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Preface

This year marks the centennial of Student’s seminal 1908 paper, “On the probable
error of a mean,” in which the t-statistic and the t-distribution were introduced. Dur-
ing the past century, the t-statistic has evolved into much more general Studentized
statistics and self-normalized processes, and the t-distribution generalized to the
multivariate case, leading to multivariate processes with matrix self-normalization
and bootstrap-t methods for tests and confidence intervals. The past two decades
have also witnessed the active development of a rich probability theory of self-
normalized processes, beginning with laws of the iterated logarithm, weak conver-
gence, large and moderate deviations for self-normalized sums of independent ran-
dom variables, and culminating in exponential and moment bounds and a universal
law of the iterated logarithm for self-normalized processes in the case of dependent
random variables. An important goal of this book is to present the main techniques
and results of these developments in probability and to relate them to the asymptotic
theory of Studentized statistics and to other statistical applications.

Another objective of writing this book is to use it as course material for a Ph.D.
level course on selected topics in probability theory and its applications. Lai and
Shao co-taught such a course for Ph.D. students in the Department of Statistics at
Stanford University in the summer of 2007. These students had taken the Ph.D. core
courses in probability (at the level of Durrett’s Probability: Theory and Examples)
and in theoretical statistics (at the level of Lehmann’s Testing Statistical Hypotheses
and Theory of Point Estimation). They found the theory of self-normalized processes
an attractive topic, supplementing and integrating what they had learned from their
core courses in probability and theoretical statistics and also exposing them to new
techniques and research topics in both areas. The success of the experimental course
STATS 300 (Advanced Topics in Statistics and Probability) prompted Lai and Shao
to continue offering it periodically at Stanford and Hong Kong University of Sci-
ence and Technology. A similar course is being planned at Columbia University
by de la Peña. With these courses in mind, we have included exercises and sup-
plements for the reader to explore related concepts and methods not covered in
introductory Ph.D.-level courses, besides providing basic references related to these
topics. We also plan to update these periodically at the Web site for the book:
http://www.math.ust.hk/∼maqmshao/book-self/SNP.html.
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Chapter 1
Introduction

A prototypical example of a self-normalized process is Student’s t-statistic based
on a sample of normal i.i.d. observations X1, . . . ,Xn, dating back to 1908 when
William Gosset (“Student”) considered the problem of statistical inference on the
mean μ when the standard deviation σ of the underlying distribution is unknown.
Let X̄n = n−1∑n

i=1 Xi be the sample mean and s2
n = (n− 1)−1∑n

i=1(Xi − X̄n)2 be
the sample variance. Gosset (1908) derived the distribution of the t-statistic Tn =√

n(X̄n− μ)/sn for normal Xi; this is the t-distribution with n− 1 degrees of free-
dom. The t-distribution converges to the standard normal distribution, and in fact
Tn has a limiting standard normal distribution as n→ ∞ even when the Xi are non-
normal. When nonparametric methods were subsequently introduced, the t-test was
compared with the nonparametric tests (e.g., the sign test and rank tests), in particu-
lar for “fat-tailed” distributions with infinite second or even first absolute moments.
It has been found that the t-test of μ = μ0 is robust against non-normality in terms
of the Type I error probability but not the Type II error probability. Without loss of
generality, consider the case μ0 = 0 so that

Tn =
√

nX̄n

sn
=

Sn

Vn

{
n−1

n− (Sn/Vn)
2

}1/2

, (1.1)

where Sn = ∑n
i=1 Xi,V 2

n = ∑n
i=1 X2

i . Efron (1969) and Logan et al. (1973) have de-
rived limiting distributions of self-normalized sums Sn/Vn. In view of (1.1), if Tn or
Sn/Vn has a limiting distribution, then so does the other, and it is well known that
they coincide; see, e.g., Proposition 1 of Griffin (2002).

Active development of the probability theory of self-normalized processes be-
gan in the 1990s with the seminal work of Griffin and Kuelbs (1989, 1991) on laws
of the iterated logarithm for self-normalized sums of i.i.d. variables belonging to
the domain of attraction of a normal or stable law. Subsequently, Bentkus and Götze
(1996) derived a Berry–Esseen bound for Student’s t-statistic, and Giné et al. (1997)
proved that the t-statistic has a limiting standard normal distribution if and only if
Xi is in the domain of attraction of a normal law. Moreover, Csörgő et al. (2003a)

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 1
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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proved a self-normalized version of the weak invariance principle under the same
necessary and sufficient condition. Shao (1997) proved large deviation results for
Sn/Vn without moment conditions and moderate deviation results when Xi is the
domain of attraction of a normal or stable law. Subsequently Shao (1999) obtained
Cramér-type large deviation results when E|X1|3 < ∞. Jing et al. (2004) derived
saddlepoint approximations for Student’s t-statistic with no moment assumptions.
Bercu et al. (2002) obtained large and moderate deviation results for self-normalized
empirical processes. Self-normalized sums of independent but non-identically dis-
tributed Xi have been considered by Bentkus et al. (1996), Wang and Jing (1999),
Jing et al. (2003) and Csörgő et al. (2003a).

Part I of the book presents in Chaps. 3–7 the basic ideas and results in the prob-
ability theory of self-normalized sums of independent random variables described
above. It also extends in Chap. 8 the theory to self-normalized U-statistics based
on independent random variables. Part II considers self-normalized processes in the
case of dependent variables. Like Part I that begins by introducing some basic prob-
ability theory for sums of independent random variables in Chap. 2, Part II begins by
giving in Chap. 9 an overview of martingale inequalities and related results which
will be used in the subsequent chapters. Chapter 10 provides a general framework
for self-normalization, which links the approach of de la Peña et al. (2000, 2004) for
general self-normalized processes to that of Shao (1997) for large deviations of self-
normalized sums of i.i.d. random variables. This general framework is also applica-
ble to dependent random vectors that involve matrix normalization, as in Hotelling’s
T 2-statistic which generalizes Student’s t-statistic to the multivariate case. In partic-
ular, it is noted in Chap. 10 that a basic ingredient in Shao’s (1997) self-normalized
large deviations theory is eψ(θ ,ρ) := E exp{θX1−ρθ 2X2

1 }, which is always finite for
ρ > 0. This can be readily extended to the multivariate case by replacing θX1 with
θ ′X1, where θ and X1 are d-dimensional vectors. Under the assumptions EX1 = 0
and E‖X1‖2 < ∞, Taylor’s theorem yields

ψ(θ ,ρ) = log
(
E exp

{
θ ′X1−ρ(θ ′X1)2}) =

{(
1
2
−ρ +o(1)

)
θ ′E(X1X ′1)θ

}

as θ → 0. Let γ > 0,Cn = (1+γ)Σ n
i=1XiX ′i ,An = Σ n

i=1Xi. It then follows that ρ and ε
can be chosen sufficiently small so that{

exp(θ ′An−θ ′Cnθ/2), Fn,n≥ 1
}

is a supermartingale with mean ≤ 1, for ‖θ‖< ε.
(1.2)

Note that (1.2) implies that {
∫
‖θ‖<ε eθ

′An−θ ′Cnθ/2 f (θ)dθ , Fn,n ≥ 1} is also a su-
permartingale, for any probability density f on the ball {θ : ‖θ‖< ε}.

In Chap. 11 and its multivariate extension given in Chap. 14, we show that the
supermartingale property (1.2), its weaker version E{exp(θ ′An− θ ′Cnθ/2)} ≤ 1
for ‖θ‖< ε , and other variants given in Chap. 10 provide a general set of conditions
from which we can derive exponential bounds and moment inequalities for self-
normalized processes in dependent settings. A key tool is the pseudo-maximization



1 Introduction 3

method which involves Laplace’s method for evaluating integrals of the form∫
‖θ‖<ε eθ

′An−θ ′Cnθ/2 f (θ)dθ . If the random function exp{θ ′An−θ ′Cnθ/2} in (1.2)
could be maximized over θ inside the expectation E{exp(θ ′An − θ ′Cnθ/2)},
taking the maximizing value θ = C−1

n An would yield the expectation of the self-
normalized variable exp{AnC−1

n An/2}. Although this argument is not valid, in-
tegrating exp{θ ′An − θ ′Cnθ/2} with respect to f (θ)dθ and applying Laplace’s
method to evaluate the integral basically achieves the same effect as in the heuristic
argument. This method is used to derive exponential and Lp-bounds for self-
normalized processes in Chap. 12. The exponential bounds are used to derive laws
of the iterated logarithm for self-normalized processes in Chap. 13.

Student’s t-statistic
√

n(X̄n− μ)/sn has also undergone far-reaching generaliza-
tions in the statistics literature during the past century. Its generalization is the
Studentized statistic (θ̂n − θ)/ŝen, where θ is a functional g(F) of the underly-
ing distribution function F , θ̂n is usually chosen to be the corresponding functional
g(F̂n) of the empirical distribution, and ŝen is a consistent estimator of the stan-
dard error of θ̂n. Its multivariate generalization, which replaces 1/ŝen by Σ̂−1/2

n ,
where Σ̂n is a consistent estimator of the covariance matrix of the vector θ̂n or
its variant, is ubiquitous in statistical applications. Part III of the book, which is
on statistical applications of self-normalized processes, begins with an overview in
Chap. 15 of the distribution theory of the t-statistic and its multivariate extensions,
for samples first from normal distributions and then from general distributions that
may have infinite second moments. Chapter 15 also considers the asymptotic the-
ory of general Studentized statistics in time series and control systems and relates
this theory to that of self-normalized martingales. An alternative to inference based
on asymptotic distributions of Studentized statistics is to make use of bootstrap-
ping. Chapter 16 describes the role of self-normalization in deriving approximate
pivots for the construction of bootstrap confidence intervals, whose accuracy and
correctness are analyzed by Edgeworth and Cornish–Fisher expansions. Chapter 17
introduces generalized likelihood ratio statistics as another class of self-normalized
statistics. It also relates the pseudo-maximization approach and the method of mix-
tures in Part II to the close connections between likelihood and Bayesian inference.
Whereas the framework of Part I covers the classical setting of independent obser-
vations sampled from a population, that of Part II is applicable to time series models
and stochastic dynamic systems, and examples are given in Chaps. 15, 17 and 18.
Moreover, the probability theory in Parts I and II is related not only to samples
of fixed size, but also to sequentially generated samples that are associated with
asymptotically optimal stopping rules. Part III concludes with Chap. 18 which con-
siders self-normalized processes in sequential analysis and the associated boundary
crossing problems.
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Chapter 2
Classical Limit Theorems, Inequalities
and Other Tools

This chapter summarizes some classical limit theorems, basic probability inequali-
ties and other tools that are used in subsequent chapters. Throughout this book, all
random variables are assumed to be defined on the same probability space (Ω ,F ,P)
unless otherwise specified.

2.1 Classical Limit Theorems

The law of large numbers, the central limit theorem and the law of the iterated
logarithm form a trilogy of the asymptotic behavior of sums of independent random
variables. They are closely related to moment conditions and deal with three modes
of convergence of a sequence of random variables Yn to a random variable Y . We
say that Yn converges to Y in probability, denoted by Yn

P−→ Y , if, for any ε > 0,
P(|Yn−Y | > ε)→ 0 as n→ ∞. We say that Yn converges almost surely to Y (or Yn

converges to Y with probability 1), denoted by Yn
a.s.−→ Y , if P(limn→∞Yn = Y ) = 1.

Note that almost sure convergence is equivalent to P(maxk≥n |Yk−Y | > ε)→ 0 as
n→∞ for any given ε > 0. We say that Yn converges in distribution (or weakly) to Y ,
and write Yn

D−→ Y or Yn ⇒ Y , if P(Yn ≤ x)→ P(Y ≤ x), at every continuity point
of the cumulative distribution function of Y . If the cumulative distribution P(Y ≤ x)
is continuous, then Yn

D−→ Y not only means P(Yn ≤ x)→ P(Y ≤ x) for every x, but
also implies that the convergence is uniform in x, i.e.,

sup
x
|P(Yn ≤ x)−P(Y ≤ x)| → 0 as n→ ∞.

The three modes of convergence are related by

Yn
a.s.−→ Y =⇒ Yn

P−→ Y =⇒ Yn
D−→ Y.

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 7
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The reverse relations are not true in general. However, Yn
D−→ c is equivalent to

Yn
P−→ c when c is a constant. Another relationship is provided by Slutsky’s theorem:

If Yn
D−→ Y and ξn

P−→ c, then Yn +ξn
D−→ Y + c and ξnYn

D−→ cY .

2.1.1 The Weak Law, Strong Law and Law of the Iterated
Logarithm

Let X1,X2, . . . be independent and identically distributed (i.i.d.) random variables
and let Sn = ∑n

i=1 Xi. Then we have Kolmogorov’s strong law of large numbers and
Feller’s weak law of large numbers.

Theorem 2.1. n−1Sn
a.s.−→ c <∞ if and only if E(|X1|) <∞, in which case c = E(X1).

Theorem 2.2. In order that there exist constants cn such that n−1Sn − cn
P−→ 0,

it is necessary and sufficient that limx→∞ xP(|X1| ≥ x) = 0. In this case, cn =
EX1I(|X1| ≤ n).

The Marcinkiewicz–Zygmund law of large numbers gives the rate of conver-
gence in Theorem 2.1.

Theorem 2.3. Let 1 < p < 2. If E(|X1|) < ∞, then

n1−1/p (n−1Sn−E(X1)
) a.s.−→ 0 (2.1)

if and only if E(|X1|p) < ∞.

When p = 2, (2.1) is no longer valid. Instead, we have the Hartman–Wintner law
of the iterated logarithm (LIL), the converse of which is established by Strassen
(1966).

Theorem 2.4. If EX2
1 < ∞ and EX1 = μ , Var(X1) = σ2, then

limsup
n→∞

Sn−nμ√
2n log logn

= σ a.s.,

liminf
n→∞

Sn−nμ√
2n log logn

=−σ a.s.,

limsup
n→∞

max1≤k≤n |Sk− kμ |√
2n log logn

= σ a.s.

Conversely, if there exist finite constants a and τ such that

limsup
n→∞

Sn−na√
2n log logn

= τ a.s.,

then a = E(X1) and τ2 = Var(X1).
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The following is an important tool for proving Theorems 2.1, 2.3 and 2.4.

Lemma 2.5 (Borel–Cantelli Lemma).

(1) Let A1,A2, . . . be an arbitrary sequence of events on (Ω ,F ,P). Then
∑∞

i=1 P(Ai) < ∞ implies P(An i.o.) = 0, where {An i.o.} denotes the event
∩k≥1∪n≥k An, i.e., An occurs infinitely often.

(2) Let A1,A2, . . . , be a sequence of independent events on (Ω ,F ,P). Then
∑∞

i=1 P(Ai) = ∞ implies P(An i.o.) = 1.

The strong law of large numbers and LIL have also been shown to hold for inde-
pendent but not necessarily identically distributed random variables X1,X2, . . . .

Theorem 2.6.

(1) If bn ↑ ∞ and ∑∞
i=1 Var(Xi)/b2

i < ∞, then (Sn−ESn)/bn
a.s.−→ 0.

(2) If bn ↑ ∞, ∑∞
i=1 P(|Xi| ≥ bi) < ∞ and ∑∞

i=1 b−2
i EX2

i I(|Xi| ≤ bi) < ∞, then (Sn−
an)/bn

a.s.−→ 0, where an = ∑n
i=1 EXiI(|Xi| ≤ bi).

The “if” part in Theorems 2.1 and 2.3 can be derived from Theorem 2.6, which
can be proved by making use Kolmogorov’s three-series theorem and the Kronecker
lemma in the following.

Theorem 2.7 (Three-series Theorem). The series ∑∞
i=1 Xi converges a.s. if and only

if the three series

∞

∑
i=1

P(|Xi| ≥ c),
∞

∑
i=1

EXiI(|Xi| ≤ c),
∞

∑
i=1

Var{XiI(|Xi| ≤ c)}

converge for some c > 0.

Lemma 2.8 (Kronecker’s Lemma). If ∑∞
i=1 xi converges and bn ↑ ∞, then

b−1
n ∑n

i=1 bixi → 0.

We end this subsection with Kolmogorov’s LIL for independent but not nec-
essarily identically distributed random variables; see Chow and Teicher (1988,
Sect. 10.2). Assume that EXi = 0 and EX2

i < ∞ and put B2
n = ∑n

i=1 EX2
i . If Bn → ∞

and Xn = o(Bn(log logBn)−1/2) a.s., then

limsup
n→∞

Sn

Bn
√

2loglogBn
= 1 a.s. (2.2)

2.1.2 The Central Limit Theorem

For any sequence of random variables Xi with finite means, the sequence Xi−E(Xi)
has zero means and therefore we can assume, without loss of generality, that the
mean of Xi is 0. For i.i.d. Xi, we have the classical central limit theorem (CLT).
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Theorem 2.9. If X1, . . . ,Xn are i.i.d. with E(X1) = 0 and Var(X1) = σ2 < ∞, then

Sn√
nσ

D−→ N(0,1).

The Berry–Esseen inequality provides the convergence rate in the CLT.

Theorem 2.10. Let Φ denote the standard normal distribution function and Wn =
Sn/(

√
nσ). Then

sup
x
|P(Wn ≤ x)−Φ(x)| (2.3)

≤ 4.1
{
σ−2EX2

1 I
(
|X1|>

√
nσ

)
+n−1/2σ−3E|X1|3I

(
|X1| ≤

√
nσ

)}
.

In particular, if E|X1|3 < ∞, then

sup
x
|P(Wn ≤ x)−Φ(x)| ≤ 0.79E|X1|3√

nσ3 . (2.4)

For general independent not necessarily identically distributed random variables,
the CLT holds under the Lindeberg condition, under which a non-uniform Berry–
Esseen inequality of the type in (2.3) still holds.

Theorem 2.11 (Lindberg–Feller CLT). Let Xn be independent random variables
with E(Xi) = 0 and E(X2

i ) < ∞. Let Wn = Sn/Bn, where B2
n = ∑n

i=1 E(X2
i ). If the

Lindberg condition

B−2
n

n

∑
i=1

EX2
i I(|Xi| ≥ εBn)−→ 0 for all ε > 0 (2.5)

holds, then Wn
D−→ N(0,1). Conversely, if max1≤i≤n EX2

i = o(B2
n) and Wn

D−→ N
(0,1), then the Lindberg condition (2.5) is satisfied.

Theorem 2.12. With the same notations as in Theorem 2.11,

sup
x
|P(Wn ≤ x)−Φ(x)| (2.6)

≤ 4.1

(
B−2

n

n

∑
i=1

EX2
i I {|Xi|> Bn}+B−3

n

n

∑
i=1

E|Xi|3I {|Xi| ≤ Bn}
)

and

|P(Wn ≤ x)−Φ(x)| (2.7)

≤ C

(
n

∑
i=1

EX2
i I {|Xi|> (1+ |x|)Bn}

(1+ |x|)2 B2
n

+
n

∑
i=1

E|Xi|3I {|Xi| ≤ (1+ |x|)Bn}
(1+ |x|)3 B3

n

)
,

where C is an absolute constant.
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2.1.3 Cramér’s Moderate Deviation Theorem

The Berry–Esseen inequality gives a bound on the absolute error in approximating
the distribution of Wn by the standard normal distribution. The usefulness of the
bound may be limited when Φ(x) is close to 0 or 1. Cramér’s theory of moderate
deviations provides the relative errors. Petrov (1975, pp. 219–228) gives a compre-
hensive treatment of the theory and introduces the Cramér series, which is a power
series whose coefficients can be expressed in terms of the cumulants of the under-
lying distribution and which is used in part (a) of the following theorem.
Theorem 2.13.
(a) Let X1,X2, . . . be i.i.d. random variables with E(X1) = 0 and Eet0|X1| < ∞ for

some t0 > 0. Then for x≥ 0 and x = o(n1/2),

P(Wn ≥ x)
1−Φ(x)

= exp
{

x2λ
(

x√
n

)}(
1+O

(
1+ x√

n

))
, (2.8)

where λ (t) is the Cramér series.

(b) If Eet0
√
|X1| < ∞ for some t0 > 0, then

P(Wn ≥ x)
1−Φ(x)

→ 1 as n→ ∞ uniformly in x ∈
[
0,o(n1/6)

)
. (2.9)

(c) The converse of (b) is also true; that is, if (2.9) holds, then Eet0
√
|X1| < ∞ for

some t0 > 0.

In parts (a) and (b) of Theorem 2.13, P(Wn ≥ x)/(1−Φ(x)) can clearly be
replaced by P(Wn ≤ −x)/Φ(−x). Moreover, similar results are also available for
standardized sums Sn/Bn of independent but not necessarily identically distributed
random variables with bounded moment generating functions in some neighborhood
of the origin; see Petrov (1975). In Chap. 7, we establish Cramér-type moderate de-
viation results for self-normalized (rather than standardized) sums of independent
random variables under much weaker conditions.

2.2 Exponential Inequalities for Sample Sums

2.2.1 Self-Normalized Sums

We begin by considering independent Rademacher random variables.
Theorem 2.14. Assume that εi are independent and P(εi = 1) = P(εi =−1) = 1/2.
Then

P

(
∑n

i=1 aiεi(
∑n

i=1 a2
i

)1/2 ≥ x

)
≤ e−x2/2 (2.10)

for x > 0 and real numbers {ai}.
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Proof. Without loss of generality, assume ∑n
i=1 a2

i = 1. Observe that

1
2
(e−t + et)≤ et2/2

for t ∈ R. We have

P

(
n

∑
i=1

aiεi ≥ x

)
≤ e−x2

Eex∑n
i=1 aiεi

= e−x2
n

∏
i=1

1
2
(e−aix + eaix)

≤ e−x2
n

∏
i=1

ea2
i x2/2 = e−x2/2.

��
Let Xn be independent random variables and let V 2

n = ∑n
i=1 X2

i . If we further
assume that Xi is symmetric, then Xi and εiXi have the same distribution, where
{εi} are i.i.d. Rademacher random variables independent of {Xi}. Hence the self-
normalized sum Sn/Vn has the same distribution as (∑n

i=1 Xiεi)/Vn. Given {Xi,1 ≤
i≤ n}, applying (2.10) to ai = Xi yields the following.

Theorem 2.15. If Xi is symmetric, then for x > 0,

P(Sn ≥ xVn)≤ e−x2/2. (2.11)

The next result extends the above “sub-Gaussian” property of the self-normalized
sum Sn/Vn to general (not necessarily symmetric) independent random variables.

Theorem 2.16. Assume that there exist b > 0 and a such that

P(Sn ≥ a)≤ 1/4 and P(V 2
n ≥ b2)≤ 1/4. (2.12)

Then for x > 0,
P{Sn ≥ x(a+b+Vn)} ≤ 2e−x2/2. (2.13)

In particular, if E(Xi) = 0 and E(X2
i ) < ∞, then

P{|Sn| ≥ x(4Bn +Vn)} ≤ 4e−x2/2 for x > 0, (2.14)

where Bn = (∑n
i=1 EX2

i )1/2.

Proof. When x≤ 1, (2.13) is trivial. When x > 1, let {Yi,1≤ i≤ n} be an indepen-
dent copy of {Xi,1≤ i≤ n}. Then

P

(
n

∑
i=1

Yi ≤ a,
n

∑
i=1

Y 2
i ≤ b2

)
≥ 1−P

(
n

∑
i=1

Yi > a

)
−P

(
n

∑
i=1

Y 2
i > b2

)

≥ 1−1/4−1/4 = 1/2.
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Noting that{
Sn ≥ x(a+b+Vn),

n

∑
i=1

Yi ≤ a,
n

∑
i=1

Y 2
i ≤ b2

}

⊂

⎧⎨
⎩

n

∑
i=1

(Xi−Yi)≥ x

⎛
⎝a+b+

(
n

∑
i=1

(Xi−Yi)2

)1/2

−
(

n

∑
i=1

Y 2
i

)1/2
⎞
⎠−a,

n

∑
i=1

Y 2
i ≤ b2

⎫⎬
⎭

⊂

⎧⎨
⎩

n

∑
i=1

(Xi−Yi)≥ x

(
n

∑
i=1

(Xi−Yi)2

)1/2
⎫⎬
⎭

and that {Xi−Yi,1 ≤ i ≤ n} is a sequence of independent symmetric random vari-
ables, we have

P(Sn ≥ x(a+b+Vn)) =
P
(
Sn ≥ x(a+b+Vn),∑n

i=1 Yi ≤ a,∑n
i=1 Y 2

i ≤ b2
)

P
(
∑n

i=1 Yi ≤ a,∑n
i=1 Y 2

i ≤ b2
)

≤ 2P
(
∑n

i=1(Xi−Yi)≥ x
(
∑n

i=1(Xi−Yi)2
)1/2

)
≤ 2e−x2/2

by (2.11). This proves (2.13), and (2.14) follows from (2.13) with a = b = 2Bn. ��

2.2.2 Tail Probabilities for Partial Sums

Let Xn be independent random variables and let Sn =∑n
i=1 Xi. The following theorem

gives the Bennett–Hoeffding inequalities.

Theorem 2.17. Assume that EXi ≤ 0 , Xi ≤ a (a > 0) for each 1 ≤ i ≤ n, and
∑n

i=1 EX2
i ≤ B2

n. Then

EetSn ≤ exp
(
a−2(eta−1− ta)B2

n
)

for t > 0, (2.15)

P(Sn ≥ x)≤ exp
(
−B2

n

a2

{(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

})
(2.16)

and

P(Sn ≥ x)≤ exp
(
− x2

2(B2
n +ax)

)
for x > 0. (2.17)

Proof. It is easy to see that (es−1− s)/s2 is an increasing function of s. Therefore

ets ≤ 1+ ts+(ts)2(eta−1− ta)/(ta)2 (2.18)
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for s≤ a, and hence

EetSn =
n

∏
i=1

EetXi ≤
n

∏
i=1

(
1+ tEXi +a−2(eta−1− ta)EX2

i
)

≤
n

∏
i=1

(
1+a−2(eta−1− ta)EX2

i
)
≤ exp

(
a−2(eta−1− ta)B2

n
)
.

This proves (2.15). To prove (2.16), let t = a−1 log(1+ax/B2
n). Then, by (2.15),

P(Sn ≥ x) ≤ e−txEetSn

≤ exp
(
−tx+a−2(eta−1− ta)B2

n
)

= exp
(
−B2

n

a2

{(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

})
,

proving (2.16). To prove (2.17), use (2.16) and

(1+ s) log(1+ s)− s≥ s2

2(1+ s)
for s > 0.

��
The inequality (2.17) is often called Bernstein’s inequality. From the Taylor ex-

pansion of ex, it follows that

ex ≤ 1+ x+ x2/2+ |x|3ex/6. (2.19)

Let βn = ∑n
i=1 E|Xi|3. Using (2.19) instead of (2.18) in the above proof, we have

EetSn ≤ exp
(

1
2

t2B2
n +

1
6

t3βneta
)

, (2.20)

P(Sn ≥ x)≤ exp
(
−tx+

1
2

t2B2
n +

1
6

t3βneta
)

(2.21)

for all t > 0, and in particular

P(Sn ≥ x)≤ exp
(
− x2

2B2
n

+
x3

6B6
n
βneax/B2

n

)
. (2.22)

When Xi is not bounded above, we can first truncate it and then apply
Theorem 2.17 to prove the following inequality.

Theorem 2.18. Assume that EXi ≤ 0 for 1≤ i≤ n and that ∑n
i=1 EX2

i ≤ B2
n. Then

P(Sn ≥ x) ≤ P
(

max
1≤i≤n

Xi ≥ b
)

+ exp
(
−B2

n

a2

{(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

})
+∑n

i=1 P(a < Xi < b)P(Sn−Xi > x−b) (2.23)
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for x > 0 and b≥ a > 0. In particular,

P(Sn ≥ x)≤ P
(

max
1≤i≤n

Xi > δx
)

+
(

3B2
n

B2
n +δx2

)1/δ

(2.24)

for x > 0 and δ > 0.

Proof. Let X̄i = XiI(Xi ≤ a) and S̄n = ∑n
i=1 X̄i. Then

P(Sn ≥ x) ≤ P
(

max
1≤i≤n

Xi ≥ b
)

+P
(

Sn ≥ x, max
1≤i≤n

Xi ≤ a
)

+P
(

Sn ≥ x, max
1≤i≤n

Xi > a, max
1≤i≤n

Xi < b
)

≤ P
(

max
1≤i≤n

Xi ≥ b
)

+P(S̄n ≥ x)

+∑n
i=1 P(Sn ≥ x,a < Xi < b) (2.25)

≤ P
(

max
1≤i≤n

Xi ≥ b
)

+P(S̄n ≥ x)

+∑n
i=1 P(Sn−Xi ≥ x−b,a < Xi < b)

= P
(

max
1≤i≤n

Xi ≥ b
)

+P(S̄n ≥ x)

+∑n
i=1 P(a < Xi < b)P(Sn−Xi ≥ x−b).

Applying (2.16) to S̄n gives

P(S̄n ≥ x)≤ exp
(
−B2

n

a2

[(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

])
,

which together with (2.26) yields (2.23). From (2.23) with a = b = δx, (2.24)
follows. ��

The following two results are about nonnegative random variables.
Theorem 2.19. Assume that Xi ≥ 0 with E(X2

i ) < ∞. Let μn = ∑n
i=1 EXi and B2

n =
∑n

i=1 EX2
i . Then for 0 < x < μn,

P(Sn ≤ x)≤ exp
(
− (μn− x)2

2B2
n

)
. (2.26)

Proof. Note that e−a ≤ 1−a+a2/2 for a≥ 0. For any t ≥ 0 and x≤ μn, we have

P(Sn ≤ x) ≤ etxEe−tSn = etx
n

∏
i=1

Ee−tXi

≤ etx
n

∏
i=1

E(1− tXi + t2X2
i /2)

≤ exp
(
−t(μn− x)+ t2B2

n/2
)
.

Letting t = (μn− x)/B2
n yields (2.26). ��
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Theorem 2.20. Assume that P(Xi = 1) = pi and P(Xi = 0) = 1− pi. Then for x > 0,

P(Sn ≥ x)≤
(μ e

x

)x
, (2.27)

where μ = ∑n
i=1 pi.

Proof. Let t > 0. Then

P(Sn ≥ x) ≤ e−tx
n

∏
i=1

EetXi = e−tx
n

∏
i=1

(
1+ pi(et −1)

)
≤ exp

(
−tx+(et −1)∑n

i=1 pi
)

= exp
(
−tx+(et −1)μ

)
.

Since the case x ≤ μ is trivial, we assume that x > μ . Then letting t = log(x/μ)
yields

exp
(
−tx+(et −1)μ

)
= exp(−x log(x/μ)+ x−μ)≤ (μ e/x)x.

��
We end this section with the Ottaviani maximal inequality.

Theorem 2.21. Assume that there exists a such that max1≤k≤n P(Sk−Sn≥ a)≤ 1/2.
Then

P
(

max
1≤k≤n

Sk ≥ x
)
≤ 2P(Sn ≥ x−a). (2.28)

In particular, if E(Xi) = 0 and E(X2
i ) < ∞, then

P
(

max
1≤k≤n

Sk ≥ x
)
≤ 2P(Sn ≥ x−

√
2Bn), (2.29)

where Bn =
√

∑n
i=1 E(X2

i ).

Proof. Let A1 = {S1≥ x} and Ak = {Sk≥ x,max1≤i≤k−1 Si < x}. Then {max1≤k≤n Sk
≥ x}= ∪n

k=1Ak and

P
(

max
1≤k≤n

Sk ≥ x
)
≤ P(Sn ≥ x−a)+

n

∑
k=1

P(Ak,Sn < x−a)

≤ P(Sn ≥ x−a)+
n

∑
k=1

P(Ak,Sn−Sk <−a)

= P(Sn ≥ x−a)+
n

∑
k=1

P(Ak)P(Sn−Sk <−a)

≤ P(Sn ≥ x−a)+(1/2)
n

∑
k=1

P(Ak)

= P(Sn ≥ x−a)+(1/2)P
(

max
1≤k≤n

Sk ≥ x
)

,

which gives (2.28). (2.29) follows from (2.28) with a =
√

2Bn. ��
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The proof of Kolmogorov’s LIL (2.2) involves upper exponential bounds like
those in Theorem 2.17 and the following lower exponential bound, whose proof is
given in Chow and Teicher (1988, pp. 352–354) and uses the “conjugate method”
that will be described in Sect. 3.1.

Theorem 2.22. Assume that EXi = 0 and |Xi| ≤ ai a.s. for 1 ≤ i ≤ n and that
∑n

i=1 EX2
i = B2

n. Let cn ≥ c0 > 0 be such that limn→∞ ancn/Bn = 0. Then for every
0 < γ < 1, there exists 0 < δγ < 1/2 such that for all large n,

P
{

Sn ≥ (1− γ)2cnBn
}
≥ δγ exp

{
−(1− γ)(1− γ2)c2

n/2
}

.

2.3 Characteristic Functions and Expansions Related to the CLT

Let Y be a random variable with distribution function F . The characteristic function
of Y is defined by ϕ(t) = EeitY =

∫ ∞
−∞ eitydF(y) for t ∈R. In view of Lévy’s inversion

formula

lim
T→∞

1
2π

∫ T

−T

e−ita− e−itb

it
ϕ(t)dt = P(a < Y < b)+

1
2
{P(Y = a)+P(Y = b)}

(2.30)

for a < b (see Durrett, 2005, pp. 93–94), the characteristic function uniquely deter-
mines the distribution function. The characteristic function ϕ is continuous, with
ϕ(0) = 1, |ϕ(t)| ≤ 1 for all t ∈R. There are three possibilities concerning solutions
to the equation |ϕ(t)|= 1 (see Durrett, 2005, p. 129):

(a) |ϕ(t)|< 1 for all t �= 0.
(b) |ϕ(t)|= 1 for all t ∈ R. In this case, ϕ(t) = eita and Y puts all its mass at a.
(c) |ϕ(τ)| = 1 and |ϕ(t)| < 1 for 0 < t < τ . In this case |ϕ| has period τ and

there exists b ∈ R such that the support of Y is the lattice {b + 2π j/τ : j = 0,
±1,±2, . . .}, i.e., Y is lattice with span 2π/τ .

A random variable Y is called non-lattice if its support is not a lattice, which cor-
responds to case (a) above. It is said to be strongly non-lattice if it satisfies Cramér’s
condition

limsup
|t|→∞

|ϕ(t)|< 1. (2.31)

Note that (2.31), which is only concerned with the asymptotic behavior of |ϕ(t)| as
|t| → ∞, is stronger than (a) because it rules out (b) and (c).

If the characteristic function ϕ of Y is integrable, i.e.,
∫ ∞
−∞ |ϕ(t)|dt < ∞, then Y

has a bounded continuous density function f with respect to Lebesgue measure and

f (y) =
1

2π

∫ ∞

−∞
e−ityϕ(t)dt. (2.32)
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This is the Fourier inversion formula; see Durrett (2005, p. 95). In this case, since
ϕ(t) =

∫ ∞
−∞ eity f (y)dy and f is integrable,

lim
|t|→∞

ϕ(t) = 0 (2.33)

by the Riemann–Lebesgue lemma; see Durrett (2005, p. 459). Hence, if Y has an
integrable characteristic function, then Y satisfies Cramér’s condition (2.31).

In the case of lattice distributions with support {b + hk : k = 0,±1,±2, . . .}, let
pk = P(Y = b + hk). Then the characteristic function is a Fourier series ϕ(t) =
∑∞

k=−∞ pkeit(b+hk), with

pk =
h

2π

∫ π/h

−π/h
e−it(b+hk)ϕ(t)dt, (2.34)

noting that the span h corresponds to 2π/τ (or τ = 2π/h) in (b).

2.3.1 Continuity Theorem and Weak Convergence

Theorem 2.23. Let ϕn be the characteristic function of Yn.

(a) If ϕn(t) converges, as n→ ∞, to a limit ϕ(t) for every t and if ϕ is continuous
at 0, then ϕ is the characteristic function of a random variable Y and Yn ⇒ Y .

(b) If Yn ⇒ Y and ϕ is the characteristic function of Y , then limn→∞ϕn(t) = ϕ(t)
for all t ∈ R.

For independent random variables X1, . . . ,Xn, the characteristic function of the
sum Sn =∑n

k=1 Xk is the product of their characteristic functions ϕ1, . . . ,ϕn. If Xi has
mean 0 and variance σ2

i , quadratic approximation of ϕi(t) in a neighborhood of the
origin by Taylor’s theorem leads to the central limit theorem under the Lindeberg
condition (2.5). When the Xk have infinite second moments, the limiting distribution
of (Sn− bn)/an, if it exists for suitably chosen centering and scaling constants, is
an infinitely divisible distribution, which is characterized by the property that its
characteristic function is the nth power of a characteristic function for every integer
n ≥ 1. Equivalently, Y is infinitely divisible if for every n ≥ 1, Y D= Xn1 + · · ·+ Xnn,
where Xni are i.i.d. random variables and D= denotes equality in distribution (i.e., both
sides having the same distribution). Another equivalent characterization of infinite
divisibility is the Lévy–Khintchine representation of the characteristic function ϕ
of Y :

ϕ(t) = exp
{

iγt +
∫ ∞

−∞

(
eitu−1− itu

1+u2

)(
1+u2

u2

)
dG(u)

}
, (2.35)

where γ ∈ R and G is nondecreasing, left continuous with G(−∞) = 0 and
G(∞) < ∞. Examples of infinitely divisible distributions include the normal,
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gamma, Poisson, and stable distributions; see Durrett (2005, Sect. 2.8) and Chow
and Teicher (1988, Chap. 12).

A random variable Y is said to have a stable distribution if for every integer n≥ 1,
Y D= (Xn1 + · · ·+Xnn−βn)/αn, where Xni are i.i.d. and αn > 0 and βn are constants.
In this case, αn must be of the form n1/α for some 0 < α ≤ 2; α is called the index
of the stable distribution. For the sum Sn of i.i.d. random variables X1, . . . ,Xn, if
(Sn− bn)/an converges in distribution for some constants an �= 0 and bn, then the
limiting distribution must be stable.

The following theorem (see Durrett, 2005, p. 151) gives necessary and sufficient
conditions for the common distribution of Xi to belong to the domain of attraction
of a stable distribution with exponent 0 < α < 2 (i.e., for (Sn−bn)/an to converge
weakly to the stable distribution). A function L : (0,∞)→ R is said to be slowly
varying (at ∞) if

lim
x→∞

L(cx)
L(x)

= 1 for all c > 0. (2.36)

Theorem 2.24. X belongs to the domain of attraction of a stable distribution with
exponent 0 <α < 2 if and only if there exist 0≤ θ ≤ 1 and a slowly varying function
L such that

(a) P(|X | ≥ x) = x−αL(x),
(b) lim

x→∞
P(X ≥ x)/P(|X | ≥ x) = θ .

In this case, (Sn−bn)/an converges weakly to the stable distribution, with

an = inf{x : P(|X | ≥ x)≤ n−1}, bn = nEXI(|X | ≤ an).

There are analogous results for the domain of attraction of a normal distribution
(with α = 2). Further details on slowly varying functions and domain of attraction
are given in Chap. 4 where we consider weak convergence of self-normalized sums
of i.i.d. random variables.

2.3.2 Smoothing, Local Limit Theorems and Expansions

As noted in the previous subsection, the usual proof of the central limit theorem
for sums of independent random variables involves quadratic approximations of the
characteristic functions. Higher-order Taylor expansions of the characteristic func-
tions will lead to more redefined approximations of the characteristic function of
Wn = Sn/Bn in Sect. 16.2.1. The Fourier inversion formula (2.32) can be used to
derive asymptotic expansions of fn−φ , where fn is the density function of Wn and
φ is the standard normal density, if the characteristic functions of EeitXk are in-
tegrable. Without such integrability assumptions, we can still perform a modified
Fourier inversion to estimate the difference between the distribution functions of
Wn and N(0,1), by using the following bound that was first introduced to prove the
Berry–Esseen inequality (Theorem 2.10).
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Theorem 2.25. Let F be a distribution function and G a function such that
G(−∞) = 0, G(∞) = 1 and |G′(x)| ≤C < ∞. Then

sup
x
|F(x)−G(x)| ≤ 1

π

∫ T

−T

∣∣∣∣ϕ(t)− γ(t)
t

∣∣∣∣dt +
24C
T

(2.37)

for T > 0, where ϕ(t) =
∫ ∞
−∞ eitxdF(x) and γ(t) =

∫ ∞
−∞ eitxdG(x) are the Fourier

transforms of F and G, respectively.

For details of the proof of Theorem 2.25, see Chow and Teicher (1988, pp. 301–
302). Here we summarize the main “smoothing” idea behind the bound. First note
that if U is independent of Y and has an integrable characteristic function, then the
characteristic function of Y +U (which is a product of the two individual character-
istic functions) is integrable and therefore the Fourier inversion formula (2.32) can
be used to evaluate the density function (and hence also the distribution function)
of Y +U . Choosing U such that its characteristic function vanishes outside [−T, T ]
and its density function is concentrated around 0 (so that U is small) is the basic
idea behind (2.37). Specifically, we choose U with density function

uT (x) =
1
π

1− cos(xT )
x2T

, −∞ < x < ∞, (2.38)

whose characteristic function is ωT (t) = (1−|t|/T )I(|t| ≤ T ). Instead of the distrib-
ution function of Y +U in the preceding discussion, we let Δ = F−G and consider
the more general convolution

∫ ∞
−∞Δ(t − x)uT (x)dx, noting that the Fourier trans-

form of F −G is ϕ − γ . In Chap. 16, we apply Theorem 2.25 to derive Edgeworth
expansions related to central limit theorems for a wide variety of statistics. Here we
illustrate its application and that of the smoothing density (2.38) in the following.

Theorem 2.26. Let X ,X1,X2, . . .Xn be i.i.d. random variables with EX = 0 and
EX2 = σ2 > 0, and assume that X is non-lattice. Let Sn = X1 + · · ·+Xn.

(a) If E|X |3 < ∞, then

P
(

Sn

σ
√

n
≤ x

)
= Φ(x)− EX3

6σ3√n
(x2−1)φ(x)+o

(
1√
n

)
(2.39)

as n→ ∞, uniformly in x ∈ R.
(b) For any x ∈ R and h > 0,

P
(√

nx≤ Sn ≤
√

nx+h
)

=
h+o(1)√

n
1
σ

φ
( x
σ

)
as n→ ∞. (2.40)

Proof. To prove (2.39), we apply Theorem 2.25 with F equal to the distribution
function of Sn/(σ

√
n), G(x) equal to the right hand side of (2.39) with the o(1/

√
n)

term removed, and T = a
√

n, where for given ε > 0, a is chosen so that 24|G′(x)|<
εa for all x. The Fourier transform of G is
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γ(t) = e−t2/2
{

1+
EX3

6σ3√n
(it)3

}
.

Hence by Theorem 2.25,

sup
x
|F(x)−G(x)| ≤

∫ a
√

n

−a
√

n

∣∣∣∣φ n(t/σ
√

n)− γ(t)
t

∣∣∣∣dt +
ε√
n
. (2.41)

Split the integral into
∫
δσ≤|t|/√n≤a +

∫
|t|≤δσ√n, which we denote by (I)+(II). Since

X is non-lattice, maxδσ≤|t|/√n≤a |ϕ(t/σ
√

n)| < 1, from which it follows that (I) =
O(ρn) for some 0 < ρ < 1. For |t| ≤ δσ

√
n with δ > 0 chosen sufficiently small, we

can apply the Taylor expansion to ϕ(t/σ
√

n) and choose n sufficiently large so that
(II) < ε/

√
n. Since ε is arbitrary, (2.39) follows from (2.41). The proof of (2.40)

does not use Theorem 2.25; it uses the smoothing density (2.38) more directly in the
Fourier inversion formula (2.32); see Durrett (2005, pp. 132–134) for details. ��

Theorem 2.26(b) is called a local limit theorem. It says that the probability that Sn
belongs to an interval of width h/

√
n is asymptotically equal to the N(0,1) density

function at any value of interval multiplied by the width h/
√

n. In the case of lattice
X with support {b+hk : k = 0,±1,±2, . . .}, we can apply the Fourier inversion for-
mula (2.32) to obtain a similar result for the probability density of Sn. The preceding
ideas and results can be readily extended to the multivariate case. The characteristic
function ϕ of a d×1 random vector Y is given by ϕ(t) = Eeit ′Y , t ∈ R

d . There are
corresponding Fourier inversion formulas, smoothing bounds and local limit theo-
rems. In particular, Stone (1965) has established a local limit theorem for the sum Sn
of i.i.d. random vectors Xn that belong to the domain of attraction of a multivariate
stable distribution.

2.4 Supplementary Results and Problems

1. Prove the following relation among the three models of convergence:

Yn
a.s.−→ Y =⇒ Yn

P−→ Y =⇒ Yn
D−→ Y.

Also give counterexamples to show that the reverse relations are not true in
general.

2. Prove that if Wn
D−→ N(0,1), then supx |P(Wn ≤ x)−Φ(x)| → 0 as n→ ∞.

3. Let {Xi, 1≤ i≤ n} be independent random variables. Prove that for x > 0,

P( max
1≤k≤n

|Sk| ≥ x)≤ 3 max
1≤k≤n

P(|Sk| ≥ x/3).

4. Montgomery-Smith (1993): Let X1, . . . ,Xn be i.i.d. random variables. Prove that
for x > 0,

max
1≤k≤n

P(|Sk| ≥ x)≤ 3P(|Sn| ≥ x/10).
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5. Let {Xi, 1 ≤ i ≤ n} be independent random variables with E(Xi) = 0 and
E|Xi|p < ∞, where 1 < p≤ 3. Prove that

E|Sn|p ≤ 22−p
n

∑
i=1

E|Xi|p for 1 < p≤ 2,

and

E|Sn|p ≤ (p−1)Bp
n +

n

∑
i=1

E|Xi|p for 2 < p≤ 3,

where B2
n = ∑n

i=1 E|Xi|2.
Hint: |1+ x|p ≤ 1+ px+22−p|x|p for 1 < p≤ 2 and x ∈ R.

6. Prove Rosenthal’s inequality: Let p ≥ 2 and let X1, . . . ,Xn be independent ran-
dom variables with EXi = 0 and E|Xi|p < ∞ for 1 ≤ i ≤ n. Then there exists a
constant Ap depending only on p such that

E|Sn|p ≤ Ap

(
(ES2

n)
p/2 +

n

∑
i=1

E|Xi|p
)

. (2.42)

Hint: Write E|Sn|p =
∫ ∞

0 pxp−1P(Sn > x)dx+
∫ ∞

0 pxp−1P(−Sn > x)dx and apply
(2.24).

7. Let X1, . . . ,Xn be i.i.d. random variables with E(Xi) = 0 and Var(Xi) = 1. The
functional form of the central limit theorem (Theorem 2.9) says that if we define
for 0≤ t ≤ 1,

Wn(t) =

{
Si/
√

n for t = i/n (S0 = 0),
linear for i/n≤ t ≤ (i+1)/n,

(2.43)

then Wn converges weakly to Brownian motion W in C[0,1] (the space of real-
valued continuous functions on [0,1] with metric ρ( f ,g) = max0≤x≤1 | f (x)−
g(x)|), i.e., E f (Wn)→E f (W ) for all bounded continuous functions f :C[0,1]→
R; see Durrett (2005, pp. 401–407). In particular, use this result to show that

n−3/2
n

∑
i=1

(n− i)Xi =⇒ N(0,1/3). (2.44)

Also prove (2.44) by applying the Lindeberg–Feller theorem.
8. There is also a functional LIL due to Strassen; see Durrett (2005, p. 435): With

the same notation and assumptions as in the preceding problem, let Zn(·) =
Wn(·)/

√
2loglogn for n ≥ 3. Then with probability 1, {Zn, n ≥ 3} is relatively

compact in C[0,1] and its set of limit points in C[0,1] is{
f ∈C[0,1] : f (0) = 0, f is absolutely continuous and

∫ 1

0

(
f ′(t)

)2 dt ≤ 1
}

.

(2.45)
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The set (2.45) is related to Brownian motion (see the preceding problem) as
the unit ball of the reproducing kernel Hilbert space of the covariance function
Cov(W (t),W (s)) = t∧s of Brownian motion. Making use of the functional LIL,
prove the compact LIL that the set of limit points of {Zn(1), n ≥ 3} is [−1,1]
and find the set of limit points of {n−3/2∑n

i=1(n− i)Xi/
√

log logn, n≥ 3}.
9. Another refinement of Theorem 2.4 is the upper-lower class test. A sequence bn

of positive numbers such that bn/
√

n is nondecreasing for all large n is said to
belong to the upper class with respect to the random walk {Sn} if P{Sn−nμ ≥
bn i.o.}= 0 and to the lower class otherwise. Show that

P{Sn−nμ ≥ bn i.o.}=

{
0 if ∑∞

n=1 n−3/2bn exp
(
−b2

n/(2σ2n)
)

< ∞,

∞ otherwise.



Chapter 3
Self-Normalized Large Deviations

In this chapter we first review the classical large deviation theorem (LDT) for sums
of i.i.d. random variables X1,X2, . . . ,Xn. As shown in Sect. 3.1, a key ingredient of
LDT is a finite moment generating function of X1 in a right neighborhood of the
origin. Surprisingly, Shao (1997) shows that for self-normalized sums of the Xi, the
LDT holds without any moment assumption on Xi. The main results and proofs of
this self-normalized large deviation theory are given in Sect. 3.2.

3.1 A Classical Large Deviation Theorem for Sample Sums

Let X ,X1, . . . ,Xn be i.i.d. random variables with P(X �= 0) > 0 and let Sn = ∑n
i=1 Xi.

The Cramér–Chernoff large deviation theorem states that if

Eeθ0X < ∞ for some θ0 > 0 (3.1)

then for every x > EX ,

lim
n→∞

n−1 logP
(

Sn

n
≥ x

)
= logρ(x),

or equivalently,

lim
n→∞

P
(

Sn

n
≥ x

)1/n

= ρ(x), (3.2)

where ρ(x) = inft≥0 e−txEetX ; see Bahadur and Ranga Rao (1960) who give refer-
ences to previous literature and also develop a more precise estimate of P(Sn/n≥ x)
as described below. See also Dembo and Zeitouni (1998) for subsequent extensions
and related large deviation results.

Let X̄n = Sn/n. Bahadur and Ranga Rao (1960) make use of a change of measures
to prove the Cramér–Chernoff large deviation theorem and derive a more precise
asymptotic approximation to P(X̄n ≥ x), which is often called exact asymptotics for
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large deviations; see Dembo and Zeitouni (1998). Letting eψ(θ) = EeθX , the basic
idea is to embed P in a family of measures Pθ under which X1,X2, . . . are i.i.d. with
density function fθ (x) = eθx−ψ(θ) with respect to P. Then for any event A,

P(A) =
∫

A

dP
dPθ

dPθ = Eθ

{
e−(θSn−nψ(θ))I(A)

}
, (3.3)

since the Radon–Nikodym derivative (or likelihood ratio) dPθ/dP is equal to
∏n

i=1 fθ (Xi) = eθSn−nψ(θ).
The family of density functions fθ is an exponential family with the following

properties:
EθX = ψ ′(θ), Varθ (X) = ψ ′′(θ). (3.4)

The change-of-measure formula (3.3) is a special case of likelihood ratio identities
which will be discussed further in Sect. 18.1.1. In particular, for A = {X̄n ≥ x} with
x > EX , we choose θ = θx such that EθX = x (and therefore x =ψ ′(θ) by (3.4)). For
this choice of θ in (3.3), which is often called the “conjugate method” (see Petrov,
1965),

Eθx

{
e−n(θxX̄n−ψ(θx))I(X̄n ≥ x)

}
= e−n(θxx−ψ(θx))Eθx

{
e−nθx(X̄n−x)I(X̄n ≥ x)

}
= e−nI (x)Eθx

{
e−
√

nθx(
√

n(X̄n−x))I(X̄n ≥ x)
}

, (3.5)

where
I (x) := θxx−ψ(θx) = sup

θ
(θx−ψ(θ)) ; (3.6)

see Problem 3.1. Since x = Eθx(X), Zn :=
√

n(X̄n− x) converges in distribution to
N(0, Varθx(X)) under Pθx by the central limit theorem. However, because (3.5) in-
volves Eθx e−

√
nθxZn I(Zn ≥ 0), which contains −θx

√
nZn in the exponent, we need

a local limit theorem for Zn when it is in a O(1/
√

n)-neighborhood of 0. If X is
non-lattice, we can use Theorem 2.26(b) to conclude from (3.5) that

P(X̄n ≥ x) = e−nI (x)Eθx

{
e−θx

√
nZn I(Zn ≥ 0)

}

∼ e−nI (x)

σx
√

2πn

∫ ∞

0
e−θxhdh =

e−nI (x)

θxσx
√

2πn
, (3.7)

where σ2
x = Varθx(X) = ψ ′′(θx) by (3.4); see Bahadur and Ranga Rao (1960) who

have also obtained higher-order expansions for P(X̄n ≥ x) when X is strongly non-
lattice and when X is lattice.
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3.2 A Large Deviation Theorem for Self-Normalized Sums

In this section we prove Shao’s (1997) large deviation theorem for the self-
normalized sum Sn/Vn without any moment assumption.

Theorem 3.1. Assume that either EX ≥ 0 or EX2 = ∞. Let V 2
n = ∑n

i=1 X2
i . Then

lim
n→∞

P(Sn ≥ x
√

nVn)1/n = sup
b≥0

inf
t≥0

Eet(bX−x(X2+b2)/2) (3.8)

for x > EX/(EX2)1/2, where EX/(EX2)1/2 = 0 if EX2 = ∞.

Corollary 3.2. Assume that either EX = 0 or EX2 = ∞. Then

lim
n→∞

P
(
Sn ≥ x

√
nVn

)1/n = sup
b≥0

inf
t≥0

Eet(bX−x(X2+b2)/2) (3.9)

for x > 0.

Note that for any random variable X , either EX2 < ∞ or EX2 = ∞. If EX2 < ∞,
which obviously implies E|X |<∞, the assumption EX ≥ 0 in Theorem 3.1 is clearly
needed to describe large deviation probabilities for Sn. Because Theorem 3.1 is also
valid when EX2 = ∞, it holds without any moment conditions. Shao (1998) gives
a review of further results in this direction. We first outline Shao’s main ideas and
then provide details of his proof of Theorem 3.1. In Sect. 10.1.1 we describe an
alternative approach that is related to the general framework of Part II.

3.2.1 Representation by Supremum over Linear
Functions of (Sn,V2

n)

We start with normalization by aV 2
n + nb (instead of by

√
nVn) that reveals the key

idea of the proof, where a > 0 and b ≥ 0. Thus we consider Sn/(aV 2
n + nb) and

observe that for x > 0,

{
Sn

aV 2
n +nb

≥ x
}

= {Sn−axV 2
n ≥ nbx}=

{
1
n

n

∑
i=1

(Xi−axX2
i )≥ bx

}
, (3.10)

and that Eet(X−axX2) < ∞ for t > 0. Therefore, by the Cramér–Chernoff large devia-
tion result (3.2),

P
(

Sn

aV 2
n +nb

≥ x
)1/n

−→ inf
t≥0

e−tbxEet(X−axX2) (3.11)

provided bx > E(X)−axE(X2). This suggests that if one can write n1/2Vn in terms
of a functional of aV 2

n + bn, then one should be able to prove (3.8). Since for any
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positive numbers x and y,

xy = inf
b>0

1
2

(
x2

b
+ y2 b

)
, (3.12)

we have the representation

√
nVn = inf

b>0

1
2b

(V 2
n +nb2) if Vn > 0, (3.13)

thereby expressing
√

nVn as an extremal functional of b−1V 2
n + bn. From (3.13), it

follows that {
Sn ≥ x

√
nVn

}
(3.14)

=
{

Sn ≥ x inf
b>0

1
2b

(V 2
n +nb2) or Vn = 0

}

=

{
sup
b>0

n

∑
i=1

(
bXi− x(X2

i +b2)/2
)
≥ 0 or Vn = 0

}

=

{
sup
b≥0

n

∑
i=1

(
bXi− x(X2

i +b2)/2
)
≥ 0

}
.

Note the resemblance of (3.14) to (3.5). Both events involve linear functions of
(Sn,V 2

n ). The nonlinearity in Vn (which is the square root of V 2
n ) results in the supre-

mum of a family, parameterized by b, of linear functions of (Sn,V 2
n ).

3.2.2 Proof of Theorem 3.1

Lemma 3.3. If g1(t),g2(t), · · · is a non-increasing sequence of functions continuous
in the closed interval [a,b], then

lim
n→∞

sup
a≤t≤b

gn(t) = sup
a≤t≤b

g(t), (3.15)

where g(t) = limn→∞ gn(t).

Proof. It suffices to show that

lim
n→∞

sup
a≤t≤b

gn(t)≤ sup
a≤t≤b

g(t).

Since gn(t) is continuous in the closed interval [a,b], there exists tn ∈ [a,b] such that

sup
a≤t≤b

gn(t) = gn(tn). (3.16)
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By the Bolzano–Weierstrass theorem, there exists a subsequence {tkn} of {tn} that
converges to a point t0 ∈ [a,b]. Since gn(t0)→ g(t0), for any ε > 0, there exists n0
such that

gkn0
(t0)≤ g(t0)+ ε. (3.17)

Furthermore, gkn0
is continuous at t0, there exists a δ > 0 such that for all |t−t0| ≤ δ ,

|gkn0
(t)−gkn0

(t0)| ≤ ε.

Note that tkn → t0, there exists m0 ≥ n0 such that for n ≥ m0, |tkn − t0| ≤ δ . Hence
for n≥ m0

gkn0
(tkn)≤ gkn0

(t0)+ ε. (3.18)

Since gn is non-increasing, we have

lim
n→∞

gn(tn) = lim
n→∞

gkn(tkn)

and for n≥ m0,

gkn(tkn)≤ gkn0
(tkn)≤ gkn0

(t0)+ ε ≤ g(t0)+2ε ≤ sup
a≤t≤b

g(t)+2ε. (3.19)

This proves that limn→∞ gkn(tkn)≤ supa≤t≤b g(t), as desired. ��

Note that for x > EX/(EX2)1/2 (≥ 0) and for b≥ 0,

Eet(bX−x(X2+b2)/2) < ∞ for all t ≥ 0

and

E
(
bX− x(X2 +b2)/2

)
=

{
−∞ if EX2 = ∞,

− x
2 (b− (EX)/x)2− 1

2

(
xEX2− (EX)2/x

)
< 0 if EX2 < ∞.

Therefore, by (3.14) and (3.2)

liminf
n→∞

P
(
Sn ≥ x

√
nVn

)1/n (3.20)

≥ liminf
n→∞

sup
b≥0

P

(
n

∑
i=1

(
bXi− x(X2

i +b2)/2
)
≥ 0

)1/n

≥ sup
b≥0

inf
t≥0

Eet(bX−x(X2+b2)/2)).

To complete the proof of (3.8), it remains to show that

limsup
n→∞

P
(
Sn ≥ x

√
nVn

)1/n ≤ sup
b≥0

inf
t≥0

Eet(bX−x(X2+b2)/2). (3.21)
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Let a≥ 1 and m = [2a/x]+1, where [y] denotes the integer part of y. Then

P
(
Sn ≥ x

√
nVn

)
= I1 + I2, (3.22)

where

I1 = P
(
Sn ≥ x

√
nVn,Vn > m

√
n
)
, I2 = P

(
Sn ≥ x

√
nVn,Vn ≤ m

√
n
)
.

Noting that na≤ x
√

nVn/2 for Vn > m
√

n , we have

I1 ≤ P

(
n

∑
i=1

XiI (|Xi|> a)+na≥ x
√

nVn,Vn > m
√

n

)

≤ P

(
n

∑
i=1

XiI (|Xi|> a)≥ (1/2)x
√

nVn

)
(3.23)

≤ P

(
n

∑
i=1

I (|Xi|> a)≥ x2n/4

)

≤
{

12x−2P(|X |> a)
}x2n/4

,

where the last inequality follows from (2.27). Therefore

limsup
n→∞

I1/n
1 ≤

(
12x−2P(|X |> a)

)x2/4
. (3.24)

We next estimate I2. Noting that
√

nVn = inf0≤b≤Vn/
√

n(bn+V 2
n /b)/2, we have

I2 ≤ P

(
sup

0≤b≤m

{
bSn− x(V 2

n +nb2)/2
}
≥ 0

)

≤
nm

∑
i=1

P

(
sup

(i−1)/n≤b≤i/n

{
bSn− x(V 2

n +nb2)/2
}
≥ 0

)

≤
mn

∑
i=1

P
(
(i/n)Sn− x

(
V 2

n +n((i−1)/n)2
)

/2≥ 0
)

≤
mn

∑
i=1

P
(
(i/n)Sn− x

(
V 2

n +n(i/n)2)/2≥−xm
)

(3.25)

≤
mn

∑
i=1

inf
0≤t≤k

exmt {E exp
(
t(i/n)X− (x/2)

(
X2 +(i/n)2))}n

≤ mnexmk sup
0≤b≤m

inf
0≤t≤k

{
E exp

(
t
(
bX − (x/2)(X2 +b2)

))}n

for any k ≥ 1. Hence

limsup
n→∞

I1/n
2 ≤ sup

0≤b≤m
inf

0≤t≤k
E exp

(
t
(
bX − (x/2)(X2 +b2)

))
. (3.26)
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By Lemma 3.3,

lim
k→∞

sup
0≤b≤m

inf
0≤t≤k

E exp
(
t
(
bX− (x/2)(X2 +b2)

))
= sup

0≤b≤m
inf

0≤t<∞
E exp

(
t
(
bX− (x/2)(X2 +b2)

))
,

and therefore

limsup
n→∞

I1/n
2 ≤ sup

0≤b≤m
inf
t≥0

E exp
(
t
(
bX − (x/2)(X2 +b2)

))
(3.27)

≤ sup
0≤b<∞

inf
t≥0

E exp
(
t
(
bX− (x/2)(X2 +b2)

))
.

Letting a → ∞ together with (3.22) and (3.27) yields (3.21). This completes the
proof of Theorem 3.1.

3.3 Supplementary Results and Problems

Let X ,X1,X2 . . . be i.i.d. random variables and Sn = ∑n
i=1 Xi:

1. Prove (3.4) and the equality in (3.6).
2. Prove the following generalization of Theorem 3.1: Let μ and ν be two real

numbers. Assume that either EX ≥ μ or EX2 = ∞. Then

lim
n→∞

P

(
∑n

i=1(Xi−μ)

(n∑n
i=1(Xi−ν)2)1/2 ≥ x

)1/n

= sup
b≥0

inf
t≥0

Eet(b(X−μ)−x((X−ν)2+b2)/2)

for x > (EX−μ)/
√

E(X−ν)2.
3. Let p > 1. Prove that for any x > 0 and y > 0,

x1/p y1−1/p = inf
b>0

(
1
p
· x

b
+

p−1
p

yb1/(p−1)
)

. (3.28)

4. Let p > 1. Assume that either EX ≥ 0 or E|X |p = ∞. Making use of (3.28),
modify the proof of Theorem 3.1 to generalize it to the following result of Shao
(1997):

lim
n→∞

P
(

Sn

Vn,p n1−1/p ≥ x
)1/n

= sup
c≥0

inf
t≥0

Eet(cX−x( 1
p |X |p+ p−1

p cp/(p−1))) (3.29)

for x > EX/(E|X |p)1/p, where Vn,p = (∑n
i=1 |Xi|p)1/p and EX/(E|X |p)1/p = 0 if

E|X |p = ∞.
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5. Assume that E(X) = 0 or E(X2) = ∞. Let ai,1 ≤ i ≤ n, be a sequence of real
numbers. Under what conditions on {ai} does the result

lim
n→∞

n−1 logP

(
n

∑
i=1

aiXi ≥ x
√

n(
n

∑
i=1

a2
i X2

i )1/2

)

= lim
n→∞

n−1 sup
b≥0

inf
t≥0

n

∑
i=1

logEet(baiX−x(a2
i X2+b2)/2)

hold for 0 < x < 1?
6. Let {ai} and {bi} be two sequences of real numbers with bi > 0. Under what

conditions does a large deviation result hold for ∑n
i=1 aiXi/(∑n

i=1 b2
i X2

i )1/2?



Chapter 4
Weak Convergence of Self-Normalized Sums

In this chapter we prove a self-normalized central limit theorem for i.i.d. random
variables belonging to the domain of a normal distribution. We also prove a related
functional central limit theorem for self-normalized sums and describe analogous
results that the i.i.d. random variables belonging to the domain of attraction of a
stable distribution with index 0 < α < 2.

4.1 Self-Normalized Central Limit Theorem

Let X ,X1,X2, . . . be i.i.d. random variables. Set Sn = ∑n
i=1 Xi and V 2

n = ∑n
i=1 X2

i . As
noted in Sect. 2.3.1, X belongs to the domain of attraction of a normal distribution
if there exist an > 0 and bn such that

(Sn−bn)/an
D−→ N(0,1). (4.1)

An equivalent condition that involves the tail of |X | is

l(x) := EX2I(|X | ≤ x) is a slowly varying function; (4.2)

see Ibragimove and Linnik (1971). Recall the definition (2.36) of “slowly varying”
(at ∞) and note that the normal distribution is stable with index α = 2. When X is
in the domain of attraction of a normal distribution, it is known that bn in (4.1) can
be taken as nE(X) and an is so chosen that a−2

n EX2I(|X | ≤ an)∼ n−1.
The next theorem is due to Giné et al. (1997). It was conjectured by Logan et al.

(1973) that if EX = 0, then “Sn/Vn is asymptotically normal if (and perhaps only if)
X is in the domain of attraction of the normal law.” The “if” part has by now been
known for a long time (see, e.g., Maller, 1981), but the “only if” part has remained
open until Giné et al. (1997).
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Theorem 4.1. Sn/Vn
D−→ N(0,1) if and only if E(X) = 0 and X is in the domain of

attraction of a normal distribution.

We start with some basic properties of a positive slowly varying function l(x);
see Bingham et al. (1987).

(P1) l(x) is representable in the form l(x) = c(x)exp
(∫ x

1

a(y)
y

dy
)

, where c(x)→
c > 0, for some c, and a(x)→ 0 as x→ ∞.

(P2) For 0 < c < C < ∞, lim
x→∞

l(tx)
l(x)

= 1 uniformly in c≤ t ≤C.

(P3) ∀ ε > 0, limx→∞ x−ε l(x) = 0 and limx→∞ xε l(x) = ∞.
(P4) For any ε > 0, there exists x0 such that for all x, xt ≥ x0

(1− ε)
(

t ∨ 1
t

)−ε
≤ l(tx)

l(x)
≤ (1+ ε)

(
t ∨ 1

t

)ε
,

∣∣∣∣ l(tx)
l(x)

−1
∣∣∣∣≤ 2

((
t ∨ 1

t

)ε
−1

)
.

(P5) For any θ >−1,
∫ x

a
yθ l(y)dy∼ xθ+1l(x)

θ +1
as x→ ∞.

(P6) For any θ <−1,
∫ ∞

x
yθ l(y)dy∼ xθ+1l(x)

−θ −1
as x→ ∞.

Lemma 4.2. Assume that l(x) := EX2I(|X | ≤ x) is slowly varying. Then as x→ ∞,

P(|X | ≥ x) = o
(
l(x)/x2) , (4.3)

E|X |I(|X | ≥ x) = o(l(x)/x) , (4.4)

E|X |pI(|X | ≤ x) = o
(
xp−2l(x)

)
for p > 2. (4.5)

Proof. Note that

P(|X | ≥ x) =
∞

∑
k=0

P
(

2kx≤ |X |< 2k+1x
)

≤
∞

∑
k=0

(x2k)−2EX2I
(

2kx≤ |X | ≤ 2k+1x
)

= x−2l(x)
∞

∑
k=0

(
l(2k+1x)
l(2kx)

−1
)

l(2kx)
22kl(x)

= x−2l(x)
∞

∑
k=0

o(1)2−k by (P2) and (P4)

= o
(
l(x)/x2) .
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This proves (4.3). To prove (4.4), application of (4.3) and (P6) yields

E|X |I(|X | ≥ x) = xP(|X | ≥ x)+
∫ ∞

x
P(|X | ≥ t)dt

= o(l(x)/x)+o(1)
∫ ∞

x
l(t)/t2dt = o(l(x)/x)

Similarly, for any 0 < ε < 1,

E|X |pI(|X | ≤ x) = E|X |pI(|X | ≤ εx)+E|X |pI(εx < |X | ≤ x)
≤ (εx)p−2l(x)+ xp−2 (l(x)− l(εx))
= (εx)p−2l(x)+ xp−2o(l(x))

by (P2). This proves (4.5) since ε can be arbitrarily small. ��

Proof (of the “if” part in Theorem 4.1). We follow the proof by Maller (1981) who
uses the fact that if E(X) = 0, then Sn/an

D−→ N(0,1) for a sequence of positive
constants an if and only if Vn/an

P−→ 1. Let

l(x) = EX2I(|X | ≤ x), b = inf{x≥ 1 : l(x) > 0} ,

zn = inf
{

s : s≥ b+1, l(s)
s2 ≤ 1

n

}
.

(4.6)

Since l(s)/s2 → 0 as s → ∞ and the function l(x) is right continuous, we have
limn→∞ zn = ∞ and

n l(zn) = z2
n. (4.7)

It follows from (4.3), (4.4) and (4.7) that

P
(

max
1≤i≤n

|Xi|> zn

)
≤ nP(|X | ≥ zn) = o

(
nl(zn)/z2

n
)

= o(1), (4.8)

n

∑
i=1

E|Xi|I(|Xi|> zn) = o(nl(zn)/zn) = o
(√

nl(zn)
)

. (4.9)

It suffices to show that
∑n

i=1 X2
i I(|Xi| ≤ zn)√

nl(zn)
P−→ 1. (4.10)

In fact, (4.8)–(4.10) imply that Sn/Vn
D−→ N(0,1) is equivalent to

∑n
i=1 {XiI(|Xi| ≤ zn)−EXiI(|Xi| ≤ zn)}√

nl(zn)
D−→ N(0,1). (4.11)

Observe that

1
nl(zn)

Var

(
n

∑
i=1
{XiI(|Xi| ≤ zn)−EXiI(|Xi| ≤ zn)}

)
→ 1,
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nl(zn) = z2
n, and for 0 < ε < 1,

1
nl(zn)

n

∑
i=1

EX2
i I(εzn < |Xi| ≤ zn)→ 0.

Hence the Lindeberg condition is satisfied and therefore (4.11) holds. Now (4.10)
follows from

Var

(
n

∑
i=1

X2
i I(|Xi| ≤ zn)

)
≤ nEX4I(|X | ≤ zn) = o

(
nz2

nl(zn)
)

= o
(
(nl(zn))

2
)

,

by making use of (4.5). ��
Proof (of the “only if” part in Theorem 4.1). The proof is considerably more com-
plicated, and we refer the details to Giné et al. (1997). The main ingredient of the
proof is

Sn/Vn = Op(1) ⇐⇒ sup
n≥1

E exp
(
γ(Sn/Vn)2) < ∞ for some γ > 0.

An alternative proof is given by Mason (2005). ��

As a generalization of the central limit theorem, the classical weak invariance
principle (or functional central limit theorem) states that on some probability space,

sup
0≤t≤1

∣∣∣∣ 1√
nσ

S[nt]−
1√
n

W (nt)
∣∣∣∣ = o(1) in probability

if and only if EX = 0 and Var(X) = σ2, where {W (t), t ≥ 0} is a standard Brownian
motion; see Csörgő and Révész (1981). In view of the self-normalized central limit
theorem, Csörgő et al. (2003a) proved a self-normalized version of the weak in-
variance principle. Let D[0,1] denote the space of functions on [0,1] that are right
continuous and have left-hand limits.
Theorem 4.3. As n→ ∞, the following statements are equivalent:

(a) EX = 0 and X is in the domain of attraction of a normal distribution.
(b) S[nt]/Vn converges weakly to Brownian motion in (D[0,1],ρ), where ρ is the

sup-norm metric, ρ( f ,g) = sup0≤t≤1 | f (t)−g(t)|, for functions in D[0,1].
(c) By redefining the random variables on some probability space, a standard

Brownian motion {W (t), t ≥ 0} can be constructed such that

sup
0≤t≤1

|S[nt]/Vn−W (nt)/
√

n| P−→ 0.

Proof. Clearly (c) implies (b). By Theorem 4.1, it suffices to show that (a) implies
(c), which consists of two steps. Let z j be defined as in (4.6) and put

X∗i = XiI(|Xi| ≤ zi)−EXiI(|Xi| ≤ zi), S∗k =
k

∑
i=1

X∗i .
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The first step is to show

max
0≤t≤1

∣∣∣∣∣S[nt]

Vn
−

S∗[nt]√
nl(zn)

∣∣∣∣∣ P−→ 0,

and the second step is to use strong approximation to show

max
0≤t≤1

∣∣∣S∗[nt]−B(nt)
∣∣∣ = o

(√
nl(n)

)
in probability.

The details can be found in Csörgő et al. (2003a). ��

In view of (c), as n→ ∞, h{S[n]̇/Vn} converges in distribution to h{W (·)} for
every measurable h : D→ R that is ρ-continuous except at points in a set of Winer
measure zero on (D,D), where D denotes the σ -field generated by the finite-
dimensional subsets of D. In particular, if EX = 0 and X is in the domain of at-
traction of a normal distribution, then

P
(

max
1≤i≤n

Si/Vn ≤ x
)
→ P

(
sup

0≤t≤1
W (t)≤ x

)
,

P
(

max
1≤i≤n

|Si|/Vn ≤ x
)
→ P

(
sup

0≤t≤1
|W (t)| ≤ x

)
,

P

(
n−1

n

∑
i=1

S2
i /V 2

n ≤ x

)
→ P

(∫ 1

0
W 2(t)dt ≤ x

)
,

P

(
n−1

n

∑
i=1
|Si|/Vn ≤ x

)
→ P

(∫ 1

0
|W (t)|dt ≤ x

)
.

For further results that are related to Theorems 4.1 and 4.3, we refer to Csörgő et al.
(2004, 2008).

4.2 Non-Normal Limiting Distributions
for Self-Normalized Sums

Theorem 2.24 says that a necessary and sufficient condition for the existence of
normalized constants an > 0 and bn such that the normalized partial sums (Sn−
bn)/an converge in distribution to a stable law with index α , 0 < α < 2, is

P(X ≥ x) =
(c1 +o(1))h(x)

xα
, P(X ≤−x) =

(c2 +o(1))h(x)
xα

(4.12)

as x→ ∞, where c1 ≥ 0,c2 ≥ 0,c1 + c2 > 0 and h(x) is a slowly varying function
at ∞. The normalizing constants are determined by n(c1 + c2)h(an) ∼ aαn and bn =
nEXI(|X | ≤ an). The following theorem gives the limiting distributions of the self-
normalized sum Sn/Vn under (4.12).
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Theorem 4.4. In addition to assumption (4.12), assume that X is symmetric when
α = 1 and E(X) = 0 when 1 < α < 2. Let δ1,δ2, . . . be i.i.d. with P(δi = 1) =
c1/(c1 + c2) and P(δi = −1) = c2/(c1 + c2), η1,η2, . . . i.i.d. exponential random
variables with mean 1 independent of {δi}. Put

Uk =

(
k

∑
i=1

ηi

)−1/α

and

dk =

{
0 if 0 < α ≤ 1,

(c1−c2)
c1+c2

EUkI(Uk < 1) if 1 < α < 2.

Then
Sn

Vn

D−→ ∑∞
k=1(δkUk−dk)
(∑∞

k=1 U2
k )1/2 (4.13)

and the limiting density function p(x) of Sn/Vn exists and satisfies

p(x)∼ 1
α

(
2
π

)1/2√
2β (α,c1,c2)e−x2β (α,c1,c2) (4.14)

as x→ ∞, where the constant β (α,c1,c2) is the solution to (6.29) in Chap. 6 on
self-normalized moderate deviations.

The characteristic function of the limiting distribution on the right-hand side
of (4.13) was proved by Logan et al. (1973), whose method will be described
in Sect. 15.1.1. The representation of the limiting distribution in (4.13) is due to
LePage et al. (1981). The following theorem, due to Chistyakov and Götze (2004a),
shows that it is necessary for X to be in the domain of attraction of a stable distri-
bution in order that Sn/Vn has a non-degenerate limiting distribution. A random
variable X is said to satisfy Feller’s condition if limn→∞ nE sin(X/an) exists and is
finite, where an = inf{x > 0 : nx−2[1+EX2I(|X | ≤ x)]≤ 1}.
Theorem 4.5. Sn/Vn converges in distribution to a random variable Z such that
P(|Z|= 1) < 1 if and only if:

(a) X is in the domain of attraction of a stable distribution with index α ∈ (0,2];
(b) EX = 0 if 1 < α ≤ 2;
(c) X is in the domain of attraction of the Cauchy distribution and Feller’s condi-

tion holds if α = 1.

4.3 Supplementary Results and Problems

1. Let X be a random variable and define l(x) = EX2I(|X | ≤ x). Prove that if
P(|X | ≥ x) = o(l(x)/x2) as x → ∞, then l(x) is a slowly varying function
at ∞.
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2. Let l(x) be defined as in Problem 1. If l(x) is slowly varying at ∞, then E|X |p <∞
for all 0 < p < 2.

3. Let X satisfy (4.12). Prove that E|X |p < ∞ for 0 < p < α and E|X |p = ∞ for
p > α . What can be said about E|X |p when p = α?

4. Let X ,X1,X2, . . . be i.i.d. random variables with E(X) = 0. The following theo-
rem on the limiting distribution of the maximum of the standardized sums is due
to Darling and Erdős (1956): If E|X |3 < ∞, then for every t ∈ R,

lim
n→∞

P
(

a(n) max
1≤k≤n

Sk/(σ
√

k)≤ t +b(n)
)

= exp(−e−t),

where σ2 = EX2, a(n) = (2loglogn)1/2 and

b(n) = 2loglogn+
1
2

logloglogn− 1
2

log(4π).

Einmahl (1989) proved that the Darling–Erdős theorem holds whenever

EX2I(|X | ≥ x) = o
(
(log logx)−1) as x→ ∞,

which is also necessary. Csörgő et al. (2003b) proved the following self-
normalized Darling–Erdős-type theorem: Suppose that EX = 0 and that
l(x) := EX2I(|X | ≤ x) is a slowly varying function at ∞, satisfying l(x2)≤Cl(x)
for some C > 0. Then, for every t ∈ R

lim
n→∞

P
(

a(n) max
1≤k≤n

Sk/Vk ≤ t +b(n)
)

= exp(−e−t).

Develop a self-normalized version of the Darling–Erdős-type theorem when X
is in the domain of attraction of a stable distribution with exponent 0 < α < 2.
Moreover, while Bertoin (1998) has extended the Darling–Erdős theorem to the
case where X belongs to the domain of attraction of a stable distribution, it would
be of interest to develop a self-normalized version.



Chapter 5
Stein’s Method and Self-Normalized
Berry–Esseen Inequality

The standard method to prove central limit theorems and Berry–Esseen inequali-
ties is based on characteristic functions, as shown in Sect. 2.3. A different method
to derive normal approximations was introduced by Stein (1972). Stein’s method
works well not only for independent random variables but also for dependent ones.
It can also be applied to many other probability approximations, notably to Poisson,
Poisson process, compound Poisson and binomial approximations. In this chapter
we give an overview of the use of Stein’s method for normal approximations. We
start with basic results on the Stein equations and their solutions and then prove
several classical limit theorems and the Berry–Esseen inequality for self-normalized
sums.

5.1 Stein’s Method

5.1.1 The Stein Equation

Let Z be a standard normally distributed random variable and let C be the set of
continuous and piecewise continuously differentiable functions f : R → R with
E| f ′(Z)|< ∞. Stein’s method rests on the following observation.

Lemma 5.1. Let W be a real-valued random variable. If W has a standard normal
distribution, then

E f ′(W ) = EW f (W ) (5.1)

for any absolutely continuous function f with E| f ′(W )| < ∞. If (5.1) holds for
any continuous and piecewise continuously differentiable functions f : R→ R with
E| f ′(Z)|< ∞, then W has a standard normal distribution.

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 41
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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Proof. Necessity: If W has a standard normal distribution, then

E f ′(W ) =
1√
2π

∫ ∞

−∞
f ′(w)e−w2/2dw

=
1√
2π

∫ 0

−∞
f ′(w)

(∫ w

−∞
(−x)e−x2/2dx

)
dw

+
1√
2π

∫ ∞

0
f ′(w)

(∫ ∞

w
xe−x2/2dx

)
dw

=
1√
2π

∫ 0

−∞

(∫ 0

x
f ′(w)dw

)
(−x)e−x2/2dx

+
1√
2π

∫ ∞

0

(∫ x

0
f ′(w)dw

)
xe−x2/2dx

=
1√
2π

∫ ∞

−∞
[ f (x)− f (0)]xe−x2/2dx

= EW f (W ).

Sufficiency: For fixed z ∈ R, let f (w) := fz(w) be the solution of the following
equation

f ′(w)−w f (w) = I(w≤ z)−Φ(z). (5.2)

Multiplying by e−w2/2 on both sides of (5.2) yields(
e−w2/2 f (w)

)′
= e−w2/2 [I(w≤ z)−Φ(z)] .

Thus,

fz(w) = ew2/2
∫ w

−∞
[I(x≤ z)−Φ(z)]e−x2/2dx

= −ew2/2
∫ ∞

w
[I(x≤ z)−Φ(z)]e−x2/2dx (5.3)

=

{√
2πew2/2Φ(w) [1−Φ(z)] if w≤ z
√

2πew2/2Φ(z) [1−Φ(w)] if w≥ z.

The solution fz above is a bounded continuous and piecewise continuously differen-
tiable function; see Lemma 5.2 below. Suppose that (5.1) holds for all f ∈ C . Then
it holds for fz. By (5.2),

0 = E
[

f ′z(W )−W fz(W )
]
= E [I(W ≤ z)−Φ(z)] = P(W ≤ z)−Φ(z).

Thus, W has a standard normal distribution. ��

When f is bounded and absolutely continuous, one can prove (5.1) by using
integration by parts, noting that for W ∼ N(0,1),
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E {W f (W )} =
1√
2π

∫ ∞

−∞
w f (w)e−w2/2dw

= − 1√
2π

∫ ∞

−∞
f (w)d

(
e−w2/2

)

=
1√
2π

∫ ∞

−∞
f ′(w)e−w2/2dw = E f ′(W ).

More generally, for a given real-valued measurable function h with E|h(Z)| < ∞,
Stein’s equation refers to

f ′(w)−w f (w) = h(w)−Eh(Z). (5.4)

Equation (5.2) is a special case of (5.4) with h(w) = I(w≤ z). Similarly to (5.3), the
solution f = fh is given by

fh(w) = ew2/2
∫ w

−∞
[h(x)−Eh(Z)]e−x2/2 dx

= −ew2/2
∫ ∞

w
[h(x)−Eh(Z)]e−x2/2 dx. (5.5)

Below are some basic properties of solutions to the Stein equations, which can
be used to derive error bounds for various approximations.

Lemma 5.2.

(a) For the function fz defined by (5.3) and all real w, u and v,

0 < fz(w)≤ 2, (5.6)

|w fz(w)| ≤ 1, (5.7)

| f ′z(w)| ≤ 2, (5.8)

|(w+u) fz(w+u)− (w+ v) fz(w+ v)| ≤ 2(|w|+1)(|u|+ |v|) . (5.9)

(b) For the function fh defined in (5.5),

sup
w
| fh(w)| ≤ 3sup

w
|h(w)|, sup

w
|w fh(w)| ≤ 2sup

w
|h(w)|, (5.10)

sup
w
| f ′h(w)| ≤ 4sup

w
|h(w)|. (5.11)

If h is absolutely continuous, then

sup
w
| fh(w)| ≤ 2sup

w
|h′(w)|, (5.12)

sup
w
| f ′h(w)| ≤ 4sup

w
|h′(w)|, (5.13)

sup
w
| f ′′h (w)| ≤ 2sup

w
|h′(w)|. (5.14)
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Proof.

(a) The inequality

1−Φ(w)≤min
(

1
2
,

1
w
√

2π

)
e−w2/2, w > 0, (5.15)

can be used to derive (5.6) and (5.7). From (5.2) and (5.7), (5.8) follows. As to
(5.9), we obtain by (5.8) and (5.6) that

|(w+u) fz(w+u)− (w+ v) fz(w+ v)|
≤ |w|| fz(w+u)− fz(w+ v)|+ |u| fz(w+u)+ |v| fz(w+ v)
≤ 2|w|(|u|+ |v|)+2|u|+2|v|.

(b) Let c0 = supw |h(w)|. Noting that |h(x)−Eh(Z)| ≤ 2c0, (5.10) follows from
(5.5) and (5.15), while (5.11) is a consequence of (5.10) and (5.4). The proofs
of (5.12), (5.13) and (5.14) require much more lengthy arguments and are omit-
ted here but can be found at the Web site for the book given in the Preface,
where the properties (5.6)–(5.9) are further refined; see below. ��

The properties (5.6)–(5.9) for fz can be refined as follows: For all real w, u and v,

w fz(w) is an increasing function of w, (5.16)

|w fz(w)| ≤ 1, |w fz(w)−u fz(u)| ≤ 1, (5.17)

| f ′z(w)| ≤ 1, | f ′z(w)− f ′z(v)| ≤ 1, (5.18)

0 < fz(w)≤min(
√

2π/4,1/|z|), (5.19)

|(w+u) fz(w+u)− (w+ v) fz(w+ v)| ≤ (|w|+
√

2π/4)(|u|+ |v|). (5.20)

5.1.2 Stein’s Method: Illustration of Main Ideas

Stein’s equation (5.4) is the starting point for normal approximations. To illustrate
the main ideas, let ξ1,ξ2, . . . ,ξn be independent random variables such that Eξi = 0
for 1≤ i≤ n and ∑n

i=1 Eξ 2
i = 1. Put

W =
n

∑
i=1

ξi, W (i) = W −ξi (5.21)

and
Ki(t) = Eξi [I(0≤ t ≤ ξi)− I(ξi ≤ t < 0)] . (5.22)
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It is easy to see that Ki(t)≥ 0 for all real t and that

∫ ∞

−∞
Ki(t)dt = Eξ 2

i ,
∫ ∞

−∞
|t|Ki(t)dt = E|ξi|3/2. (5.23)

Let h be a measurable function with E|h(Z)|< ∞, and f = fh be the solution of the
Stein equation (5.4). Our goal is to estimate

Eh(W )−Eh(Z) = E f ′(W )−EW f (W ). (5.24)

The main idea of Stein’s method is to rewrite EW f (W ) in terms of a functional
of f ′. Since ξi and W (i) are independent by (5.21) and Eξi = 0 for 1≤ i≤ n,

EW f (W ) =
n

∑
i=1

Eξi f (W )

=
n

∑
i=1

Eξi

[
f (W )− f

(
W (i)

)]

=
n

∑
i=1

Eξi

∫ ξi

0
f ′
(

W (i) + t
)

dt

=
n

∑
i=1

E
∫ ∞

−∞
f ′
(

W (i) + t
)
ξi[I(0≤ t ≤ ξi)− I(ξi ≤ t < 0)]dt

=
n

∑
i=1

E
∫ ∞

−∞
f ′
(

W (i) + t
)

Ki(t)dt. (5.25)

From ∑n
i=1

∫ ∞
−∞ Ki(t)dt = ∑n

i=1 Eξ 2
i = 1, it follows that

E f ′(W ) =
n

∑
i=1

E
∫ ∞

−∞
f ′(W )Ki(t)dt. (5.26)

Thus, by (5.25) and (5.26),

E f ′(W )−EW f (W ) =
n

∑
i=1

E
∫ ∞

−∞

[
f ′(W )− f ′

(
W (i) + t

)]
Ki(t)dt. (5.27)

Equations (5.25) and (5.27) play a key role in proving a Berry–Esseen type in-
equality. Since W and W (i) are close, one expects that f ′(W )− f ′(W (i) + t) is also
small. This becomes clear when f has a bounded second derivative, which is the
case when h has a bounded derivative.
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5.1.3 Normal Approximation for Smooth Functions

Let ξ1,ξ2, . . . ,ξn be independent random variables satisfying Eξi = 0 and E|ξi|3 <∞
for 1≤ i≤ n, and such that ∑n

i=1 Eξ 2
i = 1. Let

β =
n

∑
i=1

E|ξi|3. (5.28)

Theorem 5.3. Assume that h is a smooth function satisfying

‖h′‖ := sup
w
|h′(w)|< ∞. (5.29)

Then
|Eh(W )−Eh(Z)| ≤ 3β‖h′‖. (5.30)

In particular, we have ∣∣∣∣∣E|W |−
√

2
π

∣∣∣∣∣≤ 3β .

Proof. It follows from (5.14) that ‖ f ′′h ‖ ≤ 2‖h′‖. Therefore, by (5.27) and the mean
value theorem,

∣∣E {
f ′h(W )−W fh(W )

}∣∣ ≤ n

∑
i=1

∫ ∞

−∞
E
∣∣∣ f ′h(W )− f ′h

(
W (i) + t

)∣∣∣Ki(t)dt

≤ 2‖h′‖
n

∑
i=1

∫ ∞

−∞
E (|t|+ |ξi|)Ki(t)dt.

Using (5.23), it then follows that

∣∣E {
f ′h(W )−W fh(W )

}∣∣ ≤ 2‖h′‖
n

∑
i=1

(
E|ξi|3/2+E|ξi|Eξ 2

i
)

(5.31)

≤ 3‖h′‖
n

∑
i=1

E|ξi|3.

��

The following theorem removes the assumption E|ξi|3 < ∞ in Theorem 5.3.
Theorem 5.5 then shows how results of the type (5.30) can be used to bound
supz |P(W ≤ z)−Φ(Z)|.

Theorem 5.4. Let ξ1,ξ2, . . . ,ξn be independent random variables satisfying Eξi = 0
for 1≤ i≤ n and such that ∑n

i=1 Eξ 2
i = 1. Then for h satisfying (5.29),

|Eh(W )−Eh(Z)| ≤ 16(β2 +β3)‖h′‖, (5.32)
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where

β2 =
n

∑
i=1

Eξ 2
i I(|ξi|> 1) and β3 =

n

∑
i=1

E|ξi|3I(|ξi| ≤ 1). (5.33)

Proof. Defining W (i) by (5.21), we use (5.13) and (5.14) to show

∣∣∣ f ′h(W )− f ′h
(

W (i) + t
)∣∣∣ ≤ ‖h′‖min(8,2(|t|+ |ξi|))≤ 8‖h′‖(|t|∧1+ |ξi|∧1) ,

where a∧b denotes min(a,b). Substituting this bound into (5.27), we obtain

|Eh(W )−Eh(Z)| ≤ 8‖h′‖
n

∑
i=1

∫ ∞

−∞
E (|t|∧1+ |ξi|∧1)Ki(t)dt. (5.34)

Making use of

x
∫ ∞

−∞
(|t|∧1) [I(0≤ t ≤ x)− I(x≤ t < 0)] dt =

⎧⎨
⎩

x2−|x|/2 if |x|> 1,

1
2
|x|3 if |x| ≤ 1,

we obtain
∫ ∞

−∞
E (|t|∧1+ |ξi|∧1)Ki(t)dt = E

{
ξ 2

i I(|ξi|> 1)
}
− 1

2
E {|ξi|I(|ξi|> 1)}

+
1
2

E
{
|ξi|3I(|ξi| ≤ 1)

}
+E

{
ξ 2

i E (|ξi|∧1)
}

.

It then follows from (5.34) that

|Eh(W )−Eh(Z)| ≤ 8‖h′‖
(
β2 +β3 +

n

∑
i=1

Eξ 2
i E (|ξi|∧1)

)
. (5.35)

Since both x2 and (x∧ 1) are increasing functions of x ≥ 0, it follows that for any
random variable ξ ,

Eξ 2E (|ξ |∧1)≤ E
{
ξ 2 (|ξ |∧1)

}
= E|ξ |3I(|ξ | ≤ 1)+Eξ 2I(|ξ |> 1), (5.36)

and therefore the sum in (5.35) is no greater than β3 +β2, proving (5.32). ��

Although we cannot derive a sharp Berry–Esseen bound from Theorem 5.3
or 5.4, the following result still provides a partial rate of convergence.

Theorem 5.5. Assume that there exists δ such that for any h satisfying (5.29),

|Eh(W )−Eh(Z)| ≤ δ‖h′‖. (5.37)



48 5 Stein’s Method and Self-Normalized Berry–Esseen Inequality

Then
sup

z
|P(W ≤ z)−Φ(z)| ≤ 2δ 1/2. (5.38)

Proof. We can assume that δ ≤ 1/4, since otherwise (5.38) is trivial. Let α =
δ 1/2(2π)1/4, and define for fixed z

hα(w) =

⎧⎪⎨
⎪⎩

1 if w≤ z,

0 if w≥ z+α,

linear if z≤ w≤ z+α.

Then ‖h′‖= 1/α and hence by (5.37),

P(W ≤ z)−Φ(z) ≤ Ehα(W )−Ehα(Z)+Ehα(Z)−Φ(z)

≤ δ
α

+P{z≤ Z ≤ z+α}

≤ δ
α

+
α√
2π

.

Therefore
P(W ≤ z)−Φ(z)≤ 2(2π)−1/4δ 1/2 ≤ 2δ 1/2. (5.39)

Similarly, we have
P(W ≤ z)−Φ(z)≥−2δ 1/2, (5.40)

proving (5.38). ��
Theorems 5.4 and 5.5 together yield the Lindeberg central limit theorem.

Corollary 5.6. Let X1, . . . ,Xn be independent random variables with EXi = 0 and
EX2

i < ∞ for 1≤ i≤ n. Put Sn = ∑n
i=1 Xi and B2

n = ∑n
i=1 EX2

i . If

B−2
n

n

∑
i=1

EX2
i I(|Xi|> εBn)→ 0 for all ε > 0, (5.41)

then
Sn/Bn

D−→ N(0,1). (5.42)

Proof. To apply Theorems 5.4 and 5.5, let

ξi = Xi/Bn and W = Sn/Bn. (5.43)

Clearly, the Lindeberg condition (5.41) is equivalent to

lim
n→∞

n

∑
i=1

Eξ 2
i I(|ξi|> ε) = 0 for all ε > 0. (5.44)
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Define β2 and β3 as in (5.33), and observe that for any 0 < ε < 1,

β2 +β3 =
n

∑
i=1

Eξ 2
i I(|ξi|> 1)+

n

∑
i=1

E|ξi|3I(|ξi| ≤ 1)

=
n

∑
i=1

Eξ 2
i I(|ξi|> 1)+

n

∑
i=1

E|ξi|3I(|ξi| ≤ ε)+
n

∑
i=1

E|ξi|3I(ε < |ξi| ≤ 1)

≤
n

∑
i=1

Eξ 2
i I(|ξi|> 1)+ ε

n

∑
i=1

E|ξi|2 +
n

∑
i=1

E|ξi|2I(ε < |ξi| ≤ 1)

≤ 2
n

∑
i=1

Eξ 2
i I(|ξi|> ε)+ ε. (5.45)

Then (5.44) and (5.45) imply β2 +β3 → 0 as n→ ∞, since ε is arbitrary. Hence, by
Theorems 5.4 and 5.5,

sup
z
|P(Sn/Bn ≤ z)−Φ(z)| ≤ 8(β2 +β3)1/2 → 0 as n→ ∞.

��

5.2 Concentration Inequality and Classical Berry–Esseen Bound

We use (5.27) and a concentration inequality in Lemma 5.8 below, which provides
a key tool for overcoming the non-smoothness of the indicator function I(W ≤ z),
to derive the classical Berry–Esseen bound.
Theorem 5.7. Let ξ1,ξ2, . . . ,ξn be independent random variables satisfying
Eξi = 0, E|ξi|3 < ∞ for 1≤ i≤ n and such that ∑n

i=1 Eξ 2
i = 1. Then

|P(W ≤ z)−Φ(z)| ≤ 12β , (5.46)

where W = ∑n
i=1 ξi and β = ∑n

i=1 E|ξi|3.

Proof. Let fz be the solution of the Stein equation (5.2) and define W (i) by (5.21).
To apply (5.27), rewrite

f ′z(W )− f ′z
(

W (i) + t
)

=
(

W (i) +ξi

)
fz

(
W (i) +ξi

)
−
(

W (i) + t
)

fz

(
W (i) + t

)
+ I

(
W (i) ≤ z−ξi

)
− I

(
W (i) ≤ z− t

)
.

Thus, by (5.9),∣∣∣E{
f ′z(W )− f ′z(W

(i) + t)
}∣∣∣

≤ E
∣∣∣(W (i) +ξi

)
fz

(
W (i) +ξi

)
−
(

W (i) + t
)

fz

(
W (i) + t

)∣∣∣
+
∣∣∣P(

W (i) ≤ z−ξi

)
−P

(
W (i) ≤ z− t

)∣∣∣
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≤ 2E
{(∣∣∣W (i)

∣∣∣+1
)

(|t|+ |ξi|)
}

+
∣∣∣P(

W (i) ≤ z−ξi

)
−P

(
W (i) ≤ z− t

)∣∣∣
≤ 4(|t|+E|ξi|)+

∣∣∣P(
W (i) ≤ z−ξi

)
−P

(
W (i) ≤ z− t

)∣∣∣ .
From (5.27), it follows that

|P(W ≤ z)−Φ(z)| = |E f ′z(W )−EW fz(W )|

≤
n

∑
i=1

4
∫ ∞

−∞
(|t|+E|ξi|)Ki(t)dt

+
n

∑
i=1

∫ ∞

−∞

∣∣∣P(
W (i) ≤ z−ξi

)
−P

(
W (i) ≤ z− t

)∣∣∣Ki(t)dt

≤ 4
n

∑
i=1

(E|ξi|3/2+E|ξi|Eξ 2
i )

+
n

∑
i=1

∫ ∞

−∞
(2|t|+2E|ξi|+3β )Ki(t)dt ≤ 12β ,

where in the second inequality, we have used (5.23) to obtain the first sum, and
Lemma 5.8 below to obtain the second sum, noting that∣∣∣P(

W (i) ≤ z−ξi

)
−P

(
W (i)≤z− t

)∣∣∣ ≤ P
(

z−max(t,ξi)≤W (i) ≤ z−min(t,ξi)
)

≤ 2(|t|+E|ξi|)+3β . ��

Lemma 5.8. With the same notation and assumptions as in Theorem 5.7,

P
(

a≤W (i) ≤ b
)
≤ 2(b−a)+3β (5.47)

for all a < b and 1≤ i≤ n, where W (i) = W −ξi.

Proof. Define δ = β/2 and let

f (w) =

⎧⎪⎨
⎪⎩
− 1

2 (b−a)−δ if w < a−δ ,

w− 1
2 (b+a) if a−δ ≤ w≤ b+δ ,

1
2 (b−a)+δ if w > b+δ ,

(5.48)

so that f ′(x) = I(a−δ < x < b+δ ) and ‖ f‖= (b−a)/2+δ . Since ξ j and W (i)−ξ j

are independent for j �= i, and since ξi is independent of W (i) and Eξ j = 0 for all j,

E
{

W (i) f
(

W (i)
)}
−E

{
ξi f

(
W (i)−ξi

)}
=

n

∑
j=1

E
{
ξ j

[
f (W (i))− f (W (i)−ξ j)

]}
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=
n

∑
j=1

Eξ j

∫ 0

−ξ j

f ′
(

W (i) + t
)

dt

=
n

∑
j=1

E
∫ ∞

−∞
f ′
(

W (i) + t
)

M̂j(t)dt, (5.49)

where M̂j(t) = ξ j{I(−ξ j ≤ t ≤ 0)−I(0 < t ≤−ξ j)}. Noting that M̂j ≥ 0 and f ′ ≥ 0,

n

∑
j=1

E
∫ ∞

−∞
f ′
(

W (i) + t
)

M̂j(t)dt ≥
n

∑
j=1

E
∫
|t|≤δ

f ′
(

W (i) + t
)

M̂j(t)dt

≥
n

∑
j=1

EI
(

a≤W (i) ≤ b
)∫
|t|≤δ

M̂j(t)dt

= E

{
I
(

a≤W (i) ≤ b
) n

∑
j=1
|ξ j|min(δ , |ξ j|)

}

≥ H1,1−H1,2, (5.50)

where

H1,1 = P
(

a≤W (i) ≤ b
) n

∑
j=1

E|ξ j|min(δ , |ξ j|),

H1,2 = E

∣∣∣∣∣
n

∑
j=1

{
|ξ j|min(δ , |ξ j|)−E|ξ j|min(δ , |ξ j|)

}∣∣∣∣∣ .
Simple algebra yields

min(x,y)≥ x− x2/(4y) x > 0, y > 0,

implying that
n

∑
j=1

E|ξ j|min(δ , |ξ j|)≥
n

∑
j=1

{
Eξ 2

j −
E|ξ j|3

4δ

}
=

1
2

(5.51)

since δ = β/2, and therefore

H1,1 ≥
1
2

P
(

a≤W (i) ≤ b
)

. (5.52)

By the Hölder inequality,

H1,2 ≤
(

Var

{
n

∑
j=1
|ξ j|min(δ , |ξ j|)

})1/2

≤
(

n

∑
j=1

Eξ 2
j min(δ , |ξ j|)2

)1/2

≤ δ

(
n

∑
j=1

Eξ 2
j

)1/2

= δ . (5.53)
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On the other hand, recalling that ‖ f‖ ≤ 1
2 (b−a)+δ , we have

E
{

W (i) f
(

W (i)
)}
− E

{
ξi f

(
W (i)−ξi

)}
≤ {(b−a)/2+δ}

(
E
∣∣∣W (i)

∣∣∣+E|ξi|
)

≤ (b−a)+2δ = (b−a)+β . (5.54)

Combining (5.49), (5.50) and (5.52)–(5.54) yields

P
(

a≤W (i) ≤ b
)
≤ 2{(b−a)+β +δ}= 2(b−a)+3β .

��
Following the lines of the previous proof, one can prove that

|P(W ≤ z)−Φ(z)| ≤ 20(β2 +β3), (5.55)

dispensing with the third moment assumption, where β2 and β3 are as in (5.33).
With a more refined concentration inequality, the constant 20 can be reduced to 4.1;
see Chen and Shao (2001).

5.3 A Self-Normalized Berry–Esseen Inequality

Let X1, . . . ,Xn be independent random variables with EXi = 0 and EX2
i < ∞. Put

Sn =
n

∑
i=1

Xi, V 2
n =

n

∑
i=1

X2
i , B2

n =
n

∑
i=1

EX2
i . (5.56)

The study of the Berry–Esseen bound for the self-normalized sum Sn/Vn has a long
history. The first general result is due to Bentkus and Götze (1996) for the i.i.d. case,
which is extended to the non-i.i.d. case by Bentkus et al. (1996). In particular, they
have shown that

sup
z
|P(Sn/Vn ≤ z)−Φ(z)| ≤C(β2 +β3), (5.57)

where C is an absolute constant and

β2 = B−2
n

n

∑
i=1

EX2
i I(|Xi|> Bn), β3 = B−3

n

n

∑
i=1

E|Xi|3I(|Xi| ≤ Bn). (5.58)

The bound, therefore, coincides with the classical Berry–Esseen bound for the stan-
dardized mean Sn/Bn up to an absolute constant. Their proof is based on the tra-
ditional characteristic function approach. In this section, we give a direct proof of
(5.57) by using Stein’s method, which has been used by Shao (2005) to obtain a
more explicit bound.
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Theorem 5.9. Let X1, . . . ,Xn be independent random variables with EXi = 0 and
EX2

i < ∞ for 1≤ i≤ n. Define Sn, Vn and Bn by (5.56). Then

sup
z
|P(Sn/Vn ≤ z)−Φ(z)| ≤ 11B−2

n

n

∑
i=1

EX2
i I(|Xi|> Bn/2)

+B−3
n

n

∑
i=1

E|Xi|3I(|Xi| ≤ Bn/2).

In particular, for 2 < p≤ 3,

sup
z
|P(Sn/Vn ≤ z)−Φ(z)| ≤ 25B−p

n

n

∑
i=1

E|Xi|p.

5.3.1 Proof: Outline of Main Ideas

Without loss of generality, assume that Bn = 1. Let

ξi = Xi/Vn and W =
n

∑
i=1

ξi. (5.59)

A key observation is that for any absolutely continuous function f ,

W f (W ) −
n

∑
i=1

ξi f (W −ξi)

=
n

∑
i=1

ξi ( f (W )− f (W −ξi)) =
n

∑
i=1

ξi

∫ 0

−ξi

f ′(W + t)dt

=
n

∑
i=1

ξi

∫ 1

−1
f ′(W + t) [I(−ξi ≤ t ≤ 0)− I(0 < t ≤−ξi)]dt

=
n

∑
i=1

∫ 1

−1
f ′(W + t)m̂i(t)dt

=
∫ 1

−1
f ′(W + t)m̂(t)dt, (5.60)

where

m̂i(t) = ξi [I(−ξi ≤ t ≤ 0)− I(0 < t ≤−ξi)] , m̂(t) =
n

∑
i=1

m̂i(t).

Noting that ∫ 1

−1
m̂(t)dt =

n

∑
i=1

ξ 2
i = 1,
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we have

f ′(W )−W f (W ) = −
n

∑
i=1

ξi f (W −ξi) (5.61)

+
∫ 1

−1

[
f ′(W )− f ′(W + t)

]
m̂(t)dt.

Let f = fz be the solution (5.3) to the Stein equation (5.2). Then

I(W ≤ z)−Φ(z) =
∫ 1

−1
(W fz(W )− (W + t) fz(W + t)) m̂(t)dt

+
∫ 1

−1
[I(W ≤ z)− I(W + t ≤ z)] m̂(t)dt−

n

∑
i=1

ξi fz(W −ξi)

= R1 +R2−R3, (5.62)

where

R1 =
∫ 1

−1
(W fz(W )− (W + t) fz(W + t)) m̂(t)dt, (5.63)

R2 = I(W ≤ z)−
∫ 1

−1
I(W + t ≤ z)m̂(t)dt, (5.64)

R3 =
n

∑
i=1

ξi fz(W −ξi). (5.65)

It is easy to see that

|R1| ≤
∫ 1

−1
(|W |+1) |t|m̂(t)dt ≤ (1/2)

n

∑
i=1

(|W |+1) |ξi|3. (5.66)

Since Bn = 1, we expect that Vn is close to 1 with high probability, so ξi is close Xi,
which can be used to show that

E|R1|I(Vn ≥ 1/2) = O(1)(β2 +β3). (5.67)

As to R2, since m̂(t) ≥ 0 and
∫ 1
−1 m̂(t)dt = 1, we can view m̂(t) as a conditional

density function given Xn := (Xi,1 ≤ i ≤ n). Let T be a random variable such that
the conditional density function of T given Xn is m̂(t). Then we can rewrite

∫ 1

−1
I(W + t ≤ z)m̂(t)dt = E [I(W +T ≤ z)|Xn]

and
R2 = I(W ≤ z)−E [I(W +T ≤ z)|Xn] . (5.68)
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Now E(R2) = P(W ≤ z)−P(W + T ≤ z). Similarly to Lemma 5.8, we expect the
following randomized concentration inequality to hold:

|P(W ≤ z)−P(W +T ≤ z)|= O(1)(β2 +β3). (5.69)

Noting that ξi and W −ξi are almost independent, we also expect that

|ER3I(Vn ≥ 1/2)|= O(1)(β2 +β3). (5.70)

5.3.2 Proof: Details

We now give a detailed proof of (5.57). Without loss of generality, assume Bn = 1,
z≥ 0, and use the notation in Sect. 5.3.1. It follows from (5.62) that

[I(W ≤ z)−Φ(z)] I(Vn ≥ 1/2) = (R1 +R2−R3)I(Vn ≥ 1/2)

and therefore

|P(W ≤ z) − Φ(z)| (5.71)
= |E [I(W ≤ z)−Φ(z)] I(Vn <1/2)|+|E [I(W≤z)−Φ(z)] I(Vn≥1/2)|
≤ P(Vn < 1/2)+ |ER1I(Vn ≥ 1/2)|

+ |ER2I(Vn ≥ 1/2)|+ |ER3I(Vn ≥ 1/2)| . (5.72)

Since (5.57) is trivial when β2 ≥ 0.1 or β3 ≥ 0.1, we assume

β2 < 0.1 and β3 < 0.1, (5.73)

and divide the proof of (5.57) into four steps.
Step 1. Show that

P(Vn ≤ 1/2)≤ 0.4β3. (5.74)

Application of Theorem 2.19 yields

P(Vn ≤ 1/2) ≤ P
{
∑n

i=1 X2
i I(|Xi| ≤ 1)≤ 1/4

}
≤ exp

(
−
[
∑n

i=1 EX2
i I(|Xi| ≤ 1)−1/4

]2

2∑n
i=1 EX4

i I(|Xi| ≤ 1)

)

≤ exp
[
−(1−β2−0.25)2/(2β3)

]
≤ exp(−0.652/2β3)≤ 0.4β3 by (5.73).

Step 2. Bound ER1I(Vn ≥ 1/2) by

|ER1I(Vn ≥ 1/2)| ≤ 2β2 +16β3. (5.75)
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Noting that |ξi| ≤V−1
n |Xi|I(|Xi| ≤ 1)+ I(|Xi|> 1), we have by (5.66),

|ER1I(Vn ≥ 1/2)|

≤ 1
2

n

∑
i=1

E|ξi|3I(Vn ≥ 1/2)+
1
2

n

∑
i=1

E|ξi|3|W |I(Vn ≥ 1/2)

≤ 1
2

n

∑
i=1

E
(
|ξi|3 + |ξi|4

)
I(Vn ≥ 1/2)+

1
2

n

∑
i=1

E|ξi|3|W −ξi|I(Vn ≥ 1/2)

≤
n

∑
i=1

E|ξi|3I(Vn ≥ 1/2)+
1
2

n

∑
i=1

E|ξi|3|W −ξi|I(Vn ≥ 1/2)

≤
n

∑
i=1

E
[
V−3

n |Xi|3I(|Xi| ≤ 1)+ I(|Xi|> 1)
]

I(Vn ≥ 1/2)

+
1
2

n

∑
i=1

E
[
V−3

n |Xi|3I(|Xi| ≤ 1)+ I(|Xi|> 1)
]
|Sn−Xi|V−1

n I(Vn ≥ 1/2)

≤
n

∑
i=1

{
8E|Xi|3I(|Xi| ≤ 1)+P(|Xi|> 1)

}

+
n

∑
i=1

{
E
[
8|Xi|3I(|Xi| ≤ 1)+ I(|Xi|> 1)

]
|Sn−Xi|

}
≤ 8β3 +β2 +8β3 +β2 = 2β2 +16β3. (5.76)

Step 3. Bound |ER2I(Vn ≥ 1/2)| by

|ER2I(Vn ≥ 1/2)| ≤ Aβ2 +Aβ3. (5.77)

By (5.68), ER2I(Vn ≥ 1/2) = E[I(W ≤ z)− I(W +T ≤ z)]I(Vn ≥ 1/2). Therefore

ER2I(Vn ≥ 1/2)

⎧⎨
⎩
≤ EI(z−|T | ≤W ≤ z)I(Vn ≥ 1/2),

≥−EI(z≤W ≤ z+ |T |)I(Vn ≥ 1/2).

We now develop a randomized concentration inequality for P(z−|T | ≤W ≤ z,Vn ≥
1/2). Following the proof of Lemma 5.8, let δ = (1/2)∑n

i=1 |ξi|3,

fT,δ (w) =

⎧⎪⎨
⎪⎩
−|T |/2−δ if w≤ z−|T |−δ ,

(w− z−|T |/2) if z−|T |−δ ≤ w≤ z+δ ,

|T |/2+δ if w≥ z+δ ;

h(w) =

⎧⎪⎨
⎪⎩

0 if w≤ 1/4,

linear if 1/4 < w < 1/2,

1 if w≥ 1/2.
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By (5.60) and the fact that f ′T,δ ≥ 0,

W fT,δ (W ) −
n

∑
i=1

ξi fT,δ (W −ξi)

=
∫ 1

−1
f ′T,δ (W + t)m̂(t)dt

≥
∫
|t|≤δ

f ′T,δ (W + t)I(z−|T | ≤W ≤ z)m̂(t)dt

= I(z−|T | ≤W ≤ z)
n

∑
i=1
|ξi|min(|ξi|,δ )

≥ I(z−|T | ≤W ≤ z)
n

∑
i=1

{
ξ 2

i −|ξi|3/(4δ )
}

= (1/2)I(z−|T | ≤W ≤ z),

in which the last inequality follow from min(x,y)≥ x−x2/(4y) for x≥ 0 and y > 0.
Therefore

EI(z−|T | ≤W ≤ z)I(Vn > 1/2)
≤ EI(z−|T | ≤W ≤ z)h(Vn)

≤ 2EW fT,δ (W )h(Vn)−2
n

∑
i=1

Eξi fT,δ (W −ξi)h(Vn)

:= Δ1 +Δ2. (5.78)

Recalling that the conditional density function of T given Xn is m̂(t), we obtain

|Δ1| ≤ 2E|W |(|T |/2+δ )h(Vn)
≤ 2E|W |δh(Vn)+E (|W |h(Vn)E (|T ||Xn))

= 2E|W |δh(Vn)+E|W |h(Vn)
∫ 1

−1
|t|m̂(t)dt

= 2E|W |δh(Vn)+
1
2

n

∑
i=1

E|W |h(Vn)|ξi|3

≤ 3
2

n

∑
i=1

E|W ||ξi|3I(Vn > 1/4)

≤ A(β2 +β3), (5.79)

following the proof of (5.76). To estimate Δ2, let

V ∗n = max(Vn,1/4), V ∗(i) = max
((

∑ j �=i X2
j

)1/2
,1/4

)
.
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The main idea is to replace Vn in Δ2 by V ∗(i) and then use the independence of Xi and
{Xj, j �= i}. First note that

∣∣∣∣ d
dx

(
x fT,δ (ax)

)∣∣∣∣≤ | fT,δ (xa)|+ |ax f ′T,δ (ax)| ≤ A(|a|+1)

for 0≤ x≤ 4, and that

|h(x)−h(y)| ≤ 2min(1, |x− y|)
= 2min

(
1, |x2− y2|/(|x|+ |y|)

)
≤ Amin

(
1, |x2− y2|

)
for x≥ 1/4,y≥ 1/4. Moreover,

0 ≤ 1
V ∗(i)
− 1

V ∗n
=

V ∗2n −V ∗2(i)

V ∗n V ∗(i)(V
∗
n +V ∗(i))

≤ |Xi|2
V ∗n V ∗(i)(V

∗
n +V ∗(i))

≤ Amin(X2
i ,1). (5.80)

Also note that g(Vn)h(Vn) = g(V ∗n )h(V ∗n ) for any measurable function g because
h(Vn) = h(V ∗n ) = 0 when Vn < 1/4. Hence, with δ ∗ = ∑n

i=1 |Xi|3/V ∗3n , we have

Eξi fT,δ (W −ξi)h(Vn)

= E
Xi

V ∗n
fT,δ ∗

(
Sn−Xi

V ∗n

)
h(V ∗n )

≤ E
Xi

V ∗(i)
fT,δ ∗

(
Sn−Xi

V ∗(i)

)
h
(

V ∗(i)
)

+AE|Xi|(|Sn−Xi|+1)min(1,X2
i )

= E
Xi

V ∗(i)
fT,δ ∗

(
Sn−Xi

V ∗(i)

)
h
(

V ∗(i)
)

+AE|Xi|min(1,X2
i )E (|Sn−Xi|+1)

≤ E
Xi

V ∗(i)
fT,δ ∗

(
Sn−Xi

V ∗(i)

)
h
(

V ∗(i)
)

+AEX2
i I (|Xi| ≥ 1)+AE|Xi|3I(|Xi| ≤ 1).

We can replace δ ∗ by δ ∗(i), where δ ∗(i) = (1/2)∑ j �=i |Xj|3/V ∗3(i) , because

∣∣∣δ ∗ −δ ∗(i)
∣∣∣ ≤ |Xi|3

V ∗3n
+∑

j �=i
|Xj|3

(
1

V ∗3(i)
− 1

V ∗3n

)

≤ Amin
(
|Xi|3,1

)
+A∑

j �=i

|Xj|3
V ∗3n

min(1,X2
i )≤ Amin(1,X2

i ),
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which implies that

E
Xi

V ∗(i)
fT,δ ∗

(
Sn−Xi

V ∗(i)

)
h
(

V ∗(i)
)

≤ E
Xi

V ∗(i)
fT,δ ∗(i)

(
Sn−Xi

V ∗(i)

)
h
(

V ∗(i)
)

+AE|Xi|min(1,X2
i )

≤ E
Xi

V ∗(i)
fT,δ ∗(i)

(
Sn−Xi

V ∗(i)

)
h
(

V ∗(i)
)

+AEX2
i I (|Xi| ≥ 1)+AE|Xi|3I (|Xi|< 1)

= E

{
Xi

V ∗(i)
h
(

V ∗(i)
)

E

[
fT,δ ∗(i)

(
Sn−Xi

V ∗(i)

)∣∣∣∣∣Xn

]}

+AEX2
i I (|Xi| ≥ 1)+AE|Xi|3I (|Xi|< 1) .

We next compute the conditional expected value of fT,δ(i)
given Xn:

E
(

fT,δ ∗(i)
(Sn−Xi)

∣∣∣Xn

)
=

∫ 1

−1
ft,δ ∗(i) (Sn−Xi)m̂(t)dt

=
n

∑
j=1

∫ 1

−1
ft,δ ∗(i) (Sn−Xi)m̂ j(t)dt

=
n

∑
j=1

ξ j

∫ 0

−ξ j

ft,δ ∗(i) (Sn−Xi)dt

= ξi

∫ 0

−ξi

ft,δ ∗(i) (Sn−Xi)dt +∑
j �=i

ξ j

∫ 0

−ξ j

ft,δ ∗(i) (Sn−Xi)dt.

As before, we show that ξ j above can be replaced by Xj/V ∗(i). Since | ft,δ ∗(i) | ≤ 2 for
−1≤ t ≤ 1 and ∣∣∣∣ d

dx

(
x
∫ 0

−x
ft,δ ∗(i) (Sn−Xi)dt

)∣∣∣∣≤ 2|x|,

we have

∑
j �=i

ξ j

∫ 0

−ξ j

ft,δ ∗(i) (Sn−Xi)dt

≤∑
j �=i

Xj

V ∗(i)

∫ 0

−Xj/V ∗(i)
ft,δ ∗(i) (Sn−Xi)dt +2∑

j �=i
|Xj|

(
1

V ∗(i)
− 1

V ∗n

)
|Xj|
V ∗(i)

≤∑
j �=i

Xj

V ∗(i)

∫ 0

−Xj/V ∗(i)
ft,δ ∗(i) (Sn−Xi)dt +A∑

j �=i

|Xj|2
V ∗2(i)

X2
i

V 2∗
n

≤∑
j �=i

Xj

V ∗(i)

∫ 0

−Xj/V ∗(i)
ft,δ ∗(i) (Sn−Xi)dt +Amin(1,X2

i ).
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Because E(Xi) = 0, Xi and {Xj, j �= i} are independent, we have

E
Xi

V ∗(i)
fT,δ ∗(i)

(
Sn−Xi

V ∗(i)

)
h
(

V ∗(i)
)
≤ E

|Xi|3
V ∗2n

+AE|Xi|min(1,X2
i )

+∑
j �=i

E
Xi

V ∗(i)

Xj

V ∗(i)
h
(

V ∗(i)
)∫ 0

−Xj/V ∗(i)
ft,δ ∗(i) (Sn−Xi)dt

≤ AE|Xi|min(1,X2
i ).

Putting the above inequalities together gives

|Δ2| ≤ A(β2 +β3). (5.81)

Therefore
EI(z−|T | ≤W ≤ z)I(Vn ≥ 1/2)≤ A(β2 +β3).

Similarly, EI(z≤W ≤ z+ |T |)I(Vn ≥ 1/2)≤ A(β2 +β3). This proves (5.77).
Step 4. Following the proof of (5.81), it is readily seen that

|ER3I(Vn ≥ 1/2)| ≤ A(β2 +β3).

Completing the proof of (5.57). ��

5.4 Supplementary Results and Problems

1. Prove (5.15) and show how it can be used to derive (5.6) and (5.7).
2. Let Y be a random variable with density function p with respect to Lebesgue

measure. Assume that p(y) > 0 for all y ∈ R and p(−∞) = p(∞) = 0. Let f :
R−→ R be bounded and absolutely continuous:

(a) Prove that for f ∈ C ,

E
(
(p(Y ) f (Y ))′ /p(Y )

)
= 0. (5.82)

(b) Let h be a measurable function such that E|h(Y )|< ∞. Solve f = fh for the
Stein equation

f ′(y)+ f (y)p′(y)/p(y) = h(y)−Eh(Y ).

3. Modify the proof of Lemma 5.8 to derive (5.55).
4. Stein’s method can also be applied to prove the following non-uniform Berry–

Esseen bound (Chen and Shao, 2001): Let ξ1,ξ2, . . . ,ξn be independent random
variables satisfying Eξi = 0 and E|ξi|3 < ∞ for each 1 ≤ i ≤ n and such that
∑n

i=1 Eξ 2
i = 1. Put W = ∑n

i=1 ξi. Then
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|P(W ≤ z)−Φ(z)| ≤ A(1+ |z|)−3γ , (5.83)

where A is an absolute constant and γ = ∑n
i=1 E|ξi|3.

A key step in the proof of (5.83) is the following non-uniform concentration
inequality

P(a≤W ≤ b)≤ 10e−a/2(b−a+ γ) (5.84)

for all real b > a. Prove (5.84).
5. Chen and Shao (2007) have proved the following “randomized concentration in-

equality”: Let ξ1,ξ2, . . . ,ξn be independent random variables satisfying Eξi = 0
and E|ξi|3 <∞ for each 1≤ i≤ n and such that ∑n

i=1 Eξ 2
i = 1. Put W =∑n

i=1 ξi.
Let Δ1 and Δ2 be measurable functions of {ξi,1≤ i≤ n}. Then

P(Δ1 ≤W ≤ Δ2) ≤ E|W (Δ2−Δ1)|+2γ (5.85)

+
n

∑
i=1
{E|ξi(Δ1−Δ1,i)|+E|ξi(Δ2−Δ2,i)|},

where Δ1,i and Δ2,i are Borel measurable functions of (ξ j,1≤ j ≤ n, j �= i).
Making use of (5.85), one can obtain Berry–Esseen bounds for many non-linear
statistics. In particular, carry this out for U-statistics; see (8.5) and Sect. 8.2.1
for an introduction to U-statistics.

6. It would be of interest to investigate if Stein’s method can be used to prove the
following results that have been proved by other methods and to derive more
precise bounds.

(a) Hall and Wang (2004): Let X ,X1,X2, . . . be i.i.d. random variables in the
domain of attraction of the normal law with E(X) = 0. Then

sup
x
|P(Sn/Vn ≤ x)−Φ(x)−Ln(x)|= o(δn)+O(n−1/2), (5.86)

where

Ln(x) = nE
(
Φ
[
x(1+X2/b2

n)
1/2− (X/bn)

]
−Φ(x)

)
,

δn = nP(|X |> bn)+nb−1
n |EXI(|X | ≤ bn)|

+nb−3
n |EX3I(|X | ≤ bn)|+nb−4

n EX4I(|X | ≤ bn),
bn = sup

{
x : nx−2EX2I(|X | ≤ x)≥ 1

}
.

If, in addition, Cramér’s condition (2.31) is satisfied, then O(n−1/2) on the
right-hand side of (5.86) can be replaced by O(n−1).

(b) Hall and Wang (2004): Let X ,X1,X2, . . . be i.i.d. random variables with
E(X) = 0, σ2 = E(X2) and E|X |3 < ∞. Assume that the distribution of X is
nonlattice, then

sup
x
|P(Sn/Vn ≤ x)−Φ(x)−Fn(x)|= o(n−1/2), (5.87)

where Fn(x) = EX3

6
√

nσ3 (2x2 +1)φ(x).



Chapter 6
Self-Normalized Moderate Deviations and Laws
of the Iterated Logarithm

Let X ,X1, . . . ,Xn be i.i.d. random variables. Shao (1997) has developed a theory
of moderate deviations for the self-normalized sum of the Xi when X belongs to
the domain of attraction of a stable distribution with index α (0 < α ≤ 2). In this
chapter, Sect. 6.1 describes this theory when X is attracted to a normal distribution
(α = 2), and Sect. 6.2 describes the theory for the case 0 < α < 2. Section 6.3
applies the theory to self-normalized laws of the iterated logarithm.

6.1 Self-Normalized Moderate Deviations: Normal Case

Throughout this chapter we let X ,X1,X2, . . . be i.i.d. random variables and set

Sn =
n

∑
i=1

Xi and V 2
n =

n

∑
i=1

X2
i .

Let {xn, n ≥ 1} be a sequence of positive numbers with xn → ∞ as n → ∞. It is
known that

lim
n→∞

x−2
n logP

(
|Sn|√

n
≥ xn

)
=−1

2

holds for any sequence {xn} with xn → ∞ and xn = o(
√

n) if and only if EX = 0,
EX2 = 1 and Eet0|X | < ∞ for some t0 > 0. The “if” part follows from the theory of
large deviations in Sect. 3.1. For the “only if” part, see Problem 6.1. While we have
given a treatment of the self-normalized large deviation probability P(Sn ≥ xn Vn)
with xn �

√
n in Sect. 3.2, we now consider the case xn = o(

√
n) and show that

logP(Sn ≥ xn Vn) is asymptotically distribution-free if X belongs to the domain of
attraction of a normal law.

Theorem 6.1. Let {xn, n ≥ 1} be a sequence of positive numbers with xn → ∞ and
xn = o(

√
n) as n→ ∞. If EX = 0 and EX2I(|X | ≤ x) is slowly varying as x→ ∞,

then

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 63
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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lim
n→∞

x−2
n logP

(
Sn

Vn
≥ xn

)
=−1

2
. (6.1)

The proof is divided into two parts. The first part proves the upper bound

limsup
n→∞

x−2
n logP

(
Sn

Vn
≥ xn

)
≤−1

2
, (6.2)

and the second part proves the lower bound

liminf
n→∞

x−2
n logP

(
Sn

Vn
≥ xn

)
≥−1

2
. (6.3)

6.1.1 Proof of the Upper Bound

Let
l(x) = EX2I(|X | ≤ x), b = inf{x≥ 1 : l(x) > 0} ,

zn = inf
{

s : s≥ b+1, l(s)
s2 ≤ x2

n
n

}
.

(6.4)

By Lemma 4.2, we have that similar to (4.7),

zn → ∞ and nl(zn) = x2
n z2

n for every n sufficiently large, (6.5)

P(|X | ≥ x) = o
(
l(x)/x2) , E|X |I(|X | ≥ x) = o(l(x)/x) , (6.6)

and
E|X |kI(|X | ≤ x) = o

(
xk−2l(x)

)
for each k > 2 (6.7)

as x→ ∞. Let X̄i = XiI(|Xi| ≤ zn). For any 0 < ε < 1/4,

P(Sn ≥ xnVn) ≤ P

(
n

∑
i=1

X̄i ≥ (1− ε)xn Vn

)
(6.8)

+P

(
n

∑
i=1

XiI(|Xi|> zn)≥ ε xn Vn

)

≤ P

(
n

∑
i=1

X̄i ≥ (1− ε)2xn
√

nl(zn)

)

+P
(

Vn ≤ (1− ε)
√

nl(zn)
)

+P

(
n

∑
i=1

I(|Xi|> zn)≥ ε2x2
n

)

:= J1 + J2 + J3.
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We next apply the exponential inequality (2.22) to the truncated variables X̄i,
noting that

n

∑
i=1

EX̄i = o(nl(zn)/zn) = o
(

xn
√

nl(zn)
)

,

n

∑
i=1

Var(X̄i)≤
n

∑
i=1

EX̄2
i = nl(zn) := B2

n,

βn :=
n

∑
i=1

E|X̄i−EX̄i|3 ≤ 8nE|X̄i|3 = o(nznl(zn)) by (6.7),

(
xn
√

nl(zn)
)3

B6
n

βnexn
√

nl(zn)zn/B2
n = o(x2

n) by (6.5).

From (2.22), it then follows that for sufficiently large n,

J1 ≤ P

(
n

∑
i=1

(X̄i−EX̄i)≥ (1− ε)3xn
√

nl(zn)

)
(6.9)

≤ exp
(
− (1− ε)6x2

n

2

)
.

To bound J2, application of (2.26) yields

J2 ≤ P

(
n

∑
i=1

X̄2
i ≤ (1− ε)2nl(zn)

)
(6.10)

≤ exp
(
− (1− (1− ε)2)2(nl(zn))2

2nEX4I(|X | ≤ zn)

)

≤ exp

(
−ε2 (nl(zn))

2

o(nz2
nl(zn))

)

≤ exp
(
−x2

nε2/o(1)
)
≤ exp(−2x2

n)

by (6.5) and (6.7). We next consider J3. Recalling that ∑n
i=1 I(|Xi|> zn) has a bino-

mial distribution and applying (2.27), we obtain from (6.6) and (6.5) that

J3 ≤
(

3nP(|X |> zn)
ε2x2

n

)ε2x2
n

(6.11)

=
(

o
(

l(zn)
z2

n

)
· n
ε2x2

n

)ε2x2
n

=
(

o(1)
ε2

)ε2x2
n

≤ exp(−2x2
n).

Since ε is arbitrary, (6.2) follows from (6.8)–(6.11). ��
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6.1.2 Proof of the Lower Bound

Define zn as in (6.4). The proof is based on the following observation:

xnVn ≤
1
2b

(
b2V 2

n + x2
n
)

(6.12)

for any b > 0 and equality holds when b = xn/Vn. From the proof of (6.2), we can
see that Vn is close to (nl(zn))1/2. Thus we can choose b = 1/zn in (6.12). To carry
out this idea, we need the following two lemmas.

Lemma 6.2. Let {ξ ,ξn, n ≥ 1} be a sequence of independent random variables,
having the same non-degenerate distribution function F(x). Assume that

H := sup
{

h : Eehξ < ∞
}

> 0.

For 0 < h < H, put

m(h) = Eξehξ /Eehξ , σ2(h) = Eξ 2ehξ /Eehξ −m2(h).

Then

P

(
n

∑
i=1

ξi ≥ nx

)
≥ 3

4

(
Eehξ

)n
e−nhm(h)−2hσ(h)

√
n (6.13)

provided that
m(h)≥ x+2σ(h)/

√
n. (6.14)

Proof. Let
V (x) =

1
Eehξ

∫ x

−∞
ehy dF(y).

Consider the sequence of independent random variables {η ,ηn,n ≥ 1}, having the
same distribution function V (x). Denote by Fn(x) the distribution function of the
random variable (∑n

i=1(ηi − Eηi))/
√

nVarη . By the conjugate method in Petrov
(1965), which we have explained with another notation in Sect. 3.1,

P

(
n

∑
i=1

ξi ≥ nx

)
=
(

Eehξ
)n

e−nhm(h)
∫ ∞

−(m(h)−x)
√

n/σ(h)
e−hσ(h)t

√
n dFn(t).

Since m(h)≥ x+2σ(h)/
√

n,

∫ ∞

−(m(h)−x)
√

n/σ(h)
e−hσ(h)t

√
n dFn(t) ≥

∫ 2

−2
e−hσ(h)t

√
n dFn(t)

≥ e−2hσ(h)
√

nP

(∣∣∣∣∣
n

∑
i=1

(ηi−Eηi)

∣∣∣∣∣≤ 2
√

nVarη

)

≥ 3
4

e−2hσ(h)
√

n,

proving (6.13). ��



6.1 Self-Normalized Moderate Deviations: Normal Case 67

Lemma 6.3. Let 0 < ε < 1/4,

bn = 1/zn, ξ := ξn = 2bnX−b2
nX2, and h := hε = (1+ ε)/2.

Then, under the condition of Theorem 6.1, as n→ ∞,

Eehξ = 1+ ε(1+ ε)x2
n/(2n)+o

(
x2

n/n
)
, (6.15)

Eξehξ = (1+2ε)x2
n/n+o

(
x2

n/n
)
, (6.16)

Eξ 2ehξ = 4x2
n/n+o

(
x2

n/n
)
. (6.17)

Proof. Note that
hξ = h

(
1− (bnX−1)2)≤ h≤ 1. (6.18)

In view of (6.6), we have

Eehξ = Eehξ I(|X |> zn)+Eehξ I(|X | ≤ zn) (6.19)

= o
(
l(zn)/z2

n
)
+E

(
1+hξ +

(hξ )2

2

)
I(|X | ≤ zn)

+E
(

ehξ −1−hξ − (hξ )2

2

)
I(|X | ≤ zn).

From (6.5)–(6.7), it follows that

E
(

1+hξ +
(hξ )2

2

)
I(|X | ≤ zn) (6.20)

= 1−P(|X |> zn)−2hbnEXI(|X |> zn)−hb2
nl(zn)

+2h2b2
nl(zn)−2h2b3

nEX3I(|X | ≤ zn)+h2b4
nEX4I(|X | ≤ zn)/2

= 1−hb2
nl(zn)+2h2b2

nl(zn)
+o

(
l(zn)/z2

n
)
+hbn o(l(zn)/zn)+h2b3

n o(znl(zn))+h2b4
no
(
z2

nl(zn)
)

= 1+ ε(1+ ε)b2
nl(zn)/2+o

(
b2

nl(zn)
)

= 1+ ε(1+ ε)x2
n/(2n)+o(x2

n/n).

Similarly, by using the inequality |ex−1− x− x2/2| ≤ |x|3e|x|,∣∣∣∣∣E
(

ehξ −1−hξ − (hξ )2

2

)
I(|X | ≤ zn)

∣∣∣∣∣ (6.21)

≤ E|hξ |3eh|ξ |I(|X | ≤ zn)

≤ 4h3Eeh(1+(bnX−1)2)
(

8b3
n|X |3 +b6

nX6
)

I(|X | ≤ zn)

≤ 4h3e3E
(

8b3
n|X |3 +b6

nX6
)

I(|X | ≤ zn)

≤ 4h3e3
(

b3
n o(znl(zn))+b6

n o
(
z4

nl(zn)
))

= o
(
b2

n l(zn)
)

= o(x2
n/n).



68 6 Self-Normalized Moderate Deviations and Laws of the Iterated Logarithm

From (6.19)–(6.21), (6.15) follows.
To estimate Eξehξ , write

Eξehξ = Eξehξ I(|X |> zn)+Eξ (1+hξ )I(|X | ≤ zn)+Eξ (ehξ −1−hξ )I(|X | ≤ zn).

Noting that sup−∞<x≤1 |x|ex = e, we have∣∣∣Eξehξ I(|X |> zn)
∣∣∣ ≤ h−1Eh|ξ |ehξ I(|X |> zn)

≤ h−1 eP(|X |> zn)
= h−1o

(
l(zn)/z2

n
)

= o
(
x2

n/n
)

by (6.18) and (6.6). Similar to (6.20),

Eξ (1+hξ )I(|X | ≤ zn) = (1+2ε)x2
n/n+o

(
x2

n/n
)
.

Using the inequality |ex−1−x| ≤ x2e|x|, we can proceed along the lines of the proof
of (6.21) to show

Eξ (ehξ −1−hξ )I(|X | ≤ zn) = o
(
x2

n/n
)
.

Combining these bounds yields (6.16). The proof of (6.17) is similar. ��

Proof (of the lower bound (6.3)). Let bn, h and ξ be the same as in Lemma 6.3. Put

ξi = 2bnXi−b2
nX2

i , i = 1,2, . . . .

By (6.12),

P(Sn ≥ xnVn) ≥ P
(

Sn ≥
1

2bn

(
b2

nV 2
n + x2

n
))

(6.22)

= P

(
n

∑
i=1

ξi ≥ x2
n

)
.

As in Lemma 6.2, let

m(h) = Eξehξ/Eehξ , σ2(h) = Eξ 2ehξ/Eehξ −m2(h), x = x2
n/n.

From Lemma 6.3, it follows that

m(h) = (1+2ε)x2
n/n+o

(
x2

n/n
)
,

Eξehξ − (x2
n/n)Eehξ = 2εx2

n/n+o
(
x2

n/n
)
,

σ(h)
(

Eehξ
)1/2

√
n

=
2(1+o(1))xn/

√
n√

n
= o

(
x2

n/n
)
.
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Therefore, (6.14) is satisfied for every sufficiently large n. By Lemma 6.2 and (6.15),

P

(
n

∑
i=1

ξi ≥ x2
n

)
≥ 3

4

(
Eehξ

)n
e−nhm(h)−2hσ(h)

√
n (6.23)

≥ 3
4

eε(1+ε)x2
n/2−h(1+2ε)x2

n+o(x2
n)

=
3
4

e−(1+ε)2x2
n/2+o(x2

n).

Since ε is arbitrary, (6.3) follows from (6.22) and (6.23). ��

Remark 6.4. The above proof of Theorem 6.1 has shown actually that the conver-
gence in (6.1) is uniform: For arbitrary 0 < ε < 1/4, there exist 0 < δ < 1, x0 > 1
and n0 such that for any n≥ n0 and x0 < x < δ

√
n,

e−(1+ε)x2/2 ≤ P
(

Sn

Vn
≥ x

)
≤ e−(1−ε)x2/2. (6.24)

Remark 6.5. Following the proof of (6.2) and using the Ottaviani maximal inequal-
ity (2.28) to bound J1, one can obtain the following result under the conditions of
Theorem 6.1: For any 0 < ε < 1/2, there exist θ > 1, 0 < δ < 1, x0 > 1 and n0
such that for any n≥ n0 and x0 < x < δ

√
n,

P
(

max
n≤k≤θn

Sk

Vk
≥ x

)
≤ e−(1−ε)x2/2. (6.25)

6.2 Self-Normalized Moderate Deviations: Stable Case

Let X be in the domain of attraction of a stable distribution with exponent α (0 <
α < 2) and xn be a sequence of constants satisfying

xn → ∞ and xn = o(
√

n)

as n→ ∞. In this section we prove that the tail probability of the self-normalized
sum P(Sn ≥ xnVn) is also Gaussian-like. Specifically, we have

Theorem 6.6. Assume that there exist 0 < α < 2, c1 ≥ 0, c2 ≥ 0, c1 +c2 > 0 and a
slowly varying function h(x) such that

P(X ≥ x) =
c1 +o(1)

xα
h(x) and P(X ≤−x) =

c2 +o(1)
xα

h(x) (6.26)

as x→∞. Moreover, assume that EX = 0 if 1 < α < 2, X is symmetric if α = 1 and
that c1 > 0 if 0 < α < 1. Then

lim
n→∞

x−2
n logP(Sn ≥ xnVn) =−β (α,c1,c2), (6.27)
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where β (α,c1,c2) is the solution of

Γ (β ,α,c1,c2) = 0, (6.28)

in which Γ (β ,α,c1,c2) is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1
∫ ∞

0
1+2x−e2x−x2/β

xα+1 dx+ c2
∫ ∞

0
1−2x−e−2x−x2/β

xα+1 dx if 1 < α < 2,

c1
∫ ∞

0
2−e2x−x2/β−e−2x−x2/β

x2 dx if α = 1,

c1
∫ ∞

0
1−e2x−x2/β

xα+1 dx+ c2
∫ ∞

0
1−e−2x−x2/β

xα+1 dx if 0 < α < 1.

(6.29)

In particular, if X is symmetric, then

lim
n→∞

x−2
n logP(Sn ≥ xnVn) =−β (α), (6.30)

where β (α) is the solution of

∫ ∞

0

2− e2x−x2/β − e−2x−x2/β

xα+1 dx = 0.

Remark 6.7. It is easy to see thatΓ (β ,α,c1,c2) is strictly decreasing and continuous
on (0,∞) and, by the L’Hôpital rule, that

lim
β↓0

Γ (β ,α,c1,c2) = ∞ and lim
β↑∞

Γ (β ,α,c1,c2) =−∞.

Therefore the solution of Γ (β ,α,c1,c2) = 0 indeed exists and is unique.

6.2.1 Preliminary Lemmas

To prove Theorem 6.6, we start with some preliminary lemmas. Statements below
are understood to hold for every sufficiently large n. Let

yn = x2
n/n (6.31)

and let zn be a sequence of positive numbers such that

h(zn)z−αn ∼ yn as n→ ∞. (6.32)

Lemma 6.8. Under the conditions of Theorem 6.6, we have as x→ ∞,

P(|X | ≥ x)∼ c1 + c2

xα
h(x), (6.33)
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E|X |2I(|X | ≤ x)∼ α(c1 + c2)
2−α

x2−αh(x), (6.34)

E|X |I(|X | ≥ x)∼ α(c1 + c2)
α−1

x1−αh(x) if 1 < α < 2, (6.35)

E|X |I(|X | ≤ x)∼ α(c1 + c2)
1−α

x1−αh(x) if 0 < α < 1. (6.36)

Proof. Equation (6.33) follows from the assumption (6.26). For (6.34), write

x2 =
∫ ∞

0
2tI(t ≤ |x|)dt

and

E|X |2I(|X | ≤ x) = E
∫ ∞

0
2tI(t ≤ |X |)I(|X | ≤ x)dt

=
∫ x

0
2t {P(|X | ≥ t)−P(|X |> x)}dt

∼ 2(c1 + c2)x2−αh(x)
2−α

− (c1 + c2)x2−αh(x)

=
α(c1 + c2)

2−α
x2−αh(x)

by (6.33) and (P5) in Sect. 4.1. This proves (6.34), and the proofs of (6.35) and
(6.36) are similar. ��

Lemma 6.9. Under the conditions of Theorem 6.6,

Ee−b2X2
= 1−2(c1 + c2)bαh(1/b)

∫ ∞

0
x1−αe−x2

dx+o(bαh(1/b)) (6.37)

as b ↓ 0.

Proof. Observe that

1− e−y2
=

∫ |y|
0

2xe−x2
dx =

∫ ∞

0
2xe−x2

I(|y| ≥ x)dx.

We have

1−Ee−b2X2
= 2

∫ ∞

0
xe−x2

P(|X | ≥ x/b)dx

= 2
∫ ∞

0
xe−x2 (c1 + c2 +o(1))h(x/b)

(x/b)α
dx by (6.33)

= 2(c1 + c2)bαh(1/b)
∫ ∞

0
x1−αe−x2

dx+o(bαh(1/b))

by (P2) and (P4) in Sect. 4.1. ��
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For t > 0, put

γ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1α
∫ ∞

0
1+2tx−et(2x−x2)

xα+1 dx+ c2α
∫ ∞

0
1−2tx−et(−2x−x2)

xα+1 dx if 1 < α < 2,

c1
∫ ∞

0
2−et(2x−x2)−et(−2x−x2)

x2 dx if α = 1,

c1α
∫ ∞

0
1−et(2x−x2)

xα+1 dx+ c2α
∫ ∞

0
1−et(−2x−x2)

xα+1 dx if 0 < α < 1.
(6.38)

Note that

γ ′(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1α
∫ ∞

0
2−(2−x)et(2x−x2)

xα dx+ c2α
∫ ∞

0
(2+x)et(−2x−x2)−2

xα dx if 1 < α < 2,

c1
∫ ∞

0
(x−2)et(2x−x2)+(2+x)et(−2x−x2)

x dx if α = 1,

c1α
∫ ∞

0
(x−2)et(2x−x2)

xα dx+ c2α
∫ ∞

0
(2+x)et(−2x−x2)

xα dx if 0 < α < 1;
(6.39)

and

γ ′′(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−c1α
∫ ∞

0
(2−x)2et(2x−x2)

xα−1 dx− c2α
∫ ∞

0
(2+x)2et(−2x−x2)

xα−1 dx if 1 < α < 2,

−c1
∫ ∞

0 (x−2)2et(2x−x2) + (2+ x)2et(−2x−x2) dx if α = 1,

−c1α
∫ ∞

0
(x−2)2et(2x−x2)

xα−1 dx− c2α
∫ ∞

0
(2+x)2et(−2x−x2)

xα dx if 0 < α < 1.
(6.40)

The next two lemmas play a key role in the proof of Theorem 6.6.

Lemma 6.10. Let
ξ := ξb = 2bX − (bX)2, b > 0

and let 0 < d < D < ∞. Under the conditions of Theorem 6.6, as b ↓ 0,

1−Eetξ = γ(t)bαh(1/b)+o(bαh(1/b)) , (6.41)

Eξ etξ =−bαh(1/b)γ ′(t)+o(bαh(1/b)) , (6.42)

and
Eξ 2 etξ =−bαh(1/b)γ ′′(t)+o(bαh(1/b)) (6.43)

for any d ≤ t ≤ D, where γ(t) is defined as in (6.38) and the constants implied in
o(·) do not depend on t.

Proof. Let ′ denote derivative with respect to x. In the case 1 < α < 2, we use
integration by parts and EX = 0 to obtain
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1−Eetξ = 2t
∫ ∞

0
P(X ≥ x/b)

(
1− (1− x)et(2x−x2)

)
dx

+2t
∫ ∞

0
P(X ≤−x/b)

(
−1+(1+ x)et(−2x−x2)

)
dx

= 2t
∫ ∞

0

(c1 +o(1))h(x/b)
(x/b)α

(
1− (1− x)et(2x−x2)

)
dx

+2t
∫ ∞

0

(c2 +o(1))h(x/b)
(x/b)α

(
−1+(1+ x)et(−2x−x2)

)
dx

= (c1 +o(1))bαh(1/b)(1+o(1))2t
∫ ∞

0

1
xα

(
1− (1− x)et(2x−x2)

)
dx

+(c2 +o(1))bαh(1/b)(1+o(1))2t
∫ ∞

0

1
xα

(
−1+(1+x)et(−2x−x2)

)
dx

= γ(t)bαh(1/b)+o(bαh(1/b)) , (6.44)

where (P2) is used for the third equality and integration by parts is used for the last
equality. Moreover,

Eξetξ = 2
∫ ∞

0
P(X ≥ x/b)

(
(1− x)

(
t(2x− x2)+1

)
et(2x−x2)−1

)
dx

+2
∫ ∞

0
P(X ≤−x/b)

(
(1+ x2)

(
t(2x+ x2)−1

)
et(−2x−x2) +1

)
dx

= 2
∫ ∞

0

(c1 +o(1))h(x/b)
(x/b)α

(
(1− x)

(
t(2x− x2)+1

)
et(2x−x2)−1

)
dx

+2
∫ ∞

0

(c2 +o(1))h(x/b)
(x/b)α

(
(1+ x2)

(
t(2x+ x2)−1

)
et(−2x−x2) +1

)
dx

= 2c1bαh(1/b)
∫ ∞

0

1
xα

(
(1− x)

(
t(2x− x2)+1

)
et(2x−x2)−1

)
dx

+2c2bαh(1/b)
∫ ∞

0

1
xα

(
(1+ x2)

(
t(2x+ x2)−1

)
et(−2x−x2) +1

)
dx

+o(bαh(1/b))
= −γ ′(t)bαh(1/b)+o(bαh(1/b)) , (6.45)

proving (6.41) and (6.42). To prove (6.43), we proceed similarly to obtain

Eξ 2 etξ =
∫ ∞

0
P(X ≥ x/b)

(
(2x− x2)2et(2x−x2)

)′
dx

+
∫ ∞

0
P(X ≤−x/b)

(
(2x+ x2)2et(−2x−x2)

)′
dx

= c1bαh(1/b)
∫ ∞

0
x−α

(
(2x− x2)2et(2x−x2)

)′
dx

+ c2bαh(1/b)
∫ ∞

0
x−α

(
(2x+ x2)2et(−2x−x2)

)′
dx+o(bαh(1/b))
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= αc1bαh(1/b)
∫ ∞

0

(2− x)2et(2x−x2)

xα−1 dx

+αc2bαh(1/b)
∫ ∞

0

(2+ x)2et(2x−x2)

xα−1 dx+o(bαh(1/b))

=−bαh(1/b)γ ′′(t)+o(bαh(1/b)) . (6.46)

For the case α = 1, since X is symmetric,

1−Eetξ = −
∫ ∞

0

(
1− et(2x−x2)

)
dP(X ≥ x/b)

−
∫ ∞

0

(
1− et(−2x−x2)

)
dP(X ≤−x/b)

= −
∫ ∞

0

(
2− et(2x−x2)− et(−2x−x2)

)
dP(X ≥ x/b)

=
∫ ∞

0
P(X ≥ x/b)

(
2− et(2x−x2)− et(−2x−x2)

)′
dx.

In the case 0 < α < 1, we do not have this simplification and work directly with

1−Eetξ =
∫ ∞

0
P(X ≥ x/b)

(
1− et(2x−x2)

)′
dx

+
∫ ∞

0
P(X ≤−x/b)

(
1− et(−2x−x2)

)′
dx.

We can then proceed as in (6.44)–(6.46) to complete the proof. ��

Lemma 6.11. Let 0 < d ≤ D < ∞. Then, under the conditions of Theorem 6.6,

sup
0<b≤D/zn

inf
t>0

e−tcynEet(2bX−|bX |2) ≤ e−βcyn+o(yn)

for every d ≤ c≤D, where β := βp(α,c1,c2) is defined as in Theorem 6.6, zn and yn
are as in (6.31) and (6.32), and the constant implied by o(yn) is uniform in c∈ [d,D].

Proof. Let 0 < δ < d and divide 0 < b < D/zn into two parts: 0 < b < δ/zn and
δ/zn ≤ b≤ D/zn. From (6.41) it follows that for 0 < b < δ/zn,

Ee3β (2bX−|bX |2) ≤ 1− γ(3β )bαh(1/b)+o(bαh(1/b))
≤ exp((|γ(3β )|+1)bαh(1/b))
≤ exp(K(δ/zn)αh(zn/δ ))

≤ exp
(

K1δα/2z−αn h(zn)
)

≤ exp
(

K2δα/2yn

)
≤ exp(cβyn) ,

provided that δ is chosen to be sufficiently small, and that n is large enough; here
and in the sequel, K and K1,K2, . . . denote positive constants which depend only
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on α and other given constants, but may be different from line to line. Hence there
exists δ > 0 such that

sup
0<b≤δ/zn

inf
t>0

e−tcynEet(2bX−|bX |2)

≤ sup
0<b≤δ/zn

e−3βcynEe3β (2bX−|bX |2) ≤ e−2βcyn . (6.47)

Next estimate supδ/zn≤b≤D/zn
inft>0 e−tcynEet(pbX−|bX |p). Let γ(t), γ ′(t) and γ ′′(t) be

defined as in (6.38), (6.39) and (6.40) respectively. In view of (6.40) and the fact that

γ ′′(t) < 0 for t > 0, lim
t↓0

γ ′(t) = ∞ and lim
t↑∞

γ ′(t) =−∞,

there exists a unique tb such that

γ ′(tb) =− ync
bαh(zn)

. (6.48)

Since

0 < K1 ≤
d ynzαn

Dαh(zn)
≤ ync

bαh(zn)
≤ Dynzαn

δαh(zn)
≤ K2 < ∞

for δ/zn ≤ b≤ D/zn, we have

K3 ≤ tb ≤ K4.

Applying (P2) in Sect. 4.1 and (6.41) again, we obtain

sup
δ/zn≤b≤D/zn

inf
t>0

e−tcynEet(2bX−|bX |2)

≤ sup
δ/zn≤b≤D/zn

e−tbcynEetb(2bX−|bX |2)

≤ sup
δ/zn≤b≤D/zn

exp(−tbcyn− γ(tb)bαh(1/b)+o(bαh(1/b)))

≤ sup
δ/zn≤b≤D/zn

exp(−tbcyn− γ(tb)bαh(zn)+ γ(tb)bαh(zn)o(1)+o(yn))

≤ sup
δ/zn≤b≤D/zn

exp(−tbcyn− γ(tb)bαh(zn)+o(yn)) .

Let
g(b) =−tbcyn− γ(tb)bαh(zn)

and b0 be such that tb0 = β . Noting that γ(t) = α tαΓp(t,α,c1,c2), we have

γ(tb0) = 0.
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By (6.48),

g′(b) =−γ(tb)αbα−1h(zn)

⎧⎪⎪⎨
⎪⎪⎩

> 0 if b < b0,

= 0 if b = b0,

< 0 if b > b0

for tb a decreasing function of b, and γ(t)/tα is a decreasing function of t. Thus,
g(b) achieves the maximum at b = b0 and g(b0) =−βcyn. Consequently,

sup
δ/zn≤b≤D/zn

inf
t>0

e−tcynEet(2bX−|bX |2) ≤ exp(−βcyn +o(yn)) . (6.49)

From (6.47) and (6.49), the desired conclusion follows. ��

6.2.2 Proof of Theorem 6.6

Let β = β (α,c1,c2). We first show that for any 0 < ε < 1/2,

P(Sn ≥ xnVn)≤ exp
(
−(1− ε)β x2

n
)

(6.50)

provided that n is sufficiently large. Define yn and zn as in (6.31) and (6.32) and let
0 < δ < A < ∞. The values of δ and A will be specified later, with δ sufficiently
small and A sufficiently large. Similar to (6.8),

P(Sn ≥ xnVn) ≤ P(Sn ≥ xnVn,δxn zn < Vn < Axnzn)
+P(Sn ≥ xnVn,Vn ≥ Axn zn)+P(Vn ≤ δxn zn)

≤ P
(

Sn ≥ inf
b=xn/Vn

(
(bVn)2 + x2

n
)
/(2b),δxn zn ≤Vn ≤ Axn zn

)

+P

(
n

∑
i=1

XiI
(
|Xi| ≤

√
Azn

)
≥ Ax2

nzn/2

)

+P

(
n

∑
i=1

XiI
(
|Xi|>

√
Azn

)
≥ xnVn/2

)
+P(Vn ≤ δxn zn)

≤ P
(

Sn ≥ inf
1/(Azn)≤b≤1/(δ zn)

(
(bVn)2 + x2

n
)
/(2b)

)

+P

(
n

∑
i=1

XiI (|Xi| ≤ Azn)≥ Ax2
n zn /2

)

+P

(
n

∑
i=1

I
(
|Xi|>

√
Azn

)
≥ (xn/2)2

)
+P(V 2

n ≤ δ 2x2
n z2

n)

:= T1 +T2 +T3 +T4. (6.51)
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From (2.27), (P4), (6.33), and (6.32), it follows that

T3 ≤
(

4enP(|X |>
√

Azn)
xn2

)x2
n/4

≤
(

16(c1 + c2)h(Azn)
Aα/2zαn yn

)x2
n/4

≤
(

20(c1 + c2)h(zn)
Aα/4zαn yn

)x2
n/4

≤
(

25(c1 + c2)/Aα/4
)x2

n/4
≤ e−2β x2

n , (6.52)

provided that A is large enough. Let t = 1/(δ zn) and c0 =
∫ ∞

0 x1−αe−x2
dx. It follows

from (6.37) that for δ sufficiently small,

T4 ≤ etδ 2x2
nz2

nEe−tV 2
n = eδx2

n
(

Ee−tX2
)n

≤ exp
(
δx2

n− (c1 + c2)c0ntαh(t)
)

≤ exp
(
δx2

n−0.6(c1 + c2)c0n(δ zn)−αh(zn)
)

≤ exp
(
δx2

n−0.5(c1 + c2)c0δ−δ x2
n

)
≤ exp(−2βx2

n). (6.53)

To bound T2, we apply Lemma 6.8 to obtain

n

∑
i=1

∣∣∣EXiI
(
|Xi| ≤

√
Azn

)∣∣∣ = n
∣∣∣EXI

(
|X | ≤

√
Azn

)∣∣∣

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nE|X |I
(
|X |>

√
Azn

)
if 1 < α < 2

0 if α = 1

nE|X |I
(
|X | ≤

√
Azn

)
if 0 < α < 1

≤

⎧⎪⎨
⎪⎩

2nα(c1 + c2)(
√

Azn)1−αh(
√

Azn)/(α−1) if 1 < α < 2

0 if α = 1

2nα(c1 + c2)(
√

Azn)1−αh(
√

Azn)/(1−α) if 0 < α < 1

≤

⎧⎪⎨
⎪⎩

2nα(c1 + c2)A1−α/2z1−α
n h(zn)/(α−1) if 1 < α < 2

0 if α = 1
2nα(c1 + c2)A1−α/2z1−α

n h(zn)/(1−α) if 0 < α < 1

≤ Ax2
nzn/4, (6.54)

nEX2I
(
|X | ≤

√
Azn

)
≤ 4(c1 + c2)

2−α
n(
√

Azn)2−αh(
√

Azn)≤ Az2
nx2

n. (6.55)
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Therefore, by the Bernstein inequality (2.17), we have for all sufficiently large A,

T2 ≤ P

(
n

∑
i=1
{XiI

(
|Xi| ≤

√
Azn

)
−EXiI

(
|Xi| ≤

√
Azn

)
≥ Ax2

nzn/4

)

≤ exp
(
− A2x4

nz2
n

32(Az2
nx2

n +A3/2z2
nx2

n)

)

≤ exp

(
−A1/2x2

n

64

)
≤ exp(−2βx2

n). (6.56)

To bound T1, let θ = (1−ε/2)−1/2 and b j = θ j/(Azn), j = 0,1,2, . . . . It follows
from Lemma 6.11 that

T1 = P

(
sup

1/(Azn)≤b≤1/(δ zn)

(
2bSn−b2V 2

n
)
≥ x2

n

)

≤ P

(
max

0≤ j≤logθ (A/δ )
sup

b j≤b≤b j+1

(
2bSn−b2V 2

n
)
≥ x2

n

)

≤ P
(

max
0≤ j≤logθ (A/δ )

(
2b j+1Sn−b2

jV
2
2
)
≥ x2

n

)

≤ ∑
0≤ j≤logθ (A/δ )

P
(
2θb jSn−b2

jV
2
n ≥ x2

n
)

= ∑
0≤ j≤logθ (A/δ )

P
(
2(b j/θSn− (b j/θ)p2V 2

n ≥ (xn/θ)2)
≤ (1+ logθ (A/δ )) sup

0<b≤1/(δ zn)
P
(
2bSn−b2V 2

n ≥ (xn/θ)2)
≤ (1+ logθ (A/δ )) sup

0<b≤1/(δ zn)
inf
t>0

e−t(xn/θ)2
Eet(2bSn−b2V 2

n )

≤ (1+ logθ (A/δ ))

(
sup

0<b≤1/(δ zn)
inf
t>0

e−tyn/θ2
Eet(2bX−|bX |2)

)n

≤ (1+ logθ (A/δ ))exp(−βnyn/θ 2 +o(yn)n)
= (1+ logθ (A/δ ))exp

(
−(p−1)βx2

n/θ 2 +o(x2
n)
)

= (1+ logθ (A/δ ))exp
(
−β (1− ε/2)x2

n +o(x2
n)
)
. (6.57)

From (6.52), (6.53), (6.56) and (6.57), (6.50) follows.
We next use the same idea as that in the proof of (6.3) to show

P(Sn ≥ xnVn)≥ exp
(
−(1+ ε)βx2

n
)
. (6.58)

Recalling that γ(t) = α tαΓp(t,α,c1,c2), we have γ(β ) = 0. Since γ(t) is concave
on (0,∞) and limt↓0 γ(t) = 0, it follows from γ(β ) = 0 that γ ′(β ) < 0. Let δ = ε/3
and γ ′(t) be as in (6.39). Put
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b := bn,δ =
(
− (1+δ )yn

γ ′(β )h(zn)

)1/α
,

ξ = 2bX −|bX |2 and ξi = 2bXi−|bXi|2, i = 1,2, . . . .

Application of (6.12) yields

P(Sn ≥ xnVn)≥ P
(
Sn ≥

(
b2V 2

n + x2
n
)
/(2b)

)
= P

(
n

∑
i=1

ξi ≥ n(p−1)yn

)
.

To verify condition (6.14), let m(·) and σ(·) be the same as in Lemma 6.2. From
(6.32), it follows that

b∼ 1
zn

(
− (1+δ )

γ ′(β )

)1/α
.

By Lemma 6.10, (P2) and (6.32), we obtain

Eeβξ = 1+o(yn),

Eξ eβξ = (1+δ )yn +o(yn),(
Eξ 2 eβξ

)1/2/√
n = O

(√
yn/
√

n
)

= o(yn),

and hence
m(β ) = (1+δ )yn +o(yn),

σ(β )/
√

n = o(yn).

Thus, the condition (6.14) is satisfied with h = β . Therefore, by Lemma 6.2,

P

(
n

∑
i=1

ξi ≥ nyn

)
≥ 3

4

(
Eeβξ

)n
exp

(
−nβm(β )−2β σ(β )

√
n
)

≥ 3
4

exp(o(yn)n−n(1+δ )βyn)

≥ exp(−(1+ ε)βxq
n) ,

as desired, proving Theorem 6.6. ��

Remark 6.12. Analogous to Remark 6.4, the convergence in (6.27) is uniform: For
arbitrary 0 < ε < 1/2, there exist 0 < δ < 1,x0 > 1 and n0 such that for any n≥ n0
and x0 < x < δ

√
n,

e−(1+ε)β (α,c1,c2)x2 ≤ P(Sn ≥ xVn)≤ e−(1−ε)β (α,c1,c2)x2
.

Moreover, analogous to Remark 6.5, we have a strong version of (6.50).

Theorem 6.13. Under the conditions of Theorem 6.6, for any 0 < ε < 1/2 there
exists θ > 1 such that
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P
(

max
n≤k≤θn

Sk

Vk
≥ xn

)
≤ exp

(
−(1− ε)β (α,c1,c2)x2

n
)

(6.59)

for every n sufficiently large.

Proof. Let η = (1− (1− ε/2)1/4)/3. Clearly,

P
(

max
n≤k≤θn

Sk

Vk
≥ xn

)
≤ P

(
Sn

Vn
≥ (1−3η)xn

)
(6.60)

+P
(

max
n<k≤θn

Sk−Sn

Vk
≥ 3ηxn

)
.

By Theorem 6.6, if n is sufficiently large,

P
(

Sn

Vn
≥ (1−3η)xn

)
≤ exp

(
−(1− ε/2)β (α,c1,c2)x2

n
)
. (6.61)

Next we show that the second term on the right hand side of (6.60) is bounded
by exp(−2β (α,c1,c2)x2

n). Let zn be as in (6.32) and let 0 < δ < 1/4. Write

P
(

max
n<k≤θn

Sk−Sn

Vk
≥3ηxn

)
≤ P

(
max

n<k≤θn

∑k
i=n+1 XiI

(
|Xi| ≤ (ηδ )2zn

)
Vk

≥ 2ηxn

)

+P

(
max

n<k≤θn

∑k
i=n+1 |Xi|I

(
|Xi| ≥ (ηδ )2zn

)
Vk

≥ ηxn

)

≤ P

(
max

n<k≤θn

k

∑
i=n+1

XiI
(
|Xi| ≤ (ηδ )2zn

)
≥ 2ηδx2

nzn

)

+P(Vn ≤ δxnzn)+P

(
[θn]

∑
i=n+1

I
(
|Xi| ≥ (ηδ )2zn

)
≥ (ηxn)2

)
.

By (6.53), there exists δ > 0 such that

P(Vn ≤ δxnzn)≤ exp(−2β (α,c1,c2)x2
n).

Similar to (6.52), we have

P

(
[θn]

∑
i=n+1

I
(
|Xi| ≥ (ηδ )2zn

)
≥ (ηxn)2

)
≤

(
3(θ −1)nP

(
|X | ≥ (ηδ )2zn

)
(ηxn)2

)(ηxn)2

≤
(

6(c1 + c2)(θ −1)nh(zn)
(ηxn)2(ηδ )2αzαn

)(ηxn)2

≤
(

8(θ −1)(c1 + c2)
η6δ 4

)η2x2
n

≤ exp
(
−2β (α,c1,c2)x2

n
)
,
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provided that θ is sufficiently near 1. In view of the proof of (6.54), we can choose
θ −1 > 0 sufficiently small so that

[θn]

∑
i=n+1

∣∣EXiI
(
|Xi| ≤ (ηδ )2zn

)∣∣≤ K(θ −1)x2
nzn ≤

1
2
ηδx2

nzn,

[θn]

∑
i=n+1

Var
(
XiI

(
|Xi| ≤ (ηδ )2zn

))
≤ (θ −1)nEX2I

(
|X | ≤ (ηδ )2zn

)

≤ 2(θ −1)nα(c1 + c2)
2−α

(ηδ )4−2αz2−α
n h(zn)

≤ K(θ −1)x2
nz2

n ≤ η4δ 4x2
nz2

n,

where K is a constant depending only on α,c1,c2,η ,δ . Therefore, by the Ottaviani
inequality (2.28) and the Bernstein inequality (2.17),

P

(
max

n<k≤θn

k

∑
i=n+1

XiI
(
|Xi| ≤ (ηδ )2zn

)
≥ 2ηδx2

nzn

)

≤ 2P

(
[θn]

∑
i=n+1

{
XiI

(
|Xi| ≤ (ηδ )2zn

)
−EXiI

(
|Xi| ≤ (ηδ )2zn

)}
≥ ηδx2

nzn

)

≤ exp
(
− (ηδx2

nzn)2

2η4δ 4x2
nz2

n +4(ηδ )2zn(ηδx2
nzn)

)

= exp
(
− x2

n

6η2δ 2

)
≤ exp

(
−2β (α,c1,c2)x2

n
)
,

provided that δ is small. Putting together the above inequalities yields

P
(

max
n<k≤θn

Sk−Sn

Vk
≥ 3ηxn

)
≤ 4exp

(
−2β (α,c1,c2)x2

n
)
. (6.62)

From (6.61), (6.60) and (6.62), (6.59) follows. ��

6.3 Self-Normalized Laws of the Iterated Logarithm

Let X ,X1,X2, . . . be i.i.d. random variables. Finiteness of the second moment is nec-
essary for the classical law of the iterated logarithm to hold; see Theorem 2.4. More-
over, if X is symmetric and in the domain of attraction of a stable law with index α
(0 < α < 2), then

limsup
n→∞

Sn

an
= 0 or ∞ a.s. (6.63)
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for any sequence {an, n ≥ 1} of positive numbers with an → ∞; see Feller (1946).
In contrast, Griffin and Kuelbs (1989) have proved that a self-normalized law of the
iterated logarithm holds for all distributions in the domain of attraction of a normal
or stable law. This is the content of the following theorem, in which the constant
specified in (6.65) is due to Shao (1997).

Theorem 6.14.

(a) If EX = 0 and EX2I(|X | ≤ x) is slowly varying as x→ ∞, then

limsup
n→∞

Sn

Vn(2loglogn)1/2 = 1 a.s. (6.64)

(b) Under the conditions of Theorem 6.6, we have

limsup
n→∞

Sn

Vn(log logn)1/2 = (β (α,c1,c2))
−1/2 a.s. (6.65)

In particular, if X is symmetric, then

limsup
n→∞

Sn

Vn(log logn)1/2 = (β (α))−1/2 a.s., (6.66)

where β (α,c1,c2) and β (α) are defined as in Theorem 6.6.

Proof. We only prove part (b) since part (a) is similar. We first show that

limsup
n→∞

Sn

Vn(log logn)1/2 ≤ (β (α,c1,c2))
−1/2 a.s. (6.67)

For any 0 < ε < 1/4, let θ > 1 be given in (6.59). Then

limsup
n→∞

Sn

Vn(log logn)1/2 = limsup
k→∞

max
θ k≤n≤θ k+1

Sn

Vn(logk)1/2 . (6.68)

By (6.59),

∞

∑
k=1

P
(

max
θ k≤n≤θ k+1

Sn

Vn(logk)1/2 ≥ (1+ ε)β (α,c1,c2)−1/2
)

≤ K
∞

∑
k=1

exp
(
−(1− ε)(1+ ε)2 logk

)
< ∞.

In view of the Borel–Cantelli lemma and (6.68), (6.67) follows.
To prove the lower bound of the limsup, let τ > 1 and nk = [ekτ ], k = 1,2, . . . .

Note that
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limsup
n→∞

Sn

Vn(log logn)1/2 ≥ limsup
k→∞

Snk

Vnk(log lognk)1/2 (6.69)

≥ limsup
k→∞

Snk −Snk−1

Vnk(log lognk)1/2 + liminf
k→∞

Snk−1

Vnk(log lognk)1/2

= limsup
k→∞

(V 2
nk
−V 2

nk−1
)1/2

Vnk

Snk −Snk−1

(V 2
nk
−V 2

nk−1
)1/2(log lognk)1/2

+ liminf
k→∞

Vnk−1

Vnk

Snk−1

Vnk−1(log lognk)1/2 .

Since (Snk − Snk−1)/(V 2
nk
−V 2

nk−1
)1/2), k ≥ 1, are independent, it follows from

Theorem 6.6 and the Borel–Cantelli lemma that

limsup
k→∞

Snk −Snk−1

(V 2
nk
−V 2

nk−1
)1/2(log lognk)1/2 ≥

1
τ2β (α,c1,c2)1/2 a.s. (6.70)

We shall show that
lim
k→∞

Vnk

Vnk−1

= ∞ a.s. (6.71)

By (6.69)–(6.71) and (6.67),

limsup
n→∞

Sn

Vn(log logn)1/2 ≥
1

τ2β (α,c1,c2)1/2 a.s. (6.72)

Since τ > 1 is arbitrary, (6.65) follows from (6.67) and (6.72).
To prove (6.71), let xnk = k and define znk as in (6.32). Then, by (6.53) and the

Borel–Cantelli lemma,
liminf

k→∞

Vnk

xnk znk

≥ δ > 0 a.s. (6.73)

From Lemma 6.8, it follows that

P(Vnk−1 > znk) ≤ nk−1P(|X |> znk)+P

(
nk−1

∑
i=1

X2
i I(|Xi| ≤ zn) > z2

nk

)

≤ O(1)nk−1h(znk)
zαnk

+
nk−1EX2I(|Xi| ≤ zn)

z2
nk

=
O(1)nk−1h(znk)

zαnk

=
O(1)nk−1x2

nk

nk

= O(k−2) by (6.32).

Hence, by the Borel–Cantelli lemma again,

limsup
k→∞

Vnk−1

znk

≤ 1 a.s. (6.74)

From (6.73) and (6.74), (6.71) follows. ��
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6.4 Supplementary Results and Problems

Let X ,X1,X2, . . . be i.i.d. random variables. Put

Sn =
n

∑
i=1

Xi, V 2
n =

n

∑
i=1

X2
i , V p

n,p =
n

∑
i=1
|Xi|p, p > 1.

1. Assume that E(X) = 0 and E(X2) = 1.

(a) If Eet0|X | < ∞ for some t0 > 0, show that

logP(|Sn| ≥ xn
√

n)∼−x2
n/2 (6.75)

for xn → ∞ and xn = o(n1/2).
(b) If (6.75) holds for any xn→∞ and xn = o(n1/2), show that there exists t0 > 0

such that Eet0|X | < ∞ (see Shao, 1989).

2. Assume that E(X) = 0 and E(X2) < ∞. Let ai, 1≤ i≤ n, be a sequence of real
numbers. Under what condition does the result

logP

⎛
⎝ n

∑
i=1

aiXi ≥ xn

(
n

∑
i=1

a2
i X2

i

)1/2
⎞
⎠∼−x2

n/2

hold for xn → ∞ and xn = o(n1/2)?
3. Prove (6.25).
4. Moderate deviation normalized by Vn,p (Shao, 1997): Assume that the condi-

tions in Theorem 6.6 are satisfied. Let p > max(1,α), and let {xn, n ≥ 1} be a
sequence of positive numbers with xn→∞ and xn = o(n(p−1)/p) as n→∞. Then

lim
n→∞

x−p/(p−1)
n logP

(
Sn

Vn,p
≥ xn

)
=−(p−1)βp(α,c1,c2), (6.76)

where βp(α,c1,c2) is the solution of Γp(β ,α,c1,c2) = 0 and Γp(β ,α,c1,c2) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1

∫ ∞

0

1+ px− epx−xp/β p−1

xα+1 dx+ c2

∫ ∞

0

1− px− e−px−xp/β p−1

xα+1 dx if 1 < α < 2,

c1

∫ ∞

0

2− epx−xp/β p−1 − e−px−xp/β p−1

x2 dx if α = 1,

c1

∫ ∞

0

1− epx−xp/β p−1

xα+1 dx+ c2

∫ ∞

0

1− e−px−xp/β p−1

xα+1 dx if 0 < α < 1.

5. Moderate deviation normalized by max1≤k≤n |Xk| (Horváth and Shao, 1996):
Assume that the conditions of Theorem 6.6 are satisfied. If {xn,1≤ n < ∞} is a
sequence of positive numbers satisfying xn → ∞ and xn = o(n), then we have

lim
n→∞

1
xn

logP
(

Sn ≥ xn max
1≤k≤n

|Xk|
)

=−τ(α,c1,c2),
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where τ = τ(α,c1,c2) > 0 is the solution of f (τ) = c1 + c2, and f (t) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

tα(c2− c1)
α−1

+ c1α
∫ 1

0

etx−1− tx
xα+1 dx+ c2α

∫ 1

0

e−tx−1+ tx
xα+1 dx if 1 < α < 2,

c1

∫ 1

0

etx + e−tx−2
x2 dx if α = 1,

c1α
∫ 1

0

etx−1
xα+1 dx+ c2α

∫ 1

0

e−tx−1
xα+1 dx if 0 < α < 1.

6. Universal self-normalized moderate deviation for centered Feller class (Jing et
al., 2008): Let Cs denote the support of X , that is,

Cs = {x : P(X ∈ (x− ε,x+ ε)) > 0, for any ε > 0} .

Assume that

Cs∩R
+ �= /0 and Cs∩R

− �= /0, where R
+ = {x : x > 0}, R

− = {x : x < 0}

and that either EX = 0 or EX2 = ∞. If X is in the centered Feller class, i.e.,

limsup
a→∞

a2
{

P(|X |> a)+a−1|EXI(|X | ≤ a)
}

EX2I(|X | ≤ a)
< ∞,

then
logP(Sn/Vn ≥ xn)∼−nλ (x2

n/n)

for any sequence {xn,n≥ 1} with xn → ∞ and xn = o(
√

n), where

λ (x) = inf
b≥0

sup
t≥0

(
tx− logE exp

{
t(2bX −b2X2)

})
.

If in addition, Card(Cs)≥ 3, then

lim
n→∞

x−2
n logP(Sn/Vn ≥ xn) =−t0, (6.77)

where t0 = limx→0+ tx, and (tx,bx) is the solution (t,b) of the equations

Eb(2X−bX2)exp
{

tb(2X −bX2)
}

= xE exp
{

tb(2X −bX2)
}

, (6.78)

E(X−bX2)exp
{

tb(2X −bX2)
}

= 0. (6.79)

7. Let X satisfy the conditions in Theorem 6.6. Prove that X is in the centered Feller
class. Also verify that t0 = β (α,c1,c2), where t0 is as in (6.77) and β (α,c1,c2)
in (6.27).

8. Assume that X is symmetric. Prove that

limsup
n→∞

|Sn|
Vn(2loglogn)1/2 ≤ 1 a.s. (6.80)

Under what condition can the inequality ≤ 1 be changed to = 1?
Hint: Use (2.11).



Chapter 7
Cramér-Type Moderate Deviations
for Self-Normalized Sums

Let X1,X2, . . . ,Xn be a sequence of independent random variables with zero means
and finite variances. In Sect. 2.1.3, we have described Cramér’s moderate deviation
results for (∑n

i=1 Xi)/(∑n
i=1 EX2

i )1/2. In this chapter we show that similar to self-
normalized large and moderate deviation theorems in Chaps. 3 and 6, Cramér-type
moderate deviation results again hold for self-normalized sums under minimal mo-
ment conditions.

7.1 Self-Normalized Cramér-Type Moderate Deviations

Let X1,X2, . . . ,Xn be independent random variables with EXi = 0 and 0 < EX2
i <∞.

Let

Sn =
n

∑
i=1

Xi, B2
n =

n

∑
i=1

EX2
i , V 2

n =
n

∑
i=1

X2
i , (7.1)

Δn,x =
(1+ x)2

B2
n

n

∑
i=1

EX2
i I (|Xi|> Bn/(1+ x))

+
(1+ x)3

B3
n

n

∑
i=1

E|Xi|3I (|Xi| ≤ Bn/(1+ x))
(7.2)

for x≥ 0. Jing et al. (2003) have proved the following theorem.

Theorem 7.1. There exists an absolute constant A (> 1) such that

P(Sn ≥ xVn)
1−Φ(x)

= eO(1)Δn,x and
P(Sn ≤−xVn)

Φ(−x)
= eO(1)Δn,x (7.3)

for all x≥ 0 satisfying
x2 max

1≤i≤n
EX2

i ≤ B2
n (7.4)

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 87
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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and
Δn,x ≤ (1+ x)2/A, |O(1)| ≤ A . (7.5)

Theorem 7.1 provides a very general framework and the following results are its
direct consequences.

Theorem 7.2. Let {an,n≥ 1} be a sequence of positive numbers. Assume that

a2
n ≤ B2

n/ max
1≤i≤n

EX2
i (7.6)

and

∀ ε > 0, B−2
n

n

∑
i=1

EX2
i I (|Xi|> εBn/(1+an))→ 0 as n→ ∞. (7.7)

Then
logP(Sn/Vn ≥ x)

log(1−Φ(x))
→ 1,

logP(Sn/Vn ≤−x)
logΦ(−x)

→ 1 (7.8)

holds uniformly for x ∈ (0,an).

The next corollary is a special case of Theorem 7.2 and may be of independent
interest.

Corollary 7.3. Suppose that Bn ≥ c
√

n for some c > 0 and that {X2
i , i ≥ 1} is uni-

formly integrable. Then, for any sequence of real numbers xn satisfying xn→∞ and
xn = o(

√
n),

logP(Sn/Vn ≥ xn)∼−x2
n/2. (7.9)

When the Xi’s have finite (2+δ )th absolute moments for 0 < δ ≤ 1, we have

Theorem 7.4. Let 0 < δ ≤ 1 and set

Ln,δ =
n

∑
i=1

E|Xi|2+δ , dn,δ = Bn/L1/(2+δ )
n,δ .

Then for 0≤ x≤ dn,δ ,

P(Sn/Vn ≥ x)
1−Φ(x)

= 1+O(1)
(

1+ x
dn,δ

)2+δ
, (7.10)

P(Sn/Vn ≤−x)
Φ(−x)

= 1+O(1)
(

1+ x
dn,δ

)2+δ
, (7.11)

where O(1) is bounded by an absolute constant. In particular, if dn,δ →∞ as n→∞,
we have

P(Sn ≥ xVn)
1−Φ(x)

→ 1,
P(Sn ≤−xVn)

Φ(−x)
→ 1 (7.12)

uniformly in 0≤ x≤ o(dn,δ ).
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Results (7.10) and (7.11) are useful because they provide not only the relative
error but also a Berry–Esseen rate of convergence. By the fact that 1−Φ(x) ≤
2e−x2/2/(1+x) for x≥ 0, it follows from (7.10) that the following exponential non-
uniform Berry–Esseen bound holds for 0≤ x≤ dn,δ :

|P(Sn/Vn ≥ x)− (1−Φ(x))| ≤ A(1+ x)1+δ e−x2/2/d2+δ
n,δ . (7.13)

The next corollary specifies dn,δ under certain circumstances and especially for
i.i.d. cases.

Corollary 7.5. Let 0 < δ ≤ 1. Assume that {|Xi|2+δ , i ≥ 1} is uniformly integrable
and that Bn ≥ cn1/2 for some constant c > 0. Then (7.12) holds uniformly for x ∈
[0,o(nδ/(4+2δ ))).

For i.i.d. random variables, Theorem 7.1 reduces to

Corollary 7.6. Let X ,X1,X2, . . . be i.i.d. random variables with EX = 0 and σ2 =
EX2 < ∞. Then there exists an absolute constant A > 2 such that

P(Sn ≥ xVn)
1−Φ(x)

= eO(1)Δn,x and
P(Sn ≤−xVn)

Φ(−x)
= eO(1)Δn,x

for all x≥ 0 satisfying Δn,x ≤ (1+ x)2/A, where |O(1)| ≤ A and

Δn,x = (1+ x)2σ−2EX2
1 I
(
|X1|>

√
nσ/(1+ x)

)
+(1+ x)3σ−3n−1/2E|X1|3I

(
|X1| ≤

√
nσ/(1+ x)

)
.

Remark 7.7. If X1,X2, . . . are i.i.d. random variables with σ2 = EX2
1 < ∞, then con-

dition (7.4) reduces to x≤√n while (7.5) reduces to

1
σ2 E

{
X2

1 I
(
|X1|>

√
nσ

1+ x

)}
+

1+ x√
n

E|X1|3
σ3 I

(
|X1| ≤

√
nσ

1+ x

)
≤ 1

A
,

which in turn implies (1 + x) ≤ √n. Hence, (7.5) implies (7.4) in the i.i.d. case.
However, (7.5) does not imply (7.4) in general. On the other hand, it would be of in-
terest to find out if condition (7.4) in Theorem 7.1 or condition (7.6) in Theorem 7.2
can be removed.

Remark 7.8. An example given in Shao (1999) shows that in the i.i.d. case, the con-
dition E|X1|2+δ <∞ cannot be replaced by E|X1|r <∞ for some r < 2+δ for (7.12)
to hold.

Remark 7.9. When X1,X2, . . . are i.i.d. random variables, dn,δ is simply equal to
nδ/(4+2δ )(EX2

1 )1/2/(E|X1|2+δ )1/(2+δ ).
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7.2 Proof of Theorems

Throughout the remainder of this chapter, we use A to denote an absolute constant,
which may assume different values at different places. We first prove Theorems 7.2
and 7.4 by making use of Theorem 7.1 and then give the proof of Theorem 7.1.

7.2.1 Proof of Theorems 7.2, 7.4 and Corollaries

Proof (of Theorem 7.2). Note that for 0 < ε ≤ 1 and 0≤ x≤ an,

B−2
n

n

∑
i=1

EX2
i I (|Xi|> Bn/(1+ x))+(1+ x)B−3

n

n

∑
i=1

E|Xi|3I (|Xi| ≤ Bn/(1+ x))

= B−2
n

n

∑
i=1

EX2
i I (|Xi|> Bn/(1+ x))+(1+ x)B−3

n

n

∑
i=1

E|Xi|3I (|Xi| ≤ εBn/(1+an))

+(1+ x)B−3
n

n

∑
i=1

E|Xi|3I (εBn/(1+an) < |Xi| ≤ Bn/(1+ x))

≤ B−2
n

n

∑
i=1

EX2
i I (|Xi|> Bn/(1+ x))+ ε(1+ x)B−2

n /(1+an)
n

∑
i=1

E|Xi|2

+B−2
n

n

∑
i=1

E|Xi|2I (εBn/(1+an) < |Xi| ≤ Bn/(1+ x))

≤ ε +B−2
n

n

∑
i=1

E|Xi|2I (|Xi|> εBn/(1+an)) .

Therefore by (7.7),
Δn,x = o

(
(1+ x)2) as n→ ∞

uniformly for 0≤ x≤ an. Hence Theorem 7.2 follows from Theorem 7.1. ��

Proof (of Corollary 7.3). For any an satisfying an → ∞ and an = o(Bn), the uni-
form integrability assumption implies that (7.6) and (7.7) are satisfied and hence the
corollary follows from Theorem 7.2. ��

Proof (of Theorem 7.4). Equations (7.10) and (7.11) follow from Theorem 5.9 on
the Berry–Esseen bound for 0≤ x≤ A. When x > A, it is easy to see that

Δn,x ≤ (1+ x)2+δLn,δ/B2+δ
n =

(
1+ x
dn,δ

)2+δ
≤ (1+ x)2/A

and that d2
n,δ maxi≤n EX2

i ≤ B2
n. Thus, conditions (7.4) and (7.5) are satisfied and the

result follows from Theorem 7.1. ��
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Proof (of Corollary 7.5). Let d > 0 and xn = d nδ/(4+2δ ). It suffices to show that

Δn,xn = o(1) as n→ ∞. (7.14)

Similar to the proof of Theorem 7.2, we have, for any 0 < ε < 1,

Δn,xn ≤ (1+ xn)2B−2
n

n

∑
i=1

EX2
i I (|Xi|> Bn/(1+ xn))

+ε1−δ (1+ xn)2+δB−(2+δ )
n

n

∑
i=1

E|Xi|2+δ I (|Xi| ≤ εBn/(1+ xn))

+(1+ xn)2+δB−(2+δ )
n

n

∑
i=1

E|Xi|2+δ I (εBn/(1+ xn) < |Xi| ≤ Bn/(1+ xn))

≤ (1+ xn)2+δB−(2+δ )
n

n

∑
i=1

E|Xi|2+δ I (|Xi|> εBn/(1+ xn))+O(1)ε1−δ

= o(1)+O(1)ε1−δ ,

since {|Xi|2+δ , i≥ 1} is uniformly integrable. This proves (7.14) because ε can be
arbitrarily small and hence the corollary. ��

7.2.2 Proof of Theorem 7.1

We use the same notation as before and only prove the first part in (7.3) since the
second part can be easily obtained by changing x to −x in the first part. The main
idea of the proof is to reduce the problem to a one-dimensional large deviation result.
It suffices to show that

P(Sn ≥ xVn)≥ (1−Φ(x))e−AΔn,x (7.15)

and
P(Sn ≥ xVn)≤ (1−Φ(x))eAΔn,x (7.16)

for all x > 0 satisfying (7.4) and (7.5). Let

b := bx = x/Bn. (7.17)

Since xVn ≤ (x2 +b2V 2
n )/(2b), it follows that

P(Sn ≥ xVn)≥ P
(
Sn ≥ (x2 +b2V 2

n )/(2b)
)

= P(2bSn−b2V 2
n ≥ x2).

Therefore, the lower bound (7.15) follows from the following proposition.

Proposition 7.10. There exists an absolute constant A > 1 such that

P(2bSn−b2V 2
n ≥ x2) = (1−Φ(x))eO(1)Δn,x (7.18)

for all x > 0 satisfying (7.4) and (7.5), where |O(1)| ≤ A.
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As for the upper bound (7.16), when 0 < x≤ 2, this bound is a direct consequence
of the Berry–Esseen bound in Theorem 5.9. For x > 2, let

θ := θn,x = Bn/(1+ x) (7.19)

and define

X̄i = XiI(|Xi| ≤ θ), S̄n =
n

∑
i=1

X̄i, V̄ 2
n =

n

∑
i=1

X̄2
i ,

S(i)
n = Sn−Xi, V (i)

n = (V 2
n −X2

i )1/2, B̄2
n =

n

∑
i=1

EX̄2
i .

Noting that for any s, t ∈ R1, c≥ 0 and x≥ 1,

x
√

c+ t2 =
√

(x2−1)c+ t2 + c+(x2−1)t2

≥
√

(x2−1)c+ t2 +2t
√

(x2−1)c

= t +
√

(x2−1)c,

we have
{s+ t ≥ x

√
c+ t2} ⊂ {s≥ (x2−1)1/2√c}. (7.20)

Hence,

P(Sn ≥ xVn) ≤ P(S̄n ≥ xV̄n)+P(Sn ≥ xVn, max
1≤i≤n

|Xi|> θ) (7.21)

≤ P(S̄n ≥ xV̄n)+
n

∑
i=1

P(Sn ≥ xVn, |Xi|> θ)

≤ P(S̄n ≥ xV̄n)+
n

∑
i=1

P
(

S(i)
n ≥ (x2−1)1/2V (i)

n , |Xi|> θ
)

≤ P(S̄n ≥ xV̄n)+
n

∑
i=1

P
(

S(i)
n ≥ (x2−1)1/2V (i)

n

)
P(|Xi|> θ) .

Moreover, P(S̄n ≥ xV̄n) is equal to

P
{

S̄n ≥ x
[
B̄2

n +∑n
i=1(X̄

2
i −EX̄2

i )
]1/2

}
(7.22)

≤ P
{

S̄n ≥ xB̄n

[
1+ 1

2B̄2
n
∑n

i=1(X̄
2
i −EX̄2

i )− 1
B̄4

n

(
∑n

i=1(X̄
2
i −EX̄2

i )
)2
]}

:= Kn,

where the inequality follows from (1+ y)1/2 ≥ 1+ y/2− y2 for any y≥−1. Hence
the upper bound (7.16) follows from the next three propositions.
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Proposition 7.11. There exists an absolute constant A such that

P(S(i)
n ≥ xV (i)

n )≤ (1+ x−1)
1√
2πx

exp(−x2/2+AΔn,x) (7.23)

for any x > 2 satisfying (7.4) and (7.5).

Proposition 7.12. There exists an absolute constant A such that

Kn ≤ (1−Φ(x))eAΔn,x +Ae−3x2
(7.24)

for all x > 2 satisfying (7.4) and (7.5).

Proposition 7.13. There exists an absolute constant A such that

Kn ≤ (1−Φ(x))eAΔn,x +A
(
Δn,x/(1+ x)2)4/3

(7.25)

for x > 2 with Δn,x/(1+ x)2 ≤ 1/128.

To complete the proof of (7.16), we first use Propositions 7.12 and 7.13 to show
that

Kn ≤ (1−Φ(x))eAΔn,x (7.26)

for all x > 2 satisfying conditions (7.4) and (7.5). We consider two cases. If
Δn,x/(1+ x)2 ≤ (1−Φ(x))3/128, then by (7.25),

Kn ≤ (1−Φ(x))eAΔn,x
(

1+A(1+ x)−2Δn,x
(
Δn,x/(1+ x)2)1/3

/(1−Φ(x))
)

≤ (1−Φ(x))eAΔn,x
(
1+AΔn,x/(1+ x)2)

≤ (1−Φ(x))e2AΔn,x .

When Δn,x/(1+ x)2 > (1−Φ(x))3/128, by (7.24),

Kn ≤ (1−Φ(x))eAΔn,x
(

1+Ae−3x2
/(1−Φ(x))

)
≤ (1−Φ(x))eAΔn,x

(
1+A(1−Φ(x))3

)
≤ (1−Φ(x))eAΔn,x

(
1+128AΔn,x/(1+ x)2)

≤ (1−Φ(x))e129AΔn,x .

For x > 2, we next use Proposition 7.11 and the fact that (2π)−1/2(x−1 −
x−3)e−x2/2 ≤ 1−Φ(x) for x > 0 to obtain
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P
(

S(i)
n ≥ (x2−1)1/2V (i)

n

)
≤

(
1+(x2−1)−1/2

)
(2π)−1/2(x2−1)−1/2 exp(−x2/2+AΔn,x)

≤ (2π)−1/2 A
x

exp(−x2/2+AΔn,x)

≤ (2π)−1/2A(x−1− x−3)exp(−x2/2+AΔn,x)
≤ A(1−Φ(x))exp(AΔn,x). (7.27)

It follows from (7.21), (7.22), (7.26) and (7.27) that

P(Sn ≥ xVn) ≤ P(S̄n ≥ xV̄n)+
n

∑
i=1

P
(

S(i)
n ≥ (x2−1)1/2V (i)

n

)
P(|Xi|> θ)

≤ (1−Φ(x))eAΔn,x +
n

∑
i=1

A(1−Φ(x))exp(AΔn,x)P(|Xi|> θ)

≤ (1−Φ(x))eAΔn,x

(
1+A

n

∑
i=1

P(|Xi|> θ)

)

≤ (1−Φ(x))eAΔn,x

(
1+A

n

∑
i=1

θ−2EX2
i I(|Xi|> θ)

)

≤ (1−Φ(x))eAΔn,x(1+AΔn,x)

≤ (1−Φ(x))e2AΔn,x .

This completes the proof of (7.16) and therefore also that of Theorem 7.1.

7.2.3 Proof of Propositions

A key ingredient in the proofs of the propositions an appropriately chosen expansion
for E{(λbX−θ(bX)2)keλbX−θ(bX)2} as b ↓ 0, k = 0,1,2,3. This is provided by the
following lemmas whose proofs can be found in Jing et al. (2003).

Lemma 7.14. Let X be a random variable with EX = 0 and EX2 < ∞. Then, for
any 0 < b < ∞, λ > 0 and θ > 0,

Eeλ bX−θ(bX)2
= 1+(λ 2/2−θ)b2EX2 +Oλ ,θ δb, (7.28)

where δb = b2EX2I(|bX | > 1)+ b3E|X |3I(|bX | ≤ 1) and Oλ ,θ denotes a quantity
that is bounded by a finite constant depending only on λ and θ . In (7.28), |Oλ ,θ | ≤
max(λ + |λ 2/2−θ |+ eλ

2/(4θ), λθ +θ 2/2+(λ +θ)3eλ/6).

Lemma 7.15. Let X be a random variable with EX = 0 and EX2 < ∞. For 0 < b <
∞, let ξ := ξb = 2bX − (bX)2. Then, for λ > 0,
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Eeλ ξ = 1+(2λ 2−λ )b2EX2 +Oλ ,0 δb, (7.29)

Eξeλ ξ = (4λ −1)b2EX2 +Oλ ,1 δb, (7.30)

Eξ 2eλ ξ = 4b2EX2 +Oλ ,2 δb, (7.31)

E|ξ |3eλ ξ = Oλ ,3 δb, (7.32)

(Eξeλξ )2 = Oλ ,4δb, (7.33)

where δb is defined as in Lemma 7.14 and

|Oλ ,0| ≤ max(2λ + |2λ 2−λ |+ eλ ,2.5λ 2 +4λ 3eλ/3),

|Oλ ,1| ≤ max
(

2+ |4λ −1|+max(eλ ,e/λ ),5λ +13.5λ 2eλ
)

,

|Oλ ,2| ≤ max
(

4+max
(

eλ ,(e/(2λ ))2
)

,5+27λeλ
)

,

|Oλ ,3| ≤ 27eλ ,

|Oλ ,4| ≤ 2max
((

max(eλ ,e/λ )+2
)2

,(1+9λeλ )2
)

.

In particular, when λ = 1/2, |Oλ ,0| ≤ 2.65, |Oλ ,1| ≤ 8.1, |Oλ ,2| ≤ 28, |Oλ ,3| ≤ 45,
|Oλ ,4| ≤ 150, and

Eeξ/2 = eO5δb , where |O5| ≤ 5.5. (7.34)

Lemma 7.16. Let {ξi, 1 ≤ i ≤ n} be a sequence of independent random variables
with Eehξi < ∞ for 0 < h < H, where H > 0. For 0 < λ < H, put

m(λ ) =
n

∑
i=1

Eξieλξi /Eeλξi , σ2(λ ) =
n

∑
i=1

(
Eξ 2

i eλξi /Eeλξi − (Eξieλξi /Eeλξi)2
)

.

Then

P

(
n

∑
i=1

ξi ≥ y

)
≥ 3

4

(
n

∏
i=1

Eeλξi

)
e−λm(λ )−2λσ(λ ), (7.35)

provided that
0 < λ < H and m(λ )≥ y+2σ(λ ). (7.36)

Because the details in applying these lemmas to prove the propositions involve
lengthy calculations, they are omitted here. Interested readers can find the detailed
proofs at the Web site for the book given in the Preface.
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7.3 Application to Self-Normalized LIL

It is known that the law of the iterated logarithm is usually a direct consequence of
a moderate deviation result. We first show that condition (7.6) in Theorem 7.2 can
be removed.

Theorem 7.17. Let xn be a sequence of real numbers such that xn → ∞ and xn =
o(Bn). Assume

B−2
n

n

∑
i=1

EX2
i I(|Xi|> εBn/xn)→ 0 for all ε > 0. (7.37)

Then
logP(Sn/Vn ≥ xn)∼−x2

n/2. (7.38)

As a direct consequence of Theorem 7.17, we have the following self-normalized
law of the iterated logarithm for independent random variables:

Theorem 7.18. If Bn → ∞ and

B−2
n

n

∑
i=1

EX2
i I
(
|Xi|> εBn/(log logBn)1/2

)
→ 0 for all ε > 0,

then
limsup

n→∞

Sn

Vn(2loglogBn)1/2 = 1 a.s. (7.39)

Remark 7.19. Shao (1995) proved that if for every ε > 0,

B−2
n

n

∑
i=1

EX2
i I
(
|Xi|> εBn/(log logBn)1/2

)
→ 0 as n→ ∞ (7.40)

and
∞

∑
n=1

P
(
|Xn|> εBn/(log logBn)1/2

)
< ∞ (7.41)

are satisfied, then

limsup
n→∞

Sn

Bn(2loglogBn)1/2 = 1 a.s. (7.42)

The following example shows that the self-normalized LIL (7.39) holds but the LIL
(7.42) that normalizes by Bn instead fails. Let X1,X2, . . . be independent random
variables satisfying

P(Xn = 0) =
3
4
− 1

n(log logn)3 +
1

4loglogn
,

P(Xn =±2) =
1
8
− 1

8loglogn
, P

(
Xn =±n1/2 log logn

)
=

1
2n(log logn)3 .
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Then EXn = 0, EX2
n = 1, and {X2

n ,n ≥ 1} is uniformly integrable. Hence, by
Theorem 7.18, (7.39) holds. On the other hand, note that for all ε > 0,

∞

∑
n=1

P
(
|Xn|> εBn(log logBn)1/2

)
= ∞ with Bn =

√
n.

Therefore, by the Borel–Cantelli lemma, (7.42) does not hold.

Proof (of Theorem 7.17). It suffices to show that for 0 < ε < 1/2,

P(Sn/Vn ≥ xn)≤ exp
(
−(1− ε)x2

n/2
)

(7.43)

and
P(Sn/Vn ≥ xn)≥ exp

(
−(1+ ε)x2

n/2
)

(7.44)

for sufficiently large n. Let η = ηε > 0 that will be specified later and define τ =
η2Bn/xn. Set

X̄i = XiI(|Xi| ≤ τ), S̄n =
n

∑
i=1

X̄i, V̄ 2
n =

n

∑
i=1

X̄2
i .

Observe that

P(Sn/Vn ≥ xn) ≤ P
(
S̄n/Vn ≥ (1−η)xn

)
+P

(
n

∑
i=1

XiI(|Xi|> τ)/Vn ≥ ηxn

)

≤ P
(
S̄n/V̄n ≥ (1−η)xn

)
+P

(
n

∑
i=1

I(|Xi|> τ)≥ (ηxn)2

)

≤ P
(

S̄n ≥ (1−η)3/2xnBn

)
+P

(
V̄ 2

n ≤ (1−η)B2
n
)

+P

(
n

∑
i=1

I(|Xi|> τ)≥ (ηxn)2

)
. (7.45)

From (7.37), it follows that

n

∑
i=1

P(|Xi|> τ)≤ τ−2
n

∑
i=1

EX2
i I(|Xi|> τ) = o(x2

n).

Therefore

P

(
n

∑
i=1

I(|Xi|> τ)≥ (ηxn)2

)
≤

(
3∑n

i=1 P(|Xi|> τ)
(ηxn)2

)η2x2
n

= o(1)η
2x2

n ≤ exp(−2x2
n) (7.46)
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for n sufficiently large. Note that

EV̄ 2
n = B2

n−
n

∑
i=1

EX2
i I(|Xi|> τ) = (1−o(1))B2

n ≥ (1−η/2)B2
n

for sufficiently large n. Hence, by the Bernstein inequality (2.17),

P
(
V̄ 2

n ≤ (1−η)B2
n
)
≤ exp

(
− (ηB2

n/2)2

2∑n
i=1 EX4

i I(|Xi| ≤ τ)

)

≤ exp
(
− (ηB2

n/2)2

2τ2B2
n

)

= exp
(
− x2

n

8η2

)
≤ exp(−2x2

n), (7.47)

provided that η < 1/16 and that n is sufficiently large.
We now estimate P(S̄n ≥ (1−η)3/2xnBn). Observe that

|ES̄n| =
∣∣∣∣∣

n

∑
i=1

EXiI(|Xi|> τ)

∣∣∣∣∣
≤ τ−1

n

∑
i=1

EX2
i I(|Xi|> τ) = o(1)xnBn.

It follows from the Bernstein inequality (2.17) that

P
(

S̄n ≥ (1−η)3/2xnBn

)
≤ P

(
S̄n−ES̄n ≥ (1−2η)xnBn

)
≤ exp

(
− ((1−2η)xnBn)

2

2(B2
n + xnBnτ)

)

≤ exp

(
− ((1−2η)xnBn)

2

2(1+η2)B2
n

)

≤ exp
(
−(1− ε)x2

n/2
)
, (7.48)

provided that (1−2η)/(1+η2) > 1− ε . From (7.45)–(7.48), (7.43) follows.
To prove (7.44), let 0 < ε < 1/2, 1/4 > η = ηε > 0,

G = {1≤ i≤ n : x2
nEX2

i > η3B2
n}, H = {1≤ i≤ n : x2

nEX2
i ≤ η3B2

n}.

First we show that

#(G) = o(x2
n) and ∑

i∈G
EX2

i = o(B2
n). (7.49)
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Note that for i ∈ G,

η3(Bn/xn)2 ≤ EX2
i = EX2

i I(|Xi| ≤ η2Bn/xn)+EX2
i I(|Xi|> η2Bn/xn)

≤ η4(Bn/xn)2 +EX2
i I(|Xi|> η2Bn/xn).

Hence
EX2

i I(|Xi|> η2Bn/xn)≥ η4(Bn/xn)2

for i ∈ G, and by (7.37),

η4(Bn/xn)2#(G)≤ ∑
i∈G

EX2
i I(|Xi|> η2Bn/xn) = o(B2

n),

which proves the first part of (7.49). For the second part of (7.49), we have

∑
i∈G

EX2
i = ∑

i∈G
EX2

i I
(
|Xi| ≤ η2Bn/xn

)
+EX2

i I
(
|Xi|> η2Bn/xn

)

≤ ∑
i∈G

(η2Bn/xn)2 +
n

∑
i=1

EX2
i I
(
|Xi|> η2Bn/xn

)
= o(x2

n)(Bn/xn)2 +o(B2
n) = o(B2

n).

Now we show that we only need to focus on i ∈ H to prove (7.44). Let

SH = ∑
i∈H

Xi, SG = ∑
i∈G

Xi, V 2
H = ∑

i∈H
X2

i , V 2
G = ∑

i∈G
X2

i .

Noting that
|SG/Vn| ≤ [#(G)]1/2 = o(xn),

we have

P(Sn/Vn ≥ xn) = P(SH/Vn ≥ xn−SG/Vn) (7.50)
≥ P(SH ≥ (1+η)xnVn)

≥ P
(

SH ≥ (1+η)xn(V 2
H +ηB2

n)
1/2, V 2

G ≤ ηB2
n

)
= P

(
SH ≥ (1+η)xn(V 2

H +ηB2
n)

1/2
)

P(V 2
G ≤ ηB2

n).

From (7.49), it follows that

P(V 2
G ≤ ηB2

n)≥ 1−E(V 2
G)/(ηB2

n)≥ 1/2 (7.51)

for n sufficiently large.
Let τ = η2Bn/xn and let Yi, i ∈ H, be independent random variables such that Yi

has the distribution function of Xi conditioned on |Xi| ≤ τ . Put

S̃H = ∑
i∈H

Yi, Ṽ 2
H = ∑

i∈H
Y 2

i .
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Note that

∑
i∈H

EY 2
i = ∑

i∈H

EX2
i I(|Xi| ≤ τ)

P(|Xi| ≤ τ)

≤ ∑
i∈H

EX2
i I(|Xi| ≤ τ)

1−η
≤ B2

n/(1−η),

∑
i∈H

EY 2
i ≥ ∑

i∈H
EX2

i I(|Xi| ≤ τ)

= ∑
i∈H

EX2
i −∑

i∈H
EX2

i I(|Xi|> τ)

= B2
n−∑

i∈G
EX2

i −∑
i∈H

EX2
i I(|Xi|> τ)

= (1−o(1))B2
n ≥ (1−η)B2

n,

∑
i∈H

EY 4
i ≤ τ2 ∑

i∈H
EY 2

i ≤ η4B4
n/x2

n,

∑
i∈H
|EYi| ≤ 2τ−1 ∑

i∈H
EX2

i I(|Xi|> τ) = o(xnBn).

Moreover,

P
(

SH ≥ (1+η)xn(V 2
H +ηB2

n)
1/2

)
≥ P

(
SH ≥ (1+η)xn(V 2

H +ηB2
n)

1/2, max
i∈H
|Xi| ≤ τ

)
(7.52)

= P
(

max
i∈H
|Xi| ≤ τ

)
P
(

S̃H ≥ (1+η)xn(Ṽ 2
H +ηB2

n)
1/2

)

= P
(

max
i∈H
|Xi| ≤ τ

)
P
(

S̃H ≥ (1+η)xn(Ṽ 2
H +ηB2

n)
1/2, Ṽ 2

H ≤ (1+2η)B2
n

)

≥ P
(

max
i∈H
|Xi| ≤ τ

)
P
(
S̃H ≥ (1+η)(1+3η)xnBn

)
−P

(
Ṽ 2

H > (1+2η)B2
n
)
.

Similar to the proof of (7.47), we have

P
(
Ṽ 2

H > (1+2η)B2
n
)
≤ exp

(
−
(
(1+2η−1/(1−η))B2

n
)2

2
(
∑i∈H EY 4

i +2τ2B2
n
)

)
(7.53)

≤ exp
(
− η2B4

n

16η4B4
n/x2

n

)
≤ exp(−2x2

n).
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Also note that

P
(

max
i∈H
|Xi| ≤ τ

)
= ∏

i∈H
(1−P(|Xi|> τ)) (7.54)

≥∏
i∈H

(
1− τ−2EX2

i I(|Xi|> τ)
)

≥ exp

(
−2∑

i∈H
τ−2EX2

i I(|Xi|> τ)

)

= exp
(
−o(1)x2

n
)
.

Finally, by Kolmogorov’s lower exponential bound (see Theorem 2.22),

P
(
S̃H ≥ (1+η)(1+3η)xnBn

)
≥ exp

(
− (1+ ε/2)(1+η)2(1+3η)2x2

nB2
n

2(1−η)B2
n

)
≥ exp

(
−(1+ ε)x2

n/2
)

(7.55)

for sufficiently large n, provided that η is chosen small enough. Combining the
above inequalities yields (7.44). ��

Proof (of Theorem 7.18). We follow the proof of Theorem 6.14. We first show that

limsup
n→∞

Sn

Vn(2loglogBn)1/2 ≤ 1 a.s. (7.56)

For θ > 1, let mk := mk(θ) = min{n : Bn ≥ θ k}. It follows from condition (7.40)
that

Bmk ∼ θ k as k→ ∞. (7.57)

Let xk = (2loglogBmk)
1/2. Then, for 0 < ε < 1/2,

P
(

max
mk≤n≤mk+1

Sn

Vn
≥ (1+7ε)xk

)

≤ P
(

Smk

Vmk

≥ (1+2ε)xk

)
+P

(
max

mk≤n≤mk+1

Sn−Smk

Vn
≥ 5εxk

)
. (7.58)

By Theorem 7.2,

P
(

Smk

Vmk

≥ (1+2ε)xk

)
≤ exp

(
−(1+2ε)x2

k/2
)
≤C k−1−ε (7.59)

for every sufficiently large k.
To bound the second term in the right-hand side of (7.58), let η = (θ 2− 1)1/2

and define zk = ηBmk/xk. Set Tn = ∑n
i=mk+1 XiI(|Xi| ≤ zk). Therefore
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P
(

max
mk≤n≤mk+1

Sn−Smk

Vn
≥ 5εxk

)

≤ P
(

max
mk≤n≤mk+1

Tn ≥ 2εxkBmk

)

+P(Vmk ≤ Bmk/2)+P

(
mk+1

∑
i=1+mk

I(|Xi|> zk)≥ (εxk)2

)
. (7.60)

Note that
mk+1

∑
i=1+mk

EX2
i I(|Xi| ≤ zk)∼ (θ 2−1)θ 2k

and

max
mk≤n≤mk+1

|ETn| ≤ z−1
k

mk+1

∑
i=1+mk

EX2
i ∼ z−1

k (θ 2−1)θ 2k

∼ (θ 2−1)1/2xkBmk ≤ εxkBmk/2

for 1 < θ < 1+ ε2/8. By the Bernstein inequality (2.17), for all large k,

logP
(

max
mk≤n≤mk+1

Tn ≥ 2εxkBmk

)
≤ − (εxkBmk)

2

2
(
(θ 2−1)θ 2k + εxkBmk zk

)
∼ − ε2x2

k

2
(
(θ 2−1)+ ε(θ 2−1)1/2

)
≤ −x2

k , (7.61)

provided that θ(>1) is close enough to 1. By the Bernstein inequality again,

P(Vmk ≤ Bmk/2) ≤ P

(
mk

∑
i=1

X2
i I(|Xi| ≤ zk)≤ B2

mk
/4

)
(7.62)

≤ exp

(
−

(3B2
mk

/4)2

2
{
∑mk

i=1 EX4
i I(|Xi| ≤ zk)+B2

mk
z2

k

}
)

≤ exp

(
−

B4
mk

8B2
mk

z2
k

)

≤ exp(−x2
k)

for θ(>1) close to 1. Let

t = tk := log
{

(εxk)2
/
∑mk+1

i=1 z−2
k EX2

i I(|Xi|> zk)
}

.
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By (7.40), t → ∞. From the Markov inequality, it follows that

P

(
mk+1

∑
i=1+mk

I(|Xi|> zk)≥ (εxk)2

)

≤ e−t(εxk)2
mk+1

∏
i=1+mk

(
1+(et −1)P(|Xi|> zk)

)

≤ exp

(
−t(εxk)2 +(et −1)

mk+1

∑
i=1

z−2
k EX2

i I(|Xi|> zk)

)

≤ exp

(
−(εxk)2 log

{
(εxk)2

3∑mk+1
i=1 z−2

k EX2
i I(|Xi|> zk)

})

≤ exp(−x2
k) (7.63)

for sufficiently large k. Combining the above inequalities yields (7.56) by the Borel–
Cantelli lemma and the arbitrariness of ε .

Next, we prove that

limsup
n→∞

Sn

Vn(2loglogBn)1/2 ≥ 1 a.s. (7.64)

Let nk = min{m : Bm ≥ e4k logk}. Then, Bnk ∼ e4k logk. Observe that

limsup
n→∞

Sn

Vn(2loglogBn)1/2 (7.65)

≥ limsup
k→∞

Snk

Vnk(2loglogBnk)1/2

≥ limsup
k→∞

Snk −Snk−1

Vnk(2loglogBnk)1/2 + liminf
k→∞

Snk−1

Vnk(2loglogBnk)1/2

= limsup
k→∞

(V 2
nk
−V 2

nk−1
)1/2

Vnk

Snk −Snk−1

(V 2
nk
−V 2

nk−1
)1/2(2loglogBnk)1/2

+ liminf
k→∞

Vnk−1

Vnk

Snk−1

Vnk−1(2loglogBnk)1/2 .

Since (Snk − Snk−1)/(V 2
nk
− V 2

nk−1
)1/2, k ≥ 1, are independent, it follows from

Theorem 7.2 and the Borel–Cantelli lemma that

limsup
n→∞

Snk −Snk−1

(V 2
nk
−V 2

nk−1
)1/2(2loglogBnk)1/2 ≥ 1 a.s. (7.66)

Similar to (7.62) and by the Borel–Cantelli lemma, we have

liminf
k→∞

Vnk

Bnk

≥ 1/2 a.s.
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Note that

P(Vnk−1 ≥ Bnk/k)≤ k2EV 2
nk−1

/B2
nk

= k2B2
nk−1

/B2
nk
≤ k−2.

Then, by the Borel–Cantelli lemma again,

lim
k→∞

Vnk−1

Vnk

= 0 a.s. (7.67)

From (7.65) and (7.66), (7.67), (7.64) follows. ��

7.4 Cramér-Type Moderate Deviations for Two-Sample
t-Statistics

Let X1, . . . ,Xn1 be a random sample from a population with mean μ1 and variance
σ2

1 , and Y1, . . . ,Yn2 be a random sample from another population with mean μ2 and
variance σ2

2 . Assuming that the two random samples are independent, define the
two-sample t-statistic

T =
X̄ − Ȳ − (μ1−μ2)√

s2
1/n1 + s2

2/n2

, (7.68)

where X̄ = ∑n1
i=1 Xi/n1, Ȳ = ∑n2

i=1 Yi/n2,

s2
1 =

1
n1−1

n1

∑
i=1

(Xi− X̄)2, s2
2 =

1
n2−1

n2

∑
i=1

(Yi− Ȳ )2.

Two-sample t-statistics are commonly used for testing the difference between two
population means or constructing confidence intervals for the difference. Cao (2007)
has proved the following moderate deviation results, analogous to Theorems 6.1
and 7.4, for the two-sample t-statistic (7.68).

Theorem 7.20. Let n = n1 + n2. Assume that c1 ≤ n1/n2 ≤ c2 for some 0 < c1 ≤
c2 < ∞ and all large n. Then for any x := x(n1,n2) satisfying x→ ∞, x = o(n1/2),

logP(T ≥ x)∼−x2/2 (7.69)

as n→ ∞. If, in addition E|X1|3 < ∞ and E|Y1|3 < ∞, then

P(T ≥ x)
1−Φ(x)

= 1+O(1)(1+ x)3n−1/2d3 (7.70)

for 0≤ x≤ n1/6/d, where d3 = (E|X1−μ1|3 +E|Y1−μ2|3)/(σ2
1 +σ2

2 )3/2 and O(1)
depends only on c1 and c2. In particular,

P(T ≥ x)
1−Φ(x)

→ 1 (7.71)

uniformly in x ∈ [0,o(n1/6)).
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Proof. Without loss of generality, assume μ1 = μ2 = 0. Let

V 2
1,n1

=
n1

∑
i=1

X2
i , V 2

2,n2
=

n2

∑
i=1

Y 2
i ,

s∗21 =
V 2

1,n1

n1−1
, s∗22 =

V 2
2,n2

n2−1
,

T ∗ =
X̄− Ȳ√

s∗21 /n1 + s∗22 /n2

.

Noting that

s2
1 = s∗21

(
1−n1X̄2/V 2

1,n1

)
, s2

2 = s∗22
(
1−n2Ȳ 2/V 2

2,n2

)
,

we have

P(T ∗ ≥ x) ≤ P(T ≥ x)≤ P(T ∗ ≥ x
√

1− ε)

+P

(
n1X̄2

V 2
1,n1

≥ ε

)
+P

(
n2Ȳ2

V 2
2,n2

≥ ε

)
(7.72)

for any 0 < ε < 1.
To prove (7.69), let ε = (1+ x)/

√
n. It follows from Theorem 7.2 that

logP(T ∗ ≥ x)∼−x2/2 (7.73)

and
logP

(
T ∗ ≥ x

√
1− ε

)
∼−x2/2. (7.74)

By Theorem 6.1,

logP

(
n1X̄2

V 2
1,n1

≥ ε

)
∼−εn1/2 (7.75)

and

logP

(
n2Ȳ 2

V 2
2,n2

≥ ε

)
∼−εn1/2. (7.76)

Noting that x2 = o(ε min(n1,n2)), we obtain (7.69) by combining (7.72)–(7.76).
To prove (7.70), let ε = (1+ x)/

√
n again. By Theorem 7.4,

P(T ∗ ≥ x)
1−Φ(x)

= 1+O(1)(1+ x)3n−1/2d3 (7.77)

and
P(T ∗ ≥ x

√
1− ε)

1−Φ(x)
= 1+O(1)(1+ x)3n−1/2d3. (7.78)
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By Theorem 6.1,

P(n1X̄2/V 2
1,n1
≥ ε) = o

(
(1+ x)3 n−1/2 (1−Φ(x))

)
, (7.79)

P(n2Ȳ 2/V 2
2,n2
≥ ε) = o

(
(1+ x)3 n−1/2 (1−Φ(x))

)
. (7.80)

From (7.72) and (7.77)–(7.80), (7.70) follows. ��

7.5 Supplementary Results and Problems

1. It has been shown by Chistyakov and Götze (2004b) that the bound in (7.3) is
the best possible. Consult their paper for a detailed example.

2. Wang (2005) has proved the following result:
Let X ,X1,X2, . . . be i.i.d. random variables with E(X) = 0 and E(X4) <∞. Then

P(Sn ≥ xVn)
1−Φ(x)

= exp
{
− x3EX3

3
√

nσ3

}(
1+O

(
1+ x√

n

))

for 0≤ x≤ O(n1/6).
Compare his result and proof with Theorem 7.20. Can his assumption
E(X4) < ∞ be weakened to E|X |3 < ∞?

3. Hu et al. (2008) have shown that if X ,X1,X2, . . . are i.i.d. random variables with
E(X) = 0 and E(X4) < ∞, then

lim
n→∞

P(max1≤k≤n Sk ≥ xVn)
1−Φ(x)

= 2

uniformly in x ∈ [0,o(n1/6)). It would be interesting to see if the finiteness of
E(X4) can be weakened to that of E|X |3.

4. Prove (7.78) and (7.79).



Chapter 8
Self-Normalized Empirical Processes
and U-Statistics

Whereas previous chapters have considered limit theorems for self-normalized sums
of independent random variables, we extend sums to more general structures in this
chapter, namely, self-normalized empirical processes and U-statistics. In particular,
we extend the methods and results of Chaps. 6 and 7 to self-normalized U-statistics.

8.1 Self-Normalized Empirical Processes

Let X ,X1, . . . ,Xn be i.i.d random variables with values in a measurable space
(X ,C ). Let F be a class of real-valued measurable functions on (X ,C ). Con-
sider all functions f in F that are centered and normalized, i.e.,

E f (X) = 0 and E f 2(X) = 1.

Define the self-normalized empirical process by

Wn( f ) = ∑n
i=1 f (Xi)√
∑n

i=1 f 2(Xi)
, f ∈F .

There is a comprehensive theory on the classical empirical process { 1√
n ∑

n
i=1 f (Xi),

f ∈ F}; see, e.g., Shorack and Wellner (1986) and van der Vaart and Wellner
(1996). For the self-normalized empirical process, Bercu et al. (2002) have proved
the following moderate and large deviation results and exponential bounds for

Wn = sup
f∈F

Wn( f ).

Definition 8.1. F is said to have a finite covering with brackets in L2 satisfying
concordance of signs if for any δ > 0, one can find a finite family C of pairs of
measurable functions in L2 such that, for any f ∈F , there exists (g,h) in C with

|g| ≤ | f | ≤ |h|, gh≥ 0 and E [(h(X)−g(X)]2 ≤ δ .

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 107
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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Theorem 8.2. Suppose that F is a countable class of centered and normalized func-
tions. Assume that F has finite covering with brackets in L2 satisfying concordance
of signs, and that

C0 := sup
n≥1

E

[
sup
f∈F

max

(
1√
n

n

∑
i=1

f (Xi),0

)]
< ∞. (8.1)

Then, for any sequence (xn) such that xn → ∞ and xn = o(
√

n),

lim
n→∞

1
x2

n
logP(Wn ≥ xn) =−1

2
. (8.2)

Theorem 8.3. Let t : X →R be a measurable function such that t(X) has a contin-
uous distribution function, Et(X) = 0 and eψ(θ) = Eeθ t(X) < ∞ for 2m ≤ θ ≤ 2M,
where m < 0 < M. For θ ∈ [m,0)∪ (0,M] and x ∈X , define fθ (x) = exp{θ t(x)−
ψ(θ)} and let F = { fθ : θ ∈ [m,0)∪ (0,M]}. Then for any r ≥ 0,

lim
n→∞

n−1 logP
(
Wn ≥ r

√
n
)

=−I (r), (8.3)

where I (r) = inf f∈F I f (r) and

If (r) =− logsup
a≥0

inf
t≥0

E exp
(
t
[
a f (X)− r

(
f 2(X)+a2)/2

])
. (8.4)

The proofs of Theorems 8.2 and 8.3 involve certain concentration inequalities
and approximation arguments that are quite technical. Details can be found in Bercu
et al. (2002).

8.2 Self-Normalized U-Statistics

Let X ,X1, . . . ,Xn be i.i.d. random variables, and let h(x1,x2) be a real-valued sym-
metric Borel measurable function such that Eh(X1,X2) = θ . An unbiased estimate
of θ is the U-statistic

Un =
(

n
2

)−1

∑
1≤i< j≤n

h(Xi,Xj), (8.5)

typical examples of which include:

(1) Sample mean: h(x1,x2) = 1
2 (x1 + x2).

(2) Sample variance: h(x1,x2) = 1
2 (x1− x2)2.

(3) Gini’s mean difference: h(x1,x2) = |x1− x2|.
(4) One-sample Wilcoxon’s statistic: h(x1,x2) = I(x1 + x2 ≤ 0).

The function h in (8.5) is called the kernel of the U-statistic. For notational sim-
plicity we only consider the case of U-statistics of order 2, i.e., h is a function of
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two variables. The kernel of a U-statistic of order m is a function of m variables, for
which (8.5) is generalized to

Un =
(

n
m

)−1

∑
1<i1<···<im≤n

h(Xi1 , . . . ,Xim).

8.2.1 The Hoeffding Decomposition and Central Limit Theorem

Without loss of generality, assume θ = 0. Let g(x) = Eh(x,X). Hoeffding (1948)
has shown that the U-statistic (8.5) has the following decomposition:

Un =
2
n

n

∑
i=1

g(Xi)+
2
n
Δn, (8.6)

where
Δn =

1
n−1 ∑

1≤i< j≤n

{
h(Xi,Xj)−g(Xi)−g(Xj)

}
. (8.7)

By showing that Δn is usually negligible under some regularity conditions, he
approximates a non-degenerate U-statistic (i.e., g(X) is non-degenerate) by the
sample mean of i.i.d. random variables. In particular, if Eh2(X1,X2) < ∞ and
σ2

1 = Var(g(X1)) > 0, he thereby obtains the central limit theorem

sup
x

∣∣∣∣P
(√

n
2σ1

Un ≤ x
)
−Φ(x)

∣∣∣∣→ 0 as n→ ∞. (8.8)

Likewise, if E|h(X1,X2)|5/3 < ∞, E|g(X1)|3 < ∞ and σ2
1 = Var(g(X1)) > 0, then we

have the Berry–Esseen bound

sup
x

∣∣∣∣P
(√

n
2σ1

Un ≤ x
)
−Φ(x)

∣∣∣∣ = O(n−1/2); (8.9)

see Koroljuk and Borovskikh (1994), Alberink and Bentkus (2001, 2002), Wang and
Weber (2006). There are also large deviation results for U-statistics; see Borovskich
and Weber (2003a,b).

8.2.2 Self-Normalized U-Statistics and Berry–Esseen Bounds

Since σ1 is typically unknown, what is used in statistical inference is the self-
normalized U-statistic

Tn =
√

n(Un−θ)/Rn , (8.10)
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where R2
n is the jackknife estimate of σ2

1 given by

R2
n =

4(n−1)
(n−2)2

n

∑
i=1

(qi−Un)2, with qi =
1

n−1

n

∑
j=1
j �=i

h(Xi,Xj). (8.11)

It is easy to see that the central limit theorem remains valid for the self-normalized
U-statistic (8.10) provided that E|h(X1,X2)|2 < ∞. The following Berry–Esseen
bound is due to Wang et al. (2000):

Theorem 8.4. Assume θ = 0 and E|h(X1,X2)|3 < ∞. Then

sup
x
|P(Tn ≤ x)−Φ(x)| ≤ An−1/2E|h(X1,X2)|3/σ3

1 , (8.12)

where A is an absolute constant.

8.2.3 Moderate Deviations for Self-Normalized U-Statistics

In view of the moderate deviation results for self-normalized sums in Chaps. 6 and 7,
it is natural to ask whether similar results hold for self-normalized U-statistics. As-
suming that 0 < σ2

1 = Eg2(X1) < ∞, we describe here the approach of Lai et al.
(2008) to establish results like (6.1) and (7.12) when the kernel satisfies

h2(x1,x2)≤ c0
[
σ2

1 +g2(x1)+g2(x2)
]

(8.13)

for some c0 > 0. This condition is satisfied by the typical examples (1)–(4) in the
first paragraph of Sect. 8.2.

Theorem 8.5. Assume that (8.13) holds for some c0 > 0 and 0 <σ2
1 = Eg2(X1) <∞.

Then, for any sequence xn with xn → ∞ and xn = o(n1/2),

logP(Tn ≥ xn)∼−x2
n/2. (8.14)

If, in addition, E|g(X1)|3 < ∞, then

P(Tn ≥ x) = (1−Φ(x)) [1+o(1)] (8.15)

holds uniformly in x ∈ [0,o(n1/6)).

Without loss of generality, assume θ = 0. Write Sn = ∑n
j=1 g(Xj) and V 2

n =
∑n

j=1 g2(Xj). The following theorem shows that the self-normalized U-statistic Tn
can be approximated by the self-normalized sum Sn/Vn under condition (8.13). As
a result, (8.14) and (8.15) follow from (6.1) and (7.12).

Theorem 8.6. Assume that θ = 0, 0 < σ2
1 = Eg2(X1) < ∞ and the kernel h(x1,x2)

satisfies condition (8.13). Then there exists a constant η > 0 depending only on σ2
1

and c0 such that, for all 0≤ εn < 1, 0≤ x≤√n/3 and n sufficiently large,
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P{Sn/Vn ≥ (1+ εn)x}−5
√

2(n+2)e−η min(nε2
n ,
√

nεnx) ≤ P(Tn ≥ x)

≤ P{Sn/Vn ≥ (1− εn)x}+5
√

2(n+2)e−η min(nε2
n ,
√

nεnx). (8.16)

8.3 Proofs of Theorems 8.5 and 8.6

8.3.1 Main Ideas of the Proof

Assume that θ = 0. Let

R∗2n =
4(n−1)
(n−2)2

n

∑
i=1

q2
i , T ∗n =

√
nUn

R∗n
. (8.17)

Noting that ∑n
i=1(qi−Un)2 =∑n

i=1 q2
i −2Un∑n

i=1 qi +nU2
n =∑n

i=1 q2
i −nU2

n , we have

Tn =
T ∗n(

1− 4(n−1)
(n−2)2 T ∗2n

)1/2 , (8.18)

and therefore

{Tn ≥ x}=
{

T ∗n ≥
x

[1+4x2(n−1)/(n−2)2]1/2

}
. (8.19)

Thus, we only need to work on T ∗n instead of Tn. Without loss of generality, assume
σ2

1 = 1; otherwise, consider h/σ1 in the place of h.
We next establish a relation between T ∗n and Sn/Vn. To do this, let

ψ(x1,x2) = h(x1,x2)−g(x1)−g(x2), (8.20)

Δn =
1

n−1 ∑
1≤i �= j≤n

ψ(Xi,Xj), W (i)
n =

n

∑
j=1
j �=i

ψ(Xi,Xj), Λ 2
n =

n

∑
i=1

(
W (i)

n

)2
.

It is easy to see that

nUn/2 = Sn +Δn. (8.21)

Also observe that ∑n
j=1, j �=i h(Xi,Xj) = (n−2)g(Xi)+Sn +W (i)

n and

(n−1)(n−2)2

4
R∗2n =

n

∑
i=1

⎛
⎜⎝ n

∑
j=1
j �=i

h(Xi,Xj)

⎞
⎟⎠

2

= (n−2)2V 2
n +Λ 2

n +(3n−4)S2
n

+2(n−2)
n

∑
i=1

g(Xi)W
(i)
n +2Sn

n

∑
i=1

W (i)
n .
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Combining this with |∑n
i=1 g(Xi)W

(i)
n | ≤VnΛn and |Sn∑n

i=1 W (i)
n | ≤ |Sn|

√
nΛn, where

Λ 2
n ≤ nmax1≤i≤n |W (i)

n |2, we can write

R∗2n =
4

n−1
V 2

n (1+δn), (8.22)

in which

|δn| ≤
1

(n−2)2

[
Λ 2

n

V 2
n

+
3nS2

n

V 2
n

+
2nΛn

Vn
+2
√

n
|Sn|Λn

V 2
n

]

≤ 1
(n−2)2

(
Λ 2

n

V 2
n

+
4nΛn

Vn
+

3nS2
n

V 2
n

)
. (8.23)

By (8.21)–(8.22) and (8.17),

T ∗n =
Sn +Δn

dnVn(1+δn)1/2 , where dn =
√

n/(n−1). (8.24)

We then make use of the following exponential bounds to conclude that Δn and δn
are negligible.

Proposition 8.7. There exist constants δ0 > 0 and δ1 > 0, depending only on σ2
1

and c0, such that for all y > 0,

P(|δn| ≥ y)≤ 4
√

2(n+2) exp
(
−δ0 min{1,y,y2}n

)
, (8.25)

P(|Δn| ≥ yVn)≤
√

2(n+2) exp
(
−δ1 min{n,y

√
n}
)
. (8.26)

8.3.2 Proof of Theorem 8.6

Lat τ ′n =
√

n
n−1

[
1+ 4x2(n−1)

(n−2)2

]−1/2
. Since x2 ≤ n/9 and 0≤ εn < 1, it is easy to show

that for 0≤ x≤√n/3,

τn :=
(

1− εn

4

)1/2
τ ′n ≥ 1− εn/2

when n is sufficiently large. Hence it follows from (8.19), (8.24) and Proposition 8.7
that

P(Tn ≥ x)≤ P{Sn/Vn ≥ (1−εn)x}+P
{
|Δn|/Vn ≥ x(εn−1)+xτ ′n (1+δn)1/2

}
≤ P{Sn/Vn ≥ (1−εn)x}+P{|Δn|/Vn ≥ x(εn−1)+xτn}+P{|δn| ≥ εn/4}
≤ P{Sn/Vn ≥ (1−εn)x}+P{|Δn|/Vn ≥ xεn/2}+P{|δn| ≥ εn/4}
≤ P{Sn/Vn ≥ (1−εn)x}+5

√
2(n+2)e−η min(nε2

n ,
√

nεnx),
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where η > 0 is a constant depending only on σ2
1 and c0. This proves the upper bound

of (8.16). The lower bound can be proved similarly.

8.3.3 Proof of Theorem 8.5

By the central limit theorem, the result (8.15) is obvious when 0 ≤ x ≤ 1. In order
to prove (8.15) for x ∈ [1,o(n1/6)), we choose εn = max{ε ′nx/

√
n,n−1/8}, where

ε ′n → ∞ and ε ′nx3/
√

n→ 0 for x ∈ [1,o(n1/6)). Since

min
{

nε2
n ,
√

nεnx
}
≥
√

nεn x≥max
{
ε ′nx2,n3/8 x

}
,

and since

1√
2π

(
1
x
− 1

x3

)
e−x2/2 ≤ 1−Φ(x)≤ 1√

2π
1
x

e−x2/2 for x > 0,

we have uniformly in x ∈ [1,o(n1/6)),

ne−η min(nε2
n ,
√

nεnx) = o(1−Φ(x)) . (8.27)

Moreover, by (7.12),

P{Sn/Vn ≥ (1− εn)x} ≤ {1−Φ [(1− εn)x]}
(
1+O(1)x3/

√
n
)

≤ [1−Φ(x)]
{

1+
|Φ [(1− εn)x]−Φ(x)|

1−Φ(x)

} [
1+O(1)x3/

√
n
]

= [1−Φ(x)] [1+o(1)] , (8.28)

where we have used the bound

|Φ ((1− εn)x)−Φ(x)| ≤ εn xe−(1−εn)2x2/2 = o(1−Φ(x))

uniformly in [1,o(n1/6)), since εn x2 ≤ ε ′nx3/
√

n = o(1).
Combining (8.27)–(8.28) with the upper bound in (8.16), we obtain P(Tn ≥

x) ≤ (1−Φ(x))(1 + o(1)). Similarly we have P(Tn ≥ x) ≥ (1−Φ(x))(1 + o(1)).
This proves (8.15). In a similar way, we can prove (8.14) by choosing εn =
max{n−1/8,ε ′n}, where ε ′n are constants converging so slowly that nε ′2n /x2

n → ∞.

8.3.4 Proof of Proposition 8.7

To prove (8.25), we make use of the exponential inequalities for sums of indepen-
dent random variables in Chap. 2 to develop them further in the next two lemmas.



114 8 Self-Normalized Empirical Processes and U-Statistics

Lemma 8.8. Let {ξi, i≥ 1} be independent random variables with zero means and
finite variances. Let Sn = ∑n

i=1 ξi, V 2
n = ∑n

i=1 ξ 2
i , B2

n = ∑n
i=1 Eξ 2

i . Then for x > 0,

P
(
|Sn| ≥ x(V 2

n +5B2
n)

1/2
)
≤
√

2exp(−x2/8), (8.29)

ES2
nI (|Sn| ≥ x(Vn +4Bn))≤ 16B2

ne−x2/4. (8.30)

Proof. Note that (8.29) is a variant of (2.14). It is easy to see that (8.30) holds when
0 < x < 3. When x > 3, let {ηi,1≤ i≤ n} be an independent copy of {ξi,1≤ i≤ n}.
Set

S∗n =
n

∑
i=1

ηi, V ∗2n =
n

∑
i=1

η2
i .

Then

P
(
|S∗n| ≤ 2Bn, V ∗2n ≤ 4B2

n
)
≥ 1−P(|S∗n|> 2Bn)−P(V ∗2n > 4B2

n)
≥ 1−1/4−1/4 = 1/2,

by the Chebyshev inequality. Noting that{
|Sn| ≥ x(4Bn +Vn), |S∗n| ≤ 2Bn,V ∗2n ≤ 4B2

n
}

⊂
{
|Sn−S∗n| ≥ x

(
4Bn +

(
∑n

i=1(ξi−ηi)2
)1/2−V ∗n

)
−2Bn, |S∗n| ≤ 2n,V ∗2n ≤ 4B2

n

}
⊂

{
|Sn−S∗n| ≥ x

(
2Bn +

(
∑n

i=1(ξi−ηi)2
)1/2

)
−2Bn, |S∗n| ≤ 2Bn

}
⊂

{
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

, |S∗n| ≤ 2Bn

}
,

we have

E
{

S2
nI (|Sn| ≥ x(Vn +4Bn))

}
=

E
{

S2
nI (|Sn| ≥ x(Vn +4Bn)) I(|S∗n| ≤ 2Bn,V ∗2n ≤ 4B2

n)
}

P(|S∗n| ≤ 2Bn,V ∗2n ≤ 4B2
n)

≤ 2E
{

S2
nI
(
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

, |S∗n| ≤ 2Bn

)}
≤ 4E

{
(Sn−S∗n)

2I
(
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

, |S∗n| ≤ 2Bn

)}
+4E

{
S∗2n I

(
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

, |S∗n| ≤ 2Bn

)}
≤ 4E

{
(Sn−S∗n)

2I
(
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

)}
+16B2

nP
(
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

)
. (8.31)

Let {εi,1≤ i≤ n} be a Rademacher sequence independent of {(ξi,ηi), 1≤ i≤ n}.
Noting that {ξi−ηi,1 ≤ i ≤ n} is a sequence of independent symmetric random
variables, {εi(ξi−ηi),1 ≤ i ≤ n} and {ξi−ηi,1 ≤ i ≤ n} have the same joint dis-
tribution. By Theorem 2.14,
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P
(
|∑n

i=1 aiεi| ≥ x
(
∑n

i=1 a2
i
)1/2

)
≤ 2e−x2/2 (8.32)

for any real numbers ai. Hence

E
{

(∑n
i=1 aiεi)

2 I
(
|∑n

i=1 εi| ≥ x
(
∑n

i=1 a2
i
)1/2

)}
≤ (2+ x2)e−x2/2∑n

i=1 a2
i

≤ 1.2e−x2/4∑n
i=1 a2

i (8.33)

for x > 3. By (8.32) and (8.33), for x > 3,

P
(
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

)
≤ 2e−x2/2 ≤ 0.22e−x2/4, (8.34)

E
{

(Sn−S∗n)
2I
(
|Sn−S∗n| ≥ x

(
∑n

i=1(ξi−ηi)2
)1/2

)
I(|S∗n| ≤ 2Bn)

}
= E

{
(∑n

i=1 εi(ξi−ηi))
2 I
(
|∑n

i=1 εi(ξi−ηi)| ≥ x
(
∑n

i=1(ξi−ηi)2
)1/2

)}
≤ 1.2e−x2/4E∑n

i=1(ξi−ηi)2

= 2.4B2
ne−x2/4. (8.35)

From (8.31), (8.34) and (8.35), (8.30) follows. ��

Lemma 8.9. With the same notations as in Sect. 8.3.1, assume σ2
1 = 1. Then for all

y > 0,
P
(
|Sn| ≥ y(Vn +

√
5n)

)
≤ 2e−y2/8 (8.36)

and
P(V 2

n ≤ n/2)≤ e−η0 n, (8.37)

where η0 = 1/(32a2
0) and a0 satisfies

E
{

g(X1)2I(|g(X1)| ≥ a0)
}
≤ 1/4. (8.38)

Proof. Recall Eg(X1) = 0 and Eg2(X1) = 1. Note that (8.36) is a special case of
(8.29). To prove (8.37), let Yk = g(Xk)I(|g(Xk)| ≤ a0). Since e−x ≤ 1− x+ x2/2 for
x > 0, we have for t = 1/(4a2

0),

P(V 2
n ≤ n/2) ≤ P

(
∑n

k=1 Y 2
k ≤ n/2

)
≤ etn/2Ee−t∑n

k=1 Y 2
k = etn/2(Ee−tY 2

1 )n

≤ etn/2 (1− tEY 2
1 + t2EY 4

1 /2
)n

≤ etn/2 (1− (3/4)t + t2a2
0/2

)n

≤ exp
(
−(t/4− t2a2

0/2)n
)

= exp
(
−n/(32a2

0)
)
.

��



116 8 Self-Normalized Empirical Processes and U-Statistics

Lemma 8.10. Assume σ2
1 = 1 so that h2(x1,x2)≤ c0{1+g2(x1)+g2(x2)}. Let a0 =

2(c0 +4) and define W (i)
n and Λ 2

n by (8.20). Then for all y≥ 0,

P
{
Λ 2

n ≥ a0 y2 n(7V 2
n +11n)

}
≤
√

2ne−y2/8. (8.39)

Proof. Let V (i)2
n = ∑n

j=1, j �=iψ2(Xi,Xj) and τ2(x) = E(ψ2(X1,Xj)|Xj = x). Condi-

tional on Xi, W (i)
n is a sum of i.i.d. random variables with zero means. Hence it

follows from (8.29) that

P
{
|W (i)

n | ≥ y
[
V (i)2

n +5(n−1)τ2(Xi)
]1/2

}
≤
√

2e−y2/8. (8.40)

Since ψ2(x1,x2)≤ 2(c0 +4)[1+g2(x1)+g2(x2)],

V (i)2
n +5(n−1)τ2(Xi)≤ 2(c0 +4)

[
11n+6ng2(Xi)+∑n

i=1 g2(Xi)
]
, (8.41)

n

∑
i=1

(
11n+6ng2(Xi)+

n

∑
i=1

g2(Xi)

)
= n(7V 2

n +11n).

From (8.40)–(8.40), it follows that

P
{
Λ 2

n ≥ a0 y2 n(7V 2
n +11n)

}
≤ ∑n

i=1 P
{
|W (i)

n | ≥ y
[
V (i)2

n +5(n−1)τ2(Xi)
]1/2

}

≤
√

2ne−y2/8.

��

Proof (of (8.25)). Without loss of generality, assume σ2
1 = 1. By (8.36) and (8.37),

for any x > 0,

P(|Sn| ≥ 5xVn) ≤ P(V 2
n ≤ n/2)+P

{
|Sn| ≥ x

(
Vn +

√
5n
)}

≤ 2e−x2/8 + e−η0n.

By (8.39) and (8.37), for any x > 0,

P
(
Λn ≥

√
7a0 +22x

√
nVn

)
≤ P(V 2

n ≤ n/2)+P
{
Λ 2

n ≥ a0 x2 n(7V 2
n +11n)

}
≤
√

2ne−x2/8 + e−η0n.
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Moreover,

P(|δn| ≥ y) ≤ 2P
(
|Sn| ≥

√
y(n−2)Vn/3

)
+2P(Λn ≥ y(n−2)Vn/4)

+P
(
Λn ≥

√
y(n−2)Vn/

√
3
)

≤ 2
√

2(n+1)e−δ
′
0yn +2

√
2ne−δ

′′
0 y2 n +5e−η0n

≤ 4
√

2(n+2) exp
(
−δ0 nmin{1,y,y2}

)
,

where the constants δ0, δ ′0 and δ ′′0 depend only on σ2
1 and c0, proving (8.25). ��

We omit the proof of (8.26) because it is similar to that of (8.25) except that we
use the following exponential inequality in place of (8.39):

P

{∣∣∣∣∣ ∑
1≤i< j≤n

ψ(Xi,Xj)

∣∣∣∣∣≥ a1 y2√n(V 2
n +106n)1/2

}
≤
√

2(n+2)e−y2/8, (8.42)

where a2
1 = 46(c0 +4). The rest of this section is devoted to the proof of (8.42). Let

Fn be the σ -field generated by X1, . . . ,Xn and let

Yj =
j−1

∑
i=1

ψ(Xi,Xj), T 2
1n =

n

∑
j=2

Y 2
j , T 2

2n =
n

∑
j=2

E(Y 2
j |F j−1). (8.43)

Note that ∑1≤i< j≤nψ(Xi,Xj) = ∑n
j=2 Yj and that {Yj} is a martingale difference se-

quence with respect to the filtration {Fn}. The proof of (8.42) uses the following
result on exponential inequalities for self-normalized martingales, which will be
proved in Chap. 12 (Sect. 12.3.1) for more general self-normalized processes.

Lemma 8.11. Let {ξi,Fi, i≥ 1} be a martingale difference sequence with Eξ 2
i <∞.

Then for all x > 0,

P

{
|∑n

i=1 ξi|(
∑n

i=1(ξ 2
i +E(ξ 2

i |Fi−1)+2Eξ 2
i )
)1/2 ≥ x

}
≤
√

2exp(−x2/4).

Proof (of (8.42)). Note that EY 2
j ≤ ( j− 1)Eh2(X1,X2) ≤ 3( j− 1), where the last

inequality follows from (8.13) and Eg2(X1) = 1. With T 2
1n and T 2

2n defined in (8.43),
we next show that

P
{

T 2
1n ≥ a2 y2 n(V 2

n + n)
}
≤
√

2ne−y2/8, (8.44)

P
{

T 2
2n ≥ a3 y2 n(V 2

n +50n)
}
≤
√

2e−y2/4, (8.45)

where a2 = 14(c0 +4) and a3 = 16(c0 +4). Without loss of generality, assume y≥ 1;
otherwise (8.44) and (8.45) are obvious. Write V ′j = Vψ, j +4( j−1)1/2τ(Xj), where

V 2
ψ, j = ∑ j−1

i=1 ψ
2(Xi,Xj). To prove (8.45), note that



118 8 Self-Normalized Empirical Processes and U-Statistics

P
{

T 2
2n ≥ 2y2

[
4n∑n

j=2 τ2(Xj)+64n2Eτ2(X1)
]}

≤ P
{
∑n

j=2 E
[
Y 2

j I(|Yj| ≤ yV ′j)|F j−1

]
≥ y2

[
4n∑n

j=2 τ2(Xj)+64n2Eτ2(X1)
]}

+P
{
∑n

j=2 E
[
Y 2

j I(|Yj|> yV ′j)|F j−1

]
≥ y2

[
4n∑n

j=2 τ2(Xj)+64n2Eτ2(X1)
]}

:= J1 + J2. (8.46)

Since y≥ 1,

J1 ≤ P

{
n

∑
j=2

E
[
V ′2j |F j−1

]
≥
[

4n
n

∑
j=2

τ2(Xj)+64n2Eτ2(X1)

]}

= P

{
n

∑
j=2

j−1

∑
i=1

2τ2(Xi)+32
n

∑
j=2

( j−1)Eτ2(X1)≥ 4n
n

∑
j=2

τ2(Xj)+64n2Eτ2(X1)

}

= 0, (8.47)

J2 ≤
1

64y2n2Eτ2(X1)

n

∑
j=2

E
[
Y 2

j I(|Yj|> yV ′j)
]

=
1

64y2n2Eτ2(X1)

n

∑
j=2

E
{

E
[
Y 2

j I(|Yj|> yV ′j)|Xj
]}

≤ 16
64y2n2Eτ2(X1)

n

∑
j=2

E
[

j τ2(X1)
]

e−y2/4 by (8.30)

≤ e−y2/4. (8.48)

The inequality (8.45) follows from (8.46)–(8.48) and the bound

4n
n

∑
j=2

τ2(Xj)+64n2Eτ2(X1)≤ 8(c0 +4)n(50n+V 2
n ),

recalling that τ2(x)≤ 2(c0 +4)[2+g(x)]. The proof of (8.44) is similar.
Since ∑1≤i< j≤nψ(xi,x j) =∑n

j=2 Yj and {Yj,F j, j≥ 2} is a martingale difference
sequence, it follows from Lemma 8.11 that

P
{∣∣∣∑n

j=2 Yj

∣∣∣≥ y
(
∑n

j=2

[
Y 2

j +2EY 2
j +E(Y 2

j |F j−1)
])1/2

}
≤
√

2e−y2/4. (8.49)

Combining (8.49) with (8.44) and (8.45) yields (8.42). ��
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8.4 Supplementary Results and Problems

1. In Sect. 8.2.1, assuming that Eh2(X1,X2) < ∞, prove that EΔ 2
n = O(1) and that

(8.8) holds.
2. In Sect. 8.2.2, under the assumption Eh4(X1,X2) < ∞, prove that

sup
x
|P(Tn ≤ x)−Φ(x)|= O(n−1/2).

3. Give a kernel h and i.i.d. random variables X1 and X2 such that E|h(X1,X2)|3 <∞
but condition (8.13) is not satisfied. Does Theorem 8.5 still hold for this kernel?



Part II
Martingales and Dependent Random

Vectors



Chapter 9
Martingale Inequalities and Related Tools

In this chapter we first review basic martingale theory and then introduce tangent
sequences and decoupling inequalities which are used to derive exponential in-
equalities for martingales. These exponential inequalities will be used in Chap. 10
to show that a wide range of stochastic models satisfy certain “canonical assump-
tions,” under which self-normalized processes can be treated by a general “pseudo-
maximization” approach described in Chap. 11.

9.1 Basic Martingale Theory

Durrett (2005, Chap. 4) provides details of the basic results in martingale theory
summarized in this section. Chow and Teicher (1988, Sect. 11.3) gives a compre-
hensive treatment of convex function inequalities for martingales that include the
Burkholder–Davis–Gundy inequalities in Theorem 9.6 as a special case.

9.1.1 Conditional Expectations and Martingales

Let X be a random variable defined on the probability space (Ω ,F ,P) such that
E|X | < ∞. Let G ⊂ F be a σ -field. A random variable Y is called a version of
the conditional expectation of X given G , denoted by E(X | G ), if it satisfies the
following two properties:

(a) Y is G -measurable.
(b)

∫
A X dP =

∫
A Y dP for all A ∈ G .

The conditional expectation is therefore the Radon–Nikodym derivative dν/dP,
where ν(A) =

∫
A X dP for A ∈ G . Hence it is unique except for P-null sets. The

special case Y = I(B) gives the conditional probability P(B | G ) of B given G .
A filtration is a nondecreasing sequence (i.e., Fn ⊂ Fn+1) of σ -fields Fn ⊂ F .

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 123
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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The Borel–Cantelli lemma has a conditional counterpart involving ∑∞
i=1 P(Ai|Fi−1).

Moreover, Freedman (1973) has provided exponential inequalities relating ∑τ
i=1 Xi

and ∑τ
i=1 E(Xi|Fi−1) for stopping times τ and nonnegative, bounded random vari-

ables Xi that are adapted to a filtration {Fi} (i.e., Xi is Fi-measurable). A random
variable N taking values in {1,2, . . .}∪{∞} is called a stopping time with respect
to a filtration {Fn} if {N = n} ∈Fn for all integers n ≥ 1. These results are sum-
marized in the following lemma, which will be applied in Chap. 13.

Lemma 9.1. Let {Fn,n≥ 0} be a filtration.

(a) Let An be a sequence of events with An ∈Fn. Then

{An i.o.}=

{
∞

∑
n=1

P(An |Fn−1) = ∞

}
.

(b) Suppose Xn is Fn-measurable and 0 ≤ Xn ≤ c for some non-random constant
c > 0. Let μn = E(Xn|Fn−1) and let τ be a stopping time. Then for 0≤ a≤ b,

P

{
τ

∑
i=1

Xi ≤ a,
τ

∑
i=1

μi ≥ b

}
≤
{(

b
a

)a

ea−b
}1/c

,

P

{
τ

∑
i=1

μi ≤ a,
τ

∑
i=1

Xi ≥ b

}
≤
{(a

b

)b
eb−a

}1/c

.

An important property of conditional expectations is its “tower property”:
E(X) = E[E(X |G )]. A useful result on the conditional probability of the union
of A1, . . . ,Am is Dvoretzky’s lemma below; see Durrett (2005, pp. 413–414) for the
proof and an application.

Lemma 9.2. Let {Fn,n≥ 0} be a filtration and An ∈Fn. Then for any nonnegative
random variable ζ that is F0-measurable,

P

(
m⋃

k=1

Ak|F0

)
≤ ζ +P

{
m

∑
k=1

P(Ak |Fk−1) > ζ
∣∣∣∣F0

}
.

Let Mn be a sequence of random variables adapted to a filtration {Fn} such that
E|Mn|< ∞ for all n. If

E(Mn |Fn−1) = Mn−1 a.s. for all n≥ 1, (9.1)

then {Mn,Fn,n ≥ 1} is called a martingale and dn := Mn−Mn−1 is called a mar-
tingale difference sequence. When the equality in (9.1) is replaced by ≥, {Mn,Fn,
n ≥ 1} is called a submartingale. It is called a supermartingale if the equality in
(9.1) is replaced by ≤. By Jensen’s inequality, if Mn is a martingale and ϕ : R→ R

is convex, then ϕ(Mn) is a submartingale.
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9.1.2 Martingale Convergence and Inequalities

Associated with a stopping time N is the σ -field

FN = {A ∈F : A∩{N = n}} ∈Fn for all n≥ 1}. (9.2)

A sequence of random variables Xn is said to be uniformly integrable if

sup
n≥1

E {|Xn|I(|Xn| ≥ a)}→ 0 as a→ ∞. (9.3)

Uniform integrability, which has been used in Chapter 7, is an important tool in
martingale theory. Two fundamental results in martingale theory are the optional
stopping theorem and the martingale convergence theorem.

Theorem 9.3. Let {Xn,Fn,n≥ 1} be a submartingale and M≤N be stopping times
(with respect to {Fn}). If {XN∧n,n≥ 1} is uniformly integrable, then E(XN |FM)≥
XM a.s., and consequently, EXN ≥ EXM.

Theorem 9.4. Let {Xn,Fn,n ≥ 1} be a submartingale. If supn≥1 E(X+
n ) < ∞, then

Xn converges a.s. to a limit X∞ with E|X∞|< ∞.

Before describing exponential inequalities in the next two sections, we review
some classical martingale inequalities.

Theorem 9.5. Let {Xn,Fn,n≥ 1} be a submartingale. Then for every λ > 0,

λP
{

max
1≤i≤n

Xi > λ
}
≤ E

{
XnI

(
max

1≤i≤n
Xi > λ

)}
≤ EX+

n ,

λP
{

min
1≤i≤n

Xi <−λ
}
≤ EX+

n −EX1.

Moreover, for any p > 1,

E
(

max
1≤i≤n

X+
i

)p

≤
(

p
p−1

)p

E(X+
n )p.

Theorem 9.6. Let {Mn =∑n
i=1 di,Fn,n≥ 1} be a martingale. Then there exist finite

positive constants ap,bp depending only on p such that

apE

(
n

∑
i=1

d2
i

)p/2

≤ E max
j≤n
|Mj|p ≤ bpE

(
n

∑
i=1

d2
i

)p/2

for all p≥ 1.

9.2 Tangent Sequences and Decoupling Inequalities

Decoupling inequalities are based on the idea of comparing sums of dependent ran-
dom variables di to sums of conditionally independent (decoupled) random vari-
ables that have the same conditional distributions as di given the past history Fi−1.
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This section summarizes several key concepts and results in decoupling, a compre-
hensive treatment of which is given in de la Peña and Giné (1999).

Definition 9.7. Let {ei} and {di} be two sequences of random variables adapted to
the filtration {Fi}. Then {ei} and {di} are tangent with respect to {Fi} if for all i,

L (di|Fi−1) = L (ei|Fi−1),

where L (di|Fi−1) denotes the conditional probability law of di given Fi−1.

9.2.1 Construction of Decoupled Tangent Sequences

Definition 9.8.

(a) A sequence {ei} of random variables adapted to the filtration {Fi} is said to
satisfy the CI (conditional independence) condition if there exists a σ -field G
contained in F such that e1,e2, . . . are conditionally independent given G and
L (ei|Fi−1) = L (ei|G ) for all i.

(b) A sequence {ei} which satisfies the CI condition and which is also tangent to
{di} is called a decoupled tangent sequence with respect to {di}.

Proposition 9.9. For any sequence of random variables {di} adapted to a filtration
{Fi}, there exists a decoupled sequence {ei} (on a possibly enlarged probability
space) which is tangent to {di} and conditionally independent of some σ -field G ;
we can take G to be the σ -field generated by {di}.

The decoupled sequence of Proposition 9.9 can be defined recursively as fol-
lows: Let e1 be an independent copy of d1. At the ith stage, given {d1, . . . ,di−1},
ei is independent of e1, . . . ,ei−1,di and sampled according to the probability law
L (di|Fi−1). In this case, if we let F̃i = σ(Fi,e1, . . . ,ei), then {ei} is {F̃i}-tangent
to {di} and satisfies the CI condition with respect to G = σ({di}). Therefore, any
sequence of random variables {di} has a decoupled version {ei}. The following
diagram illustrates the construction:

d1 → d2 → d3 → d4 → ·· · → di−1 → di

↘ ↘ ↘ ↘ ↘
e1 e2 e3 e4 . . . ei−1 ei

9.2.2 Exponential Decoupling Inequalities

The following theorem provides decoupling inequalities for the moment generating
functions of two tangent sequences, one of which satisfies the CI condition. Its proof
uses a simple lemma.
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Theorem 9.10. Let di be random variables adapted to the filtration {Fi}.
(a) On a possibly enlarged probability space, there exists {F̃i}, a σ -field G con-
tained in F and sequence {ei} satisfying the CI condition given G and {F̃i}-
tangent to {di} such that for all G -measurable random variables g ≥ 0 and all
real λ ,

Egexp

{
λ

n

∑
i=1

di

}
≤

√√√√Eg2 exp

{
2λ

n

∑
i=1

ei

}
.

(b) Let {ei} be any {Fi}-tangent sequence to {di} and satisfying the CI condition
given G ⊆F . Then, for all G -measurable functions g≥ 0 and all real λ ,

Egexp

{
λ

n

∑
i=1

di

}
≤

√√√√Eg2 exp

{
2λ

n

∑
i=1

ei

}
.

Lemma 9.11. Let X, Y be two nonnegative random variables such that X = 0 when
Y = 0, and E(X/Y )≤ K for some constant K. Then

E
√

X ≤
√

KEY . (9.4)

Proof. E
√

X = E(
√

X
Y ×
√

Y )≤
√

E X
Y ×
√

EY ≤
√

KEY , by the Cauchy–Schwarz
inequality. ��

Proof (of Theorem 9.10). First assume that the di’s are nonnegative. It follows from
Proposition 9.9 that one can find a sequence {ei} which is tangent to {di} and con-
ditionally independent given some σ -field G . Let Fi be the σ -field generated by
{d1, . . . ,di,e1, . . . ,ei}. We can use induction and the tower property of conditional
expectations to show that

E
(

∏n
i=1 di

∏n
i=1 E(di|Fi−1)

)
= 1, (9.5)

noting that if (9.5) is valid for n−1, then

E
(

∏n
i=1 di

∏n
i=1 E(di|Fi−1)

)
= E

[
∏n−1

i=1 di

∏n−1
i=1 E(di|Fi−1)

× E(dn|Fn−1)
E(dn|Fn−1)

]

= E

(
∏n−1

i=1 di

∏n−1
i=1 E(di|Fi−1)

)
= 1.

Since {ei} is tangent to {di} and conditionally independent given G and since g is
G -measurable,
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g
n

∏
i=1

E(di|Fi−1) = g
n

∏
i=1

E(ei|Fi−1) = g
n

∏
i=1

E(ei|G )

= gE

(
n

∏
i=1

ei|G
)

= E

(
g

n

∏
i=1

ei|G
)

.

From Lemma 9.11 with K = 1,X = g∏n
i=1 di and Y = g∏n

i=1 E(di|Fi−1), it follows
that

E

√
g

n

∏
i=1

di ≤

√√√√E

[
E(g

n

∏
i=1

ei|G )

]
=

√
E(g

n

∏
i=1

ei).

To complete the proof, replace g,di,ei in the preceding argument by g2,exp(2λdi)
and exp(2λei). ��

9.3 Exponential Inequalities for Martingales

9.3.1 Exponential Inequalities via Decoupling

In this section we summarize the decoupling methods and results of de la Peña
(1999) on exponential inequalities for the tail probability of the ratio of a martingale
to its conditional variance.

Theorem 9.12. Let {di,Fi, i ≥ 1} be a martingale difference sequence with
E(d2

j |F j−1) = σ2
j , V 2

n = ∑n
j=1σ2

j . Assume that E(|d j|k|F j−1)≤ (k!/2)σ2
j ck−2 a.e.

or P{|d j| ≤ c|F j−1}= 1 for all k > 2 and some c > 0. Then for all x > 0 and y > 0,

P

{
n

∑
i=1

di > x, V 2
n ≤ y for some n

}
≤ exp

{
− x2

y(1+
√

1+2cx/y)

}
(9.6)

≤ exp
{
− x2

2(y+ cx)

}
.

In the special case of independent random variables, (9.6) with y =V 2
n is the classical

Bernstein inequality (2.17). If the L∞-norm ‖∑n
i=1σ2

i ‖∞ is finite a.s., we can also set
y = ‖∑n

i=1σ2
i ‖∞ in (9.6) and obtain Bernstein’s inequality for martingales.

Theorem 9.13. With the same notations and assumptions as in Theorem 9.12, let
Mn = ∑n

i=1 di. Then for all F∞-measurable sets A and x > 0,

P
{

Mn

V 2
n

> x,A
}
≤ E

(
exp

{
−
(

x2

1+ cx+
√

2cx+1

)
V 2

n

}∣∣∣∣Mn

V 2
n

> x,A
)

≤ E
(

exp
{
− x2V 2

n

2(1+ cx)

}∣∣∣∣Mn

V 2
n

> x,A
)

,

(9.7)
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P
{

Mn

V 2
n

> x,A
}
≤
√

E exp
{
−
(

x2

1+
√

2cx+1+ cx

)
V 2

n

}
I(A), (9.8)

P
{

Mn

V 2
n

> x,
1

V 2
n
≤ y for some n

}
≤ exp

{
−1

y

(
x2

1+
√

2cx+1+ cx

)}

≤ exp
{
− x2

2y(1+ cx)

}
.

(9.9)

Theorem 9.14. Let {di,Fi, i≥ 1} be a martingale difference sequence with |d j| ≤ c
for some c > 0, E(d2

j |F j−1) = σ2
j and V 2

n =∑n
i=1σ2

i or V 2
n = ‖∑n

i=1σ2
i ‖∞. Then for

all x > 0 and y > 0,

P

{
n

∑
i=1

di > x,V 2
n ≤ y for some n

}
≤ exp

{
− x

2c
arc sinh

(
xc
2y

)}
. (9.10)

Moreover, for every F∞-measurable set A, β > 0, α ≥ 0 and x≥ 0,

P
{

∑n
i=1 di

α +βV 2
n

> x,A
}
≤ exp

{
−αx

c
arc sinh

cβx
2

}

×E
[

exp
{
−
(
βx
2c

arc sinh
(
βxc

2

))
V 2

n

}∣∣∣∣Mn > (α +β )V 2
n x,A

]
, (9.11)

P
{

∑n
i=1 di

α +βV 2
n

> x,A
}

≤
√

exp
{
−αx

c
arc sinh

cβx
2

}
E exp

{
−
(
βx
2c

arc sinh
(
βxc

2

))
V 2

n

}
I(A),

(9.12)

P
{

∑n
i=1 di

α +βV 2
n

> x,
1

V 2
n
≤ y for some n

}

≤ exp
{
−αx

c
arc sinh

cβx
2

}
exp

{
− βx

2cy
arc sinh

(
βxc

2

)}
.

In what follows we provide the proofs of Theorems 9.12 and 9.13; the proof of
Theorem 9.14 is similar and is therefore omitted. Let Mn = ∑n

i=1 di and G be the
σ -field generated by {di}. We will use the following variant of the Bennett–
Hoeffding inequality for sums of independent random variables (Theorem 2.17).

Lemma 9.15. Let {Xi} be a sequence of independent random variables with
EXi = 0, B2

n = ∑n
i=1 EX2

i > 0, and such that there exists c > 0 for which

E|Xj|k ≤
k!
2

ck−2EX2
j for k > 2, 1≤ j ≤ n,
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Then

E exp

{
r

n

∑
i=1

Xi

}
≤ exp

{
B2

nr2

2(1− cr)

}
for 0 < r <

1
c
. (9.13)

Proof (of Theorem 9.12). Let τ = inf{n : Mn > x and V 2
n ≤ y}, with inf /0 = ∞. Let

A = {Mn > x and V 2
n ≤ y for some n}. Note that P(A) = P(τ < ∞, Mτ > x,A). Ap-

plying Markov’s inequality first, followed by Fatou’s lemma (valid since τ < ∞
on A), we obtain

P(A)≤ P

{
τ

∑
i=1

di > x,A

}

≤ inf
λ>0

E

[
exp

{
λ
2

(
τ

∑
i=1

di− x

)}
I(Mτ > x,A)

]

= inf
λ>0

E

[
lim
n→∞

exp

{
λ
2

(
τ∧n

∑
i=1

di− x

)}
I(Mτ∧n > x,A)

]

≤ inf
λ>0

liminf
n→∞

E exp

{
λ
2

(
τ∧n

∑
i=1

di− x

)}
I(Mτ∧n > x,A)

≤ inf
λ>0

liminf
n→∞

√√√√E exp

{
λ

(
τ∧n

∑
i=1

ei− x

)}
I(Mτ∧n > x,A), by Theorem 9.10(b),

= inf
λ>0

liminf
n→∞

√√√√E

[
I(Mτ∧n > x,A)e−λxE

(
exp

{
λ

τ∧n

∑
i=1

ei

}∣∣∣∣∣G
)]

,

recalling that the random variables outside the conditional expectation are G mea-
surable. Observe that since {di} and {ei} are tangent and {ei} is conditionally in-
dependent given G , the moment assumptions on the distribution of di translate to
conditions on the ei’s and therefore we can apply (9.13) to obtain

E

(
exp

{
λ

τ∧n

∑
i=1

ei

}∣∣∣∣∣G
)
≤ exp

{
h(λ )V 2

τ∧n
}

, (9.14)

where h(λ ) = λ 2

2(1−λc) . Replacing this in the above bound one obtains

P

{
τ

∑
i=1

di > x,A

}
≤ inf

λ>0
liminf

n→∞

√
E
[
exp

{
−
(
λx−h(λ )V 2

τ∧n
)}

I(Mτ∧n > x,A)
]
.

Since the variable inside the expectation is dominated by

exp
{
−
(
λx−h(λ )V 2

τ
)}

I(Mτ∧n > x,A),

and since Vτ ≤ y on A, application of the dominated convergence theorem yields
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P

{
τ

∑
i=1

di > x,A

}
≤ inf

λ>0

√
E exp{−(λx−h(λ )V 2

τ )} I(Mτ > x,A).

Dividing both sides by
√

P{Mτ > x,A} gives

P

{
τ

∑
i=1

di > x,A

}
≤ inf

λ>0
E
[

exp
{
−
(
λx−h(λ )V 2

τ
)}∣∣∣∣A∩{Mτ > x}

]
.

Then, since Mτ > x and V 2
τ ≤ y on A, we have

P

{
n

∑
i=1

di > x,V 2
n ≤ y for some n

}
≤ inf

λ>0
exp{−(λx−h(λ )y)} ,

from which (9.6) follows by minimizing exp{−(λx−h(λ )y)} over λ > 0. ��

Proof (of Theorem 9.13). Application of Markov’s inequality similar to that in the
proof of Theorem 9.12 yields

P

{
n

∑
i=1

di > V 2
n x,A

}
≤ inf

λ>0
E

[
exp

{
λ
2

(
n

∑
i=1

di−V 2
n x

)}
I(Mn > V 2

n x,A)

]

≤ inf
λ>0

√√√√E

[
exp

{
λ

(
n

∑
i=1

ei−V 2
n x

)}
I(Mn > V 2

n x,A)

]

= inf
λ>0

√√√√E

[
I(Mn >V 2

n x,A)exp{−λV 2
n x}E

(
exp

{
λ

n

∑
i=1

ei

}∣∣∣∣∣G
)]

.

Since {di} and {ei} are tangent and {ei} is conditionally independent given G , the
moment assumptions on the distribution of di translate to conditions on the ei’s and
therefore we can apply (9.13) to show that

E

(
exp

{
λ

n

∑
i=1

ei

}∣∣∣∣∣G
)
≤ exp

{
λ 2

2(1−λc)
V 2

n

}
, (9.15)

which can be combined with the preceding bound to yield

P

{
n

∑
i=1

di > V 2
n x,A

}
≤ inf

λ>0

√
E exp

{
−
(
λx− λ 2

2(1−λc)

)
V 2

n

}
I(Mn > V 2

n x,A)

≤
√

E exp
{
− x2

1+
√

2cx+1+ cx
V 2

n

}
I(Mn > V 2

n x,A).

Dividing both sides by
√

P{Mn > V 2
n x,A} gives (9.7), while (9.9) is obtained by

adapting the stopping time argument used in the proof of Theorem 9.12. ��
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9.3.2 Conditionally Symmetric Random Variables

Let {di} be a sequence of variables adapted to a filtration {Fi}. Then we say that
the di’s are conditionally symmetric if L (di |Fi−1) = L (−di |Fi−1). Note that
any sequence of real-valued random variables Xi can be “symmetrized” to produce
an exponential supermartingale by introducing random variables X ′i such that

L (X ′n|X1,X ′1, . . . ,Xn−1,X ′n−1,Xn) = L (Xn|X1, . . . ,Xn−1)

and setting dn = Xn−X ′n; see Sect. 6.1 of de la Peña and Giné (1999).

Theorem 9.16. Let {di} be a sequence of conditionally symmetric random variables
with respect to the filtration {Fn}. Then for all x > 0, y > 0,

P

(
n

∑
i=1

di ≥ x,
n

∑
i=1

d2
i ≤ y for some n

)
≤ exp

{
− x2

2y

}
. (9.16)

Moreover, for all sets A ∈F∞ and all β > 0, x≥ 0, y > 0 and α ∈ R,

P
(

∑n
i=1 di

α +β ∑n
i=1 d2

i
≥ x, A

)

≤ E

[
exp

{
−x2

(
β 2

2

n

∑
i=1

d2
i +αβ

)}∣∣∣∣∣ ∑n
i=1 di

α +β ∑n
i=1 d2

i
≥ x, A

]
, (9.17)

P
(

∑n
i=1 di

α +β ∑n
i=1 d2

i
≥ x, A

)
≤

√√√√E exp

{
−x2

(
β 2

2

n

∑
i=1

d2
i +αβ

)}
, (9.18)

P
(

∑n
i=1 di

α +β ∑n
i=1 d2

i
≥ x,

1
∑n

i=1 d2
i
≤ y for some n

)
≤ exp

{
−x2

(
β 2

2y
+αβ

)}
.

(9.19)

Lemma 9.17. Let {di} be a sequence of conditionally symmetric random variables
with respect to the filtration {Fn}. Then for all λ > 0,

{
exp{∑n

i=1λ di}
exp

{
(λ 2/2)∑n

i=1 d2
i

} ,Fn, n≥ 1

}
(9.20)

is a supermartingale.

Proof. Let H0 be the trivial σ -field {Ω , /0} and for n≥ 1, let Hn be the σ -field gen-
erated by (d1, . . . ,dn−1, |dn|). Similarly, let F0 be the trivial σ -field and for n≥ 2, let
Fn−1 be the σ -field generated by (d1, . . . ,dn−1). Then the conditional symmetry of
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{di} implies that the conditional distribution of dn given Hn and that of −dn given
Hn are the same. Hence

E
[
exp{λdn}

∣∣Hn
]
= E

[
exp{−λdn}

∣∣Hn
]
, (9.21)

which can be shown by noting that for all Hn ∈Hn, Fn−1 ∈Fn−1 and λ > 0,∫
(d1,...,dn−1,|dn|)∈Hn

exp(λdn)dP =
∫

(d1,...,dn−1,|dn|)∈Hn

exp(−λdn)dP.

Making use of (9.21) and the fact that {exp(λdn)+ exp(−λdn)}/2 is measurable
with respect to Hn, we obtain

E [exp(λdn) |Hn] = E
[

exp(λdn)+ exp(−λdn)
2

∣∣∣∣Hn

]

=
exp(λdn)+ exp(−λdn)

2
≤ exp

(
λ 2d2

n

2

)
.

Hence E{exp(λdn− 1
2λ

2d2
n)|Hn} ≤ 1, and an induction argument can then be used

to complete the proof of Lemma 9.17. ��

Proof (of Theorem 9.16). We only consider the case α = 0, β = 1 because the gen-
eral case follows similarly. For all A ∈F∞ and λ > 0,

P
(
∑n

i=1 di

∑n
i=1 d2

i
≥ x,A

)

≤ E exp

{
λ
2

n

∑
i=1

di−
λx
2

n

∑
i=1

d2
i

}
I
(
∑n

i=1 di

∑n
i=1 d2

i
≥ x,A

)

= E
exp{(λ/2)∑n

i=1 di}
exp

{
λ 2

4 ∑n
i=1 d2

i

} exp

{
λ 2

4

n

∑
i=1

d2
i −

λx
2

n

∑
i=1

d2
i

}
I
(
∑n

i=1 di

∑n
i=1 d2

i
≥ x,A

)

≤

√√√√E exp

{
λ 2

2

n

∑
i=1

d2
i −λx

n

∑
i=1

d2
i

}
I
(
∑n

i=1 di

∑n
i=1 d2

i
≥ x,A

)

≤

√√√√E exp

{
−x2

2

n

∑
i=1

d2
i

}
I
(
∑n

i=1 di

∑n
i=1 d2

i
≥ x,A

)
,

where the last inequality follows by minimizing over λ and the one that precedes it
follows from the Cauchy–Schwarz inequality and Lemma 9.17. Dividing both sides

by
√

P(∑n
i=1 di/∑n

i=1 d2
i ≥ x,A) yields the desired conclusion. ��
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9.3.3 Exponential Supermartingales and Associated Inequalities

Theorem 9.18 (Stout, 1973). Let {dn} be a sequence of random variables adapted
to a filtration {Fn} and such that E(dn|Fn−1) ≤ 0 and dn ≤ c a.s. for all n and
some constant c > 0. For λ > 0 with λc≤ 1, let

Tn = exp

(
λ

n

∑
i=1

di

)
exp

[
−λ 2

2

(
1+

λc
2

) n

∑
i=1

E(d2
i |Fi−1)

]
(9.22)

for n≥ 1, with T0 = 1. Then {Tn,Fn,n≥ 1} is a nonnegative supermartingale with
mean ≤ 1 and

P
(

sup
n≥0

Tn > α
)
≤ 1/α (9.23)

for all α ≥ 1.

Proof. Since di ≤ c a.s. and 0 < λ < c−1,

eλdi ≤ 1+λdi +
1
2
(λdi)2

(
1+

λc
2

)
a.s.

Combining this with the assumption that E(di|Fi−1)≤ 0 a.s. yields

E(eλdi |Fi−1)≤
λ 2

2
E(d2

i |Fi−1)
[

1+
λc
2

]

≤ exp
[
λ 2

2

(
1+

λc
2

)
E(d2

i |Fi−1)
]

a.s.,

since 1 + x ≤ ex. From this, (9.22) follows. To prove (9.23), let α > 0 be fixed and
let τ = inf{n ≥ 0 : Tn > α}, inf /0 = ∞. Then the sequence {Tn∧τ , n ≥ 0} is also a
nonnegative supermartingale with T0 = 1, and therefore for all n≥ 1,

1≥ ETτ∧n ≥ αP(τ ≤ n).

Letting n→∞ completes the proof since 1≥ αP(τ <∞) = αP(supn≥0 Tn > α). ��
While Theorem 9.18 can be regarded as a supermartingale “relative” of the

Bennett–Hoeffding inequality, Lemma 9.15 (which is a variant of the Bennett–
Hoeffding inequality) is likewise related to the following supermartingale.

Theorem 9.19. Let {dn} be a sequence of random variables adapted to a filtration
{Fn} such that E(dn|Fn−1) = 0 and σ2

n = E(d2
n |Fn−1) < ∞. Assume that there ex-

ists a positive constant M such that E(|dn|k|Fn−1)≤ (k!/2)σ2
n Mk−2 a.s. or P(|dn| ≤

M|Fn−1) = 1 a.s. for all n ≥ 1, k > 2. Let An = ∑n
i=1 di, V 2

n = ∑n
i=1 E(d2

i |Fi−1),
A0 = V0 = 0. Then {exp(λAn− 1

2(1−Mλ )λ
2V 2

n ), Fn, n≥ 0} is a supermartingale for
every 0≤ λ ≤ 1/M.



9.4 Supplementary Results and Problems 135

The martingale (Mn,Fn,n ≥ 1) is said to be square-integrable if EM2
n < ∞ for

all n. A stochastic sequence {Mn} adapted to a filtration {Fn} is said to be a locally
square-integrable martingale if there are stopping times τm with respect to {Fn}
such that limm→∞ τm =∞ a.s. and {Mτm∧n,Fn,n≥ 1} is a square-integrable martin-
gale for every m≥ 1. Azuma (1967) proved the following extension of the Bennett–
Hoeffding inequality for locally square-integrable martingales.

Theorem 9.20 (Azuma, 1967). Let {Mn = ∑n
i=1 di,Fn,n≥ 1} be a locally square-

integrable martingale such that there exist nonrandom constants ai < bi for which
ai ≤ di ≤ bi for all i≥ 1. Then for all x≥ 0,

P(|Mn| ≥ x)≤ 2exp
(
− 2x2

∑n
i=1(bi−ai)2

)
.

Whereas the exponential inequalities in Theorems 9.12–9.14 and 9.18 involve
conditional variances ∑n

i=1 E(d2
i |Fi−1), those in Theorem 9.16 and Lemma 9.17

involve the squared function ∑n
i=1 d2

i of the (local) martingale. Bercu and Touati
(2008) have derived the following analogs of Theorems 9.12 and 9.14 by using
∑n

i=1 E(d2
i |Fi−1)+∑n

i=1 d2
i for normalization to dispense with the boundedness as-

sumptions of di in Theorems 9.12 and 9.14.

Theorem 9.21 (Bercu and Touati, 2008). Let {Mn = ∑n
i=1 di} be a locally square-

integrable martingale adapted to the filtration {Fn} with M0 = 0. Let 〈M〉n =
∑n

k=1 E(d2
k |Fk−1) and [M]n = ∑n

k=1 d2
k . Then for all λ ∈ R,

{
exp

(
λMn−

λ 2

2
(〈Mn〉+[M]n)

)
,Fn, n≥ 1

}
(9.24)

is a supermartingale with mean ≤1. Moreover, for all x > 0, y > 0,

P(|Mn| ≥ x, [M]n + 〈M〉n ≤ y)≤ 2exp
(
− x2

2y

)
,

and for all a≥ 0, b > 0,

P
(

|Mn|
a+b〈M〉n

≥ x, 〈M〉n ≥ [M]n + y
)
≤ 2exp

[
−x2

(
ab+

b2y2

2

)]
.

9.4 Supplementary Results and Problems

1. Let X1,X2, . . . be independent random variables and let T be a stopping time
adapted to the filtration {Fn}, where Fn is the σ -field generated by X1, . . . ,Xn.
Let {X̃i, i≥ 1} be an independent copy of {Xi, i≥ 1}:
(a) Show that, on a possibly enlarged probability space, {Xn I(T ≥ n), n ≥ 1}

is tangent to {X̃n I(T ≥ n), n≥ 1} with respect to the filtration {Gn}, where
Gn is the σ -field generated by X1, . . . ,Xn, X̃1, . . . , X̃n.
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(b) Show that ∑T∧n
i=1 X̃i is a sum of conditionally independent random variables

but ∑T∧n
i=1 Xi is not.

2. Prove Lemma 9.15.
3. The exponential inequalities (9.7)–(9.9), (9.11), (9.12) and (9.17)–(9.19) are re-

lated to the strong law of large numbers since they involve a martingale di-
vided by its conditional variance or quadratic variation, as noted by de la Peña
et al. (2007) who have extended this approach to obtain exponential bounds
for the ratio of two processes in a more general setting involving what they
call the “canonical assumptions.” These canonical assumptions are described
in Chap. 10 where we introduce a general framework for self-normalization, in
which we use the square root of the conditional variance or quadratic variation
for normalization, instead of the strong-law-type normalization in the exponen-
tial inequalities in this chapter. In particular, if A and B > 0 are two random
variables satisfying the canonical assumption that

E exp(λA−λ 2B2/2)≤ 1 for all λ ∈ R, (9.25)

de la Peña et al. (2007) have shown that for all x≥ 0 and y > 0,

P(A/B2 > x, 1/B2 ≤ y)≤ e−x2/(2y), (9.26)

P(|A|/B > x, y≤ B≤ ay)≤ 4
√

ex(1+ loga)e−x2/2 for all a≥ 1. (9.27)

Compare (9.26) with (9.9) and discuss their connection.
Hint: See Sect. 10.2.



Chapter 10
A General Framework for Self-Normalization

In this chapter we provide a general framework for the probability theory of
self-normalized processes. We begin by describing another method to prove the
large deviation result (3.8) for self-normalized sums of i.i.d. random variables. This
approach leads to an exponential family of supermartingales associated with self-
normalization in Sect. 10.1. The general framework involves these supermartingales,
or weaker variants thereof, called “canonical assumptions” in Sect. 10.2, which also
provides a list of lemmas showing a wide range of stochastic models that satisfy
these canonical assumptions. Whereas Sect. 9.3 gives exponential inequalities for
discrete-time martingales that are related to the canonical assumptions, Sect. 10.3
gives continuous-time analogs of these results.

10.1 An Exponential Family of Supermartingales Associated
with Self-Normalization

10.1.1 The I.I.D. Case and Another Derivation of (3.8)

A key idea underlying the proof of Theorem 3.1 in Chap. 3 is the representation
(3.13) so that Sn ≥ xn1/2Vn⇔ supb≥0∑n

i=1{bXi−x(X2
i +b2)/2} ≥ 0. For each fixed

b, letting Yi = bXi − x(X2
i + b2)/2, the Cramér–Chernoff large deviation theory

yields that the rate of decay of n−1 logP{∑n
i=1 Yi ≥ 0} is inft>0 logEetY . A tech-

nical argument, which involves partitioning {b ≥ 0} into a finite union of disjoint
sets and truncation of Xi, is used in Sect. 3.2.2 to prove Theorem 3.1.

An alternative method to prove Theorem 3.1 is to use the finiteness of the moment
generating function eψ(θ ,ρ) = E exp{θX−ρ(θX)2} for all θ ∈R and ρ > 0 (without
any moment condition on X), which yields the large-deviations rate function

φ(μ1,μ2) = sup
θ∈R,ρ>0

{θμ1−ρθ 2μ2−ψ(θ ,ρ)}, μ1 ∈ R, μ2 ≥ μ2
1 . (10.1)

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 137
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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Since Sn/(
√

nVn) = g(n−1∑n
i=1 Xi,n−1∑n

i=1 X2
i ), where g(μ1,μ2) = μ1/

√μ2, we
can express P{Sn ≥ x

√
nVn} as P{g(μ̂1, μ̂2) ≥ x}, where μ̂1 = n−1∑n

i=1 Xi, μ̂2 =
∑n

i=1 X2
i . A standard method to analyze large deviation probabilities via the mo-

ment generating function eψ(θ ,ρ) is to introduce the family of measures Pθ ,ρ under
which the Xi are i.i.d. with density function fθ ,ρ(x) = exp{θx−ρ(θx)2−ψ(θ ,ρ)}
with respect to the measure P that corresponds to the case θ = 0. We can use the
change of measures as in Sect. 3.1 to show that P{g(μ̂1, μ̂2)≥ b}= e(κ+o(1))n, where
κ = − inf{φ(μ1,μ2) : g(μ1,μ2) ≥ x}. As shown in Chan and Lai (2000, p. 1648),
who use this approach to obtain a Bahadur–Ranga Rao-type refined large deviation
approximation, the right-hand side of (3.8) is equal to eκ .

10.1.2 A Representation of Self-Normalized Processes
and Associated Exponential Supermartingales

Let P(n)
θ ,ρ denote the restriction of Pθ ,ρ to the σ -field Fn generated by X1, . . . ,Xn. The

change of measures mentioned in the preceding paragraph involves the likelihood
ratio (or Radon–Nikodym derivative)

dP(n)
θ ,ρ

dP(n) = exp
{
θSn−ρθ 2nV 2

n −nψ(θ ,ρ)
}

, (10.2)

which is a martingale with mean 1 under P. When EX = 0 and EX2 < ∞, Taylor’s
theorem yields

ψ(θ ,ρ) = log
(
E exp

{
θX−ρ(θX)2}) =

{(
1
2
−ρ +o(1)

)
θ 2EX2

}

as θ → 0. Let γ > 0, An = Sn and B2
n = (1+ γ)∑n

i=1 X2
i . It then follows that ρ and ε

can be chosen sufficiently small so that for |λ |< ε ,{
exp(λAn−λ 2B2

n/2), Fn, n≥ 1
}

is a supermartingale with mean ≤ 1. (10.3)

The assumption (10.3) and its variants provide a general framework to analyze
self-normalized processes of the form An/Bn with Bn > 0. A key observation is

A2
n

2B2
n

= max
λ

(
λAn−

λ 2B2
n

2

)
. (10.4)

Although maximizing the supermartingale in (10.3) over λ would not yield a
supermartingale and the maximum may also occur outside the range |λ | < ε , in-
tegrating the supermartingale with respect to the measure f (λ )dλ still preserves
the supermartingale property. Laplace’s method for asymptotic evaluation of in-
tegrals (see Sect. 11.1) still has the effect of maximizing (λAn − λ 2B2

n/2), and
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the maximum is still 1
2 (An/Bn)2 if the maximizer An/B2

n lies inside (−ε,ε). This
“pseudo-maximization” approach, which will be described in the next chapter, was
introduced by de la Peña et al. (2000, 2004) to study self-normalized processes in
the general framework of (10.3) or some even weaker variants, which replace the
moment generating function eψ(θ ,ρ) in the i.i.d. case and which they call the canon-
ical assumptions.

10.2 Canonical Assumptions and Related Stochastic Models

A continuous-time analog of (10.3) simply replaces n(≥ 1) by t (≥ 0), with A0 = 0.
A canonical assumption that includes both cases, therefore, is

{exp(λAt −λ 2B2
t /2), Ft , t ∈ T} is a supermartingale with mean ≤ 1, (10.5)

where T is either {1,2, . . .} or [0,∞). A weaker canonical assumption considers a
pair of random variables A,B, with B > 0 such that

E exp(λA−λ 2B2/2)≤ 1, (10.6)

either (a) for all real λ , or (b) for all λ ≥ 0, or (c) for all 0≤ λ < λ 0. Lemma 9.17
and Theorems 9.18, 9.19 and 9.21, in Chap. 9 and the following lemmas provide
a wide range of stochastic models that satisfy (10.3), (10.5) or (10.6). In particu-
lar, Lemma 10.2 follows from Proposition 3.5.12 of Karatzas and Shreve (1991).
Lemma 10.3 is taken from Proposition 4.2.1 of Barlow et al. (1986); see Sect. 10.3
for an introduction to continuous-time martingales.

Lemma 10.1. Let Wt be a standard Brownian motion. Assume that T is a stopping
time such that T < ∞ a.s. Then

E exp{λWT −λ 2T/2} ≤ 1,

for all λ ∈ R.

Lemma 10.2. Let Mt be a continuous local martingale, with M0 = 0. Then
exp{λMt −λ 2〈M〉t/2} is a supermartingale for all λ ∈ R, and therefore

E exp{λMt −λ 2〈M〉t/2} ≤ 1.

Lemma 10.3. Let {Mt ,Ft , t ≥ 0} be a locally square-integrable right-continuous
martingale, with M0 = 0. Let {Vt} be an increasing process, which is adapted, purely
discontinuous and locally integrable; let V (p) be its dual predictable projection. Set
Xt = Mt +Vt, Ct =∑s≤t((ΔXs)+)2, Dt = {∑s≤t((ΔXs)−)2}(p)

t , Ht = 〈Mc〉t +Ct +Dt .

Then for all λ ∈ R, exp{λ (Xt −V (p)
t )− 1

2λ
2Ht} is a supermartingale and hence

E exp{λ (Xt −V (p)
t )−λ 2Ht/2} ≤ 1.
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In Sect. 10.3, we give two additional lemmas (Lemmas 10.6 and 10.7) on
continuous-time martingales that satisfy the canonical assumption (10.5). In
Sect. 13.2, we derive the following two lemmas that are associated with the theory
of self-normalized LIL.

Lemma 10.4. Let {dn} be a sequence of random variables adapted to a filtration
{Fn} such that E(dn|Fn−1)≤ 0 and dn ≥−M a. s. for all n and some non-random
positive constant M. Let An = ∑n

i=1 di, B2
n = 2Cγ ∑n

i=1 d2
i , A0 = B0 = 0 where Cγ =

−{γ + log(1− γ)}/γ2. Then {exp(λAn− 1
2λ

2B2
n),Fn, n≥ 0} is a supermartingale

for every 0≤ λ ≤ γM−1.

Lemma 10.5. Let {Fn} be a filtration and Yn be Fn-measurable random variables.
Let 0≤ γn < 1 and 0 < λn ≤ 1/Cγn be Fn−1-measurable random variables, with Cγ
given in Lemma 10.4. Let μn = E{YnI(−γn ≤Yn < λn)|Fn−1}. Then exp{∑n

i=1(Yi−
μi−λ−1

i Y 2
i )} is a supermartingale whose expectation is ≤ 1.

10.3 Continuous-Time Martingale Theory

As shown in Chap. 1 of Karatzas and Shreve (1991) or Chap. II of Revuz and
Yor (1999), the basic martingale theory in Sect. 9.1 can be readily extended to
continuous-time martingales/submartingales/supermartingales if the sample paths
are a.s. right-continuous. In particular, such processes have left-hand limits and are
therefore cadlag (continu à droit, limité à gauche).

Here we summarize some of the main results that are related to the lemmas in
Sect. 10.2 and the inequalities in Chap. 9. Comprehensive treatments of these and
other results can be found in the monographs by Elliott (1982), Karatzas and Shreve
(1991) and Revuz and Yor (1999). A filtration (Ft) is said to be right-continuous
if Ft = Ft+ :=

⋂
ε>0 Ft+ε . It is said to be complete if F0 contains all the P-null

sets (that have zero probability) in F . In what follows we shall assume that the
process {Xt , t ≥ 0} is right-continuous and adapted to a filtration {Ft} that is
right-continuous and complete. The σ -field generated on Ω × [0,∞) by the space
of adapted processes which are left-continuous on (0,∞) is called the predictable
σ -field. A process {Xt} is predictable if the map (ω, t) �→ Xt(ω) from Ω × [0,∞)
to R is measurable with respect to the predictable σ -field. An extended random
variable T taking values in [0,∞] is called (a) a stopping time (with respect to the
filtration {Ft}) if {T ≤ t} ∈Ft for all t ≥ 0, (b) an optional time if {T < t} ∈Ft
for all t > 0, and (c) a predictable time if there exists an increasing sequence of
stopping times Tn such that Tn < T on {T > 0} and limn→∞ Tn = T a.s.

A stochastic process X = {Xt , t ≥ 0} is called measurable if the map (ω, t) �→
Xt(ω) from Ω × [0,∞) to R is measurable. For a measurable process, there exists a
predictable process Y = {Yt , t ≥ 0} such that

E {XT I(T < ∞)|FT−}= YT I(T < ∞) a.s., (10.7)
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for every predictable time T . The process Y is essentially unique and is called the
predictable projection of X , denoted by XΠ . Suppose A = {At , t ≥ 0} is a nonde-
creasing, measurable process such that E(A∞) < ∞. Then there exists an essentially
unique nondecreasing, predictable process A(p) such that for all bounded, measur-
able processes {Xt , t ≥ 0},

E(XΠ
t At) = E(XtA

(p)
t ). (10.8)

The process A(p) is called the dual predictable projection of A; see Elliott (1982,
p. 72).

10.3.1 Doob–Meyer Decomposition and Locally Square-Integrable
Martingales

Let Ta be the class of stopping times such that P(T ≤ a) = 1 for all T ∈Ta. A right-
continuous process {Xt , t ≥ 0} adapted to a filtration {Ft} is said to be of class
DL if {XT ,T ∈ Ta} is uniformly integrable for every a > 0. If {Xt ,Ft , t ≥ 0} is
a nonnegative right-continuous submartingale, then it is of class DL. The Doob–
Meyer decomposition says that if a right-continuous submartingale {Xt ,Ft , t ≥ 0}
is of class DL, then it admits the decomposition

Xt = Mt +At , (10.9)

in which {Mt ,Ft , t ≥ 0} is a right-continuous martingale with M0 = 0 and At is
predictable, nondecreasing and right-continuous. Moreover, the decomposition is
essentially unique in the sense that if Xt = M′t + A′t is another decomposition, then
P{Mt = M′t ,At = A′t for all t}= 1. The process At in the Doob-Meyer decomposition
is called the compensator of the submartingale {Xt ,Ft , t ≥ 0}.

Suppose {Mt ,Ft , t ≥ 0} is a right-continuous martingale that is square inte-
grable, i.e., EM2

t < ∞ for all t. Since M2
t is a right-continuous, nonnegative sub-

martingale (by Jensen’s inequality), it has the Doob–Meyer decomposition whose
compensator is called the predictable variation process and denoted by 〈M〉t , i.e.,
M2

t − 〈M〉t is a martingale. If {Nt ,Ft , t ≥ 0} is another right-continuous square
integrable martingale, then (Mt + Nt)2−〈M + N〉t and (Mt −Nt)2−〈M−N〉t are
martingales, and the predictable covariation process 〈M,N〉t is defined by

〈M,N〉t =
1
4
{〈M +N〉t −〈M−N〉t} , t ≥ 0. (10.10)

Let M2 denote the linear space of all right-continuous, square-integrable martin-
gales M with M0 = 0. Two processes X and Y on (Ω ,F ,P) are indistinguishable if
P(Xt = Yt for all t ≥ 0) = 1. Define a norm on M2 by
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‖M‖=
∞

∑
n=1

min
(√

EM2
n ,1

)
2n . (10.11)

This induces a metric ρ(M,M′) = ‖M−M′‖ on M2 if indistinguishable processes
are treated as the same process. A subspace H of M2 is said to be stable if it is a
closed set in this metric space and has two additional “closure” properties:

(a) M ∈H ⇒MT ∈H for all stopping times T , where MT
t = MT∧t .

(b) M ∈H and A ∈F0 ⇒MI(A) ∈H .

Two martingales M,N belonging to M2 are said to be orthogonal if 〈M,N〉t = 0 a.s.
for all t ≥ 0, or equivalently, if {MtNt ,Ft , t ≥ 0} is a martingale. If H is a stable
subspace of M2, then so is

H ⊥ := {N ∈M2 : N is orthogonal to M for all M ∈H }. (10.12)

Moreover, every X ∈M2 has a unique (up to indistinguishability) decomposition

X = M +N, with M ∈H and N ∈H ⊥. (10.13)

Besides the dual predictable projection defined by (10.8), Lemma 10.3 also in-
volves the “continuous part” Mc of M ∈M2 (or a somewhat more general M which
is the a.s. limit of elements of M2), which is related to the decomposition (10.13)
with H = M c

2 , where

M c
2 = {M ∈M2 : M has continuous sample paths}. (10.14)

It can be shown that M c
2 is a stable subspace of M2, and therefore (10.13) means

that every M ∈M2 has an essentially unique decomposition

M = Mc +Md , with Mc ∈M c
2 and Md ∈ (M c

2 )⊥. (10.15)

While Mc is called the continuous part of M, Md is called its “purely discontinuous”
part. Note that Mc and Md are orthogonal martingales.

For M ∈M2 and t > 0, let Π be a partition 0 = t0 < t1 < · · ·< tk = t of [0, t]. Then
as ‖Π‖ := max1≤i≤k |ti− ti−1| → 0, ∑k

i=1(Mti −Mti−1)
2 converges in probability to

a limit, which we denote by [M]t . The random variable [M]t is called the quadratic
variation process of M. For M ∈M c

2 , [M] = 〈M〉. More generally, for M ∈M2,

[M]t = 〈Mc〉t + ∑
0<s≤t

( Ms)2, (10.16)

where  Ms = Ms −Ms−, noting that Ms− = limu↑s Mu exists since M is cadlag.
The quadratic covariation of M and N, which both belong to M2, is defined by
[M,N]t = {[M +N]− [M−N]}/4, and (10.16) can be generalized to

[M,N]t = 〈Mc,Nc〉t + ∑
0<s≤t

( Ms)( Ns). (10.17)
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We can relax the integrability assumptions above by using localization. If there
exists a sequence of stopping times Tn such that {MTn∧t ,Ft , t ≥ 0} is a martingale
(or a square-integrable martingale, or bounded), then {Mt ,Ft , t ≥ 0} is called a
local martingale (or locally square-integrable martingale, or locally bounded). By
a limiting argument, we can again define 〈M〉t , 〈M,N〉t , [M]t , [M,N]t , Mc and Md

for locally square integrable martingales. Moreover, a continuous local martingale
Mt can be expressed as time-changed Brownian motion:

Mt = W〈M〉t , (10.18)

which provides the background for Lemma 10.2; see Karatzas and Shreve (1991,
Sect. 3.4B). If V is an adapted process with finite variation on bounded intervals,
then its dual predictable projection process V (p) (see (10.8)) is the essentially unique
predictable process having finite variation on bounded intervals and such that V −
V (p) is a local martingale; see Elliott (1982, p. 121).

10.3.2 Inequalities and Stochastic Integrals

Let M loc
2 denote the class of right-continuous, locally square-integrable martingales

M with M0 = 0. Let M,N belong to M loc
2 and H,K be two measurable processes.

For 0≤ s≤ t, let 〈M,N〉s,t = 〈M,N〉t −〈M,N〉s and note that

〈M + rN〉s,t = 〈M,M〉s,t +2r〈M,N〉s,t + r2〈N,N〉s,t

is a nonnegative quadratic function of r. Therefore

|〈M,N〉s,t | ≤ {〈M,M〉s,t}1/2 {〈N,N〉s,t}1/2 . (10.19)

Hence, approximating the Lebesgue–Stieltjes integral below by a sum, we obtain
from (10.19) the Kunita–Watanabe inequality

∫ t

0
|Hs||Ks|d〈M,N〉s ≤

(∫ t

0
H2

s d〈M〉s
)1/2(∫ t

0
K2

s d〈N〉s
)1/2

, (10.20)

where we use the notation ζ̄t to denote the total variation of a process ζ on [0, t].
A continuous-time analog of Theorem 9.12 is the following: If M is a continuous

local martingale with M0 = 0, then for x > 0 and y > 0,

P{Mt ≥ x and 〈M〉t ≤ y for some t ≥ 0} ≤ exp(−x2/2y); (10.21)

see Revuz and Yor (1999, p. 145) whose Sect. IV.4 provides an extension of the
Burkholder–Davis–Gundy inequalities (Theorem 9.6) to continuous local mar-
tingales. Barlow et al. (1986) have derived convex function inequalities, which
generalize the Burkholder–Davis–Gundy inequalities, for right-continuous, locally
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square-integrable martingales. In connection with Lemma 10.3, they have also
proved the following analog of (10.21) for right-continuous, locally square-
integrable martingales:

P{MT ≥ x,HT ≤ y} ≤ exp(−x2/2y) for all stopping times T, (10.22)

where Ht = 〈Mc〉t +∑s≤t(( Ms)+)2 +{∑s≤t(( Ms)−)2}(p)
t , following the notation

of Lemma 10.3. They note that in the case  M ≤ c a.s. for some constant c ≥ 0,
(10.22) follows from the sharper inequality

P{MT ≥ x,〈M〉T ≤ y} ≤ exp
{
− x2

2y
ψ
(

cx
y

)}
, (10.23)

where ψ(0) = 1 and ψ(λ ) = (2/λ 2)
∫ λ

0 log(1+ t)dt for λ > 0. They derive (10.23)
from Lemma 10.6 below, which is a continuous-time analog of Theorem 9.18. They
also derive (10.22) in the case M ≥ 0 a.s. from another exponential supermartin-
gale, given in Lemma 10.7 below.

Lemma 10.6. Let {Mt ,Ft , t ≥ 0} be a locally square-integrable, right-continuous
martingale such that M0 = 0 a.s. and  Mt ≤ c a.s. for all t ≥ 0 and some c > 0.
Then for λ > 0,

{exp(λMt −ϕc(λ )〈M〉t) ,Ft , t ≥ 0} is a supermartingale, (10.24)

where ϕc(λ ) = c−2(eλc−1−λc).

Let {Xt , t ≥ 0} be a cadlag process of locally bounded variation. Then ∏s≤t(1+
 Xs) is well defined as a limit and is a cadlag process of locally bounded variation;
see Problem 10.1. For a locally square-integrable, right-continuous martingale M,
the Volterra equation

Zt = 1+
∫ t

0
Zs− dMs (10.25)

has a unique cadlag solution

Zt = E (M)t := exp
{

Mt −
1
2
〈Mc〉t

}
∏
s≤t

(1+ Ms)e− Ms ,

in which E (M) is called the Doléans exponential of M.

Lemma 10.7. Let {Mt ,Ft , t ≥ 0} be a locally square-integrable, right-continuous
martingale M with M0 = 0. Then {E (M)t ,Ft , t ≥ 0} is a martingale. If  Mt ≥ 0
for all t ≥ 0, then exp(Mt − 1

2 [M]t)≤ E (M)t and {exp(Mt − 1
2 [M]t),Ft , t ≥ 0} is a

supermartingale.

We now define the stochastic integral
∫ t

0 Xs dYs with integrand X = {Xs,0 ≤
s ≤ t} and integrator Y = {Ys,0 ≤ s ≤ t}. If Y has bounded variation on [0, t], then
the integral can be taken as an ordinary pathwise Lebesgue–Stieltjes integral over
[0, t]. If Y is a right-continuous, square-integrable martingale and X is a predictable
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process such that
∫ t

0 X2
s d〈Y 〉s < ∞ a.s., then

∫ t
0 Xs dYs can be defined by the limit (in

probability) of integrals (which reduce to sums) whose integrands are step functions
and converge to X in an L2-sense. More generally, one can define

∫ t
0 Xs dYs when X

is a predictable, locally bounded process and Y is a semimartingale, which is defined
below. Moreover, the process {

∫ t
0 XsdYs, t ≥ 0} is also a semimartingale.

Definition 10.8. A process Y which is adapted to the filtration {Ft , t ≥ 0} is called
a semimartingale if it has a decomposition of the form Yt = Y0 + Mt +Vt , where M
is a locally square-integrable, right-continuous martingale, Vt is an adapted cadlag
process with finite variation on bounded intervals, and M0 = V0 = 0.

Theorem 10.9 (Ito’s formula for semimartingales). Let X(t) = (X1(t), . . . ,Xm(t)),
t ≥ 0, be a vector-valued process whose components Xi are semimartingales, which
can be decomposed as Xi(0)+Mi(t)+Vi(t). Let f : [0,∞)×R

m→R be of class C1,2

(i.e., f (t,x) is twice continuously differentiable in x and continuously differentiable
in t). Then { f (t,X(t)), t ≥ 0} is a semimartingale and

f (t,X(t)) = f (0,X(0))+
m

∑
i=1

∫ t

0+

∂
∂xi

f (s,X(s−))dXi(s)

+
1
2

m

∑
i=1

m

∑
j=1

∫ t

0+

∂ 2

∂xi∂x j
f (s,X(s−))d〈Mc

i ,M
c
j 〉s

+ ∑
0<s≤t

{
f (s,X(s))− f (s,X(s−))−

m

∑
i=1

(∂/∂xi) f (s,X(s−)) Xi(s)

}
.

An important corollary of Theorem 10.9 is the product rule for semimartingales
X and Y : XY is a semimartingale and

d(XtYt) = Xt−dYt +Yt−dXt +d[X ,Y ]t . (10.26)

In particular, for a locally square-integrable, right-continuous martingale M, setting
X = Y = M in (10.26) yields

[M]t = M2
t −2

∫ t

0
Ms− dMs. (10.27)

By (10.27), M2− [M] is a martingale but [M] is not predictable. Since M2−〈M〉 is
a martingale and 〈M〉 is predictable, it follows that 〈M〉t is the compensator of the
nondecreasing process [M]t .

Barlow et al. (1986, Sect. 2) give a general theory of inqualities of the form
P{XT ≥ x,YT ≤ y} for stopping time T and two nonnegative adapted processes X
and Y . Earlier results along this line are Lenglart’s (1977) inequalities. Let X be a
right-continuous adapted process and Y a nondecreasing predictable process with
Y0 = 0 such that

E|XT | ≤ EYT for every bounded stopping time T. (10.28)
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Then for any ε > 0, δ > 0 and stopping time τ ,

P
{

sup
t≤τ
|Xt | ≥ ε, |Yτ |< δ

}
≤ ε−1E(δ ∧Yτ), (10.29)

P
{

sup
t≤τ
|Xt | ≥ ε

}
≤ (δ/ε)+P{Yτ ≥ δ}. (10.30)

Note that (10.30) follows from (10.29) since

P
{

sup
t≤τ
|Xt | ≥ ε

}
≤ P

{
sup
t≤τ
|Xt | ≥ ε,Yτ < δ

}
+P{Yτ ≥ δ}.

In particular, since (10.28) holds with X = M2 and Y = 〈M〉 for a locally square-
integrable right-continuous martingale M, it follows from (10.30) that for any η > 0,
δ > 0 and stopping time τ ,

P
{

sup
t≤τ
|Mt | ≥ η

}
≤ (δ/η2)+P{〈M〉τ ≥ δ}.

10.4 Supplementary Results and Problems

1. Let X = {Xs, 0≤ s≤ t} be a cadlag process with bounded variation. Show that
∏k

i=1(1 + Xti) is absolutely convergent as ‖P‖ → 0, where P is a partition
t0 = 0 < t1 < · · · < tk = t of [0, t]. The limit is called the product-integral of X
and is denoted by ∏0≤s≤t(1+ Xs). We can clearly extend the definition of the
product-integral Yt := ∏−∞<s≤t(1 + Xs) to cadlag processes X = {Xt , t ∈ R}
such that X has bounded variation on (−∞,a] for all a. Show that the product-
integral Y is cadlag and has bounded variation on (−∞,a] for all a.

2. Let X = {Xt ,−∞ < t < ∞} be a cadlag process that has bounded variation on
(−∞,a] for all a. Show that Yt :=∏−∞<s≤t(1+ Xs) satisfies the Volterra equa-
tion

Yt = 1+
∫ t

−∞
Ys−dXs. (10.31)

By applying this result to Xt = S(t), where S(t) = P(T > t) is the survival func-
tion of a random variable T , show that

S(t) =∏
s≤t

(1− A(s)) if A(t) < ∞, (10.32)

where A is the cumulative hazard function of T defined by

A(t) =
∫ t

−∞

dF(s)
1−F(s−)

=−
∫ t

−∞

dS(u)
S(u−)

, (10.33)

in which F = 1−S is the distribution function of T .
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3. Let X1, . . . ,Xn be i.i.d. random variables with common distribution function F .
Let C1, . . . ,Cn be independent random variables that are also independent of
{X1, . . . ,Xn}. Let X̃i = min(Xi,Ci), δi = I(Xi ≤Ci) for i = 1, . . . ,n. Let Ft be the
σ -field generated by

I(X̃i ≤ t), δiI(X̃i ≤ t), X̃iI(X̃i ≤ t), i = 1, . . . ,n. (10.34)

Define

Rn(t) =
n

∑
i=1

I(X̃i ≥ t), Nn(t) =
n

∑
i=1

I(X̃i ≤ t, δi = 1). (10.35)

Show that {Nn(t), Ft ,−∞ < t < ∞} is a right-continuous, nonnegative sub-
martingale with compensator

∫ t
−∞ Rn(s)dA(s). This result enables one to apply

continuous-time martingale theory to analyze statistical methods for the analysis
of censored data (X̃i,δi), 1≤ i≤ n, that are observed instead of X1, . . . ,Xn.

4. Because the Xi in the preceding problem are not fully observable, one cannot
use the empirical distribution of the Xi to estimate F . In view of the preceding
problem,

Mn(t) := Nn(t)−
∫ t

−∞
Rn(s)dA(s) (10.36)

is a martingale with respect to the filtration {Ft}. By (10.36), dMn(t) =
dNn(t)−Rn(t)dA(t), which suggests the following estimate of A(t) based on
{(X̃i,δi), 1≤ i≤ n}:

Ân(t) =
∫ t

−∞

I(Rn(s) > 0)
Rn(s)

dNn(t) =∑
s≤t

 Nn(s)
Rn(s)

, (10.37)

using the convention 0/0 = 0 and noting that
∫ t
−∞{I(Rn(s) > 0)/Rn(s)}dMn(s)

is a martingale since Rn(s) is left-continuous and therefore predictable. This and
(10.32) suggest the following estimator of S:

Ŝn(t) =∏
s≤t

(
1− Ân(s)

)
=∏

s≤t

(
1−  Nn(s)

Rn(s)

)
. (10.38)

The estimator Ân is called the Nelson–Aalen estimator of the cumulative haz-
ard function A, and Ŝn (or 1− Ŝn) is called the Kaplan–Meier estimator of the
survival function S (or distribution function F). Show that for any τ such that
F(τ) < 1 and liminfn→∞ n−1∑n

i=1 P(Ci ≥ τ) > 0,

P
{

lim
n→∞

sup
t≤τ
|Ân(t)−A(t)|= 0

}
= P

{
lim
n→∞

sup
t≤τ
|Ŝn(t)−S(t)|= 0

}
= 1,

(10.39)

thereby establishing the strong uniform consisting of Ân and Ŝn on (−∞,τ].
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Hint: Use the Borel–Cantelli lemma and exponential bounds for martingales and
sums of independent random variables.

5. Rebolledo (1980) has proved the following functional central limit theorem
for continuous-time locally square-integrable, right-continuous martingales
{Mn,Ft , t ∈ T}, where T is an interval (possibly infinite):

Suppose that there exists a nonrandom function V such that 〈Mn〉(t) P−→ V (t)
for every t ∈ T and that 〈M(ε)

n 〉(t) P−→ 0 for every t ∈ T and ε > 0, where M(ε)
n is

the subset of the purely discontinuous part of Mn that consists of jumps larger in
absolute value than ε . Then Mn converges weakly to W (V (·)) in D(T ), where W
is Brownian motion and D(T ) denotes the space of cadlag functions on T with
the Skorohod metric.

Making use of Rebolledo’s central limit theorem, show that
√

n(Ân − A)
and

√
n(Ŝn − S) converge weakly in D((−∞,τ]) as n → ∞, for any τ such

that F(τ) < 1 and liminfn→∞ n−1∑n
i=1 P(Ci ≥ τ) > 0. See Problem 2.7 and

Sect. 15.3.1 for related weak convergence results and functional central limit
theorems.



Chapter 11
Pseudo-Maximization via Method of Mixtures

In this chapter we describe the method of mixtures to perform pseudo-maximization
that generates self-normalized processes via (10.4). Section 11.1 describes a pro-
totypical example and Laplace’s method for asymptotic evaluation of integrals.
Section 11.2 reviews the method of mixtures used by Robbins and Siegmund
(1970) to evaluate boundary crossing probabilities for Brownian motion, and gen-
eralizes the method to analyze boundary crossing probabilities for self-normalized
processes. In Sect. 11.3 we describe a class of mixing density functions that are par-
ticularly useful for developing Lp and exponential inequalities for self-normalized
processes, details of which are given in the next chapter.

11.1 Pseudo-Maximization and Laplace’s Method

We begin with a review of Laplace’s method for asymptotic evaluation of the
integral

∫ ∞
−∞ f (θ)eag(θ)dθ as a → ∞, where f and g are continuous functions

on R such that g has unique maximum at θ ∗ and is twice continuously dif-
ferentiable in some neighborhood of θ ∗, limsup|θ |→∞ g(θ) < min{g(θ ∗),0} and
limsup|θ |→∞ | f (θ)|eAg(θ) < ∞ for some A > 0. Since g′(θ ∗) = 0, g′′(θ ∗) < 0 and

eag(θ) = eag(θ∗) exp
{

a
[
g′′(θ ∗)+o(1)

]
(θ −θ ∗)2/2

}
as θ → θ ∗, (11.1)

and since the assumptions on f and g imply that for every ε > 0, there exists ηε > 0
such that as a→ ∞,(∫ θ∗−ε

−∞
+
∫ ∞

θ∗+ε

)
f (θ)eag(θ)dθ = O(exp(a [g(θ ∗)−ηε ])) ,

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 149
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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it follows that∫ ∞

−∞
f (θ)eag(θ)dθ ∼ f (θ ∗)eag(θ∗) (−ag′′(θ ∗)

)−1/2
∫ ∞

−∞
e−t2/2dt

=

√
2π

a|g′′(θ ∗)| f (θ ∗)eag(θ∗) (11.2)

as a→ ∞, using the change of variables t = (−a f ′′(θ ∗))1/2 (θ −θ ∗).
Laplace’s asymptotic formula (11.2) relates the integral

∫ ∞
−∞ f (θ)eag(θ)dθ to the

maximum of eag(θ) over θ . This is the essence of the pseudo-maximization approach
that we use to analyze a self-normalized process (which can be represented as a
maximum by (10.4)) via an integral with respect to a probability measure. Note that
there is much flexibility in choosing the probability measure (or the mixing den-
sity function f ), and that the function g(θ) := θAn−θ 2B2

n/2 in (10.4) is a random
function whose maximizer θ ∗ is a random variable An/Bn. Whereas f is assumed
to be continuous, and therefore bounded on finite intervals, in the preceding para-
graph which follows the conventional exposition of Laplace’s method, allowing f
to approach ∞ in regions where An/B2

n tends to be concentrated can tailor f to the
analysis of Eh(An/Bn) for given h (e.g., h(x) = |x|p or h(x) = eλx). In Sect. 11.2
we describe a class of mixing density functions f with this property, which will
be used in Chap. 12 for the analysis of Eh(An/Bn). Similar density functions were
introduced by Robbins and Siegmund (1970) who used the method of mixtures to
analyze boundary crossing probabilities for Brownian motion. Section 11.3 reviews
their method and results and extends them to derive boundary crossing probabilities
for self-normalized processes under the canonical assumption (10.3) or (10.6).

11.2 A Class of Mixing Densities

Let L : (0,∞)→ [0,∞) be a nondecreasing function such that

L(cy)≤ 3cL(y) for all c≥ 1 and y > 0, (11.3)

L(y2)≤ 3L(y) for all y≥ 1, (11.4)∫ ∞

1

dx
xL(x)

=
1
2
. (11.5)

An example is the function

L(y) = β{log(y+α)}{log log(y+α)}{log log log(y+α)}1+δ , (11.6)

where δ > 0, α is sufficiently large so that (11.3) and (11.4) hold and β is a normal-
izing constant to ensure (11.5). By a change of variables,

∫ 1

0

(
λ L

(
1
λ

))−1

dλ =
∫ ∞

1
(λ L(λ ))−1dλ ,
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so condition (11.5) ensures that

f (λ ) =
1

λ L
(
max

(
λ , 1

λ
)) , λ > 0, (11.7)

is a probability density on (0,∞). Therefore the canonical assumption (10.6) holding
for all λ ≥ 0 implies that

1≥ E
∫ ∞

0
exp

{
Ax−

(
B2x2/2

)}
f (x)dx. (11.8)

Lemma 11.1. Let γ ≥ 1. Then yL(y/B∨ B/y) ≤ 3γ{L(γ)∨ L(B∨ B−1)} for any
0 < y≤ γ and B > 0. Consequently, for any A≥ B > 0 and any −A

B < x≤ 0,

(
x+

A
B

)
L

(
x+ A

B
B
∨ B

x+ A
B

)
≤ 3

A
B

{
L
(

A
B

)
∨ L

(
B∨ 1

B

)}
. (11.9)

Proof. First consider the case y≤ 1. From (11.3) and the fact L is nondecreasing, it
follows that

yL
(

y
B
∨ B

y

)
≤ yL

(
1
y

(
1
B
∨B

))
≤ 3L

(
B∨ 1

B

)
.

For the remaining case 1 < y≤ γ , since L is nondecreasing, we have

yL
(

y
B
∨ B

y

)
≤ γ L

(
γ
(

1
B
∨B

))

≤ γ

{
L(γ2)∨ L

((
B∨ 1

B

)2
)}

≤ 3γ
{

L(γ)∨ L
(

B∨ 1
B

)}
,

where the last inequality follows from (11.4). ��

Lemma 11.2. Let A,B > 0 be two random variables satisfying the canonical as-
sumption (10.6) for all λ ≥ 0. Define

g(x) = x−1 exp(x2/2)I(x≥ 1). (11.10)

Then

E
g
(A

B

)
L
(A

B

)
∨ L

(
B∨ 1

B

) ≤ 3∫ 1
0 exp{−x2/2} dx

.
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Proof. From (11.7) and (11.8), it follows that

1≥ E
∫ ∞

0

exp{Ax− (B2x2/2)}
xL

(
x∨ 1

x

) dx

= E
∫ ∞

0

exp
{

Ay
B −

y2

2

}
yL

(
y
B ∨

B
y

) dy (letting y = Bx)

≥ E

⎡
⎢⎢⎣eA2/2B2

∫ ∞

− A
B

exp{−(x2/2)}(
x+ A

B

)
L
(

x+ A
B

B ∨ B
x+ A

B

) I
(

A
B
≥ 1

)
dx

⎤
⎥⎥⎦
(

letting x = y− A
B

)

≥ E

[
eA2/2B2

∫ 0

−1

exp{−(x2/2)}dx
3A
B

(
L
(A

B

)
∨L

(
B∨ 1

B

)) I
(

A
B
≥ 1

)]
by (11.9)

=
{

1
3

∫ 1

0
e−x2/2dx

}
E

g
(A

B

)
L
(A

B

)
∨L

(
B∨ 1

B

) . ��

The class of mixing densities (11.3)–(11.5) was introduced by de la Peña et al.
(2000, 2004) who made use of the properties in Lemmas 11.1, 11.2 and the fol-
lowing easy lemma to prove moment and exponential bounds for self-normalized
processes satisfying the canonical assumption (10.5) or (10.6). Details will be given
in Sect. 12.2.2.

Lemma 11.3. Let r > 0, 0 < δ < 1, gr(x) = x−1 exp(rx2/2)I(x≥ 1). If

g1−δ
r (x)≤ L

(
B∨ 1

B

)
,

then

x≤
√

2
r(1−δ )

log+ L
(

B∨ 1
B

)
.

11.3 Application of Method of Mixtures to Boundary Crossing
Probabilities

11.3.1 The Robbins–Siegmund Boundaries for Brownian Motion

Let Wt , t ≥ 0, be standard Brownian motion. Then exp(θWt − θ 2t/2), t ≥ 0, is a
continuous martingale with mean 1, and therefore (10.5) holds with At = Wt ,Bt = t
and ε = ∞. Hence f (Wt , t), t ≥ 0, is also a continuous martingale, where
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f (x, t) =
∫ ∞

0
exp(θx−θ 2t/2)dF(θ), x ∈ R, t ≥ 0, (11.11)

and F is any measure on (0,∞) which is finite on bounded intervals. Robbins and
Siegmund (1970, Sect. 3) make use of this and the following lemma to evaluate a
class of boundary crossing probabilities for Brownian motion.

Lemma 11.4. Let ε > 0 and let {Zt ,Ft , t ≥ a} be a nonnegative martingale with
continuous sample paths on {Za < ε} and such that

Zt I
(

sup
s>a

Zs < ε
)

P−→ 0 as t → 0. (11.12)

Then

P
{

sup
t>a

Zt ≥ ε |Fa

}
= Za/ε a.s. on {Za < ε}. (11.13)

Consequently, P{supt≥a Zt ≥ ε}= P{Za ≥ ε}+ ε−1E{Za I(Za < ε)}.

Proof. Let T = inf{t ≥ a : Zt ≥ ε} (inf /0 = ∞). Then {ZT∧t ,Ft , t ≥ 0} is a non-
negative martingale by the optional stopping theorem. Therefore for A ∈ Fa and
t ≥ a,

E{Za I(A,Za < ε)} = E{ZT∧t I(A,Za < ε)}
= εP(A∩{T ≤ t,Za < ε})

+E{ZtI(A,T > t,Za < ε)}. (11.14)

By (11.12), Zt I(T > t) P−→ 0 as t → ∞, and therefore letting t → ∞ in (11.14) yields

E{Za I(A,Za < ε)}=εP(A∩{T < ∞,Za < ε})

=ε
∫

A∩{Za<ε}
P(T < ∞ |Fa)dP,

proving (11.13). ��

Corollary 11.5. Define f by (11.11). Then for any b ∈ R,h≥ 0 and a > 0,

P{ f (Wt +b, t +h)≥ ε for some t ≥ a}
= P{ f (Wa +b,a+h)≥ ε}

+
1
ε

∫ ∞

0
exp(bθ − h

2
θ 2)Φ

(
βF(a+h,ε)−b√

a
−
√

aθ
)

dF(θ),

where Φ is the standard normal distribution function and

βF(t,ε) = inf{x : f (x, t)≥ ε} . (11.15)
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Proof. Without loss of generality we can assume that f (x,a + h) < ∞ for some x
because otherwise the result is trivial. Then for t ≥ a, the equation f (x, t) = ε has
a unique solution βF(t,ε), and βF(t,ε) is continuous and increasing for t ≥ a, We
next show that f (b+Wt , h+ t) P−→ 0 as t→∞. Let φ be the standard normal density
function. For any c > 0,

f (b+ c
√

t,h+ t) = (φ(c))−1
∫ ∞

0
φ(c−θ

√
t)exp(bθ −hθ 2/2)dF(θ)→ 0

(11.16)

as c→ ∞, by the dominated convergence theorem. From (11.16), it follows that for
any ε > 0 and c > 0, the following inequality holds for all sufficiently large t:

P{ f (b+Wt ,h+ t)≥ ε} ≤ P
{

Wt ≥ c
√

t
}

= 1−Φ(c), (11.17)

which can be made arbitrarily small by choosing c sufficiently large. Hence Zt
P−→ 0,

where Zt = f (b +Wt ,h + t). With this choice of Zt , the desired conclusion follows
from Lemma 11.4. ��

Robbins and Siegmund (1970) make use of Corollary 11.5 to obtain boundary
crossing probabilities for boundaries of the form βF , noting that

{ f (Wt +b, t +h)≥ ε}= {Wt ≥ βF(t +h,ε)−b} . (11.18)

They also make use of Lemma 11.4 to prove the following two variants of Corollary
11.5: (a) If f (b,h) < ε for some b ∈ R and h≥ 0, then

P{Wt ≥ βF(t +h,ε)−b for some t ≥ 0}= f (b,h)/ε. (11.19)

(b) If F is a probability measure on (0,∞) and ε > 1, then

P{Wt ≥ βF(t,ε) for some t ≥ 0}= P{ f (Wt , t)≥ ε for some t ≥ 0}= ε−1.
(11.20)

11.3.2 Extensions to General Self-Normalized Processes

Replacing (Wt , t) by (At ,B2
t ) in the preceding argument, de la Peña et al.

(2004, pp. 1920–1921) have derived boundary crossing probabilities for the self-
normalized process At/Bt under the canonical assumption (10.5), or (10.3) for
discrete-time processes. In fact, letting

Φr(x) = xr/r for x≥ 0, 1 < r ≤ 2, (11.21)
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they generalize the canonical assumption (10.5) to

{exp(θAt−Φr(θBt)) ,Ft , t ∈ T} is a supermartingale with mean 1 for 0 <θ <θ0,
(11.22)

where Bt > 0, T = {0,1,2, . . .} or T = [0,∞). In the case T = [0,∞), they also
assume that At and Bt are right-continuous.

Let F be any finite measure on (0,λ0),with F(0,λ0) > 0 and define the function

ψ(u,v) =
∫ λ0

0
exp(λu−λ rv/r)dF(λ ). (11.23)

Given any c > 0 and v > 0, the equation ψ(u,v) = c has a unique solution u =
βF(v,c). For the case r = 2, the function v �→ βF(v,c) is called a Robbins–Siegmund
boundary in Lai (1976a), in which such boundaries are shown to have the following
properties:

(a) βF(v,c) is a concave function of v.
(b) limv→∞βF(v,c)/v = bF/2, where bF = sup{b > 0 : F(0,b) = 0} (sup /0 = 0).
(c) If dF(λ ) = f (λ )dλ for 0 < λ < λ0, inf0<λ<λ0 f (λ ) > 0 while sup0<λ<λ0

f (λ )
< ∞, then βF(v,c)∼ (v logv)1/2 as v→ ∞.

(d) If dF(λ ) = f (λ )dλ for 0 < λ < e−2, and = 0 elsewhere, where

f (λ ) = 1/
{
λ (logλ−1)(log logλ−1)1+δ

}
(11.24)

for some δ > 0, then as v→ ∞,

βF(v,c) =
{

2v
[

log2 v+
(

3
2

+δ
)

log3 v+ log
(

c
2
√
π

)
+o(1)

]}1/2

,

(11.25)

where, as in Robbins and Siegmund (1970), we write logk v = log(logk−1 v) for k ≥
2, log1 v = logv. For general 1 < r ≤ 2, (a) still holds, (b) holds with bF/2 replaced
by br−1

F /r, and (c) can be generalized to βF(v,c) ∼ v1/r{(logv)/(r− 1)}(r−1)/r as
v→ ∞. Moreover, if f is given by (11.24), then

βF(v,c)∼ v1/r {r(log logv)/(r−1)}(r−1)/r as v→ ∞. (11.26)

Note that ψ(At ,Br
t ) is right-continuous when T = [0,∞) by the assumption on

(At ,Bt) in this case. It follows from (11.22) that {ψ(At ,Br
t ), t ≥ 0} is a nonnega-

tive supermartingale with mean ≤ F(0,λ0) and therefore,

P{At ≥ βF(Br
t ,c) for some t ∈ T}

= P{ψ(At ,Br
t )≥ c for some t ∈ T} ≤ F(0,λ0)/c, (11.27)
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for every c > 0. In particular, by choosing c in (11.27) arbitrarily large, we obtain
from (11.26) and (11.27) the following:

Corollary 11.6. Let 1 < r ≤ 2,Φr(x) = xr/r for x ≥ 0 and suppose that (11.22)
holds for the process (At ,Bt), t ∈ T , and that At and Bt are right-continuous in the
case T = [0,∞). Then

limsup
t→∞

At

Bt(log logBt)(r−1)/r
≤
{

r
r−1

}(r−1)/r

a.s. on
{

lim
t→∞

Bt = ∞
}

.

We conclude this section with a discussion of the properties (c) and (d) of
the Robbins–Siegmund boundaries, relating them to the results and methods of
Sects. 11.1 and 11.2. Suppose dF(λ ) = f (λ ) for 0≤ λ ≤ λ0 and consider the case
r = 2 in (11.23). First assume that f is continuous and positive on [0,λ0], then since
λu−λ 2v/2 is maximized at λ = u/v, Laplace’s asymptotic formula (11.2) yields
(as v→ ∞)

ψ(u,v)∼
√

2π
v

f
(u

v

)
exp

(
u2

2v

)
if ε ≤ u

v
≤ λ0− ε, (11.28)

for every ε > 0. From (11.28), it follows that for given c > 0,

ψ(u,v)≥ c⇐⇒ u≥
{

2v
[

log
(√

v
2π

)
+ log

(
c

f (u/v)

)
+o(1)

]}1/2

as v→∞, proving property (c). If sup0<λ<λ0
f (λ ) <∞ and inf0<λ<λ0 f (λ ) > 0, then

we can use this assumption to bound the integral in (11.2) above and below to prove
property (c) without assuming f to be continuous.

When f can become infinite as in (11.24), we have to modify Laplace’s method
accordingly by bounding f above and below and combining with certain bounds on
exp(uλ −vλ 2/2), as in the proof of Lemma 11.2, to derive the asymptotic behavior
of βF(v,c) via that of ψ(u,v). This is the basic idea behind Robbins and Siegmund
(1970, Sect. 5) derivation of (11.25). First we can rewrite the equation ψ(u,v) = c as

c =
∫ e−2

0
exp

(
u√
v
λ
√

v− 1
2
λ 2v

)
f (λ )dλ

=
1

φ(u/
√

v)

∫ e−2

0
φ
(
λ
√

v− u√
v

)
f (λ )dλ , (11.29)

from which it follows that

u/
√

v→ ∞ and u/
√

v = o(
√

v) as v→ ∞. (11.30)

Let γ > 1. Since f is decreasing on (0,λ ) for sufficiently small λ > 0, (11.29) and
(11.30) imply that for all v sufficiently large,
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c≥ 1
φ(u/

√
v)

∫ γu/v

0
φ
(
λ
√

v− u√
v

)
f (λ )dλ

≥ f (γu/v)
φ(u/

√
v)

∫ γu/v

0
φ
(
λ
√

v− u√
v

)
dλ

=
Φ ((γ−1)u/

√
v)−Φ(−u/

√
v)√

vφ(u/
√

v)
f (γu/v).

Letting v→ ∞ and then γ → 1, it follows that

c≥ 1+o(1)

(u/
√

v)φ(u/
√

v){log(v/u)}{log log(v/u)}1+δ . (11.31)

To obtain a reverse inequality, take 0 < a < b < 1 and split the integral in (11.29) as∫ au/v
0 +

∫ bu/v
au/v +

∫ e−2

bu/v. The first integral can be bounded by

∫ au/v

0
φ
(
λ
√

v− u√
v

)
f (λ )dλ ≤ φ

(
(a−1)

u√
v

)∫ au/v

0
f (λ )dλ

=
φ ((a−1)u/

√
v)

δ (log log(v/au))δ
.

An upper bound for
∫ bu/v

au/v can be obtained by bounding f (λ ) in this range by

f (au/v), and a similar upper bound can be obtained for
∫ e−2

bu/v. It follows by com-
bining these upper bounds that as v→ ∞,

c≤ b−1 +o(1)

(u/
√

v)φ(u/
√

v){log(v/u)}{log log(v/u)}1+δ . (11.32)

Letting b→ 1 in (11.32) and combining the result with (11.31), (11.30) follows.
This idea that makes use of the properties of f has been used in Sect. 11.2 for f of
the more general form (11.7).

11.4 Supplementary Results and Problems

1. Let Pθ be a probability measure under which X1,X2, . . . are i.i.d. random vari-
ables with density function gθ (x) = eθx−ψ(θ) with respect to some probability
measure m on R such that

∫ ∞
−∞ eθxdm(x) < ∞ for some θ �= 0; this is the expo-

nential family with natural parameter θ ∈Θ := {θ ∈ R :
∫

eθxdm(x) < ∞}. Let
Sn = X1 + · · ·+Xn, and let Fn be the σ -field generated by X1, . . . ,Xn:

(a) Show that Θ is an interval (possibly infinite) containing 0 and that X1 has
distribution m under P0. Denote P0 by P for simplicity.
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(b) Let F be a probability measure on Θ and let

f (Sn,n) =
∫
Θ

eθSn−nψ(θ)dF(θ). (11.33)

Show that P{ f (Sn,n)≥ c for some n≥ 1} ≤ c−1 for every c > 1.
(c) The Bernoulli distribution P(X1 = 1) = p = 1− P(X1 = 0) can be em-

bedded in an exponential family with θ = log(p/(1− p)). Suppose the
probability distribution F on θ has density function f (θ)dθ = pa−1(1−
p)b−1d p/B(a,b), 0 < p < 1, where B(·, ·) is the beta function and a > 0,
b > 0. Let 0 < p0 < 1 and let P0 correspond to the case p = p0. Show that
in this case f (Sn,n) has an explicit formula and

f (Sn,n)≥ c⇐⇒ p0 ∈ In(Sn,c), (11.34)

where In is an interval. Hence conclude from (b) that

Pp {p ∈ In(Sn,c) for every n≥ 1} ≥ 1− c−1. (11.35)

Thus, the random sequence {In(Sn,c), n ≥ 1} simultaneously covers the
true parameter p with probability no smaller than 1− c−1. This is called a
(1− c−1)-level confidence sequence.

2. For the confidence sequence In = In(Sn,c) defined by (11.34), show that the
width of In converges a.s. to 0. Hence, for p �= p0, Pp0{p /∈ In for all large n}= 1.
Robbins (1970) has made use of this property to construct sequential tests of
H0 : p = p0 with Type I error probability no larger than c−1 and with power 1.

3. Show that for given p0, it is possible to choose F such that the associated
confidence sequence In (depending on Sn, c and F) has width of the order
n−1/2{2p0(1− p0) log logn}1/2 a.s.

4. Robbins and Siegmund (1970) have proved the following limit theorem for
boundary crossing probabilities of the random walk Sn = X1 + · · ·+ Xn, where
X1,X2, . . . are i.i.d. random variables having mean 0 and variance 1, relating
them to those of the Brownian motion Wt :

(a) Let h > 0 and let β : [h,∞)→R be a continuous function such that t−1/2β (t)
is ultimately nondecreasing as t → ∞ and

∫ ∞

h

β (t)
t3/2 exp

(
−β 2(t)

2t

)
dt < ∞, (11.36)

which is related to the upper-lower class test in Problem 2.9. Then

lim
m→∞

P
{

Sn ≥
√

mβ (n/m) for some n≥ hm
}

= P{Wt ≥ β (t) for some t ≥ h} .
(11.37)
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(b) Assume furthermore that β is defined and continuous on (0,h), that β (t)/
√

t
is nonincreasing for t sufficiently small and that

∫ 1

0

β (t)
t3/2 exp

(
−β 2(t)

2t

)
dt < ∞. (11.38)

Then (11.37) continues to hold with n≥ hm replaced by n≥ 1 and t ≥ h by
t > 0.

Apply this limit theorem to the Robbins–Siegmund boundaries βF considered in
(c) and (d) of Sect. 11.3.2, and explain how you can use the result to construct
an approximate 95% confidence sequence for the mean of a distribution with
known variance 1 based on successive observations X1,X2, . . . drawn indepen-
dently from the distribution.



Chapter 12
Moment and Exponential Inequalities
for Self-Normalized Processes

Inspired by three continuous-time martingale inequalities that are described in
Sect. 12.1, de la Peña et al. (2000, 2004) have developed moment and exponen-
tial inequalities for general self-normalized process by making use of the method
of mixtures described in Chap. 11. In Sect. 12.2 we present these moment and expo-
nential inequalities under the canonical assumption (10.5) or (10.6) and explain how
the method of mixtures can be used to derive them. Their applications are given in
Sect. 12.3.

12.1 Inequalities of Caballero, Fernandez and Nualart,
Graversen and Peskir, and Kikuchi

Caballero et al. (1998) provide an estimate for the Lp-norm of a continuous mar-
tingale divided by its quadratic variation, where 1 ≤ p < q. This norm is bounded
by a universal constant times the Lq-norm of the inverse of the square root of the
quadratic variation. The following theorem generalizes this result to random vari-
ables satisfying the canonical assumption (10.6) for all λ . Let ‖X‖p = (E|X |p)1/p.

Theorem 12.1. Let B > 0 and A be two random variables satisfying (10.6) for all
λ ∈ R. Then for 1≤ p < q, there exists a universal constant C = C(p,q) such that∥∥∥∥ A

B2

∥∥∥∥
p
≤C‖B−1‖q.

Proof. Note that

E
[∣∣∣∣ A

B2

∣∣∣∣
p]

=
∫ ∞

0
pxp−1P

[
|A|> xB2] dx,

P
{
|A|> xB2}≤ P

{
A > xB2}+P

{
−A > xB2} .

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 161
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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Take α > 1 and β > 1 such that 1/β +1/α = 1. Choose λ > 0 and θ > 0 such that
(λα)2/2 = θα , that is, θ = λ 2α/2. Then

P(A > xB2)≤ P(eλA−θB2
> e(λx−θ)B2

)

≤ E(eλA−θB2
e−(λx−θ)B2

)

≤
(

E
[
eλαA−θαB2

])1/α (
E
[
e−β (λx−θ)B2

])1/β
.

Since θ = λ 2α/2, it then follows from (10.6) that

P(A > xB2)≤
(

E
[
e−β (λx−λ 2α/2)B2

])1/β
.

The optimal λ is given by λ = x/α , which yields

P(A > xB2)≤
(

E
[
e−(βx2/2α)B2

])1/β
=
(

E
[
e−(β−1)(x2/2)B2

])1/β

since 1/α = (β −1)/β . Therefore, for any ε > 0 and δ > 1,

E
[∣∣∣∣ A

B2

∣∣∣∣
p]
≤ 2

∫ ∞

0
pxp−1

(
E
[
e−(β−1)(x2/2)B2

])1/β
dx

≤ 2ε p +2
∫ ∞

ε
pxp−1

(
E
[
e−(β−1)(x2/2)B2

])1/β
dx

= 2ε p +2p
∫ ∞

ε
x−δ

(
E
[
x(δ+p−1)β e−(β−1)(x2/2)B2

])1/β
dx

≤ 2ε p +2p
(∫ ∞

ε
x−δ dx

)(
E
[

sup
x∈R

(
x(δ+p−1)β e−(β−1)(x2/2)B2

)])1/β
.

Let ψ(x) = x(δ+p−1)β e−(β−1)(x2/2)B2
. Then

ψ ′(x) =
[
β (δ + p−1)x(δ+p−1)β−1− xβ (δ+p−1)+1(β −1)B2

]
e−(β−1)(x2/2)B2

.

This function ψ is minimized when

x0 =

√
β (δ + p−1)

β −1
B−1.

Therefore,

ψ(x0) =
(
β (δ + p−1)

β −1

) δ+p−1
2 β (

B2)−(δ+p−1)β/2
e−(δ+p−1)β/2.

Hence,
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E
[∣∣∣∣ A

B2

∣∣∣∣
p]
≤ 2ε p +

2p
δ −1

ε1−δ e−(δ+p−1)/2
(
β (δ + p−1)

β −1

)(δ+p−1)/2

×
(

E
[(

B2)−(δ+p−1)β/2
])1/β

= 2ε p + ε1−δK ,

where

K =
2p

δ −1
e−(δ+p−1)/2

(
β (δ + p−1)

β −1

)(δ+p−1)/2(
E
[
(B2)−(δ+p−1)β/2

])1/β
.

Next we optimize over ε . Set Q(ε) = 2ε p + ε1−δK. Then

Q′(ε) = 2pε p−1 +(1−δ )e−δK,

and the unique solution of Q′(ε) = 0 is given by

ε0 =
(
δ −1

2p

)1/(p+δ−1)

K1/(p+δ−1),

for which

Q(ε0) = 2
(
δ −1

2p

)p/(p+δ−1)

K p/(p+δ−1)

+
(
δ −1

2p

)(1−δ )/(p+δ−1)

K(1−δ )/(p+δ−1)+1

= K p/(p+δ−1)

(
2
(
δ −1

2p

)p/(p+δ−1)

+
(
δ −1

2p

)(1−δ )/(p+δ−1)
)

=
(

2p
δ −1

)p/(p+δ−1)

e−p/2
(
β (δ + p−1)

β −1

)p/2

×
(

2
(
δ −1

2p

)p/(p+δ−1)

+
(
δ −1

2p

)(1−δ )/(p+δ−1)
)

×
(

E
[(

B2)−(δ+p−1)β/2
])p/[β (δ+p−1)]

.

Therefore,

∥∥∥∥ A
B2

∥∥∥∥
p
≤ 21/pe−1/2

√
β (δ + p−1)

β −1

(
1+

p
δ −1

)1/p

‖B−1‖(δ+p−1)β .

We now choose β > 1 and δ > 1 by the equations q− p = (β − 1)(p + 1), δ =
2−1/β . Then q = (δ −1+ p)β . Hence,
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B2

∥∥∥∥
p
≤Cp,q‖B−1‖q, where Cp,q =

21/p
√

e

(
(p+1)

(
1+

p
q− p

))1/2+1/p

. ��

For continuous local martingales Mt , Revuz and Yor (1999, p.168) give a closely
related inequality for p > q > 0:

E
{

sup
s≥0
|Ms|p

/
〈M〉q/2

∞

}
≤CpqE

(
sup
s≥0
|MS|

)p−q

, (12.1)

where Cpq is a universal constant depending on p,q. In Sect. 12.2 we consider what
is arguably the more important case p = q under the canonical assumption (10.5),
which we also use to extend the following two inequalities to a more general setting.
Theorem 12.2 (Graversen and Peskir, 2000). Let M = (Mt)t≥0 be a continuous
local martingale with predictable variation process (〈M〉t)t≥0. Then there exist uni-
versal constants D1 > 0 and D2 > 0 such that

D1E
√

log(1+ log(1+ 〈M〉τ))≤ E

(
max

0≤t≤τ

|Mt |√
1+ 〈M〉t

)

≤ D2E
√

log(1+ log(1+ 〈M〉τ)) (12.2)

for all stopping times τ .

Theorem 12.3 (Kikuchi, 1991). Let (Mt)t≥0 be a continuous local martingale such
that M̃∞ := supt≥0 |Mt | < ∞ a.s. Then for every p > 0 and 0 < α < 1

2 , there exists
an absolute constant Cα,p such that

E
[
M̃p

∞ exp
(
αM̃2

∞
/
〈M〉∞

)]
≤Cα,p E(M̃p

∞).

12.2 Moment Bounds via the Method of Mixtures

In this section we show how the method of mixtures to perform pseudo-
maximization in Chap. 11 can be applied to develop moment bounds that generalize
Theorems 12.1–12.3 to more general functions h than the special cases h(x) = |x|p
and h(x) = exp(αx2) considered in these theorems and to more general processes.
We use the canonical assumption (10.5), or (10.6), or a variant thereof. While
Sect. 11.1 has related pseudo-maximization to Laplace’s method when the method
of mixtures uses a bounded continuous density function, we use in Sect. 12.2.1
a special class of these mixing densities, namely, Gaussian density functions, for
which integration can be performed exactly in an explicit form, without resorting
to Laplace’s approximation. In Sect. 12.2.2 we use the class of mixing densities
in Sect. 11.2 and modify Laplace’s method by bounding the integrand, using argu-
ments similar to those in the last paragraph of Sect. 11.3.
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12.2.1 Gaussian Mixing Densities

We begin with a simple application of the method of mixtures to derive exponential
and Lp-bounds for A/

√
B2 +(EB)2 when (10.6) holds for all λ ∈ R.

Theorem 12.4. Let B ≥ 0 and A be two random variables satisfying (10.6) for all
λ ∈ R. Then for any y > 0,

E
y√

B2 + y2
exp

{
A2

2(B2 + y2)

}
≤ 1. (12.3)

Consequently, if EB > 0, then E exp(A2/[4(B2 +(EB)2)])≤
√

2 and

E exp
(

x|A|
/√

B2 +(EB)2

)
≤
√

2exp
(
x2) for all x > 0. (12.4)

Moreover, for all p > 0,

E
(
|A|

/√
B2 +(EB)2

)p

≤ 2p−1/2 pΓ (p/2). (12.5)

Proof. Multiplying both sides of (10.6) by (2π)−1/2yexp(−λ 2y2/2) and integrating
over λ , we obtain by using Fubini’s theorem that

1≥
∫ ∞

−∞
E

y√
2π

exp
(
λA− λ 2

2
B2
)

exp
(
−λ 2y2

2

)
dλ

= E

[
y√

B2 + y2
exp

{
A2

2(B2 + y2)

}

×
∫ ∞

−∞

√
B2 + y2
√

2π
exp

{
−B2 + y2

2

(
λ 2−2

A
B2 + y2 λ +

A2

(B2 + y2)2

)}
dλ

]

= E

[
y√

B2 + y2
exp

{
A2

2(B2 + y2)

}]
,

proving (12.3). By the Cauchy-Schwarz inequality and (12.3),

E exp
{

A2

4(B2 + y2)

}

≤

⎧⎨
⎩
(

E
yexp

{
A2/

(
2(B2 + y2)

)}
√

B2 + y2

)⎛
⎝E

√
B2 + y2

y2

⎞
⎠
⎫⎬
⎭

1/2

≤

⎛
⎝E

√
B2

y2 +1

⎞
⎠

1/2

≤
(

E
(

B
y

+1
))1/2

for y = EB.
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To prove (12.4) and (12.5), we assume without loss of generality that EB < ∞.
Using the inequality ab ≤ a2+b2

2 with a =
√

2c|A|/
√

B2 +(EB)2 and b = x/
√

2c,

we obtain x|A|/
√

B2 +(EB)2 ≤ cA2

B2+(EB)2 + x2

4c , which in the case c = 1/4 yields

E exp

{
x|A|√

B2 +(EB)2

}
≤ E exp

{
cA2

B2 +(EB)2 +
x2

4c

}
≤
√

2exp(x2),

proving (12.4). Moreover, by Markov’s inequality, P(|A|/
√

B2 +(EB)2 ≥ x) ≤√
2exp(−x2/4) for all x > 0. Combining this with the formula EU p =

∫ ∞
0 pxp−1P(U

> x)dx for any nonnegative random variable U , we obtain

E
(
|A|

/√
B2 +(EB)2

)p

≤
√

2
∫ ∞

0
pxp−1 exp(−x2/4)dx = 2p−1/2 pΓ (p/2). ��

Another application of the basic inequality (12.3) is the following.

Corollary 12.5. Under the same assumption as in Theorem 12.4, for all x ≥
√

2,
y > 0 and p > 0,

P

(
|A|

/√
(B2 + y)

(
1+

1
2

log
(

B2

y
+1

))
≥ x

)
≤ exp

(
−x2

2

)
, (12.6)

E

(
|A|

/√
(B2 + y)

(
1+

1
2

log
(

B2

y
+1

)))p

≤ 2p/2 +2(p−2)/2 pΓ
( p

2

)
.

(12.7)

Proof. Note that for x≥
√

2 and y > 0,

P
{

A2

2(B2 + y)
≥ x2

2

(
1+

1
2

log
(

B2

y
+1

))}

≤ P
{

A2

2(B2 + y)
≥ x2

2
+

1
2

log
(

B2

y
+1

)}

≤ exp
(
−x2

2

)
E
√

yexp
{

A2/(2(B2 + y))
}

√
B2 + y

≤ exp
(
−x2

2

)
,

in which the last inequality follows from (12.3). The proof of (12.7) makes use of
(12.6) and is similar to that of (12.5). ��
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12.2.2 The Mixing Density Functions in Sect. 11.2

The function g defined in (11.10) and the class of functions L satisfying (11.3)–
(11.5) will be used throughout this section, and therefore reference to where they
are introduced will be omitted. Special cases and concrete examples of the moment
inequalities obtained by the method of mixtures using the mixing density (11.7) will
be given in Sect. 12.3. By making use of Lemmas 11.2 and 11.3, we first derive the
following inequality due to de la Peña et al. (2000).

Theorem 12.6. Let A,B > 0 be two random variables satisfying (10.6) for all
λ > 0. Let 0 < δ < 1 and let h : [0,∞) → [0,∞) be nondecreasing such that
limsupy→∞ yh(y)/gδ (y) < ∞. Then

Eh
(

A+

B

)
≤4sup

y≥1

y
(
L(y)∨g1−δ (y)

)
h(y)

g(y)

+Eh

(
1∨

√
2

1−δ
log+ L

(
B∨ 1

B

))
,

(12.8)

Eh

⎛
⎝ A+/B√

1∨ log+ L
(
B∨ 1

B

)
⎞
⎠≤ h

(√
2

1−δ

)

+ sup
y≥1

y
(
L(y)∨g1−δ (y)

)
h(y)

g(y)
.

(12.9)

Proof. Let Qδ = {g1−δ (A/B)≤ L(B∨B−1)}. By Lemma 11.3,

Eh
(

A+

B

)
≤ Eh(1)I

(
A
B
≤ 1

)

+Eh

(√
1

1−δ
log+ L

(
B∨ 1

B

))
I
(

A
B

> 1,Qδ

)

+E
g
(A

B

)
4 A

B

(
L
(A

B

)
∨L

(
B∨ 1

B

))
×

4
(A

B

)(
L
(A

B

)
∨g1−δ (A

B

))
h
(A

B

)
g
(A

B

) I
(

A
B

> 1,Qc
δ

)

≡ I + II + III.

Dropping the event Qδ from II yields

I + II ≤ Eh

(
1∨

√
2

1−δ
log+ L

(
B∨ 1

B

))
.
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By Lemma 11.2,

III ≤ sup
y≥1

4y
(
L(y)∨g1−δ (y)

)
h(y)

g(y)
,

proving (12.8). To prove (12.9) we use an analogous three-term decomposition

Eh

⎛
⎝ A+/B√

1∨ log+ L
(
B∨ 1

B

)
⎞
⎠

≤ Eh

⎛
⎝ 1√

1∨ log+ L
(
B∨ 1

B

)
⎞
⎠ I

(
A+

B
≤ 1

)

+Eh

⎛
⎝
√

2
1−δ log+ L

(
B∨ 1

B

)
√

1∨ log+ L
(
B∨ 1

B

)
⎞
⎠ I

(
A+

B
> 1, Qδ

)

+E

{
g(A/B)

4 A
B

(
L
(A

B

)
∨L

(
B∨ 1

B

))
×

4 A
B

(
L
(A

B

)
∨g1−δ (A

B

))
h
(A

B

)
g
(A

B

) I
(

A
B
≥ 1,Qc

δ

)}

≤ h

(√
2

1−δ

)
+4sup

y≥1

y
(
L(y)∨g1−δ (y)

)
g(y)

h(y).

��
We next consider the canonical assumption (10.5) instead of (10.6) and

obtain inequalities similar to (12.8) and (12.9) but with A+/B replaced by
supt≤τ At/

√
B2

t +1, where τ is a nonnegative random variable. We shall change
g to gr defined in Lemma 11.3, choosing r < 1 so that we can use the following
result of Shao (1998).

Lemma 12.7. Let Tk, k ≥ 1, be a nonnegative supermartingale. Then, for all 0 <
r < 1,

E

(
sup
k≥1

Tk

)r

≤ (ET1)r

1− r
.

Theorem 12.8. Let T = {0,1,2, . . .} or T = [0,∞). Suppose that {(At ,Bt), t ∈ T}
satisfies the canonical assumption (10.5) for all λ > 0, and that Bt is positive and
nondecreasing in t > 0, and A0 = B0 = 0. In the case T = [0,∞), At and Bt are also
assumed right-continuous. Let 0 < δ , r < 1 and h : [0,∞)→ [0,∞) be nondecreasing
such that limsupy→∞

(
yh(y)/gδr (y)

)
<∞, where gr(y) = (exp(ry2/2))I(y≥ 1). Then

for any random time τ ,
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Eh

(
sup
t≤τ

At√
B2

t +1

)
≤ sup

y≥1

4y(L(y)∨g1−δ
r (y))h(y)

gr(y)

+Eh

(
1∨

(√
2

r(1−δ )
log+ L

(√
B2
τ +1

)))
,

(12.10)

Eh

⎛
⎜⎜⎝sup

t≤τ

At√
B2

t +1
√

1∨ log+ L
(√

B2
t +1

)
⎞
⎟⎟⎠

≤ sup
y≥1

4y(L(y)∨g1−δ
r (y))h(y)

gr(y)
+h

(√
2

r(1−δ )

)
. (12.11)

Proof. By considering τ ∧ t and applying the monotone convergence theorem in
letting t → ∞, we can assume without loss of generality that τ is bounded. There
exists a sequence of random times tn ≤ τ such that

lim
n→∞

A+
tn√

B2
tn +1

= sup
0≤t≤τ

A+
t√

B2
t +1

= sup
0≤t≤τ

At√
B2

t +1
,

recalling that A0 = 0. Since 0 < r < 1,

E
(

exp
{
λAtn −

λ 2

2
(
B2

tn +1
)})r

≤ E
(

exp
{
λAtn −

λ 2

2
B2

tn

})r

≤ E
(

sup
0≤s≤τ

exp
{
λAs−

λ 2

2
B2

s

})r

= E
(

sup
s≥0

exp
{
λAτ∧s−

λ 2

2
B2
τ∧s

})r

≤ 1
1− r

(
E exp

{
λA0−

λ 2

2
B2

0

})r

=
1

1− r
,

where the last inequality follows from Lemma 12.7 and the last equality follows
from A0 = B0 = 0. For notational simplicity, let A = Atn and B = Btn . Multiplying
by the mixing density f (λ ) defined in (11.7) and integrating, 1

1−r is bounded from
below by∫ ∞

0
E exp

{
r
(
λA− λ 2

2
{

B2 +1
})} 1

λL(λ ∨λ−1)
dλ

= E
∫ ∞

0

exp
{

r
(

Ay√
B2+1

− y2

2

)}

yL
(

y√
B2+1

∨
√

B2+1
y

) dy
(

by Fubini, letting y = λ
√

B2 +1
)
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= E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp
(

rA2

2(B2 +1)

)∫ ∞

− A√
B2+1

exp
(
−rx2/2

)
(

x+ A√
B2+1

)
L

(
x+ A√

B2+1√
B2+1

∨
√

B2+1
x+ A√

B2+1

)dx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≥ E

⎧⎪⎪⎨
⎪⎪⎩

I
(

A√
B2+1

≥ 1
)

exp
(

rA2

2(B2+1)

)∫ 0
−1 exp

(
−rx2/2

)
dx

3 A√
B2+1

(
L
(

A
B2+1

)
∨L

(√
B2 +1∨ 1√

B2+1

))
⎫⎪⎪⎬
⎪⎪⎭ by Lemma 11.1

≥ E
gr

(
A√

B2+1

)

4 A√
B2+1

(
L
(

A√
B2+1

)
∨L(
√

B2 +1)
) ,

where the second equality is obtained via the change of variables x = y− A√
B2+1

and the last one uses the fact that
√

B2 +1 ≥ 1/
√

B2 +1. Replacing g(x) by gr(x)
and using the same argument as that in the proof of Theorem 12.6,

Eh

(
sup

0≤t≤τ

A+
t√

B2
t +1

)
= lim

n→∞
Eh

⎛
⎝ A+

tn√
B2

tn +1

⎞
⎠

≤ sup
y≥1

4y
(
L(y)∨g1−δ

r (y)
)

(1− r)gr(y)
h(y)

+ lim
n→∞

Eh

(
1∨

√
2

r(1−δ )
log+ L(

√
B2

tn +1)

)

≤ sup
y≥1

4y
(
L(y)∨g1−δ

r (y)
)

(1− r)gr(y)
h(y)

+Eh

(
1∨

√
2

r(1−δ )
log+ L(

√
B2
τ +1)

)
,

where the last inequality follows because tn ≤ τ and Bt is increasing in t, giving
(12.10). The proof of (12.11) is similar and follows by replacing

√
B2

t +1 with

(
√

B2
s +1)

√
1∨ log+ L(

√
B2

s +1). ��
In Theorems 12.6 and 12.8, the assumed growth rate of h is related to g (or gr)

and not to L. The next two theorems, due to de la Peña et al. (2004), relate the growth
rate to both g and L and give analogs of (12.8) and (12.10) in this case.
Theorem 12.9. Let h be a nondecreasing function on [0,∞) such that for some
x0 ≥ 1 and c > 0,

0 < h(x)≤ cg(x)/L(x) for all x≥ x0. (12.12)
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Let q be a strictly increasing, continuous function on [0,∞) such that for some c̄≥ c,

L(x)≤ q(x)≤ c̄g(x)
h(x)

for all x≥ x0. (12.13)

Let B > 0 and A be random variables satisfying (10.6) for all λ > 0. Then

Eh(A+/B)≤ 4c̄+h(x0)+Eh
(
q−1 (L(B∨B−1)

))
. (12.14)

Consequently, Eh(A+/B) < ∞ if Eh(q−1(L(B∨B−1))) < ∞.

Proof. By Lemma 11.2,

E
g(A+/B)

L(A/B)∨L(B∨1/B)
≤ 4.

Let Q = {L(B∨B−1)≤ q(A/B)}. Then Eh(A+/B) is majorized by

h(x0)+E

{
h(A+/B)I(Q)I(A/b≥ x0)

g(A/B)/(L(A/B)∨L(B∨1/B))

×
(

g(A/B)
L(A/B)∨L(B∨1/B)

)}
+Eh

{(
A+

B

)
I(Qc)I

(
A
B
≥ x0

)}

≤ h(x0)+ sup
y≥x0

h(y)(L(y)∨q(y))
g(y)

×E
(

g(A/B)
L(A/B)∨L(B∨1/B)

)
+Eh

(
q−1

(
L
(

B∨ 1
B

)))

≤ h(x0)+4 sup
y≥x0

h(y)q(y)
g(y)

+Eh
(

q−1
(

L
(

B∨ 1
B

)))
.

��
We next consider the case where the canonical assumption (10.6) holds only

for 0 < λ < λ0. Some new ideas are needed because A+/B may fall outside this
range. In this connection we also generalize the canonical assumption (10.6) by
replacing the quadratic function λ 2B2/2 and the upper bound 1 by a convex function
Φ(λB) and a finite positive constant c. Unlike Theorem 12.9 that involves a single
function q to give the upper bound (12.14), a new idea to handle the restricted range
0 < λ < λ0 is to use a family of functions qb.

Theorem 12.10. Suppose that Φ(·) is a continuous function with Φ ′(x) strictly
increasing, continuous and positive for x > 0, with limx→∞Φ(x) = ∞ and
supx>0Φ ′′(x) < ∞. Let B > 0 and A be random variables such that there exists
c > 0 for which

E exp{λA−Φ(λB)} ≤ c for all 0 < λ < λ0. (12.15)
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For w > Φ ′(1), define yw by the equation Φ ′(yw) = w, and let

gΦ(w) = y−1
w exp{wyw−Φ(yw)}. (12.16)

Let η > η̃ > 0. Let h : [0,∞)→ (0,∞) be a nondecreasing function. For b ≥ η , let
qb be a strictly increasing, continuous function on (0,∞) such that for some c̃ > 0
and w0 > Φ ′(2),

qb(w)≤ c̃{gΦ(w)I(yw ≤ λ0b)+ eλ0η̃wI(yw > λ0b)}
/

h(w) (12.17)

for all w ≥ w0. Then there exists a constant C depending only on λ0,η , η̃ ,c, c̃ and
Φ such that

Eh
(
A+/(B∨η)

)
≤C +h(w0)+Eh

(
q−1

B∨η (L(B∨η))
)

. (12.18)

Proof. The proof uses two variants of Lemma 11.2. We split A/B ≥ w0 into two
cases: yA/B > λ0B and yA/B ≤ λ0B. Since Φ(x) is increasing in x > 0, (12.15) holds
with B replaced by B∨η and, therefore, we shall assume without loss of generality
that B≥η . Integrating (12.15) with respect to the probability density function (11.7)
yields

c≥ E
∫ λ0

0

exp{λA−Φ(λB)}
λL(λ ∨λ−1)

dλ = E
∫ λ0B

0

exp{xA/B−Φ(x)}
xL(x/B∨B/x)

dx (12.19)

The first variant of Lemma 11.2, given in (12.20), provides an exponential bound
for A/B when λ0B < yA/B. Observe that using the definition of yw, we have that
x A

B −Φ(x) increases in x for x ≤ yA/B, and decreases in x for x ≥ yA/B. Take any
0 < η̃ < η , and let λ1 = λ0∨λ−1

0 ∨ η̃ . Since B≥ η > η̃ , it follows from (12.19) and
(11.3) that

c≥E
∫ λ0η̃

λ0η

exp{xA/B−Φ(x)}
xL(x/B∨B/x)

dxI
(

A
B
≥ w0

)
I(yA/B > λ0B)

≥E
∫ λ0η̃

λ0η

exp{λ0η̃A/B−Φ(λ0η)}
L(λ0∨B/(λ0η̃))

dx
x

I
(

A
B
≥ w0

)
I(yA/B > λ0B)

≥e−Φ(λ0η̃)

3λ1/η̃
log

(
η
η̃

)
E

{
eλ0η̃A/B

L(B)
I
(

A
B
≥ w0

)
I(yA/B > λ0B)

}
. (12.20)

The second variant of Lemma 11.2, given in (12.22), bounds A/B when λ0B ≥
yA/B. Since w0 > Φ ′(2),yw0 > 2. Define

a∗ = sup{a≤ 1 : a2Φ ′′(x)≤ 1 for all x > yw0 −a}. (12.21)

Note that a∗ > 0 and yw0−a∗ > 1. Since Φ ′(yw)−w = 0, a two-term Taylor expan-
sion for w≥ w0 and x ∈ (yw−a∗,yw) yields
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wx−Φ(x) = wyw−Φ(yw)− (x− yw)2

2
Φ ′′(ξ ∗)

≥ wyw−Φ(yw)− (x− yw)2

2a2∗
,

in which ξ ∗ lies between x and yw. The last inequality follows from (12.17) and
(12.21), noting that ξ ∗ > x > yw−a∗ ≥ yw0 −a∗. It then follows from (12.19) that

c≥ E

[
I
(

yA/B ≤ λ0B,
A
B
≥ w0

)

×
∫ yA/B

yA/B−a∗

exp{(A/B)yA/B−Φ(yA/B)− (x− yA/B)2/(2a2
∗)}

xL(x/B∨B/x)
dx

]

≥ E

[
I
(

yA/B ≤ λ0B,
A
B
≥ w0

)

×
exp{(A/B)yA/B−Φ(yA/B)}

yA/B{L(λ0∨B)}

∫ yA/B

yA/B−a∗
exp

{
−

(x− yA/B)2

2a2∗

}
dx

]
,

using x > yA/B− a∗ ≥ yw0 − a∗ > 1 so that B
x < B. From Lemma 11.1 and the fact

that B≥ η , we have L(λ0∨B)≤ 3(1∨ λ0
η )L(B). Hence,

c≥ E

[
I
(

yA/B ≤ λ0B,
A
B
≥ w0

)

×
exp{(A/B)yA/B−Φ(yA/B)}

3yA/B (1∨ (λ0/η))L(B)
a∗

∫ 1

0
exp

(
− z2

2

)
dz

]

≥ a∗
4(1∨ (λ0/η))

E
gΦ(yA/B)I(yA/B ≤ λ0B,A/B≥ w0)

L(B)
. (12.22)

Let Q = {L(B) ≤ qB(A/B)}. Then rewriting (12.17) as an upper bound for h and
using the definition of Q, we can majorize Eh(A+/B) by

h(w0)+ c̃E

[
I(Q)

{
gΦ(A/B)

L(B)
I
(

A
B
≥ w0,yA/B ≤ λ0B

)

+
eλ0η̃A/B

L(B)
I
(

A
B
≥ w0,yA/B > λ0B

)}]

+Eh
(

A
B

)
I
(

Qc∩
{

A
B
≥ w0

})
≤ h(w0)+C +Eh

(
q−1

B (L(B))
)
,

in which the inequality follows from (12.17), (12.20) and (12.22). ��
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While Theorem 12.10 provides an analog of (12.8) when the canonical assump-
tion (10.6) holds only for the restricted range 0 < λ < λ0 and generalizes (10.6) to
(12.5) in this connection, de la Peña et al. (2004) have also provided an analog of
(12.11) when the canonical assumption (10.5) holds only for 0 < λ < λ0. They use
ideas similar to those in the proof of Theorem 12.10 and have accordingly general-
ized (10.5) to (10.23) in the following.

Theorem 12.11. Let T = {0,1,2, . . .} or T = [0,∞), 1 < r ≤ 2, and Φr(x) = xr/r
for x > 0. Let At ,Bt be stochastic processes (on the same probability space) such
that Bt is positive and nondecreasing in t > 0, with A0 = B0 = 0, and

{exp(λAt −Φr(λBt), t ∈ T} is a supermartingale for 0 < λ < λ0. (12.23)

In the case T = [0,∞), assume furthermore that At and Bt are right-continuous.
Let η > 0, λ0η > ε > 0 and h : [0,∞)→ (0,∞) be a nondecreasing function such
that h(x) ≤ eεx for all large x. Then there exists a constant C depending only on
λ0,η ,r,ε,h and L such that

Eh
(

sup
t≥0

{
At(Bt ∨η)−1 [1∨ log+ L(Bt ∨η)

]−(r−1)/r
})
≤C. (12.24)

12.3 Applications and Examples

12.3.1 Proof of Lemma 8.11

Let A =∑n
i=1 ξi, B2 =∑n

i=1 ξ 2
i +∑n

i=1 E(ξ 2
i |Fi−1). By Theorem 9.21, (A,B) satisfies

the canonical assumption (10.6) for all λ ∈ R. Therefore we can apply (12.4) to
conclude that

E exp
{
θ |A|

/√
B2 +(EB)2

}
≤
√

2exp(θ 2) for all θ > 0.

Noting that EB2 ≥ (EB)2 and setting θ = x/2, application of Markov’s inequality
then yields

P

{
|∑n

i=1 ξi|[
∑n

i=1
(
ξ 2

i +E(ξ 2
i |Fi−1)+2Eξ 2

i

)]1/2 ≥ x

}

≤ P
{
|A|

/√
B2 +(EB)2 ≥ x

}
≤ e−θxE exp

{
θ |A|

/√
B2 +(EB)2

}

≤
√

2exp(−θx+θ 2) =
√

2e−x2/4.
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12.3.2 Generalizations of Theorems 12.1, 12.2 and 12.3

Suppose B > 0 and A satisfy (10.6) for all λ ∈R. Let p > 0. Then by Theorem 12.6
with h(x) = |x|p, there exist constants Cp, C1,p and C2,p, depending only on p, such
that

E
∣∣∣∣A+

B

∣∣∣∣
p

≤C1,p +C2,p E
(

log+ L
(

B∨ 1
B

))p/2

, (12.25)

which is a consequence of (12.8), and

E

(
|A|

B
√

1∨ log+ L(B∨B−1)

)p

≤Cp, (12.26)

which is a consequence of (12.9). Note that (12.25) addresses the case q = p in
Theorem 12.1. Moreover, the upper bound (12.2) for a continuous local martingale
Mt is the special case, corresponding to p = 1, of Theorem 12.8 with h(x) = |x|p,
At = Mt (and also At =−Mt), B2

t = 〈M〉t and L(x) = 2(logxee)(log logxee)2I(x≥ 1),
for which (12.10) reduces to

E

(
sup

0≤t≤τ

(
|Mt |√

1+ 〈M〉t

)p)
≤C1,p +C2,pE (log(1+ log(1+ τ)))p/2 . (12.27)

Example 12.12. Let {Yi} be a sequence of i.i.d. random variables with P(Yi = 1) =
P(Yi = −1) = 1

2 and T = {infn ≥ ee : ∑n
j=1 Yj ≥

√
2n log logn} with T = ∞ if no

such n exists. By a result of Erdös (1942), P(T < ∞) = 1. Let Xn, j = YjI(T ≥ j) for
1≤ j ≤ n with Xn, j = 0 when j > n. Then

Xn,1 + · · ·+Xn,n√
X2

n,1 + · · ·+X2
n,n

= ∑T∧n
i=1 Yi√
T ∧n

→
√

2loglogT . (12.28)

This shows that (12.25) is sharp.

Whereas the preceding applications have followed Theorems 12.1 and 12.2 and
focused on the Lp-norms of self-normalized processes, we can choose h to be an
exponential function in the results of Sect. 12.2.2, as illustrated in the following.

Example 12.13. Supposed B > 0 and (A,B) satisfies the canonical assumption (10.6)
for all λ > 0. Let 0 < θ < 1 and h(x) = exp(θx2/2) for x≥ 0. With this choice of h
and with L defined by (11.6), it follows from Theorem 12.9 that

E exp

[
θ
2

(
A+

B

)2
]

< ∞

if E
{

(log B̃)(log log B̃)3/2(log log log B̃)1+δ
}θ/(1−θ)

< ∞ (12.29)

for some δ > 0, where B̃ = B∨B−1∨ e3; see Problem 12.2.
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We next consider the canonical assumption (10.5) for all λ > 0 and extend
Theorem 12.3 due to Kikuchi (1991) by applying Theorem 12.8.

Example 12.14. Consider the case of continuous local martingales At . We can apply
Theorem 12.8 with Bt =

√
〈A〉t , in view of Lemma 10.2. Putting h(x) = exp(αx2),

with 0 < α < 1
2 , in (12.11) yields an absolute constant C(α) such that

E
[

sup
t≥0

exp
(

αA2
t

(〈A〉t +1) log log(〈A〉t + e2)

)]
≤C(α)

which can be regarded as an extension to p = 0 of Theorem 12.3.

12.3.3 Moment Inequalities Under Canonical Assumption
for a Restricted Range

Section 10.2 has described a number of models that satisfy (10.5) or (10.6) only for
the restricted range 0 < λ < λ0. The following example applies Theorem 12.10 to
handle this case.

Example 12.15. Suppose B > 0 and (A,B) satisfies (10.6) only for 0≤ λ ≤ λ0. Thus,
(12.15) holds with Φ(x) = x2/2 and gΦ reduce to the function g defined by (11.10)
in this case, noting that yw = w. Let p > 0 and h(x) = xp for x≥ 0. For b≥η > η̃ > 0,
let qb be a strictly increasing function on (0,∞) such that for all large b,

qb(w) = ew2/2/wp+1 if w≤ λ0(η̃b)1/2,

≤ ew2/2/wp+1 if λ0(η̃b)1/2 < w≤ λ0,

≤ eλ0η̃w/wp if w > λ0b.

(12.30)

The inequality (12.13) holds with c̃ = 1. Using (11.6) as the choice of L, it
follows from (12.30) that q−1

b (L(b)) ∼ (2loglogb)1/2 as b → ∞. Therefore, by
Theorem 12.10,

E
(
A+/(B∧η)

)p
< ∞ if E {log(| log(B∧η)|∧ e)}p/2 < ∞. (12.31)

Similarly, letting h(x) = eξx with 0 < ξ < λ0η̃ , it follows from Theorem 12.10 that

E exp
(
ξA+/(B∨η)

)
< ∞

if E exp
{
ξ
[
2(log log B̃)(log loglog B̃)1+δ

]1/2
}

(12.32)

for some δ > 0, where B̃ = B∨ e3.
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12.4 Supplementary Results and Problems

1. Prove Lemma 12.7.
2. Explain how (12.29) can be derived from Theorem 12.9.
3. One choice of qb that satisfies (12.30) for sufficiently large b is to let qb(w) =

w−p exp
(

f 2(w)
)

for λ0(η̃b)1/2 < w≤ λ0b, where f is linear on [λ0(η̃b)1/2,λ0b]
and is uniquely determined by requiring qb to be continuous. Show that in this
case f 2(w)≤ w2/2− logw for λ0(η̃b)1/2 ≤ w≤ λ0b if b is sufficiently large.



Chapter 13
Laws of the Iterated Logarithm
for Self-Normalized Processes

In this chapter we first give Stout’s (1973) generalization of Kolmogorov’s law of
the iterated logarithm (LIL) for sums of independent zero-mean random variables
with finite variances (see (2.2)) to martingales that are self-normalized by the con-
ditional variances. We then consider self-normalization by a function of the sum of
squared martingale differences as in de la Peña et al. (2004). This self-normalization
yields a universal upper LIL that is applicable to all adapted sequences. In the case
of martingales satisfying certain boundedness assumptions, a compact LIL is then
derived.

13.1 Stout’s LIL for Self-Normalized Martingales

Stout’s LIL for martingales involves normalization by a function of the conditional
variance s2

n = ∑n
i=1 E(d2

i |Fi−1). In the case where the di’s are independent zero-
mean random variables, the conditional variance is equal to the variance and hence
Stout’s result, which is stated in the following theorem, is a generalization of Kol-
mogorov’s LIL. Let mn =

√
2loglog(e2∨ s2

n).

Theorem 13.1. Let Mn = ∑n
i=1 di be a martingale with respect to a filtration {Fn}.

There exists a function ε(·) such that ε(x) decreases to 0 as x ↓ 0 and for some
constants 0 < K ≤ 1

2 and ε(K) < 1,

limsup
Mn

snmn
≤ 1+ ε(K) a.s.

whenever:

(1) s2
n < ∞ a.s. for each n≥ 1 and s2

n → ∞ a.s.
(2) di ≤ Kisi/mi and limsupKi < K a.s., where Ki is Fi−1-measurable.

Before proceeding with the proof, we present a simple corollary.

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 179
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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Corollary 13.2. Let Ki be Fi−1−measurable for all i≥ 1. Assume that Ki → 0 a.s.
If s2

n < ∞, s2
n → ∞ a.s. and

Yi ≤
Kisi

mi
a.s. for all i≥ 1, (13.1)

then
limsup

Mn

snmn
≤ 1 a.s. (13.2)

Stout (1970) has shown that equality in fact holds in (13.2) if Yi in (13.1) is replaced
by its absolute value.

Lemma 13.3. Let fK(x) = (1 + x)2[1−K(1 + x)/2]− 1 for 0 < x ≤ 1, 0 < K ≤ 1
2 .

Then fK(x) is an increasing function satisfying fK(0) < 0 and fK(1) > 0 for each
0 < K ≤ 1

2 . Let ε(K) be the zero of fK(·) for each 0 < K ≤ 1
2 . Then 1 > ε(K) for

each 0 < K ≤ 1
2 and ε(K) decreases to 0 as K→ 0.

Proof (of Theorem 13.1). We use a truncation argument so that Theorem 9.18 can
be applied. Let d′i = diI(Ki ≤ K) for i ≥ 1 and M′n = ∑n

i=1 d′i for n ≥ 1. Since
limsupi Ki < K, it suffices to show that

limsup
M′n

snmn
≤ 1+ ε(K) a.s. (13.3)

To prove (13.3), we introduce a sequence of stopping times that allow us to replace
the random quantities si,mi by constants. Once this is done we are able to use the
supermartingale in Theorem 9.18.

Take any p > 1. For k ≥ 1, let τk be the smallest n for which s2
n+1 ≥ p2k. Note

that s2
n+1 is Fn-measurable and hence τk is a stopping time. Let M(k)

n = M′τk∧n. Then

{M(k)
n ,Fn, n≥ 1} is a supermartingale. Note that

sτk−1+1 +mτk−1+1

2p2k log log(e2∨ p2k)
≥ p−2 log log(e2∨ p2(k−1))

log log(e2∨ p2k)
≈ p−2.

Let δ ′ > 0 and pick δ > 0 in such a way that (1 + δ )p−1 > 1 + δ ′. Then P(M′n >
(1+δ )snmn i.o.) is bounded above by

P

(
sup

τk≥n≥0
M′n > (1+δ )sτk−1+1mτk−1+1 i.o.

)

= P
(

sup
n≥0

M(k)
n > (1+δ )sτk−1+1mτk−1+1 i.o.

)

≤ P
(

sup
n≥0

M(k)
n > (1+δ ′)

[
2p2k log log(e2∨ p2k)

]1/2
i.o.

)
,

in which “i.o.” means “for infinitely many k’s.” Therefore, by the Borell–Cantelli
lemma, it suffices to show that for all δ ′ > ε(K),
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∞

∑
k=1

P
(

sup
n≥0

M(k)
n > (1+δ ′)

[
2p2k log log(e2∧ p2k)

]1/2
)

< ∞. (13.4)

For k large enough, using the definition of τk and the fact that sn/mn is non-
decreasing and the bound on the di’s, we obtain

M(k)
n+1−M(k)

n ≤ Ksτk

mτk

≤ K pk

[2loglog(e2∧ p2k)]1/2 a.s.

Let (s(k)
n )2 = ∑n

i=1 E[(M(k)
i −M(k)

i−1)
2|Fi−1] for all n≥ 1. We apply Theorem 9.18 to

the martingale {M(k)
n ,Fn, n≥ 1} for k large enough, with

c = K pk/[2loglog(e2∧ p2k)]1/2,

λ = (1+δ ′)[2loglog(e2∧ p2k)]1/2/pk.
(13.5)

Set

Tn = exp
(
λM(k)

n

)
exp

[
−λ 2

2

(
1+

λc
2

)(
s(k)

n

)2
]

for n ≥ 1 and T0 = 0. If we choose δ ′ ≤ 1, then λc = (1 + δ ′)K ≤ 1 by (13.5) and
the assumption K ≤ 1

2 . Finally, note that supn≥1(s
(k)
n )2 ≤ s2

τk
a.s.

P
(

sup
n≥0

M(k)
n > (1+δ ′)

[
2p2k log log(e2∧ p2k)

]1/2
)

= P
(

sup
n≥0

M(k)
n > λ p2k

)

= P
(

sup
n≥0

exp(λM(k)
n ) > exp(λ 2 p2k)

)

≤ P
(

sup
n

Tn > exp
[
λ 2 p2k−λ 2

(
1+

λc
2

)
s2
τk

])

≤ P
(

sup
n

Tn > exp
[
λ 2 p2k−λ 2

(
1+

λc
2

)
p2k

])

≤ exp
(
−λ 2 p2k +λ 2

(
1+

λc
2

)
p2k

)
,

by Theorem 9.18. Putting in the values of λ and c given in (13.5), the above upper
bound reduces to

exp
{
−(1+δ ′)2

[
1− 1

2
K(1+δ ′)

]
log log(e2∨ p2k)

}
.

Note that (1 + δ ′)2[1−K(1 + δ ′)/2]− 1 > 0 for all 1 ≥ δ ′ > ε(K). Pick such δ ′.
Then there exists β > 1 such that
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P
(

sup
n≥0

M(k)
n > (1+δ ′)

[
2p2k log log(e2∨ p2k)

]1/2
)
≤ exp

[
−β log log(e2∧ p2k)

]
= (2k log p)−β

for k large enough. Therefore ∑∞
k=1(2k log p)−β < ∞, completing the proof. ��

13.2 A Universal Upper LIL

In this section we describe a universal upper LIL (Theorem 13.5) developed by de
la Peña et al. (2004). When a partial sum of random variables X1,X2, . . . is centered
and normalized by a sequence of constants, only under rather special conditions
does the usual LIL hold even if the variables are i.i.d. In contrast, Theorem 13.5
shows that there is a universal upper bound of LIL type for the almost sure rate at
which such sums can grow after centering by a sum of conditional expectations of
suitably truncated variables and normalizing by the square root of the sum of squares
of the Xj’s. Specifically, let Sn = X1 + X2 + · · ·+ Xn and V 2

n = X2
1 + X2

2 + · · ·+ X2
n ,

where {Xi} is adapted to the filtration {Fi}. In Theorem 13.5 we prove that given
any λ > 0, there exist positive constants aλ and bλ such that limλ→∞ bλ =

√
2 and

limsup
{Sn−∑n

i=1 μi(−λvn,aλ vn)}
Vn(log logVn)1/2 ≤ bλ a.s. (13.6)

on {limVn = ∞}, where vn = Vn(log logVn)1/2 and μi(c,d) = E{XiI(c ≤ Xi < d) |
Fi−1} for c < d. Note that (13.6) is “universal” in the sense that it is applicable
to any adapted sequence {Xi}. In particular, suppose {Sn,Fn,n ≥ 1} is a super-
martingale such that Xn ≥ −mn a.s. for some Fn−1− measurable random variable
mn satisfying P{0≤ mn ≤ λvn for all large n}= 1. Then (13.6) yields

limsup
Sn

Vn(log logVn)1/2 ≤ bλ a.s. on {limVn = ∞}. (13.7)

We derive in Sect. 13.3 the lower half counterpart of (13.7) for the case where
{Sn,Fn,n≥ 1} is a martingale such that |Xn| ≤ mn a.s. for some Fn−1-measurable
mn with vn→ ∞ and mn/vn→ 0 a.s. Combining this with (13.7) (with limλ→0 bλ =√

2) then yields

limsup
Sn

Vn(log logVn)1/2 =
√

2 a.s. (13.8)

To prove (13.6) for any adapted sequence {Xi}, one basic technique pertains
to upper-bounding the probability of an event of the form Ek = {tk ≤ τk < tk+1} in
which t j and τ j are stopping times defined in (13.10) below. Sandwiching τk between
tk and tk+1 enables us to replace both the random exceedance and truncation levels
in (13.10) by constants. Then the event Ek can be re-expressed in terms of two
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simultaneous inequalities, one involving centered sums and the other involving a
sum of squares. Using these inequalities, we come up with a supermartingale that is
then used to bound P(Ek). The supermartingale is already mentioned without proof
in Lemma 10.5. Apart from finite mean constraints, Lemma 10.4 gives the basic
idea underlying the construction of this supermartingale. Lemma 10.4 corresponds
to the case r = 2 in the following.

Lemma 13.4. let 0 < γ < 1 < r ≤ 2. Define

cr = inf{c > 0 : exp(x− cxr)≤ 1+ x for all x≥ 0} ,

c(γ)
r = inf{c > 0 : exp(x− c|x|r)≤ 1+ x for all − γ ≤ x≤ 0} ,

cγ ,r = max{cr,c
(γ)
r }.

(a) For all x ≥ −γ, exp{x− cγ , r|x|r} ≤ 1 + x. Moreover, cr ≤ (r− 1)(r−1)(2−
r)(2−r)/r and

c(γ)
r =

−(γ + log(1− γ))
γ r =

∞

∑
j=2

γ j−r

j
.

(b) Let {dn} be a sequence of random variables adapted to the filtration {Fn}
such that E(dn | Fn−1) ≤ 0 and dn ≥ −M a.s. for all n and some nonran-
dom positive constant M. Let An = ∑n

i=1 di, Br
n = rcγ ,r ∑n

i=1 |di|r, A0 = B0 = 0.
Then {exp(λAn− (λBn)r/r),Fn,n ≥ 0} is a supermartingale for every 0 ≤
λ ≤ γM−1.

Proof. The first assertion of (a) follows from the definition of cγ , r. For c > 0, define
gc(x) = log(1+x)−x+c|x|r for x >−1. Then g′c(x) = |x|r−1{|x|2−r(1−|x|)−1−cr}
for−1 < x < 0. Since |x|2−r/(1−|x|) is decreasing in−1 < x < 0, g′c has at most one
0 belonging to (−1,0). Let c∗ =−{γ+ log(1−γ)}/γr. Then gc∗(−γ) = 0 = gc∗(0).
It then follows that gc∗(x) > 0 for all−γ < x < 0 and, therefore, c∗ ≥ c(γ)

r . If c∗> c(γ)
r ,

then g
c(γ)

r
(−γ) < gc∗(−γ) = 0, contradicting the definition of c(γ)

r . Hence, c(γ)
r = c∗.

Take any c≥ (r−1)(r−1)(2− r)(2−r)/r. Then for all x > 0,

g′c(x) =
1

1+ x
−1+ crxr−1 ≥ x

1+ x

{
−1+ cr inf

y>0

(
yr−2 + yr−1)}

=
x

1+ x

{
−1+

cr
(r−1)(r−1)(2− r)(2−r)

}
≥ 0.

Since gc(0) = 0, it then follows that gc(x) ≥ 0 for all x ≥ 0. Hence, cr ≤
(r−1)(r−1)(2− r)(2−r)/r.

To prove (b), note that since λdn ≥−λM≥−λ a.s. for 0≤ λ ≤ γM−1, (a) yields

E
[
exp

{
λdn− cγ ,r|λdn|r |Fn−1

}]
≤ E[1+λdn |Fn−1]≤ 1 a.s.

��
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Lemma 10.5 is a refinement of Lemma 10.4, in which Cγ corresponds to cγ ,2
in Lemma 13.4(b), by removing the assumptions on the integrability and lower
bound on Yi. Noting that exp{y− y2/λi} ≤ 1 if y ≥ λi or if y < −γi, and letting
Xi = YiI(−γn ≤ Yn < λi) so that μi = E(Xi|Fi−1), we have

E
{

exp(Yi−μi−λ−1
i Y 2

i )|Fi−1
}
≤ E

{
exp(Xi−μi−λ−1

i X2
i )|Fi−1

}
≤ E

{
exp((1+Xi)e−μi)|Fi−1

}
= (1+μi)e−μi ,

proving Lemma 10.5 since (1+μi)e−μi ≤ 1. One reason why de la Peña et al. (2004)
consider more general 1 < r ≤ 2 instead of only r = 2 is related to the more general
form (12.23) of the canonical assumption, in which Φr(x) = xr/r.

The centering constants in (13.6) involve sums of expectations conditioned on
the past which are computed as functions of the endpoints of the interval on which
the associated random variable is truncated. The actual endpoints used, however,
are neither knowable nor determined until the future. Thus the sequence of centered
sums that result is not a martingale. Nevertheless, by using certain stopping times,
the random truncation levels can be replaced by non-random ones, thereby yielding
a supermartingale structure for which Lemma 10.5 applies, enabling us to establish
the following result.

Theorem 13.5. Let Xn be measurable with respect to Fn, an increasing sequence of
σ -fields. Let λ > 0 and h(λ ) be the positive solution of

h− log(1+h) = λ 2. (13.9)

Let bλ = h(λ )/λ , γ = h(λ )/{1+h(λ )} and aλ = λ/(γCγ), where Cγ is defined by
Lemma 10.4. Then (13.6) holds on {limn→∞Vn = ∞} and limλ→0 bλ =

√
2.

Proof. Recall that V 2
n = X2

1 + · · · + X2
n , vn = Vn(log logVn)−1/2. Let ek =

exp(k/ logk). Define

t j = inf{n : Vn ≥ e j}, (13.10)

τ j = inf

{
n≥ t j : Sn−

n

∑
i=1

μi(−λvn,aλ vn)≥ (1+3ε)bλVn(log logVn)1/2

}
,

letting inf /0 = ∞. To prove (13.6), it suffices to show that for all sufficiently small
ε > 0,

lim
K→∞

∞

∑
k=K

P{τk < tk+1}= 0.

Note that τk ≥ tk and that tk may equal tk+1, in which case {τk < tk+1} becomes the
empty set. Moreover, on {limn→∞Vn = ∞}, t j < ∞ for every j and lim j→∞ t j = ∞.
Since y(log logy)−1/2 is increasing in y≥ e3, we have the following inequalities on
{tk ≤ τk < tk+1} with k ≥ 3:
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ek ≤
(

τk

∑
i=1

X2
i

)1/2

< ek+1, (13.11)

dk := ek(log logek)−1/2 ≤ vtk ≤ vτk < dk+1, (13.12)
μi(−λvτk ,αλ vτk)≥ μi(−λdk+1,αλdk) for 1≤ i≤ τk. (13.13)

Let μi,k = μi(−λdk+1,αλdk). We shall replace Xi (for 1 ≤ i ≤ τk) by Yi,k :=
(λdk+1)−1γXi and μi,k by μ̃i,k := (λdk+1)−1γμi(−λdk+1,αλdk). Since λ−1γαλ =
C−1
γ ,

μ̃i,k = E
{

Yi,k1(−γ ≤ Yi,k < C−1
γ dk/dk+1)|Fi−1

}
. (13.14)

Since ek/dk = (log logek)1/2 and dk/dk+1 → 1 as k→ ∞, it follows from (13.11)–
(13.13) that for all sufficiently large k, the event {τk < tk+1} is a subset of{

τk

∑
i=1

(λdk+1)−1(Xi−μi,k)≥ (1+2ε)λ−1bλ log logek, τk < ∞

}

⊂
{

τk

∑
i=1

[
(λdk+1)−1γ(Xi−μi,k)−Cγ(dk+1/dk)(λdk+1)−2γ2X2

i
]

≥ (1+2ε)γλ−1bλ log logek−Cγ(dk+1/dk)(γ/λ )2 log logek+1, τk < ∞

}

⊂
{

sup
n≥1

exp

[
n

∑
i=1

(Yi,k− μ̃i,k−Cγd−1
k dk+1Y 2

i,k)

]

≥ exp
[
(1+ ε)(γλ−1bλ −Cγ γ2λ−2)(logk)

]}
.

In view of (13.14), we can apply Lemma 10.5 to conclude that the last event above
involves the supremum of a non-negative supermartingale with mean ≤ 1. There-
fore, application of the supermartingale inequality to this event yields

P{τk < tk+1} ≤ exp
{
−(1+ ε)(γλ−1bλ −Cγ γ2λ−2)(logk)

}
,

which implies (13.6) since

γλ−1bλ −λ−2γ2Cγ = λ−2 {γh(λ )+ γ + log(1− γ)}= 1. (13.15)

The first equality in (13.15) follows from γ2Cγ = −{γ + log(1− γ)} and bλ =
h(λ )/λ , and the second equality from γ = h(λ )/(1 + h(λ )) and (13.9). Moreover,
(13.9) implies that h2(λ )∼ 2λ 2 and, therefore, bλ →

√
2 as λ → 0. ��

Remark 13.6. The choice of γ in Theorem 13.5 actually comes from minimizing
γλ−1bλ−λ−2γ2Cγ over 0 < γ < 1, whereas bλ is employed to make this minimizing
value equal to 1, leading to (13.9) that defines h(λ ).



186 13 Laws of the Iterated Logarithm for Self-Normalized Processes

Another reason why de la Peña et al. (2004) consider more general 1 < r ≤ 2 in
Lemma 13.4 is to use it to extend Theorem 13.5 to the following result, in which we
self-normalize the suitably centered Sn by the more general (∑n

i=1 |Xi|r)1/2.

Theorem 13.7. Let Xn be measurable with respect to the filtration {Fn}. For 1 <
r ≤ 2, let Vn,r = (∑n

i=1 |Xi|r)1/r, vn,r = Vn,r{log log(Vn,r∨e2)}−1/r. Then for any 0 <
γ < 1, there exists a positive constant bγ ,r such that

limsup
n→∞

{
Sn−∑n

i=1 μi(−γvn,r,c
−1/(r−1)
γ ,r vn,r)

}
{Vn,r(log logVn,r)(r−1)/r}

≤ bγ ,r a.s.

on {limn→∞Vn,r = ∞}, where cγ ,r is given in Lemma 13.4.

13.3 Compact LIL for Self-Normalized Martingales

Although Theorem 13.5 gives an upper LIL for any adapted sequence {Xi}, the up-
per bound in (13.6) may not be attained. A simple example is given in Problem 13.3.
In this section we consider the case of martingales {Sn,Fn,n≥ 1} self-normalized
by Vn and prove the lower half counterpart of (13.7) when the increments of Sn do
not grow too fast, thereby establishing (13.8). This is the content of the following.

Theorem 13.8. Let {Xn} be a martingale difference sequence with respect to the
filtration {Fn} such that |Xn| ≤mn a.s. for some Fn−1-measurable random variable
mn, with Vn → ∞ and mn/{Vn(log logVn)−1/2}→ 0 a.s. Then (13.8) holds.

Proof. Take 0 < b < β < β̃ <
√

2. Since 1−Φ(x) = exp{−( 1
2 +o(1))x2} as x→∞,

we can choose λ sufficiently large such that

{
1−Φ(β

√
λ )

}1/λ
≥ exp(−β̃ 2/2), (13.16)

where Φ is the standard normal distribution function. Take a > 1 and define for
j ≥ 2 and k = 0,1, . . . , [λ−1 log j],

a j,k = a j + k(a j+1−a j)/[λ−1 log j],

t j(k) = inf{n : V 2
n ≥ a j,k}.

Let t j = inf{n : V 2
n ≥ a j}, so t j(0) = t j, t j(λ−1 log j) = t j+1. Since X2

n =
o(V 2

n (log logVn)−1) a.s. and a j,k ≤V 2
t j(k)

< a j,k +X2
t j(k)

,

V 2
t j(k) = a j,k

{
1+o

(
(log j)−1)} a.s. (13.17)
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It will be shown that

∑t j(k)<n≤t j(k+1) X2
n

∑t j(k)<n≤t j(k+1) E(X2
n |Fn−1)

→ 1 (13.18)

in probability under P(·|Ft j(k)) as j→ ∞, uniformly in 0≤ k < [λ−1 log j].
Let Sm,n = ∑m<i≤n Xi, V 2

m,n = ∑m<i≤n X2
i . In view of (13.17),

V 2
t j(k),t j(k+1) ∼ a j(a−1)/[λ−1 log j], (13.19)

V 2
t j ,t j+1

∼ a j(a−1) a.s. (13.20)

Since X2
n is bounded by the Fn−1-measurable random variable m2

n, which is o(V 2
n

(log logVn)−1) a.s., the conditional Lindeberg condition holds and, in view of
(13.18) and (13.19), the martingale central limit theorem (see Sect. 15.3.1) can be
applied to yield

P
{

St j(k),t j(k+1) ≥ β
√
λVt j(k),t j(k+1) |Ft j(k)

}
→ 1−Φ(β

√
λ ) a.s. (13.21)

as j→ ∞, uniformly in 0≤ k < [λ−1 log j]. Since

St j ,t j+1 = ∑
0≤k<[λ−1 log j]

St j(k),t j(k+1)

and

Vt j ,t j+1(log j)1/2 =
(√

λ +o(1)
)

∑
0≤k<[λ−1 log j]

Vt j(k),t j(k+1) a.s.

by (13.19), it follows from (13.21) that as j→ ∞,

P
{

St j ,t j+1 ≥ bVt j ,t j+1(log j)1/2 |Ft j(k)

}
≥ P

{
St j(k),t j(k+1) ≥ β

√
λVt j(k),t j(k+1) for all 0≤ k < [λ−1 log j] |Ft j(k)

}
=
(

1−Φ(β
√
λ )+o(1)

)[λ−1 log j]

≥ exp
{
−
(
β̃ 2/2+o(1)

)
log j

}
a.s.,

in view of (13.16). Since β̃ 2/2 < 1, the conditional Borel–Cantelli lemma
(Lemma 9.1(a)) then yields

limsup
j→∞

St j ,t j+1

Vt j ,t j+1(log j)1/2 ≥ b a.s. (13.22)
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Recalling that Vn → ∞ and mn = o(Vn(log logVn)−1/2) a.s., we obtain from (13.7)
that

limsup
n→∞

Sn

Vn(log logVn)1/2 ≤
√

2 a.s. (13.23)

and the same conclusion still holds with Sn replaced by−Sn (which is a martingale).
Combining this with (13.19) and (13.22) yields

limsup
j→∞

St j+1

Vt j+1(log logVt j+1)1/2 ≥ ba−1/2(a−1)1/2−
√

2a−1/2 a.s. (13.24)

Since a can be chosen arbitrarily large and b arbitrarily close to
√

2 in (13.24),

limsup
j→∞

St j+1

Vt j+1(log logVt j+1)1/2 ≥
√

2 a.s.

Combining this with the upper half result (13.23) yields (13.8).
It remains to prove (13.18). Let α j = a j(a− 1)/[λ−1 log j]. In view of (13.19),

we need to show that given any 0 < ρ < 1
2 and δ > 0,

limsup
n→∞

⎡
⎣P

⎧⎨
⎩ ∑

t j(k)<n≤t j(k+1)
E(X2

n |Fn−1)≥ (1+ρ)α j|Ft j(k)

⎫⎬
⎭ (13.25)

+ P

⎧⎨
⎩ ∑

t j(k)<n≤t j(k+1)
E(X2

n |Fn−1)≥ (1−ρ)α j|Ft j(k)

⎫⎬
⎭
⎤
⎦≤ δ a.s.

Choose ε > 0 such that 2{max[(I +ρ)e−ρ ,(1−ρ)eρ ]}1/ε < δ . Let X̃n = XnI(m2
n ≤

εα j) and note that since mn is Fn−1-measurable and X2
n ≤ m2

n,

0≤ E(X2
n |Fn−1)−E(X̃2

n |Fn−1)≤ m2
nI(m2

n > εα j).

Moreover, P{m2
n ≤ εα j for all t j(k) < n≤ t j(k +1) |Ft j(k)} → 1 a.s. Hence, it suf-

fices to consider E(X̃2
n |Fn−1) instead of E(X2

n |Fn−1) in (13.25). Since X̃2
n ≤ εα j,

we can apply Lemma 9.1(b) to conclude that

P

⎧⎨
⎩ ∑

t j(k)<n≤t j(k+1)
E(X2

n |Fn−1)≥ (1+ρ)α j|Ft j(k)

⎫⎬
⎭

+P

⎧⎨
⎩ ∑

t j(k)<n≤t j(k+1)
E(X2

n |Fn−1)≥ (1−ρ)α j|Ft j(k)

⎫⎬
⎭

≤ (1+ρ)e−ρ/ε +(1−ρ)eρ/ε +o(1) < δ ,

completing the proof. ��
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Replacing Xn by −Xn in Theorem 13.8 yields

liminf
n→∞

Sn/
{

Vn(log logVn)1/2
}

=−
√

2 a.s.

Theorem 13.8 can therefore be strengthened into the following compact LIL by a
standard argument; see Proposition 2.1 of Griffin and Kuelbs (1989).

Corollary 13.9. With the same notation and assumptions as in Theorem 13.8, the
cluster set of the sequence {Sn/[Vn(log log(Vn∧e2))1/2]} is the interval [−

√
2,
√

2].

Note that Theorem 13.8 and Corollary 13.9 pertain to martingale difference se-
quences Xn. This means that given an integrable sequence {Xn}, one should first
consider centering Xn at its conditional expectation given Fn−1 before applying the
theorems to X̃n = Xn−E(Xn|Fn−1) and Vn =

(
∑n

i=1 X̃2
i
)1/2. Although Theorem 13.8

requires X̃n to be bounded by Fn−1-measurable mn = o(Vn(log logVn)−1/2), we
can often dispense with such boundedness assumptions; see Problem 13.2. In the
more general context of Theorem 13.5, the Xn may not even be integrable, so
Theorem 13.5 centers the Xn at certain truncated conditional expectations. Using
(∑n

i=1 X2
i )1/2 for the norming factor, however, may be too large since it involves

uncentered Xi’s. To alleviate this problem, we can first center Xn at its conditional
median before applying Theorem 13.5 to X̃n = Xn−med(Xn|Fn−1), as illustrated in
the following example.

Example 13.10. Let 0 < α < 1, d1 ≥ 0, d2 ≥ 0 with d1 +d2 > 0. Let Y,Y1,Y2, . . . be
i.i.d random variables such that

P{Y ≥ y}= (d1 +o(1))y−α , (13.26)

P{Y ≤−y}= (d2 +o(1))y−α , as y→ ∞.

Let Ŝn = ∑n
i=1 Yi, V̂ 2

n = ∑n
i=1 Y 2

i , v̂n = V̂n(log logV̂n)−1/2. Then by Theorem 6.14,

limsup
n→∞

Ŝn

V̂n(log logn)1/2
= {β (α,d1,d2)}−1/2 a.s. (13.27)

Moreover, E{Y I(−λy≤Y < aλ y)}= (d1aλ −d2λ +o(1))αy1−α/(1−α) as y→∞
and

nv̂1−α
n

V̂n(log logV̂n)1/2
=

n
V̂α

n (log logV̂n)(2−α)/2
= O(1) a.s. (13.28)

since loglogV̂n ∼ log logn and

liminf
n→∞

∑n
i=1 Y 2

i

n1/α̃(log logn)−(1−α̃)/α̃ > 0 a.s.

with α̃ = α/2 by the so-called delicate LIL (see Breiman, 1968).
Now let Xn = nr +Yn with r > 1/α and let Sn = ∑n

i=1 Xi, V 2
n = ∑n

i=1 X2
i . Since

Yn = o(ns) a.s. for any s > 1/α , it follows that Sn ∼ Vn ∼ nr+1/(r + 1) and
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μi(−λvn,aλ vn) = ir +o(n(r+1)(1−α)) = ir +o(nr) a.s., recalling that rα > 1. There-
fore, although (13.6) still holds in this case, it is too crude as the nonrandom location
shift nr is the dominant term in Xn causing Vn to swamp the centered Sn. Centering
the Xn first at its median will remove this problem. Specifically, if we apply (13.6)
to X̃n = Xn−med(Xn) and Ṽ 2

n = ∑n
i=1 X̃2

i , then X̃n = Yn−med(Y ) and (13.27) still
holds with Ŝn replaced by S̃n.

13.4 Supplementary Results and Problems

1. Show that (13.6) implies (13.7) when Sn =∑n
i=1 Xi is a supermartingale such that

Xn ≥−mn a.s., and mn is Fn−1-measurable and satisfies

P{0≤ mn ≤ λvn for all large n}= 1. (13.29)

2. The following example shows that we cannot dispense with the boundedness
assumption |Xn| ≤ mn with Fn−1-measurable mn = o(vn) for (13.8) to hold for
martingales. Let X1 = X2 = 0,X3,X4, . . . be independent random variables such
that

P{Xn =−n−1/2}= 1/2−n−1/2(logn)1/2−n−1(logn)−2,

P{Xn =−mn}= n−1(logn)−2,

P{Xn = n−1/2}= 1/2+n−1/2(logn)1/2,

for n≥ 3, where mn ∼ 2(logn)5/2 is chosen so that EXn = 0. Show that P{Xn =
−mn i.o.}= 0 and that with probability 1, V 2

n = logn+O(1).

Since X̃i := XiI(|Xi| ≤ 1)−EXiI(|Xi| ≤ 1) are independent bounded random vari-
ables with zero means and Var(X̃i)∼ i−1, Kolmogorov’s LIL yields

limsup
n→∞

∑n
i=1 X̃i

{2(logn)(log loglogn)}1/2 = 1 a.s. (13.30)

Show that ∑n
i=1 EXiI(|Xi| ≤ 1)∼ 4

3 (logn)3/2 and therefore

∑n
i=1 Xi

Vn(log logVn)1/2 ∼
4(logn)3/2

3{(logn)(log log logn)}1/2}
→ ∞ a.s. (13.31)

Since mn(log logVn)1/2/Vn → ∞, this shows that without the boundedness con-
dition Xn ≥ −λVn(log logVn)−1/2, the upper LIL need not hold for martin-
gales self-normalized by Vn. It also shows the importance of the centering in
Theorem 13.5 because subtracting EXi1(|Xi| ≤ 1) from Xi gives the LIL in view
of (13.30).
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3. Let X1,X2, . . . be independent random variables with P(Xi = i!) = 1
2 = P(Xi =

−i!). Let Sn = ∑n
i=1 Xi and V 2

n = ∑n
i=1 X2

i , vn = Vn(log logVn)−1/2, and define
μi(c,d) as in (13.6). Prove

{Sn−∑n
i=1 μi(−λvn,αλ vn)}

/
Vn = O(1) a.s.,

which shows that although Theorem 13.5 gives an upper LIL for any adapted
sequence {Xn}, the upper bound in (13.6) may not be attained.

4. The following example illustrates the difference between Stout’s LIL (Theorem
13.1) and Theorem 13.8. Let Xn be the same as in Problem 2. Note that Xn satis-
fies the boundedness condition of Theorem 13.1. Show that Var(Xi)∼ 4(log i)3/i
and that s2

n = ∑n
i=1 E(X2

i |Fi−1)∼ (logn)4, and therefore

∑n
i=1 Xi

sn(log logsn)1/2 ∼
4(logn)3/2

3(logn)2(log log logn)1/2 → 0 a.s. (13.32)

which is consistent with Theorem 13.1. Contrasting (13.32) with (13.31) shows
the difference between self-normalizing by sn and Vn for martingales.



Chapter 14
Multivariate Self-Normalized Processes
with Matrix Normalization

The general framework of self-normalization in Chap. 10 and the method of mix-
tures in Chap. 11 has been extended by de la Peña et al. (2008) to the multivariate
setting in which At is a vector and Bt is a positive definite matrix. Section 14.1 de-
scribes the basic concept of matrix square roots and the literature on its application
to self-normalization. Section 14.2 extends the moment and exponential inequali-
ties in Chap. 13 to multivariate self-normalized processes. Section 14.3 describes
extensions of the boundary crossing probabilities in Sect. 11.3 and the law of the it-
erated logarithm in Sect. 13.3 to multivariate self-normalized processes with matrix
normalization.

14.1 Multivariate Extension of Canonical Assumptions

14.1.1 Matrix Sequence Roots for Self-Normalization

Let C be a symmetric m×m matrix. Then all the eigenvalues λ1, . . . ,λm are real.
Assume that C is nonnegative definite (i.e., x′V x ≥ 0 for all x ∈ R

m). Then the λi
are non-negative and so are

√
λi. Let ei be an eigenvector associated with λi, nor-

malized so that e′iei = 1. The eigenvectors corresponding to distinct eigenvalues are
orthogonal, and in the case where the eigenvalue λ has multiplicity p, its associated
linear space of eigenvectors has dimension p and is orthogonal to the eigenvectors
associated with the other eigenvalues. Let Q be the m×m orthogonal matrix (i.e.,
Q−1 = Q′) whose column vectors are e1, . . . ,em. Since ei is the eigenvector asso-
ciated with λi, Cei = λiei for 1 ≤ i ≤ m and therefore CQ = Qdiag(λ1, . . . ,λm),
yielding the singular value decomposition

C = Qdiag(λ1, . . . ,λm)Q′. (14.1)

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 193
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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Since Q′Q = I, we can define C1/2 (so that C1/2C1/2 = C) by

C1/2 = Qdiag(
√

λ1, . . . ,
√

λm)Q′, (14.2)

which is often called the symmetric square root of C. When C is positive definite,
the eigenvalues are positive and C−1 and C−1/2 can be evaluated by

C−1 = Qdiag(λ−1
1 , . . . ,λ−1

m )Q′, C−1/2 = Qdiag(1/
√

λ1, . . . ,1/
√

λm)Q′. (14.3)

The Cholesky decomposition of C is of the form C = PP′, where P is an m×m
lower-triangular matrix (and therefore P′ is upper-triangular); see Problem 14.1. The
left Cholesky square root of C is P, and P′ is the right Cholesky square root. For the
problem of self-normalizing an m-dimensional statistic (e.g., sample mean vector)
so that the self-normalized vector converges weakly to a spherically symmetric dis-
tribution (such as N(0, I)), Vu et al. (1996) have shown that the symmetric and the
left Cholesky square roots of the sample estimate of the asymptotic covariance ma-
trix can be used for self-normalization. They point out that the Cholesky square root
“is favoured in the older statistical literature because of its computational conve-
nience, an important consideration before the advent of computers.” This advantage,
however, disappears with the availability of software packages. The R function svd
returns the singular value decomposition M = UΛV ′ of a general m× p matrix M
with real entries, where U and V are m× (m∧ p) and p× (m∧ p) matrices with
orthonormal columns and Λ is a diagonal matrix. The R function chol returns the
Cholesky decomposition C = PP′ of a nonnegative definite symmetric matrix.

In this and subsequent chapters we use the symmetric square root of a positive
definite matrix C for self-normalization. As will be shown in Sect. 14.2, the singular
value decomposition of C that is used in (14.2) to define C1/2 also provides linear
transformations that orthogonalize the variables in the integrals associated with the
method of mixtures for pseudo-maximization.

14.1.2 Canonical Assumptions for Matrix-Normalized Processes

We first extend the canonical assumption (10.6) to the setting of a random vector
A and the canonical assumption on a random vector A and a symmetric, positive
definite random matrix C:

E exp{θ ′A−θ ′Cθ/2} ≤ 1 for all θ ∈ R
d . (14.4)

We then relax (14.4) to the form

E exp{θ ′A−Φ(C1/2θ)} ≤ γ if ‖θ‖< ε, (14.5)

for some γ > 0 and ε > 0, where Φ : R
d → [0,∞) is isotropic, strictly convex in ‖θ‖

such that Φ(0) = 0, lim‖θ‖→∞Φ(θ) = ∞ and Φ(θ) has bounded second derivatives
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for large ‖θ‖. An important special case is Φq(θ) = ‖θ‖q/q with 1 < q≤ 2. These
exponential and Lp-bounds are then strengthened into corresponding maximal in-
equalities for self-normalized processes under the canonical assumption{

exp(θ ′At −Φq(C
1/2
t θ)), t ∈ T

}
is a supermartingale for ‖θ‖< ε, (14.6)

where T is either {0,1,2, . . .} or [0,∞).
The following lemmas, which give important special cases of these canonical

assumptions, are extensions of corresponding results in Chaps. 9, 10 and 13.

Lemma 14.1. Let Mt be a continuous martingale taking values in R
d, with M0 = 0.

Then exp{θ ′Mt −θ ′〈M〉tθ/2} is a supermartingale with mean ≤ 1, for all θ ∈ R
d.

Lemma 14.2. Let {Mt : t ≥ 0} be a locally square-integrable martingale taking val-
ues in R

d, with M0 = 0. Then

exp

{
θ ′Mt −

1
2
θ ′〈M〉ct θ −∑

s≤t
[(θ ′ΔMs)+]2− [∑

s≤t
((θ ′ΔMs)−)2](p)

t

}

is a supermartingale with mean ≤ 1, for all θ ∈ R
d, where the superscript (p)

denotes the dual predictable projection process.

Lemma 14.3. Let {dn} be a sequence of random vectors adapted to a fil-
tration {Fn} such that di is conditionally symmetric (i.e., L (θ ′dn|Fi−1) =
L (−θ ′dn|Fn−1). Then exp{θ ′∑n

i=1 di−θ ′∑n
i=1 did′iθ/2}, n≥ 1, is a supermartin-

gale with mean ≤ 1, for all θ ∈ R
d.

Lemma 14.4. Let {dn} be a sequence of random vectors adapted to a fil-
tration {Fn} such that E(dn|Fn−1) = 0 and ‖dn‖ ≤ M a.s. for all n and
some non-random positive constant M. Let 0 < ε ≤ M−1, An = ∑n

i=1 di, Cn =
(1+ 1

2εM)∑n
i=1 E(did′i |Fi−1). Then (14.6) holds.

Lemma 14.5. Let {dn} be a sequence of random vectors adapted to a fil-
tration {Fn} such that E(dn|Fn−1) = 0 and σ2

n = E(‖dn‖2|Fn−1) < ∞. As-
sume that there exists a positive constant M such that E(‖dn‖k|Fn−1) ≤
(k!/2)σ2

n Mk−2 a.s. or P(‖dn‖ ≤ M|Fn−1) = 1 a.s. for all n ≥ 1, k > 2. Let
An = ∑n

i=1 di, Vn = ∑n
i=1 E(did′i |Fi−1). Then for ‖θ‖ ≤ 1/M, {exp(θ ′An −

1
2θ
′Vnθ/(1−M‖θ‖), Fn, n≥ 0} is a supermartingale with mean ≤ 1.

Lemma 14.6. Let {dn} be a sequence of random vectors adapted to a filtration
{Fn} such that E(dn|Fn−1) = 0 and ‖dn‖ ≤ M a. s. for all n and some nonran-
dom positive constant M. Let 0 < γ < 1,aγ = −{γ + log(1− γ)}/γ2,An = ∑n

i=1 di,
Cn = 2aγ ∑n

i=1 did′i . Then (14.6) holds with ε = γM−1.
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14.2 Moment and Exponential Inequalities
via Pseudo-Maximization

Consider the canonical assumption (14.4). If the random function exp{θ ′A −
θ ′Cθ/2} could be maximized over θ inside the expectation, taking the maximizing
value θ = C−1A in (14.4) would yield E exp{A′C−1A/2} ≤ 1. This in turn would
give the exponential bound P(‖C−1/2A‖ > x) ≤ exp(−x2/2). Although we cannot
interchange the order of maxλ and E that is needed in the above argument, we can
integrate both sides of (14.4) with respect to a probability measure F on θ and use
Fubini’s theorem to interchange the order of integration with respect to P and F . To
achieve an effect similar to maximizing the random function exp{θ ′A− θ ′Cθ/2},
F would need to assign positive mass to and near θ = C−1A that maximizes
exp{θ ′A−θ ′Cθ/2}, for all possible realizations of (A,C). This leads us to choose
probability measures of the form dF(θ) = f (θ)dθ , with f positive and continuous.
Note that∫

Rd
eθ
′A−θ ′Cθ/2 f (θ)dθ = eA′C−1A/2

∫
Rd

e−(θ−C−1A)′C(θ−C−1A)/2 f (θ)dθ . (14.7)

Let λmax(C) and λmin(C) denote the maximum and minimum eigenvalues of C,
respectively. Since (θ−C−1A)′C(θ−C−1A)≥ λmin(C)‖θ−C−1A‖2, it follows that
as λmin(C)→ ∞,

∫
Rd

e−(θ−C−1A)′C(θ−C−1A)/2 f (θ)dθ ∼ (2π)m/2
√

det C
f (C−1A). (14.8)

Combining (14.7) with (14.8) yields Laplace’s asymptotic formula that relates the
integral on the left-hand side of (14.7) to the maximum value exp(A′C−1A/2)
of exp{θ ′A− θ ′Cλ/2}. Thus integration of exp(θ ′A− θ ′Cθ/2) with respect to
the measure F provides “pseudo-maximization” of the integrand over θ when
λmin(C)→ ∞. By choosing f appropriately to reflect the growth rate of C−1/2A,
we can extend the moment and exponential inequalities in Sect. 12.2 to the multi-
variate case. In particular, we shall prove the following two theorems and a related
lemma.

Theorem 14.7. Let A and C satisfy the canonical assumption (14.4). Let V be a
positive definite nonrandom matrix. Then

E

[√
det(V )

det(C +V )
exp

{
1
2

A′(C +V )−1A
}]
≤ 1, (14.9)

E exp{A′(C +V )−1A/4} ≤
{

E
√

det(I +V−1C)
} 1

2
. (14.10)

Proof. Put f (θ) = (2π)−d/2
√

detV exp(−θ ′Vθ/2), θ ∈ R
d , in (14.7) after multi-

plying both sides of (14.4) by f (θ) and integrating over θ . By Fubini’s theorem,
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1≥ E

[√
det (V )

(2π)d/2 eA′(C+V )−1A/2
∫

Rd
e−{θ−(C+V )−1A}′(C+V ){θ−(C+V )−1A}dθ

]

= E

√
det(V )

det(C +V )
eA′(C+V )−1A/2,

proving (14.9). To prove (14.10), apply (14.9) to the upper bound in the Cauchy–
Schwarz inequality

E exp{A′(C +V )−1A/4}

≤
{(

E

√
det(V )

det(C +V )
exp

(
1
2

A′(C +V )−1A
))(

E

√
det(C +V )

det(V )

)}1/2

. ��

Note that (14.10) is of the form Eh(A′(C +V )−1A) ≤ EH(V−1C), where H is a
function that depends on h and V is a positive definite matrix used to shift C away
from 0 (the matrix with zero entries). For d = 1, de la Peña et al. (2000) and de
la Peña et al. (2004) also consider the case without shifts, for which they obtain
inequalities of the form Eh(A/B) ≤ EH(B∨B−1), where B = C1/2. The pseudo-
maximization technique can be used to generalize these inequalities to the multi-
variate case, for which we replace B∨B−1 in the case d = 1 by λmax(B)∨λ−1

min(B)
for d×d positive definite matrices B.

As in Sects. 11.2 and 12.2, a key idea in this generalization is to choose the den-
sity function f in (14.7) to be

f (θ) = f̃ (‖θ‖)/‖θ‖d−1 for θ ∈ R
d , with f̃ (r) =

1
rL(r∨ r−1)

for r > 0,

(14.11)

where L : (0,∞)→ [0,∞) is a nondecreasing function satisfying (11.3)–(11.5), in
which (11.5) is now modified to

∫ ∞
1 f̃ (r)dr = 1/[2vol(Sd)], where vol(Sd) denotes

the volume of the unit sphere S
d = {θ ∈ R

d : ‖θ‖= 1}. Since f is isotropic,

∫
Rd

f (λ )dλ = vol(Sd)
∫ ∞

0
f̃ (r)dr = vol(Sd)

{∫ 1

0
f̃ (r)dr +

∫ ∞

1
f̃ (r)dr

}
= 1.

The following properties of L play an important role in applying the pseudo-
maximization technique to derive inequalities for self-normalized vectors from the
canonical assumption (14.4).

Lemma 14.8.
(a) For x �= 0 and positive definite matrix B,

L(‖B−1x‖∨‖B−1x‖−1)≤ 3{L(‖x‖∨1)∨L(λmax(B)∨λmax(B−1))}.
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(b) Under (14.4) for A and C, let B = C1/2 and define g : (0,∞)→ [0,∞) by

g(r) =
er2/2

rd I(r ≥ 1). (14.12)

Then

E
g(‖B−1A‖)

L(‖B−1A‖)∨L(λmax(B)∨λ−1
min(B))

{
λmin(B)
λmax(B)

}d−1

≤ 18
(∫ 1/2

−1/2
e−z2/2dz/2

)−d

.

Proof. The proof of (a) is a straightforward modification of that of Lemma 11.1, not-
ing that λmin(B−1)‖y‖≤ ‖B−1y‖≤ λmax(B−1)‖y‖, and that λmin(B−1) = 1/λmax(B).
To prove (b), application of (14.4) and (14.7) to the density function (14.11) yields

E
{

e−A′C−1A/2I
(
‖B−1A‖ ≥ 1

)∫
Rd

exp{−(θ −C−1A)′C(θ −C−1A)/2}
‖θ‖dL(‖θ‖∨‖θ‖−1)

dθ
}
≤ 1.

(14.13)

To evaluate the integral in (14.13), we use the singular value decomposition that
gives C = Q′ diag (λ1, . . . ,λd)Q, where the λi are eigenvalues of the positive definite
matrix C and Q is an orthogonal matrix. Noting that the Euclidean norm ‖ · ‖ is
invariant under orthogonal transformations, we use the change of variables x = Qθ
to rewrite the integral as

∫
Rd

exp{−∑d
i=1λi(xi− ãi)2/2}

‖x‖dL(‖x‖∨‖x‖−1)
dx≥

∫
I

exp{−∑d
i=1λi(xi− ãi)2/2}

‖x‖dL(‖x‖∨‖x‖−1)
dx, (14.14)

where I is the rectangle ∏d
i=1[ãi− (2

√
λi)−1, ãi +(2

√
λi)−1] and ã = (ã1, . . . , ãd)′ =

QC−1A. Note that B = C1/2 = Q′ diag (
√
λ1, . . . ,

√
λd)Q. Next use the change of

variables yi =
√
λixi (i = 1, . . . ,d) for the integral in the right-hand side of (14.14)

and apply part (1) of the lemma, so that (14.14) is bounded below by

∫
I∗

(λ1 . . .λd)−1/2 exp(−∑d
i=1(yi−

√
λiãi)2/2)

3(∑d
i=1 y2

i /λi)d/2{L(‖y‖∨1)∨L(max1≤i≤d
√

1/λi∨max1≤i≤d
√
λi)

dy,

(14.15)
where I∗ = ∏d

i=1[
√
λiãi−1/2,

√
λiãi +1/2]. Note that

ã = QB−1B−1A = diag(1/
√

λ1, . . . ,1/
√

λd)QB−1A

= (a∗1/
√

λ1, . . . ,a∗d/
√

λd)′,
(14.16)
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where a∗ = (a∗1, . . . ,a
∗
d)
′ = QB−1A. Therefore I∗ = ∏d

i=1[a
∗
i − 1

2 ,a∗i + 1
2 ], and ‖y‖<

2‖a∗‖ for y ∈ I∗ and ‖a∗‖ ≥ 1. Hence (14.15) can be bounded below by

(λ1, . . . ,λd)−1/2
(∫ 1/2
−1/2 e−z2/2dz

)d

3(min1≤i≤d λi)
−d/2 (2‖B−1A‖d){6L(‖B−1A‖)∨L(λmax(B−1)∨λmax(B))}

(14.17)

in view of (11.3) and ‖a∗‖ = ‖B−1A‖. Combining (14.13) with (14.14)–(14.17)
gives the desired conclusion, noting that the eigenvalues of B are

√
λ1, . . . ,

√
λd . ��

Replacing L(B∨B−1) in the one-dimensional case by

�(B) = L(λmax(B)∨λ−1
min(B)){λmax(B)/λmin(B)}d−1 (14.18)

for d× d matrices B, we can use the same argument as that of Theorem 12.9 to
derive the following result from Lemma 14.8(b).

Theorem 14.9. Let h be a nondecreasing function on [0,∞) such that for some x0 ≥
1 and α > 0,

0 < h(x)≤ αg(x)/L(x) f or all x≥ x0, (14.19)

where g is defined by (14.12) and L : (0,∞)→ (0,∞) is a nondecreasing function
satisfying (11.3)–(11.5). Let q be a strictly increasing, continuous function on [0,∞)
such that for some α̃ ≥ α ,

L(x)≤ q(x)≤ α̃g(x)/h(x) for all x≥ x0. (14.20)

Let A and C satisfy the canonical assumption (14.4) and let B = C1/2. Then there
exists a positive constant ζd (depending only on d) such that

Eh(‖B−1A‖)≤ ζdα̃ +h(x0)+Eh(q−1(�(B))), (14.21)

where � is defined in (14.18).

As a corollary of Theorem 14.9, we obtain that under the canonical assumption
(14.4), there exist universal constants ζd,p and ζ̃d,p for any p > 0 such that

E‖B−1A‖p ≤ζd,p + ζ̃d,pE{log+ log(λmax(B)∨λ−1
min(B))

+ [logλmax(B)− logλmin(B)]}p/2.
(14.22)

In the univariate case d = 1, the term logλmax(B)− logλmin(B) disappears and
(14.22) reduces to

E|A/B|p ≤ ζp + ζ̃pE{log+ log(B∨B−1)}p/2. (14.23)

The following example shows that for d > 1, the term logλmax(B)− logλmin(B) in
(14.22) cannot be removed.
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Example 14.10. Lai and Robbins (1981, p. 339) consider the simple linear regres-
sion model yi = α +βui + εi, in which εi are i.i.d. random variables with Eεi = 0
and Eε2

i = 1 and the ui are sequentially determined regressors defined by

u1 = 0, un+1 = ūn + cε̄n (14.24)

so that un+1 is Fn-measurable, where Fn is the σ -field generated by {ε1, . . . ,εn}
and c �= 0 is nonrandom. They have shown that

n

∑
i=1

(ui− ūn)2 = c2
n

∑
i=2

(i−1)ε̄2
i−1/i∼ c2 logn a.s., (14.25)

n

∑
i=1

(ui− ūn)εi/
n

∑
i=1

(ui− ūn)2 →−c−1 a.s. (14.26)

Example 1 of Lai and Wei (1982) uses (14.25) to prove that

λmax

(
n

∑
i=1

xix′i

)
∼ n

⎧⎨
⎩1+ c2

(
∞

∑
i=1

i−1εi

)2
⎫⎬
⎭ a.s.,

λmin

(
n

∑
i=1

xix′i

)
∼ c2(logn)

/⎧⎨
⎩1+ c2

(
∞

∑
i=1

i−1εi

)2
⎫⎬
⎭ a.s.,

(14.27)

where xi = (1,ui)′. Standard projection calculations associated with the simple lin-
ear regression model can be used to show that

Wn :=

(
n

∑
i=1

xiεi

)′( n

∑
i=1

xix′i

)−1( n

∑
i=1

xiεi

)

=
(∑n

1 εi)2

n
+

[∑n
1(ui− ūn)εi]2

∑n
1(ui− ūn)2 .

(14.28)

Whereas the LIL yields (∑n
1 εi)2/n = O(log logn) a.s., the last term in (14.28) is of

order logn (rather than loglogn) since

[∑n
1(ui− ūn)εi]2

∑n
1(ui− ūn)2 =

{
∑n

1(ui− ūn)2εi

∑n
1(ui− ūn)2

}2 n

∑
i=1

(ui− ūn)2 ∼ logn a.s., (14.29)

by (14.25) and (14.26). By Fatou’s lemma, liminfn→∞ E(Wn/ logn) ≥ 1, showing
that the term logλmax(∑n

i=1 xix′i) cannot be dropped from (14.22).

For other extensions of the results in Sects. 12.2 and 12.3, see de la Peña et al.
(2008).
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14.3 LIL and Boundary Crossing Probabilities for Multivariate
Self-Normalized Processes

Theorem 13.8 has the following multivariate extension, details of which can be
found in de la Peña et al. (2008).

Theorem 14.11. Let {Mn,Fn,n ≥ 0} be a martingale taking values in R
d, with

M0 = 0. Let di = Mi−Mi−1 and define Vn either by Vn = ∑n
i=1 E(did′i |Fi−1) or by

Vn = ∑n
i=1 did′i for all n. Assume that

‖dn‖ ≤ mn a.s. for some Fn−1-measurable mn, (14.30)

tr(Vn)→ ∞ and mn(log logmn)1/2/tr(Vn)→ 0 a.s., (14.31)

lim
n→∞

Vn/tr(Vn) = Γ a.s. (14.32)

for some positive definite nonrandom matrix Γ . Define Wn(t) = V−1/2
n Mi/{2log

logtr(Vn)}1/2 for t = tr(Vi)/tr(Vn), Wn(0) = 0, and extend by linear interpolation
to Wn : [0,1]→ R

d. Then with probability 1, {Wn,n ≥ 1} is relatively compact in
Cd [0,1] and its set of limit points in Cd [0,1] is{

f = ( f1, . . . , fd) : fi(0) = 0, fi is absolutely continuous and

d

∑
i=1

∫ 1

0

(
d
dt

fi(t)
)2

dt ≤ 1
}

.

(14.33)

Consequently, limsupn→∞(M′nV−1
n Mn)/{2loglogtr(Vn)}= 1 a.s.

In the case d = 1, (14.32) clearly holds with Γ = 1, and (14.30) and (14.31)
are Stout’s assumptions for the martingale LIL in Theorem 13.1. Theorem 14.11
in this case can be regarded as the Strassen-type version (see Problem 2.8) of
Theorem 13.1.

Let f : R
d → [0,∞) be an isotropic function such that

∫
‖θ‖<ε f (θ)dθ <∞. Under

(14.6), {ψ(At ,C
1/2
t ), t ∈ T} is a nonnegative supermartingale, where

ψ(A,B) =
∫
‖θ‖<ε

f (θ)exp(θ ′A−Φq(Bθ))dθ . (14.34)

Let Bt = C1/2
t , A0 = B0 = 0. Therefore by the supermartingale inequality, for any

a > 0,

P{ψ(At ,Bt)≥ a for some t ≥ 0} ≤
∫
‖θ‖<ε

f (θ)dθ/a. (14.35)
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Let λ (B) be the d× 1 vector of ordered eigenvalues (not necessarily distinct) of a
positive definite matrix B. It will be shown that

ψ(A,B) < a⇐⇒ B−1A ∈ Γa,λ (B), (14.36)

where Γa,λ is a convex subset of R
d depending only on a > 0 and a parameter

λ ∈ R
d . Therefore (14.35) can be re-expressed as

P
{

B−1
t At �∈ Γa,λ (Bt ) for some t ≥ 0

}
≤

∫
‖θ‖<ε

f (θ)dθ/a. (14.37)

In the case d = 1, λ (B) = B ∈ (0,∞) and the convex set is an interval (−∞,γa(B)),
so the probability in (14.36) is the boundary crossing probability P{At/Bt ≥ γa(Bt)
for some t ≥ 0}.

To prove (14.36), use the transformation x = Bθ to rewrite the integral in
(14.34) as

1
det(B)

∫
‖B−1x‖<ε

f (B−1x)exp{x′B−1A−Φq(x)}dx. (14.38)

Let λ (B) = (
√
λ1, . . . ,

√
λd) and use the singular value decomposition B2 = Q′ diag

(λ1, . . . ,λd)Q, where Q is an orthogonal matrix, to express ‖B−1x‖ in terms of λ (B):

‖B−1x‖2 = x′B−2x =
d

∑
i=1

(Qx)2
i /λi.

Moreover, det(B) = ∏d
i=1
√
λi. Since f and Φq are isotropic, applying a further

change of variables z = Qx to the integral in (14.38) can be used to express (14.34) as
a function ψ̃(B−1A,λ (B)) of B−1A and the eigenvalues of B. For fixed λ , the func-
tion ψ̃(w,λ ) is a convex function of w∈R

d , and therefore Γa,λ := {w : ψ̃(w,λ ) < a}
is convex. Since ψ(A,B) = ψ̃(B−1A,λ (B)), (14.36) follows.

14.4 Supplementary Results and Problems

1. The decomposition V = LDL′, with diagonal matrix D = diag(d1, . . . ,dp) and
lower-triangular matrix L whose diagonal elements are 1, is called the modified
Cholesky decomposition of V . Show that for a positive definite matrix V , the
elements of L and D in its modified Cholesky decomposition can be computed
inductively, one row at a time, beginning with d1 = V11:

Li j =

(
Vi j−

j−1

∑
k=1

LikdkL jk

)/
d j, j = 1, . . . , i−1;

di = Vii−
i−1

∑
k=1

dkL2
ik, i = 2, . . . , p.
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Moreover, show that the di are positive and that P := LD1/2 is a lower-triangular
matrix, thereby yielding the Cholesky decomposition V = PP′.

2. Prove Lemmas 14.1–14.6 by noting that for fixed θ ∈ R
d ,θ ′At and θ ′Ctθ are

scalars to which the corresponding results in Chaps. 9, 10 and 13 are applicable.
3. The following example illustrates the subtleties of matrix normalization in self-

normalized LIL. Suppose that in Example 14.10 the εi are symmetric Bernoulli
random variables. Let xi = (1,ui)′ and

An =
n

∑
i=1

xiεi, Cn =
n

∑
i=1

xix′i =
n

∑
i=1

Cov(xiεi|Fi−1),

noting that ε2
i = 1. By Lemma 14.3, the canonical assumption (14.6) holds with

q = 2 and ε = ∞. In view of (14.27), logλmax(Cn) ∼ logn and logλmin(Cn) ∼
log logn a.s.

(a) Show that ‖C−1/2
n An‖2 ∼ 2loglogn+ logn a.s. and that

‖C−1/2
n An‖2/{log logλmax(Cn)}1/2 → ∞ a.s. (14.39)

(b) The components of An are ∑n
i=1 εi and ∑n

i=1 uiεi, which are martingales with
bounded increments and satisfy the univariate LIL. Therefore it may be
somewhat surprising that the LIL fails to hold for the self-normalized
C−1/2

n An as (14.39) shows. However, the components of C−1/2
n An are

n−1/2∑n
1 εi and {∑n

1(ui− ūn)εi}/{∑n
1(ui− ūn)2}

1
2 . Explain why (ui− ūn)εi

is not even Fi-measurable for i≤ n−1.
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Chapter 15
The t-Statistic and Studentized Statistics

This chapter first describes in Sect. 15.1 the t-distribution introduced by Gosset
(1908) and its multivariate extensions, in the form of the multivariate t-distribution,
Hotelling’s T 2-statistic and the F-distribution, all derived from sampling theory of a
normal (or multivariate normal) distribution with unknown variance (or covariance
matrix). It then develops the asymptotic distributions of these self-normalized sam-
ple means even when the population has infinite second moment. Related results
such as the law of the iterated logarithm (LIL) for these self-normalized statistics
are also described.

Self-normalized statistics, with matrix normalization as in the T 2-statistic, are
ubiquitous in statistical applications. Section 15.2 describes these general Studen-
tized statistics; the term “Studentized” refers to Gosset’s (Student’s) basic approach
that divides θ̂n− θ by the estimated standard error ŝen of the sample estimate θ̂n
(which is the sample mean in Gosset’s case) of a population parameter θ . In the
multivariate case, 1/ŝen is replaced by C−1/2

n , where Cn is typically a consistent
estimator of the covariance matrix of θ̂n when the latter exists or of the covari-
ance matrix in the asymptotic normal distribution of θ̂n. This principle extends far
beyond the setting of i.i.d. observations, and Sect. 15.3 shows that the asymptotic
theory of these extensions to time series and control systems is typically related to
self-normalized martingales.

15.1 Distribution Theory of Student’s t-Statistics

Let X1,X2, . . . ,Xn be i.i.d. normal random variables with mean μ and variance
σ2 > 0. The sample mean X̄n = n−1∑n

i=1 Xi is normal with mean μ and vari-
ance σ2/n and therefore

√
n(X̄n − μ)/σ is standard normal. In practice, σ is

unknown and
√

n(X̄n− μ)/σ cannot be used as a pivot (i.e., a quantity whose dis-
tribution does not depend on unknown parameters) for inference on μ . The sample
variance s2

n = (n−1)−1∑n
i=1(Xi− X̄n)2 is an unbiased estimate of σ2, and replacing

σ in
√

n(X̄n−μ)/σ by sn gives a pivot since the distribution of

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 207
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Tn :=
√

n(X̄n−μ)
sn

=

√
n−1

n
∑n

i=1(Xi−μ)/σ{
∑n

i=1 [(Xi−μ)− (X̄n−μ)]2 /σ2
}1/2 (15.1)

does not depend on (μ ,σ), noting that (Xi− μ)/σ is N(0,1). The distribution of
the pivot (15.1) was first derived by W. S. Gosset in 1908 under the name Student
as he was working at a brewery at that time. It has since been called Student’s
t-distribution with ν = n−1 degrees of freedom, and has density function

f (t) =
Γ ((ν +1)/2)√

πΓ (ν/2)

(
1+

t2

ν

)−(ν+1)/2

, −∞ < t < ∞. (15.2)

The t-distribution with ν degrees of freedom converges to the standard normal dis-
tribution as ν → ∞. Without assuming normality, Tn still converges in distribution
to a standard normal random variable even though its exact distribution is not Stu-
dent t, provided that σ2 is finite and positive so that the central limit theorem can
be applied to

√
n(X̄n− μ) and the law of large numbers to s2

n. Remarkably, Tn still
has a limiting distribution when EX2

i = ∞ and the distribution of Xi belongs to the
domain of attraction of a normal or stable law.

15.1.1 Case of Infinite Second Moment

As pointed out in (1.1), (15.1) in the case μ = 0 can be expressed as Tn = Un{(n−
1)/(n−U2

n )}1/2, where Un = (∑n
i=1 Xi)/(∑n

i=1 X2
i )1/2 is the self-normalized sum.

Let Sn = ∑n
i=1 Xi, V 2

n = ∑n
i=1 X2

i . When Xi is symmetric, Efron (1969) has shown
that Un has a limiting distribution. Logan et al. (1973) have derived the limiting
distribution of Un when Xi belongs to the domain of attraction of a stable law with
index 0 <α < 2. They first note that for appropriately chosen constants an, anSn and
a2

nV 2
n have the same joint limiting distribution as that in the case when Xi is stable

with index α . They then restrict to exactly stable Xi having density function g that
satisfies

xα+1g(x)→ r, xα+1g(−x)→ � as x→ ∞, (15.3)

with r + � > 0. The characteristic function of (Sn/n1/α ,V 2
n /n2/α) can be written as

E exp
(

it1Sn

n1/α +
it2V 2

n

n2/α

)
=
{

1+
∫ ∞

−∞

[
exp

(
ixt1
n1/α +

ix2t2
n2/α

)
−1

]
g(x)dx

}n

. (15.4)

First consider the case 0 < α < 1. Let

K(y) =

{
r if y > 0,

� if y < 0.
(15.5)
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Using the change of variables x = n1/αy, we can rewrite the integral in (15.4) as

∫ ∞

−∞

{
exp(iyt1 + iy2t2)−1

} (n1/α |y|)1+α

n|y|1+α g(n1/αy)dy

∼ 1
n

∫ ∞

−∞

{
exp(iyt1 + iy2t2)−1

} K(y)
|y|1+α dy

(15.6)

as n→ ∞, noting that the second integral in (15.6) converges and applying (15.3)
and the dominated convergence theorem. From (15.4) and (15.5) it follows that the
characteristic function of (Sn/n1/α ,V 2

n /n2/α) converges to

Ψ(t1, t2) := exp
{∫ ∞

−∞

[
exp(iyt1 + iy2t2)−1

]
[K(y)/|y|1+α ]dy

}
. (15.7)

Since V 2
n /n2/α has a limiting distribution concentrated on (0,∞), it then follows that

Sn/Vn has a limiting distribution which is the distribution of S/V , where (S,V 2) has
characteristic function (15.7).

Let c(t) = EeitS/V be the characteristic function of S/V . To derive a formula
for c from the characteristic function (15.7) of (S,V 2), let a > 0 and set t1 = u and
t2 = iau2 in (15.7), in which the integral can be extended to all real t1 and Im(t2) > 0.
Using (15.5) and the change of variables x = yu yields Ψ(u, iau2) = exp(uαψ(a)),
where

ψ(a) =
∫ ∞

−∞

[
exp(ix−ax2)−1

]
[K(x)/|x|1+α ]dx, a > 0. (15.8)

A key idea is to relate c to ψ via∫ ∞

0
u−1 {exp(uαψ(a))− exp(uαψ(b))}du

=
∫ ∞

0
u−1{Ψ(u, iau2)−Ψ(u, ibu2)

}
du

= E
∫ ∞

0
u−1eiuS(e−au2V 2 − e−bu2V 2

)du

= E
∫ ∞

0
t−1eitS/V (e−at2 − e−bt2

)dt (with t = Vu)

=
∫ ∞

0
t−1c(t)(e−at2 − e−bt2

)dt.

Differentiating the equation relating the first and last terms above with respect to a
then yields∫ ∞

0
tc(t)e−at2

dt =−ψ ′(a)
∫ ∞

0
uα−1 exp(uαψ(a))du = α−1ψ ′(α)/ψ(α); (15.9)

see Problem 15.1. By multiplying (15.9) by (πa)−1/2 exp(−s2/4a), integrating over
a from 0 to ∞, and using the identity t

∫ ∞
0 (πa)−1/2 exp[−s2/4a− at2]da = e−st for
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positive s and t, Logan et al. (1973, pp. 795–797) derive from (15.9) a formula for∫ ∞
0 c(t)e−stdt, which is the Laplace transform of the Fourier transform of the distri-

bution function F of S/V . They then invert this transform to compute the density
function of F numerically.

For the case 1 < α < 2, instead of using (15.4), note that
∫ ∞
−∞ xg(x)dx = EX1 = 0

and write E exp(it1n−1/αSn + it2n−2/αV 2
n ) as

{
1+

∫ ∞

−∞

[
exp

(
ixt1
n1/α +

ix2t2
n2/α

)
−1− ixt1

n1/α

]
g(x)dx

}1/n

.

We can then proceed as before after modifying (15.8) as

ψ(a) =
∫ ∞

−∞

[
exp(ix−ax2)−1− ix

]
[K(x)/|x|1+α ]dx.

For the case α = 1, Logan et al. (1973, pp. 798–799) note that Un has a proper
limiting distribution only if r = � (i.e., only if Xi has a symmetric Cauchy distribu-
tion), and indicate how the preceding arguments can be modified for the symmetric
Cauchy distribution.

As pointed out in Chap. 4, there is a stochastic representation of the distribution
of S/V in terms of i.i.d. symmetric Bernoulli and exponent random variables; see
Theorem 4.5. Giné et al. (1997) have proved that the t-statistic has a limiting normal
distribution if and only if X1 is in the domain of attraction of a normal law. This is the
content of Theorem 4.1 which settles one of the conjectures of Logan et al. (1973,
pp. 789). Theorem 4.5, which is due to Chistyakov and Götze (2004a), settles the
other conjecture of Logan et al. (1973) that the “only possible nontrivial limiting
distributions” are those when X1 follows a stable law. Mason and Zinn (2005) have
also given an elementary proof of this conjecture when X1 is symmetric.

15.1.2 Saddlepoint Approximations

As shown in the preceding section, the limiting distribution of the t-statistic is nor-
mal when Xi belongs to the domain of attraction of a normal law and is a compli-
cated distribution, which depends on α and is specified by the Laplace transform
of its characteristic function, when Xi belongs to the domain of attraction of a sta-
ble law with index α . Jing et al. (2004) have developed simpler saddlepoint ap-
proximations for the density function and the tail probability of the self-normalized
mean

√
nX̄n/Vn. These saddlepoint approximations do not require Xi to belong to

the domain of attraction of a normal or stable law and are in fact applicable to all
distributions satisfying∫ ∞

−∞

∫ ∞

−∞
|E exp(itX1 + isX2

1 )|ρdtds < ∞ for some ρ ≥ 1. (15.10)
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This corresponds to the case of an integrable characteristic function in Sect. 2.3.2;
because the characteristic function of a sum of n i.i.d. random variables is the nth
power of the individual characteristic function, we only need the ρth absolute power
of the characteristic function to be integrable. For 0 < b < 1, the numerical results
in Sect. 5 of their paper compare the probability P(

√
nX̄n/Vn ≥ b), estimated by 1

million Monte Carlo simulations, with the saddlepoint approximation, the normal
approximation that is valid only when Xi belongs to the domain of attraction of a
normal law, and the Edgeworth expansion (see Chap. 16) that requires finiteness of
E|X1|r for r ≥ 3. They study four different underlying distributions, ranging from
the normal to the Cauchy, for the case n = 5 and for b = 0.05,0.10, . . . ,0.90,0.95,
and have found that the saddlepoint approximations are remarkably accurate. In
contrast, the normal and Edgeworth approximations perform much worse.

A key ingredient of the saddlepoint approximation to the density function fn of√
nX̄n/Vn is the cumulant generating function K(s, t) = logE exp(sX + tX2), which

is finite if t < 0. Note that in the notation of Sect. 10.1.1, K(θ ,−ρθ) = ψ(θ ,ρ). To
approximate fn(b) for |b|< 1, note that x/

√
y = b⇔ y = x2/b2 and define

Λ(a,b) = sup
t<0,s∈R

{
sa+ ta2/b2−K(s, t)

}
= ŝa+ t̂a2/b2−K(ŝ, t̂), (15.11)

where ŝ and t̂ < 0 are the solutions of

(∂K/∂ s)(ŝ, t̂) = a, (∂K/∂ t)(ŝ, t̂) = a2/b2. (15.12)

Let ab be the minimizer ofΛ(a,b) given by the solution of the equationΛa(a,b) = 0,
where we useΛa to denote ∂Λ/∂a andΛaa to denote ∂ 2Λ/∂a2. Then under (15.10),
Jing et al. (2004) have shown that the saddlepoint approximation to fn is

f̂n(b)≈
√

n
2π

2a2
b/|b|3

{det(∇2Λ(ab,b))Λaa(ab,b)}1/2 e−nΛ(ab,b), (15.13)

where ∇2Λ denotes the Hessian matrix of second partial derivatives ofΛ . Moreover,
they also showed that

P
{√

nX̄n

Vn
≥ b

}
= 1−Φ

(√
nw

)
− φ (

√
nw)√
n

{
1
w
− 1

v
+O(n−1)

}
, (15.14)

where Φ and φ are the standard normal distribution and density functions and

w = {2Λ(ab,b)}1/2 , v =−
{

det
(
∇2Λ(ab,b)

)
Λaa(ab,b)

}1/2
t̂(ab,b),

noting that the ŝ and t̂ in (15.12) are actually functions of a,b and can be denoted by
ŝ(a,b) and t̂(a,b).

Daniels and Young (1991) have derived the saddlepoint approximation (15.14)
under (15.10) and the assumption E exp(sX1 +tX2

1 ) <∞ for all (s, t) with |s|+ |t|< δ
and some δ > 0. They also consider the equations in (15.12) without requiring t̂ < 0.
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A key observation of Jing et al. (2004) is that the solution (ŝ, t̂) of (15.12) has the
property that t̂ < 0 and therefore we only need the finiteness of E exp(sX1 + tX2

1 ) for
t < 0, which always holds.

15.1.3 The t-Test and a Sequential Extension

The saddlepoint approximation (15.14) can be used to calculate the type I error
probability of the one-sided t-test that rejects the null hypothesis H0 : μ = 0 if the t-
statistic (15.1), in which μ = 0, exceeds some threshold, for general (not necessarily
normal) Xi satisfying (15.10) even when Xi has fat tails that result in infinite E|Xi|.
When Xi is symmetric, Efron (1969, pp. 1285–1288) notes that the probability in
(15.14) is bounded by P{N(0,1) ≥ b}, at least for tail probabilities in the usual
hypothesis testing range. Concerning the question as to “why worry about limiting
normality if the type I errors tend to be in the conservative direction in any case,” he
points out that the t-test may have poor power relative to more robust tests such as
the sign test and rank tests.

Chan and Lai (2000, pp. 1645, 1647–1649) have developed similar approxima-
tions for the type I and type II errors of the t-test and its sequential extension, called
the repeated t-test, by using a different approach that involves change of measures
and geometric integration associated with Laplace’s method for tubular neighbor-
hoods of extremal manifolds. The repeated t-test of H0 stops sampling at stage

τ = inf
{

n≥ δc :
n
2

log
(

1+
X̄2

n

s2
n

)
≥ c

}
∧ [ac], (15.15)

where 0 < δ < a and c > 0 are the design parameters of the test. Note that
ln := (n/2) log(1 + X̄2

n /s2
n) ≈ nX̄2

n /(2s2
n) ≈ T 2

n /2 in view of (15.1); ln is the gen-
eralized likelihood ratio statistic when the Xi are i.i.d. normal with unknown mean
and variance (see Chap. 17). The test rejects H0 if stopping occurs prior to n1 := [ac]
or if ln1 ≥ c when stopping occurs at n1. Chan and Lai (2000) make use of the finite-
ness of the moment generating function eψ(θ ,ρ) := E exp(θX1−ρθ 2X2

1 ) to embed
the distribution of (Xi,X2

i ) in a bivariate exponential family with density functions

fθ ,ρ(x,y) = exp
{
θx−ρθ 2y−ψ(θ ,ρ)

}
with respect to the probability measure P that corresponds to θ = 0; see Sect. 10.1.1.

Besides the repeated t-test, there are other sequential extensions of the t-test in
the literature. These are reviewed in Sects. 18.1, and 18.2 also describes methods for
analyzing the error probabilities of these tests.
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15.2 Multivariate Extension and Hotelling’s T2-Statistic

15.2.1 Sample Covariance Matrix and Wishart Distribution

Let Y1, . . . ,Yn be independent m×1 random N(μ ,Σ) vectors with n > m and positive
definite Σ . Define

Ȳ =
1
n

n

∑
i=1

Yi, W =
n

∑
i=1

(Yi− Ȳ )(Yi− Ȳ )′. (15.16)

The sample mean vector Ȳ and the sample covariance matrix W/(n− 1) are inde-
pendent, generalizing the corresponding result in the case m = 1. Suppose Y1, . . . ,Yn
are independent N(0,Σ) random vectors of dimension m. Then the random ma-
trix ∑n

i=1 YiY ′i is said to have a Wishart distribution, denoted by Wm(Σ ,n). This
definition can be used to derive the density function of W when Σ is positive
definite. We begin by considering the case m = 1 and noting that χ2

n , which
is the distribution of Z2

1 + · · ·+ Z2
n with i.i.d. standard normal Zi, is the same

as the gamma(n/2,1/2) distribution. Therefore σ2χ2
n has the density function

w(n−2)/2e−w/(2σ2)/[(2σ2)n/2Γ (n/2)
]
, w > 0. The density function of the Wishart

distribution Wm(Σ ,n) generalizes this to

f (W ) =
det(W )(n−m−1)/2 exp

{
− 1

2 tr
(
Σ−1W

)}
[2mdet(Σ)]n/2Γm(n/2)

, W > 0, (15.17)

in which W > 0 denotes that W is positive definite andΓm(·) denotes the multivariate
gamma function

Γm(t) = πm(m−1)/4
m

∏
i=1

Γ
(

t− i−1
2

)
. (15.18)

Note that the usual gamma function corresponds to the case m = 1. The follow-
ing properties of the Wishart distribution are generalizations of some well-known
properties of the chi-square distribution and the gamma(α,β ) distribution:

(a) If W ∼Wm(Σ ,n), then E(W ) = nΣ .
(b) Let W1, . . . ,Wk be independently distributed with Wj ∼Wm(Σ ,n j), j = 1, . . . ,k.

Then ∑k
j=1 Wj ∼Wm(Σ ,∑k

j=1 n j).
(c) Let W ∼ Wm(Σ ,n) and A be a nonrandom m×m nonsingular matrix. Then

AWA′ ∼Wm(AΣA′,n). In particular, a′Wa∼ (a′Σa)χ2
n for all nonrandom m×1

vectors a �= 0.

15.2.2 The Multivariate t-Distribution and Hotelling’s T2-Statistic

The multivariate generalization of ∑n
t=1(yt− ȳ)2 ∼ σ2χ2

n−1 involves the Wishart dis-
tribution and is given by W :=∑n

i=1(Yi−Ȳ )(Yi−Ȳ )′ ∼Wm(Σ ,n−1). As indicated in
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Sect. 14.1.1, we can use the singular value decomposition W = Pdiag(λ1, . . . ,λm)P′,
where P is an orthogonal matrix and λ1, . . . ,λm are the eigenvalues of W , to define
W 1/2 = Pdiag(

√
λ1, . . . ,

√
λm)P′. Moreover, as noted above, W is independent of

Ȳ ∼ N(μ ,Σ/n). Hence the situation is the same as in the univariate (m = 1) case. It
is straightforward to generalize the t-distribution to the multivariate case as follows.
If Z ∼ N(0,Σ) and W ∼Wm(Σ ,k) such that the m×1 vector Z and the m×m matrix
W are independent, then (W/k)−1/2Z is said to have the m-variate t-distribution
with k degrees of freedom.

By making use of the density function (15.17) of the Wishart distribution, it can
be shown that the m-variate t-distribution with k degrees of freedom has the density
function

f (t) =
Γ ((k +m)/2)
(πk)m/2Γ (k/2)

(
1+

t ′t
k

)−(k+m)/2

, t ∈ R
m. (15.19)

The square of a tk random variable has the F1,k-distribution. More generally, if T has
the m-variate t-distribution with k degrees of freedom such that k ≥ m, then

k−m+1
km

T ′T has the Fm,k−m+1-distribution. (15.20)

Applying (15.20) to Hotelling’s T 2-statistic

T 2 = n(Ȳ −μ)′
(
W
/
(n−1)

)−1 (Ȳ −μ), (15.21)

where Ȳ and W are defined in (15.16), yields

n−m
m(n−1)

T 2 ∼ Fm,n−m, (15.22)

noting that

[
W
/
(n−1)

]−1/2 [√n(Ȳ −μ)
]
=
[
Wm(Σ ,n−1)

/
(n−1)

]−1/2 N(0,Σ)

has the m-variate t-distribution.
In the preceding definition of the multivariate t-distribution, it is assumed that

Z and W share the same Σ . More generally, we can consider the case where Z ∼
N(0,V ) instead. By considering V−1/2Z instead of Z, we can assume that V = I.
Then the density function of (W/k)−1/2Z, with independent Z ∼ N(0, I) and W ∼
Wm(Σ ,k), has the general form

f (t) =
Γ ((k +m)/2)

(πk)m/2Γ (k/2)
√

det(Σ)

(
1+

t ′Σ−1t
k

)−(k+m)/2

, t ∈ R
m. (15.23)
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15.2.3 Asymptotic Theory in the Case of Non-Normal Yi

Let Yi, . . . ,Yn be i.i.d. m-dimensional random vectors (not necessarily normal) with
EY = 0. Hahn and Klass (1980) have shown that there exist m×m nonrandom
matrices An such that An∑n

i=1 Yi has a limiting N(0, I) distribution if and only if

lim
y→∞

sup
‖θ‖=1

y2P(|θ ′Y |> y)
E [(θ ′Y )2I{|θ ′Y | ≤ y}] = 0. (15.24)

Note that the zero-mean random variable θ ′Y belongs to the domain of attraction of
the normal law if and only if

y2P
(
|θ ′Y |> y

)/
E
[
(θ ′Y )2I

{
|θ ′Y | ≤ y

}]
→ 0 as y→ ∞; (15.25)

see Sect. 4.2 and Sepanski (1994, 1996). Thus (15.24) requires this convergence
to be uniform in θ belonging to the unit sphere. The construction of An is quite
complicated, even in the two-dimensional case; see Hahn and Klass (1980, p. 269).
In contrast, self-normalization simply involves multiplying ∑n

i=1 Yi by V−1
n , where

Vn = {∑n
i=1(Yi−Ȳ )(Yi−Ȳ )′}1/2. Making use of this result of Hahn and Klass (1980),

Vu et al. (1996) have shown that V−1
n ∑n

i=1 Yi has a limiting N(0, I) distribution if
(15.24) holds. They have also shown that the result still holds if the Cholesky square
root (see Sect. 14.1.1) is used instead of the symmetric square root Vn. Giné and
Götze (2004) have proved the converse that the weak convergence of V−1

n ∑n
i=1 Yi to

N(0, I) implies (15.24) when Yi is symmetric.
Dembo and Shao (2006) have obtained the LIL for the T 2-statistic (15.21) under

EY = 0, h(y) := E‖Y‖2I{‖Y‖ ≤ y} is slowly varying, and

liminf
y→∞

min
‖θ‖=1

E
[
(θ ′Y )2I{‖Y‖ ≤ y}

]/
h(y) > 0. (15.26)

They prove this LIL under (15.26) by extending Theorem 6.1, which establishes
the self-normalized moderate deviation formula (6.1) in the domain of attraction of
a normal distribution, to the multivariate case. This is the content of the following
theorem, and they conjecture that the LIL still holds for the T 2-statistic (15.21)
under the weaker assumption (15.24).

Theorem 15.1. Let Y,Y1,Y2, . . . be i.i.d. m-dimensional random vectors such that
EY = 0, h(y) := E‖Y‖2I(‖Y‖≤ y) is slowly varying and (15.26) holds. Define T 2

n (=
T 2) by (15.21). Let {xn, n≥ 1} be a sequence of positive numbers with xn→∞ and
xn = o(n) as n→ ∞. Then

lim
n→∞

x−1
n logP

(
T 2

n ≥ xn
)

=−1
2
. (15.27)

Moreover, the LIL holds for T 2
n :

limsupT 2
n / log logn = β a.s. (15.28)
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15.3 General Studentized Statistics

The t-statistic
√

n(X̄n− μ)/sn is a special case of more general Studentized statis-
tics (θ̂n− θ)/ŝen that are of fundamental importance in statistical inference on an
unknown parameter θ of an underlying distribution from which the sample obser-
vations X1, . . . ,Xn are drawn. In nonparametric inference, θ is a functional g(F) of
the underlying distribution function F and θ̂n is usually chosen to be g(F̂n), where
F̂n is the empirical distribution. The standard deviation of θ̂n is often called its stan-
dard error, which is typically unknown, and ŝen denotes a consistent estimate of the
standard error of θ̂n. For the t-statistic, μ is the mean of F and X̄n is the mean of F̂n.
Since Var(X̄n) = Var(X1)/n, we estimate the standard error of X̄n by sn/

√
n, where

s2
n is the sample variance. An important property of a Studentized statistic is that it

is an approximate pivot, which means that its distribution is approximately the same
for all θ . For parametric problems, θ is usually a multidimensional vector and θ̂n is
an asymptotically normal estimate (e.g., by maximum likelihood). Moreover, the as-
ymptotic covariance matrix Vn(θ) of θ̂n depends on the unknown parameter θ , so
V−1/2

n (θ̂n)(θ̂n−θ) is the self-normalized (Studentized) statistic that can be used as
an approximate pivot for tests and confidence regions. The theoretical basis for the
approximate pivotal property of Studentized statistics lies in the limiting standard
normal distribution, or in some other limiting distribution that does not involve θ
(or F in the nonparametric case).

The results in Sect. 15.2.3 on the asymptotic normality of the t-statistic and its
multivariate extension when the observations are independent (as in Part I) and be-
long to the domain of attraction of the (multivariate) normal law have been applied
to linear regression in errors-in-variables models by Martsynyuk (2007a,b). By Stu-
dentizing the generalized least squares estimates appropriately, she obtains statistics
that are approximately pivotal in the sense that their asymptotic distributions are
independent of unknown parameters in the distributions of the measurement errors,
thereby giving weaker conditions on the explanatory variables than previous authors
in the construction of asymptotically valid confidence intervals for the regression pa-
rameters. We next consider applications of Studentized statistics in the more general
settings considered in Part II, where martingale theory plays a basic role.

15.3.1 Martingale Central Limit Theorems and Asymptotic
Normality

To derive the asymptotic normality of θ̂n, one often uses a martingale Mn associated
with the data, and approximates V−1/2

n (θ̂n)(θ̂n−θ) by 〈M〉−1/2
n Mn. For example, in

the asymptotic theory of the maximum likelihood estimator θ̂n, Vn(θ) is the inverse
of the observed Fisher information matrix In(θ), and the asymptotic normality of θ̂n
follows by using Taylor’s theorem to derive
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−In(θ)(θ̂n−θ)=̇
n

∑
i=1

∇ log fθ (Xi|X1, . . . ,Xi−1). (15.29)

The right-hand side of (15.29) is a martingale whose predictable variation is−In(θ).
Therefore the Studentized statistic associated with the maximum likelihood estima-
tor can be approximated by a self-normalized martingale, i.e.,

V−1/2
n (θ̂n)(θ̂n−θ) .= I1/2

n (θ)(θ̂n−θ) .= 〈M〉−1/2
n Mn,

where Mn = ∑n
i=1 ei, with ei = ∇ log fθ (Xi|X1, . . . ,Xi−1). If there exist nonrandom

positive definite matrices Bn such that

B−1
n 〈M〉

1/2
n

P−→ I as n→ ∞ (15.30)

and if for every ε > 0,

n

∑
i=1

E
[
‖B−1

n ei‖2I
{
‖B−1

n ei‖2 ≥ ε
}
|Xi, . . . ,Xi−1

] P−→ 0, (15.31)

then 〈M〉−1/2
n Mn converges in distribution to the multivariate standard normal dis-

tribution, by applying the following martingale central limit theorem to xni = B−1
n ei;

see Durrett (2005, p. 411). Condition (15.31), or its more general form (15.33) be-
low, is usually referred to as conditional Lindeberg.
Theorem 15.2. Let {xn,m,Fn,m,1 ≤ m ≤ n} be a martingale difference array (i.e.,
E(xn,m|Fn,m−1) = 0 for 1≤ m≤ n). Let

Sn,0 = 0, Sn,k =
k

∑
i=1

xn,m, Vn,m =
k

∑
m=1

E(x2
n,m|Fn,m−1),

and define

Sn(t) =

{
Sn,m if t = m/n and m = 0,1, . . . ,n
linear for t ∈ [(m−1)/n,m/n] .

(15.32)

Suppose that Vn,[nt]
P−→ t for every t ∈ [0,1] and

n

∑
m=1

E
[
x2

n,mI{x2
n,m ≥ ε}|Fn,m−1

] P−→ 0 for every ε > 0. (15.33)

Then Sn converges weakly in C[0,1] to Brownian motion as n→ ∞.

15.3.2 Non-Normal Limiting Distributions in Unit-Root
Nonstationary Autoregressive Models

The assumption (15.30) is crucial for ensuring the weak convergence of the self-
normalized martingale 〈M〉−1/2

n Mn to standard normal. Without this condition,
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〈M〉−1/2
n Mn may not have a limiting standard normal distribution. A well-known

example in the time series literature is related to least squares estimates of β in the
autoregressive model yt = βyt−1 + εt when β = 1, the so-called unit-root nonsta-
tionary model. Here εt are i.i.d. unobservable random variables with Eεt = 0 and
Eε2

t = σ2 > 0. The least squares estimate

β̂n = ∑n
t=2 ytyt−1

∑n
t=2 y2

t−1
= β + ∑n

t=2 yt−1εt

∑n
t=2 y2

t−1

is consistent but not asymptotically normal in this case. Note that since β = 1, yt =
y0 +∑t

i=1 εi is a zero-mean random walk and that(
n

∑
t=2

εt

)2

=
n

∑
t=2

ε2
t +2

n

∑
t=2

εt(yt−1− y0).

Moreover, by Theorem 15.2 and the continuous mapping theorem for weak conver-
gence in C[0,1] (Durrett, 2005, p. 407), it follows that

(
n

∑
t=2

y2
t−1

)1/2

(β̂n−β ) =
1
2

{(
1√
n ∑

n
t=2 εt

)2
− 1

n ∑
n
t=2 ε2

t + 2y0
n ∑n

t=2 εt

}
{

1
n ∑

n
t=2 (yt−1/

√
n)2

}1/2

⇒ σ
2

(
W 2(1)−1

)
{∫ 1

0 W 2(t)dt
}1/2

where⇒ denotes weak convergence and {W (t), t ≥ 0} denotes standard Brownian
motion.

In the preceding autoregressive model, the mean level is assumed to be 0. For
the more general autoregressive model yt = α +βyt−1 + εt , there is a similar result
for the Studentized statistic (β̂ − 1)/ŝe(β̂ ), which is called the Dickey–Fuller test
statistic for unit-root nonstationarity (i.e., β = 1 and α = 0); see Problem 15.3.
Extensions to more lagged variables yt−1,yt−2, . . . ,yt−p and to multivariate yt have
also been considered in the literature, leading to the augmented Dickey–Fuller test
and the cointegration test; see Lai and Xing (2008, Sects. 9.4.4 and 9.4.5) for details.

15.3.3 Studentized Statistics in Stochastic Regression Models

The autoregressive model in the previous section is a special case of stochastic re-
gression models of the form

yt = β ′xt + εt , (15.34)

in which {εt} is a martingale difference sequence with respect to a filtration {Ft}
and xt is Ft−1-measurable. An important class of these models in control systems
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is the ARMAX model (autoregressive models with moving average errors and ex-
ogenous inputs):

yt = a1yt−1 + · · ·+apyt−p +b1ut−d + · · ·+bqut−d−q+1 + εt + c1εt−1 + · · ·+ crεt−r,
(15.35)

in which yt represents the output and ut the input at time t and the εt are random dis-
turbances, β = (a1, . . . ,ap,b1, . . . ,bq,c1, . . . ,cr)′ is a vector of unknown parameters
and d ≥ 1 represents the delay. The regressor

xt = (yt−1, . . . ,yt−p,ut−d , . . . ,ut−d−q+1,εt−1, . . . ,εt−r)′ (15.36)

is indeed Ft−1-measurable but includes the unobservable εt−1, . . . ,εt−r and there-
fore ordinary least squares cannot be used to estimate β . In the white-noise case
(i.e., r = 0), xt does not contain εi and the model is called ARX, for which β can be
estimated by least squares.

To begin with, consider the linear regression model yt = a + bxt + εt . The least
squares estimate of b based on (x1,y1), . . . ,(xnyn) is

b̂n = ∑n
i=1(xi− x̄n)yi

∑n
i=1(xi− x̄n)2 = b+ ∑n

i=1(xi− x̄n)εi

∑n
i=1(xi− x̄n)2 . (15.37)

Even when εi are independent with Eεi = 0,Eε2
i < ∞ and the xi are nonrandom

constants such that ∑n
i=1(xi− x̄n)2 → ∞, strong consistency of b̂n does not follow

directly from the strong law of large numbers since it involves a double array
of weights ani := xi − x̄n to form the weighted sum ∑n

i=1 aniwi. By making use
of the properties of the double array ani associated with least squares regression, Lai
et al. (1978, 1979) have established the strong consistency of least squares estimates
β̂n := (∑n

t=1 xtx′t)
−1∑n

t=1 xtyt in the regression model (15.34) under the minimal
assumption that ∑n

i=1(xi− x̄n)2→ ∞, when the xi are nonrandom and {εi,Fi, i≥ 1}
is a martingale difference sequence with limsupn→∞ E(ε2

n |Fn−1) < ∞.
This assumption, however, is not strong enough to ensure strong consistency of

β̂n in stochastic regression models (15.34) in which xt is Ft−1-measurable. In this
case, letting λmax(·) and λmin(·) denote the maximum and minimum eigenvalue of
a symmetric matrix, respectively, Lai and Wei (1982) have shown that

β̂n → β a.s. on

{
λmin

(
n

∑
t=1

xtx′t

)/
logλmax

(
n

∑
t=1

xtx′t

)
→ ∞

}
, (15.38)

when supn E(|εn|2+δ |Fn−1) < ∞ for some δ > 0. They also give an example in
which λmax(∑n

t=1 xtx′t) ∼ Un, λmin(∑n
t=1 xtx′t) ∼ V logn and β̂n → bU,V �= β a.s.,

where U �= 0,V �= 0 and bU,V are random variables. The proof of (15.38) uses the
(squared) Studentized statistic

Qn = (β̂n−β )′
(

n

∑
t=1

xtx′t

)
(β̂n−β ), (15.39)
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which is shown to satisfy

Qn = O

(
logλmax

(
n

∑
t=1

xtx′t

))
a.s. (15.40)

Since Qn = (β̂n−β )′/∑n
t=1 xtx′t)(β̂n−β ) ≥ λmin(∑n

t=1 xtx′t)‖β̂n−β‖2, (15.38) fol-
lows from (15.40).

To prove (15.40), Lai and Wei (1982) make use of the following recursive repre-
sentations of β̂n and Pn := (∑n

t=1 xtx′t)
−1:

β̂n = β̂n−1 +Pnxn(yn− β̂ ′n−1xn), (15.41)

Pn = Pn−1−
Pn−1xnx′nPn−1

1+ x′nPn−1xn
. (15.42)

The recursions (15.41) and (15.42) lead to a recursive inequality for Qn of the fol-
lowing form:

Qn ≤ (1+αn−1)Qn−1 +θn− γn +wn−1εn, (15.43)

with αn = 0,θn = x′nPnxnε2
n ,wn−1 = 2{(β̂n−1−β )′xn}(1− x′nPnxn) and

γn =
{

(β̂n−1−β )′xn

}2
(1− x′nPnxn)≥ 0. (15.44)

Lai (2003, p. 394) calls Qn ≥ 0 an extended stochastic Liapounov function if it
is Fn-measurable and satisfies (15.43), in which αn ≥ 0,θn ≥ 0,γn ≥ 0 and wn are
Fn-measurable random variables such that ∑∞

n=1αn < ∞ a.s. and {εn,Fn,n ≥ 1}
is a martingale difference sequence such that limsupn→∞ E(ε2

n |Fn−1) < ∞ a.s. He
uses (15.43) and strong laws for martingales to show that

max

(
Qn,

n

∑
i=1

γi

)
= O

⎛
⎝ n

∑
i=1

θi +

(
n−1

∑
i=1

w2
i

)1/2+η
⎞
⎠ a.s. (15.45)

for every η > 0. Moreover,

Qn converges and
n

∑
i=1

E(γi|Fi−1) < ∞ a.s. on

{
∞

∑
i=1

E(θi|Fi−1) < ∞

}
. (15.46)

Applying (15.45) to the αn,θn,wn and γn in (15.44) yields (15.40) since ∑n
i=2 w2

i−1 ≤
4∑n

i=1 γi and

n

∑
i=1

θi =
n

∑
i=1

x′iPixiε2
i = O

(
n

∑
i=1

x′iPixi

)
= O

(
logλmax

(
n

∑
i=1

xix′i

))
a.s.;

see Lemma 2 of Lai and Wei (1982) and recall the assumption limsupn→∞ E(|εn|2+δ |
Fn−1) < ∞ a.s. for the stochastic regression model.
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For the ARMAX model (15.35), one can use the extended least squares estimator
that replaces the unobserved εi in (15.36) by the prediction error ε̂i = yi− β̂ ′i−1xi. Lai
and Wei (1986) have modified the preceding argument to prove an analog to (15.38)
under certain conditions on (c1, . . . ,cr). They have also shown how the inputs ut can
be chosen in the adaptive control problem of keeping the outputs yt as close as pos-
sible to some target values y∗t when the parameters a1, . . . ,ap,b1, . . . ,bq,c1, . . . ,cr of
the ARMAX model are unknown.

15.4 Supplementary Results and Problems

1. Prove the two equalities in (15.9). The argument leading to (15.9) in Sect. 15.1.1
is closely related to the derivation of the following identity in Logan and Shepp
(1968, p. 310), according to a conversation with Larry Shepp:

∫ ∞

0

f (ax)− f (bx)
x

dx = f (0) log
b
a

(15.47)

for a > 0, b > 0 and continuously differentiable f : [0,∞) → R such that∫ ∞
1 | f ′(x)| logx <∞. Note that both sides of (15.47) are equal when b = a. Differ-

entiating the left-hand side of (15.47) with respect to b yields −
∫ ∞

0 f ′(bx)dx =
f (0)/b, and the derivative of the right-hand side of (15.47) with respect to b is
also f (0)/b.

2. Derive (15.19) from (15.17), and prove (15.20) and (15.23).
3. Let θ̂n = (α̂n, β̂n)′ be the least squares estimate, based on y1, . . . ,yn, of the pa-

rameter vector θ = (α,β )′ in the autoregressive model yt = α +βyt−1 + εt , in
which {εt , t ≥ 1} is a martingale difference sequence with respect to a filtration
{Ft} such that y0 is F0-measurable and

lim
t→∞

E(ε2
t |Ft−1) = σ a.s., sup

t
E(|εt |p|Ft−1) < ∞ a.s. for some p > 2.

(15.48)
Let xt = (1,yt−1)′:

(a) If |β | < 1, show that the Studentized statistic (∑n
t=2 xtx′t)

1/2(θ̂n− θ) has a
limiting normal distribution as n→ ∞.

(b) If β = 1 and α = 0, show that (∑n
t=2 xtx′t)

1/2(θ̂n−θ) still converges weakly
as n→ ∞, but to a non-normal limiting distribution.



Chapter 16
Self-Normalization for Approximate Pivots
in Bootstrapping

An alternative to inference based on the approximate normal distribution theory in
Sect. 15.3.1 for Studentized statistics is to make use of bootstrap resampling. Let
X1, . . . ,Xn be independent random vectors with common distribution F . The empiri-
cal distribution puts probability mass 1/n at each Xi, or equivalently has distribution
function F̂(x) = n−1∑n

i=1 I{Xi≤x}. A bootstrap sample (X∗1 , . . . ,X∗n ) is obtained by
sampling with replacement from F̂ so that the X∗i are i.i.d. with common distribu-
tion function F̂ . Let g be a functional of F and θ = g(F). The “plug-in estimate” of
θ is θ̂ = g(F̂). For example, the kth sample moment n−1∑n

i=1 Xk
i =

∫
xkdF̂(x) is an

estimate of the kth moment of F , for which g(F) =
∫

xkdF(x). Denoting g(F̂) also
by g(X1, . . . ,Xn), we use the bootstrap sample to form a bootstrap replicate of θ̂
via θ̂ ∗ = g(X∗1 , . . . ,X∗n ). The sampling distribution of θ̂ can be estimated by Monte
Carlo simulations involving a large number of bootstrap replicates generated from
F̂ . In particular, the standard error se(θ̂ ) of θ̂ , which is the standard deviation of the
sampling distribution of θ̂ , can be estimated by the following steps:

1. Generate B independent bootstrap samples from F̂
2. Evaluate θ̂ ∗b for the bth bootstrap sample, b = 1, . . . ,B
3. Compute the mean θ̄ ∗ = B−1∑B

b=1 θ̂ ∗b of the bootstrap replicates and estimate
the standard error se(θ̂ ) by

ŝe(θ̂) =

{
B

∑
b=1

(θ̂ ∗b − θ̄ ∗)2/(B−1)

}1/2

16.1 Approximate Pivots and Bootstrap-t Confidence Intervals

The limiting standard normal distribution of the Studentized statistic (θ̂ − θ)/ŝe
provides an approximate (1−2α)-level confidence interval θ̂ ± z1−α ŝe, where zp is
the pth quantile of the standard normal distribution for which zα = −z1−α . For the

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 223
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special case where θ is the mean of a distribution, Gosset derived in 1908 a better
approximation that replaces the normal quantile z1−α by the quantile tn−1;1−α of
a t-distribution with n− 1 degrees of freedom; the approximation is exact if the
underlying distribution is normal. If the underlying distribution F were known, one
could evaluate the αth and (1−α)th quantiles of (θ̂ − θ)/ŝe by Monte Carlo by
sampling from F and thereby obtain the confidence interval [θ̂ −u1−α ŝe, θ̂ −uα ŝe],
where up denotes the pth quantile of (θ̂ −θ)/ŝe. Since F is actually unknown, the
bootstrap approach draws samples from F̂ to evaluate its quantiles ûα and û1−α ,
which are then used to form the bootstrap confidence interval [θ̂ − û1−α ŝe, θ̂ −
ûα ŝe].

The preceding bootstrap confidence interval is often called a bootstrap-t inter-
val since it is based on the Studentized statistic (or generalized t-statistic). An
important property of Studentized statistics is that they are asymptotic pivots in
the sense that their limiting distributions do not depend on F , which suggests that
we can approximate the quantiles of the limiting distribution by sampling from F̂ .
An alternative bootstrap interval is the percentile interval [θ̂− q̂1−α , θ̂− q̂α ], which
uses the quantiles q̂α and q̂1−α of the bootstrap replicates θ̂ ∗1 − θ̂ , . . . , θ̂ ∗B− θ̂ to es-
timate the quantiles qα and q1−α of the sampling distribution of θ̂ −θ . Hall (1988)
uses Edgeworth expansions to compare the accuracy of different types of bootstrap
confidence intervals. The next section describes these Edgeworth expansions for the
bootstrap-t and percentile intervals.

16.2 Edgeworth Expansions and Second-Order Accuracy

16.2.1 Edgeworth Expansions for Smooth Functions
of Sample Means

To derive the Edgeworth expansions rigorously, Hall considers the case of smooth
functions of sample means for which Bhattacharya and Ghosh (1978) have devel-
oped a complete theory of Edgeworth expansions. Let h : R

d →R be a function that
is sufficiently smooth in some neighborhood of the common mean μ of i.i.d. random
vectors X1, . . . ,Xn. Taylor expansion of h(X̄) around h(μ) can be combined with the
central limit theorem to show that

√
n{h(X̄)−h(μ)} has a limiting normal distrib-

ution with mean 0 and variance σ2 = (∇h(μ))′V (∇h(μ)), where V is the common
covariance matrix of the Xi. This is often called the delta method.

Theorem 16.1. Suppose that for some integer ν ≥ 1, h has ν +2 continuous deriv-
atives in a neighborhood of μ and that E(‖X1‖ν+2) < ∞. Assume also that the
characteristic function of X1 satisfies Cramér’s condition

limsup
‖t‖→∞

∣∣E exp(it ′X1)
∣∣ < 1. (16.1)
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Let Φ and φ denote the standard normal distribution and density functions. Then

P
{√

n(h(X̄)−h(μ))
/
σ ≤ x

}
= Φ(x)+

ν

∑
j=1

n− j/2π j(x)φ(x)+o(n−ν/2) (16.2)

uniformly in x, where π j is a polynomial of degree 3 j−1, odd for even j and even
for odd j, with coefficients depending on the moments of X1 up to order j + 2 and
the derivatives of h at μ .

For the details of the proof, see Bhattacharya and Ghosh (1978). Here we sum-
marize the main ideas. First consider the simplest case d = 1 and h(x) = x. If the
characteristic function of X1 belongs to Lp(R) for some p ≥ 1, then

√
n(X̄ − μ)/σ

has a density function fn (with respect to Lebesgue measure) for n ≥ p and an
Edgeworth expansion of fn can be obtained by Fourier inversion of the characteris-
tic function Eeit

√
n(X̄−μ)/σ = (Eei(t/

√
n)(X1−μ)/σ )n, the Fourier transform of fn. The

Edgeworth expansion (16.2) for h(x) = x can then be obtained by integrating the
Edgeworth expansion of fn. For general d and h, we can obtain a linear approx-
imation to h(X̄)− h(μ) and a change of variables involving the Jacobian matrix
to derive an Edgeworth expansion of the density function of

√
n{h(X̄)−h(μ)}/σ .

A more delicate Fourier inversion argument can be used when the integrability as-
sumption on the characteristic function of X1 is replaced by Cramér’s condition; see
Sect. 2.3.2, Bhattacharya and Ranga Rao (1976, pp. 211–214) and Bhattacharya and
Ghosh (1978, p. 445) for details.

16.2.2 Edgeworth and Cornish–Fisher Expansions: Applications
to Bootstrap-t and Percentile Intervals

A confidence interval I = I(X1, . . . ,Xn) for θ , with nominal coverage probability
1− α , is said to be second-order accurate if P{θ ∈ I} = 1− α + O(n−1). It is
called first-order accurate if P{θ ∈ I} = 1−α + O(n−1/2). We now make use of
Edgeworth expansions to show that bootstrap-t intervals for θ are second-order ac-
curate but one-sided percentile intervals are only first-order accurate when θ is a
smooth function of the sample mean vector. Closely related to coverage accuracy
is the notion of correctness of a confidence interval, which refers to how closely
the confidence interval matches an exact confidence interval that it tries to mimic.
For example, an exact 1−α level upper confidence bound for θ is θ̂ − uα ŝe and
the bootstrap-t upper confidence bound is θ̂ − ûα ŝe. An upper confidence bound is
said to be second-order correct if it differs from the corresponding exact confidence
bound by Op(n−3/2) = Op(n−1ŝe). If the difference is Op(n−1), the upper confi-
dence bound is called first-order correct. Whereas an Edgeworth expansion gives an
asymptotic formula for the distribution function of

√
n(θ̂−θ) or

√
n(θ̂−θ)/ŝe, in-

verting the formula gives a Cornish–Fisher expansion that relates the quantile of the
sampling distribution to that of the normal distribution. Cornish–Fisher expansions
can be used to show that bootstrap-t confidence bounds are second-order accurate



226 16 Self-Normalization for Approximate Pivots in Bootstrapping

but percentile confidence bounds are only first-order accurate. Since X∗1 , . . . ,X∗n are
i.i.d. with distribution function F̂ , we can apply Edgeworth expansions to the boot-
strap distribution of θ̂ ∗ − θ̂ or (θ̂ ∗ − θ̂)/ŝe by translating Cramér’s condition on F
to a similar property for F̂ ; see Problem 16.1 for the precise statement.

To apply Theorem 16.1 to (θ̂ −θ)/se or (θ̂ −θ)/ŝe, where θ̂ = g(X̄), we take
the function h in the theorem to be of the form h(x) = (g(x)−g(μ))/s(μ) or h(x) =
(g(x)−g(μ))/s(x), where s2(μ)/n is the asymptotic variance of θ̂ . Note that s(X̄)
is a consistent estimate of s(μ) and that σ = 1 for both choices of h. The coefficients
of the polynomials π j, however, differ for the two choices.

Setting (16.2), with h(x) = (g(x)−g(μ))/s(x) and ν = 2, equal to α and noting
that Φ(zα) = α , we obtain the following Cornish–Fisher expansion for uα :

uα = zα +n−1/2 p1(zα)+n−1 p2(zα)+O(n−3/2), (16.3)

in which the p j are polynomials of degree at most j + 1, odd for even j and even
for odd j, and depend on moments of X1 up to order j +2. From the corresponding
Edgeworth expansion applied to X∗i instead of Xi, we obtain likewise

ûα = zα +n−1/2 p̂1(zα)+n−1 p̂2(zα)+Op(n−3/2). (16.4)

Since the sample moments differ from their population counterparts by Op(n−1/2), it
follows from (16.3) and (16.4) that ûα−uα = Op(n−1), and therefore the bootstrap-t
upper confidence bound θ̂ − ûα ŝe is second-order correct.

If we consider the percentile upper confidence bound instead, then we can apply
(16.2) with ν = 2 and h(x) = (g(x)−g(μ))/s(μ) instead, yielding similar Cornish–
Fisher expansions for the quantile qα of θ̂ −θ and that of θ̂ ∗ − θ̂ :

qα = n−1/2s(μ)
{

zα +n−1/2P1(zα)+n−1P2(zα)
}

+o(n−1), (16.5)

q̂α = n−1/2s(X̄)
{

zα +n−1/2P̂1(zα)+n−1P̂2(zα)
}

+op(n−1). (16.6)

Since s(X̄)− s(μ) = Op(n−1/2), it follows that the percentile upper confidence
bound θ̂ − q̂α is only first-order correct.

To study the coverage accuracy of the bootstrap-t confidence bound, we use
(16.3) and (16.4) to derive

ûα = zα +n−1d̂1(Ȳ )+
2

∑
j=1

n− j/2 p j(zα)+Op(n−3/2), (16.7)

where d1(Ȳ ) =
√

n{p̂1(zα)− p1(zα)} and Ȳ contains X̄ as a subvector and other
components involved in the sample moments up to order 3. Therefore
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P
{

g(μ)≤ g(X̄)−n−1/2s(X̄)uα
}

= P

{
√

n(g(X̄)−g(μ))/s(X̄)+n−1d̂1(Ȳ )≥ uα −
2

∑
j=1

n− j/2 p j(zα)

}

+O(n−3/2). (16.8)

An Edgeworth expansion, up to term of the order n−1 and with a remainder of the
order O(n−3/2), still holds for the second probability in (16.8), which then can be
shown to be equal to 1−α +O(n−1).

Since the percentile upper confidence bound θ̂ − q̂α is only first-order correct,
modifying the preceding argument to derive an Edgeworth expansion for the cover-
age probability of the one-sided percentile interval yields

P
{√

n(g(X̄)−g(μ))/s(μ)≥
√

nq̂α/s(μ)
}

= 1−α +O(n−1/2), (16.9)

showing that the one-sided percentile interval is only first-order accurate. This illus-
trates the importance of using self-normalized statistics for statistical inference.

For two-sided percentile intervals [θ̂ − q̂1−α , θ̂ − q̂α ], the coverage probability is

P
{√

nq̂α/s(μ)≤
√

n(g(X̄)−g(μ))/s(μ)≤
√

nq̂1−α/s(μ)
}

= P
{√

n(g(X̄)−g(μ))/s(μ)≤
√

nq̂1−α/s(μ)
}

−P
{√

n(g(X̄)−g(μ))/s(μ)≤
√

nq̂α/s(μ)
}

. (16.10)

Since zα =−z1−α and π1(zα) = π(z1−α) because π1 is an even function, it follows
from the difference of the Edgeworth expansions for the two probabilities in (16.10)
that the coverage probability of [θ̂ − q̂1−α , θ̂ − q̂α ] is Φ(z1−α)−Φ(zα)+O(n−1) =
1−2α+O(n−1). The two-sided percentile interval is second-order accurate because
of such cancellation of the first-order terms. Unlike π1,π2 is an odd function for
which π2(zα) =−π2(z1−α). Therefore

n−1 {π2(z1−α)φ(z1−α)−π2(zα)φ(zα)}= 2n−1π2(z1−α)φ(z1−α),

and the two-sided bootstrap-t interval remains second-order accurate as there is no
cancellation of the second-order terms.

A practical difficulty that sometimes arises in using bootstrap-t confidence inter-
vals is that a good estimate ŝe of the standard error may be difficult to find, especially
when n is not large and g(F) is a nonlinear functional of F . A well-known example
is the correlation coefficient of a bivariant distribution F ; see Efron and Tibshirani
(1993, Sect. 12.6) who also introduce a variance-stabilizing transformation to over-
come this difficulty. Other methods to improve the bootstrap-t method in nonlinear
settings include the BCa interval, the ABC approximation and bootstrap iteration;
see Efron and Tibshirani (1993, Sects. 22.4–22.8) and Hall (1992, Sects. 3.10, 3.11)
for the underlying theory, Edgeworth expansions, and technical details.
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16.3 Asymptotic U-Statistics and Their Bootstrap Distributions

[Asymptotic U-Statistics and Their Bootstrap Distributions]
Although smooth functions of sample mean vectors cover a wide range of statis-

tics in applications, many statistics cannot be expressed as g(X̄). When the Xi are
i.i.d., it is natural to use symmetric statistics; a statistic S = S(X1, . . . ,Xn) is said
to be symmetric if it is invariant under permutation of the arguments. In particular,
g(F̂) is a symmetric statistic. Assuming that ES2 < ∞, let μ = ES and define

A(xi) = E(S | Xi = xi)−μ ,

B(xi,x j) = E(S | Xi = xi,Xj = x j)−E(S | Xi = xi)−E(S | Xj = x j)+μ

for i �= j, etc. Then B(x,y) = B(y,x) and S has the decomposition

S−μ =
n

∑
i=1

A(Xi)+ ∑
1≤i< j≤n

B(Xi,Xj)+ ∑
1≤i< j<k≤n

C(Xi,Xj,Xk)

+ ∑
1≤i< j<k<h≤n

D(Xi,Xj,Xk,Xh)+ · · ·+R(X1, . . . ,Xn), (16.11)

where all 2n − 1 random variables on the right-hand side of (16.11) have mean
0 and are mutually uncorrelated with each other. In fact, E{B(X1,X2) | X1} = 0,
E{C(X1,X2,X3) | X1,X2} = 0, etc. The decomposition (16.11), due to Efron and
Stein (1981), is a generalization of Hoeffding’s (1948) decomposition for the special
case of U-statistics; see Sect. 8.2.1. Using the first three terms of this decomposition,
Lai and Wang (1993) call a real-valued statistic Un = Un(X1, . . . ,Xn) an asymptotic
U-statistic if it has the decomposition

Un =
n

∑
i=1

{
α(Xi)√

n
+

α ′(Xi)
n3/2

}
+ ∑

1≤i< j≤n

β (Xi,Xj)
n3/2

+ ∑
1≤i< j<k≤n

γ(Xi,Xj,Xk)
n5/2 +Rn, (16.12)

where α,α ′,β ,γ are non-random Borel functions which are invariant under permu-
tation of the arguments and which satisfy assumptions (A2)–(A4) below, and the Rn
are random variables satisfying (A1):

(A1) P{|Rn| ≥ n−1−ε}= o(n−1) for some ε > 0.
(A2) Eα(X) = Eα ′(X) = 0.
(A3) E{β (X1,X2) | X1}= 0, E{γ(X1,X2,X3) | X1,X2}= 0.
(A4) E{|α ′(X1)|3 + |γ(X1,X2,X3)|4}< ∞.

To develop an Edgeworth expansion, with an error of order o(n−1), for the dis-
tribution of an asymptotic U-statistic, Lai and Wang (1993) make the following
assumptions on α and β :

(B) Eα2(X1) = σ2 > 0,Eα2(X1) < ∞ and limsup|t|→∞ |Eeitα(X1)|< 1.
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(C) E|β (X1,X2)|r <∞ for some r > 2 and there exist K Borel functions fν : R
p→R

such that E f 2
ν (X1) < ∞(ν = 1, . . . ,K) and the covariance matrix of W1, . . . ,WK

is positive definite, where Wν = E{β (X1,X2) fν(X2) | X1}, with K(r−2) > 4r
if γ(X1,X2,X3) = 0 a.s. and K(r−2) > 32r−40 otherwise.

Condition (B) is natural for Edgeworth expansions of the major term ∑n
i=1α(Xi)/

√
n

in the decomposition (16.12). In the case γ = Rn = 0, Bickel, Götze and van Zwet
(1986) introduced a condition that is equivalent to condition (C) (see their Lemma
4.1). Noting that β (X1,X2) can be represented in the form ∑n

i=1 cνgν(X1)gν(X2)
when condition (C) fails, Lai and Wang (1993) introduce the following alternative
to condition (C):

(D) There exist constants cν and Borel functions gν : R
p → R such that Egν

(X) = 0,E|gν(X)|r <∞ for some r≥ 5 and β (X1,X2) =∑K
ν=1 cνgν(X1)gν(X2)

a.s.; moreover, for some 0 < δ < min{1,2(1−11r−1/3)},

limsup
|t|→∞

sup
|s1|+···+|sK |≤|t|−δ

∣∣∣∣∣E exp

(
it

{
α(X)+

K

∑
ν=1

sνgν(X)

})∣∣∣∣∣ < 1.

Under these assumptions, they prove the following Edgeworth expansion for asymp-
totic U-statistics.

Theorem 16.2. Let Un be an asymptotic U-statistic defined by (16.12) and (A1)–
(A4). Suppose α satisfies (B) and either (C) or (D) holds. Let σ = (Eα2(X))1/2 and
define

a3 = Eα3(X), a4 = Eα4(X), a′ = E
{
α(X)α ′(X)

}
,

b = E {α(X1)α(X2)β (X1,X2)} ,
c = E {α(X1)α(X2)α(X3)γ(X1,X2,X3)} ,

κ3 = a3 +3b,

κ4 = a4−3σ4 +4c

+12E
{
α2(X1)α(X2)β (X1,X2)+α(X1)α(X2)β (X1,X3)β (X2,X3)

}
,

P1(z) = κ3σ−3(z2−1)/6,

P2(z) =
{

a′+
Eβ 2(X1,X2)

4

}
z
σ2 +

κ4

24σ4 (z3−3z)+
κ2

3
72σ6 (z5−10z3 +15z).

Then P{Un/σ ≤ z} = Φ(z)− n−1/2φ(z)P1(z)− n−1φ(z)P2(z) + o(n−1), uniformly
in −∞ < z < ∞.

To prove Theorem 16.2, Lai and Wang (1993) make use of Theorem 2.25 to
analyze the distribution function of Ũn := Un−Rn via its characteristic function,
noting that in view of (A1) it suffices to consider Ũn instead of Un. Let fn(t) =
EeitŨn/σ . Take 2 < s ≤ min(3,r). By making use of the Taylor expansion eiu =
1 + iu− u2/2 + O(|u|s) as u → 0, Lai and Wang (1993, pp. 531–532) show that
fn(t) = gn(t)+o(n−(1+2ρ)|t|) uniformly in |t| ≤ uρ , where
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gn(t) =
∫ ∞

−∞
eitzd

{
Φ(z)−n−1/2φ(z)P1(z)−n−1φ(z)P2(z)

}

and 0 < ρ < 1/4 such that s/2− ρ(s− 1) > 1− 2ρ . Since
∫
|t|≥nδ |t|−1|gn(t)|dt =

o(n−1) for any δ > 0, Lai and Wang (1993, pp. 532–539) complete the proof of
Theorem 16.2 by showing that∫

nρ≤|t|≤n(r−1)/r(logn)−1
|t−1 fn(t)|dt = o(n−1),

∫
n(r−1)/r(logn)−1≤|t|≤n logn

|t−1 fn(t)|dt = o(n−1).

Lai and Wang (1993, pp. 526–527, 539–541) have also extended the preceding
analysis to derive Edgeworth expansions for asymptotic U-statistics, by making use
of the following result of Abramovitch and Singh (1985, p. 129) on the empirical
characteristic function ψ̂n(t) :=

∫
eitydF̂n(y), where F̂n is the distribution function of

i.i.d. random variables Y1,Y2, . . . that have distribution function F and characteristic
function ψ:

sup
|t|≤na

∣∣ψ̂n
(
t/
√

n
)
−ψ

(
t/
√

n
)∣∣→ 0 a.s. for any a > 0. (16.13)

Theorem 16.3. With the same notation and assumptions as in Theorem 16.2, let H
denote the distribution of X1 and Ĥn(A) = n−1∑n

i=1 I(Xi ∈ A) denote the empirical
distribution, and let X∗1 , . . . ,X∗n be i.i.d. with common distribution Ĥn. Suppose that
there exist functions α̂n, Ân, β̂n, γ̂n, depending on Ĥn and invariant under permuta-
tion of the arguments, such that

n−1
n

∑
i=1
|Ân(Xi)|3+n−3 ∑

1≤i< j<k≤n
|γ̂n(Xi,Xj,Xk)|4 = Op(1), (16.14)

n

∑
i=1

α̂n(Xi) =
n

∑
i=1

Ân(Xi) = 0 =
n

∑
i=1

β̂n(y1,Xi)

=
n

∑
i=1

γ̂n(y1,y2,Xi) for any y1,y2 ∈ S(H), (16.15)

sup
x∈S(H)

|α̂n(x)−α(x)|
1+ |α(x)| + sup

x,y∈S(H)
|β̂n(x,y)−β (x,y)|= Op(n−1/2), (16.16)

where S(H) denotes the support of H. Let

U∗n =
n

∑
i=1

{
α̂n(X∗i )√

n
+

Ân(X∗i )
n3/2

}
+ ∑

1≤i< j≤n

β̂n(X∗i ,X∗j )

n3/2

+n−5/2 ∑
1≤i< j<k≤n

γ̂ n(X∗i ,X∗j ,X
∗
k )+R∗n, (16.17)
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where nP{|R̃∗n| ≥ n−1−ε | Ĥn} P→ 0 for some ε > 0. Let σ̂2
n = E{α̂2

n (X∗1 ) | Ĥn}. Then
P{U∗n ≤ σ̂nz | Ĥn}=Φ(z)−n−1/2φ(z)P1(z)+Op(n−1), uniformly in −∞< z <∞.
Consequently, supz |P{Un/σ ≤ z}−P{U∗n ≤ σ̂nz | Ĥn}|= Op(n−1).

Although the conclusion of Theorem 16.3 seems restrictive because it is con-
cerned with the distribution of the standardized statistic Un/σ , it is straightforward
to modify the result so that it is applicable to the Studentized statistic Un/σ̂n. As
noted by Gross and Lai (1996), Un/σ̂n can be expressed as an asymptotic U-statistic
with σ = 1 and therefore Theorem 16.2 is still applicable to Un/σ̂n (in place of
Un/σ ). In this case Theorem 16.3 can be modified to show that

sup
z
|P{Un/σ̂n ≤ z}−P{U∗n /σ̂∗n ≤ z | Ĥn}|= Op(n−1), (16.18)

where, similar to U∗n , σ̂∗n replaces X1, . . . ,Xn in σ̂n by X∗1 , . . . ,X∗n . Gross and Lai
(1996) have applied this result to develop an asymptotic theory of Efron’s (1981)
“simple” bootstrap method for right censored survival data and have also extended
it to right censored and left truncated data described below.

Let (X1,T1,C1), (X2,T2,C2), . . . be i.i.d. random vectors such that (Ti,Ci) is inde-
pendent of Xi. The quantities of interest are the Xi which are not completely observ-
able because of the presence of the right censoring variables Ci and left truncation
variables Ti. Letting

X̃i = min(Xi,Ci), δi = I(Xi ≤Ci), (16.19)

one only observes (X̃i,δi) when X̃i ≥ Ti. Thus, the data consist of n observations
(X̃i,o,δi,o,Ti,o) with X̃i,o ≥ Ti,o, i = 1, . . . ,n. Such left truncated and right censored
data have wide applications in survival analysis, where Xi represents the failure time
of the ith subject in a clinical study. The subject may withdraw from the study, or
may be lost to follow-up, or may still survive by the scheduled end of the study.
Thus, Xi is right censored. In certain studies of the duration of a disease, patients
are followed from an entrance (or left truncation) age to an exit age (due to death or
right censoring). When truncation is absent, we can set Ti = −∞. When censoring
is absent, multiplying the random variables by −1 converts a left truncated model
into a right truncated one, and right truncated data have extensive applications
in astronomy and econometrics; see Gross and Lai (1996, p. 509). Let Ψ̂n denote
the empirical distribution that puts probability 1/n at each Xi = (X̃i,o,δi,o,Ti,o), i =
1, . . . ,n. The simple bootstrap sample consists of i.i.d. random vectors Z∗1 , . . . ,Z∗n
drawn from the distribution Ψ̂n. As noted by Gross and Lai (1996, p. 512), the Zi
are i.i.d. random vectors whose common distributionΨ is given by

P
{
δi,o = δ ,(X̃i,o,Ti,o) ∈ A

}
= P{I(X1 ≤C1) = δ ,(X1∧C1,T1) ∈ A}/P{X1∧C1 ≥ T1} ,

for δ = 0 or 1 and all Borel sets A such if x ≥ t if (x, t) ∈ A. Let S = S(Z1, . . . ,Zn)
be an estimate of the functional μ(Ψ) and let σ̂ = σ̂(Z1, . . . ,Zn) be an estimate
of the standard error of S, in which S/σ̂ can be expressed as an asymptotic
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U-statistic. Theorem 16.3 can be used to show that the sampling distribution of
(S− μ(Ψ))/σ̂ can be approximated by that of (S∗ − μ(Ψ̂n))/σ̂∗ with Op(n−1)
error, where S∗ = S(Z∗1 , . . . ,Z∗n) and σ̂∗ = σ̂(Z∗1 , . . . ,Z∗n); see Gross and Lai (1996)
for details and examples and Problems 10.3 and 10.4 for the background.

16.4 Application of Cramér-Type Moderate Deviations

Results of the type in Theorem 16.3 are concerned with absolute errors of the boot-
strap approximation to the sampling distribution of a Studentized statistic. For small
tail probabilities of a Studentized statistic, relative errors of the bootstrap approxi-
mation are more relevant than absolute errors. In this section we apply Theorem 7.4
to study the relative error in the case of the t-statistic Tn =

√
n(X̄n− μ)/sn and its

bootstrap version T ∗n =
√

n(X̄∗n − X̄n)/s∗n, where X1, . . . ,Xn are i.i.d. with mean μ
and X∗1 , . . . ,X∗n are i.i.d. drawn from the empirical distribution F̂n of {X1, . . . ,Xn}.

Theorem 16.4. If E|X1|2+δ < ∞ for some 0 < δ ≤ 1, then with probability 1,

P(T ∗n ≥ x|F̂n)
P(Tn ≥ x)

= 1+o(1) and
P(T ∗n ≤−x|F̂n)

P(Tn ≤−x)
= 1+o(1) (16.20)

uniformly in 0≤ x≤ o(nδ/(4+2δ )).

Proof. We only consider the first part of (16.20) and assume μ = 0 without loss
of generality. In view of (15.1), the distribution functions of Tn and Sn/Vn are
related via

{Tn ≥ x}=

{
Sn ≥ x

(
n

n+ x2−1

)1/2

Vn

}
. (16.21)

From Theorem 7.4, it follows that, uniformly in 0≤ x≤ o(n
δ

2(2+δ ) ),

P(Tn ≥ x)
1−Φ(x)

= 1+o(1). (16.22)

For the bootstrap distribution, we can apply Theorem 7.4 again (see (16.21) and
Remark 7.9) to obtain ∣∣∣∣P(T ∗n ≥ x|F̂n)

1−Φ(x)
−1

∣∣∣∣≤ A(1+ x)2+δ

d∗ 2+δ
n,δ

, (16.23)

for 0≤ x≤ d∗n,δ where, letting E∗(·) = E(·|F̂n),
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d∗n,δ = nδ/(4+2δ ) E∗(|X∗1 |2)1/2

(E∗|X∗1 |2+δ )1/(2+δ )

= nδ/(4+2δ ) (n−1∑n
i=1 X2

i )1/2

(n−1∑n
i=1 |Xi|2+δ )1/(2+δ ) .

By the strong law of large numbers,

d∗n,δ/nδ/(4+2δ )→ (EX2
1 )1/2/(E|X1|2+δ )1/(2+δ ) a.s. as n→ ∞. (16.24)

From (16.21)–(16.24), (16.20) follows. ��
Theorem 16.4 states that the bootstrap provides an accurate approximation of

moderate deviation probabilities for the t-statistics. Jing et al. (1994) have obtained
a similar result under the much stronger assumption E exp(tX2

1 ) < ∞ for some
t > 0. If δ = 1, the region where (16.20) is valid becomes 0≤ x≤ o(n1/6), which is
smaller than 0≤ x≤ o(n1/3) obtained by Jing et al. (1994) under the much stronger
assumption that X2

1 has a finite moment generating function.

16.5 Supplementary Results and Problems

1. Let X1, . . . ,Xn be i.i.d α×1 random vectors with characteristic function ψ . Let
ψ̂n(t) = n−1∑n

k=1 exp(it ′Xk) denote the empirical characteristic function (i.e.,
characteristic function of the empirical distribution):

(a) Make use of the Bennett–Hoeffding inequalities (Theorem 2.17) to obtain
an exponent bound for P(|ψ̂n(t)−ψ(t)|> ε) for every t.

(b) Let α > 0, Δn(t) = ψ̂n(t) − ψ(t). Cover {t : ‖t‖ ≤ nα} by cubes I j,
1≤ j ≤ (2nα/ε)d , with centers t j and width ε . Show that

sup
‖t‖≤nα

|Δn(t)| ≤ max
1≤ j≤(2nα/ε)d

|Δn(t j)|+ ε

{
E‖X1‖+n−1

n

∑
i=1
‖Xi‖

}
.

Hint: |eiu− 1| ≤ |u|, and more generally, |eiu− 1− ·· ·− (iu)n−1

(n−1)! | ≤
|u|n
n! for

u ∈ R.
(c) Make use of (a) and (b) to show that if E‖X1‖< ∞ then

sup
‖t‖≤nα

|ψ̂n(t)−ψ(t)|> ε → 0 a.s.

(d) Show that if E‖X1‖ < ∞ and ψ satisfies Cramér’s condition limsup‖t‖→∞
|ψ(t)|< 1, then limsupn→∞(sup‖t‖≤nα |ψ̂n(t)|) < 1 a.s. for every α > 0.

2. Consider the problem, mentioned at the end of Sect. 16.2, of constructing a
confidence interval for the correlation coefficient ρ of a bivariate distribution
F based on a sample of i.i.d. random vectors X1, . . . ,Xn drawn from F . Let ρ̂
denote the sample correlation coefficient:
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(a) As noted in Sect. 16.2.1, one can use the delta method to show that ρ̂ is
asymptotically normal if EX4

1 <∞. Carry out the details and use the method
of moments to derive ŝe in this case.

(b) Note that whereas ρ and ρ̂ do not exceed 1 in absolute value, the random
variable ŝe in (a) is not bounded when F does not have bounded support.
Instead of ρ , consider the transformed parameter

θ =
1
2

log
(

1+ρ
1−ρ

)
, (16.25)

which ranges from−∞ to ∞ (instead of from−1 to 1). Use the delta method
to estimate the standard error of θ̂ = 1

2 log[(1+ ρ̂)/(1− ρ̂)].
(c) Show that in the case where F is bivariate normal,

√
n(θ̂−θ) has a limiting

standard normal distribution. Thus, the nonlinear transformation (16.25)
approximately normalizes the estimate ρ̂ and is often called a variance-
stabilizing transformation.

One way to improve the bootstrap-t confidence interval for ρ is to construct
the bootstrap-t interval for θ and then to transform it back to a confidence
interval for ρ = (e2θ − 1)/(e2θ + 1). Bootstrap-t confidence intervals are not
transformation-respecting; it makes a difference which scale is used to con-
struct the interval. In the case of the correlation coefficient ρ , the transformation
(16.25) is known to be variance-stabilizing and normalizing, if F is bivariate
normal (and therefore bypasses the need to estimate the standard error), and
also works well for more general F . Efron and Tibshirani (1993, pp. 164–165)
describe a bootstrap method to find an appropriate variance-stabilizing transfor-
mation and construct a bootstrap-t interval for the transformed parameter so that
the inverse transformation then yields the confidence interval for the original
parameter.

3. Let X1, . . . ,Xn be i.i.d. random variables with E|X1|3 < ∞ and a common con-
tinuous distribution function F . Let X(1) ≤ ·· · ≤ X(n) denote the order statistics
and let ψ : [0,1]→ R be four times continuously differentiable. Consider the
linear combination

Sn =
n

∑
i=1

ψ(i/n)X(i) = n
∫ ∞

−∞
xψ (Fn(x))dFn(x)

of order statistics, where Fn is the empirical distribution function. Let
μ =

∫ ∞
−∞ xψ(F(x))dF(x),

σ2 = 2
∫ ∫

s<t
ψ (F(s))ψ (F(t))F(s)(1−F(t))dsdt.

Then (Sn− nμ)/
√

n⇒ N(0,σ2), and Lai and Wang (1993, pp. 525–526) have
expressed (Sn−nμ)/

√
n as an asymptotic U-statistic. Give a consistent estimate

σ̂2 of σ and express (Sn−nμ)/(
√

nσ̂) as an asymptotic U-statistic.



Chapter 17
Pseudo-Maximization
in Likelihood and Bayesian Inference

The self-normalized statistics in Chaps. 15 and 16 are Studentized statistics of the
form (θ̂−θ)/ŝe, which are generalizations of the t-statistic

√
n(X̄n−μ)/sn for test-

ing the null hypothesis that the mean of a normal distribution is μ when the variance
σ2 is unknown and estimated by the sample variance s2

n. In Sect. 17.1 we consider
another class of self-normalized statistics, called generalized likelihood ratio (GLR)
statistics, which are extensions of likelihood ratio (LR) statistics (for testing simple
hypotheses) to composite hypotheses in parametric models. Whereas LR statistics
are martingales under the null hypothesis, GLR statistics are no longer martin-
gales but can be analyzed by using LR martingales and the pseudo-maximization
technique of Chap. 11. The probabilistic technique of pseudo-maximization via the
method of mixtures has a fundamental statistical counterpart that links likelihood to
Bayesian inference; this is treated in Sect. 17.2.

17.1 Generalized Likelihood Ratio Statistics

Let X1,X2, . . . be observations drawn from a probability measure P under which f1
is the marginal density of X1 and for i ≥ 2, the conditional distribution of Xi given
X1, . . . ,Xi−1 has density function fi(·|X1, . . . ,Xi−1) with respect to some measure νi.
To test a simple null hypothesis H0 : fi = pi versus a simple alternative hypothesis
H1 : fi = qi, the likelihood ratio test based on a sample X1, . . . ,Xn of fixed size n
rejects H0 if

LRn =
n

∏
i=1
{qi(Xi|X1, . . . ,Xi−1)/pi(Xi|X1, . . . ,Xi−1)} (17.1)

exceeds the threshold c for which the Type I error probability PH0{LRn ≥ c} is equal
to some prescribed α . The Neyman–Pearson lemma says that among all tests whose
Type I error probability does not exceed α , the likelihood ratio test is most powerful

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 235
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009



236 17 Pseudo-Maximization in Likelihood and Bayesian Inference

in the sense that it maximizes the probability of rejecting the null hypothesis (called
power) under the alternative hypothesis. Note that {LRm,m ≥ 1} is a martingale,
with mean 1, under PH0 .

One can also control the Type II error probability (or 1−power) of the likelihood
ratio test by choosing the sample size n appropriately. Instead of using a fixed sam-
ple size n, an alternative approach is to continue sampling until LRn shows enough
evidence against H0 or H1. In the case of i.i.d. Xt , this is the idea behind Wald’s
sequential probability ratio test (SPRT), which stops sampling at stage

N = inf{n≥ 1 : LRn ≥ B or LRn ≤ A} (inf /0 = ∞), (17.2)

and which rejects H0 if LRN ≥ B, and H1 if LRN ≤ A, upon stopping, where 0 <
A < 1 < B. Wald and Wolfowitz (1948) showed that EH0(N) and EH1(N) are both
minimized among all tests, sequential or otherwise, of H0 versus H1 whose Type I
and Type II error probabilities do not exceed those of the SPRT; see Sect. 18.1.1.

In parametric models in which fi depends on an unknown parameter θ , the null
hypothesis H0 can be described by θ ∈ Θ0, which is not simple unless Θ0 is a
singleton. Let Θ denote the parameter space, i.e., the set of possible values of θ .
Since θ is unknown, a simple extension of the likelihood ratio (17.1) is to estimate
θ by maximum likelihood under H0 : θ ∈Θ0 and under H1 : θ ∈Θ−Θ0 and replace
θ in fi,θ by separate maximum likelihood estimates (MLE) under H0 and H1. A
variant of this approach leads to the generalized likelihood ratio statistic

GLRn =
supθ∈Θ ∏n

i=1 fi,θ (Xi|X1, . . . ,Xn)
supθ∈Θ0 ∏

n
i=1 fi,θ (Xi|X1, . . . ,Xn)

. (17.3)

This test statistic is asymptotically pivotal under H0. In fact, a classical result, due to
Wilks (1938), states that under certain regularity conditions, 2 log(GLRn) has a lim-
iting χ2

d−p-distribution, where d is the dimension of θ and p is its effective dimen-
sion under H0. More precisely, Θ is typically a d-dimensional manifold and Θ0 is a
p-dimensional submanifold ofΘ . Further discussion and some recent developments
concerning the asymptotic theory of GLRn are given in the next chapter (Sect. 18.2).

17.1.1 The Wilks and Wald Statistics

The test statistic Λn := 2log(GLRn) is often called Wilks’ statistic. Let θ̂ be the
MLE of θ , and θ̂0 ∈Θ0 be the constrained MLE under H0. Let

ln(θ) =
n

∑
i=1

log fi,θ (Xi|X1, . . . ,Xi−1) (17.4)

be the log-likelihood function. Under H0, Λn is asymptotically equivalent to Wald’s
statistic

Wn := (θ̂ − θ̂0)′V̂−1(θ̂ − θ̂0), (17.5)
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where V̂ is an estimate of the asymptotic convariance matrix of θ̂ under H0. In
the case of simple null hypothesis Θ0 = {θ 0}, θ̂0 = θ 0, V̂−1 = −∇2ln(θ̂) and Wn
reduces to the square of a Studentized statistic, which has a limiting χ2

d distribu-
tion and is therefore asymptotically pivotal; see Problem 17.2. We next consider
more general Θ0 = {(γ0,λ ) : λ ∈ R

d−p}, in which λ can be viewed as a nuisance
parameter (similar to σ in the t-test). Let θ = (γ,λ ),

Iψλ =
(
− ∂ 2

∂γi∂λ j
ln(γ,λ )

)
1≤i≤p,1≤ j≤d−p

, Iψψ =
(
− ∂ 2

∂γi∂λ j
ln(γ,λ )

)
1≤i, j≤p

and define Iλλ , Iλγ similarly; note that Iλγ = I′γλ . Then by the asymptotic theory of
MLE,

V̂−1 = Iγγ(θ̂)− Iγλ (θ̂)I−1
λλ (θ̂)Iλγ(θ̂). (17.6)

The asymptotic equivalence between Λn and Wn can be derived by applying a
two-term Taylor expansion to ln(θ), first around (γ̂, λ̂ ) and then around (γ0, λ̂ 0),
where λ̂ 0 is the MLE under the constraint γ = γ0. Approximating the likelihood
function by making use of the asymptotic normality of (γ̂, λ̂ ), it can be shown that

λ̂ 0 = λ̂ + I−1
λλ (θ 0)Iλγ(θ 0)(γ̂− γ0)+op(n1/2), (17.7)

where the superscript 0 denotes the true parameter value; see Problem 17.4. More-
over, from the Taylor expansions of ln(θ̂)− ln(θ 0) and ln(γ0, λ̂ 0)− ln(θ 0), it follows
that

Λn = 2
{

ln(θ̂)− ln(θ 0)
}
−2

{
ln(γ0, λ̂ 0)− ln(γ0,λ 0)

}
=

(
(γ̂− γ0)′,(λ̂ −λ 0)′

)
∇2ln(θ 0)

(
γ̂− γ0

λ̂ −λ 0

)

−
(

0,(λ̂ 0−λ 0)′
)
∇2ln(θ 0)

(
0

λ̂ − λ̂ 0

)
+op(1).

Combining this with (17.7) then yields

Λn = (λ̂ −λ 0)′
{

Iγγ(θ 0)− Iγλ (θ 0)I−1
λλ (θ 0)Iλγ(θ 0)

}
(λ̂ −λ 0)+op(1)

= Wn +op(1),
(17.8)

in view of (17.5) and (17.6) for the present setting with Θ0 = {(γ0,λ ) : λ ∈ R
d−p};

see Problem 17.5.
Although Wilks’ and Wald’s statistics are asymptotically equivalent under H0,

Wilks’ statistic is often preferred because it is already self-normalized and does
not require estimation of the asymptotic covariance matrix under H0. As pointed
out in Sect. 16.2.2, the linear approximations in deriving asymptotic standard er-
ror formulas may be poor when θ̂ is not sufficiently close to θ and therefore the
χ2-approximation to Wn is often less accurate than that to Λn for the sample sizes
encountered in practice.
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17.1.2 Score Statistics and Their Martingale Properties

Since Eθ0{ ∂
∂θ log ft,θ (Xt | X1, . . . ,Xt−1) |θ=θ0 | X1, . . . ,Xt−1}= 0 for i = 1, . . . ,d (see

Problem 17.1), the score statistics

Sn(θ 0) = ∇ln(θ 0) =
n

∑
t=1

∇ log ft,θ (Xt | X1, . . . ,Xt−1) |θ=θ0 (17.9)

form a martingale with respect to the filtration Fn := σ(X1, . . . ,Xn). Martin-
gale central limit theorems (see Sect. 15.3.1) can therefore be used to show that
under certain regularity conditions, Sn(θ 0)/

√
n has a limiting normal distribu-

tion with mean 0 and covariance matrix V . Moreover, likelihood theory shows
that V can be consistently estimated by (−∇2ln(θ 0))/n or (−∇2ln(θ̂))/n; see
Problem 17.2. Hence an alternative to the Wilks’ and Wald’s tests of H0 : θ = θ 0 is
the score test (also called Rao’s test) that rejects H0 if the Studentized score statistic
(−∇2ln(θ 0))−1/2Sn(θ 0) exceeds the normal quantile z1−α for a one-sided level-α
test of H0, or if (Sn(θ 0))′(−∇2ln(θ0))−1Sn(θ 0) exceeds the 1−α quantile of the
χ2

d distribution for a two-sided level-α test of H0.
Assuming θ̂ to be consistent, its asymptotic normality follows from that of the

score statistic (17.9) since

0 = ∇ln(θ̂)≈ ∇ln(θ 0)+(∇2ln(θ 0))(θ̂ −θ 0),

implying that

(−∇2ln(θ 0))
1
2 (θ̂ −θ 0)≈ (−∇2ln(θ 0))−

1
2∇ln(θ 0). (17.10)

Note that the left-hand side of (17.10) is the self-normalized Wald statistic while the
right-hand side is the self-normalized score statistic. Although the Hessian matrix
−∇l2

n(θ 0) is commonly used for self-normalization in (17.10), their asymptotically
equivalent variants also can be used. In the case of i.i.d. Xt , the score statistic
(17.9) reduces to ∑n

t=1 Yt , where Yt = ∇ log fθ (Xt) |θ=θ0 , and using (∑n
t=1 YtY ′t )

1/2

instead of (−∇2ln(θ 0))1/2 to self-normalize the score statistic ∑n
t=1 Yt leads to the

self-normalized sum which is a multivariate extension of that considered in Part I;
see also Sect. 15.2.3 for the advantages of using (∑n

t=1 YtY ′t )
1/2 to self-normalize the

score statistic in this case.

17.2 Penalized Likelihood and Bayesian Inference

The GLR statistic (17.3) for testing the null hypothesis H0 that a d-dimensional
parameter vector θ belongs to be a p-dimensional space Θ0 with p < d can be
regarded as a special case of the problem of choosing the dimension of a model.
Instead of using a hypothesis testing approach to this dimension selection problem,
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an alternative approach, introduced by Schwarz (1978), is to use a Bayesian formu-
lation that puts a prior distribution first on the set of parametric models and then
on θ given the parametric model. Using Laplace’s method described in Sect. 11.1,
Schwarz has shown that the Bayes solution can be approximated by a penalized
likelihood criterion that involves ln(θ̂ ( j)) plus a penalty term that involves the di-
mension d j of the model, where θ̂ ( j) denotes the MLE under the constraint that it
belongs to Θ j with dimension d j. Besides model selection, this section also uses
pseudo-maximization via the method of mixtures to relate GLR and Bayes tests.

17.2.1 Schwarz’s Bayesian Selection Criterion

Schwarz considers the special case of i.i.d. d-dimensional random vectors Xi whose
common density function belongs to the exponential family

fθ (x) = exp(θ ′x−ψ(θ)) (17.11)

with respect to some measure ν or R
d . The natural parameter space {θ ∈

R
d :

∫
eθ
′xdν(x) < ∞} is a convex subset of R

d . Since
∫

fθ (x)dν(x) = 1,
eψ(θ) =

∫
eθ
′xdν(x). Suppose that for 1 ≤ j ≤ J, Θ j consists of vectors with a

known subvector γ j of dimension d− d j, and the prior distribution assigns proba-
bility α j to Θ j and has a density function π j(λ ), with respect to Lebesgue measure
on R

d j , for the remaining subvector λ ∈ R
d j of θ . Partitioning X̄n into correspond-

ing subvectors X̄ (1)
n , X̄ (2)

n with respective dimensions d− d j and d j, the posterior
probability in favor of Θ j is proportional to

p j :=α j

∫
en

(
γ ′j X̄

(1)
n +λ ′X̄(2)

n

)
π j(λ )dλ

∼α j(2π/n)d j/2eln(θ̂ ( j))π j

(
θ̂ ( j)

)/{
det

(
∇2ψ

(
θ̂ ( j)

))}1/2 (17.12)

where ln(θ) = n(θ ′X̄n−ψ(θ)) is the log-likelihood function (17.4) and θ̂ ( j) is the
maximizer of ln(θ) over Θ j. Note that the maximization is in fact over the sub-
vector λ which belongs to a convex subset Cj of R

d j so that
∫

exp(γ ′jx(1) +λ ′x(2))
dν(x) < ∞ for all λ ∈ Cj. The asymptotic approximation in (17.12) follows from
Laplace’s asymptotic formula (11.4), assuming that π j is positive and continuous
on Cj. Suppose the loss for choosing the wrong model is a > 0 and there is no
loss for choosing the correct model. Since the posterior probability in favor of Θ j is
p j/(p1 + · · ·+ pJ), the Bayes rule chooses the J that has the largest p j. Using the as-
ymptotic approximation in (17.12) therefore leads to the Bayes information criterion

BIC( j) = ln
(
θ̂ ( j)

)
− d j

2
logn, (17.13)
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choosing the model j with the largest BIC( j). Note that BIC( j) penalizes the
maximized likelihood ln(θ̂ ( j)) by using the penalty (logn)/2 for each additional
dimension.

Extension of the preceding argument to more general d j-dimensional subman-
ifolds Θ j of Θ involves geometric integration and generalization of Laplace’s
method, which will be presented in Sect. 18.2. Some authors define BIC( j) as
−ln(θ̂ ( j)) + d j

2 logn and therefore choose the model that minimizes such BIC( j).
There is a connection between BIC( j) and the p-value of the GLR test of Θ1, the
lowest-dimensional model, versus Θ j (1 ≤ j ≤ J), as shown by Siegmund (2004)
who has also modified the BIC to handle non-regular cases, such as change-point
models with the number of change-points to be chosen by modified BIC.

17.2.2 Pseudo-Maximization and Frequentist Properties
of Bayes Procedures

As illustrated by (17.12), Bayes procedures are asymptotically equivalent to pe-
nalized likelihood procedures and therefore have the same asymptotic frequentist
properties. For parametric models involving a family of measures Pθ indexed by a
parameter vector θ ∈R

d , frequentist properties of a procedure refer to its properties
under Pθ0 , where θ0 is the true parameter. In the case of Schwarz’s Bayesian infor-
mation criterion for model selection, a well-known frequentist property is its strong
consistency, i.e., with probability 1, the BIC chooses the lowest-order true model.

A well-known frequentist property of Bayes procedures is that, under certain
regularity conditions, the posterior distribution of θ given X1, . . . ,Xn is asymptot-
ically normal with mean θ̂ and covariance matrix (−∇2ln(θ̂))−1 a.s.[Pθ0 ], where
ln(θ) is the log-likelihood function (17.4) and θ̂ is the MLE. In particular, if the Xi
are i.i.d., then

Pθ0

{
L

[(
−∇2ln(θ̂n)

)1/2
(θ − θ̂)

∣∣∣(X1, . . . ,Xn)
]

=⇒ N(0,1)
}

= 1 (17.14)

when fθ satisfies certain regularity conditions. The notation L (·|X1, . . . ,Xn) in
(17.14) denotes the posterior distribution given (X1, . . . ,Xn), which is a random
measure. Thus, (17.14) says that this random measure converges weakly to N(0,1)
with probability 1. To illustrate the underlying ideas, consider the one-parameter
(d = 1) exponential family of densities fθ (x) = eθx−ψ(θ) with measure to some
measure ν and assume that θ has prior distribution with density function π with
respect to Lebesgue measure. Then the posterior density of θ given X1, . . . ,Xn is

en(θ X̄n−ψ(θ))π(θ)∫ ∞
−∞ en(λ X̄n−ψ(λ ))π(λ )d(λ )

,

and applying Laplace’s asymptotic formula (11.2) to the denominator shows that the
posterior density is concentrated around θ̂ and that it is asymptotically equivalent to
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{
nψ ′′(θ̂)/2π

} 1
2 exp

{
n
[
(θ − θ̂)X̄−

(
ψ(θ)−ψ(θ̂)

)]}
∼
{

nψ ′′(θ̂)/2π
} 1

2 exp
{
−nψ ′′(θ̂)(θ − θ̂)2/2

}
,

(17.15)

since ψ ′(θ̂) = X̄ . Noting that−l′′n (θ̂) = nψ ′(θ̂), we obtain from (17.15) that the pos-
terior distribution of (−l′′n (θ̂))1/2(θ − θ̂) converges weakly to the standard normal
distribution a.s.[Pθ0 ]. Under certain regularity conditions, the preceding argument
can also be applied to more general parametric families fθ (with multivariate θ ) for
which θ̂ → θ0 a.s.[Pθ0 ]. In fact, by assuming log fθ (x) to have K + 3 continuous
partial derivatives with respect to θ , Johnson (1970) has derived asymptotic expan-
sions of the form Φ(θ)+∑K

j=1 n− j/2γ j(θ ;X1, . . . ,Xn) for the posterior distribution
function of (−l′′n (θ̂))1/2(θ − θ̂), with an error of the order O(n−(K+1)/2) a.s.[Pθ0 ];
he has also extended the result to the case of Markov-dependent Xt .

Under the regularity conditions assumed above, θ̂ → θ0 a.s.[Pθ0 ]. Since the pos-
terior distribution is asymptotically normal with mean θ̂ , this implies that the poste-
rior distribution converges weakly to the point mass at θ0 a.s.[Pθ0 ]. Most generally,
assume that the parameter spaceΘ is a complete separable metric space with metric
ρ and let μ be a prior distribution onΘ . Let P denote the probability measure under
which θ has distribution μ and conditional on θ , the Xt are generated from the prob-
ability measure Pθ , and let E denote expectation with respect to P. By the martingale
convergence theorem, for any bounded Borel-measurable function ϕ :Θ → R,

E [ϕ(θ) | X1, . . . ,Xn]−→ E [ϕ(θ) | X1,X2, . . . ] a.s. (17.16)

Suppose there exists a measurable function f : X →Θ such that Eρ(θ , f (X1,X2,
. . . ,Xn)) = 0, where X denotes the sample space. Then for μ-almost every θ0 ∈Θ ,
the posterior distributions of θ given X1, . . . ,Xn converges weakly to δθ0 (the point
mass at θ0); see Le Cam and Yang (1990, pp. 148–149).

The preceding gives positive consistency results on the frequentist properties of
Bayes procedures. Section 7.5 of Le Cam and Yang (1990) summarizes negative
results, which arise in nonparametric problems and in parametric models when the
prior measure is too “thin” around the true parameter θ0.

17.3 Supplementary Results and Problems

1. Let X1, . . . ,Xn be n observations for which the joint density function fθ depends
on an unknown d-dimensional parameter vector θ , whose true value is denoted
by θ 0. Show that

(a) E(∇ log fθ (X1, . . . ,Xn)|θ=θ0) = 0,
(b) E(−∇2ln(θ 0)) = Cov(∇ln(θ 0))

under suitable regularity conditions, where ln is the log-likelihood function.
State the regularity conditions you assume.
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2. Show that under suitable regularity conditions, {Sn(θ 0),Fn, n ≥ 1} is a mar-
tingale, where Sn(θ 0) is the score statistic (17.9) and Fn is the σ -field gen-
erated by X1, . . . ,Xn, and that Sn(θ 0)/

√
n has a limiting normal distribution

with mean 0 and covariance matrix V , which can be consistently estimated by
(−∇2ln(θ 0))/n or (−∇2ln(θ̂))/n. Hence show that (a) the Wald statistic (17.5)
for testing H0 : θ = θ 0 has a limiting χ2

d -distribution, and (b) the maximum
likelihood estimator θ̂ is asymptotically normal.

3. Consider a d×d nonsingular matrix

A =
(

A11 A12
A21 A22

)
,

where A11 is p× p (p < d). Assume that A22 and Ã11 := A11−A12A−1
22 A21 are

nonsingular:

(a) Show that A−1 is given by(
Ã−1

11 −Ã−1
11 A12A−1

22
−A−1

22 A21Ã−1
11 A−1

22 +A−1
22 A21Ã−1

11 A12A−1
22

)
.

(b) Show that det(A) = det(A22)det(A11−A12A−1
22 A21).

(c) Use (a) and (b) to show that if Y ∼ N(μ ,V ) is partitioned as

Y =
(

Y1

Y2

)
, μ =

(
μ1

μ2

)
, V =

(
V11 V12
V21 V22

)
,

where Y1 and μ1 have dimension p < d and V11 is p× p, then the conditional
distribution of Y1 given Y2 = y2 is

N
(
μ1 +V12V−1

22 (y2−μ2), V11−V12V−1
22 V21

)
.

4. Prove (17.7). Make use of Problem 3 and the asymptotic normality of θ̂ in
Problem 2 to prove (17.6). State your assumptions.

5. Prove (17.8). Make use of Problems 2 and 3 to show that Λn has a limiting χ2
d−p-

distribution when θ 0 ∈Θ0 = {(γ0,λ ) : λ ∈ R
d−p}. State your assumptions.



Chapter 18
Sequential Analysis and Boundary Crossing
Probabilities for Self-Normalized Statistics

In Sect. 17.1 we have described likelihood ratio statistics and Wald’s sequential
probability ratio test (SPRT). The likelihood ratio statistics for testing simple hy-
potheses are then extended to generalized likelihood ratio (GLR) statistics for
testing composite hypotheses. However, corresponding extensions of the SPRT
have not been considered. On the other hand, Sect. 15.1.3 mentions a sequential
extension of the t-test. In fact, shortly after Wald’s 1945 introduction of the SPRT,
there were several proposals to extend the SPRT for testing the mean of a normal
distribution when the variance is unknown, but these tests are different from the
repeated t-test in Sect. 15.1.3. Section 18.1 reviews these different approaches to
constructing sequential t-tests and provides a general class of sequential GLR tests
of composite hypotheses. It also develops certain “information bounds” whose
attainment characterizes the asymptotic optimality of a sequential test. In Sect. 18.1
we show that sequential GLRs attain these information bounds and are therefore
asymptotically optimal for parametric models. In the case of nonparametric or
semiparametric models, we modify these ideas to construct sequential score tests
(involving self-normalized test statistics) that are asymptotically optimal for test-
ing local alternatives. Whereas Sect. 11.2 has described the method of mixtures to
derive bounds for certain boundary crossing probabilities, Sect. 18.2 refines this
method to derive more precise asymptotic formulas for boundary crossing prob-
abilities in various sequential testing applications. The essence of the refinement
lies in a generalization of Laplace’s method that involves tubular neighborhoods of
extremal manifolds. Section 18.2 also describes another approach that applies these
geometric integration ideas more directly to saddlepoint approximations of density
functions of random walks with i.i.d. or Markov-dependent increments. Instead
of analytic approximations, one can compute the boundary crossing probabilities
by Monte Carlo, and Sect. 18.3 describes efficient importance sampling methods
for Monte Carlo evaluation of boundary crossing probabilities. These importance
sampling methods are also shown to be related to the method of mixtures.

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 243
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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18.1 Information Bounds and Asymptotic Optimality
of Sequential GLR Tests

18.1.1 Likelihood Ratio Identities, the Wald–Hoeffding
Lower Bounds and their Asymptotic Generalizations

The likelihood ratio statistics in Sect. 17.1 are closely related to change of measures;
in fact, (17.1) is the Radon–Nikodym derivative of the measure under H1 relative
to that under H0. The optimality of the likelihood ratio test (Neyman–Pearson
lemma) is a consequence of this change of measures. Regarding a test of H0 ver-
sus H1 as a function ϕ from the sample space X into [0,1] (i.e., ϕ(X1, . . . ,Xn)
is the probability of rejecting H0), the likelihood ratio test ϕ∗ can be character-
ized by ϕ∗ = 1 if LRn > c and ϕ∗ = 0 if LRn < c. Since (ϕ∗ −ϕ)(LRn− c) ≥ 0,
E0{(ϕ∗ −ϕ)LRn} ≥ cE0(ϕ∗ −ϕ). Changing the measures for P1 to P0 then yields

E1(ϕ∗ −ϕ) = E0 {(ϕ∗ −ϕ)LRn} ≥ cE0(ϕ∗ −ϕ), (18.1)

in which the equality is a special case of Wald’s likelihood ratio identity described
below. From (18.1), it follows that if the Type I error of ϕ does not exceed that of
ϕ∗ (i.e., E0ϕ ≤ E0ϕ∗), then E1ϕ∗ ≥ E1ϕ , proving the Neyman–Pearson lemma.

Wald (1945) extended the preceding argument involving change of measures to
derive (1) Type I and Type II error probability bounds of the SPRT with stopping
rule (17.2) and (2) lower bounds for the expected sample sizes EH0(T ) and EH1(T )
of any test (sequential or otherwise) of simple H0 vs. simple H1 with prescribed
Type I and Type II error probabilities. More generally, let (Ω ,F ) be a measurable
space and P,Q be probability measures on (Ω ,F ). Let {Fn} be an increasing
sequence of sub-σ -fields of F , and Pn and Qn be the restrictions of P and Q,
respectively, to Fn. Assuming that Pn is absolutely continuous with respect to Qn
for every n, let Ln = dPn/dQn denote the Radon–Nikodym derivative. Let T be a
stopping time with respect to {Fn}. Then for all F ∈FT ,

P(F ∩{T < ∞}) = EQ {LT I(T < ∞,F)} ,
Q(F ∩{T < ∞}) = EP

{
L−1

T I(T < ∞,F)
}

.
(18.2)

When Ln = ∏n
i=1(g1(Xi)/g0(Xi)) is the likelihood ratio LRn of i.i.d. observations

X1, . . . ,Xn having common density function f ∈ {g0,g1} with respect to some
dominating measure m, (18.2) is known as Wald’s likelihood ratio identity.

To derive Type I and Type II error probability bounds of the SPRT of H0 : f = g0
vs. H1 : f = g1 that stops sampling at stage N defined by (17.2), Wald (1945) noted
that since Pi(N <∞) = 1 under the natural assumption that Pi{g1(X1) �= g0(X1)}> 0
for i = 0,1, (18.2) yields

P0{LN ≥ B} ≤ B−1P1{LN ≥ B}, P1{LN ≤ A} ≤ AP0{LN ≤ A}, (18.3)
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and ≤ can be replaced by = in (18.3) if LN has to fall on either boundary exactly
(i.e., there is no “overshoot”). Ignoring overshoots, he made use of both approxi-
mate equalities in (18.3) to solve for the error probabilities α = P0{LN ≥ B} and
β = P1{LN ≤ A}:

α ≈ 1−A
B−A

, β ≈ A
(

B−1
B−A

)
.

Let T be the stopping rule of a test of H0 vs. H1 with error probabilities α,β , and
let dT denote its terminal decision rule (dT = i if Hi is accepted, i = 0,1). Wald’s
likelihood ratio identity yields

α = P0(dT = 1) = E1
{

L−1
T I(dT = 1)

}
= E1{e− logLT |dT = 1}P1(dT = 1)≥ exp{−E1(logLT |dT = 1)}P1(dT = 1)

= exp
{
−E1 [(logLT )I(dT = 1)]

/
(1−β )

}
(1−β ),

in which ≥ follows from Jensen’s inequality. Therefore

−E1 [(logLT )I(dT = 1)]≤ (1−β ) log(α/(1−β )) .

A similar argument also gives−E1[(logLT )I(dT = 0)]≤ β log((1−α)/β ). Adding
the two inequalities then yields

(1−β ) log
α

1−β
+β log

1−α
β
≥−E1(logLT )=−E1

(
T

∑
t=1

log
g1(Xt)
g0(Xt)

)
=−μ1E1T,

by Wald’s equation (assuming that E1T < ∞; see Problem 18.1), where μi =
Ei[log(g1(X1)/g0(X1))]. This proves Wald’s lower bound for E1(T ) and a similar
argument can be used to prove that for E0(T ), i.e.,

E1(T )≥ μ−1
1

{
(1−β ) log

(
1−β
α

)
+β log

(
β

1−α

)}
,

E0(T )≥ (−μ0)−1
{

(1−α) log
(

1−α
β

)
+α log

(
α

1−β

)}
,

(18.4)

noting that μ1 > 0 > μ0 under the assumption Pi{g1(X1) �= g0(X1)}> 0 for i = 0,1.
Since the right-hand sides of (18.4) are Wald’s approximations, ignoring overshoots,
to E1(N) and E0(N), Wald (1945) concluded that the SPRT should minimize both
E0(T ) and E1(T ) among all tests that have Type I and Type II errors α and β , re-
spectively, at least approximately when the overshoots are ignored. Later, Wald and
Wolfowitz (1948) used dynamic programming arguments to prove that the SPRT is
indeed optimal.

Hoeffding (1960) extended Wald’s arguments to derive lower bounds for E(T )
when the sequential test of H0 versus H1 has error probabilities α and β , un-
der another measure that has density function g with respect to ν . One such
lower bound involves the Kullback–Leibler information numbers I(g,gi) =
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E[log(g(X1)/gi(X1))]. Let τ2 = E{log[g1(X1)/g0(X1)] − I(g,g0) + I(g,g1)}2,
ζ = max{I(g,g0), I(g,g1)}. Then

E(T )≥
{[
−ζ log(α +β )+(τ/4)2]1/2− τ/4

}2/
ζ 2. (18.5)

The derivation of the lower bounds (18.4) and (18.5) depends heavily on the fact
that logLn is a sum of i.i.d. random variables. Lai (1981) has provided the following
asymptotic extension of Hoeffding’s lower bound to the general setting in Sect. 17.1
for likelihood ratio statistics.

Theorem 18.1. Let P be a probability measure under which (X1, . . . ,Xn) has joint
density function pn(x1, . . . ,xn) with respect to νn, for all n≥ 1. Assume that (X1, . . . ,
Xn) has joint density function pin(x1, . . . ,xn) with respect to νn for all n ≥ 1 under
Hi, i = 0,1. For 0 < α,β < 1, let T (α,β ) be the class of tests (T,dT ) of H0 versus
H1 based on the sequence {Xn} and satisfying the error probability constraints

P0{dT rejects H0} ≤ α, P1{dT rejects H1} ≤ β . (18.6)

Define L(i)
n = pn(X1, . . . ,Xn)/pin(X1, . . . ,Xn). Assume that there exist finite constants

η0 and η1 such that

η0 ≥ 0, η1 ≥ 0, max{η0,η1}> 0, (18.7)

and
n−1 logL(i)

n → ηi a.s. [P] for i = 0,1. (18.8)

(a) For every 0 < δ < 1, as α +β → 0,

inf
(T,dT )∈T (α,β )

P [T > δ min{| logα|/η0, | logβ |/η1}]→ 1, (18.9)

where a/0 is defined as ∞ for a > 0.
(b) For 0 < α,β < 1, let Cα,β and Dα,β be positive constants such that

logCα,β ∼ | logα|, logDα,β ∼ | logβ | as α +β → 0. (18.10)

Define

Tα,β = inf{n≥ 1 : L(0)
n ≥Cα,β or L(1)

n ≥ Dα,β} (inf /0 = ∞). (18.11)

Let (Tα,β ,d∗) be the test which stops sampling at stage Tα,β and rejects H0 iff

L(0)
Tα,β
≥Cα,β . Then as α +β → 0,

Tα,β

min{| logα|/η0, | logβ |/η1}
→ 1 a.s. [P]. (18.12)
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Moreover, the error probabilities of the test (Tα,β ,d∗) satisfy

P0
[
(Tα,β ,d∗) rejects H0

]
≤C−1

α,βP
[
(Tα,β ,d∗) rejects H0

]
,

P1
[
(Tα,β ,d∗) rejects H1

]
≤ D−1

α,βP
[
(Tα,β ,d∗) rejects H1

]
.

(18.13)

Proof. Let l(i)n = logL(i)
n . Let 0 < δ < 1 and δ̄ > 1 such that δ δ̄ < 1. Let m be the

greatest integer ≤ δ min{| logα|/η0, | logβ |/η1}. Then for (T,dT ) ∈T (α,β ),

α =
∫
{T<∞,dT rejects H0}

exp
(
−l(0)

T

)
dP

≥
∫
{T≤m, l(0)

T ≤δ̄η0m,dT rejects H0}
exp

(
−l(0)

T

)
dP

≥ exp(−δ̄η0m)P
[
T ≤ m, l(0)

T ≤ δ̄η0m,dT rejects H0

]
.

(18.14)

Since δ̄η0m≤ δ δ̄ | logα|, it follows from (18.14) that

P [T ≤ m,dT reject H0]≤ α1−δ δ̄ +P[T ≤ m, l(0)
T > δ̄η0m]

≤ α1−δ δ̄ +P
[

max
j≤m

l(0)
j > δ̄η0m

]
.

(18.15)

Using a similar argument, we also obtain that

P [T ≤ m,dT rejects H1]≤ β 1−δ δ̄ +P
[

max
j≤m

l(1)
j > δ̄η1m

]
. (18.16)

From (18.15) and (18.16), it follows that

sup
(T,dT )∈T (α,β )

P[T ≤ m]≤α1−δ δ̄ +β 1−δ δ̄ +P
[

max
j≤m

l(0)
j > δ̄η0m

]

+P
[

max
j≤m

l(1)
j > δ̄η1m

]
.

(18.17)

Since j−1l(i)j → ηi a.s. [P] for i = 0,1 and δ̄ > 1, (18.9) follows from (18.17).
The a.s. asymptotic behavior (18.12) of Tα,β follows easily from (18.8) and

(18.11). The bounds in (18.13) for the error probabilities of (Tα,β ,d∗) can be
proved by essentially the same argument as those in (18.3). ��

18.1.2 Asymptotic Optimality of 2-SPRTs and Sequential GLR Tests

The test (Tα,β ,d∗) in Theorem 18.1 is a general form of the 2-SPRT introduced by
Lorden (1976) for the case of i.i.d. Xt , with common density function g0 under H0,
g1 under H1, and g under P. Let nα,β = inf(T,dT )∈Tα,β

E(T ). Under the assumption
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that E{log2[g(X1)/g0(X1)]+ log2[g(X1)/g1(X1)]}< ∞, Lorden (1976) showed that
ETα,β − nα,β → 0 as α + β → 0. For the special case of a normal family with
mean θ , he also showed numerically that ETα,β is close to Hoeffding’s lower bound
(18.5). This provides an asymptotic solution, with o(1) error, to the Kiefer and Weiss
(1957) problem of minimizing the expected sample size Eθ∗(T ) at given θ ∗ subject
to error probability constraints of the test (T,dT ) at θ0 and θ1 in a one-parameter ex-
ponential family of densities fθ (x) = eθx−ψ(θ) with respect to some measure ν on R.

Ideally, the θ ∗ where we want to minimize the expected sample size of the
2-SPRT

T ∗ = inf

{
n :

n

∏
i=1

(
fθ∗(Xi)/ fθ0(Xi)

)
≥ A0 or

n

∏
i=1

(
fθ∗(Xi)/ fθ1(Xi)

)
≥ A1

}
(18.18)

should be chosen to be the true parameter value θ that is unknown. For the problem
of testing H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 (> θ0) in an exponential family, replacing
θ ∗ in (18.18) by its maximum likelihood estimate θ̂n at stage n leads to Schwarz’s
(1962) test which he derived as an asymptotic solution to the Bayes problem of
testing H0 versus H1 with 0–1 loss and cost ε per observation, as ε → 0 while θ0
and θ1 are fixed. For the case of a normal mean θ , Chernoff (1961, 1965) derived
a different and considerably more complicated approximation to the Bayes test of
H ′0 : θ < θ0 versus H ′1 : θ > θ0. In fact, setting θ1 = θ0 in Schwarz’s test does not
yield Chernoff’s test. This disturbing discrepancy between the asymptotic approx-
imations of Schwarz (assuming an indifference zone) and Chernoff (without an
indifference zone separating the one-sided hypotheses) was resolved by Lai (1988),
who gave a unified solution (to both problems) that uses a stopping rule of the form

N̂ = inf

{
n : max

[
n

∑
i=1

log
fθ̂n

(Xi)
fθ0(Xi)

,
n

∑
i=1

log
fθ̂n

(Xi)
fθ1(Xi)

]
≥ g(εn)

}
(18.19)

for testing H0 versus H1, and setting θ1 = θ0 in (18.19) for the test of H ′0 versus
H ′1. The function g in (18.19) satisfies g(t) ∼ log t−1 as t → 0 and is the boundary
of an associated optimal stopping problem for the Wiener process. By solving the
latter problem numerically, Lai (1988) also gave a closed-form approximation to
the function g.

This unified theory for composite hypotheses provides a bridge between asymp-
totically optimal sequential and fixed sample size tests. In the fixed sample size
case discussed in Sect. 17.1, the Neyman–Pearson approach replaces the likelihood
ratio by the generalized likelihood ratio (GLR), which is also used in (18.19) for the
sequential test. Since the accuracy of θ̂n as an estimate of θ varies with n, (18.19)
uses a time-varying boundary g(εn) instead of the constant boundary in (18.18)
(with A0 = A1) where θ is completely specified. Simulation studies and asymptotic
analysis have shown that N̂ is nearly optimal over a broad range of parameter values
θ , performing almost as well as (18.18) that assumes θ to be known; see Lai (1988).
This broad range covers both fixed alternatives, at which the expected sample size is
of the order O(| logε|), and local alternatives θ approaching θ0 as ε → 0, at which
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the expected sample size divided by | logε| tends to ∞. In other words, N̂ can adapt
to the unknown θ by learning it during the course of the experiment and incorporat-
ing the diminishing uncertainties in its value into the stopping boundary g(εn). Lai
and Zhang (1994) have extended these ideas to construct nearly optimal sequential
GLR tests of one-sided hypotheses concerning some smooth scalar function of the
parameter vector in multiparameter exponential families, with an indifference zone
separating the null and alternative hypotheses and also without an indifference zone.
Lai (1997) has provided further extension to a general class of loss functions and
prior distributions, thereby unifying (18.19) with another type of sequential tests
involving mixture likelihood ratios which were introduced by Robbins (1970); see
Sect. 11.3 for Robbins’ applications of these mixture likelihood ratio statistics.

In practice, one often imposes an upper bound M and also a lower bound m on
the total number of observations. With M/m→ b > 1 and logα ∼ logβ , we can
replace the time-varying boundary g(εn) in (18.19) by a constant threshold c since
g(t)∼ log t−1 and logn = logm+O(1) for m≤ n≤M. The test of H0 : θ = θ0 with
stopping rule

Ñ = inf

{
n≥ m :

[
n

∏
i=1

fθ̂n
(Xi)

]/[
n

∏
i=1

fθ0(Xi)

]
≥ ec

}
∧M, (18.20)

which corresponds to (18.19) with θ1 = θ0, g(εn) replaced by c, and n restricted
between m and M, is called a repeated GLR test. The test rejects H0 if the GLR
statistic exceeds ec upon stopping. Whereas (18.20) considers the simple null hy-
pothesis θ = θ0 in the univariate case, it is straightforward to extend the repeated
GLR test to multivariate θ and composite null hypothesis H0 : θ ∈Θ0, by simply
replacing ∏n

i=1 fθ0(Xi) in (18.20) by supθ∈Θ0 ∏
n
i=1 fθ (Xi). A particular example is

the repeated t-test with stopping rule (15.15), and its multivariate extension is the
repeated T 2-test; see Problem 18.2.

The relative simplicity of (15.15) and its multivariate extension that have asymp-
totically optimal properties is in sharp contrast to the earlier attempts in extending
the SPRT to sequential t-, χ2-, F-, T 2-statistics; see Ghosh (1970). These attempts
began with Sect. 6 of Wald (1945), who suggested using weight functions to handle
composite hypotheses so that one can still work with likelihood ratios. When H0 is
simple, say θ = 0, but H1 is composite, Wald proposed to integrate the likelihood
over the alternative hypothesis and to consider the integrated Type II error in ap-
plying the SPRT with Ln = {

∫
∏n

i=1 fθ (Xi)w(θ)dθ}/{∏n
i=1 f0(Xi)}. The likelihood

ratio identity can again be used to approximate the Type I error and the integrated
Type II error of the test, as in Sect. 18.1.1 for Wald’s SPRT. When H0 is also
composite, he proposed to use the SPRT with

Ln =

{∫ n

∏
i=1

fθ (Xi)w1(θ)dθ

}/{
n

∏
i=1

fθ (Xi)w0(θ)dθ

}
,

for which the likelihood ratio identity can again be used to approximate the inte-
grated error probabilities. Recognizing that one usually would like to have supθ∈H0
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α(θ)≤α instead of
∫
α(θ)w(θ)dθ ≤α (where α(θ)I(θ ∈H0) and β (θ)I(θ ∈H1)

denote the Type I and Type II error probabilities), he showed in the case of testing
H0 : μ = 0 vs. H1 : |μ/σ |= δ , for the mean μ of a normal distribution with unknown
variance σ2, that it is possible to choose weight functions w0 and w1 such that

sup
θ∈H0

α(θ) =
∫

α(θ)w0(θ)dθ , sup
θ∈H1

β (θ) =
∫

β (θ)w1(θ)dθ .

This is the Wald–Arnold–Goldberg–Rushton sequential t-test; see David and
Kruskal (1956) who proved that the test terminates with probability 1 for all
choices of μ and σ > 0.

The weight function approach, which has been used to derive the sequential t-,
T 2- or F-tests, can be replaced by an alternative approach that reduces compos-
ite hypotheses to simple ones by the principle of invariance. If G is a group of
transformations leaving the problem invariant, then the distribution of a maximal
invariant depends on P only through its orbit. Therefore, by considering only invari-
ant sequential tests, the hypotheses become simple; see Chap. 6 of Ghosh (1970).
This is, therefore, a special case of the SPRT with stopping rule (17.2), in which
LRn = p1n(Un)/p0n(Un), where Un = Un(X1, . . . ,Xn) is a maximal invariant with
respect to G based on X1, . . . ,Xn and pin is the density function of this maximal
invariant under Hi (i = 0,1). In the case of the sequential t-test of H0 : μ = 0 for the
mean μ of a normal distribution with unknown variance σ2, G is the group of scale
changes x �→ cx (c > 0) and Un is the t-statistic

√
nX̄n/sn in Chap. 15. Thus, even

though the Xi are i.i.d., the Un are no longer i.i.d. and classical random walk results
like Wald’s equation are no longer applicable. This makes questions such as whether
the SPRT based on the maximal invariants terminates with probability 1 and its ex-
pected sample sizes at the null and alternative hypotheses much harder than in the
i.i.d. case. On the other hand, the simple bounds (18.3) and Wald-type approxima-
tions for the error probabilities still hold for the SPRT in the dependent case.

For the repeated GLR test (18.20) that has at most M observations, the issue of
termination with probability 1 becomes trivial. Although the simple bounds (18.3)
and related approximations are no longer applicable to the repeated GLR test, we
can still use the likelihood ratio identity involving mixture of densities together with
the pseudo-maximization method to analyze the error probabilities of the test. This
and another technique that uses saddlepoint approximation and geometric integra-
tion will be described in the next section. To obtain asymptotic approximations for
the expected sample sizes of SPRTs for the general setting of dependent random
variables, Lai (1981, p. 326) make use of (18.12) and uniform integrability after
strengthening the a.s. convergence in (18.8) into r-quick convergence. A sequence
of random variables Yn is said to converge to 0 r-quickly if ELr

ε < ∞ for every
ε > 0, where Lε = sup{n ≥ 1 : |Yn| ≥ ε}; note that Yn → 0 a.s. can be restated as
P{Lε < ∞} = 1 for every ε > 0 (see Lai, 1976b). For the special case of invariant
SPRTs (that use invariance to reduce composite hypotheses to simple ones) or
repeated GLR tests based on i.i.d. observations, Lai and Siegmund (1979) have
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derived asymptotic expansions for E(Tα,β ) or E(Ñ), up to the o(1) term, by making
use of nonlinear renewal theory; see Problem 18.4 for a sketch of the basic ideas.

18.2 Asymptotic Approximations via Method of Mixtures
and Geometric Integration

18.2.1 Boundary Crossing Probabilities for GLR Statistics
via Method of Mixtures

By using the method of mixtures, Siegmund (1977) has derived an asymptotic
approximation to the Type I error probability of the repeated t-test of H0 : μ = 0 for
the mean μ of a normal distribution with unknown variance σ2. Under the group of
scale changes x �→ cx (c > 0), a maximal invariant is (Y2, . . . ,Yn), where Yi = Xi/X1.
By conditioning on X1/σ , the density of (Y2, . . . ,Yn) under μ/σ = θ can be easily
shown to be

∫ ∞

−∞

|x|n−1

(2π)n/2 exp

[
−x2

2

n

∑
i=1

(yi−θ)2

]
dx, with y1 = 1.

Let Pθ be the probability measure induced by the sequence (Y2,Y3, . . .) and let
Q =

∫ ∞
−∞ Pθdθ/

√
2π . The likelihood ratio of (Y2, . . . ,Yn) under Q relative to P0 is

therefore

1√
2π

∫ ∞

−∞

∫ ∞
−∞ |x|n−1 exp

[
− x2

2 ∑n
i=1(Yi−θ)2

]
dx∫ ∞

−∞ |x|n−1 exp
[
− x2

2 ∑n
i=1 Y 2

i

]
dx

dθ

= n−1/2

{(
n

∑
i=1

Y 2
i

)/
n

∑
i=1

(Yi− Ȳn)2

}n/2

=
1√
n

exp
{

n
2

log
(

1+
X̄2

n

s2
n

)}
=

1√
n

e�n ,

where �n = 1
2 n log(1+ X̄2

n /s2
n).

Consider the stopping rule (15.15) of the repeated t-test (τ,dτ), in which the
terminal decision rule rejects H0 : μ = 0 if �τ ≥ c. Letting m = [δc] and M = [ac],
the Type I error of the test is

P0(�τ ≥ c) = P0(�m ≥ c)+
∫ ∞

−∞
Eθ

{√
τe−�τ I(�τ ≥ c, τ > m)

}
dθ

/√
2π, (18.21)

by applying the likelihood ratio identity (18.2). The first summand in (18.21),
P0(�m ≥ c), can be represented as the tail probability of the tm−1-distribution since√

mx̄m/sm has the tm−1-distribution under H0. To analyze the second summand, note
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that e−�τ = e−ce−(�τ−c) and Siegmund (1977) uses the law of large numbers and
nonlinear renewal theory to show that, as c→ ∞,

Eθ

{√
τ
c

e−(�τ−c)I (�τ ≥ c, [ac]≥ τ > [δc])
}

→

⎧⎨
⎩

0 if log(1+θ 2) /∈ [2a−1,2δ−1][
2

log(1+θ2)

]1/2
lim
c→∞

Eθ [exp{−(�τ − c)}] if θ �= 0 and 2
a < log(1+θ 2) < 2

δ .

(18.22)

Problem 18.3 provides a sketch of the basic ideas; in particular, the existence and
characterization of the limiting distribution of the overshoot �τ − c follows from
nonlinear renewal theory. The monographs by Woodroofe (1982) and Siegmund
(1985) give a systematic introduction to asymptotic approximations to Type I error
probabilities of sequential GLR tests obtained by using this approach that involves
change of measures from P0 to

∫
PθdG(θ), the likelihood ratio identity, and the

renewal-theoretic formula for the overshoot term.
A basic feature of this approach is that the approximations depend crucially on

the fact that stopping occurs at the first time τ when the likelihood ratio or GLR
statistic �τ exceeds some threshold c. Thus �τ is equal to c plus an excess over
the boundary whose limiting distribution can be obtained using renewal theory.
When the test statistic used is not �τ , the arguments break down. Since they are
based on the fact that �τ = c+Op(1), where the Op(1) term is the overshoot, these
arguments are also not applicable when τ is replaced by a fixed sample size n.
Moreover, whereas the role of �τ in change-of-measure arguments is quite easy to
see when the null hypothesis is simple, it becomes increasingly difficult to work
with �τ when the region defining a composite null hypothesis becomes increasingly
complex. In the next section we describe another approach, developed by Chan and
Lai (2000), which can be applied not only to likelihood ratio or GLR statistics but
also to other functions of the sufficient statistics in a multiparameter exponential
family, and which is applicable to both sequential and fixed sample size tests.

18.2.2 A More General Approach Using Saddlepoint
Approximations and Geometric Integration

Chan and Lai (2000) consider the following three classes of large deviation proba-
bilities, which they tackle by integrating saddlepoint approximations to the density
functions of sums of i.i.d. random vectors over tubular neighborhoods of certain
extremal manifolds that are related to Laplace’s method. Let X1,X2, . . . be i.i.d.
d-dimensional non-lattice random vectors whose common moment generating
function is finite in some neighborhood of the origin. Let Sn = X1 + · · ·+ Xn,
μ0 = EX1 and Θ = {θ : Eeθ

′X < ∞}. Assume that the covariance matrix of X1 is
positive definite. Let ψ(θ) = log(Eeθ

′X ) denote the cumulant generating function
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of X1. Let Λ be the closure of ∇ψ(Θ), Λ o be its interior, and denote the boundary
of Λ by ∂Λ (= Λ −Λ o). Then ∇ψ is a diffeomorphism from Θ o onto Λ o. Let
θμ = (∇ψ)−1(μ). For μ ∈Λ o, define

φ(μ) = sup
θ∈Θ

{
θ ′μ−ψ(θ)

}
= θ ′μμ−ψ(θμ). (18.23)

The function φ is the convex dual of ψ and is also known as the rate function in
large deviations theory. Let g : Λ → R and define the stopping time

Tc = inf{k ≥ n0 : kg(Sk/k) > c} , (18.24)

where n0 corresponds to a prescribed minimal sample size. Chan and Lai (2000)
develop asymptotic approximations to the large deviation probabilities

P{Tc ≤ n}, P{ng(Sn/n) > c} , P
{

min
k≤n

[(n− k)β + kg(Sk/k)] > c
}

, (18.25)

with n ∼ ac and n0 ∼ δc as c→ ∞, for some a > δ > 0 such that g(μ0) < 1/a for
the first two probabilities, and β > 1/a and g(μ0) = 0 for the third probability.

For the first probability in (18.25), the large deviation principle suggests that
logP{ng(Sn/n) > c} is asymptotically equivalent to −n inf{φ(μ) : g(μ) > c/n} as
c→ ∞. This in turn suggests that log(∑δc≤n≤ac P{ng(Sn/n) > c}) is asymptotically
equivalent to −minδc≤n≤ac infg(μ)>c/n nφ(μ), which, upon interchanging the min
and inf signs, is asymptotically equivalent to

− inf
g(μ)>1/a

cφ(μ)
min(1/δ ,g(μ))

=−c
r
, where r = sup

g(μ)>1/a

min(δ−1,g(μ))
φ(μ)

.

Hence P{Tc ≤ ac} = e−c/r+o(c) as c → ∞. Chan and Lai (2000, Theorem 1) as-
sume the following regularity conditions to obtain a more precise asymptotic
approximation:

(A1) g is continuous on Λ o and there exists ε0 > 0 such that

sup
a−1<g(μ)<δ−1+ε0

g(μ)/φ(μ) = r < ∞.

(A2) Mε := {μ : a−1 < g(μ) < δ−1 + ε and g(μ)/φ(μ) = r} is a q-dimensional
oriented manifold for all 0≤ ε ≤ ε0, where q≤ d.

(A3) liminfμ→∂Λ φ(μ) > (δ r)−1 and there exists ε1 > 0 such that φ(μ) >

(δ r)−1 + ε1 if g(μ) > δ−1 + ε0.
(A4) g is twice continuously differentiable in some neighborhood of Mε0 and

σ({μ : g(μ) = δ−1 and g(μ)/φ(μ) = r}) = 0, where σ is the volume ele-
ment measure of Mε0 .

Spivak (1965) provides a concise introduction to q-dimensional manifolds in R
d

and integration on these manifolds. Assumptions (A1)–(A3) imply that supg(μ)>a−1
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min(δ−1,g(μ))/φ(μ) can be attained on the q-dimensional manifold M0. The first
part of (A3) implies that there exists ε∗ > 0 such that

M∗ := {μ : a−1 ≤ g(μ)≤ δ−1 + ε∗,g(μ)/φ(μ) = r} (18.26)

is a compact subset of Λ ; it clearly holds if φ(μ)→ ∞ as μ → ∂Λ , which is usu-
ally the case. For μ ∈ M0, let T M0(μ) denote the tangent space of M0 at μ and
let T M⊥0 (μ) denote its orthogonal complement (i.e., T M⊥0 (μ) is the normal space
of M0 at μ). Let ρ(μ) = φ(μ)− g(μ)/r. By (A1) and (A3), ρ attains on Mε0 its
minimum value 0 over {μ : α−1 < g(μ) < δ−1 + ε0}, and therefore

∇ρ(μ) = 0 and ∇2ρ(μ) is nonnegative definite for μ ∈M0. (18.27)

Let Π⊥μ denote the d× (d− q) matrix whose column vectors form an orthonormal
basis of T M⊥0 (μ). Then the matrix ∇2

⊥ρ(μ) := (Π⊥μ )′∇2ρ(μ)Π⊥μ is nonnegative
definite for μ ∈ M0. Letting | · | denote the determinant of a nonnegative definite
matrix, we shall also assume that:

(A5) infμ∈M0 |∇2
⊥ρ(μ)|> 0, with ρ = φ −g/r, where we set |∇2

⊥ρ(μ)|= 1 in the
case d−q = 0.

Under (A1)–(A5), Chan and Lai (2000) first consider the case where X1 has a
bounded continuous density function (with respect to Lebesgue measure) so that
Sn/n has the saddlepoint approximation

P{Sn/n ∈ dμ}= (1+o(1))(n/2π)d/2 ∣∣∑(μ)
∣∣−1/2 e−nφ(μ) dμ , (18.28)

where ∑(μ) = ∇2ψ(θ)|θ=θμ and the o(1) term is uniform over compact subsets
of Λ o; see Borovkov and Rogozin (1965), Barndorff-Nielsen and Cox (1979) and
Jensen (1995) for the proofs and applications of these saddlepoint approximations.
Note that Sect. 15.1.2 already gives a concrete example of such saddlepoint approx-
imations, with Xi = (Yi,Y 2

i ) associated with Student’s t-statistic based on Yi, . . . ,Yn.
Let

f (μ)dμ = P{Tc ≤ ac,STc/Tc ∈ dμ}
= ∑

δc≤n≤ac
P{Sn/n ∈ dμ}I{ng(μ)>c}

×P{kg(Sk/k) < c for all δc≤ k < n|Sn/n ∈ dμ}.

(18.29)

Making use of (18.28) and (18.29), they first show that

P{Tc ≤ ac}=
∫

Rd
f (μ) dμ ∼

∫
U

c−1/2 logc

f (μ) dμ , (18.30)

where Uη is a tubular neighborhood of M0 with radius η , and then perform the
integration in (18.30) over Uc−1/2 logc. This is basically an extension of Laplace’s
asymptotic method in Sect. 11.1 to manifolds. Specifically, we say that
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Uη = {y+ z : y ∈M0, z ∈ T M⊥0 (y) and ‖z‖ ≤ η} (18.31)

is a tubular neighborhood of M0 with radius η if the representation of the elements
of Uη in (18.31) is unique. The integral in (18.30) uses the infinitesimal change of
volume in differential geometry; see Gray (1990) for a comprehensive treatment.
From Lemmas 3.13, 3.14 and Theorem 3.15 of Gray (1990), it follows that as
η := c−1/2 logc→ 0,

∫
Uη

f (μ) dμ ∼
∫

M0

{∫
z∈T M⊥0 (y),‖z‖≤η

f (y+ z) dz
}

dσ(y). (18.32)

The inner integral in (18.32) can be evaluated asymptotically by making use of
(18.28) and (18.29), and combining the result with (18.30) yields the asymptotic
formula for P{Tc ≤ ac} in the following theorem. While the preceding analysis has
assumed that X1 has a bounded continuous density function, Chan and Lai (2000,
pp. 1651–1652) replace this assumption by the much weaker assumption that X1
be non-lattice. By partitioning Λ into suitably small cubes, they use change of
measures (see (18.33) below) and a local limit theorem (see Sect. 2.3.2) to modify
the preceding analysis, replacing “∈ dμ” above by “∈ Iμ”, where Iμ denotes a cube
centered at μ .

Theorem 18.2. Let X (μ)
i be i.i.d. such that

P{X (μ)
i ∈ dx}= eθ

′
μ x−ψ(θμ ) dF(x), (18.33)

where F is the distribution of X1, and let Sn(μ) = ∑n
i=1{θ ′μX (μ)

i −ψ(θμ)}. Let
∑(μ) = ∇2ψ(θ)|θ=θμ . Suppose X1 is non-lattice and g : Λ →R satisfies (A1)–(A5)
with a > δ , g(μ0) < a−1 and n0 ∼ δc. Let γ(μ) =

∫ ∞
0 e−yP{minn≥1 Sn(μ) > y}dy.

Then as c→ ∞, P{Tc ≤ ac} is asymptotically equivalent to

( c
2πr

)q/2
e−c/r

∫
M0

γ(μ)(φ(μ))−(q/2+1) ∣∣∑(μ)
∣∣−1/2 |∇2

⊥ρ(μ)|−1/2 dσ(μ),

where ∇2
⊥ρ is introduced in (A5).

For the second and third probabilities in (18.25) with g(μ0) < b, Chan and Lai
(2000) impose the following conditions in lieu of (A1)–(A5):

(B1) g is continuous on Λ o and inf{φ(μ) : g(μ)≥ b}= b/r.
(B2) g is twice continuously differentiable on {μ ∈ Λ o : b− ε0 < g(μ) < b + ε0}

for some ε0 > 0.
(B3) ∇g(μ) �= 0 on N := {μ ∈ Λ o : g(μ) = b}, and M := {μ ∈ Λ o : g(μ) =

b, φ(μ) = b/r} is a smooth p-dimensional manifold (possibly with bound-
ary) for some 0≤ p≤ d−1.

(B4) liminfμ→∂Λ φ(μ) > br−1 and infg(μ)>b+δ φ(μ) > br−1 for every δ > 0.

For the notion of smooth submanifolds (with or without boundaries), see Spivak
(1965). Under (B2) and (B3), N is a (d−1)-dimensional manifold and T N⊥(μ) is
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a one-dimensional linear space with basis vector ∇g(μ). Making use of (B1)–(B4),
Chan and Lai (2000, p. 1665) show that

inf
μ∈M
‖∇φ(μ)‖> 0, (∇g(μ))′∇φ(μ)>0 and ∇φ(μ)∈T N⊥(μ) for all μ∈M.

(18.34)

Hence ∇φ(μ) = s∇g(μ) with s = ‖∇φ(μ)‖/‖∇g(μ)‖. Let e1(μ) = ∇φ(μ)/‖
∇φ(μ)‖ and let {e1(μ), e2(μ), . . . ,ed−p(μ)} be an orthonormal basis of T M⊥(μ).
Define a d × (d − p− 1) matrix Πμ (in the case d > p + 1) by Πμ = (e2(μ) . . .
ed−p(μ)) and a positive number ξ (μ) by

ξ (μ) =

{
1/‖∇φ(μ)‖ if d = p+1∣∣Π ′μ {∑−1(μ)− s∇2g(μ)

}
Πμ

∣∣− 1
2 /‖∇φ(μ)‖ if d > p+1.

The following assumption is analogous to (A5):

(B5) infμ∈M |Π ′μ{∑−1(μ)− s∇2g(μ)}Πμ |> 0 if d > p+1.

Theorem 18.3. Suppose X1 is non-lattice and g : Λ → R satisfies (B1)–(B5). Let
b > g(μ0). Then as n→ ∞,

P{g(Sn/n) > b} ∼ P{g(Sn/n)≥ b}

∼ (2π)−(p+1)/2n(p−1)/2e−bn/r
∫

M
ξ (μ)|∑(μ)|−1/2 dσ(μ).

Theorem 18.4. Suppose X1 is non-lattice, g : Λ → R satisfies (B1)–(B5) and
g(μ0) = 0. Let β > b > 0. Define X (μ)

i as in Theorem 18.2 and let Wn(μ) =

∑n
i=1{θ ′μ(X (μ)

i −μ)+ s(b−β )}. Let w(μ) =
∫ ∞

0 e−yP{maxn≥1 Wn(μ) < y}dy. Then
as n→ ∞,

P
{

min
k≤n

[(n− k)β + kg(Sk/k)] > bn
}
∼ P

{
min
k≤n

[(n− k)β + kg(Sk/k)]≥ bn
}

∼ (2π)−(p+1)/2n−(p−1)/2e−bn/r
∫

M
ξ (μ)w(μ)|∑(μ)|−1/2 dσ(μ).

The proofs of Theorems 18.3 and 18.4 are given in Chan and Lai (2000,
pp. 1653–1654). We summarize here the main ideas in the proof of Theorem 18.3,
as the proof of Theorem 18.4 is similar. Assume that r = 1 and X1 has a bounded
continuous density. Recall that e1(y), . . . ,ed−p(y) form an orthonormal basis of
T M⊥(y) and that ∇g(y) is a scalar multiple of e1(y), for every y ∈ M. For y ∈ M
and max1≤i≤d−p |vi| ≤ (logn)−1, since g(y) = b and (∇g(y))′∑d−p

i=1 viei(y) =
v1‖∇φ(y)‖/s, Taylor’s expansion yields

g

(
y+

d−p

∑
i=1

viei(y)

)
= b+ v1‖∇φ(y)‖/s+O(v2

1)+ v′Π ′y∇2g(y)Πyν/2+o(‖v‖2)

> b if v1‖∇φ(y)‖/s > c(v)+o(‖v‖2)+O(v2
1), (18.35)
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where v = (v2, . . . ,vd−p)′ and c(v) =−v′Π ′y∇2g(y)Πyv/2. Let

Vn =

{
y+

d−p

∑
i=1

viei(y) : y ∈M, max
1≤i≤d−p

|vi| ≤ (logn)−1, v1‖∇φ(y)‖/s > c(v)

}
.

By (18.28), P{Sn/n∈Vn} is equal to (1+o(1))(n/2π)d/2 ∫
Vn
|∑(μ)|−1/2e−nφ(μ)dμ .

We can use the infinitesimal change of volume function over tubular neighborhoods
as in (18.32) to evaluate the integral. Making use of (18.28) together with (B1) and
(B4), it can be shown that P{g(Sn/n) > b}= P{Sn/n ∈Vn}+o(n−qe−bn) for every
q > 0.

Chan and Lai (2000, Sect. 4) have also extended the preceding ideas to derive ap-
proximations to moderate deviation probabilities. One may argue that, for the usual
significance levels of hypothesis tests, the probabilities of large deviations in (18.25)
seem to be too small to be of practical relevance. The moderate deviation theory
in Chan and Lai (2000) basically shows that the large deviation approximations
can be extended to probabilities of moderate deviations. More importantly, large
deviation approximations are important for multiple testing situations, as shown by
Chan and Lai (2002, 2003) in applications to change-point problems and limiting
distribution of scan statistics, for which the i.i.d. setting above is also extended to
Markov chains on general state spaces.

18.2.3 Applications and Examples

Consider the multiparameter exponential family with density function exp(θ ′x−
ψ(θ)) with respect to some probability measure F . The natural parameter space
is Θ . Let Θ1 be a q1-dimensional smooth submanifold of Θ and Θ0 be a q0-
dimensional smooth submanifold of Θ1 with 0 ≤ q0 < q1 ≤ d. The GLR statis-
tics for testing the null hypothesis H0 : θ ∈ Θ0 versus the alternative hypothesis
H1 : θ ∈Θ1−Θ0 are of the form ng(Sn/n), where

g(x) = φ1(x)−φ0(x), with φi(x) = sup
θ∈Θi

(
θ ′x−ψ(θ)

)
. (18.36)

Then g(x)≤ φ(x) and equality is attained if and only if φ1(x) = φ(x) and φ0(x) = 0.
Since ∇ψ is a diffeomorphism, Λi = ∇ψ(Θi) is a qi-dimensional submanifold
of Λ o. Note that φ(x) = φ1(x) iff x1 ∈ Λ1. Consider the repeated GLR test with
stopping rule Tc ∧ [ac] where Tc is defined in (18.24) with g given by (18.36) and
n0 ∼ δc. To evaluate the Type I error probability at θ0, we can assume, by choosing
the underlying probability measure F as that associated with θ0 and by replacing
Xi by Xi−∇ψ(θ0), that θ0 = 0, ψ(0) = 0 and ∇ψ(0) = 0. Then (A1)–(A5) hold
with r = 1 and q = q1−q0 under certain regularity conditions and therefore we can
apply Theorem 18.2 to approximate the Type I error probability P0{Tc ≤ ac}.
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Example 18.5. Consider the repeated t-test of the null hypothesis H0 that the com-
mon mean of i.i.d. normal observations Y1,Y2, . . . is 0 when the variance is un-
known. Here Xi = (Yi,Y 2

i ), Sn/n = (n−1∑n
1 Yi,n−1∑n

1 Y 2
i ), Λ o = {(y,v) : v > y2}

and Λ0 = {(0,v) : v > 0}. The GLR statistics are of the form ng(Sn/n), where
g(y,v) = 1

2 log(v/(v− y2)), and the repeated t-test rejects H0 if ng(Sn/n) > c for
some δc≤ n≤ ac. The test is invariant under scale changes, so we can consider the
Type I error probability when Var(Yi) = 1. Since φ(y,v) = [v− 1− log(v− y2)]/2,
(A1)–(A4) are satisfied with r = 1 and

Mε =
{
(y,1) : 1− exp

(
−2(δ−1 + ε)

)
> y2 > 1− exp(−2a−1)

}
.

Moreover, (A5) holds since ∇2
⊥ρ(y,1) = 1/2 for (y,1) ∈M0.

Suppose next that instead of the stopping rule Tc ∧ [ac], the GLR test of H0 is
based on a sample of fixed size n. The test rejects H0 if g(Sn/n) > b, where g is
defined by (18.36). To evaluate the Type I error probability at θ0, there is no loss of
generality in assuming that θ0 = 0, ψ(0) = 0 and ∇ψ(0) = 0. Then (B1)–(B5) hold
with r = 1 and p = q1−q0−1 under certain regularity conditions, so Theorem 18.3
can be used to approximate the Type I error probability P0{g(Sn/n) > b}. A different
choice of g in Theorem 18.3 also gives an approximation to the Type II error prob-
ability Pθ{g(Sn/n) ≤ b} with g(∇ψ(θ)) > b. Specifically, let g̃(μ) = g(∇ψ(θ))−
g(μ), b̃ = g(∇ψ(θ))−b, and apply Theorem 18.3 with g, b replaced by g̃, b̃.

Theorems 18.2 and 18.3 can also be applied to analyze error probabilities of tests
that are not based on likelihood ratio statistics. For example, consider the repeated t-
test of Example 18.5 when the underlying distribution is actually non-normal. Here
g(y,v) =− 1

2 log(1−y2/v) is an increasing function of |y|/√v, which increases as v
decreases. Thus change of measures for the probabilities in (18.25) can be restricted
to {(θ1,θ2) : θ2 < 0}, on which Eeθ1Y+θ2Y 2

< ∞ without any moment conditions
on Y . In this general setting,

φ(y,v) = sup
γ∈R,λ>0

{
γy−λv− logEeγY−λY 2

}
for v≥ y2;

see (10.1). Write g(y,v)=G(|y|/√v). For 0≤ t ≤ 1, define F(t)= infv>0 φ(t
√

v,v)=
φ(t
√

vt ,vt). Then

sup
v≥y2

g(y,v)/φ(y,v) = sup
0≤t≤1

[G(t)/min{F(t),F(−t)}] .

In the normal case considered in Example 18.5, G = F since v−1− logv has mini-
mum value 0. For non-normal Y , suppose r = sup0≤t≤1[G(t)/min{F(t),F(−t)}] is
attained at t∗ ∈ (0,1) and a−1 < G(t∗) < δ−1. Then (A1)–(A5) hold with q = 0 and
Mε = {(t∗√vt∗ ,vt∗)}, or {(−t∗

√
vt∗ ,vt∗)}, or {(t∗√vt∗ ,vt∗),(−t∗

√
vt∗ ,vt∗)} accord-

ing as F(t∗) < F(−t∗), or F(−t∗) < F(t∗), or F(t∗) = F(−t∗). Hence application
of Theorem 18.2 yields a large deviation approximation to P{Tc ≤ ac} even when
the underlying distribution to which the repeated t-test is applied does not have
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finite pth absolute moment for any p > 0, which is similar to the large deviation
theory in Chap. 3 for fixed sample size n.

Remark 18.6 (Asymptotic efficiencies of fixed sample size tests). Chernoff (1952),
Bahadur (1960, 1967, 1971) and Hoeffding (1965) have used large deviation ap-
proximations for Type I and Type II error probabilities to evaluate asymptotic
efficiencies of fixed sample size tests. Theorem 18.3 provides a much more precise
approximation for these error probabilities. In the case of linear hypotheses about a
multivariate normal mean, such refined large deviation approximations in the litera-
ture have been derived from well-developed exact distribution theory in the normal
case; see Groeneboom (1980, pp. 71–90). Chernoff and Hoeffding consider the
Type I error probability αn, and the Type II error probability βn at a fixed alternative
θ1, of a typical test of H0 : θ = θ0, as the sample size n→ ∞ so that both αn and βn
approach 0 exponentially fast. By introducing the Chernoff index

λ = lim
n→∞

n−1 logmax(αn,βn), (18.37)

Chernoff (1952) defines the asymptotic efficiency of a test δ1 relative to a test δ2 by

e(δ1,δ2) = λ1/λ2, (18.38)

and gives examples of the index λ for standard normal, chi-square and binomial
tests. Hoeffding (1965) considers tests of multinomial probabilities and shows that
GLR tests have the minimal index and are therefore asymptotically efficient.

Bahadur (1960) makes use of the attained significance levels (or p-values) for
stochastic comparison of test statistics. Let Tn be a test statistic based on i.i.d. ob-
servations X1, . . . ,Xn such that large values of Tn show significant departures from
the null hypothesis H0 : θ ∈Θ0. Letting Gn(t) = supθ∈Θ0

Pθ (Tn > t), the attained
significance level of Tn is πn := Gn(Tn). In typical cases, πn converges weakly as
n→ ∞ under Pθ for θ ∈Θ0, and there exists c(θ) > 0 such that

−2n−1 logπn −→ c(θ) a.s.[Pθ ] (18.39)

at θ /∈Θ0. If (18.39) holds, c(θ) is called the Bahadur slope of Tn at θ . If the a.s.

convergence in (18.39) is replaced by
Pθ−→ (i.e., convergence in probability), then

c(θ) is called the “weak Bahadur slope” at θ . The larger the value of c(θ), the faster
Tn tends to reject H0. For two sequences of test statistics T (1)

n and T (2)
n , the Bahadur

efficiency of T (1)
n relative to T (2)

n at alternative θ is given by the ratio c1(θ)/c2(θ),
where ci(θ) is the Bahadur slope of T (i)

n at θ . See Bahadur (1960, 1967, 1971),
Akritas and Kourouklis (1988) and He and Shao (1996) for results on Bahadur
slopes and efficiencies and their derivations from large and moderate deviation
theories.

Theorem 18.4 can be used to evaluate the Type II error probability of the se-
quential test that rejects H0 if kg(Sk/k) > c for some k ≤ ac. Suppose g(μ0) > a−1.
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Then the Type II error probability of the test at the alternative with EX1 = μ0 can
be expressed in the following form to which Theorem 18.4 is applicable:

Pμ0

{
max
k≤n

kg(Sk/k)≤ c
}

= Pμ0

{
min
k≤n

[ng(μ0)− kg(Sk/k)]≥ ng(μ0)− c
}

= Pμ0

{
min
k≤n

[(n− k)β + kg̃(Sk/k)]≥ bn
}

,

where β = g(μ0), g̃ = g(μ0)−g and b = g(μ0)−a−1.

Example 18.7. With the same notation and assumptions as Example 18.5, con-
sider the Type II error probability of the repeated t-test at the alternative where
E(Yi) = γ �= 0 and Var(Yi) = 1. Thus E(Y 2

i ) = 1 + γ2. Suppose γ > 0 and
g(γ,1+ γ2) > a−1. Let b = g(γ,1+ γ2)−a−1,

g̃(y,v) = g(γ,1+ γ2)−g(y,v) =
{

log(1+ γ2)− log
(
v/(v− y2)

)}
/2.

Since the logarithm of the underlying density function is −(y− γ)2/2− log(
√

2π),
the rate function now takes the form

φ(y,v) =
[
v−1− log(v− y2)−2γy+ γ2]/2.

Since φ is strictly convex with its global minimum at (γ,1 + γ2) and since
g(γ,1+ γ2) > a−1, the minimum of φ over the region {(y,v) : g(y,v)≤ a−1} occurs
at v = αy2 with α satisfying g(1,α) = a−1, or equivalently, α/(α − 1) = e2/a.
Since φ(y,αy2) = {αy2 − 1− log(α − 1)− logy2 − 2γy + γ2}/2 is minimized at
ya := (γ +

√
γ2 +4α)/2α , (B1) holds with g̃ in place of g and b/r = φ(μa) and

(B3) holds with M consisting of the single point μa := (ya,αy2
a). Moreover, (B2),

(B4) and (B5) also hold (with g̃ in place of g). Hence Theorem 18.4 can be applied
to give the Type II error probability of the repeated t-test: As c→ ∞,

Pγ

{
max

2≤k≤ac
kg(Sk/k)≤ c

}
∼ (ac/2π)1/2ξ (μa)w(μa)

∣∣∑(μa)
∣∣−1/2 e−acφ(μa).

18.3 Efficient Monte Carlo Evaluation of Boundary
Crossing Probabilities

The likelihood ratio identity and the method of mixtures in Sect. 18.2.1 can be used
to compute boundary crossing probabilities directly, by Monte Carlo simulations
using importance sampling, instead of relying on asymptotic approximations (which
may be inaccurate for the given sample size and may involve difficult numerical
integration) developed from the method. When an event A occurs with a small
probability (e.g., 10−4), generating 100 events would require a very large number
of simulations (e.g., 1 million) for direct Monte Carlo computation of P(A). To
circumvent this difficulty, one can use importance sampling instead of direct Monte
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Carlo, changing the measure P to Q under which A is no longer a rare event and
evaluating P(A) = EQLI(A) by m−1∑m

i=1 LiI(Ai), where (L1, I(A1)), . . . ,(Lm, I(Am))
are m independent samples drawn from the distribution Q, with Li being a realiza-
tion of the likelihood ratio statistic L := dP/dQ, which is the importance weight. We
next discuss how Q should be chosen to produce an efficient Monte Carlo estimate.

Let pn denote the probability in Theorem 18.3, i.e., pn = P{g(Sn/n) > b} with
b > g(μ0). Glasserman and Wang (1997) have pointed out that importance sampling
which uses the same change of measures as that used in deriving large deviations
approximations may perform much worse than direct Monte Carlo for nonlinear
functions g. They consider the case d = 1 and g(x) = x2, for which

pn = P{|Sn|/n >
√

b}= P{|Sn|> an}, (18.40)

where a =
√

b > |μ0| and a ∈ Λ o. Suppose φ(a) < φ(−a). Then pn ∼ P{Sn > an}
and

n−1 logLn
P→−φ(a) = lim

n→∞
n−1 logP{|Sn|> an}, (18.41)

where Ln = dPn/dPa,n and Pμ,n denotes the probability measure under which X1, . . . ,
Xn are i.i.d. from the exponential family (18.33) with natural parameter θμ . Since
n−1 logP{Sn > an}→−φ(a) and n−1 logP{Sn <−an}→−φ(−a),

VarPI(|Sn|> an)∼ P{|Sn|> an}= e−{φ(a)+o(1)}n. (18.42)

Consider importance sampling of {|Sn| > an} by using Qn = Pa,n, a choice that
is “consistent with large deviations” in the terminology of Glasserman and Wang
(1997, p. 734), who have also shown that for the case θa +θ−a > 0,

lim
n→∞

EQn L2
nI(|Sn|> an) = ∞. (18.43)

Comparison of (18.43) with (18.42) shows that Monte Carlo computation of pn by
using importance sampling from Pa,n in this case is much worse than direct Monte
Carlo.

To simulate the tail probability pn = P{g(Sn/n) > b} under (B1)–(B5), Chan
and Lai (2007) propose to use importance densities of the form

w̃n(μ) = β̃ne−nφ(μ)I (g(μ) > b) , μ ∈Λ , (18.44)

where β̃n is a normalizing constant such that
∫
Λ w̃n(μ)dμ = 1. Specifically, they

propose to generate i.i.d. (X (i)
1 , . . . ,X (i)

n ), i = 1, . . . ,m, from the importance sampling
measure

Q∗n =
∫
Λ

Pμ,nw̃n(μ)dμ (18.45)

and estimate pn by

p̂n = m−1
m

∑
i=1

L(i)
n I

(
g(S(i)

n /n) > b
)

, where S(i)
n = X (i)

1 + · · ·+X (i)
n , (18.46)



262 18 Boundary Crossing Probabilities for Self-Normalized Statistics

and L(i)
n = dPn/dQ∗n = (

∫
Λ eθ

′
μS(i)

n −nψ(θμ )w̃n(μ)dμ)−1. Note that p̂n is unbiased for
pn. Let G be a distribution function on R

d satisfying F(A) > 0⇒ G(A) > 0 for any
Borel set A⊂ R

d . Assume that λ (θ) := log[
∫

eθ
′xG(dx)] < ∞ for all ‖θ‖ ≤ θ1 and

let Γ = {θ : λ (θ) < ∞}. For θ ∈ Γ , define a probability distribution Gθ on R
d by

dGθ (x) = exp
{
θ ′x−λ (θ)

}
dG(x), (18.47)

and let Qμ,n denote the measure under which X1, . . . ,Xn are i.i.d. with distribution
function G(∂λ )−1(μ). Let Wn be a probability measure and define the mixture

Qn =
∫
∇λ (Γ )

Qμ,n dWn(μ). (18.48)

Chan and Lai (2007) have proved the following result on the asymptotic optimality
of the importance sampling measure (18.45).

Theorem 18.8. Assume that g satisfies (B1)–(B5). Then for any distribution func-
tion G on R

d such that
∫

eθ
′xdG(x) < ∞ for θ in some neighborhood of the origin,

liminf
n→∞

EQn

[(
dPn

dQn

)2

I (g(Sn/n) > b)

]/(√
np2

n
)

> 0,

where Qn is defined from G via (18.47) and (18.48). Moreover, defining Q∗n by
(18.44) and (18.45), we have

EQ∗n

[(
dPn

dQ∗n

)2

I (g(Sn/n) > b)

]
= O(

√
np2

n).

Hence Q∗n is asymptotically efficient.

Chan and Lai (2007) have modified (18.47) and (18.48) to give a similar im-
portance sampling measure that is asymptotically efficient for Monte Carlo com-
putation of the probability pc = P{Tc ≤ ac} in Theorem 18.2. They have also
described how these importance sampling methods can be implemented in practice
and have provided numerical results on their performance. Moreover, extensions to
Markov-dependent Xi are also given in Chan and Lai (2007).

18.4 Supplementary Results and Problems

1. (a) Let X1,X2, . . . be i.i.d. random variables and let T be a stopping time such
that ET < ∞. Show that if EX1 = EX+

1 −EX−1 is well-defined (i.e., EX+
1

and EX−1 are not both infinite), then E(∑T
i=1 Xi) = (ET )(EX1). This is often

called Wald’s equation. Moreover, by using a truncation argument, show
that if EX1 = 0, then E{(∑T

i=1 Xi)2} = (ET )EX2
1 , which is often called

“Wald’s equation for the second moment.”
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(b) Using the notation of Sect. 18.1.1, show that if Pi{g1(X1) �= g0(X1)}> 0 for
i = 0,1, then EiN < ∞ and that ignoring overshoots, the stopping time N
of the SPRT with Type I and Type II error probabilities α and β attain the
lower bounds in (18.4).

(c) Suppose that under the true probability measure P, the Xi are i.i.d. such
that E{log(g1(X1)/g0(X1))}= 0 while P{g1(X1) �= g0(X1)}> 0. Show that
EN <∞ and use Wald’s equations in (a) to derive approximations (ignoring
overshoots) for P{LN ≥ B} and EN.

2. (a) Show that the repeated t-test with stopping rule (15.15) is a repeated GLR
test for testing the null hypothesis that the mean of a normal distribution is
0 when its variance is unknown.

(b) Generalize (a) to the case of a multivariate normal distribution and thereby
derive the repeated T 2-test.

3. Renewal theory, nonlinear extension and applications. Let X ,X1,X2, . . . be i.i.d.
random variables with EX1 = μ > 0, and let Sn = X1 + · · ·+Xn, S0 = 0. Define

τ(b) = inf{n≥ 1 : Sn≥ b}, τ+ = inf{n≥ 1 : Sn > 0}, U(x) =
∞

∑
n=0

P{Sn ≤ x},

(18.49)

and call X arithmetic if its support is of the form {0,±d,±2d, . . .}, where the
largest such d is called its span. The function U is called the renewal function,
and Blackwell’s renewal theorem says that if X is a.s. positive, then

U(x+h)−U(x)→ h/μ as x→ ∞, (18.50)

for any h > 0 in the case of non-arithmetic X , and for h = d and x being an
integral multiple of d when X is arithmetic with span d. The renewal theorem
provides a key tool to prove the following results on (τ(b),Sτ(b)−b):

• As b→ ∞ (through multiples of d in the lattice case), Sτ(b)−b converges in
distribution; in fact

P{Sτ(b)−b > y}→ 1−H(y) := (ESτ+)−1
∫ ∞

y
P(Sτ+ > x)dx. (18.51)

Moreover, if VarX = σ2 < ∞, then

lim
b→∞

E(Sτ(b)−b) =

{
ES2

τ+/(2ESτ+) if X is non-arithmetic
ES2

τ+/(2ESτ+)+d/2 if X is arithmetic with span d.

(18.52)

• As b→ ∞ (through multiples of d in the lattice case),

P
{
τ(b)≤ b/μ + x(bσ2/μ3)1/2,Sτ(b)−b≤ y

}
→Φ(x)H(y) (18.53)
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for all x ∈ R and y > 0; i.e., (τ(b)− b/μ)/(bσ2/μ3)1/2 is asymptotically
standard normal and asymptotically independent of the overshoot Sτ(b)−b.

Lai and Siegmund (1977) have extended (18.51) and (18.53) to the case where
the random walk Sn above is replaced by Zn = S̃n + ζn, where S̃n is a random
walk whose increments are i.i.d. with a positive mean and ζn is slowly changing
in the sense that max1≤i≤n |ζi|/

√
n P→ 0 and for every ε > 0 there exist n∗ and

δ > 0 such that

P
{

max
1≤k≤nδ

|ζn+k−ζn|> ε
}

< ε for all n≤ n∗. (18.54)

They have shown that (18.51) and (18.53) still hold with τ(b) replaced by
T (b) = inf{n ≥ 1 : Zn ≥ b}, Sτ(b) replaced by ZT (b) and Sτ+ replaced by S̃τ+ .
This extension of (18.51) and (18.53) covers a wide variety of applications in
which the statistics are nonlinear functions of sample mean vectors and can be
represented as S̃n +ζn, where ζn is the remainder in a Taylor series expansion:

(a) Let Y,Y1,Y2, . . . be i.i.d. random variables with EY 2 < ∞ and let Zn =
ng(∑n

i=1 Yi/n), where g is positive and twice continuously differentiable in
a neighborhood of EY . By making use of the strong law of large numbers
and Taylor’s expansion around EY , show that Zn can be expressed in the
form S̃n +ζn, where

S̃n = ng(EY )+g′(EY )
n

∑
i=1

(Yi−EY )

and ζn is slowly changing.
(b) Let 0≤ γ < 1 and assume that EY > 0. Show that Tc := inf{n≥ 1 : ∑n

i=1 Yi ≥
cnγ} can be re-expressed as T (b) = inf{n ≥ 1 : Zn ≥ b}, with b = c1/(1−γ)

and Zn of the form in (a).
(c) Show that �n in Sect. 18.2.1 can be written in the form S̃n + ζn and hence

prove (18.22).

4. Let X1,X2, . . . be i.i.d. with EX1 = μ > 0, and define τ(b) by (18.49). Show that
Eτ(b) <∞ and limb→∞ Eτ(b)/b = 1/μ , first in the case P{X1 ≤ c}= 1 for some
c > 0, and then in general by a truncation argument. Assuming furthermore that
VarX1 = σ2 <∞ and that X1 is non-arithmetic, make use of Wald’s equation and
(18.52) to show that

Eτ(b) =
1
μ

{
b+

ES2
τ+

2ESτ+
+o(1)

}
as b→ ∞. (18.55)

Lai and Siegmund (1979) have extended Blackwell’s renewal theorem (18.50)
to U(x) in which Sn is replaced by Zn = S̃n + ζn in (18.49), where ζn is slowly
changing and satisfies some additional assumptions, including that ζn converges
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in distribution to ζ . Letting μ̃ = ES̃1, they have used this result to show that
(18.55) can be extended to

ET (b) =
1
μ̃

{
b−Eζ +

ES̃2
τ+

2ES̃τ+
+o(1)

}
as b→ ∞, (18.56)

where T (b) = inf{n≥ 1 : Zn ≥ b}.
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