ′ε−1‖ϕ‖
L2k1

(T N )
‖ψ‖

L2s (T N )
≤ M ′ε−1‖ϕ‖

L2k2
(T N )
‖ψ‖

L2k2
(T N )

,

where k2 = max{k1, s}.
15. We apply the inequality of Problem 14b to Dαϕ and Dβψ , and then the result

follows by applying the norm inequality of Problem 27 in Chapter III to ‖Dαϕ‖
L2k (T

N )

and ‖Dβψ‖
L2k (T

N )
.

16. The functions eil·xeim·y are orthonormal in L2(T N × T N ), and it is therefore
enough to show that the sum of the absolute-value squared of the coefficients is finite.
That is, we are to show that

∑
l,m∈ZN

|blm |2l2αm2β(∑
|α′|≤k ′ l2α

′)2(∑
|β ′|≤k ′ m2β

′)2 <∞

whenever |α| ≤ k ′ and |β| ≤ k ′. Since l2α ≤∑|α′|≤k ′ l
2α′ and m2β ≤∑|β ′|≤k ′ m

2β ′ ,
it is enough to prove that

∑
l,m∈ZN

|blm |2(∑
|α′|≤k ′ l2α

′)(∑
|β ′|≤k ′ m2β

′) <∞. (∗)
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If we use the estimate of Problem 15 for ϕ = eil·( · ) and ψ = eim·( · ), we have

l2αm2β |blm |2 = |B(Dαeil·( · ), Dβeim·( · ))|2 ≤ C2‖eil·( · )‖2
L2
k′ (T

N )
‖eim·( · )‖2

L2
k′ (T

N )

for |α| ≤ K and |β| ≤ K . Hence

l2αm2β |blm |2 ≤ C2
( ∑
|α′|≤k ′

l2α
′)( ∑

|β ′|≤k ′
m2β

′)
.

Summing over α and β for |α| ≤ K and |β| ≤ K and taking into account Problem 29
in Chapter III, we obtain

(1+ |l|2)K (1+ |m|2)K |blm |2 ≤ C ′
( ∑
|α′|≤k ′

l2α
′)( ∑

|β ′|≤k ′
m2β

′)
for a constantC ′. Thus the left side of (∗) is≤ C ′

∑
l,m∈ZN (1+|l|2)−K (1+|m|2)−K ,

and Problem 32 of Chapter III shows that this is finite.

17. Since Fα,β is in L2(T N × T N ), B ′ is a continuous function of two L2(T N )

variables Dαϕ and Dβψ . In particular it is well defined for ϕ and ψ in C∞(T N ).
Because of continuity in L2 and orthogonality, we have

(2π)−2N
∫
[−π,π]2N

Fα,β(x, y)D
αeil·x Dβeim·y dx dy

= (2π)−2N
∫
[−π,π]2N

blm(−i)|α|+|β|lαmβ i |α|+|β|lαmβ( ∑
|α′|≤k ′

l2α′
)( ∑
|β ′|≤k ′

m2β ′
) dx dy

= blml2αm2β( ∑
|α′|≤k ′

l2α′
)( ∑
|β ′|≤k ′

m2β ′
) .

Summing for α and β with |α| ≤ k ′ and |β| ≤ k ′, we obtain B ′(eil·( · ), eim·( · )) =
B(eil·( · ), eim·( · )).
18. The result of Problem 17 implies that B ′(ϕ, ψ) = B(ϕ, ψ) if ϕ and ψ are

trigonometric polynomials. It shows also that convergence in L2 of either variable
and its derivatives through order k ′ implies convergence of B ′. Since convergence
in C∞(T N ) implies convergence in L2k ′(T

N ) and since B is separately continuous,
B ′ = B on C∞(T N ). The expression on the right side of the display in the statement
of Problem 17 is the action of a distribution on T N × T N upon the function ϕ ⊗ ψ ,
and thus B(ϕ, ψ) = 〈S, ϕ ⊗ ψ〉 for a suitable distribution S.
19. By the Schwarz inequality, |B( f, g)| ≤ ‖H(η f )‖2‖ηg‖2 = ‖η f ‖2‖ηg‖2 ≤

‖ f ‖2‖g‖2 ≤ ‖ f ‖sup‖g‖sup. This proves (a).
For (b), we argue by contradiction. Using continuous functions f and g with

disjoint supports, we see near (0, 0) that we must have dρ(x, y) = 1
π

dx dy
x−y . However,

the function 1
x−y is not locally integrable, and there can be no such signed measure ρ.
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Chapter VI

1. For (a), let C be the connected component of 1. Since multiplication is
continuous, it carries the connected setC×C to a connected set containing 1, hence to
a subset of C . Thus C is closed under products. Similarly it is closed under inverses.
It is topologically closed since the closure of a connected set is connected. If x is in
G, then the map x �→ gxg−1 is continuous and therefore carries the connected set C
to a connected set containing 1, hence to a subset of C . Thus gCg−1 ⊆ C for all g,
and C is normal. For (b), one can take the additive rationals or the countable product
of two-element groups; for each the identity component contains only the identity
element.

2. In (a), if g fixes the first standard basis vector, then the first column of g is the first
standard basis vector. Since g is a rotation, gtrg = 1. In particular∑j (g

tr)i j gj1 = δi1.
Thus (gtr)i1 = δi1 for all i , and g1i = δi1. In other words, the first row of g is 0
except in the first entry.
In (b), let v be any unit vector in RN , and extend v to a basis v, v2, . . . , vN . The

Gram–Schmidt orthogonalization process replaces this basis by an orthonormal basis
such that the first member is still v. We form a matrix with this orthonormal basis
as its columns. If it has determinant −1, we multiply the last column by −1, and
then the determinant will be 1. The resulting matrix is in SO(N ) and carries the first
standard basis vector to v.
For (c), we obtain a continuous function SO(N ) → SN−1 given by g �→ ge1,

where e1 is the first standard basis vector. This function descends to a function
SO(N )/SO(N − 1) → SN−1 that is necessarily continuous. It is one-one onto, its
domain is compact, and the image is Hausdorff. Hence it is a homeomorphism.

3. What needs to be shown is that every sufficiently small open neighborhood
N of 1 · H in G/H is mapped to an open set by π . Since G/H is locally compact
and has a countable base, there exist open neighborhoods Uk of 1 · H such that U cl

k

is compact, U cl
k ⊆ Uk+1, and G/H = ⋃k Uk . The Baire Category Theorem for X

shows that π(Un) has nonempty interior V for some n. Let y be a member of G such
that π(yH) is in V , and put U = π−1(y−1V ). Then U is an open neighborhood of
1 · H in G/H and π(U ) = y−1V is open in X . Also, U cl is compact as a closed
subset of U cl

n . Let N be any open neighborhood of 1 · H in G/H that is contained in
U . SinceU cl is compact, π is a homeomorphism fromU cl with the relative topology
to π(U cl) with the relative topology. Thus π(N ) is relatively open in π(U cl). Hence
π(N ) = π(U cl) ∩ W for some open set W in X . Since π(N ) ⊆ π(U ), we can
intersect both sides with π(U ) and get π(N ) = π(U cl) ∩ W ∩ π(U ) = W ∩ π(U ).
Since W ∩ π(U ) is open in X , π(N ) is open in X .

4. This is a special case of the previous problem.

5. No. The reason is that the subset R1 p cannot be locally compact. In fact, if it
were locally compact, then it would be open in its closure, by Problem 4 in Chapter X
of Basic. Since T 2 is a group and R1 p is a subgroup, (R1 p)cl is a group, and R1 p
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would be an open dense subgroup. An open subgroup is closed, and henceR1 pwould
be equal to (R1 p)cl, i.e., R1 p would have to be closed in T 2. Then R1 ∩ {(eiθ , 1)}
would be a closed subgroup of the circle group {(eiθ , 1)} and would have to be a finite
subgroup or the entire circle. On the other hand, we readily check thatR1 p∩{(eiθ , 1)}
is countably infinite. It therefore cannot be closed.

6. Take V to be any bounded open neighborhood of 1. Inductively for n ≥ 1,
choose gn such that gn /∈ ⋃n−1

k=1 gkV . Then choose an open neighborhood U of 1
with U = U−1 and UU ⊆ V . Let us see that gkU ∩ gnU = ∅ if k < n. If g is in
gkU ∩ gnU , then gku = gnu′ with u and u′ inU , and hence gn is in gkUU−1 ⊆ gkV .
This contradicts the defining property of gn . Thus the sets gnU are disjoint. The left
Haar measure of their union therefore equals the sum of their left Haar measures,
and their left Haar measures are equal to some positive number,U being a nonempty
open set. Consequently the left Haar measure of G is infinite.

7. For (a), we have

λ(E)ρ(G) = ∫G ∫G IE (y) dλ(y) dρ(x) = ∫G ∫G IE (xy) dλ(y) dρ(x)
= ∫G ∫G IE (xy) dρ(x) dλ(y) = ∫G ∫G IE (x) dρ(x) dλ(y)
= λ(G)ρ(E).

Therefore λ(E)ρ(G) = λ(G)ρ(E) as asserted.
For (b), let λ1 and λ2 be two left Haar measures. Without loss of generality, we

may assume that λ1(G) = λ2(G) = 1. Let ρ be a right Haar measure (existence by
Theorem 12.1). Applying (a) twice, we obtain λ1(E)ρ(G) = λ1(G)ρ(E) = ρ(E) =
λ2(G)ρ(E) = λ2(E)ρ(G), and hence λ1(E) = λ2(E) on Baire sets. Consequently
λ1 = λ2 as regular Borel measures.

8. In (a), both are Haar measures on G(n) of total measure one. Parts (b) and (c)
are special cases of Problems 15–19 of Chapter XI of Basic.

9. For fixed g in G, we have dl(�(gx)) = dl(�(g)�(x)) = dl(�(x)), and hence
dl(�( · )) and dl( · ) are left Haar measures on G. The uniqueness in Theorem 6.8
shows that they are multiples of one another.

10. Under left translation we have (s0, t0)(s, t) = (s0s)((s−1t0s)t). If ϕ is left
translation by (s0, t0), then (ds dt)ϕ−1 = d(s0s) d((s−1t0s)t) = ds dt , and ds dt is
a leftHaarmeasure. Under right translationwehave (s, t)(s0, t0) = (ss0)((s

−1
0 ts0)t0).

Thus ds dt goes to d(ss0) d((s
−1
0 ts0)t0) = ds d(s−10 ts0) = δ(s−10 ) ds dt , and

δ(s) ds dt goes to δ(ss0)δ(s
−1
0 ) ds dt = δ(s) ds dt . In other words, δ(s) ds dt is

a right Haar measure.

11. In (a), we have
∫
V f (c−1x) dx = ∫V f (x) d(cx) = |c|V

∫
V f (x) dx for f in

Ccom(V ). Hence |c1c2|V
∫
V f (x) dx = ∫V f ((c1c2)−1x) dx =

∫
V f (c

−1
2 x) d(c1x) =

|c1|V
∫
V f (c−12 x) dx = |c1|V |c2|V

∫
V f (x) dx . Choosing f with

∫
V f (x) dx = 0,

we obtain |c1c2|V = |c1|V |c2|V when c1 = 0 and c2 = 0. The equality is trivial when
one or both of c1 and c2 are 0, and hence we have |c1c2|V = |c1|V |c2|V in all cases.
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To prove continuity, we first check continuity at each c0 = 0. Let S = support( f ),
and let N be a compact neighborhood of c0 not containing 0. If c is in N , then
f (c−1x) is nonzero only for x in the compact set NS. Let ε > 0 be given. Continuity
of (c, x) �→ f (c−1x) allows us to find, for each x in NS, an open subneighborhood
Nx of c0 and an open neighborhood Ux of x such that | f (c−1y)− f (c−10 x)| < ε for
c ∈ Nx and y ∈ Ux . Then | f (c−1y) − f (c−10 y)| < 2ε for c ∈ Nx and y ∈ Ux .
The open sets Ux cover NS. Forming a finite subcover and intersecting the cor-
responding finitely many sets Nx , we obtain an open neighborhood N ′ of c0 such
that | f (c−1y) − f (c−10 y)| < 2ε for c ∈ N ′ whenever y is in NS. As a result,
c �→ ∫

V f (c−1x) dx is continuous at c = c0. Therefore c �→ |c|V
∫
V f (x) dx is

continuous at c0, and so is c �→ |c|V .
To prove continuity at c = 0, we are to show that limc→0

∫
V f (c−1x) dx = 0.

Let U be any compact neighborhood of 0 in V . Find a sufficiently small neigh-
borhood N of 0 in V such that c ∈ V implies that c support( f ) does not meet
Uc. Then c−1Uc ∩ support( f ) = ∅. For such c’s, we have

∣∣ ∫
V f (c−1x) dx

∣∣ =∣∣ ∫
U f (c−1x) dx

∣∣ ≤ ‖ f ‖sup (dx(U )). The desired limit relation follows.
Finally, even without the continuity at c = 0, these properties imply that |c|V =

|c|t for some real t . The continuity at c = 0 forces t ≥ 0. Then it follows that
|c1|V ≤ |c2|V if |c1| ≤ |c2|.
In (b), V/W is itself a locally compact topological vector space, and its group

operation is addition. With the normalization of Haar measures as in Theorem 6.18,
μ becomes aHaarmeasure on V/W , andwewrite it as d(v+W ). Then

∫
V f (v) dv =∫

V/W

( ∫
W f (v+w) dw

)
d(v+W ). If we replace f by f (c−1 · ) and move the c into

the measures, we obtain
∫
V f (v) d(cv) = ∫V/W ( ∫W f (v + w) d(cw)

)
d(c(v +W ))

and therefore |c|V
∫
V f (v) dv = |c|V/W

∫
V/W

(|c|W ∫W f (v + w) dw
)
d(v + W ).

Hence |c|V = |c|V/W |c|W .
In (c), choose N such that |2|V < 2N . If V has an N -dimensional subspaceW , then

Proposition 4.5 and Corollary 4.6 show that this subspace is closed and is Euclidean.
Therefore |2|W = 2N . Then (b) shows that |2|V/W = |2|V /|2|W = 2−N |2|V < 1.
But this conclusion contradicts the fact that |c|V/W ≥ 1 if |c| ≥ 1. We conclude that
dim V < N .

12. By inspection, (�v1 , �v2) = (v2, v1) has the properties of an inner product.
The Banach-space norm of �v is sup‖v′‖≤1 |�v(v′)| = sup‖v′‖≤1 |(v′, v)|. This is ≤
‖v‖ = ‖�v‖ by the Schwarz inequality, and it is ≥ ‖v‖ = ‖�v‖ because we can
choose v′ = v/‖v‖.
The contragredient has (�c(x)�v)(v′) = �v(�(x−1)v′) = (�(x−1)v′, v) =

(v′,�(x)v) = ��(x)v(v
′). Hence �c(x)�v = ��(x)v , and (�c(x)�v,�c(x)�′v) =

(�(x)v′,�(x)v) = (v′, v) = (�v, �v′).

13. Taking the adjoint of E�(g) = �′(g)E gives�(g)∗E∗ = E∗�′(g)∗ for all g.
Since� is unitary,�(g)−1E∗ = E∗�′(g)−1 for all g, and thus�(g)E∗ = E∗�′(g).
Then E∗E�(g) = E∗�′(g)E = �(g)E∗E . By Schur’s Lemma, E∗E is scalar, say
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equal to cI . Since E is invertible, c is not zero. If v = 0, then c‖v‖2 = (cI (v), v) =
(E∗E(v), v) = (E(v), E(v)) ≥ 0. So c > 0. If

√
c denotes the positive square root

of c, then F = (
√
c)−1E exhibits � and �′ as equivalent, and F is unitary because

F∗F = (
√
c)−2E∗E = c−1cI = I .

14. The operator �(ρ), for ρ in O(N ), makes sense on all of L2(RN ), as well as
on the vector space Hk . It was observed in the example toward the end of Section 8
that the Fourier transform F commutes with the action by members of O(N ). Thus
we have F(�(ρ)(hj (x) f (|x |))) = �(ρ)F(hj (x) f (|x |)). The left side at y equals
the expression

∑
i �(ρ)i jF((hi (x) f (|x |)))(y) =

∑
i �(ρ)i j

∑
s hs(y) fsi (|y|) =∑

s

(∑
i �(ρ)i j fsi (|y|)

)
hs(y), and the right side is �(ρ)

(∑
t ht (y) fti (|y|)

) =
= ∑

t

∑
s �(ρ)st hs(y) fti (|y|) =

∑
s

(∑
t �(ρ)st fti (|y|)

)
hs(y). The equality of

the two sides gives us, for each |y|, the matrix equality asserted in (a).
Corollary 6.27, the formula of part (a), and the irreducibility of Hk together imply

that F(|y|) is a scalar matrix for each |y|. In other words, fi j (|y|) = g(|y|)δi j
for some scalar-valued function g. Then F(hj (x) f (|x |))(y) =

∑
i hi (y) fi j (|y|) =∑

i hi (y)g(|y|)δi j = hj (y)g(|y|) for all j . Since h is a linear combination of the
hj ’s, F(h(x) f (|x |))(y) = h(y)g(|y|). This proves (b).
For (c), we observe that F(|y|) is continuous if f (|x |) is continuous of compact

support. In fact, the inner product on Hk can be taken to be integration with dω over
the unit sphere SN−1. By homogeneity this is the same as the inner product relative
to r−2k dω over the sphere of radius r centered at 0. Then the formula for fi j is

fi j (r) =
∫
SN−1 F(hj (x) f (|x |))(rω)hi (rω)r−2k dω

= ∫SN−1 F(hj (x) f (|x |))(rω)hi (ω)r−k dω
for r > 0, and this is continuous in r sinceF(hj (x) f (|x |)) is continuous onRN . Thus
the vector subspace of all f in L2((0,∞), r N−1+2k dr) for which F(h(x) f (|x |))
is of the form h(y)g(|y|) contains the dense subspace Ccom((0,∞)). Let f (n) in
Ccom((0,∞)) tend to f in L2((0,∞), r N−1+2k dr). Then h(x) f (n)(|x |) tends to
h(x) f (|x |) in L2(RN ), and F(h(x) f (n)(|x |)) tends to F(h(x) f (|x |)) in norm. A
subsequence therefore converges almost everywhere. Since F(h(x) f (n)(|x |))(y) =
h(y)g(n)(|y|) almost everywhere, the limit function must be of the form h(y)g(|y|)
almost everywhere.

15. If {vj } is an orthonormal basis of V , then {�vj } is an orthonormal basis of V ∗,
and (�c(x)�vj , �vj ) = (��(x)vj , �vj ) = (vj ,�(x)vj ) = (�(x)vj , vj ). Summing on j
gives the desired equality of group characters.

16. Following the notation of that example, let τi j (x) = (τ (x)uj , ui ), let l
be the left-regular representation, and let �v be as in Problem 12. Consider, for
fixed j0, the image of τ c(g)�ui under the linear extension of the map E

′(�uk )(x) =
(τ (x)uj0 , uk). This is E

′(�∑
k
ckuk

)(x) = E ′
(∑

k c̄k�uk
)
(x) = ∑k c̄k E

′(�uk )(x) =
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k c̄k(τ (x)uj0 , uk) = (τ (x)uj0 ,

∑
k ckuk), and hence E ′(�v)(x) = (τ (x)uj0 , v).

Then the image of interest is

E ′(τ c(g)�ui )(x) = E ′(�τ(g)ui )(x) = (τ (x)uj0 , τ (g)ui )

= (τ (g−1x)uj0 , ui ) = (l(g)τi j0)(x).

Hence l carries a column of matrix coefficients to itself and is equivalent on such a
column to τ c.

17. In (a), the left-regular representation on G = R/2πZ is given by (l(θ) f )(eiϕ)
= f (ei(ϕ−θ)). Assuming on the contrary that l is continuous in the operator norm
topology, choose δ > 0 such that |θ | < δ implies ‖l(θ)−1‖ < 1. Since ‖einϕ‖2 = 1,
we must have ‖l(θ)(einϕ)− einϕ‖2 < 1 for |θ | < δ. Then

|e−inθ − 1|2 = 1
2π

∫ π

π
|e−inθ − 1|2 dϕ = 1

2π

∫ π

−π |ein(ϕ−θ) − einϕ|2 dϕ < 1

for all θ with |θ | < δ and for all n. For large N , θ = π
2N satisfies the condition on θ ,

and n = N has |e−inθ − 1|2 = | − i − 1|2 = 2, contradiction.
In (b), ‖�(g)v−v‖2 = (�(g)v−v,�(g)v−v) = ‖�(g)‖2−2Re(�(g)v, v)+

‖v‖2 = 2‖v‖2−2Re(�(g)v, v). The weak continuity shows that the right side tends
to 0 as g tends to 1, and hence the left side tends to 0, i.e., � is strongly continuous.

18. In (a), we apply Problem 15. Let {ui } be an orthonormal basis of the space
of �. In the formula (�( f )uk, uk) =

∫
G (�(x)uk, uk) f (x) dx , we take f to be of

the form f (x) = (�(x)uj , ui ). Substituting and using Schur orthogonality gives
(�( f )uk, uk) = d−1(uk, uj )(uk, ui ). Summing on k shows that Tr�( f ) = d−1δi j ,
and the right side is d−1 f (1) for this f . Thus f (1) = d�( f ). Passing to a linear
combination of such f ’s, we obtain the asserted formula.
Part (b) follows by taking linear combinations of results from (a), and part (c)

follows by applying (b) to a function f ∗ ∗ f , where f ∗(x) = f (x−1). Part (d)
follows by decomposing the right-regular representation on L2(G) into irreducible
representations and using the identification in Section 8 of the isotypic subspaces.

19. For (a), h ∗ f (x) = ∫G h(xy−1) f (y) dy = ∫G h(y−1x) f (y) dy = f ∗ h(x).
For (b), it is enough to check the assertion for f equal to a matrix coefficient

x �→ (�(x)uj , ui ) = �i j (x) of an irreducible unitary representation �. If � has
degree d , then we have∫

G f (gxg−1) dg = ∫G �i j (gxg−1) dg =
∑

k,l

∫
G �ik(g)�kl(x)�l j (g−1) dg

=∑k,l �kl(x)
∫
G �ik(g)�jl(g) dg =

∑
k,l �kl(x)d−1δi jδkl = δi j d−1

∑
k �kk(x),

as required.
In (c), Corollary 6.33 shows that h is the uniform limit of a net of trigonometric

polynomials. Since C(G) is metrizable, h is the uniform limit of a sequence of
trigonometric polynomials hn . If ε > 0 is given, we can find N such that n ≥ N
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implies |hn(y) − h(y)| ≤ ε for all y. Then |hn(gxg−1) − h(gxg−1)| ≤ ε and so∣∣ ∫
G hn(gxg

−1) dg− ∫G h(gxg−1) dg∣∣ ≤ ε. The function Hn(x) =
∫
G hn(gxg

−1) dg
is a linear combination of irreducible characters by (b), and

∫
G h(gxg

−1) dg is just
h. Thus h is the uniform limit of the sequence of functions Hn , each of which is a
linear combination of characters.
In (d), it is enough to prove that the space of linear combinations of irreducible

characters is dense in the vector subspace of L2 in question. If h is in this sub-
space, choose a sequence of functions hn in C(G) converging to h in L2. Then
Hn(x) =

∫
G hn(gxg

−1) dg converges to h in L2, and each Hn is continuous and
has the invariance property that Hn(gxg−1) = Hn(x). Hence the vector subspace
of members of C(G) with this invariance property is L2 dense in the subspace of
L2 in question. By (c), any member of C(G) with the invariance property is the
uniform limit of a sequence of functions, each of which is a finite linear combination
of characters. Since uniform convergence implies L2 convergence on a space of finite
measure, the space of linear combinations of irreducible characters is L2 dense in the
space in question.

20. In (a), the sum
∑

α (d
(α))2 counts the number of elements in the basis of L2(G)

in Corollary 6.32. Another basis consists of the indicator functions of one-element
subsets of G, and the two bases must have the same number of elements.
In (b), again we have two ways of computing a dimension, one from (d) in the

previous problem, and the other from indicator functions of single conjugacy classes.
The two computations must give the same result.
In (c), representatives of the possible cycle structures are (1234), (123), (12),

(12)(34), (1). By (b), the number of�(α)’s is 5. Two of these have degree 1. For the
other three the sums of the squares of the degrees must equal 24− 1− 1 = 22. The
only possibility is 22 = 9+ 9+ 4, and thus the degrees are 1, 1, 2, 3, 3.
21. Let	 ⊆ G be the set of products ST , and let K = S∩T . The group S×T acts

continuously on 	 by (s, t)ω = sωt−1, and the isotropy subgroup at 1 is the closed
subgroup diag K . Thus the map (s, t) �→ st−1 descends to a map of (S× T )/diag K
onto	. Since	 is assumed open in G, it is locally compact Hausdorff in the relative
topology. Then Problem 3 shows that the map of (S × T )/diag K onto 	 is open,
and it follows by taking compositions that the multiplication map of S × T to 	 is
open.

22. In the twoparts, AN andMAN are subgroups closed under limits of sequences,
hence are closed subgroups. Consider the decompositions in (a) and (b). For the

decomposition in (a), we multiply out the relation kθaxny =
(
a b
c d

)
and solve for θ ,

x , and y, obtaining

ex =
√
a2 + c2, cos θ = e−xa, sin θ = e−xc, y = e−2x (ab + cd).

Hence we have the required unique decomposition. Since K AN equals all of G, the
image under multiplication of K× AN is open inG. For the decomposition in (b), we
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multiply out the relation vtm±axny =
(
a b
c d

)
and solve for t , m±, x , and y, obtaining

± = sgn a, ex = |a|, y = b/a, t = c/a.

Hence we have the required unique decomposition if a = 0, and the decomposition
fails if a = 0. Since V MAN equals the open subset of G where the upper left entry
is nonzero, the image under multiplication of V × MAN is open in G.
The group G = SL(2,R) is unimodular, being generated by commutators, and

hence the formula in Theorem 12.9 simplifies to
∫
G f (x) dx = ∫S×T f (st) dls dr t .

For (a), we apply this formula with S = K and T = AN . The group K is unimodular,
so that dls becomes dθ , and we easily compute that dr t can be taken to be e2x dy dx .
For (b), we apply the formula with S = V and T = MAN . The group V is
unimodular, and we find that the right Haar measure for MAN can be taken to be
e2x dy dx on the m+ part and the same thing on the m− part.
25. If h is in C([0, π ]), the previous two problems produce a unique f = fh in

C(G) such that fh is constant on conjugacy classes and has h(θ) = fh(tθ ). Define
�(h) = ∫

G fh(x) dx . This is a positive linear functional on C([0, π ]) and yields
the measure μ, by the Riesz Representation Theorem. If f is any member of C(G)

and f0(x) =
∫
G f (gxg−1) dg, then

∫
G f (x) dx = ∫G f0(x) dx and f0 is fh for the

function h(θ) = f0(tθ ). The construction ofμmakes
∫
[0,π] f0(tθ ) dμ =

∫
G f0(x) dx .

Substitution gives
∫
[0,π]

[ ∫
G f (gtθg−1) dg

]
dμ = ∫G f0(x) dx =

∫
G f (x) dx .

26. The crux of the matter is (a). The formula of Problem 25, together with the
character formula for χn , gives

δn0 =
∫
G χnχ0 dx =

∫
[0,π] (e

inθ + ei(n−2)θ + · · · + e−inθ ) dμ(θ).

This says that
∫
[0,π] dμ(θ) = 1 for n = 0,

∫
[0,π] (e

iθ + e−iθ ) dμ(θ) = 0 for n = 1,
and

∫
[0,π] (e

2iθ + 1+ e−2iθ ) dμ(θ) = 0 for n = 2. The middle term of the integrand
for n = 2 has already been shown to produce 1, and thus the n = 2 result may be
rewritten as

∫
[0,π] (e

2iθ+e−2iθ ) dμ(θ) = −1. For n ≥ 3, comparison of the displayed
formula for n with what it is for n− 2 gives 0 = ∫[0,π] (einθ + e−inθ ) dμ(θ)+ δn−2,0.
Since n − 2 > 0, we obtain

∫
[0,π] (e

inθ + e−inθ ) dμ(θ) = 0 for n > 2.
For the rest we replace θ by −θ in our integrals and see that the integral∫

[−π,0] (e
inθ + e−inθ ) dμ(−θ) is 0 for n = 1 and n ≥ 3, and is −1 for n = 2.

Therefore
∫
[−π,π] (e

inθ + e−inθ ) dμ′(θ) is 0 for n = 1 and n ≥ 3, and is −1
for n = 2. We can regard μ′ as a periodic Stieltjes measure whose Fourier se-
ries may be written in terms of cosines and sines. Since μ′(E) = μ′(−E), only
the cosine terms contribute. There are no point masses since only finitely many
Fourier coefficients are nonzero. Since cos 2θ has a cosine series with no other
cos kθ contributing,

∫
[−π,π] cos nθ dμ

′(θ) = − 1
2δn,2 = − 1

2π

∫
[−π,π] cos nθ cos 2θ dθ

for all n > 0. Taking into account that μ′([−π, π ]) = 1, we conclude from
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the Fourier coefficients that dμ′(θ) = 1
2π (1 − cos 2θ) dθ = 1

π
sin2 θ dθ . Since∫

G f (x) dx = ∫[−π,π] ∫G f (gtθg−1) dg dμ′(θ), substitution into the formula of Prob-
lem 25 gives the desired result.

27. Problem19d shows that the irreducible characters give an orthonormal basis for
the subspace of L2 functions on SU(2) invariant under conjugation. In view of Prob-
lem 26d, the restrictions of these characters to the diagonal subgroup T therefore form
an orthonormal basis of the subspace of all functions χ in L2

(
[−π, π ], 1

π
sin2 θ dθ

)
with χ(θ) = χ(−θ). Since sin2 θ = 1

4 |eiθ − e−iθ |2, the conditions to have a new χ

are that it be a continuous function with χ(θ) = χ(−θ) such that∫ π

−π (e
iθ − e−iθ )χ(θ)(ei(n+1)θ − e−i(n+1)θ ) = 0

for every integer n ≥ 0. Using the condition χ(θ) = χ(−θ), we can write the Fourier
series of χ as χ(θ) ∼ a0

2 +
∑∞

k=1 ak cos kθ . For n ≥ 1, the orthogonality condition
says that

∫ π

−π χ(θ)(cos(n + 2)θ − cos nθ) dθ = 0. Hence an+2 = an for n ≥ 1. By
the Riemann–Lebesgue Lemma, all an are 0 for n ≥ 1. Thus χ is constant. Since
χ0 = 1 is already a known character, χ = 0.
28. Let F be a compact topological field. If F is discrete, then each one-point

set is open, and the compactness forces F to be finite. Otherwise, every point in F
is a limit point. Take a net {xα} in F − {0} with limit 0, and form the net {x−1α }. By
compactness this has a convergent subnet {x−1αμ

} with some limit x0. By continuity of
multiplication, {x−1αμ

xαμ
} converges to 0x0 = 0. On the other hand, every term of the

subnet is 1, and we conclude that a net that is constantly 1 is converging to 0. This
behavior means that F is not Hausdorff, contradiction.

29. In (a), the argument that c �→ |c|F is continuous and satisfies |c1c2|F =
|c1|F |c2|F is the same as in Problem 11a.
For (b), we have d(cx)/|cx |F = (|c|F dx)/(|c|F |x |F ) = dx/|x |F . For (c), |x |F =

|x | if F = R, and |x |F = |x |2 if F = C. For (d), |x |F = |x |p if F = Qp. For (e),
we have I = pZp, and therefore the Haar measure of I is the product of |p|p = p−1

times the Haar measure of Zp. Hence the Haar measure of I is p−1.
30. In (a), the image of amultiplicative character must be a subgroup of S1, and the

only subgroup of S1 contained within a neighborhood of radius 1 about the identity
is {1}. Thus as soon as n is large enough so that pnZp is mapped into the unit “ball”
about 1, pnZp is mapped to 1.
In (b), Qp/Zp is discrete since Zp is open. Hence the cosets of the members of Q

exhaust Qp/Zp, and it is enough to define a multiplicative character of the additive
group Q that is 1 on every member of Q ∩ Zp. Let a/b be in lowest terms with
b > 0 and with |a/b|p = pk . If k ≤ 0, then set ϕ0(a/b) = 1. If k ≥ 0, write
b = b′ pk . Since b′ and pk are relatively prime, we can choose integers c and d with

cpk + b′d = a, and then
a

b′ pk
= c

b′
+ d

pk
. We set ϕ0(a/b) = e2π id/p

k
. The result is

well defined because if c′ pk + b′d ′ = a, then (c− c′)pk + (d − d ′)b′ = 0 shows that
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d − d ′ is divisible by pk and hence that e2π id/p
k = e2π id

′/pk . One has to check that
ϕ0 has the required properties.
In (c), we may assume that ϕ is not trivial. The p-adic number k can be formed by

an inductive construction. Use (a) to choose the smallest possible (i.e., most negative)
integer n such that ϕ is trivial on pnZp. Then x �→ ϕ(pnx) is trivial on Zp and must
be a power of e2π i/p on p−1. We match this, adjust ϕ, iterate the construction through
powers of p−1, and prove convergence of the series obtained for k.

31. Write r in Q as r = ±m/n, assume without loss of generality that r = 0,
and factor m and n as products of powers of primes. Only finitely many primes can
appear, and |r |p = 1 if p is prime but is not one of those primes. The only other v is
∞, and thus |r |v = 1 except for finitely many v.
32. With r = 0 and with r = ±m/n in lowest terms, factor m and n into products

of primes as m = ∏k
i=1 p

ai
i and n =

∏l
j=1 q

bj
j . Then |r |pi = p−aii and |r |qj = q

bj
j .

Hence

∏
p prime

|r |p =
( k∏
i=1

p−aii

)( l∏
j=1

q
bj
j

)
= |r |−1 and

∏
v∈P
|r |p = |p|−1|p|∞ = 1.

33. The product of topological groups is a topological group, and thus each X (S)
is a topological group. The defining properties of a group depend only on finitely
many elements at a time, and these will all be in some X (S). Thus X acquires a
group structure. The operations are continuous because again they can be considered
in a suitable neighborhood of each point, and these points can be taken to be in some
X (S)× X (S) in the case of multiplication, or in some X (S) in the case of inversion.
Thus X is a topological group. The assertions about the situation with topological
rings are handled similarly.

35. By continuity of translations, it is enough to find an open neighborhoodU of 0
in AQ withU ∩Q = {0}. Since each AQ(S) is open in AQ, it is enough to find thisU
in someAQ(S). We do so for S = {∞}. LetU = (−1/2, 1/2)× (×p primeZp

)
. If x

is in U , then |x |p ≤ 1 for all primes p and |x |∞ < 1/2. By Problem 32, x cannot be
in Q unless x = 0. Hence U ∩Q = {0}. Proposition 6.3b shows that Q is therefore
discrete.

36. If x = (xv) is in AQ, let p1, . . . , pn be the primes p where |xp|p > 1, and let
|xp|pj = p

aj
j . If r =

∏n
j=1 p

−aj
j and if we regard r as embedded diagonally in AQ,

then |xpr−1|p ≤ 1 for every prime p. Hence xr−1 is in AQ({∞}). Choose an integer
n such that |x∞r−1 − n|∞ ≤ 1. If we then regard n as embedded diagonally in AQ,
then |n|p ≤ 1 for all primes p, and hence n is in AQ({∞}). Thus xr−1 − n is in the
compact subset K = [−1, 1]× (×p primeZp

)
of AQ. The continuous image of K in

AQ/Q is compact, and we have just seen that this image is all of AQ/Q. Thus AQ/Q
is compact.
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37. Fix a finite subset S of P containing {∞}. Then the projection of×w∈SQ
×
w

to Q×
v is continuous for each v ∈ S. Since also the inclusion Q×

v → Qv is
continuous, the composition ×w∈SQ

×
w → Qv is continuous. Thus the corre-

sponding mapping ×w∈SQ
×
w → ×w∈SQw is continuous. In similar fashion

×w/∈SZ
×
w → Zv is a continuous function as a composition of continuous functions.

Thus×w/∈SZ
×
w →×w/∈SZw is continuous. Putting these twocompositions together

shows thatA×Q(S)→ AQ(S) is continuous, and thereforeA×Q(S)→ AQ is continuous.
Since this is true for each S, it follows that A×Q → AQ is continuous.
The topologies on the adeles AQ and the ideles A×Q are regular and Hausdorff, and

they are both separable. Hence AQ and A×Q are metric spaces, and the distinction
between the topologies can be detected by sequences. Let pn be the nth prime, and
let xn = (xn,v) be the adele with xn,v = pn if v = pn and xn,v = 1 if v = pn . The
result is a sequence {xn} of ideles, and we show that it converges to the idele (1) in
the topology of the adeles but does not converge in the topology of ideles. In fact,
each xn lies in AQ({∞}), which is an open set in AQ. For each prime p, xn,p = 1
if n is large enough, and also xn,∞ = 1 for all n. Since AQ({∞}) has the product
topology, {xn} converges to (1). On the other hand, if {xn} were to converge to some
limit x in A×Q, then x would have to lie in some A×Q(S), and the ideles xn would have
to be in A×Q(S) for large n. But (xn,v) is not in A×Q(S) as soon as v is outside S.
39. In (a), let f be in C(K ). Corollary 6.7 shows that the map k �→ k f of K into

the left translates of f is continuous into C(K ). The continuous image of a compact
set is compact, and thus f is left almost periodic. Similarly f is right almost periodic.
In (b), let g be inG. Then (g f )(x) = f (g−1x) = F(ι(g−1x)) = F(ι(g)−1ι(x)) =

((ι(g)F)(ι(x)) shows that the set of left translates of f can be regarded as a subset
of the set of left translates of F . The latter is compact, and hence the closure of the
former is compact.

40. We may view the unitary representation � as a continuous homomorphism
of G into the compact group K = U (N ) for some N . If f (x) = �(x)i j , then
f (x) = F(�(x)), where F : U (N ) → C is the (i, j)th entry function. Thus
Problem 39b applies.

41. In (a), assume the contrary. Then for some ε > 0 and for every neighborhood
N of the identity, there exists gN in N with ‖gN f − f ‖sup ≥ ε. Here {gN f } is a net
in the compact metric space K f , and there must be a convergent subnet {gNα

f } with
limit some function h in K f . Since ‖gNα

f − h‖sup tends to 0, h is not f . Thus gNα
f

converges uniformly to h while, by continuity, tending pointwise to f . Since h = f ,
we have arrived at a contradiction.
Part (b) follows from the formula ‖g0(g1 f ) − g0(g2 f )‖sup = ‖g1 f − g2 f ‖sup,

and part (c) follows from (b), uniform continuity, and completeness of the compact
set K f .

42. Part (a) follows from a remark with Ascoli’s Theoremwhen stated as Theorem
2.56 ofBasic: the remark says that ifwe have an equicontinuous sequence of functions
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from a compact metric space into a compact metric space, then there is a uniformly
convergent subsequence. Here if we have a sequence {ϕn} of isometries of X onto
itself, then the ϕn are equicontinuous with δ = ε. Since the domain X is compact
and the image X is compact, the sequence has a uniformly convergent subsequence,
and we readily check that the limit is an isometry. Since every sequence in 
 has a
convergent subsequence, 
 is compact.
For (b), let members of 
 have ϕn → ϕ and ψn → ψ . Then

ρ(ϕn ◦ ψn, ϕ ◦ ψ) ≤ ρ(ϕn ◦ ψn, ϕn ◦ ψ)+ ρ(ϕn ◦ ψ, ϕ ◦ ψ).

The first term on the right side equals ρ(ψn, ψ) because ϕn is an isometry, and the
second term equals ρ(ϕn, ϕ) because ψ(x) describes all members of X as x varies
through X . These two terms tend to 0 by assumption and hence ϕn ◦ ψn → ϕ ◦ ψ .
This proves continuity of multiplication. Similarly inversion is continuous.
For (c), let γn → γ and xn → x . Then

d(γn(xn), γ (x)) ≤ d(γn(xn), γ (xn))+d(γ (xn), γ (x)) ≤ ρ(γn, γ )+d(γ (xn), γ (x)),
and both terms on the right side tend to 0.

43. In (a), let {gn} be a net convergent to g0 in G, and form {ι(gn)}. Then
ρ(ι(gn),ι(g0))=suph∈K f

‖ι(gn)h−ι(g0)h‖sup=suph∈K f , x∈G |ι(gn)h(x)−ι(g0)h(x)|
= suph∈K f , x∈G |h(g−1n x) − h(g−10 x)| = supy∈G, x∈G |(y f )(g−1n x) − (y f )(g−10 x)| =
supy∈G, x∈G | f (y−1g−1n x)− f (y−1g−10 x)|. If this does not tend to 0 as gn tends to g0,
then we can find a subnet of {gn}, which we write without any change in notation,
and some ε > 0 such that this supremum is ≥ ε for every n. To each such n, we
associate some yn such that supx∈G | f (y−1n g−1n x) − f (y−1n g−10 x)| ≥ ε/2. By left
almost periodicity we can find a subnet of {yn f } that converges uniformly to some
function, say H . This function H has to be left uniformly continuous, and we may
suppose that ‖yn f − H‖sup ≤ ε/8 for n ≥ N . Then n ≥ N implies

|(yn f )(g−1n x)− (yn f )(g
−1
0 x)|

≤ |(yn f )(g−1n x)−H(g−1n x)| + |H(g−1n x)−H(g−10 x)| + |H(g−10 x)−(yn f )(g
−1
0 x)|

≤ ε
8 + |H(g−1n x)− H(g−10 x)| + ε

8 .

The left uniform continuity of H implies that the right side is eventually ≤ 3ε
8 . This

contradicts the condition supx∈G | f (y−1n g−1n x) − f (y−1n g−10 x)| ≥ ε/2, and (a) is
proved.
In (b), the action 
 f × K f → K f is continuous by Problem 42c, and therefore

γ �→ γ−1h is continuous. Evaluation of members of K f at 1 is continuous, and hence
Ff (h) is continuous on 
 f . If {gn} is a net with gn f → h, then Ff (h)(ι f (g0)) =
((ι f (g0))−1h)(1) = limn((ι f (g0))−1gn f )(1) = limn(gn f )(g0) = h(g0).
For (c), we apply (b) with h = f . Then f arises from the compact group 
 f via

the construction in Problem 39b. Therefore f is right almost periodic.
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44. If f is a given almost periodic function, the function F to use takes an element∏
f ′(γ f ′) to Ff (γ f ). Then the equality F(ι(x)) = Ff (ι f (x)) = f (x) shows that f

arises from the compact group 
.

45. Problem 44 produces an isomorphism of the algebra L AP(G) of almost
periodic functions onG ontoC(
), and the Stone Representation Theorem (Theorem
4.15) produces an isomorphism of L AP(G) with C(S1), where S1 is the Bohr com-
pactification of G. The result then follows after applying Problem 23 in Chapter IV.

46. Finite-dimensional unitary representations of 
 give rise to finite-dimensional
unitary representations of G, and thus Corollary 6.33 for 
 gives the desired result.

47. Any continuous multiplicative character of K yields a continuous multi-
plicative character of G. Conversely any continuous multiplicative character of G
is almost periodic by Problem 40 and therefore yields a continuous function on
K . The multiplicative property of this continuous function on the dense set p(G),
together with continuity of multiplication on K , implies that the function on K is a
multiplicative character.

Chapter VII

1. If x0 is in 	, let ϕ be a compactly supported smooth function on 	 equal to
(x − x0)α in an open neighborhood V of x0. Then 0 = (P(x, D)u)(x) = (α!)aα(x)
on V , and hence aα(x) = 0 for x in V .
2. Within the Banach space C(	cl,R), S is the vector subspace of all functions

u with Lu = 0 on 	. It contains the constants and hence is not 0. The restriction
mapping R : S→ C(∂	,R) is one-one by the maximum principle (Theorem 7.12),
and it has norm 1. Let V be the image of R, and let R−1 : V → S be the inverse
of R : S → V . The operator R−1 has norm 1 as a consequence of the maximum
principle. If ep denotes evaluation at the point p of	, then ep◦R−1 is a bounded linear
functional on V of norm 1. The Hahn–Banach Theorem shows that ep ◦ R−1 extends
to a linear functional � on C(∂	,R) of norm 1. We know that �(1) = ep ◦ R−1(1) =
ep(1) = 1. If f ≥ 0 is a nonzero element in C(∂	,R), then 1 − f/‖ f ‖sup has
norm ≤ 1. Therefore |�(1 − f/‖ f ‖sup)| ≤ 1 and 0 ≤ �( f/‖ f ‖sup) ≤ 2. Thus the
linear functional � is positive. By the Riesz Representation Theorem, � is given by a
measure μp. Consequently every u is S has u(p) =

∫
∂	
u(x) dμp(x). Taking u = 1

shows that μp(∂	) = 1 for every p.
3. In (a), the line integral

∮
|(x,y)|=ε (P dx + Q dy) is equal to∫ 2π

0 ϕ(ε cos θ, ε sin θ)ε−2
(
(ε cos θ)(−ε sin θ)+ (ε sin θ)(ε cos θ)

)
dθ,

and the integrand is identically 0. Part (b) is just a computation of partial derivatives.
If (c), we know from Green’s Theorem that for any positive numbers ε < R,( ∮

|(x,y)|=R −
∮
|(x,y)|=ε

)
(P dx + Q dy) = ∫∫

ε≤|(x,y)|≤R
(
∂Q
∂x − ∂P

∂y

)
dx dy.
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With our P and Q, for sufficiently large R, the line integral
∮
|(x,y)|=R is 0 since P and

Q have compact support, and (a) says that the limit of the line integral
∮
|(x,y)|=ε is 0 as ε

decreases to 0. The function ∂Q
∂x − ∂P

∂y =
yϕx−xϕy
x2+y2 is integrable near (0, 0), and we thus

conclude from the complete additivity of the integral that
∫∫

R2

( yϕx−xϕy
x2+y2

)
dx dy = 0.

In (d), with a new P and Q, the line integral
∮
|(x,y)|=ε (P dx + Q dy) is equal to

∫ 2π
0 ϕ(ε cos θ, ε sin θ)ε−2

(
(−ε sin θ)(−ε sin θ)+ (ε cos θ)(ε cos θ)

)
dθ.

This simplifies to
∫ 2π
0 ϕ(ε cos θ, ε sin θ) dθ , which tends to 2πϕ(0, 0) by continuity

of ϕ. Part (e) is just a computation of partial derivatives, and part (f) is proved in the
same way as part (c).
For (g), wehave z−1 ∂ϕ

∂ z̄ = z−1(ϕx+iϕy) = x−iy
x2+y2 (ϕx+iϕy) =

xϕx+yϕy
x2+y2 +

i(xϕy−yϕx )
x2+y2 .

Combining (c) and (f) gives
∫∫

R2
z−1 ∂ϕ

∂ z̄ dx dy = −2πϕ(0, 0) + i0, and hence
1
2π

∫∫
R2
z−1 ∂ϕ

∂ z̄ = −ϕ(0, 0).
For (h), we use (g) and obtain 〈 ∂T

∂ z̄ , ϕ〉 = −〈T, ∂ϕ

∂ z̄ 〉 = −
∫∫

R2
(2π z)−1 ∂ϕ

∂ z̄ dx dy =
ϕ(0, 0) = 〈δ, ϕ〉.
4. In (a), letϕ be inC∞com(R

1). Then 〈Dx H, ϕ〉=−〈H, ϕ′〉=− ∫∞−∞ H(x)ϕ′(x) dx
= − ∫∞0 ϕ′(x) dx = − limN [ϕ(x)]N0 = ϕ(0) = 〈δ, ϕ〉.
In (b) let ϕ be in C∞com((−1, 1)). We are to verify that

∫ 1
−1 max{x, 0}ϕ′(x) dx =

− ∫ 1−1 H(x)ϕ(x) dx , i.e., that
∫ 1
0 xϕ

′(x) dx = − ∫ 10 ϕ(x) dx . This follows from

integration by parts because
∫ 1
0 xϕ

′(x) dx = [xϕ(x)]10−
∫ 1
0 ϕ(x) dx = − ∫ 10 ϕ(x) dx .

The answer to (c) is no. If gwere aweak derivative, then the left side of the equality∫ 1
−1 H(x)ϕ′(x) dx = − ∫ 1−1 g(x)ϕ(x) dx would be 0 whenever ϕ ∈ C∞com((−1, 1))
vanishes in a neighborhood of 0. Then g(x) would have to be 0 almost everywhere
for x = 0, and we would necessarily have 0 = ∫ 10 ϕ′(x) dx = [ϕ(x)]10 = −ϕ(0) for
all ϕ in C∞com((−1, 1)).
In (d), 〈Dx (H × δ), ϕ〉 = −〈H × δ, Dxϕ〉 = − ∫∞0 (Dxϕ)(x, 0) dx , and this

= − limN [ϕ(x, 0)]x=Nx=0 = ϕ(0, 0) = 〈δ, ϕ〉.
In (e), the support of H is [0,∞) and the singular support is {0}, while for H × δ

the support and the singular support are both R× {0}.
5. We apply Lemma 7.8 to R(x) = P(i x). The preliminary step in the proof

multiplies the given distribution f by something so that f has support near 0. We
form e−iα·x f as a member of E ′((−2π, 2π)N ) and restrict it to a member ofP ′(T N ).
Then it has a Fourier series e−iα·x f ∼ ∑k dke

ik·x . Put ck = dk
R(k+α) , α being the

member of RN produced by the lemma. Then |ck | ≤ C(1 + |k|2)p for some p,
and (b) produces a distribution S in E ′((−2π, 2π)N ) with 〈S, e−ik·x 〉 = ck for all k.
Define u = eiα·x S as a member of E ′((−2π, 2π)N ). Let ψ(x) be a smooth function
with compact support near 0, and extendψ to be periodic, i.e., to be inC∞(T N ). The
multiple Fourier series ofψ is then of the formψ(x) =∑k γke

ik·x with γk decreasing
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faster than any power of |k|. The function ϕ(x) = ψ(x)e−iα·x is inC∞((−2π, 2π)N )
but is not necessarily periodic. Applying P(D) to u and having the result act on ϕ,
we write

〈P(D)u, ϕ〉 = 〈P(D)u,∑k γke
i(k−α)·x 〉 = 〈P(D)u,∑k γ−ke

−i(k+α)·x 〉.

Since the γk are rapidly decreasing and P(D)u is continuous on C∞((−2π, 2π)N ),
we can interchange the summation and the operation of P(D)u. Thus the right side
of the display is∑

k γ−k〈P(D)u, e−i(k+α)·x 〉 =
∑

k γ−k〈u, P(−D)(e−i(k+α)·x )〉
=∑k γ−k〈eiα·x S, P(i(k + α))e−i(k+α)·x 〉 =∑k γ−k〈S, P(i(k + α))e−ik·x 〉
=∑k γ−kck P(i(k + α)) =∑k γ−k

dk
R(k+α) P(i(k + α)) =∑k γ−kdk .

Now dk = 〈e−iα·x f, e−ik·x 〉. The rapid convergence of the series
∑

k γ−ke
−ik·x means

that 〈e−iα·x f, ψ〉 =∑k γ−k〈e−iα·x f, e−ik·x 〉 =
∑

k γ−kdk . Therefore 〈P(D)u, ϕ〉 =∑
k γ−kdk = 〈e−iα·x f, ψ〉 = 〈e−iα·x f, eiα·xϕ〉 = 〈 f, ϕ〉. Near 0, the function ϕ is an

arbitrary smooth function, and thus P(D)u = f near 0.

6. The coefficient of xα in (x1 + · · · + xN )|α| is the multinomial coefficient( |α|
α1,...,αN

) = |α|!
α! . This is a positive integer, and hence α! ≤ |α|!. Fixing |α| = l and

putting x1 = · · · = xN = 1, we obtain the formula Nl = ∑|α|=l
l!
α! , and therefore∑

|α|=l (1/α!) = Nl/ l!. The identity with z can be proved by induction on q, the base
case being q = 0, where the expansion is a geometric series. If the case q is known,
we differentiate both sides and divide by q+1 to obtain the case q+1. Alternatively,
one can derive the identity from the binomial series expansion in Section I.7 of Basic.

7. Here is the solution apart from some details. The argument uses induction, the
base case being m = 1, where the result describes the given system of differential
equations. Assuming that Dm−1

t is of the asserted form,wedifferentiate the expression
with respect to t . In the 2m−1 terms of the first kind, the derivative acts on some
expression Dα

x u, giving D
α
x Dtu. We substitute for Dtu from the given system and

sort out what happens; we get 2m terms involving an x derivative of u and 2m−1 terms
involving a derivative of F . In the 2m−1 − 1 terms of the second kind, the derivative
acts on some iterated partial derivative of F and just raises the order of differentiation.
The total number of terms involving F is then 2m−1 + 2m−1 − 1 = 2m − 1.
8. In (a), just apply Dβ

x to the formula for Dm
t u in the previous problem. The

operator gets applied to each u or F that appears in the formula, and there is no
simplification. Then one evaluates at (0, 0). In (b), the asserted finiteness implies
that the multiple power series

U (x, t) =∑β

∑
m≥0

Dβ
x D

m
t u(0,0)

β!m! xβ tm
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convergeswhen |t | < r and |xj | < r for all j and that Dβ
x Dm

t U (0, 0) = Dβ
x Dm

t u(0, 0)
for all β andm. Then it follows that the sumU (x, t) solves the given Cauchy problem
for these values of (x, t). Since r is arbitrary, the series converges for all (x, t) ∈ CN+1

and the sum U (x, t) solves the Cauchy problem globally.

9. In (a), we consider a single term of the expansion of Dm
t u(0, 0), namely

T1 · · · TmDα
x u(0, 0) = T1 · · · TmDα

x g(0). Here each of T1, . . . , Tm is equal to some
Aji or to B, and D

α
x is the product over i of the Dji for those Ti with Ti = Aji . The

term has ‖T1 · · · TmDα
x g(0)‖∞ ≤ Mm‖Dα

x g(0)‖∞, and the boundedness of the series
involving g(0) implies that (α!)−1‖Dα

x g(0)‖∞R|α| ≤ C . Let k be the number of
factors of T1 · · · Tm equal to B. Then |α| = m − k, and hence Mm‖Dα

x g(0)‖∞ ≤
CMmα!R−(m−k). Each Ti equal to Aji has to be summed over the N values of ji , and
we get a contribution of Nm−k from all these sums. Finally the number of such terms
involving k factors B is the number of subsets of k elements in a set of m elements
and is

(m
k

)
, and α! ≤ (m − k)! by Problem 6. The desired estimate results.

In (b), we adjust the above estimate by replacing ‖Dα
x g(0)‖∞ by ‖Dα+β

x g(0)‖∞.
Then Cα!R−(m−k) gets replaced by C(α + β)!R−(m−k+l), where l = |β|. Since
(α+ β)! ≤ (m − k + l)!, the term is ≤∑m

k=0 CM
mNm−k(m − k + l)!(mk )R−(m−k+l).

In (c), we are to sum the product of the estimate in (b) by
rl+m

β!m!
, the sum extending

over all m ≥ 0, all l ≥ 0, and all β with |β| = l. Thus we are to bound

∞∑
m=0

∞∑
l=0

∑
|β|=l

m∑
k=0

CMmNk−m(m − k + l)!
(m
k

)
R−(m−k+l)rl+m

β!m!

=
∞∑
m=0

∞∑
l=0

m∑
k=0

CMmNm−k+l(m − k + l)!
(m
k

)
R−(m−k+l)rl+m

l!m!

= C
∞∑
m=0

∞∑
k=0

[ ∞∑
l=0

(
m − k + l

l

)(Nr
R

)l]MmNm−k R−(m−k)rm

k!

= C
∞∑
m=0

∞∑
k=0

(
1− Nr

R

)−(m−k)−1 MmNm−k R−(m−k)rm

k!
,

the first and third steps using Problem 6 and the third step requiring the assumption

on R that Nr/R < 1. If we assume in fact that Nr/R ≤ 1/2, then (1− Nr
R

)−1 ≤ 2,
and the above expression is

≤ C
∞∑
m=0

∞∑
k=0

2m−k+1MmNm−k R−(m−k)rm

k!
≤ 2C

∞∑
m=0

eR/(2N )
(2MrN

R

)m
,

the second inequality following from the series expansion of the exponential function.
The series on the right is convergent if 2MrN/R < 1. This proves (c).
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In (d), the analog of (a) is to consider a term T1 · · · TsDα
x D

m−1−s
t F , where each

Ti is some Aji or B. Let k be the number of factors B, so that s − k factors are
some Aj and |α| = s − k. The contributions to Dα

x come from the factors Aj ; regard
the m − 1 − s contributions to Dm−1−s

t as coming from factors of the identity I . In
this way the two phenomena can be handled at the same time. Ignore the fact that
I commutes with the other matrices; it is easier to treat it as if its occurrences in
different positions were different. The effect is the same as expanding the set of n
matrices Aj to include I , yielding a set of N + 1 matrices. The requirement M ≥ 1
makes it so that the estimate ‖Iv‖∞ ≤ M‖v‖∞ is valid for the new member of the
set, as well as the old members. The steps for imitating (b) and (c) are then essentially
the same as before except that m is replaced by m − 1 and N is sometimes replaced
by N + 1.
10. The crux of the matter is to show that if {ui, j (x, y)} solves the Cauchy problem

for the first-order system, then ui, j (x, y) = Di
x D

j
yu0,0(x, y) for i + j ≤ m and hence

u0,0(x, y) solves the mth-order equation. The proof proceeds by induction on j .
The case j = 0 is okay because the first-order system has Dxui,0 = ui+1,0 for
i < m. Suppose the identity holds for some j . Then Dxui, j+1 = Dyui+1, j from
the system, and this is = DyDxui, j by induction. Hence Dx (ui, j+1 − Dyui, j ) =
0, and we obtain ui, j+1 − Dyui, j = c(y). Put x = 0 and get ui, j+1(0, y) =
D j+1
y f (i)(y) = DyD

j
y f (i)(y) = Dyui, j (0, y). Therefore c(y) = 0, and ui, j+1 =

Dyui, j = Di
x D

j+1
y u0,0. This completes the induction.

11. The second index ( j in Problem 10) is replaced by an (N − 1)-tuple α =
(α1, . . . , αN−1). If β = 0, the equation for Dxui,β is Dxui,β = Dyj u

i,α , where j
is the first index for which αj = 0 and where α is obtained from β by reducing the
j th index by 1. If β = 0, the equations are as in Problem 10. The Cauchy data
are ui,β(0, y) = Dy f (i)(y) except when (i, β) = (m, 0), and they are the data of
Problem 10 when (i, β) = (m, 0). The argument now inducts on β1, . . . , βN−1, and
the functions c(y) that appear are of the form c(y1, . . . , yN−1). The Cauchy data are
for x = 0, and we get an equation c(y1, . . . , yN−1) = 0 in one step in each case.
12. The equations Dxui, j+1 = Dyui+1, j involve first partial derivatives in the y

direction with coefficient 1, and Dxui,0 = ui+1,0 involves an undifferentiated variable
with coefficient 1. The equation for Dxum,0 involves a linear combination of variables
and first partial derivatives in the y direction of variables, plus the term Fx , which is
an entire holomorphic function of (x, y). So the equations of the first-order system
are as in Problems 6–9.

Chapter VIII

1. What needs checking is that the two charts are smoothly compatible. The
set Mκ1 ∩ Mκ2 is S

n − {(0, . . . , 0,±1)}, and the image of this under κ1 and κ2 is
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Rn−{(0, . . . , 0)}. Put yj = xj/(1−xn+1), so that κ−11 (y1, . . . , yn) = (x1, . . . , xn+1).
Then

κ2 ◦ κ−11 (y1, . . . , yn) = (x1/(1+ xn+1), . . . , xn/(1+ xn+1))
= (y1(1− xn+1)/(1+ xn+1), . . . , yn(1− xn+1)/(1+ xn+1)).

To compute (1 − xn+1)/(1 + xn+1), we take |x | = 1 into account and write 1 =∑n+1
j=1 x

2
j = x2n+1+

∑n
j=1 y

2
j (1− xn+1)2. Then

∑n
j=1 y

2
j = (1− x2n+1)/(1− xn+1)2 =

(1+ xn+1)/(1− xn+1), and

κ2 ◦ κ−11 (y1, . . . , yn) =
(
y1
/∑n

j=1 y
2
j , . . . , yn

/∑n
j=1 y

2
j

)
.

The entries on the right are smooth functions of y since y = 0, and the two charts are
therefore smoothly compatible.

3. If it is σ -compact, it is Lindelöf. If it is Lindelöf, countably many charts suffice
to cover X . If there is a countable dense set, then we can choose one chart for each
member of the dense set, and these will have to cover X . This proves (a). For (b),
each chart has a countable base, and the union of these countable bases, as the chart
varies, is a countable base for X .

4. For (a), multiplication is given by polynomial functions, which are smooth.
Inversion, according to Cramer’s rule, is given by polynomial functions and division
by the determinant, and inversion is therefore smooth.
For (b), we have

Ãg f = (dlg)1(A)( f ) = A( f ◦ lg) = A( f (g · )) =∑
i, j
Ai j

∂( f (g · ))
∂xi j

(1)

=∑
i, j
Ai j
∑

r,s
∂ f
∂xrs

(g) ∂((gx)rs )
∂xi j

(1) = ∑
i, j,r,s

Ai j
∂ f
∂xrs

(g)griδs j

= ∑
j,r,s

(gA)r jδs j
∂ f
∂xrs

(g) =∑
r,s

(gA)rs
∂ f
∂xrs

(g).

For (c), the condition for smoothness, by Proposition 8.8, is that all Ãxi j be
smooth functions. Part (b) gives Ãxi j (g) = Ãg(xi j ) =

∑
r,s(gA)rsδirδjs = (gA)i j =∑

k gik Ak j , and the right side is a smooth function of the entries of g. For the
left invariance, let F = lh , and put g′ = F−1(g) = h−1g. We are to check
that (dF)g′( Ãg′)( f ) = Ãg( f ) if f is defined near g. The left side is equal to
Ãg′( f ◦ lh) = ((dlg′)1(A))( f ◦ lh) = (dlh)g′(dlg′)1(A)( f ), and the right side is
Ãg( f ) = (dlg)1(A)( f ). These two expressions are equal by Proposition 8.7.
Parts (d) and (e) amount to the same thing. For (d), the question is whether

Ãg0 exp t A f = (dc)t
(
d
dt

)
( f ). The right side is d

dt f (g0 exp t A), and that is why (d) and
(e) amount to the same thing. The left side is

∑
r,s(g0(exp t A)A)rs

∂ f
∂xrs

(g0 exp t A)

by (b), and this expression equals d
dt f (g0 exp t A) by the chain rule and the formula

d
dt exp t A = (exp t A)A known from Basic.



446 Hints for Solutions of Problems

5. For (a), fix l. Choose, for each p in Ll , a compatible chart about p such that the
closure of the domain of the chart is a compact subset of Ul . The domains of these
charts form an open cover of Ll , and we extract a finite subcover. Taking the union
of such subcovers on l, we obtain the atlas {κα}.
For (b) and (d), the solution will be a translation into the language of smooth

manifolds of a proof given in introducing Corollary 3.19: In (b), let the domains of
the charts constructed at stage l be Mκ1 , . . . ,Mκr . Lemma 3.15b of Basic constructs
an open cover {W1, . . . ,Wr } of Ll such thatW cl

j is a compact subset ofMκj for each j .
A second application of Lemma 3.15b of Basic produces an open cover {V1, . . . , Vr }
of Ll such that V clj is compact and V

cl
j ⊆ Wj for each j . Proposition 8.2 constructs

a smooth function gj ≥ 0 that is 1 on V clj and is 0 off Wj . Then
∑r

j=1 gj is > 0
on Ll and has compact support in

⋃r
j=1 Mκj . If we write {ηα} for the union of the

sets {g1, . . . , gr } as l varies, then the functions ϕα = ηα
/∑

β ηβ have the required
properties.
For (c), we apply (b) to the smoothmanifoldU . The construction in (b) is arranged

so that about each point is an open neighborhood on which only finitely many ϕα’s
can be nonzero. As this point varies through K , the open neighborhoods cover K ,
and there is a finite subcover. Therefore only finitely many ϕα’s have the property
that they are somewhere nonzero on K . The sum of this finite subcollection of all
ϕα’s is then a smooth function with values in [0, 1] that is 1 everywhere on K and has
compact support in U .
For (d), we argue as in (b) with two applications of Lemma 3.15b of Basic to

produce an open cover {V1, . . . , Vr } of K such that for each j , V clj is a compact
subset of Wj , whose closure is a compact subset of Uj . Part (c) constructs a smooth
function gj ≥ 0 that is 1 on V clj and is 0 offWj . Then g =

∑r
j=1 gj is> 0 everywhere

on K and has compact support in
⋃r

j=1Uj . A second application of (c) produces a
smooth function h ≥ 0 on M with values in [0, 1] that is 1 on K and is compactly
supported within the set where g > 0. Then g + (1− h) is smooth and everywhere
positive on M , and the functions ϕj = gj/(g+ (1− h)) have the required properties.
6. In the notation of Proposition 8.6, the matrix

[∂Fi
∂uj

∣∣∣
(u1,...,un)=(x1(p),...,xn(p))

]
,

which is of size k-by-n, has rank k. Choose k linearly independent columns. Possibly
after a change of notation that will not affect the conclusion, we may assume that
they are the first k columns. Call the n functions y1 ◦ F, . . . , yk ◦ F, xk+1, . . . , xn by
the names f1, . . . , fn . These are in C∞(Mκ) and have matrix

[∂( fi ◦ κ−1)
∂uj

]
of the

block form ⎛⎝[∂Fi∂uj

] [∂Fi
∂uj

]
0 1

⎞⎠
at the point where (u1, . . . , un) = (x1(p), . . . , xn(p)). The upper left corner is
invertible by the condition of rank k, and hence the whole matrix is invertible. Then
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the result follows from Proposition 8.4.

7. In the notation of Proposition 8.6, the matrix
[∂Fi
∂uj

∣∣∣
(u1,...,un)=(x1(p),...,xn(p))

]
,

which is of size k-by-n, has rank n. Choose n linearly independent rows. Since
Fi = (yi ◦ F) ◦ κ−1, Proposition 8.4 shows that the corresponding functions yi ◦ F
generate a system of local coordinates near p. This proves (a).
8. A little care is needed with the definition of measure 0 for a manifold because

the sets of measure 0 that arise are not shown to be Borel sets. However, for points
in the intersection of the domains of two charts κ1 and κ2, the change-of-variables
theorem shows that the two versions of Lebesgue measure near the two images in
Euclidean space of a point are of the form dx and (κ1 ◦ κ−12 )′(x) dx , and the sets of
measure 0 are the same for these.
The solution of the problem as written is a question of localizingmatters so that the

Euclidean version of Sard’s Theorem (Theorem 6.35 ofBasic) applies. For each point
p in M , one can find a chart κp with p ∈ Mκp and a chart λp with F(p) ∈ Nλp such
that F(Mκp ) ⊆ Nλp . The Euclidean theorem applies to λp ◦ F ◦κ−1p . The separability
implies that countably many of these Mκp ’s cover M . We get measure 0 for the
critical values within each F(Mκp ), and the countable union of sets of measure 0 has
measure 0.

9. Here we localize and apply Corollary 6.36 of Basic.

10. The reflexive condition followswith h = 1, and the transitive condition follows
by using the composition of two h’s. Strictly equivalent is the condition “equivalent”
with h = 1.
11. Substitution of the definitions gives

ḡk j (x)gji (x) = φ′k,x
−1 ◦ hx ◦ φj,x ◦ φ−1j,x ◦ φi,x = φ′k,x

−1 ◦ hx ◦ φi,x = ḡki (x).

This proves the first identity, and the second identity is similar.

12. For (a), if x lies in Mκj ∩ Mκ ′k and y lies in Fn , then the only way that h can
have the correctmapping function x �→ ḡk j (x) is to have ḡk j (x)(y) = φ′k,x

−1hφj,x (y).
Therefore we must have h(φj,x (y)) = φ′k,x ḡk j (x)(y), and h is unique.
In (b), if h exists, then it is apparent from the formula for it that it is a diffeomor-

phism. In this case the function h−1 exhibits the relation “equivalent” as symmetric.
13. For (a), if x lies also in Mκi ∩ Mκ ′l , then we have

pj (b) = φ−1j,x (b) = φ−1j,x φi,xφ
−1
i,x (b) = gji (x)(pi (b))

and hence

hkj (b) = φ′k,x ḡk j (x)(pj (b)) = φ′k,x ḡk j (x)gji (x)(pi (b)) = φ′k,x ḡki (x)(pi (b))

= φ′l,x g
′
lk(x)ḡki (x)(pi (b)) = φ′l,x ḡli (x)(pi (b)) = hli (b).

(∗)
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The sets p−1(Mκj ∩ Mκ ′k ) are open and cover B as j and k vary, and the consistency
condition (∗) therefore shows that the functions hkj piece together as a single smooth
function h : B → B ′.
For (b), let y be in Fn . Put b = φj,x (y) in the definition of hkj (b), so that

y = φ−1j,x (b) = pj (b), and then we have

φ′k,x
−1hφj,x (y) = φ′k,x

−1h(b) = φ′k,x
−1φ′k,x ḡk j (x)(pj (b)) = ḡk j (x)(y).

This shows that the functions x �→ ḡk j (x) coincide with the mapping functions of h.

Chapter IX

1. The formula is μ|x | = μx + μ∨x − 1
2μ({0}), where μ∨x is the measure on R

defined by μ∨x (A) = μx (−A).
2. Both sides equal

∫
	
�(x1, . . . , xn) dP .

3. For (a), we have σ 2n =
∫

R
(t − E)2 dμn(t) ≥

∫
|t−E |≥δ (t − E)2 dμn(t) ≥

δ2P({|yn − E | ≥ δ}).
For (b), we calculate

|E(�(yn))−�(E)| = ∣∣ ∫
R
[�(t)−�(E)] dμn(t)

∣∣ ≤ ∫
R
|�(t)−�(E)| dμn(t)

= ∫|t−E |<δ
+ ∫|t−E |≥δ ≤ ∫|t−E |<δ

ε dμn(t)+ 2MP({|yn − E | ≥ δ})
≤ ε + 2Mσ 2n δ

−2.

In (c), let ε > 0 be given, and choose the δ of continuity for � and ε. Then the
calculation in (b) applies. Since lim σ 2n = 0, the right side is≤ 2ε for n large enough.
For such n, we have |E(�(yn))−�(E)| ≤ 2ε.
In (d), the argument of (c) depends only on the continuity of� at E and the global

boundedness of �. In the situation of Theorem 9.7 with independent identically
distributed random variables xn , we put sn = x1 + · · · + xn and take yn = 1

n sn . We
saw that if E(xk) = E and Var(xk) = σ 2, then E(yn) = E and Var(yn) = 1

n σ
2.

Thus (c) applies.

4. Part (a) is a direct application of the Kolmogorov Extension Theorem. One
starts with the measure on R1 that assigns mass p to {1} and mass 1 − p to {0},
forms the n-fold product to model n independent tosses, and obtains the space for a
sequence of tosses from the Kolmogorov Theorem.
In (b), the expectation is p · 1+ (1− p) · 0 = p. The computation for the variance

is p · 12 + (1− p) · 02 − p2 = p − p2 = p(1− p).
For (c), the answer is the number of ways of obtaining k heads and n − k tails in

n tosses, namely
(n
k

)
, times the probability of getting a specific sequence of k heads

and n − k tails, which is pk(1− p)n−k .
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In (d), we put yn = 1
n sn . In view of (c), E(yn) is

∑n
k=0�

(
k
n

)(n
k

)
pk(1 − p)n−k ,

and (a) shows that �(E) is �(p). The variance of yn is
p(1−p)

n , in view of (b); since
this tends to 0, Problem 3c is applicable and establishes the limit formula.
For (e), we go over the solution of Problem 3. The relevant facts for making

an estimate that is uniform in p are that � is uniformly continuous and that the
convergence of the variance to 0 is uniform in p.

6. For the regularity any set in F is in some Fn . The sets in Fn are of the form
Ẽ = E × (×∞

k=n+1Xk) with E ⊆ 	(n) and ν(Ẽ) = νn(E). Given ε > 0, choose
K compact and U open in 	(n) with K ⊆ E ⊆ U and νn(U − K ) < ε. In 	, K̃ is
compact, Ũ is open, K̃ ⊆ Ẽ ⊆ Ũ , and ν(Ũ − K̃ ) < ε.

7. Let E = ⋃∞
n=1 En disjointly in F. Since ν is nonnegative additive, we have∑∞

n=1 ν(En) ≤ ν(E). For the reverse inequality let ε > 0 be given. Choose K
compact andUn openwith K ⊆ E , En ⊆ Un , ν(Un−En) < ε/2n , and ν(E−K ) < ε.
Then K ⊆ ⋃∞

n=1Un , and the compactness of K forces K ⊆ ⋃N
n=1Un for some N .

Then ν(E) ≤ ν(K )+ε ≤ ν
(⋃N

n=1Un
)+ε ≤∑N

n=1 ν(Un)+ε ≤∑N
n=1 ν(En)+2ε ≤∑∞

n=1 ν(En)+ 2ε. Since ε is arbitrary, ν(E) ≤
∑∞

n=1 ν(En).
8. The key is that 	 is a separable metric space. Every open set is therefore the

countable union of basic open sets, which are in the various Fn’s.

10. The collection of subsets of 	 that are of type J for some countable J is a
σ -algebra containing A′, and thus it contains A.
11. Continuity cannot be ensured by conditions at only countably many points,

as we see by altering the value of the function at a point not in a prospective such
countable set of points.

12. A nonempty set of A that is contained in C must be defined in terms of what
happens at countably many points, and no such conditions are possible, just as in the
previous problem. So the set must be empty. Since ρ∗(C) is the supremum of ρ of
all such sets, we obtain ρ∗(C) = 0.
13. Ifω is inCj but not E , then the uniform continuity ofωmeans thatω

∣∣
J
extends

to a member of C . In other words, there is a member ω′ of 	 that is 0 on J such that
ω+ ω′ is in C . Since C ⊆ E , ω+ ω′ is in E . The set E is by assumption of type J ,
and therefore the sum of any member of E with a member of	 that vanishes on J is
again in E . Hence ω = (ω + ω′)− ω′ is in E , contradiction.
14. Problem 13 shows that the infimum of ρ(E) for all E inA containingC equals

the infimum over all countable J of ρ(CJ ). Under the assumption this infimum is 1.
Thus ρ∗(C) = 1.
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INDEX OF NOTATION

See also the list of Notation and Terminology on pages xix–xxii. In the list below,
items are alphabetized according to their key symbols. For letters the order is
lower case, italic upper case, Roman upper case, script upper case, blackboard
bold, and Gothic. Next come items whose key symbol is Greek, and then come
items whose key symbol is a nonletter. The last of these are grouped by type.

â, 153
A∗m, 153
AQ, 271
( · )c, 266
ck, 96
C∞(E,C), C∞(E,R), 324
C∞com(U ), 131
C+com(G), 226
C∞K , 180
Cp(M), 327
C 0p , C 1p , 345
d, 368
d(α), 250
dx, 237
dl x, dr x, 230
(dF)p, dFp, dF(p), 330
Dj , 55
Dα, 55
P(D), 284
P(x, D), 185
Q(D), 55
D ′(M), 352
D ′(U ), 180
Eτ , 260
E(x), 378
E ′(M), 352
E ′(U ), 114
AF , ρF , 389

g f, f g, 222
gx, xg, 222
gμ, μg, 222
gκ ′κ( · ), 338
gκ(x), 351
G tr, 355
Gκ , 362
G/H, 214
GL(N ,C), 213
GL(N ,F), 338
GL(N ,R), 213, 223, 371
GLC(V ), 241
G, 310, 357, 361
Hs, 63, 100
Hs
K , 366

Hs
com(M), Hs

loc(M), 366
aH, 214
G/H, 214
Hn(x), 32
H( f, ϕ), 226
H p(R2

+), 100
H, 236
Hp(RN+1

+ ), 81
Jm, 242
Jn(r), 12
l, 256
�ϕ, 227
L(u), 19
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L∗(v), 20
L p([0, 1]), 0 < p < 1, 109
L p(G), 237
L2k(T

N ), 103
L p
k (U ), 63

L1com(M, μg), L1loc(M, μg), 352
LAP(G), 272
Mκ , M̃κ , 322
M(L2(S, μ)), 160
O(N ), 218
pt (x, dy), 388
P, 376
P(D), 284
P(x, D), 185
P(x, t), Pt(x), 80
P(x, 2π iξ), 287
Pm(x, 2π iξ), 287
Pm(t), 16
Pr (θ), 15
Q(D), 55
Qp, 270
r, 257
r(a), 150
R(λ), 150
RN+1
+ , 80
sgn σ, 242
sing supp u, 303
support( · ), 192
Sm1,0(U ), S−∞1,0 (U ), 307
Sm1,0,0(U ×U ), S−∞1,0,0(U ×U ), 356
SL(2,R), 236, 268
SL(N ,F), 218
SO(N ), 218, 264
Sp(N ,F), 218
SU(2), 268
S ′(RN ), 59
Sn, 242
( · )tr, 188
T N , 102
Tf , 187, 352
T (M), 331, 344

T (M,R), T (M,C), 344
T ∗(M), 344, 345
T ∗(M,R), 355
T ∗(M,R)×, 364
Tp(M), 328
T ∗p (M), 345
Tr L , 51, 249
uxt , 2
aU, Ub, 213
UV, U−1, 213
U (N ), 218
xj (q), 323
dx, 237
ϕx , 190
ZN , 292
Zp, 270

Greek
|α|, 55
α!, 55
Dα, 55
δ, 206
, 2, 276
(g), 230
G(t), 232
κ : Mκ → M̃κ , 322
dμ(gH), 235
μg, 351
μx , 379
μx1,...,xN , 380
π, 338
[−π, π ]N , 292
σ(a), 150
σL(p, ξ), 355
σκ(x, ξ), 364
ϕx , 190
φκ, 338
f �, 221
μ�, 221
�( f ), 257
	, 376



Index of Notation 457

Norms
‖ · ‖HS, 47
‖ · ‖Hp

, 81

‖ · ‖Hs , 100
‖ · ‖K ,p, 113
‖ · ‖

L p
k
, 63

‖ · ‖
L2k(T

N )
, 103

| · |p, 269
‖ · ‖p,α, 180
‖ · ‖P,Q, 56
‖ · ‖α,β, 180

Other unary operations
∂U, 61
â, 153
f ∨, T ∨, 189
f #, f ##, 234

Binary operations
〈T, ϕ〉, 59, 181
K1 − K2, xix, 129
f ∗ h, 237
⊕, 247
U � V, ⊔i Wi , 335
∼, 357
ϕ1 ⊗ ϕ2, 361

Other symbols
1, 214
∂̄, 369
∂
∂ z̄ , 276[

∂
∂xj

]
p, 328
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about a point, 322
absolutely uniform convergence, 6
adele, 271
adjoint, formal, 20
Alaoglu’s Theorem, 120, 146
preliminary form, 81, 82

algebra
associative, 121
Banach, 122, 146
commuting, 161
multiplication, 160

almost periodic, 272, 273
amplitude, 356
Approximation Theorem, 255, 267, 274
Artin product formula, 270
Ascoli’s Theorem, 145
associated Legendre equation, 16
associative algebra, 121
Atiyah–Singer Index Theorem, 369
atlas, 322

Baire Category Theorem, 114, 264
Baire set, xxii
Banach algebra, 122, 146
base space, 338
basic separation theorem, 127
Beltrami equation, 94
Bernstein polynomial, 399
Bessel function, 12, 31
Bessel’s equation, 12
Bohr compactification, 272
Borel set, xxii
Borel–Cantelli Lemma, 394
boundary data, 2
boundary of open set, 61
boundary values, 2
boundary-value problem, 2, 277
bounding point, 126
Brouwer Fixed-point Theorem, 145

Brownian motion, 387, 400
bundle
coordinate vector, 338
cotangent, 344
space, 338
tangent, 344
vector, 341

C∗ algebra, 157
Calderón–Zygmund decomposition, 86
Calderón–Zygmund Theorem, 83, 102, 370
Cantor diagonal process, 225
Cantor measure, 400
Cauchy data, 279, 280
Cauchy problem, 284, 320
Cauchy–Kovalevskaya Theorem, 278, 279, 281,

282, 318, 320
Cauchy–Peano Existence Theorem, 145
Cauchy–Riemann equations, 92, 276
Cauchy–Riemann operator, 287, 318, 349
chain rule, 331
character, 250
group, 250
multiplicative, 242
sign, 242

characteristic, 283
chart, 322
atlas of, 322
compatible, 322

Chebyshev’s inequality, 393
circled set, 132
closed convex hull, 140
closed subgroup, 217
coin tossing, 376
commuting algebra, 161
compact group, 217
compact operator, 34
compact ring, 270
compactification
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Bohr, 272
one-point, 124
Stone–Čech, 125

compatible chart, 322
completely continuous, 34
complex tangent bundle, 344
conditional probability, 382
cone condition, 67
constant coefficients, 279, 282, 292, 300
continuity
complete, 34
left uniform, 273
strong, 256
uniform, 219
weak, 267

continuous dual, 114
contragredient representation, 245, 266
convergence
absolutely uniform, 6
in probability, 394
uniform on compact sets, 75

convex set, 125
convolution
of distributions, 192, 195
of functions, 186, 237
of measures, 189

coordinate function, 338
coordinate transformation, 338
coordinate vector bundle, 338
equivalence, 373

cotangent bundle, 344
countable, xix
critical point, 372
critical value, 372
curve, 333
integral, 333

cyclic vector, 162

de Rham’s Theorem, 368
degree of homogeneity, xx, 83, 355
degree of representation, 250
density, 380
derivation, 328
derivative
transverse, 209
weak, 62, 103, 290

diffeomorphism, 326
differential, 330
differential 1-form, 348

smooth, 348
differential operator, linear, 19, 353
transpose of, 20, 353

differentiation of distribution, 188
dimension of smooth manifold, 322
Dirac distribution, 201
Dirac operator, 369
direct limit, 139, 177
direct sum, 247
directed system, 177
Dirichlet problem, 13, 288
discrete group, 213
disjoint union, 335
distribution, 179, 290, 352
arbitrary, 180
convolution with, 192, 195
differentiation of, 188
Dirac, 201
equal to a locally integrable function, 183
equal to a smooth function, 183
Fourier series of, 209
Fourier transform of, 60, 202, 203
function, 380
given by function, 187
Heaviside, 318
kernel, 310, 357, 361
localization of, 186
of compact support, 114, 352
of random variable, 379
operation on, 187
periodic, 209
product with smooth function, 188
support of, 181
supported at {0}, 208
supported on vector subspace, 208
tempered, 58

Divergence Theorem, 70

eigenfunction, 19
eigenspace, 36
eigenvalue, 19, 36
eigenvector, 36
elliptic
differential equation, 288
operator, index, 368
pseudodifferential operator, 315, 366

equal to a function, distribution, 183
equivalent coordinate vector bundles, 373
equivalent representations, 244, 259
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unitarily, 266
equivalent vector bundles, 373
ergodic measure, 143, 176
essential image, 166
event, 376, 378
exhausting sequence, 64, 113, 350
expectation, 378
expected value, 378
extreme point, 140, 175

F. and M. Riesz Theorem, 102
face, 140
Fatou’s Theorem, 81
finite-dimensional representation, 241
finite-dimensional topological vector space,

111
formal adjoint, 20
formally self adjoint, 20
Fourier inversion formula for compact group,

267
Fourier series
multiple, 96, 98, 102
of distribution, 209
use in local solvability, 292
use in separation of variables, 5

Fourier transform
of distribution of compact support, 203
of tempered distribution, 60, 202

freezing principle, 285
Fréchet limit, 139
Fréchet space, 139
functional calculus, 167
fundamental solution, 206, 290, 300, 302, 318

Gårding’s inequality, 286
Gelfand transform, 153
Gelfand–Mazur Theorem, 151
general linear group, 213, 371
generalized pseudodifferential operator, 356
transpose of, 356

germ, 327
Green’s formula, 20, 31, 72, 73, 206
Green’s function, 25, 290
group action, 222
group character, 250

Haar covering function, 226
Haar measure, 223, 232
Hahn–Banach Theorem, 126

half space
Poisson integral formula, 80
Poisson kernel, 80

Hardy space, 100
harmonic, 2, 69
harmonic measure, 317
harmonic polynomial, 244, 263
heat equation, 2, 6
heat operator, 287
Heaviside distribution, 318
Heaviside function, 318
Hermite polynomial, 32
Hermite’s equation, 32
Hermitian matrix, 36
Hilbert transform, xxii, 83, 92, 101, 211
Hilbert–Schmidt norm, 47
Hilbert–Schmidt operator, 47
Hilbert–Schmidt Theorem, 22, 25, 42, 43
Hirzebruch–Riemann–Roch Theorem, 369
Hodge theory, 368
holomorphic polynomial, 243
homogeneous function, xx, 83, 355
homogeneous partial differential equation,

1, 276
homogeneous space, 214
homomorphism of topological groups, 213
Hopf maximum principle, 297
hyperbolic, 289

idele, 272
identically distributed, 380
identification space, 335
identity component, 264
identity element, 214
independent events, 382
independent random variables, 384
index of elliptic operator, 368
indicator function, xxi
inductive limit topology, 139, 174
initial data, 2
initial-value problem, 277
integrable, locally, 62
integral curve, 333
integral operator, 41
trace of, 98

Interior Mapping Theorem, 173
internal point, 126
invariant subspace, 243, 259
inverse, 149
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invertible, 149
involution, 157
irreducible representation, 245, 259
isomorphism of topological groups, 213
isomorphism of topological vector spaces, 106
isotypic subspace, 261

joint distribution, 380

kernel
distribution, 310, 357, 361
of integral operator, 41
Poisson 15, 80

Kolmogorov Extension Theorem, 390, 400
Kolmogorov’s inequality, 395
Krein–Milman Theorem, 140

Laplace equation, 2, 13
Laplacian, 2, 206, 276, 287
Law of Large Numbers
Strong, 394
Weak, 394

left almost periodic, 272
left coset, 214
left Haar measure, 223
left inverse, 149
left parametrix, 310
left uniform continuity, 273
left-invariant vector field, 371
left-regular representation, 256
Legendre equation
associated, 16
ordinary, 16

Legendre polynomial, 16, 31
Leibniz rule, 63
Lewy example, 286, 349
LF topology, 139
Lie group, 349
line segment, 140
linear
differential operator, 19, 353
functional, multiplicative, 122, 148, 152
homogeneous partial differential equation,
276

operator (see operator)
partial differential equation, 1, 276
partial differential operator, 185, 188
topological space, 106

Liouville, 78

local coordinate system, 323, 372
local neighborhood base, 132
local solvability, 292
localization of distribution, 186
locally compact abelian group, 270
locally compact field, 270
locally compact group, 217
locally compact ring, 271
locally compact topological vector space, 111,

265
locally convex, 128
locally integrable, 62

manifold, 322
Riemannian, 349
smooth, 322

mapping function, 373
Marcinkiewicz Interpolation Theorem, 95
Markov–Kakutani Theorem, 143
matrix
Hermitian, 36
orthogonal, 218
rotation, 218
trace of, 249
unitary, 37, 218

matrix coefficient, 250
matrix representation, 241
maximal abelian self-adjoint subalgebra, 161
maximal ideal, 152
maximum principle, 297
mean-value property, 72, 73
measurable set of type F , 389
measure
Cantor, 400
harmonic, 317
smooth, 351

measure 0, 372
metric, Riemannian, 349
modular function, 230
modulus of ellipticity, 296
Monotone Class Lemma, 170
multi-index, 55
multiple Fourier series, 96, 98, 102
of distribution, 209
use in local solvability, 292

multiplication algebra, 160
multiplication of smooth function and

distribution, 188
multiplicative character, 242
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multiplicative linear functional, 122, 148, 152
multiplicity, 251

negative, xix
noncharacteristic, 283
norm, Hilbert–Schmidt, 47
normal operator, 52, 165
normed linear space, 107

one-point compactification, 124
operation on distribution, 187
by −1 in domain, 189
by convolution, 192, 195
by linear partial differential operator, 188
of differentiation, 188
of Fourier transform, 202
of multiplication, 188
of transpose, 187

operator
compact, 34
completely continuous, 34
differential, linear, 353
Dirac, 369
elliptic, 288
elliptic pseudodifferential, 315, 366
generalized pseudodifferential, 356
Hilbert–Schmidt, 47
hyperbolic, 289
integral, 41
normal, 52, 165
orthogonal, 45
positive semidefinite, 165
pseudodifferential, 306, 308, 362
smoothing, 291, 301, 308, 357
trace of, 51, 98
trace-class, 49
transpose of, 185
unitary, 45, 163, 165

order of differential equation, 276
order of differential operator, 185, 353
orthogonal group, 218
orthogonal matrix, 218
orthogonal operator, 45

p-adic integer, 270
p-adic norm, 269
parametrix, 292, 301, 307, 310, 315
partial differential equation, 276
elliptic, 288

homogeneous, 1, 276
hyperbolic, 289
linear, 1, 276
linear homogeneous, 276
order, 276
system, 276

partial differential operator
elliptic, 288
hyperbolic, 289
linear, 185, 188
transpose of, 185, 353

partition of unity, 65, 113, 174, 351, 371
periodic distribution, 209
Peter–Weyl Theorem, 252
Picard–Lindelöf Existence Theorem, 145
Plancherel formula for compact group, 254, 257
Poisson integral formula for half space, 80
Poisson integral formula for unit disc, 15
Poisson kernel for half space, 80
Poisson kernel for unit disc, 15
Poisson’s equation, 291
polynomial
Bernstein, 399
harmonic, 244, 263
holomorphic, 243
trigonometric, 254

positive, xix
positive definite function, 142, 176
positive semidefinite operator, 165
Principal Axis Theorem, 289
principal symbol, 287, 355, 364
probability, 376, 378
conditional, 382

probability space, 378
product of topological groups, 213
projection, 338
projective space, 371
properly supported, 313, 357, 361
pseudodifferential operator, 306, 308, 362
elliptic, 315, 366
generalized, 356
transpose of, 308, 356

pseudolocal, 311, 357, 362
pseudonorm, 56
pull back, 221
push forward, 221

quotient of topological vector space, 110
quotient space, 214
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of Lie group, 349

Radon–Nikodym Theorem, 224
random number, 377
random variable, 378
rank, 338
real tangent bundle, 344
regularizing, 61
Rellich’s Lemma, 368
representation
contragredient, 245, 266
finite-dimensional, 241
irreducible, 245, 259
left-regular, 256
matrix, 241
right-regular, 257
standard, 242
trivial, 242
unitary, 245, 256

resolvent, 150
resolvent set, 150
restricted direct product, 178, 271
Riemann–Roch Theorem, 369
Riemannian manifold, 349
Riemannian metric, 349
Riesz Convexity Theorem, 95
Riesz Representation Theorem, 118, 164, 220
Riesz transform, 93
right almost periodic, 272
right group action, 223
right Haar measure, 223
right inverse, 149
right parametrix, 307
right-regular representation, 257
rotation group, 218
rotation matrix, 218

Sard’s Theorem, 372
satisfy cone condition, 67
Schauder–Tychonoff Theorem, 144
Schrödinger’s equation, 32
Schur orthogonality, 249
Schur’s Lemma, 247
Schwartz Kernel Theorem, 209, 361
Schwartz space, 55
Schwarz Reflection Principle, 78
section, 347
smooth, 347

self adjoint, formally, 20

self-adjoint subalgebra, 161
seminorm, 56
separable, xxi
separating family of seminorms, 57, 107
separation of variables, 1, 3
sign character, 242
singular support, 183, 303, 362
smooth curve, 333
smooth differential 1-form, 348
smooth function, 323, 326
smooth manifold, 322
dimension, 322

smooth measure, 351
smooth section, 347
smooth structure, 322
smooth vector field, 331, 332, 348
smoothing operator, 291, 301, 308, 357
Sobolev space, 63, 100, 103, 290, 308, 366
Sobolev’s Theorem, 67, 69, 100, 103, 368
space-boundary data, 2
special linear group, 218
Spectral Mapping Theorem, 155
spectral radius, 150
spectral radius formula, 155
Spectral Theorem
finite-dimensional, 37
for bounded normal operators, 166
for bounded self-adjoint operator, 165
for compact self-adjoint operator, 39
for unbounded self-adjoint operator, 172

spectrum, 150, 167
standard representation, 242
standard symbol, 307
Stieltjes integral, 379
stochastic process, 389
Stone Representation Theorem, 121, 147, 176
Stone–Weierstrass Theorem, 31, 124, 169, 263
Stone–Čech compactification, 125
strict equivalence, 341
strict inductive limit topology, 139
strong continuity, 256
Strong Law of Large Numbers, 394
Sturm’s Theorem, 5, 21
Sturm–Liouville eigenvalue problem, 20
Sturm–Liouville theory, 5, 19, 172
superposition principle, 1
support function of convex set, 126
support of distribution, 115, 181, 352
singular, 183, 303, 362
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support of function, xxi, 324
supported properly, 313, 357, 361
symbol, 287, 306
principal, 287, 355, 364
standard, 307

symplectic group, 218
system of partial differential equations, 276

tangent bundle, 332, 344
tangent space, 328
tangent vector, 328
tempered distribution, 58
topological field, 269
topological group, 213
isomorphism for, 213

topological ring, 270
topological vector space, 106
defined by seminorms, 107
finite-dimensional, 111
isomorphism for, 106
locally compact, 111, 265
locally convex, 128
quotient of, 110

trace of integral operator, 98
trace of linear map, 249
trace of matrix, 249
trace of operator, 51
trace-class operator, 49
transition function, 338
transition matrix, 338
translate, 190
transpose, 187, 352
of generalized pseuodifferential operator,
356

of operator, 185
of ordinary differential operator, 20
of partial differential operator, 185, 353
of pseudodifferential operator, 308, 356

transverse derivative, 209
trigonometric polynomial, 254
trivial representation, 242
two-sided parametrix, 315

Tychonoff Product Theorem, 120, 225

ultrametric inequality, 269
uniform continuity, 219
left, 273

uniform convergence on compact sets, 75
unimodular group, 232
unit disc
Poisson integral formula, 15
Poisson kernel, 15

unit sphere, 370
unitarily equivalent, 266
unitary group, 218
unitary matrix, 37, 218
unitary operator, 45, 163, 165
unitary representation, 245, 256
Urysohn Metrization Theorem, 323

variance, 393
vector bundle, 341
coordinate, 338
equivalence, 373

vector field, 331, 348
left-invariant, 371
smooth, 331, 332, 348

vibrating drum, 18
vibrating string, 17

wave equation, 3, 17
wave operator, 287
weak continuity, 267
weak derivative, 62, 103, 290
Weak Law of Large Numbers, 394
weak topology on normed linear space, 108,

116
weak-star topology on dual of normed linear

space, 109, 116
weakly analytic, 150
Weierstrass Approximation Theorem, 399
Weyl integration formula, 269
Wiener Covering Lemma, 87




