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Preface to the Third Edition

First of all we would like to thank all those who showed a steady, extraordinary in-
terest in this book about extreme value analysis. This gave the motivation, courage
and opportunity to provide an update of the book and to work out new topics,
which primarily focus on dependencies, conditional analysis based on serial and
covariate information, predictions, and the multivariate modeling of extremes.

As mentioned by Chris Heyde1 while reviewing the second edition: “There is a
considerable statistical content in the book, quite apart from its focus on extremes.
... The authors are seeking, quite properly, to embed the analysis of extreme values
into the mainstream of applied statistical investigations.” This strategy has been
continued and strengthened in the new edition.

With each new edition there are complex questions as well as complex solu-
tions. In that context, the cooperation with distinguished experts becomes more
and more important.

Parts I–III about the basic extreme value methodology remained unchanged
to some larger extent, yet notable are new or extended sections about

• Testing Extreme Value Conditions with Applications related to goodness–of–
fit tests, co–authored by J. Hüsler and D. Li;

• The Log–Pareto Model and other Pareto–Extensions with a view towards
super–heavy tailed distributions;

• An Overview of Reduced–Bias Estimation, an approach related to the jack-
knife method, co–authored by M.I. Gomes;

• The Spectral Decomposition Methodology which reduces multivariate ques-
tions to univariate ones to some extent,

• About Tail Independence with testing tail dependence against certain degrees
of tail independence, co–authored by M. Frick.

1Heyde, C. (2002). Book Review: Statistical Analysis ... Australian & New Zealand J.
Statist. 44, 247–248.
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Of central importance are the new chapters entitled

• Extreme Value Statistics of Dependent Random Variables co–authored by
H. Drees;

• Conditional Extremal Analysis which provides the necessary technical sup-
port for certain applications;

• Elliptical and Related Distributions with special emphasis on multivariate
Student and sum–stable distributions.

Other new topics are collected within

Part IV: Topics in Hydrology and Environmental Sciences;

Part V: Topics in Finance and Insurance,

Part VI: Topics in Material and Life Sciences.

Within these parts one may find

• a new chapter about Environmental Sciences, co–authored by R.W. Katz,
with a detailed description of the concepts of cycles, trends and covariates;

• a new section about Predicting the Serial Conditional VaR, co–authored by
A. Kozek and C.S. Wehn, including remarks about the model validation;

• a new section about Stereology of Extremes, co–authored by E. Kaufmann,
with remarks about modeling and estimation.

The entire text has been thoroughly updated and rearranged to meet the
requirements. The new results and topics are elaborated on about 120 pages.

The book includes the statistical MS Windows application Academic Xtremes
4.1 and StatPascal on CD. The STABLE package for sum–stable distributions is
no longer included. The major difference of the academic version compared to
the professional one is a restriction of the executable sample sizes. Consequently,
not all of the numerical examples in the book can be executed with the academic
version.

To keep the book at a reasonable size, the former sections Implementation in
Xtremes and the separate Case Studies in Extreme Value Analysis were omitted.
The Appendix about Xtremes and StatPascal of the second edition is considerably
shortened. The full description of Xtremes and StatPascal—also including the
former sections Implementation in Xtremes—may be found in the Xtremes User
Manual which is enclosed as a pdf–file on the CD.

It is a pleasure to thank Th. Hempfling who showed great efficiency in editing
this book.

Siegen, Germany Rolf–Dieter Reiss
Michael Thomas
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With the second edition we continue a project concerning extreme value analysis
in combination with the interactive statistical software Xtremes which started
in the late 1980’s. An early publication was Chapter 6 together with the User’s
Guide to Xtremes in [16], besides tutorials for the statistical software Xtremes in
1993 and 1995 which had a wider circulation within the extreme value community.
These efforts culminated in the first edition of the present book which has found
a favorable reception from the side of practitioners and in academic circles.

The new highlights of this extended edition, elaborated on about 160 pages,
include

• the statistical modeling of tails in conjunction with the global modeling of
distributions with special emphasis laid on heavy–tailed distributions such
as sum–stable and Student distributions;

• the Bayesian methodology with applications to regional flood frequency anal-
ysis and credibility estimation in reinsurance business;

• von Mises type upper bounds on remainder terms in the exceedance process
approximation and a thorough theoretical and practical treatment of the
phenomenon of penultimate distributions;

• a section about conditional extremes;

• an extension of the chapter about multivariate extreme value models, espe-
cially for the Gumbel–McFadden model with an application to the theory of
economic choice behavior;

• a chapter about the bivariate peaks–over–threshold method;

• risk assessment of financial assets and portfolios in the presence of fat and
heavy–tailed distributions by means of the Value–at–Risk (VaR);

• VaR under the Black–Scholes pricing and for general derivative contracts;

• sections about corrosion analysis and oldest–old questions.
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The “analysis of extreme values must be embedded in various other ap-
proaches of main stream statistics” as mentioned in the first edition. In that con-
text, M. Ivette Gomes2 remarks “its scope is much broader, and I would rather
consider it a welcome addition to the reference works in applied statistics ... though
there is a unifying basis provided by extreme value theory.” For the second edition,
it is our declared aim to enforce this characteristic of providing a broad statistical
background in the book.

In Part V there is a continuation of the successful program concerning self–
contained “Case Studies in Extreme Value Analysis” of other authors. The case
studies in the first edition are replaced by new ones with emphasis laid on envi-
ronmental extreme value statistics. We thank Humberto Vaquera, José Villaseñor,
Stuart Coles, Jürg Hüsler, Daniel Dietrich, Dietmar Pfeifer, Pieter van Gelder and
Dan Lungu for the new contributions.

It was a pleasure to cooperate with several distinguished experts in vari-
ous fields, namely, with John Nolan (sum–stable distributions), Edgar Kaufmann
(rates of convergence and longevity of humans), Michael Falk (multivariate peaks–
over–threshold), Jon Hosking (flood frequency analysis), Michael Radtke (insur-
ance) and Casper de Vries and Silvia Caserta (finance).

The present statistical software environment is much more than an update of
Xtremes, Version 2.1. As a consequence of our intention to establish a book about
applied statistics—with a unifying basis provided by extreme value statistics—the
Xtremes package becomes more and more applicable to various statistical fields.
Further introductory remarks may be found in

• Xtremes: Overview and the Hierarchy

• Xtremes and StatPascal Within the Computing Environment RiskTec

after the Prefaces and at the beginning of the Appendix.
We would like to thank colleagues, readers and users of the first edition and

Xtremes for their comments, questions and suggestions; among others, Claudio
Baraldi, Arthur Böshans, Holger Drees, Harry Harper, Sylvia Haßmann, Claudia
Klüppelberg, Elson Lee, Frank Marohn, Alexander McNeil, Richard Smith, Q.J.
Wang, Carsten Wehn.

Siegen, Germany Rolf–Dieter Reiss
Michael Thomas

2Gomes, M.I. (1999). Book Review: Statistical Analysis ... Extremes 2, 111–113.
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This textbook deals with the statistical modeling and analysis of extremes. The
restriction of the statistical analysis to this special field is justified by the fact
that the extreme part of the sample can be of outstanding importance. It may
exhibit a larger risk potential of random scenery such as floods, hurricanes, high
concentration of air pollutants, extreme claim sizes, price shocks, incomes, life
spans, etc. The fact that the likelihood of a future catastrophe is not negligible
may initiate reactions which will help to prevent a greater disaster. Less spectacular
yet important, the statistical insight gained from extremes can be decisive in daily
business life or for the solution to ecological or technical problems.

Although extreme value analysis has its peculiarities, it cannot be looked at
in an isolated manner. Therefore, the analysis of extreme values must be embed-
ded in other various approaches of main stream statistics such as data analysis,
nonparametric curve estimation, survival analysis, time series analysis, regression
analysis, robust statistics and parametric inference.

The book is divided into

Part I: Modeling and Data Analysis;

Part II: Statistical Inference in Parametric Models;

Part III: Elements of Multivariate Analysis;

Part IV: Topics in Insurance, Finance and Hydrology;

Part V: Case Studies in Extreme Value Analysis,

Appendix: An Introduction to XTREMES.

Whenever problems involving extreme values arise, statisticians in many
fields of modern science and in engineering or the insurance industry may profitably
employ this textbook and the included software system XTREMES. This book is
helpful for various teaching purposes at colleges and universities on the undergrad-
uate and graduate levels. In larger parts of the book, it is merely presumed that
the reader has some knowledge of basic statistics. Yet more and more statistical
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prerequisites are needed in the course of reading this book. Several paragraphs and
subsections about statistical concepts are intended to fill gaps or may be regarded
as shorter refresher units. Parts I and II (with the exception of Chapter 6) are
elementary yet basic for the statistical analysis of extreme values. It is likely that
a more profound statistical background is helpful for a thorough understanding of
the advanced topics in Chapter 6 and the multivariate analysis in Part III.

Part I sets out the statistical background required for the modeling of extreme
values. The basic parametric models are introduced and theoretically justified in
Chapter 1. The nonparametric tools introduced in Chapter 2 are most impor-
tant for our approach to analyzing extreme values. In this context the included
statistical software system is helpful to

• get a first insight into the data by means of visualizations;

• employ a data–based parametric modeling and assess the adequacy;

• draw statistical conclusions in a subjective manner;

• carry out the statistical inference in an objective (automatic) manner, and

• control results of parametric inference by nonparametric procedures.

Part II deals with statistical procedures in the parametric extreme value (EV)
and generalized Pareto (GP) models. Yet, at the beginning, we start with the sta-
tistical inference in normal and Poisson models (Chapter 3) in order to give an
outline of our approach to statistical questions within a setting which is familiar
to a larger readership. From our viewpoint, the Gaussian model is merely relevant
for the center of a distribution and, thus, not for extreme values. Chapters 4 and
5 develop the statistical methodology that is necessary for dealing with extremes.
Applied questions are addressed in various examples. These examples also include
critical examinations of case studies in publications which are occasionally very
ambitious. We will approach extreme value analysis from a practical viewpoint,
yet references are given to the theoretical background (as developed in the books
[24], [20], [39], [42] and [16]). Applied contributions to extreme value analysis can
be found in several journals. It is recommended to have a look at the J. Hydrology,
Insurance: Mathematics and Economics, J. Econometrics, J. Royal Statistical So-
ciety B and, particularly, at the forthcoming journal Extremes, Statistical Theory
and Applications in Science, Engineering and Economics. Other valuable sources
for applied work are the recent Gaithersburg proceeding volumes [15] and the
hydrology proceedings [13].

Part III contains supplementary material about the analysis of multivariate
data and auxiliary results for multivariate distributions applied in Part II. Initially,
a textbook for univariate extremes was scheduled. Yet, it is evident that a time–
scale must be included in conjunction with time series phenomena, for example,
exceedance times and exceedances are jointly visualized in a scatterplot. This was
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our first step towards multivariate data. Further extensions of our initial frame-
work followed so that, finally, we decided to include some procedures concerning
multivariate extremes.

We also want to learn in which manner the methodology provided by the pre-
vious parts can be made applicable in certain areas. Part IV deals with important
questions in

• insurance (coauthored by Michael Radtke),

• finance (coauthored by Casper G. de Vries),

• hydrology.

We hope that the explanations are also of interest for non–specialists.

Part IV has a certain continuation in Part V which contains several case
studies in extreme value analysis. The case studies are written in the form of self–
contained articles, which facilitated the inclusion of studies of other authors. One
basic requirement for any case study is that the underlying data must be publicly
accessible because, otherwise, the hypotheses and conclusions of an analyst can-
not be critically examined and further improved by others, which would strongly
violate scientific principles. We would like to thank Ana M. Ferreira, Edgar Kauf-
mann, Cornelia Hillgärtner, Tailen Hsing and Jürg Hüsler for their contributions.

The appendix is a manual for the included statistical software XTREMES. The
menu–driven part of XTREMES allows us to surf through data sets and statistical
models and reduces the “start up” costs of working in this area. For special prob-
lems one may employ the integrated programming language XPL. A short overview
of the hierarchy of XTREMES is given after this preface. We believe that an expe-
rienced reader can partially handle XTREMES after having read the overview. A
further link between the book and the statistical software is provided by sections
entitled “Implementation in XTREMES” at the end of the chapters.

We will not make any attempt to give exhaustive references to the extreme
value literature. Several footnotes provide hints to papers and books which are
important from the historical viewpoint or may be helpful to get a more thorough
understanding of special questions. The bibliography merely consists of references
to monographs and proceeding volumes that are suggested for further reading or
cited several times within the text.

We are grateful to several colleagues for valuable suggestions and stimu-
lating discussions, especially, Sandor Csörgő, Richard A. Davis, Paul Embrechts,
Michael Falk, Laurens de Haan, Jürg Hüsler, Edgar Kaufmann, Alex Koning, Ross
Leadbetter, Wolfgang Merzenich, Wolfgang Wefelmeyer. We would like to express
particular gratitude to the coauthors of Chapters 9 and 10 who had a constructive
impact on our work. Very special thanks are due to Sylvia Haßmann for collabora-
tion on the MS–DOS version of XTREMES (documented in [16]) and for assistance
in writing a first draft of Section 6.1.
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Several generations of students were exposed to the development of this book
and the included software system; we acknowledge warmly the assistance of Si-
mon Budig (final version of the UserFormula facility), Andreas Heimel (help sys-
tem), Jens Olejak (minimum distance estimators), Claudia Schmidt (expert for
the Moselle data) and Karsten Tambor (previous version of the multivariate mode
of XTREMES). The technical assistance of Sarah Schultz and Maximilian Reiss was
very helpful.

Part of the work of the first author was done as a guest professor at the
Tinbergen Institute, Rotterdam, and visiting the Center for Stochastic Processes,
Chapel Hill. Thanks are due to Laurens de Haan and Ross Leadbetter for their
hospitality. The stimulating atmospheres of these institutions had a greater impact
on the course of this work. The stay at the Tinbergen Institute also enabled the
cooperation with Casper de Vries.

Siegen, Germany Rolf–Dieter Reiss
Michael Thomas
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List of Special Symbols

F distribution function (df); likewise we use symbols G, W etc. for dfs

Fµ,σ df F with added location and scale parameters µ and σ; p. 16

F survivor function of df F ; pages 11 and 266

f density of df F with
∫ x

∞ f(y) dy = F (x); likewise, we use g, w etc.

F−1 quantile function (qf) pertaining to the df F ; p. 40

F [u] exceedance df at u (truncation of df F left of u); p. 12

F (u) excess df at u (residual life df at age u) pertaining to the df F ; p. 49

Gi,α standard extreme value (EV) df for maximum (ith submodel); p. 15
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Fm mth power of df F (with Fm(t) := (F (t))m); p. 10
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Modeling and Data Analysis



Chapter 1

Parametric Modeling

Chapter 1 is basic for the understanding of the main subjects treated in this book.
It is assumed that the given data are generated according to a random mechanism
that can be linked to some parametric statistical model.

In this chapter, the parametric models will be justified by means of mathe-
matical arguments, namely by limit theorems. In this manner, extreme value (EV)
and generalized Pareto (GP) models are introduced that are central for the sta-
tistical analysis of maxima or minima and of exceedances over a higher or lower
threshold, see Sections 1.3 and 1.4. Yet, we do not forget to mention other distri-
butions used in practice for the modeling of extremes. In Section 1.5 we especially
deal with fat and heavy–tailed distributions such as, e.g., log–normal and Student
distributions.

1.1 Applications of Extreme Value Analysis

At the beginning, the relevance of extreme value analysis to flood frequency analy-
sis, environmental sciences, finance and insurance (these areas are especially dealt
with in Chapters 14–17) and other important topics is indicated. We start with
flood frequency analysis primarily because of historical reasons.

Flood Frequency Analysis

The ultimate interest of flood frequency analysis is the estimation of the T –year
flood discharge (water level), which is the discharge once exceeded on the average in
a period of T years. Usually, the time span of 100 years is taken, yet the estimation
is carried out on the basis of flood discharges for a shorter period. Consequences
of floods exceeding such a level can be disastrous. For example, 100–year flood
levels were exceeded by the great American flood of 1993 that caused widespread
devastations in the American Midwest (as pointed out in [13], Preface).
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Under standard conditions, the T –year level is a higher quantile of the distri-
bution of discharges. Thus, one is primarily interested in a parameter determined
by the upper tail of the distribution. Because flood discharges of such a magnitude
were rarely observed or are not recorded at all, a parametric statistical modeling is
necessary to capture relevant tail probabilities. A careful checking of the validity
of the parametric modeling is essential.

If the statistical inference is based on annual maxima of discharges, then
our favorite model is the Gumbel or the unified extreme value model, yet we also
mention other models employed by hydrologists. Alternatively, the inference is
based on a partial duration series, which is the series of exceedances over a certain
higher threshold. In that case, our standard model for the flood magnitudes is
the generalized Pareto model or certain submodels suggested by the well–known
index flood procedure in regional flood frequency analysis. We mention alternative
models. A modeling of the exceedance times must be included.

The regional flood frequency provides the possibility to include information
from data recorded at nearby gauging stations, respectively, sites having a similar
characteristic.

The Actuary’s Interest in Extremes

In recent years, actuaries have become more and more aware of the potential risk
inherent in very large claim sizes due to catastrophic events. An insurer must com-
pensate the losses—due to the payments for claims of policy holders—by means of
an appropriate premium. Thereby, an actuary is first of all interested in estimating
the net premium which is the mean of the total claim amount for an individual or
a portfolio (collection) of risks.

The total claim amount depends on the size of claims and the frequency of
claims within a given period. These two ingredients can be dealt with separately
from the statistical viewpoint.

Claim Sizes Claim Number

Total Claim Amount

Net Premium
�

�

In conjunction with excess–of–loss (XL) reinsurance, when the reinsurer pays
for the excess of a higher fixed limit for individual claim sizes, a parametric mod-
eling and estimation of the upper tail of the claim size distribution is of genuine
interest to evaluate the net premium.



1.1. Applications of Extreme Value Analysis 5

Our favorite model is again the generalized Pareto model, yet we also study
other distributions employed by actuaries (such as Benktander II and truncated
Weibull distributions).

For assessing the total premium, the actuary must also consider other param-
eters of the random losses besides the net premium. We will focus our attention
on the interdependence between the ruin probability of a portfolio within a finite
time horizon and the choice of an initial capital (reserve).

Extremes in Financial Time Series, Value at Risk

Insurance and financial data can be investigated from the viewpoint of risk analysis
(as initiated in the books by H.L. Seal1 and H. Bühlmann2). Therefore, the insight
gained from insurance data can also be helpful for the understanding of financial
risks (and vice versa).

Financial time series consist of daily or weekly reported speculative prices
of assets such as stocks, foreign currencies or commodities such as corn, cocoa,
coffee, sugar, etc. Risk management at a commercial bank is interested in guarding
against the risk of high losses due to the fall in prices of financial assets held or
issued by the bank. It turns out that daily or weekly returns—relative differences
of consecutive prices or differences of log–prices (log–returns)—are the appropriate
quantities which must be investigated.

Most importantly, there is empirical evidence that distributions of returns
can possess fat or heavy tails so that a careful analysis of returns is required. In
this context, we deal with the upper tail of loss/profit distributions and, especially,
with parameters, which summarize the potential risk to some extent, such as

• the Value–at–Risk (VaR) as the limit which is exceeded by the loss (measured
as a positive value) of a given speculative asset or a portfolio with a specified
low probability,

• the Capital–at–Risk (CaR) as the amount which may be invested with the
possible consequence that the loss exceeds a given limit with a specified low
probability.

These two concepts are closely related to each other: we fix either the invested
capital (market value) or the limit and, then, compute the other variable.

A special feature of return series is the alternation between periods of tran-
quility and volatility. Therefore, the VaR, which is essentially the q–quantile of the
distribution of log–returns, should vary in time.

The following illustration3 concerns the log–returns of the Standard & Poors

1Seal, H.L. (1969). Stochastic Theory of a Risk Business. Wiley, New York.
2Bühlmann, H. (1970). Mathematical Methods in Risk Theory. Springer, Berlin.
3Illustrations are produced with the Frame Size (Print/EPS) facility in the local menus

of the plot windows of Xtremes.
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500 market index (stored in fm–poors.dat4).
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Fig. 1.1. Scatterplot of the log–returns (with changed signs) of the S&P500 index from

July 1962 to Dec 1987 and a moving sample 95%–quantile based on the preceding 90

days.

One recognizes the periods of higher volatility which are reflected by periods
of higher sample q–quantiles and, thus, a higher VaR.

Material Sciences and Other Important Areas

In most parts of the book, we do not focus our attention on special areas. Such a
theoretical approach is justified by the fact that, to some extent, the basic statisti-
cal questions have a common feature for all the potential applications. We briefly
mention further questions for which extreme value analysis is of interest:

• (Corrosion Analysis.) Pitting corrosion can lead to the failure of metal struc-
tures such as tanks and tubes. Extreme value analysis becomes applicable
because pits of a larger depth are of primary interest. In analogy to the
T –year discharge in hydrology one may estimate the T –unit depths which
is the level once exceeded (within a given time span) on the average, if T
units or an area of size T are exposed to corrosion. The role of time in other
applications (e.g., in hydrology) is now played by the location of the pits,
see Section 18.1.

4Data sets *.dat can be found in the subdirectory xtremes\dat, if xtremes is taken
as the working directory of Xtremes.
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• (Telecommunication.) There exist several research papers about teletraffic
data in conjunction with a discussion of the concepts of aggregation and
self–similarity, see page 169.

• (Strength of Material.) A sheet of metal breaks at its weakest point so that a
minimum strength determines the quality of the entire sheet. Related topics
are strength of bundles of threads and first failure of equipments with many
components, see [20], pages 188–196.

• (Longevity of Human Life.) The insight gained from experiments led to state-
ments such as “the studies are consistently failing to show any evidence for
pre–programmed limit to human life span” which found their way to daily
news papers5. We will study such questions from the viewpoint of extreme
value analysis, see Chapter 19.

• (Environmental Sciences.) Higher concentration of certain ecological quanti-
ties, like concentration of ozone, acid rain or sulfur dioxide (SO2) in the air,
are of greater interest due to the negative response on humans and, generally,
on the biological system, see Chapter 15.

Other important areas of applications include geology, meteorology and seis-
mic risk analysis. It is self–evident that our list is by no means complete.

The T–Year Level and Related Parameters

The T –year level (e.g., for discharges in flood frequency analysis) plays an impor-
tant role in our analysis. This parameter is dealt with, for example, in Sections 1.2
and 14.2. The same methodology can be applied to the T –unit depths in corrosion
analysis, see Section 18.1. In a similar way, we define a T –year initial reserve in
insurance (page 430) and a T –day capital in finance (page 390). These parameters
are connected to certain small or large quantiles and must be estimated by the
methods presented in this book.

1.2 Observing Exceedances and Maxima

It is understood that the reader is familiar with the concepts of a distribution
function (df) F , a density f as the derivative of the df, and independent and
identically distributed (iid) random variables X1, . . . , Xn. The df of a real–valued
random variable X is given by F (x) = P{X ≤ x}. The expectation and variance
of a random variable X are denoted by E(X) and V (X). These quantities are the
mean and the variance of the distribution of X .

5Kolata, G. New views on life spans alter forecasts on elderly. The New York Times,
Nov. 16. 1992.
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Number of Exceedances over a Threshold

One method of extracting upper extremes from a set of data x1, . . . , xn is to take
the exceedances over a predetermined, high threshold u. Exceedances yj over u
(peaks–over–threshold (pot)) are those xi with xi > u taken in the original order
of their outcome or in any other order. The values yj − u are the excesses over u.

Subsequently, the number of exceedances over u will be denoted by k or,
occasionally, by K to emphasize the randomness of this number. In many cases,
the values below u are not recorded or cannot be observed by the statistician.
Given random variables X1, . . . , Xn, we may write K =

∑
i≤n I(Xi > u), where

I(Xi > u) is an indicator function with I(Xi > u) = 1 if Xi > u holds and zero,
otherwise. If the Xi are iid random variables with common df F , then

P{K = k} =

(
n

k

)
pk(1 − p)n−k =: Bn,p{k}, k = 0, . . . , n, (1.1)

where Bn,p is the well–known binomial distribution with parameters n and p =
1 − F (u). The mean number of exceedances over u is

Ψn,F (u) = np = n(1 − F (u)), (1.2)

which defines a decreasing mean value function.

The Poisson Approximation of Binomial Distributions

We give an outline of the well–known fact that the binomial distribution Bn,p can
be replaced by a Poisson distribution and, thus, the number K of exceedances may
be regarded as a Poisson random variable.

Let X1, . . . , Xn be iid random variables attaining the values 1 and 0 with
probability p and, respectively, 1 − p. In conjunction with the number of ex-
ceedances, these random variables are of the special form I(Xi ≥ u). We have

P{X1 + · · · + Xn = k} = Bn,p{k}, k = 0, . . . , n.

This formula can be rephrased by saying that success occurs with probability p
and failure with probability 1 − p, then the total number of successes is governed
by Bn,p. Note that np is the expected number of successes, and np(1 − p) is the
variance.

Poisson distributions can be fitted to binomial distributions under certain
conditions. If np(n) → λ as n → ∞, then

Bn,p(n){k} → Pλ{k}, n → ∞, (1.3)

where

Pλ{k} =
λk

k!
e−λ, k = 0, 1, 2, 3, . . .
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defines the Poisson distribution with parameter λ.
In Fig. 1.2, the binomial and Poisson histograms Bn,p{k} and Pnp{k}, k =

0, . . . , 20, for the parameters n = 40 and p = 0.25 are displayed, see also the Demos
A.1 and A.2.

10 20

0.1

Fig. 1.2. Fitting the Poisson distribu-

tion P10 (dark) to a binomial distribu-

tion B(40, .25) (light).

If X is a Poisson random variable with parameter λ, then E(X) = λ. In
addition, the variance of X is V (X) = E(X−λ)2 = λ. We see that the expectation
and the variance of a Poisson random variable are equal.

It is well known that the inequality

|Bn,p(A) − Pnp(A)| ≤ p (1.4)

holds for each set A of nonnegative integers. Notice that the right–hand side of
the inequality does not depend on n. Thus, a Poisson distribution can be fitted to
a binomial distribution whenever p is sufficiently small.

The iid condition, under which the Poisson approximation was formulated,
can be weakened considerably, yet we do not go into details6. In Section 3.4,
we also introduce mixtures of Poisson distributions as, e.g., negative binomial
distributions.

Maxima

Assume that the given data yi are maxima, that is,

yi = max{xi,1, . . . , xi,m}, i = 1, . . . , n, (1.5)

where the xi,j may not be observable.
If the xi,j in (1.5) can be observed by the statistician, then taking maxima

out of blocks is another possibility of extracting upper extreme values from a set of

6We refer to Haight, F.A. (1967). Handbook of the Poisson Distribution. Wiley, New
York; for a more recent monograph see Barbour, A.D., Holst, L. and Janson, S. (1992).
Poisson Approximation. Oxford Studies in Probability. Oxford University Press.
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data (besides taking exceedances). This method is called annual maxima, blocks or
Gumbel method. For example, one takes the maximum values—such as maximum
temperatures, water discharges, wind speeds, ozone concentrations, etc.—within a
month or a year.

For iid random variables X1, . . . , Xm with common df F , one may easily
compute the df of maxima; we have

P
{

max
i≤m

Xi ≤ x
}

= P{X1 ≤ x, . . . , Xm ≤ x} = Fm(x). (1.6)

Thus, the yi’s in (1.5) are governed by Fm if the xi,j ’s are governed by F .

If the iid condition fails, then a df of the form Fm may still be an accurate
approximation of the actual df of the maximum. For independent, yet heteroge-
neous random variables Xj with df Fj , (1.6) holds with Fm replaced by

∏
j≤m Fj .

A df Fm can be fitted to
∏

j≤m Fj if the deviations of the Fj from each other can
be neglected.

Likewise, if there is a slight dependence in the data, a df of the form Fm may
still serve as an approximation of the actual df of the maximum. It is plausible to
employ this approach in more complex situations as well. In Section 1.3, we go one
step further and replace Fm by an extreme value (EV) df G. The EV distributions
constitute a parametric model which will be introduced in Section 1.3.

We mention a special EV df, namely the Gumbel df G0(x) = exp(−e−x),
which plays a central role within the extreme value analysis.

Example 1.2.1. (Annual Wind–Speed Maxima at Vancouver.) We present annual max-
ima of daily measurements of wind speeds taken from [21], page 122 (stored in the file
em–cwind.dat).

Table 1.1. Annual wind–speed maxima in km/h from 1947 to 1984 at Vancouver.

year speed year speed year speed year speed year speed year speed year speed

47 79.5 53 64.8 59 64.8 65 61.0 71 70.3 77 48.1 83 51.8

48 68.4 54 59.2 60 88.8 66 51.8 72 68.4 78 53.6 84 48.1

49 74.0 55 79.5 61 88.8 67 62.9 73 55.5 79 55.5

50 59.2 56 62.9 62 75.8 68 64.8 74 64.8 80 62.9

51 74.0 57 59.2 63 68.4 69 61.0 75 77.7 81 61.0

52 64.8 58 68.2 64 68.4 70 61.0 76 57.3 82 61.0

Such data can be visualized by means of nonparametric tools such as, e.g., kernel
densities (see Section 2.1). One may try to fit a parametric density—e.g., a Gumbel
density with location and scale parameters µ and σ—to the sample density.

In Fig. 1.3, one can recognize a reasonable fit of a Gumbel density to the data

(represented by a sample density). For a continuation, see Example 2.1.3.
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wind-speed in km/h

50 75 100
0.0

0.02

0.04

Fig. 1.3. Representing the wind–

speed data by a fitted Gumbel

density (µ = 60.3 and σ = 8.3)

and a kernel density.

Minima

Generally, results for minima can be deduced from corresponding results for max-
ima by writing

min
i≤n

Xi = −max
i≤n

(−Xi).

In conjunction with minima, it can be useful to present results in terms of
the survivor function

F = 1 − F. (1.7)

Utilizing the same arguments as in (1.6), one may compute the survivor function
of the minimum of iid random variables Xi with common df F . We have

P
{

min
i≤m

Xi > x
}

= (1 − F (x))m = F
m

(x). (1.8)

Therefore, the df of the minimum is

P
{

min
i≤m

Xi ≤ x
}

= 1 − (1 − F (x))m. (1.9)

Actual dfs of minima will be replaced by converse EV dfs in Section 1.3 (see page
22). As an example of a converse EV df, we mention the converse Gumbel df

G̃0(x) = 1 − G0(−x) = 1 − exp(−ex), (1.10)

which is also called Gompertz df.

Magnitudes of Exceedances and Upper Order Statistics

Let the xi be governed again by a df F and let the threshold u be smaller than the
right endpoint ω(F ) := sup{x : F (x) < 1} of the support of F . We speak of a high
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threshold u, if u is close to the right endpoint ω(F ). In that case, p = 1 − F (u)
is small and the number k of exceedances may be regarded as a Poisson random
variable. Subsequently, we deal with the magnitudes (sizes) of the exceedances.

Exceedances occur conditioned on the event that an observation is larger
than the threshold u. The pertaining conditional df F [u] is called exceedance df at
u. If X denotes a random variable with df F , then

F [u](x) = P (X ≤ x|X > u)

= P{X ≤ x, X > u}/P{X > u}

=
F (x) − F (u)

1 − F (u)
, x ≥ u. (1.11)

In terms of survivor functions we may write

F [u](x) = F(x)/F(u), x ≥ u. (1.12)

One should keep in mind that the left endpoint α(F [u]) = inf{x : F [u](x) > 0}
of F [u] is equal to u. The relationship between exceedances and the exceedance df
will be examined more closely in (2.4). Moreover, generalized Pareto (GP) dfs will
be fitted to exceedance dfs F [u] in Section 1.4.

Another closely related approach of extracting extreme values from the data
is to take the k largest values xn−k+1:n ≤ · · · ≤ xn:n of the xi, where the number
k is predetermined. Notice that xn:n is the maximum. Within this approach, the
(k + 1)th largest observation xn−k:n may be regarded as a random threshold.

The T–Year Level

One of the major objectives of extreme value analysis is the estimation of the
T –year level. We introduce the T –year level u(T ) as the threshold u(T ) such that
the mean number of exceedances over u(T ) within the time span of length T is
equal to 1. In this context, it is understood that for each year (or any other period
like day, month or season), there is one observation.

Let X1, X2, . . . , XT be random variables with common df F . Then, u(T ) is
the solution to the equation

E

(∑
i≤T

I(Xi ≥ u)

)
= 1. (1.13)

Apparently,
u(T ) = F−1(1 − 1/T ) (1.14)

which is the (1 − 1/T )–quantile of the df F (also see Section 1.6). We have

P{X1 > u(T )} = 1 − F (u(T )) =
1

T

and, thus, the T –year level u(T ) is exceeded by the observation in the given year
(period) with probability 1/T .
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Exceedance Times and the T–Year Return Level

The primary aim of the following lines is to outline why the T –year level u(T ) =
F−1(1 − 1/T ) is also called T –year return level. In this context, we also get a
different interpretation of the T –year level.

Besides the number and sizes of exceedances, one is interested in the times
at which the exceedances occur. Given x1, . . . , xn, let xi(1), . . . , xi(k) be the ex-
ceedances over a predetermined threshold u. Let i(1) ≤ i(2) ≤ · · · ≤ i(k) be the
ordered exceedance times.

In conjunction with exceedance times, we are primarily interested in the fu-
ture occurrence of the next exceedance at a certain higher threshold u for an infinite
time horizon. Therefore, one must consider an infinite sequence X1, X2, X3, . . . of
random variables with common df F . The first exceedance time at u is

τ1 = min{m : Xm > u}, (1.15)

whereby it is understood that the threshold u is smaller than the right endpoint
ω(F ) of F . We also deal with the random ordered exceedance times

τ1 < τ2 < τ3 < · · ·

at the threshold u. Occasionally, we also write τr,u instead of τr for the rth ex-
ceedance time to emphasize the dependence on the threshold u. The exceedance
times may be defined recursively by

τr = min{m > τr−1 : Xm > u}, r > 1. (1.16)

The sequence of exceedance times has independent, geometrically distributed
increments called return periods or interarrival times, see (1.17) and (1.21). Note
that

P{τ1 = k} = P{X1 ≤ u, . . . , Xk−1 ≤ u, Xk > u}
= p(1 − p)k−1, k = 1, 2, 3, . . . , (1.17)

with p = 1−F (u), where the latter equality holds for iid random variables. Thus,
the first exceedance time τ1 at u is distributed according to a geometric distribution
with parameter p. Consequently, the mean of the first exceedance time—also called
mean return period—at u is E(τ1,u) = 1/p.

A threshold u such that the mean first exceedance time is equal to T is the
T –year return level. Thus, the T –year return level is the solution to the equation

E(τ1,u) =
1

1 − F (u)
= T. (1.18)

This equation has the same solution as equation (1.13), namely

u(T ) = F−1(1 − 1/T ). (1.19)
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This means that the T –year level in (1.14) and the T –year return level coincide
under the present conditions.

The first exceedance time τ1,u(T ) at the T –year level u(T ) is a geomet-
ric random variable with parameter 1/T . By the definition of u(T ), we have
E(τ1,u(T )) = T . In addition, the variance is V (τ1,u(T )) = (T − 1)T.

A justification for the names “mean return period” and “return level” is
provided by the fact that the return periods

τ1, τ2 − τ1, τ3 − τ2, . . . (1.20)

are iid random variables. This yields that the mean return periods E(τr+1−τr) are
equal to the mean first exceedance time E(τ1). Also, the threshold u such that the
mean return period is equal to T is the T –year return level in (1.14) and (1.19).

The iid property can be verified easily. For positive integers k(1), . . . , k(r),
we have

P{τ1 = k(1), τ2 − τ1 = k(2), . . . , τr − τr−1 = k(r)}
= P{τ1 = k(1), τ2 = k(1) + k(2), . . . , τr = k(1) + · · · + k(r)}
= P{X1 ≤ u, . . . , Xk(1)−1 ≤ u, Xk(1) > u,

Xk(1)+1 ≤ u, . . . , Xk(1)+···+k(r) > u}

=
∏
j≤r

P{τ1 = k(j)}. (1.21)

Generally, one may verify that

P{τr = k} =

(
k − 1

r − 1

)
pr(1 − p)k−r (1.22)

for k = r, r + 1, . . . and, hence, the rth exceedance time is a negative binomial
random variable with parameters r and p = 1 − F (u) shifted to the right by the
amount r.

1.3 Modeling by Extreme Value Distributions

The actual df of a maximum will be replaced by an extreme value (EV) df. First, we
give a list of the standard EV dfs Gi,α and Gγ within three submodels and a unified
model, where α and γ are certain shape parameters. The pertaining densities are
denoted by gi,α and gγ . One must include location and scale parameters µ and σ
to build the full statistical models.

At the end of this section, we will also mention corresponding questions
concerning minima.
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The α–Parameterization

Here is a list of the three different submodels by writing down the standard EV
dfs for the different shape parameters α:

Gumbel (EV0): G0(x) = exp(−e−x), for all x;

Fréchet (EV1), α > 0: G1,α(x) = exp(−x−α), x ≥ 0;

Weibull (EV2), α < 0: G2,α(x) = exp(−(−x)−α), x ≤ 0.

The Fréchet df G1,α is equal to zero if x < 0; the Weibull df G2,α is equal
to one if x > 0. We see that each real parameter α determines a standard EV
distribution. Notice that G2,−1 is the exponential df on the negative half–line.
Occasionally, the standard Gumbel df G0 is also denoted by G0,α.

Warning! Our parameterization for Weibull dfs differs from the stan-
dard one used in statistical literature, where Weibull dfs with positive
shape parameters are taken.

We also note the pertaining densities g = G
′

of the standard EV dfs:

Gumbel (EV0): g0(x) = G0(x)e−x, for all x;

Fréchet (EV1), α > 0: g1,α(x) = αG1,α(x)x−(1+α), x ≥ 0;

Weibull (EV2), α < 0: g2,α(x) = |α|G2,α(x)(−x)−(1+α), x ≤ 0.

EV densities are unimodal. Remember that a distribution and the pertaining
density f are called unimodal if the density is non–decreasing left of some point u
and non–increasing right of u. Then, u is called a mode. Fréchet densities and the
Gumbel density are skewed to the right.

Weibull dfs provide a very rich family of unimodal dfs. Weibull densities

• are skewed to the left if α is larger than −3.6 and have a pole at zero if
α > −1,

• look symmetrical if α is close to −3.6,

• are skewed to the right—such as Fréchet and Gumbel densities—if α is
smaller than −3.6.
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Location and Scale Parameters

If a random variable X has the df F , then µ+σX has the df Fµ,σ(x) = F ((x−µ)/σ),
where µ and σ > 0 are the location and scale parameters. Full EV models are
obtained by adding location and scale parameters µ and σ > 0. By

G0,µ,σ(x) = exp(−e−(x−µ)/σ)

and

Gi,α,µ,σ(x) = Gi,α

(
x − µ

σ

)
, i = 1, 2,

one obtains Gumbel, Fréchet and Weibull dfs with location and scale parameters
µ and σ.

We see that the location parameter µ is the left endpoint of the Fréchet df
G1,α,µ,σ and the right endpoint of the Weibull df G2,α,µ,σ. Furthermore,

g0,µ,σ(x) =
1

σ
e−(x−µ)/σ exp(−e−(x−µ)/σ)

and

gi,α,µ,σ(x) =
1

σ
gi,α

(
x − µ

σ

)
, i = 1, 2,

are the densities of the Gumbel df G0,µ,σ and the Fréchet and Weibull dfs Gi,α,µ,σ.

The γ–Parameterization

Up to now, the three different EV models are separated from each other. Yet a
visualization of these dfs—or of the pertaining densities—shows that Fréchet and
Weibull dfs attain the shape of a Gumbel df when the shape parameter α goes to
∞ and, respectively, to −∞.

By taking the reparameterization γ = 1/α—due to von Mises7 (also fre-
quently attributed to Jenkinson8)—of EV dfs Gi,α one obtains a continuous, uni-
fied model. In this representation, the Gumbel df again has the parameter γ equal
to zero. The standard versions in the γ–parameterization are defined such that

Gγ(x) → G0(x), γ → 0. (1.23)

This is achieved by employing appropriate location and scale parameters in
addition to the reparameterization γ = 1/α. Thus, EV dfs with certain location

7 Mises von, R. (1936). La distribution de la plus grande de n valeurs. Rev. Math.
Union Interbalcanique 1, 141–160. Reproduced in Selected Papers of Richard von Mises,
Amer. Math. Soc. 2 (1964), 271–294.

8 Jenkinson, A.F. (1955). The frequency distribution of annual maximum (or mini-
mum) values of meteorological elements. Quart. J. Roy. Meteorol. Soc. 81, 158–171.
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and scale parameters unequal to zero and one are taken as the standard EV dfs
in the γ–parameterization if γ �= 0. We have

G0(x) = exp(−e−x), for all x, (1.24)

and
Gγ(x) = exp

(
− (1 + γx)−1/γ

)
, 1 + γx > 0, γ �= 0. (1.25)

By applying the well–known formula (1 + γx)1/γ → exp(x) as γ → 0, one
may verify that (1.23) holds. Notice that

• G0 is the standard Gumbel df;

• Gγ is a Fréchet df if γ > 0,

• Gγ is a Weibull df if γ < 0.

The right endpoint of a Weibull df Gγ is equal to 1/|γ| and the left endpoint of
the Fréchet df Gγ is equal to −1/γ. For γ = 1/α �= 0, one obtains the representation

Gγ = Gi,α,−α,|α| (1.26)

with i = 1 if γ > 0 and i = 2 if γ < 0. The pertaining densities are

g0(x) = G0(x)e−x, for all x,

and
gγ(x) = Gγ(x)(1 + γx)−(1+1/γ), 1 + γx > 0, γ �= 0.

Also, check that gγ(x) → g0(x) as γ → 0. Some EV densities around the
Gumbel density are displayed in Fig. 1.4.
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Fig. 1.4. (left.) Gumbel density (dashed) and two Fréchet (solid) densities for parameters

γ = .28, .56. (right.) Gumbel density (dashed) and two Weibull (solid) densities for

parameters γ = −.28, −.56.

On the right–hand side, we see the Weibull density with shape parameter γ =
−.28 (that is, α = −3.6) that looks symmetrical and can hardly be distinguished
from a normal (Gaussian) density. Recall that a Weibull density gγ has the finite
right endpoint 1/|γ|. We have ω(G−.28) = 3.6 and ω(G−.56) = 1.8.
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Limiting Distributions of Maxima

Recall from (1.6) that maxi≤n Xi has the df Fn, if X1, . . . , Xn are iid random
variables with common df F . The choice of Fréchet, Weibull and Gumbel dfs for
modeling dfs of maxima becomes plausible from the subsequent remarks:

(Fisher–Tippett9.) If Fn(bn + anx) has a non–degenerate limiting df as n → ∞
for constants bn and an > 0, then

|Fn(x) − G ((x − µn)/σn))| → 0, n → ∞, (1.27)

for some EV df G ∈ {G0, G1,α, G2,α} or G = Gγ and location and scale parameters
µn and σn > 0.

If (1.27) holds, then F belongs to the max–domain of attraction of the EV
df G; in short, F ∈ D(G). For lists of suitable constants bn and an > 0, we refer to
(1.31) and (2.33), whereby the constants in (2.33) are applicable if a certain von
Mises condition is satisfied.

Additionally, convergence also holds in (1.27) for the pertaining densities if
F is one of the usual continuous textbook dfs. The illustrations in Fig. 1.5 concern
the Gumbel approximation of the maximum of exponential random variables for
a sample of size n = 30.

2 4 6 8

0.2

0.4

2 4 6 8

-0.02

0.02

Fig. 1.5. (left.) Density f of df
(
1 − e−x

)30
(solid) and Gumbel density g0,µ,σ (dotted)

for parameters µ = 3.4 and σ = .94. (right.) Plot of the difference f − g0,µ,σ.

It can be easily verified that (1.27) holds if, and only if,

nF(bn + anx) → − log G(x), n → ∞, (1.28)

for every x in the support of G, where again F = 1 − F is the survivor func-
tion. According (1.2), this relation concerns the asymptotic behavior of the mean
number of exceedances over the threshold u(n) = µn + σnx.

9Fisher, R.A. and Tippett, L.H.C. (1928). Limiting forms of the frequency distribution
of the largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180–190.
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More refined necessary and sufficient conditions for (1.27) are due to Gne-
denko and de Haan, see, e.g., [16], Theorem 2.1.1 and Section 6.510. A discussion
about the accuracy of such approximations may also be found in Section 6.5. If
condition (1.27) does not hold or it merely holds with a low rate, then the situa-
tion is classified as the “horror case” by some authors. We simply suggest to use
a different modeling.

The Max–Stability

EV dfs are characterized by their max–stability. A df F is max–stable if

Fn(bn + anx) = F (x) (1.30)

for a suitable choice of constants bn and an > 0. Thus, the standardized maximum
under the df F is distributed according to F .

We give a list of these constants when the max–stable df is one of the standard
EV dfs.

Gumbel G0: bn = log n, an = 1,
Fréchet G1,α, α > 0: bn = 0, an = n1/α,

Weibull G2,α, α < 0: bn = 0, an = n1/α.
(1.31)

For example, Gn
2,−1(x/n) = G2,−1(x) for the exponential df G2,−1 on the

negative half–line. The constants in (1.31) will also be used in Section 6.5 to show
the convergence of Fn(bn + anx) to an EV df for a larger class of dfs F .

Moments and Modes of Extreme Value Distributions

The jth moment E(Xj) of a Fréchet or a Weibull random variable X can be
written in terms of the gamma function

Γ(λ) =

∫ ∞

0

xλ−1e−x dx, λ > 0. (1.32)

Recall that Γ(λ+1) = λΓ(λ) and Γ(1) = 1. If X has the df G and density g = G
′

,
then the jth moment can be written as

mj,G := E(Xj) =

∫
xj dG(x) =

∫
xjg(x) dx. (1.33)

10For example, a df F belongs to the max–domain of attraction of the EV df Gγ with
γ > 0 if, and only if, ω(F ) = ∞ and

F(tx)/F(t) →t→∞ x−1/γ , x > 0. (1.29)

The standardizing constants may be chosen as bn = 0 and an = F−1(1 − 1/n).
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Occasionally, the index G will be omitted. We also write mG = m1,G for the mean
of G. By applying the substitution rule, one obtains

mj,G1,α = Γ(1 − j/α), if α > j,

and
mj,G2,α = (−1)jΓ(1 − j/α).

The jth moment of the Fréchet df G1,α is infinite if α ≤ j. This is due to the
fact that the upper tail of the Fréchet density g1,α(x) is approximately equal to
αx−(1+α). In that context, one speaks of heavy upper tails of Fréchet distributions.

For the special case j = 1, one obtains the mean values of Fréchet and Weibull
dfs. We have

mG1,α = Γ(1 − 1/α), if α > 1,

and
mG2,α = −Γ(1 − 1/α).

Especially the first moment is infinite whenever 0 < α ≤ 1. In contrast to the
usual textbook analysis, we are also interested in such distributions.

If the actual distribution is of that type, then a single extreme observation
may dominate all the other observations and destroy the performance of a statistic
connected to the mean. This is one of the reasons why we are also interested in
other functional parameters of GP dfs such as q–quantiles with the median as a
special case, cf. Section 1.6.

For centered moments one obtains in analogy to (1.33),

E
(
(X − E(X))j

)
=

∫
(x − m1)

j dG(x) =

∫
(x − m1)

jg(x) dx,

where m1 = m1,G. For j = 2 one obtains the variance.
The variances varGi,α of Fréchet and Weibull dfs can be deduced easily, be-

cause var = m2 − m2
1. We have

varGi,α = Γ(1 − 2/α) − Γ2(1 − 1/α), if 1/α < 1/2.

In the γ–parameterization, the mean and variance of an EV df is given by

mGγ = (Γ(1 − γ) − 1)/γ, if γ < 1,

and
varGγ =

(
Γ(1 − 2γ) − Γ2(1 − γ)

)
/γ2, if γ < 1/2.

The case γ = 0 is included in the latter formulas by considering limits with γ
tending to zero. We have

mG0 = lim
γ→0

mGγ =

∫ ∞

0

(− log x)e−x dx = λ, (1.34)
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where λ = 0.577216 . . . is Euler’s constant. Moreover,

varG0 = lim
γ→0

varGγ = π2/6, (1.35)

and
m2,G0 = λ2 + π2/6.

Normalizing centered moments by the standard deviation var1/2 one obtains

E

(
X − EX

var
1/2
G

)j

=
E(X − EX)j

var
j/2
G

. (1.36)

For j = 1, 2, the normalized, centered moments are equal to zero and one, respec-
tively.

For j = 3, one obtains the skewness coefficient of G

skewG =
E(X − EX)3

var
3/2
G

, (1.37)

if α > 3 or γ < 1/3, and X is a random variable with df G. Note that skew =
(m3−3m1m2 +2m3

1)/σ3. The 4th normalized, centered moment is the kurtosis, cf.
page 31. Check that the normalized, centered moments are independent of location
and scale parameters.

In Figure 1.6, the skewness coefficient of EV dfs Gγ is plotted against γ.
The skewness coefficient is equal to zero at γ0 = −.2776 . . . in accordance with
the remark on page 15 that the density of the Weibull df with shape parameter
γ = −.28 (or α = −3.6) looks symmetrical. We have skewGγ > 0, if γ > γ0, and
skewGγ < 0, if γ < γ0. Furthermore, skewG0 = 1.1395 . . . .

shape parameter

-0.4 -0.2 0.2

5

10

Fig. 1.6. Plotting the skewness

coefficients skewGγ against γ <

1/3.

Finally, we deal with the unique modes, cf. page 15, of EV dfs G which will
be denoted by modG. We have

modG1,α = (α/(1 + α))1/α
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and, thus, modG1,α → 0 as α → 0 and modG1,α → 1 as α → ∞. In addition,
modG2,α = 0, if −1 ≤ α < 0, and

modG2,α = −(α/(1 + α))1/α, α < −1.

Thus, modG2,α → 0 as α → −1 and modG2,α → −1 as α → −∞. In the γ–
parameterization there is

modGγ =
(
(1 + γ)−γ − 1

)
/γ, γ �= 0,

and the mode of the standard Gumbel distribution G0 is zero.

Limiting Distributions of Minima

There is a one–to–one relationship between limiting dfs of maxima and minima. If

P
{

max
i≤n

(−Xi) ≤ bn + anz
}
→ G(z), n → ∞,

then

P
{

min
i≤n

Xi ≤ dn + cnz
}
→ 1 − G(−z), n → ∞,

with cn = an and dn = −bn (and vice versa). This yields that the limiting dfs of
sample minima are the converse Gumbel, Fréchet and Weibull dfs

G̃i,α(x) = 1 − Gi,α(−x) (1.38)

in the α–parameterization, and

G̃γ(x) = 1 − Gγ(−x) (1.39)

in the γ–parameterization. Moreover, if Gi,α,µ,σ or Gγ,µ,σ is the df of −Yi, then

G̃i,α,−µ,σ or G̃γ,−µ,σ is the df of Yi.

The limiting dfs G̃ of minima are also called extreme value dfs or, if necessary,
converse extreme value dfs. Here are three special cases:

• the converse Gumbel df G̃0 is also called Gompertz df; this is the df that
satisfies the famous Gompertz law, see page 54;

• G̃2,−1 is the exponential df on the positive half–line,

• G̃2,−2 is the Rayleigh df that is also of interest in other statistical appli-
cations. Note the following relationship: if the areas of random circles are
exponentially distributed, then the diameters have a Rayleigh df.
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The Min–Stability

The limiting dfs of minima—these are the converse EV dfs—are characterized by
the min–stability. A df F is min–stable if

P
{

min
i≤n

Xi ≤ dn + cnx
}

= 1 − (1 − F (dn + cnx))n = F (x) (1.40)

for a certain choice of constants dn and cn > 0, where X1, . . . , Xn are iid random
variables with common df F .

The min–stability can be expressed in terms of the survivor function F =
1 − F of F . We have

P
{

min
i≤n

Xi > dn + cnx
}

= F
n
(dn + cnx) = F(x). (1.41)

Some Historical Remarks

We compare the symbols employed for EV dfs in this textbook with others also
used in relevant statistical publications:

Gumbel EV0 G0 Type I Λ

Fréchet EV1 G1,α Type II Φα

Weibull EV2 G2,α Type III Ψα

In this book—as in many statistical textbooks—the normal (Gaussian) df
is denoted by Φ and, therefore, the same symbol cannot be used for the Fréchet
df. By combining the numbering of EV dfs in [20] with the letter G used in [39]
(presumably, in honor of B.V. Gnedenko), one obtains the symbol Gi,α for EV dfs
also taken in [42] and [16]. In contrast to the latter representation, the Gumbel
df also gets the parameter α = 0 in the present α–parameterization. The books
[20] by J. Galambos and [39] by M.R. Leadbetter, G. Lindgren and H. Rootzén,
together with the booklet [25] by L. de Haan, laid the probabilistic foundations of
modern extreme value theory. We refer to [20] and [42] for a more detailed account
of the history.

1.4 Modeling by
Generalized Pareto Distributions

The standard generalized Pareto (GP) dfs Wi,α and Wγ are the adequate para-
metric dfs for exceedances, cf. also (1.11). The pertaining densities are denoted by
wi,α and wγ . There is the simple analytical relationship

W (x) = 1 + log G(x), if log G(x) > −1,

between GP dfs W and EV dfs G.
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The α–Parameterization

First we introduce a representation for GP dfs within three submodels correspond-
ing to that for EV dfs.

Exponential (GP0): W0(x) = 1 − e−x, x ≥ 0,

Pareto (GP1), α > 0: W1,α(x) = 1 − x−α, x ≥ 1,

Beta (GP2), α < 0: W2,α(x) = 1 − (−x)−α, −1 ≤ x ≤ 0.

The exponential df W0 is equal to zero for x < 0; the Pareto dfs W1,α are
equal to zero for x < 1; the beta dfs W2,α are equal to zero for x < −1 and equal
to 1 for x > 0.

Note that W2,−1 is the uniform df on the interval [−1, 0]. One should be
aware that the dfs W2,α constitute a subclass of the usual family of beta dfs.
Subsequently, when we speak of beta dfs only dfs W2,α are addressed (except of
those in Section 4.3, where we mention the full beta family).

Warning! Our parameterization for beta dfs differs from the stan-
dard one used in the statistical literature, where beta dfs with positive
shape parameters are taken.

Once more, we also note the pertaining densities w = W
′

:

Exponential (GP0): w0(x) = e−x, x ≥ 0,

Pareto (GP1), α > 0: w1,α(x) = αx−(1+α), x ≥ 1,

Beta (GP2), α < 0: w2,α(x) = |α|(−x)−(1+α), −1 ≤ x < 0.

The Pareto and exponential densities are decreasing on their supports. This
property is shared by beta densities with shape parameter α < −1. For α = −1,
one gets the uniform density on [−1, 0] as mentioned above. Finally, the beta
densities with shape parameter α > −1 are increasing, having a pole at zero.

We see that a GP density wi,α possesses an upper tail similar (asymptotically
equivalent) to that of an EV density gi,α. Roughly speaking, the EV density is a
GP density tied down near the left endpoint.

Again, one must add location and scale parameters µ and σ > 0 in order to
obtain the full statistical families of GP dfs. Notice that the left endpoint of the
Pareto df W1,α,µ,σ(x) = W1,α((x − µ)/σ) is equal to µ + σ.
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The γ–Parameterization

The unified GP model is obtained by applying a representation that corresponds
to that for EV dfs in Section 1.3. The standard versions are defined such that

Wγ(x) → W0(x), γ → 0. (1.42)

By putting γ = 1/α and choosing location and scale parameters as in Section 1.3,
the GP dfs in the γ–parameterization are W0(x) = 1 − e−x for x > 0, and

Wγ(x) = 1 − (1 + γx)−1/γ for

⎧⎨⎩ 0 < x, γ > 0;
if

0 < x < 1/|γ|, γ < 0.

It is straightforward to verify that (1.42) holds for this choice of standard GP
distributions. Note that W0 is the standard exponential df again. Corresponding
to (1.26), we have for γ = 1/α �= 0,

Wγ = Wi,α,−α,|α|

with i = 1 if γ > 0 and i = 2 if γ < 0. The left endpoint of Wγ is equal to zero
for all γ. Therefore, the γ–parameterization has the additional advantage that the
location parameter is always the left endpoint of the support of the distribution.

The pertaining densities wγ = W
′

γ are w0(x) = e−x, x > 0, if γ = 0, and

wγ(x) = (1 + γx)−(1+1/γ) for

⎧⎨⎩ 0 ≤ x, γ > 0;
if

0 ≤ x < 1/|γ|, γ < 0.

The convergence wγ(x) → w0(x) as γ → 0 holds again. In Fig. 1.7, Pareto and
beta densities around the exponential density are displayed.

One can recognize that the left endpoint of a standard GP distribution Wγ is
equal to zero; the right endpoint is finite in the case of beta (GP2) distributions.

The POT–Stability

GP dfs are the only continuous dfs F such that for a certain choice of constants
bu and au,

F [u](bu + aux) = F (x),

where F [u](x) = (F (x)−F (u))/(1−F (u)) is again the exceedance df at u pertaining
to F as introduced in (1.11). This property is the pot–stability of GP dfs. The
following three examples are of particular interest:

• for exponential dfs with left endpoint equal to zero,

W
[u]
0,0,σ = W0,u,σ; (1.43)
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Fig. 1.7. (left.) Exponential (dashed) and Pareto (solid) densities for parameters γ =

.5, 1.0. (right.) Exponential (dashed) and beta (solid) densities for parameters γ =

−.3, −.5.

• for Pareto dfs W1,α,µ,σ in the α–parameterization with µ + σ < u,

W
[u]
1,α,µ,σ = W1,α,µ,u−µ, (1.44)

• for GP dfs Wγ,µ,σ in the γ–parameterization with µ < u and σ+γ(u−µ) > 0,

W [u]
γ,µ,σ = Wγ,u,σ+γ(u−µ), (1.45)

whereby (1.43) is a special case.

According to these relations the truncated version of a GP distribution re-
mains in the same model, a property that exhibits the outstanding importance of
GP distributions for our purposes. A beta df, truncated left of 1, is displayed in
Fig. 1.8.
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1

Fig. 1.8. Beta df W−0.3 (solid) and

a pertaining exceedance df W
[1]
−0.3 =

W−0.3, 1, 0.7 (dashed).

In Fig. 1.8, one recognizes that the truncated beta df has a left endpoint
equal to the truncation point 1 and the same right endpoint 1/|γ| = 10/3 as the
original beta df.
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Limiting Distributions of Exceedances

The parametric modeling of exceedance dfs F [u] by GP dfs is based on a limit
theorem again. Recall that our intention is the modeling of exceedances dfs at
high thresholds and, hence, one should consider thresholds tending to the right
endpoint of the actual df F .

(Balkema–de Haan–Pickands11.) If F [u](bu +aux) has a continuous12 limiting
df as u goes to the right endpoint ω(F ) of F , then

|F [u](x) − Wγ,u,σu(x)| → 0, u → ω(F ), (1.46)

for some GP df with shape, location and scale parameters γ, u and σu > 0.

Note that the exceedance df F [u] and the approximating GP df possess the
same left endpoint u. If (1.46) holds, then F belongs to the pot–domain of at-
traction of the GP df Wγ . It is evident that this limit theorem can be formulated
likewise in terms of GP dfs in the α–parameterization. It is evident that (1.46) is
closely related to (1.28).

One can easily prove that every EV df Gγ belongs to the pot–domain of
attraction of Wγ . For this particular case, we also compute a rate of convergence.
By employing a Taylor expansion of the exponential function around zero, one
should first verify that the relation

Gγ(x) = Wγ(x)
(
1 + O

(
Wγ(x)

))
(1.47)

holds for the survivor functions Gγ and Wγ . Then, deduce

|G[u]
γ (x) − W [u]

γ (x)| = O
(
Wγ(u)

)
. (1.48)

Now, (1.46) follows from (1.45), whereby σu = 1+γu. Moreover, if one of the usual
textbook dfs satisfies (1.46), then the convergence also holds for the pertaining
densities, also see Section 6.5.

Fig. 1.9 provides two illustrations in terms of densities:
The first example treats the standard Weibull and beta densities gγ and wγ with
shape parameter γ = −.3. The second example concerns the standard Cauchy
density f(x) = 1/(π(1 + x2)) and a Pareto density with shape parameter α = 1.

In Fig. 1.9, one can see that the GP (beta and Pareto) densities fit to the
upper tail of the Weibull and Cauchy densities. Elsewhere, the densities are sub-
stantially different. The preceding Pareto density with µ = −.25 replaced by µ = 0
also fits to the upper tail of the Cauchy density.

11Balkema, A.A. and de Haan, L. (1974). Residual life time at great age. Ann. Probab.
2, 792–804. Parallel work was done by J. Pickands (1975). Statistical inference using
extreme value order statistics. Ann. Statist. 3, 119–131.

12An example of a discrete limiting df is, e.g., the geometric df Hp(k) = 1 − (1 − p)k,
k ≥ 1, mentioned on page 13.
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Fig. 1.9. (left.) Weibull density gγ (solid) and beta density wγ (dashed) with shape

parameter γ = −.3. (right.) Standard Cauchy density (solid) and Pareto density w1,α,µ,σ

(dashed) with α = 1, µ = −.25 and σ = 1/π.

Fitting a Generalized Pareto Distribution to the Upper Tail

As suggested by the limiting relation (1.46), we assume that a GP df Wγ,u,σ

can be fitted to the exceedance df F [u] for certain parameters γ and σ (in short:
F [u] ≈ Wγ,u,σ). This implies that a certain GP df can be fitted to the original df
F . More precisely, if F (u) is known, we deduce from a relation F [u] ≈ Wγ,u,σ that

F (x) ≈ Wγ,µ̃(x),σ̃, x ≥ u, (1.49)

for certain parameters µ̃ and σ̃. According to the definition (1.11) of exceedance
dfs we have

F (x) = (1 − F (u))F [u](x) + F (u)

≈ (1 − F (u))Wγ,µ,σ(x) + F (u)

= Wγ,µ̃,σ̃(x), x ≥ u, (1.50)

where the latter equality holds for the parameters

σ̃ = σ/
(
1 + γW−1

γ (F (u))
)

and µ̃ = u − σ̃W−1
γ (F (u)). (1.51)

There is a unique relation between the two pairs of parameters µ, σ and µ̃, σ̃
determined by the equations

W
[u]
γ,µ̃,σ̃ = Wγ,u,σ and Wγ,µ̃,σ̃(u) = F (u). (1.52)

In terms of survivor functions, (1.50) can be written F(x) = F(u)F [u](x) ≈
F (u)Wγ,u,σ(x) = Wγ,µ̃,σ̃(x), x ≥ u.

Related conclusions hold in the α–parametrization: if the Pareto df W1,α,µ,σ

with left endpoint µ + σ = u fits to the exceedance df F [u], then the Pareto df
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W1,α,µ̃,σ̃ determined by W
[u]
1,α,µ̃,σ̃ = W1,α,µσ and W1,α,µ̃,σ̃(u) = F (u) fits to the

upper tail of the df F . We have µ̃ = µ and σ̃ = σ(1 − F (u))1/α.
Note that the first line in (1.50) can be extended to the representation

F (x) = F (u)P (X ≤ x|X ≤ u) + (1 − F (u))P (X ≤ x|X > u), x real, (1.53)

where X is a random variable with df F .
For a continuation of this topic we refer to page 58, where relations between

GP and sample dfs are investigated.

Maxima of Generalized Pareto Random Variables

It is a simple exercise to deduce from (1.47) that Wn
0 (x + log n) and Wn

i,α(anx)—
with an as in (1.31)—are EV dfs G0 and Gi,α in the limit as n → ∞. The rate of
convergence is O(n−1).

There is another interesting non–asymptotic relationship between maxima of
GP random variables and EV distributions. Generally, let X1, X2, X3, . . . be non–
negative iid random variables with common df F which has the left endpoint zero.
Let N be a Poisson random variable with parameter λ > 0 which is independent
of the Xi. Then, with F 0(x) = 1 we have

P
{

max
i≤N

Xi ≤ x
}

=
∞∑

n=0

P
{

max
i≤N

Xi ≤ x, N = n
}

=

∞∑
n=0

P{N = n}Fn(x)

= exp(−λ(1 − F (x)) (1.54)

for x ≥ 0 and zero otherwise. Notice that there is a jump at zero. Plugging in a
GP df one obtains a df that equals an EV df right of zero. If λ is sufficiently large,
then the jump is negligible and the df in (1.54) can be replaced by a GP df.

Moments of Generalized Pareto Distributions

The jth moment mj,W of a Pareto and beta dfs W can be computed in a straight-
forward way. Recollect that

mj,W = E(Xj) =

∫
xj dW (x) =

∫
xjw(x) dx,

where w = W
′

is the density of W and X is a random variable distributed accord-
ing to W . We have

mj,W1,α = α/(α − j), if α > j,

and
mj,W2,α = (−1)jα/(α − j).
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The jth moment of a Pareto df W1,α is infinite if α ≤ j. For the special case of
j = 1, one obtains the mean values mW = m1,W of Pareto and beta dfs W . For
i = 1, 2 we have

mWi,α = |α|/(α − 1), (1.55)

if 1/α < 1. If 1/α < 1/2, the variances are

varWi,α = α/((α − 1)2(α − 2)). (1.56)

The mean values and variances of the GP dfs Wγ are

mWγ = 1/(1 − γ), if γ < 1, (1.57)

and
varWγ = 1/((1 − γ)2(1 − 2γ)), if γ < 1/2.

In the special case of γ = 0, one gets the well–known result that the mean value
and variance of the standard exponential distribution are both equal to 1.

1.5 Heavy and Fat–Tailed Distributions

There are several different concepts of fat or heavy–tailedness of a distribution. We
say that a df F has a heavy upper tail if a jth moment

∫∞
0 xj dF (x)—evaluated

over the positive half–line—is equal to infinity for some positive integer j. There-
fore, all Pareto dfs are heavy–tailed. In addition, all the dfs in the pot–domain
of attraction of a Pareto df are heavy–tailed. Likewise one may speak of a heavy
lower tail.

Fat–tailedness may be introduced by comparing the kurtosis to that of the
normal distribution.

The Normal (Gaussian) Model

Let Φ(x) =
∫ x

−∞ ϕ(y) dy denote the standard normal df, and

ϕ(y) = exp(−y2/2)/
√

2π

the pertaining normal density.
We introduce the mth convolution of a df F , which is given by

Fm∗(x) = P{X1 + · · · + Xm ≤ x},

where X1, . . . , Xm are iid random variables with common df F . A parametric
modeling of convolutions by means of normal dfs is adequate, because under the
conditions of the central limit theorem, we know that

sup
x

|Fm∗(x) − Φ ((x − µm)/σm)| → 0, m → ∞, (1.58)
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Fig. 1.10. (left.) Standard normal df Φ. (right.) Standard normal density ϕ.

where µm and σm > 0 are location and scale parameters.
It is noteworthy that the normal df Φ is sum–stable because Φm∗(m1/2x) =

Φ(x). The Cauchy df F is another sum–stable df with Fm∗(mx) = F (x). This
topic will be further pursued in Section 6.4 within the framework of sum–stable
distributions.

The Kurtosis and a Concept of a Fat–Tailedness

The kurtosis of a df F is another moment ratio which is defined by∫
(x − mF )4 dF (x)

/
var2F , (1.59)

where mF and varF are the mean and the variance of F . If the density has a high
central peak and long tails, then the kurtosis is typically large. Notice that the
kurtosis is independent of location and scale parameters. A df with kurtosis larger
than 3, which is the kurtosis of normal dfs, is fat–tailed or leptokurtic. We also
speak of fat upper and lower tails in this context.

It is easily proven that the mixture of two Gaussian dfs—see (1.61) and
Example 2.3.2—with equal location parameters and unequal scale parameters is
leptokurtic.

Log–Normal Distributions

The property of fat–tailedness is also discussed in conjunction with the log–normal
distribution which has a short (finite) lower tail, yet one can speak of a fat upper
tail.

If one has a strong preference for the normal model, yet the positive data
x1, . . . , xn indicate a fat or heavy upper tail of the underlying distribution, then
one may try to fit a normal df Φµ,σ to the transformed data T (x1), . . . , T (xn) of
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a reduced magnitude, cf. also page 37. The first choice of such a transformation is
T (x) = log x.

If a normal df Φµ,σ can be fitted to log(x1), . . . , log(xn), then the log–normal
df

F(µ,σ)(x) = Φµ,σ(log(x)), x > 0, (1.60)

can be fitted to the original data x1, . . . , xn. Conversely, exp–transformed normal
data are log–normal which justifies to say that the log–normal df has a fatter upper
tail than the normal one.

We have F(0,σ)(1 + σx) → Φ(x) as σ → 0. Therefore, instead of employing
a log–transformation to the data, one may also try to fit a log–normal df to the
original data.

The log–normal df is not heavy–tailed in our terminology, cf. page 30, because
all moments are finite. Note that normal as well as log–normal dfs belong to the
pot–domain of attraction of the exponential df , cf. [20] on pages 67–68.

Notice that F(µ,σ)(x) = Φ0,σ(log(x/ exp(µ))) and, hence, exp(µ) is a scale
parameter of the log–normal df. Log–normal distributions are skewed to the right.

1 2 3
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1.5

Fig. 1.11. Plots of log–normal

densities f(0,1) (solid) and f(0, .3)

(dashed).

The preceding illustration concerns the standard log–normal density

f(0,σ)(x) =
1√

2πσx
exp

(
− (log(x))2/2σ2

)
, x > 0,

with the shape parameter σ.

Mixtures of Gaussian and Heavy–Tailed Distributions

To enlarge a given model one may take mixtures

F = (1 − d)F0 + dF1, (1.61)

where F0 and F1 are taken from an initial parametric model and the mixing pa-
rameter d ranges between 0 and 1. An important example is a mixture of two
normal distributions.



1.5. Heavy and Fat–Tailed Distributions 33

Actual dfs are mixtures, if data are generated according to random mech-
anism with dfs F0 and F1 with a probability 1 − d and, respectively, d. A more
detailed interpretation of mixtures is given in Section 8.1 in conjunction with con-
ditional distributions.

Subsequently, we deal with mixtures (1 − d)Φ + dF , where F is another df
that may be regarded as a contamination of the ideal normal model and 0 ≤ d ≤ 1.
We consider two special cases of a densities f which may serve as a contamination
of the normal density.

• (Student Distributions.) For α > 0, we introduce densities

fα(x) = c(α)

(
1 +

x2

α

)−(1+α)/2

(1.62)

where c(α) = Γ((1+α)/2)/(Γ(α/2)Γ(1/2)α1/2). For positive integers α this is
the Student distribution with α degrees of freedom. The variance is α/(α−2)
for α > 2. In (6.16), such distributions are introduced as mixtures of normal
distributions.

• (Generalized Cauchy Distributions.) The density of the standard generalized
Cauchy df with shape parameter α > 0 is13

fα(x) = c(α)/
(
1 + |x|1+α

)
, (1.63)

where c(α) = ((1 + α)/(2π)) sin(π/(1 + α)).

In both cases one obtains the standard Cauchy density, cf. page 27, for α = 1.
In addition, these densities are unimodal with mode equal to zero and possess
heavy tails like the Pareto dfs with shape parameter α.

The mixture density (1−d)ϕ(x)+d fα(x), with d being close to zero, has the
shape of a normal density in the center, yet possesses heavier tails. It is advisable
to apply trimmed estimators of µ and σ to reach an estimate of the central normal
part of the distribution.

The following illustrations concern mixtures between the standard normal
distribution and Cauchy and Weibull distributions.

In Fig. 1.12 (left), one can clearly observe the heavier tails of the mixture,
although the fraction of the Cauchy distribution is only ten percent. The center
of the mixture can hardly be distinguished from a normal density.

Remarks About Robust Statistics

The contamination of a normal distribution by a heavy–tailed distribution (such as
the Cauchy distribution) is one of the favorite topics in robust statistics, because

13Drees, H. and Reiss, R.–D. (1992). Tail behavior in Wicksell’s corpuscle problem. In:
Probability Theory and Applications, J. Galambos and I. Kátai (eds.), 205–220, Kluwer,
Dortrecht.
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Fig. 1.12. Normal density ϕ (solid) and mixture densities .9ϕ + .1f1 (left) and 0.9ϕ +

0.1g2, −1.6, 3, 1 (right) with Cauchy and Weibull components.

observations under the heavy tail—frequently regarded as outliers—destroy the
performance of classical statistical procedures such as the sample mean.

A primary aim of robust statistics may be formulated in the following manner
(cf. [27]): “Describe the structure best fitting to the bulk of the data: we tentatively
assume a parametric model ... taking explicitly into account that the model may be
distorted.” For this (central) bulk of the data the normal model is the dominating
parametric model.

A Converse View Towards Robust Statistics

In the preceding lines, a fat or heavy–tailed distribution was regarded as a con-
tamination of the normal df. A converse view can be expressed in the following
manner14:

“In many applications extreme data do not fit to the ideology of normal sam-
ples and, therefore, extremes are omitted from the data set or one uses statistical
procedures upon which extremes have a bounded influence. The converse attitude
is to regard extremes as the important part of the data set, yet one must still
follow certain principles of robust statistics and check the validity of the statistical
model selection.”

The decisive step was the fitting of certain dfs—such as GP dfs—to extreme
data. One must be aware that

• the actual df deviates from any of the chosen parametric ones, and

• there can be gross errors in the measurements which may heavily influence
the performance of statistical procedures.

14 Reiss, R.–D. (1989). Robust statistics: A converse view. 23rd Semester on Robustness
and Nonparametric Statistics. Stefan Banach Center, Warsaw, Abstracts of Lectures,
Part II, 183–184.



1.6. Quantiles, Transformations and Simulations 35

The difficulties arising from the fact that the actual distribution deviates
from any EV or GP distribution is the central topic in most research papers on
extreme value theory. This question is briefly touched upon in this book:

• we already mentioned limit theorems for maxima and exceedance dfs (cf.
Sections 1.3 and 1.4);

• a von Mises condition will be introduced in Section 2.1 in conjunction with
reciprocal hazard functions, and

• the concept of a δ–neighborhood of a GP distribution and related weaker
conditions are studied in Section 6.5.

Less is known about robustifying statistical procedures in the extreme value
setting against gross errors. The explanations in the Sections 3.1 and 5.1 about
M–estimates should be regarded as a first step.

1.6 Quantiles, Transformations

and Simulations

The concept of q–quantiles and quantile functions (qfs) is introduced in greater
generality and in a more rigorous manner compared to our remarks about quantiles
on page 12. We also deal with technical questions that can be best described by
means of quantile functions.

Quantiles

In conjunction with the T –year level, we already introduced the q–quantile of a df
F as the value z such that F (z) = q. Thus, the q–quantile z is a value along the
measurement scale with the property that the fraction q of the distribution is left
of z.

In Fig. 1.13, this will be illustrated for the Gumbel df G0(x) = exp(−e−x),
where z = − log(− log(q)).

If the q–quantile is not unique, one may take the smallest z such that F (z) =
q. For discrete dfs and, generally, for discontinuous dfs, it may happen that there
is no value z such that F (z) = q. Then, the q–quantile is the smallest value x such
that F (x) ≥ q. The 1/2–quantile is the median of the df F .

Quantile Functions

If the df F is continuous and strictly increasing on its support (α(F ), ω(F )), then
the quantile function (qf) F−1 is the usual inverse of F .

Usually, the quantile function (qf) F−1 is a “generalized inverse”

F−1(q) := inf{x : F (x) ≥ q}, 0 < q < 1. (1.64)
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Fig. 1.13. (left.) The Gumbel df G0 evaluated at the q–quantile z. (right.) The area under

the Gumbel density g0(x) = e−x exp(−e−x) left of the q–quantile z is equal to q.

Notice that F−1(q) is the q–quantile of F as introduced in the preceding
lines. If Fµ,σ is a df with location and scale parameters µ and σ, then

F−1
µ,σ = µ + σF−1, (1.65)

where F = F0,1 is the standard df.
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Fig. 1.14. Plot of the Gumbel

qf G−1
0 (q) = − log(− log(q)).

We state the explicit form of EV and GP qfs in both parameterizations
starting with EV qfs in their α–parameterization.

Gumbel (EV0): G−1
0 (q) = − log(− log(q));

Fréchet (EV1), α > 0: G−1
1,α(q) = (− log(q))−1/α;

Weibull (EV2), α < 0: G−1
2,α(q) = −(− log(q))−1/α.

Next, we present EV qfs in their γ–representation:
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EV, γ �= 0: G−1
γ (q) = ((− log(q))−γ − 1)/γ,

and for γ = 0, we have the Gumbel qf G−1
0 again.

We continue with GP qfs in the α–parameterization:

Exponential (GP0): W−1
0 (q) = − log(1 − q);

Pareto (GP1), α > 0: W−1
1,α(q) = (1 − q)−1/α;

Beta (GP2), α < 0: W−1
2,α(q) = −(1 − q)−1/α.

Finally, there is the γ–representation of GP dfs:

GP, γ �= 0: W−1
γ (q) = ((1 − q)−γ − 1)/γ,

and again W−1
0 (q) = − log(1 − q).

Recall that the medians of these distributions are obtained by plugging in
the value q = 1/2. Verify, by means of

(xy − 1)/y → log x, y → 0, (1.66)

that EV and GP qfs in the γ–parameterization again built a continuous family.

Transformations

If a statistician is preoccupied with certain parametric dfs, say Fϑ, yet none of
these dfs fits to the data x1, . . . , xn, one may deal with the transformed data
T (x1), . . . , T (xn). If Fϑ fits to T (x1), . . . , T (xn) for some parameter ϑ, then the
df Fϑ(T ) fits to the original data x1, . . . , xn. For example, the transformation
T (x) = log(x) reduces the magnitude of positive data. The df Fϑ(log(x)) is called
the log–Fϑ df. We may say that the log–df has a fatter upper tail than the original
df in view of the exp–transformation of the data.

• (Exponential Model as Log–Gompertz Model.) If X is an exponential random
variable with scale parameter σ, then log X is a Gompertz random variable
with location parameter µ = log σ.

• (Pareto Model as Log–Exponential Model.) If X is a Pareto random variable
with shape and scale parameters α and σ, then log X is an exponential
random variable with location and scale parameters log σ and 1/α.

• (Fréchet Model as Log–Gumbel Model.) A corresponding relationship holds
between a Fréchet random variable with shape and scale parameters α and
σ and a Gumbel random variable with location and scale parameters log σ
and 1/α.
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• (Pareto and Beta Model.) If X is once again a Pareto random variable with
shape and scale parameters α and σ, then −1/X is a beta random variable
with shape and scale parameters −α and 1/σ.

• (Fréchet and Weibull Model.) A corresponding relationship holds between
a Fréchet random variable with shape and scale parameters α and σ and a
Weibull random variable with shape and scale parameters −α and 1/σ.

Such transformations are suggested by the quantile and probability transfor-
mations:

1. Quantile Transformation: if U is a (0, 1)–uniformly distributed random
variable, then F−1(U) has the df F ,

2. Probability Transformation: conversely, if X is a random variable with
continuous df F , then F (X) is (0, 1)–uniformly distributed.

We mention further examples of transformed random variables: if X is a
converse exponential random variable, then

T (X) = G−1
2,α(G2,−1(X)) = −(−X)−1/α (1.67)

is a Weibull random variable with shape parameter α. Likewise,

T (X) = −(−X)−1/α (1.68)

is a beta random variable with shape parameter α if X is (−1, 0)–uniformly dis-
tributed.

Generation of Data

According to our preceding remarks, one can easily generate data under EV and
GP dfs: if u1, . . . , un are governed by the uniform df on the interval (0, 1), the
transformed values F−1(u1), . . . , F

−1(un) are governed by the df F . For example,
the quantile transformation technique can be applied to a Cauchy random variable
which possesses the qf F−1

1 (q) = tan(π(q − 0.5)).
If location and scale parameters µ and σ are included, then the transformation

can be carried out in two steps because F−1
µ,σ(ui) = µ + σF−1(ui).

We mention two other simulation techniques15:

• the normal qf is not feasible in an analytical form and the quantile transfor-
mation is not applicable. In this case, the polar method can be utilized,

• the interpretation of mixture distributions within a two–step experiment
stimulates a technique to carry out simulations, cf. page 33 and Section 8.1.

15 For details see, e.g., Devroye, L. (1986). Non–Uniform Random Variate Generation.
Springer, New York.



Chapter 2

Diagnostic Tools

In this chapter, we catch a glimpse of the real world in the condensed form of
data. Our primary aim is to fit extreme value (EV) and generalized Pareto (GP)
distributions, which were introduced in the foregoing chapter by means of limit
theorems, to the data.

For that purpose, fairly simple nonparametric techniques for visualizing data
are introduced. Those tools are especially selected which are of high relevance to
extreme values. For example, sample excess and sample reciprocal hazard functions
should be close to a straight line if a GP hypothesis is valid. Of course, Q–Q plots
are also on the agenda. We discuss Q–Q plots for location and scale parameter
families as well as for EV and GP models. Finally, certain tools are introduced
which are relevant in conjunction with time series phenomena.

2.1 Visualization of Data

First, we describe visualization techniques such as the sample df, the sample qf,
histograms and kernel densities. In contrast to Chapter 1, we do not assume that
the data are maxima, exceedances or sums.

The Sample Distribution Function

The sample df F̂n(x) at x for a series of univariate data x1, . . . , xn is the relative
number of the xi that are smaller or equal to x. Thus,

F̂n(x) :=
1

n

∑
i≤n

I(xi ≤ x), (2.1)

where the indicator function is defined by I(y ≤ x) = 1 if y ≤ x and 0, elsewhere;
furthermore, the summation runs over i = 1, . . . , n. Sample dfs are particularly
useful for representing samples of a smaller size.
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The data x1, . . . , xn ordered from the smallest to the largest are denoted by

x1:n ≤ · · · ≤ xn:n.

We have F̂n(xi:n) = i/n if xi:n is not a multiple point. Notice that F̂n is
constant between consecutive ordered values. The ordered values can be recaptured
from the sample df and, thus, there is a one–to–one correspondence between the
sample df and the ordered values. One may take a linear interpolation between
consecutive points as well (also see pages 42 to 47 for other modifications).

Occasionally, we write F̂n(x; x) in place of F̂n(x) to indicate the dependence
on the vector of data x = (x1, . . . , xn). We will primarily deal with situations

where each of the xi is generated under a common df F and the sample df F̂n is
approximately equal to F . This relationship will be briefly written

F̂n(x) ≈ F (x). (2.2)

In view of (2.2), we say that F̂n(x) is an estimate of F (x).
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Fig. 2.1. Gumbel df (dotted) and

sample df of a Gumbel data set

with 50 points.

To a larger extent, our statistical arguments are based on the relationship
(2.2) between the sample df F̂n and the underlying df F so that, apparently,
the statistical prerequisites for understanding this textbook are of an elementary
nature.

The Sample Exceedance Distribution Function

Let F̂n(x; · ) be the sample df based on the data xi as in the preceding lines. Recall
that the exceedances yi over the threshold u are those xi with xi > u taken in
the original order of their outcome. The sample df F̂k(y; · ) based on the vector



2.1. Visualization of Data 41

y = (y1, . . . , yk) of exceedances is the sample exceedance df. We have

F̂k(y; · ) =
(
F̂n(x; · )

)[u]

. (2.3)

Thus, the sample exceedance df is equal to the exceedance df of the sample df.

From the fact that the sample df F̂n(x; · ) is an estimate of the underlying
df F , as pointed out in (2.2), one may conclude that

F̂k(y; · ) ≈ F [u], x ≥ u; (2.4)

that is, the sample exceedance df is an estimate of the exceedance df.

Sample Moments

Now we introduce sample versions of the mean, variance and skewness coefficient.
These sample functionals can be deduced from the sample moments

mj,n =
1

n

∑
i≤n

xj
i . (2.5)

Subsequently, assume that x1, . . . , xn are governed by the df F . The representation
mj,n =

∫
xj dFn(x) and (2.2) make it plausible that the jth sample moment mj,n

is an estimate of the jth moment mj =
∫

xj dF (x) of F if this moment exists.

We also write

x̄n =
1

n

∑
i≤n

xi

for the sample mean. The sample variance is

s2
n =

1

n − 1

∑
i≤n

(xi − x̄n)2. (2.6)

A factor 1/(n − 1) is employed instead of 1/n in the definition of s2
n to obtain an

unbiased estimator (cf. page 89) of the variance of F . Note that s2
n = m2,n −m2

1,n

if the factor 1/n is taken. We also write x̄ and s2 instead of x̄n and s2
n.

The sample skewness coefficient can be written

1

n

∑
i≤n

(
xi − x̄n

sn

)3

= (m3,n − 3m1,nm2,n + 2m3
1,n)/s3

n. (2.7)

The sample skewness coefficient is also a natural estimate of the skewness coeffi-
cient skewF of F .
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Sample Quantiles, Sample Quantile Functions

We believe that qfs and densities are more useful than dfs for the visual discrimina-
tion between distributions. In the subsequent lines we present the sample versions
of qfs and densities.

The sample qf F̂−1
n may be introduced by

F̂−1
n

(
i

n + 1

)
:= xi:n, (2.8)

where x1:n ≤ · · · ≤ xn:n are the data arranged in increasing order. In statistical
publications, it is also suggested to employ plotting positions (i − 0.5)/n in place

of i/(n + 1) in (2.8). In addition, let F̂−1
n be constant between consecutive points

i/(n + 1). Likewise, one may employ a linear interpolation. Note that the sample
qf remains constant in case of multiple points.

The sample qf F̂−1
n is the qf—in the sense of (1.64)—of the sample df F̂n

if the sample qf is taken left–continuous. Also, F̂−1
n (q) is the sample q–quantile.

Usually, special constructions are employed for the sample median.
Conclude from the basic relationship (2.2) for dfs that

xi:n = F̂−1
n

(
i

n + 1

)
≈ F−1

(
i

n + 1

)
, (2.9)

where F−1 is the qf pertaining to the df F , cf. (1.64). We also have x[nq]:n ≈
F−1(q).

In conjunction with grouped data and the kernel method, we will also present
smoothed versions of the sample qf.

Linearly Interpolated Sample Distributions

If the underlying df is continuous, then it is plausible to estimate this df by means
of a continuous sample df. Such a df can be constructed by linearly interpolating
the sample df F̂n in (2.1) over bins (tj , tj+1], where the tj < tj+1 constitute a grid
on the real line. One gets the continuous sample df

Fn(x) = F̂n(tj) +
x − tj

tj+1 − tj

(
F̂n(tj+1) − F̂n(tj)

)
= F̂n(tj) +

(x − tj)nj

tj+1 − tj
, for tj < x ≤ tj+1, (2.10)

where nj is the frequency of data x1, . . . , xn in the bin (tj , tj+1]. Thus, the sample
df Fn only depends on the data in a grouped form.

Example 2.1.1. (Sample Distribution and Quantile Functions of Grouped Fire Claim
Data.) The sample df and sample qf of grouped claim data are displayed. From the
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original data set of UK fire claim data, observed during a four year period, we just take
the 387 claim sizes over £51,200 (these data are taken from [10] and stored in the file
ig–fire1.dat).

Table 2.1. Number n(j) of claim sizes within class limits in £1000

lower class limit 51.2 72.41 102.4 250 500 750 1000 2000 3000

number of claims n(j) 108 88 117 47 12 4 8 3 0

The sample df and sample qf pertaining to the histogram are plotted in Fig. 2.2.

claim size

1000 2000 3000

0.5

1 claim size

0.5 1

1000

2000

3000

Fig. 2.2. Sample df (left) and sample qf (right) for fire claim data over £51,200 .

The first overall impression is that the sample qf is a reflection of the sample df at

the diagonal (as it should be because the sample qf is a generalized inverse of the sample

df). It is evident that the sample df and qf provide the same information about the data

although the viewpoints are different.

The sample df based on grouped data is piecewise continuously differentiable
and, therefore, it has a density in the form of a histogram. We will also deal with
histograms for discrete data and with kernel densities for continuous data. The
latter concept can be regarded as a modification of histograms for grouped data.

Histograms for Grouped Data

Again let nj be the frequency of data in the bin (tj , tj+1]. Taking the derivative
of the preceding sample df Fn based on grouped data as given in (2.10), one gets
the probability density

fn(x) =
n(j)

n(tj+1 − tj)
, tj < x ≤ tj+1. (2.11)
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It is very natural to visualize frequencies by means of such a histogram. It is
apparent that this histogram is an appropriate estimate of the density f of F . The
histogram may also be addressed as sample density.

Practitioners use histograms because of their simplicity in representing data,
even if the data are given in a continuous form. One disadvantage of a histogram is
that one must choose the location of the grid. Later we will introduce an alternative
method for representing data, namely by means of a kernel density.

Histograms for Discrete Data

In the case of integer–valued data, a sample histogram is given by

pn(j) = n(j)/n,

where n(j) is the number of data x1, . . . , xn equal to the integer j. In analogy to
(2.2), we have

pn(j) ≈ P{j}, (2.12)

where P is the underlying discrete distribution (under which the xi were gener-
ated). Note that the discrete values xi—ordered according to their magnitudes—
can be recaptured from the histogram. Histograms for binomial and Poisson dis-
tributions are given in Fig. 1.2, also see Fig. 3.2.

Kernel Densities

Starting with continuous data x1, . . . , xn, the histogram for grouped data may be
constructed in the following manner. Replace each point xi in the bin (tj , tj+1] by
the constant function

g(x, xi) =
1

n(tj+1 − tj)
, tj < x ≤ tj+1, (2.13)

with weight 1/n. In summing up the single terms g(x, xi), one gets the histogram
for grouped data in the representation fn(x) =

∑
i≤n g(x, xi). If continuous data

are given, then the choice of the grid is crucial for the performance of the histogram.
We represent an alternative construction of a sample density. In contrast to

(2.13), replace xi by the function

gb(x, xi) =
1

nb
k

(
x − xi

b

)
,

where k is a function (kernel) such that
∫

k(y) dy = 1 and b > 0 is a chosen
bandwidth. If k ≥ 0, then k((x−xi)/b)/b may be regarded as a probability density
with location and scale parameters xi and b > 0. The function gb(·, xi) again
possesses the weight 1/n.
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In summing up the single terms, one gets the kernel density

fn,b(x) :=
∑
i≤n

gb(x, xi) =
1

nb

∑
i≤n

k

(
x − xi

b

)
(2.14)

which is a probability density if k ≥ 0.
In subsequent illustrations, the Epanechnikov kernel

k(x) =
3

4
(1 − x2)I(−1 ≤ x ≤ 1)

is taken which is the optimal kernel under a certain criterion. A kernel related
directly to the terms g(x, xi) in the histogram is the “naive” one

k(x) = 0.5 × I(−1 ≤ x < 1).

Other interesting choices of kernels are

k(x) =
1

8
(9 − 15x2)I(−1 ≤ x ≤ 1) (2.15)

or

k(x) =
15

32
(3 − 10z2 + 7z4)I(−1 ≤ x ≤ 1), (2.16)

because these kernels satisfy the additional condition
∫

x2k(x) dx = 0.
In analogy to the choice of the grid for the histogram—particularly of the

bin–width—the choice of an appropriate bandwidth b is crucial for the performance
of the kernel density.

-2 2

0.2
Fig. 2.3. Plots of normal density

(solid) and kernel densities for the

bandwidths b = 1.1 (dashed) and

b = 0.3 (dotted) based on 50

Gaussian data.

If the bandwidth b is small, which is related to a small scale parameter, then
one can still recognize terms gb(x, xi) representing the single data. If b is large,
then an oversmoothing of the data may prevent the detection of certain clues in
the data.
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An Automatic Bandwidth Selection

An automatic bandwidth selection is provided by cross–validation (see, e.g., the
review article by Marron1 or [50]). For finite sample sizes, the automatic choice
of the bandwidth must be regarded as a first crude choice of the bandwidth. It is
useful to vary the bandwidth around the automatically selected parameter; e.g.,
decrease the bandwidth until the graph of the kernel density becomes bumpy.

Example 2.1.2. (TV Watching in Hours per Week.) We analyze 135 data of TV watching
in hours per week stored in the file su–tvcon.dat. The bulk of the data is below 20 hours.
The lower 100 observations range from 1.68 to 19.5. A list of the 35 data exceeding 20
hours is given.

Table 2.2. Hours per week over 20.

20 20.5 23 24 26 27.5 28.5 31.5 45

20 22 23 24.75 26 27.5 29 33 49

20 22 23 25 27 28 29.5 37 63

20.5 22 23.9 25 27 28 30 40

These data are represented by a kernel density in Fig. 2.4. The automatic bandwidth
selection by means of cross–validation leads to the choice b = 12.5.

hours per week

40 80

0.02

0.04

Fig. 2.4. Two kernel densities for

bandwidths b = 12.5 (solid) and

b = 5 (dotted) for TV data.

The cross–validation with the selected bandwidth b = 12.5 seems to oversmooth the

data. The bandwidth b = 5 is small enough so that a more detailed structure becomes

visible in the upper part of the distribution which might indicate a subpopulation. Yet,

this bandwidth is sufficiently large so that the kernel density does not become bumpy.

1Marron, J.S. (1988). Automatic smoothing parameter selection: A survey. Empirical
Economics 13, 187–208.
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It is likely that in the classical statistical analysis—from a methodological
viewpoint one may specify this as the work done before R.A. Fisher2—certain
observations, such as the data point 63, are regarded as outliers and are omitted
from the sample.

Kernel Distribution and Quantile Functions

By taking the df pertaining to the kernel density fn,b, one obtains a competitor

F̂n,b of the sample df F̂n. We have

F̂n,b(x) :=
1

n

∑
i≤n

K

(
x − xi

b

)
, (2.17)

where

K(x) =

∫ x

−∞
k(y) dy.

By taking the qf pertaining to F̂n,b, one obtains a competitor of the sample qf.
Another version of the sample qf is constructed by directly smoothing the

sample qf by a kernel k. Let

F̂−1
n,b (q) =

1

b

∫ 1

0

k

(
q − y

b

)
F̂−1

n (y) dy.

One must apply a variable bandwidth selection around the boundary points.

Kernel Densities With Bounded Support

If it is known that none of the observations is below or, respectively, above a
specific threshold—e.g., life spans are non–negative or exceedances over a certain
threshold t exceed t—then the foregoing smoothing of data should not result in
shifting weight below or above such thresholds (also compare the kernel densities
in Fig. 2.4 and Fig. 2.10).

One may reflect the sample at the minimum and/or maximum value and
apply the preceding method or, alternatively, take bandwidths that vary with the
location.

If one realizes that there is a mode at a boundary point—as in the case of
the exponential density at zero—then one should employ less smoothing around
this point.

2who discussed the problem of outliers : “... the rejection of observations is too crude
to be defended: and unless there are other reasons for rejection than the mere diver-
gences from the majority, it would be more philosophical to accept these extremes, not
as gross errors, but as indications that the distribution of errors is not normal” on page
322, respectively, page 289 in Fisher, R.A. (1922). On the mathematical foundation of
theoretical statistics. Phil. Trans. Roy. Soc. A 222, 309–368, and Collected Papers of R.A.
Fisher, Vol. I, J.H. Bennett, ed., pp. 274–335. University of Adelaide, 1971.
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Fig. 2.5. (left.) [0, 1]–uniform (solid), kernel (dashed) and bounded kernel density (dot-

ted) for b = .2 based on 400 uniform data. (right.) Exponential (solid), kernel (dashed)

and left bounded kernel density (dotted) for b = 1.1 based on 50 exponential data.

Critical Remarks About Sample Distribution Functions

Visualizing data by the sample df yields a severe regularization of the data in so
far that

• there is a severe averaging, and

• one gets a monotone function approaching one (zero) in the upper (lower)
tail.

This makes the sample df particularly applicable for small sample sizes. Yet for
moderate and large sample sizes, the sample qf and, to some extent, sample densi-
ties such as the histogram and the kernel densities are more useful. This discussion
will be continued in Section 2.4.

The Scatterplot

Points (i, x(i)) or, generally, (t(i), x(i)) for 1 ≤ i ≤ n are plotted, thus resulting
in a scatterplot. It is evident that such a scatterplot is also useful for plotting
a function. The scatterplot is an indispensable tool for visualizing time series
phenomena (see Section 2.5).

Example 2.1.3. (Continuation of Example 1.2.1 about Annual Wind–Speed Maxima at
Vancouver.) In Fig. 2.6 the annual wind–speed maximum is plotted against the year of
occurrence.

The scatterplot exhibits a certain decreasing tendency in the data which is captured

by a least squares line, cf. Section 2.5, given by s(x) = 938.49−0.44x. Such a decrease in

the annual wind–speed maxima may be due to changes in the climate or an urbanization

near the gauging station.
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Fig. 2.6. Annual wind–speed

maxima measured in km/h

plotted against years.

This part of the book only concerns univariate extremes. Whenever bivariate
data are treated, then the first component is regarded as a time–scale. In extreme
value theory, it is customary to replace the time i by i/n in order to obtain an
elegant formulation of asymptotic results. We are particularly interested in scat-
terplots of points where the second component x(i) exceeds a selected threshold
u. Then, the values i/n locate the exceedance times, cf. page 13.

For a continuation of this topic we refer to Sections 2.5 to 2.7.

2.2 Excess and Hazard Functions

Mean and median excess functions are important to extreme value analysis from
a diagnostic viewpoint, because excess functions of GP dfs are straight lines. The
pertaining sample versions provide further useful techniques for visualizing data.

Another diagnostic tool, taken from survival analysis, is the hazard function.
Yet, we are primarily interested in the reciprocal hazard function which is a straight
line for GP dfs.

Excess Distribution Functions

As introduced in Section 1.2, the excesses

y′
i := yi − u

over the threshold u are a variant of the exceedances yi. The excesses are the
exceedances shifted to the left by the amount u. The pertaining excess df F (u) at
u is

F (u)(x) = F [u](x + u) =
F (x + u) − F (u)

1 − F (u)
, x ≥ 0, (2.18)

where F [u] is the exceedance df. Notice that the left endpoint of F (u) is equal to
zero.
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The excess df F (u) can be introduced as a conditional df: if X is a random
variable with df F , then

F (u)(x) = P (X − u ≤ x|X > u) (2.19)

is the conditional df of X − u given X > u.
The excess df F (u) is alternatively called residual life df at age u, where

F (u)(x) is the probability that the remaining life time is smaller or equal to x
given survival at age u.

In this section, we are especially concerned with functional parameters of the
excess df F (u) as a function in u. For example, the mean excess function describes
the expected remaining life given survival at age u.

Mean Excess Functions

The mean excess function eF of a df F (respectively, of a random variable X) is
given by the conditional expectation of X − u given X > u. We have

eF (u) = E(X − u|X > u) =

∫
xdF (u)(x), u < ω(F ). (2.20)

It is evident that eF (u) is the mean of the excess df at u. The mean excess function
eF is also called the mean residual life function, see, e.g., [28]. Note that

eFµ,σ (u) = σeF ((u − µ)/σ) , (2.21)

where µ and σ are the location and scale parameters.
In conjunction with the visualization of data, we are expressly interested in

dfs, where the mean excess function is a straight line. It is well known that the
GP dfs are the only dfs where this goal is achieved.

We also deal with converse Weibull dfs

G̃2,α(x) = 1 − exp(−x−α), x > 0,

with parameter α < 0 (introduced in (1.38)). Note that G̃2,−1 = W0 is the expo-
nential df on the positive half–line.

Here is a list of mean excess functions for GP and converse Weibull dfs.

Exponential (GP0): eW0(u) = 1, u > 0,

Pareto (GP1), α > 1: eW1,α(u) = u/(α − 1), u > 1,

Beta (GP2), α < 0: eW2,α(u) = u/(α − 1), −1 ≤ u ≤ 0,

GP: eWγ (u) = 1+γu
1−γ for

⎧⎨⎩ 0 < u, 0 ≤ γ < 1,
if

0 < u < −1/γ, γ < 0,
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Converse Weibull, α < 0: eG̃2,α
(u) = |α|−1 u1+α(1 + O(uα)).

We see that the mean excess function eWγ,µ,σ has the slope β1 = γ/(1 − γ)
and the intercept β0 = (1 − γµ)/(1 − γ). Therefore, the slopes of the mean excess
functions of GP dfs Wγ,µ,σ are increasing in γ.

γ = −0.5

γ = 0.5

γ = 0

0.5 1 1.5

1

2

3

4

Fig. 2.7. Mean excess functions

of GP dfs for parameters γ =

−0.5, 0, 0.5.

If the excess df F (s) is close to a GP df W , then it is obvious from (2.20) that
eF (u), u ≥ s, is close to the corresponding straight line determined by W . Mean
excess functions do not exist for Pareto dfs with a shape parameter α ≤ 1.

We also refer to (5.34), where Benktander II dfs are constructed with mean
excess functions equal to |α|−1u1+α.

We now mention another representation of the mean excess function. First
notice that

eF (u) =
E((X − u)I(X > u))

P{X > u} , u < ω(F ).

Secondly, one gets

E((X − u)I(X > u)) =

∫
I(u < x)(x − u) dF (x)

=

∫ ∞

u

(1 − F (x)) dx, (2.22)

where the second equation can be verified by writing

x − u =

∫
I(u ≤ y)I(y < x) dy, x ≥ u,

and by interchanging the order of integration (applying Fubini’s theorem). There-
fore, the mean excess function can also be written as

eF (u) =

∫∞
u

(1 − F (x)) dx

1 − F (u)
, u < ω(F ). (2.23)
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The expectations

E(max{X − u, 0}) =

∫ ∞

u

(1 − F (x)) dx (2.24)

are also called “tail probabilities”.

Sample Mean Excess Functions

Let eF again be the mean excess function of the df F . By plugging in the sample
df F̂n based on x1, . . . , xn, one obtains by

en(u) := eF̂n
(u) =

∑
i≤n(xi − u) I(xi > u)∑

i≤n I(xi > u)
, x1:n < u < xn:n, (2.25)

an estimate of eF . Note that en(u) is the sample mean of the excesses over the
threshold u.

Taking the mean or the median of the excesses over u entails a certain smooth-
ing (regularization) of the data, yet one should be aware that excess functions are
neither increasing or decreasing nor do they approach a constant at the upper end
of the range.

Sample mean excess functions will be one of our basic tools to verify the
validity of a GP hypothesis in the upper tail of a distribution. The applicability of
this approach is confirmed by the relationship to the reciprocal hazard function,
cf. (2.27), in conjunction with the von Mises condition (2.32).

Trimmed Mean Excess Functions

Because the mean excess function does not exist for Pareto dfs with shape param-
eter α < 1 and due to the fact that en is an inaccurate estimate of eF if α > 1 is
close to 1 (for a discussion see [16], page 150), a trimmed version

eF,p(u) =
1

p

∫ (F (u))−1(p)

−∞
xdF (u)(x)

is of interest, where 0 < p < 1. There is no trimming if p = 1. Trimmed mean
excess functions of GP dfs again form a straight line3. In the Pareto case we have

eW1,α,p(u) =
(1

p

∫ 1

1−p

y−1/αdy − 1
)
u, u > 1.

Moreover, eW2,α,p is strictly decreasing and eW0,1,p is a constant. A sample
version is also obtained by plugging in the sample df.

3Drees, H. and Reiss, R.–D. (1996). Residual life functionals at great age. Commun.
Statist.–Theory Meth. 25, 823–835.
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Median Excess Functions

The median excess function is defined by the medians of excess dfs. We have

mF (u) := (F (u))−1(1/2).

The median excess function has properties corresponding to those of the trimmed
mean excess function. For standard Pareto dfs W1,α, we have

mW1,α(u) = (21/α − 1)u, u > 1.

Once again, a sample version is obtained by plugging in the sample df. A formula
corresponding to (2.21) also holds for trimmed mean and median excess functions.

Hazard Functions

The hazard function hF of a df F with density f is

hF (t) = f(t)/(1 − F (t)), t < ω(F ).

Note that hF is the derivative of the cumulative hazard function

HF (t) = − log(1 − F (t)), t < ω(F ).

The value hF (t) is also called hazard rate or mortality rate at age t. It is the
right–hand derivative taken at zero of the residual life df F (t) at age t. We have

F (t)(x) ≈ hF (t)x

for small x. Recall that F (t)(x) is the probability that the remaining life time is less
than the instant x given survival at age t. Therefore, one gets the interpretation
that the mortality rate is approximately equal to the probability that the remaining
life is less than 1 given survival at age t. Check that

hFµ,σ (t) = hF ((t − µ)/σ) /σ,

where µ and σ denote the location and scale parameters.
We include a list of the hazard functions of GP, converse Weibull and converse

Gumbel dfs.

Exponential (GP0): hW0(t) = 1, t > 0;

Pareto (GP1), α > 1: hW1,α(t) = α/t, t > 1;

Beta (GP2), α < 0: hW2,α(t) = α/t, −1 ≤ t ≤ 0.

In the γ–representation, we have:
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GP: hWγ (t) = 1
1+γt for

⎧⎨⎩ 0 < t, 0 ≤ γ,
if

0 < t < 1/|γ|, γ < 0;

Converse Weibull, α < 0: hG̃2,α
(t) = |α|t−(1+α), t > 0;

Converse Gumbel: hG̃0
(t) = et.

γ = 0

γ = 1

γ = −1

1 2

1

2

3

4

Fig. 2.8. Hazard functions of GP

dfs for γ = −1, 0, 1.

The hazard function of the converse Weibull df G̃2,α is a straight, increasing

line if α = −2. Recall that G̃2,−2 is the Rayleigh df. Moreover, one can easily

check that the converse Gumbel dfs G̃0,µ,σ are the only ones that satisfy the
famous Gompertz law postulating a mortality rate of the form4

h(x) = aebx.

Hence G̃0 is also called Gompertz df. Because

1 − F (t) = exp
(
−
∫ t

α(F )

hF (x) dx
)
, α(F ) < t < ω(F ), (2.26)

we see that the survivor function and, thus, also the df F can be regained from
the hazard function.

The hazard function and, therefore, the survivor function can be written
in terms of the mean excess function. By multiplying both sides in (2.23) with
1 − F (u) and taking derivatives, one obtains

hF (t) =
1 + e′F (t)

eF (t)
, α(F ) < t < ω(F ). (2.27)

4Gompertz, B. (1825). On the nature of the function expressive of the law of human
mortality etc. Phil. Trans. Roy. Soc. 115, 513–585.
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Combining this with (2.26), we have

1 − F (t) = exp
(
−
∫ t

α(F )

1 + e′F (x)

eF (x)
dx
)
, α(F ) < t < ω(F ). (2.28)

Sample Hazard Functions

The sample hazard function

hn,b(t) =
fn,b(t)

1 − F̂n,b(t)
, t < xn:n,

is an estimator of the hazard function hF , where fn,b is the kernel density in (2.14),

and F̂n,b is the kernel estimator of the df in (2.17). Note that F̂n,b may be replaced

by the sample df F̂n. The quality of the sample hazard function as an estimate of
the hazard function heavily depends on the choice of the bandwidth b.

It can be advantageous to consider left or right–bounded versions of the
sample hazard function as it was done for the kernel density itself.

For grouped data, again with frequencies n(j) in cells [tj , tj+1), the sample
hazard function is defined by means of the histogram. Consequently,

hn(t) =
n(j)

(tj+1 − tj)
∑

i≥j n(i)
, tj ≤ t < tj+1.

Another version of the sample hazard function may be obtained by taking
the derivative of a smoothed sample cumulative hazard function log(1 − F̂n).

Reciprocal Hazard Functions, a Von Mises Condition

The reciprocal 1/hW of the hazard function of a GP df W is a straight line which
is clearly of interest for visual investigations. Moreover, this observation leads to a
condition (due to von Mises) that guarantees that a df belongs to the max and the
pot–domain of an EV and GP distribution. Thus, the reciprocal hazard function
is also of theoretical interest.

Reciprocal hazard and mean excess functions are related to each other. We
have

eWi,α = 1/((α − 1)αhWi,α), (2.29)

if i = 1 and α > 1 or i = 2, and

eWγ = 1/((1 − γ)hWγ ), (2.30)

if γ < 1. Note that eW0 = hW0 = 1.
The reciprocal hazard function was also mentioned due to technical reasons.

Observe that the reciprocal hazard function of a GP df Wγ,µ,σ satisfies

1

hWγ,µ,σ (t)
=

1 − Wγ,µ,σ(t)

wγ,µ,σ(t)
= σ + γ(t − µ).
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Therefore, the first derivative of the reciprocal hazard function is equal to γ. We
have (

1 − Wγ,µ,σ

wγ,µ,σ

)′
= γ (2.31)

on the support of Wγ,µ,σ. From (2.26) deduce that GP dfs are the only dfs which
possess this property.

If this condition is approximately satisfied for large t by some df F , then F
belongs to the max and pot–domain of attraction of the EV and GP df with the
given parameter γ. More precisely, the

von Mises condition: lim
x→ω(F )

(
1 − F

f

)′
(x) = γ (2.32)

is sufficient for the relations in (1.27) and (1.46), namely

• Gγ is the limiting df of Fn(bn + anx) as n → ∞, and

• Wγ is the limiting df of F [t](bt + atx) as t → ω(F )

for certain normalizing constants.

Check, for example, that the normal df Φ satisfies condition (2.32) for γ = 0
and, hence, the Gumbel df is the limiting df of maxima of normal random variables.

Under condition (2.32), one may take the following constants an and bn if
the standard EV dfs in the α–parameterization are taken as limiting dfs.

G0: bn = F−1(1 − 1/n), an = 1/(nf(bn));

G1,α: bn = 0, an = F−1(1 − 1/n),

G2,α: bn = ω(F ), an = ω(F ) − F−1(1 − 1/n).

(2.33)

For iid random variables X1, . . . , Xn with common df F , the expected number
of exceedances over F−1(1 − 1/n) is equal to one. For GP dfs F = Wi,α, one
obtains in (2.33) the standardizing constants under which the max–stability of the
standard EV dfs Gi,α holds, cf. also (1.31).

2.3 Fitting Parametric Distributions to Data

In this section we visualize data by parametric dfs or densities. Thereby, one
may also visually control the validity of a parametric model. This idea will be
exemplified for EV, GP and, in addition, for Poisson and normal distributions.
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Fitting an Extreme Value Distribution to Maxima

Let x = (x1, . . . , xn) be the vector of maxima xi of blocks of size m as in (1.5).

Recall from (2.2) that the sample df F̂n(x; · ) based on x is approximately equal
to the underlying df Fm if the number n of maxima is sufficiently large.

Combining (2.2) and (1.27) one gets

F̂n(x; · ) ≈ Fm ≈ Gγ,µm,σm ,

if n and m are sufficiently large. Therefore, an EV df can be fitted to the sample
df based on maxima.

It is likely that one of our basic assumptions is violated if none of the EV dfs
fits to the sample df. Correspondingly, fit an EV density to the histogram or kernel
density fn based on the xi. An efficient, interactive software package is needed to
carry out a visual selection of the parameters.

Of course, the selection of the parameters is done in some subjective manner,
yet one may follow certain principles.

• If the selection is based on the sample df, one may choose the parametric df
by minimizing the maximum deviation between the curves.

• If the selection is based on a kernel density, then we suggest to single out a
parametric density so that the area between both curves is minimized; this
corresponds to minimizing the L1–distance.

• There is a strong dependence on the smoothing parameter in the latter case
if the selection is based on the maximum deviation between the parametric
and the sample curve.

Fitting a Generalized Pareto Distribution to Exceedances

Let F̂k(y; · ) be the sample exceedance df, cf. page 41, based on the exceedances
y1, . . . , yk over the threshold u. Combining (2.4) and (1.46) one gets

F̂k(y; · ) ≈ F [u] ≈ Wγ,u,σ, (2.34)

if k and u are sufficiently large. Therefore, a GP df can be fitted to the sample
exceedance df. Once again, it is likely that one of our basic assumptions is violated
if none of the GP dfs fits to the sample exceedance df.

If excesses y′
i = yi − u are taken in place of the exceedances yi, then a GP df

with location parameter (left endpoint) equal to zero must be fitted to the data.
Likewise, one may fit a Pareto df W1,α,µ,σ with left endpoint µ + σ = u to the

sample exceedance df F̂k(y; · ).
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Fitting a Generalized Pareto Distribution to the Original Data

In the preceding lines, a GP df was fitted to the sample exceedance df. By changing
the location and scale parameters a GP df can be fitted to the upper tail of the
original sample df and, therefore, to the original data.

This is an application of (1.49) with F [u] and F replaced by the sample

exceedance df F̂k(y; · ) and and sample df F̂n(x; · ). If (2.34) is valid, then (1.49)
yields

Wγ,µ̃,σ̃(x) ≈ F̂n(x; x ), x ≥ u, (2.35)

where

σ̃ = σ(k/n)γ (2.36)

and

µ̃ = u − σ
(
1 − (k/n)γ

)
/γ . (2.37)

Notice that F̂n(x; u) = 1 − k/n and k is the number of exceedances.

There is a unique relation between the two pairs of parameters µ, σ and µ̃,

σ̃ determined by the equations W
[u]
γ,µ̃,σ̃ = Wγ,u,σ and Wγ,µ̃,σ̃(u) = 1 − k/n.

Fig. 2.9 illustrates the two different approaches of fitting a density to the
exceedances and to the original data. The illustration on the right–hand side es-
sentially shows a magnification of the curves on the left–hand side right of u.

Fig. 2.9. (left.) Fitting a GP density (solid) to the upper tail of a kernel density (dotted)

based on the original xi. (right.) Fitting a GP density (solid) to a kernel density (dotted)

based on exceedances yi over u.

Let W1,α,µ,σ be a Pareto df with µ + σ = u which is the left endpoint. If

this Pareto df fits to the sample exceedance df F̂k(y; · ), then W1,α,µ̃,σ̃, determined

by W
[u]
1,α,µ̃,σ̃ = W1,α,µ,σ and W1,α,µ̃,σ̃(u) = 1 − k/n, fits to the original sample df

F̂n(x; · ). Moreover, µ̃ = µ and σ̃ = σ(k/n)1/α.
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Fitting a Poisson Distribution to Discrete Data

Let x1, . . . , xn be governed by a Poisson distribution Pλ. Remember from (2.12)
that pn(j) = n(j)/n ≈ Pλ{j}, where n(j) is again the number of data being equal
to j. Therefore, a Poisson hypothesis should be rejected if none of the Poisson
histograms Pλ{j} visually fits to the sample histogram pn(j).

Local Fitting of a Normal Distribution

The preceding arguments can also be applied in the Gaussian case, if (1.27) is
replaced by (1.58). Select location and scale parameters µ and σ so that Φµ,σ ≈
F̂n(y; · ) in order to get a visualization of sums y1, . . . , yn via a normal df.

The procedure of fitting a GP df to upper extremes may be regarded as a
local statistical modeling. Such a local approach can be employed in the Gaussian
setting as well. For example, fit the main component of the normal mixture in the
subsequent Fig. 2.10 to the central observations (visualized by a kernel density).

To some extent, the local fitting of parametric distributions to data corre-
sponds to nonparametric density estimation, where the estimate of the density at
a fixed point x is just based on data around x.

Mixtures of Normal Distributions

If a parametric model as dealt with above is untenable, then a modification of this
approach, such as dealing with a mixture, can be beneficial.

Example 2.3.1. (Mixture of Normal Distributions.) We continue the analysis of 135
data of TV watching in hours per week, cf. Example 2.1.2. From the form of the kernel
density (Epanechnikov kernel and bandwidth b = 5) in Fig. 2.4, we already know that a
normal density cannot be fitted to the data. From Fig. 2.10, we see that a better fit is
obtained by a normal mixture. This modeling is still unsatisfactory in the upper tail of
the distribution.

hours per week

20 40 60

0.02

0.04

Fig. 2.10. Normal mixture (dot-
ted) 0.875ϕ1 + 0.125ϕ2 , where

ϕ1(x) = ϕ((x − 12.4)/6.2)/6.2,

ϕ2(x) = ϕ((x − 27)/3.4)/3.4,

and a left–bounded kernel density.
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If the means of the two normal components are slightly closer together, then the
heterogeneity of the data becomes less visible. Then, a representation of the data by
means of a right–skewed distribution, such as the Gumbel distribution (cf. Fig. 1.3),
would also be acceptable.

Conversely, if a Gumbel modeling for certain data seems to be adequate, then

a mixture distribution cannot be excluded. It depends on the posed question or the

additional information about the data as to which type of modeling (in other words,

hypothesis formulation) is preferable.

It is likely that mixtures of normal distributions having identical means are
of higher interest. Recall from page 31 that such distributions are fat–tailed, that
is, the kurtosis is lager than the kurtosis 3 of a normal distribution.

Example 2.3.2. (Fitting a Mixture of Two Normal Distributions to Financial Data.)
Parametric densities are fitted to a kernel density—with bandwidth b = 0.002—based on
the centered financial data which are displayed in Fig. 1.1.

A normal mixture—a maximum likelihood estimate—with mixing parameter d =
0.362 and scale parameters σ1 = 0.00285 and σ2 = 0.00898 is hardly distinguishable from
the kernel density (both represented by a solid line).

-0.02 -0.01 0.01 0.02

50

100

Fig. 2.11. Fitting normal (dot-

ted, dashed) and a mixture of

two normal densities (solid) to fi-

nancial data.

Two normal densities with σ = 0.0039 (dotted) and σ = 0.0065 (dashed) are

included. The first one fits well to the kernel density in the center, yet there is a significant

deviation in the tails. The second one—determined by the sample standard deviation—

strongly deviates from the kernel density in the center.

In Chapter 16, page 379, we also a apply maximum likelihood estimators in
statistical models of Student and sum–stable distributions, cf. Sections 6.3 and
6.4, to these data.
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The Art of Statistical Modeling

One major goal of this book is to select distributions which simultaneously fit to
the central as well as to the extreme data. The appropriate insight can be gained
by using the available tools such as Q–Q plots (subsequent Section 2.4) and sample
mean excess functions (Section 2.2).

A parametric modeling can be useful in reducing the variance of an estimation
procedure. If the parametric model is incorrect, then one must take a bias into
account. An optimal choice of the parametric model is achieved if there is a certain
balance between the variance and the bias. In Section 6.6 much effort is invested
to reduce the bias of estimators within the extreme value setting by introducing
higher order conditions.

We believe that visual procedures are preferable to automatic ones in many
situations. In that context, we also cite an interesting argument (translated from
German) in Pruscha5, page 62: “For larger sample sizes n, visual diagnostic tools
can be preferable to goodness–of–fit tests. A parametric hypothesis will be rejected
for larger n, even if the deviation of this hypothesis is negligible (from a practical
viewpoint) due to the high power of test procedures.”

2.4 Q–Q and P–P Plots

Q–Q plots are usually defined for location and scale parameter families and, there-
fore, we first review the main ideas for such models. An extension to EV and GP
models is obtained by employing estimators of the shape parameter.

Q–Q Plots in Location and Scale Parameter Families

Assume that the data x1, . . . , xn are governed by a df

Fµ,σ(x) = F ((x − µ)/σ)

with location and scale parameters µ and σ > 0. Thus, F = F0,1 is the standard

version. Values F̂−1
n (q) of the sample qf will be plotted against F−1(q). More

precisely, one plots the points(
F−1(qi), F̂−1

n (qi)
)
, i = 1, . . . , n,

where qi = i/(n+1). Notice that location and scale parameters need not be selected

in advance when a Q–Q plot is applied to the data. Because F̂−1
n (qi) = xi:n, the

relationship (2.9) between the sample qf and the underlying qf yields

F̂−1
n (qi) ≈ F−1

µ,σ(qi) = µ + σF−1(qi), (2.38)

5 Pruscha, H. (1989). Angewandte Methoden der Mathematischen Statistik. Teubner,
Stuttgart.
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and, hence, the Q–Q plot of points(
F−1(qi), xi:n

)
, i = 1, . . . , n, (2.39)

is close to the graph (x, µ+ σx). The Q–Q plot can be visualized by a scatterplot,
whereby a linear interpolation may be added. Apparently, the intercept and the
slope of the Q–Q plot provide estimates of µ and σ. Another frequently taken
choice of qi is (i − 0.5)/n.

The selected location/scale parameter family is untenable if the deviation of
the Q–Q plot from a straight line is too strong.

Example 2.4.1. (Continuation of Example 2.1.2 about TV Data.) A greater problem in
Example 2.1.2 was the selection of an appropriate bandwidth parameter. In conjunction
with Q–Q plots, one must not choose a bandwidth, but a parametric model. Subsequently,
we selected the normal location and scale parameter family. A straight line will be fitted
to that part of the Q–Q plot which represents the bulk of the data.

hours

-3 -2 -1 1 2 3

20

40

Fig. 2.12. Normal Q–Q plot based on

135 TV data and a straight line visu-

ally fitted to the Q–Q plot.

The normal Q–Q plot is sufficiently close to a straight line below the quantity of

18 hours, yet there is a stronger deviation above this threshold.

Of course, one may also check whether the data were generated under a
specific df F . This is just the case when the actual df is the standard df in the
preceding considerations. Then, the Q–Q plot must be close to the main diagonal
in the plane. The disadvantage of Q–Q plots is that the shape of the selected
parametric distribution is no longer visible.

Q–Q Plots in Extreme Value and Generalized Pareto Models

In EV and GP models, one must keep in mind that there is an additional pa-
rameter, namely the shape parameter, besides the location and scale parameters.
We suggest applying a Q–Q plot with the unknown shape parameter having been



2.4. Q–Q and P–P Plots 63

replaced by an estimate. If there is a stronger deviation of the Q–Q plot from a
straight line, then either the estimate of the shape parameter is inaccurate or the
model selection is untenable.

P–P Plots

We introduce the P–P plot in conjunction with a location and scale parameter
family of dfs Fµ,σ. The P–P plot is given by(

qi, F
(
(xi:n − µn)/σn

))
, i = 1, . . . , n,

where µn and σn are estimates of the location and scale parameters (such estimates
will be presented in the next section).

Because

F
(
(xi:n − µn)/σn

))
= Fµn,σn

(
F̂−1

n (qi)
)
,

a strong deviation of the P–P plot from the main diagonal in the unit square
indicates that the given model is incorrect (or the estimates of the location and
scale parameters are inaccurate). The values of the P–P plot will be close to one
(or zero) and, thus, close to the diagonal in the upper (or lower) tail, even if the
choice of the model is wrong.

Further Remarks About Regularization and Smoothing

Let us continue our permanent discussion about the usefulness of sample dfs, qfs,
densities, etc. for the visualization of data. A remark made about regularization
in Section 2.1 is also relevant to Q–Q and P–P plots.

By applying the sample qf, sample excess functions, the sample hazard func-
tion or the Q–Q plot, one is able to extract the information inherent in the data in
a suitably way by achieving a compromise between the following two requirements:

• the random fluctuation of the data must be reduced, and

• special features and clues contained in the data must be exhibited.

We believe that this goal is not achieved in the same manner by dfs and related
tools such as the P–P plot because there is an oversmoothing particularly in the
upper and lower tails of the distribution.

Exaggerating a bit, one may say that one should apply the sample df Fn (or,
likewise, the survivor function 1 − Fn) and the P–P plot if one wants to justify
a hypothesis visually. The other tools are preferable whenever a critical attitude
towards the modeling is adopted.
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2.5 Trends, Seasonality and Autocorrelation

This section concerns several aspects of exploratory time series analysis. Many
observations recorded at specified times exhibit a dependence on time. This de-
pendence may be caused, for example, by a certain tendency in the climate, an
increasing population, inflation, or seasonal effects.

We collect and discuss some statistical procedures known from regression and
time series analysis for measuring and removing a trend or a seasonal component in
a series of data. The autocorrelation function is also on the agenda. After having
removed a trend or a seasonal component from the data, one obtains residuals
which may be dealt with by the tools provided in foregoing sections.

The Linear Least Squares Method

A trend is a long–term change of a series of data. First let a linear tendency be
visible, cf. Example 2.1.3, that will be captured and removed by a least squares
line. Thus, a straight line is fitted to the points (t1, y1), . . . , (tn, yn) in a scatter-
plot by applying the least squares method. The ti need not be integer–valued or
equidistant.

The least squares line

s(t; β0, β1) = β0 + β1t

with regression slope β1 and intercept β0 is chosen such that the cumulated squared
distances ∑

i≤n

(yi − β0 − β1ti)
2 (2.40)

between the values yi and s(ti; β0, β1) at ti are minimal. The well–known solutions
are the estimates

β1,n =

∑
i≤n(yi − ȳ)(ti − t̄)∑

i≤n(ti − t̄)2

of the regression slope, and

β0,n = ȳ − β1,nt̄

of the intercept, where ȳ and t̄ are again the averages of the yi and ti.

One gets a decomposition

yi = s(ti; β0,n, β1,n) + xi (2.41)

where s(ti; β0,n, β1,n) = β0,n + β1,nti represents a linear part in the data and the
xi are the residuals which fluctuate irregularly around zero.
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Nonlinear (Polynomial) Least Squares Methods

If one recognizes a nonlinear trend in the scatterplot of points (ti, yi), one may em-
ploy parametric trend functions s(t; β0, . . . , βp), where the parameters β0, . . . , βp

are selected such that ∑
i≤n

(
yi − s(ti; β0, . . . , βp)

)2
(2.42)

is minimal. There is a greater variety of parametric trend functions. For example,
the linear approach can be extended to polynomials

s(t; β0, . . . , βp) = β0 +
∑
j≤p

βjt
j

of degree p. For p = 0 one gets the sample mean which determines a straight line.
Explicit solutions β0,n, . . . , βp,n to the least squares minimization for polynomials
can be obtained within the bounds of multiple, linear regression.

Parametric Regression for a Fixed Design

We reformulate the preceding considerations within a stochastic framework. Let

Yi = s(ti; β0, . . . , βp) + εi,

where the random variable Yi is observable at time (at the position) ti, and εi is
a random residual with expectation Eεi = 0. Thus, Yi is a random variable with
expectation

EYi = s(ti; β0, . . . , βp).

Notice that the yi and xi in (2.41) may be regarded as realizations of Yi and εi.
The least squares solutions βj,n—within the polynomial framework—provide

unbiased estimators of the unknown parameters βj and, therefore,

mn(i) = s(ti; β0,n, . . . , βp,n) (2.43)

is an unbiased estimator of the expectation E(Yi).
It suggests itself also to employ certain averages to estimate such expecta-

tions. Below, we deal with moving averages of the Yj pertaining to adjacent points
tj of ti. These moving averages provide nonparametric estimates of a parametric
or nonparametric trend function.

Parametric regression for a random design will be studied in Section 8.1.

Moving Averages, Nonparametric Estimation of a Trend

To eliminate—or, at least, to reduce—the irregular fluctuation of measurements
yi in a nonparametric manner one may average those yj pertaining to adjacent
points tj of ti. These averages capture a trend in the yi.
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For example, take the Nadaraya–Watson moving average

mn(i) =
1

Kn

∑
j≤n

I(ti − b ≤ tj ≤ ti + b)yj (2.44)

at the position ti, where

Kn =
∑
j≤n

I(ti − b ≤ tj ≤ ti + b)

is the number of points tj in the interval of length 2b around ti. The value b > 0
is called a bandwidth.

Generally, averages can be expressed by

mn(i) =
∑
j≤n

k

(
tj − ti

b

)
yj

/∑
j≤n

k

(
tj − ti

b

)
(2.45)

at the positions ti, where k is a kernel such that
∫

k(t) dt = 1 and b > 0 is a
bandwidth (cf. also page 44, where, e.g., the Epanechnikov kernel is introduced).
Usually, k is taken symmetrical around zero. In (2.44) there is the uniform kernel

k(t) = 0.5 × I(−1 ≤ t ≤ 1).

Again one gets a decomposition

yi = mn(i) + xi,

where the xi are the residuals which fluctuate irregularly around zero.
Special kernels (e.g., truncated versions) must be taken at corner points. We

suggest to employ truncated versions of the given kernel.
Subsequently, we assume that the positions ti are arranged in increasing order

and, in addition, the ti are equidistant, with ti = i or ti = i/n as special cases.
Then, (2.45) can be written

mn(i) =
∑

j

ajyi+j , (2.46)

for certain weights aj satisfying aj = a−j and
∑

j aj = 1. In the case of the uniform
kernel k(t) = 0.5 × I(−1 ≤ t ≤ 1), one obtains the moving average

mn(i) =
1

2v + 1

∑
|j|≤v

yi+j . (2.47)

A slightly modified version is

mn(i) =
1

2v

(
1

2
yi−v +

∑
|j|≤v−1

yi+j +
1

2
yi+v

)
. (2.48)

There is a trade–off between the two requirements that
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• the irregular fluctuation should be reduced,

• the long term variation in the data such as a quadratic or cubic tendency
should not be distorted by oversmoothing the data.

A balance between these two requirements can be gained by an appropriate
choice of the bandwidth b or of the numbers v in (2.47) and (2.48).

In addition, it can be useful to employ kernels as in (2.15) or (2.16) with∫
k(t)t2 dt = 0

in order to preserve a quadratic or cubic tendency in the data. This corresponds
to the condition

∑
j ajj

2 = 0 for the weights aj in (2.47), if x(i) − x(i − 1) = 1.
An example is provided by Spencer’s 15 point moving average, where the weights
are

(a0, a1, . . . , a7) = (74, 67, 46, 21, 3,−5,−6,−3)/320.

In Fig. 2.13 (right), Spencer’s moving average is applied to 200 iid standard normal
data.

200

-2

2

200

-2

2

Fig. 2.13. (left.) Scatterplot of 200 standard normal data. (right.) Spencer’s 15 point

moving average of these data.

The strong fluctuation in the normal data cannot be smoothed appropriately
by Spencer’s moving average. Apparently, the choice of the number of points is
more important than the selection of the kernel.

Example 2.5.1. (Maximum Daily Temperature at Death Valley.) We consider the maxi-
mum daily temperatures at Furnace Creek, Death Valley National Park, from Aug. 1994
to Aug. 1995, by which the measurements for Dec. 1994 were not available.

For the missing data, we filled in values deduced from a quadratic least squares
procedure applied to points around the gap. In Fig. 2.14 (left), the maximum daily
temperature is plotted against the day of the measurement.
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Fig. 2.14. (left.) Scatterplot of maximum daily temperature measured in Fahrenheit.

(right.) Moving average (41 points) employing the Epanechnikov kernel.

Relative to the given time span of 13 months, we observe a long term variation (a

trend) in the data that can be removed by means of a moving average. This data set is

stored in the file et–deval.dat.

Given a time span of several years, the variation in the preceding temperature
data must be interpreted as a seasonal effect (dealt with below). Thus, the time
horizon greatly influences the methodology of handling a series of data.

Our general references for this section are the mathematically oriented book
[5] and [26] for economic time series, yet the application of kernels and the question
of an appropriate choice of the number of points are not dealt with in these books.

Modifications of Moving Averages

In certain applications, it is desirable to employ modified versions of the averages
as introduced in the preceding lines. Other characteristics of the sample, such as
medians and quantiles, are also also of interest. We give some details.

• (One–Sided Moving Averages.) This is the construction employed for the
ordinary moving average at the upper corner point.

• (Moving Averages With a Random Bandwidth Chosen by Nearest Neigh-
bors.) If there is not a grid of equidistant points, as, e.g., a full grid of
integers, then it can be advisable to employ a nearest neighbor method. A
random bandwidth b is determined in the following manner. Given a non-
negative integer r, let b be the minimum of the distances between the fixed
point ti, where the moving average is evaluated, and its rth upper and, re-
spectively, rth lower neighbor tj . Near to the upper or lower corner point,
one merely evaluates the distance to the rth lower or, respectively, the rth
upper neighbor. Thus, one is averaging over r + 1 to 2r + 1 values yj .
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• (Local Weighted Regression.) As before choose neighboring tj of a fixed value
ti and carry out a weighted local least squares (lowess) procedure based on
these neighbors, cf. the book [8] by Cleveland.

• (Moving Medians.) Alternatively, one may use moving medians of the form(
ti, med|j|≤k yi+j

)
to reduce the fluctuation of a time series. This can be

necessary when the observations come from a heavy–tailed distribution.

• (Moving Quantiles.) Later we will be particularly interested in moving higher
q–quantiles in conjunction with series of log–returns of financial data (cf. Fig.
1.1 and Chapter 16).

In the latter context, we also use the parametric approach for estimating a
higher quantile.

The Seasonal Component

If the moving average exhibits a variation that is annual in period—in other words,
seasonal—then a refined decomposition of the measurements yi is suggested. For
simplicity, let ti = i for i = 1, . . . , n, where n = lp and l, p are the number and
length of periods.

Now we also single out a periodic component sn, i = 1, . . . , p, satisfying

sn(i + jp) = sn(i), j = 0, . . . , l − 1; i = 1, . . . , p, (2.49)

and
∑

i≤p sn(i) = 0. Thus, we have a decomposition in mind

yi = mn(i) + sn(i) + xi, (2.50)

where the mn(i) represent the smooth trend components and the xi are the resid-
uals. This is done in three steps.

• (Preliminary Determination of a Trend Component.) By applying moving
averages as introduced in (2.47) or (2.48) with p = 2v+1 or p = 2v, one gets
a preliminary trend component m̃n(i) that is not affected by any periodic
component.

• (Determination of a Period (Cycle).) From the residuals yi − m̃n(i), single
out a periodic component determined by

s̃n(i) =
1

l

l−1∑
j=0

(
yi+jp − m̃n(i + jp)

)
, i = 1, . . . , p,

or

sn(i) = s̃n(i) − 1

p

∑
j≤p

s̃n(j), i = 1, . . . , p,
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whereby the second version is preferable because it satisfies the additional
requirement

∑
i≤p sn(i) = 0.

If the number of periods is small, yet one can postulate a smooth periodic
component, then it is plausible to apply the preceding operations to a slightly
smoothed version of the yi − m̃n(i).

• (Final Determination of the Trend Component.) Finally, compute a moving
average or a parametric trend function mn(i) based on the deseasonalized
data yi − sn(i). One gets the residuals

xi = yi − sn(i) − mn(i) (2.51)

by combining these steps,

If the detrended and deseasonalized data x1, . . . , xn are realizations of random
variables X1, . . . , Xn with expectation EXi = 0, and X1, . . . , Xn are uncorrelated
or independent, then standard statistical procedures become applicable.

Example 2.5.2. (Water Levels of the Moselle River.) We examine the water levels (in
meters) of the Moselle River measured in Zeltingen from Nov. 1964 to Dec. 1977 and
from Jan. 1981 to Jan. 1996 (stored in the file ht–mosel.dat). The measurements from
the years 1978–1980 are missing. Since 1988, the measurements are daily maxima. Before
1988, there was one measurement each day.

Fig. 2.15. Scatterplot of the Moselle River levels from Nov. 1964 to Jan. 1996, with a

gap of the years 1978–1980 due to missing data.

Of course, the missing data from the years 1978 to 1980 caused an additional prob-
lem. To simplify the matter, this gap was filled by corresponding neighboring measure-
ments. The gap from Jan. 1978 to June 1979 was filled with the values from Jan. 1976 to
June 1977, and, likewise, the gap from July 1979 to Dec. 1980 was filled with the values
from July 1981 to Dec. 1982 (this completed data set is stored in the file ht–mofil.dat).
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In Fig. 2.16, we see the estimated seasonal component with and without smoothing.
The smoothing reduces the irregular fluctuation to some extent.

time (days)
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time (days)
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Fig. 2.16. (left.) Seasonal component without smoothing. (right.) Seasonal component

with an additional 25 points smoothing.

The seasonal component attains its maximum values within the period from the

end of December to mid–February. There is another remarkable peak in April.

The Moselle River data will be analyzed more intensively in Chapter 14.
One must cope with the facts that these data are serial correlated and seasonally
varying in the variance (heterosketastic) and in higher moments.

Serial Analysis of Stationary Data: the Autocovariance Function

For random variables X ,Y with EX2, EY 2 < ∞ the covariance is

Cov(X, Y ) = E
(
(X − EX)(Y − EY )

)
. (2.52)

Loosely speaking, there is a tendency that the random variables X and Y simulta-
neously exceed or fall below their expectations EX and EY , if there is a positive
covariance.

The random variables X and Y are uncorrelated if Cov(X, Y ) = 0. Recall
that independent random variables are uncorrelated, yet the converse conclusion
is not valid.

The pertaining sample covariance is

sx,y,n =
1

n − 1

∑
i≤n

(xi − x̄)(yi − ȳ), (2.53)

where x̄ and ȳ are the sample means of the data x1, . . . , xn and y1, . . . , yn.
Subsequently, we study the serial dependence structure of a detrended and

deseasonalized time series by means of the autocovariance function. A sequence
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X1, . . . , Xn is stationary if EXi = EX1, EX2
i < ∞ and the covariances

Cov(Xi, Xi+h) = Cov(X1, X1+h) =: r(h), i + h ≤ n, (2.54)

merely depend on the time lag h. One also speaks of a weakly or covariance station-
ary series. The function r, with the time lag h as a variable, is the autocovariance
function. It is particularly assumed that the expectations and variances are con-
stant. The autocovariance function r(h) can be estimated by the sample version

r̂n(h) =
1

n

∑
i≤n−h

(xi − x̄)(xi+h − x̄), (2.55)

where x̄ =
∑

i≤n xi/n is the sample mean. The estimation is accurate if n − h is
sufficiently large. Notice that r̂n(0) is the sample variance with the factor 1/(n−1)
replaced by 1/n to reduce the random fluctuation for larger lags h.

The ratio
ρ(h) = r(h)/r(0) (2.56)

is the autocorrelation function. The sample autocorrelation function ρ is

ρ̂n(h) = r̂n(h)/r̂n(0). (2.57)

In Fig. 2.17, the sample autocorrelations are represented by bars.

time lag

10 30

0.0

1

Fig. 2.17. Sample autocorrela-

tions of 200 iid standard ex-

ponential data for lags h =

0, . . . , 40.

Notice that ρ̂n(0) = ρ(0) = 1 and the autocorrelation function attains values
between −1 and 1 under the stationarity condition.

In the case of detrended and deseasonalized data, we may assume that the
expectation is equal to zero. An estimate of the autocovariance function r is

r̂n(h) =
1

n

∑
i≤n−h

xixi+h .
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If r̂n(h) is sufficiently close to zero for h ≥ q, it is legitimate to assume
that the residuals x1, x1+q, x1+2q, . . . are realizations of uncorrelated or indepen-
dent random variables. Then, standard statistical procedures for uncorrelated or
independent random variables become applicable to the subsequence.

In conjunction with a non–trivial autocorrelation function, one speaks of a
time series. As a theoretical example of such a series, we mention a Gaussian AR(1)
time series {Xi}.

Example 2.5.3. (Gaussian AR(1) Series.) For 0 ≤ d ≤ 1, let

X1 = Y1,

Xk = d Xk−1 + (1 − d2)1/2 Yk, k > 1, (2.58)

where the Yi are iid standard Gaussian random variables (normal random variables are
often called Gaussian in the time series context).

This is the usual construction when defining standard Gaussian random variables
X1 and X2 with correlation d. Verify that {Xk} is a stationary sequence of standard
Gaussian random variables with autocorrelation function

ρ(h) = E(X1 X1+h) = dh, h ≥ 0.

Thus, we have a geometrically decreasing autocorrelation function. Notice that indepen-
dence holds for d = 0 and total dependence for d = 1.

time lag
0 5 10 15

0

1

Fig. 2.18. Theoretical autocor-

relations of Gaussian AR(1) se-

ries with d = 0.8 (solid line)

and sample autocorrelations of

200 Gaussian AR(1) data under

the parameter d = 0.8 (bars) for

time lags h = 0, . . . , 15.

Next we want to illustrate the sample behavior of AR(1) series for uncorrelated
(independent) and strongly correlated random variables. In Fig. 2.19, Gaussian AR(1)
data series of size 200 are plotted which were generated under the correlation parameters
d = 0 and d = 0.95.

The data randomly fluctuate around the x–axis on the left–hand side, yet seem to

exhibit a certain trend on the right–hand side although there is a stationary series.

The discussion about AR(1) series and related time series will be continued
in the Sections 6.2, 16.7 and 16.8.
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Fig. 2.19. Gaussian AR(1) data generated under d = 0 (left) and d = 0.95 (right).

2.6 The Tail Dependence Parameter

The following remarks should be regarded as a preliminary technical introduction
to the concept of tail dependence and tail independence which concerns a certain
property of the bivariate survivor function in the upper tail.

Later on, namely in Section 12.1, tail independence is interpreted as the
property of the upper tail of a bivariate distribution which entails that the com-
ponentwise taken maxima are asymptotically independent. In Section 13.3 there
is also a detailed discussion of other tail independence parameters which measure
the rate at which the tail independence is attained.

At the beginning we introduce a certain tail dependence parameter by means
of the bivariate survivor function. The definition of a auto–tail–dependence func-
tion ist added which is related to the autocovariance function. In addition, certain
sample versions of the tail dependence parameter and of the auto–tail–dependence
function are suggested.

An Introduction to Tail Dependence

Let X and Y be random variables with the joint df F and univariate marginal dfs
FX and FY . The dependence in the upper tail region of the distribution may be
expressed by the conditional probability

P (Y > y|X > x) =
P{X > x, Y > y}

P{X > x} (2.59)

of Y > y given X > x. Such conditional probabilities were studied by Sibuya6 and
other authors in conjunction with the asymptotic independence of componentwise
taken maxima, see (12.8).

6Sibuya, M. (1960). Bivariate extreme statistics. Ann. Inst. Math. Statist. 11, 195–210.
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The conditional probability in (2.59) is independent of the marginal dfs FX

and FY when x and y are replaced by the quantiles F−1
X (u) and F−1

Y (v).
In the sequel, let u = v. The tail dependence parameter χ(u) of X and Y at

the level u is

χ(u) = P
(
Y > F−1

Y (u)
∣∣X > F−1

X (u)
)

= P (V > u|U > u), (2.60)

where
(U, V ) = (FX(X), FY (Y ))

is the pertaining copula random vector with (0, 1)–uniformly distributed marginal
random variables U and V , if FX and FY are continuous (according to the prob-
ability transformation).

It is always understood that u is close to 1, that is, we are dealing with
probabilities in the upper tail region of the joint distribution of X and Y or,
respectively, of U and V . The term

χ = lim
u→1

χ(u) (2.61)

is addressed as tail dependence parameter. We have tail independence, if χ = 0,
and total tail dependence if χ = 1.

We list some properties of the tail dependence parameters:

• χ(u) and χ are symmetric in X and Y ;

• χ(u) and χ range between zero and one;

• if X and Y are stochastically independent (in the usual sense), then χ(u) =
1 − u and χ = 0; therefore, independence implies tail independence,

• if X = Y , then χ(u) = 1 and χ = 1.

However, one should be aware that tail independence does not imply inde-
pendence. Let

W (x, y) = 1 + x + y

for x, y ≤ 0 and x + y ≥ −1. Then, χ(u) = 0 if u ≥ 1/2 and, therefore, also χ = 0.
Thus, we have tail independence. Yet, W is the joint df of the totally dependent
rvs Z and −(1 + Z) where Z is on (−1, 0)–uniformly distributed.

The sample version pertaining to χ(u) and χ, based on data (xi, yi) under
the df F , is

χn(u) =
1

n(1 − u)

∑
i≤n

I(xi > x[nu]:n, yi > y[nu]:n). (2.62)

For a continuation of this topic we refer to the Chapters 12 and 13 which con-
cern multivariate extreme value and multivariate generalized Pareto models. For
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such multivariate distributions, the dependence structure is of central importance
(besides of the univariate marginals). We particularly refer to Section 12.1, where
we describe the relationship of the tail dependence parameter χ to the Pickands
dependence function D, and to Section 13.3 for the definition of other tail depen-
dence parameters χ̄ and β which determine the rate at which the tail independence
is attained.

The Auto–Tail–Dependence Function

Next, let X1, . . . , Xn be a series of identically distributed random variables with
common df F . Assume, in addition, that the series has stationary dependencies in
the upper tail in the sense that for i ≤ n − h,

P
(
Xi+h > F−1(u)

∣∣Xi > F−1(u)
)

= P
(
X1+h > F−1(u)

∣∣X1 > F−1(u)
)

=: ρ(u, h) (2.63)

which defines the auto–tail–dependence function at the level u. Likewise one defines
an auto–tail–dependence function ρ(h) by

ρ(h) = lim
u→1

ρ(u, h) (2.64)

as the limit of ρ(u, h) for u → 1.
The auto–tail–dependence functions ρ(u, h) at the level u can be estimated

by the sample version

ρn(u, h) =
1

n(1 − u)

∑
i≤n

I(min(xi, xi+h) > x[nu]:n) (2.65)

based on data x1, . . . , xn.
It is clear that ρn(u, h) also serves as an estimate of ρ(h), where a sufficiently

large u must be selected by the statistician. The level (threshold) u should be
sufficiently large to reduce the bias, and small enough to reduce the variance of
the estimator.

Another auto–tail–dependence function ρ̄ will be introduced in Section 13.3
in conjunction with the tail dependence parameter χ̄ which measures the degree
of tail independence.

2.7 Clustering of Exceedances

In conjunction with extreme values, it has been implicitly assumed in foregoing
sections that the data x1, . . . , xn are generated independently from each other or,
at least, the dependence between the data is negligible.

In Section 2.6 we already started with a preliminary discussion about depen-
dence concepts in conjuction with tail dependence parameters. In that context,
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another feature will be captured by the phenomenon that stronger dependence
may lead to a clustering of extreme values. The clustering of data is also related to
another important parameter in extreme value theory, namely the extremal index
θ (as indicated in this section, see below, and further mentioned in Section 6.2).

Building Clusters by Runs, the Mean Cluster Size

Given x1, . . . , xn let xi(1), . . . , xi(k) again denote the exceedances over a predeter-
mined threshold u. For some choice of a positive integer r, called the run length,
define clusters of exceedance times i(j) in the following manner.

Any run of at least r consecutive observations xi below the threshold u sep-
arates two clusters. Hence, there is a minimal gap of length r between two consec-
utive clusters of exceedance times.

time
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Fig. 2.20. Six clusters above u =

1 with respect to a run length r =

3 of a Gaussian AR(1) series with

d = 0.8 with cluster sizes between

1 and 5.

We introduce the mean cluster size that characterizes the clusters to some
extent. Let n(u, r) denote the number of clusters over u. The mean cluster size,
relative to u and the run length r, is

mcsize(u, r) = k/n(u, r). (2.66)

The mean cluster size is a useful statistic for describing extreme data besides an
estimate of the tail index.

The Blocks Method

Clusters of exceedance times may also be built by the blocks method (also called
Gumbel method) as mentioned in Section 1.2. Each block containing at least one
exceedance time is treated as a cluster (cf. [16], pages 242–243, and the literature
cited therein for more details).
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Declustering

To obtain data that correspond more closely to a model of iid random variables,
one may reduce the sample of exceedances to that of the cluster maxima. This
topic will be further pursued within the framework of Poisson counting processes,
see Section 9.2.

The Cluster Size Distribution

The following discussion merely concerns the run length definition of clusters.

Let |µ| denote the size of a cluster µ of exceedance times for the given ex-
ceedances xi(1), . . . , xi(k) over u according to the run length r. The relative number
of clusters with size j defines the (dicrete) cluster size distribution Pu,r on the set
1, . . . , k. We have

Pu,r({j}) :=
|{µ : |µ| = j}|

n(u, r)
, 1 ≤ j ≤ k. (2.67)

The mean of the cluster size distribution Pu,r is the mean cluster size mcsize(u, r)
as introduced in (2.66) before.

The illustration in Fig. 2.21 concerns the exceedances over a threshold u = 1
of 4000 Gaussian AR(1) data generated under the correlation coefficient d = 0.8.
The exceedances as well as the exceedance times are plotted. One clearly recognizes
the clustering in the exceedances xi(j) as well as in the exceedance times.

time i/n
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4

Fig. 2.21. Scatterplot of exceedances over the threshold u = 1 of 4000 Gaussian AR(1)

data with correlation coefficient d = 0.8.
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We remark that the number of exceedances over 1 (respectively, 2, 3) in Fig.
2.21 is 707 (respectively, 102, 12).

Next, the run length r is chosen equal to 1. In Fig. 2.22 (left), the cluster size
distribution for u = 1 and the (reciprocal) mean cluster sizes for varying u ≥ 1
are plotted.
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Fig. 2.22. Cluster size distribution for u = 1 and r = 1 (left). Mean cluster sizes (right,

top) and reciprocal mean cluster sizes for u ≥ 1 and r = 1 (right, bottom).

The reciprocal mean cluster sizes 1/mcsize(u, r) will also be written θ(u, r).
The reciprocal mean cluster sizes θ(u, r) are related to the extremal index, denoted
by θ, which will be discussed in Section 6.2. In Fig. 2.23, θ(·, r) is plotted against
the threshold u for run lengths r = 1, 2, 5, 10.
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Fig. 2.23. Reciprocal mean

cluster sizes for u ≥ 1 and

r = 1, 2, 5, 10.

We also include plots of the reciprocal mean cluster sizes θ(·, r) of Gaussian
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AR(1) data for the sample size n = 4000, corresponding to those in Fig. 2.23, for
d = 0.4 and d = 0.6.

Fig. 2.24. Reciprocal mean cluster sizes θ(u, r) for d = 0.4 and d = 0.6 and u ≥ 1,

r = 1, 2, 5, 10

For smaller d, that is the situation closer to independence, the reciprocal
mcsizes are closer to 1. Likewise, one may deal with mean cluster sizes and cluster
size distributions depending on the number k of exceedances as a parameter.



Part II

Statistical Inference in
Parametric Models



Chapter 3

An Introduction to
Parametric Inference

In the preceding chapters, we emphasized the visual viewpoint of representing data
and fitting parametric distributions to the data. This is the exploratory approach
to analyzing data. In the present chapter, we add some parametric estimation and
test procedures which have been partially deduced from the visual ones.

This chapter gives us the opportunity to reinforce previous knowledge as
well as to fill gaps. For example, we give a detailed description of the parametric
bootstrap in conjunction with confidence intervals in Section 3.2. The p–value is
employed instead of a fixed significance level in testing problems.

We introduce some classical estimation procedures in the exponential, Gaus-
sian and Poisson models in order to give an outline of our approach within a
familiar setting. This is done in the Sections 3.1, 3.4 and 3.5. Recall that exponen-
tial distributions belong to the family of generalized Pareto (GP) distributions.
Gaussian distributions are on the agenda because we want to compare classical
statistical procedures in Gaussian models with those influenced by extreme value
analysis.

The Sections 3.2 and 3.3 are devoted to confidence intervals and test pro-
cedures for parametric models. Poisson distributions are of interest in extreme
value analysis because the number of exceedances above a higher threshold can be
modeled by such distributions.

Bayesian analysis gains more and more importance in our investigations. In
Section 3.5, we give an introduction to the Bayesian estimation principle within
a decision theoretic framework and collect some relevant examples of Bayesian
estimators in continuous and discrete models.
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3.1 Estimation in Exponential and

Gaussian Models

In the preceding chapter, a normal df was visually fitted to the sample df. Subse-
quently, automatic procedures are provided using estimators of the location and
scale parameters. We present some prominent estimators of the mean µ and the
standard deviation σ within the normal (Gaussian) model {Φµ,σ : µ real, σ > 0}.
Keep in mind that the normal dfs and densities will not be represented by the
variance σ2, but by the standard deviation (scale parameter) σ.

We start with a likelihood–based estimator, namely, the maximum likelihood
estimator in exponential and Gaussian models. Other likelihood–based estimators
are the Bayesian estimators.

Maximum Likelihood Estimation in the Exponential Model

We compute the maximum likelihood estimate (MLE) for the model of exponential
densities gϑ(x) = ϑ exp(−ϑx), x > 0, where ϑ > 0 is the unknown reciprocal scale
parameter.

Remember that the joint density of iid exponential variables X1, . . . , Xn with
parameter ϑ is

g(x|ϑ) =
∏
i≤n

gϑ(xi), x = (x1, . . . , xn),

cf. also (10.10) in the multivariate part of this book. The MLE ϑ̂n maximizes the
likelihood function

L(ϑ) =
∏
i≤n

gϑ(xi)

for the given sample x = (x1, . . . , xn).
Now compute the MLE by taking the derivative of the log–likelihood function

log L(ϑ) and solving the likelihood equation

(log L)′(ϑ) = 0.

The solution is the reciprocal sample mean ϑ̂n = 1/x̄ = n
/∑

i≤n xi.

Likewise, the sample mean is the MLE of the scale parameter in the expo-
nential model.

Maximum Likelihood Estimation in the Gaussian Model

The joint density of iid normal random variables X1, . . . , Xn with mean and stan-
dard deviation (location and scale parameters) µ and σ is

ϕ(x|µ, σ) =
∏
i≤n

ϕµ,σ(xi), x = (x1, . . . , xn),
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where the density of Φµ,σ is denoted by ϕµ,σ again.
The MLEs of µ and σ in the normal model are the sample mean and the

sample standard deviation

µ̂n = x̄ and σ̂n =

(
1

n

∑
i≤n

(xi − µ̂n)
2

)1/2

. (3.1)

The estimate (µ̂n, σ̂n) maximizes the likelihood function L(µ, σ) = ϕ(x|µ, σ)
for the given sample x1, . . . , xn. The values µ̂n and σ̂n may be computed as the
the solutions to the likelihood equations

∂

∂µ
log L(µ, σ) = 0 and

∂

∂σ
log L(µ, σ) = 0

obtained by the partial derivatives of the log–likelihood function.

Example 3.1.1. (Michelson’s Determination of the Velocity of Light in the Air from
1879.) Using a refinement of Foucault’s method, Michelson obtained n = 100 measure-
ments of the velocity of light in the air1. The values in Table 3.1 plus 299,000 in km/sec
are Michelson’s determinations of the light speed in the air (stored in the order of the
outcome in the file nu–miche.dat).

Table 3.1. Michelson’s 1879 measurements of the velocity of light in the air.

620 760 800 810 840 850 870 880 930 960

650 760 800 810 840 850 870 880 930 960

720 760 800 810 840 850 870 890 940 970

720 760 800 810 840 850 880 890 940 980

720 770 800 810 840 850 880 880 940 980

740 780 810 820 840 860 880 900 950 980

740 780 810 820 840 860 880 900 950 1000

740 790 810 830 850 860 880 910 950 1000

750 790 810 830 850 870 880 910 960 1000

760 790 810 840 850 870 880 920 960 1070

The Q–Q plot in Fig. 3.1 confirms a normal modeling for the measurements. The
MLEs are µ̂ = 852.4 and σ̂ = 78.6. In addition, the plots of the estimated parametric
density and a kernel density are sufficiently close to one another. Thus, 299,841.7 km/sec
is a parametric estimate of the light speed in the air.

The universally–accepted light speed in a vacuum is about 299,792.5 km/sec. To

obtain the light speed in the air, this value must be multiplied by a correction factor which

depends on atmospheric humidity, pressure and temperature. By employing the correction

factor taken by Michelson, one arrives at the value 299,734.5; other reasonable choices of

1See also Andrews, D.F. and Herzberg, A.H. (1985). Data. Springer, New York.
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Fig. 3.1. (left.) Normal Q–Q plot for Michelson’s data. (right.) Kernel density (dotted)

with b = 70 and normal density (solid) with parameters given by the MLE.

the correction factor would lead to a similar conclusion. Thus, due to a systematic error

in the experiment, the correct normal modeling of Michelson’s data and the skillfully

defined MLE are merely of limited relevance to evaluating the target parameter, namely

the “true” light speed. For a continuation, see Example 3.2.1, where a confidence interval

is presented.

It is likely that some of the readers are disappointed or even frustrated by
the foregoing example, yet it was deliberately chosen to enforce a critical attitude
and to exhibit certain limitations of statistical inference.

The Moment Estimation Method

The MLEs µ̂n and σ̂n in the normal model may be classified as moment estimates,
because µ̂n and σ̂2

n are the sample mean and sample variance, and µ and σ2 are
the mean and the variance of the normal df Φµ,σ.

Generally, moment estimates are obtained by equating the sample moments
with the pertaining moments of parametric distributions. A similar method is
introduced in Section 14.5, where ordinary moments are replaced by L–moments.

The Quantile Estimation Method, L–Statistics

Recall from (2.9) that x[nq]:n is an estimate of the q–quantile. In a location and
scale parameter family, we have x[nq]:n ≈ µ + σF−1(q). Such a relation can be
employed to estimate µ and σ (and further parameters if necessary). In the normal
case, the median x[n/2]:n is an estimate of µ. By taking differences, one eliminates
the location parameter and finds an estimate of σ. For example, the interquartile
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range leads to the well–known robust estimate

(x[3n/4]:n − x[n/4]:n)/(2Φ−1(3/4))

of σ in the normal location and scale parameter family. Estimators of this type
may be classified as quick or systematic estimators.

Example 3.1.2. (Fitting a Normal Distribution When Fat Tails are Correct.) To data
x1, . . . , xn, which are governed by a symmetric distribution F with fat or heavy tails,
one may fit a normal df with location parameter µ = 0 and scale parameter given by the
sample standard deviation, or quick estimators such as

σ̂n = x[nq]:n

/
Φ−1(q) (3.2)

based on the xi, or, under a condition of symmetry imposed on F ,

σ̃n = y[nq]:n

/
Φ−1((1 + q)/2) (3.3)

based on yi = |xi|.

By the definition of σ̂n, the normal df Φ0,σ̂n has the q–quantile x[nq]:n and, therefore,

the weight of Φ0,σ̂n and the number of data beyond the point x[nq]:n correspond to each

other. Typically, σ̂n > sn and σ̃n > sn and the normal dfs pertaining to the quick

estimates are more appropriate as estimators of the tails of F .

More generally, one may deal with L–statistics (linear combination of or-
der statistics) of the form

∑
i≤n ci,nxi:n which provide a rich class of statistics

for estimating parameters (see, e.g., [48]). Special L–statistics will by utilized in
conjunction with the L–moment estimation method which will be introduced in
Section 14.5.

The Least Squares Estimation Method

Location and scale parameters µ and σ may be estimated by a least squares
method.

The points of a normal Q–Q plot in (2.39) are close to the straight line
(x, σx+µ) and, therefore, also close to the least squares line (x, ax+ b) as defined
by (2.40). Consequently, the two straight lines (x, σx+µ) and (x, ax+ b) are close
together. This yields that the intercept b and the slope a of the least squares line
provide plausible estimates of the location and scale parameters µ and σ.

It is advisable to use a trimmed version of the least squares procedure. Thus,
first omit a certain number of upper and lower extremes from the sample, and then
apply the least squares method. This least squares method for estimating location
and scale parameters can be utilized for any df F in place of the normal df Φ.
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The Minimum Distance Method

By visually fitting a normal df or density to the sample df or, respectively, to a
kernel density or histogram, one is essentially applying a minimum distance (MD)
method.

Let d be a distance on the family of dfs. Then, (µ̂n, σ̂n) is an MDE2, if

d(F̂n, Φµ̂n,σ̂n) = inf
µ,σ

d(F̂n, Φµ,σ),

where F̂n again denotes the sample df. The distance may also be based on a
distance between normal densities ϕµ,σ and sample densities fn. One must apply
the Hellinger distance

H(ϕµ,σ, fn) =

(∫ (
ϕ1/2

µ,σ(x) − f1/2
n (x)

)2

dx

)1/2

(3.4)

to obtain asymptotically efficient estimators3 (a property which is shared by the
MLE). The Hellinger or L2 distances also possess computational advantages, be-
cause, then, the distances d(ϕµ,σ, fn) are differentiable in µ and σ.

The M–Estimation Method

In view of an application in Section 5.1 we deal with M–estimators in scale pa-
rameter models {Fσ : σ > 0} with special emphasis laid on the exponential scale
parameter model. Let f be the density of F = F1. The MLE of the scale parameter
is a special M–estimator as the solution to the likelihood equation∑

i≤n

ψML(xi/σ) = 0,

where the M–function is ψML(x) = −xf ′(x)/f(x) − 1.
In the exponential model, where f(x) = e−x, x ≥ 0, we have

ψ∗
ML(x) = x − 1, (3.5)

and the MLE of the scale parameter is the sample mean.
Generally, M–estimates of σ are solutions to M–equations∑

i≤n

ψ(xi/σ) = 0, (3.6)

where ψ is the M–function with
∫

ψ(x)f(x)dx = 0. In addition,

2 The L2 distance between normal densities and histograms was used in Brown, L.D.
and Gene Hwang, J.T. (1993). How to approximate a histogram by a normal density.
The American Statistician 47, 251–255.

3Beran, R.J. (1977). Minimum Hellinger distance estimates for parametric models.
Ann. Statist. 5, 445–463.
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• boundedness of ψ is required to achieve robustness against gross errors,

• ψ should be close to ψML in order to gain efficiency of the estimator.

An estimator satisfying both requirements is obtained by truncating ψML (see [27],
page 122). Such M–functions go back to P.J. Huber [30]).

For the exponential model, we use M–functions of the form

ψ∗
b (x) = − exp(−x/b) + b/(1 + b). (3.7)

Check that ψ∗
b is bounded and bψ∗

b (x) → ψ∗
ML(x) as b → ∞ (apply (1.66)). Because

ψ∗
ML is differentiable, one can apply the Newton–Raphson iteration procedure to

solve the M–equation (3.6).

Covering Probabilities

The accuracy of an estimator can also be measured directly by the df of the
estimator: the probability that the absolute deviation of the sample mean X from
the true mean mF is smaller or equal to some t > 0 has the representation

P{|X− mF | ≤ t} = P{X ≤ mF + t} − P{X < mF − t}. (3.8)

If F = Φµ,σ and the Xi are independent, this yields

P
{
|X− µ| ≤ tσ/n1/2

}
= 2Φ(t) − 1. (3.9)

In greater generality, we have

P
{
|X− mF | ≤ tsF /n1/2

}
≈ 2Φ(t) − 1, (3.10)

for every df F which possesses a finite standard deviation sF .
These two formulas lead to exact and asymptotic confidence intervals for the

mean of a distribution (cf. Section 3.2).

The Bias and the Mean Squared Error (MSE) of an Estimator

Let us deal with the special case of estimating the location parameter µ in the
normal model and, generally, with estimating the mean mF =

∫
xdF (x) of a df

F . The natural estimator of mF is the sample mean X = 1
n

∑
i≤n Xi, where the

Xi are identically distributed with common df F . We have EX = mF . Hence, the
bias EX−mF is equal to zero, and X is an unbiased estimator of mF . For such an
unbiased estimator, the variance E(X − mF )2 is an appropriate measure for the
accuracy.

Generally, the performance of an estimator ϑ̂n of a parameter ϑ can be mea-
sured by the mean squared error (MSE) which is the expected squared deviation
of the estimator from the target parameter. We have

E(ϑ̂n − ϑ)2 = E
(
ϑ̂n − E(ϑ̂n)

)2
+
(
E(ϑ̂n) − ϑ

)2
=: V (ϑ̂n) + Bias2(ϑ̂n). (3.11)
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For unbiased estimators, the MSE is the variance. The bias that occurs when the
model is incorrect is essential for the performance of an estimator.

The MSE plays a central role in the definition of the Bayes estimator which
will be dealt with in the subsequent lines.

3.2 Confidence Intervals

Intervals based on the data are constructed so that the true parameter falls into
such an interval in (1−α)×100% of the trials. One obtains 95% or 99% confidence
intervals, if α = 0.05 or α = 0.01.

We mostly deal with confidence intervals based on estimators. Such a con-
fidence interval also provides a measure for the accuracy of the estimator. First,
we will employ (3.9) and (3.10) to construct confidence intervals for the mean of
a distribution.

Confidence Intervals for the Mean

First assume that the data x1, . . . , xn are governed by a normal df Φµ,σ0 with µ
unknown and σ0 fixed. Let u(α) = Φ−1(1 − α) denote the (1 − α)–quantile of Φ.
(3.9) yields that, with probability 1 − α, a sample x1, . . . , xn is drawn such that
the interval

[x̄ − σ0u(α/2)/n1/2, x̄ + σ0u(α/2)/n1/2] (3.12)

covers µ. Thus, we gain a (1 − α) confidence interval for the mean.

If σ0 in (3.12) is unknown, then the interval bounds are also unknown to the
statistician. Yet, if σ0 is replaced by the sample standard deviation sn, one gets
an interval which is merely based on the data. This leads to a confidence interval
that approximately attains the level 1 − α.

To obtain a confidence interval such that the level 1 − α is attained exactly,
one must adopt quantiles of the t–df with n − 1 degrees of freedom, see (1.62).

Example 3.2.1. (Continuation of Example 3.1.1 about Michelson’s 1879 Determination of

the Velocity of Light in the Air.) The confidence interval of level .99 for the unknown mean

value µ∗ is [x̄ − 2.58snn−1/2, x̄ + 2.58snn−1/2] = [832.1, 872.7]. Thus, when Michelson’s

experiment is repeated for several times, then µ∗ would fall into such intervals in 99 % of

the trials. Whereas the value of 299,841.7 km/sec determined by Michelson might be an

acceptable estimate of the light–speed in the air—there is a deviation of 107.2 km/sec—

the measuring of the accuracy of the estimate by means of the confidence interval must

be regarded as a failure.

From (3.10), we know that an asymptotic confidence interval for the mean is
still obtained by the preceding construction if the normal distribution is replaced
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by any df which has a finite variance. This construction can be extended to other
functional parameters.

Asymptotic Confidence Intervals for Functional Parameters

We deal with the fairly general case of two–sided confidence intervals for a func-
tional parameter T (ϑ) of a parametric df Fϑ with ϑ ∈ Θ. We assume that a

consistent estimator ϑ̂n of the parameter ϑ is available.
In analogy to (3.10), assume that T̂n(X) is an estimator of T (ϑ) such that

P
{∣∣T̂n(X) − T (ϑ)

∣∣ ≤ ts(ϑ)/n1/2
}
≈ 2Φ(t) − 1, (3.13)

where X = (X1, . . . , Xn) is a vector of n iid random variables Xi with common df
Fϑ, and s(ϑ) are normalizing constants varying continuously in ϑ.

Let x be the vector of data xi governed by Fϑ. If ϑ̂n(x) ≈ ϑ, then s(ϑ̂n(x)) ≈
s(ϑ). Therefore, corresponding to (3.12), the vectors x = (x1, . . . , xn) are drawn,
with probability approximately equal to 1 − α, such that the intervals[

T̂n(x) − s(ϑ̂n(x))u(α/2)

n1/2
, T̂n(x) +

s(ϑ̂n(x))u(α/2)

n1/2

]
(3.14)

cover the functional parameter T (ϑ).
For the preceding construction, one needs a precise knowledge of the asymp-

totic behavior of the estimator of the functional parameter T (ϑ). In particular,
the normalizing constants s(ϑ) must be known to the statistician. Otherwise, con-
fidence intervals may be constructed by means of the bootstrap4 approach.

Parametric Bootstrap Confidence Intervals

We will briefly explain the bootstrap approach within a parametric framework
(also see [49] and the review paper by Manteiga and Sánchez5). Let T̂n(x) be an
estimate of the functional parameter T (ϑ) based on x = (x1, . . . , xn). Assume that

ϑ̂n is a consistent estimator of ϑ. Usually, we have T̂n(x) = T (ϑ̂n(x))
The parametric bootstrap df based on the vector x of data is given by

B̂n(x; t) = P
{∣∣T̂n(Z) − T (ϑ̂n(x))

∣∣ ≤ t
}
, (3.15)

where Z = (Z1, . . . , Zn) is a vector of iid random variables with common df Fϑ̂n(x).

Notice that B̂n(x; ·) is known to the statistician (at least, theoretically). Denote

the (1 − α)–quantile of the bootstrap df B̂n(x; ·) by

cn,α(x) = B̂−1
n (x; 1 − α). (3.16)

4A term coined in Efron, B. (1979). Bootstrap methods: another look at the jackknife.
Ann. Statist. 7, 1–26.

5Manteiga, W.G. and Sánchez, J.M.P. (1994). The bootstrap—a review. Comp.
Statist. 9, 165–205
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Under certain regularity conditions, the intervals in (3.14) can be replaced by the
bootstrap confidence intervals[

T̂n(x) − cn,α(x), T̂n(x) + cn,α(x)
]
. (3.17)

A justification of the bootstrap approach will be provided at the end of this
section. First, the value cn,α(x) will be computed by employing the Monte Carlo
method.

Simulating the Bootstrap Confidence Bounds

Generate data z1,j, . . . , zn,j, j = 1, . . . , N, according to the df Fϑ̂n(x). Notice that
the bootstrap sample

bj = |T̂n(z1,j , . . . , zn,j) − T (ϑ̂n(x))|, j = 1, . . . , N, (3.18)

is governed by the bootstrap df B̂n(x; ·). According to (2.9), the bootstrap sample
(1 − α)–quantile b[(1−α)N ]+1:N satisfies the relation

b[(1−α)N ]+1:N ≈ B̂−1
n (x; 1 − α) (3.19)

which yields that c̃n,α(x) = b[(1−α)N ]+1:N may be taken in (3.17) in place of
cn,α(x).

In order to obtain a sufficiently accurate estimate of the bootstrap (1 − α)–
quantile in (3.19) for typical values α = .01 and α = .05, we suggest taking
N = max(n, 2000) as the sample size for the simulation.

A Justification of the Bootstrap Approach

One must verify that

P
{∣∣T̂n(X) − T (ϑ0)

∣∣ ≤ cn,α(X)
}
≈ 1 − α (3.20)

where X = (X1, . . . , Xn) is a vector of iid random variables with common df Fϑ0 .

If (3.13) holds uniformly in a neighborhood of ϑ0 and s(ϑ̂n(x)) ≈ s(ϑ0), then the

bootstrap df is an estimate of the centered distribution of the estimator T̂n(X),
that is,

B̂n(x; t) ≈ P
{∣∣T̂n(X) − T (ϑ0)

∣∣ ≤ t
}
. (3.21)

Moreover, from (3.13) we know that

P
{∣∣T̂n(X) − T (ϑ0)

∣∣ ≤ dn,α

}
≈ 1 − α, (3.22)

where dn,α = n1/2Φ−1(1 − α/2)/s(ϑ0). Now, deduce from (3.21) and (3.22) that
dn,α/cn,α(x) ≈ 1 which implies that dn,α can be replaced by cn,α(X) in (3.22).
Thus, (3.20) holds true.
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Extensions

In many applications, a framework more general than that of replicates x1, . . . , xn

is required. For example, one may deal with measurements xi at time ti governed
by a df Fβ0+β1ti ; the joint experiment is determined by the parameter vector
(β0, β1).

Likewise, one may deal with one–sided bootstrap confidence intervals. For
that purpose take a bootstrap sample with T̂n(z1,j, . . . , zn,j) − T (ϑ̂n(x)) instead
of bj in (3.18).

3.3 Test Procedures and p–Values

In this section we briefly discuss critical regions of a significance level α and their
representation by means of a p–value. In statistical software packages, the output
of a test usually consists of the p–value, whereby it is understood that the user
has some significance level in mind. The major advantage of the p–value is that
the significance level must not be specified in advance.

Test Statistics and Critical Values

Let {Fϑ} be a family of dfs, where ϑ varies over a parameter space Θ. Let Θ0

and Θ1 be the null hypothesis and the alternative, where Θ0 and Θ1 constitute a
partition of Θ. A decision for or against the null hypothesis may be based on a
critical region C. If x = (x1, . . . , xn) belongs to the critical region C, then the null
hypothesis is rejected.

Throughout, we consider critical regions of the special form

Cα = {x : T (x) ≥ G−1(1 − α)} (3.23)

of a significance level α, where T is a test statistic and G is a df. The usual
significance levels are α = .05 or α = .01. Thus, the null hypothesis is rejected
whenever T (x) exceeds the critical value G−1(1 − α).

Let X = (X1, . . . , Xk) be a vector of iid random variables with common df
Fϑ, where ϑ belongs to the null hypothesis. Usually, G is the exact or asymptotic
df of the test statistic T (X) for a certain parameter ϑ in the null hypothesis. We
have

P{T (X) ≥ G−1(1 − α)} ≤ α. (3.24)

The null hypothesis is rejected, although it is true with a probability bounded by
α.

The p–Value

We introduce the p–value in conjunction with critical regions as given in (3.23).
Let T be the test statistic and let G be the exact or approximate df of T (X) under
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some appropriate parameter in the null hypothesis. Notice that

{x : T (x) ≥ G−1(1 − α)} = {x : G(T (x)) ≥ 1 − α}
= {x : p(x) ≤ α},

where
p(x) = 1 − G(T (x)). (3.25)

Now the decision will be based on the p–value p(x). If one has a significance
level α in mind, then the null hypothesis is rejected whenever p(x) ≤ α. The
p–value is also called the sample significance level, because p(x) is the smallest
significance level α such that the null hypothesis is rejected6.

According to the probability transformation (cf. page 38), the random vari-
able p(X) is uniformly distributed on [0, 1] if G is the distribution of T (X) under
the null hypothesis.

Evaluation of p–Values for the Normal Model

We mention three simple, well–known testing problems in the normal model and
specify the p–values.

• (One–Sided Test of the Mean with Known Variance.) The testing of the null
hypothesis H0 : µ ≤ µ0 against the alternative H1 : µ > µ0, with σ = σ0

known, is based on the critical region

Cα =
{

x :
x̄ − µ0

σ0/n1/2
≥ Φ−1(1 − α)

}
,

where x̄ is the sample mean again. Then, the p–value is

p(x) = 1 − Φ
( x̄ − µ0

σ0/n1/2

)
.

• (One–Sided t–Test of the Mean with Unknown Variance.) When testing the
same hypotheses as before with σ being unknown, let

Cα =
{
x :

x̄ − µ0

s/n1/2
≥ t−1

n−1(1 − α)
}

,

where tn−1 is the Student df with n − 1 degrees of freedom, and s2 is the
sample variance again. The explicit form of the Student density may be found
in (1.62) and (6.14). The p–value is

p(x) = 1 − tn−1

( x̄ − µ0

s/n1/2

)
.

6See, e.g., Rice, J.A. (1988). Mathematical Statistics and Data Analysis. Wadsworth
& Brooks, Pacific Grove.
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• (One–Sided Testing of the Mean with Asymptotic p–Value.) Because the
Student distribution is asymptotically normal as n → ∞, we know that tn−1

can be replaced by the standard normal df Φ for larger sample sizes n. The
p–value is

p(x) = 1 − Φ
( x̄ − µ0

s/n1/2

)
.

This p–value can be generally employed for testing the mean of a distribution
under the conditions of the central limit theorem.

We started with a likelihood ratio (LR) test statistic for simple hypotheses
and replaced the unknown standard deviation by the corresponding sample coef-
ficient. The latter test statistic is based on the first and second sample moments.

Asymptotic p–Values for the Multinomial Model,
χ2 and Likelihood Ratio Statistics

We mention the χ2 and LR–statistics for the multinomial model and specify the
pertaining p–values. Let X1, . . . , Xn be iid random variables and let B0, . . . , Bm

be a partition of the real line (or, generally, of the Euclidean d–space). Then, the
joint distribution of the random numbers

Ni =
∑
j≤n

I(Xj ∈ Bi), i = 0, . . . , m,

is a multinomial distribution Mn,p with parameter vector p = (p0, . . . , pm), where
pi = P{X1 ∈ Bi}. For n = (n0, . . . , nm) with

∑m
j=0 nj = n, we have

Mn,p({n}) = P{N0 = n0, . . . , Nm = nm}

=
n!

n0! · · ·nm!

m∏
j=0

p
nj

j .

Notice that the parameter vector belongs to the space

Km =

{
p : pj ≥ 0,

m∑
j=0

pj = 1

}
.

We are testing a composite null hypothesis K0 which is a subspace of Km.

• (The χ2–Statistic.) The χ2–statistic is

Tχ2(n) =
m∑

j=0

(nj/n − p̂j,0(n))2

p̂j,0(n)/n
, (3.26)

where p̂0(n) = (p̂0,0(n), . . . , p̂m,0(n)) is an MLE for K0. Under the null
hypothesis, the asymptotic df of the χ2–statistic is a χ2–df χ2

k with k degrees
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of freedom (see Section 4.3), where k is the difference of the dimension m of
Km and the dimension of the null hypothesis K0. Therefore, the (asymptotic)
p–value is

pχ2(n) = 1 − χ2
k(Tχ2(n)).

If the null hypothesis is simple, say, K0 = {p0}, then p̂0 = p0 and k = m.
The χ2–statistic in (3.26) is the Pearson χ2–statistic.

• (The Likelihood Ratio (LR) Statistic.) The LR statistic for the preceding
testing problem is

TLR(n) = 2 log
supp∈Km

Mn,p({n})
supp∈K0

Mn,p({n})

= 2n

m∑
j=0

nj

n
log

nj

np̂j,0(n)
, (3.27)

where p̂(n) = (n0/n, . . . , nm/n) is the MLE for the full parameter space Km

and p̂0(n) = (p̂0,0(n), . . . , p̂m,0(n)) is the MLE again for K0. Under the null
hypothesis, the LR statistic has the same asymptotic df as the preceding
χ2–statistic. Therefore, the p–value is

pLR(n) = 1 − χ2
k(TLR(n)).

Examples of χ2 and LR–tests are given in the subsequent section, where a
goodness–of–fit test is employed to the Poisson model.

3.4 Inference in Poisson
and Mixed Poisson Models

In this section, estimating and testing within the Poisson model and the negative
binomial model will be studied, whereby the latter model consists of mixed Poisson
distributions. The Poisson model is relevant to extreme value analysis—as pointed
out in Section 1.2—because the number of exceedances may be regarded as a
Poisson random variable.

Estimation in the Poisson Model

Let x1, . . . , xn be nonnegative integers governed by a Poisson distribution Pλ with
unknown parameter λ > 0. Recall that λ is the mean and variance of Pλ.

The sample mean λ̂n = x̄ is the natural estimate of the unknown parameter
λ. Note that the mean λ̂n is also the MLE for the Poisson model {Pλ : λ > 0}.
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Statistics for such discrete data can be expressed in terms of the number n(j)
of data xi equal to j. For example, we may write

λ̂n =
∑

j

jn(j)
/(∑

j

n(j)
)

for the sample mean.
There are three different approaches for estimating a Poisson distribution:

• (Nonparametric Approach.) Take the sample histogram pn(j) = n(j)/n as
an estimate of the Poisson histogram Pλ{j} (see page 59);

• (Parametric Approach: Poisson Model) Compute the MLE λ̂n in the Poisson
model and display Pλ̂n

{j};

• (Parametric Approach: Normal Model.) Compute the MLE (µ̂n, σ̂n) in the
normal model (or any related estimator) based on x1, . . . , xn and take the
normal density ϕµ̂n,σ̂n as an estimate of the Poisson histogram Pλ{j}, where
this procedure is merely accurate if λ is sufficiently large.

Another estimate of the parameter λ is the sample variance s2
n, due to the fact

that the mean and the variance of a Poisson distribution are equal. One obtains
the representation

s2
n =

∑
j

j2n(j)
/(∑

j

n(j)
)
− λ̂2

n.

A strong deviation of the sample mean from the sample variance indicates that
the Poisson assumption is violated.

Goodness–of–Fit Test for the Poisson Model

The null hypothesis—that the data are generated under a Poisson distribution
Pλ with unknown parameter λ—is tested against any other distribution on the
nonnegative integers. The likelihood ratio and χ̂2–test in the multinomial model
will be made applicable by grouping the data.

Under the null hypothesis, let X1, . . . , Xn be iid random variables with com-
mon Poisson distribution Pλ where λ is unknown. Let Bj = {j} for j = 0, . . . , m−1
and Bm = {m, m+1, m+2, . . .}. Thus, we are observing n = (n0, . . . , nm), where
nj is the frequency of the observations xi in the cell Bj .

The null hypothesis is

K0 =
{
(p0(λ), . . . , pm(λ)) : λ > 0

}
,

where

pj(λ) = Pλ{j} =
λj

j!
e−λ, j = 0, . . . , m − 1,



98 3. An Introduction to Parametric Inference

and

pm(λ) = 1 −
m−1∑
j=0

pj(λ).

The null hypothesis K0 is a parameter space of dimension 1 and, therefore,
the limiting df for the likelihood ratio (LR) and χ2–statistics is the χ2–df with
k = m − 1 degrees of freedom. To make (3.27) and (3.26) applicable one must
compute the MLE

p(λ̂) =
(
p0(λ̂), . . . , pm(λ̂)

)
for K0. For that purpose, one must find the solution to the likelihood equation

∂

∂λ
log Mn,p(λ){n} = 0

which is equivalent to the equation

λ =
1

n

⎛⎝m−1∑
j=0

jnj +
nm

pm(λ)

∞∑
j=m

jPλ{j}

⎞⎠ .

If nm = 0, then λ̂(n) is the sample mean which is the MLE in the Poisson model.
The likelihood ratio (LR) and the χ2–statistics for the present problem are

TLR(n) = 2n

m∑
j=0

nj

n
log

nj

npj(λ̂(n))
(3.28)

and

χ̂2(n) =

m∑
j=0

(nj − npj(λ̂(n)))2

npj(λ̂(n))
. (3.29)

The pertaining p–values for testing the Poisson hypothesis are

pLR(n) = 1 − χ2
m−1(TLR(n))

and
pχ2(n) = 1 − χ2

m−1(χ̂
2(n)).

Mixtures of Poisson Distributions, Negative Binomial Distributions

Remember that the mean and variance of a Poisson distribution are equal. The
Poisson modeling is untenable if the sample mean and sample variance deviate
significantly from each other. Therefore, we also deal with mixed Poisson distri-
butions Q given by

Q{k} =

∫ ∞

0

Pλ{k}f(λ) dλ, k = 0, 1, 2, . . . , (3.30)
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where f is a mixing density. Subsequently, the mixing will be done with respect
to a gamma density.

When the mixing is carried out with respect to a gamma density (see (3.42))
with shape parameter r > 0 and reciprocal scale parameter d, one finds the nega-
tive binomial distribution

B−
r,p{k} =

Γ(r + k)

Γ(r)Γ(k + 1)
pr(1 − p)k, k = 0, 1, 2, . . . , (3.31)

with parameters r > 0 and p = d/(1 + d). Notice that B−
1,p is a geometric distri-

bution (also see page 13).
The mean and the variance of the negative binomial distribution B−

r,p are
r(1 − p)/p and r(1 − p)/p2. We see that the variance is larger than the mean
(a property which is shared by all mixed Poisson distributions that differ from a
Poisson distribution).

If r(1 − p(r)) → λ as r → ∞, then the mean and variance of the negative
binomial distribution tend to λ. Moreover, one ends up with a Poisson distribution
with parameter λ in the limit. We have

B−
r,p(r){k} → Pλ{k}, k = 0, 1, 2, . . . .

In similarity to the Poisson approximation of binomial distributions, a much
stronger inequality holds. We have

|B−
r,p(A) − Pr(1−p)/p(A)| ≤ 1 − p√

2p
(3.32)

for each set A of nonnegative integers7. Note that the negative binomial and the
approximating Poisson distribution in (3.32) have identical mean values. Thus,
a modeling by means of a Poisson as well as a negative binomial distribution is
justified, if p is sufficiently close to 1.

Estimation in the Negative Binomial Model

From the mean and variance of negative binomial distributions, one may easily
deduce moment estimators for that model. We also mention MLEs.

• Moment Estimator: Given a sample of nonnegative integers xi, the moment
estimates r̂n and p̂n of the parameters r and p are the solutions to the
equations

r(1 − p)/p = x̄ and r(1 − p)/p2 = s2,

where x̄ and s2 again denote the sample mean and sample variance. We have

p̂n = x̄/s2 and r̂n = x̄2/(s2 − x̄).

7Matsunawa, T. (1982). Some strong ε–equivalence of random variables. Ann. Inst.
Math. Statist. 34, 209–224.



100 3. An Introduction to Parametric Inference

If s2 ≤ x̄, take some value for p̂n close to 1 and r̂n = x̄p̂n/(1 − p̂n); another
plausible choice would be a Poisson distribution with parameter x̄.

• Maximum Likelihood Estimator: One must compute a solution to the likeli-
hood equations

∂

∂r
log L(r, p) = 0 and

∂

∂p
log L(r, p) = 0, (3.33)

where
L(r, p) =

∏
i≤n

B−
r,p{xi}

denotes the likelihood function. Deduce from the 2nd equation in (3.33) that

p = r/(r + x̄).

By adopting the formula Γ(r + 1) = rΓ(r) and inserting the value for p in
the 1st equation (3.33), one obtains

1

n

∑
i≤n

∑
j≤xi

1

r + j − 1
= log(1 + x̄/r) (3.34)

with
∑

j≤0 = 0. This equation must be solved numerically, whereby the
moment estimate for r may serve as an initial value of an iteration procedure.
For that purpose, it is advisable to write the left–hand side of (3.34) as∑

j≤max{xi}

(∑
i≤n

I(xi ≥ j)
)/

(r + j − 1).

In the subsequent example, Poisson and negative binomial distributions are
fitted to a data set of numbers of car accidents.

Example 3.4.1. (Number of Car Accidents.) We deal with the classical problem of mod-
eling the number of car accidents caused by a single driver within a given period. The
present data set records the number of accidents over the period from Nov. 1959 to Feb.
1968 for 7842 drivers in the state of California (stored in the file id–cars2.dat).

Table 3.2. Frequencies n(j) of number of accidents equal to j.

j 0 1 2 3 4 5 6 7 8 9 10 11

n(j) 5147 1859 595 167 54 14 5 0 0 0 0 1

Since the sample mean and sample variance are 0.49 and 0.68, one hesitates to fit a
Poisson distribution to the data. This critical attitude is confirmed by plots of sample and
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number j of car accidents

0 1 2 3 4 5
0

0.25

0.5

Fig. 3.2. From left to right: Sample his-

togram; MLE and Moment histograms

in negative binomial model; MLE his-

togram in Poisson model.

Poisson histograms (cf. Figure 3.2) and a χ2–goodness–of–fit test. The usual suggestion
is to fit a negative binomial distribution to such numbers.

The sample histogram and the negative binomial histograms pertaining to the MLE

(r = 1.34, p = 0.73) and Moment estimates (r = 1.31, p = 0.73) cannot be distinguished

visually (as far as the height of the bars is concerned); there is a remarkable deviation of

the Poisson histogram from the other histograms.

The usual explanation for the failure of fitting a Poisson distribution to
data—such as those in Example 3.4.1—is that the number of accidents of a sin-
gle driver may fit to a Poisson distribution Pλ, yet the parameter λ varies from
one driver to another. Therefore, one deals with the following two–step stochastic
experiment:

1st Step. A driver with an individual accident characteristic λ is randomly
drawn according to a certain mixing distribution.

2nd Step. The final outcome (namely the number of claims for this driver) is
generated under the Poisson distribution Pλ.

For the parametric modeling, one may take the mixture of Poisson distri-
butions Pλ with respect to a gamma distribution with shape and reciprocal scale
parameters r and d, which is a negative binomial distribution with parameters r
and p = d/(1 + d), cf. (3.31).

The data in Example 3.4.1 can be regarded as the outcome of 7842 indepen-
dent repetitions of such a two–step stochastic experiment.

Bayesian inference in Poisson models will be dealt with at the end of the
subsequent section.



102 3. An Introduction to Parametric Inference

3.5 The Bayesian Estimation Principle

Bayesian estimation is another likelihood–based method besides the maximum
likelihood (ML) method. In addition to the statistical model, the statistician must
specify a prior distribution.

In this section, we introduce Bayes estimators within a decision–theoretical
framework. We estimate a real–valued functional parameter T (ϑ), where

ϑ = (ϑ1, . . . , ϑm)

is a parameter vector. This includes, e.g., the estimation

• of the jth component ϑj of ϑ if T (ϑ) = ϑj ,

• of the mean T (ϑ) =
∫

xdFϑ(x) of the underlying df Fϑ represented by ϑ.

The latter problem will be studied in Section 17.6 in conjunction with estimating
the net premium of an individual risk.

The Prior Density, Minimizing the Bayes Risk

Let T̂ (X) be an estimator of the functional parameter T (ϑ), where X is a random
variable having a distribution represented by ϑ. For example, X = (X1, . . . , Xn)

is a sample of size n, T (ϑ) is the mean of the common distribution and T̂ (X) is

the sample mean X. The performance of T̂ (X) as an estimator of T (ϑ) can be
measured by the mean squared error (MSE)

E
((

T̂ (X) − T (ϑ)
)2∣∣ϑ) := E

(
T̂ (X) − T (ϑ)

)2
,

cf. also page (3.11), where the left–hand side emphasizes the fact that the expec-
tation is taken under the parameter ϑ.

The performance of the estimator can be made independent of a special
parameter vector ϑ by means of a “prior” probability density p(ϑ) which may
be regarded as a weight function. Some prior knowledge about the parameter of
interest is included in the statistical modeling by means of the prior density p(ϑ).

The Bayes risk of the estimator T̂ with respect to the prior p(ϑ) is the
integrated MSE

R(p, T̂ ) =

∫
E
((

T̂ (X) − T (ϑ)
)2∣∣ϑ)p(ϑ) dϑ1 · · · dϑm. (3.35)

An estimator T̂ , which minimizes the Bayes risk, is called Bayes estimator.
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Computing the Bayes Estimator, the Posterior Density

We introduce the posterior density, which is determined by the prior density p(ϑ)
and the likelihood function, and deduce an explicit representation of the Bayes
estimator by means of the posterior density.

Let X = (X1, . . . , Xn) be a vector of iid random variables with common df
Fϑ and density fϑ, where again ϑ = (ϑ1, . . . , ϑm) is the parameter vector. As in
the discussion about the MLE on page 84, let

L(x|ϑ) =
∏
i≤n

fϑ(xi) (3.36)

be the likelihood function given the sample vector x = (x1, . . . , xn). Using the
likelihood function, one gets the representation

E
((

T̂ (X) − T (ϑ)
)2|ϑ) =

∫ (
T̂ (x) − T (ϑ)

)2
L(x|ϑ) dx1 · · · dxn (3.37)

of the MSE.
We verify that the Bayes estimate can be written

T ∗(x) =

∫
T (ϑ)p(ϑ|x) dϑ1 · · ·dϑm, (3.38)

where the function

p(ϑ|x) =
L(x|ϑ)p(ϑ)∫

L(x|ϑ)p(ϑ) dϑ1 · · ·dϑm
(3.39)

is the “posterior” density for a given sample vector x, whenever the denominator
is larger than zero. If ϑ is a one–dimensional parameter and T (ϑ) = ϑ, then the
Bayes estimate is the mean

∫
ϑp(ϑ|x) dϑ of the posterior distribution according to

(3.38).
Thus, by means of the prior density p(ϑ) and the likelihood function L(x|ϑ)

one gets the posterior density p(ϑ|x). Notice that the posterior density in (3.39)
and the Bayes estimate can be computed whenever L(x|ϑ)p(ϑ), as a function in
ϑ, is known up to a constant. Writing g(ϑ) ∝ f(ϑ), when functions g and f are
proportional, we have

p(ϑ|x) ∝ L(x|ϑ)p(ϑ). (3.40)

To prove the representation (3.38) of the Bayes estimate, combine (3.35) and
(3.37) and interchange the order of the integration. The Bayes risk with respect
to the prior p(ϑ) can be written

R(p, T̂ ) =

∫ (
T̂ (x) − T (ϑ)

)2
L(x|ϑ)p(ϑ) dx1 · · · dxn dϑ1 · · ·dϑm (3.41)

=

∫ ( ∫ (
T̂ (x) − T (ϑ)

)2
p(ϑ|x) dϑ1 · · · dϑm

)
f(x) dx1 · · · dxn,
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where f(x) =
∫

L(x|ϑ)p(ϑ) dϑ1 · · · dϑm. To get the Bayes estimate, compute for

every x the value z which minimizes the integral
∫ (

z−T (ϑ)
)2

p(ϑ|x) dϑ1 · · · dϑm.
This value z can be computed by showing that the derivative

∂

∂z

∫ (
z − T (ϑ)

)2
p(ϑ|x) dϑ1 · · ·dϑm

=

∫
2
(
z − T (ϑ)

)
p(ϑ|x) dϑ1 · · · dϑm

= 2
(
z − T ∗(x)

)
is equal to zero, if z is equal to the value T ∗(x) in (3.38).

In those cases where the posterior density p(ϑ|x) is of the same type as the
prior density p(ϑ) one speaks of a conjugate prior. An example of a conjugate
prior will be given for the exponential model in (3.44).

For a different view toward the Bayesian principle we refer to Section 8.4. The
results of Section 3.5 are revisited within a Poisson process setting in Sections 9.3
and 9.5. The Sections 14.5 and 17.6 concern applications of Bayesian estimators
in regional flood frequency analysis and reinsurance business.

The Gamma and Reciprocal Gamma Distributions

Our prior densities will be usually specified by means of gamma densities or modi-
fications of gamma densities. The gamma density with shape parameter s > 0 and
reciprocal scale parameter d > 0 is given by

hs,d(ϑ) =
d

Γ(s)
(dϑ)s−1 exp(−dϑ), ϑ > 0. (3.42)

It is clear from the integral representation of the gamma function in (1.32) that
hs,d is a probability density. The gamma distribution in (3.42) has the mean s/d
and variance s/d2. It is the type III distribution in the Pearson system. We also
remark that h1,d is an exponential density.

We also introduce the reciprocal gamma distribution. If a random variable
X has the gamma density ha,b, then 1/X has an reciprocal gamma density

h̃a,b(x) =
1

bΓ(a)
(x/b)−(1+a) exp(−b/x), x > 0. (3.43)

A prominent example of a reciprocal gamma density is the sum–stable Lévy density
with index a = 1/2, also see (6.18). The mean, variance and coefficient of variation
are b/(a−1), b2/

(
(a−1)2(a−2)

)
and (a−2)−1/2, if a > 1 and a > 2, respectively.

The mode is equal to b/(a + 1).
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A First Example: Bayesian Estimators in the Exponential Model

We compute a Bayes estimator for the model of exponential densities

fϑ(x) = ϑ exp(−ϑx), x > 0,

where ϑ > 0 is the unknown reciprocal scale parameter. The gamma density

p(ϑ) = hs,d(ϑ), (3.44)

with parameters s, d > 0, is taken as a prior.
Writing the likelihood function as L(x|ϑ) = ϑn exp

(
− ϑ

∑
i≤n xi

)
and rep-

resenting the posterior density by

p(ϑ|x) ∝ L(x|ϑ)hs,d(ϑ) ∝ hs′,d′(ϑ),

with s′ = s + n and d′ = d + nx̄ (x̄ denoting the sample mean), one obtains the
representation

p(ϑ|x) = hs′,d′(ϑ) (3.45)

of the posterior density which is again a gamma density. We see that gamma
densities are conjugate priors for the exponential model.

According to (3.38), the Bayes estimator ϑ∗
n of ϑ is the mean of the posterior

distribution. We have

ϑ∗
n(x) =

∫
ϑp(ϑ|x) dϑ =

s + n

d + nx̄
. (3.46)

Notice that the Bayes estimates ϑ∗
n(x) approach the reciprocal sample mean

1/x̄, which is the MLE in the exponential model, with a rate of order O(1/n).
The estimates can be written as the linear combination αs/d + (1 − α)/x̄ with
α = 1/(1 + nx̄/d).

Bayesian estimation in Pareto models and Poisson process models with Pareto
marks is dealt with on the pages 129–133 and 254–245.

Bayesian Estimation in the Poisson Model

We also deal with the Bayes estimation in discrete models. For that purpose, the
likelihood function for continuous data, as utilized on page 102, must be replaced
by the likelihood function for discrete data. This will be illustrated for the Poisson
model with repect to two different parameterizations.

• Bayes Estimator: we compute an explicit representation of the Bayes es-
timator within the Poisson model. The likelihood function for a sample
vector k = (k1, . . . , kn) of size n within this discrete model is given by

L(k|λ) =
∏

i≤n Pλ{ki}. The MSE of an estimator λ̂n of λ can be written

E
(
(λ̂n − λ)2|λ

)
=
∑

(λ̂n(k) − λ)2L(k|λ),
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where the summation runs over all vectors k = (k1, . . . , kn) of nonnegative
integers. In the subsequent lines, we just follow the arguments concerning the
Bayes risk and Bayes estimators as outlined at the beginning of this section
(or apply the general arguments in Section 8.4). The gamma density

p(λ) = hr,c(λ), (3.47)

with parameters r and c, cf. (3.42), is chosen as a prior. Verify that the
posterior density p(λ|k) satisfies p(λ|k) ∝ L(k|λ)hr,c(λ) ∝ hr′,c′(λ) with
r′ = r +

∑
i≤n ki and c′ = c + n. Therefore, the posterior density

p(λ|k) = hr′,c′(λ) (3.48)

is also a gamma density. We see that gamma densities are conjugate priors
for the Poisson model.

Because the Bayes estimate of λ is the mean of the posterior density, we have

λ∗
n(k) =

∫
λp(λ|k) dλ =

r + nk̄

c + n
, (3.49)

where k̄ is the sample mean.

• Bayes Estimator in a Modified Poisson Model: for later purposes (cf. Section
9.3), we shortly mention the model of reparameterized Poisson distributions
PλT for parameters λ > 0, where T > 0 is some fixed value. Moreover, let
n = 1. The likelihood function is

L(k|λ) =
(
(λT )k/k!

)
exp(−λT ) (3.50)

for every observed nonnegative integer k. Choosing again a gamma density

p0(λ) = hr,c(λ) (3.51)

as a prior, one obtains the posterior density

p0(λ|k) = hr′,c′(λ), (3.52)

which is the gamma density with parameters r′ = r + k and c′ = c + T .
Therefore, the Bayes estimate is

λ∗
k =

∫
λp0(λ|k) dλ =

r + k

c + T
(3.53)

for all nonnegative integers k.



Chapter 4

Extreme Value Models

This chapter is devoted to statistical procedures in parametric extreme value (EV)
models which are especially designed for maxima. It is worth recalling that minima
can be dealt with by changing the sign of the data.

In Section 4.1, we deal with estimators within the Gumbel (EV0), Fréchet
(EV1), Weibull (EV2) and unified extreme value (EV) models. Q–Q plots based
on estimators of the shape parameter will be employed to check the validity of such
models. Tests are addressed in Section 4.2. Extensions of extreme value models
and certain alternative models for the modeling of maxima are briefly discussed
in Section 4.3.

4.1 Estimation in Extremes Value Models

Consider data x1, . . . , xn generated under a df Fm as in Section 1.2. Thus, each
xi is the maximum of m values that are governed by the df F . Think back to
Section 2.1, where we found that the df Fm and the pertaining density or qf can
be estimated by the corresponding sample versions, namely the sample df F̂n, the
histogram or kernel density fn or the sample qf F̂−1

n .

Remember that some extreme value (EV) df G can be fitted to the df Fm of
the maximum if the arguments in Section 1.2 are valid. This includes that, for a
while, the x1, . . . , xn may be regarded as observations governed by G. Therefore,
statistical procedures within a parametric model can be applied.

The Gumbel (EV0) Model

This is the traditional model in extreme value analysis which had about the same
status as the normal model in other applications (with just the same advantages
and negative consequences). The major advantage of the Gumbel model is that the
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distribution can be specified by location and scale parameters as in the Gaussian
case. Thus, the Gumbel model is an ordinary location and scale parameter model.

One of our declared aims is to overcome the potential dislike for an additional
parameter—besides the location and scale parameters—and to convince the reader
that an extension of the Gumbel (EV0) model to the EV model can be worthwhile.

Recall that the standard Gumbel df is given by

G0(x) = exp
(
− e−x).

By adding a location and scale parameters µ and σ, one gets the Gumbel (EV0)
model

EV0: {G0,µ,σ : µ real, σ > 0}.

We mention the following estimators for µ and σ.

• MLE(EV0): the MLEs µn and σn of the location and scale parameters must
be evaluated numerically. First, compute σn as the solution to the equation

σ − n−1
∑
i≤n

xi +
(∑

i≤n

xi exp(−xi/σ)
)/(∑

i≤n

exp(−xi/σ)
)

= 0. (4.1)

The least squares estimate for σ can be taken as an initial value of the
iteration procedure. Then,

µn = −σn log
(
n−1

∑
i≤n

exp(−xi/σn)
)
. (4.2)

• Moment(EV0): estimators of µ and σ are deduced from the sample mean
and variance. From (1.34) and (1.35), conclude that µ + σλ and σ2π2/6 are
the mean and the variance of G0,µ,σ, where λ again denotes Euler’s constant.
Therefore,

σn = 61/2sn/π

and

µn = x̄ − σnλ

are the moment estimates of the location and scale parameters µ and σ in
the Gumbel model, where x̄ and s2

n are the sample mean and variance again.

If G0,µn,σn strongly deviates from F̂n, then the modeling of Fm by Gumbel
dfs G0,µ,σ is critical (or the estimates are inaccurate)! Likewise, one may compare
the estimated density g0,µn,σn with the kernel density fn,b for some choice of a
bandwidth b.
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Example 4.1.1. (Annual Floods of the Feather River.) We partially repeat the analysis
of Benjamin and Cornell1 and Pericchi and Rodriguez–Iturbe2 about the annual floods
of the Feather River in Oroville, California, from 1902 to 1960. The following flood data
are stored in the file ht–feath.dat.

Table 4.1. Annual maximum discharges of Feather River in ft3/sec from 1902 to 1960.

year flood year flood year flood year flood year flood

1907 230,000 1943 108,000 1911 75,400 1916 42,400 1934 20,300

1956 203,000 1958 102,000 1919 65,900 1924 42,400 1937 19,200

1928 185,000 1903 102,000 1925 64,300 1902 42,000 1913 16,800

1938 185,000 1927 94,000 1921 62,300 1948 36,700 1949 16,800

1940 152,000 1951 92,100 1945 60,100 1922 36,400 1912 16,400

1909 140,000 1936 85,400 1952 59,200 1959 34,500 1908 16,300

1960 135,000 1941 84,200 1935 58,600 1910 31,000 1929 14,000

1906 128,000 1957 83,100 1926 55,700 1918 28,200 1955 13,000

1914 122,000 1915 81,400 1954 54,800 1944 24,900 1931 11,600

1904 118,000 1905 81,000 1946 54,400 1920 23,400 1933 8,860

1953 113,000 1917 80,400 1950 46,400 1932 22,600 1939 8,080

1942 110,000 1930 80,100 1947 45,600 1923 22,400

By applying the MLE(EV0), one obtains µn = 47, 309 and σn = 37, 309. The

pertaining Gumbel distribution can be well fitted to the upper part of the flood data

(according to the Q–Q plot, etc.). Therefore, this parametric approach may be employed

to estimate T–year flood levels (cf. (1.19)): the 50 and 100–year flood levels are u(50) =

192, 887 and u(100) = 218, 937 ft3/sec. Notice that the estimated 100–year flood level was

exceeded in the year 1907. The estimated Gumbel distribution has a remarkable 2.8% of

its weight on the negative half–line. Yet, this does not heavily influence the estimation

of parameters of the upper tail like T–year flood levels (also see Example 5.2.1).

Pericchi and Rodriguez–Iturbe also select gamma (Pearson type III), log–
gamma (log–Pearson type III) and log–normal models (cf. (4.6), (4.12) and (1.60)),
yet there seems to be no clear conclusion which of these models is most preferable.

1 Benjamin, J.R. and Cornell, C.A. (1970). Probability, Statistics and Decisions for
Civil Engineers. McGraw–Hill, New York.

2Pericchi, L.R. and Rodriguez–Iturbe, I. (1985). On the statistical analysis of floods.
In: A Celebration of Statistics. The ISI Centenary Volume, A.C. Atkinson and S.E.
Fienberg (eds.), 511–541.
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Moreover, these authors suggest to use excess dfs and hazard functions in flood
studies. In this context, these functions are called residual flood df and flood rate.

The following Fréchet and Weibull models can be deduced from the Gumbel
model by means of the transformations T (x) = log(x) and T (x) = −1/x (cf. page
37). Thus, results and procedures (such as the MLE) for the Gumbel model can be
made applicable to these models (and vice versa). Finally, we deal with estimators
in the unified extreme value (EV) model.

The Fréchet (EV1) Model

We deal with another submodel of extreme value dfs. Recollect that the standard
Fréchet df with shape parameter α > 0 is given by G1,α(x) = exp(−x−α) for
x > 0. By adding a scale parameter σ, one gets the EV1 model

EV1: {G1,α,0,σ : α, σ > 0}.

Keep in mind that the left endpoint of G1,α,0,σ is always equal to zero. If
all potential measurements are positive—e.g., due to physical reasons—and, in
addition, a left endpoint equal to zero is acceptable, then it can be worthwhile to
check the validity of the EV1 model.

When applying the maximum likelihood principle for this model, one should
make sure that the left endpoint of the actual df is larger than zero (at least this
should hold true for the data).

The Weibull (EV2) Model

The standard Weibull df with shape parameter α < 0 is given by G2,α(x) =
exp(−(−x)−α) for x ≤ 0. Recall from Section 1.3 that our parameterization for
Weibull dfs differs from the standard one used in the statistical literature, where
a positive shape parameter is taken.

In the following model, a scale parameter is included:

EV2: {G2,α,0,σ : α < 0, σ > 0}.

Notice that the upper endpoint of each of the dfs is equal to zero.
For many data which may be regarded as minima, as, e.g., data concerning

the strength of material, a converse Weibull df G̃2,α,0,σ(x) = 1−G2,α,0,σ(−x) is a
plausible candidate of a distribution, also see (1.38) and (1.39).

The Unified Extreme Value Model

The unified EV model—in the γ–parameterization—is the most important one for
modeling maxima. By including scale and location parameters σ and µ, we obtain
the model

EV: {Gγ,µ,σ : µ, γ real, σ > 0},
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where Gγ are the standard versions as defined on page 16.
Occasionally, the extreme value (EV) model is called the generalized extreme

value (abbreviated GEV) model in statistical references. The latter notion can be
a bit confusing because this model only consists of extreme value distributions.

Here is a list of estimation procedures.

• MLE(EV): The MLE in the EV model must be numerically evaluated as a
solution to the likelihood equations.

The MLE determines a local maximum of the likelihood function if the iter-
ated values remain in the region γ > −1. If γ varies in the region below −1,
then neither a global nor a local maximum of the likelihood function exists,
see R.L. Smith3.

• MDE(EV): Let d be a distance on the family of dfs. Then, (γn, µn, σn) is an
MDE (minimum distance estimator), if

d(F̂n, Gγn,µn,σn) = inf
γ,µ,σ

d(F̂n, Gγ,µ,σ).

Likewise, an MDE may be based on distances between densities. This es-
timation principle is related to the visualization technique as dealt with in
preceding sections.

• LRSE(EV): This is a class of estimators that are linear combinations of ratios
of spacings (RS’s)

r̂ =
x[nq2]:n − x[nq1]:n

x[nq1 ]:n − y[nq0]:n
,

where q0 < q1 < q2. Note that this statistic is independent of the location
and scale parameters in distribution (in other words, r̂ is invariant under
affine transformations of the data). As a consequence of (2.38),

r̂ ≈
G−1

γ (q2) − G−1
γ (q1)

G−1
γ (q1) − G−1

γ (q0)
=

(
− log q2

− log q0

)−γ/2

,

if q0, q1, q2 satisfy the equation (− log q1)
2 = (− log q2)(− log q0). In this man-

ner, one obtains the estimate γn = 2 log(r̂)/ log(log(q0)/ log(q1)) of γ. Such
an estimate was suggested in [31]—attributed to S.D. Dubey—for estimating
the shape parameter of Weibull distributions.

If q0 = q, q1 = qa, q2 = qa2

for some 0 < q, a < 1, then

γn = log(r̂)/ log(1/a). (4.3)

3Smith, R.L. (1985). Maximum likelihood estimation in a class of nonregular cases.
Biometrika 72, 67–90.
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The efficiency can be improved by taking a linear combination of such RSE’s
where each of the single terms is defined for q = i/n.

The least squares method may be applied to obtain the additionally required
estimators of the location and scale parameters µ and σ.

The L–moment estimators within EV models will be dealt with in Section
14.5 in the context of flood frequency analysis.

Simulating the Mean Squared Error (MSE)

Given an estimator γn and a df H , generate a set of estimates, say, γn,1, . . . , γn,N ,
where N is the selected number of simulations. Our standard number of simulations
is N = 4000.

We simulate the MSE of estimators based on Gumbel data, maxima of m = 30
exponential data, and maxima of m = 30, 100 standard normal data (indicated by
the dfs G0, W 30 and Φm) for sample sizes n = 20, 100, 500.

Table 4.2. MSE of estimators γn of the shape parameter γ = 0 for block sizes m =
30, 100.

MSE

G0 W 30
0

sample size n 20 100 500 20 100 500

MLE(EV) 0.057 0.006 0.001 0.058 0.006 0.001

LRSE(EV) 0.165 0.022 0.004 0.167 0.023 0.004

Φ30 Φ100

sample size n 20 100 500 20 100 500

MLE(EV) 0.086 0.024 0.017 0.081 0.019 0.012

LRSE(EV) 0.156 0.041 0.023 0.163 0.034 0.016

For the sample size n = 500, the MSE is close to the squared bias. Based on
the γn,i one may also simulate the df or density of the estimator.

EV Q–Q Plots

Recall from page 62 that the unknown shape parameter γ must be replaced by an
estimator γn when a Q–Q plot is employed in the EV model. If there is a stronger
deviation of the EV Q–Q plot from a straight line, then either the estimator of
the shape parameter is inaccurate (perhaps try another one), or the EV model is
untenable.
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Example 4.1.2. (De Bilt September Data.) The de Bilt (September) data consist of 133
monthly maxima of temperature in de Bilt measured during the years 1849–1981. Thus,
the background of the data suggests to use the EV model. These data are stored in the
file em–dbilt.dat jointly with the maxima of other months and the annual maxima.

The EV Q–Q plot (cf. Fig. 4.1 on the left–hand side) seems to confirm the EV
assumption. The maximum temperature within the whole period, measured in the year
1949, is equal to 34.2 degrees Celsius. The values of the MLE in the EV model are γ =
−0.19, µ = 24.39 and σ = 2.76; the right endpoint of the estimated Weibull distribution is
equal to 38.76. In Fig. 4.1, on the right–hand side, the kernel density (with Epanechnikov
kernel and a bandwidth equal to 1.8) and the estimated Weibull density are displayed.
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Fig. 4.1. (left.) EV Q–Q plot of the de Bilt (September) data with MLE(EV) γ =

−0.19. (right.) A kernel density (dotted) and the Weibull density (solid) pertaining to

the MLE(EV).

When a least squares line and a two–sided moving average are displayed in a scat-

terplot window, there is no significant trend visible in the data. There is some evidence

of periods, yet we believe that this is negligible.

Notice that the estimated Weibull density in the preceding example is skewed
to the right. We remark that the shapes of the estimated Weibull distributions vary
from month to month. For example, the estimated Weibull density for the month
May is skewed to the left4.

Estimation of Parameters When a Trend Must be Dealt With

Next, we admit a certain trend in the data yi that are measurements at time
ti. Assume that yi is governed by an EV df Gγ,µ(ti;β0,...,βp),σ, where the location
parameter depends on the time ti and further parameters β0, . . . , βp. For example,

4Also see [42] and Buishand, T.A. (1989). Statistics of extremes in climatology. Statist.
Neerlandica 43, 1–30.
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the model is specified by the four parameters γ, β0, β1 and σ, if µ(t; β0, β1) =
β0 + β1t. The estimation in such a complex parametric model can be carried
out by using the ML or MD estimation methods. A particular challenge is to
theoretically evaluate the properties of such estimators and to implement such
estimation procedures in a statistical software package.

Subsequently, we handle this question in a more pragmatic way and suggest
an estimation method that can be carried out in three steps:

• estimate the trend in the data by the least squares method or in some non-
parametric manner (without taking the EV model into account);

• employ the preceding parametric estimators in the EV model to the residuals,

• deduce estimators of γ, µ(ti; β0, . . . , βp) and σ.

This approach will be exemplified in conjunction with the least squares
method as introduced in Section 2.5. Let mn(i) be the least squares estimate
based on y1, . . . , yn of the mean of Gγ,µ(ti;β0,...,βp),σ as introduced in (2.43), where
we assume that γ < 1 so that the mean exists. Next, assume that the residuals
xi = yi −mn(i) are governed by an EV df Gγ,µ,σ, where µ is independent of i. Let
γ̂n, µ̂n and σ̂n be estimators of γ, µ and σ based on the residuals x1, . . . , xn. We
propose γ̂n, µ̂n + mn(i) and σ̂n as estimates of γ, µ(ui; β0, . . . , βp) and σ in the
original model.

Example 4.1.3. (Iceland Storm Data5.) We report preliminary investigations concerning
storm data for the years between 1912 and 1992, with the measurements from the years
1915 and 1939 missing (stored in em–storm.dat). The annual maxima resemble those of
the storm data at Vancouver given in Table 1.1.

Table 4.3. Iceland storm data.

year 1912 1913 1914 1916 · · · 1989 1990 1991 1992

annual maxima 38 69 47 53 · · · 60 68 89 63

In Fig. 4.2, the annual maxima are plotted against the years. One can recognize a
slight, positive trend. The least squares line f(x) = 48.05 + 0.12(x − 1911) is added. A
quadratic least squares line leads to a similar trend function so that the hypothesis of a
linear trend seems to be justified.

Firstly, by applying the MLE(EV) to the annual maxima in Table 4.3, we get the
parameters α = −3.60, µ = 98.53 and σ = 50.59 (taken in the α–parameterization).
Thus, the estimated Weibull distribution is nearly symmetric around 53. Recall that
µ = 98.53 is also the upper endpoint of the distribution.

5cf. also Stoyan, D., Stoyan, H. and Jansen, U. (1997). Umweltstatistik. Teubner,
Stuttgart.
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Fig. 4.2. Scatterplot of storm
data and linear least squares
line.

Secondly, we take the slight, positive trend in the data into account. The MLEs
for the residuals (detrended data) are α = −3.09, µ = 38.85 and σ = 43.43. Thus, the
estimated Weibull distribution is now slightly skewed to the left. By adding the values
of the least squares line 48.05 + 0.12(x − 1911) for each of the years x, one can estimate
the location parameter of the Weibull distribution for the year x by

µ(x) = 86.90 + 0.12(x − 1911).

The estimates for α and σ remain unchanged. Moreover, the estimated upper endpoints
are equal to 86.90 and 96.62 for the years 1912 and 1992.

We estimate the T–year thresholds with and without a linear trend hypothesis.
In the latter case, equation (9.5) must be applied to Fk = Gα,µ(k),σ with α = −3.09,
µ(k) = 97.1+0.12k and σ = 43.43, when the first year is 1997. Upper bootstrap confidence
bounds are added.

Table 4.4. Estimated T–year thresholds (initial year 1997) with 95% upper bootstrap
confidence bounds in brackets.

T–year thresholds u(T )

T 50 100 200

without trend 81.41 (85.8) 84.42 (89.8) 86.9 (103.5)

with trend 89.02 (89.7) 95.47 (109.7) 107.17 (134.7)

As mentioned at the beginning, these investigations were of a preliminary nature.
Although the analysis was carried out skillfully, according to the present state–of–the–
art, the results are partly of a limited relevance due to the fact that the measurements
do not directly concern wind speeds, but a certain index given by

number of stations measuring at least 9 on the Beaufort scale

total number of stations
× 100 .
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Thus, the values in the 2nd column of Table 4.4 concern the annual maximum of such
daily indices which are necessarily below 100. This implies that the estimated 200–year
threshold and some of the confidence bounds in Table 4.4 are nonsense (sorry!).

If the estimation is carried out in the Weibull (EV2) model (without trend) with a

fixed upper endpoint equal to 100, then the estimated parameters are α = −3.72, µ = 100

and σ = 52.13. Again, T–year thresholds and pertaining upper bootstrap confidence

bounds may be calculated. Directions of the winds are also included in this data set.

This example shows that one has to work closely with people in applications
in order to carry out a correct analysis.

In conjunction with wind speeds it is of interest to include the direction of
the wind speeds in the analysis for design assessment of large buildings and other
structures6. We also refer to the case studies by Zwiers7 and Ross8; we believe
that the analysis of these wind–speed data would deserve particular attention, yet
the full data set seems to be unavailable to the scientific community.

The question of estimating a trend in the scale parameter of generalized
Pareto (GP) dfs is dealt with in Section 5.1, page 139.

Asymptotic Distributions of Estimators and
Confidence Intervals in Extreme Value Models

We specify the asymptotic normal distributions of the MLE(EV0) and deduce
the asymptotic normality of the pertaining estimators of the T –year threshold by
means of (11.6). Detailed explanations about multivariate normal distributions are
postponed until Section 11.1. Asymptotic confidence intervals can easily be estab-
lished by replacing unknown parameters in covering probabilities by estimators,
cf. Section 3.2.

The MLEs µn and σn of the location and scale parameters µ and σ in the
Gumbel EV0 model are jointly asymptotically normal with mean vector (µ, σ) and
covariance matrix Σ/n, where

Σ =
6σ2

π2

⎛⎝ π2

6 + (1 − λ)2 (1 − λ)

(1 − λ) 1

⎞⎠
and λ is Euler’s constant. Let gT (µ, σ) = G−1

0,µ,σ(1− 1/T ) = µ + σc(T ) denote the

6Coles, S.G. and Walshaw, D. (1994). Directional modeling of extreme wind speeds.
Appl. Statist. 43, 139–157.

7Zwiers, F.W. (1995). An extreme–value analysis of wind speeds at five Canadian
locations. In [21], pp. 124–134.

8Ross, W.H. (1995). A peaks–over–threshold analysis of extreme wind speeds. In [21],
pp. 135–142.
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T –year threshold, where c(T ) = − log(− log(1 − 1/T )). Because

D =

(
∂gT

∂µ
(µ, σ),

∂gT

∂σ
(µ, σ)

)
= (1, c(T )),

we know that the pertaining estimator gT (µn, σn) is asymptotically normal with
mean gT (µ, σ) and variance DΣDt/n, where

DΣDt = σ2
(
1 + 6(1 − λ + c(T ))2/π2

)
. (4.4)

This is [24], 6.2.7, formula (2), in a paragraph written by B.F. Kimball.
For a discussion of the asymptotic normality of the MLE(EV) we refer to the

article by Smith cited on page 111 or [31], Chapters 20 and 21.

Minima

As mentioned before, results for minima can be deduced from those for maxima.
If x1, . . . , xn may be regarded as minima, then the yi = −xi may be regarded as
maxima. If the EV df Gi,α,µ,σ or Gγ,µ,σ can be fitted to the yi, then the converse

EV df G̃i,α,−µ,σ or G̃γ,−µ,σ, see (1.38) and (1.39), can be fitted to the original data
xi.

Example 4.1.4. (Tensile Strength of Sheet Steel.) We partly repeat the statistical analysis
in the book by D. Pfeifer9 concerning sheet steel with a cross–section of 20 × 0.7 mm2.
The tensile strength is measured as the elongation in % in a test according to DIN 50145.

Table 4.5. Tensile strength of sheet steel (elongation in %).

35.9 37.3 38.7 39.4 40.5 41.2 41.5 42.3 42.8 45.0

36.5 37.3 38.8 39.9 40.8 41.2 41.6 42.4 42.9 46.7

36.9 37.8 38.9 40.3 40.8 41.2 41.7 42.5 43.0

37.2 37.8 38.9 40.4 41.1 41.3 41.9 42.6 43.7

37.2 38.1 39.0 40.5 41.1 41.5 42.2 42.7 44.3

37.3 38.3 39.3 40.5 41.1 41.5 42.2 42.7 44.9

From P–P plots, Pfeifer deduced a converse Weibull df with parameters α = −3.34,
µ = 33.11 and σ = 8.38. Notice that µ = 33.11 is also the left endpoint of the distribution.
The MLE(EV) gives the parameters α = −2.87, µ = 34.53 and σ = 6.84, which are
comparable to the preceding ones.

One may argue that there is no plausible explanation for a left endpoint not equal

to zero. Therefore, we also applied the MLE in the EV2 model, where the left endpoint

is fixed and equal to zero. The estimates are α = −18.1, µ = 0 and σ = 41.7, and there

is also a reasonable fit to the data. The data are stored in gu–steel.dat.

9Pfeifer, D. (1989). Einführung in die Extremwertstatistik. Teubner, Stuttgart.
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Estimation of Actual Functional Parameters

What do we estimate if the actual distribution is unequal yet close to an EV dis-
tribution? Let us return to our initial model, where the x1, . . . , xn are generated
under Fm. Now, there is no one–to–one relationship between parameters and dis-
tributions and, therefore, parameters lose their operational meaning. There is a
close relationship between our question and a corresponding one in the book [27]
by Hampel et al., page 408: “What can actually be estimated?” There is a plain
answer in our case: by estimating the parameters γ, µ and σ, we also estimate
Gγ,µ,σ and, therefore, the actual df Fm of the maximum, respectively, functional
parameters of Fm.

4.2 Testing within Extreme Value Models

We may continue the discussion of the previous lines by asking: what are we
testing? We are primarily interested in the question whether the actual distribution
of the maximum is sufficiently close to an EV distribution so that the actual
distribution can be replaced by an ideal one to facilitate the statistical inference.
Therefore, the test should not be too stringent for larger sample sizes because,
otherwise, small deviations from an EV df would be detected.

Of course, one may also test the domain of attraction as it was done, e.g., in
the paper by Castillo et al.10 Accepting the null–hypothesis does not necessarily
mean that the actual distribution is closer to one of the specific EV distributions
in the null–hypothesis.

Likelihood Ratio (LR) Test for the Gumbel (EV0) Model

Within the EV model, we are testing

H0 : γ = 0 against H1 : γ �= 0 (4.5)

with unknown location and scale parameters. Thus, the Gumbel distributions are
tested against other EV distributions for a given vector x = (x1, . . . , xn) of data.
The likelihood ratio (LR) statistic is

TLR(x) = 2 log

∏
i≤n gγ̂,µ̂,σ̂(xi)∏
i≤n g0,µ̃,σ̃(xi)

with (γ̂, µ̂, σ̂) and (µ̃, σ̃) denoting the MLEs in the EV and EV0 models. Because
the parameter sets have dimensions 3 and 2, we know that the LR–statistic is

10Castillo, E., Galambos, J. and Sarabia, J.M. (1989). The selection of the domain of
attraction of extreme value distribution from the set of data. In [14], pp. 181–190.
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asymptotically distributed according to the χ2–df χ2
1 with 1 degree of freedom

under the null–hypothesis. Consequently, the p–value is

pLR(x) = 1 − χ2
1(TLR(x)).

The significance level is attained with a higher accuracy by employing the
Bartlett correction11 when the LR–statistic TLR is replaced by TLR/(1 + 2.8/n).
In this case the p–value is

p(x) = 1 − χ2
1

(
TLR(x)/(1 + 2.8/n)

)
.

There is a general device to replace an LR–statistic TLR by TLR/(1 + b/n) to
achieve a higher accuracy in the χ2–approximation12.

A Test–Statistic Suggested by LAN–Theory

Marohn13 applies the LAN–approach to deduce a test statistic for the testing
problem (4.5). Let

v1,µ,σ(x) = −(x − µ)/σ + ((x − µ)/σ)
2
(1 − exp (−(x − µ)/σ)) /2,

v2,µ,σ(x) = −1/σ + ((x − µ)/σ) (1 − exp (−(x − µ)/σ)) /σ,
v3,µ,σ(x) = (1 + exp (−(x − µ)/σ))/σ .

The test–statistic can be approximately represented by

Tn,µ,σ(x) =
∣∣∣1.6449

∑
i≤n

v1,µ,σ(xi) − σ × 0.5066
∑
i≤n

v2,µ,σ(xi)

− σ × 0.8916
∑
i≤n

v3,µ,σ(xi)
∣∣∣/(n1/23.451).

The p–value is
p(x) = 2Φ(Tn,µ̂(x),σ̂(x)(x)/0.69)− 1,

where µ̂(x) and σ̂(x) are the MLEs of µ and σ.

Other Test Procedures

In those cases where the null–hypothesis is a location and scale parameter family
it is desirable to use a test statistic that is invariant under location and scale pa-
rameters. This condition is satisfied by the sample skewness coefficient (see (2.7)).

11 Hosking, J.R.M. (1984). Testing whether the shape is zero in the generalized extreme–
value distribution. Biometrika 71, 367–374.

12See, e.g, Barndorff–Nielsen, O.E. and Cox, D.R. (1994). Inference and Asymptotics.
Chapmann & Hall, London.

13Marohn, F. (2000). Testing extreme value models. Extremes 3, 362–384.
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Tests based on the sample skewness coefficient are well known in the statistical lit-
erature. It is evident that the null–hypothesis of a Gumbel distribution is accepted
for those distributions with skewness parameter close to 1.14, cf. page 21.

For tests based on spacings (differences of order statistics) we refer to Otten
and van Montfort14.

Goodness–of–fit tests for the Gumbel or EV model are obtained by χ2–
test statistics as mentioned in Section 3.3. A class of goodness–of–fit tests for
the Gumbel model was investigated by Stephens15. Test statistics of the form∑

i≤n

(
F (xi) − F̂n(xi)

)2
are utilized, where F̂n is the sample df and F is the

Gumbel df with unknown parameters replaced by MLEs.

4.3 Extended Extreme Value Models
and Related Models

We present several distributions, such as Wakeby, two–component extreme value
and gamma distributions (also see [4], a book about the gamma and related dis-
tributions), which are also used for the modeling of maxima.

A Wakeby Construction

Distributions with a certain tail behavior may also be designed by using qfs. Note
that every real–valued, nondecreasing and left continuous function on the interval
(0, 1) defines a qf. Therefore,

Q(q) = a
(
1 − (1 − q)b

)
+ c
(
− 1 + (1 − q)−d

)
+ e, 0 < q < 1

with a, b, c, d > 0, is a qf.
We see that the left and right tails of the distribution are related to those of

a beta and, respectively, a Pareto distribution16.

Two–Component Extreme Value Distributions

In cases where one observes a seasonal variation in the data, it is advisable to
apply a seasonal separation to obtain identically distributed data. This was done

14Otten, A. and van Montfort, M.A.J. (1978). The power of two tests on the type of
the distributions of extremes. J. Hydrology 37, 195–199.

15Stephens, M.A. (1977). Goodness of fit for the extreme value distribution. Biometrika
64, 583–588.

16Houghton, J.C. (1978). Birth of a parent: The Wakeby distribution for modeling
flows. Water Resour. Res. 14, 1105–1110, and

Hosking, J.R.M., Wallis, J.R. and Wood, E.F. (1985). An appraisal of the regional
flood frequency procedure in the UK Flood Studies Report. Hydrol. Sci. J. 30, 85–109.
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by Todorovic and Rousselle17 for flood data (in addition see [42] and Davison
and Smith18). Then, the annual maximum can be regarded as the maximum of,
e.g., monthly or certain seasonal maxima. Subsequently, we merely deal with two–
component distributions. Then, the modeling by means of the product G1(x)G2(x)
of two EV dfs is adequate (called two–component EV distribution).

Such a modeling can also be used in conjunction with mixture distributions.
Before going into details we present an example of tropical and non–tropical wind
speeds (a data set of a similar type, without a classification of extraordinarily large
data, consists of the annual floods of the Blackstone River in Woonsocket, Rhode
Island, from 1929 to 1965 (stored in the file ht–black.dat)).

Example 4.3.1. (Annual Maximum Wind Speeds for Jacksonville, Florida.) The data in
Table 4.6 (stored in the file em–jwind.dat) were recorded by M.J. Changery19 and further
discussed in [34]. By reviewing weather maps for the days on which the annual maxima
occurred, Changery identified storms of two types, namely tropical and non–tropical.

Table 4.6. Annual maximum wind speeds (in mph) from 1950 to 1979 with tropical
storms indicated by T.

year mph type year mph type year mph type year mph type year mph type

1950 65 T 1956 44 1962 49 1968 47 T 1974 48

1951 38 T 1957 42 1963 56 1969 53 1975 68

1952 51 1958 38 1964 74 T 1970 40 1976 46

1953 47 1959 34 1965 52 T 1971 51 1977 36 T

1954 42 1960 42 T 1966 44 T 1972 48 1978 43

1955 42 1961 44 1967 69 1973 53 1979 37

A preliminary statistical analysis is carried out separately for the two subsamples.

A Gumbel modeling can be acceptable for both subsamples. The MLE(EV0) is (µ, σ) =

(43.6, 6.7) for the tropical and (µ, σ) = (44.1, 9.0) for the non–tropical data. For a

continuation see Example 6.1.2.

Tropical and non–tropical winds are selected at random by nature so that a
modeling of a daily maximum wind speed by means of a mixture distribution is

17Todorovic, P. and Rousselle, J. (1971). Some problems of flood analysis. Water Re-
sour. Res. 7, 1144–1150

18Davison, A.C. and Smith, R.L. (1990). Models for exceedances over high thresholds.
J. R. Statist. Soc. B 52, 393–442.

19Changery, M.J. (1982). Historical extreme winds for the United States—Atlantic and
Gulf of Mexico coastlines. U.S. Nuclear Regulatory Commission, NUREG/CR–2639.
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adequate. Next, we follow the line of arguments by Rossi et al.20 which suggests a
modeling of the annual maximum by means of a two–component EV distribution.

Assume that X1, . . . , XN(1) and Y1, . . . , YN(2) are maxima over a certain
threshold. Assume that the Xi and Yi are distributed according to F1 and F2.
Under independence conditions and the condition that N(1) and N(2) are Pois-
son random variables one can verify (e.g., using the superposition of two Poisson
processes) that both sequences can be jointly modeled by a sequence Z1, . . . , ZN ,
where N is a Poisson random variable with parameter λ = λ1 + λ2 and the Zi

have the common mixture distribution F (x) = p1F1(x) + p2F2(x) with p1 = λ1/λ
and p2 = λ2/λ. According to (1.54), the maximum of the Zi has the df

exp
(
− λ(1 − F (x))

)
= exp

(
− λ1(1 − F1(x))

)
exp

(
− λ2(1 − F2(x))

)
for x ≥ 0. This df is close to a two–component EV distribution if λ1, λ2 are small
and F1, F2 are close to GP dfs.

Presently, we do not have direct access to statistical inference in the two–
component EV model (beyond a visual one). Some further consideration will be
made in Section 6.1, where the identification of the single components will be
reconsidered within the framework of censored data.

Gamma (Pearson–Type III) and χ2 Distributions

The gamma (Pearson–type III) distribution with shape parameter r > 0 was al-
ready introduced in (3.42) as a prior for a Bayesian estimation procedure. Gamma
distributions may also be employed as mixing distributions in various cases and
for the direct modeling of distributions of actual maxima.

The density of the standard gamma distribution with shape parameter r > 0
is

Gamma: hr(x) = 1
Γ(r)x

r−1e−x, x > 0. (4.6)

The exponential density is a special case for r = 1. From the relation Γ(r +
1) = rΓ(r), it follows that the mean and variance of the gamma distribution are
both equal to r.

Gamma dfs Hr are sum–reproductive in so far as the convolution is of the
same type: we have Hm∗

r = Hmr. Generally, the sum of m independent gamma
random variables with parameters ri is a gamma random variable with parameter
r1 + · · · + rm. It is apparent that gamma dfs approach the normal df as r → ∞.
For positive integers r = n + 1, one obtains the distribution of the sum of n + 1
iid exponential random variables Xi. In this case, the gamma df can be written

Hn+1(x) = 1 − exp(−x)

n∑
i=0

xi

i!
, x > 0. (4.7)

20Rossi, F., Fiorenti, M. and Versace, P. (1984). Two–component extreme value distri-
bution for flood frequency analysis. Water Resour. Res. 20, 847–856.
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The gamma df is also called the Erlang df in this special case.
It is noteworthy that χ2–distributions with n degrees of freedom are gamma

distributions with shape and scale parameters r = n/2 and σ = 2. If X1, . . . , Xn

are iid standard normal random variables, then
∑

i≤n X2
i is a χ2 random variable

with n degrees of freedom.

Logistic Distributions as Mixtures of Gumbel Distributions

If {Fϑ} is a family of dfs and h is a probability density, then

Fh(x) =

∫
Fϑ(x)h(ϑ) dϑ (4.8)

is another df (the mixture of the dfs Fϑ with respect to h). If fϑ is the density of
Fϑ, then

fh(x) =

∫
fϑ(x)h(ϑ) dϑ

is the density of Fh. We refer to Section 8.1 for a detailed discussion of the heuristics
behind the concept of mixing.

We show that a certain mixture of Gumbel distributions is a generalized lo-
gistic distribution, if the mixing is done with respect to a gamma distribution (a
result due to Dubey21). Therefore, the generalized logistic model can be an appro-
priate model for distributions of maxima in heterogeneous populations. Likewise,
one may deal with minima.

A Gumbel df with location and scale parameters µ and σ > 0 can be repa-
rameterized by

G0,µ,σ(x) = exp(− exp(−(x − µ)/σ))

= exp(−ϑ exp(−x/σ)),

where ϑ = exp(µ/σ).
Mixing over the parameter ϑ with respect to the gamma density hr,β, with

shape and scale parameters r, β > 0, one obtains the mixture df

Fβ,r,σ(x) =

∫ ∞

0

exp(−ϑ exp(−x/σ))hr,β(ϑ) dϑ

= (1 + β exp(−x/σ))−r (4.9)

which is a generalized logistic df with two shape parameters β, r > 0 and the scale
parameter σ > 0. If r = 1 and β = 1 and, thus, the mixing is done with respect to
the standard exponential df, then the mixture is a logistic df

F1,1,σ(x) = (1 + exp(−x/σ))−1 (4.10)

21Dubey, S.D. (1969). A new derivation of the logistic distribution. Nav. Res. Logist.
Quart. 16, 37–40.
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with scale parameter σ > 0.
If the Gumbel df is replaced by the Gompertz df G̃0,µ,σ(x) = 1−G0,µ,σ(−x)

and ϑ = exp(−µ/σ), then the mixture is the converse generalized logistic df

F̃β,r,σ(x) = 1 − (1 + β exp(x/σ))−r . (4.11)

If β = 1/r, then the Gumbel df G0,0,σ and, respectively, the Gompertz df

G̃0,0,σ are the limits of the (converse) generalized logistic dfs in (4.9) and (4.11)
as r → ∞.

Log–Gamma (Log–Pearson–Type III) and GP–Gamma Distributions

If log(X) has the gamma density hr(x/σ)/σ for some scale parameter σ > 0, then
X has the density

Log–Gamma: f1,r,α(x) = αr

Γ(r)(log x)r−1x−(1+α), x > 1, (4.12)

for α = 1/σ. We see that the log–gamma distribution has two shape parameters
r, α > 0. For r = 1, one obtains the standard Pareto density with shape parameter
α.

r = 0.5

r = 1

r = 1.5

1 2 3 4
0

0.5

1

Fig. 4.3. Log–gamma densities

for α = 1 and r = 0.5, 1, 1.5.

Figure 4.3 indicates that log–gamma distributions have upper tails similar
to those of Pareto (GP1) distributions, yet the shape can be completely different
near the left endpoint.

In addition, if X is a log–gamma random variable, then −1/X has the density

GP–Gamma2: f2,r,α(x) = |α|r
Γ(r)(− log |x|)r−1(−x)−(1+α), −1 < x < 0,

for parameters α < 0, where we again changed the sign of the shape parameter.
The standard beta (GP2) densities are special cases for r = 1.

Within this system, the gamma density may be denoted by f0,r. The following
diagram shows the relationships between the different models.
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Gamma

Exponential (GP0)

GP–Gamma 2

Beta (GP2)

Log–Gamma

Pareto (GP1)
�

�
�

log(X)

−1/X

A unified model is achieved by using the von Mises approach. For r > 0 and
γ �= 0, we have

GP–Gamma: fr,γ(x) = 1
Γ(r)

(
log(1+γx)

γ

)r−1

(1 + γx)−(1+1/γ)

for 0 < x, if γ > 0, and 0 < x < 1/|γ|, if γ < 0. The gamma densities fr,0 are
obtained in the limit as γ → 0.

Fitting Gamma and Log–Gamma Distributions to Maxima

If r < 1 and γ < −1, then GP–gamma densities have a pole at zero and a mono-
tonic decrease. Thus, due to the second property, there is a certain similarity to
GP densities.

If r > 1, there is a greater similarity to EV densities:

• gamma densities have an exponential type upper tail and are tied down near
zero by means of a factor xr−1,

• log–gamma densities with location parameter µ = −1 have a Pareto type
upper tail and are tied down near zero by

(log(1 + x))r−1 ≈ xr−1.

Therefore, gamma and log–gamma densities have shapes that correspond visually
to Fréchet densities if r > 1.

A further extension of the preceding models is achieved if we start with
generalized gamma instead of gamma distributions; e.g., logarithmic half–normal
distributions are included in such models. Yet, in the subsequent lines we deal
with a different kind of extensions starting with converse gamma and converse
generalized gamma distributions.

Generalized Gamma Distributions

If X is a gamma random variable with parameter r > 0, then X1/β is a generalized
gamma random variable with density

h̃r,β(x) =
β

Γ(r)
xβr−1 exp(−xβ), x ≥ 0,
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for β > 0. This transformation corresponds to that on page 38, where Weibull
(EV2) dfs were deduced from converse exponential dfs. We see that the generalized
gamma model includes the converse Weibull model (for r = 1). For β = 2 and
r = 1/2 we have the half–normal distribution.

The normal distribution is included if we also take double generalized gamma
distributions with densities of the form h̃r,β(|x|)/2.

EV–Gamma Distributions

We indicate certain extensions of EV models by a diagram with transformations
as in the EV family.

EV–Gamma 0

Gumbel (EV0)

Converse Gamma

Converse Exponential

EV–Gamma 1

Fréchet (EV1)

Converse Generalized Gamma

Weibull (EV2)
�

�

�

�
log(X)

−(−X)−1/α

−1/X

Within the EV–Gamma1 model one obtains the Lévy distribution (cf. (6.18))
which is a sum–stable density with index 1/2 and a certain skewness parameter. A
von Mises representation is again possible. The applicability of such models must
be still explored.

The Two–Parameter Beta Family

We mention also the beta distributions in the usual parameterization that are
given by

fa,b(x) =
xa−1(1 − x)b−1

B(a, b)
, 0 ≤ x ≤ 1, (4.13)

for shape parameters a, b > 0, where

B(a, b) =

∫ 1

0

xa−1(1 − x)b−1 dx

is the beta function. Notice that the beta densities in the GP2 model constitute
a special case; we have w1,α,1,1 = f1,−α. Recall that B(a, b) = Γ(a)Γ(b)/Γ(a + b),
where Γ is the gamma function.



Chapter 5

Generalized Pareto Models

This chapter deals once again with the central topic of this book, namely with
exceedances (in other words, peak–over–threshold values) over high thresholds
and upper order statistics. One may argue that this chapter is richer and more
exciting than the preceding one concerning maxima. The role of extreme value
(EV) dfs is played by generalized Pareto (GP) dfs.

5.1 Estimation in Generalized Pareto Models

Let x1, . . . , xn be the original data which are governed by a df F . We deal with
upper extremes which are either

• the exceedances y1, . . . , yk over a fixed threshold u, or

• the k upper ordered values {y1, . . . , yk} = {xn−k+1:n, . . . , xn:n}, where k is
fixed.

Recollect from (2.4) that a nonparametric estimate of the exceedance df F [u]

is given by the sample df F̂k = F̂k(y; ·) based on the exceedances y1, . . . , yk over
u. Likewise, the exceedance density or qf can be estimated by means of a sample
exceedance density fk or the sample exceedance qf F̂−1

k .
Now we want to pursue a parametric approach. We assume that the actual

exceedance df F [u] can be replaced by some GP df W with left endpoint u. For
example, we estimate the exceedance df F [u] by means of a GP df Wγk,u,σk

(in
the γ–representation), where γk and σk are estimates of the shape and scale pa-
rameters. It is advisable to add the threshold u to the sample when a parametric
estimation based on exceedances is executed.

We also deal with likelihood–based estimator, namely MLEs and Bayesian
estimators, based on exceedances. For that purpose, exceedances are dealt with
like iid data. A justification for this approach can be found in Section 8.1, page
234.
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Recall that the threshold value u is replaced by xn−k:n in the case of upper
ordered values. Another random threshold is obtained for a data–driven choice of
k, see page 137.

The Exponential Model GP0(u)

The statistical model for the exceedances over the threshold u consists of all ex-
ponential dfs with left endpoint u.

GP0(u): {W0,u,σ : σ > 0}.

Estimators for the GP0(u) model:

• MLE(GP0): the MLE of the scale parameter is σk = 1
k

∑
i≤k(yi − u). It is

apparent that the MLE is also a moment estimator.

• M–Estimator (GP0): an M–estimate of the scale parameter σ, which may be
regarded as a robustified MLE (see (3.7)), is obtained as the solution to∑

i≤k

(
exp

(
− yi − u

σb

)
− b

1 + b

)
= 0.

For b → ∞, the likelihood equation is attained.

We refer to Section 3.5 for Bayesian estimators in the exponential model.

Example 5.1.1. (Continuation of Example 4.1.1 about the Annual Floods of the Feather

River.) According to the insight gained from Example 4.1.1, we may already expect that

an exponential distribution can be fitted to the upper part of the annual maximum flood

(which is indeed confirmed). From the MLE(GP0) with k = 25, we get the exponential

distribution with location and scale parameters µk = 36, 577 and σk = 45, 212. The 50

and 100–year flood levels are u(50) = 213, 450 and u(100) = 244, 789. We see that the

100–year flood level is exceeded by none of the 59 annual maximum discharges.

If one is not sure whether the exponential model is acceptable, one should
alternatively carry out the estimation within the Pareto model or the unified gen-
eralized Pareto model which are handled below.

The Restricted Pareto Model GP1(u, µ = 0)

This is just the exponential model GP0(u) transformed by T (x) = log x (as out-
lined on page 37). Therefore, the estimators correspond to those in the exponential
model. We consider a one–dimensional Pareto model parameterized by the shape
parameter α, namely,

GP1(u, µ = 0): {W1,α,0,u : α > 0}.
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This is an appropriate model for exceedances over the threshold u because the left
endpoints of these Pareto dfs are equal to u.

The shape parameter α can be represented as a functional parameter because∫
log(x/u) dW1,α,0,u(x) = 1/α . (5.1)

Estimators of the shape parameter α within the model GP1(u, µ = 0):

• Hill1: this is the in the restricted Pareto model GP1(u, µ = 0). We have

αk = k
/∑

i≤k

log(yi/u). (5.2)

Recall that the threshold u is replaced by xn−k:n in the case of upper ordered
values. Then, the estimate can be written

αk = k
/∑

i≤k

log(xn−i+1:n/xn−k:n) (5.3)

which is the Hill estimator in the original form. The Hill estimator may be
introduced as a sample functional

αk = 1

/∫
log(x/u) dF̂k(x) ,

where F̂k is the sample exceedance df (replacing W1,α,0,u in equation (5.1)).
For a discussion about the performance of the Hill estimator we refer to the
subsequent page and the lines around the Figures 5.1 and 5.2.

• M–Estimator in the restricted Pareto model GP1(u, µ = 0): the estimate2 of
the shape parameter α that corresponds to the M–estimate of σ in the GP0
model is the solution to∑

i≤k

((yi

u

)−α/b

− b

1 + b

)
= 0.

For b → ∞, the Hill estimate is received.

• Bayes estimators for the model GP1(u, µ = 0)3: take the gamma density

p(α) = hs,d(α), (5.4)

1Hill, B.M. (1975). A simple general approach to inference about the tail of a distri-
bution. Ann. Statist. 3, 1163–1174.

2Reiss, R.–D., Haßmann, S. and Thomas, M. (1994). XTREMES: Extreme value analysis
and robustness. In [15], Vol. 1, 175–187.

3Early references are Hill1 and Rytgaard, M. (1990). Estimation in the Pareto distri-
bution. ASTIN Bulletin 20, 201–216.
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cf. (3.42), as a prior for the shape parameter α. This Bayes estimator corre-
sponds to the one in the exponential model with unknown reciprocal scale
parameter, see page 102. The likelihood function satisfies

L(y|α) ∝ αk exp
(
− α

∑
i≤k

log(yi/u)
)
, yi > u, (5.5)

in α. Consequently, the posterior density satisfies p(α|y) ∝ L(y|α)hs,d(α),
and one obtains

p(α|y) = hs′,d′(α) (5.6)

for the posterior density which is the gamma density with parameters s′ =
s + k and d′ = d +

∑
i≤k log(yi/u). The Bayes estimate, as the mean of the

posterior density, is

α∗
k(y) =

∫
αp(α|y) dα

=
s + k

d +
∑

i≤k log(yi/u)
. (5.7)

We see that the Bayes estimate is close to the Hill estimate if s and d are
small or/and k is large.

The explicit representation of the Hill and the Bayes estimators facilitated
the development of an asymptotic theory. In addition, these estimators possess
an excellent performance if this one–dimensional model is adequate. Supposedly,
to check the performance of these estimators, simulations were usually run under
standard Pareto distributions with location parameter µ = 0.

Also, the Hill estimator has been applied to data in a lot of research papers.
Yet, this does not necessarily imply that the Hill estimator and related estimators
should be used in applications. We refer to the comments around Figures 5.1 and
5.2 for a continuation of this discussion.

What should be done if the diagnostic tools—like the sample mean or median
excess function—in Chapter 2 indicate that the GP1(u, µ = 0) model is signifi-
cantly incorrect, as, e.g., in the case of financial data in Chapter 16. It is likely
that one of these estimators was applied because a heavy–tailed or, specifically, a
Pareto–like tail of the underlying df was conjectured.

It suggests itself to carry out the statistical inference within the full model
GP1(u) of Pareto dfs with left endpoint u which are introduced in the next sub-
section.

For dfs in the full Pareto GP1(u) model we have

W1,α,µ,σ = W1,α,µ,u−µ ≈ W1,α,0,u, (5.8)

if u is sufficiently large. Therefore, estimators especially tailored for the submodel
GP1(u, µ = 0) are of a certain relevance for the full Pareto model GP1(u) in
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asymptotic considerations. Yet, for finite sample sizes the approximation error
in (5.8) may cause a larger bias and, thus, an unfavorable performance of the
estimator.

Also see Section 6.5, where theoretical results are indicated that the approx-
imation error is of a smaller order for small shape parameters α.

The Full Pareto GP1(u) Model: (α, µ, σ)–Parameterization

The model of all Pareto dfs (in the α–parameterization) with shape parameter
α > 0 and left endpoint u is given by

GP1(u): {W1,α,µ,σ : α, σ > 0, µ real, µ + σ = u}.

It is apparent that the restricted Pareto model GP1(u, µ = 0) is a submodel of the
model GP1(u) with µ = 0.

The MLE in the GP1(u) model corresponds to the MLE in the generalized
Pareto model and does not exist in the present Pareto model with a certain positive
probability.

The Full Pareto GP1(u) Model: (α, η)–Parameterization

The GP1(u) model can be parameterized by two parameters α, η > 0. For every
df W1,α,µ,σ with µ + σ = u,

W1,α,µ,σ(x) = W1,α,µ,u−µ

= W1,α,u(1−η),uη(x)

= 1 −
(

1 +
(x − u)/u

η

)−α

, x ≥ u, (5.9)

where η = 1 − µ/u has the nice property of being a scale parameter for the
normalized excesses (x − u)/u.

One obtains a reparameterized full Pareto model (for exceedances over u)

(α, η)–parameterization: {W1,α,u(1−η),uη : α, η > 0}. (5.10)

In this representation, the restricted Pareto model GP1(u, µ = 0) is a submodel
with η = 1.

Within the reparameterized model of Pareto dfs one gets some closer insight
why the Hill estimator, and related estimators such as the Bayes estimator in (5.7),
are inaccurate even in such cases where a Paretian modeling is acceptable.

Notice that a larger scale parameter η puts more weight on the upper tail of
the df. If such a Pareto df is estimated, yet η = 1 is kept fixed in the modeling, then
the heavier weight in the tail, due to a larger parameter η, must be compensated
by a smaller estimated shape parameter α.
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In the following illustration, we show simulated densities of the Hill estimator
based on k = 45 largest Pareto data out of n = 400. The number of simulations
is N = 4000. Whereas the shape and scale parameters are kept fixed, we vary the
location parameter of the underlying Pareto distribution.

As expected, the density of the Hill estimator of α is nicely centered around
the true shape parameter α = 10 if µ = 0 because the underlying df belongs to
the restricted Pareto model GP1(u, µ = 0).

2 4 6 8 10 12 14 16 18 20 22

0.0

0.5

1

Fig. 5.1. Simulated densities of Hill

estimator under the Pareto distri-

butions with shape parameter α =

10, σ = 1 and µ = −1, 0, 1 from

left to right.

The Hill estimator has a bad performance for the other cases (for a continu-
ation see Fig. 5.2); e.g., for µ = −1 it centers around a value 3.

Bayes Estimation in the Full Pareto Model, (α, η)–Parameterization

Bayes estimators for the model GP1(u), in the (α, η)–parameterization, were dealt
with by Reiss and Thomas4. For a more recent article see Diebolt et al.5

As a prior density take

p(α, η) = hs,d(α)f(η), (5.11)

where hs,d is a gamma density taken as a prior for α, and f , as a prior for η, is
another probability density which will be specified later. The likelihood function
for the present model is determined by

L(y|α, η) ∝ (α/η)k exp
(
− (1 + α)

∑
i≤k

log
(
1 +

yi − u

ηu

))
, yi > u. (5.12)

4Reiss, R.-D. and Thomas, M. (1999). A new class of Bayesian estimators in Paretian
excess–of–loss reinsurance. ASTIN Bulletin 29, 339–349.

5Diebolt, J., El–Aroui, M.–A., Garrido, M. and Girard, S. (2005). Quasi–conjugate
Bayes estimates for GPD parameters and application to heavy tails modelling. Extremes
8, 57–78.
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Deduce the posterior density

p(α, η|y) = hs′,d′(η)(α)f̃ (η), (5.13)

where hs′,d′(η) is again a gamma density with parameters s′ = s + k and d′(η) =

d + Σi≤k log(1 + (yi − u)/(ηu)). The probability density f̃ is characterized by

f̃(η) ∝ η−k(d′(η))−s′

exp
(
−
∑
i≤k

log
(
1 +

yi − u

ηu

))
f(η). (5.14)

Simple calculations yield that the Bayes estimates of α and η are

α∗
k(y) =

∫
αp(α, η|y) dαdη =

∫
s′

d′(η)
f̃(η) dη, (5.15)

and

η∗
k(y) =

∫
ηp(α, η|y) dαdη =

∫
ηf̃(η) dη. (5.16)

We see that the Bayesian estimator of α is just the estimator in (5.7), if the
prior distribution—and, thus, also the posterior—is a point measure with mass
equal to one at σ = 1.

We remark that gamma priors were chosen for the parameter α in the re-
stricted model because they possess the nice property of being conjugate priors.
This property still holds in the full model in so far that the conditional posterior
for α is again a gamma distribution. Such a natural choice seems not to exist for
the scale parameter σ. As priors for η one may also take, e.g., reciprocal gamma
distributions as introduced in (3.43). For a continuation see Section 8.3.

If the Pareto modeling is not adequate for the actual fat or heavy–tailed df,
then one may choose one of the models introduced in Section 5.5.

The Beta Model (GP2)

We shortly mention the model of beta (GP2) distributions with upper endpoint
equal to zero and scale parameter u. The left endpoint of the distribution is −u.
Recall from Section 1.4 that these distributions form a submodel of the family of
beta distributions as dealt with in the statistical literature. In addition, a negative
shape parameter is taken.

GP2(u): {W2,α,0,u : α < 0}.

The GP1 model can be transformed to the GP2 model by means of the transfor-
mation T (x) = −1/x (cf. page 37 again). Thus, an MLE corresponding to the Hill
estimator in the GP1 model, therefore called Hill(GP2) estimator, becomes appli-
cable. Shift the data below zero if an upper endpoint other than zero is plausible.
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The Generalized Pareto Model

The given model is

GP(u): {Wγ,u,σ : γ real, σ > 0},
where u and σ are the location and scale parameters. Notice that the Pareto df
W1,α,µ,u−µ in (5.8) is equal to Wγ,u,σ with σ = γ(u − µ).

Estimators γk of γ include:

• MLE(GP): the MLE in the GP model must be evaluated by an iteration
procedure6. The remarks about the MLE(EV) also apply to the present
estimator.

• Moment(GP): the moment estimator7 takes the form γ1,k + γ2,k, where
γ1,k = 1/αk is the reciprocal of the Hill estimator. The second term γ2,k

is constructed by means of lj,k =
∑

i≤k(log(yi/u))j
/
k for j = 1, 2. We have

γ2,k = 1 − 1/
(
2
(
1 − l21,k/l2,k

))
.

Roughly speaking, γ1,k (respectively, γ2,k) estimates the shape parameter γ
if γ ≥ 0 (if γ ≤ 0) and γ1,k (respectively, γ2,k) is close to zero if γ ≤ 0 (if
γ ≥ 0).

Warning! The moment estimator has an excellent performance in
general, yet it should not be applied to a full data set of exceedances.
In that case, one obtains irregular estimates.

• Drees–Pickands(GP): an LRSE of the shape parameter γ in the GP model
can be defined in similarity to that in the EV model, cf. page 111. Let

γk = log(r̂)/ log(1/a)

with q0 = 1 − q, q1 = 1 − aq and q3 = 1 − a2q, where 0 < q, a < 1. By
taking q = 4i/k and a = 1/2, one obtains the Pickands8 estimate, which
corresponds to a Dubey estimate (cf. page 111) in the EV model9. We have

γk,i = log

(
yk−i:k − yk−2i:k

yk−2i:k − yk−4i:k

)/
log 2

6Prescott, P. and Walden, A.T. (1980). Maximum likelihood estimation of the param-
eters of the generalized extreme–value distribution. Biometrika 67, 723–724.

7Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for
the index of an extreme–value distribution. Ann. Statist. 17, 1833–1855.

8Pickands, J. (1975). Statistical inference using extreme order statistics. Ann. Statist.
3, 119–131.

9A closely related estimator may be found in the article by Weiss (1971). Asymptotic
inference about a density function at an end of its range. Nav. Res. Logist. Quart. 18,
111–114.



5.1. Estimation in Generalized Pareto Models 135

for i ≤ [k/4]. A linear combination
∑

i≤[k/4] ck,iγk,i with estimated optimal

scores ck,i was studied by H. Drees10. Estimates of γ based on two and,
respectively, five Pickands estimates were dealt with by M. Falk11 and T.T.
Pereira12.

• Slope(GP): the slope β1,k of the least squares line (see (2.40)), fitted to the
mean excess function right of the k largest observations, is close to γ/(1−γ)
and, therefore, γk = β1,k/(1 + β1,k) is a plausible estimate of γ.

• L–Moment Approach: This method will be introduced in Section 14.4 in
conjunction with flood frequency analysis.

In addition, σ may be estimated by a least squares estimator σk (a solution to
(2.40) for µ = u with Φ replaced by Wγk

), where γk is the Moment, Drees–Pickands
or slope estimator.

If γ > −1/2, then one should apply the MLE(GP) or Moment(GP). The
Drees–Pickands estimator possesses remarkable asymptotic properties, yet the fi-
nite sample size performance can be bad for γ > 0. Yet, we believe that the concept
of LRSEs has also the potential to provide accurate estimators for smaller sample
sizes in such cases. In addition, estimators of that type can be especially tailored
such that certain additional requirements are fulfilled. The Slope(GP) estimator
is only applicable if γ < 1.

Estimation Based on the Original Data

Let αk, γk and σk be the estimates of α, γ and σ based on

(a) the exceedances y1, . . . , yk over u, or

(b) the upper ordered values yi = xn−i+1:n,

as defined in the preceding lines. Moreover, we assume that the original data
x1, . . . , xn are available. Put αk,n = αk and γk,n = γk. Derive µk,n and σk,n from
u and σk as described on page 58. Then, one may use Wγn,k,µn,k,σn,k

as a parametric
estimate of the upper tail of the underlying df F . Recall that the sample df Fn(x; ·)
is a global estimator of F .

Likewise, use the pertaining parametric densities and qfs for estimating the
underlying density f and qf F−1 near the upper endpoints. Thereby, we obtain
parametric competitors of the kernel density and the sample qf.

10Drees, H. (1995). Refined Pickands estimators of the extreme value index. Ann.
Statist. 23, 2059–2080.

11Falk, M. (1994). Efficiency of convex combinations of Pickands estimator of the ex-
treme value index. Nonparametric Statist. 4, 133–147.

12Pereira, T.T. (2000). A spacing estimator for the extreme value index. Preprint.
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Diagram of Estimates

The choice of the threshold u or, likewise, the number k of upper extremes corre-
sponds to the bandwidth selection problem for the kernel density in Section 2.1.
Such a choice can be supported visually by a diagram. Thereby, estimates γk,n,
µk,n and σk,n are plotted against the number k of upper ordered values.

The following properties become visible:

• if k is small, then there is a strong fluctuation of the values γk,n for varying
k;

• for an intermediate number k of extremes, the values of the estimates γk,n

stabilize around the true value γ,

• finally, if k is large, then the model assumption may be strongly violated and
one observes a deviation of γk,n from γ.

In other words, if k is small, then the variance of the estimator is large and the
bias is small (and vice versa); in between, there is a balance between the variance
and the bias and a plateau becomes visible.

We start with a negative result: the Hill diagram for 400 Pareto data gen-
erated under the shape, location and scale parameters α = 10, µ = −1, σ = 1
provides a smooth curve, yet it is difficult to detect the aforementioned plateau
in Fig. 5.2 (left). This is due to the fact that the Hill estimator is inaccurate for
larger α and µ �= 0, also see (6.38).
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Fig. 5.2. (left.) Hill diagram for 400 Pareto data generated under the shape, location and

scale parameters α = 10, µ = −1, σ = 1. (right.) Pareto mean excess function pertaining

to Hill (dashed) and MLE(GP) (dotted) estimates based on k = 45 upper extremes;

sample mean excess function (solid).

For real data, one may compare, e.g., the mean excess function, which belongs
to the estimated parameters, with the sample mean excess function in order to
check the adequacy of a parametric estimate. In Fig. 5.2 (right), one recognizes
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again that the Hill estimate is not appropriate. The MLE(GP) with values α =
−20.23 (respectively, γ = −0.05) is acceptable.

In Fig. 5.2, the estimation was carried out within the ideal model for the
MLE(GP) and, hence, the performance of the MLE(GP) can be improved when
the number k is equal to the sample size n = 400. The situation changes for Fréchet
data. Recall from (1.47) that a Fréchet df is close to a Pareto df in the upper tail.
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Fig. 5.3. MLE(GP) estimates αk,n

plotted against k = 1, . . . , 400 for

standard Fréchet data under the

shape parameter α = 1.

In Fig. 5.3, a plateau with right endpoint k = 80 becomes visible. Therefore,
we suggest to base the estimation on this number of upper extremes.

Automatic Choice of the Number of Extremes

The selection of the right endpoint of a plateau may also be done in an auto-
matic manner. The following ad hoc procedure works reasonably well. Let γk,n

be estimates of the shape parameter γ based on the k upper extremes (likewise,
one may deal with estimates αk,n of α). Denote the median of γ1,n, . . . , γk,n by
med(γ1,n, . . . , γk,n). Choose k∗ as the value that minimizes

1

k

∑
i≤k

iβ |γi,n − med(γ1,n, . . . , γk,n)| (5.17)

with 0 ≤ β < 1/2. A slight smoothing of the series of estimates improves the
performance of the procedure for small and moderate sample sizes. Modifications
are obtained, for example, by taking squared deviations and γk,n in place of the
median.

Other selection procedures may be found in the papers by Beirlant et al.13

13Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). Tail index estimation, Pareto
quantile plots, and regression diagnostics. JASA 91, 1659–1667.
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and by Drees and Kaufmann14 and in the literature cited therein. We also refer
to Csörgő et al.15 for the smoothing of tail index estimators.

Peaks–Over–Threshold and Annual Maxima Methods

Besides selecting exceedances or upper ordered values from the original data
x1, . . . , xn, there is another method of extracting extremes, namely by taking max-
ima out of blocks (see (1.5) and Chapter 4). Therefore, there are two different
approaches to the estimation of the tail index α or γ of a df:

• based on exceedances or upper extremes as dealt with in this section (pot
method),

• based on maxima within certain subperiods (annual maxima method).

For the second approach, one must assume that the original data x1, . . . , xn

are observable. Let

{x(j−1)m+1, . . . , xjm}, j = 1, . . . , k, (5.18)

be a partition of x1, . . . , xn, where n = mk, and take the maximum yj out of the
jth block.

Assume that the xi are governed by a df F . If the block size m is large, then
an EV df can be accurately fitted to the actual df Fm of the maximum. Yet, one
must cope with the disadvantage that the number k of maxima is small (and vice
versa).

According to foregoing remarks, the EV df G has the same shape parameter
as the GP df W corresponding to the exceedances. For discussions concerning the
efficiency of both approaches, we refer to [42], Section 9.6 and to Rasmussen et
al.16.

Random Thresholds

If the k largest values are selected, then xn−k:n may be regarded as a random
threshold. The index is also random either if the sample sizes are random or as in
the case of automatically selected thresholds (in (5.17)). Other choices are

• the smallest annual maximum,

14Drees, H. and Kaufmann, E. (1998). Selection of the optimal sample fraction in
univariate extreme value estimation. Stoch. Proc. Appl. 75, 149–172

15Csörgő, S., Deheuvels, P. and Mason, D.M. (1985). Kernel estimates of the tail index
of a distribution. Ann. Statist. 13, 1050–1078.

16Rasmussen, P.F., Ashkar, F., Rosbjerg, D. and Bobée, B. (1994). The pot method
for flood estimation: a review, 15–26 (in [13]).
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• the threshold such that, on the average, the number of selected extremes in
each year is equal to 3 or 4.

For the latter two proposals, we refer to a paper by Langbein17.

Extrapolation

In this section, a GP df was fitted to the upper tail of the sample df, thus also to
the underlying df F in the region where the exceedances are observed. Using this
parametric approach, it is possible to construct estimates of certain functional
parameters of F with variances smaller than those of nonparametric estimates.
This advantage is possibly achieved at the cost of a larger bias if the parametric
modeling is inaccurate.

There will be a new maximum or observations larger than the present ones
in the near future. These observations are outside of the region where a GP df
was fitted to the data. Statistical questions concerning future extremes should
be approached with the following pragmatic attitude. Of course we do not know
whether the insight gained from the data can be extrapolated to a region where
no observation has been sampled. Keep your fingers crossed and evaluate the risk
of future extreme observations under the estimated df.

In the long run, more information will be available and the modeling should
be adjusted again.

Estimation of Parameters When a Trend Must be Dealt With

In Section 4.1, pages 113–116, we studied the question of estimating location pa-
rameters µ(ti; β0, . . . , βp) of EV dfs which depend on the time ti. Thus we assumed
that there is certain trend in the data yi that are measurements at time ti. For
that purpose we

• estimated the trend in the data by the least squares method;

• employed parametric estimators in the EV model to the residuals,

• deduced estimators of the parameters µ(ti; β0, . . . , βp).

Now, we assume that exceedances yi over a threshold u are observed within
a certain time period. The exceedances yi at the exceedance times ti follow GP
dfs Wγ,u,σ(ti;β0,...,βp). Thus, we allow a trend in the scale parameter σ.

The aim is to estimate γ and a trend function σ(t; β0, . . . , βp) in the scale
parameter. Let nj be the number of exceedances within a jth sub–period. We
implicitly assume stationarity for the exceedances in each sub–period. We proceed
in the following manner:

17Langbein, W.B. (1949). Annual floods and the partial duration flood. Transactions
Geophysical Union 30, 879–881.
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• determine estimates γ̂j and σ̂j for each sub–period;

• take γ̂ =
∑

j nj γ̂j

/∑
j nj as an estimate of the stationary parameter γ,

• evaluate a trend function for the scale parameter by fitting a regression line
to the σj .

Example 5.1.2. (Ozone Cluster Maxima18.) The data set used in this study has been
collected by the Mexico City automatic network for atmospheric monitoring (RAMA)
(from the south monitoring station called Pedregal). The data are the daily maxima
of ozone levels measured in parts per million from July 1987 to April 1999, stored in
mexozone.dat.
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Fig. 5.4. Time series of daily maximum ozone levels from Pedregal Monitoring Station

from July 1987 to April 1999.

We take eleven twelve month periods from July to June and one last period from
July to April. The data yi are cluster maxima taken according to the run length definition
with a minimum gap of two days. In Table 5.1 we listed the estimates of the scale
parameters σj for the threshold u = 0.22.

Table 5.1. Scale parameters σ of estimated GP distributions for the threshold u = .22
and estimated shape parameter γ = −.35.

year

87 88 89 90 91 92 93 94 95 96 97 98

σ .066 .061 .066 .082 .092 .068 .050 .051 .046 .041 .043 .028

18Villaseñor, J.A., Vaquera, H. and Reiss, R.–D. (2001). Long–trend study for ground
level ozone data from Mexico City. In: 2nd ed. of this book, Part V, pages 353–358.
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The regression curve fitted to the σj is exp(−0.003t2 − 0.34t− 0.01). Similar calcu-

lations can be carried out within the exponential model where the shape parameter γ is

equal to zero.

This data set is also studied in Example 6.5.2 in conjunction with the question
of penultimate approximations.

Estimation Based on the Annual k Largest Order Statistics.

Up to now we investigated two different methods of extracting upper extremes
from a set of data, namely, to take maxima out of blocks or to take exceedances
over a higher threshold, where the latter includes the selection of the largest k
values out of the data set. One may as well select the k largest values out of each
block. If k = 1, this reduces to the usual blocks method, whereas for larger k this
method is closer to the pot–method.

A parametric statistical model for the k largest order statistics is suggested
by limiting distributions as in the case of maxima and exceedances (see, e.g., [42],
Section 5.4). One may take submodels, which are the Gumbel, Fréchet and Weibull
models if k = 1, or a unified model in the von Mises parameterization.

Example 5.1.3. (Exceptional Athletic Records.) The data (communicated by Richard
Smith), illustrated in Fig. 5.5 and stored in records.dat, concern women’s 1500m and
3000m best performances from 1972 to 1992. M.E. Robinson and J.A. Tawn19 and R.L.
Smith20 analyzed these data in view of an improvement of the 3000 m record from 502.62
to 486.11 seconds in the year 1993.

Confidence intervals and, respectively, prediction intervals showed evidence that the
outstanding record in 1993 is inconsistent with the previous performances. Some insight
into the nature of the record in 1993 would be also gained by computing T–year records
based on the historical data.

From the scatterplots one recognizes trends and an “Olympic year” effect in the

data. In view of the similar nature of both data sets and the small sample sizes, one could

take into account a pooling of the data, cf. Section 14.3.

Asymptotic Distributions of Estimators and
Confidence Intervals in the Generalized Pareto Model

We first deal with the case of iid random variables with common GP df.

19Robinson, M.E. and Tawn, J.A. (1995). Statistics for exceptional athletics records.
Appl. Statist. 44, 499–511.

20Smith, R.L. (1997). Statistics for exceptional athletics records: letter to the editor.
Appl. Statist. 46, 123–127.
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Fig. 5.5. Women’s best performances for 1500m (left) and 3000m (right).

• (The MLE in the GP1 Model.) We formulate the asymptotic normality of the
MLE α̂k in the GP1 model in terms of the γ–parameterization to make the
result easily comparable to the performance of the MLE in the GP model.
For iid random variables with common df W1,α,0,σ, the reciprocal MLE 1/α̂k

is asymptotically normal with mean γ = 1/α and variance γ2/k.

• (The MLE in the GP Model.) The MLE (γ̂k, σ̂k) of (γ, σ) in the GP model is
asymptotically normal with mean vector (γ, σ) and covariance matrix Σ/k,
where

Σ = (1 + γ)

⎛⎝ (1 + γ) σ

σ 2σ2

⎞⎠
if γ > 1/2. In particular, the asymptotic variance of γ̂k is (1 + γ)2/k. This
result is taken from the paper by Davison and Smith mentioned on page 121.

We see that the asymptotic variance of 1/α̂k is much smaller than that of γ̂k

for γ close to zero. Yet, as noted on page 136, the MLE in the GP1 model can
have a large bias if the special Pareto assumption is violated.

The estimation based on random exceedances or upper order statistics can
be reduced to the preceding problem concerning iid random variables by using the
conditioning devices in Section 8.1, page 234.

In the first case, one must deal with a random number K of exceedances
over a threshold u: apply the preceding results conditioned on K = k. Then, the
asymptotic normality holds for the estimators 1/α̂K and (γ̂K , σ̂K) and variances
and covariance matrices with k replaced by E(K). Secondly, u is replaced by the
order statistic Xn−k:n of n iid random variables Xi. The MLEs are computed
conditioned on Xn−k:n = u. The resulting estimators have the same performance
as 1/α̂k and (γ̂k, σ̂k). Such calculations can be carried out for a larger class of
estimators.
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We remark that 1/α̂K and (γ̂K , σ̂K) are MLEs in a pertaining point process
model (see [43]). Moreover, these results remain valid under distributions which
are sufficiently close (in the upper tail) to a GP df. We refer to (6.35) for an
appropriate technical condition.

Based on the asymptotic normality result for estimators it is straightforward
to construct confidence intervals for the parameters (as it was done in Section
3.2). It would also be of interest to deal with confidence bands and testing in
conjunction with reliability functions such as the mean excess function. Yet, this
goal is not further pursued in this book.

5.2 Testing Within Generalized Pareto Models

For testing an exponential upper tail of a distribution against other GP–type tails
one may again use the sample skewness coefficient. Subsequently, we prefer the
sample coefficient which leads to test statistic introduced by Hashofer and Wang21

We also include the LR test for the exponential model. The tests are either based
on exceedances over a threshold u or on the k + 1 largest order statistics.

Use the conditioning arguments given at the end of Section 8.1 to fix the
critical values.

A Test Based on the Sample Coefficient of Variation

The coefficient of variation var
1/2
F /mF is the standard deviation divided by the

mean. In the following we use the reciprocal squared coefficient. This value is equal
to 1−2γ for GP distributions Wγ,0,σ with γ < 1/2. For exceedances y1, . . . , yk over
a threshold u one may take the scale invariant test statistic (ȳk − u)2/s2

k. Such a
test statistic was proposed by Gomes and van Montfort22.

Using ordered values one obtains the corresponding (location and scale in-
variant) test statistic

(x̄k − xn−k:n)2

1
k−1

∑
i≤k

(
xn−i+1:n − x̄k

)2 , (5.19)

where x̄k = 1
k

∑
i≤k xn−i+1:n. This is the test statistic introduced by Hashofer and

Wang for testing γ = 0 against γ �= 0. The asymptotic considerations by Hashofer
and Wang were based on results in a paper by Weissman23 which is of interest in

21Hashofer, A.M. and Wang, Z. (1992). A test for extreme value domain of attraction.
JASA 87, 171–177.

22Gomes, M.I. and van Montfort, M.A.J. (1986). Exponentiality versus generalized
Pareto, quick tests. Proc. 3rd Internat. Conf. Statist. Climatology, 185–195.

23Weissman, I. (1978). Estimation of parameters and large quantiles based on the k
largest observations. JASA 73, 812–815.



144 5. Generalized Pareto Models

its own right; alternatively, one may use results in [48], pages 136–137, and the
conditioning argument.

The local, asymptotic optimality of tests based on such test statistics was
proven by Marohn (article cited on page 119).

Likelihood Ratio (LR) Test for the Exponential (GP0) Model

Within the GP model, one tests H0 : γ = 0 against H1 : γ �= 0 with unknown scale
parameters σ > 0. Thus, the exponential hypothesis is tested against other GP
distributions. For a given vector y = (y1, . . . , yk) of exceedances over the threshold
u, the likelihood ratio (LR) statistic is

TLR(y) = 2 log
(∏

i≤k

wγ̂,u,σ̂(yi)
/∏

i≤k

w0,u,σ̃(yi)
)

with (γ̂, σ̂) and σ̃ denoting the MLEs in the GP and GP0 models. The p–value is

pLR(y) = 1 − χ2
1(TLR(y)).

The p–value, modified with a Bartlett correction, is

p(y) = 1 − χ2
1

(
TLR(x)/(1 + b/k)

)
for b = 4.0. Recall that u is replaced by xn−k:n if the largest ordered values are
taken instead of exceedances.

5.3 Testing Extreme Value Conditions
with Applications
co–authored by J. Hüsler and D. Li24

We introduce two methods of testing one dimensional extreme value conditions
and apply them to two financial data sets and a simulated sample.

Introduction and the Test Statistics

Extreme value theory (EVT) can be applied in many fields of interest as hydrology,
insurance, finance, if the underlying df F of the sample is in the max–domain of
attraction of an extreme value distribution Gγ , denoted by F ∈ D(Gγ). We suppose
commonly that the random variables X1, X2, . . . , Xn are iid with df F such that
for some real γ there exist constants an > 0 and reals bn with

lim
n→∞

Fn(anx + bn) = Gγ(x) := exp
(
−(1 + γx)−1/γ

)
(5.20)

24both at the Department of Math. Statistics, University of Bern.
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where 1 + γx > 0. In case of γ = 0, G0(x) is interpreted as exp(−e−x), cf. also
(1.25).

Under the extreme value condition (5.20), the common statistical approach
consists of estimating the extreme value index γ and the normalizing constants
bn and an which are the location and scale parameters. Then based on these
estimators, one can deduce quantiles, tail probabilities, confidence intervals, etc.
The goodness–of–fit is usually analyzed in a qualitative and subjective manner
by some graphical devices, as, e.g., by Q–Q plots and excess functions, which can
easily be drawn with Xtremes, cf. also the remarks about “the art of statistical
modeling” on page 61.

However the extreme value condition does not hold for all distributions. For
example, the Poisson distribution and the geometric distribution are not in D(Gγ)
for any real γ (see, e.g., C.W. Anderson25, or Leadbetter et al. [39]). Thus, before
applying extreme value procedures to maxima or exceedances one should check
the basic null–hypothesis

H0 : F ∈ D(Gγ) for some real γ.

We are going to introduce two tests in (5.21) and, respectively, (5.22) which
we call test E and test T.

Dietrich et al.26 present the following test E assuming some additional second
order conditions. They propose to use the test statistic

En := k

∫ 1

0

( log Xn−[kt],n − log Xn−k,n

γ̂+
− t−γ̂− − 1

γ̂−
(1 − γ̂−)

)2

tη dt (5.21)

for some η > 0. It is shown that En converges in distribution to

Eγ : =

∫ 1

0

(
(1 − γ−)(t−γ−−1W (t) − W (1)) − (1 − γ−)2

t−γ− − 1

γ−
P

+
t−γ− − 1

γ−
R + (1 − γ−)R

∫ 1

t

s−γ−−1 log s ds
)2

tη dt,

where γ+ = max{γ, 0}, γ− = min{γ, 0}, W is Brownian motion, and the random
variables P and R are some integrals involving W (for details see Dietrich et al.).
The estimates γ̂+ and γ̂+ for γ+ and γ−, respectively, are fixed to be the moment
estimator, cf. page 134.

Thus the limiting random variable Eγ depends in general on γ and η, only.
However, if γ ≥ 0, the limiting distribution does not depend on γ, since the terms
(t−γ− − 1)/γ− are to be interpreted as − log t. Dietrich et al. state the result for

25Anderson, C.W. (1970). Extreme value theory for a class of discrete distributions
with application to some stochastic processes. J. Appl. Probab. 7, 99–113.

26Dietrich, D., de Haan, L. and Hüsler, J. (2002). Testing xtreme value conditions.
Extremes 5, 71–85.
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η = 2, but it is easy to extend the result to any η > 0. This approach is based
on sample qfs and of Gγ . They propose in addition another test statistic which
is valid for γ > 0. But it seems that this test statistic is no so good as the test
statistic En.

For testing H0, one needs to choose an η and to derive the quantiles of the
limiting random variable Eγ , which can be done by simulations for some γ, see
Table 5.2 below.

Table 5.2. Quantiles Qp,γ of the limiting random variable Eγ for the test E with η = 2.

p

γ 0.10 0.30 0.50 0.70 0.90 0.95 0.975 0.99

≥ 0 0.028 0.042 0.057 0.078 0.122 0.150 0.181 0.222

−0.1 0.027 0.041 0.054 0.074 0.116 0.144 0.174 0.213

−0.2 0.027 0.040 0.053 0.072 0.114 0.141 0.169 0.208

−0.3 0.027 0.040 0.054 0.073 0.113 0.140 0.168 0.206

−0.4 0.027 0.040 0.054 0.073 0.114 0.141 0.169 0.207

−0.5 0.027 0.040 0.054 0.073 0.115 0.141 0.169 0.208

−0.6 0.027 0.040 0.054 0.074 0.116 0.144 0.173 0.212

−0.7 0.028 0.041 0.055 0.074 0.118 0.147 0.176 0.218

Then in applications one continues as follows:

• First, estimate γ̂+ and γ̂− by the moment estimator and calculate the value
of the test statistic En.

• Secondly, determine the corresponding quantile Q1−α,γ̂ by linear interpola-
tion using the values of Table 5.2. Here γ̂ = γ̂+ + γ̂− and α is usually 0.05.
Moreover we use Q1−α,γ̂ = Q1−α,−0.7 if γ̂ < −0.7.

• Finally, compare the value of En with the quantile Q1−α,γ̂ . If En > Q1−α,γ̂ ,
then reject H0 with nominal type I error α.

Drees et al.27 propose a test T restricted to γ > −1/2, assuming also some
additional second order conditions. For each η > 0, their test statistic

Tn := k

∫ 1

0

(n

k
F̄n

(
ân/k

x−γ̂ − 1

γ̂
+ b̂n/k

)
− x

)2

xη−2 dx (5.22)

converges in distribution to Tγ :=
∫ 1

0

(
W (x)+Lγ(x)

)2
xη−2 dx, where W is Brown-

ian motion, and the process Lγ depends on the asymptotic distribution of (γ̂, â, b̂),

27Drees, H., de Haan, L. and Li, D. (2006). Approximations to the tail empirical distri-
bution function with application to testing extreme value conditions. J. Statist. Plann.
Inf. 136, 3498–3538.
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which is some
√

k–consistent estimator of (γ, a, b). Now proceed as in case of test
E based on the quantiles in Table 5.3.

Table 5.3. Quantiles Qp,γ of the limiting random variable Tγ for the test T with η = 1.0.

p

γ 0.10 0.30 0.50 0.70 0.90 0.95 0.975 0.99

4 0.086 0.123 0.161 0.212 0.322 0.393 0.462 0.558

3 0.085 0.120 0.156 0.205 0.307 0.372 0.440 0.532

2 0.083 0.116 0.150 0.195 0.286 0.344 0.402 0.489

1.5 0.082 0.115 0.148 0.192 0.282 0.340 0.400 0.480

1 0.082 0.114 0.146 0.189 0.276 0.330 0.388 0.466

0.5 0.083 0.116 0.149 0.194 0.285 0.343 0.404 0.481

0.25 0.085 0.119 0.153 0.120 0.295 0.355 0.415 0.499

0 0.089 0.126 0.163 0.213 0.319 0.388 0.455 0.542

−0.1 0.091 0.129 0.168 0.221 0.330 0.400 0.471 0.569

−0.2 0.093 0.133 0.174 0.231 0.350 0.425 0.500 0.604

−0.3 0.096 0.139 0.183 0.242 0.369 0.449 0.531 0.653

−0.4 0.100 0.145 0.192 0.256 0.393 0.484 0.576 0.690

−0.45 0.103 0.150 0.199 0.320 0.416 0.511 0.605 0.735

−0.499 0.107 0.157 0.210 0.338 0.439 0.546 0.652 0.799

The exact formulas of Lγ and Tγ are known for the MLE (for MLEs see
Smith, cf. page 111, and Drees et al.28) which depend on γ and η, only. Similar to
the test E, the test T can be applied for testing F ∈ D(Gγ), but only if γ > −1/2.
Note that this second approach is based on the sample df.

Hüsler and Li29 discuss the tests E and T by extensive simulations. If F �∈
D(Gγ), then the power depends on how ’close’ F is to some F ∗ ∈ D(Gγ). For
instance, if F = Poisson(λ) with λ small, the tests detect with high power the
alternative. However, if λ is large, so the Poisson df could be approximated by a
normal one, then the power is getting small. In summary, they suggest to

1. choose η = 2 for the test E and η = 1 (or maybe also η = 2) for the test T;

2. if the extreme value index γ seems to be positive, then both tests can be
applied equally well to test H0; otherwise the test E is preferable.

28Drees, H., Ferreira, A. and de Haan, L. (2004). On maximum likelihood estimation
of the extreme value index. Ann. Appl. Probab. 14, 1179–1201.

29Hüsler, J. and Li, D. (2006). On testing extreme value conditions. Extremes 9, 69–86.
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Data and Analysis

We apply the two tests to financial data. First, two examples consider log–returns,
cf. Section 16.1, of daily equity over the period 1991–2003 for ABN ARMO and for
the ING bank with sample size n = 3283. The other data are log–returns of daily
exchange rates Dutch guilder–U.S. dollar and British pound–U.S. dollar during
the period from January 1, 1976 to April 28, 2000 with sample size n = 6346.

For each data mentioned, we first calculate the maximum likelihood estima-
tor (MLE) and moment estimator (Mon.) of the extreme value index, which are
presented in the upper right plots in the figures for varying k. Secondly we derive
the test statistics Tn and En and their corresponding 0.95 quantiles, which are
shown in the two lower plots in each Fig. 5.6 to 5.9, also with varying k.

Fig. 5.6 and 5.7 show the data, the ML and the moment estimators for γ
depending on the chosen number k and the two tests E and T applied to the
largest k observations for the ING and the ABN AMRO example.
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Fig. 5.6. Log–return of daily equity of ING bank (n = 3283).

It is evident that the test E is more sensitive to the selection of k; with large
k usually the null–hypothesis is rejected by the test E. Each test provides a hint
on the largest possible selection of k, preventing us to select a too large k. Note
that we should select k such that k/n → 0 as n → ∞. Thus, a k up to 200 or up
to 300 may be chosen in the ING and ABN ARMO examples, respectively. This is
either based on the visual inspection of the γ plots or much better by the behavior
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of the tests shown in the test plots. In this perspective, the test E seems be more
sensitive. Since both Tn and En are much smaller than their corresponding 0.95
quantiles for a large range of k (k/n is from 3% to 10%), both tests tend not
to reject the null–hypothesis in both examples for the mentioned k’s. So we may
assume for each example that the underlying F ∈ D(Gγ).
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Fig. 5.7. Log–return of daily equity of ABN ARMO bank (n = 3283).

The situation is similar for the daily exchange rate examples, see Fig. 5.8
and 5.9. Both tests reject the null–hypothesis for large k, with k/n > 10% in the
British pound–U.S. dollar exchange rate example. But again the test T is less
sensitive with respect to k. This test T does not reject the null–hypothesis even
for very large k in the Dutch guilder–U.S. dollar example.

We also apply the two tests to a simulated sample from Poisson(λ) distribu-
tion with sample size n = 3000 and λ = 10 and 100 (see Figures 5.10 and 5.11). As
mentioned before F = Poisson(10) or Poisson(100) are not in the max–domain and
are not close to a normal distribution. Again the data and the MLE and the mo-
ment estimators are given. For k not small, both tests reject the null–hypothesis,
so indicating that both Poisson(10) and Poisson(100) are not in the max–domain.

Note that the test E has a smoother behavior than the test T which may be
influenced by the strange behavior of the MLE for these data. Also we see that
the test E rejects the null–hypothesis already for smaller k than the test T .
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Fig. 5.8. Log–return of daily exchange rate British pound–U.S. dollar.

Fig. 5.9. Log–return of daily exchange rate Dutch guilder–U.S. dollar.
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Fig. 5.10. One sample from Poisson(10) distribution (n = 3000).
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Fig. 5.11. One sample from Poisson(100) distribution (n = 3000).
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5.4 Statistics in Poisson–GP Models

Assume that the original data x1, . . . , xn are governed by the df F . In contrast
to the preceding sections, the exceedances over a given threshold u are grouped
within certain cells.

Let u be a high threshold and consider a partition

u = u1 < u2 < · · · < um < um+1 = ∞ (5.23)

of the interval [u,∞). The following considerations will be only based on the
frequencies n(i) of data in the m upper cells [ui, ui+1). Notice that k =

∑
i≤m ni

is the number of exceedances over u.
Note that the frequencies n(i) are part of a multinomial scheme with cell

probabilities pi := F (ui+1) − F (ui). If 1 − F (u) is sufficiently small, so that a
Poisson approximation corresponding to (1.4) is applicable, then one may assume
that the n(1), . . . , n(m) are mutually independent and each n(i) is governed by a
Poisson distribution Pλi with parameter λi = npi.

We study the estimation within certain submodels which are deduced from
Pareto (GP1) or generalized Pareto (GP) dfs.

The Poisson–GP1 Model

Assume that F is sufficiently close to some Pareto df W1,α,0,σ above the threshold
u and, hence, F [u] is close to W1,α,0,u. Then, the parameters λi = npi can be
replaced by

λi(α, σ) = nσα(u−α
i − u−α

i+1), i = 1, . . . , m,

where u−α
m+1 = 0.

The MLEs αm and σm of the parameters α and σ in the Poisson–GP1 model
must be evaluated numerically, see [16], page 140.

Example 5.4.1. (Increasing the Upper Limit in Liability Insurance.) Subsequently, we
consider the question that there is an upper limit of one million, which makes the whole
affair relatively harmless, and it is intended to increase the covering to the amount of
four millions. Therefore, we are interested in the tail probabilities p1 = F (4) − F (1) and
p2 = 1−F (4), where F is the claim size distribution of those claim sizes over the priority
(threshold) of 0.03 millions. Our calculations will be based on a data set of grouped claim
sizes from the year 1983 (see Table 5.4; stored in im–claim.dat).

Table 5.4. Frequencies of claims within priorities in millions

priorities ui 0.03 0.05 0.1 0.2 0.3 0.4 0.5 1

frequencies n(i) 147 89 35 11 7 5 4 3
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According to the routine visualization of the data, it is plausible to accept the Pareto

assumption. By applying the MLE in the Poisson–GP1 model, one obtains the estimate

α̂ = 1.28. The pertaining estimates of the tail probabilities are p̂1 = 0.0093 and p̂2 =

0.0019. These considerations indicate that an increase of the premiums by a smaller

amount is sufficient. This calculation would lead to a disaster if the covering is removed,

because very large claim sizes may occur with a probability which cannot be neglected.

The MLE in the Poisson–GP1 model has the same deficiencies as the Hill
estimator. Therefore, we also compute the MLE in an enlarged model.

The Poisson–GP Model

This is a model deduced from generalized Pareto (GP) dfs Wγ,µ,σ with shape,
location and scale parameters γ, µ and σ. If F is sufficiently close to Wγ,µ,σ, then
the truncated df F [u] is close to Wγ,u,η with η = σ + γ(u − µ) (cf. (1.45)). This
indicates that the problem of computing an MLE can be reduced to maximizing
a likelihood function in the parameters γ and η.

First, the parameters λi = npi are replaced by

λi(γ, µ, σ) = nσ1/γϕi(γ, η), i = 1, . . . , m,

where

ϕi(γ, η) =
(
η + γ(ui − u)

)−1/γ −
(
η + γ(ui+1 − u)

)−1/γ
, i = 1, . . . , m − 1,

and ϕm(γ, η) =
(
η + γ(um − u)

)−1/γ
. Because

∑
i≤m ϕi(γ, η) = η−1/γ , the log–

likelihood function as a function in γ, η and σ is

l(γ, η, σ) =
k log σ

γ
+
∑
i≤m

ni log ϕi(γ, η) − n

(
σ

η

)1/γ

+ C, (5.24)

where C is a constant. The solution to the likelihood equation (∂/∂σ)l = 0 is

σ = η(k/n)γ . (5.25)

Furthermore, the parameter µ can be regained from γ and η by

µ = u − η
(
1 − (k/n)γ

)
/γ. (5.26)

By inserting the right–hand side of (5.25) in (5.24), we see that γ and η must be
determined as the values maximizing

l̃(γ, η) = k(log η)/γ +
∑
i≤m

ni log ϕi(γ, η). (5.27)

This must be done numerically.
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5.5 The Log–Pareto Model and

Other Pareto–Extensions

First, we deal with mixtures of exponential, Pareto and converse Weibull distri-
butions with respect to the Gamma distribution. We obtain the log–Pareto and
the Burr model as an extension of the Pareto model. Secondly, the Benktander
II and the truncated converse Weibull models are introduced which include the
exponential and Pareto models.

Mixtures of Generalized Pareto Distributions

Recall from (4.8) that

Fh(x) =

∫
Fϑ(x)h(ϑ) dϑ

is the mixture of the dfs Fϑ with respect to density h. We give two examples in
the present context:

• (Pareto Distributions as Mixtures of Exponential Distributions.) First, we
show that mixtures of exponential dfs

Fϑ(x) = 1 − e−ϑx, x > 0,

with mean 1/ϑ > 0 are Pareto dfs, if the parameter ϑ is determined by
sampling with respect to a gamma density hα(x) = xα−1e−x/Γ(α), x > 0,
with shape parameter α > 0, cf. (3.42). The mixture∫ ∞

0

Fϑ(x)hα(ϑ) dϑ = 1 − (1 + x)−α, x > 0, (5.28)

is a Pareto df with shape, location and scale parameters α, −1 and 1. For a
continuation of this topic we refer to (16.30).

• (Log–Pareto Distributions as Mixtures of Pareto Distributions.) The log–
Pareto df Lα,β with shape parameters α, β > 0 possesses a super–heavy
upper tail. The term “super–heavy” is characterized by the property that
the log–transformation leads to a df with a heavy tail. We have

Lα,β(x) = W1,α,−1,1/β(log x)

= 1 − (1 + β log x)−α, x ≥ 1,

where W1,α,−1,1/β is the Pareto df with shape, location and scale parameters
α, −1 and 1/β.

The log–Pareto df Lα,β can be represented as a mixture of Pareto dfs with
respect to the gamma density hα,β with shape and scale parameters α, β > 0.
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Straightforward computations yield∫ ∞

0

W1,z(x)hα,β(z)dz = Lα,β(x), x ≥ 1.

Note that mixing with respect to a Dirac measure leads to a Pareto distri-
bution again.

Log–Pareto distributions within a generalized exponential power model are
studied by Desgagné and Angers 30. In a technical report31 associated to an article
by Diebolt et al., cited on page 132, these authors mention another mixture dis-
tribution, different from the log–Pareto one, with super–heavy tails. Log–Pareto
random variables as innovations in an autoregressive process are studied by Zeevi
and Glynn32.

The Full Log–Pareto Model as an Extension
of the Pareto Model

We present another parametrization of log–Pareto distributions with left endpoint
of the support being equal to zero, and add a scale parameter, thus getting the
full log–Pareto model.

Let X be a random variable with df

W̃α,β(x) = 1 − (1 + x/β)−α, x > 0, (5.29)

which is a Pareto df with shape and scale parameters α > 0 and β > 0.
Then, the transformed random variable (σ/β)

(
exp(X) − 1

)
has the log–

Pareto df

L̃α,β,σ(x) = 1 −
(

1 +
1

β
log

(
1 +

βx

σ

))−α

, x > 0, (5.30)

with shape parameters α, β > 0 and scale parameter σ > 0. We have

L̃α,β,σ(x) →β→0 W̃α,σ(x), x > 0, (5.31)

and, therefore, the log–Pareto model can be regarded as an extension of the Pareto
model.

By repeating this procedure one gets models of loglog–Pareto dfs and, gener-
ally, iterated log–Pareto dfs with “mega–heavy” tails as extensions of the Pareto
model. Notice that log–moments and iterated log–moments of such distributions
are infinite.

30Desgagné, A. and Angers, J.–F. (2005). Importance sampling with the generalized
exponential power density. Statist. Comp. 15, 189–195.

31see http://www.inria.fr/rrt/rr-4803.html
32Zeevi, A. and Glynn, P.W. (2004). Recurrence properties of autoregressive processes

with super–heavy–tailed innovations. J. Appl. Probab. 41, 639–653.
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The Burr Model as an Extension of the Pareto Model

Notice that X1/β is a standard Pareto random variable with shape parameter αβ,
if β > 0 and X is a standard Pareto random variable with shape parameter α.
Such a conclusion is no longer valid if a location parameter is added. The random
variable (X − 1)1/β has a Burr df

Fα,β(x) = 1 − (1 + xβ)−α, x ≥ 0, (5.32)

with shape parameters α, β > 0. The density is

fα,β(x) = αβxβ−1(1 + xβ)−(1+α), x ≥ 0.

Burr distributions can be represented as mixtures of converse Weibull dfs.
For β, ϑ > 0, let

G̃β,ϑ(x) = 1 − exp(−ϑxβ), x > 0,

be a Weibull df on the positive half–line. By mixing again with respect to the
gamma density hα over the parameter ϑ, one easily obtains∫ ∞

0

G̃β,ϑ(x)hα(ϑ) dϑ = 1 − (1 + xβ)−α = Fα,β(x), x > 0. (5.33)

For β = 1, one finds the Pareto df as a mixture of exponential distributions.
Burr distributions with parameter β > 1 have shapes that visually correspond

to Fréchet densities.

Benktander II Distributions

We include two further families of distributions for modeling the tails of a distri-
bution, namely the Benktander II and truncated converse Weibull distributions.
Both types of distributions are well known within insurance mathematics and may
be of interest in general.

Formula (2.28) for mean excess functions can be employed to design a family
of dfs—called Benktander II dfs33—so that the mean excess functions are equal
to xb/a for a > 0 and −a ≤ b < 1. Recall that such functions are attained by the
mean excess functions of converse Weibull dfs with shape parameter α = b − 1 as
u → ∞.

The standard Benktander II dfs with left endpoint equal to 1 are given by

Fa,b(x) = 1 − x−b exp
(
− a

1 − b

(
x1−b − 1

))
, x ≥ 1, (5.34)

where a > 0 and −a ≤ b < 1 are two shape parameters.

33Benktander, G. (1970). Schadenverteilung nach Grösse in der Nicht–Leben–Ver-
sicherung. Mitteil. Schweiz. Verein Versicherungsmath., 263–283
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Benktander II dfs have the interesting property that truncations F
[u]
a,b are

Benktander II dfs again in the form Fau1−b,b,0,u with location and scale parameters
µ = 0 and σ = u. This is the pot–reproductivity of Benktander II distributions.
Also,

• for b = 0, the Benktander II df is the exponential df with location and scale
parameters µ = 1 and σ = 1/a, and

• for b → 1, one reaches the standard Pareto df with shape parameter α = 1+a
in the limit.

Truncated Converse Weibull Distributions

It is analytically simpler to work with truncations of converse Weibull dfs them-
selves. These dfs have the additional advantage that we need not restrict our
attention to Pareto dfs with shape parameter α > 1.

Consider dfs

H1,α,β(x) = 1 − exp
(
− α

1 − β

(
x1−β − 1

))
, x ≥ 1, (5.35)

where α > 0 and β are two shape parameters.
By truncating converse Weibull dfs with shape and scale parameters α̃ < 0

and σ > 0 left of u = 1, one obtains dfs H1,α,β with β = 1 + α̃ and α = |α̃|σα̃.
Remember that converse Weibull densities have a pole at zero and a monotonic
decrease if −1 < α̃ < 0 (which is equivalent to 0 < β < 1).

The density and qf are

h1,α,β(x) = αx−β exp
(
− α

1 − β

(
x1−β − 1

))
, x ≥ 1 (5.36)

and

H−1
1,α,β(q) =

(
1 − 1 − β

α
log(1 − q)

)1/(1−β)

. (5.37)

In agreement with Benktander II dfs, the df H1,α,β is

• an exponential df with location and scale parameters µ = 1 and σ = 1/α, if
β = 0, and

• a standard Pareto df with shape parameter α in the limit as β → 1.

In particular, it is understood that H1,α,1 is defined as such a limit in (5.35).
Truncated converse Weibull dfs are pot–reproductive in so far as a truncation is

of the same type. We have H
[u]
1,α,β = H1,αu1−β ,β,0,u.

We present a model for exceedances yi over a threshold u:

{H1,α,β,0,u : α > 0, 0 ≤ β ≤ 1}. (5.38)
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For computing the MLE in that model, deduce from the first likelihood equa-
tion for the parameters α and 0 < b < 1 that

1

α
=

1

k

∑
i≤k

(yi/u)1−β − 1

1 − β
.

By inserting the value of α in the second likelihood equation, one finds(∑
i≤k

log(yi/u)

)(
1

k

∑
i≤k

(yi/u)1−β − 1

1 − β

)
+
∑
i≤k

∂

∂β

(yi/u)1−β − 1

1 − β
= 0.

This equation must be solved numerically.
In the first equation, the results are that we gain

• the MLE for σ in the exponential model if β = 0, and

• the Hill estimate for α in the limit as β → 1.

If the estimated β is sufficiently close to 1, then a Pareto hypothesis is jus-
tified. The threshold u may be replaced by an upper ordered value xn−k:n again.
As in the GP case, a truncated converse Weibull distribution can be fitted to the
upper tail of a distribution.

Including a Scale Parameter
in the Truncated Converse Weibull Model

A scale parameter σ > 0 should be included in the truncated converse Weibull
model. This will be done in conjunction with a representation as in the GP
case. Recall that the Pareto df Wγ in the γ–parameterization is the Pareto df
W1,α,−α,α, where γ = 1/α > 0. Likewise, let Hγ,β be a truncated converse Weibull
df H1,α,β,−α,α with location and scale parameters −α and α, where γ = 1/α > 0.
We have

Hγ,β(x) = 1 − exp

(
− 1

γ(1 − β)

(
(1 + γx)1−β − 1

))
, x ≥ 0,

for shape parameters γ > 0 and 0 ≤ β ≤ 1. It is apparent that Hγ,β is

• the exponential df W0, if β = 0,

• the Pareto df Wγ in the limit as β → 1, and

• W0 in the limit as γ → 0.

Consider
{Hγ,β,u,σ : γ, σ > 0, 0 < β ≤ 1} (5.39)

as a statistical model for exceedances over a threshold u. A pot–reproductivity
also holds in the extended framework.



Chapter 6

Advanced Statistical
Analysis

Section 6.1 provides a discussion about non–random and random censoring. Es-
pecially, the sample df is replaced by the Kaplan–Meier estimate in the case of
randomly censored data. In Section 6.2 we continue the discussion of Section 2.7
about the clustering of exceedances by introducing time series models and the ex-
tremal index. The insight gained from time series such as moving averages (MA),
autoregressive (AR) and ARMA series will also be helpful for the understanding
of time series like ARCH and GARCH which provide special models for financial
time series, see Sections 16.7 and 16.8.

Student distributions provide further examples of heavy–tailed distributions
besides Fréchet and Pareto distributions, see Section 6.3. Gaussian distributions
are limits of Student distributions when the shape parameter α goes to infinity.
Further distributions of that kind are sum–stable distributions with index α < 2
which will be discussed in Section 6.4. Gaussian distributions are sum–stable with
index α = 2.

Rates of convergence towards the limiting distribution of exceedances and
the concept of penultimate distributions are dealt with in Section 6.5. We also
indicate a relationship between the concepts of pot–stability and regularly varying
functions.

Higher order asymptotics for extremes is adopted in Section 6.6 to establish
a bias reduction for estimators. This method is, e.g., useful to repair the Hill
estimator.

6.1 Non–Random and Random Censoring

This section deals with the nonparametric estimation of the df by means of the
Kaplan–Meier estimator (also called the product–limit estimator) and with esti-
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mators in EV and GP models based on randomly censored data. Smoothing the
Kaplan–Meier estimator by a kernel leads to nonparametric density estimators.
We start with remarks about the fixed censoring.

Fixed Censoring

In the fixed censorship model, one distinguishes two different cases:

• (Type–I Censoring.) The data below and/or above a certain threshold u are
omitted from the sample.

• (Type–II Censoring.) Lower and/or upper order statistics are omitted from
the sample.

One also speaks of left/right censoring, if merely the lower/upper part of the
sample is omitted. Taking exceedances over a threshold or taking the k largest
ordered values is a left censoring (of Type–I or Type–II) of the sample. It would
be of interest to deal with such censorship models in conjunction with EV models1.

Fixed Right Censoring in Generalized Pareto Models

Let yi be the exceedances over a threshold u, yet those values above c > u are
censored. Thus, we just observe zi = min(yi, c). A typical situation was described
in Example 5.4.1, where c is the upper limit of an insurance policy.

This question can be dealt with in the following manner:

• if the number of yi ≥ c is small and the statistical procedure for continuous
data—as described in the preceding sections—is robust against rounding, we
may just neglect the censoring,

• the number of censored data is the number of yi in the cell [c,∞). If we take
a partition of [u,∞) as in (5.23) with um = c, we may apply the procedures
already presented in Section 5.4.

Randomly Censored Data

First, let us emphasize that our main interest concerns the df Fs under which the
survival times x1, . . . , xn are generated. Yet, data (z1, δ1), . . . , (zn, δn) are merely
observed, where

• zi = min(xi, yi) is xi censored by some censoring time yi,

• δi = I(xi ≤ yi) provides the information as to whether censoring took place,
where δi = 1 if xi is not censored, and δi = 0 if xi is censored by yi.

1For relevant results see Balakrishnan, N. and Cohen, A.C. (1991). Order Statistics
and Inference. Academic Press, Boston.



6.1. Non–Random and Random Censoring 161

Note that this procedure may be regarded as a right censoring with respect
to a random threshold. A left censoring, where zi = max(xi, yi), can be converted
to a right censoring by changing the signs. Then, we have −zi = min(−xi,−yi).

Example 6.1.1. (Stanford Heart Transplantation Data.) We provide an example of cen-
sored survival times referring to the Stanford heart transplantation data. These data
consist of the survival times (in days) of n = 184 patients who underwent a heart trans-
plantation during the period from t0 ≡ Oct. 1, 1967 to t1 ≡ Feb. 27, 1980 at Stanford.
We have

• the survival times x1, . . . , xn, which are of primary interest, and

• the censoring data yi = t1 − ui, where ui ∈ [t0, t1] is the date of operation. The
survival time xi is censored by yi if the patient is alive at time t1.

Table 6.1. Survival times xi and censoring variables δi.

survival (in days) 0 1 1 1 2 3 · · · 2805 2878 2984 3021 3410 3695

censoring value 1 1 1 0 0 1 · · · 0 1 0 0 0 0

The full data set, taken from the collection by Andrews and Herzberg (cf. page 85),

is stored in the file mc–heart.dat.

Subsequently, let the xi and yi be generated independently from each other
under the survival df Fs and the censoring df Fc. In the preceding example, one
may assume that Fc is the uniform df on the interval [0, t1 − t0]. Additionally, Fc

is a degenerate df in the fixed censorship model. Our aim is to estimate the df Fs

based on the zi and δi. As in (1.6), check that the censored values zi are governed
by the df

H = 1 − (1 − Fs)(1 − Fc)

= Fs + (1 − Fs)Fc. (6.1)

Note further that ω(H) = min(ω(Fs), ω(Fc)). One may distinguish the following
situations.

• The fraction of censored data is small and the censoring may be regarded
as some kind of a contamination that is negligible (such a case occurs when
ω(Fc) ≥ ω(Fs) and Fc(x) is small for x < ω(Fs)). Yet, in this case, it can still
be desirable to adopt procedures according to the present state–of–the–art
censorship models.

• If the fraction of censored data is large, then the usual sample df F̂n based
on the censored data zi will not accurately estimate the target df Fs. It is
necessary to apply procedures specially tailored for censored data.
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• When using the Kaplan–Meier estimate one can recognize from the data
whether ω(Fc) < ω(Fs). Then we have F (x) < 1 = H(x) for ω(Fc) ≤ x <
ω(Fs). Notice that the observed zi and δi contain no information about the
form of the survival time df Fs beyond ω(Fc). One may try to estimate Fs(x)
for x ≤ ω(Fc). Then, extrapolate this result to the region beyond ω(Fc) by
means of a parametric modeling.

The Kaplan–Meier Estimate

Assume again that the survival times x1, . . . , xn are generated under the df Fs.
Let z1:n ≤ . . . ≤ zn:n denote the ordered z1, . . . , zn. If there are ties in the zi’s, the
censored values are ranked ahead of the uncensored ones. Define the concomitant
δ[i:n] of zi:n by δ[i:n] := δj if zi:n = zj. The role of the usual sample df is played by
the Kaplan–Meier estimate F ∗

n . We have

F ∗
n(x) = 1 −

∏
zi:n≤x

(
1 −

δ[i:n]

n − i + 1

)
=

∑
i≤n

wi,nI(zi:n ≤ x), (6.2)

where

wi,n =
δ[i:n]

n − i + 1

∏
j≤i−1

(
n − j

n − j + 1

)δ[j:n]

.

The wi,n are constructed in the following manner. At the beginning, each zi:n has
the weight 1/n. Let zi1:n ≤ . . . ≤ zim:n be the censored ordered values. Then, let
wi,n = 1/n for i = 1, . . . , i1 − 1 and wi1,n = 0. The weight 1/n, initially belonging
to zi1:n, is uniformly distributed over zi1+1:n ≤ zi1+2:n ≤ . . . ≤ zn:n. Each of the
remaining ordered values will then have the total weight 1/n+1/(n(n− i1)). This
procedure is continued for i2, . . . , im. We see that

∑
i≤n wi,n = 1 if δ[n:n] = 1. The

weight ∏
j≤n−1

((n − j)/(n − j + 1))δ[j:n]

eventually put on zn:n is omitted if im = n [which is equivalent to δ[n:n] = 0].
Then,

∑
i≤n wi,n < 1 yielding limx→∞ F ∗

n(x) < 1.

From this construction of the Kaplan–Meier estimate, it is apparent which
part of the information contained in the data is still available. One can recapture
the ordered uncensored data and the number of censored data between consecutive
ordered uncensored data.

In analogy to (2.2), the Kaplan–Meier estimate F ∗
n(x) is approximately equal

to the survival df Fs(x), x < ω(H), for sufficiently large sample sizes n, written
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briefly2

F ∗
n (x) ≈ Fs(x), x < ω(H). (6.3)

This relation still remains valid for x = ω(H) if Fs is continuous at this point.
Then, we also have F ∗

n(zn:n) ≈ Fs(ω(H)), which settles the question as to whether
one can tell from the data that Fs(ω(H)) < 1. This entails that the zi and δi

contain no information about an upper part of the survival time df Fs.

The Kernel Density Based on Censored Data

A kernel estimate of the density f of Fs is obtained by a procedure corresponding
to that in Section 2.1 with weights 1/n replaced by wi,n. Let

fn,b(x) =
1

b

∑
i≤n

wi,n k

(
x − zi:n

b

)
.

According to our preceding explanations, fn,b is an estimate of the survival time
density f for x < ω(H). It is advisable to employ a right–bounded version.

Example 6.1.2. (Continuation of Example 4.3.1 about Annual Maximum Wind Speeds
for Jacksonville, Florida.) We want to identify more closely the distribution of the tropical
maximum annual wind speeds dealt with in Example 4.3.1. These data can be regarded
as randomly left censored by the non–tropical wind speeds. As mentioned before the left
censoring can be converted to right censoring by changing signs (these data are stored
in the file ec–jwind.dat). Xtremes is applied to these negative data, yet our following
arguments concern the original wind speed data.

Plotting a kernel density only based on the tropical wind speeds and the kernel

density for censored data we see that the distribution is now shifted to the left. This

reflects the fact that we take into account tropical wind speeds which were censored by

non–tropical ones. Another effect is that the distribution of tropical wind speeds can now

be better described by a Fréchet density. Thus, the distribution is shifted to the left, yet

the (visual) estimate indicates a heavier upper tail. This may have serious consequences

for the forecast of catastrophic tropical storms.

Up to now there are no automatic procedures available that concern estima-
tion within EV models based on censored data. First steps were done in the GP
model.

2 See, e.g., Shorack, G.R. and Wellner, J.A. (1986). Empirical Processes with Appli-
cations to Statistics. Wiley, New York.
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Estimation in Generalized Pareto Models

Given (z1, δ1), . . . , (zn, δn), consider the exceedances z̃1, . . . , z̃k over a threshold u.
Denote the δ-values belonging to the z̃i by δ̃1, . . . , δ̃k. It is clear that the (z̃i, δ̃i)
only depend on the exceedances of the xi and yi over the threshold u and, hence,

the exceedance dfs F
[u]
s and F

[u]
c are merely relevant. Assume that F

[u]
s can be

substituted by some GP df W if u is sufficiently large.
Maximize the likelihood function (made independent of the censoring df Fc)

(γ, σ) → log

(∏
i≤k

(wγ,σ(z̃i))
δ̃i(1 − Wγ,σ(z̃i))

1−δ̃i

)
,

where wγ,σ is the density of Wγ,σ. The likelihood function is computed under the
condition that the xi’s and yi’s are independent replicates. Likewise, this can be
performed in the α–parameterization.

GP1 Model: The MLE in the GP1 model of α for censored data is given by

α̂k =

(∑
i≤k

δ̃i

)/(∑
i≤k

log(z̃i/u)

)
.

This estimator is related to the Hill estimator for non–censored
data.

GP Model: The likelihood equations are solved numerically.

Extreme value analysis of randomly censored data is still in a research sta-
dium. The preceding considerations should be regarded as a first step.

6.2 Models of Time Series, the Extremal Index

The purpose of discussing certain time series is twofold. Firstly, we want to pro-
vide examples for which the extremal index will be specified. Secondly, we make
some preparations for Chapter 16, where series of speculative asset prices will be
investigated within a time series framework.

Time series are based on white–noise series {εk} which are sequences of un-
correlated random variables εk satisfying the conditions

E(εk) = 0 and E(ε2
k) = σ2.

Stochastic Linear Difference Equations

First, we deal with first–order difference equations for random variables Yk starting
at time zero. The value of Yk is related to the value at the previous period by the
equation

Yk = φ0 + φ1Yk−1 + εk



6.2. Models of Time Series, the Extremal Index 165

for certain constants φ0, φ1 with |φ1| < 1 and innovations εk.
Notice that the random variables Yk satisfy these equations if, and only if,

the random variables Xk = Yk − φ0/(1 − φ1) satisfy

Xk = φ1Xk−1 + εk, k = 1, 2, 3, . . . . (6.4)

By recursive substitution, one obtains

Xk = φk
1X0 +

k−1∑
i=0

φi
1εk−i

as a solution to (6.4). If the innovations εk have zero–mean, then

EXk = φk
1EX0 → 0, k → ∞,

and

V (Xk) = φ2k
1 V (X0) + σ2

(
φ2k

1 − 1
)/(

φ2
1 − 1

)
→ σ2

/(
1 − φ2

1

)
, k → ∞, (6.5)

if, in addition, X0, ε1, ε2, ε3, . . . are pairwise uncorrelated.

Weakly and Strictly Stationary Time Series

Besides weakly stationary processes—that are covariance–stationary processes (cf.
page 72)—we also work with strictly stationary sequences {Xk}, where k runs over
all integers or over the restricted time domain of nonnegative or positive integers.

For example, if in addition to the conditions specified around (6.5) the exact
relations EX0 = 0 and V (X0) = σ2

/(
1−φ2

1

)
hold, then {Xk} is a weakly stationary

series with
Cov(X0, Xh) = φh

1V (X0). (6.6)

We see that the solution of the stochastic linear equations converges to a stationary
series.

A sequence {Xk} is strictly stationary if the finite–dimensional marginal dis-
tributions are independent of the time lag h, that is, the joint distributions of
Xk1 , . . . , Xkm and, respectively, Xk1+h, . . . , Xkm+h are equal for all k1, . . . , km and
h > 1. One speaks of a Gaussian time series if all finite–dimensional marginals are
Gaussian. For a Gaussian time series, weak and strict stationarity are equivalent.

Example 6.2.1. (Continuation of Example 2.5.3 about Gaussian AR(1) Series.) The

Gaussian time series Xk = φ1Xk−1 + εk in (2.58) is a special case with φ1 = d and

εk = (1 − d2)1/2Yk, where Y1, Y2, Y3, . . . are iid standard Gaussian random variables.

Because Xk−1 and εk are independent we know, see (8.13), that the conditional df of Xk

given Xk−1 = xk−1 is the df of dxk−1 + (1 − d2)1/2Yk. This yields that the conditional
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expectation E(Xk|xk−1) and conditional variance V (Xk|xk−1) are equal to dxk−1 and,

respectively, 1 − d2.

Example 6.2.1 should be regarded as a first step towards the modeling of
financial data by means of ARCH and GARCH series, see Sections 16.7 and 16.8.

AR(p) Time Series

Let the set of all integers k be the time domain. Given white noise {εk} and
constants φ1, . . . , φp, define an autoregressive (AR) time series {Xk} of order p as
a stationary solution to the AR equations

Xk = φ1Xk−1 + · · · + φpXk−p + εk. (6.7)

The time series in (6.6) and, specifically, in Example 6.2.1 with time domain
restricted to the nonnegative or positive integers may also be addressed as AR(1)
series.

MA(q) Time Series

An MA(q) time series {Xk} for certain parameters θ1, . . . , θq is defined by

Xk = εk + θ1εk−1 + · · · + θqεk−q. (6.8)

This process is apparently covariance–stationary. The autocovariance function is

r(h) =

⎧⎨⎩ E
(
ε2
1

)∑q−h
i=0 θiθi+h h ≤ q,

for
0 h > q,

where θ0 = 1.
If the εk are independent, then {Xk} is strictly stationary. We mention two

examples.

• (Gaussian MA(q) Series.) One obtains a Gaussian time series in the case of
iid Gaussian random variables εk.

• (Cauchy MA(q) Series.) The construction in (6.8) can also be employed if the
expectations or variances of the innovations εk do not exist. Then, one does
not obtain an MA(q) process in the usual sense. Yet, the resulting process
may still be strictly stationary. For example, one gets a strictly stationary
sequence of Cauchy random variables with scale parameter σ

∑q
i=0 θi, if the

εk are iid Cauchy random variables with scale parameter σ and θi > 0 for
i = 1, . . . , q, because the convolution of two Cauchy random variables with
scale parameters c1 and c2 is a Cauchy random variable with scale parameter
c1 + c2.

We remark that two values, namely 668.3 and 828.3 at 0.07 and 0.075, are
not visible in the illustration.



6.2. Models of Time Series, the Extremal Index 167
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Fig. 6.1. Scatterplot of n =

200 MA(5) data of standard

absolute Cauchy random vari-

ables with ci = i.

ARMA(p,q) Time Series

By combining (6.8) and (6.7), one obtains the ARMA equations

Xk − φ1Xk−1 − · · · − φpXk−p = εk + θ1εk−1 + · · · + θqεk−q. (6.9)

This equation may be written φ(B)Xk = θ(B)εk, where BjXk = Xk−j is the
backshift operator, and θ(B) and φ(B) are defined by means of the MA and AR
polynomials

θ(z) = 1 + θ1z + · · · + θqz
q

and
φ(z) = 1 − φ1z − · · · − φpz

p.

An ARMA(p,q) time series {Xk} is a stationary solution to these equations.
Notice that MA(q) and AR(p) processes are special ARMA processes.

If the AR polynomial φ satisfies φ(z) �= 0 for all complex numbers z with
|z| ≤ 1, then it is well known that a stationary solution to the ARMA equations
is found in the MA(∞) time series

Xk =

∞∑
j=0

ψjεk−j , (6.10)

where the coefficients ψj are determined by the equation

∞∑
j=0

ψjz
j =

θ(z)

φ(z)
, |z| ≤ 1.

The ARMA(p, q) process is said to be causal. We have EXk = 0, and the autoco-
variance function is

r(h) = E
(
ε2
1

) ∞∑
j=0

ψjψj+|h|.
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A series {Yk} is an ARMA(p, q) process with mean µ, if Xk = Yk − µ is a causal
ARMA(p, q) process.

One obtains a Gaussian time series X1, X2, X3, . . . if the εk are iid Gaussian
random variables. For that purpose, check that (Xk,n)k≤m = (

∑n
j=0 ψjεk−j)k≤m

is a Gaussian vector that converges pointwise to (Xk)k≤m, and the distribution of
(Xk,n)k≤m converges weakly to a Gaussian distribution as n goes to ∞. For the
simulation of such an ARMA process, one may use the innovation algorithm (cf.
[5], page 264).

Estimation in ARMA-Models

We shortly describe estimators in AR and ARMA models. We refer to time–series
books such as [26] and [5] for a more detailed description.

• (AR(p): Yule–Walker.) This is an estimator designed for the AR(p)–model.
The Yule–Walker estimator computes estimates of the coefficients φ1, . . . , φp

of the AR(p) process and the variance σ2 of the white noise series. The
estimation is based on the Yule–Walker equations. Parameter estimates are
obtained by replacing the theoretical autocovariances in the Yule–Walker
equations by their sample counterparts.

• (ARMA(p, q): Hannan–Rissanen.) The Hannan–Rissanen algorithm uses lin-
ear regression to establish estimates for the parameters and the white noise
variance of an ARMA(p, q) process. For this purpose, estimates of the unob-
served white noise values εk, . . . , εk−q are computed.

• (ARMA(p, q): Innovations Algorithm.) One obtains estimates of the param-
eters and the white noise variance of a causal ARMA(p, q) process.

• (ARMA(p, q): MLE.) To compute the MLE of the parameters of a causal
ARMA(p, q) process, one must use one of the preceding estimators to get an
initial estimate.

The Extremal Index and the EV Modeling Revisited

The EV modeling for maxima can still be employed when the iid condition is con-
siderably relaxed. For a stationary sequence of random variables Xi with common
df F it is well known that (1.27) still holds under Leadbetter’s mixing conditions
D and D′ (see, e.g., [39]) which concern a long range and a local mixing of the
random variables.

If condition D′ is weakened, one may still have

P{max{X1, . . . , Xn} ≤ x} ≈ F θn(x) (6.11)

with 0 ≤ θ ≤ 1 for larger values x. The constant θ is the extremal index. This
index is equal to 1 for iid random variables. A condition D′′ which guarantees that
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(6.11) holds was introduced by Leadbetter and Nandagopalan3 and weakened to
conditions D(k) by Chernick et al.4 If (6.11) holds, then an EV modeling for dfs
of maxima is still possible because Gθ is an EV df if G is an EV df. In (1.27), the
location and scale parameters are merely changing. As already noted in Section
2.7, the extremal index is also the limiting reciprocal mean cluster size.

In the statistical literature, the extremal index was calculated for various
stationary sequences. We mention only two examples concerning MA(q) and AR(1)
sequences.

• (MA(q) Sequence.) If the innovations εi in (6.8) have a Pareto type upper
tail with tail index α > 0, then the extremal index is equal to5

θ =

(
max
i≤q

{θi}
)α/∑

i≤q

θα
i .

• (AR(1) Sequence.) Examples of AR(1) sequences with Cauchy marginals and
θ < 1 are dealt with in the aforementioned paper by Chernick et al.

For the Gaussian AR(1) sequences dealt with in Section 2.5, condition D′

holds, and, therefore, the extremal index is equal to 1. This yields that max-
ima and exceedances over high thresholds asymptotically behave as those of iid
random variables. This asymptotic result somewhat contradicts the clustering of
exceedances in Fig. 2.21 for d = 0.8. Yet, this scatterplot only exhibits that the
rate of convergence in the asymptotics is exceedingly slow. The illustration would
not be drastically different when the sample size is increased to n = 30, 000. An
asymptotic formulation for that question that represents the small sample behavior
of maxima (also that of the clustering) was provided by Hsing et al.6

Aggregation and Self–Similarity

Let {Zi} be a strictly stationary sequence of random variables. Consider the mov-
ing average

Z
(m)
k =

1

m

km∑
i=(k−1)m+1

Zi, k = 1, 2, 3, . . . (6.12)

3Leadbetter, M.R. and Nandagopalan, S. (1989). On exceedance point processes for
stationary sequences under mild oscillation restrictions. In [14], pp. 69–80.

4Chernick, M.R., Hsing, T. and McCormick, W.P. (1991). Calculating the extremal
index for a class of stationary sequences. Adv. Appl. Prob. 23, 835–850.

5Davis, R.A. and Resnick, S.I. (1985). Limit theory for moving averages of random
variables with regular varying tail probabilities. Ann. Prob. 13, 179–195.

6Hsing, T., Hüsler, J. and Reiss, R.–D. (1996). The extremes of a triangular array of
normal random variables. Ann. Appl. Prob. 6, 671–686.
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which is called aggregated sequence with level of aggregation m. It is evident
that the aggregated sequence is again strictly stationary. In that context, one also
speaks of self–similarity when the aggregated sequence is distributional of the same
type as the original one. For example, if the Xi are iid standard normal, then

m1/2X
(m)
k

d
= X1, (6.13)

that is we have equality of both random variables in distribution. This can be
extended to all sum–stable random variables such as Cauchy and Levy random
variables, see Section 6.4. Another example is provided in the subsequent Section
6.3 about Student distributions.

6.3 Statistics for Student Distributions

In (1.62) we introduced the standard Student distribution with shape parameter
α > 0 and density

fα(x) = c(α)

(
1 +

x2

α

)−(1+α)/2

(6.14)

where c(α) = Γ((1 + α)/2)/(Γ(α/2)Γ(1/2)α1/2). Apparently, such a Student dis-
tribution has lower and upper tails with both tail indices equal to α. We see that
the Cauchy distribution is a special case for α = 1, cf. page 27.

For positive integers α = n, we obtain in (6.14) the well–known Student
distribution (t–distribution) with n degrees of freedom. This distribution can be
represented by

X
/
(Y/n)1/2, (6.15)

where X and Y are independent random variables distributed according to the
standard normal df and the χ2–df with n degrees of freedom, cf. page 123. Recall
that a χ2 random variable with n degrees of freedom is a gamma random variable
with shape parameter r = n/2 and scale parameter σ = 2.

A Stochastic Representation of Student Distributions

Using gamma random variables one may find a representation as in (6.15) for all
Student distributions.

Consider the ratio X/(Y/r)1/2, where again X and Y are independent, X is
standard normal and Y is a standard gamma random variable with parameter r,
cf. (4.6). The density is given by

gr(z) =

∫ ∞

0

(
ϑϕ(ϑz)

)(
2rϑhr(rϑ

2)
)
dϑ

=
Γ((2r + 1)/2)

Γ(r)(2πr)1/2

(
1 +

z2

2r

)−(2r+1)/2

. (6.16)
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This is the Student density in (6.14), if r = α/2.

Notice that the Student density fα is the reciprocal scale mixture of normal
densities taken with respect to the distribution of (2Y/α)1/2, where Y is a gamma
random variable with parameter r = α/2. Alternatively, one may speak of a scale
mixture of normal densities with respect to the distribution of (2Y/α)−1/2.

Properties of Student Distributions

• (Asymptotic Normality.) Using the relation

(1 + x2/α)α/2 → exp(−x2/2)

as α → ∞ one may prove that fα is the standard Gaussian density in the
limit as α → ∞.

• (Construction of a Self–Similar Sequence.) Let the {Xi} be iid standard
normal random variables, and let Y be a gamma random variable with pa-
rameter r = α/2 which is independent of the sequence {Xi}. Then, the

Zi = Xi/(2Y/α)1/2

are Student random variables with parameter α. Consider again moving

averages Z
(m)
k in (6.12). As a direct consequence of (6.13) one obtains

m1/2Z
(m)
k

d
= Z1

and, therefore, the Zi are self–similar.

Maximum Likelihood Estimation in the Student Model

This is one of the earliest examples of the use of the ML method (R.A. Fisher
(1922) in the article cited on page 47).

The likelihood equations have no explicit solution and must be numerically
computed. In such cases, we will apply a Newton–Raphson iteration procedure
by which the initial value of the iteration is an estimate determined by another
estimation method. A local maximum of the likelihood function is occasionally
computed instead of a global maximum.

Including a Skewness Parameter

Including a location parameter δ in the standard normal random variable X one
obtains a noncentral Student distribution with noncentrality parameter δ.

An extension to the multivariate framework may be found in Section 11.3.
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6.4 Statistics for Sum–Stable Distributions

co–authored by J.P. Nolan7

We add some statistical results for non–degenerate, sum–stable distributions which
are different from the Gaussian ones. Sum–stable distributions are heavy–tailed,
like Student distributions, if the shape parameter α (index of stability) is smaller
than 2. All sum–stable distributions have unimodal densities.

Generally, a df F is sum–stable, if

Fm∗(amx + bm) = F (x) (6.17)

for a certain choice of constants am > 0 and bm. It is well known that am = m1/α

for some α with 0 < α ≤ 2, also see page 31.
Thus, we have α = 2 for the normal df and α = 1 for the Cauchy df. The

Lévy distribution is another example of a sum–stable distribution with α = 1/2,
for which a simple representation is feasible. The Lévy density is

f(x) = (2π)−1/2x−3/2 exp(−(2x)−1), x ≥ 0, (6.18)

which is a special reciprocal gamma density, see (3.43).
Check that

F (x) = 2
(
1 − Φ

(√
1/x

))
is the pertaining df. In contrast to the normal and Cauchy distributions, the Lévy
distribution is not symmetric. The heavy tails and the possible asymmetry make
stable laws an attractive source of models.

The stability property (6.17) is closely related to the Generalized Central
Limit Theorem (GCLT). The classical Central Limit Theorem applies to terms
having finite variance: if X1, X2, . . . have finite variance, then

m−1/2(X1 + X2 + · · · + Xm) − m1/2EX1

converges in distribution to a normal distribution. If the terms X1, X2, . . . have
infinite variance, then the normalized sums

cm(X1 + X2 + · · · + Xm) − dm

converge in distribution to a stable law, where the term cm must be of the form
m−1/α. Hence, stable laws are the only possible limiting distributions of normalized
sums of iid terms.

Until recently, stable distributions were inaccessible for practical problems
because of the lack of explicit formulas for the densities and distribution functions.
However, new computer programs make it feasible to use stable distributions in
applications.

7American University, Washington DC
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All computations with sum–stable distributions were done using a DLL–
version of STABLE8.

Some Basic Facts About Characteristic Functions

Since there are no explicit formulas for stable densities, they are usually described
through their characteristic functions or Fourier transforms. Let x+iy be the usual
representation of complex numbers and recall that

exp(ix) = cos(x) + i sin(x).

The expectation of a complex variable X + iY is defined as

E(X + iY ) = E(X) + iE(Y ).

The characteristic function χX of a real–valued random variable X is defined
as

χ
X

(t) = E
(
exp(itX)

)
. (6.19)

It is well known that there is a one–to–one relationship between the distri-
bution of X and the characteristic function χ

X
. The importance of characteristic

functions becomes apparent from the fact that

χ
X+Y

= χ
X

χ
Y

for independent random variables X and Y .
Because exp(u + w) = exp(u) exp(w) for complex numbers u and w we have

χ
µ+ηX

(t) = E
(
exp(iηtX)

)
exp(iµt)

= χ
X

(ηt) exp(iµt) (6.20)

for real numbers µ and η. Therefore, it suffices to specify the characteristic func-
tions of standard variables for the construction of statistical models.

Symmetric Sum–Stable Distributions

We first introduce the standard sum–stable dfs S(α) with index of stability 0 <
α ≤ 2 which are symmetric about zero. These dfs can be represented by the
real–valued characteristic functions

χα(t) = exp(−|t|α). (6.21)

The support of the df S(α) is the real line.
We use the following notation for

8The basic algorithms are described in Nolan, J.P. (1997). Numerical computation
of stable densities and distribution functions. Commun. Statist.–Stochastic Models 13,
759–774. Note that the STABLE package is no longer included in Xtremes.
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Symmetric Sum–Stable Distributions: S(α, 0, σ, µ; 0),

if scale and location parameters σ > 0 and µ are included. At the second position
there is a skewness parameter which is equal to zero in the case of symmetric
sum–stable distributions. The zero after the semicolon indicates a certain type of
parameterization which will become important for skewed stable distributions.

Observe that the characteristic functions in (6.21) are continuous in the pa-
rameter α. The Fourier inverse formula for densities implies that this also holds
for the pertaining densities and dfs. This property remains valid when location
and scale parameters are added.

It is well known that S
(
2, 0, 1/

√
2, 0; 0

)
is the standard normal df Φ. Thus,

(6.20) yields
S(2) = S(2, 0, 1, 0; 0) = Φ0,

√
2

which is the normal df with location parameter zero and scale parameter σ =
√

2.
In addition, S(1, 0, 1, 0; 0) is the standard Cauchy df.

In Fig. 6.2 we plot some symmetric sum–stable densities varying between the
normal and the Cauchy density.
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Fig. 6.2. Plots of symmetric,

sum–stable densities with in-

dex of stability α equal to 2

(normal), 1.75, 1.5, 1.25 and

1 (Cauchy).

We see that the most significant difference between the normal density and
other sum–stable symmetric densities is the weight in the tails. One could get a
greater similarity in the center of the distributions by varying the scale parameter.

The formulas become a bit more complicated when a skewness parameter is
included. In that context we deal with two different parameterizations.

Sum–stable distributions have Pareto–like tails. Yet, it is well known that
estimators of the tail index α < 2 are inaccurate if α is close to 2. This phenomenon
will be clarified by computing the remainder term in the Pareto approximations.

From Christoph and Wolf [7] we know that the expansion

fα(x) =
1

π

∑
j≤m

(−1)j+1 Γ(1 + jα)

j!
sin(jαπ/2)|x|−(1+jα) + O

(
Am(x)

)
, (6.22)
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holds for the density fα of S(α), where

Am(x) = O
(
|x|−(1+(m+1)α)

)
, |x| → ∞.

For m = 3, we have

fα(x) =
1

σ(α)
w1,α

( x

σ(α)

)(
1 + C(α)

( x

σ(α)

)−α

+ O
( x

σ(α)

)−2α
)

(6.23)

for certain scale parameters σ(α) and constants C(α), where w1,α is the standard
Pareto density with shape parameter α. The constant C(α) in the second order
term satisfies

C(α) = 24/(2 − α) + O(1), α → 2, (6.24)

which shows that these constants are very large for α close to 2.

Adding a Skewness Parameter, a Continuous Parameterization

To represent the family of all non–degenerate, sum–stable distributions one must
include a skewness parameter −1 ≤ β ≤ 1 in addition to the index of stability
0 < α ≤ 2. For α = 2 one gets the normal df S(2) for each β.

We choose a parameterization so that the densities and dfs vary continuously
in the parameters. Such a property is indispensable for statistical inference and
visualization techniques.

The continuous location–scale parameterization introduced by Nolan9 is a
variant of the (M) parameterization of Zolotarev10. Let

χ
X

(t) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
− |t|α

(
1 + iβ tan

(
απ
2

)
sign(t)

(
|t|1−α − 1

)))
α �= 1,

if

exp
(
− |t|

(
1 + iβ 2

π sign(t) log(|t|)
))

α = 1.

(6.25)
Using this parameterization one gets a family of characteristic functions which

is continuous in the parameters α and β. To prove the continuity at α = 1, notice
that tan(π/2 + x) = −1/x + o(x) and, therefore, according to (1.66)

tan
(απ

2

)(
|t|1−α − 1

)
=

2

π

|t|1−α − 1

1 − α
+ o(1 − α)

→ (2/π) log |t|, α → 1.

If β = 0, then one gets the family of characteristic functions in (6.21) for sym-
metric sum–stable distributions. The dfs pertaining to the characteristic functions
in (6.25) are denoted by S(α, β; 0). We write

9Nolan, J.P. (1998). Parameterizations and modes of stable distributions. Statist.
Probab. Letters 38, 187-195.

10Zolotarev, V.M. (1986). One–Dimensional Stable Distributions. Translations of Math-
ematical Monographs, Vol. 65, American Mathematical Society.
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Continuous Parameterization: S(α, β, σ, µ; 0),

if scale and location parameters σ > 0 and µ are included. As in the case of
symmetric sum–stable distributions one obtains families of dfs and densities which
are continuous in all parameters.
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Fig. 6.3. Plots of sum–stable

densities with index of sta-

bility α equal to 2 (normal),

1.75, 1.5, 1.25 and 1 (Cauchy)

and skewness parameter β =

0.75.

Deduce from (6.20) that a random variable −X has the df S(α,−β; 0), if X
has the df S(α, β; 0). The support of S(α, β; 0) is the real line, if −1 < β < 1.

The dfs S(α, 1; 0) and S(α,−1; 0) have the supports (− tan(πα/2),∞) and
(−∞, tan(πα/2)), respectively. Moreover, S(1/2, 1, 1, 1; 0) is the Lévy df, as defined
by (6.18).

The tails of most stable laws are Pareto–like: when β ∈ (−1, 1], the tail
probability and density satisfy as x → ∞,

P (X > x) ∼ cα(1 + β)x−α,

f(x) ∼ αcα(1 + β)x−(α+1), (6.26)

where cα = Γ(α) sin(πα/2)/π. (The β = −1 case decays faster than any power.)
This asymptotic power decay has been used to estimate stable parameters, but in
most cases one must go extremely far out on the tails to see this tail behavior,
e.g., Fofack and Nolan11 and Section 6.5, so this approach is of limited usefulness
in practice.

Adding a Skewness Parameter, the Conventional Parameterization

We also mention a parameterization which is more commonly used and which is
particularly convenient for mathematical proofs (see, e.g., [7] and [46]). Given a

11Fofack, H. and Nolan, J.P. (1999). Tail behavior, modes and other characteristics of
stable distributions. Extremes 2, 39–58.
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random variable X with df S(α, β; 0) let

Y =

⎧⎨⎩ γ
(
X + β tan(πα/2)

)
+ δ, α �= 1,

if
γ
(
X + (2/π)β log(γ)

)
+ δ, α = 1

(6.27)

for parameters γ > 0 and δ. The pertaining dfs are denoted by

Conventional Parameterization: S(α, β, γ, δ; 1).

Notice that γ and δ are scale and location parameters if α �= 1. The parameter δ
is a location parameter for the dfs S(α, β, γ, 0; 1). If β = 0, then the continuous
and convential parameterizations coincide.

According to (6.20) and (6.25) the pertaining characteristic functions are

χY (t) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
− γα|t|α

(
1 − iβ tan

(
απ
2

)
sign(t)

)
+ iδt

)
α �= 1,

if

exp
(
− γ|t|

(
1 + iβ 2

π sign(t) log(|t|)
)

+ iδt
)

α = 1.

(6.28)

This parameterization is not continuous at α = 1 and, therefore, less useful for
statistical inference. The reader is cautioned that several other parameterizations
are used for historical and technical reasons.

Scale Mixtures of Normal Distributions

As in the case of Student distributions one may represent symmetric, sum-stable
distributions as scale mixtures of normal distributions. Now, the mixing df is the
sum–stable df with skewness parameter β = 1 and index α < 1.

Let X and Y be independent random variables, where X is standard normal
and Y has the df S(α/2, 1, 1, 0; 1) for some α < 2. Notice that Y has the support
(0,∞). Then,

Y 1/2X (6.29)

has the df S(α, 0, γ, 0; 1), where γ = 2−1/2sec(πα/4)1/α with sec(x) = 1/ cos(x)
denoting the secant function.

For example, if Y is the Lévy random variable, having the index α = 1/2,
then the scale mixture is the Cauchy df.

This construction will be of importance in the multivariate setup for the
characterization of multivariate sum–stable, spherically or elliptically contoured
dfs, see Section 11.4.

Estimating Stable Parameters

For estimating the four parameters in the S(α, β, σ, µ; 0)–parameterization several
methods are applicable. We mention
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• Quantile Method: McCulloch12 uses five sample quantiles (with q = 0.05,
0.25, 0.5, 0.75, 0.95) and matches the observed quantile spread with the
exact quantile spread in stable distributions.

• Empirical Characteristic Function Method: Kogon and Williams13 use the
known form of the characteristic function to estimate stable parameters.
The empirical/sample characteristic function is computed from the sample
X1, . . . , Xn by

χ̂(t) =
(∑

j≤n

exp(itXj)
)/

n.

The sample parameters are estimated by regression techniques from the exact
form for χ(t) given in (6.25).

• MLE: This method uses initial estimate of (α, β, σ, µ) from the quantile
method, and then maximizes the likelihood by a numerical search in the
4–dimensional parameter space. Large sample confidence interval estimates
have been computed, see Nolan14.

The estimated parameters may be converted to the conventional parameter-
ization.

Diagnostics with Kernel Densities

In principle, it is not surprising that one can fit a data set better with the 4
parameter stable model than with the 2 parameter normal model. The relevant
question is whether or not the stable fit actually describes the data well.

The diagnostics we are about to discuss are an attempt to detect non–
stability. As with any other family of distributions, it is not possible to prove
that a given data set is or is not stable. The best we can do is to determine
whether or not the data are consistent with the hypothesis of stability. These tests
will fail if the departure from stability is small or occurs in an unobserved part of
the range.

The first step is to do a smoothed density plot of the data. If there are clear
multiple modes or gaps in the support, then the data cannot come from a stable
distribution. For density plots, we smoothed the data with the Epanechnikov or a
Gaussian kernel with standard deviation given by a width parameter. In addition
to the automatic choice we used trial and error to find a width parameter that was

12McCulloch, J.H. (1986). Simple consistent estimators of stable distribution parame-
ters. Commun. Statist. Simulations 15, 1109–1136.

13Kogon, S.M. and Williams, D.B. (1998). Characteristic function based estimation of
stable distribution parameters. In: A Practical Guide to Heavy Tails, R.J. Adler et all
(eds.), Birkhäuser, Basel, 311-335.

14Nolan, J.P. (2001). Maximum likelihood estimation of stable parameters. In: Lévy
Processes, ed. by Barndorff–Nielson, Mikosch, and Resnick, Birkhäuser, Basel, 379–400.
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as small as possible without showing too much oscillations from individual data
points.

Example 6.4.1. (Distributions of Black Market Exchange Rate Returns.) We examine
two data sets of consecutive monthly log-returns (cf. Chapter 16) from Colombia and
Argentina15 of a relatively small small sample size of 119 studied by Akgiray et al.16 and
further investigated by Koedijk et al.17. Akgiray et al. estimated parameters of sum–
stable and Student distributions for several Latin American exchange rate series.

First one must note that these series exhibit the typical properties of financial data,
namely a certain dependency which becomes visible by periods of tranquility and volatil-
ity. This entails that one cannot expect a good performance of estimation procedures.

For the Colombia data we estimated a sum–stable distribution S(α, β, σ, µ; 0) =
S(1.21,−0.14, 0.0059, 0.0096; 0) and a Student distribution with shape, location and scale
parameters α = 1.83, µ = 0.0094 and σ = 0.0072. It is remarkable that in both cases one
gets a shape parameter α less that 2.

In Fig. 6.4 (left) we plot the estimated sum–stable density and a kernel density
based on the Epanechnikov kernel and the width parameter b = 0.007. The estimated
Student density can hardly be distinguished from the sum–stable density and is, therefore,
omitted.
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Fig. 6.4. Kernel densities and estimated sum–stable densities for Colombia (left) and for

Argentina (right) exchange rate data.

For the Argentina exchange rate data the ML estimation procedures gives the

sum–stable distribution S(α, β, σ, µ; 0) = S(1.093,−0.44, 0.036, 0.0036; 0). This density is

strongly skewed to the right. For a continuation of this example see Example 6.4.2.

15Communicated by S. Caserta and C.G. de Vries and stored in blackmarket.dat.
16Akgiray, V., Booth, G.G. and Seifert, B. (1988). Distribution properties of Latin

American black market exchange rates. J. Int. Money and Finance 7, 37–48.
17Koedijk, K.G., Stork, P.A. and Vries, de C.G. (1992). Differences between foreign

exchange rate regimes: the view from the tail. J. Int. Money and Finance 11, 462-473.



180 6. Advanced Statistical Analysis

The density plots give a good sense of whether the fit matches the data near
the mode of the distribution, but generally they are uninformative on the tails
where both the fitted density and the smoothed data density are small.

Diagnostics with Q–Q Plots

If the smoothed density is plausibly stable, proceed with a stable fit and compare
the fitted distribution with the data using Q–Q and P–P plots and more refined
statistical tools coming from extreme value analysis.

We observed practical problems with Q–Q plots for heavy tailed data. While
using Q–Q plots to compare simulated stable data sets with the exact correspond-
ing cumulative df, we routinely had two problems with extreme values: (1) most of
the data is visually compressed to a small region and (2) on the tails there seems
to be an unacceptably large amount of fluctuation around the theoretical straight
line.

For heavy tailed stable distributions we should expect such fluctuations: if
Xi:n is the ith order statistic from an iid stable sample of size n with common df
F , q = (i− 1/2)/n and F−1(q) is the q–quantile, then for n large, the distribution
of Xi:n is approximately normal with expectation EXi:n ≈ F−1(q) and variance

V (Xi:n) ≈ q(1 − q)/nf(F−1(q))2.

The point is that Q–Q plots may appear non–linear on the tails, even when the
data set is stable.

Diagnostics with Trimmed Mean Excess Functions

One should be aware that the mean excess function does not exist, if the tail
index α of the underlying df is smaller than 1. In addition, the sample mean
excess function provides an inaccurate estimator, if α ≤ 1.5. Therefore, we employ
trimmed mean excess functions, cf. Section 2.2, in the subsequent analysis.

In conjunction with sum–stable dfs there is another difficulty, namely that
the constant in the remainder term of the Pareto approximation is large for α
close to 2, see (6.24). One cannot expect that linearity in the upper tail of the
underlying trimmed mean excess function becomes clearly visible in the sample
version.

In Fig. 6.5 we plot the underlying trimmed mean excess function with trim-
ming factor p = 0.8—simulated under the gigantic sample size of 100,000 data—for
standard, symmetric sum–stable dfs with parameters α = 1.5 and α = 1.8, and in
both cases three different sample trimmed mean excess functions for sample sizes
n = 1000.

For the parameter α = 1.5 (respectively, α = 1.8) the linearity of the “theoret-
ical” trimmed mean excess function becomes visible beyond the threshold u = 1.5
(u = 2.5) which corresponds to the 85% quantile (95% quantile). This indicates
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Fig. 6.5. “Theoretical” trimmed mean excess functions (solid) and sample versions (dot-

ted) based on n = 1000 simulated data for the parameter α = 1.5 (left) and α = 1.8

(right).

why larger sample sizes are required to detect the linearity in the upper tail of the
trimmed mean excess function, if α is close to 2.

Example 6.4.2. (Continuation of Example 6.4.1.) The following considerations concern
the Argentina exchange rate data which were studied in Example 6.4.1. Recall that the
estimated sum-stable distribution was S(α, β, σ, µ; 0) = S(1.093,−0.44, 0.036, 0.0036; 0).

In Fig. 6.6 we plot the sample trimmed mean excess function with trimming factor
0.8 and the “theoretical” trimmed mean excess function simulated under the estimated
parameters (under the Monte Carlo sample size of 50,000).
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Fig. 6.6. Sample trimmed mean ex-

cess function based on Argentina ex-

change rate data and “theoretical”

trimmed mean excess function.

The number of data above the threshold u = 1.3 is k = 24. The MLE and moment

estimates in the full Pareto model based on the 24 largest data are around α = 2. This

also confirms that there is a distribution with a very heavy tail.
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The overall impression from the analysis of data and of simulations is that
upper tails of sum–stable dfs can be successfully analyzed by sample trimmed
mean excess functions, if α is not too close to 2 and the sample size is sufficiently
large.

6.5 Ultimate and Penultimate
GP Approximation

co–authored by E. Kaufmann18

From this section some theoretical insight can be gained why the modeling of dfs
of maxima or exceedances by means of EV or GP dfs leads to inaccurate results
in certain cases although the underlying df F belongs to the max or pot–domain
of attraction of an EV or GP df.

This question is handled by computing remainder terms in the limit theorems
(1.27) and (1.46) for dfs of maxima and exceedance dfs. This book is devoted
to exceedances to some larger extent and, therefore, we focus our attention on
the approximation to exceedance dfs in order not to overload this section. Our
arguments are closely related to those in [16], pages 11–45.

At the beginning we start with some explanations about the relationship
between the pot–stability of GP dfs and the concept of regularly varying functions.
In the second part of this section one may find some results about von Mises bounds
for such approximations.

The POT–Stability and Regularly Varying Functions

In the following lines, we merely study the case of Pareto dfs W1,α,µ,σ in the α–
parametrization. Similar results hold for GP dfs in general. From (1.44) we know
that for exceedance dfs of Pareto dfs the relation

W
[u]
1,α,µ,σ(x) = W1,α,µ,u−µ(x), x ≥ u,

holds for thresholds u > µ + σ, which is the pot–stability of Pareto dfs.
Recall from (1.12) that for any df F ,

F [u](x) = F(x)/F(u), x ≥ u,

where F is the survivor function of F . Rewriting the pot–stability of Pareto dfs
F = W1,α,µ,σ in terms of survivor functions and replacing x by ux, one gets

F(ux)/F(u) = F [u](ux) =
(x − µ/u

1 − µ/u

)−α

→u→∞ x−α, x ≥ 1. (6.30)

18University of Siegen.
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In the special case of F = W1,α,0,σ—this is the case of a Pareto df with
location parameter µ = 0—we have equality in (6.30), that is,

F(ux)/F(u) = x−α, x > 1, (6.31)

holds. This indicates that pot–stability is closely related to the property that the
survivor function F is regularly varying at ∞.

Generally, a measurable function U : (0,∞) → (0,∞) is called regularly
varying at infinity with index (exponent of variation) ρ, if

U(tx)/U(t) →t→∞ xρ, x > 0, (6.32)

see, e.g., [44], Section 0.4. The canonical ρ–varying function is U(x) = xρ.
If ρ = 0, then U is called slowly varying. One speaks of regularly varying at

zero if (6.32) holds with t → ∞ replaced by t ↓ 0.
Recall from Section 1.3, page 19, that a df F belongs to the max–domain of

attraction of the EV df Gγ with γ > 0 if, and only if, ω(F ) = ∞ and the survivor
function F is regularly varying at ∞ with index ρ = −1/γ.

If F = W1,α,µ,σ is a Pareto df with location parameter µ �= 0, then condition
(6.32) is satisfied for F with ρ = −α, yet the rate is exceedingly slow if α is a
larger index. In the following lines we make this remark more precise by computing
remainder terms.

Computing the Remainder Term in the GP Approximation

We start with a condition imposed on the survivor function F = 1 − F of a df F
under which the remainder term of the approximation in (1.46) of an exceedance
df F [u] by means of a GP df W can be calculated easily.

Our interest is primarily focused on GP dfs, yet the subsequent formulas
(6.33) to (6.37) are applicable to any df W as an approximate df. Assume that

F(x) = W(x)
(
1 + O

(
W

1/δ
(x)
))

(6.33)

holds19 for some δ > 0. Thus, F is close to the df W in the upper tail. If this
condition holds, we say that a df F belongs to the δ–neighborhood of the df
W . Notice that the remainder term is small if δ is small. In addition, we have
ω(F ) ≤ ω(W ) for the right–hand endpoints of the supports of F and W .

Condition (6.33), with W being a GP df, is satisfied for δ = 1 by many
of the distributions mentioned in this book such as Fréchet, Weibull, Gumbel,
generalized Cauchy, Student, Burr and sum–stable distributions with α < 2 and
various mixtures.

Straightforward calculations show that the relation∣∣∣F [u](x) − W [u](x)
∣∣∣ = O

(
W

1/δ
(u)
)

, u ≤ x < ω(F ), (6.34)

19This condition can be attributed to L. Weiss (1971), see the article cited on page 134.
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holds uniformly over u for the exceedance dfs of F and W . A special case was
mentioned in (1.48). Recall that the exceedance df W [u] of a GP df W is again a
GP df (which is the pot–stability of GP dfs). Also, a df belongs to the pot–domain
of attraction of a GP df, if it belongs to the δ–neighborhood of a GP df.

Condition (6.33) reformulated in terms of densities is

f(x) = w(x)
(
1 + O

(
W

1/δ
(x)
))

. (6.35)

By integration one obtains that (6.35) implies (6.33). In addition, simple
calculations yield that

f [u](x) = w[u](x)
(
1 + O

(
W

1/δ
(u)
))

, u ≤ x < ω(F ), (6.36)

holds for the exceedance densities f [u] and w[u] uniformly in the thresholds u.
In Section 9.4 we apply a reformulation of (6.36) in terms of the Hellinger

distance (introduced in (3.4)). (6.36) implies

H
(
f [u], w[u]

)
= O

(
W

1/δ
(u)
)

, (6.37)

where H is the Hellinger distance between f [u] and w[u].
Approximations to actual distributions of exceedances or maxima can still

be satisfactorily accurate for small sample sizes, if the constant in the remainder
term is small, with hardly any improvement when the sample size increases. For a
longer discussion see [42], pages 172–175.

Comparing the Tail Behavior of Certain Pareto Distributions

We also want to discuss the poor performance of the Hill estimator, as illustrated
in Figure 5.2 (left), by computing a refinement of (6.33). The Hill estimator is
an MLE in the GP1(u, µ = 0) model, where the location parameter µ is equal to
zero. If µ �= 0, then it is well known that the Hill estimator is still consistent (as
outlined in Section 5.1).

We compare the tail behavior of Pareto dfs W1,α,µ,σ with location parameter
µ �= 0 to that for µ = 0. For that purpose, an expansion of length 2 is computed.
By applying a Taylor expansion one gets

W1,α,µ,σ(x) = W1,α,0,σ

(
1 +

αµ

σ
W

1/α

1,α,0,σ(x) + O
(
W

2/α

1,α,0,σ(x)
))

. (6.38)

We see that Pareto dfs with µ �= 0 belong to the δ–neighborhood of a Pareto
df with µ = 0, yet δ = α can be large which yields a large remainder term in the
approximation.

This indicates that estimators of the shape parameter α, which are especially
tailored for the GP1(u, µ = 0) model such as the Hill estimator, are inaccurate, if
the parameters α is large. Of course, the constant µ/σ is important as well.
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A stronger deviation of the actual distribution from the GP1(u, µ = 0) model
yields a larger bias of the Hill estimator a fact which was already observed by
Goldie and Smith20.

The Hall Condition

A refinement of the Weiss condition (6.33), with the factor

1 + O
(
W

1/δ
(x)
)

replaced by an expansion

1 + C(1 + o(1))W
1/δ

(x), (6.39)

is the Hall condition21. See (6.38) for an example. Another example is provided
by (6.23) which is an expansion for sum–stable distributions: the Hall condition
holds for γ = 1/α and δ = 1, yet the constant—hidden in the remainder term—is
very large if α is close to 2.

In terms of densities we get a

refined δ–neighborhood: f(x) = w(x)
(
1 + C̃(1 + o(1))W

1/δ
(x)
)

, (6.40)

where C̃ = C(1 + 1/δ).
The expansion for sum–stable densities in the book by Christoph and Wolf

also includes those with a skewness parameter β �= 0. If α �= 1, 2, then the sum–
stable densities generally satisfy condition (6.35) with δ = 1; if α = 1 and β �= 0,
then this relation holds for δ = 1 + ε for every ε > 0.

Under such a condition the optimal number k of extremes was studied by Hall
and Welsh22. Early results on the bias–correction of estimators were established
under this condition. The latter topic will separately be studied in Section 6.6.

Such Hall type conditions are also of interest in conjunction with the auto-
matic choice of k (see page 137).

Von Mises Bounds for the Remainder Term
in the GP Approximation to Exceedance DFs

Conditions (6.33) and (6.35) are not satisfied by the normal, log–normal, gamma,
Gompertz and converse Weibull distributions, for example. Yet, by using the von

20See, e.g., Goldie, C.M. and Smith, R.L. (1987). Slow variation with remainder term:
A survey of the theory and its applications. Quart. J. Math. Oxford Ser. 38, 45–71.

21Hall, P. (1982). On estimating the endpoint of a distribution. Ann. Statist. 10, 556–
568.

22Hall, P. and Welsh, A.H. (1985). Adaptive estimates of parameters of regular varia-
tion. Ann. Statist. 13, 331–341.
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Mises condition (2.32), one may prove that these distributions belong to the pot–
domain of attraction of the exponential df (and, likewise, to the max–domain
of attraction of the Gumbel df). We refer to [20], pages 67–68, for the required
computations in the case of the log–normal distribution.

Subsequently, we make use of the von Mises condition (2.32), which is equiv-
alent to the following

von Mises condition: M(t) :=
(1 − F

f

)′
(F−1(1 − t)) − γ → 0, t ↓ 0, (6.41)

for some real parameter γ.
An upper bound related to that in (6.37) will be determined by the remainder

function M . Note that M is independent of location and scale parameters of the
df F . Also,

• if M = 0, then F is a GP df,

• if
M(t) ∼ ct1/δ as t ↓ 0,

then f satisfies condition (6.35) for some GP density w (that is, f belongs
to the δ–neighborhood of a GP density w with shape parameter γ).

In addition, assume that

M(tx)

M(t)
→ xρ, t ↓ 0, x > 0, (6.42)

holds for some ρ ≥ 0. This condition says that the remainder function M is
regularly varying at zero, if ρ > 0, and slowly varying at zero, if ρ = 0, see page
183. Note that, (6.42) implies (6.41), if ρ > 0.

The case ρ = 0 includes distributions for which poor rates of convergence are
achieved in (6.37). For the standard Gompertz df G̃0 we have γ = 0 and

M(t) = −(log t)−1. (6.43)

Such an order is also achieved by M for normal, log–normal, gamma and converse
Weibull dfs.

We compute an upper bound for the remainder term in the GP approximation
which is related to that in (6.37). Under the conditions (6.41) and (6.42) we have23

H(f [u], wγ,u,σ(u)) ∼ C|M(F(u))|, (6.44)

where

σ(u) =

⎧⎨⎩ (1 − F (u))/f(u) γ ≥ 0,
if

(ω(F ) − u)|γ| γ < 0.
(6.45)

23Kaufmann, E. and Reiss, R.–D. (2002). An upper bound on the binomial process
approximation to the exceedance process. Extremes 5, 253–269.
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For a continuation of this topic, within the framework of exceedance pro-
cesses, we refer to Section 9.4.

Penultimate Modeling

By computing remainder terms one is also able to discuss the concept of penul-
timate distributions. Within EV or GP models one may find dfs which are more
accurate approximations of the actual df Fm or F [u] than the limiting ones. Such
EV or GP dfs are called penultimate dfs.

Early results of that type are contained in the paper by Fisher and Tippett
cited on page 18. Further references concerning the penultimate EV approximation
are given at the end of this section.

The starting points are the conditions (6.41) and (6.42) which determine an
upper bound for the ultimate rate. Under these conditions a penultimate approx-
imation exists if, and only if, M is slowly varying24.

We assume that the von Mises condition (6.41) and condition24,

M(tx) − M(t)

A(t)
→ c log x, t ↓ 0, x > 0, (6.46)

hold, where A : (0, 1) → (0,∞) is another auxiliary function and c = −1, 1.
This condition implies that M and A are slowly varying at 0. Hence, (6.42)

holds for M and A with ρ = 0. The rate of convergence in (6.42) is of order
A(t)/M(t) which shows that A is of smaller order than M .

We compute an upper bound for the remainder term in the penultimate GP
approximation which correspond to that in (6.44). Under the conditions (6.41) and
(6.46) we have24

H(f [u], wγ(u),u,σ(u)) ∼ CA
(
F(u)

)
(6.47)

with σ(u) as in (6.45), and γ replaced by

γ(u) := γ + M(F(u)). (6.48)

Recall that M(t) = −(log t)−1 for the Gompertz df. In addition, we have

A(t) = (log t)−2

for the second auxiliary function A in this case.
The existence of penultimate distributions can have serious consequences for

the estimation of GP distributions (and, likewise, for EV distributions) and the
interpretation of such results.

Example 6.5.1. (Extreme Life Spans.) Our analysis concerns extreme life spans of women
born before and around the year 1900 and later living in West Germany.

24Kaufmann, E. (2000). Penultimate approximations in extreme value theory. Extremes
3, 39–55.
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The given data are the ages of female persons at death in West–Germany in the
year 199325 . None of the persons died at an age older than 111 years. The analysis is
based on the ages at death of 90 or older.

Table 6.2. Frequencies of life spans (in years).

life span 90 91 92 93 94 95 96 97 98 99 100

frequency 12079 10273 8349 6449 5221 3871 2880 1987 1383 940 579

life span 101 102 103 104 105 106 107 108 109 110 111

frequency 340 207 95 63 36 16 9 4 1 1 1

Gompertz dfs (see page 54) are one of the classical life span dfs. A Gompertz density

with location and scale parameters µ = 83.0 and σ = 9.8 fits well to the histogram of

the life span data above 95 year. According to (6.43)–(6.45), an exponential df provides

an ultimate approximation. The penultimate approach, see (6.47) and (6.48), leads to a

beta dfs with γ(u) ↑ 0 as u → ∞. For more details we refer to Section 19.1.

The possibility of a penultimate approximation must also be taken in account
when the shape parameter γ(u) varies with the threshold u.

Example 6.5.2. (Ozone Cluster Maxima.) We discuss one further aspect of the case

study mentioned in Example 5.1.2. In this case we do not have a classical distribution

for all of the data in mind. However, for the increasing thresholds u = −0.20, 0.22, 0.24

one obtains as estimates of the shape parameter γ the values γ̂(.20) = −0.41, γ̂(.22) =

−.35 and γ̂(.24) = −.33. This indicates the possibility that we estimated penultimate

approximations to the actual distribution with the exponential distribution providing an

ultimate approximation.

This short discussion underlines the importance of penultimate approxima-
tion in extreme value theory. The situation is characterized by the facts that there
is a bad approximation rate by means of the ultimate distribution and a slight
improvement of the accuracy of the approximation by means of penultimate dis-
tributions.

The possibility of occurance of penultimate distributions should not be ig-
nored in statistically oriented applications, e.g., in conjunction with speculations
about the right endpoint of life–span distribution.

25Stored in the file um–lspge.dat (communicated by G.R. Heer, Federal Statistical
Office).
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The Remainder Term in the EV Approximation

To obtain sharp bounds on the remainder term of the EV approximation to the
joint distribution of several maxima, one must compute the Hellinger distance
between such distributions, see [42] and [16]. Such bounds can be easily computed
if F belongs to a δ–neighborhood of a GP distribution.

In the literature about probability theory one finds bounds on the maxi-
mum deviation of dfs or, in exceptional cases, for the variational distance between
distributions in the case of a single maximum.

From the Falk–Marohn–Kaufmann theorem26, it is known that an algebraic
rate of convergence—that is a rate of order O(n−c) for some c > 0—can be achieved
if, and only if, condition (6.33) is satisfied. This clarifies why one gets inaccurate
results in certain cases. For example, the large MSEs in Table 4.2 for normal data
can be explained by the fact that the normal distribution does not satisfy condition
(6.33).

An upper bound, which involves the von Mises condition, was established
by Radtke27. A closely related upper bound may be found in an article by de
Haan and Resnick28. The condition formulated by de Haan and Resnick is better
adjusted to approximations of sample maxima.

First results concerning the penultimate approximation to distributions of
maxima are due to Fisher and Tippett (in the article cited on page 18). These
results were considerably extended by Gomes29. Exact penultimate rates were
recently established by Gomes and de Haan30 and in the afore mentioned article
by Kaufmann24.

26 Falk, M. and Marohn, F. (1993). Von Mises conditions revisited. Ann. Probab. 21,
1310–1328, and Kaufmann, E. (1995). Von Mises conditions, δ–neighborhoods and rates
of convergence for maxima. Statist. Probab. Letters 25, 63–70.

27Radtke, M. (1988). Konvergenzraten und Entwicklungen unter von Mises Bedingun-
gen der Extremwerttheorie. Ph.D. Thesis, University of Siegen, (also see, e.g., [42], page
199).

28de Haan, L. and Resnick, S.I. (1996). Second order regular variation and rates of
convergence in extreme value theory. Ann. Probab. 24, 97-124.

29Gomes, M.I. (1984). Penultimate limiting forms in extreme value theory. Ann. Inst.
Statist. Math. 36, Part A, 71–85, and Gomes, M.I. (1994). Penultimate behaviour of the
extremes. In [15], Vol. 1, 403–418.

30Gomes, M.I. and Haan, L. de (1999). Approximation by penultimate extreme value
distributions. Extremes 2, 71–85.
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6.6 An Overview of Reduced–Bias Estimation

co–authored by M.I. Gomes31

The semi–parametric estimators of first order parameters of extreme or even rare
events—like the tail index, the extremal index, a high q–quantile, a return period
of a high level, and so on—may be based on the k top order statistics Xn−i+1:n,
i = 1, . . . , k, of iid random variables with common df F . Before dealing with second
order parameters, which are decisive for the bias reduction, we recall some basic
facts about the asymptotic theory for heavy tails in the first order framework.
Next, we formulate a basic condition for the second order framework, and

• introduce the concept of bias reduction;

• provide details about the jackknife methodology;

• study an approximate maximum likelihood approach, together with the in-
troduction of simple bias–corrected Hill estimators,

• provide an application to data in the field of finance.

This section is concluded with remarks about some recent literature on bias re-
duction.

The First Order Framework Revisited

The estimators for an extreme events’ parameter, say η, are consistent if the df F
is in the domain of attraction of an EV df Gγ , and k is intermediate, i.e.,

k = kn → ∞ and k = o(n) as n → ∞. (6.49)

We shall assume here that we are working with heavy tails and, thus, with shape
parameters γ > 0 in the unified model. Then, according to (1.29), a df F is in the
max–domain of attraction of Gγ if, and only if, for every x > 0,

F(tx)/F(t) →t→∞ x−1/γ , or equivalently, U(tx)/U(t) →t→∞ xγ , (6.50)

where F = 1 − F is the survivor function, and U(t) = F−1(1 − 1/t) for t ≥ 1.

Thus, according to (6.32), the survivor function is regularly varying at infinity
with a negative index −1/γ, or equivalently, U is of regular variation with index
γ. We shall here concentrate on these Pareto–type distributions, for which (6.50)
holds.

31University of Lisbon, this research was partially supported by FCT/POCTI and
POCI/FEDER.
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A Second Order Condition and
a Distributional Representation of the Estimators

Under the first order condition (6.50), the asymptotic normality of estimators for
an extreme events’ parameter η is attained whenever we assume a second order
condition, i.e., when we assume to know the rate of convergence towards zero of,
for instance, log U(tx) − log U(t) − γ log x, as t → ∞.

Such a second order condition may be written as

log U(tx) − log U(t) − γ log x

A(t)
→t→∞

xρ − 1

ρ
, (6.51)

where ρ ≤ 0 and A(t) → 0 as t → ∞. More precisely,

|A(tx)/A(t)| →t→∞ xρ for all x > 0;

that is, |A| is regularly varying at infinity with index ρ.
For any classical semi–parametric estimator ηn,k, which is consistent for the

estimation of the parameter η, and under the second order condition (6.51), there
exists a function ϕ(k), converging towards zero as k → ∞, such that the following
asymptotic distributional representation

ηn,k
d
= η + σϕ(k)Pk + bρA(n/k) (1 + op(1)) , (6.52)

holds (thus, we have equality in distribution with one term converging to zero in
probability). Here the Pk are asymptotically standard normal random variables,
σ > 0, bρ is real and �= 0, and A(·) the function in (6.51).

We may thus provide approximations to the variance and the bias of ηn,k

given by (σϕ(k))
2

and bρA(n/k), respectively. Consequently, these estimators ex-
hibit the same type of peculiarities:

• high variance for high thresholds Xn−k:n, i.e., for small values of k;

• high bias for low thresholds, i.e., for large values of k;

• a small region of stability of the sample path (plot of the estimates versus k
as it is done in Fig. 5.3), as a function of k, making problematic the adaptive
choice of the threshold, on the basis of any sample paths’ stability criterion;

• a “very peaked” mean squared error, making difficult the choice of the value
k0 where the mean squared error function MSE(ηn,k) attains its minimum.

The Concept of Reduced–Bias Estimators

The preceding peculiarities have led researchers to consider the possibility of deal-
ing with the bias term in an appropriate manner, building new estimators ηR

n,k,
the so–called reduced–bias estimators.
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Under the second order condition (6.51) and for k intermediate, i.e., whenever
(6.49) holds, the statistic ηR

n,k, a consistent estimator of a functional of extreme
events η = η(F ), based on the k top order statistics in a sample from a heavy
tailed df F , is said to be a reduced–bias semi–parametric estimator of η, whenever

ηR
n,k

d
= η + σ

R
ϕ(k)PR

k + op(A(n/k)), (6.53)

where the PR
k are asymptotically standard normal and σ

R
> 0, with A(·) and ϕ(·)

being the functions in (6.51) and (6.52).

Notice that for the reduced–bias estimators in (6.53), we no longer have a
dominant component of bias of the order of A(n/k), as in (6.52). Therefore,

√
k
(
ηR

n,k − η
)

is asymptotically normal with null mean value not only when
√

k A(n/k) → 0 (as
for the classical estimators), but also when

√
k A(n/k) → λ, finite and non–null.

Such a bias reduction provides usually a stable sample path for a wider region of
k–values and a reduction of the mean squared error at the optimal level.

Such an approach has been carried out in the most diversified manners, and
from now on we shall restrict ourselves to the tail index estimation, i.e., we shall
replace the generic parameter η by the tail index γ, in (6.50). As a consequence,
ϕ(k) = 1/

√
k. The key ideas are either to find ways of getting rid of the dominant

component bρA(n/k) of bias in (6.52), or to go further into the second order
behavior of the basic statistics used for the estimation of γ, like the log–excesses
or the scaled log–spacings.

Historical Remarks

We mention some pre–2000 results about bias–corrected estimators in extreme
value theory. Such estimators may be dated back to Reiss32, Gomes33, Drees34

and Peng35, among others. Gomes uses the Generalized Jackknife methodology in
Gray and Schucany [23], and Peng deals with linear combinations of adequate tail
index estimators, in a spirit quite close to the one associated to the Generalized
Jackknife technique.

32Reiss, R.-D. (1989). Extreme value models and adaptive estimation of the tail index.
In [14], 156–165.

33Gomes, M.I. (1994). Metodologias Jackknife e Bootstrap em Estat́ıstica de Extremos.
In Mendes-Lopes et al. (eds.), Actas II Congresso S.P.E., 31–46.

34Drees, H. (1996). Refined Pickands estimators with bias correction. Comm. Statist.
Theory and Meth. 25, 837–851.

35Peng, L. (1998). Asymptotically unbiased estimator for the extreme–value index.
Statist. Probab. Letters 38, 107–115.
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The latter technique was also used in Martins et al.36, where convex mixtures
of two Hill estimators, computed at two different levels, are considered. Within the
second order framework, Beirlant et al.37 and Feuerverger and Hall38 investigate
the accommodation of bias in the scaled log–spacings and derive approximate
“maximum likelihood” and “least squares” reduced–bias tail index estimators.

The Jackknife and Related Methodologies

First we provide some details about the Jackknife methodology, due to J. Tukey.
This is a nonparametric resampling technique, essentially in the field of exploratory
data analysis, whose main objective is the reduction of bias of an estimator, by
means of the construction of an auxiliary estimator based on B. Quenouille’s re-
sampling technique, and the consideration of a suitable combination of the two
estimators.

The Generalized Jackknife statistics of Gray and Schucany [23] are more
generally based on two different estimators of the same functional, with similar
bias properties. More precisely, and as a particular case of the Jackknife theory, if

we have two different biased consistent estimators η
(1)
n and η

(2)
n of the functional

parameter η(F ), such that E
(
η
(1)
n

)
= η+ϕ(η) d1(n) and E

(
η
(2)
n

)
= η+ϕ(η) d2(n),

then, denoting by

qn :=
BIAS

(
η
(1)
n

)
BIAS

(
η
(2)
n

) =
d1(n)

d2(n)
,

the Generalized Jackknife statistic associated to
(
η
(1)
n , η

(2)
n

)
is

ηG
n

(
η(1)

n , η(2)
n

)
=

η
(1)
n − qnη

(2)
n

1 − qn
,

which is an unbiased consistent estimator of η(F ), provided that qn �= 1 for all n.

Generalized Jackknife Estimators of the Tail Index

Whenever we are dealing with semi–parametric estimators of the tail index, or
even other parameters of extreme events, we have usually information about the
asymptotic bias of these estimators. We may thus choose estimators with similar
asymptotic properties, and build the associated Generalized Jackknife statistic.

36Martins, M.J., Gomes, M.I. and Neves, M. (1999). Some results on the behavior of
Hill estimator. J. Statist. Comput. and Simulation 63, 283–297.

37Beirlant, J., Dierckx, G., Gogebeur, Y. and Matthys, G. (1999). Tail index estimation
and an exponential regression model. Extremes 2, 177–200.

38Feuerverger, A. and Hall, P. (1999). Estimating a tail exponent by modelling depar-
ture from a Pareto distribution. Ann. Statist. 27, 760–781.
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This methodology has first been used by Martins et al., as noted above,
and still later on, in Gomes et al.39. These authors suggest several Generalized
Jackknife estimators of the tail index γ. We shall here refer only to the one based
on the classical Hill estimator for γ, namely

γ
(1)
n,k :=

1

k

∑
i≤k

(
log Xn−i+1:n − log Xn−k:n

)
, (6.54)

cf. (5.3), and on the alternative estimator

γ
(2)
n,k :=

M
(2)
n,k

2M
(1)
n,k

,

where, related to the lj,k with a fixed threshold on page 134,

M
(j)
n,k :=

1

k

∑
i≤k

(log Xn−i+1:n − log Xn−k:n)j , j ≥ 1. (6.55)

Under the second order condition (6.51), and with P
(1)
k and P

(2)
k asymp-

totically standard normal random variables, we have individually and jointly the
validity of the distributional representations

γ(1)
n (k)

d
= γ +

γP
(1)
k√
k

+
A(n/k)

1 − ρ
+ op(A(n/k)), (6.56)

γ(2)
n (k)

d
= γ +

√
2 γP

(2)
k√

k
+

A(n/k)

(1 − ρ)2
+ op(A(n/k)), (6.57)

where one may choose

P
(1)
k =

√
k
(∑

i≤k

ηi/k − 1
)

and P
(2)
k =

√
2

2

(√k

2

(∑
i≤k

η2
i /k − 2

)
− P

(1)
k

)
,

with ηi, i ≥ 1 being iid standard exponential random variables. Consequently,

Cov
(
P

(1)
k , P

(2)
k

)
=

√
2/2.

The ratio between the dominant components of bias of γ
(1)
n,k and γ

(2)
n,k is equal

to 1 − ρ, and we thus get the Generalized Jackknife estimator

γGJ
ρ,k :=

(
γ

(1)
n,k − (1 − ρ) γ

(2)
n,k

)
/ρ, (6.58)

39Gomes, M.I., Martins, M.J. and Neves, M. (2000). Alternatives to a semi–parametric
estimator of parameters of rare events—the Jackknife methodology. Extremes 3, 207–
229, and Gomes, M.I., Martins, M.J. and Neves, M. (2002). Generalized Jackknife semi–
parametric estimators of the tail index. Portugaliae Mathematica 59, 393–408.
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where ρ must still be replaced by an estimator ρ̂. Note that this estimator is
exactly the estimator studied by Peng, cf. page 192, who claimed that no good
estimator for the second order parameter ρ was then available, and considered a
new ρ–estimator, alternative to the ones in Feuerverger and Hall, cf. page 193,
Beirlant et al.40 and Drees and Kaufmann, cf. page 138.

We formulate two asymptotic results for the estimator in (6.58).

• Under the second order condition (6.51) and k intermediate,

γGJ
ρ,k

d
= γ +

γPGJ
k

√
2ρ2 − 2ρ + 1

|ρ|
√

k
+ op(A(n/k)), (6.59)

where PGJ
k is an asymptotically standard normal random variable. This re-

sult comes directly from the expression of γGJ
ρ,k , together with the distribu-

tional representations in (6.56) and (6.57).

• The result in (6.59) remains true for the Generalized Jackknife estimator
γGJ

ρ̂,k in (6.58) with ρ replaced by ρ̂, provided that ρ̂ − ρ = op(1) for all k

on which we base the tail index estimation, i.e., whenever
√

k A(n/k) → λ,

finite. For these values of k, we have that
√

k
(
γGJ

ρ̂,k − γ
)

is asymptotically

normal with mean zero and variance

σ2
GJ

= γ2
(
1 +

(1 − ρ

ρ

)2)
. (6.60)

This result comes from the fact that

dγGJ
ρ,k

dρ
=

γ
(2)
n,k − γ

(1)
n,k

ρ2
= Op

(
1/

√
k
)

+ Op

(
A(n/k)

)
,

and

γGJ
ρ̂,k

d
= γGJ

ρ,k (k) +
(
ρ̂ − ρ

)(
Op

(
1/

√
k
)

+ Op

(
A(n/k)

))
(1 + op(1)). (6.61)

A closer look at (6.61) reveals that it does not seem convenient to compute
ρ̂ at the same level k we use for the tail index estimation. Indeed, if we do that,
and since we can have ρ̂−ρ = Op

(
1/
(√

k A(n/k)
))

, we are going to have a change
in the asymptotic variance of the tail index estimator, because (ρ̂ − ρ)A(n/k) is
then a term of the order of 1/

√
k.

Gomes et al., see the Extremes–article mentioned on page 194, have indeed
suggested the misspecification of ρ at ρ = −1, and the consideration of the estima-

tor γGJ
n,k := 2 γ

(2)
n,k − γ

(1)
n,k which is a reduced–bias estimator, in the sense herewith

defined, i.e., in the sense of (6.53), if and only if ρ = −1. This was essentially due
to the high bias and variance of the existing estimators of ρ at that time, together
with the idea of considering ρ̂ = ρ̂k.

40Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). Excess function and estimation of
the extreme–value index. Bernoulli 2, 293–318.
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The Estimation of ρ

We shall consider here special members of the class of estimators of the second
order parameter ρ proposed by Fraga Alves et al.41 Under adequate general condi-
tions, they are semi–parametric asymptotically normal estimators of ρ, whenever
ρ < 0, which show highly stable sample paths as functions of k, the number of top
order statistics used, for a wide range of large k–values. Such a class of estimators
is parameterized by a tuning real parameter τ , and may be defined as,

ρ̂τ,k := −
∣∣∣3(T

(τ)
n,k − 1)/(T

(τ)
n,k − 3)

∣∣∣ , (6.62)

where

T
(τ)
n,k :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
M

(1)
n,k

)τ−
(

M
(2)
n,k/2

)τ/2(
M

(2)
n,k/2

)τ/2−
(

M
(3)
n,k/6

)τ/3 if τ �= 0,

log
(

M
(1)
n,k

)
− 1

2 log
(

M
(2)
n,k

/2
)

1
2 log

(
M

(2)
n,k/2

)
− 1

3 log
(

M
(3)
n,k/6

) if τ = 0,

with M
(j)
n,k given in (6.55).

We shall here summarize a few results proved in Fraga Alves et al., now
related to the asymptotic behavior of the estimators of ρ in (6.62):

• For ρ < 0, if (6.49) and (6.51) hold, and if
√

k A(n/k) → ∞, as n → ∞, the
statistic ρ̂τ,k in (6.62) converges in probability towards ρ, as k → ∞, for any
real τ .

• Under additional restrictions on k related to a third order framework which
is not discussed here,

√
k A(n/k)

(
ρ̂τ,k − ρ

)
is asymptotically normal with

mean zero and variance

σ2
ρ =

(
γ(1 − ρ)3

ρ

)2 (
2ρ2 − 2ρ + 1

)
.

• For large levels k1, of the type k1 = [n1−ε] with ε > 0 small, and for a large
class of heavy tailed models, we can guarantee that,(

ρ̂τ,k1 − ρ
)
log n = op(1) as n → ∞.

41Fraga Alves, M.I., Gomes, M.I. and de Haan, L. (2003). A new class of semi–
parametric estimators of the second order parameter. Portugaliae Mathematica 60, 193–
213.
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The Estimation of ρ in Action

The theoretical and simulated results in the above mentioned article by Fraga
Alves et al., as well as further results in Caeiro et al.42, lead to the proposal of the
following algorithm for the ρ–estimation:

Algorithm for ρ–estimation.

1. Consider any level

k1 = min
(
n − 1, [n1−ε] + 1

)
, with ε small, say ε = 0.05. (6.63)

2. Given a sample (X1, X2, . . . , Xn), plot, for τ = 0 and τ = 1, the estimates
ρ̂τ,k in (6.62), 1 ≤ k < n.

3. Consider {ρ̂τ,k}k∈K, for large k, say k ∈ K =
([

n0.995
]
,
[
n0.999

])
, and com-

pute their median, denoted χτ . Next choose the tuning parameter

τ :=

⎧⎨⎩ 0 if
∑

k∈K (ρ̂0,k − χ0)
2 ≤

∑
k∈K (ρ̂1,k − χ1)

2
,

1 otherwise.

A few comments:

• Step 3 of the algorithm leads in almost all situations to the tuning parameter
τ = 0 whenever |ρ| ≤ 1 and τ = 1, otherwise. Such a expert’s guess usually
provides better results than a possibly “noisy” estimation of τ , and is highly
recommended in practice. For details on this and similar algorithms for the
ρ–estimation, see Gomes and Pestana43. The choice of the level k1 in (6.63),
and the ρ–estimator

ρ̂τ1 := −

∣∣∣∣∣∣
3
(
T

(τ)
n,k1

− 1
)

T
(τ)
n,k1

− 3

∣∣∣∣∣∣ , k1 =
[
n0.995

]
, τ =

{
0 if ρ ≥ −1,
1 if ρ < −1,

(6.64)
is a sensible one.

• It is however possible to consider in Steps 2 and 3 of the algorithm a set T
of τ–values larger than the set T = {0, 1}, to draw sample paths of ρ̂τ,k in
(6.62) for τ ∈ T , as functions of k, selecting the value of τ which provides
higher stability for large k, by means of any stability criterion. A possible
choice on the lines of the algorithm is thus τ∗ := argminτ

∑
k∈K (ρ̂τ,k − χτ )

2
.

42Caeiro, F., Gomes, M.I. and Pestana, D. (2005). Direct reduction of bias of the
classical Hill estimator. Revstat 3, 111–136.

43Gomes, M.I. and Pestana, D. (2004). A simple second order reduced–bias’ tail index
estimator. J. Statist. Comp. and Simulation, in press.
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Representations of Scaled Log–Spacings

Let us consider the representations of scaled log–spacings

Ui := i (log Xn−i+1:n − log Xn−i:n) , 1 ≤ i ≤ k.

which are useful for the bias reduction and of interest in its own right.
Under the second order condition (6.51), and for ρ < 0, Beirlant et al., cf.

page 193, motivated the following approximation for the scaled log–spacings:

Ui ∼
(
γ + A(n/k) (i/k)−ρ

)
ηi, 1 ≤ i ≤ k, (6.65)

where ηi, i ≥ 1, denotes again a sequence of iid standard exponential random
variables. In the same context, Feuerverger and Hall, cf. page 193, considered the
approximation,

Ui ∼ γ exp
(
A(n/k) (i/k)

−ρ
/γ
)

ηi = γ exp (A(n/i)/γ) ηi, 1 ≤ i ≤ k. (6.66)

The representation (6.65), or equivalently (6.66), has been made more precise, in
the asymptotic sense, in Beirlant et al.44, in a way quite close in spirit to the
approximations established by Kaufmann and Reiss45 and Drees et al.46.

The Hall Condition, Again

We shall here further assume just as in Feuerverger and Hall, cf. page 193, that
we are in Hall’s class of Pareto–type models, with a survivor function

F(x) = Cx−1/γ
(
1 + Dxρ/γ + o

(
xρ/γ

))
as x → ∞,

C > 0, D real, ρ < 0. Notice that this condition is (6.39) with W(x) = Cx−1/γ

and ρ = −1/δ. Then, (6.51) holds and we may choose

A(t) = αtρ =: γβtρ, β real, ρ < 0. (6.67)

The Maximum Likelihood Estimation
Based on the Scaled Log–Spacings

The use of the approximation in (6.66) and the joint maximization in γ, β and ρ
of the approximate log–likelihood of the scaled log–spacings, i.e., of

log L(γ, β, ρ; Ui, 1 ≤ i ≤ k) = −k log γ − β
∑
i≤k

(i/n)
−ρ − 1

γ

∑
i≤k

e−β(i/n)−ρ

Ui,

44Beirlant, J., Dierckx, G., Guillou, A. and Stǎricǎ, C. (2002). On exponential repre-
sentations of log–spacings of extreme order statistics. Extremes 5, 157–180.

45Kaufmann, E. and Reiss, R.–D. (1998). Approximation of the Hill estimator process.
Statist. Probab. Letters 39, 347–354.

46Drees, H., de Haan, L. and Resnick, S.I. (2000). How to make a Hill plot. Ann. Statist.
28, 254–274.
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led A. Feuerverger and P. Hall, cited on page 193, to an explicit expression for γ̂,
as a function of β̂ and ρ̂, given by

γ̂ = γ̂
F H

β̂,ρ̂,k
:=

1

k

∑
i≤k

e−β̂(i/n)−ρ̂

Ui. (6.68)

Then, β̂ = β̂FH
k and ρ̂ = ρ̂FH

k are numerically obtained, through

(β̂, ρ̂) := arg min
(β,ρ)

{
log
(

1
k

∑
i≤k

e−β(i/n)−ρ

Ui

)
+ β

(
1
k

∑
i≤k

(i/n)−ρ
)}

. (6.69)

If (6.49) and the second order condition (6.51) hold, it is possible to state
the following results.

• If we assume ρ to be known,

γFH
β̂,ρ,k

d
= γ + γ

(1 − ρ

ρ

) Γk√
k

+ op(A(n/k)),

where Γk is asymptotically standard normal.

• If ρ is unknown as well as β, as usually happens, and they are both estimated
through (6.69), then

γFH
β̂,ρ̂,k

d
= γ + γ

(
1 − ρ

ρ

)2
Γ∗

k√
k

+ op(A(n/k))

holds, where Γ∗
k is an asymptotically standard normal random variable.

• Consequently, even when
√

k A(n/k) → λ, non–null, we have an asymp-
totic normal behavior for the reduced–bias tail index estimator, with a null
asymptotic bias, but at the expenses of a large asymptotic variance, ruled
by σ2

F H
= γ2 ((1 − ρ)/ρ)

4
> σ2

GJ
for |ρ| < 3.676, with σ2

GJ
provided in (6.60).

Indeed,
√

k
(
γFH

β̂,ρ̂,k
− γ

)
is asymptotically normal wit mean zero and variance

σ2
F H

= γ2
(1 − ρ

ρ

)4

. (6.70)

A Simplified Maximum Likelihood Tail Index Estimator
and the External Estimation of ρ

The ML estimators of β and ρ in (6.69) are the solution of the ML system of
equations

b̂10B̂00 − B̂10 = 0 and B̂11 − b̂11B̂00 = 0,
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where for non–negative integers j and l,

b̂jl ≡ b̂jl(ρ̂) :=
1

k

∑
i≤k

( i

n

)−jρ̂(
log

i

n

)l

=:
(k

n

)ρ̂

ĉjl,

and

B̂jl ≡ B̂jl(ρ̂, β̂) :=
1

k

∑
i≤k

( i

n

)−jρ̂(
log

i

n

)l

e−β̂(i/n)−ρ̂

Ui =:
(k

n

)ρ̂

Ĉjl.

The first ML equation may then be written as,∑
i≤k

i−ρ̂ exp
(
− β̂

(
i/n
)−ρ̂

)
Ui = γ̂

(∑
i≤k

i−ρ̂
)
,

with γ̂ given in (6.68). The use of ex ∼ 1 + x as x → 0, led Gomes and Martins47

to an explicit estimator for β, given by

β̂GM
ρ̂,k :=

(
k

n

)ρ̂
ĉ10Ĉ00 − Ĉ10

ĉ10Ĉ10 − Ĉ20

, Ĉj0 = Ĉj =
1

k

∑
i≤k

( i

k

)−jρ̂

Ui, (6.71)

and the following approximate maximum likelihood estimator for the tail index γ,

γ̂GM
ρ̂,k :=

1

k

∑
i≤k

Ui − β̂GM
ρ̂,k

(n

k

)ρ̂

Ĉ1, (6.72)

based on an adequate, consistent estimator for ρ. The estimator in (6.72) is thus a
bias–corrected Hill estimator, i.e., the dominant component of the bias of the Hill
estimator, provided in (6.56) and equal to A(n/k)/(1 − ρ) = γβ(n/k)ρ/(1 − ρ) is

estimated though β̂GM
ρ̂,k (n/k)

ρ̂
Ĉ1, and directly removed from the Hill estimator in

(6.54), which can also be written as γH
n,k =

∑
i≤k Ui/k.

If the second order condition (6.51) holds, if k = kn is a sequence of in-
termediate positive integers, and

√
k A(n/k) → λ, finite, as n → ∞, with ρ̂ any

ρ–estimator such that ρ̂−ρ = op(1) for any k such that
√

kA(n/k) → λ, finite, one

obtains that
√

k
(
γGM

ρ̂,k − γ
)

is asymptotically normal with mean zero and variance

σ2
GM

=
γ2(1 − ρ)2

ρ2
. (6.73)

47Gomes, M.I. and Martins, M.J. (2002). “Asymptotically unbiased” estimators of the
tail index based on external estimation of the second order parameter. Extremes 5, 5–31.
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External Estimation of β and ρ

Gomes et al.48 suggest the computation of the β estimator β̂GM
ρ̂,k at the level k1 in

(6.63), the level used for the estimation of ρ. With the notation β̂ := β̂GM
ρ̂,k1

, they
suggest thus the replacement of the estimator in (6.72) by

γ̂M
β̂,ρ̂,k

≡ M β̂,ρ̂,k := γH
n,k − β̂

(n

k

)ρ̂

Ĉ1, (6.74)

where γH
n,k denotes the Hill estimator in (6.54), and (β̂, ρ̂) are adequate consistent

estimators of the second order parameters (β, ρ). With the same objectives, but
with a slightly simpler analytic expression, we shall here also consider the estimator

γ̂H
β̂,ρ̂,k

≡ H β̂,ρ̂,k := γH
n,k

(
1 − β̂ (n/k)

ρ̂
/(1 − ρ̂)

)
, (6.75)

studied in Caeiro et al., cf. page 197. Notice that the dominant component of the
bias of the Hill estimator is estimated in (6.75) through γH

n,kβ̂(n/k)ρ̂/(1− ρ̂), and
directly removed from Hill’s classical tail index estimator.

The estimation of β and ρ at the level k1 in (6.63), of a higher order than the
level k used for the tail index estimation, enables the reduction of bias without
increasing the asymptotic variance, which is kept at the value γ2, the asymptotic
variance of Hill’s estimator.

Denoting by γ̂•
β̂,ρ̂,k

any of the estimators in (6.74) and (6.75), we now formu-

late two asymptotic results for these estimators.

• Under the second order condition (6.51) and k intermediate, further assuming
that A(·) can be chosen as in (6.67), we have

γ̂•
β,ρ,k

d
= γ +

γP •
k√
k

+ op(A(n/k)), (6.76)

where P •
k is an asymptotically standard normal random variable. This is an

immediate consequence of the representation of γ̂•
β,ρ,k.

• The result in (6.76) remains true for the reduced–bias tail index estima-

tors estimators in (6.74) and (6.75), provided that β̂ − β = op(1) and (ρ̂ −
ρ) log(n/k) = op(1) for all k on which we base the tail index estimation, i.e.,

whenever
√

k A(n/k) → λ, finite.

For these values of k, one gets that
√

k
(
γ̂•

β̂,ρ̂,k
− γ

)
is asymptotically normal

with mean zero and variance
σ2
• = γ2. (6.77)

48Gomes, M.I., Martins, M.J. and Neves, M. (2005). Revisiting the second order re-
duced bias “maximum likelihood” extreme value index estimators. Notas e Comunicações
CEAUL 10/2005. Submitted.



202 6. Advanced Statistical Analysis

This is immediate from

γ̂•
β̂,ρ̂,k

− γ̂•
β,ρ,k ∼ −A(n/k)

1 − ρ

( β̂ − β

β
+ (ρ̂ − ρ) log(n/k)

)
.

In Fig. 6.7, we illustrate the differences between the sample paths of the
estimator in (6.75), denoted H β̂,ρ̂ for the sake of simplicity. We have considered a

sample of size n = 10, 000 from a Fréchet model, with γ = 1, when we compute β̂
and ρ̂ at the same level k used for the estimation of the tail index γ (left), when

we compute only β̂ at that same level k, being ρ̂ computed at a larger k-value, let
us say an intermediate level k1 such that

√
k1 A(n/k1) → ∞, as n → ∞ (center)

and when both ρ̂ and β̂ are computed at that high level k1 (right).

We have estimated β through β̂0,k = β̂GM
ρ̂01,k in (6.71), computed at the level

k used for the estimation of the tail index, as well as computed at the level k1 =
[n0.995] in (6.63), the one used for the estimator ρ̂01 in (6.64). We use the notation

β̂01 = β̂0,k1 . The estimates of β and ρ have been incorporated in the H–estimator,
leading to H β̂0,k,ρ̂0,k

(left), H β̂0,k,ρ̂01
(center) and H β̂01,ρ̂01

(right).
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Fig. 6.7. External estimation of (β, ρ) at a larger fixed level k1 (right) versus estimation

at the same level both for β and ρ (left) and only for β (center).

From the pictures in Fig. 6.7, as well as from the asymptotic results in (6.60),
(6.70), (6.73) and (6.77), we thus advise, in practice:

• The direct estimation of the dominant component of the bias of Hill’s es-
timator of a positive tail index γ. The second order parameters in the bias
should be computed at a fixed level k1 of a larger order than that of the level
k at which we compute the Hill estimator.

• Such an estimated bias should then be directly removed from the classical
Hill estimator.

• Doing this, we are able to keep the asymptotic variance of the new reduced-
bias tail index estimator equal to γ2, the asymptotic variance of the Hill
estimator.
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A Simulation Experiment

We have here implemented a simulation experiment, with 1000 runs, for an un-
derlying Burr parent,

F (x) = 1 −
(
1 + x−ρ/γ

)1/ρ
, x ≥ 0,

with ρ = −0.5 and γ = 1. For these Burr models, β = γ for any ρ. We have
again estimated β through β̂0,k, computed at the level k used for the estimation
of the tail index, as well as computed at the level k1 in (6.63), the one used for
the estimator ρ̂01 in (6.64). We use the same notation as before. The simulations
show that the tail index estimator H β̂01,ρ̂01,k seems to work reasonably well, as
illustrated in Fig. 6.8.
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Fig. 6.8. Mean values and mean squared errors of estimators the Hill and reduced–bias

estimators, for samples of size n = 1000, from a Burr parent with γ = 1 and ρ = −0.5

(β = 1).

The discrepancy between the behavior of the estimator H β̂01,ρ̂01
and the

random variable Hβ,ρ suggests that some improvement in the estimation of second
order parameters may be still welcome, but the behavior of the mean squared error
of the H–estimator is rather interesting: the new estimator H β̂01,ρ̂01,k is better than
the Hill estimator not only when both are considered at their optimal levels, but
also for every sub–optimal level k, and this contrarily to what happens with the
classical reduced–bias estimators GJρ̂01 and H β̂0,k,ρ̂01

, as we may also see in Fig.
6.8.

Some overall conclusions

• If we estimate the first order parameter at a level k, and use that same level k
for the estimation of the second order parameter ρ and β in A(t) = γ β tρ, we
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get a much higher asymptotic variance than when we compute ρ at a larger
level k1, computing β at the same level k. And we may still decrease the
asymptotic variance of the tail index reduced–bias estimators, if we estimate
both second order parameters, β and ρ, at a larger level k1 than the one used
for the estimation of the first order parameter.

• The main advantage of the new reduced–bias estimators in (6.74) and (6.75)

lies on the fact that we can estimate β and ρ adequately through β̂ and
ρ̂ so that the MSE of the new estimator is smaller than the MSE of Hill’s
estimator for all k, even when |ρ| > 1, a region where has been difficult to find
alternatives for the Hill estimator. And this happens together with a higher
stability of the sample paths around the target value γ. The pioneering paper
on a new type of reduced–bias estimators of a positive tail index, i.e., the
ones with an asymptotic variance equal to γ2, is by Gomes et al.49, who
introduce a weighted Hill estimator, linear combination of the log–excesses.

• To obtain information on the asymptotic bias of these reduced–bias estima-
tors we should have gone further into a third order framework, specifying the
rate of convergence in the second order condition in (6.51). This is however
beyond the scope of this chapter. Interested readers may look into Gomes et
al.50

The Estimation of β and γ in Action

We go on with the following:

Algorithm (β and γ estimation).

4. Chosen τ in step 3, work then with (ρ̂, β̂) = (ρ̂τ1, β̂τ1) := (ρ̂τ,k1 , β̂ρ̂τ,k1
), ρ̂τ,k,

k1 and β̂ρ̂,k given in (6.62), (6.63) and (6.71), respectively.

5. Estimate the optimal level for the estimation through the Hill, given by

k̂H
0 =

(
(1 − ρ̂)n−ρ̂/(β̂

√
−2ρ̂)

)2/(1−2ρ̂)
, compute kmin = k̂H

0 /4, kmax = 4k̂H
0

and plot the classical Hill estimates Hk, kmin ≤ k ≤ kmax.

6. Plot also, again for kmin ≤ k ≤ kmax, the reduced-bias tail index estimates
H β̂,ρ̂,k and M β̂,ρ̂,k, associated to the estimates (ρ̂, β̂) in step 4.

49Gomes, M.I., de Haan, L. and Rodrigues, L. (2004). Tail index estimation through
accommodation of bias in the weighted log–excesses. Notas e Comunicações CEAUL
14/2004. Submitted.

50Gomes, M.I., Caeiro, F. and Figueiredo, F. (2004). Bias reduction of a tail index
estimator through an external estimation of the second order parameter. Statistics 38,
497–510.
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7. Obtain χ
H

, χ
H

and χ
M

, the medians of Hk, H β̂,ρ̂,k and M β̂,ρ̂,k, respectively,

for kmin ≤ k ≤ kmax. Compute the indicators, I
H

:=
∑

k1≤k≤k2

(
Hk −χ

H

)2
,

I
H

:=
∑

k1≤k≤k2

(
H β̂,ρ̂,k − χ

H

)2
and I

M
:=
∑

k1≤k≤k2

(
M β̂,ρ̂,k − χ

M

)2
.

8. Let T be the estimator (among H , H and M) providing the smallest value
among I

H
, I

H
and I

M
. Consider γ̂

T
= χ

T
as estimate of γ.

Financial Data Analysis

We now provide a data analysis of log–returns associated to the Euro–British
pound daily exchange rates, collected from January 4, 1999, until November 17,
2005.

The number of positive log–returns of these data is n0 = 385. The sample
paths of the ρ–estimates associated to the tuning parameter τ = 0 and τ = 1
lead us to choose, on the basis of any stability criterion for large k, like the one
suggested in step 3. of the Algorithm, the estimate associated to τ = 0. The
estimates obtained are

(
ρ̂0, β̂0

)
= (−0.686, 1.047) obtained at k1 = 808.

In Fig. 6.9, for the Euro–British pound data, we picture the sample paths
of the estimators of the second order parameters ρ (left) and the sample paths of
the classical Hill estimator H in (6.54), the second order reduced–bias tail index
estimators H0 = H β̂01,ρ̂01

and M0 = M β̂01,ρ̂01
, provided in (6.74) and (6.75),

respectively (right). For this data set, the criterion in step 7. of the Algorithm led
to the choice of M0 and to the estimate γ̂

M0
= 0.289 (associated to k = 132).

-3

-2

-1

0

0 400 800 ̂ρ 0 (k)

ˆ ρ 1(k)

k

 ̂ρ = −0.70

0,1

0,2

0,3

0,4

10 100 190

H H 0

ˆ γ M 0
= 0.29

k

M 0

Fig. 6.9. Estimates of ρ, through ρ̂τ,k in (6.62), τ = 0 and 1 (left), and of γ, through H ,

M and H in (6.54), (6.74) and (6.75) (right), for the positive log–returns on Euro–British

pound data.
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Additional Literature on Reduced–Bias Tail Index Estimation

Other approaches to reduced–bias estimation of the tail index can be found in
Gomes and Martins51, Fraga Alves52 and Gomes et al.53 54, and the references
therein.

51Gomes, M.I. and Martins M.J. (2001). Alternatives to Hill’s estimator—asymptotic
versus finite sample behaviour. J. Statist. Planning and Inference 93, 161–180.

52Fraga Alves, M.I. (2001). A location invariant Hill–type estimator. Extremes 4, 199–
217.

53Gomes, M.I., Figueiredo, F. and Mendonça, S. (2005). Asymptotically best linear
unbiased tail estimators under a second order regular variation condition. J. Statist.
Plann. Inf. 134, 409–433

54Gomes, M.I., Miranda, C. and Viseu, C. (2006). Reduced bias tail index estimation
and the Jackknife methodology. Statistica Neerlandica 60, 1–28.



Chapter 7

Statistics of
Dependent Variables

coauthored by H. Drees1

Classical extreme value statistics is dominated by the theory for independent
and identically distributed (iid) observations. In many applications, though, one
encounters a non–negligible serial (or spatial) dependence. For instance, returns
of an investment over successive periods are usually dependent, cf. Chapter 16,
and stable low pressure systems can lead to extreme amounts of rainfall over
several consecutive days. These examples demonstrate that a positive dependence
between extreme events is often particularly troublesome as the consequences,
which are already serious for each single event, may accumulate and finally result
in a devastating catastrophe.

In Section 7.1 we discuss the impact of serial dependence on the statistical
tail analysis. A more detailed analysis of the consequences for the estimation of
the extreme value index and extreme quantiles is given in Section 7.2 and Section
7.3, respectively, under mild conditions on the dependence structure. Section 7.4
deals with (semi–)parametric time series models where the dependence structure
is known up to a few parameters.

Throughout this chapter we assume that a strictly stationary univariate time
series Xi, 1 ≤ i ≤ n, with marginal df F is observed, cf. page 165.

1Universität Hamburg.
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7.1 The Impact of Serial Dependence

The presence of serial dependence has two consequences for the modeling and the
statistical analysis of the data. Firstly, in contrast to the iid case, the stochastic
behavior is not fully determined by the df of a single observation, but the serial
dependence structure must be taken into account, e.g., when the distribution of
the sum of two successive observations is to be analyzed. Secondly, even if one is
interested only in the tail behavior of the marginal distribution, then often the
serial dependence strongly influences the accuracy of estimators or tests known
from classical extreme value statistics for iid data.

If one does not assume a (semi–)parametric time series model, then rela-
tively few statistical methods for the estimation of the dependence structure be-
tween extreme observations are available. One possible approach to the analysis of
the dependence is to apply multivariate extreme value statistics to the vectors of
successive observations. Although this approach has proved fruitful in probability
theory, it is of limited value in the statistical analysis because, due to the ‘curse of
dimensionality’, in practice only very few consecutive observations can be treated
that way.

Alternatively, estimators for certain parameters related to the serial depen-
dence have been proposed in the literature. Best known are estimators of the ex-
tremal index, that is, the reciprocal value of the mean cluster size, cf. Sections 2.7
and 6.2. Hsing2 also proposed estimators for the cluster size distribution. Unfortu-
nately, all these parameters bear limited information about the serial dependence
structure. For example, Gomes and de Haan3 proved that the probability of k
successive exceedances of an ARCH(1) time series over a high threshold does not
only depend on the extremal index but on the whole dependence structure of the
ARCH process. of the marginal parameters that of the aforementioned depen-
dence parameters. Since a more general approach to the statistical analysis of the
dependence structure is still an open problem, here we will focus on the second
aspect, that is, the influence of the serial dependence on estimators of marginal
tail parameters like the extreme value index or extreme quantiles.

Recall from (6.11) that under weak conditions one has

P
{

max
1≤i≤n

Xi ≤ x
}
≈ P

{
max

1≤i≤[nθ]
X̃i ≤ x

}
for large values of n where X̃i denote iid random variables with the same df F as
X1 and θ ∈ (0, 1] is the extremal index. Hence, as far as maxima are concerned,
the serial dependence reduces the effective sample size by a factor θ. Likewise, one
may expect that a time series with a non–negligible serial dependence bears less

2Hsing, T. (1991). Estimating the parameters of rare events. Stoch. Processes Appl.
37, 117–139.

3Gomes, M.I. and de Haan, L. (2003). Joint exceedances of the ARCH process.
Preprint, Erasmus University Rotterdam.
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information on F than an iid sample of the same size, and that thus the estimation
error for marginal parameters will be higher. Indeed, we will see that under mild
conditions on the dependence structure the same estimators as in the classical
iid setting can be used, but that their distribution is less concentrated about the
true value. Generally, the application of standard estimation procedures relies on
ergodic theory4 5. However, if one does not account for this loss of accuracy, e.g.,
in flood frequency analysis, then it is likely that safety margins are chosen too low
to prevent catastrophic events with the prescribed probability.

The construction of confidence intervals based on dependent data is substan-
tially more complicated than in the iid setting, because the extent to which the
estimation error is increased by the serial dependence does not only depend on
a simple dependence parameter—like the extremal index—but on the whole de-
pendence structure in a complex manner. Therefore, a completely new approach
to the construction of confidence intervals is needed, see Sections 7.2 and 7.3. As
a by–product, we will also obtain a new graphical tool for choosing the sample
fraction on which the estimation is based, that may be useful also in the standard
iid setting.

Instead of examining the accuracy of estimators of marginal parameters under
dependence, one may also first try to decluster the observed time series and then to
apply the classical statistical theory to the nearly independent data thus obtained,
see also the end of Section 2.7. This approach, however, has two serious drawbacks.
Firstly, the declustering is often a delicate task that must be done manually by
subject–matter specialists. Secondly, although a cluster bears less information than
iid data of the same size, taking into account only one observation from each
cluster usually seems a gross waste of information which will often lead to even
larger estimation errors for the parameter of interest. For these reasons, in what
follows we will adopt are more refined approach.

7.2 Estimating the Extreme Value Index

Assume that the df F belongs to the max–domain of attraction of an extreme value
distribution with index γ. Recall from (1.46) that then the conditional distribution
of an exceedance over a high threshold u can be approximated by a GP distribution
Wγ,u,σu . In Section 5.1 this approximation was used to derive estimators of the
extreme value index γ which use only the k largest observations from analogous
estimators in a parametric GP model. We will see that under mild conditions the
same estimators can be used for time series data.

4Révész, P. (1968). The Laws of Large Numbers. Academic Press, New York.
5Pantula, S.G. (1988). Estimation of autoregressive models with ARCH errors.

Sankhyā 50, 119–148.
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Conditions on the Dependence Structure

The trivial time series Xi = X1 for all i shows that, without further conditions, in
general this approach is not justified any longer if the data exhibit serial depen-
dence. To avoid problems of that type, we require that the dependence between
the data observed in two time periods separated by l time points vanishes as l
increases. More precisely, we assume that the so–called β–mixing coefficients tend
to 0 sufficiently fast. For technical details of the conditions and results mentioned
in this and the next section, we refer to a series of articles6 7 8. This mixing con-
dition is usually satisfied for linear time series like ARMA models, and also for
the GARCH models defined by (16.29) and (16.44)—introduced in conjunction
with returns of random asset prices—and, more general, for Markovian time series
under mild conditions. However, time series models with long range dependence
are often ruled out.

Secondly, we need to assume that the serial dependence between exceedances
over a high threshold u stabilizes as u increases. This very mild condition will
be automatically satisfied if the vector (X1, X1+h) belongs to the max–domain
of attraction of a bivariate extreme value distribution, see (12.2), for all h > 0.
Finally, we assume that the sizes of clusters of extreme observations have a finite
variance.

Normal Approximations and Confidence Intervals

Under these mild conditions, it can be shown that the k largest order statistics
Xn−k+1:n, . . . , Xn:n can be approximated by the order statistics of GP random
variables. More precisely, one can approximate the empirical tail quantile func-
tion pertaining to the observed order statistics by a GP quantile function plus a
stochastic error term of order k−1/2, provided k is sufficiently small relative to the
sample size n, but not too small. The stochastic error term can be described in
terms of a centered Gaussian process whose covariance function is determined by
the tail dependence structure of the observed time series.

From this result, one can derive approximations to the distributions of the
estimators introduced in Section 5.1. For example, the Hill estimator (in the case
γ > 0) and the maximum likelihood estimator in the GP model based on the
k largest order statistics (if γ > −1/2) are approximately normally distributed
with mean γ and variance γ2σ2

0/k and (1 + γ)2σ2
0/k, respectively, where σ2

0 is

6Drees, H. (2000). Weighted approximations of tail processes for β–mixing random
variables. Ann. Appl. Probab. 10, 1274–1301.

7Drees, H. (2002). Tail empirical processes under mixing conditions. In: H.G. Dehling,
T. Mikosch und M. Sørensen (eds.), Empirical Process Techniques for Dependent Data,
325–342, Birkhäuser, Boston.

8Drees, H. (2003). Extreme quantile estimation for dependent data with applications
to finance. Bernoulli 9, 617–657.
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determined by the dependence structure. If the data are independent, then σ2
0 = 1

while typically σ2
0 > 1 if serial dependence is present in the data. Recall that this

approximation is justified only if k is sufficiently small relative to the length of
the time series, while for larger values of k the estimators exhibit a non–negligible
bias if F is not exactly equal to a GP df or, for the Hill estimator, the location
parameter in the GP1 model does not equal 0. Hence the Hill estimator need
not outperform the ML estimator, despite its smaller variance, cf. the discussion
around Fig. 5.1 and Fig. 5.2.

Unlike for iid samples, the estimators will not necessarily be asymptotically
normal if k grows too slowly as the sample size n increases. This new effect can be
explained as follows. If k is very small relative to n, then all order statistics used by
the estimator stem from very few clusters of large observations. However, within
one cluster the behavior of large observations is not determined by the tail df only,
but it is also influenced by the specific serial dependence structure. In practice,
the lower bound on the rate at which k tends to infinity does not cause major
problems, because usually the β–mixing coefficients tend to 0 at an exponential
rate. In this case, it is sufficient that k is of larger order than log2+ε n for some
ε > 0, which is anyway needed to obtain accurate estimates.

More generally, a large class of estimators γ̂
(k)
n that use only the k largest

order statistics are approximately normally distributed with mean γ and variance
σ2/k with a σ2 > 0 that is determined by the tail dependence structure of the
time series. While this approximation allows a comparison of the performance of
different estimators for a given time series model, it cannot be used directly for
the construction of confidence intervals, because σ2 is unknown.

To overcome this problem, we take advantage of the fact that the size of the

random fluctuations of the estimates γ̂
(k)
n as k varies are proportional to σ. More

concretely, one can show that, for a suitable chosen j, the estimator

σ̂2
n :=

k∑
i=j

(γ̂(i)
n − γ̂(k)

n )2
/ k∑

i=j

(i−1/2 − k−1/2)2 (7.1)

is consistent for σ2. Simulation studies indicate that in practice one may choose j

equal to the smallest number such that γ̂
(j)
n is well defined, e.g., j = 2 for the Hill

estimator. Now approximative confidence intervals for γ can be easily constructed.
For example,[

γ̂(k)
n − Φ−1(1 − α/2)σ̂nk−1/2, γ̂(k)

n + Φ−1(1 − α/2)σ̂nk−1/2
]

(7.2)

defines a two–sided confidence interval with nominal coverage probability 1 − α.

Changes of Interest Rates—a Case Study, Part 1

Life insurance companies often invest a large proportion of the capital they manage
in low risk bonds. If they guarantee a minimal interest rate to their customers,
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they are exposed to the risk that the interest rates of the low risk bonds drop
below this level. On the other hand, a hike of the interest rates will let the value
of the portfolio decrease rapidly, which may cause problems if many customers
withdraw their capital from the company. In both cases a quick change of the
interest rate is particularly troublesome, as it gives the company little time to
adjust its investment strategy.

In this case study, we want to analyze the interest rates of the US treasury
bonds with maturity in 10 years observed on a monthly basis from 1957 to 1999.
The time series Ri, 1 ≤ i ≤ m, of length m = 515 is assumed stationary. Given
the long observational period, this assumption is somewhat questionable but no
natural alternative model is at hand. We are interested in extreme quantiles of
the change of the rate over one year. In order to not waste data, we analyze the
interest rate changes over overlapping one year periods, namely

Xi := Ri+12 − Ri, 1 ≤ i ≤ n := m − 12 = 503,

which are clearly dependent, see Fig. 7.1.
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Fig. 7.1. Yearly changes of in-

terest rates of 10 year treasury

bonds.

As a first step in the analysis of the upper tail, we estimate the extreme value
index. The left plot of Fig. 7.2 displays the Hill estimator, the ML estimator in the
GP model and the moment estimator, cf. Section 5.1, as a function of the number
k of largest order statistics. All three estimates are quite different: the Hill plot
exhibits a clear (upward) trend almost from the beginning, while the curves of the
ML estimates and the moment estimates are nearly parallel for k between 50 and
200. As a rule of thumb, such a behavior indicates that a Pareto model with non–
vanishing location parameter fits the upper tail well. Indeed, after a shift of the
data by 0.05, the ML estimator and the moment estimator yield almost identical
values for 80 ≤ k ≤ 220 which are relatively stable for 100 ≤ k ≤ 160, and the Hill
plot is very stable for 80 ≤ k ≤ 160 with values close to the other estimates (Fig.
7.2, right plot). Again we see that the Hill estimator is particularly sensitive to
shifts of the data, whereas the moment estimator is less strongly influenced and
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the ML estimator is invariant under such shifts, cf. Fig. 5.1. Here, after the shift,
the Hill estimator with k = 160 seems a reasonable choice, that yields γ ≈ 0.111.
Other diagnostic tools, like a QQ–plot, confirm that the corresponding pure Pareto
model fits the tail well after the shift of the data.
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Fig. 7.2. Hill estimator (solid), ML estimator (dashed) and moment estimator (dotted)

for the right tail of yearly interest rate changes (left) and the same data shifted by 0.05

(right).

Next we calculate the confidence intervals (7.2). The estimates of the asymp-
totic variance according to (7.1) are plotted in the left graph of Fig. 7.3. Again the
curve is quite stable for k between 80 and 180. The right graph of Fig. 7.3 displays
the Hill estimator together with the 95%–confidence intervals (7.2) as a function
of k. For comparison, also the confidence intervals[

γ̂(k)
n (1 − Φ−1(1 − α/2)k−1/2), γ̂(k)

n (1 + Φ−1(1 − α/2)k−1/2)
]

(7.3)

are plotted for α = 0.05, that would be appropriate if the data were independent
and hence the asymptotic variance was equal to γ2. As one expects, the confidence
intervals which take the serial dependence into account, are considerably wider: for
k = 160 it equals [0.086, 0.136] compared with the interval [0.094, 0.128] derived
from the theory for iid data. (However, note that these confidence intervals do
not account for the shift of the data by 0.05, which is motivated by the achieved
coincidence of the moment estimator and the ML estimator and is thus data driven.
Taking this into account would lead to even wider confidence intervals.)

The analysis of the lower tail is more difficult. After shifting the data by 0.2
one obtains the ML estimates and the moment estimates shown in the left plot of
Fig. 7.4. Here the true value may be negative, so that the Hill estimator cannot
be used. For k ≤ 120 both estimators are very unstable, but for k between 120
and 275 the curves are relatively stable and close together. A QQ–plot based on
the moment estimator with k = 270 shows that the tail is fitted reasonably well,
although the most extreme observations deviate from the ideal line. Simulations,
however, show that for dependent data one must expect much bigger deviations
in the QQ–plot than one typically observes for iid data. Unfortunately, because
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Fig. 7.3. Estimated asymptotic variance according to (7.1) (left) and the Hill estimator

(solid) with 95%–confidence intervals (7.2) (dashed) and 95%–confidence intervals (7.3)

assuming independence (dotted) (right).

of the large fluctuations of the estimators for small values of k, the estimates for
the asymptotic variance are unreliable, and no reasonable confidence interval is
available.
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Fig. 7.4. ML estimates (dashed) and moment estimates (dotted) for the left tail (left)

and QQ–plot (right).

Choice of the Sample Fraction Used for Estimation

The shape of the curve of variance estimates displayed in the left plot of Fig.
7.3 is quite common when the Hill estimator is used. Except for the very first
values of k, the variance estimates are usually rather large when only few order
statistics are used, then the curve decreases until it stabilizes for intermediate
values of k, and finally at a certain point it sharply increases. Since the estimator
σ̂2

n just measures an average squared difference of Hill estimators based on different
numbers of order statistics, it cannot distinguish between random fluctuations
and systematic changes due to an increasing bias. Hence, for larger values of k,
the growing bias leads to increasing variance estimates. Although in this range
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the variance estimates are clearly quite inaccurate, in practice this effect is to be
welcomed for two reasons.

Firstly, much more clearly than the Hill plot, the sharp kink in the curve of
variance estimates indicates the point from which on the bias significantly con-
tributes to the error of the Hill estimator. Therefore, the plot of the variance
estimates is a very useful tool for choosing the number of largest order statistics
to be used by the Hill estimator even for iid data.

Secondly, the confidence intervals (7.2) start to widen again at the point
where the bias kicks in, whereas the confidence intervals (7.3) motivated by the
theory for iid data usually shrink with increasing k. Hence the latter give a to-
tally false impression; indeed, in literature one can often find plots of “confidence
intervals” which are disjoint for different values of k! In contrast, the confidence
intervals derived from the theory for dependent data are qualitatively more rea-
sonable for large values of k (though they are too conservative) in that the growing
uncertainty due to the increasing bias is taken into account.

Unfortunately, as in the analysis of the lower tail in the case study, the
variance estimates (7.1) are often unreliable when the estimator of the extreme
value index are very unstable for small values of k. Sometimes it might help to
start with a larger number of order statistics, that is, to choose a larger value
for j, but this requires the number of observations to be large, which limits the
applicability of this approach. In this case, one might think of robustified versions

of the variance estimator. For example, the squared difference (γ̂
(i)
n − γ̂

(k)
n )2 could

be replaced with the absolute difference and, accordingly, (i−1/2 − k−1/2)2 with
|i−1/2 − k−1/2|, but it is not clear whether the resulting estimator is consistent for
σ2, too.

7.3 Extreme Quantile Estimation

In most applications, not the extreme value index (which is just a parameter in
the limit model for maxima or exceedances) but, e.g., extreme quantiles xp :=
F−1(1 − p) for small p > 0 are the main parameters of interest, see Chapter 16.

Estimation in the Restricted Pareto Model

The estimation of extreme quantiles is particularly simple if the largest order
statistics approximately behave as in the restricted Pareto model with location
parameter 0. Then xp can be estimated by the so–called Weissman estimator

x̂n,p := x̂(k)
n,p := Xn−k+1:n

(np

k

)−γ̂n

(7.4)

where γ̂n = γ̂
(k)
n denotes an estimator of γ that is based on the k largest obser-

vations. Of course, this approach only makes sense if k is much bigger than np,
because else one could simply use the empirical quantile Xn−[np]+1:n.
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In the setting of Section 7.2, one has under very mild extra conditions on p

1

log(k/(np))
log

x̂n,p

xp
=

1

log(k/(np))

( x̂n,p

xp
− 1

)
(1 + oP (1))

= (γ̂n − γ)(1 + oP (1)).

Hence, if γ̂n is approximately normal with mean γ and variance σ2/k, then both
log(x̂n,p/xp) and x̂n,p/xp − 1 are approximately normal with mean zero and vari-
ance log2(k/(np))σ2/k. In particular if one uses the Hill estimator γ̂n, the normal
approximation is much better for log(x̂n,p/xp) than for the relative estimation
error x̂n,p/xp − 1, because log x̂n,p is a linear function of γ̂n, which in turn is a
linear statistic and hence is often well approximated by a normal random variable
(cf. Fig. 7.10). Therefore, confidence intervals shall be based on the normal ap-
proximation for log x̂n,p rather than the normal approximation for x̂n,p. If σ̂2

n is a
suitable estimator for σ2, then[

x̂n,p exp
(
− Φ−1(1 − α/2)σ̂nk−1/2 log(k/(np))

)
,

x̂n,p exp
(
Φ−1(1 − α/2)σ̂nk−1/2 log(k/(np))

)]
(7.5)

is a confidence interval for xp with approximate coverage probability 1 − α.
Here one may use the variance estimator (7.1) defined in terms of differences

of γ–estimates, but it is more natural to define an analogous estimator in terms

of logarithmic quantile estimators log x̂
(k)
n,p for different numbers k of largest order

statistics:

σ̂2
n,p :=

k∑
i=j

( log(x̂
(i)
p /x̂

(k)
p )

log(i/(np))

)2
/ k∑

i=j

(
i−1/2 − log(k/(np))

log(i/(np))
k−1/2

)2

, (7.6)

with j greater than np. Unlike (7.1), this estimator measures directly the fluctu-

ations of log x̂
(k)
n,p as a function of k. Because the estimator (7.1), as an estimator

for the asymptotic variance of the quantile estimator, relies on the aforementioned

asymptotic relationship between the fluctuations of γ̂n and of log x̂
(k)
n,p, one may

expect that the estimator σ̂2
n,p performs better for moderate sample sizes when

this asymptotic approximation is inaccurate.
In an extensive simulation study9 it has been shown that for the Hill estimator

and several time series models, the confidence intervals (7.5) with the variance
estimated by (7.6) are quite accurate, though a bit too conservative, because the
asymptotic variance is over–estimated. To correct for this over–estimation, one
may choose k ≥ k0 such that σ̂2

n,p (or the width of the confidence intervals) is
minimized, when k0 is chosen such that the variance estimates seem reliable for
k ≥ k0. This simple trick works surprisingly well for many time series models.

9Drees, H. (2003). Extreme quantile Estimation for Dependent Data with Applications
to Finance. Bernoulli 9, 617–657.
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Note that the asymptotic variance of the quantile estimators does not de-
pend on p. Hence one may use an exceedance probability p̃ in the definition (7.6)
of σ̂2

n,p̃ different from the exceedance probability p of the extreme quantile one is
actually interested in. While this approach contradicts the general philosophy ex-
plained above (namely that one should use the same estimators for the estimation
of the variance and for the estimation of the parameter of interest), it improves
the performance of the confidence intervals significantly if p is so small such that
F−1(1 − p) lies far beyond the range of observations and thus the quantile es-
timators are quite inaccurate. In such a situation it is advisable to estimate the
variance by σ̂2

n,p̃ such that the corresponding quantile F−1(1− p̃) lies at the border
of the sample, e.g., p̃ = 1/n.

Changes of Interest Rates—a Case Study, Part 2

In the situation of the case study discussed above, we aim at estimating the max-
imal yearly change of interest rates of the 10 year US treasury bonds which is
exceeded with probability 1/2000, i.e., we want to estimate x0.0005. Again we use
the Hill estimator for the extreme value index applied to the observed yearly
changes shifted by 0.05.

The left plot in Fig. 7.5 displays the variance estimates (7.6) with j = 2. (The
estimates do not change much when one uses σ̂2

n,p̃ with p̃ = 1/500 and j = 3.)

As the variance estimates σ̂2
n for the Hill estimator, see Fig. 7.3, the variance es-

timates σ̂2
n,p are quite high if only few order statistics are used and they stabilize

for k around 150, but here for k = 160 one obtains an estimated variance of 0.038,
while for the Hill estimator one gets 0.027. This seems to contradict the asymp-
totic result, according to which these asymptotic variances are equal. However, a
closer inspection of the proof of the asymptotic normality of the quantile estimator
shows that the first term ignored in the asymptotic expansion is just of the order
1/ log(k/(np)) smaller than the leading term. Thus for moderate sample sizes, the
asymptotic result can be quite misleading.

The quantile estimates and the confidence intervals based on the variance
estimates discussed above are shown in the right plot of Fig. 7.5 together with
the confidence intervals when the asymptotic variance is estimated by γ̂2

n as it is
suggested by the asymptotic theory for iid data. (The estimates are corrected for
the shift by 0.05 of the observed interest rate changes.) Here, for k = 160, the
former interval [0.044, 0.089] is more than 4 times longer than the latter interval
[0.060, 0.070]! In such a situation, for two reasons it is questionable to use the
standard asymptotic theory: firstly, one ignores the loss of accuracy due to the
serial dependence, and secondly, the first order asymptotic approximation of the
quantile estimator is rather crude for moderate sample sizes.

The point estimate for x0.0005 is 0.065. Note that the confidence intervals
are not symmetric about this point estimate, because we have used the normal
approximation of log x̂n,p rather than that of x̂n,p to construct the confidence
intervals.
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Fig. 7.5. Variance estimator (7.6) (left) and the estimated quantile F−1(1 − 1/2000)

(solid) with confidence intervals (7.5) (dashed) and the confidence intervals derived from

the asymptotic theory for iid data (dotted) (right).

Estimation in the Generalized Pareto Model

While in principle it is quite simple to calculate point estimates of extreme quan-
tiles in the full GP model, the construction of reliable confidence intervals is a
difficult task.

To estimate xp = F−1(1 − p), one fits the GP model to the k largest order
statistics, as it is described in Section 5.1. To this end, one may use the maximum
likelihood estimator of the extreme value index and the scale parameter of the
approximating GP model (provided γ > −1/2), or the moment estimators

γ̂n := l1,n + 1 − 1

2

(
1 −

l21,n

l2,n

)−1

, ŝn :=
2l31,n

l2,n

with

lj,n :=
1

k − 1

k−1∑
i=1

logj Xn−i+1:n

Xn−k+1:n
.

Then an estimator for xp is given by

x̃n,p := Xn−k+1:n + ŝn
(np/k)−γ̂n − 1

γ̂n
. (7.7)

To construct confidence intervals in an analogous way as in the restricted
Pareto model, one needs suitable approximations to the distribution of these quan-
tile estimators. Unfortunately, it turns out that the approximations have a quite
different form for heavy tailed and light tailed distributions. If F is heavy tailed
(i.e., γ > 0), then the extreme quantiles are unbounded and the relative estima-
tion error x̂n,p/xp − 1 (or log(x̂n,p/xp)) can be approximated by a normal random
variable as in the restricted Pareto model. Since for light tailed distributions (i.e.,
γ < 0) both the estimate and the extreme quantile to be estimated are close to the
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right endpoint of the distribution, the relative estimation error is of little inter-
est. In this case, a normal approximation can be established for the standardized
absolute estimation error.

More precisely, assume that the extreme value index γ < 0 and the scale
parameter of the GP approximation of the exceedances over Xn−k:n are estimated

by γ̂n = γ̂
(k)
n and ŝn = ŝ

(k)
n , respectively, using the maximum likelihood approach

(if γ > −1/2) or the moment estimators mentioned above. Then

k
1/2
n

ŝn
(x̃n,p − xp)

is approximately normally distributed with mean 0 and a variance σ2 which again is
determined by the serial dependence in a complex manner.10 The limiting variance
can be consistently estimated by

σ̂2
n :=

k∑
i=j

( x̃
(i)
n,p − x̃

(k)
n,p

ŝ
(i)
n

)2/ k∑
i=j

(i−1/2 − k−1/2)2 (7.8)

with ŝ
(i)
n denoting the estimator of the scale parameter of the GP approximation

of the exceedances over Xn−i:n.
Note that the estimators (7.6) and (7.8) for the approximative variances of the

quantile estimators look quite different in the cases γ > 0 and γ < 0, respectively,
and likewise the resulting confidence intervals do. In principle, one could first test
for the sign of the extreme value index, and then construct the confidence intervals
accordingly, but apparently this procedure does not work well in practice if γ is
close to 0. The problem of finding good estimators of the approximative variance is
aggravated by the large variability of many estimators of the extreme value index
based on a small number of order statistics (cf. part 1 of the case study discussed
above). Thus, the construction of reliable confidence intervals remains an open
problem if γ is small in absolute value.

7.4 A Time Series Approach

Often parametric dependence structures are used to model time series, because
they facilitate a better interpretation of the dynamics of the time series than a non–
parametric model. Moreover, usually they allow for more efficient estimators. The
best known examples are ARMA(p, q) models, where it is assumed that (Xt)1≤t≤n

is a stationary time series satisfying

Xt −
p∑

i=1

ϕiXt−i = Zt +

q∑
j=1

ϑjZt−j, p + 1 ≤ t ≤ n, (7.9)

10Drees, H. (2003). Extreme quantile stimation for dependent data with applications
to finance. Bernoulli 9, p. 652.
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with centered iid innovations Zt and, in addition, unknown coefficients ϕ1, . . . , ϕp

and ϑ1, . . . , ϑq.
Suppose that the df FZ of the innovations has balanced heavy tails, that is,

FZ ∈ D(Gγ) for some γ > 0 and (1 − FZ(x))/FZ (−x) → p/(1 − p) as x → ∞ for
some p ∈ (0, 1). Then the tail of the df of the observed time series is related to the
tail of FZ as follows:

1 − FX(x) ∼ cϕ,ϑ(1 − FZ(x)), x → ∞;

see, e.g., Datta and McCormick (1998)11. Here cϕ,ϑ is a constant depending on
(ϕ1, . . . , ϕp, ϑ1, . . . , ϑq). In particular, FX ∈ D(Gγ) and

F−1
X (1 − p) ∼ F−1

Z

(
1 − p

cϕ,ϑ

)
, p → 0. (7.10)

Therefore, one may adopt two different approaches to the tail analysis of the
time series:

• Estimate γ and F−1
X (1−p) directly from the observed time series as discussed

in the Sections 7.2 and 7.3.

• First estimate ϕ1, . . . , ϕp and ϑ1, . . . , ϑq by some standard method for ARMA
models, cf. [5].

In the next step, calculate the residuals Ẑt based on the fitted model; for
example, in an AR(p) model (i.e., if (7.9) holds with ϑ1 = · · · = ϑq = 0) let

Ẑt := Xt −
p∑

i=1

ϕ̂iXt−i, p + 1 ≤ t ≤ n.

Finally, apply the classical theory for iid observations to the residuals to
estimate γ and F−1

Z (1 − p/cϕ̂,ϑ̂) (as an approximation to F−1
X (1 − p)).

For AR(p) time series, Resnick and Stărică12 demonstrated that the Hill esti-
mator performs better in the second approach. A similar result was recently proved
by Ling and Peng (2004)13. To the best of our knowledge, analogous results about
the corresponding quantile estimators are not known up to now. We expect that
the model based tail analysis using the residuals also leads to more accurate quan-
tile estimates, because the estimation error of the Hill estimator asymptotically
determines the performance of the quantile estimators.

11Datta, S. and McCormick, W.P. (1998). Inference for the tail parameters of a linear process
with heavy tail innovations. Ann. Inst. Statist. Math. 50, 337–359.

12Resnick, S.I. and Stǎricǎ, C. (1997). Asymptotic behavior of Hill’s estimator for autoregres-
sive data. Comm. Statist. Stochastic Models 13, 703–721.

13Ling, S. and Peng, L. (2004). Hill’s estimator for the tail index of an ARMA model. J. Statist.
Plann. Inference 123, 279–293.
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However, the relationship (7.10) between the tails of FX and FZ heavily relies
on the model assumptions. Hence, even a moderate deviation from the assumed
model can lead to gross estimation errors. This drawback of the indirect model
based approach is aggravated by the fact that, due to the lack of data, model
deviations in the tails are particularly difficult to detect statistically.

Quantile Estimation in AR(1) Models: a Simulation Study

Consider the AR(1) model

Xt = ϕXt−1 + Zt, 2 ≤ t ≤ n = 2000, (7.11)

with 1− FZ(x) = FZ(−x) = 0.5(1 + x)−1/γ , x ≥ 0, ϕ = 0.8, and γ = 1/2, i.e., the
positive and the negative part of the innovations have a Pareto distribution with
location parameter −1. Thus p = 1/2 and in this case cϕ,ϑ = 1/(2(1 − |ϕ1|)).

We aim at estimating the quantile F−1
X (1− p) with p = 0.001, which usually

lies near the boundary of the range of observations. To calculate the true quantile
approximately, we simulate a time series of length 410 000 and determine the 400th
largest of the last 400 000 observations (i.e., the first 10 000 simulated values are
used as a burn-in period to approach the stationary distribution). We do this
m = 10 000 times, and finally approximate the unknown true quantile by the
average of the m simulated order statistics, which yields F−1

X (1 − p) = 37.015
(with estimated standard deviation 0.02).

To estimate the quantile using the model based approach, we first estimate
ϕ by the sample autocorrelation at lag 1, which is the Yule-Walker-type estimator
for AR(1) time series, cf. Section 6.2:

ϕ̂ :=

∑n
t=2 Xt−1Xt∑n

t=1 X2
t

. (7.12)

Note that ϕ̂ is a sensible estimator for ϕ even if the variance of Xt is infinite and
hence the autocorrelation does not exist14.

Then we calculate the residuals

Ẑt := Xt − ϕ̂Xt−1, 2 ≤ t ≤ n. (7.13)

Finally, estimate F−1
X (1 − p) by

x̂(2)
n,p := Ẑn−k:n−1

((n − 1)2(1 − |ϕ̂|)
k

)−γ̃n−1

with

γ̃n−1 :=
1

k − 1

k−1∑
i=1

log
Ẑn−i:n−1

Ẑn−k:n−1

14Davis, R.A. and Resnick, S.I. (1986). Limit theory for the sample covariance and correlation
functions of moving averages. Ann. Statist. 14, 533–558.
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denoting the Hill estimator based on the k largest order statistics of these residuals.
In addition, we estimate F−1

X (1 − p) directly using x̂n,p defined in (7.4).
The empirical root mean squared error (rmse) of these estimators (obtained in

10 000 simulations) are displayed in Fig. 7.6 as a function of k. Since these estimates
of the true rmse are somewhat unstable (i.e. they change from simulation to simu-

lation), we also show the corresponding simulated L1–errors E
∣∣x̂(2)

n,p −F−1
X (1− p)

∣∣
and E

∣∣x̂n,p − F−1
X (1 − p)

∣∣, which are more reliable approximations to the true
errors.
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Fig. 7.6. Empirical root mean

squared error of x̂n,p (solid

line) and x̂
(2)
n,p (dashed line)

and the corresponding empiri-

cal L1–errors (dotted line, resp.

dash-dotted line) in the AR(1)

model (7.11).

As expected, the estimator x̂
(2)
n,p based on the residuals is more accurate if k is

chosen appropriately. Both the rmse and the L1–error of the model based estimator

x̂
(2)
n,p is minimal for k = 50 with minimal values 15.8 and 11.2, respectively. In

contrast, the optimal k is much greater for the direct estimator x̂n,p and the errors
are about 80% and 40%, respectively, larger. (The minimal rmse 28.3 is attained
for k = 184 and the minimal L1–error 15.3 for k = 159.)

The situation changes dramatically if we perturb the linear AR(1) model by
a logarithmic term:

Xt = ϕXt−1 + δ · sgn(Xt−1) log
(
max(|Xt−1|, 1)

)
+ Zt (7.14)

with FZ as above and δ = 0.6. Then the true quantile F−1
X (1− p) to be estimated

is approximately equal to 41.37 (with estimated standard deviation 0.02).
Note that the logarithmic perturbation of the linear dependence structure,

that affects only the observations greater than 1 in absolute value, is difficult to
distinguish from an increase of the autoregressive parameter ϕ. Indeed, in the
average the estimate ϕ̂ defined in (7.12) equals 0.92 in the perturbed model,
and the average relative difference between the perturbed autoregressive term
ϕXt−1+δ ·sgn(Xt−1) log

(
max(|Xt−1|, 1)

)
and the fitted AR(1) term ϕ̂Xt−1 is just

5.2%. Therefore, in the scatterplot of Xt versus Xt−1 displayed in Figure 7.7 for
one simulated sample of size n = 2 000 the deviation from the linear dependence
can hardly be seen. Moreover, the model deviation is also difficult to detect by



7.4. A Time Series Approach 223

statistical tests. For example, the turning point test and the difference–sign test,
see [5], p. 37f., to the nominal size 5% reject the null hypothesis that the residuals
Ẑt defined in (7.13) are iid with probability less than 6%. (Note that the more
popular tests for the linear AR(1) dependence structure which are based on the
sample autocorrelation function are not applicable in the present setting because
the variance may be infinite.)
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Fig. 7.7. Scatterplot of Xt ver-

sus Xt−1 and line through ori-

gin with slope ϕ̂.

Fig. 7.8 shows the rmse and L1–errors of the direct quantile estimator x̂n,p

and the estimator x̂
(2)
n,p which is based on the (wrong) linear AR(1) model (7.11).

Now the model based estimator has minimal rmse 31.7 and minimal L1-error 22.8
(both attained at k = 2) while the simulated errors for the direct estimator equal
14.1 (for k = 282) and 10.0 (for k = 305), respectively. Thus, for the perturbed
time series, the estimation error of the model based estimator is more than double
as big as the error of the direct quantile estimator, which does not rely on a
specific time series model. Another disadvantage of the model based estimator is
the sensitivity of its performance to the choice of k. The smallest but one L1–error
is about 30% larger than the minimal value; it is attained for k = 18. Moreover,
for k > 50 the estimation error increases rapidly.

Fig. 7.9 displays the estimated density of the distribution of the quantile
estimators in the AR(1) model (7.11) (left plot) and the perturbed model (7.14)
(right plot). Here we use kernel estimates based on the Epanechnikov kernel with
bandwidth 2 applied to the simulated quantile estimates with minimal L1–error.
In the AR(1) model, the mode of the distribution of the model based estimator

x̂
(2)
n,p is very close to the true value, which is indicated by the vertical dotted line.

The distribution of x̂n,p has a lower mode and is also a bit more spread out. In

contrast, in the perturbed model (7.14) the mode of the density of x̂
(2)
n,p is much

too low and the distribution is much more spread out than the distribution of x̂n,p.
In addition, the estimated density of the model based estimator is also shown for
k = 18 (i.e. the value leading to the smallest but one L1–error). Here the mode
is approximately equal to the true value, but the distribution is even more spread
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Fig. 7.8. Empirical root mean

squared error of x̂n,p (solid

line) and x̂
(2)
n,p (dashed line)

and the corresponding empiri-

cal L1–errors (dotted line, resp.

dash-dotted line) in the per-

turbed AR(1) model (7.14).

out.

50 100 150 200

0.01

0.02

0.03

0.04

0.05

50 100 150 200

0.01

0.02

0.03

0.04

0.05

Fig. 7.9. Kernel density estimates for x̂n,p (solid line) and x̂
(2)
n,p (dashed line) with minimal

the L1–error in the AR(1) model (7.11) (left plot) and the perturbed model (7.14) (right

plot), where in addition, the estimated density is shown for x̂
(2)
n,p with the smallest but

one L1–error (dash-dotted line); the true values are indicated by the vertical lines.

From Fig. 7.9 it is also obvious that the distribution of the quantile estimator
x̂n,p is strongly skewed to the right. Hence it cannot be well fitted by a normal
distribution. Fig. 7.10 demonstrates that the normal fit to the distribution of
log x̂n,p is much better. Therefore, as explained above, one should use the normal
approximation to log x̂n,p rather than a normal approximation to x̂n,p to construct
confidence intervals.

Non–linear Time Series

Non–linear time series models are particularly popular in financial applications.
For example, various types of GARCH time series have been proposed to model
returns of risky assets, cf. Section 16.7. Here we consider GARCH(1,1) time series,
i.e., stationary solutions {Rt}, with t ranging over all natural numbers, of the
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Fig. 7.10. Kernel density estimates for x̂n,p (solid line, left plot) and log x̂n,p (solid line,

right plot) with minimal the L1–error in the AR(1) model (7.11) together with the

densities of the normal distribution fitted by minimizing the Hellinger distance (cf. Section

3.1) (dotted lines).

stochastic recurrence equations

Rt = σ̃tεt,

σ̃2
t = α0 + α1R

2
t−1 + β1σ̃

2
t−1,

with α0 > 0, α1, β1 ≥ 0 and iid innovations εt with mean 0 and variance 1. Under
mild conditions on the distribution of εt, the returns Rt are heavy–tailed with
extreme value index γ > 0 determined by the equation

E(α1ε
2
1 + β1)

1/(2γ) = 1,

cf. page 398.

If one fixes the distribution of innovations, e.g., one assumes standard normal
innovations, then one might estimate the extreme value index from this relation-
ship after replacing the unknown parameters by suitable estimates, e.g., quasi
maximum likelihood estimates, cf. Section 16.7. If one does not fix the distribu-
tion of the innovations, then first one must fit some model to the residuals, in
order to estimate γ this way. In any case, unlike for linear time series models, here
the extreme value index depends on the whole distribution of the innovations.
Thus any misspecification of this distribution may lead to a serious estimation
error for γ. In an empirical study15, Stǎricǎ and Pictet compared the estimates of
the extreme value index obtained from fitting a GARCH(1,1) model with normal
innovations to the returns of several exchange rates aggregated over different time
intervals with the Hill estimators applied directly to these data sets. It turned out
that for almost all levels of aggregation the approach based on the GARCH model
apparently underestimates the tail thickness drastically, an effect which is most

15Stǎricǎ, C. and Pictet, O. (1997). The tales the tails of GARCH processes tell.
Preprint, Chalmers University Gothenburg.
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likely caused by a misspecification of the time series model (or by the choice of
the estimator).

However, even if the assumed GARCH model is correct, this does not help
much when it comes to extreme quantile estimation. While it is known that, for
symmetric innovations,

P{Rt > x} ∼ cx−1/γ as x → ∞,

no analytic expression in terms of α0, α1 and β1 and the distribution of εt is known
for the constant c > 0. Hence, in the present setting, we cannot copy the model
based approach for the estimation of extreme quantiles discussed above for ARMA
models. Of course, in principle, one can first fit the GARCH model and then obtain
an approximation to the extreme quantile by simulation, but the simulation results
obtained by Mikosch16 indicate that it can be quite computer intensive to obtain
accurate approximations of extreme quantiles this way even if the model would be
exactly known.

In view of these drawbacks of the time series approach, the general method
discussed in the Sections 7.2 and 7.3 seems the only feasible way to obtain reliable
estimates of extreme quantiles. In fact, this conclusion holds true for most non–
linear time series models, for which typically no simple asymptotic relationship
between the tails of the innovations and the tails of the time series is available.

16Mikosch, T. (2003). Modeling dependence and tails of financial time series. In: Ex-
treme Value Theory and Applications, Finkenstadt, B. and Rootzén, H. (eds.), Chapman
and Hall, 185–286.



Chapter 8

Conditional Extremal
Analysis

In this chapter we provide an overview of the conditioning concept including some
theoretical applications. After some heuristic arguments and technical preparations
in Section 8.1. we study conditional extremes in a nonparametric and, respectively,
in a parametric framework, see Sections 8.2 and 8.3.

The Bayesian view towards the Bayesian estimation principle is outlined in
Section 8.4. Especially, we give the standard Bayesian interpretation of the poste-
rior density as a conditional density.

8.1 Interpretations and Technical Preparations

This section lays out heuristic arguments about the conditioning concept and col-
lects some relevant auxiliary technical results. We make an attempt to clarify the
relationships between joint distributions, conditional distributions and mixtures
(shortly address as “roundabout”). In this section we also study the linear regres-
sion problem for a random design as a first application.

Conditional Distribution Functions

In Section 1.1 we introduced elementary conditional dfs, namely exceedance dfs
P (Y ≤ y|Y > u) and excess dfs P (Y −u ≤ y|Y > u). In addition, the mean excess
function (in other words, the mean residual life function) was determined by the
means of excess dfs, cf. (2.20).

In the sequel, we consider conditional probabilities of a random variable Y
conditioned on the event that X = x. Generally, the conditional df F (y|x) of Y
given X = x is defined by an integral equation, see (8.3). In the special case, where
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P{X = x} > 0, one may compute the conditional df by

F (y|x) = P (Y ≤ y|X = x) =
P{X = x, Y ≤ y}

P{X = x} . (8.1)

The joint random experiment with outcome (x, y), described by the random
vector (X, Y ), can be regarded as a two–step experiment:

Step 1 (initial experiment): observe x as an outcome of the random
experiment governed by X .

Step 2 (conditional experiment): generate y under the conditional df
F (·|x) given x.

Keep in mind that y can be interpreted as the second outcome in the joint exper-
iment as well as the outcome of the conditional experiment.

If X has a discrete distribution, then the joint df F (x, y) of X and Y can be
regained from the distribution of X and the conditional df by

F (x, y) =
∑
z≤x

F (y|z)P{X = z}. (8.2)

If X does not have a discrete distribution, then the conditional df F (·|x) is
a solution of the integral equation

F (x, y) =

∫ x

−∞
F (y|z) dFX(z), (8.3)

where FX , usually written F (x), denotes the df of X . The preceding interpretations
just remain the same. Notice that (8.2) can be written in the form of (8.3).

It is apparent that the df of Y is given by

F (y) =

∫
F (y|z) dFX(z). (8.4)

In addition, a density f(·|x) of F (·|x) is referred to as conditional density of
Y given X = x. Usually, we write f(y|x) in place of f(·|x), etc.

Conditional Distributions

The conditional distribution pertaining to the conditional df F (y|x) is denoted by

P (Y ∈ ·|X = x). (8.5)

Apparently, P (Y ≤ y|X = x) = F (y|x).
Generally, a conditional distribution P (Y ∈ ·|X = x) has the property

P{X ∈ B, Y ∈ C} =

∫
B

P (Y ∈ C|X = x) dL(X)(x), (8.6)
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and, hence, also

P{Y ∈ C} =

∫
P (Y ∈ C|X = x) dL(X)(x) (8.7)

which reduces to (8.3) and (8.4) in the special case of dfs.

Basic Technical Tools for Conditional Distributions

In the following lines we formulate some concepts and results for conditional dfs
and related conditional densities The experienced reader may elaborate these ideas
in greater generality, namely, in terms of conditional distributions and conditional
densities with respect to some dominating measure.

• (Computing the conditional density.) The conditional density of Y given
X = x can be written as

f(y|x) =
f(x, y)

f(x)
I(f(x) > 0). (8.8)

Therefore, the conditional density can be deduced from the joint density
f(x, y) because

f(x) =

∫
f(x, y) dy and f(y) =

∫
f(x, y) dx. (8.9)

• (Computing the joint density.) If f(x) is a density of F (x), then

f(x, y) = f(y|x)f(x) (8.10)

is a density of F (x, y); by induction one also gets the representation

f(x1, . . . , xn) = f(x1)

n∏
i=2

f(xi|xi−1, . . . , x1), (8.11)

where f(x1, . . . , xn) is the density of the df F (x1, . . . , xn). This indicates,
extending thereby Step 2 above, that the data may be sequentially generated
by conditional dfs.

• (Inducing conditional distributions.) For measurable maps g,

P (Y ∈ g−1(B)|X = x) = P (g(Y ) ∈ B|X = x). (8.12)

• (Conditioning in the case of independent random variables.) If X and Y are
independent, one can prove in a direct manner that the conditional df of
g(X, Y ) given X = x is the df of g(x, Y ). Thus we have

P (g(X, Y ) ≤ z|X = x) = P{g(x, Y ) ≤ z}. (8.13)

As a special case one gets that the conditional df of Y is the unconditional
df, if X and Y are independent.
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• (Conditioning in the case of random vectors.) Assume that (Xi, Yi) are iid
random vectors und put X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). Then the
conditional df of Y given X = x is

P (Y ≤ y|X = x) =

n∏
i=1

P (Yi ≤ yi|Xi = xi). (8.14)

To prove this result, verify that the right–hand side satisfies the required
property of the conditional distribution1.

The Concept of Conditional Independence

The random variables Y1, . . . , Yn are called conditionally independent given X, if

P (Y ≤ y|X = x) =

n∏
i=1

P (Yi ≤ yi|X = x). (8.15)

Assume that the random vectors (X1, Y1), . . . , (Xn, Yn) are iid. According to
(8.14),

P (Y ≤ y|X = x) =

n∏
i=1

P (Yi ≤ yi|Xi = xi) (8.16)

which implies that

P (Yi ≤ yi|X = x) = P (Yi ≤ yi|Xi = xi). (8.17)

Therefore, the Yi are conditionally independent with conditional distributions

P (Yi ≤ yi|X = x) = P (Yi ≤ yi|Xi = xi).

Conditional Expectation, Conditional Variance,
Conditional q–Quantile

Let Y be a real–valued random variable with E|Y | < ∞ and X any further random
variable. Denote again by F (y|x) the conditional df of Y given X = x. We recall
some well–known functional parameters of the conditional df.

• The mean

E(Y |X = x) =

∫
y dF (·|x)(y) (8.18)

of the conditional df is called the conditional expectation of Y given X = x.
We shortly write E(Y |x) in place of E(Y |X = x) when no confusion can
arise.

Notice that the conditional expectation E(Y |x) is the mean within the con-
ditional experiment described by Step 2 on page 228.

1Presently, we do not know an appropriate reference to the stochastical literature.
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• We mention another conditional functional parameter, namely the condi-
tional variance V (Y |x) of Y given X = x which is the variance of the con-
ditional df. Thus, V (Y |x) is the variance in the conditional experiment. We
have

V (Y |x) :=

∫
(y − E(Y |x))2 dF (·|x)(y). (8.19)

The conditional variance can be represented by means of conditional expec-
tations. With the help of (8.12) one gets

V (Y |x) = E(Y 2|x) − E(Y |x)2. (8.20)

• Later on we will also be interested in the conditional q–quantile

q(Y |x) := F (·|x)−1(q) (8.21)

of Y given X = x as the q–quantile of the conditional df F (y|x).

In addition, E(Y |X) := g(X) is the conditional expectation of Y given X ,
where g(x) = E(Y |x). Notice that E(Y |X) is again a random variable. Likewise,
one may speak of the conditional variance V (Y |X) and conditional q–quantile
q(Y |X) of Y given X .

The Linear Regression Function for a Random Design

We characterize the linear regression model for a fixed design as the conditional
model in the corresponding random design problem. It is pointed out that the
linear regression function is a conditional expectation.

Later on, corresponding questions will be studied in the Sections 8.3, 9.5, 16.8
and Chapter 15, where we specify parametric statistical models in the conditional
setup.

First we recall some basic facts from Section 2.5 about linear regression for
a fixed design. Assume that the random variables Yt have the representation

Yt = α + βxt + εt, t = 1, . . . , n, (8.22)

with the residuals εi being independent random variables with expectations Eεt =
0, and the xt are predetermined values. Recall that g(x) = α + βx is the linear
regression function with intercept α and slope β.

This may be equivalently formulated in the following manner: let the Yt be
independent random variables with expectations

EYt = α + βxt, t = 1, . . . , n. (8.23)

In the subsequent example, the xt are also random.

Example 8.1.1. (Exercises and Tests.) The following illustration is based on the per-
centages xt of solved exercises in a tutorial and the scores yt in a written test (data set
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Table 8.1. percentages xt of solved exercises and scores yt in test

xt 41.1 42 24.5 50 56.1 50.7 56.1 82.5 90.8 ...

yt 0 8.5 6 3 9 5 15 11.5 17 ...

exam96.dat). The maximum attainable score is 20. Some of the data are displayed in
Table 8.1.

In Fig. 8.1 we plot the scores yt against the percentages xt and include the estimated
least squares line.
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Fig. 8.1. Plotting scores in examination against percentages of solved exercises and fitted

least squares line.

For the (academic) teacher it is very satisfactory that solving exercises has a positive

effect for students on passing the test.

Subsequently, the xt are regarded as outcomes of random variables Xt. This
leads to the random design problem.

We assume that (X1, Y1), . . . , (Xn, Yn) are iid copies of a random vector
(X, Y ) which has the representation

Y = α + βX + ε, (8.24)

where X, ε are independent and Eε = 0. Because X and ε are independent, we
get from (8.13) that

P (Y ∈ · |X = x) = L(α + βx + ε). (8.25)

Thus, the Yt conditioned on Xt = xt are distributed as in the fixed design problem.
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For the conditional expectation we have

E(Y |x) = α + βx (8.26)

which is again called linear regression function.
Put again X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). From (8.16) and (8.26)

we know that the Yt, conditioned on X = x, are conditionally independent with
conditional expectations

E(Yt|xt) = E(Yt|Xt = xt) = α + βxt. (8.27)

These properties correspond to those in the fixed design problem. This is the
reason why results for the fixed design regression carry over to the random design
regression.

Estimation and prediction in the linear regression model for a random design
will be studied at the end of this section.

The Roundabout: Joint, Conditional, and Mixture Distributions

We want to explain the relationships between joint, conditional and mixture dis-
tributions in a “roundabout”:

joint df

mixture conditional df
����������������

�

We may

(i) start with a joint df F (x, y) of random variables X and Y ;

(ii) decompose the joint df in the marginal df F (x) of X and the conditional df
F (y|x) of Y given X = x, see (8.3);

(iii) regard the conditional df and, respectively, the marginal df of X as param-
eterized dfs F (y|ϑ) and mixing df F (ϑ), replacing the x by ϑ, and, finally,
return to (i).

We provide some details concerning the last step: let F (·|ϑ) = Fϑ be a family
of dfs parameterized by ϑ, and let F be a mixing df. Then, the mixture of the Fϑ

with respect to F is

G(y) =

∫
F (y|ϑ) dF (ϑ) =

∫
F (y|ϑ)f(ϑ) dϑ, (8.28)
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where the latter equality holds for a density f of F , see (4.8). If the integration in
(8.28) is carried out from −∞ to x, then one obtains a bivariate df F (ϑ, y) as in
(8.3). Therefore, one may introduce random variables X and Y with common df
F (ϑ, y). Replacing ϑ by x we are in the initial situation (i) with the mixing df as
df of X and the mixture df as df of Y .

These arguments may be helpful to understand, e.g., the Bayesian view to-
wards Bayesian statistics, see page 243.

Conditional Distributions of Exceedances and Order Statistics

Further insight in the statistical modeling of exceedances over a threshold u and
upper order statistics may be gained by conditioning on the random number K of
exceedances and, respectively, on the (k + 1)st upper order statistic Xn−k:n:

• the random exceedances over u conditioned on K = k are distributed as k
iid random variables with common df F [u] (see [43] and [16]),

• the upper order statistics Xn−k+1:n ≤ · · · ≤ Xn:n conditioned on Xn−k:n = u
are distributed as the order statistics Y1:k ≤ · · · ≤ Yk:k of k iid random
variables Yi with common df F [u] (see [42]).

Consequently, the statistical analysis of exceedances and upper order statis-
tics can be reduced to the standard model of iid random variables.

Analyzing Dependent Data, the Rosenblatt Transformation

All the exploratory tools, like QQ–plots or sample excess functions, concern iid
data. In the case of independent, not necessarily identically distributed (innid)
data one my use the probability transformation to produce iid, (0, 1)–uniform
data.

In the case of dependent random variables one has to apply the Rosenblatt2

transformation to achieve such a result.
Let (X1, . . . , Xd) be a random vector. Let

Fi (·|xi−1, . . . , x1)

be the conditional df of Xi given Xi−1 = xi−1, . . . , X1 = x1. Assume that

P
{
ω ∈ Ω : Fi

(
· |Xi−1(ω), . . . , X1(ω)

)
continuous, i = 1, . . . , d

}
= 1.

Then,
F1(X1), F2(X2|X1), . . . , Fd(Xd|Xd−1, . . . , X1) (8.29)

are iid, (0, 1)–uniformly distributed random variables.

2Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math.
Statist. 23, 470–472.
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The following short proof of the Rosenblatt transformation (8.29) in its gen-
eral form is due to Edgar Kaufmann (personal communication), and it is worth-
while to indicate the basic idea: the joint integral is decomposed to an iterated
integral (by a Fubini theorem) and the probability transformation is applied in
the inner integral. First we mention these auxiliary results.

(a) Probability Transformation: according to the probability transformation, see
page 38, we have ∫

I
(
F (x) ∈ B)

)
dF (x) = P{U ∈ B}

for continuous dfs F where U is (0, 1)–uniformly distributed

(b) Fubini Theorem3: for random variables X, Y and non–negative, measurable
functions f ,∫

f(x, y) dL(X, Y )(x, y) =

∫ (∫
f(x, y)P (Y ∈ dy|X = x)

)
dL(X)(x)

which is the Fubini theorem for conditional distributions. If X and Y are
independent, then the conditional distribution is the distribution of Y and
one gets the usual Fubini theorem.

To prove the Rosenblatt transformation (8.29) it suffices to verify that X =
(Xd−1, . . . , X1) and Fd(Xd|X) are independent and Fd(Xd|X) is (0, 1)–uniformly
distributed. For measurable sets A and B one gets

P{X ∈ A, Fd(Xd|X) ∈ B}

=

∫
I
(
x ∈ A

)
I
(
Fd(x|x) ∈ B

)
dL(X, Xd)(x, x)

(b)
=

∫
I
(
x ∈ A

)(∫
I
(
Fd(x|x) ∈ B

)
F (dx|x)

)
dL(X)(x)

(a)
= P{X ∈ A}P{U ∈ B}

where U is (0, 1)-uniformly distributed. The proof is concluded.

Predicting a Random Variable

In the following lines, we recall some basic facts about the concept of predicting
(forecasting) a random variable. The aim is the prediction of a future value y of a
random experiment based on an observable value g(x), where x is a realization of
another experiment, and the function g describes a fixed rule according to which
the prediction is carried out.

3E.g., Gänssler, P. and Stute, W. (1977). Wahrscheinlichkeitstheorie. Springer, Berlin,
Satz 1.8.13.
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Clearly, one should be interested in the performance of the predictor. For that
purpose, let Y and X be random variables which represent the two experiments
with outcomes y and x. We predict Y by means of g(X). It is desirable that

• the predictor g(X) is unbiased; that is, E(Y − g(X)) = 0,

• the remainder term in the prediction is small, e.g., measured by the mean
squared loss E

(
(Y − g(X))2

)
.

It is well known that the conditional expectation E(Y |X) is the best predictor
of Y based on X . Recall from page 230 that E(Y |X) = g(X), where g(x) =
E(Y |x).

If g depends on an unknown parameter—this will usually be the case—one
has to replace these parameters by estimators in the prediction procedure. We
provide an example in conjunction with the linear regression model.

Estimation and Prediction in the
Linear Regression Model for a Random Design

First we study once again the linear regression problem as specified in (8.23).
Based on x = (x1, . . . , xn) and Y = (Y1, . . . , Yn) one gets the following least
squares estimators

β̂x,Y =

∑n
t=1(Yt − Ȳ )(xt − x̄)∑n

i=1(xt − x̄)2
,

α̂x,Y = Ȳ − β̂x,Y x̄

of the intercept α and the slope β. Plugging in these estimators into the regression
function, one also gets

ĝx,Y (x) = α̂x,Y + β̂x,Y x

as an estimator of the linear regression function g(x) = α + βx.
In the random design problem, see (8.27), estimate the intercept α and the

slope β by the unbiased least squares estimators

β̂X,Y =

∑n
i=1(Yt − Ȳ )(Xt − X̄)∑n

i=1(Xt − X̄)2
,

α̂X,Y = Ȳ − β̂X,Y X̄ (8.30)

to get the unbiased estimator

ĝX,Y (x) = α̂X,Y + β̂X,Y x (8.31)

of the linear regression function g(x) = α + βx = E(Y |x).
Based on x we want to predict the future value y. As mentioned before the

conditional expectation
E(Y |X) = α + βX
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provides the optimal predictor of Y , yet the parameters α and β are unknown.
Plugging in the estimators one gets by means of ĝx,y(x) in (8.31) a reasonable
prediction of y based on the observed x, x and y .

Example 8.1.2. (Continuation of Example 8.1.1.) We want predict the future score y

in the test based on the known percentage x of solved exercises in the tutorial. As a

prediction use the pertaining value of the estimated regression line in Fig. 8.1.

Later on we will also write Eα,β(Y |x) and Eα,β(Y |X) to indicate the depen-
dence of the conditional expectation on the parameters α and β.

The Notion of a Predictive Distribution

Occasionally, a conditional distribution is called predictive distribution, see, e.g.,
the book by Fan and Yao [18], page 454. One could extend this notion and generally
address a random distribution as a predictive distribution. We shall use the term
“predictive distribution” in a narrower sense.

The conditional distribution usually includes unknown parameters, which
have to be estimated, so that one can deduce a prediction of a random functional
parameter such as the conditional expectation. We shall refer to this random dis-
tribution with the unknown parameters replaced by estimates—the “estimated
random distribution”—as predictive distribution.

The posterior distribution in the Bayesian framework, cf. Section 8.4, may
also be addressed as predictive distribution, if the prior distribution does not
depend on superparameters. A predictive distribution may also depend on the
model choice or certain approximations, cf. Section 16.8.

Example 8.1.3. (Continuation of Example 8.1.) In the linear regression set–up, where
Y = α + βX + ε with X, ε being independent, we get as predictive distribution in
the narrow sense (unknown parameters are replaced by the least squares estimators) by
distributions of the form

L(α̂x,y + β̂x,yx + ε).

By the way, this predictive distribution is the conditional distribution of

α̂X,Y + β̂X,Y X + ε given X = x,X = x, Y = y,

if the random vector (X, X, Y ) and the innovation ε are independent.

Notice that (X, X, Y ) represents the past which can be observed by the statistician

or hydrologist, etc. Therefore, the predictive distribution is observable, if, ε is specified,

e.g., as a standard normal random variable.

On page 236 the performance of a predictor g(X) of Y was measured by
the mean squared loss. A related measurement is possible within the framework of
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predictive distributions. The role of Y and g(X) is played by a random distribution
K(·|X) and a predictive distribution K∗(·|X, Z), where Z represents the additional
available information. Now, the performance is measured by the expected loss

E
(
d
(
K(·|X), K∗(·|X, Z)

))
,

where d is an appropriate distance.
Densities of predictive distributions are called predictive densities. Diebold et

al.4 address the actual conditional densities in (8.11) as “data generating process”,
and the pertaining predictive densities as a sequence of density forecasts (in accor-
dance with our terminology). Likewise one can speak of a sequence of predictive
distributions.

8.2 Conditional Extremes:

a Nonparametric Approach

One of the primary aims of extreme value analysis is to evaluate a higher quantile
(such as a T –year threshold) of a random variable Y . In the present section we
discuss such questions under the condition that the value x of a covariate X is
already known. Thus, we want to estimate, for example, a higher quantile of the
conditional df F (·|x) of Y given X = x (or some other parameter of the upper tail
of the conditional df).

The message from this section is that one may deal with conditional extremes
as if we had ordinary extremes from the conditional df. For that purpose we give
an outline of some technical results from the book [16], entitled Laws of Small
Numbers.

Let (xi, yi) be realizations of the random vector (X, Y ). The basic idea is
to base the estimation of the conditional df on those yi which belong to the xi

close to the specified value x. The maximum, exceedances over a threshold u, or
the k largest order statistics belonging to the selected yi may be addressed as
conditional extremes (conditional sample maximum, conditional exceedances or
conditional order statistics).

There are two different possibilities of selecting the xi.

• (Nearest Neighbor Approach.) Take those xi which are the k closest neigh-
bors to x.

• (Fixed Bandwidth Approach.) Select those xi which are closer to x than a
predetermined bandwidth b.

It is understood that distances are measured with respect to the Euclidian dis-
tance, yet the subsequent results are valid in greater generality. For applications
in hydrology and insurance we refer to the Sections 14.2 and 17.3.

4Diebold, F.X., Gunther, T.A. and Tay, A.S. (1998). Evaluating density forecasts with appli-
cations to financial risk management. Int. Economic Review 39, 863–883.
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The Nearest Neighbor Approach

Let (X1, Y1), . . . , (Xn, Yn) be iid random vectors with common df F (x, y) and
let (x1, y1), . . . , (xn, yn) be realizations. Let y′

1, . . . , y
′
k be the yi for which the

pertaining xi are the k closest neighbors to x. The y′
i are taken in the original

order of their outcome. Denote by Y
′

1 , . . . , Y
′

k the pertaining random variables.

The Y
′

i can be replaced by iid random variables Y ∗
1 , . . . , Y ∗

k with common df
F (·|x), if

k = o
(
n4/5

)
(8.32)

and, if a certain technical condition holds for the density of (X, Y ) (for details we
refer to [16], Theorem 3.5.2, where the replacement is formulated in terms of the
Hellinger distance).

As a consequence we know that functionals like max(Y
′

1 , . . . , Y
′

k ) can be re-
placed by max(Y ∗

1 , . . . , Y ∗
k ). Now one may construct statistical models etc. as in

the unconditional case.

Likewise, the exceedances of the Y
′

1 , . . . , Y
′

k over a threshold u can be replaced
by the exceedances of the Y ∗

1 , . . . , Y ∗
k over u.

A result similar to that for the maxima was deduced by Gangopadhyay5

under a condition k = o
(
n2/3

)
which is stronger than (8.32). On the other hand,

Gangopadhyay merely requires a local condition on the density of (X, Y ) compared
to the overall condition imposed in [16], Theorem 3.5.2.

The Fixed Bandwidth Approach

Assume again that there are iid random vectors (X1, Y1), . . . , (Xn, Yn) with com-
mon df F (x, y). Let y′

1, . . . , y
′
k be the yi such that |xi − x| ≤ b, where b is pre-

determined. The y′
i are taken in the original order of their outcome. Denote by

Y
′

1 , . . . , Y
′

K(n) the pertaining random variables, where K(n) is independent of the

Y
′

1 , Y
′

2 , Y
′

3 , . . . .

The Y
′

i can be replaced by random variables Y ∗
1 , . . . , Y ∗

K∗(n), where

• Y ∗
1 , Y ∗

2 , Y ∗
3 , . . . is a sequence of iid random variables with common df F (·|x),

• K∗(n) is a binomial random variable which is independent of the Y ∗
i ,

if

b = o
(
n−1/5

)
(8.33)

and, if a certain technical condition holds for the density of (X, Y ) (cf. [16], Corol-
lary 3.1.6, where the replacement is formulated in terms of the Hellinger distance).

5Gangopadhyay, A.K. (1995). A note on the asymptotic behavior of conditional ex-
tremes. Statist. Probab. Letters 25, 163–170.
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As a consequence we know that functionals like max(Y
′

1 , . . . , Y
′

K(n)) can be

replaced by max(Y ∗
1 , . . . , Y ∗

K∗(n)). Now one may construct statistical models etc.
as in the unconditional case.

One may also deal with exceedances over a higher threshold. In addition, the
binomial random variable K∗(n) can be replaced by a Poisson random variable
with the same expectation as K∗(n). Then, one arrives at a Poisson process as
introduced in Section 9.1.

8.3 Maxima Under Covariate Information

Contrary to the preceding section, we assume that the conditional distributions
belong to a parametric family. In addition, we do not necessarily assume a linear
regression framework as in Section 8.1. For example, we may assume, correspond-
ing to (8.24), that

Y = µ(X) + σ(X)ε

where ε is a standard normal random innovation which is independent of a covari-
ate (explanatory variable) X . This yields that the conditional df of Y given X = x
is normal with location and scale parameters µ(x) and σ(x). Thus, we have

F (y|x) = P (Y ≤ y|X = x) = Φµ(x),σ(x)(y).

Such a modeling could be appropriate in Example 8.1.1.

Subsequently, this idea is further developed within the framework of EV
models in the present section and of GP models in Section 9.5. The use of such
models was initiated in the celebrated article by Davison and Smith (cited on page
121).

A Conditional Extreme Value Model

Assume that the conditional df of Y given X = x is an extreme value df, namely

F (y|x) = Gγ(x),µ(x),σ(x)(y) (8.34)

where the shape, location and scale parameters γ(x) µ(x) and σ(x) depend on x.

To reduce the number of parameters we may assume that γ(x) does not
depend on x, and

µ(x) = µ0 + µ1x,

σ(x) = exp(σ0 + σ1x). (8.35)

Therefore, we have to deal with the unknown parameters γ, µ0, µ1, σ0 and
σ1.
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Conditional Maximum Likelihood Estimation

Let again X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). We assume that the Yt are
conditionally independent conditioned on X with P (Yt ≤ y|X = x) = P (Yt ≤
y|Xt = xt), see page 230.

The estimation of the unknown parameters γ, µ0, µ1, σ0 and σ1 may be
carried out by means of a conditional maximum likelihood (ML) method. The
conditional likelihood function is given by

L(γ, µ0, µ1, σ0, σ1) =

n∏
t=1

gγ,µ(xt),σ(xt)(yt).

Based on the conditional MLE’s γ̂x,y, µ̂0,x,y, µ̂1,x,y, σ̂0,x,y, σ̂1,x,y of the
parameters γ, µ0, µ1, σ0, σ1 one also gets the estimates

µ̂x,y(x) = µ̂0,x,y + µ̂1,x,yx

σ̂x,y(x) = exp(σ̂0,x,y + σ̂1,x,yx)

of µ(x) and σ(x). Now, replace the parameters in the EV df Gγ,µ(x),σ(x) by the
estimated parameters to get an estimate of the conditional df P (Y ≤ y|X = x).

For related MLEs in the pot–framework we refer to Section 9.5.

Estimating Conditional Functional Parameters

In the subsequent lines we want to distinguish in a strict manner between es-
timation and prediction procedures. On the one hand, we estimate parameters,
which may be real–valued or functions, and on the other hand, we predict random
variables.

In that context, we merely consider the mean and the q–quantile as con-
ditional functional parameters. Another important parameter is, of course, the
variance.

Conditional Mean Function (Expectation):

Eγ,µ,σ(Y |x) =

∫
zGγ,µ(x),σ(x)(dz). (8.36)

Conditional q–Quantile Function:

qγ,µ,σ(Y |x) = G−1
γ,µ(x),σ(x)(q). (8.37)

If the conditioning is based on a covariate we also speak of a covariate condi-
tional quantile or a covariate conditional expectation. Likewise within a time series
framework, one may speak of a serial conditional quantile or a serial conditional
expectation. It is apparent that the conditioning may also be based on covariate
as well as serial information (a case not treated in this book).
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Estimate the conditional functions by replacing the unknown parameters by
the conditional MLE’s based on x and y. For example,

qγ̂x,y,µ̂x,y ,σ̂x,y (Y |x)

is an estimate of the conditional q–quantile qγ,µ,σ(Y |x) for each x.

Predicting the Conditional q–Quantile

In place of the factorization of the conditional expectation Eγ,µ,σ(Y |x) of Y given
X = x consider the conditional expectation Eγ,µ,σ(Y |X) of Y given X .

Recall that the conditional expectation is the best prediction of Y based on
X with respect to the quadradic loss function. In the present context, we have to
replace the unknown parameters by estimates. By

Eγ̂X,Y ,µ̂X,Y ,σ̂X,Y
(Y |X)

one gets a predictor of the random variables Eγ,µ,σ(Y |X) and Y based on X, Y

and X .
Likewise,

qγ̂X,Y ,µ̂X,Y ,σ̂X,Y
(Y |X) (8.38)

is a predictor of the conditional q–quantile qγ,µ,σ(Y |X) based on X, Y and X .
In the same manner, predictions in the pot–framework, in conjunction with

Poisson processes of exceedances, are addressed in Section 9.5.

8.4 The Bayesian Estimation Principle, Revisited

The Bayesian estimation principle—cf. Sections 3.5 and 5.1—will be formulated
in a greater generality.

An Interpretation of the Posterior Density

In Section 3.5 we started with

• the prior density p(ϑ) as a mixing density, and

• densities L(·|ϑ) of distributions parameterized by ϑ and expressed by the
likelihood function.

Using these densities we may introduce the joint density L(x|ϑ)p(ϑ) of a random
vector (ξ, θ), see (8.8).

According to (8.8) and (8.10) one may interchange the role of ξ and θ. From
the joint distribution of (ξ, θ) one may deduce the conditional density of θ given
ξ = x which leads to the posterior density in (3.39) as well as in (8.41) below.
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The Bayesian Two–Step Experiment

The prior distribution for the parameter ϑ is regarded as the distribution of a ran-
dom variable θ with outcome ϑ. This random parameter θ describes the initial step
in a two–step experiment. The distributions, represented by ϑ, in the given statis-
tical model are regarded as conditional distributions of another random variable
ξ given θ = ϑ, cf. page 233 for the “roundabout” description.

Two special cases were dealt with in Section 3.5. In both cases a gamma
distribution with parameters s and d served as a prior distribution.

• P (ξ ∈ ·|θ = ϑ) is the common distribution of iid random variables X1, . . . , Xk

with df Fϑ and density fϑ, and likelihood function L(x|ϑ) =
∏

i≤k fϑ(xi).

• The Xi are iid Poisson random variables with parameter λ and likelihood
function L(x|λ) =

∏
i≤k Pλ{xi}.

• Both previous cases are combined in the present section within a Poisson
process setting with a likelihood function given in a product form.

Because the prior distribution and the family of conditional distributions are
specified by the statistician, the joint distribution L(ξ, θ) of ξ and θ is also known,
cf. (8.10). The joint density is L(x|ϑ)p(ϑ), where p(ϑ) is a density of the prior
distribution and L(x|ϑ) is the likelihood function for the given statistical model.

If a statistical model of prior distributions—instead of a fixed one—is speci-
fied by the statistician, then the present viewpoint also enables the estimation of
the prior distribution from data.

In the preceding lines we reformulated and extended a technical problem
discussed in Chapter 3 within a two–step stochastical procedure.

• In the initial stage there is a stochastic experiment governed by the prior
distribution L(θ) which generates an unobservable outcome, namely the pa-
rameter ϑ.

• Afterwards, an observation x is generated under ϑ. With respect to the total
two–step experiment, the value x is governed by L(ξ).

Although θ is unobservable, one gets knowledge of this random parameter
in an indirect manner, namely, by means of x. The information contained in x
is added to the initial information which is represented by the prior distribution
L(θ). As a result, one gets the updated information expressed by the posterior
distribution P (θ ∈ ·|ξ = x). This illuminates the importance of the posterior
distribution in its own right.

Computing Bayesian Estimates

We compute the Bayes estimate within a general framework. Let again L(θ) and
p(ϑ) denote the prior distribution and prior density, respectively. We repeat some
of the computations in Section 3.1 concerning the Bayes estimate.
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The MSE of an estimator T̂ (X) of the functional parameter T (ϑ) can be
written as an integral with respect to the conditional distribution of ξ given θ = ϑ.
We have

E
((

T̂ (X) − T (ϑ)
)2|ϑ) =

∫
(T̂ (x) − T (ϑ))2P (ξ ∈ dx|θ = ϑ).

Therefore, the Bayes risk with respect to a prior distribution L(θ) can be written
as

R(p, T̂ ) =

∫ (∫
(T̂ (x) − T (ϑ))2P (ξ ∈ dx|θ = ϑ)

)
L(θ)(dϑ)

=

∫
(T̂ (x) − T (ϑ))2L(θ, ξ) (dϑdx)

=

∫ (∫
(T̂ (x) − T (ϑ))2P (θ ∈ dϑ|ξ = x)

)
L(ξ)(dx) . (8.39)

Now proceed as in (3.41) to get the Bayes estimate

T ∗(x) =

∫
T (ϑ)P (θ ∈ dϑ|ξ = x). (8.40)

Thus, we get a representation of the Bayes estimate by means of the posterior
distribution P (θ ∈ ·|ξ = x). If ϑ is one–dimensional and T (ϑ) = ϑ, then T ∗ =
E(θ|ξ = x) is the conditional expectation of θ given ξ = x.

In fact, (8.40) is an extension of (3.38). To see this, one must compute the
conditional density p(ϑ|x) of θ given ξ = x. Because L(x|ϑ)p(ϑ) is the joint density
of ξ and θ one obtains

p(ϑ|x) =
L(x|ϑ)p(ϑ)∫

L(x|ϑ)L(θ) (dϑ)
, (8.41)

which is the posterior density given x (see also Section 8.1, where the “roundabout”
of joint, conditional and mixture dfs is discussed in detail).

Bayesian Estimation and Prediction

From (8.40) one recognizes that the Bayes estimate can be written as the condi-
tional expectation T ∗(x) = E(T (θ)|ξ = x). Moreover, the characteristic property
of the Bayes estimate of minimizing the Bayes risk can be reformulated (cf. second
line in (8.39)) as

E
(
(T ∗(ξ) − T (θ))2

)
= inf

T̂
E
(
(T̂ (ξ) − T (θ))2

)
,

where the inf ranges over all estimators T̂ . Of course, this is a well–known property
of conditional expectations.
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The property that T ∗ is the Bayes estimator for the functional T can be
rephrased by saying that T ∗(ξ) = E(T (θ)|ξ) is the best predictor of the random
variable T (θ). This approach also allows the introduction of a linear Bayes esti-
mator by taking the best linear predictor of T (θ).

The conditional (posterior) distribution of T (θ) given ξ = x may be addressed
as predictive distribution (cf. Section 8.1, page 237) in the Bayesian framework.
This predictive distribution is known to the statistician as long as the prior dis-
tribution does not include superparameters, cf. Section 14.5.

Further Predictive Distributions in the Bayesian Framework

Let (ξ, θ) be a random vector where θ is distributed according to the prior density
p(ϑ). Outcomes of the random variables ξ and θ are x and the parameter ϑ. The
conditional density of ξ given θ = ϑ is p(x|ϑ). From (8.41) we know that the
posterior density (the conditional density of θ is given ξ = x) is given by

p(ϑ|x) = p(x|ϑ)p(ϑ)
/∫

p(x|ϑ)p(ϑ) dϑ . (8.42)

Predictive distributions may be dealt with in the following extended frame-
work (as described in the book by Aitchison and Dunsmore6): Consider the random
vector (ξ, η, θ) where θ has the (prior) density p(ϑ), and ξ and η are conditional
independent (conditioned on θ = ϑ) with conditional densities p(x|ϑ) and p(y|ϑ).
Thus, the conditional density of (ξ, η) given θ = ϑ is p(x, y|ϑ) = p(x|ϑ)p(y|ϑ).

The predictive distribution is the conditional distribution of η given ξ = x
which has the density

p(y|x) =

∫
p(y|ϑ)p(ϑ|x) dϑ , (8.43)

where p(ϑ|x) is the posterior density in (8.42). To establish (8.43) we make use
of the representation p(y|x) = p(x, y)/p(x) of the conditional density of η given
ξ = x, where p(x, y) and p(x) are the densities of (ξ, η) and ξ. We have

p(y|x) = p(x, y)/p(x)

=

∫
p(x, y|ϑ)p(ϑ) dϑ

/
p(x)

=

∫
p(x|ϑ)p(y|ϑ)p(ϑ) dϑ

/∫
p(x|ϑ)p(ϑ) dϑ

=

∫
p(y|ϑ)p(ϑ|x) dϑ .

If p(ϑ) is a conjugate prior for both conditional densities p(x|ϑ) and p(y|ϑ),
then the last integrand is proportional to a density which is of the same type as
the prior p(ϑ) and the integrand can be analytically computed.

6Aitchison, J. and Dunsmore, I.R. (1975). Statistical Prediction Analysis. Cambridge
University Press, Cambridge.
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Example 8.4.1. (Predictive distributions for the restricted Pareto model.) We assume
that the statistical models related to the random variables ξ and η are both restricted
Pareto models with thresholds u and v. Let

p(x|α) =
∏
i≤k

w1,α,0,u(xi)

and
p(y|α) = w1,α,0,v(y) .

As in Section 5.1 take the gamma density p(α) = hs,d(α) as a prior for the shape param-
eter α. Then the gamma density p(α|x) = hs′,d′(α) is the posterior with respect to the
p(x|α) where s′ = s + k and d′ = d +

∑
i≤k log(xi/u).

For computing the predictive density p(y|x) put s∗ = s′ +1 and d∗ = d′ +log(y/v).
Writing the integrand as a gamma density we get

p(y|x) =

∫ ∞

0

w1,α,0,v(y)hs′,d′(α) dα (8.44)

= d′s′Γ(s′)−1y−1

∫ ∞

0

αs∗−1 exp(−d∗α) dα

= d′s′d∗−s∗
s′y−1

= (s + k)
(
d +

∑
i≤k

log
xi

u

)s+k

y−1
(
d +

∑
i≤k

log
xi

u
+ log

y

v

)−(s+k+1)

for y > v.
We note an extension where η is also a vector of iid Paretian random variables. If

p(y|α) is replaced by

p(y|α) =
∏
i≤m

w1,α,0,v(yi) ,

then the predictive density is

p(y|x) = d′s′d∗−s∗
( ∏

j≤m

yj

)−1 ∏
j≤m

(s′ + j − 1)

with s∗ = s′ + m and d∗ = d′ +
∑

j≤m log(yj/v) for yj > v.

It would be desirable to give these ideas more scope within the extreme value
setting.



Chapter 9

Statistical Models for
Exceedance Processes

In this chapter, Poisson processes and related processes are studied. These pro-
cesses are essential for hydrological, environmental, financial and actuarial studies
in Chapters 14 to 17. In Section 9.1 the basic concepts are introduced. We par-
ticularly mention the modeling of exceedances and exceedance times by means of
Poisson processes. Within the framework of Poisson processes, we reconsider the
concept of a T –year level in Section 9.2. The maximum likelihood and Bayesian
estimation within models of Poisson processes is addressed in Section 9.3. The ex-
planations about the GP approximation of exceedance dfs, cf. Section 6.5, will be
continued within the framework of binomial and Poisson processes in Section 9.4.
An extension of the modeling by Poisson processes from the homogeneous case to
the inhomogeneous one is investigated in Section 9.5.

9.1 Modeling Exceedances by Poisson Processes:
the Homogeneous Case

In this section, we deal with observations occurring at random times. Especially,
we have exceedance times modeled by Poisson processes. Let Ti denote the arrival
time of the ith random observation Xi, where necessarily 0 ≤ T1 ≤ T2 ≤ T3 ≤ · · · .
The Xi will be addressed as marks.

Homogeneous Poisson and Poisson(λ, F ) Processes

The most prominent examples of arrival processes are homogeneous Poisson pro-
cesses with intensity λ, where the interarrival times T1, T2 −T1, T3 −T2, . . . are iid
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random variables with common exponential df

F (x) = 1 − e−λx, x ≥ 0,

with mean 1/λ. Under this condition, the arrival time Ti is a gamma random vari-
able. The numbers of observations occurring up to time t constitute the counting
process

N(t) =

∞∑
i=1

I(Ti ≤ t), t ≥ 0. (9.1)

The arrival times T1 ≤ T2 ≤ T3 ≤ · · · as well as the counting process N(t)
are addressed as a homogeneous Poisson process with intensity λ (in short, as a
Poisson(λ) process). Deduce from (4.7) that

P{N(t) = k} = P{Tk ≤ t, Tk+1 > t}
= P{Tk ≤ t} − P{Tk+1 ≤ t}

=
(λt)k

k!
e−λt.

Hence, the number N(t) of arrival times is a Poisson random variable with param-
eter λt. The mean value function—describing the mean number of observations up
to time t—is

Ψλ(t) = E(N(t)) = λt.

In addition, it is well known that the homogeneous Poisson process has in-
dependent and stationary increments, that is,

N(t1), N(t2) − N(t1), . . . , N(tn) − N(tn−1), t1 < t2 < · · · < tn,

are independent, and N(tj) − N(tj−1) has the same distribution as N(tj − tj−1).
We see that the mean number of observations occurring within a time unit is

E
(
N(t + 1) − N(t)

)
= E(N(1)) = λ

which gives a convincing interpretation of the intensity λ of a homogeneous Poisson
process.

The sequence {(Ti, Xi)} of arrival times and marks is a Poisson(λ, F ) process
if the following conditions are satisfied.

Poisson(λ, F ) Conditions:

(a) the sequence of arrival times 0 ≤ T1 ≤ T2 ≤ T3 ≤ · · · is a Poisson(λ)
process;

(b) the marks X1, X2, X3, . . . are iid random variables with common df F ,

(c) the sequences T1, T2, T3, . . . and X1, X2, X3, . . . are independent.
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A justification of such a process in flood frequency studies with exponential
exceedances was given by Todorovic and Zelenhasic1. To capture the seasonality of
flood discharges, an extension of the present framework to inhomogeneous Poisson
processes with time–dependent marks is desirable. Yet, in order not to overload
this section, the introduction of such processes is postponed until Section 9.5.

Poisson Approximation of Exceedances and Exceedance Times

In Section 1.2, the exceedance times τ1 ≤ τ2 ≤ τ3 ≤ · · · of iid random variables Yi

over a threshold u were described in detail. Moreover, if F is the common df of the
Yi, then we know that the exceedances are distributed according to the exceedance
df F [u]. Exceedance times and exceedances are now regarded as arrival times and
marks. If 1−F (u) is sufficiently small, then an adequate description of exceedance
times and exceedances is possible by means of a Poisson

(
1 − F (u), F [u]

)
process.

For further details see Section 9.5 and the monographs [44] and [43].

Exceedances for Poisson(λ, F ) Processes

Now we go one step further and deal with exceedances and exceedance times
for a Poisson(λ, F ) process of arrival times Ti and marks Xi. If only the ex-
ceedances of the Xi over a threshold v and the pertaining times are registered, then
one can prove that exceedance times and exceedances constitute a Poisson

(
λ(1 −

F (v)), F [v]
)

process. We refer to Section 9.5 for a generalization of this result.

Mixed Poisson Processes, Pólya–Lundberg Processes

We mention another class of arrival processes, namely mixed Poisson processes.
Our attention is focused on Pólya–Lundberg processes, where the mixing of ho-
mogeneous Poisson processes is done with respect to a gamma distribution. The
marginal random variables N(t) of a Pólya–Lundberg process are negative bino-
mial random variables.

Let us write N(t, λ), t ≥ 0, for a homogeneous Poisson (counting) process
with intensity λ > 0. By mixing such processes over the parameter λ with respect
to some density f , one obtains a mixed Poisson process, say, N(t), t ≥ 0. Recollect
that a mixed Poisson process represents the following two–step experiment: firstly,
a parameter λ is drawn according to the distribution represented by the density f
and, secondly, a path is drawn according to the homogeneous Poisson process with
intensity λ. The marginals N(t) are mixed Poisson random variables. We have

P{N(t) = n} =

∫
Pλt{n}f(λ) dλ.

1Todorovic, P. and Zelenhasic, E. (1970). A stochastic model for flood analysis. Water
Resour. Res. 6, 1641–1648.
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In the special case where f = fα,σ is a gamma density with shape and scale
parameters α, σ > 0, one obtains a Pólya–Lundberg process with parameters α
and σ. Deduce from (3.31) that N(t) is a negative binomial random variable with
parameters α and p = 1/(1 + σt). In addition,

Ψα,σ(t) = E(N(t)) = ασt, t ≥ 0, (9.2)

is the increasing mean value function of a Pólya–Lundberg process with parameters
α and σ.

Arrival Times for Mixed Poisson Processes

Let N(t), t ≥ 0 be a counting process such as a mixed Poisson process. The ith
arrival time can be written

Ti = inf{t > 0 : N(t) ≥ i}, i = 1, 2, 3, . . . .

The df of the first arrival time T1 has the representation

P{T1 ≤ t} = 1 − P{N(t) = 0}. (9.3)

From (9.3) and (2.24) deduce

E(T1) =

∫ ∞

0

P{N(t) = 0} dt.

In the special case of a Pólya–Lundberg process with parameters α, σ > 0,
one must deal with negative binomial random variables N(t) for which

P{N(t) = 0} = (1 + σt)−α. (9.4)

Hence, the first arrival time T1 is a Pareto random variable with shape, location
and scale parameters α, −1/σ and 1/σ.

9.2 Mean and Median T–Year Return Levels

Recall that the T –year return level u(T ) of a sequence of random variables is that
threshold u such that the first exceedance time τ1 = τ1,u at u is equal to T in the
mean, that is, u(T ) is the solution to the equation E(τ1,u) = T .

In Section 1.2, it was verified that the first exceedance time of iid random
variables at a threshold u is a geometric random variable with parameter p =
1 − F (u) which yields u(T ) = F−1(1 − 1/T ). In order to estimate u(T ), the
unknown df F is usually replaced by an estimated EV or GP df.
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The T–Year Return Level for Heterogeneous Variables

Next, we assume that X1, X2, X3, . . . are independent, not necessarily identically
distributed random variables. Let Fi denote the df of Xi. The probability that the
first exceedance time τ1 at the threshold u is equal to k is

P{τ1 = k} = (1 − Fk(u))
∏

i≤k−1

Fi(u), k = 1, 2, 3, . . . ,

according to the first identity in (1.17). In the heterogeneous case, it may happen
that, with a positive probability, the threshold u is never exceeded. In this instance,
τ1 is put equal to ∞.

To evaluate the T –year return level u(T ), one must solve E(τ1,u) = T as an
equation in u, which can be written

∞∑
k=1

k(1 − Fk(u))
∏

i≤k−1

Fi(u) = T. (9.5)

This equation must be solved numerically by a Newton iteration procedure. We
remark that u(T ) ≥ F−1(1−1/T ), if Fi ≤ F . If E(τ1,u) = ∞, this approach is not
applicable.

The Median T–Year Return Level

One may consider a different functional parameter of the first exceedance time τ1,u

to fix a T –year return level. To exemplify this idea, we compute a median of τ1,u

and determine the median T –year return level u(1/2, T ). The median of τ1,u is

med(τ1,u) = min

{
m :

∑
k≤m

p(1 − p)k−1 ≥ 1/2

}

with p = 1 − F (u). Because
∑

k≤m zk−1 = (1 − zm)/(1 − z), one obtains

med(τ1,u) = 〈log(1/2)/ log(F (u))〉, (9.6)

where 〈x〉 is the smallest integer ≥ x. The median T –year return level u(1/2, T )
is the solution to the equation med(τ1,u) = T. Approximately, one gets

u(1/2, T ) ≈ F−1
(
2−1/T

)
≈ F−1(1 − (log 2)/T ). (9.7)

Because log(2) = 0.693..., the median T –year return level is slightly larger than
the mean T –year return level in the iid case.

By generalizing this concept to q–quantiles of the first exceedance time τ1,u

one obtains a T –year return level u(q, T ) according to the q–quantile criterion (see
also page 430).
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Poisson Processes and T–Year Return Levels

When exceedances over u are modeled by a Poisson
(
1 − F (u), F [u]

)
process (cf.

page 249), then the first exceedance time is an exponential random variable with
expectation 1/(1 − F (u)). Therefore, the expectation and the median of the first
exceedance time are equal to a predetermined time span T for the thresholds

u = u(T ) = F−1(1 − 1/T )

and
u = u(1/2, T ) = F−1(1 − (log 2)/T ).

Thus, when employing a Poisson approximation of the exceedances pertaining to
random variables Xi as in Section 1.2, one finds the same mean T –year return
level and, approximately, the median T –year return level given in (9.7).

If we already start with a Poisson(λ, F ) process, then the mean and median
T –year return level are

u(T ) = F−1(1 − 1/(λT )) (9.8)

and
u(1/2, T ) = F−1(1 − (log 2)/(λT )). (9.9)

This can be verified in the following manner: As mentioned in Section 9.1, the
marks exceeding v and the pertaining times constitute a Poisson

(
λ(1−F (v)), F [v]

)
process and, hence, the first exceedance time is an exponential random variable
with mean 1/(λ(1 − F (v))). This implies the desired result.

This suggests the following approach for estimating the T –year return level.
Firstly, utilize a Poisson(λ, W ) modeling for a sufficiently large number of ex-
ceedances (over a moderately high threshold), where W is a GP df. Secondly,

estimate the intensity by λ̂ = N(t)/t and the GP df by Ŵ = Wγk,µk,σk
. Then,

û(T ) = Ŵ−1(1 − 1/(λ̂T )) (9.10)

and
û(1/2, T ) = Ŵ−1(1 − (log 2)/(λ̂T )) (9.11)

are estimates of the mean and median T –year return level.
In the case of clustered data, proceed in a similar manner. The T –year return

level of clustered data and of the pertaining cluster maxima (cf. page 78) are close
to each other and, therefore, one may reduce the analysis to the cluster maxima.

9.3 ML and Bayesian Estimation in Models

of Poisson Processes

In this section we study maximum likelihood (ML) and Bayes estimators for cer-
tain Poisson processes which provide a joint model for exceedance times and ex-
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ceedances. The primary aim is to show that the estimators of Pareto and general-
ized Pareto (GP) parameters, as dealt with in Section 5.1, correspond to those in
the Poisson process setting.

Models of Poisson Processes

We observe a random scenery up to time T . In applications this usually concerns
the past T periods. For each parameter λ > 0 and each df F , let Poisson(λ, F, T )
denote the Poisson(λ, F ) process—introduced in Section 9.1—restricted to the
time interval from 0 up to time T . Thus, there is a homogeneous Poisson process
with intensity λ in the time scale with marks which have the common df F .
Apparently, the number N(T ) of exceedances up to time T is a Poisson random
variable with parameter λT . Assume that F = Fϑ is a df with density fϑ. Thus,
the Poisson(λ, Fϑ, T ) process is represented by the parameter vector (λ, ϑ).

In the present context the outcome of such a Poisson process is a sequence of
pairs (ti, yi), for i = 1, . . . , k, consisting of exceedance times ti and the pertaining
exceedances yi over a threshold u. Notice that k is the outcome of the Poisson
random variable N(T ) with parameter λT . If k = 0, then there are no observations,
which happens with a positive probability.

The Likelihood Function for Poisson Process Models

By specifying a likelihood function, the ML and Bayesian estimation principles
become applicable. It suffices to determine a likelihood function up to a constant
to compute the ML and Bayes estimates.

One may prove (cf. [43], Theorem 3.1.1) that for every sample {(ti, yi)} the
likelihood function L({(ti, yi)}|λ, ϑ) satisfies

L({(ti, yi)}|λ, ϑ) ∝ L1(k|λ)L2(y|ϑ) (9.12)

(“∝” again denotes that both sides are proportional), where

• L1(k|λ) =
(
(λT )k/k!

)
exp(−λT ) is the likelihood function for the Poisson

model as given in (3.50),

• L2(y|ϑ) =
∏

i≤k fϑ(yi) is the likelihood function for the model of k iid ran-
dom variables with common density fϑ as dealt with, e.g., in (3.36).

One recognizes that likelihood–based estimators of λ and ϑ only depend on the
data by means of k and, respectively, y = (y1, . . . , yk).

Maximum Likelihood Estimators for Poisson Processes
with Generalized Pareto Marks

To get the MLE one must find the parameters λ and ϑ which maximize the likeli-
hood function in (9.12). Due to the specific structure of the likelihood function in
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(9.12), it is apparent that the ML procedure for Poisson processes splits up into
those which were separately dealt with in the Sections 3.1 and 3.4.

Because the first factor L1(k|λ) is independent of ϑ it can be easily verified
that the MLE of λ is equal to

λ̂k = k/T. (9.13)

We distinguish two different models with respect to the parameter ϑ.

• (The Restricted Pareto Model GP1(u, µ = 0).) Let ϑ = α be the unknown
shape parameter in the restricted model GP1(u, µ = 0) of Pareto distribu-

tions (cf. page 116). Then, (λ̂k, α̂k(y)) is the MLE in the present Poisson
process model, where α̂k(y) denotes the Hill estimate (cf. (5.1); also see [43],
pages 142–143).

• (The Generalized Pareto Model GP(u).) Let ϑ = (γ, σ) be the parame-
ter vector in the generalized Pareto model as described on page 134. The
MLE in the pertaining Poisson process model is (λ̂k, γ̂k(y), σ̂k(y)), where
(γ̂k(y), σ̂k(y)) is the MLE in the GP(u) model of iid random variables of a
sample of size k.

Bayes Estimators for Poisson Processes with Pareto Marks

Next, we apply the concept of Bayes estimators, as outlined in Section 3.5 and
further developed in the Sections 5.1 and 7.3, to certain statistical models of
Poisson(λ, Fϑ, T ) processes, where Fϑ is a Pareto df represented by ϑ. An exten-
sion of that concept is required to cover the present questions, yet the calculations
remain just the same.

Recall from (9.12) that the likelihood function pertaining to the model of
Poisson(λ, Fϑ, T ) processes satisfies L({(ti, yi)}|λ, ϑ) ∝ L1(k|λ)L2(y|ϑ). One must
estimate the unknown parameters λ and ϑ.

The Bayes estimate of the intensity parameter λ of the homogeneous Poisson
process of exceedance times can be computed independently of ϑ if the prior density
can be written as the product

p(λ, ϑ) = p1(λ)p2(ϑ). (9.14)

Under this condition, the posterior density is

p(λ, ϑ|{(ti, yi)}) = p1(λ|k)p2(ϑ|y), (9.15)

where p1(λ|k) ∝ L1(k|λ)p1(λ) and p2(ϑ|y) ∝ L2(y|ϑ)p2(ϑ).

The Bayes estimator for a functional parameter

T (λ, ϑ) = T1(λ)T2(ϑ) (9.16)
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can be represented by

T̂ ({ti, yi}) =

∫
T1(λ)T2(ϑ)p1(λ|k)p2(ϑ|y) dλdϑ

=

∫
T1(λ)p1(λ|k) dλ

∫
T2(ϑ)p2(ϑ|y) dϑ . (9.17)

We explicitly compute Bayes estimators of the intensity λ and the parameter
ϑ.

• If λ is estimated, then T1(λ) = λ, T2(ϑ) = 1 and
∫

T2(ϑ)p2(ϑ|y) dϑ = 1. The
Bayes estimate of λ is

λ∗
k =

∫
λp1(λ|k) dλ. (9.18)

Specifically, if the prior p1(λ) is the gamma density with parameters r and
c, then we know from (3.53) that

λ∗
k =

r + k

c + T
(9.19)

is the Bayes estimate of the intensity λ.

• Bayes estimation of ϑ: Again, we deal with two different models, where ϑ = α
and, respectively, ϑ = (α, η) are the parameters of Paretian models.

– The restricted Pareto model GP1(u, µ = 0): Bayes estimators in this
Poisson–Pareto model were dealt with by Hesselager2. One gets the
Bayes estimate

α∗
k(y) =

∫
αp2(α|y) dα (9.20)

of the shape parameter α. If the prior p2(α) is a gamma density with
parameters s and d, then one obtains the Bayes estimate α∗

k(y) in (5.7).

– The full Pareto model GP(u) in the (α, η)–parameterization: Let ϑ =
(α, η) be the parameter vector in the model of Pareto distributions in
(5.10). The Bayes estimates of α and η can be written

α∗
k(y) =

∫
αp2(α, η|y) dαdη (9.21)

and

η∗
k(y) =

∫
ηp2(α, η|y) dαdη (9.22)

2Hesselager, O. (1993). A class of conjugate priors with applications to excess–of–loss
reinsurance. ASTIN Bulletin 23, 77–90.
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with p2(α, η|y) as in (9.15). If

p2(α, η) = hs,d(α)f(η),

as in (5.11), then one obtains the Bayes estimates α∗
k(y) and η∗

k(y) of
α and η as in (5.15) and (5.16).

9.4 GP Process Approximations
co–authored by E. Kaufmann3

This section provides a link between the explanations in the Sections 1.2 and 5.1
about exceedances and exceedance dfs and Section 9.1, where exceedances and
exceedance times are represented by means of Poisson processes.

Recall from Section 1.2 that the number of exceedances, of a sample of size n
with common df F , over a threshold u is distributed according to a binomial dis-
tribution Bn,p with parameter p = F(u) = 1− F (u). In addition, the exceedances
have the common df F [u] = (F (x) − F (u))/(1 − F (u)) for x ≥ u. In Section 5.1
the actual exceedance df F [u] was replaced by a GP df W , and in Section 6.5
the remainder term in this approximation was computed under certain conditions
imposed on F . In the statistical context one must simultaneously deal with all
exceedances over the given threshold u.

Binomial Processes Representation of Exceedances Processes

First, the exceedances will be represented by a binomial process.

Binomial(n, p, F [u]) Conditions: Let

(a) Y1, Y2, Y3, . . . be iid random variables with common df F [u],

(b) K(n) be a binomial random variable with parameters n and p = F(u),
which is independent of the sequence Y1, Y2, Y3, . . . .

The actual exceedances can be distributionally represented by the sequence

Y1, Y2, Y3, . . . , YK(n) (9.23)

which can be addressed as binomial process.

Binomial Process Approximation

Next, the actual binomial process in (9.23) will be replaced by another binomial
process

Z1, Z2, Z3, . . . , ZK(n) (9.24)

3University of Siegen; co–authored the 2nd edition.
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where F [u] is replaced by W [u]. Recall that W [u] is again a GP df if W is a GP df.
Let F and W have the densities f and w. In addition, assume that ω(F ) =

ω(W ). According to [16], Corollary 1.2.4 (iv), such an approximation holds with
a remainder term bounded by

∆F (n, u) :=
(
nF(u)

)1/2
H
(
f [u], w[u]

)
, (9.25)

where H is the Hellinger distance, cf. (3.4), between f [u] and w[u]. More precisely,
one gets in (9.25) a bound on the variational distance between the point processes
pertaining to the sequences in (9.23) and (9.24).

Under condition (6.35) we have

H
(
f [u], w[u]

)
= O

(
W

1/δ
(u)
)

, (9.26)

and, therefore, because (6.33) also holds,

∆F (n, u) = O
(
n1/2W

(2+δ)/2δ
(u)
)

. (9.27)

For example, if u is the (1 − k/n)–quantile of W—with k denoting the ex-
pected number of exceedances over u—then the right–hand side in (9.27) is of
order k1/2(k/n)1/δ.

Von Mises Bounds

We mention the required modifications if condition (6.35) is replaced by the con-
ditions (6.41) and (6.42).

The upper bound on the binomial process approximation, with w[u] replaced
by wγ,u,σ(u), is

∆F (n, u) =
(
nF(u)

)1/2
H
(
f [u], wγ,u,σ(u)

)
= O

((
nF(u)

)1/2∣∣η(F(u)
)∣∣) (9.28)

in analogy to (9.27) with σ(u) as in (6.45).
Thus, the exceedances under the actual df F [u] can be replaced by GP random

variables with common df Wγ,u,σ(u) within the error bound in (9.28). For example,
if F is the Gompertz df and u = F−1(1 − k/n), then

∆F (n, u) = O
(
k−1/2/ logn

)
.

Penultimate Approximation

The corresponding upper bound for the penultimate approximation to the ex-
ceedances process, with wγ,u,σ(u) replaced by wγ(u),u,σ(u), is

∆F (n, u) =
(
nF(u)

)1/2
H
(
f [u], wγ(u),u,σ(u)

)
= O

((
nF(u)

)1/2
τ
(
F(u)

))
(9.29)
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under the conditions (6.41) and (6.46).

A Poisson Process Approximation

One gets a Poisson process instead of a binomial process if the binomial random
variable with parameters n and p is replaced by a Poisson random variable with
parameter λ = np. The remainder term of such an approximation, in terms of the
variational distance, is bounded by p, see [43], Remark 1.4.1.

9.5 Inhomogeneous Poisson Processes,

Exceedances Under Covariate Information

In this section we model

• frequencies of occurance times by means of an inhomogeneous Poisson pro-
cess, and

• magnitudes by stochastically independent, time–dependent marks which are
distributed according to generalized Pareto (GP) dfs.

A parametric modeling for the marks is indispensable to achieve the usual
extrapolation to extraordinary large data.

Inhomogeneous Poisson and Poisson(Λ, F ) Processes

We extend the concept of a Poisson(λ, F ) process (cf. page 248) in two steps.
Firstly, the intensity λ is replaced by a mean value function Λ or an intensity
function (also denoted by λ) and, secondly, the df F of the marks is replaced by a
conditional df F = F (·|·).

Poisson(Λ, F ) Conditions:

(a) (Poisson(Λ) Process.) Firstly, let 0 ≤ T1 ≤ T2 ≤ T3 ≤ · · · be a Pois-
son(1) process (a homogeneous Poisson process with intensity λ = 1,
cf. page 248). Secondly, let Λ be a nondecreasing, right–continuous
function defined on the positive half–line [0,∞) with Λ(0) = 0 and
limt→∞ Λ(t) = ∞. Define the generalized inverse Λ−1 corresponding to
the concept of a qf, see (1.64).

Then, the series τi = Λ−1(Ti), i ≥ 1 or, equivalently, the counting
process

N(t) =

∞∑
i=1

I(τi ≤ t), t ≥ 0,

can be addressed as an inhomogeneous Poisson process with mean value
function Λ.
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(b) (Conditional Marks.) Given occurrence times ti consider random vari-
ables Xti with df F (·|ti). Thus, we have marks which distributionally
depend on the time at which they are observed.

One can verify that N(t) is a Poisson random variable with expectation Λ(t)
which justifies the notion of Λ as a mean value function. Moreover notice that there
is a homogeneous Poisson process with intensity λ if Λ(t) = λt. If a representation∫ b

a
λ(x) dx = Λ(b) − Λ(a) holds, then λ(x) is called the intensity function of Λ.

This two–step random experiment constitutes a Poisson(Λ, F ) process. The
reader is referred to [43], Corollary 7.2.2, where it is shown, in a more general
setting, that such a process is a Poisson point process with intensity measure

ν([0, t] × [0, y]) =

∫ t

0

F (y|z) dΛ(z). (9.30)

One obtains a Poisson(λ, F ) process as a special case if Λ(t) = λt and F (·|t) = F .

An Exceedance Process as an Inhomogeneous Poisson Process

Given a Poisson(Λ, F ) process, the marks exceeding the threshold u and the per-
taining exceedance times form a Poisson(Λu, F [u]) process, where

Λu(t) =

∫ t

0

(1 − F (u|s)) dΛ(s) (9.31)

is the mean value function of the exceedance times, and

F [u](w|t) =
(
F (w|t) − F (u|t)

)/(
1 − F (u|t)

)
, w ≥ u, (9.32)

are the conditional dfs of the exceedances.
In terms of Poisson point processes, cf. end of this section, this can be for-

mulated in the following manner: if ν is the intensity measure pertaining to the
Poisson(Λ, F ) process, then the truncation of ν outside of [0,∞) × [u,∞) is the
intensity measure pertaining to the Poisson(Λu, F [u]) process (of the truncated
process).

Densities of Poisson Processes

For the specification of likelihood functions one requires densities of Poisson pro-
cesses with domain S in the Euclidean d–space.

Let N0 and N1 be Poisson processes on S with finite intensity measures ν0

and ν1; thus, ν0(S) < ∞ and ν1(S) < ∞ (cf. end of this section). If ν1 has the
ν0–density h, then L(N1) has the L(N0)–density g with

g({yi}) =
( k∏

i=1

h(yi)
)

exp
(
ν0(S) − ν1(S)

)
, (9.33)
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where k is the number of points yi, see, e.g., [43], Theorem 3.1.1, for a general
formulation.

Statistical Modeling of the Exceedance Process

We start with independent random variables Yt with dfs F (y|t) and densities f(y|t)
for t = 1, . . . , n. We implicitly assume that the dfs depend on some unknown
parameter.

The discrete time points t = 1, . . . , n are replaced by a homogeneous Poisson
process on the interval [0, n] with intensity λ = 1 (this is motivated by weak
convergence results for empirical point processes). The random variables Yt are
regarded as marks at t. Combining the random time points and the marks on
gets a two–dimensional Poisson process with intensity measure ν([0, s] × [0, y]) =∫ s

0
F (y|t) dt as in (9.30).

The exceedances above the threshold u and the pertaining exceedance times
form a Poisson(Λu, F [u]) process as specified in (9.31) and (9.32) with Λ(t) = t.
The intensity measure of the Poisson(Λu, F [u]) process is given by

νu([0, s] × [u, y]) =

∫ s

0

F [u](y|t) dΛu(t)

and, therefore, νu(S) =
∫ n

0
(1−F (u|t)) dt where S = [0, n]× [u,∞). One may check

that the Lebesgue density of νu is

hu(t, y) = f(y|t), (t, y) ∈ [0, n]× [u,∞).

by changing the order of integration.
Such a model will be applied in Section 14.2 to compute the T –year flood

level in flood frequency analysis. Next we also specify a likelihood function for
such processes which enables, e.g., the computing of MLEs in an exceedance model
under covariate information.

A Likelihood Function for the Exceedance Process

The likelihood function of the Poisson(Λu, F [u]) process, as a function of the pa-
rameter which is suppressed in our notation, is given by

L({(yti, ti)}|·) ∝
( k∏

i=1

f(yti |ti)
)

exp
(
−
∫ n

0

(1 − F (u|t)) dt
)
, (9.34)

where k is the number of exceedances yti , and the ti are the pertaining exceedance
times4.

4To make (9.33) applicable, one has to use a density with respect to a finite measure
which is equivalent to the Lebesgue measure. This entails that a factor is included in
the representation of the density which does not depend on the given parameters and is,
therefore, negligible in (9.34).
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The dfs F (y|t) are merely specified for t = 1, . . . , n and, therefore, the integral∫ n

0 (1 − F (u|t)) dt in (9.34) is replaced by
∑n

t=1(1 − F (u|t)). Notice that the term
1 − F (u|t) represents the exceedance probability at time t. Also notice that the
likelihood function L is merely evaluated for exceedance times ti ∈ {1, . . . , n} in
conjunction with the pertaining exceedances yi.

An Application to Exceedances under Covariate Information

Corresponding to (8.34), where EV dfs are studied, assume that the conditional
df of Y given X = x is equal (or close to) a generalized Pareto (GP) df for values
y above a higher threshold u. More precisely, let

P (Y ≤ y|X = x) = Wγ,µ(x),σ(x)(y), y > u, (9.35)

where the location and scale parameters µ(x) and σ(x) are given as in (8.35). We
take

µ(x) = µ0 + µ1x,

σ(x) = exp(σ0 + σ1x). (9.36)

Also assume that the Yt are conditionally independent by conditioning on the
covariate vector X with

P (Yt ≤ y|X = x) = P (Yt ≤ y|Xt = xt)

= Wγ,µ(xt),σ(xt)(y), y > u, (9.37)

cf. (8.15) to (8.17), where such a condition is deduced for iid random pairs (Xt, Yt).
Next the ML procedure in (9.34) is applied to dfs

F (y|t) = Wγ,µ(xt),σ(xt)(y), y > u.

Put y = (yt1 , . . . , ytk
) and x = (x1, . . . , xn), where the yti are the exceedances

above the threshold u. As in Section 8.3, one obtains conditional MLEs γ̂x,y,
µ̂x,y(x), σ̂x,y(x) of the parameters γ, µ(x) and σ(x).

Other estimation procedures should be made applicable as well. We remind
on the estimation of a trend

• in the location parameter of EV dfs, see pages 113–116,

• in the scale parameter of GP dfs, see pages 139–141.

In this context one should also study moment or L–moment estimators. Such es-
timators may serve as initial values in the ML procedure.

For larger q, one gets an estimate of the covariate conditional q–quantile

qγ,µ,σ(Y |x) = W−1
γ,µ(x),σ(x)(q) (9.38)

given X = x by means of qγ̂x,y,µ̂x,y ,σ̂x,y (Y |x).
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Predicting the Conditional q–Quantile

We may as well define the covariate conditional q–quantile qγ,µ,σ(Y |X). Plugging
in the estimators of the unknown parameters as in (8.38) one gets a predictor of
qγ,µ,σ(Y |X).

A Poisson Process Modeling of Financial Data

The modeling of higher excesses of returns by means of Poisson processes under
covariate information (explanatory variables) was used by Tsay5 to investigate the
effect of changes in U.S. daily interest rates on daily returns of the S&P 500 index,
and a covariate conditional Value–at–Risk (VaR). We refer to Section 16.8, where
a serial conditional VaR is studied within the framework of GARCH time series.

An application of the present Poisson process modeling under covariate in-
formation to environmental sciences may be found in Chapter 15.

The General Notion of a Poisson Process

In Section 9.1, we started with the notion of a homogeneous Poisson process,
denoted by Poisson(λ), with intensity λ. By adding marks one gets a Poisson(λ, F )
process. Using a transformation in the time scale by means of a mean value function
Λ one gets the inhomgeneous Poisson process Poisson(Λ, F ). We also employed
the notion of an intensity measure which presents the mean number of points in a
measurable set.

Generally, one may define a Poisson process for every finite or σ–finite mea-
sure ν on a measurable space S, see [43]. This measure is again called intensity
measure. The Poisson process is denoted by Poisson(ν). In textbooks it is usually
assumed that the underlying space S is Polish or a locally compact Hausdorff space
with a countable base, yet these conditions are superfluous for the definition of a
Poisson process.

5Tsay, R.S. (1999). Extreme value analysis of financial data. Working paper, Graduate
School of Business, University of Chicago; also see Section 7.7 in Tsay, R.S. (2002).
Analysis of Financial Time Series. Wiley, New Jersey.
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Chapter 10

Basic Multivariate Concepts
and Visualization

This chapter provides a short introduction to several probabilistic and statistical
concepts in the multivariate setting such as, e.g., dfs, contour plots, covariance
matrices and densities (cf. Section 10.1), and the pertaining sample versions (cf.
Section 10.2) which may be helpful for analysing data.

Decomposition procedures of multivariate distributions by means of univari-
ate margins and multivariate dependence functions, such as copulas, are studied
in Section 10.3.

10.1 An Introduction to
Basic Multivariate Concepts

This section provides the multivariate versions of distribution functions (dfs), sur-
vivor functions and densities besides the notation.

Notation

Subsequently, operations and relations for vectors are understood componentwise.
Given row vectors a = (a1, . . . , ad) and b = (b1, . . . , bd), let

max{a, b} = (max{a1, b1}, . . . ,max{adbd}),

min{a, b} = (min{a1, b1}, . . . ,min{adbd}),
ab = (a1b1, . . . , adbd),

a + b = (a1 + b1, . . . , ad + bd),

a/b = (a1/b1, . . . , ad/bd), if bi �= 0.



266 10. Basic Multivariate Concepts and Visualization

If a real value is added to or subtracted from a vector, then this is done compo-
nentwise. Likewise, let a/b = (a1/b, . . . , ad/b) for a real value b �= 0.

Furthermore, relations “≤”, “<”, “≥”, “>”, etc. hold for vectors if they are
valid componentwise; e.g., we have a ≤ b, if aj ≤ bj for j = 1, . . . , d or a < b, if
aj < bj for j = 1, . . . , d.

These summations and relations can be extended to matrices in a straight-
forward manner. Occasionally, we also use the multiplication of matrices that is
different from the multiplication of row vectors as mentioned above: for a d1 × d2–
matrix A = (ai,j) and a d2×d3–matrix B =

(
bj,k

)
, we have AB =

(∑
j≤d2

ai,jbj,k

)
.

Especially, ab′ =
∑

j≤d ajbj for vectors a and b, where b′ is the transposed
vector of a, that is, b is written as a column vector. More generally, A′ denotes
the transposed of a matrix A.

Multivariate Distribution and Survivor Functions

The reader should be familiar with the notions of a d–variate df, a d–variate density
and the concept of iid random vectors X1, . . . ,Xm with common df F .

The df of a random vector X = (X1, . . . , Xd) is

F (x) = P{X ≤ x} = P{X1 ≤ x1, . . . , Xd ≤ xd}

for x = (x1, . . . , xd). If X1, . . . , Xd are independent, then

F (x) =
∏
j≤d

F(j)(xj), (10.1)

where F(j) is the df of Xj . If X1, . . . , Xd are identically distributed and totally
dependent—hence, the Xi are equal to X1 with probability one—then

F (x) = P{X1 ≤ x1, . . . , X1 ≤ xd}
= F(1)(min{x1, . . . , xd}). (10.2)

The d–variate survivor function corresponding to the df F is given by

F(x) = P{X > x} = P{X1 > x1, . . . , Xd > xd}.

Survivor functions will be of importance in multivariate extreme value anal-
ysis (as well as in the univariate setting, where a simpler representation of results
for minima was obtained by survivor functions).

Mean Vector and Covariance Matrix

For characterizing the df of a random vector X = (X1, . . . , Xd), the mean vector

m = (m1, . . . , md) = (EX1, . . . , EXd)
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and the covariance matrix Σ =
(
σj,k

)
are important, where the covariances are

given by

σj,k = Cov(Xj , Xk) = E
(
(Xj − mj)(Xk − mk)

)
,

whenever the covariance exists (cf. (2.52)). Notice that σj,j = σ2
j is the variance

of Xj. One gets the correlation coefficients by

ρj,k = σj,k/(σjσk).

Note that the correlation coefficient ρj,k ranges between −1 and 1. Random vari-
ables Xj and Xk are uncorrelated if ρj,k = 0. This condition holds if Xj and Xk

are independent and the second moments are finite. If Xj = Xk or Xj = −Xk

with probability 1, then ρj,k = 1 or ρj,k = −1.

Kendall’s τ

For characterizing the dependence structure of a random vector X = (X1, . . . , Xd)
one may also use Kendall’s τ in place of the covariance. One of the advantages of
Kendall’s τ is that the second moments need not be finite.

Let Y = (Y1, . . . , Yd) be another random vector which is distributional equal
to X, and let X and Y be independent. Then, define

τj,k = P{(Yj − Xj)(Yk − Xk) > 0} − P{(Yj − Xj)(Yk − Xk) < 0} . (10.3)

Marginal Distribution and Survivor Functions

In (10.1) and (10.2), we already employed the jth margin df F(j) of a d–variate df
F . Generally, let

FK(x) = P{Xk ≤ xk, k ∈ K}

for any set K of indices between 1 and d. Thus, we have F(j)(xj) = F{j}(x).
Apparently, FK can be deduced from F by letting xj tend to infinity for all indices
j not belonging to K. Likewise, the margins FK of a survivor function F are defined
by

FK(x) = P{Xk > xk, k ∈ K}.

One reason for the importance of survivor functions is the following repre-
sentation of a d–variate df F in terms of marginal survivor functions FK . We
have

1 − F (x) =
∑
j≤d

(−1)j+1
∑

|K|=j

FK(x). (10.4)

Likewise, we have

1 − F(x) =
∑
j≤d

(−1)j+1
∑

|K|=j

FK(x). (10.5)
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To verify (10.4) and (10.5), one must apply an additivity formula (see, e.g.,
(4.4) in [16]). Finally, we remark that F is continuous if the univariate margins
F(j) are continuous. Deduce from (10.4) and (10.5) that

F (x1, x2) = F1(x1) + F2(x2) + F(x1, x2) − 1 (10.6)

and
F(x1, x2) = F1(x1) + F2(x2) + F (x1, x2) − 1 (10.7)

for bivariate dfs F with margins F1 and F2.

Multivariate Densities

If a df F has the representation

F (x) =

∫ x

−∞
f(x) dx =

∫ xd

−∞
· · ·
∫ x1

−∞
f(x1, . . . , xd) dx1 · · ·dxd, (10.8)

where f is nonnegative, then f is a (probability) density of F . A necessary and
sufficient condition that a nonnegative f is the density of a df is∫

f(x) dx :=

∫ ∞

−∞
f(x) dx = 1. (10.9)

If the random variables X1, . . . , Xd are independent again and Xi possesses a
density fi, we see that

f(x) =
∏
i≤d

fi(xi) (10.10)

is a joint density of the X1, . . . , Xd.
Under certain conditions, a density can also be constructed from a given df

F by taking partial derivatives1: if the d–fold partial derivative

f(x) =
∂d

∂x1 · · ·∂xd
F (x) (10.11)

is continuous, then f is a density of F . It is sufficient that the given condition
holds in an open rectangle (a, b) =

∏
j≤d(aj , bj)—or, generally, an open set U—

possessing the probability 1. Then, put f = 0 outside of (a, b) or U .
If the df F has a density f , then the survivor function F can be written

F (x) =

∫ ∞

x

f(x) dx =

∫ ∞

xd

· · ·
∫ ∞

x1

f(x1, . . . , xd) dx1 · · ·dxd. (10.12)

From this representation, as well as from (10.5), one realizes that the density
f can also be deduced from the survivor function by taking the d–fold partial
derivative.

1See Theorem A.2.2 in Bhattacharya, R.N. and Rao, R.R. (1976). Normal Approxi-
mation and Asymptotic Expansions. Wiley, New York.
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Contour Plots of Surfaces, Bivariate Quantiles

Another indispensable tool for the visualization of a bivariate function f is the
contour plot which consists of lines {(x, y) : f(x, y) = q} for certain values q.

The illustration in Fig. 10.1 concerns a bivariate normal density which will
be introduced in Section 11.1.

-3 0 3
-3

0

3

Fig. 10.1. Contour plot of the

bivariate normal density with

correlation coefficient ρ = 0.5.

For a bivariate df F , the line {(x, y) : F (x, y) = q} may be addressed as the
q–quantile of F . Therefore, a contour plot of a df F displays a certain collection
of quantiles. Likewise, one may deal with upper p–quantiles {(x, y) : F(x, y) = p}
pertaining to the survivor function.
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Fig. 10.2. Contour plots of the bivariate normal distribution with correlation coefficient

ρ = 0.5. (left.) Quantiles of df for q = i/10 with i = 1, . . . , 9. (right.) Quantiles of survivor

function for p = i/10 with i = 1, . . . , 9.
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10.2 Visualizing Multivariate Data

In this section we introduce the sample versions of multivariate dfs, covariances,
densities and also contour plots. Moreover, we display different versions of scatter-
plots for trivariate data. Remarks about handling missing components in a vector
of data are added.

Multivariate Sample Distribution and Survivor Functions

For d–variate data x1, . . . ,xn, the sample df is

Fn(x) =
1

n

∑
i≤n

I(xi ≤ x). (10.13)

If x1, . . . ,xn are governed by a d–variate df F , then the sample df Fn(x)
provides an estimate of F (x) as in the univariate case. An illustration of a bivariate
df may be found in Fig. 12.1.

A related remark holds for the sample survivor function which is defined by

Fn(x) =
1

n

∑
i≤n

I(xi > x). (10.14)

The 2–dimensional sample df and survivor function must be plotted in a 3–D
plot. A simplified representation is achieved by using sample contour plots as dealt
with below.

Sample Mean Vector, Sample Covariances

The sample versions of the mean vector m and the covariance matrix (σj,k)—based
on d–variate data x1, . . . ,xn with xi = (xi,1, . . . , xi,d)—are

• the vector mn of the componentwise taken sample means

mj,n =
1

n

∑
i≤n

xi,j , (10.15)

• the matrix of sample covariances (cf. also (2.53))

sj,k,n =
1

n − 1

∑
i≤n

(xi,j − mj,n)(xi,k − mk,n). (10.16)

For the sample variances we also write s2
j,n in place of sj,j,n. In addition, the sample

correlation correlations

ρj,k,n = sj,k,n/(sj,j,nsk,k,n)1/2. (10.17)
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Bivariate Sample Contour Plots

The contour plots of sample df Fn and sample survivor function Fn are estimates
of the contour plots of the underlying df F and survivor function F . Thus, in the
case of the sample survivor function one is computing lines of point t which admit
an approximately equal number of points xi > t.
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y
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Fig. 10.3. 2–dimensional data and

a contour plot of the sample sur-

vivor function.

As in the continuous case, one is evaluating the surface of the sample functions
on a rectangular grid, and the approximate contours are computed by interpola-
tion. For the details we refer to the book by Cleveland [8], pages 242–241.

Multivariate Kernel Density

Let k be a univariate kernel as presented in Section 2.1. Using such univariate
kernels as factors one gets a d–variate kernel by u(x) =

∏
j≤d k(xj). In analogy to

(2.14), define a d–variate kernel density fn,b at x by

fn,b(x) =
1

nbd

∑
i≤n

∏
j≤d

k

(
xj − yi,j

b

)
(10.18)

based on d–variate data yi = (yi,1, . . . , yi,d), where b > 0 is a smoothing parameter.
Note that (10.18) can be written

fn,b(x) =
1

nbd

∑
i≤n

u

(
x − yi

b

)
. (10.19)

In this formula, the special kernel

u(x) =
∏
j≤d

k(xj)
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Fig. 10.4. (left.) 3–D plot of bivariate normal density with correlation coefficient ρ = 0.5.

(right.) 3–D plot of kernel density based on 100 bivariate normal data with the bandwidth

b = .5 (based on a bivariate normal kernel).

can be replaced by any d–variate probability density.
Modifications of this construction are necessary if the data exhibit a certain

direction. Then, it is useful to consider a kernel u that mimics the shape of the
data set. This question can also be dealt with in conjunction with data sphering
and principle component analysis2.

Bounded Kernel Density

Subsequently, we study bivariate data yi = (yi,1, yi,2) for i = 1, . . . , n. As in
the univariate case, we try to prevent a smoothing of the data beyond certain
boundaries. One may assume that the first or second component is left or right–
bounded.

First, let us assume that the first component is left bounded by a1, that
is, yi,1 ≥ a1 for i = 1, . . . , n. For this case, a plausible kernel density may be
constructed in the following manner:

1. reflect the yi,1 in a1 obtaining values y′
i,1 = 2a1 − yi,1;

2. apply the preceding kernel density fn,b to the new enlarged data set consist-
ing of (yi,1, yi,2) and (y′

i,1, yi,2) for i = 1, . . . , n,

3. restrict the resulting curve to [a1,∞) × (−∞,∞).

If the first component is also right–bounded by a2 > a1, reflect the yi1 also
in a2 and proceed as before. Of course, the order of these two steps can be in-
terchanged. If this is necessary, continue this procedure in the second component,
whereby one must start with the enlarged data set.

2Falk, M., Becker, R. and Marohn, F. (2002). Foundations of Statistical Analyses and
Applications with SAS. Birkhäuser, Basel.
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The 3–D Scatterplot

As in the 2–dimensional case the 3–dimensional scatterplots provide an indispens-
able tool to get a first impression of a data set.

We include two versions of a 3–dimensional scatterplot.
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Fig. 10.5. A scatterplot of

50 trivariate normal data.

The facility to rotate such a scatterplot around the z–axis makes it particu-
larly valuable.

Next, the 3–D scatterplot is once more applied to trivariate data where, how-
ever, the first and second components describe the site of a spatial measurement.
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Fig. 10.6. A scatterplot of

sites and measurements.

Contourplots, surface plots and scatterplots are available within the multi-
variate part of the menu system of Xtremes.
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Missing Data

In conjunction with censored data, the question of handling missing data was
solved by defining appropriate statistical models and by applying model–based
procedures.

Subsequently, we deal with the situation where one or several components
of an observation vector are missing (assuming that this happens in an irregular
manner). Simply discarding the incompletely recorded observation vector will en-
tail the loss of information, a consequence which should be avoided particularly
for samples of smaller sizes. The proposed filling–in procedure for missing values is
a nearest–neighbor method that is related to the stochastic regression imputation
discussed in the book by Little and Rubin3.

For simplicity, let us assume that xl = (xl,1, . . . , xl,d−1, ·) is a vector such that

only the dth component is missing. Put x
(d)
l = (xl,1, . . . , xl,d−1). Fix a number k.

From those vectors without a missing component, select xi1 , . . . ,xik
such that

x
(d)
i1

, . . . ,x
(d)
ik

are the k nearest neighbors of x
(d)
l . Finally, a dth component xl,d is

added to xl which is randomly chosen from the dth components xi1,d, . . . , xik,d.
Notice that this is a sampling procedure according to a conditional sample df (cf.
[16], pages 96–98). Likewise, missing values in other components are filled in and
the completed data are analyzed by standard methods.

Example 10.2.1. (Annual Wind–Speed Maxima: Continuation of Examples 1.2.1 and
2.1.3.) We deal with the annual wind–speed maxima (in km/hr) based on hourly mea-
surements at five Canadian stations (located at Vancouver, Regina, Toronto, Montreal
and Shearwater) from 1947 to 1984. The wind–speeds at Shearwater from 1947 to 1949
are not recorded. Thus, if the incompletely recorded vectors are discarded, a sample of
size 35 remains.

The following table only contains the data for the years 1947 to 1951. The missing
values were generated by means of the nearest–neighborhood algorithm with k = 5.

Table 10.1. Annual wind–speed maxima from 1947 to 1951 with filled–in values.

Maximum wind speed (km/h)

Year Vancouver Regina Toronto Montreal Shearwater

1947 79.5 88.8 79.5 120.2 (85.1)

1948 68.4 74.0 75.8 74.0 (79.5)

1949 74.0 79.5 88.8 64.8 (68.4)

1950 59.2 74.0 96.2 77.7 64.8

1951 74.0 79.5 72.1 61.0 79.5

3Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing Data. Wiley,
New York.
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10.3 Decompositions of

Multivariate Distributions

Let X = (X1, . . . , Xd) be a random vector with df F . In this section we describe
some procedures in which manner the df F can be decomposed into certain uni-
variate dfs and a multivariate df where the latter df represents the dependence
structure.

Thereby, one may separately analyze and estimate certain univariate com-
ponents and the multivariate dependence structure. The piecing together of the
different estimates yields an estimate of F .

Copulas

Assume that the univariate marginal dfs Fj are continuous (which implies that
F is continuous). By applying the probability transformation as introduced on
page 38, the random variables Xj can be transformed to (0, 1)–uniform random
variables. The df C of the vector Y of transformed random variables Yj = Fj(Xj)
is called the copula pertaining to F . We have,

C(u) = P{Y1 ≤ u1, . . . , Yd ≤ ud}
= F

(
F−1

1 (u1), . . . , F
−1
d (ud)

)
, (10.20)

where F−1
j is the qf of Fj . In addition, Y may be addressed as copula random

vector pertaining to X.
Conversely, one may restore the original df F from the copula by applying

the quantile transformation. We find

F (x) = C
(
F1(x1), . . . , Fd(xd)

)
, (10.21)

which is the desired decomposition of F into the copula C and the univariate
margins Fj .

Likewise, the original univariate margins can be replaced by some other dfs.
Thus, we may design a multivariate df with a given multivariate dependence struc-
ture (as, e.g., a copula) and predetermined univariate margins.

For a shorter introduction to various families of copula functions we refer to a
paper by Joe4. There is a controversial discussion about the usefulness of copulas:
we refer to Mikosch5 and the attached discussion, as, e.g., the contribution by
Genest and Rémillard6.

4Joe, H. (1993). Parametric families of multivariate distributions with given marginals.
J. Mult. Analysis 46, 262–282.

5Mikosch, T. (2006). Copulas: tales and facts. Extremes 9, 3–20.
6Genest, C. and Rémillard, B. (2006). Discussion of “Copulas: tales and facts”, by

Thomas Mikosch. Extremes 9, 27–36.
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Data–Based Transformations, Empirical Copulas

In application one may carry out the transformations with estimated paramet-
ric univariate and multivariate dfs and and piece the univariate and multivariate
components together, for details see page 389.

In the following example, the copula method is employed with estimated
Gaussian copula and Student margins.

Example 10.3.1. (Log-Returns Deutsche Bank against Commerzbank: Continuation of
Example 9.4.1.) The scatterplot in Figure 10.7 again consists of the log-returns (with
conversed signs) of the Deutsche Bank plotted against those of the Commerzbank on
trading days from Jan. 1, 1992 to Jan. 11, 2002.

In addition, the contour lines of the estimated density of a Gaussian copula and
univariate Student margins are plotted.
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Fig. 10.7. Scatterplot of log-

returns (with changed signs)

Deutsche Bank against Com-

merzbank and contour plot of

estimated density with Gaus-

sian copula and univariate

Student margins.

The exotic “butterfly” contour plot does not fit to the scatterplot which has an

elliptical shape. We conclude that the modeling by means of a Gaussian copula and

univariate Student margins is not correct.

A related illustration in conjunction with a scatterplot of daily differences of
zero–bond–discount–factors may be found in Wiedemann et al., page 757. These
examples show that the copula method should be employed with utmost care. We
are not aware whether there are general rules under which the copula method is
always appropriate.

7Wiedemann, A., Drosdzol, A., Reiss, R.–D. and Thomas, M. (2005). Statistische
Modellierung des Zinsänderungsrisikos. Teil 2: Multivariate Verteilungen. In: Modernes
Risikomanagement (F. Romeike ed.). Wiley-VCH, Weinheim.
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The transformations may also be based on kernel estimates of the dfs, see
(2.17) and (10.19). In this case, the data are still transformed by means of contin-
uous dfs.

In Section 13.3 we make use of univariate transformations of a different type,
namely those by means of univariate sample dfs F̂n based on the sample vector
x = (x1, . . . , xn), see (2.1). Thus, the original data xi in the margins are replaced

by yi = F̂n(xi). Recall that the number of xj ≤ xi is the rank of xi, denoted by
ri(x), see, e.g., Hájek and Šidak, page 368. The value ri(x) is the rank of xi in
the ordered sample x1:n < . . . < xn:n. Therefore, the transformed data are relative
ranks; we have

yi = ri(x)/n. (10.22)

In that context one loosely speaks of empirical copulas. Concerning stochastical
properties of order statistics and rank statistics we refer to the book by Hájek and
Šidak.

Other Decompositions

The decomposition of the joint distribution of random variables X and Y in the
marginal distribution of X and the conditional distribution of Y given X = x
was the topic of Section 8.1. Of course, this is the most important decomposition
methodology for a random vector.

Notable is also the well–known decomposition of spherical random vectors
in two independent random variables, namely the radial and angular components,
see Section 11.2.

In conjunction with extreme values, we are interested in standard forms of
multivariate distributions different from copulas, namely,

• the bivariate generalized Pareto (GP) dfs in their standard form, cf. Section
13.1, are closely related to copulas in so far that the margins are always
equal to the uniform df on the interval (−1, 0) which is the univariate GP df
W2,−1, thus, there is the slight modification of a shifted uniform df;

• the bivariate extreme value (EV) dfs in Section 12.1 are described by the
Pickands dependence function and univariate margins equal to the reversed
exponential df on the negative half–line which is the EV df G2,−1 (by the
way, other authors prefer the Frechét df G1,1 as univariate margin);

• representations of a different type are employed in Section 12.4 where a
bivariate dfs H on the left, lower quadrant (−∞, 0]2 is represented by a
certain spectral decomposition. For that purpose one considers univariate
dfs of the form

Hz(c) = H(cz, c(1 − z))

8Hájek, J. and Šidak, Z. (1967). Theory of Rank Tests. Academic Press, New York.
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in the variable c for each z, where z and c may be regarded as the angular
and, respectively, radial component.

If H is an EV df or, respectively, a GP df, then Hz is a reversed exponential
df or, respectively, a uniform df depending on z,

• in analogy to the above mentioned decomposition for spherical random vec-
tors, bivariate GP random vectors can be decomposed in independent radial
and angular components, see Section 12.4.



Chapter 11

Elliptical and Related
Distributions

In Section 11.1 we first recall some well–known, basic facts about multivariate
Gaussian and log–normal models. The Gaussian distributions will serve as ex-
amples of spherical and elliptical distributions in Section 11.2. An introduction
to multivariate Student and multivariate sum–stable distributions is separately
treated in the Sections 11.3 and 11.4.

Thus, we deal with multivariate distributions, where the univariate margins
have light, fat and heavy tails. Recall that Student distributions have Pareto–
type tails with α > 0, whereas the tail index of the non–Gaussian, sum–stable
distributions is restricted to α < 2.

11.1 Multivariate Gaussian Models

Corresponding to the univariate case, parametric models are built by starting with
certain standard dfs and, subsequently, adding location and scale parameters in
the single components. As examples we first discuss the multivariate normal and
log–normal models.

In Section 12.1, the multivariate normal model will be converted into a mul-
tivariate EV model with univariate Gumbel margins.

Location and Scale Parameter Vectors

Let X = (X1, . . . , Xd) be a random vector with df F . Location and scale parameter
vectors can be added to this df by considering random variables Yj = µj + σjXj

for j = 1, . . . , d. The joint df of the Yj is given by

Fµ,σ(x) = P{X1 ≤ (x1 − µ1)/σ1, . . . , Xd ≤ (xd − µd)/σd}

= F

(
x − µ

σ

)
, (11.1)
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where µ = (µ1, . . . , µd) and σ = (σ1, . . . , σd) denote the location and scale vectors.

Multivariate Normal Distributions

The d–variate normal distribution serves as a first example of a multivariate distri-
bution. Let X = (X1, . . . , Xd) be a vector of iid standard normal random variables.
Linear changes of X are again normal vectors. If A is a d × d–matrix (ai,j) with
determinant detA �= 0, then

Y
′

= AX
′

=

(∑
j≤d

a1,jXj, . . . ,
∑
j≤d

ad,jXj

)′
(11.2)

is a d–variate normal vector with mean vector zero and covariance matrix Σ =
(σi,j) = AA

′

. The density of Y is given by

ϕΣ(y) =
1

(2π)d/2 det(Σ)1/2
exp

(
− 1

2
yΣ−1y′

)
, (11.3)

where Σ−1 denotes the inverse of Σ. Let

ΦΣ(x) =

∫ x

−∞
ϕΣ(y) dy (11.4)

be the df of Y . We write ϕµ,Σ and Φµ,Σ when a location vector µ is added.
The density ϕΣ can be deduced from the density ϕI of the original normal

vector X by applying the transformation theorem for densities (hereby, I denotes
the unit matrix with the elements equal to one in the main diagonal and the
elements are equal to zero otherwise). Moreover, marginal vectors (Yj1 , . . . , Yjk

)
with 1 ≤ j1 < j2 < · · · < jk ≤ d are normal again.

Notice that (11.2) is a special case of the following well–known result: if Y

is a d–variate normal vector with mean vector µ and covariance matrix Σ and A
is a k × d–matrix (with k rows and d columns and k ≤ d) having rank k, then

Z
′

= AY
′

is a k–variate normal vector with mean vector Aµ′ and covariance
matrix AΣA

′

.

Statistical Inference in the Multivariate Gaussian Model

The d–variate normal model is{
Φµ,Σ : µ = (µ1, . . . , µd), Σ =

(
σi,j

)}
, (11.5)

where µ is a location (mean) vector and Σ is the covariance matrix. Estimators are
easily obtained by the sample mean vector µn and the sample covariance matrix
Σn, cf. (10.15) and (10.16).
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It is well known that the sample mean vector µn and the sample covariance
matrix Σn (with the factor 1/(n − 1) replaced by 1/n) are also the MLEs in the
d–variate normal model.

Assume that (Y1, . . . , Yd) is a random normal vector with mean vector µ =
(µ1, . . . , µd) and covariance matrix Σ = (σi,j). Then Yj has the location and scale

parameters µj and σj = σ
1/2
j,j . The correlation matrix is (ρi,j) = (σi,j/(σiσj)).

Therefore, a normal distribution may be alternatively represented by the the cor-
relation matrix (ρi,j) and the location and scale vectors µ = (µ1, . . . , µd) and
σ = (σ1, . . . , σd).

A Useful Result Concerning the Asymptotic Normality

The following result, which was applied in (4.4), is taken from [48], pages 118 and
122. Let

• b−1
n (Xn − µ) be distributed asymptotically according to ΦΣ (that is the

pointwise convergence of the dfs) where bn → 0 as n → ∞,

• gi be real–valued functions with partial derivatives ∂gi/∂xj �= 0 at µ for
i = 1, . . . , m and j = 1, . . . , d.

Let g = (g1, . . . , gm) and let D be the matrix of partial derivatives evaluated at
µ. Then,

b−1
n (g(Xn) − g(µ)) (11.6)

is distributed asymptotically according to ΦDΣD
′ .

Multivariate Log–Normal Distributions

If the positive data x1, . . . ,xn indicate a heavier upper tail than that of a multi-
variate normal distribution Φµ,Σ, then one may try to fit a multivariate log–normal
df

F(µ,Σ)(x) = Φµ,Σ(log(x1), . . . , log(xd)), x > 0. (11.7)

The values exp(µi) are scale parameters and Σ is a matrix of shape parame-
ters of the multivariate log–normal distribution. It is apparent that the univariate
margins are univariate log–normal distributions as set forth in Section 1.6.

11.2 Spherical and Elliptical Distributions

First, we study multivariate normal distributions from the viewpoint of spherical
and elliptical distributions.
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Multivariate Normal Distributions, Revisited

We describe multivariate normal distributions as spherical and elliptical ones. Let
again X = (X1, . . . , Xd) be a vector of iid standard normal random variables as
in Section 11.3. The pertaining density is

ϕI(x) =
∏
j≤d

ϕ(xj) =
1

(2π)d/2
exp

(
− 1

2
xx′

)
, (11.8)

where I is again the unit matrix.
Notice that |x| =

√
xx′ is the Euclidean norm of the vector x. It is apparent

that the contour lines {x : ϕI(x) = q} are spheres. Therefore, one speaks of
a spherical distribution. A random vector X with density ϕI has the following
property: we have

AX
d
= X, (11.9)

for any orthogonal matrix A; that is, for matrices A with AA′ = I. This can be
analytically verified by means of equation (11.3) because Σ−1 = (AA′)−1 = I

for orthogonal matrices A. (11.9) is also evident from the fact that an orthogonal
matrix causes the rotation of a distribution.

More generally, if A is a d× d–matrix with det A �= 0, then AX is a normal
vector with covariance matrix Σ = AA′ and density ϕΣ, cf. again (11.3). Now,
the contour line {y : ϕΣ(y) = q} is an ellipse for every q > 0, and one speaks of
an elliptical distribution.

Spherical and Elliptical Distributions

Generally, one speaks of a spherical random vector X if (11.9) is satisfied for any
orthogonal matrix A. Moreover, an elliptical random vector is the linear change
of a spherical random vector under a matrix A with detA �= 0.

In conjunction with multivariate Student and multivariate sum–stable distri-
butions we will make use of the following construction: if X is a spherical random
vector and Y is real–valued then XY is again a spherical random vector because

A(XY ) = (AX)Y
d
= XY, (11.10)

for any orthogonal matrix A.

A Decomposition of Spherical Distributions

It is well known, see, e.g., [19], that a spherical random vector X can be written
as

X = RU,

where R ≥ 0 is the radial component, U is uniformly distributed on the unit
sphere S = {u : |u| = 1} and R, U are independent. Here |x| =

√
xx′ is again the
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Euclidean norm. We may call U the angular component (at least in the bivariate
case).

If P{X = 0} = 0, then we have |X| d
= R and X/|X| d

= U.

11.3 Multivariate Student Distributions

We introduce another class of elliptical distributions, namely certain multivariate
Student distributions, and deal with statistical questions. At the end of this section,
we also introduce non–elliptical Student distributions.

Multivariate Student Distribution with Common Denominators

Recall from Section 6.3 that Z = X/(2Y/α)1/2 is a standard Student random
variable with shape parameter α > 0, where X is standard normal and Y is a
gamma random variable with parameter r = α/2.

Next, X will be replaced by a random vector X = (X1, . . . , Xd) of iid stan-
dard normal random variables Xi. Because X is spherical, we know from the
preceding arguments that X/(2Y/α)1/2 is a spherical random vector. In addition,
if A is a matrix with detA �= 0, then a linear change yields the elliptical random
vector

Z = A
(
X/(2Y/α)1/2

)
= (AX)/(2Y/α)1/2, (11.11)

where AX is a normal random vector with covariance matrix Σ = AA′.
This distribution of Z is the multivariate standard Student distribution with

parameter α > 0 and parameter matrix Σ = (σi,j). We list some properties of
these distributions.

• The density of Z = (Z1, . . . , Zd) is

fα,Σ(z) =
Γ((α + d)/2)

Γ(α/2)(απ)d/2(detΣ)1/2

(
1 + α−1zΣ−1z′)−(α+d)/2

. (11.12)

• According to (11.11), the marginal distributions are Student distributions
again. In particular, Zj is distributed according to the Student distribution

with shape parameter α > 0 and scale parameter σj = σ
1/2
j,j .

• If α > 2, then α
α−2Σ is the covariance matrix. For α ≤ 2 the covariances do

not exist.

Warning! Σ is not the covariance matrix of the Student
distribution with density fα,Σ for any α.

This was the reason why we spoke of a parameter matrix Σ instead of a
covariance matrix in that context. In the sequel, we still address Σ as “co-
variance matrix”—in quotation marks—for the sake of simplicity.
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Initial Estimation in the Student Model

The shape and scale parameters α and σj may be estimated within the univariate
marginal models. Take, e.g., the arithmetic mean of the estimates of α in the
marginal models as an estimate of α in the joint model. If α is known to be larger
than 2, then one may utilize sample variances to estimate the “covariance matrix”.

Otherwise, one may use an estimate based on Kendall’s τ , see (10.3), We
will estimate the “covariance matrix” Σ = (σi,j) by estimating the “correlation

matrix” (σi,j/σiσj), where σj = σ
1/2
j,j again. The operational meaning of this pa-

rameterization becomes evident by generating the Student random vector Z in
(11.11) in two steps. Let D be the diagonal matrix with elements σj in the main

diagonal: we have Z = DZ̃ where Z̃ = (D−1AX)/(2Y/α)1/2 is the standard-
ized Student random vector with “covariance matrix” (σi,j/σiσj), and Z is the
pertaining random vector with scale parameter vector σ.

Maximum Likelihood Estimation in the Student Model

Based on initial estimates one may compute an MLE for the Student model using
the Newton–Raphson procedure. We continue Example 10.3.1 where the applica-
tion of the copula method produced a curious “butterfly” contour plot.

Example 11.3.1. (Continuation of Example 10.3.1.) The following considerations are
based on the daily stock indizes of the Commerzbank and the Deutsche Bank from Jan.
1, 1992 to Jan 11, 2002. The scatterplot in Figure 11.1 consists of the the pertaining
log-returns on trading days with conversed signs.
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Fig. 11.1. Scatterplot of log-

returns (with changed signs)

Deutsche Bank against Com-

merzbank and contour plot of

the estimated Student den-

sity.

The estimated bivarate Student distribution provides a better fit to the scatterplot

due to its elliptical contour.
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For a continuation we refer to page 390 where the Value–at–Risk is computed
within the multivariate Student model.

Extending the Concept of Multivariate Student Distributions

In (6.16) we introduced Student distributions as those of X/(Y/r)1/2, where X is
standard normal and Y is a gamma random variable with parameter r > 0. This
approach can be extended to the d–variate case dealing with random variables

Xi/(Yi/ri)
1/2, i = 1, . . . , d,

where X = (X1, . . . , Xd) is multivariate normal with mean vector zero and cor-
relation matrix Σ, and Y = (Y1, . . . , Yd) is a multivariate gamma vector. For
example, the Yi are totally dependent or independent (for details, see [32], Chap-
ter 37). It is apparent that the univariate margins are Student random variables
with parameter ri.

A further extension to skewed distributions is achieved when the mean vector
of X is unequal to zero. Then, the univariate margins are noncentral Student
distributions.

11.4 Multivariate Sum–Stable Distributions

co–authored by J.P. Nolan1

In this section we give a short introduction to multivariate sum–stable distribu-
tions. We emphasis the statistical diagnostic which reduces the multivariate case
to the univariate one which was outlined in Section 6.4.

Distributional Properties

A random vector X = (X1, X2, . . . , Xd) is stable if for all m = 2, 3, 4, . . .

X1 + · · · + Xm = amX + bm,

in distribution, where X1, X2, . . . are iid copies of X. The phrase “jointly stable”
is sometimes used to stress the fact that the definition forces all the components
Xj to be univariate sum–stable with the same α. Formally, if X is a stable random

vector, then every one dimensional projection uX
′

=
∑

uiXi is a one dimensional
stable random variable with the same index α for every u, e.g.,

uX
′ ∼ S(α, β(u), γ(u), δ(u); 1). (11.13)

The converse of this statement is true if the projections are all symmetric,
or all strictly stable, or if α ≥ 1. Section 2.2 of [46] gives an example where α < 1

1American University, Washington DC.
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and all one dimensional projections are stable, but X is not jointly stable. In this
case, a technical condition must be added to get a converse.

One advantage of (11.13) is that it gives a way of parameterizing multivariate
stable distributions in terms of one dimensional projections. From (11.13) one gets
the (univariate) characteristic function of uX

′

for every u, and hence the joint
characteristic function of X. Therefore α and the functions β(·), γ(·) and δ(·)
completely characterize the joint distribution. In fact, knowing these functions on
the unit sphere S = {u : |u| = 1} in the Euclidean d–space characterizes the
distribution.

The functions β(·), γ(·) and δ(·) must satisfy certain regularity conditions.
The standard way of describing multivariate stable distributions is in terms of a
finite measure Λ on the sphere S, called the spectral measure. It is typical to use
the spectral measure to describe the joint characteristic function, we find it more
convenient to relate it to the functions β(·), γ(·), and δ(·).

Let X = (X1, . . . , Xd) be jointly stable with a representation as in (11.13).
Then there exists a finite measure Λ on S and a d–variate vector δ with

γ(u) =

(∫
S

|us′|α Λ(ds)

)1/α

β(u) =

∫
S
|us′|αsign (us′) Λ(ds)∫

S
|us′|α Λ(ds)

δ(u) =

⎧⎨⎩ δu′ α �= 1;
if

δu′ − 2
π

∫
S
(us′) ln |us′|Λ(ds) α = 1.

(11.14)

It is possible for X to be non–degenerate, but singular. X = (X1, 0) is for-
mally a two dimensional stable distribution if X1 is univariate stable, but it does
not have a density. It can be shown that the following conditions are equivalent:
(i) X is nonsingular, (ii) γ(u) > 0 for all u, (iii) the span of the support of Λ
is the Euclidean d–space. If these conditions hold, then a smooth density exists.
Relatively little is known about these densities—their support is a cone in general,
and they are likely to be unimodal.

There are a few special cases of multivariate stable distributions where quan-
tities of interest can be explicitly calculated. We concentrate on the bivariate case.

The Gaussian Case

The density function ϕµ,Σ of a multivariate Gaussian distribution was given in
(11.3). The joint characteristic function of such a distribution is

χ(u) = exp
(
− uΣu′/2 + uµ′).

Hence the parameter functions are γ(u) = (uΣu′/2)1/2, β(u) = 0 and δ(u) = uµ′.
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The Independent Case

Let X1 ∼ S(α, β1, γ1, δ1; 1) and X2 ∼ S(α, β2, γ2, δ2; 1) be independent, then
X = (X1, X2) is bivariate stable. Since the components are independent, the
joint density is

f(x1, x2) = g(x1|α, β1, γ1, δ1; 1)g(x2|α, β2, γ2, δ2; 1),

where g(·| · · · ) are the one dimensional stable densities. When there is an explicit
form for a univariate density (Gaussian, Cauchy or Lévy cases), then there is an
explicit form for the bivariate density. For example, the standardized Cauchy with
independent components has density

f(x1, x2) =
1

π2

1

(1 + x2
1)(1 + x2

2)
. (11.15)

For a general α the parameter functions are

β(u1, u2) =
(sign u1)β1|u1γ1|α + (sign u2)β2|u2γ2|α

|u1γ1|α + |u2γ2|α

γ(u1, u2) = (|u1γ1|α + |u2γ2|α)1/α

δ(u1, u2) =

{
u1δ1 + u2δ2, α �= 1,
u1δ1 + u2δ2 − (2/π)(β1γ1u1 ln |u1| + β2γ2u2 ln |u2|), α = 1.

Note that β(1, 0) = β1, γ(1, 0) = γ1, and δ(1, 0) = δ1, which corresponds to
(1, 0)X

′

= X1 and β(0, 1) = β2, γ(0, 1) = γ2, and δ(0, 1) = δ2 which corresponds
to (0, 1)X

′

= X2. The corresponding spectral measure is discrete with four point
masses γα

1 (1 + β1)/2 at (1, 0), γα
1 (1 − β1)/2 at (−1, 0), γα

2 (1 + β2)/2 at (0, 1),
γα
2 (1 − β2)/2 at (0,−1).

Radially Symmetric Stable Distributions

Next we deal with radially symmetric (spherical) distributions. When α = 2, they
are Gaussian distributions with independent components. When 0 < α < 2, the
components are univariate symmetric stable, but dependent. The Cauchy example
has an explicit formula for the density, namely,

f(x1, x2) =
1

2π

1

(1 + x2
1 + x2

2)
3/2

. (11.16)

See Fig. 11.2 for an illustration.
That is not the same as the independent components case (11.15). When

α �∈ {1, 2}, there is not a closed form expression for the density. The parameter
functions are easy: β(u1, u2) = 0, γ(u1, u2) = c, and δ(u1, u2) = 0.

The spectral measure for a radially symmetric measure is a uniform measure
(a multiple of Lebesgue measure) on the unit circle. A linear change of variables
gives elliptically contoured stable distributions, which have heavier tails than their
Gaussian counterparts.
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Fig. 11.2. Contour plot (left) and surface plot (right) for a radially symmetric Cauchy

density.

Another Illustration

If the spectral measure has more mass in a certain arc, then the bivariate dis-
tribution bulges in that direction. This is illustrated in Fig. 11.3 for a bivari-
ate sum–stable distribution with α = 0.8, where the spectral measure has point
masses of weight 0.125 at (1, 0), and weights 0.250 at (cos(π/3), sin(π/3)) and
(cos(−π/3), sin(−π/3)).
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Fig. 11.3. Sum–stable density bulging in direction π/3 and −π/3 having also a smaller

bulge along the x–axis corresponding to different masses.
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Multivariate Estimation

For conciseness, we stated the above results in the conventional S(α, β, γ, δ; 1)
parameterization. As in the univariate case, one should use the S(α, β, γ, δ; 0)
parameterization in all numerical and statistical work to avoid the discontinuity
at α = 1.

There are several methods of estimating for multivariate stable distributions;
in practice all involve some estimate of α and some discrete estimate of the spectral
measure Λ̂ =

∑
k≤m λk1{sk}, sk ∈ S. Rachev and Xin2 and Cheng and Rachev3

use the fact that the directional tail behavior of multivariate stable distributions is
Pareto, and base an estimate of Λ on this. Nolan, Panorska and McCulloch4 define
two other estimates of Λ, one based on the joint sample characteristic function and
one based on one–dimensional projections of the data.

Another advantage of (11.14) is that it gives a way of assessing whether a
multivariate data set is stable by looking at just one dimensional projections of
the data. Fit projections in multiple directions using the univariate techniques
described earlier, and see if they are well described by a univariate stable fit. If
so, and if the α’s are the same for every direction (if α < 1, another technical
condition holds), then a multivariate stable model is appropriate.

The parameters (α, β(u), γ(u), δ(u)) may be more useful than Λ itself when
two multivariate stable distributions are compared. This is because the distribution
of X depends more on how Λ distributes mass around the sphere than exactly
on the measure. Two spectral measures can be far away in the traditional total
variation norm (e.g., one can be discrete and the other continuous), but their
corresponding directional parameter functions and densities can be very close.
Indeed, (11.13) shows that the only way Λ enters into the joint distribution is
through the parameter functions.

Multivariate Diagnostics

The diagnostics suggested are:

• Project the data in a variety of directions u and use the univariate diagnos-
tics described in Section 6.4 on each of those distributions. Bad fits in any
direction indicate that the data is not stable.

• For each direction u ∈ S, estimate a value for the parameter functions α(u),
β(u), γ(u), δ(u) by ML estimation. The plot of α(u) should be a constant,

2Rachev, S.T. and Xin, H. (1993). Test for association of random variables in the
attraction of multivariate stable law. Probab. Math. Statist. 14, 125–141.

3Cheng, B.N. and Rachev, S.T. (1995). Multivariate stable future prices. Math. Fi-
nance 5, 133–153.

4Nolan, J.P., Panorska, A. and McCulloch, J.H. (2001). Estimation of stable spectral
measures. Mathematical and Computer Modelling 34, 1113–1122.
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significant departures from this indicate that the data has different decay
rates in different directions and is not jointly stable. (Note that γ(·) will be
a constant iff the distribution is isotropic.)

• Assess the goodness–of–fit by computing a discrete Λ̂ by one of the methods
above. Substitute the discrete Λ̂ in (11.14) to compute parameter functions.
If it differs from the one obtained above by projection, then either the data is
not jointly stable, or not enough points were chosen in the discrete spectral
measure approximation.



Chapter 12

Multivariate Maxima

Multivariate extreme value (EV) distributions are introduced as limiting distri-
butions of componentwise taken maxima. In contrast to the univariate case, the
resulting statistical model is a nonparametric one. Some basic properties and first
examples of multivariate EV dfs are dealt with in Section 12.1.

In Section 12.2, we introduce the family of Gumbel–McFadden distributions
which are perhaps the most important multivariate EV distributions. As an ap-
plication, the question of economic choice behavior will be considered under dis-
turbances which are multivariate EV distributed. In the special case of Gumbel–
McFadden disturbances the choice probabilities are of a multinomial logit form.

Estimation in certain parametric EV submodels and will be investigated in
Section 12.3.

In Section 12.4, we give an outline of a new spectral decomposition method-
ology in extreme value theory where bivariate dfs are decomposed in univariate
dfs. For example, bivariate EV dfs are decomposed in univariate EV dfs.

12.1 Nonparametric and Parametric

Extreme Value Models

Because the univariate margins of multivariate EV distributions are EV distri-
butions, one may concentrate on the dependence structure of the multivariate
distribution. Therefore, we particularly, study EV dfs with reversed exponential
margins. In that context, the Pickands dependence function will be central for our
considerations.

Multivariate Extreme Value Distributions, Max–Stability

The maximum of vectors xi = (xi,1, . . . , xi,d) will be taken componentwise. We
have maxi≤m xi =

(
maxi≤m xi,1, . . . ,maxi≤m xi,d

)
. If X1, . . . ,Xm are iid random
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vectors with common d–variate df F , then

P
{

max
i≤m

Xi ≤ x
}

= Fm(x), (12.1)

because maxi≤m Xi ≤ x holds if, and only if, X1 ≤ x, . . . ,Xm ≤ x.
Corresponding to the univariate case, the actual df Fm will be replaced by a

limiting df. If
Fm(bm + amx) → G(x), m → ∞, (12.2)

for vectors bm and am > 0, then G is called a d–variate EV df and F is said to
belong to the max–domain of attraction of G.

One can prove that G is an EV df if, and only if, G is max–stable, that is,

Gm(bm + amx) = G(x) (12.3)

for certain vectors bm and am > 0.
Let F(j) denote the jth margin of F . From (12.2), it follows that

Fm
(j)(bm,j + am,jxj) → G(j)(xj), m → ∞, (12.4)

where G(j) is the jth margin of G. Hence, the jth marginal df G(j) of a multi-
variate EV df is necessarily a univariate EV df. In addition, the vectors bm =
(bm,1, . . . , bm,d) and am = (am,1, . . . , am,d) are determined by the univariate con-
vergence. Another consequence is the continuity of the multivariate EV dfs. Yet, in
contrast to the univariate EV model, the d–variate one is a nonparametric model
for d ≥ 2.

Extreme Value Model for Independent Margins

If, in addition, the vectors Xi have independent margins, then the marginal max-
ima maxi≤m Xi,1, . . . ,maxi≤m Xi,d are independent and, consequently,

Fm(bm + amx) =
∏
j≤d

Fm
(j)(bm,j + am,jxj) →

∏
j≤d

G(j)(xj) (12.5)

as m → ∞ if (12.4) holds. For this special case, the limiting df G of maxi≤m Xi

in (12.2), taken in the γ–parameterization, is

G(x) =
∏
j≤d

Gγj ,µj ,σj (xj). (12.6)

It is evident that the estimation of the parameters γj , µj and σj must be based
on the data in the jth component.

The importance of the EV dfs as given in (12.6) comes from the fact that
an EV df of this form may also occur if the random vectors Xi have dependent
margins. We mention a prominent example.



12.1. Nonparametric and Parametric Extreme Value Models 293

(Tiago de Oliveira, Geffroy, Sibuya.) Let (Xi, Yi) be iid normal vectors with
correlation coefficient ρ strictly between −1 and 1. Under this condition, the max-
ima maxi≤m Xi and maxi≤m Yi are asymptotically independent. We have

P
{

max
i≤m

Xi ≤ bm+amx, max
i≤m

Yi ≤ dm+cmy
}
→ G0(x)G0(y), m → ∞, (12.7)

with standardizing constants such that the univariate convergence holds.

To prove this result, one may verify a simple condition imposed on conditional
probabilities which were already studied in Section 2.6. Let X and Y be random
variables with common df F such that Fm(bm + amx) → G(x) as m → ∞ for all
x. The condition

P (Y > u|X > u) → 0, u ↑ ω(F ), (12.8)

is equivalent to the asymptotic independence of the pertaining maxima; that is,

P{max
i≤m

Xi ≤ bm + amx, max
i≤m

Yi ≤ bm + amy} → G(x)G(y), m → ∞,

for iid copies (Xi, Yi) of (X, Y ), see Sibuya (1960) in the paper cited on page 74.
For a proof of this result we refer to [20], page 258, or [42], page 235.

The asymptotic independence of the marginal maxima may be regarded as
the intrinsic property of tail independence. It is equivalent to

χ = lim
u↑ω(F )

P (Y > u|X > u) = 0

where χ is the tail dependence parameter introduced in Section 2.6.

Condition (12.8) also implies that the componentwise taken exceedances are
independent if the thresholds are chosen in such a manner that the expected num-
ber of exceedances remains bounded when the sample size goes to infinity1.

Thus, before using a complex model, one should check whether the EV model
for independent margins or a related generalized Pareto model is applicable.

In addition, the pairwise asymptotic independence implies the joint asymp-
totic independence, see, e.g., [20] or [42].

Rates for the Asymptotic Independence of Maxima

Let F be a bivariate df with identical univariate margins F(j). Applying the rep-
resentation (10.7) of a df by means of survivor functions one gets (see (7.2.11) in
[42]) that

Fn(x) = Fn
1 (x1)F

n
2 (x2) exp

(
nF(x)

)
+ O(n−1). (12.9)

1Reiss, R.–D. (1990). Asymptotic independence of marginal point processes of ex-
ceedances. Statist. & Decisions 8, 153–165. See also [43], Section 6.2.
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Therefore, the term nF(x) determines the rate at which the independence of the
marginal maxima is attained. For a general result of this type we refer to [16],
Lemma 4.1.3.

In the case of iid standard normal vectors with correlation coefficient ρ with
−1 < ρ < 1 it was proven in [42] that

nF(bn + b−1
n x) = O

(
n−(1−ρ)/(1+ρ)(log n)−ρ/(1+ρ)

)
, (12.10)

where bn = (bn, bn) and bn satisfies the condition bn = ϕ(bn). Thus, one obtains
again the above mentioned result of the asymptotic independence of maxima of
normal random variables. The rate of the asymptotic independence is slow when
ρ is close to 1. For a continuation of this topic we refer to Section 13.3.

The Marshall–Olkin Model

The standard Marshall–Olkin distributions Mλ are bivariate EV distributions with
exponential margins G2,−1 = exp(x), x < 0, where the dependence parameter
λ ranges from 0 to 1. For λ = 0 we have independence, and for λ = 1 total
dependence. We have

Mλ(x, y) = exp
(
(1 − λ)(x + y) + λmin{x, y}

)
, x, y < 0. (12.11)

The df Fλ is necessarily continuous, yet a density does not exist for λ > 0,
because standard Marshall–Olkin distributions have positive mass at the main
diagonal which becomes visible in Fig. 12.1.

Fig. 12.1. 3–D plot of Marshall–

Olkin df Mλ with λ = 0.5 .

For 0 ≤ λ ≤ 1, check that

Mλ(x, y) = P

{
max

{
Z2

1 − λ
,
Z1

λ

}
≤ x, max

{
Z3

1 − λ
,
Z1

λ

}
≤ y

}
, (12.12)
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where Z1, Z2 and Z3 are iid random variables with common exponential df G2,−1.
This model can be extended to a d–variate one. Let Λ = (λi,j) be a m × d–

matrix such that λi,j ≥ 0 and ∑
i≤m

λi,j = 1

for each j ≤ d. Let Z1, . . . , Zm be iid random variables with common exponential
df G2,−1(x) = exp(x), x < 0. Then,

MΛ(x) = P
{

max
i≤m

{Zi/λi,j} ≤ xj , j = 1, . . . , d
}

= exp

(∑
i≤m

min
j≤d

(λi,jxj)

)
, x < 0, (12.13)

is a d–variate max–stable df with univariate margins G2,−1. In (12.12) there is a
special case for d = 2 with λ1,3 = λ2,2 = 0.

Such dfs are also of theoretical interest (see [16], page 111) for a general
representation of max–stable distributions.

Hüsler–Reiss Triangular Arrays

This model is constructed by taking limiting dfs of maxima of a triangular array
of standard normal random vectors. The univariate margins are Gumbel dfs. We
start with the bivariate case. Let Φ again denote the univariate standard normal
df. For positive parameters λ we have

Hλ(x, y) = exp

(
− e−x −

∫ ∞

y

Φ

(
1

λ
+

λ(x − z)

2

)
e−z dz

)
(12.14)

= exp

(
− Φ

(
1

λ
+

λ(x − y)

2

)
e−y − Φ

(
1

λ
+

λ(y − x)

2

)
e−x

)
,

where the second equality may be established by partial integration.
In addition, let

H0(x, y) = G0(x)G0(y)

and

H∞(x, y) = G0(min{x, y})

which are the dfs describing the cases of independence and total dependence. We
have

Hλ(x, y) → H0(x, y) and Hλ(x, y) → H∞(x, y), λ → ∞,

and, therefore, this model ranges continuously between independence and total
dependence with λ indicating the degree of dependence.
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The bivariate EV dfs Hλ in (12.14) generally occur as limiting dfs of maxima
of iid random vectors (Xn,i, Yn,i), i = 1, . . . , n, where

(Xn,i, Yn,i)
d
=
(
S1, ρnS1 +

√
1 − ρ2

nS2

)
(12.15)

with ρn ↑ 1 at a certain rate as n → ∞ and (S1, S2) being a spherical random
vector, under the condition that the radius R =

√
S2

1 + S2
2 is in the max–domain

of attraction of the Gumbel df G0
2. Notice that the (Xn,i, Yn,i) are elliptically

distributed, see Section 11.2. Further related results may be found in another
article by Hashorva3.

3–D plots of the density of Hλ with parameter λ = 1 are displayed in Fig.
12.2 with views from two different angles. On the left–hand side, one recognizes
that hλ is symmetric in x and y, cf. also (12.14). After a rotation of 90◦, the typical
contours of the marginal Gumbel densities become visible.

Fig. 12.2. (left.) 3–D plot with a view of the density hλ along the main diagonal in the

(x, y) plane for λ = 1. (right.) The density shown again after a rotation of 90◦ about the

z–axis.

We compute the density hλ(x, y) and the conditional df Hλ(y|x) for param-
eters 0 < λ < ∞. The density can be computed by taking partial derivatives of
Hλ, cf. (10.11). By employing the identity

ϕ
(
λ−1 + λ(x − y)/2

)
e−y = ϕ

(
λ−1 + λ(y − x)/2

)
e−x,

one gets

hλ(x, y) = Hλ(x, y)
(
Φ
(
λ−1 + λ(x − y)/2

)
Φ
(
λ−1 + λ(x − y)/2

)
e−(x+y)

+ λϕ
(
λ−1 + λ(y − x)/2

)
e−x/2

)
. (12.16)

2Hashorva, E. (2005). Elliptical triangular arrays in the max–domain of attraction of
Hüsler–Reiss distribution. Statist. Probab. Lett. 72, 125–135.

3Hashorva, E. (2006). On the max–domain of attraction of bivariate elliptical arrays.
Extremes 8, 225–233.
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The conditional density is

hλ(y|x) = hλ(x, y)/g0(x) ,

cf. (8.10). By integration, one obtains the conditional df

Hλ(y|x) = Hλ(x, y)Φ (1/λ + λ(y − x)/2) /G0(x) . (12.17)

The conditional density and df are useful for generating data in two steps:
firstly, generate x under the Gumbel df G0 and, secondly, generate y under the
conditional df Hλ(· |x).

There is a one–to–one relation between the dependence parameter λ and the
correlation coefficient ρ of Hλ which is indicated in Fig. 12.3. We see that the
correlation coefficient is practically zero when the shape parameter λ is smaller
than .3.

2 4

1

Fig. 12.3. Correlation coefficient ρ

of Hλ plotted against the shape pa-

rameter λ.

Generally, let4

HΛ(x) = exp

(
−
∑
k≤d

∫ ∞

xk

ΦΣ(k)

((
λ−1

i,k + λi,k(xi − z)/2
)k−1

i=1

)
e−z dz

)
,

for a symmetric d × d–matrix Λ =
(
λi,j

)
with λi,j > 0 if i �= j and λi,i = 0, and

ΦΣ(k) is a (k − 1)–variate normal df (with the convention that ΦΣ(1) = 1). The

mean vector of ΦΣ(k) is zero and Σ(k) =
(
σi,j(k)

)
is a correlation matrix given by

σi,j(k) =

⎧⎨⎩
λi,kλj,k

(
λ−2

i,k + λ−2
j,k − λ−2

i,j

)
/2 1 ≤ i < j ≤ k − 1;

if
1 i �= j.

4Such a representation is given in Joe, H. (1994). Multivariate extreme–value distri-
butions with applications to environmental data. Canad. J. Statist. 22, 47–64. Replacing
ΦΣ(k) by survivor functions (cf. (10.4)), one obtains the original representation.
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Each pair of marginal random variables determines one parameter of the limiting
df so that the dimension of the parameter vector is d(d − 1)/2. For d = 2, the
matrix Λ is determined by λ = λ1,2 and one gets the bivariate case.

Extending and Modifying Standard Models

Let Z = (Z1, . . . , Zd) be a random vector distributed according to one of the
preceding multivariate EV dfs G. Denote by G0 the common univariate df of the
Zj. Thus, G0 is either an exponential or Gumbel df.

• (Location and Scale Vectors.) A first natural extension of the models is
obtained by including location and scale parameters µj and σj . Thus, one

deals with random variables µj + σjZj with joint df G̃(x) = G ((x − µ)/σ)
(cf. page 163).

• (Exchanging Marginal Dfs.) Next the marginal df G0 is replaced by some
other univariate EV df G(j) in the jth component. First remember that the
Yj = G0(Zj) are (0, 1)–uniformly distributed with common df

C(y) = G
(
G−1

0 (y1), . . . , G
−1
0 (yd)

)
which is the copula of G, cf. page 275.

Applying the quantile transformation one arrives at random variables Xj =
G−1

(j)(Yj) with marginal dfs G(j) and joint multivariate EV df

G̃(x) = C
(
G(1)(x1), . . . , G(d)(xd)

)
= G

(
G−1

0 (G(1)(x1)), . . . , G
−1
0 (G(d)(xd))

)
. (12.18)

Using the latter approach, one may build multivariate EV models with spec-
ified univariate dfs such as, e.g., a Hüsler–Reiss model with Gumbel (EV0) or EV
margins.

As an example, the bivariate, standard Hüsler–Reiss df Hλ is transformed
to a df H̃λ with exponential margins G(j)(x) = G2,−1(x) = exp(x) for x < 0.

Because G0(x) = exp
(
−e−x

)
is the standard Gumbel df, we have G−1

0 (G(j)(x)) =
− log(−x) and, therefore,

H̃λ(x, y) = exp

(
Φ

(
1

λ
+

λ

2
log
( y

x

))
y + Φ

(
1

λ
+

λ

2
log

(
x

y

))
x

)
(12.19)

for x, y < 0, with H̃0(x, y) = exp(x + y) and H̃∞(x, y) = exp(min{x, y}).

The Pickands Dependence Function for Distributions

A bivariate EV df with exponential marginals G2,−1(x) = exp(x), x < 0, has the
representation (cf. [20], 2nd edition, or [16]))

G(x, y) = exp
(
(x + y)D (x/(x + y))

)
, x, y ≤ 0, (12.20)
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where D : [0, 1] → [0, 1] is the Pickands dependence function which is convex and
satisfies max(1−z, z) ≤ D(z) ≤ 1 for 0 ≤ z ≤ 1 with the properties of independence
and complete dependence being characterized by D = 1 and, respectively, D(z) =
max(1 − z, z).

We specify the explicit form of the Pickands dependence function for our
standard examples.

• Marshall–Olkin df Mλ:

Dλ(z) = 1 − λmin(z, 1 − z) . (12.21)

• Hüsler–Reiss df H̃λ in the version (12.19):

Dλ(z) = Φ

(
1

λ
+

λ

2
log

(
z

1 − z

))
z + Φ

(
1

λ
+

λ

2
log

(
1 − z

z

))
(1 − z).

(12.22)

Recall that the Pickands dependence functions are convex and satisfies

max(1 − z, z) ≤ D(z) ≤ 1 for 0 ≤ z ≤ 1.

The value D(1/2) of the Pickands dependence function will be used to define a
certain canonical representation.

Generally, a max–stable, d–variate df with univarite margins G−2,1 has the
representation

G(x) = exp
(∫

S

min
j≤d

(yjxj) dµ(y)
)
, x < 0, (12.23)

where µ is a finite measure on the d–variate unit simplex S =
{
y :

∑
j≤d yj =

1, yj ≥ 1
}

such that
∫

S yj dµ(y) = 1 for j ≤ d.

The Canonical Parameterization

For any bivariate EV df G with standard exponential margins G2,−1, the Pickands
dependence function DG satisfies 1/2 ≤ DG(1/2) ≤ 1. Particularly, DG(1/2) = 1
and DG(1/2) = 1/2, if independence and, respectively, complete dependence holds.
Define the functional (canonical) parameter

T (G) = 2
(
1 − Dλ(1/2)

)
(12.24)

which ranges between 0 and 1. Necessarily, T (G) = 0 and T (G) = 1, if indepen-
dence and, respectively, complete dependence holds.

Suppose that there is a parametric family of bivariate EV dfs Gλ with a one–
to–one relation between λ and Dλ(1/2). One may introduce another representation
of the family by

ϑ = T (Gλ) = 2
(
1 − Dλ(1/2)

)
. (12.25)
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This is the canonical parameterization of a bivariate EV family5 which will be
studied more closely on the subsequent pages. In special cases, we obtain the
following canonical parameters.

• Marshall–Olkin: ϑ = λ;

• Hüsler–Reiss: ϑ = 2(1 − Φ(1/λ)).

Notice that the original and the canonical parameterization are identical
for the Marshall–Olkin family (also see Section 12.2 for the Gumbel–McFadden
model).

Canonical and Tail Dependence Parameters

Let again G be a bivariate EV df with Pickands dependence function D and
canonical (functional) parameter T (G) = 2(1 − D(1/2)). An operational meaning
of the canonical parameter can be expressed by means of a property of the survivor
function G in the upper tail region. Applying (10.7) we get

G(u, u) = 1 − 2 exp(u) + exp(2uD(1/2))

= T (G)|u| + O(u2), u → 0. (12.26)

Let X and Y be random variables with common EV df G. For the tail de-
pendence parameter χ(q) at the level q, introduced in (2.60), one gets

χ(q) = P
(
Y > log q

∣∣X > log q
)

= G(log q, log q)/(1 − q)

= T (G) + O(1 − q), q → 1, (12.27)

according to (12.26). Thus, the canonical parameter T (G) of a bivariate EV df is
the tail dependence parameter χ, cf. (2.61). This topic will be continued in Section
13.3.

Multivariate Minima, Limiting Distributions of Minima
and the Min–Stability

Corresponding to the maximum of vectors xi = (xi,1, . . . , xi,d), one may take
the componentwise minimum mini≤m xi =

(
mini≤m xi,1, . . . ,mini≤m xi,d

)
. Let

X1, . . . ,Xm be iid random vectors with common df F and survivor function F .
The survivor function of the minimum is given by

P
{

min
i≤m

Xi > x
}

= F
m

(x).

5Falk, M. and Reiss, R.–D. (2001). Estimation of the canonical dependence parameter
in a class of bivariate peaks–over–threshold models. Statist. Probab. Letters 52, 9–16
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Moreover, the representation mini≤m Xi = −maxi≤m(−Xi) holds again. As
in the univariate case, cf. (1.38) and (1.38), there is a one–to–one relationship
between limiting dfs of maxima and minima. If

P
{

max
i≤m

(−Xi) ≤ bm + amx
}
→ G(x), m → ∞,

then for cm = am and dm = −bm we have

P
{

min
i≤m

Xi ≤ dm + cmx
}
→ G(−x), m → ∞.

We see that the limiting dfs G̃ of sample minima are necessarily of the form
G̃(x) = G(−x). Conversely, G(x) can be written as the survivor function of G̃
applied to −x.

Limiting dfs of minima can be characterized again by the min–stability. The
survivor function F (and, thus, the df F ) is min–stable, if F

m
(dm +cmx) = F(x)

for certain vectors dm and cm > 0.

12.2 The Gumbel–McFadden Model

We first deal with certain bivariate dfs which are the Gumbel type II dfs as men-
tioned in [20], page 247, in the form of a min–stable df. D–variate versions are
introduced in (12.32) and (12.33). The section is concluded with an application to
utility–maximizing.

Bivariate Gumbel Type II Distributions

This is another model of EV dfs with exponential margins G2,−1(x) = exp(x), x <
0,. The bivariate Gumbel type II dfs Hλ are parameterized by a dependence pa-
rameter λ which ranges from 1 to infinity. We have independence for λ = 1 and
total dependence for λ = ∞. Let

Hλ(x, y) = exp
(
−
(
(−x)λ + (−y)λ

)1/λ
)
, x, y < 0. (12.28)

Notice that H1(x, y) = exp(x) exp(y) and Hλ(x, y) → exp(min{x, y}) =:
H∞(x, y) for x, y < 0 as λ → ∞. Taking partial derivatives one gets the density

hλ(x, y) = Hλ(x, y)(xy)λ−1
((

(−x)λ + (−y)λ
)2(1/λ−1)

+ (λ − 1)
(
(−x)λ + (−y)λ

)1/λ−2
)
. (12.29)

Several distributional properties of Hλ can be conveniently deduced from a
representation in terms of independent random variables (due to L. Lee6 and J.–C.

6Lee, L. (1979). Multivariate distributions having Weibull properties. J. Mult. Analysis
9, 267–277.
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Lu and G.K. Bhattacharya7).

Let U , V1, V2 and Zλ be independent random variables, where U is uni-
formly distributed on [0, 1], the Vj have the common exponential df G2,−1(x) =
exp(x), x < 0, and Zλ is a discrete random variable with P{Zλ = 0} = 1 − 1/λ
and P{Zλ = 1} = 1/λ. Let V = V1 + ZλV2.

Random variables X1 and X2 with joint df Hλ have the representation

(X1, X2) =
(
U1/λV, (1 − U)1/λV

)
in distribution. (12.30)

Moments of Gumbel–McFadden distributions can be easily deduced from
(12.30). In particular, there is a one–to–one relation between the dependence pa-
rameter λ and the correlation coefficient ρ(λ) of Lλ. One gets

ρ(λ) = 2Γ2(1 + 1/λ)/Γ(1 + 2/λ) − 1.

This function is plotted in Fig. 12.4.
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Fig. 12.4. Correlation coefficient ρ

of Hλ plotted against the shape pa-

rameter λ.

The Pickands dependence function of the Gumbel df Hλ is

Dλ(z) =
(
(1 − z)λ + zλ

)1/λ

. (12.31)

The canonical parameter is given by ϑ = 2 − 21/λ.

7Lu, J.–C. and Bhattacharya, G.K. (1991). Inference procedures for bivariate expo-
nential model of Gumbel. Statist. Probab. Letters 12, 37–50.
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Gumbel–McFadden Distributions

Certain d–variate extensions of the Gumbel distributions are due to Daniel Mc-
Fadden8. We have

Hλ,d(x) = exp

(
−
(∑

i≤d

(−xi)
λ
)1/λ

)
, x < 0, (12.32)

and as another extension

G(x) = exp

(
−
∑
k≤m

ak

(∑
i

(−xi)
λ(k)

)1/λ(k)
)

, x < 0, (12.33)

where i varies over Bk ⊂ {1, . . . , d},
⋃

k≤m Bk = {1, . . . , d}, ak > 0, and λ(k) ≥ 1.
To get standard exponential margins in the second case, the additional con-

dition
∑

k≤m akI(i ∈ Bk) = 1 must be satisfied for i = 1, . . . , d.
In the following lines it is shown that Gumbel–McFadden dfs Hλ,d lead to a

multinomial logit model in the utility–maximizing theory. In that application, EV
dfs are convenient because one gets an elegant representation for certain choice
probabilities.

An Application to Utility–Maximizing

It is the common situation that consumers can choose between different alterna-
tives as, e.g., between different

• residential locations8 described by certain configurations of attributes such
as accessibility, quality of public services, neighborhood, etc.

• residential end–use energy configurations9.

It is understood that a consumer chooses that configuration which provides a
maximum utility.

The utility of a configuration, labeled by the index i, will be expressed by

Ui = vi + Xi, i = 1, . . . , d,

where vi is a function of the above mentioned attributes and of consumer’s char-
acteristics (family size, income), and Xi is an unobserved random variable.

8 McFadden, D. (1978). Modelling the choice of residential location. In: Spatial Inter-
action Theory and Planning Models, pp. 75–96, A. Karlquist et al. (eds.), North Holland,
Amsterdam. Reprinted in The Economics of Housing, Vol. I, pp. 531–552, J. Quigley (ed),
Edward Elgar, London, 1997.

9Cowing, T.G. and McFadden, D.L. (1984). Microeconomic Modeling and Policy Anal-
ysis. Academic Press, Orlando.
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The probability of the choice of the configuration with label i is

pi = P{Ui > Uj for j = 1, . . . , d with j �= i}

which can be expressed by means of the ith partial derivative of the joint df F of
the X1, . . . , Xd. We have

pi =

∫
∂

∂xi
F
(
(vi + z − vj)j≤d

)
dz . (12.34)

This formula will be applied to dfs F = G, where G are EV dfs with univariate
Gumbel margins.

Let G(x) = exp(−Ψ(x)) be an EV df with univariate exponential margins.
From (12.20) and (12.23) we know that the auxiliary function Ψ is homegeneous
of order 1, that is

Ψ(ay) = aΨ(y), y < 0, a > 0, (12.35)

which implies that the partial derivative is homogeneous of order 0, that is

∂

∂xi
Ψ(ay) =

∂

∂xi
Ψ(y), y < 0, a > 0.

In addition, EV dfs with univariate Gumbel margins are of the form

G(x) = exp
(
− Ψ

(
(−e−xj)j≤d

))
,

cf. (12.18).

Using the homogeneity properties one gets

pi =

∫
(−e−z)

∂

∂xi
Ψ
(
(−e−(vi+z−vj))j≤d

)
exp

(
− Ψ

(
(−e−(vi+z−vj))j≤d

))
dz

=

∫
(−e−z)

∂

∂xi
Ψ
(
(−evj )j≤d

)
exp

(
− e−(vi+z)Ψ

(
(−evj )j≤d

))
dz

=
(
− evi

) ∂

∂xi
Ψ
(
(−evj )j≤d

)/
Ψ
(
(−evj )j≤d

)
. (12.36)

In the special case of a Gumbel–McFadden df Hλ,d one gets the multinomial logit
form

pi = eviλ
/∑

j≤d

evjλ

for the choice probabilities pi.

We have seen that the modeling of the random disturbances in utilities by
means of EV distributions leads to attractive formulas for the choice probabilities.
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12.3 Estimation in Extreme Value Models

A multivariate EV distribution is determined by the parameters (shape, location
and scale parameter) in the single components and by the parameters of the copula
or by the copula itself in the nonparametric approach.

The first class of parameters can be estimated by means of the methods
presented in Part II; new estimation procedures must be developed for the second
problem.

Estimation by Piecing–Together from Lower–Dimensional Margins

Let xi = (xi,1, . . . , xi,d), i = 1, . . . , k, be governed by the d–variate EV df G that
is determined by the location, scale and shape parameter vectors µ, σ and γ and,
in addition, by the copula C.

From (12.18) we know that G has the representation

G(x) = C
((

Gγj ,µj ,σj (xj)
)
j≤d

)
for vectors x = (x1, . . . , xd), where Gγj ,µj ,σj is the jth marginal df of G. If C ≡ Cλ

is given in a parametric form, then we speak of a dependence parameter λ.
To estimate G one must construct estimates of µ, σ, γ and C (with C replaced

by λ in the parametric case). One can easily find estimates of µ, σ and γ by taking
estimates in the single components. Notice that the data x1,j , . . . , xk,j in the jthe
component are governed by the jthe marginal df Gγj ,µj ,σj of G. Therefore, one
may take estimates of the parameters γj , µj and σj as introduced in Section 4.1.

The definition of the copula C suggests to base the estimation of C or the
unknown dependence parameter λ on the transformed vectors

zi =
(
Gγ̂j,k,µ̂j,k,σ̂j,k

(xi,j)
)
j≤d

, i = 1, . . . , k. (12.37)

Notice that the zi only depend on the xi. Subsequently, the zi are regarded
as vectors that are governed by C. Let Ĉk be an estimate of C based on z1, . . . ,zk

within the copula model. If C is of the parametric form Cλ, then construct an
estimate λ̂k of the parameter λ.

Thus, the piecing–together method yields estimates γ̂k, µ̂k, σ̂k and λ̂k of γ,
µ, σ and λ or, alternatively, the estimate

Ĝk(x) = Ĉk

((
Gγ̂j,k,µ̂j,k,σ̂j,k

(xj)
)

j≤d

)
of the EV df G, where Ĉk can be of the form C

λ̂k

10.

10For supplementary results concerning multivariate EV models see [16] and
Tiago de Oliveira, J. (1989). Statistical decisions for bivariate extremes. In [14], pp.

246–261, or Smith, R.L., Tawn, J.A. and Yuen, H.K. (1990). Statistics of multivariate
extremes. ISI Review 58, 47–58.
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The Pickands Estimator in the Marshall–Olkin Model

We give a simple estimate of the dependence parameter λ in the model of standard
Marshall–Olkin dfs, namely, for (x1, y1), . . . , (xk, yk),

λ̂k = 2 + k
/∑

i≤k

max{xi, yi}. (12.38)

This estimate can be made plausible in the following way: from (12.11), de-
duce that (2 − λ)max{X, Y } is an exponential random variable with df G2,−1, if
(X, Y ) has the Marshall–Olkin df Mλ. Therefore,

1

k

∑
i≤k

max{xi, yi} ≈ E max{X, Y } = − 1

2 − λ

and λ̂k ≈ λ. This yields estimates within an enlarged model.

Example 12.3.1. (American Football (NFL) Data.) We partially repeat the analysis by
Csörgő and Welsh11. The data were extracted from game summaries published in the
Washington Post newspaper during three consecutive weekends in 1986. Consider the
random game times to the first

• field goal (denoted by U);

• unconverted touchdown or safety (denoted by V ),

• point–after touchdown (denoted by W ).

Because the game time of the conversion attempt after a touchdown is zero, we have

X = min{U, W }: game time to the first kicking of the ball between the goalposts;

Y = min{V, W }: game time to the first moving of the ball into an endzone.

Notice that X = Y if the first score is a point–after touchdown which happens with a
positive probability. Assuming for a while that the random variables U, V, W are expo-
nential it is reasonable to assume that (X, Y ) has a Marshall–Olkin distribution. Table
12.1 contains the first and last three data vectors.

Table 12.1. Scoring times (minutes : seconds) from 42 American Football games.

x: 2:03 9:03 0:51 · · · 19:39 17:50 10:51
y: 3:59 9:03 0:51 · · · 10:42 17:50 38:04

The data (xi, yi), expressed in decimal minutes, are stored in the file football.dat.
Because we introduced the Marshall–Olkin distributions in the version for maxima, we
first change the signs of the data. Estimation in the EV model shows that a Weibull
modeling for the single components is adequate, yet with α �= −1. The MLE(EV1)
procedure provides the parameters α1 = −1.39, µ1 = 0, σ1 = 9.92 and α2 = −1.18,

11Csörgő, S. and Welsh, A.H. (1989). Testing for exponential and Marshall–Olkin dis-
tributions. J. Statist. Plan. Inference 23, 287–300.
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µ2 = 0, σ2 = 14.34 in the first and second component. Thus, we have Weibull components,
yet we still assume a bivariate Marshall–Olkin structure.

Check that −(−X/σ)−α has the exponential df G2,−1 if X has the df G2,α,0,σ.
Therefore, a modeling by standard Marshall–Olkin dfs is more adequate for the trans-
formed data

(x′
i, y

′
i) =

(
− (−xi/12)

1.2,−(−yi/12)
1.2
)
, i = 1, . . . , 42. (12.39)

Based on (x′
i, y

′
i) one obtains the estimate λ̂ = 0.63 for the dependence parameter λ.

Finally, the converse transformations provide an estimated df for the original data.

An application of the ML method is a bit more complicated, because one
must deal with more sophisticated densities, namely densities with respect to the
sum of the 2–dimensional Lebesgue measure on the plane and the 1–dimensional
Lebesgue measure on the main diagonal.

Estimation in the Gumbel–McFadden and Hüsler–Reiss Models

First, specify a model for the univariate margins. We will primarily deal with PTEs
(piecing–together estimates) so that first the parameters in the univariate margins
are estimated by means of one of the estimation methods in Chapter 4. After a
transformation, as explained in (12.37), we may assume that the data are governed
by the df Lλ or Hλ.

Thus, an estimate of the dependence parameter λ or the canonical parameter
ϑ must be constructed.

• Moment Method: because of the one–to–one relationship between the depen-
dence parameter λ and the correlation coefficient ρ, one obtains an estimate
of λ based on the sample correlation coefficient.

• Pickands Estimator: assume that the dfs G are given in the Pickands rep-
resentation (12.20). Deduce that ((2 − T (G))max(X, Y ) is an exponential
random variable with exponential df G2,−1, where T (G) is the canonical
parameter. Therefore, generalizing (12.38) we conclude that

T̂ (G)k = 2 + k
/∑

i≤k

max{xi, yi} (12.40)

is an estimator of the functional parameter T (G), which also provides an
estimator of the canonical parameter ϑ within the parametric framework.

• Maximum Likelihood Method: from the density in (12.29) or (12.16), deduce
the likelihood equation and calculate the MLE numerically. The preceding
moment or Pickands estimate may serve as the initial value of the iteration
procedure.
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Such PTEs may also serve as initial values of an iteration procedure to eval-
uate the MLE in the full bivariate model.

Example 12.3.2. (Ozone Concentration in the San Francisco Bay Area.) We partially
repeat the analysis of ozone concentration in the aforementioned article by Harry Joe4.
The data set (stored in the file cm–ozon1.dat) consists of 120 weekly maxima of hourly
averages of ozone concentrations measured in parts per hundred million for the years
1983–1987 for each of the five monitoring stations (Concord (cc), Pittsburg (pt), San
Jose (sj), Vallejo (va), Santa Rosa (st)). Weeks within the months April to September
are only taken, because there are smaller maxima in the winter months.

The first 21 maxima are listed in Table 12.2 to give a first impression of the data.

Table 12.2. The first 21 maxima at 5 stations.

No. cc pt sj va st No. cc pt sj va st No. cc pt sj va st

1. 7 6 6 6 5 8. 10 11 11 8 5 15. 13 8 15 8 7

2. 6 7 5 5 4 9. 7 7 6 4 4 16. 8 8 8 5 4

3. 6 7 8 5 6 10. 11 14 13 13 6 17. 7 8 6 3 4

4. 6 6 5 4 4 11. 12 10 12 8 5 18. 9 8 8 4 5

5. 6 6 5 4 4 12. 7 7 7 4 4 19. 13 11 14 12 7

6. 5 6 5 4 4 13. 8 8 8 5 5 20. 15 13 13 10 7

7. 9 9 7 7 5 14. 8 7 7 5 4 21. 5 6 6 4 4

Next, MLEs for the Gumbel (EV0) and the full EV model are calculated for the
single components. The estimates suggest to take a Gumbel modeling for the margins.
This is supported by a nonparametric visualization of the data. We have not analyzed
any other data in this book with a better fit to a parametric model (perhaps with the
exception of Michelson’s data concerning the velocity of light in the air). Of course the
stronger discrete nature of the data becomes visible.

Table 12.3. MLE(EV0) and MLE(EV) for the single stations.

Univariate Parameters

cc pt sj

γ µ σ γ µ σ γ µ σ

MLE(EV0) 0 7.21 2.02 0 6.81 1.62 0 7.23 2.13

MLE(EV) −0.06 7.28 2.06 0.06 6.76 1.58 0.00 7.23 2.13

va st

γ µ σ γ µ σ

MLE(EV0) 0 5.40 1.66 0 4.54 1.10

MLE(EV) 0.12 5.29 1.58 0.11 4.48 1.05

We also include in Table 12.4 the estimated pairwise dependence parameters λ at
the 5 different stations.
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Dependence Parameter λ
cc pt sj va

pt 2.7
sj 1.9 1.5
va 1.7 1.6 1.5
st 1.3 1.2 1.2 1.6

Table 12.4. MLEs of pairwise de-
pendence parameters λ.

As it was already reported in the article by H. Joe4 that the Hüsler–Reiss modeling
is adequate for the present data set. This judgement is supported by 3–D plots in Fig. 12.5
of a bivariate kernel density for the cc–pt data (38 distinct pairs with certain numbers
of multiplicities) and the estimated parametric density.
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Fig. 12.5. Bivariate kernel density (left) and parametric density (right) for cc–pt data.

What has been achieved in the multivariate framework is promising yet this
approach is still in a research stadium.

12.4 A Spectral Decomposition Methodology

We merely state some basic properties and results about a certain spectral decom-
position in the special case of bivariate distributions. For a continuation we refer to
Section 13.3. A detailed account of this methodology, including the d–dimensional
case, is given in Falk et al. [17].

A Spectral Decomposition

Any vector (x, y) ∈ (−∞, 0]2 with (x, y) �= (0, 0) can be uniquely represented by
means of the angular and radial components z and c with z = x/(x + y) ∈ [0, 1]
and c = x + y ≤ 0. We have

(x, y) = (cz, c(1 − z)). (12.41)
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Any df H with support (−∞, 0]2 may be written in the form H(cz, c(1− z)).
Putting

Hz(c) = H(cz, c(1 − z)), z ∈ [0, 1], c ≤ 0, (12.42)

one gets a one–to–one representation of H by means of the family of univariate
dfs {Hz : z ∈ [0, 1]} which we call spectral decomposition of H . Check that H0

and H1 are the marginal dfs of H in the 1st and 2nd component.
First, we provide two examples where H is the df of independent exponen-

tially and, respectively, uniformly distributed random variables:

(a) if H(x, y) = exp(x + y), x, y ≤ 0, then

Hz(c) = exp(c), c ≤ 0,

(b) if H(x, y) = (1 + x)(1 + y), −1 ≤ x, y ≤ 0, then

Hz(c) = 1 + c + c2z(1 − z), c ≤ 0, 1 + c + c2z(1 − z) ≤ 0.

Next we extend (a) to bivariate EV dfs in general.

(c) A bivariate EV df G with Pickands dependence function D, cf. (12.20), has
the spectral dfs

Gz(c) = exp(cD(z)), c ≤ 0.

Notice that Gz is an exponential df with reciprocal scale parameter D(z). In
particular, the spectral dfs are univariate EV dfs.

We also make use of the partial derivative

hz(c) =
∂

∂c
Hz(c). (12.43)

In the preceding examples (a)–(c) we have

(a′) hz(c) = exp(c), c ≤ 0;

(b′) hz(c) = 1 + 2cz(1 − z), c ≤ 0, 1 + c + c2z(1 − z) ≤ 0,

(c′) gz(c) = D(z) exp(cD(z)), c ≤ 0.

A Spectral Condition

Assume that H is a bivariate df with support (−∞, 0] such that

Hz(c) = 1 + cg(z)(1 + o(1)), c ↑ 0, z ∈ [−1, 0], (12.44)

where g(0) = g(1) = 1. Then, the following assertions hold, cf. [17], Theorem 5.3.2,
which is formulated for the d–variate case:
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• g(z) = D(z) is a Pickands dependence function,

• H is in the domain of attraction of the EV df G with Pickands dependence
function; more precisely,

Hn
(x

n
,
y

n

)
→ G(x, y), n → ∞.

It is apparent that condition (12.44) is satisfied with D(z) = 1 in the cases
(a) and (b), and for D(z) in the general case (c) of EV dfs. Because of the stan-
dardization D(0) = D(1) = 1 we get for the marginal dfs

H0(c) = 1 + c(1 + o(1)) and H1(c) = 1 + c(1 + o(1)).

Therefore, it suggests itself to transform original data to (−1, 0)–uniform or expo-
nential data before applying results based on this condition.

Condition (12.44) can be verified by the following “differentiable” version: if
hz(c) > 0 for c close to zero, z ∈ [0, 1], and

hz(c) = g(z)(1 + o(1)), c ↑ 0, z ∈ [0, 1], (12.45)

where g(0) = g(1) = 1, then condition (12.44) holds.
It is evident that condition (12.45) is satisfied for the examples in (a′)–(c′) at

a certain rate. In Section 13.3 we formulate an expansion for hz(c) which specifies
the rate at which (12.45) is attained. This expansion is applied to the testing of tail
dependence against tail independence. Section 13.3 also provides further examples
for which condition (12.45) is satisfied.

The Spectral Decomposition of a GP
Distribution Function

The spectral decomposition of a bivariate GP df W = 1 + log G, which will be
introduced in Section 13.1, consists of uniform dfs, we have

Wz(c) = 1 + cD(z), −1/D(z) ≤ c ≤ 0,

for 0 ≤ z ≤ 1, where D is again the pertaining Pickands dependence function.
Thus, the univariate margins of bivariate GP dfs are again GP dfs and, more

general, the spectral dfs of bivariate GP dfs are GP dfs.

The Random Angular and Radial Components

Let (X, Y ) be a random vector with joint df H which has the support in (−∞, 0]2.
Then, the vector

(X/(X + Y ), X + Y )
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may be called Pickands transform with the angular and radial component in the
1st and 2nd component (cf. Falk et al. [17], pages 150–153).

It turns out that the angular and radial components have remarkable, stochas-
tic properties. They are conditionally independent conditioned on X + Y > c
for GP dfs W under mild conditions. We have unconditional independence if
one takes a different version of the GP df, namely that truncated outside of
{(x, y) ∈ (−∞, 0]2 : x + y > c} with c > −1. Moreover, the asymptotic condi-
tional independence holds for dfs in a neighborhood of W .

This result for GP distributions is closely related to that for spherical distri-
butions, see Section 11.2. In that section, the radial component is the L2–norm of
the spherical random vector, whereas the radial component X + Y in the present
section is related to the L1–norm.

The testing of tail dependence against tail independence in Section 13.3 will
be based on the radial component.



Chapter 13

Multivariate Peaks Over
Threshold

co–authored by M. Falk1

We already realized in the univariate case that, from the conceptual viewpoint, the
peaks–over–threshold method is a bit more complicated than the annual maxima
method. One cannot expect that the questions are getting simpler in the multi-
variate setting. Subsequently, our attention is primarily restricted to the bivariate
case, this topic is fully worked out in [16], 2nd ed., for any dimension. A new result
about the testing of tail dependence is added in Section 13.3.

13.1 Nonparametric and Parametric
Generalized Pareto Models

We introduce bivariate generalized Pareto (GP) distributions and deal with the
concepts of canonical and tail–dependence parameters within this framework.

Introducing Bivariate GP Distributions

In analogy to the univariate case, define a bivariate GP distribution2 pertaining
to an EV df G by

W (x, y) = 1 + log G(x, y), if log G(x, y) ≥ −1. (13.1)

1Katholische Universität Eichstätt; now at the University of Würzburg.
2Kaufmann, E. and Reiss, R.–D. (1995). Approximation rates for multivariate ex-

ceedances. J. Statist. Plan. Inf. 45, 235–245; see also the DMV Seminar Volume [16].
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The univariate margins of the bivariate GP df W are just the univariate GP dfs
pertaining to the margins of the EV df G.

If G is an EV df such that the Pickands representation (12.20) holds, then

W (x, y) = 1 + (x + y)D

(
y

x + y

)
, if (x + y)D

(
y

x + y

)
> −1, (13.2)

where D is the Pickands dependence function of G. In this case, the univariate
margins of W are both the uniform df W2,−1 = 1 + x on [−1, 0].

Because D ≤ 1, we know that the condition log G(x, y) ≥ −1 is satisfied if
x+ y ≥ −1. In the subsequent calculations, we assume that the latter condition is
satisfied to avoid technical complications.

If W̃ is any bivariate GP df with margins W̃1 and W̃2, then

W (x, y) = W̃
(
W̃−1

1 (1 + x), W̃−1
2 (1 + y)

)
, −1 < x, y < 0, (13.3)

is of the standard form (13.2).

Tajvidi’s Definition of Bivariate GP Distributions

The definition of a bivariate GP df is not as self–evident as in the univariate case.
We mention the relation of the preceding definition of a GP df to another one.

Consider the map

m(u,v)(x, y) =
(
max(x, u), max(y, v)

)
(13.4)

which replaces marginal values x < u and, respectively, y < v by the marginal
thresholds u and v as illustrated in Fig. 13.1.

u

v

Fig. 13.1. Putting points (x, y) to

m(u,v)(x, y).

We refer to Section 13.3, where the map mu,v is once again utilized in the
context of a point process approximation.
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Let (X, Y ) be a random vector with GP df W as introduced in (13.1) and
let u, v be thresholds such that log G(u, v) = −1. Then, the random vector
m(u,v)(X, Y ) has the df

W̃ (x, y) =

⎧⎨⎩ W (x, y) (x, y) ≥ (u, v)
if

0 otherwise
(13.5)

which is a GP df as defined by Tajvidi3.
Thus, both definitions are closely related to each other. We remark that

• both distributions are identical in the region {(x, y) : x > u, y > v},

• in contrast to the GP df W , the modification W̃ does not possess the property
that the margins are again GP dfs.

In view of the latter remark, we prefer to deal with GP dfs as introduced in
(13.1). Using such dfs also facilitates transformations in the univariate margins.

Canonical and Tail Dependence Parameters

Now, let (X, Y ) be a random vector with df bivariate GP df W as given in (13.2).
Applying (10.7) one gets for −1/2 ≤ u < 0,

P (Y > u|X > u) =
2|u| − 2|u|DW (1/2)

|u|
= 2

(
1 − DW (1/2)

)
=: T (W ), (13.6)

where DW is the Pickands dependence function pertaining to W . We see that the
conditional probabilities do not depend on the threshold u.

Notice that T (W ) is just the canonical parameter introduced in (12.25) for
bivariate EV dfs. Thus, for a parametric family of GP dfs Wϑ, for which there
is a one–to–one relation between the original parameter λ and T (Wλ), we may
introduce another representation by taking the canonical parameter

ϑ = T (Wλ).

It is apparent from (13.6) that the survivor function Wϑ satisfies

W(u, u)/|u| = T (W ), −1/2 ≤ u ≤ 0. (13.7)

3Tajvidi, N. (1996). Characterization and some statistical aspects of univariate and
multivariate generalised Pareto distributions. PhD Thesis, Dept. of Mathematics, Uni-
versity of Göteborg.
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Recall from (12.26) that such a relation approximately holds for the pertaining
EV df.

In addition, we have

T (W ) = χ(q), q ≥ 1/2, (13.8)

where χ(q) is the tail dependence parameter at the level q introduced in (2.60).

Parametric Models of Bivariate GP Distributions

Explicit representations of Wϑ, where ϑ is the canonical parameter, are given for
the bivariate Marshall–Olkin, Gumbel–McFadden and Hüsler–Reiss dfs.

• (Marshall–Olkin–GP dfs.) Because ϑ = λ, we obtain from (13.1) and (12.11),

Wϑ(x, y) = 1 + (1 − ϑ)(x + y) + ϑ min{x, y}, (13.9)

whenever x, y ≤ 0 and the right–hand side exceeds zero.

• (Gumbel–McFadden–GP dfs.) Because ϑ = 2 − 21/λ, we have

λ = (log 2)/ log(2 − ϑ).

(13.1) and (12.28) yield

Wϑ(x, y) = 1 −
(
(−x)

log 2
log(2−ϑ) + (−y)

log 2
log(2−ϑ)

) log(2−ϑ)
log 2

, (13.10)

whenever x, y ≤ 0 and the right–hand side exceeds zero.

• (Hüsler–Reiss–GP dfs.) Because ϑ = 2(1−Φ(1/λ)), we have λ = 1/Φ−1(1−
ϑ/2). Deduce from (13.1) and (12.19) that

Wϑ(x, y) = 1 + ψϑ

(y

x

)
y + ψϑ

(
x

y

)
x, (13.11)

where the auxiliary function ψϑ is defined by

ψϑ(z) = Φ

(
Φ−1

(
1 − ϑ

2

)
+

1

2Φ−1
(
1 − ϑ

2

) log(z)

)
, 0 < z < ∞,

whenever x, y < 0 and the right–hand side in (13.11) exceeds zero.

In all three cases we have W0(x, y) = 1+(x+y) and W1(x, y) = 1+min{x, y}.
It is remarkable that W0 is the uniform distribution on the line {(x, y) : x, y ≤
0, x + y = −1}.
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The Canonical Dependence Function

We define the canonical dependence function of a bivariate GP df W by

TW (z) = 2(1 − DW (z)), (13.12)

where DW is again the Pickands dependence function pertaining to W .
In conjunction with EV distributions, Huang4 studied the stable tail depen-

dence function

l(x, y) = (x + y)D
( y

x + y

)
which is the function −Ψ(x, y) on page 304. For obvious reasons we prefer to work
with a real–valued function which varies between zero and one.

The value of the canonical dependence function TW (1/2) at z = 1/2 is the
canonical parameter T (W ). We also write Tϑ etc., if there is a parametric family of
GP dfs reresented in the canonical parameterization. Given the canonical param-
eterization we have T0(z) = 0 and T1(z) = min(2z, 2(1 − z)), if tail independence
and, respectively, total tail dependence hold.

In Fig. 13.2 we plot several canonical dependence functions Tϑ for Gumbel–
McFadden and Marshall–Olkin dfs ranging from the case of tail independence to
the one of total dependence.

0 1
0.0

0.25

0.5

0.75

1

Fig. 13.2. Canonical dependence func-

tions Tϑ for Gumbel–McFadden (solid)

and Marshall–Olkin (dashed) distribu-

tion with canonical parameters ϑ =

0, 0.25, 0.5, 0.75, 1.

We provide a representation of the canonical dependence function TW by
means of the survivor function W which extends that for the canonical parameter,
see (13.7).

4 Huang, X. (1992). Statistics of bivariate extreme values. PhD Thesis, Erasmus Uni-
versity Rotterdam.
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Let W be a standard bivariate GP df as given in (13.2). From the represen-
tation (10.7) of a survivor function deduce that

2W(−d(1 − z),−dz)/d = TW (z) (13.13)

for 0 < d ≤ 1 and 0 ≤ z ≤ 1. Notice that the formula (13.7) for the canonical
parameter T (W ) = TW (1/2) is a special case. In addition, one must take |u| = d/2.
Here, z and d may be regarded as direction and distance measures.

Therefore, by estimating the survivor function W in (13.13)—for certain se-
lected values d which may depend on z—one gets estimates of the canonical de-
pendence function TW and the canonical parameter T (W ).

13.2 Estimation of the
Canonical Dependence Function

In this section we estimate the canonical dependence function TW by means of
a sample version of the survivor function. Consequently, the actual df F can be
estimated in the upper tail region by the piecing–together method. The results
presented here should be regarded as a preliminary introduction5.

Estimation Within the Standard GP Model

Let (xi, yi) be governed by the standard GP df W as given in (13.2). In view of
(13.13) one may take

T̂n(z) =
2

nd

∑
i≤n

I(xi > −d(1 − z), yi > −dz) (13.14)

as an estimate of the canonical dependence function TW (z), where 0 < d ≤ 1 can

be selected by the statistician. Spezializing this to z = 1/2 one gets by T̂n(1/2) an
estimate of the canonical parameter T (W ).

This approach to estimating the canonical dependence function includes the
case where the modeling of an actual survivor function F by means of W is suffi-
ciently accurate for x, y > u ≥ −1. In that case, one must take d = |u|.

Transforming Univariate GP Margins

In contrast to the preceding lines we consider the more general situation of bivari-
ate GP dfs W̃ having the GP margins W̃1 and W̃2 which are not necessarily equal
to the uniform df on the interval [−1, 0].

5For further results see Falk, M. and Reiss, R.–D. (2003). Efficient estimators and
LAN in canonical bivariate pot models. J. Mult. Analysis 84, 190–207.
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1. Use estimated univariate GP distributions to transform the original data to
the standard form of [−1, 0]–uniform data;

2. estimate the canonical dependence function (the canonical parameter) as in
(13.14) based on the transformed data,

3. use the estimated canonical dependence function and univariate GP dfs to
construct an estimate of the GP df W̃ .

This approach can be also applied to the situation, where univariate GP dfs
W̃1 and W̃2 are fitted to the upper tails of actual univariate margins F1 and F2

above the thresholds v(1) and v(2). Assume that the bivariate GP modeling of the
actual bivariate distribution is valid for x, y > u = max(u(1), u(2)), where the u(i)
are the transformed thresholds v(i).

Arbitrary Margins

Let X and Y be random variables having continuous dfs FX and FY . Put

p(d, z) := P
{
X > F−1

X (1 − d(1 − z)), Y > F−1
Y (1 − dz)

}
. (13.15)

A natural estimator of the probability p(d, z) is

p̂n(d, z) =
1

n

∑
i≤n

I
(
xi > x[n(1−d(1−z))]:n, yi > y[n(1−dz)]:n

)
,

where (xi, yi) are realizations of (X, Y ).
Applying the quantile transformation one gets

p(d, z) = P
{
U > −d(1 − z), V > −dz

}
= F

(
− d(1 − z), −dz

)
for 0 < d ≤ 1 and 0 ≤ z ≤ 1, where U and V are [−1, 0]–uniform random
variables with common df F . In view of (13.13) it is plausible to assume that for
all 0 ≤ z ≤ 1, ∣∣p(d, z) − W

(
− d(1 − z), −dz

)∣∣/d → 0, d → 0, (13.16)

where W is a standard GP df. For the probabilities in (13.15) one gets

2p(d, z)/d → TW (z), d → 0,

Thus, TW may be regarded as a limiting canonical dependence function. Putting
d = k/n, one arrives at the estimator

T̂n,k(z) =
2

k

∑
i≤n

I
(
xi > xn−[k(1−z)]:n, yi > yn−[kz]:n

)
(13.17)
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of the limiting canonical dependence function. For the direction z = 1/2 one gets
again an estimator of the canonical parameter.

In Fig. 13.3 we plot the estimate T̂n,k(z) of the canonical dependence function
based on n = 500 Gumbel–McFadden data generated under the parameter ϑ =
0.5 with k = 60. For z = 0.5 one gets an exceptional accuarate estimate of the
canonical parameter.

direction z

0.0 0.5 1
0.0

0.5

1

Fig. 13.3. Estimated canonical depen-

dence function generated under the

canonical parameter ϑ = 0.5.

A somewhat related estimator was examined by Deheuvels6 in the context of
“tail probabilities”. We refer to Huang4 and Drees and Huang7 for recent asymp-
totic results and a survey of the literature.

Estimating by Piecing–Together

Piecing together

• the estimated univariate GP dfs,

• the estimated parametric bivariate standard GP df

one gets an approximation to the original bivariate df in the upper tail region.
This approximation can be extrapolated to higher tail regions outside of the range
of the data

If this is done within the nonparametric framework—using the estimated
canonical dependence function—then one should be aware that the resulting df is

6Deheuvels, P. (1980). Some applications to the dependence functions in statistical
inference: nonparametric estimates of extreme value distributions, and a Kiefer type
universal bound for the uniform test of independence. In: Nonparametric Statistical In-
ference, pp. 183–201, B.V. Gnedenko et al. (eds), North Holland, Amsterdam.

7Drees, H. and Huang, X. (1998). Best attainable rates of convergence for estimators
of the stable tail dependence function. J. Mult. Analysis 64, 25–47.
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not a bivariate GP df. This can be achieved by using a concave majorant of the
sample canonical dependence function.

We present once again the scatterplot and contour plot in Fig. 10.3 and add
an extrapolated contour plot.
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Fig. 13.4. (left.) Contour plots of theoretical and sample survivor function.

(right.) Estimated parametric extrapolation to the upper tail region.

13.3 About Tail Independence
co–authored by M. Frick8

In this section we discuss some well–known measures of independence which char-
acterize different degrees of tail independence and indicate the relationship of these
parameters to each other. Moreover, we study a test of tail dependence against
tail independence based on the radial component.

Recall from (12.10) that

Φ̄ρ(bn + b−1
n x) = O

(
n−2/(1+ρ)(log n)−ρ/(1+ρ)

)
,

where Φ̄ρ(x, y) = P{X > x, Y > y} is the survivor function of a standard normal
vector (X, Y ) with correlation coefficient ρ such that −1 < ρ < 1. Thus, according
to (12.9), the right–hand side determines the rate at which the random maxima in
each component become independent as the sample size goes to infinity. The latter
property was addressed as the upper tail independence of the bivariate normal df.

8University of Siegen.
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The Coefficient of Tail Dependence for Normal Vectors

In an article by Ledford and Tawn9, relation (12.10) is reformulated and strength-
ened with (X, Y ) replaced by the pertaining copula random vector (U, V ) =
(Φ(X), Φ(Y )) where Φ is the univariate standard normal df.

These authors prove that

P{U > u, V > u} ∼ c(ρ)(1 − u)2/(1+ρ)(− log(1 − u))−ρ/(1+ρ), u → 1, (13.18)

where c(ρ) = (1 + ρ)3/2(1 − ρ)−1/2(4π)−ρ/(1+ρ).
In that context, Coles et al.10 introduced the coefficient of tail dependence

at the level u, namely,

χ̄(u) =
2 log P{U > u}

log P{U > u, V > u} − 1, (13.19)

and the coefficient of tail dependence

χ̄ = lim
u→1

χ̄(u). (13.20)

It is easy to verify that

χ̄ = ρ (13.21)

for the particular case of (0, 1)–uniformly distributed random variables U and V
with normal dependence structure as in (13.18). As pointed out by Coles et al.,
the relation (13.21) “provides a useful benchmark for interpreting the magnitude
of χ̄ in general models.”

The reason for introducing the coefficient of tail dependence as another tail
dependence parameter is the desire to distinguish between pairs of random vari-
ables which are both tail independent, that is

χ = lim
u→1

χ(u) := lim
u→1

P{U > u, V > u}
P{U > u} = 0,

cf. (2.61), but have different degrees of independence at an asymptotic level of
higher order.

The Coefficient of Tail Dependence in General Models

For non–normal vectors, the coefficients of tail dependence χ̄(u) and χ̄ are defined
in analogy to (13.19) and (13.20). We list some properties of χ̄(u) and χ̄:

9Ledford, A.W. und Tawn, J.A. (1996). Statistics for near independence in multivariate
extreme values. Biometrika 83, 169–187.

10Coles, S., Heffernan, J.E. and Tawn, J.A. (1999). Dependence measures for extreme
value analyses. Extremes 2, 339–365.



13.3. About Tail Independence 323

• χ̄(u) and χ̄ are symmetric in U and V ;

• χ̄(u) and χ̄ range between −1 and 1;

• if U = V , then χ̄ = 1.

The pair (χ, χ̄) of tail dependence parameters may be employed to describe
the tail dependence structure of two random variables:

χ > 0, χ̄ = 1 tail dependence with χ determining the degree of
dependence.

χ = 0, χ̄ < 1 tail independence with χ̄ determining the degree
of dependence.

Another Coefficient of Tail Dependence

We start again with a normal copula random vector (U, V ) pertaining to a standard
normal vector with correlation coefficient ρ with −1 < ρ < 1.

Relation (13.18) can be written

P{U > u, V > u} ∼ L(1 − u)(1 − u)1/η, u → 1, (13.22)

where η = (1 + ρ)/2 and L(1 − u) = c(ρ)(− log(1 − u))−ρ/(1+ρ) with c(ρ) as in
(13.18). The term η is again called coefficient of tail dependence.

Generally, if for a copula random vector (U, V ), a relation

P{U > u, V > u} ∼ L(1 − u)(1 − u)1/η, u → 1, (13.23)

holds, where L is a slowly varying function at 0 (i.e. as u → 1), then η is called
coefficient of tail dependence. It is evident that (13.22) is a special case. Notice
that 0 < η ≤ 1.

Example 13.3.1. (Morgenstern distributions.) The copula of the Morgenstern df with
parameter −1 < α ≤ 1 is given by

Cα(u, v) = uv[1 + α(1 − u)(1 − v)],

see, e.g., Heffernan11. The bivariate survivor function satisfies the relation

P{U > u, V > u} ∼ (1 + α)(1 − u)2, u → 1,

so that η = 1/2 and L(1 − u) = 1 + α.

11Heffernan, J.E. (2000). A directory of coefficients of tail independence. Extremes 3,
279–290.
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For further examples we refer to the article by Heffernan. We indicate the
relationship between the different dependence parameters χ, χ̄ and η.

χ̄ = 2η − 1;

χ =

⎧⎨⎩ c if χ̄ = 1 and L(u)
u→1−→ c ≥ 0,

0 if χ̄ < 1.

(13.24)

In Ledford and Tawn12 one may find related formulas for the case of unequal
thresholds u and v.

Estimating the Coefficient of Tail Dependence

In analogy to (2.62), a sample version pertaining to χ̄(u) based on data (xi, yi),
i = 1, . . . , n, is

χ̄n(u) =
2 log(1 − u)

log
(

1
n

∑
i≤n I(xi > x[nu]:n, yi > y[nu]:n)

) − 1, (13.25)

which is an estimator of χ̄(u) as well as χ̄.

Example 13.3.2. The illustration in Fig. 13.5 concerns a data set consisting of n = 2, 894

three–hourly–measurements of the surge and wave heights taken at Newlyn, a coastal

town in England, see Example 13.3.6. The sample version χ̄n(u) is plotted against the

level u. The plot was generated by using the source code written by Coles, Heffernan and

Tawn13. This plot suggests an estimate of χ̄n = 0.5 of χ̄. Near u = 1 there is a larger

variation of χ̄n(u) due to the fact that the estimate is merely based on a smaller number

of extremes.

It would be desirable to get some theoretical results for this estimator (as
well as for the serial version which is mentioned in the following lines).

Another Auto–Tail–Dependence Function

In analogy to the auto–tail–dependence function ρ(u, h) for the parameter χ(u),
see (2.63), one may introduce a auto–tail–dependence function ρ̄(u, h) for the tail–
independence parameter χ̄(u) at the level u.

12Ledford, A.W. und Tawn, J.A. (1997). Modelling dependence within joint tail regions.
J.R. Statist. Soc. B 59, 475–499.

13www.maths.lancs.ac.uk/˜currie/Code/DependenceMeasuresForExtremes.S and -.txt



13.3. About Tail Independence 325

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

u

χ n
(u

)

Fig. 13.5. The sample coefficient of tail dependence χ̄n(u) at the level u plotted against

u for the wave and surge data.

Let again X1, . . . , Xn be a series of identically distributed random variables
with common df F . Then, for i ≤ n − h, put

ρ̄(u, h) =
2 log P{Xi > F−1(u)}

log P{Xi > F−1(u), Xi+h > F−1(u)} − 1

=
2 logP{X1 > F−1(u)}

log P{X1 > F−1(u), X1+h > F−1(u)} − 1, (13.26)

where we implicitly assume stationarity in the dependencies.
Likewise define an auto–tail–dependence function ρ̄(h) by

ρ̄(h) = lim
u→1

ρ̄(u, h). (13.27)

Again ρ̄(u, h) and ρ̄(h) can be estimated by the sample versions

ρ̄n(u, h) =
2 log(1 − u)

log
(

1
n−h

∑
i≤n−h I(min(xi, xi+h) > x[nu]:n)

) − 1 (13.28)

based on the data x1, . . . , xn.

Example 13.3.3. (Gaussian AR(1) series.) We study once more a Gaussian AR(1) series
as in Example 2.5.3 with autocorrelation function ρ(h) = dh. It is evident that the
autocorrelation function ρ(h) and the auto–tail–dependence function ρ̄(h) are identical.
Therefore, the sample versions estimate the same functions and should coincide to some
extent.
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Fig. 13.6. Autocorrelation functions (left) and auto–tail–dependence functions (right).

In Fig. 13.6 we plot the sample autocorrelation function and sample auto–tail–
independence function for u = 0.8 based on 200 Gaussian AR(1) data under the param-
eter d = 0.8. The theoretical correlation function ρ(h) = dh is included.

The sample autocorrelation function, which is based on the whole data set,
provides a more accurate estimate of the theoretical curve than the sample auto-
tail-dependence function because the latter sample function is merely based on the
extremes.

A Spectral Expansion of Length 2

Next we make use of the spectral decomposition methodology, outlined in Section
12.4, to characterize the degree of tail independence.

First we state a refinement of condition (12.45) given in Section 12.4. Let X
and Y be random variables having the joint bivariate df H with support (−∞, 0]2.
Assume that H satisfies a differentiable spectral expansion of length 2, i.e.,

hz(c) :=
∂

∂c
Hz(c) = D(z) + B(c)A(z) + o(B(c)), as c ↑ 0, (13.29)

where B is regularly varying with exponent of variation β > 0. We say that H
satisfies a differentiable spectral expansion of length 2 with exponent of variation
β. Notice that B satisfies limc↑0 B(c) = 0.

An important example is given by B(c) = |c|β. For this special case with
β = 1, condition (13.29) was introduced in Falk et al. [16], 2nd ed. The present
form is due to Frick et al.14

14Frick, M., Kaufmann, E. and Reiss, R.–D. (2006). Testing the tail–dependence based
on the radial component, submitted.
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Because (13.29) implies (12.45) we know that the function D in the expansion
is necessarily a Pickands dependence function, cf. (12.20).

We provide two examples of distributions for which (13.29) is satisfied with
D(z) = 1 which is the Pickands dependence function for the case of independent
marginal maxima.

Example 13.3.4. (Bivariate Standard Normal Distribution) We consider again the bi-
variate standard normal distribution with correlation ρ ∈ (0, 1). Let H be its df after
transformation to (−1, 0)–uniformly distributed margins. It satisfies the expansion

hz(c) = 1 + B(c)A(z) + o(B(c)), as c ↑ 0, (13.30)

with

B(c) = |c|2/(1+ρ)−1L̃(c),

where L̃(c) := c(ρ)(− log |c|)−ρ/(1+ρ) with c(ρ) as in (13.18), and

A(z) =
2

1 + ρ
(z(1 − z))1/(1+ρ).

The function L̃ is slowly varying so that the function B is regularly varying with exponent
of variation β = 2/(1 + ρ) − 1. Substituting this result in equation (13.33) we receive
again the relationship χ̄ = ρ (see (13.21)).

Additionally,

L(1 − u) = (1 − u)−βB(−(1 − u)) and η = (1 + β)−1 (13.31)

in (13.22).

In the following example, we extend the representation of hz(c) in the case
of independent, (−1, 0)–uniformly distributed random variables, cf. (c′) on page
310, to Morgenstern random vectors.

Example 13.3.5. (Morgenstern distributions.) A transformation of the Morgenstern df,
whose copula form was given in Example 13.3.1, to (−1, 0)–uniformly distributed margins
leads to the df

H(u, v) = (1 + u)(1 + v)(1 + αuv)

which satisfies the expansion

hz(c) = 1 + c(1 + α)2z(1 − z) + o(c), c ↑ 0.

Therefore, D(z) = 1, A(z) = −2z(1 − z), and B(c) = −(1 + α)c, the latter being a

regularly varying function with exponent of variation β = 1. Recalling from Example

13.3.1 that η = 1/2, both (13.24) and the subsequent formula (13.33) imply that χ̄ = 0.
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Relationships Between Measures of Dependence

Let again H be the df of a random vector (X, Y ) satisfying a differentiable spectral
expansion of length 2. According to (13.6) we have

χ = lim
c↑0

P (Y > c|X > c) = 2(1 − D(1/2)), (13.32)

where D is again the Pickands dependence function, and the expression 2(1 −
D(1/2)) is the canonical parameter.

This implies the following characterization of tail dependence :

If D �= 1, we have tail dependence.

If D = 1, we have tail independence.

In addition, if D = 1 one obtains a relationship between the exponent of
variation β (in the spectral expansion of length 2) and the coefficient of tail de-
pendence χ̄. For that purpose let, in addition, B be absolutely continuous with
a monotone density. This is satisfied, e.g., for the standard case of a regularly
varying function B(c) = |c|β.

Under these conditions one can prove that

χ̄ =
1 − β

1 + β
. (13.33)

Notice that χ̄ → 1 if β → 0, and χ̄ → −1 if β → ∞.

Asymptotic Distributions of the Radial Component

We assume that the spectral expansion (13.29) is valid and the partial derivatives
hz(c) = ∂/∂c Hz(c) and h̃c(z) = ∂/∂z Hz(c) are continuous.

Under these conditions, the conditional asymptotic distribution of the radial
component X + Y for increasing thresholds c is provided (a result due to Frick et
al. in the article cited on page 326, who extended a result in Falk et al. [16], 2nd
ed., from the special case of β = 1 to β > 0).

(i) D �= 1 implies

P (X + Y > ct|X + Y > c) −→ t =: F0(t), c ↑ 0,

uniformly for t ∈ [0, 1],

(ii) D = 1 and β > 0 implies

P (X + Y > ct|X + Y > c) → t1+β =: Fβ(t), c ↑ 0,

uniformly for t ∈ [0, 1] provided that

(2 + β)

∫
A(z) dz − A(0) − A(1) �= 0. (13.34)
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Condition (13.34) is satisfied, e.g., for normal and Morgenstern dfs. This con-
dition is not satisfied for the bivariate generalized Pareto df, special considerations
are required in this case (for a discussion see Falk et al. [16] and the above men-
tioned article by Frick et al.). This result will be applied to the testing of tail
dependence based on the radial component.

Selection of the Null–Hypothesis

We continue our discussion on page 293 about the selection of the model: “be-
fore using a more complex model, one should check whether the EV model for
independent margins or a related generalized Pareto model is applicable.” There-
fore, we wish to check whether the more complex model with unknown Pickands
dependence function D can be replaced by the simpler one where D = 1.

About the selection of the hypotheses, there is a well–known general advice
(e.g., in the booklet by J. Pfanzagl15, page 95, translated from German): “As
null–hypothesis select the opposite of that you want to prove and try to reject the
null–hypothesis.” In our special case we want to prove the tail independence and,
therefore, take tail dependence as the null–hypothesis.

We are well aware that statisticians often do not follow this advice primarily
due to technical reasons.

Testing Tail Dependence Against Tail Independence

We are testing a simple null–hypothesis H0, representing dependence, against a
composite alternative H1, representing the various degrees of independence.

For that purpose we merely have to deal with the asymptotic conditional
distributions of the test statistic X + Y . We are testing

H0 : F0(t) = t against H1 : Fβ(t) = t1+β , β > 0,

based on the the radial components

Ci = (Xi + Yi)/c, i = 1, . . . , n,

with Ci < 1, i = 1, . . . , n. The testing procedure is carried out conditioned on the
random sample size of exceedances, see page 234. Denote by C̃i, i = 1, . . . , m, the
iid random variables in the conditional set–up.

The Neyman–Pearson test at the level α for testing F0 against the fixed
alternative Fβ is independent of the parameter β > 0. Notice that this test is based
on the densities fβ(t) = (1+β)tβ , 0 ≤ t ≤ 1. Therefore, one gets a uniformly most
powerful test for the testing against the composite alternative.

15Pfanzagl, J. (1974). Allgemeine Methodenlehre der Statistik II. Walter de Gruyter,
Berlin.
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For iid random variables C̃i, i = 1, . . . , m, with common df F0, the Neyman–
Pearson test statistic

∑m
i=1 log C̃i is distributed according to the gamma df

Hm(t) = exp(t)
m−1∑
i=0

(−t)i

i!
, t ≤ 0,

on the negative half–line with parameter m. Therefore, the Neyman–Pearson test
at the level α is given by the critical region

Cm,α =

{
m∑

i=1

log C̃i > H−1
m (1 − α)

}
.

In the aforementioned article by Frick et al. one may also find a bias–corrected
MLE for β.

Power Functions and P–Values

Evaluating P (Cm,α) under iid random variables Zi, which are distributed accord-
ing to Fβ , one gets the power function

ζm,α(β) = 1 − Hm

(
(1 + β)H−1

m (1 − α)
)
, β ≥ 0,

for the level–α–test.
The p–value of the optimal test, finally, is given by

p(c̃) = 1 − Hm

(
m∑

i=1

log c̃i

)
≈ Φ

(
−
∑m

i=1 log c̃i + m

m1/2

)
, (13.35)

with c̃ = (c̃1, · · · , c̃m), according to the central limit theorem.
One may also derive an approximate representation of the power function by

ζm,α(β) ≈ 1 − Φ((1 + β)Φ−1(1 − α) − βm1/2).

Particularly, for m = 361 and α = 0.01 we have

ζ361,0.01(β) = 1 − Φ((1 + β)Φ−1(0.99)− 19β).

This function together with some other power functions is displayed in Figure 13.7.

Data Transformation

Real data (v1, w1), . . . , (vn, wn) are independent realizations of a random vector
(V, W ) with common unknown df. These pairs have to be transformed to the left
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Fig. 13.7. Power functions for m = 361 and α = 0.01, 0.05 (above), and m = 290, 434

and α = 0.01 (below).

lower quadrant to make the preceding test procedure applicable. Such a transfor-
mation can be achieved as explained in Section 10.3. Subsequently, we make use
of transformations by means of the sample dfs F̂n(v; ·) and F̂n(w; ·) in the single
components. We have

xi = F̂n(v; vi) and yi = F̂n(w; wi), i = 1, . . . , n.

Recall that the resulting data are relative ranks with values in the interval [0, 1]
or (0, 1) if the ranks are divided by n + 1 in place of n. Then the data are shifted
to (−1, 0). This procedure is illustrated in the following example.

Example 13.3.6. (Wave and Surge Heights at Newlyn, England.) The wave and surge
data set was originally recorded by Coles and Tawn. It consists of 2, 894 three–hourly–
measurements of the surge and wave heights taken at Newlyn, a coastal town in England.
Ledford and Tawn as well as Coles et al. have already analyzed the dependence structure
of these data with the motivation that flooding is likely if both surge and wave heights
reach extreme levels.
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Now we are going to test the extremal dependence of the two components by apply-

ing the uniformly most powerful test. In a first step the marginal data are transformed by

means of the marginal univariate empirical dfs. Then they are shifted from (0, 1)× (0, 1)

to (−1, 0) × (−1, 0). The data set in its original form and after transformation to (0, 1)–

uniformly distributed margins is displayed in Figure 13.8.

Fig. 13.8. Wave heights and surge levels at Newlyn: original data (left) and transformed

data set with [0, 1]–uniformly distributed margins (right)

Testing the Tail Dependence for the Wave and Surge Heights

Next we proceed as in Falk et al. [17], page 189: fix c < 0 and consider those
observations xi+yi exceeding the threshold c. These data are subsequently denoted
by c1, . . . , cm. The threshold c is chosen in such a way that the number m of
exceedances is about 10% to 15% of the total number n = 2, 894. Therefore, we
take values c from −0.46 to −0.35. It may be worthwhile to investigate more closely
the impact of the threshold c on the performance of the test. Figure 13.9 shows
the transformed full data set and the part near zero together with threshold lines.

Fig. 13.9. The transformed full data set, shifted to the negative quadrant (left) and data

above the threshold lines corresponding to c = −0.46 and c = −0.35 (right).
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We assume that our results are applicable to the ci/c, i = 1, . . . , m. Substi-
tuting the xi in (13.35) by ci/c, i = 1, . . . , m, one gets approximate p–values. Table
1 provides some examples of p–values for different thresholds c together with the
number m of exceedances.

Table 13.1. p–values for different thresholds c.

c −0.46 −0.45 −0.44 −0.43 −0.42 −0.41

m 431 414 400 390 376 361

p–value 0.00028 0.00085 0.00158 0.00162 0.00305 0.00665

c −0.4 −0.39 −0.38 −0.37 −0.36 −0.35

m 353 338 325 313 300 294

p–value 0.00542 0.01179 0.01939 0.02816 0.04601 0.03291

Having in mind a significance level of α = 0.01 the null–hypothesis is accepted
for the bigger values of c, up from −0.39. For lower thresholds the p–values are
rather low, suggesting a rejection of the null–hypothesis. Remembering that we are
considering limiting distributions as c ↑ 0 we may nevertheless decide to accept
the null–hypothesis entailing the acception of an extremal tail–dependence. Yet
we have to be aware that this conclusion is not straightforward and we must not
ignore that the null–hypothesis is always rejected if we choose a significance level
of α = 0.05, for example.

13.4 The Point Process Approach
to the Multivariate POT Method

We shortly introduce the point process models related to the multivariate GP
models and possible estimation procedures within such models.

The Models

We shortly describe the relationship between

• the original statistical modeling by means of iid random vectors (Xi, Yi),
i = 1, . . . , n, with common bivariate df F ,

• the model determined by bivariate GP dfs W̃ as introduced in (13.5).

Let (xi, yi), i = 1, . . . , n, be generated according to F . Let (x′
i, y

′
i), i =

1, . . . , k, be those (xi, yi) for which either xi > u or yi > v (taken in the orig-
inal order of the outcome). Let

(x̃i, ỹi) := m(u,v)(x
′
i, y

′
i) =

(
max(x′

i, u), max(y′
i, v)

)
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be the vectors introduced in (13.4). Within a certain error bound (see [16], Section
5.1), the (x̃i, ỹi) can be regarded as realizations of random vectors

(X̃i, Ỹi), i = 1, . . . , K(n), (13.36)

where

• (X̃1, Ỹ1), (X̃2, Ỹ2), (X̃3, Ỹ3), . . . are iid random vectors with common GP df

W̃ (x, y) in the form described in (13.5),

• K(n) is a binomial or a Poisson random variable which is independent of the

(X̃i, Ỹi).

Thus, the series of random vectors in (13.36) constitute a binomial or a Poisson
process depending on the choice of K(n).

Estimation in Point Process Models

Of course, first of all one may also use the estimators presented before within the
point process framework.

The ML approach was applied, for example, by Davison and Smith in the
article mentioned on page 121. To compute the likelihood function specify densities
of point processes as it was done in Section 9.3 (also see Section 9.5) with the help
of results in [43], Section 3.1.
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Chapter 14

Flood Frequency Analysis

co–authored by J.R.M. Hosking1

We first summarize and supplement in Section 14.1 the at–site analysis done before
in conjunction with annual flood series.

Section 14.2 deals with the partial duration series of daily discharges. Our
program was already outlined in Section 2.5, namely we want to handle the serial
correlation and seasonal variation in the data. Our primary interest still concerns
the calculation of the T –year threshold, yet also briefly discuss the question of
seasonal variation in its own right. To catch the seasonal variation of discharges
over a higher level, we introduce inhomogeneous Poisson processes with marks
which distributionally depend on the time of their occurrence (Section 14.2). The
handling of such partial duration series is the main topic of this chapter. A trend
is included in Section 14.3.

In Sections 14.3–14.5, we also deal with the regional flood frequency analysis
Our primary references are the paper by Hosking et al., cf. page 120, and the book
[29].

14.1 Analyzing Annual Flood Series

The traditional approach of dealing with floods is to use annual maxima. On the
one hand, one is avoiding the problems of serial correlation and seasonal variation;
on the other hand, one is losing information contained in the data. A first modifi-
cation of this approach is to base the inference on seasonal or monthly maxima.

1IBM Research Division, Thomas J. Watson Research Center; co–authored the 2nd
edition.
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In Section 4.3 we introduced several distributions, such as Wakeby, two–
component and gamma distributions, which are used in the hydrological literature
besides EV distributions for the modeling of annual or seasonal floods. In this
chapter, we only employ EV distributions.

Estimation of the T–Year Flood Level Based on Annual Maxima

We repeat the analysis of annual floods as it was already done for the Feather River
discharges, see Examples 4.1.1 and 5.1.1. We computed 50 and 100–year discharge
levels based on the estimated Gumbel (EV0) and exponential (GP0) distributions.

To make the results in this and the subsequent section comparable, we repeat
the aforementioned analysis with respect to the Moselle River data.

Example 14.1.1. (Continuation of Example 2.5.2 about the Moselle River Data.) The

MLE(EV) will be applied to the annual maximum levels for water years running from

Nov. to Oct. of consecutive calendar years. Based on 31 annual maxima one obtains the

parameters γ = −0.40, µ = 8.00 and σ = 1.74. Moreover, the right endpoint of the

estimated Weibull distribution is 12.37. The 50 and 100–year levels are u(50) = 11.45

and u(100) = 11.67. According to these estimates, there was a 100–year flood, with a

level of 11.73 meters, around Christmas time in the year 1993.

In view of the small number of data, we do not carry out a tail estimation for
the Moselle River within a GP model based on exceedances over a certain level.

Modifications of the Annual Maxima Approach

If the number of years is small, there is a greater need to extract more information
out of a sample of daily recorded discharges or water levels. The number of extreme
data can be increased by extracting monthly or seasonal maxima for the statistical
analysis, where independence may still be assumed, yet one is exposed to the
seasonal variation. We do not go into details but concentrate our attention to the
partial duration approach which will be outlined in the next section.

14.2 Analyzing Partial Duration Series

Series of flood peaks are investigated under the fairly general conditions that the
frequency of occurrence and the magnitude of floods exhibit a seasonal dependency.

Modeling by an Inhomogeneous Poisson Process

After a declustering of the data, the modeling

• of frequencies by means of an inhomogeneous Poisson process, and
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• of the magnitudes by stochastically independent, time–dependent marks

is adequate.
Subsequently, we use a nonparametric approach with the exception that the

marks are assumed to be distributed according to generalized Pareto (GP) dfs. A
parametric modeling for the marginal distributions of the marks is indispensable
when the usual extrapolation to extraordinary high flood levels must be carried
out.

We model the frequencies and the marks by means of an inhomogeneous
Poisson process in the time scale with mean value function Λ, and marks with dfs
F (·|ti) at time ti. This constitutes a Poisson(Λ, F ), cf. Section 9.5.

The flood peaks are those marks exceeding a threshold v. According to (9.31)
and (9.32) this situation is described by a Poisson(Λv, F

[v]) with mean value func-
tion

Λv(t) =

∫ t

0

(1 − F (v|s)) dΛ(s) (14.1)

in the time scale, and marks distributed according to

F [v](w|t) =
(
F (w|t) − F (v|t)

)/(
1 − F (v|t)

)
, w ≥ v. (14.2)

The T–Year Flood Level

We extend the computations on page 252 concerning the T –year return level to the
new framework. (14.1) and (14.2) yield that the first exceedance time with respect
to the threshold v is the random variable τ1,v = Λ−1

v (X), where X is a standard
exponential random variable. Hence, the T –year return level is the solution to the
equation

E(τ1,v) = T. (14.3)

An estimate of the T –year return level is obtained by plugging in estimates of the
mean value function Λ and of the conditional df F = F (·|·).

Subsequently, we assume that there is only a seasonal dependence of F (·|s)
and Λ(s). Then, according to (14.1),

Λv(T ) = T

∫ 1

0

(1 − F (v|s)) dΛ(s) =: Tψ(v), T = 1, 2, 3, . . . . (14.4)

When the inhomogeneous mean value functions Λv(t) are replaced by the homo-

geneous mean value functions Λ̃v(t) = tψ(v), then ψ(v) is the intensity in the time
domain, and the first exceedance time is an exponential random variable with
expectation 1/ψ(v), see Section 9.2 for details. This expectation is equal to T , if

Tψ(v) = 1. (14.5)

Therefore, one obtains a T –year return level ṽ(T ) as a solution to this equation.
This T –year return level may serve as an approximation to the one in the original
setting.
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We also give an alternative interpretation of ṽ(T ): let Nv be the inhomoge-
neous Poisson counting process with mean value function Λv. Because

1 = Tψ(v) = Λ̃ṽ(T )(T ) = E
(
Nṽ(T )(T )

)
(14.6)

we know that ṽ(T ) is the threshold so that the mean number of exceedances up
to time T is equal to 1, also see page 12.

Estimation of the T–Year Level

Let l be the number of years for which the flood measurements are available. Let
again N(t), t ≤ l, be the counting process pertaining to the exceedance times
τi, i ≤ N(l), of exceedances over u. It is apparent that

Nl(s) =
1

l

l−1∑
j=0

(
N(j + s) − N(j)

)
, 0 ≤ s ≤ 1,

is an unbiased estimator of Λ(s) for 0 ≤ s ≤ 1. Plugging in Nl for Λ in ψ(v) =∫ 1

0 (1 − F (v|s)) dΛ(s) one obtains by∫ 1

0

(1 − F (v|s)) dNl(s) =
1

l

∑
i≤N(l)

(
1 − F (v| j(i) + ηi)

)
=

1

l

∑
i≤N(l)

(
1 − F (v|ηi)

)
an estimator of ψ(v), where j(i) + ηi = τi. Thus, we have ηi = τi modulo 1.

Next, F (·|ηi) will be replaced by a generalized Pareto (GP) df W . The final
estimator of ψ(v) is given by

ψ̂(v) =
1

l

∑
i≤N(l)

(
1 − Wγ̂(ηi),u,σ̂(ηi)(v)

)
, (14.7)

where the estimators γ̂(ηi) and σ̂(ηi) of the shape and scale parameters are con-
structed in the following manner: let Xj be the mark pertaining to the time τj

(and, thus, pertaining to ηj). Then, these estimators are based on those Xj for
which |ηj − ηi| ≤ b, where b > 0 is a predetermined bandwidth. Alternatively, one
may employ a nearest neighbor method, that is, take the marks Xj pertaining to
the k values ηj closest to ηi, where k is predetermined (see Section 8.2).

Then, an estimator v̂(T ) of the T –year level is obtained as the solution to

T ψ̂(v) = 1. (14.8)

One gets again the estimator in the homogeneous case (see page 252) if the
parameters are independent of the time scale.
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Example 14.2.1. (Continuation of Example 13.1.1 about the Moselle River Data.) After
taking the exceedances over a base level u = 5 and the selection of cluster maxima
(with run length r = 7) there are 131 observations within the 31 water years (starting in
November). In the hydrological literature, it is suggested to take a base level and clusters
such that there are three cluster maxima for each year on the average. Thus, we took a
slightly greater number of exceedances.

In Fig. 14.1 (left), the exceedances are plotted against the day of occurrence within
the water year. As one could expect the exceedances primarily occur in winter and spring
time. It is remarkable that higher flood levels also occur in times with a lower flood
frequency.
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Fig. 14.1. (left.) Scatterplot of cluster maxima over u = 5 at days modulo 365. (right.)

Frequency of exceedances within weeks modulo 52.

We also included a histogram of the frequencies plotted against the week of occur-
rence within the water year (Fig. 14.1 (right)).

The GP parameters γ(i) and σ(i) of the flood magnitudes are estimated by means
of the MLE(GP) using the nearest neighbor approach with k = 30. The use of the
Moment(GP) estimator would lead to a similar result. In Fig. 14.2, plots of the estimates
are provided for all days within the water year where an exceedance occurred.

This is our interpretation: the estimates reflect to some extent what can also be

seen in the scatterplot (Fig. 14.1 (left)). In winter time the cluster maxima are relatively

homogeneously scattered within the range between 5 and 12, whereas in spring time very

high floods are rare events. In the first case, the wide range is captured by the larger scale

parameter, whereas the latter phenomenon is captured by the positive shape parameter.

Based on Monte Carlo simulations we obtain 12.1 meter as an estimate of the 100–year

threshold. Applying the Moment(GP) estimator one obtains higher T–year thresholds

than for the MLE(GP).

Statistical inference for such series (particularly, the estimation of the T –year
level) was carried out in the hydrological literature

• within the reduced setting of stationarity within certain seasons2,

2Ashkar, F. and Rousselle, J. (1981). Design discharge as a random variable: a risk
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Fig. 14.2. Estimated shape parameters γ(i) (left–hand side) and scale parameters σ(i)

(right–hand side) at days i.

• for a certain continuous modeling with trigonometric functions3.

Moreover, it was assumed that the marks (the flood magnitudes) are exponentially
distributed. For further explanations and references see Davison and Smith (cited
on page 121), where also a decision is made for the exponential model according
to a likelihood ratio test. We believe that for our example of Moselle data the GP
modeling is adequate.

Flood Series with a Trend

The estimated T –year level may drastically increase in the presence of a slight
trend. If a linear trend is included in the modeling, then much higher T –year
levels were estimated for the Moselle river data4. We also refer to articles by R.L.
Smith5 and by H. Rootzén and N. Tajvidi6.

study. Water Resour. Res. 17, 577–591.
Rasmussen, P.F. and Rosbjerg, D. (1991). Prediction uncertainty in seasonal partial

duration series. Water Resour. Res. 27, 2875–2883.
3North, M. (1980). Time–dependent stochastic model of floods. J. Hydraul. Div. Am.

Soc. Civ. Eng. 106, 649–665.
Nachtnebel, H.P. and Konecny, F. (1987). Risk analysis and time–dependent flood

models. J. Hydrol. 91, 295–318.
4Reiss, R.–D. and Thomas, M. (2000). Extreme environmental data with a trend and a

seasonal component. In: Environmental Engineering and Health Sciences (ed. J.A. Raynal
et al.), 41–49, Water Resources Publications, Englewood.

5Smith, L.R. (1989). Extreme value analysis of environmental time series: an applica-
tion to trend detection in round–level ozone. Statistical Science 4, 367–381.

6Rootzén, H. and Tajvidi, N. (1997). Extreme value statistics and wind storm losses:
a case study. Scand. Actuarial. J., 70–94.
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14.3 Regional Flood Frequency Analysis

We argued that the use of a partial duration series in place of an annual flood series
is necessary to extract more information out of the available data. Another pos-
sibility is to include information from data recorded at nearby sites, respectively,
sites having similar characteristics.

Regional Estimation of Parameters

In the regional analysis it is assumed that data are available at different sites with
data xj,i at site j. We deal with data yj,i which are

• annual maxima, or

• excesses (exceedances) over a threshold uj.

Subsequently, we primarily address the case of excesses.
Assume that the random excesses at site j are distributed according to the

GP df Wγ,0,σj . Apparently this is the situation, where the accesses have a common
shape parameter γ, yet the scale parameters are different from each other.

If γ̂j is an estimate of γ at site j, then

γ̂R =
∑

j

nj γ̂j

/∑
j

nj (14.9)

is a regional estimate of γ, where the nj are the sample sizes (number of excesses
over the threshold uj) at site j (cf. [29], page 7, where further references to the
literature are provided). If the nj are of a similar size, then a pooling of the data
is appropriate.

An important question is the selection

• of the homogeneous region, that is, those sites which can be modeled by the
same shape parameter,

• of an appropriate submodel of GP distributions.

The Index Flood Procedure

We introduce a special at–site estimation procedure which is also useful in con-
junction with regional considerations.

Suppose that the excesses Yi of discharges over the threshold u are distributed
according to a GP df Wγ,0,σ with shape and scale parameters γ and σ. Recall from
(1.57) that Yi has the expectation

m = σ/(1 − γ),
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which is the index flood, under the condition γ < 1. Under this condition, the
statistical inference is done within a certain submodel of GP dfs, where dfs with
a very heavy upper tail are excluded.

The rescaled excesses Yi/m = Yi(1 − γ)/σ have means equal to 1 and are
distributed according to the GP df

Wγ,0,1−γ(z) = 1 −
(
1 +

γ

1 − γ
z
)−1/γ

for

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 < z, 0 ≤ γ < 1,

if

0 < z < 1−γ
|γ| , γ < 0;

(14.10)
with density

wγ,0,1−γ(z) =
1

1 − γ

(
1+

γ

1 − γ
z
)−(1+1/γ)

for

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 < z, 0 ≤ γ < 1,

if

0 < z < 1−γ
|γ| , γ < 0.

(14.11)
The unknown parameter γ < 1 may be estimated, for example, by the ML

estimator γ̂ in this submodel of GP dfs (using the Newton–Raphson iteration
procedure).

Within the original model of GP dfs with shape parameter γ < 1 and scale
parameter σ > 0 one gets the following two–step estimation procedure: let yi be
a realization of Yi and denote again by ȳ the sample mean of the yi. Then, the
excess degrees

zi =
yi

ȳ

may be regarded as realizations under the GP df Wγ,0,1−γ as given in (14.10). Let
γ̂ be the ML estimate (or any other estimate) of γ within the model of GP dfs{

Wγ,0,1−γ : γ < 1
}

based on the excess degrees zi. Because ȳ is an estimate of the mean m = σ/(1−γ),
it is apparent that

σ̂ = (1 − γ̂)ȳ

is an estimate of the original scale parameter σ > 0.

The Sample Median Taken as Index Flood

If one takes the median in place of the mean, then the rescaled excesses have
medians equal to 1 and are distributed according to a GP df

W0,0,1/ log 2 γ = 0,

if

Wγ,0,γ/(2γ−1) γ �= 0.
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For estimating the parameters γ and σ > 0 in the GP model of dfs Wγ,0,σ—without
any restriction on the shape parameter γ—we use excess degrees with the sample
mean replaced by the sample median.

Regional Estimation Using the Index Flood Procedure

Let again yj,i be the discharge excesses over a threshold uj at site j which are
governed by a GP df Wγ,0,σj .

Rescaling the GP dfs by the means mj = σj/(1−γ) as in the preceding lines,
we obtain the common regional frequency distribution Fγ = Wγ,0,1−γ . Recall that
mj is the index flood for the site j. Notice that

Fγ,mj (y) = Fγ(y/mj) = Wγ,0,σj (y)

and, therefore, the index flood mj is a scale parameter for the model of regional
frequency distributions.

Let again

zj,i =
yj,i

ȳj

be the excess degrees at site j, where ȳj is the sample mean of the excesses yj,i at
site j. Now, use the at–site estimates γ̂j of γ to define the regional estimate γ̂R in
(14.9). In addition,

σ̂j = (1 − γ̂)ȳj

is an estimate of the original scale parameter σj = (1 − γ)mj .

Estimation of the T–Year Flood Level

At a given site, the T –year flood level may be estimated as in (14.7) and (14.8)
with γ̂ and γ̂(ηi) replaced by the corresponding regional estimates γ̂R and γ̂R(ηi).

14.4 The L–Moment Estimation Method

We give a short introduction to L–moments and the L–moment estimation method
following closely the explanations in the book by Hosking and Wallis [29] about
regional frequency analysis. L–moment estimators are obtained by equating sample
L–moments with the pertaining L–moments corresponding to the procedure for
ordinary moments, see page 86. As an application, L–moment estimators are dealt
with under the Paretian modeling.

L–moment estimators are extensively applied in flood frequency in conjunc-
tion with the index flood procedure analysis due to their appealing small sample
performance.
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L–Moments

Recall from (1.33) that the ordinary jth moment is defined by

mj =

∫
xj dF (x) =

∫ 1

0

(
F−1(u)

)j
du, (14.12)

where the latter equality is a consequence of the quantile transformation, cf. page
38, and the transformation theorem for integrals.

The right–hand expressions will be replaced by certain probability weighted
moments

βr =

∫ 1

0

F−1(u)ur du (14.13)

for r = 0, 1, 2, . . . . Notice that β0 is the mean m1. Likewise, one could start with

βr replaced by αr =
∫ 1

0 F−1(u)(1 − u)r du.
The next step corresponds to the step from moments to centered moments

to some extent. The first L–moment λ1 is the mean, the second L–moment λ2

corresponds to the standard deviation, and for j ≥ 3 the jth L–moment is related
to the jth central moment. More precisely, let

λ1 = β0

λ2 = 2β1 − β0

λ3 = 6β2 − 6β1 + β0

λ4 = 20β3 − 30β2 + 12β1 − β0

and, in general,

λj =

∫ 1

0

F−1(u)Pj−1(u) du =

j−1∑
k=0

pj−1,kβk , (14.14)

where

Pr(u) =

r∑
k=0

pr,kuk

are Legendre polynomials of degree r shifted to the interval [0, 1] with the coeffi-
cients pr,k = (−1)r−k(r + k)!

/(
(k!)2(r − k)!

)
for r = 0, 1, 2, . . . . It is evident that

all L–moments exist if the mean exists.
We have P0(x) = 1, Pr(1) = 1 and

∫ 1

0 Pr(u)Ps(u) du = 0 for r �= s. In

particular,
∫ 1

0
Pr(u) du = 0 for r ≥ 1 which yields that L–moments are independent

of a location parameter for j ≥ 1.
The representations

λ2 = E
(
X2:2 − X1:2

)/
2

λ3 = E
(
X3:3 − X2:3 −

(
X2:3 − X1:3

))/
3

λ4 = E
(
X4:4 − X1:4 − 3

(
X3:4 − X2:4

))/
4
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reveal why L–moments exhibit characteristics of the distribution just as the stan-
dard deviation and the 3rd and 4th centered moments.

Also define the L–CV, the L–moment analogue of the coefficient of variation,
by

τ = λ2/λ1 (14.15)

and the L–moment ratios

τj = λj/λ2 (14.16)

with the L–skewness and the L–kurtosis as special cases for j = 3, 4. Notice that
the L–CV is independent of a scale parameter, and the L–moment ratios are in-
dependent of location and scale parameters.

Sample L–Moments

One gets estimates of βr for r = 0, 1, 2, . . . by replacing the qf F−1 in (14.13) by
the sample qf F−1

n as defined in (2.8). A slight modification leads to estimates

β̃r =
1

n

∑
k≤n

( k

n + 1

)r

xk:n .

Yet, unbiased estimators are obtained by using another modification, namely

β̂0 =
1

n

n∑
k=1

xk:n ,

β̂1 =
1

n

n∑
k=2

k − 1

n − 1
xk:n ,

and, in general,

β̂r =
1

n

n∑
k=r+1

(k − 1) · · · (k − r)

(n − 1) · · · (n − r)
xk:n.

Unbiased estimates λ̂j of the L–moment λj are obtained by replacing the

probability weighted moments βk in (14.14) by the sample versions β̂k. We have

λ̂j =

j−1∑
k=0

pj−1,kβ̂k , (14.17)

where, particularly, the first sample L–moment λ̂1 is the sample mean x̄.
In this manner, on may also define the sample L–moment ratios τ̂j = λ̂j/λ̂2

and the sample L–coefficient of variation τ̂ = λ̂2/λ̂1.
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L–Moment Estimation in the Pareto Model

We apply the L–moment estimation method

• to the Pareto model for excesses with unknown scale and shape parameters
σ and γ,

• to the reduced Pareto model in (14.10) for excess degrees in conjunction with
the index flood procedure.

It turns out that both approaches are equivalent.

The first two L–moments of a Pareto df Wγ,u,σ are

λ1 = u + σ/(1 − γ),

λ2 = σ/((1 − γ)(2 − γ)),

for γ < 1. Notice that u = 0, if we deal with excesses yi.

L–moments estimates of the parameters γ and σ are solutions to

λ̂1(y) = u + σ/(1 − γ),

λ̂2(y) = σ/((1 − γ)(2 − γ)),

where λ̂j(y) are the sample L–moments based on the excesses yi. The solutions
are

γ̂(y) = 2 − ȳ/λ̂2(y),

σ̂(y) = (1 − γ̂(y))ȳ. (14.18)

Within the model (14.10) for excess degrees we base the estimation of γ on
the 2nd L–moment λ2. One gets the estimate

γ̃(z) = 2 − 1/λ̂2(z),

where z is the sample of excess degrees zi = yi/ȳ. It is apparent that

γ̃(z) = γ̂(y) (14.19)

and, therefore, the L–moment method applied to the excesses yi and, respectively,
the index flood procedure in conjunction with the L–moment method applied to
the excess degrees zi leads to the same estimates of σ and γ within the Pareto
model for excesses.

Simulations show that the L–moment estimator of γ has a better performance
than the MLE in the model (14.10) for small and moderate sample sizes, if γ is
around zero.
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L–Moment Estimation in the Extreme Value Model

The first two L–moments and the L–skewness parameter of the EV df Gγ,µ,σ are

λ1 = µ − σ(1 − Γ(1 − γ))/γ,

λ2 = −σ
(
1 − 2γ

)
Γ(1 − γ)/γ,

τ3 = 2
(
1 − 3γ

)
/
(
1 − 2γ

)
− 3 . (14.20)

If γ is known, then

σ =
−λ2γ(

1 − 2γ
)
Γ(1 − γ)

, (14.21)

and
µ = λ1 + σ(1 − Γ(1 − γ))/γ . (14.22)

Thus, to get the L–moment estimates of γ, µ, σ, replace λ1, λ2, τ3 by the sam-
ple versions and compute a numerical solution to the third equation in (14.20).

14.5 A Bayesian Approach to

Regional Estimation

In this section we give an outline of an approach to regional flood frequency analysis
which originates in a paper by G. Kuczera7.

A Bayesian At–Site Analysis

Assume that the annual floods at a given site are distributed with common log–
normal df F(µ,σ)(x) = Φµ,σ(log(x)) as defined in (1.60), where Φµ,σ is the normal
df with location and scale parameters µ and σ > 0. For such a distribution, the
T –year flood (T –year level) is

u(T ) = F−1
(µ,σ)(1 − 1/T )

= exp
(
µ + σΦ−1(1 − 1/T )

)
. (14.23)

The estimation of u(T ) will be carried out in the normal model. If z1, . . . , zn

are the annual floods then—according to the definition of the log–normal df—the
transformed data yi = log(zi) are governed by the normal df Φµ,σ. The T –year
flood u(T ) will be estimated by replacing in (14.23) the parameters µ and σ by
the sample mean ȳ and a Bayesian estimate of σ2 based on y = (y1, . . . , yn).

In the sequel, the normal dfs are represented by the variance ϑ = σ2 and
the unknown mean µ is replaced by the sample mean ȳ. The latter corresponds to

7Kuczera, G. (1982). Combining site–specific and regional information: an empirical
Bayes approach. Water Resour. Res. 18, 306–314.
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taking a non–informative prior for µ. For the Bayesian estimation of ϑ we take a
reciprocal gamma density

pa,b(ϑ) =
1

bΓ(a)
(ϑ/b)−(1+a) exp(−b/ϑ), ϑ > 0,

as a prior for ϑ, see (3.43). Such densities are conjugate priors for ϑ. The posterior
density is

pa,b(ϑ|y) = pa′,b′(ϑ)

with
a′ = a + n/2

and
b′ = b + ns2/2,

where s2 = (1/n)
∑

i≤n(yi − ȳ)2.

The Bayesian estimate of ϑ = σ2—as the mean of the posterior distribution—
is

σ̂2 =
b + ns2/2

a + n/2 − 1
. (14.24)

Therefore, one gets
û(T ) = exp

(
ȳ + σ̂Φ−1(1 − 1/T )

)
as an estimate of the T –year flood u(T ).

Regional Moment Estimation of the Superparameters

Next, we assume that data sets of size nj are recorded at k different sites. We want
to use the regional information to estimate the superparameters a and b.

Let ϑ̂j be estimates of the unknown parameter ϑj at site j. From the Bayesian
viewpoint (see page 243), the parameter ϑj was generated under a prior density pa,b

which is the density of a random parameter θ. One may also regard the estimates
ϑ̂j as realizations under pa,b. It remains to estimate the superparameters a and b

from ϑ̂j , j = 1, . . . , k.
This will be exemplified by applying the moment estimation method (see

page 86) to the model of reciprocal gamma distributions. Because the mean and
the variance of the reciprocal gamma distribution are given by m(a, b) = b/(a− 1)
and var(a, b) = b2/

(
(a − 1)2(a − 2)

)
(see page 104) we have

b = (a − 1)m(a, b)

and
a = 2 + m(a, b)2/var(a, b)

for a > 2. Replacing m(a, b) and var(a, b) by the sample versions based on the ϑ̂j ,

j = 1, . . . , k, one gets estimates âk and b̂k of the superparameters a and b. This
leads to a new estimator in (14.24) and a regional estimate of the T –year flood.
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Refined Regional Approach

It is more realistic to assume that the random parameters θj at sites j are not
identically distributed. Suppose that

θj = xjβ
′ + εj , (14.25)

where xj represents the known characteristics at site j and the εj are residuals.
Thus, the prior distribution at site j has the parameters a(xj) and b(xj). In
addition, let the estimates at sites j have the representations

ϑ̂j = ϑj + ηj (14.26)

which yields that
ϑ̂j = xjβ

′ + εj + ηj . (14.27)

Within this multiple, linear regression problem one may get estimates of the mean
and the variance of the prior distribution at site j and, therefore, of the superpa-
rameters a(xj) and b(xj) by using again the moment estimation method.

Further Applications of Empirical Bayes Estimation
in Regional Analysis

The Bayesian argument in Kuczera’s article was taken up by H.D. Fill and J.R.
Stedinger8 to justify forming a linear combination of two estimators with weights
inversely proportional to the estimators variance. This is done within the annual
maxima framework.

In this context, we also mention an article by H. Madsen and D. Rosbjerg9

who apply the regression technique in conjunction with empirical Bayes estimation
to regional partial duration series. Both articles contain exhaustive lists of relevant
articles.

8Fill, H.D. and Stedinger, J.R. (1998). Using regional regression within index flood
procedures and an empirical Bayesian estimator. J. Hydrology 210, 128–14.

9Madsen, D. and Rosbjerg, D. (1997). Generalized least squares and empirical Bayes
estimation in regional partial duration series index–flood modeling. Water Resour. Res.
33, 771–781.



Chapter 15

Environmental Sciences

co–authored by R.W. Katz1

This chapter deals with the application of the statistics of extremes in the envi-
ronmental sciences. Related chapters include those dealing with flood frequency
analysis in hydrology (Chapter 14) and large claims in the insurance industry
(Chapter 16). Consideration of extreme events commonly arises in the regulatory
process related to the environment, particularly the selection of thresholds which
aid in determining compliance and effectiveness. Statistical characteristics typical
of environmental extremes include annual and diurnal cycles, as well as trends
possibly attributable to anthropogenic activities.

One commonly unappreciated aspect in extreme value analysis for environ-
mental variables is the potential of making use of covariates, particularly geophys-
ical variables. Their incorporation into the analysis makes the resultant models
both more efficient, e.g., in terms of quantile estimation, and more physically re-
alistic.

Another feature, beyond the scope of this treatment, is the spatial dependence
of extremes typically exhibited by fields of environmental data.

15.1 Environmental Extremes

In much of the environmental sciences, particularly impact assessment, extreme
events play an important role. For example, earthquakes (and related tsunamis),
fires, floods, or hurricanes can have devastating impacts, ranging from disturbances

1Institute for Study of Society and Environment, National Center for Atmospheric
Research, Boulder, Colorado, USA. NCAR is sponsored by the National Science Foun-
dation.
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in ecosystems to economic impacts on society as well as loss of life. Such features
indicate that there should be plentiful applications of the statistics of extremes to
the environmental sciences.

Environmental Policy and Regulation

The implementation of environmental policy requires the development of regu-
lations, such as the setting of standards for environmental variables by govern-
ment agencies. In particular, these standards involve the selection of high (or low)
thresholds, defining an extreme event. These circumstances imply that extreme
value analysis ought to be an integral part of this process. Such standards could
involve statistics as simple as whether the annual maxima exceeds a high thresh-
old, e.g., in the context of air pollution. Yet they sometimes involve much more
intricate quantities, whose motivation from a purely statistical perspective is lack-
ing; e.g., the ozone standard set by the U.S. Environmental Protection Agency
is defined in terms of the statistic, the daily average of the maximum of 8–hour
running means, and is based on whether the fourth highest value of this quantity
over a given year exceeds a threshold.

The monitoring of environmental variables to detect any trend in extremes,
possibly attributable to human activity, provides important information for pol-
icy makers. Specifically, possible shifts in the frequency and intensity of extreme
weather and climate events are one of the primary concerns under global climate
change as part of the enhanced greenhouse effect.

Cycles

That environmental variables often possess marked diurnal and annual cycles is
well established. Consequently, it is commonplace for statistical models of envi-
ronmental time series to include an annual (and/or diurnal) component for the
mean (as well as sometimes for the standard deviation). Yet in the statistics of
environmental extremes such cyclical behavior is usually neglected. Although not
necessarily identical in form to that for the mean, cyclical behavior in extremes
ought to be anticipated. It is an inherent aspect of the process by which envi-
ronmental extremes arise, so that taking into account the cyclical modulation of
extremal characteristics would be physically appealing.

Trends

The monitoring and detection of trends in environmental extremes is important
for a number of reasons. For one thing, any trends in extremes might serve as
an early indicator of broader change, a catalyst for public policy intervention.
In particular, it can be argued that the response of ecosystems is most sensitive
to extreme events, not average conditions. On the other hand, it may be that
regulations already have been imposed to “control” the environmental variable,
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with the hope of observing a diminished trend, i.e., as a measure of the effectiveness
of environmental regulation. Typically, trend analysis of environmental variables
focuses on the mean (as well as occasionally on the standard deviation), not the
extremes per se. Yet there is no inherent reason why the form of trend in extremes
need be identical to that for the mean for an example in which there is a trend
in the extremes, but apparently none in the mean, see the article by R.L. Smith
cited on page 342). So, for completeness, any trend in extremes ought to be directly
modeled.

Covariates

Such cycles and trends can be incorporated into extreme value analysis as co-
variates, in the form of simple deterministic functions of time, e.g., a sum of sine
waves. Still a noteworthy feature of environmental variables is the influence of
covariates, especially those geophysical in nature, which are not simply determin-
istic functions, but rather random variables themselves. For example, air pollution
concentration is effected by the prevailing meteorological conditions. This feature
is well appreciated for statistics like the mean level of an environmental time se-
ries. So it would be natural to anticipate that environmental extremes are likewise
influenced by geophysical covariates. Yet it is less common to incorporate such
covariates into environmental extreme value analysis, at least partly because of a
lack of awareness by practitioners that this extension of extreme value analysis is
feasible (a notable exception is the book by Coles [9], pages 107–114). In Chapters
8 and 9 we made some technical preparations.

Not only would the introduction of covariates result in increased precision in
estimating high quantiles, but it would serve to make the statistics of extremes
more realistic from an environmental science perspective.

Tail Behavior

The distribution of the impacts, in monetary terms, associated with extreme en-
vironmental events—e.g., a hurricane or a flood—has a marked tendency to be
heavy–tailed. Yet the distribution of the underlying geophysical phenomenon may
not necessarily be heavy–tailed. Some geophysical variables, such as streamflow
or precipitation, are clearly heavy–tailed; whereas others, such as wind speed or
temperature, appear to have a light or bounded upper tail. Certain environmental
variables, such as air pollution concentration, also do not appear to be heavy–
tailed.

Because of the complex coupling among these processes (i.e., geophysical,
environmental, and economic impact), the determination of the origin of extremal
behavior in environmental impacts is non–trivial. In particular, the extent to which
this heavy–tailed behavior in environmental impacts is “inherited” from the tail
behavior of underlying geophysical and/or environmental variables is unclear. Re-
calling the origin of the Pareto distribution as a model for the distribution of
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income or wealth, the heavy tail behavior of environmental impacts could well
reflect primarily the aggregative nature of variables like income or wealth.

15.2 Inclusion of Covariates

In principle, the inclusion of covariates is feasible in any of the various approaches
to extreme value analysis covered in this book, including both block maxima and
peaks–over–threshold (pot). If the technique of maximum likelihood is adopted,
then parameter estimation remains straightforward. Nevertheless, although the sit-
uation closely resembles that of generalized linear models [41], the well developed
theory of estimation in that situation is not directly applicable. The extremal–
based approach used here would not necessarily differ much from ordinary least
squares in terms of point estimates. But substantial discrepancies would be pos-
sible for standard errors (or confidence intervals) for upper quantile estimators,
particularly when dealing with a variable possessing a heavy–tailed distribution.

Block Maxima

Consider the EV df Gγ,µ,σ as the approximate distribution for block maxima,
say corresponding to a random variable Y with observed data y1, . . . , yn (e.g.,
annual maximum of time series such as daily precipitation amount). Suppose that
a covariate X is also available, say with observed data, x1, . . . , xn, on the same
time scale t = 1, . . . , n as the block maxima. Given a value of covariate, say X = x,
the conditional distribution of the block maxima is assumed to remain the EV,
but now with parameters that possibly depend on x.

As an example, the location parameter µ and the logarithm of the scale pa-
rameter σ could be linear functions of x (applying the logarithmic transformation
to preserve non–negativity of scale), whereas for simplicity the shape parameter γ
might well be taken independent of the value x:

γ(x) = γ, µ(x) = µ0 + µ1x, log σ(x) = σ0 + σ1x . (15.1)

Here µ0, µ1, σ0, σ1 and γ are unknown parameters to be estimated by maximum
likelihood. Now the parameters of the EV df in (15.1) depend on a covariate which
varies with time, writing γt = γ(xt), µt = µ(xt), and σt = σ(xt). For technical
details we refer to Section 8.4.

This approach amounts to fitting non–identical EV dfs, whereas the conven-
tional diagnostic displays (e.g., Q–Q plots) are predicated upon identical distribu-
tions. This non–stationarity can be removed by using the relationship between an
arbitrary EV df and the standard Gumbel, i.e., EV0 df. Namely, if Yt has an EV
df with parameters γt, µt, and σt, then

εt = (1/γt) log(1 + γt(Yt − µt)/σt) (15.2)
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has a G0,0,1 df (see Chapter 1). In practice, “residuals” can be obtained by substi-
tuting the time–dependent parameter estimates γ̂t, µ̂t, and σ̂t, e.g., as in (15.1),
along with the corresponding data (i.e., xt’s), into (15.2). Then a Q–Q plot, for
instance, can be constructed for a standard Gumbel distribution.

Peaks–Over–Threshold Approach

The potential advantages of the pot approach over the block maxima approach
become more readily apparent in the presence of covariates (for an early treatment
of that question see the article by Davison and Smith, mentioned on page 121,
in Section 3 about regression). For instance, allowing for an annual cycle in the
block maxima approach would not even be feasible, except in an ad hoc and non–
parsimonius manner such as taking block maxima over months or seasons. More
generally, many physically–based covariates would naturally be measured on a time
scale similar, if not identical, to that of the variables whose extremal behavior is
being modeled (e.g., covariates such as pressure readings on a daily time scale
in the case of modeling extreme high daily precipitation amounts). On the other
hand, additional complications arise in the pot approach with covariates, including
the need in some circumstances to permit the threshold to be time varying.

Poisson–GP (Two–Component) Model. By “two-component model” we refer
to the situation in which the two individual components, the Poisson process—
with rate parameter λt—for the occurrence of exceedances of the high threshold u
and the GP df (with shape parameter γt and scale parameter σt[u], which depends
on the threshold u unlike the scale parameter for the EV df) for the excess over
the threshold, are modeled separately. This approach was originally introduced
in hydrology, for instance, to incorporate annual cycles in one or both of the
components. This is the description of an exceedance process with an homogeneous
Poisson process, see Section 9.1, or an inhomogeneous Poisson process, see Section
9.5, in the time scale and GP marks for the exceedances themselves. Analogous to
the case of block maxima (15.1), it would be natural to express log λt, log σt[u],
and perhaps γt as functions of a covariate.

For the statistical validation of the model, the non–stationarity in the GP df
can be removed by using the relationship between an arbitrary GP distribution
and the standard exponential (i.e., GP0 df), corresponding to (15.2) for EV dfs.
Namely, if Yt has a GP df with parameters λt and σt[u], then

εt = (1/γt) log(1 + γtYt/σt[u]) (15.3)

has a W0,0,1 df (see Chapter 1). With marked dependence of the extremal charac-
teristics on a covariate (e.g., in the case of a substantial trend or cycle), it may be
that the threshold itself ought to vary with the covariate, i.e., with time t, writing
ut instead of u. For simplicity, we ignore this complication in the notation used
here.
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Point Process Approach. By “point process approach,” we refer here to the
treatment of the problem as a full–fledged two–dimensional, non–homogeneous
point process, rather than modeling the two components separately2. Here the
one–dimensional Poisson process for the occurrence of exceedances and the GP
df for the excesses are modeled simultaneously, see Section 9.5, page 260. This
approach has the advantage treating all of the uncertainty in parameter estimation
in a unified fashion, e.g., making it more straightforward to determine confidence
intervals for return levels.

Interpretation can be enhanced if the point process is parameterized in terms
of the EV df. To do this, it is convenient to specify a time scaling parameter, say
h > 0, e.g., h ≈ 1/365.25 for annual maxima of daily data. Then the parameters of
the point process, λt (i.e., rate parameter per unit time), γt, and σt[u], are related
to the parameters of the EV df, γt, µt, and σt, by

log λt = −(1/γt) log[1 + γt(u − µt)/σt)], σt[u] = σt + γt(u − µt), (15.4)

with the shape parameter γt being equivalent3. Now the model has at least a lim-
ited theoretical interpretation as arising as the limiting distribution which would
be obtained if many observations were available at a fixed time t (instead of just
one as in practice) and the largest value were taken. The nonlinearity and interac-
tion in the relationships in (15.4) imply that expanding some of the parameters of
the point process components as simple functions of a covariate would not neces-
sarily correspond to nearly such a simple model in terms of the EV df parameters,
see Section 9.5 for technical details.

Another question concerns how to extend the concepts of return period and
level which originated in the context of stationarity, i.e., no covariates. One could
always think in terms of an “effective” return period and level, consistent with
the theoretical interpretation just discussed. We defer the discussion of possible
extensions of these concepts until they arise in the context of specific examples
later in this chapter.

Finally, the choice of the time scaling constant h should be viewed as arbi-
trary. Specifically, δ = h/h∗ denotes the ratio between two different time scaling
parameters (e.g., annual versus monthly maxima), then the corresponding param-
eters of the EV df (say γ, µ, and σ for time scale h versus γ∗, µ∗, and σ∗ for time
scale h∗) are related by4

γ∗ = γ, µ∗ = µ + [σ∗(1 − δ−γ)]/γ, σ∗ = σδγ . (15.5)

2Smith, R.L. (2001). Extreme value statistics in meteorology and the environment. In
Environmental Statistics, Chapter 8, 300–357 (NSF–CBMS conference notes). Available
at www.unc.edu/depts/statistics/postscript/rs/envnotes.pdf.

3Katz, R.W., Parlange, M.B. and Naveau, P. (2002). Statistics of extremes in hydrol-
ogy. Advances in Water Resources 25, 1287–1304.

4Katz, R.W., Brush, G.S. and Parlange, M.B. (2005). Statistics of extremes: Modeling
ecological disturbances. Ecology 86, 1124–1134.
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15.3 Example of Trend

Fitting a trend constitutes one of the simplest forms of covariate analysis. By
means of an example, we contrast the traditional approach of trend analysis to
that more in harmony with extreme value theory.

Traditional Approach

The traditional approach to trend analysis of environmental extremes would in-
volve fitting a trend, ordinarily by the method of least squares, in the mean (and
possibly in the standard deviation) of the original time series. Then the extreme
value analysis is applied to residuals, presumed stationary, from this trend analysis
(see Chapter 4). There are several possible drawbacks to such an approach. For
one thing, it is in effect assumed that removing a trend in the overall mean would
necessarily eliminate any trend in extremes as well. For another, such a two–stage
estimation approach makes it difficult to account for all of the uncertainty in pa-
rameter estimation, with the error involved in constructing the residuals being
usually neglected.

Extreme Value Approach

In the extreme value approach, we simply expand the parameters of the EV df
as functions of time, e.g., as in (15.1). Of course, determining the appropriate
functional form of trend is not necessarily a routine matter. It should further be
recognized that such an analysis is not based on any statistical theory of extreme
values for non–stationary time series per se. But recall the general interpretation
for an EV df with time–dependent parameters as discussed earlier.

Example

In contrast to global warming, the “urban heat island” refers to a warming effect
on the local climate attributable to urbanization. This phenomenon is well docu-
mented in terms of its effects on mean daily minimum and maximum temperature.
Among other things, the warming trend is more substantial for minimum, rather
than maximum, temperature.

So we analyze the extremes for a time series of daily minimum temperature
during summer (i.e., July–August) at Phoenix, Arizona, USA, for the 43–year
time period 1948–19905. This area experience rapid urbanization during this time
period, with a substantial trend in the mean of the distribution of daily minimum
temperature being apparent. For simplicity, we adopt a block minima approach;
strictly speaking, fitting the EV df for block maxima to negated block minima and

5Tarleton, L.F. and Katz, R.W. (1995). Statistical explanation for trends in extreme
temperatures at Phoenix, Arizona. Journal of Climate 8, 1704–1708.
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then converting the results back into the appropriate form for block minima, see
Chapter 1, with the time series of summer minima being shown in Fig. 15.1.
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Table 15.1 summarizes the results of fitting the EV df to block minima by
the method of maximum likelihood, with trends in the parameters of the form:

γt = γ, µt = µ0 + µ1t, log σt = σ0 + σ1t, for t = 1, . . . , 43. (15.6)

Three nested candidate models are compared:

(i) µ1 = σ1 = 0, i.e., no trend in either µ or σ;

(ii) µ1 �= 0, σ1 = 0, i.e., trend in µ but not in σ;

(iii) µ1 �= 0, σ1 �= 0, i.e., trends in both µ and σ.

The negative log–likelihoods (denoted by − logL in the table) indicate that model
(ii) with a trend in only the location parameter is the superior fitting model.

Table 15.1. Maximum likelihood estimates of parameters (with standard errors of trend
parameters given in parentheses) of EV df fitted by block minima approach for trend
analysis of extreme low summer (July–August) temperatures (◦F) at Phoenix, Arizona,
USA, 1948–1990.

model γ̂ µ̂0 µ̂1 σ̂0 σ̂1 − log L

µ1 = σ1 = 0 −0.184 70.88 0 1.346 0 121.52

µ1 �= 0, σ1 = 0 −0.204 66.05 0.202 (0.041) 1.135 0 111.52

µ1 �= 0, σ1 �= 0 −0.211 66.17 0.196 (0.041) 1.338 −0.009 (0.010) 111.11
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The estimated slope of the trend in the location parameter is µ̂1 = 0.202 ◦F
per year for model (ii), or an estimate of the urban warming effect in terms of
extreme low temperatures. Fig. 15.1 shows the corresponding trend in the median,
i.e., effective two–year return level, of the conditional EV df for the best fitting
model (ii). Pointwise 95% local confidence intervals for the conditional median are
also included in Fig. 15.1. Using the expression for the return level for the lowest
temperature during the tth summer as a function of the corresponding parameters
of the EV df (see Chapter 1), these intervals can be derived from the large–sample
standard errors for the maximum likelihood estimators.

A Q–Q plot for model (ii) based on (15.2) appears reasonably satisfactory
(not shown). Nevertheless, the pattern in Fig. 15.1 suggests that an alternative
form of trend in the location parameter, such as an abrupt shift, might be more
appropriate. The same conclusion concerning the existence of a trend in extreme
low summer temperatures is reached if the point process approach were applied
instead.

15.4 Example of Cycle

Fitting cycles constitutes another simple form of covariate analysis. By means of
an example, we contrast the traditional approach of seasonal analysis to that more
in harmony with extreme value theory, as well as indicating an inherent advantage
of the point process approach over block maxima.

Traditional Approach

The traditional approach to cyclic analysis of environmental extremes would in-
volve fitting a cyclic function (e.g., sine wave), ordinarily by the method of least
squares, to the mean (and possibly to the standard deviation) of the original time
series. Then the extreme value analysis is applied to the residuals from the cyclic
analysis. The drawbacks to this approach are identical to those for traditional
trend analysis; namely, the possibility of a different cyclic form for extremes than
that for the mean and standard deviation, as well as the lack of an integrated
treatment of uncertainty.

Extreme Value Approach

Like the extreme value approach for modeling trends, we simply expand the pa-
rameters of the EV df as functions, in this case periodic, of time. For instance, in
the following example, the location parameter and logarithm of the scale parame-
ter of the EV df are both modeled as sine waves, whereas the shape parameter is
assumed independent of time.
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Example

In many regions, daily precipitation exhibits marked seasonality. Such cycles are
well documented for both the probability of occurrence of precipitation and for
the conditional mean (or median) amount of precipitation given its occurrence.
Yet the seasonality in precipitation extremes is not typically explicitly taken into
account in extreme value analysis of precipitation (e.g., to estimate upper quantiles
of precipitation amount associated with flooding).

So we analyze the extremes for a time series of daily precipitation amount at
Fort Collins, Colorado, USA, for the 100–year time period 1900–1999 (also see the
article by Katz et al. (2002) mentioned on page 358). For such a long time series,
it is convenient to summarize the data in terms of block maxima, with Fig. 15.2
showing the derived time series of annual maxima. Nevertheless, we will actually
apply the point process approach to model the extremal behavior with seasonality
being permitted. Although much year–to–year variation is present, no long–term
trend is evident in Fig. 15.2. Because of a flood which occurred on 28 July 1997
(with an observed value of 4.63 inches), this data set is of special interest.
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amount at Fort Collins, Colorado,

USA, 1900–1999.

Table 15.2 summarizes the results of fitting the EV df indirectly through the
point process approach by the method of maximum likelihood. Annual cycles in
the form of sine waves are incorporated for the location parameter and logarithm
of the scale parameter:

γt = γ,

µt = µ0 + µ1 sin(2πt/T ) + µ2 cos(2πt/T ),

log σt = σ0 + σ1 sin(2πt/T ) + σ2 cos(2πt/T ), (15.7)

for t = 1, . . . , 36524 with time scaling constant h = 1/T, T ≈ 365.25.
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The threshold of u = 0.395 inches was chosen by trial and error, perhaps
a bit lower than optimal for wetter times of the year, a compromise to avoid
the complication of a time varying threshold. The parameter estimates are given
for the case of no declustering (with little evidence, in general, of the need for
declustering daily precipitation extremes), but quite similar results are obtained
when runs declustering with r = 1 is applied (see Chapter 2).

Three nested candidate models are compared in Table 15.2:

(i) µ1 = µ2 = σ1 = σ2 = 0, i.e., no cycle in either µ or σ;

(ii) µ1 �= 0, µ2 �= 0, σ1 = σ2 = 0, i.e., cycle in µ but not in σ;

(iii) µ1 �= 0, µ2 �= 0, σ1 �= 0, σ2 �= 0, i.e., cycles in both µ and σ.

The negative log–likelihoods (denoted by − log L in Table 15.2) indicate that model
(iii) with annual cycles in both the location parameter and the logarithm of the
scale parameter of the EV df is the superior fitting model. A Q–Q plot for model
(iii) based on (15.2), comparing the observed annual maxima to the EV df fitted
indirectly by the point process approach, appears reasonably satisfactory (not
shown). A more complex form of extremal model might include a sine wave for
the shape parameter as well, or a sum of more than one sine wave for the location
parameter and/or logarithm of the scale parameter.

Table 15.2. Maximum likelihood estimates of parameters of EV df (parameterized in
terms of annual maxima, time scaling constant h = 1/365.25) fitted by point process
approach (threshold u = 0.395 inches) for annual cycle in extreme high daily precipitation
amount (inches) at Fort Collins, Colorado, USA, 1900-1999.

model γ̂ µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 − log L

µ1 = µ2 = σ1 = σ2 = 0 0.212 1.383 0 0 −0.631 0 0 −1359.82

σ1 = σ2 = 0 0.103 1.306 0.082 −0.297 −0.762 0 0 −1521.45

no contraints 0.182 1.281 −0.085 −0.805 −0.847 −0.124 −0.602 −1604.29

For the best fitting model (iii), Fig. 15.3 shows the effective 100–year return
level, with the parameters of the EV df being rescaled for sake of comparison
using (15.5) to reflect the maximum of daily precipitation amount over a month
instead of a year (i.e., time scaling constant h∗ = 12/365.25). These estimated
return levels range from a low in mid January of about 1.1 inches to a high in
mid July of about 4.3 inches. To give a rough feeling for the actual annual cycle
in extreme precipitation, the observed monthly maximum of daily precipitation
is also included in Fig. 15.3. Consistent with the effective return levels for the
fitted EV df, a marked tendency is evident toward higher precipitation extremes
in summer than in winter.

It is also of interest to estimate the return period for the high precipitation in
July 1997. With annual cycles in the parameters of the EV df, the determination



364 15. Environmental Sciences

0 100 200 300

day

0

1

2

3

4

5
pr

ec
ip

ita
tio

n 
(in

)

Fig. 15.3. Annual cycle in effective

100–year return level for fitted EV

distribution for monthly maximum

of Fort Collins daily precipitation.

Observed values of monthly max-

imum of daily precipitation indi-

cated by circles.

of a return period involves a product of probabilities that differ depending on
the day of year (i.e., of the form p1 × · · · × pT instead of simply pT , where pt

denotes the probability on the tth day of the year); for simplicity, treating the
daily precipitation amounts as independent. Refitting only the data for the time
period before the flood, i.e., 1900–1996, using model (iii), the estimated return
period for the observed daily amount of 4.63 inches is roughly 50.8 years.

15.5 Example of Covariate

Fitting covariates which are random variables themselves, such as geophysical
quantities, is no more involved than the examples of trends and cycles just pre-
sented. Yet such examples are more compelling, both in terms of the potential
predictability of extremes (e.g., reflected in terms of confidence intervals for re-
turn levels whose length varies conditional on the covariate) and in terms of its
appeal from an environmental science perspective.

Traditional Approach

Even in fields such as hydrology with a rich tradition of reliance on extreme value
analysis, an inconsistency arises with extreme value theory typically being aban-
doned in favor of ordinary regression analysis, either for the entire data set or
for a subset consisting only of extremes, if covariates are treated. As an ad hoc
approach, sometimes an ordinary extremal analysis is conducted separately de-
pending on a few discretized categories of the covariate (e.g., “above average” or
“below average”). The disadvantages of such traditional approaches are somewhat
subtle, with the central issue being the lack of a robust treatment of extremes.
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Extreme Value Approach

Just like the extreme value approach for modeling trends or cycles, we expand the
parameters of the EV df as functions of one or more physically based covariates.
But now the issue of how to specify the functional form of such relationships is
particularly challenging, ripe for input from environmental or geophysical scien-
tists.

Example

It is well understood that heavy precipitation is associated with particularly me-
teorological conditions, involving other variables such as pressure. To demonstrate
the viability of incorporating physically based covariates into extremal analysis, a
prototypical example is considered. This example is not intended to constitute a
realistic treatment of the various meteorological factors known to have an influence
on heavy precipitation.

So we analyze the extremes for a time series of daily precipitation amount at
Chico, California, USA, during the month of January over the time period 1907–
1988, with fours years have been eliminated from the data set because of missing
values (also see the paper by Katz et al. mentioned on page 362). As a covariate,
the January average sea level pressure at a single grid point (actually derived from
observations within a grid box) over the Pacific Ocean adjacent to the California
coast is used, say a random variable denoted by Y . Fig. 15.4 shows a scatterplot of
the January maxima of daily precipitation amount versus the pressure covariate,
with at least a weak tendency for lower maximum precipitation when the average
pressure is higher being apparent.

Rather than using monthly block maxima (as, for simplicity, in Fig. 15.4),
we actually fit the EV df indirectly through the point process approach by the
method of maximum likelihood, with the results being summarized in Table 15.3.
Given average pressure X = x, the location parameter and the logarithm of the
scale parameter of the conditional EV df are assumed linear functions of y:

γ(x) = x, µ(x) = µ0 + µ1x, log σ(x) = σ0 + σ1x . (15.8)

These forms of functional relationship are intended solely for illustrative purposes,
not necessarily being the most physically plausible. Because daily time series for
the single month of January are being modeled, a time scaling constant of h = 1/31
is used. The threshold of u = 40 mm was selected by trial and error, with no
declustering being applied.

Three nested candidate models are compared in Table 15.3:

(i) µ1 = σ1 = 0, i.e., no variation with y;

(ii) µ1 �= 0, σ1 = 0, i.e., µ varies with y, but σ does not;

(iii) µ1 �= 0, σ1 �= 0, i.e., both µ and σ vary with y.
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The negative log–likelihoods (denoted by − logL in Table 15.3) suggest that model
(ii), with only location parameter of the conditional EV df depending on pressure,
is the superior fitting model. In particular, a likelihood ratio test for model (ii)
versus model (iii) indicates only weak evidence that the scale parameter ought to
be varied as well (p–value ≈ 0.209). A Q–Q plot for model (ii) based on (15.2),
comparing the observed monthly maxima to the EV df fitted indirectly by the
point process approach, appears reasonably satisfactory (not shown).

Table 15.3. Maximum likelihood estimates of parameters of EV df (parameterized in
terms of annual maximum, time scaling constant h = 1/31) fitted by point process
approach (threshold u = 40 mm) to daily precipitation amount (mm) at Chico, California,
USA, conditional on pressure covariate (mb, with 1000 mb being subtracted), 1907–1988.

model γ̂ µ̂0 µ̂1 σ̂0 σ̂1 − log L

µ1 = σ1 = 0 0.198 35.49 0 2.226 0 244.10

µ1 �= 0, σ1 = 0 0.151 58.13 −1.361 2.315 0 235.27

µ1 �= 0, σ1 �= 0 0.199 58.15 −1.284 2.979 −0.045 234.49

The estimated slope parameter in model (ii) is µ̂1 = −1.361 mm per mb, or
higher precipitation extremes being associated with lower pressure. For the best
fitting model (ii), the conditional median of the fitted EV df (i.e., effective two–year
return level) is also included in Fig. 15.4. Another way of interpreting the fitted
model is in terms of effective return periods. For model (i) (i.e., no dependence
on pressure), the estimate of the conventional 20–year return level is 73.0 mm.
But this return level would correspond to effective return periods, based on fitted
model (ii), ranging from 8.1 years for the lowest observed pressure to 44.9 years
for the highest.
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One natural extension of this example would be to allow the pressure covari-
ate to vary from one day to the next, in meteorological terminology considering
high frequency variations instead of just low frequency ones. The relationship be-
tween precipitation extremes and pressure could be simultaneously modeled over
the entire year, but such a model might well entail the complication of a different
relationship depending on the time of year to be physically realistic.

15.6 Numerical Methods and Software

Although not difficult in principle to program, most existing software routines
for extreme value analysis do not make any provision for the incorporation of
covariates, perhaps another explanation for alternatives to extreme value theory
still being prevalent in applications. So a brief description focused on techniques
for maximum likelihood estimation and on the available software is now provided.

Maximum Likelihood Estimation

Because the expansion of the parameters of extremal models in terms of one or
more covariates can be readily incorporated in maximum likelihood estimation, the
expressions for the likelihood function of the EV df, whether for the block maxima
or point process approaches, are not repeated here for this specific situation (but
see Chapter 5). It should be acknowledged that the presence of covariates makes
the routine reliance on iterative numerical methods more problematic, with the
possibility of multiple local maxima, etc.

Statistical Software

Software for extreme value analysis, which does make provision for covariates,
includes the suite of S functions provided as a companion to the text by Stuart
Coles [9]. These functions allow for covariates in fitting the EV df to block maxima,
the GP df to excesses over a high threshold, and the EV df indirectly through the
point process approach. Based on these same S functions (ported into R), the
Extremes Toolkit provides a graphical interface so that users, particularly in the
environmental and geophysical sciences, unfamiliar with R or S can still make use
of the Coles software (gateway: www.issse.ucar.edu/extremevalues/extreme.html).
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Chapter 16

Extreme Returns in
Asset Prices

co–authored by

C.G. de Vries1 and S. Caserta2

Throughout this chapter, we assume that speculative prices st like those per-
taining to stocks, foreign currencies, futures etc. are evaluated at discrete times
t = 0, 1, 2, . . . , where the periods can be days or weeks. Thus, if s0 is the price of an
investment at time t = 0, then the return—the difference of prices taken relatively
to the initial price—at time T is (sT − s0)/s0. Our primary interest concerns daily
returns under discrete compounding (arithmetic returns)

r̃t =
st − st−1

st−1

or the daily returns under continuous compounding (log–returns)

rt = log(st) − log(st−1). (16.1)

These quantities are close to each other if the ratio st/st−1 is close to 1. We will
focus on the latter concept. Log–returns are also called geometric returns in the
financial literature.

The speculative return series generally exhibits two empirical properties. The
first property is that the variability of the rt shows a certain clustering which makes

1Tinbergen Institute and Erasmus University Rotterdam; co–authored the 1st and 2nd
edition.

2Tinbergen Institute and Erasmus University Rotterdam; co–authored the 2nd edition.
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the variance somewhat predictable. The other feature is that the random log–prices
log St satisfy the martingale property. Both of these properties will be discussed in
greater detail. Keep in mind that we write Rt and St when stochastic properties
of random returns and prices are dealt with.

In Section 16.1, we collect stylized facts about financial data and give refer-
ences to the history of statistical modeling of returns. In Section 16.2, daily stock
market and exchange rate returns are visualized to get a first insight into finan-
cial data. The pot–methodology is applied in Section 16.3 to estimate the upper
and lower tails of log–returns and cumulated return dfs. The loss/profit variable
is represented by means of return variables in Section 16.4. Such representations
make the statistical results of Section 16.3 applicable to the loss/profit variable.

As an application, we estimate the q–quantile of the loss/profit distribution in
Section 16.5 under different statistical models for the returns. This is the so–called
Value–at–Risk (VaR) problem faced by financial intermediaries like commercial
banks. A related question is to evaluate the amount of capital which can be invested
such that at time T the possible loss exceeds a certain limit l with probability q.
Section 16.6 deals with the VaR methodology for a single derivative contract.
Finally, we focus our attention on the modeling of returns by ARCH/GARCH and
stochastic volatility (SV) series in Section 16.7 and predict the conditional VaR in
Section 16.8.

16.1 Stylized Facts and Historical Remarks

In this section, we collect some basic facts about returns series of financial data.
We compare the relationship between arithmetic and log–returns, deal with the
weekend and calendar effects and discuss the concept of market efficiency in con-
junction with the martingale property.

Arithmetic Returns and Log–Returns

The subsequent explanations about the advantage of using log–returns rt compared
to arithmetic returns r̃t heavily relies on a discussion given by Philippe Jorion [33].

• For the statistical modeling, e.g., by means of normal dfs, it is desirable that
the range of the returns is unbounded. This property is merely satisfied by
log–returns because the arithmetic returns are bounded from below by −1.

• Some economic facts can be related to each other in a simpler manner by
using log–returns. For example, let st be the exchange rate of the U.S. dollar
against the British pound and let rt = log(st/st−1) be the pertaining log–
return. Then, the exchange rate of the British pound against the U.S. dollar
is 1/st. This yields that the log–return, from the viewpoint of a British
investor, is just −rt = log((1/st)/(1/st−1)).
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• It is apparent that the price sT at time T can be regained from the daily
returns r1, . . . , rT and the initial price s0 by

sT = s0 exp

(∑
t≤T

rt

)
. (16.2)

Conversely, the T –day log–return log sT − log s0 of the period from 0 to T is
the sum of the daily log–returns which is a useful property in the statistical
context.

Weekend and Calendar Effects

Before we can analyze any speculative return series, we must deal with the fact
that returns are computed at equally–spaced moments in time, but that business
time does not coincide with physical time. For example, stock markets are closed
at night and during weekends. This poses a problem for the definition of returns
at higher frequencies. The following ad hoc procedures can be employed to deal
with the weekend effect.

1. (Returns with Respect to Trading Days.) Just take the prices for the given
trading days and compute the returns.

2. (Omitting Monday Returns.) Omit the days for which prices are not recorded
including the consecutive day. Thus, after a weekend, the Monday returns
are also omitted.

3. (Distributing Monday Returns.) The return registered after a gap (e.g., the
return recorded on Monday) is equally distributed over the relevant days
(e.g., if r is the return on Monday, then r/3 is taken as the return on Saturday,
Sunday and Monday).

Distributing or omitting the Monday returns is a very crude method; a thor-
ough analysis and a refined treatment of the weekend effect may be desirable for
certain questions. Of course, one may also take just the original returns with the
potential disadvantage that the Monday may exhibit the behavior of returns accu-
mulated over three days. In the book [54] by S. Taylor there is a detailed discussion
of further calendar effects such as the dependence of the mean and standard devi-
ation of returns on the day in the week or the month in the year. Such effects will
be neglected in this chapter.

The economic background of financial time series is also well described in the
books [1] and [12].

Market Efficiency and the Martingale Property

The martingale property of the random return series {Rt} derives from economic
insight. The returns {Rt} are regarded as martingale innovations, a property which
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is characterized by the condition that the conditional expectation of the future re-
turn Rt given the past returns value rt−1, . . . , r0 with r0 = log s0 (or, equivalently,
given the prices st−1, . . . , s0) is equal to zero.

On the contrary, suppose that

E(Rt|st−1, . . . , s0) �= 0

holds. Let as assume that the conditional expectation is positive so that the price
is expected to rise. In speculative markets, lots of arbitrageurs quickly eliminate
unfair gambles: buying at todays low price st−1 is more than a fair gamble. If all
agents have this information, they will all want to buy at st−1 in order to resell
at the higher expected price tomorrow. Yet if many try to buy, this already drives
up the price today and the expected gain disappears.

If the martingale property of returns is accepted, then the returns are neces-
sarily uncorrelated.

Some Historical Remarks

The hypothesis that logarithmic speculative prices form a martingale series was
first raised by Bachelier3. Specifically, he assumed normally distributed returns.

Writing
Rt = µ + σWt

for the random log–returns, where the Wt are iid standard normal random vari-
ables, µ is the drift parameter, and σ > 0 is the so–called volatility, one arrives in
(16.2) at a discrete version of the famous Black–Scholes4 model, namely,

ST = S0 exp

(
µT + σ

∑
t≤T

Wt

)
. (16.3)

Later, Benoit Mandelbrot5 discovered that the speculative return series, i.e.,
the innovations of the martingale, are fat–tailed distributed. He suggested the mod-
eling of speculative returns by means of non–normal, sum–stable random variables
(see also [40], [1], and the book by F.X. Diebold6). But this latter model conflicts
with the fact that return series generally exhibit bounded second moments, see,
e.g., Akgiray and Booth7 and the literature cited therein.

3Bachelier, L.J.B.A. (1900). Thêorie de la Speculation. Gauthier–Villars, Paris.
4Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J.

Political Economy 81, 637–659.
5Mandelbrot, B.B. (1963). The variation of certain speculative prices. J. Business 36,

394–419.
6Diebold, F.X. (1989). Empirical Modeling of Exchange Rate Dynamics. Lect. Notes

in Economics and Math. Systems 303, Springer, Berlin.
7Akgiray, V. and Booth, G.G. (1988). The stable-law model of stock returns. J. Busi-

ness & Economic Statistics 6, 51–57.
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16.2 Empirical Evidence in Returns Series

Certain properties of financial series of stock market returns and exchange rate
returns will be illustrated by means of scatterplots. One recognizes a clustering of
higher volatility of returns which will also be captured by plots of sample variances
over moving windows in the time scale (related to that what is done by means of
moving averages).

Stock Market and Exchange Rate Data

Next, we partially repeat and extend the analysis made by Loretan and Phillips8

concerning

• the Standard & Poors 500 stock market index from July 1962 to Dec. 1987
(stored in fm–poors.dat), and

• exchange rates of the British pound, Swiss franc, French franc, Deutsche
mark, and Japanese yen measured relatively to the U.S. dollar from Dec.
1978 to Jan. 1991 (stored in fm–exchr.dat9).

We visualize the Standard & Poors 500 stock market data and the exchange
rates of the British pound measured relatively to the U.S. dollar. Stock market
and exchange rate data exhibit a similar behavior so that a joint presentation is
justified.

Fig. 16.1. (left.) Log–index log st of Standard & Poors 500 stock market. (right.) Log–

exchange rate log st of British pound relative to U.S. dollar.

8Loretan, M. and Phillips, P.C.B. (1994). Testing the covariance stationarity of heavy–
tailed time series. J. Empirical Finance 1, 211–248.

9Extended data sets are stored in fm–poor1.dat (from June 1952 to Dec. 1994) and in
fm–exch1.dat (from Jan. 1971 to Feb. 1994).
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Next, the equally (over the weekend) distributed returns are displayed in a
scatterplot. In Oct. 1987, there are extraordinarily high and low returns to the
stock market index which are not displayed in Fig. 16.2 (left).

Fig. 16.2. (left.) Daily returns rt to the Standard & Poors 500 stock market index.

(right.) Daily exchange rate returns rt to the British pound relative to U.S. dollar.

The scatterplot of the Standard & Poors log–returns (with changed signs)
was partly displayed in Fig. 1.1 together with a plot of a moving sample quantiles.

The Sample Autocorrelations of Log–Returns

The serial autocorrelations for the returns (based on trading days or with the
returns omitted after a gap) are practically equal to zero which supports the
martingale hypothesis. In particular, the expectation of returns conditioned on
the past is equal to zero. This is illustrated for the Standard & Poors market
indices in Fig. 16.3.
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Fig. 16.3. Autocorrelation func-
tions for the Standard & Poors
log–returns w.r.t. the trading days
(solid) and with the Monday re-
turns distributed (dotted).
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There is a slightly larger positive correlation for the lag h = 1, if the Monday
returns are distributed over the weekend.

The Tranquility and Volatility of Returns

Series of daily squared returns r2
t from stock and foreign exchange markets are

visualized by a scatterplot.
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Fig. 16.4. Squared daily returns r2
t to (left) Standard & Poors 500 stock market index,

and (right) exchange rates of the British pound measured relatively to the U.S. dollar.

The illustrations in Fig. 16.4 exhibit that there are periods of tranquility and
volatility of the return series in a particularly impressive manner.

The periods of volatility can also be expressed by moving sample variances
(1/m)

∑t
i=t−m(ri − r̄t)

2 based on the log–returns of the preceding m days.
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This shows that, while the return process is a fair game, risk is spread un-
evenly. Hence, the risk of an investment is clustered through time and somewhat
predictable. Supposedly, investors trade off return against risk, and hence portfo-
lio management has to take this predictability into account. In technical terms,
we may assume that the returns are conditionally heterosketastic (the variance is
varying conditioned on the past).

Trend and Symmetry

For currencies no trend has to be eliminated. Also, currencies are naturally sym-
metric due to the fact that the return, e.g., for the Deutsche mark on the U.S.
dollar is the negative of the return of a Deutsche mark investment for U.S. dollars
(see also page 372). Therefore, for exchange rate returns, the tails will also be
estimated under the condition of symmetry. Tail estimators are also applied to
returns reflected in 0.

For stock prices, one must first eliminate the positive trend, due to growth
of the economy, to get to the martingale model.

16.3 Parametric Estimation
of the Tails of Returns

Again, we may visualize returns by means of the usual nonparametric tools like
kernel densities, sample mean excess functions, etc., see Section 8.1 for a justifica-
tion of classical extreme value statistics. The application of standard estimation
procedures may also be relied on ergodic theory, see page 209 for references to the
literature.

The overall impression of stock market and exchange rate data is that normal
distributions or similar symmetric distributions can be well fitted to the central
data, yet there seem to be fat tails. So even in those cases where we estimate light
tails (exponential or beta tails) within the GP model, there seems to be a kurtosis
larger than that of the normal distribution.

We estimate the upper and lower tail indices of stock market and exchange
rate returns and compare our estimates with those of Loretan and Phillips (L&P)
who always employed the Hill estimator (presumably to the returns with respect
to the trading days).

Stock Market Returns

We start our investigations with the famous Standard & Poors stock market index
which has been frequently analyzed in the literature.

There is a certain trend in the returns that can be captured by a quadratic
least squares line to some extent. The trend is negligible, when GP parameters are
estimated, as long as there is a time horizon of less than about 10 years.
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Example 16.3.1. (Estimating the Tail Indices of Returns to the Standard & Poors Index.)
In Table 16.1, Hill(GP1), Moment(GP) and MLE(GP) estimates of the lower and upper
tail index α, based on the daily returns to the Standard & Poors index, are displayed.
The number k of lower or upper extremes was chosen according to the insight gained
from the diagrams of the estimators.

We are also interested in the effect of handling the daily returns in different manners
(taking the returns for each trading day or distributing or omitting returns after gaps).

Table 16.1. Returns with respect to trading days and returns after gaps distributed or
omitted.

Tail Indices α of Standard & Poors Index Returns

Lower (k = 150) Upper (k = 100)

trad. distr. omit. L&P trad. distr. omit. L&P

Hill(GP1) 3.39 3.79 4.33 3.59 3.81 3.70 3.70 3.86

Moment(GP) 2.77 2.59 4.40 – 4.26 3.67 3.67 –

MLE(GP) 3.25 2.20 4.26 – 4.32 3.52 3.52 –

The remarkable difference between the Moment(GP) or MLE(GP) estimates for the lower
tail index—with returns after a gap distributed or omitted—is due to the drop from
282.70 to 224.84 of the Standard & Poors index during the well–known stock market
crash on Monday, Oct. 19, 1987.

Omitting this extraordinary event from the data yields an underestimation of the

risk entailed in negative returns.

The most important message from the preceding example is that for these
stock market returns, one must take heavy upper and lower tails with a tail index
α around 3 into account.

Related results are obtained for other stock market indices (as, e.g., for the
Lufthansa and Allianz data stored in fm-lh.dat and fm-allia.dat).

Global Modeling of a Distribution,
Local Modeling of the Tails

As already mentioned on page 61: one major goal of this book is to select distri-
butions which simultaneously fit to the central as well as to the extreme data. The
extreme part is analyzed by means of the tools of extreme value analysis.

In Example 2.3.2, we successfully fitted a mixture of two Gaussian distribu-
tions to the S&P500 data which were also dealt with in Example 16.3.1.

Applying the MLEs in the Student model as well as in the model of sum–
stable distributions, see Sections 6.3 and 6.4, we get the estimates as listed in
Table 16.2.
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Parameters

α σ

Student 2.29 0.0034

sum–stable 1.34 0.0027
Table 16.2. MLEs of α and σ
based on S&P data.

If the pertaining densities are additionally plotted in Fig. 2.11, they are hardly
distinguishable from the Gaussian mixture and the kernel densities. Therefore,
there are three candidates for the modeling of the Standard & Poors, namely, a
Gaussian mixture, Student and sum-stable distribution. The insight gained from
Example 16.3.1 speaks in favor of the Student modeling.

Exchange Rate Returns

For exchange rate returns we find light as well as heavy tails. The tail index is also
estimated under the condition of symmetry. Under that condition one may base
the estimation on a larger number of upper extremes.

Example 16.3.2. (Estimating the Tail Indices of Daily Exchange Rate Returns: British
Pound.) Our approach corresponds to that in Example 16.3.1.

Table 16.3. Estimating the tail indices.

Tail Indices α of British Pound Returns

Lower (k = 75) Upper (k = 75) Symm. (k = 150)

trad. distr. omit. L&P trad. distr. omit. L&P distr.

Hill(GP1) 3.85 4.03 4.03 2.89 3.65 4.25 3.75 3.44 3.95

Moment(GP) 12.88 4.51 4.51 – 5.48 3.62 5.05 – 4.72

MLE(GP) 238.0 4.28 4.28 – 5.98 3.33 5.40 – 4.85

There is a greater variability in the Moment and MLE estimates based on returns
with respect to trading days. The diagrams of estimates provide more insight.

We remark that the Moment and ML estimates based on the symmetrized trading

day data are around α = 6. The overall picture is that a Paretian modeling of the lower

and upper tails is justified for the British daily exchange rate returns.

The insight gained from Example 16.3.2 suggest to intensify an exploratory
analysis of the data and to apply additionally the L–moment and related estima-
tors, see Chapter 14. The latter has not been done yet.

A completely different modeling must be taken for the Swiss franc. It seems
to us that an exponential modeling for the tails of the distribution is justified.



16.3. Parametric Estimation of the Tails of Returns 381

If the estimation is carried out in the unified generalized Pareto (GP) model,
then the estimates of the shape parameter γ are close to zero in the present case.
Therefore, α = 1/γ attains large positive as well as small negative values. In such
cases, it is preferable to carry out the estimation in the γ–parameterization to
avoid bigger differences in the estimates of α for varying k.

It is remarkable that the Hill estimator is incorrect, a fact which becomes
apparent by comparing parametric and nonparametric plots, see also Fig. 5.2 (left)
and the expansion in (6.38).

Example 16.3.3. (Estimating the Tail Indices of Daily Exchange Rate Returns: Swiss
Franc.) For daily exchange rate returns of the Swiss franc relative to the U.S. dollar, we
obtain negative estimates of the lower tail index α. The estimates are based on equally
distributed returns. When omitting Monday returns, one finds similar results. The chosen
number k of extremes is 100.

Table 16.4. Estimating the tail indices α and γ of daily exchange rate returns of the
Swiss franc relative to the U.S. dollar with equally distributed returns (including Hill
estimates taken from Loretan and Phillips (L&P) in the α–parameterization).

Tail Indices α and γ of Swiss Franc Returns

Lower (k = 100) Upper (k = 100) Symmetric (k = 200)

α γ L&P α γ L&P α γ

Hill(GP1) 3.61 0.28 3.10 4.16 0.24 2.77 3.66 0.27

Moment(GP) −9.09 −0.11 – 9.67 0.10 – −9.35 −0.11

MLE(GP) −5.88 −0.17 – 18.19 0.05 – −31.81 −0.03

Moment(GP) and MLE(GP) estimates γ for the lower tail index are negative yet
close to zero. When employing the armory of nonparametric tools such as sample excess
functions, Q–Q plots, sample qfs, etc. and then comparing the nonparametric and para-
metric curves, there is doubt that an application of the Hill estimator is correct. On the
basis of these results, we suggest a beta or an exponential modeling for the lower tail.

Moment(GP) and MLE(GP) estimates for the upper tail index can be negative for

other choices of the number k of extremes. We suggest an exponential modeling of the

upper tail in the case of Swiss exchange rate returns. The preceding remarks about the

Hill estimator are applicable again. The estimates for the symmetrized sample confirm

the preceding conclusions.

There is a greater variability in the estimates of the shape parameter for vary-
ing numbers k of extremes which could be reduced, to some extent, by smoothing
these estimates over a moving window.

We shortly summarize results for the exchange rates of the French franc,
Deutsche mark and yen against the U.S. dollar. We give a list of Moment(GP)
and MLE(GP) estimates in the γ–parameterization.
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Table 16.5. Estimating the lower and upper tail indices of distributed daily returns
based on k = 75 extremes (k = 150 extremes for the symmetrized sample).

Estimating the Tail Index γ

Moment(GP) MLE(GP)

Lower Upper Symmetric Lower Upper Symmetric

French franc −0.11 −0.05 −0.05 −0.09 −0.04 −0.05

Deutsche mark −0.19 0.02 −0.05 −0.23 −0.04 −0.14

yen 0.06 0.08 0.007 −0.06 0.06 −0.03

We see that for all three cases an exponential modeling for the tails seems to
be adequate.

A detailed exploration of extreme returns of further exchange rates, stock
market indices and other speculative asset prices is desirable.

16.4 The Profit/Loss Variable

and Risk Parameters

At the time of writing financial institutions like commercial banks have to meet
new Capital Adequacy rules. A landmark is the Basle Committee accord of 1988
for credit risks which were supplemented by proposals for market risks starting
1993 (for details see the book by Jorion [33] and further supplements of the Basle
Committee accord10). These rules require that a bank must have sufficient capital
to meet losses on their exposures. In this context, we compute

• the Value–at–Risk (VaR) as the limit which is exceeded by the loss of a given
speculative asset or a portfolio with a specified low probability,

• the Capital–at–Risk (CaR) as the amount which may be invested so that the
loss exceeds a given limit with a specified low probability, see Section 16.5.

Thus, we fix either the invested capital (market value) or the limit and, then,
compute the other variable. Further useful risk parameters of the loss/profit dis-
tribution will be introduced at the end of this section.

The VaR is a quantile of the loss (more precisely, profit/loss) distribution
which must be estimated from the data. This goal is achieved in the following
manner.

1. The loss variable is represented by means of the returns so that the results
from the preceding section become applicable. This is done in the subsequent
lines.

10Basle Committee on Banking Supervision (1996). Supplement to the Capital Accord
to Incorporate Market Risk. Basle Committee on Banking Supervision, Basle.
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2. We estimate the VaR based on different statistical models for the returns,
particularly making use of the GP modeling as outlined in Section 16.3. This
step will be carried out in the next section.

In both steps one must distinguish between the case of a single asset and the one
of a portfolio.

Representing the Profit/Loss Variable by Means of Returns

Let V0 and VT be the market values of a single speculative asset or a portfolio at
the times t = 0 and t = T . Usually, the time horizon is a day or a month (the
latter corresponds to 20 trading days or, alternatively, to 30 days if the Monday
returns are distributed over the weekend).

Losses and profits within the given period of T –days will be expressed by the
loss (profit/loss) variable as the difference of the market values VT and V0. We
have

LT = −(VT − V0). (16.4)

Notice that losses are measured as positive values. Conversely, there is a profit
if LT is negative. Under this convention, we may say that a loss is, for example,
smaller than the 99% Value–at–Risk, see (16.11), with a probability of 99%.

The T –day loss LT will be expressed by means of T –day returns

R(T ) =
∑
t≤T

(−Rt) (16.5)

taken with a changed sign. Next, we distinguish between representations of the
loss variable for a single asset and for a portfolio.

• (The Loss for a Single Asset.) The total market value Vt of an asset at time
t can be expressed by Vt = hSt, where h is the number of shares, which
are held within the given period, and St is the price at time t. From (16.2),
where prices are represented by means of the daily log–returns, we conclude
that the loss at time T is

LT = V0

(
1 − exp(−R(T ))

)
≈ V0R(T ). (16.6)

• (The Portfolio Loss.) Let Vt,j = hjSt,j be the market value of the jth asset
in the given portfolio at time t, where hj are the numbers of shares which
are held within the given period, and St,j are the prices at time t. Notice
that

Vt =
∑

j

Vt,j (16.7)

is the market value of the portfolio at time t.
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We also introduce the vector of weights w = (w1, . . . , wd), where wj =
V0,j/V0. Notice that the wj sum to unity. The vector of weights determines
the market strategy of the investor at the beginning of the period. We have

Vt = V0

∑
j

wjSt,j = V0wS
′

t (16.8)

where S
′

t is the transposed vector of prices St = (St,1, . . . , St,d).

From (16.2) and (16.7) deduce that the loss LT = −(VT −V0) of the portfolio
at time T is

LT = V0

∑
j

wj

(
1 − exp(−R(T,j))

)
≈ V0

∑
j

wjR(T,j) = V0wR
′

(T ), (16.9)

where R(T ) = (R(T,1), . . . , R(T,d)) is the vector of random T –day log–returns
(with changed sign) for the different asset.

If the portfolio consists of a single asset, then the formulas in (16.9) reduce to
those in (16.6). The portfolio may also be treated like a single asset. The log–return
of the portfolio is given by

R∗
t = log Vt − log Vt−1 (16.10)

with Vt as in (16.7). Now (16.6) is applicable with R∗
t in place of Rt.

The Value–at–Risk (VaR)

The Value–at–Risk parameter VaR(T, q) is the q–quantile of the loss distribution.
The VaR at the probability q satisfies the equation

P{LT ≤ VaR(T, q)} = q, (16.11)

where LT is the loss variable in (16.4).
We also speak of a VaR at the 99% or 95% level, if q = 0.99 or q = 0.95. Thus,

for example, the loss is smaller than the VaR at the 99% level with a probability
of 99%.

If the VaR is computed to fulfill capital adequacy requirements, then it is
advisable to choose a higher percentage level, say 99% or 99.9%. To compare risks
across different markets, a smaller level such as 95% can be appropriate.

The VaR depends on the distribution of the returns.

• (VaR of a Single Asset.) Let FT denote the df of the T –day log–return
R(T ) =

∑
t≤T (−Rt) with changed sign. Thus,

FT (x) = P{R(T ) ≤ x}. (16.12)
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Applying (16.6) we see that the VaR can be written

VaR(T, q) = V0

(
1 − exp

(
−F−1

T (q)
))

(16.13)

≈ V0F
−1
T (q), (16.14)

where V0 is the market value at time t = 0.

The VaR is overestimated in (16.14) in view of the inequality 1− exp(−x) ≤
x, yet the error term is negligible if the q–quantile F−1

T (q) is not too large.

• (VaR of a Portfolio.) The Value–at–Risk VaR(T, q) is the q–quantile and,
respectively, the approximate q–quantile of the random variables in (16.9).

In Section 16.5, the VaR is computed in a more explicit manner based on
different statistical models such as, e.g., the GP modeling for returns in the case
of a single asset.

Further Risk Parameters

Further risk parameters may be defined as functional parameters of exceedance
dfs pertaining to the loss L. Let F denote the df of L, and denote by F [u] the
exceedance df at the threshold u (cf. (1.11)). An example of such a functional
parameter is the expected shortfall which is the mean of F [u] with u = VaR(q)
which has the representation

E
(
L
∣∣L > VaR(q)

)
=

∫ ∞

VaR(q)

xdF [VaR(q)](x)

=
1

1 − q

∫ 1

q

VaR(x) dx, (16.15)

where the second equation may be deduced with the help of the well–known for-

mula
∫

xdF (x) =
∫ 1

0
F−1(q) dq. We see that the expected shortfall at the level q

is an “average” of the Value–at–Risks with x ≥ q.

Perhaps, it would be more reasonable to call

E
(
L − VaR(q)

∣∣L > VaR(q)
)

expected shortfall as the expected loss which is not covered by the allocated capital
of the bank.

In Section 16.3 we estimated the upper tail of the distribution of returns and,
thus, the exceedance df. Using a representation of the loss variable in Section 16.4
in terms of returns one can estimate the indicated risk parameters. Details will be
given for the VaR in the subsequent section.
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16.5 Evaluating the Value–at–Risk (VaR)

Next, we discuss the estimation of the VaR under certain models for the return
distribution. We start with the estimation of the VaR in the case of a single asset
based on the GP–modeling. The estimation by means of the sample q–quantile is
the second method. In the financial literature this method runs under the label
Historical Simulation (HS).

Estimating the VaR for a Single Asset: the GP Modeling

We take representations of the VaR, given in (16.13) and (16.14). For simplicity,
let the initial market value V0 be equal to 1.

It remains to estimate the q–quantile F−1
T (q), where FT is the df of the T –day

log–return R(T ). Moreover, we assume that a GP df could be accurately fitted to
the upper tail of FT as it was done in Section 15.3.

In Example 16.5.1, the VaR will be computed for T = 1 and T = 30 days
and several large probabilities q in the case of the Standard & Poors index with
the Monday returns distributed over the weekend.

Example 16.5.1. (VaR for the Standard & Poors Index.) The Value–at–Risk VaR(T, q)
is estimated for T = 1 and T = 30 based on the 9314 equally distributed, daily returns
to the Standard & Poors Index.

For T = 1 the q–quantile of the daily returns with changed sign is estimated in a
parametric manner by means of the Moment(GP) estimator and our standard estimators
of the location and scale parameters. The estimation is based on k = 150 lower extreme
daily returns as in Example 16.3.1.

To estimate VaR(30, q) the Moment(GP) estimator is applied to k = 30 extreme
30–days returns. The number of 30–days returns is 310. The estimated shape parameter
is α = 2.4.

In both cases, the upper tail of the qf F−1
T is estimated by the Pareto qf belonging

to the estimated parameters. The VaR, according to (16.14), is listed in Table 16.6 for
several values of q.

Table 16.6. Estimating the Value–at–Risk VaR(T, q) for the Standard & Poors Index.

Value–at–Risk VaR(T, q)

probability q 0.99 0.995 0.999 0.9995

T = 1 0.017 0.020 0.033 0.041

T = 30 0.128 0.169 0.333 0.435

For example, the loss within T = 30 days is smaller than VaR(30, 0.99) = 0.128
with a 99%–probability, if V0 = 1 is invested at time t = 0.
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We also give the exact values VaR∗ = 1−exp(−VaR) of the Value–at–Risk according
to (16.13). As mentioned before, the values in Table 16.6 overestimate the exact values
VaR∗.

Table 16.7. Values VaR∗(T, q) = 1− exp(−VaR(T, q)) for the Standard & Poors Index.

Value–at–Risk VaR∗(T, q)

probability q 0.99 0.995 0.999 0.9995

T = 1 0.017 0.020 0.032 0.040

T = 30 0.120 0.155 0.283 0.353

For T = 1 the differences are negligible, yet there are remarkable differences for

T = 30.

There is a remarkable coincidence between estimated parametric q–quantiles
and sample q–quantiles when the parametric q–quantile lies inside the range of the
sample.

Estimating the VaR: Historical Simulation

In Historical Simulation (HS), the loss/profit df of a given asset or a portfolio over
a prescribed holding period of length T is simply given by the sample df of past
losses and gains. We then translate this into a loss/profit qf and read of the VaR.

The advantage of HS relies on its simplicity and low implementation costs.
But this very simplicity is also the cause of problems. The main problem is that
extreme quantiles cannot be estimated, because extrapolation beyond past obser-
vation is impossible, and when estimation is possible the estimates are not reliable
due to the lack of sufficient observations in the tail area. Moreover, the quantile
estimators tend to be very volatile if a large observation enters the sample.

Estimating the VaR for a Portfolio:
the Variance–Covariance Method

This method is useful when we have to compute the VaR for a portfolio containing
many different assets. In fact, this task becomes particularly easy when all asset
returns are assumed to be normally distributed and the loss variable of the portfolio
is a linear function of these. In this case, the VaR is a multiple of the portfolio
standard deviation and the latter is a linear function of individual variances and
covariances.
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We assume that the T –day log–return (with changed sign)

R(T,j) =
∑
t≤T

(−Rt,j)

of the jth asset at time t is a Gaussian random variable with mean zero and
unknown variance σ2

T,j > 0. In addition, assume that the R(T,j), j ≤ d, are jointly

Gaussian with a covariance matrix ΣT =
(
σT,i,j

)
as introduced on page 280.

Necessarily, σT,j,j = σ2
T,j .

Let V0,j be the market value of the jth asset in the portfolio at time t = 0.
According to (16.9), the loss LT of the portfolio at time t = T can be approximately
represented by

LT ≈ V0wR
′

(T ), (16.16)

where R(T ) is the vector of the T –day log–returns R(t,j). According to the well–

known results for Gaussian random vectors (cf. page 280), the term wR
′

(T ) in

(16.16) is a Gaussian random variable with mean zero and standard deviation

σT =
√

wΣT w′. (16.17)

Combining (16.16) and (16.17) we get

VaR(T, q) = V0σT Φ−1(q),

where Φ−1 is the univariate standard Gaussian qf.
An estimate of the VaR is obtained by replacing the variances and covariances

σT,i,j in (16.17) by their sample versions ŝT,i,j , cf. (2.6), based on historical T –day
log–returns.

If there is a single asset, or the portfolio is dealt with like a single asset, and
the daily log–returns are uncorrelated, then σT = V0T

1/2σ1 with σ1 denoting the
standard deviation of a daily log–return.

Estimating the VaR for a Portfolio:
the Copula Method

A considerable improvement, compared to the simple variance–covariance method,
is achieved when the univariate Gaussian margins are replaced by more realistic
dfs. This is the copula method (cf. page 275) as already successfully applied in the
Chapters 12 and 13 to estimate unknown multivariate EV and GP dfs.

We assume that the dependence structure of a multivariate Gaussian df ΦΣ̃

(cf. (11.4)), with mean vector zero and covariance matrix Σ̃, is still valid, however
the univariate margins are unknown dfs Fj , say. Thus, we assume that the T –day
log-returns R(T,j) have the joint df

F (x) = ΦΣ

(
Φ−1(F1(x1)), . . . ,Φ

−1(Fd(xd))
)
, (16.18)
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where Σ is the correlation matrix pertaining to Σ̃ and Φ−1 is the univariate stan-
dard Gaussian qf.

Notice that the preceding variance–covariance model is a special case with
Fj being a Gaussian df with scale parameters σj . We discuss further possibilities.

• De Raaij and Raunig11 report a successful implementation of mixtures of
two Gaussian dfs (also see pages 31 and 380).

• If one goes one step further and is continuously mixing Gaussian distributions
with respect to a gamma distribution, one arrives at a Student distribution
(cf. (6.16) and page 380). The careful univariate extreme value analysis in
Section 16.3 speaks in favor of such dfs which have Pareto–like tails.

• Further possibilities include sum–stable dfs yet, as mentioned before, this
conflicts with the empirical evidence that log–returns exhibit bounded second
moments.

The df in (16.18) can be estimated by applying the piecing–together method
(used to estimate multivariate EV and GP dfs).

1. Estimate the df Fj by means of F̂j based on the univariate data xi,j in the
jth component;

2. transform the data xi,j to

yi,j = Φ−1
(
F̂j(xi,j)

)
which may be regarded as data governed by ΦΣ;

3. estimate Σ by the sample correlation matrix Σ̂ based on the transformed
data yi,j ,

4. take

F̂ (x) = ΦΣ̂

(
Φ−1(F̂1(x1)), . . . ,Φ

−1(F̂d(xd))
)

(16.19)

as an estimate of F (x).

For an application we refer to Example 10.3.1 where the copula method led
to a curious modeling.

Using the tools from multivariate extreme value analysis, one should also
analyze the validity of the chosen copula function. Further candidates of copula
functions are, e.g., those pertaining to multivariate sum–stable or Student distri-
butions.

11Raaij, de G. and Raunig, B. (1999). Value at risk approaches in the case of fat–tailed
distributions of risk factors. Manuscript, Central Bank of Austria.
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Estimating the VaR for a Portfolio:
a Multivariate Student Modeling

We extend the variance–covariance method to multivariate Student distributions.
The loss LT of a portfolio at time T is again represented by V0wR

′

(T ) as in (16.16).
Now we assume that the T –day log–returns RT,j , j ≤ d, are jointly Student
distributed with shape parameter α > 0 and parameter matrix Σ, see (11.11) and
(11.12). Therefore, the log–returns have the representations

RT,j =
Xj

(2Y/α)1/2
,

where the Xj are jointly Gaussian with covariance matrix Σ. Consequently,

wR
′

(T ) =
X

(2Y/α)1/2
,

where X is Gaussian with standard deviation σT =
√

wΣT w′ corresponding to
(16.17), and LT is a Student variable with shape parameter α > 0 and scale
parameter V0σT . Therefore, one gets the Value–at–Risk

VaR(T, q) = V0σT F−1
α (q),

where Fα denotes the standard Student df with shape parameter α.
One gets the variance–covariance result in the limit as α → ∞. The extended

model is more flexible compared to the Gaussian model and includes the case of
heavy–tailed distributions. There is still the restriction of equal shape parameters
in the single components.

Capital–at–Risk (CaR) for a Single Asset

In the preceding lines the VaR was computed as the limit l such that P{LT ≤
l} = q, where LT is the loss/profit variable for the period t = 0 and t = T .
Conversely, one may fix the limit l and compute the Capital–at–Risk CaR(T, q, l)
as the amount which can be invested such that the pertaining loss LT does not
exceed the limit l with a given probability q.

Using the representation (16.13) of the loss/profit variable LT with V0 re-
placed by CaR(T, q, l), one gets

P{LT ≤ l} = P
{
CaR(T, q, l)

(
1 − exp

(∑
t≤T

Rt

))
≤ l
}

= q,

if

CaR(T, q, l) = l/
(
1 − exp

(
− F−1

T (q)
))

≈ l/F−1
T (q).
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Here, FT is again the df of the T –day return
∑

t≤T (−Rt) with changed sign (see
(16.12)). The ratio

c(T, q) = 1/F−1
T (q) (16.20)

is the capital/loss coefficient.

Example 16.5.2. (Capital/Loss Coefficient for the Standard & Poors Index.) The capi-
tal/loss coefficient c(T, q) is estimated for T = 1 and T = 30 based on the 9314 equally
distributed daily returns to the Standard & Poors Index. Apparently, one must estimate
the q–quantile of FT .

It is evident from (16.20) that the capital/loss coefficients are just the reciprocals
of the values computed for the VaR in Table 16.6.

Table 16.8. Estimating the Capital/Loss Coefficient for the Standard & Poors Index.

Capital/Loss Coefficient c(T, q)

probability q 0.99 0.995 0.999 0.9995

T = 1 58.1 50.0 30.3 24.4

T = 30 7.8 5.9 3.0 2.3

It is difficult, due to medium sample sizes, to extend the empirical approach to

estimating the capital/loss coefficient beyond a period of a month.

Capital–at–Risk for a Portfolio

Let H0 be an initial market strategy which determines the proportions of the
different assets to each other. Let again Vt,j = H0,jPt,j and Vt =

∑
j Vt,j be the

market values of the single assets and of the portfolio with respect to H0.

We compute a constant b such that the loss/profit variable LT for the period
from t = 0 to t = T , belonging to the multiple bH0 of the initial market strategy,
fulfills the equation

P{LT ≤ l} = P
{
b
∑

j

V0,j

(
1 − exp

(∑
t≤T

Rt,j

))
≤ l
}

= q.

This holds with b = l
/

F−1
T,H0

(q), where F−1
T,H0

is the df of

∑
j

V0,j

(
1 − exp

(∑
t≤T

Rt,j

))
.
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Therefore,

CaR(T, q, l) = bV0 = lV0

/
F−1

T,H0
(q)

is the Capital–at–Risk at the probability q.

16.6 The VaR for a Single Derivative Contract

We start with a short introduction to derivative contracts with special empha-
sis laid on European call options, deduce the VaR for the call option under the
Black–Scholes pricing and conclude the section with remarks concerning the gen-
eral situation.

An Introduction to Derivative Contracts

A derivative contract is a contract, the value of which is dependent on the value
of another asset, called the underlying. Options are a special kind of derivative
contracts, because these depend non–linearly on the value of the underlying.

Options are traded on many underlyings such as single stocks, stock indices,
exchange rates, etc. We concentrate on an option for which the underlying is a
non–dividend paying stock. There are two basic types of options. A European call
option (respectively, a put option) gives the owner the right to buy (to sell) the
underlying asset by a certain future date T for a prefixed price X , where

• T is the expiration date or maturity,

• X is the strike price.

The prices and returns of the underlying are again denoted by St and Rt.
At maturity T the value of a European call option (called payoff) will be the

amount
PF = max(ST − X, 0), (16.21)

by which the stock price ST exceeds the strike price X . The value for the put
option is PF = max(X − ST , 0).

The Black–Scholes Prices for European Call Options

A call option becomes more valuable as the stock price increases. The opposite
holds for put options. The present value (at time t) of the option could be deter-
mined through discounting the payoff. However, ST in (16.21) is unknown at time
t < T , and one has to use a different market price.

Within the continuous–time version of the model presented in (16.3), in case
the underlying is not dividend paying, this is the Black–Scholes price

C(St, T − t)

:= StΦ
(
d1(St, T − t)

)
− X exp

(
− r(T − t)

)
Φ
(
d2(St(T − t)

)
, (16.22)
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where r is the annual risk–free rate of interest, T − t is the number of calendar
days until expiration,

d1(St, T − t) =
log St

X +
(
r + σ2

2

)
(T − t)

σ
√

T − t
and d2(St, T − t) = d1 − σ

√
T − t.

We have St+1 = St exp(µ + σW ), where W is a standard Gaussian random
variable. For simplicity, we assume that µ = 0. Therefore, σW is the log–return
for the given time period. More precisely, one must deal with the conditional
distribution of St+1 conditioned on st because the price st is known at time t, yet
this leads to the same result.

The profit/loss (again with a conversed sign) for the period from t to t + 1 is

L = −
(
C(St+1, T − t − 1) − C(St, T − t)

)
. (16.23)

Therefore, the Value–at–Risk VaR(q) at the level q is the q-quantile of the distri-
bution of L. We have P{L ≤ VaR(q)} = q corresponding to (16.11).

We compute the VaR by means of linearization and also show that a direct
computation is possible for the simple case of a call option.

Computation of the VaR by Linearization (Delta Method)

We deduce an approximate representation of the loss variable in (16.23) which is
linear in the log–return variable σW of the underlying.

From the fact that

sϕ
(
d1(s, T − t)

)
− X exp(−r(Tt))ϕ

(
d2(s, T − t)

)
= 0

one gets
∂

∂s
C(s, T − t) = Φ

(
d1(s, T − t)

)
=: ∆(s, T − t)

which is called the ∆ of the option.
Therefore, a Taylor expansion about St yields that

L ≈ ∆(St, T − t)(St − St+1)

= St∆(St, T − t)(1 − exp(σW ))

≈ St∆(St, T − t)σW. (16.24)

Using the last expression for the loss variable one gets

VaR(q) = St∆(St, T − t)σΦ−1(q) (16.25)

for the one–day Value–at–Risk at the level q.
A more accurate linear approximation can be achieved when the linear term

depending on the partial derivative (∂/∂t)C(s, t) is added.
This kind of approach will underperform when more complicated kinds of

derivatives are considered or when the underlying is highly non–normal.
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Direct Computation of the VaR

The Black–Scholes formula for a call option can be also used to compute the VaR
directly, because the price of the option is strictly increasing in the price of the
underlying. The exact solution is

VaR(q) = C
(
St, T − t

)
− C

(
St exp(−σΦ−1(q), T − t − 1)

)
. (16.26)

We remark that (16.25) can also be deduced from this formula.

In the case of more complex derivatives, when the function C has no simple
analytic expression, such an approach can still be used, and the VaR can be found
by numerical approximation.

Computing the Black–Scholes Price

The preceding arguments heavily rely on the Black–Scholes pricing formula as
specified in (16.22). We indicate in which manner this price for the European
call option and other derivative contracts can be determined. This enables us to
compute the VaR as well for other derivative contracts.

Under the conditions of the Black–Scholes model (16.3) we have

ST = St exp

(
µ(T − t) + σ

T∑
k=t+1

Wk

)

with St being observed at time t.

Let r be the annual risk–free rate of interest. In addition, assume that

E(ST /St) = exp(r(T − t)). (16.27)

Thus, the expected return of the speculative asset corresponds to the risk–free rate
of interest. Under this additional condition one obtains the equality

C(St, T − t) = E
(
max(ST − X, 0)

)
exp(−r(T − t))

between the discounted expected option payoff and the Black–Scholes price.

Without condition (16.27), the Black–Scholes price can still be justified as a
fair price by using the concept of hedge portfolios. Moreover, under certain regu-
larity conditions, the fair price of any derivative contract can be computed by cal-
culating the discounted expected value of the option payoff PF with respect to the
risk-neutral probability, also called the equivalent martingale measure. Thereby,
the original probability measure is replaced by another one under which the pro-
cess of payoffs becomes a martingale. Yet, both probability measures coincide, if
condition (16.27) is valid.
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Value–at–Risk for General Derivative Contracts

For general derivative contracts we also obtain by

C(St, T − t) = E
(
PF
)
exp(−r(T − t)) (16.28)

the fair price, if the expectation is taken under the risk–neutral probability. The
profit/loss with conversed sign is given in analogy to (16.23). One may try to apply
the delta method or to carry out a direct computation of the VaR.

Another possibility is to use intensive simulation procedures, such as Monte
Carlo or bootstraps, to compute the expected value of the payoff. For details we
refer to Caserta et al.12.

16.7 GARCH and

Stochastic Volatility Structures

The aim of this section is to provide some theoretical insight in the tail–behavior of
return distributions and to start a discussion about a semiparametric estimation of
the VaR and the capital/loss coefficient. We primarily deal with time series {Xk}
that possess an ARCH (autoregressive conditional heterosketastic)13 structure or,
by generalizing this concept, a GARCH14 structure.

We also mention stochastic volatility (SV) models which provide alternative
models for the volatility in returns series.

First, we review some basic facts of the conditioning concept as outlined in
Section 8.1. Recall that the mean and the variance of the conditional distribution
are the conditional expectation E(Y |x) and the conditional variance V (Y |x) of Y
given X = x.

Modeling the Conditional Heteroskedasticity
and Distributions of Returns

Assume that the random return Rt at time t can be expressed as

Rt = σ̃tεt, (16.29)

where εt is a random innovation with E(εt) = 0 and V (εt) = 1, and σ̃t > 0 is a
random variable with finite expectation being independent of εt (and depending
on the past). Values of σ̃t are denoted by σt.

12Caserta, S., Dańıelsson, J. and de Vries, C.G. (1998). Abnormal returns, risk, and
options in large data sets. Statistica Neerlandica 52, 324–335.

13 Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of
the variance of United Kingdom inflation. Econometrica 50, 987–1007.

14 Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J.
Econometrics 31, 307–327.
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Because of the independence of σ̃t and εt, the conditional distribution of Rt

given σ̃t = σt is the distribution of σtεt, see (8.13). In the present context, σ̃2
t is

also addressed as random variance or volatility.
Under the conditions above we have

(i) E(Rt|σt) = 0;

(ii) V (Rt|σt) = σ2
t .

Thus, the conditional variance is not a fixed constant, a property addressed as
conditional heteroskedasticity. In addition,

(iii) E(Rt) = 0;

(iv) V (Rt) = E
(
σ̃2

t

)
.

Later on, further conditions will be imposed on σ̃t and εt so that {Rt} is a
martingale innovation scheme and, hence, a series of uncorrelated random vari-
ables.

Notice that the distribution of σ̃tεt is the mixture of the distributions σtεt

with respect to the distribution of σ̃t. We mention three examples of innovations
εt and random scale parameters σ̃t:

• (Normal Innovations.) If εt is standard normal and 1/σ̃2
t is a gamma random

variable with shape parameter r > 0 (see (4.6)), then Rt = σ̃tεt has the
density gr which is the Student density as deduced in (6.16).

• (Laplace Innovations.) If εt is a Laplace (double–exponential) random vari-
able with density f(x) = exp(−|x|)/2 and 1/σ̃t is a gamma random variable
with shape parameter r, then Rt = σ̃tεt is a double–Pareto random variable
with density (cf. also (5.28))

gr(x) =

∫ ∞

0

(ϑ/2) exp(−|x|)hr(ϑ) dϑ

= r(1 + |x|)1+r/2. (16.30)

• (Log–Normal Innovations.) If σ̃t and εt are log–normal, then Rt is log–
normal.

ARCH(1) Series

The following scheme captures both the martingale feature and the observed clus-
ters of volatility in speculative return series. These clusters are well described
analytically, but not well understood from the economic point of view15.

15See, e.g., Vries, de C.G. (1994). Stylized facts of nominal exchange rate returns. In:
The Handbook of International Economics, R. van der Ploeg (ed.), Blackwell, Oxford,
pp. 335–389.
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Let {εt} be a white–noise process of iid random variables satisfying the con-
ditions E(εt) = 0 and E(ε2

t ) = 1. Let R0 be an initial random variable which is
independent of the innovations εt. Then, Rt = σ̃tεt with

σ̃2
t = α0 + α1R

2
t−1, t ≥ 1, (16.31)

and α0, α1 > 0, is an ARCH(1) series. Notice that the conditions, specified in
(16.29), are valid.

We discuss some properties of the series {Rt}. Because the εt and Rt−i are
independent for each i ≥ 1, the Rt are uncorrelated with expectations E(Rt) = 0
and variances

V (Rt) = α0

( t−1∑
j=0

αj
1

)
+ αt

1V (R0)

= α0
1 − αt

1

1 − α1
+ αt

1V (R0), (16.32)

where one must assume that α1 �= 1 in the second representation.

If α1 < 1, then

V (Rt) → α0/(1 − α1), t → ∞,

and the ARCH series approximately satisfies the condition of weak stationarity. If,
in addition, V (R0) = α0/(1−α1), then V (Rt) = V (R0) and {Rt} is a white–noise
process. We remark that white–noise processes of this type are taken to model
innovations in certain economic time series.

The special properties of the ARCH process are due to the fact that the Rt

are uncorrelated yet not independent. As a consequence of (8.13), the conditional
distribution of Rt given Rt−1 = rt−1 is the distribution of

σ(rt−1)εt, (16.33)

where

σ(r) = (α0 + α1r
2)1/2.

This is also the conditional distribution of Rt given the past Rt−1 = rt−1, . . . , R0 =
r0 up to time zero.

Especially, the property

E(Rt|rt−1, . . . , r0) = 0

of martingale innovations holds. In addition, it is evident that E(Rt|rt−1) = 0 and
V (Rt|rt−1) = σ2(rt−1).
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Extremal Properties of ARCH Series

The distributional properties of the ARCH series are best analyzed by viewing
the squared ARCH series R2

t as a stochastic difference equation. From (16.31) and
(16.29) we obtain

R2
t = α0ε

2
t + α1ε

2
t R

2
t−1

= Bt + AtR
2
t−1, (16.34)

say. This stochastic difference equation with iid pairs (Bt, At) is equivalent to the
ARCH series up to a coin flip process for the sign. If E(log A1) < 0, and if there
is a κ such that E(Aκ

1 ) = 1, E(Aκ
1 log A1) < ∞, 0 < E(Bκ

1 ) < ∞ and B1/(1−A1)
is nondegenerate, then

R2
t → R2

∞ =
∑
j<∞

Bj

∏
i≤j−1

Ai, t → ∞ (16.35)

in distribution.
Furthermore, R2

∞ has a Pareto like tail with tail index κ, that is,

P{R2
∞ > x} = (1 + o(1))cx−κ.

Note that this latter conclusion still follows if the innovations εt have a light tail.
For example, if the εt are iid standard normal, the tail index κ for R2

∞can be
computed from the condition that E(Aκ

1 ) = 1. We have

Γ(κ + 1/2) = π1/2(2α1)
−κ.

For more details and references to the literature see de Haan et al.16 and Basrak
et al.17

Conditional Densities,
Quasi Maximum Likelihood Estimation

The question of estimating the tails of the unconditional distribution of Rt was
already dealt with in the preceding section. Presently, this distribution (more pre-
cisely, the sequence of distributions) is regarded as a nuisance parameter. The aim
is to estimate the parameters α0 and α1. We briefly indicate that the maximum
likelihood principle is applicable by computing the joint density of the returns.

16Haan, de L., Resnick, S.I., Rootzén, H. and Vries, de C.G. (1990). Extremal behavior
of solutions to a stochastic difference equation with applications to ARCH–processes.
Stoch. Proc. Appl. 32, 214–224.

17Basrak, B., Davis, R.A. and Mikosch, T. (2002). Regular variation of GARCH pro-
cesses. Stoch. Proc. Appl. 99, 95–115.
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Let f be the density of the innovation εt, and let f0 be the density of the
initial random variable R0. According to (16.33), the conditional density of Rt

given Rt−1 = rt−1, . . . , R0 = r0 (which is also the conditional density of Rt given
Rt−1 = rt−1) is

ft(rt|rt−1, . . . , r0) = ft(rt|rt−1) =
1

σ(rt−1)
f

(
rt

σ(rt−1)

)
, (16.36)

where σ(r) = (α0 + α1r
2)1/2. Therefore, the joint density of R0, . . . , Rt is

f(r0, . . . , rt) = f0(r0)
∏
s≤t

fs(rs|rs−1) (16.37)

according to (8.11).
It is well–known that consistent estimators of α0 and α1 are obtained by

maximizing the likelihood function based on (16.37), whereby the term f0(r0) can
be omitted; that is, one is maximizing a conditional likelihood function. Moreover,
the unknown density f of the innovations is replaced by the normal one.

The Extension to ARCH(p) Series

A first extension of an ARCH(1) series is achieved, if the stochastic volatility is of
the form

σ̃2
t = α0 +

∑
i≤p

αiR
2
t−i (16.38)

with innovations εt being independent of the past random variables R1−i, i =
1, . . . , p.

Repeating the arguments in (16.33) one may verify that the conditional dis-
tribution of Rt given Rt−1 = rt−1, . . . , Rt−p = rt−p is the distribution of

σ(rt−1, . . . , rt−p)εt, (16.39)

where
σ(rt−1, . . . , rt−p) = (α0 +

∑
i≤p

αir
2
t−i)

1/2.

In (16.39) one also gets the conditional distribution of Rt given the past Rt−1 =
rt−1, . . . , R1−p = r1−p up to time 1 − p.

Extending (16.36) and (16.37), one gets the conditional densities

ft(rt|rt−1, . . . , r1−p) = ft(rt|rt−1, . . . , rt−p) (16.40)

=
1

σ(rt−1, . . . , rt−p)
f

(
rt

σ(rt−1, . . . , rt−p)

)
,

and the joint density

f(r1−p, . . . , rt) = f0(r1−p, . . . , r0)
∏
s≤t

fs(rs|rs−1, . . . , rs−p) (16.41)

of the returns Rt.
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Stochastic Volatility (VS) Models

Let again Rt = σ̃tεt as in (16.29). In contrast to ARCH models we assume that
the series {σ̃t} and {εt} are independent. For example, let {σ̃t} be an AR series
of the form

σ̃2
t = β0 +

∑
j≤q

βj σ̃
2
t−j + ηt, (16.42)

where {ηt} is another innovation series. This is the product series model as dealt
with in [54]. Another example is obtained if {σ̃t} is defined by means of an MA(∞)
series. Let

σ̃2
t = c exp

( ∞∑
j=0

ψjηt−j

)
. (16.43)

Asymptotic results of extremes of such processes are obtained by F.J. Breidt and
R.A. Davis18.

The Extension to GARCH(p, q) Series

An extension of the concept of an ARCH series is achieved, if

σ̃2
t = α0 +

∑
i≤p

αiR
2
t−i +

∑
j≤q

βj σ̃
2
t−j , t ≥ 1. (16.44)

Then, Rt = σ̃tεt, t ≥ 1, is a GARCH(p, q) (a generalized ARCH) series. Notice
that a GARCH(p, 0) series is an ARCH(p) series. Thus, the extension is related to
the step from an AR to an ARMA series.

The RiskMetricsTM (RM) method deals with GARCH(1, 1) series. RM is
concerned with the calculation of the Value–at–Risk for a portfolio consisting of
up to more than 450 assets. Market position, for example, can be entered through
the RM interface and, then, the VaR will be provided.

The basic idea used by RM is that daily log–returns of an asset have zero
mean and are generated according to a non–stationary GARCH(1, 1) series

Rt = σ̃tεt,

where the εt are iid standard normal innovations and

σ̃2
t = (1 − λ)R2

t−1 + λσ̃2
t−1.

Using past log–returns on the asset it is possible to forecast the volatility of the
daily return for the next day which in turn can be used to compute the one–day
VaR.

18Breidt, F.J. and Davis, R.A. (1998). Extremes of stochastic volatility models. Ann.
Appl. Probab. 8, 664–675.
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The RiskMetricsTM specification for λ, called the decay factor, is 0.94 for
daily returns. This determination is based on minimization of the mean square
variance forecast error with respect to λ for a number of asset returns. The decay
factor is then a weighted average of individual optimal decay factors, see J.P.
Morgan Bank19 for details.

16.8 Predicting the Serial Conditional VaR
co–authored by A. Kozek20 and C.S. Wehn21

In the preceding sections, we primarily studied the estimation of the Value–at–
Risk (VaR) as a quantile of a stationary distribution of the loss variable Lt. In the
conditional set–up, the VaR is a conditional quantile, cf. Section 8.1, which should
be predicted based on observable quantities.

In the time series framework, we speak of a serial conditional quantile, cf.
Section 8.3, and, therefore, also of a serial conditional VaR. At the end of Section
9.5, we already mentioned a covariate conditional VaR. The present section focuses
on the serial conditioning within GARCH models. A more general formulation in
terms of both serial and covariate information is possible, yet not considered in
this book.

McNeil et al.22 argue that both approaches, the unconditional as well as the
conditional one, are relevant for risk management purposes. However, in view of
the fact that most empirical time series used in market risk modeling experience
non–stationarity and certain heteroskedastic properties, the conditional approach
is particularily relevant in market risk modeling.

The Serial Conditional VaR

Let again
Lt = −(Vt − Vt−1)

be the loss (profit/loss) variable at time t pertaining to the market values Vt−1 =
hSt−1 and Vt = hSt, where h is the fixed number of shares (the portfolio position),
and St is the price at time t. Denote again by Rt = log St − log St−1 = log Vt −
log Vt−1 the log–return at time t.

The serial conditional VaR at the level q is the conditional q–quantile

VaR(q; rt−1, rt−2, . . .) := q(Lt|rt−1, rt−2, . . .), (16.45)

19J.P. Morgan (1996). RiskMetrics Technical Document (4th ed.). J.P. Morgan Bank,
New York.

20Macquarie University, Sydney
21DekaBank, Frankfurt am Main
22McNeil, A.J., Frey, R., Embrechts, P. (2005). Quantitative Risk Management—

Concepts, Techniques, Tools. Princeton University Press, Princeton.



402 16. Extreme Returns in Asset Prices

as mentioned in (8.21), of the loss variable Lt given the past returns rt−1, rt−2, . . .;
thus, q(Lt|rt−1, rt−2, . . .) is the q–quantile of the conditional distribution of Lt

given Rt−1 = rt−1, Rt−2 = rt−2, . . ..
As in (16.6) one gets the representation

Lt = Vt−1(1 − exp(Rt))

≈ −Vt−1Rt. (16.46)

In view of (16.46), one may replace in (16.45) the loss variable Lt by the approx-
imate value −Vt−1Rt.

Notice that the past market value Vt−1 ≡ Vt−1(Rt−1, Rt−2, . . .) is a non–
random function of the past returns Rt−i, and Vt−1 itself is known at time t − 1.
To some larger extent, we suppress the dependency on some unknown initial values
or random variables in our notation when time series are studied.

In practical situations, the modeling of loss variables becomes even more
complicated. We mention two important extensions:

1. A trading portfolio usually consists of a larger number of assets. Therefore,
one has to consider the corresponding multivariate question.

2. The portfolio positions h = ht vary from one day to another, where ht is the
position in the asset Vt at time t. The assumption that the process ht merely
depends on the past returns Rt−1, Rt−2, . . . ensures that our analysis can be
easily extended to time varying portfolio weights.

GARCH Models for the Returns, Again

The statistical modeling of the loss distribution is again formulated in terms of
the log–returns Rt. As in (16.29) let

Rt = σ̃tεt, t ≥ 1,

where the εt are iid random innovations, and εt is independent of the random
scale parameter σ̃t. Because we are merely interested in q–quantiles of conditional
distributions we do not necessarily impose any conditions on the moments of εt.
Therefore, we also speak of a random scale parameter instead of a stochastic
volatility. Specifically, we assume that σ̃t = σ(Rt−1, Rt−2, . . .) and, hence,

Rt = σ(Rt−1, Rt−2, . . .)εt, t ≥ 1, (16.47)

where εt is independent of the past returns Rt−1, Rt−2, . . ., and, consequently, the
innovation εt is independent of the random scale parameter.

For the ARCH(p) series in (16.38) we have

σ2(Rt−1, Rt−2, . . .) = α0 +
∑
i≤p

αiR
2
t−i. (16.48)
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For the GARCH(p, q) series in (16.44) the random scale parameter is recursively
defined by

σ2(Rt−1, Rt−2, . . .) = α0 +
∑
i≤p

αiR
2
t−i +

∑
j≤q

βjσ
2(Rt−j−1, Rt−j−2, . . .). (16.49)

Within the ARCH(p) and GARCH(p, q) series, the distributions of the returns
depend on the parameters αi and, respectively, the parameters αi and βj , and the
distribution of εt.

Representing GARCH as ARCH Models

By induction one gets a representation of σ̃2
t in terms of the returns Rt, see, e.g.

Fan and Yao [18], (4.35). We have

σ̃2
t =

α0

1 −
∑q

j=1 βj
+

p∑
i=1

αiR
2
t−i

= +

p∑
i=1

αi

∑
k≥1

q∑
j1=1

· · ·
q∑

jk=1

βj1 × · · · × βjk
R2

t−i−j1−···−jk
(16.50)

with respect to an infinite past. In practice, one has to use some initial values and
a truncation, e.g., by truncating all terms having a non–positive index.

As a special case we deduce the representation in the RiskMetricsTM (RM)
model of a GARCH(1,1) series, where

σ̃2
t = (1 − λ)R2

t−1 + λσ̃2
t−1,

and the innovations εt are standard normal, cf. Section 16.7, page 400.
In that case, we have

σ̃2
t = (1 − λ)

∑
i≥1

λi−1R2
t−i, (16.51)

which can be addressed as a random scale parameter in an ARCH(∞) series. If
λ < 1 it makes sense to take the first p terms in the sum, thus, getting an ARCH(p)
series, because the deleted returns Rt−p−1, Rt−p−2, . . . enter only with very small
cumulated weights

∑
i≥p+1 λi−1 = λp/(1 − λ).

The general strategy is to estimate a smaller number of parameters in a
GARCH series, yet to carry out further computations in a related (approximating)
ARCH(p) series.

Conditional Distributions in GARCH Series

It is evident from (16.47) that the conditional distribution of Rt given Rt−1 =
rt−1, Rt−2 = rt−2, . . . is the distribution of

σ(rt−1, rt−2, . . .)εt. (16.52)
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Alternatively, the conditioning may simultaneously be based on certain past
returns and past scale parameters: the conditional distribution of Rt given Rt−1 =
rt−1, . . . , Rt−p = rt−p, σ̃t−1 = σt−1, . . . , σ̃t−q = σt−q is the distribution of

σtεt (16.53)

with σt recursively defined by

σ2
t = α0 +

∑
i≤p

αir
2
t−i +

∑
j≤q

βjσ
2
t−j .

The results in (16.52) and (16.53) are identical with σt = σ(rt−1, rt−2, . . .).
Based on these formulas one may write down conditional and joint densi-

ties and a likelihood function. In analogy to (16.40) and (16.41), one gets the
conditional densities

ft(rt|rt−1, rt−2, . . .) =
1

σt
f
( rt

σt

)
, (16.54)

and the joint density

f(. . . , rt−1, rt) = f0(. . . , r−1, r0)

t∏
s=1

1

σs
f
( rs

σs

)
(16.55)

of the returns Rt, t ≥ 1, including some initial values.
Likewise the conditional density of R1, . . . Rt given the initial values is

f(r1, . . . , rt|r0, r−1, . . .) =

t∏
s=1

1

σs
f
( rs

σs

)
. (16.56)

Now we may build a likelihood function based on the joint density or the
conditional likelihood function based on the conditional density (which leads to
the same expression if the term depending on f0 is omitted).

We provide two examples, namely, the cases where the innovation density f
is the standard normal density ϕ or a Student density with shape parameter α.

• (Normal innovations.) In Section 16.7 we mentioned the result that returns
have Pareto–like tails if the innovations εt are standard normal. Thus, nor-
mal innovations do not contradict our findings in the previous sections which
spoke in favor for return distributions with heavy tails such as Student dis-
tributions. From (16.56) one easily gets the conditional likelihood function.
For the conditional log–likelihood function one gets,

l(α, β) = −
t∑

s=1

log σs +
t∑

s=1

log ϕ(rs/σs)

= − t

2
log(2π) −

t∑
s=1

log σs −
1

2

t∑
s=1

r2
s

σ2
s

, (16.57)
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where the right–hand side depends on the αi and βj via the σs; next one has
to compute the likelihood equations.

• (Student innovations.) In the recent financial literature one observes a trend
to take Student innovations in the GARCH modeling. Simulation studies
indicate that this type of modeling for the innovations is compatible to
Pareto–distributed returns. More precisely, if the innovations are Student-
distributed, then one may conjecture that the returns are again Student–
distributed with a shape parameter smaller than the initial one (personal
communication by Petra Schupp).

We note the conditional log–likelihood function

l(α, β) = t log
( Γ((α + 1)/2)√

π(α − 2)Γ(α/2)

)
−

t∑
s=1

log σs −
α + 1

2

t∑
s=1

log
(
1 +

r2
s

σ2
s(α − 2)

)
, (16.58)

where we take standardized Student innovations with shape parameter α > 2
to make the result comparable to [18]. Recall from (1.62) that the standard
deviation is equal to

√
α/(α − 2). We do not know any result for the case of

α ≤ 2.

The Serial Predictive Conditional VaR

We merely provide details in the special case of the RM model, see (16.51), where
the innovation df F is the standard normal df Φ.

Within the RM modeling let again λ̂ = 0.94 be the specification of the pa-
rameter λ in the GARCH model as provided by RM (or some other estimate of
λ). The innovations εt are assumed to be distributed according to Φ. Then, one
gets the predictor

V̂aR(q; rt−1, rt−2, . . .) = vt−1σ̂tΦ
−1(q), (16.59)

with

σ̂t =

√
(1 − λ̂)

∑
i≥1

λ̂i−1r2
t−i, (16.60)

of the conditional Value–at–Risk VaR(q; rt−1, rt−2, . . .) based on the observed mar-
ket value vt−1, and the past observed returns rt−i, where one only takes the first
p terms in the sum.

It is worthwhile to reconsider all the steps which led to the prediction of
the serial conditional VaR (as the conditional q–quantile of the loss variable Lt

conditioned on the past returns):

1. replace the loss variable Lt by −Vt−1Rt
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2. take a model Rt = σ̃tεt with iid innovations εt for the returns;

3. specialize this model further to a GARCH model like the RM model;

4. replace unknown parameters like the λ by estimates based on observable
quantities (or by a value provided, e.g., by J.P. Morgan);

5. fix a df for the innovation εt;

6. take an appropriate smaller number p of terms in the sum of the random
scale parameter which is the step from the GARCH model to a ARCH(p)
model,

7. take the conditional q–quantile within this final model as a predictor of the
serial conditional VaR.

The conditional distribution in step 6, with the unknown paramters replaced
by estimates, may be addressed as a predictive distribution (as introduced in
Section 8.1, page 237). One may also speak of a serial predictive VaR as a predictor
of the serial conditional VaR.

In view of the longer list of conditions and approximations, one may ask after
the accuracy of the prediction by means of this predictive VaR. In this context,
the steps 2 to 5, which concern the statistical modeling and the estimation of
unknown parameters, are of particular interest. Later on, we indicate a validation
of the GARCH modeling by using the Rosenblatt transformation and, respectively,
certain residuals.

Predicting the Serial Conditional Expected Shortfall

The predictive df

F (l|rt−1, rt−2, . . .) = Φ(l/(vt−1σ̂t) (16.61)

in (16.59) for the loss variable Lt provides more than a predictor of the serial
conditional VaR.

For example, in place of a q–quantile we may use a different functional pa-
rameter such as the expected shortfall (which itself is frequently called conditional
VaR in the literature; we hope that no confusion will arise due to this ambigu-
ity). The serial conditional expected shortfall may be predicted by plugging in the
predictive df. Other possible applications concern predictive intervals.

Validation for the GARCH Modeling
by Using the Rosenblatt Transformation

In the preceding sections, we employed exploratory tools to analyze financial data
according to their postulated stationary distribution or their martingal (correla-
tion) structure. To make tests applicable (if dependencies cannot be neclected),
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one needs complex theoretical results as, e.g., those developed in Chapter 7. Al-
ternatively, standard tests can be applied to transformed data.

If the data come from independent, not necessarily identically distributed
(innid) random variables, then the simple probability transformation helps to pro-
duce iid (0,1)–uniform data. Otherwise, as, e.g., in the GARCH case, one can use
the Rosenblatt transformation, see (8.29).

In the present context, the Rosenblatt transformation was applied by Diebold
et al. (in the article cited on page 238). We want to know whether the GARCH
modeling for the returns series Rt and the estimation procedures can be justified.

Let

Ft(·|rt−1, rt−2, . . .) = F (·/σ(rt−1, rt−2, . . .))

be the conditional df of Rt given Rt−1 = rt−1, Rt−2 = rt−2, . . ., where F is the
common df of the innovations εt, see (16.52). It is understood that unknown pa-
rameters in the conditional dfs are replaced by estimates based on the returns.
Thus, one is using the predictive dfs (the “estimated conditional dfs”) instead of
the actual conditional dfs in the Rosenblatt transformation. Diebold et al. also
compute the joint density of the transformed random variables when predictive
dfs in place of actual conditional dfs are applied in the transformation.

According to the Rosenblatt transformation, the

yt = Ft(rt|rt−1, rt−2, . . .)

may be regarded as iid (0, 1)–uniform data if the predictive dfs are sufficiently
accurate.

Now, the distributional properties as well as the serial independence can be
analyzed. If, e.g., a test procedure rejects one of these properties then it is likely
that one of our basic conditions is violated (or our estimation procedures in the
GARCH model are not sufficiently accurate).

Diebold et al. argue in favor of exploratory analysis (just in the spirit of larger
parts of the present book):

• ... when rejection occurs, the tests generally provide no guidance as to why.

• ... even if we know that rejection comes from violation of uniformity, we’d
like to know more: What, precisely, is the nature of violation ...

• Is the dependence strong and important, or is iid an adequate approximation,
even if strictly false?

They come to the conclusion: “The nonconstructive nature of tests of iid U(0,1)
behavior, and the nonconstructive nature of related separate tests of iid and U(0,1),
make us eager to adopt more revealing methods of exploratory data analysis.”

The authors analyze the transformed data by means of histograms and sample
autocorrelation functions. The latter tool is also applied to powers of centered data.
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In simulation studies, they generate the data according to a GARCH(1,1)
series (the data generating process) given by

σ̃2
t = 0.01 + 0.13 × R2

t−1 + 0.86 × σ̃2
t−1 (16.62)

which is close to the RM model. Yet, in place of standard normal innovations,
these authors take standardized Student variables with shape parameter α = 6
(six degrees of freedom). For the standardization one has to use the standard
deviation which is equal to

√
3/2 for α = 6, see (1.62) and (16.58).

The Rosenblatt transformation is carried out under the following sequences
of predictive distributions:

• a sequence of iid standard normal or non–normal random variables;

• a GARCH(1,1) series with normal innovations,

• the correct model (with estimated parameters).

Diebold et al. conclude that “our density forecast evaluation procedures clearly
and correctly revealed the strength and weakness of the various density forecasts.”

A real data set of daily S&P returns is also analyzed within the framework
of MA(1)–GARCH(1,1) model (again with Student innovations).

Despite the arguments above, we mention some test procedures which are
employed for testing the simple null–hypothesis of iid (0, 1)–uniform random vari-
ables. One may apply goodness–of–fit tests such as χ2 or Kolmogorov–Smirnov
tests. Likelihood–ratio tests may be applied to a binomially distributed number
of exceedances, see Kupiec23. The Kupiec test can be regarded as a two–sided
extension of the traffic light approach.

The traffic light approach is a binomial test based on the exceedances of the
serial conditional VaR, i.e., marks in time, where the observed losses exceed the
respective predicted VaR. By the Rosenblatt transformation it is ensured that these
exceedances are binomially distributed if the serial conditional df is appropriately
selected. This binomial test is especially relevant for regulatory purposes24.

Another useful reference in the context of testing the conditional modeling is
Berkowitz25.

By statistical tests or explorative means like QQ–plot, PP–plot, histograms or
autocorrelation functions, it is possible to iterate the different steps 1–7 above that

23Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement mod-
els. J. Derivatives 2, 73–84.

24Basel Committee on Banking Supervision: Supervisory Framework for ‘Backtesting’
in conjunction with the Internal Models Approach to Market Risk Capital Requirements,
1996.

25Berkowitz, J. (2001). Testing density forecasts, with applications to risk management,
J. Business & Economic Statistics 19, 465–474.
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led to the respective dfs26. If there is a significant serial correlation identified (or a
significant autocorrelation of the squared returns), the specified GARCH/ARCH–
model can be improved and, in addition, the estimated parameters should be
reviewed (steps 3, 4 and 6 of the loss variable specification steps). If the distribu-
tional properties do not fit well (which again is explored by statistical or graphical
means), the fixed df for the innovations is questionable (step 5). This procedure is
called the “backtesting” of the risk model and should be conducted regularily to
improve stepwise and iteratively the chosen model and its assumptions.

These pragmatic procedures can as well be employed in the case of multi-
variate asset returns and for time varying portfolio weights ht (mentioned at the
beginning of this section).

Validation for the GARCH Modeling by Using Residuals

Fan and Yao [18] analyze daily S&P returns (different from the one used by Diebold
et al.) with a modeling of the innovations by Student distributions. Applying the
conditional likelihood method these authors get the following GARCH(1,1) series
(with estimated parameters)

σ̂2
t = 0.007 + 0.047× r2

t−1 + 0.945× σ̂2
t−1

with an additional estimated shape parameter α = 7.41 of the Student distribution.
The validation for the GARCH modeling is based on the residuals

ε̂s = rs/σ̂s, s ≥ 1. (16.63)

One can expect that the residuals ε̂s have properties as the innovations εs to some
extent.

Fan and Yao apply tests as well as exploratory tools to the residuals and
conclude that Student modeling is more agreeable than the normal one. It is re-
ported that there is no significant autocorrelation in the residual series and its
squared series. These authors also discuss the question of predicting the condi-
tional VaR based on the distribution of R̂t = σ̂tε̂t,α, where ε̂t,α corresponds to a
Student–variable with estimated shape parameter α, and σ̂t is the predictive scale
parameter (with parameters estimated within the GARCH model).

Semiparametric Evaluation of the Conditional Df of Returns

We add some remarks about a predictive df of the return Rt within the GARCH
setup, where the parameters αi and βj are estimated in a correct manner, yet
the validity of the overall parametric modeling of the common innovation df F is
questionable. Then, the residuals ε̂s may still be regarded as observations under

26Wehn, C.S. (2005). Ansätze zur Validierung von Marktrisikomodellen—Systema-
tisierung, Anwendungsmöglichkeiten und Grenzen der Verfahren. Shaker, Aachen.
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F . Therefore, we may estimate F , based on the residuals, by means of the sample
df F̂t−1 or a kernel df F̂t−1,b with bandwidth b > 0 as defined in (2.17). One may
as well apply the extreme value technique to estimate the upper tail of F .

By piecing together the predictive scale parameter σ̂t and the estimates F̂t−1

or F̂t−1,b of F , one gets the predictive dfs F̂t−1(·/σ̂t) or F̂t−1,b(·/σ̂t) of the return
Rt. In order to get a predictive VaR, one has to use quantiles of the predictive
dfs. The approach, using the kernel qf introduced below (2.17), would also be an
option. In conjunction with the kernel df approach, special refined methods of
selecting the quantile are available27 28.

An Empirical Evaluation of the Conditional Df of Returns

Within the ARCH(p) setting we predicted the conditional df Ft(·|rt−1, . . . , rt−p) =
F (·/σ(rt−1, . . . , rt−p)) of the return Rt given Rt−1 = rt−1, . . . , Rt−p = rt−p, where
F is the common df of the innovations εt. A predictive version was provided by
replacing the unknown parameters αi by estimates α̂i based on the past returns.
One may ask whether an empirical approach is possible by estimating the condi-
tional df in a direct manner under certain weak assumptions imposed on the time
series of returns. There is a positive answer if p is small, yet our answer is negative
due to the “curse of dimensionality” for the more interesting case of larger p. For
simplicity, we merely give details for p = 1.

In view of the corresponding property of an ARCH(1)–series, one may as-
sume that the returns Rt satisfy the technical condition of a Markov chain with
stationary transition df F (·|r). In the special case of an ARCH(1)–series we have
F (·|r) = F (·/σ(r)). Now we proceed as in Section 8.2 with the iid condition re-
placed by the Markov condition. Let rt(1), . . . , rt(k), 1 < t(j) < t, be the returns
in the past for which rt(j)−1 is close to the fixed value r. Then, the rt(j) may be
regarded as observations under F (·|r), and the sample df Fk(·|r), based on the
rt(j), as an estimator of the conditional df F (·|r).

27Kozek, A. (2003). On M–estimators and normal quantiles. Ann. Statist. 31, 1170–
1185.

28Jaschke, S., Stahl, G. and Stehle, R. (2006). Value–at–risk forecasts under scrutiny—
the German experience. To appear in Quantitative Finance.



Chapter 17

The Impact of Large Claims
on Actuarial Decisions

co–authored by M. Radtke1

In this chapter, we elaborate on and develop some ideas which were already pre-
sented in Section 1.1. Recall that the expectation of the total claim amount de-
termines the net premium. Based on the net premium, the insurer determines the
total premium that must be paid by the policy holder. We start in Section 17.1
with the calculation of the df, expectation and variance of the total claim amount.

From our viewpoint, reinsurance is of particular interest, because the excesses
of large or catastrophic claim sizes over a certain higher threshold are covered by
the reinsurer. Special names for threshold are limit, priority or retentation level.
One may distinguish between the following reinsurance treaties:

• excess–of–loss (XL) reinsurance, when the reinsurer pays the excess of a
certain fixed limit for individual claim sizes;

• stop–loss reinsurance or total loss insurance, when the reinsurer covers the
excess of a certain limit for the total claim amount of an insurer’s portfolio,

• ECOMOR reinsurance, which is a modification of the XL treaty with the
kth largest individual claim size taken as a random limit (thus, the reinsurer
only pays excesses of the kth largest claim size).

The net premium for the next period can be estimated in a nonparametric
manner by means of the total claim amount of preceding periods. It is suggested
to also employ a parametric approach in the reinsurance business.

1Kölnische Rückversicherung; co–authored the first edition.
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We merely deal with risks in conjunction with the XL reinsurance treaty. The
required modifications for the ECOMOR treaty are apparent from our viewpoint2.
The restriction to the XL treaty is justified by the fact that the ECOMOR treaty
seems to have less practical relevance.

In XL reinsurance, the estimation of the net premium can be done again
within the generalized Pareto (GP) model (Section 17.2) or some other statistical
model such as the Benktander II or truncated converse Weibull model.

The segmentation of a portfolio with respect to the probable maximum loss
(PML) of single risks is dealt with in Section 17.3. The segmentation is necessary
to adjust the tarification to the risks of individual policy holders. We pursue an
empirical and a parametric statistical approach towards this important question.
The parametric one is based on the estimation of the mean of GP distributions.

Another important question is the choice of an adequate initial reserve (cap-
ital) for a portfolio. We will introduce a concept based on finite ruin theory (see,
e.g., the book by Gerber [22]) in which the initial reserve becomes a parameter
which can be estimated by the insurer. For that purpose, one must formulate a
certain criterion which determines the initial reserve in a unique manner: we sug-
gest using a T –year initial reserve for a q × 100% ruin probability. This is the
initial reserve for a portfolio such that ruin occurs within the next T years with
a probability of q × 100%. Reasonable quantities are a time horizon of T = 10
years and a predetermined ruin probability of 1% or 5%. These ideas are pursued
in Section 17.4 within the framework of risk processes. This chapter is concluded
with some remarks about asymptotic ruin theory (Section 17.5).

17.1 Numbers of Claims

and the Total Claim Amount

Let Sn =
∑

i≤n Xi denote the total (aggregate) claim amount of the first n of
the random claims sizes X1, X2, X3, . . . . Then, the total claim amount for a given
period can be written

SN =
∑
i≤N

Xi, (17.1)

where N is the random number of claims occurring within this period. Remember
that the expectation E(SN ) of the total claim amount is the net premium that
must be estimated by the actuary.

The Total Claims DF

The df, expectation and variance of the total claim amount SN will be computed
under the conditions of the homogeneous risk model.

2For details and further references, see, e.g., Kremer, E. (1992). The total claims
amount of largest claims reinsurance revisited. Blätter DGVM 22, 431–439.
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(Homogeneous Risks Model): the claim sizes X1, X2, X3, . . . are iid random
variables with common df F . Additionally, the claim number N and the sequence
X1, X2, X3, . . . are independent.

With calculations similar to those in (1.54) we obtain for the total claims df

P{SN ≤ x} =

∞∑
n=0

P{SN ≤ x, N = n}

=

∞∑
n=0

P{N = n}Fn∗(x), (17.2)

where S0 = 0, F 0∗(x) = I(0 ≤ x) and Fn∗(x) = P{Sn ≤ x} is the n–fold
convolution, cf. page 30, of F again.

Next, the total claims df will be written in a more explicit form for binomial,
Poisson, negative binomial and geometric claim numbers3.

• (Compound Binomial.) If the number N of claims is a binomial random
variable with parameters n and p, then the total claims df is

P{SN ≤ x} =

n∑
k=0

Bn,p{k}F k∗(x). (17.3)

• (Compound Poisson.) If the number N of claims is a Poisson random variable
with parameter λ, then the total claims df is

P{SN ≤ x} =

∞∑
k=0

Pλ{k}F k∗(x). (17.4)

• (Compound Negative Binomial.) If the number N of claims is a negative
binomial random variable with parameters r and p, see (3.31), then the total
claims df is

P{SN ≤ x} =

∞∑
k=0

B−
r,p{k}F k∗(x). (17.5)

• (A Simplified Representation in the Geometric Case.) If r = 1 in the preced-
ing example, then N is geometric. Thus,

P{N = k} = B−
1,p{k}

= p(1 − p)k, k = 0, 1, 2, 3, . . . ,

3Also see Kuon, S., Radtke, M. and Reich, A. (1993). An appropriate way to switch
from the individual risk model to the collective one. Astin Bulletin 23, 23–54.



414 17. The Impact of Large Claims on Actuarial Decisions

for some p with 0 < p < 1, and

P{SN ≤ x} = p

∞∑
k=0

(1 − p)kF k∗(x). (17.6)

In addition, assume that the claim sizes are exponentially distributed with
common df F (x) = 1− e−x/σ, x > 0. Recall from (4.7) that the convolution
F k∗ is a gamma df with density

fk∗(x) = σ−1(x/σ)k−1 exp(−x/σ)/(k − 1)!, x > 0.

Check that

p

1 − p

∞∑
k=1

(1 − p)kfk∗(x) = σ−1pe−px/σ, x ≥ 0,

and, hence, equality also holds for the pertaining dfs. By combining this with
(17.6), one obtains the representation

P{SN ≤ x} = p + (1 − p)(1 − e−px/σ), x ≥ 0, (17.7)

of the total claims df.

Next, we verify that the net premium4—the expectation of the total claim
amount—within the given period is

E(SN ) = E(X)E(N), (17.8)

where X is a random variable with the same distribution as the Xi. Because the
random variables Sn and I(N = n) are independent, we have

E(SN ) =

∞∑
n=0

E
(
SNI(N = n)

)
=

∞∑
n=1

E(Sn)E(I(N = n))

= E(X)

∞∑
n=1

nP{N = n}

= E(X)E(N)

and, thus, (17.8) holds.
The variance of SN may be computed in a similar manner. One obtains

V (SN ) = V (X)E(N) + (EX)2V (N). (17.9)

4For an elementary introduction to premium principles see Straub, E. (1989). Non–Life
Insurance Mathematics. Springer, Berlin.
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17.2 Estimation of the Net Premium

The net premium will be estimated in a nonparametric and a parametric manner
under various conditions.

Nonparametric Estimation of the Net Premium

Assume that the claim arrival times T1, T2, T3, . . . constitute a claim number pro-
cess N(t) =

∑∞
i=1 I(Ti ≤ t), t ≥ 0, which has a constant arrival rate, that is,

E
(
N(t2) − N(t1)

)
= (t2 − t1)E(N(1)), t1 < t2. (17.10)

The estimation of the net premium E(SN ) for the next period will be based on
the total claim amount SN(T ) of the past T years. Under the conditions of the
homogeneous risk model, one obtains according to (17.8),

E(SN ) = E(N(1))E(X),

and, under condition (17.10),

E(SN(T )) = TE(N(1))E(X).

Therefore, SN(T )/T is an unbiased estimator of the net premium E(SN ). The
variance of this estimator can easily be deduced from (17.9).

Example 17.2.1. (Large Norwegian Fire Claim Data.) A data set of large fire claim data
(stored in the file it–fire2.dat) was extensively analyzed by R. Schnieper5.

Table 17.1. Fire claims sizes over 22.0 million NKr from 1983 to 1992.

year claim size year claim size

(in millions) (in millions)

1983 42.719 23.208

1984 105.860 1990 37.772

1986 29.172 34.126

22.654 27.990

1987 61.992 1992 53.472

35.000 36.269

1988 26.891 31.088

1989 25.590 25.907

24.130

5Schnieper, R. (1993). Praktische Erfahrungen mit Grossschadenverteilungen. Mitteil.
Schweiz. Verein. Versicherungsmath., 149–165.
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The original fire claim data over a priority of 10.0 million NKr (Norwegian crowns)
were corrected by means of a certain trend function. The original data are indexed “as if”
they occurred in 1993. Table 17.1 contains the corrected data. In addition, the original
data were made anonymous so that the portfolio cannot be identified (personal commu-
nication).

We estimate the net premium for the excess claim sizes over the given priority of

u = 22 million NKr and another one, namely u = 50 million NKr. In the first case, the

estimation is based on the given 17 claim sizes; in the second case, only 3 claim sizes are

available and, thus, the estimate is less reliable. The nonparametric estimates of the net

premium (XL) are 26.98 and, respectively, 7.13 million NKr.

If the estimation of the net premium must be based on such a small number
of claim sizes as in the preceding example, then a parametric approach should be
employed.

Parametric Estimation of the Net Premium for Excess Claims

Assume that the arrival times and the claim sizes satisfy the conditions of a
Poisson(λ, F ) process, cf. page 248. Notice that λ is the mean number of claims
in a period of unit length and F is the df of the excesses over the priority u. We
assume that F = Wγ,u,σ is a GP df. The mean claim size E(X) is the mean of the
GP df (in the γ–parameterization). The net premium for the next period is

E(SN ) = λmWγ,u,σ ,

where mF again denotes the mean of a df F . Thus, by estimating the parameters
λ, γ and σ one obtains an estimate of the net premium.

Notice that

λN(T ) = N(T )/T

is an estimator of λ = E(N). If γN(T ) and σN(T ) are estimators of the parameters
γ and σ, then the mean

mN(T ) := u +
σN(T )

1 + γN(T )

of the GP df WγN(T),u,σN(T )
is an estimator of the mean claim size E(X) = mWγ,u,σ .

Therefore, λN(T )mN(T ) is an estimator of the net premium E(SN ).

Example 17.2.2. (Continuation of Example 17.2.1.) Apparently, the estimated parameter
for the number of claims within a single year—the number of claims divided by the
number of years—is λ = 1.7.

The parametric estimation of the claim size df was carried out in the GP0, GP1 and
GP models with left endpoint u = 22.0. The estimated parameters are listed in Table
17.2. Necessarily, the nonparametric estimate and the MLE in the exponential model
(GP0) lead exactly to the same net premium.
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Table 17.2. Parametric estimation of the mean claim size (excesses), the net premium
(XL) in millions of NKr and nonparametric estimate of net premium (XL).

γ–Parameterization Mean Claim Size Net Premium (XL)

γ µ σ E(X) E(SN)

nonparametric – – – 26.98

MLE(GP0) 0.0 22.0 15.873 15.87 26.98

Hill(GP1) 0.451 22.0 9.915 18.06 30.70

MLE(GP) 0.254 22.0 11.948 16.02 27.23

Moment(GP) 0.293 22.0 12.060 17.06 29.00

In Fig. 17.1, the sample mean excess functions and the mean excess functions of GP
dfs pertaining to the parametric estimates are plotted. These functions are given within
the range of 20 to 35 millions NKr. First of all we are interested in the question as to
whether the sample mean excess function is sufficiently close to a straight line so that
the GP modeling is acceptable.

claim sizes

25 30 35

15

20

25

Fig. 17.1. Sample mean excess

function and mean excess func-

tions for Hill(GP1) (solid), Mo-

ment(GP) (dashed), MLE(GP)

(dotted) and also MLE(GP0)

(dashed–dotted).

A comparison of the mean excess functions leads to the conclusion that a GP

modeling is acceptable. In addition, the plots speak in favor of the MLE(GP) which,

consequently, will be employed in the following computations.

For small sample sizes as in the preceding example it is desirable to include
further information in the statistical analysis. One possibility is to use Bayesian
analysis as it is outlined in Section 17.6. Another one is to pool data over different
portfolios (as it was also done by Schnieper in the paper cited on page 415). Such
a pooling was also done in the regional frequency analysis (cf. Section 14.4).

Analyzing large Danish fire claim data, McNeil6 justifies the GP modeling for
the upper tail of the claim size distribution and obtains an ML estimate γ = 0.497.

6McNeil, A.J. (1997). Estimating the tails of loss severity distributions using extreme
value theory. ASTIN Bulletin 27, 117–137.
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Estimating the Net Premium for Extraordinarily High Priorities

We regard a priority v > u as extraordinarily high when the number of observed
excesses over v is very small (including the case that no claim size over v has been
observed). This is the typical situation when v is the predetermined retentation
level yet one wants to base the statistical inference on a larger number of claims.
Within the parametric framework, the preceding parametric estimates γN(T ) and
σN(T )—obtained for the priority u—can still be employed to estimate the net
premium for claim sizes over v > u.

Recall from page 249 that the claim arrival times and claim sizes over v

satisfy the conditions of a Poisson
(
λ̃, W

[v]
γ,u,σ

)
process, where λ̃ = λ(1−Wγ,u,σ(v)).

We obtain

λ̃N(T ) =
N(T )

T

(
1 + γN(T )

v − u

σN(T )

)−1/γN(T)

as an estimator of λ̃ = E(N). From (1.45), we found that

W [v]
γ,u,σ = Wγ,v,σ+γ(v−u).

Plugging in the estimators for γ and σ, one obtains by the mean

m̃N(T ) = v +
σN(T ) + γN(T )(v − u)

1 − γN(T )

an estimator of the mean claim size E(X). By combining these estimators, one
obtains λ̃N(T )m̃N(T ) as an estimator of the net premium E(SN ) = E(N)E(X) for
the excesses of the claim sizes over v.

Example 17.2.3. (Continuation of Example 17.2.1.) The estimated parameters of the
GP distribution (based on the 17 claim sizes) for the retentation level of 50 millions are
given in the following table.

Table 17.3. Parametric estimation of the mean claim size (excesses) and the net pre-
mium (XL) in millions of NKr (and nonparametric estimate of net premium (XL)) for
retentation level of 50 million.

γ–Parameterization Mean Claim Size Net Premium (XL)

γ µ σ E(X) E(SN )

nonparametric – – – 7.13

MLE(GP) 0.254 50.0 19.06 25.55 6.90

Notice that the estimate of the shape parameter γ is identical to that of the reten-

tation level u = 22.
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Finally, we remark that there could be a positive trend in the frequency of
large claims. Yet, such phenomena will be only dealt with in conjunction with
partial duration flood series (Section 14.2).

Combining the Nonparametric and Parametric Approach

Nonparametric and parametric calculations can be combined to estimate the claim
size df

• over a fixed priority u in a parametric manner,

• below the priority in a nonparametric manner.

Let F̂n(x; ·) be the sample df based on the claim sizes xi. Let Wγ,µ̃,σ̃ be the

GP df fitted to the upper tail of F̂n(x; ·), cf. (2.35). Both dfs can be pieced together

smoothly because Wγ,µ̃,σ̃(u) = F̂n(x; u). The df

F̂n(x; x)I(x ≤ u) + Wγ,µ̃,σ̃(x)I(x > u)

is such a nonparametric–parametric estimate of the claim size df. Such a procedure
must also be used when the parametric hypothesis is valid only for a threshold
larger than that predetermined by the XL treaty.

Let us review the justification for such an approach. We want to utilize a
nontrivial model for the tail of the distribution, even in regions where possibly
no data are available. A parametric modeling seems to be the only reasonable
approach to that question. On the other hand, there is a greater bulk of data
available in the center of the distribution so that a nonparametric estimate can
have a higher accuracy than a parametric estimate if the parametric modeling is
incorrect.

17.3 Segmentation According to

the Probable Maximum Loss

In this section, we deal with the tarification of policies with respect to the probable
maximum loss (PML)7, especially in the property business with losses caused, e.g.,
by fire, storm and earthquake. Besides a nonparametric estimation of the mean
claim sizes in the different PML groups we pursue a parametric approaches within
GP models.

7Gerathewohl, K. (1976). Rückversicherung: Grundlagen und Praxis. Verlag Ver-
sicherungswirtschaft.
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Mean Claim Sizes in Dependence on the Probable Maximum Loss

It is evident that the loss potential is not homogeneous for all risks of a portfolio,
but it depends on the underlying exposure of the individual risk of a policy. A
particularly important figure is the PML of the individual risk that describes
the maximum single claim size covered by the policy. This value is estimated
by underwriting experts on the basis of additional information of the individual
risk and can be thought of as the upper endpoint of the individual claim size
distribution.

Thus, besides a claim size variable X for single policies, there is a covariate
Z, namely the PML. One is interested in the conditional expectation E(X |z) of
X given Z = z, where z is the PML for a given policy. The aim is to estimate the
conditional mean claim size E(X |z) as a function of the PML z (also see Section
6.6). It is apparent that the estimation of the conditional mean claim size is a
regression problem. The next steps are to estimate the mean claim number and
the mean total claim amount (net premium) in dependence on the PML.

In practice, this is done for each sub–portfolio defined by a PML group of risks
within specified priorities. We introduce a greater variety of methods to estimate
the mean claim size within a PML group. We are particularly interested in PMLs
and claim sizes over a higher priority so that it is tempting to use also parametric
approaches besides empirical ones.

Estimating the Mean Claim Size for a PML Group
by Using Claim Degrees

The ith PML group is determined by those risks with PMLs z between boundaries
pi and pi+1, where

u = p0 < p1 < · · · < pm−1 < pm = ∞

is a predetermined partition. We write ni for the number of claims and xi,j for
the claim sizes belonging to the ith PML group. The PML pertaining to xi,j is
denoted by zi,j . Note that n−1

i

∑
j≤ni

xi,j is an estimate of the mean claim size
within the ith PML group.

In order to make the results in the different PML groups comparable, we
introduce

• the claim degrees xi,j/zi,j, and

• the empirical mean degrees di = n−1
i

∑
j≤ni

xi,j/zi,j.

The mean claim size in the ith group can be estimated by

mi = qidi

where qi = (pi + pi+1)/2 are the centers of the PML intervals. The advantage of
using mean degrees di for estimating the mean claim sizes is that one may smooth
the variation of these values by using, e.g., a polynomial least squares function.
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Example 17.3.1. (A Segmented Fire–Industrial Portfolio.) We deal with a middle–sized
fire–industrial portfolio segmented into 25 PML groups. It is indexed and coded. Each
recorded claim size exceeds u = 100 thousand currency units. A first impression of the
data set (stored in im–pmlfi.dat) can be gained from Table 17.4.

Table 17.4. PMLs and claim sizes in fire–industrial portfolio in thousands.

No. i From pi To pi+1 PML zi,j Claim Size xi,j Claim Degree xi,j/zi,j

1 100 250 . . .

2 250 500 434 123 0.28341

2 250 500 324 254 0.78395

3 500 750 727 534 0.73427

· · · · · ·

25 150000 200000 183186 176 0.00096

25 150000 200000 169666 607 0.00358

25 150000 200000 165994 161 0.00097

The largest claim size of over 37 millions occurred in the 24th PML group. No
claims are recorded in the first PML group. An overview of the data is obtained by the
scatterplot in Fig. 17.2. One recognizes that the recorded claim sizes in the highest PML
group with PMLs between 150 and 200 millions are relatively small.
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Fig. 17.2. Scatterplot of claim

sizes xj plotted against the

PMLs zj .

The special feature of the largest PML group may be caused by a systematic under-
writing effect of these large scaled risks, i.e., the insurance company takes some individual
risk management measures in order to avoid heavy losses.

Another aspect is that these large PML risks normally are composed of a number
of differently located smaller risks—a greater industrial firm with different locations and
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buildings—which produce independently small losses and, therefore, a total loss is less
probable.

In Fig. 17.3, the mean claim degrees di are plotted against the group number i. A
least squares line is added (the mean degrees of the second and third group are omitted
from that analysis).
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Fig. 17.3. Plotting the mean de-

grees di against the group num-

ber i including a least squares

line (dotted).

It is typical that the mean degrees di are decreasing in i. This is partially due to

the fact that for larger PMLs there is a smaller threshold for the claim degrees (therefore,

this evaluation of the mean degree is a length–biased estimation).

Up to now, it is not clarified whether a plotting and smoothing should be
done against the centers of the PML intervals instead of the group numbers. Using
the smoothed mean degrees d′i from the least squares line, one obtains the estimate

m′
i = qid

′
i (17.11)

of the mean claim size in the ith PML group.

Relative Frequencies of Segmented Portfolios
and Estimating the Net Premium in PML Groups

We introduce the relative claim frequencies

fi = ni/ri

where ni is again the number of claims and ri is the number of risks belonging to
the ith PML group.

Example 17.3.2. (Continuation of Example 17.3.1.) In Table 17.5, we list the number of
risks ri and the claim numbers ni for each of the PML groups.
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Table 17.5. Number of risks ri and number of claims ni in ith PML group.

Group Nr. i

2 3 4 5 6 7 8 9 10 11 12 13

ri 2049 1658 1673 2297 1732 2536 1709 1186 1749 1669 1349 726

ni 2 1 3 5 4 14 1 13 22 22 25 36

14 15 16 17 18 19 20 21 22 23 24 25

ri 719 254 194 123 76 61 34 36 24 26 15 28

ni 36 24 22 9 13 19 8 11 5 7 5 9

We also plot the relative frequencies fi = ni/ri of claim numbers against the group
number i and include a least squares line. The increase of the plot can also be explained
as an effect of a length–biased estimation.
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Fig. 17.4. Plotting the relative frequencies fi = ni/ri of claim numbers against the group

number i (including a least squares (dotted) line).

Let m′
i be as in (17.11) and f ′

i the smoothed relative frequencies. Then,
besides

∑ni

j=1 xi,j one obtains by

m′
if

′
iri

an estimate of the net premium for the ith PML group. Subsequently, m′
i will

be replaced by parametric estimates of the mean claim size. These estimates are
either based on claim degrees or on the original claim sizes. The smoothing by
least squares lines is done for the parameters of GP distributions.
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A Parametric Approach

The mean claim size in the ith PML group can be estimated in a parametric
manner. Specify a GP model for the claim degrees or the original claim sizes
in the ith PML group and use the mean of the estimated GP distribution for
estimating the mean claim degree or the mean claim size. For example, the claim
degree in the ith group are between ui = u/pi+1 and 1 and, thus, a beta (GP2)
modeling is possible (with unknown shape parameter αi). Note that the mean of
this beta df is

(1 + ui|αi|/(1 + |αi|).
Use, e.g., the Hill(GP2) estimator for evaluating αi.

A Parametric Nearest Neighbor Approach

The disadvantage of the previous method is that, for some of the PML groups, the
parametric estimation must be based on a very small number of claims. Recall that
the mean claim size within a PML group is related to the conditional expectation
E(X |z) of the claim size X conditioned on the PML Z = z.

The estimation of the conditional expectation E(X |z) can also be based on
the claim sizes yj , j = 1, . . . , k, pertaining to the k PMLs zj closest to z (for an
introduction to the nearest neighbor method see Section 7.2). Then,

mk = k−1
∑
j≤k

yj

is an empirical estimate of the conditional mean claim size E(X |z).
Likewise, the estimation can be carried out within a GP model. For that

purpose, compute estimates γ̂k(z) and σ̂k(z) of the shape and scale parameters
γ(z) and σ(z) based on the yj within a GP model and use the mean of the GP
distribution Wγ̂k(z),u,σ̂k(z) as an estimate of E(X |z).

Example 17.3.3. (Continuation of Example 17.3.1.) For the given fire–industrial claim

sizes, the estimates γ̂k(z) vary around the value 0.9 which corresponds to a Pareto mod-

eling. In the further calculation, we take the constant estimate γ̂k(z) = 0.88, cf. (17.13).

The scale parameters σ(z) of the GP distribution W0.88,u,σ(z) are estimated by means of

MLE’s for unknown scale parameters.

Motivated by Example 17.3.3, we use the simplified modeling of claim size
distributions conditioned on Z = z by means of GP dfs Wγ0,u,σ(z), where γ0 is a
predetermined shape parameter which is independent of z. If σ̂k(z) are estimates
of σ(z) (first, a smoothing may be carried out for the σ̂k(z)), then the mean

m̂i,k = u + σ̂k(qi)/(1 − γ0) (17.12)

of Wγ0,u,σ̂k(qi) is an estimate of the mean claim size in the ith PML group.



17.3. Segmentation According to the Probable Maximum Loss 425

Example 17.3.4. (Continuation of Example 17.3.3.) Our computations only concern the
10th to 24th PML group (thus, we have PMLs from 5 to 150 millions). We tabulate the
estimates m′

i and m̂i,k in (17.11) and (17.12) of the mean claim sizes in the different
groups for k = 30. The smoothing was carried out with least squares lines of degree 2.

Table 17.6. Estimated mean claim sizes m′
i and m̂i,k in ith PML group.

Group Nr. i

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

m′
i 435 569 730 879 982 951 807 635 521 550 808 1380 2352 4747 10139

m̂i,k 1367 1334 1292 1248 1208 1203 1254 1361 1524 1743 2017 2348 2734 3418 4526

Notice the remarkable differences in the total amounts of the estimates as well as

the different variations from group to group. Up to now we can not offer a final conclusion

which of the estimation methods is preferable for the given PML data set.

Further modifications of the presented approaches are possible. For example,
the smoothing of mean degrees, relative frequencies and GP parameters may be
done by fitting least squares lines to the log–values or the estimated GP distribu-
tions may be truncated at the upper boundary of the PML segment.

A Collective Viewpoint

We clarify in which way we determined the mysterious shape parameter γ0 = 0.88
in Example 17.3.3. The collective claim size df for the portfolio (the unconditional
claim size df) is

Fγ,Z(x) =

∫
Wγ,u,σ(z)(x) dFZ (z)

where FZ is the df of Z.
For γ close to 1 and large x, the conditional of Wγ,u,σ(z) can be replaced by

the Pareto df W1,1/γ,0,σ(z)/γ in the α–parameterization (cf. (6.38)). Therefore,

Fγ,Z(x) ≈
∫

W1,1/γ,0,σ(z)/γ(x) dFZ (z) = W1,1/γ,0,σ0
(x) (17.13)

for larger x, where

σ0 =

(∫
σ(z)1/γ dFZ(z)

)γ

/γ.

Thus, a Pareto modeling is adequate for the portfolio if this is justified in the seg-
ments. The value γ = 0.88 in Example 17.3.3 was estimated within this collective
approach.

The standard reference for collective risk theory is the book by Bühlmann
which was mentioned on page 5. Also see the aforementioned article by Kuon,
Radtke and Reich.
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17.4 The Risk Process

and the T–Year Initial Reserve

In Sections 17.1–17.3, the total claim amount SN was evaluated within a certain
fixed period. When the time t varies, we write N(t) and S(t) in place of N and
SN , thereby obtaining the claim number and total claims processes.

Next, we deal with the risk process, which is primarily based on the initial
reserve, denoted by s, and the total claims process. The initial reserve is a variable
of the system which can be chosen by the insurer. Ruin occurs when the risk
process becomes negative.

The primary aim in risk theory is the calculation of the ultimate ruin proba-
bility8 or an upper bound (Lundberg inequality) of that quantity (also see Section
17.5). Knowledge about the ruin probability within a finite time horizon is pre-
ferred by practitioners.

For us the initial reserve is the central parameter that must be estimated by
the actuary. We estimated that initial reserve s such that ruin within a time span
of length T occurs with a probability of q × 100%.

Are Reserves for Single Portfolios of Practical Importance?

To measure the performance of a single portfolio from an economic viewpoint, the
insurer must take two aspects into account, namely

• the profitability, i.e., the expected profit from running the portfolio over a
certain period of time, and

• a certain fluctuation potential

of a portfolio. The profitability can be deduced from the estimated net premium
and the related premium income.

Yet, for an economic evaluation of a portfolio, it is also necessary to quantify
the fluctuations of the results of a portfolio over time. A commonly used approach
is to consider the risk process and derive some initial reserve which is necessary to
avoid a technical ruin in a fixed finite time horizon with a certain probability.

This reserve can be interpreted as the security capital the insurer needs to
carry the collective risk of the portfolio. It is a kind of fluctuation reserve which
ensures that the company does not become ruined over time by possible deviations
from the expected results of the portfolio.

In this context, another important aspect is that risk processes allow compar-
ison of different portfolios not only by their profitability, but also by the required
initial reserves.

8See, e.g., Vylder, de F. (1997). Advanced Risk Theory. Editrans de l’Université Brux-
elles.
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For example, to compare a fire portfolio, a portfolio consisting of natural
perils (like earthquakes and storms) and some type of motor insurance portfolio, it
is obviously necessary to deal with substantially different reserves. By applying this
approach to all business over all lines, the insurance company is able to conduct the
technical solvency process. This also enables the supervisory authority to evaluate
a solvency margin for the liabilities of the company.

Net and Total Premiums

The net premium (at time t) is the expectation E(S(t)) of the total claim amount
S(t). Assuming the independence of the claim size process

X1, X2, X3, . . .

and the claim arrival process
T1, T2, T3, . . . ,

our basic condition in Section 17.1 is valid, namely the independence of the claim
size process X1, X2, X3, . . . and the claim numbers N(t).

We also assume that the claim sizes Xi are identically distributed. Denote
the mean claim size by E(X) again. Recall from (17.8) that the net premium can
be written

E(S(t)) = E(X)E(N(t)).

If the claim number process N(t), t ≥ 0 is a homogeneous Poisson process
with intensity λ, then

E(S(t)) = E(X)λt. (17.14)

If N(t), t ≥ 0 is a Pólya–Lundberg process, then a corresponding formula holds
with λ replaced by ασ.

Assuming that the total premium c(t)—the total amount to be paid by the
policy holders to compensate the future losses—is a multiple of the net premium,
one may write

c(t) = (1 + ρ)E(S(t)), (17.15)

where ρ is a constant called the safety loading.

The Risk Process

We introduce the risk (surplus, reserve) process in the form

U(t) = s + E(S(t)) + b(t) − S(t), t ≥ 0, (17.16)

where the single terms are

• the initial insurer’s reserve s = U(0) ≥ 0 for a given portfolio;

• the net premium E(S(t)) up to time t;
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• the safety function (mean surplus) b(t) at time t which is

– the difference ρE(S(t)) between the total and net premiums (with ρ
denoting the safety loading in (17.15))

– plus the interest income for the accumulated reserve

– minus expenses, taxes and dividends etc.,

• the total claim amount S(t) = SN(t) =
∑

i≤N(t) Xi up to time t.

The mean of the reserve variable U(t) is

E(U(t)) = s + b(t), (17.17)

and, therefore, b(t) is the surplus that can be added (in the mean) to the reserve.
It is clear that the safety function b(t) must be nonnegative.

Special Safety Functions

Insurance mathematics primarily concerns safety functions b(t) = c(t) − E(S(t))
which are the differences between the total premium and the net premium. If c(t)
is given as in (17.15), then

b(t) = ρE(X)E(N(t)) = ρE(X)λt

for a homogeneous Poisson process with intensity λ.
If ρ > 0, then the mean reserve is linearly increasing according to (17.17);

on the other hand, the outstanding result of insurance mathematics is that ruin
occurs with a positive probability (see the next Section 17.5).

Accumulating reserves which are rapidly increasing is perhaps not a desirable
goal. We also suggest to consider safety functions of the form

b(t) = ρE(X)λtβ (17.18)

for Poisson processes with intensity λ (and related functions for other claim number
processes).

Note that the safety exponent β = 1 is taken in the classical framework.
If β ≤ 1/2, then ruin occurs with probability one, if the claim sizes satisfy the
conditions of the law of the iterated logarithm.

Example 17.4.1. (Continuation of Example 17.2.1.) We again consider the claim sizes

over the retentation level of 22 million NKr. For the estimated parameters, several paths

of the risk process—with initial reserve s = 250, safety exponent β = 0.3, 1 and safety

loading ρ = 0.1—are generated and displayed in Fig. 17.5.

Let us summarize what has been achieved up to now:
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Fig. 17.5. Paths of risk processes with β = 0.3 (left) and β = 1 (right).

• we estimated the unknown parameters γ, σ and λ, thereby getting an esti-
mate of the mean claim size E(X) = u + σ/(1 + γ) and of the net premium
λE(X),

• we fixed a safety function ρE(X)λtβ , where the choice of the safety coef-
ficients ρ and β is presumably dictated by the market and other external
conditions.

The knowledge of these constants enables us to simulate risk process paths. This
also yields that any functional parameter of the risk process can be estimated, and
the estimate can be computed by means of the simulation technique. This will be
exemplified in conjunction with the T –year initial reserve for a given q × 100%
ruin probability.

Ruin Times and Ruin Probabilities
within an Infinite und Finite Time Horizon

Ruin occurs at the time when the reserve variable U(t) becomes negative. Let τs

be the ruin time (with the convention that τs = ∞ if no ruin occurs) of the risk
process U(t), t ≥ 0, starting with an initial reserve s = U(0). The ruin time can
be written

τs = inf{t : U(t) < 0}.
Consider the ruin time df

Hs(x) = P{τs ≤ x}
which can be a defected df, since non–ruin may occur with a positive probability.
The ultimate ruin probability

ψ(s) = P{τs < ∞} (17.19)

as a function of the initial reserve s will be dealt with in Section 17.5. This is the
quantity that is studied in ruin theory.
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Subsequently, we examine ruin within a certain finite time horizon T . The
probability of ruin up to time T is

ψT (s) = Hs(T ) = P{τs ≤ T }.

We will calculate such ruin probabilities by simulations9. Apparently, the ultimate
ruin probability ψ(s) is the limit of ψT (s) as T goes to infinity.

One may also deal with early warning times

τs,w = inf{t : U(t) < w}, (17.20)

where w > 0 is an early warning limit for the insurer. Because

U(t) = s + E(S(t)) + b(t) − S(t) < w

if, and only if,
(s − w) + E(S(t)) + b(t) − S(t) < 0,

we have τs,w = τ(s−w), so that this case can be treated within the previous frame-
work.

The T–Year Initial Reserve for a q × 100% Ruin Probability

Choose the initial reserve s such that ruin occurs with a probability q within a time
span of length T , where, e.g., q = 0.01 or q = 0.05 and T = 10 or T = 50 years.
The value s(q, T ) is is called a T –year initial reserve10. Apparently, it depends on
the underlying risk process of the specific portfolio.

Note that s(q, T ) is a solution to the equation ψT (s) = Hs(T ) = q which can
be written as

H−1
s (q) = T. (17.21)

Thus, find the initial reserve s such that the ruin time qf H−1
s evaluated at q is

equal to T . Check that s(q, T ) is a T –year threshold according to the q–quantile
criterion (see page 251) for the process S(t) − (E(S(t)) + b(t)).

A closely related concept would be the mean T –year initial reserve as the
solution to Eτs = T, yet the mean seems to be infinite even for finite ruin time
rvs (for a safety exponent β ≤ 1/2).

The Initial Risk Contour Plot

By employing the simulation technique, one can plot a sample qf as an estimate
of the ruin time qf H−1

s for several initial reserves s. This plot is the initial risk

9Also see Vylder, de F. and Goovaerts, M.J. (1988). Recursive calculation of finite–
time ruin probabilities. Insurance: Mathematics and Economics 7, 1–7.

10Presented at the 35th ASTIN meeting (Cologne, 1996) of the DAV.
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contour plot. Notice that one gets a sample version of a contour plot of the function
s(q, T ).

Now, by employing an iteration procedure, one can calculate the desired
estimate of the T –year initial reserve for a predetermined q×100% ruin probability.
Knowledge about the accuracy of this procedure can be gained by constructing a
parametric bootstrap confidence interval, see Section 3.2.

Example 17.4.2. (Continuation of Example 17.2.1.) We again consider the claim sizes
over the retentation level of 22 million NKr. For the estimated parameters, we compute
the initial reserve contour lines for s = 100, 200, 300. The risk process is taken for the
safety exponent β = 1 and the safety loading ρ = 0.1.

s = 300

s = 200

s = 100

ruin probability

0.1 0.2 0.3

20

40

Fig. 17.6. Initial risk con-

tour plot for the initial re-

serves s = 100, 200, 300 .

From the contour plot, one may deduce that, e.g., the 10–year initial reserve for
the 5% ruin probability is about 250. The estimate obtained by an iteration procedure
is ŝ(0.05, 10) = 225.

We also compute an upper bootstrap confidence bound. First, let us recollect the

bootstrap procedure for this special application. The bootstrapping is based on the

Poisson
(
λ, Gγ,µ,σ

)
process as introduced on page 248, where λ = 1.7, γ = 0.254, µ = 0

and σ = 11.948. Moreover, the sampling time is T = 10. To obtain a bootstrap sample for

the initial reserve, generate the claim number and claim sizes according to the specified

Poisson process and estimate the parameters by means of the MLE(GP). Compute the

initial reserve according to the estimated parameters and store this value in a file. Repeat

this procedure according to the bootstrap sample size. We obtained the 80% and 90%

upper bootstrap confidence bounds 334 and 508. These larger bounds are not surprising

in view of the small sample size of 17 claims (in the mean).

It is apparent that such contour lines can be utilized to simulate a T –year
initial reserve. This can be done by using a StatPascal program11.

11Supplementary details can be found in Reiss, R.–D., Radtke, M. and Thomas, M.
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17.5 Elements of Ruin Theory

Assume that the claim number process is a homogeneous Poisson process with
intensity λ > 0. Assume that the total premium is c(t) = (1 + ρ)E(X)λt, where

ρ > 0 (17.22)

is the safety loading (see (17.15)). We deal with risk processes

U(t) = s + (1 + ρ)E(X)λt − S(t).

Denote the ultimate ruin probability by ψ(s) again, given an initial reserve s.

We refer to the review article by Embrechts and Klüppelberg12 and to [11]
for a detailed account of extremal ruin theory.

Exact Evaluation of Ruin Probabilities

Let F denote the claim size df again. Because 0 < E(X) < ∞, we know from
(2.22) that

∫∞
0

(1−F (y)) dy = E(X), and, hence, h(y) = (1−F (y))/E(X), y ≥ 0,
is a density of a df, say H . Because

1 − H(x) =
1

EX

∫ ∞

x

(1 − F (y)) dy

we see that the survivor function of H can be expressed by tail probabilities (cf.
(2.24)).

Under the present conditions, one obtains

1 − ψ(s) = p

∞∑
k=0

(1 − p)kHk∗(s), s ≥ 0 (17.23)

for the probability of non–ruin13 where

p = ρ/(1 + ρ).

Therefore, one must compute a compound geometric df (cf. (17.6)) in order to
evaluate ruin probabilities.

(1997). The T–year initial reserve. Technical Report, Center for Stochastic Processes,
Chapel Hill.

12Embrechts, P. and Klüppelberg, C. (1993). Some aspects of insurance mathematics.
Theory Probab. Appl. 38, 262–295.

13See, e.g., Hipp, C. and Michel, R. (1990). Risikotheorie: Stochastische Modelle und
Statistische Methoden. Verlag Versicherungswirtschaft, Karlsruhe.
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Alternatively, the ruin probability function may be written in terms of the
survivor functions of Hk∗. We have

ψ(s) = p

∞∑
k=1

(1 − p)k(1 − Hk∗(s)), s ≥ 0. (17.24)

Deduce that ψ(s) tends to zero as s → ∞.
We compute the auxiliary df H for two special cases. In addition, an explicit

representation of the ruin probability function ψ can be given for exponential claim
sizes (Erlang model).

• (Exponential Claim Sizes.) Assume that the claim sizes are exponentially
distributed. More precisely, let F (x) = 1 − e−x/σ, x ≥ 0. Hence, EX = σ.
Then, H(x) = F (x). From (17.7) and (17.23), one obtains

ψ(s) =
1

1 + ρ
exp

(
− ρs

(1 + ρ)E(X)

)
, s ≥ 0. (17.25)

Thus, the ruin probabilities decrease with an exponential rate to zero as the
initial capital s goes to infinity.

• (Pareto Claim Sizes.) If X is a Pareto random variable with df W1,α,µ,σ with
lower endpoint µ + σ > 0 and α > 1, then E(X) = µ + σα/(α − 1) and

1 − H(x) =
σ

E(X)(α − 1)

(x − µ

σ

)−(α−1)

(17.26)

for x ≥ µ + σ.

Lower Bounds of Ruin Probabilities

A simple lower bound of ψ(s) can be easily deduced from (17.24). Because Hk∗ ≤
H(s), one gets

ψ(s) ≥ (1 − H(s))/(1 + ρ). (17.27)

• (Exponential Claim Sizes.) Again, let F (x) = 1 − e−x/σ, x ≥ 0. We have

ψ(s) ≥ exp(−E(X)/s)/(1 + ρ).

We see that the simple lower bound is close to the exact one in (17.25).

• (Pareto Claim Sizes.) From (17.26), we obtain the lower bound

ψ(s) ≥ σ

E(X)(α − 1)(1 + ρ)

(s − µ

σ

)−(α−1)

(17.28)

for s ≥ µ + σ. Thus, in contrast to the preceding examples, one gets an
arithmetic rate of the lower bound as s → ∞.

We refer to the aforementioned book by Hipp and Michel for more refined
lower bounds.
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Upper Bounds: The Lundberg Inequality

An upper bound for the ultimate ruin probability is provided by the Lundberg
inequality. Assume that R > 0 satisfies the equation∫ ∞

0

eRy(1 − F (y)) dy = (1 + ρ)E(X). (17.29)

Such a constant R is called an adjustment coefficient. Then, the inequality

ψ(s) ≤ exp(−Rs), s ≥ 0, (17.30)

holds.

• (Exponential Claim Sizes With Mean µ > 0.) We have

R =
ρ

(1 + ρ)E(X)
(17.31)

and, hence, the upper bound exceeds the exact value in (17.25) by a factor
1 + ρ.

• (Pareto Claim Sizes.) For Pareto claim size dfs the Lundberg inequality is
not satisfied according to (17.28). Notice that the left–hand side of (17.29)
is equal to infinity.

Ruin Probabilities in the Pareto Case Revisited

Direct calculations lead to an upper bound of the ultimate ruin probability ψ(s)
for Pareto claim size dfs W1,α,µ,σ with α > 1. We have14

ψ(s) ≈ σ

E(X)(α − 1)ρ

( s

σ

)−(α−1)

, s → ∞. (17.32)

We see that the lower bound in (17.28) is exact, except of a factor (ρ + 1)/ρ.

17.6 Credibility (Bayesian) Estimation
of the Net Premium

As in Section 17.1 we deal with an excess–of–loss (XL) reinsurance treaty. The
primary aim is to estimate the net premium which is the expectation of the total

14 Bahr von, B. (1975). Asymptotic ruin probabilities when exponential moments do
not exist. Scand. Actuarial J., 6–10.

In greater generality dealt with in Embrechts, P. and Veraverbeke, N. (1982). Esti-
mates for the probability of ruin with special emphasis on the probability of large claims.
Insurance: Mathematics and Economics 1, 55–72.
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claim amount

SN =
∑
i≤N

(Xi − u)

for the next period, where N is the random number of claims occurring in the
period, and the Xi are the random claim exceedances over the priority u.

Throughout, we assume that the exceedance times and the exceedances can
be jointly modeled by a Poisson(λ, F ) process. Thus, the exceedance times are
described by a homogeneous Poisson process with intensity λ > 0, and the ex-
ceedances have the common df F . The net premium is

E(SN ) = λ(mF − u) (17.33)

with mF denoting the mean of F . The estimate of the net premium is based on the
exceedance times and exceedances of the past T years. In contrast to Section 17.1,
we merely deal with the estimation of the net premium within certain Poisson–
Pareto models.

Our attention is focused on the Bayes estimation—that is, the exact credibil-
ity estimation—of the net premium. A justification for a restriction to the exact
credibility estimation was formulated by S.A. Klugman [35], page 64: “Most of the
difficulties ... are due to actuaries having spent the past half–century seeking lin-
ear solutions to the estimation problems. At a time when the cost of computation
was high this was a valuable endeavor. The logical solution is to drop the linear
approximation and seek the true Bayesian solution to the problem. It will have
the smallest mse and provides a variety of other beneficial properties”.

Recall that the mean of a Pareto distribution is equal to infinity if the shape
parameter α is smaller or equal to 1, cf. (1.44). This yields that the support
of a prior distribution must be restricted to parameters α > 1, when the Bayes
estimation of the mean is dealt with. This is the reason that we introduce truncated
gamma distributions in the subsequent lines.

Truncated Gamma Distributions

A gamma distribution, truncated left of q ≥ 0, with shape and reciprocal scale
parameters s > 0 and d > 0, cf. (3.42), serves as a prior. The pertaining df and
density are denoted by Hs,d,q and hs,d,q. One gets gamma distributions if q = 0.
The gamma density hs,d,q, truncated left of q ≥ 0, is given by

hs,d,q(α) = hs,d(α)/
(
1 − Hs,d(q)

)
, α > q. (17.34)

It turns out that truncated gamma densities are conjugate priors for our models.
That is, the posterior densities are of the same type.

Straightforward calculations yield that such a truncated gamma distribution
has the mean

Ms,d,q =
(
s(1 − Hs+1,d(q))

)/(
d(1 − Hs,d(q))

)
(17.35)
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and the variance

Vs,d,q =
s
(
(s + 1)(1 − Hs+2,d(q))(1 − Hs,d(q)) − s(1 − Hs+1,d(q))

2
)

d2(1 − Hs,d(q))2
. (17.36)

These formulas are useful

• to specify a gamma prior with predetermined moments,

• to compute the numerical value of a Bayes estimate.

Estimation of the Net Premium for Poisson Processes
with Pareto GP1(u, µ = 0) Marks

For the modeling of exceedances over the priority u we use dfs within the restricted
Pareto GP1(u, µ = 0) model which are given by

W1,α,0,u(y) = 1 − (y/u)−α, y ≥ u, (17.37)

where α > 0. These dfs are used for the modeling of exceedances over a priority u.
The pertaining excesses have the mean u/(α − 1) and, therefore, the net

premium (cf. (17.33)) is given by

m(λ, α) =
λu

α − 1
, α > 1. (17.38)

This functional can be written in a product form as given in (9.16). We further ap-
ply the concept as developed in Section 9.3. The prior is p(λ, α) = hr,c(λ)hs,d,q(α)
with q > 1. The posterior with respect to the parameter α is p2(α|y) = hs′,d′,q(α)
with s′ and d′ as in (5.6).

One obtains the Bayes estimate

m̂({ti, yi}) = λ∗
km∗

k,q(y) (17.39)

of the net premium m(λ, α) with λ∗
k as in (3.53) and

m∗
k,q(y) =

∫ ∞

q

u

α − 1
hs′,d′,q(α) dα. (17.40)

The integral must be numerically evaluated. Notice that m∗
k,q(y) is a Bayes esti-

mate of the mean of excesses over u.

Estimation of the Net Premium for Poisson Processes
with Pareto GP1(u) Marks

In contrast to the preceding lines, we assume that the exceedances over the priority
u are distributed according to a Pareto df

Fα,η(y) = 1 −
(
1 +

y − u

ηu

)−α

, y ≥ u, (17.41)
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where α, η > 0, cf. (5.9). Thus, we deal with the full Pareto model in the (α, η)–
parameterization. One obtains the restricted GP1(u, µ = 0) model if η = 1.

The excesses have the mean uη/(α − 1) and, therefore, the net premium is
given by

m(λ, α, η) =
λuη

α − 1
, α > 1. (17.42)

The prior is p(λ, α, η) = hr,c(λ)hs,d,q(α)f(η) with q > 1, and f is another probabil-
ity density on the positive half–line. The posterior with respect to the parameter
vector (α, η) is p2(α, η|y) = hs′,d′(η),q(α)f̃(η) with s′, d′(η) and f̃(η) as in (5.13)
and (5.14).

One obtains the Bayes estimate

m̃({ti, yi}) = λ∗
km∗∗

k,q(y) (17.43)

of the net premium m(λ, α, η) with λ∗
k as in (3.53) and

m∗∗
k,q(y) =

∫ ∞

0

η
( ∫ ∞

q

u

α − 1
hs′,d′(η),q(α) dα

)
f̃(η) dη. (17.44)

Estimation of Parameters

We also shortly note the estimates of the parameters α and η if a prior hs,d,q is
taken for α.

• The restricted Pareto model GP1(u, µ = 0): from (17.35) deduce that the
Bayes estimate of α > q ≥ 0 is

α∗
k,q(y) = α∗

k(y)
1 − Hs′+1,d′(q)

1 − Hs′,d′(q)
, (17.45)

where α∗
k(y) is the Bayes estimate in the case of the gamma prior (with

q = 0; see (5.7)). Notice that α∗
k,0(y) = α∗

k(y).

• The full Pareto model GP1∗(u): extending the formulas in (5.15) and (5.16),
one gets

α∗
k,q(y) =

∫
s′

d′(η)

(1 − Hs′+1,d′(η)(q))

(1 − Hs′,d′(η)(q))
f̃(η) dη, q ≥ 0, (17.46)

and, independently of q, η∗
k,q(y) = η∗

k(y) as Bayes estimates of α > q ≥ 0
and η > 0.
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Chapter 18

Material Sciences

In Section 18.1 the blocks method (in other words, annual maxima or Gumbel
method) is applied to corrosion engineering. We are particularly interested in the
service life of items exposed to corrosion. Our primary sources are the book by
Kowaka et al., [37] and a review article by T. Shibata1.

Section 18.2 concerns a stereological problem in conjunction with extreme
value analysis. We are interested in extremes of 3–dimensional quantities of which
we merely observe a 2-dimensional image.

18.1 Extremal Corrosion Engineering

In corrosion analysis the role of time periods is played by several units such as
steel tanks. One can also deal with a single area which is divided into T subareas
of the same size. This corresponds to dividing a given period into T blocks.

For each of the units or subareas, which are exposed to corrosion, we observe
the maximum pit depth (or, e.g., a measurement concerning stress corrosion crack-
ing), and thus get a data set y1, . . . , yT of maxima. In the statistical modeling we
get random variables Y1, . . . , YT which are distributed according to a Gumbel df
G0,µ,σ or, in general, according to an extreme value df Gγ,µ,σ.

The unified extreme value model was introduced by Laycock et al.2 in the
field of corrosion analysis.

Assume that there are T units or an area of size T exposed to corrosion. Our
final goal is to determine the T –unit service life which is the period of x(T, l) years
such that the T –unit depth u(T ) for x(T, l) years is equal to an allowable margin
of thinning l.

1Shibata, T. Application of extreme value statistics to corrosion. In [15], Vol. II, 327–
336.

2Laycock, P.J., Cottis, R.A. and Scarf, P.A. (1990). Extrapolation of extreme pit
depths in space and time. J. Electrochem. Soc. 137, 64–69.
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Recall from page 6 that the T –unit pit depth u(T ) for a given time period of
length x is the level once exceeded on the average.

Estimation of a T–Unit Depth

Let Yi be the maximum pit depth of the ith unit within the given period of x
years. The T –unit depth u(T ) is the solution to the equation

E

(∑
i≤T

I(Yi ≥ u)

)
= 1

which are the quantiles

u(T ) = G−1
0,µ,σ(1 − 1/T )

or

u(T ) = G−1
γ,µ,σ(1 − 1/T )

corresponding to (1.13).
It is evident that the T –unit depth also depends on the service time x. Occa-

sionally, we also write u(T, x) in place of u(T ). Necessarily, u(T, x) is an increasing
function in x.

The value u(T ) is evaluated by estimating the parameters µ, σ or γ, µ and σ
as it is done in Chapter 4 within the Gumbel EV0 model or the full extreme value
model EV.

Example 18.1.1. (Maximum Pit Depths of Steel Tanks.) The maximum pit depths (in
mm) of steel tanks exposed to cyclic dry/wet (by sea water) conditions are measured
after 4 years of service (stored in gu–pit04.dat). This data set is taken from Kowaka et
al., [37], Table 18.13.

These authors estimate a Gumbel distribution with location and scale parameters
µ = 1.03 and σ = 0.37 by visual inspection of a Gumbel probability paper. The 100–unit
depth u(100) is estimated as 2.76mm.

Table 18.1. Maximum pit depth measured in mm after 4 years of service.

0.3 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6

0.7 0.7 0.8 1.0 1.1 1.2 1.3 1.4 1.6 2.0

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6 2.1

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6 2.3

0.7 0.8 0.9 1.0 1.1 1.3 1.4 1.5 1.6 2.5

3With reference given to Tsuge, H. (1983). Archive of 51st Corrosion Symposium,
JSCE, page 16.
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This result is confirmed by the MLE(EV0). One gets a Gumbel distribution with location

and scale parameters µ = 1.00 and σ = 0.36. The adequacy is also confirmed by the

MLE(EV) and other diagnostic tools. The estimate for the 100–unit depth u(100) is

2.65mm.

Varying the Service Time

Subsequently, we compute the T –unit depths for different years of service. We
write u(T, x) in place of u(T ) to emphasize the dependence of the T –unit depth
from the service time x.

In addition to the data analyzed in Example 18.1.1 for a service time of x = 4
years, we also deal with data for service times x = 6, 12.

Example 18.1.2. (Continuation of Example 18.1.1 About Maximum Pit Depths of Steel
Tanks.) We also analyze a sample of 32 maximum pit depths after a service time of 6
years (stored in gu–pit06.dat) and a sample of 30 maximum pit depths after a service
time of 12 years (stored in gu–pit12.dat). These data sets are also taken from Kowaka et
al. [37]. We compare the estimates obtained by the MLE(EV0) with those in [37].

In the subsequent table we compare the estimated Gumbel parameters µ, σ and the
pertaining 100–unit depths u(100) in [37] with the values obtained by the MLE(EV0). The
corresponding parameters of the MLE(EV) are added. Recall that Gumbel distributions
possess the shape parameter γ = 0.

Table 18.2. Estimated EV parameters and 100–unit pit depths.

Estimated EV0/EV parameters and 100–unit depths

Kowaka et al. MLE(EV0) MLE(EV)

x 4 6 12 4 6 12 4 6 12

γ(x) 0 0 0 0 0 0 −0.07 −0.07 0.38

µ(x) 1.03 1.16 1.43 1.00 1.17 1.58 1.01 1.19 1.40

σ(x) 0.37 0.49 1.23 0.36 0.41 0.94 0.36 0.42 0.79

u(100, x) 2.76 3.4 7.1 2.65 3.1 6.0 2.43 2.82 11.2

One recognizes a greater difference of the estimated parameters in the Gumbel
model for the service time of 12 years. Within the EV–model one gets a shape param-
eter γ = 0.38, which indicates a heavier upper tail of the distribution. Thus, the shape
parameter γ significantly deviates from γ = 0 which is the shape parameter for Gumbel
distributions.

Whereas the Gumbel distribution—with the larger scale parameter σ = 1.23 of
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Kowaka et al.—catches the heavier upper tail it does not fit to the lower data. Thus,

these authors locally fitted a Gumbel distribution to the upper extremes of the maxima

y1, . . . , yT .

The Service Life Criterion

Based on different T –unit depths u(T, xk) we select the service life x(T, l) which
is the number of years x such that the T –unit depth u(T, x) is equal to an allow-
able margin of thinning l. Thus, given T units exposed to corrosion there is one
maximum pit depths which will exceed the depth of the amount l within x(T, l)
years on the average.

Example 18.1.3. (Continuation of the Preceding Examples.) The margin of thinning is
taken equal to l = 5mm in the preceding example. By fitting a linear and a quadratic
regression line to the 100–unit depths u(100, x) based on the MLE(EV) estimates for the
three different years x = 4, 6, 12, one obtains estimates of x̂(100, 5) = 6.9 and x̂(100, 5) =
8.5 years for the service life compared to x̂(100, 5) = 8.2 years which was estimated by
Kawata et al.
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Fig. 18.1. 100–unit depths plotted

against years, fitted linear (dashed)

and quadratic (solid) least squares

lines, constant (dotted) line with

value equal to the margin of thin-

ning l = 5mm.

We merely dealt with the blocks method, yet one could also apply the peaks–
over–threshold (pot) method. Then, one should take care of a possible clustering
of larger pit depths. This question is discussed by Scarf and Laycock4. A global
modeling of pit depth by means of log–normal distributions may be found in a
paper by Komukai and Kasahara5.

4Scarf, P.A. and Laycock, P.J. (1994). Applications of extreme value theory in corro-
sion engineering. In: [15], Vol. II, 313–320.

5Komukai, S. and Kasahara, K. (1994). On the requirements for a reasonable extreme
value prediction of maximum pits on hot–water–supply copper tubing. In: [15], Vol. II,
321–326.
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18.2 Stereology of Extremes

co–authored by E. Kaufmann6

This section is devoted to the well–known Wicksell7 “corpuscle problem” which
concerns the size and number of inclusions in a given material (such as particles
of oxides in a piece of steel). If we assume that the particles are spheres, then the
size is determined by the radius R which is regarded as a random variable. Besides
the df F of R one is interested in the number of particles.

Information about the spheres can be gained by those which become visible
on the surface area. On a plane surface one observes circles which are determined
by the radius S with a df which is denoted by W (F ). This df is addressed as the
Wicksell transformation of F . Drawing conclusions about the initial 3–dimensional
objects from the observable 2–dimensional ones is a genuine problem in stereology.
Our attention will be focused on the modeling of the upper tails of F and W (F ).

The Wicksell Transformation

At the beginning we compute the Wicksel transformation W (F ) as a conditional
df of the radius variable S and provide different representations.

A sphere in the Euclidean space is determined by the coordinates x, y, z of
the center and the radius r. We assume that 0 ≤ z ≤ T . The sphere intersects the
x, y–plane if r > z. In that case one observes a circle in the x, y–plane with radius
s =

√
r2 − z2.

(x,y,0)

(x,y,z)
r

s

Fig. 18.2. Computation of circle radius s.

Within the stochastical formulation we assume that the random radius R > 0
and the random coordinate Z are independent, R has the df F , and Z is uniformly
distributed on [0, T ]. Thus, S =

√
R2 − Z2 is the random radius of the circle in

the x, y–plane under the condition that S2 = R2 − Z2 > 0; that is, there is an
intersection with the x, y–plane.

6University of Siegen.
7Wicksell, S.D. (1925). The corpuscle problem I. Biometrika 17, 84–99, and Wicksell,

S.D. (1926). The corpuscle problem II. Biometrika 18, 152–172.
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We compute the survivor probability P{S > s} for s > 0 and the conditional
survivor function

WT (F )(s) = P (S > s|S > 0).

Applying results for conditional distributions, namely (8.4) and (8.13), one
gets

P{S > s} =

∫
P
{
R >

√
s2 + z2

}
dL(Z)(z)

=
1

T

∫ T

0

F
(√

s2 + z2
)
dz,

where F is again the survivor function of F . Therefore,

WT (F )(s) =

∫ T

0
F
(√

s2 + z2
)
dz∫ T

0 F(z) dz
. (18.1)

If
∫∞
0

F(z) dz < ∞, then the “tail probability” formula (2.24) yields

WT (F )(s) →T→∞

∫∞
0

F
(√

s2 + z2
)
dz∫∞

0
z dF (z)

=:
H(s)

H(0)
= W (F )(s), (18.2)

where the df W (F ) is the Wicksell transformation of F .

Alternative Representations of the Wicksell Transformation

We add alternative representations of the numerator H(s). Applying the substitu-
tion rule and, in a second step, writing F(z) as an integral with respect to F and
interchanging the order of integration one gets

H(s) =

∫ ∞

s

(
z2 − s2

)−1/2
zF(z) dz (18.3)

=

∫ ∞

s

√
r2 − s2 dF (r). (18.4)

With the help of (18.4) verify that H(s) =
∫∞

s h(z) dz with

h(s) = s

∫ ∞

s

(
r2 − s2

)−1/2
dF (r). (18.5)

Hence, h is a density pertaining to H . This also yields that w(F ) := h/H(0) is a
density of the Wicksell transformation W (F ).
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Poisson Process Representations

In the preceding lines we merely considered the radii of the spheres and circles.
Next, we include the centers and the number of occurances. These quantities are
jointly described by a marked Poisson process. Thus, our 2–step approach resem-
bles that employed for exceedances, where we first introduced the exceedance df
and, later on, the Poisson process of exceedances.

The centers of the spheres are regarded as points of a homogeneous Poisson
process with intensity c > 0. This is a Poisson process with intensity measure cλ3

(see the end of Section 9.5), where λ3 denotes the 3–dimensional Lebesgue measure.
Secondly, let F be the df of the sphere radii which are regarded as marks. Then, a
joint statistical model for the inclusions—for centers as well as radii—is given by
a Poisson(cλ3, F ) process with unknown intensity c and unknown df F .

The intersections with the x, y–plane, that is, the centers and radii of the cir-
cles, constitute a marked homogeneous Poisson(2cH(0)λ2, W (F )) process, where
W (F ) is the Wicksell transformation of F and H(0) is the constant in (18.2). The
new marked Poisson process is derived from the initial one by

• a truncation procedure, because only spheres contribute to the new process
that intersect the plane,

• a transformation, due to the fact that circle coordinates instead of the orig-
inal sphere coordinates are observed.

In practice, the surface area is a subset A in the x, y–plane with finite measure
λ2(A) < ∞. In addition, to analyze the size distribution of the circles, respectively,
of the spheres, one merely has to consider the marginal Poisson process of circle
radii. Under the postulated homogeneity, the circle centers provide no information
about the radius df.

The intensity measure ν of the marginal Poisson process pertaining to the
circle radii is given by the mean value representation

ν(s,∞) = 2cλ2(A)H(0)W (F )(s)

= 2cλ2(A)

∫ ∞

0

F(
√

s2 + z2) dz, (18.6)

where the latter equation follows from (18.2).
Hence, the circle radii may be treated as a random number N of independent

and identically distributed random variables S1, S2, . . . with common df W (F ),
where N is a Poisson random variable with parameter 2cλ2(A)H(0) which is in-
dependent of the Si.

The Art of Stereological Extreme Value Analysis

In the sequel, we study the relationship between the tails of radius distributions
of spheres and circles. The modeling of the upper tail of the observable circle radii
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by means of GP dfs can regarded as business as usual. Our primary aim is to find
a theoretical justification for a GP modeling for the sphere radii. This will be done
by comparing

• max/pot–domains of attractions,

• the validity of certain von Mises conditions.

In addition, a counterexample shows that a GP upper tail for the circle radii does
not necessarily justify such a modeling for the sphere radii.

Max–Domains of Attraction

We impose conditions on F which imply that the Wicksell transformation W (F )
belongs to the max–domain of attraction of an EV df G; in short W (F ) ∈ D(G).

First we provide some details and a proof in the special case of Fréchet dfs
G1,α. Assume that F ∈ D(G1,α). From Section 1.3 we know that this condition
holds if, and only if, the survivor function F of the sphere radius has a regularly
varying tail with index −α < 0; that is, for each t > 0 we have F(st)/F(s) → t−α

as s → ∞.

By substitution and employing the letter property, one gets∫ ∞

0

F (
√

s2 + z2) dz = s

∫ ∞

0

F(s
√

1 + y2) dy

∼ sF(s)

∫ ∞

0

(1 + y2)−α/2 dy

as s → ∞, if α > 1 (otherwise, the latter integral is infinite). Combining this with
(18.2) one gets that W (F ) is a regularly varying function with index 1−α. Hence,
W (F ) ∈ D(G1,α−1), if α > 1.

Such questions were treated in the article by Dress and Reiss, cited on page
33, in greater generality, with the preceding result as a special case. We have
W (F ) ∈ D(Gi,β(α)), if F ∈ D(Gi,α), for i = 1, 2, with the shape parameters β(α)
given by

β(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α − 1 i = 1, α > 1,

if

α − 1/2 i = 2, α < 0.

(18.7)

In the Gumbel case we have W (F ) ∈ D(G0), if F ∈ D(G0). It is remarkable that
we do not get any result for W (F ) with −1/2 ≤ β(α) < 0.
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Von Mises Conditions

If the df F has a density f which is positive in a left neighborhood of ω(F ), then
the following von Mises conditions are sufficient for F to belong to the domain of
attraction of an EV df Gi,α. We assume that

M(0) :

∫ ω(F )

t

(1 − F (u)) du < ∞ for some t < ω(F ),

lim
t↑ω(F )

f(t)

∫ ω(F )

t

(1 − F (u)) du/(1 − F (t))2 = 1;

M(1, α) : ω(F ) = ∞, lim
t↑∞

tf(t)/(1 − F (t)) = α;

M(2, α) : ω(F ) < ∞, lim
t↑ω(F )

((ω(F ) − t)f(t)/(1 − F (t)) = −α.

We also write M(0, α) instead of M(0). For a different von Mises condition, which
involves the 1st derivative of the density f , we refer to (2.32).

If F satisfies condition M(i, α), then F ∈ D(Gi,α). The preceding conditions
also entail the convergence in terms of the variational and Hellinger distances, see
[42]. Under the restrictions on α given in (18.7), it was proved by Drees and Reiss
that W (F ) fulfills M(i, β(α)), if F fulfills M(i, α).

Most important, from our viewpoint, is the following converse result: if β(α) <
−1/2 or β(α) > 0 and W (F ) fulfills M(i, β(α)), then F is in the domain of attrac-
tion of Gi,α. Therefore, if we come to the conclusion that the statistical modeling
of circle radii by means of a GP df with the shape parameter β(α) < −1/2 or
β(α) > 0 is appropriate, then we may assume that the upper tail of F is of GP
type with shape parameter α.

The preceding results were extended to ellipsoidal particles by Hlubinka8,
where the particles (except the positions) are determined by a bivariate random
vector.

A Counterexample

We focus our attention on the case i = 2 and β(α) = −1/2. We provide an
example of a Wicksell transformation W (F ), where W (F ) fulfills the von Mises
condition M(2,−1/2), yet F is not in the max–domain of attraction of an EV
df. More precisely, we show that W (F ) satisfies a Weiss condition (belongs to a
δ-neighborhood of a GP df), yet F is a df with the total mass concentrated in a
single point (and, therefore, does not belong to the domain of attraction of an EV

8Hlubinka, D. (2003). Stereology of extremes; shape factor of spheroids. Extremes 6,
5–24.
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df). Therefore, it is not self–evident to employ a GP modeling for the upper tail
of F , if such a modeling is accepted for W (F ).

If the size of the inclusions is fix, say s0 > 0, then one can deduce the
density of the Wicksell transformation W (F ) from (18.5). Denote again by w(F )
the density of W (F ). We have

w(F )(s) =
h(s)

H(0)
=

s

s0

√
s2
0 − s2

= w2,−1/2,µ,σ(s)
(
1 + O

(
W2,−1/2,µ,σ(s)

)2)
(18.8)

for 0 < s < s0, where µ = s0 and σ = s0/2.

Wicksell Transformation and Exceedance Dfs

There is a nice relationship

W (F )[u] = W (F [u])[u] (18.9)

between exceedance dfs of F and the pertaining Wicksell transformations W (F ),
due to Anderson and Coles9. The proof is straightforward; we have

W (F )[u](s) = 1 − H(s)

H(u)

= 1 −
∫∞

s

√
r2 − s2 dF (r)∫∞

u

√
r2 − u2 dF (r)

= 1 −
∫∞

s

√
r2 − s2 dF [u](r)∫∞

u

√
r2 − u2 dF [u](r)

= W (F [u])[u](s), s ≥ u.

This result was applied by Anderson and Coles to estimate the upper tail of the
initial df F based on exceedances of circle radii (see below).

Statistical Inference

In the article by Drees and Reiss, the estimation of the initial df F was treated
in several steps. Based on the exceedances of circle radii over some threshold, a
GP density with shape parameter β̂ is fitted to the upper tail of the circle radius
density w(F ). This tail estimator is combined with a nonparametric estimator of
the central part of w(F ) by the piecing together method. In a second step, an

estimate f̂ of the sphere radius density f is computed by applying a smoothed

9Anderson, C.W. and Coles, S.G. (2002). The largest inclusions in a piece of steel.
Extremes 5, 237–252.
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expectation maximization (EMS) algorithm. Notice that the EMS algorithm is
one of the common methods within the framework of ill–posed inverse problems
such as the Wicksell corpuscle problem. Finally, the upper tail of the estimated
density f̂ is replaced by a GP density with shape parameter α̂ as established in
(18.7). Likewise, one could generally investigate extremes in inverse problems.

An alternative estimation procedure is employed by Anderson and Coles.
Again one assumes that a GP modeling for the upper tail of F is valid. In the
subsequent lines, we make use of the γ–parametrization of GP dfs because then
the left endpoint of the support is just the location parameter. Replacing F [u] by
a GP df Wγ,u,σ on the right–hand side of (18.9) one gets the truncated Wick-
sell transformation W (Wγ,u,σ)[u]. Notice that this df is the exceedance df for the
pertaining circle radii above the threshold u. Moreover, this df has the density

w(Wγ,u,σ)[u](s) =
s
∫∞

s (r2 − s2)−1/2 dWγ,u,σ(r)∫∞
u

√
r2 − u2 dWγ,u,σ(r)

, s ≥ u.

Now estimate the parameters γ and σ by applying the ML method to the circle
radii exceedances.

Additional Literature on Maximum Inclusion Sizes

Applied work about the “maximum size of inclusions” started with articles by
Murakami and Usuki10 and Murakami et al.11. In that context, we also refer to a
series of articles by Shi, Atkinson, Sellars and Anderson; see, e.g., the article by
J.R. Yates et al.12 and the references therein.

Further results about stereological extremes may be found in articles by Taka-
hashi and Sibuya13. Notable is also a recent, theoretically oriented review about
stereological particle analysis by Kötzer14 which includes a longer list of references
to the stereological literature.

10Murakami, Y. and Usuki, H. (1989). Quantitative evaluation of effects of non–metallic
inclusions on fatigue strength of high strength steel II: fatigue limit evaluation based on
statistics for extreme values of inclusion size. Int. J. Fatigue 11, 299–307.

11Murakami, Y., Uemura, Y. and Kawakami, K. (1989). Some problems in the applica-
tion of statistics extreme values to the estimation of the maximum size of non–metallic
inclusions in metals. Transactions Japan Soc. Mechan. Engineering 55, 58–62.

12Yates, J.R., Shi, G., Atkinson, H.V., Sellars, C.M. and Anderson, C.W. (2002). Fa-
tigue tolerant design of steel components based on the size of large inclusions. Fatigue
Fract. Engng. Mater. Struct. 25, 667–676.

13Takahashi, R. and Sibuya, M. (1996). The maximum size of the planar sections of
random sheres and its application to metallurgy. Ann. Inst. Statist. Math. 48, 127–144,
and Takahashi, R. and Sibuya, M. (1998). Prediction of the maximum size in Wicksell’s
corpuscle problem. Ann. Inst. Statist. Math. 50, 361–377.

14Kötzer, S. (2006). Geometric identities in stereological particle analysis. Image Anal.
Stereol. 25, 63–74.



Chapter 19

Life Science

co–authored by E. Kaufmann1

In Section 19.1 we deal with the question whether human life spans are limited or
unlimited. The celebrated Gompertz law will be central for our considerations. We
particularly apply the results of Section 6.5, concerning penultimate distributions,
to this question. Section 19.2 concerns the prediction of life tables by adopting a
regression approach.

19.1 About the Longevity of Humans

We discuss the question whether the right endpoint of the life span df F of a pop-
ulation is infinite, in other words, that the life span is unlimited. This is primarily
done within the framework of extreme value analysis, yet we also fit Gompertz
and logistic distributions to extreme life spans.

Gompertz and Logistic Laws

The Gompertz distribution is the classical life span distribution. The Gompertz law
(called Gompertz–Makeham formula by Gumbel) postulates a hazard (mortality)
rate h(x) = aebx.

Recall from page 54 that the converse Gumbel df G̃0,µ,σ, called Gompertz df,
is the only df which satisfies the Gompertz law with µ = (log(b/a)/b and σ = 1/b.
A theoretical explanation for the adequacy of the Gompertz distribution, based
on the cellular aging phenomena of limited replicability and deceleration of the

1University of Siegen.
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process of mitosis, may be found in an article by Abernethy2.

Example 19.1.1. (Extreme Life Spans.) Our analysis concerns extreme life spans of
women born before and around the year 1900 and later living in West Germany.

The given data are the ages of female persons at death in West–Germany in the
year 19933. None of the persons died at an age older than 111 years. The analysis is
based on the ages at death of 90 or older.

Table 19.1. Frequencies of life spans (in years).

life span 90 91 92 93 94 95 96 97 98 99 100

frequency 12079 10273 8349 6449 5221 3871 2880 1987 1383 940 579

life span 101 102 103 104 105 106 107 108 109 110 111

frequency 340 207 95 63 36 16 9 4 1 1 1

Thus, our analysis is based on a subgroup of our target population described at
the beginning. Those who died before 1993 and were alive after 1993 are not included
in the study. Yet, the extreme life spans within the subgroup are governed by the same
distribution as those of the entire population under the condition that the birth rate
was nearly homogeneous during the relevant period. This idea can be made rigorous
by a thinning argument within the point process framework, see [43], pages 68 and 69.
For that purpose, consider uniformly distributed dates of birth Vi over the relevant time
period and add life spans Xi. The thinning random variable is defined by Ui = I(1993 ≤
Vi + Xi < 1994).

A Gompertz density with location and scale parameters µ = 83.0 and σ = 9.8 fits

well to the histogram of the life span data above 95 years, see Fig. 19.1.

If the Gompertz df is accepted, then life span is unlimited. This is in agree-
ment with recent experiments which showed (see, e.g., Carey et al.4 about Mediter-
ranean fruit flies and the article by Kolata5) that the average life span and the
oldest ages strongly depend on the living conditions.

The insight gained from experiments and from a series of data sets may be
summarized by the statement that “the studies are consistently failing to show
any evidence for a pre–programmed limit to human life span,” as nicely expressed

2Abernethy, J. (1998). Gompertzian mortality originates in the winding–down of the
mitotic clock. J. Theoretical Biology 192, 419–435.

3Stored in the file um–lspge.dat (communicated by G.R. Heer, Federal Statistical
Office).

4Carey, J.R., Liedo, P., Orozco, D. and Vaupel, J.W. (1992). Slowing of mortality rates
at older ages in large medfly cohorts. Science 258, 457–461.

5Kolata, G., New views on life spans alter forecasts on elderly. The New York Times,
Nov. 16, 1992.
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by J.W. Vaupel (cited by Kolata).
Thatcher et al.6 suggest to fit a logistic distribution to ages at death between

80 and 120. Such a modeling is very natural in view of the change in the population
which can be observed around 95 years, and the fact that the logistic distribution is
a certain mixture of Gompertz distributions with respect to a gamma distribution,
cf. (4.11). The hazard function of a (converse) logistic df is given by

h(x) = aebx/(1 + αebx)

with b = 1/σ, α = β and a = rβ/σ.
It was observed by Kannisto7 and Himes et al.8 that there is already a close

fit to data in the special case where a = α which yields r = σ =: s. These
distributions can be represented by the dfs

Fs,µ(x) = 1 − (1 + exp((x − µ)/s))−s

which have the densities

fs,µ(x) = exp((x − µ)/s)/(1 + exp((x − µ)/s))1+s,

where µ is a location parameter. In Fig. 19.1 (right) we give an illustration based
on the same data as in Example 19.1.1.
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Fig. 19.1. Histogram of life span data and (left) Gompertz density with parameters

µ = 83, σ = 9.8, (right) logistic density fs,µ with parameters s = 7.25, µ = 98.6.

6Thatcher, A.R., Kannisto, V. and Vaupel, J.W.. (1998). The Force of Mortality at
Ages 80 to 120. Odense University Press.

7Kannisto, V. (1992). Presentation at a workshop on old age mortality at Odense
University.

8Himes, C.L., Preston, S.H. and Condran, G.A. (1994). A relational model of mortality
at older ages in low mortality countries. Population Studies 48, 269–291.
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For a logistic df there is again an infinite upper endpoint. In addition, these
dfs—just as the Gompertz dfs—belong to the pot domain of attraction of the
exponential df which is a special case of a generalized Pareto (GP) df. In the
subsequent lines, the statistical inference is done in the GP model.

Analyzing the Upper Tail of the Life Span Distribution
Within the Generalized Pareto Model

Aarssen and de Haan9 applied the standard pot–method to Dutch life span data
(stored in um–lspdu.dat) and estimated a negative shape parameter. This yields
that the estimated generalized Pareto (GP) df has a finite upper limit. These
authors go one step further and compute confidence intervals for the upper limit.

In the subsequent example we also make use of the standard pot–method.

Example 19.1.2. (Continuation of Example 19.1.1.) The sample mean excess function
is close to a straight line for life spans exceeding 95 years; there is a stronger deviation
from this line below 95.
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Fig. 19.2. (left.) Sample mean excess function. (right.) Sample hazard function.

The form of the mean excess function supports the conjecture that there is a long–
living subpopulation which becomes visible beyond the age of 95 years (cf., e.g., the article
of Perls (1995)). To a larger extent, our results merely concern this subpopulation.

It is clear that a beta df will be estimated within the GP model. Guided by sim-
ulations, we decided to base the estimation on 2500 extremes (just life spans ≥ 98 are
taken). The estimated shape parameter γ within the generalized Pareto (GP) model

9Aarssen, K. and de Haan, L. (1994). On the maximal life span of humans. Mathe-
matical Population Studies 4, 259–281.
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is equal to −0.08. The right endpoint of the estimated beta distribution is equal to 122

years. This estimate fits well to the worldwide reported life span of Mrs Jeanne Calment

(122 years and 164 days) who was born in Arles (France) on Feb. 21, 1875 and died in

Arles on Aug. 4, 1997.

The estimation of a negative shape parameter is in accordance with the result
by Aarssen and de Haan. In contrast to these authors we do not conclude that
human life span has a finite upper limit. Therefore, we also make no attempt to
estimate such an upper limit in accordance with Gumbel10 who wisely refused to
discuss this question. He suggested to estimate the “return value” F−1(1 − 1/n)
or the expected value E(Xn:n) of the maximum Xn:n of a sample of size n .

Using the concept of penultimate distributions one can show that an infinite
upper limit is well compatible with extreme value theory although we estimated a
beta distribution. Another argument which speaks in favor of the exponential df
can be found in an article by Galambos and Macri11.

Gompertz Law and Penultimate Approximation

In Fig. 19.1 a Gompertz df G̃0,µ,σ with location and scale parameters µ = 83 and
σ = 9.8 was fitted to the upper tail of the given data of life spans. The following
considerations are made under the hypothesis that this Gompertz df is the actual
life span df. We still utilize our standard modeling, that is, actual truncated dfs
are replaced by GP dfs. For that purpose we compute the parameters of ultimate
and penultimate GP dfs according to the theoretical results in Section 6.5.

The Gompertz df is truncated left of the threshold u = 98. According to
(6.44) and (6.45), the approximating exponential df has the location parameter

u = 98 and the scale parameter σ(u) = (1 − G̃0,µ,σ(u))/g̃0,µ,σ(u) ≈ 2.12.
The penultimate approach, see (6.47) and (6.48), leads to a beta df with

the same location and scale parameters as in the ultimate case, and the shape
parameter

γ(u) = η(1 − G̃0,µ,σ(u)) =
(
(1 − G̃0,µ,σ)/g̃0,µ,σ

)′
(u) ≈ −0.22.

Plots of the densities show that the beta density is much closer to the truncated
Gompertz density than the exponential density. Therefore, estimates based on ex-
ceedances of Gompertz data point to beta (GP2) dfs when the statistical inference
is carried out in the GP model. Yet, estimating a beta df within the unified GP
model does not necessarily yield that the actual upper endpoint (thus, the upper
limit of life spans) is finite.

10Gumbel, E.J. (1933). Das Alter des Methusalem. Z. Schweizerische Statistik und
Volkswirtschaft 69, 516–530.

11Galambos, J. and Macri, N. (2000). The life length of humans does not have a limit.
J. Appl. Statist. Science.
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In the case of a Gompertz df, the upper endpoint of the penultimate beta df is
given by u+σ, which is equal to 107.8 for the parameters found above. This reveals
that an approximation, measured in terms of the Hellinger distance, is not very
sensitive to higher extremes. One may also fit a penultimate df to the truncation
of the Gompertz df beyond the threshold u = 111, the observed maximum life
span in our example. This procedure is related to the approximation of Gompertz
maxima by a penultimate EV df. Applying (6.47) again one gets a penultimate
beta df with shape parameter γ(111) ≈ −0.06 and a right endpoint of 120.8.

The conclusion is that the penultimate approach leads to significantly higher
accuracy than the approach by limiting dfs. In addition, the penultimate approxi-
mations reveal that a Gompertz hypothesis is compatible with estimated beta dfs
within the framework of GP dfs.

19.2 Extrapolating Life Tables To Extreme

Life Spans: A Regression Approach

Based on eleven German life tables from 1871 to 1986, we study the change of
mortality rates of women over the time for fix ages and apply a regression approach
to predict life tables. In a second step, we extrapolate the tail of the life span
distribution by fitting a Gompertz distribution.

Introduction

Life tables are used by actuaries to calculate the premium of an insurance policy
(life or health insurance, rental scheme etc.). The basic terms of interest are the
mortality rates that will be separately estimated for both sexes and each age up
to 100. In the 1986 life table, the estimator of the mortality rate of a x years
old women is based on female babies born around the year 1986 − x. Because
people become older and older due to better standard of life, health care etc., the
mortality rates of babies born today are overestimated.

In the following we study mortality rates of women over the time for fix
ages and apply a regression approach to forecast life tables. In a second step, we
extrapolate the tail of the life span distribution by fitting a Gompertz distribution.
For a general overview concerning the theory of life spans we refer to L.A. Gavrilov
and N.S. Gavrilova12.

For a women of x years born within the year t − x define the mortality rate
qx,t as the (conditional) probability of death within one year. Denote by Ft−x the
(continuous) life span distribution of a women born in the year t − x. Then, the

12Gavrilov, L.A. and Gavrilova, N.S. (1991). The Biology of Life Span: A Quantitative
Approach. Harwood Academic Publishers, Chur (Russian edition by Nauka, Moscow
(1986)).
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theoretical mortality rate is

qx,t :=
Ft−x(x + 1) − Ft−x(x)

1 − Ft−x(x)
, x = 0, 1, 2, . . . (19.1)

In the statistical literature, the term mortality rate is often used as a synonym for
hazard rate. In our considerations these terms have a different meaning. The link
between them will be given later.

A natural estimate of qx,t is given by the empirical estimate q̂x,t which is
defined by the number of women born in t − x and dying at age between x and
x + 1 divided by the total number of women born in t − x exceeding an age of x
years. In practice, one takes a small number of years to calculate the estimates.

The life span distribution of a women born within the year t can be derived
from the mortality rates in a simple manner. We have

1 − Ft(x) =

x−1∏
j=0

1 − Ft(j + 1)

1 − Ft(j)
=

x−1∏
j=0

(1 − qj,t+j), x = 0, 1, 2, . . . (19.2)

Because the calculation of an individual premium is based on the unknown mor-
tality rates in the future one has to find a prediction procedure.

The Data

Our investigations are based on eleven German life tables13 (consisting of estimated
mortality rates q̂x,t) from the year 1871 to 1986 dealing with ages up to 100. In
Table 19.2 we list the mortality rates q̂x,t of women at ages x = 90, 100.

Table 19.2. Mortality rates q̂x,t for women at ages x = 90, 100 taken from life tables at
the years t.

t 1871 1881 1891 1901 1910 1924 1932 1949 1960 1970 1986

q̂90,t .314 .306 .302 .296 .302 .263 .274 .259 .248 .234 .187

q̂100,t .518 .447 .446 .420 .476 .402 .476 415 .380 .405 .382

It should be noted that the life tables differ from each other in methodology.
The main differences concern the method of estimating mortality rates, smoothing
techniques, the handling of special influences on mortality like the wave of influenza
in 1969/70, and the number of years a life table is based on (e.g., 10 years (1871)
and 3 years (1986)). In the following lines we ignore these differences and assume
that the life tables consist of the empirical estimates as specified above.

13Stored in the files lm–lifem.dat for men and lm–lifew.dat for women (communicated
by Winfried Hammes, Federal Statistical Office).
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Regression over Time

Scatterplots of the mortality rates q̂x,t, for each fixed age x plotted against the
years t, indicate a decrease of exponential or algebraic order (see also Table 1). We
assume a polynomial regression model for the log–mortality rates log q̂x,t for fixed
age x. Least squares polynomials of degree 2 fit particularly well to the data.

We have

log q̂x,t ≈ p̂x,0 + p̂x,1t + p̂x,2t
2,

where p̂x,0, p̂x,1 and p̂x,2 are the estimated parameters.

The following illustrations show plots of the log–mortality rates log q̂x,t as
functions in t and the fitted least squares polynomials of degree 2.
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Fig. 19.3. Fitting least squares

polynomials of degree 2 (solid

lines) to log–transformed mor-

tality rates (dotted).

It is obvious from Fig. 19.2 that linear regression curves—as used by Bomsdorf
and Trimborn14 and Lühr15 do not adequately fit the transformed data. The larger
reduction of mortality from the 1970 to the 1986 life table, which is also observed
in newer abriged life tables16 may serve as another argument for the non–linearity
of the log–mortality rates. We remark that the mortality itself decreases with a
slower rate for higher ages (in contrast to the log–mortality).

With the estimated polynomials px we estimate the theoretical mortality
rates qx,t and the life span distribution Ft that is related to a cohort life table for
women born in the year t.

14Bomsdorf, E. and Trimborn M. (1992). Sterbetafel 2000. Modellrechnungen der Ster-
betafel. Zeitschrift für die gesamte Versicherungswissenschaft 81, 457–485.

15Lühr, K.–H. (1986). Neue Sterbetafeln für die Rentenversicherung. Blätter DGVM
XVII, 485–513.

16Schmithals, B. and Schütz, E.U. (1995). Herleitung der DAV–Sterbetafel 1994 R für
Rentenversicherungen (English title: Development of table DAV 1994 R for annuities).
Blätter DGVM XXII, 29–69.
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Fig. 19.4. Estimated life span distributions (left) and estimated mortality rates (right) by

interpolation (solid) and extrapolation (dotted) for women born in 1871, 1891, . . . , 1991.

Estimated life span distributions by interpolation means that the empirical
estimators of the mortality rates are calculated within the period from 1871 to
1986 by interpolation.

Regression of Extreme Life Spans

In the following we are interested in extreme life spans. We apply again a regression
approach to fit a parametric distribution to the mortality rates q̂x,t of ages x
exceeding 90 (also see Section 19.1). Note that within the life tables different
smoothing techniques in the center as well as in the tail were applied. We assume
that after the regression these manipulations are of no consequence for the general
structure of the extreme life spans.

Recall the relation between the theoretical mortality rates qx,t as defined in
(19.1) and the hazard rate. The latter one is defined by

ht(x) :=
ft(x)

1 − Ft(x)

where ft denotes the density of Ft. Then

qx,t+x = 1 − 1 − Ft(x + 1)

1 − Ft(x)
= 1 − exp

(
−
∫ x+1

x

ht(s) ds

)
and, thus, ∫ x+1

x

ht(s) ds = − log(1 − qx,t+x).

To find a reasonable distribution that fits to the upper tail of the life span
distribution, we apply again visualization techniques. For 90 ≤ x ≤ 100, a scatter-
plot of points (x, log(− log(1 − qx,t+x))) is close to a straight line. Notice that for
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a Gompertz distribution one has the hazard rate ht(x) = exp((t−µt)/σt)/σt and,
thus,

log

(∫ x+1

x

ht(s) ds

)
=

x

σt
− µt

σt
+ log

(
exp

( 1

σt

)
− 1

)
is a straight line. We fit a Gompertz distribution to the upper tail by the least
square linear regression

log
(
− log(1 − q̂x,t)

)
≈ âtx + b̂t, x = 90, . . . , 100 (19.3)

and obtain mortality rates q̂x,t for women of 101 years and older by extrapolation
in (19.3) and the formula

q̂x,t = 1 − exp
(
− exp(âtx + b̂t)

)
, x = 101, 102, 103, . . .

The estimated mortality rates and the corresponding life span distribution
functions for high ages are plotted in Fig. 19.5.
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Fig. 19.5. Estimated life span distributions (left) and estimated mortality rates (right)

with fitted Gompertz tail by interpolation (solid) and extrapolation (dotted) for women

born in the years 1871, 1891, . . . , 1991.

We include tabulated values of three estimated survivor functions F t = 1−Ft

for t = 1901, 1921, 1991 given in Fig. 19.5 (left). Notice that the women born in
1901 achieved the age 96 in the year of writing this article17. We see, for example,
that the (estimated) probability of survival at the age of 96 years increases from
.018 to .046 for the women born in the years 1901 and 1921.

We do not believe that a reliable forecast can be given for longer periods by
using such a straightforward extrapolation technique. Forecasts for more than one
or two decades merely indicate the theoretical consequences of our modeling.

17Reference is given to Kaufmann, E. and Hillgärtner, C. (1997). Extrapolating life
tables to extreme life spans: a regression approach using XPL. In: 1st ed. of this book,
Part V, pages 245–250.
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Table 19.3. Estimated probability of survival F t := 1−Ft for women born in the years
t = 1901, 1921, 1991.

age x 90 92 94 96 98 100 102 104 106 108

F 1901(x) .088 .057 .034 .018 .009 .004 .001 <.001 <.001 <.001

F 1921(x) .174 .121 .078 .046 .024 .011 .004 .001 <.001 <.001

F 1991(x) .664 .573 .466 .349 .232 .131 .059 .019 .004 <.001

The behavior of the mortality rates in Fig. 19.5 (right) is somewhat surpris-
ing. Primarily, it is not a result of the Gompertz (or converse Weibull) fit or the
regression approach of degree 2 instead of degree 1. It rather depends on the weaker
trend of reduction of mortality for elderly people. Fig. 19.5 (left) seems to confirm
the ecological crisis hypothesis as reviewed (and rejected) in the above–mentioned
book by Gavrilov and Gavrilova that states a biological limit for human life spans
between 100 and 110 years. However, for a more detailed study it is essential, even
in view of the existence of a long–living subpopulation visible behind an age of
95 years, cf. Perls18 and Section 19.1, to take empirical mortality rates of women
exceeding 100 years into account.

Notice that it is also possible to fit a converse Weibull distribution. In this
case the hazard rate is of the form atb. However, one obtains analogous illustrations
for the converse Weibull distribution.

18Perls, T.T. (1995). Vitale Hochbetagte. Spektrum der Wissenschaft, März 3, 72–77.
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Appendix A

The Menu System

A.1 Installation

Xtremes is a genuine Windows application so that any system running Windows
98 (and newer) or NT 4 (and newer) is also capable of executing Xtremes.

To facilitate the installation, the CD–ROM contains an installation program
that copies all required files to your computer. The installation program starts
automatically when you insert the CD–ROM. One may choose an installation
directory and select certain optional parts of the system. If you are unsure, we rec-
ommend to accept the default options. Please make sure that you are logged in as
an administrator when installing under Windows NT/2000/XP/2003 or Windows
Vista 32–Bit.

Xtremes is deinstalled in the usual manner; i.e., by executing the option
Software in the Windows Control Panel. Please consult the Xtremes User Manual
for further information; a pdf version is accessible from its menu entry in the
Xtremes section of the Windows start menu.

A.2 Overview and the Hierarchy

Xtremes is a statistical software system that possesses graphics facilities, a facility
to generate and load data, an arsenal of diagnostic tools and statistical procedures,
and a numerical part for Monte–Carlo simulations.

The development of Xtremes has been supported by Simon Budig (User-
Formula facility), Martin Elsner (HTML help), Andreas Gaumann (help system),
Sylvia Haßmann (censored data), Andreas Heimel (help system, ARMA estima-
tors), Jens Olejak (minimum distance estimators), Wolfgang Merzenich (consul-
tation on the StatPascal compiler), Reinhard Pfau (Linux port), Torsten Spill-
mann (XGPL plots), Karsten Tambor (early version of the multivatiate mode),
and Arthur Böshans, Carsten Wehn, Lars Fischer, Ralf Pollnow (MS Excel front-
end) whose help is gratefully acknowledged.
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The illustration on the right–hand side shows the hierarchy of the Xtremes system:

• Univariate and Multivariate Modes: the system is partitioned into a univari-
ate and a multivariate mode that can be selected in the toolbar.

• Domains D(iscrete), SUM, MAX and POT: select certain domains in the
toolbar which correspond to different parametric models (discrete, Gaussian,
extreme value (EV) or generalized Pareto (GP)) built for discrete data and
data that are sums, maxima or exceedances (peaks–over–threshold).

• The Menu–Bar: select menus for handling and visualizing data, plotting dis-
tributions by analytical curves, estimating parameters etc. The Visualize
menu and larger parts of the Data menu are independent of the different
domains.

• Menus: commands of the system are available in different menus.

• Dialog Boxes: if a menu command requires further parameters, a dialog box
is displayed.

• Graphics Windows: the result of a menu command is usually displayed in a
graphics window.

• Local Menus: options and commands that are specific to a particular window
or dialog box are provided by means of a local menu (available with a right–
click somewhere in the window or the dialog box).

• Special Facilities: in the toolbar, select tools to manipulate a graphic. These
tools change the action taking place when one drags the mouse in a graphics
window. For example, to change the coordinate system, you may click on the

coordinate tool in the toolbar and, then, pull up a rectangle.

• Help System: a context–sensitive online help is available by pressing the F1–
key at any time besides the general help facility (option Index in the Help
menu).

• Act, $, Hyd Supplements: special options for insurance, finance and hydrol-
ogy (Chapters 14–17) are available.

• UFO: select the UserFormula facility to enter your own formulas to plot
curves, generate or to transform data (cf. Section A.5).

• StatPascal: the integrated programming language StatPascal is activated
by means of the SP button (cf. Appendix B and StatPascal User Manual).

Keep in mind that the options in the Visualize and Estimator menus must
be applied to an active data set (read from a file or generated in the Data menu).
Instructions about the installation of the system are given in Section A.1.
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Professional Version

For details concerning the professional version of Xtremes we refer to the web–site
http://www.stat.math.uni-siegen.de/xtremes/.

Under this web–site one is also informed about the latest news about Xtremes
and possible updates.

A.3 Becoming Acquainted with the

Menu System

A further possibility is to work closely with the online–help facility (press the
F1–key or enter the Help... Index).

Plotting Histograms and Curves

Xtremes provides easy–to–use plotting facilities. The user can quickly plot a curve,
adjust the coordinate system, get a list of the curves displayed in a plot window
or export the picture via the clipboard. A special facility is available for producing
EPS–files (see Documenting Illustrations on page 478).

We partly repeat the operations which are required to plot the histograms
in Fig. 1.2. Make sure that the univariate D(iscrete) domain is active, that is, the

first button in the toolbar shows a single bullet and the button labeled is
pressed.

Demo A.1. (Plotting Poisson Histograms.) (a) Select the option Distribution...
Poisson in the univariate D(iscrete) domain and choose the parameter λ = 10.

Execute the Histogram option.

(b) The tool (activating the option mouse mode) may be employed to adjust the
positions of the plotted bars.

The user may change the parameters of a plotted histogram (or of a curve)
by means of sliders which are an indispensable tool to work interactively with

data. Select the parameter varying mouse mode from the toolbar and click
onto a histogram or curve in a plot window to open a window with sliders for each
parameter.

Demo A.2. (Varying the Parameter of a Poisson Histogram.) First, plot a Pois-
son histogram with parameter λ = 1. Select the parameter varying mouse mode

from the toolbar and click on the histogram of the Poisson distribution. Vary the
parameter λ, and also change the boundaries for the possible parameter values. In Fig.
A.1 there is a Poisson histogram with the pertaining slider and, in addition, a sample
histogram.
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Fig. A.1. Interactive fitting of

a Poisson histogram (right) to

sample histogram (left).

Next, let us display a Pareto density on the screen. Now, activate the uni-
variate POT domain, that is, the first button in the toolbar shows a single bullet

and the button labeled is pressed.

Demo A.3. (Plotting a Pareto Density.) Select the menu option Distribution...
Pareto to open a dialog box asking for the parameters of the distribution The

dialog box for the Pareto distribution is displayed in Fig. A.2. Click on the Density button
to plot the Pareto density for the chosen parameters. A plot window opens showing the
graph of the density.

Fig. A.2. Dialog box POT... Dis-

tribution... Pareto in the univariate

mode. Enter the parameters of the

Pareto distribution and plot a curve

using the buttons.

The coordinate system can be adjusted by using the local menu of the win-
dow. Click inside the window with the right mouse button and select the option
Change coordinates. Xtremes stores the previous coordinates which may be re-

stored by executing the option Restore coordinates in the toolbar (click the
button) or by pressing the Backspace key.

A more direct, interactive facility to modify the coordinate system is avail-
able by selecting a certain mouse mode from the tool bar (explained in the next
subsection).

One can get an overview of the curves plotted in a window utilizing the



472 A. The Menu System

menu option Edit Curves and Labels. A list with all curves is displayed, and one
can delete some curves or change their options like color, line style, brushes used
to hatch histograms, etc. If one wants to know the parameters of a plotted curve,

select the information mouse mode tool and click onto the curve.

Pictures may be exported. Click the option Print in the local menu to send
your window to the printer. You can also copy it to the Windows clipboard or
create EPS–files. Advanced options to format a plot are described on page 478.

Selecting a Mouse Mode

The mouse mode determines what happens if you click into a window. The default
mode just brings a window into the foreground.

Other mouse modes are employed to move or delete curves, change colors
and plot options, add text, etc. Detailed explanations of all modes are given in
Section A.4.

As an example, we describe the change of the coordinate system using a
specific mouse mode. Activate the coordinate changing mouse mode by clicking

the tool in the toolbar. In this mode, a new coordinate system is selected by
pulling up a rectangle: click into the graphics window (left mouse key), hold down
the mouse key and move the cursor to the opposite corner. The rectangle may be
pulled outside the window to enlarge the coordinate system.

Reading and Generating Data

At the beginning, the user should restrict himself to handling data included in the
package or generated by Xtremes. To read a data set from the disk, execute the
menu option Data... Read Data. The file dialog box of Windows appears.

Proceed to the dat folder and select any file. Xtremes loads this file and
opens a window entitled Active Sample displaying information about the data
set. Read another data set and notice that the description of the active data set
changes.

Now, two data sets are kept in memory. One can choose the active data set
from the ones already loaded by executing the menu option Data... Choose Data.
A list of all data sets used in the current session is displayed and a new active data
set can be selected. Keep in mind that all visualization and estimation procedures
are based on the active data set.

If one needs to load multiple data sets from a different subdirectory, the Drag
and Drop facility of Xtremes can be utilized. Just select the files in a directory
listing of Windows and drop them anywhere on the Xtremes window.

Xtremes also enables the user generating data sets. Use the menu option
Data... Generate Univariate Data and select a distribution from the menu (see
Demo A.4). A dialog box opens asking for parameters, the sample size and a
filename. Files are stored in the active directory of Xtremes.
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After clicking OK the data set is generated and a short description appears
in the Active Sample window.

Visualization of Data

A simple way to display data is in the form of a text. Load a data set or generate
one using Data... Generate Data and select the menu option Data... List Data.
Then, Xtremes opens a text window showing your data set. You can use the scroll
bar to browse the data.

The Visualize menu contains options to display sample dfs, qfs, histograms,
scatterplots, mean and median excess functions, among others. Kernel Density
also provides options that reflect the data points at the right, left or both ends
of the support. The bandwidth can be chosen by the user, an automatic selection
(via cross–validation) is available.

The visualization options are also available in the local menu of a List Data
window. They are applied to the displayed data set (rather than the active one) if
selected from the local menu. An easy way to work with more than one data set
is therefore to list them, minimize the windows and work with the local menus.

Time series (see Section A.4 for a description of the different types of data
sets used in Xtremes) are visualized by means of the scatterplot option. Note that
each scatterplot is displayed in a separate window. You can cut points from a

scatterplot using the point selection (scissors) mouse mode tool . The option
Least Squares Polynomial in the local menu of the scatterplot window leads to a
dialog box for polynomial regression.

The scatterplot option is also applicable to multivariate data. Depending on
the active mode (univariate or multivariate), the user has to select two or three
components. In the latter case, the points are displayed using a 3–D dynamic plot.

Applying Estimators to the Active Data

The three chapters in Part II of this book correspond to four different domains of
Xtremes called D(iscrete), SUM, MAX and POT. Each domain provides different
distributions and estimators in the Data... Generate Univariate Data, Distribution
and Estimate menus. One may switch between the different domains by means of
the buttons D(iscrete), POT, MAX and SUM in the toolbar.

In the following example, we focus on estimators in the POT domain because
it provides the richest facilities.
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Demo A.4. (Estimation Using the Hill Estimator.) To start, let us apply the Hill
estimator to standard Pareto data.

(a) First, create a data set using Data... Generate Univariate Data... Pareto(GP1).
(b) Next, execute the option Estimating... Hill(GP1/GP2) . Recall that generalized
Pareto models are fitted to the upper tail of the distribution. Therefore, the estima-
tor requires the number k of upper extremes to be used for the estimation. You can
change the number of extremes by clicking the up or down arrows in the estimator dialog
box.
(c) A plot of α̂n,k or σ̂n,k as a function in k is obtained using the diagram option. Choose
the desired parameters before clicking the button.

Various parametric curves (plotted with the estimated parameter values)
can be selected from the estimator dialog box. Comparing these curves with the
corresponding nonparametric ones, the user is able to judge visually the quality of
the estimation.

Similar dialog boxes are provided within the MAX and SUM domains. One
can work with the other parts of Xtremes while estimator dialogs are open. It is
also possible to use two or more estimators at the same time to compare their
results.

The Toolbar

The toolbar below the main menu provides a quick access to frequently used op-
tions of Xtremes. The tools enable the user to select different parametric distri-
butions in the main menu. They are also used to select a mouse mode. We start
with the tools already described in the Overview.

Switch menu bar from univariate to multivariate mode.

Switch menu bar from multivariate to univariate mode.

Activates pulldown menus for discrete models.

Activates pulldown menus for Gaussian models.

Activates pulldown menus for extreme value (EV) models.

Activates pulldown menus for generalized Pareto (GP) models.

Opens pulldown menu with options for hydrology data (Chapter 11).

Opens pulldown menu with options for insurances data (Chapter 12).
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Opens pulldown menu with options for finance data (Chapter 13).

Opens pulldown menu providing UFO facilities.

Opens StatPascal Editor Window to enter and run StatPascal programs.

Next the tools are listed that are not described in the Overview.

Opens ASCII–editor window.

Opens the Windows file dialog box and loads a data set. The file dialog
box provides options to delete or copy files.

The active data set is displayed in a text window.

Restores coordinate system in active window to the size before the last
change.

The toolbar is also used to select a mouse mode. The mouse mode determines the
action taking place when the user clicks into a window or onto a curve1.

Standard mouse mode: no special actions occurs.

Option mouse mode*: changes display options of a curve (e.g., color, line
styles, number of supporting points, etc.). The actual dialog box depends
on the type of the curve.

Parameter varying mouse mode*: opens window with sliders for each
parameter of a curve. Parameters are changed dynamically while sliders
are dragged.

Clipboard mouse mode*:

• moves the curves to the Xtremes clipboard window. When this
mode is applied in the Xtremes clipboard window, the systems
asks for a destination window;

• a curve can be directly dragged to a different plot window (also
to a scatterplot window), if the left mouse button is kept pressed
until the cursor is located in the destination window.

Deleting mouse mode*: deletes curves from a plot window.

1Mouse modes, where one must click onto a curve, are marked with *.
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Information mouse mode*: displays parameters of curve.

Coordinate changing mouse mode: adjust the coordinate system by
pulling up a rectangle or, in the trivariate setup, rotate the coordinate
system.

Point selection mouse mode: use this mode to cut off points in a bivariate
scatterplot. Options of the local menu of a scatterplot do not use the cut
points.

Line drawing mouse mode: adds straight lines to a plot window.

Label mouse mode: adds text labels to a plot. See page 478 for details.

Curve tabulating mouse mode*: the supporting points of a curve can be
tabulated by storing them into a bivariate data set.
For that purpose, adjust the coordinate system and the number of sup-
porting points (enter the Change Coordinates box to adjust the range of

the supporting points and use the option tool to select the number
of supporting points).

A.4 Technical Aspects of Xtremes

This section discusses two technical aspects of Xtremes, namely the format of data
sets and the mechanisms provided to export graphics.

Format of Data Sets

Data sets are stored as plain ASCII files. Certain specifications can be given at
the top of the file, such as the type of the data set and the sample size. Moreover,
one may include a shorter and a more detailed description.

Data sets can be entered by utilizing any text editor available under MS–
DOS or Windows. It is possible to use the integrated editor, yet one should be
aware of the fact that Windows 95/98 and ME limits the text size of the editor to
64 KBytes. Under Windows NT/2000/XP and Vista 32–Bit, text files of arbitrary
size can be handled.

We start with an example showing the data entry using the integrated editor.
Suppose you want to create a univariate data set with the following values: 1, 3.5,
7, −4.

Start the editor by selecting the editor button in the toolbar and click on
the Header button in the toolbar of the editor window. A dialog box asking for
the type of the data set opens. Select Univariate Data to create a template of a
univariate data set and fill in the following fields:
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Xtremes Univariate Data

Type: Artificial example

\begin(description)

This is an artificial data set. It

was entered using the integrated editor.

\end(description)

Sample Size: 4

1

3.5

7

-4

17

The first line defines the type of the data set—in the present case Xtremes
Univariate Data. A list of all types is given below. The second line starts with
Type: and provides a short description which will be shown in the list of loaded
data sets (Data... Choose Data). It is also added to the description of curves based
on this data set. The description must be restricted to one line.

Between the lines \begin(description) and \end(description), a longer
description may be added. It is displayed in the Active Sample window. The next
line determines the size of the data set.

Then, the data are listed, one value for each line. After having typed the
text, save it to a file (e.g., in the subdirectory \dat). Afterwards, your data set
becomes the active one. One may also simulate a data set of the desired type using
the option Generate... .

Xtremes particularly supports the following data types.

• Xtremes Univariate Data. Real data x1, . . . , xn in any order, as presented
above. Execute Data... Transform Data... Sort to sort these data according
to their magnitude.

• Xtremes Time Series. Pairs (i, xi) of integers i and reals xi as, e.g.,

1 17.5

2 −2

3 0.34

4 0.001

The discrete time must be given in increasing order. Some of the pairs (i, xi)
can be omitted (see, e.g., ct–sulco.dat), so that the entry Sample Size is not
necessarily the number of data points within the file. It may be larger than
the time of the last point if values were omitted at the end of the file.

• Xtremes Multivariate Data. Multivariate data (xi,1, . . . , xi,m) are stored
using m entries on a line.
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Moreover, the line after Sample Size contains an entry defining the dimen-
sion m of the data set. It is followed by m names surrounded by quotation
marks. They define the headers for the corresponding column, e.g.,

Sample Size: 12

Dimension: 4

“Month” “SO2” “NO” “O3”

1 75.2 13.4 17.2

2 83.1 17.9 15.4

3 . 12.8 11.3

4 43.9 15.3 11.3

Missing values are indicated as a dot. It is possible to combine related uni-
variate data sets of different length to one multivariate data set. The rows
containing a dot are ignored when the multivariate data set is transformed
or converted.

• Data Sets Without Header. Xtremes can also load plain ASCII files
containing just a matrix of data, without any headers. Such data sets are
treated as multivariate. Moreover, one can use decimal points or decimal
commas within a data set.

Discrete, grouped and censored data types are also available. Please consult
the Xtremes User Manual for details.

Data can be converted from one type into another by the option Data...
Convert to. All canonical conversions are available. There are also some special
conversions.

One can apply the UserFormula facility to perform transformations not cov-
ered by the menu system. More sophisticated conversions are accomplished by
means of StatPascal programs.

Documenting Illustrations

Xtremes provides various tools to change the outer appearance of a plot and to
export it to other systems. We start with a description of advanced plot options
(like different colors and line styles) that are used to prepare pictures for exporting.
The following options are available:

• Coordinate System: the coordinate system is either displayed within the
window or on a rectangle around the actual plot area. These options are
controlled in the Change Coordinates box of the local menu. The portion of
the plot area may be changed to provide space for the attachment of labels
outside the frame using the Frame Size option.
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• Line Styles and Colors: the option mouse mode tool is used to change
the plot options of a curve. A left–click onto the curves opens a dialog box
(cf. Fig. A.3). The user may select

– predefined line styles,

– define his own line style by specifying the length of curve segments and
gaps

as well as the thickness of the curve. For example, choose the values

– 1 and 1 to produce a dotted line,

– 4 and 4 to produce a dashed line.

These procedures lead to a better result on printed pages than the use of
predefined line styles (except of the solid line).

Different sizes and hatch styles are provided for histograms. The local menu
of a scatterplot window provides the Options entry to change the point size.

• Adding Text: select the label mouse mode tool and click at the position
where you want to put your label. The font and position of the text may be

changed using the parameter varying and option mouse mode tools.
It is possible to display vertical text or to move a label to the edge of the
window. Labels are treated like curves, so they may be moved to another
window or deleted in the same way.

The box for curve options is presented in the following Fig. A.3. We suggest
to use the solid line option or the “line” and “gap” facility.

Fig. A.3. Specify your own line style

in the input fields “line” and “gap”.

The contents of an Xtremes plot window may be exported, either by printing
a window, saving it as an EPS (Encapsulated Postscript) file or storing it in the
Windows clipboard.
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• Printing: first, select the option Frame Size (Print/EPS) (cf. Fig. A.4) from
the local menu of the active window to define the size of the picture and
provide space for the frame (see the next Demo A.1). Then, select Print to
copy the contents to your printer. Printer Setup is utilized to change options
of the printer.

• Saving an EPS file: first, set the size of the picture and frame, as in the
previous case. Then, select Save as EPS file to store the contents in the EPS
format. Xtremes asks for a filename.

• Copying to the clipboard (Option Copy to Clipboard in the local menu): the
contents of the active window are copied to the clipboard in the standard
bitmap format. It is possible to insert the contents of the clipboard in other
applications like painting programs or word processors.

Fig. A.4. Frame Size (Print/EPS) di-

alog box. The user selects the size of the

coordinate system and provides space

for text displayed outside the actual

picture.

In the following demo further explanations are provided about the dialog box
in Fig. A.4.

Demo A.5. (Printing a Graphics Window.) Select the Frame Size (Print/EPS)
option from the local menu and enter the size of your picture in the dialog box.

The values shown in Fig. A.4 entail a picture of the size 72mm × 52mm, the actual plot
area comprises 60mm × 40mm. After that, proceed with the Print option to copy the
active window to your printer or select Save as EPS file to create an EPS file that can
be included in other documents.
LATEX–users may employ the epsf macro package, which provides commands to in-
clude postscript files into LATEX documents (e.g., the commands \epsfxsize=72mm

\epsfbox{picture.eps} load picture.eps and scale it to a horizontal size of 72mm).
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A.5 The UserFormula (UFO) Facilities

With UserFormula (UFO), the user can type in formulas that are used

• to evaluate expressions using a calculator;

• to plot univariate or bivariate curves;

• to generate data sets;

• to transform existing data sets.

The formulas are entered by using the notation of common programming lan-
guages.

We give an overview of the functions that are available in UserFormula ex-
pressions and describe the options of the UserFormula menu, which opens after

clicking the UFO button in the toolbar. Operations that are too complicated
for UserFormula may be handled by using the integrated programming language
StatPascal, introduced in Appendix B.

Overview

One can access all distributions implemented in Xtremes by calls to predefined
functions. There are three different groups of predefined functions.

• Standard mathematical functions like abs(x) (absolute value), exp(x) (ex-
ponential function), log(x) (natural logarithm) or sqrt(x) (square root),
among others.

• Function calls—partly including a shape parameter a—under which one may
generate data, such as betadata(a) or gumbeldata. The returned values are
independent for successive calls and governed by the respective distribution
in its standard form. In addition, [0, 1)–uniform data may be called by the
function random.

• Functions for densities, qfs and dfs (again partially including a shape param-
eter a) such as:

– betadensity(a,x), betadf(a,x), betaqf(a,x);

– gaussiandensity(x), gaussiandf(x), gaussianqf(x); etc.

The last curve plotted within an Xtremes plot window is available under the name
actualcurve.

The chapter Library Functions within the StatPascal User Manual gives a
detailed description of all predefined functions that are available within the User-
Formula facility.
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Calculator

The calculator allows the user to type in a formula and evaluate it. Fig. B.5 shows
the calculator dialog box.

Fig. A.5. Calculator dialog box.

Formulas typed in the upper edit

field are evaluated. The lower edit

field defines variables and func-

tions also available in other parts

of Xtremes.

In the lower part of the calculator window, you can define your own functions
and variables. Write your definitions in the edit field User Defined Functions and
click on the =–button. The definitions thus made are available within all dialog
boxes providing a UserFormula facility. They can also be used in all edit fields
where a real value is expected, e.g., in the dialog boxes used for plots of parametric
curves. For example, a Gaussian density including a location parameter is defined
in the following way:

Pi:=3.1415

gauss(mu,x):=1/sqrt(2*Pi)*exp(-(x-mu)**2/2)

The formulas are stored in the file formula.txt within the working directory.
They are loaded again upon the next start of Xtremes.

Plotting Curves

The graph of a function x → f(x) or x → f(p, x) may be plotted in every graphics
window. The optional parameter vector p = (p1, p2, p3) is changed by using the

parameter varying mouse mode tool . Instead of p1 one may also use p. Within
the multivariate mode, a surface plot of a function (x, y) → f(x, y) is performed.

Demo A.6. (Plotting Gaussian Densities with Varying Location Parameter.) Click

the UFO button in the toolbar and select the option Plot curve from the popup
menu. Now, type the formula 1/sqrt(2*3.1415) * exp(-(x-p1)**2/2) in the edit field
labeled f(x) or f(p,x) in the dialog box. If you have entered the definitions shown in the
Calculator box, you can also write gauss(p1, x).
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Especially note the option for the destination window. Xtremes lists all open
windows, and you can also enter the name of a new window. Select OK to plot
the curve.

Generating Data

The UserFormula facility may be employed to generate univariate data sets. Click
the UFO button and select the option Generate Data... A dialog box similar to
the one used for plotting curves is utilized.

Now, the user must specify a quantile function (qf) Q(x) that is applied to
[0, 1)–uniform data. For example, use -log(x) to generate standard exponential
data.

Data distributed according to the distributions implemented in Xtremes is
available by means of the predefined functions *data (where * is replaced by the
name of the distribution). For example, one might also write exponentialdata in
the above example.

Transforming Data

The UserFormula facility offers the transformation of univariate or multivariate
data sets and time series. When you select the option Transform Data... in the
UFO menu, Xtremes asks for a transformation depending on the type of the active
data set.

• Univariate Data xi: specify a transformation T to generate the data T (xi).

• Time Series (ti, xi): specify two functions T1(t, x) and T2(t, x) to obtain the
time series values (T1(ti, xi), T2(ti, xi)). Note that real–valued times are al-
lowed.

• Multivariate Data (xi,1, . . . , xi,m): specify transformations Tj . The system
generates

(T1(xi,1, . . . , xi,m), . . . , Tk(xi,1, . . . , xi,m)).

In addition to the transformation, one must specify k names for the columns
of the transformed data set. See Demo B.8.

Demo A.7. (Smoothing a Data Set Using Polynomial Regression.) Convert the
data set to a time series, display a scatterplot and add a regression polynomial.

Now, the polynomial is available as actualcurve. Therefore, one can apply the transfor-
mation T1(t, x) = t and T2(t, x) = actualcurve(t) to store the values of the polynomial,
evaluated at the times t of the original time series.
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Fig. A.6. Transform Data dialog

box for multivariate data. The trans-

formation in (12.39) is applied to

football.dat (with changed signs).

Demo A.8. (UFO Transformation of Multivariate Data.) Read football.dat (cf.
Example 8.2.1) and change the signs (Data... Transform Data... Change Signs).

Choose UFO and apply Transform Data. The dialog box Transform Data lists the column
names X1 and X2 of the current data set on the left–hand side (see Fig. B.6) together
with the variable names x1 and x2 assigned to the values in the columns. In the edit
field on the right–hand side, the user must define the names of the ith column (using the
arrow button one may edit a template of the transformation T (x1, x2) = (x1, x2)). In our
example, we use the names Goalpost and Endzone and add the transformed variables
-(-x1/12)**1.2 and -(-x1/12)**1.2. Finally, press OK to execute the transformation.



Appendix B

The StatPascal
Programming Language

To enhance the flexibility of the system beyond the possibilities of the UserFor-
mula facility, it is supplemented by the integrated Pascal–like programming lan-
guage StatPascal. StatPascal programs are handled in the StatPascal editor win-
dow which can be opened by selecting the button.

Exaggerating a bit, one can say that the pull–down menu system serves as a
platform for learning the specific functions and procedures available in StatPascal.
Thus, many options in the menus and dialog boxes have their counterparts as
functions in StatPascal.

When a StatPascal program is executed, use the implemented

• dialog boxes,

• plot windows and a StatPascal window for the output.

One may also attach StatPascal programs to the menu bar which provides a facility
to extend the menu system. We assume that the reader has a working knowledge
of the Pascal language.

In contrast to other common statistical languages, StatPascal is a strongly
typed language which is compiled and executed by an abstract stack machine.
StatPascal is therefore usually faster than other systems.

The StatPascal User Manual contains a formal description of the syntax and
an alphabetical list of all library functions. The first chapters of the StatPascal User
Manual also include an introduction to basic (Pascal) programming techniques.

The installation program copies a pdf version of the StatPascal User Manual
and Reference to the file spmanual.pdf in the sp subdirectory.
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B.1 Programming with StatPascal: First Steps

This section enables the user to take the first steps into the StatPascal environ-
ment. We mention the StatPascal editor and introduce some simple programs.

The StatPascal Editor

A StatPascal editor window is opened by selecting the button within the
toolbar. It provides the usual editing facilities of Windows. Text blocks can be
exchanged by means of the clipboard utilizing the commands listed in Appendix
A. Under Windows 95, the maximum file size of the editor window is limited to
64 KBytes.

The toolbar enables the user to save and load text files. The Run option
is a short cut for the compilation and execution of a program. Fig. B.1 shows the
StatPascal editor window, where the following tools are available.

New: erases the text within the StatPascal editor window.

Load: opens the file dialog box and loads a StatPascal program.

Save: writes the text in the StatPascal editor window to a disk file. If no
filename has been provided, the Save as option is activated.

Save as: writes the text in the StatPascal editor window to a disk file
after asking for a file name.

Run: compiles and executes the program in the StatPascal editor win-
dow.

Compile: compiles a program and stores the resulting binary under a
filename, executes it or locates the position of a runtime error with the
source file.

Compiler Options: opens the Compiler Options dialog box, controlling
parameters of the compiler and runtime environment.

Help: opens the StatPascal online help.
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The “Hello, World” Program

We start with the traditional “Hello, world” program to demonstrate the tech-
niques of entering, compiling and running a StatPascal program. The user will
immediately recognize that the program looks like its Pascal equivalent.

program hello;

begin

writeln (’Hello, world!’)

end.

Type in the program, save it to a file (Save as, and click the Run button

to execute the program. If the program contains no errors, Xtremes opens the
StatPascal window displaying the output.

The StatPascal Window

The procedures write, writeln and read of the Pascal language are provided to
perform input and output operations in the StatPascal window. In Fig. B.1, we
see a program in the StatPascal editor window and its output in the StatPascal
window.

Fig. B.1. StatPascal ed-

itor window with exam-

ple program (front) and

its output in the StatPas-

cal window (back).

The example program asks for real numbers t and displays the Gaussian den-
sity ϕ(t). The predefined routines MessageBox, DialogBox and MenuBox (which
are described in the StatPascal manual) provide an alternative using dialog boxes.

Data Types and Structures

StatPascal provides most of the data types and data structures of the Pascal
language. The predefined types
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boolean, char, integer, real and string

are available, and the user can define new types using all data structures of Pascal
(with the exception of variant records). Our examples use only the predefined data
types in conjunction with the standard Pascal data structure array and the new
data structure vector which is introduced below.

Elements of a StatPascal Program

A StatPascal program consists of up to eight different sections. In the following
table, we give a short explanation of the different sections of a program. As one
could see from the previous example programs, most of these sections are optional.

program name; a StatPascal program starts with the reserved word
program, followed by the name of the program

uses ... ; the optional uses lists libraries which are used by
the program

label ... ; the optional label starts the declaration of the labels

const ... ; the optional const defines constant values

type ... ; the optional type is used to assign names to user
defined data types (see page 489)

var ... ; the optional var declares the variables used in a pro-
gram

procedure ... ;
function ... ;

an arbitrary number of functions and procedures
may be declared (see page 489)

begin
...

end.

the mandatory main program contains the instruc-
tions performed by the program

A tutorial on basic programming techniques with an introduction to standard
Pascal can be found in the StatPascal manual.

Vector and Matrix Types

StatPascal implements a new data structure vector which is similar to the array
structure. Yet, one does not have to specify the number of elements when declaring
a vector. A vector type is defined using the declaration

vector of type.

We start with a simple example which shows the usage of a real vector. The
following program generates a Gaussian data set of size 100 under the location and
scale parameters 2 and 3, and stores the data in the vector x. Then the sample
mean and sample variance of the simulated data set are displayed.
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program example;

var x: vector of real;

begin

x := 2 + 3 * GaussianData (100);

writeln (mean (x), variance (x))

end.

Readers who are familiar with other statistical languages should note that
the usual arithmetic and logical expressions (with componentwise operations) as
well as index operations are supported.

Vectors can also be used as arguments and return types of functions. The
language provides implicit looping over the components of a vector if a function
operates on the base type of a vector structure.

The following program demonstrates further vector operations. We perform
a numerical integration of a real–valued function f , defined on the interval [a, b],
using the approximation∫ b

a

f(x) dx ≈
n∑

i=1

f(ci) + f(ci+1)

2

b − a

n

where ci = a + (i − 1)(b − a)/n for i = 1, . . . , n + 1. The function f as well as the
parameters a, b and n are provided as arguments.

type realfunc = function (real): real;

function integrate (f: realfunc; a, b: real; n: integer): real;

var fc: vector of real;

begin

fc := f (realvect (a, b, n + 1));

return sum (fc [1..n] + fc [2..(n+1)]) * (b-a) / (2*n)

end;

We start with a type declaration for the functional parameter. The first as-
signment within the function integrate calculates the values f(ci), i = 1, . . . , n + 1
and stores them in the variable fc.

Note that the call to the predefined function realvect returns a real vector
with n + 1 equally spaced points between a and b, which is given as an argument
in the call of f.

In the second statement, we generate two integer vectors containing the values
from 1 to n and from 2 to n + 1, which serve as indices to fc. The index operation
yields two real vectors with the values (f(c1), . . . , f(cn)) and (f(c2), . . . , f(cn+1)).
The + operator adds these vectors componentwise, and the predefined function
sum calculates the sum of the components of the resulting vector. Finally, the
value of the integral is returned.

Next, we define a function square and calculate its integral.
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function square (x: real): real;

begin

return x * x

end;

begin

writeln (integrate (square, 0, 1, 100)) (* 0.33335 *)

end.

The data structure matrix represents two–dimensional arrays where the
number of rows and columns are determined at run time. The language provides
an implicit conversion from two–dimensional arrays to matrices. One can also con-
struct a matrix using the predefined function MakeMatrix, which fills a matrix
with the components of a vector. Matrices can be used in arithmetic operations.
The multiplication of two matrices or of a matrix and a vector perform the usual
mathematical matrix operations. As an example, we show a program that prints
100 random variables simulated under a bivariate Gaussian distribution with co-
variance matrix

Σ =

⎛⎝ 1 0.2

0.2 1.5

⎞⎠ .

Note that chol (S) returns a matrix C such that S = CCt.

program bivgauss;

var S, C: matrix of real;

i: integer;

begin

S := MakeMatrix (combine (1.0, 0.2, 0.2, 1.5), 2, 2);

C := chol (S);

for i := 1 to 100 do

writeln (C * GaussianData (2))

end.

Consult the StatPascal Reference Manual for further information about vec-
tors and matrices.

B.2 Plotting Curves

StatPascal allows the user to open an Xtremes plot window and to display curves
and scatterplots in it. These windows and curves exactly act like the ones available
from the menu system.

In the following, we only discuss univariate curves and scatterplots. The sp

subdirectory of the Xtremes directory contains various example programs that
demonstrate the graphical facilities of StatPascal.
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Univariate Curves

Xtremes provides a predefined function plot which is utilized to plot univariate
curves. The function requires two vectors containing the points xi and values yi,
the destination window and a description of the curve. A linear interpolation of
the given points is displayed.

For example, the following program plots a Gaussian density in two Xtremes
plot windows.

program gaussplot;

const n = 100;

var x, y: vector of real;

begin

x := realvect (-3, 3, n);

y := gaussiandensity (x);

plot (x, y, ’Density 1’, ’Gaussian density’);

plot (x, y, ’Density 2’, ’Gaussian density’)

end.

Fig. B.2 shows the output of the program. Two Xtremes plot windows (Den-
sity 1 and Density 2) are opened by calls to plot. The curves are displayed as solid
black lines. One can change the plot options using the procedures listed at the end
of this section.

Fig. B.2. The program

gaussplot and its out-

put in two Xtremes plot

windows.

Scatterplots

The scatterplot procedure, displaying scatterplots, is similar to the plot procedure.
The routine requires three parameters: two arrays defining the points and the
name of the scatterplot window. In the above example, the call to plot must be
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replaced by scatterplot (x, y, ’Scatterplot’) to obtain a scatterplot of the
points (x1, y1), . . . , (xn, yn).

B.3 Generating and Accessing Data

An important facility of StatPascal is the implementation of routines for data gen-
eration and data transformation not covered by the menu system or UserFormula.
In this section, we introduce functions and procedures to exchange data between
StatPascal and Xtremes. Data stored in a StatPascal program (e.g., in a vector)
are not used directly within Xtremes, and data sets loaded in Xtremes are not
used by StatPascal automatically. Instead, all data transfer is accomplished by
calling predefined functions and procedures. They give the user access to the ac-
tive data set from within a StatPascal program and allow to pass data collected
in a StatPascal vector to Xtremes, thus creating a new active data set.

We start with an example for generating standard Pareto data under the
shape parameter α = 1.

program Pareto;

const n = 100;

alpha = 1.0;

var x : vector of real;

begin

x := paretodata (alpha, n);

createunivariate (x, ’pareto.dat’, ’Description’)

end.

Here n Pareto data are generated independently by the function paretodata
and stored in the vector x. The call to createunivariate passes the data to Xtremes,
that is, the data set stored in x is saved to the file pareto.dat which is then the
active one. In addition, a short comment is added. After having run the program,
all options of the menu system can be applied to the new data set.

Passing Data from StatPascal to Xtremes

We now provide a more systematic description of the generation of data sets by
StatPascal. Four different procedures are provided to pass data collected in a
vector from StatPascal to Xtremes. In the following examples, the data are saved
to filename.dat in the working directory. One may create data sets of the following
types.

Xtremes Univariate Data: data x1, . . . , xn are collected in a real vector given
as argument to the call of the predefined procedure createunivariate.

var x: vector of real;

...
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createunivariate (x, ’filename.dat’, ’Description’);

Instead of a vector, a one–dimensional real array may be given as well.

Xtremes Time Series: in addition to the previous case, a vector containing the
times ti of the observations must be provided.

var x : vector of real;

t : vector of integer;

...

createtimeseries (t, x, ’filename.dat’, ’Description’);

Xtremes Censored Data: besides a real vector containing the censored data,
there is an integer vector with the censoring information.

var z : vector of real;

delta : vector of integer;

...

createcensored (z, delta, ’filename.dat’, ’Description’);

Xtremes Multivariate Data: the data xi,j are collected in a real matrix. In
addition, a string with the column names, separated by ’|’, must be provided.

var x: matrix of real;

h: string;

...

h := ’Day|Month|...’;

createmultivariate (x, h, ’filename.dat’, ’Description’);

Note that a two–dimensional array can be provided instead of a matrix type,
because the language supports an implicit type conversion from two–dimensional
arrays to matrix types.

As a result of such a procedure you will get an active data set of the type
as specified by the command create.... The Active Data window opens showing
the name of your data set and the description provided in the last argument.

Passing Data from Xtremes to StatPascal

Next, let us consider the case where active data are dealt with by StatPascal. The
active data set is accessed by means of the following functions:

samplesize size of the active data set;

dimension dimension of the active data of type Xtremes Multivariate
Data. This function can also be applied to univariate data or
a time series, yielding 1 or 2, respectively;
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data(i) xi:n if x1, . . . , xn are Xtremes Univariate Data. Use the func-
tion call data(i,1) to access the unsorted data;

data(i,j) xi,j if (x1,1, x1,2), . . . , (xn,1, xn,2) is the active time series. Mul-
tivariate data are dealt with in the same way. If a grouped data
set is active, then data(i,1) returns the cell boundary ti and
data(i,2) the frequencies ni in cell [ti, ti+1). Moreover, censored
data are treated like multivariate data with the censored data
in the first component, the censoring information in the second
and the weights of the Kaplan–Meier estimate in the third one;

columndata(i) vector with the (unsorted) data in the ith column of the active
data set;

rowdata(i) vector with the data in the ith row of the active data set;

columnname(i) name of the ith column. This function yields an empty string
if not applied to a multivariate data set.

Demo B.1. (Translation of a Univariate Data Set.) We employ StatPascal to add
the value 5 to univariate data. Note that the vector structure allows us to deal

with data sets of any size.

program translation;

var x: vector of real;

begin

x := columndata (1);

createunivariate (x + 5, ’demo.dat’, ’’)

end.

We used the function call columndata (1) to access the unsorted data set.
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Stǎricǎ, C., 198, 220, 225
Stahel, A.W., 34, 89, 118
Stedinger, J.R., 351
Stephens, M.A., 120
Stork, P.A., 179
Stoyan, D., 114
Stoyan, H., 114
Straub, E., 414
Stute, W., 235

T

Tajvidi, N., 315, 342
Takahashi, R., 451
Tarleton, L.F., 359
Tawn, J.A., 141, 305, 322, 324, 331
Tay, A.S., 238, 407
Taylor, S., 373, 400
Teugels, J.L., 137, 195
Thatcher, A.R., 455
Thomas, M., 129, 132, 276, 342
Tiago de Oliveira, J., 293, 305
Tippett, L.H.C., 18, 187
Todorovic, P., 121, 249
Trimborn, M., 460
Tsay, R.S., 262
Tsuge, H., 442

U

Uemura, Y., 451
Usuki, H., 451

V

Vaquera, H., viii, 140
Vaupel, J.W., 454, 455
Veraverbeke, N., 434
Versace, P., 122
Villaseñor, J.A., viii, 140
Viseu, C., 206
Vries, de C.G., viii, 179, 371, 395, 396, 398
Vylder, de F., 426, 430
Vynckier, P., 137, 195

W

Walden, A.T., 134
Wallis, J.R., 120
Walshaw, D., 116
Wang, Z., 143
Wehn, C.S., vi, 401, 409



Author Index 499

Weiss, L., 134, 183
Weissman, I., 143
Wellner, J.A., 163
Welsh, A.H., 185, 306
Whitmore, G.A., 10
Wicksell, S. D., 445
Wiedemann, A., 276
Williams, D. B., 178
Wolf, W., 174
Wood, E.F., 120, 337

X

Xin, H., 289

Y

Yao, Q., 403, 409
Yates, J.R., 451
Yuen, H.K., 305

Z

Zeevi, A., 155
Zelenhasic, E., 249
Zolotarev, V.M., 175
Zwiers, F.W., 116



Subject Index

A

Aggregation, 170
Angular component, 283, 311
Annual maxima method, 10, 138
Approximation

EV, of maxima, 18
GP, of exceedance df, 27, 183
normal

of gamma distributions, 122
of sums, 30

penultimate, 187–189, 257
Poisson

in a multinomial scheme, 152
of binomial distribution, 8, 9
of exceedances, 249
of negative binomial distribution, 99

Asset prices, 5, 371
Auto–tail–dependence function, 76, 325

sample, 76, 325
Autocorrelation function, 72
Autocovariance function, 72, 166, 167

sample, 72
Automatic choice

of bandwidth, see Cross–validation
of number of extremes, 137

B

Bartlett correction
in EV model, 119
in GP model, 144

Bayes
risk, 102, 244

Beta function, 126
Bias, 61, 89

–reduction, 190
Black–Scholes

model, 374
price, 392

Blocks method, see Annual maxima method
Bootstrap

parametric, df, 91
sample, 92, 431

C

Calendar effect, 373
Canonical

dependence function, 317
Censoring

fixed, type–I, II, 160
random, 160

Central limit theorem, 30
Characteristic function, 173
Cluster size

distribution, 78, 208
mean, 77, 208

reciprocal, see Extremal index
Clustering of exceedances according to

blocks definition, 77
runs definition, 77

Condition
extreme value, 145
Hall, 185, 198
Poisson(Λ, F ), 258
Poisson(λ,F ), 248
von Mises, 56, 186, 449
Weiss, see δ–neighborhood of a GP df

Conditional
density, 228

posterior density as, 244
distribution, 12, 228

of exceedances, 234
of order statistics, 234

expectation, 50, 165, 230, 395
Bayesian estimator as, 244
covariate, 241
serial, 241

501



502 Index

independence, 230, 245, 312
mean function, 241
q–quantile, 231

covariate, 241, 261
function, 241
serial, 241

variance, 166, 231, 395
Confidence interval, 90

bootstrap, 91, 115, 431
for functional parameter, 91

Contour plot, 269
Copula, 275

empirical, 277
Correlation coefficient, 267
Covariance, 71, 165

matrix, 267
sample, 71, 270

Covariate, 238, 355
Critical region, 93
Cross–validation, 46
Cycle, 354

D

Data, 6
American football (NFL), 306
declustered, 78, 209, 252, 341
deseasonalized, 70
exceptional athletic records, 141
exchange rate

black market, 179
British pound vs U.S. dollar, 375
Swiss franc vs U.S. dollar, 381

fire claim
Danish, 417
from UK, 42
Norwegian, 415
of industrial portfolio, 421

floods
of Feather River, 109
of Moselle River, 70, 338

generation of, by
building mixtures, 38
polar method, 38
quantile transformation, 38

grouped, 152
Iceland storm, 114
liability insurance, 152
maximum pit depth, 442

maximum temperature

at de Bilt, 113
at Furnace Creek, 67

maximum wind–speeds

at Jacksonville, 121, 163
at Vancouver, 10, 48
multivariate, 274

missing, 67, 70, 274
number of car accidents, 100
ozone

at Mexico City, 140
in San Francisco Bay Area, 308

pooling of, 343

spatial, 273
stock market, 375
tensile strength of sheet steel, 117

TV watching, 46, 59
velocity of light (Michelson), 85

δ–neighborhood of a GP df, 183

Density, 7
kernel, 45

for censored data, 163

Density, multivariate, 268
kernel, 271
representation of, by d–fold partial deriva-

tive, 268

Dependence
serial, 71, 208

Distance

Hellinger, 88, 184, 239, 257
L2–, 88

Distribution(s)

Benktander II, 156
beta (GP2), 24, 38, 124
beta, two–parameter, 126

binomial, 8
Burr, 156

as a mixture, see Distribution(s), mix-
ture of, converse Weibull

Cauchy, 27, 38, 170, 172, 174
χ2–, 123, 170

convolution of, 30
double–exponential, see Distribution(s),

Laplace

elliptical
symmetric, 287

endpoint of



Subject Index 503

left, 12
right, 11

Erlang, 123
exponential, 122
exponential (GP0), 24, 37
extreme value (EV)

fitting, to maxima, 57

two–component, 121
fat–tailed, 31, 32
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Lévy, 126, 172
Laplace, 396
leptokurtic, see Distribution(s), fat–tailed
limiting, of

exceedances, 27
maxima, 18
minima, 22
sums, see Central limit theorem

log–gamma, 124, 125

log–normal, 32, 186, 349, 396
log–Pareto, 154
logistic, 123, 455
mixture of, 32, 123, 154, 233

converse Weibull, 156

exponential, 154

Pareto, 154
Poisson, 98, 249

multinomial, 95

negative binomial, 14, 99, 250
normal, 17, 31, 172, 174

fitting, to data, 59
kurtosis of, 31
mixture of, 31, 32, 59, 379, 389

of maximum, 10
of heterogeneous random variables,

10

of minimum, 11
Pareto (GP1), 24, 37, 38, 124

as a mixture, see Distribution(s), mix-
ture of, exponential

Pearson–type III, see Distribution(s),
gamma

penultimate, 187, 189
Poisson, 9

fitting, to discrete data, 59
predictive, 245
profit/loss, 384

Rayleigh, 22, 54
regional frequency, 345

Student, 33, 95, 170, 179, 379, 396
noncentral, 285
with n degrees of freedom, 94, 170

sum–stable, 172, 379
unimodal, 15
Wakeby, 120

Weibull (EV2), 15, 38
Distribution(s), multivariate

elliptical, 282, 296
function (df), 266

sample, 270

Gumbel type II, see Distribution(s),
multivariate, Gumbel–McFadden

Gumbel–McFadden, 301, 307
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linear combination of ratios of spac-

ings (LRS)
in EV model, 111
in GP model, see Estimator, Drees–

Pickands (GP)
M–

for scale parameter, 88
in exponential (GP0) model, 89, 128
in Pareto (GP1) model, 129

maximum likelihood (ML)
in normal model, 85
for censored data, 164
in beta (GP2) model, 133
in EV model, 111

in exponential (GP0) model, 84, 128
in Fréchet (EV1) model, 110
in GP model, 134
in Gumbel (EV0) model, 108
in multivariate normal model, 281
in negative binomial model, 100
in Poisson model, 96

mean squared error (MSE) of, 89, 102,
191

minimum distance (MD)
in EV model, 111
in normal model, 88

moment
in GP model, 134
in Gumbel (EV0) model, 108
in negative binomial model, 99
in normal model, 86

nonparametric density, see Density, ker-
nel

Pickands (2–dim EV), 306, 307
quick, in normal model, 87
reduced–bias, 190
unbiased, 89

Euclidean norm, 282
Euler’s constant, 21, 108
Exceedance(s), 8, 138

df, 12
for Poisson(λ, F ) process, 249
number of, 8
time, see Time, arrival

Excess, 49
df, 49, 53
function

mean, 50
median, 53
sample mean, 52, 456
trimmed mean, 52, 180

Expected shortfall, 385
conditional, 406

Extremal index, 79, 168
Extreme value index, 208
Extremes

conditional, 238

F

Forecast, see Prediction
Fubini theorem, 235

for conditional distributions, 235
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G

Gamma function, 19, 104
Gompertz law, 54, 453
Gumbel method, see Annual maxima method

H

Hazard
function, 53

cumulative, 53
reciprocal, 55
sample, 55, 456

rate, 53, 458
Histogram

of discrete distribution, 9, 470
Poisson, 97
sample, 44, 97

Homogeneity property, 304
Horror case, 19

I

Index flood, 344, 345
Innovation algorithm, see Simulation, of ARMA

time series
Intensity, 248, 262, 447

function, 259
measure, 259, 262, 447

J

Jackknife method, 193

K

Kendall’s τ , 267, 284
Kurtosis, 31

L

L–CV, 347
L–kurtosis, 347
L–moment ratios, 347
L–moments, 86, 346
L–skewness, 347
L–statistic, 87
Lag, see Time, lag
Leadbetter’s mixing conditions, 168
Least squares method, 64, 65
Legendre polynomials, 346
Level, T–year, 12, 13
Likelihood

function, 84, 103

Location and scale parameters, 16, 36
vectors, 279

Lowess, see Regression, local weighted

M

Matrix
orthogonal, 282
transposed, 266
unit, 280, 282

Maxima, 9
of GP random variables, 29

McSize, see Cluster size, mean
Mean

number of exceedances, see Mean, value
function

of binomial distribution, 8
of EV distribution, 20
of gamma distribution, 122
of GP distribution, 30
of negative binomial distribution, 99
of Poisson distribution, 9
sample, 41
value function, 8, 18

of homogeneous Poisson process, 248
of inhomogeneous Poisson process,

258
of Pólya–Lundberg process, 250

vector, 266
sample, 270

Minima, 11, 110, 117
Mode(s), 15

of EV distributions, 21
Model

Poisson–GP, 153
Poisson–Pareto (Poisson–GP1), 152

Moments
centered, 20
of EV distributions, 19
of GP distributions, 29
sample, 41

Mortality rate, see Hazard, rate
Moving averages, 66

Nadaraya–Watson, 66

N

Newton–Raphson iteration, 171

O
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Order statistics, 12, 40, 141, 234
Outlier, 47

P

P–P plots, 63
p–value, 93, 95, 96, 330
Parameter

canonical, 299, 300, 307
tail dependence, 75, 300, 316

Parameterization
α–

of EV distributions, 15
of GP distributions, 24

γ–
of EV distributions, 16
of GP distributions, 25

Partial duration values, see Exceedances
Peaks–over–threshold, see Exceedance(s)
Pickands dependence function, 327
Polynomial, MA and AR, 167
Posterior

density, 103, 244
Power function, 330
Prediction, 235, 244

linear, 245
Predictive

density, 238
distribution, 237, 406

in Bayesian framework, 245
VaR, 406

Prior
conjugate, 104–106
density, 102

Probability weighted moments, 346
Probable maximum loss (PML), 419
Process

counting, 248, 415
Pólya–Lundberg, 250
point, 259
Poisson, 247, 262

homogeneous (Poisson(λ)), 248
inhomogeneous (Poisson(Λ)), 258
mixed, 249

white–noise, 164, 397

Q

Quantile(s), 35
bivariate, 269

extreme, 208
function (qf), 35, 120

sample, 42
sample, 42

Quantile–Quantile (Q–Q) plot, 61
EV, 62, 112
GP, 62
normal, 62

R

Radial component, 282, 311, 328
Random variables

uncorrelated, 71, 267
Regression

fixed design, 65
local weighted, 69
slope, 64

Regularly varying, 182, 186
Reinsurance treaty

ECOMOR, 411
excess–of–loss (XL), 4, 411
stop–loss, 411

Reproductivity
pot–

of Benktander II distributions, 157
of converse truncated Weibull dis-

tributions, 157
sum–

of gamma distributions, 122
Residual life

df, see Excess, df
mean, function, see Excess, function,

mean
Residuals, 69
Return period, see Time, interarrival
Returns, 5, 371

volatility of, 377
Risk

contour plot, 430
process, 412

RiskMetrics, 400
Robust statistics, 34, 88, 128, 129
Rotation, 282
Run length, see Clustering, of exceedances

according to, run definition

S

Scatterplot, 48
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3–D, 273
Seasonal component, 69
Self–similarity, 170, 171
Separation, seasonal, 120
Service

life, 441
Simulation

of ARMA time series, 168
Skewness coefficient

of EV distributions, 21
sample, 41, 119

Slowly varying, 183, 186
Spacings, 120
Spectral expansion

differentiable, 326
Stability

max–, 19
min–, 23
pot–, 25, 182
sum–, 31, 126, 172, 174

STABLE, 173
Standard deviation, 21
Stationarity

covariance–, see Stationarity, weak
strict, 165, 207

of Gaussian time series, 165
weak, 72, 165, 397

StatPascal
accessing active data with, 493
editor, 486
generating data with, 492
plots, 490
Reference Manual, 485
Vector Types, 488
window, 487

Strength
of material, 7
of bundles of threads, 7
of material, 110, 117
tensile, 117

Survivor function, 11, 54
marginal, 267
multivariate, 266

T

T–day capital, 7
T–unit depths, 6, 7
T–year discharge, see Level, T–year

T–year initial reserve, 7, 430

Tail
behavior, 355
dependence

coefficient of, 322
dependence/independence, 75, 328

testing for, 329
probability, 52

Test
χ2–

for EV models, 120
in multinomial model, 95, 98

goodness–of–fit, 61
for EV models, 120

for Poisson model, 97
likelihood ratio (LR)

in EV model, 118
in GP model, 144

in multinomial model, 96, 98
selection of null–hypothesis, 329
t–, in normal model, 94
UMP, in normal model, 94

Theorem
Balkema–de Haan–Pickands, 27
Falk–Marohn–Kaufmann, 189
Fisher–Tippett, 18
Tiago de Oliveira–Geffroy–Sibuya, 292

Threshold, 8
random, 138
T–year, 4

for heterogeneous random variables,
251

given a Poisson process, 252
median, 251

Time

arrival, 13, 247
for mixed Poisson process, 250
Pareto, 250

early warning, 430

interarrival, 13
exponential, 247

lag, 72
ruin, 429

Time series
AR(p), 166, 221
ARCH(p), 397, 399
ARMA(p,q), 167, 210
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causal, 167
GARCH(p,q), 210, 224, 400, 401, 403
Gaussian AR(1), 73, 165, 325, 326
MA(∞), 167
MA(q), 166

Cauchy, 166
Gaussian, 166

Transformation
probability, 38, 234, 235, 407
quantile, 38
Rosenblatt, 234, 407
theorem for densities, 280
Wicksell, 446

Trend, 354

U

UFO, 481
calculator, 482

Utility
function, 303
maximizing, 304

V

Value–at–Risk (VaR), 384
conditional

covariate, 262
serial, 401, 409

Variance
of binomial distribution, 8
of EV distribution, 20
of gamma distribution, 122
of GP distribution, 30
of negative binomial distribution, 99
of Poisson distribution, 9
of Student distribution, 33
sample, 41

Varying function
regularly, 326
slowly, 323

Vector
transposed, 266

Volatility, 374

W

Wicksell’s corpuscle problem, 33, 445

X

Xtremes

clipboard, 475, 480
data

format, 476
generating, 472
missing, 478
reading, 472
types, 477

editor, 476
illustrations, 478
installation, 467
mouse mode, 475

coordinate changing, 468, 472
information, 472
label, 479
option, 470, 479
parameter varying, 470, 479, 482
point selection (scissors), 473

overview, 467
plots, 470
printing, 480
starting, 470
system requirements, 467
toolbar, 470, 471, 474
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