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Preface

In almost every branch of quantitative sciences, inequalities play an im-
portant role in its development and are regarded to be even more impor-
tant than equalities. This is indeed the case in probability and statis-
tics. For example, the Chebyshev, Schwarz and Jensen inequalities are
frequently used in probability theory, the Cramer-Rao inequality plays
a fundamental role in mathematical statistics. Choosing or establishing
an appropriate inequality is usually a key breakthrough in the solution
of a problem, e.g. the Berry-Esseen inequality opens a way to evaluate
the convergence rate of the normal approximation.

Research beginners usually face two difficulties when they start resear-
ching—they choose an appropriate inequality and/or cite an exact ref-
erence. In literature, almost no authors give references for frequently
used inequalities, such as the Jensen inequality, Schwarz inequality, Fa-
tou Lemma, etc. Another annoyance for beginners is that an inequality
may have many different names and reference sources. For example,
the Schwarz inequality is also called the Cauchy, Cauchy-Schwarz or
Minkovski-Bnyakovski inequality. Bennet, Hoeffding and Bernstein in-
equalities have a very close relationship and format, and in literature
some authors cross-cite in their use of the inequalities. This may be due
to one author using an inequality and subsequent authors just simply
copying the inequality’s format and its reference without checking the
original reference. All this may distress beginners very much.

The aim of this book is to help beginners with these problems. We
provide a place to find the most frequently used inequalities, their proofs
(if not too lengthy) and some references. Of course, for some of the more
popularly known inequalities, such as Jensen and Schwarz, there is no
necessity to give a reference and we will not do so.

The wording “frequently used” is based on our own understanding.

It can be expected that many important probability inequalities are not
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collected in this work. Any comments and suggestions will be appreci-
ated.

The writing of the book is supported partly by the National Science
Foundation of China.

The authors would like to express their thanks to Ron Lim Beng Seng

for improving our English in this book.

Zhengyan Lin
May, 2009
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Chapter 1

Elementary Inequalities of
Probabilities of Events

In this Chapter, we shall introduce some basic inequalities which can
be found in many basic textbooks on probability theory, such as Feller
(1968), Loéve (1977), etc.

We shall use the following popularly used notations. Let £ be a
space of elementary events, .# be a o-algebra of subsets of Q, P be a
probability measure defined on the events in #. (92, #, P) is so called
a probability space. The events in .# will be denoted by Aj, Ay, -+ or
A B,--- etc. A|UB,AB(or A(B),A— B and AAB denote the union,
intersection, difference and symmetric difference of A and B respectively.
A¢ denotes the complement of A and @ denotes the empty set.

1.1 Inclusion-exclusion Formula
Let Ay, As,---, A, be n events, then we have

P(OAi>iP(Ai) ST P(AA) 4

1<i<j<n

+(_1)k_1 Z P(All A'Lk)

1< < <ipg<n,
4 (_1)”*1})(141 e Ay).

Proof. When n = 2, it is trivially known that

P (A1 U AQ) — P(A1) + P(As — A1 As)
=P(A;) + P(A2) — P(A1A2). (1)
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We show the formula by induction. Assume that the formula holds for
n. We will show that it holds also for n 4+ 1. In fact, by (1) and the
induction hypothesis,

n+1 n
P(U Ai) =P (U Ai) + P(Anq1) (U Aj An+1>
i=1 i=1 i=1

n+1
=D "P(A) = > P(AiAj)+ (-1 P(Ar - Ay)
i=1 1<i<j<n
{ZP(A An+1 Z PAA An+1)
i=1 1<i<j<n
+---F (_1)n_1P(A1 o AnAn+1)}
n+1
=D "P(A) = D PAA)+ -+ (—1)"P(Ar - A,
i=1 1<i<j<n+1

1.2 Corollaries of the Inclusion-exclusion Formula

From the inclusion-exclusion formula, it is easy to deduce the following
two conclusions.

1.2.a. When A4, ---, A, are exchangeable, we have
(04 For (s
Zn ) ) 1
i=1
Remark. A set of events {Ay,--+,A4,} is said to be exchangeable if

the probability of the intersection of any subset depends only on the
size of the subset, that is, for any integers 1 < 4; < --- < ¢; < n and
1.2.b. When A,,---, A, are independent and p = P(4;), we have

(0n) -z

1.3 Further Consequences of the Inclusion-exclusion
Formula

The following inequalities are also consequences of the inclusion-exclusion
formula.
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1.3.a S P(A)— Y P(AA) <P (Ql A,») < éP(Ai).

i=1 1<i<j<n
Remark. The right hand side (RHS) of the above inequality can be
improved to

P (U Ai) <D P(A) =) P(AA).

i=1 i=1 i=2
Proof. When n = 2, the inequality with the improved RHS reduces to
the inclusion-exclusion formula. Now, by induction we have

)+ (00) o (31)0)

<Y P(A) = > P(A14) + P(Any1) — P(A1Anp).
i =2
This proves the improved right hand side. Similarly, by induction, we
have

) 00) ({30

>3 P(A)— Y P(Aid)) + P(Ani1) — ZP AiAni1).
i=1 i<j<n i=1
This proves the left hand side (LHS) of the inequality.
1.3.b. |P(AB) — P(A)P(B)| < }.
Proof.

|P(AB) — P(A)P(B)|=|P(A)P(AB)+P(A°)P(AB)
—P(A)P(AB) — P(A)P(A°B)|
=|P(A°)P(AB) — P(A)P(A°B)|.
Since A° and AB are disjoint, P(A°)P(AB) < 1/4 (by noticing that
Orggiclp(l —p) = 1/4). Similarly, P(A)P(A°B) < 1/4 as desired.
Remark. The difference P(AB) — P(A)P(B) can be regarded as the
covariance of the indicators I4 and Ig. The inequality 1.3.b can be
easily proved by using the Cauchy-Schwarz inequality. Here, we proved
the inequality by deliberately avoiding the use of moments.
1.3.c. |P(A) — P(B)| < P(AAB), (AAB=(A-B)J(B - A4))
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Proof. By 1.3.a,
P(AAB) > P(A— B)=P(A)— P(AB) > P(A) — P(B).
By the symmetry of A and B, 1.3.c is proved.

1.3.d. (Boole inequality). P(AB) > 1 — P(A¢) — P(B°).
Proof. P(AB)+ P(B¢) > P(A) =1— P(A°).

1.3.e. Let limsup A, = (| U An,liminfA, = |J () An. Then
n—00 N=1n=N n—eo N=1n=N
P(liminf A,) < liminf P(4,) < limsup P(A,,)
< i < i .
< P(llTILILsOLip Ap) < J\}gnoo;v P(A,)

Proof. For any positive integer N, we have
o0 oo
() AncAv C | An,
n=N n=N

which simply implies

() <rumr (0 a) < £
n=N n=N n=N

Letting N — oo, we obtain the desired inequalities.

1.3f. If P(A) > 1 —¢e,P(B) > 1—¢ for some 0 < & < 3, then
P(AB) > 1 — 2e.

Proof. P(AB)=P(A)+ P(B)— P(AUB) >1— 2e.

1.3.g (Bonferroni inequality). Let Pp,j(P,,) be the probability that
exactly (at least, correspondingly) m events among Aj,---, A, occur
simultaneously. Putting

Sm= > P(A,---4,).

1< <+ <im <N

Then
Sm o (m+ 1)Sm+1 < P[m] < Sm’ Sm - mSm-‘rl <Py < Sm

Proof. Let Ap,) (A(n)) denote the event that exactly (at least, corre-
spondingly) m events among Ai,--- , A, happen simultaneously. Then
we have

A[m] C A(m) = U Ai1 Ay

1< < <im<n

m-
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The RHS of the above inequalities follows by using the semi-additivity
of probability measure.
On the other hand, we have

Ay D U Ag Ay, — U Ao Ai

1<i1 < <im<n 1<i1 < <imy1<n
This implies p,) = pm — Smy1. Also, for each iy < --+ < ipq1, the

probability P(4;, --- A is included at most in each of P(4;, --- A;: )
in Sy, where (i}, - ,4,) is a subset of (i1, ,imy1). Among the m+1,

» ‘m

Tm1 )
one needs to contribute to p,,. Therefore,
Sm — Pm 2 mSm+1-

The LHS of 1.3.g then follow.
Remark. In fact, the inequalities 1.3.g can be proved from the following
identities:

1 2
P[m]:Sm— <m+ )Sm+1+ <m+ )Sm+2+...+(—1)n_m<n>5m
m m m

Pm:Sm—( m >Sm+1+(m+ 1>Sm+2+. . ~+(—1)nm<n_1>sm
m—1 m—1

m—1
S = Z (7;) Py and S, = zn: (;__11)3-.

i=m i=m

By definition, we have

Py= Y P4 N 4),

FeZ; JjEF LeFe
where .%; is the collection of all subsets of size i of the set {1,2,--- n}.
Note that for each F € Fm, the set (| Ay can be written as the union of
teF

disjoint subsets (| A; () AS, for all i > m where F € .%; and F C F.
JEF  teFe
This proves that

which implies S,, = > (27")P; by noticing that P = P; — Piqs.

i=m
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Substituting the expression of Sy, in terms of P; into the RHS of
the first identity, we obtain

m+1 m+ 2 mem T
Sm_( m )Sm-l-l"'( m )Sm+2+"'+(_1) ( )Sn

()2 ()

j=m i= M

" " fi-m
= Py —1)77™ = Py
2 ()0 2 (G20 ) =

By the same approach, one can prove the second identity.
1.4 Inequalities Related to Symmetric Difference

1.4.a. P{(UAn>A(U Bn>} < P{ U (AnABn>} <Y P(A,AB,).

n

Proof. The left inequality follows from ( U An> A( U Bn) cU(4,AB,)
n n n

by the definition of the symmetric difference. The right one follows from
1.3.a.

1.4.b. P{(A; — A2)A(B; — B2)} < P(A1AB;) + P(A2ABs).

Proof. The inequality follows from the observation

(A1 — A2)A(By — By) C (A1ABy) | J(424By).

1.5 Inequalities Related to Independent Events

1.5.a. Let {A,} be a sequence of mutually independent events. Then

1-P (O Ak) <6XP{—XR:P(A1¢)}»
k=1

k=1

1-P (U Ak> < lim exp{—ZP(Ak)}.
k=1 k=1

Remark. The inequalities are useful in the proof of the Borel-Cantelli
lemma.

Proof. The conclusions follow from an application of the inequality
1 —x < e™® for real x to the RHS of the identity

1-P (CJ Ak> =P <ﬁ A;) = ﬁ(l — P(Ap)).
k=1 k=1

k=1
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1.5.b. Suppose that A and B are independent, AB C D and A°B° C
D¢. Then P(AD) > P(A)P(D).

Proof.
P(AD)=P(ADB) + P(ADB) = P(AB) + P(AB®) — P(AD°B°®)
= P(A)P(B) + P(AB°) — P(D°B°) + P(A°D°B®)
= P(A)P(B) + P(AB®) — P(D°B°) + P(A°B°)
— P(A)P(B) + P(B°) — P(D°B")
> P(A)P(BD) + P(A)P(B°D) = P(A)P(D).

1.5.c (Feller-Chung). Let Ay = &, {A,,} and {B,} be two sequences of
events. Suppose that either

(i) By, is independent of A, AS_--- A§ for all n > 1, or

(ii) By is independent of {A,,, A, AS |, Ay AS AS o, -+ }foralln >

1. Then
(n n n) = n>1 ( n) < n) .

n=1

Proof. In case (i),
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1.6 Lower Bound for Union (Chung-Erdés)

P <QA> > (gP(Ai)f/(gP(Ai)JrQ > P(AiAj)>.

1<i<j<n

Proof. Define random variables X (w),w € Q, by

O, ifwgéAi,
1, if we A;.

x) = {
Then

2 Y PMA)=BEXi+--+X,)° - E(X{+--+X2).

1<i<j<n

By the Cauchy-Schwarz inequality (see 8.4.b), we have

(E(X1+ -+ X)) < PX1++ X, >0BE(X1 + -+ Xn)%

Note that EX; = EX2 = P(A;),P(X1 +---+ X, >0) =P (U Ai>
=1

by definition. Combining the above two relations yields the desired in-
equality.
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Chapter 2

Inequalities Related to Commonly
Used Distributions

Commonly used distributions play an important role in applied statistics,
statistical computing and applied probability. So, inequalities related to
these distributions are of great interest in these areas.

Let ¢ be a random variable (r.v.). Then its distribution function
(d.f.) is defined by F'(z) = P(£ < x) and its probability density function
(pdf.) p(x) (if it exists) is defined to be a measurable function such that
F(z) = [*__ p(y)dy. Write

1 * 2 1 2
() = — et/ 2dt and r) = ——e " /2
@=-—=/ o)
for the standard normal d.f. and pdf. respectively,

b(k;n7p)=<2)p’“q”‘k, k=0,1,---,n, 0<p<l1l, qg=1—p

for the binomial distribution with parameters n and p,

Ake—A
k!

p(k; \) = k=0,1,---, A>0

for the Poisson distribution with parameter .

2.1 Inequalities Related to the Normal d.f.

2.1.a. \/%Tt(b —a)exp{—(a®Vb?)/2} < ®(b) — ®(a) < %ﬂ(b —a),—o0 <
a <b<oo.
Proof. It follows from the fact that e=*"/2 on [a, b] is between exp{—(a?V

b?)/2} and 1.
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2.1.b. For all x > 0,
1 1 T 1
(3 - %) ¥ < [aele) <1- B(a) < Tola).

Proof. The most right inequality follows from integration by parts

/00 e~ t/2dt = l673”2/2 — /OO ie*tz/zdt

for all z > 0. The most left inequality is elementary. The middle in-
equality follows from the observation that for all z > 0,

iz et /24t >/ t%e_ﬁﬂdt: le_g”z/2 —/ et /24t
z xT T x xr

Hence . ) -
e/ < <1 + 2) / e 24t
T T -

which implies what is to be proven.
Remark. By repeatedly integrating by parts, the above inequality can
be extended as, for any integer k > 0 and = > 0,

2k+1

S LG DY) < 1) <Z CUe ),

Jj=0

where (25 — 1)1 =(2j-1)---3-1= (;Jj),' and by convention (—1)!l = 1.

The reader is reminded that one can only do finite steps of the integration
o0 1 .

by parts because the series % does not converge for any
j=0

x > 0. That means, one cannot get an identity by making k — oco.

2.1.c. For all real 7, 1 — ®(z) > (V22 + 4 —2)p(z) for all 2 > —1,1—

2
®(2) < v @)

Proof. Using the Cauchy-Schwarz inequality (see 8.4.b), we have

oo 2 %) %)
(e /2)2 = (/ tetg/zdt> < </ tzetg/th> </ et2/2dt)
= (:Ee"”Q/2 +/ et2/2dt> / e*t2/2dt,

which implies the first inequality. Let

Uy = 612/2// e /24t and 0r = (Ve — )20y — ).
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By the LHS of 2.1.b, for all > 0, we have v, > I?—ilga(x) and hence
for all z > 0,

22 (2% + 1)

T @

Next we show that ¢, > 1 is true for all . If not, by continuity,

> 1.

there is an zg such that
Pzo = 1, <p;0 > 0.
But
30;0 = (V;O — 1) 20y — x0) + (Vay — xo)(ZV;D —-1)
=Vay (P2 — 1) + 2(Vay — 0) (g, — 1)
=2V, — x0)(Vy, — 1).

By the RHS of 2.1.b, we have v, —x > 0 for all real . By the assumption
1=z = 2V§0 — 3T0Vs, + 23, we have

2 2 2 2
Vpo — 1 = V3 — ToVey — [2V5, — 320Va, + 5] = —(T0 — vg,)” <0,

which implies that ¢}, < 0, contradicting the assumption that ¢}, > 0.
Hence, for finite z,
g > 1.

Considering the above inequality as a quadratic inequality in v,, we
obtain that for all x, either

3z 4+ Va2 +8 3z — Va2 +8
— = - -

or v, < 1

It is obvious that the first inequality is true for z < 0 since the second

Vyp >

one is impossible. By continuity, we conclude that the first inequality is
true for all real x. Then, the second inequality of 2.1.c follows from the
fact that @ >0 for all z > —1.

2.1.d. 1-®(z) ~p(z){: - L +L3 — .4 (—1)F (2;;;&2”} as x — oo and

x T x

for z > 0 the RHS overestimates 1—®(z) if k is even, and underestimates
if k& is odd.

Proof. See the remark to 2.1.b.

2.1.e. Let (X,Y) be a bivariate normal random vector with the distri-

“((0)-( 1))

bution
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If 0 <7 < 1, then for any real a and b,

b—ra

(1 - ®(a)) (1 ) (W

<(1—®(a)){<1—‘1’(%>>”z8 (1_@<%>>}'

If —1 < r <0, the inequalities are reversed.

)) < P(X >a,Y >0

Proof. By integration by parts we get

P(X >a,Y >b) :/:Oap(x) (1—@(%))@
o)

+ /:o(l — ®(z))p (jl__m;) 7 - —da.

Suppose 0 < r < 1. The lower bound then follows immediately. Next
note that (1 — ®(z))/p(x) is decreasing. Thus

[ e (L)
20 [ (5
- l;iga) /aoO @(b)y (\jl__rfz) \/1df r2

e o2

which gives the upper bound. For the case —1 < r < 0 the same argu-

ment works by noting the reversed directions of the inequalities.

2.2 Slepian Type Inequalities

2.2.a (Slepian lemma). Let (Xi,---,X,) be a normal random vector
with EX; =0, ELX]2 =1,j=1,--- ,n. Put vy = EX; X; and I" = (Vkl)
which is the covariance matrix. Let IJ! = [z,00),I; 1 = (—o0,x) and

A; = {X; € I}, where ¢, is either +1 or —1. Then P{ N Aj;F} is
=1

j=

an increasing function of vy if exe; = 1; otherwise it is decreasing.
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Proof. The pdf of (X3,---,X,) can be written in terms of its charac-
teristic function (c.f.) by?

n .” 1
p(x1, -, xn; ) =(2m) /—~/exp i E 1tjxj_§ kgl Yiitity pdty - - - dty,.
J= ,

It follows that

dp 0%p
— = 1<k<l<n.
OV Oxpdxy’ < "

Hence we regard p as a function of the n(n — 1)/2 variables v, k < [.
Moreover

P ﬂAj;l" :/ / plug, - up; D)dug - - - duy,.
-1 ! o

Consider the probability as a function of v, k < [, we then prove the
conclusion by verifying the nonnegativity of an example. Consider 714
and the integral intervals are I ;7! and I'. We have

ap{ N Aj;r}
=1

8712
82
= S P(ur,uz, - up; Ddurdug - - - duy,
e I 8U1 8U2
T zo zn

=/ / p(x1, x2,us, -, un; I')dug - - - du,, > 0.
;3 en

xn

Hence P {
J

n
Aj; F} is an increasing function of 2.
=1
2.2.b (Berman). Continue to use the notation in 2.2.a. We have

P ﬂAj —HP(Aj) < Z vkl (T, T15v50) s
j=1 =1

1<k<I<n

where p(x,y;7;;) is the standard bivariate normal density function with
a covariance vy, and v;; is a number between 0 and ;.

1 In this book, “” sometimes denotes an index or at other times denotes the
image unit. It is not confused from the context.
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Proof. Put I; = I3},

Q((Ih"‘ n /Il / Ul,"' Up; )dul -du,,

In

and I to be an identity matrix of order n. Then, by the mean value
theorem, there exist numbers v}; between 0 and ~yj; such that

n n
(N A4;Tp-PL(A > w(0Q/0va) (I, -+ In); (7))
j=1 =1 1<k<i<n
< D lwmle(@r, zs ).
1<k<I<n

2.2.c (Gordon). Let {X;;} and {Y;;} (1 < < n,1 < j < m) be two
collections of normal r.v.’s satisfying:
(1) EX; = EY;; = 0, EX}, EYg, <i<n,
(2)E(Xini)<E(YY) z<n1<j
(3) E(XijXu) 2 E(Yi;Yi), i 1,1 <i,1<n,1<j,k<m.
Then for any x;;,

PEOUGS 20t > P (U0 > 0)

i=17=1 i=1j5=1
Proof. Denote a vector z = (z1,- -+, Zpm) in R by
T=(T11, 5 Timy T215 7 5 T2my 5 Tnly " Tum )y

where z;; = T(i_1)myj, 1 <i<n, 1<j<m.

For a given positive definite matrix I' = (Yyo )nm, let Z = (Z1,- -,
Znm) be a centered normal random vector with covariance matrix I
Then its pdf can be written as

9(Z;T) = (2n)*”m/ exp {i(x, Z) — ;xTx} dz.

As mentioned in subsection 2.2.a, if u # v then 0g/07v., = 0%g/02,0%,.
Notice that ifu = (i —1)m+j,v=(I-1)m+k (1<i,i<n,1<jk<
m), then by our notation

Yo = E(ZuZy) = E(Zij Zik).
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Let A” = {ZU 2 xij}a BiO = Ail and BU = Afl-”AfinJJrl.
Then we can verify that

n m m—1 m—1
AUA4;=U - U BijBa - Buj)
i=1j=1 j1=0  jn=0
By this relation we obtain
Qz:m)=pP (A Z Z/ /B g(z)dz,

i=1j=1 71=0 In=0 171

where we have used the facts that for any function f(z11---2pm) and
indices1<i1<n, 0<j<m—1,

Bio ;1 J —00 —oo
and
Ti1
[ o= [ S
B o0 Ti,j+1

/ f(2)dzim - - - dziedzi.

By differentiating @ with respect to ~,, we obtain

0Q(zT)
8’71“) Z Z / azuazv u .

51=0  jn=0"B1 Bnjn

There are two possibilities for the above integrals:

(a)u = (i—1)m+k, v=(i—1)m+Il, where 1 <k <l<m, 1 <i<n;

Mu=@GE-1)m+k v=>G —-1)m+1, where l <k <l<m, 1<
1<i <n

In case (a), without loss of generality, we take z, = 21 m—1,20 =
zim(.e,i =1,k =m — 1,1 =m), then

2
/ Mdzlr-'dzlm
B

1, 071,m-1021m

L1549 oo 82 ( )
— . dzy, - d
/ / /gcl G141 / 0 021,m-10z1m “ o
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and we see that this is equal to zero if j; < m — 1 because

o0 2
/ I 1GNP

— 00 621’m,1621m

But when j; = m — 1, then

2
/ _09@) g
B

11 321,m—15’21m

z11 T1,m—2
- / to / g(z)|21,m—1iﬂ?1,m—1721m:$1md2177>1—2 -dzg.
— 00 — 00

Hence, it follows that in case (a), 9Q/0vuy < 0
In case (b), without loss of generality, we take z,, = z1,, and 2z, = 2zo,.
Then, when either j; or js is smaller than m — 1, we obtain as in the

above manner,

— 2 dzyq---dzy,,dzer - - d =0.
/32]2/3 3Z1m522m 211 Z1mdz21 Z2m

151

However, if j; = jo =m — 1, then
/ / 9(2) —————dzy1 - - dzymdzor - - - d2om,
Bam-1YBi,m-1 azlma'sz

11 T1,m—1 21 T2,m—1 oo 82
g\z
o A P
- —00 Tim J —00 —o00 T 621maz2m

2m

T11 wl,'rnfl 21 T2, m—1
= T e 92 |z1m=21m 22m =22 d22,m—1" "
— 00 — 00 — 00 — 00

dzo1dzy m—1---d211

=0.

Hence it follows that in case (b), 0Q/0vu, = 0
Let I'x and I'y be the covariance matrices of X = (X171, , X1m, -+
Xnt, o, Xpm) and Y = (Y11, , Y1, . Ya1, -+, Yom). By a stan-
dard approximation procedure we may assume that I'x and I'y are both
positive definite. For 0 < 6 < 1, let T'x = (yu) and T'y = (sy4) and
I'(0) = 0T x +(1—0)Ty. By assumption (1), vuy = Sy for all u, therefore
QT _go0en

u<v
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By the assumptions (2) and (3), yup < Sy In case (a) and Yup = Sup
in case (b), hence dQ/df > 0. Therefore Q(z,I'(1)) > Q(z,1(0)), i.e.,
Q(X;Tx) > Q(Y;Ty). The proof is completed.

Remark. As a consequence, under the conditions (1), (2) and (3),

E min max X;; > E min max Yj;.
1<i<n 1<j<m 1<i<n 1<j<m

2.3 Anderson Type Inequalities

2.3.a. Let X be a zero-mean Gaussian vector in RY and let D be a
convex set in RV symmetric with respect to the origin. Then for any
0 < |h| £ 1 we have

P{X +z €D} < P{X +hx € D}.

Proof. This is a direct consequence of the following integral inequalities
(Anderson, 1955): For the convex set D of RY where D is symmetric
with respect to the origin, a non-negative function f(x) in RY satisfies:
(i) f(2) = f(—a);
(ii) for any u>0, {x: f(x) > u} is a convex set;
(iii) [}, f(z)dz < co (under the meaning of Lebesgue integral).
Then for any 0 < |h| < 1, we have

/f:v+y /fw+hy (2)

Assume that f(z) = (2n)~N/2 exp{—2’ X" 'x/2}, in which ¥ is the pos-
itive definite covariance matrix of X, the proof follows from (2).
2.3.b. Let X; and X5 be Gaussian vectors with means zero and covari-
ance matrixes X and Y5, respectively. If Xy — 3 is positive semi-definite
and D is a convex set symmetric with respect to the origin, then

P{X, € D} > P{X, € D}.

Proof. Let Y be a Gaussian vector in RY with mean zero and covariance
matrix Yo — X, and is independent of X;. Then X5 and X; + Y have
identical distributions. From 2.3.a, we have

P{X, € D}=P{X,+Y € D} = /P{X1 +yeD}dPy(y)

< / P{X, € D}dPy(y) = P{X, € D).



18 Chapter 2 Inequalities Related to Commonly Used Distributions

2.4 Khatri-Siddk Type Inequalities

2.4.a. Let X and X® be Gaussian vectors in R™ and R"™ respec-
tively, and D1, Dy be two convex sets in R™ and R™ which are sym-
metric with respect to the origin. If the rank of the covariance matrix
Cov(X®, X)) is not larger than 1, then we have

P{XW e D, X e Dy} > P{XWV e D;}P{X? € D,}.

Proof. Let g and h be two functions defined in RY. Suppose that
for any z1, 20 € RV, (g(x1) — g(z2))(h(z1) — h(z2)) < 0. Let X be a
random vector in RY and Y be an iid. copy of it. Then from E(g(X) —
g(Y)(h(X)—h(Y)) > 0 we have

Eg(X)h(X) > Eg(X)Eh(X). 3)

Let X} and X, be the covariance matrixes of X (1) and X () respectively.
Since the rank of Cov(X ™, X)) is at most 1, there exist a vector a €
R™ and a vector b € R” which satisfy Cov(X(), X)) = ab’, and X1,
X can be expressed as

XD =v® 1aq, Xx®=y® 4G,

where G is a standard normal variable, YV and Y are Gaussian
vectors with mean 0 and covariance matrices X; — aa’ and Xy — bb'?
respectively, and Y1), Y(2) and G are independent of each other. From
2.3.a, we obtain P{Y") +ay € D;} and P{Y® + by € D,} are both
nondecreasing functions of |y|. Therefore, by using (3) we have

P{XM e D;,X®? e D,}
=P{YW + 4G e D, Y?® 4G € Dy}

:/P{Y(l) +ay e D, Y® £ by e Dy} dP,(y)

2 If we arbitrarily choose the vectors a and b for the expression of
COV(X(1)7X<2)), the matrices X1 — aa’ and Yo — bb’ may not be non-negatively
definite (nnd.) and thus Y1) and Y(®) are not well defined. We just remind the
reader that we can always select suitable vectors a and b such that the matrices
Y1 — aa’ and Yo — bb' are both nnd. and our proof is based on such a suitable
selection of the vectors a and b.
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:/P{YU) +ay € D1 }P{Y® + by € Dy} dP,(y)

> / P{YW +ay € D} dP,(y) / P{Y® 4 by € Dy} dP,(y)

=P{YW 1 ag e D1 }P{Y® +bg € Dy}
=P{XW € D;}P{X® € Dy}.

As a special case of 2.4.a, we have

2.4.b. Suppose (X1,---,Xp) is a zero-mean Gaussian vector in RY.
Then for any positive number \;,i =1,--- , N, we have
N N—-1
P{ﬂuxn < An} >P{ (N (X1 <20 }PUXN] <)
i=1 i=1
> H P{|Xi| = An}.

When the rank of Cov(X ™, X)) is larger than 1, Shao(2003) proved
the following conclusion.
2.4.c. Suppose (X1, -+, X,) is a zero-mean Gaussian vector. Then for
any x > 0 and each 1 < k < n,

< <
pP{ max | Xi| < o} P{ max [Xi] <}

<P{ max |X;| <z} <p 1P{ max |X| x}P{ max |X\ x},

1<ig

where p = (| Z|/(|Z11]| Z22]))*/?, £, 211 and Yy are covariance matrixes
of (X1, ,Xn), (X1, ,Xg) and (Xp41,- -, X,) respectively.

2.4.b can be regarded as an analogy of an absolute-value situation of
Slepian lemma. Another analogy is 2.5.

2.5 Corner Probability of Normal Vector

Let X = (Xi, -
covariance matrix I' = (a;;) satisfying a;; = oyaj(aia;;)'?, i # 7,

,Xn) be a zero-mean Gaussian vector in RY with

where |a;| < 1 and a;; > 0,5 =1,---,N. Then for any positive number
Ni,i=1,---, N, we have

P{m(|Xi| > )\i)} > HP{(|X1‘\ > A}

i=1
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Proof. Put 0? = a;;. By the assumption, the covariance matrix I' can
be written as I' = T + aa/, where a = (o101, -+ ,oyay)’, and T is a
N x N diagonal matrix of which the diagonal elements are o2(1 — o).

Moreover, X can be written as
X =Y +ag,

where Y = (Y1, -+ ,Yn) is a zero-mean Gaussian vector with covari-
ance matrix 7', ¢g is a standard normal variable independent of Y, and
Y1,---,YyN, g are independent of each other. From 2.3.a, we obtain that
for each i, P{|Y; + o;a;y| > A\;} is a nondecreasing function of |y|. By
using (3), we have

N N
P{m(|Xi| > )\i)}Z/HP‘UYi + oyl = Ni} dPy(y)

i=1 i=1

N
> H/P{D/; + oiouy| = Ai} dPy(y)
i=1

N
=TI P{xil = A}
1=1

2.6 Normal Approximations of Binomial and Pois-
son Distributions

2.6.a (DeMoivre-Laplace). For n = 1,2,---, let k = k,, be a non-
negative integer and put = x;, = (k—np)(npq) /2, where ¢ = 1—p, 0 <
p < 1. If = o(n'/%), there exist positive constants A, B, C such that

blnp) | _A, Blaf', Cle|

(npg)~1/%¢(x) non vn

Proof. The condition z = o(n'/®) implies k/n — p. By the Stirling

formula,
1 1
| — n+1/2 —n+ten, /9 < < —
men e T 1 S 12

we have

n _ n" /2 exp(—n + e, ) (27) "V 2pkgn—Fk
b(kin,p)=|{ 0" " " = ——7 (,k Ve )(2m)

k kR +1/2(n — k)n—k+1/2 exp(—n + e + en_k)

e* ( k >_k_1/2 (n—k>_"+k_1/2( )-1/2
= —_— n s
o np ng Pq
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where ¢ = ¢, — &, — €5,k Since k/n — p,e = O(n~!). Now

log{(2mnpq)*/?b(k;n,p)}

<k+1>logk<nk+ >log —k
ng

=c— (np+x\/np + >log (1+x1/5p>
— | ng—xy/n Jr1 log|{1—=x a

q rq B g ng
B 1 qg 2% |z 3
=¢ (np—i—xw/npq—i—Q) {x p 2np+0(n3/2
—(n 71W+1 - ﬂf@JrO

q Pa+ 5 wa  2ng

x
—5—[35\/W+xq +§ Lo

oo (L) o(5) o ()]

This proves the desired inequality.
2.6.b. For z = (k — \)/V A ~ o(AY/6) as X\ — oo, there exist positive
constants A, B and C' such that
. 3

N P . )

AP () PN SV
Proof. Since z = (k — \)/VA = 0oA\Y®), k= X+ 0o(A\*/3) and v \/k =
o(A1/3),

k —X\ k+1/2
log {(23‘[)\)1/2>\;‘} = log { (2) e_/\'H“_E’”}
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1
k+ = |log 1—u + 2V — ey
2 k
1 VSN =P 23 \3/2
:—<k+2){k+2kz+o<k_3> +£L'\/X—€k
22\ v\ 22 a3 \3/2
__{2k+2k+4k2+0( 2 )

_;x2+0<\%) +O<i>+0<§;),

which implies the desired inequality.
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Chapter 3

Inequalities Related to
Characteristic Functions

The characteristic function (c.f.) or Fourier transformation is an impor-
tant mathematical tool in probability theory, especially in the theory of
limiting theorems of sums of independent random variables. Most of the
inequalities can be found in Loéve (1977) and Petrov (1995).

Let € be ar.v. with d.f. F(x). Its c.f. is defined as

f(z) = Bel'® = /00 e dF(z).

— 00

3.1 Inequalities Related Only with c.f.

3.1.a. For any real t,
L= [f(2)) <401 - |f@O)P).

Proof. Let G(z) be an arbitrary d.f. and let g(¢) be the corresponding
c.f. Then

o0

Re(1 — g(t)) = / (1 — costz)dG(x),

— 0o

where Re denotes the real part. It is clear that
t 1
1 — costr = 2sin? = > —(1 — cos 2tx)
2 7 4
and therefore for every t,
Re(1 —g(2t)) < 4Re(1 — g(t))

(this inequality is of its own interest). The desired inequality then follows
by setting g(t) = |£(£)|2.
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3.1.b. If [f(t)] < ¢ < 1 for all |t| € [b,20] (b > 0), then

1—¢2

2
8b2 t

lfB)]<1-

for [t| < b.
Proof. It follows from 3.1.a that

L= [f@" )P <4"(1 - fOF)

for every n. For t = 0 the inequality is trivial. Suppose ¢t # 0, |t| < b.
We choose n so that 27"b < [t| < 27"F!b. Then |f(2"t)]? < ¢* and
1= |f(O) > 5582 or |f(1)] < 1— L5842

3.1.c. Let f(t) be the c.f. of a non-degenerate distribution. Then there
exist positive constants § and ¢ such that |f(t)] < 1 — et? for |t| < 4.
Proof. We first prove that for any non-degenerate distribution with
c.f. f(t), there is a constant b such that |f(¢)] < 1 for any |t| < 2b.
If this is proved, then the conclusion follows from 3.1.b by choosing

€ = SUp;¢pp 9p) | £ ()] which is less than 1 by continuity of the c.f.

Now, we proceed with the proof of our assertion. If there is a positive
value o such that |f(to)] = 1, then there is a real number a such that
f(to) = €%, which implies that f(to)e™'® = 1. Considering its real part
we have

/(1 — cos(tox — a))dF(x) = 0.

Since 1 — cos(toxr — a) = 0, we conclude that with probability 1, tox —
a = 2nk, k = 0,%+1,---. That is, F' is a lattice distribution valued at
a + 2nk/ty. If there is a sequence ¢, | 0 such that |f(¢,)] = 1, then the
r.v. can only take values in

(V{an + 20k /t, k= 0,41, }.

n=1

The intersection can contain at most one point by the fact that ¢,, — 0
and thus F' is degenerate which contradicts the assumption. Our asser-
tion then follows from 3.1.b and consequently 3.1.c is proved.
3.1.d. Let £ be a bounded r.v. with || < M and variance 0. Then

1

2,2 2,2
T L) et < I
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Proof. Suppose first that £ = 0. By Taylor’s formula

|t|"

Z R, R0 < D,
7=0
Hence, we have
- )< 28 ()
and 242 21413
1= g0 - 5| < M )

If z is a complex number and |1 — z| < 1,

1 1_ |1—Z|2
/Z (c 1) d<’< ]

(integrating along a line segment). Then, using (4), we obtain

[logz+1—2z| =

- fOP ot

1 ) +1—f(t) < < . M?*? < 2.
| ng()+ f( )| |f(t)‘ 4(1—02t2/2)
Combining this inequality with (5), it follows that
o*t? ottt Mo?|t]?  o?t? 1
—log f(t) — < <Z% Mmp<=
A0 e o A T TNy 6 6 <3

Taking real parts, we find that the desired inequality is true for |¢| <
1/(2M). If we now drop the restriction that E¢ = 0, we apply the in-
equality to & — F to obtain 3.1.d.

3.1.e (increment inequality). For all real ¢ and h,

() = F(t+D)[* < 2(1 = Ref(h)).

Proof. By the Cauchy-Schwarz inequality

2

£(0)— F(t+ )P \/ (1 - )R ()

< /dF(m)/|1 — "2 F(z)

:2/(1 — cos hx)dF(x)
=2(1 — Ref(h)).
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3.2 Inequalities Related to c.f. and d.f.

3.2.a (truncation inequality). For u > 0,
9 3
AF (@) < ~5(1 - Ref(u)).
|z|<1/u u

/ AP (z) < z/uu _ Ref(1))dt
|z|>1/u U Jo

2,2 2,2
/(1 — cosux)dF(x) 2/ e (1 _ue ) dF(x)
lz|<1/u 2 12
11u?
—u/ 2dF(z);
24 |z|<1/u

i/ou dt/(l — costz)dF(x) =/ (1 - Siigx) dF(z)

2(1—sinl)/ dF(x).
lz|>1/u

3.2.b (integral inequality). For u > 0 there exist functions 0 < m(u) <
M (u) < oo such that

Proof.

=

miw) [0 RefO)e < [ a0 < M) [0 Ref(0)at

For u sufficiently close to 0,

1+ 22

/IQdF(J;) < —M(u) /Ou(log Ref(t))dt

Proof. The first part follows from the facts

“ sinuz 1+ 2?2 22
1-— F(x) = 1-— F
/0 dt/( costz)dF(z) u/ ( - ) 1 —|—x2d (x)

< Mﬁl(u) < 00.

2

. 1 2
0<m(u) < |yl <1 - Sm’“) tr

ux x

The second part follows from the fact that In(1 — z) ~ z as * — 0.
3.2.c. f1+2dF < JT e = f(t)|dt.



3.3 Normality Approximations of c.f. of Independent Sums 27

Proof. Integrating by parts yields

> 1
/ e teosxtdt = ——,
0 1 + JTQ

which implies

1+ 22

/ Y 4R = /Oooe—ta—Ref(t))dt,

as required.

3.3 Normality Approximations of c.f. of Indepen-
dent Sums

Let Xi,---,X, be independent r.v.’s, EX; = 0, E|X;|® < o0, j =
1,--- ,n. Put

0} =EX;, Bn=)» o3, L,=B."?> E|X;
j=1

j=1
—1/2 &
Let f,(t) be the c.f. of the r.v. B, '" >~ X,. Then
j=1
[Fn(t) =72 < T6L e/
for [¢] < 47—
Proof. We begin with the case in which [¢| > %LZLI/S. Then 8L,|t|* > 1,

and we will show that
_ 2
[fa()]? <e7?/2, (6)

which implies that
fult) — e 2 < | fult)] + e /2 < 27/ 6L, [t]Pe /2.

Write v;(t) = Fel'™i (j = 1,--- ,n) and define the symmetrization
rv. X j = X; =Y}, where Y} is independent and identically distributed
as X;. Then, X; has the c.f. |v;()|? and variance 207. Furthermore,
E|X;[® < 8B|X,P,

4 4
l;()> < 1—ojt* + g|zf|3E|Xj|3 < exp {—a?tQ + 3|t3E|Xj|‘”>} )
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Therefore in the interval [t| < 71— we have the estimate
a t\|? 4 2
2 _ ot 2, 2 3 _ 42
| fn (2] —jl;[l vj <\/B7> SeXp{ £+ 5 Lalt] }<eXp{ 3¢ }
and (6) is proved.
Now suppose that [t| < ﬁn and |t| < %L;l/?’. For j =1,---,n, we
have
0 (B X% 13 _ L t
t| < <L/t <=, vj|—==]=1-—1y,
where . .
_ gt EIX;° s

so that |r;| < & and

2,2\ 2 3 2 3
2 ajt EIXG1° s EIX;1° 8
Iy < 2 (wn v2( o) < S

Therefore

1 t B sz»tz
®\yB. )~ 2B,

t? L,
logfu(t) = =5 + 0=t |01 < 1.

E|X;?
9B3/?

/ 3 /
+ 0; t°, 1051 <1,

Using the inequality L, |t]> < %, which implies that exp {1 L, [t[3} <
2, we find that

|fut) — 72 <72

2
gLnlt‘3_1‘<&t3 v ht?’
ot <Dppep {0+ By

<Ly lt[Pe /2.
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Chapter 4

Estimates of the Difference of Two
Distribution Functions

Rates of weak convergence are important for application of weak limit
theorems. Thus, investigation on convergence rates has been an active
research topic for decades. Generally speaking, the convergence rates are
established by various basic inequalities between two distribution func-
tions and/or functions of bounded variation in terms of various trans-
formations. The first work was done be Berry-Esseen who established
the convergence rate of normal approximation in terms of Fourier trans-
formations or characteristic functions. Stein and Chen created a new
method to evaluate the convergence rates of normal or Poisson approxi-
mation for non-independent sums. In 1993, Bai established convergence
rates of empirical spectral distributions of large dimensional random ma-
trices in terms of Stieltjes transforms. In this chapter, we only introduce
some basic inequalities of difference of two distribution functions. Their
applications can be found in Petrov (1995), Stein (1986) and Bai (1993).

4.1 Fourier Transformation

4.1.a (Berry-Esseen basic inequality). Estimate of the difference of the
corresponding c.f.’s.

Let F'(x) be a non-decreasing bounded function, and G(z) a function
of bounded variation on the real line. Suppose that F'(—oo) = G(—o0).
Let

16 = [e=ar@), g0 = [ a6,
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and T' be an arbitrary positive number. Then for any b > 5~ we have

sup |F(x) \<b/
—oo<r<oo

+20T  sup / |G(z +y) — G(z)|dy,
ly|<ce(b)/T

—oo<r <00

0290 o

where ¢(b) is a positive constant depending only on b and is usually
chosen as the root of the equation

c(®)/2 gin? 1
R = D
/0 x? + 8b°

Proof. Note that w(z) = S;“;f is a probability density function with
c.f. h(t) = (1 — |t|) or 0 according to whether |t| < 1 or not. Let F' (G)
be the convolution of Tw(Tx) with F (G, correspondingly). Then, we

~( ) é( ) 1 /oo e—itw f(t)i_itgot) h(t/T)dt

have

2

from wh