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Preface

Discovered in the seventies, Black-Scholes formula continues to play a central role
in Mathematical Finance. We recall this formula. Let (Bt , t ≥ 0; Ft , t ≥ 0, P) de-
note a standard Brownian motion with B0 = 0, (Ft , t ≥ 0) being its natural filtra-
tion. Let

(
Et := exp

(
Bt − t

2

)
, t ≥ 0

)
denote the exponential martingale associated

to (Bt , t ≥ 0). This martingale, also called geometric Brownian motion, is a model
to describe the evolution of prices of a risky asset. Let, for every K ≥ 0:

ΠK(t) := E
[
(K −Et)+

]
(0.1)

and
CK(t) := E

[
(Et −K)+

]
(0.2)

denote respectively the price of a European put, resp. of a European call, associated
with this martingale. Let N be the cumulative distribution function of a reduced
Gaussian variable:

N (x) :=
1√
2π

∫ x

−∞
e−

y2
2 dy. (0.3)

The celebrated Black-Scholes formula gives an explicit expression of ΠK(t) and
CK(t) in terms of N :

ΠK(t) = KN

(
log(K)√

t
+

√
t

2

)
−N

(
log(K)√

t
−

√
t

2

)
(0.4)

and

CK(t) = N

(
− log(K)√

t
+

√
t

2

)
−KN

(
− log(K)√

t
−

√
t

2

)
. (0.5)

Comparing the expressions (0.4) and (0.5), we note the remarkable identity:

CK(t) = KΠ1/K(t). (0.6)

v
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These formulae have been the starting point of the present monograph, which con-
sists of a set of eight Chapters, followed by three Complements and three Appen-
dices. We now summarize the contents of these different items.

About Chapter 1

The processes ((K −Et)+, t ≥ 0) and ((Et −K)+, t ≥ 0) are submartingales; hence,
ΠK and CK are increasing functions of t. Furthermore, it is easily shown that:

ΠK(t) −−→
t→∞

K and CK(t) −−→
t→∞

1. (1.1)

This motivates our question: can we exhibit, on our probability space, a positive r.v.
X (Π) (resp. X (C)) such that

(
1
KΠK(t), t ≥ 0

)
,
(
resp. (CK(t), t ≥ 0)

)
is the cumulative

distribution function of X (Π) (resp. X (C)) ? We answer this question in Chapter 1 of
the present monograph. Precisely, let:

G
(E )
K := sup{s ≥ 0; Es = K} (1.2)

(= 0 if this set {s ≥ 0; Es = K} is empty).

Then:
ΠK(t) := KP

(
G

(E )
K ≤ t

)
(1.3)

and
CK(t) := P

(E )
(
G

(E )
K ≤ t

)
(1.4)

where, in the latter formula, P
(E ) is the probability obtained from P by “change of

numéraire”:
P

(E )
|Ft

:= Et ·P|Ft . (1.5)

About Chapter 2

Formulae (1.3) and (1.4) may be extended when the martingale (Et , t ≥ 0) is re-
placed by a positive, continuous, local martingale such that:

lim
t→∞

Mt = 0 a.s. (2.1)

Indeed, in Chapter 2, we show that, with:

G
(M)
K := sup{t ≥ 0; Mt = K} , (2.2)

one has:
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E
[
(K −Mt)+

]
= KP

(
G

(M)
K ≤ t

)
. (2.3)

If, furthermore, (Mt , t ≥ 0) is a “true” martingale, (i.e. E [Mt ] = 1 for every t ≥ 0),
then:

E
[
(Mt −K)+

]
= P

(M)
(
G

(M)
K ≤ t

)
(2.4)

where the probability P
(M) is given by:

P
(M)
|Ft

:= Mt ·P|Ft . (2.5)

Of course, a formula such as (2.3) or (2.4) has practical interest only if we know how

to compute the law of the r.v. G
(M)
K . This is why, in Chapter 2, we have developed:

• general results (cf. Sections 2.3, 2.4 and 2.5), which allow the computation of the

law of G
(M)
K ,

• explicit examples of computations of these laws.

Moreover, Chapter 2 also contains an extension of formulae (2.3) and (2.4) to the
case where the martingale (Mt , t ≥ 0) is replaced by several orthogonal martingales

(M(i)
t , t ≥ 0)i=1,...,n.

About Chapter 3

Formulae (2.3) and (2.4) show the central importance of the family of r.v. G
(M)
K de-

fined by (2.2). However, these r.v’s are not stopping times (e.g: with respect to the
natural filtration of the martingale (Mt , t ≥ 0)). Nonetheless, we wish to study the

process (Mt , t ≥ 0) before and after G
(M)
K . This study hinges naturally upon the pro-

gressive enlargement of filtration technique, i.e. upon the introduction of the filtra-
tion (F K

t , t ≥ 0), which is the smallest filtration containing (Ft , t ≥ 0) and making

G
(M)
K a (F K

t , t ≥ 0) stopping time, and upon the computation of Azéma’s super-

martingale
(
P

(
G

(M)
K ≥ t|Ft

)
, t ≥ 0

)
. These computations and the corresponding

study of the process (Mt , t ≥ 0) before and after G
(M)
K are dealt with in Chapter 3.

The preceding discussion leads us to consider a slightly more general set-up, that
of Skorokhod submartingales, i.e. continuous submartingales (Xt , t ≥ 0) such that:

Xt = −Mt +Lt (t ≥ 0) (3.1)

with:

• Xt ≥ 0, X0 = 0, (3.2)

• (Lt , t ≥ 0) increases and dLt is supported by {t ≥ 0; Xt = 0}, (3.3)

• (Mt , t ≥ 0) is a local martingale. (3.4)

A sketch of study of the general set-up is found at the end of Chapter 3.
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About Chapter 4

Chapter 4 may be read independently from the other ones.
Let

(
Et := exp

(
Bt − t

2

)
, t ≥ 0

)
denote the geometric Brownian motion. We de-

fine, for every x ≥ 0 and K ≥ 0, the Black-Scholes type perpetuity:

Σ (x)
K :=

∫ ∞

0
(xEt −K)+ dt. (4.1)

Other perpetuities (see for instance Dufresne [21], Salminen-Yor [80], [81] and [82]
or Yor [98]) have been defined and studied in the context of Mathematical Finance.
In particular, it goes back to D. Dufresne that, for, a �= 0 and ν > 0:

∫ ∞

0
exp(aBt −νt)dt

(law)
=

2
a2γ 2ν

a2

(4.2)

where γb is a gamma variable with parameter b. In Chapter 4 of this monograph, we

study the perpetuity Σ (x)
K in detail: its moments, its Laplace transform, asymptotic

properties, and so on.

About Chapter 5

We come back to the Brownian set-up. Let (Bt , t ≥ 0) denote a Brownian motion

starting from 0 and (Ft , t ≥ 0) its natural filtration. Let, for ν real,
(
E

(ν)
t , t ≥ 0

)

denote the exponential martingale defined by:

(
E

(ν)
t , t ≥ 0

)
:=

(
exp

(
νBt −

ν2t
2

)
, t ≥ 0

)
. (5.1)

Formulae (1.3) and (1.4), or rather their generalization for a general index ν,

E

[(
K −E

(ν)
t

)+
]

:= KP

(
G

(E (ν))
K ≤ t

)
(5.2)

and

E

[(
E

(ν)
t −K

)+
]

:= P
(E (ν))

(
G

(E (ν))
K ≤ t

)
(5.3)

where: P
(E (ν))
|Fs

= E
(ν)
s · P|Fs have a drawback: it is not possible to estimate

P

(
G

(E (ν))
K ≤ t

)
only from the observation of the Brownian trajectory up to time t

since
G

(E (ν))
K := sup

{
s ≥ 0; E

(ν)
s = K

}
(5.4)
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is not a stopping time. To counter this drawback, we introduce:

G
(E (ν))
K (t) := sup

{
s ≤ t; E

(ν)
s = K

}
, (5.5)

and, now, G
(E (ν))
K (t) is Ft-measurable (although, it is still not a stopping-time). The

first part of Chapter 5 is then devoted (see Theorem 5.1) to write some analogues

of formulae (5.2) and (5.3) where we replace G
(E (ν))
K by G

(E (ν))
K (t). This rewriting

of formulae (5.2) and (5.3) leads to the interesting notion of past-future martingale.
More precisely, let the past-future filtration (Fs,t , 0 ≤ s ≤ t) be defined by:

Fs,t = σ (Bu,u ≤ s; Bh,h ≥ t) (5.6)

and note that, if [s, t] ⊂ [s′, t ′]:
Fs,t ⊃ Fs′,t ′ . (5.7)

We then say that a process (Δs,t , s ≤ t) which is Fs,t-adapted and takes values in R,
is a past-future martingale if, for every [s, t] ⊂ [s′, t ′]:

E
[
Δs,t |Fs′,t ′

]
= Δs′,t ′ . (5.8)

The second part of Chapter 5 is devoted to the study of past-future martingales and
to the description of the set of these two parameter “martingales”.

About Chapter 6

We come back to the price of a European put associated to a martingale (Mt , t ≥ 0)
such that M0 = 1 a.s.:

ΠM(K, t) := E
[
(K −Mt)+

]
(0 ≤ K ≤ 1, t ≥ 0). (6.1)

We saw (see Chapter 2) that, for K = 1, the application t 
→ΠM(1, t) is the cumula-

tive distribution function of the r.v. G
(M)
1 . On the other hand, we have:

ΠM(K,0) = 0 (0 ≤ K ≤ 1) ; ΠM(0, t) = 0 (t ≥ 0), (6.2)

ΠM(K, t) = KP

(
G

(M)
K ≤ t

)
−−→
t→∞

K. (6.3)

Then, the following question arises naturally: is the function of two variables
(ΠM(K, t),K ∈ [0,1], t ≥ 0) the cumulative distribution function of a 2-dimensional
r.v. taking values in [0,1]× [0,+∞[ ? In other terms, does there exist a probability
γM on [0,1]× [0,+∞[ such that, for every K ∈ [0,1] and t ≥ 0:

E
[
(K −Mt)

+] = γM ([0,K]× [0, t]) ? (6.4)
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Since, from Fubini, one has:

E
[
(K −Mt)

+] =
∫ K

0
P(Mt ≤ x)dx (6.5)

the existence of γM is equivalent to the assertion:

“for every x < 1, the function t 
→ P(Mt ≤ x) is increasing.” (6.6)

Of course, (6.6) is also equivalent to the existence, for every x < 1, of a r.v. Yx ≥ 0,
such that:

P(Mt ≤ x) = P(Yx ≤ t) (x < 1, t ≥ 0) (6.7)

We call the family of r.v. (Yx,x ∈ [0,1[) a decreasing pseudo-inverse of the process
(Mt , t ≥ 0). In Chapter 6, we show, for

(
Mt = Et := exp

(
Bt − t

2

)
, t ≥ 0

)
the exis-

tence of a decreasing pseudo-inverse of this martingale. This implies the existence
of a probability γE on [0,1]× [0,+∞[ such that:

E
[
(K −Et)

+] = γE ([0,K]× [0, t]) (K ∈ [0,1], t ≥ 0). (6.8)

We then describe, in several ways, the r.v. (taking values in [0,1]× [0,+∞[) which
admits γE as cumulative distribution function.

About Chapters 7 and 8

We say that a process (Xt , t ≥ 0), taking values in R
+ and starting from x≥ 0, admits

an increasing pseudo-inverse (resp. a decreasing pseudo-inverse) if:

i) for every y > x, lim
t→∞

Px(Xt ≥ y) = 1, (7.1)

ii) for every y > x, the function from R
+ into [0,1] : t → Px(Xt ≥ y) is increasing,

(7.2)

resp. if:

i′) for every y < x, lim
t→∞

Px(Xt ≤ y) = 1, (7.1’)

ii′) for every y < x, the function from R
+ into [0,1] : t → Px(Xt ≤ y) is increasing.

(7.2’)

Conditions (i) and (ii) (resp. (i′) and (ii′)) are equivalent to the existence of a family
of positive r.v. (Yx,y,y > x) (resp. (Yx,y,y < x)) such that:

Px (Xt ≥ y) = P(Yx,y ≤ t) (y > x, t ≥ 0), (7.3)

resp.
Px (Xt ≤ y) = P(Yx,y ≤ t) (y < x, t ≥ 0). (7.3’)
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We call such a family of r.v. (Yx,y,y > x) (resp. (Yx,y,y < x)) an increasing (resp.
decreasing) pseudo-inverse of the process (Xt , t ≥ 0).

In the preceding Chapter 6, we noticed the importance of the notion of pseudo-
inverse to be able to consider the price of a European put ΠM(K, t) as the cumulative
distribution function of a couple of r.v.’s taking values in [0,1]× [0,+∞[. This is the
reason why, in Chapters 7 and 8, we try to study systematically this notion:

• in Chapter 7, we show that the Bessel processes with index ν ≥ − 1
2 admit an

increasing pseudo-inverse; we then extend this result to several processes in the
neighborhood of Bessel processes. Finally, if (Yx,y,y > x) is the pseudo-inverse of
a Bessel process, we show that the laws of the r.v.’s (Yx,y,y > x) enjoy remarkable
properties, which we describe.

• In Chapter 8, we study the existence of pseudo-inverses for a class of real-valued
diffusions. There again, we show that these pseudo-inverses have remarkable
distributions, related with non-Markovian extensions of the celebrated theorem
of J. Pitman about “2S−X”. (See [73] for these extensions of Pitman’s theorem).

Each of these eight chapters ends with Notes and Comments which make precise
the sources – mainly recent preprints – of the contents of that chapter. Some of
them contain Exercises and Problems, from which the reader may “feel” better some
springs of our arguments. Typically, Problems develop thoroughly a given topic.

Finally, this monograph ends with two appendices A and B which consist respec-
tively of three Complements and three Notes on Bessel items.

In the first Complement A.1, we study an example of a European call price as-
sociated to a strict local martingale (which therefore does not satisfy the hypotheses
of Section 2.2). Then, in Complement A.2, we give some criterion to measure how
much a random time (such as the last passage times we introduced previously) dif-
fers from a stopping time. The last Complement A.3 is dedicated to an extension
of Dupire’s formula to the general framework of positive, continuous martingales
converging towards 0.

As for the Notes on Bessel items, B.1 recalls the definition (and some useful for-
mulae) for the modified Bessel functions and the McDonald functions, while the two
others B.2 and B.3 summarize some well-known results about Bessel and Squared
Bessel processes.

As a conclusion this monograph provides some new looks at the generalized
Black-Scholes formula, in the following directions:

• In Chapters 1 and 2, the prices of a European put and call are expressed in terms
of last passage times.

• In Chapter 5, a further extension of the Black-Scholes formula in terms of last
passage times is given when working under a finite horizon. This leads to the
definition of the notion (and the detailed study) of past-future (Brownian) mar-
tingales.

• In the set-up of geometric Brownian motion, we associate to the set of prices of
European puts, indexed by strikes K and maturities t, a probability γ on [0,1]×
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[0,+∞[. The knowledge of the probability γ is equivalent to that of the set of the
prices of European puts. γ is described completely in Chapter 6.

• The construction of γ hinges upon the notion of pseudo-inverse of a process; this
notion is defined and studied in detail in the general set-up of Bessel processes
(Chapter 7) and linear diffusions (Chapter 8).

This kind of “new look” at European options may also be developed for exotic op-
tions, e.g. Asian options, a study we have engaged in, but which lies outside the
scope of this monograph.

Here are a few indications about the genesis of this monograph: it really started
in August 2007, with the question from M. Qian [69] to give a simple formula for∫ ∞

0 e−λ t
E [(Et −1)+]dt. This question, and its solution as developed in Chapter 1,

then motivated the search for the various developments which we just presented in
this Introduction. We thank M. Qian most sincerely for providing this starting point.
Thanks are also due to J. Akahori (Ritsumeikan Univ.) who suggested to consider
last hitting times of a martingale up to finite maturity.

To conclude, it turns out finally that a number of topics related to last passage
times seem to find a natural niche in our discussions of generalized Black-Scholes
formulae. We have not, intentionally, discussed about the importance of the Black-
Scholes formula as a pillar of mathematical finance so far, but we hope that our last
passage times interpretation shall help develop other up to now hidden aspects of
this topic.

Nancy, Paris, Christophe Profeta
October 2009 Bernard Roynette

Marc Yor
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Chapter 1
Reading the Black-Scholes Formula in Terms of
First and Last Passage Times

Abstract We first recall the classical Black-Scholes formula (Theorem 1.1), and
then give two new formulations of it:

– the first one in terms of first and last passage times of a Brownian motion with
drift (Theorem 1.2 and Theorem 1.3),

– the second one as an expectation with respect to the law of B2
1 (Theorem 1.4).

1.1 Introduction and Notation

1.1.1 Basic Notation

We present some basic notation for the Brownian items we shall deal with through-
out this Chapter, as well as classical results about the laws of the first and last pas-
sage times for Brownian motion with drift. For every ν ∈R, we denote the Brownian

motion with drift ν by (B(ν)
t , t ≥ 0):

(B(ν)
t , t ≥ 0) := (Bt +νt, t ≥ 0). (1.1)

We denote by (Ft , t ≥ 0) the natural filtration of (Bt , t ≥ 0):

(Ft , t ≥ 0) := (σ(Bs,s ≤ t); t ≥ 0) (1.2)

and
F∞ :=

∨

t≥0

Ft .
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2 1 Reading the Black-Scholes Formula in Terms of First and Last Passage Times

1.1.2 Exponential Martingales and the Cameron-Martin Formula

Let
(
E

(ν)
t , t ≥ 0

)
be the positive (Ft , t ≥ 0)-martingale defined by:

(
E

(ν)
t , t ≥ 0

)
:=

(
exp

(
νBt −

ν2

2
t

)
, t ≥ 0

)
. (1.3)

Note that
(
E

(ν)
t , t ≥ 0

)
has, a priori, little to do with (B(ν)

t , t ≥ 0), although see the

Cameron-Martin formula (1.5) below. For ν = 1, we shall simply write Et instead

of E
(1)

t . Throughout this chapter, many facts pertaining to
(
E

(ν)
t , t ≥ 0

)
may be

reduced to (Et , t ≥ 0) since by scaling:

(
E

(ν)
t , t ≥ 0

) (law)
= (Eν2t , t ≥ 0) . (1.4)

Moreover, the Cameron-Martin formula relates the laws of B(ν) and B as follows:

E

[
F(B(ν)

s ,s ≤ t)
]

= E

[
F(Bs,s ≤ t)E (ν)

t

]
=: E

(E ν ) [F(Bs,s ≤ t)] (1.5)

for any positive functional F on C ([0, t],R).

1.1.3 First and Last Passage Times

Let us define for a ∈ R, ν ∈ R:

T (ν)
a := inf{u ≥ 0;B(ν)

u = a} (1.6)

(= +∞ if the set {u ≥ 0;B(ν)
u = a} is empty).

G(ν)
a := sup{u ≥ 0;B(ν)

u = a} (1.7)

(= 0 if the set {u ≥ 0;B(ν)
u = a} is empty).

It is obvious by symmetry that:

T (ν)
a

(law)
= T (−ν)

−a ; G(ν)
a

(law)
= G(−ν)

−a (1.8)

and, by time inversion, that:

1

T (ν)
a

(law)
= G(a)

ν ;
1

G(ν)
a

(law)
= T (a)

ν . (1.9)

We recall the classical formulae, for ν > 0 and a > 0:
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P

(
G(−ν)

a > 0
)

= P

(
T (−ν)

a < +∞
)

= exp(−2νa) (1.10)

and

P

(
T (ν)

a ∈ dt
)

=
a√

2πt3
exp

(
− (a−νt)2

2t

)
dt, (1.11)

P

(
G(ν)

a ∈ dt
)

=
ν√
2πt

exp

(
− (a−νt)2

2t

)
dt, (1.12)

whereas, for a > 0 and ν > 0:

P

(
T (−ν)

a ∈ dt
)

=
a√

2πt3
exp

(
− (a+νt)2

2t

)
dt, (1.13)

P

(
G(−ν)

a ∈ dt
)

=
ν√
2πt

exp

(
− (a+νt)2

2t

)
dt. (1.14)

In agreement with equation (1.10), the measures given by formulae (1.13) and (1.14)
are subprobabilities on [0,+∞[ with common total mass exp(−2νa). Note that the
proof of formula (1.11) may be reduced to the case ν = 0 thanks to the Cameron-
Martin formula (1.5).

1.1.4 The Classical Black-Scholes Formula

A reduced form of the celebrated Black-Scholes formula is the following:

Theorem 1.1 ([11], [44]). For every K ≥ 0:

i) The European put price equals:

E
[
(K −Et)+

]
= KN

(
log(K)√

t
+

√
t

2

)
−N

(
log(K)√

t
−

√
t

2

)
(1.15)

with N (x) :=
1√
2π

∫ x

−∞
e−

y2
2 dy.

ii) The European call price equals:

E
[
(Et −K)+

]
= N

(
− log(K)√

t
+

√
t

2

)
−KN

(
− log(K)√

t
−

√
t

2

)
. (1.16)

iii) Formula (1.16) (or (1.15)) may be split into two parts:

E
[
Et1{Et>K}

]
= 1−E

[
Et1{Et<K}

]
= N

(
− log(K)√

t
+

√
t

2

)
, (1.17)

KP(Et > K) = K (1−P(Et < K)) = KN

(
− log(K)√

t
−

√
t

2

)
. (1.18)
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iv) In the case K = 1, the equalities (1.15) and (1.16) reduce to:

E [|Et −1|] = 2P

(
B2

1 ≤
t
4

)
, (1.19)

or equivalently to:

E
[
(Et −1)+

]
= E

[
(1−Et)+

]
= P

(
B2

1 ≤
t
4

)
.

This theorem can easily be proven thanks to the Cameron-Martin formula (1.5).
Indeed:

E
[
Et1{Et>K}

]
= P

(
eBt+ t

2 > K
)

(from (1.5))

= P

(
Bt > log(K)− t

2

)

= P

(
B1 >

log(K)√
t

−
√

t
2

)
(by scaling)

= 1−N

(
log(K)√

t
−

√
t

2

)

= N

(
− log(K)√

t
+

√
t

2

)
.

This is formula (1.17). The other formulae can be proven using similar arguments.
Besides, formula (1.19) is a consequence of the following equalities:

E
[
(Et −1)+

]
−E

[
(Et −1)−

]
= E [Et −1] = 0

and

E [|Et −1|] = E
[
(Et −1)+

]
+E

[
(Et −1)−

]

= 2E
[
(Et −1)+

]

= 2

(
N

(√
t

2

)
−N

(
−
√

t
2

))
(from (1.16))

= 2P

(
B1 ∈

[
−
√

t
2

,

√
t

2

])

= 2P

(
B2

1 ≤
t
4

)
.
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1.2 The Black-Scholes Formula in Terms of First and Last
Passage Times

1.2.1 A New Expression for the Black-Scholes Formula

The aim of this section is to give a new expression for the Black-Scholes formula

making use of the first passage times T (ν)
a and the last passage times G(ν)

a . More
precisely, we have (see [47]):

Theorem 1.2. For any K ≥ 0:

i) The European put price admits the representation:

E
[
(K −Et)+

]
= KP

(
G(−1/2)

log(K) ≤ t
)

. (1.20)

ii) The European call price admits the representation:

E
[
(Et −K)+

]
= E

[
Et1{Et>K}

]
−KP(Et > K)

= P

(
G(1/2)

log(K) ≤ t
)

. (1.21)

iii) For K ≥ 1:

E
[
Et1{Et>K}

]
+KP(Et > K) = P

(
T (1/2)

log(K) ≤ t
)

(1.22)

while for K ≤ 1:

E
[
Et1{Et<K}

]
+KP(Et < K) = P

(
T (1/2)

log(K) ≤ t
)

. (1.23)

Of course, relations (1.21), (1.22) and (1.23) imply:
• For K ≥ 1:

E
[
Et1{Et>K}

]
=

1
2

(
P

(
T (1/2)

log(K) ≤ t
)

+P

(
G(1/2)

log(K) ≤ t
))

(1.24)

and

KP(Et > K) =
1
2

P

(
T (1/2)

log(K) ≤ t ≤ G(1/2)
log(K)

)
. (1.25)

• For 0 ≤ K ≤ 1:

E
[
Et1{Et>K}

]
=

1
2

(
1+K −P

(
T (1/2)

log(K) ≤ t ≤ G(1/2)
log(K)

))
(1.26)

and

KP(Et > K) =
1
2

{
1+K −

(
P

(
T (1/2)

log(K) ≤ t
)

+P

(
G(1/2)

log(K) ≤ t
))}

. (1.27)
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1.2.2 Comments

a) Formula (1.20) is the prototype of a more general formula that we shall develop
in Chapter 2. More precisely, let (Mt , t ≥ 0) denote a positive, continuous local
martingale, such that M0 = 1 and lim

t→+∞
Mt = 0 a.s. We shall prove in Chapter 2,

Theorem 2.1 that:
E
[
(K −Mt)+

]
= KP

(
G

(M)
K ≤ t

)
(1.28)

for all K ≥ 0 and t ≥ 0, with:

G
(M)
K := sup{t ≥ 0;Mt = K}. (1.29)

Hence, formula (1.20) is a particular case of (1.28) with (Mt = Et , t ≥ 0) since:

G
(E )
K = G(−1/2)

log(K) . (1.30)

b) Formula (1.21) can also be obtained from a more general formula that we shall
prove in Chapter 2, Theorem 2.2. More precisely, let (Mt , t ≥ 0) a positive, continu-
ous (Ω ,(Ft , t ≥ 0),F∞,P)-martingale, such that M0 = 1 and lim

t→+∞
Mt = 0 a.s. The

relative absolute continuity formula

P
(M)
|Ft

:= Mt ·P|Ft (1.31)

induces a probability on (Ω ,F∞) (see Azéma-Jeulin [2] for some precisions) and,
for every K ≥ 0 and t ≥ 0, the following relation:

E
[
(Mt −K)+

]
= P

(M)
(
G

(M)
K ≤ t

)
(1.32)

holds. Formula (1.21) is then a particular case of (1.32) since, from the Cameron-
Martin formula, under the probability P

(E ):

G
(E )
K

(law)
= G(1/2)

log(K).

c) On the other hand, formulae (1.22) and (1.23) do not have a plain generalization
to a larger class of martingales. Indeed, as we shall see in the proof below, formulae
(1.22) and (1.23) rely on Désiré André’s symmetry principle for Brownian motion,
a principle which an “ordinary” martingale does not satisfy in general.1

d) When (Mt , t ≥ 0) is a martingale, the functions: x 
→ (K −x)+ and x 
→ (x−K)+

being convex, the processes
( 1

K
(K −Mt)+, t ≥ 0

)
and ((Mt −K)+, t ≥ 0) are sub-

1 A class of martingales satisfying the reflection principle consists of the Ocone martingales, i.e.
martingales whose Dambis-Dubins-Schwarz representation Mt = β〈M〉t features a Brownian motion
β independent of 〈M〉. Many examples are known, such as: the Winding number (θt) of a planar
BM, Lévy’s stochastic area At =

∫ t
0 XsdYs −YsdXs · · · (see [20]).
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martingales. Hence, the functions ψ1 and ψ2 defined by: ψ1(t) := 1
K E [(K −Mt)+]

and ψ2(t) := E [(Mt −K)+] are increasing (and continuous) functions. Then, apply-
ing the Dominated Convergence Theorem, we obtain

lim
t→∞

1
K

E
[
(K −Mt)+

]
= 1,

and, using the relation 1− 1
K

= ψ1(t)−
1
K
ψ2(t),

lim
t→∞

E
[
(Mt −K)+

]
= 1.

Therefore, there exists two positive random variables Z1 and Z2 such that:

1
K

E
[
(K −Mt)+

]
= P(Z1 ≤ t) and E

[
(Mt −K)+

]
= P(Z2 ≤ t).

In the case M = E , formulae (1.20) and (1.21) (and more generally (1.28) and (1.32))
make it possible to identify the laws of Z1 and Z2:

Z1
(law)
= G(−1/2)

log(K) , Z2
(law)
= G(1/2)

log(K).

More generally, we shall prove in Chapter 6 that the function
(E [(K −Et)+] ;0 ≤ K ≤ 1, t ≥ 0) is the distribution function of a couple of r.v.’s tak-
ing values in [0,1]×R

+, whose law will be explicitly described.

1.2.3 Proof of Theorem 1.2

We first prove (1.20) and (1.21)
• We shall show that, for any a and μ in R:

P

(
G(μ)

a ≥ t|Ft

)
=
(

exp
{

2μ
(

a−B(μ)
t

)})
∧1. (1.33)

We now prove (1.33). For μ ≥ 0, we have, applying the Markov property to the

process
(

B(μ)
t , t ≥ 0

)
:

P

(
G(μ)

a ≥ t|Ft

)
= P

(
inf
s≥0

(
x+B(μ)

s

)
≤ a

)
with x = B(μ)

t

= P

(
inf
s≥0

B(μ)
s ≤ a− x

)

=
(

exp
{

2μ
(

a−B(μ)
t

)})
∧1 (from (1.10)).

The proof for μ ≤ 0 is similar.
• We apply (1.33) with μ = −1/2 and a = log(K):
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P

(
G(−1/2)

log(K) ≥ t|Ft

)
=
(

1
K

exp
{

Bt −
t
2

})
∧1, (1.34)

which implies:

P

(
G(−1/2)

log(K) ≤ t
)

= E

[(
1− 1

K
exp

(
Bt −

t
2

))+
]

=
1
K

E
[
(K −Et)+

]
.

This is relation (1.20).

• We apply (1.33) with μ = 1/2 and a = log(K):

P

(
G(1/2)

log(K) ≥ t|Ft

)
=
{

K exp
(
−Bt −

t
2

)}
∧1, (1.35)

which implies:

P

(
G(1/2)

log(K) ≤ t
)

= E

[(
1−K exp

(
−Bt −

t
2

))+
]

= E

[
eBt− t

2

(
e−Bt+ t

2 −K
)+

]
(since Bt

(law)
= −Bt)

= E

[(
e−(Bt+t)+ t

2 −K
)+

]
(from the Cameron-Martin formula)

= E
[
(Et −K)+

]
(since Bt

(law)
= −Bt ).

This is formula (1.21).

We now prove (1.25)
Using again (1.33) we see that, for K ≥ 1, (1.25) is equivalent to:

KP

(
Bt −

t
2

> log(K)
)

=
1
2

E

[
1{

T (1/2)
log(K)≤t

}
(

K

eBt+t/2
∧1

)]
. (1.36)

We now use the Cameron-Martin formula on both sides to reduce the statement of
(1.36) to a statement about standard Brownian motion (Bt , t ≥ 0), for which we
denote: St := sup

s≤t
Bs. (1.36) is then equivalent to:

KE

[
1{Bt>log(K)}e−

Bt
2

]
=

1
2

E

[
1{St>log(K)}

(
Ke−Bt ∧1

)
e

Bt
2

]
. (1.37)

We now decompose the RHS of (1.37) in a sum of two quantities:

1
2

(
E

[
1{St>log(K)}1{Bt>log(K)}Ke−

Bt
2

]
+E

[
1{St>log(K)}1{Bt<log(K)}e

Bt
2

])
.
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Thus, (1.37) gets simplified to the equivalent form:

KE

[
1{Bt>log(K)}e−

Bt
2

]
= E

[
1{St>log(K)}1{Bt<log(K)}e

Bt
2

]
(1.38)

which, taking x = log(K), may be written as:

E

[
1{Bt>x} exp

(
x− Bt

2

)]
= E

[
1{St>x>Bt}e

Bt
2

]
. (1.39)

We now show (1.39) from the right to the left, as a consequence of the reflection
principle of Désiré André. Conditionally on FTx , and Tx < t, we have:

Bt − x = B̂(t−Tx), with B̂ independent from FTx ;

hence, under this conditioning, the reflection principle boils down to:

Bt − x
(law)
= −(Bt − x). (1.40)

Thus, the RHS of (1.39) rewrites:

E

[
1{Tx<t}1{Bt−x<0} exp

(
1
2
{x+(Bt − x)}

)]

= E

[
1{Tx<t}1{Bt−x>0} exp

(
1
2
{x− (Bt − x)}

)]

= E

[
1{Bt>x} exp

(
x− Bt

2

)]
,

which is the LHS of (1.39). This proves (1.25), and with the help of (1.21), it also
proves (1.22).

We now prove that (1.22) implies (1.23) (with 0 ≤ K ≤ 1)

We introduce the probability P
(E ) defined by:

P
(E )
|Ft

= Et ·P|Ft . (1.41)

We note that from the Cameron-Martin formula, under P
(E ), (Bt , t ≥ 0) is a Brow-

nian motion with drift +1, so that
1
Et

:= Êt = exp
(

B̂t −
t
2

)
for a new Brownian

motion (B̂t , t ≥ 0). Thus, the LHS of (1.23) writes:
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P
(E ) (Et < K)+KE

(E )
[
Êt1{Et<K}

]
= P

(E )
(

Êt >
1
K

)
+KE

(E )
[
Êt1{Êt>

1
K }

]

= K

(
E

(E )
[
Êt1{Êt>

1
K }

]
+

1
K

P
(E )

(
Êt >

1
K

))

= KP
(E )

(
T̂ (1/2)
− log(K) ≤ t

)

(applying (1.22) with 1/K instead of K)

= KP
(E )

(
T̂ (−1/2)

log(K) ≤ t
)

(by symmetry)

= P

(
T (1/2)

log(K) ≤ t
)

since, from the Cameron-Martin absolute continuity relationship:

P
(−ν)
|FTa∩(Ta<∞) = exp(−2νa) ·P(ν)

|FTa
(1.42)

where P
(ν) (resp. P

(−ν)) denotes the law of the Brownian motion with drift ν (resp.
−ν). ��

1.2.4 On the Agreement Between the Classical Black-Scholes
Formula (Theorem 1.1) and our Result (Theorem 1.2)

We now check in an elementary manner the equality between the classical Black-
Scholes formulae given by Theorem 1.1 and the formulae given by Theorem 1.2.

• We first prove that:

N

(
− log(K)√

t
+

√
t

2

)
−KN

(
− log(K)√

t
−

√
t

2

)
= P

(
G(1/2)

log(K) ≤ t
)

(1.43)

(
= E

[
(Et −K)+

])
.

We assume K ≥ 1. Since both sides of (1.43) are equal to 0 for t = 0, we only need
to check that the derivatives in t are equal. On the one hand, we have:

∂
∂ t

{
N

(
− log(K)√

t
+

√
t

2

)
−KN

(
− log(K)√

t
−

√
t

2

)}

=
K

2
√

2πt
exp

(
− 1

2t

(
log(K)+

t
2

)2
)

and, on the other hand, from (1.12):
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∂
∂ t

P

(
G(1/2)

log(K) ≤ t
)

=
1

2
√

2πt
exp

(
− 1

2t

(
log(K)− t

2

)2
)

=
K

2
√

2πt
exp

(
− 1

2t

(
log(K)+

t
2

)2
)

. (1.44)

This shows (1.43) when K ≥ 1. The case K ≤ 1 can be proven in the same way.

• We now prove that, for K ≥ 1:

N

(
− log(K)√

t
+

√
t

2

)
+KN

(
− log(K)√

t
−

√
t

2

)
= P

(
T (1/2)

log(K) ≤ t
)

(1.45)

( = E
[
Et1{Et>K}

]
+KP(Et > K)).

Once again, both sides of (1.45) equal 0 when t = 0, so we only need to check that
the derivatives in t are equal. We have:

∂
∂ t

{
N

(
− log(K)√

t
+

√
t

2

)
+KN

(
− log(K)√

t
−

√
t

2

)}

=
K log(K)√

2πt3
exp

(
− 1

2t

(
log(K)+

t
2

)2
)

while, from (1.11):

∂
∂ t

P

(
T (1/2)

log(K) ≤ t
)

=
log(K)√

2πt3
exp

(
− 1

2t

(
log(K)− t

2

)2
)

=
K log(K)√

2πt3
exp

(
− 1

2t

(
log(K)+

t
2

)2
)

. (1.46)

The agreement between the other formulae of Theorem 1.1 and Theorem 1.2 can be
obtained by similar computations. In fact, these are the precise manipulations which
led us to believe in the truth of Theorem 1.2.

1.2.5 A Remark on Theorem 1.2 and Time Inversion

We come back to the time inversion property of BM, in order to throw another light
upon our key result (1.20), which relates the European call price with the cumulative
function of last Brownian passage times. (This paragraph has been partly inspired
from unpublished notes by Peter Carr [15].) Indeed, a variant of (1.20) is the fol-
lowing:

For every t ≥ 0, K ≥ 0 and φ : C ([0, t],R+), measurable,

E
[
φ(Bu,u ≤ t)(K −Et)+

]
= KE

[
φ(Bu,u ≤ t)1{G (E )

K ≤t}

]
(1.47)

where G
(E )
K := sup{u ≥ 0; Et = K}.
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Writing (1.47) in terms of the Brownian motion (B̂h,h ≥ 0) such that: Bu =
uB̂(1/u), and setting s = 1/t, it is clearly seen that (1.47) is equivalent to:

(
K − exp

(
1
s

B̂s −
1
2s

))+

= KP

(
T̂ (− log(K))

1/2 ≥ s|B̂s

)
,

where T̂ (ν)
a := inf{u ≥ 0, B̂u +νu = a}. Since hats are no longer necessary for our

purpose, we drop them, and we now look for an independent proof of:

(
K − exp

(
x
s
− 1

2s

))+

= KP

(
T (− log(K))

1/2 ≥ s|Bs = x
)

. (1.48)

On the RHS of (1.48), we may replace {Bs = x} by {Bs − s log(K) = x− s log(K)}.
Now, as a consequence of the Cameron-Martin relationship, the conditional expec-
tation:

E [F(Bu −νu,u ≤ s)|Bs −νs = y]

does not depend on ν; hence (1.48) is equivalent to:

(
1− 1

K
exp

(
x
s
− 1

2s

))+

= P
(
T1/2 ≥ s|Bs = x− s log(K)

)
,

which simplifies to:

(

1− exp

(
y− 1

2

s

))+

= P

(
sup
u≤s

Bu <
1
2
|Bs = y

)
,

or, by scaling:

(
1− exp

{
1√
s

(
y√
s
− 1

2
√

s

)})+

= P

(
sup
u≤1

Bu <
1

2
√

s
|B1 =

y√
s

)
.

This is equivalent to:

(
1− e2σ(y−σ)

)+
= P

(
sup
u≤1

Bu < σ |B1 = y

)
(1.49)

for σ ≥ 0 and y ∈ R. This formula is trivial for σ < y, and, for σ ≥ y, it follows
from the classical formula:

P

(
sup
u≤1

Bu ∈ dσ , B1 ∈ da

)
=

dadσ√
2π

2(2σ −a)e−
(2σ−a)2

2 1{a<σ , σ≥0}. (1.50)

The interested reader may refer to Chapter 5, proof of Point (i) of Theorem 5.1, for
similar computations. Let us also mention that formula (1.49) plays an important
role in numerical computations, see [61].
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Exercise 1.1 (On the law of (St ,Bt)).
Let (Bt , t ≥ 0) be a standard Brownian motion and define St := sup

s≤t
Bs.

1) Prove that, for σ ≥ 0, σ ≥ a:
∫ ∞

0
e−λ t

P(St > σ ,Bt < a)dt = E

[
e−λTσ

]∫ ∞

0
e−λu

P(Bu ≤ a−σ)du

where Tσ := inf{t ≥ 0,Xt = σ}.

2) Compute E
[
e−λTσ

]
.

Hint: Consider the martingale
(

exp
(
λBt − λ 2

2 t
)

, t ≥ 0
)

.

3) Deduce then that the joint density of (St ,Bt), ft(σ ,a), satisfies:
∫ ∞

0
e−λu fu(σ ,a)du = 2E

[
e−λT2σ−a

]
.

4) Finally, recover formula (1.50).

1.3 Extension of Theorem 1.2 to an Arbitrary Index ν

1.3.1 Statement of the Main Result

So far, we have focused on the Black-Scholes formula relative to the martingale(
Et = eBt− t

2 , t ≥ 0
)

. We shall now extend these results to the family of martingales
(
E

(ν)
t := exp

(
νBt − ν2t

2

)
, t ≥ 0

)

ν∈R

. Of course, we have, by scaling and symme-

try, for the three following processes:

E
(ν)

t
(law)
= E

(−ν)
t

(law)
= Eν2t (ν �= 0) (1.51)

hence, ⎧
⎪⎨

⎪⎩

1
4ν2 G(1/2)

2aν

(law)
= G(ν)

a (ν �= 0)

1
4ν2 T (1/2)

2aν

(law)
= T (ν)

a (ν �= 0).
(1.52)

The counterpart of Theorem 1.2 in this new framework writes:

Theorem 1.3. For all ν and K, t > 0:

i) The European put price associated to the martingale (E (−2ν)
t , t ≥ 0) equals:

E

[(
K−2ν −E

(−2ν)
t

)+
]

= K−2ν
P

(
G(ν)

log(K) ≤ t
)

. (1.53)



14 1 Reading the Black-Scholes Formula in Terms of First and Last Passage Times

ii) The European call price associated to the martingale (E (2ν)
t , t ≥ 0) equals:

E

[(
E

(2ν)
t −K2ν

)+
]

= P

(
G(ν)

log(K) ≤ t
)

. (1.54)

iii) For every K ≥ 0, if ν log(K) > 0:

E

[
E

(2ν)
t 1{E (2ν)

t >K2ν}

]
+K2ν

P

(
E

(2ν)
t > K2ν

)
= P

(
T (ν)

log(K) ≤ t
)

, (1.55)

while, if ν log(K) < 0:

E

[
E

(2ν)
t 1{E (2ν)

t <K2ν}

]
+K2ν

P

(
E

(2ν)
t < K2ν

)
= P

(
T (ν)

log(K) ≤ t
)

. (1.56)

Furthermore, if K = 1 and ν �= 0:

P

(
T (ν)

0 ≤ t
)

= E

[
E

(2ν)
t 1{E (2ν)

t >1}

]
+P(E (2ν)

t > 1)

= E

[
E

(2ν)
t 1{E (2ν)

t <1}

]
+P(E (2ν)

t < 1) (1.57)

= 1.

1.3.2 Some Comments on Theorem 1.3

• Theorem 1.2 may be recovered from Theorem 1.3 by taking ν =−1/2 or ν = 1/2

(recall that
(
E

(ν)
t , t ≥ 0

) (law)
=

(
E

(−ν)
t , t ≥ 0

)
). Besides, formulae (1.53) and (1.54)

are seen to coincide with (1.20) and (1.21). Taking limits as t tends to 0 in (1.53)
and to +∞ in (1.55) and (1.56), we obtain:

- if ν log(K) > 0:

P

(
G(ν)

log(K) = 0
)

= 0 = P

(
T (ν)

log(K) = +∞
)

,

- if ν log(K) < 0:

P

(
G(ν)

log(K) > 0
)

= P

(
T (ν)

log(K) < +∞
)

= K2ν .

These results coincide with (1.10).

• The relations (1.55) and (1.56) for the case ν = 0
(
i.e. E

(−ν)
t = E

(0)
t = 1

)
may be

obtained by passing to the limit as ν tends to 0 on both sides. For example, we have
from (1.55), for ν > 0 and K ≥ 1:



1.3 Extension of Theorem 1.2 to an Arbitrary Index ν 15

P

(
T (ν)

log(K) < s
)

= E

[
e2ν(Bs−νs)1{e2ν(Bs−νs)>K2ν}

]
+P(e2ν(Bs−νs) > K2ν)

= E

[
e2ν(Bs−νs)1{Bs−νs>log(K)}

]
+P(Bs −νs > log(K))

−−→
ν↓0

2P(Bs > log(K)).

On the other hand, since T (0)
a

(law)
=

a2

B2
1

:

P

(
T (0)

log(K) < s
)

= P

(
(log(K))2

B2
1

< s

)
= P(|Bs| > log(K)) = 2P(Bs > log(K)) .

(Note that this is once again a form of the reflection principle.) A similar analysis
holds for (1.56) as we let ν tend to 0.

1.3.3 A Short Proof of Theorem 1.3

We prove (1.54)
We have:

P

(
G(ν)

log(K) < t
)

= P

(
1

4ν2 G(1/2)
log(K2ν ) < t

)
(from (1.52))

= P

(
G(1/2)

log(K2ν ) < 4ν2t
)

= E
[
(E4ν2t −K2ν)+

]
(from Theorem 1.2)

= E

[
(E (2ν)

t −K2ν)+
]

(from (1.51)).

Similar arguments establish (1.53), (1.55) and (1.56).

We now prove (1.57)
From the Cameron-Martin formula (1.5), it holds:

E

[
E

(2ν)
t 1{E (2ν)

t <1}

]
= P

(
e2ν(Bt+2νt)−2ν2t < 1

)

= P

(
e−2νBt−2ν2t > 1

)

= P

(
E

(2ν)
t > 1

)
.

Hence:
E

[
E

(2ν)
t 1{E (2ν)

t >1}

]
= P

(
E

(2ν)
t < 1

)
.
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Consequently, we obtain:

E

[
E

(2ν)
t 1{E (2ν)

t >1}

]
+P

(
E

(2ν)
t > 1

)
= E

[
E

(2ν)
t 1{E (2ν)

t <1}

]
+P

(
E

(2ν)
t < 1

)
,

and so:

E

[
E

(2ν)
t 1{E (2ν)

t >1}

]
+E

[
E

(2ν)
t 1{E (2ν)

t <1}

]
+P

(
E

(2ν)
t < 1

)
+P

(
E

(2ν)
t > 1

)
= 2,

which establishes (1.57).

1.4 Another Formulation of the Black-Scholes Formula

1.4.1 Statement of the Result

We shall now give yet another formulation of the Black-Scholes formula.

Theorem 1.4. For all K ≥ 0 and ν ∈ R:

E

[
(E (2ν)

t −K)±
]

= (1−K)± +
√

KE

[
1{B2

1≤ν2t} exp

(
− (log(K))2

8B2
1

)]
. (1.58)

Of course, (1.58) is a generalization of (1.19), which is (1.58) with K = 1 and
ν = 1/2.

1.4.2 First Proof of Theorem 1.4

Since
(
E

(2ν)
t , t ≥ 0

) (law)
= (E4ν2t , t ≥ 0), it suffices to show (1.58) for ν = 1/2. The

proof will hinge upon the use of the local time of the martingale (Et , t ≥ 0). Let(
LK

t , t ≥ 0
)

denote the local time at level K of the martingale (Et , t ≥ 0). For any
positive Borel function f , the occupation density formula writes:

∫ t

0
f (Es)d 〈E 〉s =

∫ ∞

0
f (K)LK

t dK (1.59)

where (〈E 〉t , t ≥ 0) denotes the increasing process of the martingale (Et , t ≥ 0).
Since, from Itô’s formula:

Et = 1+
∫ t

0
EsdBs, (1.60)

we have d 〈E 〉s = (Es)
2 ds. Hence:

∫ t

0
E

[
f (Es)(Es)

2
]

ds =
∫ ∞

0
f (K)E

[
LK

t

]
dK. (1.61)
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As (1.61) holds for all positive Borel functions f , it follows that:

E
[
LK

t

]
= K

∫ t

0

ds√
2πs

exp

(
− 1

2s

(
log(K)+

s
2

)2
)

(1.62)

where we have used for the density of Es:

fEs(z) =
1
z

1√
2πs

e−
1
2s (log(z)+ s

2 )
2

1{z≥0}. (1.63)

On developing the square in the exponential in (1.62), we get:

E
[
LK

t

]
=

√
K√
2π

∫ t

0

ds√
s

exp

(
− (log(K))2

2s
− s

8

)
. (1.64)

On the other hand, the Itô-Tanaka formula yields:

E
[
(Et −K)±

]
= (1−K)± +

1
2

E
[
LK

t

]

= (1−K)± +
√

K

2
√

2π

∫ t

0

ds√
s

exp

(
− (log(K))2

2s
− s

8

)
(from (1.64))

= (1−K)± +
√

K

2
√

2π
4

√
π
2

E

[
1{4B2

1≤t} exp

(
− (log(K))2

8B2
1

)]
,

(1.65)

where we have used the density of B2
1:

fB2
1
(z) =

1√
2πz

e−
z
2 1{z≥0}.

Formula (1.58) has thus been proven. ��

1.4.3 A Second Proof of Theorem 1.4

The result is plainly true for ν = 0 (since E
(0)

t = 1), and, as both sides only depend
on the absolute value of ν, it is enough to consider the case ν > 0. The derivative,
with respect to ν, of the RHS of (1.58) equals:

∂
∂ν

(√
KE

[
1{B2

1≤ν2t} exp

(
− (log(K))2

8B2
1

)])

= 2
√

K
∂
∂ν

∫ ν
√

t

0
exp

(
− (log(K))2

8x2 − x2

2

)
dx√
2π

(1.66)

=
2
√

Kt√
2π

exp

(
− (log(K))2

8ν2t
− ν2t

2

)
. (1.67)
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On the other hand, we may directly evaluate the LHS of (1.58) using the Black-
Scholes formula as:

E

[(
E

(2ν)
t −K

)+
]

= N

(
− log(K)

2ν
√

t
+ν

√
t

)
−KN

(
− log(K)

2ν
√

t
−ν

√
t

)
.

Taking partial derivatives with respect to ν, we get:

∂
∂ν

E

[
(E (2ν)

t −K)+
]

= n

(
− log(K)

2ν
√

t
+ν

√
t

)(
log(K)
2ν2

√
t

+
√

t

)

−Kn

(
− log(K)

2ν
√

t
−ν

√
t

)(
log(K)
2ν2

√
t
−
√

t

)
(1.68)

where n(x) = N ′(x) =
1√
2π

e−
x2
2 . We now recognize:

⎧
⎪⎪⎨

⎪⎪⎩

n

(
− log(K)

2ν
√

t
+ν

√
t

)
= exp

(
− (log(K))2

8ν2t
− ν2t

2

) √
K√
2π

,

n

(
− log(K)

2ν
√

t
−ν

√
t

)
= exp

(
− (log(K))2

8ν2t
− ν2t

2

)
1√

K
√

2π
.

Substituting back into (1.68), we obtain:

∂
∂ν

E

[(
E

(2ν)
t −K

)+
]

= exp

(
− (log(K))2

8ν2t
− ν2t

2

)
2
√

Kt√
2π

,

which matches (1.67), the derivative of the RHS of (1.58) with respect to ν. ��

Problem 1.1 (Computation of the laws of T (ν)
a and G(ν)

a ).
Let (Bt , t ≥ 0) be a standard Brownian motion started at 0, and denote St := sup

s≤t
Bs.

1) Prove, by using for instance the reflection principle, that for every t ≥ 0,

St
(law)
= |Bt |.

2) Let a ∈ R and denote Ta := inf{s ≥ 0;Bs = a}. Deduce from 1) that:

P(Ta ∈ dt) =
|a|√
2πt3

exp

(
−a2

2t

)
dt (t ≥ 0).

3) Prove that E
[
e−λTa

]
= e−|a|

√
2λ , (λ ≥ 0) and that Ta −−→

a→0
0. Show that (Ta,a > 0)

is a stable subordinator of index 1/2.
4) We recall (see Appendix B.1) that:

Kν(x) =
1
2

( x
2

)ν
∫ ∞

0
t−ν−1e−t− x2

4t dt (ν ∈ R), (1)

Kν = K−ν and K1/2(x) =
√

π
2x

e−x. (2)
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Prove that:

∫ ∞

0

a√
2πt3

exp

(
−a2

2t
−λ t

)
dt = e−a

√
2λ (a,λ ≥ 0)

which yields another proof of 2).

5) Let a and ν > 0. Using the martingale
(
E

(2ν)
t := exp

(
2νBt −2ν2t

)
, t ≥ 0

)
and

Lemma 2.1, prove formula (1.10):

P

(
G(−ν)

a > 0
)

= P

(
T (−ν)

a < +∞
)

= exp(−2νa) .

6) By using Cameron-Martin formula (1.5), prove (1.11):

P

(
T (ν)

a ∈ dt
)

=
a√

2πt3
exp

(
− (a−νt)2

2t

)
dt (t > 0, a > 0).

7) Deduce then that:

∫ ∞

0

a√
2πt3

exp

(
− (a+νt)2

2t

)
dt = e−2aν .

This formula could also have been obtained from (1) and (2).
8) Let B̃t := tB1/t if t > 0, and B̃0 = 0. Prove that (B̃t , t ≥ 0) is a standard Brownian
motion, and deduce then formula (1.9):

1

T (ν)
a

(law)
= G(a)

ν (ν,a reals).

9) Deduce finally from 8) and 6) that:

P

(
G(ν)

a ∈ dt
)

=
|ν|√
2πt

exp

(
− (a−νt)2

2t

)
dt (t > 0, a > 0, ν ∈ R).

1.5 Notes and Comments

As explained in a number of preprints (Bentata-Yor [5], [6] and [5, F], [6, F], [7, F],
Madan-Roynette-Yor [47], [48], [49], [50] and [38, F]), the motivation for the search
of an expression such as:

E
[
(Et −1)±

]
= P(X ≤ t) (1.69)

came from a question by M. Qian, in August 2007, to the third author of this mono-
graph, precisely, to give a closed form expression for:

∫ ∞

0
e−λ t

E
[
(Et −1)±

]
dt
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and more generally: ∫ ∞

0
h(t)E

[
(Et −1)±

]
dt.

Since, from Theorem 1.1, X
(law)
= 4B2

1 in (1.69), we obtain:

∫ ∞

0
e−λ t

E
[
(Et −1)±

]
dt =

1
λ

E

[
e−λ (4B2

1)
]

=
1

λ
√

1+8λ
,

and more generally, there is the identity:
∫ ∞

0
h(t)E

[
(Et −1)±

]
dt = E

[
H(4B2

1)
]
,

where H(x) =
∫ ∞

x
h(t)dt.

More general quantities will be studied in Chapter 4.
Theorems 1.3 and 1.4 are taken from [48], and Theorem 1.2 – which is a partic-

ular case of Theorem 1.3 for ν = 1 – was first obtained in [50].



Chapter 2
Generalized Black-Scholes Formulae for
Martingales, in Terms of Last Passage Times

Abstract Let (Mt , t ≥ 0) be a positive, continuous local martingale such that
Mt −−→

t→∞
M∞ = 0 a.s. In Section 2.1, we express the European put Π(K, t) :=

E
[
(K −Mt)

+] in terms of the last passage time G
(M)
K := sup{t ≥ 0;Mt = K}. In

Section 2.2, under the extra assumption that (Mt , t ≥ 0) is a true martingale, we ex-
press the European call C(K, t) := E

[
(Mt −K)+

]
still in terms of the last passage

time G
(M)
K . In Section 2.3, we shall give several examples of explicit computations

of the law of G
(M)
K , and Section 2.4 will be devoted to the proof of a more general

formula for this law. In Section 2.5, we recover, using the results of Section 2.1,
Pitman-Yor’s formula for the law of GK in the framework of transient diffusions.
The next sections shall extend these results in different ways:

– In Section 2.6, we present an example where (Mt , t ≥ 0) is no longer continuous,
but only càdlàg without positive jumps,

– In Section 2.7, we remove the assumption M∞ = 0,
– Finally, in Section 2.8, we consider the framework of several orthogonal local

martingales.

2.1 Expression of the European Put Price in Terms of Last
Passage Times

2.1.1 Hypotheses and Notation

Let (Mt , t ≥ 0) be a local martingale defined on a filtered probability space
(Ω ,(Ft , t ≥ 0),F∞,P). We assume that (Ft := σ(Ms;s ≤ t), t ≥ 0) is the natu-
ral filtration of (Mt , t ≥ 0) and that F∞ :=

∨

t≥0
Ft . Let M 0,c

+ denote the set of local

martingales such that:

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7 2, © Springer-Verlag Berlin Heidelberg 2010
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• for all t≥ 0, Mt ≥ 0 a.s. (2.1)

• (Mt , t ≥ 0) is a.s. continuous (2.2)

• M0 is a.s. constant and lim
t→∞

Mt = 0 a.s. (2.3)

Hence, a local martingale which belongs to M 0,c
+ is a supermartingale.

For all K, t ≥ 0, we define the put quantity Π(K, t) associated to M:

Π(K, t) := E
[
(K −Mt)

+] . (2.4)

We note that, since x 
→ (K − x)+ is a bounded convex function, ((K −Mt)
+ , t ≥

0) is a submartingale, and therefore E
[
(K −Mt)

+] is an increasing function of t,
converging to K as t → ∞. It is thus natural to try to express Π(K, t) as K times the
distribution function of a positive random variable. This is the purpose of the next
paragraph, which is a generalization of Point (i) of Theorem 1.2.

2.1.2 Expression of Π(K, t) in Terms of G
(M)
K

Let (Mt , t ≥ 0) ∈ M 0,c
+ and define G

(M)
K by:

G
(M)
K : = sup{t ≥ 0; Mt = K}, (2.5)

( = 0 if the set {t ≥ 0; Mt = K} is empty.)

We shall often write GK instead of G
(M)
K when there is no ambiguity.

Theorem 2.1. Let K > 0:

i) For any Ft -stopping time T :

(
1− MT

K

)+

= P(GK ≤ T |FT ) . (2.6)

ii) Consequently:

Π(K,T ) = E
[
(K −MT )+

]
= KP(GK ≤ T ) . (2.7)

2.1.3 Proof of Theorem 2.1

It hinges upon the following (classical) Lemma.
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Lemma 2.1 (Doob’s maximal identity).
If (Nt , t ≥ 0) ∈ M 0,c

+ , then:

sup
t≥0

Nt
(law)
=

N0

U
(2.8)

where U is a uniform r.v. on [0,1] independent of F0.

Proof. Let a > N0 and Ta := inf{t ≥ 0; Nt = a} (= +∞ if this set is empty). We use
Doob’s optional stopping theorem to obtain:

E [NTa |F0] = aP(Ta < ∞|F0) = N0

since NTa = 0 if Ta = +∞ and NTa = a if Ta < +∞. Thus:

P

(
sup
t≥0

Nt > a|F0

)
=

N0

a

since {Ta < ∞} =
{

sup
t≥0

Nt > a

}
.

��
We now prove Theorem 2.1
We note that, since lim

t→∞
Mt = 0 a.s.:

{GK < T} =
{

sup
s≥T

Ms < K

}
.

We apply Lemma 2.1 to the local martingale (MT+u,u ≥ 0), in the filtration
(FT+u,u ≥ 0). Conditionally on FT :

sup
s≥T

Ms
(law)
=

MT

U
(2.9)

where U is uniform on [0,1], and independent of FT . Consequently:

P

(
sup
s≥T

Ms < K|FT

)
= P

(
MT

U
< K|FT

)
=
(

1− MT

K

)+

. (2.10)

��
Remark 2.1. Theorem 2.1 and Lemma 2.1 remain valid if we replace the hypothesis:
(Mt , t ≥ 0) is a.s. continuous by the weaker one: (Mt , t ≥ 0) has càdlàg paths and
no positive jumps. This relies on the fact that, in this new framework, we still have
MTa = a on the event {Ta < ∞}.

Of course, Theorem 2.1 has a practical interest only if we can explicitly compute
the law of GK . We shall tackle this computation in Section 2.3 below, but, before
that, we study the way Theorem 2.1 is modified when we replace the Put price by a
Call price.
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Exercise 2.1 (Another proof of Doob’s maximal identity).
Let (Bt , t ≥ 0) denote a Brownian motion started at x, and denote by
Tk := inf{t ≥ 0; Bt = k} its first hitting time of level k.
1) Let a < x < b. Prove that:

Px (Ta < Tb) =
x−b
a−b

.

2) We assume that x = 1. Deduce then that:

sup
t≥0

Bt∧T0 =
1
U

where U is a uniform r.v. on [0,1] independent from (Bt , t ≥ 0).
3) Let (Mt , t ≥ 0) ∈ M 0,c

+ such that M0 = 1 a.s. Apply question 2) and the Dambis,
Dubins, Schwarz’s Theorem to recover Doob’s maximal identity. (Note that 〈M〉∞ <
∞ a.s. since (Mt , t ≥ 0) converges a.s.)

2.2 Expression of the European Call Price in Terms of Last
Passage Times

2.2.1 Hypotheses

Let (Mt , t ≥ 0) ∈ M 0,c
+ . For all K, t ≥ 0, we defined the call quantity C(K, t) associ-

ated to M by:
C(K, t) := E

[
(Mt −K)+

]
. (2.11)

In order to state the counterpart of Theorem 2.1 for the call price, we add the extra
assumption:

(T ) (Mt , t ≥ 0) is a (true) martingale such that M0 = 1.

In particular, E[Mt ] = 1 for all t ≥ 0.

Let P
(M) be the probability on (Ω ,F∞) such that, for all t ≥ 0:

P
(M)
|Ft

= Mt ·P|Ft . (2.12)

In the framework of financial mathematics, this probability is called a change of
numéraire probability.

We note that:
• P

(M)(T0 < +∞) = 0, where T0 := inf{t ≥ 0; Mt = 0}. Indeed,

P
(M)(T0 ≤ t) = E

[
Mt1{T0≤t}

]
= E

[
MT0 1{T0≤t}

]
= 0. (2.13)

Hence, T0 = +∞ P
(M)-a.s.
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• It is easily seen that, under P
(M),

(
1

Mt
, t ≥ 0

)
is a positive local martingale. It is

thus a supermartingale, which converges a.s. In fact:

1
Mt

−−→
t→∞

0 P
(M)-a.s. (2.14)

Indeed, for every ε > 0:

P
(M)

(
1

Mt
> ε

)
= P

(M)
(

Mt <
1
ε

)
= E

[
Mt1{Mt<1/ε}

]
−−→
t→∞

0

from the dominated convergence theorem. Thus (2.14) holds.

2.2.2 Price of a European Call in Terms of Last Passage Times

We state the counterpart of Theorem 2.1 for the call price.

Theorem 2.2. Let (Mt , t ≥ 0) be a positive, continuous martingale which converges
to 0 a.s and such that M0 = 1 a.s. Then:

i) For every bounded, Ft -measurable r.v. Ft , and all K ≥ 0:

E
[
Ft (Mt −K)+

]
= E

(M)
[

Ft1{G (M)
K ≤t}

]
. (2.15)

In particular:

E
[
(Mt −K)+

]
= P

(M)
(
G

(M)
K ≤ t

)
. (2.16)

ii) For every bounded, Ft -measurable r.v. Ft:

E [Ft |Mt −K|] = KE

[
Ft1{G (M)

K ≤t}

]
+E

(M)
[

Ft1{G (M)
K ≤t}

]
(2.17)

iii) For every K, t ≥ 0:

P
(M)

(
G

(M)
K ≤ t

)
= 1−K +KP

(
G

(M)
K ≤ t

)
(2.18)

= 1−KP(G (M)
K > t)

and
P

(M)
(
G

(M)
K > t

)
= KP(G (M)

K > t).

Therefore, if K ≥ 1:

P
(M)

(
G

(M)
K ≥ t|G (M)

K > 0
)

= P(G (M)
K ≥ t),
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while if K ≤ 1:

P

(
G

(M)
K ≥ t|G (M)

K > 0
)

= P
(M)(G (M)

K ≥ t).

In particular, for K = 1:

G
(M)
1 has the same distribution under P and under P

(M). (2.19)

2.2.3 Proof of Theorem 2.2

We first prove Point (i)
We have:

E
[
Ft (Mt −K)+] = E

[
Ft (Mt −K)+ 1{Mt>0}

]
(since (Mt −K)+ = 0 on {Mt = 0})

= E

[

FtMt

(
1− K

Mt

)+

1{Mt>0}

]

= E
(M)

[

Ft

(
1− K

Mt

)+

1{Mt>0}

]
(
from the definition of P

(M))

= E
(M)

[
Ft1{G (1/M)

1/K ≤t}

]

by applying Theorem 2.1 with 1/M and 1/K instead of M and K, and since

P
(M) (Mt > 0) = 1 from (2.13). But, by its very definition, G (1/M)

1/K = G
(M)
K , and there-

fore:

E
[
Ft (Mt −K)+

]
= E

(M)
[

Ft1{G (M)
K ≤t}

]
.

This is Point (i).

We now prove Point (iii)
We have,

E
[
(Mt −K)+

]
−E

[
(K −Mt)

+]= E[Mt −K] = 1−K.

Hence, from Point (ii) of Theorem 2.1 and Point (i) of Theorem 2.2:

P
(M)

(
G

(M)
K ≤ t

)
−KP

(
G

(M)
K ≤ t

)
= 1−K.

This is Point (iii).
Finally, Point (ii) is an easy consequence of the identity:

|Mt −K| = (Mt −K)+ +(K −Mt)
+ ,

applying once again Point (ii) of Theorem 2.1 and Point (i) of Theorem 2.2.
��
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In fact, formula (2.16) can be improved in the following way: let ϕ : R
+ → R

+

a Borel and locally integrable function, and Φ(x) :=
∫ x

0 ϕ(y)dy. Then, for any t ≥ 0
and Ft ∈ Ft , one has:

E [FtΦ(Mt)] = E
(M)

[
Ftϕ

(
inf
s≥t

Ms

)]
. (2.20)

(
Of course, (2.16) is also a particular case of (2.20) with Φ(x) = (x −K)+ and
ϕ(x) = 1{x>K}.

)

We prove (2.20)
We have:

E [FtΦ(Mt)] = E

[
Ft

∫ Mt

0
ϕ(y)dy

]

= E [FtMtϕ(UMt)]
(where U is a uniform r.v. on [0,1] independent from Ft)

= E
(M) [Ftϕ(UMt)]

= E
(M)

[

Ftϕ

(
1
1

UMt

)]

= E
(M)

⎡

⎢
⎣Ftϕ

⎛

⎜
⎝

1

sup
s≥t

1
Ms

⎞

⎟
⎠

⎤

⎥
⎦

(applying Lemma 2.1 to the P
(M)-local martingale (1/Mt , t ≥ 0))

= E
(M)

[
Ftϕ

(
inf
s≥t

Ms

)]
.

2.3 Some Examples of Computations of the Law of G
(M)
K

Example 2.3.a. We get back to the classical Black-Scholes formula, with Et :=
exp

(
Bt − t

2

)
where B is a Brownian motion started from 0. From (2.7), the iden-

tity:

E

[(
1− Et

K

)+
]

= P

(
G

(E )
K ≤ t

)

holds. Taking K = 1, it suffices to obtain the identity:

G1
(law)
= 4B2

1 (2.21)
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to recover formula (1.19). In fact, this identity (2.21) may be obtained simply by
time inversion, since:

G1 := sup{t ≥ 0; Et = 1} = sup{t ≥ 0; Bt −
t
2

= 0},

hence, with the notation of Subsection 1.1.3:

G1 = G(−1/2)
0

(law)
=

1

T (0)
−1/2

(from (1.9))

(law)
=

4

T (0)
1

(by scaling)

(law)
= 4B2

1.

Example 2.3.b. Here (Mt , t ≥ 0) is the martingale defined by:
(
Mt = Bt∧T0 , t ≥ 0

)

where (Bt , t ≥ 0) is a Brownian motion started from 1, and T0 := inf{t ≥ 0;Bt = 0}.
Then, for K ≤ 1:

G
(M)
K

(law)
=

(UK)2

N2

(law)
= TUK (2.22)

where (Tx,x ≥ 0) is the first hitting time process of a Brownian motion (βt , t ≥ 0)
starting from 0, N is a standard Gaussian r.v. and UK is uniform on [1−K,1 + K],
independent from T and N.

Proof of (2.22)
Applying Williams’ time reversal Theorem (see [91]), we have:

(
BT0−u,u ≤ T0

) (law)
= (Ru,u ≤ G1(R)) (2.23)

where (Ru,u ≥ 0) is a Bessel process of dimension 3 starting from 0 and G1(R) :=
sup{u ≥ 0;Ru = 1}. Hence:

T0
(law)
= TK(R)+G

(M)
K , (2.24)

where on the RHS, TK(R) and G
(M)
K are independent and

TK(R) := inf{u ≥ 0;Ru = K}.

Taking the Laplace transform in λ 2

2 on both sides of (2.24) gives:

e−λ =
λK

sinh(λK)
E

[
e−

λ2
2 G

(M)
K

]
, (2.25)

since E

[
e−

λ2
2 T0

]
= e−λ and E

[
e−

λ2
2 TK(R)

]
=

λK
sinh(λK)

.
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Then, formula (2.25) becomes:

E

[
e−

λ2
2 G

(M)
K

]
=

e−λ (1−K)− e−λ (1+K)

2λK
=

1
2K

∫ 1+K

1−K
e−λxdx

=
1

2K

∫ 1+K

1−K
E

[
e−

λ2
2 Tx

]
dx.

Thus:

E

[
e−

λ2
2 G

(M)
K

]
=

1
2K

∫ 1+K

1−K
E

[
e−

λ2
2

x2

N2

]
dx = E

[

e−
λ2
2

(UK )2

N2

]

since Tx
(law)
=

x2

N2 . Hence,

G
(M)
K

(law)
=

(UK)2

N2

(law)
= TUK .

��

Example 2.3.c. (Mt , t ≥ 0) is the (strict) local martingale defined by:(
Mt :=

1
Rt

, t ≥ 0

)
where (Rt , t ≥ 0) is a 3-dimensional Bessel process starting from

1. Then, for every K < 1:

G
(M)
K

(law)
=

(
ŨK

)2

N2

(law)
= TŨK

(2.26)

where (Tx,x ≥ 0) is the first hitting time process of a Brownian motion (βt , t ≥
0) starting from 0, N is a standard Gaussian r.v. and ŨK is a uniform r.v. on[

1
K −1, 1

K +1
]
, independent from the process T and N.

Proof of (2.26)

We observe that G
(M)
K := sup

{
u ≥ 0;

1
Ru

= K

}
= sup

{
u ≥ 0;Ru =

1
K

}
. We con-

sider the process R as obtained by time reversal from the Brownian motion (Bt , t ≥
0) starting from 1/K and killed when it first hits 0. Hence, with the same notation
as in Example 2.3.b, we have:

T0
(law)
= G

(M)
K +T1(R), (2.27)

where on the RHS, G
(M)
K and T1(R) are assumed to be independent. Taking once

again the Laplace transform in λ 2

2 of both sides, one obtains:

e−λ/K =
λ

sinh(λ )
E

[
e−

λ2
2 G

(M)
K

]
, (2.28)
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which can be rewritten:

E

[
e−

λ2
2 G

(M)
K

]
=

e−λ ( 1
K −1)− e−λ ( 1

K +1)

2λ
=

1
2

∫ 1
K +1

1
K −1

e−λxdx

=
1
2

∫ 1
K +1

1
K −1

E

[
e−

λ2
2 Tx

]
dx

=
1
2

∫ 1
K +1

1
K −1

E

[
e−

λ2
2

x2

N2

]
dx = E

[

e−
λ2
2

(ŨK )2

N2

]

.

��
Example 2.3.d. (Mt , t ≥ 0) is the martingale defined by:(

Mt = |Bt |h(Lt)+
∫ ∞

Lt

h(x)dx, t ≥ 0

)
where (Bt , t ≥ 0) is a Brownian motion start-

ing from 0, (Lt , t ≥ 0) its local time at level 0 and h : R
+ → R

+ a strictly positive
Borel function such that

∫ ∞
0 h(x)dx = 1. (Mt , t ≥ 0) is the Azéma-Yor martingale

associated with h (see [4]). We then have:

G
(M)
1

(law)
=

(
H−1(U)+

U
h◦H−1(U)

)2

·T1 (2.29)

where, on the RHS, T1 and U are assumed to be independent, U is uniform on
[0,1], T1 is the first hitting time of 1 by a Brownian motion starting from 0, and

H(u) :=
∫ u

0 h(y)dy. In particular, if h(l) = λ
2 e−

λ l
2 , we have:

G
(M)
1

(law)
= T 2

λ (log( 1
U )+ 1

U −1) (2.30)

where Tx is the first hitting time of x by a Brownian motion starting from 0, and U
is uniform on [0,1], independent from (Tx,x ≥ 0).

Proof of (2.29)

We use the fact that G
(M)
1 has the same distribution under P and P

(M) (see (2.19)).
The law of the canonical process (Xt , t ≥ 0) under P

(M) is fully described in [72]. In
particular, under P

(M):

• L∞ < ∞ P
(M)-a.s., and admits h as density function,

• Conditionally on {L∞ = l}, (Xt , t ≤ τl) is a Brownian motion stopped at τl

(with τl := inf{t ≥ 0;Lt > l}), independent from the process
(
Xτl+t , t ≥ 0

)
, and(

|Xτl+t |, t ≥ 0
)

is a 3-dimensional Bessel process started at 0.

Then, under P
(M), conditionally on {L∞ = l}:

G
(M)
1 = τl + sup

{
t ≥ 0;

∫ ∞

l
h(x)dx+h(l)|Xt | = 1

}

= τl + sup

{

t ≥ 0; |Xt | =
∫ l

0 h(x)dx
h(l)

}

.
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Denoting k(l) = 1
h(l)H(l) we have, by time reversal (see Example 2.3.b and 2.3.c

above):

G
(M)
1

(law)
= τl +Tk(l) (2.31)

where Tx is the first hitting time at level x of a Brownian motion started from 0, and
where, on the RHS, τl and Tk(l) are assumed to be independent. But, (τl , l ≥ 0) and
(Tl , l ≥ 0) being independent and having the same law, we have:

G
(M)
1

(law)
= Tl+k(l) (2.32)

Then, since L∞ admits h as density, H(L∞) is uniformly distributed on [0,1]. Hence:

G
(M)
1

(law)
= T(

H−1(U)+ U
h◦H−1(U)

)

(law)
=

(
H−1(U)+

U
h◦H−1(U)

)2

·T1 (by scaling).

��

Example 2.3.e. We end this series of examples by examining a situation which is no
longer in the scope of Theorem 2.1 or Theorem 2.2: we shall compute the price of
a call where (Mt , t ≥ 0) is only a local martingale, and not a (true) martingale. (In

other words, we remove assumption (T)). More precisely, let
(

Xt , t ≥ 0,P
(3)
a ,a > 0

)

the canonical Bessel process of dimension 3, defined on the space Ω := C (R+,R+).

Let (Mt , t ≥ 0) be the local martingale

(
Mt =

1
Xt

, t ≥ 0

)
. Then:

E
(3)
1

[

Ft

(
1
Xt

−1

)+
]

= W1
[
Ft1{γ≤t≤T0}

]
(2.33)

where Ft is a generic bounded Ft-measurable r.v., W1 is the Wiener measure (with
W1(X0 = 1) = 1), T0 := inf{t ≥ 0;Xt = 0} and γ := sup{t < T0;Xt = 1}. In particular:

E
(3)
1

[(
1
Xt

−1

)+
]

= W1 (γ ≤ t ≤ T0) . (2.34)

Proof of (2.33)
From the well-known Doob’s h-transform relationship:

P
(3)
a|Ft

=
Xt∧T0

a
·Wa|Ft (2.35)

we have:
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E
(3)
1

[

Ft

(
1
Xt

−1

)+
]

= W1

[

Ft

(
1
Xt

−1

)+

Xt∧T01{t≤T0}

]

= W1

[
Ft
(
1−Xt∧T0

)+
1{t≤T0}

]

= W1
[
Ft1{γ≤t≤T0}

]

by applying Theorem 2.1, relation (2.6), with K = 1 and Mt = Xt∧T0 .
��

We observe that the LHS of (2.34) is not an increasing function of t. Indeed, the
RHS converges to 0 as t → ∞ as a consequence of Lebesgue’s dominated conver-
gence Theorem. In fact, we can compute explicitly this RHS, which equals:

r(t) = W1(T0 ≥ t)−W1(γ ≥ t) (since, by definition, T0 ≥ γ).

Recall that, under W1: T0
(law)
=

1

B2
1

and, from Example 2.3.b with K = 1, γ
(law)
=

(U1)2

B2
1

where U1 is uniform on [0,2] and independent of B2
1. Therefore:

r(t) = P

(
|B1| ≤

1√
t

)
−P

(
|B1| ≤

U1√
t

)
, (2.36)

that is:

r(t) =

√
2
π

∫ 1/
√

t

0
e−x2/2dx−

√
2
π

∫ ∞

0
e−x2/2

(
1− x

√
t

2

)+

dx. (2.37)

In particular, r starts to increase, reaches its overall maximum, and then decreases.
Moreover, it easily follows from (2.37) that:

r(t) ∼
t→∞

1
6

√
2
πt3 . (2.38)

It is also easily proven that:

r(t) ∼
t→0

√
t

2π
. (2.39)

This example will be taken up and developed in Section A.1 of the Complements.

2.4 A More General Formula for the Computation of the Law
of G

(M)
K

2.4.1 Hypotheses

Let (Mt , t ≥ 0) ∈ M 0,c
+ . (See Section 2.1). Our purpose in this Section is to give a

general formula for the law of G
(M)
K . To proceed, we add extra hypotheses on M:
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i) For every t > 0, the law of the r.v. Mt admits a density (mt(x),x≥ 0), and (t,x) 
→
mt(x) may be chosen continuous on (]0,+∞[)2.

ii) Let us denote by (〈M〉t , t ≥ 0) the increasing process of (Mt , t ≥ 0). We suppose
that d 〈M〉t = σ2

t dt, and that there exists a jointly continuous function:

(t,x) 
→ θt(x) := E
[
σ2

t |Mt = x
]

on (]0,+∞[)2. (2.40)

2.4.2 Description of the Law of G
(M)
K

Theorem 2.3. Under the preceding hypotheses, the law of G
(M)
K is given by:

P

(
G

(M)
K ∈ dt

)
=
(

1− a
K

)+
δ0(dt)+

1
2K

θt(K)mt(K)1{t>0}dt (2.41)

where, in (2.41), a = M0 and δ0 denotes the Dirac measure at 0.

Proof. Using Tanaka’s formula, one obtains:

E
[
(K −Mt)

+]= (K −a)+ +
1
2

E
[
LK

t (M)
]

(2.42)

where
(
LK

t (M), t ≥ 0,K ≥ 0
)

denotes the bicontinuous family of local times of the
martingale (Mt , t ≥ 0). Thus, from Theorem 2.1, there is the relationship:

P

(
G

(M)
K ∈ dt

)
=
(

1− a
K

)+
δ0(dt)+

1{t>0}
2K

dtE
[
LK

t (M)
]

(2.43)

and formula (2.41) is now equivalent to the following expression for dtE
[
LK

t (M)
]
:

dtE
[
LK

t (M)
]
= θt(K)mt(K)dt (t > 0). (2.44)

We now prove (2.44).
For every f : R

+ → R
+ Borel, the density of occupation formula

∫ t

0
f (Ms)d 〈M〉s =

∫ ∞

0
f (K)LK

t dK (2.45)

becomes, under hypothesis (2.40),

∫ t

0
f (Ms)σ2

s ds =
∫ ∞

0
f (K)LK

t dK. (2.46)

Thus, taking expectation on both sides of (2.46), we obtain:

E

[∫ t

0
f (Ms)σ2

s ds

]
=

∫ ∞

0
f (K)E

[
LK

t

]
dK (2.47)
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and, the LHS of (2.47), thanks to (2.40), equals:

∫ t

0
E
[

f (Ms)σ2
s

]
ds =

∫ t

0
E
[

f (Ms)E
[
σ2

s |Ms
]]

ds

=
∫ ∞

0
f (K)dK

∫ t

0
θs(K)ms(K)ds. (2.48)

Comparing (2.47) and (2.48), we obtain:

E
[
LK

t (M)
]
=

∫ t

0
θs(K)ms(K)ds,

and Theorem 2.3 is proven.
��

2.4.3 Some Examples of Applications of Theorem 2.3

Example 2.4.3.a. Here,
(
Mt := Et = exp

(
Bt − t

2

)
, t ≥ 0

)
where (Bt , t ≥ 0) is

a Brownian motion started at 0. From Itô’s formula, Et = 1 +
∫ t

0 EsdBs, thus
d 〈E 〉t = E 2

t dt and we may apply Theorem 2.3 with θt(x) = x2 and

mt(x) =
1

x
√

2πt
exp

(
− 1

2t

(
log(x)+

t
2

)2
)

. We obtain:

P

(
G

(E )
K ∈ dt

)
=
(

1− 1
K

)+

δ0(dt)+
1{t>0}

2
√

2πt
exp

(
− 1

2t

(
log(K)+

t
2

)2
)

dt

(2.49)

This formula (2.49) agrees with formulae (1.10) and (1.14) since G
(E )
K

(law)
= G(−1/2)

log(K) .

Example 2.4.3.b. Let (Mt ,0 ≤ t < 1) be the martingale defined by:

(
Mt =

1√
1− t

exp

(
− B2

t

2(1− t)

)
, t < 1

)
.

This martingale is the Girsanov density of the law of the Brownian bridge (bu,0 ≤
u < 1) with respect to the Wiener measure on the σ -field (Ft) (see Exercise 2.2).
We have here:

mt(x) =
1√
2πt

2(1− t)
x

1
√

Δ(x)
e−

Δ(x)
2t 1{

x< 1√
1−t

} (2.50)

with Δ(x) := −2(1− t) log
(
x
√

1− t
)

and:
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θt(x) =
x2

(1− t)2Δ(x). (2.51)

Hence, from Theorem 2.3:

P

(
G

(M)
K ∈ dt

)

=
(

1− 1
K

)+

δ0(dt)+

√
Δ(K)

(1− t)
√

2πt
e−

Δ(K)
2t 1{

K< 1√
1−t

}1{t<1}dt (2.52)

=
(

1− 1
K

)+

δ0(dt)+
(

K
√

1− t
) 1

t −1
√

− log(K
√

1− t)
πt(1− t)

1{
K< 1√

1−t

}1{t<1}dt.

Example 2.4.3.c. Here, (Mt , t ≥ 0) is the martingale defined by:(
Mt = cosh(Bt)e−t/2, t ≥ 0

)
. We have from Itô’s formula: σt = sinh(Bt)e−t/2, hence

σ2
t = M2

t − e−t and θt(x) = x2 − e−t . On the other hand:

mt(x) =

√
2
πt

exp

(
− 1

2t

(
Argcosh(xet/2)

)2
)

1√
x2 − e−t

1{x>e−t/2}. (2.53)

Hence, from Theorem 2.3:

P

(
G

(M)
K ∈ dt

)
=
(

1− 1
K

)+

δ0(dt)+
1

2K
(K2 − e−t)mt(K)1{t>0}dt,

where mt(K) is given by (2.53).

Example 2.4.3.d. We consider Feller’s martingale, i.e. the solution of the stochastic
equation:

Mt = l +2
∫ t

0

√
MsdBs.

(Mt , t ≥ 0) is a square Bessel process of dimension 0 started from l. From Itô’s
formula, θt(x) = 4x, and it is known that the law of the r.v. Mt is given by:

q0
t (l,dK) = exp(−l/2t)δ0(dK)+

1
2t

√
l
K

exp

(
− l +K

2t

)
I1

(√
lK
t

)

dK,

where I1 is the modified Bessel function of index 1 (see Appendix B.1). Hence, from
Theorem 2.3:

P

(
G

(M)
K ∈ dt

)
=
(

1− l
K

)+

δ0(dt)+
1
t

√
l
K

exp

(
− l +K

2t

)
I1

(√
lK
t

)

1{t>0}dt.

(2.54)
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Exercise 2.2 (Girsanov’s density of the Brownian bridge with respect to the
Brownian motion).
Let (Bt ,0 ≤ t ≤ 1) denote the canonical Brownian motion started at 0, P the Wiener
measure, and (bt ,0 ≤ t ≤ 1) the standard Brownian bridge (with b0 = b1 = 0).
(bt ,0 ≤ t < 1) is the strong solution of the SDE:

⎧
⎨

⎩
dbt =

−bt

1− t
dt +dBt

b0 = 0
(0 ≤ t < 1).

Let Π be the law on C ([0,1],R) of (bt ,0 ≤ t ≤ 1).
1) Prove, applying Girsanov’s Theorem, that:

Π|Ft = Mt ·P|Ft (0 ≤ t < 1) (1)

with

Mt := exp

(
−
∫ t

0

BsdBs

1− s
− 1

2

∫ t

0

B2
s ds

(1− s)2

)
, 0 ≤ t < 1.

2) Use Itô’s formula to show that:

Mt =
1√

1− t
exp

(
− B2

t

2(1− t)

)
, 0 ≤ t < 1.

Show that M1 = 0 a.s.
3) In the case of the n-dimensional Brownian motion in R

n, prove that the analogous
martingale writes:

M(n)
t =

1

(1− t)n/2
exp

(
− ‖Bt‖2

2(1− t)

)
, 0 ≤ t < 1

where ‖Bt‖2 =
(
B1

t

)2 + . . .+(Bn
t )

2.
4) More generally, let (Xt , t ≥ 0; Ft , t ≥ 0;Px,x ∈ R) be the canonical realization of
a regular diffusion on R. We denote by (Pt , t ≥ 0) and (pt(x,y); t > 0,x,y ∈ R) the
associated semi-group and its density kernel (with respect to the Lebesgue measure),
which we assumed to be regular.

Let l > 0. We denote by Π (l)
x→y the law, on C ([0, l],R) of the bridge of length l

(xu,0 ≤ u ≤ l) such that x0 = x,xl = y. Let 0 ≤ t < l. For every F : C ([0, l],R)→ R

bounded and measurable and every f : R → R Borel and bounded, we have:

Ex [F(Xu,u ≤ t) f (Xl)] =
∫

R

Ex [F(Xu,u ≤ t)|Xl = y] f (y)pl(x,y)dy.

i) Prove that:

Ex [F(Xu,u ≤ t) f (Xl)] = Ex [F(Xu,u ≤ t)Pl−t f (Xt)] .
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ii) Deduce that:

Ex [F(Xu,u ≤ t)|Xl = y] = Ex

[
F(Xu,u ≤ t)

pl−t(Xt ,y)
pl(x,y)

]

and
Π (l)

x→y|Ft
= Mt ·Px|Ft with Mt :=

pl−t(Xt ,y)
pl(x,y)

. (2)

Prove that (1) is a particular case of (2).
Comment: Relation (2) makes it possible to derive the expression of the bridge of a
diffusion as the solution of a SDE, thanks to Girsanov’s Theorem.

2.5 Computation of the Law of GK in the Framework of
Transient Diffusions

2.5.1 General Framework

Theorem 2.1 and Theorem 2.2 cast some light on our ability to compute explicitly

the law of G
(M)
K when M is a positive (local) martingale. We temporarily leave this

framework and give (following Pitman-Yor, [65]) a general formula for the law of

G
(X)
K when (Xt , t ≥ 0) is a transient diffusion taking values in R

+.

We consider the canonical realization of a transient diffusion (Xt , t ≥ 0; Px,x > 0)
on C (R+,R+) (See [12]). For simplicity, we assume that:

i) Px(T0 < ∞) = 0 for every x > 0, with T0 := inf{t ≥ 0;Xt = 0}.

ii) Px

(
lim
t→∞

Xt = +∞
)

= 1, x > 0.

As a consequence of (i) and (ii), there exists a scale function s for this diffusion
which satisfies:

s(0+) = −∞ , s(+∞) = 0 (s is increasing). (2.55)

Let Γ be the infinitesimal generator of (Xt , t ≥ 0), and take the speed measure m to
be such that:

Γ =
∂
∂m

∂
∂ s

. (2.56)

Let, for K > 0:
G

(X)
K := sup{t ≥ 0;Xt = K}. (2.57)

Let us also denote by q(t,x,y) (= q(t,y,x)) the density of the r.v. Xt under Px, with
respect to m; thus

Px(Xt ∈ A) =
∫

A
q(t,x,y)m(dy), (2.58)

for every Borel set A.
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2.5.2 A General Formula for the Law of G
(X)
K

Theorem 2.4 (Pitman-Yor, [65]). For all x,K > 0:

Px

(
G

(X)
K ∈ dt

)
=
(

1− s(x)
s(K)

)+

δ0(dt)− 1
s(K)

q(t,x,K)dt (2.59)

where δ0(dt) denotes the Dirac measure at 0.

In particular, if K ≥ x, since s is increasing and negative, formula (2.59) reduces to:

Px

(
G

(X)
K ∈ dt

)
= − 1

s(K)
q(t,x,K)dt.

Proof. We apply Theorem 2.1 to the local martingale (Mt = −s(Xt), t ≥ 0). This
leads to:

Px

(
G

(X)
K ≤ t

)
= Px

(
G

−s(X)
−s(K) ≤ t

)
= E

[(
1− −s(Xt)

−s(K)

)+
]

. (2.60)

As we apply Tanaka’s formula to the submartingale
(

1− s(Xt )
s(K)

)+
, we obtain:

Px

(
G

(X)
K ≤ t

)
=
(

1− s(x)
s(K)

)+

− 1
2s(K)

Ex

[
L−s(K)

t (M)
]

(2.61)

where (La
t (M), t ≥ 0) denotes the local time of the local martingale (Mt , t ≥ 0) at

level a.
We now prove:

∂
∂ t

Ex

[
L−s(K)

t (M)
]

= 2q(t,x,K) (2.62)

which obviously, together with (2.61), implies Theorem 2.4. In fact, (2.62) follows
from the density of occupation formula for our diffusion (Xt , t ≥ 0):
for any f : R

+ → R
+, Borel,

∫ t

0
f (Xs)ds =

∫ ∞

0
f (K)lK

t m(dK) (2.63)

where (la
t , t ≥ 0,a > 0) is the family of diffusion local times. (See [12]). On the LHS

of (2.63), taking the expectation, we have:

Ex

[∫ t

0
f (Xs)ds

]
=

∫ ∞

0
f (K)

(∫ t

0
q(s,x,K)ds

)
m(dK). (2.64)

Thus, (2.63) and (2.64) imply:
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Ex
[
lK
t

]
=

∫ t

0
q(s,x,K)ds. (2.65)

On the other hand, there is the following relationship between the diffusion and
martingale local times:

2lK
t = L−s(K)

t (M). (2.66)

Hence, from (2.61), (2.65) and (2.66):

∂
∂ t

Px

(
G

(X)
K ≤ t

)
=
(

1− s(x)
s(K)

)+

δ0 −
1

2s(K)
∂
∂ t

(
Ex

[
L−s(K)

t (M)
])

=
(

1− s(x)
s(K)

)+

δ0 −
1

s(K)
∂
∂ t

(
Ex

[
lK
t

])

=
(

1− s(x)
s(K)

)+

δ0 −
1

s(K)
q(t,x,K),

where δ0 is the derivative of the Heaviside step function, i.e. the Dirac measure at 0.
��

Remark 2.2. Formula (2.59) still holds in the more general framework of a tran-
sient diffusion (Xt , t ≥ 0) taking values in R, such that for example Xt −−→

t→∞
+∞

a.s. Indeed, introducing (Xt := exp(Xt), t ≥ 0), it is easily seen that X satisfies the
hypotheses of Subsection 2.5.1, and therefore Theorem 2.4 applies (with obvious
notation):

Px

(
G

(X)
K ∈ dt

)
=
(

1− s(x)
s(K)

)+

δ0(dt)− 1
s(K)

q(t,x,K)dt.

Then, using the identities: G
(X)
K = G

(X)
log(K), s(x) = s(log(x)) = s(x) and q(t,x,y) =

q(t, log(x), log(y)) = q(t,x,y), we obtain:

Px

(
G

(X)
log(K) ∈ dt

)
=
(

1− s(x)
s(log(K))

)+

δ0(dt)− 1
s(log(K))

q(t,x, log(K))dt

which is (2.59).

2.5.3 Case Where the Infinitesimal Generator is Given by its
Diffusion Coefficient and its Drift

In practice, it may be useful to write formula (2.59) in terms of the density p(t,x,y)
of the r.v. Xt with respect to the Lebesgue measure dy (and not m(dy)). We shall give
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this new expression in the following. Let us assume that the infinitesimal generator
Γ is of the form:

Γ =
1
2

a(x)
∂ 2

∂x2 +b(x)
∂
∂x

. (2.67)

Consequently:
dm(y)

dy
=

2
s′(y)a(y)

(2.68)

and

q(t,x,y) =
1
2

p(t,x,y)s′(y)a(y) (2.69)

so that formula (2.59) becomes:

Px

(
G

(X)
K ∈ dt

)
=
(

1− s(x)
s(K)

)+

δ0(dt)− s′(K)a(K)
2s(K)

p(t,x,K)dt. (2.70)

We now give several examples of application of Theorem 2.4, and of relation (2.70).

• Let us go back to Example 2.4.3.d where we computed P

(
G

(M)
K ∈ dt

)
for

(Mt , t ≥ 0) a square Bessel process of dimension 0 started from l. We then de-

fine the diffusion
(

Xt , t ≤ G
(X)
l

)
to be the time reversed process of the martingale

(Mt , t ≤ T0). (Xt , t ≥ 0) is a square Bessel process of dimension 4 started from 0 and
therefore satisfies the hypotheses of Theorem 2.4. In this set-up, we have:

s(x) = −1
x
, a(x) = 4x,

and

p(t,x,y) =
1
2t

√
y
x

exp

(
−x+ y

2t

)
I1

(√
xy
t

)
.

Now, applying the Markov property, we see that the law of G
(M)
K under P is the same

as the law of G
(X)
l under Q

(4)
K , where Q

(4)
K denotes the law of a square Bessel process

of dimension 4 started at K. Then, relation (2.70) yields:

P

(
G

(M)
K ∈ dt

)
= Q

(4)
K

(
G

(X)
l ∈ dt

)

=
(

1− s(K)
s(l)

)+

δ0(dt)− s′(l)a(l)
2s(l)

p(t,K, l)dt

=
(

1− l
K

)+

δ0(dt)+
1
t

√
l
K

exp

(
− l +K

2t

)
I1

(√
Kl
t

)

dt,

which is (2.54).
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• If Xt = Bt +νt (i.e. a = 1 and b = ν), we have: s′(x) = e−2νx,

p(t,0,K) =
1√
2πt

exp

(
− 1

2t
(K −νt)2

)
and, from (2.70), for ν and K > 0:

P0

(
G

(X)
K ∈ dt

)
= P

(
G(ν)

K ∈ dt
)

=
ν√
2πt

exp

(
− 1

2t
(K −νt)2

)
dt,

and this formula agrees with (1.12).

• If (Xt , t ≥ 0) is a transient Bessel process, i.e. if a = 1 and b(x) =
2ν +1

2x
, with

index ν > 0 (i.e. with dimension d = 2ν + 2 > 2), we have: s(x) = −x−2ν and

p(t,0,K) =
2−ν

Γ (ν +1)
t−(ν+1)K2ν+1 exp

(
−K2

2t

)
. Hence, from (2.70):

P
(ν)
0

(
G

(X)
K ∈ dt

)
=

ν2−ν

Γ (ν +1)
1
K

K2ν+1

tν+1 exp

(
−K2

2t

)
dt

=
2−ν

Γ (ν)
K2ν

tν+1 exp

(
−K2

2t

)
dt. (2.71)

Note that, by time reversal, we recover Getoor’s result (see [25]):

P
(ν)
0

(
G

(X)
K ∈ dt

)
= P

(−ν)
K (T0 ∈ dt) = P

(
K2

2γν
∈ dt

)
(2.72)

where P
(−ν)
K denotes the law of a Bessel process of index (−ν) for 0 < ν < 1 (i.e. of

dimension δ = 4−d for 2 < d < 4) started at K and where γν is a gamma r.v. with
parameter ν. See also Problem 4.1 in the present monograph, and e.g., [98], Paper #
1, for some closely related computations and references.

2.6 Computation of the Put Associated to a Càdlàg Martingale
Without Positive Jumps

2.6.1 Notation

Let (Bt , t ≥ 0) be a Brownian motion started from 0, and ν > 0. As in Chapter 1,

we denote by (B(ν)
t := Bt +νt, t ≥ 0) the Brownian motion with drift ν and T (ν)

a :=
inf{t ≥ 0;Bt +νt = a}. We have:

E

[
e−

λ2
2 T (ν)

a

]
= exp

(
−a

(√
ν2 +λ 2 −ν

))
(2.73)
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and in particular, for λ 2 = 1+2ν:

E

[
e−( 1

2 +ν)T (ν)
a

]
= exp(−a) (a ≥ 0). (2.74)

It follows from the fact that (B(ν)
t , t ≥ 0) is a Lévy process (which implies

T (ν)
a+b

(law)
= T (ν)

a +T (ν)
b , with T (ν)

a and T (ν)
b independent), together with (2.74) that:

(
M(ν)

a := exp

{
a−

(
1
2

+ν

)
T (ν)

a

}
, a ≥ 0

)
is a martingale. (2.75)

In fact, this is a positive martingale, without positive jumps, and such that

lim
a→∞

M(ν)
a = 0 a.s. (2.76)

Indeed, from the law of large numbers:

Bt +νt

( 1
2 +ν)t

−−→
t→∞

ν
1
2 +ν

a.s.

Hence, since T (ν)
a −−−→

a→∞
∞ a.s.:

B
T (ν)

a
+νT (ν)

a

( 1
2 +ν)T (ν)

a

=
a

( 1
2 +ν)T (ν)

a

−−−→
a→∞

ν
1
2 +ν

< 1 a.s.

From (2.75), this implies that M(ν)
a −−−→

a→∞
0 a.s.

2.6.2 Computation of the Put Associated to the Martingale(
M(ν)

a ,a ≥ 0
)

Proposition 2.1. Let K > 0.

i) If K < ea:

E

[(
K −M(ν)

a

)+
]

= KE
[
(Et − e2aν)+

]
−E

[(
Et − e2a(ν+1)

)+
]
, (2.77)

with t = t(a,ν,K) =
2a2(2ν +1)
a− log(K)

. (2.78)

ii) If K ≥ ea:

E

[(
K −M(ν)

a

)+
]

= K −1. (2.79)
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Proof. (2.79) is obvious. We prove (2.77):

E

[(
K −M(ν)

a

)+
]

=
∫ ∞

a−log(K)
1
2 +ν

(
K − ea−( 1

2 +ν)u
) a√

2πu3
exp

(
− (a−νu)2

2u

)
du

(from the explicit formula for the density of T (ν)
a given by (1.11))

= eaν
∫ a2(2ν+1)

a−log(K)

0

(
K − ea−( 1

2 +ν) a2
s

)
eaν

√
2πs

exp

(
− s

2
− a2ν2

2s

)
ds

(after the change of variable
a2

u
= s)

= Keaν
E

⎡

⎣1{
B2

1≤
a2(2ν+1)

2(a−log(K))

}e
− a2ν2

2B2
1

⎤

⎦

− ea(ν+1)
E

⎡

⎣1{
B2

1≤
a2(2ν+1)

2(a−log(K))

}e
− a2(ν+1)2

2B2
1

⎤

⎦ , (2.80)

i.e., with t =
2a2(2ν +1)
a− log(K)

, A = e2aν and B = e2a(ν+1):

E

[(
K −M(ν)

a

)+
]

= K
√

AE

[

1{4B2
1≤t}e

− log2(A)
8B2

1

]

−
√

BE

[

1{4B2
1≤t}e

− log2(B)
8B2

1

]

.

(2.81)
We now apply formula (1.58), Theorem 1.4:

E[(Et −K)±] = (1−K)± +
√

KE

[

1{4B2
1≤t}e

− log2(K)
8B2

1

]

successively with K = e2aν and K = e2a(ν+1). We obtain:

E
[
(Et − e2aν)+

]
= eaν

E

[

1{4B2
1≤t}e

− a2ν2

2B2
1

]

, (2.82)

E

[(
Et − e2a(ν+1)

)+
]

= ea(ν+1)
E

[

1{4B2
1≤t}e

− a2(ν+1)2

2B2
1

]

. (2.83)

Gathering (2.80), (2.82) and (2.83) ends the proof of (2.77) and of Proposition 2.1.
��
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2.6.3 Computation of the Law of G
(M(ν))
K

We shall apply Proposition 2.1 to get the law of the r.v. G
(M(ν))
K := sup{a ≥ 0;

M(ν)
a = K}.

Proposition 2.2. The r.v. G
(M(ν))
K admits as probability density the function f

G
(M(ν))
K

given, for K < ea, by:

f
G

(M(ν))
K

(a) = ν
{

P

(
G(1/2)

2aν ≤ t
)
−P

(
T (1/2)

2aν < t
)}

+
ν +1

K

{
P

(
T (1/2)

2a(ν+1) ≤ t
)
−P

(
G(1/2)

2a(ν+1) < t
)}

(2.84)

= 2
ν +1

K
e2a(ν+1)

P

(
B(−1/2)

t > 2a(ν +1)
)
−2νe2aν

P

(
B(−1/2)

t > 2aν
)

(2.85)

with the notations of Chapter 1 and where t =
2a2(2ν +1)
a− log(K)

.

Proof. We first prove (2.84).

Since
(

M(ν)
a ,a ≥ 0

)
has no positive jumps, we may apply Theorem 2.1 (see Re-

mark 2.1) to obtain:

P

(
G

(M(ν))
K ≤ a

)
=

1
K

E

[(
K −M(ν)

a

)+
]

=
1
K

(
E

[
K
(
Et − e2aν

)+
]
−E

[(
Et − e2a(ν+1)

)+
])

(from Proposition 2.1, with t =
2a2(2ν +1)
a− log(K)

)

= P

(
G(1/2)

2aν ≤ t
)
− 1

K
P

(
G(1/2)

2a(ν+1) ≤ t
)

(from Theorem 1.2)

(2.86)

=
∫ 2a2(2ν+1)

a−log(K)

0

1

2
√

2πu
exp

(
− 1

2u

(
2aν− u

2

)2
)

du (2.87)

− 1
K

∫ 2a2(2ν+1)
a−log(K)

0

1

2
√

2πu
exp

(
− 1

2u

(
2a(ν +1)− u

2

)2
)

du.

We then differentiate both sides of (2.87) with respect to a. The terms coming from
the differentiation of the upper bound in both integrals on the RHS cancel, and it
finally remains:
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∂
∂a

P

(
G

(M(ν))
K ≤ a

)

=
∫ t

0

1

2
√

2πu

(
ν− 4aν2

u

)
exp

(
− 1

2u

(
2aν− u

2

)2
)

du

− 1
K

∫ t

0

1

2
√

2πu

(
ν +1− 4a(ν +1)2

u

)
exp

(
− 1

2u

(
2a(ν +1)− u

2

)2
)

du

= ν
{

P

(
G(1/2)

2aν ≤ t
)
−P

(
T (1/2)

2aν ≤ t
)}

− ν +1
K

{
P

(
G(1/2)

2a(ν+1) ≤ t
)
−P

(
T (1/2)

2a(ν+1) ≤ t
)}

.

This is relation (2.84).
We now prove (2.85)
From Theorem 1.3, identities (1.54) and (1.55) for K > 1 and ν > 0, we deduce:

P

(
T (ν)

log(K) ≤ t
)

= E

[
E

(2ν)
t 1{E (2ν)

t >K2ν}

]
+K2ν

P

(
E

(2ν)
t > K2ν

)

P

(
G(ν)

log(K) ≤ t
)

= E

[
E

(2ν)
t 1{E (2ν)

t >K2ν}

]
−K2ν

P

(
E

(2ν)
t > K2ν

)
.

By subtracting:

P

(
T (ν)

log(K) ≤ t
)
−P

(
G(ν)

log(K) ≤ t
)

= 2K2ν
P

(
E

(2ν)
t > K2ν

)

= 2K2ν
P

(
B(ν)

t > log(K)
)

. (2.88)

Finally, we obtain (2.85) from (2.84) by applying (2.88) first with ν = 1/2 and
K = e2aν , and then with K = e2a(ν+1) noting that this is allowed since e2aν and
e2a(ν+1) are larger than 1.

��

2.6.4 A More Probabilistic Approach of Proposition 2.2

We shall now prove again Proposition 2.2 via a more probabilistic method, when
ν = 0. More precisely, we will show:

Proposition 2.3 (ν = 0).

i) P

(
G

(M(0))
K ≤ a

)
=P

(
G(−1/2)

log(K) ≤ 2(a− log(K))
)

−P

(
G(1/2)

2a−log(K) ≤ 2(a− log(K))
)

. (2.89)
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ii) f
G

(M(0))
K

(a) = P

(
T (1/2)

2a−log(K) ≤ 2(a− log(K))
)
−P

(
G(1/2)

2a−log(K) ≤ 2(a− log(K))
)

= 2
e2a

K
P
(
B2(a−log(K)) > 3a−2log(K)

)
. (2.90)

In the following, we shall first prove Proposition 2.3, and then, we will check that
relations (2.89) and (2.90) coincide with those of Proposition 2.2.

Proof. We first give a geometric representation of the two events
{

G
(M(0))
K ≤ a

}
and

{
G(−1/2)

log(K) ≤ 2(a− log(K))
}

. We have,

GK(M(0)) := sup
{

a ≥ 0; ea− Ta
2 ≥ K

}
= sup

{
a ≥ 0; a ≥ 1

2
Ta + log(K)

}
,

hence the event
{

G
(M(0))
K ≤ a

}
is composed of the Brownian paths which do not

leave the hatched area of Fig. 1:

y

0

a

s

y =
1
2

s+ log(K)

2(a− log(K))

log(K)

Fig. 1
{
G

(M(0))
K ≤ a

}

Similarly:

G
(−1/2)
log(K) := sup

{
s ≥ 0; B(−1/2)

s = log(K)
}

= sup

{
s ≥ 0; Bs =

1
2

s+ log(K)
}

and the event
{

G(−1/2)
log(K) ≤ 2(a− log(K))

}
is composed of the Brownian paths which

do not leave the hatched area of Fig. 2:
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y

0

a

s

y =
1
2

s+ log(K)

2(a− log(K))

log(K)

Fig. 2
{
G

(−1/2)
log(K) ≤ 2(a− log(K))

}

Consequently:

P

(
GK(M(0)) ≤ a

)
= P

(
{

G(−1/2)
log(K) ≤ 2(a− log(K))

}
∩
{

sup
s≤2(a−log(K))

Bs ≤ a

})

.

We put T = 2(a− log(K)), and this identity becomes:

P

(
GK(M(0)) ≤ a

)
= P

(
G(−1/2)

log(K) ≤ T
)
−P

({
G(−1/2)

log(K) ≤ T
}
∩
{

sup
s≤T

Bs > a

})
.

(2.91)
Let us now study the event:

{
G(−1/2)

log(K) ≤ T
}
∩
{

sup
s≤T

Bs > a

}
=
{

inf
s≥T

( s
2

+ log(K)−Bs

)
> 0

}
∩
{

sup
s≤T

Bs > a

}
.

On this event, the Brownian paths hit a.s. level a before time T , hence, applying
Désiré André’s reflection principle, we can replace the piece of path after Ta(B) by
its symmetric with respect to the horizontal line of y-coordinate a. We then obtain:

P

({
inf
s≥T

s
2

+ log(K)−Bs > 0

}
∩
{

sup
s≤T

Bs > a

})

= P

({
inf
s≥T

Bs −
(

2a− log(K)− s
2

)
> 0

}
∩
{

sup
s≤T

Bs > a

})

= P

(
inf
s≥T

Bs −
(

2a− log(K)− s
2

)
> 0

)

= P

(
G(1/2)

2a−log(K) ≤ T
)

.
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Plugging back this expression in (2.91), we finally get:

P

(
G

(M(0))
K ≤ a

)
= P

(
G(−1/2)

log(K) ≤ 2(a− log(K))
)
−P

(
G(1/2)

2a−log(K) ≤ 2(a− log(K))
)

,

which is Point (i) of Proposition 2.3.

Let us now compute the density of G
(M(0))
K . We have:

P

(
G

(M(0))
K ≤ a

)
=
∫ 2(a−log(K))

0

1

2
√

2πu

(
e−

1
2u (log(K)+ u

2 )
2

− e−
1
2u (2a−log(K)− u

2 )
2
)

du.

We differentiate this identity with respect to a. Once again, the terms coming from
the differentiation of the upper bound in both integrals on the RHS cancel, and it
finally remains:

f
G

(M(0))
K

(a) =
∫ 2(a−log(K))

0

1

2
√

2πu

1
2u

4
(

2a− log(K)− u
2

)
e−

1
2u (2a−log(K)− u

2 )
2

du

=
∫ 2(a−log(K))

0

(
2a− log(K)√

2πu3
− 1

2
√

2πu

)
e−

1
2u (2a−log(K)− u

2 )
2

du

= P

(
T (1/2)

2a−log(K) ≤ 2(a− log(K))
)
−P

(
G(1/2)

2a−log(K) ≤ 2(a− log(K))
)

= 2
e2a

K
P
(
B2(a−log(K)) > 3a−2log(K)

)
,

the last equality coming from (2.88) with ν = 1/2, and where we have replaced K

by e2a

K

(
e2a

K > 1 since K < ea
)
.

��

We now show that the two expressions (2.84) and (2.90) of the density of G
(M(0))
K

coincide. With ν = 0, (2.84) becomes:

f
G

(M(0))
K

(a) =
1
K

{
P

(
T 1/2

2a ≤ 2a2

a− log(K)

)
−P

(
G1/2

2a ≤ 2a2

a− log(K)

)}

=
1
K

∫ 2a2
a−log(K)

0

(
2a√
2πu3

− 1

2
√

2πu

)
e−

1
2u (2a− u

2 )
2

du

=
1
K

∫ ∞

2(a−log(K))

(
1√
2πs

− a

2
√

2πs3

)
e−

1
2s (a−s)2

ds

(after the change of variable s =
4a2

u
)

=
1
K

{
P

(
G(1)

a ≥ 2(a− log(K))
)
−P

(
T (1)

a ≥ 2(a− log(K))
)}

=
1
K

{
P

(
T (1)

a ≤ 2(a− log(K))
)
−P

(
G(1)

a ≤ 2(a− log(K))
)}

.

(2.92)
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Then, from (2.88), one obtains:

P

(
T (1)

a ≤ 2(a− log(K))
)
−P

(
G(1)

a ≤ 2(a− log(K))
)

= 2(ea)2
P

(
B(−1)

2(a−log(K)) > a
)

= 2e2a
P
(
B2(a−log(K)) −2(a− log(K)) > a

)

= 2e2a
P
(
B2(a−log(K)) > 3a−2log(K)

)
. (2.93)

Hence, plugging (2.93) in (2.92):

f
G

(M(0))
K

(a) = 2
e2a

K
P
(
B2(a−log(K)) > 3a−2log(K)

)
,

which is (2.84).

2.6.5 An application of Proposition 2.1 to the Local Times of the
Martingale (Et , t ≥ 0)

We end this Section 2.6 by an application of Proposition 2.1 to the local times
(LK

t , t ≥ 0,K ≥ 0) of the martingale (Et , t ≥ 0).

Proposition 2.4. Let (LK
t , t ≥ 0,K ≥ 0) denote the family of local times of the mar-

tingale (Et , t ≥ 0). Then, for all 0 < K < ea and ν > 0:

(K −1)+ +
1
2

E

[
LK

T (ν)
a

]
=

K
2

E

[
Le2aν

t

]
− 1

2
E

[
Le2a(ν+1)

t

]
. (2.94)

where t =
2a2(2ν +1)
a− log(K)

.

Proof. We start by applying Tanaka’s formula to the martingale (Et , t ≥ 0) stopped

at the time s∧T (ν)
a . Using the identity Bt − t

2 = B(ν)
t −

(
1
2 +ν

)
t:

E

[(
K −E

s∧T (ν)
a

)+
]

= E

[(
K − exp

{
B(ν)

s∧T (ν)
a

−
(

1
2

+ν

)
(s∧T (ν)

a )
})+

]

= (K −1)+ +
1
2

E

[
LK

s∧T (ν)
a

]
.

We then let s tend to +∞, using the dominated convergence theorem for the term

E

[(
K −E

s∧T (ν)
a

)+
]

, and the monotone convergence theorem for E

[
LK

s∧T (ν)
a

]
. This

leads to:
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(K −1)+ +
1
2

E

[
LK

T (ν)
a

]
= E

[(
K − exp

{
a−

(
1
2

+ν

)
T (ν)

a

})+
]

= KE

[(
Et − e2aν

)+
]
−E

[(
Et − e2a(ν+1)

)+
]
,

where t =
2a2(2ν +1)
a− log(K)

from Proposition 2.1. It only remains to apply once again

Tanaka’s formula to obtain the result (2.94), since e2aν and e2a(ν+1) are larger than
1 (= E0).

��

Remark 2.3. Since the application ϕ : x 
→ ex is a C 1-diffeomorphism from R onto
]0,+∞[, we have, with obvious notation:

Lϕ(x)
t (ϕ(B(−1/2))) = ϕ ′(x)Lx

t (B
(−1/2)).

Thus, denoting by
(

Lx
t (B(−1/2)), t ≥ 0,x ∈ R

)
the family of local times of the semi-

martingale
(

B(−1/2)
t , t ≥ 0

)
, Proposition 2.4 can be rewritten:

(K −1)+ +
K
2

E

[
Llog(K)

T (ν)
a

(B(−1/2))
]

=
K
2

e2aν
E

[
L2aν

t (B(−1/2))
]
− e2a(ν+1)

2
E

[
L2a(ν+1)

t (B(−1/2))
]
. (2.95)

In the same spirit as that of Proposition 2.3, we could give, when ν = 0, a proba-
bilistic proof of identity (2.95). We leave this proof to the interested reader. Formula
(2.95) writes then:

E

[
Llog(K)

Ta
(B(−1/2))

]
= E

[
Llog(K)

2(a−log(K))(B
(−1/2))

]
−E

[
L2a−log(K)

2(a−log(K))(B
(1/2))

]
.

(2.96)

2.7 The case M∞ �= 0

2.7.1 Hypotheses

Our aim in this Section is to give a generalization of Theorem 2.1 when we re-
move the assumption M∞ = 0 a.s. More precisely, we still consider a positive
and continuous local martingale (Mt , t ≥ 0) defined on a filtered probability space
(Ω ,(Ft , t ≥ 0),F∞,P). We assume that (Ft := σ(Ms,s ≤ t), t ≥ 0) is the natu-
ral filtration of (Mt , t ≥ 0) and that F∞ :=

∨

t≥0
Ft . As a positive local martingale,
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(Mt , t ≥ 0) is a positive supermartingale, which therefore converges a.s. towards a
r.v M∞ as t → ∞. But, as opposed to the previous sections, we no longer assume
that M∞ = 0 a.s. Then, in this new framework, Theorem 2.1 extends in the following
way:

2.7.2 A Generalization of Theorem 2.1

Theorem 2.5. Let (Mt , t ≥ 0) a positive continuous local martingale. For every
K≥0:

E

[
1{G (M)

K ≤t} (K −M∞)+ |Ft

]
= (K −Mt)

+ . (2.97)

Of course, if M∞ = 0 a.s., we recover Theorem 2.1.

2.7.3 First Proof of Theorem 2.5

It hinges on the balayage formula which we first recall (see [70], Chapter VI, p.260):

Balayage formula:
Let (Yt , t ≥ 0) be a continuous semi-martingale and GY (t) = sup{s ≤ t; Ys = 0}.
Then, for any bounded predictable process (Φs,s ≥ 0), we have:

ΦGY (t)Yt = Φ0Y0 +
∫ t

0
ΦGY (s)dYs. (2.98)

We note GK(s) := sup{u ≤ s; Mu = K}. The balayage formula, applied to
(Yt = (K −Mt)

+ , t ≥ 0), becomes, for every bounded and predictable process
(Φs,s ≥ 0) and t ≥ 0:

ΦGK(t) (K −Mt)
+ = Φ0 (K −M0)

+ −
∫ t

0
ΦGK(s)1{Ms<K}dMs +

1
2

∫ t

0
ΦGK(s)dLK

s

(where (LK
s ,s ≥ 0) denotes the local time at level K

of the local martingale (Ms,s ≥ 0)),

= Φ0 (K −M0)
+ −

∫ t

0
ΦGK(s)1{Ms<K}dMs +

1
2

∫ t

0
ΦsdLK

s (2.99)

since dLK
s charges only the set of times for which Ms = K i.e. for which GK(s) = s.

We now apply (2.99) between t and +∞ to obtain:

E

[
Φ

G
(M)
K

(K −M∞)+ |Ft

]
= ΦGK(t) (K −Mt)

+ +
1
2

E

[∫ ∞

t
ΦsdLK

s |Ft

]
(2.100)
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since GK(∞) = G
(M)
K . Taking in (2.100) Φs = ϕ(s)1{s≤t} for a bounded Borel func-

tion ϕ : R
+ 
→ R and observing that GK(t) ≤ t and

∫ ∞
t ϕ(s)1{s≤t}dLK

s = 0, we ob-
tain:

E

[
ϕ
(
G

(M)
K

)
1{G (M)

K ≤t} (K −M∞)+ |Ft

]
= ϕ (GK(t))(K −Mt)

+ .

��

2.7.4 A Second Proof of Theorem 2.5

Let T be a Ft-stopping time. It is clear that:

E

[
1{G (M)

K ≤T} (K −M∞)+
]

= E

[
1{dK

T =∞} (K −M∞)+
]

(2.101)

with dK
T := inf{t > T ;Mt = K}, since {G (M)

K ≤ T} = {dK
T = ∞}. Then:

E

[
1{dK

T =∞} (K −M∞)+
]

= E

[
1{dK

T =∞}

(
K −MdK

T

)+
]

= E

[(
K −MdK

T

)+
]

(2.102)

since, on the set (dK
T < ∞),

(
K −MdK

T

)+
= 0. We now note that, for t between T

and dK
T , LK

t is constant since Mt �= K. Hence, from Tanaka’s formula, the RHS of
(2.102) equals:

E

[(
K −MdK

T

)+
]

= E
[
(K −MT )+

]
. (2.103)

Gathering (2.101), (2.102) and (2.103), we obtain:

E

[
1{G (M)

K ≤T} (K −M∞)+
]

= E
[
(K −MT )+

]
. (2.104)

This identity may be reinforced as:

E

[
1{G (M)

K ≤T} (K −M∞)+ |FT

]
= (K −MT )+

by replacing in (2.104) T by TΛ :=

{
T on Λ ,

+∞ on Λ c for any generic set Λ ∈ FT .

��
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2.7.5 On the Law of S∞ := sup
t≥0

Mt

We have seen in Section 2.1 that, when Mt −−→
t→∞

0 a.s., then:

S∞
(law)
=

M0

U
(2.105)

where U is uniform on [0,1] and independent from M0. What can be said about the
law of S∞ if we remove the assumption M∞ = 0 ? Going back to the proof of Lemma
2.1 and applying Doob’s optional stopping Theorem, we obtain, for b > a = M0 and
Tb := inf{t ≥ 0;Mt = b}:

E
[
MTb

]
= a (2.106)

i.e.

bP(S∞ ≥ b)+E
[
M∞1{S∞<b}

]
= a. (2.107)

Let us remark that, applying the monotone convergence theorem:

lim
b→∞

bP(S∞ ≥ b) = a−E[M∞]. (2.108)

Furthermore, relation (2.107) leads us to introduce the function Φ : R
+ → R

+ de-
fined by:

Φ(S∞) = E [M∞|S∞] . (2.109)

It is clear that Φ(x) ≤ x and (2.107) becomes:

bP(S∞ ≥ b)+E
[
Φ(S∞)1{S∞<b}

]
= a. (2.110)

Assuming Φ is given, we may consider (2.110) as an equation for the distribution
of S∞, and we obtain:

Proposition 2.5. For simplicity, we assume that for every x > 0, Φ(x) < x. Then, the
law of S∞ is given by:

P(S∞ ≥ b) = exp

(
−
∫ b

a

dx
x−Φ(x)

)
. (2.111)

Observe that, since S∞ < ∞ a.s., it follows from (2.111) that:
∫ ∞

a

dx
x−Φ(x)

= +∞. (2.112)

Proof. From formula (2.110), denoting μ(b) := P(S∞ ≥ b), we obtain:

bμ(b)−
∫ b

a
Φ(x)dμ(x) = a. (2.113)
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Consequently, by differentiation:

bdμ(b)+μ(b)db−Φ(b)dμ(b) = 0

i.e.
(b−Φ(b))dμ(b) = −μ(b)db (2.114)

The above equation yields:

μ(b) = C exp

(
−
∫ b

a

dx
x−Φ(x)

)
(2.115)

which implies C = 1 by taking b = a, since μ(a) = 1.
��

Example 2.7.5. Let (Bt , t ≥ 0) be a Brownian motion started at a > 0, and SB
t :=

sup
s≤t

Bs. For 0 < α < 1, we define the stopping time:

T (α)
a := inf{t ≥ 0; Bt = αSB

t } (2.116)

to which we associate the martingale
(

Mt = B
t∧T (α)

a
, t ≥ 0

)
. Then, Φ(x) = αx, and

consequently, we have:

∫ b

a

dx
x−Φ(x)

=
1

1−α
log

(
b
a

)
(b ≥ a) (2.117)

and

μ(b) = exp

(
− 1

1−α
log

(
b
a

))
=
(a

b

) 1
1−α (b ≥ a). (2.118)

(Observe that μ is the tail of a Pareto distribution.)

Remark 2.4.
a) Under which condition(s) is (Mt , t ≥ 0) uniformly integrable ? This question had
of course a negative answer when M∞ = 0 a.s. But now ? Uniform integrability is
equivalent to E[M∞] = E[M0] = a, which is satisfied if and only if (see (2.109)):

E [Φ(S∞)] = a. (2.119)

From (2.108), uniform integrability of (Mt , t ≥ 0) is also equivalent to:

lim
b→∞

bP(S∞ ≥ b) = 0. (2.120)

From (2.119) and (2.111), uniform integrability of (Mt , t ≥ 0) is also equivalent to:

∫ ∞

a

Φ(x)
x−Φ(x)

(
exp

(
−
∫ x

a

dy
y−Φ(y)

))
dx = a. (2.121)
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Let us check that (2.120) and (2.121) coincide. Indeed, we have, from (2.121):

−a =
∫ ∞

a

(
x−Φ(x)
x−Φ(x)

− x
x−Φ(x)

)(
exp

(
−
∫ x

a

dy
y−Φ(y)

))
dx

=
∫ ∞

a
μ(x)dx−

∫ ∞

a

x
x−Φ(x)

exp

(
−
∫ x

a

dy
y−Φ(y)

)
dx

=
∫ ∞

a
μ(x)dx+[xμ(x)]∞a −

∫ ∞

a
μ(x)dx

(after an integration by parts)

= lim
b→∞

bP(S∞ ≥ b)−a.

Going back to Example 2.7.5, we have: Φ(x) = αx and μ(b) = P(S∞ ≥ b) =
(

a
b

) 1
1−α . Hence: bP(S∞ ≥ b) = a

1
1−α b−

α
1−α −−−→

b→∞
0. Then, Example 2.7.5 is a case

of uniform integrability.

b) Can we describe all the laws of (Mt , t ≥ 0) which satisfy (2.109) for a given Φ ?
See Rogers [71] where the law of (S∞,M∞) is described in all generality. See also
Vallois [87]. However, these authors assume a priori that (Mt , t ≥ 0) is uniformly

integrable. We shall study later (see Chapter 3) the law of G
(M)
K when M∞ �= 0.

2.8 Extension of Theorem 2.1 to the Case of Orthogonal Local
Martingales

2.8.1 Statement of the Main Result

In this section, we shall extend Theorem 2.1 to the case of orthogonal local martin-

gales. Let (M(i)
t , t ≥ 0; i = 1, · · · ,n) be a set of n positive, continuous local martin-

gales such that, for all i = 1, · · · ,n:

lim
t→∞

M(i)
t = 0 a.s. (2.122)

We assume moreover that these martingales are orthogonal, i.e., for all 1≤ i < j ≤ n:
〈

M(i),M( j)
〉

t
= 0 (0 ≤ t < ∞) (2.123)

where
(〈

M(i),M( j)
〉

t
, t ≥ 0

)
denotes the bracket of the martingales M(i) and M( j).

The counterpart of Theorem 2.1 writes then:
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Theorem 2.6. Under the preceding hypotheses:

i) For every Ki ≥ 0 and every bounded Ft -measurable r.v. Ft:

E

[

Ft

n

∏
i=1

(
Ki −M(i)

t

)+
]

= E

[

Ft

(
n

∏
i=1

Ki

)

1{ ∨

i=1,··· ,n
G

(i)
Ki

≤t}

]

(2.124)

where
∨

i=1,··· ,n
G

(i)
Ki

:= sup
i=1,··· ,n

G
(M(i))
Ki

. (2.125)

ii) In other words, the submartingale P

(
∨

i=1,··· ,n
G

(i)
Ki

≤ t|Ft

)

equals:

P

(
∨

i=1,··· ,n
G

(i)
Ki

≤ t|Ft

)

=
n

∏
i=1

(

1− M(i)
t

Ki

)+

(2.126)

=
n

∏
i=1

P

(
G

(i)
Ki

≤ t|Ft

)
. (2.127)

We shall discuss the law of
∨

i=1,··· ,n
G

(i)
Ki

later (see Theorem 2.7). For the moment,

we give two proofs of Theorem 2.6. For clarity’s sake, we shall assume that n = 2,
i.e. we are considering two orthogonal local martingales (Mt , t ≥ 0) and (M′

t , t ≥ 0).
Clearly, our arguments extend easily to the general case.

2.8.2 First Proof of Theorem 2.6, via Enlargement Theory

(2.124) writes:

E

[
Ft (K −Mt)

+ (K′ −M′
t

)+
]

= E

[
FtKK′1{GK∨G ′

K′≤t}

]
. (2.128)

To prove (2.128), we first use Point (i) of Theorem 2.1 which allows to write the
LHS of (2.128) as:

E

[
Ft (K −Mt)

+ (K′ −M′
t

)+
]

= E

[
Ft
(
K′ −M′

t

)+
K1{GK≤t}

]
. (2.129)

Let us define
(
F K

t , t ≥ 0
)

the smallest filtration containing (Ft , t ≥ 0) and making
GK a stopping time. From Lemma 2.2 below, (M′

t , t ≥ 0) remains a local martingale
in this new filtration. Then, we may use again Theorem 2.1, this time with respect
to (M′

t , t ≥ 0) which is a local martingale in (F K
t , t ≥ 0) to obtain:
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E

[
Ft (K −Mt)

+ (K′ −M′
t

)+
]

= E

[
FtK1{GK≤t}

(
K′ −M′

t

)+
]

= E

[
FtK1{GK≤t}K′1{G ′

K′≤t}

]

= E

[
FtKK′1{GK∨G ′

K′≤t}

]
.

This is Theorem 2.6.

Lemma 2.2. (M′
t , t ≥ 0) is a local martingale in the enlarged filtration (F K

t , t ≥ 0).

Proof. For the reader’s convenience, we recall some enlargement formulae (see

Mansuy-Yor [51], and Subsection 3.2.1. Let Z(K)
t := P(GK > t|Ft) the Azéma su-

permartingale associated with GK . Then, if (M′
t , t ≥ 0) is a continuous (Ft , t ≥ 0)-

local martingale, there exists (M̃′
t , t ≥ 0) a (F K

t , t ≥ 0) local martingale such that:

M′
t = M̃′

t +
∫ t∧GK

0

d
〈

M′,Z(K)
〉

s

Z(K)
s

−
∫ t

t∧GK

d
〈

M′,Z(K)
〉

s

1−Z(K)
s

. (2.130)

In our situation, we have, from Theorem 2.1:

Z(K)
t =

(
1− Mt

K

)+

. (2.131)

This implies that:

d
〈

M′,Z(K)
〉

s
= −1{Ms<K}

d 〈M′,M〉s

K
= 0 (2.132)

since M and M′ are orthogonal. Hence, Lemma 2.2 and Theorem 2.6 are proven.
��

2.8.3 Second Proof of Theorem 2.6, via Knight’s Representation of
Orthogonal Continuous Martingales

It hinges upon the following:

Lemma 2.3. For every t ≥ 0, conditionally on Ft :
(

sup
u≥t

Mu , sup
u≥t

M′
u

)
(law)
=

(
Mt

U
,

M′
t

U ′

)
(2.133)

where, on the RHS of (2.133), U and U ′ are two independent r.v’s which are uniform
on [0,1], and independent from Ft .

Let us admit for a moment Lemma 2.3, and let us prove Theorem 2.6. We have,
since Mt −−→

t→∞
0 a.s. and M′

t −−→t→∞
0 a.s.:



58 2 Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times

P
(
GK ∨G ′

K′ ≤ t|Ft
)

= P

((
sup
u≥t

Mu < K

)
∩
(

sup
u≥t

M′
u < K′

)∣
∣Ft

)

= P

((
Mt

U
< K

)
∩
(

M′
t

U ′ < K′
)∣
∣Ft

)
(from Lemma 2.3)

= P

((
Mt

K
< U

)
∩
(

M′
t

K′ < U ′
)∣
∣Ft

)

=
(

1− Mt

K

)+(
1− M′

t

K′

)+

which is Theorem 2.6.

We now give two proofs of Lemma 2.3.

First proof of Lemma 2.3
Replacing (Ms,s≥ 0) and (M′

s,s≥ 0) by (Mt+s,s≥ 0) and (M′
t+s,s≥ 0), it is enough

to prove Lemma 2.3 for t = 0. Let b ≥ a, b′ ≥ a′, Tb := inf{t ≥ 0; Mt = b} and

T ′
b′ := inf{t ≥ 0; M′

t = b′}. Since M and M′ are orthogonal,

(
Mt∧Tb ·M′

t∧T ′
b′
, t ≥ 0

)

is a bounded martingale. By Doob’s optional stopping Theorem, we have:

aa′ = E

[
MTbM′

T ′
b′

]

= bb′P
(
Tb < ∞,T ′

b′ < ∞
)

since MTb = 0 (resp. M′
T ′

b′
= 0) on the set {Tb = +∞} (resp. {T ′

b′ = +∞}). Thus:

P

({
sup
s≥0

Ms > b

}
∩
{

sup
s≥0

M′
s > b′

})
= P

(
Tb < ∞,T ′

b′ < ∞
)

=
a
b

a′

b′

which is Lemma 2.3.

Second proof of Lemma 2.3
From the Dambis, Dubins, Schwarz’s Theorem, there exist two Brownian mo-
tions (βu,u ≤ T0(β )) and (β ′

u,u ≤ T0(β ′)) with T0(β ) := inf{t ≥ 0; βt = 0} (resp.
T0(β ′) := inf{t ≥ 0; β ′

t = 0}), started at a and a′ such that:

Mu = β〈M〉u
, M′

u = β ′
〈M′〉u

, (2.134)

Moreover:
〈M〉∞ = T0(β ) ,

〈
M′〉

∞ = T0(β ′). (2.135)

Let us admit for a moment that the orthogonality of M and M′ implies:

(βu,u ≤ T0(β )) and
(
β ′

u,u ≤ T0(β ′)
)

are independent, (2.136)

and let us show that (2.136) implies Lemma 2.3. As we have already mentioned it,
it is sufficient to prove Lemma 2.3 for t = 0. But, since from Lemma 2.1:
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sup
u≥0

Mu = sup
u≤T0(β )

βu
(law)
=

a
U

,

(2.136) implies then:

(
sup
u≥0

Mu , sup
u≥0

M′
u

)
=

(

sup
u≤T0(β )

βu , sup
u≤T0(β ′)

β ′
u

)
(law)
=

(
a
U

,
a′

U ′

)
(2.137)

where, on the RHS of (2.137), U and U ′ are two independent r.v.’s uniform on [0,1].

It remains to prove (2.136)
Of course, when 〈M〉∞ = 〈M′〉∞ = +∞, relation (2.136) is the celebrated Knight’s
Theorem on the representation of orthogonal martingales. The proof we shall
present below is a variant of P.A. Meyer’s proof [56] of Knight’s Theorem. We con-
sider two square integrable variables H and H ′ which are measurable with respect to
σ (βu,u ≤ T0(β )) and σ (β ′

u,u ≤ T0(β ′)). From Itô’s representation Theorem, they
may be written as:

H = E[H]+
∫ T0(β )

0
hudβu , H ′ = E[H ′]+

∫ T0(β ′)

0
h′udβ ′

u (2.138)

where (hu,u ≥ 0) and (h′u,u ≥ 0) are two predictable processes with respect to the

natural filtration of
(
βu∧T0(β ),u ≥ 0

)
and

(
β ′

u∧T0(β ′),u ≥ 0
)

such that:

E

[∫ T0(β )

0
(hu)

2 du+
∫ T0(β ′)

0

(
h′u
)2

du

]
< ∞.

Now, after the change of variable u = 〈M〉t (resp. u = 〈M′〉t ) in (2.138), we obtain:

H = E[H]+
∫ ∞

0
h〈M〉t dMt , H ′ = E[H ′]+

∫ ∞

0
h′〈M′〉t dM′

t , (2.139)

and, because of the orthogonality of M and M′, and Itô’s formula:

E[HH ′] = E[H]E[H ′],

which is Lemma 2.3.
��

2.8.4 On the Law of
∨

i=1,··· ,n
G

(i)
Ki

We now give the counterpart of Theorem 2.3 in the situation of Section 2.8, where
we deal with several orthogonal local martingales. As previously, to simplify, we
assume that n = 2 and we make the following hypotheses:
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i) The r.v. Mt (resp. M′
t ) admits a density x 
→ mt(x) (resp. x 
→ m′

t(x)) which is
jointly continuous in t and x.

ii) There exist two previsible processes (σt , t ≥ 0) and (σ ′
t , t ≥ 0) such that:

d 〈M〉t = σ2
t dt , d

〈
M′〉

t =
(
σ ′

t

)2
dt.

Then, there is the following.

Theorem 2.7.

P
((

GK ∨G ′
K′
)
∈ dt

)
=
(

1− M0

K

)+(
1− M′

0

K

)+

δ0(dt)+ γK,K′(t)dt (t ≥ 0)

(2.140)
with

γK,K′(t) =
1

2K
E

[

σ2
t

(
1− M′

t

K′

)+

|Mt = K

]

mt(K)

+
1

2K′ E

[
(
σ ′

t

)2
(

1− Mt

K

)+

|M′
t = K′

]

m′
t(K

′) (2.141)

where all the functions of several variables appearing in (2.141) admit jointly con-
tinuous versions.

The proof of (2.140) is essentially the same as that of Theorem 2.3. We start by
writing, applying Theorem 2.6:

P
((

GK ∨G ′
K′
)
≤ t

)
= E

[(
1− Mt

K

)+(
1− M′

t

K

)+
]

(2.142)

and we develop the RHS of (2.142) thanks to Tanaka’s formula to obtain:

P
((

GK ∨G ′
K′
)
≤ t

)
=
(

1− M0

K

)+(
1− M′

0

K

)+

+
1
2

(

E

[∫ t

0

(
1− M′

s

K′

)+ dLK
s

K

]

+E

[∫ t

0

(
1− Ms

K

)+ dL′K′
s

K′

])

(since M and M′ are orthogonal) where (LK
s ,s ≥ 0) (resp. (L′K′

s ,s ≥ 0)) denotes the
local time of M at level K (resp. of M′ at level K′). And, as for Theorem 2.3, the
proof can now be ended by applying the occupation density formula.

Problem 2.1 (On time inversion of a Lévy process).
1) Let X1,X2, . . . ,Xn, . . . denote a sequence of i.i.d. integrable r.v’s. Define:

S0 = 0, Sn =
n

∑
i=1

Xi (n ≥ 1).
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i) Prove that, for every 1 ≤ i ≤ n , E[Xi|Sn] =
Sn

n
.

ii) Let F+
n+1 := σ(Sn+1,Sn+2, . . .). Prove that, for every n ≥ 1:

E

[
Sn

n
|F+

n+1

]
=

Sn+1

n+1
.

2) Let (Λt , t ≥ 0) be an integrable Lévy process, i.e. for any t ≥ 0, E[|Λt |] < ∞.

i) Prove that E[Λt ] = tE[Λ1].

ii) Let F+
t := σ(Λs;s ≥ t). Prove that

(
1
t
Λt , t ≥ 0

)
is a F+

t -inverse martingale,

i.e, for every s < t:

E

[
Λs

s
|F+

t

]
=

Λt

t
.

Hint: Use discretization and 1) (see [36]).
iii) Define:

Mt =

{
tΛ 1

t
if t > 0,

E[Λ1] if t = 0.
(1)

Prove that (Mt , t ≥ 0) is a martingale with respect to the filtration
G :=

{
σ
(
Λu,u ≥ 1

t

)
, t > 0

}
, which is the natural filtration of (Mt , t ≥ 0).

(Note that Λ being a càdlàg process, the martingale M as defined by (1) is left-
continuous (and right-limited). To get a right-continuous process, one should
take Mt := tΛ( 1

t )
− .)

iv) Prove that the process (Mt , t ≥ 0) is an (inhomogeneous) Markov process.
v) Identify (Mt , t ≥ 0) when Λt is a Brownian motion with drift.

3) We now assume that (Λt , t ≥ 0) is an integrable subordinator, with Lévy measure
ν, and without drift term. Thus, there is the Lévy-Khintchine formula:

E

[
e−λΛt

]
= exp

(
−t

∫ ∞

0
(1− e−λx)ν(dx)

)
with

∫ ∞

0
(x∧1)ν(dx) < ∞. (2)

i) Prove that the integrability of Λt is equivalent to
∫ ∞

0 xν(dx) < ∞.
ii) Observe that the martingale (Mt , t ≥ 0) has no positive jumps.
iii) Prove that Mt −−→

t→∞
0 a.s.; to start with, one may show that Mt −−→

t→∞
0 in law.

iv) Prove that, for every K ≤ E[Λ1] and every t ≥ 0:

1
K

E
[
(K −Mt)+

]
= P

(
G

(M)
K ≤ t

)
(3)

with G
(M)
K := sup{t ≥ 0; Mt = K}. (Theorem 2.1 may be useful).

v) Let, for every K < E[Λ1], T (Λ)
K := inf{u ≥ 0; Λu ≥ Ku}. Prove that T (Λ)

K is finite

a.s. and that G
(M)
K =

1

T (Λ)
K

a.s. Deduce that, for every t ≥ 0:
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P

(
T (Λ)

K ≥ t
)

=
1
K

E
[
(K −Mt)+

]
.

vi) Compute explicitly the law of T (Λ)
K when (Λt , t ≥ 0) is the gamma subordinator.

Recall that the density fΛt of Λt is then equal to:

fΛt (x) =
1

Γ (t)
e−xxt−11{x>0}. (4)

Solve the same question when (Λt , t ≥ 0) is the Poisson process with parame-
ter λ .

4) We now complete the results of question 3) when (Λt , t ≥ 0) is the gamma sub-
ordinator. We recall that the density of Λt is given by (4), and that its Lévy measure
ν is given by:

ν(dx) =
e−x

x
dx. (5)

i) Exploit the fact that, conditionally upon γ 1
s
= y, the law of γ 1

t
, for s < t, is given

by:

γ 1
t

(law)
= yβ

(
1
t
,

1
s
− 1

t

)
(6)

where β
(

1
t ,

1
s −

1
t

)
is a beta variable with parameters 1

t and 1
s −

1
t , in order to

show that, for every α > 0:
⎛

⎜
⎝M(α)

t =
Γ
(

1
t

)(
γ 1

t

)α

Γ
(
α + 1

t

) , t ≥ 0

⎞

⎟
⎠ is a (Gt , t ≥ 0) martingale. (7)

ii) Using (7) with α = 2, deduce that the bracket of (Mt , t ≥ 0) is given by:

〈M〉t =
∫ t

0

M2
s

1+ s
ds.

iii) Prove more generally that:

d〈M(α),M(β )〉t = −M(α)
t M(β )

t

θ ′
α,β (t)

θα,β (t)
dt

where θα,β (t) =
Γ (α + 1

t )Γ (β + 1
t )

Γ ( 1
t )Γ (α +β + 1

t )
.

iv) Prove that the infinitesimal generator L̃ of the Markov process (Mt , t ≥ 0) satis-
fies:

L̃ f (s,x) =
x f ′(x)

s
+

1
s2

∫ 1

0
( f (xz)− f (x))

z
1
s −1

1− z
dz (8)

for every C 1 function f . Check that, for f1(x) := x, L̃ f1 = 0.
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v) Prove that, for every C 2 function f , lim
s→0

L̃ f (s,x) =
x2 f ′′(x)

2
.

vi) Use (8) to give another proof of (7) when α ∈ N
∗.

vii)Use relation (7) to obtain, for any integer n, the law of T (n)
K where:

T (n)
K := inf

{
u ≥ 0;Λu ≥ [Ku(1+u)(1+2u) . . .(1+(n−1)u)]

1
n

}

(and K < E[Λ1] = 1).

5) We now improve upon the results of question 3) when (Λt , t ≥ 0) is the Poisson
process of parameter 1 (and Lévy measure ν(dx) = δ1(dx)).

i) Prove that, for s < t, conditionally upon Λ 1
s
= y, Λ 1

t
follows a binomial distribu-

tion B
(
y, s

t

)
with parameters y and

(
s
t

)
.

ii) Let L̃ denote the infinitesimal generator of the Markov process (Mt , t ≥ 0). Prove
that:

L̃ f (s,x) =
x f ′(x)

s
+( f (x− s)− f (x))

x
s2 (9)

for f in C 1. Check that, for f1(x) =: x, L̃ f1 = 0.

iii) Prove that, for every C 2 function f , lim
s→0

L̃ f (s,x) =
1
2

x f ′′(x).

iv) Compute L̃ f2(s,x), with f2(x) = x2. Deduce that (M2
t −tMt , t ≥ 0) is a (Gt , t ≥ 0)

martingale and that the bracket of (Mt , t ≥ 0) is given by:

〈M〉t =
∫ t

0
Msds.

v) Compute L̃ fn(s,x), with fn(x) = xn (n ∈ N).
(

Answer: L̃ f (s,x) =
n−1

∑
j=1

( n
j−1

)
x j(−s)n−1− j.

)

2.9 Notes and Comments

The results of Sections 2.1, 2.2, 2.3, 2.4 and 2.7 are taken from the preprints of A.
Bentata and M. Yor (see [5], [6] and [5, F], [6, F], [7, F]). The description of the
European put and call in terms of last passage times also appears in D. Madan, B.
Roynette and M. Yor (see [47] and [48]). The results of Section 2.5 are taken from
J. Pitman and M. Yor ([65]). The study of the local martingale of Example 2.3.e,(

1
Xt

, t ≥ 0

)
, where (Xt , t ≥ 0) is a Bessel process of dimension 3 is borrowed from

Ju-Yi Yen and M. Yor ([93]) while the study of the càdlàg martingale in Section 2.6
is due to C. Profeta ([67]). The generalization of these results to the case of several
orthogonal continuous local martingales is taken from B. Roynette, Y. Yano and
M. Yor (see [74]).



Chapter 3
Representation of some particular Azéma
supermartingales

Abstract We show how the formula obtained in Chapter 2 for the supermartin-
gale associated with a last passage time at a given level fits with a more general
representation of Azéma supermartingales.

We also recall progressive enlargement formulae, and particularize them to our
framework.

Finally, we discuss a representation problem for Skorokhod submartingales.

3.1 A General Representation Theorem

3.1.1 Introduction

Let (Mt , t ≥ 0) be a positive, continuous local martingale which converges to 0 as
t → ∞, and, for K ≥ 0:

GK := G
(M)
K := sup{t ≥ 0;Mt = K}. (3.1)

We have seen in Chapter 2 that GK plays an important (although somewhat hidden!)
role in option pricing. In particular, from Theorem 2.1, the formula

P(GK ≤ t|Ft) =
(

1− Mt

K

)+

(3.2)

holds, or equivalently,

P(GK > t|Ft) =
(

Mt

K

)
∧1. (3.3)

Of course, GK is a last passage time. That is why we start this chapter by recalling, in
a general framework, a representation result for Azéma supermartingales associated
with ends of predictable sets.

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7 3, © Springer-Verlag Berlin Heidelberg 2010
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3.1.2 General Framework

Let (Ω ,(Ft , t ≥ 0),(Xt , t ≥ 0),Px,x ≥ 0) be a transient diffusion taking values in
R

+, and Γ a compact subset of R
+. We define L to be:

L : = sup{t ≥ 0; Xt ∈ Γ } (3.4)

(= 0 if the set {t ≥ 0;Xt ∈ Γ } is empty.)

We would like to describe the pre L-process (Xt , t ≤ L) and the post L-process
(Xt+L, t ≥ 0). But, in order to apply the method of enlargement of filtration, we need

first to study the Azéma supermartingale (Z(L)
t , t ≥ 0) defined by:

(
Zt := Z(L)

t = P(L > t|Ft) , t ≥ 0
)

. (3.5)

We shall start by stating a representation theorem of such a supermartingale. To this
end, we make two extra assumptions:

(C) All (Ft)-martingales are continuous. (3.6)

(A) For any stopping time T , P(L = T ) = 0. (3.7)

((C) stands for continuous (martingales), and (A) for avoiding (stopping times)). Of
course, assumption (C) is fulfilled in the Brownian set up.

3.1.3 Statement of the Representation Theorem

Theorem 3.1. Under (C) and (A), there exists a unique positive local martingale
(Nt , t ≥ 0), with N0 = 1 such that:

P(L > t|Ft) =
Nt

St
(3.8)

where
St := sup

s≤t
Ns (t ≥ 0). (3.9)

We refer to ([51], Proposition 1.3, p.16) for the proof of Theorem 3.1. Let us just
note that, since L < ∞ a.s., Nt −−→

t→∞
0 a.s. We now make some further remarks about

Theorem 3.1:
• Note first that log(S∞) is exponentially distributed, since, from Lemma 2.1,

log(S∞)
(law)
= log

(
1
U

)
(3.10)

where U is uniform on [0,1].
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• Then, the additive decomposition of the supermartingale
Nt

St
is given by:

Nt

St
= 1+

∫ t

0

dNu

Su
− log(St) = E [log(S∞)|Ft ]− log(St). (3.11)

Indeed, from Itô’s formula, we have:

Nt

St
= 1+

∫ t

0

dNu

Su
−
∫ t

0

NudSu

S2
u

= 1+
∫ t

0

dNu

Su
−
∫ t

0

dSu

Su

(since dSu only charges the set {u ≥ 0;Nu = Su})

= 1+
∫ t

0

dNu

Su
− log(St). (3.12)

Then:

0 ≤ Nt

St
+ log(St) = 1+

∫ t

0

dNu

Su
≤ 1+ log(S∞)

since S0 = N0 = 1 and S is an increasing process. Therefore, the martingale(∫ t

0

dNu

Su
, t ≥ 0

)
belongs to H1, and we can pass to the limit when t tends to +∞

in (3.12). Since
Nt

St
−−→
t→∞

0 a.s., this yields:

0 = 1+
∫ +∞

0

dNu

Su
− log(S∞),

thus:

log(S∞) = 1+
∫ +∞

0

dNu

Su

and

E [log(S∞)|Ft ] = E

[
1+

∫ +∞

0

dNu

Su

∣
∣Ft

]
= 1+

∫ t

0

dNu

Su
.

• The martingale E [log(S∞)|Ft ] belongs to (BMO) (see [70], Exercise 3.16, p.75)
since, from (3.11):

E [log(S∞)− log(St)|Ft ] ≤ 1. (3.13)

3.1.4 Application of the Representation Theorem 3.1 to the
Supermartingale (P(GK > t|Ft) , t ≥ 0), when M∞ = 0

Let (Mt , t ≥ 0) be a positive, continuous local martingale such that M0 = a > 0 and
M∞ = 0 a.s. We assume that (Mt , t ≥ 0) is defined on a filtered probability space
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(
Ω ,(Ft , t ≥ 0),F∞ :=

∨

t≥0
Ft ,P

)
, and we apply Theorem 3.1 with L := GK =

sup{t ≥ 0; Mt = K}. This leads to:

Theorem 3.2. Let M0 = a ≥ K. Then:

P(GK > t|Ft) =
(

Mt

K
∧1

)
=

Nt

St
(3.14)

where (Nt , t ≥ 0) is the positive local martingale converging to 0 as t → ∞ defined
by:

Nt :=
(

Mt

K
∧1

)
exp

(
1

2K
LK

t

)
, (3.15)

St := sup
s≤t

Ns = exp

(
1

2K
LK

t

)
(3.16)

and (LK
t , t ≥ 0) denotes the local time of (Mt , t ≥ 0) at level K.

Remark 3.1. Note that it follows from the previous remarks that
1

2K
LK
∞ (= log(S∞))

is exponentially distributed.

Proof. From Tanaka’s formula, Theorem 2.1 and Theorem 3.1, we have:

P(GK > t|Ft) =
Mt

K
∧1 = 1+

1
K

∫ t

0
1{Ms≤K}dMs −

1
2K

LK
t =

Nt

St
. (3.17)

The comparison of (3.11) and (3.17) implies:

∫ t

0

dNu

Su
=

1
K

∫ t

0
1{Ms≤K}dMs, (3.18)

and
1

2K
LK

t = log(St). (3.19)

Hence

Nt =
(

Mt

K
∧1

)
St

=
(

Mt

K
∧1

)
exp

(
1

2K
LK

t

)
. (3.20)

Note that, since Mt −−→
t→∞

0 a.s., it follows from (3.20) that Nt −−→
t→∞

0 a.s., since

LK
t = LK

∞ < ∞ for t large enough.
��

Remark 3.2. On the other hand, if K > a:
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P(GK = 0) = P

(
sup
t≥0

Mt < K

)
= 1− a

K

from Lemma 2.1. Hence, for the stopping time T ≡ 0, P(GK = T = 0) > 0 and
hypothesis (A) is not fulfilled.

3.1.5 A Remark on Theorem 3.2

a) We now compare the results of Theorems 3.1 and 3.2. We remark that not ev-

ery supermartingale of the form

(
Nt

St
, t ≥ 0

)
can be written as

(
Mt

K
∧1, t ≥ 0

)
.

Indeed, assuming:
Mt

K
∧1 =

Nt

St
,

we deduce that:

d〈N〉t = exp

(
LK

t

K

)
1{Mt<K}

d〈M〉t

K2 . (3.21)

Now, in a Brownian setting, we have d〈N〉t = n2
t dt and d〈M〉t = m2

t dt, for two
(Ft , t ≥ 0) predictable processes (mt , t ≥ 0) and (nt , t ≥ 0). Then (3.21) implies:

n2
t =

1
K2 exp

(
LK

t

K

)
1{Mt<K}m2

t dt ·P a.s.

Consequently:

n2
t = 0 on {(t,ω); Mt(ω) > K} dt ·P a.s.

However, this cannot be satisfied if we start, for example, from a local martingale N
such that n2

t > 0 for all t. Note that the random set {t ≥ 0; Mt > K} is not empty. If
it were, then the local time at level K of M would be equal to 0, which is in contra-

diction with S∞
(law)
=

M0

U
.

b) Let (Mt , t ≥ 0)∈M 0,c
+ as in Chapter 2. It is now natural to ask the following ques-

tion: for which functions h : R
+ → [0,1] is it true that, for any (Mt , t ≥ 0) belonging

to M 0,c
+ , (h(Mt), t ≥ 0) is an Azéma supermartingale, i.e. may be written:

h(Mt) =
Nt

St
= M̃t ∧1. (3.22)

(We choose K = 1 in (3.14) without loss of generality.) We shall call such a function
h an Azéma function. Here is a partial answer to this question:

Proposition 3.1. Assume that h is an Azéma function such that:

i) {x;h(x) < 1} = [0,b[ for some positive real b.
ii) h′′, in the Schwartz distribution sense, is a bounded measure.
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Then:
h(x) =

( x
b

)
∧1. (3.23)

Proof. From (ii) and the Itô-Tanaka formula, for any (Mt , t ≥ 0) ∈ M 0,c
+ , we have:

h(Mt) = h(M0)+
∫ t

0
h′(Ms)dMs +

1
2

∫ ∞

0
h′′(dx)Lx

t (M) (3.24)

where (Lx
t (M), t ≥ 0,x ≥ 0) is the family of local times of M. Since (h(Mt), t ≥ 0)

is an Azéma supermartingale, its increasing process, in (3.24), is carried by the set
{s ≥ 0; h(Ms) = 1} (from (3.11)). Therefore:

∫ t

0
1{h(Ms)<1}

∫ ∞

0
h′′(dx)dsL

x
s(M) = 0. (3.25)

Now, the LHS of (3.25) equals:
∫ ∞

0
h′′(dx)1{h(x)<1}Lx

t (M) =
∫

[0,b[
h′′(dx)Lx

t (M)

as a consequence of hypothesis (i). This is equivalent to h′′(dx) = 0 on [0,b[, thus
h(x) = cx + d on [0,b[. Furthermore, h(0) = 0, since lim

t→∞
h(Mt) = 0 for any M ∈

M 0,c
+ . Thus, h(x) = cx on [0,b[, and applying (i) once again yields the result, since

h ≤ 1 from (3.22).
��

3.2 Study of the Pre GK- and Post GK-processes, when M∞ = 0

Let (Mt , t ≥ 0)∈M 0,c
+ , K ≥ 0 such that M0 = a ≥K, and GK := sup{t ≥ 0;Mt = K}.

We shall now study the pre GK- and post GK-processes (Ms,s ≤ GK) and (MGK+s,
s ≥ 0).

3.2.1 Enlargement of Filtration Formulae

For that study, we shall consider the enlarged filtration (F K
t , t ≥ 0), i.e. the smallest

filtration containing the initial filtration (Ft , t ≥ 0) and which makes GK a stopping
time. We assume that hypotheses (C) and (A) are fulfilled (which implies, in partic-
ular, that K ≤ a; see Remark 3.2). Let (Zt , t ≥ 0) denote the Azéma supermartingale
studied in Subsection 3.1.4:

Zt = P(GK > t|Ft) =
Nt

St
. (3.26)
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Then, for every local martingale (Xt , t ≥ 0), there exists a (F K
t , t ≥ 0)-local martin-

gale (X̃t , t ≥ 0) such that:

Xt = X̃t +
∫ t∧GK

0

d〈X ,Z〉s

Zs
−
∫ t

t∧GK

d〈X ,Z〉s

1−Zs
. (3.27)

Now, since Zt =
Nt

St
=
(

Mt

K

)
∧1, we have:

Xt = X̃t +
∫ t∧GK

0
1{Ms<K}

d〈X ,M〉s

Ms
−
∫ t

t∧GK

d〈X ,M〉s

K −Ms
. (3.28)

It is of some interest to take Xt = Mt . Formula (3.28) then becomes:

Mt = M̃t +
∫ t∧GK

0
1{Ms<K}

d〈M〉s

Ms
−
∫ t

t∧GK

d〈M〉s

K −Ms
. (3.29)

3.2.2 Study of the Post GK-Process

We recall that K ≤ a = M0. Hence, GK < ∞ a.s.

Proposition 3.2. Let us define (Rt = K − MGK+t , t ≥ 0). Then, there exists a 3-
dimensional Bessel process (ρu,u ≥ 0), starting at 0 and considered up to TK(ρ) :=
inf{u ≥ 0; ρu = K} such that:

(Rt , t ≥ 0) =
(
ρ〈M̂〉t , t ≥ 0

)
(3.30)

where, with the notation of (3.29), 〈M̂〉t = 〈M̃〉GK+t −〈M̃〉GK , and 〈M̂〉∞ = TK(ρ).

Proof. From (3.29), we may write:

MGK+t = K + M̂t −
∫ t

0

d〈M〉GK+s

K −MGK+s
, (3.31)

with M̂t = M̃GK+t − M̃GK , i.e.

Rt = −M̂t +
∫ t

0

d〈M〉GK+s

Rs
. (3.32)

Now, there exists a Brownian motion (βu,u ≥ 0) such that M̂t = β〈M̂〉t . Hence, since

〈M̂〉t = 〈M̃〉GK+t −〈M̃〉GK ,

Rt = −β〈M̂〉t +
∫ t

0

d〈M̂〉s

Rs
. (3.33)
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Therefore, by change of time, there exists a Bessel process ρ of dimension 3 starting
at 0 such that (Rt = ρ〈M̂〉t ). Since Mt −−→

t→∞
0 a.s, Rt −−→

t→∞
K a.s, and ρ is considered

up to TK(ρ) := inf{u ≥ 0;ρu = K} = 〈M̂〉∞.
��

3.2.3 Study of the Pre GK-Process

In Section 2.4, we have already described the law of the r.v. GK . We shall now de-
scribe the law of the pre GK-process (Ms,s ≤ GK) conditionally on GK . To proceed,
we assume, as in Section 2.4, that:

i) for every t > 0, there exists a measurable function (t,x) 
→ mt(x) such that
(mt(x),x ≥ 0) is the density of the law of Mt ,

ii) there exists a predictable process (σt , t ≥ 0) such that

d〈M〉t = σ2
t dt. (3.34)

We shall consider a measurable choice of the function
(t,x) 
→ θt(x) := E

[
σ2

t |Mt = x
]
.

However, note the difference with our hypothesis in Subsection 2.4.1: we no longer
make continuity assumptions for these functions.

Theorem 3.3. Let (Φu,u ≥ 0) denote a positive (Fu,u ≥ 0) predictable process.
Then:

i) We have:

E
[
ΦGK

]
= E

[

Φ0

(
1− M0

K

)+
]

+
1

2K

∫ ∞

0
E
[
Φsσ2

s |Ms = K
]

ms(K)ds dK a.e.

(3.35)
ii) As a consequence of (i), we recover:

P(GK ∈ dt) =
(

1− M0

K

)+

δ0(dt)+
1

2K
θt(K)mt(K)1{t>0}dt dK a.e.

(3.36)
iii) Furthermore:

E
[
ΦGK |GK = t

]
=

E
[
Φtσ2

t |Mt = K
]

E
[
σ2

t |Mt = K
] P(GK ∈ dt) a.e. (3.37)

Proof. We apply the balayage formula (2.98) to the process Yt = (K −Mt)+, with
t = +∞, and we take expectations. We obtain:

E
[
ΦGK (K −M∞)+

]
= E

[
Φ0(K −M0)+

]
+

1
2

E

[∫ ∞

0
ΦsdLK

s

]
, (3.38)
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since GY (∞) = GK , and dLK
s only charges the set {s≥ 0; Ms = K}= {s≥ 0; GK(s) =

s}. Now, since M∞ = 0 a.s.:

E
[
ΦGK

]
= E

[

Φ0

(
1− M0

K

)+
]

+
1

2K
E

[∫ ∞

0
ΦsdLK

s

]
. (3.39)

Hence, (3.35) will be proven if we show:

E

[∫ ∞

0
ΦsdLK

s

]
=

∫ ∞

0
E
[
Φsσ2

s |Ms = K
]

ms(K)ds dK a.e. (3.40)

In order to prove (3.40), we use the density of occupation formula (2.45). Integrating
Φs on both sides of (2.45) yields, using hypothesis (ii):

∫ ∞

0
Φs f (Ms)σ2

s ds =
∫ ∞

0
dK f (K)

(∫ ∞

0
ΦsdLK

s

)
. (3.41)

Taking expectations on both sides, we obtain, with hypothesis (i):

∫ ∞

0
f (K)dK

∫ ∞

0
E
[
Φsσ2

s |Ms = K
]

ms(K)ds =
∫ ∞

0
f (K)dKE

[∫ ∞

0
ΦsdLK

s

]
(3.42)

which is easily seen to imply (3.40). Then, replacing in (3.35) Φs by Φsg(s), for a
generic Borel function g : R

+ → R
+, we deduce (3.36) and (3.37).

��

Example 3.2.3. The particular case where (Mt , t ≥ 0) is Markovian, e.g. the Black-
Scholes situation where Mt = Et , allows for some simplifications of the above for-
mula. In this case, σs =σ(s,Ms) with σ(s,x) a deterministic function, and we obtain
from (3.37):

E
[
ΦGK |GK = s

]
= E [Φs|Ms = K] ,

i.e. conditionally on {GK = s}, the pre GK-process is the bridge (of M) on the time
interval [0,s], ending at K.

3.2.4 Some Predictable Compensators

The computations we have made in the previous section make it possible to derive,
without further efforts, some explicit expressions for several predictable compen-
sators. Let (Ct , t ≥ 0) an increasing process defined on a filtered probability space
(Ω ,(Ft , t ≥ 0),P) such that C0 = 0 and which is not necessarily adapted. Then,
there exists a unique predictable increasing process (At , t ≥ 0) with A0 = 0 such that
for all predictable, positive processes (Φt , t ≥ 0):
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E

[∫ ∞

0
ΦsdCs

]
= E

[∫ ∞

0
ΦsdAs

]
. (3.43)

(At , t ≥ 0) is called the predictable compensator of the process (Ct , t ≥ 0). Let
(Mt , t ≥ 0) ∈ M 0,c

+ . For K ≥ 0, let (ΛK(t), t ≥ 0) be the increasing process defined
by: (

ΛK(t) = 1{0<GK≤t}, t ≥ 0
)
. (3.44)

Let us also define:

S[t,+∞[ := sup
s≥t

Ms, S∞ := sup
s≥0

Ms, S′t = S∞−S[t,+∞[. (3.45)

Proposition 3.3.

i) The predictable compensator of (ΛK(t), t ≥ 0) is the process

(
1

2K
LK

t , t ≥ 0

)
. (3.46)

ii) The predictable compensator of (S′t , t ≥ 0) is the process

(
1
2

∫ t

0

d〈M〉s

Ms
, t ≥ 0

)
(3.47)

with the convention
1

Ms
= 0 for s ≥ T0(M) := inf{t ≥ 0;Mt = 0}.

Proof. We first prove Point (i)
It is an immediate consequence of (3.38). Indeed, with Φ0 = 0:

E

[∫ ∞

0
Φsds

(
1{0<GK≤s}

)
]

= E
[
ΦGK

]
=

1
2K

E

[∫ ∞

0
ΦsdLK

s

]
, (3.48)

since M∞ = 0.
We now prove Point (ii)
We integrate both sides of (3.48) with respect to f (K)dK, for f Borel and positive.
This yields:

E

[∫ ∞

0
f (K)ΦGK dK

]
= E

[
1
2

∫ ∞

0
f (K)

dK
K

(∫ ∞

0
ΦsdLK

s

)]

= E

[
1
2

∫ ∞

0
f (Ms)Φs

d〈M〉s

Ms

]
. (3.49)

from the density of occupation formula. We note that {GK ≤ t}=
{

S[t,+∞[ < K
}

, i.e.
the inverse of K 
→ GK is t 
→ S[t,+∞[. As a consequence, we may express the LHS
of (3.49) as:

E

[∫ ∞

0
f (S[t,+∞[)ΦtdS′t

]
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which we compare to the RHS of (3.49). Taking f (x) = 1, we obtain:

E

[∫ ∞

0
ΦtdS′t

]
=

1
2

[∫ ∞

0
Φt

d〈M〉t

Mt

]
(3.50)

which is Point (ii) of Proposition 3.3.
��

Remark 3.3. Applying (3.50) with Φt = f (Mt), we have:

E

[∫ ∞

0
f (Mt)dS′t

]
= −E

[∫ ∞

0
f (S[t,+∞[)dS[t,+∞[

]

(since the support of S′t is the set {t;Mt = S[t,+∞[}
and dS′t = −dS[t,+∞[)

= E

[∫ S∞

0
f (x)dx

]

(after the change of variable S[t,+∞[ = x)

=
∫ ∞

0
f (x)

(a
x
∧1

)
dx

(since S∞
(law)
=

a
U

, with U uniform on [0,1]).

Hence, from (3.50):

∫ ∞

0
f (x)

(a
x
∧1

)
dx =

1
2

E

[∫ ∞

0
f (Mt)

d〈M〉t

Mt

]
. (3.51)

We now see that, under the hypotheses (i) and (ii) of Subsection 2.4.1, the RHS of
(3.51) equals:

1
2

E

[∫ ∞

0
f (Mt)

d〈M〉t

Mt

]
=

∫ ∞

0
dt
∫ ∞

0
mt(K)θt(K) f (K)

dK
2K

. (3.52)

Comparing (3.51) and (3.52), we obtain:

a
K
∧1 =

∫ ∞

0
mt(K)θt(K)

dt
2K

. (3.53)

Formula (3.53) agrees with the expression (2.41) of the law of GK :

P(GK > 0) =
∫ ∞

0
mt(K)θt(K)

dt
2K(

=
( a

K
∧1

)
from (3.14)

)
.

Remark 3.4. In Proposition 3.3, we computed the predictable compensators of(
1{0<GK≤t}, t ≥ 0

)
and of

(
S′t = S∞−S[t,+∞[, t ≥ 0

)
when (Mt , t ≥ 0) ∈ M 0,c

+ . If we
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remove the assumption Mt −−→
t→∞

0 a.s., we can nevertheless make a similar compu-

tation, using this time identity (2.97) from Theorem 2.5:

E
[
1{GK≤t} (K −M∞)+ |Ft

]
= (K −Mt)

+ . (3.54)

This yields:

Proposition 3.4. We remove assumption M∞ = 0 a.s. Then:

i) The predictable compensator of
(
1{0<GK≤t}(K −M∞)+, t ≥ 0

)
is the process(

1
2K

LK
t , t ≥ 0

)
.

ii) Let
(

It := (S∞−M∞)2 −
(
S[t,+∞[−M∞

)2
, t ≥ 0

)
. Then, the predictable compen-

sator of (It , t ≥ 0) is the process (〈M〉t , t ≥ 0).

These results originate from Azéma-Yor [3].

3.2.5 Expression of the Azéma supermartingale
(P(GK > t|Ft) , t ≥ 0) when M∞ �= 0

In the previous section, we gave an expression for the Azéma supermartingale
(P(GK > t|Ft) , t ≥ 0), with K ≤ a = M0, when the local martingale M converges
towards 0 a.s. We shall now remove this assumption and give a general expression
when M∞ �= 0 a.s. Let

FG−
K

:= σ
{

HGK ;H predictable process
}

and νK the law of M∞ conditionally on FG−
K

. Thus, for every positive, Borel func-
tion:

E

[
f (M∞)|FG−

K

]
=

∫ ∞

0
f (m)νK(dm). (3.55)

In particular, we have:

μGK := E

[
(K −M∞)+ |FG−

K

]
=

∫ ∞

0
(K −m)+ νK(dm). (3.56)

Then, there exists a predictable process (μ(K)
u ,u ≥ 0) (the predictable projection of(

1{GK≤u}μGK ,u ≥ 0
)
, see [70], p.173) such that, for all predictable stopping times

T :
E
[
1{GK≤T}μGK 1{T<∞}|FT−

]
= μ(K)

T 1{T<∞}. (3.57)
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3.2.6 Computation of the Azéma Supermartingale

Theorem 3.4. We assume M∞ �= 0 and K ≤ a = M0. Then, the supermartingale Zt =
P(GK > t|Ft) is given by:

Zt = E

[
(K −M∞)+

μGK

|Ft

]
− (K −Mt)+

μGK(t)
(3.58)

=
1
2

E

[∫ ∞

0

dLK
s

μs
−
∫ t

0

dLK
s

μs
|Ft

]
. (3.59)

Proof. We first prove (3.58)
From (2.100), with t = 0, we have:

E
[
ΦGK (K −M∞)+

]
= E

[
Φ0 (K −M0)

+]+
1
2

E

[∫ ∞

0
ΦsdLK

s

]
(3.60)

for every positive predictable process (Φs,s ≥ 0). But, from (3.56):

E
[
ΦGK (K −M∞)+

]
= E

[
ΦGK E

[
(K −M∞)+ |FG−

K

]]
= E

[
ΦGKμGK

]
. (3.61)

Thus,

E
[
ΦGKμGK

]
= E

[
Φ0 (K −M0)

+]+
1
2

E

[∫ ∞

0
ΦsdLK

s

]
. (3.62)

Replacing in (3.62) Φs by Φs/μs, we obtain:

E
[
ΦGK

]
= E

[
Φ0

μ0
(K −M0)

+
]

+
1
2

E

[∫ ∞

0

Φs

μs
dLK

s

]
. (3.63)

In particular, for Φu := 1[0,T ](u), with T a generic stopping time, we obtain:

P(GK ≤ T ) = E

[
(K −M0)+

μ0

]
+

1
2

[∫ T

0

dLK
s

μs

]
(3.64)

= E

[
(K −MT )+

μGK(T )

]

(3.65)

from the balayage formula (2.98), with GK(T ) := sup{s ≤ T ;Ms = K}. Now, to a
set Γt ∈ Ft , we associate the stopping time:

T =

{
t on Γt ,

+∞ on Γ c
t .

(3.66)

Hence, (3.65) becomes:
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E
[
1Γt 1{GK≤t}

]
+E

[
1Γ c

t

]
= E

[

1Γt

(K −Mt)+

μGK(t)

]

+E

[
1Γ c

t

(K −M∞)+

μGK

]
. (3.67)

Then, by simply writing 1Γ c
t

= 1−1Γt , formula (3.67) may be written equivalently
as:

E
[
1Γt 1{GK>t}

]
= E

[

1Γt

(
(K −M∞)+

μGK

− (K −Mt)+

μGK(t)

)]

(3.68)

which is (3.58).

Formula (3.59) is then obtained by developing

(
(K −Mt)+

μGK(t)
, t ≥ 0

)

with the bal-

ayage formula:

(K −Mt)+

μGK(t)
=

(K −M0)+

μ0
+
∫ t

0

1{Ms<K}dMs

μGK(s)
+

1
2

∫ t

0

dLK
s

μs
(3.69)

and by using (3.68).
��

3.3 A Wider Framework: the Skorokhod Submartingales

3.3.1 Introduction

Let (Mt , t ≥ 0) ∈ M 0,c
+ . We wish to explain how our basic formula (2.6) which we

now write as:

E

[

Ft

(
1− Mt

K

)+
]

= E
[
Ft1{GK≤t}

]
(3.70)

for every positive and Ft-measurable variable Ft , is a particular case of the following
representation problem for certain (Skorokhod) submartingales. Let us consider, on
a filtered space (Ω ,F ,(Ft)):

a) a probability P, and a positive process (Xt , t ≥ 0) which is (Ft)-adapted and
integrable;

b) a σ -finite measure Q on (Ω ,F ). Q may be finite, even a probability, but we are
also interested in the more general case where Q is only σ -finite.

c) a positive F -measurable r.v. G such that:

∀ Γt ∈ Ft , E [ΓtXt ] = Q
(
Γt1{G≤t}

)
. (3.71)

Note that it follows immediately from (3.71) that (Xt , t ≥ 0) is a (P,(Ft))-
submartingale since, for s < t and Γs ∈ Fs:

E [Γs(Xt −Xs)] = Q
[
Γs1{s≤G≤t}

]
≥ 0. (3.72)
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Conversely, we would like to find out which positive submartingales X , with re-
spect to (Ω ,(Ft),P) may be represented in the form (3.71); that is, we seek a pair
(Q,G ) such that (3.71) is satisfied. So far, we have not solved this problem in its full
generality, but we have three set-ups where the problem is solved. The next three
subsections are devoted to the discussion of each of these cases.

3.3.2 Skorokhod Submartingales

The three cases are concerned with what we shall call Skorokhod submartingales,
i.e.: (Xt , t ≥ 0) is a submartingale such that:

Xt = −Mt +Lt , t ≥ 0 (3.73)

with:

1. Xt ≥ 0; X0 = 0, (3.74)

2. (Lt , t ≥ 0) is increasing, and dLt is carried by the zeroes of (Xt , t ≥ 0), (3.75)

3. (Mt , t ≥ 0) is a true martingale, not necessarily positive. (3.76)

As is well known (see Skorokhod’s Lemma, [70] Chap. VI, p.239), this implies that:

Lt = St(M ) := sup
s≤t

Ms. (3.77)

Note, therefore, that we can assume that M0 = 0 without loss of generality. We shall
also assume that the submartingale (Xt , t ≥ 0) is continuous, hence, so are (Mt , t ≥ 0)
and (Lt , t ≥ 0). The three main cases we will consider are:

i) Xt = (1−Yt)+, (t ≥ 0), (3.78)

where (Yt , t ≥ 0) is a positive continuous martingale, which converges to 0 as t →∞
and with Y0 = 1.

ii) Xt = St(N )−Nt , (t ≥ 0), (3.79)

where (Nt , t ≥ 0) is a positive continuous martingale, with N0 = 1, which converges
to 0 as t → ∞, and St(N ) := sup

s≤t
Ns.

iii) Xt = |Bt |, (t ≥ 0), (3.80)

where (Bt , t ≥ 0) is a standard Brownian motion.
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3.3.2.1 Case 1

Denote:
G := sup{t ≥ 0; Yt = 1} = sup{t ≥ 0; Xt = 0}.

Then, we have shown in Theorem 2.1 that:

P(G ≤ t|Ft) = (1−Yt)
+ . (3.81)

Therefore, in this case, we may write:

E [ΓtXt ] = E
[
Γt1{G≤t}

]
(3.82)

for every Γt ∈ Ft . Thus, Q = P is convenient in this situation.

3.3.2.2 Case 2

Again, we introduce:

G := sup{t ≥ 0; Nt = St(N )} = sup{t ≥ 0; Xt = 0}. (3.83)

We have:

P(G > t|Ft) = P

(
sup
s≥t

Ns > St(N )|Ft

)

= P

(
Nt

U
> St(N )|Ft

)

(from Lemma 2.1, with U uniform on [0,1] and independent from Ft)

= P

(
U <

Nt

St(N )
|Ft

)

=
Nt

St(N )
, (3.84)

and thus:

E

[
Γt

(
1− Nt

St(N )

)]
= E

[
Γt1{G≤t}

]
. (3.85)

Since (3.85) is valid for everyΓt ∈Ft and every t ≥ 0, we may replaceΓt byΓtSt(N )
and rewrite (3.85) in the equivalent form:

E [Γt (St(N )−Nt)] = E
[
ΓtSt(N )1{G≤t}

]
. (3.86)

However, on {G ≤ t}, St = S∞ and (3.86) equals:

E [Γt (St(N )−Nt)] = E
[
ΓtS∞(N )1{G≤t}

]
. (3.87)
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Therefore, a solution of (3.71) is:

Q = S∞(N ) ·P. (3.88)

Note that, in this case, Q has infinite total mass, since:

P(S∞(N ) ∈ dt) =
dt
t2 1{t≥1},

i.e., from Lemma 2.1 again, S∞(N ) =
1
U

with U uniform on [0,1].

3.3.2.3 Case 3

This study has been the subject of many considerations within the penalizations
procedures of Brownian paths studied in [58] and [77]. In fact, on the canonical
space C (R+,R), where we denote by (Xt , t ≥ 0) the coordinate process, and Ft :=
σ{Xs,s ≤ t}, if W denotes the Wiener measure, a σ -finite measure W has been
constructed in [58] and [77] such that:

∀Γt ∈ Ft , W [Γt |Xt |] = W [Γt1{G≤t}], (3.89)

where G = sup{s ≥ 0; Xs = 0} is finite a.s. under W . Thus, now a solution to (3.71)
is given by

Q = W .

We note that W and W are mutually singular.

3.3.3 A Comparative Analysis of the Three Cases

We note that in case 1 and case 2, X converges P-a.s., and the solution to (3.71) may
be written, in both cases:

E [ΓtXt ] = E
[
ΓtX∞1{G≤t}

]
, (3.90)

where: G = sup{t ≥ 0;Xt = 0}.
Is this the general case for continuous Skorokhod submartingales which converge

a.s.? Here is a partial answer to this question:

1) We assume E[X∞] < ∞:

a) If the convergence of Xt towards X∞ also holds in L1, then (Mt , t ≥ 0) is
uniformly integrable and relation (3.90) holds.

b) If the convergence of Xt towards X∞ does not hold in L1, then (3.90) is not
satisfied.
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2) Without the assumption E[X∞] < ∞, relation (3.90) is known to hold in the fol-
lowing cases (this list is by no means exhaustive):

a) when (Mt , t ≥ 0) is a positive continuous local martingale converging to-
wards 0 (in this set-up, E[X∞] = ∞, this has been proven in the previous
Subsubsection 3.3.2.2 Case 2),

b) when (Mt , t ≥ 0) is uniformly integrable,
c) when Mt −−→

t→∞
M∞ with |M∞|<∞ a.s. and M− belongs to the class D (see

[40], p.24):
{
M−

T ; T a.s finite stopping time
}

is uniformly integrable. (3.91)

The proofs of the two last statements (b) and (c) are given in the next subsection.

3.3.4 Two Situations Where the Measure Q Exists

We end this Section by discussing two situations where we can prove the existence
of the measure Q.

3.3.4.1 Case Where (Mt , t ≥ 0) is Uniformly Integrable

In this case, there exists a r.v. M∞ such that:

Mt = E [M∞|Ft ] . (3.92)

As previously, let Xt := −Mt +St(M ) and G := sup{t ≥ 0; Xt = 0}. Let us define,
for t ≥ 0 the stopping time T (t) by:

T (t) := inf{s ≥ t; Ms = St}

where we denote, to simplify, St for St(M ). We have, for every t ≥ 0, Γt ∈ Ft and
u > t:

E [ΓtMt ] = E
[
ΓtMu∧T (t)

]

= E

⎡

⎢
⎣ΓtMu1{

sup
t≤v≤u

Mv<St

}

⎤

⎥
⎦+E

⎡

⎢
⎣ΓtSt1{

sup
t≤v≤u

Mv≥St

}

⎤

⎥
⎦ . (3.93)

We let u tend to +∞ in (3.93). Since (Mt , t ≥ 0) is uniformly integrable, Mt con-
verges to M∞ a.s. and in L1 as t → ∞. Then:

E [ΓtMt ] = E
[
ΓtM∞1{G≤t}

]
+E

[
ΓtSt1{G≥t}

]
. (3.94)
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This relation is valid for every Γt ∈ Ft , and we can replace Γt by Γt1{St<a}. Then:

E
[
Γt1{St<a}Mt

]
= E

[
Γt1{St<a}M∞1{G≤t}

]
+E

[
Γt1{St<a}St1{G≥t}

]
,

or equivalently:

E
[
Γt1{St<a}(St −Mt)

]
= E

[
Γt1{St<a}(St −M∞)1{G≤t}

]
, (3.95)

i.e., since St = S∞ on {G ≤ t}:

E
[
Γt1{St<a}Xt

]
= E

[
Γt1{St<a}X∞1{G≤t}

]
.

Finally, letting a tend to +∞ and applying the monotone convergence theorem, we
obtain:

E [ΓtXt ] = E
[
ΓtX∞1{G≤t}

]
. (3.96)

Therefore:
Q = X∞ ·P.

Note that in this set-up X∞ is not necessarily integrable.

Remark 3.5. However, let us assume for a moment that E[X∞] < ∞.
a) If Xt converges towards X∞ in L1, the relation, ∀t ≥ 0, E[Xt ] = E[Lt ], yields, ap-
plying the monotone convergence theorem: E[X∞] = E[L∞] <∞. Thus, we can write
Mt = Xt − Lt , and this martingale converges in L1 (towards X∞ − L∞). Therefore
(Mt , t ≥ 0) is uniformly integrable and the above applies.

Note that the hypothesis that Xt converges in L1 towards X∞ is satisfied for any
uniformly bounded Skorokhod submartingale. Indeed, under this boundedness con-
dition, i.e. Xt ≤ K for some K > 0, we get: Mt = Lt −Xt , and |Mt | ≤ K + L∞. But
E[Lt ] = E[Xt ] ≤ K, and, as a consequence, E[L∞] ≤ K, so that (Mt , t ≥ 0) is uni-
formly integrable, hence it converges in L1, and finally, so does Xt = Lt −Mt .

b) If Xt does not converge in L1 towards X∞, then relation (3.90) cannot hold. In-
deed, otherwise, relation (3.90) would imply, for K ≥ 0:

E
[
Xt1{Xt≥K}

]
= E

[
X∞1{Xt≥K}1{G≤t}

]

≤ E

⎡

⎢
⎣X∞1{

sup
t≥0

Xt≥K

}

⎤

⎥
⎦−−−→

K→∞
0 uniformly in t,

since E[X∞] <∞ and sup
t≥0

Xt <∞ a.s. Thus, the family (Xt , t ≥ 0) would be uniformly

integrable, and the convergence of Xt towards X∞ would also hold in L1. An example
of such a Skorokhod submartingale is given, for a > 0, by

Xt = −Bt∧Ta + sup
s≤t

Bs∧Ta ,
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where (Bt , t ≥ 0) is a standard Brownian motion started from 0 and Ta := inf{t ≥
0,Bt = a}. Note that in this case: X∞ = 0.

3.3.4.2 Extension of the Previous Case

We now assume that:
Mt −−→

t→∞
M∞ a.s. (3.97)

with |M∞| < ∞ a.s. and that M− belongs to the class D .

Let a > 0, Ta = inf{t ≥ 0;Mt = a} and
(
M

(a)
t := Mt∧Ta , t ≥ 0

)
. This martingale

being uniformly integrable, we can apply the result of Subsubsection 3.3.4.1. This
leads to, with obvious notations:

E

[
ΓtX

(a)
t

]
= E

[
ΓtX

(a)
∞ 1{G (a)≤t}

]
. (3.98)

We let a tend to +∞ in (3.98).
• X (a)

t being an increasing function of a, applying the monotone convergence theo-
rem, the LHS of (3.98) converges towards E [ΓtXt ].
• On the other hand:

{
G (a) = +∞ on {Ta < ∞}
G (a) = G on {Ta = ∞}

(3.99)

Hence:

E

[
ΓtX

(a)
∞ 1{G (a)≤t}

]
= E

[
ΓtX

(a)
∞ 1{G (a)≤t}1{Ta<∞}

]
+E

[
ΓtX

(a)
∞ 1{G (a)≤t}1{Ta=∞}

]

= E

[
ΓtX

(a)
∞ 1{G≤t}1{Ta=∞}

]

(since 1{G (a)≤t} = X (a)
∞ = 0 on {Ta < ∞})

−−−→
a→∞

E
[
ΓtX∞1{G≤t}

]

from the monotone convergence theorem, since X (a)
∞ and 1{Ta=∞} are increasing

functions of a.
��

Problem 3.1 (Multiplicative decomposition of supermartingales, change of
probability and enlargement of filtration, see [72]).

A. Let (Ω ,(Ft , t ≥ 0),F∞ =
∨

t≥0
Ft ,P) a filtered probability space and (Mt , t ≥ 0)

a strictly positive, continuous (Ft , t ≥ 0) martingale such that M0 = 1. Let us define:

Mt := inf
0≤s≤t

Ms.
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1) Prove that

(
Yt :=

Mt

Mt
−1, t ≥ 0

)
is a continuous, non-negative, local P-martin-

gale such that P(Y0 = 0) = 1.
2) Let (lt , t ≥ 0) be the non-decreasing, continuous process, such that l0 = 0 and
(Yt − lt , t ≥ 0) is a continuous local martingale. Prove that:

i) The support of dlt is included in {t ≥ 0; Yt = 0}.
ii) Mt = e−lt .

(Hint: From Itô’s formula, dYt = dMt
Mt

− Mt
M2

t
dMt , hence dlt = − Mt

M2
t
dMt = − 1

Mt
dMt .)

B. We now assume that M∞ = 0 P-a.s.
1) Prove that: M∞ = 0 P-a.s. ⇐⇒ M∞ = 0 P-a.s. ⇐⇒ l∞ = +∞ P-a.s.
Let Q denote the probability induced on F∞ by:

Q|Ft = Mt ·P|Ft .

2) Prove that Q(Mt = 0) = 0 and that

(
1

Mt
, t ≥ 0

)
is a Q-martingale such that

1
Mt

−−→
t→∞

0 Q-a.s.

3) Prove that M∞ is a Q-finite r.v. with uniform distribution on [0,1].
(Hint: Introduce Tc(M) := inf{s ≥ 0; Ms = c} and remark that: Q(Mt < c) =
Q(Tc(M) < t)).
4) Let g := sup{t ≥ 0; Mt = M∞} (= 0 if this set is empty), and denote (Zt :=
Q(g > t|Ft) , t ≥ 0) the Q-Azéma supermartingale associated to g. Prove that:

Zt =
Mt

Mt
Q-a.s.

(Hint: Introduce σt := inf{s > t; Ms ≤ Mt} and compute, for Γt ∈ Ft :
Q(Γt ∩{g > t}) = Q(Γt ∩{σt < ∞}) = lim

n→∞
Q(Γt ∩{σt < t +n})).

5) Deduce from 4) that Q(0 < g < ∞) = 1.
6) Observe that, from Girsanov’s Theorem:

(
M̃t := Mt −

∫ t

0

d〈M〉u

Mu
, t ≥ 0

)

is the martingale part of the Q-semimartingale (Mt , t ≥ 0).
7) Prove that:

Zt = 1−
∫ t

0

Mu

M2
u

dM̃u + log(Mt) (Q-a.s.).

C. We now summarize the previous results denoting by (Nt , t ≥ 0) the Q-martin-
gale defined by:

Nt :=
1

Mt
(t ≥ 0).
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We obtained:
let (Nt , t ≥ 0) be a positive, continuous Q-martingale such that Q(N0 = 1) = 1 and
lim
t→∞

Nt = 0 Q-a.s. Then:

1) sup
t≥0

Nt
(law)
=

1
U

, where U is uniformly distributed in [0,1].

2) Let g := sup{t ≥ 0; Nt = sup
u≥0

Nu}, then Q(0 < g < ∞)= 1. Let Zt := Q(g > t|Ft).

Then:

i) Zt =
Nt

Nt
, with Nt := sup

u≤t
Nu.

ii) (Zt , t ≥ 0) is a positive Q-supermartingale, with Doob-Meyer decomposition:
Zt = M′

t − log(Nt), where (M′
t , t ≥ 0) denotes a Q-martingale.

D. We now suppose that P is the Wiener measure on the canonical space
C (R+,R) (where (Xt , t ≥ 0) is the coordinate process) such that P(X0 = 0) = 1.
We then have:

i) Mt = 1+
∫ t

0
msdXs where (ms,s ≥ 0) is a predictable process such that, for any

t ≥ 0,
∫ t

0
m2

s ds < ∞ a.s.

ii)

(
βt = Xt −

∫ t

0

mu

Mu
du, t ≥ 0

)
is, from Girsanov’s Theorem, a Q-Brownian mo-

tion.

1) Prove that there exists a (Gt ,Q) Brownian motion (β̃t , t ≥ 0) such that:

βt = β̃t +
∫ t∧g

0

d〈Z,β 〉u

Zu
−
∫ t

t∧g

d〈Z,β 〉u

1−Zu
(t ≥ 0),

i.e.

βt = β̃t −
∫ t∧g

0

mu

Mu
du+

∫ t

t∧g

Mumu

Mu(Mu −Mu)
du (t ≥ 0)

where (Gt , t ≥ 0) is the smallest filtration containing (Ft , t ≥ 0) and making g a
(Gt , t ≥ 0) stopping time.
(Hint: Apply the enlargement formulae (3.27)).
2) Deduce from 1) that:

Xt = β̃t +
∫ t

t∧g

mu

Mu −Mu
du (under Q).

3) Let ϕ : R
+ → R

+ be a positive Borel function such that
∫ ∞

0 ϕ(y)dy = 1 and let us
denote Φ(y) =

∫ y
0 ϕ(z)dz. Let:

Mϕ
t := ϕ(St)(St −Xt)+

∫ ∞

St

ϕ(z)dz with St := sup
s≤t

Xs.
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Prove that (Mϕ
t , t ≥ 0) is a positive, continuous martingale such that Mϕ

0 = 1 and
lim
t→∞

Mϕ
t = 0.

(Hint: Apply the balayage formula (2.98)).
Show that:

Mϕ
t = 1−

∫ t

0
ϕ(Su)dXu (t ≥ 0).

4) Let us denote by Q
ϕ the probability on F∞ induced by: Q

ϕ
|Ft

= Mϕ
t ·P|Ft . Prove

that Mϕ
t = 1−Φ(St) and Mϕ

∞ = 1−Φ(S∞). Deduce from this formula and C.1) that,
under Q

ϕ , S∞ admits ϕ as a density probability function.
5) Let g := sup{u ≥ 0; Mϕ

u = Mϕ
∞} and g′ := sup{u ≥ 0; Xu = S∞}.

Prove that g = g′, Q-a.s.
6) Prove that, under Q

ϕ :

i) the processes (Xu,u ≤ g) and (Xg −Xg+u,u ≥ 0) are independent.
ii) (Xg −Xg+u,u ≥ 0) is distributed as a 3-dimensional Bessel process.
iii) Conditionally on S∞ = s, (Xu,u ≤ g) is a Brownian motion started at 0 and

stopped at its first hitting time of level s.

3.4 Notes and Comments

Theorem 3.1 which expresses the decomposition of the supermartingale (P(L >

t|Ft), t ≥ 0) in the form P(L > t|Ft) =
Nt

St
, with St := sup

s≤t
Ns is found in A. Nikegh-

bali and M. Yor (see [60]). The reader may also refer to R. Mansuy and M. Yor ([51]
p.13-16) for a presentation of this result. Formula (3.10), i.e. the fact that log(S∞) is
an exponential r.v., is a general result due to J. Azéma (see [37]). The progressive
enlargement formulae used in Subsection 3.2.1 are due to T. Jeulin ([37]) and may
be also found in R. Mansuy and M. Yor ([51], p.12-15). The predictable compen-
sators computations in Subsection 3.2.4, as well as the computation of the Azéma
supermartingale given in Theorem 3.4, are taken from A. Bentata and M. Yor ([5]).
The example of Case 3 in Section 3.3 relative to the Skorokhod submartingales
originates from the works about Brownian penalizations, for which one may re-
fer to the monograph by J. Najnudel, B. Roynette and M. Yor ([59]). A study of
general Skorokhod submartingales and of this representation problem are found in
Najnudel-Nikeghbali [57].



Chapter 4
An Interesting Family of Black-Scholes
Perpetuities

Abstract We obtain the Laplace transform and integrability properties of the in-
tegral over R

+ of the call quantity associated with the geometric Brownian motion
with negative drift, thus adding a new element to the list of already studied Brownian
perpetuities.

4.1 Introduction

Let (Xt , t ≥ 0) be a process. It is often of interest to consider the r.v.:

ΣX
μ :=

∫ ∞

0
Xtdμ(t) (4.1)

where μ is a measure on R
+ such that the integral converges a.s. Can we describe

the law of ΣX
μ , compute its expectation, . . . ?

4.1.1 A First Example

As in Chapter 1, let (Bt , t ≥ 0) denote a 1-dimensional Brownian motion starting
from 0; associated to B, one considers the geometric Brownian motion:

(
Et := exp

(
Bt −

t
2

)
, t ≥ 0

)

which is a positive martingale converging a.s. to 0 as t → ∞. We define:

Σ±
μ :=

∫ ∞

0
(Et −1)± μ(dt). (4.2)

Let us compute its expectation:
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E
[
Σ±
μ
]
= E

[∫ ∞

0
(Et −1)± μ(dt)

]
=

∫ ∞

0
E
[
(Et −1)±

]
μ(dt)

=
∫ ∞

0
P
(
4B2

1 ≤ t
)
μ(dt) (from (1.19))

= E

[∫ ∞

4B2
1

μ(dt)
]

= E
[
μ(4B2

1)
]

with μ(x) = μ [x,+∞[. In particular, if μ(dt) = e−λ t1{t≥0}dt:

E
[
Σ±
μ
]
=

1
λ

E

[
e−4λB2

1

]
=

1

λ
√

1+8λ
. (4.3)

4.1.2 Other Perpetuities

Other perpetuities have already been studied, in particular by Dufresne [21],
Salminen-Yor [80], [81], [82] and Yor [98]. They obtained, for example, for a �= 0
and ν > 0, the identity in law:

∫ ∞

0
exp(aBt −νt)dt

(law)
=

2
a2γ2ν/a2

(4.4)

where γb is a gamma r.v. of parameter b:

P(γb ∈ dt) =
1

Γ (b)
e−ttb−1dt (t ≥ 0).

In particular, with a = 1 and ν = 1/2:

∫ ∞

0
exp

(
Bt −

t
2

)
dt

(law)
=

2
e

(4.5)

where e is a standard exponential r.v.

4.1.3 A Family of Perpetuities Associated to the Black-Scholes
Formula

As was hinted at in the Comments on Chapter 1, in recent years, the following
questions have been asked to the third author, in connection with European option
pricing1:

1 A small notational point: throughout this Chapter, the usual strike parameter K shall be denoted
as k, since in the sequel the McDonald function Kν plays an essential role.
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i) to express as simply as possible the quantity:
∫ ∞

0
λ e−λ t

E
[
(Et − k)+

]
dt (k ≥ 0),

ii) to find the law of
∫ s

0
(Et − k)+dt, for fixed s,

iii) to find the law of
∫ ∞

0
λ e−λ t(Et − k)+dt.

From Theorem 1.2, we see that (i) may be solved quite explicitly, following the
same computations as in Example 4.1.1. However, questions (ii) and (iii) are harder
to solve explicitly, as, indeed, one may look for double Laplace transforms of either
quantities, e.g.: ∫ ∞

0
e−μt

E

[
e−λ

∫ t
0(Es−k)+ds

]
dt.

In the present Chapter, we are studying thoroughly the law of
∫ ∞

0
(Et −k)+dt which

seems to be slightly less difficult than either question (ii) or (iii). However, the
results we obtain are not particularly simple.

4.1.4 Notation

These motivations having been presented, we now concentrate exclusively on the

law of
∫ ∞

0
(Et − k)+dt. It will be convenient to consider the two-parameter process:

(
E

(x)
t := x exp

(
Bt −

t
2

)
= exp

(
log x+Bt −

t
2

)
, t ≥ 0,x ≥ 0

)
. (4.6)

(E (x)
t , t ≥ 0,x > 0) is a Markov process taking values in R

+ which, most often, we

shall denote as:
(
Et , t ≥ 0; Px,x > 0

)
since E

(x)
0 = x.

To simplify notation, we shall write P for P1 and Et for E
(1)

t .
For any k > 0, let us define:

Σ (x)
k :=

∫ ∞

0
(E (x)

t − k)+dt. (4.7)

Again, to simplify, we shall write Σk for Σ (1)
k . Since E

(x)
t −→

t→∞
0 a.s., the integral

which defines (4.7) is a.s. convergent, as (E (x)
t − k)+ = 0 for t ≥ Gk := sup{t ≥

0;E (x)
t = k}, and Gk < ∞ a.s.
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4.1.5 Reduction of the Study

We now explain about some reductions of the study of the laws of Σ (x)
k , to closely

related problems.

i) From Itô’s formula, we deduce:

E
(x)

t = x+
∫ t

0
E

(x)
s dBs = β

A(x)
t

(4.8)

where (βu,u ≥ 0) denotes the Dambis, Dubins, Schwarz Brownian motion associ-

ated with (E (x)
t , t ≥ 0) (and β0 = x) and:

A(x)
t = 〈E (x)〉t =

∫ t

0
(E (x)

s )2ds. (4.9)

Hence:

Σ (x)
k =

∫ ∞

0
(β

A(x)
s
− k)+ds =

∫ T0(β )

0

(βv − k)+

β 2
v

dv (4.10)

(after the change of variable A(x)
s = v and where T0(β ) = inf{u ≥ 0; βu = 0})

=
∫ ∞

k

(y− k)
y2 Ly

T0(β ) dy

(
=

∫ ∞

k
dz

∫ ∞

z

dy
y2 Ly

T0(β )

)
(4.11)

from the density of occupation formula, and where Ly
T0

denotes the local time at time
T0 and level y of the Brownian motion (βu,u ≥ 0).

ii) When x = k, the first Ray-Knight Theorem (see Appendix B.2.3) allows us to
write, from (4.11):

Σ (k)
k =

∫ ∞

k

(y− k)
y2 λy−k dy (4.12)

where (λz,z≥ 0), conditionally on λ0 = l, is a 0-dimensional squared Bessel process

starting at l, and where λ0 is an exponential variable with parameter
1
2k

, i.e. with

expectation 2k.

4.1.6 Scaling Properties

From the elementary relations:

(
xeBt− t

2 − k
)+

= x

(
eBt− t

2 − k
x

)+

= k
(x

k

(
eBt− t

2
)
−1

)+
(4.13)

valid for every x,k > 0, we deduce that the law of Σk under Px is that of xΣ k
x

under

P, or that of kΣ1 under P x
k
. In other words, for every Borel positive function ϕ , we
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have:

Ex [ϕ(Σk)] = E

[
ϕ(xΣ k

x
)
]

= E x
k
[ϕ(kΣ1)] . (4.14)

These relations allow us to reduce our study of the law of Σk under Px to that of Σ1

under P x
k
. We might as well limit ourselves to the study of Σk under P.

4.1.7 General Case of the Brownian Exponential Martingale of
Index ν �= 0

Let ν �= 0 and:

E
(x,ν)

t := exp

(
ν (log x+Bt)−

ν2t
2

)
= xν exp

(
νBt −

ν2t
2

)

and define, for k > 0:

Σ (x,ν)
k :=

∫ ∞

0
(E (x,ν)

s − k)+ds. (4.15)

Since, by scaling, (E (x,ν)
t , t ≥ 0)

(law)
= (xνEν2t , t ≥ 0), we have:

Σ (x,ν)
k

(law)
=

∫ ∞

0
(xνEν2s − k)+ds =

xν

ν2

∫ ∞

0

(
Eu −

k
xν

)+

du

(law)
=

xν

ν2 Σ k
xν

. (4.16)

Thus, the study of the law of Σ (x,ν)
k may be reduced very simply to that of Σ k

xν
. This

is the reason why we have chosen to limit ourselves to ν = 1.

4.1.8 Statement of the Main Results

Here are the main results of this Chapter.

Theorem 4.1. Let α ≥ 0. Then, for every x > 0, Ex [(Σ1)α ] <∞ if and only if α < 1.

Theorem 4.2. Let α < 0 and x > 0. Then:

i) For every x > 1, Ex
[
(Σ1)

α]< ∞.
ii) For every x < 1, Px(Σ1 = 0) = 1− x ; hence Ex [(Σ1)α ] = +∞.

iii) For x = 1, E1 [(Σ1)α ] < ∞ if and only if α > −1
3
·
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Theorem 4.3 (Laplace transform of Σ1).
For every θ ≥ 0:

Ex

[
e−

θ
2 Σ1

]
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
xKγ(

√
4θx)

1
2 Kγ(

√
4θ)−

√
θ K′

γ(
√

4θ)
if x ≥ 1

1+ x
1
2 Kγ(

√
4θ)+

√
θK′

γ(
√

4θ)
1
2 Kγ(

√
4θ)−

√
θK′

γ(
√

4θ)
if 0 < x ≤ 1

(4.17)

where Kγ denotes the McDonald function with index γ
(
see Appendix B.1

)
and

where γ =
√

1−4θ if 4θ ≤ 1 and γ = i
√

4θ −1 if 4θ ≥ 1.

We shall also prove, as a consequence of Theorem 4.3:

Theorem 4.4. Let (λx,x ≥ 0) denote a squared Bessel process with dimension 0

started at l and denote its law by Q
(0)
l . Then:

• If 4θ ≥ 1:

Q
(0)
l

[
exp

(
−θ

2

∫ ∞

1

(x−1)
x2 λx−1dx

)]
= Q

(0)
l

[
exp

(
−θ

2

∫ ∞

0

x
(x+1)2 λxdx

)]

= exp

(
l
2

(
1
2

+
√
θK′

iν(
√

4θ)
Kiν(

√
4θ)

))

(4.18)

with ν =
√

4θ −1.

• If 4θ ≤ 1:

Q
(0)
l

[
exp

(
−θ

2

∫ ∞

1

x−1
x2 λx−1 dx

)]
= exp

(
l
2

(
1
2

+
√
θ K′

ν(
√

4θ)
Kν(

√
4θ)

))

with ν =
√

1−4θ .

In Section 4.3, we shall study the asymptotic behavior, as θ →∞, of E

[
e−

θ
2 Σ1

]
and

we shall obtain:

E

[
e−

θ
2 Σ1

]
∼

θ→∞

C

θ
1
3

(C > 0). (4.19)

Finally, in a short Section 4.4, we shall indicate how Theorems 4.1, 4.2 and 4.3

extend when we replace Σk by Σ (ρ)
k , with:

Σ (ρ)
k :=

∫ ∞

0

(
eρ(Bt− t

2 ) − k
)+

dt (ρ,k > 0)

(law)
=

1
ρ2

∫ ∞

0

(
e(Bu− u

2ρ ) − k
)+

du (by scaling) (4.20)
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which, from (4.20), corresponds to consider an extension of our previous
perpetuities relative to

(
Bt − t

2 , t ≥ 0
)

to Brownian motion with drift − 1
2ρ , i.e.

(
Bt − t

2ρ , t ≥ 0
)
.

4.2 Proofs of Theorems 4.1, 4.2, 4.3 and 4.4

4.2.1 A First Proof of Theorem 4.1

i) We first prove that for x = 1, E1 [Σ1] = ∞
Indeed, from (4.11):

E1[Σ1] =
∫ ∞

1

(y−1)
y2 E1[L

y
T0

]dy

=
∫ ∞

1

(y−1)
y2 E1[L1

T0
]dy

= 2
∫ ∞

1

(y−1)
y2 dy = +∞ (4.21)

(since (Ly
T0

,y ≥ 0) is a martingale and L1
T0

is an exponential variable with parameter

1/2, hence for y ≥ 1, E1

[
Ly

T0

]
= E1

[
L1

T0

]
= 2).

ii) We now prove that, for every x > 0, Ex[Σ1] = ∞

• For x ≥ 1, this is clear since Σ (x)
k is an increasing function of x (and a decreasing

function of k). Hence:

Ex[Σ1] ≥ E1[Σ1] = +∞ (from (4.21)).

• For x < 1, from the Markov property:

Σ (x)
1

(law)
= 1{

T
(− 1

2 )

log( 1
x )

<∞
} ·Σ1 (4.22)

with T
(− 1

2 )
log( 1

x )
:= inf

{
t ≥ 0;Bt −

t
2

= log

(
1
x

)}
, and in (4.22), Σ1 and T

(− 1
2 )

log( 1
x )

are

assumed to be independent. Hence:

E

[
Σ (x)

1

]
= P

(
T

(− 1
2 )

log( 1
x )

< ∞
)

E[Σ1] = +∞

from (4.21) and since P

(
T

(− 1
2 )

log( 1
x )

< ∞
)

= x (see (1.10)).
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iii) We now prove that, for x > 0 and 0 ≤ α < 1, Ex [(Σ1)α ] < ∞
We have:

Ex [(Σ1)α ] = xα E

[
(Σ 1

x
)α
]

(from (4.14))

≤ xα E [(Σ0)α ]
(since Σk is a decreasing function of k)

≤ xα
∫ ∞

0

2
yα

e−ydy < ∞ (from (4.5)).

4.2.2 Second Proof of Theorem 4.1

It hinges upon:

Lemma 4.1. Let G(ν)
a and T (ν)

a defined by (1.7) and (1.6).
i) If ν and a have the same sign:

• E

[
eμG(ν)

a

]
< ∞ if and only if μ <

ν2

2
, (4.23)

• for every real α, E

[
(G(ν)

a )α
]

< ∞. (4.24)

ii) If ν and a have opposite signs:

• E

[
eμG(ν)

a

]
< ∞ if and only if μ <

ν2

2
, (4.25)

• for every real α > 0, E

[
(G(ν)

a )α
]

< ∞. (4.26)

Hence, for α < 0, E

[
(G(ν)

a )α
]

= +∞.

Proof. The proof of this Lemma is obvious, and hinges on the well-known formulae
(1.8)–(1.14).

��

We now give a second proof of Theorem 4.1

• We first show that, for 0 ≤ α < 1, Ex [(Σ1)α ] < ∞. From the relation:

Σ (x)
1 = x

∫ ∞

0

(
Et −

1
x

)+

dt = x
∫ G

(− 1
2 )

− log x

0

(
Et −

1
x

)+

dt

≤ x

(
sup
t≥0

Et

)
·G(− 1

2 )
− log x
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we deduce that, for 0 ≤ α < 1, α p < 1 and
1
p

+
1
q

= 1 (p,q > 1):

Ex [(Σ1)α ] ≤ xα E

[(
sup
t≥0

Et

)α (
G

(− 1
2 )

− log x

)α]

≤ xα E

[(
sup
t≥0

Et

)α p] 1
p

E

[(
G

(− 1
2 )

(− log x)

)αq] 1
q

≤ C xα E

[(
sup
t≥0

Et

)α p] 1
p

(from Lemma 4.1).

As (Et , t ≥ 0) is a positive martingale, starting from 1, and converging a.s. to 0 as
t → ∞, we get, applying Doob’s maximal identity (2.8):

sup
s≥0

Es
(law)
=

1
U

(4.27)

with U uniform on [0,1]. Thus:

E

[(
sup
t≥0

Et

)α p]
=

∫ 1

0

1
uα p du < ∞ (4.28)

since α p < 1.

• We then show that Ex[Σ1] = ∞. First of all, it follows from (1.21) with K = 1 that:

E1[Σ1] =
∫ ∞

0
P

(
G

( 1
2 )

0 ≤ t

)
dt = E

[∫ ∞

G
( 1

2 )
0

dt

]
= +∞

since G
( 1

2 )
0 < +∞ a.s.

Likewise:

Ex[Σ1] = xE1

[
Σ 1

x

] (
from (4.14)

)

= xE

⎡

⎣
∫ ∞

G
( 1

2 )

log 1
x

dt

⎤

⎦= ∞

from (1.21) and since G
( 1

2 )
log 1

x
< ∞ a.s.
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4.2.3 Proof of Theorem 4.2

i) We already prove Point (i)
Let x > 1 and x′ such that 1 < x′ < x. It is then obvious that:

Σ (x)
1 ≥ (x′ −1)T (− 1

2 )

log( x′
x )

(4.29)

(
with T

(− 1
2 )

a := inf{t ≥ 0;Bt − t
2 = a}, since, if t < T

(− 1
2 )

log x′
x

, then elog x+Bt− t
2 − 1 ≥

x′ −1
)
. Hence, with γ > 0:

Ex

[
1

(Σ1)γ

]
=

∫ ∞

0
Px

(
1

(Σ1)γ
≥ t

)
dt =

∫ ∞

0
Px(Σ1 < v)

γ
v1+γ dv

≤
∫ ∞

0

γ
v1+γ P

(
T

(− 1
2 )

log( x′
x )

≤ v
x′ −1

)
dv

(
from (4.29)

)

=
∫ ∞

0

γ
v1+γ P

(
G

(log( x
x′ ))

1
2

≥ x′ −1
v

)
dv

(
from (1.8) and (1.9)

)

=
∫ ∞

0

γ
(x′ −1)γ

uγ−1
P

(
G

(log( x
x′ ))

1
2

≥ u

)
du

=
1

(x′ −1)γ
E

[(
G

(log x
x′ )

1
2

)γ]
< ∞ (4.30)

(
from Point (i) of Lemma 4.1

)
.

ii) We now prove Point (ii)
It is clear that, for x < 1:

{Σ (x)
1 = 0} =

{
T

(− 1
2 )

log 1
x

= ∞
}

Thus, P

(
Σ (x)

1 = 0
)

= P

(
T

(− 1
2 )

log 1
x

= ∞
)

= P

(
G(log x)

1
2

= 0

)
= 1− x > 0 from (1.9)

and (1.10).

iii) We now prove Point (iii)
For this purpose, we write, for γ > 0:

E1

[
1

(Σ1)γ

]
=

1
Γ (γ)

∫ ∞

0
E

[
e−θ Σ1

]
θγ−1dθ (4.31)

and we show, in the next Section 4.3, that:

E1

[
e−θΣ1

]
∼

θ→∞

C

θ
1
3

(C > 0).
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Thus, E

[
1

(Σ1)γ

]
<∞ if and only if

∫ ∞

1
θγ−1− 1

3 dθ <∞, that is, if and only if γ <
1
3
·

4.2.4 Proof of Theorem 4.3

a) A useful Lemma

Lemma 4.2. Let θ ≥ 0 and Kγ the McDonald function with index γ , such that γ =
√

1−4θ if θ ≤ 1
4

and γ = i
√

4θ −1 if θ ≥ 1
4
·

1) Define the function ϕθ : R
+ → R by:

ϕθ (y) =
√

yKγ(
√

4θy) (y ≥ 0). (4.32)

Then:

i) ϕθ is a real valued function which satisfies:

ϕ ′′
θ (y)+

(
−θ

y
+

θ
y2

)
ϕθ (y) = 0. (4.33)

ii) ϕθ , restricted to [1,+∞[ is positive, convex, bounded and decreasing.

2) We define the function ϕ̃θ : R
+ → R

+ by:

ϕ̃θ (y) =

{
ϕθ (y) if y ≥ 1,
(
ϕθ (1)−ϕ ′

θ (1)
)
+ yϕ ′

θ (1) if 0 ≤ y ≤ 1.
(4.34)

Then ϕ̃θ is a bounded, positive, convex, decreasing function which satisfies:

ϕ̃ ′′
θ (y)+

(
−θ

y
+

θ
y2

)
1{y≥1} · ϕ̃θ (y) = 0. (4.35)

b) Proof of Lemma 4.2

i) Relation (4.33)
(
as well as relation (4.35)

)
follows from a direct computation,

using the equation K′′
γ (z)+

1
z

K′
γ(z)−

(
1+

γ2

z2

)
Kγ(z) = 0

(
see Appendix B.1

)
and

the fact that γ2 = 1−4θ
(
see Petiau [46, F], p. 306, formula (8), which needs to be

corrected by replacing a by −a, or Kamke [32, F], p. 440
)
.

We distinguish two cases:

Case 1: 4θ ≤ 1, γ =
√

1−4θ . The function Kγ , hence also ϕθ , is positive. Further-
more ϕθ is bounded on R

+ since:
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�

�
1

ϕ̃θ

ϕθ = ϕ̃θϕθ

Fig. 3 Graphs of ϕθ and ϕ̃θ

ϕθ (y) ∼
y→0

C y
1−γ

2 , ϕθ (y) ∼
y→∞

C′ y
1
4 e−

√
4θy (

see Appendix B.1
)
.

On the other hand, from (4.33), the function ϕθ is convex on the interval [1,+∞[.
As it is convex, positive, and bounded, it is decreasing. Lemma 4.2 is thus proven in
this case.

Case 2: 4θ ≥ 1, γ = i
√

4θ −1 and here ϕθ (y) =
√

yKiν(
√

4θy) with ν =
√

4θ −1.
From the integral representation formula

(
see Appendix B.1

)
:

Kiν(y) =
∫ ∞

0
e−ycosh u cos(νu)du (y ≥ 0) (4.36)

we deduce that Kiν(y) is real valued, hence so is ϕθ (y).
On the other hand, ϕθ is bounded on [0,+∞[. Indeed, for y ≥ 0, from (4.36):

∣
∣
∣
∣
√

4θ ϕθ

(
y2

4θ

)∣∣
∣
∣= y

∣
∣Kiν(y)

∣
∣≤ y

∫ ∞

0
e−y eu

2 du = y
∫ ∞

y
2

e−z dz
z

.

Thus: ∣
∣
∣
∣
√

4θ ϕθ

(
y2

4θ

)∣∣
∣
∣≤ 2e−

y
2 .

Hence:
∣
∣
∣
∣
√

4θ ϕθ

(
y2

4θ

)∣∣
∣
∣−→y→∞

0 and

∣
∣
∣
∣
√

4θ ϕθ

(
y2

4θ

)∣∣
∣
∣≤ y

(
C + | log(y)|

)
−→
y→0

0.

Moreover, it is clear, from (4.36), that Kiν(y) > 0 hence ϕθ (y) > 0, for y large
enough.
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ii) We now show that Kiν(y) is decreasing in y on [ν,+∞[. If not, there would exist
a point y0 > ν such that:

Kiν(y0) > 0, K′
iν(y0) = 0, K′′

iν(y0) ≤ 0.

However,

K′′
iν(y0)+

1
y0

K′
iν(y0) =

(
1− ν2

y2
0

)
Kiν(y0).

Thus K′′
iν(y0) > 0, which is absurd. Since Kiν is decreasing on [ν,+∞[, and positive

near +∞, Kiν is positive on [ν,+∞[. Thus, ϕθ is positive on [1,+∞[
(
since, if y ≥

1,
√

4θy ≥
√

4θ ≥
√

4θ −1 = ν
)
. From the relation (4.33), we then deduce that

ϕθ is convex on [1,+∞[. Since it is bounded, convex and positive, it is decreasing.
Lemma 4.2 is thus proven.

��

c) End of the proof of Theorem 4.3

Let

(
Mθ

t := ϕ̃θ (Bt)exp

(
−θ

2

∫ t

0

ϕ̃ ′′
θ

ϕ̃θ
(Bs)ds

)
, t ≥ 0

)
. Then (Mθ

t , t ≥ 0) is a local

martingale. It is equal, from (4.35) to:

Mθ
t = ϕ̃θ (Bt)exp

(
−θ

2

∫ t

0

(Bs −1)+

B2
s

ds

)
(4.37)

and, from Lemma 4.2, for every x ≥ 0, (Mθ
t∧T0

, t ≥ 0) is bounded. Thus, from Doob’s
optional stopping Theorem:

ϕ̃θ (x) = Ex[Mθ
0 ] = Ex

[
ϕ̃θ (BT0)exp

(
−θ

2

∫ T0(B)

0

(Bs −1)+

B2
s

ds

)]

= ϕ̃θ (0)Ex

[
exp

(
−θ

2
Σ1

)]
(
from (4.10)

)
.

Thus:

Ex

[
e−

θ
2 Σ1

]
=

ϕ̃θ (x)
ϕ̃θ (0)

.

This is precisely Theorem 4.3, owing to formula (4.34) which yields ϕ̃θ explicitly.
��

Remark 4.1. Theorem 4.3 allows to recover formula (4.5): Σ0
(law)
=

2
e
· Indeed, on the

one hand, from (B.9):

E1

[
exp

(
−θ

2
Σ0

)]
= E

[
exp

(
−θ

2
2
e

)]
=

∫ ∞

0
e−

θ
z −zdz = 2

√
θ K1(

√
4θ)

and, on the other hand:
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E1

[
e−

θ
2 Σ0

]
= lim

ε↓0
E1

[
e−

θ
2 Σε

]
= lim

ε↓0
E

[
exp

(
−θ

2

∫ ∞

0
(eBt− t

2 − ε)+dt

)]

= lim
ε↓0

E

[

exp

(

−θε
2

∫ ∞

0

(
1
ε

eBt− t
2 −1

)+

dt

)]

= lim
ε↓0

E1/ε

[
e−

θε
2 Σ1

]

= lim
ε↓0

1√
ε K√

1−4θε(
√

4θ)
1
2 K√

1−4θε(
√

4θε)− 1
2

√
4θε K′√

1−4θε(
√

4θε)

(from (4.17), replacing θ by θε and x by 1/ε)

= lim
ε↓0

1√
ε K1(

√
4θ)+O(1)

1
2 K√

1−4θε(
√

4θε)
[
1−

√
1−4θε

]
+
√
θε K√

1−4θε+1(
√

4θε)
(
since zK′

ν(z) = νKν(z)− zKν+1(z); see (B.4)
)

= lim
ε↓0

1√
ε K1(

√
4θ)+O(1)

O(1)+
√
θε

(
1

2θε +O(1)
) = 2

√
θ K1(

√
4θ).

4.2.5 Proof of Theorem 4.4

From Theorem 4.3, we know that, for θ ≥ 1
4

:

E1

[
e−

θ
2 Σ1

]
=

2Kiν(
√

4θ)
Kiν(

√
4θ)−

√
4θ K′

iν(
√

4θ)

=
1

1
2 −

√
θ K′

iν (
√

4θ)
Kiν (

√
4θ)

=
1
2

∫ ∞

0
exp

(

− l
2

+
l
2

(
1
2

+
√
θ

K′
iν(

√
4θ)

Kiν(
√

4θ)

))

dl. (4.38)

On the other hand, from (4.12):

E1

[
e−

θ
2 Σ1

]
= E

[
exp

(
−θ

2

∫ ∞

1

(y−1)
y2 λy−1 dy

)]

=
1
2

∫ ∞

0
e−

l
2 dl E

[
exp

(
−θ

2

∫ ∞

1

(y−1)
y2 λy−1dy

)∣
∣λ0 = l

]

=
1
2

∫ ∞

0
e−

l
2 dl Q

(0)
l

[
exp

(
−θ

2

∫ ∞

0

y
(1+ y)2 λy dy

)]
(4.39)

where Q
(0)
l denotes the expectation relative to a squared Bessel process of dimension

0, starting from l. The comparison of (4.39) and (4.38) implies Theorem 4.4 in the
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(
− θ

2 Σ1
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as θ → ∞ 103

case θ ≥ 1
4

, since the Laplace transform is one-to-one. The proof of Theorem 4.4 in

the case θ ≤ 1
4

is the same.
��

Remark 4.2. Let μ denote a positive σ -finite measure on R
+. Let Φ denote the

unique decreasing, positive solution on R
+ of the Sturm-Liouville equation Φ ′′ =

μΦ
(
and such that Φ(0) = 1

)
. It is well known

(
see [70], Chap. IX, p. 444

)
that:

Q
(0)
l

[
exp

(
−1

2

∫ ∞

0
λy μ(dy)

)]
= exp

(
l
2
Φ ′(0+)

)
. (4.40)

(
Observe that, as (λy,y ≥ 0) has compact support a.s.,

∫ ∞

0
λy μ(dy) < ∞ if μ is

σ -finite on R
+). Theorem 4.4 may be recovered easily by applying formula (4.40)

with μ(dy) =
y

1+ y2 dy.

On the other hand, if μ(dy) = a(y)dy, with

c1 1[0,γ1](y) ≤ a(y) ≤ c2 1[0,γ2](y) (0 < c1 ≤ c2, 0 < γ1 ≤ γ2),

we deduce from [70], Chap. XI, Corollary 1.8, that:

exp

(
− l

2
c′2
√
θ
)
≤ Q

(0)
l

[
exp

(
−θ

2

∫ ∞

0
λy μ(dy)

)]
≤ exp

(
− l

2
c′1
√
θ
)

(4.41)

for θ large enough, whereas, as we shall show in Section 4.3:

Q
(0)
l

[
exp

(
−θ

2

∫ ∞

0

y
1+ y2 λy dy

)]
∼

θ→∞
C exp

(
− l

2
θ

1
3

)
. (4.42)

4.3 Asymptotic Behavior of E1
[
exp

(
−θ

2 Σ1
)]

as θ → ∞

We shall now end the proof of Theorem 4.2 by showing:

Theorem 4.5. There is the equivalence result:

E1

[
e−

θ
2 Σ1

]
∼

θ→∞

C

θ
1
3

. (4.43)

Proof of Theorem 4.5
We recall that, from Theorem 4.3:

E1

[
e−

θ
2 Σ1

]
=

2Kiν(
√

4θ)
Kiν(

√
4θ)−

√
4θ K′

iν(
√

4θ)
(4.44)
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with ν =
√

4θ −1
(
θ ≥ 1

4

)
· We shall successively find an equivalent of the numer-

ator and of the denominator of (4.44), the difficulty arising from the fact that, in
Kiν(

√
4θ)

(
and K′

iν(
√

4θ)
)

the argument
√

4θ and index iν = i
√

4θ −1 tend both
to infinity as θ → ∞. To overcome this difficulty, we shall use some results about
Bessel functions found in Watson

(
[90], p. 245-248

)
, which we now recall.

i) Let H(1)
iν the first Hankel function

(
see [46], p. 120

)
; it is related to Kiν via the

formula:

Kiν(z) =
iπ
2

e−
νπ
2 H(1)

iν (ze
iπ
2 ). (4.45)

We define ε by the formula: iν = iz(1− ε) and assume that, as z → ∞, ε remains
bounded (with, of course, ν depending on z). Then, there is the second order asymp-
totic expansion:

H(1)
ν (z) =

+∞
− 2

3π

⎧
⎨

⎩
e

2
3 πi

(
sin

π
3

) Γ
(

1
3

)

(
1
6 z
) 1

3

+ e
4
3 πi(εz)

(
sin

2π
3

)
Γ
(

2
3

)

(
1
6 z
) 2

3

+o

(
1

z
2
3

)
⎫
⎬

⎭
.

(4.46)
ii) Let us study the numerator of (4.44):

N = 2Kiν(
√

4θ) = 2
iπ
2

e−
νπ
2 H(1)

iν

(
e

iπ
2
√

4θ)

= (iπ)e−
νπ
2

(
− 2

3π

)
⎧
⎨

⎩
C1 e

2
3 πi 1

(
e

iπ
2
√

4θ
) 1

3

+o

(
1

θ
1
6

)
⎫
⎬

⎭
(4.47)

(
with C1 =

(
sin

π
3

)
Γ
(

1
3

)
6

1
3
)

∼
θ→∞

2
2
3

3
C1e−

νπ
2

1

θ
1
6

. (4.48)

Here, we have used the first order expansion (4.46) with: exp

(
2
3

iπ
)

exp

(
− iπ

6

)
=

i and the fact that:

εz = z−ν

= i
√

4θ − i
√

4θ −1 = i
√

4θ

(

1−
√

1− 1
4θ

)

−→
θ→∞

0.

iii) We now study the denominator of (4.44)

D = Kiν(
√

4θ)−
√

4θ K′
iν(

√
4θ)

= Kiν(
√

4θ)+
√

4θ Kiν−1(
√

4θ)+ i
√

4θ −1Kiν(
√

4θ) (4.49)
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(
after using

d
dz

(
zμKμ(z)) =−zμKμ−1(z); see (B.4)

)
. Since we have already studied

the asymptotic behavior of Kiν(
√

4θ), it remains to study that of

Δ(θ) :=
√

4θ Kiν−1(
√

4θ)+ i
√

4θ −1Kiν(
√

4θ). (4.50)

Now, since
√

4θ Kiν−1(
√

4θ)+ i
√

4θ −1Kiν(
√

4θ) is real
(
from (4.36) and (4.44)

)

and since i
√

4θ −1Kiν(
√

4θ) is purely imaginary, the development of Δ(θ) as θ
tends to ∞ is that of the real part of

√
4θ Kiν−1(

√
4θ). Then, we obtain:

√
4θ Kiν−1(

√
4θ) =

√
4θ

iπ
2

e
iπ
2 (iν−1)H(1)

iν−1

(
e

iπ
2
√

4θ
)

=
√

4θ
π
2

e−
νπ
2 H(1)

iν−1

(
e

iπ
2
√

4θ
)

(4.51)

from (4.45), by replacing iν by iν−1. This time, we use the second order develop-
ment (4.46) with here z = e

iπ
2
√

4θ and:

iν−1 = z(1− ε) = i
√

4θ(1− ε), i.e. : εz = εe
iπ
2
√

4θ

or εz = εe
iπ
2
√

4θ = 1+
1

4
√
θ

+o

(
1√
θ

)
(
ν =

√
4θ −1

)
(4.52)

We obtain:

√
4θ Kiν−1(

√
4θ) =

√
4θ

π
2

e−
νπ
2

(
− 2

3π

)

×

⎧
⎨

⎩
C1 e

2iπ
3

1
(
e

iπ
2
√

4θ
) 1

3

+C2 e
4iπ
3

(
1+

i

4
√
θ

)
· 1
(
e

iπ
2
√

4θ
) 2

3

+o

(
1

θ
1
3

)
⎫
⎬

⎭

(4.53)
(

with C1 =
(

sin
π
3

)
Γ
(

1
3

)
6

1
3 and C2 =

(
sin

2π
3

)
Γ
(

2
3

)
6

2
3 (C1,C2 > 0)

)

= −1
3

√
4θ e−

νπ
2

{

C1 i
1

(
√

4θ)
1
3

−C2

(
1+

i

4
√
θ

)
1

(
√

4θ)
2
3

+o

(
1

θ
1
3

)}

.

(4.54)

We now consider the real part of (4.54) and we obtain, from (4.50):

Δ(θ) = Re
(√

4θ Kiν−1(
√

4θ)+ i
√

4θ −1Kiν(
√

4θ)
)

=
1
3

√
4θ e−

νπ
2 C2

(
1

(
√

4θ)
2
3

+o

(
1

θ
1
3

))

∼
θ→∞

2
1
3 C2

3
e−

νπ
2 θ

1
6 . (4.55)
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iv) We then gather (4.44), (4.48) and (4.55), to obtain:

E1

[
e−

θ
2 Σ1

]
∼

θ→∞

2 2
2
3

3 C1 e−
νπ
2 1

θ
1
6

2
2
3

3 C1 e−
νπ
2 1

θ
1
6

+ 2
1
3

3 C2 e−
νπ
2 θ

1
6

∼
θ→∞

2
4
3 C1

C2

1

θ
1
3

=
2

3
1
3

Γ ( 1
3 )

Γ ( 2
3 )

1

θ
1
3

(4.56)

from the explicit formulae for C1 and C2. This is Theorem 4.5.
��

Remark 4.3. Using Theorem 4.5, we obtain, for 0 < x ≤ 1:

Ex

[
e−

θ
2 Σ1

]
= 1+ x

1
2 Ki

√
4θ−1(

√
4θ)+

√
θK′

i
√

4θ−1
(
√

4θ)
1
2 Ki

√
4θ−1(

√
4θ)−

√
θ K′

i
√

4θ−1
(
√

4θ)
.

It now follows easily from (4.48) and (4.55) that:

Ex

[
e−

θ
2 Σ1

]
−→
θ→∞

1− x. (4.57)

Now, on the other hand:

Ex

[
e−

θ
2 Σ1

]
−→
θ→∞

Px(Σ1 = 0). (4.58)

We recall (and recover here) that Px(Σ1 = 0) = 1− x. This is Point (ii) of Theo-
rem 4.2.

4.4 Extending the Preceding Results to the Variables Σ (ρ,x)
k

Let

Σ (ρ,x)
k :=

∫ ∞

0

(
eρ(log x+Bt− t

2 ) − k
)+

dt (ρ,x,k > 0). (4.59)

In the preceding Sections, we have studied the case ρ = 1.
The analogue of Theorem 4.5 may be stated as:

Theorem 4.6. The Laplace transform of Σ (ρ)
1 under Px is given by:
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Ex

[
e−

θ
2 Σ (ρ)

1

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
xKγ

(√4θ
ρ x

ρ
2
)

1
2 Kγ(

√
4θ
ρ )−

√
θ K′

γ(
√

4θ
ρ )

if x ≥ 1,

1+ x
1
2 Kγ(

√
4θ
ρ )+

√
θK′

γ (
√

4θ
ρ )

1
2 Kγ(

√
4θ
ρ )−

√
θ K′

γ(
√

4θ
ρ )

if 0 < x ≤ 1,

(4.60)

with γ =
√

1−4θ
ρ

if θ ≤ 1
4

and γ = i

√
4θ −1
ρ

if θ >
1
4

.

The proof of this Theorem 4.6 is quite similar to that of Theorem 4.5. It hinges upon
the following Lemma 4.3

Lemma 4.3.
i) Let, for θ ≥ 0 and ρ > 0, the function ϕ(ρ)

θ : R
+ → R defined by:

ϕ(ρ)
θ (y) =

√
yKγ

(√
4θ
ρ

y
ρ
2

)

(y ≥ 0). (4.61)

Then, it satisfies:

(
ϕ(ρ)
θ

)′′
(y)+θ

(
−yρ−2 +

1
y2

)
ϕ(ρ)
θ (y) = 0 (4.62)

(
see [46, F], p. 306, with ρ − 2 = m, formula (8), after taking care of replacing a

by −a
)
.

ii) Let ϕ̃(ρ)
θ : R

+ → R defined by:

ϕ̃(ρ)
θ (y) =

⎧
⎨

⎩

ϕ(ρ)
θ (y) if y ≥ 1,

ϕ(ρ)
θ (1)−

(
ϕ(ρ)
θ

)′
(1)+ y

(
ϕ(ρ)
θ

)′
(1) if y ≤ 1.

(4.63)

Then ϕ̃(ρ)
θ is positive, decreasing, convex and satisfies:

(
ϕ̃(ρ)
θ

)′′
(y)+θ

(
−yρ−2 +

1
y2

)
1{y≥1}ϕ̃

(ρ)
θ (y) = 0. (4.64)

Remark 4.4. As a check, we note that formula (4.60) allows to recover the iden-
tity (4.4): ∫ ∞

0
eρ Bt− ρt

2 dt
(law)
=

2
ρ2γ1/ρ

·

where γb is a gamma r.v. of parameter b. Indeed, on one hand:
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E

[
exp

(
−θ

2
2

ρ2γ1/ρ

)]
=

1

Γ
(
1/ρ

)
∫ ∞

0
e
− θ

ρ2z
−z

z
1
ρ −1dz

=
2

Γ
(
1/ρ

)K 1
ρ

(√
4θ
ρ

)(
θ
ρ2

) 1
2ρ

.

On the other hand:

E1

[
e−

θ
2 Σ (ρ)

0

]
= lim

ε↓0
E1

[
exp

(
−θ

2

∫ ∞

0

(
eρBt− ρt

2 − ε
)+

dt

)]

= lim
ε↓0

E1

[

exp

(

−θε
2

∫ ∞

0

(
eρ
(

log 1
ε

ρ +Bt

)
− ρt

2 −1
)+

dt

)]

= lim
ε↓0

(
1
ε
) 1

2ρ K√
1−4θε
ρ

(√
4θε
ρ

(
1
ε
) 1
ρ

ρ
2
)

1
2 K√

1−4θε
ρ

(√
4θε
ρ

)
−
√
θε K′√

1−4θε
ρ

(√
4θε
ρ

)

(
from (4.60), replacing θ by θε and x by

(
1
ε

) 1
ρ
)

∼
ε→0

(
1
ε
) 1

2ρ K 1
ρ

(√4θ
ρ
)

1
2 K√

1−4θε
ρ

(√
4θε
ρ

)
− ρ

2

(√
4θε
ρ

)
K′√

1−4θε
ρ

(√
4θε
ρ

)

∼
ε→0

(
1
ε
) 1

2ρ K 1
ρ

(√4θ
ρ
)

ρ
2

√
4θε
ρ K 1

ρ +1

(√4θε
ρ

)
(
since zK′

ν(z) = νKν(z)− zKν+1(z)
)

∼
ε→0

(
1
ε
) 1

2ρ K 1
ρ

(√
4θ
ρ
)

ρ
2Γ ( 1

ρ +1)
(√θε

ρ
)− 1

ρ

(
since Kν(z) ∼

z→0

1
2
Γ (ν)

( z
2

)−ν
)

∼
ε→0

(
1
ε
) 1

2ρ K 1
ρ

(√4θ
ρ
)

1
2Γ

(
1
ρ
)

ε
1

2ρ θ
1

2ρ

ρ
1
ρ

−→
ε↓0

(
θ
ρ2

) 1
2ρ 2

Γ
(

1
ρ
) K 1

ρ

(√
4θ
ρ

)

= E

[
e−

θ
2 Σ (ρ)

0

]
.

Remark 4.5. Taking up again the arguments of the proof of Theorem 4.5, it is not
difficult to see that:

E1

[
e−

θ
2 Σ (ρ)

1

]
∼

θ→∞

C(ρ)

θ
1
3



4.4 Extending the Preceding Results to the Variables Σ (ρ,x)
k 109

where C(ρ) is a strictly positive constant, depending on ρ . We then deduce that, for
α < 0:

E1

[
(Σ (ρ)

1 )α
]

< ∞ if and only if α > −1
3
.

On the other hand, it is not difficult to see that:
• If x > 1, for all α < 0, Ex

[
(Σ (ρ)

1 )α
]

< ∞.

• If x < 1, for all α < 0, Ex

[
(Σ (ρ)

1 )α
]

= +∞.

Concerning the positive moments of Σ (ρ)
1 :

• If 0 < α < 1
ρ , then

Ex

[
(Σ (ρ)

1 )α
]

< ∞. (4.65)

Indeed (4.65), for x = 1, follows from:

E1

[
(Σ (ρ)

1 )α
]
≤ E1

[
(Σ (ρ)

0 )α
]

=
1

Γ
(

1
ρ
)
∫ ∞

0

(
2
ρ2z

)α
e−zz

1
ρ −1dz < ∞ if α <

1
ρ

since Σ0
(law)
=

2
ρ2γ 1

ρ

from (4.4).

The fact that Ex

[
(Σ (ρ)

1 )α
]
<∞ for every x > 0, and every α <

1
ρ

may be obtained

by using arguments close to those used in the proof of Theorem 4.1.
We believe (but have not been able to settle) that, for all ρ > 0:

Ex

[
(Σ (ρ)

1 )
1
ρ
]

= +∞. (4.66)

We now show (4.66), when ρ > 1
It then suffices, by using the arguments of the proof of Theorem 4.1, to see that
(4.66) is true when x = 1.

• We first show that:

1−E1

[
e−

θ
2 Σ (ρ)

1

]
∼

θ→0
Cθ

1
ρ . (4.67)

Indeed, from Theorem 4.6, we have:

E1

[
exp

(
−θ

2
Σ (ρ)

1

)]
= 1+

1
2 Kγ

(√4θ
ρ
)
+
√
θ K′

γ
(√4θ

ρ
)

1
2 Kγ

(√
4θ
ρ
)
−
√
θ K′

γ
(√

4θ
ρ
)

with γ =
√

1−4θ
ρ

(
and θ ≤ 1

4
)· Thus:
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1−E1

[
e−

θ
2 Σ (ρ)

1

]
= −

1
2 Kγ

(√4θ
ρ
)
+ ρ

2

{√
4θ
ρ K′

γ
(√4θ

ρ
)}

1
2 Kγ

(√4θ
ρ
)
− ρ

2

{√
4θ
ρ K′

γ
(√4θ

ρ
)}

= −
1
2 K√

1−4θ
ρ

(√4θ
ρ
)
(1−

√
1−4θ
ρ )−

√
θ
ρ K√

1−4θ
ρ −1

(√4θ
ρ
)

1
2 K√

1−4θ
ρ

(√4θ
ρ
)
(1+

√
1−4θ
ρ )+

√
θ
ρ K√

1−4θ
ρ −1

(√4θ
ρ
)

(
after using zK′

μ(z) = −μ Kμ(z)− zKμ−1(z)
)
.

Since ρ > 1, we replace K√
1−4θ
ρ −1

by K
1−

√
1−4θ
ρ

(recall that Kμ = K−μ ) and we

deduce, from:

K
1−

√
1−4θ
ρ

−→
θ→0

K1− 1
ρ
, with 1− 1

ρ
> 0,

that:

1−E1

[
e−

θ
2 Σ (ρ)

1

]
∼

θ→0

aθ 1− 1
2ρ +bθ

1
2ρ

a′ θ− 1
2ρ +b′ θ

1
2ρ

(since, for μ > 0, Kμ(z) ∼
z→0

Cμ z−μ )

∼
θ→0

b
a′
θ

1
ρ

(
since ρ ≥ 1 implies 1− 1

2ρ
≥ 1

2ρ

)
.

• From (4.67) we deduce:

∫ ∞

0
e−

θ t
2 P

(
Σ (ρ)

1 ≥ t
)

dt =
2
θ

(
1−E

[
e−

θ
2 Σ (ρ)

1

])

∼
θ→0

C′θ
1
ρ −1

.

Hence, from the Tauberian Theorem:

P

(
Σ (ρ)

1 ≥ t
)

∼
t→∞

C′′ 1

t
1
ρ

(4.68)

and

E

[
(Σ (ρ)

1 )
1
ρ
]

=
∫ ∞

0
P

(
(Σ (ρ)

1 )
1
ρ ≥ t

)
dt

=
∫ ∞

0
P

(
Σ (ρ)

1 ≥ tρ
)

dt = +∞ (from (4.68)).

We note that, for ρ < 1, the preceding argument cannot be applied since:

∫ ∞

1
exp

(
−θ t

2

)
dt

t
1
ρ

−→
θ→0

∫ ∞

1

dt

t
1
ρ

< ∞.
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Problem 4.1 (Explicit computations of the laws of some Brownian perpetuities).
This problem takes up M. Yor’s proof of Dufresne’s identity, as presented in [98],
p.14-22.

A. Getoor’s result on Bessel processes last passage times ([25])

Let (R̂t , t ≥ 0) be a Bessel process of dimension δ̂ = 2(1 + ν) started at 0, with
ν > 0.

1) i) Prove that

(

Mt :=
1

R̂δ̂−2
t

, t ≥ 1

)

is a positive, continuous local martingale such

that lim
t→∞

Mt = 0 a.s.

ii) Show that: inf
t≥1

R̂t
(law)
= R̂1 ·U

1
δ̂−2 , with U uniform on [0,1] and independent

of R̂1.

2) Let us define: G
(R̂)
1 := sup{u ≥ 0; R̂u = 1} (=0 if this set is empty). Note that

G
(R̂)
1 > 0 a.s. Prove that:

G
(R̂)
1

(law)
=

1
(

inf
u≥1

R̂u

)2 .

(Hint: Use the scaling property of R̂ and {G (R̂)
1 ≥ t} = {inf

u≥t
R̂u ≤ 1}).

3) Deduce from 1)(ii) and 2) that:

1

G
(R̂)
1

(law)
= R̂2

1U1/ν .

Conclude that:

G
(R̂)
1

(law)
=

1
2γν

(1)

where γν is a gamma r.v. with parameter ν.
(
Hint: R̂2

1
(law)
= 2γ δ̂

2
, U1/ν (law)

= β (ν,1) and, from the “beta-gamma algebra”,

γa
(law)
= γa+b ·β (a,b)

)
.

Comment: The result (1) is obtained in:
R. K. Getoor [25]. The Brownian escape process. Ann. Probab., 7(5):864-867, 1979.
Pitman-Yor [65] show that there is a general formula for last passage times of tran-
sient diffusions, see Theorem 2.4 of the present monograph.

B. Dufresne’s result about the geometric Brownian motion perpetuity (see [21])
Let (Bt , t ≥ 0) be a standard Brownian motion started at 0.
1) Prove that:

eBt−νt = 1+
∫ t

0
eBs−νsdBs +

(
1
2
−ν

)∫ t

0
eBs−νsds.
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2) We now set:

At =
∫ t

0
e2(Bs−νs)ds

and define the process (ρu,u ≤ A∞) via the implicit relation:

exp(Bt −νt) = ρAt . (2)

Prove that:

ρu = 1+βu +
(

1
2
−ν

)∫ u

0

ds
ρs

, u < A∞

where (βu,u < A∞) is a standard Brownian motion. Observe that (ρu,u < A∞) is
a Bessel process of dimension δ = 2(1− ν) starting at 1. Note that, as u → A∞,
ρu → 0. It is therefore possible to extend (ρu,u < A∞) by continuity until the time
A∞. Prove that:

A∞ = T0(ρ) := inf{u ≥ 0; ρu = 0}.

3) Prove that A∞
(law)
= G

(R̂)
1 .

(Hint: Use a time reversal argument)
4) Prove that: ∫ ∞

0
e2(Bs−νs)ds

(law)
=

1
2γν

and more generally:

∫ ∞

0
dsexp(aBs −bs)

(law)
=

2
a2γ 2b

a2

.

Comment: Here, we have given a proof of Dufresne’s result, see:
D. Dufresne [21]. The distribution of a perpetuity, with applications to risk theory
and pension funding. Scand. Actuar. J., (1-2):39-79, 1990,
which may be reduced to Getoor’s result on last passage times for Bessel processes.

C. We now recall Lamperti’s relation (see [70], p.452)

exp(Bt +μt) = R(μ)
(∫ t

0
dsexp(2(Bs +μs))

)

where μ ≥ 0 and (R(μ)
t , t ≥ 0) is a Bessel process of index μ (i.e. dimension 2(1 +

μ)) started at 1. Compare Lamperti’s (implicit) relation (for μ ≥ 0) with (2) (for
−ν < 0).
1) Deduce from Lamperti’s relation that:

R(μ)
t = exp(Bu +μu)

∣
∣
u=Ht

with Ht =
∫ t

0

ds
(

R(μ)
s

)2 .
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2) Prove that, for every α > 0:

∫ ∞

0

ds
(

R(μ)
s

)α+2 =
∫ ∞

0
e−α(Bu+μu)du

and deduce then that:
∫ ∞

0

ds
(

R(μ)
s

)α+2

(law)
=

2
α2γ 2μ

α

(μ > 0, α > 0).

4.5 Notes and Comments

This Chapter is taken from [76]. For studies of other perpetuities related to Brownian
motion with drift, we refer the reader to Salminen-Yor [80], [81] and [82].



Chapter 5
Study of Last Passage Times up to a Finite
Horizon

Abstract In Chapter 1, we have expressed the European put and call quantities in

terms of the last passage time G
(E )
K . However, since G

(E )
K is not a stopping time, for-

mulae (1.20) and (1.21) are not very convenient for simulation purposes. To counter
this drawback, we introduce in Section 5.1 of the present Chapter the Ft-measurable
random time:

G
(E )
K (t) = sup{s ≤ t; Es = K}

and write the analogues of formulae (1.20) and (1.21) for these times G
(E )
K (t). This

will lead us to the interesting notion of past-future martingales, which we shall study
in details in Section 5.2.

5.1 Study of Last Passage Times up to a Finite Horizon for the
Brownian Motion with Drift

5.1.1 Introduction and Notation

Let
(
Ω ,(Bt ,Ft)t≥0,F∞ =

∨

t≥0

Ft ,P
)

denote a Brownian motion starting at 0 and

(Ft := σ(Bs,s ≤ t), t ≥ 0) its natural filtration. We define the past-future (or the two
parameters) filtration:

Fs,t = σ(Bu,u ≤ s; Bh,h ≥ t), 0 ≤ s ≤ t < ∞. (5.1)

For every ν ∈ R, we denote (B(ν)
t , t ≥ 0) = (Bt + νt, t ≥ 0) the Brownian motion

with drift ν. Let us define, for a,ν ∈ R and t > 0:

G(ν)
a (t) := sup{u ≤ t;B(ν)

u = a}, (5.2)

(= 0 if the set {u ≤ t;B(ν)
u = a} is empty).

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7 5, © Springer-Verlag Berlin Heidelberg 2010
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G(ν)
a (t) is the last passage time of B(ν) at level a before time t. Of course, we have

G(ν)
a (t) −−→

t→∞
G(ν)

a a.s. with:

G(ν)
a := sup{u ≥ 0;B(ν)

u = a}, (5.3)

(= 0 if the set {u ≥ 0;B(ν)
u = a} is empty).

In Chapter 1, we described the link that exists between the last passage times of
the drifted Brownian motion and some option prices defined with the help of the

geometric Brownian motion

(
E

(ν)
t := exp

(
νBt −

ν2

2
t

)
, t ≥ 0

)
. In particular, we

showed that:

P

(
G(−ν)

log(K) ≤ s|Fs

)
=

(

1− E
(2ν)
s

K2ν

)+

(5.4)

(see Theorem 1.3). However, this formula is not very convenient for simulation pur-

poses, since the event {G(−ν)
log(K) ≤ s} depends on the whole Brownian trajectory after

time s. That is why, to overcome this drawback, we shall consider in this Chap-

ter times such as G(−ν)
log(K)(t) instead of G(−ν)

log(K), so that the event {G(−ν)
log(K)(t) ≤ s}

only depends on the Brownian trajectory before time t. That is what we shall call
working up to horizon t.

5.1.2 Statement of our Main Result

Theorem 5.1. For every K ≥ 0, ν ∈ R, s ≤ t:

i) P

(
G(ν)

log(K)(t) ≤ s|Fs,t

)

=
(

1− exp

{
− 2

t − s

(
B(ν)

s − log(K)
)(

B(ν)
t − log(K)

)})+

(5.5)

ii) K−2ν
P

(
G(ν)

log(K)(t) ≤ s|B(ν)
s = log(x)

)

=1{x<K}

{
K−2ν

E

[
E

(−2ν)
u 1{B(ν)

u >log(x/K)}

]
− x−2ν

P

(
B(ν)

u < log
( x

K

))}

(5.6)

+1{x>K}

{
K−2ν

E

[
E

(−2ν)
u 1{B(ν)

u <log(x/K)}

]
− x−2ν

P

(
B(ν)

u > log
( x

K

))}
.

(s ≤ t, u = t − s, x ≥ 0)
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iii) Yuri’s Formula (this terminology is borrowed from [1]) holds:

P

(
G(ν)

log(K)(t) ≤ s
)

= E

[(
1−K2νE

(2ν)
s

)+
]

+E

[
sgn

(
1−K2νE

(2ν)
s

)
sgn

(
1−K2νE

(2ν)
t

)(
1∧K2νE

(2ν)
t

)]
. (5.7)

Remark 5.1.
a) We have stated Theorem 5.1 by “decreasing order of conditioning”: Point (i)
gives the conditional expectation of the event {G(ν)

log(K)(t) ≤ s} with respect to Fs,t ,

Point (ii) gives its conditional expectation with respect to Fs, and Point (iii) its
expectation without conditioning.
b) By comparing formulae (5.4) and (5.5), we see that Theorem 5.1 provides a kind
of Black-Scholes formula up to horizon t.
c) Theorem 1.3, Point (i), or formula (5.4), is a consequence of equation (5.5) on
letting t tend to infinity and observing that:

G(ν)
log(K)(t) −−→t→∞

G(ν)
log(K) a.s. and

B(ν)
t

t
−−→
t→∞

ν a.s.

d) An alternative form of equation (5.6) that we shall use is as follows. For ν > 0:

K−2ν
P

(
G(ν)

log(K)(t) ≤ s|B(ν)
s = log(x)

)

=
(
K−2ν − x−2ν

)+
+
(
1{x<K} −1{x>K}

)
(5.8)

×
{

K−2ν
E

[
E

(−2ν)
u 1{B(ν)

u >log(x/K)}

]
− x−2ν

P

(
B(ν)

u < log
( x

K

))}
,

while, for ν < 0:

K−2ν
P

(
G(ν)

log(K)(t) ≤ s|B(ν)
s = log(x)

)

=
(
K−2ν − x−2ν

)+
+
(
1{x<K} −1{x>K}

)
(5.9)

×
{

x−2ν
P

(
B(ν)

u > log
( x

K

))
−K−2ν

E

[
E

(−2ν)
u 1{B(ν)

u <log(x/K)}

]}
.

Ones goes from (5.6) to (5.8) and (5.9) on observing that:

P

(
B(ν)

u > log
( x

K

))
= 1−P

(
B(ν)

u < log
( x

K

))
,

and
E

[
E

(−2ν)
u 1{B(ν)

u <log(x/K)}

]
= 1−E

[
E

(−2ν)
u 1{B(ν)

u >log(x/K)}

]
.
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Proof. We first prove Point (i)

We have, from the definition of G(ν)
l (t) for l ∈ R:

{
G(ν)

l (t) < s
}

= A+
s,t ∪A−

s,t

where

A+
s,t = {∀u ∈]s, t[, B(ν)

u > l},

A−
s,t = {∀u ∈]s, t[, B(ν)

u < l}.

Therefore:

P

(
G(ν)

l (t) < s|Fs,t

)
=P

(
A+

s,t |Fs,t
)
+P

(
A−

s,t |Fs,t
)

(5.10)

=1{B(ν)
s >l}P

(
inf

s≤u≤t
(B(ν)

u −B(ν)
s ) > l −B(ν)

s |B(ν)
t −B(ν)

s

)

+1{B(ν)
s <l}P

(
sup

s≤u≤t
(B(ν)

u −B(ν)
s ) < l −B(ν)

s |B(ν)
t −B(ν)

s

)

(5.11)

Thus, we need to compute for l and λ = l −B(ν)
s (with λ (λ −m) > 0):

1{B(ν)
s >l}P

(
inf

s≤u≤t
(B(ν)

u −B(ν)
s ) > l −B(ν)

s |B(ν)
t −B(ν)

s = m

)

= 1{B(ν)
s >l}P

(
T (ν)
λ > t − s|B(ν)

t−s = m
)

, (5.12)

and

1{B(ν)
s <l}P

(
sup

s≤u≤t
(B(ν)

u −B(ν)
s ) < l −B(ν)

s |B(ν)
t −B(ν)

s = m

)

= 1{B(ν)
s <l}P

(
T (ν)
λ > t − s|B(ν)

t−s = m
)

. (5.13)

We note that the quantities in equations (5.12) and (5.13) depend only on t − s and
not the pair (s, t). Furthermore, the law of the bridge from a to b over the time [0,u]
of a Brownian motion with drift ν is independent of ν. Hence, we need to compute:

P(Tλ > t − s|Bt−s = m) = 1−P(Tλ < t − s|Bt−s = m) ,

and it is a well-known fact that:

P(u)
0→m (Tλ < u) = exp

(
−2(λ (λ −m))+

u

)
(5.14)
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where P(u)
0→m denotes the law of a Brownian bridge of length u starting at 0 and

ending at level m. Gathering (5.11), (5.12), (5.13) and (5.14) with λ = l −B(ν)
s and

m = B(ν)
t −B(ν)

s , we obtain (5.5).

Remark 5.2. (5.14) can be obtained by an application of the symmetry principle:

P(u)
0→m (Tλ > u) = 1−P(u)

0→m (Tλ < u)

=
1√
2πu

exp
(
−m2

2u

)
− 1√

2πu
exp

(
− (2λ−m)2

2u

)

1√
2πu

exp
(
−m2

2u

)

= 1− exp

(
− (2λ −m)2

2u
+

m2

2u

)

= 1− exp

(
−2(λ (λ −m))+

u

)
.

In fact, since formula (5.14) plays a key role in our proof of (5.5), we feel it is
relevant to give some references where it also appears: Guasoni [27] (formula (10)-
(11) p.85), Pagès [61] (Proposition 7.3) in his discussion of the Brownian bridge
method for simulating the continuous Euler scheme, Pitman [64] while deriving the
law of the local time at 0 for a Brownian bridge, Yor [97] while discussing Seshadri’s
identities ([83], p.11).

We now prove Point (ii) of Theorem 5.1
We start by writing:

B(ν)
t

(law)
= B̃(ν)

s +B(ν)
t−s = log(x)+B(ν)

u with u = t − s (5.15)

where B̃(ν) is a Brownian motion with drift ν independent of Fu. We may then write
with C = log(x/K), from (5.5):

P

(
G(ν)

log(K)(t) < s|Fs

)
=E

[(
1− exp

{
−2

u

(
log

x
K

)(
log

x
K

+B(ν)
u

)})+
]

=1{x<K}P
(

B(ν)
u +C < 0

)
+1{x>K}P

(
B(ν)

u +C > 0
)

−1{x<K}E

[
1{B(ν)

u +C<0} exp

(
−2C

u
(C +B(ν)

u )
)]

−1{x>K}E

[
1{B(ν)

u +C>0} exp

(
−2C

u
(C +B(ν)

u )
)]

:=α +β − γ−δ . (5.16)

We now make the computations for α,β ,γ and δ :
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α = 1{x<K}P

(
B(ν)

u < log
K
x

)

= 1{x<K}E

[

1{B(ν)
u <log K

x }
E

(−2ν)
u

E
(−2ν)
u

]

= 1{x<K}E
[
1{Bu−νu<log K

x }
e2νBu−2ν2u

]
(from the Cameron-Martin formula (1.5))

= 1{x<K}E
[
1{−Bu−νu<log K

x }
e−2νBu−2ν2u

]
(since Bu

(law)
= −Bu)

= 1{x<K}E

[
1{B(ν)

u >log x
K }E

(−2ν)
u

]
. (5.17)

Similarly, one shows that:

β = 1{x>K}P

(
B(ν)

u > log
K
x

)
= 1{x>K}E

[
1{B(ν)

u <log x
K }E

(−2ν)
u

]
. (5.18)

For γ , we have:

γ = 1{x<K}E

[
1{B(ν)

u +C<0} exp

(
−2C

u
(C +B(ν)

u )
)]

= 1{x<K}E

[

1{B(ν)
u +C<0} exp

(
−2C

u
(C +B(ν)

u )
)

E
(−2ν)
u

E
(−2ν)
u

]

= 1{x<K}E

[
1{B(−ν)

u +C<0} exp

(
−2C

u
(C +B(−ν)

u )+2νBu −2ν2u

)]
(5.19)

(from the Cameron-Martin formula (1.5))

= 1{x<K} exp

(
−2C2

u
+2Cν−2ν2u

)
E

[
1{Bu<−C+νu} exp

(
−Bu

u
(2C−2νu)

)]

= 1{x<K} exp

(
−2C2

u
+2Cν−2ν2u

)∫ −C+νu

−∞

dy√
2πu

e−
y2
2u−

y
u (2C−2νu)

= 1{x<K} exp

(
−2C2

u
+2Cν−2ν2u+

(2C−2νu)2

2u

)

×
∫ −C+νu

−∞

dy√
2πu

e−
1
2u (y+2C−2νu)2

(5.20)

= 1{x<K} exp(−2Cν)
∫ C−νu

−∞

dz√
2πu

e−
z2
2u

(after the change of variable y+2C−2νu = z)

= 1{x<K}K2νx−2ν
P

(
B(ν)

u < log
x
K

) (
since C = log

x
K

)
. (5.21)
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A similar computation yields to:

δ = 1{x>K}E

[
1{B(ν)

u +C>0} exp

(
−2C

u
(C +B(ν)

u )
)]

= 1{x>K}K2νx−2ν
P

(
B(ν)

u > log
x
K

)
. (5.22)

Plugging the results (5.17)–(5.22) back into equation (5.16) yields then Point (ii) of
Theorem 5.1.

We now prove Yuri’s formula (5.7)
We work in the case ν < 0. The result for ν > 0 may be deduced on utilizing the
identity in law (1.8):

G(ν)
log(K)(t)

(law)
= G(−ν)

− log(K)(t).

We shall begin with the equivalent form (5.9). In the following, log(x) shall denote

the r.v. B̃s +νs and x−2ν the r.v. Ẽ
(−2ν)
s = exp

(
−2νB̃s −2ν2s

)
. These r.v. are inde-

pendent of Bu for u = t − s, see (5.15). We write:

K−2ν
P

(
G(ν)

log(K)(t) < s
)

=Ẽ

[(
K−2ν − x−2ν

)+
]
−K−2ν

Ẽ

[
1{x<K}E

[
E

(−2ν)
u 1{B(ν)

u <log(x/K)}

]]

+ Ẽ

[
1{x<K}x−2ν

P

(
B(ν)

u > log
x
K

)]
+K−2ν

Ẽ

[
1{x>K}E

[
E

(−2ν)
u 1{B(ν)

u <log(x/K)}

]]

− Ẽ

[
1{x>K}x−2ν

P

(
B(ν)

u > log
x
K

)]

:=a−b+ c+d − e.

On the other hand, Yuri’s formula (5.7) asserts that:

K−2ν
P

(
G(ν)

log(K)(t) < s
)

=Ẽ

[(
K−2ν − x−2ν

)+
]
−K−2ν

P

(
E

(−2ν)
s < K−2ν , E

(−2ν)
t > K−2ν

)

+E

[
1{E (−2ν)

s <K−2ν}1{E (−2ν)
t <K−2ν}E

(−2ν)
t

]

+K−2ν
P

(
E

(−2ν)
s > K−2ν , E

(−2ν)
t > K−2ν

)

−E

[
1{E (−2ν)

s >K−2ν}1{E (−2ν)
t <K−2ν}E

(−2ν)
t

]

:=a′ −b′ + c′ +d′ − e′.

The equality of a and a′ is clear. We now examine the other terms, still making use
of the Cameron-Martin formula (1.5).
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• Analysis of the term b:

b = K−2ν
Ẽ

[
1{x<K}E

[
E

(−2ν)
u 1{B(ν)

u <log(x/K)}

]]

= K−2ν
Ẽ

[
1{Ẽ (−2ν)

s <K−2ν}E
[
E

(−2ν)
u 1{exp(−2νBu−2ν2u)<K2ν exp(−2νB̃s−2ν2s)}

]]

= K−2ν
Ẽ

[
1{Ẽ (−2ν)

s <K−2ν}P
(

exp(−2νBu +2ν2u) < K2ν exp(−2νB̃s −2ν2s)
)]

= K−2ν
Ẽ

[
1{Ẽ (−2ν)

s <K−2ν}P
(

exp(2ν(Bu − B̃s)−2ν2t) > K−2ν
)]

(t = u+ s)

= K−2ν
P

(
E

(−2ν)
s < K−2ν ,E

(−2ν)
t > K−2ν

)

(since Bu
(law)
= −Bu and replacing B̃s by Bs)

= b′.

• The equality of d and d′ follows from a similar analysis.

• Analysis of the term c:

c = Ẽ

[
1{x<K}x−2ν

P

(
B(ν)

u > log
x
K

)]

= Ẽ

[

1{Ẽ (−2ν)
s <K−2ν}Ẽ

(−2ν)
s E

[
E

(−2ν)
u

E
(−2ν)
u

1{E (−2ν)
u >K2ν Ẽ

(−2ν)
s }

]]

= Ẽ

[
1{Ẽ (−2ν)

s <K−2ν}Ẽ
(−2ν)
s E

[
exp

(
2νBu −2ν2u

)
1{exp(−2νBu+2ν2u)>K2ν Ẽ

(−2ν)
s }

]]

= Ẽ

[
1{Ẽ (−2ν)

s <K−2ν}E
[
exp

(
−2ν(B̃s −Bu)−2ν2t

)
1{exp(−2ν(B̃s−Bu)−2ν2t)<K−2ν}

]]

= E

[
1{E (−2ν)

s <K−2ν} exp
(
−2νBt −2ν2t

)
1{E (−2ν)

t <K−2ν}

]

(on replacing Bu by −Bu and B̃s by Bs)

= E

[
1{E (−2ν)

s <K−2ν}1{E (−2ν)
t <K−2ν}E

(−2ν)
t

]

= c′.

• The equality of e and e′ is established similarly.

This completes the proof of Theorem 5.1.
��

Remark 5.3. In Chapter 1, we have chosen to prove Theorem 1.3 using the results

of Theorem 1.2 together with the scaling properties of T (ν)
a , G(ν)

a and E
(ν)

t . In fact,
it is possible to ignore Theorem 1.2 completely, and to prove Theorem 1.3 as a
corollary of Theorem 5.1. Indeed, points (i) and (ii) of Theorem 1.3 follow from
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Theorem 5.1 by letting t tend to +∞ in (5.5), (5.6) and (5.7), and taking expectation.
In completing this agenda, we show that Theorem 5.1 implies Point (iii), relations
(1.55) and (1.56) of Theorem 1.3. We shall only give the proof for ν > 0 and K ≥ 1
since the other cases may be obtained in the same manner. First, it is clear that for
x > 0:

P

(
G(ν)

log(K)(t) < s|Bs +νs = log(x)
)

= P

(
T (ν)

log(K/x) > t − s
)

, (5.23)

and we get from (5.6) and (5.23) with K = 1, 0 < x < 1 and u = t − s:

P

(
T (ν)

log(1/x) ≤ u
)

= 1−P

(
T (ν)

log(1/x) > u
)

= 1−E

[
E

(−2ν)
u 1{B(ν)

u >log(x)}

]
+ x−2ν

P

(
B(ν)

u < log(x)
)

= E

[
E

(−2ν)
u 1{B(ν)

u <log(x)}

]
+ x−2ν

P

(
B(ν)

u < log(x)
)

= E

[
e−2νBu−2ν2u1{Bu+νu<log(x)}

]
+ x−2ν

P

(
B(ν)

u < log(x)
)

= E

[
e2νBu−2ν2u1{Bu−νu>− log(x)}

]
+ x−2ν

P

(
B(ν)

u < log(x)
)

(5.24)

after changing Bu to −Bu. Then, replacing in (5.24) 1/x by K, with K ≥ 1, we obtain:

P

(
T (ν)

log(K) ≤ u
)

= E

[
E

(2ν)
u 1{B(−ν)

u >log(K)}

]
+K2ν

P

(
B(−ν)

u > log(K)
)

(5.25)

or equivalently:

P

(
T (ν)

log(K) ≤ u
)

= E

[
E

(2ν)
u 1{E (2ν)

u >K2ν}

]
+K2ν

P

(
E

(2ν)
u > K2ν

)
. (5.26)

We remark that we have proven (5.26) for K ≥ 1 and ν > 0. If instead of assuming
ν > 0, we had assumed ν < 0, then, (5.26) would have become:

P

(
T (ν)

log(K) ≤ u
)

= E

[
E

(2ν)
u 1{E (2ν)

u <K2ν}

]
+K2ν

P

(
E

(2ν)
u < K2ν

)
. (5.27)

5.1.3 An Explicit Expression for the Law of G(ν)
x (t)

We recall that G(ν)
x (t) = sup

{
s ≤ t;B(ν)

s = x
}

. In the case ν = 0, the following result

has already been obtained ([96]):

P

(
G(0)

x (t) ∈ ds
)

=
ds

√
s(t − s)

exp

(
−x2

2s

)
(0 < s < t). (5.28)



124 5 Study of Last Passage Times up to a Finite Horizon

Note that this is a subprobability, since ds
π
√

s(t−s)
is the arcsine distribution on [0, t].

Indeed,

P

(
G(0)

x (t) = 0
)

= P(Tx ≥ t) = P

(
|N| ≤ x√

t

)
> 0

with N a standard Gaussian r.v.

We first prove (5.28)
We have:

{
0 < G(0)

x (t) ≤ s
}

= {Tx ≤ s}∩
{

Tx + Ĝ(0)
0 (t −Tx) ≤ s

}
(5.29)

where Ĝ(0)
0 (t −Tx) := sup{u ≤ t; B̂u = 0}, with

B̂u = Bu+Tx −BTx . (5.30)

Now, it is a well-known fact that, (conditionally on Tx) Ĝ(0)
0 (t −Tx) follows an arc-

sine law (see [70], Exercise 3.20, p.112). Therefore, from (1.11):

P

(
0 < G(0)

x (t) ≤ s
)

=
∫ s

0

x√
2πa3

e−
x2
2a da

∫ s−a

0

dy

π
√

y(t −a− y)
, (5.31)

and, by derivation:

P

(
G(0)

x (t) ∈ ds
)

=

(
1
π

∫ s

0

x√
2πa3

e−
x2
2a

da
√

(s−a)(t − s)

)

ds

=
(

1

π
√

t − s

1
s

∫ ∞

0

x√
2πb

e−
x2
2s (b+1)db

)
ds

(after the change of variable b =
s
a
−1)

=

⎛

⎝ e−
x2
2s

π
√

s(t − s)
1√
π

∫ ∞

0

e−c
√

c
dc

⎞

⎠ds

(after the change of variable
x2

2s
b = c)

=

(
1

π
√

s(t − s)
e−

x2
2s

)

ds (since Γ (1/2) =
√
π).

We are now interested in the general case ν �= 0. We shall compute, for 0 ≤ s ≤ t:
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γ(ν)
x,t (s) := P

(
0 < G(ν)

x (t) ≤ s
)

(5.32)

= E

[
1{0<G(0)

x (t)≤s} exp

(
νBt −

ν2

2
t

)]
(from (1.5))

= E

[
1{Tx≤s}1{Tx+Ĝ(0)

0 (t−Tx)≤s} exp

(
ν(x+ B̂t−Tx)−

ν2

2
t

)]

(from (5.29) and (5.30)) (5.33)

= eνx− ν2
2 t

E

[
1{Tx+Ĝ(0)

0 (t−Tx)≤s} exp

(
ν

√
(t −Tx)− Ĝ(0)

0 (t −Tx) m̂1

)]

where we have used the “meander factorization” (see [10]):

B̂t−Tx =
√

(t −Tx)− Ĝ(0)
0 (t −Tx) m̂1

with m̂1 = εm1 independent of (Tx, Ĝ
(0)
0 (t −Tx)), ε a symmetric Bernoulli r.v. and

m1
(law)
=

√
2e, where e is a standard exponential r.v. We introduce the function:

Φ(λ ) := E [exp(λ m̂1)] = E [cosh(λm1)] =
∫ ∞

0
e−t cosh(λ

√
2t)dt.

An integration by parts shows that:

Φ(λ ) = 1+ e
λ2
2 |λ |

√
2πP(|N| ≤ |λ |)

with N a standard Gaussian r.v. Consequently, we obtain:

γ(ν)
x,t (s) = eνx− ν2t

2 E

[
1{0<Ĝ(0)

x (t)≤s}Φ
(

ν

√
t − Ĝ(0)

x (t)
)]

(5.34)

which implies, from (5.28):

P

(
G(ν)

x (t) ∈ ds
)

= eνx− ν2
2 t ds

π
√

s(t − s)
exp

(
−x2

2s

)
Φ(ν

√
t − s). (5.35)

Exercise 5.1 (General computation of Gx(t) := sup{s ≤ t; Xs = x} for a linear
diffusion).
Let (Xt , t ≥ 0) be a regular linear diffusion taking values in R and started at 0. We
denote by s its scale function, m(dx) = ρ(x)dx its speed measure, and q(t,x,y) its
transition density function with respect to m. Let us introduce the resolvent kernel
of (Xt , t ≥ 0):

uλ (x,y) =
∫ ∞

0
e−λuq(u,x,y)du.
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1) We first assume that P(Xt −−→
t→∞

+∞) = 1. Prove that, for x > 0, u0(x,x) = −s(x)
and rewrite Theorem 2.4 in terms of uλ . In fact, it can be proven that this new
expression is valid for all transient (regular) diffusions, see [12].
2) Let τ be an exponential r.v. of parameter α , independent from (Xt , t ≥ 0). We
define the diffusion (X̂t , t ≥ 0) by:

X̂t =

{
Xt if t < τ
∂ if t ≥ τ

where ∂ is a cemetery point. Apply the result of Question 1) to (X̂t , t ≥ 0) to prove
that:

P0 (Gx(τ) ∈ dt) =
(
1−E

[
e−αTx

])
δ0(dt)+

e−αtq(t,0,x)
uα(x,x)

dt

where Tx := inf{t ≥ 0; Xt = x}.
3) We assume that (Xt , t ≥ 0) is a recurrent diffusion. Recall the following formula
(see [42]):

1
uλ (x,x)

=
∫ ∞

0
(1− e−λu)nx(u)du

where nx is the density of the Lévy measure νx of the subordinator τ(x)
l := inf{t ≥

0; Lx
t > l}. Prove that

1
λuλ (x,x)

is the Laplace transform of u 
→ νx[u,+∞[.

(Hint: Compute
∫ ∞

a (1 − e−λu)nx(u)du with an integration by parts, and then let
a → 0.)
4) Deduce from 2) and 3) that, for u ≤ t:

P0 (Gx(t) ∈ du) = P0(Tx > t)δ0(du)+q(u,0,x)νx[t −u,+∞[du.

5) In the case of Brownian motion, recover formula (5.28).
6) We now assume that (Xt := B(ν)

t , t ≥ 0) is a Brownian motion with drift ν. Its
resolvent kernel is given by:

u(ν)
λ (x,x) =

1

2
√

2λ +ν2
e−2νx.

Prove then that:
√
λ +a
λ

=
∫ ∞

0
e−λ t

(
e−at
√
πt

+
√

a Erf(
√

at)
)

dt

where Erf(u) =
2
π

∫ u

0
e−x2

dx, and recover formula (5.35).
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5.2 Past-Future (Sub)-Martingales

5.2.1 Definitions

Let (Bt , t ≥ 0) be a Brownian motion started from 0. We have seen in the previous
section the importance of the “past-future filtration” (Fs,t ,0 ≤ s ≤ t < ∞) defined
by:

Fs,t = σ(Bu,u ≤ s; Bh,h ≥ t), 0 ≤ s ≤ t < ∞. (5.36)

Note that, for s = t, Fs,s = F∞ =
∨

t≥0
Ft , with Ft := σ(Bu,u ≤ t), and that, if

[s, t] ⊂ [s′, t ′], Fs′,t ′ ⊂ Fs,t . It is therefore quite natural to introduce the following
notions:

Definition 5.1.
i) A R

+-valued Fs,t-adapted process (Δs,t ,s ≤ t) is called a (Fs,t ,s ≤ t) positive
submartingale (or a past-future submartingale) if, for every s,s′, t, t ′ such that [s, t]⊂
[s′, t ′], we have:

E
[
Δs,t |Fs′,t ′

]
≥ Δs′,t ′ . (5.37)

ii) A R
+-valued Fs,t-adapted process (Δs,t ,s ≤ t) is called a (Fs,t ,s ≤ t) positive

martingale (or a past-future martingale) if, for every s,s′, t, t ′ such that [s, t]⊂ [s′, t ′],
we have:

E
[
Δs,t |Fs′,t ′

]
= Δs′,t ′ . (5.38)

Here are some particular examples of such submartingales: let Γ be a Borel set
in R and define

ΔΓ
s,t := P(∀u ∈ [s, t],Bu ∈ Γ |Fs,t) (5.39)

and the sets:
AΓ

s,t := {∀u ∈ [s, t], Bu ∈ Γ }. (5.40)

They satisfy: AΓ
s′,t ′ ⊂ AΓ

s,t if [s, t] ⊂ [s′, t ′] which implies that (ΔΓ
s,t ,s ≤ t) is a past-

future submartingale. Moreover, from the Markov property of Brownian motion,
there exists a function fΓ (s, t;x,y) (with s ≤ t,x,y ∈ R) such that:

ΔΓ
s,t = fΓ (s, t;Bs,Bt). (5.41)

This leads us to present the following definition:

Definition 5.2. A function f : R
+×R

+×R×R→R
+ is a past-future subharmonic

function (PFS-function) if ( f (s, t;Bs,Bt),s ≤ t) is a past-future submartingale.
A function f : R

+ ×R
+ ×R×R → R

+ is a past-future harmonic function (PFH-
function) if ( f (s, t;Bs,Bt),s ≤ t) is a past-future martingale.

Let us go back, for a moment, to Theorem 5.1 and its proof. We have:

{G(ν)
l (t) < s} = A(ν),Γl

s,t = {∀u ∈]s, t[; B(ν)
u ∈ Γl}
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with Γl =]−∞, l[∪]l,+∞[. Hence, we deduce from Theorem 5.1 that:

P

(
G(ν)

l (t) < s|Fs,t

)
=
(

1− exp

{
− 2

t − s

(
B(ν)

s − log(l)
)(

B(ν)
t − log(l)

)})+

and, from (5.41), that:

h(l,ν)(s, t;x,y) =
(

1− exp

{
− 2

t − s
(x+νs− log(l))(y+νt − log(l))

})+

(5.42)

is a PFS-function. Besides, (5.42) leads us to believe that, for l,ν ∈ R, the function
f (l,ν) defined by:

f (l,ν)(s, t;x,y) = exp

{
− 2

t − s
(x+νs− log(l))(y+νt − log(l))

}
(5.43)

is a PFH-function. We shall prove this result in Subsection 5.2.3 below.

5.2.2 Properties and Characterization of PFH-Functions

Thanks to basic properties of Brownian motion, i.e.:

- scaling:
(

aBt/a2 , t ≥ 0
) (law)

= (Bt , t ≥ 0),

- time inversion:
(

B̂t = tB1/t , t ≥ 0
) (law)

= (Bt , t ≥ 0) (where B̂0 = 0 by continuity),

- bridge property: conditionally on Bt + νt = a, the law of (Bs + νs,s ≤ t) does
not depend on ν,

the following Proposition is easily obtained:

Proposition 5.1. Let f (= f (s, t;x,y)) be a PFH-function. Then:

i) For any a > 0:

f (a)(s, t;x,y) := f (a2s,a2t;ax,ay) is also a PFH-function,

ii) f̂ defined by:

f̂ (s, t;x,y) := f

(
1
t
,

1
s

;
y
t
,

x
s

)
(5.44)

is also a PFH-function.
iii) For any ν, l ∈ R:

f (l,ν)(s, t;x,y) = f (s, t;x+νs+ l,y+νt + l) (5.45)

is also a PFH-function.
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The proof of this Proposition is left to the reader.

Here is now a characterization of PFH-functions:

Theorem 5.2. A regular function h(s, t;x,y) (s ≤ t;x,y ∈ R) is a PFH-function if
and only if:

∂h
∂ s

(s, t;x,y)+
y− x
t − s

∂h
∂x

(s, t;x,y)+
1
2
∂ 2h
∂x2 (s, t;x,y) = 0, (5.46)

and

− ∂h
∂ t

(s, t;x,y)− y− x
t − s

∂h
∂y

(s, t;x,y)+
1
2
∂ 2h
∂y2 (s, t;x,y) = 0. (5.47)

Proof. This proof hinges upon the following lemma:

Lemma 5.1. Let M f
s,t := f (s, t;Bs,Bt) (s ≤ t) for f a regular function. Then, (M f

s,t ,
s ≤ t) is a past-future martingale if and only if:

i) for fixed t,

(M f
s,t ,s < t) is a (F (t)

s ,s < t) martingale, where: F
(t)
s = Fs ∨σ(Bt) (5.48)

ii) for fixed s,

(M f
s,t , t > s) is a

(
(s)F+

t , t > s
)

martingale, where: (5.49)

(s)F+
t = σ(Bs)∨F+

t , and F+
t = σ(Bu,u ≥ t)

Proof. Note that (M f
s,t ,s ≤ t) is a (Fs,t ,s ≤ t) martingale if and only if for every

Φs′ ∈ b(Fs′) (the space of bounded Fs′ -measurable r.v.’s), Ψt ′ ∈ b(F+
t ′ ), with s′ ≤

s ≤ t ≤ t ′ one has:
E

[
Φs′M

f
s,tΨt ′

]
= E

[
Φs′M

f
s′,t ′Ψt ′

]
(5.50)

We first prove that (5.50) implies conditions (i) and (ii) of Lemma 5.1
Indeed, taking s′ < s < t = t ′ and Ψt = g(Bt) for a generic bounded function g, we
have, from (5.50):

E

[
Φs′M

f
s,tg(Bt)

]
= E

[
Φs′M

f
s′,tg(Bt)

]

i.e. (5.48) and, by past-future symmetry, (5.50) also implies (5.49).

We now prove that conditions (i) and (ii) of Lemma 5.1 imply (5.50)
From the Markov property, the LHS of (5.50), say L, is equal to:

L = E

[
Φs′M

f
s,tγ(t,Bt)

]
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where
γ(t,Bt) = E [Ψt ′ |Ft ] = E [Ψt ′ |Bt ] .

From (5.48), we then get:

L = E

[
Φs′M

f
s,tγ(t,Bt)

]
= E

[
Φs′M

f
s′,tγ(t,Bt)

]
= E

[
Φs′M

f
s′,tΨt ′

]
.

Again, from the Markov property, we get:

L = E

[
β (s′,Bs′)M

f
s′,tΨt ′

]

where β (s′,Bs′) = E [Φs′ |Bs′ ]. Now, using (5.49), we obtain:

L = E

[
β (s′,Bs′)M

f
s′,tΨt ′

]
= E

[
β (s′,Bs′)M

f
s′,t ′Ψt ′

]

and Lemma 5.1 is proven.
��

Let us remark that these arguments only make use of the Markov property, and not
of the Brownian framework.

We now complete the proof of Theorem 5.2

For a fixed t > 0, (Bs,s ≤ t) is a (F (t)
s ,s ≤ t) semi-martingale with:

Bs = β (t)
s +

∫ s

0

Bt −Bu

t −u
du (5.51)

where (β (t)
s ,0 ≤ s ≤ t) is a (F (t)

s ,0 ≤ s ≤ t) Brownian motion (see [51]). We apply

Itô’s formula to (M f
s,t ,s ≤ t) in the filtration (F (t)

s ,s ≤ t). We obtain, for u < s < t:

Ms,t =Mu,t +
∫ s

u

∂ f
∂ s

(r, t;Br,Bt)dr +
∫ s

u

∂ f
∂x

(r, t;Br,Bt)
(

dβ (t)
r +

Bt −Br

t − r
dr

)

+
1
2

∫ s

u

∂ 2 f
∂x2 (r, t;Br,Bt)dr. (5.52)

Hence, the martingale property, from Point (i) of Lemma 5.1, holds if and only if:

∂ f
∂ s

(s, t;x,y)+
y− x
t − s

∂ f
∂x

(s, t;x,y)+
1
2
∂ 2 f
∂x2 (s, t;x,y) = 0.

This is (5.46). We might obtain (5.47) using some similar arguments; however, a
time inversion argument (Point (ii) of Proposition 5.1) is much quicker and reduces
the obtention of (5.47) to (5.46).

��
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5.2.3 Two Classes of PFH-Functions

We now introduce two classes of PFH-functions. Actually, we shall show that these
two classes make it possible to describe all the PFH-functions.

Theorem 5.3. Let ν, l, e and d four reals. Then, the functions f (l,ν) and h(e,d) de-
fined by:

f (l,ν)(s, t;x,y) = exp

{
− 2

t − s
(x+νs− l)(y+νt − l)

}
(5.53)

and

h(e,d)(s, t;x,y) = exp

{
x(e+dt)− y(e+ds)

t − s
− e2 +2eds+d2st

2(t − s)

}
(5.54)

= c(e,d)exp

{
2

t − s

((
x− e+ds

2

)(
y+

e+dt
2

)
− xy

)}
(5.55)

are PFH-functions.

Note that, for d = 0:

h(e,0)(s, t;x,y) = exp

(
e

x− y
t − s

− e2

2(t − s)

)
, (5.56)

and for e = 0:

h(0,d)(s, t;x,y) = exp

(
d

xt − ys
t − s

− d2st
2(t − s)

)
. (5.57)

We shall see in Subsection 5.2.5 how we came to think about these functions f (l,ν)

and h(e,d).

Proof. Elementary (but fastidious) computations show that f (l,ν) and h(e,d) satisfy
conditions (5.46) and (5.47), thus are PFH-functions.

��

5.2.4 Another Characterization of PFH-Functions

We shall say that a function K : R
+×R→R

+ is space-time harmonic for Brownian
motion if (K(t,Bt), t ≥ 0) is a martingale (for the usual filtration (Ft , t ≥ 0).) If K
is smooth, from Itô’s formula, this condition is of course equivalent to:

∀t ≥ 0, E[|K(t,Bt)|] < +∞ and
∂K
∂ t

+
1
2
∂ 2K
∂x2 = 0. (5.58)

It is known, from Widder’s representation Theorem of positive space-time harmonic
functions, that the condition (5.58) is also equivalent to the existence of a positive
finite measure γ , carried by R, such that:
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K(t,x) =
∫

R

exp

(
λx− λ 2t

2

)
dγ(λ ). (5.59)

Our aim now is to obtain a representation formula like (5.59), but this time for
PFH-functions. Of course, the functions that will play the role of eλ defined by

eλ (t,x) := exp
(
λx− λ 2

2 t
)

will be the functions f (l,ν) and h(e,d) defined by (5.53)

and (5.54).

Theorem 5.4 (Another characterization of PFH-functions).
A function h is a PFH-function if and only if:

i) For every t > 0 and y ∈ R, there exists a space-time harmonic function K+
(t,y) for

Brownian motion such that:

h(s, t;x,y) = K+
(t,y)

(
s

t − s
,

xt − ys

(t − s)
√

t

)
, (5.60)

or equivalently, from (5.59):
For every t > 0 and y ∈ R, there exists a positive finite measure γ+(t,y,dη) such
that:

h(s, t;x,y) =
∫

R

γ+(t,y,dη)exp

(
η

xt − ys

(t − s)
√

t
− η2

2
s

t − s

)
. (5.61)

ii) For every s > 0 and x ∈ R, there exists a space-time harmonic function K−
( 1

s , x
s )

for Brownian motion such that:

h(s, t;x,y) = K−
( 1

s , x
s )

(
s

t − s
,
(y− x)

√
s

t − s

)
, (5.62)

or equivalently, from (5.59):
For every s > 0 and x ∈R, there exists a positive finite measure γ−(t,y,dη) such
that:

h(s, t;x,y) =
∫

R

γ−
(

1
s
,

x
s
,dη

)
exp

(
η

(x− y)
√

s
(t − s)

− η2

2
s

t − s

)
. (5.63)

Proof. We shall use Theorem 5.2, but, first of all, let us give another formulation
of (5.46):
• For any given t and y, the process (h(s, t;b(y,t)

s ,y),0 ≤ s < t) is a martingale, where

(b(y,t)
s ,0 ≤ s ≤ t) is a Brownian bridge of length t such that b(y,t)

t = y a.s. This results

at once from Itô’s formula, noting that (b(y,t)
s ,0 ≤ s ≤ t) is the solution of the SDE:

dβs =
y−βs

t − s
ds+dBs. (5.64)

Let us also remark also that, thanks to Proposition 5.1, an equivalent formulation of
(5.47) is given by:
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• Let k defined by: k(s, t;x,y) := h

(
1
t
,

1
s

;
y
t
,

x
s

)
. Then, k satisfies (5.46).

Hence, we will have proven Theorem 5.4 if we can show the existence of a bijective
correspondence Θ between:
- the set HB of space-time harmonic functions for Brownian motion,
- the set H 0→y

br,t of space-time harmonic functions for the Brownian bridge of length
t ending at y,
this correspondence being given by:

Θ(K)(s,x) := h(t,y)(s,x) := K

(
s

t − s
,

xt − ys

(t − s)
√

t

)
. (5.65)

Let us show (5.65)

Let K(u,z) : R
+ ×R → R

+ and h(t,y) defined by:

h(t,y)(s,x) := K

(
s

t − s
,

xt − ys

(t − s)
√

t

)
. (5.66)

We also define: L(t,y)(ϕ) =
∂ϕ
∂ s

+
y− x
t − s

∂ϕ
∂x

+
1
2
∂ 2ϕ
∂x2 . Then, from (5.66), we deduce:

∂h
∂ s

=
t

(t − s)2

∂K
∂u

+
(x− y)

√
t

(t − s)2

∂K
∂ z

∂h
∂x

=
√

t
t − s

∂K
∂ z

,
∂ 2h
∂x2 =

t
(t − s)2

∂ 2K
∂ z2 .

Hence:

L(t,y)(h) =
t

(t − s)2

∂K
∂u

+
(x− y)

√
t

(t − s)2

∂K
∂ z

+
y− x
t − s

√
t

t − s
∂K
∂ z

+
1
2

t
(t − s)2

∂ 2K
∂ z2

=
t

(t − s)2

(
∂K
∂u

+
1
2
∂ 2K
∂ z2

)
. (5.67)

It is therefore plain from (5.67) that h is a space-time harmonic function for the

Brownian bridge b(y,t) (i.e. L(t,y)(h) = 0) if and only if
∂K
∂u

+
1
2
∂ 2K
∂ z2 = 0, i.e. K is

space-time harmonic for Brownian motion.
��

5.2.5 Description of Extremal PFH-Functions

From Theorem 5.4, to every PFH-function h, we can associate 2 families of positive
finite measures γ+(t,y,dη) and γ−

(
1
s ,

x
s ,dη

)
. We now study the PFH-harmonic
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functions for which the measures γ+ and γ− cannot be decomposed, i.e. such that
the supports of γ+ and γ− are each reduced to a point. More precisely:

Definition 5.3. A PFH-function h is said to be extremal if the measures γ+(t,y,dη)
and γ−

(
1
s ,

x
s ,dη

)
have their supports each reduced to a point. In other terms, there

exist two functions Ψ ,Φ : R
+ ×R → R

+ and two functions α,β : R
+ ×R → R

such that: {
γ+(t,y,dη) =Ψ(t,y)δα(t,y)(dη),

γ−
(

1
s ,

x
s ,dη

)
= Φ(s,x)δβ (s,x)(dη).

(5.68)

Theorem 5.5. Let g an extremal PFH-function. Then, g is one of the two functions
f (l,ν) or h(e,d) described by Theorem 5.3.

Proof. i) Let g an extremal PFH-function. First of all, with the same notations as
in Theorem 5.4, there exist two families of measures γ+(t,y,dη) and γ−

(
1
s ,

x
s ,dη

)

such that, for all s ≤ t:

g(s, t;x,y) =
∫

R

γ+(t,y,dη)exp

(
η

xt − ys

(t − s)
√

t
− η2

2
s

t − s

)
(5.69)

=
∫

R

γ−
(

1
s
,

x
s
,dη

)
exp

(
η

(x− y)
√

s
(t − s)

− η2

2
s

t − s

)
(5.70)

which leads, taking (5.68) into account, to the identity:

Ψ(t,y)exp

(
α

xt − ys

(t − s)
√

t
− α2

2
s

t − s

)
= Φ(s,x)exp

(
β

(x− y)
√

s
(t − s)

− β 2

2
s

t − s

)

(5.71)
where, to simplify, we have written α for α(t,y) and β for β (s,x). Relation (5.71)
being true for all t ≥ s, we replace t by as, with a ≥ 1. After a few algebraic com-
putations, (5.71) is seen to be equivalent to:

Ψ(as,y)exp

(
− 1

2(a−1)

(
α2 −2αx

√
a
s

+
2αy√

as

))

= Φ(s,x)exp

(
− 1

2(a−1)

(
β 2 − 2βy√

s
+

2βx√
s

))
. (5.72)

ii) We now study more carefully relation (5.72)
We take x = 0, and then y = 0 in (5.72). We obtain:

Ψ(as,y)exp

(
− 1

2(a−1)

(
α2 +

2αy√
as

))

= Φ(s,0)exp

(
− 1

2(a−1)

(
β 2(s,0)− 2β (s,0)y√

s

))



5.2 Past-Future (Sub)-Martingales 135

and

Ψ(as,0)exp

(
− 1

2(a−1)

(
α2(as,0)−2α(as,0)x

√
a
s

))

= Φ(s,x)exp

(
− 1

2(a−1)

(
β 2 +

2βx√
s

))
.

We plug back these two relations in (5.72):

Φ(s,0)exp

(
− 1

2(a−1)

(
β 2(s,0)− 2β (s,0)y√

s
−2αx

√
a
s

))

=Ψ(as,0)exp

(
− 1

2(a−1)

(
α2(as,0)−2α(as,0)x

√
a
s
− 2βy√

s

))
. (5.73)

Identifying the terms which depend on x and y in (5.73), we obtain:

β (s,0)y√
s

+α(as,y)x
√

a
s

= α(as,0)x
√

a
s

+
β (s,x)y√

s
(5.74)

and

Φ(s,0)exp

(
− 1

2(a−1)
β 2(s,0)

)
=Ψ(as,0)exp

(
− 1

2(a−1)
α2(as,0)

)
. (5.75)

We then take the logarithm of (5.75), multiply by a−1 and make a = 1. This yields:

β 2(s,0) = α2(s,0) i.e. β (s,0) = ±α(s,0).

Furthermore, from (5.74), we deduce:

β (s,x) =
√

s
y

(
β (s,0)

y√
s
+α(as,y)x

√
a
s
−α(as,0)x

√
a
s

)
(5.76)

= β (s,0)+
x
y

(α(as,y)−α(as,0))
√

a.

The LHS of this last relation does not depend on y, neither on a, so we get by making
y = a = 1:

β (s,x) = β (s,0)+ x(α(s,1)−α(s,0)) . (5.77)

The same method yields, still from (5.74) but expressing this time α(as,y):

α(as,y) =
1
x

√
s
a

(
α(as,0)x

√
a
s

+β (s,y)
y√
s
−β (s,0)

y√
s

)

which reduces, after taking x = 1 and a = 1, to:
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α(s,y) = α(s,0)+ y(β (s,1)−β (s,0)) . (5.78)

Hence, from (5.77) and (5.78), with x = y = 1:

α(s,1)−α(s,0) = β (s,1)−β (s,0). (5.79)

Plugging (5.77) and (5.78) back into (5.74), we obtain:

β (s,0)y√
s

−{α(as,0)+ y(β (as,1)−β (as,0))}x

√
a
s

= α(as,0)x
√

a
s

+
y√
s
{β (s,0)+ x(α(s,1)−α(s,0))} . (5.80)

We identify in (5.80) the terms in xy, and then make s = 1:

β (a,1)−β (a,0) =
α(1,1)−α(1,0)√

a
=:

c√
a
. (5.81)

Finally, gathering (5.76)–(5.81) yields:

β (s,x) = β (s,0)+
cx√

s

α(s,y) = ±β (s,0)+
cy√

s
,

or, denoting l(s) = β (s,0) to simplify:

β (s,x) = l(s)+
cx√

s
(5.82)

α(s,y) = ±l(s)+
cy√

s
. (5.83)

iii) It remains to identify the possible values of c and of the function l
To this end, we plug (5.82) and (5.83) back into (5.72):

Ψ(as,y)exp

{

− 1
2(a−1)

((
±l(as)+

cy√
as

)2

−2x

√
a
s

(
±l(as)+

cy√
as

)
+

2y√
as

(
±l(as)+

cy√
as

))}
(5.84)

=Φ(s,x)exp

{

− 1
2(a−1)

((
l(s)+

cx√
s

)2

− 2y√
s

(
l(s)+

cx√
s

)
+

2x√
s

(
l(s)+

cx√
s

))}
.
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We then take the logarithm of this last expression, multiply it by a− 1, and make
a = 1:

(
±l(s)+

cy√
s

)2

− 2x√
s

(
±l(s)+

cy√
s

)
+

2y√
s

(
±l(s)+

cy√
s

)

=
(

l(s)+
cx√

s

)2

− 2y√
s

(
l(s)+

cx√
s

)
+

2x√
s

(
l(s)+

cx√
s

)
. (5.85)

But, in (5.85), the terms in y2 and x2 must be null, which leads to the equations:

c2y2

s
+

2cy2

s
= 0 i.e. c = 0 or c = −2,

c2x2

s
+

2cx2

s
= 0 i.e. c = 0 or c = −2. (5.86)

The identification of the terms in x and y in (5.85) yields then:
- If c = −2,

α(s,x) = l(s)− 2x√
s
,

β (s,x) = l(s)− 2x√
s
.

- If c = 0,

α(s,x) = −l(s),
β (s,x) = l(s).

iv) It remains to find l.
From (5.84), it is clear that the functionsΨ and Φ are necessarily of the form:

Ψ(as,y) = exp(i(as)y+ j(as))
Φ(s,x) = exp(e(s)x+ f (s)) (5.87)

for four functions i, j,e, f . Then, according to the value of c (and therefore to the
sign of ±l(s)), we can identify the coefficient in x in (5.84) to get, for example when
c = −2:

l(as)
a−1

√
a
s

= −e(s)+
l(s)

a−1
1√
s
.

Hence, for s = 1:

l(a) = −e(1)
a−1√

a
+

l(1)√
a

=:
e√
a

+d
√

a (5.88)

with d and e two real constants.
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v) To sum up, if g is an extremal PFH-function, we have necessarily:

- either c = −2 and:

α(s,x) =
e√
s
+d

√
s− 2x√

s

β (s,x) =
e√
s
+d

√
s− 2x√

s

Ψ(s,y) = exp

(
ey
s
− e2

2s

)
(5.89)

Φ(s,y) = exp

(
−dx− d2

2
s

)
,

- or c = 0 and:

α(s,x) =
e√
s
+d

√
s

β (s,x) = − e√
s
−d

√
s

Ψ(s,y) = exp

(
−ey

s
− e2

2s

)
(5.90)

Φ(s,y) = exp

(
dx− d2

2
s

)
.

vi) Reverse study
So far, we have taken an extremal PFH-function g, and we have described the form
it must necessarily take (these are relations (5.68), (5.69), (5.89) and (5.90)). But,
do these relations actually give a PFH-function ? To check this, we shall adopt the
reverse method. Starting from (5.89) and (5.90), we shall compute the correspond-
ing functions g and verify that they are PFH-functions.

• The case c = −2
We have, computing g with the help of γ+ as given by (5.68):

g(s, t;x,y) =
∫

R

exp

(
η

xt − ys

(t − s)
√

t
− η2

2
s

t − s

)
Ψ(t,y)δα(t,y)(dη)

=exp

(
ey
t
− e2

2t

)
exp

((
e√
t
+d

√
t − 2y√

t

)
xt − ys

(t − s)
√

t

− s
2(t − s)

(
e√
t
+d

√
t − 2y√

t

)2
)

=exp

(
−de

4

)
exp

(
− 2

t − s

(
x− e+ds

2

)(
y− e+dt

2

))
.
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The computation of g performed this time with the help of γ− (as a verification)
gives the same result. Hence, in the case c = −2, the function g(s, t;x,y) we ob-
tained is indeed a PFH-function: it is the function f (l,ν) from Theorem 5.3 with
ν = − d

2 and l = e
2 .

• The case c = 0
We have, still with γ+:

g(s, t;x,y) =exp

(
−ey

t
− e2

2t

)

· exp

((
e√
t
+d

√
t

)
xt − ys

(t − s)
√

t
− s

2(t − s)

(
e√
t
+d

√
t

)2
)

=exp

(
x(e+dt)− y(e+ds)

t − s
− e2 +2eds+d2st

2(t − s)

)
.

The computation of g with the help of γ− gives also the same result. Hence, in the
case c = 0, the function g(s, t;x,y) we obtained is the function h(e,d) of Theorem 5.3.
This ends the proof of Theorem 5.5.

��

Corollary 5.1. A function g is a positive PFH-function if and only if there exist two
positive measures θ1 and θ2 carried by R

2 such that:

g(s, t;x,y) =
∫

R2
f (l,ν)(s, t;x,y)θ1(dl,dν)+

∫

R2
h(e,δ )(s, t;x,y)θ2(de,dδ ). (5.91)

Proof. Let CH denote the convex cone of positive PFH-functions, and denote by X a
base of CH . (X is the intersection of CH with a closed affine hyperplane, which does
not contain 0, and intersects all the generators of the cone). An element g of X is said
to be X-extremal if the relation g = 1

2 (g1 +g2) with g1,g2 ∈X implies that g1 = g2 =
g. It is clear that X-extremal elements are precisely the extremal PFH-functions in
the sense of Definition 5.3. Indeed, if the measure γ+(t,y,dη) (resp. γ−( 1

s ,
x
s ,dη))

is supported by more than one point (i.e. it is not a Dirac measure), we can always
decompose it into the sum of two positive measures with disjoint supports. Then,
relation (5.91) relies on an application of Choquet’s representation Theorem, which
expresses every element of X as a barycenter of its extremal elements. We refer the
interested reader to [16] for the details.

��

Remark 5.4. Looking carefully at Theorems 5.3 and 5.5, it seems natural to try to
find all the PFH-functions having the form:

h(s, t;x,y) = exp(a(s, t)xy+b(s, t)x+ c(s, t)y+d(s, t)) . (5.92)

From Theorem 5.2, we must have:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂a
∂ s

=
1

t − s
a

a

(
1

t − s
+

1
2

a

)
= 0

∂b
∂ s

=
1

t − s
b

∂c
∂ s

+b

(
1

t − s
+a

)
= 0

∂d
∂ s

+
1
2

b2 = 0.

(5.93)

The second relation of (5.93) implies either a = 0 or a = − 2
t − s

. When a = 0, the

solution of (5.93) is:

b(s, t) =
e+dt
t − s

, c(s, t) =
e+ds
t − s

, and d(s, t) =
e2 +2eds+d2st

2(t − s)
.

The corresponding function h is the function h(e,d) of Theorem 5.3. (This is the case

c = 0, relation (5.90)). When a = − 2
t − s

, we find:

b(s, t) =
l −νt
t − s

, c(s, t) =
l −νs
t − s

, and d(s, t) =
1
2

(l −νs)(l −νt)
t − s

.

The corresponding function h is the function f (l,ν) of Theorem 5.3. (This is the case
c = −2, relation (5.89)).

Exercise 5.2 (A few examples of past-future martingales).
Let (Bt , t ≥ 0) be a standard Brownian motion.

1) Prove that

(
Bt −Bs

t − s
,s < t

)
is a past-future martingale.

2) Recall the initial enlargement formula (5.51):

Bs = β (t)
s +

∫ s

0

Bt −Bu

t −u
du (5.94)

where (β (t)
s ,0 ≤ s ≤ t) is a (F (t)

s := Fs ∨σ(Bt),0 ≤ s ≤ t) Brownian motion (see
[51]). Using (5.94), prove that, for f ∈ L2(R+):

E

[∫ ∞

0
f (u)dBu|Fs,t

]
=

∫ s

0
f (u)dBu +

∫ ∞

t
f (u)dBu +

Bt −Bs

t − s

∫ t

s
f (u)du (5.95)

3) Deduce that:
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E

[
exp

(∫ ∞

0
f (u)dBu

)
|Fs,t

]
= exp

(∫ s

0
f (u)dBu +

∫ ∞

t
f (u)dBu

+
Bt −Bs

t − s

∫ t

s
f (u)du+

1
2

∫ t

s
f 2(u)du− 1

2(t − s)

(∫ t

s
f (u)du

)2
)

.

4) Let a > 1/2. Prove similarly that:

E

[∫ ∞

0
eBu−audu|Fs,t

]
=

∫ s

0
eBu−audu+

∫ ∞

t
eBu−audu

+ eBs−as
∫ t−s

0
exp

((
1
2

+
Bt −Bs

t − s
−a

)
v− v2

2(t − s)

)
dv.

Note: An integrable process H such that

(
Ht −Hs

t − s
,s < t

)
is a past-future martin-

gale is called a harness. It can be proven that a process H is a harness if and only if

for every t > 0, there exists a (F (t)
s )-martingale (M(t)

s ,s ≥ 0) such that:

∀s ≤ t, Hs = M(t)
s +

∫ s

0

Ht −Hu

t −u
du,

see:
R. Mansuy and M. Yor [40, F]. Harnesses, Lévy bridges and Monsieur Jourdain.
Stochastic Process. Appl., 115(2):329–338, 2005.

5.3 Notes and Comments

The assertion (i) of Theorem 5.1 is due to A. Bentata and M. Yor ([6]). It has been
developed in a course given by M. Yor in the Bachelier Séminaire in February 2008
at Institut H. Poincaré. “Yuri’s formula” (Point (iii) of Theorem 5.1) is due, in the
particular case ν = −1/2, to J. Akahori, Y. Imamura and Y. Yano ([1]). Section 5.1
is taken from D. Madan, B. Roynette and M. Yor ([48]). The notion of “past-future”
martingales – Theorems 5.2 and 5.3 – is taken from the Bachelier Séminaire course
at Institut H. Poincaré, already mentioned ([6]). The contents of Subsection 5.2.5 –
which describes the space-time harmonic functions (see, e.g. Corollary 5.1) – are
new.



Chapter 6
Put Option as Joint Distribution Function in
Strike and Maturity

Abstract For a large class of R
+-valued, continuous local martingales (Mt , t ≥ 0),

with M0 = 1 and M∞ = 0, the put quantity: ΠM(K, t) = E [(K −Mt)+] turns out to
be the distribution function in both variables K and t, for K ≤ 1 and t ≥ 0, of a
probability γM on [0,1]× [0,+∞[. We discuss in detail, in this Chapter, the case
where (Mt = Et := exp(Bt − t

2 ), t ≥ 0), for (Bt , t ≥ 0) a standard Brownian motion,
and give an extension to the more general case of the semimartingale E σ ,−ν

t :=
exp

(
σBt −νt

)
, (σ �= 0,ν > 0).

6.1 Put Option as a Joint Distribution Function and Existence of
Pseudo-Inverses

6.1.1 Introduction

Throughout this Section 6.1, we consider a generic continuous local martingale
(Mt , t ≥ 0) taking values in R

+, and such that:

M0 = 1, lim
t→∞

Mt = 0. (6.1)

To such a (Mt , t ≥ 0), we associate the function ΠM : [0,1]×R
+ → R

+ defined by:

ΠM(K, t) := E
[
(K −Mt)+

]
, (0 ≤ K ≤ 1, t ≥ 0). (6.2)

Note that this function is separately increasing in K and t (concerning the latter,
since (K − x)+ is convex, ((K −Mt)+, t ≥ 0) is a submartingale). Furthermore, we
have:

i) ΠM(K,0) = 0 (0 ≤ K ≤ 1) and, from the dominated convergence Theorem,

ΠM(K,+∞) := lim
t→∞

ΠM(K, t) = K. (6.3)

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7 6, © Springer-Verlag Berlin Heidelberg 2010

143

http://dx.doi.org/10.1007/978-3-642-10395-7_6
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ii) From Theorem 2.1:
ΠM(K, t) = KP(GK ≤ t) (6.4)

with GK := sup{t ≥ 0;Mt = K}. In particular:

ΠM(1, t) = P(G1 ≤ t). (6.5)

Thus,
(
ΠM(K,+∞), K ≤ 1

)
, (resp.

(
ΠM(1, t), t ≥ 0

)
) is a distribution function on

[0,1], (resp. on [0,+∞[) ; more precisely, these functions are, respectively, the dis-
tribution function of U , a standard uniform variable on [0,1], and of G1.

To illustrate (6.5), let us recall that in the case
(
Mt = Et := exp

(
Bt − t

2

)
, t ≥ 0

)
,

with (Bt , t ≥ 0) a standard Brownian motion, it was shown in Chapter 1 that:

G1
(law)
= 4B2

1; hence, (6.5) reads, in this case:

ΠE (1, t) = P(4B2
1 ≤ t). (6.6)

This formula may also be checked directly from the classical Black-Scholes for-
mula.

6.1.2 Seeing ΠM(K, t) as a Function of 2 Variables

It is thus a natural question to ask whether the function of K and t:(
ΠM(K, t); K ≤ 1, t ≥ 0

)
is the distribution function of a probability on [0,1]×

[0,+∞[ which, assuming it exists, we shall denote by γ (= γM). If so, we have:

E
[
(K −Mt)+

]
= γ

(
[0,K]× [0, t]

)
, (K ≤ 1, t ≥ 0). (6.7)

6.1.3 General Pattern of the Proof

Here is our strategy to attack this question. Note that by Fubini:

E
[
(K −Mt)+

]
=

∫ K

0
P(Mt ≤ x)dx. (6.8)

Assume that there exists, for every x < 1, a r.v. Yx ≥ 0 such that:

P(Mt ≤ x) = P(Yx ≤ t) (x < 1, t ≥ 0). (6.9)

Definition 6.1. We shall call this collection (Yx,x < 1) of r.v.’s (provided it exists) a
decreasing pseudo-inverse of (Mt , t ≥ 0). (See Chapter 7, Definition 7.1 and 7.2 for
more general definitions and some justifications of this terminology).
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Let us go back to (6.8), and assume that (Mt , t ≥ 0) admits a decreasing pseudo-
inverse (Yx, x < 1). Then, plugging (6.9) in (6.8), we find that γ exists, and it is the
probability:

γ(dx,dt) = dxP(Yx ∈ dt) on [0,1]× [0,+∞[.

Note that, a priori, we do not know the existence of (Yx, x < 1) as a process, that is a
measurable function: (x,ω) 
→ Yx(ω) ; if such a process exists, then γ is the law of:

(U,YU ) (6.10)

where U is uniform on [0,1] and independent of (Yx, x < 1).

6.1.4 A Useful Criterion

In practice, most of the time, the function:

(K, t) 
−→ΠM(K, t)

is regular; if so, we find that (Mt , t ≥ 0) admits a decreasing pseudo-inverse if and
only if:

∂ 2

∂K∂ t

(
ΠM(K, t)

)
≥ 0 (6.11)

and then:

γ(dK,dt) = dK P(YK ∈ dt) =
(

∂ 2

∂K∂ t

(
ΠM(K, t)

)
)

dK dt. (6.12)

6.1.5 Outline of the Following Sections

In Sections 6.2 and 6.3, we shall develop this program for

(
Mt = Et := exp

(
Bt −

t
2

)
, t ≥ 0

)
,

where (Bt , t ≥ 0) is a standard Brownian motion started at 0. In particular, we prove
the existence of a decreasing pseudo-inverse for (Et , t ≥ 0). In Chapter 7, we shall
study the existence of pseudo-inverses for Bessel and related processes, and more
generally for linear diffusions in Chapter 8.
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6.2 The Black-Scholes Paradigm

6.2.1 Statement of the Main Result

In this section, (Bt , t ≥ 0) denotes a standard Brownian motion started at 0 and
(Et , t ≥ 0) is the exponential martingale defined by:

Et := exp
(

Bt −
t
2

)
, (t ≥ 0). (6.13)

Note that E0 = 1 and Et −→
t→∞

0 a.s. We define, for 0 ≤ K ≤ 1 and t ≥ 0:

ΠE (K, t) := E
[
(K −Et)+

]
. (6.14)

Theorem 6.1. There exists a probability, which we shall denote by γ , on [0,1]×
[0,+∞[ such that:

ΠE (K, t) = γ
(
[0,K]× [0, t]

)
(6.15)

(
see Point (ii) of Proposition 6.3 for a description of the density of γ

)
.

In order to prove Theorem 6.1 and to describe γ , we start with the following:

Lemma 6.1. Denote by N the distribution function of the standard Gaussian vari-
able:

N (x) :=
1√
2π

∫ x

−∞
e−

y2
2 dy (x ∈ R). (6.16)

Then:

i) To any a,b > 0, one can associate a r.v. Ya,b, taking values in [0,+∞[, such that:

P(Ya,b ≤ t) = N

(
a
√

t − b√
t

)
, (t ≥ 0). (6.17)

ii) The density fYa,b of Ya,b is given by:

fYa,b(t) =
1√
2π

eab ·
(

a

2
√

t
+

b

2
√

t3

)
exp

(
−1

2

(
a2t +

b2

t

))
. (6.18)

iii) Let us define:

T (a)
b := inf{t ≥ 0 ; Bt +at = b}, (6.19)

G(a)
b := sup{t ≥ 0 ; Bt +at = b}. (6.20)

Then:

P(Ya,b ∈ dt) =
1
2

(
P(T (a)

b ∈ dt)+P(G(a)
b ∈ dt)

)
. (6.21)
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We note that this formula (6.21) allows to define the law of a process (Ya,b,b ≥ 0)

obtained as a fair coin toss of (T (a)
b ,b≥ 0) on one hand and (G(a)

b ,b≥ 0) on the other
hand.

Remark 6.1.
a) It may be worth mentioning that Point (i) of Lemma 6.1 admits a wide extension,
since to any distribution function F on R, and any a,b > 0, we can associate a new
distribution function Fa,b on R

+ via:

Fa,b(t) = F

(
a
√

t − b√
t

)
(t ≥ 0).

However, the particular case F = N fits extremely well with our discussion.

b) We note that
1

Ya,b

(law)
= Yb,a, which may be deduced from either (6.17), (6.18)

or (6.21).

Proof.
1) Points (i) and (ii) of Lemma 6.1 are immediate since:

• lim
t↓0

N

(
a
√

t − b√
t

)
= 0

• lim
t↑∞

N

(
a
√

t − b√
t

)
= 1

• ∂
∂ t

N

(
a
√

t − b√
t

)
=

1√
2π

(
a

2
√

t
+

b

2
√

t3

)
exp

(

−1
2

(
a
√

t − b√
t

)2
)

≥ 0

= fYa,b(t).

Point (iii) is then a direct consequence of (6.18), (1.11) and (1.12).

2) Another proof of Point (iii) of Lemma 6.1:

Let us denote, for ν > 0,
(
E

(2ν)
t := exp(2νBt −2ν2t), t ≥ 0

)
. It is proven in Chap-

ter 1, Theorem 1.3, that, for A ≥ 1:

P(T (ν)
logA ≤ t) = E

[
E

(2ν)
t 1{E (2ν)

t >A2ν}

]
+A2ν

P(E (2ν)
t > A2ν)

and for A ≥ 0 (Theorem 1.3, formula (1.54)):

P(G(ν)
logA ≤ t) = E

[
E

(2ν)
t 1{E (2ν)

t >A2ν}

]
−A2ν

P

(
E

(2ν)
t > A2ν

)
.

Thus, by addition:
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1
2

(
P(T (ν)

logA ≤ t)+P(G(ν)
logA ≤ t)

)

=E

[
E

(2ν)
t 1{E (2ν)

t >A2ν}

]

=P

(
e2νBt+2ν2t > A2ν

)
(from Cameron-Martin formula (1.5))

=P(Bt > logA−νt) = P

(
B1 >

logA−νt√
t

)

=1−N

(
logA√

t
−ν

√
t

)
= N

(
ν
√

t − logA√
t

)
. (6.22)

(6.18) is now an immediate consequence of (6.22), with b = logA and ν = a, by
derivation with respect to t.

��

Proof. We have, for K ≤ 1 and t ≥ 0:

ΠE (K, t) := E
[
(K −Et)+

]
=

∫ K

0
P(Et ≤ x)dx

=
∫ K

0
N

(
logx√

t
+

√
t

2

)
dx (6.23)

(
since P(Et ≤ x) = P(eBt− t

2 ≤ x) = P

(
B1 <

logx√
t

+
√

t
2

))

=
∫ K

0
P

(
Y1

2 , log 1
x
≤ t

)
dx (from Lemma 6.1).

Hence:
∂ 2

∂K∂ t
ΠE (K, t) =

∂
∂ t

P(Y1
2 , log 1

K
≤ t) = fY1

2 , log 1
K
(t) ≥ 0.

This ends the proof of Theorem 6.1.
��

Remark 6.2. More generally, if, for x > 0, (M(x)
t , t ≥ 0) is a positive continuous local

martingale such that M(x)
0 = x a.s. and lim

t→∞
M(x)

t = 0, then there exists a probability

γM(x) on [0,x]× [0,+∞[ such that:

1
x
ΠM(x) (K, t) = γM(x) ([0,K]× [0, t]) , (K ≤ x, t ≥ 0)

if and only if (M(x)
t , t ≥ 0) admits a decreasing pseudo-inverse (Yx,y,y < x).
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6.2.2 Descriptions of the Probability γ

6.2.2.1 First Description of γ: Conditioning with Respect to U

Proposition 6.1. The probability γ on [0,1]× [0,+∞[ is the law of the pair:

(U, Y1
2 , log 1

U
) (6.24)

where U is uniform on [0,1] and independent of the process (Y1
2 ,b, b > 0).

We now describe in words this probability viewed from (6.24): it is the law of a two
components r.v.; the first component is the choice of a level out of the moneyness
for a put, or the choice of a strike K < 1, uniformly on [0,1]. Given this level, we
construct the second variable on the outcome of a fair coin toss as either the first
passage time of the stock price under the share measure to the level

(
1
K

)
, or the last

passage time of the stock price under the share measure to level
(

1
K

)
.

Proof. We have, for K ≤ 1 and t ≥ 0:

P(U ≤ K, Y1
2 , log 1

U
≤ t) =

∫ K

0
du P(Y1

2 , log 1
u
≤ t) (as explained just above)

=
∫ K

0
N

(√
t

2
+

logu√
t

)
du

=
∫ K

0
P(Et ≤ u)du

(
since Et

(law)
= exp

(√
tB1 −

t
2

)
, for fixed t

)

=E
[
(K −Et)+

] (
from (6.8)

)

=γ
(
[0,K]× [0, t]

) (
from (6.15)

)
.

The density of γ with respect to the Lebesgue measure on [0,1]×R
+ given by (6.33)

(see Proposition 6.3 below) may also be obtained from the preceding relations.
��

6.2.2.2 Second Description of γ: Conditioning with Respect to G1

Proposition 6.2. The probability γ on [0,1]× [0,+∞[ is the law of the pair:

(
exp(−2e) ∨ exp(−

√
8e′B2

1), 4B2
1

)
(6.25)

where B1,e,e
′ are independent, with e and e′ two standard exponential variables.
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Remark 6.3. Upon comparing Propositions 6.1 and 6.2, it is quite natural to look for
some understanding of the implied identities in laws between the first, resp. second,
components of (6.25) and (6.24); precisely, we wish to check directly that:

exp(−2e)∨ exp(−
√

8e′B2
1)

(law)
= U (6.26)

and

Y1
2 , log 1

U

(law)
= 4B2

1

(
(law)
= G

(
− 1

2

)

0 = sup
{

t ≥ 0;Bt −
t
2

= 0
})

. (6.27)

a) We now prove (6.26)
• First, we have: √

2e′B2
1

(law)
= e. (6.28)

Indeed:

P

(√
2e′B2

1 > x

)
= P

(
e
′ >

x2

2B2
1

)
= E

[
exp

(
− x2

2B2
1

)]

(a)
= E

[
exp

(
−x2

2
T1

)]
(b)
= exp(−x)

since T1, the first hitting time of 1 by (Bt , t ≥ 0) is distributed as
1

B2
1

, hence (a), and

the Laplace transform of T1 is well known to be given by (b).

• Since exp(−2e)
(law)
= U2, we have, from (6.28):

exp(−2e)∨ exp(−
√

8e′B2
1)

(law)
= U2 ∨ (U ′)2

with U and U ′ uniform on [0,1] and independent. But, for y ∈ [0,1]:

P
(
U2 ∨ (U ′)2 ≤ y

)
=
(
P(U2 ≤ y)

)2
= (

√
y)2 = y.

We have proven (6.26).

b) We now prove (6.27)
We have for every t ≥ 0:

P(Y1
2 , log 1

U
≤ t) =

∫ 1

0
P(Y1

2 , log 1
u
≤ t)du (after conditioning by U = u)

=
∫ 1

0
N

(√
t

2
+

logu√
t

)
du (from Lemma 6.1)

= E
[
(1−Et)+

] (
from (6.23)

)

= P(4B2
1 ≤ t)

(
from the Black-Scholes formula, see (1.19)

)
.
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We now prove Proposition 6.2
Conditioning on B2

1 and using the explicit formula for the density of B2
1:

fB2
1
(z) =

1√
2πz

e−
z
2 1{z>0},

we have, for K ≤ 1 and t ≥ 0:

P

(
exp(−2e)∨

(
exp−

√
8e′B2

1) ≤ K, 4B2
1 ≤ t

)

=
∫ t

4

0

dz√
2πz

e−
z
2 P

(
exp(−2e)∨ (exp−

√
8e′z) ≤ K

)

=
∫ t

4

0

dz√
2πz

e−
z
2 P(exp(−2e) ≤ K)P

(
e
′ >

(logK)2

8z

)

=
√

K
∫ t

4

0

dz√
2πz

e−
z
2 exp

(
− (logK)2

8z

)
(
since exp(−e)

(law)
= U

)

=
√

K E

[
1{B2

1≤
t
4 }
· exp

(
− (logK)2

8B2
1

)]

= E
[
(K −Et)+

]
(6.29)

where the last equality follows from Chapter 1, Theorem 1.4, which asserts that for
K ≤ 1:

E
[
(K −Et)+

]
=
√

K E

[
1{4B2

1≤t} exp

(
− (logK)2

8B2
1

)]
. (6.30)

��
Another proof of Proposition 6.2
We have, from (1.14) with ν = −1/2 and K < 1, since GK = sup{t ≥ 0; Et = K} =
G(−1/2)

log(K) :

P(GK ∈ ds) =
1/2√
2πs

exp

(
− 1

2s

(
log K +

s
2

)2
)

ds.

Hence:

KP(GK ∈ ds) =
√

K

(
exp

(
− (logK)2

2s

))
P(G1 ∈ ds)

= exp

(
1
2

logK

)
exp

(
− (logK)2

2s

)
P(G1 ∈ ds)

= P

(
e > −1

2
log K

)
P

(
e
′ >

(logK)2

2s

)
P(G1 ∈ ds)

= P
(

exp(−2e)∨ exp(−
√

2se′) < K
)
P(G1 ∈ ds)

= P
(

exp(−2e)∨ exp(−
√

8B2
1e

′) < K
)
P(4B2

1 ∈ ds)
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since G1
(law)
= 4B2

1

(
see Chapter 1, Theorem 1.2 and relation (1.19)

)
. Hence, since

from Theorem 2.1, E [(K −Es)+] = K P(GK ≤ s), one has:

γ(dK,ds) =
∂ 2

∂K∂ s

(
K P(GK ≤ s)

)
dK ds

= P

(
exp(−2e)∨ exp(−

√
8B2

1e
′) ∈ dK

)
P(4B2

1 ∈ ds)

which is Proposition 6.2.
��

6.2.2.3 Third Description of γ: its Relation with Local Time-Space Calculus

Let us define (LK
s ;K ≥ 0,s ≥ 0) the jointly continuous family of local times of the

martingale (Es, s ≥ 0). This family is characterized by the occupation density for-
mula: ∫ t

0
f (Es)d〈E 〉s =

∫ ∞

0
f (K)LK

t dK

for every Borel and positive function f . Here
(
〈E 〉s, s ≥ 0

)
denotes the bracket, i.e.

the quadratic variation process of (Es, s ≥ 0) and we have:

d〈E 〉s = E 2
s ds.

The Itô-Tanaka formula yields, for K ≤ 1:

E
[
(K −Et)+

]
=

1
2

E
[
LK

t

]
. (6.31)

As a consequence of (6.31), we obtain Point (i) of the following:

Proposition 6.3.

i) The probability γ on [0,1]× [0,+∞[ admits a density fγ and satisfies:

γ(dK, dt) =
1
2

(
∂ 2

∂K∂ t
E
[
LK

t

]
)

dK dt = fγ(K, t)dKdt (0 ≤ K ≤ 1, t ≥ 0).

(6.32)
ii) A closed form of fγ is:

fγ(K, t) =
1

2
√

2πKt

(
1
2
− logK

t

)
exp

(
− (logK)2

2t
− t

8

)
1[0,1](K)1[0,+∞[(t).

(6.33)

Proof. In Theorem 1.4, formula (1.64), we obtained the following explicit formula
for E[LK

t ]:

E
[
LK

t

]
=

√
K√
2π

∫ t

0

ds√
s

exp

(
− (log(K))2

2s
− s

8

)
. (6.34)
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Hence:
∂ 2

∂K∂ t
E
[
LK

t

]
=

1√
2πt

∂
∂K

(√
K exp

(
− (logK)2

2t
− t

8

))
(6.35)

and (6.33) is an easy consequence of (6.35) and (6.32).
��

6.2.2.4 Relation with a Result by N. Eisenbaum
(
see [22] and [23]

)

We now relate the above description of γ as in Proposition 6.3 with the definition-
formula established in [23]:

∫ ∞

−∞

∫ t

0
f (K,s)dK,s(LK

s ) =
∫ t

0
f (Es,s)dEs +

∫ 1

1−t
f (E1−s,1− s)dsE1−s (t ≤ 1).

(6.36)
This formula is the particular instance for Xs = Es of the formula found in Theorem
2.2 of [23] for a general reversible semimartingale. Here, on the RHS of (6.36), the
second stochastic integral is taken with respect to the natural filtration of Ês = E1−s,
which is, of course, that of B̂s = B1−s. We take f bounded, Borel, with support in
[0,1]K × [0,1]s. In order to relate formula (6.36) with Proposition 6.3, we note that:

a)
∫ 1

0

∫ 1

0
f (K,s)γ(dK,ds) =

1
2

E

[∫ 1

0

∫ 1

0
f (K,s)dK,s(LK

s )
]

which follows from

(6.31), and the monotone class Theorem.

b) From formula (6.36) and the fact that (Et , t ≥ 0) is a martingale, we deduce:

E

[∫ 1

0

∫ 1

0
f (K,s)dK,s(LK

s )
]

= E

[∫ 1

0
f (Ês,1− s)dÊs

]
(6.37)

which we shall compute explicitly thanks to the semimartingale decomposition of
(Ês, s ≤ 1) in its own filtration. This is presented in the next:

Proposition 6.4.

i) The canonical decomposition of (Bt , t ≤ 1) in the filtration

B
(1)
t := σ(Bs, s ≤ t)∨σ(B1) is:

Bt = B∗
t +

∫ t

0

B1 −Bs

1− s
ds (6.38)

where (B∗
t , t ≤ 1) is a (B(1)

t , t ≤ 1) Brownian motion.
ii) The canonical decomposition of B̂t = B1−t in its own filtration is:

B̂t = B1−t = B1 +β ∗
t −

∫ t

0

B1−s

1− s
ds (6.39)

where (β ∗
t , t ≤ 1) is a Brownian motion in

{
B̂t := σ(B̂u, u ≤ t), t ≤ 1

}
.
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iii) The canonical decomposition of Êt in B̂t is:

dÊt = Êt

(
dβ ∗

t +dt
(

1− B1−t

1− t

))
. (6.40)

Proof. (i) is well-known, see, e.g., Jeulin-Yor [38] or Itô [34].
(ii) may be deduced from (i), when (i) is applied to βt = B1−t −B1. Actually, for-
mula (6.39) appears in [22], at the bottom of p. 308.
(iii) follows from (ii), thanks to Itô’s formula.

��

Comments
a) We are grateful to N. Eisenbaum (personal communication) for pointing out for-
mula (6.39), which allowed to correct our original wrong derivation of the canonical
decomposition of B̂t = B1−t :

B̂t = B1−t = B1 + β̃t +
∫ t

0

du
u

(B̂u −B1). (6.41)

Indeed, by time-reversal from (6.38) in Proposition 6.4, there is the identity (6.41)
where β̃t = B∗

1−t −B∗
1 is a Brownian motion, but (6.41) is not the canonical decom-

position of B̂t in B̂t
(
for a discussion of non-canonical decompositions of Brownian

motion, see, e.g. Yor [95] and Hibino, Hitsuda, Muraoka [29]
)
.

b) A slightly different derivation of (6.39) consists in remarking that B1−t =
(1− t)B1 + b(t) with

(
b(t), 0 ≤ t ≤ 1

)
a standard Brownian bridge independent

from B1. From (i), this Brownian bridge admits the decomposition:

b(t) = β ∗
t −

∫ t

0

b(s)
1− s

ds.

Thus we obtain:

B1−t = (1− t)B1 +β ∗
t −

∫ t

0

ds
1− s

(
b(s)+(1− s)B1 − (1− s)B1

)

= (1− t)B1 +β ∗
t −

∫ t

0

B1−s

1− s
ds+ tB1

= B1 +β ∗
t −

∫ t

0

B1−s

1− s
ds

which is precisely (6.39). Now, plugging (6.40) in (6.37), and with the help of (i),
we get:

∫ 1

0

∫ 1

0
f (K,s)γ(dK,ds) =

1
2

E

[∫ 1

0
f (Es,s)Es

(
1− Bs

s

)
ds

]

=
1
2

E

[∫ 1

0
Es f (Es,s)

(1
2
− logEs

s

)
ds

]
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which matches perfectly with our previous formula (6.33). Thus, we have estab-
lished a close link with local time-space calculus as developed in

(
[22]–[23]

)
.

c) To summarize the argument in b): (B1−t , t ≤ 1) is a Brownian bridge over the time
interval [0,1], starting with B1 and ending at 0. Now, a Brownian bridge starting at
x and ending at y solves:

Xt = x+β ∗
t +

∫ t

0

y−Xs

1− s
ds.

It remains to replace x by B1 and y by 0 to recover (6.39).
We note that a similar remark appears on p. 563 of S. Tindel [85] in his stochastic

calculus approach to spins systems.

6.2.3 An Extension of Theorem 6.1

In the next statement, we shall replace the standard Brownian martingale (Et , t ≥ 0)
by the semimartingale

(
E σ ,−ν

t := exp(σBt −νt), t ≥ 0
)

(σ �= 0, ν > 0). Then we
can show:

Theorem 6.2.

i) There exists a probability on [0,1]× [0,+∞[, which we shall denote by γσ ,ν such
that:

Πσ ,ν(K, t) := E

[
(K −E σ ,−ν

t )+
]

= γσ ,ν

(
[0,K]× [0, t]

)
. (6.42)

ii) Moreover, γσ ,ν is the law of:
(
U,Y ν

|σ | ,
1
|σ | log 1

U

)
(6.43)

where U is uniform on [0,1] and independent of (Ya,b, a,b > 0) as introduced in
Lemma 6.1.

Proof. We may choose σ > 0, since σBt
(law)
= −σBt . Then, we write for K ≤ 1,

applying Fubini:

E

[
(K −E σ ,−ν

t )+
]

=
∫ K

0
P(E σ ,−ν

t ≤ x)dx

=
∫ K

0
P

(
B1 <

ν
√

t
σ

+
logx

σ
√

t

)
dx

=
∫ K

0
N

(
ν
√

t
σ

+
logx

σ
√

t

)
dx

=
∫ K

0
P

(
Yν

σ , 1
σ log 1

x
≤ t

)
dx (from Lemma 6.1)

which implies points (i) and (ii) of Theorem 6.2.
��
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Note that (6.43) corresponds to the first description in Subsection 6.2.2 of the

particular case σ = 1, ν =
1
2
· We would like to see whether there is a second de-

scription of γσ ,ν ; in particular, what is the law of Yν
σ , 1

σ log 1
U

? Let us denote by fσ ,ν

the density of Yν
σ , 1

σ log 1
U

. Then, we have:

Proposition 6.5.

i) The following formula holds:

fσ ,ν(t) =
σ

2
√

2πt
e−

ν2t
2σ2

(
1+

(
2

ν

σ2 −1
)∫ ∞

0
e−μx− x2

2σ2t dx

)
(6.44)

where μ = 1− ν
σ2 ,

ii) In particular, if 2ν
σ2 = 1,

(
this condition ensures that (E σ ,−ν

t , t ≥ 0) is a martin-

gale!
)
, we have:

f
σ , σ

2
2

(t) =
σ

2
√

2πt
e−

σ2t
8 . (6.45)

(
= f4B2

1
(t) if σ = 1 and ν =

1
2

, in agreement with Proposition 6.2, formula

(6.27)
)

.

Proof. From (6.21) and (6.43) we have:

fσ ,ν(t)dt =
1
2

∫ 1

0
du

(
P

(
T

( ν
σ )

1
σ log 1

u
∈ dt

)
+P

(
G

( ν
σ )

1
σ log 1

u
∈ dt

))
.

Making the change of variable log

(
1
u

)
= x and using (1.11) and (1.12), we obtain:

fσ ,ν(t) =
1
2

∫ ∞

0
e−x

((
x

σ
√

2πt3
+

ν

σ
√

2πt

)
e−

(x−νt)2

2σ2t

)
dx

=
σ

2
√

2πt
exp

(
− ν2t

2σ2

)∫ ∞

0

( x
tσ2 +

ν

σ2

)
exp

(
−x− x2

2σ2t
+

xν
σ2

)
dx.

We now introduce the parameter μ = 1− ν

σ2 and we compute the integral:

I :=
∫ ∞

0

( x
tσ2 +

ν

σ2

)
e−μx− x2

2σ2t dx

:= I1 +
ν

σ2 I2,

with:

I1 =
∫ ∞

0
e−μx− x2

2σ2t
x

tσ2 dx = 1−μ
∫ ∞

0
e−μx− x2

2σ2t dx
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(after integrating by parts). Finally:

I = I1 +
ν

σ2 I2 = 1−μI2 +
ν

σ2 I2

= 1+
(

2ν

σ2 −1

)∫ ∞

0
e−μx− x2

2σ2t dx

and:

fσ ,ν(t) =
σ

2
√

2πt

(
1+

(
2ν

σ2 −1

)∫ ∞

0
e−μx− x2

2σ2t dx

)
exp

(
− ν2t

2σ2

)
.

This proves (6.44).
��

6.2.4 γ as a Signed Measure on R
+×R

+

In this paragraph, we extend the definition of γ to [0,+∞[×[0,+∞[.

Proposition 6.6.

i) There exists a signed measure γ on [0,+∞[×[0,+∞[ such that:

ΠE (K, t) := E
[
(K −Et)+

]
= γ

(
[0,K]× [0, t]

)
(6.46)

holds for all values K, t ≥ 0.
ii) γ admits on R

+ ×R
+ the density fγ given by:

fγ(K, t) =
1

2
√

2πKt

(
1
2
− logK

t

)
exp

(
− (logK)2

2t
− t

8

)
1[0,+∞[×[0,+∞[(K, t)(6.47)

=
1

2
√

2πt

(
1
2
− logK

t

)
exp

(
− 1

2t

(
logK +

t
2

)2
)

1[0,+∞[×[0,+∞[(K, t).

iii) Consequently, if γ = γ+ − γ− is the decomposition of γ into its positive and
negative parts, we have:

γ+(dK,dt) = 1{
K≤e

t
2

}γ(dK,dt). (6.48)

In particular:
γ+
|(K,t ; K≤1) = γ|(K,t ; K≤1)

is a probability.
iv) Formula (6.47) may be synthesized as follows:

• if K < 1:

γ(dK,dt) =
dK
2

{
P
(
G

( 1
2 )

log( 1
K )

∈ dt
)
+P

(
T

( 1
2 )

log( 1
K )

∈ dt
)
}

, (6.49)
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• if K > 1:

γ(dK,dt) =
dK
2

{
P
(
G

( 1
2 )

log( 1
K )

∈ dt
)
−P

(
T

( 1
2 )

log( 1
K )

∈ dt
)
}

. (6.50)

Proof. Points (i) and (ii) are easy to prove. Indeed, for every K ≥ 0:

E
[
(K −Et)+

]
=

∫ K

0
P(Et < x)dx =

∫ K

0
N

(√
t

2
+

logx√
t

)
dx.

This formula implies the existence of γ and the density fγ of γ is given by:

fγ(K, t) =
∂ 2

∂K∂ t

∫ K

0
N

(√
t

2
+

logx√
t

)
dx

=
∂
∂ t

N

(√
t

2
+

logK√
t

)

=
1

2
√

2πKt

(
1
2
− logK

t

)
exp

(
− (logK)2

2t
− t

8

)
.

Point (iii) follows immediately. Formulae (6.49) and (6.50) are obtained as in (6.22).
��

Finally, we note that an elementary change of variables allows to present γ+ and
γ− in a very simple manner.

Proposition 6.7. For any ϕ : R
+ ×R

+ → R
+ Borel, the following 3 quantities are

equal:

•
∫ ∫

(K<e
t
2 )
γ+(dK,dt) ϕ

( t
2
− log K, t

)
(6.51)

•
∫ ∫

(K>e
t
2 )
γ−(dK,dt) ϕ

(
log K − t

2
, t
)

(6.52)

• 1
2

∫ ∞

0
dyE

[
ϕ(y,Ty)

]
=

1
2

∫ ∞

0
dy

∫ ∞

0
dt

y√
2πt3

e−
y2
2t ϕ(y, t) (6.53)

where Ty = inf{t ≥ 0;Bt = y}.

Proof. This double identity follows easily, by obvious change of variables, from
formula (6.47) for the density fγ of γ , and the facts that:

γ+(dK,dt) = 1{
K≤e

t
2

}γ(dK,dt) ; γ−(dK,dt) = −1{
K≥e

t
2

}γ(dK,dt).

��
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6.3 Notes and Comments

The idea to represent
(
E
[
(K −Mt)

+] ;0 ≤ K ≤ 1, t ≥ 0
)

as the cumulative dis-
tribution function of a probability γM on [0,1] × [0,+∞[, i.e. E

[
(K −Mt)

+] =
γM ([0,K]× [0, t]) (0 ≤ K ≤ 1, t ≥ 0) appears, for

(
Mt = Et := exp

(
Bt − t

2

)
, t ≥ 0

)

in the paper by D. Madan, B. Roynette and M. Yor ([49]). The construction of
this probability γM hinges upon the existence of a pseudo-inverse of the process
(Et , t ≥ 0). This notion of a pseudo-inverse has also been introduced in the same
paper ([49]), from which the descriptions of γE (= γ) given by Propositions 6.1, 6.2
and 6.3 are taken. Links between Proposition 6.3 and the “local time-space calcu-
lus” (formula (6.37)) hinge upon some works by N. Eisenbaum (see [22] and [23])
whom we thank for telling us about an error in our first version of Proposition 6.4.



Chapter 7
Existence and Properties of Pseudo-Inverses for
Bessel and Related Processes

Abstract In Chapter 6, we have shown the existence of a decreasing pseudo-inverse
for the martingale (Mt := exp

(
Bt − t

2

)
, t ≥ 0). We shall now explore this notion

in a more general framework, starting with the case of Bessel (and some related)
processes. We show in particular that the tail probabilities of a Bessel process of
index ν ≥ 1/2 increase with respect to time; in fact it is the distribution function of
a random time which is related to first and last passage times of Bessel processes.

7.1 Introduction and Definition of a Pseudo-Inverse

7.1.1 Motivations

The aim of this Chapter 7 and of the following Chapter 8 is to give some mathemat-
ical meaning to the assertion:

“the stochastic process (Rt , t ≥ 0), with values in R
+, has a tendency to increase”

(7.1)
and, more precisely, to “measure this tendency”, by showing the existence of a
“pseudo-inverse” of R and by studying its properties. First, here are several pos-
sible interpretations of (7.1):

a) (Rt , t ≥ 0) is a.s. increasing; then, it admits an increasing inverse process.
b) (Rt , t ≥ 0) is a submartingale; under some adequate conditions, it admits a Doob-

Meyer decomposition:
Rt = Mt +At (t ≥ 0)

with (At , t ≥ 0) an increasing process and (Mt , t ≥ 0) a martingale. Since a mar-
tingale is a “well balanced” process, (Rt , t ≥ 0) has a tendency to increase, which
is measured by (At , t ≥ 0).

c)
(
E[Rt ], t ≥ 0

)
is an increasing function.

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7 7, © Springer-Verlag Berlin Heidelberg 2010
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d) (Rt , t ≥ 0) is “stochastically increasing”, i.e.: for every y ≥ 0, P(Rt ≥ y) is an
increasing function of t (in the case R0 = x > 0, we need to modify the previous
assertion by taking y ≥ x, to get a meaningful assertion).

We note that, trivially: (a) =⇒ (b) =⇒ (c) ⇐= (d) (when x = 0).
It is the assertion (d) which we have in mind throughout this study. It leads us to

the definition of a pseudo-inverse of (Rt , t ≥ 0), which we now present.

7.1.2 Definitions and Examples

Let
(
Ω ,(Rt , t ≥ 0),Px,x ∈ R

+) denote a process taking values on R
+, which is a.s.

continuous and such that Px(R0 = x) = 1. In most of our applications, this process
will be a diffusion, but to start with, we do not use the Markov property.

Definition 7.1. (Rt , t ≥ 0) admits an increasing pseudo-inverse, resp. a decreasing
pseudo-inverse, if:

i) for every y > x,
lim
t→∞

Px(Rt ≥ y) = 1, (7.2)

ii) for every y > x,

the application from R
+ into [0,1] : t → Px(Rt ≥ y) is increasing. (7.3)

resp. if:

i) for every y < x,
lim
t→∞

Px(Rt ≤ y) = 1, (7.2’)

ii) for every y < x,

the application from R
+ into [0,1] : t → Px(Rt ≤ y) is increasing. (7.3’)

Definition 7.2. Assume that (7.2) and (7.3)
(
resp. (7.2’) and (7.3’)

)
are satisfied.

Then, there exists a family of positive r.v.’s (Yx,y,y > x) (resp. Yx,y,y < x) such that:

Px(Rt ≥ y) = P(Yx,y ≤ t) (t ≥ 0) (7.4)

resp.
Px(Rt ≤ y) = P(Yx,y ≤ t) (t ≥ 0). (7.4’)

We call the family of positive r.v.’s (Yx,y,y > x)
(
resp. (Yx,y,y < x)

)
the increasing

(resp. decreasing) pseudo-inverse of the process (Rt , t ≥ 0).

We note that, a priori, the family (Yx,y,y > x)
(
resp. (Yx,y,y < x)

)
is only a fam-

ily of r.v.’s, and does not constitute a process. Note that formulae (7.4) and (7.4’)
may be read, either considering x as fixed and y varying or by considering the two
parameters x and y as varying.
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Remark 7.1.
a) If (Rt , t ≥ 0) admits an increasing (resp. decreasing) pseudo-inverse, then
Rt −→

t→∞
+∞ in probability

(
resp. Rt −→

t→∞
0 in probability

)
.

b) If (Rt , t ≥ 0) admits an increasing pseudo-inverse, then, for every α > 0 (resp.
for every α < 0), the process (Rα

t , t ≥ 0) admits an increasing (resp. decreasing)
pseudo-inverse. If (Rt , t ≥ 0) admits a decreasing pseudo-inverse, then for every
α > 0 (resp. for every α < 0), the process (Rα

t , t ≥ 0) admits a decreasing (resp.
increasing) pseudo-inverse.

c) Justifying the term “pseudo-inverse”: Condition (7.3) indicates that the process
(Rt , t ≥ 0) “has a tendency to increase”. In case this process is indeed increasing,
we introduce (τl , l ≥ 0) its right-continuous inverse:

τl := inf{t ≥ 0;Rt > l}.

Then, from (7.4), and for y > x;

Px(Rt ≥ y) = Px(τy ≤ t) = P(Yx,y ≤ t).

Thus Yx,y
(law)
= τy under Px. Hence, in this case, we may choose for the family

(Yx,y,y > x) the process (τy,y > x), and this justifies our terminology of pseudo-
inverse.

7.1.3 Aim of this Chapter

In the set-up of the classical Black-Scholes formulae, i.e. when M(x)
t = E

(x)
t :=

exp
(

Bt −
t
2

)
, where under Px,(Bt , t ≥ 0) is a Brownian motion starting from

(log x), we have proven in Chapter 6 the existence of a decreasing pseudo-inverse of

(M(x)
t , t ≥ 0) and thus established the existence of a probability γE (x) (see Theorem

6.1) characterized by:

1
x
Ex

[
(K −E

(x)
t )+

]
= γE (x)

(
[0,K]× [0, t]

)
(K ≤ x, t ≥ 0).

In Chapter 6, the study was done for x = 1, but reducing the study to the case x = 1
is easy. Note that we have also described this probability γE (x) in detail.

Now, let (Ω ,(Rt ,Ft), t ≥ 0;P(ν)
x ,x ≥ 0) denote a Bessel process of index ν (ν ≥

−1). We shall prove in Section 7.2 (see Theorem 7.1) the following results:

• when ν ≥ −1
2

, the existence of an increasing pseudo-inverse (Y (ν)
x,y ,y > x) for

(Rt , t ≥ 0,P
(ν)
x ,x ≥ 0),
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• when ν = −1, the existence of a decreasing pseudo-inverse (Y (−1)
x,y ,y < x) for

(Rt , t ≥ 0,P
(−1)
x ,x ≥ 0),

• when ν ∈
]
−1,−1

2

[
:

i) if x = 0, the existence of an increasing pseudo-inverse,
ii) if x > 0, the non-existence of a pseudo-inverse.

In Section 7.3, we describe the laws of the r.v.’s (Y (ν)
x,y ,y > x). In particular, we obtain

explicitly the Laplace transform of (Y (ν)
x,y ,y > x):

E

[
e−λY (ν)

x,y

]
=

Iν(x
√

2λ )
(x
√

2λ )ν
(y
√

2λ )ν+1Kν+1(y
√

2λ )
(

ν ≥−1
2

)

where Iν and Kν are the classical modified Bessel functions (see Appendix B.1). We

also answer (partially) the question: are the r.v.’s Y (ν)
x,y infinitely divisible ?

For ν > 0, we apply (end of Section 7.2) the existence of a pseudo-inverse for
the process (Rt , t ≥ 0) to the generalized Black-Scholes formula relative to the lo-
cal martingale (R−2ν

t , t ≥ 0), when (Rt , t ≥ 0) denotes a δ = 2(ν + 1) dimensional
Bessel process.

In Section 7.4, we present two other families of Markovian positive submartingales
which admit an increasing pseudo-inverse; they are:

i) the Bessel processes with drift, studied by S. Watanabe [89], with infinitesimal
generator:

L(ν,a) =
1
2

d2

dx2 +
(

2ν +1
2x

+a
Iν+1

Iν
(ax)

)
d
dx

for ν ≥−1
2

, and a ≥ 0;

ii) the generalized squares of Ornstein-Uhlenbeck processes
(
see, e.g., [66]

)
, also

called Cox-Ingersoll-Ross (= CIR) processes in the Mathematical Finance liter-
ature, with infinitesimal generator:

L
(ν,β ) = 2x

d2

dx2 +
(
2βx+2(ν +1)

) d
dx

again with ν ≥−1
2

, and β ≥ 0.

Of course, letting a → 0, (resp. β → 0), in (i), (resp. (ii)), we recover the result for
the Bessel processes.
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In Section 7.5, we exhibit a two parameter family (Y (ν,α)
x,y ,ν ≥ 0,α ∈ [0,1]) of vari-

ables (indexed by (x,y),x < y) which extends the family Y (ν)
x,y , corresponding to

α = 1.

The following paragraph aims at relating the results of Section 7.3, which presents

the properties of the r.v.’s Y (ν)
x,y , and those of Section 7.5, where the r.v.’s Y (ν,α)

x,y are
defined and studied.

Consider (R(ν)
t , t ≥ 0) and (R(ν′)

t , t ≥ 0) two independent Bessel processes start-
ing from 0, and with respective indexes ν and ν ′, greater than −1, or dimensions:
d = 2(ν + 1) and d′ = 2(ν ′ + 1). From the additivity property of squares of Bessel
processes, the process:

R(ν+ν′+1)
t :=

√
(R(ν)

t )2 +(R(ν′)
t )2 (t ≥ 0),

is a Bessel process with index ν +ν ′+1 (or dimension: d +d′), starting from 0. Let,
for y > 0:

G(α)
y := sup{t ≥ 0; R(α)

t = y}

T (α)
y := inf{t ≥ 0; R(α)

t = y}
(α = ν, ν +ν ′ +1).

It is then clear that:

T (ν+ν′+1)
y ≤ T (ν)

y ≤ G(ν)
y , and G(ν+ν′+1)

y ≤ G(ν)
y .

These inequalities invite to look for some r.v.’s Z(i)
y (i = 1,2,3), such that:

G(ν)
y

(law)
= G(ν+ν′+1)

y +Z(1)
y (7.5)

G(ν)
y

(law)
= T (ν)

y +Z(2)
y (7.6)

T (ν)
y

(law)
= T (ν+ν′+1)

y +Z(3)
y (7.7)

where the r.v.’s featured on the right-hand side of (7.5), (7.6) and (7.7) are indepen-
dent.

The existence of these r.v.’s Z(i)
y (i = 1,2,3) is obtained in Sections 7.3 and 7.5 as

a subproduct of the existence of pseudo-inverses for Bessel processes. Precisely,
the identities (7.5), (7.6) and (7.7) are shown respectively as (7.117), in Proposition
7.4, resp. as (7.113), with y = z and z = 0, resp. as (7.116) in Proposition 7.4. In
Theorem 7.3

(
Point (iv) and (v)

)
and Theorem 7.7, other equalities in law of the

type of (7.5), (7.6) and (7.7), are established, when the starting points of the Bessel
processes differ from 0.
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7.2 Existence of Pseudo-inverses for Bessel Processes

7.2.1 Statement of our Main Result

Let ν ≥ −1 and (Rt , t ≥ 0;P(ν)
x ,x ≥ 0) denote a Bessel process with index ν, i.e.

with dimension δ = 2ν +2, with δ ≥ 0.

Theorem 7.1.

i) If ν ≥ −1
2
,(Rt , t ≥ 0) admits an increasing pseudo-inverse; that is for every

y > x ≥ 0, there exists a positive r.v. Y (ν)
x,y such that, for every t ≥ 0:

P
(ν)
x (Rt ≥ y) = P(Y (ν)

x,y ≤ t). (7.8)

ii) Let ν ∈
]
−1,−1

2

[
:

– if x > 0, (Rt , t ≥ 0) does not admit a pseudo-inverse,

– if x = 0, (Rt , t ≥ 0) admits an increasing pseudo-inverse.

iii) If ν = −1, (Rt , t ≥ 0) admits a decreasing pseudo-inverse, that is: there exists,

for every x > y > 0, a positive r.v. Y (−1)
x,y such that, for every t ≥ 0:

P
(−1)
x (Rt ≤ y) = P(Y (−1)

x,y ≤ t). (7.9)

Thus, in Theorem 7.1, the value ν = − 1
2 appears as a critical value. This is, in fact,

rather natural. Indeed, for ν ≥− 1
2 , (Rt , t ≥ 0) is a submartingale - therefore it is, in

a way, increasing in t - and it may be written as:

Rt = x+Bt +
2ν +1

2

∫ t

0

ds
Rs

if ν > −1
2

where (Bt , t ≥ 0) denotes a Brownian motion starting from 0, and for ν = − 1
2 , Rt =

|x +Bt | = |x|+βt +L−x
t , where (L−x

t , t ≥ 0) denotes the local time of B at level −x
and (βt , t ≥ 0) is a Brownian motion.

For ν ∈
]
−1,−1

2

[
, such a representation is no longer true. In fact:

Rt = x+βt +
2ν +1

2
kt

with

kt := p.v.
∫ t

0

ds
Rs

:=
∫ ∞

0
a2ν(La

t −L0
t )da

where (La
t , t ≥ 0,a ≥ 0) denotes the jointly continuous family of diffusion local

times associated with (Rt , t ≥ 0)
(
see [70], Exercise 1.26, Chap.XI, p.451

)
; in this
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case, (Rt , t ≥ 0) is no longer a semimartingale, but it is a Dirichlet process.
(
See

Bertoin [7] for a deep study of excursion theory for the process
(
(Rt ,kt), t ≥ 0

))
.

In order to prove Theorem 7.1, we gather a few results about Bessel processes, see
also Appendices B.2 and B.3.

7.2.2 A Summary of some Results About Bessel Processes

7.2.2.1 The Density of the Bessel Semi-Group
(
see [70], Chap. XI

)

We denote by p(ν)(t,x,y) the density of Rt under P
(ν)
x (ν > −1); one has:

p(ν)(t,x,y) =
y
t

(y
x

)ν
exp

(
−x2 + y2

2t

)
Iν
(xy

t

)
(ν > −1) (7.10)

if x > 0, whereas for x = 0,

p(ν)(t,0,y) = 2−νt−(ν+1)Γ (ν +1)y2ν+1 exp

(
−y2

2t

)
(ν > −1) (7.11)

where Iν denotes the modified Bessel function with index ν (see Appendix B.1).

7.2.2.2 Density of Last Passage Times
(
See [25] and [65]

)

Let y ≥ 0 and denote by Gy the last passage time of R at level y:

Gy := sup{t ≥ 0; Rt = y}, (7.12)

(= 0 if this set {t ≥ 0; Rt = y} is empty).

Then, for x ≤ y, applying Theorem 2.4:

P
(ν)
x (Gy ∈ dt) =

ν

y
p(ν)(t,x,y)dt (ν > 0). (7.13)

It follows easily from (7.13) and (7.11) that, under P
(ν)
0 , the law of Gy is that of

y2

2γν
,

where γν is a gamma r.v. with parameter ν (ν > 0):

Gy
(law)
=

y2

2γν
(Gy being considered under P

(ν)
0 ) (7.14)

and:
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E
(ν)
x

[
e−λGy

]
= 2ν

(y
x

)ν
Iν(x

√
2λ )Kν(y

√
2λ ) (0 < x < y, ν > 0),

E
(ν)
0

[
e−λGy

]
=

1
2ν−1Γ (ν)

(y
√

2λ )νKν(y
√

2λ ) (y > 0, ν > 0).

7.2.2.3 Laplace Transform of First Hitting Times
(
See [41] and [65]

)

Let y ≥ 0 and denote by Ty the first hitting time of R at level y:

Ty := inf{t ≥ 0;Rt = y} (7.15)

(= +∞ if this set {t ≥ 0;Rt = y} is empty).

Then:

E
(ν)
x

[
e−λTy

]
=
(y

x

)ν Iν(x
√

2λ )
Iν(y

√
2λ )

(x ≤ y, λ ≥ 0). (7.16)

In particular, for x = 0

E
(ν)
0

[
e−λTy

]
=

1
2νΓ (ν +1)

(y
√

2λ )ν

Iν (y
√

2λ )
. (7.17)

7.2.2.4 Resolvent Kernel
(
see [12]

)

Let u(ν)
λ denote the density of the potential kernel of (Rt , t ≥ 0) under P

(ν):

u(ν)
λ (x,y) =

∫ ∞

0
e−λ t p(ν)(t,x,y)dt (λ ≥ 0).

Then, for every positive Borel function f :

∫ ∞

x
u(ν)
λ (x,y) f (y)dy =

2
xν

Iν(x
√

2λ )
∫ ∞

x
yν+1Kν(y

√
2λ ) f (y)dy (7.18)

and
u(ν)
λ (x,y) = 2y

(y
x

)ν
Iν(x

√
2λ )Kν(y

√
2λ ) (x < y)

where Kν denotes the Bessel-McDonald function with index ν (see Appendix B.1).

7.2.2.5 Bessel Realizations of the Hartman-Watson Laws
(
See [94] and [65]

)

It was established by Hartman-Watson [28] that, for any ν ≥ 0 and r > 0, the ratio

λ −→
I√

λ+ν2

Iν
(r)
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is the Laplace transform of a probability, say θ (ν)
r on R

+, which may then be called
Hartman-Watson distribution. In [94] and [65] these laws were shown to be those

of the Bessel clocks
∫ t

0

ds
R2

s
for Bessel bridges (Rs,s ≤ t) conditioned at both ends.

Precisely, for ν > −1 and μ �= 0, one has:

E
(ν)
x

[
exp

(
−μ2

2

∫ t

0

ds
R2

s

)∣
∣
∣
∣Rt = y

]
=

I√μ2+ν2

Iν

(xy
t

)
(x,y ≥ 0). (7.19)

This formula may be obtained from the particular case ν = 0:

E
(0)
x

[
exp

(
−μ2

2

∫ t

0

ds
R2

s

)∣
∣
∣
∣Rt = y

]
=

I|μ|
I0

(xy
t

)

together with the absolute continuity relationship:

P
(ν)
x|Rt∩{t<T0} =

(
Rt

x

)ν

exp

(
−ν2

2

∫ t

0

ds
R2

s

)
·P(0)

x|Rt
(7.20)

where (Rt , t ≥ 0) denotes the natural filtration of (Rt , t ≥ 0). If ν > 0, Rt ∩{t < T0}
may be replaced by Rt in formula (7.20) since then T0 = ∞ a.s., whereas if ν ∈
]−1,0[, then, for μ2 > 0:

E
(ν)
x

[
exp

(
−μ2

2

∫ t

0

ds
R2

s

)∣
∣
∣
∣Rt = y

]
= E

(ν)
x

[
exp

(
−μ2

2

∫ t

0

ds
R2

s

)
1{T0>t}

∣
∣
∣
∣Rt = y

]

since, if T0 < t,
∫ t

0

ds
R2

s
= +∞.

We make several remarks:
a) For ν < 0, letting μ → 0 in (7.19), we get, using (7.20):

P
(ν)
x (T0 > t|Rt = y) =

I−ν

Iν

(xy
t

)
. (7.21)

b) For ν > −1
2

, formula (7.19) becomes, taking μ2 = 2ν +1:

E
(ν)
x

[
exp

{
−
(

ν +
1
2

)∫ t

0

ds
R2

s

}∣
∣
∣
∣Rt = y

]
=

Iν+1

Iν

(xy
t

) (
ν > −1

2

)
. (7.22)

From (7.22), we deduce that, for ν ≥−1
2

and z ≥ 0:

Iν+1(z) ≤ Iν(z). (7.23)
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(
(7.23) is an immediate consequence of (7.22) for ν > −1

2
and for ν = −1

2
:

I 1
2
(z) =

√
2
πz

sinh(z) ≤ I− 1
2
(z) =

√
2
πz

cosh(z); see (B.6)

)
.

7.2.2.6 The Hirsch-Song Formula
(
see [30]

)

Proposition 7.1. Let ν > −1
2

.

i) The following Hirsch-Song formula between transition densities holds:

∂
∂x

p(ν)(t,x,y) = − ∂
∂y

(
x
y

p(ν+1)(t,x,y)
)

. (7.24)

ii) Let H denote the operator defined on the space of C 1 functions, with derivative
equal to 0 at 0, and which are bounded, as well as their derivative:

H f (x) =
1
x

f ′(x). (7.25)

Let (P(ν)
t , t ≥ 0) denote the Bessel semi-group with index ν. Then:

HP(ν)
t = P(ν+1)

t H. (7.26)

iii) Let (Q(ν)
t , t ≥ 0) denote the semi-group of the squared Bessel process, with index

ν. Then:
DQ(ν)

t = Q(ν+1)
t D (7.27)

where D denotes the differentiation operator: D f (x) = f ′(x), with domain the
space of C 1 functions, bounded as well as their derivative.

It is easily verified that (7.26) and (7.27) are equivalent
(
since Q(ν)

t f (z) =

P(ν)
t ( f̃ )(

√
z), with f̃ (z) = f (z2)

)
. On the other hand, denoting by L

(ν)
the infinites-

imal generator of the semi-group Q(ν)
t :

L
(ν)

f (x) = 2x f ′′(x)+2(ν +1) f ′(x), (7.28)

an easy computation allows to obtain DL
(ν) = L

(ν+1)
D, hence (7.27), (see Subsub-

section 7.2.2.7 below about the Fokker-Planck formula).
The intertwining relation (7.27) shall be generalized in Chapter 8, Remark 8.9.

(See also Hirsch-Yor [31].)

We show (7.24), following [30]
For f regular with compact support, one has:

P(ν)
t f (x) =

∫ ∞

0
p(ν)(t,x,y) f (y)dy,



7.2 Existence of Pseudo-inverses for Bessel Processes 171

hence:
∂
∂x

P(ν)
t f (x) =

∫ ∞

0

∂
∂x

p(ν)(t,x,y) f (y)dy. (7.29)

On the other hand, with obvious notations:

∂
∂x

P(ν)
t f (x) =

∂
∂x

E
(ν)[ f (Rx

t )
]
= E

(ν)
[

f ′(Rx
t )
∂Rx

t

∂x

]
.

However, since:

Rx
t = x+Bt +

2ν +1
2

∫ t

0

ds
Rx

s

(
ν > −1

2

)
,

we obtain, by differentiation with respect to x:

∂Rx
t

∂x
= 1− 2ν +1

2

∫ t

0

ds
(Rx

s)2

∂Rx
s

∂x
(7.30)

(see also Vostrikova [88]).
The linear equation (7.30) may then be integrated, and we obtain:

∂Rx
t

∂x
= exp

(
−2ν +1

2

∫ t

0

ds
(Rx

s)2

)
. (7.31)

Thus:
∫ ∞

0

∂
∂x

p(ν)(t,x,y) f (y)dy = E
(ν)
x

[
f ′(Rt)exp

(
−2ν +1

2

∫ t

0

ds
R2

s

)]

=
∫ ∞

0
E

(ν)
x

[
exp

(
−2ν +1

2

∫ t

0

ds
R2

s

)∣
∣
∣
∣Rt = y

]
f ′(y)p(ν)(t,x,y)dy

=
∫ ∞

0
p(ν)(t,x,y) f ′(y)

Iν+1

Iν

(xy
t

)
dy

(
from (7.22)

)

= −
∫ ∞

0
f (y)

∂
∂y

(
Iν+1

Iν

(xy
t

)
p(ν)(t,x,y)

)
dy (after an integration by parts)

= −
∫ ∞

0
f (y)

∂
∂y

(
x
y

p(ν+1)(t,x,y)
)

dy
(
from (7.10)

)
. (7.32)

The comparison of (7.32) and (7.29) then implies Point (i) of Proposition 7.1.

7.2.2.7 The Fokker-Planck Formula

The infinitesimal generator L(ν) of the Bessel semi-group (P(ν)
t , t ≥ 0) with index ν

is given by:

L(ν) f (x) =
1
2

f ′′(x)+
2ν +1

2x
f ′(x). (7.33)

Its domain is the space of functions f such that L(ν) f are bounded continuous and
satisfy: lim

x→0
x2ν+1 f ′(x) = 0. One has:
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∂
∂ t

p(ν)(t,x,y) = L(ν)(p(ν)(t, ·,y)
)
(x)

= L(ν)∗(p(ν)(t,x, ·)
)
(y) (Fokker-Planck) (7.34)

where the operator L(ν)∗, the adjoint of L(ν), is defined by:

L(ν)∗ f (x) =
1
2

f ′′(x)− ∂
∂x

(
2ν +1

2x
f (x)

)
. (7.35)

The infinitesimal generator L
(ν)

of the semi-group (Q(ν)
t , t ≥ 0) of the squared

Bessel process with index ν, is given by:

L
(ν)

f (x) = 2x f ′′(x)+2(ν +1) f ′(x) (7.36)

and its adjoint L
(ν)∗

is defined by:

L
(ν)∗

f (x) =
∂ 2

∂x2

(
2x f (x)

)
−2(ν +1) f ′(x). (7.37)

7.2.2.8 Sojourn Time Below Level y
(
see [65], also [52], Th. 11.6, p.180

)

Let:

A−
y =

∫ ∞

0
1{Rt≤y}dt

(
=

∫ Gy

0
1{Rt≤y}dt

)
.

Then:

E
(ν)
y

[
e−λ A−

y

]
=

2ν

y
√

2λ
Iν(y

√
2λ )

Iν−1(y
√

2λ )
(ν > 0, λ > 0). (7.38)

7.2.3 Proof of Theorem 7.1

7.2.3.1 A Useful Lemma

Lemma 7.1. Let Iν denote the modified Bessel function with index ν.

i) If ν ≥−1
2

, then, for every z ≥ 0,

Iν(z) ≥ Iν+1(z). (7.39)

ii) If ν = −1, then, for every z ≥ 0,

I1(z) = I−1(z) ≤ I0(z). (7.40)
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iii) If ν ∈]−1,− 1
2 [,

a) for z small enough, Iν(z) > Iν+1(z),
b) whereas for z large enough, Iν(z) < Iν+1(z).

Proof. Point (i) has already been proven: it is relation (7.23).
Then, Point (ii) follows from the Point (i) since I−1 = I1.

We prove Point (iii)
In the neighborhood of 0, one has:

Iν(z)
Iν+1(z)

∼
z→0

(z/2)ν

Γ (ν +1)
Γ (ν +2)
(z/2)ν+1 =

2
z
(ν +1)−→

z→0
+∞ (ν > −1) (7.41)

In the neighborhood of +∞, one has
(
see [46], p. 122 and 123

)
:

Iμ(z) =
z→∞

ez
√

2πz

(
1− 4μ2 −1

4
1
2z

+o

(
1
z2

))
.

Thus, with μ = ν and ν ∈
]
−1,− 1

2

[
:

Iν(z) =
z→∞

ez
√

2πz

(
1− 4ν2 −1

4
1
2z

+o

(
1
z2

))
,

Iν+1(z) =
z→∞

ez
√

2πz

(
1− 4(ν +1)2 −1

4
1
2z

+o

(
1
z2

))
.

Now, for ν ∈]−1,− 1
2 [, one has 4ν2 −1 ≥ 4(ν + 1)2 −1; indeed, this is equivalent

to ν2 ≥ 1+ν2 +2ν, i.e. ν ≤−1
2

.

Hence, the ratio
Iν(z)

Iν+1(z)
−→
z→∞

1− as z →+∞. As a conclusion, from this point and

(7.41), for ν ∈
]
−1,− 1

2

[
:

• for z large enough,
Iν(z)

Iν+1(z)
< 1,

• for z small enough,
Iν(z)

Iν+1(z)
> 1.

��

7.2.3.2 The Case x = 0

When x = 0 and ν > −1, we shall show the existence of an increasing process
(Jt , t ≥ 0) such that Jt −→

t→∞
+∞ a.s. and

P
(ν)
0 (Rt ≥ y) = P(Jt ≥ y). (7.42)
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This formula obviously implies the existence of a process which is a pseudo-inverse
of (Rt , t ≥ 0). Let us prove (7.42), which hinges in fact simply on the scaling prop-
erty of (Rt , t ≥ 0). Indeed, one has:

P
(ν)
0 (Rt ≥ y) =P

(ν)
0

(√
t ≥ y

R1

)
(by scaling)

=P
(ν)
0

(
t ≥ y2

R2
1

)

=P

(
t ≥ y2

2γν+1

)

(
since R2

1
(law)
= 2γν+1 under P

(ν)
0 , where γν+1 is a gamma r.v. with parameter ν +1

)

=P
(ν+1)
0 (Gy ≤ t)

(
from (7.14)

)

=P
(ν+1)
0

(
inf
u≥t

Ru ≥ y
)

= P
(ν+1)
0 (Jt ≥ y),

with Jt := inf
u≥t

Ru. Clearly (Jt , t ≥ 0) is an increasing process and Jt −→
t→∞

+∞ P
(ν+1)
0

a.s. since ν +1 > 0.

Remark 7.2. In a general set-up, it was proven by Kamae-Krengel [39], that to a real-
valued process (Xt , t ≥ 0) which admits an increasing pseudo-inverse, one can al-

ways associate an increasing process (At , t ≥ 0) such that, for every t ≥ 0, Xt
(law)= At .

7.2.3.3 We now Prove Point (i) of Theorem 7.1

From the comparison theorem, (applied to Bessel processes) for ν ≥−1
2

, one has:

P
(ν)
x (Rt ≥ y) ≥ P

(− 1
2 )

0 (Rt ≥ y)

= P0
(
|Bt | ≥ y

)
= P0

(
|B1| >

y√
t

)
−→
t→∞

1

where (Bt , t ≥ 0) is a Brownian motion started from 0.
It suffices then, in order to prove Point (i) of Theorem 7.1 to show that: t 
−→

P
(ν)
x (Rt ≥ y) is an increasing function of t. Now, one has:

∂
∂ t

P
(ν)
x (Rt ≥ y) =

∫ ∞

y

∂
∂ t

p(ν)(t,x,z)dz

=
∫ ∞

y

[
1
2
∂ 2

∂ z2 p(ν)(t,x,z)− ∂
∂ z

(
2ν +1

2z
p(ν)(t,x,z)

)]
dz

(from Fokker-Planck, (7.34))

= −1
2
∂
∂y

p(ν)(t,x,y)+
2ν +1

2y
p(ν)(t,x,y).
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Now, from (7.10):

∂
∂y

p(ν)(t,x,y) = p(ν)(t,x,y)
[
ν +1

y
− y

t
+

x
t

I′ν( xy
t )

Iν( xy
t )

]
.

Hence:

∂
∂ t

P
(ν)
x (Rt ≥ y) = p(ν)(t,x,y)

[
ν

2y
+

y
2t

− x
2t

I′ν( xy
t )

Iν( xy
t )

]

= p(ν)(t,x,y)
[

ν

2y
+

y
2t

− x
2t

(
Iν+1

Iν

(xy
t

)
+

νt
xy

)]

(
since

I′ν(z)
Iν(z)

=
Iν+1

Iν
(z)+

ν

z
(see (B.5))

)

=
p(ν)(t,x,y)
2t Iν( xy

t )

[
yIν

(xy
t

)
− xIν+1

(xy
t

)]
. (7.43)

It now follows from Lemma 7.1 that
∂
∂ t

P
(ν)
x (Rt ≥ y) is positive, since y > x and

Iν(z) ≥ Iν+1(z).

7.2.3.4 We now Prove Point (ii) of Theorem 7.1

This follows immediately from (7.43) and from point (iii) of Lemma 7.1: for x �= 0,
∂
∂ t

P
(ν)
x (Rt ≥ y) does not have a fixed sign, hence t 
−→ P

(ν)
x (Rt ≥ y) cannot be a

monotone function.

7.2.3.5 We now Prove Point (iii) of Theorem 7.1

We need to show that, for every x > 0 and 0 < y < x, P
(−1)
x (Rt ≤ y) is an increasing

function of t. We may of course replace Rt by R2
t . Now, the law of R2

t , when R2
0 = x,

is given by:

P(R2
t ∈ dy) = exp

(
− x

2t

)
δ0(dy)+q(t,x,y)dy

with

q(t,x,y) :=
1
2t

√
x
y

exp

(
−x+ y

2t

)
I1

(xy
t

)
. (7.44)

Then, we need to show that, for every y < x, one has:

∂
∂ t

(
exp− x

2t

)
+

∂
∂ t

∫ y

0
q(t,x,z)dz ≥ 0.
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But, since
∂
∂ t

(
exp− x

2t

)
≥ 0, it suffices to show that:

∂
∂ t

∫ y

0
q(t,x,z)dz ≥ 0.

Now, one has:

∂
∂ t

∫ y

0
q(t,x,z)dz =

∫ y

0

∂
∂ t

q(t,x,z)dz

=
∫ y

0

∂ 2

∂ z2

(
2zq(t,x,z)

)
dz (from Fokker-Planck, with ν = −1)

=
∂
∂y

(
2yq(t,x,y)

)

= 2q(t,x,y)+2yq(t,x,y)
[
− 1

2y
− 1

2t
+

1
2t

√
x
y

I′1
I1

(√
xy

t

)]

= q(t,x,y)
[

1− y
t

+
√

xy

t

(
I0

I1

(√
xy

t

)
− t

√
xy

)]

(
since

I′1
I1

(z) =
I0

I1
(z)− 1

z

)

=
√

y

t
q(t,x,y)

[√
x

I0

I1

(√
xy

t

)
−√

y

]
≥ 0

from Point (ii) of Lemma 7.1 and since y < x. This ends the proof of Theorem 7.1.
��

Remark 7.3.
a) The property: t → P

(ν)
x (Rt ≥ y) is an increasing function of t (for y > x) is

equivalent to: for every Borel increasing function ϕ with support in ]x,+∞[, t →
E

(ν)
x
[
ϕ(Rt)

]
is an increasing function of t. Indeed, we have, for such a ϕ :

E
(ν)
x
[
ϕ(Rt)

]
= E

(ν)
x

[∫ Rt

x
dϕ(y)

]
= E

(ν)
x

[∫ ∞

x
dϕ(y)1{Rt≥y}

]

=
∫ ∞

x
dϕ(y)P(ν)

x (Rt ≥ y).

b) Formula (7.43)

∂
∂ t

P
(ν)
x (Rt ≥ y) =

p(ν)(t,x,y)
2t Iν( xy

t )

[
yIν

(xy
t

)
− xIν+1

(xy
t

)]

may still be written, with the help of (7.10):

∂
∂ t

P(Y (ν)
x,y ≤ t) =

∂
∂ t

P
(ν)
x (Rt ≥ y) =

y
2t

p(ν)(t,x,y)− x2

2ty
p(ν+1)(t,x,y). (7.45)
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We denote by θ (ν)(t,x,y) the RHS of (7.45). We now check directly that this positive
function of t integrates to 1 i.e., it is a density of probability:

∫ ∞

0
θ (ν)(t,x,y)dt = 1. (7.46)

For this purpose, we use the classical Lipschitz-Hankel formula
(
see, e.g. [90], p.

384
)
, for ν > 0:

ν
∫ ∞

0

du
u

exp(−au)Iν(u) =
1

(a+
√

a2 −1)ν
(a > 1). (7.47)

Differentiating both sides with respect to a, we obtain:

∫ ∞

0
exp(−au)Iν(u)du =

1

(a+
√

a2 −1)ν
1√

a2 −1
(a > 1, ν > 0). (7.48)

In order to check (7.46), we first prove that:

Λ (ν)
x,y :=

∫ ∞

0

dt
t

p(ν)(t,x,y) =
2y

y2 − x2 (y > x). (7.49)

Note that (7.49) (which we assume for a moment) shows that Λ (ν)
x,y does not depend

on ν ! We deduce from (7.49) that:

∫ ∞

0

[
y
2t

p(ν)(t,x,y)− x2

2ty
p(ν+1)(t,x,y)

]
dt =

y
2
Λ (ν)

x,y − x2

2y
Λ (ν+1)

x,y

=
(

y
2
− x2

2y

)
2y

y2 − x2 = 1

which is the desired result (7.46).

c) We now prove (7.49). From (7.10), we get:

Λ (ν)
x,y =

(y
x

)ν
y
∫ ∞

0

dt
t2 exp

(
−x2 + y2

2t

)
Iν
(xy

t

)

=
(y

x

)ν
y
∫ ∞

0
du exp

(
−x2 + y2

2
u

)
Iν(xyu)

(after the change of variable
1
t

= u)

=
(y

x

)ν y
xy

∫ ∞

0
dzexp

(
−x2 + y2

2xy
z

)
Iν(z)

(after the change of variable xyu = z)

=
(y

x

)ν 1
x

1

(a+
√

a2 −1)ν
1√

a2 −1
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with the help of (7.48), where a :=
x2 + y2

2xy
> 1 since (x < y). On the other hand,

there are the elementary identities:

√
a2 −1 =

y2 − x2

2xy
and a+

√
a2 −1 =

y
x
,

which imply: Λ (ν)
x,y =

1
x

1
y2−x2

2xy

=
2y

y2 − x2

which is the desired result (7.49). We shall come back to this computation, in Section

7.3, in order to establish certain properties of the r.v.’s Y (ν)
x,y .

7.2.4 Interpretation in Terms of the Local Martingales
(R−2ν

t , t ≥ 0)

We assume here ν > 0. We know that (Rt , t ≥ 0) solves the S.D.E.:

Rt = r +Bt +
2ν +1

2

∫ t

0

ds
Rs

(7.50)

where (Bt , t ≥ 0) is a Brownian motion starting from 0. Let M(ν)
t := R−2ν

t and denote

M(ν)
0 = x (= r−2ν). Itô’s formula yields:

M(ν)
t = x−2ν

∫ t

0
(M(ν)

s )
2ν+1

2ν dBs. (7.51)

We denote by Q
(ν)
x the law of the solution of (7.51). Thus (M(ν)

t , t ≥ 0; Q
(ν)
x ,x ≥ 0)

is the family of laws of a Markov process and (M(ν)
t , t ≥ 0) is a positive local mar-

tingale, hence, a supermartingale, which converges a.s. to 0 as t →∞. Gathering the
results of Theorem 7.1, Point (b) of Remark 7.1 and Remark 6.2, we have obtained:

Theorem 7.2.

i) For every ν > 0 and x > 0, there exists a probability measure γM(ν) on [0,x]×
[0,+∞[ such that:

1
x

Q
(ν)
x

[
(K −M(ν)

t )+
]

= γM(ν)

(
[0,K]× [0, t]

)
(K ≤ x, t ≥ 0). (7.52)

ii) There exists a family of positive r.v.’s (Y (ν)
x,y ,y < x) such that:

Q
(ν)
x (M(ν)

t ≤ y) = P(Y (ν)
x,y ≤ t) (y < x, t ≥ 0). (7.53)
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x,y ,y > x)

(
ν ≥− 1

2

)
179

Remark 7.4.
a) Since:

Q
(ν)
x (M(ν)

t ≤ y) = P
(ν)

x−
1

2ν

(
1

R2ν
t

≤ y

)
= P

(ν)

x−
1

2ν
(Rt ≥ y−

1
2ν ) (7.54)

we have:

Y
(ν)
x,y

(law)
= Y (ν)

x−
1

2ν ,y−
1

2ν
(x > y). (7.55)

In Section 7.3, we shall study in details the laws of the r.v.’s (Y (ν)
x,y ,y > x) which,

thanks to (7.55), allows to obtain easily the corresponding properties of the r.v.’s

(Y (ν)
x,y ,y < x).

b) When ν ∈]− 1,0[,(R−2ν
t , t ≥ 0) is no longer a local martingale, but is a sub-

martingale
(
see [19]

)
such that:

R−2ν
t = N(ν)

t +L(ν)
t (7.56)

where (N(ν)
t , t ≥ 0) is a martingale and (L(ν)

t , t ≥ 0) an increasing process such that

dL(ν)
t = 1{Rt=0}dL(ν)

t .

7.3 Some Properties of the r.v.’s (Y (ν)
x,y ,y > x)

(
ν ≥−1

2

)

We recall that these r.v.’s Y (ν)
x,y (or, more exactly, their laws) are defined (see Theorem

7.1) via:
P

(ν)
x (Rt ≥ y) = P(Y (ν)

x,y ≤ t). (7.57)

7.3.1 The Main Theorem

Theorem 7.3. Here are a few properties (of the laws) of Y (ν)
x,y

(
ν ≥−1

2
, y > x

)
:

i) Laplace transform of Y (ν)
x,y

E

[
e−λY (ν)

x,y

]
=

Iν(x
√

2λ )
(x
√

2λ )ν
(y
√

2λ )ν+1Kν+1(y
√

2λ ) (x > 0, λ ≥ 0)

= (y
√

2λ )
(y

x

)ν
Iν(x

√
2λ )Kν+1(y

√
2λ ). (7.58)

For x = 0, we get:
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E

[
e−λY (ν)

0,y

]
=

1
2νΓ (ν +1)

(y
√

2λ )ν+1Kν+1(y
√

2λ ). (7.59)

ii) Scaling property

The law of
Y (ν)

x,y

xy
depends only on the ratio

y
x
(> 1). In particular:

Y (ν)
x,y = x2Y1, y

x
(y > x) (7.60)

and

E

[

e−
λY

(ν)
x,y
xy

]

=
√

2λbν+ 1
2 Iν

(√
2λ
b

)

Kν+1(
√

2λb) (7.61)

where b =
y
x

> 1.

iii) Further results about the laws of Y (ν)
x,y

• Y (ν)
0,y

(law)
=

y2

2γν+1

(law)
= G(ν+1)

y (7.62)

where G(ν+1)
y denotes the r.v. Gy under P

(ν+1)
0 .

The following relations hold:

• P(Y (ν)
x,y ≤ t) = P

(
γν+1 ≥

y2

2t

)
+
∫ x

0

z
y

p(ν+1)(t,z,y)dz (7.63)

• ∂
∂x

P(Y (ν)
x,y ≤ t) =

x
y

p(ν+1)(t,x,y) =
x

ν +1
f
G(ν+1)

x,y
(t) (7.64)

where f
G(ν+1)

x,y
denotes the density of the r.v. Gy under P

(ν+1)
x , (x < y).

• The density f
Y (ν)

x,y
of Y (ν)

x,y is given by:

f
Y (ν)

x,y
(t) =

1
2t

[
y p(ν)(t,x,y)− x2

y
p(ν+1)(t,x,y)

]
. (7.65)

• E

[
Y (ν)

x,y

]
=

y2

2ν
− x2

2(ν +1)
(ν > 0). (7.66)

iv) An equation satisfied by Y (ν)
x,y

Y (ν)
x,z

(law)
= T (ν)

x,y +Y (ν)
y,z (x < y < z). (7.67)
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In particular:

Y (ν)
0,z

(law)
= T (ν)

0,y +Y (ν)
y,z (0 < y < z). (7.68)

The r.v.’s which occur on the RHS of (7.67) and (7.68) are independent and T (ν)
x,y is

the first hitting time of level y by the process (Rt , t ≥ 0) starting from x.

v) T (ν)
0,x +Y (ν)

x,y
(law)
= G(ν+1)

y (0 < x < y). (7.69)

The r.v.’s which occur on the LHS of (7.69) are independent
(
see (7.12), (7.13) and

(7.14) for the definition of G(ν+1)
y

)
.

Proof.

i) We compute the Laplace transform of Y (ν)
x,y

From (7.57), we deduce:
∫ ∞

0
e−λ t

P
(ν)
x (Rt ≥ y)dt =

∫ ∞

0
dt
∫ ∞

y
e−λ t p(ν)(t,x,z)dz

=
∫ ∞

y
dz

∫ ∞

0
e−λ t p(ν)(t,x,z)dt

=
∫ ∞

y
u(ν)
λ (x,z)dz

(
see Subsubsection 7.2.2.4

)

= E

[∫ ∞

0
e−λ t1{t≥Y (ν)

x,y }dt

]
=

1
λ

E

[
e−λY (ν)

x,y

]
.

Hence:

E

[
e−λY (ν)

x,y

]
= λ

∫ ∞

y
u(ν)
λ (x,z)dz (7.70)

=
2λ
xν

Iν(x
√

2λ )(2λ )−
ν
2 −1

∫ ∞

y
√

2λ
Kν(h)hν+1dh

(
from (7.18)

)
.

Now, since:

−zν+1Kν(z) =
∂
∂ z

(
zν+1Kν+1(z)

)
(see (B.4))

we obtain:

E

[
e−λY (ν)

x,y

]
= (2λ )−

1
2

Iν(x
√

2λ )
xν

(y
√

2λ )ν+1Kν+1(y
√

2λ )

=
Iν(x

√
2λ )

(x
√

2λ )ν
(y
√

2λ )ν+1Kν+1(y
√

2λ ).

Formula (7.59) may be obtained by letting x tend to 0 in (7.58) and (7.66) follows
from (7.58) by differentiation.
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ii) Proof of the scaling property

• It is an immediate consequence of (7.58). The fact that the law of
Y (ν)

x,y

xy
depends

only on the ratio
(y

x

) (y
x

> 1,x > 0
)

may also be obtained with the help of (7.45).

Indeed, we deduce from (7.45) and (7.10) that:

P

(
Y (ν)

x,y

xy
≤ t

)

= P

(
xy

Y (ν)
x,y

≥ 1
t

)

=
∫ txy

0

du
2u

[
y p(ν)(u,x,y)− x2

y
p(ν+1)(u,x,y)

]

or, equivalently:

P

(
xy

Y (ν)
x,y

≥ t

)

=
∫ xy

t

0

du
2u

[
y p(ν)(u,x,y)− x2

y
p(ν+1)(u,x,y)

]
.

Given (7.10), this formula yields the density f xy

Y
(ν)
x,y

of the r.v.
xy

Y (ν)
x,y

:

f xy

Y
(ν)
x,y

(u) =
1
2

(y
x

)ν+1
e−a(x,y)u

(
Iν(u)− x

y
Iν+1(u)

)

where a(x,y) :=
x2 + y2

2xy
=

1
2

(
x
y

+
y
x

)
.

Thus, the law of
xy

Y (ν)
x,y

, hence that of
Y (ν)

x,y

xy
only depends on the ratio

(y
x

)
.

• We may also prove this scaling property as a direct consequence of the scaling
property of the Bessel process. Indeed, we have:

P(Y (ν)
x,y ≤ t xy) = P

(ν)
x (Rtxy ≥ y)

= P
(ν)
x

(
1

√
xy

Rtxy ≥
y

√
xy

)

= P
(ν)

x√
xy

(
Rt ≥

√
y
x

)
(by scaling of the Bessel process)

= P
(ν)√ x

y

(
Rt ≥

√
y
x

)
.

iii) Proof of (7.62)
This formula (7.62) has been obtained during the proof of Theorem 7.1 (Subsection
7.2.3.2, in the case x = 0). We note that one can deduce (7.59) from (7.62). Indeed,

from (7.62), since P(Y (ν)
0,y ≤ t) = P

(
y2

2γν+1
≤ t

)
, one has:
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∫ ∞

0
e−λ t

P(Y (ν)
0,y ≤ t)dt =

∫ ∞

0
e−λ t

P

(
y2

2γν+1
≤ t

)
dt, i.e. :

E

[
e−λY (ν)

0,y

]
= E

[
e
− λ

2
y2

γν+1

]

=
1

Γ (ν +1)

∫ ∞

0
zν exp

{
−1

2

(
2z+

λy2

z

)}
dz

=
2

1−ν
2

Γ (ν +1)
λ

ν+1
2 yν+1Kν+1(y

√
2λ ) (see (B.9))

=
1

2νΓ (ν +1)
(y
√

2λ )ν+1Kν+1(y
√

2λ ).

iv) We now prove (7.63) and (7.64)
From the Hirsch-Song formula (7.24), one has:

∂
∂x

p(ν)(t,x,y) = − ∂
∂y

(
x
y

p(ν+1)(t,x,y)
)

.

Then:
∂
∂x

P(Y (ν)
x,y ≤ t) =

∂
∂x

P
(ν)
x (Rt ≥ y)

=
∫ ∞

y

∂
∂x

p(ν)(t,x,z)dz

= −
∫ ∞

y

∂
∂ z

(
x
z

p(ν+1)(t,x,z)
)

dz

=
x
y

p(ν+1)(t,x,y)

and the relation: x
y

p(ν+1)(t,x,y) =
x

ν +1
f
G(ν+1)

x,y
(t)

follows from (7.13). Formula (7.63) is obtained by integration of (7.64) (with respect
to x):

P(Y (ν)
x,y ≤ t) = P(Y (ν)

0,y ≤ t)+
∫ x

0

∂
∂ z

P(Y (ν)
z,y ≤ t)dz

= P

(
γν+1 ≥

y2

2t

)
+
∫ x

0

z
y

p(ν+1)(t,z,y)dz

from (7.62) and (7.64). We note that (7.63) may also be written, from (7.64):

P(Y (ν)
x,y ≤ t) = P

(
γν+1 ≥

y2

2t

)
+
∫ x

0

z
ν +1

f
G(ν+1)

z,y
(t)dz. (7.71)

We also remark that the computation of E

[
Y (ν)

x,y

]
, given by (7.66) when ν > 0, may

be obtained from (7.71). Indeed we deduce from (7.71) that:
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P(Y (ν)
x,y ≥ t) = P

(
γν+1 ≤

y2

2t

)
−
∫ x

0

z
ν +1

f
G(ν+1)

z,y
(t)dz.

Thus, integrating this relation in t from 0 to +∞, for ν > 0, we obtain:

∫ ∞

0
P(Y (ν)

x,y ≥ t)dt =
∫ ∞

0
dt
∫ y2

2t

0

1
Γ (ν +1)

e−zzνdz− x2

2(ν +1)

=
1

Γ (ν +1)

∫ ∞

0
e−zzν y2

2z
dz− x2

2(ν +1)
=

y2

2ν
− x2

2(ν +1)
.

v) Formula (7.65) is an immediate consequence of (7.45).

vi) We now prove that Y (ν)
x,y satisfies equation (7.67)

Indeed, this follows from a simple application of the Markov property. Let x < y < z.
Since the process (Rt , t ≥ 0) starting from x needs to pass through y to reach z, we
obtain:

P
(ν)
x (Rt ≥ z) = P

(ν)
x (Ty < ∞;Rt ≥ z)

= P
(ν)
x
(
1{Ty≤t}P̂

(ν)
y (R̂t−Ty ≥ z)

)

where in the expression P̂
(ν)
y (R̂t−Ty ≥ z) the term Ty is frozen. Hence, conditioning

with respect to Ty = u, we obtain:

P
(ν)
x (Rt ≥ z) =

∫ t

0
P

(ν)
x (Ty ∈ du)P(ν)

y (Rt−u ≥ z), i.e. :

P(Y (ν)
x,z ≤ t) =

∫ t

0
P

(ν)
x (Ty ∈ du)P(Y (ν)

y,z ≤ t −u)

hence:

Y (ν)
x,z

(law)
= T (ν)

x,y +Y (ν)
y,z .

It is also possible to obtain (7.67) by using the Laplace transforms of Y (ν)
x,y and T (ν)

x,y .
Indeed, from (7.58):

E

[
e−λY (ν)

x,z

]
=

Iν(x
√

2λ )
(x
√

2λ )ν
(z
√

2λ )ν+1Kν+1(z
√

2λ )

whereas, from (7.58) and (7.16):

E

[
e−λ (T (ν)

x,y +Y (ν)
y,z )

]
=
(y

x

)ν Iν(x
√

2λ )
Iν(y

√
2λ )

· Iν(y
√

2λ )
(y
√

2λ )ν
(z
√

2λ )ν+1Kν+1(z
√

2λ )

=
Iν(x

√
2λ )

(x
√

2λ )ν
(z
√

2λ )ν+1Kν+1(z
√

2λ ) = E

[
e−λY (ν)

x,z

]
.
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vii) The proof of (7.69) hinges on the same arguments as previously and, from
(7.14), on:

E

[
e−λG(ν+1)

y

]
=

1
2νΓ (ν +1)

(y
√

2λ )ν+1Kν+1(y
√

2λ ).

This ends the proof of Theorem 7.3.
��

7.3.2 Some Further Relations

1) We note that the r.v.’s (Y (ν)
x,y ,y > x) are not the only ones which satisfy equation

(7.67). Indeed, let, for x < y:

A(ν),−
x,y :=

∫ ∞

0
1{R(ν)

x (s)≤y}ds

(
=

∫ Gy

0
1{R(ν)

x (s)≤y}ds

)

where here
(
R(ν)

x (s),s ≥ 0
)

denotes the Bessel process with index ν starting from x.
Then, an application of the Markov property yields, for x < y < z:

A(ν),−
x,z

(law)
= T (ν)

x,y +A(ν),−
y,z . (7.72)

We note that, although the r.v.’s (A(ν),−
x,y ,y > x) satisfy the same equation as the r.v.’s

(Y (ν)
x,y ,y > x), they do not have the same law. Indeed, for x = 0, from Ciesielski-

Taylor
(
[17]

)

A(ν),−
0,y

(law)
= T (ν−1)

0,y (ν > 0) (7.73)

whereas Y (ν)
0,y

(law)
= G(ν+1)

y
(
from (7.62)

)
and the laws of T (ν−1)

0,y and G(ν+1)
y differ;

indeed E

[
e−λT (ν−1)

0,y

]
=

1
2ν−1Γ (ν)

(y
√

2λ )ν−1

Iν−1(y
√

2λ )
, from (7.17), whereas, from (7.59)

and (7.62),

E

[
e−λY (ν)

0,y

]
= E

(ν+1)
0

[
e−λGy

]
=

1
2νΓ (ν +1)

(y
√

2λ )ν+1Kν+1(y
√

2λ ).

2) For ν > 0, the equality:

E

[
Y (ν)

x,y

]
=

y2

2ν
− x2

2(ν +1)

may be obtained in a different manner than the previously developed ones, by mak-

ing use this time of the r.v.’s A(ν),−
x,y . Indeed, for x < y:
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E

[
Y (ν)

x,y

]
=

∫ ∞

0
P(Y (ν)

x,y ≥ t)dt = E
(ν)
x

[∫ ∞

0
1{Rt≤y}dt

]
= E

[
A(ν),−

x,y

]
. (7.74)

Thus, we need to compute E

[
A(ν),−

x,y

]
. Itô’s formula, for ν > 0, implies, from (7.50):

(Rt ∧ y)2 = x2 +2
∫ t

0
Rs1{Rs<y}

(
dBs +

2ν +1
2Rs

ds

)
− yLy

t +
∫ t

0
1{Rs<y}ds (7.75)

where (Ly
t , t ≥ 0) denotes the local time of (Rt , t ≥ 0) at level y. Hence, taking ex-

pectation in (7.75) and letting t tend to +∞, we obtain:

y2 = x2 +(2ν +2)E
[
A(ν),−

x,y

]
− yE

(ν)
x [Ly

∞] . (7.76)

However:

E
(ν)
x [Ly

∞] = E
(ν)
y [Ly

∞] =
∫ ∞

0
p(ν)(t,y,y)dt

=
∫ ∞

0

y
t

exp

(
−y2

t

)
Iν

(
y2

t

)
dt

(
from (7.10)

)

= y
∫ ∞

0
Iν(z)e−z dz

z

(
after the change of variable

y2

t
= z

)

=
y
ν

(7.77)

from the Lipschitz-Hankel formula (see (7.47)). Finally, from (7.77), (7.76) and
(7.74):

E
[
Y ν

x,y

]
= E

[
A(ν),−

x,y

]
=

1
2ν +2

(
y2
(

1+
1
ν

)
− x2

)
=

y2

2ν
− x2

2(ν +1)
.

3) It may be of interest to express the law of the r.v. Y (ν)
x,y in terms of the only process

(Rt , t ≥ 0;P(ν)
x ). Here is our result.

Proposition 7.2. Let ν > 0 and h be a generic positive Borel function. Then:

E

[
h(Y (ν)

x,y )
]

=
y2

2ν
E

(ν)
x

[
h(Gy)

Gy

(
1− x

y
exp

{
−
(

ν +
1
2

)∫ Gy

0

ds
R2

s

})]
(7.78)

=
y(y− x)

2ν
E

(ν)
x

[
h(Gy)

Gy

]

+
xy
2ν

E
(ν)
x

[
h(Gy)

Gy

(
1− exp

{
−
(

ν +
1
2

)∫ Gy

0

ds
R2

s

})]
. (7.79)

Proof. The density of the r.v. Y (ν)
x,y , f

Y (ν)
x,y

, equals, from (7.43) and (7.22):
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f
Y (ν)

x,y
(t) =

p(ν)(t,x,y)
2t

(
y− x

Iν+1

Iν

(xy
t

))
(7.80)

=
y p(ν)(t,x,y)

2t

(
1− x

y
E

(ν)
x

[
exp

{
−
(

ν +
1
2

)∫ t

0

ds
R2

s

}∣
∣
∣
∣Rt = y

])
.

On the other hand, from (7.13), the density f
G(ν)

x,y
of Gy under P

(ν)
x equals:

f
G(ν)

x,y
(t) =

ν

y
p(ν)(t,x,y). (7.81)

Thus, since for every positive and predictable process H, one has
(
[24]

)
:

E
(ν)
x

[
HGy

]
=

∫ ∞

0
P

(ν)
x (Gy ∈ dt)E(ν)

x [Ht |Rt = y] , (7.82)

we derive from (7.80) that:

E
[
h(Y (ν)

x,y )
]

=
∫ ∞

0

h(t)
2t

p(ν)(t,x,y)y
(

1− x
y
E

(ν)
x

[
exp

{
−
(

ν +
1
2

)∫ t

0

ds
R2

s

}∣
∣
∣
∣Rt = y

])
dt

=
y2

2ν

∫ ∞

0

h(t)
t

P
(ν)
x (Gy ∈ dt)

(
1− x

y
E

(ν)
x

[
exp

{
−
(

ν +
1
2

)∫ t

0

ds
R2

s

}∣
∣
∣
∣Rt = y

])

=
y2

2ν
E

(ν)
x

[
h(Gy)

Gy

(
1− x

y
exp

{
−
(

ν +
1
2

)∫ Gy

0

ds
R2

s

})]

from (7.81). This is formula (7.78), which, after some mild rearrangement, yields
formula (7.79).

��
We note that both terms in (7.79):

y(y− x)
2ν

E
(ν)
x

[
h(Gy)

Gy

]
and

xy
2ν

E
(ν)
x

[
h(Gy)

Gy

(
1− exp

{
−
(

ν +
1
2

)∫ Gy

0

ds
R2

s

})]

are positive measures (viewed via the integration of h). The first one has total mass:

y(y− x)
2ν

E
(ν)
x

[
1

Gy

]
=

y(y− x)
2ν

∫ ∞

0

1
ty

νp(ν)(t,x,y)dt
(
from (7.81)

)

=
y(y− x)

2ν

ν

y
2y

y2 − x2 =
y

y+ x

(
from (7.49)

)

whereas the second has total mass
x

y+ x
· In particular, for x = 0, we recover:

E
[
h(Y (ν)

0,y )
]
=

y2

2ν
E

(ν)
0

[
h(Gy)

Gy

]

and the second term in (7.79) vanishes.
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4) The r.v.’s Y
(−1)
x,y (x > y) In the same way that Point (i) of Theorem 7.1 allows to

define the r.v.’s

(
Y (ν)

x,y ,y > x;ν ≥−1
2

)
, Point (iii) of this theorem allows to define

the positive r.v.’s (Y (−1)
x,y ,x > y) characterized by:

Q
(−1)
x (Mt ≤ y) = P(Y (−1)

x,y ≤ t)

where (Mt , t ≥ 0) under Q
(−1)
x is a Bessel square process with index −1 started from

x. With arguments similar to those used to prove Theorem 7.3, we obtain:

E

[
e−λY (−1)

x,y

]
= K1(

√
2λx)

[√
2λx+

y√
x

√
2λ I2(

√
2λy)

]
. (7.83)

5) Use of additivity property of squares of Bessel processes

We have shown, in Theorem 7.1, that for ν ≥−1
2

and for y > 1: t → P
(ν)
1 (Rt ≥ y) is

an increasing function of t. It is the distribution function of the r.v. Y (ν)
1,y (the general

case, with x < y, may be deduced from this one, by scaling). On the other hand,

it is well known
(
see, e.g., [70], Chap. XI

)
that Q

(d)
x ∗Q

(d′)
x′ = Q

(d+d′)
x+x′ , where Q

(d)
x

(resp. Q
(d′)
x′ ) denotes the law of a squared Bessel process, with dimension d = 2ν+2,

starting from x (resp. with dimension d′ = 2ν ′ +2 starting from x′). Hence:

P
(ν)
1 (Rt ≥

√
y) = P

(ν)
1 (R2

t ≥ y) = P
(
R2

0(t)+X(t) ≥ y
)

where
(
R2

0(t), t ≥ 0
)

is a squared Bessel process with dimension d = 2ν +2 starting
from 0 and (Xt , t ≥ 0) is a squared Bessel process with dimension 0 started from 1.
Then:

P
(ν)
1 (Rt ≥

√
y) = P

(
γ d

2
≥ 1

2t
(y−Xt)+

)
(7.84)

since R2
0(t)

(law)
= tR2

0(1) by scaling and R2
0(1)

(law)
= 2γ d

2
. Consequently:

P
(ν)
1 (Rt ≥

√
y) =

1

Γ ( d
2 )

∫ ∞

0
P

(
1
2t

(y−Xt)+ ≤ z

)
z

d
2 −1e−zdz. (7.85)

Therefore, from (7.84), Theorem 7.1 hinges only upon the properties of the process
(Xt , t ≥ 0), which is a squared Bessel process of dimension 0 started from 1. For
d = 2 (i.e. ν = 0), (7.85) becomes:

P
(0)
1 (Rt ≥

√
y) = E

[
exp

{
− 1

2t
(y−Xt)+

}]
(7.86)
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since γ d
2

= γ1 is then a standard exponential variable. We note that, Theorem 7.1,

applied for ν = 0
(
> − 1

2 !
)

implies that the RHS of (7.86) is a distribution function

(i.e.: that of the r.v. Y (0)
1,
√

y).

For d = 1
(
i.e. ν = − 1

2

)
, (7.85) becomes:

P
(− 1

2 )
1 (Rt ≥

√
y) =

√
2
π

E

[∫ ∞
√

(y−Xt )+
t

e−
u2
2 du

]

(7.87)

which is also a distribution function with respect to t, that of the r.v. Y
(− 1

2 )
1,
√

y . This
remark invites to ask the following (open) questions:

• Which are the probabilities π on R
+ such that: E

[
π
(

1
2t

(y−Xt)+
)]

is a distri-

bution function in t, with π(x) = π
(
]x,+∞[

)
? Theorem 7.1 implies that it is the case

when π is a mixture of gamma laws, with parameter
d
2
≥ 1

2
but that it is not true if

d
2

<
1
2
·

• More generally, which are the properties of the process

(
Zt =

1
2t

(y−Xt)+, t ≥ 0

)
,

with y > 1, which may explain the above increase property ?

6) Around infinite divisibility properties for Y (ν)
x,y

Proposition 7.3.

i) Let x > 0 and Vx a positive, 1
2 stable r.v. such that E

[
e−λVx

]
= exp(−x

√
2λ )(λ ≥

0). If ν >
1
2

, then Vx +Y (ν)
x,y (with Vx and Y (ν)

x,y independent) is infinitely divisible.

ii) If ν >
1
2

and
y
x

is large enough, then Y (ν)
x,y is infinitely divisible.

Proof.
i) We prove (i)
By scaling we may suppose x = 1 and y > 1. From (7.58) we have:

E

[
e−λY (ν)

1,y

]
= yν+1

√
2λ Iν(

√
2λ )Kν+1(y

√
2λ ) (7.88)

:= exp
(
−h(λ )

)
.

Hence:

h′(λ ) = − 1
2λ

− 1√
2λ

I′ν(
√

2λ )
Iν(

√
2λ )

− y√
2λ

K′
ν+1(y

√
2λ )

Kν+1(y
√

2λ )

= − 1√
2λ

Iν+1

Iν
(
√

2λ )+
y√
2λ

Kν

Kν+1
(y
√

2λ ) (7.89)
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(see Appendix B.1). On the other hand
(
see Ismail [32]

)
:

1√
2λ

Kν(
√

2λ )
Kν+1(

√
2λ )

=
4
π2

∫ ∞

0

1
2λ + t2

dt

t
(
J2
ν+1(t)+Y 2

ν+1(t)
) (7.90)

and
Iν+1(

√
2λ )

Iν(
√

2λ )
=
√

2λ
∞

∑
n=1

2
2λ + j2

ν,n
(7.91)

where Jν+1,Yν+1 are the Bessel functions with index ν (see [46], p.98) and
( jν,n,n ≥ 1) is the increasing sequence of the positive zeroes of Jν . Hence:

1
2

h′(λ ) =
1
π

∫ ∞

0

y2

2λy2 + t2

2
πt

dt

J2
ν+1(t)+Y 2

ν+1(t)
−∑

n≥1

1
2λ + j2

ν,n
. (7.92)

Let now Zy := V1 +Y (ν)
1,y (y > 1). We have, from (7.92):

E

[
e−λZy

]
= exp

(
−h(λ )−

√
2λ

)
:= exp

(
−g(λ )

)

with:

1
2

g′(λ ) =
1
2

h′(λ )+
1

2
√

2λ
(7.93)

=

[
1
π

∫ ∞

0

y2

2λy2 + t2

2
πt

dt

J2
ν+1(t)+Y 2

ν+1(t)

]

+

[
1
π

∫ ∞

0

dt
2λ + t2 −

∞

∑
n≥1

1
2λ + j2

ν,n

]

(7.94)

:=(1)+(2)
(

we used
1√
2λ

=
2
π

∫ ∞

0

dt
2λ + t2

)
.

One needs, to prove (i), to show that g′ is completely monotone. For (1), it is clear
since it is the Stieltjes transform of a positive measure. For (2), one has:

1
π

∫ ∞

0

dt
2λ + t2 −

∞

∑
n≥1

1
2λ + j2

ν,n
=

1
π

(
∞

∑
n=1

∫ jν,n

jν,n−1

dt
2λ + t2 −π

∞

∑
n=1

1
2λ + j2

ν,n

)

=
1
π

∞

∑
n=1

{∫ jν,n

jν,n−1

(
1

2λ + t2 − 1
2λ + j2

ν,n

)
dt +( jν,n − jν,n−1 −π)

1
2λ + j2

ν,n

}

=
1
π

∞

∑
n=1

{∫ jν,n

jν,n−1

j2
ν,n − t2

(2λ + t2)(2λ + j2
ν,n)

dt +( jν,n − jν,n−1 −π)
1

2λ + j2
ν,n

}
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which is clearly completely monotone since
(
see [32], p. 357

)
, jν,n − jν,n−1 > π as

ν >
1
2
.

ii) We now prove (ii)
One needs to show that h′(λ ), as given by (7.92) is the Laplace transform, for y
large enough, of a positive measure. Now, one has:

1
2

h′(λ ) =
1
π

∫ ∞

0

1
2λ + s2

2
πs

ds

J2
ν+1(ys)+Y 2

ν+1(ys)
−∑

n≥1

1
2λ + j2

ν,n
(7.95)

=
1
π

∞

∑
n=1

∫ jν,n

jν,n−1

(
1

2λ + s2 − 1
2λ + j2

ν,n

)
2
πs

ds

J2
ν+1(ys)+Y 2

ν+1(ys)

+
1
π

∞

∑
n=1

(∫ jν,n

jν,n−1

2
πs

ds

J2
ν+1(ys)+Y 2

ν+1(ys)
−π

)
1

2λ + j2
ν,n

. (7.96)

But, from Watson
(
[90], p. 449

)
:

J2
ν+1(z)+Y 2

ν+1(z) ∼
z→∞

2
πz

.

Hence:
∫ jν,n

jν,n−1

2
πs

ds

J2
ν+1(ys)+Y 2

ν+1(ys)
∼

y→+∞

∫ jν,n

jν,n−1

2
πs

πsy
2

ds

∼
y→+∞

y( jν,n − jν,n−1) uniformly in n.

Thus, for y large enough, and since ν >
1
2

implies jν,n − jν,n−1 > π , one has:

1
2

h′(λ ) =
1
π

∞

∑
n=1

∫ jν,n

jν,n−1

j2
ν,n − s2

(2λ + s2)(2λ + j2
ν,n)

2
πs

ds

J2
ν+1(ys)+Y 2

ν+1(ys)

+
∞

∑
n=1

αn(y)
1

2λ + j2
ν,n

where the αn(y) are all positive. It is then clear that h′(λ ) is completely monotone.
��

7) On the negative moments of Y (ν)
x,y (x < y)

For every m > 0, we have:

E

[
1

(Y (ν)
x,y )m

]

< ∞. (7.97)

Indeed, we have, for m > 0:
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E

[
1

(Y (ν)
x,y )m

]

=
1

Γ (m)

∫ ∞

0
E

[
e−λY (ν)

x,y

]
λm−1dλ

and, from (7.58), E

[
e−λY (ν)

x,y

]
∼

λ→+∞

1
2

(y
x

)ν 1
√

xy
e−(y−x)

√
2λ (

see Appendix B.1
)
.

7.4 Two Extensions of Bessel Processes with Increasing
Pseudo-Inverses

7.4.1 Bessel Processes with Index ν ≥−1
2

and Drift a > 0

S. Watanabe
(
see, in particular [89], p.117 and 118, see also [65], especially Sec-

tions 7 and 8
)

introduced the Bessel processes
(
(Rt , t ≥ 0),P(ν,a)

x ,x ≥ 0
)

with index
ν and drift a, whose extended infinitesimal generator is given by:

1
2

d2

dx2 +
(

2ν +1
2x

+a
Iν+1

Iν
(ax)

)
d
dx

. (7.98)

(
This is the expression (7.8) in [89], where we replaced α by (2ν + 1) and

√
2c

by a
)
. We recall that, for integer dimensions d = 2(ν + 1), these processes may be

obtained by taking |−→B t +−→m · t|, where (
−→
B t) is a d-dimensional Brownian motion,

starting from 0, and a = |−→m |, for some −→m ∈ R
d .

Here is a first generalization of our Theorem 7.1 (recovered by letting a → 0).

Theorem 7.4. For ν ≥−1
2

, and a > 0, the process
(
(Rt , t ≥ 0),(P(ν,a)

x ,x ≥ 0)
)

ad-

mits an increasing pseudo-inverse.

Sketch of the proof of Theorem 7.4 (It is very similar to that of Theorem 7.1).

We need to show that, for y > x,
∂
∂ t

P
(ν,a)
x (Rt ≥ y)≥ 0. From Fokker-Planck formula

(7.34), we get:

∂
∂ t

P
(ν,a)
x (Rt ≥ y) = −1

2
∂
∂y

p(t,x,y)+
(

2ν +1
2y

+a
Iν+1(ay)
Iν(ay)

)
p(t,x,y) (7.99)

where p(t,x,y), the density with respect to the Lebesgue measure of Rt under P
(ν,a)
x ,

equals, from
(
[89], p.117-118

)
:

p(t,x,y) = y
Iν(ay)
Iν(ax)

e−
a2t
2

t
exp

(
−
(

x2 + y2

2t

))
Iν
(xy

t

)
. (7.100)

Hence:
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∂
∂y

p(t,x,y) = p(t,x,y)
[

1
y

+a
I′ν(ay)
Iν(ay)

− y
t

+
x
t

I′ν( xy
t )

Iν( xy
t )

]
.

Then, we deduce from:
I′ν(z)
Iν(z)

=
Iν+1(z)
Iν(z)

+
ν

z
,

and from (7.99) that:

∂
∂ t P

(ν,a)
x (Rt ≥ y)
p(t,x,y)

= − 1
2y

− a
2

(
Iν+1(ay)
Iν(ay)

+
ν

ay

)
+

y
2t

− x
2t

(
Iν+1(

xy
t )

Iν( xy
t )

+
νt
xy

)

+
2ν +1

2y
+a

Iν+1(ay)
Iν(ay)

=
a
2

Iν+1(ay)
Iν(ay)

+
1
2t

[
y− x

Iν+1(
xy
t )

Iν( xy
t )

]
≥ 0 (7.101)

since y > x and Iν+1(z) ≤ Iν(z), from Lemma 7.1.
��

7.4.2 Squares of Generalized Ornstein-Uhlenbeck Processes, also
Called CIR Processes in Mathematical Finance

Let
(
(Rt , t ≥ 0),(Q(ν,β )

x ,x ≥ 0)
)

denote the square of a generalized Ornstein-
Uhlenbeck process, with infinitesimal generator:

2x
d2

dx2 +
(
2βx+2(ν +1)

) d
dx

. (7.102)

For d = 2(ν + 1) an integer, this process may be constructed as the square of the
Euclidean norm of the d-dimensional Ornstein-Uhlenbeck, with parameter β > 0,
that is the solution of:

Xt = x0 +Bt +β
∫ t

0
Xsds

where (Bt , t ≥ 0) denotes a d-dimensional Brownian motion. See, e.g., Pitman-Yor
[66] for results about this family of diffusions.

Theorem 7.5. For ν ≥ −1
2

, and β ≥ 0, the process
(
(Rt , t ≥ 0);

(
Q

(ν,β )
x ,x ≥ 0)

)

admits an increasing pseudo-inverse.

Sketch of the proof of Theorem 7.5. We need to show that
∂
∂ t

Q
(ν,β )
x (Rt ≥ y) ≥ 0

for every y > x. From the Fokker-Planck formula (7.34), we get:

∂
∂ t

Q
(ν,β )
x (Rt ≥ y) = −2y

∂
∂y

p(t,x,y)+(2βy+2ν)p(t,x,y) (7.103)
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where p(t,x,y), the density with respect to the Lebesgue measure of Rt under Q
(ν,β )
x ,

is given by
(
see [66]

)
:

p(t,x,y)=
β

2 sinh(β t)

(y
x

) ν
2

exp

{

−β

(

(1−ν)t +
xeβ t + ye−β t

2 sinh(β t)

)}

Iν

(
β√xy

sinh(β t)

)
.

(7.104)
Hence:

∂
∂y p(t,x,y)

p(t,x,y)
=

ν

2y
−β

e−β t

2 sinh(β t)
+

1
2

√
x
y

β
sinh(β t)

I′ν
Iν

(
β√xy

sinh(β t)

)
. (7.105)

Thus, from (7.105) and (7.103):

∂
∂ t Q

(ν,β )
x (Rt ≥ y)
p(t,x,y)

= 2βy+ν +βy
e−β t

sinh(β t)
− β

sinh(β t)
√

xy
I′ν
Iν

(
β√xy

sinh(β t)

)

and, using again the relation:

I′ν
Iν

(z) =
Iν+1

Iν
(z)+

ν

z
,

we have:

Δt :=
∂
∂ t Q

(ν,β )
x (Rt ≥ y)
p(t,x,y)

= 2βy+ν +βy
e−β t

sinh(β t)
− β

sinh(β t)
√

xy

(
Iν+1

Iν

(
β√xy

sinh(β t)

)
+

ν sinh(β t)
β√xy

)

= 2βy+
βye−β t

sinh(β t)
− β

sinh(β t)
√

xy
Iν+1

Iν

(
β√xy

sinh(β t)

)
.

Denoting z :=
β√xy

sinh(β t)
, and using y > x =⇒ z ≤ βy

sinh(β t)
, we have:

Δt ≥ 2z sinh(β t)+ z

√
y
x

e−β t − z
Iν+1

Iν
(z) (since y ≥ x)

≥ z

(
eβ t − e−β t + e−β t − Iν+1

Iν
(z)

)

= z

(
eβ t − Iν+1

Iν
(z)

)
≥ 0

as β ≥ 0 implies eβ t ≥ 1 ≥ Iν+1

Iν
(z), from Lemma 7.1.

��
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Remark 7.5.
a) When d is an integer, the previous computation may be obtained in a simpler
manner, using the fact that Rt is the square of the norm of a d-dimensional Gaussian

variable with mean x0 exp(β t), and (common) variance
e2β t −1

2β
·

b) We also deduce, from the comparison theorem for SDE’s, that, for ν ′ ≥ ν and
β ′ ≥ β :

Q
(ν′,β ′)
x (Rt ≥ y) ≥ Q

(ν,β )
x (Rt ≥ y) (y ≥ x)

hence, with obvious notation, for x ≤ y, and t ≥ 0:

P(Y (ν′,β ′)
x,y ≤ t) ≥ P(Y (ν,β )

x,y ≤ t)

which states that the r.v.’s. Y (ν,β )
x,y are stochastically decreasing in the parameters ν

and β . These variables Y (ν,β )
x,y are different from those discussed in Section 7.5.

7.4.3 A Third Example

Let us consider the process:

X (ν)
t =

∫ t

0
dsexp2((Bt −Bs)+ν(t − s)) , (t ≥ 0)

Here, (Bt , t ≥ 0) denotes a 1-dimensional Brownian motion, starting from 0. The

process (X (ν)
t , t ≥ 0) is easily shown to be Markov, since, thanks to Itô’s formula,

we obtain:
dX (ν)

t =
(
2(ν +1)X (ν)

t +1
)
dt +2X (ν)

t d Bt .

Theorem 7.6. For ν + 1 ≥ 0, the submartingale (X (ν)
t , t ≥ 0) admits an increasing

pseudo-inverse.

Proof. Using time reversal (from t), we get, for any fixed t ≥ 0:

X (ν)
t

(law)
= A(ν)

t :=
∫ t

0
du exp

(
2(Bu +νu)

)
.

Now, the process (A(ν)
t , t ≥ 0) is increasing, and, if we denote by (τ(ν)

y ,y ≥ 0) its
inverse, we obtain:

P(X (ν)
t ≥ y) = P(A(ν)

t ≥ y) = P(τ(ν)
y ≤ t) (y ≥ 0).

We note that, here, we may define the pseudo-inverse process (Y (ν)
y ,y > 0) of the

process (X (ν)
t , t ≥ 0) as a “time” process, precisely the process (τ(ν)

y ,y ≥ 0).
��
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7.5 The More General Family (Y (ν,α)
x,y ;x < y,ν ≥ 0,α ∈ [0,1])

In Section 7.2, we introduced the r.v.’s

(
Y (ν)

x,y ,x < y;ν ≥−1
2

)
and studied their

properties in Section 7.3. We shall now introduce further positive r.v.’s(
Y (ν,α)

x,y ;x < y,ν ≥ 0,α ∈ [0,1]
)

which extend the family (Y (ν)
x,y ), corresponding to

α = 1, and we shall describe some of their properties. Let us insist again that these
variables have nothing to do with those introduced in Remark 7.5 following Theo-
rem 7.5.

7.5.1 Some Useful Formulae

For ease of the reader, we recall some notation and formulae which we have already
used and which shall be useful to us below.

T (ν)
x,y : a r.v. whose law, under P

(ν)
x , is that of inf{t ≥ 0;Rt = y},

T (ν)
y = T (ν)

0,y ,

G(ν)
x,y : a r.v. whose law, under P

(ν)
x , is that of sup{t ≥ 0;Rt = y},

G(ν)
y = G(ν)

0,y .
Then:

E

[
e−λT (ν)

x,y

]
=
(y

x

)ν Iν(x
√

2λ )
Iν(y

√
2λ )

(x < y) (7.106)

E

[
e−λT (ν)

y

]
=

1
2νΓ (ν +1)

(y
√

2λ )ν

Iν(y
√

2λ )
(y > 0) (7.107)

E

[
e−λG(ν)

x,y

]
= 2ν

(y
x

)ν
Iν(x

√
2λ )Kν(y

√
2λ ) (x < y) (7.108)

E

[
e−λG(ν)

y

]
=

1
2ν−1Γ (ν)

(y
√

2λ )νKν(y
√

2λ ) (0 < y,ν > 0) (7.109)

E

[
e−λY (ν)

x,y

]
=

Iν(x
√

2λ )
(x
√

2λ )ν
(y
√

2λ )ν+1Kν+1(y
√

2λ ). (7.110)

From these formulae, we deduced, in Theorem 7.3:

T (ν)
x +Y (ν)

x,y
(law)
= G(ν+1)

y (7.111)

Y (ν)
x,z

(law)
= T (ν)

x,y +Y (ν)
y,z (x < y < z). (7.112)

On the other hand, it is obvious that:

T (ν)
x,y +G(ν)

y,z
(law)
= G(ν)

x,z (x < y < z). (7.113)
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7.5.2 Definition of (G(ν+θ ,ν)
y ,y > 0,ν,θ ≥ 0) and

(T (ν+θ ,ν)
y ,y > 0,ν,θ ≥ 0)

From Ismail-Kelker [33], or Pitman-Yor
(

[65], p.336, formula (9.b.1)
)

, there exists,

for every y > 0,ν,θ ≥ 0, a positive r.v. G(ν+θ ,ν)
y such that:

E

[
e−λG(ν+θ ,ν)

y

]
=

Γ (ν +θ)
Γ (ν)

2θ

(y
√

2λ )θ
Kν(y

√
2λ )

Kν+θ (y
√

2λ )
. (7.114)

Likewise from [33], or [65], p.336, formula (9.a.1), there exists, for every y > 0,

ν,θ ≥ 0, a positive r.v. T (ν+θ ,ν)
y such that:

E

[
e−λT (ν+θ ,ν)

y

]
=

Γ (ν +θ +1)
Γ (ν +1)

2θ

(y
√

2λ )θ
Iν+θ (y

√
2λ )

Iν(y
√

2λ )
. (7.115)

From the relations (7.107) and (7.115) on one hand, and relations (7.109) and
(7.114) on the other hand, we immediately deduce the following Proposition which
completes the results of Pitman-Yor [65].

Proposition 7.4.

i) For every y > 0, ν ≥−1
2

and θ ≥ 0:

T (ν+θ)
y +T (ν+θ ,ν)

y
(law)
= T (ν)

y . (7.116)

ii) For every y > 0, ν > 0 and θ ≥ 0:

G(ν+θ)
y +G(ν+θ ,ν)

y
(law)
= G(ν)

y . (7.117)

Of course, it is desirable to give a “more probabilistic” proof of (7.116) and (7.117).
Here is such a proof for relation (7.116).

Another proof of (7.116)
To simplify, we take y = 1. Let (R(ν)

t , t ≥ 0) and (R(θ−1)
t , t ≥ 0) two Bessel processes

starting from 0, independent, with respective indexes ν and θ −1 (i.e. with dimen-

sion resp. 2ν + 2 and 2θ ). Let

(
R(ν+θ)

t :=
√

(R(ν)
t )2 +(R(θ−1)

t )2, t ≥ 0

)
. (R(ν+θ)

t ,

t ≥ 0) is a Bessel process with index ν +θ , i.e. with dimension 2ν +2θ +2, started

at 0. Let T (ν+θ)
1 := inf{t ≥ 0;R(ν+θ)

t = 1}. It is clear that T (ν+θ)
1 ≤ T (ν)

1

(
with

T (ν)
1 := inf{t ≥ 0;R(ν)

t = 1}
)

and that R(ν)

T (ν+θ)
1

≤ 1. Thus:
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T (ν)
1 = T (ν+θ)

1 + inf
{

u ≥ 0;R(ν)

T (ν+θ)
1 +u

= 1
}
. (7.118)

On the other hand, it follows from the intertwining properties of the Bessel semi-
groups

(
see [14] or [18]

)
that:

E
(ν+θ)
0

[
f (R(ν)

t )
∣
∣R(ν+θ)

t

]
= E

[
f

(
r
√

βν+1,θ

)]
(7.119)

where on the right-hand side of (7.119) r = R(ν+θ)
t and βν+1,θ is a beta variable

with parameters ν + 1 and θ . We then deduce from (7.119) (which is valid for the

(R(ν+θ)
t ) stopping time T = T (ν+θ)

1 ) that:

R(ν)

T (ν+θ)
1

(law)
=

√
βν+1,θ (7.120)

and that T (ν+θ)
1 and (R(ν)

T (ν+θ)
1 +u

,u≥ 0) are independent. It then follows from (7.118)

that:

E

[
e−λT (ν)

1

]
= E

[
e−λT (ν+θ)

1

]∫ 1

0

xν(1− x)θ−1

B(ν +1,θ)
E

[
e
−λT (ν)√

x,1

]
dx. (7.121)

Taking (7.106) into account, we shall have proven (7.116) once we establish:

∫ 1

0

xν(1− x)θ−1

B(ν +1,θ)

(
1√
x

)ν Iν(
√

2λx)
Iν(

√
2λ )

dx =
2θΓ (ν +θ +1)

Γ (ν +1)
1

(
√

2λ )θ
Iν+θ (

√
2λ )

Iν(
√

2λ )
.

(7.122)
Now (7.122) is easily established, by using the series expansion:

Iν(z) =
∞

∑
k=0

(
z
2

)ν+2k

Γ (k +1)Γ (k +ν +1)
, (see (B.1))

then integrating term by term on the left hand side of (7.122) and using the formula:

∫ 1

0
xa−1(1− x)b−1dx = B(a,b) =

Γ (a)Γ (b)
Γ (a+b)

(a,b > 0).

Concerning (7.117) a proof close to the preceding one seems harder since G(ν+θ)
1

is not a stopping time. Nonetheless, it may be possible to use the enlarged filtra-

tion (G (ν+θ)
t , t ≥ 0), i.e. the smallest filtration which contains the natural filtra-

tion (R(ν+θ)
t , t ≥ 0) of (R(ν+θ)

t , t ≥ 0) and which makes G(ν+θ)
1 a (G (ν+θ)

t , t ≥
0) stopping time. Explicit computations in this new filtration are made possible

from the knowledge of the Azéma supermartingale
(
P(G(ν+θ)

1 ≥ t|R(ν+θ)
t ), t ≥ 0

)

=
(
(R(ν+θ)

t )−2(ν+θ) ∧ 1, t ≥ 0
)
. But the enlargement formulae allowing to express
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the process (R(ν+θ)
t , t ≥ 0) in this new filtration lead to complicated formulae which

do not seem to provide us with the desired explicit result.

7.5.3 Existence and Properties of
(
Y (ν,α)

x,y ;x < y,ν ≥ 0,α ∈ [0,1]
)

Here is now the main result of this Section 7.5, i.e. the existence and the properties

of the r.v.’s
(
Y (ν,α)

x,y ;x < y,ν ≥ 0,α ∈ [0,1]
)
.

Theorem 7.7.
i) For every ν ≥ 0,x < y and α ∈ [0,1], there exists a positive r.v. Y (ν,α)

x,y such that:

E

[
e−λY (ν,α)

x,y

]
=

21−αΓ (ν +1)
Γ (ν +α)

Iν(x
√

2λ )
(x
√

2λ )ν
(y
√

2λ )ν+αKν+α(y
√

2λ ). (7.123)

Moreover:
ii)The r.v.’s Y (ν,α)

x,y interpolate between Y (ν)
x,y and G(ν)

x,y , i.e.:

Y (ν,1)
x,y

(law)
= Y (ν)

x,y , Y (ν,0)
x,y

(law)
= G(ν)

x,y . (7.124)

iii) Y (ν,α)
x,y

(law)
= Y (ν)

x,y +G(ν+1,1−α)
y (7.125)

and, for (1−ν)+ ≤ α ≤ 1:

Y (ν,α)
x,y

(law)
= Y (ν+α−1)

x,y +T (ν,1−α)
x . (7.126)

iv) T (ν)
x +Y (ν,α)

x,y
(law)
= G(ν+α)

y
(law)
= T (ν+α−1)

x +Y (ν+α−1)
x,y . (7.127)

v) G(ν)
x,y = G(ν+α,α)

y +Y (ν,α)
x,y . (7.128)

In particular, for x = 0, we recover (7.117):

G(ν)
y

(law)
= G(ν+α,α)

y +G(ν+α)
y . (7.129)

vi) Y (ν)
x,y +G(ν+1,1−α)

y
(law)
= Y (ν+α−1)

x,y +T (ν,1−α)
x

(
(law)
= Y (ν,α)

x,y

)
. (7.130)

Observe that, from (7.125) and (7.129), the r.v.’s Y (ν,α)
x,y are stochastically decreasing

in α .
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Proof.
i) We show (7.123)
We have:

E

[
e−λY (ν,α)

x,y

]
=

21−αΓ (ν +1)
Γ (ν +α)

Iν(x
√

2λ )
(x
√

2λ )ν
(y
√

2λ )ν+αKν+α(y
√

2λ )

=

(
Iν(x

√
2λ )

(x
√

2λ )ν
(y
√

2λ )ν+1Kν+1(y
√

2λ )

)

×
(

21−αΓ (ν +1)
Γ (ν +α)

(y
√

2λ )α−1 Kν+α(y
√

2λ )
Kν+1(y

√
2λ )

)

=E

[
e−λY (ν)

x,y

]
E

[
e−λG(ν+1,1−α)

y

]
(
from (7.110) and (7.114)

)
.

This proves (7.123) and (7.125).

ii) We now show (7.126)
We have:

E

[
e−λY (ν,α)

x,y

]
=

21−αΓ (ν +1)
Γ (ν +α)

Iν(x
√

2λ )
(x
√

2λ )ν
(y
√

2λ )ν+αKν+α(y
√

2λ )

=

(
Iν+α−1(x

√
2λ )

(x
√

2λ )ν+α−1
(y
√

2λ )ν+αKν+α(y
√

2λ )

)

×
(

21−αΓ (ν +1)
Γ (ν +α)(x

√
2λ )1−α

Iν(x
√

2λ )
Iν+α−1(x

√
2λ )

)

=E

[
e−λY (ν+α−1)

x,y

]
E

[
e−λT (ν,1−α)

x

]
(
from (7.110) and (7.115)

)

This shows (7.126).

iii) The relation T (ν)
x +Y (ν,α)

x,y
(law)
= G(ν+α)

y follows immediately from (7.107), (7.123)

and (7.109). The relation G(ν+α)
y

(law)
= T (ν+α−1)

x +Y (ν+α−1)
x,y follows from (7.111)

(
or

from the preceding relation where we replace ν by ν +α−1 and we observe, as is

obvious, that Y (ν+α−1)
x,y

(law)
= Y (ν+α−1,1)

x,y
)
.

iv) We now show (7.128)
We deduce, from (7.113), (7.129) and (7.127):

T (ν)
x +G(ν)

x,y
(law)
= G(ν)

y
(law)
= G(ν+α,α)

y +G(ν+α)
y

(law)
= G(ν+α,α)

y +T (ν)
x +Y (ν,α)

x,y .



7.6 Notes and Comments 201

Hence:

G(ν)
x,y

(law)
= G(ν+α,α)

y +Y (ν,α)
x,y .

We might also have proven this last relation by using (7.108), (7.114) and (7.123).

v) The relation (7.124) obviously holds.

vi) Finally, relation (7.130) follows from (7.126) and (7.125). Indeed, from (7.126)
and (7.125):

Y (ν,α)
x,y

(law)
= Y (ν+α−1)

x,y +T (ν,1−α)
x

(law)
= Y (ν)

x,y +G(ν+1,1−α)
y

(
x < y, (1−ν)+ ≤ α ≤ 1

)
.

��

7.6 Notes and Comments

The notion of a pseudo-inverse for a process, and in fact the notion of its existence,
appears naturally in [49] for the construction of a probability γ on [0,1]× [0,+∞[
(cf. Chapter 6). Most of this Chapter 7 is taken up from B. Roynette and M. Yor
[75]. The results found in this Chapter hinge upon:

• formula (7.19) relative to the Bessel bridges, a formula obtained in [94] and [65].
• formula (7.24) which is due to F. Hirsch and S. Song ([30])

The Markov process studied in Subsection 7.4.1 whose infinitesimal generator is
given by (7.98) has been introduced by S. Watanabe ([89]). The formulae in Theo-
rem 7.7 extend, in some sense, those obtained by J. Pitman and M. Yor ([65], Th.
4.3, p.312).



Chapter 8
Existence of Pseudo-Inverses for Diffusions

Abstract In this chapter, we continue the study of pseudo-inverses, extending the
previous results of Chapter 7 to the general framework of linear diffusions. We shall
focus here on increasing pseudo-inverses, and we shall deal with two cases:

– first, a diffusion taking values in R, and solution of a particular SDE,
– and then, a general diffusion on R

+ starting from 0.

More precisely, we shall prove that, to a positive diffusion X starting from 0,
we can associate another diffusion X such that the tail probabilities of X are the
distribution functions of the last passage times of X .

8.1 Introduction

We consider a regular linear diffusion X taking values in R or R
+. We denote by

Px and Ex, respectively, the probability measure and the expectation associated with
X when started from x. The notion of pseudo-inverse being defined in Chapter 7,
Definition 7.1 and 7.2, let us start by making the following remark: if only Point (ii)
of Definition 7.1 is satisfied, then, since t 
→ Px(Xt ≥ y) is bounded by 1, for every
y > x the limit:

lim
t→∞

Px(Xt ≥ y) =: Z(x,y)

exists. Therefore, there exists a family of positive random variables (Yx,y,y > x) such
that:

1
Z(x,y)

Px(Xt ≥ y) = P(Yx,y ≤ t). (8.1)

In this case, we call the family of positive r.v.’s (Yx,y,y > x) the increasing quasi
pseudo-inverse of the process (Xt , t ≥ 0).

We now give the plan and the main results of this chapter:
1) We first consider, in Section 8.2, the case of a diffusion on R which is solution of
the stochastic differential equation:

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7 8, © Springer-Verlag Berlin Heidelberg 2010

203

http://dx.doi.org/10.1007/978-3-642-10395-7_8
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Xt = x+βt +
∫ t

0
c(Xs)ds.

We show that if c is a C 2 positive function which is decreasing and convex, then
X admits an increasing quasi pseudo-inverse (see Theorem 8.1). The existence of
an increasing pseudo-inverse requires an additional assumption on c, which can be
given for instance using Feller’s criterion.

2) In the remaining part of the Chapter, we shall focus on diffusions taking val-

ues in R
+. We introduce, in Section 8.3, a family of diffusions

(
X (α)

)

α≥0
defined

as the solutions of the SDEs:

X (α)
t = Bt +

∫ t

0

(
c− αe2C

1+α
∫ ·

0 e2C(y)dy

)
(X (α)

s )ds

where C(x) :=
∫ x

1 c(y)dy with c :]0,+∞[→ R
+ a C 1 function such that c(0) = +∞

and C(0) =−∞. We prove that there exists a transient diffusion X independent from
α such that:

P
(α)
0 (X (α)

t ≥ y) =
1

1+α
∫ y

0 e2C(z)dz
P0

(
Gy ≤ t

)
.

where Gy := sup{t ≥ 0;Xt = y}. Therefore, we obtain that:

i) if α > 0, X (α) admits an increasing quasi pseudo-inverse,
ii) if α = 0, X := X (0) admits an increasing pseudo-inverse, and the following equal-

ity in law holds:

Xt
(d)
= inf

s≥t
Xs.

This is Theorem 8.2.

3) Then, in Section 8.4, we extend the previous results of Section 8.3 to the gen-
eral case of a diffusion X taking values on R

+ and started from 0. Denoting by m
the speed measure of X , we show the existence of a transient process X such that:

P0 (Xt ≥ y) =
(

1− m[0,y]
m[0,+∞[

)
P0

(
Gy ≤ t

)
.

In particular, we prove in Theorem 8.3, that in our framework, a diffusion admits an
increasing pseudo-inverse if and only if it is transient, or null recurrent.

4) Finally, in Section 8.5, we derive new relations between the diffusions X and
X (see Proposition 8.6). We then introduce 3 new processes (see diagram (8.92))
which are linked to X via the notion of pseudo-inverse. One of them, X̂ , is obtained
by time-reversing X . Finally, we prove some Zolotarev-like identities, (also known
as Kendall’s identities, [13], see Proposition 8.8) and some new results between the
laws of these processes (see Proposition 8.10).
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8.2 Pseudo-Inverse for a Brownian Motion with a Convex,
Decreasing, Positive Drift

In this section, we establish the existence of pseudo-inverses in the set-up of R-
valued diffusions (Xt , t ≥ 0;Px,x ∈ R) which solve:

Xt = x+βt +
∫ t

0
c(Xs)ds (8.2)

where (βt , t ≥ 0) denotes a one-dimensional Brownian motion starting from 0.

Theorem 8.1. Let c : R → R
+ a C 2 function which is decreasing and convex. Then:

i) equation (8.2) admits a unique solution, which is strong;
ii) for every y > x, the function t 
→ Px(Xt ≥ y) increases and is continuous;
iii) if, for every y > x:

Px(Xt ≥ y) −−→
t→∞

1, (8.3)

then, the process (Xt , t ≥ 0;Px,x ∈ R) admits an increasing pseudo-inverse. In
other terms, for every y > x, there exists a positive r.v. Yx,y such that, for every
t ≥ 0, (7.4) is satisfied:

Px(Xt ≥ y) = P(Yx,y ≤ t) (t ≥ 0).

Remark 8.1. Of course, it is desirable to give some conditions which ensure the
validity of condition (8.3). For example, if c(x) > k

x , for x ≥ A for some A > 0 and
k > 1/2, the relation (8.3) is satisfied, since:

C(y) :=
∫ y

A
c(x)dx ≥

∫ y

A

k
x

dx ≥ k log(y/A).

Thus: ∫ ∞

A
e−2C(y)dy ≤

∫ ∞

A

(
A
y

)2k

dy < ∞,

and Px(Xt −−→
t→∞

+∞) = 1 from Feller’s criterion, (see [40], p.345), which implies

Px(Xt > y) −−→
t→∞

1 for every y > x.

Proof.
1) Existence and uniqueness of a strong solution of equation (8.2) is classical. It
follows from the fact that c is locally Lipschitz, and from the absence of explosion
since:

• xc(x) ≤ 0 if x ≤ 0,
• c is bounded on R

+.

2) We introduce some notation:
• p(t,x,y) denotes the density with respect to the Lebesgue measure of the

r.v. Xt under Px.



206 8 Existence of Pseudo-Inverses for Diffusions

• h(t,x,y) :=
1√
2πt

e−
(x−y)2

2t denotes the heat semi-group density,

• for any Borel function g : R → R, we denote:

E(g)
x,y := Ex

[
exp

∫ t

0
g(Xs)ds|Xt = y

]
,

• if γ : R
+ ×R×R → R is a function of t,x and y, we write

∂γ
∂a

(resp.

∂γ
∂b

) for the derivative of γ with respect to the second variable x (resp. with respect

to the third variable y). This will be useful for instance as we shall encounter the
quantities:

∂
∂a

p(t,y,x) =
∂
∂a

p(t,a,b)|a=y,b=x

• we denote by C the primitive of c, such that C(0) = 0:

C(x) =
∫ x

0
c(y)dy.

3) A first Lemma

Lemma 8.1.

i) The function t → Px(Xt ≥ y) is increasing for every y > x if and only if
∂
∂a

p(t,x,y) ≤ 0 for every x > y.

ii) There is a general Hirsch-Song formula, which extends formula (7.24):

∂
∂a

p(t,x,y) = − ∂
∂b

(
p(t,x,y)E(c′)

x,y

)
. (8.4)

Proof.
a) We note that, for y > x:

∂
∂ t

Px(Xt ≥ y) =
∂
∂ t

∫ ∞

y
p(t,x,z)dz

=
∫ ∞

y

∂
∂ t

p(t,x,z)dz

=
∫ ∞

y

[
1
2

∂ 2

∂b2 p(t,x,z)− ∂
∂b

(c(z)p(t,x,z))
]

dz (from Fokker-Planck)

=−1
2

∂
∂b

p(t,x,y)+ c(y)p(t,x,y). (8.5)

On the other hand, since m(dz) = 2e2C(z)dz is the speed measure of the diffusion
(Xt , t ≥ 0), it is classical (see [12]) that, for every x,y:

e2C(x) p(t,x,y) = e2C(y) p(t,y,x). (8.6)
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We shall now use (8.6) in order to establish another expression for the relation (8.5).
Differentiating (8.6) with respect to y, we get:

e2C(x) ∂
∂b

p(t,x,y) = 2c(y)e2C(y)p(t,y,x)+ e2C(y) ∂
∂a

p(t,y,x). (8.7)

We then plug back (8.7) in (8.5) and we obtain, for every x,y:

∂
∂ t

Px(Xt ≥ y) =− 1
2

[
2c(y)e2C(y)−2C(x)p(t,y,x)+ e2C(y)−2C(x) ∂

∂a
p(t,y,x)

]

+ c(y)e2C(y)−2C(x)p(t,y,x)

=− 1
2

e2C(y)−2C(x) ∂
∂a

p(t,y,x). (8.8)

This proves Point (i) of Lemma 8.1, after exchanging the roles of x and y.

b) We now prove the general Hirsch-Song formula, i.e. Point (ii) of Lemma 8.1
For any generic regular function f , with compact support, we have, on one hand:

∂
∂x

Ex [ f (Xt)] =
∫ ∞

−∞

∂
∂a

p(t,x,y) f (y)dy (8.9)

whereas, on the other hand, with obvious notation:

∂
∂x

Ex [ f (Xt)] =
∂
∂x

E [ f (Xx
t )] = E

[
f ′(Xx

t )
∂Xx

t

∂x

]
. (8.10)

We deduce from (8.2) that:

∂Xx
t

∂x
= 1+

∫ t

0
c′(Xx

s )
∂Xx

s

∂x
ds. (8.11)

Integrating the linear equation (8.11), we obtain:

∂Xx
t

∂x
= exp

(∫ t

0
c′(Xx

s )ds

)
. (8.12)

Plugging (8.12) in (8.10), we obtain:

∂
∂x

Ex [ f (Xt)] = Ex

[
f ′(Xt)exp

(∫ t

0
c′(Xs)ds

)]

=
∫ ∞

−∞
Ex

[
exp

(∫ t

0
c′(Xs)ds

)
|Xt = y

]
f ′(y)p(t,x,y)dy

= −
∫ ∞

−∞

∂
∂b

(
E(c′)

x,y p(t,x,y)
)

f (y)dy (8.13)

(after integrating by parts). The comparison of (8.9) and (8.13) implies Point (ii) of
Lemma 8.1.

��
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4) Lemma 8.1 implies that the function t → Px(Xt ≥ y) is increasing for every y > x

if and only if
∂
∂b

(
p(t,x,y)E(c′)

x,y

)
≥ 0 for every x > y. To evaluate this quantity, our

approach now consists in expressing E(c′)
x,y p(t,x,y) with the help of the Brownian

motion β .

Lemma 8.2. For every x,y and every g : R → R Borel, one has:

E(g)
x,y p(t,x,y) = h(t,x,y)eC(y)−C(x)Wx

[
exp

∫ t

0

(
g− 1

2
(c′ + c2)

)
(βs)ds

∣
∣βt = y

]
,

where (Wx,x ∈ R) denotes the family of Wiener measures. In particular, for g = c′:

E(c′)
x,y p(t,x,y) = h(t,x,y)eC(y)−C(x)Wx

[
exp

1
2

∫ t

0
(c′ − c2)(βs)ds

∣
∣βt = y

]
.

Proof. For any Borel, positive function f , Girsanov’s theorem yields:

Ex

[
f (Xt)exp

(∫ t

0
g(Xs)ds

)]

= Wx

[
f (βt)exp

(∫ t

0
g(βs)ds+

∫ t

0
c(βs)dβs −

1
2

∫ t

0
c2(βs)ds

)]
. (8.14)

Actually, a little care is needed in the application of Girsanov’s Theorem here, since
c is not bounded. However, from Mc Kean’s extension (see [55]) involving the ex-
plosion time, and since the explosion time in this set-up is infinite a.s., formula
(8.14) holds. From Itô’s formula:

C(βt) = C(x)+
∫ t

0
c(βs)dβs +

1
2

∫ t

0
c′(βs)ds, (8.15)

we deduce, by plugging (8.15) in (8.14):

Ex

[
f (Xt)exp

(∫ t

0
g(Xs)ds

)]

= Wx

[
f (βt)exp

(
C(βt)−C(x)+

∫ t

0

(
g− 1

2
(c′ + c2)

)
(βs)ds

)]
. (8.16)

However, (8.16) may now be written, after conditioning by Xt = y and βt = y:

∫ ∞

−∞
Ex

[
exp

(∫ t

0
g(Xs)ds

)∣
∣Xt = y

]
f (y)p(t,x,y)dy

=
∫ ∞

−∞
Wx

[
exp

∫ t

0

(
g− 1

2
(c′ + c2)

)
(βs)ds

∣
∣βt = y

]
eC(y)−C(x) f (y)h(t,x,y)dy.

(8.17)

Letting f vary in (8.17), Point (ii) of Lemma 8.2 has been proven.
��



8.2 Pseudo-Inverse for a Brownian Motion with a Convex, Decreasing, Positive Drift 209

5) We are now able to end the proof of Point (ii) in Theorem 8.1
From Lemmas 8.1 and 8.2, it suffices to see that, for x > y:

∂
∂b

(
E(c′)

x,y p(t,x,y)
)

=
∂
∂b

(
eC(y)−C(x)h(t,x,y)Wx

[
exp

1
2

∫ t

0
(c′ − c2)(βs)ds

∣
∣βt = y

])
(8.18)

is positive. Now, denoting Ẽx,y = Wx

[
exp

1
2

∫ t

0
(c′ − c2)(βs)ds

∣
∣βt = y

]
, we have

from (8.18):

∂
∂b

(
E(c′)

x,y p(t,x,y)
)

= E(c′)
x,y p(t,x,y)

(

c(y)+
1

h(t,x,y)
∂
∂b

h(t,x,y)+
1

Ẽx,y

∂
∂b

Ẽx,y

)

= E(c′)
x,y p(t,x,y)

(

c(y)+
x− y

t
+

1

Ẽx,y

∂
∂b

Ẽx,y

)

.

Hence,
∂
∂b

(
E(c′)

x,y p(t,x,y)
)

E(c′)
x,y p(t,x,y)

= c(y)+
x− y

t
+

∂
∂b Ẽx,y

Ẽx,y
.

Thus, since c(y) ≥ 0 and
x− y

t
≥ 0 for x ≥ y, we will have proven the increase of

t → Px(Xt ≥ y) once we show:

∂
∂b

Ẽx,y ≥ 0. (8.19)

We now show (8.19). The Brownian bridge of length t, (β x,y,t
s ,s ≤ t), going from x

to y, satisfies:

β x,y,t
s = x+(y− x)

s
t
+β 0,0,t

s .

Hence:
∂
∂b

β x,y,t
s =

s
t
,

and consequently,

∂
∂b

Ẽx,y = Wx

[(
1
2

∫ t

0

s
t
(c′′ −2cc′)(βs)ds

)
exp

1
2

∫ t

0
(c′ − c2)(βs)ds

∣
∣βt = y

]
≥ 0

since, by hypothesis: c′′ ≥ 0,c′ ≤ 0 and c ≥ 0. This ends the proof of Theorem 8.1,
since Point (iii) is just an immediate consequence of the definition of a pseudo-
inverse. Note that, for the proof of Point (ii) of this Theorem, we only needed the
relation:

c′′ −2cc′ ≥ 0.

��
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Remark 8.2. The existence of an increasing (quasi) pseudo-inverse for the Bessel
process with index ν ≥ − 1

2 (i.e. Point (i) of Theorem 7.1) may be deduced from
Theorem 8.1. Indeed, define, for ε > 0, the function c(ε) : R → R

+ by:

c(ε)(x) =

⎧
⎪⎨

⎪⎩

2ν +1
2x

if x ≥ ε,

2ν +1
2ε

− 2ν +1
2ε2 (x− ε) if x ≤ ε.

Let (X (ε)
t , t ≥ 0) denote the solution of:

X (ε)
t = x+βt +

∫ t

0
c(ε)(X (ε)

s )ds.

Then, the function t 
→ Px(X
(ε)
t ≥ y) is increasing for y > x from Theorem 8.1, since

c(ε) satisfies the hypotheses of that Theorem. It then remains to let ε → 0 to obtain

that t 
→ P
(ν)
x (Rt > y) is an increasing function of t, for y > x.

Remark 8.3. Note that the density function fYx,y of the random variable Yx,y is given
by:

fYx,y(t) = −e2C(y)−2C(x)

2Z(x,y)
∂
∂a

p(t,y,x) (from (8.8))

=
1

Z(x,y)

(
−1

2
∂
∂b

p(t,x,y)+ c(y)p(t,x,y)
)

(from (8.5))

where Z(x,y) is given by (8.1). Likewise, from (7.70), the Laplace transform of Yx,y

takes the form:

E

[
e−λYx,y

]
=

λ
Z(x,y)

∫ ∞

y
uλ (x,z)dz,

where uλ (x,z) =
∫ ∞

0
e−λ t p(t,x,z)dt is the resolvent kernel of (Xt , t ≥ 0).

8.3 Study of a Family of R
+-Valued Diffusions

8.3.1 Definition of the Operator T

Let us introduce the following functional spaces:

H =
{

F :]0,+∞[ 
→ R, F of class C 1,

∫

0+
e2F(y)dy < ∞

}
, (8.20)

H ∞ =
{

F ∈ H ,
∫ ∞

0
e2F(y)dy = ∞

}
. (8.21)
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On H , we define the non-linear operator T as follows:

T F(x) =
e2F(x)

∫ x
0 e2F(y)dy

−F ′(x) (x > 0, F ∈ H ). (8.22)

This operator was first introduced by Matsumoto and Yor in [53] and [54] in a
discussion of extensions of Pitman’s theorem about the Bessel process of dimension
3. It was taken up by Roynette, Vallois and Yor in [73] to find a class of max-
diffusions (i.e. processes X such that the two-dimensional process (Xt ,SX

t , t ≥ 0)
where SX

t := sup
s≤t

Xs, is Markov) which enjoy Pitman’s property (i.e. (2SX
t −Xt , t ≥ 0)

is Markov). We gather here some of their results. Let F ∈H . We study the diffusion
(Xt , t ≥ 0) which is solution of:

Xt = x+Bt +
∫ t

0
T F(Xs)ds (t,x > 0)

where B is a standard Brownian motion started at 0.

Proposition 8.1 ([73], Section 5).

i) The process (Xt , t ≥ 0) takes its values in R
+, 0 being a not-exit boundary, and

Xt goes to +∞ as t → ∞.
ii) The random variable J0 = inf

t≥0
Xt is finite.

(a) If F ∈ H ∞, then, the density function of J0 under Px is

y 
−→ 1
∫ x

0 e2F(z)dz
e2F(y)1[0,x](y). (8.23)

(b) If F does not belong to H ∞, then Px(J0 < a) = h(a)/h(x) for any a ∈]0,x[
where:

h(a) =
∫ a

0 e2F(y)dy
∫ ∞

a e2F(y)dy
, (0 < a ≤ x).

We now give some details about the non injectivity of the operator T . Indeed, let
Uα(F) be the function:

Uα(F)(x) := F(x)− log

(
1+α

∫ x

0
e2F(y)dy

)
(8.24)

where F ∈ H and α ∈ R is such that:

α ≥− 1
∫ ∞

0 e2F(y)dy
. (8.25)

Then, the following Proposition shows precisely how T is not one-to-one:

Proposition 8.2 ([73], Section 5).
Assume F ∈ H .
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i) Let α satisfy (8.25), then Uα(F) ∈ H .
ii) Let G ∈ H . Then T G = T F if and only if G = θ +Uα(F) for some constant

θ ∈ R and α satisfying (8.25).

8.3.2 Study of the Family (X (α))α≥0

1) Definition.
Let c :]0,+∞[→ R

+ a C 1 function such that c(0) = +∞. We denote:

C(x) =
∫ x

1
c(y)dy,

and assume that C(0) = −∞. Since c is R
+-valued, C ∈ H ∞.

For α ≥ 0, let us introduce the following family of diffusions:

X (α)
t = Bt +

∫ t

0

(
c− αe2C

1+α
∫ ·

0 e2C(y)dy

)
(X (α)

s )ds. (8.26)

When α = 0, we get:

Xt = Bt +
∫ t

0
c(Xs)ds. (8.27)

We define:

c(α)(x) := c(x)− αe2C(x)

1+α
∫ x

0 e2C(y)dy
, (8.28)

and

C(α)(x) :=
∫ x

1
c(α)(y)dy

=C(x)− log

(
1+α

∫ x

0
e2C(y)dy

)
+ log

(
1+α

∫ 1

0
e2C(y)dy

)
. (8.29)

From Proposition 8.2, we have: TC = TC(α) where T is the operator defined by

(8.22). Therefore, the process X
(α)

which is solution of:

X
(α)
t = x+Bt +

∫ t

0
TC(α)(X (α)

s )ds, (8.30)

does not depend on α . We will denote it by X from now on:

Xt = x+Bt +
∫ t

0

(
e2C(Xs)

∫ Xs
0 e2C(y)dy

− c(Xs)

)

ds. (8.31)

Its speed measure m(dx) and its scale function s are given by:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s(x) = − 1

2
∫ x

0 e2C(u)du
,

m(dx) =
(∫ x

0
2e2C(u)du

)2

e−2C(x)dx.

(8.32)

Remark 8.4. Let us note that, since c is positive, C is an increasing function, and 0
is always an entrance endpoint. Indeed, ∀z > 0, (See Section 8.4):

∫ z

0
e−2C(x)

(∫ x

0
e2C(y)dy

)
dx ≤

∫ z

0
e−2C(x)xe2C(x)dx ≤ z2 < ∞. (8.33)

2) Intertwining relation.
Let (Pα

t , t ≥ 0) be the semi-group associated to X (α), and Hα defined by:

Hα f (x) =
1

∫ x
0 e2C(α)(y)dy

∫ x

0
f (y)e2C(α)(y)dy. (8.34)

Proposition 8.3. The following intertwining relation:

HαPα
t = PtHα (8.35)

holds.

Proof. It is sufficient to check the identity on the infinitesimal generators. Let f be
a C 2 function on R

+. On the one hand, we have:

(Hα f )′(x) = − e2C(α)(x)

(∫ x
0 e2C(α)(y)dy

)2

∫ x

0
f (y)e2C(α)(y)dy+

e2C(α)(x)

∫ x
0 e2C(α)(y)dy

f (x), (8.36)

and,

(Hα f )′′(x) = − 2c(α)(x)e2C(α)(x)

(∫ x
0 e2C(α)(y)dy

)2

∫ x

0
f (y)e2C(α)(y)dy− 2e4C(α)(x)

(∫ x
0 e2C(α)(y)dy

)2 f (x)

+
2e4C(α)(x)

(∫ x
0 e2C(α)(y)dy

)3

∫ x

0
f (y)e2C(α)(y)dy

+
2c(α)(x)e2C(α)(x)

∫ x
0 e2C(α)(y)dy

f (x)+
e2C(α)(x)

∫ x
0 e2C(α)(y)dy

f ′(x). (8.37)

Gathering (8.36) and (8.37), we obtain after simplifications:
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LHα f (x) =
1
2
(Hα f )′′(x)+

(
e2C(x)

∫ x
0 e2C(u)du

− c(x)

)

(Hα f )′(x)

=
1
2

e2C(α)(x)

∫ x
0 e2C(α)(y)dy

f ′(x)

=
1
2

e2C(x)
(∫ x

0 e2C(y)dy
)(

1+α
∫ x

0 e2C(y)dy
) f ′(x). (8.38)

On the other hand:

HαLα f (x) =
1

∫ x
0 e2C(α)(y)dy

∫ x

0

(
1
2

f ′′(y)+ c(α)(y) f ′(y)
)

e2C(α)(y)dy

=
1

∫ x
0 e2C(α)(y)dy

(∫ x

0
c(α)(y) f ′(y)e2C(α)(y)dy+

1
2

[
e2C(α)(y) f ′(y)

]x

0

−1
2

∫ x

0
f ′(y)2c(α)(y)e2C(α)(y)dy

)
(after integrating by parts)

=
1
2

e2C(α)(x)

∫ x
0 e2C(α)(y)dy

f ′(x) (since e2C(α)(0) = 0)

=
1
2

e2C(x)
(∫ x

0 e2C(y)dy
)(

1+α
∫ x

0 e2C(y)dy
) f ′(x). (8.39)

The comparison of (8.38) and (8.39) ends the proof of Proposition 8.3.
��

3) We now establish a link between X and X (α).

Proposition 8.4. We have:

P
(α)
0

(
X (α)

t ≥ z
)

=
1

1+α
∫ z

0 e2C(y)dy
P0(Xt ≥ z). (8.40)

Remark 8.5. Proposition 8.4 shows that X (α) can admit a pseudo-inverse only if
α = 0 since, for α > 0,

lim
t→∞

P
(α)
0 (X (α)

t ≥ z) ≤ 1

1+α
∫ z

0 e2C(y)dy
< 1.

Proof. From Proposition 8.3, we have, taking α = 0 in (8.35):

HPt = PtH.

Hence, from (8.35),
Pα

t = H−1
α HPtH

−1Hα .

Let us evaluate these operators. For f such that f (0)=0, we have:
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H−1
α f (x) = f (x)+ e−2C(x) f ′(x)

(∫ x

0
e2C(y)dy

)(
1+α

∫ x

0
e2C(y)dy

)
,

H−1 f (x) = f (x)+ e−2C(x) f ′(x)
(∫ x

0
e2C(y)dy

)
,

H−1
α H f (x) = −α

∫ x

0
f (y)e2C(y)dy+

(
1+α

∫ x

0
e2C(y)dy

)
f (x),

H−1Hα f (x) =
f (x)

1+α
∫ x

0 e2C(y)dy
+
∫ x

0

αe2C(y) f (y)
(
1+α

∫ y
0 e2C(z)dz

)2 dy

=
∫ x

0

f ′(y)
1+α

∫ y
0 e2C(z)dz

dy.

Therefore, we obtain:

PtH
−1Hα f (x) = Ex

[∫ Xt

0

f ′(y)
1+α

∫ y
0 e2C(z)dz

dy

]

and:

H−1
α HPtH

−1Hα f (x) = −α
∫ x

0
e2C(y)

Ey

[∫ Xt

0

f ′(u)
1+α

∫ u
0 e2C(z)dz

du

]
dy (8.41)

+
(

1+α
∫ x

0
e2C(y)dy

)
Ex

[∫ Xt

0

f ′(y)
1+α

∫ y
0 e2C(z)dz

dy

]
.

Letting x tend toward 0 in (8.41), we obtain:

Pα
t f (0) = E0

[∫ Xt

0

f ′(y)
1+α

∫ y
0 e2C(z)dz

dy

]
. (8.42)

We take f (x) =
∫ x

0 h(y)dy with h positive. (8.42) becomes:

Pα
t f (0) =

∫ ∞

0

(∫ y

0
h(z)dz

)
p(α)(t,0,y)dy (8.43)

= E0

[∫ Xt

0

h(y)
1+α

∫ y
0 e2C(z)dz

dy

]

=
∫ ∞

0

(∫ y

0

h(z)
1+α

∫ z
0 e2C(u)du

dz

)
p(t,0,y)dy. (8.44)

Applying Fubini in (8.43) and (8.44), we obtain:

∫ ∞

0
h(z)

(∫ ∞

z
p(α)(t,0,y)dy

)
dz =

∫ ∞

0

h(z)dz

1+α
∫ z

0 e2C(u)du

∫ ∞

z
p(t,0,y)dy,

which ends the proof of Proposition 8.4.
��
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Remark 8.6. Let us introduce the
(
P

(α)
x ,(Ft , t ≥ 0)

)
martingale:

M(α)
t :=

(
e−2C(Xt)

e−2C(x)

∫ Xt
0 e2C(u)du
∫ x

0 e2C(u)du

)(
1+α

∫ Xt
0 e2C(u)du

1+α
∫ x

0 e2C(u)du

)

exp

(∫ t

0

(
c(α)

)′
(Xu)du

)
.

Then, Girsanov’s formula gives:

Px|Ft = M(α)
t ·P(α)

x|Ft
.

This leads to the relation:

p(t,x,y)
p(α)(t,x,y)

=

(
e−2C(y)

e−2C(x)

∫ y
0 e2C(u)du
∫ x

0 e2C(u)du

)(
1+α

∫ y
0 e2C(u)du

1+α
∫ x

0 e2C(u)du

)

E
(α)
x

[
e
∫ t

0(c(α))′(Xs)ds|Xt = y
]
.

(8.45)

Therefore, plugging (8.45) in the general Hirsch-Song formula (8.4), one obtains in
this case:

e2C(x)
(∫ x

0 e2C(u)du
)(

1+α
∫ x

0 e2C(u)du
)
∂ p(α)

∂x
(t,x,y)

= − ∂
∂y

(
e2C(y)p(t,x,y)

(∫ y
0 e2C(u)du

)(
1+α

∫ y
0 e2C(u)du

)

)

. (8.46)

Introducing the differential operator:

Dα f (x) =
e2C(x)

(∫ x
0 e2C(u)du

)(
1+α

∫ x
0 e2C(u)du

) f ′(x),

it follows easily from (8.46) that:

DαPα
t = PtDα .

We can also note that, as a transient diffusion whose endpoint 0 is entrance-
not-exit, X is not “too far” from a Bessel process of dimension 3. Indeed, let us
introduce m(dx) = 2e2C(x)dx the speed measure of the diffusion (Xt , t ≥ 0). We de-

fine the time change
(

At :=
∫ t

0 4e4C(Xs)ds, t ≥ 0
)

and (τu,u≥ 0) its right-continuous

inverse. Then:

Proposition 8.5.
(
m[0,Xτu ],u ≥ 0

)
is a Bessel process of dimension 3 starting from

m[0,x].
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Proof. Let us apply Itô formula to m[0,Xt ], using (8.31):

m[0,Xt ] = m[0,x]+
∫ t

0
2e2C(Xs)dBs +

∫ t

0
2

e4C(Xs)

∫ Xs
0 e2C(y)dy

ds.

Denoting by β the Dambis, Dubins, Schwarz’s Brownian motion associated to the

local martingale
(

Nt :=
∫ t

0 2e2C(Xs)dBs, t ≥ 0
)

, we obtain Nt = βAt
and:

m[0,Xt ] = m[0,x]+βAt
+
∫ t

0

dAs

m[0,Xs]
.

Finally, the time change t = τu gives:

m[0,Xτu ] = m[0,x]+βu +
∫ u

0

ds

m[0,Xτs ]
,

and we recognize the SDE satisfied by the Bessel process of dimension 3 starting
from m[0,x]. This ends the proof of Proposition 8.5.

��

8.3.3 Existence of a Pseudo-Inverse when α = 0

We now state the main result of this subsection.

Theorem 8.2. Let α ≥ 0 and X (α) the diffusion solution of (8.26). Then:

i) The function t 
→ P
(α)
0 (X (α)

t ≥ y) increases and equals:

P
(α)
0 (X (α)

t ≥ y) =
1

1+α
∫ y

0 e2C(z)dz
P0

(
Gy ≤ t

)
(8.47)

where Gy := sup{t ≥ 0;Xt = y}.

ii) lim
t→∞

P
(α)
0 (X (α)

t ≥ y) =
1

1+α
∫ y

0 e2C(z)dz
.

iii) Therefore:

1) if α = 0, X admits an increasing pseudo-inverse (Y0,y,y > 0) and we have
the following equalities in law:

(a) Xt
(law)
= inf

s≥t
Xs,

(b) Y0,y
(law)
= Gy.

2) if α > 0, X (α) admits an increasing quasi pseudo-inverse (Y (α)
0,y ,y > 0).
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Proof.
We start by a useful Lemma

Let u(t,y) denote the density of inf
s≥t

Xs under P0. We have:

Lemma 8.3.

u(t,y) = e2C(y)
∫ ∞

y

p(t,0,z)
∫ z

0 e2C(u)du
dz. (8.48)

Proof. Using (8.23) (since C ∈ H ∞) and the Markov property for the diffusion X
we have:

P0

(
inf
s≥t

Xs > y

)
=

∫ ∞

y
P0

(
inf
s≥t

Xs > y|Xt = z

)
p(t,0,z)dz

=
∫ ∞

y
Pz

(
inf
s≥0

Xs > y

)
p(t,0,z)dz

=
∫ ∞

y

∫ z
y e2C(u)du
∫ z

0 e2C(a)da
p(t,0,z)dz (from (8.23))

=
∫ ∞

y
du e2C(u)

∫ ∞

u

p(t,0,z)
∫ z

0 e2C(a)da
dz (by Fubini). (8.49)

Differentiating (8.49) with respect to y ends the proof of Lemma 8.3.
��

We go back to the proof of Theorem 8.2
We start by showing Point (iii) item (a). We need to show that u(t,y) = p(t,0,y).
We will prove that u satisfies the same parabolic equation as p, namely:

∂ p
∂ t

(t,0,y) = L∗p(t,0,y) (8.50)

where

L∗ f =
1
2

f ′′ − (c f )′. (8.51)

1) On the one hand, let us calculate
∂u
∂ t

using (8.48):

∂u
∂ t

(t,y) = e2C(y)
∫ ∞

y

∂ p
∂ t

(t,0,z)
dz

∫ z
0 e2C(u)du

= −2e2C(y)
∫ ∞

y
L
∗
p(t,0,z)s(z)dz (8.52)

from Fokker-Planck and (8.32). We integrate (8.52) by parts. s being a scale function
for the process X , we have for all z, Ls(z) = 0. Consequently, only the boundary
terms coming from the integration by parts are not null. We obtain:
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∂u
∂ t

(t,y)

= −2e2C(y)
∫ ∞

y

(
1
2

p′′(t,0,z)−
((

e2C(z)
∫ z

0 e2C(u)du
− c(z)

)

p(t,0,z)

)′)

s(z)dz

= e2C(y)

(

−1
2

p′(t,0,y)
∫ y

0 e2C(u)du
+

(
e2C(y)

∫ y
0 e2C(u)du

− c(y)

)
p(t,0,y)

∫ y
0 e2C(u)du

− 1
2

e2C(y)p(t,0,y)
(∫ y

0 e2C(u)du
)2

)

= e2C(y)

(

−1
2

p′(t,0,y)
∫ y

0 e2C(u)du
− c(y)

p(t,0,y)
∫ y

0 e2C(u)du
+

1
2

e2C(y) p(t,0,y)
(∫ y

0 e2C(u)du
)2

)

. (8.53)

2) On the other hand, we calculate L∗u still using (8.48).We have:

∂u
∂y

(t,y) = 2c(y)u(t,y)− e2C(y) p(t,0,y)
∫ y

0 e2C(u)du
, (8.54)

and

∂ 2u
∂y2 (t,y) = 2c′(y)u(t,y)+2c(y)

(
2c(y)u(t,y)− e2C(y) p(t,0,y)

∫ y
0 e2C(u)du

)
(8.55)

−2c(y)e2C(y) p(t,0,y)
∫ y

0 e2C(u)du
− e2C(y) p′(t,0,y)

∫ y
0 e2C(u)du

+
e4C(y) p(t,0,y)
(∫ y

0 e2C(u)du
)2 .

Hence, gathering (8.54) and (8.55), we obtain:

L∗u(·, t)(y) = e2C(y)

(

−1
2

p′(t,0,y)
∫ y

0 e2C(u)du
− c(y)

p(t,0,y)
∫ y

0 e2C(u)du
+

1
2

e2C(y) p(t,0,y)
(∫ y

0 e2C(u)du
)2

)

.

(8.56)
Comparing (8.53) and (8.56), we see that:

∂u
∂ t

(t,y) = L∗u(·, t)(y).

We must now check that the 2 functions (t,y) 
→ p(t,0,y) and (t,y) 
→ u(t,y) satisfy
the same initial conditions. First, it is clear that p(t,0, ·) and u(t, ·) are 2 density func-
tions on R

+ satisfying: u(0, ·) = p(0,0, ·) = δ0. Then, for every t > 0, u(t,0) = 0,
since X is a transient diffusion whose endpoint 0 is entrance-not-exit (and there-
fore 0 does not belong to the state space of X). The same is true for X : if 0 is
entrance-not-exit for the diffusion X , then for every t > 0, p(t,0,0) = 0. Otherwise,
0 is reflecting. In this case, let us introduce q(t,x,y) the transition density of X with
respect to its speed measure m(dy) = 2e2C(y)dy. q is well-defined on [0,+∞[3 (see
[12], p.13) and we have p(t,x,y)dy = q(t,x,y)m(dy). Thus, for x = y = 0, we get
p(t,0,0) = q(t,0,0)2e2C(0) = 0 since C(0) = −∞. Consequently, by uniqueness of
the solution of equation (8.50) (when proper initial conditions are given, see [43],
p.145), we obtain that:
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∀t ≥ 0, ∀y ≥ 0, u(t,y) = p(t,0,y). (8.57)

This ends the proof of (iii) item (a).

We now end the proof of Theorem 8.2
From Lemma 8.3, we have, with Gy := sup{s ≥ 0; Xs = y}:

P0(Xt ≥ y) = P0

(
inf
s≥t

Xs ≥ y

)
= P0(Gy ≤ t). (8.58)

Plugging (8.58) in (8.40) gives (8.47) (i.e. Point (i)).
Point (ii) follows from the fact that X is transient from Proposition 8.1. Therefore,
if α = 0, X admits an increasing pseudo-inverse, and we have:

P0(Gy ≤ t) = P(Y0,y ≤ t).

This ends the proof of Theorem 8.2.
��

Remark 8.7. If c is a decreasing function, then, for all x ≥ 0, TC(x) ≥ c(x). Indeed,
we have:

TC(x) =
e2C(x)

∫ x
0 e2C(y)dy

− c(x) ≥ c(x)

⇐⇒ e2C(x)−2c(x)
∫ x

0
e2C(y)dy ≥ 0

⇐⇒ e2C(x)− c(x)

([
e2C(y)

c(y)

]x

0

+
∫ x

0

e2C(y)c′(y)
c2(y)

dy

)

≥ 0

⇐⇒ −c(x)
∫ x

0

e2C(y)c′(y)
c2(y)

dy ≥ 0.

Therefore, applying the stochastic comparison theorem, if we realize the 2 processes
X and X on the same space (with respect to the same Brownian motion), then,

P
(
Xt ≥ Xt for all t ≥ 0

)
= 1.

8.4 Existence of Pseudo-Inverses for a R
+-Valued Diffusion

Started at 0

8.4.1 Notations

Our aim now is to extend the results proven previously for the family (X (α))α≥0

to the general framework of a linear regular diffusion X taking values in R
+. Let
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us denote by m its speed measure, and s its scale function. We assume that m is
absolutely continuous with respect to the Lebesgue measure:

m(dx) = ρ(x)dx, (ρ > 0)

and that s is a strictly increasing function. We also introduce q(t,x,y) its transition
density with respect to the speed measure,

uλ (x,y) :=
∫ ∞

0
e−λ tq(t,x,y)dt

its resolvent kernel and

L :=
∂ 2

∂m∂ s

its infinitesimal generator. Let us recall the following classification of boundaries,
for the left hand endpoint 0 (See [12], p.14):

i) 0 is called exit if, for z > 0:
∫ z

0
m[a,z]s′(a)da < ∞, (8.59)

ii) 0 is called entrance if, for z > 0:
∫ z

0
(s(z)− s(a))m(da) < ∞. (8.60)

Let us note that integrating (8.60) by parts gives an equivalent condition:

lim
a→0

(s(a)m[0,a])+
∫ z

0
m[0,a]s′(a)da < ∞. (8.61)

In our study, we assume that the diffusion is started at 0. Therefore, inequality (8.60)
(or equivalently (8.61)) must be satisfied, and 0 is an entrance endpoint. Further-
more:

• If 0 is also an exit endpoint, it is called a non-singular boundary. A diffusion
reaches its non-singular boundaries with positive probability. In this case, it is nec-
essary, in order to describe the diffusion process, to add a boundary condition. Here,
since m is assumed to be absolutely continuous with respect to the Lebesgue mea-
sure, we have m({0}) = 0, and 0 will be a reflecting boundary.

• If 0 is not an exit endpoint (i.e. equation (8.59) is not satisfied), then, the dif-
fusion cannot reach it from an interior point of its state space. Therefore, since the
diffusion is assumed to be regular, 0 does not belong to the state space. But, as an
entrance endpoint, it is nevertheless possible to start the diffusion from 0.

We also assume that +∞ is a natural boundary (i.e. neither entrance, nor exit).
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8.4.2 Biane’s Transformation

1) Associating X to X

Definition 8.1. To the diffusion X , we now associate another diffusion, X , whose
speed measure m(dx) = ρ(x)dx and scale function s are defined by:

⎧
⎪⎨

⎪⎩

ρ(x) = (m[0,x])2s′(x),

s(x) =
1

m[0,+∞[
− 1

m[0,x]
.

(8.62)

X is a transient diffusion, since s is increasing and:

s(0) = −∞ and s(+∞) = 0.

We assume furthermore that lim
a→0

m[0,a]s(a) > −∞. From (8.61), this implies that

the function a 
→ m[0,a]s′(a) is integrable at 0. Therefore, from (8.62), the endpoint
0 is entrance-not-exit for the diffusion X .

For example, if X is a Bessel process with index ν, then X is a Bessel process
with index ν + 1. This transformation was first introduced by Biane [9] in order
to generalize a celebrated identity from Ciesielski and Taylor ([17]), which was
originally obtained for Bessel processes.

Remark 8.8.
a) We must stress the fact that this transformation is not injective. For instance, as

for the operator T (see (8.22)), if X (α) is the solution of (8.26), then X
(α)

defined by
Biane’s transformation does not depend on α . Indeed, from (8.26):

(
s(α)

)′
(x) =

(
1+α

∫ x

0
e2C(u)du

)2

e−2C(x), (8.63)

and

m(α)(dx) =
2e2C(x)

(
1+α

∫ x
0 e2C(u)du

)2 dx. (8.64)

Integrating (8.64) gives:

m(α)[0,x] = 2
∫ x

0

e2C(y)

(
1+α

∫ y
0 e2C(u)du

)2 dy

= 2

[
− 1
α

1

1+α
∫ y

0 e2C(u)du

]x

0

=
2
∫ x

0 e2C(u)du

1+α
∫ x

0 e2C(u)du
. (8.65)
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Therefore:

s(α)(x) :=
α
2
− 1

m(α)[0,x]
= − 1

2
∫ x

0 e2C(u)du
,

and

ρ(α)(x) := (m(α)[0,x])2
(

s(α)
)′

(x) =
(

2
∫ x

0
e2C(u)du

)2

e−2C(x).

We thus see that the characteristics of the diffusion X
(α)

do not depend on α . In

fact, X
(α) = X where X is the diffusion defined by (8.31).

b) More generally, if X is a linear diffusion with speed measure m(dx) = ρ(x)dx
and scale function s which we suppose to be strictly increasing, then, the 2 pro-
cesses s(X) and s(X) have the same law. This can easily be shown by computing the
2 infinitesimal generators.

2) We now study some links between X and X .
Let H be the functional:

H f (x) :=
1

m[0,x]

∫ x

0
f (y)m(dy) (8.66)

defined on the space of continuous functions with compact support in ]0,+∞[.

Lemma 8.4. The following intertwining relation:

HPt = PtH

holds.

Proof. It is sufficient to check the identity on the infinitesimal generators.
Let f be a C 2 function with compact support in ]0,+∞[. On the one hand, we have:

HL f (x) =
1

m[0,x]

∫ x

0
L f (y)m(dy)

=
1

m[0,x]

∫ x

0

∂
∂m

∂
∂ s

f (y)m(dy)

=
1

m[0,x]

∫ x

0

1
ρ(y)

∂
∂y

(
f ′(y)
s′(y)

)
ρ(y)dy

=
1

m[0,x]

(
f ′(x)
s′(x)

− f ′(0)
s′(0)

)

=
f ′(x)

m[0,x]s′(x)
(since f has a compact support in ]0,+∞[). (8.67)

On the other hand, since from (8.62) s′(x) =
ρ(x)

(m[0,x])2 , we have:
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LH f (x) =
∂ 2

ρ(x)∂xs′(x)∂x

(
1

m[0,x]

∫ x

0
f (y)m(dy)

)

=
∂

ρ(x)∂x
(m[0,x])2

ρ(x)

(
− ρ(x)

(m[0,x])2

∫ x

0
f (y)m(dy)+

ρ(x)
(m[0,x])

f (x)
)

=
∂

ρ(x)∂x

(
−
∫ x

0
f (y)m(dy)+m[0,x] f (x)

)

=
m[0,x]
ρ(x)

f ′(x)

=
f ′(x)

m[0,x]s′(x)
. (8.68)

The comparison of (8.67) and (8.68) ends the proof of Lemma 8.4.
��

Lemma 8.4 will allow us to deduce the following relation between the transition
densities of X and X :

Lemma 8.5.

1
m[0,x]

∫ x

0
q(t,y,z)m(dy) =

∫ ∞

z
q(t,x,y)m[0,y]s′(y)dy. (8.69)

In particular, letting x tend to 0, we obtain:

q(t,0,z) =
∫ ∞

z
q(t,0,y)m[0,y]s′(y)dy. (8.70)

Proof. We use the intertwining relation between the semi-groups of X and X . Let
f be a Borel function on ]0,+∞[ with compact support. On the one hand, we have,
applying Fubini:

HPt f (x) =
1

m[0,x]

∫ x

0

(∫ ∞

0
f (z)q(t,y,z)m(dz)

)
m(dy)

=
∫ ∞

0
f (z)

(
1

m[0,x]

∫ x

0
q(t,y,z)m(dy)

)
m(dz). (8.71)

On the other hand, using (8.62):

PtH f (x) =
∫ ∞

0

(
1

m[0,y]

∫ y

0
f (z)m(dz)

)
q(t,x,y)m(dy)

=
∫ ∞

0
f (z)

(∫ ∞

z

1
m[0,y]

q(t,x,y)m(dy)
)

m(dz)

=
∫ ∞

0
f (z)

(∫ ∞

z
q(t,x,y)m[0,y]s′(y)dy

)
m(dz). (8.72)

The comparison of (8.71) and (8.72) ends the proof of Lemma 8.5.
��
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Remark 8.9. Lemma 8.4 and Lemma 8.5 have differential counterparts. Indeed, if
we define:

D̃ f (x) =
1

m[0,x]s′(x)
f ′(x),

on the space of C 1 functions, with derivative equal to 0 at 0, and which are bounded
as well as their derivative, we obtain, following the same pattern of proof as for
Lemma 8.4:

D̃Pt = PtD̃. (8.73)

This easily implies the generalized Hirsch-Song formula:

1
m[0,x]s′(x)

∂ p
∂x

(t,x,y) = − ∂
∂y

(
p(t,x,y)

m[0,y]s′(y)

)

where p (resp. p) is the transition density function of X (resp. X) with respect to the
Lebesgue measure. Furthermore, denoting by Z the Markov process:

Zt :=
∫ Xt

0
m[0,a]s′(a)da,

and (Qt , t ≥ 0) its semi-group, we have:

DQt = QtD

where D denotes the differentiation operator: D f (x) = f ′(x) defined on the space of
C 1 functions bounded as well as their first derivative.

8.4.3 Existence of Pseudo-Inverses

We now state our main result:

Theorem 8.3. Let X be a regular linear diffusion on R
+ with speed measure

m(dx) = ρ(x)dx and scale function s. We assume that s is a strictly increasing C 2

function such that:
lim
a→0

m[0,a]s(a) > −∞,

and that 0 is an entrance endpoint and +∞ a natural boundary.
Let y > 0. Then:

i) The function t 
→ P0(Xt ≥ y) increases and satisfies:

P0 (Xt ≥ y) =
(

1− m[0,y]
m[0,+∞[

)
P0

(
Gy ≤ t

)
(8.74)

where Gy := sup{s ≥ 0; Xs = y}.
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ii) lim
t→∞

P0(Xt ≥ y) = 1− m[0,y]
m[0,+∞[

.

iii) Therefore:

1) If m[0,+∞[= +∞, X admits an increasing pseudo-inverse (Y0,y,y > 0) and
we have the following equalities in law:

(a) Xt
(law)
= inf

s≥t
Xs,

(b) Y0,y
(law)
= Gy.

2) If m[0,+∞[< +∞, X admits an increasing quasi pseudo-inverse (Y0,y,y > 0).

Then, in our framework, a diffusion admits an increasing pseudo-inverse if and only
if it is transient, or null recurrent.

Remark 8.10.
a) Observe that, unlike (Xt , t ≥ 0), the process (inf

s≥t
Xs, t ≥ 0) is increasing, see Re-

mark 7.2 and [39].
b) It is clear that a positively recurrent diffusion cannot admit an increasing pseudo-

inverse since, denoting π(dz) :=
ρ(z)

m[0,+∞[
dz the stationary probability measure of

X , we have, for y > 0 (see [12], p.35):

P0(Xt ≥ y) −−→
t→∞

∫ ∞

0
1{z≥y}π(dz) =

m[y,+∞[
m[0,+∞[

< 1.

Remark 8.11. Let us study, using this theorem, the case of the diffusions X (α) which
are solutions of (8.26). From (8.63), we see that s(α) is strictly increasing and:

∣
∣m(α)[0,a]s(α)(a)

∣
∣=

2
∫ a

0 e2C(u)du

1+α
∫ a

0 e2C(u)du

∫ 1

a

(
1+α

∫ x

0
e2C(u)du

)2

e−2C(x)dx

≤ (1−a)
(

1+α
∫ 1

0
e2C(u)du

)2

e−2C(a)2ae2C(a)

≤ 2a(1−a)
(

1+α
∫ 1

0
e2C(u)du

)2

−−→
a→0

0.

Thus Theorem 8.3 applies, and the application t 
→ P
(α)
0 (X (α)

t ≥ y) increases. Fur-
thermore, since C ∈ H ∞ (cf. (8.21)), we obtain, letting x tend to +∞ in (8.65):

m(α)[0,+∞[=
2
α

.

Hence, from Point (ii) of Theorem 8.3,

lim
t→∞

P
(α)
0 (X (α)

t ≥ y) = 1− α
2

( ∫ y
0 2e2C(u)du

1+α
∫ y

0 e2C(u)du

)

=
1

1+α
∫ y

0 e2C(u)du
.
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This is Point (ii) of Theorem 8.2. Hence, Theorem 8.2 is a particular case of Theo-
rem 8.3.

Proof.
a) It is known from [35], p.149, that (t,z) 
→ q(t,0,z) solves the parabolic equation:

∂u
∂ t

(t,z) = Lu(t,z).

Hence:

∂
∂ t

P0(Xt ≥ y) =
∫ ∞

y

∂q
∂ t

(t,0,z)m(dz)

=
∫ ∞

y
Lq(t,0,z)m(dz)

=
∫ ∞

y

∂
∂m

∂q
∂ s

(t,0,z)m(dz)

= −∂q
∂ s

(t,0,y). (8.75)

Now, (8.75) can be rewritten, thanks to (8.70):

∂
∂ t

P0(Xt ≥ y) = − 1
s′(y)

∂
∂y

(∫ ∞

y
q(t,0,z)m[0,z]s′(z)dz

)

= q(t,0,y)m[0,y]

= −
(

1− m[0,y]
m[0,+∞[

)
1

s(y)
q(t,0,y) (from (8.62)). (8.76)

Then, X being transient, from Theorem 2.4, t 
→ − 1
s(y)q(t,0,y) is the density func-

tion of the last passage time of X at level y, starting from 0:

P0(Gy ∈ dt) = − 1
s(y)

q(t,0,y)dt. (8.77)

Thus, integrating (8.76) with respect to t yields Point (i) of Theorem 8.3.

b) Point (ii) is immediate since X is transient, and finally, items (a) and (b) fol-
low easily from (8.74) and the identity:

P0

(
inf
s≥t

Xs ≥ y

)
= P0

(
Gy ≤ t

)
= P0 (Xt ≥ y) .

This ends the proof of Theorem 8.3.
��
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8.4.4 A Second Proof of Theorem 8.3

We now give another proof of Theorem 8.3, by showing that the Laplace transforms
of both sides of (8.74) coincide. Let X be the process associated to X by Biane’s
transformation. From (8.77) we have for λ ≥ 0:

E0

[
e−λGy

]
= −

∫ ∞

0
e−λ t q(t,0,y)

s(y)
dt =

uλ (0,y)
−s(y)

. (8.78)

Let us remark that y 
→ uλ (0,y) is the unique (up to a multiplicative constant) eigen-

function of the operator L =
∂ 2

∂m∂ s
, associated to the eigenvalue λ , which is de-

creasing and satisfies uλ (0,+∞) = 0 (see [12], p. 18). Let φ be the function defined
by:

φ(y,λ ) := λ
1

m[0,y]

∫ ∞

y
uλ (0,x)m(dx).

We show that y 
→ φ(y,λ ) satisfies the same conditions as y 
→ uλ (0,y). First, it is
clear that φ(·,λ ) is a decreasing function such that φ(+∞,λ ) = 0. Furthermore, we
have:

Lφ(y,λ ) =
∂ 2

∂m∂ s
φ(y,λ )

= λ
∂

ρ(y)∂y
(m[0,y])2

ρ(y)

(
− ρ(y)

(m[0,y])2

∫ ∞

y
uλ (0,x)m(dx)− ρ(y)

m[0,y]
uλ (0,y)

)

= λ
∂

ρ(y)∂y

(
−
∫ ∞

y
uλ (0,x)m(dx)−m[0,y]uλ (0,y)

)

=
λ

(m[0,y])2s′(y)

(
uλ (0,y)ρ(y)−ρ(y)uλ (0,y)−m[0,y]

∂
∂y

uλ (0,y)
)

= − λ
(m[0,y])s′(y)

∂
∂y

uλ (0,y). (8.79)

But, since y 
→ uλ (0,y) is an eigenfunction of the operator L =
∂ 2

∂m∂ s
associated to

the eigenvalue λ , we have:

∂ 2

ρ(y)∂ys′(y)∂y
uλ (0,y) = λuλ (0,y). (8.80)

Integrating (8.80) gives:

1
s′(+∞)

∂
∂y

uλ (0,+∞)− 1
s′(y)

∂
∂y

uλ (0,y) = λ
∫ ∞

y
uλ (0,x)ρ(x)dx. (8.81)

But the endpoint +∞ is assumed to be natural, and therefore, from ([12], p.19):
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1
s′(+∞)

∂
∂y

uλ (0,+∞) =
∂uλ
∂ s

(0,+∞) = 0.

Then, plugging (8.81) into (8.79), we obtain:

Lφ(y,λ ) = λ
(
λ

1
m[0,y]

∫ ∞

y
uλ (0,x)m(dx)

)
= λφ(y,λ ),

which means that φ is an eigenfunction of L associated to the eigenvalue λ . There-
fore, there is a constant γ > 0 such that:

uλ (0,y) = γ
λ

m[0,y]

∫ ∞

y
uλ (0,x)m(dx). (8.82)

Plugging (8.82) into (8.78) we finally get:

E0

[
e−λGy

]
= − γλ

s(y)m[0,y]

∫ ∞

y
uλ (0,x)m(dx)

=
γλ

1− m[0,y]
m[0,+∞[

∫ ∞

y

(∫ ∞

0
e−λ tq(t,0,x)dt

)
ρ(x)dx (from (8.62))

=
γλ

1− m[0,y]
m[0,+∞[

∫ ∞

0
e−λ t

P0(Xt ≥ y)dt (applying Fubini)

=
γ

1− m[0,y]
m[0,+∞[

∫ ∞

0
e−λ t

(
∂
∂ t

P0(Xt ≥ y)
)

dt

after an integration by parts. Therefore, from the injectivity of the Laplace trans-

form, we deduce that t 
→ γ
1− m[0,y]

m[0,+∞[

∂
∂ t

P0(Xt ≥ y) is the density function of a

random variable Y0,y (having the same law as Gy under P0) which satisfies:

P(Y0,y ≤ t) = P0(Gy ≤ t) =
∫ t

0

γ
1− m[0,y]

m[0,+∞[

(
∂
∂ s

P0(Xs ≥ y)
)

ds

=
γ

1− m[0,y]
m[0,+∞[

P0(Xt ≥ y).

Then, letting y tend to 0 in this last identity, we obtain:

P0(G0 ≤ t) = γP0(Xt ≥ 0) = γ (X being a R
+-valued diffusion). (8.83)

But, since X is transient:
P0(G0 ≤ t) −−→

t→∞
1,
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and, from (8.83), γ = 1. The fact that P0(G0 ≤ t) does not depend on t is not a
surprise since 0 is an entrance-not-exit endpoint for the diffusion X , and thus G0 =
0 P0-a.s. This ends the second proof of Theorem 8.3.

��

Exercise 8.1 (Existence of pseudo-inverses for nearest neighbor random walk
on Z).
Let (Xn,n ≥ 0) denote the nearest neighbor random walk on Z, started from 0, and
defined by:

X0 = 0, Xn = Y1 + . . .+Yn

where the r.v.’s (Yi)i∈N∗ are i.i.d. and such that P(Y1 = 1) = p and P(Y1 = −1) = q
with p+q = 1.
1) Let k ∈ N

∗. Prove that, for all n ≥ 0:

P(X2n+2 ≥ 2k) = P(X2n ≥ 2k)+ p2
P(X2n = 2k−2)−q2

P(X2n = 2k). (1)

Let ϕk(n) := P(X2n ≥ 2k). It follows from (1) that, for k ≥ 1 fixed, ϕk(n) is an
increasing function of n if and only if

p2
P(X2n ≥ 2k−2) ≥ q2

P(X2n ≥ 2k).

2) Prove that, for all n ≥ k:

P(X2n = 2k) = Cn+k
2n pn+kqn−k.

Deduce then that the function n 
→ ϕk(n) (defined on N) is increasing if and only if
p ≥ q. Check that ϕk(0) = 0 and ϕk(n) −−−→

n→∞
1 if and only if p > q.

3) Prove that, for p > q, there exists a family of r.v.’s (Y2k,k ≥ 1) taking values in
{2k,2k +2, . . .} such that:

P(Y2k ≤ 2n) = P(X2n ≥ 2k), (n ∈ N).

Consequently, the family (Y2k,k ≥ 1) is the increasing pseudo-inverse of the random
walk (X2n,n ≥ 0).

Give an expression of P(Y2k = 2n) (n ≥ k) and compute the expectation of Y2k in
terms of the potential kernel of the random walk (X2n,n ≥ 0).

Exercise 8.2 (Existence of pseudo-inverses for a birth-death process).
Let (Xn,n ≥ 0) denote the Markov chain started from 0, whose transition matrix is
given by:

Π(0,1) = 1

Π(k,k +1) =
k +2
2k +2

Π(k,k−1) =
k

2k +2
(k ≥ 1).
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1) Let k ≥ 1. Prove that, for all n ∈ N:

P(X2n+2 ≥ 2k) = P(X2n ≥ 2k)+P(X2n = 2k−2)bk −P(X2n = 2k)ak

where: ⎧
⎪⎨

⎪⎩

ak = P(X2n+2 = 2k−2|X2n = 2k) =
2k−1

2(4k +2)
,

bk = P(X2n+2 = 2k|X2n = 2k−2) =
2k +1

2(4k−2)
.

Let ϕk(n) := P(X2n ≥ 2k). Then, the function n 
→ ϕk(n), for k ≥ 1 fixed, is an
increasing function of n if and only if

P(X2n = 2k−2)bk ≥ P(X2n = 2k)ak.

2) It is shown in [50, F], p.266, that:

P(X2n = 2k) =
2
π

(2k +1)
∫ π

0
(cos(θ))2n sin(θ)sin((2k +1)θ)dθ .

Prove, using the previous formula, that:

P(X2n = 2k) = 4
(2k +1)2Cn

B
(

2n+1+2k+1
2 +1, 2n+1−2k−1

2 +1
) (k ≤ n)

where Cn is a constant which depends only on n, and B(s, t) =
∫ 1

0 us−1(1−u)t−1du.(
[27, F], p.375, formula 3.633:

∫ π/2

0
(cos(θ))p−1 sin(aθ)sin(θ)dθ =

aπ
2p+1 p(p+1)B

( p+a
2 +1, p−a

2 +1
)
)

.

3) Deduce from the previous questions that ϕk(n) is an increasing function of n
for n ≥ k. The chain (Xn,n ≥ 0) being transient (cf. [50, F], p.268), show that:
lim
n→∞

ϕk(n) = 1. Consequently, the chain (X2n,n ≥ 0) admits an increasing pseudo-

inverse (Y2k,k ≥ 1) which satisfies:

P(X2n ≥ 2k) = P(Y2k ≤ 2n).

4) Express the expectation of Y2k in terms of the potential kernel of the chain
(Xn,n ≥ 0). (cf. [50, F] p.268 and the followings).

Comments and References: These exercises rely mainly on the lectures by B. Roynette
at the Ecole d’été de St Flour in summer 1977 [50, F].
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Exercise 8.2 may be generalized by replacing the chain (Xn,n ≥ 0) by the chain
“associated to the ultraspherical polynomials”, see [26, F].
For Table of integral computations, see [27, F].

8.5 Some Consequences of the Existence of Pseudo-Inverses

8.5.1 Another Relation Between the Processes X and X Started
from 0

Proposition 8.6. Let t ≥ 0 and U a uniform r.v. on [0,1] independent from Xt .
Then, under the hypotheses of Theorem 8.3, the law of the r.v. m[0,Xt ] under P0 is
the same as the law of m[0,Xt ]U under P0:

m[0,Xt ]
(law)
= m[0,Xt ]U.

We provide two proofs.
1) An analytic proof of Proposition 8.6.
We write for every positive Borel function f :

E0 [ f (m[0,Xt ])] =
∫ ∞

0
f (m[0,y])q(t,0,y)ρ(y)dy

=
∫ ∞

0
f (m[0,y])

(∫ ∞

y
q(t,0,z)m[0,z]s′(z)dz

)
ρ(y)dy (from (8.70))

=
∫ ∞

0

(
1

m[0,z]

∫ z

0
f (m[0,y])ρ(y)dy

)
q(t,0,z)ρ(z)dz

(applying Fubini and (8.62))

=
∫ ∞

0

(
1

m[0,z]

∫ m[0,z]

0
f (u)du

)
q(t,0,z)ρ(z)dz

(with the change of variable u = m[0,y])

= E0

[
1

m[0,Xt ]

∫ m[0,Xt ]

0
f (u)du

]

= E0
[

f (m[0,Xt ]U)
]

(after the change of variable u = m[0,Xt ]v).

This ends the proof of Proposition 8.6.
��

2) A more probabilistic proof of Proposition 8.6 under the assumption
m[0,+∞[= +∞.

Since s(x) = − 1
m[0,x]

is a scale function for X , the process

(
1

m[0,Xt+s]
,s < T

(t)
0

)

where T
(t)
0 := inf{s ≥ 0; Xt+s = 0}, is a positive continuous (F t+s,s ≥ 0)-local
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martingale. But, 0 being entrance-not-exit for X , we have T
(t)
0 = +∞ P0−a.s., and X

being transient,

(
1

m[0,Xt+s]
,s ≥ 0

)
is in fact a positive continuous local martingale

which converges towards 0. We apply Doob’s maximal identity (Lemma 2.1):

sup
s≥t

1

m[0,Xs]
(law)
=

1

m[0,Xt ]U
. (8.84)

Then, since x 
→m[0,x] is increasing, applying Point (iii) of Theorem 8.3, we obtain:

1

m[0,Xt ]U
(law)
= sup

s≥t

1

m[0,Xs]
=

1

inf
s≥t

m[0,Xs]
=

1

m[0, inf
s≥t

Xs]
(law)
=

1
m[0,Xt ]

. (8.85)

��

8.5.2 A Time Reversal Relationship

Assume that X is a diffusion satisfying the hypotheses of Theorem 8.3. Then the

process X̂ :=
(

XGy−t , t < Gy

)
is a diffusion started at y with semi-group (see [70],

Exercise 4.18, p.322):

P̂t f (x) :=
1

s(x)
Pt( f s)(x).

Using (8.62), its speed measure m̂(dx) = ρ̂(x)dx and scale function ŝ(x) are given
by: ⎧

⎪⎪⎨

⎪⎪⎩

ŝ(x) = − 1
s(x)

=
m[0,x]m[0,+∞[

m[0,+∞[−m[0,x]
,

ρ̂(x) = s2(x)ρ(x) =
(

1− m[0,x]
m[0,+∞[

)2

s′(x).
(8.86)

As a result, the law of Gy under P0 is the same as the law of T̂0 for the process X̂ .
This leads to a new formulation of identity (8.74):

Proposition 8.7. Let X be a diffusion satisfying the hypotheses of Theorem 8.3, and
X̂ defined by (8.86). Then:

P0 (Xt ≥ y) =
(

1− m[0,y]
m[0,+∞[

)
P̂y

(
T̂0 ≤ t

)
. (8.87)

In fact, (see [79], Section 2.2), the diffusion X can also be obtained by conditioning
X̂ not to hit 0, and we have:

q(t,x,y) =
q̂(t,x,y)
ŝ(x)ŝ(y)

−−→
x→0

f̂y0(t)
ŝ(y)

=
(

1
m[0,y]

− 1
m[0,+∞[

)
f̂y0(t), (8.88)
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where f̂y0 is the density function of the first hitting time of 0 of X̂ under P̂y:

P̂y(T̂0 ∈ dt) = f̂y0(t)dt.

Therefore, plugging (8.88) in (8.70), we get:

Proposition 8.8.

q(t,0,y) =
∫ ∞

y
f̂z0(t)

(
1− m[0,z]

m[0,+∞[

)
s′(z)dz.

Let us note that (8.86) reduces significantly when m[0,+∞[= +∞. Indeed, we obtain
in this case: {

ŝ(x) = m[0,x]
ρ̂(x) = s′(x)

and differentiating formula (8.87) with respect to y and t gives:

Proposition 8.9 (Zolotarev-like identity, or Kendall’s identity, [13]).
If m[0,+∞[= +∞:

− ∂
∂ t

q(t,0,y)ρ(y) =
∂
∂y

f̂y0(t).

Remark 8.12.
a) Proposition 8.9 can also be proven using Krein’s spectral representations of
q(t,0,y) and fy0(t), see [78] and [42].

b) If X is a diffusion such that m[0,+∞[= +∞ and s(x) = m[0,x], then, X is a
null recurrent diffusion, and, with our notations, the 2 processes (Xt , t < T0) and
(X̂t , t < T̂0) started from y have the same law. Proposition 8.8 implies then:

Py(T0 ∈ dt) = − 1
s′(y)

∂q
∂y

(t,0,y)dt.

Note that this formula is very similar to (8.77) for transient diffusions:

P0(Gy ∈ dt) = − 1
s(y)

q(t,0,y)dt.

Example 8.1. If X is a Brownian motion reflected at 0, then X is a Bessel process of
dimension 3, and X̂ is a Brownian motion killed at 0. From (8.87), we thus get the
well-known formula:

W0(Xt ≥ y) = Wy(T0 ≤ t).
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8.5.3 Back to the Family (X (α))α≥0

All the results of Section 8.4 apply to the family (X (α))α≥0 defined by (8.26). In
particular, we can define the diffusion (X̂t , t < T̂0) on R

+ as the solution of:

Xt = y+Bt −
∫ t

0
c(Xs)ds.

We note that: ⎧
⎨

⎩
ŝ(x) = 2

∫ x

0
e2C(u)du,

ρ̂(x) = e−2C(x).

Note that, since X does not depend on α , neither does X̂ . Let us also introduce the
max-diffusion:

Zt = Bt +
∫ t

0
c(2SZ

u −Zu)du where SZ
u := sup

t≤u
Zt . (8.89)

Then it is known from ([73], Theorem 5.4) that the process (2SZ
t − Zt , t ≥ 0) is

distributed as (Xt , t ≥ 0) under P0. Hence, since 2SZ
t −Zt ≥ St , we have:

Gy
(law)
= T Z

y where T Z
y := inf{t ≥ 0,Zt > y},

and formula (8.74) can be rewritten as follows:

P0 (Xt ≥ y) =
(

1− m[0,y]
m[0,+∞[

)
P

Z
0

(
T Z

y ≤ t
)
.

Note that we can also construct, in the general case, the process (Zt , t ≤ T Z
y ) from

(Xt , t ≤ Gy) by the relation:

Zt = 2JX
t −Xt where JX

t := inf
Gy≥s≥t

Xs. (8.90)

Now, introduce the process:

Ẑt = 2IX̂
t − X̂t where IX̂

t := inf
s≤t

X̂s. (8.91)

Like Z, Ẑ is a priori not Markov, but, since Ẑt ≤ X̂t , we have GẐ
0 = T̂0 P̂y-a.s.

Proposition 8.10. The following time reversal relationship holds:

(
ZT Z

y −t , t ≤ T Z
y

) (law)
=

(
Ẑt , t ≤ GẐ

0

)
.
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Proof.

(
ZT Z

y −t , t ≤ T Z
y

) (law)
=

(
2JX

Gy−t −XGy−t , t ≤ Gy

)
(from (8.90))

(law)
=

(

2 inf
Gy≥s≥Gy−t

Xs −XGy−t , t ≤ Gy

)

(law)
=

(
2inf

s≤t
XGy−s −XGy−t , t ≤ Gy

)

(law)
=

(
2inf

s≤t
X̂s − X̂t , t ≤ T̂0

)

(law)
=

(
Ẑt , t ≤ GẐ

0

)
(from (8.91)).

��

The links between these 5 processes can be summed up in the following diagrams:

X
Biane

X

and,
(
Zt , t ≤ T Z

y

) Time Reversal

2SZ−Z

(
Ẑt , t ≤ GẐ

0

)

2V Ẑ−Ẑ

(
Xt , t ≤ Gy

)

2JX−X

Time Reversal
(

X̂t , t ≤ T̂0

)

2IX̂−X̂

(8.92)

where, in this commutative diagram, V Ẑ
t := sup

s≥t
Ẑs. (See relations (8.89), (8.90) and

(8.91), for the definition of S, J and I.) In particular, we have:

P0
(
Gy ≤ t

)
= P̂y

(
T̂0 ≤ t

)
= P

Ẑ
y

(
GẐ

0 ≤ t
)

= P
Z
0

(
T Z

y ≤ t
)
.

Example 8.2. If X is a Bessel process of index ν > −1, ν �= 0, then:

• X is a Bessel process of index ν +1 started at 0.

• X̂ is a Bessel process of index −(ν +1) started at y and killed when it first hits 0
if −(ν +1) > −1. In the case −(ν +1) < −1, X̂ can be obtained as the root of a
“square” Bessel process of negative dimension, see ([70], Exercise 1.33, p. 453).

Exercise 8.3. (Around Zolotarev’s formula)
Let (Xt , t ≥ 0) be a R

+-valued diffusion satisfying the hypotheses of this section.
We assume furthermore that (Xt , t ≥ 0) satisfies a scaling property, namely, there
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exist α,β ∈ R
∗ such that

∀t ≥ 0,∀c > 0, Xt
(law)
= cαXt/cβ .

1) Prove that, ∀c > 0,∀y ≥ 0:

cαq(t,0,y)ρ(y) = q
( t

cβ
,0,

y
cα

)
ρ
( y

cα

)
.

2) Apply Proposition 8.7 to deduce that:
(

1− m[0,y]
m[0,+∞[

)
β tP̂y

(
T̂0 ∈ dt

)
dy = αyP0 (Xt ∈ dy)dt. (1)

3) Let (R(ν)
t , t ≥ 0) be a Bessel process of index ν ∈]−1,0[. Using (1), prove that:

P
(ν)
y

(
T (ν)

0 ∈ dt
)

=
1

Γ (−ν)

(
y2

2t

)−ν

exp

(
−y2

2t

)
dt

and recover Getoor’s result: under P
(ν)
y ,

T (ν)
0

(law)
=

y2

2γ−ν

where γ−ν is a gamma r.v. of parameter −ν.

4) Similarly, prove that, if (Y (ν)
t , t ≥ 0) is a square Bessel process of index ν ∈

]−1,0[, then:

Q
(ν)
y

(
T (ν)

0 ∈ dt
)

=
2νtν+1

yνΓ (−ν)
exp

(
− y

2t

)
dt.

8.6 Notes and Comments

This Chapter is, essentially, taken from [68]. Proposition 8.1 is due to B. Roynette,
P. Vallois and M. Yor ([73]) where it has been established in order to extend in a
non-Markovian framework the celebrated Theorem of J. Pitman expressing 2S−X
with X a Brownian motion, and S its supremum, as a Bessel process of dimension 3.
The transformation of Definition 8.1 has been introduced by P. Biane to generalize
to arbitrary diffusions the famous result of Ciesielski-Taylor ([17]) obtained in the
set-up of Bessel processes (see for instance [52], Chapter 4, for a description and
extensions of this result). Formulae such as these of Remark 8.9 (intertwining with
the first derivative operator) may be found in Hirsch-Yor [31]. Zolotarev’s formula
– of which Proposition 8.9 is a slightly different version – is classical for Lévy
processes without positive jumps (see [13] where the term Kendall’s identity is also
used).



Appendix A
Complements

A.1 Study of the Call Associated to a Strict Local Martingale
(see Yen-Yor [93])

A.1.1 Introduction

Let (Mt , t ≥ 0) be a “true” positive, continuous martingale converging towards 0
when t → ∞. We showed in Chapter 2, Theorem 2.2 that for all Ft-measurable and
bounded r.v. Ft , and all K ≥ 0:

E
[
Ft(Mt −K)+

]
= E

(M)
[

Ft1{G (M)
K ≤t}

]
(A.1)

where G
(M)
K := sup{t ≥ 0; Mt = K} and P

(M) is the probability defined by:

P
(M)
|Ft

= Mt ·P|Ft . (A.2)

In particular, taking Ft = 1 in (A.1), we see that t 
→ E [(Mt −K)+] is an increas-
ing function. What happens if (Mt , t ≥ 0) is not a martingale, but only a local
martingale ? As an example, we examine the case of the strict local martingale(

Mt = 1
Rt

, t ≥ 0
)

, where (Rt , t ≥ 0) is a Bessel process of dimension 3 starting at 1.

(The study for a Bessel process of dimension 3 starting at r > 0 can be reduced to
this case by scaling.) We shall see that in this set-up Theorem 2.2 is no longer true; in
particular, the function t 
→ E [(Mt −K)+] is not increasing (not even monotonous).
We refer the reader to S. Pal and P. Protter ([62]) and to Ju-Yi Yen and M. Yor ([93])
from which the following results are taken.

A.1.2 Main Results

We denote by (Xt , t ≥ 0) the canonical process on C (R+,R); Wx is the Wiener

measure such that Wx(X0 = x) = 1 and P
(1/2)
1 the law of the Bessel process of di-

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7, © Springer-Verlag Berlin Heidelberg 2010
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mension 3 (i.e. index ν = 1/2) starting at 1. We define:

• CK(t) := E
(1/2)
1

[(
1
Xt

−K

)+
]

,

• G1 := sup{t ≥ 0; Xt = 1},
• Tk := inf{t ≥ 0; Xt = k}, with k = 1

K ,

(these two r.v.’s g1 and Tk being considered under P
1/2
1 ),

• T̃k the size-biased sampling of Tk, i.e., for every Borel function f ,

E

[
f (T̃k)

]
= 3K2

E
(1/2)
0 [ f (Tk)Tk] .

Theorem A.1 (Yen-Yor, [93]).

i) The function (3K2CK(t), t ≥ 0) is a probability density on R
+.

ii) It is the density function of the r.v. ΛK, with:

ΛK
(law)
= (G1 − T̃k)+ T̃kU (A.3)

where in (A.3), U is uniform on [0,1], and G1, T̃k and U are independent.
iii) The Laplace transform of ΛK is given by:

E

[
e−λΛK

]
=

∫ ∞

0
3K2CK(t)e−λ tdt =

3K2

λ
e−

√
2λ

(
sinh(k

√
2λ )

k
√

2λ
−1

)

.

iv) There are the asymptotic formulae at ∞:

CK(t) ∼
t→∞

1

3
√

2πK2

1

t3/2
(K > 0), (A.4)

C0(t) ∼
t→∞

√
2
πt

(K = 0). (A.5)

v) There are the equivalents at 0:

CK(t) −−→
t→0

(1−K)+ (K �= 1), (A.6)

C1(t) ∼
t→0

√
t

2π
(K = 1). (A.7)

It is then clear from (iv) and (v), and from the first statement (i) of the Theorem,
that CK(t) is not an increasing function in t.

This Theorem relies mainly on Theorem 2.1, on the well-known Doob h-process
relationship between Brownian motion and the Bessel process of dimension 3:

P
(1/2)
1|Ft

= (Xt∧T0) ·W1|Ft ,
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and on the classical time reversal result by D. Williams, namely: the law of

(XT0−t , t ≤ T0) under W1 is the same as that of (Xt , t ≤ G1) under P
(1/2)
0 .

A.1.3 An Extension

Theorem A.1 may be extended to the case of the local martingale
(

Mt := 1
R2ν

t
, t ≥ 0

)

where (Rt , t ≥ 0) is a Bessel process of index ν, i.e. dimension δ = 2ν + 2, with
2 < δ < 4. We now state this result, see [93]:

Theorem A.2 (Yen-Yor, [93]).

Let, for K ≥ 0, C(ν)
K (t) := E

(ν)
1

[(
1

R2ν
t

−K
)+

]
, where E

(ν)
1 denotes the expectation

relative to the Bessel process of index ν started from 1. Then:

i) The function (2(ν +1)K
1
ν C(ν)

K (t), t ≥ 0) is a probability density on R
+.

ii) It is the density function of the r.v. Λ (ν)
K , with:

Λ (ν)
K

(law)
= (G1 − T̃k)+ T̃kU (A.8)

where k = 1

K
1

δ−2
, and T̃k is the sized-biased sampling of Tk, with G1 and Tk defined

with respect to P
(ν)
0 .

iii) The Laplace transform of Λ (ν)
K is given by:

E

[
e−λΛ (ν)

K

]
=

4(ν +1)K
1
ν

λ
Kν

(√
2λ

)
(

ν
Iν(k

√
2λ )

kν
− 1

Γ (ν)

(√
2λ
2

)ν)

where Iν and Kν denote the usual modified Bessel functions with parameter ν.
iv) There are the asymptotic formulae at ∞:

C(ν)
K (t) ∼

t→∞

α(ν)
K

t3/2
(K > 0) with α(ν)

K :=
1

2ν+1(ν +1)Γ (ν)K1/ν
, (A.9)

C(ν)
0 (t) ∼

t→∞

1
2νΓ (ν +1)

1
tν

(K = 0). (A.10)

v) There are the equivalents at 0:

C(ν)
K (t) −−→

t→0
(1−K)+ (K �= 1), (A.11)

C(ν)
1 (t) ∼

t→0
ν

√
2t
π

(K = 1). (A.12)
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A.2 Measuring the “Non-Stopping Timeness” of Ends of
Previsible Sets (see Yen-Yor, [92])

A.2.1 About Ends of Previsible Sets

In this section, we take up the framework of Chapter 3. We are interested in random
times L defined on a filtered probability space (Ω ,F ,(Ft)t≥0,P) as ends of (Ft)-
previsible sets Γ , that is:

L = sup{t ≥ 0; ]t,+∞[⊂ Γ }. (A.13)

We suppose that assumptions (A) and (C) of Subsection 3.1.2 hold, namely:

(C) All (Ft)-martingales are continuous.

(A) For any stopping time T , P(L = T ) = 0.

We also define the Azéma supermartingale:
(

Z(L)
t = P(L > t|Ft) , t ≥ 0

)

which, under (CA), admits a continuous version.
We have seen in Chapters 1 and 2 that the Black-Scholes type formulae are

deeply linked with certain last passage times. For example, if (Mt , t ≥ 0) is a positive
continuous martingale converging a.s. towards 0 when t → ∞, then:

E
[
(K −Mt)+

]
= KP

(
G

(M)
K ≤ t

)
(A.14)

E
[
(Mt −K)+

]
= P

(M)
(
G

(M)
K ≤ t

)
(A.15)

with G
(M)
K := sup{t ≥ 0; Mt ∈ [K,+∞[}. In the present section, we would like to

measure “how much L differs from a (Ft , t ≥ 0) stopping time”. For that purpose,
we shall first give some criterions to measure the NST (=Non-Stopping Timeness)
of L, and then make explicit computations on some examples.

A.2.2 Some Criterions to Measure the NST

A.2.2.1 A Fundamental Function: mL(t)

Let (mL(t), t ≥ 0) be the function defined by:

mL(t) := E

[(
1{L≥t} −P(L ≥ t|Ft)

)2
]
. (A.16)

If L were a (Ft)-stopping time, then the process 1{L≥t} would be identically equal

to Z(L)
t := P(L > t|Ft) and mL would equal 0. Thus the function (mL(t), t ≥ 0) tells
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us about the NST of L. Note furthermore that:

mL(t) = E

[
Z(L)

t (1−Z(L)
t )

]
. (A.17)

A.2.2.2 Some Other Criterions

Instead of considering the “full function” (mL(t), t ≥ 0), we may consider only:

m∗
L := sup

t≥0
mL(t) (A.18)

as a global measurement of the NST of L.
Here are also two other (a priori natural) measurements of the NST of L:

m∗∗
L = E

[
sup
t≥0

(
Z(L)

t (1−Z(L)
t )

)]
(A.19)

and
m̃L = sup

T≥0
E

[
Z(L)

T

(
1−Z(L)

T

)]
(A.20)

where T runs over all (Ft)-stopping times. However, we cannot expect to learn very
much from m∗∗

L and m̃L, since it is easily shown that:

m∗∗
L = 1/4 = m̃L. (A.21)

Proof of (A.21)
i) The fact that m∗∗

L = 1/4 follows immediately from sup
x∈[0,1]

(x(1−x)) = 1/4 and the

fact that, a.s., the range of the process (Z(L)
t , t ≥ 0) is [0,1] since Z(L)

0 = 1, Z(L)
∞ = 0

and (Z(L)
t , t ≥ 0) is continuous.

ii) Let us consider Ta = inf{t ≥ 0; Z(L)
t = a}, for 0 < a < 1. Then,

Z(L)
t (1−Z(L)

t )|t=Ta = a(1−a); hence,

sup
a∈]0,1[

E

[
Z(L)

Ta
(1−Z(L)

Ta
)
]

= sup
a∈]0,1[

(a(1−a)) = 1/4.

��

A.2.2.3 A Distance from Stopping Times

As a natural criterion, one could think of the distance:

νL := inf
T≥0

E [|L−T |]

where T runs over all (Ft , t ≥ 0) stopping times. However, this quantity may be
infinite as L may have infinite expectation. A more adequate distance may be given
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by:

ν̃L := inf
T≥0

E

[
|L−T |

1+ |L−T |

]
.

Note that this distance was precisely computed by du Toit-Peskir-Shiryaev in the ex-
ample they consider [86]. Other criterions are proposed and discussed in [92], from
which this section is taken. We shall now focus on mL and compute this function in
a few examples.

A.2.3 Computations of Several Examples of Functions mL(t)

A.2.3.1 A General Formula

We shall compute (mL(t), t ≥ 0) in the case where:

L = GK := sup{t ≥ 0; Mt = K} (K ≤ 1)

with (Mt , t ≥ 0) ∈ M 0,c
+ , M0 = 1. From (2.6),

P(GK ≤ t|Ft) =
(

1− Mt

K

)+

,

thus:

Zt = 1−
(

1− Mt

K

)+

=
(

Mt

K

)
∧1

and,

mL(t) = E [Zt(1−Zt)] =
1

K2 E
[
Mt(K −Mt)+

]
. (A.22)

We now particularize this formula when Mt := Et = exp(Bt − t/2) with (Bt , t ≥
0) a standard Brownian motion and GK := sup{t ≥ 0; Et = K} (K ≤ 1). From for-
mula (A.22), we deduce:

mGK (t) =
1

K2 E
[
Et(K −Et)+

]

=
1

K2 E

[(
K − exp

(
Bt +

t
2

))+
]

(from the Cameron-Martin formula)

=
1

K2

{
KP

(
exp

(
Bt +

t
2

)
< K

)
−E

[
1{exp(Bt+t/2)<K} exp

(
Bt +

t
2

)]}

=e−l
P

(
Bt +

t
2

< l
)
− ete−2l

P

(
Bt +

3t
2

< l

)
(with K = el)

=P

(
B1 < −3

√
t

2
+

l√
t

)
(e−l − ete−2l)

+ e−l
P

(
−3

√
t

2
+

l√
t

< B1 < −
√

t
2

+
l√
t

)
.
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For a comparative study of the graphs of (mGK (t), t ≥ 0) when K varies, we refer the
reader to [92], from which this Section A.2 is taken.

A.2.3.2 The Case L = GTa = sup{t < Ta; Bt = 0}

We apply Theorem 2.1 to the positive martingale (Mt := a − Bt∧Ta , t ≥ 0), with

G
(M)
a := sup{t ≥ 0; Mt = a}. This gives:

P

(
G

(M)
a ≤ t|Ft

)
=
(

1− a−Bt∧Ta

a

)+

=
B+

t∧Ta

a
.

Hence:

Zt = P(GTa ≥ t|Ft) = P

(
G

(M)
a ≥ t|Ft

)
= 1−

B+
t∧Ta

a
.

Thus, we obtain:

mGTa
(t) = E

[
B+

t∧Ta

a

(

1−
B+

t∧Ta

a

)]

=
1
a2 E

[
1{t<Ta}1{Bt>0}Bt(a−Bt)

]

=
1
a2 E

[
1{St<a}1{Bt>0}Bt(a−Bt)

]

=
1
a2 E

[
1{S1< a√

t
}1{B1>0}tB1

(
a√
t
−B1

)]

=
1
x2ϕ(x),

where x =
a√
t
, and:

ϕ(x) = E
[
1{S1<x}1{B1>0}B1 (x−B1)

]
.

It remains to compute the function ϕ . We note that:

ϕ(x) = E
[
B+

1 (x−B1)
+]−E

[
1{S1>x}B+

1 (x−B1)
+] .

Recall the useful formula:

P(S1 > x|B1 = a) = exp(−2x(x−a)) , (x ≥ a > 0)

(see Chapter 1 (1.50), or Chapter 5, (5.14)). Then, we find:

ϕ(x) =
1√
2π

∫ x

0
y(x− y)

(
e−

y2
2 − e

1
2 (2x−y)2

dy

)

=
x3

√
2π

∫ 1

0
u(1−u)

(
e−

x2u2
2 − e

x2
2 (2−u)2

du

)
.



246 A Complements

Thus:
ϕ(x)

x2 =
x√
2π

∫ 1

0
u(1−u)

(
e−

x2u2
2 − e

x2
2 (2−u)2

)
du.

(See [92] for a study and the graph of this function.)

A.3 Some Connexions with Dupire’s Formula

A.3.1 Dupire’s Formula (see [20, F])

Let (Mt , t ≥ 0) be the solution of the SDE:

Mt = x+
∫ t

0
σ(s,Ms)dBs (A.23)

where (Bs,s ≥ 0) is a Brownian motion started at 0. Let, for every K and t:

Π(t,K) := E
[
(K −Mt)+

]
. (A.24)

Under some regularity and slow growth conditions on the function Π and its deriva-
tives, B. Dupire shows that the knowledge of Π makes it possible to determine σ .
More precisely, the following formulae hold:

1
2
σ2(t,K)

∂ 2Π
∂K2 (t,K) =

∂Π
∂ t

(t,K) (A.25)

i.e.

σ(t,K) =

(
2 ∂Π

∂ t (t,K)
∂ 2Π
∂K2 (t,K)

) 1
2

. (A.26)

A.3.2 Extension of Dupire’s Formula to a General Martingale in
M 0,c

+

Let (Mt , t ≥ 0) denote a positive, continuous martingale converging towards 0 when
t →∞ and such that M0 is a.s. constant. We assume that the hypotheses of Subsection
2.4.1 are satisfied:

• (mt(x),x ≥ 0) denotes the density of the r.v. Mt ,
• d〈M〉t = σ2

t dt and θt(x) := E
[
σ2

t |Mt = x
]
,

the functions m and θ being continuous in both variables. Let us define:

Π(t,K) := E
[
(K −Mt)+

]
and C(t,K) := E

[
(Mt −K)+

]
. (A.27)
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Theorem A.3. The following quantities are equal:

i)
∂Π
∂ t

(t,K) =
1
2
θt(K)

∂ 2Π
∂K2 (t,K) = K fGK (t) (A.28)

ii)
∂C
∂ t

(t,K) =
1
2
θt(K)

∂ 2C
∂K2 (t,K) = K fGK (t) (A.29)

where fGK denotes the density function of the r.v. GK := sup{t ≥ 0; Mt = K}.

Proof. We first prove (A.28)
We have:

Π(t,K) = E
[
(K −Mt)+

]
=

∫ K

0
P(Mt ≤ x)dx.

Thus:
∂ 2Π
∂K2 (t,K) = mt(K). (A.30)

On the other hand, from Tanaka’s formula:

E
[
(K −Mt)+

]
= (K −M0)+ +

1
2

E
[
LK

t

]
(A.31)

where (LK
t , t ≥ 0) denotes the local time of (Mt , t ≥ 0) at level K. Thus:

∂Π
∂ t

(t,K) =
1
2
∂
∂ t

E
[
LK

t

]
=

1
2
θt(K)mt(K) (from (2.44)). (A.32)

Comparing (A.30) and (A.32), we obtain the first part of (A.28).
The second part of this equality relies on Theorem 2.1, formula (2.7):

Π(t,K) = KP(GK ≤ t) . (A.33)

Hence:
∂Π
∂ t

(t,K) = K fGK (t). This proves (A.28).

Then, (A.29) follows immediately from (A.28) since:

E [Mt −K] = E [M0 −K] = E
[
(Mt −K)+

]
−E

[
(Mt −K)−

]

= C(t,K)−Π(t,K), (A.34)

thus:
∂C
∂ t

=
∂Π
∂ t

and
∂ 2C
∂K2 =

∂ 2Π
∂K2 .

Observe that the hypothesis: (Mt , t ≥ 0) is a true martingale is necessary to obtain
(A.34). Moreover, the analogue of formula (A.31) for the call:

E
[
(Mt −K)+

]
= (M0 −K)+ +

1
2

E
[
LK

t

]

is only correct if (Mt , t ≥ 0) is a true martingale. When it is a strict local martingale,
a correction term must be added on the right hand side of the preceding formula.
This is the content of the paper [39, F].

��
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A.3.3 A Formula Relative to Lévy Processes Without Positive
Jumps

We shall now use the formulae of Theorem A.3 to obtain an interesting formula
relative to Lévy processes without positive jumps.

Let (Xt , t ≥ 0) be a Lévy process without positive jumps; then it admits exponen-
tial moments, and we have:

E

[
eλXt

]
:= exp(tψ(λ )) . (A.35)

Let (Mt , t ≥ 0) be the martingale defined by:

(Mt := exp(Xt − tψ(1)) , t ≥ 0). (A.36)

We assume that Mt −−→
t→∞

0 a.s., which is satisfied for instance if ψ ′(0)−ψ ′(1) < 0.

This martingale having no positive jumps, we can apply the results of Chapter 2
and of Theorem A.3. We now slightly modify our notation, and assume that all the
functions (of two variables) that appear below are continuous. We denote:

• (m(t,x),x ≥ 0) the density of the r.v. Mt ,

• (l(t,x), t ≥ 0) the density of G
(M)
x := sup{t ≥ 0; Mt = x},

(i.e. l(t,x) = fGx(t) with the notation of the previous subsection),
• ( f (t,x),x ≥ 0) the density of Xt − tψ(1),
• (τ(t,x), t ≥ 0) the density of Tx := inf{t ≥ 0; Xt − tψ(1) ≥ x}

= inf{t ≥ 0; Mt ≥ ex},
• (γ(t,x), t ≥ 0) the density of Gx := sup{t ≥ 0; Xt − tψ(1) ≥ x}

= sup{t ≥ 0; Mt ≥ ex}.

Theorem A.4. We have, for all t,x ≥ 0:

∂ f
∂ t

(t,x) =
∂ 2γ
∂x2 (t,x)+

∂γ
∂x

(t,x) =
1
x

(
τ(t,x)+ t

∂τ
∂ t

(t,x)
)

. (A.37)

Proof.
i) It follows from (A.30) and (A.33) that:

∂ 2Π
∂x2 (t,x) = m(t,x) =

∂ 2

∂x2

(
x
∫ t

0
l(u,x)du

)
,

hence, on differentiating with respect to t:

∂m
∂ t

(t,x) =
∂ 2

∂x2 (xl(t,x)) . (A.38)

ii) Since G
(M)
x = Glog(x), we have:

l(t,x) = γ(t, log(x)), (A.39)
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and, since Mt = exp(Xt − tψ(1)):

m(t,x) =
1
x

f (t, log(x)). (A.40)

Furthermore, it follows from Zolotarev’s formula, since (Xt −tψ(1), t ≥ 0) is a Lévy
process without positive jumps (see [13], or [8] p.190) that:

tτ(t,x) = x f (t,x) (t ≥ 0, x > 0). (A.41)

Hence, from (A.38), (A.40) and (A.41):

∂m
∂ t

(t,x) =
∂
∂ t

(
1
x

f (t, log(x))
)

=
∂
∂ t

(
t

x log(x)
τ(t, log(x))

)

=
∂ 2

∂x2 {xγ(t, log(x))} (A.42)

which reduces to:

1
log(x)

τ(t, log(x))+
t

log(x)
∂τ
∂ t

(t, log(x)) =
∂γ
∂x

(t, log(x))+
∂ 2γ
∂x2 (t, log(x)),

i.e., replacing log(x) by x:

τ(t,x)+ t
∂τ
∂ t

(t,x) = x

(
∂ 2γ
∂x2 (t,x)+

∂γ
∂x

(t,x)
)

. (A.43)

This is the second part of (A.37).

iii) From (A.42), we have:

1
x
∂ f
∂ t

(t, log(x)) =
∂
∂x

(
∂γ
∂x

(t, log(x))+ γ(t, log(x))
)

=
1
x

(
∂ 2γ
∂x2 (t, log(x))+

∂γ
∂x

(t, log(x))
)

which, after replacing log(x) by x, leads to:

∂ f
∂ t

(t,x) =
∂ 2γ
∂x2 (t,x)+

∂γ
∂x

(t,x). (A.44)

This is the first part of (A.37).
��

Note that (A.37) gives a relationship between the densities of (Yt := Xt − tψ(1), t ≥
0), Tx = inf{t ≥ 0; Yt ≥ x} and Gx = sup{t ≥ 0; Yt ≥ x}, and that this relationship no
longer makes use of Π(t,K) or C(t,K), although it was obtained (partially) thanks

to the formula Π(t,K) = E [(K −Mt)+] = KP

(
G

(M)
K ≤ t

)
.
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(A.37) can also be seen, in some way, as a counterpart for Lévy processes of the
formulae (8.74) and (8.87) obtained in the framework of positive linear diffusions
starting from 0. Indeed, assuming (to simplify) that m[0,+∞[= +∞ and denoting
fGx

the density function of Gx := sup{t ≥ 0; Xt = x} under P0, we have proven in
Theorem 8.3 and Proposition 8.9 (with the notations of Section 8.5) that:

− ∂
∂ t

q(t,0,x)ρ(x) =
∂
∂x

fGx
(t) =

∂
∂x

f̂x0(t),

a formula which gives a relationship between the densities of (Xt , t ≥ 0) under P0,
(Gx,x ≥ 0) under P0 and T̂0 under P̂x.



Appendix B
Bessel Functions and Bessel Processes

B.1 Bessel Functions (see [46], p. 108-136)

Let Iν denote the modified Bessel function defined by:

Iν(z) =
∞

∑
k=0

(z/2)ν+2k

Γ (k +1)Γ (k +ν +1)
z ∈ C\]−∞,0[, (B.1)

and Kν the McDonald function defined, for ν /∈ Z, by:

Kν(z) =
π
2

I−ν(z)− Iν(z)
sin(νπ)

z ∈ C\]−∞,0[, (B.2)

and for ν = n ∈ Z by:

Kn(z) = lim
ν→n
ν �=n

Kν(z). (B.3)

These functions are analytic functions in z for z ∈ C\]−∞,0[ and entire functions
in ν. It is known that Iν and Kν generate the set of solutions of the linear differential
equation:

u′′ +
1
x

u′ −
(

1+
ν2

x2

)
u = 0,

an equation which is often encountered in mathematical physics. They also appear
in many computations of probability laws. The derivatives of these functions are
seen to satisfy some simple recurrence relations:

∂
∂ z

[zνKν(z)] = −zνKν−1(z)
∂
∂ z

[
z−νKν(z)

]
= −z−νKν+1(z) (B.4)

∂
∂ z

[zν Iν(z)] = zν Iν−1(z)
∂
∂ z

[
z−νIν(z)

]
= z−νIν+1(z) (B.5)
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Note moreover that, I−n = In for n ∈ N (since the first n terms of the expansion
vanish if ν = −n), Kν = K−ν for ν ∈ R, and that these functions simplify when
ν = ±1/2:

I−1/2(z) =

√
2
πz

cosh(z), I1/2(z) =

√
2
πz

sinh(z) (B.6)

and

K−1/2(z) = K1/2(z) =
√

π
2z

e−z. (B.7)

There exist also some useful integral representations for Kν . For instance, for x > 0
and ν ∈ C:

Kν(x) =
∫ ∞

0
e−xcosh(u) cosh(νu)du (B.8)

or, after a change of variable,

Kν(x) =
1
2

( x
2

)ν
∫ ∞

0
t−ν−1e−t−x2/4tdt. (B.9)

Finally, looking at Iν and Kν as functions from R
+ to R, it is seen that, for x > 0 and

ν ≥ 0, Iν is a positive increasing function while Kν is a positive decreasing function.
We have the following equivalents when x → 0:

Iν(x) ∼
x→0

xν

2νΓ (ν +1)
(B.10)

Kν(x) ∼
x→0

2ν−1Γ (ν)
xν

(B.11)

K0(x) ∼
x→0

log

(
2
x

)
, (B.12)

and the asymptotic formulae when x → ∞:

Iν(x) ∼
x→∞

ex
√

2πx
(B.13)

Kν(x) ∼
x→∞

√
π
2x

e−x. (B.14)

Clearly, neither function has any strictly positive zeros.
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B.2 Squared Bessel Processes (see [70] Chapter XI, or [26])

B.2.1 Definition of Squared Bessel Processes

Definition B.1. For every δ ≥ 0 and x ≥ 0, the unique (strong) solution of the equa-
tion

Zt = x+2
∫ t

0

√
ZsdBs +δ t, Zt ≥ 0 (B.15)

where (Bt , t ≥ 0) is a standard Brownian motion, is called the squared Bessel process
of dimension δ started at x, and is denoted BESQ δ (x). The real ν := δ

2 −1 is called
the index of the process BESQδ (x).

For an integer dimension δ ∈ N, (Zt , t ≥ 0) may be realized as the square of the
Euclidean norm of a δ -dimensional Brownian motion. Note immediately that a
straightforward change of variable in equation (B.15) gives a scaling property of
BESQ, namely: if Z is a BESQ δ (x), then, for every c > 0, the process (c−1Zct , t ≥ 0)
is a BESQ δ (x/c).

Denoting by Q
δ
x the law of (Zt , t ≥ 0), solution of (B.15) on the canonical space

C (R+,R+) (where (Xt , t ≥ 0) is taken as the coordinate process), there is the con-
volution property:

Q
δ
x ∗Q

δ ′
x′ = Q

δ+δ ′
x+x′ (B.16)

which holds for all x,x′,δ ,δ ′ ≥ 0 (see Shiga-Watanabe [84]); in other terms,
adding two independent BESQ processes yields another BESQ process, whose
starting point (resp. dimension) is the sum of the starting points (resp. dimen-
sions). It follows from (B.16) that for any positive measure μ(du) on R

+ such that∫
(1+u)μ(du) < ∞, then, if X (μ) :=

∫
Xuμ(du),

Q
δ
x

[
exp

(
−1

2
X (μ)

)]
= (Aμ)δ (Bμ)x (B.17)

with Aμ =
√

Φμ(∞) and Bμ := exp(Φ ′
μ(0+)) for Φμ the unique decreasing solution

of the Sturm-Liouville equation: Φ ′′ = Φμ ;Φ(0) = 1. (see [70], Appendix §8).
(B.17) may be considered as the (generalized) Laplace transform (with argument μ)
of the probability Q

δ
x . Furthermore, for any fixed δ and x, Q

δ
x is infinitely divisible,

and its Lévy Khintchine representation is given by:

Q
δ
x

[
exp

(
−1

2
X (μ)

)]
= exp

(
−
∫

C (R+,R+)
Mδ

x (dω)
(

1− e−
1
2 X(μ)(ω)

))
(B.18)

where Mδ
x = xM +δN for M and N two σ -finite measures on C (R+,R+) which are

described in details in Pitman-Yor [66], Revuz-Yor [70], . . .
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B.2.2 BESQ as a Diffusion

From (B.15), it is seen that BESQ δ is a linear diffusion, whose infinitesimal gener-
ator Γ equals on C 2

K(]0,+∞[) the operator:

Γ (δ ) := 2x
∂ 2

∂x2 +δ
∂
∂x

.

Its speed measure m(dx) is the measure whose density with respect to the Lebesgue
measure is given by:

xν

2ν
for ν > 0,

1
2

for ν = 0, − xν

2ν
for ν < 0,

where ν := δ/2−1. Its scale function s is the function:

−x−ν for ν > 0, log(x) for ν = 0, x−ν for ν < 0.

Furthermore, taking μ(du) = λεt(du) in (B.17), where εt is the Dirac measure at t,
we get the Laplace transform of the transition density function of BESQ δ :

Q
δ
x

[
e−λXt

]
= (1+2λ t)−

δ
2 exp

(
− λx

1+2λ t

)
.

By inverting this Laplace transform, it follows that, for δ > 0, the semi-group of
BESQ δ has a density in y equal to:

qδt (x,y) =
1
2t

(y
x

)ν/2
exp

(
−x+ y

2t

)
Iν

(√
xy

t

)
(t > 0, x,y > 0), (B.19)

where Iν is the modified Bessel function with index ν.
More generally, replacing μ by λμ (for any scalar λ ≥ 0) in (B.17) yields the

Laplace transform of X (μ), provided the function Φλμ is known explicitly, which
is the case for instance when μ(dt) = atα1{t≤K}dt + bεK(dt), and in many other

cases. Consequently, several quantities associated to BESQ δ , such as first hitting
times (see Kent [41]) or distributions of last passage times (see Pitman-Yor [65])
may be expressed explicitly in terms of Bessel functions (see Chapter 7, Section 7.2
of the present monograph).

B.2.3 Brownian Local Times and BESQ Processes

The Ray-Knight theorems for Brownian local times (Ly
t ; y ∈ R, t ≥ 0) express the

laws of (Ly
T ,y ∈ R) for some very particular stopping times in terms of certain Q

δ
x ;

namely:
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• if T = Ta is the first hitting time of level a of some Brownian motion, and

(Lz
Ta

,z ∈ R) its local times up to time Ta then: (Z(a)
y := La−y

Ta
,y ≥ 0) satisfies

the SDE:

Z(a)
y = 2

∫ y

0

√
Z(a)

z dγz +2(y∧a) (B.20)

for some Brownian motion (γz,z ≥ 0) indexed by “space”. In particular:

i) Conditionally on L0
Ta

, the processes (La−x
Ta

,0 ≤ x ≤ a) and (La−x
Ta

,x ≥ a) are
independent,

ii) (La−x
Ta

,0 ≤ x ≤ a) is distributed as BESQ 2(0),
iii) Conditionally on L0

Ta
= l, (L−x

Ta
,x ≥ 0) is distributed as BESQ 0(l).

• if T = τl is the right-continuous inverse of the local time at 0: τl := inf{t ≥
0;Lt > l}, then, (Ly

τl
,y ≥ 0) and (L−y

τl
,y ≥ 0) are two independent BESQ 0(l).

B.3 Bessel Processes (see [70] Chapter XI, or [26])

B.3.1 Definition

Definition B.2. For δ ≥ 0, x ≥ 0, the square root of BESQ δ (x2) is called the Bessel
process of dimension δ started at x, and is denoted BES δ (x). As for BESQ δ , we

call ν := δ
2 − 1 the index of BES δ , and shall denote by P

(ν)
x , the law of the Bessel

process of index ν started at x.

The function x 
→
√

x being a homeomorphism, BES δ is still a linear diffusion tak-
ing positive values. Its generator is given by:

Λ (δ ) :=
1
2
∂ 2

∂x2 +
δ −1

2x
∂
∂x

(
=

1
2
∂ 2

∂x2 +
2ν +1

2x
∂
∂x

)

on the set of C 2(R+,R+) functions f such that lim
x→0

x2ν+1 f ′(x) = 0. As a result, its

scale function may be chosen equal to:

−x−2ν for ν > 0, 2log(x) for ν = 0, x−2ν for ν < 0,

and with this choice, its speed measure is given by the densities (with respect to the
Lebesgue measure):

x2ν+1

ν
for ν > 0, x for ν = 0, −x2ν+1

ν
for ν < 0.

Moreover, for δ > 0, a straightforward change of variable in relation (B.19) gives
the density of the semi-group of BES δ :
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pδt (x,y) =
1
t

(y
x

)ν
yexp

(
−x2 + y2

2t

)
Iν
(xy

t

)
(t > 0, x,y > 0). (B.21)

Note also that for integer dimension δ ∈ N, BES δ can be realized as the modulus
of a δ -dimensional Brownian motion. Moreover, the scaling property of BESQ δ

makes it possible to derive a similar scaling property for Bessel processes, namely:
if R is a BES δ (x), then, for every c > 0, the process (cRt/c2 , t ≥ 0) is a BES δ (cx).

B.3.2 An Implicit Representation in Terms of Geometric Brownian
Motions

J. Lamperti [45] showed a one-to-one correspondence between Lévy processes
(ξt , t ≥ 0) and semi-stable Markov processes (i.e. strong Markov processes on
(0,+∞) which satisfy a scaling property) (Σu,u ≥ 0) via the (implicit) formula:

exp(ξt) = Σ∫ t
0 dsexp(ξs) (t ≥ 0). (B.22)

In the particular case where (ξt := 2(Bt +νt), t ≥ 0), formula (B.22) becomes:

exp(2(Bt +νt)) = X (ν)
(∫ t

0
dsexp(2(Bs +νs))

)
(t ≥ 0) (B.23)

where (X (ν)
u ,u ≥ 0) denotes a squared Bessel process with index ν started at 1.

Taking the square root of both sides, (B.23) may be rewritten:

exp(Bt +νt) = R(ν)
(∫ t

0
dsexp(2(Bs +νs))

)
(t ≥ 0) (B.24)

with (R(ν)
u ,u ≥ 0) a Bessel process with index ν started at 1. Note that more gener-

ally, thanks to the scaling property of Brownian motion, we have for every a ∈ R:

exp(aBt +νt) = R(ν/a2)
(

a2
∫ t

0
dsexp(2(aBs +νs))

)
(t ≥ 0). (B.25)

Absolute continuity relationships between the laws of different BES processes may
be derived from (B.24), combined with the Cameron-Martin relationships (1.5) be-
tween the laws of (Bt +νt, t ≥ 0) and (Bt , t ≥ 0). Precisely, one obtains, for ν ≥ 0:

P
(ν)
x|Ru

=
(

Ru

x

)ν

exp

(
−ν2

2

∫ u

0

ds
R2

s

)
·P(0)

x|Ru
(B.26)

where Ru := σ{Rs,s ≤ u} is the natural filtration of R, and ν = δ
2 −1. The combi-

nation of (B.24) and (B.26) may be used to derive results about (Bt +νt, t ≥ 0) from
results about the BES δ (x) process (and vice-versa). In particular, the law of
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A(ν)
Tλ

:=
∫ Tλ

0
dsexp(2(Bs +νs))

where Tλ denotes an independent exponential time, was derived in ([98], Paper 2)
from this combination.

Other relations about Bessel processes, such as resolvent kernels, Bessel realiza-
tions of Hartman-Watson laws, or the Hirsch-Song formula are given in Chapter 7,
Section 7.2.
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101–109 (1988)

11. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political
Economy 81, 637–654 (1973)

12. Borodin, A.N., Salminen, P.: Handbook of Brownian motion—facts and formulae, second edn.
Probability and its Applications. Birkhäuser Verlag, Basel (2002)
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compacts quelconques. Ann. Inst. Fourier (Grenoble) 13, 139–154 (1963)
17. Ciesielski, Z., Taylor, S.J.: First passage times and sojourn times for Brownian motion in space

and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103, 434–450
(1962)

C. Profeta et al., Option Prices as Probabilities, Springer Finance,
DOI 10.1007/978-3-642-10395-7, © Springer-Verlag Berlin Heidelberg 2010

259

http://dx.doi.org/10.1007/978-3-642-10395-7


260 References

18. De Meyer, B., Roynette, B., Vallois, P., Yor, M.: On independent times and positions for Brow-
nian motions. Rev. Mat. Iberoamericana 18(3), 541–586 (2002)

19. Donati-Martin, C., Roynette, B., Vallois, P., Yor, M.: On constants related to the choice of
the local time at 0, and the corresponding Itô measure for Bessel processes with dimension
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Lecture Notes in Math., vol. 1372, pp. 88–130. Springer, Berlin (1989)
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47. Pitman, J., Yor, M.: Itô’s excursion theory and its applications. Jpn. J. Math. 2(1), 83–96
(2007)

48. Rosen, J., Yor, M.: Tanaka formulae and renormalization for triple intersections of Brownian
motion in the plane. Ann. Probab. 19(1), 142–159 (1991)
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