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Preface

Of what use is mathematics? Hasn’t everything in mathematics already been discov-
ered? These are natural questions often asked by undergraduates. The answers provided
by their professors are often quite brief. Most university courses, pressed for time and
rigidly structured, offer little opportunity to present and study actual applications and
real-world examples.

Even more high-school students ask the same questions with more insistence. Teach-
ers in these schools generally work under even tighter constraints than university profes-
sors. If they are able to competently respond to these questions it is probably because
they received good answers from their teachers and professors. And if they do not have
the answers, then whose fault is it?

The genesis of this text

It is impossible to introduce this text without first discussing the course in which it
originated. The course “Mathematics and Technology” was created at the Université
de Montréal and taught for the first time in the winter semester of 2001. It was created
after observing that most courses in the department neglect to present real applications.
Since its creation the course has been open to both undergraduate mathematics students
and future high-school teachers.

Since no appropriate text or manual for the course we envisioned existed, we were
led to write our own course notes, from which we taught. We got so caught up in
writing these notes that they quickly grew to the size of a textbook, containing much
more material than could possibly be taught in one semester. Despite the two of us
being career mathematicians, we must admit that we both knew little or nothing about
most of the applications presented in the following chapters.

The goal of the “Mathematics and Technology” course

The primary goals of the course are to demonstrate the active and evolving character of
mathematics, its omnipresence in the development of technologies, and to initiate stu-
dents into the process of modeling as a path to the development of various mathematical
applications.
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Although a few of the included subjects fall outside the strict domain of technology,
we hope to make it clear that, yes, mathematics is useful, and it plays a major role
in everyday technologies. Several of the subjects treated in this text are still being
actively developed, and this allows students to see, often for the first time, that the field
of mathematics remains open and dynamic.

Since the students taking our course include future high school-teachers, it is impor-
tant to stress that the point is not simply to provide them with examples and applica-
tions that they can repeat to their future students, but rather to give them the tools to
formulate and develop real-world examples appropriate to their students. They should
be instilled with the feeling that they are teaching a subject that is intrinsically elegant,
of course, but whose applications have helped shape our physical environment and our
understanding of it.

The choice of subjects

In choosing subjects we have paid particular attention to the following points:

• The applications should be recent or affect the students’ day-to-day life. Moreover,
contrary to the mature mathematics typically taught in other undergraduate courses,
some of the mathematics used should be modern or even still in development.

• The mathematics should be relatively elementary and if it exceeds the typical first-
year undergraduate curriculum (calculus, linear algebra, probability theory), the
missing pieces must be covered within the chapter. A special effort is made to make
extensive use of high-school-level mathematics, particularly Euclidean geometry. Ba-
sic high-school and undergraduate mathematics form a remarkable toolkit, provided
they are well understood and mastered, allowing students to readily explore their
wide applications and, often for the first time, to discover their power when used
together.

• The level of mathematical sophistication required should remain at a minimum:
ideas are a scientist’s most precious commodity, and behind most technological suc-
cesses there lies a brilliant yet sometimes elementary observation.

As a result, the mathematics used in the book covers a very wide spectrum:

• Lines and planes appear in all of their forms (regular equations, parametric equa-
tions, subspaces), often in unexpected ways (using the intersection of several planes
to decode a Reed–Solomon encoded message).

• A large number of subjects make use of basic geometric objects: circles, spheres,
and conics. The concept of locus of points in Euclidean geometry is often repeated,
for example in problems where we calculate the position of an object through trian-
gulation (Chapter 1 on GPS, and Chapter 15 on Science Flashes).

• The different types of affine transformations in the plane or in space (in particular
rotation and symmetries) appear several times: in Chapter 11 on image compression
using fractals, in Chapter 2 on mosaics and friezes, and in Chapter 3 on robot motion.

• Finite groups appear as symmetry groups (Chapter 2 on mosaics and friezes) and
also in the development of primality tests in cryptography (Chapter 7).
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• Finite fields make an appearance in Chapter 6 on error-correcting codes, in Chapter
1 on GPS and in Chapter 8 on random-number generation.

• Chapter 7 on cryptography and Chapter 8 on random-number generation both make
use of arithmetic modulo n, while Chapter 6 on error-correcting codes makes use of
arithmetic modulo 2.

• Probability theory appears in several unexpected places: in Chapter 9 on Google’s
PageRank algorithm, and in the construction of large prime numbers in Chapter 7.
It is also used more classically in Chapter 8 on random-number generation.

• Linear algebra is omnipresent: in Chapter 6 on Hamming and Reed–Solomon codes,
in Chapter 9 on the PageRank algorithm, in Chapter 3 on robot motion, in Chapter
2 on mosaics and friezes, in Chapter 1 on GPS, in Chapter 12 on the JPEG standard,
etc.

Using this book as a course text

The text is written for students who have a familiarity with Euclidean geometry and have
mastered multivariable calculus, linear algebra, and elementary probability theory. We
hope that we have not implicitly assumed any other background knowledge. Working
through the text nonetheless requires a certain scientific maturity: it involves integrating
a variety of mathematical tools in a setting different from the one in which they were
originally taught. For that reason, undergraduates in their junior or senior years are
the ideal audience for the course.

The text presents applications in two forms: the main chapters (all except Chapter
15) are long and detailed, while the Science Flashes (sections of Chapter 15) are short
and narrow in scope. Readers will notice a certain unity in the form of the longer
chapters: the first sections describe the application and the underlying mathematical
problem; this is followed by an exploration of simple cases of the problem and, if neces-
sary, a development of the required mathematics. We call these parts the basic portion
of the chapter. Afterward, one or more sections may explore more-complicated exam-
ples, provide more details to the mathematical tools discussed earlier, or simply discuss
the fact that mathematics alone is not always sufficient! We refer to this latter part of
a chapter as the advanced portion. Each application is typically covered in 5–6 hours
of class: two hours for the basic theory, two hours for examples and exercises and, if
time permits, one or two hours for advanced topics. Often we are able only to touch
briefly on the advanced material, unless a second week is spent on the chapter. Each
Science Flash can be treated in an hour of class or even assigned as an exercise without
being preceded by any theory development. During a single semester we aim to cover
a significant part of 8 to 12 chapters and a handful of Science Flashes. Another option
is to significantly reduce the number of chapters being covered and to dig further into
their advanced sections.

We are thus forced to select subjects as a function of their intrinsic interest or the
students’ mathematical knowledge. The chapters not selected or the advanced portions
of those that were covered are natural points of departure for course projects. Self-
guided students who are reading this text on their own may simply jump from chapter
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to chapter as the mood strikes them. Each chapter is (mathematically) independent (or
very nearly so), and any links among them are explicitly stated.

One last note for professors using this book as a course text. Teaching this course
has forced us to revise our usual pedagogical methods: here no subject is prerequisite for
further courses, the definitions and theorems are not the ultimate goals of the course, and
the problems are not drill. These factors can cause some anxiety on the students’ side.
Moreover, we are not specialists in any of the technologies we discuss here. So we had
to revise our teaching. We try to make as many links as possible to the technology. We
encourage students to participate in the course. This allows us to check their background
relative to the mathematical tools being used. As for exams, we choose to reassure them
from the beginning by stating that the exams are open book, noncumulative, and limited
to the basic material. Emphasis is put on simple mathematical modeling and problem
solving. Our sets of exercises focus on these skills.

Using this book as a self-directed reader

During the writing of this text we have always been passionate about presenting the
mathematics underlying technology and demonstrating both its intrinsic beauty and
power. We believe that this text will be of interest to any reader, from young scientist
to experienced mathematician, curious to understand the mathematics that drives tech-
nological innovation. Since the chapters are largely independent, the reader can hop
from subject to subject at will. Hopefully, the reader will be equally interested in the
many historical notes scattered throughout the text and, who knows, even find time to
work through a few of the exercises.

The contributions of Hélène Antaya and Isabelle Ascah-Coallier

The first draft of Chapter 14 on the calculus of variations was written by Hélène Antaya
during a summer internship at the end of her junior college. Chapter 13 on computing
with DNA was written the following summer by Hélène Antaya and Isabelle Ascah-
Coallier while they were supported by an Undergraduate Student Research Award from
the National Sciences and Engineering Research Council (NSERC) of Canada.

How to use the chapters

For the most part, chapters are independent. The beginning of each chapter contains a
brief “how-to,” describing the required basic knowledge, the relationships between the
sections, and, if necessary, their relative difficulty.

Christiane Rousseau
Yvan Saint-Aubin

Département de mathématiques et de statistique
Université de Montréal
June 2008
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1

Positioning on Earth and in Space

This chapter is the best example in the book of how diverse the applications of mathe-

matics can be to a simple technical question: how can one locate people or events on

Earth? This diversity is striking, and to spend more than one week on this chapter

can be a good idea for that reason. Two hours are sufficient to cover the theory behind

GPS (Section 1.2) and to briefly touch upon the application of GPS to storm tracking

(Section 1.3). Afterward, there is a choice to be made. If you have already introduced

finite fields in Chapter 6 on error-correcting codes or Chapter 8 on random-number

generators, then the mechanics of the GPS signal can be covered in a little more than

an hour, since you may skip the review of finite fields. If time is limited and finite fields

have not yet been introduced, a reasonable compromise is simply to state Theorem 1.4

and to illustrate it using several examples such as Example 1.5. Section 1.5 on car-

tography will require a minimum of two hours, unless the students are already familiar

with the notion of conformal maps. Section 1.2 requires only Euclidean geometry and

basic linear algebra, while Section 1.3 uses elementary probability concepts. Section 1.4

is more difficult unless one has some knowledge of finite fields. Section 1.5 makes use

of multivariable calculus.

1.1 Introduction

Since the beginning of time man has been interested in determining his position on
the Earth. He started with primitive instruments, navigating through the use of the
magnetic compass, the astrolabe, and later the sextant. Recent history has seen the
development of significantly more complex and accurate navigational aids, such as the
Global Positioning System (GPS). In this chapter we walk backward through time:
we will start by discussing modern-day GPS, followed by a brief discussion of ancient
techniques, mostly in the exercises.

Since such navigational techniques are really useful only if we have accurate maps
of the world, we will dedicate a section to cartography. Since the Earth is a sphere,

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 1, c© Springer Science+Business Media, LLC 2008



2 1 Positioning on Earth and in Space

it is impossible to represent it on a sheet of paper in a manner that preserves angles,
relative distances, and relative areas. The chosen compromise depends largely on the
application. The Peters Atlas has chosen to use projections that preserve relative area
[2]. Marine charts, on the other hand, have chosen projections that preserve angles.

1.2 Global Positioning System

1.2.1 Some Facts about GPS

The GPS constellation of satellites was completed in July 1995 by the Defense Depart-
ment of the USA, and was authorized for use by the general public. When it was first
deployed, the system consisted of 24 satellites designed such that at least 21 would be
functioning 98% of the time. In 2005 the system consisted of 32 satellites, of which at
least 24 are to be functioning while the others are ready to take over in case a satellite
fails. The satellites are positioned 20,200 km from the surface of the Earth. They are
distributed across 6 orbital planes, each tilted at an angle of 55 degrees to the equa-
torial plane (see Figure 1.1). There are at least 4 satellites per orbital plane, roughly
equidistant from each other. Each satellite completes a circular orbit around the Earth
in 11 hours and 58 minutes. The satellites are situated such that at any moment and
at any location on Earth we may observe at least 4 satellites.

Fig. 1.1. The 24 satellites on 6 orbital planes.

The 24 satellites emit a signal that repeats periodically, and which is received with
the aid of a special receiver. When we buy a GPS we are in fact buying a device (which
we will call the receiver) that receives the GPS signals and uses the information in
them to calculate its location. It contains an almanac with which it is able to calculate
the absolute position of each satellite at any given moment of time. However, since
slight errors in the orbit are inevitable, correcting information for each satellite is coded
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directly within the emitted signal (this correcting information is updated every hour).
Each satellite emits its signal continuously. The period of the signal is fixed, and the
start time of the cycle may be determined through the use of the almanac. Additionally,
each satellite is equipped with an extremely precise atomic clock allowing it to stay
synchronized to the start times contained in the almanac. When a receiver records a
signal from a satellite, it immediately starts comparing it with one that it generates
and that is supposed to match perfectly the one received. In general, these signals will
not immediately match. Thus, the receiver shifts the copy it generates until it is in
phase with the received signal (which it determines through calculating the correlation
between the two). In such a manner, the device is able to calculate the time it takes for
the signal to arrive from the satellite. We will discuss this system in much more detail
in Section 1.4.

The system described above is the standard precision GPS system. In absence
of more sophisticated ground-based corrections, it permits the calculation of receiver
position to about 20 meters. Prior to May 2000, the Department of Defense intentionally
introduced inaccuracies to the satellite signals in order to reduce the precision of the
system to 100 meters.

1.2.2 The Theory Behind GPS

How does the receiver calculate its position? We will start by assuming that the
clocks of the receiver and all of the satellites are perfectly synchronized. The receiver
calculates its position through triangulation. The basic principle of triangulation meth-
ods is to determine where a person (object) is located by using some knowledge relating
the position of the person (object) with respect to reference objects whose positions are
known. In the case of the receiver of the GPS, it calculates its distance to the satellites,
whose positions are known.

• The receiver measures the time t1 it takes for the signal emitted from satellite P1

to reach it. Given that the signal travels at the speed of light c, the receiver can
calculate its distance from the satellite as r1 = ct1. The set of points situated at a
distance r1 from the satellite P1 forms a sphere S1 centered at P1 with radius r1. So
we know that the receiver is on S1. Consider these points as defined in a Cartesian
coordinate system. Let (x, y, z) be the unknown position of the receiver and let
(a1, b1, c1) be the known position of the satellite P1. Then (x, y, z) must satisfy the
equation describing points on the sphere S1, namely

(x − a1)2 + (y − b1)2 + (z − c1)2 = r2
1 = c2t21. (1.1)

• This piece of information is insufficient to determine the precise position of the
receiver. The receiver therefore records the signal of a second satellite P2, recording
the time t2 that the signal took to arrive and calculating the distance r2 = ct2 to
the satellite. As before, it must be that the receiver lies on the sphere S2 of radius
r2 centered at (a2, b2, c2):
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(x − a2)2 + (y − b2)2 + (z − c2)2 = r2
2 = c2t22. (1.2)

This narrows down our search, since the intersection of two overlapping spheres is
a circle. Thus, we have now narrowed down the position of the receiver to a circle
C1,2 on which the receiver must lie. However, we again do not know precisely where
the receiver is on this circle.

• In order for the receiver to calculate its final position, it needs to capture and process
the signal received from a third satellite P3. Once again, the receiver measures the
time t3 for the signal to arrive and calculates its distance r3 = ct3 from it. As before,
it follows that the receiver lies somewhere on the sphere S3 of radius r3 centered at
(a3, b3, c3):

(x − a3)2 + (y − b3)2 + (z − c3)2 = r2
3 = c2t23. (1.3)

The receiver is therefore at the intersection of the circle C1,2 and the sphere S3.
Since a sphere and a circle intersect at two points, it may seem that we are not yet
sure of the position of the receiver. Fortunately, this is not the case. In fact, the
satellites have been positioned such that one of the two solutions will be completely
unrealistic, being quite far away from the surface of the Earth. Thus, by finding the
two solutions of the system (∗) of equations formed by equations (1.1), (1.2), and
(1.3), and subsequently eliminating the spurious solution, the receiver may calculate
its precise position.

Solving the system (∗). The equations of system (∗) are quadratic, not linear, which
complicates the solution. You may have observed, however, that if we subtract one of
the equations from another we obtain a linear equation, since the terms x2, y2, and z2

cancel. Thus, we replace the system (∗) by an equivalent system obtained by replacing
the first equation by (1.1)−(1.3) and the second equation by (1.2)−(1.3) and by keeping
the third equation. This results in the system

2(a3 − a1)x + 2(b3 − b1)y + 2(c3 − c1)z = A1, (1.4)
2(a3 − a2)x + 2(b3 − b2)y + 2(c3 − c2)z = A2, (1.5)

(x − a3)2 + (y − b3)2 + (z − c3)2 = r2
3 = c2t23, (1.6)

where

A1 = c2(t21 − t23) + (a2
3 − a2

1) + (b2
3 − b2

1) + (c2
3 − c2

1),
A2 = c2(t22 − t23) + (a2

3 − a2
2) + (b2

3 − b2
2) + (c2

3 − c2
2).

(1.7)

The satellites have been placed in such a manner that no three satellites will ever fall
along a line. This property guarantees that at least one of the 2 × 2 determinants∣∣∣∣a3 − a1 b3 − b1

a3 − a2 b3 − b2

∣∣∣∣ ,
∣∣∣∣a3 − a1 c3 − c1

a3 − a2 c3 − c2

∣∣∣∣ ,
∣∣∣∣b3 − b1 c3 − c1

b3 − b2 c3 − c2

∣∣∣∣
is nonzero. In fact, if all three determinants are zero, then the vectors (a3 − a1, b3 −
b1, c3 − c1) and (a3 − a2, b3 − b2, c3 − c2) are collinear (their cross product is zero),
implying that the three points P1, P2, and P3 fall on a line.



1.2 Global Positioning System 5

Suppose that the first determinant is nonzero. Using Cramer’s rule, the first two
equations of (1.6) can give us solutions for x and y as a function of z:

x =

∣∣∣∣∣∣
A1 − 2(c3 − c1)z 2(b3 − b1)
A2 − 2(c3 − c2)z 2(b3 − b2)

∣∣∣∣∣∣∣∣∣∣∣∣
2(a3 − a1) 2(b3 − b1)
2(a3 − a2) 2(b3 − b2)

∣∣∣∣∣∣
,

y =

∣∣∣∣∣∣
2(a3 − a1) A1 − 2(c3 − c1)z
2(a3 − a2) A2 − 2(c3 − c2)z

∣∣∣∣∣∣∣∣∣∣∣∣
2(a3 − a1) 2(b3 − b1)
2(a3 − a2) 2(b3 − b2)

∣∣∣∣∣∣
.

(1.8)

Substituting these values into the third equation of (1.6) yields a quadratic equation
in z, which we may solve to find the two solutions z1 and z2. Back-substituting z for
the values z1 and z2 into the two above equations yields the corresponding values x1,
x2, y1, and y2. We could easily find closed forms to these solutions, but the formulas
involved quickly become too large to offer any insight or convenience.

Choosing the axes of our coordinate system. Nowhere in the above discussion
did we mention or were we forced to choose a set of axes for our coordinate system.
However, to facilitate the translation from absolute coordinates to latitude, longitude,
and altitude we make the following choice:

• the center of the coordinate system is the center of the Earth;
• the z axis passes through the two poles, and is oriented toward the North Pole;
• the x and y axes both lie in the equatorial plane;
• the positive x axis passes through the point of 0 degrees longitude;
• the positive y axis passes through the point of longitude 90 degrees west;

Since the radius R of the Earth is approximately 6365 km, a solution (xi, yi, zi) is
considered acceptable if x2

i + y2
i + z2

i ≈ (6365± 50)2. The uncertainty of 50 km allows a
window for the altitudes of mountains and airplanes. A more natural coordinate system
for expressing points near the surface of the Earth is the longitude L, the latitude l,
and the distance h from the center of the Earth (the altitude above sea level is therefore
given by h − R). Longitude and latitude are angles that will be expressed in degrees.
If a point (x, y, z) lies exactly on the sphere of radius R (in other words, if the point lies
at altitude zero), then its longitude and latitude may be found by solving the following
system of equations:

x = R cos L cos l,
y = R sin L cos l,
z = R sin l.

(1.9)

Since l ∈ [−90◦, 90◦], we obtain
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l = arcsin
z

R
, (1.10)

allowing us to calculate cos l. The longitude L is therefore uniquely determined by the
two equations ⎧⎪⎪⎨

⎪⎪⎩
cos L =

x

R cos l
,

sin L =
y

R cos l
.

(1.11)

Calculating the position of the receiver. Let (x, y, z) be the position of the receiver.
We begin by calculating the distance h of the receiver from the center of the Earth, given
by

h =
√

x2 + y2 + z2.

We now have two choices for calculating the latitude and longitude: adapt the formulas
(1.10) and (1.11) by replacing all occurrences of R with h, or project the position (x, y, z)
to the surface of the sphere and use these values in the equations (1.10) and (1.11):

(x0, y0, z0) =
(

x
R

h
, y

R

h
, z

R

h

)
.

The altitude of the receiver is given by h − R.

1.2.3 Dealing with Practical Difficulties.

We have just presented the theory behind calculating the position, which holds true
in a perfect world. Unfortunately, real life is vastly more complicated, since the times
being measured are extremely short and must be measured to high precision. The
satellites are each equipped with an extremely precise (and expensive!) atomic clock
allowing them to be (very nearly) perfectly in sync. Meanwhile, the average receiver
is typically equipped with only a mediocre clock, allowing it to be within the budget
of most everyone. Assuming that the clocks of the satellites are in sync, the receiver
is easily capable of calculating precise transit times for the signals from the satellites.
However, given that the receiver is not perfectly in sync, it will actually be calculating
three fictitious transit times T1, T2, and T3. How do we deal with these inaccurate
measurements? When we had three unknowns, x, y, z, we had needed three measured
times t1, t2, t3, to find the unknowns. Now the fictitious time Ti measured by the receiver
is given by

Ti = (arrival time of the signal on the receiver’s clock)
− (departure time of the signal on the satellite’s clock).

The solution comes from the fact that the error between the fictitious time Ti calculated
by the receiver and the actual time ti is the same, regardless of the satellite from which
the measurement was taken. That is, Ti = τ + ti, for i = 1, 2, 3, where
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ti = (arrival time of the signal on the satellite’s clock)
− (departure time of the signal on the satellite’s clock)

and τ is given by the equation

τ = (arrival time of the signal on the receiver’s clock)
− (arrival time of the signal on the satellite’s clock). (1.12)

The constant τ represents the clock offset between the clocks on the satellites and the
receiver’s clock. This introduces a fourth unknown, τ , to our original system of three
unknowns x, y, z. In order to resolve the system of equations to a finite set of solutions
we must obtain a fourth equation. This is simple to do in our context: the receiver
simply measures the offset signal transit time T4 between itself and a fourth satellite
P4. Since ti = Ti − τ for i = 1, . . . , 4, our system then becomes:

(x − a1)2 + (y − b1)2 + (z − c1)2 = c2(T1 − τ)2,
(x − a2)2 + (y − b2)2 + (z − c2)2 = c2(T2 − τ)2,
(x − a3)2 + (y − b3)2 + (z − c3)2 = c2(T3 − τ)2,
(x − a4)2 + (y − b4)2 + (z − c4)2 = c2(T4 − τ)2

(1.13)

where we have the four unknowns x, y, z, and τ . As before, we can use elementary
operations to replace three of these quadratic equations by linear equations. To do this
we subtract the fourth equation from each of the first three, resulting in:

2(a4 − a1)x + 2(b4 − b1)y + 2(c4 − c1)z = 2c2τ(T4 − T1) + B1,
2(a4 − a2)x + 2(b4 − b2)y + 2(c4 − c2)z = 2c2τ(T4 − T2) + B2,
2(a4 − a3)x + 2(b4 − b3)y + 2(c4 − c3)z = 2c2τ(T4 − T3) + B3,

(x − a4)2 + (y − b4)2 + (z − c4)2 = c2(T4 − τ)2,

(1.14)

where

B1 = c2(T 2
1 − T 2

4 ) + (a2
4 − a2

1) + (b2
4 − b2

1) + (c2
4 − c2

1),
B2 = c2(T 2

2 − T 2
4 ) + (a2

4 − a2
2) + (b2

4 − b2
2) + (c2

4 − c2
2),

B3 = c2(T 2
3 − T 2

4 ) + (a2
4 − a2

3) + (b2
4 − b2

3) + (c2
4 − c2

3).
(1.15)

In the system of equations (1.14), Cramer’s rule applied to the first three equations
allows us to determine values for x, y, and z as a function of τ :
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x =

∣∣∣∣∣∣∣∣
2c2τ(T4 − T1) + B1 2(b4 − b1) 2(c4 − c1)
2c2τ(T4 − T2) + B2 2(b4 − b2) 2(c4 − c2)
2c2τ(T4 − T3) + B3 2(b4 − b3) 2(c4 − c3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2(a4 − a1) 2(b4 − b1) 2(c4 − c1)
2(a4 − a2) 2(b4 − b2) 2(c4 − c2)
2(a4 − a3) 2(b4 − b3) 2(c4 − c3)

∣∣∣∣∣∣∣∣
,

y =

∣∣∣∣∣∣∣∣
2(a4 − a1) 2c2τ(T4 − T1) + B1 2(c4 − c1)
2(a4 − a2) 2c2τ(T4 − T2) + B2 2(c4 − c2)
2(a4 − a3) 2c2τ(T4 − T3) + B3 2(c4 − c3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2(a4 − a1) 2(b4 − b1) 2(c4 − c1)
2(a4 − a2) 2(b4 − b2) 2(c4 − c2)
2(a4 − a3) 2(b4 − b3) 2(c4 − c3)

∣∣∣∣∣∣∣∣
,

z =

∣∣∣∣∣∣∣∣
2(a4 − a1) 2(b4 − b1) 2c2τ(T4 − T1) + B1

2(a4 − a2) 2(b4 − b2) 2c2τ(T4 − T2) + B2

2(a4 − a3) 2(b4 − b3) 2c2τ(T4 − T3) + B3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2(a4 − a1) 2(b4 − b1) 2(c4 − c1)
2(a4 − a2) 2(b4 − b2) 2(c4 − c2)
2(a4 − a3) 2(b4 − b3) 2(c4 − c3)

∣∣∣∣∣∣∣∣
.

(1.16)

None of this makes sense unless the denominator is nonzero. However, the denominator
is zero if and only if the four satellites are situated in the same plane (see Exercise
1). Once again, the satellites are laid out such that no four of them that are visible
from a given point on the Earth will ever lie in the same plane. We forward-substitute
the solutions to the first three equations into the fourth, resulting in a final quadratic
equation in τ , which yields two solutions τ1 and τ2. Back-substituting these into (1.16)
yields two possible positions for the receiver, and we use the same trick as before to
eliminate the spurious solution.

Which satellites should the receiver choose if it can see more than four? In
this case, the receiver has a choice for which data to use in the calculations. It makes
sense to use the data that will introduce the minimal amount of error. In reality, the
time measurements are all approximate. This implies that the calculated distances to
the satellites are only approximate. Graphically, we could represent the area of incerti-
tude by thickening the shell of each sphere. The intersection of the thick spheres then
becomes a set, the size of which is related to the uncertainty of the solution. Thinking
geometrically, it is easy to convince ourselves that the greater the angle between the
surfaces of two intersecting thick spheres, the smaller the volume of space swept out
by the intersection. Conversely, if the spheres intersect almost tangentially, then the
volume of intersection (and hence uncertainty) is bigger. We thus want to choose the
spheres Si that intersect each other at as large an angle as possible (see Figure 1.2).

This is the geometric intuition behind our choice. Algebraically, we see that the
values of x, y, and z in terms of τ are obtained by dividing by
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Fig. 1.2. A small angle of intersection at the left (loss of precision) and a large angle at the
right.

∣∣∣∣∣∣
2(a4 − a1) 2(b4 − b1) 2(c4 − c1)
2(a4 − a2) 2(b4 − b2) 2(c4 − c2)
2(a4 − a3) 2(b4 − b3) 2(c4 − c3)

∣∣∣∣∣∣ .
The smaller the denominator, the larger the error. Thus, we want to choose the four
satellites that maximize this denominator.

More advanced investigations into this topic would fit easily into a course project.

A few refinements:

• Differential GPS (DGPS): One source of imprecision in GPS comes from the
fact that distances are calculated to the satellites using the constant c, which is the
speed of light in a vacuum. In reality, the signal is traveling and refracting through
the atmosphere, which both lengthens its trajectory and decreases its speed. To
obtain a better approximation to the actual average speed of the signal on the path
from the satellite to the receiver we can employ a differential GPS system. The
idea is to refine the value of c to be used in calculating satellite distance. We do
this by comparing the transit time measured at the receiver and the transit time
measured at another nearby receiver at a precisely known position. This allows us to
accurately calculate the average speed of light along the path from a given satellite
to the receiver, which in turn results in more accurate distance calculations. When
helped with such a fixed ground station, GPS precision is on the order of centimeters.

• The signal sent by each satellite is a random signal that repeats at regular known
intervals. The period of the signal is relatively short, such that the distance covered
by the signal in one period is on the order of a few hundred kilometers. When the
receiver sees the beginning of a period of the signal it must determine at precisely
which moment in time this period was emitted from the satellite. A priori we have
an uncertainty of some integer number of periods.

• Rapidly moving GPS receiver: installing a GPS receiver on a fast-moving object (an
airplane, for example) is a very natural application: if an airplane needs to land in
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inclement weather, the pilot needs to know its precise position at every instant, and
the time to calculate the position must be reduced to an absolute minimum.

• The Earth is not really round! In fact, the Earth is more an ellipsoid that is slightly
flattened at the poles and bulging at the equator (an “oblate spheroid”). The radius
of the Earth is roughly 6356 km at the poles and 6378 km at the equator. Thus, the
calculations for translating Cartesian coordinates (x, y, z) into latitude, longitude,
and altitude must be refined to accommodate this fact.

• Relativistic corrections. The speed of the satellites is sufficiently large that all of
the calculations must be adapted to account for the effects of special relativity. In
fact, the clocks on the satellites are traveling very fast compared to those on Earth.
As such, the theory of special relativity predicts that these clocks will run slower than
those on Earth. Furthermore, the satellites are in relatively close proximity to the
Earth, which has significant mass. General relativity predicts a small increase in the
speed of the clocks on board the satellites. As a first approximation, we may model
the Earth as a large nonrotating spherical mass without any electrical charge. The
effect is relatively easy to compute using the Schwarzschild metric, which describes
the effects of general relativity under these simplified conditions. As it turns out,
this simplification is sufficient to capture the actual effect to high precision. The two
effects must both be considered because even though they are in opposite directions,
they only partially cancel each other out. For more details see [4].

Applications of GPS. The applications of GPS are numerous, and we name only a
few here:

• A GPS receiver allows a person to easily find his/her position when outdoors. As
such, it is immediately useful to hikers, kayakers, hunters, sailors, boaters, etc. Most
receivers allow the marking of waypoints, which can be saved either when one is phys-
ically present at the location (in which case the receiver has calculated its position)
or by manually entering map coordinates into the receiver. By joining waypoints
with line segments we can in turn represent a route. The receiver may then provide
us with our position relative to a chosen waypoint or even give us instructions on
how to follow our route. More sophisticated receivers may even store detailed map
information. The receiver may then display our position on a portion of the map
appearing on the screen, annotated with our waypoints and routes.

• More and more vehicles (especially taxis) are equipped with GPS navigation systems
that allow their drivers to find their way to a particular address. In Western Europe
and North America there exist several products that provide precise directions to
nearly any address.

• Imagine you have an ancient map on which you wish to plot a route you have
followed. The route can be saved in the GPS as it is taken, and later uploaded to
a computer with the appropriate software. Such software can then superimpose the
followed route on the digitized map. If you do not already have a digital version
of the map, you may first scan it and (using appropriate software) overlay it with
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a coordinate system by simply showing it the location of three known points (see
Exercise 5).

• The ubiquitous use of GPS on airplanes allows the size of airways (imaginary corri-
dors of air that airplanes follow between points) to be decreased while still ensuring
that airplanes on different airways will stay a safe distance from each other.

• A fleet of delivery vehicles may be equipped with GPS receivers that permit the
simultaneous tracking of all vehicles. Such a system is presently used to direct taxis
in Paris. In this application the GPS system must be coupled with a communication
system allowing the coordinates of each vehicle to be broadcast (an example of such a
system is the Global System for Mobile Communications, or GSM). Similar systems
are used for tracking wildlife in environmental studies. It is not hard to imagine
the impact on our lives if a car rental company equipped its fleet with a GPS-GSM
system, allowing it to ensure that clients respect the territorial limits imposed by
the rental contract!

• GPS may be used to help blind people find their way.
• Geographers use GPS to measure the growth of Mount Everest: this mountain

continues to grow slowly as its glacier, the Khumbu, descends. Similarly, every two
years an expedition ascends Mont Blanc to update its official height at the peak.
In the nineties, geographers once again asked whether K2 was in fact taller than
Mount Everest. Since their 1998 expedition, where they used GPS, the matter is
now definitely closed: Mount Everest is the tallest mountain on Earth, at 8830 m. In
1954, the height of Everest was estimated at 8848 m by B. L. Gulatee. At the time,
the estimate was computed using theodolite measurements taken from six stations on
the north Indian plains (a theodolite is an optical instrument for measuring angles,
used in the field of geodesy).

• There are many military applications, considering that the system was originally
developed for the use of the American military. One such use is the precise guidance
of bombs.

The future: GPS and Galileo. Up until now the United States has had a monopoly
in this market. Given that they maintain exclusive control over GPS, the American
government can choose to scramble the GPS signal to block access to it or degrade
its accuracy over a certain region for military reasons (under the NAVWAR program,
for navigational warfare). In March 2002 the European Union and European Space
Agency agreed to fund the development and deployment of Galileo, a positioning system
designed as an alternative to GPS. Two test satellites were launched in 2005 with the
remaining 28 satellites to be launched before the end of 2010. GPS satellites do not
actually transmit information regarding the status of the satellite or the quality of the
signal itself. It can thus take several hours before a malfunctioning satellite is detected
and shut down, with the system accuracy being degraded severely during that time.
This restricts the applications of GPS for guiding airplanes in inclement weather. The
Galileo satellites are designed to constantly transmit signal quality information, allowing
receivers to ignore the signal from malfunctioning satellites. This is done through a
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system of ground stations that accurately measure the actual position of the satellite
and compare it to the satellite’s calculated position. This information is sent to the
malfunctioning satellite, which in turn relays it back to receivers. The US government
is planning a similar improvement to the GPS system.

1.3 How Hydro-Québec Manages Lightning Strikes

New solutions to existing problems often become apparent as new technology is made
available. Hydro-Québec1 uses GPS as part of its approach to managing lightning
strikes. Mathematics is at work in several places in their lightning-strike-monitoring
system. As such, this section focuses not only on the application of GPS to managing
lightning strikes, but on the mathematics involved elsewhere in their approach.

1.3.1 Locating Lightning Strikes

In 1992, Hydro-Québec installed a lightning strike locating system throughout its net-
work. The basic problem is to determine the boundaries of areas affected by storms, in
order to reduce the power transmitted on affected power lines and to reroute it through
power lines outside of the stormy area. In doing so, the potential impact of a lightning
strike on a power line is minimized: damage caused by a lighting strike is kept local-
ized, thereby minimizing the number of customers affected and increasing the overall
reliability of the power grid.

To accomplish this goal, Hydro-Québec uses a system of 13 detectors distributed
across the lower two-thirds of the province of Québec (the territory covered by power
lines). Their positions are precisely known, but since the system relies on precise time
measurements, the clocks in the detectors are required to be perfectly synchronized. To
do this, they each use a GPS receiver.

Using a GPS receiver as a time reference. It may seem a little surprising that a
GPS receiver can be used to tell time. We just observed that GPS receivers are typically
equipped with cheap clocks of relatively low precision. However, we also observed that
in calculating its position, the receiver calculates τ , the clock shift between its clock and
those on board the GPS satellites. Thus, the receiver actually calculates the precise time
as measured by the clocks on board the satellites. When great precision is desired and
the receiver is stationary, it is better to replace the calculated values of x, y, z, and τ
by the average of several calculated values (xi, yi, zi, τi)N

i=1 at different times. Indeed,
there is an error in each calculation (xi, yi, zi, τi). The errors in space can be in any
direction around the true receiver position, and they obey a nice statistical law (they
are uniform and Gaussian). Similarly, the error in the calculation of the time shift can

1Hydro-Québec is the largest producer, transporter, and distributor of electricity in the
province of Québec. Its name comes from the fact that 95% percent of its power generation is
hydroelectric.
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be positive or negative. So the position of the receiver and time shift are more precisely
approximated by ( 1

N

∑N
i=1 xi,

1
N

∑N
i=1 yi,

1
N

∑N
i=1 zi,

1
N

∑N
i=1 τi).

In such a manner, a GPS receiver is capable of synchronizing its clock to the satellites
with a precision of roughly 100 nanoseconds (a nanosecond is 1 billionth of a second).
Such an approach is used in the Hydro-Québec detectors. Indeed, the GPS allows the
13 detectors to synchronize their clocks up to 100 nanoseconds. Once the receiver is
synchronized with the satellites’ clocks it can also “beat the second,” i.e., send a pulse
every second. This is used for other measurements.

Locating lightning strikes. In addition to maintaining a synchronized clock, the 13
detectors are also responsible for monitoring all abnormal electromagnetic activity and
identifying such activity caused by lightning strikes. Hydro-Québec has positioned the
detectors quite far from the actual power lines since the electromagnetic fields caused
by the power lines would disrupt accurate signal detection. The detectors are typically
placed on the roof of Hydro-Québec management buildings, distributed as uniformly as
possible throughout the territory to be monitored. When lightning strikes within this
territory with sufficient energy to threaten the grid, it is typically recorded by at least
five detectors. In fact, the detectors are sufficiently sensitive to locate extremely large
lightning strikes as far away as Mexico, but with less precision.

The lightning strike generates an electromagnetic wave, which travels through space
at the speed of light. Each detector notes the precise time when the wave was perceived.
For this, they use a fast oscillator (for example, a quartz crystal) that is synchronized
to the GPS time source. The frequency of such oscillators typically varies from 4 to 16
megahertz (a megahertz is a frequency of one million oscillations per second, abbreviated
MHz). The detectors relay this information to a central computer as soon as they have
measured the wave. This system then calculates the position of the lightning strike
through triangulation (in other words, by using the differences in the times at which
the wave was observed by the individual detectors, as explored in Exercise 2).

Identifying lightning strikes. There exist three types of lightning strikes:

• Lightning strikes between clouds. This type forms the majority of lightning strikes.
They are not detected, but they do not affect the grid, since they do not strike the
ground.

• Negative lightning strikes. In this case the cloud is negatively charged, and the
lightning strike consists of a flow of electrons traveling from the cloud to the ground.

• Positive lightning strikes. In this case the cloud is positively charged, and the light-
ning strike consists of a flow of electrons traveling from the ground to the cloud. As
you may have guessed, the wave of a positive strike is thus the mirror image of that
of a negative strike.

If we limit ourselves to lightning strikes between the ground and the clouds, 90% of
such strikes are negative. However, during a strong storm this percentage is reversed,
and 90% of the ground lightning strikes are positive. The detectors can differentiate
between a negative and a positive lightning strike: one is the mirror image of the other.
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If one detector were to register a wave for a positive lightning strike, and another were
to register a negative lightning strike, it stands to reason that these two waves could not
have been generated by the same strike. Unfortunately, it is a little more complicated
than that. A wave that has traveled more than 300 km from its source may be reflected
by the ionosphere, inverting the signal. Thus a detector situated far enough away may
actually be measuring a reflected signal.

To differentiate between lightning strikes and other electromagnetic signals, the de-
tector analyzes the shape of the wave by filtering the signal and looking for the specific
signature of a lightning strike. In particular, the detector notes the beginning of the
signal, the maximum amplitude, the number of peaks, and the slope of the rise, sending
this information to the central computer. Signal processing is a beautiful subject of
applied mathematics, but we will not discuss it here.

From theory to practice. There are several additional tricks that may be employed
to correctly identify received signals.

• Let P and Q be the two detectors that are the furthest apart from each other, and
let T be the time necessary for a signal to travel between P and Q at the speed of
light. We can be sure that the time difference between the two detected signals for
the same lightning strike can be no more than T . Thus, if two detectors registered
a strike at times t1 and t2 such that |t1 − t2| > T , then these signals could not have
come from the same lightning strike.

• The amplitude of the wave generated by the lightning strike is inversely proportional
to the square of the distance to its source. Thus, in order for two detected signals to
correspond to the same lightning bolt, the amplitudes of the measured signals must
be compatible with the calculated location.

• If lightning strikes within 20 km of a detector, the readings from the detector are
eliminated from the calculation. This is because the measured amplitude is too
large, and the detector is not able to detect difference between a signal of a single
lightning strike and a superposed signal from two lightning strikes.

With these methods Hydro-Québec is able to locate lightning strikes within 500 m
of accuracy when they fall within the area covered by the detectors. The accuracy
diminishes for lightning strikes outside of the covered territory.

Locating faults in the power lines. A similar method is used to locate faults in the
transport network: for example, if a lightning strike has damaged a power line, techni-
cians need to know where to go in order to repair it. On either end of each power line
to be protected an oscilloperturbograph is installed, synchronized by GPS. This device
measures the form of the 60 Hz signal traveling through the power line. Depending
on the fault, there will be different types of perturbation observed. The perturbation
travels along the power line at the speed of light. The two detectors measure the times
t1 and t2 at which the perturbation is observed, and using the difference t1 − t2, the
location of the fault can be calculated. These techniques are precise only within a few
hundred meters, but this is generally sufficient. In Quebec the power lines are often
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very long and traverse immense uninhabited areas; thus the system allows for a rapid
deployment of a repair team to the area of the fault.

Redistributing power transmission. Lightning-strike detection can be used to de-
termine the size and location of a storm. Since lightning strikes occur in a random
manner within a territory, statistical models can be used. For this, the territory is di-
vided into an even grid, and a spatiotemporal density of lightning strikes is calculated.
For example, a storm with two lightning strikes per km2 within 10 minutes is very
strong. Using the information from the model, the heart of the storm is calculated (the
storm centroid). The calculation is repeated every five minutes, and the displacement
of the calculated centroid used to infer the speed and direction of the storm (which can
be anywhere from 0 to 200 km/h). This information can in turn be used to predict
which areas of the power grid will be affected next. One of the more difficult problems
to be solved is that of two storms near each other: the system must decide whether
there are in fact two separate storms, or a single larger storm. An interesting challenge
for engineers!

Armed with this information, the distributor draws upon his experience to decide
whether to lower the amount of power being transmitted over a potentially affected
power line. Keeping a power grid in equilibrium is a very delicate operation. There
must always be a balance between the amount of power being generated, the amount
of power being transmitted, and the amount of power being used. In order to diminish
the amount of power being transmitted on one line, there must be excess capacity on
one or more other lines. Thus, in order to make such decisions the distributor must
have a certain margin for maneuver. Each line has a maximum capacity, but as a rule,
power grids are always operated slightly below capacity so that the system can absorb
the loss of an entire line at any given moment.

1.3.2 Threshold and Quality of Lightning-Strike Detection

The detector equipment is tested to meet minimum standards for detection, but one can
generally do better. It is thus worthwhile to accurately gauge their actual capabilities,
a process that relies principally on statistical methods.

To this end we will draw upon an empirical law of probability for the random variable
X, giving the intensity of a lightning strike. Rather than using the density function f(I)
of lightning strikes, we will use the distribution function

P (I) = Prob(X > I) =
1

1 +
(

I
M

)K
. (1.17)

We have that P (0) = Prob(X > 0) = 1. The values of M and K to be used de-
pend on the geographic zone and the particulars of its environment and are determined
empirically. The value of I is given in kA (kiloamperes). Certain values are used suf-
ficiently often to merit being given a name. Thus, the function P from (1.17) is called
the Popolansky function when M = 25 and K = 2. It is called the Anderson–Erikson
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function when M = 31 and K = 2.6. Figure 1.3 represents the Popolansky function
and Figure 1.4 represents the density function f(I) of the associated variable X. Recall
that P (I) =

∫∞
I

f(J)dJ and therefore that f(I) = −P ′(I).

Fig. 1.3. The Popolansky function.

Fig. 1.4. The density function associated with the Popolansky function.

We demonstrate how this empirical law can be used in practice.

Example 1.1 The Popolansky function

1. The probability of a random lightning bolt having an amperage greater than 50 kA
is
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P (50) =
1

1 +
(

50
25

)2 =
1
5

= 0.2. (1.18)

2. The median of this distribution is the value Im of I such that

Prob(X > Im) = P (Im) =
1
2
. (1.19)

This gives us the equation 1

1+( Im
25 )2 = 1

2 . Thus 1 +
(

Im

25

)2
= 2, or in other words(

Im

25

)2
= 1. Hence Im = 25.

Calculating the rate of lightning-strike detection. In practice we do not actually
detect all lightning strikes, but only those with energy greater than a certain threshold.
This threshold depends on the position of the lightning strike with respect to the de-
tectors and on various sources of interference that may decrease the reception quality
of the detectors at any given moment in time. We will explore how to determine the
percentage of lightning strikes that are detected. In our example we determined that
50% of lightning strikes have an amperage higher than 25 kA. Suppose for now that in
a sample of detected lightning strikes we observed that 60% had an amperage higher
than 25 kA. Let E be the event “the lightning strike is detected.” Then we wish to
calculate Prob(E). We know the probability that a detected lightning strike (in other
words, that event E took place) had an amperage higher than 25 kA. This is a condi-
tional probability because we have assumed that the lightning strike was detected, and
it may be written as

Prob(X > 25|E) = 0.6. (1.20)

On the other hand, we know that the conditional probability of X > 25 knowing that
E has occurred can be expressed as

Prob(X > 25|E) =
Prob(X > 25 and E)

Prob(E)
. (1.21)

As such we cannot do much with this expression, since both the numerator and the
denominator are unknown. But suppose we can assume that all lightning strikes with
an amperage higher than 25 kA are detected. Then the event “X > 25 and E” becomes
simply X > 25, whose probability is known. Thus (1.21) provides

Prob(E) =
Prob(X > 25)

Prob(X > 25|E)
=

0.5
0.6

=
5
6

= 0.83. (1.22)

Suppose now that for a given limited geographic region we can assume the hypothesis
(with a reasonable margin of error) that the only lightning strikes not detected are those
that have a weaker amperage. We may wish to determine the threshold amperage I0

below which lightning strikes are not detected. For this calculation the event E becomes
X > I0. We have seen that Prob(E) = 5

6 = 0.83. Since Prob(E) = Prob(X > I0) =
P (I0), this gives the equation
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P (I0) =
0.5
0.6

=
5
6
, (1.23)

while comes to 1

1+( I0
25 )

2 = 5
6 , or equivalently 1 +

(
I0
25

)2
= 6

5 . Hence I0 is the value

satisfying
(

I0
25

)2
= 1

5 = 0.2, yielding

I0 = 25
√

0.2 = 11.18. (1.24)

We can therefore conclude that for the given region, the threshold of detection is I0 =
11.18 kA, and that lightning strikes with amperages below this value are not detected.

1.3.3 Long-Term Risk Management

Managing lightning strikes is not limited to the task of detecting and locating storms.
Hydro-Québec keeps detailed long-term statistics that are used to construct isokeraunic
maps giving the density of lightning strikes over a period of five years. Such a map can
then be used to identify which zones are subject to more risk. In the case of power
lines that have already been built, this information can be used to decide which sections
should be better protected. Similarly, such maps allow for ready identification of routes
to take during the construction of new power lines. These choices can be rewritten in a
risk-management framework.

Risks due to violent storms are but one of many risks faced by a company that
produces, transports, and distributes electricity. Hence, all of the tasks of locating
lightning strikes, storm tracking and identifying risk zones may be used as part of a
general risk-management framework. The problem is to make the distribution network
as reliable as possible. Investment in the grid for this purpose represents the cost. Thus,
individual investments in the grid have to be evaluated in terms of their profitability.
The more dangerous a given event and the larger its financial impact, the more prepared
we are to invest in protecting the system from the event or limiting its impact. Naturally,
this is always subject to the condition that the cost of the protection not be too high!
To formalize such a system we introduce three variables:

• the probability p of the event at risk;
• the projected cost Ci were the event to occur without precautions taken to mitigate

it;
• the cost of attenuation Ca, which is to be paid to protect equipment and limit the

impact of the event occurring.

We introduce the index
pCi

Ca
. (1.25)

We see that the numerator represents the expected cost of repairs and that the denom-
inator represents the cost of protection. We must have this ratio at least 1 in order
for investing in protection to be profitable. However, there are several other factors
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that come into play in practice. We are more likely to purchase protection if it is valid
for multiple events. Similarly, the situation changes if the protection is only partial,
meaning we incur some reduced repair cost if the event occurs, as opposed to being
total.

1.4 Linear Shift Registers and the GPS Signal

Linear shift registers allow the generation of sequences that have excellent properties
in terms of allowing a receiver to synchronize with them. These simple-to-build devices
(one can build a linear shift register with a few basic electrical components) generate
pseudorandom signals. That is, they generate signals that appear to be largely random
even though they are generated by deterministic algorithms.

We will construct a linear shift register that generates a periodic signal with a
period of 2r −1. It will have the property that it is extremely poorly correlated with all
translations of itself and with other signals generated by the same register using different
coefficients. This property of having a signal that correlates poorly to its translations
and other similar signals permits GPS receivers to easily identify the signals of individual
GPS satellites and synchronize to them. The signal produced by a linear shift register
can be imagined as a sequence of zeros and ones. The register itself may be imagined as
a ribbon of r boxes containing the entries an−1, . . . , an−r, each of which holds a value of
0 or 1 (see Figure 1.5). Each box is associated with a number qi ∈ {0, 1}. The r values

Fig. 1.5. A linear shift register.

qi are fixed and distinct for all satellites. We generate a pseudorandom sequence in the
following manner:

• We give ourselves a set of initial conditions a0, . . . , ar−1 ∈ {0, 1}, not all zero.
• Given an−r, . . . , an−1, the register calculates the next element in the sequence as
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an ≡ an−rq0 + an−r+1q1 + · · · + an−1qr−1 =
r−1∑
i=0

an−r+iqi (mod 2). (1.26)

(To calculate modulo 2 we perform the calculation as normal. The final result is 0
if the number is even, and 1 otherwise. As such we write a ≡ 0 (mod 2) if a is even,
and a ≡ 1 (mod 2) if it is odd.)

• We shift each entry to the right, forgetting an−r. The calculated value an is inserted
into the leftmost box.

• We iterate the above procedure.

Since the above procedure is perfectly deterministic and the number of initial conditions
is finite, we will generate a sequence that must become periodic. Similarly we can see
that the period of the sequence can be at most 2r, since there are only 2r distinct
sequences of length r. In fact, we can convince ourselves that if at some moment
an−r = · · · = an−1 = 0, then for all m ≥ n we will have am = 0. Thus an “interesting”
periodic sequence must never contain a sequence of r zeros, and will therefore have a
maximal period of 2r −1. In order to generate a sequence with interesting properties we
need only carefully choose the coefficients q0, . . . , qr−1 ∈ {0, 1} and the initial conditions
a0, . . . , ar−1 ∈ {0, 1}.

We never see the entire sequence, but rather we only observe a window of M =
2r − 1 consecutive entries {an}n=m+M−1

n=m , which we label B = {b1, . . . , bM}. We wish
to compare it with another window C = {c1, . . . , cM} of the form {an}n=p+M−1

n=p . For
example, sequence B is sent by the satellite, and sequence C is a cyclic shift of the same
sequence generated by the GPS receiver. To determine the shift between the two, the
receiver shifts repeatedly its sequence by one unit (by making p �→ p + 1) until it is
identical with B.

Definition 1.2 We call the correlation between two sequences B and C of length M
the number of entries i where bi = ci minus the number of entries i where bi 
= ci. We
denote this by Cor(B,C).

Remark: If the register consists of r entries, then the correlation between any pairs of
sequences B and C must satisfy −M ≤ Cor(B,C) ≤ +M , where M = 2r − 1. We say
that the sequences are poorly correlated if Cor(B,C) is close to zero.

Proposition 1.3 The correlation between two sequences is given by

Cor(B,C) =
M∑
i=1

(−1)bi(−1)ci . (1.27)

Proof. The number Cor(B,C) is calculated as follows: each time bi = ci we must
add 1. Similarly, each time bi 
= ci, we must subtract 1. Recall that bi and ci may
take on only the value 0 or 1. Thus if bi = ci, then either (−1)bi = (−1)ci = 1 or
(−1)bi = (−1)ci = −1. In either case we see that (−1)bi(−1)ci = 1. Similarly, if
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bi 
= ci, exactly one of (−1)bi and (−1)ci is equal to 1 and the other to −1. Hence
(−1)bi(−1)ci = −1. �

The following theorem shows that we may initialize a linear shift register in such a
manner that it will generate a sequence that is poorly correlated to every translation of
itself.

Theorem 1.4 Given a linear shift register as shown in Figure 1.5, there exist coeffi-
cients q0, . . . , qr−1 ∈ {0, 1} and initial conditions a0, . . . , ar−1 ∈ {0, 1} such that the
sequence generated by the register has a period of length 2r − 1. Consider two win-
dows B and C of this sequence of length M = 2r − 1, where B = {an}n=m+M−1

n=m and
C = {an}n=p+M−1

n=p with p > m. If M does not divide p − m, then

Cor(B,C) = −1. (1.28)

In other words, the number of bits in disagreement is always one more than the number
of bits in agreement.

The proof of this theorem makes use of finite fields. We will begin by walking through
an example that illustrates the theorem. The proof will follow in Section 1.4.2.

Example 1.5 In this example we take r = 4, (q0, q1, q2, q3) = (1, 1, 0, 0), and (a0, a1,
a2, a3) = (0, 0, 0, 1). We let the reader verify that these values generate a sequence with
period 24 − 1 = 15, repeating the following block of symbols:

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 .

If we translate the sequence to the left by one symbol, we send the first 0 to the end,
yielding

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 .

We see that the two blocks of symbols differ at positions 3, 4, 6, 8, 9, 10, 11, and 15.
Thus, they differ at eight positions and agree at seven positions, yielding a correlation
of −1.

In order to calculate the correlation with the other 14 translations of the sequence we
explicitly write all possible translations. Inspection shows that any two of the following
sequences agree at exactly seven places and differ in the remaining eight. We leave it to
the reader to verify this:
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0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
0 1 1 0 1 0 1 1 1 1 0 0 0 1 0
1 1 0 1 0 1 1 1 1 0 0 0 1 0 0
1 0 1 0 1 1 1 1 0 0 0 1 0 0 1
0 1 0 1 1 1 1 0 0 0 1 0 0 1 1
1 0 1 1 1 1 0 0 0 1 0 0 1 1 0
0 1 1 1 1 0 0 0 1 0 0 1 1 0 1
1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
1 1 1 0 0 0 1 0 0 1 1 0 1 0 1
1 1 0 0 0 1 0 0 1 1 0 1 0 1 1
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

In the preceding example we did not explicitly show why we chose those specific
values for q0, . . . , q3 and a0, . . . , a3. In order to show this and to prove Theorem 1.4 we
will need to use the theory of finite fields. In particular, we will need to make use of
the field F2r containing 2r elements. For the case r = 1 the field F2 is the field of 2
elements {0, 1} with addition and multiplication modulo 2.

1.4.1 The Structure of the Field Fr
2

The structure and construction of finite fields of order pn (for p prime) are explored in
Sections 6.2 and 6.5 of Chapter 6. These sections are self-contained and may be read
without reading the rest of Chapter 6. For the remainder of this chapter, we will assume
that the reader has knowledge of the material covered in these sections.

The elements of Fr
2 are the r-tuples (b0, . . . , br−1), where bi ∈ {0, 1}. The addition

of two such r-tuples is simply addition modulo 2, performed entry by entry,

(b0, . . . , br−1) + (c0, . . . , cr−1) = (d0, . . . , dr−1), (1.29)

where di ≡ bi + ci (mod 2). To define a multiplication operator we start by choosing an
irreducible polynomial

P (x) = xr + pr−1x
r−1 + · · · + p1x + p0 (1.30)

over the field F2. We interpret each r-tuple (b0, . . . , br−1) as a polynomial of degree less
than or equal to r − 1:

br−1x
r−1 + · · · + b1x + b0. (1.31)

In order to multiply the two r-tuples we multiply the two associated polynomials.
The product is a polynomial of degree less than or equal to 2(r − 1), which is then
reduced to a polynomial in x of degree r − 1 by taking its remainder when divided by
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P (a process analogous to long division as applied to integers). This is equivalent to
applying the rule P (x) = 0, i.e. xr = pr−1x

r−1 + · · · + p1x + p0 (recall that −pi = pi

in F2) and iterating. We then interpret the coefficients of the resulting degree-(r − 1)
polynomial as the entries of an r-tuple. The following is a classic theorem from the
theory of finite fields. We will give only an overview of its proof without dwelling too
much on the underlying algebra. If you are unfamiliar with the material covered in the
following discussion you may safely skip it. The above discussion has explicitly shown
that the vector elements Fr

2 may be interpreted as polynomials.

Theorem 1.6 1. The set F2r together with addition and multiplication as defined
above is a field.

2. There exists an element α such that the nonzero elements of F2r are precisely the
elements αi for i = 0, . . . , 2r − 2. In other words,

F2r \ {0} = {1, α, α2, . . . , α2r−2}. (1.32)

An element α satisfying this property is called a primitive root, and satisfies α2r−1 =
1.

3. The elements {1, α, . . . , αr−1} are linearly independent when interpreted as elements
of the vector space Fr

2 over F2 (which is isomorphic to the field F2r).
4. If α is a primitive root of the field F2r constructed with an irreducible polynomial P

over F2, then α is a root of a polynomial of degree r,

Q(x) = xr + qr−1x
r−1 + · · · + q1x + q0,

irreducible over F2. The field constructed using the polynomial Q in the definition
of multiplication is isomorphic to the field constructed using the polynomial P .

Definition 1.7 A polynomial Q(x) with coefficients in F2 is called primitive if it is
irreducible and if the polynomial x is a primitive root of the field F2r constructed with
respect to Q(x).

Outline of the Proof of Theorem 1.6

1. The proof is identical to the proof that Fp (also called Zp) is a field if p is prime
(see Exercise 24 of Chapter 6). This proof makes use of Euclid’s algorithm for
polynomials, which finds the greatest common divisor of two given polynomials.

2. The nonzero elements of F2r form a multiplicative group G with 2r − 1 elements.
Each nonzero element y generates a finite subgroup H = {yi, i ∈ N}. Lagrange’s
theorem (Theorem 7.18) states that the number of elements of H must divide the
number of elements of G. Moreover, since H is finite, there must exist some mini-
mum s such that ys = 1. This s, called the order of the element y, is equal to the
number of elements of H. Thus y is a root of the polynomial xs + 1 = 0. Since
s | 2r − 1 then y is a root of R(x) = x2r−1 + 1. (Exercise: why?) We have therefore
shown that all elements of G are roots of the polynomial R(x) = x2r−1 +1. Suppose
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now that there exists m, a strict divisor of 2r −1, such that the order of all elements
of G divides m. Then all elements of G must be roots of the polynomial xm + 1.
This is a contradiction, since this polynomial has only m < 2r − 1 roots. Thus
there exist elements yi with orders mi (for i = 1, . . . , n) such that the least common
multiple of the mi is 2r −1. As such, the order of the product y1 · · · yn = α is 2r −1.

3. We will simply assume that the elements {1, α, . . . , αr−1} are linearly independent
when interpreted as vectors in the space Fr

2.
4. The vectors {1, α, . . . , αr} are linearly dependent because any r + 1 vectors in a

vector space of dimension r must be. Since the vectors {1, α, . . . , αr−1} are linearly
independent, there exist coefficients qi such that αr = q0 + q1α + · · · + qr−1α

r−1.
Thus α is a root of the polynomial Q(x) = xr + qr−1x

r−1 + · · · + q1x + q0. This
polynomial must be irreducible over F2, for otherwise, α would be the root of a
polynomial with degree smaller than r, which would be in contradiction to the fact
that {1, α, . . . , αr−1} are linearly independent in Fr

2. �
Remark: We could have chosen to write F2r with the polynomial Q(x) rather than
with the polynomial P (x). The advantage of this last result is that it always allows
us to ensure that α = x is a primitive root. One must be careful, however, since the
progression αi is not the same when computed modulo Q(x) as it is when computed
modulo P (x)!

Definition 1.8 The trace function is the function T : F2r → F2 given by T (br−1x
r−1 +

· · · + b1x + b0) = br−1.

Proposition 1.9 The function T is linear and surjective. It has the value 0 on exactly
half of the elements of F2r and 1 on the remaining half.

Proof: Exercise!

1.4.2 Proof of Theorem 1.4

We choose a primitive polynomial P (x) over F2,

P (x) = xr + qr−1x
r−1 + · · · + q1x + q0,

permitting us to construct the field F2r .
The qi of the linear shift register are the coefficients of the polynomial P (x). In order

to construct good initial conditions we choose any nonzero polynomial b = br−1x
r−1 +

· · · + b1x + b0 from F2r . We define the initial conditions as

a0 = T (b) = br−1,
a1 = T (xb),

...
ar−1 = T (xr−1b).

(1.33)
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Consider how the value of a1 is calculated:

a1 = T (bx) = T (br−1x
r + br−2x

r−1 + · · · + b0x)
= T (br−1(qr−1x

r−1 + · · · + q1x + q0) + br−2x
r−1 + · · · + b0x)

= T ((br−1qr−1 + br−2)xr−1 + · · · )
= br−1qr−1 + br−2.

(1.34)

A similar calculation allows for the determination of the values a2, . . . , ar−1. The formu-
las quickly become large, but the calculation can be performed very quickly in practice
when the qi and bi are substituted by zeros and ones.

Example 1.10 In Example 1.5 the polynomial used was P (x) = x4 + x + 1. (Exercise:
verify that the polynomial is irreducible and primitive.) The polynomial b that was
chosen was simply b = 1. This creates the initial conditions a0 = T (1) = 0, a1 =
T (x) = 0, a2 = T (x2) = 0, and a3 = T (x3) = 1.

Proposition 1.11 Let us choose the coefficients q0, . . . , qr−1 of a shift register as those
of a primitive polynomial

P (x) = xr + qr−1x
r−1 + · · · + q1x + q0.

Let b = br−1x
r−1+· · ·+b1x+b0. We choose the initial elements a0, . . . , ar−1 as in (1.33).

Then the sequence {an}n≥0 generated by the shift register is given by an = T (xnb), and
it repeats with a period that divides 2r − 1.

Proof. We use the fact that P (x) = 0, which is to say xr = qr−1x
r−1 + · · ·+ q1x + q0.

Then
T (xrb) = T ((qr−1x

r−1 + · · · + q1x + q0)b)

= qr−1T (xr−1b) + · · · + q1T (xb) + q0T (b)
= qr−1ar−1 + · · · + q1a1 + q0a0

= ar.

(1.35)

We proceed by induction. Suppose now that the elements of the sequence satisfy ai =
T (xib) for i ≤ n − 1. Then

T (xnb) = T (xrxn−rb) = T ((qr−1x
r−1 + · · · + q1x + q0)xn−rb)

= qr−1T (xn−1b) + · · · + q1T (xn−r+1b) + q0T (xn−rb)
= qr−1an−1 + · · · + q1an−r+1 + q0an−r

= an.

(1.36)

Thus multiplication by x corresponds exactly to the calculation performed by the shift
register, and therefore an = T (xnb) for all n. We see immediately that the minimal
period has length at most 2r − 1, since x2r−1 = 1. �
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We may ask ourselves, what is the minimal period of this sequence? To begin, it
must be a divisor of 2r − 1 (see Exercise 11). In fact, we will show that the minimal
period is exactly 2r − 1 when P is primitive. The proof will be indirect. If the period
were given by s ∈ N such that 2r − 1 = sm and 1 < s < 2r − 1, then the infinite
sequence {an}n≥0 and the sequence {an+s}n≥0 would have to be identical. We will
show that this cannot be true. Do not forget our original goal of creating sequences
that are poorly correlated with translations of themselves. We will compute at the
same time the correlation between any two windows B and C of length M = 2r − 1,
B = {an}n=m+M−1

n=m and C = {an}n=p+M−1
n=p .

Proposition 1.12 If B = {an}n=m+M−1
n=m and C = {an}n=p+M−1

n=p , then Cor(B,C) =
−1 if M does not divide p − m.

Proof. We can suppose m ≤ p. Then

Cor(B,C) =
∑M−1

i=0 (−1)am+i(−1)ap+i

=
∑M−1

i=0 (−1)T (xm+ib)(−1)T (xp+ib)

=
∑M−1

i=0 (−1)T (xm+ib)+T (xp+ib)

=
∑M−1

i=0 (−1)T (xm+ib+xp+ib)

=
∑M−1

i=0 (−1)T (bxi+m(1+xp−m))

=
∑M−1

i=0 (−1)T (xi+mβ),

(1.37)

where β = b(1+xp−m). By our choice of P we know that x is a primitive root of our field
and therefore that xM = 1 and xN 
= 1 if 1 ≤ N < M . We deduce that xN = 1 if and
only if M divides N . If M divides p−m then xp−m = 1 and β = b(1+1) = b · 0 = 0, in
which case Cor(B,C) = M . If M does not divide p−m then the polynomial (1+xp−m)
is not the zero polynomial; hence β = b(1 + xp−m) is nonzero as well, since it is the
product of two nonzero elements. Thus β is of the form xk, where k ∈ {0, . . . , 2r − 2},
which implies that the set {βxi+m, 0 ≤ i ≤ M − 1} is a permutation of the elements
of F2r \ {0} = {1, x, . . . , x2r−2}. The trace function T take a 1 value on half of the
elements of F2r and a 0 value on the remaining elements. Since it takes a 0 value on
the zero element, it takes a 1 value on 2r−1 of the elements of F2r \ {0} and a 0 value
on the remaining 2r−1 − 1. Hence Cor(B,C) = −1. �

Corollary 1.13 The period of the pseudorandom sequence generated by the linear shift
register is exactly M = 2r − 1.

Proof. If the period were equal to K < M , then the sequence would coincide with its
translation by K elements, and the two sequences would have a correlation equal to M .
This is in contradiction to Proposition 1.12. �

If we now want to generate other pseudorandom sequences of the same length, we
may use the same principle but change the polynomial P (x). (We want a distinct
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sequence for each satellite.) Galois theory lets us (in certain cases) calculate the corre-
lation of this new sequence with the first one and its translations. Engineers, however,
content themselves with looking up these correlation values in precalculated tables.

1.5 Cartography

As mentioned in the introduction, the field of cartography encounters certain nontrivial
problems in trying to faithfully represent the surface of the Earth. Maps are generally
used to orient or guide us. Depending on the application it may be more important to
us that the map preserve distances, for example if we desire the shortest path between
two points on the map to correspond to the shortest path between two points in reality.
This condition is generally not important on terrestrial maps because when traveling by
car we are constrained to travel on highways, and when traveling on foot, the distances
involved are sufficiently small that any deviation from the true shortest path is negligible.
In contrast, in choosing the route to be flown by an airplane or taken by a boat, the
problem becomes noticeable. Moreover, for someone navigating a sailboat or small
airplane with relatively rudimentary equipment, it is not sufficient just to plot a course
on a map. The course must also be able to be followed and held by the pilot. Prior to
the invention of GPS it was very common to use a magnetic compass as a primary means
of navigation. Using a magnetic compass we can assure ourselves that we are following
a trajectory that maintains a constant angle with respect to the Earth’s magnetic field.
Such a trajectory is not necessarily the shortest path between two points, but since it
is an easy path to follow, it would be convenient to have maps on which such paths are
represented by straight lines. Marine and some aeronautical charts have this property.
However, on these charts relative areas are not preserved: two regions of the globe that
have the same surface area are not in general represented by domains with the same
surface area on the map.

We begin by stating the rules of the game. A theorem in differential geometry states
that it is impossible to map a portion of the surface of the sphere into the plane while
preserving both distances and angles. (For those who are familiar with the terminology,
such a transformation is called an “isometry” and preserves the “Gaussian curvature” of
the surface. The Gaussian curvature of a sphere of radius R is 1/R2, while the Gaussian
curvature of both a plane and a cylinder is zero.) Thus, we must make a compromise.
The specific compromise to be made depends on the application.

Cartography is principally concerned with projections, and there are many different
types.

Projection onto a plane tangent to the sphere. This is the most elementary type
of projection. There exist several variations on this type of projection: where the projec-
tion goes through the center of the sphere (gnomonic projection); where the projection
goes through the point antipodal to the tangent point (stereographic projection); and,
where the projection is taken along lines that are orthogonal to the plane of projection
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(orthographic projection). (See Figure 1.6.) This family of projections gives reasonable
results if we are interested in mapping only a small portion of the sphere centered at
the point of tangency. However, the distortions become very pronounced as we move
away from the point of tangency. From a mathematical point of view these projections
offer little interest (except the stereographic projection discussed in Exercise 24), and
we will not discuss them further.

(a) Gnomonic projection (b) Stereographic projec-
tion

(c) Orthographic projec-
tion

Fig. 1.6. Three types of projections onto a tangential plane.

For the remainder of this section we will limit our discussion to projections onto a
cylinder. After the projection the cylinder may be unrolled, yielding a plane. Already
we can see that progress has been made. Instead of there being just one point of
tangency (where the map is most accurate), there is an entire circle of tangency around
the sphere. However, there will still be severe distortions as we move toward the poles of
the sphere. As before, there are several variations on this projection, and depending on
the method chosen, the resulting map will have different properties. There is generally a
strong desire to map lines of latitude (parallels) to horizontal lines and lines of longitude
(meridians) to vertical lines. Such a projection means that there is an easy mapping
between Cartesian coordinates on the map and longitude and latitude on the globe (but
there will be distortion of distances along distinct parallels).

Projection onto the cylinder via the center of the sphere. Under this projection
the sphere maps to an infinite cylinder, with the poles being mapped to the infinite
extremes of the cylinder. This projection has little use or interest beyond the fact that
its formula is simple.
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Horizontal projection onto the cylinder. This projection is known to geographers
as Lambert projection, but in fact it was studied in detail by Archimedes. Let S be a
sphere of radius R whose surface points satisfy the equation x2 + y2 + z2 = R2. We
want to project the sphere onto the cylinder C satisfying the equation x2 + y2 = R2.
The projection P : S → C is given by the formula

P (x, y, z) =

(
Rx√

x2 + y2
,

Ry√
x2 + y2

, z

)
(1.38)

(see Figure 1.7). The point P (x0, y0, z0) is therefore the point of intersection between
the cylinder and the horizontal half-line starting at (0, 0, z0) (on the vertical axis) and
passing through the point (x0, y0, z0).

Fig. 1.7. Horizontal projection onto a cylinder.

Although it has less distortion than the cylindrical projection via the center of the
sphere, this projection distorts distances as we move away from the equator. However,
this projection has a rather remarkable property: it preserves area. This property was
discovered for the first time by Archimedes. This projection was therefore chosen in
producing the Peters atlas (see Figure 1.8). In other atlases using different projections,
the Nordic countries have a greatly exaggerated size. In the Peters atlas [2], the relative
sizes of these countries are precisely preserved, although they appear less tall and wider.
We will now prove this remarkable property of the Lambert projection.

Theorem 1.14 The projection P : S → C given by equation (1.38) preserves area. (In
geographic and cartographic terms, we say that this projection is equivalent.)
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Fig. 1.8. The world map using the Lambert cylindrical projection.

Proof. To make the proof simpler we will first change our coordinate system. We
parameterize the sphere using two angular coordinates, θ and φ, which can be mapped
back to Cartesian coordinates using the following mapping:

F : (−π, π] × [−π
2 , π

2 ] → S,
(θ, φ) �→ F (θ, φ) = (x, y, z) = (R cos θ cos φ,R sin θ cos φ,R sin φ). (1.39)

These are the spherical coordinates. We can interpret θ as being the longitude, expressed
in radians rather than degrees, with θ = 0 corresponding to the Greenwich meridian, θ >
0 corresponding to eastern longitudes, and θ < 0 corresponding to western longitudes. In
the same way, φ is the latitude, positive values of φ corresponding to northern latitudes.
Similarly, using the same parameters we may parameterize the cylinder as

G : (−π, π] × [−π
2 , π

2 ] → C,
(θ, φ) �→ G(θ, φ) = (x, y, z) = (R cos θ,R sin θ,R sin φ). (1.40)

Under these coordinate systems the projection P may be rewritten as (θ, φ) �→ (θ, φ).
Let A be a region of the sphere and let P (A) be the corresponding projected region on
the cylinder. Both of these regions are the images of the same set B with

B ⊂ (−π, π] ×
[
−π

2
,
π

2

]
.

The area on the surface of the sphere of A is given by (we will justify this formula a
little later)

Area(A) =
∫∫

B

∣∣∣∣∂F

∂θ
∧ ∂F

∂φ

∣∣∣∣ dθ dφ (1.41)
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where v ∧ w represents the cross product of v and w and |v ∧ w| represents its length
(see [1] or any multivariable calculus textbook). This yields

∂F
∂θ = (−R sin θ cos φ,R cos θ cos φ, 0),
∂F
∂φ = (−R cos θ sin φ,−R sin θ sin φ,R cos φ),

∂F
∂θ ∧ ∂F

∂φ = (R2 cos θ cos2 φ,R2 sin θ cos2 φ,R2 sin φ cos φ),∣∣∣∂F
∂θ ∧ ∂F

∂φ

∣∣∣ = R2| cos φ|.

Similarly, for the cylinder the area of P (A) is given by

Area(P (A)) =
∫∫

B

∣∣∣∣∂G

∂θ
∧ ∂G

∂φ

∣∣∣∣ dθ dφ. (1.42)

Here we see that

∂G
∂θ = (−R sin θ,R cos θ, 0),
∂G
∂φ = (0, 0, R cos φ),

∂G
∂θ ∧ ∂G

∂φ = (R2 cos θ cos φ,R2 sin θ cos φ, 0),∣∣∣∂G
∂θ ∧ ∂G

∂φ

∣∣∣ = R2| cos φ|.

It is easy to see that the integrals for the areas of A and P (A) need to be calculated
over the same domain B. Since the two integrands are identical, the above shows that
these two areas are in fact equal. �
Justification of Equations (1.41) and (1.42). This is a quick reminder (most likely
from your multivariable calculus course) about how to calculate the area of a surface.
We consider cutting B into infinitesimally small rectangular pieces with side lengths
dθ and dφ. The area of A (respectively P (A)) is given by the sum of the areas of
the images of the pieces under the mapping F (respectively G). We will consider the
area of A. We can think of dθ and dφ as being little segments that are tangential to
the curves φ = constant and θ = constant. Thus their images are little segments that
are tangential to the images of these two curves: the vectors ∂F

∂θ dθ and ∂F
∂φ dφ. These

vectors will in general inscribe a parallelogram whose area is precisely
∣∣∣∂F

∂θ ∧ ∂F
∂φ

∣∣∣ dθ dφ

(the product of the lengths of the vectors, multiplied by the sines of the angle between
them).

In our proof, the image under F of this piece of B resembles a little rectangle with
sides of lengths R dθ| cos φ| and R dφ. Similarly, its image under G is a little rectangle
with sides of length R dθ and R| cos φ| dφ. In both of these cases the images have an
area of R2| cos φ| dθ dφ.

Mercator projection. The Lambert projection preserves areas but it does not preserve
angles. In making marine charts, projections that preserve angles are preferred, since
they allow for the easy plotting of courses that can be followed using a magnetic compass.
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The Mercator projection M : S → C does exactly this. This projection covers the
entire infinitely long cylinder. Here again we will use spherical coordinates (1.39) for
representing a point Q on the sphere, given by F (θ, φ). Its image under M is given by

M(Q) = M(F (θ, φ)) =
(
R cos θ,R sin θ,R log

(
tan 1

2 (φ + π
2 )
))

. (1.43)

As before, the final projection will be given by the unrolled cylinder. Let θ represent
the horizontal coordinate (abscissa) on the unrolled cylinder and let z represent the
vertical coordinate (ordinate). This gives us a mapping N : S → R2 of the sphere onto
the plane. If (θ, φ) are the spherical coordinates of a point Q, we will map this point to

N(F (θ, φ)) =
(
θ, log

(
tan 1

2 (φ + π
2 )
))

(1.44)

(see Figures 1.9 and 1.10).

Fig. 1.9. Mercator projection: project onto a cylinder and unroll it. A given distance along a
meridian appears longer the further away it is from the equator.

Definition 1.15 A transformation N : S1 → S2 from a surface S1 to a surface S2 is
conformal if it preserves angles. That is, if two curves on S1 intersect each other at
point Q with an angle α, the images of these two curves on S2 will intersect each other
at point N(Q) with the same angle α.

Theorem 1.16 The transformations M and N defined in equations (1.43) and (1.44)
are conformal.
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Fig. 1.10. A map of the world using the Mercator projection. Since the entire map would
have infinite height, only the portion between 85◦S and 85◦N is shown here.

Proof. We will content ourselves with giving the proof for the mapping N . Then
it will follow that M is conformal if we convince ourselves that rolling or unrolling a
cylinder cannot change the angles of intersection between curves inscribed on it. Since
two curves tangent to each other are mapped to two curves tangent to each other, it
suffices to consider tiny line segments tangent to the original curves at the point of
intersection. Consider a point (θ0, φ0) and two little line segments passing through this
point, which may be written as

v(t) = (θ0 + t cos α, φ0 + t sin α),
w(t) = (θ0 + t cos β, φ0 + t sin β).

We will consider the tangent vectors F ◦ v = v1 and F ◦ w = w1 in Q = F (θ0, φ0), and
show that they inscribe the same angle as the vectors N ◦F ◦v = v2 and N ◦F ◦w = w2

in N(Q). The tangent vectors may be calculated using the chain rule and are given by

v′
1(0) = R(− sin θ0 cos φ0 cos α − cos θ0 sin φ0 sin α,

cos θ0 cos φ0 cos α − sin θ0 sin φ0 sin α, cos φ0 sin α),
w′

1(0) = R(− sin θ0 cos φ0 cos β − cos θ0 sin φ0 sin β,
cos θ0 cos φ0 cos β − sin θ0 sin φ0 sin β, cos φ0 sin β),

v′
2(0) = (cos α, sin α

cos φ0
),

w′
2(0) = (cos β, sin β

cos φ0
).
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To show that the transformation is conformal we use the following criteria:

Lemma 1.17 The transformation is conformal if for all θ0, φ0, there exists a positive
constant λ(θ0, φ0) such that for all α and β, the following relation holds for the scalar
product of v′

i(0) and w′
i(0):

〈v′
1(0), w′

1(0)〉 = λ(θ0, φ0)〈v′
2(0), w′

2(0)〉. (1.45)

Proof. Let ψi be the angle between v′
i(0) and w′

i(0) for i = 1, 2. We want to show
that cos ψ1 = cos ψ2. If (1.45) is satisfied, we see that

cos ψ1 = 〈v′
1(0),w

′
1(0)〉

|v′
1(0)| |w′

1(0)|
= 〈v′

1(0),w
′
1(0)〉

〈v′
1(0),v

′
1(0)〉1/2〈w′

1(0),w
′
1(0)〉1/2

= λ(θ0,φ0)〈v′
2(0),w

′
2(0)〉

(λ(θ0,φ0)〈v′
2(0),v

′
2(0)〉)1/2(λ(θ0,φ0)〈w′

2(0),w
′
2(0)〉)1/2

= 〈v′
2(0),w

′
2(0)〉

〈v′
2(0),v

′
2(0)〉1/2〈w′

2(0),w
′
2(0)〉1/2

= 〈v′
2(0),w

′
2(0)〉

|v′
2(0)| |w′

2(0)|
= cos ψ2.

(The requirement that λ(θ0, φ0) be positive ensures that there is no division by zero
and that square roots are real.) �

Verifying (1.45) for the Mercator projection requires a bit of work but simplifies
nicely. We obtain that

〈v′
1(0), w′

1(0)〉 = R2(cos2 φ0 cos α cos β + sin α sin β),
〈v′

2(0), w′
2(0)〉 = cos α cos β + sin α sin β

cos2 φ0
.

From this it follows that λ(θ0, φ0) = R2 cos2 φ0. �
The shortest path between two points on a sphere. We consider two points Q1

and Q2 on the surface of a sphere. If they are not antipodal, the points cannot be in
line with the center of the sphere; thus they form a plane with it. The intersection
between the plane and the sphere traces out a great circle, with the points Q1 and Q2

both lying on it. The points cut the circle into two arcs, and the shorter of the two
is the shortest path on the surface of the sphere between Q1 and Q2. Let O be the
center of the sphere. Then the length of this path is Rα, where α ∈ [0, π) is the angle
between OQ1 and OQ2, and R is the radius of the sphere. In maritime navigation the
shortest path between two points is called an orthodrome. In mathematics the shortest
path between two points on some surface is usually called a geodesic. The geodesics
of a sphere are all great circles. If we consider a chart constructed using the Mercator
projection, the orthodrome between two points Q1 and Q2 does not correspond to
a straight line on the chart, unless the points lie along the same longitude. In the
vocabulary of marine navigation the loxodrome (also called a rhumb line) between two



1.5 Cartography 35

points is the route joining them that intersects all lines of meridians at the same angle.
Under the Mercator projection, this route corresponds to a straight line joining the two
points, and this in fact proves that such a route always exists. A loxodrome is usually
longer and never shorter than an orthodrome. However, on a Mercator projection of
the sphere this relationship is inverted (see Figure 1.11).

Fig. 1.11. Orthodromic and loxodromic routes between two points A and B.

Following a trajectory. If we want to proceed from point A to point B using only
traditional navigation techniques (in other words, without using GPS), it is easier to
follow the loxodromic route (which appears as a straight line in a Mercator projection).
This trajectory intersects each line of meridian at a constant angle. The traditional
tool of navigation is a simple magnetic compass, which indicates the direction to mag-
netic north. The magnetic field lines surrounding the Earth resemble lines of meridian,
originating at the north magnetic pole and terminating at the south magnetic pole.
However, the magnetic north and south poles do not perfectly coincide with the Earth’s
true poles. Moreover, the magnetic poles are not static, but rather wander slowly. Thus,
in practice, the magnetic field lines intersect the lines of meridian at an angle, and this
angle is not the same at every position on Earth, nor is it the same at one location from
one year to the next. The exact value of the variation between true north and magnetic
north can be quickly looked up in tables, and is usually included directly on marine
and aeronautical charts. Alternatively, it can be calculated assuming that we know our
location and those of one or more nearby landmarks. If we are navigating sufficiently
far away from the poles we can assume that the variation is nearly constant. Thus, in
order to follow a loxodromic route it suffices to keep a compass pointed at the desired
angle, to be calculated in view of the angle between the magnetic field lines and the
meridians at the current position.

Cartography in the vicinity of the poles. If we want to make charts of the areas
around the poles, the projections discussed previously are not very convenient. Thus
we instead consider projections onto oblique cylinders or cones. If we want a conformal
projection, we can use the Mercator projection onto an oblique cylinder. However, in
doing so we lose the property that lines of longitude and latitude map to straight lines.
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We may also consider conformal projections onto the surface of a cone. Such projections
are called Lambert projections (see Exercise 26 for an example).

The UTM coordinate system. When we want to enter a waypoint into a GPS
receiver, we must calculate its coordinate on a chart. Many charts make use of the UTM
(Universal Transverse Mercator) coordinate system, which comes from 60 projections
of the same type as the Mercator projection: the difference is that the cylinder is
no longer vertical, but horizontal, hence tangent to the Earth along a meridian. The
corresponding projection is called a transverse Mercator projection. A longitude zone
covers an interval of longitude of width 6 degrees. Each of the 60 longitude zones in
the UTM system is based on a transverse Mercator projection. This allows us to map
a region of large north–south extent with a low amount of distortion. This system was
originally designed by the North Atlantic Treaty Organization (NATO) in 1947.

1.6 Exercises

GPS (“Global positioning system”)

1. Show that the denominator of equation (1.16) is zero if and only if the four satellites
lie in the same plane.

2. The Loran (for “LOng RANge”) navigational system was widely used for marine nav-
igation for many years, particularly just off the North American coasts. Since many
boats are still equipped with Loran receivers, the system has not been decommissioned,
even though GPS is becoming increasingly popular. Loran transmitters are organized
into chains of three to five transmitters, one being designated as the master or principal
station M and the others as the slave or secondary stations W , X, Y , and Z.

• The principal station transmits a signal.
• The secondary station W receives the signal, delays a predetermined amount of time,

and retransmits the same signal.
• The secondary station X receives the signal, delays a predetermined amount of time,

and retransmits the same signal.
• etc.

The delays used by each secondary station are chosen such that there will be no doubt as
to the origin of a signal received anywhere within the designated service area of the chain
of transmitters. The idea behind the system is that the Loran receiver (on the boat)
measures the phase shift between the received signals. Since there are between three
and five signals received, there are at least two phase shifts that will be independent.
(a) Explain how we can determine our position knowing two phase shifts.
(b) In practice, the phase shift between the first antenna and the second antenna
allows the receiver to locate itself on a branch of a hyperbola. Why?
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Comment: These hyperbolic positioning curves are drawn on marine charts. A position
on a marine chart can therefore be identified as the point of intersection between two
hyperbolic curves drawn on the chart.

3. In order to calculate its position a GPS receiver needs to know the signal transit time for
four satellites. If we constrain the problem by saying that the receiver is at an altitude
of zero (in other words, at sea level), show that only three satellites are required in
order to calculate the receiver’s position. Explain the details of the calculations to be
performed.

4. Meteorites regularly enter the atmosphere, rapidly heat up, disintegrate, and finally
explode before hitting the surface of the Earth. This explosion generates a shock wave
that travels in all directions at the speed of sound v. The shock wave is detected by
seismographs installed at various locations on the surface of the Earth.

If four stations (equipped with perfectly synchronized clocks) note the moment that
the shock wave arrives, explain how to calculate both the position and time of the
explosion.

5. Consider a map that does not explicitly show any lines of latitude or longitude, nor
the direction of north. Explain how knowing the locations of any three nonaligned
landmarks on the chart allows for the position of any point on the chart to be calculated.
What hypothesis must be made in order for this to work?

Lightning strikes and storms

6. What is the minimum number of detectors that must observe a lightning strike in
order for it to be located? Give the system of equations that the central computer must
resolve in order to calculate this position.

7. Given the two times t1 and t2 measured by the oscilloperturbographs on either end of
a power line of length L, calculate the location of the fault on the power line.

8. A nanosecond is one billionth of a second: 10−9 s. Calculate the distance traveled by
light in 100 nanoseconds and from this deduce the accuracy of the position calculated
by a system that measures light transit times within 100 nanoseconds.

9. Given that P (I) is the Popolansky function, calculate the density function f(I) of the
variable X representing the amperage of lightning strikes. What is the mode of this
distribution (the value of I where the density takes its maximum)?

10. In other regions the Anderson–Erikson function P given in (1.17) is typically used,
where M = 31 and K = 2.6. In contrast to the Popolansky function, you will have to
use numerical methods.
(a) Calculate the median of this distribution.
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(b) Calculate the 90th percentile of this distribution. In other words, find the value I
such that Prob(X ≤ I) = 0.9.
(c) If 58% of detected lightning strikes have an amperage higher than the median,
calculate the percentage of lightning strikes that are not detected. By making the
further assumption that only the weakest lightning strikes avoid detection, calculate
the threshold amperage I0 below which lightning strikes will not be detected.
(d) Calculate the mode of this distribution.

Linear shift registers

11. Consider a sequence {an} that is periodic with length N , that is, an+N = an for all n.
Show that the minimal period of this sequence, the least integer M such that an+M = an

for all n, must be a divisor of N .

12. (a) Show that the polynomial x4 + x3 + 1 is primitive over F2.
(b) Calculate the sequence generated by the linear shift register where (q0, q1, q2, q3) =
(1, 0, 0, 1) and the initial conditions are (a0, a1, a2, a3) = (T (b), T (xb), T (x2b), T (x3b))
with b = 1. Verify that this sequence has a minimal period of length 15.
(c) Verify that this sequence is not the same as that given in Example 1.5.
(d) Calculate the correlation between this sequence and the different translations of
the sequence of Example 1.5.

13. Show that the polynomial x4 + x3 + x2 + x + 1 is not primitive over F2. Calculate the
sequence generated by the linear shift register where (q0, q1, q2, q3) = (1, 1, 1, 1) and the
initial conditions are (a0, a1, a2, a3) = (T (b), T (xb), T (x2b), T (x3b)) with b = 1. Verify
that this sequence has a minimal period of length less than 15.

A few elementary ways of calculating position
Before the invention of GPS humankind used several other (mathematical!) methods
and ingenious tools for calculating position: the position of the North Star, the position
of the sun at noon, the sextant, etc. Some of these techniques are still in use today. In
fact, even though GPS is much more precise and simple to use, we cannot guarantee
that the system will never break down, or that we will always have a fresh set of batteries
on hand. Hence the continued importance and use of these simpler techniques.

14. The North Star is situated very nearly on the axis of rotation of the Earth and is visible
only from the Northern Hemisphere.
(a) If we are situated on the 45th parallel, with what angle over the horizon will we
see the North Star? What about from the 60th parallel?
(b) Suppose that you see the North Star with an angle θ above the horizon. At what
latitude are you?

15. The axis of rotation of the Earth is at an angle of 23.5 degrees with the normal to the
ecliptic plane (the plane of the Earth’s orbit around the sun).
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(a) The Arctic Circle is situated at 66.5 degrees north latitude. If you are at the Arctic
Circle, at what angle above the horizon will you see the sun at noon during the equinox?
During the summer solstice? During the winter solstice? (It is this last property that
led to the naming of this particular parallel.)
(b) Answer the same question assuming that you are at the equator.
(c) Answer the same question if you are at a latitude of 45 degrees north.
(d) The Tropic of Cancer is situated at a latitude of 23.5 degrees north. Show that
the sun is vertically above the Tropic of Cancer at noon during the summer solstice.
(e) For which points on the surface of the Earth is the sun vertically above at noon
on at least one day of the year?

16. We can also use the height of the sun at noon to calculate latitude. If the sun is at an
angle θ above the horizon at noon during the summer solstice, calculate your latitude.
Answer the same question during the equinoxes and the winter solstice.

17. In order to determine your approximate longitude you can use the following technique.
Set your watch to the local time at the Greenwich meridian. Note the indicated time
when the sun is at its zenith. Explain how you can use this information to calculate your
longitude. This method is not terribly accurate, since it is rather difficult to tell when
the sun is at its zenith. Instead, marine navigators typically interpolate the results of
two measures, one taken before zenith and another after.

18. The workings of a sextant: as shown in Exercises 14 and 17 we can determine
longitude and latitude by measuring the angle above the horizon of the sun or North
Star. This is nice in theory, but in practice how do we get an accurate measurement
while standing on a rocking boat? This is where the sextant is useful. Sextants use a
system of two mirrors. The navigator adjusts the angle between the two mirrors until
he sees the reflected image of the sun or North star at the same level of the horizon, as
shown in Figure 1.12.
(a) Show that if the angle between the two mirrors is θ, then the angle above the
horizon made by the sun or the North Star is 2θ.
(b) Explain why the measurement is not too strongly affected by the rocking of the
boat.

Cartography

19. Consider two points Q1 = (x1, y1, z1) and Q2 = (x2, y2, z2) on the surface of an idealized
spherical Earth of radius R. Let the longitudes of these two points be θ1 and θ2 and the
latitudes be φ1 and φ2, respectively. Calculate the minimal distance along the surface
of the Earth between these two points.

20. Consider a chart constructed using the standard Mercator projection. Calculate the
equation of the orthodrome between the point at longitude 0◦ and latitude 0◦ and the
point at longitude 90◦W and latitude 60◦N.
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Fig. 1.12. The workings of a sextant (Exercise 18).

21. Consider a chart constructed using the horizontal cylindrical projection. Calculate the
equation of the orthodrome between the point at longitude 0◦ and latitude 0◦ and the
point at longitude 90◦W and latitude 60◦N.

22. Consider projecting the sphere onto a vertical cylinder via the center of the sphere.
(a) Give the formula describing the projection.
(b) What is the image of the meridians? What about the parallels?
(c) What is the image of a great circle?

23. Conic projections use cones that are tangent or secant to the sphere and project through
the center of the sphere. Imagine a conic projection and draw the grid of meridians and
parallels on the unwrapped cone.

24. Stereographic projection: Consider projecting the sphere onto a plane tangent to
the sphere at a point P . Let P ′ be the point on the sphere diametrically opposed to P .
The projection is performed as follows: if Q is a point on the sphere, then its projection
is the intersection of the line P ′Q with the plane tangent to the sphere at P .
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(a) Give the formula for this projection in the case that P is the South Pole and we
consider the sphere to have radius 1. (In this case the point P ′ is the North Pole and
the tangent plane is described by the equation z = −1.)
(b) Show that this projection is conformal.

25. In order to accurately represent the Earth we need to model it as an ellipsoid of
revolution x2

a2 + y2

a2 + z2

b2 = 1. In general, the spherical coordinates of an ellipsoid may
be written as

(x, y, z) = (a cos θ cos φ, a sin θ cos φ, b sin φ).

The notion of longitude is the same as that of a sphere, but most geographers tend
to use geodesic latitude, defined as follows: the geodesic latitude of a point P on an
ellipsoid is the angle between the normal vector at the point P and the equatorial plane
(the plane z = 0). Calculate the geodesic latitude as a function of φ.

26. Lambert conic conformal projection: Consider the sphere x2 + y2 + z2 = 1 and a
cone centered above the North Pole at a point z.
(a) What are the coordinates of the peak of the cone if the cone is tangent to the
sphere along the parallel φ0?
(b) If we cut the cone along the meridian θ = π and unroll it, we obtain a sector of a
circle. Show that the angular width of this sector is 2π sin φ0.
(c) Show that the distance ρ0 between the peak of the cone and all points of tangency
between the cone and the sphere is ρ0 = cot φ0.
(d) Harder! Suppose that the sector is unrolled and aligned as shown in Figure 1.13.

Fig. 1.13. The unrolling of the cone for Exercise 26: If P is a point, then ρ = |AP | and ψ is

the angle ÔAP .

The Lambert projection of the sphere onto this unrolled sector is defined as follows.
Let (x, y, z) = (cos θ cos φ, sin θ cos φ, sin φ) be a point on the sphere. Map it to the point
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X = ρ sin ψ,

Y = ρ0 − ρ cos ψ,

where ⎧⎨
⎩ρ = ρ0

(
tan 1

2 ( π
2 −φ)

tan 1
2 ( π

2 −φ0)

)sin φ0

,

ψ = θ sin φ0.

Verify that the projection from the sphere to the cone given by (x, y, z) �→ (X,Y ) is
conformal.



References

[1] M. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.
[2] A. Peters, editor. Peters World Atlas. Turnaround Distribution, 2002.
[3] P. Richardus and R.K. Adler. Map Projections. North-Holland, 1972.
[4] E.F. Taylor and J.A. Wheeler. Exploring Black Holes: Introduction to General Relativity.

Addison Wesley Longman, New York, 2000. (Chapters 1 and 2 and project on GPS.)



2

Friezes and Mosaics

This chapter discusses the classification of friezes and several concepts related to mo-
saics. The first section introduces the concept of operations that leave a frieze un-
changed, using basic geometry and intuition. It also describes what will be the main
steps of the classification theorem. Section 2.2 defines affine transformations and their
matrix representation, and isometries. The highlight of this chapter is the classification
theorem shown in Section 2.3. In less detail, the last section discusses mosaics. There
is no advanced section to this chapter, the proof of the classification theorem being the
most difficult element. Sections 2.1 and 2.4 can be covered in three hours of class.
The tools are then purely geometric and the possibility of classification is made clear.
If the classification theorem is the goal, four hours should be devoted to the first three
sections. In all cases, the lecturer should bring copies of Figure 2.2 on transparencies
to the classroom. Their use on a projector helps students to understand quickly the
concept of symmetry. Only a basic knowledge of linear algebra and Euclidean geometry
is required to understand this chapter. The proof of the classification theorem requires
a familiarity with abstract reasoning.

This subject offers several interesting directions for further study: aperiodic tilings (end

of Section 2.4) is one such direction, while Exercises 13, 14, 15, and 16 present several

others.

Friezes and mosaics have been used in decoration for several millennia. The ancient
world’s Sumerian, Egyptian, and Mayan civilizations all used them to great effect. It
would be a lie, however, to pretend that ancient mathematics developed the “tech-
nology” behind the art. The formal mathematical study of tilings is relatively recent,
having started no more than two centuries ago. The memoir of Bravais [1], a French
physicist, is among the first scientific studies of the subject.

Mathematics is able to provide a way to systematically classify the friezes and mo-
saics commonly seen in architecture and art. These classifications have allowed mathe-
maticians to better understand the rules behind them and to create truly new patterns
by breaking some of these rules.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 2, c© Springer Science+Business Media, LLC 2008
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Fig. 2.1. Seven friezes. (Each of the above friezes has its pattern displayed in simplified form
in Figure 2.2.)
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Fig. 2.2. Seven simplified friezes. (Each of the above friezes is a simplified form of the corre-
sponding frieze in Figure 2.1.)
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Classification of objects is a fairly common mathematical activity. The reader who
has followed a course on multivariable calculus will remember the classification of ex-
trema of a function of two variables using the second partial derivative test. If the
matrix of second derivatives (the Hessian matrix) is nonsingular, the extremum can be
classified as either a local minimum or a local maximum or a saddle point. The reader
might also have encountered the classification of conics, either in an advanced linear
algebra class or in Euclidean geometry. And for those having read Chapter 6 on error-
correcting codes, Theorems 6.17 and 6.18 classify finite fields. These are examples of
classifications of abstract objects. It may be surprizing to learn that mathematics can
classify objects as concrete as architectural patterns. Here is how it is done.

2.1 Friezes and Symmetries

The Oxford English Dictionary defines frieze as a band of painted or sculptured deco-
ration. It is also defined as that member in the entablature of an order which comes
between the architrave and cornice, referring to the architectural location where such
patterns are commonly used. Figure 2.1 shows seven friezes taken from architecture. To
discuss these objects from a mathematical point of view, we will modify the definition to
include the following elements: (i) a frieze has a constant and finite width (the height
of the friezes in Figure 2.1) and is infinitely long in the perpendicular direction (the
horizontal one in our examples); and, (ii) it is periodic, meaning that there exists some
minimal distance L > 0 such that a translation of the frieze by a distance L along the
direction in which it is infinite will leave the frieze unchanged. The length L is called
the period of the frieze. This definition does not fit perfectly with real-world friezes
(specifically those in Figure 2.1) because they are not infinitely long. However, we can
easily imagine extending them infinitely in both directions by simply continuing the
pattern.

Figure 2.2 presents seven more friezes. They are much less detailed but much simpler
to study. Each of these seven friezes has the same period L, equal to the distance
between two neighboring vertical bars. In the remaining discussion we will imagine
that these vertical bars do not appear in the frieze pattern, since they have been drawn
simply to make the period explicit. Some of these friezes are invariant under various
geometric transformations other than translations. For example, the third and seventh
friezes remain the same even if we flip them so as to exchange their top and bottom.
In this case we say that they are invariant under reflection by a horizontal mirror. The
second, sixth, and seventh friezes remain unchanged if flipped from left to right; we
say that they are invariant under reflection by a vertical mirror. These distinctions
between various friezes raise a natural question: is it possible to classify all friezes
by considering the set of operations under which they are invariant? For example,
the set of operations leaving the first frieze unchanged includes neither the horizontal
nor the vertical reflection just discussed. This set of operations is distinct from that
characterizing the third frieze, which may be reflected horizontally. Note that the
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friezes in Figures 2.1 and 2.2 have been ordered such that they each display the same
respective symmetries. Thus, corresponding pairs will be left unchanged by the same
operations. For example, the third frieze in both figures is invariant under translations
and horizontal reflection.

When a geometric transformation preserving lengths (such as a translation or a
reflection) leaves a frieze unchanged, it is said to be a symmetry operation of the frieze
or, simply, a symmetry. The complete list of symmetries of a frieze is infinite. Indeed,
we would like to distinguish in this list the translation by a distance of one period L
from the translations by 2L, 3L, etc., and these already account for an infinite number
of symmetry operations. Moreover, the list should also contain the inverse of each
symmetry operation. The inverse of a symmetry operation is the usual inverse of a
function: the composition of a function and its inverse is the identity in the plane (or
on the subset defined by the frieze as in the present case). The inverse of a translation
to the right by a distance L is a translation to the left by the same distance. (Exercise:
what is the inverse of a reflection with respect to a given mirror? and that of a rotation
by an angle θ?) If translations to the right (respectively to the left) are associated
to positive distances (respectively negative distances), then the list of symmetries of a
frieze of period L should contain all translations by a distance nL with n ∈ Z. Instead
of listing all symmetries of a frieze, it is common to give only a subset of elements whose
compositions and inverses give the whole list. Such a subset is called a set of generators.
This is what we are going to use from now on. (Mathematicians usually take this subset
as small as possible. They call it minimal whenever the subset, after removal of one of
its elements, fails to generate the whole set of symmetries.)

The goal for the remainder of this section is to build geometric intuition of key ideas
leading to the classification theorem, Theorem 2.12. This theorem gives all possible
lists of symmetry generators for friezes of a given period. The reader is urged to make
a copy of Figure 2.2 on a transparency and cut it into seven strips, one for each frieze,
before reading on. Experimentation is an ideal way to develop intuition!
The three generators tL, rh, and rv. We have already introduced some possible
symmetry operations: translations (by any integer multiple of the period), reflections
by horizontal and vertical mirrors. We will use the symbol rh and rv for the latter. The
set of translations of a frieze is generated by the unique translation tL by a period L.
(The inverse of tL is t−L. Composition of n operations tL gives tL ◦ tL ◦ · · · ◦ tL = tnL.)

A subtlety should be cleared up right away. For the reflection rh to leave a frieze
unchanged, the horizontal mirror should be located along the middle line of the frieze
(the dashed lines in Figure 2.2). Its position is therefore completely determined by the
requirement of being a symmetry. This is not the case for reflections through a vertical
mirror. Positions of vertical mirrors must be chosen according to the pattern. The frieze
2 (the second from the top in Figure 2.2) has an infinite set of vertical mirrors. All small
vertical bars define a position for a vertical mirror. But these are not the only ones.
A mirror located halfway between two adjacent vertical bars also defines a symmetry
of this frieze. Exercise 7 shows that if a frieze of period L is unchanged under a given
vertical mirror, it is also invariant under an infinite number of mirrors, any of those
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being at a distance nL
2 , for n ∈ Z, from the first. The notation rv underlies therefore a

choice for the position of one mirror and all other vertical mirrors at a distance equal to
an integer multiple of L

2 from the first one. (Exercise: which other friezes of the figure
have a symmetry rv?)
Notation. Composition of symmetry operations will be used often in the following,
and we shall drop the symbol “◦”. For example, rh ◦ rv will be simply noted rhrv. Soon
will also appear the necessity of distinguishing the order of operations. It is important
to note that operations are listed from right to left. The composition rhrv stands for
the operation rv followed by rh.
The rotation rhrv. The frieze 5 introduces a new generator. This frieze has neither
rh nor rv as a symmetry, but if rv and then rh are both performed on it, the frieze
remains unchanged. (The vertical mirror is along one of the vertical bars.) (Exercise:
check this claim!) It can then happen that neither rh nor rv is a symmetry but their
composition rhrv is. The final result rhrv of these two reflections is a rotation by an
angle 180◦. To see this, note that rhrv exchanges the top and bottom, the left and the
right, without altering the distances. This is exactly the action of rotation by 180◦. (In
terms of a coordinate system whose origin is on a vertical bar, a point (x, y) within the
frieze is mapped into (−x,−y) under this transformation. This is why this operation is
also called the symmetry through the origin.) Exercise 8 proposes a geometrical proof
of this property.

The following properties of the three generators rh, rv, and rhrv are easily verified,
geometrically or with the use of the copy on transparency that you have made of the
figure. They could also be proved using the matrix representation that will be introduced
in Section 2.2. (See Exercise 6.)

Proposition 2.1 1. The operations rh and rv commute, that is, the two compositions
rhrv and rvrh are equal.
2. The inverse of rh is rh, that of rv is rv, and that of rhrv is rhrv.
3. The composition of rh and rhrv gives rv. That of rv and rhrv gives rh. (This allows
us to conclude that a frieze that would have any two of the three operations rh, rv, rhrv

as symmetries would automatically have the third also.)

With these properties, it should be easy to determine which of rh, rv, and rhrv are
symmetries of a given frieze of Figure 2.2. (Exercise: do it for all of them!)
The glide reflection symmetry sg = tL/2rh. After the last proposition, the list of
possible generators reads tL, rh, rv, and rhrv. Any of rh, rv, and rhrv is a symmetry of
at least one frieze in Figure 2.2 and not a symmetry of at least one other frieze. But
the frieze 4 shows that this list is not yet complete. None of rh, rv, rhrv is a symmetry
of this frieze. But a reflection rh followed by a translation by a half-period L

2 leaves
it unchanged. (See Figure 2.3. Recall that vertical bars are not part of the pattern.)
We shall refer to this operation as the glide reflection and denote it by sg. Using the
composition we can write it as sg = tL/2rh. (Exercise: only one other frieze among the
seven of Figure 2.2 has sg among its symmetries. Which one?)
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Fig. 2.3. A glide reflection. The frieze 4 as it appears in Figure 2.2 (top line), the same after
the operation rh (middle line), and after a translation by a half-period (bottom line).

Toward the classification theorem. The list of possible generators now contains
five operations (tL, rh, rv, rhrv, sg). It was obtained by studying Figure 2.2. To obtain
the complete list of symmetry sets of friezes, we need all possible symmetry operations
of friezes. What tells us that the list of five operations above is complete? Could there
be another frieze that has a symmetry that cannot be obtained from these five? These
will be the first questions to answer in order to prove the classification theorem.

Suppose for the time being that this list is complete. We can then enumerate po-
tential sets of symmetries for friezes of period L. As stated above, we shall do this by
identifying a set of generators. By definition, all sets will include the translation tL by
a distance L and no shorter ones. Any set may contain either zero or one or two of
the three generators rh, rv, rhrv. (If the list contains two, it automatically contains the
third one.) These observations lead to the following list.

1. 〈tL〉
2. 〈tL, rv〉
3. 〈tL, rh〉
4. 〈tL, sg〉
5. 〈tL, rhrv〉
6. 〈tL, sg, rhrv〉
7. 〈tL, rh, rv〉
8. 〈tL, sg, rh〉
9. 〈tL, sg, rv〉
10. 〈tL, sg, rh, rv〉
All of the sets contain tL. Sets 1 and 4 contain none of rh, rv, rhrv. Set 4 contains sg,
set 1 does not. Sets 2, 3, 5, 6, 8 and 9 contain one and only one of rh, rv, rhrv; 6, 8, 9
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add the glide reflection sg, but 2, 3, 5 do not. Sets 7 and 10 contain two of rh, rv, rhrv

(and therefore all three). Set 10 has moreover sg.
The classification theorem will have to resolve two more questions. The first is

whether this list contains repetitions. Since we are listing only generators, two in the
list above could generate the same list of symmetries. The second question is whether
some of the sets do not generate symmetries of friezes of period L. This question might
be somewhat surprising. But one can easily see that set 8 needs to be crossed out of
the list, since it does not generate symmetries of a frieze of period L.

To see this, it is crucial to remember that the glide reflection sg is the composition of
rh and tL/2. But it can be seen that the set of generators of a frieze of period L cannot
contain both sg and rh. Why? We have noted that the inverse of rh is rh itself. Then the
composition of rh and sg is sgrh = tL/2rhrh = tL/2(Id) = tL/2. Because compositions
of symmetries are symmetries, the translation tL/2 should also be a symmetry of the
frieze. But the period of the frieze was assumed to be L, and by definition, this period
should be the smallest translation leaving the frieze invariant. The translation tL/2

cannot appear, and hence sg and rh cannot simultaneously be generators of the same
frieze. Set 8 must be rejected. (Note that this set does generate a set of symmetries for
a frieze. But that frieze is of period L

2 and it is then set 3, that is, 〈tL/2, rh〉.) (Exercise:
the classification theorem will end up keeping only seven of the ten lists above. The
argument for rejecting 8 was given. Can you guess which other two must be discarded?)

We shall complete the proof of the Classification theorem after having discussed a
powerful algebraic tool to study these geometric operations: the matrix representation
of affine transformations.1

2.2 Symmetry Group and Affine Transformations

We will use affine transformations as the mathematical foundation for describing in-
variant operations on friezes. (If you have read Chapter 3 or 11, you will have already
encountered them.)

Definition 2.2 An affine transformation in the plane is a transformation R2 → R2 of
the form (x, y) �→ (x′, y′), where

x′ = ax + by + p,

y′ = cx + dy + q.

An affine transformation is called proper if it is bijective.

Such a transformation can be described in matrix form as

1It is possible to give a purely geometric proof of this theorem. See, for example, [2] and
[5].
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x′

y′

)
=

(
a b
c d

)(
x
y

)
+
(

p
q

)
. (2.1)

The matrix
(

a b
c d

)
is a linear transformation, while p and q represent a translation in

the plane. For the rest of this chapter we will be considering only proper (or regular)
affine transformations, that is, affine transformations that are one-to-one. As we shall
see soon, this additional condition is equivalent to the invertibility of the linear trans-
formation matrix

(
a b
c d

)
. Observe that the following equation describes the same affine

transformation: ⎛
⎝x′

y′

1

⎞
⎠ =

⎛
⎝a b p

c d q
0 0 1

⎞
⎠
⎛
⎝x

y
1

⎞
⎠ . (2.2)

In this modified form, a one-to-one correspondence is made between elements (x, y) of
the plane R2 and elements (x, y, 1)t in the plane at z = 1 of R3. The mapping between
affine transformations of the form (2.1) and the 3×3 matrices whose last line is (0 0 1),⎛

⎝a b p
c d q
0 0 1

⎞
⎠ ,

is also one-to-one.
If we compose two affine transformations (x, y) → (x′, y′) and (x′, y′) → (x′′, y′′)

given by

x′ = a1x + b1y + p1,

y′ = c1x + d1y + q1,

and

x′′ = a2x
′ + b2y

′ + p2,

y′′ = c2x
′ + d2y

′ + q2,

the resulting (x′′, y′′) can be obtained as

x′′ = a2x
′ + b2y

′ + p2

= a2(a1x + b1y + p1) + b2(c1x + d1y + q1) + p2

= (a2a1 + b2c1)x + (a2b1 + b2d1)y + (a2p1 + b2q1 + p2)

and

y′′ = c2x
′ + d2y

′ + q2

= c2(a1x + b1y + p1) + d2(c1x + d1y + q1) + q2

= (c2a1 + d2c1)x + (c2b1 + d2d1)y + (c2p1 + d2q1 + q2).
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Note that this compound transformation can itself be described in a 3× 3 matrix form:⎛
⎝x′′

y′′

1

⎞
⎠ =

⎛
⎝a2a1 + b2c1 a2b1 + b2d1 a2p1 + b2q1 + p2

c2a1 + d2c1 c2b1 + d2d1 c2p1 + d2q1 + q2

0 0 1

⎞
⎠
⎛
⎝x

y
1

⎞
⎠ .

This last example demonstrates the utility of the 3×3 matrix notation, since composed
transformations can themselves be expressed as the product of the matrices underlying
the individual transformations:⎛
⎝a2 b2 p2

c2 d2 q2

0 0 1

⎞
⎠
⎛
⎝a1 b1 p1

c1 d1 q1

0 0 1

⎞
⎠ =

⎛
⎝a2a1 + b2c1 a2b1 + b2d1 a2p1 + b2q1 + p2

c2a1 + d2c1 c2b1 + d2d1 c2p1 + d2q1 + q2

0 0 1

⎞
⎠ .

This property allows us to study affine transformations and their compositions using
this 3 × 3 representation and simple matrix multiplication. The geometric problem is
thus reduced to a linear algebra problem. Because of this correspondence, we shall often
use the matrix representation to describe an affine transformation. It should be stressed
that an affine transformation can be defined without using a coordinate system, but its
matrix representation exists only if one has been chosen.

To show the power of this notation we will now compute the inverse of a proper affine
transformation. The inverse is the transform that associates (x′, y′) → (x, y), where
x′ = ax+ by +p and y′ = cx+dy + q. Since the composition of affine transformations is
represented by matrix multiplication, it must be that the matrix describing the inverse
is the inverse of the matrix describing the original transform. This is easily calculated
as ⎛

⎝ d/D −b/D (−dp + bq)/D
−c/D a/D (cp − aq)/D

0 0 1

⎞
⎠ ,

where D = det
(

a b
c d

)
= ad − bc. This is also a matrix describing a proper affine

transformation. (Exercise: what must you do to ensure that it actually describes a
proper transform? Do it. This exercise confirms the claim that an affine transformation
is proper if and only if the matrix

(
a b
c d

)
is invertible.) If we write the matrix describing

the original transform in the form

B =
(

A t
0 1

)
,

where

A =
(

a b
c d

)
, 0 =

(
0 0

)
, and t =

(
p
q

)
,

then its inverse may be written as

B−1 =
(

A t
0 1

)−1

=
(

A−1 −A−1t
0 1

)
.
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Note that B−1 is of the same form as B: its third row is (0 0 1). Furthermore, note
that the linear transformation A−1 is also invertible.

The set of all proper affine transformations forms a group.

Definition 2.3 A set E equipped with a multiplication operation E×E → E is a group
if it satisfies the following properties:

1. associativity: (ab)c = a(bc),∀a, b, c ∈ E;
2. existence of an identity element: there exists an element e ∈ E such that ea = ae =

a,∀a ∈ E;
3. existence of inverses: ∀a ∈ E, ∃b ∈ E such that ab = ba = e.

The inverse of an element a is usually denoted by a−1.

Groups play an important role in several other chapters. See, for example, Section 1.4
and Section 7.4.

It is easy to verify that the set of matrices representing proper affine transformations
forms a group. Thus, the set of affine transformations itself forms a group. This is what
we check now.

Proposition 2.4 The set of matrices representing proper affine transformations forms
a group under matrix multiplication. The set of proper affine transformations also forms
a group under composition. The latter is called the affine group.

Proof : Consider the matrix

B =
(

A t
0 1

)
representing a proper affine transformation. Since the affine transformation is proper,
A is an invertible 2 × 2 matrix and therefore the matrix B is itself invertible. Being
of the same form as B, the matrix B−1 also represents a proper affine transformation,
and condition 3 holds. Property 1 holds because matrix multiplication is itself associa-
tive, and property 2 holds using the 3 × 3 identity matrix, which represents the affine
transformation ⎛

⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ←→

{
x′ = x,

y′ = y.

Therefore the set of matrices representing proper affine transformations forms a group.
We have seen that there is a one-to-one correspondence between matrices (with last line
(0 0 1)) and affine transformations. Moreover, the composition of affine transformations
is represented by matrix multiplication through this correspondence. The verification
above automatically holds for the proper affine transformations themselves. �

Earlier, we introduced reflections with respect to horizontal and vertical mirrors. As
examples, we now give their matrix representation. To obtain these, we need to fix the
origin. We shall place it at equal distance between the top and bottom of the frieze.
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Fig. 2.4. The coordinate system.

(See Figure 2.4.) This still leaves some freedom, since any point on the horizontal axis
in the middle of the frieze is a possible choice. (We have already underlined this freedom
when discussing the position of vertical mirrors. We shall also use this freedom in the
proof of Lemma 2.10.) For a given choice along the horizontal axis, the reflection rh

that exchanges top and bottom (that is, that exchanges the positive vertical axis with
the negative one) is represented by the matrix⎛

⎝ rh
0
0

0 0 1

⎞
⎠ , where rh =

(
1 0
0 −1

)
,

and the reflection rv that exchanges left and right is⎛
⎝ rv

0
0

0 0 1

⎞
⎠ , where rv =

(−1 0
0 1

)

if the origin is on the mirror. (Exercise: check these claims.) Note that

rhrv =
(

1 0
0 −1

)(−1 0
0 1

)
=

(−1 0
0 −1

)
.

We observe again that the rotation by an angle of 180◦ (or π) can be obtained by a
reflection in a vertical mirror followed by a reflection in a horizontal one. (Exercise:
determine the 3 × 3 matrices that represent the translation tL and the glide reflection
sg.)

The definition of an affine transformation makes it a function from R2 to R2. The
requirement that these functions leave a frieze invariant restricts the set of affine trans-
formations that we need to consider. But a second restriction is made that limits the
affine transformations even more.

Definition 2.5 An isometry of the plane (or of a region of the plane) is a function
T : R2 → R2 (or T : F ⊂ R2 → R2) that preserves lengths. Hence, if (x1, y1) and
(x2, y2) are two points, then the distance between them is equal to the distance between
their images T (x1, y1) and T (x2, y2).
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Definition 2.6 A symmetry of a frieze is an isometry that maps the frieze onto the
frieze.

Exercise 9 will show that an isometry is an affine transformation. Lemma 2.7 shows
that this restriction to isometric affine transformations limits significantly the possible
linear transformations A that can play a role.

Lemma 2.7 Let the isometry represented by the matrix(
A 0
0 1

)
be a symmetry of a frieze. Then the 2 × 2 block is one of the four matrices(

1 0
0 1

)
, rh =

(
1 0
0 −1

)
, rv =

(−1 0
0 1

)
, and rhrv =

(−1 0
0 −1

)
. (2.3)

Proof: A linear transformation is completely determined by its action on a basis. We
shall use the basis {u,v}, where u and v are horizontal and vertical vectors of length
equal to half the width of the frieze. With this choice any point of the frieze is of the
form (x, y) = αu + βv with α ∈ R and β ∈ [−1, 1]. (The constraint β ∈ [−1, 1] ensures
that the point (x, y) is within the frieze.) The two basis vectors are perpendicular
(u ⊥ v) or, equivalently, their inner product vanishes: (u,v) = 0.

To check whether ( A 0
0 1 ) represents an isometry, it is sufficient to check that

|Au| = |u|, |Av| = |v|, and Au ⊥ Av. (2.4)

Indeed, if P and Q are two points in the frieze and Q − P = αu + βv is the vector
between them, then the image of Q − P is A(αu + βv) and the square of its length is
given by

|A(αu + βv)|2 = (αAu + βAv, αAu + βAv)

= α2|Au|2 + 2αβ(Au, Av) + β2|Av|2
= α2|u|2 + β2|v|2
= (αu + βv, αu + βv)

= |αu + βv|2,
where we have used, to obtain the third equality, the three relations of (2.4) and, for the
fourth, the fact that the basis vectors are perpendicular. Then the distance between any
pair of points P and Q is preserved by A if the relations (2.4) are satisfied. (Exercise:
show that these relations are also necessary.)

Let Au = γu + δv be the image of u by A. Since the transformation is linear,
A(βu) = β(γu + δv). If δ is nonzero, then it is possible to choose β ∈ R sufficiently
large that |βδ| > 1. This means that the point A(βu) is outside the frieze. Since this
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must be ruled out, δ has to be set to zero. (In other words, a transformation A such
that δ is nonzero is a linear transformation that tilts the frieze out of the horizontal.)
Thus Au = γu, and if |Au| = |u|, we must have γ = ±1.

Now let Av = ρu+σv be the image of v under A. Since Au must be perpendicular
to Av, we must have

0 = (Au, Av) = (γu, ρu + σv) = γρ|u|2.

Since neither γ nor |u| is zero, ρ must be set to 0. And again the last condition |Av| = |v|
fixes σ to be ±1. The matrix A representing the transformation in the basis {u,v} is
then

(
γ 0
0 σ

)
. There are two choices for each γ and σ and thus four for the matrix A,

precisely those appearing in the statement. �
The composition of two isometries and the inverse of an isometry are themselves

isometries. Thus the subset of isometric transformations of the affine group itself forms
a group, called the group of isometries. Finally, the composition of two isometries
leaving a frieze unchanged itself leaves the frieze unchanged. The subset of the group
of isometries that leaves the frieze invariant is therefore a group. We are led to the
following definition.

Definition 2.8 The group of symmetry of a frieze is the group of all isometries that
leave the frieze invariant.

2.3 The Classification Theorem

Having a formal theory of isometries and affine transformations allows us to create
a list of such transformations that could leave a frieze unchanged. This section will
first establish a complete list of possible symmetry generators. The second part of this
section uses this list of transformations to enumerate and classify all possible types of
groups of frieze symmetries.

There are many affine transformations that simply cannot appear in the symmetry
group of a frieze. Lemma 2.7 has already rejected the linear transformations that tilt
the frieze out of its domain (the constraint δ = 0 excludes these transformations). The
following lemmas characterize the transformations that can appear in frieze symmetry
groups. The first describes translations along the infinite axis of the frieze.

Lemma 2.9 The symmetry group of any frieze of period L contains the translations⎛
⎝1 0 nL

0 1 0
0 0 1

⎞
⎠ , n ∈ Z.

These are the only translations that appear in the symmetry group.
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Proof: The translation

tL =

⎛
⎝1 0 L

0 1 0
0 0 1

⎞
⎠

leaves any frieze with period L unchanged. Observe that the inverse of this translation
is

t−L =

⎛
⎝1 0 −L

0 1 0
0 0 1

⎞
⎠

and that its composition n times yields

tnL =

⎛
⎝1 0 nL

0 1 0
0 0 1

⎞
⎠ .

(Exercise!) The translation tnL must therefore be in the symmetry group for all n ∈ Z.
No translation of the form ⎛

⎝1 0 a
0 1 b
0 0 1

⎞
⎠

with b 
= 0 can leave a frieze unchanged, since the vertical portion of the translation
will map certain points of the frieze outside of its original vertical extent. We are left
with possible translations of the form⎛

⎝1 0 a
0 1 0
0 0 1

⎞
⎠ ,

where a is not an integer multiple of L. After performing such a translation by ( a
0 ), one

can repeatedly perform a translation by ( L
0 ) or

(−L
0

)
until the resulting translation is

by
(

a′
0

)
, where a′ satisfies 0 ≤ a′ < L. If 0 < a′ < L, it is a translation by a constant

a′ smaller than the period L, contradicting the definition of the period. And if a′ = 0,
then the original a was an integer multiple of the period L. The only translations left
are therefore tnL, n ∈ Z. �

Are there any other transformations of the form(
A t
0 1

)

where A is not the identity matrix and t is nonzero? The next lemma answers this
question.
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Lemma 2.10 Consider isometries of the form ( A t
0 1 ), where t is nonzero. By redefining

the origin it is possible to reduce any such transformation to one of the form

(i)

⎛
⎝ A

nL
0

0 0 1

⎞
⎠ , (ii)

⎛
⎝1 0 L/2 + nL

0 −1 0
0 0 1

⎞
⎠ , and (iii)

⎛
⎝−1 0 L/2 + nL

0 1 0
0 0 1

⎞
⎠ ,

where n ∈ Z and A is one of the four allowed by Lemma 2.7. Form (iii) may occur only
if the rotation rhrv is also a symmetry.

Proof: By definition of an isometry, lengths must be preserved. Since the distance
between two points is the same as the distance between any translation of the same two
points, the matrix A must be one of the four given in (2.3). Moreover, if ty 
= 0 in⎛

⎝a b tx
c d ty
0 0 1

⎞
⎠ ,

then y′ = cx + dy + ty will be outside of the frieze for certain values of x and y. In fact,
for the four possible matrices A, the image of the square [−1, 1] × [−1, 1] is the square
itself. Every translation that has ty 
= 0 moves the square vertically and takes some
points of this square out of the frieze. Thus, ty must be zero.

Since the symmetry group of a frieze contains all horizontal translations by integer
multiples of L, the presence of ⎛

⎝a 0 tx
0 d 0
0 0 1

⎞
⎠

in the group implies the presence of⎛
⎝1 0 nL

0 1 0
0 0 1

⎞
⎠
⎛
⎝a 0 tx

0 d 0
0 0 1

⎞
⎠ =

⎛
⎝a 0 tx + nL

0 d 0
0 0 1

⎞
⎠

for all n ∈ Z. Out of the set of all such transformations there will be one such that
0 ≤ t′x = tx + nL < L.

We now consider the four possibilities for A. If A is the identity matrix, then Lemma
2.9 forces t′x to be zero, and the resulting matrix is of the form (i).

Let A = rh. Then the square of ⎛
⎝ rh

t′x
0

0 0 1

⎞
⎠

must also be in the symmetry group of the frieze. However,
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⎝1 0 t′x

0 −1 0
0 0 1

⎞
⎠2

=

⎛
⎝1 0 2t′x

0 1 0
0 0 1

⎞
⎠

is a translation. Thus there exists m ∈ Z such that 2t′x = mL. Since 0 ≤ t′x < L, we
have that 0 ≤ 2t′x < 2L. If t′x = 0, the translation is trivial. Otherwise, we must have
that t′x = L/2, and the affine transformation becomes⎛

⎝1 0 L/2
0 −1 0
0 0 1

⎞
⎠ . (2.5)

It remains to consider the two cases A =
(−1 0

0 −1

)
and

(−1 0
0 1

)
. Here we will use our

freedom in choosing the origin. (See the remarks after the proof of Proposition 2.9.)
Consider translating the origin along the x axis by a distance a. The matrix describing
the coordinate change is given by

S =

⎛
⎝1 0 −a

0 1 0
0 0 1

⎞
⎠ .

If T is the matrix representing an affine transformation and S the matrix changing the
coordinate system (x, y) to a new one (x′, y′), the same affine transformation will be
represented by the matrix STS−1 in the new system. To see this, we read as usual
from right to left. This expression first transforms the coordinates (x′, y′) of a point
into its coordinates (x, y) in the old system using S−1, applies the affine transformation
represented in these old coordinates by the matrix T , and transforms the result back
with S into the new coordinate system. The affine transformation represented by⎛

⎝−1 0 t′x
0 ±1 0
0 0 1

⎞
⎠ (2.6)

will therefore be represented by the matrix⎛
⎝1 0 −a

0 1 0
0 0 1

⎞
⎠
⎛
⎝−1 0 t′x

0 ±1 0
0 0 1

⎞
⎠
⎛
⎝1 0 a

0 1 0
0 0 1

⎞
⎠

=

⎛
⎝−1 0 t′x − a

0 ±1 0
0 0 1

⎞
⎠
⎛
⎝1 0 a

0 1 0
0 0 1

⎞
⎠ =

⎛
⎝−1 0 t′x − 2a

0 ±1 0
0 0 1

⎞
⎠

in the new system. (Exercise: It is crucial to check that this coordinate change does not
spoil the form of other symmetry operations. Show that transformations represented by
( A t

0 1 ) with A equal to ( 1 0
0 1 ) or rh keep the same matrix representation after a horizontal
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translation of the origin.) Thus the affine transformation represented by (2.6) is now
represented by ⎛

⎝−1 0 0
0 ±1 0
0 0 1

⎞
⎠ (2.7)

if we displace the origin by precisely a = t′x/2.
Note that if the symmetry group contains two transformations of the form (2.6)

with distinct t′x1, t
′
x2 ∈ [0, L), then moving the origin assures us that the transformation

with t′x1 can be written in the form (2.7). The second remains of the form (2.6) with
t′x2 replaced by tx2 = t′x2 − t′x1. If both transformations have the same A, then their
composition will be a translation by tx2 , forcing tx2 to be nL for some integer n. In this
case both transformations are cast into form (i) by the change of origin. If, however, the
two transformations have different A’s, we may suppose that the first has A =

(−1 0
0 −1

)
and then it is a rotation rhrv by 180◦. The composition of the two is then⎛

⎝1 0 tx2

0 −1 0
0 0 1

⎞
⎠ ,

and by previous arguments, tx2 must be either nL or nL + L
2 for some integer n. The

second transformation is then of the form (i) if tx2 is an integer multiple of L or of the
form (iii) if not. �

The first two forms of isometries allowed by Lemma 2.10 are then (i) the compo-
sition of one of the linear transformations of Lemma 2.7 and a translation tnL by an
integer multiple of the period L and (ii) the composition of the glide reflection sg and
a translation tnL. The third form (iii) may appear only if rhrv is also present, and in
this case, one can use rhrv and the isometry of the form (ii) (with n = 0) as genera-
tors. Hence the three lemmas together show that the symmetry group of a frieze can
be generated by a subset of {tL, rh, rv, rhrv, sg}. This answers the question of the list
of possible generators, a question left open at the end of Section 2.1.

The lemmas will now allow us to finish our classification of the symmetry groups of
various friezes, which will provide us with an affirmative answer to our earlier question:
is it possible to classify friezes based on the set of geometric operations under which they
are invariant? When describing the various possible symmetry groups we will simply
reference the generators of each group. We recall formally the definition of such a list
of generators.

Definition 2.11 Let {a, b, . . . , c} be a subset of a group G. This set is a set of genera-
tors for G, and then we write G = 〈a, b, . . . , c〉 if the set of all compositions of a finite
number of elements of {a, b, . . . , c} and of their inverses is G.

Theorem 2.12 (Classification of frieze groups) The symmetry group of any frieze
is one of the following seven groups:
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1. 〈tL〉
2. 〈tL, rv〉
3. 〈tL, rh〉
4. 〈tL, tL/2rh〉
5. 〈tL, rhrv〉
6. 〈tL, tL/2rh, rhrv〉
7. 〈tL, rh, rv〉
Each of these groups is described by a set of generators, and they are presented in the
same order as those in Figures 2.1 and 2.2.

Proof: Let tL represent translation by a distance L along the horizontal axis. All of
the groups contain translations by integer multiples of L, the period of the frieze, and
the list of generators must contain tL. Through an appropriate choice for the origin, the
only other generators of the symmetry groups will be the linear transformations denoted
by A = rh, rv or rhrv and the glide reflection sg allowed by Lemma 2.10. Note that
if a symmetry group contains any two of rh, rv, and rhrv then it must automatically
contain all three. The list of all possible combinations of generators therefore consists
of the seven given in the statement of the theorem as well as

8. 〈tL, tL/2rh, rh〉
9. 〈tL, tL/2rh, rv〉
10. 〈tL, tL/2rh, rh, rv〉
(See the discussion at the end of Section 2.1, where this list was first constructed.) We
repeat here the argument that forces us to reject the case 8. The presence of sg = tL/2rh

and rh implies that the group must also contain their product (tL/2rh)rh = tL/2(r2
h) =

tL/2, which is a translation by L/2 (since r2
h = Id). This contradicts the fact that the

frieze is periodic with a minimum period of L, and therefore this set must be rejected.
For case 9, note that the product of sg and rv is of the form tL/2rhrv discussed

in Lemma 2.10. Through a translation of the origin (by a = L
4 ), this product can

be written in the form of (2.7) with A = rhrv. A simple calculation shows that the
generators tL and sg are unchanged by this translation but that rv becomes sg = tL/2rv.
Thus subgroup 9 is equally described by the generators 〈tL, tL/2rh, tL/2rv, rhrv〉. Three
of these generators belong to 6, while the fourth (tL/2rv) is simply the product of tL/2rh

and rhrv. Case 9 is in fact identical to case 6 and it may be omitted.
Finally, case 10 contains the generators of case 8 and can be eliminated for the same

reason.
Thus the symmetry group of any frieze must be one of the seven listed groups. Is

there any redundancy in this list? No, and with the help of Figure 2.2 we can easily
convince ourselves of this fact. The full argument is rather tedious, and thus we will
restrict ourselves to frieze 4, whose symmetry group was determined to be 〈tL, sg〉. We
first observe that the two generators tL and sg are both symmetries of this frieze. The
group they generate must therefore be a subgroup of the actual symmetry group of the
frieze. Can we add any other generators to these two? A quick inspection shows that



64 2 Friezes and Mosaics

no such addition (from among the remaining possibilities rh, rv, rhrv) is possible. Thus
〈tL, sg〉 is indeed the entire symmetry group of the frieze 4. Finally, since group 1 is
distinct from 4 and the remaining five groups each contain at least one of rh, rv, and
rhrv which group 4 does not have, then group 4 is in fact distinct from the other six.
Repeating an argument of this type for each of the remaining friezes and symmetry
groups shows that the list is exhaustive and does not contain any redundancy. �

2.4 Mosaics

In architecture, mosaics are as popular, if not more popular, than friezes. For us, a
mosaic will be a pattern that can be repeated to fill the plane and that is periodic
along two linearly independent directions. Thus, a mosaic has two linearly independent
vectors t1 and t2 along which it may be translated without change.

As with friezes, mosaics may be studied in terms of the symmetry operations that
leave them unchanged. And as with friezes, they may also be classified by their sym-
metry groups. Due to their importance in the physics and chemistry of crystals, they
are referred to as the crystallographic groups. There are 17 crystallographic groups.
We will not derive this classification. We will limit ourselves to enumerating the rota-
tions that may appear in the symmetry groups of mosaics, and to understanding the
description of the classification.

Lemma 2.13 Any rotation that leaves a mosaic unchanged must have one of the fol-
lowing angles: π, 2π

3 , π
2 , π

3 .

Fig. 2.5. The point O and two of its images A,B under translation.
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Proof: Let O be the center of a rotation leaving the mosaic unchanged. Let θ = 2π
n be

the smallest angle describing the rotation about this point. Since the mosaic is periodic
in two linearly independent directions, there exists an infinity of such points. Let f be
a vector joining O to a nearby image A chosen among the closest images of O obtained
by translations. Then translation along the vector f belongs to the symmetry group of
the mosaic.

By rotating the mosaic about O by an angle θ, the point A is mapped to B. The
vector f ′ joining O to B also describes a translation under which the mosaic is invariant
(see Figure 2.5). The distance between A and B is the length of the vector f ′ − f , and
since f ′ − f is also a translation leaving the mosaic unchanged, this distance must be
greater than or equal to the length of f by hypothesis. (A was one of the nearest images
of O.) Since f and f ′ are of the same length, it must be that the angle θ = 2π

n is greater
than or equal to 2π

6 = π
3 (which is 60◦). In fact, π

3 is the precise angle such that f ,
f ′, and f ′ − f are all the same length. This first argument restricts the possibilities to
2π
2 = π, 2π

3 , 2π
4 = π

2 , 2π
5 , and 2π

6 = π
3 .

Fig. 2.6. The case of rotation by an angle 2π
5

.

However, no mosaic can be left unchanged after rotation by an angle of 2π
5 . Figure

2.6 shows f and its image f ′′ after a rotation of 4π
5 . Translation along f +f ′′ must also be

an invariant operation, but its length is shorter than that of f , a contradiction. Thus,
we can safely reject this angle. �

The elements of the crystallographic groups are similar to those found in the frieze
symmetry groups: translations, reflections, reflections followed by translations (that
is, glide reflections as for friezes), and rotations. Rather than exhaustively listing the
generators for each of the 17 crystallographic groups, we will instead show an example of
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Fig. 2.7. Penrose tiles.

each type and highlight its symmetries (see Figures 2.17 through 2.22, starting on page
77). For each class we illustrate the basic shape of the mosaic at the left, overlaid with
a shaded parallelogram whose sides indicate the two linearly independent directions
in which the mosaic may be translated. These vectors have been chosen such that
the parallelogram encloses the smallest possible area necessary to cover the plane by
translations along them. There is usually more than one choice for this parallelogram.
On the right, the same mosaic has been drawn again with axes of reflection or glide
reflection and points of rotation overlaid. Finally, the legend of each graph identifies
the international symbols commonly used to designate each crystallographic group [5].
Solid lines indicate that a simple reflection across the axis is a symmetry. Dashed lines
indicate glide reflections; the required translations are not explicitly shown but are
easily seen nonetheless. Various symbols are used to indicate points about which the
mosaic may be rotated. If the center of rotation does not fall on an axis of reflection,
the following are used:

� for rotations of angle π,
� for rotations of angle 2π

3 ,
� for rotations of angle π

2 ,
and hexagons for rotations of angle π

3 .

When the point of rotation lies along an axis of reflection, solid versions of the same
symbols (�, �, etc.) are employed.

The ancient city of Alhambra, seat of the Moorish government of Granada in the
south of modern-day Spain, houses many mosaics that are as stunning in number as they
are in complexity. For a long time it was debated whether all 17 crystallographic groups
were represented by the Alhambra mosaics. Grünbaum, Grünbaum, and Shephard [4]
claim that this is not the case, with only 13 groups being employed. Even with this
negative response, it is still natural to ask whether the Moorish artists of the time were
aware of such a system of classification.

The precise mathematical formalization of friezes and mosaics allowed mathemati-
cians to study new generalized structures by relaxing certain rules in the definition.
Aperiodic tilings are one such structure. All mosaics must fill the plane, meaning that
repeating the pattern in all directions covers all points of R2 without leaving any gaps.
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Fig. 2.8. An aperiodic Penrose tiling.

This condition is also satisfied by aperiodic tilings. For example, it is possible to tile the
plane R2 with the two Penrose tiles (referred to as the Penrose rhombs) shown in Figure
2.7 [5]. Even if it is possible to tile the plane in a periodic manner with these tiles, it is
also possible to arrange them in such a way that no translational symmetry is present;
in other words, they may be used to tile the plane in an aperiodic manner. Figure 2.8
shows a fragment of an aperiodic tiling. Maybe these new generalized structures will
find their way into architecture... (There are other sets of tiles, constructed by Penrose
and others, that may be tiled only aperiodically!)

2.5 Exercises

1. We say that two operations a, b ∈ E commute if ab = ba.
(a) Do translation operations commute?
(b) Do rh, rv, and rhrv all commute with each other?
(c) Do the reflections rh, rv, and rhrv commute with translations?

2. Find the conditions under which a linear transformation
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⎝a b 0

c d 0
0 0 1

⎞
⎠

and a translation ⎛
⎝1 0 p

0 1 q
0 0 1

⎞
⎠

will commute with each other.

Fig. 2.9. The frieze of Exercise 3.

3. (a) Determine the period L of the frieze in Figure 2.9. Indicate it directly on the figure
or a copy of it.
(b) Under which of the transformations tL, rh, sg, rv, rhrv is the frieze invariant?
(c) Which of the seven symmetry groups does the frieze belong to?
(d) By drawing a single point per period on the frieze, reduce its symmetry group to
〈tL〉 without changing the length of its period.

4. (a) Friezes are often used in architecture, with [3] giving several remarkable examples.
Select a few such examples, and determine to which of the symmetry groups they belong.
(b) The artist M. C. Escher created several remarkable mosaics, with a large number
of them being presented in [6]. Select a few of Escher’s mosaics and determine to which
of the 17 crystallographic groups they belong.

5. (a) Identify the symmetry group of the frieze shown in Figure 2.10.

Fig. 2.10. Frieze for Exercise 5.

(b) By removing two triangles from each period of this frieze, construct a frieze
belonging to the symmetry group 5.
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6. Prove the three statements of Proposition 2.1. Suggestion: these properties can be
proved using only Euclidean geometry or using the matrix representation of affine trans-
formations. Explore both approaches.

7. (a) Let m1 and m2 be parallel lines at a distance d and let rm1 and rm2 be the
reflections through these lines. Show that the composition rm2rm1 is a translation by
a distance 2d along a direction perpendicular to the lines (mirrors) m1 and m2. Hint:
show this using only Euclidean geometry, that is, without use of a coordinate system.
You may use the concept of distance or length of a segment.
(b) Let a frieze of period L be invariant under the reflection rv. Show that it is
invariant under reflection through a vertical mirror at distance L

2 from the first. Hint:
study the composition of rv and the translation tL.

8. Let m1 and m2 be two lines intersecting at P and let rm1 and rm2 be the reflections
through these lines. Show that the composition rm2rm1 is a rotation of center P by
twice the angle between the two lines (mirrors) m1 and m2. Hint: show first that the
images rm1Q and Q′ = rm2rm1Q lie on a circle of center P and of radius |PQ|. Then
study the angles made by the segments PQ and PQ′ with a given line, say m1.

9. The goal of this exercise is to show that an isometry is the composition of a linear
transformation and a translation and therefore is an affine transformation. (Either the
linear transformation or the translation could be the identity.) Recall that a linear
transformation of the plane is a function T : R2 → R2 that satisfies the following two
conditions: (i) T (u+v) = T (u) + T (v) and (ii) T (cu) = cT (u) for all points u,v ∈ R2

and constant c ∈ R.
(a) Show that an isometry T : R2 → R2 preserves angles. Hint: choose three (non-
collinear) points P,Q,R. If P ′, Q′, R′ are their images under T , show that the triangles
PQR are P ′Q′R′ are congruent.
(b) Show that a translation is an isometry.
(c) Suppose that an isometry S has no fixed-point and that S(P ) = Q. Show that
the composition TS, where T is the translation that maps Q to P , has at least one
fixed-point.
(d) Let S be an isometry that has (at least) one fixed-point O. Let P,Q,R be chosen
such that OPQR is a parallelogram. Let P ′, Q′, R′ be their image under S. Show
that the sum of the vectors OP ′ and OR′ is OQ′. (This amounts to S(OP + OR) =
S(OP ) + S(OR).)
(e) Let S be an isometry that has (at least) one fixed-point O and let P and Q be two
points, distinct and distinct from O, such that O,P,Q are collinear. Show that

S(OP ) =
|OP |
|OQ|S(OQ).
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(f) Conclude that an isometry is a linear transformation followed by a translation
and is therefore an affine transformation. (Either of the two operations could be the
identity.)

10. (a) The pattern of Figure 2.11 consists of a series of ellipses centered along the x axis
at the points (2i, 0) with principal axes rx = 2i−2, ry = 1. Thus, this pattern exists
over the infinite half-strip (0,∞)× [− 1

2 , 1
2 ]. This pattern is not a frieze because it is not

periodic. Replace the periodicity condition with another invariance condition such that
this pattern is a “frieze.”
(b) Describe the transformation that maps one ellipse to the first one on its left. Is it
linear? Does the set of such transformations form a group?

Fig. 2.11. A pattern that is not periodic. (For Exercise 10.)

11. Let r > 1 be a real number and let

Ar =
{

(x, y) ∈ R2
∣∣∣ 1

r
≤

√
x2 + y2 ≤ r

}

be the ring with center at the origin of the plane and delimited by the circles with radii
r and 1

r .
(a) Show that the set Ar is invariant under rotations of the form

Fig. 2.12. A circular frieze. (See Exercise 11.)
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cos θ − sin θ
sin θ cos θ

)

for all θ ∈ [0, 2π). (The invariance of Ar means that the transformation is invertible
and that the image of Ar is Ar itself.)
(b) Consider the transformation R2 \ {(0, 0)} → R2 \ {(0, 0)} defined by

x′ =
x

x2 + y2
,

y′ =
y

x2 + y2
.

This transformation is called an inversion. Show that Ar is invariant under this trans-
formation. Show that A2

r is the identity transformation. Is this transformation linear?
(c) Figure 2.12 represents a circular frieze drawn on a ring Ar. The dashed line
represents the circle of radius 1. Unlike the band friezes discussed earlier, circular
friezes are bounded. It is easy to construct a correspondence between the symmetries of
a band frieze presented in Section 2.2 and those of a circular frieze. Translations become
rotations, and reflection rh across the horizontal axis becomes inversion as introduced
in (b). Define the transformation that corresponds to reflection rv across a vertical axis.
We will call this last transformation reflection. Is reflection a linear transformation? (As
before, this transformation can be defined only after a suitable origin has been chosen.
You will have to carefully choose a particular point of Ar through which the “mirror”
will pass.)
(d) Starting from the three operations of rotation, inversion, and reflection, construct
a set of generators for the symmetry group of the circular frieze shown in Figure 2.12.

12. (a) This exercise continues the previous one. Let n be the largest integer for which a
circular frieze is invariant under a rotation of 2π

n . We will suppose that n ≥ 2. Classify
the symmetry groups of a circular frieze for a given n. Does the classification depend
on n in any way?
(b) The order of a group is the number of elements in the group. The orders of the
symmetry groups of regular friezes are infinite, but those of circular friezes are finite.
Calculate the orders of the groups you constructed in (a).

13. For each Archimedean tiling shown in Figure 2.13, determine to which of the 17 crys-
tallographic groups it belongs (certain tilings must belong to the same group). An
Archimedean tiling is a tiling of the plane consisting of regular polygons such that each
vertex is of the same type. For two vertices to be of the same type, they must be coinci-
dent with similar polygons, and the polygons must appear in the same order as we turn
about the point in a given direction (clockwise, for example). It is possible that the
mirror image of such a tiling is impossible to achieve through rotation and translation
alone. If we assume that such tilings are unique up to their mirror image (when such an
image is different from the original tiling), there are exactly 11 families of Archimedean
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Fig. 2.13. Archimedean tilings. (See Exercise 13.)
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tilings. The mirror image is distinct from the original tiling for exactly one of these
tilings. Identify it.

14. A small challenge: classify the Archimedean tilings (see Exercise 13).
(a) Denote by n the regular polygon with n sides. Its internal angles are all equal to
(n−2)π

n . (Prove this!) Consider an Archimidean tiling and let (n1, n2, . . . , nm) be the
list of the m polygons that meet at the vertices of this tiling. The sum of the angles at
a given vertex must be 2π, and therefore

2π =
(n1 − 2)π

n1
+

(n2 − 2)π
n2

+ · · · + (nm − 2)π
nm

.

For example, for the Archimedean tiling of Figure 2.14, the polygons that meet at a
vertex are enumerated by the list (4, 3, 3, 4, 3), and as required, they satisfy

(4 − 2)π
4

+
(3 − 2)π

3
+

(3 − 2)π
3

+
(4 − 2)π

4
+

(3 − 2)π
3

= 2π.

Enumerate all possible lists (n1, n2, . . . , nm) of polygons that may meet at a vertex.
Hint: there are 17 such lists if we distinguish between them using only their size, not
the order of the ni’s.
(b) Why does the list (5, 5, 10) not correspond to an Archimedean tiling of the plane?
(c) For each of the lists determined in (a), verify whether the set of polygons
(n1, n2, . . . , nm) meeting at a vertex actually describes a tiling of the plane. Caution:
the order of the elements in the list (n1, n2, . . . , nm) is important!

Fig. 2.14. A closer look at an Archimedean tiling (see Exercise 14). The list of polygons
meeting at a vertex is denoted by (4, 3, 3, 4, 3).
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Fig. 2.15. An icosahedron and the corresponding tiling of the sphere (see Exercise 15).

15. A challenge: classify the Archimedean tilings of the sphere. In Section 15.8, we see that
each regular polyhedron (the tetrahedron, the cube, the octahedron, the icosahedron,
and the dodecahedron) corresponds to a regular tiling of the sphere. This correspon-
dence is constructed as follows:

• the polyhedron is centered at the origin. The distance between the origin and each
of the vertices is therefore the same, and we circumscribe a sphere with this radius
that passes through all of the vertices;

• for every edge of the polyhedron, we join the vertices by an arc from the great circle
between them.

The end result is the desired tiling of the sphere. Figure 2.15 shows such a construction
for an icosahedron. The construction can be repeated for any polyhedron whose vertices
all lie along the surface of a sphere. This is the case with Archimedean polyhedra: all
of their faces are regular polygons with the same side length and all of their corners
are incident to the same polygons. Even though regular polyhedra (also called Pla-
tonic polyhedra) meet these requirements, we reserve the adjective “Archimedean” for
polyhedra whose faces consist of at least two different types of polygons. An example
of an Archimedean polyhedron is the familiar shape of a soccer ball, formally called a
truncated icosahedron (see Figure 2.16). Each vertex is shared by two hexagons and
a pentagon. We denote it by the list (5, 6, 6). Archimedean tilings of the sphere are
classified as follows: prisms, antiprisms, and the 13 exceptional tilings. (Certain math-
ematicians prefer to exclude the prisms and antiprisms from the Archimedean tilings,
and use the term to refer only to the 13 remaining tilings.)
(a) The list (n1, n2, . . . , nm) of polygons meeting at a vertex must satisfy two simple
conditions. In order for each vertex to be convex (and not planar), the sum of the
internal angles meeting at the vertex must be less than 2π:

π

m∑
i=0

ni − 2
ni

< 2π.
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Fig. 2.16. A truncated icosahedron and the corresponding tiling of the sphere (see Exercise
15).

This is the first test. The second condition is based on Descartes’s theorem. Each
vertex of the polyhedron has associated with it an angle deficiency defined as Δ =
2π−π

∑
i(ni −2)/ni. Descartes’s theorem states that the sum of the deficiencies across

all vertices of a polyhedron must be equal to 4π. Since all vertices of an Archimedean
solid are identical, we must therefore have that 4π/Δ is an integer, equal to the number
of vertices. This is the second test. Verify that the soccer ball satisfies both of these
conditions. (We will see in (d) that these two tests alone are not sufficient to characterize
the Archimedean solids.)

(b) A prism is a polyhedron consisting of two identical polygonal faces that are parallel.
Each edge of these two faces is then connected by a square. They form an infinite family
of solids denoted by (4, 4, n), for n ≥ 3. Convince yourself that all of the vertices of
such a solid are identical and accurately described by the list (4, 4, n). Draw an example
of such a prism, for example (4, 4, 5). Verify that the list (4, 4, n) passes both of the
tests described in (a) regardless of n. (When n is sufficiently large, these solids begin
to resemble stout cylinders.)

(c) An antiprism also consists of two parallel identical polygons with n faces (n ≥ 4).
However, one of the faces is rotated with respect to the other by an angle of π

n and
the corners joined by equilateral triangles. The antiprisms form an infinite family of
solids and are denoted by the list (3, 3, 3, n) for n ≥ 4. Answer the same questions as
for prisms.

(d) Show that the list (3, 4, 12) passes both of the tests described in (a). However, it
is impossible to construct a regular polyhedron based on this list. Why? Hint: start by
assembling a triangle, a square, and a polygon with twelve sides (a dodecagon) around
a single vertex. Consider the other vertices of these three faces. Is it possible for these
vertices to have the same configuration described by the list (3, 4, 12)? (This is the
hardest part of this question!)
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(e) Show that there exist 13 Archimedean tilings of the sphere (or, equivalently, 13
Archimedean polyhedra) that are neither prisms nor antiprisms. (The soccer ball is one
of these 13 solids.)

16. A difficult challenge: derive the crystallographic groups (shown in Figures 2.17–2.22).
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Fig. 2.17. The 17 crystallographic groups. From top to bottom: the groups p1, pg, pm.
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Fig. 2.18. The 17 crystallographic groups (continued). From top to bottom: the groups cm,
p2, pgg.
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Fig. 2.19. The 17 crystallographic groups (continued). From top to bottom: the groups pmg,
pmm, cmm.
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Fig. 2.20. The 17 crystallographic groups (continued). From top to bottom: the groups p3,
p31m, p3m1.
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Fig. 2.21. The 17 crystallographic groups (continued). From top to bottom: the groups p4,
p4g, p4m.
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Fig. 2.22. The 17 crystallographic groups (continued). From top to bottom: the groups p6,
p6m.
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3

Robotic Motion

This chapter can be covered in a week of classes. The first hour is spent describing the

robot of Figure 3.1. It is important to make sure that the concept of the “dimension”

(number of degrees of freedom) of the problem is well understood by walking through

several simple examples. After this, rotations in three-space are presented with their

representations as orthogonal matrices by stating and discussing the principal results

of Section 3.3. The last hour is devoted to presenting the seven frames of reference

associated with the robot of Figure 3.1, and calculating the positions of the various ar-

ticulations in each frame of reference (see Section 3.5). Since this discussion requires

a full hour, it is not possible to cover the entire discussion on orthogonal transforma-

tions, nor all of the details of the fundamental theorem (Theorem 3.20), which states

that all orthogonal transformations in R3 with determinant 1 are rotations. So the

principal results are only stated and briefly illustrated. The important lesson about

orthogonal transformations is that choosing an appropriate basis facilitates compre-

hension and visualization of the transformation. The exact discussion of orthogonal

transformations depends on the students’ prior experience with linear algebra. It is

possible to simply work through a few examples, or instead to choose to work through

several proofs.

3.1 Introduction

Consider the three-dimensional robot in Figure 3.1. It consists of three articulated
joints and a claw. On the figure we have indicated six rotations that the robot can
perform, numbered 1 through 6. The robot is attached to a wall, with the first segment
perpendicular to it. This segment is not fixed, however, and is free to rotate around its
central axis as shown by movement 1. At the end of the first segment there is a second
segment. The joint between the two segments is similar to an elbow in that its motion
is constrained to a plane (as shown by motion 2). However, if we combine this allowed
rotation with that of 1, we see that the rotational plane of 2 itself rotates along with
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the first segment. Thus, the composition of these two rotations allows us to position the
second segment in any possible direction. Now consider the third segment. Rotation
3 allows the segment to pivot in a plane (as in rotation 2), while rotation 4 allows the
segment to rotate about its axis. This segment can be compared to a shoulder: we can
lift our arm (which is equivalent to rotation 3) and we can turn our arm about its axis
(which is equivalent to rotation 4). (In reality, a shoulder is not constrained to lifting
the arm within a single plane, thus it has yet another degree of freedom as compared to
this segment, since we can turn our arm around our body while keeping a fixed angle
with the vertical.) Finally, there is a claw attached to the end of the third segment.
The claw also has two associated rotations: rotation 5 acts in a plane and varies the
angle between the third segment and the claw, while rotation 6 allows the claw to rotate
around its axis.

Why was this robot built with six rotational movements? We will see that this was
no accident and that if it had even one fewer possible rotation, the robot’s movements
would be severely limited.

We start with a simple example that considers translations:

Example 3.1 Let P = (x0, y0, z0) be a point of departure in R3. We wish to determine
which positions Q we can reach if we permit translations along the unit directions v1 =
(a1, b1, c1) and v2 = (a2, b2, c2). The set of points that may be reached is

{Q = P + t1v1 + t2v2 | t1, t2 ∈ R}.

This set describes a plane passing through P as long as v1 
= ±v2. (Exercise: prove
this!)

If we add a third unit direction v3 such that {v1, v2, v3} are linearly independent,
then the set of positions Q that may be reached is the entire space R3.

Why did we require three translational directions to make the entire space reachable?
Because the dimension of the space is three, as evidenced by the fact that we require
three coordinates to specify a position in R3. We say that the problem has three degrees
of freedom.

Try adapting this approach to our robot: how many numbers are required to fully
describe its exact position? For a worker using the robot to grab an object, precisely
positioning the claw is of primary importance. This worker specifies:

• the position of P : it is defined by the three coordinates (x, y, z) of P in space.
• the direction of the axis of the claw. A direction can be specified by a vector, so

it looks as if three numbers should be necessary. However, there exist an infinite
number of vectors that point in the same direction. Thus, a more efficient manner of
providing a direction is to imagine a unit sphere centered at P and indicating a point
Q on the surface of the sphere. The ray originating at P and passing through Q
specifies a unique direction. If we give ourselves a direction, that is, a ray emanating
from P , this will intersect the sphere at exactly one point. Thus, there is a bijection
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Fig. 3.1. A three-dimensional robot with six degrees of freedom.

between the points on the surface of the sphere and the directions. Specifying a
point on the sphere is therefore sufficient to uniquely identify a direction. This can
be done most efficiently using spherical coordinates. The points on a sphere of radius
1 are

(a, b, c) = (cos θ cos φ, sin θ cos φ, sin φ),

with θ ∈ [0, 2π) and φ ∈ [−π
2 , π

2 ]. Thus the two numbers θ and φ are sufficient to
describe the direction of the claw.

• The claw can pivot around its axis by a rotation, the angle of which is specified by
a single parameter α.

In total we required six numbers (x, y, z, θ, φ, α) in order to specify the position and
orientation of the claw. Analogous to Example 3.1, we say that the robot of Figure
3.1 has six degrees of freedom. The rotations 1, 2, and 3 are used to place P at the
desired position (x, y, z). Rotations 4 and 5 are used to correctly orient the axis of the
claw, while rotation 6 rotates the claw to the desired angle about its axis. These six
movements correspond to the six degrees of freedom.

Consider the difference between the point Q of Example 3.1 and the claw of our
robot. We required only three numbers to specify the position of Q, while we required
six to specify the position of the claw. The claw is an example of what is called a “solid”
object in R3, and we will see that we always require six numbers to specify the position
of a solid in space. To develop our intuition we will begin by considering a solid in the
plane.

3.1.1 Moving a Solid in the Plane

Consider cutting out a triangle from cardboard in such a manner that none of the three
angles are the same (and therefore the triangle has no symmetry).

Assume that the triangle is not able to be deformed and that it must rest firmly
in the plane; then it is capable only of sliding in the plane. We wish to describe all
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Fig. 3.2. Moving a solid in the plane.

possible positions that the triangle may take (see Figure 3.2). To do this we will choose
any one of the corners of the triangle and label it A (but we could have made the same
reasoning with any other point).

• We start by specifying the position of A. This requires the two coordinates (x, y) of
A in the plane.

• Next we specify the orientation of the triangle with respect to the point A. If A is
fixed then the only possible movement of the triangle is rotation about A. If B is
a second corner of the triangle then the position of the triangle is determined by
the angle α made between the vector

−−→
AB and some fixed direction, for example the

horizontal ray extending to the right from A.

Thus we require three numbers (x, y, α) to fully specify the position of the triangle (and
any other asymmetric solid) in the plane.

Consider Figure 3.2 and suppose that we start with A situated at the origin and the
vector

−−→
AB pointing horizontally to the right. To move the triangle to position (x, y, α)

we can translate by (x, 0) in the direction e1 = (1, 0), then translate by (0, y) in the
direction e2 = (0, 1), and finally rotate by an angle of α about (x, y).
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We made an equivalence between the numbers (x, y, α) determining the position of
the triangle and the movements that bring the triangle to this position from a position
of (0, 0, 0). We state the following theorem without proof:

Theorem 3.2 Movements of a solid in the plane are compositions of translations and
rotations. These are movements that preserve lengths, angles, and orientation.

Example 3.3 Imagine a robot that is able to realize the motions we just described.
Such a robot is shown in Figure 3.3. At the end of the second segment there is a claw
that can be rotated perpendicular to the plane of motion of the robot. If a triangle is

Fig. 3.3. A robot in the plane.

attached to the claw by the corner labeled A, then rotation of the claw will correspond
to rotation of the triangle about A (see Figure 3.4). What are the positions that may be
reached by the extreme end of the second segment? It is obvious that we cannot reach
all of the points in the plane, because we are limited by both the length of the arms and
the presence of the wall. But we can reach many positions, described by a 2-dimensional
subset of the plane. If the robot had only a single segment we would be limited to a
1-dimensional subset of the plane, specifically an arc of a circle. Finding the exact set
of positions reachable by A is the goal of Exercise 13.

This example illustrates that three degrees of freedom are required to move a solid
through the plane and demonstrates a robot capable of realizing these motions.

3.1.2 Some Thoughts on the Number of Degrees of Freedom

There are many ways to build a robot in three-space, but six degrees of freedom (and
thus at least six independent motions) are necessary in order to reach every possible
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(a) Initial position (b) Position after rotating the claw by π
3

Fig. 3.4. Movement along the third degree of freedom of the robot from Figure 3.3.

position with every possible orientation. Thus, six degrees of freedom are also required
in the control system that manipulates the robot.

One can imagine adding additional segments to the robotic arm and even installing
it on a track. This will possibly enlarge the size and alter the shape of the region that
can be reached, but it will not change its “dimension.” Such modifications may offer
other advantages, which will be discussed a little later.

On the other hand, one can also consider building a robot with only five degrees of
freedom. Regardless of how these independent motions are realized and connected, there
will always be certain positions or orientations of the claw that are unattainable. In fact,
there will be only a small set of reachable positions as compared to an overwhelming
majority of unreachable ones.

The robot of Figure 3.1 uses only rotations. These rotations can easily be replaced
by other movements such as translation along a track or telescoping arms (segments
whose length can alter). Try to think of a few other robotic arms with six degrees of
freedom.

The underlying mathematics: If we wish to describe the movements of a robot
we must discuss the motion of a solid in R3. As in the plane, these movements will
be compositions of translations and rotations. In general, different rotations will have
distinct rotational axes.

• If we choose a coordinate system whose origin is along the axis of rotation, then the
rotation is a linear transformation in this frame of reference. Its matrix is simpler if
the axis of rotation is one of the coordinate axes.

• Since the rotational axes are distinct, we will need to consider coordinate system
changes. If we know the coordinates of a point Q in one coordinate system, such



3.2 Movements That Preserve Distances and Angles 91

mappings allow us to calculate the coordinates of the same point in a new coordinate
system.

• Considering our example in Figure 3.1, these transformations will allow us to calcu-
late the final position of the claw after applying the rotations Ri(θi) by angles θi,
for i ∈ {1, 2, 3, 4, 5, 6}.

3.2 Movements That Preserve Distances and Angles in the
Plane or Space

We begin by considering linear transformations that preserve distances and angles: these
are precisely those transformations whose matrices are orthogonal, and they are called
orthogonal transformations. A rotation about an axis passing through the origin will
be of this type.

We will briefly review linear transformations. Although we will initially discuss
linear transformations on Rn, we will ultimately focus on the cases n = 2 and n = 3
that are applicable in practice. Let us start with some notation.

Notation: We will distinguish between the vectors of Rn that are geometric objects
and will be denoted by v, w, . . . and the column matrices n × 1, which represent their
coordinates in the standard basis C = {e1, . . . , en} of Rn, where

e1 = (1, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0),
...
en = (0, . . . , 0, 1).

(3.1)

We will denote the column matrix of coordinates of v by [v] or [v]C . We make this
distinction because we will later consider changes of bases.

Theorem 3.4 Let T : Rn → Rn be a linear transformation, in other words one that
satisfies the following properties:

T (v + w) = T (v) + T (w), ∀v, w ∈ Rn,
T (αv) = αT (v), ∀v ∈ Rn, ∀α ∈ R.

(3.2)

1. There exists a unique n×n matrix A such that the coordinates of T (v) are given by
A[v] for all v ∈ Rn:

[T (v)] = A[v]. (3.3)

2. The transformation matrix A is constructed such that the columns of A are the
images of the vectors of the standard basis of Rn.
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Proof: We begin by proving the second part. Calculate [T (e1)],

[T (e1)] =

⎛
⎜⎜⎜⎝

a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 . . . αnn

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11

a21

...
an1

⎞
⎟⎟⎟⎠ ,

and repeat this for each vector in the standard basis.
For the first part, the matrix A is the matrix whose columns contain the coordinates

of T (ei) expressed in the standard basis. It clearly satisfies (3.3).
The fact that the column vectors of the matrix contain the coordinates of T (ei) in

the standard basis guarantees the uniqueness of the matrix A. �

Definition 3.5 1. Let A = (aij) be an n×n matrix. The transpose of A is the matrix
At = (bij), where

bij = aji.

2. A matrix A is orthogonal if its inverse is equal to its transpose, in other words, if
At = A−1 or equivalently

AAt = AtA = I,

where I is the n × n identity matrix.
3. A linear transformation is orthogonal if its matrix in the standard basis is orthogo-

nal.

Definition 3.6 The scalar product of two vectors v = (x1, . . . , xn) and w = (y1, . . . , yn)
is

〈v, w〉 = x1y1 + · · · + xnyn.

We recall without proof the following classical proposition.

Proposition 3.7 1. If A is an m × n matrix and B is an n × p matrix, then

(AB)t = BtAt.

2. The scalar product of two vectors v and w can be calculated as

〈v, w〉 = [v]t[w].

Theorem 3.8 1. A matrix is orthogonal if and only if its columns form an orthonor-
mal basis of Rn.

2. A linear transformation preserves distances and angles if and only if its matrix is
orthogonal.



3.2 Movements That Preserve Distances and Angles 93

Proof:

1. Let us remark that the columns of A are given by Xi = A[ei], i = 1, . . . , n, where
the Xi are n × 1 matrices. We write

A =
(
X1 X2 · · · Xn

)
.

Then the transposes Xt
1, . . . , X

t
n are horizontal 1 × n matrices. If we represent the

matrix At by its rows, then it has the form

At =

⎛
⎜⎝Xt

1
...

Xt
n

⎞
⎟⎠ .

We calculate the matrix product AtA using this notation:

AtA =

⎛
⎜⎝Xt

1
...

Xt
n

⎞
⎟⎠(

X1 X2 · · · Xn

)
=

⎛
⎜⎜⎜⎝

Xt
1X1 Xt

1X2 · · · Xt
1Xn

Xt
2X1 Xt

2X2 · · · Xt
2Xn

...
...

. . .
...

Xt
nX1 Xt

nX2 . . . Xt
nXn

⎞
⎟⎟⎟⎠ .

Let T be the linear transformation with matrix A. We have

Xt
i Xj = (A[ei])tA[ej ] = [T (ei)]t[T (ej)] = 〈T (ei), T (ej)〉.

The matrix A is orthogonal if and only if the matrix AtA is equal to the identity
matrix. Saying that the entries on the diagonal are equal to 1 is equivalent to saying
that the scalar product of each vector T (ei) with itself is equal to 1. Since the scalar
product is equal to the square of the length of the vector, this is equivalent to saying
that they have length 1. So the entries on the diagonal are equal to 1 if and only if
all vectors T (ei) have length 1. All entries not on the diagonal are zero if and only
if the scalar product of T (ei) with T (ej) is zero when i 
= j. Hence, the matrix A is
orthogonal if and only if the vectors T (e1), . . . , T (en) are orthogonal and each has
length 1, thus forming an orthonormal basis of Rn.

2. We start by proving the reverse direction, which asserts that if T is a linear transfor-
mation with an orthogonal matrix, then T preserves distances and angles. According
to the proof of the first part, the images of the vectors of the standard basis (which
are the columns of A) form an orthonormal basis. Thus their lengths are preserved
as well as the angles between them. We can easily convince ourselves that a linear
transformation preserves distances and angles if and only if it preserves scalar prod-
ucts, in other words, if 〈T (v), T (w)〉 = 〈v, w〉 for all v, w. Let v, w be two vectors.
Observe that their scalar product is preserved if A is orthogonal:
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〈T (v), T (w)〉 = (A[v])t(A[w])

= ([v]tAt)(A[w])

= [v]t(AtA)[w]

= [v]tI[w]

= [v]t[w]
= 〈v, w〉.

The other direction makes the hypothesis that T preserves distances and angles.
Suppose that AtA = (bij). Let v = ei and w = ej . We have [T (v)] = A[v] and
[T (w)] = A[w]. Then

〈T (v), T (w)〉 = ([v]t(AtA))[w] = (bi1, . . . , bin)[w] = bij .

Moreover, [v]t[w] = δij , where

δij =

{
1 if i = j,

0 if i 
= j.

Thus, ∀i, j, bij = δij , which is equivalent to saying that AtA = I. Hence A is
orthogonal. �

Theorem 3.9 The movements that preserve both distances and angles in Rn are the
compositions of translations and orthogonal transformations. (These movements are
called the isometries of Rn.)

Proof: Consider a movement F : Rn → Rn that preserves distances and angles. Let
F (0) = Q and let T be the translation T (v) = v − Q. Then T (Q) = 0 and therefore
T ◦ F (0) = 0. Let G = T ◦ F . This is a transformation that preserves distances and
angles and that has a fixed point at the origin. If G is to preserve distances and angles
it must be linear (for a proof of this fact see Exercise 4), and by the previous theorem
it must be an orthogonal transformation. We have also that F = T−1 ◦ G. Since T−1

is also a translation, then F has been shown to be the composition of an orthogonal
transformation and a translation. �

3.3 Properties of Orthogonal Matrices

Consider the following orthogonal matrix:

A =

⎛
⎝1/3 2/3 2/3

2/3 −2/3 1/3
2/3 1/3 −2/3

⎞
⎠ . (3.4)
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Can we describe in geometric terms the orthogonal transformation with matrix A?
Looking at this matrix it is rather hard to visualize the action of T on R3. We know
only that it is orthogonal and that it therefore preserves angles and distances. How can
we determine the geometry of T? An extremely useful tool for exploring the behavior
of T is the technique of diagonalization. When we diagonalize a matrix we are in fact
changing the coordinate system of the linear transformation. We place ourselves in a
coordinate system for which the coefficients of the transformation matrix are extremely
simple and the behavior of the transformation is easily understood. Before doing the
calculations for this matrix we will recall the relevant definitions.

Definition 3.10 Let T : Rn → Rn be a linear transformation with matrix A. A number
λ ∈ C is an eigenvalue of T (or of A) if there exists a nonzero vector v ∈ Cn such that
T (v) = λv. Any vector v with this property is called an eigenvector of the eigenvalue λ.

Remarks.

1. In the context of orthogonal transformations it is essential to look at complex eigen-
values. Indeed, when we have a real eigenvector v of a real nonzero eigenvalue λ
then the set E of multiples of v forms a subspace of dimension 1 (a line) of Rn

that is invariant by T , thus satisfying T (E) = E. Let us consider a rotation in
R2. Obviously there is no invariant line. Hence the eigenvalues and their associated
eigenvectors are complex.

2. How do we calculate T (v) if v ∈ Cn? The standard basis (3.1) is also a basis of
Cn. So the following definition makes sense [T (v)] = A[v], yielding that T (v) is the
vector of Cn whose coordinates in the standard basis of Cn are given by A[v].

3. Consider in R3 a rotation about an axis: it is an orthogonal transformation whose
axis of rotation is an invariant line. So we will find this axis when we will diagonalize
the transformation.

We state without proof the following theorem

Theorem 3.11 Let T : Rn → Rn be a linear transformation with matrix A.

1. The set of eigenvectors of the eigenvalue λ is a linear subspace of Rn, called the
eigenspace of the eigenvalue λ.

2. The eigenvalues are the roots of the polynomial

P (λ) = det(λI − A)

of degree n. The polynomial P (λ) is called the characteristic polynomial of T (or
of A).

3. Let v ∈ Rn \ {0}. Then v is an eigenvector of λ if and only if [v] is a solution of
the homogeneous system of linear equations:

(λI − A)[v] = 0.
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Example 3.12 Let T be the orthogonal transformation with matrix A given in (3.4).
To diagonalize A we begin by calculating its characteristic polynomial

P (λ) = det(λI − A) =

∣∣∣∣∣∣
λ − 1/3 −2/3 −2/3
−2/3 λ + 2/3 −1/3
−2/3 −1/3 λ + 2/3

∣∣∣∣∣∣ .
We have

P (λ) = λ3 + λ2 − λ − 1 = (λ + 1)2(λ − 1).

The matrix therefore has the two eigenvalues 1 and −1.

Eigenvectors of +1: To find them we need to solve the system (I − A)[v] = 0. So we
transform the matrix I − A into echelon form using Gaussian elimination:

I − A =

⎛
⎝ 2/3 −2/3 −2/3
−2/3 5/3 −1/3
−2/3 −1/3 5/3

⎞
⎠ ∼

⎛
⎝2/3 −2/3 −2/3

0 1 −1
0 −1 1

⎞
⎠

∼
⎛
⎝1 −1 −1

0 1 −1
0 0 0

⎞
⎠ ∼

⎛
⎝1 0 −2

0 1 −1
0 0 0

⎞
⎠ .

All solutions are multiples of the eigenvector v1 = (2, 1, 1).

Eigenvectors of −1: These are the solutions to the system (−I − A)[v] = 0, which is
equivalent to the system (I + A)[v] = 0. To find them we reduce the matrix to echelon
form, yielding

I + A =

⎛
⎝4/3 2/3 2/3

2/3 1/3 1/3
2/3 1/3 1/3

⎞
⎠ ∼

⎛
⎝1 1/2 1/2

0 0 0
0 0 0

⎞
⎠ .

Here the set of solutions describes a plane. It is generated by the two vectors v2 =
(1,−2, 0) and v3 = (1, 0,−2).

It is useful to work with an orthonormal basis. Thus, in general we will replace v3 by
a vector v′

3 = (x, y, z) that is perpendicular to v2 but still lies within the plane generated
by the two vectors. It must therefore satisfy 2x+ y + z = 0 in order to be an eigenvector
of −1, and it must be perpendicular to v2, meaning it must satisfy x − 2y = 0. We can
take v′

3 = (−2,−1, 5) which is a solution to the system

2x + y + z = 0,
x − 2y = 0.

To make this an orthonormal basis we normalize each vector by dividing it by its length.
This yields the orthonormal basis
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B =
{

w1 =
(

2√
6
,

1√
6
,

1√
6

)
, w2 =

(
1√
5
,− 2√

5
, 0
)

,

w3 =
(
− 2√

30
,− 1√

30
,

5√
30

)}
.

In this basis the matrix of the transformation T is given by

[T ]B =

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠ .

Geometrically we have that T (w1) = w1, T (w2) = −w2, and T (w3) = −w3. We see
that this transformation consists of reflection across the w1 axis; equivalently, this can be
viewed as a rotation of angle π about the w1 axis. We have now seen how diagonalization
allows us to “understand” the transformation.

A few comments on Example 3.12: The two eigenvalues 1 and −1 each have unit
absolute values. This is no coincidence, since orthogonal transformations preserve dis-
tances, meaning that we could never have T (v) = λv for |λ| 
= 1. Moreover, all of
the eigenvectors associated with eigenvalue −1 are orthogonal to those associated with
eigenvalue 1. This is also no coincidence. We will discuss the properties of diagonaliza-
tions of orthogonal matrices a little later.

As mentioned, the eigenvalues of an orthogonal transformation are not necessarily
real, as shown in the following example.

Example 3.13 The matrix

B =

⎛
⎝0 −1 0

1 0 0
0 0 1

⎞
⎠

describing a transformation T is orthogonal (exercise!). It represents a rotation of π
2

about the z axis: this can be verified by looking at the images of the three vectors of the
standard basis:

T

⎛
⎝1

0
0

⎞
⎠ =

⎛
⎝0

1
0

⎞
⎠ , T

⎛
⎝0

1
0

⎞
⎠ =

⎛
⎝−1

0
0

⎞
⎠ , T

⎛
⎝0

0
1

⎞
⎠ =

⎛
⎝0

0
1

⎞
⎠ .

Under the action of T we see that the third vector e3 remains fixed, while the two vectors
e1 and e2 have both rotated by an angle of π

2 in the plane (x, y). The characteristic
polynomial of B is

det(λI − B) = (λ2 + 1)(λ − 1),

which has as roots 1, i, and −i. The two complex eigenvalues i and −i are conjugates
of one another and both have a modulus of 1.
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We recall without proof the following proposition.

Proposition 3.14 1. Let A be an n × n matrix. Then

detAt = detA.

2. Let A and B be two n × n matrices. Then

det AB = detAdet B.

Theorem 3.15 An orthogonal matrix always has a determinant of +1 or −1.

Proof: Using Proposition 3.14 we have

det AAt = detAdet At = (detA)2.

Moreover, AAt = I, which implies detAAt = 1. Thus (detA)2 = 1, meaning that
det A = ±1. �
We see that there are two cases for an orthogonal matrix:

• det A = 1. In this case the orthogonal transformation corresponds to the movement
of a solid with one point fixed. We will see that the only movements of this type are
rotations about an axis.

• det A = −1. In this case the transformation “reverses the orientation.” An example
of such a transformation is reflection across a plane. Consider an asymmetric object
such as your hand. The mirror image of your right hand is your left hand, and there
is no motion that could bring your right-hand to its mirror image. Thus orthogonal
transformations with a determinant of −1 cannot be realized by movements of a
solid. It can be shown that any orthogonal transformation with a determinant of
−1 can be written as the composition of a rotation and a reflection across a plane
(see Exercise 10).

A brief review of complex numbers:

• The conjugate of a complex number z = x + iy is the complex number z = x − iy.
Moreover, it is easy to verify that if z1 and z2 are two complex numbers, then{

z1 + z2 = z1 + z2,

z1z2 = z1z2.
(3.5)

• z is real if and only if z = z.
• The modulus of a complex number z = x + iy is |z| =

√
x2 + y2 =

√
zz.

Proposition 3.16 If A is a real matrix and if λ = a + ib with b 
= 0 is a complex
eigenvalue of A with eigenvector v, then λ = a − ib is also an eigenvalue of A with
eigenvector v.
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Proof. Let v be an eigenvector of the complex eigenvalue λ. We have that A[v] = λ[v].
Taking the conjugate of this expression yields A[v] = A[v] = λ[v]. Since A is real we
have that A = A. This implies

A[v] = λ[v],

which shows that λ is an eigenvalue of A with eigenvector v. �
The principal result that we are working up to is that any 3 × 3 orthogonal matrix

A with detA = 1 corresponds to a rotation by some angle about some axis. Among the
various intermediate results is the corresponding result for 2 × 2 matrices.

Proposition 3.17 If A is a 2×2 orthogonal matrix with det A = 1 then A is the matrix
of rotation by an angle θ,

A =
(

cos θ − sin θ
sin θ cos θ

)
,

for some θ ∈ [0, 2π). The eigenvalues are λ1 = a + ib and λ2 = a − ib, with a = cos θ
and b = sin θ. They are both real if and only if θ = 0 or θ = π. In the case θ = 0 we
obtain a = 1, b = 0, and A is the identity matrix. In the case θ = π we obtain a = −1,
b = 0, and A is the matrix of rotation by the angle π (also called reflection through the
origin).

Proof. Let

A =
(

a c
b d

)
.

Since each column vector has length 1 we must have that a2 + b2 = 1, allowing us to
set a = cos θ and b = sin θ. Since the two columns are orthogonal, we must have that

c cos θ + d sin θ = 0.

Therefore {
c = −C sin θ,

d = C cos θ,

for some C ∈ R. Since the second column is a vector with length 1, then c2 + d2 = 1,
which implies C2 = 1 or equivalently C = ±1. Finally, since detA = C, we must have
that C = 1.

The characteristic polynomial of this matrix is det(λI − A) = λ2 − 2aλ + 1, which
has roots a ±√

a2 − 1. The result follows, since

±
√

a2 − 1 = ±
√

cos2 θ − 1 = ±
√
−(1 − cos2 θ) = ±i sin θ = ±ib.

�

Lemma 3.18 All the real eigenvalues of an orthogonal matrix A are equal to ±1.
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Proof. Let λ be a real eigenvalue and let v be a corresponding eigenvector. Let T be
the orthogonal transformation with matrix A. Since T preserves lengths, we have that
〈T (v), T (v)〉 = 〈v, v〉. But T (v) = λv. Thus 〈T (v), T (v)〉 = 〈λv, λv〉 = λ2〈v, v〉. Finally,
λ2 = 1. �

Proposition 3.19 If A is a 3 × 3 orthogonal matrix with det A = 1, then 1 is always
an eigenvalue of A. Moreover, all complex eigenvalues λ = a + ib have modulus 1.

Proof. The characteristic polynomial of A, det(λI − A), has degree 3. Therefore it
always has one real root λ1 which can be only 1 or −1 by Proposition 3.18. The other
two eigenvalues λ2 and λ3 are either both real or both complex and conjugates of each
other. The determinant is the product of the eigenvalues. Thus 1 = λ1λ2λ3. If λ2

and λ3 are real, then λ1, λ2, λ3 ∈ {1,−1} by Lemma 3.18. For their product to be 1 it
must be that either all three eigenvalues are 1 or two of them are −1 and the remaining
eigenvalue is 1. Hence at least one eigenvalue is equal to 1. If λ2 and λ3 are complex
then λ2 = a+ ib and λ3 = λ2 = a− ib, from which it follows that λ2λ3 = |λ2|2 = a2 +b2.
Since 1 = λ1λ2λ3 > 0, then λ1 = 1 and a2 + b2 = 1. �

Theorem 3.20 If A is a 3 × 3 orthogonal matrix with det A = 1 then A is the matrix
of a rotation T by some angle θ about some axis. If A is not the identity matrix then
the axis of rotation corresponds to the eigenvector associated with the eigenvalue +1.

Proof. Let v1 be a unit eigenvector of the eigenvalue 1. We consider the subspace
orthogonal to v1:

E = {w ∈ R3|〈v1, w〉 = 0},
which is a subspace of dimension 2. Let T be the orthogonal transformation with matrix
A. Since T preserves scalar products and T (v1) = v1, if w ∈ E then T (w) ∈ E, since

〈T (w), T (v1)〉 = 〈T (w), v1〉 = 〈w, v1〉 = 0.

Consider the restriction TE of T on E. Let B′ = {v2, v3} be an orthonormal basis of E
and consider the matrix B of TE in the basis B′. If

B =
(

b22 b23

b32 b33

)
,

this signifies that {
T (v2) = b22v2 + b32v3,

T (v3) = b23v2 + b33v3.

Since TE preserves scalar products, then B must be an orthogonal matrix. Now consider
the matrix [T ]B of the transformation T expressed in the basis B = {v1, v2, v3} (which
is an orthonormal basis of R3):
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[T ]B =

⎛
⎝ 1 0 0

0
B0

⎞
⎠ .

The determinant of this matrix is equal to detB. (Recall that the determinant of the
matrix of a linear transformation does not change when we change the basis.) Thus
det B = detA = 1. By Proposition 3.17 it follows that B is a matrix of rotation, from
which it follows that

[T ]B =

⎛
⎝1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠ .

Consider this matrix: it tells us that all vectors along the axis described by v1 are
mapped to themselves by T , and that all vectors in the plane E undergo a rotation by
the angle θ. If we decompose a vector v as v = Cv1 + w with w ∈ E, then T (v) =
Cv1 + TE(w), where TE corresponds to rotation by the angle θ in the plane E. This
corresponds to rotation by an angle θ about the axis described by v1. �

Corollary 3.21 Suppose A is a 3× 3 orthogonal matrix with det A = 1 and with three
real eigenvalues. Then either A is the identity matrix with eigenvalues 1 or A has the
three eigenvalues 1,−1,−1. In the latter case A corresponds to reflection through the
axis generated by the eigenvector associated with eigenvalue +1. (This transformation
can equally be visualized as a rotation by an angle of π about this same axis.)

Theorem 3.20 states that an orthogonal matrix A with detA = 1 is the matrix of a
rotation. How do we calculate the angle of rotation? To do this we introduce the trace
of a matrix.

Definition 3.22 Let A = (aij) be an n × n matrix. The trace of A is the sum of the
elements along its diagonal:

tr(A) = a11 + · · · + ann.

We state without proof the following property of the trace of a matrix.

Theorem 3.23 The trace of a matrix is equal to the sum of its eigenvalues.

Proposition 3.24 Let T : R3 → R3 be a rotation with matrix A. Then the angle of
rotation θ is such that

cos θ =
tr(A) − 1

2
. (3.6)

Proof. Consider the proof of Theorem 3.20. In calculating the characteristic polyno-
mial of [T ]B we saw that the eigenvalues of T were 1 and cos θ ± i sin θ. Thus the sum
of the eigenvalues is 1 + 2 cos θ. By Theorem 3.23 this is equal to tr(A). �
Analyzing an orthogonal transformation in R3. Theorem 3.20 and Proposition
3.24 suggest a strategy:
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• We start by calculating detA. If detA = 1 we are sure that 1 is one of the eigenvalues
of A and that the transformation is a rotation. If detA = −1 we are sure that −1
is an eigenvalue (see Exercise 10). The rest of this discussion centers on the case
det A = 1, with the case det A = −1 being left to Exercise 10.

• To determine the axis of rotation we find the eigenvector v1 associated with eigen-
value 1.

• We calculate the angle of rotation using equation (3.6). There are two possible solu-
tions, since cos θ = cos(−θ). We cannot decide between the two without performing
a test. To do this we choose a vector w orthogonal to v1 and we calculate T (w).
We then calculate the cross product of w and T (w) (see Definition 3.25 below). It
will be a multiple Cv1 of v1 with |C| = | sin θ|. The angle θ is that which satisfies
C = sin θ.

Definition 3.25 The cross product of two vectors v = (x1, y1, z1) and w = (x2, y2, z2)
is the vector v ∧ w given by

v ∧ w =
(∣∣∣∣ y1 z1

y2 z2

∣∣∣∣ ,−
∣∣∣∣ x1 z1

x2 z2

∣∣∣∣ ,
∣∣∣∣ x1 y1

x2 y2

∣∣∣∣
)

.

Remark. The angle of rotation is determined using the right-hand rule: with the right
hand positioned such that your thumb points along the vector v1, positive angles are
measured in the direction that your fingers curl. Thus, the angle θ depends on the
direction that has been chosen for the axis of rotation. Hence, the rotation about an
axis determined by v1 and angle θ is identical to that about the axis determined by −v1

and angle −θ.

We now have all of the elements necessary to define and describe the possible move-
ments of a solid in space.

Definition 3.26 A transformation F is a movement of a solid in space if F preserves
distances and angles, and if for all sets of vectors with the same origin P that form an
orthonormal basis {v1, v2, v3} of R3 with v3 = v1∧v2, then {F (v1), F (v2), F (v3)} is also
an orthonormal basis of R3 with origin at F (P ) and such that F (v3) = F (v1) ∧ F (v2).

The additional condition that F maps v1∧v2 to F (v1)∧F (v2) is equivalent to saying
that F preserves orientation.

Theorem 3.27 Any movement of a solid in space is the composition of a translation
and a rotation about some axis.

Proof. Let F be a transformation in R3 that describes the movement of a solid. It
preserves both distances and angles. Consider a point of the solid at an initial position
P0 = (x0, y0, z0) and a final position P1 = (x1, y1, z1) after the transformation. Let
v =

−−−→
P0P1 and let G be the operation of translation by v. Set T = F ◦ G−1. Then
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T (P1) = F (P1 − v) = F (P0) = P1. Thus P1 is a fixed point of T . Since T preserves
distances and angles and has a fixed point, it is linear (Exercise 4), hence an orthogonal
transformation with matrix A. But we have seen that if detA = −1 then A cannot be
a transformation of a solid (see Exercise 10). Hence det A = 1, and therefore T is a
rotation. �

3.4 Change of Basis

Transformation matrices in a basis B. Consider a linear transformation T : Rn →
Rn. We are interested only in the cases n = 2 and n = 3. Let B be a basis for R3. We
represent a vector v using its coordinates in the basis B by a column vector [v]B = ( x

y )
if n = 2 and [v]B =

(
x
y
z

)
if n = 3. For now, we limit ourselves to the case n = 3. If

B = {v1, v2, v3}, then [v]B =
(

x
y
z

)
signifies that v = xv1+yv2+zv3. Let A be the matrix

describing the transformation T in the basis B, denoted by A = [T ]B. The coordinates
of T (v) in the basis B are determined as

[T (v)]B = A[v]B = [T ]B[v]B.

As is the case with the standard basis, the columns of A are given by the coordinate
vectors in the basis B of the images of the vectors in B under the transformation T .

Matrices for performing a change of basis

1. If we have two bases B1 and B2 of R3, then

[v]B2 = P [v]B1 ,

where P is the change of basis matrix from B1 to B2. The matrix P is also sometimes
called the passage matrix from B1 to B2.

2. The columns of P are the coordinates of the vectors of B1 written in the basis B2.
In the case that the two bases are orthonormal, then P is orthogonal.

3. If Q is the change of basis matrix from B2 to B1, then Q = P−1. The columns of
Q are the coordinates of the vectors of B2 written in the basis B1. In the case that
the two bases are orthonormal, then Q = P t and therefore the columns of Q are the
rows of P .

Theorem 3.28 Let T be a linear transformation and let B1 and B2 be two bases of R3.
Let P be the change of basis matrix from B1 to B2. Then

[T ]B2 = P [T ]B1P
−1.
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Proof: Let v be a vector. We have that

[T (v)]B2 = [T ]B2 [v]B2 .

We also have that
[T (v)]B2 = P [T (v)]B1

= P ([T ]B1 [v]B1)
= P [T ]B1(P

−1[v]B2)
= (P [T ]B1P

−1)[v]B2 .

The result follows directly from these two equations and from the uniqueness of the
matrix [T (v)]B2 of T in the basis B2. �

Playing with multiple bases allows us to resolve complicated problems. We have seen
how diagonalization allows us to understand the structure of a linear transformation.
We can also play the same game in reverse, constructing a transformation matrix from
a description of its effect. We illustrate this in the following example.

Fig. 3.5. The cube from Example 3.29.

Example 3.29 Consider a cube whose eight corners are positioned at the points
(±1,±1,±1), as shown in Figure 3.5. We are looking for the matrices of the two ro-
tations of angles ± 2π

3 about the axis through the corners (−1,−1,−1) and (1, 1, 1).
Observe that both of these rotations map the cube to itself.
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To do this we start by choosing a basis B that is suited to the problem. The direction
of the first vector will be given by the direction of the axis, w1 = (2, 2, 2). The two
other vectors w2 and w3 of the basis will be taken orthogonal to w1. Their coordinates
(x, y, z) will therefore satisfy x + y + z = 0. The vector w2 = (−1, 0, 1) is easily seen to
be of this form. We wish for the third vector to be perpendicular to both w1 and w2. Its
coordinates must therefore satisfy {

x + y + z = 0,
x − z = 0,

a possible solution to which is w3 = (1,−2, 1). We would like to work with an orthonor-
mal basis, so we divide each vector by its length: vi = wi

||wi|| . The final basis is given
by

B = {v1, v2, v2}
=

{(
1√
3
,

1√
3
,

1√
3

)
,

(
− 1√

2
, 0,

1√
2

)
,

(
1√
6
,− 2√

6
,

1√
6

)}
.

In this basis the two transformations are simply rotations about the v1 axis. Note that
cos(− 2π

3 ) = cos 2π
3 = − 1

2 and sin(− 2π
3 ) = − sin 2π

3 = −
√

3
2 . The two rotations T± are

therefore given (in the basis B) by

[T±]B =

⎛
⎝ 1 0 0

0 cos 2π
3 ∓ sin 2π

3
0 ± sin 2π

3 cos 2π
3

⎞
⎠ =

⎛
⎜⎝ 1 0 0

0 − 1
2 ∓

√
3

2

0 ±
√

3
2 − 1

2

⎞
⎟⎠ .

Now we wish to find the matrices T± in the standard basis C. By applying the previous
theorem we see that these matrices are given by

[T±]C = P−1[T±]BP,

where P is the passage matrix from C to B. Thus P−1 is the passage matrix from B to
C, whose columns consist of the vectors of B written in the basis C. These are precisely
the vectors vi, since they are already written in the standard basis. Since P−1 = P t we
have that

P−1 =

⎛
⎜⎝

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

1√
2

1√
6

⎞
⎟⎠ , P =

⎛
⎜⎝

1√
3

1√
3

1√
3

− 1√
2

0 1√
2

1√
6

− 2√
6

1√
6

⎞
⎟⎠ .

From this it follows that

[T+]C =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ , [T−]C =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ .
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The first transformation T+ consists of rotation by an angle of 2π
3 about the axis v1 (see

Figure 3.5). It permutes three corners of the cube as (1, 1,−1) �→ (−1, 1, 1) �→ (1,−1, 1).
Similarly, it permutes three other corners as (−1,−1, 1) �→ (1,−1,−1) �→ (−1, 1,−1),
while the two remaining corners (1, 1, 1) and (−1,−1,−1) remain fixed.
Remark: [T+]C is orthogonal and T− = T−1

+ . Thus [T−]C = [T+]−1
C = [T+]tC.

3.5 Different Frames of Reference for a Robot

Definition 3.30 A frame of reference in space consists of a point P ∈ R3, called the
origin, and a basis B = {v1, v2, v3} of R3.

Giving ourselves a frame of reference is equivalent to defining a coordinate system
centered on the point P whose axes are oriented along the vectors of the basis B. The
units of the coordinate system are chosen such that the vectors vi are the unit vectors
v1 = (1, 0, 0), v2 = (0, 1, 0), and v3 = (0, 0, 1) when expressed in this coordinate system.

Consider the robot of Figure 3.1, which we have reproduced in a stretched-out po-
sition in Figure 3.6, and after several rotations in Figure 3.8. We have specified seven
frames of reference R0, . . . , R6, centered at P0, . . . , P6 respectively. Each frame of refer-
ence has been associated with a set of axes xi, yi, and zi for i = 0, . . . , 6, the directions
of which are given by the bases B0, . . . ,B6. The frame of reference B0 is the base frame
of reference. It is fixed and centered at P0 = (0, 0, 0). The frame of reference Ri is
centered at Pi (Figures 3.6, 3.7, and 3.8). When the robot is stretched out (in its base
position), all the frames of reference have parallel axes, as shown in Figure 3.6. The
frames of reference themselves will move as the robot moves. In fact, since moving one
joint affects all joints attached further along the arm, the frame of reference Ri depends
on any motions applied to joints 1, . . . , i and is independent of those applied to joints
i + 1, . . . , 6.

Fig. 3.6. The different frames of reference of the robot.
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Fig. 3.7. The frame of reference R1 after a rotation about the axis y0.

Fig. 3.8. The various frames of reference after several rotations about the joints 2, 3, 5, and 6.
The frame of reference R1 (respectively R4) coincides with that of R0 (respectively R3) and is
not explicitly shown.

We describe the sequence of motions applied to the robot that place it in the position
of Figure 3.1 or Figure 3.8.

(i) The first movement consists of a rotation T1 of angle θ1 about the axis y0. In the
frame of reference R0 this is a linear transformation, since the origin is fixed. In the
basis B0 it is described by the matrix

A1 =

⎛
⎝ cos θ1 0 − sin θ1

0 1 0
sin θ1 0 cos θ1

⎞
⎠ .
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The second frame of reference R1 is altered by this motion and obtained by applying
T1 to R0. In particular, the basis B1 is given by the image of B0 under T1.

(ii) The second movement is a rotation T2 of angle θ2 about the axis x2, described by
the matrix

A2 =

⎛
⎝ 1 0 0

0 cos θ2 − sin θ2

0 sin θ2 cos θ2

⎞
⎠ .

(iii) The third movement is, for instance, a rotation T3 by angle θ3 about the axis x3,
described by the matrix

A3 =

⎛
⎝ 1 0 0

0 cos θ3 − sin θ3

0 sin θ3 cos θ3

⎞
⎠ .

Looking at Figure 3.1, it is difficult to discern whether this movement is a rotation
about x3 or z3. What may look like a rotation about x3 or z3 actually depends on
the earlier applied rotation T1.

(iv) The fourth movement is a rotation T4 by angle θ4 about the axis y4 as given by
the matrix

A4 =

⎛
⎝ cos θ4 0 − sin θ4

0 1 0
sin θ4 0 cos θ4

⎞
⎠ .

(v) The fifth movement consists of a rotation T5 by angle θ5 about the axis x5 and is
described by the matrix

A5 =

⎛
⎝ 1 0 0

0 cos θ5 − sin θ5

0 sin θ5 cos θ5

⎞
⎠ .

(vi) The sixth movement is a rotation T6 by angle θ6 about the axis y6, given by the
matrix

A6 =

⎛
⎝ cos θ6 0 − sin θ6

0 1 0
sin θ6 0 cos θ6

⎞
⎠ .

We wish to calculate the position of a point on the robot with respect to the various
frames of reference. To do this we start by calculating how the various axes are mod-
ified as we pass from one frame of reference to another. This allows us to find the
“orientation” of the basis Bi+k in the basis Bi. The columns of the matrix Ai give the
coordinates of the vectors of the basis Bi+1 expressed in the basis Bi. This is the change
of basis matrix from Bi+1 to Bi. We will denote it by M i+1

i .

Change of basis matrix from Bi+k to Bi. We deduce that it is given by

M i+k
i = M i+1

i M i+2
i+1 · · ·M i+k

i+k−1.
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Let Q be a point in space. Finding its position in the frame of reference Ri means
to find the vector

−−→
PiQ in the basis Bi, in other words, [

−−→
PiQ]Bi

. Its position in the frame
of reference Ri−1 is given by

[
−−−−→
Pi−1Q]Bi−1 = [

−−−−→
Pi−1Pi]Bi−1 + [

−−→
PiQ]Bi−1 = [

−−−−→
Pi−1Pi]Bi−1 + M i

i−1[
−−→
PiQ]Bi

.

We will use this approach to account for motion at each of the joints i = 1, . . . , 6.
We will determine the position and orientation of the extremity of the robot in the basis
B0, accounting for the rotations of the various joints by angles θ1, . . . , θ6, respectively.
Suppose that we know the position of Q in the frame of reference R6, denoted by
[
−−→
P6Q]B6 :

• Let l5 be the length of the claw. Then

[
−−→
P5Q]B5 = [

−−−→
P5P6]B5 + [

−−→
P6Q]B5 =

⎛
⎝ 0

l5
0

⎞
⎠ + M6

5 [
−−→
P6Q]B6 .

• Let l4 be the length of the third segment of the robot. Then

[
−−→
P4Q]B4 = [

−−−→
P4P5]B4 + [

−−→
P5Q]B4

=

⎛
⎝ 0

l4
0

⎞
⎠ + M5

4

⎛
⎝
⎛
⎝ 0

l5
0

⎞
⎠ + M6

5 [
−−→
P6Q]B6

⎞
⎠

=

⎛
⎝ 0

l4
0

⎞
⎠ + M5

4

⎛
⎝ 0

l5
0

⎞
⎠ + M6

4 [
−−→
P6Q]B6 .

• The frame of reference R3 has the same origin as R4: P3 = P4. Thus, in the frame
of reference R3,

[
−−→
P3Q]B3 = [

−−→
P4Q]B3 = M4

3

⎛
⎝
⎛
⎝ 0

l4
0

⎞
⎠ + M5

4

⎛
⎝ 0

l5
0

⎞
⎠ + M6

4 [
−−→
P6Q]B6

⎞
⎠

= M4
3

⎛
⎝ 0

l4
0

⎞
⎠ + M5

3

⎛
⎝ 0

l5
0

⎞
⎠ + M6

3 [
−−→
P6Q]B6 .

• Let l2 be the length of the second segment of the robot. Then

[
−−→
P2Q]B2 = [

−−−→
P2P3]B2 + [

−−→
P3Q]B2

=

⎛
⎝ 0

l2
0

⎞
⎠ + M4

2

⎛
⎝ 0

l4
0

⎞
⎠ + M5

2

⎛
⎝ 0

l5
0

⎞
⎠ + M6

2 [
−−→
P6Q]B6 .



110 3 Robotic Motion

• Let l1 be the length of the first segment of the robot. Then

[
−−→
P1Q]B1 = [

−−−→
P1P2]B1 + [

−−→
P2Q]B1

=

⎛
⎝ 0

l1
0

⎞
⎠+ M2

1

⎛
⎝ 0

l2
0

⎞
⎠+ M4

1

⎛
⎝ 0

l4
0

⎞
⎠+ M5

1

⎛
⎝ 0

l5
0

⎞
⎠+ M6

1 [
−−→
P6Q]B6 .

• Finally, in the base frame of reference, since P0 = P1 we have that

[
−−→
P0Q]B0 = M1

0

⎛
⎝ 0

l1
0

⎞
⎠ + M2

0

⎛
⎝ 0

l2
0

⎞
⎠ + M4

0

⎛
⎝ 0

l4
0

⎞
⎠ + M5

0

⎛
⎝ 0

l5
0

⎞
⎠ + M6

0 [
−−→
P6Q]B6 .

(3.7)

Setting l3 = 0 allows us to rewrite (3.7) as

[
−−→
P0Q]B0 =

5∑
i=1

M i
0

⎛
⎝ 0

li
0

⎞
⎠ + M6

0 [
−−→
P6Q]B6 .

Inversely,

[
−−→
P6Q]B6 = M0

6 [
−−→
P0Q]B0 −

5∑
i=1

M i
6

⎛
⎝ 0

li
0

⎞
⎠ ,

where M i
6 is the change of basis matrix from Bi to B6. We have that M i

6 = (M6
i )−1 =

(M6
i )t. If necessary we can also calculate [

−−→
PiQ]Bi

as a function of [
−−→
P0Q]B0 .

Applications:

1. The Canadarm on the International Space Station. The Canadarm is the robotic
arm attached to the International Space Station. Initially it was fixed to the station.
It has since been mounted on rails, allowing it to be moved along the length of the
station. This facilitates the work of the astronauts as they assemble new space
station modules or perform repairs.
The Canadarm (the Shuttle Remote Manipulator System, or SRMS for short) is
a robot with six degrees of freedom. Similar to a human arm, it consists of two
segments at the end of which is found a “wrist” of sorts. The first segment is
attached to a rail on the station, and can make an arbitrary angle at this attachment,
requiring both a pitch (up and down) and yaw (side to side) motion. The joint
between the two segments has only one degree of freedom, allowing only an up and
down motion, similar to an elbow. The wristlike joint has three degrees of freedom,
allowing pitch, yaw, and roll (motion about its axis). (See Exercise 16.) The first
segment is 5 m long while the second segment has length 5.8 m.
Since the original Canadarm was built, an improved model has been constructed.
The Canadarm2 is 17 m long and has seven joints, allowing it more flexibility for
those hard-to-reach places. It can be controlled from the ground.
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2. Surgical robots. Such robots allow for noninvasive surgeries, since they can be in-
serted through small incisions and controlled externally. They have many small
segments near the end of the robot, affording it a great degree of flexibility in a
small space.

More mathematical problems related to robots. We are far from having con-
sidered all mathematical problems related to robots. We present a few other practical
problems here:

(i) There exist several sequences of movements that will place a robot in a given final
position. Which is better? Certain “small” movements may lead to “large” displace-
ments of the claw, while other “large” movements may cause “small” displacements.
The latter are preferable when the robot is being used for work requiring precision,
as is the case for surgical robots.

(ii) We can always add more segments and joints to a robot, increasing its flexibility
and allowing it to avoid obstacles. What other effects are there in adding more
segments and movements?

(iii) What is the effect of changing the lengths of the various segments?
(iv) The inverse problem (difficult!): given a final position for the claw, determine a

sequence of movements that will bring the claw to this position. Answering this
problem generally involves solving a system of nonlinear equations.

(v) There are many more related problems. It is up to you to think of some.

3.6 Exercises

1. (a) Calculate the matrix A of rotation by the angle θ in the plane, using the standard
basis {e1 = (1, 0), e2 = (0, 1)}. Use the fact that the columns of A are the coordinates
of the images of the vectors e1 and e2.
(b) Let z = x+ iy. Rotating the vector (x, y) by an angle θ is equivalent to performing
the operation z �→ eiθz. Use this formula to determine the matrix A.

2. If two linear transformations T1 and T2 described by matrices A1 and A2 are composed,
then the matrix describing the composed operator T1 ◦ T2 is A1A2. In this exercise we
will assume that n = 2.
(a) Verify that the composition of a rotation by an angle of θ1 with a rotation by an
angle of θ2 is a rotation by an angle of θ1 + θ2.
(b) Verify that the determinant of a matrix of rotation is equal to 1.
(c) Verify that the inverse of a matrix of rotation A is simply its transpose, At.

3. The triangle shown in Figure 3.2 is a right triangle with side lengths 3, 4, and 5.
Initially the corner opposing the side of length 3 is at the origin, and at the end of its
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movements it is situated at the point (7, 5). Give the coordinates of the corner opposite
the side of length 4 if the rotation is by an angle of π

7 .

4. Show that a transformation T of the plane or of the space preserving distances and
angles and having a fixed point is a linear transformation. Suggestion:
(a) Start by proving that the transformation preserves the sum of two vectors, using
that the sum v1+v2 of the two vectors is constructed as the diagonal of the parallelogram
with sides v1 and v2.
(b) Show now that for any vector v and any c ∈ R, then T (cv) = cT (v). Make the
argument in several steps:

• Prove the assertion for c ∈ N.
• Prove the assertion for c ∈ Q.
• Show that T is uniformly continuous. Use this to prove it for c ∈ R. Indeed, if

c = limn→∞ cn with cn ∈ Q, and if T is continuous, then T (cv) = limn→∞ T (cnv).

5. Show that all orthogonal transformations in R2 with a determinant of −1 are reflections
across an axis passing through the origin.

6. Consider the following orthogonal matrices with determinant 1:

A =

⎛
⎝2/3 −1/3 −2/3

2/3 2/3 1/3
1/3 −2/3 2/3

⎞
⎠ , B =

⎛
⎝ 1/3 2/3 2/3
−2/3 2/3 −1/3
−2/3 −1/3 2/3

⎞
⎠ .

For each of these matrices calculate the axis and angle of rotation (up to the sign).

7. Show that the product of two orthogonal matrices A1 and A2 with determinant 1 is
itself an orthogonal matrix with determinant 1. Deduce that the composition of two
rotations in R3 is also a rotation in R3 (even if the two axes of rotation are not the
same!).

8. Consider a rotation by the angle +π/4 about the axis v1 determined by v1 =
(1/3, 2/3, 2/3). Using the basis B = {v1, v2, v3} where v1 = (1/3, 2/3, 2/3), v2 =
(2/3,−2/3, 1/3), and v3 = (2/3, 1/3,−2/3), give the matrix describing this rotation
expressed in the standard basis.

9. (a) Let Π be a plane passing through the origin in R3 and let v be a unit vector
perpendicular to the plane at the origin. Reflection across Π is the operation that maps
a vector x ∈ R3 to the vector RΠ(x) = x − 2〈x, v〉v. Show that RΠ is an orthogonal
transformation. What is the determinant of the associated matrix?
(b) Show that the composition of two such reflections yields a rotation about some
axis passing through the origin. Verify that this axis is the line of intersection between
the two planes.
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10. (a) Show that if an orthogonal 3× 3 matrix has determinant −1, then −1 is one of its
eigenvalues.
(b) Show that all orthogonal transformations in R3 with determinant −1 can be
described as a composition of a reflection across some plane passing through the origin
and a rotation about the axis passing through the origin and perpendicular to the plane.
Give a formula for the axis of rotation.
(c) Conclude that an orthogonal transformation in R3 with determinant −1 cannot
describe a movement of a solid in space.

11. Consider the robot of Figure 3.9, which operates in a vertical plane: at the end of the
second segment there is a claw that is perpendicular to the plane of operation of the
robot and driven by a third rotation (we will ignore this rotation in this question).
Assume that the two segments of the robot are of the same length l.
(a) Let Q be the far end of the robot’s second segment. Calculate the position of Q if
the first segment is rotated through an angle of θ1 and if the second segment is rotated
through an angle of θ2.

Fig. 3.9. The robot of Exercise 11.

(b) Calculate the (two values of the) angle θ2 that will position the point Q at a
distance of l

2 from the point where the robot attaches to the wall.
(c) Calculate the two distinct pairs of angles (θ1, θ2) that will position Q at ( l

2 , 0).
(d) Suppose now that the robot is attached to a vertical rail and can slide up and
down the wall. Choose a coordinate system. In this coordinate system calculate the
position of Q if we translate the robot by a distance h, rotate the first joint by an angle
of θ1, and rotate the second joint by an angle of θ2.
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12. In R3 let Rx represent rotation about the x axis by the angle π/2, let Ry represent
rotation about the y axis by the angle π/2, and let Rz represent rotation about the z
axis by the angle π/2.
(a) The composition Ry ◦ Rz is also a rotation. Determine its axis and angle.
(b) Show that Rx = (Ry)−1 ◦ Rz ◦ Ry.

13. Consider a robot in the plane attached to a single fixed point. The robot consists of
two arms, the first of which has length l1 and is attached to the fixed point, the second
of which has length l2 and is attached to the end of the first. Both arms are free to
rotate completely about their points of attachment. Describe the set of points in the
plane that are reachable by the far end of the second segment of the robot as a function
of l1 and l2.

14. Consider a two-segment robotic arm attached to the wall with segment lengths l1 and
l2 where l2 < l1. The first segment is attached to the wall by a universal joint (one
that has two degrees of freedom and can make any angle with the wall). Similarly, the
second arm is attached to the first by a universal joint. Determine the set of points in
space that are reachable by the free end of the second segment as a function of l1 and
l2.

15. We describe a robot capable of operating in a vertical plane as shown in Figure 3.10:

• The first segment is fixed at P0 = P1 and has length �1.
• The second segment is attached to the end of the first segment at P2. Its length is

variable with a minimum of �2 and a maximum of L2 = �2 + d2. A claw is attached
to its far end.

• The claw has length d3 such that d3 < �1, �2.

(a) Give the conditions on �1, �2, d2, d3 such that the extremity P4 of the claw can
grab an object situated at P0.
(b) Choose a frame of reference centered at P0. In this coordinate system, give the
position of the extremity P4 of the claw if the rotations θ1, θ2, and θ3 have been applied
as in Figure 3.10 and if the second segment has been set to a length of �2 + r.

16. The Canadarm (the Shuttle Remote Manipulator System, or SRMS for short) is a robot
with six degrees of freedom. Similar to a human arm, it consists of two segments, at
the end of which is found a “wrist” of sorts. The first segment is attached to a rail on
the station and can make any arbitrary angle at this attachment, requiring both a pitch
(up and down) and yaw (side to side) motion. The joint between the two segments has
only one degree of freedom, allowing only an up and down motion, similar to an elbow.
The wristlike joint has three degrees of freedom allowing pitch, yaw, and roll (motion
about its axis).
(a) Ignoring the translational movement on the rails along the station, draw a
schematic of the arm and the necessary frames of reference required to calculate the
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Fig. 3.10. The robot of Exercise 15.

position of the end of the wrist. In the appropriate frame of reference, give the six
rotational movements corresponding to the six degrees of freedom of the robot.
(b) Given a set of six rotations with angles θ1, . . . , θ6 to be applied to each degree of
freedom, calculate the position of the end of the wrist in the base frame of reference.

17. Imagine a system of controls for all six degrees of freedom of the robot of Figure 3.1.

18. When an astronomer wishes to make an observation, he or she must first appropriately
aim the telescope. Assume that the base of the telescope is fixed.
(a) Show that two independent rotations are sufficient to point the telescope in any
direction.
(b) Astronomers face another problem when they want to observe a very distant or
very faint object: they must take a photo that has been exposed over many hours. The
Earth turns while this photo is being taken; thus the telescope must be continually
re-aimed in order to keep it aligned with the targeted celestial body. Here is how such
systems function: we install a central axis that is perfectly parallel to the axis of rotation
of the Earth. The entire telescope assembly is free to rotate around this axis, and it is
called the first axis (see Figure 3.11). For an observatory in the Northern Hemisphere,
this axis is essentially lined up with the North Star, Polaris. At the North Pole itself
this axis is vertical; otherwise, it is oblique. The telescope itself is mounted on a second
axis whose angle between it and the first can be varied. Show that these two degrees of
freedom are sufficient to point the telescope in any direction.
(c) Show that a rotation around the first axis is sufficient to keep the telescope aimed
at the same celestial object as the Earth rotates.
(d) Show that at the 45th parallel, the angle between the axis of the Earth and the
surface is 45 degrees.
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Fig. 3.11. The two degrees of freedom of a telescope (see Exercise 18).
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4

Skeletons and Gamma-Ray Radiosurgery

The concept of skeletons comes up in the discussion of optimal strategies for perform-

ing irradiative surgery, including “gamma knife” techniques ([4] and [5]). They are

also an important concept in a variety of scientific problems. If this chapter is to be

covered with three hours of theory and two hours of practical work, we recommend for-

mulating the core problem of gamma-ray surgery. Follow this by covering both Sections

4.2 and 4.3, which discuss skeletons in both two and three dimensions with the help

of simple examples. Time permitting, Section 4.4 can be discussed briefly in an infor-

mative mode. If you have a fourth hour at your disposal there is a choice to be made:

there is sufficient time to discuss the numerical algorithms in Section 4.5 or the fun-

damental property of skeletons in Section 4.7. It may be preferable to concentrate on

the algorithmic content for applied math students, for example, or on the fundamental

property of skeletons for education majors. The rest of the chapter is enrichment and

may be used as a departure point for a semester project.

4.1 Introduction

A “gamma knife” is a surgical device that is used for treating brain tumors. The ma-
chine focuses 201 beams of gamma-rays (originating from radioactive cobalt 60 sources
distributed evenly around the inner surface of a sphere) into a single small spherical
area. The region of intersection is subject to a strong dose of radiation. The beams
are focused with the help of a helmet, and may produce focal regions of various sizes
(2 mm, 4 mm, 7 mm, or 9 mm radius). Each size of dose requires the use of a different
helmet; thus the helmet must be changed when the dose radius needs to be changed.
Each helmet weighs roughly 500 pounds. Hence it is important to minimize the number
of helmet changes.

The problem presented to mathematicians is to construct an algorithm to create
optimal treatment plans, allowing the tumor to be irradiated in a minimum of time.
This decreases the cost of the operation, while at the same time improving the quality

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
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of treatment for the patient, since long radiotherapy sessions can be quite unpleasant.
The problem is quite simple for small tumors, since they can often be treated with a
single dose. However, it becomes quite complex for large and irregularly shaped tumors.
A good algorithm should be able to limit a treatment to a maximum of 15 individual
doses. Similarly, it must be as robust as possible, which is to say that it must return
acceptable (if not optimal) treatment plans for nearly all possible shapes and sizes of
tumors.

It is easy to see that this problem is somewhat related to the problem of stacking
spheres. We wish to fill (as much as possible) a region R ⊂ R3 with spheres in such a
way that the proportion of volume not covered is less than some threshold of tolerance
ε. If we use balls (or solid spheres) B(Xi, ri) ⊂ R, i = 1, . . . , N , with centers Xi and
radii ri, then the irradiated zone is PN (R) = ∪N

i=1B(Xi, ri). Letting V (S) represent the
volume of a region S, we wish to find balls such that

V (R) − V (PN (R))
V (R)

≤ ε. (4.1)

In order to find an optimal solution, the first task is to wisely choose the centers
of the spheres. In fact, we must choose spheres that conform as much as possible to
the surface of the region. By definition, these are spheres that have the most points
of contact (points of tangency) with the boundary of the region. The centers of the
spheres will then be taken along the “skeleton” of the region.

4.2 Definition of Two-Dimensional Region Skeletons

The skeleton of a region of R2 or R3 is a mathematical concept that is used in shape
analysis and automatic shape recognition. We start by giving an intuitive definition.

Suppose that the region is formed of uniformly combustible material (for instance
grass) and that we ignite the entire outer surface all at once. As the fire burns inward at
a constant rate, it will eventually reach a point where there is no combustible material
left. The skeleton of the shape is the set of points at which the fire goes out (see
Figure 4.1).

We will return to this intuitive definition of the skeleton a little later, since it will
be our guide to developing our intuition. First we will define the formal mathematical
notion of skeleton. A region is an open subset of the plane R2 or space R3. Being open,
a region does not include any of the points along its boundary, which we will denote by
∂R. The following definition is equally applicable to two- or three-dimensional regions.
However, sometimes the terminology changes depending on the dimension; for example,
we typically say “disk” to describe a filled circle in two dimensions, while we say “ball”
to describe a solid sphere. In cases where the typical terminology varies, we will place
the appropriate word for the three-dimensional definition in parentheses.
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Fig. 4.1. The skeleton of a region.

Definition 4.1 Let |X − Y | denote the Euclidean distance between two points in the
plane or space.

Thus, if two points X and Y ∈ R2 have coordinates (x1, y1) and (x2, y2) respectively,
then the distance between them is

|X − Y | =
√

(x1 − x2)2 + (y1 − y2)2.

Definition 4.2 Let R be a region of R2 (or R3) and let ∂R be its boundary. The
skeleton of R, denoted by Σ(R), is the following set of points:

Σ(R) =
{

X∗ ∈ R
∣∣∣ ∃X1, X2 ∈ ∂R such that X1 
= X2 and
|X∗ − X1| = |X∗ − X2| = minY ∈∂R |X∗ − Y |

}
.

This definition is rather opaque; thus we will explain a few elements. The quantity
minY ∈∂R |X∗ − Y | gives the distance between a point X∗ and the boundary ∂R of R.
Unlike the distance between two points, there is no simple algebraic expression for this
distance. Rather, it is expressed as the minimum of the function f(Y ) = |X∗ − Y |,
expressed as a function of Y (X∗ is constant). Thus, we are looking for the shortest
line segment connecting X∗ to any point on the boundary. The length of this shortest
segment is minY ∈∂R |X∗ − Y |. In the case that R is a region in the plane, Figure 4.2
shows several of the possible line segments, with the shortest being indicated by a bold
line.

Suppose that we draw a circle (a sphere) with center X∗ and radius

d = min
Y ∈∂R

|X∗ − Y |, (4.2)

denoted by
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Fig. 4.2. Looking for the shortest distance between a point X∗ and the boundary ∂R.

S(X, d) = {Y ∈ R2(or R3) | |X − Y | = d}.
In order for X∗ to be in the skeleton Σ(R), the above definition requires that S(X∗, d)
intersect ∂R at (at least) two points X1 and X2. Thus S(X∗, d) and the boundary
∂R must have at least two points in common. Since the radius of S(X∗, d) is precisely
minY ∈∂R |X∗ − Y |, the interior of S(X∗, d) is contained within R. To see this, choose
a point Z in the complement C(R) of the region (in other words, C(R) = R2 \ R or
C(R) = R3 \ R) and draw a line segment between X∗ and Z. Since X∗ ∈ R and
Z ∈ C(R), the segment must cross the boundary ∂R at some point, which we will call
Y ′. By the definition of the distance between X∗ and the boundary we have that

min
Y ∈∂R

|X∗ − Y | ≤ |X∗ − Y ′| < |X∗ − Z|

and the point Z is outside of S(X∗, d). Similarly, no points in the complement of R are
in the interior of S(X∗, d), and the interior of S(X∗, d) consists entirely of points of R.
If we define the disk (or ball) of center X and radius r by

B(X, r) = {Y ∈ R2(or R3) | |X − Y | < r},

then the elements X∗ of the skeleton Σ(R) satisfy

B(X∗, d) ⊂ R.

Even if the radius d is defined as a minimum (see (4.2)), it is also a maximum! It is
the maximum radius such that a disk (or ball) centered at X∗, B(X∗, r) lies completely
within R. (All disks B(X∗, r) with r > d will contain a point Z in the complement
C(R) of R. To see this, draw the line segment between X∗ and the nearest point X1
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on the boundary of R.1 Then |X1 − X∗| = d. If r > d then the segment of length r
originating at X∗ and passing through X1 will traverse the boundary ∂R and therefore
contain a point outside of R.)

We have thus proved the following proposition, which gives us an alternative but
equivalent definition for the skeleton of a region.

Proposition 4.3 Let X∗ ∈ R and d = minY ∈∂R |X∗ − Y |. Then d is the maximum
radius such that B(X∗, d) lies completely within R, i.e., d = max{c > 0 : B(X∗, c) ⊂
R}. The point X∗ is in the skeleton Σ(R) if and only if S(X∗, d)∩ ∂R contains at least
two points.

At this point, it is clear that the distance d = minY ∈∂R |X∗ − Y | plays a key role in
the theory of skeletons. The following definition gives it a name.

Definition 4.4 Let R be a region of the plane (or space). For each point X in the
skeleton Σ(R) of R, let d(X) denote the maximum radius of a disk (or ball) centered at
X such that it is contained within R. We know that

d(X) = min
Y ∈∂R

|X − Y | = max{c > 0 : B(X, c) ⊂ R}.

We present another definition, whose utility will soon become obvious.

Definition 4.5 Let r ≥ 0. The r-skeleton of a region R, denoted by Σr(R), is the set
of points of the skeleton Σ(R) that are at least a distance r from the boundary of the
region:

Σr(R) = {X ∈ Σ(R)|d(X) ≥ r} ⊂ Σ(R).

Observe that Σ(R) = Σ0(R).

Even with this reformulation, the definition of a skeleton is not easy to use in practice.
It presupposes knowledge of the distance between all points in the interior of R to all
points in its boundary. However, in its present form it can be used to determine the
skeleton of simple geometric shapes. The following lemmas will prove useful.

Lemma 4.6 1. Consider an angular region R bounded by two half-rays originating at
the same point O. Then the skeleton of this region is the bisector of the angle formed
by the two half-rays (Figure 4.3(a)).

2. Consider a strip region R bounded by two parallel rays (D1) and (D2) separated by
a distance h. Then the skeleton of this region is the parallel line that is equidistant
to (D1) and (D2) (Figure 4.3(b)).

1More advanced readers may have observed that we have implicitly made several assump-
tions on R. Specifically, we are assuming that the boundary of R is piecewise continuously
differentiable. Not to worry, the rest of you can continue to follow your intuition!
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(a) Skeleton of an angular
region.

(b) Skeleton of a strip re-
gion.

Fig. 4.3. The examples of Lemma 4.6.

Proof. We will give the proof only for the angular region. Let P be a point of the
skeleton, and consider Figure 4.4. By hypothesis it must be that |PA| = |PB|, since P

is equidistant to the two sides of the region. Moreover, P̂AO = P̂BO = π
2 . We need

to show that P̂OA = P̂OB. To do this we will show that the two triangles POA and
POB are congruent, by showing that they have three equal sides. Both triangles are

Fig. 4.4. Proof of Lemma 4.6.

right-angled. They both share the same hypotenuse c = |OP |. Moreover, |PA| = |PB|.
Finally, by the Pythagorean theorem, it follows that

|OA| =
√

c2 − |PA|2 =
√

c2 − |PB|2 = |OB|.
Since the two triangles are congruent, we can then conclude that the corresponding
angles P̂OA and P̂OB are equal. �

Lemma 4.7 1. A line tangent to a circle O at a point P is perpendicular to the radius
OP . As a consequence, if the circle is tangent to the boundary ∂R of a region R in
the plane, then the center of the circle is situated along the normal of ∂R at P .
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2. Let P be a point on the circle S(O, r). All lines passing through P other than the
tangent line have a segment that lies within B(O, r).

Proof. To complete the proof we require a precise definition of a tangent line. Consider
Figure 4.5. A line that it tangent to a circle at a point P is the limit of the secant
lines passing through points A and B as both A and B approach the point P . Since
|OA| = |OB|, the triangle OAB is isosceles. Thus we conclude that ÔAB = ÔBA.
Since ÔAB + α = π and ÔBA + β = π, we conclude that α = β. In the limit that A

Fig. 4.5. A normal to a circle passes through the center of a circle.

and B approach a single point, the following two conditions hold:{
α = β,

α + β = π.

Thus it follows that α = β = π
2 in the limit. The second part is left as an exercise for

the reader. �

Example 4.8 (A rectangle.) We will determine the skeleton of a rectangle R with
base b and height h such that b > h. Using Lemma 4.6 we may construct six lines that
possibly contain skeleton points of the rectangle by considering two of its sides at a time:
the four bisectors, the horizontal parallel equidistant from the two horizontal sides, and
the vertical parallel equidistant from the two vertical sides (see Figure 4.6).

We can rapidly exclude (nearly) all points from the vertical parallel. Consider any
point along this parallel that is inside the rectangle. Its distance to the vertical sides will
always be greater than its distance to the nearest horizontal side, since b > h. Thus,
except in the case of the point equidistant to the top and bottom, the circle of largest
radius centered at the point will touch only one side of the rectangle. There is, however,
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Fig. 4.6. The six lines that can possibly contain the skeleton points of a rectangle.

a segment I of the horizontal parallel that surely belongs to the skeleton. Once again,
consider a point on this parallel inside the rectangle. The circle with radius h

2 centered
at this point will touch both horizontal sides. As long as the point is not so close to
one of the vertical sides that the circle of radius h

2 centered at that point falls partially
outside the rectangle, then it will belong to the skeleton. Thus, it must be at least h

2
from the vertical sides. If the origin of the coordinate system corresponds to the bottom
left corner of the rectangle, then the two disks of radius h

2 with three points of tangency
are centered at (h

2 , h
2 ) and (b− h

2 , h
2 ). We have thus identified a segment that will belong

to the skeleton of the rectangle: I = {(x, h
2 ) ∈ R2 | h

2 ≤ x ≤ b − h
2 } ⊂ Σ(rectangle).

Through a similar argument it is relatively simple to convince ourselves that the segments
of the bisectors from each corner to I will belong to the skeleton. The skeleton is thus
the union of these five segments, as shown in Figure 4.7(a). A few maximal disks are
shown in Figure 4.7(b).

Figure 4.7(c) shows an example of an r-skeleton, constructed with r = h
4 . To obtain

the h
4 -skeleton, we kept only the centers of maximal disks with radius at least h

4 . Thus,
half of the points along each of the bisectors were discarded. The concept of r-skeletons
is useful for the following reason: since the doses of radiation in an optimal treatment
plan will be centered along the skeleton and the doses have a minimum radius r0 (r0 = 2
mm with current technology), then these doses will be centered at skeleton points at least
a distance r0 from the boundary. Hence, the doses of an optimal treatment plan will lie
along the r0-skeleton.

Before giving a second example, we return to the earlier intuitive definition of the
skeleton, where we described it as the set of points where an inward-burning fire ex-
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(a) The skeleton (b) A few maximal disks

(c) The h
4
-skeleton (d) A few maximal disks of the h

4
-skeleton

Fig. 4.7. The skeleton of a rectangle with base b greater than its height h.

tinguishes itself. Using this analogy, each point along the boundary is the location of
a small fire. Each of them burns inward in all directions at a constant speed; thus at
each instant in time, the leading edge of each fire is an arc of a circle. We say that
a fire extinguishes itself at a point X ∈ R if this point is reached simultaneously by
more than one leading edge. Thus the relationship between this analogy and the formal
definition is quite clear. Since X is first reached simultaneously by two leading edges
emanating from the points X1 and X2 on the boundary, then X is the same distance
from both of these points. Hence |X1 − X| = |X2 − X| = minY ∈∂R |Y − X|, which is
precisely the condition required to belong to the skeleton. Note that the condition we
have chosen to describe, “points where the fire goes out,” is only intuitive. For instance,
when two fronts meet at a point X in the bisector of an angle of the rectangle, the fire
goes out at this point but progresses along the bisector. Figure 4.8 shows the state
of the fire at two instants, after having covered a distance h

4 in (a) and after having
covered a distance h

2 in (b). The leading edges of several boundary points of R have
been illustrated in both cases. Only the four points indicated in Figure 4.8(a) will burn
out at this given moment in time. In contrast, Figure 4.8(b) shows the moment in time
where the fire burns out along the entire interval I. The utility of this analogy is quite
clear, and it will even allow us to determine the skeleton for any region bounded by a
closed continuously differentiable curve.

Remark. Even if the fire lit in one point burns in all directions, when we light the fire
at all points of the boundary simultaneously we see the fire front advance at constant
speed along the normal to the boundary. This comes from the fact that in the other
directions, the fire goes out because it meets the fire coming from the other boundary
points.
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(a) After covering a distance of h
4

(b) After covering a distance of h
2

Fig. 4.8. Progress of a fire started along the boundary of a rectangle.

Example 4.9 (An ellipse) We imagine lighting a fire along the entire boundary of
an ellipse and observing this fire as it burns inward at a constant velocity. At every
moment in time, the fire front advances along the normal line to its leading edge. With
the use of mathematical software we have drawn the fire front at several moments in
time, as illustrated in Figure 4.9. In the beginning, the fire front is a smooth rounded
curve that resembles an ellipse (without being one). After the fire has progressed far
enough, we note the appearances of sharp corners to the fire front; the points where the
sharp corners first appear are precisely the first points where the fire will burn out.

(a) (b)

Fig. 4.9. The advancing leading edge of a fire lit on the boundary of an ellipse.

Suppose that the ellipse is described by the equation

x2

a2
+

y2

b2
= 1,

where a > b. Then we remark that the points where the fire will burn out are the points
where the normal to the ellipse at the point (x0, y0) intersects the normal to the ellipse
at the point (x0,−y0). Due to symmetry, these are precisely the points where the normal
lines intersect the x axis (the points are well defined for y0 
= 0). We wish to determine
the set of such points. Let (x0, y0) be a point on the ellipse and consider the normal to
this point. To do this, we consider the ellipse as the level set F (x, y) = 1 of the function
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F (x, y) =
x2

a2
+

y2

b2
.

The gradient vector

∇F (x0, y0) =
(

∂F

∂x
,
∂F

∂y

)
(x0, y0) =

(
2x0

a2
,
2y0

b2

)
is normal to the ellipse at the point (x0, y0). (Recall that the gradient of a multivariate
function is perpendicular to its level sets!) The normal to the ellipse at (x0, y0) is there-
fore the line passing through the point (x0, y0) in the direction ∇F (x0, y0) =

(
2x0
a2 , 2y0

b2

)
.

To find its equation we write that the vector (x − x0, y − y0) is parallel to the vector(
2x0
a2 , 2y0

b2

)
, yielding

2y0

b2
(x − x0) − 2x0

a2
(y − y0) = 0.

To find the point of intersection with the x axis we substitute y = 0, giving

x = x0 − b2

2y0

2x0y0

a2
= x0

(
1 − b2

a2

)
= x0

a2 − b2

a2
.

(Observe that we have implicitly assumed y0 
= 0.) If x0 ∈ (−a, a) then x ∈(
−a2−b2

a , a2−b2

a

)
. The skeleton is therefore the segment

y = 0, x ∈
[
−a2 − b2

a
,
a2 − b2

a

]
.

We have added the two extreme points because it is natural that the skeleton is a closed
set. However, note that the maximal disk centered at each of these two extreme points
touches the ellipse at only one point (one of its extremities along the x axis). Despite
this, these two points are justifiably included in the skeleton Σ(ellipse), on the basis that
they are “multiple tangency points.” This will be discussed in Exercise 16.

It may seem natural to believe that the extreme points of the skeleton should corre-
spond to the focal points of the ellipse, but we will show that this is not the case. To
do this we will calculate the positions of the focal points. They are situated along the
x axis at the points (±c, 0). They have the property that for any (x0, y0) of the ellipse,
the sum of the distances from this point to the two focal points is constant. Consider
the points (a, 0) and (0, b) in particular. For (a, 0), the sum of the distances is

(a + c) + (a − c) = 2a.

For the second point we find a sum of distances of

2
√

b2 + c2.

We must have that 2a = 2
√

b2 + c2, which yields

c =
√

a2 − b2.
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Fig. 4.10. The skeleton of an ellipse. The fire progresses along each line segment from the
point of tangency of an inscribed maximal disk to the center of the disk located on Σ(R).

4.3 Three-Dimensional Regions

The definition of skeletons given in two dimensions applies directly to three dimensions
as well. However, we can distinguish different types of points of a three-dimensional
skeleton based on the number of points of tangency between the corresponding maximal
ball and the region boundary.

Definition 4.10 Let R be a region of space and ∂R its boundary. The linear portion
of the skeleton is defined as

Σ1(R) = {X∗ ∈ R | ∃ X1, X2, X3 ∈ ∂R such that X1 
= X2 
= X3 
= X1

and such that |X∗ − X1| = |X∗ − X2| = |X∗ − X3| = min
X∈∂R

|X∗ − X|}.

The surface portion of the skeleton of R is

Σ2(R) = Σ(R) \ Σ1(R).

Example 4.11 (A circular cone) A solid circular cone is described by the following
set of points:

{(x, y, z) ∈ R3 | z > x2 + y2}.
Any ball inside a cone with two points of tangency to the boundary must have an infinite
number of points of tangency, and its center must lie along the central axis of the
cone. The skeleton is therefore simply the positive z axis, Σ(cone) = {(0, 0, z), z > 0},
and contains only a linear part. As we will shortly see, this is a rather unique case.
Figure 4.11(a) shows the boundary of a cone, its skeleton, and one maximal ball.
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(a) The skeleton of a solid circular
cone is given by its central axis

(b) The skeleton of an infinite wedge
is given by the bisecting half-plane

Fig. 4.11. The skeletons of two simple regions. (a) While the region is the solid (filled) cone,
only the boundary of the cone is shown, as well as one maximal ball and its circle of tangency.
(b) An infinite wedge consists of all points between two half-planes emanating from a common
axis. A maximal ball is shown with its two points of tangency.

Example 4.12 (An infinite wedge) Another simple geometric region is the infinite
wedge formed by two half-planes emanating from a common axis. The skeleton of this
region is the half-plane bisecting the dihedral angle between the bounding half-planes. In
this case, the skeleton contains only a surface part. Figure 4.11(b) shows an infinite
wedge and its skeleton. A maximal ball and its points of tangency have been indicated.

The two preceding examples were intuitive and simple. However, neither of them
is representative of typical regions. In fact, regions generally have both a linear and
surface part. In many of these cases the linear part (or a portion of it) is the boundary
of the surface part. We consider an example of this form.

Example 4.13 (A rectangular parallelepiped with two square faces) We con-
sider the parallelepiped region R = [0, b] × [0, h] × [0, h] ⊂ R3 where b > h. To simplify
the example we have chosen two of the side lengths to be equal. As with our previous
examples we must find all balls with at least two points of tangency to the boundary. By
necessity, these points of tangency must be on distinct faces. A family of such balls will
simultaneously touch the four faces with area b × h. These maximal balls have radius
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h
2 , and their centers lie on the segment J = {(x, h

2 , h
2 ) ∈ R3, h

2 ≤ x ≤ b − h
2 }, which is

a subset of the linear portion of the skeleton. Similar to maximal disks in the corner
of a rectangle, each corner of R has a family of maximal balls with radius less than or
equal to h

2 that touch the three adjoining faces. Thus, the linear portion of the skeleton
consists of the segment J and the eight segments from the corners to the ends of J . This
linear portion of the skeleton is shown in Figure 4.12(a).

We can decrease the radius of a maximal ball touching four faces and ensure that it
remains in contact with two faces. Similarly, we can take a ball in contact with three
faces in a corner and slide it toward another corner, all the while maintaining contact
with two faces. The centers of these families of maximal balls are centered along polygons
whose edges are either segments from the linear skeleton or edges of the parallelepiped.
Each of these polygons is a portion of the half-plane bisectors between each pair of
neighboring faces on R. Figure 4.12 presents the skeleton of R from two points of view.
The linear part found earlier is found at the intersections between neighboring polygons.

(a) The linear part of the
skeleton

(b) The entire skeleton (c) A second view of the
skeleton

Fig. 4.12. Skeleton of a rectangular parallelepiped with square faces (b > h).

These examples are far from being practical cases. Only computers can hope to
tackle the complex regions typically encountered in surgical cases. However, since skele-
tons are an important concept in science (see Section 4.6), much research effort is focused
on finding efficient algorithms for computing them numerically (see Section 4.5).

4.4 The Optimal Surgery Algorithm

In this section we will give an overview of an algorithm for optimal dose planning in
gamma-ray surgery. It is based on dynamic programming techniques ([5] and [4]).

To begin with, we recall that we are not required to irradiate the entire region, but
only a fraction 1− ε of it (see (4.1)). Why don’t we need to irradiate the entire region?
The radiation is delivered by focusing an array of 201 beams to a spherical target.
However, due to the fact that the overlapping beams come from all directions, it is
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clear that the area immediately around the target also receives a relatively large dose of
radiation. Experience has shown that we do not need overlapping doses that completely
cover the region, provided that neighboring doses are sufficiently close together. Also,
it bears repeating that we are only looking for a “reasonably optimal” solution. We are
also limited by the four sizes available for the individual doses.

The basic idea of a dynamic programming algorithm is to find the solution step by
step, rather than looking for the entire solution at once.

The underlying idea. Suppose that an optimal solution for a region R is given by

∪N
i=1B(X∗

i , ri).

Then if I ⊂ {1, . . . , N}, we must have that ∪i/∈IB(X∗
i , ri) is an optimal solution for

R \ ∪i∈IB(X∗
i , ri) (see Exercise 8).

Although seemingly naive, this concept is very powerful. It allows us to apply an
iterative process: rather than determining the entire solution at once, we start with a
reasonably optimal initial dose over a subset of the region and optimally plan one dose
at a time.

Choosing the first dose. Any dose in an optimal solution must be centered along
the skeleton of the region. Recall that the doses may have only one of four sizes r1 <
r2 < r3 < r4 and that it is therefore natural to consider ri-skeletons. Consider a planar
region. The initial dose should be placed at an extreme point of one ri-skeleton or at
a point of intersection between various branches of the skeleton (Figure 4.13). (For
a three-dimensional region, the equivalent to a point of intersection between various
branches is any point along the linear part of the skeleton. It is even possible for there
to be points of intersection between branches of the linear part of the skeleton, at which
points the maximal ball has at least four points of tangency.) A dose of radius ri

centered at an extreme point of the ri-skeleton optimally fills a chunk on the boundary
of the region. One centered at a point of intersection will irradiate a disk that has at
least three points of tangency with the boundary. How do we choose between these two
alternatives? In order to cover the region with fewer doses, we favor using larger radius
doses. But we have only a small set of sizes to choose from. The second choice is good
if we can choose a point of intersection X that can support a reasonable radius: that
is, we want the radius d(X) of the maximal ball at point X to be relatively close to
one of the ri. If this is not possible, then we opt for the first choice. In this case, we
need to choose an adequate ri, i = 1, . . . , 4. This is largely dependent on the shape of
the boundary at the extreme point. If it is somewhat pointed or narrow, we will need
to choose a smaller radius to ensure that the nonirradiated area is not too far from the
irradiated one (see Figure 4.14). In contrast, if it is well rounded, then we can choose a
larger radius while ensuring adequate coverage.

The rest of the algorithm. Once we have found an initial dose B(X∗
1 , r1) we simply

iterate the process. We consider the region R1 = R \B(X∗
1 , r1), determine its skeleton,
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(a) A first dose of ra-
dius 4 mm

(b) The skeleton of the
remaining region after
two doses of radii 4 and
7 mm

(c) The entire region ir-
radiated with doses of
radii 2, 4, 7 and 9 mm

Fig. 4.13. Different stages in the irradiation of the region from Figure 4.1.

(a) A small radius (b) A larger radius

Fig. 4.14. Choosing the radius for a dose centered at an extreme point of a skeleton.

and look for a reasonably optimal dose in the same manner as just described. The
tolerance threshold allows us to decide when to stop. If we want to improve the results
of the algorithm we can do so by exploring several initial doses, at each step considering
a few of the next possible dosage placements.

4.5 A Numerical Algorithm for Finding the Skeleton

It is a nontrivial problem to develop a good algorithm for finding the skeleton of a
region. We limit ourselves to discussing the problem in two dimensions. We will take
for granted (without proof) that the skeleton of a simply connected region (a single
piece without holes) is a particular type of graph: a tree.
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The formal definition of a graph varies throughout the literature. In this section we
will consider undirected graphs, defined as follows.

Definition 4.14 1. An (undirected) graph consists of a set of nodes {S1, . . . , Sn} and
a set of edges between them. For each distinct pair of nodes {Si, Sj}, 1 ≤ i < j ≤ n,
we may have at most one edge between them.

2. We say that two graphs are equivalent if the following two conditions are satisfied:
• we have a bijection h between the nodes of the first graph and those of the second;
• there is an edge joining nodes Si and Sj in the first graph if and only if there is

one joining h(Si) and h(Sj) in the second.

Definition 4.15 1. A graph is connected if for all pairs of nodes Si and Sj, there
exists a sequence of nodes Si = T1, T2, . . . , Tk = Sj such that each pair {Tl, Tl+1}
is connected by an edge. In other words, there exists a path between every pair of
nodes in the graph.

2. A path T1, . . . , Tk is said to be a cycle if T1 = Tk and Ti 
= Tj otherwise.
3. A graph that contains no cycles is called a tree.

We will numerically test to see whether interior points of a region are part of the
skeleton. Numerical errors can lead to two problems:

(i) Due to missing certain points that should be included, the skeleton may not be
connected.

(ii) Due to falsely including certain points, the skeleton may include extra branches.

In both of these cases the “topology” of the skeleton has been altered. Thus, it is
important to develop a robust algorithm that does not introduce such defects. We
describe an algorithm from [2].

The algorithm consists of two parts: the first part makes use of the inward burning
fire analogy. The fire propagates along the flow lines in a vector field. This allows the
approximate determination of points in the skeleton as points of discontinuity of the
vector field along the advancing fire front, but it still suffers from the above errors.
The second part of the algorithm seeks to eliminate these errors while preserving the
underlying topology of the skeleton.

4.5.1 The First Part of the Algorithm

We consider the analogy of an inward-burning fire lit simultaneously along the entire
boundary ∂R. At every point X along the boundary ∂R, the fire will burn inward at
a constant velocity (which we will assume equal to 1 unit of distance per unit of time)
along the normal vector to the boundary at X. Each point X in the interior of the
region will be consumed by the fire originating from a point Xb ∈ ∂R such that X
lies along the normal line through Xb. Thus, when the fire reaches the point X it will
continue to travel along the direction of the vector X − Xb at constant speed. Hence
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each interior point X may be associated with a vector V (X), the speed vector, creating
a vector field over the interior of R (see Figure 4.15). The speed vector V (X) has its
origin at X, the direction X − Xb, and length one. We must be careful: if a point X
is at the intersection of several normal lines to ∂R and at the same distance from the
boundary along these normal lines, then V (X) is undefined. Thus V (X) is undefined
at points in Σ(R) and discontinuous around them. This is the property that we will use
to detect points belonging to the skeleton.

(a) A rectangle (b) An ellipse

Fig. 4.15. The vector field V (X) and the skeleton (in dashed lines) for various regions.

Doing this will require the ability to analytically manipulate the vector field V (X).
We introduce the function

d(X) = min
Y ∈∂R

|X − Y |, (4.3)

which returns the distance between the point X and the boundary ∂R. Observe that for
points along Σ(R) the function coincides with the function d introduced in Definition 4.4.
This is a two-dimensional function, depending on the coordinates of X. We will show
that V (X) = ∇d(X).

Definition 4.16 (1) Let U be an open set in Rn and r ≥ 1. A function F =
(f1, . . . , fm) : U → Rm is of class Cr (or simply F is Cr) if for all (i1, . . . , ir) ∈
{1, . . . , n}r and for all j ∈ {1, . . . , m} the partial derivative ∂rfj

∂xi1 ···∂xir
exists and

is continuous. In the case r = 1 we also say that the function is continuously
differentiable.

(2) We say that a curve C in R2 is of class Cr if for every point X0 on C there exist
an open neighborhood U of X0 and a function F : U → R of class Cr such that
C ∩ U = {X ∈ U |F (X) = 0} and the gradient of F does not vanish on U .

Proposition 4.17 Let R be a region such that ∂R is of class C2. Then the function
d(X) is of class C1 over the points R \ Σ(R) and the field ∇d(X) is continuous on the
same set. Moreover, if ∂R is of class C3, then ∇d(X) is of class C1 over R \ Σ(R).
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The proof of this proposition makes use of the implicit function theorem, which is
quite advanced. In order to continue with our discussion of the algorithm we defer this
proof to Section 4.5.3. You can decide to accept the proposition without proof and to
continue with the rest of the algorithm, which is more elementary. In particular, we
concentrate on a useful consequence of this result.

Proposition 4.18 At a point X ∈ R \ Σ(R) the vector field V (X) is given by the
gradient ∇d(X) of the function d(X) defined in (4.3). It is a vector of unit length.

Proof. Consider a point X0 ∈ R \Σ(R). Then B(X0, d(X0)) ⊂ R and S(X0, d(X0)) is
tangent to ∂R at a single point X1. The gradient of d(X) at X0, ∇d(X0), is oriented in
the direction where the rate of increase of d(X) is the largest. We will convince ourselves
that this direction is the inward-pointing normal to ∂R, namely the direction of the line
from X1 to X0. In fact, the directional derivative of d along the direction of a given
unit vector u is given by 〈∇d(X0),u〉, where 〈., .〉 is the scalar product. The boundary
∂R in the neighborhood of X1 can be imagined as an infinitesimally small line segment
parallel to the tangent vector v(X1) to the boundary at X1. Indeed, because X0 is not
on the skeleton, for points X in the neighborhood of X0 then d(X) = |X −X2| with X2

in the neighborhood of X1, so we can forget the other parts of the boundary. Thus, if
we move X0 in a direction parallel to v(X1), then the directional derivative of d(X0) in
this direction will be zero, since the function d is constant. Hence ∇d(X0) is orthogonal
to v(X1), and therefore ∇d(X0) is a scalar multiple of X0 − X1. The length of the
vector ∇d(X0) is given by the directional derivative of d(X) at X0 in the direction of
X0 − X1. Along this line we have that d(X) = |X − X1| as long as X is not a point
on the skeleton. Since we can assume that X1 is constant, it is easy to perform the
calculation, yielding ∇d(X0) = X0−X1

|X0−X1| , which has the expected length 1. �

Definition 4.19 We consider a vector field V (X) defined on a region R, and a circle
S(X0, r) parameterized by θ ∈ [0, 2π], X(θ) = X0 + r(cos θ, sin θ), such that the disk
B(X0, r) lies within R. Let N(θ) = (cos θ, sin θ) be the unit vector normal to S(X0, r)
at X(θ). The flux of the field V (X) along the circle S(X0, r) is given by the line integral

I =
∫ 2π

0

〈V (X(θ)), N(θ)〉 dθ, (4.4)

where 〈V (X(θ)), N(θ)〉 represents the scalar product between V (X(θ)) and N(θ).

Lemma 4.20 The flux of a constant vector field V (X) = (v1, v2) along a circle S(X0, r)
is zero.

Proof.

I =
∫ 2π

0
〈V (X(θ)), N(θ)〉 dθ

=
∫ 2π

0
(v1 cos θ + v2 sin θ) dθ

= (−v1 sin θ + v2 cos θ)
∣∣2π

0
= 0.
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�
Lemma 4.20 gives us the key to finding approximate skeleton points. In fact, when

we are at a point X far from the skeleton, the vector field in a small neighborhood of
X is approximately constant. Thus, the flux along a small circle around X will be very
small. Similarly, we can convince ourselves that the flux will be much larger when the
disk contains skeleton points (see Example 4.21 below).

This gives us a test for finding skeleton points: in order to decide whether a point
X ∈ R is on the skeleton we calculate (4.4) along a small circle containing X and lying
within R. If the value of this integral is below a certain threshold, then we conclude
that X is not on the skeleton. If it exceeds the threshold, we conclude that the disk
probably contains some skeleton points, and we refine our search within the disk.

Example 4.21 At sufficiently small scales, the curves forming the skeleton look like
small line segments. Consider the case in which a portion of the skeleton is a line
segment along the x axis. Then we can verify that the field V (X) = ∇d(X) is given by

V (x, y) =

{
(0,−1), y > 0,

(0, 1), y < 0.

If we consider a circle S(X0, r) centered along the x axis, we find that

I =
∫ π

0

− sin θ dθ +
∫ 2π

π

sin θ dθ = −4.

We can verify that the integral remains nonzero if the circle is not centered on the
axis but still contains a portion of the x axis (the calculation is a little more difficult,
however). Similarly, we can show that the value of the integral diminishes continually
as the center of the circle gets further from the x axis.

Practical implementation of the first part. Suppose that the function d in (4.3)
and its gradient have already been calculated. The region R is identified by a set of
pixels, and for each one we must decide whether it belongs to the skeleton. Take a pixel
P within R, and consider its eight neighboring pixels (those that share a common side
or corner), as shown in Figure 4.16(a). Let δ be the side length of a pixel. Consider
a circle S(P, δ) centered at P with radius δ, and take the eight points Pi dividing the
circle into eight equal arcs such that point Pi falls within pixel i. We calculate the unit
vector Ni normal to S(P, δ) at Pi. We approximate (up to a constant) the integral of
(4.4) with the discrete sum

I(P ) =
2π

8

8∑
i=1

〈Ni,∇d(Pi)〉.

The point P is a candidate to be removed if |I(P )| < ε, where ε is an appropriately
chosen threshold. If the threshold is sufficiently high, then all of the spurious branches
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of the skeleton will be removed. However, if it is too high, we risk removing actual
skeleton points and ending up with a skeleton in several disjoint pieces.

4.5.2 Second Part of the Algorithm

How do we prevent the skeleton from fracturing? How can we ensure that the skeleton
remains a tree? To do this we construct the skeleton in small steps. For each pixel
we decide whether it is in the skeleton. We proceed slowly by removing those points
determined not to be in the skeleton. Starting at the boundary, we proceed layer by
layer until at the end we are left with only the skeleton (or more precisely, a thickened
skeleton visible on screen). Each time we remove a pixel, we ensure that the remaining
pixels remain connected and that the implied graph does not contain any cycles.

(a) The eight
neighbors of P

(b) We remove P (c) We do not re-
move P

Fig. 4.16. The eight neighboring pixels P and the graphs allowing us to decide whether we
remove P .

Practical implementation of the second part. We begin by deciding that the pixels
along the boundary do not belong to the skeleton. We analyze then the inner pixels one
at a time, staring from the boundary. For a given pixel P we begin by calculating I(P ).
If |I(P )| < ε, then the pixel is a candidate to be removed. In order to decide whether
we remove this pixel, we consider its eight neighbors as shown in Figure 4.16(a). If none
of the other neighbors of P have been removed, then we do not remove P , since this
would create a hole. If some of the neighbors have been removed, then we construct a
graph over the remaining neighbors. We connect pixels i and j with an edge if pixels i
and j share either an edge or a corner. The possible pairs of connected neighbors are
(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 1), (2, 4), (4, 6), (6, 8), and (8, 2). We
want to ensure that we do not have any cycles in this graph. Such cycles will be given
by the following triplets of edges:
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⎪⎪⎪⎩
{(1, 2), (8, 1), (8, 2)},
{(2, 3), (3, 4), (2, 4)},
{(4, 5), (5, 6), (4, 6)},
{(6, 7), (7, 8), (6, 8)}.

If any of these triplets are present, then we remove the cycle by removing the di-
agonal edge from the triplet. For example, we would replace the triplet of edges
{(1, 2), (8, 1), (8, 2)} by the pair {(1, 2), (8, 1)}. Once we have constructed the graph
over the remaining neighbors of P we will remove P if and only if this graph is a tree
(see Figures 4.16(b) and (c)). In this way, neither do we cut the skeleton into disjoint
pieces, nor do we create holes in it. Once we have decided for P we study the next pixel
in the same manner. As a note, an efficient method for testing whether this graph is a
tree is explored in Exercise 15.

Remark. This method can be generalized to deal with three-dimensional regions.

4.5.3 Proof of Proposition 4.17

Recall that Proposition 4.17 stated that if R is a region such that ∂R is of class C2

(respectively C3), then the function d(X) is of class C1 (respectively C2) over the points
R \ Σ(R), and the field ∇d(X) is continuous (respectively of class C1) on R \ Σ(R).
In order to show this, we will have to “calculate” d(X). This can be done using the
implicit function theorem, which we state without proof:

Theorem 4.22 Let F = (f1, . . . , fn) : U → Rn be a function of class Cr, r ≥ 1,
defined over an open set U ⊂ Rn+k. We represent the points in U as pairs (X,Y ),
where X ∈ Rn and Y ∈ Rk, and we write X = (x1, . . . , xn). Let (X0, Y0) ∈ U be such
that F (X0, Y0) = 0 and such that the partial Jacobian matrix

J(X0, Y0) =

⎛
⎜⎝

∂f1
∂x1

. . . ∂f1
∂xn

... . . .
...

∂fn

∂x1
. . . ∂fn

∂xn

⎞
⎟⎠ (X0, Y0)

is invertible. Then there exist a neighborhood V of Y0, a unique function g : V → Rn,
and a neighborhood W of (X0, Y0) such that

(i) g is of class Cr on V and its graph lies within W .
(ii) g(Y0) = X0.
(iii) For (X,Y ) ∈ W it follows that F (X,Y ) = 0 if and only if X = g(Y ).

Proof of Proposition 4.17. Let X0 = (x0, y0) be a point of R that is not on
the skeleton. Its distance from the boundary is given by d(X0) = |X0 − X1|, where
X1 = (x1, y1) is a point of ∂R such that the vector X0 − X1 is normal to ∂R. We
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wish to show that d(X) is C1 in a neighborhood of X0. The biggest difficulty is in
calculating d(X). To do this we must identify the boundary point Y = (x, y) that is
closest to a point X = (x, y). We will find it using the implicit function theorem. We
can suppose that the boundary is the level curve f1(Y ) = 0 of a function f1 of class C2

with values in R by Definition 4.16(2). We must have that the vector X − Y is normal
to the boundary at Y . Since the normal vector has the same direction as the gradient
∇f1(Y ) of f1, then the vector X −Y must be parallel to ∇f1(Y ), which may be written
as

f2(x, y, x, y) =

∣∣∣∣∣ x − x ∂f1
∂x (Y )

y − y ∂f1
∂y (Y )

∣∣∣∣∣ = 0.

We are looking for solutions to F (x, y, x, y) = 0 with F = (f1, f2). If f1 is of
class C2, then f2 and therefore F are of class C1. By the implicit function the-
orem (Theorem 4.22), the solutions to F = 0 will be given by a unique function
(x, y) = g(x, y) = g(X) of class C1 if we can show that

J(x1, y1, x0, y0) =

(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
(x1, y1, x0, y0)

is invertible. We have

J(X1, X0)t

=

(
∂f1
∂x (X1) ∂f1

∂y (X1) − (y1 − y0)∂2f1
∂x2 (X1) + (x1 − x0) ∂2f1

∂x∂y (X1)
∂f1
∂y (X1) −∂f1

∂x (X1) + (x1 − x0)∂2f1
∂y2 (X1) − (y1 − y0) ∂2f1

∂x∂y (X1)

)
.

(4.5)

What does the condition det(J(x1, y1, x0, y0)) = 0 signify? It is precisely the condition
under which the circle S(X0, |X1 −X0|) has a contact of order greater than 1 at X0, as
explored in Exercise 16. Such a point corresponds to an extreme point of the skeleton.
We leave the rather delicate proof of this fact to Exercise 17. (A change of variables
allows us to consider the easier case of f1(x, y) = y − f(x) for a function f of class
C2.) Thus, if X0 is not on the skeleton, then J(X1, X0) is invertible. This ensures the
existence of g of class C1.

We now know that d(x, y) = |X − g(X)| is of class C1. Thus ∇d is continuous.
Similarly, had we had supposed that f1 is of class C3, then we would have obtained
that ∇d is of class C1. �
Remark on the proof: Examine the structure of the proof a little further. We started
by taking a point X0 ∈ R \Σ(R). This hypothesis was used only to affirm the existence
of a unique point X1 on the boundary of R closest to X0. This is also true for extreme
points of the skeleton, such as those of the ellipse (see Example 4.9). We wish to show
that for each X in a neighborhood of X0 there exists a unique closest point Y on the
boundary of the region. However, this property does not hold for extreme points of the
skeleton. In fact, such extreme points have neighbors on the skeleton whose minimum
distance to the boundary is realized by more than one point on the boundary. This
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obstruction is reflected by the fact that the Jacobian (4.5) vanishes at the extreme
points of the skeleton.

Remark on the utility of Proposition 4.17: We have shown many regions whose
boundaries are continuous, but only piecewise C3 (for example, any polygonal region).
In these cases the hypothesis of Proposition 4.17 is not satisfied. We could lightly round
the corners of such a region so that the boundary of the modified region would be C3

and the result would apply. We need only convince ourselves that the “rounding” of
the boundary will not significantly alter the skeleton of the region. (See Exercise 18.)

4.6 Other Applications of Skeletons

Skeletons in morphology: The notion of the skeleton of a region was first introduced
in a biological context by Harry Blum [1] in order to describe the forms of organisms
in nature, or morphology. Blum called the skeleton the “axis of symmetry” of the
form. More specifically, when biologists wish to describe a form they are actually more
interested in describing the differences between the forms of two different species. Even
within a species there is a large amount of variability in the form of individual organisms.
Thus, biologists are interested in finding the characteristic properties of the form of all
individuals of the same species. Recall, for example, that the skeleton of a planar region
is a graph (see Definition 4.14). The properties of this graph can be used to describe
the form of a species if the graphs of all individuals are equivalent. In that case we say
that the graph of the skeleton is an “invariant” of the species.

We may associate a graph to the skeleton of a planar region in the following manner:
extremal points and points of intersection of branches of the skeleton become nodes; two
nodes are connected by an edge if the points they represent are connected by a portion
of a skeleton not containing any other nodes.

In the morphological analysis of planar regions, we are interested in differentiating
between forms whose skeleton graphs are not equivalent. Blum’s idea was to define a new
type of geometry adapted to describing natural shapes and based on the notion of points
and “growth.” Inward growth from the boundary leads naturally to the definition of
the skeleton. Outward growth from the skeleton, coupled with the associated distance
function d(X), regenerates the original form.

Blum’s ideas are powerful enough that we reserve Section 4.7 for their discussion.
We will describe a region not by its boundary, but by its skeleton and the thickness of
the region surrounding it. This constitutes the fundamental property of the skeleton.

Some other applications: The concept of the skeleton has long been known by
physicists. It appears naturally in the study of wave fronts, particularly in the field of
geometric optics. As an example, physicists have long known that the skeleton of an
ellipse is a straight line segment.
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Skeletons also arise in the study of the shapes of sand dunes. Since sand dunes have
roughly constant slopes, the projection of the summit edge onto the base is roughly the
skeleton of the base [3].

Skeletons are currently a commonly used concept in the world of three-dimensional
modeling. Given a curve in space X(t) = (x(t), y(t), z(t)), t ∈ [a, b], and for each point
along the curve a radius d(t), then a volume is described by the union of the balls
B(X(t), d(t)) along the curve. This volume is in some sense a generalized cylinder,
whose axis is a curve rather than a straight line and whose radius is variable. In three-
dimensional modeling one tries to approximate a given volume by a finite number of
such generalized cylinders. It is relatively easy to see that such a representation provides
an economical way of describing complicated volumes.

4.7 The Fundamental Property of the Skeleton of a Region

We will characterize the points in the skeleton of a region R through a fundamental
property. All of the proofs in this section will be intuitive, since we will suppose that
the boundary ∂R of R possesses a tangent at each point. It is possible to generalize the
theorem to less well behaved regions, but at the expense of complicating the proofs.

We define the notion of a maximal disk (ball) in a region R of R2 (R3). We will
show that skeleton points are precisely the centers of maximal disks (balls).

Definition 4.23 Let R be a region of the plane R2 (of the space R3). Let B(X, r)
denote a disk (a ball) of radius r centered at X. Then B(X, r) is maximal with respect
to the region R if B(X, r) ⊂ R and B(X, r) is not itself included in any disk (ball)
included in R.

We develop some intuition for this new concept in exploring the following proposi-
tion.

Proposition 4.24 All points X of a region R belong to a maximal disk.

Proof. We give the proof in the case of a region of the plane R2, and invite the reader
to generalize this to higher dimensions.

To do this we will imagine “inflating” a disk around the point X until it is maximal.

Since X is in the interior of R, we can choose a sufficiently small radius ε such
that the disk B(X, ε) is completely contained in R. We increase the radius of this disk
until it touches the boundary of the region. At this point, the radius of the disk is now
minY ∈∂R |X−Y |. A few of the steps in this inflation process are shown in Figure 4.17(a).
The initial disk B(X, ε) is shown with a thick line, while several subsequent disks are
shown in fine lines. The first point of contact X1 with the boundary is indicated. The
line through X and X1 contains a diameter of the circle and is normal to the tangent
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(a) We increase the radius of the disk until it touches the
boundary.

(b) We retreat the center of the disk until it is tangent
to ∂R at no fewer than two points.

Fig. 4.17. Constructing a maximal disk in two steps.

of the circle at X1. Since the circle is itself tangent to the boundary at X1, the line is
also normal to the boundary (see Lemma 4.7).

The disk B(X, minY ∈∂R |X − Y |) contains X but is not necessarily maximal. In
order to see this, draw the line passing through X and X1. This line is normal to the
boundary, and therefore we know that any circle tangent to the boundary at X1 must
have its center along this line (this follows from the fact that R and the disk have the
same tangent at X1 and from Lemma 4.7). Now consider drawing a few larger disks
whose centers remain on the line and that are tangent to the boundary at X1. This
second process of inflation is shown in Figure 4.17(b). The final disk from the previous
step is shown with a thick line, while several subsequent disks are shown in fine lines.
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We stop this process once a second point of contact X2 is obtained. (As shown in
Exercise 16, this second point of contact may be confounded with X1.) The final disk
B(X ′, r) must still contain X. The following lemmas will convince us that it is in fact
maximal. �

Lemma 4.25 If B(X, r) ⊂ R and if its circular boundary S(X, r) contains a point X1

in ∂R, then X1 is a point of tangency between S(X, r) and ∂R.

Proof: Since B(X, r) ⊂ R and S(X, r) contains a point X1 of ∂R, it must be that
r = minY ∈∂R |X − Y |.

Consider the tangent to ∂R at X1. If it is not the same as the tangent line to
the circle S(X, r) at X1, a portion of it must be included in the disk B(X, r) (see
Lemma 4.7). Since the boundary is tangent to this line, a portion of the boundary must
also lie within B(X, r). Finally, this implies that B(X, r) must contain some points
outside of R (Figure 4.18), which is a contradiction. �

Fig. 4.18. A disk B(X, r) included in R and whose boundary S(X, r) touches ∂R at X1 must
be tangent to ∂R at X1.

Lemma 4.26 If B(X, r) ⊂ R and S(X, r) contains two distinct points X1 and X2 of
∂R, then B(X, r) is a maximal disk of R. (We could also generalize this to the case of
a single point of contact between S(X, r) and ∂R of order greater than 1. See Exercise
16.)

Proof: The question we must answer is the following: does there exist a disk B(X ′, r′)
(distinct from B(X, r)) such that

B(X, r) ⊂ B(X ′, r′) ⊂ R? (�)
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If not, then B(X, r) is maximal. We will thus try to construct such a B(X ′, r′).

Fig. 4.19. On the hunt for a disk B(X ′, r′) as described in Lemma 4.26.

Since X1, X2 ∈ S(X, r), it must be that the circular boundary S(X ′, r′) of B(X ′, r′)
also contains these points. Since they are at the boundary ∂R and since B(X ′, r′) must
lie within R, it is impossible to choose X ′ = X and r′ > r.

Since X1 and X2 must be on the circle S(X ′, r′), they must be the same distance away
from the center X ′. Thus, the center must lie along the perpendicular bisector of the two
points. But by constructing a circle S(X ′, r′) whose center lies along the perpendicular
bisector and whose boundary includes both X1 and X2, we see that S(X ′, r′) is no
longer tangent to ∂R at either X1 or X2 (see Figure 4.19) unless X = X ′ and r = r′.
So the disk B(X ′, r′) can therefore not lie strictly within R, by the contrapositive of
Lemma 4.25. Thus there does not exist a disk B(X ′, r′) that satisfies (�), and therefore
B(X, r) is maximal. �

We are now ready to introduce the fundamental property of the skeleton Σ(R) of a
region R.

Theorem 4.27 The skeleton of a region R of the plane R2 (the space R3) is the set of
centers of all maximal disks (balls) of R.

Proof: Even though this theorem remains valid for more general regions, we will limit
our discussion to two-dimensional regions with continuously differentiable boundaries.

Let E be the set of centers of maximal disks. Proving the equivalence of the two
definitions amounts to proving the following two inclusions:{

Σ(R) ⊂ E,

Σ(R) ⊃ E.
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If X ∈ Σ(R) and d(X) = minY ∈∂R |X − Y |, then the circle S(X, d(X)) contains
two points X1 and X2 of ∂R, the disk B(X, d(X)) is contained within R, and therefore
B(X, d(X)) is maximal by Lemma 4.26. Thus we have that Σ(R) ⊂ E.

To prove the other direction, consider a point X ∈ E and a radius r such that
B(X, r) is maximal. Then B(X, r) ⊂ R. The circle S(X, r) must contain a point
X1 ∈ ∂R as otherwise we could have applied the first “inflation” step to yield a larger
disk containing B(X, r) (see Figure 4.17(a)). Similarly, there must be a second point of
tangency, since otherwise we could apply the second “inflation” to again find a larger
disk containing B(X, r) (see Figure 4.17(b)). Thus B(X, r) is of maximal radius (that is,
r = minY ∈∂R |X−Y |) and touches ∂R at two points. These are precisely the conditions
required for X to be in the skeleton Σ(R). �

We leave the proof of the following corollary to the exercises.

Corollary 4.28 A region R of the plane R2 (the space R3) is completely determined
by its skeleton Σ(R) and the function d(X) defined for X ∈ Σ(R).

4.8 Exercises

1. (a) Find the skeleton of a triangle. Determine its r-skeleton.
(b) Show that the skeleton of the triangle is the union of three line segments. What
classical theorem of Euclidean geometry assures us that these three segments meet at a
point?

2. This exercise explores the analogy between the r-skeleton and a fire lit simultaneously
at all points along the boundary of a region R ⊆ R2. Let v be the speed of the fire.
Describe the points of the r-skeleton in terms of this analogy.

3. Can you construct a region R whose skeleton is
(a) a single point?
(b) a line segment? (Other than an ellipse!)

4. The rectangle example shows that its skeleton consists of five line segments.
(a) What is the skeleton of a square (b = h)? Show that this skeleton consists of only
two segments.
(b) Are there other regions that have the same skeleton as the square?

5. Determine the skeleton of a parabola (see Figure 4.20). Is the focus of the parabola an
extreme point of its skeleton?

6. (a) Let R be the region of R2 represented at the left in Figure 4.21. Both of the curves
are semicircles. Draw the skeleton of this region.
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Fig. 4.20. The advancing front of a fire on a parabola (Exercise 5).

(b) Let L be the region of R2 represented at the right in Figure 4.21. What are the
radius and the center of the largest circle that may be inscribed in this region? (Note:
the two arms of L have the same width (h = 1) and the curves are again semicircles.)
(c) Draw the skeleton of the region L as precisely as possible and explain your answer.
(If this skeleton consists of several curves or segments, then their points of intersection
should be clearly marked.)

Fig. 4.21. Regions R and L for Exercise 6.

7. Think of an algorithm for drawing the skeleton of a polygon, both convex and not
convex. Similarly, think of an algorithm for drawing the r-skeleton of a polygon.

8. In the context of gamma-ray radiosurgery, let us suppose that an optimal solution for
a region R is given by ∪N

i=1B(X∗
i , ri). Explain why it is natural that if I ⊂ {1, . . . , N},

then ∪i/∈IB(X∗
i , ri) is an optimal solution for R \ ∪i∈IB(X∗

i , ri).
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9. The proof of Theorem 4.27 does not apply to the skeleton of the triangle, since the
tangent vectors at the corners are ill-defined. Show (by some other method) that this
theorem still holds for triangles.

10. Find the skeleton of a rectangular parallelepiped whose sides have three distinct lengths.
Find its r-skeleton.

11. What is the skeleton of a tetrahedron? What is its r-skeleton?

12. What is the skeleton of a cone with an elliptical cross section?

13. Consider an ellipsoid of revolution, given by

x2

a2
+

y2

b2
+

z2

b2
= 1,

for b < a. Describe its skeleton and justify your answer.

14. What is the skeleton of a cylinder with height h and radius r? You will have to consider
three cases: (i) h > 2r, (ii) h = 2r, and (iii) h < 2r.

15. (a) Show that a connected graph is a tree if and only if its Euler number (defined as
the number of nodes minus the number of edges) is 1.
(b) Show that an acyclic graph is connected (in other words, it is a tree) if and only
if it has an Euler number of 1.

16. The extreme points of the ellipse with b < a. This exercise extends Example 4.9.
The points of the skeleton were identified as being the points of the interior of the ellipse
that are reached simultaneously by two or more fires originating from distinct points on
the boundary. The skeleton is a segment of the major axis whose two extremities(

a2 − b2

a
, 0
)

and
(
−a2 − b2

a
, 0
)

are not reached by fires originating from two distinct points. For instance, by studying
Figure 4.10 we see that the extreme point (a2−b2

a , 0) is first reached by the fire originating
at (a, 0). Why do these two extreme points belong to the skeleton? The answer lies in
the domain of differential geometry.

Let α(x) = (x, y1(x)) and β(x) = (x, y2(x)) be two curves in the plane that touch
at x = 0:

α(0) = β(0).

We say that α and β have a contact of order at least p ≥ 1 if
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d
dxα(0) = d

dxβ(0),
d2

dx2 α(0) = d2

dx2 β(0),
...
dp

dxp α(0) = dp

dxp β(0).

The contact is of order exactly p if moreover, dp+1

dxp+1 α(0) 
= dp+1

dxp+1 β(0). Intuitively,
a high-order contact between two curves indicates that they stay close to each other
“longer” as we distance ourselves from the point of actual contact, or that their “degree
of tangency” is higher. A parallel can be drawn to the concept of multiplicity of roots.
When we have a root with multiplicity p we treat it as the limiting case of p roots that
approach each other. Here we can consider a point of contact of order p as the limiting
case of p points of tangency approaching each other.

We will calculate the order of contact between the maximal disk at the end of the
minor axis (at (0, b)) and then at the end of the major axis (at (a, 0)).
(a) Show that the equation of the circle delimiting the boundary of the maximal disk
tangent to the ellipse at (0, b) is given by

α(x) =
(
x,
√

b2 − x2
)

and that the ellipse is

β(x) =
(

x,
b

a

√
a2 − x2

)
.

Show that these two curves touch at x = 0. Show that the order of the point of contact
between these two curves is 1 but not higher.
(b) To study the point of contact at (a, 0) it is useful to change the role of x and y in
the above definition. Thus, the equation of the ellipse becomes

β(y) =
(a

b

√
b2 − y2, y

)
.

(Convince yourself of this fact!) Write the equation of the circular boundary of the
maximal disk tangent to the ellipse at (a, 0) in the form of α(y) = (f(y), y) for some
function f(y). What is the order of contact between the two curves at this point? (The
order of contact is determined by taking the derivatives of the curves with respect to
y.) Conclude that it is reasonable to include the two extreme points (±(a2 − b2)/a, 0)
in the skeleton Σ(ellipse).

17. In the case that the function f1(x, y) of the proof of Proposition 4.17 is of the form
f1(x, y) = y − f(x), show that the condition that J be noninvertible (in other words,
det(J) = 0, where J is given by (4.5)) is equivalent to saying that the curve y = f(x)
has a contact of order at least 2 at (x1, y1) to the circle (x − x0)2 + (y − y0)2 = r2,
where r2 = (x1 − x0)2 + (y1 − y0)2. (To do this, write the circle in the form y = g(x)
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and show that f(x1) = g(x1) = y1 and f ′(x1) = g′(x1) implies det(J) = 0 if and only
if f ′′(x1) = g′′(x1). The concept of “contact of order p” was defined and explored in
Exercise 16.

18. We consider a region Rε consisting of a rectangle R whose corners have been replaced
by small circles of radius ε (see Figure 4.22). Give the skeleton of Rε. Show that it
coincides with the r-skeleton of R for a given value r. What is the value?
(Remark: The boundary of Rε is only C1. In order to obtain a boundary that is
piecewise C3 we would have to replace the quarter-circles by curves with points of
contact of order 3 to the sides of the rectangle. However, the exercise still illustrates
that in the case of a convex domain, there exists an r0 such that for r > r0 there is
no difference between the r-skeleton of the original region and that of the “smoothed”
region. For nonconvex regions the result is not quite so simple, but we can still obtain
a reasonable approximation to the skeleton by smoothing the boundary.)

Fig. 4.22. The region Rε of Exercise 18.

19. Relationship to Voronoi diagrams (see Section 15.5). Show that the skeleton of
the complement R of a set S of n points is given by the edges of the Voronoi diagram
over S. (This means that the boundary of R is given by S.)
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5

Savings and Loans

This chapter requires only a familiarity with geometric series, recursive sequences, and

limits. It can be covered in two hours of class and contains no advanced part (see the

preface).

Nothing seems further from mathematics than buying a home or planning for retirement,
especially to a twenty-year-old. However, the saving and borrowing of money is subject
to various rules that are amenable to mathematical modeling. In fact, this is one of the
oldest uses of mathematics.

Leibniz wrote numerous scientific papers on the subjects of interest, insurance, and
financial mathematics [2]. However, our civilization is not the first to have considered
these issues. In 1933, an archaeological dig in Iran directed by Contenau and Mecquenem
discovered several Babylonian tablets. These tablets were heavily studied over the next
few decades, and several of them had mathematical content. In particular, one of the
tablets discussed the calculation of compound interest and annuities [1]. These tablets
were dated to the end of the first Babylonian dynasty, a little after Hammurabi (1793–
1750 BC). As such, the problems discussed in this chapter are surely among the oldest
applications of mathematics!

The mathematics used in these financial problems is quite simple. Nonetheless,
the average person is not familiar with mortgage terminology and is often suspicious
of the seemingly amazing promises of retirement plans. Since these are issues that
affect everyone at some point, it is well worth learning the underlying vocabulary and
mathematics.

5.1 Banking Vocabulary

As with many subjects in which mathematics is used, the commonly used vocabulary
was not created by mathematicians. In these fields, terms are often unclear or even

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 5, c© Springer Science+Business Media, LLC 2008
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downright confusing. Thankfully, in the financial world they are both simple and precise.
Two examples will allow us to introduce the basic vocabulary.

The first example is that of a savings account. Suppose a person deposits $1000 into
a savings account with the intention of withdrawing the money in exactly five years.
The bank agrees to pay 5% annually. The initial deposit, or principal , is the amount
that was originally placed into the account. In this example it is $1000. The 5% paid
by the bank is the interest rate.1

The second example is that of a loan. You have worked several summer jobs but
you are $5000 short of buying your first car. You decide to borrow this money from a
bank. The bank requires you to repay the loan by paying $156.38 monthly for three
years because the loan is made with an interest rate of 8%. The loan amount, or initial
balance, is the $5000 that the bank initially lends you, the monthly payment is $156.38,
and the amortization period is three years. At every moment during those three years,
the precise amount remaining to be paid to the bank (from the original $5000) is referred
to as the outstanding balance. At the end of the three years the outstanding balance
will be zero and the car will belong completely to you.

5.2 Compound Interest

There are two types of interest: simple and compound. We will start by discussing
compound interest, which is by far the most commonly used.

Compound interest does not “add,” but rather it “compounds.” What precisely
does this mean? In the first example of the previous section, the interest rate was 5%
(understood to be annual). After the first year the principal of $1000 will be worth

$1000 + (5% of $1000) =
(

$1000 +
5

100
× $1000

)
= ($1000 + $50) = $1050.

However, the same interest is not simply added the following year. In fact, the interest
in the second year will be calculated based on the “new” balance of $1050 after the first
year. Thus, after two years, the balance is

$1050 + (5% of $1050) =
(

$1050 +
5

100
× $1050

)
= ($1050 + $52.50) = $1102.50.

Is the $2.50 at all significant? Over time, this small difference will play a large role.
Continuing the calculation for each of the remaining anniversaries, we obtain

1The expressions 5% and n% signify fractions of 100. Thus, 5% represents 5
100

, and n%
represents n

100
.
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3rd anniversary: $1157.63,

4th anniversary: $1215.51,

5th anniversary: $1276.28.

If the interest applied each year remained the same as it was at the end of the first
year, the final balance would have been ($1000 + 5 × $50) = $1250. However, since the
interest was compounded, the closing balance is instead $1276.28.

It is time to formalize this concept. Let pi be the balance after the ith anniversary
and let p0 be the initial balance. Let r be the interest rate, where r = 5

100 in the above
example. The balance pi at the ith anniversary may be calculated using the balance
pi−1 from the previous anniversary. In fact, it is given by the simple relation

pi = pi−1 + r · pi−1 = pi−1(1 + r), i ≥ 1.

Expanding this recursive formula, we see that

pi = pi−1(1 + r)

= (pi−2(1 + r)) (1 + r) = pi−2(1 + r)2

= · · ·
= p0(1 + r)i, i ≥ 1. (5.1)

This is the formula for compound interest. A mathematician would read this formula
by saying that “the balance grows geometrically,” meaning that it grows like the power
of 1 + r (which is greater than 1).

Most banks actually calculate their interest over shorter time periods. Suppose that
in the previous example, the interest was applied quarterly, which is to say every three
months. Since there are four cycles of three months in a year, the bank would calculate
an interest of r

4% = 5
4% every three months. After one year, there would be four interest

deposits, and their compounding would produce an effective interest rate greater than
the announced 5%. In fact,

1 + reff =
(
1 +

r

4

)4

and
reff = 5.095%,

which is to the client’s advantage. When a bank calculates interest at intervals smaller
than a year, the advertised interest rate is called the nominal interest rate. The actual
rate of interest observed at the end of a year will be slightly higher than this and is
called the effective interest rate. In the last example, the nominal interest rate was 5%,
while the effective rate was 5.095%.

As we may imagine, the effective interest rate increases as the compounding inter-
val shrinks. For example, if the interest is compounded daily, then the effective rate
associated with r = 5% is
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reff =
(
1 +

r

365

)365

− 1 = 5.12675%.

What about interest compounded at every hour? At every second? At every millisec-
ond? Mathematicians are naturally led to pose the following question: does there exist
a limit for the effective interest rate as the compounding period tends to zero? If the
year is divided into n equal pieces, then the effective interest rate associated with a
nominal rate of r is given by

1 + reff(n) =
(
1 +

r

n

)n

.

The most generous banker in the world would apply interest continuously, and the
effective rate would be

1 + reff(∞) = lim
n→∞(1 + reff(n)) = lim

n→∞

(
1 +

r

n

)n

= er.

The last step of the above equation uses the formula

lim
n→∞

(
1 +

1
n

)n

= e,

which is normally shown in a first calculus course. Using the change of variables m = n
r ,

we obtain

lim
n→∞

(
1 +

r

n

)n

= lim
m→∞

(
1 +

1
m

)mr

=
(

lim
m→∞

(
1 +

1
m

)m)r

= er.

It is somewhat amusing to note the appearance of the base e of the natural logarithms
in such a seemingly simple calculation. (Since loans have been around as long as there
have been people, bankers could easily have been the first to discover this number.) If
r = 5% as in our earlier examples, then a savings period of 20 years multiplies the initial
principal by e. This is seen easily using (5.1), since

p20 = p0(1 + reff(∞))20 = p0(er)20 = p0e
5

100×20 = p0e.

There is not a large difference between the nominal rate of r = 5% and the corresponding
limiting effective rate reff(∞): reff(∞) = er − 1 = 5.127, 109 . . . %. As such, bankers do
not use the limiting effective rate (a somewhat abstract concept) as a marketing tool.

Simple interest is very rare and is almost never used in banking circles. It consists
in calculating interest based on the initial deposit regardless of the anniversary. In the
case of a initial deposit p0 = $1000 and an interest rate r = 5%, the (simple) interest
applied each year will be $1000 × 5

100 = $50, and the balances at the end of the first
five anniversaries will be
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p1 = $1050,
p2 = $1100,
p3 = $1150,
p4 = $1200,
p5 = $1250.

This is called an arithmetic progression, and it grows linearly with the number of years
since the initial deposit:

pi = p0(1 + ir).

If you are looking to put money into a savings account, refuse simple interest. However,
if somebody offers you a loan using simple interest, they are being very generous!

5.3 A Savings Plan

Financial institutions recommend starting to save for retirement as early as possible.
They propose several savings plans, some of which promise that you can begin your
retirement on the day of your 55th birthday, with guaranteed financial comfort. For a
young student this may seem quite far off, and it may not seem like such a big deal to
delay starting a savings plan by a few years. But the banks are right: the sooner you
start, the better!

A savings plan might involve putting aside an amount of Δ dollars annually, for N
years. During these N years the bank offers an interest rate r, which we will assume is
compounded annually. The variables are as follows:

Δ : annual deposit into the savings account,
r : constant interest rate during the N years,

N : duration of the savings plan,

pi : balance of the account after i years, i = 0, 1, . . . , N.

We will assume that the client starts the plan by depositing Δ dollars on the first day;
thus

p0 = Δ.

After one year, the interest is calculated and deposited into the account, and the client
deposits an additional Δ dollars as well. At the end of this first year, the balance is

p1 = p0 + rp0 + Δ = p0(1 + r) + Δ.

This logic can be repeated for each following year, yielding the recurrence relation

pi = pi−1(1 + r) + Δ.
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It is possible to determine pi as a function of p0. By experimenting a little, we guess
the answer:

p2 = p1(1 + r) + Δ
= (p0(1 + r) + Δ) (1 + r) + Δ

= p0(1 + r)2 + Δ(1 + (1 + r))

and

p3 = p2(1 + r) + Δ

=
(
p0(1 + r)2 + Δ(1 + (1 + r))

)
(1 + r) + Δ

= p0(1 + r)3 + Δ
(
1 + (1 + r) + (1 + r)2

)
.

It is tempting to propose a general formula of

pi = p0(1 + r)i + Δ
(
1 + (1 + r) + (1 + r)2 + · · · + (1 + r)i−1

)
= p0(1 + r)i + Δ

i−1∑
j=0

(1 + r)j . (5.2)

This formula will be proved in Exercise 1.
Recalling that the sum of the first i powers of a number x is given by

i−1∑
j=0

xj =
xi − 1
x − 1

if x 
= 1, then we obtain

pi = Δ(1 + r)i + Δ
i−1∑
j=0

(1 + r)j , since p0 = Δ

= Δ
i∑

j=0

(1 + r)j

= Δ
(1 + r)i+1 − 1

(1 + r) − 1

=
Δ
r

(
(1 + r)i+1 − 1

)
and therefore

pi =
Δ
r

(
(1 + r)i+1 − 1

)
. (5.3)

Thus, after N years we have a closing balance of pN = Δ((1 + r)N+1 − 1)/r. Observe
that if the client begins his retirement after N years, he will not deposit the final amount
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of Δ dollars into the account, since this is the day he begins living off his savings. Thus,
the actual final balance will be

qN = pN − Δ

=
Δ
r

(
(1 + r)N+1 − 1

)− Δ

=
Δ
r

(
(1 + r)N+1 − 1 − r

)
=

Δ
r

(
(1 + r)N+1 − (1 + r)

)
. (5.4)

Rather than (5.3), we will use (5.4) from now on.

Example 5.1 (a) We present a numerical example to help give some idea of such a
savings plan. Suppose that an annual deposit of Δ = $1000 is deposited over an N = 25
year period. If the interest rate is 8%, then the final balance is

qN =
Δ
r

(
(1 + r)N+1 − 1

)− Δ = $78,954.42,

even though the client spent only $25,000.
(b) Suppose that a second client started her savings one year later than the client in

the first example, but still retired the same year. What difference will there be in the
final balances? For the second client we have that N = 24, while the other variables
remain the same. Thus, q24 = $72,105.94, and the difference between the two balances
is $6848.48. By having contributed only $1000 less than the first client, the second client
finds herself with almost 10% less money than the first. As you can see, the banks are
right: start your retirement savings early!

At the beginning of our discussion we made the hypothesis that the interest rate
offered over the N years would remain constant. This is not very realistic! Figure 5.3
shows the average interest rate for housing mortgages charged by large Canadian banks
over the last fifty years. When banks charge higher interest rates to borrowers, they are
able to pay higher rates on savings.

5.4 Borrowing Money

Many people borrow money in order to pay for expensive things like cars, appliances,
education, and homes. It is therefore useful to understand how various loans work.

When buying a home, a buyer normally uses a portion of her savings to make a
down payment. The rest of the purchase cost is typically borrowed from a bank. The
down payment and the borrowed sum are paid directly to the previous owner, and the
new owner is left with the responsibility of paying back the bank.
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Banks typically let clients choose the amortization period of the loan, associated
with which will be an interest rate r and a monthly payment Δ. Here are the variables
involved:

pi : amount of the borrowed money left to repay after the ith month,

Δ : monthly payment amount,
rm : effective monthly interest rate,
N : amortization period (in years).

The amount p0 represents the initial amount of money borrowed from the bank, in other
words, the purchase price minus the down payment. It is important to note that the
variable i in this section counts months rather than years. At the end of each month,
interest is calculated and charged, but the borrower also makes a payment of Δ dollars.
Thus, if the borrower owed pi after i months, after i + 1 months she owes

pi+1 = pi(1 + rm) − Δ.

The negative sign in front of Δ indicates that the borrower reduces her debt with her
payment, while the monthly interest rmpi increases it. (Thus, it is possible to reduce
the debt only if pirm < Δ.) Since she chose to pay back her debt over N years (and
therefore 12N months), it is required that

p12N = 0.

Fig. 5.1. The average interest rate for housing mortgages charged by large Canadian banks
since 1950. (Source: website of the Bank of Canada.)
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Using a similar calculation to that of the previous section (exercise!), it is possible to
express pi as a function of p0. We find that

pi = p0(1 + rm)i − Δ
i−1∑
j=0

(1 + rm)j

= p0(1 + rm)i − Δ
(1 + rm)i − 1

rm
. (5.5)

Since the bank fixes the interest rate (and therefore rm) and the client chooses the
principal p0 and the amortization period N , the only unknown is Δ. Using the fact
that p12N = 0, it follows that

0 = p12N = p0(1 + rm)12N − Δ
rm

(
(1 + rm)12N − 1

)
and therefore

Δ = rmp0
(1 + rm)12N

((1 + rm)12N − 1)
. (5.6)

Fig. 5.2. Outstanding balance during the first year (left) and during the 20-year amortization
period (right). See Example 5.2.

Example 5.2 Consider a loan of $100,000 paid over a 20-year period with a monthly
interest rate of 2

3% (and therefore a nominal annual rate of 12 × 2
3% = 8%). The

borrower must make monthly payments of

Δ =
2

300
× $100,000 × (1 + 2

300 )240(
(1 + 2

300 )240 − 1
) = $836.44.

The 240 monthly payments of $836.44 will total 240 × $836.44 = $200,746, more than
twice the amount borrowed. Using (5.5), we can plot the outstanding balance pi over
the course of the 20-year amortization period. Figure 5.2 shows the progress of the debt
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repayment during the first year (at left) and during the entire amortization period (at
right). Observe that during the first year of repayment the balance did not even decrease
by $3000, even though the borrower made 12 × $836.44 = $10,037.28 in payments!
Mortgages can be pretty frustrating.

If we wish to pay back the debt in 15 years rather than 20, then the monthly payment
will be $955.65 with a total repayment of $172,017. The difference of more than $28,000
between a 20-year and a 15-year mortgage would no doubt make many people think twice
when choosing an amortization period. You will surely think about it when making your
first home purchase.

In the first section we saw the difference between nominal interest rates and effective
interest rates. A similar distinction appears for mortgage rates. Banks always mention
their annual mortgage rate r without explaining how the monthly rate rm is calculated.
Is it

rm =
r

12
? (rm1)

Or is rm determined by
(1 + r) = (1 + rm)12? (rm2)

In the first case, the effective annual interest rate would be

reff1 = (1 + rm1)12 − 1 =
(
1 +

r

12

)12

− 1,

while in the second case it would be reff2 = r. It is clear that (1 + r
12 )12 − 1 > r (why?)

and that banks will make more money with a monthly rate of rm1 than one of rm2.
Thus rm1 favors the banks, while rm2 favors the borrowers. The question remains, how
is the rate calculated?

The answer depends on the country! Even in North America, monthly rates are
calculated differently in Canada and the United States. American banks use rm1, while
Canadian banks use neither. In fact, in Canada the formula(

1 +
r

2

)
= (1 + rm)6 (rmCAN)

is used. In other words, Canadian monthly mortgage rates are calculated such that
when compounded over six months they must equal half of the nominal annual rate.
Knowing exactly how rm is calculated is necessary to reproduce the calculations made
by bankers.

5.5 Appendix: Mortgage Payment Tables

The following two pages contain monthly payment tables for nominal annual interest
rates of 8% and 12%. These are the types of tables that can be found in books called
mortgage payment tables. The top line gives the amortization period in years, and the
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leftmost column the amount borrowed. These tables are provided as an example and
are used in several exercises. The effective monthly interest rate has been calculated
according to Canadian rules.



166 5 Savings and Loans

1
2

3
4

5
6

7
8

9
1
0

1
5

2
0

2
5

1
0
0
0

8
6
.9

3
4
5
.1

7
3
1
.2

8
2
4
.3

5
2
0
.2

1
1
7
.4

7
1
5
.5

2
1
4
.0

7
1
2
.9

5
1
2
.0

6
9
.4

8
8
.2

8
7
.6

3
2
0
0
0

1
7
3
.8

6
9
0
.3

4
6
2
.5

5
4
8
.7

0
4
0
.4

3
3
4
.9

4
3
1
.0

4
2
8
.1

4
2
5
.9

0
2
4
.1

3
1
8
.9

6
1
6
.5

7
1
5
.2

6
3
0
0
0

2
6
0
.7

8
1
3
5
.5

0
9
3
.8

3
7
3
.0

6
6
0
.6

4
5
2
.4

1
4
6
.5

6
4
2
.2

1
3
8
.8

5
3
6
.1

9
2
8
.4

4
2
4
.8

5
2
2
.9

0
4
0
0
0

3
4
7
.7

1
1
8
0
.6

7
1
2
5
.1

1
9
7
.4

1
8
0
.8

6
6
9
.8

8
6
2
.0

9
5
6
.2

8
5
1
.8

1
4
8
.2

6
3
7
.9

3
3
3
.1

3
3
0
.5

3
5
0
0
0

4
3
4
.6

4
2
2
5
.8

4
1
5
6
.3

8
1
2
1
.7

6
1
0
1
.0

7
8
7
.3

5
7
7
.6

1
7
0
.3

5
6
4
.7

6
6
0
.3

2
4
7
.4

1
4
1
.4

2
3
8
.1

6
6
0
0
0

5
2
1
.5

7
2
7
1
.0

1
1
8
7
.6

6
1
4
6
.1

1
1
2
1
.2

8
1
0
4
.8

2
9
3
.1

3
8
4
.4

2
7
7
.7

1
7
2
.3

8
5
6
.8

9
4
9
.7

0
4
5
.7

9
7
0
0
0

6
0
8
.5

0
3
1
6
.1

8
2
1
8
.9

3
1
7
0
.4

6
1
4
1
.5

0
1
2
2
.2

9
1
0
8
.6

5
9
8
.4

9
9
0
.6

6
8
4
.4

5
6
6
.3

7
5
7
.9

9
5
3
.4

2
8
0
0
0

6
9
5
.4

3
3
6
1
.3

4
2
5
0
.2

1
1
9
4
.8

1
1
6
1
.7

1
1
3
9
.7

6
1
2
4
.1

7
1
1
2
.5

6
1
0
3
.6

1
9
6
.5

1
7
5
.8

5
6
6
.2

7
6
1
.0

6
9
0
0
0

7
8
2
.3

5
4
0
6
.5

1
2
8
1
.4

9
2
1
9
.1

7
1
8
1
.9

3
1
5
7
.2

3
1
3
9
.6

9
1
2
6
.6

4
1
1
6
.5

6
1
0
8
.5

8
8
5
.3

3
7
4
.5

5
6
8
.6

9
1
0
0
0
0

8
6
9
.2

8
4
5
1
.6

8
3
1
2
.7

6
2
4
3
.5

2
2
0
2
.1

4
1
7
4
.7

0
1
5
5
.2

1
1
4
0
.7

1
1
2
9
.5

1
1
2
0
.6

4
9
4
.8

2
8
2
.8

4
7
6
.3

2
1
5
0
0
0

1
3
0
3
.9

2
6
7
7
.5

2
4
6
9
.1

5
3
6
5
.2

8
3
0
3
.2

1
2
6
2
.0

5
2
3
2
.8

2
2
1
1
.0

6
1
9
4
.2

7
1
8
0
.9

6
1
4
2
.2

2
1
2
4
.2

5
1
1
4
.4

8
2
0
0
0
0

1
7
3
8
.5

7
9
0
3
.3

6
6
2
5
.5

3
4
8
7
.0

4
4
0
4
.2

8
3
4
9
.4

0
3
1
0
.4

3
2
8
1
.4

1
2
5
9
.0

3
2
4
1
.2

8
1
8
9
.6

3
1
6
5
.6

7
1
5
2
.6

4
2
5
0
0
0

2
1
7
3
.2

1
1
1
2
9
.2

0
7
8
1
.9

1
6
0
8
.8

0
5
0
5
.3

5
4
3
6
.7

4
3
8
8
.0

4
3
5
1
.7

7
3
2
3
.7

8
3
0
1
.6

0
2
3
7
.0

4
2
0
7
.0

9
1
9
0
.8

0
3
0
0
0
0

2
6
0
7
.8

5
1
3
5
5
.0

4
9
3
8
.2

9
7
3
0
.5

6
6
0
6
.4

2
5
2
4
.0

9
4
6
5
.6

4
4
2
2
.1

2
3
8
8
.5

4
3
6
1
.9

2
2
8
4
.4

5
2
4
8
.5

1
2
2
8
.9

6
3
5
0
0
0

3
0
4
2
.4

9
1
5
8
0
.8

8
1
0
9
4
.6

7
8
5
2
.3

2
7
0
7
.5

0
6
1
1
.4

4
5
4
3
.2

5
4
9
2
.4

7
4
5
3
.3

0
4
2
2
.2

4
3
3
1
.8

5
2
8
9
.9

3
2
6
7
.1

2
4
0
0
0
0

3
4
7
7
.1

3
1
8
0
6
.7

2
1
2
5
1
.0

5
9
7
4
.0

7
8
0
8
.5

7
6
9
8
.7

9
6
2
0
.8

6
5
6
2
.8

2
5
1
8
.0

5
4
8
2
.5

6
3
7
9
.2

6
3
3
1
.3

4
3
0
5
.2

9
4
5
0
0
0

3
9
1
1
.7

7
2
0
3
2
.5

6
1
4
0
7
.4

4
1
0
9
5
.8

3
9
0
9
.6

4
7
8
6
.1

4
6
9
8
.4

6
6
3
3
.1

8
5
8
2
.8

1
5
4
2
.8

8
4
2
6
.6

7
3
7
2
.7

6
3
4
3
.4

5
5
0
0
0
0

4
3
4
6
.4

1
2
2
5
8
.4

0
1
5
6
3
.8

2
1
2
1
7
.5

9
1
0
1
0
.7

1
8
7
3
.4

9
7
7
6
.0

7
7
0
3
.5

3
6
4
7
.5

7
6
0
3
.2

0
4
7
4
.0

8
4
1
4
.1

8
3
8
1
.6

1
6
0
0
0
0

5
2
1
5
.7

0
2
7
1
0
.0

8
1
8
7
6
.5

8
1
4
6
1
.1

1
1
2
1
2
.8

5
1
0
4
8
.1

9
9
3
1
.2

9
8
4
4
.2

4
7
7
7
.0

8
7
2
3
.8

5
5
6
8
.8

9
4
9
7
.0

1
4
5
7
.9

3
7
0
0
0
0

6
0
8
4
.9

8
3
1
6
1
.7

6
2
1
8
9
.3

4
1
7
0
4
.6

3
1
4
1
4
.9

9
1
2
2
2
.8

8
1
0
8
6
.5

0
9
8
4
.9

4
9
0
6
.5

9
8
4
4
.4

9
6
6
3
.7

1
5
7
9
.8

5
5
3
4
.2

5
8
0
0
0
0

6
9
5
4
.2

6
3
6
1
3
.4

4
2
5
0
2
.1

1
1
9
4
8
.1

5
1
6
1
7
.1

3
1
3
9
7
.5

8
1
2
4
1
.7

2
1
1
2
5
.6

5
1
0
3
6
.1

1
9
6
5
.1

3
7
5
8
.5

2
6
6
2
.6

9
6
1
0
.5

7
9
0
0
0
0

7
8
2
3
.5

4
4
0
6
5
.1

2
2
8
1
4
.8

7
2
1
9
1
.6

7
1
8
1
9
.2

7
1
5
7
2
.2

8
1
3
9
6
.9

3
1
2
6
6
.3

6
1
1
6
5
.6

2
1
0
8
5
.7

7
8
5
3
.3

4
7
4
5
.5

2
6
8
6
.8

9
1
0
0
0
0
0

8
6
9
2
.8

3
4
5
1
6
.7

9
3
1
2
7
.6

4
2
4
3
5
.1

9
2
0
2
1
.4

2
1
7
4
6
.9

8
1
5
5
2
.1

4
1
4
0
7
.0

6
1
2
9
5
.1

3
1
2
0
6
.4

1
9
4
8
.1

5
8
2
8
.3

6
7
6
3
.2

1

T
a
b
le

5
.1

.
T
a
b
le

o
f
m

o
rt

g
a
g
e

m
o
n
th

ly
p
ay

m
en

ts
fo

r
a

n
o
m

in
a
l
in

te
re

st
ra

te
o
f
8
%

.



1
2

3
4

5
6

7
8

9
1
0

1
5

2
0

2
5

1
0
0
0

8
8
.7

1
4
6
.9

4
3
3
.0

8
2
6
.1

9
2
2
.1

0
1
9
.4

0
1
7
.5

0
1
6
.0

9
1
5
.0

2
1
4
.1

8
1
1
.8

2
1
0
.8

1
1
0
.3

2
2
0
0
0

1
7
7
.4

3
9
3
.8

8
6
6
.1

5
5
2
.3

8
4
4
.2

0
3
8
.8

0
3
5
.0

0
3
2
.1

9
3
0
.0

4
2
8
.3

6
2
3
.6

3
2
1
.6

2
2
0
.6

4
3
0
0
0

2
6
6
.1

4
1
4
0
.8

2
9
9
.2

3
7
8
.5

8
6
6
.3

0
5
8
.2

0
5
2
.4

9
4
8
.2

8
4
5
.0

6
4
2
.5

4
3
5
.4

5
3
2
.4

3
3
0
.9

6
4
0
0
0

3
5
4
.8

5
1
8
7
.7

5
1
3
2
.3

0
1
0
4
.7

7
8
8
.3

9
7
7
.6

0
6
9
.9

9
6
4
.3

8
6
0
.0

9
5
6
.7

2
4
7
.2

6
4
3
.2

4
4
1
.2

8
5
0
0
0

4
4
3
.5

7
2
3
4
.6

9
1
6
5
.3

8
1
3
0
.9

6
1
1
0
.4

9
9
7
.0

0
8
7
.4

9
8
0
.4

7
7
5
.1

1
7
0
.9

0
5
9
.0

8
5
4
.0

5
5
1
.5

9
6
0
0
0

5
3
2
.2

8
2
8
1
.6

3
1
9
8
.4

6
1
5
7
.1

5
1
3
2
.5

9
1
1
6
.4

0
1
0
4
.9

9
9
6
.5

7
9
0
.1

3
8
5
.0

8
7
0
.9

0
6
4
.8

6
6
1
.9

1
7
0
0
0

6
2
0
.9

9
3
2
8
.5

7
2
3
1
.5

3
1
8
3
.3

4
1
5
4
.6

9
1
3
5
.8

0
1
2
2
.4

9
1
1
2
.6

6
1
0
5
.1

5
9
9
.2

6
8
2
.7

1
7
5
.6

7
7
2
.2

3
8
0
0
0

7
0
9
.7

1
3
7
5
.5

1
2
6
4
.6

1
2
0
9
.5

4
1
7
6
.7

9
1
5
5
.2

0
1
3
9
.9

9
1
2
8
.7

5
1
2
0
.1

7
1
1
3
.4

4
9
4
.5

3
8
6
.4

8
8
2
.5

5
9
0
0
0

7
9
8
.4

2
4
2
2
.4

5
2
9
7
.6

9
2
3
5
.7

3
1
9
8
.8

9
1
7
4
.6

0
1
5
7
.4

8
1
4
4
.8

5
1
3
5
.1

9
1
2
7
.6

2
1
0
6
.3

4
9
7
.2

9
9
2
.8

7
1
0
0
0
0

8
8
7
.1

3
4
6
9
.3

8
3
3
0
.7

6
2
6
1
.9

2
2
2
0
.9

8
1
9
4
.0

0
1
7
4
.9

8
1
6
0
.9

4
1
5
0
.2

1
1
4
1
.8

0
1
1
8
.1

6
1
0
8
.1

0
1
0
3
.1

9
1
5
0
0
0

1
3
3
0
.7

0
7
0
4
.0

8
4
9
6
.1

4
3
9
2
.8

8
3
3
1
.4

8
2
9
1
.0

0
2
6
2
.4

7
2
4
1
.4

1
2
2
5
.3

2
2
1
2
.7

0
1
7
7
.2

4
1
6
2
.1

5
1
5
4
.7

8
2
0
0
0
0

1
7
7
4
.2

7
9
3
8
.7

7
6
6
1
.5

2
5
2
3
.8

4
4
4
1
.9

7
3
8
8
.0

0
3
4
9
.9

7
3
2
1
.8

8
3
0
0
.4

3
2
8
3
.6

1
2
3
6
.3

2
2
1
6
.1

9
2
0
6
.3

8
2
5
0
0
0

2
2
1
7
.8

4
1
1
7
3
.4

6
8
2
6
.9

1
6
5
4
.8

0
5
5
2
.4

6
4
8
5
.0

0
4
3
7
.4

6
4
0
2
.3

6
3
7
5
.5

4
3
5
4
.5

1
2
9
5
.4

0
2
7
0
.2

4
2
5
7
.9

7
3
0
0
0
0

2
6
6
1
.4

0
1
4
0
8
.1

5
9
9
2
.2

9
7
8
5
.7

6
6
6
2
.9

5
5
8
2
.0

0
5
2
4
.9

5
4
8
2
.8

3
4
5
0
.6

4
4
2
5
.4

1
3
5
4
.4

8
3
2
4
.2

9
3
0
9
.5

7
3
5
0
0
0

3
1
0
4
.9

7
1
6
4
2
.8

4
1
1
5
7
.6

7
9
1
6
.7

2
7
7
3
.4

5
6
7
9
.0

0
6
1
2
.4

4
5
6
3
.3

0
5
2
5
.7

5
4
9
6
.3

1
4
1
3
.5

6
3
7
8
.3

4
3
6
1
.1

6
4
0
0
0
0

3
5
4
8
.5

4
1
8
7
7
.5

4
1
3
2
3
.0

5
1
0
4
7
.6

8
8
8
3
.9

4
7
7
6
.0

0
6
9
9
.9

3
6
4
3
.7

7
6
0
0
.8

6
5
6
7
.2

1
4
7
2
.6

4
4
3
2
.3

9
4
1
2
.7

6
4
5
0
0
0

3
9
9
2
.1

0
2
1
1
2
.2

3
1
4
8
8
.4

3
1
1
7
8
.6

4
9
9
4
.4

3
8
7
3
.0

0
7
8
7
.4

2
7
2
4
.2

4
6
7
5
.9

7
6
3
8
.1

1
5
3
1
.7

2
4
8
6
.4

4
4
6
4
.3

5
5
0
0
0
0

4
4
3
5
.6

7
2
3
4
6
.9

2
1
6
5
3
.8

1
1
3
0
9
.6

0
1
1
0
4
.9

2
9
7
0
.0

0
8
7
4
.9

2
8
0
4
.7

1
7
5
1
.0

7
7
0
9
.0

1
5
9
0
.8

0
5
4
0
.4

9
5
1
5
.9

5
6
0
0
0
0

5
3
2
2
.8

1
2
8
1
6
.3

0
1
9
8
4
.5

7
1
5
7
1
.5

2
1
3
2
5
.9

1
1
1
6
4
.0

0
1
0
4
9
.9

0
9
6
5
.6

5
9
0
1
.2

9
8
5
0
.8

2
7
0
8
.9

7
6
4
8
.5

8
6
1
9
.1

4
7
0
0
0
0

6
2
0
9
.9

4
3
2
8
5
.6

9
2
3
1
5
.3

4
1
8
3
3
.4

4
1
5
4
6
.8

9
1
3
5
8
.0

0
1
2
2
4
.8

8
1
1
2
6
.6

0
1
0
5
1
.5

0
9
9
2
.6

2
8
2
7
.1

3
7
5
6
.6

8
7
2
2
.3

3
8
0
0
0
0

7
0
9
7
.0

8
3
7
5
5
.0

7
2
6
4
6
.1

0
2
0
9
5
.3

6
1
7
6
7
.8

8
1
5
5
2
.0

0
1
3
9
9
.8

7
1
2
8
7
.5

4
1
2
0
1
.7

2
1
1
3
4
.4

2
9
4
5
.2

9
8
6
4
.7

8
8
2
5
.5

2
9
0
0
0
0

7
9
8
4
.2

1
4
2
2
4
.4

6
2
9
7
6
.8

6
2
3
5
7
.2

7
1
9
8
8
.8

6
1
7
4
6
.0

0
1
5
7
4
.8

5
1
4
4
8
.4

8
1
3
5
1
.9

3
1
2
7
6
.2

2
1
0
6
3
.4

5
9
7
2
.8

8
9
2
8
.7

1
1
0
0
0
0
0

8
8
7
1
.3

4
4
6
9
3
.8

4
3
3
0
7
.6

2
2
6
1
9
.1

9
2
2
0
9
.8

5
1
9
4
0
.0

0
1
7
4
9
.8

3
1
6
0
9
.4

2
1
5
0
2
.1

5
1
4
1
8
.0

3
1
1
8
1
.6

1
1
0
8
0
.9

7
1
0
3
1
.9

0

T
a
b
le

5
.2

.
T
a
b
le

o
f
m

o
rt

g
a
g
e

m
o
n
th

ly
p
ay

m
en

ts
fo

r
a

n
o
m

in
a
l
in

te
re

st
ra

te
o
f
1
2
%

.



168 5 Savings and Loans

5.6 Exercises

Note: Assume that interest is compounded annually unless otherwise stated.

1. Prove formula (5.2). (Hint: by induction, obviously!)

2. (a) Is formula (5.4) linear in Δ? In other words, if the annual deposit Δ is multiplied
by x, is the balance after i years also multiplied by x?
(b) Is the same formula linear in r?
(c) If the client instead saves Δ

2 every six months, will the sum after N years be
different?

3. Most credit card companies advertise annual rates even though they calculate interest
monthly. If the effective annual rate of a company is 18%, what monthly rate will they
charge? Before finding the precise answer, will it be bigger or smaller than 18

12% = 1.5%?

4. (a) A 20-year-old student saves $1000 into an account with an interest rate of 5%. She
intends to leave the money in the account until she retires at age 65. Suppose that the
interest rate remains constant throughout her lifetime. What will be the balance in the
account at her retirement if the interest is compounded (i) annually and (ii) monthly
at a rate of 5

12%?
(b) A student of the same age decides not to start saving until he is 45. He wishes to
make a deposit that will provide him with the same amount at age 65 as the student in
question (a). Considering each of the interest rates in (a), what will this amount be?

5. (a) A person invests $1000 for ten years. What will the values of the investment be
after the ten years if the annual rate is 6%, 8%, and 10%?
(b) For each of the interest rates in (a), how long will the investment take to double
its initial value?
(c) Same question as (b), but where the interest is simple rather than compound.
(d) What is the answer to (b) if the initial deposit is instead $2000?

6. A mortgage with a rate of 8% is paid over a 20-year period. How many months will it
take to pay back half of the initial principal?

7. (a) A 20-year-old student finds a bank that offers a 10% interest rate if she agrees to
invest $1000 per year until she is 65. What will be the value of the investment on her
65th birthday?
(b) What annual deposit is required if she wishes to retire a millionaire?

8. A student wishes to borrow some money. He knows that he will be unable to pay back
a single penny for the next five years. He is considering two options. His father has
offered to lend him the money with a simple interest rate of 10%. A friend has also
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offered to lend him the money with an compound interest rate of 7%. What would you
suggest?

9. When negotiating a mortgage the following parameters are established: the mortgage
rate, the amount to be borrowed, the amortization period, the payment period (normally
monthly, but sometimes weekly or biweekly), and the mortgage term. The mortgage
term is always less than or equal to the amortization period. At the end of the term,
the bank and the borrower renegotiate the terms of the mortgage, with the remaining
principal being considered as the borrowed amount.
(a) A couple buys a home and must borrow $100,000 to pay for it. They opt for a
25-year amortization period. Since the interest rates are relatively high at the time of
purchase (12%), they decide to choose a relatively short term of three years. What will
their monthly payment be during those three years? How much will they owe at the
end of the term?
(b) During the first three years, the interest rate has fallen to 8%. They decide that
they still wish to pay off their home at the end of 22 more years, and they renew their
mortgage for a term of five years. What will their new monthly payment be? What will
be the outstanding balance at the end of the second term?

10. Two mortgages are offered for the same amount of money, both with an amortization
period of 20 years. If the interest rates are different, which interest rate will have
permitted the payment of a larger portion of the outstanding balance after 10 years:
the mortgage with the higher interest rate, or that with the lower one?

11. You can buy books of mortgage payment tables in nearly any bookstore. In an appendix
to this chapter you will find tables corresponding to nominal mortgage rates of 8% and
12% (see Tables 5.1 and 5.2). The monthly rates have been calculated according to
Canadian rules.
(a) According to these tables, what will the monthly payment be for a $40,000 mort-
gage at 8% with an amortization period of 12 years?
(b) What about for a $42,000 loan with same amortization period and rate?
(c) Calculate the answer to question (a) directly, without using the table. You will
first need to calculate the effective monthly rate rm.

12. Several banks offer mortgages with biweekly payments. These banks calculate the
payment that must be paid back as if the borrower were making 24 payments per year
(two per month), even though the borrower makes 26 payments per year. This allows
the mortgage to be paid off more quickly than its full amortization period. Consider
a 20-year mortgage at 7%. How many years will it take to fully pay off the mortgage?
(You will have to decide on a fair biweekly rate rbw. Try to imitate formula (rmCAN).)

13. Use software of your choice to write a program that reproduces the tables in the
appendix.
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6

Error-Correcting Codes

The elementary parts of this chapter are found in Sections 6.1 through 6.4. They

explain the necessity for error-correcting codes, introduce the finite field F2, and discuss

the Hamming family of error-correcting codes. While the concept of the field F2 will

likely be new to some students, the elementary sections of this chapter use only the

concepts of a vector space (over F2) and basic linear algebra. These sections can be

covered in three hours of class. Sections 6.5 and 6.6 constitute the advanced portion of

the material. We construct the finite fields Fpr , for p prime, by introducing the notion

of multiplication modulo an irreducible polynomial. Several thorough examples help

students to digest this initially difficult concept. Reed–Solomon codes are presented in

the last section. Covering the advanced material requires at least three additional hours

of class time.

6.1 Introduction: Digitizing, Detecting and Correcting

The transmission of information over long distances began very early in human his-
tory.1 The discovery of electromagnetism and its many applications allowed us to send
messages through wires and electromagnetic waves in the second half of the nineteenth
century. Whether the message is sent in spoken word (in any human language) or an
encoded form (using Morse code (1836), for example), the utility of being able to rapidly
detect and correct errors is obvious.

An early method for improving the fidelity of a transmission is of historic importance.
When telephones were first invented (both wired and wireless), the quality of transmis-
sion left much to be desired. Thus, rather than speaking directly, it was quite usual to
spell out words phonetically. For example, in order to say the word “error,” the caller

1According to legend, the soldier charged with reporting the victory of the Athenians over
the Persians in 490 BC had to run the distance between Marathon and Athens, dying from
exhaustion on his arrival. The distance of the Olympic marathon is now 42.195 km.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 6, c© Springer Science+Business Media, LLC 2008
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would instead say “Echo, Romeo, Romeo, Oscar, Romeo.” The American and British
armies had devised such “alphabets” by the First World War. This method of improving
the reliability of transmission works by multiplying the information; the hope is that
the receiver can extract the original message, “error,” from the code, “Echo, Romeo,
Romeo, Oscar, Romeo,” even when reception quality is poor. This “multiplication of
information” or redundancy is the idea underlying all error detectors and correctors.

Our second example is that of an error-detection code: it allows us to detect when
an error has occurred in the transmission, but it does not let us correct it. In computer
science it is normal to associate each character of our extended alphabet (a, b, c, . . . ,
A, B, C, . . . , 0, 1, 2, . . . , +, -, :, ;, . . . ) with a number between 0 and 127.2 In a binary
representation, seven bits (a contraction of “binary digits”) are required to represent
each of the 27 = 128 possible characters. For example, suppose that the letter a is
associated with the number 97. Because 97 = 64 + 32 + 1 = 1 · 26 + 1 · 25 + 1 · 20, the
letter a will be encoded as 1100001. The usual encoding is the following “dictionary”:

decimal binary parity + binary

A 65 1000001 01000001
B 66 1000010 01000010
C 67 1000011 11000011
...

...
...

...
a 97 1100001 11100001
b 98 1100010 11100010
c 99 1100011 01100011
...

...
...

...

To detect errors we add an eighth bit to each character, called a parity bit. This bit
is placed in the leftmost position, and is calculated such that the sum of all eight
bits will always be even. For example, since the sum of the seven bits for “A” is
1+0+0+0+0+0+1 = 2, the parity bit is 0, and “A” will be represented by 01000001.
Similarly, the sum of the seven bits of “a” is 1 + 1 + 0 + 0 + 0 + 0 + 1 = 3 and “a” will
be represented by the eight bits 11100001. This parity bit is an error-detection code. It
allows us to detect when a single error has occurred in the transmission, but it does not
allow us to correct for it, since we have no way of knowing which of the eight bits has
been altered. However, once the receiver has determined that an error has occurred,
he can simply ask for the affected character to be retransmitted. Note that this error

2This is commonly known as a 7-bit ASCII encoding, which is good only for encoding
languages using a small number of characters, like English. There is a variety of text encodings
for other languages using extensive sets of characters.
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detector assumes that at most one bit will be in error. This hypothesis is reasonable
if the transmission is nearly perfect and there is a low probability that two in eight
consecutive bits will be in error.

Our third example presents a simple idea for constructing an error-correcting code.
Such a code allows us both to detect and correct errors. It consists in simply sending
the entire message several times. For example, we could simply repeat each character
in a message twice. Thus, the word “error” could be transmitted as “eerrrroorr.” As
such, this is only an error-detection code, since we have no way of knowing where the
error is if one is detected. Which is the correct message if we receive “aaglee”: “age”
or “ale”? In order to make this an error-correcting code, we simply need to repeat each
letter three times. If it is reasonable to assume that no more than one in three letters
will be received in error, then the correct letter can be determined as a simple majority.
For example, the message “aaaglleee” would be received as “ale” and not “age.” Such a
simple error-correcting code is not used in practice, since it is very costly: it triples the
cost of sending each message! The codes that we will present in this chapter are much
more economical. Note that it is not impossible for two or even three errors to occur
in a sequence of three characters; our hypothesis is only that this is very unlikely. As
Exercise 8 will show, this simple code has a very small advantage as compared to the
simplest of Hamming codes, introduced in Section 6.3.

Both error-detecting and error-correcting codes have existed for a long time. In the
digital age these codes have become more necessary and easier to implement. Their
usefulness can be understood better when one knows the size of usual picture and music
files. Figure 6.1 shows a very small digitized photo of the peak of a tower at the
Université de Montréal, in Montréal, Canada. At the left, the photo is shown at its
intended resolution, while at the right, it has been enlarged eight times, allowing the
individual pixels to be seen clearly. The image was divided into 72 × 72 pixels, each of
which is represented by a number between 0 and 255, indicating the intensity of gray
from black to white. Each pixel requires 8 bits, meaning that transmitting this tiny
black-and-white image requires sending 72 × 72 × 8 = 41,472 bits. And this example
is far from the current digital cameras, whose sensors capture more than 2,000 × 3,000
pixels in color!3

Sound, music in particular, is very often stored in digital form. In contrast to images,
digitizing sound is harder to visualize. Sound is a type of wave. Waves in the ocean
undulate along the surface of the water, light is a wave in the electromagnetic field, and
sound is a wave in air density. If we measured the density of the air at a fixed location
near a (well-tuned) piano, we would see that the density increases and decreases 440
times a second when the middle A is played. The variation is very small, but out ears
are able to detect it and translate it to an electric wave that is then transmitted to
and analyzed by our brain. Figure 6.2 shows a representation of this pressure wave.

3Those who work regularly with computers are used to seeing file sizes expressed in bytes (1
byte = 8 bits), kilobytes (1 KB = 1,000 bytes), megabytes (1 MB = 106 bytes), or even gigabytes
(1 GB = 109 bytes). Our image therefore consumes 44,472/8 B = 5,184 B = 5.184 KB.)
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Fig. 6.1. A digitized photo: the “original” photo is at the left, while the same image is seen
eight-times enlarged at the right.

(The horizontal axis indicates time, while the vertical axis indicates the amplitude of
the wave.) When the value is positive, this indicates that the density of the air is higher
than normal (air at rest), while negative values indicate a decreased density. This wave
can be digitized by approximating it with a step function. Each short time period of
Δ seconds is approximated by the average value of the wave over the time interval. If
Δ is sufficiently small, the step-function approximation to the wave is indistinguishable
from the original as heard by the human ear. (Figure 6.3 shows another sound wave
and a step function digitization of it.) This digitization having been accomplished, the
wave may now be represented by a sequence of integers identifying the heights of the
steps along some predefined scale.

On compact discs, the sound wave is cut into 44,100 samples per second (equivalent
to a pixel in a photo), and the intensity of each sample is represented by a 16-bit integer
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Fig. 6.2. A sound wave measured over a fraction of a second.

(216 = 65,536).4 Recalling that compact discs store sound in stereo, then we see that
each second of music requires 44,100× 16× 2 = 1,411,200 bits and 70 minutes of audio
requires 1,411,200× 60× 70 = 5,927,040,000 bits = 740,880,000 bytes ≈ 740 MB. Given
such a large mass of data, it is desirable to be able to automatically detect and correct
errors.5

Fig. 6.3. A sound wave and a step-function approximation to it.

This chapter explores two classic families of error-correcting codes: those of Ham-
ming and those of Reed and Solomon. The first of these was used by France-Telecom
for the transmission of Minitel, a precursor to the modern Internet. Reed–Solomon
codes are used in compact discs. The Consultative Committee for Space Data Systems,

4Sony and Philips worked together to establish the Compact Disc standard. After hesitating
between a 14-bit and a 16-bit intensity scale, the engineers opted for the finer-grained scale [7].
For much more detail, see Chapter 10.

5The scientific development of the field of error-correcting codes and their applications has
been followed closely by Scientific American. See, for example, [3, 4, 5].
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created in 1982 for standardizing the practices of different space agencies, recommended
the use of Reed–Solomon codes for information transmitted over satellites.

6.2 The Finite Field F2

In order to discuss Hamming codes we must first be comfortable working with the finite
field of two elements F2. A field is a collection of elements on which we can define two
operations, called “addition” and “multiplication,” which must each satisfy properties
that are common for rationals and real numbers: associativity, commutativity, distribu-
tivity of multiplication with respect to addition, the existence of an identity element
for each of addition and multiplication, the existence of an additive inverse, and the
existence of a multiplicative inverse for all nonzero elements. The reader will surely
recognize the rationals Q, the reals R, and maybe the complex numbers C as having
these properties. These three sets, combined with the normal + and × operations, are
fields. But there exist many others!

Although we will discuss the mathematical structure of fields in more generality in
Section 6.5, we begin by providing rules for addition and multiplication over the set of
binary digits {0, 1}. The addition and multiplication tables are given by

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

(6.1)

These operations satisfy the same rules that are satisfied by the fields Q, R, and C:
associativity, commutativity, distributivity, and the existence of identity elements and
inverses. For example, using both tables above we can verify that for all x, y, z ∈ F2,
distributivity is satisfied:

x × (y + z) = x × y + x × z.

Since x, y, and z each take one of two values, this property can be fully proved by
considering each of the eight possible combinations of the triplet (x, y, z) ∈ {(0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. Here we show an explicit
verification of the distributivity property for the triplet (x, y, z) = (1, 0, 1):

x × (y + z) = 1 × (0 + 1) = 1 × 1 = 1

and
x × y + x × z = 1 × 0 + 1 × 1 = 0 + 1 = 1.

As in Q, R, and C, 0 is the identity element for addition and 1 is the identity element for
multiplication. Inspection shows that all elements have an additive inverse. (Exercise:
what is the additive inverse of 1?) Similarly, each element of F2\{0} has a multiplicative



6.3 The C(7, 4) Hamming Code 179

inverse. Verifying this last property is very simple, since there is only one element in
F2 \ {0} = {1}, and its multiplicative inverse is itself, since 1 × 1 = 1.

Much as we define the vector spaces R3, Rn, and C2, it is entirely possible to consider
three-dimensional vector spaces in which each of the entries is an element of F2. It is
possible to perform vector addition and scalar multiplication (with coefficients from F2,
obviously!) of these vectors in F3

2 using the definition of addition and multiplication in
F2. For example,

(1, 0, 1) + (0, 1, 0) = (1, 1, 1),
(1, 0, 1) + (0, 1, 1) = (1, 1, 0),

and

0 · (1, 0, 1) + 1 · (0, 1, 1) + 1 · (1, 1, 0) = (1, 0, 1).

Since the components must be in F2 and only linear combinations with coefficients from
F2 are permitted, the number of vectors in F3

2 (and in any Fn
2 for finite n) is finite!

Caution: even though the dimension of R3 is finite, the number of vectors in R3 is
infinite. On the other hand, there are only 23 = 8 vectors in the vector space F3

2, given
by

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
(Exercise: recall the formal definition of the dimension of a vector space and calculate
the dimension of F3

2.) Vector spaces over finite fields such as F2 may seem a little
daunting at first because most linear algebra courses do not discuss them, but many of
the methods of linear algebra (matrix calculations, among others) apply to them.

6.3 The C(7, 4) Hamming Code

Here is a first example of a modern error-correcting code. Rather than using the nor-
mal alphabet (a, b, c, . . .), it uses the elements of F2.6 Moreover, we limit ourselves to
transmitting “words” containing exactly four “letters” (u1, u2, u3, u4). (Exercise: does
this restriction limit us?) Our vocabulary, or code C = F4

2, therefore contains only 16
“words” or elements. Rather than transmitting the four symbols ui to represent an
element, we will instead transmit the seven symbols defined as follows:

6This is not really a restriction, since we have already seen ways of encoding the alphabet
using only these binary digits.
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v1 = u1,

v2 = u2,

v3 = u3,

v4 = u4,

v5 = u1 + u2 + u4,

v6 = u1 + u3 + u4,

v7 = u2 + u3 + u4.

Thus, to transmit the element (1, 0, 1, 1) we send the message

(v1, v2, v3, v4, v5, v6, v7) = (1, 0, 1, 1, 0, 1, 0),

since

v5 = u1 + u2 + u4 = 1 + 0 + 1= 0,
v6 = u1 + u3 + u4 = 1 + 1 + 1= 1,
v7 = u2 + u3 + u4 = 0 + 1 + 1= 0.

(Note: “+” is the addition operator over F2.)
Since the first four coefficients of (v1, v2, . . . , v7) are precisely the four symbols we

wish to transmit, what purpose do the other three symbols serve? These symbols are
redundant and allow us to correct any single erroneous symbol. How can we accomplish
this “miracle”?

We consider an example. The receiver receives the seven symbols (w1, w2, . . . , w7) =
(1, 1, 1, 1, 1, 0, 0). We distinguish the received symbols wi from the sent symbols vi in
case of an error in the transmission. Due to the quality of the transmission link, it is
reasonable for us to assume that at most one symbol will be in error. The receiver then
calculates

W5 = w1 + w2 + w4,

W6 = w1 + w3 + w4,

W7 = w2 + w3 + w4,

and compares them with w5, w6, and w7 respectively. If there is no error due to the
transmission, W5, W6, and W7 should coincide with w5, w6, and w7 that were received.
Here is the calculation

W5 = w1 + w2 + w4 = 1 + 1 + 1 = 1 = w5,

W6 = w1 + w3 + w4 = 1 + 1 + 1 = 1 
= w6, (6.2)
W7 = w2 + w3 + w4 = 1 + 1 + 1 = 1 
= w7.

The receiver realizes that an error has occurred, since two of these calculated values
(W6 and W7) are not in agreement with those received. But where is the error? Is it
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in one of the four original symbols or in one of the three redundant ones? It is simple
to exclude the possibility that one of w5, w6, and w7 is in error. By changing only one
of these values, there will remain a second identity that is not satisfied. Thus one of
the first four symbols must be in error. Among these letters, which can we change that
will simultaneously correct the two incorrect values of (6.2) while preserving the correct
value of the first? The answer is simple: we must correct w3. In fact, the first sum does
not contain w3 and thus is the only one that will not be affected by changing it. The two
other relations do contain w3, and they will both be “corrected” by the change. Thus,
even though the first four symbols of the message were received as (w1, w2, w3, w4) =
(1, 1, 1, 1), the receiver determines the correct message as (v1, v2, v3, v4) = (1, 1, 0, 1).

Consider each of the possibilities. Suppose that the receiver received the symbols
(w1, w2, . . . , w7). The only thing the receiver knows for sure (according to our hypoth-
esis) is that these symbols correspond to the seven transmitted symbols vi = i, . . . , 7,
with the exception of at most one error. Thus, there are eight possibilities:

(0) all of the symbols are correct,
(1) w1 is in error,
(2) w2 is in error,
(3) w3 is in error,
(4) w4 is in error,
(5) w5 is in error,
(6) w6 is in error,
(7) w7 is in error.

Using the redundant symbols, the receiver can determine which of these possibilities is
correct. By calculating W5, W6, and W7, he can determine which of the eight possibil-
ities holds with the help of the following table:

(0) if w5 = W5 and w6 = W6 and w7 = W7,
(1) if w5 
= W5 and w6 
= W6,
(2) if w5 
= W5 and w7 
= W7,
(3) if w6 
= W6 and w7 
= W7,
(4) if w5 
= W5 and w6 
= W6 and w7 
= W7,
(5) if w5 
= W5,
(6) if w6 
= W6,
(7) if w7 
= W7.

The hypothesis that at most one symbol is in error is crucial to this analysis. If two
letters had been in error, then the receiver would not be able to distinguish, for example,
between the cases “w1 is in error” and “w5 and w6 are both in error” and would therefore
not be able to perform the appropriate correction. However, in the case of at most one
error the receiver can always detect and correct the error. After having discarded the
three extra symbols, the receiver is assured of having received the originally intended
message. The process can be visualized as
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(u1, u2, u3, u4) ∈ C ⊂ F4
2

−−−−−−−→
encoding (v1, v2, v3, v4, v5, v6, v7) ∈ F7

2

−−−−−−−−−−→
transmission

(w1, w2, w3, w4, w5, w6, w7) ∈ F7
2

−−−−−−−−−−−−−−−−−→
correction and decoding (w′

1, w
′
2, w

′
3, w

′
4) ∈ C ⊂ F4

2

How does the C(7, 4) Hamming code compare to other error-correcting codes? This
question is a little too vague. In fact, the quality of a code can be judged only as a
function of the needs: the error rate of the channel, the average length of messages to
be sent, the processing power available for encoding and decoding, etc. Nonetheless,
we can compare it to our simple method of repetition. Each of the symbols ui, i =
1, 2, 3, 4, could be repeated until we attained sufficient confidence that the message will
be correctly decoded. We again take the hypothesis that at most one bit error can occur
every “few” bits (fewer than 15 bits). As we have already seen, if each symbol is sent
twice, we are able only to detect an error. Thus, we must transmit each symbol at least
3 times, requiring a total of 12 bits to send this 4-bit message. The Hamming code is
able to send the same message with the same confidence in only 7 bits, a significant
improvement.

6.4 C(2k − 1, 2k − k − 1) Hamming Codes

The C(7, 4) Hamming code is the first in a family of C(2k − 1, 2k − k − 1) Hamming
codes. Each of these codes allows for the correction of at most a single error. The
numbers 2k − 1 and 2k − k − 1 indicate the length of a code element and the dimension
of the subspace formed by the transmitted elements, respectively. Thus, k = 3 yields the
C(7, 4) code, which transmits 7-bit elements in the field F7

2, and these form a subspace
of dimension 4 that is isomorphic to F4

2.
Two matrices play an important role in the description of Hamming codes (and in

the description of all “linear” codes, a family to which Reed–Solomon codes also belong):
the generating matrix G and the control matrix H. The generating matrix Gk is of size
(2k − k − 1) × (2k − 1), and its rows form a basis for a subspace that is isomorphic to
F

(2k−k−1)
2 . Each element of the code is a linear combination of this basis. For C(7, 4)

the matrix G3 can be chosen as

G3 =

⎛
⎜⎜⎝

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎟⎟⎠ .

For example, the first line of G3 corresponds to the element encoding the message
u1 = 1 and u2 = u3 = u4 = 0. By the rules that we have chosen, it follows that
v1 = 1, v2 = v3 = v4 = 0, v5 = u1 + u2 + u4 = 1, v6 = u1 + u3 + u4 = 1, and
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v7 = u2 + u3 + u4 = 0. These are the entries of the first row. The 16 elements of the
code C are obtained by performing the 16 possible linear combinations of the four rows
of G3. Since G requires only that its rows form a basis, it is not uniquely defined.

The control matrix H is a k × (2k − 1) matrix whose k rows form a basis for the
orthogonal complement of the subspace spanned by the rows of G. The scalar product
is as usual: if v, w ∈ Fn

2 , then (v, w) =
∑n

i=1 viwi ∈ F2. (The appendix at the end of this
chapter formally defines scalar products and explores the important differences between
scalar products over the “usual” fields (Q, R, and C) and those over finite fields. A few
of these differences are not very intuitive!) For C(7, 4) and our choice of G3 above, the
control matrix H3 can be chosen as:

H3 =

⎛
⎝1 1 0 1 1 0 0

1 0 1 1 0 1 0
0 1 1 1 0 0 1

⎞
⎠ .

Since the rows of G and H are pairwise orthogonal, the matrices G and H satisfy

GHt = 0. (6.3)

For example, for k = 3,

G3H
t
3 =

⎛
⎜⎜⎝

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
4×7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
7×3

=

⎛
⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
4×3

.

The general C(2k − 1, 2k − k − 1) Hamming code is defined by the control matrix
H. The columns of this matrix are precisely all of the nonzero vectors of Fk

2 . Since
Fk

2 contains 2k vectors (including the zero vector), H must be a k × (2k − 1) matrix.
The matrix H3 given above is an example. As noted earlier, the rows of the generating
matrix G form a basis to the orthogonal complement of the span of the rows of H. This
concludes the definition of C(2k − 1, 2k − k − 1) Hamming codes.

We now discuss the encoding and decoding process.
In our choice of G3 each of the rows corresponds to the elements (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), and (0, 0, 0, 1) of F4
2. To obtain a general element (u1, u2, u3, u4) it suffices

to take a linear combination of the four rows of G3:(
u1 u2 u3 u4

)
G3 ∈ F7

2.

(Exercise: verify that the matrix product
(
u1 u2 u3 u4

)
G3 yields a 1 × 7 matrix.)

The encoding of u ∈ F2k−k−1
2 in the C(2k − 1, 2k − k − 1) code is done in exactly the

same manner:
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v = uG ∈ F2k−1
2 .

Encoding is therefore a simple matrix multiplication over the field F2.
Decoding is a little more subtle. The following two observations form the heart of

this procedure. The first is relatively direct: an element of the code v ∈ F2k−1
2 without

any errors is annihilated by the control matrix,

Hvt = H(uG)t = HGtut = (GHt)tut = 0,

due to the pairwise orthogonality between the rows of G and H.
The second observation is a little deeper. Let v ∈ F2k−1

2 be an element of the code
(without error) and v(i) ∈ F2k−1

2 the word obtained from v by adding a 1 to the ith
entry of v. Thus v(i) is an encoded element with an error in the ith position. Note that
H(v(i))t ∈ Fk

2 is independent of v! In fact,

v(i) = v + (0, 0, . . . , 0, 1︸︷︷︸
position i

, 0, . . . , 0)

and

H(v(i))t = Hvt + H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← position i,

since v is an element of the code. Thus H(v(i))t is the ith column of H. Since all of
the columns of H are distinct (by the definition of H), an error in the ith position of
the received encoded element w is equivalent to obtaining the ith column of H in the
product Hwt.

Decoding proceeds as follows:

w ∈ F2k−1
2 received −→ calculation of Hwt ∈ Fk

2

−→ Hwt is zero ⇒ w skips to the next step
Hwt is equal to column i of H ⇒ the entry wi is changed

−→ search for the linear combination of the
rows of G that yields the corrected w
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Although these codes can correct for only a single error, they are very economical
for sufficiently large k. For example, for k = 7 it suffices to add 7 bits to a message of
length 120 in order to be certain that any single error may be corrected. It is precisely
this C(2k −1, 2k −k−1) Hamming code with k = 7 that is used in the Minitel system.

6.5 Finite Fields

In order to present the Reed–Solomon code we will need to know several properties of
finite fields. This section covers the required background material.

Definition 6.1 A field F is a set over which two operations + and × have been defined,
and within which two special elements denoted by 0 and 1 ∈ F have been identified that
satisfy the following five properties:

(P1) commutativity:
a + b = b + a and a × b = b × a, ∀a, b ∈ F,

(P2) associativity:
(a + b) + c = a + (b + c) and (a × b) × c = a × (b × c), ∀a, b, c ∈ F,

(P3) distributivity:
(a + b) × c = (a × c) + (b × c), ∀a, b, c ∈ F,

(P4) additive and multiplicative identity:
a + 0 = a and a × 1 = a, ∀a ∈ F,

(P5) existence of additive and multiplicative inverses:
∀ a ∈ F, ∃ a′ ∈ F such that a + a′ = 0,
∀ a ∈ F \ {0}, ∃ a′ ∈ F such that a × a′ = 1.

Definition 6.2 A field F is called finite if the number of elements in F is finite.

Example 6.3 The three most familiar fields are Q, R, and C, the sets of rational, real,
and complex numbers, respectively. They are not finite. The above list of properties is
probably familiar to most readers. The goal of giving a precise definition of a field is to
reduce the properties of these three sets of numbers to a set of axioms. The advantage
to this approach is that the entire mechanism of calculation developed over these fields
may then be extended to less-intuitive fields that satisfy these same properties.

Example 6.4 The set F2 equipped with + and × as given in Section 6.2 is a field. The
calculations performed in our study of Hamming codes have likely already convinced you
of this fact. A systematic verification of this proposition is covered in Exercise 4.

Example 6.5 F2 is only the first among a family of finite fields. Let p be a prime
number. We say that two numbers a and b are congruent modulo p if p divides their
difference a − b. The congruence forms an equivalence relation over the integers. This
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relation induces exactly p distinct classes of equivalence, represented by 0̄, 1̄, . . . , p − 1.
For example, for p = 3, the integers Z are partitioned into three subsets

0̄ = {. . . ,−6,−3, 0, 3, 6, . . . },
1̄ = {. . . ,−5,−2, 1, 4, 7, . . . },
2̄ = {. . . ,−4,−1, 2, 5, 8, . . . }.

The set Zp = {0̄, 1̄, 2̄, . . . , p − 1} is the set of these equivalence classes. We define the
operations + and × over these classes as addition modulo p and multiplication modulo
p. In order to perform addition modulo p between two classes ā and b̄, we choose one
element from each of these classes (we will choose a and b). The result of ā+ b̄ is a + b,
the class to which the sum of the chosen elements belongs. (Exercise: why is this result
independent of our choice of elements from each of ā and b̄? Does this definition coincide
with that given previously for F2 in Section 6.2?) Multiplication between equivalence
classes is defined analogously. It is usual to omit the “¯” that denotes the equivalence
class. Exercise 24 verifies that (Zp,+,×) is in fact a field.

Example 6.6 The set of integers Z is not a field. For example, the element 2 does not
have a multiplicative inverse.

Example 6.7 Let F be a field. Denote by F̃ the set of all quotients of polynomials in a
single variable x with coefficients in F. Thus, all elements of F̃ are of the form p(x)

q(x) for
p(x) and q(x) polynomials (with finite degree by definition) with coefficients in F such
that q is nonzero. If we equip F̃ with the usual operations of addition and multiplication,
then (F̃,+,×) is a field. The quotient 0/1 = 0 (the quotient with p(x) = 0 and q(x) = 1)
and the quotient 1 (the quotient with p(x) = q(x) = 1) are the additive and multiplicative
identities, respectively. We can easily verify properties (P1) through (P5).

The set Zp mentioned above deserves closer inspection. The addition and multipli-
cation tables for Z3 are given by

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

(6.4)

and those of Z5 are

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(6.5)
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(Exercise: verify that these tables accurately represent addition and multiplication mod-
ulo 3 and 5, respectively.) The example introducing the field Zp stipulated that p must
be prime. What happens if it is not? Here are the addition and multiplication tables
modulo 6 over the set Z5 = {0, 1, 2, 3, 4, 5}:

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

(6.6)

How can we prove that Z6 equipped with these addition and multiplication tables is not
a field? With the help of the bold zeros in the multiplication table! The proof follows.

We know that 0 × a = 0 in Q and in R. Is this true for all nonzero elements a in a
given field F? Yes! The proof that follows is elementary. (While reading it, notice that
each step follows directly from one of the five defining properties of a field.) Let a be a
nonzero element of F. Then

0 × a = (0 + 0) × a (P4)
= 0 × a + 0 × a (P3).

By (P5) all elements of F possess an additive inverse. Let b be the additive inverse of
(0 × a). Add this element to both sides of the above equation, yielding

(0 × a) + b = (0 × a + 0 × a) + b.

The left-hand side of the equation is zero (by definition of b), while the right-hand side
may be rewritten

0 = 0 × a + ((0 × a) + b) (P2)
= 0 × a + 0
= 0 × a (P4),

due to our choice of b. Thus 0 × a is zero regardless of our choice of a ∈ F. We again
consider the multiplication table for a field F. Let a and b ∈ F be two nonzero elements
of F such that

a × b = 0.

By multiplying both sides of this equation by the multiplicative inverse b′ of b (which
exists by (P5)), we have that

a × (b × b′) = 0 × b′,
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and by the property we just showed it follows that

a × 1 = 0.

By (P4) we have that

a = 0,

which is a contradiction, since a was chosen to be nonzero. Thus, in a field F, the
product of nonzero elements must be nonzero. And therefore (Z6,+,×) is not a field,
due to the bold zeros in its multiplication table.

If p is not a prime number, there exist q1 and q2 different from 0 and 1 such that
p = q1q2. In Zp we would have q1 × q2 = p = 0 (mod p). Thus, if p is not prime then
Zp equipped with the operation of addition and multiplication modulo p is not a field.
We will use this fact to introduce a result that we will not prove here.

Denote by F[x] the set of polynomials with coefficients in F and a single variable
x. This set can be equipped with addition and multiplication operations as usual.
Note: F[x] is not a field. For example, the nonzero element (x + 1) does not have a
multiplicative inverse.

Example 6.8 F2[x] is the set of all polynomials in x with coefficients in F2. Here is
an example of multiplication in F2[x]:

(x + 1) × (x + 1) = x2 + x + x + 1 = x2 + (1 + 1)x + 1 = x2 + 1 ∈ F2[x].

In the same way that we can calculate “modulo p” it is possible to calculate “modulo
a polynomial p(x).” Let p(x) ∈ F[x] be a polynomial with degree n ≥ 1:

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0,

where ai ∈ F, 0 ≤ i ≤ n, and an 
= 0. Without loss of generality, we will restrict
ourselves to polynomials such that an = 1. The addition and multiplication operations
consist in performing normal addition and multiplication of polynomials where individ-
ual operations on coefficients are performed in the field F, and then repeatedly removing
multiples of the polynomial p(x) until the resulting polynomial has degree less than n.
This may sound somewhat complicated, but a few examples will clarify it.

Example 6.9 Let p(x) = x2 + 1 ∈ Q[x] and let (x + 1) and (x2 + 2x) be two other
polynomials in Q[x] that we wish to multiply modulo p(x). The equalities that follow
are between polynomials that differ only by a multiple of p(x). These are not strict
equalities (the polynomials are clearly not equal in the normal sense), as indicated by
the “mod p(x)” in the last line:
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(x + 1) × (x2 + 2x) = x3 + 2x2 + x2 + 2x

= x3 + 3x2 + 2x − x(x2 + 1)

= x3 − x3 + 3x2 + 2x − x

= 3x2 + x

= 3x2 + x − 3(x2 + 1)

= 3x2 − 3x2 + x − 3
= x − 3 (mod p(x)).

You can readily check that (x− 3) is the remainder of the division of (x+1)× (x2 +2x)
by p(x). This is not a coincidence. This is a general property that actually gives an
alternative method to calculate q(x) (mod p(x)). See Exercise 14.

Example 6.10 Let p(x) = x2 + x + 1 ∈ F2[x]. The square of the polynomial (x2 + 1)
modulo p(x) is

(x2 + 1) × (x2 + 1) = x4 + 1 = x4 + 1 − x2(x2 + x + 1) = x3 + x2 + 1

= x3 + x2 + 1 − x(x2 + x + 1) = x + 1 (mod p(x)).

Finite fields may be constructed starting from these sets of polynomials F[x] by
copying the construction of Zp (for p prime) using equivalence classes. The operations
of addition and multiplication will be modulo a polynomial p(x). Will any polynomial
do? No! Much as we require p to be prime for Zp, the polynomial p(x) must satisfy a
particular condition: it must be irreducible. A nonzero polynomial p(x) ∈ F[x] is called
irreducible if for all q1(x) and q2(x) ∈ F[x] such that

p(x) = q1(x)q2(x),

it follows that either q1(x) or q2(x) is a constant polynomial. In other words, p(x) does
not have any proper polynomial factors with degree less than that of p(x).

Example 6.11 The polynomial x2 + x − 1 can be factored over R. In fact,

x1 = 1
2 (
√

5 − 1) and x2 = − 1
2 (
√

5 + 1)

are the roots of this polynomial. These two numbers are in R, and

x2 + x − 1 = (x − x1)(x − x2).

Thus x2 + x − 1 ∈ R[x] is not irreducible over R. This same polynomial is irreducible
over Q[x], however, since xi 
∈ Q, i = 1, 2, and therefore x2 + x − 1 cannot be factored
over Q.

Example 6.12 The polynomial x2 + 1 is irreducible over R, but over F2 it can be
factored as x2 + 1 = (x + 1) × (x + 1). Thus, it is not irreducible over F2.
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We denote by F[x]/(p(x)) the set of polynomials F[x] equipped with the operation
of addition and multiplication modulo p(x). The following is the central result that we
need.

Proposition 6.13 (i) Let p(x) be a polynomial of degree n. The quotient F[x]/p(x) can
be identified with {q(x) ∈ F[x] | degree q < n} with addition and multiplication modulo
p(x).
(ii) F[x]/(p(x)) is a field if and only if p(x) is irreducible over F.

We do not prove this result, but we will use it to give an explicit construction of a field
that is not isomorphic to Zp for p prime.

Example 6.14 Construction of F9, the field with nine elements. Let Z3 be the
field with three elements whose tables of addition and multiplication were given earlier.
Let Z3[x] be the set of polynomials with coefficients in Z3 and define p(x) = x2 + x + 2.

We first convince ourselves that p(x) is irreducible. If it is not, then there exist two
nonconstant polynomials q1 and q2 whose product is p. Since the degree of p(x) is 2,
these two polynomials must each have degree 1. Thus

p(x) = (x + a)(bx + c) (6.7)

for some a, b, c ∈ Z3. If this is the case, then p(x) will evaluate to zero at the additive
inverse of a. However,

p(0) = 02 + 0 + 2 = 2,

p(1) = 12 + 1 + 2 = 1,

p(2) = 22 + 2 + 2 = 1 + 2 + 2 = 2,

and thus p(x) is nonzero for each possible value of x ∈ Z3. (Note: the calculations are
performed in Z3!) Thus p(x) cannot be written as in (6.7) and is therefore irreducible.

Start by finding the number of elements in the field Z3[x]/(p(x)). Since all the
elements of this field are polynomials with degree less than that of p(x), then they are
all of the form a1x + a0. Since a0, a1 ∈ Z3, they can each take on three distinct values;
thus there are 32 = 9 distinct elements in Z3[x]/(p(x)).

We now construct the multiplication table. Two examples will show how to do this:

(x + 1)2 = x2 + 2x + 1 = (x2 + 2x + 1) − (x2 + x + 2) = x − 1 = x + 2,
x(x + 2) = x2 + 2x = x2 + 2x − (x2 + x + 2) = x − 2 = x + 1.

The complete multiplication table is
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× 0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2
2 0 2 1 2x 2x + 2 2x + 1 x x + 2 x + 1
x 0 x 2x 2x + 1 1 x + 1 x + 2 2x + 2 2

x + 1 0 x + 1 2x + 2 1 x + 2 2x 2 x 2x + 1
x + 2 0 x + 2 2x + 1 x + 1 2x 2 2x + 2 1 x
2x 0 2x x x + 2 2 2x + 2 2x + 1 x + 1 1

2x + 1 0 2x + 1 x + 2 2x + 2 x 1 x + 1 2 2x
2x + 2 0 2x + 2 x + 1 2 2x + 1 x 1 2x x + 2

(6.8)

But this method is tedious. Is there some way to simplify these calculations? Con-
sider enumerating the powers of q(x) = x. Taking these powers modulo p(x), we obtain

q = x,

q2 = x2 = x2 − (x2 + x + 2) = −x − 2 = 2x + 1,

q3 = q × q2 = 2x2 + x = 2x2 + x − 2(x2 + x + 2) = 2x + 2,

q4 = q × q3 = 2x2 + 2x = 2x2 + 2x − 2(x2 + x + 2) = 2,

q5 = q × q4 = 2x,

q6 = q × q5 = 2x2 = 2x2 − 2(x2 + x + 2) = x + 2,

q7 = q × q6 = x2 + 2x = x2 + 2x − (x2 + x + 2) = x + 1,

q8 = q × q7 = x2 + x = x2 + x − (x2 + x + 2) = 1.

By taking the powers of the polynomial q(x) = x we obtain the eight nonzero polynomials
of Z3[x]/(p(x)). Pairwise multiplication between elements in {0, q, q2, q3, q4, q5, q6, q7,
q8 = 1} is simplified using qi × qj = qk, where k = i + j (mod 8), since q8 = 1. This
gives us a simple manner of calculating the multiplication table. We transform each
polynomial into a power of q, and the multiplication of two elements simplifies to an
addition of powers modulo 8. We can easily recalculate the above examples as

(x + 1)2 = q7 × q7 = q14 = q6 = x + 2,
x(x + 2) = q × q6 = q7 = x + 1.

We can use this second method to verify our earlier calculations. We rewrite the mul-
tiplication table replacing each polynomial by its power of q:
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× 0 1 q4 q1 q7 q6 q5 q2 q3

0 0 0 0 0 0 0 0 0 0
1 0 1 q4 q q7 q6 q5 q2 q3

q4 0 q4 1 q5 q3 q2 q q6 q7

q1 0 q q5 q2 1 q7 q6 q3 q4

q7 0 q7 q3 1 q6 q5 q4 q q2

q6 0 q6 q2 q7 q5 q4 q3 1 q
q5 0 q5 q q6 q4 q3 q2 q7 1
q2 0 q2 q6 q3 q 1 q7 q4 q5

q3 0 q3 q7 q4 q2 q 1 q5 q6

(6.9)

With these new names it is more natural to reorder the rows and columns of the table
so that the exponents increase. Here is the same table rewritten in this manner:

× 0 q1 q2 q3 q4 q5 q6 q7 1
0 0 0 0 0 0 0 0 0 0
q1 0 q2 q3 q4 q5 q6 q7 1 q
q2 0 q3 q4 q5 q6 q7 1 q q2

q3 0 q4 q5 q6 q7 1 q q2 q3

q4 0 q5 q6 q7 1 q q2 q3 q4

q5 0 q6 q7 1 q q2 q3 q4 q5

q6 0 q7 1 q q2 q3 q4 q5 q6

q7 0 1 q q2 q3 q4 q5 q6 q7

1 0 q q2 q3 q4 q5 q6 q7 1

(6.10)

The addition table may then be obtained in a similar manner. Here are two sample
calculations:

q2 + q4 = (2x + 1) + (2) = 2x + (2 + 1) = 2x = q5,

q3 + q6 = (2x + 2) + (x + 2) = (2 + 1)x + (2 + 2) = 1 = q8.

The full addition table of F9 follows. (Exercise: verify a few elements of this table.)

+ 0 q1 q2 q3 q4 q5 q6 q7 1
0 0 q1 q2 q3 q4 q5 q6 q7 1
q1 q1 q5 1 q4 q6 0 q3 q2 q7

q2 q2 1 q6 q1 q5 q7 0 q4 q3

q3 q3 q4 q1 q7 q2 q6 1 0 q5

q4 q4 q6 q5 q2 1 q3 q7 q1 0
q5 q5 0 q7 q6 q3 q1 q4 1 q2

q6 q6 q3 0 1 q7 q4 q2 q5 q1

q7 q7 q2 q4 0 q1 1 q5 q3 q6

1 1 q7 q3 q5 0 q2 q1 q6 q4

(6.11)
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Definition 6.15 A nonzero element whose powers enumerate all other nonzero ele-
ments of a field is called primitive or a primitive root.

Not all elements are primitive. For example, in F9 the element q4 is not primitive;
the only distinct elements that it enumerates are q4 and q4 × q4 = q8. In Exercise
13 you will find all of the primitive roots of F9. In the above example the polynomial
q(x) = x is primitive because it allows us to construct the eight nonzero polynomials in
the form qi for i = 1, . . . , 8. But q(x) = x is not a primitive root for all fields modulo
a polynomial. We give two examples, the first in Exercise 17 of this chapter and the
second in Exercise 6 of Chapter 8.

(If you know the notion of group, you may note that a primitive root is a generator
of the multiplicative group of nonzero elements of a field, yielding that these elements
form a cyclic group. This observation is not used in the present chapter.)

Theorem 6.16 All finite fields Fpr possess a primitive root. In other words, there
exists a nonzero element α whose powers enumerate the nonzero elements of Fpr :

Fpr \ {0} = {α, α2, . . . , αpr−1 = α0 = 1}.
It is usual to use the symbol α to represent a primitive root. In this section we have

often used the letter q, but we will use α in subsequent sections.
Before finishing our introduction to finite fields we will state without proof two

important theorems.

Theorem 6.17 The number of elements in a finite field is a power of a prime number.

Theorem 6.18 If two finite fields possess the same number of elements, then they are
isomorphic. In other words, there exists a reordering of the elements such that the tables
of addition and multiplication of the two fields correspond. Such a reordering naturally
associates an element from one field with its counterpart in the other, a mapping that
is called an isomorphism.

6.6 Reed–Solomon Codes

The codes devised by Reed and Solomon are more complex than those of Hamming. We
will start by describing the encoding and decoding process. Afterward, we will prove
the three properties that characterize these codes.

Let F2m be the field with 2m elements and let α be a primitive root. The 2m − 1
nonzero elements of F2m are of the form

{α, α2, . . . , α2m−1 = 1},
and therefore for all nonzero elements x ∈ F2m we have that x2m−1 = 1.
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The words to be encoded will be those of k letters, each letter being an element of
F2m , and where k < 2m − 2. (How to choose this integer k will be explained soon.)
Thus, they will be elements (u0, u1, u2, . . . , uk−1) ∈ Fk

2m . Each of these words will be
associated with the polynomial

p(x) = u0 + u1x + u2x
2 + · · · + uk−1x

k−1 ∈ F2m [x].

These words will be encoded in a vector v = (v0, v1, v2, . . . , v2m−2) ∈ F2m−1
2m whose

entries will be given by

vi = p(αi), i = 0, 1, 2, . . . , 2m − 2,

where α is the primitive root we chose at the outset. Thus, encoding consists in calcu-
lating

v0 = p(1) =u0 + u1 + u2 + · · · + uk−1,
v1 = p(α) =u0 + u1α + u2α

2 + · · · + uk−1α
k−1,

v2 = p(α2) =u0 + u1α
2 + u2α

4 + · · · + uk−1α
2(k−1),

... =
... =

...
v2m−2 = p(α2m−2)= u0 + u1α

2m−2 + u2α
2(2m−2) + · · · + uk−1α

(k−1)(2m−2).

(6.12)

The C(2m − 1, k) Reed–Solomon code is the set of vectors v ∈ F2m−1
2m obtained in this

manner. The basic requirement of any encoding is that different words not get the same
encoding. This is the content of the first property.

Property 6.19 The encoding u �→ v, where u ∈ Fk
2m and v ∈ F2m−1

2m , is a linear
transformation with a trivial kernel, that is, a kernel equal to {0} ⊂ Fk

2m .

(The proofs of the Properties 6.19 and 6.20 will be given at the end of this section.)
The transmission might introduce some errors in the encoded message v. The re-

ceived message w ∈ F2m−1
2m may differ from v at one or more locations. The decoding

consists in first replacing, in (6.12), the vi by the components wi of w and then ex-
tracting from this new linear system the original u, despite the possible errors in w. To
understand how this can be achieved, we first describe geometrically the system (6.12).
Each of these equations (with vi replaced by the corresponding wi) represents a plane
in the space Fk

2 with coordinates (u0, u1, . . . , uk−1). There are 2m − 1 planes, which is
more than k, the number of unknowns uj . Let us use our intuition of R3 to draw a
geometric representation of the situation. Figure 6.4 (a) presents five planes (instead of
2m − 1) in R3 (instead of Fk

2). If there are no mistakes in the transmission (all wi agree
with the original vi), then all the planes intersect at a single point, the original message
u. Moreover, any choice of three planes among the five determines uniquely the solution
u. In other words, two of the five planes are redundant, or, in this errorless transmis-
sion, there are many distinct ways to reconstruct u. Suppose now that one of the wi is
erroneous. The corresponding equation is then false, and the plane that it represents
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will be shifted. This is depicted in Figure 6.4(b), where one plane, the horizontal one,
has been moved up. Even though the four correct planes (those with the correct wi)
still intersect at u, a choice of three planes including the wrong one will give a wrong
message ū. In R3, we need three planes to obtain a (correct or false) determination of
u. For the system (6.12) we need k planes (= equations) to get one determination of u.
We can think of each choice of k planes as “voting” for the value u where they intersect.
If some of the wi are wrong, one may ask whether the correct u will get the largest
number of votes. This is the question we now address. (For instance, in our example of
Figure 6.4 (b), the correct answer u receives four votes and the wrong ū gets only one.)

(a) The set of planes without any er-
rors

(b) The set of planes with one error

Fig. 6.4. The planes of system (6.12).

Suppose that once the message has been transmitted, we receive the 2m −1 symbols
w = (w0, w1, w2, . . . , w2m−2) ∈ F2m−1

2m . If all of these symbols are exact, we can recover
the original message u by choosing from (6.12) any subset of k rows and resolving the
resulting linear system. Suppose that we choose rows i0, i1, . . . , ik−1 with 0 ≤ i0 < i1 <
· · · < ik−1 ≤ 2m − 2, and that αj denotes αij . Then the resulting linear system is⎛

⎜⎜⎜⎜⎜⎝
wi0

wi1

wi2
...

wik−1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 α0 α2
0 α3

0 . . . αk−1
0

1 α1 α2
1 α3

1 . . . αk−1
1

1 α2 α2
2 α3

2 . . . αk−1
2

...
...

...
...

. . .
...

1 αk−1 α2
k−1 α3

k−1 . . . αk−1
k−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u0

u1

u2

...
uk−1

⎞
⎟⎟⎟⎟⎟⎠ , (6.13)
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and we can obtain the original message by inverting the matrix {αj
i}0≤i,j≤k−1, assuming

that it is invertible.

Property 6.20 For all choices of 0 ≤ i0 < i1 < i2 < · · · < ik−1 ≤ 2m − 2, the matrix
{αj

i} described above is invertible.

Thus, assuming that the received message does not contain any errors, there are as
many ways to recover it as there are ways of choosing k equations from the 2m − 1 in
(6.12): (

2m − 1
k

)
=

(2m − 1)!
k!(2m − 1 − k)!

.

Now suppose that s of the 2m−1 coefficients of w are in error. Then only (2m−s−1)
of the equations of (6.12) will be correct, and only

(
2m−s−1

k

)
of the

(
2m−1

k

)
possible

calculations of u will be correct. The others will be in error, and there will therefore
be several candidate vectors u, only one of them correct. Let ū be one of the incorrect
candidates arrived at by choosing false equations from (6.12). How many times can
we obtain ū by changing the equations we use? The solution ū is obtained as the
intersection of the k planes represented by the k chosen equations from (6.12). At most
s + k − 1 of these planes will intersect at ū, because had there been one more, there
would be among them k planes described by valid equations, and ū = u. Thus there are
at most

(
s+k−1

k

)
ways to arrive at ū. The correct value u will receive the most “votes”

(will be calculated by the most choices of equations) if(
2m − s − 1

k

)
>

(
s + k − 1

k

)
,

or equivalently,
2m − s − 1 > s + k − 1.

Thus we deduce that
2m − k > 2s.

Because we are interested only in integer values for s, this is equivalent to

2m − k − 1 ≥ 2s.

In other words, as long as the number of errors is less than or equal to 1
2 (2m − k − 1),

then the correct value of u will receive the largest number of votes, proving the next
property.

Property 6.21 Reed–Solomon codes can correct [12 (2m − k − 1)] errors, where [x] de-
notes the integer part of x.
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The decoding of w consists therefore in choosing from all the determinations of u
the one that obtains the most votes.

We finish this section by proving Properties 6.19 and 6.20.

Proof of Property 6.19: Observe that each of the components vj of v, j =
0, 1, . . . , 2m − 2, depends linearly on the components ui. Thus the encoding is a linear
transformation from Fk

2m to F2m−1
2m .

In order to show that the kernel of this transformation is trivial, it suffices to convince
ourselves that only the zero polynomial will be mapped to 0 ∈ F2m−1

2m . If p is a nonzero
polynomial with degree at most k − 1, then it cannot evaluate to zero at more than
k − 1 values of x. The vi are evaluations of the polynomial p at the powers αi, i =
0, 1, 2, . . . , 2m − 2. Since α is a primitive root, only k− 1 of the 2m − 1 values vi = p(αi)
can be zero. Thus, every nonzero polynomial p will be mapped to a nonzero vector v.
�

Property 6.20 is a consequence of the following lemma which we demonstrate first.

Lemma 6.22 (Vandermonde determinant) Let x1, x2, . . . , xn be elements of a field
F. Then ∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

1 x3 x2
3 . . . xn−1

3
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(xj − xi).

Proof: By subtracting row j from row i the value of the determinant is not changed,
and row i becomes(

0 xi − xj x2
i − x2

j x3
i − x3

j . . . xn−1
i − xn−1

j

)
.

Since

xk
i − xk

j = (xi − xj)
k−1∑
l=0

xl
ix

k−l−1
j ,

all the elements of this new row i possess (xi−xj) as a factor. The determinant, viewed
as a polynomial in the variables x1, x2, . . . , xn, therefore has (xi −xj) as a factor for all
i and j. The determinant is thus the product of∏

1≤i<j≤n

(xj − xi)

and of one other polynomial, which remains to be found. Note that in the product∏
1≤i<j≤n(xj −xi), the maximal power of xn is n−1, since there are (n−1) terms with

j = n. Similarly, in the determinant the maximal power of xn is also n − 1, since the
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terms with xn are all in the same row and it is xn−1
n that has the highest power in this

row. Hence the polynomial multiplying
∏

1≤i<j≤n(xj − xi) cannot contain xn. We can
repeat this argument for each of the xi and conclude that the polynomial multiplying∏

1≤i<j≤n(xj − xi) is constant. The term x0
1x

1
2x

2
3 · · ·xn−1

n in the determinant comes
from the product of the diagonal terms and therefore has coefficient +1. In the product∏

1≤i<j≤n(xj − xi), this same term x0
1x

1
2x

2
3 · · ·xn−1

n is obtained by multiplying the first
term of all of the monomials (xj −xi) and also has coefficient +1. (Why the first terms?
There are precisely n−1 monomials in the product

∏
1≤i<j≤n(xj −xi) that contain the

term xn, and in each of these monomials the variable xn is the first term of (xj − xi),
since i < j. Thus we must choose the first n− 1 terms of these monomials. Among the
remaining monomials there are precisely n − 2 that contain the term xn−1. Again, in
each of these monomials the variable xn−1 is the first term. By repeating this argument
we arrive at the desired result.) Thus the determinant and the polynomial are equal. �
Proof of Property 6.20: Applying the above lemma to the matrix in (6.13) shows
that its determinant is equal to

∏
i<j(αj − αi). Recall that the αi are distinct powers

of the primitive root α for powers less than 2m − 1. Thus each of these αi is distinct,
the determinant is nonzero and the matrix invertible. �

Here is a concrete example of the various parameters k, m, and s of the code. We
saw at the beginning of the chapter that it is usual to use 7 or 8 bits to encode common
Western typographical symbols (letters, numbers, punctuation, etc). If m is set to 8,
then each of the elements (∈ F2m) can directly represent a symbol of the ASCII character
set. Thus the correspondence between “ASCII character” and “elements of F2m” is one-
to-one. If m = 8 is chosen, then the number k of letters is bounded by 2m − 2 = 254.
Now suppose that the transmission channel is reliable enough that being able to correct
2 letters is sufficient with high probability. Since the number of correctable errors s is
equal to [12 (2m−k−1)], we require that (2m−k−1) be greater than or equal to 2s = 4.
Thus we can send text in blocks of k = 28 − 4 − 1 = 251 letters. The code transforms
them into blocks of 255 letters. Note that there can be more than one bit error per
letter being corrected. The Reed–Solomon code corrects entire letters, not individual
bits.

Compact discs do not store Latin characters but rather digitized sound. However,
they use Reed–Solomon codes with the parameters just mentioned: m = 8 and a maxi-
mum of 2 errors. It should be noted that much more economical decoding methods exist
that do not require exploring all of the

(
2m−1

k

)
possible linear systems of k equations

and k unknowns [6, 1]. These algorithms considerably accelerate the decoding process.

6.7 Appendix: The Scalar Product and Finite Fields

It is very likely that you have encountered scalar products in your linear algebra courses,
where it was defined as function denoted by (·, ·) from a vector space V on R such that



6.7 Appendix: The Scalar Product and Finite Fields 199

(i) (x, y) = (y, x), for all x, y ∈ V ;
(ii) (x + y, z) = (x, z) + (y, z) for all x, y, z ∈ V ;
(iii) (cx, y) = c(x, y) for all x, y ∈ V and c ∈ R;
(iv) (x, x) ≥ 0 with (x, x) = 0 only for x = 0.

If the field R of real numbers is replaced by a finite field, the same definition applies
except for the final property, which becomes

(iv)finite if (x, y) = 0 for all y ∈ V , then x = 0.

It is the scalar product with this modification that is used in the present chapter. Note
that the original condition (iv) does not make sense in a finite field, since we do not
have a complete order (“<”) that is preserved by addition. For example, in F2 we could
propose that 0 < 1. However, this relation does not satisfy that of the ordering on the
reals, which states that if a < b then a + c < b + c for all numbers c. In fact, if the
number 1 ∈ F2 is added to both sides, we then obtain 0 + 1 < 1 + 1, or 1 < 0, which
clearly contradicts the original statement!

The definition of the orthogonal complement remains the same for both the original
and the modified scalar product. We recall it here.

Definition 6.23 If W ⊂ V is a subset of V , then the orthogonal complement W⊥ is
defined by W⊥ = {v ∈ V |(v, w) = 0 for all w ∈ W}.
This is a vector subspace of V . The modification (iv) → (iv)finite has a nonintuitive
consequence. Recall that if W ⊂ Rn is a vector subspace, then it and its complement
have only the origin in common: W ∩W⊥ = {0}. In vector spaces over finite fields this
is not always the case! For example, consider the subspace W with basis⎛

⎝1
1
0

⎞
⎠ ∈ F3

2.

The elements w = (w1, w2, w3)t ∈ F3
2 of the orthogonal complement must satisfy

(
w1 w2 w3

)⎛⎝1
1
0

⎞
⎠ = 0

and therefore w1 + w2 = 0. Hence ⎧⎨
⎩
⎛
⎝1

1
0

⎞
⎠ ,

⎛
⎝0

0
1

⎞
⎠
⎫⎬
⎭

is a basis of W⊥ and ⎛
⎝1

1
0

⎞
⎠ ∈ W ∩ W⊥.

We must therefore use our intuition about orthogonal complements with caution!
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6.8 Exercises

1. (a) In the C(7, 4) Hamming code, what are the vectors to be sent if we wish to transmit
the words (0, 0, 0, 0), (0, 0, 1, 0), and (0, 1, 1, 1)?
(b) The receiver receives the words (1, 1, 1, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1, 1), (0, 0, 0, 0, 1, 1, 1),
and (1, 1, 1, 1, 0, 0, 0). What were the originally transmitted words?

2. (a) We use the C(15, 11) Hamming code to correct a message containing at most one
bit error. If the control matrix is

H =

⎛
⎜⎜⎝

1 0 1 1 1 0 0 0 1 1 1 1 0 0 0
1 1 0 1 1 0 1 1 0 0 1 0 1 0 0
1 1 1 0 1 1 0 1 0 1 0 0 0 1 0
1 1 1 1 0 1 1 0 1 0 0 0 0 0 1

⎞
⎟⎟⎠

and the received message is

w =
(
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

)
,

was there an error in the transmission?
(b) We want to use the C(2k − 1, 2k − k − 1) Hamming code for a given k but we do
not want to add more than 10% overhead to the original word. What is the minimum
length of the original word that must be used and what value of k characterizes the
code to be used?

3. The following questions concern the C(2k − 1, 2k − k − 1) Hamming code.
(a) Using this code, what is the length of the original words u to be transmitted? How
many distinct words may be transmitted?
(b) How many “letters” are there in an encoded word v?
(c) How many distinct received words w (with an error or without) will decode to the
same original message u?
(d) Do there exist any received messages that cannot be decoded? (Another way of
posing this question is, does there exist a w ∈ F2k−1

2 that is not an encoding v of some
message u ∈ F2k−k−1

2 or within one error of such a v?)

4. Verify that addition + and multiplication × in F2 (as defined by the tables in Section
6.2) satisfy the properties of the structure of fields as defined in Section 6.5.

5. Let (F,+,×) be a finite field. Show that the multiplication table of the nonzero elements
of F has the following property: all rows and all columns contain all nonzero elements
of F exactly once.
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6. (a) In the C(7, 4) Hamming code, does there exist a received message (w1, w2, w3, w4,
w5, w6, w7) ∈ F7

2 that cannot be decoded to one of the 16 elements of F4
2 under the

hypothesis that at most one bit is in error? (See also Exercise 3(d).)
(b) Show that a Hamming type code that lengthens a message from three bits to eight
bits cannot correct for two errors.
(c) Construct a Hamming-type code mapping three bits into ten that is able to correct
two errors.

7. (a) Let H be a k×n matrix, n > k, with entries in F2. Let G be an (n−k)×n matrix
with entries in F2, obtained from H by requiring that G be of maximum rank and that
its rows be orthogonal to those of H. If H has the form

H =
(

M︸︷︷︸
k×(n−k)

| Ik×k

)
,

where M is a k× (n− k) matrix and Ik×k is the k× k identity matrix, show that G can
be chosen as

G =
(

I(n−k)×(n−k) | M t︸︷︷︸
(n−k)×k

)
.

(b) Write G4 and H4 for the C(15, 11) Hamming code with k = 4. (Start with H4.)
(c) What is the message u that the sender wished to send if he was using the C(15, 11)
code and the received message was (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)?

8. Let p = 1
1000 be the probability that a bit will be transmitted in error.

(a) What is the probability of receiving precisely two bits in error in a transmission
of seven bits, when transmitting a word in the C(7, 4) Hamming code?
(b) What is the probability of having more than one bit error in a transmission of
seven bits?
(c) Rather than using the Hamming code, consider transmitting a bit by repeating
it three times. We decode by choosing the bit that is in the majority. Calculate the
probability of correctly decoding the sent bit.
(d) We transmit four bits by repeating each one three times. What is the probability
that the four bits will be decoded correctly. Comparing the results of this question with
part (b), we see that the simple repeating code has a slight advantage over the C(7, 4)
Hamming code, but at the cost of transmitting 12 bits instead of seven.

9. Most books have an ISBN code (for International Standard Book Number), and
this code is unique to each book. This code consists of 10 numbers. For example,
ISBN 2-12345-678-0. The first three segments identify the linguistic group, the pub-
lishing house, and the volume. The last is an error-detection symbol chosen from
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X}, where X represents 10 in Roman numerals. Let ai, for
i = 1, . . . , 10, refer to the 10 symbols. The symbol a10 is chosen as the remain-
der of the sum b =

∑9
i=1 iai when divided by 11. In our example we see that
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b = 1× 2+2× 1+3× 2+4× 3+5× 4+6× 5+7× 6+8× 7+9× 8 = 242 = 11× 22+0
and a10 = 0.
(a) Show that this code can detect an error in one digit.
(b) Show that the sum

∑10
i=1 iai is divisible by 11.

(c) Find the last digit of the following ISBN code:

ISBN 0-7267-3514-?.

(d) A common type of error is the inversion of two symbols. The code 0-1311-0362-8
could be erroneously entered as 0-1311-0326-8, for example. Show that the code permits
the detection of such an error provided that the consecutive digits are not identical (in
which case the inversion does not constitute an error anyway!).
(e) In other references a10 is defined as being chosen such that the sum

10∑
i=1

(11 − i)ai

is divisible by 11. Show that this definition is equivalent to that given above.

10. The following method was introduced by IBM for constructing credit card numbers.
It is also used in Canada for social insurance numbers. We construct numbers of n
digits, a1, . . . , an with ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The number is valid if the number
b constructed as follows is a multiple of 10:

• if i is odd we define ci = ai;
• if i is even and 2ai < 10 we define ci = 2ai;
• if i is even and 2ai ≥ 10 then 2ai = 10 + di; we define ci = 1 + di, which is the sum

of the digits of 2ai;
• then

b =
n∑

i=1

ci.

(a) Show that if i is even then ci is the remainder of the division of 2ai by 9.
(b) The first 15 digits of a credit card are 1234 5678 1234 567. Calculate the 16th
digit.
(c) Show that this method can detect an error in one of the digits.
(d) A common error is the inversion of two consecutive digits. The IBM method is not
infallible for detecting such errors. Show that the IBM method is capable of detecting
such errors if the two consecutive digits are not the same (in which case it is not actually
an error) and if they are not both from the set {0, 9}.

11. The following code is constructed using the same principle as the Hamming code. We
want to send a message of four bits (x1, x2, x3, x4), where xi ∈ {0, 1}. We lengthen the
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message to 11 bits by adding x5, . . . , x11 defined as follows (where arithmetic is in the
field F2):

x5 = x1 + x4,

x6 = x1 + x3,

x7 = x1 + x2,

x8 = x1 + x2 + x3,

x9 = x2 + x4,

x10 = x2 + x3 + x4,

x11 = x3 + x4.

Show that this code can detect two errors.

12. Construct the finite field F4 of four elements. (Give the explicit addition and multipli-
cation tables.)

13. Give all the primitive elements of F9 from Example 6.14, which was constructed with
the primitive polynomial p(x) = x2 + x + 2.

14. (a) Let q(x) and p(x) be two polynomials in F[x]. Show that there exist polynomials
s(x) and r(x) ∈ F[x] such that q(x) = s(x)p(x) + r(x) with 0 ≤ degree r < degree p.
(b) Conclude that q(x) = r(x) (mod p(x)).

15. Let Mn be the set of n × n matrices and denote by + and · the usual operations of
matrix addition and multiplication. Is (Mn,+, ·) a field? Justify your answer.

16. Let E be a finite set and U(E) the set of its subsets. (For example, if E = {a, b, c},
then U(E) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.) We define on U(E) the
operations + and × as the usual operations of set union and intersection, respectively.
For + the identity element is ∅, and for × it is E . Does the set U(E) equipped with
these operations form a field? Prove this statement or show which of the properties is
not satisfied.

17. (a) Let F3 be the field of three elements. There are nine degree-2 polynomials of the
form x2+ax+b, where a, b ∈ F3. List these nine polynomials and identify the three that
are irreducible. (Hint: start by enumerating the polynomials of the form (x+c)(x+d).)
(b) With the goal of constructing the field of nine elements we consider the quotient
F3[x]/q(x), where q(x) = x2 + 2x + 2. Verify that x is primitive by reducing the powers
xi, i = 1, 2, . . . , 8, to polynomials of degree zero or one.
(c) Using the results from (b), for which i does the equality x3 + x5 = xi hold?
(d) The field F9 has now been constructed in two different manners, the first in
Example 6.14 of Section 6.5 and the second in part (b) of this question. Construct the
isomorphism between these two constructions. (See Proposition 6.18 for the definition
of an isomorphism.)
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(e) In (a) you identified three irreducible polynomials. Let p(x) be the one used in
Example 6.14, q(x) the one used in part (b), and r(x) the third. Is the polynomial
i(x) = x a primitive root of F3[x]/r(x)? What could be done to determine the addition
and multiplication tables of F3[x]/r(x)?

18. (a) Find the only degree-2 irreducible polynomial over F2, the two of degree 3, and
the three of degree 4.
(b) Construct the addition and multiplication tables of the field F8 of eight elements.

19. (a) For the ambitious: construct F16.
(b) Also for the ambitious: find an irreducible polynomial of degree 8 over F2. This
polynomial allows you to construct a field of how many elements?

20. (a) We consider the error-correcting code that consists of repeating each bit three
times. In order to send a 7-bit message we must send 21 bits of data. For example, to
send 0100111 we transmit

000 111 000 000 111 111 111.

The code can correct any single bit error. However, it can correct others as well if the
errors are sufficiently well placed. What is the maximum number of errors that may be
corrected? Under what conditions?
(b) Now consider the C(7, 3) Reed–Solomon code. The letters of this code are elements
of the field of eight elements, F23 , identified with {0, 1}3, on which we have defined
addition and multiplication. We write each letter as a sequence of three bits b0b1b2︸ ︷︷ ︸.
What is the maximum number of bits this code allows us to correct? Under what
conditions?

21. Consider the following system of three equations in three unknowns

2x− 1
2y = 1,

−x +2y −z = 0,
−y +2z = 1.

(�)

(a) Solve this system over the field F3 of three elements. (The number 1
2 is the

multiplicative inverse of 2.)
(b) Consider the system (�) over the field Fp of p elements, where p is a prime number
greater than 2. For what values of p does the system possess a unique solution?

22. (a) Calculate the following determinant over the reals R:

d =

∣∣∣∣∣∣
2 −1 0
−1 2 −1
0 −1 2

∣∣∣∣∣∣ .
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(b) Explain why the determinant d2 of the matrix⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ ∈ F3×3

2

is equal to d (mod 2).
(c) Calculate in F3 the determinant d3 of the matrix⎛

⎝2 2 0
2 2 2
0 2 2

⎞
⎠ ∈ F3×3

3 .

Could you have arrived at this determinant starting from the answer in (a)?
(d) Consider the system

2a −b = 1,
−a +2b −c = 1,

−b +2c = 1.
(�)

In which of the fields R, F2, and F3 does this system have a unique solution? (The integer
coefficients of the system are understood to be taken modulo 2 or 3 if the solution is to
be found in F2 or F3, respectively.)
(e) Solve (�) in F3.

23. This exercise walks through the encoding and decoding of a message using the Reed–
Solomon code with m = 3 and k = 3. You must first have constructed the field F8 in
Exercise 18. The calculations are simple but numerous; thus it is suggested that you
work in teams. (All participants must choose the same primitive root α and use the
same tables for F8!)
(a) What is the maximum number of errors that may be corrected by the C(7, 3)
Reed–Solomon code?
(b) What is the encoding of the word (0, 1, α) ∈ F3

2?
(c) Equation (6.12) can be rewritten as

p = Cu,

where p ∈ F 2m−1
2m , u ∈ Fk

2m , and C ∈ F
(2m−1)×k
2m . Derive the matrix C for the C(7, 3)

code.
(d) Suppose that the received message is

w = (1, α4, α2, α4, α2, α4, α2) ∈ F2m−1
2m .

Choose rows 0, 1, and 4 of the system in equation (6.12) and solve for the vector u =
(u0, u1, u2) ∈ F3

8.
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(e) How many ways are there to choose three distinct equations from those in equation
(6.12)? How many more systems would have to resolve to the same answer as (d) before
we could be sure that we had recovered the original message?
(f) Is the answer to (d) the original message?

24. Let p be a prime number. This exercise verifies that Zp is a field. We say that a and b
are congruent modulo p if their difference a−b is an integer multiple of p. (See Example
6.5.)
(a) Show that “being congruent” is an equivalence relation, called congruence modulo
p.
(b) We identify Zp as the set of equivalence classes of integers modulo p. Let ā, b̄ ∈ Zp,
i, j ∈ ā, and m,n ∈ b̄. Show that if i + m ∈ c̄ and j + n ∈ d̄, then c̄ = d̄. Answer the
same question for multiplication. This exercise shows that the definitions of + and ×
given in Example 6.5 do not depend on the chosen elements of ā and b̄.
(c) Show that the class 0̄ is the identity element for + and that 1̄ is the identity
element for ×.
(d) Let ā ∈ Zp be an element different from 0̄. Use Euclid’s algorithm (Corollary 7.4)
to show that there exists b̄ ∈ Zp such that āb̄ = 1̄.
(e) Finish verifying that Zp is a field.
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7

Public Key Cryptography: RSA (1978)

This chapter contains more material than can be covered in a single week. The review of
the number theory surrounding Euclid’s algorithm is optional (Section 7.2), depending
on the background of the student. As well, a portion of this material can easily be made
the subject of a few additional exercises. On the other hand, it is strongly recommended
to take the time to discuss arithmetic modulo n. In Section 7.3 we present the RSA
algorithm and prove Euler’s theorem, allowing us to rigorously justify the workings of
RSA. We explain how to sign a message. This first part can be covered in roughly
two hours, unless a significant amount of number theory background needs be covered.
Finally, the last hour should be dedicated to more advanced material. For example,
you could explain the principle of probabilistic primality-testing algorithms (beginning
of Section 7.4). While an hour is insufficient to cover all the details of the algorithm,
it should allow for a walk-through of several examples.

The rest of this chapter’s material is decidedly more advanced. If covered in class,

it is preferable that the students have some knowledge of basic group theory. Such

notions are required in Section 7.4 on primality testing algorithms and in Section 7.5

on Shor’s large integer factorization algorithm. Alternatively, these sections may serve

as a starting point for a semester project.

7.1 Introduction

Cryptography is a subject as old as human civilization. Through all of history man has
invented secret codes in an attempt to transmit messages that cannot be understood
by an interceptor. History has shown that constructing such codes is a very difficult
problem and that they all eventually succumb to clever analysis. Take, for example,
a code that permutes the letters of the alphabet, replacing each letter with the letter
three places further: in other words, a is replaced by d, b by e, c by f , etc. In English, e
is the most frequently occurring letter: looking at a scrambled text would quickly lead
us to guess that e had been coded by h, and letter by letter, we would finish by breaking
the code. The second reason why secret codes are vulnerable is that the sender and

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 7, c© Springer Science+Business Media, LLC 2008
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the receiver have to share with each other the inner workings of the code they wish to
use. As with any exchange of information, it is possible that this communication may
be intercepted.

In this chapter we study the RSA algorithm, named after its inventors Rivest,
Shamir, and Adleman. It describes a type of public key cryptosystem. What is par-
ticularly impressive about this algorithm is the fact that it has still not been broken,
even after 29 years of scrutiny from the best scientists in the field. This fact is all
the more surprising given that the details of exactly how the cryptosystem works are
completely public. We will study the operation of this cryptosystem and show that we
need only to be able to factor large integers in order to break it. Surprisingly, it is
the conceptually simple operation of factorization (splitting a composite integer into a
product of its prime factors, as you likely learned in grade school) that has managed
to stump the biggest supercomputers and smartest minds (provided the integer is large
enough)!

RSA is built on basic number theory, more specifically on (+, ·) arithmetic modulo
n, and on Fermat’s little theorem as generalized by Euler. The whole system works due
to three simple properties of integers, well known by theoreticians:

• It is difficult for a computer to factor a large number.
• It is easy for a computer to construct large prime numbers.
• It is easy for a computer to decide whether a given large number is prime.

Advantages of public key cryptosystems: The benefits of public key cryptosystems
are quite clear. In order for two people to communicate using a cryptosystem they must
both know the details of the system: it is in the sharing of the details of the system where
the danger of interception is largest. However, in the case of public key cryptography
this danger no longer exists: the entire system is public! Such a system is also effectively
the only approach that can work when there are millions of end users, when sending
credit card information across the Internet, for example.

We will also learn of another advantage of the RSA cryptosystem: it allows one
to “sign” a message such that the receiver can be certain of both its integrity and its
sender. Given the relatively common occurrence of identity theft and our increasing
dependence on the Internet, such techniques play an important role in protecting one’s
online identity.

7.2 A Few Tools from Number Theory

Definition 7.1 (i) Let a and b be two integers. We say that a divides b if there exists
an integer q such that b = aq. We write a | b. (This definition is equally as valid
for a, b, q ∈ N as for a, b, q ∈ Z.)

(ii) The greatest common divisor (GCD) of a and b, denoted by (a, b), satisfies the
following two properties:
• (a, b) | a and (a, b) | b,
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• if d | a and d | b then d | (a, b).
(iii) We say that a is congruent to b modulo n if n | (a−b), in other words if there exists

x ∈ Z such that (a − b) = nx. We write a ≡ b (mod n), and call this equivalence
relation congruence modulo n.

Proposition 7.2 Consider a, b, c, d, x, y ∈ Z. Then it follows that

a ≡ c (mod n) and b ≡ d (mod n) =⇒ a + b ≡ c + d (mod n),
a ≡ c (mod n) and b ≡ d (mod n) =⇒ ab ≡ cd (mod n),
a ≡ c (mod n) and b ≡ d (mod n) =⇒ ax + by ≡ cx + dy (mod n).

Proof. We show only the second implication, leaving the others as exercises.
Since a ≡ c (mod n), it follows that n | a − c. Thus there exists an integer x such

that a − c = nx. Similarly, there exists y such that b − d = ny. In order to show that
ab ≡ cd (mod n) we must show that n | ab − cd:

ab − cd = (ab − ad) + (ad − cd)
= a(b − d) + d(a − c)
= nay + nxd
= n(ay + xd).

Thus it follows that n | ab − cd. �

Euclid’s algorithm allows us to find the GCD, (a, b), of two integers a and b. The
details of this algorithm are discussed in the following proposition. Of key importance
in the algorithm is the notion of integer division with remainder.

Proposition 7.3 (Euclid’s algorithm) Let a and b be two positive integers with a ≥ b,
and let {ri} be the sequence of integers constructed in the following manner. Divide a
by b: we call q1 the quotient of this division and r1 the remainder such that

a = bq1 + r1, 0 ≤ r1 < b.

In the same manner we now divide b by r1, yielding

b = r1q2 + r2, 0 ≤ r2 < r1.

We iterate such that

ri−1 = riqi+1 + ri+1, 0 ≤ ri+1 < ri.

The sequence {ri} is strictly decreasing. Thus there must exist an integer n such that
rn+1 = 0. It follows that rn = (a, b).
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Proof. We start by showing that rn | a and rn | b. Since rn+1 = 0, the last equation
may be written rn−1 = qn+1rn. Thus rn | rn−1. The second-to-last equation is rn−2 =
qnrn−1 +rn. Since rn | rn−1, it follows that rn | qnrn−1 +rn. Thus rn | rn−2. We iterate
through the equations one by one, obtaining that rn | ri for all i. Thus rn | r1q2+r2 = b.
Finally, since rn | b and rn | r1, then rn | bq1 + r1 = a. Thus rn | a and rn | b, which
immediately implies rn | (a, b).

Let d be a divisor of a and b. We must show that d divides rn. Now the iteration
through our system of equations is downward. Since d | a and d | b, then d | r1 = a−bq1.
In the second equation we have that d | b and d | r1; thus d | r2 = b − r1q2. Iterating
shows that d | ri for all i. In particular, d | rn.

We can thus conclude that rn = (a, b). �

Corollary 7.4 Let a and b be integers and let c = (a, b). Then there exist x, y ∈ Z such
that c = ax + by.

Proof. Our proof makes use of Proposition 7.3. We know that c = rn. We again
iterate upward through the equations. Since rn−2 = qnrn−1 + rn, then

rn = rn−2 − qnrn−1. (7.1)

Substituting rn−1 = rn−3 − qn−1rn−2, equation (7.1) then becomes

rn = rn−2(1 + qn−1qn) − qnrn−3. (7.2)

Now substitute rn−2 = rn−4 − qn−2rn−3. Continuing these iterated substitutions yields
the equation rn = r1x1 + r2y1, where x1, y1 ∈ Z. We substitute r2 = b − r1q2, yielding

rn = r1(x1 − q2y1) + by1.

Finally, we substitute r1 = a − bq1, yielding our final result

rn = a(x1 − q2y1) + b(−q1x1 + q1q2y1 + y1) = ax + by,

where x = x1 − q2y1 and y = −q1x1 + q1q2y1 + y1. �

Remark: The proof of Corollary 7.4 is very important. It gives us an explicit method
for finding integers x and y such that (a, b) = ax + by. Even if this method may seem
tedious when applied by hand, it is easily performed by a computer, even for large a
and b. Similarly, it is also easy for a computer to calculate the GCD of two numbers
using the algorithm of Proposition 7.3.

Proposition 7.5 (1) Let c = (a, b). Then c is characterized by the following property:

c = min{ax + by | x, y ∈ Z, ax + by > 0}.
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(2) Consider a, b,m ∈ N. Then

(ma,mb) = m(a, b).

(3) Consider a, b, c ∈ N. If c | ab and (c, b) = 1, then c | a.
(4) If p is prime and p | ab, then p | a or p | b.

Proof.

(1) Define E = {ax + by | x, y ∈ Z, ax + by > 0} and let c = (a, b). Then it follows
that c ∈ E by Corollary 7.4. Now suppose that d = ax′ + by′ ∈ E with d > 0 and
d < c. Since c | a and c | b, then c | ax′ + by′. Thus c | d. However, 0 < d < c, a
contradiction.

(2) By (1) we have that

(ma,mb) = min{max + mby | x, y ∈ Z,max + mby > 0}
= mmin{ax + by | x, y ∈ Z, ax + by > 0}
= m(a, b).

(3) Since (c, b) = 1, by Corollary 7.4 there exist x, y ∈ Z such that cx + by = 1.
Multiplying both sides by a yields acx + aby = a. We have c | acx and c | aby.
Hence c | (acx + aby), and finally c | a.

(4) Apply (3) with c = p. If (p, b) = 1 we obtain p | a by (3). Otherwise, we must have
that (p, b) = d > 1. Since the only divisors of a prime p are 1 and p, we must have
that d = p = (p, b). In other words, p | b. �
The following corollary is quite useful:

Corollary 7.6 Let a and n be two integers with a < n. If (a, n) = 1, then there exists
a unique x ∈ {1, . . . , n − 1} such that ax ≡ 1 (mod n).

Proof. We start with the existence. Since (a, n) = 1, Corollary 7.4 ensures the
existence of x, y ∈ Z such that ax+ny = (a, n) = 1. Thus ax = 1−ny or ax ≡ 1 (mod n).
If x /∈ {1, . . . , n − 1}, then we can add or remove a multiple of n to bring it into this
range, without changing the congruence ax ≡ 1 (mod n). So the existence is proved.

Let us now prove the uniqueness. Suppose there exists a second solution x′ ∈
{1, . . . , n − 1} with ax′ ≡ 1 (mod n). Then a(x − x′) ≡ 0 (mod n), and therefore
n | a(x−x′). Since (n, a) = 1, it follows that n | x−x′. But x−x′ ∈ {−(n−1), . . . , n−1},
leaving x − x′ = 0 as the only possibility. �

7.3 The Idea behind RSA

We present the RSA cryptography system in a manner similar to that taken in the
original article [8]. We start by walking through each of the steps in the algorithm. In
a second pass, we will revisit each step in greater detail.
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A public key cryptography system is initially set up by the person (or organization),
which we will call the receiver, that wants to receive messages in a secure manner. It is
the receiver that sets up the system and publishes how to send it messages.
Step 1. The receiver chooses two large primes p and q (roughly 100 digits long each),
and calculates n = pq. The number n, the “public key,” will be roughly 200 digits long.
Given only n, computers cannot recover p and q in a reasonable amount of time.
Step 2. The receiver calculates φ(n), where φ is the Euler function defined as follows:
φ(n) is the number of integers in {1, 2, . . . , n − 1} that are relatively prime to n, for
n > 1. By convention, we define φ(1) = 1. In Proposition 7.8 we will show that
φ(n) = (p − 1)(q − 1). Note that this formula requires knowledge of p and q. Thus,
calculating φ(n) without knowing the factorization of n seems to be as hard as factoring
n (although there is no rigorous proof that these two problems are in fact equivalently
difficult).
Step 3: Choosing the encryption key. The receiver chooses e ∈ {1, . . . , n − 1}
relatively prime to φ(n). The number e is the encryption key. This number is public
and is used by the sender to encode the message following the instructions publicly
published by the receiver.
Step 4: Constructing the decryption key. There exists d ∈ {1, . . . , n − 1} such
that ed ≡ 1 (mod φ(n)). The existence of d follows from Corollary 7.6. The exact
method of constructing d is implied by the proofs of Corollary 7.6 and its supporting
propositions, including Euclid’s algorithm. The integer d, constructed by the receiver,
is the decryption key. This key, the “private key,” remains secret and allows the receiver
to decrypt its received messages.
Step 5: Encrypting a message. The sender wants to send a message that consists
of an integer m ∈ {1, . . . , n − 1}, where m is relatively prime to n. To encode it, the
sender calculates the remainder a from the division of me by n. Thus, we have that
me ≡ a (mod n), with a ∈ {1, . . . , n − 1}. The calculated integer a is the encrypted
message. The sender sends a. As we will see later, it is easy for a computer to calculate
a, even when m, e, and n are very large.
Step 6: Decrypting a message. The receiver receives an encrypted message a. To
decrypt this message the receiver calculates ad (mod n). In Proposition 7.10, we will
show that this will always yield precisely the initial message m.

Before discussing the different steps we consider a simple example with small num-
bers.

Example 7.7 We let p = 7 and q = 13, and therefore n = pq = 91. Which integers
of E = {1, . . . , 90} are not relatively prime to 91? These are all the multiples of p and
q, of which there are 18: 7, 13, 14, 21, 26, 28, 35, 39, 42, 49, 52, 56, 63, 65, 70, 77,
78, 84. So there are 90− 18 = 72 integers in E that are relatively prime to 91, yielding
φ(91) = 72. We choose e = 29 from this set. We can easily verify that (e, φ(n)) = 1.
We use Euclid’s algorithm to find d:

72 = 29 × 2 + 14,
29 = 14 × 2 + 1.
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We work backward through the set of equations to write 1 in terms of 29 and 72:

1 = 29 − 14 × 2 = 29 − (72 − 29 × 2) × 2 = 29 × 5 − 72 × 2.

Thus we have that 29×5 ≡ 1 (mod 72), yielding d = 5. Let m = 59 be our message. We
have (59, 91) = 1. To encode this message we must calculate 5929 (mod 91). Since 5929

is a very large number, we have to be clever in our calculations. We will successively
calculate 592, 594, 598, and 5916 modulo 91 and observe that 5929 = 5916×598×594×59.
Get to it!

592 = 3481 ≡ 23 (mod 91),
594 = (592)2 ≡ 232 = 529 ≡ 74 (mod 91),
598 = (594)2 ≡ 742 = 5476 ≡ 16 (mod 91),
5916 = (598)2 ≡ 162 = 256 ≡ 74 (mod 91).

Thus finally
5929 = 5916 × 598 × 594 × 59 (mod 91)

≡ (74 × 16) × 74 × 59 (mod 91)
≡ 1 × 74 × 59 = 4366 (mod 91)
≡ 89 (mod 91).

The method of calculation we have employed is that typically used by most computers.
The encoded message is thus a = 89, which we send to the receiver. To decode this
message the receiver must calculate the remainder of 895 divided by 91. The same
method of computation allows us to easily complete the calculation and recover the initial
message. In fact,

892 = 7921 ≡ 4 (mod 91),
894 = (892)2 ≡ 42 = 16 (mod 91),

allowing us to calculate

895 = 894 × 89 ≡ 16 × 89 = 1424 ≡ 59 (mod 91).

We have recovered the message m!

Proposition 7.8 Let p and q be two distinct primes. Then

φ(pq) = (p − 1)(q − 1).

Proof. We need to count the integers in E = {1, 2, . . . , pq − 1} that are relatively
prime to pq. The only integers which are not relatively prime to pq are the multiples
of p, P = {p, 2p, . . . (q − 1)p} (there are q − 1 of them) and the multiples of q, Q =
{q, 2q, (p − 1)q} (there are p − 1 of them). Note that P ∩ Q = ∅. If not, there would
exist n and m such that np = mq, where m < p; thus p | np = mq, and by Proposition
7.5(4), either p | m or p | q, both of which lead to a contradiction. Thus the number of
integers in E that are relatively prime to pq is

pq − 1 − (p − 1) − (q − 1) = pq − p − q + 1 = (p − 1)(q − 1).

�
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Theorem 7.9 (Euler’s theorem and Fermat’s little theorem) If m < n is relatively
prime to n, then mφ(n) ≡ 1 (mod n). (Fermat proved that mn−1 ≡ 1 (mod n) when n
is prime, this result being called Fermat’s little theorem.)

Proof: We start by considering the case that n is prime. In this case φ(n) = n−1, since
the numbers 1, 2, . . . , n − 1 are all relatively prime to n. Take m ∈ E = {1, . . . , n − 1},
and consider the products

1 · m, 2 · m, . . . , (n − 1) · m. (7.3)

We will show that when divided by n, the remainders rk of these products (k · m ≡
rk (mod n)) create a permutation of the sequence 1, . . . , n− 1. To start, the remainder
rk of the division of k · m by n can never be zero if n is prime and k,m < n, so it
belongs to E. It remains to show that the remainders are distinct. Suppose that k1 ·m
and k2 · m have the same remainder after division by n. Without loss of generality, we
assume k1 ≥ k2. Then we see that

k1 · m = q1 · n + r, k2 · m = q2 · n + r,

and therefore
(k1 − k2) · m = (q1 − q2) · n.

Thus n must divide (k1 − k2) · m. Since n is prime, 0 ≤ k1 − k2 < n, and m < n, the
only possibility is that k1 = k2.

Taking the product of the remainders ri modulo n of the sequence in (7.3) and
working modulo n, we see that

(n − 1)! = 1 · 2 · 3 · · · (n − 1) = r1 · r2 · · · · · rn−1

≡ (m · 1) · (m · 2) · · · (m · (n − 1)) (mod n)
= mn−1 · (n − 1)!.

Rewritten, this yields
n | (mn−1 − 1) · (n − 1)!.

Since n is prime, we know that (n, (n−1)!) = 1. Thus n | mn−1 −1, which is equivalent
to the final result mn−1 ≡ 1 (mod n).

The proof is nearly identical when n is not prime. In this case, instead of taking the
numbers 1, . . . , n− 1, we take only the φ(n) numbers that are relatively prime to n. As
before, we multiply these by m, and consider the remainders after division by n. As
before, these do not vanish. Since m and n are relatively prime, the result will again be
a permutation of the original sequence. Indeed, if we assume that k1 ·m and k2 ·m are
congruent modulo n and k1 ≥ k2, then we can deduce that (k1−k2)·m = (q1−q2)·n, and
therefore n | (k1−k2) ·m. Since (n,m) = 1, then n | k1−k2. But 0 ≤ k1−k2 ≤ n−1. So
the only possibility is that k1 − k2 = 0, thus proving the distinctness of the remainders.

Taking the product of these numbers yields
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(k,n)=1

k<n

k ≡ mφ(n)
∏

(k,n)=1
k<n

k (mod n).

The result follows by “simplifying” the product
∏

(k,n)=1,k<n k, which is relatively prime
to n by Proposition 7.5(3). Indeed, if a =

∏
(k,n)=1,k<n k and b = mφ(n) − 1, we have

n | ab and (n, a) = 1. Hence n | b, which yields the conclusion. �

Proposition 7.10 RSA encryption and decryption are inverses one of the other: if
we encrypt a message m, where (m,n) = 1, as a, where me ≡ a (mod n), then the
decryption always yields the original message m. That is, ad ≡ m (mod n).

Proof. If me ≡ a (mod n), then

ad ≡ (me)d = med = mkφ(n)+1 = mkφ(n) · m = (mφ(n))k · m
≡ 1k · m = 1 · m = m (mod n).

�

Example 7.11 A company wants to build an online ordering system. To secure the
transmission of customer credit card information, they use a public key cryptosystem.
The credit card number is a 16-digit number combined with 4 digits describing its expiry
date, yielding a total of 20 digits. The company therefore chooses two large primes p
and q. In our example we will use primes of 25 digits, yielding n = pq of roughly 50
digits. Let

p = 12345679801994567990089459

and
q = 8369567977777368712343087.

This gives

n = pq = 103328006334666582188478564007333624855622630219933

and
φ(n) = (p − 1)(q − 1)

= 103328006334666582188478543292085845083685927787388.

The company chooses
e = 115670849

such that (e, φ(n)) = 1, and uses Corollary 7.6 to calculate

d = 34113931743910925784483561065442183977516731202177.

The value of d in this example is quite large, which effectively negates any chance of
using trial and error to discover it.
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The algorithm is constrained to sending only messages m that are relatively prime
to n. Fortunately, the only divisors of n have at least 25 digits, thus all 20-digit num-
bers must be relatively prime to n. Consider a customer with a credit card number of
4540 3204 4567 8231 and an expiration date of 10/02. The customer wishes to securely
send the message m = 45403204456782311002. Thus, the software calculates

me ≡ a

≡ 49329085221791275793017511397395566847998886183308 (mod n)

and transmits it to the company. Upon receiving this encrypted transmission the com-
pany calculates

ad ≡ 45403204456782311002 = m (mod n).

It should be pointed out that the chosen values of p and q, although seemingly large, are
not large enough to prevent a computer from easily factoring n.

What would have happened had there been an error in the transmission? With high
probability the receiver would be aware of the error, since the decrypted value would have
very little chance of being a 20-digit number.

Signing a message: Up until now we have seen how a person, call him Bob, could
put in place a public key cryptosystem allowing him to securely receive messages from
anybody. Suppose that Bob receives a message from his friend Alice asking him to
transfer a large sum of money into her account. Does this prove that the message
really came from Alice, and not from someone impersonating Alice? Thus it becomes
necessary for Alice to be able to prove that she is in fact the author of the message sent
to Bob. This is what we call signing a message.

In this case, both the sender and the receiver construct a public key cryptosystem,
consisting of a triplet (n, e, d). Two public keys are necessary.

• The sender (Alice) shares nA and eA, while keeping dA secret.
• The receiver (Bob) publishes nB and eB , while keeping dB secret.

Transmitting a signed message:

• To send a signed message m relatively prime to nA, the sender starts placing his
(her) signature by calculating

m1 ≡ mdA (mod nA).

If m1 is relatively prime to nB , she then encodes it with the receiver’s public key:

m2 ≡ meB
1 (mod nB).

The sender then sends m2. If it happens that (m1, nB) 
= 1, not very likely given
that nB has so few divisors, the sender changes the message m slightly until both
(m,nA) = 1 and (m1, nB) = 1.
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• In order to decrypt the signed message the receiver starts by recovering m1, decrypt-
ing it with his secret key dB :

m1 ≡ mdB
2 (mod nB).

Indeed,

mdB
2 ≡ meBdB

1 ≡ m
k1φ(nB)+1
1 = m1 · (mφ(nB)

1 )k1 ≡ m1 (mod nB).

Afterward, he recovers the original message using the sender’s public key:

m ≡ meA
1 (mod nA).

Indeed,

meA
1 ≡ mdAeA ≡ mk2φ(nA)+1 = m · (mφ(nA))k2 ≡ m (mod nA).

If the message was sent by an impostor, this will become obvious to the receiver
after the decryption. In the credit card example, if the message had been sent by
an impostor, there would be effectively no chance that the calculated value m would
have exactly 20 digits, or correspond to a valid credit card number. In the context of
sending a text message, we would initially apply some transform to map a sequence
of letters to a sequence of numbers. Had an impostor sent such a message, the
decoded text would in all probability be an incoherent jumble.

Applications: The RSA cryptosystem is widely used on the Internet, for example for
securing the transmission of sensitive data such as credit card information. The banking
system is also protected by RSA encryption. However, the RSA algorithms require long
and complex computations. The algorithms therefore lose their allure when we need to
send extremely long messages. In this case, other systems are normally used, especially
when the message does not need to remain secret for a long period of time. Among
the many faster cryptosystems we find DES (the Data Encryption Standard) and the
more recent AES (the Advanced Encryption Standard) (see [3]). DES and AES are
symmetric key cryptosystems, meaning that the same key is shared by both sender and
receiver and used to both encrypt and decrypt the message. The key is typically much
shorter than the message itself and may be securely shared using the more costly RSA
cryptosystem.

Discussion on the value of the RSA cryptosystem: The RSA cryptosystem
was introduced in 1978. It has stimulated much research for improved factorization
methods, but without much success: RSA remains unbroken today, provided that n is
chosen sufficiently large. It is not even known whether breaking RSA is equivalent to
factorization, or whether there exists a cheaper alternative route. However, all efforts
to break RSA using techniques other than factoring n have been without success thus
far.
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In 1978 the original paper [8] estimated that it would take 74 years (using 1978
equipment) to factor a 100-digit number, 3.8 × 109 years to factor a 200-digit number,
and 4.2 × 1025 years to factor a 500-digit number. What about using modern equip-
ment? Given the huge advances in computing power, 100-digit keys are to be avoided.
As of 2005, 200-digit keys are considered breakable by decryption experts using large
supercomputers (see below). The advances in factoring have come on two fronts: bet-
ter computers and better algorithms. Moore’s “law” (named after Gordon Moore, a
co-founder of Intel), originally stated in 1965, said that the density of transistors would
double every 18 months to two years. Amazingly, this trend has held true until now.
How does this relate to the speed of calculations? The following answer comes from
Paul Rousseau, an employee of TSMC: the speed of transistors increases by a factor
of 1.4 every two to three years. Even if companies announce that the clock speed of
a given processor is multiplied by 2, the processor does less work per cycle, and this
multiplier is therefore purely artificial. A better measure is therefore the capacity of the
processor to do “real work.” For an algorithm such as factoring, where the work may be
performed in parallel, the real increase in work capacity is roughly 2.8, where a factor of
1.4 comes from the faster transistors and a factor of 2 comes from the increased count
of transistors. As of 2005, twenty-seven years have passed since 1978. If we assume that
a generation occurs every 2.5 years, then 10.8 generations have passed, yielding a factor
of 67,500, which is less than 105.

The improvement of algorithms for factoring has been no less spectacular. In the
nineteenth century, Gauss had already classified the problem of factoring large numbers
as a fundamental problem in number theory. The most important algorithms are:

• the quadratic sieve method of Pomerance,
• the elliptic curve method of Lenstra, and
• the general number field sieve method of Pollard, Adleman, Buhler, Lenstra, and

Pomerance.

Carl Pomerance wrote an excellent article on the subject [7].
In 1996 we were factoring numbers of 130 digits, and in 1999 we were factoring

numbers of 155 digits. In 2005, F. Bahr, M. Boehm, J. Franke, and T. Kleinjung
announced the factoring of a 200-digit number:

n = 27997833911221327870829467638722601621070446786955
42853756000992932612840010760934567105295536085606
18223519109513657886371059544820065767750985805576
13579098734950144178863178946295187237869221823983,

factored as n = pq, where p and q are primes given by

p = 35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349,

q = 79258699544783330333470858414800596877379758573642
19960734330341455767872818152135381409304740185467.
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This factorization was obtained using the general number field sieve technique, which
as of 2005 remains the best known factoring algorithm.

In his 2000 paper [4], Jean-Paul Delahaye recommends the use of a key of 232 digits
for not very important data, a key of 309 digits for commercial use, and a key of 617
digits if the message must remain protected over a long period of time.

Carmichael numbers. The RSA cryptosystem with public key n requires that mes-
sages m satisfy (m,n) = 1 in order for the encryption and decryption to function. In
fact, if we encrypt and decrypt messages m such that (m,n) 
= 1, we often find that
the method still works. It is therefore natural to ask, is the condition (m,n) = 1 really
required? The answer to this question is known: the condition is unnecessary if n is a
Carmichael number. Unfortunately, Carmichael numbers are hard to find and contain
at least three factors. So the condition (m,n) = 1 is really required.

7.4 Constructing Large Primes

Earlier, we stated that it is relatively simple to construct large prime numbers. This
is a direct consequence of the prime number theorem, which in simple terms tells us
the probability that a randomly chosen integer of N digits will be prime. To construct
a 100-digit prime number, we simply randomly generate 100-digit numbers and test
whether they are prime. The prime number theorem assures us that after an average
of 115 tries we should obtain a prime number (assuming that we generate only odd
numbers).

Theorem 7.12 (Prime number theorem) Let π(N) = #{p ≤ N | p is prime} (that is,
π(N) is the number of primes less than or equal to N). Provided N is sufficiently large,
then

π(N) ∼ N

lnN
.

Remark: The proof of this theorem is very advanced, and will not be discussed here.

We want to generate large prime numbers. Suppose for the moment that we have
an oracle that lets us decide whether a given number is prime. We can then randomly
choose a large integer n and test whether it is prime. If it is not, we could test n + 1
and so on, until we chance upon a prime number. We will show that this is not really
a good approach to take.

Theorem 7.13 There exist arbitrarily long sequences of consecutive nonprime integers.

Proof: Consider n ∈ N. The following sequence of length n consists purely of com-
posite integers:

n! + 2, n! + 3, . . . , n! + n.
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In fact, for 1 < m ≤ n we have that m | n! and therefore m | n! + m. �

A better technique is to randomly choose large integers and test them to see whether
they are prime. Assuming that our choices are independent, the laws of probability
assure us that we will find a prime number after a reasonable number of tries.

Consider the set of integers F = {1, . . . , N} for a given large value of N . If we
would like to find primes of 100 digits (or 200), we would take N = 10100 (N = 10200,
respectively). By the prime number theorem there are approximately π(N) = N

ln N
prime integers in the set F . Thus, if we are to randomly choose an integer n in the set
F , the probability that it will be prime is roughly

Prob(n prime) ≈
N

ln N

N
=

1
lnN

.

For N = 10100 we obtain lnN = 100 ln 10 ≈ 100 × 2.30259 = 230.259. Thus, we
have roughly a 1 in 230 chance that a randomly chosen integer from F will be prime.
We can immediately double our chances if we restrict ourselves to choosing only odd
numbers (simply choose the last digit from the set {1, 3, 5, 7, 9}). Similarly, we can fur-
ther improve our chances by choosing the last digit from the set {1, 3, 7, 9} (eliminating
multiples of 5), giving us a final probability of 1 in 92.

We let B be the subset of F of integers that are odd and not divisible by 5. The
number of elements of B is approximately 2

5N . Let p = 5
2 ln N . Every time we choose a

random-number from B it will be prime with probability p. We consider the “random
experiment” of randomly drawing a number from B and testing whether it is prime.
We repeat the experiment independently until we chance upon a prime number. Let X
be the number of experiments necessary. Then X is a geometric random variable with
parameter p. Thus,

Prob(X = k) = (1 − p)k−1p.

This formula is a simple expression of the fact that we have probability (1 − p) of
drawing a nonprime number on each of the first k − 1 experiments, and probability p
of drawing a prime on the kth experiment. The expected value of the random variable
X is the average number of experiments we would expect to perform before finding a
prime number. For our geometric random variable X with parameter p we have that

E(X) =
∞∑

k=1

kProb(X = k) =
∞∑

k=1

k(1 − p)k−1p =
1
p
.

(Showing that
∑∞

k=1 k(1 − p)k−1p = 1
p requires some cleverness. This calculation can

be found in any text on probability.)
In our example p ≈ 1

92 if we have chosen the last digit from the set {1, 3, 7, 9}; thus
E(X) = 92. Hence, we would expect to perform 92 experiments on average before
finding a prime number.
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What we have done up until this moment has assumed that testing whether an
integer n is prime is significantly easier than just factoring n. Such a test is called a
primality test. There exists a wide variety of them in the literature, although most
require a certain level of mathematical sophistication. The method we will present here
is the one that appeared in the original article on RSA [8]. It is quite technical and
uses the nonintuitive Jacobi symbol, introduced below. The underlying principle is that
a composite number n leaves its fingerprints everywhere, so much so that roughly half
of the numbers in the set {1, . . . , n} “know” that n is composite. If n passes the test
with respect to k numbers m1, . . . , mk ∈ {1, . . . , n}, then n is prime with a very high
probability, as can be shown using Bayes’s formula.

A primality test. Given two relatively prime integers m and n, we may calculate the
Jacobi symbol J(m,n) ∈ {−1, 1}. The full definition of J(m,n) will be given a little
later. Let

E = {1, . . . , n − 1}.
If n is a prime number and if a ∈ E, then{

(a, n) = 1,
J(a, n) ≡ a

n−1
2 (mod n).

(7.4)

If n is not prime, then at least half of the numbers in E will not satisfy (7.4). The
instant we find an integer a ∈ E that fails this test (by not satisfying (7.4)), we know
with certainty that n is not prime. If we choose a ∈ E randomly, then we have that

Prob(a passes the test | n is not prime) ≤ 1
2
.

Suppose we have randomly chosen a1, . . . , ak ∈ E and that n has passed the test with
respect to each of them. We wish to calculate the chance that n is in fact prime. We
start by labeling each of the events: let Ai be the event “ai passes the test.” Let P (n)
be the event “n is prime,” and let Q(n) be its complement; that is, Q(n) is the event
“n is composite.” Let A = A1 ∩ · · · ∩ Ak. Therefore, A is the event “all of a1, . . . , ak

pass the test.” Bayes’s formula tells us that

Prob(P (n) | A) =
Prob(A | P (n))Prob(P (n))

Prob(A | P (n))Prob(P (n)) + Prob(A | Q(n))Prob(Q(n))
.

Since we have that
Prob(A | P (n)) = 1,
Prob(A | Q(n)) ≤ 1

2k ,

and that we may approximately calculate P (n) (and hence Q(n)) using the prime num-
ber theorem, we may approximately calculate the probability that n is prime given that
a1, . . . , ak have each passed the test (more precisely, we may calculate a lower bound to
this probability).
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In fact, the denominator is given by

Prob(A | P (n))Prob(P (n)) + Prob(A | Q(n))Prob(Q(n))

≤ Prob(P (n)) + 1
2k Prob(Q(n)),

while the numerator is simply Prob(P (n)). We return to the our earlier example in
which n is a 100-digit odd integer not divisible by 5 (that is, an element of B). We have
already seen that

Prob(P (n)) ≈ 1
92

and that Prob(Q(n)) ≈ 91
92 . This yields

Prob(P (n) | A) ≥ 1
1 + 91 1

2k

= pk.

Consider the following values of pk, calculated for various k:

p10 = 0.9184 = 1 − 0.816 × 10−1,
p20 = 0.999913 = 1 − 0.868 × 10−4,
p30 = 0.9999999152 = 1 − 0.848 × 10−7,
p40 = 0.9999999999172 = 1 − 0.828 × 10−10.

We see that k does not need to be particularly large in order to ensure that n is prime
with very high probability.

It remains to fully define the Jacobi symbol and show that fewer than half of the
values a ∈ E pass the test (satisfy (7.4)) when n is composite. We must also show that
all integers a ∈ E will pass the test when n is prime.

The Jacobi symbol. Let a, b ∈ N be relatively prime integers. The Jacobi symbol
J(a, b) has values in the set {−1, 1}. If b is prime we define

J(a, b) =

{
1 if ∃x ∈ N x2 ≡ a (mod b),
−1 otherwise.

If b is composite, we may factor b and write it as b = p1 · · · pr (where the pi are not
necessarily distinct). The Jacobi symbol is then defined as

J(a, b) = J(a, p1) · · · J(a, pr) =
r∏

i=1

J(a, pi).

(The Jacobi symbol J(a, b) is denoted by
(

a
b

)
in many number theory texts.) We see

quickly that this definition is a little obscure, and worse, quite difficult to manipulate.
How are we to determine whether there exists x such that x2 ≡ a (mod b)? In other
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words, how are we to determine whether a is a square modulo b (we say that a is a
quadratic residue)? Moreover, this definition requires us to know the factorization of b.
This leaves us with the impression of turning in circles, requiring the factorization of an
integer in order to test whether it is prime! Thankfully, there exist simpler alternative
means of calculating J(a, b). We illustrate with a few examples.

The following theorem, cited without proof, provides an algorithm for easily calcu-
lating J(a, b). Observe that in our case, we restrict ourselves to the case a ≤ b and b
odd.

Theorem 7.14 If (a, b) = 1, a ≤ b and b is odd, then

J(a, b) =

⎧⎪⎨
⎪⎩

1, if a = 1,

J(a
2 , b)(−1)

b2−1
8 , if a even,

J(b (mod a), a)(−1)
(a−1)(b−1)

4 , if a odd and a > 1.

(7.5)

In (7.5), note that the fractions b2−1
8 and (a−1)(b−1)

4 are always integers (see Exercise
16).

Example 7.15 Consider a = 130 and b = 207. Then

J(130, 207) = J(65, 207)(−1)
42848

8 = J(65, 207)(−1)5356

= J(65, 207) = J(12, 65)(−1)
64×206

4 = J(12, 65)
= J(6, 65)(−1)

4224
8 = J(6, 65)(−1)528 = J(6, 65)

= J(3, 65)(−1)528 = J(3, 65) = J(2, 3)(−1)
2×64

4

= J(2, 3) = J(1, 3)(−1)
8
8 = −J(1, 3) = −1.

The calculation may seem long and tedious, but is in fact easily performed by a computer.
To determine whether a passes the test we must calculate a

b−1
2 (mod b). We have

that b−1
2 = 103. We have already seen how to evaluate 130103 (mod n). We first

decompose b−1
2 = 103 into powers of 2: 103 = 64+32+4+2+1 = 1+21 +22 +25 +26.

We then calculate

1302 = 16900 ≡ 133 (mod 207),
1304 = (1302)2 ≡ 1332 = 17689 ≡ 94 (mod 207),
1308 = (1304)2 ≡ 942 = 8836 ≡ 142 (mod 207),
13016 = (1308)2 ≡ 1422 = 20164 ≡ 85 (mod 207),
13032 = (13016)2 ≡ 852 = 7225 ≡ 187 (mod 207),
13064 = (13032)2 ≡ 1872 = 34969 ≡ 193 (mod 207).

Now
130103 = 13064 × 13032 × 1304 × 1302 × 130

≡ 193 × 187 × 94 × 133 × 130 (mod 207)
≡ 67 (mod 207).
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We see that J(130, 207) 
= 130
207−1

2 , and can thus conclude that 207 is not prime. In
this case, we could also have seen this directly, since 207 = 32 · 23.

In the discussion of our primality testing algorithm we asserted that if n is not prime,
then fewer than half of the elements of E pass the test. Similarly, we asserted that if n
is prime, then all the elements of E will pass the test. We will now provide a sketch of
a proof for the first fact and a proof for the second. The following discussions are quite
advanced, and make use of group theory.

Definition 7.16 1. A set G combined with an operation ∗ is a group if
• the operation ∗ is associative:

∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c);

• there exists an identity element 1 ∈ G such that

∀a ∈ G, 1 ∗ a = a ∗ 1 = a;

• all elements have inverses:

∀a ∈ G, ∃b ∈ G, a ∗ b = b ∗ a = 1.

2. A subset H ⊂ G of G is a subgroup of G if H is itself a group with respect to the
operation ∗.

3. A group G is cyclic if there exists an element g ∈ G such that any element a of the
group may be expressed in the form a = gm for some integer m ∈ Z, and where we
define

gm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
m

m > 0,

1 m = 0,
g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸

|m|

m < 0.

In the case of a finite cyclic group with n elements we can convince ourselves that
the group must be of the form G = {1, g, g2, . . . , gn−1} and that gn = 1.

Example 7.17 Let p be a prime and G = {1, 2, . . . , p − 1}. We define the operation ∗
on G as a ∗ b = c, where c is the remainder of ab after division by p. In other words, ∗
is simply the operation of multiplication modulo p. Under this operation G is a group.
We let the reader verify that ∗ is associative. It is obvious that 1 is the identity element.
Finally, we are guaranteed the existence of an inverse for every element by Corollary
7.6. As we will see in Theorem 7.22, G is actually a cyclic group.

Let us verify this for p = 7. We take g = 3. Then we have g2 = 2, g3 = 6, g4 = 4,
g5 = 5, g6 = 1.
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Notation. In the above example and those yet to come, the group operation will always
be multiplication modulo n. We will thus often omit the ∗ and simply write ab for a ∗ b.

Lagrange proved the following theorem:

Theorem 7.18 (Lagrange’s theorem) Let G be a finite group and H a subgroup of G.
Then the number of elements in H, written |H|, is a divisor of the number of elements
in G, written |G|.
Proof. If H = G then we are finished. Otherwise, there must exist a1 ∈ G \ H.

Let a1H = {a1 ∗ h | h ∈ H}. Then |a1H| = |H|. In fact, given h, h′ ∈ H, if h 
= h′

then a1 ∗ h 
= a1 ∗ h′. So the map f : H → a1H defined by h �→ a1h is a bijection.
Moreover, a1H ∩ H = ∅. Indeed, if h ∈ a1H ∩ H, then h = a1h

′ for some h′ ∈ H.
Thus, a1 = h ∗ (h′)−1 ∈ H, a contradiction.

There are two cases to consider. Either a1H ∪ H = G, in which case |G| = 2|H|, or
there exists a2 ∈ G \ (H ∪ a1H). Again, we let a2H = {a2 ∗ h | h ∈ H} and iterate the
preceding argument. Since G is finite we may express it as G = H∪a1H∪a2H∪· · ·∪anH,
where H and the aiH are pairwise disjoint, and |H| = |a1H| = · · · = |anH|. Thus,
|G| = (n + 1)|H|. �

Theorem 7.19 If n is not prime, then fewer than half of the integers a ∈ E =
{1, . . . , n − 1} pass the test (satisfy (7.4)).

Proof Sketch: The proof uses the following insight. The elements of E that are
relatively prime to n form a group G under multiplication modulo n. This can be seen
by noticing that the product aa′ of two elements a, a′ ∈ E relatively prime to n is itself
relatively prime to n; in other words, (aa′, n) = 1. Let a′′ be the remainder of aa′ when
divided by n. Then a′′ must also be relatively prime to n and also a member of E. Our
group operation is once again multiplication modulo n (so a ∗ a′ = a′′), and our group
G is closed under this operation. It is easy to verify that the operation is associative
and that 1 is the identity element. Finally, Corollary 7.6 tells us that each element of
G has an inverse in G.

The group G has fewer than n − 1 elements. The subset of the elements of G that
maintain the equality of (7.4) is a subgroup H of G, a fact that we will take for granted
here. By Lagrange’s theorem the number of elements in H must divide the number of
elements in G. Thus, two cases are possible. Suppose |H| < |G|. Then |H| is a proper
divisor of |G| and in particular, |H| ≤ |G|

2 . Suppose instead that |H| = |G|. We can
show that this case is impossible by proving the existence of an element a ∈ G such that
J(a, n) is not congruent to a

n−1
2 modulo n. This proof is also rather advanced, and will

not be presented here.
Finally, |H| ≤ |G|

2 < n−1
2 . �

Theorem 7.20 If n is an odd prime, then all a ∈ E = {1, . . . , n− 1} will pass the test
(satisfy (7.4)).
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We will present the various pieces of the proof independently, since they will be
useful to us in later chapters.

Lemma 7.21 (1) Let n be prime, S = {0, 1, . . . , n − 1}, and P (x) a polynomial

P (x) = xr + ar−1x
r−1 + · · · + a1x + a0

with ai ∈ S. Then there exist at most r solutions xi ∈ S to the congruence

P (x) ≡ 0 (mod n).

(2) In the case Pd(x) = xd − 1 where d | n− 1, the congruence Pd(x) ≡ 0 (mod n) has
exactly d distinct solutions in the set E = S \ {0}.

Proof.

(1) The argument uses induction on r. Clearly, the statement holds for r = 1. Suppose
now that the statement holds for polynomials of degree r and consider a polynomial
P (x) of degree r + 1. Suppose there exists a1 ∈ E such that P (a1) ≡ 0 (mod n).
We divide the polynomial P (x) by x − a1, obtaining

P (x) = (x − a1)Q(x) + β,

where Q(x) is a polynomial of degree r with coefficients in Z. Let

Q(x) = xr + br−1x
r−1 + · · · + b1x + b0,

bi ≡ ci (mod n), and β ≡ γ (mod n), with ci, γ ∈ S. Define

Q′(x) = xr + cr−1x
r−1 + · · · + c1x + c0.

If x ∈ S we have that Q(x) ≡ Q′(x) (mod n), and therefore

P (x) ≡ (x − a1)Q′(x) + γ (mod n).

Evaluating this at a1 we obtain P (a1) ≡ γ (mod n). Thus γ = 0 and

P (x) ≡ (x − a1)Q′(x) (mod n).

Thus P (x) ≡ 0 (mod n) if and only if n | (x−a1)Q′(x). Since n is prime, this occurs
if and only if n | x − a1 or n | Q′(x), that is, x ≡ a1 (mod n) or Q′(x) ≡ 0 (mod n).
By the inductive hypothesis, Q′(x) ≡ 0 (mod n) has at most r solutions; thus P (x)
has at most r + 1 roots modulo n.

(2) By Fermat’s little theorem (Theorem 7.9) all x ∈ S\{0} are solutions to Pn−1(x) ≡
0 (mod n). Thus this congruence has exactly n − 1 distinct solutions. Suppose d is
a divisor of n−1 such that n−1 = dk. Then we may write Pn−1(x) = (xd−1)Q(x),
where Q(x) =

∑k−1
i=0 xid. By (1), Pd(x) has at most d roots modulo n and Q(x)

has at most (k − 1)d roots. Since Pn−1 has exactly n − 1 solutions, each of the
k + (k − 1)d = n − 1 solutions to Pd(x) and Q(x) must exist. Hence, Pd(x) ≡
0 (mod n) has exactly d solutions in S \ {0}. �
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Theorem 7.22 If n is prime then the set E = {1, . . . , n − 1} is a cyclic group with
respect to multiplication modulo n. If g ∈ E is such that E = {g, g2, . . . , gn−1 = 1},
then g is called a primitive root of E.

Proof. Begin by observing that E = {1, . . . , n − 1} is a group with respect to multi-
plication modulo n. In fact, since n is prime, all a ∈ E are relatively prime to n. The
conclusion follows from Corollary 7.6.

By Fermat’s little theorem (Theorem 7.9), for all a ∈ E we have an−1 = 1. (Note
that the equality an−1 = 1 is inside the group G. Its meaning is an−1 ≡ 1 (mod n).)
Let r be the minimum integer such that ar = 1. We are certain that such an r exists,
since an−1 = 1. This r is called the order of the element a. Consider the set F =
{a, a2, . . . , ar = 1}. It is easy to verify that F is in fact a subgroup of E containing r
elements. Thus, by Lagrange’s theorem if follows that r | n − 1.

We must show that there exists an element a ∈ E with order n − 1. Let d be a
proper divisor of n − 1. We will show that there are exactly d elements of G whose
orders divide d. In fact, all elements a whose orders divide d are solutions to the
congruence xd − 1 ≡ 0 (mod n). The desired result follows from Lemma 7.21(2).

Decompose n−1 into prime factors, n−1 = pk1
1 · · · pks

s , and consider the polynomials
Q

p
ki
i

(x) = xp
ki
i −1. By Lemma 7.21(2) each congruence Q

p
ki
i

(x) ≡ 0 (mod n) has exactly

pki
i solutions in E: all of the solutions are the elements of E whose order divides pki

i .
If all solutions to Q

p
ki
i

(x) ≡ 0 (mod n) corresponded to elements of the group with

order less than pki
i , then their orders would divide pki−1

i . These elements would thus be
solutions to the congruence Q

p
ki−1
i

(x) = xp
ki−1
i −1 ≡ 0 (mod n). This is a contradiction,

since Q
p

ki−1
i

(x) ≡ 0 (mod n) has exactly pki−1
i solutions in E. Thus, let gi ∈ E be a

solution to Q
p

ki
i

(x) ≡ 0 (mod n) corresponding to an element of order pki
i . We may

easily verify that
g = g1 · · · gs

has order pk1
1 · · · pks

s = n − 1. This is a consequence of the following lemma. �

Lemma 7.23 Let G be a finite group with a commutative group operation. If g1 has
order m1 and g2 has order m2 such that (m1,m2) = 1, then g1g2 has order m1m2.

Proof. Let m be the order of g1g2. We know that (g1g2)m1m2 = (gm1
1 )m2(gm2

2 )m1 = 1,
and thus m | m1m2. Since m | m1m2, we have that m = n1n2, where n1 = (m1,m) | m1

and n2 = (m2,m) | m2 (exercise: explain why!). This allows us to write mi as mi = niri.
We also have

gmr1
1 = gn1n2r1

1 = (gm1
1 )n2 = 1.

Since (g1g2)m = 1, it follows that gm
1 = g−m

2 , so we also have g−mr1
2 = 1, which yields

gmr1
2 = 1. But

gmr1
2 = gn1n2r1

2 = gm1n2
2 .
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Therefore we must have that m2 | m1n2. Since (m1,m2) = 1, this implies m2 | n2.
Since we also have n2 | m2, we finally conclude that m2 = n2. Analogously, we may
show that m1 = n1. Thus it follows that m = m1m2. �

Proof of Theorem 7.20. It suffices to show that all a satisfy J(a, n) ≡ a
n−1

2 (mod n).
For each a we have two possibilities.

If a is a quadratic residue, meaning there exists x ∈ E such that x2 ≡ a (mod n), then
by definition, J(a, n) = 1. The other half of the equality, a

n−1
2 ≡ xn−1 ≡ 1 (mod n),

follows immediately from Fermat’s little theorem (Theorem 7.9).

The second case is that a is not a quadratic residue, and it requires a little more
work. In this case we have that J(a, n) = −1 by definition. We will show that a

n−1
2 ≡

−1 (mod n).

In Theorem 7.22 we showed that there exists g ∈ E such that E = {g, g2, . . . , gn−1 =
1}. Since gn−1 = 1, each element a ∈ E satisfies an−1 = 1, and is thus a solution to the
congruence xn−1 − 1 ≡ 0 (mod n). Observe that

xn−1 − 1 =
(
x

n−1
2 − 1

)(
x

n−1
2 + 1

)
.

In the proof of Theorem 7.22 we saw that a congruence P (x) ≡ 0 (mod n), where P (x)
is of degree n−1

2 , has at most n−1
2 solutions in E.

If is obvious that 1, g2, g4, . . . , g2k, . . . are quadratic residues. They are the solutions
of x

n−1
2 − 1 ≡ 0 (mod n). Thus the elements g, g3, . . . , g2k+1, . . . are solutions of

x
n−1

2 ≡ −1 (mod n). We must verify that these elements may not be quadratic residues.
In fact, if g2k+1 ≡ y2 (mod n) for y ∈ E, we would have that (g2k+1)

n−1
2 ≡ (y2)

n−1
2 ≡

yn−1 ≡ 1 (mod n). This is a contradiction, since (g2k+1)
n−1

2 ≡ −1 (mod n). �

A deterministic algorithm for primality testing. The algorithm that we described
for primality testing is a probabilistic algorithm. In fact, it lets us prove that some
numbers are not prime, but it does not allow us to be certain (in reasonable time) that
a number is in fact prime: we would have to complete the test with roughly half of the
integers less than n.

In 2003, Agrawal, Kayal, and Saxena announced a new deterministic algorithm,
called the AKS algorithm, which allows for primality testing in reasonable time. The
full article appeared in 2004 [1]. This algorithm remains much slower than the best
probabilistic algorithms, but it is of much theoretical interest, since it answers a ques-
tion originally posed by Gauss more than 200 years ago. It is difficult to summarize
succinctly, but a detailed study of the algorithm would make an excellent term project,
provided that one had sufficient background in number theory.
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7.5 Breaking RSA: Shor’s Algorithm for Factoring Large
Integers

As we already mentioned, there has been and continues to be a great deal of research
toward finding better algorithms for factoring large integers. For computer scientists a
good algorithm is one that functions in “polynomial” time (a concept that we will make
clear a little later). The 1997 introduction of Shor’s polynomial-time factorization algo-
rithm had many repercussions. However, this algorithm requires a quantum computer,
and even if they aren’t quite the stuff of science fiction anymore, neither are they the
stuff of reality.

Before discussing this algorithm we will first discuss algorithmic complexity.

The complexity of an algorithm applied to an m-digit integer n. Suppose that
n ≈ 10m. The number m is the “size” of the input to the algorithm. The complexity
of the algorithm is the number of operations that must be performed by a computer in
order to execute the algorithm. This number of operations is dependent on the size of
the input.

If the number of operations required is of order Cmr, where r is a constant, then we
say that the algorithm operates in polynomial-time.

The classical algorithm for integer factorization requires exponential time. In fact,
it requires testing each of the numbers 1, 2, . . . , d ≤ √

n to see whether they are divisors
of n. The number of tests required is therefore of order 10m/2. As m grows, this number
of operations quickly becomes too large for a computer.

The probabilistic primality testing algorithm described earlier operates in ex-
pected polynomial-time, and the more recent AKS algorithm operates in deterministic
polynomial-time. This is why it is significantly easier to choose large primes than it is
to factor large integers.

We will start by convincing ourselves that the simple improvements we can bring to
the factorization algorithm are not sufficient to allow easy factorization. We consider
a 200-digit integer n ≈ 10200. The classic algorithm requires checking for all potential
divisors d ≤ √

n, which means we need to perform roughly 10100 trial divisions. Let us
try to reduce this complexity by simple tricks:

• If we limit ourselves to dividing only by odd numbers, we have m1 ≈ 10100

2 tests to
perform.

• If we limit ourselves to large potential divisors (numbers with 100 digits), then we
have m2 = 9

10m1 tests to perform (exercise!).
• If we use a billion computers working in parallel, each computer must perform m3 =

10−9m2 tests.
• If each of the billion computers is a supercomputer containing 5000 processors that

could perform 5000 operations in parallel (roughly equivalent to the largest individ-
ual supercomputer at the end of 2004), we limit the effective number of operations
to m4 = m3

5000 .
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• Even with these reductions we have m5 ≥ 1086 tests to perform. This is still too
many!

• Suppose, through other insights and simplifications, that we reduce this to a reason-
able amount of computation and are able to factor 200-digit numbers. Then we need
only choose public keys with a few dozen more digits in order to make the integer
effectively impossible to factor again.

It is easy to see that if we want to be able to factor large numbers, then we re-
quire better algorithms. Briefly mentioned earlier, there exist much better algorithms,
although they remain at least subexponential in complexity. Shor’s 1997 algorithm for
integer factorization runs in exponential time on a classic computer. However, it runs
in polynomial-time on a quantum computer. It is a probabilistic algorithm: if n is not
prime, the algorithm has a very high chance of finding a divisor d of n in polynomial-
time. We will content ourselves with only providing a sketch of the algorithm, without
all of the details.

The idea behind Shor’s algorithm ([6], [9]). The algorithm attempts to find a
divisor d of n. Once we have decomposed n such that n = dm, we may test whether d
and m are prime. If one or both of these factors are not prime, we again apply Shor’s
algorithm to it until we are finally left with a product of prime factors. As we proceed,
the calculations get easier and easier because d and m are much smaller than n.

Step 1: Find an integer r such that n | r2 − 1, but such that neither r − 1 nor r + 1 is
divisible by n.

Finding such a value r allows us to find a proper divisor of n. In fact, r2 − 1 ≡
0 (mod n) implies that (r − 1)(r + 1) = mn for some integer m. If p is a prime factor
of n, then by necessity p | r − 1 or p | r + 1. If p | r − 1 then (r − 1, n) = d > 1. Since n
does not divide r − 1, then d is a proper divisor of n. Similarly if p | r + 1.
Example: If n = 65 and r = 14, then r2 = 196 = 3×65+1 ≡ 1 (mod 65), and r−1 = 13
is a divisor of 65.
On the other hand, if we choose s = 64 ≡ −1 (mod 65), then s2 ≡ −12 = 1 (mod 65).
We see that s+1 = 65 is divisible by 65, and thus s cannot help us find a proper divisor
of n.
Step 2: How to actually find r?

We choose a randomly from the set E = {1, . . . , n − 1}.
• Calculate (a, n).
• If (a, n) = d > 1, then we have found a divisor of n.
• If (a, n) = 1, then we calculate the powers of a (a, a2, a3, . . .) reduced modulo n such

that ak ≡ ak (mod n) with ak ∈ E.
• Since E is finite, there exist l and k such that ak = al. Suppose k > l. Then

ak−l ≡ ak−l ≡ 1 (mod n).
• Thus there exists a minimal value s ≤ n such that as ≡ 1 (mod n). This s is the

order of a modulo n.
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• If s is odd, then our search proves fruitless and we restart with another a chosen
randomly from E.

• If s is even, then let s = 2m and r ≡ am (mod n) ∈ E. Then r2 ≡ a2m = as ≡
1 (mod n).

• If neither r− 1 nor r + 1 is divisible by n, then we are finished by Step 1; otherwise,
we repeat with another value for a.

It is possible to show that there are many values a ∈ E with even order that will do
the trick; thus the algorithm has good expected performance.

Complexity of the algorithm. the only part of the algorithm that cannot be com-
pleted in polynomial-time on a classic computer is the determination of the order of a.
It is at this crucial step where a quantum computer can be used.

Calculating the order of a modulo n using a quantum computer. Quantum
physics being a rather complicated field, we will provide only a general idea of how
the computation works. We begin by writing the number a in base 2. If n may be
written with m binary digits (bits), then n < 2m, yielding a < 2m. We write an integer
k ∈ E = {1, . . . , 2m − 1} in base 2 as

k = [jm−1jm−2 · · · j1j0] = jm−12m−1 + jm−22m−2 + · · · + j121 + j020.

So, giving ourselves k is giving ourselves m binary bits jm−1, . . . , j0. In order to calculate
the order of a we wish to calculate ak simultaneously for each value of k ∈ E. Trying
each value of k can be done by trying each of the two values {0, 1} for each ji, amounting
to 2m possibilities altogether. It is at this point where quantum computers come to the
rescue. We replace each of the m bits in the calculation with quantum bits (qubits).

Quantum bits. A quantum bit has the ability to be in a superposition of states. It
is in the state |0〉 with probability |α|2 and the state |1〉 with probability |β|2, where
|α|2 + |β|2 = 1 and both α and β are complex numbers. In quantum mechanics we
say that the qubit is in state α|0〉 + β|1〉. To give an analogy, think of a coin: it has
probability 1/2 of coming up heads, and probability 1/2 of coming up tails. Before
the coin toss, our coin is thus in a superposed state. However, when we toss it we will
observe a single final state: heads or tails. It is the same thing with quantum bits: when
we measure them we obtain 0 with probability |α2| and 1 with probability |β2|.
The “super” parallelism of a quantum computer. If we place all m bits
jm−1, . . . , j0 in superposed states simultaneously, then by calculating a|k〉 (mod n)
(where |k〉 is a superposition of all k ∈ E) we effectively compute ak for all values
of k ∈ E simultaneously! Since quantum calculations are linear and reversible, we can
see a|k〉 (mod n) as a superposition of all of the values ak ≡ ak (mod n). All of the
necessary information can be found in this superposed state, but we cannot access it
without first measuring it. The difficulty lies in accessing the results. This lies purely
in the domain of quantum physics and we avoid discussing details here.
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Remark: We have already shown that it is not difficult for a computer to calculate
ak (mod n). In fact, if k = jm−12m−1 + · · · + j020 then ak =

∏
{i|ji=1} a2i

. Thus it

suffices to calculate the a2i

(mod n) for i = 0, . . . , m − 1. This calculation is done by
jumping from one to the next:

• a = a0,
• a2 ≡ a1 (mod n) with a1 ∈ E;
• a4 ≡ (a1)2 ≡ a2 (mod n) with a2 ∈ E;

• ...
• a2m−1 ≡ (am−2)2 ≡ am−1 (mod n) with am−1 ∈ E.

Finally, ak ≡ ∏
{i|ji=1} ai (mod n).

How far along are quantum computers? Quantum computers are not yet a serious
threat to the RSA cryptosystem. For the moment, real-world functioning quantum
computers are able to factor only very small integers: in 2002, the number 15 was
factored with the help of a 7-qubit quantum computer by Isaac Chuang and his team
of researchers.

7.6 Exercises

1. Let a, b, c, d, x, y ∈ Z. Show that

a ≡ c (mod n) and b ≡ d (mod n) =⇒ a + b ≡ c + d (mod n),
a ≡ c (mod n) and b ≡ d (mod n) =⇒ ax + by ≡ cx + dy (mod n).

2. The Euler function φ : N → N is defined as follows: if m ∈ N then φ(m) is the number
of integers from the set {1, 2, . . . ,m − 1} that are relatively prime to m.
(a) Show that if m = p1 · · · pk with p1, . . . , pk distinct primes, then φ(n) = (p1 −
1) · · · (pk − 1).
(b) Let p be a prime. Show that

φ(pn) = pn − pn−1.

3. Public key cryptography uses an integer n = pq, where p and q are two distinct prime
integers. Would the same techniques work with a number of the form n = p1p2p3, where
p1, p2, and p3 are three distinct primes?

4. Let p be a prime number.
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(a) Calculate φ(p2), where φ is the Euler function.
(b) Public key cryptography uses an integer n = pq, where p and q are two distinct
prime integers. Would the same techniques work with a number of the form n = p2? If
yes, describe the steps of the algorithm. Why wouldn’t we use such a system?

5. An article in the French science magazine La Recherche gave the following example
of public key cryptography. We choose two prime integers p and q such that p, q ≡
2 (mod 3), and let n = pq. Alice wants to send a message to Bob. Her message is a
number x in the set {1, . . . , n − 1}, where (x, n) = 1 (this last important detail didn’t
actually appear in the article!). To send her message, Alice calculates x3, and takes the
remainder y ∈ {1, . . . , n − 1} of this number modulo n. Bob decodes the message with

d =
2(p − 1)(q − 1) + 1

3
.

He calculates yd and takes the remainder z ∈ {1, . . . , n − 1} modulo n.
(a) Verify that d is in fact an integer.
(b) Explain why y and z cannot be zero, that is, why we will have y, z ∈ {1, . . . , n}.
(c) Show that z = x, and therefore that Bob successfully decodes the message.

6. You want to explain to a friend how the RSA code functions. Here is how you do
it: you choose a prime integer p, with p ≡ 2 (mod 7), and a prime integer q, with
q ≡ 3 (mod 7). Then you calculate n = pq. You explain how Alice can send a message
to Bob. Her message is an integer number m in {1, . . . , n− 1} with (m,n) = 1. To send
her message, Alice computes m7 and divides this number by n. Let a ∈ {1, . . . , n−1} be
the remainder of the division of m7 by n (which means m7 ≡ a (mod n)). You explain
that Bob decodes with the decryption key

d =
3(p − 1)(q − 1) + 1

7
.

He computes ad and then the remainder m1 of the division of ad by n (which means
ad ≡ m1 (mod n)), where m1 ∈ {1, . . . , n − 1}. You claim that m1 is the message sent
by Alice.
(a) Verify that d is an integer.
(b) Explain why a and m1 cannot vanish, yielding a,m1 ∈ {1, . . . , n − 1}.
(c) Show that m1 = m, which means that Bob will decode Alice’s message.

7. We present a simple cryptography system. The space symbol � is represented by the
number 0. The letters A, . . ., Z are represented by the numbers 1, . . . , 26, while 27
corresponds to the period and 28 to the comma. The mapping is represented in the
following table:

Symbol � A B C D E F G H I J K L M N
Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Symbol O P Q R S T U V W X Y Z . ,
Number 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Here is how we encode a word:

• we replace symbols by their associated numbers;
• we multiply each number by 2;
• we reduce each result modulo 29;
• we map each number back to its corresponding symbol, yielding the encoded word.

For example, to encode the word “THE” we first map it to the sequence 20, 8, 5. We
multiply these numbers by 2 and obtain 40, 16, 10, leaving 11, 16, 10 after reduction
modulo 29. Replacing the integers by the associated symbols yields the final encoding
of “KPJ”.

(a) Encode the word “YES”.
(b) Explain why the encoding is reversible, and how we go about decoding it.
(c) Decode the word “XMVJ”.

8. Here is a refinement of the cryptography system presented in Exercise 7. We use the
same 29 symbols, but encrypt a word in the following manner:

• we replace symbols by their associated numbers;
• we multiply each integer by 3 and add 4 to the result;
• we reduce each result modulo 29;
• we map each number back to its corresponding symbol, yielding the encoded word.

(a) Encode the word “MATH”.
(b) Explain why the encoding is reversible, and how we go about decoding it.
(c) Decode the word “MTPS”.

9. “Casting out nines” is an old trick that can be used to verify the result of the mul-
tiplication of two integers. It was widely taught before calculators were common. We
multiply two numbers m and n. Let N = mn, and we wish to verify the result of our
arithmetic. For this, we use the decimal representation of the number. For M ∈ N, we
write M = ap · · · a0, where ai ∈ {0, 1, . . . , 9}, which is equivalent to the summation

M =
p∑

i=0

ai10i.

We calculate the value F (M) ∈ {0, 1, . . . , 8}, where F (M) is the remainder of the value

p∑
i=0

ai = a0 + · · · + ap

modulo 9. Here is an example. Let M = 2857. Then 2 + 8 + 5 + 7 = 22 ≡ 4 (mod 9),
yielding F (2857) = 4.
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To check the result of our multiplication we calculate F (N), F (m), and F (n), and
finally the product r = F (m)F (n). As a last step, we calculate F (r).
(a) Assuming that there were no errors in the calculations, show that we must have

F (N) = F (r).

If these two “check digits” do not match, we can conclude that an error was made in the
original multiplication (assuming that no errors were made in computing the various
values of F (·)!).
(b) Walk through a simple example.
(c) What can we say when F (N) = F (r)? Can we conclude that there were no errors
in the calculation of N?

10. Construct a public key cryptosystem with n = pq, where n is 60 digits. For this, you
should choose distinct primes p and q of 30 digits each.
(a) Using a computer algebra system, generate 30-digit numbers and test whether
they are prime.
(b) Verify whether the generated numbers are prime using Jacobi’s test with numbers
a1, . . . , ak having fewer than 30 digits. Validate the test by running it with a known
prime number and a known composite number. The instant the test returns a negative
result we can conclude that the number is composite. If the test is positive, continue
with the next ai to obtain a higher degree of certainty that the number is prime.

11. Consider an RSA cryptosystem with n = 23×37 = 851 and the encryption key e = 47.
Find the decryption key d that satisfies

e · d ≡ 1 (mod φ(n)).

12. We give ourselves an integer M with N digits. Let aN−1 · · · a1a0 be the decimal
representation of this number such that

M = aN−110N−1 + aN−210N−2 + · · · + a110 + a0.

(a) Show that M is divisible by 11 if and only if

a0 − a1 + a2 − a3 + · · · + (−1)N−2aN−2 + (−1)N−1aN−1 ≡ 0 (mod 11).

(Hint: consider 10i (mod 11).) Remark: this simple test can be used to avoid multiples

of 11 when searching for prime numbers.
(b) Show that M is divisible by 101 if and only if

−(a0 + 10a1) + (a2 + 10a3) − (a4 + 10a5) + (a6 + 10a7) + · · · ≡ 0 (mod 101).
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13. Show that n is prime if and only if

(x + 1)n ≡ xn + 1 (mod n).

Remark: this exercise highlights the central idea underlying the AKS algorithm [1].

14. We consider the set En = {0, 1, . . . , n−1} for n ∈ N. Let p and q be such that (p, q) = 1.
We define the function F : Epq → Ep × Eq by F (n) = (n1, n2), where n ≡ n1 (mod p)
and n ≡ n2 (mod q). Show that F is a bijection. (This result is the modern form of the
“Chinese remainder theorem.”)

15. Prove Wilson’s theorem: n is prime if and only if n divides (n − 1)! + 1. One of the
directions is more difficult than the other. If n is prime we must use the fact that
{1, . . . , n − 1} is a group under multiplication to show that n | (n − 1)! + 1.
Remark: This theorem provides yet another test for deciding whether n is prime. How-
ever, this test is not really of practical interest, since when n is large, the calculation of
(n − 1)! is out of reach for even the most powerful computers.

16. Show that the fractions b2−1
8 and (a−1)(b−1)

4 in equation (7.5) for J(a, b) are always
integers when a and b are odd integers.

17. Let En = {1, . . . , n − 1}.
(a) Let n = 13. By explicitly calculating J(a, n) and a

n−1
2 (mod n), show that (7.4)

holds for all a ∈ En.
(b) Now let n = 15. How many a ∈ En do not satisfy the test?

18. We wish to use Shor’s algorithm to find a divisor of 91. To this end we choose a = 15.
(a) Compute the order of a: find the smallest integer exponent s such that as ≡
1 (mod 91). Verify that s is even.
(b) Compute r = a

s
2 (mod 91), and show that neither r − 1 nor r + 1 is divisible by

91.
(c) Complete Shor’s algorithm by using r to find a divisor of 91.

19. We wish to use Shor’s algorithm to factor 30. To this end we choose a randomly from
{1, 2, . . . , 29} and proceed. List the choices for a that permit the discovery of a proper
divisor of 30, and in each case show which method was used.
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8

Random-Number Generators

This chapter may be approached in two ways: you can work through one or two hours as

though it were a Science Flash1, the only requisite being a basic comfort with arithmetic

modulo p; or you can dive into the material in a little more depth. In the latter case

it is preferable that you be familiar with finite fields and congruences modulo 2 (for

instance because you have already worked through Chapter 6 or 7). Sections making

reference to these chapters are clearly marked. In this chapter we will thoroughly cover

the subject of linear shift registers. Although also discussed in Section 1.4 of Chapter

1, the two discussions are independent. Most exercises are very elementary. Some

exercises require a familiarity with probabilities, but these may be safely ignored if you

do not have the background knowledge.

8.1 Introduction

On April 10, 1994, a gambler was arrested by police at the Montreal Casino. His crime?
He had just beaten the laws of probability by winning three consecutive jackpots in
the game of keno, with winnings totaling more than a half million dollars.2 He was
suspected of having broken gambling laws that prohibit collusion with casino employees,
tampering with gambling equipment, etc. An investigation was launched, and after a
few weeks, the player was released and his winnings, interest included, returned to
him. The Montreal Casino had just learned an expensive lesson about random-number
generators.

1A Science Flash is a small subject to be treated in one or two course hours, as presented
in Chapter 15.

2In keno, the player has to choose a dozen numbers from the set {1, 2, . . . , 80}. The casino
then draws at random 20 balls from a set of 80 balls numbered 1, . . . , 80. This drawing can be
done electronically, as is often the case in most casinos. The winnings of the player depend on
the size of his bet and the number of matches between his chosen numbers and the numbers
of the balls drawn by the casino.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 8, c© Springer Science+Business Media, LLC 2008
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There are very few mechanical devices to be found in a modern casino. In fact, the
roulette wheel may very well be the last of them. Most other games have been replaced
by computers that simulate randomness. Each of these computers is programmed to
generate numbers that appear to be random to the user, but which are in fact computed
in a completely deterministic manner. These algorithms, random-number generators,
play an important role in many of these machines. Video games played on computers or
game consoles depend heavily on these algorithms. If these games were to behave the
same every time the machine was restarted, players would quickly grow tired of them.

Random-number generators are as important in everyday life as they are in science.
Computer simulations of stock exchanges and of virus propagation (both human and
computer!) and the selection of those (unlucky) taxpayers whose returns the govern-
ment will audit all use random-number generators routinely. In science, it is sometimes
difficult to model a system whose behavior is known only in the probabilistic sense.
An example of such a system is the impartial web surfer described in Section 9.2. The
existence of random-number generators is also assumed in the discussion of probabilistic
algorithms for cryptography in Chapter 7. Random-number generators are used explic-
itly (!) in the construction of fractal images by iterated function systems (see Chapter
11) and in the discussion of the GPS satellite signal (see Chapter 1).

These generators find many applications in modern society, and it is therefore not
surprising that they are the focus of much research into finding “better” random-number
generators. What exactly do we mean by “better”? This depends on the context. For
random-number generators being used in casinos, we want to prevent players from being
able to take advantage of the games by guessing how the underlying algorithms work.
We also require that the generated numbers follow certain laws of probability, chosen a
priori, so that the casino cannot be accused of fraud and so that players are offered a
fair gaming experience.

To begin with, we introduce a “mechanical” random-number generator. Even though
such an approach is impractical on a large scale, it captures the basic challenges that all
random-number-generator algorithms face. We can imagine playing a game of heads-
or-tails, many times in a row. By noting a 0 every time the coin comes up heads and a
1 when it comes up tails, we generate a random sequence of zeros and ones. That is, we
generate a sequence that seems to obey no visible rules. If several people were to repeat
this experiment, each would in general generate a sequence that has no resemblance to
any of the others.

Now suppose that we wish to generate a random sequence of numbers from the set
S = {0, . . . , 31}. Given that 32 = 25, each number n ∈ S may be written in base 2 as

n = a0 + 2a1 + 22a2 + 23a3 + 24a4 =
4∑

i=0

ai2i,

with ai ∈ {0, 1}. We may also represent the number n by the 5-tuple (a0, . . . , a4). For
example, the 5-tuple (0, 1, 1, 0, 1) represents 2 + 4 + 16 = 22.
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If we generate a sequence of zeros and ones by tossing a coin, we can then regroup
these numbers as 5-tuples of bits and transform them into numbers in S. For example,
suppose we had obtained the binary sequence

10000 00101 11110 01001 01001 11011. (8.1)

Converting the 5-tuples yields

10000︸ ︷︷ ︸
1

00101︸ ︷︷ ︸
20

11110︸ ︷︷ ︸
15

01001︸ ︷︷ ︸
18

01001︸ ︷︷ ︸
18

11011︸ ︷︷ ︸
27

,

or simply
1, 20, 15, 18, 18, 27,

when represented as numbers from S.
If instead of 31 we had chosen N = 2r − 1 and S = {0, . . . , N}, we could still have

followed the same approach, transforming a binary sequence into a sequence of numbers
from S.

However, when r is large or when we require a particularly long sequence of random-
numbers, the method of manually flipping coins quickly becomes cumbersome. The ideal
solution is to program a computer to generate a sequence of ones and zeros in such a
manner that the results appear as random as those obtained from actually tossing a coin.
Such a program is a random-number generator. In reality, since such an algorithm is by
its very nature deterministic, it can only generate a sequence of numbers that appear to
be random. It is for this reason that experts refer to such algorithms as pseudorandom-
number generators.

Pseudo-random-number generators are used quite often in all sorts of computer
simulations. In many cases we simply want to generate random real numbers in the
interval [0, 1]. In this case, it helps to write real numbers in binary representation. To
differentiate between binary and decimal representations we will place a subscript of 2
after all numbers in binary representation. Thus (0.a1a2 . . . an)2 represents

(0.a1a2 . . . an)2 = a12−1 + a22−2 + · · · + an2−n =
n∑

i=1

ai

2i
.

As a general rule, most real numbers require infinite binary representations. However,
given that computers are constrained to finite computations, we limit ourselves to finite
representations with a desired degree of precision. Thus, if we look at the sequence of
(8.1), we can interpret it as generating a sequence of real numbers in [0, 1] as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.100002 = 2−1 = 1
2 = 0.5,

0.001012 = 2−3 + 2−5 = 0.15625,

0.111102 = 2−1 + 2−2 + 2−3 + 2−4 = 0.9375,

0.010012 = 2−2 + 2−5 = 0.28125,

0.010012 = 2−2 + 2−5 = 0.28125,

0.110112 = 2−1 + 2−2 + 2−4 + 2−5 = 0.84375,
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the last number on the right being the decimal representation of the number.
What makes a good random number generator? What criteria must it satisfy?

When we toss a coin repeatedly the result of each toss is completely independent of
those before it, and each of the two outcomes always has probability 1

2 . This implies
that if we toss a coin a large number of times, roughly half of the time it should come
up heads (noted as 0) and half of the time tails (noted as 1)—a result of the law of large
numbers in action. If instead of tossing a coin once we were to toss it twice, each pair
of tosses would have one of four possible results:

00 01 10 11.

If we were to repeat this many times, we would expect each outcome to occur roughly
one-quarter of the time. Similarly, if we were to toss a coin three times, we would have
23 = 8 equiprobable outcomes:

000 001 010 011 100 101 110 111.

Thus we desire that a random-number generator satisfy these same properties. To
ensure that our pseudorandom-number generators do in fact have these properties, we
submit them to a battery of statistical tests.

All pseudorandom-number generators are algorithms that generate a deterministic
periodic sequence of numbers from a finite set of starting conditions.

Definition 8.1 A sequence {an}n≥0 is periodic if there exists an integer M > 0 such
that for all n ∈ N, an = an+M . The minimum N > 0 for which this property holds is
called the period of the sequence. When we want to emphasize this particular aspect of
the period, we may refer to N as the minimal period.

Lemma 8.2 Let {an}n∈N∪{0} be a periodic sequence with minimal period N and let
M ∈ N be such that for all n ∈ N, an = an+M . Then it follows that N divides M .

Proof. Divide M by N . Then there must exist integers q and r such that M = qN +r
where 0 ≤ r < N . We want to show that for all n, we must have an = an+r.

In fact, we easily see that

an = an+M = an+qN+r = an+r.

Since N is the least integer such that an = an+N , it must be that r = 0. Thus N divides
M . �.

Example 8.3 A linear congruential generator is a very commonly used type of random-
number generator. It generates a sequence over the set E = {1, . . . , p − 1} using the
rule

xn = axn−1 (mod p),
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where p is prime and a is a primitive root of Fp. That is, a is an element of E such
that {

ak 
≡ 1 (mod p), k < p − 1,

ap−1 ≡ 1 (mod p).

Recall that Fp (also called Zp in Chapter 7) is the set of integers {0, . . . , p − 1} with
addition and multiplication modulo p. Defined in this way, Fp is a field when p is prime;
this implies (see Definition 6.1) that addition and multiplication are both commutative
and associative, each operation has an identity element, multiplication is distributive
over addition, all elements have additive inverses, and finally all nonzero elements have
multiplicative inverses. These properties are explored in Exercise 24 of Chapter 6, but
we will use them without proof in the following discussion.

Take as a simple example the case p = 7. We see that 2 is not a primitive root since
23 = 8 ≡ 1 (mod 7). However, we observe that 3 is a primitive root, since⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

32 ≡ 2 (mod 7),
33 ≡ 6 (mod 7),
34 ≡ 18 ≡ 4 (mod 7),
35 ≡ 12 ≡ 5 (mod 7),
36 ≡ 15 ≡ 1 (mod 7).

The proof that there always exists a primitive root a ∈ Fp can be found in Theorem 7.22
of Chapter 7. (Again, you may take this result for granted and continue with the current
discussion.)

This generator will create a periodic sequence whose period is exactly p − 1. Linear
congruential generators are commonly used in many pieces of software, where the values
p = 231 − 1 and a = 16,807 are often taken. However, experts in the subject do not
consider these generators to be very good, since they fail some basic statistical tests (see
Exercises 2 and 4.)

Other criteria often come into play, notably those of economy. In many cases we are
interested in minimizing the time of computation and memory usage. In these cases
we may be content to use a random-number generator that is weaker from a statistical
point of view, but sufficient for the task at hand.

8.2 Linear Shift Registers

Linear shift registers (also discussed in Chapter 1) are quite good random-number gen-
erators. They can be visualized as an array (or register) of r boxes containing the entries
an−1, . . . , an−r, where each ai is in {0, 1}. Each one of these boxes is multiplied by a
value qi ∈ {0, 1}, with the results being summed modulo 2. The qi are fixed and char-
acterize the particular generator (Figure 8.1). We generate a pseudorandom-number
sequence in the following manner:
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Fig. 8.1. A linear shift register.

• Choose initial values a0, . . . , ar−1 ∈ {0, 1}, not all of which are zero.
• Given the values an−r, . . . , an−1, calculate the next value in the sequence, an, as

an ≡ an−rq0 + an−r+1q1 + · · · + an−1qr−1 ≡
r−1∑
i=0

an−r+iqi (mod 2). (8.2)

• Shift each entry to the right, dropping the entry an−r in doing so. The newly
generated an now occupies the leftmost box of the register.

• Repeat.

In Section 1.4 of Chapter 1 we showed that if we carefully choose the qi and the
initial conditions a0, . . . , ar−1, then we will generate a sequence with a period of 2r − 1.
We will revisit this topic in more detail, discussing exactly how to choose the qi.

Example 8.4 We take a linear shift register of length 4 and (q0, q1, q2, q3) = (1, 1, 0, 0).
Consider also the starting state (a0, a1, a2, a3) = (0, 0, 0, 1). Following the register
through its operation, we find that it generates a sequence of period 15:

000100110101111︸ ︷︷ ︸
15

0001 . . . .

In this cycle of 15 entries, inspection shows that 0 was generated seven times and 1 was
generated eight times. Now consider the 15 subsequences of length 2: 00 occurs three
times ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
︷︸︸︷
00 0100110101111

0
︷︸︸︷
00 100110101111

0001
︷︸︸︷
00 110101111

while the three other possible sequences of length 2, 01, 10 and 11, occur exactly four
times each. In the case of 10, the fourth occurrence straddles two cycles:
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⎪⎪⎪⎪⎪⎪⎩

000
︷︸︸︷
10 0110101111

0001001
︷︸︸︷
10 101111

000100110
︷︸︸︷
10 1111

00010011010111
︷︸︸︷
1 0 001 . . .

We leave it to the reader to verify that each subsequence of length 3 occurs twice, except
the subsequence 000, which occurs exactly once. Similarly, all subsequences of length 4
will be seen to occur exactly once, except 0000, which never occurs. Could we continue
with counting subsequences of length 5 and longer? The answer is no, since our register
is only of length 4, which immediately implies that the fifth and subsequent symbols
following a given sequence of four are predetermined. We can also easily explain why
runs of zeros occur less often: we cannot permit the register to generate a subsequence
of the form 0000; otherwise, the generating rules will force all following symbols to be
zero as well.

This example shows that linear shift registers generate all subsequences in roughly
equal proportion, as long as we do not consider subsequences longer than the register
itself (limiting ourselves to 4 in this example). This is no coincidence, as we will show
later in Theorem 8.12.

If we want our generated sequence to have good statistical properties with respect to
longer subsequences, we need only choose a sufficiently large length r for our register.

We will recast the operation of the linear shift register into another form that is
more suitable for analysis and can be generalized. At a given moment of time, which
we will call the moment j, we consider reading the entries of the register aj , . . . , aj+r−1.
We rewrite these entries as xj,0, . . . , xj,r−1, where xj,i = aj+i. The advantage of this
notation is that the index j indicates the moment of time, while the index i indicates
the entry of the register in box i. Let

xj =

⎛
⎜⎝ xj,0

...
xj,r−1

⎞
⎟⎠

be the column vector of entries at time j. Let A be the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
q0 q1 q2 q3 . . . qr−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8.3)

With this notation, the vector representing the state of the register at time j+1 is given
by
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xj+1 = Axj , (8.4)

where all operations are modulo 2. (Exercise: verify that this is in fact true!)
Before we further abstract the problem, note the utility of this alternative repre-

sentation. Suppose we wish to pass directly from xj to xj+k without calculating the
intermediate steps. We see that xj+k = Akxj ; thus if we calculate Ak, we can pass di-
rectly to xj+k from xj . The ability to take arbitrarily large steps through the sequence
with a reasonable amount of computation is a desirable property for random-number
generators.

How do we calculate Ak if k is large? In general, if we take a matrix A over the
real numbers, the coefficients of Ak can grow quite large in absolute value. However, in
this case we are working over the finite field F2, where all operations are taken modulo
2. Thus the entries of Ak will also be entries in F2, and we need not worry about
coefficient swell. That still leaves us with the problem of efficiently calculating Ak.
Consider writing k in base two as

k = b0 + b12 + b222 + · · · + bs2s.

We define A0 = A and calculate

A1 = A2,
A2 = A4 = A2

1,
...

As = A2s

= A2
s−1.

This lets us calculate the final matrix Ak as

Ak =
∏

{i|bi=1}
Ai.

Observe that each Ai is calculated as a product of two matrices thus requiring s matrix
products to calculate them. Note also that Ak is calculated as the product of at most
s + 1 of these matrices. Thus the final matrix may be calculated by taking at most
2s = 2 log2 k matrix products.

This notation also makes it clear that we could create other random number gener-
ators by generalizing the form of the transition matrix A.

8.3 Fp-Linear Generators

8.3.1 The Case p = 2

We start by considering the case p = 2, where the finite field F2 is simply the set {0, 1}
together with the operations of addition and multiplication modulo 2.
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Definition 8.5 An F2-linear generator is a generator of the form

xn+1 = Axn,
yn = Bxn,

un =
∑k

i=1 yn,i2−i,

where A and B are matrices over F2, with A of size r×r and B of size k×r. The matrix
A is the transition matrix for passing from xn to xn+1, while the matrix B transforms
the vector xn of length r into a vector yn of length k. The final step is to transform
the vector yn into a number in the range [0, 1] by considering the entries of yn as the
coefficients of un in binary representation.

Example 8.6 We can view the linear shift register as a generator of this form. To do
this we need only map sequences of length k, where k < r, into elements of the range
[0, 1]. Taking subsequences of length k is equivalent to defining a matrix B as the top k
rows of the r × r identity matrix.

The matrix B ensures that each subsequence of length k generates exactly one
pseudorandom-number, since

yn = (xn,0, . . . , xn,k−1) = (an, . . . , an+k−1).

We revisit Example 8.4. This length-4 register has parameters (q0, q1, q2, q3) =
(1, 1, 0, 0), initial conditions (a0, a1, a2, a3) = (0, 0, 0, 1), and generates the sequence
000100110101111 of period 15. Let k = 2. In doing so, the yn will correspond to each
length-2 subsequence yn = (an, an+1). The sequence of yn will also repeat with a period
of 15, yielding

00 00 01 10 00 01 11 10 01 10 01 11 11 11 10.

We now transform each yn into a number un ∈ {0, 1/4, 1/2, 3/4} by letting un = yn,1
2 +

yn,2
4 . This yields a final sequence of

0 0
1
4

1
2

0
1
4

3
4

1
2

1
4

1
2

1
4

3
4

3
4

3
4

1
2
.

Note that every element of {0, 1
4 , 1

2 , 3
4} appears four times except 0, which appears three

times.

The big advantage of F2-linear generators is that they are very efficient. On the
other hand, if we want to improve their statistical performance we have to lengthen
their period, making them more expensive to compute. As it turns out, there are better
ways to improve the statistical performance with less loss of efficiency. We will begin
by generalizing from F2-linear generators to Fp-linear generators. Afterward, instead
of simply lengthening the period of a given Fp-linear generator, we will build better
generators by combining several independent Fp-linear generators of varying periods.
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For the moment, let us return to the subject of linear shift registers and discuss
how to choose coefficients qi such that the generated sequences will have length 2r − 1.
Although not absolutely necessary, it might be useful to have read Section 1.4 of Chapter
1 in order to be able to read the proof of this result (Theorem 8.9 below).

Definition 8.7 A polynomial

Q(x) = xr + qr−1x
r−1 + · · · + q1x + q0

with coefficients qi ∈ Fp is primitive if and only if it is irreducible and the set of nonzero
elements of Fpr , where

Fpr = {b0 + b1x + · · · + br−1x
r−1 | bi ∈ Fp},

is of the form
Fpr \ {0} = {xi | i = 0, . . . , pr − 2},

where the powers xi are taken modulo Q(x).

Example 8.8 We give an example with p = 2. We will show that the polynomial
Q(x) = x3 + x + 1 is irreducible. Indeed, suppose Q(x) = Q1(x)Q2(x). Because Q(x)
is of degree 3, then either Q1(x) or Q2(x) is of degree 1, and hence belongs to the
set {x, x + 1}. If x divides Q(x), this yields Q(0) = 0, which is not true. If x + 1
divides Q(x), then we should have Q(1) = 0, which is also not true. So neither x nor
x + 1 divides Q(x), and Q(x) is irreducible. The nonzero elements of F23 are given by
{1, x, x+1, x2, x2 +1, x2 +x, x2 +x+1}. Let us verify that they are all given by powers
of x. Indeed, Q(x) = 0 yields x3 = x + 1, so

x4 = x(x + 1) = x2 + x,
x5 = x(x2 + x) = x3 + x2 = (x + 1) + x2 = x2 + x + 1,
x6 = x(x2 + x + 1) = x3 + x2 + x = (x + 1) + x2 + x = x2 + 1,
x7 = x(x2 + 1) = x3 + x = (x + 1) + x = 1.

Theorem 8.9 If the coefficients q0, . . . , qr−1 of a linear shift register are chosen such
that the polynomial

Q(x) = xr + qr−1x
r−1 + · · · + q1x + q0 (8.5)

is primitive over F2, then for all initial conditions in which not all ai are zero, the
sequence generated by the linear shift register will have a period of 2r − 1.

Proof. We saw in Chapter 6 that

F2r = {b0 + b1x + · · · + br−1x
r−1 | bi ∈ {0, 1}}

together with addition and multiplication modulo Q(x) is a field, provided Q(x) is
irreducible. In Section 1.4 of Chapter 1, we saw also that it is always possible to
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generate the nonzero elements of F2r by choosing a primitive polynomial Q(x) and
computing

{xi | i = 0, . . . , 2r − 2},
and that x2r−1 = 1. We introduce a linear mapping T : F2r → F2 such that

T (b0 + b1x + · · · + br−1x
r−1) = br−1.

We will show in Lemma 8.10 below that for any nonzero sequence (a0, . . . , ar−1) there
exists a unique b = b0 + b1x + · · ·+ br−1x

r−1 such that ai = T (bxi), for i = 0, . . . , r− 1.
Proposition 1.11 of Chapter 1 tells us that if an is a sequence generated by a linear shift
register with initial conditions ai = T (bxi), then for all n it holds that an = T (bxn).
Since x2r−1 = 1, an is periodic, and for all n it holds that an = an+2r−1.

But is 2r − 1 the minimal period? Suppose there exists m < 2r − 1 such that
an = an+m for all n. Then it must be that a0 = am, . . . , ar−1 = ar+m−1. By Lemma
8.10 below there exists a unique b′ such that ai+m = T (b′xi), for i = 0, . . . , r − 1. We
have on one side that b′ = b and on the other side that b′ = bxm, where the equalities
are taken modulo Q(x). Thus b(xm − 1) = 0, and since b 
= 0, it must be that xm = 1.
However, x is a primitive root, and as such, xm 
= 1 for all m < 2r − 1, a contradiction.
�

Lemma 8.10 We consider the field

F2r = {b0 + b1x + · · · + br−1x
r−1 | bi ∈ {0, 1}}

with multiplication and addition taken modulo Q(x), where Q(x) is an irreducible poly-
nomial as in (8.5). Then for any nonzero sequence (a0, . . . , ar−1), there exists a unique
b = b0 + b1x + · · · + br−1x

r−1 such that ai = T (bxi), for i = 0, . . . , r − 1.

Proof. We consider the linear system of equations T (bxi) = ai, for i = 0, . . . , r − 1,
with unknowns b0, . . . , br−1. Consider the first equation

T (b) = br−1 = a0,

which immediately gives us the value of br−1. Next

bx = (b0 + b1x + · · · + br−1x
r−1)x

= b0x + b1x
2 + · · · + br−2x

r−1 + br−1(q0 + q1x + · · · + qr−1x
r−1),

and therefore T (bx) = br−2 + qr−1br−1 = a1. Since br−1 is already known, we may
immediately substitute and find br−2.

We proceed accordingly for each bi. Suppose bi+1, . . . , br−1 have already been found
and consider bxr−1−i. Then it follows that

bxr−1−i = (b0 + b1x + · · · + br−1x
r−1)xr−1−i

= b0x
r−1−i + b1x

r−i + · · · + bix
r−1 + xrP (x, bi+1, . . . , br−1),
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where P (x, bi+1, . . . , br−1) is a polynomial in x with coefficients depending only on the
already known bi+1, . . . , br−1. Thus

T (bxr−1−i) = bi + R(bi+1, . . . , br−1).

The formula for R(bi+1, . . . , br−1) is not simple to write, but the important thing is
that it depends only on the already known values bi+1, . . . , br−1. Thus we can easily
calculate bi from equation T (bxr−1−i) = ar−1−i, and this process uniquely determines
the polynomial b. �

Corollary 8.11 Consider a linear shift register of length r with coefficients qi chosen
such that the polynomial Q(x) of (8.5) is primitive over F2. Suppose furthermore that
the initial conditions ai are not all zero. Then in the generated sequence of period
2r − 1, each possible subsequence of length r will occur exactly once except for the zero
subsequence. (In this context we consider the sequence starting at ai as being cyclic by
identifying the index n + 2r − 1 with the index n, letting us consider subsequences of
length r that straddle two periods of the full sequence).

Proof. Given a cyclic sequence {an} of length 2r − 1, there are 2r − 1 subsequences
of length r to be considered, one starting at each ai, i = 0, . . . , 2r − 2, of the original
sequence. (If i ≥ 2r − r, then using the periodicity, we may consider the subsequence
ai, . . . , a2r−2, a0, . . . , ai−2r+r.) Furthermore, there are exactly 2r possible sequences of
length r since there are two choices per entry of such a sequence. Considering only
those with at least one nonzero entry, there are exactly 2r − 1. Thus, each of these
subsequences must appear exactly once if none of them may appear more than once.
Suppose that one of the subsequences appears a second time, starting at entries ai and
aj , where 0 ≤ i < j < 2r − 1, yielding 0 < j − i < 2r − 1. Since the state of the
register is the same at aj as it was at ai, we would have that an = an−j+i for all n ≥ j,
contradicting the fact that the minimal period of the sequence is 2r − 1. Thus each
nonzero subsequence of length r appears exactly once in a cyclic sequence of length
2r − 1. �

The following theorem shows that a linear shift register has good statistical proper-
ties when we consider all subsequences of length k, with k ≤ r.

Theorem 8.12 Consider a linear shift register of length r with coefficients qi chosen
such that the polynomial Q(x) of (8.5) is primitive over F2. Let k ≤ r. Suppose
furthermore that the initial conditions ai are not all zero. Then in any 2r −1 sequential
symbols generated by the register and considered as a cyclic sequence, each possible
subsequence of length k will occur exactly 2r−k times, except the null sequence, which
will occur exactly 2r−k − 1 times.

Proof. In Corollary 8.11 we showed that all subsequences of length r appear exactly
once, except for the null subsequence. We consider a subsequence b0, . . . , bk−1 of length
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k < r and count the number of ways this subsequence may be lengthened into a subse-
quence of length r by adding bk, . . . , br−1. Trivially there are 2 choices for each of the
remaining r−k symbols, yielding 2r−k distinct ways of lengthening the subsequence. If
at least one of the bi is nonzero, each of the 2r−k lengthened sequences occurs exactly
once in the window of length 2r − 1, since all nonzero subsequences of length r appear
exactly once. Thus, the subsequence b0, . . . , bk−1 must appear exactly 2r−k times.

In contrast, if all of the bi are zero, then we cannot count the case in which we
lengthen the subsequence with all zeros. However, all of the other lengthened subse-
quences will still be possible and appear exactly once each in the window of length r.
Thus, the null sequence of length k ≤ r will appear exactly 2r−k − 1 times. �

8.3.2 A Lesson on Gambling Machines

Theorems 8.9 and 8.12 are the keys to understanding the story behind the arrested
Montreal Casino gambler. Through his work, the gambler in question had an under-
standing of the basic principles behind random-number generators. He knew that the
underlying algorithms were deterministic, and thus for a given algorithm and starting
conditions, the sequences of generated numbers are identical. During earlier visits to
the casino he had noticed that night after night, the keno machines kept drawing the
same numbers in the same order. He thus recorded these numbers, and played them on
his next visit with the result as described earlier in this chapter. But knowing that their
keno machines had this problem, why did the Montreal Casino reopen them to the pub-
lic? The official reason given was that the machines had been incorrectly programmed
and that the error had been corrected. Another possible reason (more embarrassing for
the casino, but equally possible) is that the machines were being turned off each night
by an employee, perhaps even by the cleaning staff. The result being that when they
were turned back on, the machines kept defaulting to the same initial conditions and
thus generated the same sequence of numbers.

This story raises another question. How can the initial conditions be determined
such that the sequence of generated numbers is not the same each time the machine is
restarted? Do we need to leave the machines on forever? And how about video games?
Here are two common solutions to this problem. In the first, we require that the machine
be “properly” shut down. When properly shut down (not just by pulling on the power
cord!), the machine can save the most recently generated ai’s and use them as initial
conditions the next time it is started. A second solution relies on a clock built into
the machine. When it is started, the machine retrieves the number of seconds (or even
milliseconds) since the first of January 2000, with the last few digits of the time being
used to seed the initial-condition ai’s.

8.3.3 The General Case

In this section we assume that the reader is familiar with the field Fpr . For more details
regarding this field, refer to Section 6.5 of Chapter 6.
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Definition 8.13 (1) Let p be a prime number. An Fp-linear random-number generator
is a generator of the form

an = q0an−r + q1an−r+1 + · · · + qr−1an−1 (mod p), (8.6)

where the q0, . . . , qr−1 and the initial conditions a0, . . . , ar−1 are integers in
{0, 1, . . . , p − 1} and operations are taken over the field Fp (in other words, modulo
p).

(2) A multiple recursive generator is defined by the linear recurrence{
an = q0an−r + q1an−r+1 + · · · + qr−1an−1 (mod p),
un = an

p .

When p = 2 an F2-linear generator is simply a linear shift register. Additionally,
we see that Fp-linear generators generate pseudorandom integers an ∈ {0, 1, . . . , p− 1},
while multiple recursive generators generate pseudorandom real numbers un ∈ [0, 1).

Theorems 8.9 and 8.12 may be generalized to the case of Fp-linear generators. In
the case of F2, working modulo the polynomial Q(x) given in (8.5) allows us to write

xr = q0 + q1x + · · · + qr−1x
r−1 (8.7)

because qi = −qi. Since this is in general no longer true for Fp, we must redefine the
polynomial Q(x) such that the relation (8.7) still holds.

Theorem 8.14 If p is prime and q0, . . . , qr−1 ∈ {0, 1, . . . , p − 1} are chosen such that
the polynomial

Q(x) = xr − qr−1x
r−1 − · · · − q1x − q0

is primitive over Fp, then the Fp-linear generator given in (8.6) generates a sequence
with period pr − 1.

Furthermore, if we take a sequence (a0, . . . , ar−1) of initial conditions, not all of
which are zero valued, then in any window of pr − 1 generated symbols, all subsequences
of length k with k ≤ r will appear exactly pr−k times, except the null subsequence, which
will appear exactly pr−k − 1 times. (Again, we treat the window of generated symbols as
a cyclic sequence and identify the index n + pr − 1 with the index n.)

Proof. Since the proof is nearly identical to those of Theorems 8.9 and 8.12, we will
leave it as an exercise to the reader. �

In practice, we often work with Fp-linear generators in which the polynomial Q(x)
has only two nonzero coefficients, q0 and qs, for some 0 < s ≤ r−1. This makes modular
arithmetic over these polynomials very simple.

Example 8.15 We consider the case in which p = 3 and Q(x) = x4 − x − 1. For
the moment, we will assume that this polynomial is primitive and leave the details to
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Exercise 10. If we take initial conditions (a0, a1, a2, a3) = (0, 0, 0, 1), then the sequence
output by this generator will have a period of 34 − 1 = 80, with the first 80 values being

0 0 0 1 0 0 1 1 0 1 2 1 1 0 0 2 1 0 2 0 1 2 2 1 0 1 0 1 1 1 1 2 2 2 0 1 1 2 1 2
0 0 0 2 0 0 2 2 0 2 1 2 2 0 0 1 2 0 1 0 2 1 1 2 0 2 0 2 2 2 2 1 1 1 0 2 2 1 2 1. (8.8)

We can verify the statistical properties of the sequence through inspection. The values
1 and 2 each appear 27 times, while the value 0 appears 26 times. Each subsequence
of length 2 appears nine times, except 00, which appears eight times. Each subsequence
of length 3 appears three times, except 000 which appears exactly twice. Finally, each
subsequence of length 4 appears exactly once, except for the null subsequence 0000 which
does not appear at all.

8.4 Combined Multiple Recursive Generators

Restricting ourselves to Fp-linear generators whose polynomials Q(x) have exactly two
nonzero coefficients, q0 and qs, with 0 < s ≤ r − 1, greatly simplifies calculations.
However, the generated sequences do not behave very well from a statistical point of
view. In order to mitigate this deficiency we combine several such generators, operating
with respect to distinct prime numbers p and distinct polynomials Q(x) of the same
degree.

Definition 8.16 We consider m linear recurrences

an,j = q0,jan−r,j + q1,jan−r+1,j + · · · + qr−1,jan−1,j (mod pj), j = 1, . . . , m,

satisfying the hypothesis of Theorem 8.14, where the pj are distinct primes. We combine
these recurrences with the “output” function

un =

⎧⎨
⎩

m∑
j=1

δjan,j

pj

⎫⎬
⎭ ,

where the δj are arbitrarily chosen integers such that each δj is relatively prime to pj.
Here {x} represents the fractional part of a real number x defined by

{x} = x − [x],

where [x] is the integer part of the number x. (This means that we consider the an,j

both as elements of Fpj
and as real numbers!) A random-number generator of this form

is called a combined multiple recursive generator.

Remark. In the literature we also find the notation x (mod 1) instead of {x}. Even
if x and {x} are not integers, this definition is similar to the classic definition, where
two numbers a and b are congruent modulo an integer n if their difference a− b may be
written in the form mn for an integer m ∈ Z.
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Example 8.17 We consider a combined multiple recursive generator with r = 3,m =
2, p1 = 3, p2 = 2, and δ1 = δ2 = 1. We let the reader verify that the polynomial
Q1(x) = x3 − x − 2 is primitive over F3. Starting with initial conditions 001, the first
generator generates the following sequence of period 26:

00101211201110020212210222.

The second recurrence, when associated with the polynomial Q2(x) = x3 − x − 1, which
is primitive over F2 as proved in Example 8.8 and initial conditions 001, generates a
sequence of period 7:

0010111.

The combined generator will therefore have a period of 7 × 26 = 182. We present the
output in three lines, where the first line of each block represents an entire period of
the first recurrence. The second line represents outputs from the second recurrence,
where vertical lines delimit the boundary of its cycle. The third line represents the
combined outputs as generated by the function un = an,1

3 + an,2
2 . Each of the outputs

has been written as a fraction over 6 to show that the numerators create a sequence
of pseudorandom-numbers over the set {0, 1, . . . , 5}. The first block represents un for
n = 0, . . . , 25, while the second represents n = 26, . . . , 51, etc.:

0 0 1 0 1 2 1 1 2 0 1 1 1 0 0 2 0 2 1 2 2 1 0 2 2 2
0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1
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We see that when the pi are small, the outputs and subsequences of outputs seem
less regular than those generated by Fp-linear generators.

Such combined generators perform excellently, even when one chooses m as small as
3. We can permit ourselves to choose sparse polynomials Qi(x) whose nonzero coeffi-
cients are simple, allowing efficient computations for each of the individual linear gener-
ators and for the combined multiple recursive generator. Examples of good choices for
coefficients are given in [2]. Despite the simplicity of the calculations of individual lin-
ear generators, the combined generators perform very well from a statistical standpoint.
Moreover, since the period of the combined generator is the product of the periods of
the underlying linear generators, we can create generators with extremely large peri-
ods even though the underlying generators may themselves have short periods. Also,
the cost of jumping from un to un+N becomes much cheaper than for a single linear
recurrence with complicated coefficients.

8.5 Conclusion

Almost all current programming languages provide a random-number generator. The
user thus has no need to delve into the theory of such generators in order to perform
probabilistic simulations. However, the field of random-number generators is relatively
young, and the number of statistical tests that a “good” random-number generator must
pass continues to increase. (See [1] for a listing of basic tests that a decent generator
must pass.) It is thus not surprising that the random-number generators made available
by several programming languages are rapidly becoming obsolete. The history of the
C programming language is interesting in this respect. The language was originally
developed in the early 1970s, while the first manual, by Kernighan and Ritchie, the
fathers of the language, appeared in 1978. Because of its widespread adoption, the
need for a standard was soon felt. The process was arduous, but in 1989 the American
National Standards Institute (ANSI) established a standard for the language. In the
first version, the rand() function provided by the language had a period of length
215 − 1 = 32,767. This period is quite short, and certainly too short to be used in a
gambling machine. The ANSI standard does not actually define the rand() function;
it simply limits its output to the range {0, 1, . . . , RAND MAX}, where RAND MAX is greater
than or equal to 32,767. Thus, the various compilers and C libraries that respect the
standard could have different rand() functions with different values of RAND MAX and
different periods. The same program compiled on different machines could produce
different results even given the same initial conditions. The rand() functions in several
standard C implementations are well known for their poor results, failing some of the
fundamental statistical tests. The programmers of these libraries are not necessarily to
blame; rather, the whole situation shows that research in this field is still ongoing and
active.
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8.6 Exercises

1. Consider a string of bits generated by an independent random event (by a coin toss,
for example). Consider further grouping the string into blocks of length r, with each
r-bit string being interpreted as a number in the range {0, 1, . . . , 2r−1}. Show that each
of these values will be generated roughly once out of every 2r such blocks.

2. A linear-congruence generator generates numbers in the set E = {1, . . . , p − 1} by the
rule

xn = axn−1 (mod p),

where p is prime and a is chosen such that{
ak 
≡ 1 (mod p), k < p − 1,

ap−1 ≡ 1.

(The existence of such an a, called a primitive root of Fp or Zp, is shown in Theorem
7.22.)
(a) Let p = 11. Find the primitive roots of F11 (there are four of them).
(b) Show that this generator will generate a sequence with minimal period p − 1,
regardless of the value of x0 ∈ S.

3. The linear-congruence generator of Exercise 2 generates a sequence of numbers uni-
formly distributed over E = {1, . . . , p − 1}. Describe a method whereby we may trans-
form this sequence into a sequence of 0’s and 1’s, while maintaining equiprobability for
0 and 1.

4. The following exercise is designed to show that a linear congruence generator (as de-
scribed in Exercise 2) does not always have good statistical properties. Here we have
chosen p = 151, the primitive root a = 30, and the initial condition x0 = 1. The
generated sequence with period 150 will therefore be

30 145 122 36 23 86 13 88 73 76 15 148 61 18 87
43 82 44 112 38 83 74 106 9 119 97 41 22 56 19

117 37 53 80 135 124 96 11 28 85 134 94 102 40 143
62 48 81 14 118 67 47 51 20 147 31 24 116 7 59

109 99 101 10 149 91 12 58 79 105 130 125 126 5 150
121 6 29 115 128 65 138 63 78 75 136 3 90 133 64
108 69 107 39 113 68 77 45 142 32 54 110 129 95 132
34 114 98 71 16 27 55 140 123 66 17 57 49 111 8
89 103 70 137 33 84 104 100 131 4 120 127 35 144 92
42 52 50 141 2 60 139 93 72 46 21 26 25 146 1.

We transform it into a sequence of 1’s and 0’s through the mapping
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yn =

{
0, xn ≤ 75,

1, 76 ≤ xn,

which generates the sequence

0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0
1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0
1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0.

(a) What are the frequencies of 0 and 1, respectively?
(b) What are the frequencies of each of the possible subsequences of length 2:
00, 01, 10, 11? In a good random-number generator, they should be roughly equal. What
can you conclude?
(c) Answer the same question as above, but considering subsequences of length 3.

5. Consider a linear shift register (in other words, an F2-linear generator) with (q0, q1,
q2, q3) = (1, 0, 0, 1) and initial conditions (a0, a1, a2, a3) = (0, 0, 0, 1). Verify that the
generated sequence has minimal period 15, and that this cycle is not the same as that
generated by Example 8.4.

6. Show that the polynomial x4 +x3 +x2 +x+1 is irreducible but not primitive over F2.
Furthermore, verify that the linear shift register with (q0, q1, q2, q3) = (1, 1, 1, 1) does
not generate a sequence with minimal period 15.

7. Consider the linear shift register with (q0, q1, q2, q3, q4) = (1, 0, 1, 0, 0) and initial con-
ditions (a0, a1, a2, a3, a4) = (0, 0, 0, 0, 1).
(a) Verify that the generated sequence has minimal period 31, by explicitly enumer-
ating ai for i = 0, . . . , 35 (and by ensuring that a0 = a31, a1 = a32, a2 = a33, a3 = a34,
and a4 = a35).
(b) Verify that 1 appears 16 times in the period of length 31.
(c) Verify that every subsequence of length 2 appears eight times, except for 00, which
appears seven times.
(d) Verify that every subsequence of length 3 appears four times, except for 000, which
appears three times.
(e) Verify that every subsequence of length 4 appears twice, except for 0000, which
appears once.
(f) Verify that every subsequence of length 5 appears once, except for 00000, which
never appears. Deduce that we could have taken any nonzero initial conditions and
achieved the same result.
(g) Conclude that if we consider subsequences of length k ≤ r and eliminate all those
that contain only zeros, then each of the possible outputs {1, . . . , 2k − 1} is equiproba-
ble.
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8. The register of Exercise 7 generates a sequence {an}.
(a) Give the function that calculates an+2 from an. (Suggestion: use the matrix
form.)
(b) Give the function that calculates an+10 from an.

9. Find all irreducible polynomials of degree 2 over F3. Which of these are primitive?

10. The goal of this exercise is to show that the polynomial Q(x) = x4 − x− 1 is primitive
over F3.
(a) Show that Q(x) is irreducible over F3. To do this, you will need to have completed
Exercise 9.
(b) Show that Q(x) is primitive. That is, show that xk 
= 1 for k < 80. To do this,
you will have to calculate the powers xk using the rule x4 = x + 1. For example,⎧⎪⎨

⎪⎩
x5 = x(x + 1) = x2 + x,

x6 = x(x2 + x) = x3 + x2,

x7 = x(x3 + x2) = x4 + x3 = (x + 1) + x3 = x3 + x + 1.

(This may seem tedious, but it can be greatly simplified using Lemma 8.2, which guar-
antees that xk = 1 can occur only when k divides 80. This lets us limit ourselves to
computing xk for k a divisor of 80.)

11. Choose a primitive polynomial of degree 2 over F3 and use its coefficients to construct
an F3-linear generator.
(a) Compute the periodic sequence of pseudorandom numbers generated by this gen-
erator.
(b) How many occurrences are there of 0, 1, and 2 in a period?
(c) Verify that each subsequence of length 2 appears exactly once, except the subse-
quence 00.

12. Choose a primitive polynomial of degree 3 over F3 and use its coefficients to construct
an F3-linear generator.
(a) Compute the periodic sequence of pseudorandom numbers generated by this gen-
erator.
(b) How many occurrences are there of 0, 1, and 2 in a period?
(c) Verify that each subsequence of length 2 appears exactly three times, except the
subsequence 00, which appears twice.
(d) Verify that each subsequence of length 3 appears exactly once, except the subse-
quence 000.

13. Choose a degree-2 primitive polynomial Q1 over F2 and use its coefficients to construct
an F2-linear generator. Similarly, choose a degree-2 primitive polynomial Q2 over F3 to
construct an F3-linear generator.
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(a) What is the period of the multiple recursive generator given by taking δ1 = δ2 = 1?
(b) Choose a set of initial conditions and compute the sequence of outputs un for a
single cycle.

14. Explain how to construct a random-number generator that simulates tossing a die. Re-
member that such a generator needs to draw numbers uniformly from the set {1, . . . , 6}.

15. When performing simulations we often require random-number generators that generate
numbers according to a given probability distribution. Up until this point we have
considered only generators that are uniform U [0, 1] over [0, 1]. Show how to transform
such a generator into one that is uniform U [a, b] over a given interval [a, b].

Note: The probability density function of a uniformly random variable over an
interval [a, b] is given by

f(x) =

{
1

b−a , x ∈ [a, b],
0, x /∈ [a, b].

16. When we want to generate random numbers that obey more general laws of probability,
we need to consider the cumulative distribution function: if X is a random variable, the
cumulative distribution function is given by

FX(x) = Prob(X ≤ x).

(a) For a given random variable X that is uniform on [0, 1] (we write X ∼ U [0, 1]),
show that the cumulative distribution function is given by

FX(x) =

⎧⎪⎨
⎪⎩

0, x < 0,

x, x ∈ [0, 1],
1, x > 1.

(The probability density function of X is given in Exercise 15 by taking a = 0 and
b = 1.)
(b) Let X ∼ U [0, 1] and let g(x) : [0, 1] → R be a strictly increasing function. Consider
the random variable Y = g(X). Show that the cumulative distribution function of Y is
given by

FY (y) = FX(g−1(y)),

where g−1 denotes the inverse function of g such that g(g−1(x)) = x.
(c) Consider a random variable Y that obeys an exponential probability density func-
tion with parameter λ:

fY (y) =

{
0, y < 0,

λe−λy, y ≥ 0.

Calculate the cumulative distribution function of Y .
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(d) Let X ∼ U [0, 1] and Y = g(X). What function g must we take for Y to obey an
exponential distribution with parameter λ? Explain a practical method by which we
may generate random numbers observing such an exponential distribution.

17. In the game of bridge, 52 cards are distributed among four players A, B, C, and D.
(a) Explain why there are 52!

(13!)4 distinct ways of dealing the cards. (In bridge the
players are numbered from 1 to 4, following the order in which they will bid. The
order in which cards are played is different and depends on the specific bids. Thus, two
games in which the same four hands were dealt to different players should be considered
different games.)
(b) How many seconds are there in a year? Compute how many years would be
necessary to play every possible game of bridge assuming that we could finish a game
every second.
(c) We see that in practice it is impossible to play every possible bridge hand. Does
this mean that it is equally impossible to calculate statistics regarding individual bridge
games? Statistics permit us to draw conclusions on a population from an analysis of
only a sample of the population (in this context, the set of all possible bridge games),
provided that the sample is representative. One manner of constructing a sample is
to number the cards from 1 to 52. To deal the cards to the first player we first must
choose a single card from the deck of 52, corresponding to generating a uniform random
number over the set {1, . . . , 52}. We then choose a second card from the remaining 51,
a third from the remaining 50, and so on, until we choose the first player’s last card
from among the remaining 40. We continue this process to deal hands to the second
and third players, with the fourth player receiving the remaining cards. In order to
deal a second game, we repeat the algorithm a second time. What conditions must be
satisfied by the different random-number generators involved so that each distinct hand
has an equal chance of being generated?
(d) We have seen that it is not sufficient for all possible events (games in this context)
to have the same probability of being generated. We require also that each possible
subsequence of k events be generated with equal probability. Given that this question
is hard to analyze on account of the sheer number of possible subsequences of events,
we can instead compute partial statistics. For example, what is the probability that a
single bridge hand contains all four aces? We could then randomly generate a thousand
games and verify whether the number of times all four aces occur in a single hand is
close to the expected number.
(e) Calculate the probability of two other not-too-rare events that could be used as
statistical tests.
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9

Google
and the PageRank Algorithm

The first three sections of this chapter make use of linear algebra (diagonalization,

eigenvalues, and eigenvectors) and elementary probability theory (independence of

events and conditional probability). These sections provide the basics and can be cov-

ered in about three hours. Combined, they give a good idea of how the PageRank

algorithm works. Section 9.4 is more advanced, requiring a familiarity with real anal-

ysis (accumulation points and convergence of sequences); this section may be covered

in one or two hours.

9.1 Search Engines

In the digital world, new problems are generally quickly solved by new algorithms or
new hardware. Those who have used the world wide web for more than a few years, say
since 1998, will no doubt remember the search engines provided by AltaVista and Yahoo.
More than likely, these same people now use Google’s search engine. Surprisingly, among
all the general-purpose search engines, Google rose to its current supremacy in a matter
of months. It did so thanks to its algorithm for ranking search results: the PageRank
algorithm. The goal of this chapter is to describe this algorithm and the mathematical
foundations on which it is built: Markov chains.

Using a search engine is fairly simple. It starts with somebody sitting at a computer
connected to the Internet, and a desire to learn about a particular subject. Suppose,
for example, that he wants to learn about the annual snowfall in Montreal. He decides
to query Google1 with the keywords precipitation, snow, Montreal, and century. (Of
these, the last word may seem a little strange. However, the user has chosen this word
to indicate his desire for long-term statistics.) The search engine responds with a brief
list of what it deems to be the best sources of information on the topic (see Figure 9.1).
The horizontal bar at the top of the page indicates that the search was performed in

1Google can be found at http://www.google.com

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 9, c© Springer Science+Business Media, LLC 2008
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Fig. 9.1. A Google search on the keywords precipitation, snow, montreal and century.

less than a tenth of a second, and that around 91,200 potentially relevant pages were
identified. The first is a link to an online database of Canadian climate data, provided
by Environment Canada, which runs the Canadian weather office. (From here we can
learn that the most snow seen since accurate record-keeping began was 384.3 cm in
1954! Thankfully, we also learn that the 30-year average is a little more reasonable, at
217.5 cm.) The first search result returned by Google often has quite a good chance of
answering the user’s question. How about the others? As we descend through the list,
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the focus of the results tends to wander, with many documents concerning the Montreal
Protocol on climate change. These later documents are of very little interest to the
user, since they do not speak at all about snow in Montreal. But they are related in
some sense, for they effectively all contain at least three of the four search terms.

This anecdote brings up an important point:2 the pages that Google returns first
are often exactly those that satisfy the user’s needs. The search would definitely be
hopeless if the user had to go through the 91,200 pages. The exact keywords entered by
the user will obviously have an impact on the pages returned, but how in general can
Google use a computer to guess the desires of the user?

Automated search tools have been around for a few decades. We can immediately
think of several domains with large bodies of knowledge that need to be efficiently nav-
igated: library catalogs, government registries (births, deaths, taxes) and professional
databases (legal, dental, medical, parts catalogs). These bodies of information all have
a few points in common. First off, they all contain data that lies within a single clearly
defined scope. For example, all the books in a library contain a title, one or more
authors, a publisher, etc. The uniformity of the data to be organized thus makes the
database more easily categorized and more easily searched. The quality of the informa-
tion is also very high. For example, books are normally entered into a library’s catalog
by professionals, and the error rate is thus very low. If and when an error occurs, the
simplicity of the database makes it easy for corrections to be made. The uniformity of
the user’s needs is also an advantage in these systems. The goal of a library catalog
is above all to maintain a concise listing of exactly what books are on hand. Even
though specialized terms may exist (for example in medical or legal databases), the
users are typically professionals in the field and will all be familiar with them. Thus,
these databases may be searched with relative ease by their users. These databases all
evolve relatively slowly. In a library, very few books leave the collection in a year, and
a year that sees 10% growth in the catalog would be rare. Add to this the fact that
the information already in a library catalog is always accurate, and never changes! The
growth rate is therefore relatively slow, and such databases are easily maintained by
humans. Finally, it is easy to achieve a consensus rating on the quality of the items in
the database. In most university faculties, committees guide the purchase of new books
for the library. Moreover, professors guide students directly toward the best books for
their courses.

None of these characteristics exists on the web. The pages on the web have an
immense diversity: technical, professional, promotional, commercial, entertainment, etc.
The quality to be found is also very inconsistent: we can expect to find many spelling
and grammar errors, as well as misinformation (whether these errors are accidental or
otherwise). The users of the web are also as numbered and varied as the pages on the
web, and their familiarity with search engines is extremely variable. The speed at which

2If the user were to repeat this search again today, chances are the results would be vastly
different and in all probability there would be many more returned pages. This is due to the
constantly changing and expanding nature of the world wide web.
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the web evolves is staggering: as of the end of 2005 (when they stopped publishing the
size of their database on their front page), Google was indexing well over 9 billion pages,
with others appearing and disappearing daily. Finally, it seems illusory to establish a
consensus on the relative quality of web pages given their number, their diversity, and
the equally varying interests of the hundreds of millions of users worldwide. It seems
that web pages have nothing in common!

In fact, this is a bit of a lie, since most pages on the web do have something in
common. They are nearly all written in HTML (HyperText Markup Language) or
in some related dialect. And the method in which they are related to each other is
uniform: links between pages are all encoded in the same manner. These links consist
of a few fixed characters preceding the address of the page, otherwise known as its
URL (Uniform Resource Locator). These are precisely the links that a human user may
follow in surfing the web, and which a computer can differentiate from the text, images,
and other elements of a web page. In January 1998, four researchers from Stanford
University, L. Page, S. Brin, R. Motwani, and T. Winograd, proposed an algorithm [3]
for ranking pages on the web. This algorithm, PageRank, does not use the textual or
visual content of the page, but rather the structure of the links between them.3

9.2 The Web and Markov Chains

The web is composed of billions of individual pages, and even more links between them.4

As such, the web can be modeled as a directed graph, where pages are nodes, and links
are directed edges between them. For example, Figure 9.2 represents a (small) web
containing five pages (A, B, C, D, and E). The directed edges between the nodes
indicate that

• the only link from page A leads to page B,
• page B links to pages A and C,
• page C links to pages A, B, and E,
• the only link from page D leads to page A, and
• page E links to pages B, C, and D.

In order to determine the ranking to be accorded to each of these five pages, we
consider a simple version of the PageRank algorithm. Suppose that an impartial web
surfer navigates through this web by randomly choosing links to follow. When he has
only one choice (for example, if he finds himself on page D), then he will follow that link
(leading to page A in this example). If he finds himself on page C, he will follow the link
to page A one-third of the time and similarly for the links to pages B and E. In other

3The first four letters of PageRank refer to the first author’s last name, and not to pages
of the web.

4When Page et al. published their algorithm in 1998, they estimated the size of the web
as roughly 150 million pages with 1.7 billion links between them. In early 2006, the web was
estimated as containing around 12 billion pages.
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Fig. 9.2. A web of five pages and its links.

words, when he finds himself on a given page, he will randomly choose from among the
outbound links, according each an equal probability. If such a web surfer were left to
crawl the web in such a manner following one link per minute, where would he find
himself in an hour, in two days, or after some large number of jumps? More precisely,
given that his path is determined probabilistically, with what probability would he find
himself on a given page after a given amount of time?

Figure 9.3 answers this question for the first two steps of an impartial web surfer
starting at page C. This page contains three outbound links; thus the web surfer can
end up only on one of the pages A, B, E. Thus, after the first step he would find
himself on page A with probability 1

3 , on page B with probability 1
3 , and on page E

with probability 1
3 . This is indicated in the middle column of Figure 9.3 by the three

relations
p(A) =

1
3
, p(B) =

1
3
, p(E) =

1
3
.

Similarly,
p(C) = 0 and p(D) = 0

indicate that after one step the web surfer could not possibly be on page C or D, since
no links from his previous page can lead him there. Each of the three possible paths
is indicated by its probability of being taken. Furthermore, given that he must stay
within the web, they satisfy

p(A) + p(B) + p(C) + p(D) + p(E) = 1.

The results after the first step are rather simple and predictable. However, even
after only two steps, things begin to get complicated. The third column of Figure 9.3
gives the possible trajectories after a second step. If the web surfer was on A after the
first step, he would be guaranteed to be on B after a second step. Since he had been
on A with probability 1

3 , this path contributes 1
3 to the probability of being on B after
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Fig. 9.3. The first two steps of an impartial web surfer starting at page C.

a second step. However, p(B) does not equal 1
3 after the second step, since there is

another independent path that could lead him there: C → E → B. If the web surfer
found himself on page E after the first step, he could choose (with equal probability)
from the three links leading to pages B, C, and D. Each of these paths contributes
1
3 × 1

3 = 1
9 to the probabilities p(B), p(C), and p(D) after the second step. Although

there are more possibilities and the attached probabilities are more complicated, the
end result is relatively simple. After two steps, the web surfer finds himself on a given
page with the following probabilities:

p(A) =
1
6
, p(B) =

4
9
, p(C) =

5
18

, p(D) =
1
9
, p(E) = 0.

Again, we see that these probabilities satisfy
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p(A) + p(B) + p(C) + p(D) + p(E) =
1
6

+
4
9

+
5
18

+
1
9

+ 0

=
3 + 8 + 5 + 2 + 0

18
= 1.

At this point, the method should seem clear, and we could continue to calculate the
probabilities after a few more steps. However, it is useful to formalize this impartial
walk through the web. The tool best suited to this job is the theory of Markov chains.

A random process {Xn, n = 0, 1, 2, 3, . . . } is a family of random variables parame-
terized by the integer n. We assume that each of these random variables Xn takes its
values from a finite set T . In the example of the impartial web surfer, T is the set of
pages in the web: T = {A,B,C,D,E}. For each step n ∈ {0, 1, 2, . . .}, the position
of the web surfer is Xn. Sticking to the language of random processes, we determined
earlier the probabilities of the possible outcomes for X1 and X2 assuming that the walk
started from C. This can be rephrased as a conditional probability P (I|J), which gives
the probability that event I occurs given that event J has already occurred. For exam-
ple, P (X1 = A|X0 = C) gives the probability of the web surfer finding himself on page
A at step 1 after having been on page C at the beginning (step 0). Thus

p(X1 = A|X0 = C) =
1
3
, p(X1 = B|X0 = C) =

1
3
, p(X1 = C|X0 = C) = 0,

p(X1 = D|X0 = C) = 0, p(X1 = E|X0 = C) =
1
3
,

and

p(X2 = A|X0 = C) =
1
6
, p(X2 = B|X0 = C) =

4
9
, p(X2 = C|X0 = C) =

5
18

,

p(X2 = D|X0 = C) =
1
9
, p(X2 = E|X0 = C) = 0.

The random walk followed by the impartial web surfer possesses the defining property
of Markov chains. First off, we will define Markov chains.

Definition 9.1 Let {Xn, n = 0, 1, 2, 3, . . . } be a random process taking its values from
the set T = {A,B,C, . . .}. We say that {Xn} is a Markov chain if the probability
P (Xn = i), i ∈ T , depends only on the value of the process at the previous step, Xn−1,
and not on any of the preceding steps, Xn−2, Xn−3, . . . . We define N < ∞ as the
number of elements in T .

In the example of the impartial web surfer, the random variables are the positions Xn

after n steps. In thinking back to our earlier calculations we notice that in calculating
the probabilities after the first step, P (X1), we used only the starting point. Similarly, in
calculating the probabilities after the second step, P (X2), we used only the probabilities
from the first step. This property of being able to calculate P (Xn) using only the
information from P (Xn−1) is the defining property of Markov chains. Are all random
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processes Markov chains? Certainly not. It takes only a slight change to the rules of
our impartial web surfer in order to lose the Markov property. Suppose that we want to
prevent the web surfer from ever returning immediately to the page where he came from.
For example, after the first step, our web surfer found himself on pages A, B, and E
with equal probability. He cannot return to page C from page A, but he could possibly
do so from pages B and E. Thus, we could prevent the web surfer from following the
links to page C from pages B and E. Under these new rules, the web surfer would
have only a single choice when arriving at page B from page C (he would have to go
to page A), and he would be reduced to two choices at page E (either page B or page
D). In prohibiting the web surfer from following links to its previous page we have
lost the Markov property: the process has memory. In fact, in order to determine the
probabilities P (X2) we need to know not only the probabilities at step 1, but also the
page (or pages) where the web surfer was at the start (step zero). The rules that we
originally defined are thus rather special in a mathematical sense: Markov chains have
no memory of past states, and the future state is completely determined by the current
state.

Markov chains are unique in that their behavior may be entirely characterized by
their initial state (p(C) = 1 in the example of Figure 9.3) and a transition matrix given
by

p(Xn = i | Xn−1 = j) = pij . (9.1)

A matrix P is a Markov chain transition matrix if and only if

pij ∈ [0, 1] for all i, j ∈ T and
∑
i∈T

pij = 1 for all j ∈ T . (9.2)

For our impartial web surfer, the elements pij of the transition matrix P represent
the probabilities of finding himself at page i ∈ T when he is coming from page j ∈ T .
However, our rules force the surfer to choose with equal probability from among the
available links. Thus, if page j offers m links, then column j of P will contain 1

m in the
rows corresponding to the m linked pages, and 0 in the remaining rows. The transition
matrix for the simple web in Figure 9.2 is thus given by

P =

A B C D E⎛
⎜⎜⎜⎜⎝

0 1
2

1
3 1 0

1 0 1
3 0 1

3
0 1

2 0 0 1
3

0 0 0 0 1
3

0 0 1
3 0 0

⎞
⎟⎟⎟⎟⎠

A
B
C
D
E

(9.3)

The columns of P indicate possible destinations: from page E the web surfer may
proceed to pages B, C, and D. Similarly, the nonzero entries in rows indicate possible
origins: the single nonzero entry in the fourth row indicates that we may arrive at page
D only from page E.
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What exactly does the second constraint of (9.2) mean? To clarify, we rewrite it
with the help of the transition matrix defined in (9.1):∑

i∈T

pij =
∑
i∈T

p(Xn = i | Xn−1 = j) = 1,

which may be read as follows: if at step n − 1 the system is in state j (at page j ∈ T ),
then the probability of being in any possible state at step n is 1. Stated even more
simply, this means that a web surfer on a given page at step n − 1 must certainly find
himself still in the web at step n. Thus, the constraint is actually rather simple.

This formalization has several advantages. The operation of matrix multiplication
suffices to reproduce the multitude of tedious calculations performed as we followed the
web surfer through his first two steps. As before, we assume that the web crawler starts
at page C. Thus

p0 =

⎛
⎜⎜⎜⎜⎝

p(X0 = A)
p(X0 = B)
p(X0 = C)
p(X0 = D)
p(X0 = E)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎠ .

The probability vector p1 after the first step is given by p1 = Pp0, and therefore

p1 =

⎛
⎜⎜⎜⎜⎝

p(X1 = A)
p(X1 = B)
p(X1 = C)
p(X1 = D)
p(X1 = E)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 1
2

1
3 1 0

1 0 1
3 0 1

3
0 1

2 0 0 1
3

0 0 0 0 1
3

0 0 1
3 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
3
1
3
0
0
1
3

⎞
⎟⎟⎟⎟⎠ ,

the same as we calculated before. In the same manner, applying the transformation
matrix again yields p2 = Pp1; the probability vector after the second step is therefore

p2 =

⎛
⎜⎜⎜⎜⎝

p(X2 = A)
p(X2 = B)
p(X2 = C)
p(X2 = D)
p(X2 = E)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 1
2

1
3 1 0

1 0 1
3 0 1

3
0 1

2 0 0 1
3

0 0 0 0 1
3

0 0 1
3 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
3
1
3
0
0
1
3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
6
4
9
5
18
1
9
0

⎞
⎟⎟⎟⎟⎠ .

The same method may be followed to calculate the probability vector after any
number of steps: pn = Ppn−1, or alternatively,

pn = Ppn−1 = P (Ppn−2) = · · · = PP · · ·P︸ ︷︷ ︸
n times

p0 = Pnp0.

The constraints of (9.2) on the transition matrix P result in several properties of
Markov chains that are very important for the PageRank algorithm.
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This first property we will examine can be seen by taking several powers of the
transition matrix P . The powers P 4, P 8, P 16, and P 32, rounded to three decimal places,
are given by

P 4 =

⎛
⎜⎜⎜⎜⎝

0.333 0.296 0.204 0.167 0.420
0.222 0.463 0.531 0.667 0.160
0.389 0.111 0.160 0.000 0.370
0.056 0.000 0.031 0.000 0.019
0.000 0.130 0.074 0.167 0.031

⎞
⎟⎟⎟⎟⎠, P 8 =

⎛
⎜⎜⎜⎜⎝

0.265 0.313 0.294 0.323 0.279
0.420 0.360 0.409 0.372 0.381
0.217 0.233 0.191 0.201 0.252
0.031 0.022 0.018 0.012 0.035
0.067 0.072 0.088 0.092 0.052

⎞
⎟⎟⎟⎟⎠,

P 16 =

⎛
⎜⎜⎜⎜⎝

0.294 0.291 0.293 0.291 0.294
0.388 0.392 0.389 0.391 0.391
0.220 0.219 0.221 0.221 0.218
0.024 0.025 0.025 0.025 0.024
0.074 0.073 0.072 0.072 0.074

⎞
⎟⎟⎟⎟⎠, P 32 =

⎛
⎜⎜⎜⎜⎝

0.293 0.293 0.293 0.293 0.293
0.390 0.390 0.390 0.390 0.390
0.220 0.220 0.220 0.220 0.220
0.024 0.024 0.024 0.024 0.024
0.073 0.073 0.073 0.073 0.073

⎞
⎟⎟⎟⎟⎠.

We observe that Pm seems to converge to a constant matrix as m increases. As it turns
out, this is not just by luck, but rather it is a property of most Markov chain transition
matrices.

Property 9.2 The transition matrix P of a Markov chain has at least one eigenvalue
equal to 1.

Proof: Recall that the eigenvalues of a matrix are always equal to the eigenvalues of
its transpose. This is a result of the fact that both matrices share the same characteristic
polynomial:

ΔP t(λ) = det(λI − P t) = det(λI − P )t = det(λI − P ) = ΔP (λ),

which itself follows from the fact that the determinant of a matrix is equal to that of
its transpose. It is simple to find an eigenvector of P t. Let u = (1, 1, . . . , 1)t. Then
P tu = u. In fact, expanding the matrix multiplication directly, we see that

(P tu)i =
n∑

j=1

[P t]ijuj =
n∑

j=1

pji · 1, since all uj are 1,

= 1,

by (9.2). �

Property 9.3 If λ is an eigenvalue of an n × n transition matrix P , then |λ| ≤ 1.
Furthermore, there exists an eigenvector associated to the eigenvalue λ = 1 with all
nonnegative entries.
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This property is a direct result of a theorem attributed to Frobenius. Although the
proof relies only on elementary linear algebra and analysis, it is far from simple. We
will explore this proof in Section 9.4.

Hypotheses Before we continue, we will state three hypotheses that we will assume
from now on.

(i) First off, we will suppose that there is exactly one eigenvalue such that |λ| = 1, and
therefore by Property 9.2 this eigenvalue is 1.

(ii) Next, we will suppose that this eigenvalue is not degenerate, which is to say that
the associated eigensubspace has dimension 1.

(iii) Finally, we will take for granted that the transition matrix P representing the web
is diagonalizable, meaning that its eigenvectors form a basis.

The first two hypotheses are not actually true for all transition matrices, and it is
in fact possible to construct valid transition matrices that violate both of them (see
the exercises). However, these remain reasonable hypotheses for transition matrices
generated by large webs. The third hypothesis is there to simplify the following result.

Property 9.4 1. If the transition matrix P of a Markov chain satisfies the three hy-
potheses above, then there exists a unique vector π such that the entries πi = P (Xn =
i), i ∈ T , satisfy

πi ≥ 0, πi =
∑
j∈T

pijπj , and
∑
i∈T

πi = 1.

We will call the vector π the stationary regime of the Markov chain.
2. Regardless of the initial point p0

i = P (X0 = i) (where
∑

i p0
i = 1), the distribution of

probabilities P (Xn = i) will converge to the stationary regime π as n → ∞.

Proof: The first point simply repeats the fact that P has a single eigenvector with
eigenvalue 1 whose components sum to 1. In fact, the defining equation for the stationary
regime is simply π = Pπ. In other words, π is the eigenvector of P associated with
the nondegenerate eigenvalue 1. Property 2 tells us that π is composed of nonnegative
entries. Since an eigenvector is always nonzero, the sum of its entries must be strictly
positive. By renormalizing this vector we can therefore always ensure that

∑
i πi = 1.

To show the second point we rewrite the initial state vector p0 in terms of the basis
formed by the eigenvectors of P . We index the eigenvalues of P as follows: 1 = λ1 >
|λ2| ≥ |λ3| ≥ · · · ≥ |λN |. Hypotheses (i) and (ii) tell us that the first inequality in this
ordering is strict (that is, the absolute value of λ1 is strictly larger than that of λ2),
while hypothesis (iii) assures us that the eigenvectors of P form a basis for the space
of dimension N where P acts. (For this last step, the eigenvalues must be counted
with their multiplicities.) Let vi be the eigenvector associated with the eigenvalue λi.
Furthermore, assume that v1 has been normalized such that v1 = π. The set {vi, i ∈ T}
forms a basis, allowing us to write
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p0 =
N∑

i=1

aivi,

where the ai are the coefficients of p0 in this basis.
We will show that the coefficient a1 is always 1. For this, we will make use of the

vector ut = (1, 1, . . . , 1) that was introduced in the discussion of Property 1. If vi is an
eigenvector of P with eigenvalue λi (which is to say that Pvi = λivi), then the matrix
product utPvi can be simplified in two ways. The first yields

utPvi = (utP )vi = utvi,

and the second,
utPvi = ut(Pvi) = λiu

tvi.

These two expressions must be equal by the associativity of matrix multiplication. For
i ≥ 2, the eigenvalue λi is not 1, and the equality can only hold if utvi = 0, which
expands as

utvi =
N∑

j=1

(vi)j = 0,

where (vi)j represents the jth coordinate of the vector vi. This condition states that
the sums of the coordinates of the vectors vi, i ≥ 2, must all be zero. If we now sum the
components of p0, we get 1 by hypothesis (

∑N
i=1 p0

i = 1). Thus

1 =
N∑

j=1

p0
j =

N∑
j=1

N∑
i=1

ai(vi)j =
N∑

i=1

ai

N∑
j=1

(vi)j

= a1

N∑
j=1

(v1)j = a1

N∑
j=1

πj = a1.

(To obtain the second inequality we used the expression p0 written in the basis of the
eigenvectors. For the fourth, we used the fact that the sums of the coefficients of the vi

are all zero-valued except for v1.)
To obtain the behavior after m steps, repeatedly apply the transition matrix P (m

times) starting from the initial state p0:

Pmp0 =
N∑

j=1

ajP
mvj =

N∑
j=1

ajλ
m
j vj = a1v1 +

N∑
j=2

λm
j ajvj = π +

N∑
j=2

λm
j ajvj .

Thus, the distance between the state at the mth step, Pmp0, and the stationary regime
π is

‖Pmp0 − π‖2 =

∥∥∥∥∥∥
N∑

j=2

λm
j (ajvj)

∥∥∥∥∥∥
2

.
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The sum on the right-hand side is a sum over the fixed vectors ajvj whose coefficients
diminish exponentially like λm

j . (Recall that the λj , j ≥ 2, all have length less than 1.)
This sum is finite, and therefore converges to zero as m → ∞. Thus, pm = Pmp0 → π
as m → ∞. �

Return to our impartial web surfer. The properties of Markov chains can be inter-
preted as saying that if the impartial web surfer continues to crawl through the web
long enough, he will find himself on each of the pages with a probability that approaches
those given by the stationary regime π, where π is the normalized eigenvector associated
with eigenvalue 1.

We are now ready to make the connection between the vector π and the PageRank
ordering of pages.

Definition 9.5 (1) The score given to page i in the (simplified) PageRank algorithm
is the corresponding coefficient πi from the vector π.

(2) We sort the pages based on their PageRank scores, with the largest coming first.

The initial example with the web of five pages (Figure 9.2) allows us to obtain an
understanding of this score. The norms |λi| of the eigenvalues of the associated matrix
P are 1 with multiplicity 1, and 0.70228 and 0.33563 each with multiplicity 2. Only
the eigenvalue 1 is a real number. The eigenvector associated with the eigenvalue 1 is
(12, 16, 9, 1, 3), which, when normalized, yields

π =
1
41

⎛
⎜⎜⎜⎜⎝

12
16
9
1
3

⎞
⎟⎟⎟⎟⎠ .

This tells us that given a sufficiently long walk, the impartial web surfer would visit
page B the most often, with 16 out of 41 steps leading to it. Similarly, he would nearly
completely ignore page D, visiting it once per 41 steps on average.

What is the final order given to the pages? Page B is ranked number 1, which means
that it is the most important page. Page A is ranked second, followed by pages C, E,
and finally, the least important, page D.

There is an another way in which PageRank scores may be interpreted: each page
gives its PageRank score to all of the pages it links to. Return to the vector π =
( 12
41 , 16

41 , 9
41 , 1

41 , 3
41 ). Page D is linked to only once, from page E. Since E has a score

of 3
41 and three outbound links that must share this value, D receives a final score of

one-third that of E, 1
41 . Three pages point to page B: pages A, C, and E. The three

pages have respective scores of 12
41 , 9

41 , and 3
41 . Page A has only one outgoing link, while

pages C and E have three each. Thus, the score of page B is

score (B) = 1 · 12
41

+
1
3
· 9
41

+
1
3
· 3
41

=
16
41

.
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Why does the order implied by the PageRank scores give a reasonable ordering of the
pages on the web? Mostly because it entrusts the users of the web itself to make the
decisions as to which pages are better than others. Similarly, it ignores completely what
the creator thinks of the importance of his own page. Moreover, the effect is cumulative.
An important page that links to a few other pages can “transmit” its importance to
these other pages. Thus, users display their confidence by linking to certain pages, and
by doing so they transmit part of their score to these pages in the PageRank algorithm.
This phenomenon has been named “collaborative trust” by the PageRank inventors.

9.3 An Improved PageRank

The algorithm described in the last section is not quite useable as is. There are two
rather evident difficulties that must first be overcome.

The first is the existence of pages that have no outgoing links. The absence of links
may come from the fact that Google’s web-spider has not yet indexed the destinations
of the links, or that the page simply does not have any links. Thus, the impartial web
crawler that arrives at this page would be forever caught there. One way of avoiding
this problem is simply to ignore such pages, and remove them (and all the links leading
to them) from the web. The stationary regime may then be calculated. After this is
done, it is possible to assign scores to these pages by “transmitting” importance from
all of the pages that link to them, as discussed at the end of the previous section:

n∑
i=1

1
li

ri,

where li is the number of links issued by the ith page leading to the dead-end page,
and ri is the calculated importance of the ith page. The next problem shows that this
somewhat crude approach offers only a partial solution.

The second difficulty resembles the first, but it is not quite so easy to fix. An example
is depicted in the web of Figure 9.4. The web consists of the five pages from our original
example, plus two others that are connected to the original web by a single link from
page D. We saw in the last section that the impartial web surfer did not spend much
time on page D. However, all the same, he did occasionally visit it, spending 1

41 of his
time there. What happens in this new modified web? Each time the web surfer visits
page D he will choose to go to page A half of the time, while the other half of the
time he will choose page F . If he chooses the latter option, then he can never return
to the original pages A, B, C, D, or E. It is not surprising then that the stationary
regime π of this new web is π = (0, 0, 0, 0, 0, 1

2 , 1
2 )t. In other words, the pages F and

G “absorb” all of the importance that should have been divided up among the other
pages! (Watch out! In this example, (−1) is also an eigenvalue of P , which means
that Pn no longer approaches the matrix with columns π as n → ∞.) Can we solve
this problem as before, by simply removing the offending pages from the web? This is
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Fig. 9.4. A web of seven pages.

not really the best approach, because in the real world, parts of the graph that act in
such a manner may themselves consist of thousands of pages that must also be ranked.
Additionally, we can easily imagine that any impartial web surfer caught in such a loop
(F → G → F → G → · · · ) would grow bored and decide to visit another part of the
web at random. Thus, the inventors of the PageRank algorithm suggest adding to P a
matrix Q that represents the “taste” of the impartial web surfer. The matrix Q would
itself be a transition matrix, and the final transition matrix used in calculations would
be

P ′ = βP + (1 − β)Q, β ∈ [0, 1].

Note that P ′ is itself a transition matrix: the coefficients of each column in P ′ still
sum to 1. (Exercise!) The balance between the “taste” of the web surfer (represented
by the matrix Q) and the structure of the web itself (represented by the matrix P ) is
controlled by the parameter β. When β = 1 the tastes of the web surfer are ignored, and
the structure of the web may again cause certain pages to absorb all of the importance.
Similarly, when β = 0 the tastes of the web surfer dominate, and the manner in which
the web surfer visits pages has absolutely no relation to the structure of the web itself.

But how does Google guess the tastes of the web surfer? In other words, how do
they choose the matrix Q? In the PageRank algorithm the matrix Q is chosen in the
most democratic way possible. They give each page in the web an equal probability of
transition. If the web consists of N pages, then every element of the matrix Q will be
1
N : qij = 1

N . This means that if the web surfer finds himself stuck in the pair of pages
(F,G) from Figure 9.4 he has a probability 5

7 × (1 − β) of escaping at each step. In
their original paper, the inventors of PageRank suggested a value of β = 0.85, forcing
the impartial web surfer to ignore the links of the page and choose his next destination
using his “taste” roughly 3 times out of 20.
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This variation on the algorithm from the previous section, with the matrix Q and
the parameter β, is the final algorithm that the inventors called PageRank. Several of
its properties will be explored in the exercises.

The PageRank algorithm first proposed by academics has since been patented. Two
of the inventors, Sergey Brin and Larry Page, founded the company Google in 1998,
while they were both still in their twenties. Since this time, Google has gone public and
is openly traded on the stock market. It is thus difficult to know what changes and
improvements have been made to the algorithm, since it has fallen under commercial
secrecy. We can piece together a few bits of information, however. PageRank is one
of the algorithms for ranking web pages, but it is probably not the only one, or many
small changes might have been brought to the original algorithm. Google claims to
catalog approximately 10 billion web pages, so we can imagine that the number N of
rows in the matrix P is of the same order. Thus, in order to determine the PageRank
of each of these pages, they must calculate an eigenvector of an N × N matrix, where
N ≈ 10,000,000,000. But solving the equation π = Pπ (or more precisely π = P ′π),
where P is a 1010 × 1010 matrix is not an easy task. In fact, according to C. Moler, the
founder of Matlab, it might be one of the largest matrix problems done by computers.
(For an up-to-date discussion of search engines and particularly PageRank (as of 2006),
see [2].) This task is probably done monthly. What is the algorithm used? Is the matrix
(I − P ) row-reduced first? Or is π obtained by the repeated application Pmp0 of P on
some set of initial conditions p0 (power method)? Or is it by an algorithm targeting first
subsets of pages of the web that are connected by many links (method of aggregation)?
It seems that the two latter methods are natural for the problem. But the exact details
of improvements to PageRank and its computation since the founding of Google remain
secret.5

The sequence of events (invention of the PageRank algorithm, dissemination of the
original article, granting of the patent, creation of Google, widespread adoption of the
Google search engine, . . . ) was optimal: on one side, the scientific community was made
aware of the details of the algorithm, and on the other, the founders of Google had
several months to get their company started and to reap the rewards of their invention.
In knowing the basic details, researchers (with the exception of those that work for
Google directly and are shrouded in corporate secrecy) can freely discuss improvements
to the algorithm and its finer points, for example, how to efficiently take into account
personal user preferences, how to benefit from pages that are strongly linked to each
other, and how to restrict searches to a particular domain of human activity.

5Search requests made to Google are filled by a cluster of roughly 22,000 computers (as
of December 2003) working with the help of the Linux operating system. Response times are
rarely greater than a half-second!
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9.4 The Frobenius Theorem

In order to describe and demonstrate the Frobenius theorem, we need to introduce the
notion of matrices with nonnegative elements.6 We will distinguish three cases. If P is
an n × n matrix, then we say that

• P ≥ 0 if pij ≥ 0 for all 1 ≤ i, j ≤ n;
• P > 0 if P ≥ 0 and at least one of the pij is positive;
• P " 0 if pij > 0 for all 1 ≤ i, j ≤ n.

We will use the same notation for vectors x ∈ Rn. Finally, the notation x ≥ y signifies
that x − y ≥ 0. These “inequalities” are likely not very familiar. To help clarify we
present a few simple examples of their use. To begin, if P ≥ 0 and x ≥ y, then it follows
that Px ≥ Py. This is due to the fact that since (x − y) ≥ 0 and P ≥ 0, the matrix
product P (x − y) consists only of sums of nonnegative elements. Therefore the entries
of the vector P (x − y) = Px − Py are nonnegative, and finally Px ≥ Py. The second
example is proved similarly and left as an exercise: if P " 0 and x > y, then Px " Py.

Fig. 9.5. Three points of view of the simplex created by the vectors x = (a, b, c). The plane
a + b + c = 1 is represented by the white square, while the simplex (a, b, c ≥ 0) is represented
by the gray triangle.

When P ≥ 0 we may define a set Λ ⊂ R of points λ that satisfy the following
property: there exists a vector x = (x1, x2, . . . , xn) such that∑

1≤j≤n

xj = 1, x > 0, and Px ≥ λx. (9.4)

For example, if n = 3, the condition x > 0 places the point x = (a, b, c) in the octant
whose points consist of nonnegative coordinates. At the same time, the constraint
a+b+c = 1 describes a plane surface. Thus the point x is constrained to the intersection
of these two sets, as depicted in Figure 9.5. In this figure the octant is depicted by the

6Recall that “nonnegative” means “positive or zero.”
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three axes, and the plane is depicted by a white square. The intersection of the two is
depicted by a gray triangle. In the case of finite dimension n, the constructed object
is called a simplex. (What does this simplex look like for n = 2? And for n = 4?
Exercise!) The most important property of the simplex is that it is a compact set,
in other words, it is both closed and bounded. For each point in the simplex we can
calculate Px, which, by our earlier observation, satisfies Px ≥ 0. Thus it is possible to
find λ ≥ 0 such that Px ≥ λx. (It can also happen that λ = 0; for example if P = ( 0 1

0 0 )
and x = ( 0

1 ), then Px = ( 1
0 ) ≥ λ ( 0

1 ) can hold only when λ = 0.)

Proposition 9.6 Let λ0 = supλ∈Λ λ. Then λ0 < ∞. Moreover, if P " 0, then λ0 > 0.

Proof: Suppose that M = maxi,j pij , the largest element of the matrix P . Then for
all x that satisfy

∑
j xj = 1 and x > 0, we have that

(Px)i =
∑

1≤j≤n

pijxj ≤
∑

1≤j≤n

Mxj = M, for all i.

Since at least one of the entries of x, call it xi, must satisfy xi ≥ 1
n , the condition

Px ≥ λx thus requires that M ≥ (Px)i ≥ λxi ≥ λ 1
n . Since this holds for all λ ∈ Λ, we

have that λ0 = supΛ λ ≤ Mn. Suppose further that P " 0, and let m = minij pij be
the smallest element of P . Then for x = ( 1

n , 1
n , . . . , 1

n ) we have that (Px)i =
∑

j pij
1
n ≥

(mn) 1
n = (mn)xi and therefore Px ≥ (mn)x and λ0 ≥ mn > 0. �

Theorem 9.7 (Frobenius) Let P > 0 and λ0 be as defined above.

(a) λ0 is an eigenvalue of P and it is possible to choose an associated eigenvector x0

such that x0 > 0;
(b) if λ is another eigenvalue of P , then |λ| ≤ λ0.

Proof:
7 (a) We will prove this statement in two steps, (a1) and (a2).

(a1) If P " 0 then there exists x0 " 0 such that Px0 = λ0x
0.

To prove this first statement we consider a sequence {λi < λ0, i ∈ N} of elements from
Λ that converges to λ0, and the associated vectors x(i), i ∈ N, which satisfy (9.4):∑

1≤j≤n

x
(i)
j = 1, x(i) > 0, and Px(i) ≥ λix

(i).

Since the points x(i) all belong to the compact simplex, it must contain an accumulation
point, and we may choose a subsequence {x(ni)}, with n1 < n2 < · · · , that is convergent
to this point. Let x0 be the limit of this subsequence:

lim
i→∞

x(ni) = x0.

7The proof given here is that of Karlin and Taylor, presented in [1].
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Note that x0 is itself in the simplex and therefore satisfies
∑

j x0
j = 1 and x0 > 0.

Finally, since P (x(ni) − λix
(ni)) ≥ 0, we have that Px0 ≥ λ0x

0. We will now show
that Px0 = λ0x

0. Suppose that Px0 > λ0x
0. Since P " 0, by multiplying both sides

of Px0 > λ0x
0 by P and defining y0 = Px0, we obtain that Py0 " λ0y

0. (Exercise:
work through the details of this step.) Since this inequality is strict for all entries, there
exists an ε > 0 such that Py0 " (λ0 + ε)y0. By normalizing y0 such that

∑
j y0

j = 1
we can deduce that λ0 + ε ∈ Λ and that λ0 cannot be the supremum: a contradiction.
Thus it must be that Px0 = λ0x

0. Since P " 0 and x0 > 0, we have that Px0 " 0. In
other words, λ0x

0 " 0, and finally x0 " 0 since λ0 > 0.

(a2) If P > 0 then there exists x0 > 0 such that Px0 = λ0x
0.

Consider an n × n matrix E whose entries are all 1. Observe that if x > 0 then
(Ex)i =

∑
j xj ≥ xi for all i, and therefore Ex ≥ x. If P > 0, then (P + δE) " 0 for

all δ > 0, and (a1) can be applied to this matrix. Let δ2 > δ1 > 0, and let x ∈ Rn be
such that x > 0 and

∑
j xj = 1. If (P + δ1E)x ≥ λx, we have that

(P + δ2E)x = (P + δ1E)x + (δ2 − δ1)Ex ≥ λx + (δ2 − δ1)x,

and therefore the function λ0(δ) whose existence is predicted by applying (a1) to the
matrix (P + δE) is an increasing function of δ. Moreover, λ0(0) is the λ0 associated
with the matrix P . Construct a decreasing positive sequence {δi, i ∈ N} converging to
0. By (a1) it is possible to find the x(δi) satisfying (P + δiE)x(δi) = λ0(δi)x(δi), where
x(δi) " 0 and

∑
j xj(δi) = 1. Since all of these vectors lie within the described simplex,

there exists a subsequence {δni
} such that x(δni

) converges toward an accumulation
point x0. This vector must satisfy x0 > 0 and

∑
j x0

j = 1. Let λ′ be the limit of λ0(δni
).

Since the sequence δi is decreasing and λ0(δ) is an increasing function, λ′ ≥ λ0(0) = λ0.
Since P + δni

E → P and (P + δni
E)x(δni

) = λ0(δni
)x(δni

), taking the limit of both
sides yields Px0 = λ′x0, and by the definition of λ0, it must be that λ′ ≤ λ0. Hence
λ′ = λ0, completing the proof of (a).

(b) Let λ 
= λ0 be another eigenvalue of P , and z an associated nonzero eigenvector.
Then Pz = λz, which is to say

(Pz)i =
∑

1≤j≤n

pijzj = λzi.

In taking the norm of both sides we get

|λ| |zi| =

∣∣∣∣∣∣
∑

1≤j≤n

pijzj

∣∣∣∣∣∣ ≤
∑

1≤j≤n

pij |zj |

and therefore
P |z| ≥ |λ| |z|,
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where |z| = (|z1|, |z2|, . . . , |zn|). By normalizing |z| appropriately, we can ensure that it
lies in the simplex and therefore |λ| ∈ Λ. Hence, by the definition of λ0, it follows that
|λ| ≤ λ0. �

Corollary 9.8 If P is a Markov chain transition matrix, then λ0 = 1.

Proof: Consider Q = P t. Then
∑

j qij = 1 for all i. Since P > 0, we have also that
Q > 0. By part (a) of the Frobenius theorem there exist λ0 and x0 (where x0 > 0 and∑

j x0
j = 1) such that Qx0 = λ0x

0. Since x0 > 0, the largest entry of x0, call it x0
k, is

positive and satisfies

λ0x
0
k = (Qx0)k =

∑
1≤j≤n

qkjx
0
j ≤

∑
1≤j≤n

qkjx
0
k = x0

k.

From this we may deduce that λ0 ≤ 1. Property 9.2 showed that 1 is an eigenvalue
of P (and of Q as well) and therefore λ0 ≥ 1, from which the desired result follows
immediately. �

Property 9.3 follows directly from the Frobenius theorem and Corollary 9.8.

9.5 Exercises

1. (a) For the web given in Figure 9.2, use the transition matrix to calculate the prob-
abilities of the impartial web surfer being on pages A, B, C, D, and E after his third
step. Compare these results to the stationary regime π for this transition matrix.
(b) What are the probabilities of being on the pages A, B, C, D, and E after the first
step if the impartial web surfer starts at page E? What about after the second step?

2. (a) Let

P =
(

1 − a b
a 1 − b

)
with a, b ∈ [0, 1].

Show that P is a Markov chain transition matrix.
(b) Calculate the eigenvalues of P as a function of (a, b). (One of the two eigenvalues
must be 1 by Property 9.2.)
(c) Which values for a and b lead to a second eigenvalue λ satisfying |λ| = 1? Draw
the corresponding webs.

3. (a) Give the transition matrix P associated with the web shown in Figure 9.6.
(b) Show that the three eigenvalues of P have absolute values of 1.
(c) Find (or better yet, intuit) the page ranking that would be assigned by the sim-
plified PageRank algorithm.
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Fig. 9.6. The circular web of Exercises 3 and 4.

Fig. 9.7. The web of Exercise 5, with two pairs connected by a single link.

Note: We remark that this web does not satisfy hypothesis (i), which was used to obtain
Property 9.4.

4. For the web shown in Figure 9.6, an impartial web surfer starts at page A at step n = 1.
Can you give the probabilities P (Xn = A), P (Xn = B), and P (Xn = C) for all n?

5. (a) Consider the web illustrated in Figure 9.7. Intuitively, which of the pairs of pages,
(A,B) or (C,D), will be given a greater rank by the simplified PageRank algorithm?
(b) Find the page ranking assigned by the simplified PageRank algorithm.
(c) Find the stationary regime of the transition matrix used by the full PageRank
algorithm: P ′ = (1 − β)E + βP . The matrix E is a 4 × 4 matrix in which all entries
are 1

4 . For which value of β will the impartial web surfer spend one-third of his time
visiting the pair (C,D)?

6. (a) Find the transition matrix representing the web shown in Figure 9.8.
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(b) Assume that at step n, the probabilities of being on each page are equal: P (Xn =
A) = P (Xn = B) = P (Xn = C) = P (Xn = Z) = 1

4 . What is the probability of being
on page Z at step n + 1?
(c) Calculate the stationary regime π of this transition matrix. Will an impartial web
surfer spend more time on page A or on page Z?

Fig. 9.8. A web of four pages, for Exercise 6.

7. Consider the web of Figure 9.9.
(a) Write out the associated Markov chain transition matrix.
(b) If we start on page B, what is the probability that we will be on page A after 2
steps?
(c) If we start on page B, what is the probability that we will be on page D after 3
steps?
(d) Calculate the stationary regime for this web, and the rank of each page using the
simplified PageRank algorithm. Which page is the most important?

8. This exercise aims to show that hypothesis (ii), used in obtaining Property 9.4, does
not always hold.
(a) Suppose that there are two “parallel” webs in existence. That is, two extremely
large webs that never link to each other. Consider the transition matrix for these two
webs taken together. This matrix will have a peculiar form. What is it?
(b) Show that the transition matrix P of this pair of parallel webs possesses two
distinct eigenvectors with eigenvalue 1.

9. (a) Write a program, in Maple, Mathematica, or Matlab for example, that when given
n will calculate a random vector (x1, x2, . . . , xn) satisfying

xi ∈ [0, 1] for all i ∈ T and
∑

i

xi = 1.
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Fig. 9.9. The web for exercise 7

(Most modern programming languages offer functionality for generating pseudorandom
numbers.)
(b) Extend your program to compute a random n×n matrix P such that each column
of P sums to 1.
(c) Extend your program to calculate Pm when given an integer m.
(d) Generate several reasonably large matrices P (10 × 10, 20 × 20, or even bigger)
and check whether the hypotheses of Property 9.4 hold. (Remark: If you are using a
language like C, Fortran, or Java, you will have to find a library or write your own code
to compute eigenvectors and eigenvalues. Such libraries can be difficult to integrate and
use, and writing the code yourself is even harder. As such, you may prefer to use a
mathematical computing package like Maple, Mathematica, or Matlab, which natively
includes such functionality.)
(e) For a given random matrix P generated as above, at what value of m are all
the columns of Pm approximately equal? Start by defining a reasonable criterion for
“approximately equal.”

10. (a) Imagine that you are a slightly villainous businessman who runs an online business.
Propose some strategies for ensuring that your site will be assigned a higher importance
by the PageRank algorithm.
(b) Now imagine that you are a young and ambitious researcher working for Google.
Your job is to outflank the villainous businessmen of the world by preventing them from
obtaining artificially inflated PageRank scores. Propose some strategies for countering
their ploys.
Note: The original article [3] by Page et al. includes some discussion on the potential
impact of commercial interests.
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10

Why 44,100 Samples
per Second?

This chapter may be covered in three or four hours, depending on the importance given

to the proof in Section 10.4. It has been written for students that have not yet seen any

Fourier analysis. As such, the prerequisites are modest: one-variable calculus and a

familiarity with the concepts of convergence and, at the end of Section 10.4, of complex

numbers. If the students are familiar with Fourier transforms, then the instructor may

choose to include a proof of the sampling theorem, which we simply state without proof.

(See Sections 8.1 and 8.2 of Kammler [2] or Exercise 60.16 of Körner [3] for a proof.)

This subject offers ample opportunity for larger projects: students may continue their

exploration through Exercises 13, 14, and 15, supplemented by topics chosen from

Benson’s book [1]; or if they are good with computers they may explore the many

numerical experiments discussed in this chapter.

10.1 Introduction

This chapter explains the choice made by the engineers at Philips and Sony when they
were defining the standard for the compact disc. It is possible to digitize sound signals.
We have seen an example in Chapter 6: sound is simply a wave of pressure that may
be interpreted as a continuous function of pressure versus time. When digitized, this
continuous function is replaced by a step function, an example of which is shown in
Figure 10.1. More formally, mathematicians call such a function piecewise constant. In
digitizing sound, each step has the same width. Thus, the digitized function may be
represented simply as the sequence of heights of the steps. The engineers at Philips
and Sony decided to make each step have a width of 1

44,100 of a second. This chapter
explains why this particular value was chosen.

For somebody with little knowledge of the subject matter, this goal may seem some-
what trivial. However, as is often the case, the choice relied on knowledge from many
diverse domains. Of course, the first question is quite basic: what is musical sound?
A second equally basic question concerns human physiology: how does the human ear

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 10, c© Springer Science+Business Media, LLC 2008
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Fig. 10.1. A continuous “wave of pressure” function and a step function approximation of it.

react to sound waves? Finally, mathematics answers the third question: knowing what
we do about the nature of sound and how the human ear interprets it, can we show that
44,100 samples per second is sufficient? The answer lies in the domain of mathematics
known as Fourier analysis.

10.2 The Musical Scale

Sound is simply a wave of pressure. As with all waves, one of the most intuitive ways
to represent and describe this wave is through a simple plot (an example of which is
given in Figure 10.2). Two mathematical properties of this wave are related to how we
perceive it as a sound: the frequency of the wave is related to the pitch of the sound,
while the amplitude of the wave is related to the volume. Female voices are normally
characterized by higher frequencies than those found in male voices. Similarly, the
amplitude of the wave representing a song sung by Pavarotti is higher than that of one
sung by most other people.

We will discuss the relation between wave amplitude and perceived volume in the
next section. For now we will first discuss the relationship between frequency and
perceived pitch. Even if many people have never taken a piano lesson, nearly all know
that the low notes are on the left end of the keyboard, while the high notes are on
the right. Figure 10.3 shows the layout of a modern piano keyboard. The notes C are
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Fig. 10.2. The pressure wave corresponding to 1
100

of a second of the last note of Beethoven’s
ninth symphony. On a compact disc each of the 441 steps in this wave is assigned an integer
value in the range [−215, 215 − 1], corresponding to the height of the step. The horizontal axis
is time while the vertical axis is the height of the step (215 = 32,768).

indicated. The occidental scale1 consists of 12 distinct notes. On the white keys we find
the notes C, D, E, F, G, A, and B, while on the black keys we find five notes falling
between these. Each of these in-between notes can be called either of two names: C� or
D�, D� or E�, F� or G�, G� or A�, and A� or B�.2 Musicians know that the notes D�
and E�, like the two notes in each of the other pairs, are not exactly the same sound.
The fact that they are considered the same note in the scale of the piano keyboard is
a result of a compromise that we will discuss a little later. A modern keyboard has
seven sets of these 12 notes. A further C is added at the extreme right, and a few notes
are added at the extreme left. In all, there are 88 keys. Note that the ratio of the
frequencies of two consecutive D’s is 2. (This is actually true for all consecutive notes
of the same name.) Later we will be interested in creating a linear representation of all
of the frequencies. We will have to deform graphically the keyboard using a logarithmic
transformation (see Figure 10.7).

1Other cultures have favored other scales. For example, Balinese gamelans are typically
based on either a pentatonic or a heptatonic scale, containing five and seven notes respectively
as compared to the 12 in the occidental scale.

2Why are certain keys white and others black? There is no scientific answer to this question.
They are arranged to accommodate the occidental preference for playing in a given key, namely
C major. Other cultures, such as the Japanese, prefer other keys, and it is likely that any
keyboard-based instruments they would have constructed would have been laid out according
to their preference. For our purpose we are not required to understand these cultural differences.
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Fig. 10.3. A modern piano keyboard. The eight C keys are indicated as well as the frequencies
of each of the D and A notes.

Why aren’t there 88 different names for the 88 notes? The answer has mostly to
do with physiology, but also a little with physics and mathematics. The physiology of
perception shows that two people can sing the same song simultaneously while singing
different notes, but still give the impression of singing the same note. We say that they
are singing in unison. The interval between two consecutive notes with the same name
is called an octave. On a keyboard these two notes are separated by precisely 12 notes,
counting the last but not the first one. Notes at intervals of one or several octaves are
perceived as almost the same. If these same two people choose to sing two notes with
different names, then the result is perceived as slightly strange or discordant. (And
if they could hear each other singing, they would quickly perceive this and alter their
voice to fall back into unison. It takes a pair of good singers to deliberately maintain a
nonoctave interval between their voices throughout an entire song.) The more physical
and mathematical reason is that consecutive notes with the same name are arranged
such that their frequencies maintain a ratio of two. As said before, the ratio between
the frequency of a note and the same note one octave higher is exactly 2. Why do
the human ear and brain prefer this factor of 2? Neither physics nor mathematics can
answer this question!3

This preference for powers of two in the ratio of frequencies is quite surprising. Even
more surprising is that the ear and brain find a ratio of three equally pleasing. Notes
whose frequencies have a ratio of three have an interval of one octave and a fifth. A
fifth is an interval of seven consecutive notes on the keyboard, not counting the starting
note. Notes must be counted consecutively, be they white or black keys. We can thus
see that the notes C and G (with another C between them) are separated by an interval
of one octave and a fifth.4 Thus, notes separated by an octave and a fifth have a ratio of

3However, physiology does give some insight (see [8] for details).
4Why does a fifth correspond to 7 notes while an octave corresponds to 12? After all, the

terms fifth and octave seem to suggest 5 and 8 respectively. The reason is again due to the
predominant role of the white keys in the key of C major. From C to G there is a fifth: if C
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three between their frequencies, while notes separated by only a fifth have a frequency
ratio of 3

2 . (Exercise: convince yourself of this fact!)
All deviations from these pleasing ratios between frequencies, even minimal, are

perceived easily by experienced musicians. However, tuning a piano while maintaining
all of these ideal relationships is a mathematical impossibility. We now describe the
root of the problem. The cycle of fifths is an enumeration of all the notes such that a
note immediately after another will lie exactly one fifth to the right of the former note
on a keyboard. Most good musicians are able to recite the cycle of fifths without even
thinking. Starting at C the cycle of fifths is:

C1, G1, D2, A2, E3, B3, F4�, C5�, G5�, D6�, A6�, E7�,
(A5�) (E6�) (B6�) (F7)

and after the E7� (F7) the cycle restarts at C8.5 (The octave associated with each of
the notes, which we have indicated using a subscript, is not normally written. We have
done so because it will be useful in the following discussion.)

For each fifth in this cycle, the frequency has been multiplied by 3
2 . From C1 to C8,

the factor has been applied 12 times, making for an overall factor of (3
2 )12. Similarly,

there are 7 octaves between these two notes and the ratio between their frequencies is
27. Thus, we would expect that (3

2 )12 = 27, or equivalently 312 = 219. However, this
identity is obviously false. A product of odd numbers remains odd, while a product of
even numbers remains even. Thus, 312 is odd and 219 is even, and they cannot possibly
be equal. However, the difference is not very large, since

312 = 531,441 and 219 = 524,288.

The error, at a little less than 2%, is not enormous considering that it is spread across
8 octaves. Renaissance-era musicians were aware of this difficulty. A well-trained ear is
able to hear this error and finds perfect-integer frequency ratios (or ratios in which the
denominator is a small integer) to be the most pleasing. This is the source of the error we
have described. A solution proposed at the end of the seventeenth century was to tune
a keyboard according to the following two rules: (i) the frequency ratio between notes
separated by one octave is exactly 2, and (ii) the frequency ratio between successive
notes on the keyboard should be constant. In this temperament, commonly called the
equal temperament in the Western world, all intervals are false except the octave. It
is the most democratic choice of distributing the error between possible intervals, and
that which has been in common use for nearly three centuries. Thus, a well-tempered

is labeled 1, then the nearest G to its right would be labeled 5, counting only the white keys.
Similarly, the next C to the right would be labeled with an 8.

5On a keyboard, the notes in parentheses coincide with the notes above them. Violinists,
who can choose the exact frequencies of their notes with their left-hands, actually distinguish
between these notes. Instead of restarting the cycle at C they continue it with B�, which
pianists identify with a C.
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tuning of a piano is perfectly and precisely false.6 (For a discussion of the history of
temperaments by a mathematician, see Benson [1].)

Can we determine the frequencies of the notes on a modern piano? Not yet, because
we are still missing one important piece of information. In fact, the entire discussion up
until this point has been concerned only with ratios of frequencies. We must still specify
the frequency of a single note so that the rest of them may be determined. It has been
traditional for nearly a century to tune the first A right of the center of the piano to
440 Hz,7 meaning that the fundamental vibration of the note oscillates 440 times per
second. An octave sees a doubling of the frequency. Since there are 12 intervals in an
octave (for example between two C’s or two A’s) and the ratios of the frequencies for all
must be equal, each of the 12 intervals must represent a frequency increase by a factor
of 12

√
2. Between the A vibrating at 440 Hz and the E just above it the frequency ratio

is therefore 12
√

2
7 ≈ 1.49831, which is very close to the ideal of 3

2 = 1.5. The frequency

of this E is therefore 12
√

2
7 × 440 Hz ≈ 659.26 Hz, which is very close to the “true”

value of 660 Hz.

10.3 The Last Note of Beethoven’s Last Symphony:
A Quick Introduction to Fourier Analysis

Can we know what notes are on a compact disc without listening to it? Is it possible
to read the 44,100 integers in a second of music and determine what notes are being
played? This is what we aim to do in this section.

We will focus our attention on a quarter of a second of music taken from the last note
of the last movement of Ludwig van Beethoven’s ninth symphony. (In most performances
of this piece this note is just slightly longer than a quarter of a second.) This choice
is particularly appropriate. As the story is told, in establishing the standard for the
compact disc, engineers made every possible effort to ensure that this symphony would
fit on a single disc [6]. Although the length of this piece varies from performance
to performance, some of them last as long as 75 minutes, such as that conducted by
Karajan. This is why a compact disc can hold just a little more than 79 minutes.
Another reason for our choice is that the last note of this symphony is particularly easy
to study mathematically, since the entire orchestra plays the same note, D, at the same
time. (Even though the musicians are all playing the same note (these notes are all D),
they are actually being played in a variety of octaves.) For those who can read music, the

6The title of Johann Sebastian Bach’s two books of preludes and fugues (The well-tempered
clavier) highlights the fact that temperament was a hot topic at the beginning of the eighteenth
century.

7The measure of frequency is the hertz, abbreviated Hz. One hertz corresponds to one
vibration per second. The choice of 440 Hz for A is arbitrary. Certain musicians and orches-
tras are distancing themselves from this standard, with most of them increasing the reference
frequency.
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Fig. 10.4. The last page of Beethoven’s ninth symphony.
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last page can be found in Figure 10.4. Each line represents a group of instruments, with
piccolo and flutes at the top, and cellos and contrabass at the bottom. The triangles
and cymbals are capable of producing only one note (or sound); thus they are accorded
only a single line on the score. All of the other instruments, including the timpani
(marked “Timp.” on the score), can produce a variety of notes, thus they use a five-line
staff. Time flows from left to right, and all notes appearing along a given vertical line
are played simultaneously. The last note is found in the rightmost column. In this
column we will find only D notes, covering every D on a piano except for the lowest
two. (Certain families of instruments seem to play notes other than D. For example,
the note written for the clarinets (“Cl.” on the score) is an F. But this will sound as
a D! The reason for the discrepancy between the note written and that produced lies
in the history of the development of the instrument. After much experiment, it was
agreed that a given length for the tube of the clarinet gave the best sound quality over
all its register (all its spectrum). Unfortunately, it also gave queer fingerings for the
most common notes. The solution was to relabel the notes: when a clarinet plays the
note written as a C, the frequency of the sound emitted is that of the B�. We must
therefore ask the clarinets to play an F in order that we hear a D. Composers routinely
do this transposition for these instruments.)

Recall that stereo recordings contain two tracks, allowing the listener to perceive the
spatial spread of the sound. We will limit ourselves to a single one of these two tracks.
The quarter of a second that we will study contains 44,100

4 = 11,025 samples. The first
10 of these 11,025 integers are 5409, 5926, 4634, 3567, 2622, 3855, 948, −5318, −5092,
and −2376, and the first 441 samples (giving one-hundredth of a second of music) are
shown in Figure 10.2. How can we possibly mathematically “listen” to the note being
played?

Fig. 10.5. A simple sound wave (a pure sound without harmonics).

Example 10.1 We begin with a very simple example. Suppose that rather than ana-
lyzing the wave shown in Figure 10.2 we consider a sound f(t) containing only a single
frequency, as shown in Figure 10.5. We remark that there are exactly four complete
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cycles of this sinusoidal wave occurring in our one-second sample; thus the wave corre-
sponds to a frequency of 4 Hz. Thus, f(t) = sin(4 · 2πt). It is easy to see this by looking
at the figure, but how to do so mathematically? The answer to this question is given by
Fourier analysis. The basic idea is to compare the sound wave f(t) to all of the cosine
and sine waves with integer frequencies (those whose frequencies are integer multiples
of 1 Hz).

Fourier analysis. Fourier analysis allows us to calculate the component of the sound
wave that has a frequency of k Hz and to reconstruct the original wave from this set
of components. The component with frequency k is given by the pair of coefficients ck

and sk. The formula for these Fourier coefficients is given by:

ck = 2
∫ 1

0

f(t) cos(2πkt) dt, k = 0, 1, 2, . . . , (10.1)

sk = 2
∫ 1

0

f(t) sin(2πkt) dt, k = 1, 2, 3, . . . . (10.2)

(Exercise 3 explains why we require two coefficients to describe the component for a
single frequency.)

Example 1 (continued) We start to calculate the coefficients ck and sk for the
function f(t) of Example 10.1. The coefficient c0 is calculated by multiplying cos 2πkt
(with k = 0) and f(t), and then integrating the resulting function over the one-second
interval. Since cos 2πkt = 1 for k = 0, the coefficient c0 is given by

c0 = 2
∫ 1

0

f(t) dt.

However, f(t) is a sinusoidal curve and the area under this curve between t = 0 and
t = 1 is clearly zero. (Recall that the area between the t-axis and the curve is negative
when f(t) is negative.) Thus

c0 = 0.

Now consider s1:

s1 = 2
∫ 1

0

f(t) sin 2πt dt.

The product of sin 2πt and f(t) is shown in Figure 10.6. Observe that f(t) = f(t + 1
2 )

and that sin 2πt = − sin 2π(t + 1
2 ), implying f(t) sin 2πt = −(f(t + 1

2 ) sin 2π(t + 1
2 )) for

t ∈ [0, 1
2 ]. Thus, the integral of f(t) sin 2πt will be zero:

s1 = 0.

Can we repeat this same procedure for all of the ck, k = 0, 1, 2, . . ., and all of the
sk, k = 1, 2, 3, . . .? It seems that we need a more efficient method for calculating these
coefficients, since the graphical method will be difficult to use for all k.

The following proposition gives us the necessary tools for this calculation.
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Fig. 10.6. The product of f(t) and sin 2πt.

Proposition 10.2 Let m,n ∈ Z. The Kronecker delta function δm,n is defined as
follows: it takes the values 1 if m = n and 0 otherwise. Thus

2
∫ 1

0

cos(2πmt) cos(2πnt) dt = δm,n + δm,−n; (10.3)∫ 1

0

cos(2πmt) sin(2πnt) dt = 0; (10.4)

2
∫ 1

0

sin(2πmt) sin(2πnt) dt = δm,n − δm,−n. (10.5)

Proof: Let

I1 =
∫ 1

0

cos(2πmt) cos(2πnt) dt,

I2 =
∫ 1

0

cos(2πmt) sin(2πnt) dt,

and I3 =
∫ 1

0

sin(2πmt) sin(2πnt) dt.

To calculate these integrals recall the identities

cos(α + β) = cos α cos β − sin α sin β,

cos(α − β) = cos α cos β + sin α sin β,

sin(α + β) = sin α cos β + cos α sin β,

sin(α − β) = sin α cos β − cos α sin β.

By adding the first two of these we find that

2 cos α cos β = cos(α + β) + cos(α − β).

Thus
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2I1 = 2
∫ 1

0

cos(2πmt) cos(2πnt) dt,

=
∫ 1

0

(cos(2π(m + n)t) + cos(2π(m − n)t)) dt,

which is simple to integrate. If m + n 
= 0 and m − n 
= 0, then

2I1 =
(

sin(2π(m + n)t)
2π(m + n)

+
sin(2π(m − n)t)

2π(m − n)

)∣∣∣∣1
0

= 0,

since m and n are integers and sinπp = 0 if p is an integer. On the other hand, if
m + n = 0 or m − n = 0, the above evaluation is false, since one of the denominators
is zero. (If m and n are nonnegative integers, then m + n = 0 can happen only when
m = n = 0.) But if m − n = 0 then the second term cos(2π(m − n)t) of the integral is
equal to 1, and therefore ∫ 1

0

cos 2π(m − n)t dt = 1.

Hence

2I1 = 2
∫ 1

0

cos(2πmt) cos(2πnt) dt = δm,n + δm,−n,

where δm,n is the Kronecker delta. Similarly, we find that (see Exercise 2)

I2 =
∫ 1

0

cos(2πmt) sin(2πnt) dt = 0

and

2I3 = 2
∫ 1

0

sin(2πmt) sin(2πnt) dt = δm,n − δm,−n,

which completes the proof. �

Example 1 (continued) We are now able to easily calculate the coefficients ck and
sk for the function from Example 10.1. For the sound wave f(t) = sin(4 · 2πt), all of
the coefficients ck and sk are zero except s4, which is

s4 = 1.

The fact that s4 is nonzero tells us that f(t) contains a component vibrating at 4 Hz
and that its amplitude is 1. The fact that all of the other coefficients are zero indicates
that f(t) contains no other frequencies.

This calculation reveals a bit about the meaning of Fourier coefficients:

Fourier coefficients describe the wave function f(t) in terms of its
underlying frequencies and their respective amplitudes.
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It may now seem obvious how to calculate the Fourier coefficients of the last quarter
second of the last note of the ninth symphony. However, we do not actually know f(t);
we know only its value at N = 11,025 equidistant points in time. We will therefore
suppose that these samples accurately describe the function f(t), and we will replace
the integrals by discrete sums. If fi, i = 1, 2, . . . , N , are the numbers stored on the
compact disc, then we will calculate the coefficients

Ck =
1
N

N∑
i=1

fi cos
(

2πk
i

N

)
and Sk =

1
N

N∑
i=1

fi sin
(

2πk
i

N

)
. (10.6)

The continuous time t has been replaced by a discrete time ti = i
N , i = 1, 2, . . . , N . Be

careful: the k are no longer exactly the frequencies, since k describes the number of
cycles of the cosine and sine functions during 1

4 second. To obtain the actual frequency
we must multiply it by 4, obtaining (4k) Hz. Note finally that in discretizing the integral∫

f(t) dt as a sum
∑

f(ti)Δt, we have introduced a numeric factor Δt, which in our
case is Δt = 1

N = 1
11,025 . This factor appears in front of the above two sums.

Fig. 10.7. The function ek = k(C2
k + S2

k) as a function of the frequency (4k) Hz.

The work involved in calculating the Fourier coefficients may seem tedious, but a
computer is particularly well suited to this task. The results of these N -term sums are
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shown in Figures 10.7 (for the higher frequencies) and 10.8 (for the lower frequencies).
These figures contain the numbers ek = k(C2

k + S2
k) for each of the frequencies (4k) Hz

for k = 1 to 1000, and thus for the frequencies 4 to 4000 Hz. The points (4k, ek) have
been joined by line segments, and the graphs therefore appear to show a continuous
function. Since the coefficients Ck and Sk represent waves with the same frequencies,
it is natural to join them together into a single number. The sum of squares (C2

k + S2
k)

is related to the amount of energy present in a sound wave of frequency (4k) Hz. Many
authors prefer to plot this single value (or its square root), and it is this sum of squares
that we will use in the exercises. In this example the function (C2

k + S2
k) decreases so

fast as k increases that we have chosen (somewhat arbitrarily) to apply a multiplier of
k to the usual sum of squares. The image of a keyboard has been added to make it
easier to identify the notes associated to a given frequency. Since we have shown the
frequencies on a linear scale, the keyboard appears deformed.

Fig. 10.8. The function ek = k(C2
k + S2

k) as a function of frequency (4k) Hz for frequencies
below 450 Hz.

Below these graphs we have indicated the frequencies of the local maxima of ek.
Observe that the peaks of ek are sometimes quite wide (for example around 1212 Hz)
and that characterizing them by the local maximum is somewhat arbitrary.

What are the most audible frequencies? We find local maxima occurring at 144, 300,
588, 1212, and 2380 Hz, which are quite close to the frequencies associated to the various
D notes (see Figure 10.3), and further local maxima at 224, 892, and 1792 Hz which
correspond to A notes. There are also a few other frequencies strongly present, such
as 1492, 2092, 2684, 3016, 3396, and 3708 Hz, which almost seem to have been added
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simply to make the space between peaks a little more regular. Before we can understand
where the A notes and other assorted frequencies come from (after all, Beethoven asked
only for D’s to be played) we must delve into the domain of physics.

Fundamental frequencies and harmonics. The wave equation describing the mo-
tion of a vibrating string, such as those on a violin, can be resolved by finding all
possible movements of the string such that each segment of the string moves with the
same frequency. These solutions are all of the form

fk(x, t) = A sin
πkx

L
· sin(ωkt + α),

where A is the amplitude of the wave, L is the length of the string, t is the time, and
x ∈ [0, L] is the position on the string. The function fk gives the transverse displacement
of the string relative to its position when at rest. (Here the word “transverse” means
perpendicular to the axis of the string.) There is an infinite number of such solutions
fk, enumerated by k = 1, 2, . . . . The phase8 α is arbitrary but the frequency ωk is
completely determined by k and by two properties of the string: its density and its
tension. (Since it is rather difficult to change the density of a string, musicians tune
strings by adjusting their tension.) The relation describing ωk is simply

ωk = kω1,

where ω1 is the fundamental frequency of the string, depending only on its physical
properties (density and tension). This frequency is called fundamental. All of the
other solutions (the other “pure” frequencies of the string) vibrate at frequencies that
are integer multiples of the fundamental frequency. These other frequencies are called
harmonics. In general, the fundamental frequency is the dominant one (although this
is not always the case) and it is therefore easy to hear “the” note being played by the
instrument. This does not stop the harmonics from being present, however. Each type
of instrument emits certain harmonic frequencies more than others; it is the relative
importance of particular harmonics that plays a large part in determining the timbre
of an instrument. The presence of these harmonics is thus one of the features used by
the human ear and brain to differentiate individual instruments.9 These are not the
only characteristics used in perceiving sound; for example, another crucial element is
the attack (the first few fractions of a second when a sound is being produced).

The expected presence of harmonics as explained by the physics of sound helps us
to better understand the graph in Figure 10.7. In fact, starting at 300 Hz (which is

8The human ear does not perceive phase. More precisely, two sources of sound emitting
the same pure frequency out of phase with each other will be perceived identically.

9A student learning to play an instrument is normally advised on how to produce the best
quality of sound. If the teacher and student are well versed in mathematics, the teacher could
ask, “Can you adjust the Fourier coefficients of this note?” The spectrum of an instrument,
in other words, the frequencies and associated amplitudes emitted by the instrument, is one of
the tools used by synthesizers.
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close to 293.7 Hz, one of the D’s on a piano) we find peaks close to every multiple of
293.7 up until 9× 293.7 = 2643 Hz, which is very close to 2684. The larger peaks of the
graph are distributed among the integer multiples of the fundamental frequency. We
observe the same phenomenon in Figure 10.8, which shows the bass frequencies. The
first peak occurs at 144 Hz, very close to the D at 146.8 Hz (the lowest one indicated
on the score), and several of the first few integer multiples of this frequency are equally
visible. Figure 10.8 indicates a peak close to the note A at 220.2 Hz. This frequency is
three times the frequency of the D at 73.4 Hz. However, this D is not actually played
by the orchestra; thus the presence of this A is not so easily explained.

Fourier analysis goes much further than just extracting the intensity of the frequen-
cies in a given function f . In fact, the following theorem by Dirichlet tells us that the
numbers ck and sk completely describe the function f , provided it is sufficiently well
behaved.

Theorem 10.3 (Dirichlet) Let f : R → R be a once continuously differentiable peri-
odic function with period 1 (that is, such that f(x + 1) = f(x),∀x ∈ R). Let ck and sk

be the Fourier coefficients as given by equations (10.1)–(10.2). Then

f(x) =
c0

2
+

∞∑
k=1

(ck cos 2πkx + sk sin 2πkx) , ∀x ∈ R. (10.7)

More precisely, the series on the right-hand side converges uniformly to f .

Fig. 10.9. The first hundredth of a second from Figure 10.2 and its reconstruction using the
Fourier coefficients Ck, k = 0, 1, . . . , 800, and Sk, k = 1, 2, . . . , 800.
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Does this mean that the numbers Ck and Sk that we have calculated can be used
to reconstruct the sound wave? Yes, and to convince ourselves Figure 10.9 shows the
superposition of the first hundredth of a second from Figure 10.2 and its partial recon-
struction

C0

2
+

800∑
k=1

(Ck cos 2πkt + Sk sin 2πkt) .

Note that we have limited the sum to the values of k from 1 to 800 rather than using all
of them, as required by Dirichlet’s theorem. Even though the number of terms is finite,
the agreement between the two functions is quite good, but the rapid oscillations have
been somewhat flattened. This is not surprising; we would have to continually add more
terms to the above sum to capture higher and higher frequencies. Furthermore, recall
that the coefficients Ck and Sk used in the sum are only approximate values obtained by
discretizing the integral defining ck and sk. Does there exist a discrete form of Dirichlet’s
theorem? And if so, how many terms are required to exactly reproduce the discretized
step function given by Figure 10.2? The following section answers these questions.

Fig. 10.10. The hearing threshold curve (bottom) and the 60-dB equal-loudness curve (top)
as a function of frequency.

We finish this study of the last note of the ninth symphony by discussing an im-
portant bit of physiology. The sounds with frequencies of 144, 224, and 300 Hz from
Figure 10.7 dominate all of the others by a large margin. (Recall that we plotted the
quantity ek = k(C2

k + S2
k) in Figures 10.7 and 10.8, while it is usual to plot (C2

k + S2
k).

Without this factor k, the peak at 1792 Hz would be roughly six times smaller than
that near 300 Hz.) How is it that these three sounds do not completely drown out all
of the others? Human physiology explains this phenomenon. In 1933, two researchers
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named H. Fletcher and W. Munson proposed a method to relate the physical measure
of sound-wave pressure to average perceived volume by humans. The bottom curve of
Figure 10.10 represents the hearing threshold as a function of frequency. (Each per-
son has his or her own proper hearing threshold curve, with this one representing an
average.) Note first of all that the frequency scale is logarithmic. The vertical scale,
measured in dB (decibels), is also a logarithmic scale. In fact, decibels are scaled such
that an increase of 10 dB corresponds to a 10-fold increase in intensity, while an increase
of 20 dB corresponds to a 100-fold increase in intensity. Table 10.1 presents a list of
common sounds and noises and their typical intensities on the decibel scale. The hear-
ing threshold is the minimum intensity required in order for the human ear to perceive
a sound, with its precise values depending on the frequency. As indicated by Figure
10.10, human hearing is the most sensitive (has the lowest threshold) between 2 and 5
kHz. It is harder for us to perceive lower frequencies between 20 and 200 Hz and higher
frequencies above 8 kHz. Although these figures are approximate and depend on the
individual (including age!), the vast majority of humans are unable to perceive sounds
below 20 Hz and sounds above 20 kHz. These physiological measures help to explain
why the sounds occurring between 100 and 300 Hz of Figure 10.7 do not deafen us and
drown out the others. Moreover, they give us a crucial piece of information for the next
section. Figure 10.10 contains a second curve passing through 60 dB at 1000 Hz. This
curve is the equal-loudness curve at 60 dB. It indicates the intensities at which given
frequencies must be played in order for them to be perceived as having a constant 60 dB
volume. Thus somebody listening to a sound at 200 Hz and 70 dB would say it has the
same intensity as another at 1000 Hz and 60 dB. Such a curve is clearly subjective and
makes sense only when taken as an average over many individuals. Since the earliest
work of Fletcher and Munson these definitions have been refined and the experiments
repeated. However, the general shape and nature of the curves has not changed: it is
between 2000 Hz and 5000 Hz that the human ear is most sensitive.

10.4 The Nyquist Frequency and the Reason for 44,100

The previous section took an intuitive approach to describing how mathematicians and
engineers understand sound: sound waves are a sum of many “pure sounds” of given
frequencies and intensities. These pure sounds are trigonometric curves (sin and cos)
oscillating at a single frequency, and their superposition (sum) weighted by their inten-
sity (the Fourier coefficients) yields the sound wave.

This section asks the following question: at what interval do we need to sample a
sound wave in order to accurately reproduce all audible frequencies? We answer this
question in two steps.

For the first step we will make the hypothesis that the music we wish to digitize
contains only pure sounds with integer frequencies (1, 2, 3, . . . Hz). The human ear
can perceive frequencies between 20 Hz and 20 kHz. How often must we sample the
sound wave such that the human ear is unable to perceive the digitization of the sound?
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Sound Intensity Intensity
in watt/m2 in dB

hearing threshold 10−12 0 dB
rustling of leaves in a tree 10−11 10 dB

whispering 10−10 20 dB
normal conversation 10−6 60 dB

busy street 10−5 70 dB
vacuum cleaner 10−4 80 dB
large orchestra 6.3 × 10−3 98 dB

walkman at full volume 10−2 100 dB
rock concert (close to the stage) 10−1 110 dB

threshold of pain 10+1 130 dB
military jet taking off 10+2 140 dB
perforation of eardrum 10+4 160 dB

Table 10.1. Various sources of sound and their intensities.

With the above hypothesis the sound wave may be described by pure sound waves with
frequencies between 20 Hz and 20 kHz:

f(t) =
20,000∑
k=20

(ck cos 2πkt + sk sin 2πkt) . (10.8)

The coefficients ck, sk for k = 20, 21, . . . , 20,000 thus completely determine the function.
(For notational simplicity, we will start our sum at k = 0 instead of k = 20.) Is it possible
to replace the Fourier coefficients ck and sk by a number of samples fi = f(iΔ), i =
1, 2, . . ., of f at regular intervals without losing information? If so, what interval Δ
should be used?

Rather than attacking the general case immediately, we will begin with a simple
example illustrating the mechanics of the calculation.

Example 10.4 Rather than considering frequencies from 20 Hz to 20 kHz we will re-
strict ourselves to three discrete frequencies and consider the sum

f(t) = 1
2c0 + c1 cos 2πt + c2 cos 4πt + c3 cos 6πt + s1 sin 2πt + s2 sin 4πt (10.9)

for t ∈ [0, 1]. The term c0 has been added to simplify the discussion; it does not play
much of a role when we start considering sums with 20,000 terms. Finally, we remark
that the term sin 6πt has been omitted; we will explain why a little later.

This sound wave is completely determined by the six real coefficients c0, c1, c2, c3, s1,
and s2. We will see shortly that the relationship between these coefficients and the
sampled values fi = f(iΔ) of the function f is linear. Thus, we will require at least six
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sampled fi in order to uniquely determine the coefficients c0, c1, c2, c3, s1, s2 from the
samples fi. This motivates our choice of Δ = 1

6 , leading to

fi = f( i
6 ), i = 0, 1, 2, 3, 4, 5.

These values may be explicitly calculated using (10.9). For example, f1 is given by

f1 = 1
2c0 + c1 cos 2π( 1

6 ) + c2 cos 4π( 1
6 )

+ c3 cos 6π( 1
6 ) + s1 sin 2π( 1

6 ) + s2 sin 4π(1
6 )

= 1
2c0 + 1

2c1 − 1
2c2 − c3 +

√
3

2 s1 +
√

3
2 s2.

Repeating this calculation for the five other values, we obtain

f0 = 1
2c0 + c1 + c2 + c3,

f1 = 1
2c0 + 1

2c1 − 1
2c2 − c3 +

√
3

2 s1 +
√

3
2 s2,

f2 = 1
2c0 − 1

2c1 − 1
2c2 + c3 +

√
3

2 s1 −
√

3
2 s2,

f3 = 1
2c0 − c1 + c2 − c3,

f4 = 1
2c0 − 1

2c1 − 1
2c2 + c3 −

√
3

2 s1 +
√

3
2 s2,

f5 = 1
2c0 + 1

2c1 − 1
2c2 − c3 −

√
3

2 s1 −
√

3
2 s2.

We can rewrite this system in matrix form as⎛
⎜⎜⎜⎜⎜⎜⎝

f0

f1

f2

f3

f4

f5

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1 1 1 0 0
1
2

1
2 − 1

2 −1
√

3
2

√
3

2
1
2 − 1

2 − 1
2 1

√
3

2 −
√

3
2

1
2 −1 1 −1 0 0
1
2 − 1

2 − 1
2 1 −

√
3

2

√
3

2
1
2

1
2 − 1

2 −1 −
√

3
2 −

√
3

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

c3

s1

s2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

As we stated earlier, the relationship between the Fourier coefficients and sampled values
in linear. Whether we can recover the Fourier coefficients from the sample values fi

is therefore equivalent to asking whether the matrix is invertible. The matrix will be
invertible if and only if its determinant is nonzero. Several of the rows of this matrix
are very similar, and the determinant may be easily calculated through a few simple row
and column operations. It is easier to perform the reductions yourself, but we present
here a possible sequence of intermediate results (if you do this yourself, your intermediate
steps will likely be different!). Using row operations the determinant may be simplified
to

2

∣∣∣∣∣∣∣∣∣∣∣∣

1
2 0 1 0 0 0
0 0 0 0

√
3

√
3

0 0 0 0
√

3 −√
3

0 −1 0 −1 0 0
1
2 − 1

2 − 1
2 1 0 0

1
2

1
2 − 1

2 −1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
,
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which may be further simplified using column operations:∣∣∣∣∣∣∣∣∣∣∣∣

3 0 0 0 0 0
0 0 0 0 2

√
3 0

0 0 0 0 0 −√
3

0 0 0 −3 0 0
0 0 −1 0 0 0
0 1

2 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

The remainder of the calculation is now straightforward, yielding a determinant of 27.
Thus, the matrix is invertible and a sound wave of the form (10.9) can be completely
recovered starting from its six sampled values fi = f(i/6).

We can now understand why we did not use the wave sin 6πt in this example. If we
had done so, we would have been presented with two options. The first would have been
to omit c0 in order to keep the number of constants to six. We would still have sampled f
using Δ = 1

6 , but sin 6π( i
6 ) = sin iπ is zero for i = 0, . . . , 5. The matrix would then have

contained a null column and would not have been invertible. The second possibility would
have been to leave c0 and to take seven samples using the interval Δ = 1

7 . Although it
would have worked, the example would have been significantly more complicated, since
trigonometric functions do not take simple values at multiples of 2π

7 .

The general case is equally simple at the conceptual level. However, the most di-
rect proof uses the complex exponential representation of trigonometric functions. The
advantage to this representation is that the inverse of the matrix may be explicitly
calculated.

Recall that

eiα = cos α + i sin α
e−iα = cos α − i sin α

}
⇐⇒

{
cos α = 1

2 (eiα + e−iα)
sin α = 1

2i (e
iα − e−iα)

where i =
√−1. Then the sum of trigonometric functions with the same frequency

ck cos 2πkt + sk sin 2πkt

may be replaced by

ck cos 2πkt + sk sin 2πkt =
1
2
ck(e2πikt + e−2πikt) +

1
2i

sk(e2πikt − e−2πikt)

=
1
2
(ck − isk)e2πikt +

1
2
(ck + isk)e−2πikt.

By introducing new complex Fourier coefficients

dk =
1
2
(ck − isk), d−k =

1
2
(ck + isk), k 
= 0,

this becomes
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ck cos 2πkt + sk sin 2πkt = dke2πikt + d−ke−2πikt.

Finally, we define d0 = 1
2c0. A sound wave containing all of the pure sounds with

frequencies from 0 to N Hz has the form

c0

2
+

N∑
k=1

(ck cos 2πkt + sk sin 2πkt) .

When using the new coefficients this becomes

N∑
k=−N

dke2πikt.

To keep things simple we will ignore the pure sound corresponding to e2πiNt in order to
maintain exactly 2N coefficients dk in the above expression. In fact, the index k takes
on the (2N + 1) values −N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N . The omission of one
frequency from the sum does not affect the generality of the result: if the wave contains
a component with frequency N Hz, it suffices to use a sum with (N + 1) frequencies.
We will therefore suppose that

f(t) =
N−1∑

k=−N

dke2πikt. (10.10)

Since there are 2N coefficients dk in equation (10.10), it is reasonable, as demon-
strated in the simplified example above, to use a sampling with interval Δ = 1

2N . The
sampled values fl will then be

fl = f(lΔ) =
N−1∑

k=−N

dke2πikl/2N , l = 0, 1, . . . , 2N − 1. (10.11)

Can the set of coefficients dk be recovered from the set of samples fl, l = 0, 1, . . . , 2N−1?
In other words, is the matrix{

e2πikl/2N
}
−N≤k≤N−1,0≤l≤2N−1

(10.12)

invertible?
The answer to this question depends on the following simple observation. Let p be

a rational number and n an integer such that e2πipn = 1. Then

n−1∑
l=0

e2πipl =

{
0, if e2πip 
= 1,
n, if e2πip = 1.

(10.13)

To prove this we will use the formula for partial geometric sums
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n−1∑
l=0

e2πipl =
1 − e2πipn

1 − e2πip
if e2πip 
= 1

=
1 − 1

1 − e2πip
= 0.

If e2πip = 1, then
n−1∑
l=0

e2πipl =
n−1∑
l=0

(1)l = n.

Equation (10.13) suggests taking linear combinations of the equations in (10.11) as
follows. Multiply both sides of the equation for fl by e−2πiml/2N and sum for l =
0, 1, . . . , 2N − 1. Here m will be an integer. The left-hand side of the equation becomes

Am =
2N−1∑
l=0

e−2πiml/2Nfl,

while the right-hand side may be simplified to

Am =
2N−1∑
l=0

N−1∑
k=−N

dke−2πiml/2Ne2πikl/2N

=
N−1∑

k=−N

dk

2N−1∑
l=0

e2πil(k−m)/2N .

The index k of the coefficients dk is an integer in the range [−N,N −1]. Restricting the
integer m to this same interval, the difference k − m will be an integer in the interval
[−(2N − 1), 2N − 1], and the number e2πip with p = (k −m)/2N will never be 1 unless
k = m. Hence, using (10.13),

Am = 2N
N−1∑

k=−N

dkδk,m.

Whatever the value of m ∈ [−N,N − 1], one (and only one) of the terms in this last
sum will satisfy k = m and hence

Am = 2Ndm.

The set of coefficients dk, k = −N,−N + 1, . . . , N − 1, can be obtained from the
samples fl, l = 0, 1, . . . , 2N − 1, through the relation

dk =
1

2N
Ak =

1
2N

2N−1∑
l=0

fle
−2πikl/2N . (10.14)
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Thus, in order to reproduce all of the (integer) frequencies up to the maximal frequency
N , we must sample the function at least 2N times per second. Conversely, if a wave
is sampled at an interval of Δ seconds, then we may extract the amplitudes of each
component frequency for frequencies up to

fNyquist =
1

2Δ
. (10.15)

The maximal frequency, called the Nyquist frequency or Nyquist limit, is named after
an engineer who studied problems relating to transmission quality and the reproduction
of analog signals [5]. Although an immediate result in Fourier analysis, it is of key
importance in transforming an analog (continuous) signal into a digital (discrete) one.

Recall that this calculation was made under the assumption that the component
frequencies are integer-valued. The invertibility of the linear transform {fl, 0 ≤ l ≤
2N − 1} �→ {dk,−N ≤ k ≤ N − 1} assures us that the coefficients can reconstruct
the signal and vice versa. However, there is one detail left to discuss. Dirichlet’s
theorem stated that the reconstruction of a (sufficiently nice) function f is perfect if the
coefficients ck and sk defined in equations (10.1) and (10.2) are used. In the exercises
we will show that the complex coefficients dk are given by

dk =
∫ 1

0

f(t)e−2πiktdt.

However, in our discretization this integral is replaced by a finite sum, as shown in
equation (10.14). Thus it seems there are two ways to calculate the coefficients dk,
provided the component frequencies of f are bounded. Exercise 11 will show that these
two methods are equivalent. In practice, compact disc players do not use any of the
dk, ck, and sk coefficients to reconstruct the analog sound wave. Rather, they use the
samples fl to generate a smooth and continuous version of the implied step function.

Knowing that the overwhelming majority of people are unable to discern frequencies
higher than 20 kHz, the engineers at Philips and Sony chose a sampling rate of 44,100
samples per second, just a little greater than the Nyquist limit 2 × 20,000 = 40,000
for reproducing 20 kHz signals. Thus here is the answer to the question asked at the
beginning of this chapter. The exact value (44,100 rather than 40,000) was chosen
by taking into consideration other technologies existing at the time [6]. Early video
recorders used cassette tapes as storage. The European PAL image standard uses 294
lines of video per frame, each one containing 3 separate color components and being
refreshed 50 times per second. This standard thus required 294×3×50 = 44,100 “lines”
per second. Thus, the reason for choosing precisely 44,100 was more about making the
new standard easier to integrate into existing ones; the only constraint the engineers
had to satisfy was that 1

Δ ≤ 2fNyquist = 2 × 20,000 Hz.

The case of noninteger frequencies. The second part of this section briefly con-
siders the case in which the component frequencies are no longer integer-valued. The
sound wave can therefore now contain any frequency ω between 0 and some maximum
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frequency σ, for example 20,000 Hz. (If we continue to use complex component waves
e2πiωt, then the frequency ω can be in the interval [−σ, σ].) This situation is markedly
more difficult: the representation of the sound wave through the use of a finite sum
such as equation (10.8) will no longer work and must be replaced by an integral over
all possible frequencies, such as

f(t) =
∫ σ

0

C(ω) cos(2πωt)dω +
∫ σ

0

S(ω) sin(2πωt)dω,

or
f(t) =

∫ σ

−σ

F(ω)e2πiωtdω (10.16)

if complex component waves are used. The three functions C(ω), S(ω), and F(ω) play
the role of the coefficients ck and sk in Dirichlet’s theorem (equation (10.7)) and dk in
equation (10.10). They describe the frequency and amplitude content of the sound wave
f(t). Despite this additional complexity, the following theorem shows that Nyquist’s
limit plays a key role in selecting an appropriate sampling rate.

We begin by introducing two definitions. Let sinc : R → R be the function defined
by

sinc(x) =

{
1, if x = 0,
sin πx

πx , if x 
= 0.
(10.17)

The amplitude of each frequency ω in the sound wave is given by the Fourier transform
F of the function f , defined by

F(ω) =
∫ ∞

−∞
f(x)e−2πiωxdx.

(In order for the Fourier transform to exist, the function f must satisfy certain condi-
tions. For example, its absolute value must decrease sufficiently fast as t → ±∞. We
will assume that these conditions are satisfied.) As stated earlier, it is the function F
that will play the role of the Fourier coefficients ck and sk in Dirichlet’s representation
(10.7). Note that the domain of F is R, in contrast to the coefficients ck and sk, which
are enumerated by an integer k. It is thus possible to differentiate F with respect to ω.
Here is the sampling theorem.

Theorem 10.5 (Sampling theorem) Let f be a function such that the Fourier trans-
form F is zero-valued outside of the interval [−σ, σ] for some given fixed σ. Let Δ be
chosen such that Δ ≤ 1

2σ . If F is continuously differentiable, then the series

g(t) =
∞∑

n=−∞
f(nΔ) sinc

(
t − nΔ

Δ

)
(10.18)

converges uniformly toward f on R, where the function sinc is given by (10.17).
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We are not going to prove this theorem. But we can at least provide an intuitive
explanation for the curious function sinc. Since the theorem assumes that the Fourier
transform F is nonvanishing only on the interval [−σ, σ], the reconstruction of f with
(10.16) follows the elementary steps

f(t) =
∫ σ

−σ

F(ω)e2πiωtdω

=
∫ σ

−σ

(∫ ∞

−∞
f(x)e−2πiωxdx

)
e2πiωtdω

=
∫ σ

−σ

(∫ ∞

−∞
f(x)e2πiω(t−x)dx

)
dω

1=
∫ ∞

−∞
f(x)

(∫ σ

−σ

e2πiω(t−x)dω

)
dx

2=
∫ ∞

−∞
f(x)

e2πiω(t−x)

2iπ(t − x)

∣∣∣∣
σ

−σ

dx

=
∫ ∞

−∞
f(x)

e2πiσ(t−x) − e−2πiσ(t−x)

2iπ(t − x)
dx

=
∫ ∞

−∞
f(x)

sin(2πσ(t − x))
π(t − x)

dx

= 2σ
∫ ∞

−∞
f(x) sinc (2σ(t − x))dx.

Two remarks on these steps. First, the equality marked by a 1 is not mathematically
rigorous, since the order of integration may not be changed for all f . Second, the
antiderivative obtained for the integration with respect to ω (equality marked by a 2)
is the right one, except when t = x. In this case the antiderivative should be ω and the
integral 2σ. But this is precisely the value given to this integral when t = x in the last
line, since the value sinc(x = 0) is defined to be 1.

To relate the last expression to the sampling theorem we need to study the rate
of variation of the two functions f(x) and sinc (2σ(t − x)) in the integrand. For that
purpose set Δ = 1

2σ . Since σ is the maximal frequency (number of oscillations per
second), Δ is to be understood as the time in seconds between two extrema of the wave
with highest possible frequency in f . If the overall feature of the graph of f varies slowly
on the scale of Δ, the two values f(t) and f(t + Δ) will almost be equal. The function

sinc (2σ(t − x)) = sinc ((t − x)/Δ),

on the other hand, varies more rapidly. Note that increasing x to x+Δ in this function
changes its argument by one unit. As can be seen on the graph of sinc displayed in
Figure 10.11, the sign of the function sinc changes each time its argument changes by
one unit (except for x in the interval (−1, 1)). Therefore the function sinc changes more
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Fig. 10.11. The function sinc.

rapidly than f in the above integral. To approximate the integral by a sum, it is natural
to probe the integrand at every change of sign of the function sinc, that is, at every
x = nΔ, n ∈ Z. Replacing the infinitesimal dx by Δ, we get the following estimate for
f(t):

f(t) ≈ 2σ

∞∑
n=−∞

f(nΔ) sinc
(

t − nΔ
Δ

)
Δ

=
∞∑

n=−∞
f(nΔ) sinc

(
t − nΔ

Δ

)
,

that is, the form proposed in (10.18). Note finally that if f varies significantly on an
interval of width Δ, it is unlikely that the above approximation will give a good estimate
of f . This argument is not a proof. But it underlines the role of sinc and the interplay
between Δ and the maximal frequency that may appear in f .

Thus the theorem says that it is sufficient to sample the function f at a regular
interval Δ ≤ 1

2σ in order to reconstruct this function. Alternatively, the sampling rate
of a function f must be at least twice the maximum frequency contained in f . Thus,
we are again brought back to Nyquist’s limit.

This theorem has been attributed to many scientists, since it was independently
discovered several times by researchers in very different domains. It is in the domain of
telecommunications and signal processing that this result continues to have the greatest
impact. Thus, it is not very surprising that we most often associate the names of
various electrical engineers (notably Kotelnikov, Nyquist, and Shannon) with this result.
However, two mathematicians, E. Borel and J.M. Whittaker, also discovered this result.
It is becoming increasingly common for this result to be covered in Fourier analysis
courses for mathematicians. (See [2] and [3].)
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10.5 Exercises

1. Determine the frequencies of each of the C keys on a piano.

2. Prove the identities in equations (10.4) and (10.5).

3. (a) Show that

ck cos 2πkt + sk sin 2πkt =
√

c2
k + s2

k cos(2πk(t + t0))

for some t0 ∈ [0, 1]. The sum ck cos 2πkt + sk sin 2πkt therefore corresponds to a pure
sound wave of frequency k translated in time. The value t0 (or more precisely 2πkt0) is
called its phase.
(b) Show that all functions of the form f(t) = r cos(2πk(t + t0)) can be written in the
form f(t) = ck cos 2πkt + sk sin 2πkt. Calculate ck and sk as functions of r and t0.

4. (a) How many notes could we add to the high end of a piano such they could still be
heard by the average human?
(b) The same question, but for notes added to the low end of the keyboard.
(c) Certain breeds of small dogs can hear frequencies as high as 45,000 Hz. How many
octaves would have to be added to a modern piano to completely cover the audible
spectrum of such a dog?
(d) How many samples per second should be taken such that a compact disc could
faithfully reproduce sound as perceived by a dog?

5. Alternative temperaments. Construct the Pythagorean and Zarlino scales. In
other words, determine the frequencies of each note between two consecutive A’s. You
will have to refer to music texts or the Internet in order to discover how these two scales
are constructed.

6. Is the function f : R → R

f(t) =
1
2

sin 2πt − 1
3

sin 6πt − 1
600

sin 400πt

periodic? If yes, what is its minimal period? Which of its Fourier coefficients are
nonzero?

7. (a) Find the Fourier coefficients of the function f : [0, 1) → R given by

f(x) =

{
1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1.

(10.19)
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Hint: the formulas giving ck and sk are integrals defined over the interval [0, 1). Partition
these integrals into two, the first over the interval [0, 1

2 ) and the second over [12 , 1).
(b) Use mathematical computing software to plot the first few partial sums of the
Fourier series (see equation (10.7)) corresponding to this function f . Verify that the
partial sums approach the original function.

Fig. 10.12. Spectrum of the first note of Brahms’s first sonata for cello and piano. The
frequencies of the local maxima are indicated. (see Exercise 8.)

8. The first note of Brahms’s first sonata for cello and piano is a single note played only
by the cello. The graph in Figure 10.12 shows the intensity

√
c2
k + s2

k of the Fourier
coefficients of this note as a function of the frequency k Hz.
(a) On the keyboard of Figure 10.3, identify the note being played by the cello.
(b) One of the following statements is true. Determine which, and justify your re-
sponse.

1. One of the harmonic frequencies dominates the fundamental frequency.
2. The harmonic frequency with largest amplitude bears a name different from that of

the note being played.
3. The peak at 82 Hz cannot be perceived by the human ear.
4. The horizontal axis of the graph covers the entire human audible spectrum.
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5. Depending on the phase difference between the fundamental frequency and a given
harmonic, the harmonic may or may not be heard.

9. (a) The last note of Schubert’s first Impromptu D. 946 is a chord of four notes, meaning
the pianist plays four notes simultaneously. Figure 10.13 shows the spectrum of this
chord. Among these four notes, one is rather difficult to identify. Find the three easily
identified notes and explain your reasoning.
(b) Why could a note be difficult to identify when a chord is being played? Considering
your answer, suggest a few possibilities for the fourth note being played.

Fig. 10.13. Spectrum of the last chord of Schubert’s first Impromptu D. 946. The frequencies
of local maxima are indicated. (See Exercise 9.)

10. (a) G. Gershwin’s Rhapsody in Blue opens with a clarinet glissando. The clarinet is
the only instrument playing at that moment. The spectrum at the beginning of the
glissando is shown in Figure 10.14. What note is being played by the clarinet?
(b) The harmonics of a clarinet possess a certain characteristic that may be seen in
the spectrum. What is this characteristic? (A little research into the particulars of
clarinets might be necessary. A good starting point is Benson’s book [1].)

11. (a) Using the equations defining dk in terms of ck and sk, show that a periodic function
f with period 1 can be written in the form
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Fig. 10.14. The spectrum of the first note of Rhapsody in Blue. The frequencies of local
maxima are indicated. (See Exercise 10.)

f(t) =
∑
k∈Z

dke2πikt,

where the dk are calculated using

dk =
∫ 1

0

f(t)e−2πikt dt.

(b) Suppose that the function f(t) contains only component frequencies with integer
frequencies k ∈ {−N,−N + 1, . . . , N − 2, N − 1} and define the coefficients Dk as those
obtained from the sampling of f at interval Δ = 1

2N :

Dk =
1

2N

2N−1∑
l=0

f(lΔ)e−2πikl/2N .

Observe that equation (10.14) allows you to conclude that dk = Dk for such a function
f .

12. Another way of showing that the system of equation in (10.11) has a unique solution
{d−N , . . . , dN−1} is by showing that the determinant of the matrix is nonzero. Show this
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by transforming it into a Vandermonde determinant and using Lemma 6.22 of Chapter
6.

13. Beat patterns. Beat patterns are a well-known musical phenomenon. When two
instruments (physically close to each other) play nearly the same note at the same
intensity, the perceived sound varies regularly in intensity with time. In other words,
the perceived amplitude oscillates periodically. This oscillation may be slow (once every
few seconds) or fast (several times per second).
(a) Two flutes emit sound waves f1 and f2 with frequencies ω1 and ω2 respectively:

f1 = sin(ω1t) and f2(t) = sin(ω2t).

(We neglect the harmonics, which we assume are weak.) The resulting sound is f =
f1 + f2. Show that we can write f in the form

f(t) = 2 sin αt cos βt

and determine α and β in terms of ω1 and ω2.
(b) Suppose that ω1 is a well-tempered E at 659.26 Hz, and that ω2 is a true E at
660 Hz. Show that the ear would perceive f as a frequency close to these two, but with
an amplitude varying with a period of about 4

3 seconds. This is an example of a beat
pattern.

14. Aliasing. This chapter has so far ignored a technical difficulty faced by engineers. We
have shown that sampling every Δ = 1

44,100 seconds allows for all sounds in the (average)
human audible spectrum to be reproduced. The problem is that musical instruments
often produce harmonic frequencies above our hearing range with Nmax = 20,000 Hz.
When the recording is sampled, a frequency N > Nmax will be perceived as a sound with
frequency between 0 and Nmax. (See Figure 10.15, where the sampled points appear to
describe a sinusoidal curve with a lower frequency than that which actually generated
them.) This problem is known as aliasing, since certain frequencies are aliased (appear

Fig. 10.15. A simple example of aliasing. (See Exercise 14.)
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as) other frequencies after sampling. This problem appears in all domains in which
signals are digitized. For example, it appears as countour banding or moiré patterns
in digital photography. This effect is closely related to another distortion commonly
encountered in movies: a spoked wheel rotating quickly in one direction may appear to
be rotating in the opposite direction.

Determine the frequency N ′ that the frequency N > Nmax will be “aliased” to after
sampling. (Obviously, this aliased frequency must satisfy 0 < N ′ ≤ Nmax.)

15. Sampling theorem This exercise provides an example of reconstructing a continuous
signal f(t) using the sampling theorem (Theorem 10.5). Suppose that we wish to
reproduce the sound waves of a signal with frequencies constrained to the range [−σ, σ],
where σ = 6 Hz. As such, we will use a sampling interval of Δ = 1

2σ = 1
12 seconds.

We should therefore be able to recover f(t) = cos 2πω0t using only its sampled values
f(nΔ), nZ, assuming ω0 ∈ [−σ, σ]. Take for example ω0 = 5.5 Hz.
(a) With the help of software, plot the function f(t) on the interval t ∈ [0, 1].
(b) Plot the function sinc t over the interval t ∈ [−6, 6]. (The function sinc was defined
in equation (10.17).)
(c) Plot the partial sum

N∑
n=M

f(nΔ) sinc
(

t − nΔ
Δ

)

on the interval t ∈ [0, 1] and compare it with the graph from (a). Start with a small
number of terms in the sum (for example M = 0 and N = 11), and increase the number
of terms by lowering M and raising N . Investigate the difference between the function
f and its partial sum reconstructions.
(d) This questions is for those with a little more knowledge of the Fourier transform.
The function f given here does not satisfy the conditions necessary for Theorem 10.5 to
apply. Why? Can you slightly modify this function so that it satisfies these conditions?
Will the reconstructions plotted in (c) change significantly after this modification?
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Image Compression: Iterated Function Systems

This chapter can be covered in one or two weeks of classes. If only one week is available
then you can briefly cover the introduction (Section 11.1) and then explain in detail the
concept of an attractor of an iterated function system (Section 11.3) by concentrating
on the Sierpiński triangle (Example 11.5). Demonstrate the theorem that constructs
affine transformations mapping three points on the plane to three points on the plane
and discuss the particular affine transformations that will be used often in iterated
function systems (Section 11.2). Explain Banach’s fixed-point theorem stressing the
point that the proof on R can be transposed, nearly word by word, to complete metric
spaces (Section 11.4). Finally, discuss the intuition behind the Hausdorff distance
(beginning of Section 11.5). If you wish to spend a second week, then you can deepen the
discussion of the Hausdorff distance and work through a few of the proofs of its various
properties (Section 11.5). This leaves sufficient time to discuss fractal dimensions
(Section 11.6) and to explain briefly the construction of iterated function systems that
allow for the reconstruction of actual photographs (Section 11.7). Sections 11.5, 11.6,
and 11.7 are almost independent, so it is possible to treat Section 11.6 or 11.7 without
having gone through the more difficult Section 11.5.

Another option for a one-week coverage is to discuss Sections 11.1 to 11.3 and to jump

to 11.7, which explains how to adapt the technique to compression of real photographs.

11.1 Introduction

The easiest way to store an image in computer memory is to store the color of each
individual pixel. However, a high-resolution photograph (many pixels) with accurate
color (many data bits per pixel) would require an enormous of amount of computer
memory. And videos, with many such images per second, would required even more.

With widespread adoption of digital cameras and the Internet, people are storing an
ever larger number of images on their computers. It is thus critical that these images
be stored efficiently so as not to take up an inordinate amount of space. Images on the
web can be of lower resolution than digital photographs or large posters. And we are
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very interested in keeping their sizes small; no doubt you have already experienced slow
loading images while browsing the web, even if the images are compressed.

There exist many image compression techniques. The commonly used JPEG (Joint
Photographic Experts Group) format makes use of discrete Fourier techniques and is
explored in Chapter 12. In this chapter we will concentrate on another technique: image
compression using iterated function systems.

There was a great deal of hope and excitement over the possibilities of this technique
when it was first introduced in the 1980s, spurring considerable research. Unfortunately,
formats based on these techniques have not seen much success because the compression
algorithms and the compression ratios are not good enough. However, these techniques
continue to be researched and might yet see improvements. We have decided to present
these methods for several reasons. First, it is easy to show the underlying mathematics
at work, which rely on Banach’s powerful fixed-point theorem (the fixed point of the
theorem referring to the attractor of an operator). Moreover, the method uses fractals,
which we demonstrate how to construct in a very simple manner as fixed points of
operators. That such complicated structures can be described through such simple
constructions is a striking demonstration of the power and elegance of mathematics;
it shows that if we look at an object from just the right point of view, everything is
simplified, allowing us to understand its structure.

We stated above that the easiest way to store a picture is simply to store the color
associated with each pixel, an approach that is far from efficient. How to do better?
Suppose that we were to draw a profile of a city (Figure 11.1). Instead of storing
the actual pixels, we could store the underlying geometric constructs, allowing us to
reconstruct it:

• all line segments,
• all circular arcs,
• etc.

We have represented the image as a union of known geometric objects.

Fig. 11.1. A line drawing of a city.

To store a line segment it is more economical to store only its extremities and to
create a program that can draw the line given these two points. Similarly, the arc of
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a circle may be specified by its center, radius, and starting and stopping angles. The
underlying geometric objects form the alphabet with which we can describe an image.

How can we store a more complicated image, for instance, a photograph of a land-
scape or a forest? It may seem that the previous method cannot work, because our
alphabet of geometric objects is too poor. We will discover that we can use the same
technique, but with a larger and more advanced alphabet:

• we approximate our image with a finite number of fractal images. For example,
consider the fern leaf in Figure 11.2;

• to store the image we create a program that draws the image using the underlying
fractals. The fern leaf of Figure 11.2 can be drawn by a program of fewer than 15
lines! (A Mathematica program for drawing the fern can be found at the end of
Section 11.3.)

In this process the resulting image is the “attractor” of an operator W (defined below)
that maps a subset of the plane to a subset of the plane. Beginning from any initial
subset B0 we recursively construct the sequence B1 = W (B0), B2 = W (B1), . . ., Bn+1 =
W (Bn), . . . . For sufficiently large n (in fact, n = 10 suffices if B0 was carefully chosen),
Bn will start to look like the fern leaf.

The technique may sound a little naive: can we really program a computer to ap-
proximate any photo using fractals? Indeed, some adaptation of the initial idea will
be needed, but we will keep the fundamental idea that the reconstructed image is the
attractor of some operator. Since constructing an arbitrary photo is quite advanced, we
leave the discussion until the end of the chapter (Section 11.7). To start, we focus on
constructing programs that can draw fractals.

11.2 Affine Transformations in the Plane

We start by explaining why we need affine transformations. Consider the fern leaf in
Figure 11.2. It is the union of (see Figure 11.2)

• the stalk,
• and three smaller fern leaves: the bottom left branch, the bottom right branch, and

the leaf minus the two lowest branches.

Each of these four pieces is the image of the entire fern leaf under an affine transforma-
tion. Knowing the four associated transformations allows us to reconstruct the entire
image:

• the transformation T1, which maps the entire leaf to the leaf minus the two lowest
branches,

• the transformation T2, which maps the entire leaf to the bottom left branch (marked
L in Figure 11.2),

• the transformation T3, which maps the entire leaf to the bottom right branch
(marked R in Figure 11.2), and
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L

Fig. 11.2. A fern leaf.

• the transformation T4, which maps the entire leaf to the bottom part of the stalk.

Definition 11.1 An affine transformation T : R2 → R2 is the composition of a trans-
lation with a linear transformation. It can be written as

T (x, y) = (ax + by + e, cx + dy + f). (11.1)

This is the composition of the linear transformation

S1(x, y) = (ax + by, cx + dy)

and the translation
S2(x, y) = (x + e, y + f).

Linear transformations are often represented in matrix notation as

S1

(
x
y

)
=

(
a b
c d

)(
x
y

)
.
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We can also use this notation to represent affine transformations:

T

(
x
y

)
=

(
a b
c d

)(
x
y

)
+
(

e
f

)
.

We see that the affine transformation is specified by the six parameters a, b, c, d, e, f .
Thus, in order to uniquely determine a given affine transformation we require six linear
equations.

Theorem 11.2 There exists a unique affine transformation that maps three distinct
noncollinear points P1, P2, and P3 to three points Q1, Q2, and Q3.

Proof: Let (xi, yi) be the coordinates of Pi and let (Xi, Yi) be the coordinates of Qi.
The desired transformation is in the form of (11.1), and we must solve for a, b, c, d, e, f ,
knowing that T (xi, yi) = (Xi, Yi), i = 1, 2, 3. This gives us six linear equations in six
unknowns a, b, c, d, e, f :

ax1 + by1 + e = X1,
cx1 + dy1 + f = Y1,
ax2 + by2 + e = X2,
cx2 + dy2 + f = Y2,
ax3 + by3 + e = X3,
cx3 + dy3 + f = Y3.

The parameters a, b, e are solutions of the system

ax1 + by1 + e = X1,
ax2 + by2 + e = X2,
ax3 + by3 + e = X3,

(11.2)

while c, d, f are solutions of the system

cx1 + dy1 + f = Y1,
cx2 + dy2 + f = Y2,
cx3 + dy3 + f = Y3.

(11.3)

Both of these are systems over the same matrix A, whose determinant is

det A =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
Note that this determinant is nonzero precisely when the points P1, P2, and P3 are
distinct and noncollinear. In fact, the three points are collinear if and only if the
vectors

−−−→
P1P2 = (x2 − x1, y2 − y1) and

−−−→
P1P3 = (x3 − x1, y3 − y1) are collinear, which is

the case if and only if the following determinant is zero:
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x3 − x1 y3 − y1

∣∣∣∣ = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1).

The determinant of a matrix does not change when we add to a row a multiple of
another. Subtracting the first row from the second and the third yields

det A =

∣∣∣∣∣∣
x1 y1 1

x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣
= (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1).

We see that det A = 0 precisely when the three points are aligned. On the other hand,
if detA 
= 0, then each of the systems (11.2) and (11.3) has a unique solution. �

Remark: We must use the technique of Theorem 11.2 to find the four transformations
describing the fern leaf. For that we need to specify coordinate axes and measure the
coordinates of the points Pi and Qi. However, in many examples we can guess the
affine transformations without having to measure the coordinates of the points Pi and
Qi and solving the associated systems. In these cases we use compositions of simple
affine transformations.

Some simple affine transformations.

• Homothety with ratio r: T (x, y) = (rx, ry).
• Reflection about the x axis: T (x, y) = (x,−y).
• Reflection about the y axis: T (x, y) = (−x, y).
• Reflection through the origin: T (x, y) = (−x,−y).
• Rotation through angle θ: T (x, y) = (x cos θ − y sin θ, x sin θ + y cos θ). To find

this formula we use the fact that a rotation is a linear transformation. The columns
of its matrix are the coordinates of the images of the base vectors e1 = (1, 0) and
e2 = (0, 1) (Figure 11.3). The transformation matrix is therefore(

cos θ − sin θ
sin θ cos θ

)
.

• Projection onto the x axis: T (x, y) = (x, 0).
• Projection onto the y axis: T (x, y) = (0, y).
• Translation by a vector (e, f): T (x, y) = (x + e, y + f).

11.3 Iterated Function Systems

Fractals that can be constructed using the technique described above will be attractors
of iterated function systems. We define these terms more clearly.
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Fig. 11.3. The images of base vectors under a rotation of angle θ.

Definition 11.3 1. An affine transformation is an affine contraction if the image of
any segment is a shorter line segment.

2. An iterated function system is a set of affine contractions {T1, . . . , Tm}.
3. The attractor of an iterated function system {T1, . . . , Tm} will be the unique geo-

metric object A such that

A = T1(A) ∪ · · · ∪ Tm(A).

Example 11.4 A fern leaf. We consider the fern leaf from Figure 11.2. It is easy to
see that each of the branches of the leaf resembles the entire leaf itself. Thus, the leaf is
the union of the stalk and infinitely many smaller copies of the leaf. We want to avoid
working with an infinite number of sets of transformations, so a little care is required.
Call A the subset of the plane consisting of all points of the fern leaf. We introduce a
coordinate system. Let T1 be the transformation mapping Pi to Qi, as labeled in Figure
11.4. The image T1(A) is a subset of A. Now consider A \ T1(A). It consists of the
bottom portion of the stalk and the bottommost branches on either side, as outlined in
Figure 11.2. We can choose points Q′

1, Q′
2, and Q′

3 to construct a transformation T2

that maps the entire leaf to the bottommost left branch. (Exercise!) Similarly, we can
choose points Q′′

1 , Q′′
2 , and Q′′

3 describing a transformation T3 that maps to the bottom-
most right branch. Thus A \ (T1(A) ∪ T2(A) ∪ T3(A)) is simply the bottommost portion
of the stalk. We wish to find another transformation T4 that maps the entire leaf to
this portion of the stalk. Such a transformation is simply a projection onto the y axis
composed with a contraction (homothety with ratio r < 1) and a translation.

We have constructed four affine transformations such that

A = T1(A) ∪ T2(A) ∪ T3(A) ∪ T4(A). (11.4)
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P
1
 = Q

1

P
3

3P
2

Fig. 11.4. The points Pi and Qi describing the transformation T1.

We claim and will prove later that no other set than the fern satisfies (11.4). The fern
leaf will be the attractor of the iterated function system {T1, T2, T3, T4}.

This example is relatively complicated. Thus, we present another easier example to
help develop some intuition.

Example 11.5 The Sierpiński triangle. To simplify the calculations we will con-
sider a Sierpiński triangle with a base and height of 1 (see Figure 11.5).

Here the triangle A is the union of three smaller copies of itself A = T1(A)∪T2(A)∪
T3(A). In this case we can easily write the explicit equations of the affine contractions.
In fact, if we suppose that the origin is situated at the bottom left corner of the triangle,
then T1 is the homothety with ratio 1/2:

T1(x, y) = (x/2, y/2),

and T2 and T3 are simply compositions of T1 with translations. Since the base and height
of the triangle are both 1, then T2 is T1 composed with a translation by (1/2, 0), while
T3 is T1 composed with a translation by (1/4, 1/2):

T2(x, y) = (x/2 + 1/2, y/2),
T3(x, y) = (x/2 + 1/4, y/2 + 1/2).
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Fig. 11.5. The Sierpiński triangle.

The triangle lies within the square C0 = [0, 1] × [0, 1]. We are interested in the sets

C1 = T1(C0) ∪ T2(C0) ∪ T3(C0),
C2 = T1(C1) ∪ T2(C1) ∪ T3(C1),

...
Cn = T1(Cn−1) ∪ T2(Cn−1) ∪ T3(Cn−1),

...

the first few of which are shown in Figure 11.6. Observe that for sufficiently large n
(even at n = 10), the set Cn already begins to resemble A. The set

Cn = T1(Cn−1) ∪ T2(Cn−1) ∪ T3(Cn−1)

is called the nth iteration of the initial set C0 under the operator

C �→ W (C) = T1(C) ∪ T2(C) ∪ T3(C),

which maps a subset C to another subset W (C).
It is for this reason we say that A is an attractor. The remarkable thing is, had we

started with any subset of the plane other than C0, the limit of the process would still
be the Sierpiński triangle (see Figure 11.7).

The general principle. The Sierpiński triangle example allowed us to see the general
process at work. Given an iterated function system {T1, . . . , Tm} of affine contractions,
we construct an operator W that acts on subsets of the plane. A subset C is mapped
to the subset W (C) as follows:

W (C) = T1(C) ∪ T2(C) ∪ · · · ∪ Tm(C). (11.5)
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(a) C0 (b) C1 (c) C2

(d) C3 (e) C4 (f) C5

Fig. 11.6. C0 and the first five iterations C1–C5.

The fractal A that we wish to construct is a subset of the plane satisfying W (A) = A.
We say that A is a fixed point of the operator W .

In the next section we will see that for all iterated function systems there exists a
unique subset A of the plane that is a fixed point of the operator W . Moreover, we will
show that for all nonempty subsets C0 ⊂ R2, the subset A is the limit of the sequence
{Cn} defined by the recurrence

Cn+1 = W (Cn).

The subset A is called the attractor of the iterated function system. Thus, if we know
of a set B satisfying B = W (B), then we know that B will be the limit of the sequence
{Cn}.

In our Sierpiński triangle example we used the unit square [0, 1]× [0, 1] as our initial
set C0, and we constructed the sequence {Cn}n≥0 using the recurrence Cn+1 = W (Cn).
The experimental results of Figure 11.6 convinced us that the sequence {Cn}n≥0 “con-
verges” to the set A, the Sierpiński triangle. We could have performed this experiment
with any initial set B0, for example B0 = [1/4, 3/4]×[1/4, 3/4]. We would have obtained
that the sequence {Bn}n≥0, where Bn+1 = W (Bn), again converges to A (Figure 11.7).

We can convince ourselves that we could have taken an initial set B0 consisting only
of a single point of the square C0. In this case, the set Bn consists of 3n points. If
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(a) B0 (b) B1 (c) B2

(d) B3 (e) B4 (f) B5

Fig. 11.7. B0 and the first five iterations B1–B5.

for each point in Bn we darken the corresponding pixel in a digitized image, then for
sufficiently large n the image would resemble the Sierpiński triangle A.

In fact, traditional programs for drawing fractals function in a slightly different
way, since it is simpler to draw a single point at each step than subsets of the plane
consisting of 3n points. We start by choosing a point P0 in the rectangle R. At each step
we randomly choose one of the transformations Ti and we calculate Pn = Tin

(Pn−1),
where Tin

is the randomly chosen transformation at step n. If the point P0 is already in
the set A, then drawing the entire set of points from the sequence {Pn}n≥0 will quickly
begin to resemble A. If we are unsure whether P0 is in A, then we discard the first M
generated points P0, . . . , PM−1, and draw the points {Pn}n≥M . The following section
will show that there always exists a value for M that will ensure that we achieve a good
approximation to A. In practice, M is often taken as small as 10, since convergence to
the attractor usually occurs quite rapidly.

When drawing the Sierpiński triangle of Figure 11.5, at each step we randomly chose
one of the transformations {T1, T2, T3}. Thus, at step n we randomly chose a number
in ∈ {1, 2, 3} and applied the transformation Tin

. Each time we generated 1 we applied
T1. If we generated 2 we applied T2, and if we generated 3 we applied T3. For the
fern leaf this approach is not very efficient: we would spend too much time drawing
points on the stalk and the bottom leaves and not enough time in the rest of the leaf.
Let T1 (respectively T2, T3, T4) be the affine contraction that maps the leaf onto the
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upper portion (respectively the left bottom branch, the right bottom branch, and the
stalk) of the leaf. We will arrange it so that our random-number generator yields 1 with
probability 85%, 2 and 3 with probabilities 7% each, and 4 with probability 1%. To
accomplish this we actually generate random-numbers ān in the range 1 to 100, choosing
T1 when ān ∈ {1, . . . , 85}, T2 when ān ∈ {86, . . . , 92}, T3 when ān ∈ {93, . . . , 99}, and
T4 when ān ∈ {100}.
Mathematica program to draw the fern leaf of Figure 11.2 (The coefficients for
the transforms Ti are taken from [1].)

chooseT := (r = RandomInteger[{1, 100}];

If[r <= 85, 1,

If[r <= 92, 2,

If[r <= 99, 3, 4]]])

t = { (* { linear transformation, translation } *)

{{{0.85, 0.04}, {-0.04, 0.85}}, {0., 1.6}},

{{{0.2, -0.26}, {0.23, 0.22}}, {0., 1.6}},

{{{-0.15, 0.28}, {0.26, 0.24}}, {0., 0.44}},

{{{0., 0.}, {0., 0.16}}, {0., 0.}}

};

transfoAff[t_, pt_] := t[[1]].pt + t[[2]]

nIteration = 20000; A = {{0., 0.}};

Do[AppendTo[A, transfoAff[t[[chooseT]], Last[A]]], {nIteration}]

ListPlot[A, AspectRatio -> Automatic, Axes -> False]

11.4 Iterated Contractions and Fixed Points

A full reading of this section requires some familiarity with analysis, but the basic
concepts can be understood without it.

We noted previously that for all iterated function systems {T1, . . . , Tm} there exists
a unique subset A of the plane that is a fixed point of the operator W defined by

W (B) = T1(B) ∪ · · · ∪ Tm(B). (11.6)

This set, satisfying W (A) = A, is called the attractor of the iterated function system.
We will now justify this claim.

The following theorem from real analysis provides the key.

Theorem 11.6 Let f : R → R be a contraction. In other words, there exists some
0 < r < 1 such that for all x, x′ ∈ R we have that
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|f(x) − f(x′)| ≤ r|x − x′|.

Then f has a unique fixed point a ∈ R such that f(a) = a.

We will prove this theorem in order to understand exactly how it works. While
working through the proof, note that we can replace R by any closed interval [α, β] and
more generally by any complete metric space (an intuitive definition of this follows).
However, we are unable to replace R by Q, nor by any open interval (α, β). When
generalizing this theorem we will replace the notion of a point in R with that of a closed
and bounded subset of R2, and the function f by the operator W defined in (11.6). We
will require the notion of a distance between two subsets (the equivalent of |x − x′| in
the above formulation) and we will need to show that W is a contraction with respect
to this distance. We would like to be able to use the same argument as will be used
in the proof of Theorem 11.6 in order to prove the existence of a unique attractor A, a
closed and bounded subset of R2 that is the fixed point of W .

Proof of Theorem 11.6: We start by showing that if f has a fixed point, then it must
be unique. Suppose that a1 
= a2 are two fixed points of f . Then f(a2)−f(a1) = a2−a1

because they are both fixed points. However, since f is a contraction, we have that
|f(a2) − f(a1)| ≤ r|a2 − a1|, where 0 < r < 1, a contradiction.

We must now prove the existence of a. To obtain a we will start with a point x0 ∈ R
and construct the sequence of its iterates x1 = f(x0), x2 = f(x1), . . . , xn+1 = f(xn), . . . .
If x1 = x0, then x0 is a fixed point and we are done. Consider the case x1 
= x0. Then

|xn+1 − xn| = |f(xn) − f(xn−1)| ≤ r|xn − xn−1|.

By iterating we obtain
|xn+1 − xn| ≤ rn|x1 − x0|.

We wish to show that the sequence {xn} converges to a point a ∈ R and that the limit
a is a fixed point of f . A very powerful tool exists that permits us to show that a
sequence of real numbers converges without having to guess a candidate for the limit: it
suffices to show that it is a Cauchy sequence. (Recall that a sequence {xn} is a Cauchy
sequence if ∀ε > 0 ∃N ∈ N such that if n,m > N then |xn − xm| < ε.) Suppose that
n > m. Then

|xn − xm| = |(xn − xn−1) + (xn−1 − xn−2) + · · · + (xm+1 − xm)|
≤ |xn − xn−1| + |xn−1 − xn−2| + · · · + |xm+1 − xm|
≤ (rn−1 + rn−2 + · · · + rm)|x1 − x0|
≤ rm(rn−m−1 + · · · + 1)|x1 − x0|
≤ rm

1−r |x1 − x0|.

For |xn − xm| to be smaller than ε it suffices to take m sufficiently large, such that

rm|x1 − x0|
1 − r

< ε,
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or in other words, rm < ε(1−r)
|x1−x0| . Since 0 < r < 1, we then take N large enough such

that rN |x1−x0|
1−r < ε. Since rm < rN for N > m we have shown that the sequence {xn}

is a Cauchy sequence.
Since every Cauchy sequence of real numbers converges to a real number, this yields

that the sequence {xn} converges to some number a ∈ R. We must now show that a
is a fixed point of f . To do this we need to show that f is continuous. In fact, f is
actually uniformly continuous on R. Consider ε > 0 and take δ = ε. Then if |x−x′| < δ
we have that

|f(x) − f(x′)| ≤ r|x − x′| < rδ = rε < ε.

Since f is continuous, the image of the convergent sequence {xn} with limit a is
itself a convergent sequence with limit f(a). Thus

f(a) = lim
n→∞ f(xn) = lim

n→∞xn+1 = lim
n→∞xn = a.

�
We can generalize the statement of the previous theorem while maintaining the same

proof. We can replace R by a general space K sharing certain properties with R. In
fact, we require only that K be a complete metric space. In order to keep the letters x
and y for the Cartesian coordinates of a point we will denote points of K by the letters
v, w, . . . . Before we can elaborate on such spaces we must precisely define the notion
of a distance d(v, w) between two elements v, w of a space K. We will construct our
definition of a distance so that it mirrors the properties of |x − x′| in R.

Definition 11.7 1. A distance function d(·, ·) on a set K is a function d : K × K →
R+ ∪ {0} that satisfies:
(i) d(v, w) ≥ 0;
(ii) d(v, w) = d(w, v);
(iii) d(v, w) = 0 if and only if v = w;
(iv) Triangle inequality: for all v, w, z,

d(v, w) ≤ d(v, z) + d(z, w).

2. A set K equipped with a distance function d is called a metric space.
3. A sequence {vn} of elements in K is a Cauchy sequence if ∀ε > 0, ∃N ∈ N such

that for all m,n > N , we have that d(vn, vm) < ε.
4. A sequence {vn} of elements of K converges to an element w ∈ K if ∀ε > 0, ∃N ∈ N

such that for all n > N , we have that d(vn, w) < ε. The element w is called the
limit of the sequence {vn}.

5. A metric space K is complete if any Cauchy sequence of elements from K converges
to a limit also in K.

Example 11.8 1. Rn with the Euclidean distance is a complete metric space.



11.4 Iterated Contractions and Fixed Points 339

2. Let K be the set of all closed and bounded subsets of R2: we call them compact
subsets of R2. The distance we will use over this set of subsets is the Hausdorff
distance, which will be defined and discussed in Section 11.5. Equipped with this
distance, K will be a complete metric space (the proof of this fact can be found in
[1]).

3. When moving from theory to practice in Section 11.7, we will consider a black and
white photo on a rectangle R as a function f : R → S, where S denotes the set
of gray tones. We can then define a distance between two such functions f and f ′

through the use of the following definitions:

d1(f, f ′) = max
(x,y)∈R

|f(x, y) − f ′(x, y)|

and

d2(f, f ′) =
(∫∫

R

(f(x, y) − f ′(x, y))2 dx dy

)1/2

. (11.7)

Equipped with these distances, the set of functions f : R → S is a complete metric
space. We can replace the set R = [a, b] × [c, d] by a discrete set of pixels over
the rectangle R by adapting slightly the above definitions. For example, the double
integral in the distance function will be replaced by a discrete sum over the individual
pixels. If x and y take the values {0, . . . , h−1} and {0, . . . , v−1}) respectively, then
the distance (11.7) becomes

d3(f, f ′) =

(
h−1∑
x=0

v−1∑
y=0

(f(x, y) − f ′(x, y))2
)1/2

. (11.8)

We require that the operator W defined in (11.5) be a contraction with respect to
the distance function over the space K. This leads us to the famous Banach fixed-point
theorem: since we will apply it with the elements of K being compact subsets of R2,
we will use capital letters for the elements of K.

Theorem 11.9 (Banach fixed-point Theorem) Let K be a complete metric space
and W : K → K a contraction. In other words, let W be a function such that for all
B1, B2 ∈ K,

d(W (B1),W (B2)) ≤ r d(B1, B2) (11.9)

with 0 < r < 1. Then there exists a unique fixed point A ∈ K of W such that W (A) = A.

We will not give a proof of the Banach fixed-point theorem, since it is exactly the
same as that of Theorem 11.6. We only need to replace |x − x′| by d(B,B′).

The Banach fixed-point theorem is one of the most important theorems in mathe-
matics. It has applications in many diverse areas.
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Example 11.10 We discuss a few applications of the Banach fixed-point theorem:

1. A first classical application of this theorem allows us to prove the existence and
uniqueness of solutions to ordinary differential equations satisfying a Lipschitz con-
dition. In this example the elements of K are functions. The fixed point is the
unique function that is a solution to the differential equation. We will not go fur-
ther into this example. However, we wish to point out that simple ideas often have
important applications in seemingly unrelated fields.

2. The second application is of immediate interest. Let K be the set of all closed and
bounded subsets of the plane, together with the Hausdorff distance. Equipped with
this distance, K will be a complete metric space. Consider a set of affine contractions
T1, . . . , Tm forming an iterated function system. We define the operator of (11.6),
and we will show that it is a contraction, satisfying (11.9) for some 0 < r < 1.
Theorem 11.9 immediately proves both the existence and uniqueness of the attractor
A of such an iterated function system.

Remark: The Banach theorem states that the fixed point A of a contraction W must
be unique. Thus, if we are already aware of a set A satisfying this property (for example,
the fern leaf), then we are sure that it is indeed the fixed point of the iterated function
system we have constructed.

11.5 The Hausdorff Distance

The definition of this distance function is somewhat difficult. Thus, we will start by
discussing the intuitive foundations on which it was built. The proof of the Banach
fixed-point theorem uses the distance function only as a tool for discussing convergence
and for discussing the closeness of two elements of K. When we talk of the convergence
of a sequence of sets Bn in K to some set A, intuitively we wish to show that for
sufficiently large n, the sets Bn strongly resemble A.

Thus, we wish to quantify the notion of closeness between two sets B1 and B2, such
that we can say precisely when two sets are within some distance ε of each other. One
way of doing this is to consider “inflating” the set B1 by an amount ε. That is, we
consider the set of all points within a distance ε of some point in B1. If the distance
between B1 and B2 is less than ε, then B2 should be entirely contained in the inflated
version of B1. The ε-inflated set B1 is given by

B1(ε) = {v ∈ R2|∃w ∈ B1 such that d(v, w) < ε},

where d(v, w) is the usual Euclidean distance between v and w, both points of R2. We
require that B2 ⊂ B1(ε). However, this is not sufficient. The set B2 could have a very
different form and be much smaller than B1. Thus, we also consider inflating B2,

B2(ε) = {v ∈ R2|∃w ∈ B2 such that d(v, w) < ε},
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and requiring that B1 ⊂ B2(ε). We denote by dH(B1, B2) the Hausdorff distance
between B1 and B2, which remains to be precisely defined. We want that

dH(B1, B2) < ε ⇐⇒ (B1 ⊂ B2(ε) and B2 ⊂ B1(ε)).

This intuitive idea of inflating a set until it subsumes another helps to make sense
of the formal definition of the Hausdorff distance.

Definition 11.11 1. Let B be a compact (closed and bounded) subset of R2 and let
v ∈ R2. The distance of v to B, denoted by d(v,B), is

d(v,B) = min
w∈B

d(v, w).

2. The Hausdorff distance between two compact sets B1 and B2 of R2 is

dH(B1, B2) = max
(

max
v∈B1

d(v,B2), max
w∈B2

d(w,B1)
)

.

Remarks:

(i) The condition that B, B1, and B2 be compact ensures that the minima and maxima
in Definition 11.11 do indeed exist.

(ii) Given the following fact regarding maxima,

max(a, b) < ε ⇐⇒ (a < ε and b < ε),

we have that
dH(B1, B2) < ε

if and only if
max
v∈B1

d(v,B2) < ε and max
w∈B2

d(w,B1) < ε

if and only if
B1 ⊂ B2(ε) and B2 ⊂ B1(ε).

Thus, the Hausdorff distance is intimately related to the concept of inflated sets.

We state the following theorem without proof:

Theorem 11.12 [1] Let K be the set of all compact subsets of the plane. Then the
Hausdorff distance over K is a distance function by Definition 11.7. Moreover, K
equipped with the Hausdorff distance is a complete metric space.

Our set K, equipped with the Hausdorff distance, is a complete metric space. We
defined the operator W : K → K in (11.6). In order to apply Banach fixed-point
theorem we must now show that W is a contraction.

To do this we first clarify the notion of the contraction factor r in the context of
affine transformations.
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Definition 11.13 Let T : R2 → R2 be an affine contraction.

1. A real number r ∈ (0, 1) is a contraction factor for T if for all v, w ∈ R2 we have
that

d(T (v), T (w)) ≤ rd(v, w).

2. A contraction factor r is an exact contraction factor if for all v, w ∈ R2 we have
that

d(T (v), T (w)) = rd(v, w).

Remark: Only affine transformations whose linear part is some composition of a homo-
thety, a rotation, and a reflection with respect to a line have exact contraction factors.

Theorem 11.14 Let {T1, . . . , Tm} be an iterated function system such that each Ti has
contraction factor ri ∈ (0, 1). Then the operator W defined in (11.5) is a contraction
with contraction factor r = max(r1, . . . , rm).

The proof of this theorem requires the following lemmas regarding the Hausdorff
distance.

Lemma 11.15 Let B,C,D,E ∈ K. Then

dH(B ∪ C,D ∪ E) ≤ max(dH(B,D), dH(C,E)).

Proof: By our remark following Definition 11.11 it suffices to show that:

(i) for all v ∈ B ∪ C we have that

d(v,D ∪ E) ≤ dH(B,D) ≤ max(dH(B,D), dH(C,E))

or
d(v,D ∪ E) ≤ dH(C,E) ≤ max(dH(B,D), dH(C,E));

(ii) and for all w ∈ D ∪ E we have that

d(w,B ∪ C) ≤ dH(B,D) ≤ max(dH(B,D), dH(C,E))

or
d(w,B ∪ C) ≤ dH(C,E) ≤ max(dH(B,D), dH(C,E)).
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We will prove only (i), since the proof of (ii) is completely similar. Let v ∈ B ∪ C
be a given point. Since D and E are both compact sets, there exists z ∈ D ∪ E such
that d(v,D ∪ E) = d(v, z). Thus we have that for all w ∈ D ∪ E, d(v, z) ≤ d(v, w). In
particular, for all u ∈ D we have that d(v, z) ≤ d(v, u), or equivalently d(v, z) ≤ d(v,D).
Additionally, for all p ∈ E, we have that d(v, z) ≤ d(v, p), yielding d(v, z) ≤ d(v,E).
However, v ∈ B ∪ C; hence v ∈ B or v ∈ C. If v ∈ B we have that

d(v,D) ≤ dH(B,D) ≤ max(dH(B,D), dH(C,E)).

Similarly, if v ∈ C we see that

d(v,E) ≤ dH(C,E) ≤ max(dH(B,D), dH(C,E)).

The rest of (i) follows from the fact that d(v,D∪E) ≤ d(v,D) and d(v,D∪E) ≤ d(v,E)
(Exercise 14). �

Lemma 11.16 If T : R2 → R2 is an affine contraction with contraction factor r ∈
(0, 1), then the mapping T : K → K (again labeled T through a slight abuse of notation)
defined by

T (B) = {T (v)|v ∈ B}
is a contraction on K with the same contraction factor r.

Proof: Consider B1, B2 ∈ K. We have to show that

dH(T (B1), T (B2)) ≤ rdH(B1, B2).

As before, it suffices to show that

(i) for all v ∈ T (B1) we have that d(v, T (B2)) ≤ rdH(B1, B2);
(ii) and for all w ∈ T (B2) we have that d(w, T (B1)) ≤ rdH(B1, B2).

Again, we will prove only (i), since the proof of (ii) is analogous. Since v ∈ T (B1), we
see that v = T (v′) for some v′ ∈ B1. Let w ∈ T (B2). Then d(v, T (B2)) ≤ d(v, w).
Choose w′ ∈ B2 such that w = T (w′). Then it follows that

d(v, T (B2)) ≤ d(v, w) = d(T (v′), T (w′)) ≤ rd(v′, w′).

Since this holds true for all w′ ∈ B2, we deduce that

d(v, T (B2)) ≤ rd(v′, B2) ≤ rdH(B1, B2).

�
Proof of Theorem 11.14. The proof proceeds by induction on the number of trans-
formations m defining the operator W . We will show that if Ti, i = 1, . . . , m, are
contractions with contraction factors ri, then W is a contraction with contraction fac-
tor r = max(r1, . . . , rm). The case m = 1 follows immediately from Lemma 11.16.
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Although it is not necessary to explicitly treat the case for m = 2, we will nonetheless
do so in order to clearly illustrate the idea behind the proof before applying it to the
general case. If m = 2, W (B) = T1(B) ∪ T2(B). We see that

dH(W (B),W (C)) = dH(T1(B) ∪ T2(B), T1(C) ∪ T2(C))
≤ max(dH(T1(B), T1(C)), dH(T2(B), T2(C)))
≤ max(r1dH(B,C), r2dH(B,C))
= max(r1, r2)dH(B,C),

by successively applying Lemmas 11.15 and 11.16.
Suppose that the theorem holds for a system of m iterated functions and consider

the case of m + 1 functions. In this case, we have that W (B) = T1(B)∪ · · · ∪ Tm+1(B).
It follows that

dH(W (B),W (C)) = dH(T1(B) ∪ · · · ∪ Tm+1(B), T1(C) ∪ · · · ∪ Tm+1(C))

= dH

((
m⋃

i=1

Ti(B)

)
∪ Tm+1(B),

(
m⋃

i=1

Ti(C)

)
∪ Tm+1(C)

)

≤ max

(
dH

(
m⋃

i=1

Ti(B),
m⋃

i=1

Ti(C)

)
, dH(Tm+1(B), Tm+1(C))

)

≤ max(max(r1, . . . , rm)dH(B,C), rm+1dH(B,C))
≤ max(r1, . . . , rm+1)dH(B,C),

by the inductive hypothesis and the application of Lemmas 11.15 and 11.16. �
Theorem 11.14 assures us that regardless of B ⊂ R2, the Hausdorff distance between

two consecutive iterates Wn(B) and Wn+1(B) decreases as n increases, since

dH(W n(B), W n+1(B)) ≤ rdH(W n−1(B), W n(B)) ≤ · · · ≤ rndH(B, W (B)),

where r ∈ (0, 1). This does not, however, allow us to say anything about the distance
between B and the attractor A. This question is addressed in the following result,
Barnsley’s collage theorem.

Theorem 11.17 (Barnsley’s collage theorem [1]) Let {T1, . . . , Tm} be an iterated
function system with contraction factor r ∈ (0, 1) and attractor A. Let B and ε > 0 be
chosen such that

dH(B, T1(B) ∪ · · · ∪ Tm(B)) ≤ ε.

Then
dH(B,A) ≤ ε

1 − r
. (11.10)

Proof: We will reuse a portion of the proof of Theorem 11.6 in order to bound the
distance dH(B,Wn(B)). By the triangle inequality we have that
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dH(B,Wn(B)) ≤ dH(B,W (B)) + · · · + dH(Wn−1(B),Wn(B))
≤ (1 + r1 + · · · + rn−1)dH(B,W (B))
≤ 1−rn

1−r dH(B,W (B))
≤ 1

1−r dH(B,W (B)) ≤ ε
1−r .

Consider an arbitrary η > 0. Then there exists N such that if n > N then
dH(Wn(B), A) < η. Thus, if n > N we have that

dH(B,A) ≤ dH(B,Wn(B)) + dH(Wn(B), A) <
ε

1 − r
+ η.

Since this inequality holds for all η > 0, we can conclude that dH(B,A) ≤ ε
1−r . �

The collage theorem is extremely important for practical applications of iterated
function systems. In fact, suppose that rather than the mathematically precise fern leaf
of Figure 11.2, we considered a photograph of a real fern leaf; call it B. It is possible
(and quite likely) that there does not exist any collection of four affine transformations
T1, . . . , T4 such that B = T1(B) ∪ T2(B) ∪ T3(B) ∪ T4(B). We have only that B is
approximately equal to

C = T1(B) ∪ T2(B) ∪ T3(B) ∪ T4(B)

for four affine transformations T1, . . . , T4. If we were now to construct (using a com-
puter, for example) the attractor A of the iterated function system {T1, . . . , T4} and
if dH(B,C) ≤ ε, then the collage theorem assures us that dH(A,B) ≤ ε

1−r . In other
words, A will resemble B. Thus our method is “robust”: it performs well when we
approximate arbitrary images.

11.6 The Fractal Dimension of the Attractor of an Iterated
Function System

It is not necessary to have seen the entire previous section in order to cover this section.
In fact, it suffices to be familiar with the definition of a contraction factor (Definition
11.13).

We have constructed several iterated function systems {T1, . . . , Tm} (where Ti has
contraction factor ri) and their attractors, for example the Sierpiński triangle and the
fern leaf. Given their richly repeating structure, these objects seem in some ways more
“dense” than simple curves through the plane. However, somewhat counterintuitively
we can actually show that they have zero area assuming that r2

1 + · · · + r2
m < 1, which

is the case in both of our examples.

Proposition 11.18 Consider the attractor A of an iterated function system {T1, . . . , Tm}
with contraction factors r1, . . . , rm (respectively). If

r2
1 + · · · + r2

m < 1, (11.11)

then it follows that A has zero area.
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Proof. Let S(B) be the area of a compact subset B of R2. Then S(Ti(B)) ≤ r2
i S(B)

and therefore S(W (B0)) ≤ (r2
1 +· · ·+r2

m)S(B0). If Bn+1 = W (Bn), iterating then yields
that

S(Bn+1) ≤ (r2
1 + · · · + r2

m)S(Bn) ≤ · · · ≤ (r2
1 + · · · + r2

m)n+1S(B0).

Hence
lim

n→∞S(Bn) = S(A) = 0.

�
Thus we see that the notion of area is not adequate to express that such objects are

denser than a simple curve: their area is zero. In some sense, these fractal objects are
“more than a curve but something less than an surface.” This concept will be formalized
by formally defining dimension. To be consistent with the usual definition of dimension
we require a definition that will evaluate to 1 for simple curves, 2 for surfaces, and 3
for volumes. At the same time, we wish the value to be calculable for the fractals we
are considering here. Since the attractors we are considering fall somewhere between a
curve and a surface, their dimensions should lie between 1 and 2. Any coherent theory
of dimension must yield noninteger values for certain fractal objects.

There are several definitions of dimension. They all coincide with the usual values
for curves, surfaces, and volumes. However, they may differ for fractal objects. We will
consider only fractal dimension.

Start by considering the line segment [0, 1], the square [0, 1] × [0, 1], and the cube
[0, 1]3 and take small segments of length 1/n, small squares with side length 1/n, and
small cubes with edge length 1/n.

• The segment [0, 1] can be considered in R, R2, or R3. In each case we can cover the
entire original segment with n small segments of length 1/n, n small squares with
side length 1/n, or n small cubes with side length 1/n.

• The square [0, 1]2 may be considered in R2 or R3. We require n2 small squares or
small cubes to cover it, while it may not be covered by any finite number of small
line segments.

• The cube [0, 1]3 can be considered only in R3. In this space it can be covered by n3

small cubes, while no finite number of small segments or squares will do.
• If we had considered the segment [0, L] instead of [0, 1] we would have required

roughly nL small segments, squares, or cubes to cover it.
• If we had considered the square [0, L]2 rather than [0, 1]2 we would have required

roughly n2L2 small squares, or cubes to cover it.
• If we had considered the cube [0, L]3 rather than [0, 1]3 we would have required

roughly n3L3 small cubes to cover it.

We try to extract a general rule from the above observations:

(i) If we had a finite differentiable curve through R2 or R3, we would require a finite
number N(1/n) of small squares or small cubes with side or edge length 1

n to cover
it such that, provided n is large enough,
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C1n ≤ N(1/n) ≤ C2n.

The above statement requires some thought to convince ourselves of its validity. If
the curve has length L we can cut it into Ln pieces with length less than or equal
to 1

n , and each such piece can be covered by a small square (cube) of side (edge)
length 1

n . Thus, N(1/n) ≤ C2n for some C2. The other inequality is harder to
get, and valid only for sufficiently large n. In fact, the curve could be sufficiently
winding that a square or cube of side length 1

n could actually contain a long length
of it. However, since the curve is differentiable (and not fractal), the width of the
smallest kink is bounded below. Thus, if we take 1

n sufficiently small, then a small
square or cube can possibly contain only a portion of the curve of length less than
or equal to C 1

n . The minimum number of squares or cubes will thus be greater than
or equal to C1n, where C1 = L

C .
(ii) Similarly, had we considered a finite smooth surface in the plane or in space, we

would require a finite number N(1/n) of small cubes with edge length 1
n to cover it

such that, provided n is sufficiently large,

C1n
2 ≤ N(1/n) ≤ C2n

2.

(iii) Finally, a volume of space will require a number N(1/n) of small cubes with edge
length 1

n to cover it such that, when n is large enough,

C1n
3 ≤ N(1/n) ≤ C2n

3.

(iv) The number N(1/n) is of roughly the same size, regardless of the space we are
working in! In fact, whether we consider covering a curve with segments, squares,
or cubes we will obtain roughly the same value.

Thus we see that the dimension of the object corresponds to the exponent of n in
the order of magnitude of N(1/n) and that the constants C1 and C2 are unimportant.
In each case we can verify that the dimension corresponds to

lim
n→∞

lnN(1/n)
lnn

.

In fact, in the case of a curve we have

ln(C1n)
lnn

≤ lnN(1/n)
lnn

≤ ln(C2n)
lnn

.

Since ln(Cin) = lnCi + lnn, then

lim
n→∞

ln(Cin)
lnn

= 1.

We can use the same reasoning with surfaces and volumes to obtain dimensions of 2
and 3.

We will now give the formal definition of fractal dimension. Rather than just con-
sidering side lengths of 1/n, we will generalize the above concepts to permit segments,
squares, and cubes with side length ε for any small ε > 0.
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Definition 11.19 We consider a compact subset B of Ri, i = 1, 2, 3. Let N(ε) be the
minimum number of small segments (respectively squares or cubes) with length (respec-
tively side length, edge length) ε necessary to cover B. Then the fractal dimension D(B)
of B is, provided it exists, the limit

D(B) = lim
ε→0

lnN(ε)
ln 1/ε

.

Remark:

1. In the previous definition, suppose that B is a subset of a line in R3. Then the
previous definition leads to the same limit whether we cover B using segments,
squares, or cubes. A similar observation applies if B is a subset of a line in R2.

2. The wording of the definition implies that the limit may not always exist. The
fractals we have constructed up until now are self-similar, which means that at any
scale we see the same repeating structure. In this case, we can show that the limit
exists. However, the limit may not exist if B is very complicated and not self-similar.

Definition 11.20 An iterated function system {T1, . . . , Tm} with attractor A is totally
disconnected if the sets T1(A), . . . , Tm(A) are disjoint.

We present the following theorem without proof.

Theorem 11.21 Let A be the attractor of a totally disconnected iterated function sys-
tem. Then the limit defining its fractal dimension exists.

Example 11.22 We calculate the dimension of the Sierpiński triangle A. From Figure
11.6 it is possible to count the number of squares with side length 1

2n required to cover
A.

• We need one square with side length 1 to cover A: N(1) = 1.
• We need three squares with side length 1

2 to cover A: N( 1
2 ) = 3.

• We need nine squares with side length 1
4 to cover A: N( 1

4 ) = 9.
• . . .
• We need 3n squares with side length 1

2n to cover A: N( 1
2n ) = 3n.

Letting ε = 1/2n we have that εn → 0 as n → ∞. Since the limit defining the dimension
D(A) of the Sierpiński triangle exists by Theorem 11.21, this limit is equal to

D(A) = lim
n→∞

lnN(1/2n)
ln(2n)

= lim
n→∞

n ln 3
n ln 2

=
ln 3
ln 2

≈ 1.58496.

Thus 1 < D(A) < 2. As announced earlier, the dimension of A is therefore greater than
that of a curve but less than that of a surface.
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The method of Example 11.22 can be quite difficult for complicated attractors. We
now present a theorem that allows a direct calculation of the fractal dimension of an
attractor without our having to explicitly count covering squares.

Theorem 11.23 Let {T1, . . . , Tm} be a totally disconnected iterated function system
where Ti has the exact contraction factor 0 < ri < 1. Let A be its attractor. Then the
fractal dimension D = D(A) of A is the unique solution to the equation

rD
1 + · · · + rD

m = 1. (11.12)

In the particular case r1 = · · · = rm = r, we have that

D(A) =
lnm

− ln r
= − lnm

ln r
. (11.13)

(The quotient is positive, since ln r < 0.)

Sketch of proof: We start by verifying that (11.13) is a consequence of (11.12). In
fact, if r1 = · · · = rm = r, then (11.12) yields

rD + · · · + rD = mrD = 1.

From this it follows that rD = 1/m. Taking the logarithm of both sites yields

D ln r = ln 1/m = − lnm,

from which the result follows.
We provide an intuitive sketch of the proof for the first equation. Let A be the

attractor of the system and let N(ε) be the minimum number of squares with side
length ε necessary to cover it. Since A is the disjoint union of T1(A), . . . , Tm(A), then
N(ε) is roughly equal to N1(ε)+ · · ·+Nm(ε), where Ni(ε) is the number of such squares
required to cover Ti(A). This approximation becomes better and better as ε approaches
0. The set Ti(A) is obtained from A by applying an affine contraction with an exact
contraction factor of ri. Thus Ti is the composition of a homothety of factor ri and an
isometry, preserving angles and distances. It follows that if we require Ni(ε) squares
with side length ε to cover Ti(A), then applying T−1

i to these squares gives us Ni(ε)
squares with side length ε/ri covering A. Hence

N(ε/ri) ≈ Ni(ε).

We therefore have that

N(ε) ≈ N(ε/r1) + · · · + N(ε/rm). (11.14)

In this form it is difficult to calculate the limit limε→0 N(ε). Thus we suppose that
N(ε) ≈ Cε−D, where D is the dimension (here we are giving only an intuitive argu-
ment!); this is certainly the case for the segments, squares, and cubes considered in our
simple examples. With this assumption, equation (11.14) yields
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Cε−D = C

(
ε

r1

)−D

+ · · · + C

(
ε

rm

)−D

.

We can simplify Cε−D, leaving us with

1 =
1

r−D
1

+ · · · + 1
r−D
m

= rD
1 + · · · + rD

m.

�

Example 11.24 For the Sierpiński triangle we have that r = 1/2 and m = 3. Thus
the theorem gives us a direct way to calculate its dimension as ln 3

ln 2 ≈ 1.58496, the same
value obtained by directly counting covering squares as shown in Example 11.22.

Calculating D(A) when the ri are not all equal and satisfy equation (11.11).
Even if it is not simple to give a completely rigorous proof, an inspection of several
examples convinces us that the condition of equation (11.11) is often satisfied by totally
disconnected iterated function systems. Equation (11.12) cannot be solved exactly, but
we can use numerical methods. To begin with, we know that the dimension lies in the
range [0, 2]. The function

f(D) = rD
1 + · · · + rD

m − 1

is strictly decreasing on [0, 2], since

f ′(D) = rD
1 ln r1 + · · · + rD

m ln rm < 0.

Indeed, the condition ri < 1 implies that ln ri < 0. Moreover, f(0) = m − 1 > 1 and
f(2) = r2

1 + · · · + r2
m − 1 < 0 by (11.11). Thus by the intermediate value theorem the

function f(D) must have a unique root in [0, 2]. We may graph this function or use any
numerical root-finding procedure (such as Newton’s method) to find the solution to the
desired accuracy.

Example 11.25 Consider a totally disconnected iterated function system {T1, T2, T3}
with contraction factors r1 = 0.5, r2 = 0.4, and r3 = 0.7. Figure 11.8(a) shows the
graph of the function

f(D) = 0.5D + 0.4D + 0.7D − 1

for D ∈ [0, 2]. Figure 11.8(b) shows the same function for D ∈ [1.75, 1.85], allowing us
to evaluate the root with higher precision. Inspection shows that D(A) ≈ 1.81.

11.7 Photographs as Attractors to Iterated Function Systems?

Everything we have seen up until now is elegant from a theoretical point of view, but it
does not really help us compress images. We have seen that iterated function systems
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(a) (b)

Fig. 11.8. The graph of f(D) for D ∈ [0, 2] and D ∈ [1.75, 1.85] for Example 11.25.

allow us to store in memory a fractal image with a very short program. However,
to take advantage of this powerful compression we must be able to recognize portions
of an image that exhibit strong self-similarity and write short programs constructing
them. Are all the parts of an image describable in such a fractal manner? Probably
not! Even if a human is able to approximate certain photographs using carefully crafted
iterated function system (there are some nice examples in [1]), this is far from providing
a systematic algorithm that can operate on hundreds of photographs. If we wish to
apply iterated function systems to image compression, we must broaden the ideas we
have developed in this chapter.

The concepts of this chapter will thus be applied slightly differently. The common
point is that we will still be using a specific type of iterated function system (called
partitioned iterated function system) whose attractor will approximate the image we
wish to compress. The following discussion was inspired by [2]. Research is ongoing to
find better-performing alternative methods.

Representing an image as the graph of a function. We discretize a photograph by
considering it as a finite set of squares with varying intensity, called pixels (for picture
elements). We associate each pixel in the photo with a number representing its color.
To simplify our discussion we will limit ourselves to grayscale images. Thus each point
(x, y) of a rectangular photo is associated with a value z that represents its gray tone.
Most digital photographs assign integer values in the range {0, . . . , 255} corresponding
to black through white, with 0 representing black and 255 representing white. Thus,
a photograph may be viewed as a two-dimensional function. If a photograph contains
h pixels horizontally and v vertically and we denote by SN the set {0, 1, 2, . . . , N − 1},
then a photograph is a function

f : Sh × Sv −→ S255.

In other words, it is a function that associates a gray tone

z = f(x, y) ∈ {0, . . . , 255}
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to every pixel (x, y) for 0 ≤ x ≤ h − 1 and 0 ≤ y ≤ v − 1. The iterated functions that
we will introduce will transform a photograph f into another photograph f ′ whose gray
tones will not always be integers between 0 and 255. Thus it will be easier for us to
work with functions

f : Sh × Sv −→ R.

Constructing a partitioned iterated function system. A partitioned iterated
function system acts on the set F = {f : Sh ×Sv → R} of all photographs. Here is how
such a system is constructed for an arbitrary photograph. We divide the image into
disjoint neighboring tiles of 4 × 4 pixels. Each such tile Ci is called a small tile, and I
is the set of all small tiles. We also consider the set of all possible 8× 8 tiles, called big
tiles. Each small tile Ci is associated with the big tile Gi that “resembles” it the most
(see Figure 11.9). (We will precisely define what we mean by “resemble” a little later.)

Fig. 11.9. Choosing a big tile that resembles a small tile.

Each point in the image is represented by its coordinates (x, y, z), where z is the
gray tone of the pixel at (x, y). An affine transformation Ti will be chosen that maps a
big tile Gi onto a small tile Ci, where Ti has the form

Ti

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ ai bi 0

ci di 0
0 0 si

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ +

⎛
⎝ αi

βi

gi

⎞
⎠ . (11.15)

Restricting ourselves to the integer coordinates (x, y), this transformation is a simple
affine contraction

ti(x, y) = (aix + biy + αi, cix + diy + βi). (11.16)
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Consider now the gray tone of the tile. The parameter si serves to modify the spread
of the gray tones used in the tile: if si < 1 then the small tile Ci has less contrast than
the large tile Gi, while it has more contrast if si > 1. The parameter gi corresponds
to a translation of the grayscale. If gi < 0 then the large tile is paler than the small
tile and vice versa (remember that 0 is black and 255 is white). In practice, since a
large tile (8 × 8 = 64) contains four times as many pixels as a small tile (4 × 4 = 16),
we start by replacing the color of each 2 × 2 block of Gi by a uniform color given by
the average color of the four pixels originally located there. We compose this operation
with the transformation Ti, calling the composition T i. Since the sides of a large tile
are mapped to those of a small tile, the parameters of the linear part

(
ai bi

ci di

)
of the

transformation Ti are greatly limited. In fact, the linear portion of the transformation
will be the composition of the homothety of scale 1/2,

(x, y) �→ (x/2, y/2),

and one of the eight following transformations:

1. the identity transform with matrix ( 1 0
0 1 );

2. rotation by π/2 with matrix
(

0 −1
1 0

)
;

3. rotation by π with matrix
(−1 0

0 −1

)
, also called symmetry with respect to the origin;

4. rotation by −π/2 with matrix
(

0 1−1 0

)
;

5. reflection about the horizontal axis with matrix
(

1 0
0 −1

)
;

6. reflection about the vertical axis with matrix
(−1 0

0 1

)
;

7. reflection about the first diagonal axis with matrix ( 0 1
1 0 );

8. reflection about the second diagonal axis with matrix
(

0 −1
−1 0

)
.

Note that all of the matrices associated with these linear transformations are orthogonal.
(Exercise: which of the above transformations will be used in mapping the big tile to
the small tile in Figure 11.9?)

To decide whether two tiles resemble each other we will define a distance function d.
The partitioned iterated function system we construct will produce iterates approaching
a limit with respect to this same distance as applied to the set F of all photographs. If
f, f ′ ∈ F , that is, both f and f ′ are digitized images of the same size, then the distance
between them is defined as

dh×v(f, f ′) =

√√√√h−1∑
x=0

v−1∑
y=0

(f(x, y) − f ′(x, y))2,

corresponding to the distance d3 given in (11.8) of Example 11.8. This distance may
seem somewhat intimidating when written out, but it is simply the Euclidean distance
on the vector space Rh×v. To decide whether a small tile Ci resembles a large tile Gi we
define a similar distance between Gi and Ci. In fact, we calculate the distance between
fCi

(the image function restricted to the small tile Ci) and fCi
= T i(fGi

), that is,
the image by T i of the photograph f restricted to the large tile Gi. Recall that the
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transformation T i is the composition of replacing the gray tones in each 2× 2 block by
their average, and then applying Ti to map Gi onto Ci. Let Hi be the set of horizontal
indices of the pixels in the Ci, and let Vi be the corresponding set of vertical indices.
Then

d4(fCi
, fCi

) =
√∑

x∈Hi

∑
y∈Vi

(
fCi

(x, y) − fCi
(x, y)

)2
. (11.17)

It is by carefully choosing si and gi that we obtain a partitioned iterated function
system that converges with respect to this distance. Let Ci be a small tile. We discuss
how to choose the best large tile Gi and the transform Ti between the two. For a given
Ci, we repeat the following steps for each potential large square Gj and each of the
possible linear transformations L above:

• apply the smoothing transformation replacing 2 × 2 blocks of Gj by their average;
• apply the transformation L to the 8 × 8 square, resulting in a 4 × 4 square whose

pixels are functions in the variables si and gi;
• choose si and gi to minimize the distance d4 between the original and transformed

tiles;
• calculate the minimized distance for the chosen si and gi.

We do the above for each Gj and L and keep track of which Gj , L, si, and gi resulted
in the smallest distance between Ci and the resulting transformed tile. This will be one
of the transformations in the partitioned iterated function system. We then repeat the
above steps for each Ci, for each one determining the optimal associated Gi and Ti. If
the image contains h × v pixels, there are (h × v)/16 small tiles. For each of these, the
number of large tiles that it must be compared against is enormous! In fact, a large tile
is uniquely specified by its upper left corner, for which there are (h−7)×(v−7) choices.
Since this is too large and would result in too slow an algorithm, we artificially limit
ourselves to nonoverlapping large tiles, of which there are (h × v)/64. It is thus with
this “alphabet” of tiles that we attempt to accurately reconstruct the original image by
associating to each small tile Ci a large tile Gi and a transform T i. If h× v = 640×640
then we will have to inspect ( 1

64h× v)× 8× ( 1
16h× v) ≈ 1.3× 109 potential transforms.

This is still quite a lot! There are other tricks that may be employed to reduce the
search space, but despite these optimizations, this method still has a high compression
cost.

Method of least squares. This is the method that is employed in the second-to-last
step of the above algorithm, which searches for the best values for si and gi. It is likely
that you have already seen this technique in a multivariable calculus, linear algebra, or
statistics course. We wish to minimize

d4(fCi
, fCi

) =
√∑

x∈Hi

∑
y∈Vi

(
fCi

(x, y) − fCi
(x, y)

)2
. (11.18)
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Minimizing d4 is equivalent to minimizing its square d2
4, which frees us of the square

root. So we must derive the expression of fCi
as a function of si and gi. Let us look at

how we get fCi
:

• we start by replacing each 2 × 2 large square of Gi by a uniform square with the
mean color;

• we apply the transformation (11.16), which amounts to sending Gi to Ci without
any color adjustment;

• we compose with the mapping (x, y, z) �→ (x, y, siz + gi), which is just the color
adjustment.

The composition of the first two transformations produces an image on Ci that is de-
scribed by a function f̃Ci

, and we have

fCi
= sif̃Ci

+ gi. (11.19)

To minimize d2
4 in (11.18) we replace fCi

by its expression in (11.19) and we require
that the partial derivatives with respect to both si and gi be equal to zero. The vanishing
of the derivative with respect to gi yields∑

x∈Hi

∑
y∈Vi

fCi
(x, y) = si

∑
x∈Hi

∑
y∈Vi

f̃Ci
(x, y) + 16gi,

which implies that fCi
and fCi

have the same average gray tone. Requiring that the
partial derivative with respect to si also vanish implies (after a few simplifications) that

si =
Cov(fCi

, f̃Ci
)

var(f̃Ci
)

,

where the covariance, Cov(fCi
, f̃Ci

), of fCi
and f̃Ci

is defined as follows:

Cov(fCi
, f̃Ci

) =
1
16

∑
x∈Hi

∑
y∈Vi

fCi
(x, y)f̃Ci

(x, y)

− 1
162

⎛
⎝∑

x∈Hi

∑
y∈Vi

fCi
(x, y)

⎞
⎠
⎛
⎝∑

x∈Hi

∑
y∈Vi

f̃Ci
(x, y)

⎞
⎠ ,

and the variance var(f̃Ci
) is defined as

var(f̃Ci
) = Cov(f̃Ci

, f̃Ci
).

The operator W associated with a partitioned iterated function system
{Ti}i∈I . Given a gray tone image f ∈ F , W (f) is the image obtained by replacing
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the image fCi
of the tile Ci by the transformed image fCi

of the associated big tile Gi.
This gives us a transformed image f ∈ F defined by

f(x, y) = fCi
(x, y) if (x, y) ∈ Ci.

The attractor of this iterated function system should hopefully be something very close
to the original image we wished to compress. Thus W : F → F is an operator on the set
of all photographs. This technique replaces the alphabet of geometric objects we used
in our first example with an alphabet of gray tone tiles, more specifically the large 8× 8
tiles of the photograph to be compressed.

Reconstructing the image. The image can be reconstructed using the following
procedure.

• Choose an arbitrary initial function f0 ∈ F . A natural choice is the function
f0(x, y) = 128 for all x and y, corresponding to a uniformly gray initial image.

• Calculate the iterates f j = W (f j−1). At step j − 1 the image on each small tile
Ci is given by the restriction of f j−1 to it. At step j here is how we calculate f j

restricted to Ci: we apply T i to the image given by f j−1 on the associated large
tile Gi. In practice, we keep track of the distance between successive iterates by
calculating dh×v(f j , f j−1). Once this distance is below a given threshold (the image
has largely stabilized), we stop the iteration.

• Replace the real-valued gray tone associated with each pixel by its closest integer
value in the range [0, 255].

As it will be shown in the following example, even the iterates f1 and f2 give quite
good approximations to the original photograph. Furthermore, the distance between
successive iterations quickly becomes small, and f5 is already an excellent approximation
to the attractor of the system (and, we hope, of the original image).

Remark: When considered as affine transformations on R3, the Ti are not always
contractions; in fact, Ti is never a contraction if si > 1! However, most Ti will be
contractions, since it is natural to have more contrast across a large tile than across
a small one. As far as we know, there is no theorem guaranteeing the convergence of
this algorithm for all images. However, in practice we generally see convergence, as if
the system {Ti}i∈I were in fact a contraction. Benôıt Mandelbrot introduced fractal
geometry as a way to describe naturally occurring forms, that proved too complicated
to be described with traditional geometry. Besides fern leaves and other plants there
are many self-similar shapes occurring in nature: rocky coastlines, mountains, river
networks, the human capillary system, etc. The technique of compressing images using
iterated function systems is particularly well adapted to images having a strong fractal
nature, that is, having a strong self-similarity across many scales. For such photos we
can generally hope not only for convergence of the resulting system, but for an accurate
reproduction of the original image.
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(a) Original image (b) First iterate f1

(c) Second iterate f2 (d) Sixth iterate f6

Fig. 11.10. Reconstructing a 32 × 32 image (see Example 11.26).

Example 11.26 An example at last! The above comments may lead one to wonder
whether this approach has any chance of accurately reproducing a real photograph. The
following example should answer that question. We will use the same photograph used
in the discussion of the JPEG image compression standard of Chapter 12, that of Figure
12.1. This photograph contains h×v = 640×640 pixels. We will produce two partitioned
iterated function systems: the first for reconstructing the 32 × 32 pixel block where two
of the cat’s whiskers cross (see the zoomed portion of Figure 12.1), and another for the
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entire image. The 32×32 pixel image is a demanding test of the algorithm. In fact, there
are only 16 large tiles to choose from, restricting our chances of finding a good match.
We will see, however, that despite this limited “alphabet” the resulting reconstruction is
quite accurate!

For the 32×32 block there are only 16 nonoverlapping 8×8 tiles, each of which may
be transformed by one of the 8 allowed transformations. This creates an “alphabet” of
16 × 8 = 128 tiles. This is quite limited, but at least it allows the best transformations
to be quickly determined. After having found the best tile Gi and transformation Ti for
each of the 8 × 8 = 64 small tiles Ci, we can proceed to the reconstruction. The results
are shown in Figure 11.10. Figure 11.10(a) shows the original image to be displayed.
For the reconstruction we began with the function f0 associating a constant gray tone
of value 128 to each of the pixels, halfway between black and white. Figures 11.10(b)
through (d) show the reconstruction after 1, 2, and 6 iterations, respectively. The first
surprise is that the first iteration appears to consist of only 8 × 8 pixels. This is easy
to explain, since each of the large tiles began as a uniform block and was mapped to a
uniform 4 × 4 tile. For the same reason the second iterate appears to consist of only
16 × 16 pixels of width 2 each. However, even after only two iterations, the edge of the
table and the rough form of the whiskers is clearly visible. The iterates f4 through f6 are
very similar to each other, only the last having been shown here. In fact, f5 and f6 are
so close that the system is very likely convergent and f6 is quite close to the attractor!
In the sixth iterate the two whiskers are nearly completely visible, but with some errors:
some pixels are much paler or much darker than in the original image. This is largely
due to the limited alphabet of large tiles that we were restricted to working with.

To obtain the complete partitioned iterated function system of the entire image we
made a few concessions. (Recall that the number of individual transformations to be
explored is over a billion!) In fact, for each small tile, each large tile, and each of the
eight transformations we calculate a pair (sj , gj). Thus, for each small square we must
repeat the calculation eight times the number of large squares. To make this process more
efficient we have decide to abandon the search as soon as a large tile Gi and associated
transform Ti are found that are within a distance of d4 = 10 to the original small tile.
Is this a large distance in the Euclidean space Rh×v = R16? No; in fact, it is quite close!
If the distance is 10, then the square distance is 100. In each small square there are 16
pixels; thus we can expect an average squared error of 100

16 ≈ 6.3 per pixel, corresponding
to an expected gray tone error of

√
6.3 ≈ 2.5 per pixel, a relative error of 1% on the

scale from 0 to 255. As we will see, the eye is easily able to overlook such a small error.
The second compromise we have made is to reject all transformations in which |si| > 1.
We have done this to improve the chances that the resulting system is convergent.

Figure 11.11 presents the first, second, fourth, and sixth iterates of the reconstruc-
tion. Again, you can clearly see the 4 × 4 uniform blocks in the first iterate and the
2×2 uniform blocks in the second iterate. As for f4 and f6, the two are nearly identical
and distinguished only by small details. The quality of the sixth iterate is quite good
and generally comparable to the original image, the exceptions being areas of fine detail
and high contrast, such as the white whiskers against the shadowed background under
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(a) The first iterate f1 (b) The second iterate f2

(c) The fourth iterate f4 (d) The sixth iterate f6

Fig. 11.11. Reconstructing the entire image of a cat (see Example 11.26).

the table. It should be noted that a majority of the small tiles were approximated by
transformations with a distance less than 10 from the original. However, roughly 15%
of the tiles were approximated by transformations with a larger error, and the worst
offender had a distance of roughly 280.

Compression ratio. As of 2007, consumer-level digital cameras are commonly avail-
able that capture images of up to 8 million pixels (and professional cameras can reach
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up to 50 million!). We consider the compression ratio achieved on a 3000 × 2000
pixel grayscale image with 28 = 255 gray tones. The gray tone of each pixel can
be specified using exactly 8 bits, thus one byte,1 and thus the original image requires
3000 × 2000 = 6 × 106 B = 6 MB. Now consider the space required to represent the
partitioned iterated function system.

Each small tile has an associated transformation Ti and large tile Gi. Consider:

(i) the number of bits necessary to represent a transformation Ti of the form in (11.15):
• 3 bits to specify one of the 23 = 8 possible affine transformations L;
• 8 bits to specify si, the gray tone scaling factor; and
• 9 bits to specify gi, the gray tone shift (we must permit negative values, requiring

another bit).
(ii) the number of bits necessary to identify the associated large tile Gi. If we permit

all possible overlapping large tiles, then each of them may be uniquely specified by
indicating the upper left corner of the block. However, since we limited ourselves
to nonoverlapping blocks, there are only 3000/8×2000/8 = 93,750 possible choices.
Since 216 = 65,536 < 93,750 < 217 = 131,072, we require 17 bits to specify a large
tile.

(iii) the number of small tiles in the image: 3000
4 × 2000

4 = 375,000.

Thus, we require 3 + 8 + 9 + 17 = 37 bits per small tile, yielding 37 × 375,000 bits
or roughly 1.73 MB, yielding that the compression ratio is roughly 3.46 times. In this
approach we see that it is possible to vary the number of candidate large tiles. Had we
restricted the search of large tiles to the one-fourth of them immediately neighboring
the small tile in question, we could have reduced the number of bits necessary to encode
each small tile by 2 (from 37 to 35). The resulting compression ratio would improve to
a factor of 37

35 × 1.73 ≈ 3.66.
A more substantial gain is achieved by making small tiles 8×8 and large tiles 16×16.

A factor of 4 is immediately gained, but at the expense of reconstructed image quality.
Finally, one last improvement is to let the size of both the small and large tiles vary.
In areas with little detail we can increase the tile size, while we could correspondingly
decrease it in areas of fine detail. Thus, the compression ratio may be smoothly varied
according to storage needs or desired quality of reconstruction.

Iterated function systems and JPEG. The method described here is very different
from that employed by the JPEG standard. Which image compression technique is
the best? This depends greatly on the type of images, the desired compression ratio,
and the amount of computational power available. As with the improvements discussed
above, the compression ratio of JPEG may be smoothly varied (at the expense of image
quality) by changing the quantization tables (see Section 12.5). Digital cameras typically
store images in the JPEG format, offering the user two or three resolution settings.
The degree of compression actually obtained for a given resolution depends on the

1One byte equals eight bits and is abbreviated B. One megabyte is 106 bytes and is abbre-
viated MB.
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photograph itself (in contrast to the algorithm presented here), but is typically between
6 and 10 times. These are compression ratios that are comparable to those we have
just calculated. Compression using iterated function systems has been studied for quite
some time but is not used in practice. Its weak point is the amount of time required
to compress an image. (Recall that in our earliest discussion of the algorithm the
number of steps was proportional to the square of the number of pixels, (h × v)2. In
comparison, the complexity of the JPEG algorithm grows only linearly with image size,
and is proportional to h × v. For a photographer in the field snapping photos one
after the other, this is a big advantage. For research images being processed on a high-
powered computer, it is less so. Regardless, the domain moves quite fast, and iterated
function systems may not have spoken their last words.

11.8 Exercises

Certain of the following fractals have been constructed based on the figures found in [1].

1. (a) For the fractals of Figure 11.12, find iterated function systems describing them. In
each case clearly specify the coordinate system you have chosen. Afterward, reconstruct
each of the figures in software.
(b) Given your chosen coordinate system, find two different iterated function systems
describing the fractal (b).

2. For the fractals of Figure 11.13, find iterated function systems describing them. In each
case clearly specify the coordinate system you have chosen. Afterward, reconstruct each
of the figures in software.

3. For the fractals of Figure 11.14, find iterated function systems describing them. In each
case clearly specify the coordinate system you have chosen. Afterward, reconstruct each
of the figures in software. Attention: here the triangle in Figure 11.14(b) is equilateral,
in contrast to the Sierpiński triangle in our earlier example.

4. For the fractals of Figure 11.15, find iterated function systems describing them. In each
case clearly specify the coordinate system you have chosen. Afterward, reconstruct each
of the figures in software.

5. Amuse yourself by constructing arbitrary iterated function systems and trying to intuit
their attractors. Afterward, confirm or disprove your intuitions by plotting them on a
computer.

6. Calculate the fractal dimensions of the fractals in Exercises 1 (except (a)), 2, 3, and 4.
(In certain cases you will be required to pursue numeric approaches.)
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(a) (b)

(c) (d)

Fig. 11.12. Exercise 1.

7. The Cantor set is a subset of the unit interval [0, 1]. It is obtained as the attractor
of the iterated function system {T1, T2}, where T1 and T2 are the affine contractions
defined by T1(x) = x/3 and T2(x) = x/3 + 2/3.
(a) Describe the Cantor set.
(b) Draw the Cantor set. (You may pursue the first few iterations by hand, but it is
easiest to use a computer.)
(c) Show that there exists a bijection between the Cantor set and the set of real
numbers with base-3 expansions of the form

0.a1a2 . . . an . . . ,

where ai ∈ {0, 2}.
(d) Calculate the fractal dimension of the Cantor set.

8. Show that the fractal dimension of the Cartesian product A1 × A2 is the sum of the
fractal dimensions of A1 and A2:

D(A1 × A2) = D(A1) + D(A2).
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(a) (b)

(c) (d)

Fig. 11.13. Exercise 2.

9. Let A be the Cantor set, as described in Exercise 7. This is a subset of R. Find an
iterated function system on R2 whose attractor is A × A.

10. The Koch snowflake (or von Koch snowflake) is constructed as the limiting object of
the following process (see Figure 11.16):

• Begin with the segment [0, 1].
• Replace the initial segment with four segments, as shown in Figure 11.16(b)).
• Iterate the process, at each step replacing each segment by four smaller segments

(see Figure 11.16(c)).

(a) Give an iterated function system that constructs the von Koch snowflake.
(b) Can you give an iterated function system for building the von Koch snowflake that
requires just two affine contractions?
(c) Calculate the fractal dimension of the von Koch snowflake.

11. Explain how to modify an iterated function system on R2
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(a) (b)

(c) (d)

Fig. 11.14. Exercise 3.

(a) such that its attractor will be twice as large in both dimensions;
(b) to translate the location of its bottom leftmost point.

12. Consider an affine transformation T (x, y) = (ax + by + e, cx + dy + f).
(a) Show that T is an affine contraction if and only if the associated linear transfor-
mation U(x, y) = (ax + by, cx + dy) is a contraction.
(b) Show that U contracts distances if⎧⎪⎨

⎪⎩
a2 + c2 < 1,

b2 + d2 < 1,

a2 + b2 + c2 + d2 − (ad − bc)2 < 1.

Suggestion: it suffices to show that the square of the length of U(x, y) is less than the
square of the length of (x, y) for all nonzero (x, y).

13. Let P1, . . . , P4 be four noncoplanar points in R3. Let Q1, . . . , Q4 be four other points
of R3. Show that there exists a unique affine transformation T : R3 → R3 such that
T (Pi) = Qi.
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(a) (b)

Fig. 11.15. Exercise 4.

(a) The initial seg-
ment

(b) The first itera-
tion

(c) The second it-
eration

(d) The von Koch
snowflake

Fig. 11.16. Constructing the von Koch snowflake of Exercise 10.

Remark: We can consider systems of iterated functions in R3. As an example, we
could use an iterated function system in this space to describe a fern leaf bent under its
own weight. We could then project this image to the plane in order to display it.

14. Consider v ∈ R2 and A,B, two closed and bounded subsets of R2. Show that d(v,A ∪
B) ≤ d(v,A) and d(v,A ∩ B) ≥ d(v,A).

15. Proceeding numerically, find the contraction factors of the individual transforms Ti for
the fern leaf. Are any of these exact contraction factors?

16. (a) Let B1 and B2 be two disks in R2 with radius r, and whose centers are at a distance
of d from each other. Calculate dH(B1, B2).
(b) Let B1 and B2 be two concentric disks in the plane with radii r1 and r2, respectively.
Calculate dH(B1, B2).
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12

Image Compression:
The JPEG Standard

Presenting the JPEG standard at the level of detail contained in this chapter will require

about four hours. To fit within this amount of time, you will have to skip Section 12.4;

this section proves the orthogonality of the matrix C and can be seen as the advanced

part of this chapter. It is necessary, however, to discuss the relationship between the

matrices f and α and to present the 64 basis elements Aij. The central idea underlying

the JPEG standard is a change of basis in a 64-dimensional space; this chapter provides

the perfect occasion to review this portion of linear algebra.

12.1 Introduction: Lossless and Lossy Compression

Data compression is at the very heart of computer science, and the Internet has made
its use an everyday occurrence for most. Many of us may not even know we are using
compression, or at least have little knowledge of how the underlying algorithms work.
Even so, many compression algorithms have names that are familiar to general computer
users (WinZip, gzip, and, in the UNIX world, compress), to music lovers and Internet
users (GIF, JPG, PNG, MP3, AAC, etc). If not for the common use of compression
algorithms, the Internet would be completely paralyzed by the volume of uncompressed
data being transferred.

The goal of this chapter is to study a commonly used algorithm for the compression
of black-and-white or color still images (“still” as opposed to “moving” images). This
method of compression is commonly known as JPEG, the acronym of Joint Photographic
Experts Group, the consortium of companies and researchers that developed and popu-
larized it. The group started its work in June 1987, and the first draft of the standard
was published in 1991. Internet users will no doubt associate this compression method
with the “jpg” suffix that is a part of the names of many images and photographs trans-
mitted over the Internet. The JPEG algorithm is the most commonly used compression
method in digital cameras.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 12, c© Springer Science+Business Media, LLC 2008
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Before diving into the details of this algorithm and the underlying mathematics
it is good to have a basic knowledge of data compression in general. There are two
broad families of data compression algorithms: those that actually degrade the original
information to some extent (called lossy algorithms) and those that allow for the recon-
struction of the original with perfect accuracy (called lossless algorithms). Two simple
observations can be made.

The first is that it is impossible to compress without loss all files of a given size using
the same algorithm. Suppose that such a technique exists for files of exactly N bits in
length. Each of these bits can take on 2 different values (0 or 1) and thus there are
2N distinct N -bit files. If the algorithm compresses each of these files, then each one
of them will be represented by some new file containing at most N − 1 bits. There are
2N−1 distinct files of N −1 bits, 2N−2 distinct files of N −2 bits, . . . , 21 distinct files of
1 bit and a single one with 0 bit. Thus, the number of distinct files containing at most
N − 1 bits is

1 + 21 + 22 + · · · + 2N−2 + 2N−1 =
N−1∑
n=0

2i =
2N − 1
2 − 1

= 2N − 1.

Thus the algorithms we are using must compress at least two of the original N -bit files
to some identical file containing fewer than N bits. These two compressed files will then
be indistinguishable, and it is impossible to determine which original file they should
decompress to. Again: it is impossible to losslessly compress all files of a given size!

The second observation is a consequence of the first: when developing a compression
algorithm, the person charged with this task must decide whether the information must
be preserved perfectly or whether a slight loss (or transformation) is tolerable. Two
examples can help make this choice clear while also demonstrating different approaches
once this decision has been made.

Webster’s Ninth New Collegiate Dictionary has 1592 pages, most being typeset in
two columns, each column having around 100 lines, each line having about 70 characters,
spaces, or punctuation marks. This amounts to a total of about 22 million characters.
These characters can be represented by an alphabet of 256 characters, each being coded
by 8 bits, or 1 byte (see Section 12.2). About 22 MB are therefore needed to hold
Webster’s. If one recalls that compact disks store approximately 750 MB, a single
CD can carry 34 copies of the whole of Webster’s (without the figures and drawings,
however). No author of a dictionary, an encyclopedia, or a textbook (or any book for
that matter!) would tolerate the changing of a single character. Thus, in compressing
such material it is extremely important to use a lossless compression algorithm allowing
for a perfect reconstruction of the original document.

A simple approach to such an algorithm assigns variable length codes to each letter
of the alphabet.1 The most common characters in English are the “�” (space) character

1This approach is common to text compression. Different algorithms may assign codes
to “words” rather than “letters,” and more complicated algorithms may change the assigned
codes based on context.
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and the letter “e” followed by the letters “t”, “a”, “o”, “i”, “n”, “h”, “s”, “r” (see
Table 12.1). The most uncommonly used letters are “x”, “z”, “j”, and “q”. The actual
frequencies depend on the author and the text. They may vary significantly if the text is
short. It is natural to try to assign short codes to more frequently occurring characters
(such as “�” and “e”) and longer codes to less frequently occurring ones (such as “j”
and “q”). In this manner, characters are represented by a variable number of bits rather
than always requiring a single byte. Does this approach violate our first observation?
No, since in order for each assigned code to be uniquely decodable the codes for rarely
occurring letters will be longer than 8 bits. Thus, files containing an unusually high
percentage of such characters will actually be longer than the original uncompressed
file. The idea of assigning variable length codes to individual symbols as a function of
their frequency of use is the main idea underlying Huffman codes.

letter frequency

e 0.125
t 0.088
a 0.080
o 0.077
i 0.069
n 0.068
h 0.066
s 0.060
r 0.059

letter frequency

d 0.047
l 0.041
u 0.027
m 0.026
w 0.025
c 0.023
g 0.022
f 0.021
y 0.021

letter frequency

p 0.018
b 0.016
v 0.010
k 0.0090
j 0.0014
x 0.0014
q 0.0010
z 0.0002

Table 12.1. Frequencies of letters in Dickens’s Oliver Twist. (Spaces and punctuation marks
have been ignored. Capital letters have been mapped to the corresponding lowercase letters.
Oliver Twist contains a little over 680,000 letters.)

Our second example lies a little closer to the subject of this chapter. All computer
screens have a finite resolution. Usually, this is measured by counting the number of
pixels that it can display. Each pixel may be illuminated to take on any color and
intensity.2 Early screens could display 640 × 480 = 307,200 pixels.3 (Resolution is

2This is not exactly true. Computer screens are able to reproduce only a portion of the
visible color gamut, broken down into a finite set of discrete colors that are roughly uniformly
close to each other. As such, they can generally reproduce a large number of colors but not
the entire visible spectrum.

3It is now common to have displays capable of displaying many millions of pixels, with the
largest surpassing four million.
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normally reported as “number of pixels per horizontal line × number of lines.”) Suppose
that the Louvre decided to digitize its entire collection of painted works. The museum
would ideally like to do this with sufficient quality so as to please art experts. However,
at the same time they would like to have lower-quality versions for transmission over the
Internet and display on typical computer screens. In this case, it doesn’t make any sense
for the image to be of a higher resolution than a typical computer monitor. Thus, the
image satisfying art experts and that for display on a typical computer monitor are going
to be of very different resolutions and sizes. The latter will contain significantly less
detail but will be entirely satisfactory for displaying on a monitor. In fact, transmitting
the higher-quality image would be a complete waste of time given the limited resolution
of the display! The decision about the number of pixels to send is then a fairly obvious
one. But suppose that Louvre technical people want to further reduce the size of the
transmitted files. They argue that mathematicians often approximate functions around
a given point by a straight line, and if one looks at the graph of the function and the
approximating line they usually agree fairly well, at least locally. If we imagine the pale
tones of a picture as the peaks and ridges of a function graph and the dark ones as its
valleys, could we use the mathematical idea of approximation to this “function”?

This last question is more physiological than mathematical: can one fool the user
by sending a picture that has been “mathematically approximated”? If the answer is
yes, it will mean that a certain loss of quality is acceptable depending on the use of the
data. Other criteria (such as human physiology) therefore play an equally important
role in deciding how to compress. For example, in digitizing music it is useful to know
that the (average) human ear is unable to perceive sounds above 20,000 Hz. In fact,
the standard used for recording compact discs ignores frequencies over 22,000 Hz and
is capable of accurately reproducing only those frequencies below this threshold, a loss
that would bother only dogs, bats, or other animals with a keener sense of hearing
than our own. For images are there limits to the variations in colors and intensities of
light that may be perceived by the human eye? Are our eyes and mind content with
receiving less than an exact reproduction of an image? Should photographic images
and cartoons be compressed in the same manner? The JPEG compression standard,
through its successes and its limits, answers these questions.

12.2 Zooming in on a JPEG Compressed
Digital Image

A photograph can be digitized in a variety of ways. In the JPEG method the photograph
is first divided into very small elements, called pixels, each one associated with a uniform
color or gray tone. The photograph of a cat in Figure 12.1 has been subdivided into
640 × 640 pixels. Each of these 640 × 640 = 409,600 pixels has been associated with
a uniform tone of gray between black and white. This particular photograph has been
digitized using a scale of 256 gray tones where 0 represents black and 255 represents
white. Since 256 = 28, each of these values may be stored using 8 bits (a single byte).
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Without compression we would require 409,600 bytes to store the photo of the cat,
which equates to roughly 410 KB. (Here we are using the metric convention: a KB
represents 1000 bytes, a MB represents 106 bytes, etc.) To encode a color image, each
pixel is associated with three color values (red, green, and blue) each encoded using an
8-bit value between 0 and 255. An image of this size would require over 1.2 MB to store
uncompressed. However, as frequent users of the Internet will know, large color JPEG-
compressed images (files with a “jpg” suffix) rarely exceed 100 KB. The JPEG method
is thus able to efficiently store the information in the image. The JPEG algorithm’s
utility is not strictly confined to the Internet. It is the principal standard used in
digital photography. Nearly all digital cameras will compress images to JPEG format
by default; the compression occurs at the instant the photo is taken, and therefore a
part of the information is lost forever. As we will see in this chapter, this loss is usually
acceptable, but sometimes it is not. Depending on the specific use of the camera, it is
up to the photographer to decide. (Exercise: As of 2006, many digital cameras offer
resolutions exceeding 10 million pixels (megapixels). What is the space that would be
required by such a color image in an uncompressed form?)

Rather than processing the entire photograph at once, the JPEG standard divides
the image into little tiles of 8× 8 pixels. Figure 12.1 shows two closeups of the image of
the cat. In the bottom left, a 32 × 32 pixel region has been shown. The bottom right
shows a further closeup of an 8×8 region of this closeup. The closeups focus on a small
region depicting the intersection of two of the cat’s whiskers close to the edge of the
table. This particular block of the image is unique in that it contains fine details and
high contrast. This is not typical of most 8 × 8 tiles! In most of the image we see that
the changes in color and texture are quite gradual. The surface under the table, the
table itself, and even the cat’s fur consist largely of smooth gradients when looked at as
8×8 blocks. This is the case with most photographs; just think of any landscape photo
containing open regions of land, water or sky. The JPEG standard was built on this
uniformity; it tries to represent a nearly uniform 8× 8 block using as little information
as possible. When such a block contains significant detail (such as is the case in our
closeup), the use of more space is accepted.

12.3 The Case of 2 × 2 Blocks

It is simpler to characterize 2 × 2 blocks than 8 × 8 blocks, so we will start with that.
We have seen that gray tones are typically represented using a scale with 256 incre-

ments. We could equally imagine a scale with infinitely fine increments that covers all
of [−1, 1] or any interval [−L,L] of R. In this case, we may associate negative values
with dark grays tending to black and positive values to lighter grays tending to white.
The origin would then correspond to a gray between levels 127 and 128 on the scale
with 256 levels. Even though this change of scale and origin may be perfectly natural in
some ways, it is not necessary for our discussion. We will, however, ignore the fact that
our gray tones are integers between 0 and 255 and instead treat them as real numbers in
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Fig. 12.1. Two successive closeups are made of the original photo (top), which contains
640 × 640 pixels. The first closeup (bottom left) contains 32 × 32 pixels. The second closeup
(bottom right) contains 8× 8 pixels. The white frames on the first and second images denotes
the boundaries of the 8 × 8 closeup in the last image.
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this same range. The tone of each pixel will therefore be represented by a real number,
and a 2 × 2 block will require four such values, or equivalently, a point in R4. (When
we are dealing with an N × N block, we can consider it as a vector in RN2

.)
Given that we perceive the blocks in two dimensions, it is more natural to number the

individual pixels using two indices i and j from the set {0, 1} (or the set {0, 1, . . . , N−1}
when we are dealing with N × N blocks). The first index will indicate the row, while
the second will indicate the column, as is typical in linear algebra. For example, the
values of the function f giving the gray tones on the 2 × 2 square of Figure 12.2 are

f =
(

f00 f01

f10 f11

)
=

(
191 207
191 175

)
.

Many of the functions that we will study naturally take their values in the range [−1, 1].
When representing them as gray tones we will use the obvious affine transformation to
map them to the range [0, 255]. This transformation can be

aff1(x) = 255(x + 1)/2 (12.1)

or
aff2(x) = [255(x + 1)/2], (12.2)

where [x] denotes the integer part of x. (This last transformation will be used when
the values need to be constrained to integers in the range [0, 255]. See Exercise 1.) We
will use f to denote a function defined in the range [0, 255] and g to denote functions
defined in the range [−1, 1]. The following box summarizes this notation and specifies
the translation we will use. Using this method, the function g associated with the above
function f is

g =
(

g00 g01

g10 g11

)
=

(
1
2

5
8

1
2

3
8

)
:

fij ∈ [0, 255] ⊂ Z ←→ gij ∈ [−1, 1] ⊂ R

fij = aff2(gij), where aff2(x) =
[

255
2 (x + 1)

]
.

We will graphically represent a 2 × 2 block in two different manners. The first will
be simply to draw it using the associated gray tones that would appear in a photograph.
The second is to interpret the values gij as a two-dimensional function of the variables
i and j, i, j ∈ {0, 1}. Figure 12.2 represents the function g = (g00, g01, g10, g11) =
(1
2 , 5

8 , 1
2 , 3

8 ) in these two manners. The coefficients giving the gray values for both the
top left g00 and bottom left g10 pixels are identical. Those of the right column are g01

(the paler of the two) and g11. In other words, if we use the matrix notation

g =
(

g00 g01

g10 g11

)
,
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Fig. 12.2. Two graphical representations of the function g = (g00, g01, g10, g11) = ( 1
2
, 5

8
, 1

2
, 3

8
).

then the elements of the matrix g are in the same positions as the pixels of Figure 12.2.
The second image interprets these same values but displays them as a histogram in two
variables i and j, with darker colors being associated to lesser heights. This particular
2 × 2 block was chosen because all of the pixels are closely related gray tones, as is
typical of most 2 × 2 blocks in a photograph. (In fact, the higher the resolution of the
photo, the gentler the gradients become.)

Fig. 12.3. The four elements of the usual basis B of R4 represented graphically.

The coordinates (g00, g01, g10, g11) (or equivalently (f00, f01, f10, f11)) represent the
small 2×2 block without any loss. (In other words, no compression has yet been done.)
These coordinates are expressed in the usual basis B of R4, where each element of the
basis contains a single nonzero entry with value 1. This basis is depicted graphically in
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Figure 12.3. If we were to apply a change of basis

[g]B =

⎛
⎜⎜⎝

g00

g01

g10

g11

⎞
⎟⎟⎠ �→ [g]B′ =

⎛
⎜⎜⎝

β00

β01

β10

β11

⎞
⎟⎟⎠ = [P ]B′B[g]B,

the new coordinates βij would also accurately represent the contents of the block. The
coordinates gij are not appropriate to our end goal. In fact, we would like to easily
recognize blocks where all of the pixels are nearly the same color or gray tone. To do
this, it is useful to construct a basis in which completely uniform blocks are represented
by a single nonzero coefficient. Similarly, we would like a cursory inspection of the
coordinates to reveal when the block is far from being uniform.

The JPEG standard proposes using another basis B′ = {A00, A01, A10, A11}. Each
element Aij of this basis can be expressed using the standard basis shown in Figure
12.3. In the standard basis B their coefficients are

[A00]B =

⎛
⎜⎜⎝

1
2
1
2
1
2
1
2

⎞
⎟⎟⎠ , [A01]B =

⎛
⎜⎜⎝

1
2− 1
2

1
2− 1
2

⎞
⎟⎟⎠ , [A10]B =

⎛
⎜⎜⎝

1
2
1
2− 1
2− 1
2

⎞
⎟⎟⎠ , [A11]B =

⎛
⎜⎜⎝

1
2− 1
2− 1
2

1
2

⎞
⎟⎟⎠ . (12.3)

The elements of this new basis are represented graphically in Figure 12.4. The first
element A00 represents a uniform block. If the 2 × 2 block is completely uniform, only
the coefficient of A00 will be nonzero. The two elements A01 and A10 represent left/right
and top/bottom contrasts, respectively. The last element A11 represents a mixture of
these two, where each pixel is in contrast with its neighbor along both directions, much
like a checkerboard.

Knowing the Aij in the standard basis, it is easy to obtain the change of basis matrix
[P ]BB′ from B′ to B. In fact, its columns are given by the coordinates of the elements
of B′ expressed in the basis B. It is therefore given by

[P ]BB′ = [P ]−1
B′B =

⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

1
2 − 1

2 − 1
2

1
2

⎞
⎟⎟⎠ . (12.4)

To calculate [g]B′ we will need to use [P ]B′B, that is, the inverse of [P ]BB′ . Here the
matrix [P ]BB′ is orthogonal. (Exercise: A matrix A is orthogonal if AtA = AAt = I.
Verify that PBB′ is orthogonal.) The computation is therefore easy:

[P ]B′B = [P ]−1
BB′ = [P ]tBB′ = [P ]BB′ .

The last equality comes from the fact that the matrix [P ]BB′ is symmetric. The coeffi-
cients of g in this basis are simply
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Fig. 12.4. The four elements of the proposed basis B′. (Element A00 is at the upper left and
element A01 is at the upper right.)

[g]B′ =

⎛
⎜⎜⎝

β00

β01

β10

β11

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

1
2 − 1

2 − 1
2

1
2

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
2
5
8
1
2
3
8

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
1
8− 1
8

⎞
⎟⎟⎠ .

In this basis the largest coefficient is β00 = 1. This is the weight of the element A00 that
gives an equal importance to each of the four pixels; in other words, this element of the
new basis assigns them all the same gray tone. The two remaining nonzero coefficients,
both much smaller in magnitude (β10 = −β11 = 1

8 ), contain information regarding the
small amount of contrast between the left and the right columns, and between the two
pixels in the right column. The careful choice of the basis highlights spatial contrast
information rather than giving individual pixel information. This is the heart of the
JPEG standard. To make this technique lossy, one needs only to decide what coefficients
correspond to visible contrasts for each of the elements of the basis. The rest of the
coefficients may simply be thrown away.

12.4 The Case of N × N Blocks

The JPEG standard divides the image into 8 × 8 blocks. The definition of the basis
that puts the focus on contrast information rather than individual pixels can equally
be defined for arbitrary N ×N blocks. The basis B′ that we introduced in the previous
section (N = 2) and that used in the JPEG standard (N = 8) are particular cases.

The discrete cosine transform4 replaces the function {fij , i, j = 0, 1, 2, . . . , N − 1}
defined over an N × N square grid by a set of coefficients αkl, k, l = 0, 1, . . . , N − 1.

4The discrete cosine transform is a particular instance of a more general mathematical
technique called Fourier analysis. Introduced at the beginning of the nineteenth century by
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The coefficients αkl are given by

αkl =
N−1∑
i,j=0

ckicljfij , 0 ≤ k, l ≤ N − 1, (12.5)

where the cij are defined as

cij =
δi√
N

cos
i(2j + 1)π

2N
, i, j = 0, 1, . . . , N − 1, (12.6)

with

δi =

{
1, if i = 0,√

2, otherwise.
(12.7)

(Exercise: For the case N = 2, show that the coefficients cij are given by

C =
(

c00 c01

c10 c11

)
=

(
1√
2

1√
2

1√
2

− 1√
2

)
.

Is it possible for the transformation (12.5) to be equivalent to the change of basis
embodied by the matrix [P ]BB′ of (12.4)? Explain.)

The transformation in (12.5) from the {fij} to the {αkl} is clearly linear. By writing

α =

⎛
⎜⎜⎜⎝

α00 α01 . . . α0,N−1

α10 α11 . . . α1,N−1

...
...

. . .
...

αN−1,0 αN−1,1 . . . αN−1,N−1

⎞
⎟⎟⎟⎠ , f =

⎛
⎜⎜⎜⎝

f00 f01 . . . f0,N−1

f10 f11 . . . f1,N−1

...
...

. . .
...

fN−1,0 fN−1,1 . . . fN−1,N−1

⎞
⎟⎟⎟⎠ ,

and

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1
N

√
1
N . . .

√
1
N√

2
N cos π

2N

√
2
N cos 3π

2N . . .
√

2
N cos (2N−1)π

2N√
2
N cos 2π

2N

√
2
N cos 6π

2N . . .
√

2
N cos 2(2N−1)π

2N

...
...

. . .
...√

2
N cos (N−1)π

2N

√
2
N cos 3(N−1)π

2N . . .
√

2
N cos (2N−1)(N−1)π

2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we see that the transformation of (12.5) takes on the matrix form

α = CfCt, (12.8)

Jean Baptiste Joseph Fourier for studying the propagation of heat, this technique has since
invaded the world of engineering. It also plays an important role in Chapter 10.
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where Ct denotes the transpose of the matrix C. In fact,

αkl = [α]kl = [CfCt]kl =
N−1∑
i,j=0

[C]ki[f ]ij [Ct]jl =
N−1∑
i,j=0

ckifijclj ,

which is the same as (12.5).
This transformation is an isomorphism if the matrix C is invertible. (That this is

the case will be shown later.) If it is so, we are able to write

f = C−1α(Ct)−1

and recover the values fij , i, j = 0, 1, . . . , N −1, from the αkl, k, l = 0, 1, . . . , N −1. The
transformation f �→ α given by (12.8) is also a linear transformation. Indeed, suppose
that f and g are related to α and β through (12.8) (namely α = CfCt and β = CgCt).
Then

C(f + g)Ct = CfCt + CgCt = α + β

follows from the distributivity of matrix multiplication. And if c ∈ R then

C(cf)Ct = c(CfCt) = cα.

The two previous identities are the defining properties of linear transformations. Since
this linear transformation is an isomorphism, it is a change of basis! Note that the
passage from f to α is not expressed through a matrix [P ]B′B as in the previous section.
But linear algebra assures us that the transformation f �→ α could be written with such
a matrix. (If the two indices of f run through {0, 1, . . . , N − 1}, then there are N2

coordinates fij , and the matrix [P ]B′B doing the change of basis is of size N2×N2. The
form (12.8) has the advantage of using only N × N matrices.)

The proof of the invertibility of C rests on the observation that C is orthogonal:

Ct = C−1. (12.9)

This observation simplifies the calculations because the above expression for f becomes

f = CtαC. (12.10)

We will give a proof of this property at the end of the section.
For the moment we will accept this fact and give an example of the transformation

f �→ α. To do this we will use the gray tones defined over the 8 × 8 block of Figure
12.1. The fij , 0 ≤ i, j ≤ 7, are given in Table 12.2. The positions of pixels in the picture
correspond to positions of entries in the table, and the entries are the gray intensities
with 0 = black and 255 = white. The large numbers (> 150) correspond to the two
white whiskers. The principal characteristic of this 8×8 block is the presence of diagonal
stripes with high contrast. We will see how this contrast influences the coefficients α of
this function.
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The αkl of the function f from Table 12.2 are given in Table 12.3. They are presented
in the same order as previously, with α00 in the upper left and α07 in the upper right.
None of the entries are exactly zero-valued, but we see that the largest coefficients (in
terms of absolute value) are α00, α01, α12, α23, . . . . To interpret these numbers we need
to have a better “visual” understanding of the elements of the basis B′.

Consider once again the change of basis expressions

α = CfCt and f = CtαC.

In terms of the coefficients themselves, the relationship giving f from α is

fij =
N−1∑
k,l=0

αkl(ckiclj).

Let Akl be the N × N matrix whose elements are [Akl]ij = ckiclj . We see that f is
a linear combination of the matrices Akl with weights αkl. The set of N2 matrices
{Akl, 0 ≤ k, l ≤ N − 1} forms a basis in terms of which the function f is described.
The 64 basis matrices Akl of this example (N = 8) are shown in Figure 12.5. Matrix

40 193 89 37 209 236 41 14
102 165 36 150 247 104 7 19
157 92 88 251 156 3 20 35
153 75 220 193 29 13 34 22
116 173 240 54 11 38 20 19
162 255 109 9 26 22 20 29
237 182 5 28 20 15 28 20
222 33 8 23 24 29 23 23

Table 12.2. The 64 values of the function f .

681.63 351.77 −8.671 54.194 27.63 −55.11 −23.87 −15.74
144.58 −94.65 −264.52 5.864 7.660 −89.93 −24.28 −12.13
−31.78 −109.77 9.861 216.16 29.88 −108.14 −36.07 −24.40

23.34 12.04 53.83 21.91 −203.72 −167.39 0.197 0.389
−18.13 −40.35 −19.88 −35.83 −96.63 47.27 119.58 36.12

11.26 9.743 24.22 −0.618 0.0879 47.44 −0.0967 −23.99
0.0393 −12.14 0.182 −11.78 −0.0625 0.540 0.139 0.197
0.572 −0.361 0.138 −0.547 −0.520 −0.268 −0.565 0.305

Table 12.3. The 64 coefficients αkl of the function f .
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Fig. 12.5. The 64 elements Akl of the basis B′. Element A00 is at the upper left and element
A07 is at the upper right.

A00 is in the upper left corner of the image, while A07 is found in the upper right. To
graphically represent each basis matrix we needed to have their coefficients mapped to
gray tones in the range 0 to 255. This was done by first replacing the [Akl]ij by

[Ãkl]ij =
N

δkδl
[Akl]ij ,

where δk and δl are given by (12.7). This transformation ensures that [Ãkl]ij ∈ [−1, 1].
Next, the transformation aff2 of (12.2) was applied to each scaled coefficient to obtain

[Bkl]ij = aff2([Ãkl]ij) =
[
255
2

([Ãkl]ij + 1)
]

.

The [Bkl]ij can be directly interpreted as gray tones, since 0 ≤ [Bkl]ij ≤ 255. These are
the values represented in Figure 12.5.
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Fig. 12.6. Constructing the graphic representation of A23.

It is possible to understand the graphic representations of the Akl directly from their
definitions. Here we consider the details of the construction of the element A23, given
by

[A23]ij =
2
N

cos
2(2i + 1)π

2N
cos

3(2j + 1)π
2N

.

The upper portion of Figure 12.6 shows the function

cos
3(2j + 1)π

16
,

and at right, vertically, the function

cos
2(2i + 1)π

16

has been shown. Since j varies from 0 to N − 1 = 7, the argument of the cosine of the
first function passes from 3π/16 to 3 · 15π/16 = 45π/16 = 2π + 13π/16 and the figure
therefore shows roughly one and one-half cycles of the cosine. Each rectangle of the
histogram has been assigned the gray tone corresponding to

255
2

(
cos

(
3(2j + 1)π

16

)
+ 1

)
.
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The same process has been repeated for the second function, cos 2(2i + 1)π/16, and the
results of this shown vertically at the right of the figure. The function A23 is obtained
by multiplying these two functions. This multiplication is between two cosine functions,
thus between values in the range [−1, 1]. The result of this multiplication can be inter-
preted visually from the image. Multiplying two very light rectangles (corresponding to
values near +1) or two very dark rectangles (corresponding to values near −1) results
in light values. The 8×8 “product” of the two histograms is the matrix of basis element
A23.

We return to the 8 × 8 block depicting the two cat whiskers. What coefficients
αkl will be the most important? A coefficient αkl will have larger magnitude if the
extrema of the basis matrix correspond roughly to those of f . For example, the basis
A77 (bottom right corner of Figure 12.5) alternates rapidly between black and white
in both directions. It has many extrema, while f depicts only a diagonal pattern. As
can be predicted, the associated coefficient is quite small at α77 = 0.305. On the other
hand, the coefficient α01 will be quite large. The basis matrix A01 (second from the left
in the top row of Figure 12.5) contains a bright left half and a dark right half. Even
though the two white whiskers of f extend into the right half of the 8× 8 block, the left
half is significantly paler than the right one. The actual coefficient is α01 = 351.77.

How should we interpret a negative coefficient αkl? The coefficient α12 = −264.52
is negative, and a closer inspection yields an answer. The basis matrix A12 is roughly
divided into six contrasting bright and dark regions, three at the top and three at the
bottom. Observe that two of the dark regions are roughly aligned with the brightest
region of f , the whiskers. Multiplying this basis matrix by −1 would make these dark
regions light, indicating that −A12 describes the contrast between the whiskers and
the background relatively well, thus the importance of this (negative) coefficient. We
can easily repeat this “visual calculation” for each of the basis matrices, but it quickly
becomes tedious. In fact, it is faster to program a computer to perform the calculations
of (12.5). Regardless, this discussion has demonstrated the following intuitive rule:
the coefficient αkl associated with a function f will have a significant magnitude if the
extrema of Akl are similar to those of f . A negative coefficient indicates that the bright
spots of f matched dark spots of the basis element and vice versa. As such, the nearly
constant basis matrices A00, A01, and A10 are likely to have large factors αkl for nearly
constant functions f . At the other extreme, the basis matrices A67, A76, and A77 will
be important for representing rapidly varying functions.

Proof of the orthogonality of C (12.11): To show this somewhat surprising fact,
we rewrite the identify CtC = I in terms of its coefficients:

[CtC]jk =
N−1∑
i=0

[Ct]ji[C]ik =
N−1∑
i=0

[C]ij [C]ik = δjk =

{
1, if j = k,

0, otherwise,

or equivalently
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[CtC]jk =
N−1∑
i=0

δ2
i

N
cos

i(2j + 1)π
2N

cos
i(2k + 1)π

2N
= δjk. (12.11)

Proving (12.11) is equivalent to proving (12.9), the orthogonality of C, which implies
the invertibility of (12.5). The proof that follows is not that difficult, but it contains
several cases and subcases that must be carefully considered.

We expand the product of cosines from (12.11) using the trigonometric identity

cos α cos β =
1
2

cos(α + β) +
1
2

cos(α − β).

Let Sjk = [CtC]jk. Then we have that

Sjk =
N−1∑
i=0

δ2
i

N
cos

i(2j + 1)π
2N

cos
i(2k + 1)π

2N

=
N−1∑
i=0

δ2
i

2N

(
cos

i(2j + 2k + 2)π
2N

+ cos
i(2j − 2k)π

2N

)

=
N−1∑
i=0

δ2
i

2N

(
cos

2πi(j + k + 1)
2N

+ cos
2πi(j − k)

2N

)
.

Since δ2
i = 1 if i = 0 and δ2

i = 2 otherwise, we can add the i = 0 term and subtract it
to obtain

Sjk =
1
N

N−1∑
i=0

(
cos

2πi(j + k + 1)
2N

+ cos
2πi(j − k)

2N

)
− 1

N
.

We split the proof into the following three cases: j = k, j − k is even but nonzero,
j − k is odd. Observe that exactly one of (j − k) and (j + k + 1) is even, while the
other is odd. We consider each of these cases by separating the sum and the term − 1

N
as follows:

j = k We write Sjk = S1 + S2 with

S1 = − 1
N

+
1
N

N−1∑
i=0

cos
2πil

2N
, S2 =

1
N

N−1∑
i=0

cos
2πil

2N
,

where l = j + k + 1 is odd, where l = j − k = 0.

j − k even and j 
= k Write Sjk = S1 + S2 with

S1 = − 1
N

+
1
N

N−1∑
i=0

cos
2πil

2N
, S2 =

1
N

N−1∑
i=0

cos
2πil

2N
,

where l = j + k + 1 is odd, where l = j − k is even and nonzero.
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j − k odd Write Sjk = S1 + S2 with

S1 =
1
N

N−1∑
i=0

cos
2πil

2N
, S2 = − 1

N
+

1
N

N−1∑
i=0

cos
2πil

2N
,

where l = j + k + 1 is even, where l = j − k is odd.
nonzero, and < 2N ,

There are three distinct sums to be studied:

1
N

N−1∑
i=0

cos
2πil

2N
, where l = 0, (12.12)

1
N

N−1∑
i=0

cos
2πil

2N
, where l even, nonzero, and < 2N, (12.13)

− 1
N

+
1
N

N−1∑
i=0

cos
2πil

2N
, where l odd. (12.14)

The first case is simple, since if l = 0 it follows that

1
N

N−1∑
i=0

cos
2πil

2N
=

1
N

N−1∑
i=0

1 =
N

N
= 1.

Since we wish to show that Sjk is zero unless j = k (otherwise, Sjj = 1), the proof is
finished if we can show that (12.13) and (12.14) are both zero. For (12.13) recall that

2N−1∑
i=0

e2πil
√−1/2N =

e2πl·2N
√−1/2N − 1

e2πl
√−1/2N − 1

= 0 (12.15)

if e2πl
√−1/2N 
= 1. If l < 2N this inequality is always satisfied. By taking the real part

of (12.15) we find that

2N−1∑
i=0

cos
2πil

2N
= 0.

The sum contains twice as many terms as (12.13). However, we can rewrite it as
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0 =
2N−1∑
i=0

cos
2πil

2N

=
N−1∑
i=0

cos
2πil

2N
+

2N−1∑
i=N

cos
2πil

2N

=
N−1∑
i=0

cos
2πil

2N
+

N−1∑
j=0

cos
2π(j + N)l

2N
, for i = j + N,

=
N−1∑
i=0

cos
2πil

2N
+

N−1∑
j=0

cos
(

2πjl

2N
+

2πNl

2N

)
.

If l is even, the phase 2πNl
2N = πl is an even multiple of π and can therefore be dropped,

since the cosine is periodic with period 2π. Thus

0 =
N−1∑
i=0

cos
2πil

2N
+

N−1∑
j=0

cos
2πjl

2N
= 2

N−1∑
i=0

cos
2πil

2N
,

and hence the sum of (12.13) is zero-valued.
Observe that the first term i = 0 of the sum from (12.14) is

1
N

cos
2π · 0 · l

2N
=

1
N

,

which cancels the term − 1
N . As such, the sum from (12.14) simplifies to

N−1∑
i=1

cos
2πil

2N
.

We must now divide case (12.14) into two subcases, N even and N odd. We divide the
sum

∑N−1
i=1 cos 2πil

2N as follows:

N odd
N−1

2∑
i=1

cos
2πil

2N
and

N−1∑
i= N−1

2 +1

cos
2πil

2N

and

N even

the term i =
N

2
,

N
2 −1∑
i=1

cos
2πil

2N
, and

N−1∑
i= N

2 +1

cos
2πil

2N
.
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We start with this last subcase. If N is even, then for i = N/2 we have

cos
2π

2N
· N

2
· l = cos

π

2
l = 0,

since l is odd. Rewrite the second sum by letting j = N − i; since N
2 + 1 ≤ i ≤ N − 1,

the domain of j is 1 ≤ j ≤ N
2 − 1:

N−1∑
i= N

2 +1

cos
2πil

2N
=

N
2 −1∑
j=1

cos
2π(N − j)l

2N
=

N
2 −1∑
j=1

cos
(

πl − 2πjl

2N

)
.

And since l is odd, the phase πl is always an odd multiple of π, and

N−1∑
i= N

2 +1

cos
2πil

2N
=

N
2 −1∑
j=1

− cos
(
−2πjl

2N

)
.

Since the cosine function is even, we have finally that

N−1∑
i= N

2 +1

cos
2πil

2N
= −

N
2 −1∑
j=1

cos
2πjl

2N
,

and the two sums of the subcase cancel each other. The subcase of (12.14) where N is
odd is left as an exercise to the reader. �

12.5 The JPEG Standard

As discussed in the introduction, a good compression method will be tailored to the
specific use and type of the object being compressed. The JPEG standard is intended
for use in compressing images, more specifically photorealistic ones. As such, the com-
pression technique is based on the fact that most photographs consist primarily of gentle
gradients and transitions, while rapid variations are relatively rare. With what we have
just learned about the discrete cosine transform and the coefficients αkl, it seems natural
to let the low-frequency components (with small l and k) play a large role, while letting
high-frequency components (with l and k near N) play a small role. The following
rule serves as a guide: all loss of information that is imperceptible to the human visual
system (eyes and brain) is acceptable.

The compression algorithm can be broken down into the following major steps:

• translation of the image function,
• application of the discrete cosine transform to each 8 × 8 block,
• quantization of the transformed coefficients,
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• zigzag ordering and encoding of the quantized coefficients.

We will describe each of these steps as applied to the image of a cat from Figure
12.1. This photo was taken by a digital camera that natively compressed the image in
JPEG format. A 640× 640 crop of the image was taken and subsequently converted to
grayscale, with each pixel taking an integer value between 0 and 255. Recall that each
pixel requires one byte of raw storage and therefore that the image requires 409,600 B
= 409.6 KB = 0.4096 MB to store uncompressed.

Translation of the image function. The first step is the translation of the values of
f by the quantity 2b−1, where b is the number of bits (or bit depth) used to represent
each pixel. In our case we are using b = 8, and we therefore subtract 2b−1 = 27 = 128
from each pixel. This first step produces a function f̃ whose values are in the interval
[−2b−1, 2b−1 − 1], which is (nearly) symmetric with respect to the origin, like the range
of the cosine functions that form the basis matrices Akl. We will follow the details of the
algorithm on the 8× 8 block shown in Table 12.2. The values of the translated function
f̃ij = fij − 128 are shown in Table 12.4, while the original values of the function f may
be found in Table 12.2.

-88 65 -39 -91 81 108 -87 -114
-26 37 -92 22 119 -24 -121 -109
29 -36 -40 123 28 -125 -108 -93
25 -53 92 65 -99 -115 -94 -106

-12 45 112 -74 -117 -90 -108 -109
34 127 -19 -119 -102 -106 -108 -99

109 54 -123 -100 -108 -113 -100 -108
94 -95 -120 -105 -104 -99 -105 -105

Table 12.4. The 64 values of the function f̃ij = fij − 128.

Discrete cosine transformation of each 8 × 8 block. The second step consists in
partitioning the image into nonoverlapping blocks of 8×8 pixels. (If the image width is
not a multiple of 8, then columns are added to the right until it is. The pixels in these
additional columns are assigned the same gray tone as the rightmost pixel in each row
of the original image. A similar treatment is applied to the bottom of the picture if the
height is not a multiple of 8.) After partitioning the image into 8×8 blocks the discrete
cosine transform is applied to each block. The result of this second step as applied to
f̃ is given in Table 12.5. If we compare these coefficients to the αkl of f shown in Table
12.3, we see that only the coefficient α00 has changed. This is no coincidence and is
a direct result of the fact that f̃ is obtained from f by a translation. Exercise 11 (b)
investigates why this happens.
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−342.38 351.77 −8.671 54.194 27.63 −55.11 −23.87 −15.74
144.58 −94.65 −264.52 5.864 7.660 −89.93 −24.28 −12.13
−31.78 −109.77 9.861 216.16 29.88 −108.14 −36.07 −24.40

23.34 12.04 53.83 21.91 −203.72 −167.39 0.197 0.389
−18.13 −40.35 −19.88 −35.83 −96.63 47.27 119.58 36.12

11.26 9.743 24.22 −0.618 0.0879 47.44 −0.0967 −23.99
0.0393 −12.14 0.182 −11.78 −0.0625 0.540 0.139 0.197
0.572 −0.361 0.138 −0.547 −0.520 −0.268 −0.565 0.305

Table 12.5. The 64 coefficients αkl of the function f̃ .

Fig. 12.7. The discrete scales used to measure α00 (top) and both α01 and α10 (bottom).

Quantization. The third step is called quantization: it consists in transforming the
real-valued coefficients αkl into integers �kl. The integer �kl is obtained from αkl and
qkl by the formula

�kl =
[
αkl

qkl
+

1
2

]
, (12.16)

where [x] is the integer part of x.
We explain the origins of this formula. Since the set of real numbers that can be

represented on a computer is finite, the mathematical concept of the real line is not
natural on computers. These numbers must be discretized, but must it be to the full
precision that the computer is capable of representing? Could we not discretize them
at a coarser scale? The JPEG standard gives a large amount of flexibility at this step:
each coefficient αkl is discretized with an individually chosen quantization step. The
size of the step is encoded in the quantization table, which is fixed across all 8×8 blocks
in a single image. The quantization table that we will use is shown in Table 12.6. For
this table the step size for α00 will be 10, while already for α01 and α10 it will be 16.
Figure 12.7 shows the effects of these step sizes for these three coefficients. Observe
that all α00 from 5 up to but not including 15 will be mapped to the value �00 = 1; in
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10 16 22 28 34 40 46 52
16 22 28 34 40 46 52 58
22 28 34 40 46 52 58 64
28 34 40 46 52 58 64 70
34 40 46 52 58 64 70 76
40 46 52 58 64 70 76 82
46 52 58 64 70 76 82 88
52 58 64 70 76 82 88 94

Table 12.6. The quantization table qkl used in this example.

fact, from

�00(5) =
[

5
10

+
1
2

]
= [1] = 1

and

�00(15 − ε) =
[
15 − ε

10
+

1
2

]
=

[
2 − ε

10

]
= 1

for an arbitrarily small positive number ε. Figure 12.7 shows the window of values that
are mapped to the same quantized coefficient, each delimited by a small vertical bar.
Any values of αkl between two numbers below the axis will share the same � at the
moment of reconstruction, the � noted above the central dot. These dots indicate the
middle of each region, and the value �kl × qkl will be assigned to the coefficient when
they are uncompressed. The fraction 1

2 in (12.16) ensures that �kl × qkl falls in the
middle of each window. The second axis of Figure 12.7 depicts the situation for α01 and
α10, whose quantification factor is larger, namely q01 = q10 = 16. More values of α01

(and α10) will be identified to the same �01 (and �10) due to this wider window. As can
be seen, the larger the value of qkl, the rougher the approximation of the reconstructed
αkl and the more information that is lost. The largest step size in our quantification
table is q77 = 94. All coefficients α77 whose values lie in the range [−47, 47) will map
to the value �77 = 0. The precise value of the original coefficient in this interval will be
irrevocably lost during the compression process.

Having chosen the quantization table shown in Table 12.6, we can quantifiy the
transform coefficients of the original block f ; they are shown in Table 12.7.

Most digital cameras offer a way to save images at various quality levels (basic,
normal, and fine, for example). Most software packages for manipulating digital images
offer similar functionality. Once a given quality level has been chosen, the image is
compressed using a quantization table that has been predetermined by the makers of
the hardware or software. The same quantization table is used for all 8 × 8 blocks
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-34 22 0 2 1 -1 -1 0
9 -4 -9 0 0 -2 0 0

-1 -4 0 5 1 -2 -1 0
1 0 1 0 -4 -3 0 0

-1 -1 0 -1 -2 1 2 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 12.7. The quantization 	kl of the transformed coefficients αkl.

in the image. It is transmitted once from the header of the JPEG file, followed by
the transformed, quantized, and compressed block coefficients. Even though the JPEG
standard suggests a family of quantization tables, any one may be used. As such, the
quantization table offers a large amount of flexibility to the end user.

Zigzag ordering and encoding. The last step of the compression algorithm is the
encoding of the table of quantized coefficients �kl. We will not delve too far into the
details of this step. We will say only that the coefficient �00 is encoded slightly differently
from the rest and that the encoding uses the ideas discussed in the introduction: the
values of �kl occurring more frequently are assigned shorter code words and vice versa.
What are the most likely values? The JPEG standard prefers coefficients with a small
absolute value: the smaller |�kl|, the smaller the code word for �kl. Is it surprising that
many coefficients �kl are nearly zero-valued? No, it is not if we recall that the αkl (and
hence the �kl) typically measure changes that are relatively small in scope with respect
to the actual size of the image.

Thanks to the quantization step, many �kl with large k and l are zero-valued. The
encoding makes use of this fact by ordering the coefficients such that long strings of
zero-valued coefficients are more likely. The precise ordering defined by the JPEG
standard is shown in Figure 12.8: �01, �10, �20, �11, �02, �03, . . . . Given that most of the
nonzero coefficients tend to be clustered in the upper left corner, it often happens that
the coefficients ordered in this manner are terminated by a long run of zero values.
Rather than encoding each of these zero values, the encoder sends a single special code
word indicating the “end of block.” When the decoder encounters this symbol it knows
that the rest of the 64 symbols are to filled in with zeros. Looking at Table 12.7, note
that �46 = 2 is the last nonzero coefficient in the proposed zigzag ordering. The eleven
remaining coefficients (�37, �47, �56, �65, �74, �75, �66, �57, �67, �76, �77) are all zero-valued
and will not be explicitly transmitted. As we will see in the example of the image of
the cat, this provides an enormous gain to the compression ratio.

Reconstruction. A computer can quickly reconstruct a photo from the information
in a JPEG file. The quantification table is first read from the file header. Then the
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Fig. 12.8. The order in which the coefficients 	kl are transmitted: 	01, 	1,0, . . . , 	77.

following steps are performed for each 8 × 8 block: the information for a block is read
until the “end of block” signal is encountered. If fewer than 64 coefficents were read, the
missing ones are set to zero. The computer then multiplies each �kl by the corresponding
qkl. The coefficient βkl = �kl ×qkl is therefore chosen in the middle of the quantification
window where the original αkl lay. The inverse of the discrete cosine transformation
(12.10) is then applied to the β’s to get the new gray tones f̄ :

f̄ = CtβC.

After correcting for the translation of the original image, the gray tones for this 8 × 8
block are ready to be shown on screen.

Figure 12.9 shows the visual results of JPEG compression, applied to the entire
image as described in this section. Recall that the original photo contains 640 × 640
pixels and therefore 80 × 80 = 6400 blocks of 8 × 8 pixels. The four steps (translation,
transformation, quantization, and encoding) are thus performed 6400 times. The left
column of Figure 12.9 contains the original image plus two successive closeups.5 The
right column contains the same image after being JPEG compressed and decompressed
using the quantization table of Table 12.6.

5Recall that the original photo was obtained from a digital camera that itself stores the
image in JPEG form.
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Fig. 12.9. The three images at the left are the same as those of Figure 12.1. Those at the
right have been obtained from this image after being heavily JPEG compressed. The middle
blocks are 32 × 32 pixels, while those at the bottom are 8 × 8 pixels.
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The 8 × 8 block containing the crossing of two whiskers has been chosen because
it is a block with high contrast. These are the types of blocks that are the least well
compressed by the JPEG standard. By comparing the closeups we can see the effect of
the aggressive compression. Close to the border between the highly contrasting regions
the effect is most noticeable. Since this block contains high-contrast quickly varying
data, we would have had to store the coefficients αkl with more precision in order to
reproduce them clearly. The aggressive zeroing of many of these coefficients in the
quantization step has introduced a certain “noise” close to the whiskers. Note that a
certain amount of noise was already present in this region in the original photograph, a
clear sign that the camera was using JPEG compression. Another clear sign that JPEG
compression has been used is the often visible boundaries of 8 × 8 blocks, specifically
blocks containing high contrast next to smooth blocks, as is the case in the region of
the whiskers. Notice the 8× 8 block second from the bottom and third from the left of
the 32 × 32 blocks in Figure 12.9. This block is completely “under the table” and has
been compressed to a uniform gray. As such, it is not surprising that after quantization
it contains only two nonzero coefficients (�00 and �10). The encoding of this block omits
62 coefficients, and the compression is very good!

Is this block the rule or the exception? There are 640 × 640 = 409,600 pixels in the
entire image. After transforming and quantizing these coefficients, the image is encoded
by a series of 409,600 coefficients �kl. By ordering them in zigzag order and omitting the
trailing runs of zeros, we are able to avoid storing over 352,000 zeros, roughly 7

8 of the
coefficients! It is not surprising that the compression achieved by the JPEG standard
is so good.6

The ultimate test is the comparison of the two images with the naked eye. It is up to
the user to judge whether the compression (in this case, the zeroing of roughly 7

8 of the
Fourier coefficients αkl) has damaged the photograph. It is important to note that this
comparison should be performed under the same conditions in which the compressed
photograph will be used. Recall the example of the digitized works from the Louvre. If
the image is going to be looked at using a low-resolution screen, then the compression
can be relatively aggressive. However, if the image is to be closely studied by art
historians, is to be printed at high resolution, or is to be viewed through software that
allows zooming in, then a higher resolution and a less-aggressive compression should be
used.

The JPEG standard offers an enormous amount of flexibility through its quantization
tables. In certain cases we can imagine that using even higher values in this table will
lead to better compression and acceptable quality. However, the weaknesses of the
JPEG standard are made apparent in areas of high contrast and detail, especially when
the quantization table contains overly large values. This is why the JPEG standard
performs so poorly at compressing line art and cartoons, which consist largely of black
lines on a white background. These lines become marred (with a characteristic JPEG

6Through careful choice of the quantization table this photo can be compressed to less than
30 KB in size (compared to 410 KB uncompressed) without the degradation being intolerable.
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“speckle”) after aggressive compression. It would be equally inappropriate to take a
picture of a page of text and compress it using the JPEG standard; the letters are in
high contrast with the page and would become blurred. The JPEG standard was created
with the goal of compressing photographs and photorealistic images and it excels at this
task.

What about color images? It is well known that colors can be described using three
dimensions. For example, the color of a pixel on a computer screen is normally described
as a ratio of the three (additive) primary colors: red, green, and blue. The JPEG stan-
dard uses a different set of coordinates (or color space). It is based on recommendations
made by the Commission internationale de l’éclairage (International Commission on
Illumination), which in the 1930s developed the first standards in this domain. The
three dimensions of this color space are separated, leading to three independent images.
These images, each corresponding to one coordinate, are then individually treated in the
same manner as discussed in this chapter for gray tones. (For those who want to learn
more, the book [2] contains a self-contained description of the standard with enough
information to fully implement the standard, a discussion of the science underlying the
various mathematical tools used in it, and the necessary knowledge on the human visual
system. References [3, 4] are good entry points in the field of data compression.)

12.6 Exercises

1. (a) Verify that if x ∈ [−1, 1] ⊂ R, then aff1(x) = 255(x+1)/2 is an element of [0, 255].
(b) Is aff1 the ideal transformation? For which x will aff1(x) = 255? Can you propose
a function aff ′ such that all integers in {0, 1, 2, . . . , 255} will be images of equal-length
subintervals of [−1, 1]?
(c) Give the inverse of aff1. The function aff ′ cannot have an inverse. Why? Despite
this, can you propose a rule that would allow you to construct a function g starting
from a function f as in Section 12.3?

2. (a) Verify that the four vectors A00, A01, A10, and A11 of (12.3) (expressed in the
usual basis B) are orthonormal, that is, they have length 1 and are pairwise orthogonal.
(b) Let v be the vector whose coefficients in the basis B are

[v]B =

⎛
⎜⎜⎝
− 3

8
5
8
1
2− 1
2

⎞
⎟⎟⎠ .

Give the coefficients of this vector in the basis B′ = {A00, A01, A10, A11}. What is the
largest coefficient of [v]B′ in terms of absolute value? Could you have guessed which
one it was going to be without explicitly calculating them? How?
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3. (a) Show that the N ×N matrix C used in the discrete cosine transform for N = 4 is
given by ⎛

⎜⎜⎝
1
2

1
2

1
2

1
2

γ δ −δ −γ
1
2 − 1

2 − 1
2

1
2

δ −γ γ −δ

⎞
⎟⎟⎠ .

Express the two unknowns γ and δ in terms of the cosine function.
(b) Using the trigonometric identity cos 2θ = 2 cos2 θ − 1, explicitly give the numbers
γ and δ. (Here “explicitly” means as an algebraic expression with integer numbers and
radicals but without the cosine function.) Using these expressions, show that the second
line of C represents a vector with unit norm as is required by the orthogonality of C.

Fig. 12.10. The discrete function g of Exercise 4 (b).

4. (a) The discrete cosine transformation allows the expression of discrete functions
g : {0, . . . , N − 1} → R (given by g(i) = gi) as linear combinations of the N discrete
basis vectors Ck, where Ck(i) = (Ck)i = cki, k = 0, 1, 2, . . . , N − 1. This transformation
expresses g in the form g =

∑N−1
k=0 βkCk, which yields

gi =
N−1∑
k=0

βk(Ck)i.

For N = 4, represent the function (C2)i by a histogram. (This exercise reuses results
from Exercise 3, but the reader is not required to have completed that exercise.)
(b) Knowing that the numeric values of γ and δ of the previous exercise are roughly
0.65 and 0.27 respectively, what will be the coefficient βk with the largest magnitude
for the function g represented in Figure 12.10?

5. Complete the calculation of (12.14) for the subcase in which N is odd.
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Fig. 12.11. The function f of Exercise 6.

6. A function

f : {0, 1, 2, 3, 4, 5, 6, 7} × {0, 1, 2, 3, 4, 5, 6, 7} → {0, 1, 2, . . . , 255}

is represented graphically by the gray tones of Figure 12.11. The values fij are constant
along a given row; in other words, fij = fik for all j, k ∈ {0, 1, 2, . . . , 7}.
(a) If f0j = 0, f1j = 64, f2j = 128, f3j = 192, f4j = 192, f5j = 128, f6j = 64, f7j = 0 for
all j, calculate α00 as defined by the JPEG standard, but without doing the translation
of f as described in the first step of Section 12.5.
(b) If the discrete cosine transform is carried out as suggested by the JPEG standard,
several of the coefficients αkl will be zero-valued. Determine which elements of αkl will
be zero-valued and explain why.

7. Let C be the matrix representing the discrete cosine transform. Its elements [C]ij =
cij , 0 ≤ i, j ≤ N −1, are given by (12.6). Let N be even. Show that each of the elements
of rows i of C where i is odd is one of the following N values:

±
√

2
N

cos
kπ

2N
, with k ∈ {1, 3, 5, . . . , N − 1}.

8. Figure 12.12 displays an 8 × 8 block of gray tones. Which coefficient αij will have the
largest magnitude (ignoring α00)? What will its sign be?
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Fig. 12.12. An 8 × 8 block of gray tones for Exercise 8.

9. With the rising popularity of digital photography, programs allowing for the manipu-
lation and retouching of photographs have become increasingly popular. Among other
things, they allow images to be reframed (or cropped) by removing rows or columns
from the outer edges. If an image is JPEG compressed, explain why it is better to
remove groups of rows or columns that are multiples of 8.

10. (a) Two copies of the same photograph are independently compressed using distinct
quantization tables qij and q′ij . If qij > q′ij for all i and j, what will be, in general, the
larger file, the second or the first? Which quantization table will lead to a larger loss of
quality in the photograph?
(b) If the quantization table from Table 12.6 is used and if α34 = 87.2, what will be
the value of �34? What if α34 = −87.2?
(c) What is the smallest value of q34 that will lead to a zero-valued �34 for the values
of α34 in the preceding question?
(d) Does �kj(−αkj) = −�kj(αkj)? Explain.
Note: Another slightly different problem is raised by technology. Suppose a photo is
already in the JPEG format and is available through the Internet. If the file remains
large, it could be useful to recompress the file using a more aggressive quantification
table for users having slower Internet connections. The choice of the new quantification
table would then depend on the speed of the connection and perhaps on the use of the
photo. It turns out that the choice of this second table is delicate, since the degradation
of the picture does not increase monotonically with the size of its coefficients. See, for
example, [1].
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11. (a) Calculate the difference between the α00 of the function f given in Table 12.2 and
that of the function f̃ obtained through translation.
(b) Show that a translation of f by any constant (for example 128) changes only the
coefficient α00.
(c) Using the definition of the discrete cosine transform, predict the difference between
the two coefficients α00 calculated in (a).
(d) Show that α00 is N times the average gray tone of the block.

12. Let g be a step function representing a checkerboard: the upper left corner (0, 0) has
value +1, and the rest of the squares are filled in such a way that they have the opposite
sign to their horizontal and vertical neighbors.
(a) Show that the step function gij can be described by the formula

gij = sin(i + 1
2 )π · sin(j + 1

2 )π.

(b) Calculate the eight numbers

λi =
7∑

j=0

cij sin(j + 1
2 )π, for i = 0, . . . , 7,

where cij is given by (12.6). (If this exercise is taking too long to perform by hand,
consider using a computer!)
(c) Calculate the coefficients βkl of the checkboard function g given by βkl =∑N−1

i,j=0 ckicljgij (calculating the values λi is helpful). Could you have guessed exactly
which coefficients would be zero-valued? Is the position of the largest nonzero coefficient
βkl surprising?
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The DNA Computer1

Covering this entire chapter could easily consume two full weeks of course time. How-
ever, it is equally possible to condense the core material into one week. In the lat-
ter case, provided the students have sufficient mathematical maturity, we construct
the theory of recursive functions starting from simple functions and the operations of
composition, recurrence, and minimization. We explain the mechanics of a Turing
machine and examine a few Turing machines that calculate simple functions (Section
13.3). We state without proof Theorem 13.40, which shows that all recursive functions
are Turing-calculable. At this point, we have a choice: we can decide to discuss parts
of the proof in further detail, or we can skip directly to discussing DNA computers. In
the latter case we have sufficient time only to discuss biological operations that can be
performed on DNA, and walk through the example of Adleman’s technique for solving
the Hamiltonian path problem using DNA (Section 13.2).

For students with more of a computer science background it is worthwhile to spend a

solid two weeks on this chapter. We spend more time describing Turing machines and

we discuss at least one step in the proof that recursive functions are Turing-calculable

(Theorems 13.32 and 13.40). We introduce insertion–deletion systems (Section 13.4)

and we explain how enzymes are able to perform insertions and deletions on DNA.

We state without proof Theorem 13.44, showing that for each Turing machine there

exists an insertion–deletion system that executes the same program, and we stress the

significance of this result. We discuss at least one of the cases of the proof, and if time

is too short, we skip Adleman’s technique.

13.1 Introduction

The subject of this chapter is an area of active research. Even though they have been
used to solve an actual mathematical problem, DNA computers are still a thing of

1This chapter was written by Hélène Antaya and Isabelle Ascah-Coallier while supported
by an NSERC Undergraduate Student Research Award.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 13, c© Springer Science+Business Media, LLC 2008
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science fiction. Research is ongoing and requires multidisciplinary teams with expertise
in computing and biochemistry.

Compare this to the development of classic computers. Their development was
spurred once somebody realized that electric circuits were capable of performing logi-
cal operations. (Simple examples of this are explored in Section 15.7 of Chapter 15.)
Modern computers are constructed by connecting an enormous number of transistors.
In the time of the first computers, programming required an implicit knowledge of the
inner workings of the computer in order to decompose the program into a sequence
of operations that the computer was able to perform. Advances in several directions
were made quickly, with computers becoming more and more sophisticated on one side
and programming languages being developed on the other side. With this progress, it
became less and less important to know the inner workings of a computer in order to
use one.

Somewhere along the way we asked ourselves, what questions may be solved by a
computer? In order to respond to this question we must first define exactly what we
mean by an “algorithm” and a “computer.” The two questions are rather difficult and
push the limits of philosophy. Rather than talking about algorithms we often talk about
“calculable functions.” All approaches to calculability have led to equivalent definitions.
In particular, if we limit ourselves to functions f : Nn → N, then calculable functions are
the recursive functions we will discuss in Section 13.3.2. In order to analyze the power
of computers, rather than thinking about the most complex computers the future will
bring, scientists instead focused on the simplest computer imaginable: a Turing machine,
described in Section 13.3. The central theorem on this topic shows that a function
f : Nn → N is recursive if and only if it is calculable by a Turing machine (see Theorem
13.41 for one of the two directions). This led Church to formulate his famous thesis,
which states that a function is “calculable” if and only if it is calculable by a Turing
machine.

The above theory yields a method for programmers to calculate all recursive func-
tions. However, such solutions are often far from being the most elegant or the most
efficient. When we are interested in numeric solutions, theoretical algorithms offer little
utility, and the algorithms used in practice bear little resemblance to them. Many of
the most simply stated problems are effectively unsolvable by traditional computers in
reasonable time. This is the case for the problem of large integer factorization discussed
in Chapter 7 and the Hamiltonian path problem discussed in this chapter. Given a set
of cities and oriented paths between them, the Hamiltonian path problem asks whether
there exists a path that starts in the first city, goes through each city exactly once,
and ends in the last city. When the number of cities is sufficiently large (more than
a hundred or so), the number of possible paths becomes so large that even the most
powerful computers are unable to explore them all. There are two ways to improve per-
formance for these types of problems: find better algorithms, or build faster computers.
A simple way of building faster computers is to increase the number of processors and
to connect many modern computers in parallel, allowing them to work on the same
problem simultaneously. In 2005 the largest computer on the planet had 131,072 paral-
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lel processors. Parallel computers are not an ideal solution, however, since the largest
ones are expensive to build and they are quickly out of date.

The concept of the DNA computer was born in 1994. Leonard Adleman, a com-
puter scientist and one of the creators of the well known RSA cryptographic system
(see Chapter 7), observed that the biological operations performed on strands of DNA
inside cells could be used to perform logical operations. DNA is a very large molecule
arranged in a double helix, which is able to be separated into two single strands in the
same way as we open a zipper. Each strand consists of a simple sequence of bases, each
one of four types: A (adenine), C (cytosine), G (guanine), and T (thymine). Two single
strands can be assembled into a double strand if they are complementary: A bases can
pair only with T bases, while C bases can pair only with G bases. Certain enzymes are
able to cut a strand of DNA at specific locations, called “loci.” A snippet of DNA may
be removed from a strand if it lies between two loci (deletion), and snippets may be
added in a similar manner (insertion). DNA polymerase (another enzyme) allows for
the duplication of DNA molecules and hence the cloning of entire DNA strands. Adle-
man saw these operations and was reminded of the basic operations being performed
by electrical circuits and transistors in a computer (see Section 15.7 of Chapter 15).
In order to demonstrate the potential computing power of DNA, Adleman used DNA
manipulation to construct the solution to a Hamiltonian path problem involving seven
cities. This initial demonstration quickly spurred further research on the subject. As
with conventional computers, research has gone in many directions. On the theoretical
side things are quite advanced. Kari and Thierrin [3] showed that all Turing-calculable
functions are able to be calculated on DNA strands using insertion and deletion op-
erations. We will show this result in Section 13.4. As is the case with conventional
computers, theoretical algorithms used in proofs are not necessarily the most efficient
or practical for solving actual problems. Thus, much research has focused on the more
practical aspects. Adleman required seven days in the lab to find the Hamiltonian path
over a set of seven cities, while most anyone would be able to find the solution in a
few minutes using pencil and paper. It is not known whether large problems could be
efficiently tackled with DNA computing. The technique used by Adleman is known to
be practical only for small numbers of cities. However, as noted above, parallelism in
conventional computers is somewhat limited by its cost. Many researchers are there-
fore interested in the potential parallelism of DNA computers. It is known that DNA
strands can be efficiently cloned in very large numbers. Mixing them all together with
the appropriate enzymes, a large number of insertions and deletions may be performed
in parallel. Can this property be used to construct hugely parallel DNA computers?
The research continues.

13.2 Adleman’s Hamiltonian Path Problem

Even if we are not yet able to build a practical DNA computer, several simple cal-
culations have already been performed using DNA operations. As just said, Leonard
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Adleman demonstrated in 1994 the potential of DNA computing by solving an actual
(albeit small) problem.

The problem starts with a directed graph, as shown in Figure 13.1. A directed graph
is a set of nodes (here labeled by the numbers 0 through 6) and a collection of directed
edges connecting pairs of nodes (here represented by arrows between nodes).

The Hamiltonian path problem consists in finding a path starting at the first node
(node 0) and finishing at the last node (node 6) while passing through all other nodes
exactly once, while satisfying the directions imposed on connections between nodes.
This is a classic problem in mathematics.

Fig. 13.1. The directed graph investigated by Adleman.

Adleman’s solution: Adleman started by encoding each node using a small DNA
strand consisting of eight bases. For example, node 0 may be represented by the strand

AGTTAGCA

and node 1 by
GAAACTAG.

We will use the word “prename” to refer to the first four bases in a node label, and
the word “name” to refer to the last four. Directed edges are encoded as strands of
eight bases, consisting of the complementary bases of the name of the departure node,
followed by the complementary bases of the prename of the destination node. Recall
that A is complementary to T , and C to G. For example, the arrow from 0 to 1 would
be encoded by the strand TCGTCTTT , since TCGT is the complement of the last four
bases (the name) of the encoding for 0, AGTTAGCA, and CTTT is the complement
of the first four bases (the prename) of the encoding for 1, GAAACTAG.

Adleman then placed a large number (roughly 1014) of copies of each strand of
DNA encoding for nodes and edges into a single test tube. DNA strands have a strong
tendency to join themselves with complementary strands. For example, if the strands
corresponding to nodes 0 and 1 were to come into proximity to a strand encoding for the
directed edge from 0 to 1, they would likely join to create the following double strand:
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T C G T C T T T
| | | | | | | |

A G T T A G C A G A A A C T A G

where the vertical line represents a stable chemical bond between complementary bases.
The bottom strand still contains unpaired bases. These bases can now attract the ends
of other directed edges, which in turn will attract nodes. Thus the molecules in the test
tube perform a large parallel computation by constructing a large number of possible
paths through the graph. Any finite path through the graph of length ≤ N for some
N could possibly be generated. This level of parallelism is simply not possible with a
conventional computer or even a large cluster of conventional computers.

If the mixture is heated, the double strands of DNA separate into single strands, thus
producing single strands encoding sequences of nodes and others encoding sequences of
directed edges. Adleman focused on the strands encoding node sequences, since these
encode the actual path walked through the graph.

The approach effectively assumes that all possible paths through the graph will be
generated. If the problem has a solution, we are nearly guaranteed that this path will
exist somewhere in the test tube. The problem now becomes to isolate and read this
solution. How to recognize which chain is the right one among the billions of others? To
succeed at this task, Adleman had to use several sophisticated biological and chemical
techniques. In fact, this was by far the most difficult and onerous part of the solution.
The basic approach is relatively simple to understand from a theoretical point of view. In
fact, Adleman used a brute-force method, which involved making an exhaustive search
through the paths and finally selecting the correct one.

To isolate the solution strand, Adleman proceeded in five steps:
Step 1. We must first select only those paths that start at node 0 and finish at node
6. The idea is to duplicate these chains until they completely dominate all others. The
details of this step require a certain familiarity with chemistry, and we will discuss it in
more detail in Section 13.6.3.
Step 2. Among the chains selected in step 1 we must now select those that contain
exactly seven nodes (hence six directed edges). These chains will be 56 bases long, as
opposed to the 48 base chains encoding directed edges (see Figure 13.2).

Fig. 13.2. Length of chain encoding paths.
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To accomplish this, Adleman used electrophoresis, a well-known technique from
biology. The basic idea is to induce a negative charge on the strands of DNA, and to
place them along one edge of a plate covered in gel. Next, a voltage difference is applied
across the plate, as shown in Figure 13.3.

Fig. 13.3. A schematic plate for electrophoresis. (The first lane contains a DNA ladder for
sizing.)

Attracted by the positive end of the plate, the strands of DNA slowly travel through
the gel. As the first negatively charged molecules reach the positive end of the plate, the
plate is deactivated, halting the motion. The speed of travel through the gel depends
on the length of the strand of DNA, with shorter strands traveling faster than longer
strands. Thus, we can estimate the position of strands on the platter as a function
of their length. In order to calculate this precisely, the process is calibrated by also
applying electrophoresis to a sample of molecules of known length. Thus, this technique
allowed Adleman to extract only those strands of DNA with lengths of 48, 52, and 56
bases, while discarding the rest. Why did Adleman choose strands with these three
lengths, rather than just those of length 56? This is due to limitations in the chemical
methods being used, and will be explained further in Section 13.6.3.
Step 3. The next step is to select only those strands of DNA that also contain the five
other nodes. To do this, Adleman used the principle of complementarity of bases. The
basic idea is to isolate those strands of DNA that contain a particular intermediate node,
one node at a time. Suppose we wish to isolate all strands that contain node 1. To start,
we heat the solution so as to separate double strands into simple strands, and we mix into
the solution microscopic particles of iron, attached to which are complementary strands
encoding for node 1. Once mixed, all of the strands of DNA containing node 1 will
attach to the complementary strands, and thus they will all have iron particles attached
to them. Next, the strands of interest are separated from the others by attracting them
to one side of the test tube with a magnet, and pouring out the others. The strands of
interest are then put back into a solution, and heated to separate the paths from the
complementary node strands and iron particles. The iron particles can now be removed
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using a magnet, and the process repeated for each of the other intermediate nodes:
2, 3, 4, 5.
Step 4. We check to see whether there are any DNA molecules left in the test tube.
If there are, then we have found one or more solutions; if not, then the problem more
than likely does not have a solution.
Step 5. If we found any chains in the previous step, then they must be analyzed in
order to determine the exact sequence(s) they encode.

Adleman spent seven days in the laboratory to come up with the simple solution
above for the graph of Figure 13.1!

13.3 Turing Machines and Recursive Functions

As mentioned in the introduction, in studying the theoretical capabilities of a computer,
the most commonly used model is that of Turing machines. This approach was invented
by Alan Turing in 1936 [7] with the goal of clearly defining the concept of an algorithm.

In this section we will discuss the operation of a standard Turing machine. After-
ward, we will establish the connection to recursive functions. We will conclude this
section with a discussion of Church’s thesis, which is often considered as the formal
definition of an algorithm.

13.3.1 Turing Machines

It is interesting to compare a Turing machine to a computer program. A Turing machine
consists in an infinitely long tape, which may be considered as the computer memory
(which is finite in the real world). The tape is divided into individual cells, each capable
of storing a single symbol from a finite alphabet. At any point in time, only a finite
number of cells contain symbols other than the blank symbol. The machine operates on
one cell at a time, with the current cell being indicated by a pointer to it. The operation
to be performed on the cell depends on a function ϕ, which effectively describes the
program being run on the machine. The function ϕ takes as input the symbol in the
cell being pointed to and the state of the pointer. As in normal computer programming,
the function ϕ must obey several rules of syntax, and the function rule depends on the
problem to be solved.

As an example, we will start this section with a discussion of a Turing machine
built to solve a particular problem. Afterward, we will formalize the theory of Turing
machines.

Example 13.1 Consider a tape that extends infinitely to the right and that is separated
into individual cells as shown in Figure 13.4. The first cell is initialized with the blank
symbol B. It is followed by a series of cells containing 1 and 0 symbols and is terminated
by another blank cell. The set of symbols {0, 1,B} forms the alphabet of the machine.
There is a pointer in an initial state (from a finite set of states) that is pointing to the
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first cell on the tape. Our task is to change all 1 symbols into 0 symbols, and vice
versa, terminating with the pointer on the first cell.

Fig. 13.4. A semi-infinite tape.

The actions to be followed by the machine depend on the state of the pointer and the
symbol to which it is pointing. There are three actions:

1. change the symbol in the cell;
2. change the state of the pointer;
3. move the pointer left or right by one cell.

We now describe the algorithm that will complete our task. When the pointer is on
the first blank cell, we move the pointer to the right. From then on, each time a 1 is
encountered it is exchanged for a 0 and the pointer moves to the right. Similarly, each
time a 0 is encountered it is exchanged for a 1 and the pointer moves to the right. When
the pointer encounters a second blank cell, it reverses direction and continues until it
returns to the first blank cell. This algorithm is represented graphically in Figure 13.5.

Fig. 13.5. The algorithm for Example 13.1.

We will discuss this diagram in further detail, since others of its type will be used
throughout this chapter. The circles represent the possible pointer states, while arrows
indicate possible actions. The arrow pointing to state q0 indicates that this is the initial
state, while the double circle indicates that q2 is the final, or halting, state. An arrow
from state qi to state qj is labeled with a label of the form “xk/xl c” (where c ∈ {−1, 0, 1})
and is interpreted as follows: if the machine is in state qi and points to a cell containing
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symbol xk, then the symbol xk in the cell is replaced with the symbol xl, the pointer
moves c cells (with positive entries meaning go right), and the machine transitions to
state qj.

Walk through the steps performed by the machine with an initial tape containing
B10011B. At the beginning the pointer is in state q0 and points at the first blank cell.
We will represent the state of the machine as

q0B10011B

Note that the pointer has been written immediately to the left of the cell it points to.
This string signifies that the machine is in state q0, that the pointer points to the first
cell containing a B, and that the tape contains the symbols B10011B. The machine
transitions to state q1 and the pointer is moved one cell to the right. The machine will
then toggle 1 and 0 symbols, each time moving one cell to the right. Since the machine
performs the same action at each of these steps it does not need to change states. This
sequence of configurations is represented by

Bq110011B

B0q10011B

B01q1011B

B011q111B

B0110q11B

B01100q1B

Now that the pointer encounters a second B it transitions to state q2 and begins moving
back to the left. This continues until the machine encounters the first cell containing a
B:

B0110q20B

B011q200B

B01q2100B

B0q21100B

Bq201100B

q2B01100B

The machine now terminates with the task completed. In fact, the algorithm does not
define what to do when the machine encounters a B while in state q2; thus it halts
operation.

The utility of states is now clear: they allow the machine to react differently when en-
countering the same symbol. We also see why we should not change state when we repeat
the same operation. This allows the machine, which has a finite number of instructions,
to perform the program on arbitrarily long inputs between the two B symbols.
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We are now ready to rigorously define Turing machines.

Definition 13.2 A standard Turing machine M is a triplet

M = (Q,X,ϕ),

where Q is a finite set called the state alphabet, X is a finite set called the tape alphabet,
and ϕ : D → Q × X × {−1, 0, 1} is a function with domain D ⊂ Q × X. As in our
example, the last item returned by the function indicates how the pointer is moved, where
−1, 0, and 1 mean move to left, do not move, and move the right, respectively. Note that
Q and X are generally chosen to be disjoint alphabets, that is, Q ∩ X = ∅. Moreover,
the state q0 ∈ Q is the initial state, B ∈ X is the blank symbol, and Qf ⊂ Q is the set
of possible halting states.

End of Example 13.1. Using this notation the Turing machine from Example 13.1
is described as Q = {q0, q1, q2}, X = {1, 0,B}, and Qf = {q2}, with ϕ being defined
in Table 13.1. In this table the input states are labeled in the top row, while the input
symbols (which are elements of the alphabet X) are labeled in the left column. The action
of the machine on encountering a given state and symbol is defined at the intersection
of the row and column containing these two labels, and contains a triplet in Q × X ×
{−1, 0, 1}.

q0 q1 q2

B (q1, B, 1) (q2, B,−1)

0 (q1, 1, 1) (q2, 0,−1)

1 (q1, 0, 1) (q2, 1,−1)

Table 13.1. The function ϕ from Example 13.1.

Remark: The tape in a standard Turing machine is unlimited in one direction. There
are alternative forms of Turing machines using tapes that are unlimited in both direc-
tions, as well as Turing machines using multiple tapes. However, it can be proved that
all of these machines are fundamentally equivalent to standard Turing machines [6],
which is why we focus our discussion on the simplest device. Note that at any moment,
even if the tape is infinite, only a finite number of cells may be nonblank. This is a direct
result of the restriction that input tapes may have only a finite number of nonblank cells
and that at each step of operation at most one more cell may be filled.

It is important to clearly define the class of functions that are calculable using a
Turing machine, which we will call T-calculable functions. First, we define the concept
of “words” over an alphabet X, which will be used often.

Definition 13.3 Let X be an alphabet and λ the null word containing no characters.
The set X∗ of all words over the alphabet X, is defined as follows:
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1. λ ∈ X∗;
2. If a ∈ X and c ∈ X∗, then ca ∈ X∗, where ca represents the word constructed by

appending the symbol a to the word c.
3. ω ∈ X∗ only if it can be obtained starting with λ and through a finite number of

applications of (ii).

Often we will find it convenient to use the concatenation of two words. We formalize
this operation in the following definition.

Definition 13.4 Let b and c be two words from X∗. The concatenation of b and c is
the word bc ∈ X∗, obtained by appending the characters from c to those of b.

Definition 13.5 A Turing machine M = (Q,X,ϕ) can calculate a function f : U ⊂
X∗ → X∗ if

1. there exists a unique transition from q0 of the form ϕ(q0, B) = (qi,B, 1), where
qi 
= q0;

2. there does not exist a transition of the form ϕ(qi, x) = (q0, y, c), where i 
= 0,
x, y ∈ X, and c ∈ {−1, 0, 1};

3. there does not exist a transition of the form ϕ(qf ,B), where qf ∈ Qf ;
4. for all μ ∈ U , the operation performed by M on μ with an initial configuration of

q0BμB stops in the final configuration qfBνB with ν ∈ X∗ after a finite number of
steps if f(μ) = ν (we say that a Turing machine stops in the configuration qix1 . . . xn

if ϕ(qi, x1) is not defined);
5. the calculation performed by M continues indefinitely if the input is the word μ ∈ X∗

and f(μ) is undefined (in other words, where μ ∈ X∗ \ U).

If these properties are satisfied we say that f is T-calculable.

At first sight it may seem difficult to imagine performing numeric calculations using
Turing machines. However, they are perfectly capable of dealing with functions defined
over natural numbers. We will use the unary representation of natural numbers.

Definition 13.6 A number x ∈ N has a unary representation of 1x+1, where 1x+1

is interpreted as the concatenations of x + 1 consecutive 1 symbols. Thus, the unary
representation of 0 is 1, that of 1 is 11, and that of 2 is 111, etc. We will use x to
denote the unary representation of an integer x.

Example 13.7 The successor function. It is rather straightforward to construct a
Turing machine that calculates the successor function s, defined as follows: s(x) = x+1.
The tape alphabet is X = {1,B}, the state alphabet is Q = {q0, q1, q2}, Qf = {q2},
U = {B1B,B11B,B111B, . . .}, and the state transition function ϕ is shown in Figure
13.6. Note that the tape will contain a number in unary representation preceded by a
single blank. All other cells in the tape will also be blank.
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Fig. 13.6. The successor function.

The pointer initially encounters a blank cell; it changes state and moves to the right
until it encounters another blank. This blank is replaced by a 1 and the pointer starts
moving to the left until it returns to the initial blank cell. At this point, computation
halts, since ϕ(q2,B) is not defined.

Example 13.8 The zero function. We consider constructing a machine that im-
plements the zero function z, defined as z(x) = 0. We must erase all the 1 symbols
except the first, and then return to the initial blank cell. The tape alphabet will be the
same as in the preceding example and the state alphabet will be Q = {q0, q1, q2, q3, q4}.
The initial configuration of the tape is q0BxB, and the final configuration will be qfB1B
(here qf = q4). The function ϕ is shown in Figure 13.7.

Fig. 13.7. The zero function.

Example 13.9 Addition. We will now construct a Turing machine that performs
addition. The tape will contain the entries BxByB, where x and y are the two numbers
to be added (in their unary representation). The machine will replace the blank symbol
between the two numbers with a 1, and then erase the final two 1 symbols. Thus, the
final configuration will be qfBx + yB, where qf = q5. The state alphabet is Q = {qi :
i = 0, . . . , 5}, with the tape alphabet remaining the same as in the previous examples.
The function ϕ is shown in Figure 13.8.

Example 13.10 Projection functions. We construct one final machine for a type
of function that will be important later: projection functions. We define the projection
function pi

(n) as follows:

pi
(n)(x1, x2, . . . , xn) = xi, 1 ≤ i ≤ n.
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Fig. 13.8. The addition function.

In order to implement this function on a Turing machine we want to erase the first
i − 1 numbers on the tape, preserve the ith number, and erase the n − i remaining
numbers. The tape alphabet remains the same as before, while the state alphabet is
{qi : i = 0, . . . , n + 2}. The function ϕ is shown in Figure 13.9. Note that the tape will
have an initial configuration of q0Bx1B . . . BxnB and a final configuration of qfBxiB.

Fig. 13.9. The projection function.

Figure 13.9 shows the steps taken by the machine. After the initial state, the first
i − 1 states direct the machine to erase the first i − 1 numbers, replacing them with
blanks. The machine finally reaches state qi, which instructs it to skip the ith number
without changing it. States qi+1 through qn instruct the machine to erase the remaining
numbers, while state qn+1 returns the machine to the right of the ith number. Finally,
state qn+2 ensures that the pointer returns to the blank cell preceding the ith number,
where it will halt, since ϕ(qn+2, B) is undefined. Note that the machine does not return
to the initial cell, that is, the leftmost cell of the half-infinite tape.

We could have added additional instructions directing the machine to translate the
ith number back to the beginning of the tape, preceded by a single blank (see Exercise 3)
and to halt with the pointer at the initial cell with the result immediately to its right, as
in our other examples. However, this is not strictly necessary based on the definition of
calculable functions (Definition 13.5).
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13.3.2 Primitive Recursive Functions and Recursive Functions

The previous section showed that there exist numeric functions that are calculable using
a Turing machine. This leads to the more general question of exactly what functions
are T-calculable. The primitive recursive functions and recursive functions we discuss
in this section are examples of such functions.

Before discussing primitive recursive functions we need a few preliminary definitions.
In all this chapter we will have

N = {0, 1, 2, . . . }.

Definition 13.11 An arithmetic function is a function of the form

f : N × N × · · · × N → N

Example 13.12 The successor function

s : N → N, x �→ x + 1,

and projection function

p
(n)
i : N × N × · · · × N → N, (x1, x2, . . . , xn) �→ xi,

are examples of arithmetic functions.

We can represent a function f : X → Y using the pairs of all its inputs and corre-
sponding outputs, as a subset of X × Y. Thus, (x, y) ∈ f is equivalent to saying that
y = f(x).

Definition 13.13 A function f : X → Y is called a total function if it satisfies the
following two conditions:

1. ∀x ∈ X, ∃y ∈ Y such that (x, y) ∈ f ;
2. if (x, y1) ∈ f and (x, y2) ∈ f , then y1 = y2.

This definition is the one that is usually used for a function whose domain is X.
However, we have formalized it here to allow us to distinguish between total functions
and partial functions, which will be defined a little later.

The primitive recursive functions are generated from the following base functions.
Base primitive recursive functions:

1. the successor function s: s(x) = x + 1;
2. the zero function z: z(x) = 0;
3. the projection functions pi

(n): pi
(n)(x1, x2, . . . , xn) = xi, 1 ≤ i ≤ n.
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Note in particular that the identity function is a base function, since it is equal to the
projection function p

(1)
1 .

Primitive recursive functions are constructed using two operations that may be it-
erated, starting from the base functions listed above. As will be shown later, these
operations (composition and recurrence) preserve the T-calculability of the starting
functions.

Definition 13.14 Let g1, g2, . . . , gk be arithmetic functions in n variables, and let h be
an arithmetic function in k variables. Let f be the function defined by

f(x1, x2, . . . , xn) = h(g1(x1, x2, . . . , xn), . . . , gk(x1, x2, . . . , xn)).

The function f is called the composition of h with g1, g2, . . . , gk, denoted by f = h ◦
(g1, g2, . . . , gk).

Example 13.15 Let h(x1, x2) = s(x1) + x2, g1(x) = x3 and g2(x) = x2 + 9. Define
f(x) = h ◦ (g1, g2)(x) for x ≥ 0. Then the composite function f simplifies to

f(x) = x3 + x2 + 10.

Example 13.16 The constant functions. Let cn(x) = n be the constant function
taking the value n. It is primitive recursive. Indeed the function c1(x) = 1 is defined as
c1(x) = s ◦ z(x). If cn has been shown to be primitive recursive, then cn+1 = s ◦ cn is
primitive recursive.

We are now ready to define the operation of recurrence.

Definition 13.17 Let g and h be total arithmetic functions of n and n + 2 variables
respectively. Define the function f of n + 1 variables as follows:

1. f(x1, x2, . . . , xn, 0) = g(x1, x2, . . . , xn);
2. f(x1, x2, . . . , xn, y + 1) = h(x1, x2, . . . , xn, y, f(x1, x2, . . . , xn, y)).

We say that f has been constructed by recurrence with base g and step h. We allow
n = 0, with the convention that a function g of zero variables is a constant.

We now have the necessary tools to define primitive recursive functions.

Definition 13.18 A function is called primitive recursive if it may be constructed using
the successor function, the zero function, the projection functions, and through a finite
number of composition and recurrence operations.
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Example 13.19 The addition function. We can define addition, add(m,n) = m +
n, using the successor function, two projection functions and a recurrence operation with
base g(x) = p

(1)
1 (x) = x and step h(x, y, z) = s ◦ p

(3)
3 (x, y, z) = s(p(3)

3 (x, y, z)) = s(z):{
add(m, 0) = g(m) = m,

add(m,n + 1) = h(m,n, add(m,n)) = s(add(m,n)).

Example 13.20 The multiplication function. Using the addition function we just
defined, we can define multiplication using the recurrence operation with base g(x) = 0
and step h(x, y, z) = add(p(3)

1 (x, y, z), p(3)
3 (x, y, z)) = add(x, z):{

mult(m, 0) = g(m) = 0,
mult(m,n + 1) = h(m,n,mult(m,n)) = add(m,mult(m,n)).

Example 13.21 The exponential function. In a similar manner we can define the
exponential function exp(m,n) = mn, by taking g(x) = 1 and h(x, y, z) = mult(x, z):{

exp(m, 0) = 1,
exp(m,n + 1) = mult(m, exp(m,n)).

Note that we have dropped the projection functions, in an effort to make the notation a
little lighter and more readable.

Example 13.22 To define the addition function add(m,n + 1) we used the succes-
sor function. To define multiplication mult(m,n + 1) we used add(. . .) and to de-
fine exp(m,n + 1) we used mult(. . .). Continuing this process, the next function
in the chain is the power tower or tetration function. Let add(m,n) = f1(m,n),
mult(m,n) = f2(m,n), and exp(m,n) = f3(m,n). We define f4 by{

f4(m, 0) = 1
f4(m,n + 1) = f3(m, f4(m,n)).

Thus we have that
f4(m,n) = mmm...m︸ ︷︷ ︸

n times

.

Similarly, we can continue this process by defining fi(m,n) as{
fi(m, 0) = 1,
fi(m,n + 1) = fi−1(m, fi(m,n)),
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for i > 4. This generates the sequence of hyperoperators, each one a function that grows
unimaginably faster than the previous one. (Exercise: what are the functions g, h used
to define fi according to Definition 13.17?)

Example 13.23 The factorial function is a primitive recursive function. We define
the factorial function as{

fact(0) = 1,
fact(n + 1) = mult(n + 1, fact(n)).

After having seen that addition is a primitive recursive function, it is natural to ask
whether subtraction is as well. However, our normal notion of subtraction is not a total
function. In fact, if we define f : N×N → N such that f(x, y) = x− y, we observe that
among others, f(3, 5) is not defined. Thus we have to define another type of subtraction
in order to have a total function on N×N. We will call this function proper subtraction.

Definition 13.24 {
sub(x, y) = x − y if x ≥ y,

sub(x, y) = 0 if x < y.

Example 13.25 Proper subtraction is a primitive recursive function. Showing this
requires two steps. We start by showing that the predecessor function is a primitive
recursive function and then we construct the proper subtraction function from it.

Definition 13.26 The predecessor function is defined by the recurrence{
pred(0) = 0,
pred(y + 1) = y.

As with addition, we can now construct the proper subtraction function using the oper-
ations of recurrence and composition:{

sub(m, 0) = m,

sub(m,n + 1) = pred(sub(m,n)).

Primitive recursive functions also allow us to construct Boolean operators, which
are necessary for constructing logical propositions. The three basic operators are NOT
(¬), AND (∧), and OR (∨) (see also Section 15.7 of Chapter 15). Before we can do this
we must first define the functions sgn and cosgn, which correspond to the “sign” of a
natural number. These functions are primitive recursive (see Exercise 11):
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1. {
sgn(0) = 0
sgn(y + 1) = 1;

2. {
cosgn(0) = 1
cosgn(y + 1) = 0.

Definition 13.27 An n variable predicate, or an open proposition, is a proposition
that will take a value of true or false depending on the values assigned to its variables
x1, . . . , xn. We will use P (x1, . . . , xn) to denote such a predicate.

Example 13.28 Let P1(x, y), P2(x, y), and P3(x, y) be respectively the three statements
x < y, x > y, and x = y, respectively. Then P1, P2 are P3 binary predicates.

Once evaluated, a predicate can return the truth value of TRUE or FALSE. Since
we are interested in working with numeric values, we will associate the number 1 with
the value TRUE, and the number 0 with the value FALSE.

Definition 13.29 Let P be a predicate on n variables. Its value function, which we
denote by |P |, is the function that given numbers x1, . . . , xn returns the truth value of
P (x1, . . . , xn) in {0, 1}.

We can now define the value functions of the binary predicates from the previous
example as primitive recursive functions which we call lt(x, y), gt(x, y), and eq(x, y):

|x < y| = lt(x, y) = sgn(sub(y, x))
|x > y| = gt(x, y) = sgn(sub(x, y))
|x = y| = eq(x, y) = cosgn(lt(x, y) + gt(x, y)),

(13.1)

where, by an abuse of notation, we have written lt(x, y) + gt(x, y) to represent
add(lt(x, y), gt(x, y)).

We are now ready to define the Boolean operators. Let P1 and P2 be two predicates
such that |P1| = p1 and |P2| = p2. The following equations define the Boolean operators
using the functions sgn and cosgn and other known primitive recursive functions

|¬P1| = cosgn(p1),
|P1 ∨ P2| = sgn(p1 + p2),
|P1 ∧ P2| = p1 ∗ p2,

where by another abuse of notation, we have written p1 ∗p2 for mult(p1, p2). In Exercise
6, the reader is asked to verify that these three functions do in fact correspond to the
Boolean operators.



13.3 Turing Machines and Recursive Functions 421

Definition 13.30 A predicate is called primitive recursive if its value function is a
primitive recursive function.

Example 13.31 The predicates x < y, x > y, and x = y from Example 13.28 are
primitive recursive. In fact, we have already constructed their value functions as com-
positions of primitive recursive functions.

Now that we have introduced primitive recursive functions, we can make the link be-
tween them and Turing machines.

Theorem 13.32 All primitive recursive functions are T-calculable.

Proof: Since we have already constructed Turing machines that calculate the successor,
zero, and projection functions, it remains only to show that the set of T-calculable
functions is closed under the operations of composition and recurrence.

We start by showing closure under composition. Let

f(x1, . . . , xn) = h ◦ (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)),

where gi, i = 1, . . . , k, and h are total arithmetic functions that are T-calculable. We use
H and Gi to denote the Turing machines that are capable of calculating the functions h
and gi, respectively. We will use these Turing machines to construct a Turing machine
that is able to calculate the function f(x1, . . . , xn).

1. The calculation of f(x1, . . . , xn) begins with initial tape configuration of

Bx1Bx2B . . . BxnB.

2. We construct a copy of the information on the tape immediately to its right, such
that the tape now reads

Bx1B . . . BxnB︸ ︷︷ ︸x1B . . . BxnB︸ ︷︷ ︸ .

(The Turing machine that performs this copying is constructed in Exercise 2.)
3. We use machine G1 to obtain

Bx1Bx2B . . . BxnBg1(x1, . . . , xn)B.

We can now copy Bx1Bx2B . . . BxnB to the end of the tape to obtain the configu-
ration

Bx1Bx2B . . . BxnBg1(x1, . . . , xn)Bx1Bx2B . . . BxnB.

It is now possible to use G2 on the last n numbers. We will do these steps k times,
yielding the configuration

Bx1Bx2B . . . BxnBg1(x1, . . . , xn)B . . . Bgk(x1, . . . , xn)B.
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4. We now erase the first n numbers by replacing them with blanks and we translate the
remaining numbers to the left (as shown in Exercise 3), yielding the configuration

Bg1(x1, . . . , xn)B . . . Bgk(x1, . . . , xn)B.

5. Machine H is used to perform the final operation, yielding a final configuration of

Bh(y1, . . . , yk)B,

where yi = gi(x1, . . . , xn), which is equivalent to the desired final configuration of

Bf(x1, . . . , xn)B.

We now show closure under recurrence. Let g and h be T-calculable arithmetic
functions and let f be the function{

f(x1, . . . , xn, 0) = g(x1, . . . , xn),
f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)),

defined using recurrence with base g and step h. Let G and H be the Turing machines
calculating g and h respectively.

1. The calculation of f(x1, . . . , xn, y) starts with an initial tape configuration of

Bx1Bx2B . . . BxnByB.

2. A counter with an initial value of zero is placed to the right of the above config-
uration. This counter is used to keep track of the recursive variable during the
calculation. The numbers x1, . . . , xn are repeated to the right of the counter, pro-
ducing a configuration of

Bx1Bx2B . . . BxnByB0Bx1Bx2B . . . BxnB.

3. Machine G is used to calculate g on the last n values of the tape, producing a
configuration of

Bx1Bx2B . . . BxnByB0Bg(x1, . . . , xn)B.

Note that the last value on the tape, g(x1, . . . , xn), corresponds to f(x1, . . . , xn, 0).
4. The tape is now in the configuration

Bx1Bx2B . . . BxnByBiBf(x1, . . . , xn, i)B,

where i = 0. The operation performed at this point will simply be iterated for other
values of i, so we describe the general case.
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5. If i < y (equivalently if lt(i, y) = 1), then the machine makes a copy of the variables
and the counter i found to the left of f(x1, . . . , xn, i). (Exercise 10 shows how to
build a Turing machine that calculates lt(i, y). Thus, it is possible to build a Turing
machine that places itself in one state if lt(i, y) = 1 and in another state if not.)
The tape now has the configuration

Bx1Bx2B . . . BxnByBiBx1Bx2B . . . BxnBiBf(x1, . . . , xn, i)B.

The successor function is applied to the counter, yielding the configuration

Bx1Bx2B . . . BxnByBi + 1Bx1Bx2B . . . BxnBiBf(x1, . . . , xn, i)B.

Machine H is applied to the last n + 2 variables of the tape, producing

Bx1Bx2B . . . BxnByBi + 1Bh(x1, . . . , xn, i, f(x1, . . . , xn, i))B.

Note that h(x1, . . . , xn, i, f(x1, . . . , xn, i)) = f(x1, . . . , xn, i + 1). If the counter is
such that i = y (equivalently lt(i, y) = 0), then the calculation is completed by
erasing the first n + 2 numbers on the tape. Otherwise the calculation continues by
returning to step 5. �

It is natural to ask whether all T-calculable functions are primitive recursive func-
tions. As it turns out, the answer is no. This is demonstrated in the following theorem
and example.

Theorem 13.33 The set of primitive recursive functions is a proper subset of the set
of T-calculable functions. In other words, there exists a function f that is T-calculable
but that is not primitive recursive.

Example 13.34 The Ackermann function A, defined as

1. A(0, y) = y + 1,
2. A(x + 1, 0) = A(x, 1),
3. A(x + 1, y + 1) = A(x,A(x + 1, y)),

is T-calculable but is not primitive recursive. The Ackermann function has the property
that it “grows faster” than all primitive recursive functions, which explains why it is
fascinating. But since it grows faster than all primitive recursive functions, it cannot
actually be one. The proof of this fact is difficult and will not be presented here. However,
you may find it, for instance, in [8].

To define a new family of functions that contains the primitive recursive functions
we will make use of Boolean and relational operators. They permit us to define a new
operation: minimization.
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Definition 13.35 Let P be a predicate on n + 1 variables and p = |P | its associ-
ated value function. The expression μz[p(x1, . . . , xn, z)] represents the smallest natural
number z, if it exists, such that p(x1, . . . , xn, z) = 1. Otherwise, it is undefined. In
other words, z is the smallest natural number such that P (x1, . . . , xn, z) is true. This
construction is called the minimization of p, and μ is the minimization operator.

An (n + 1)-variable predicate allows us to define an n variable function f ,

f(x1, . . . , xn) = μz[p(x1, . . . , xn, z)],

whose domain is the set of (x1, . . . , xn) for which there exists a z such that
P (x1, . . . , xn, z) is true.

Example 13.36 We consider the “function”

f : N → N,

x �→ √
x.

As such, this is not a function in the usual sense, but if we look at Definition 13.5
we could imagine creating a Turing machine that calculates the square roots of perfect
squares and that otherwise does not stop:

f : {0, 1, 4, 9, . . .} = U → N.

In this example it is relatively easy to identify the domain U , but this is not always the
case. Thus, Definition 13.37 introduces the notion of partial functions. The function
f can be written with the minimization operator μ as

f(x) = μz[eq(x, z ∗ z)].

This function can be imagined as a type of search procedure. Starting at z = 0, we
verify whether the equality is satisfied. If this is the case, then the appropriate value
z has been found. If not, then we increment z and continue the search. For values of
x that are not perfect squares, equality will never be attained; thus the calculation will
continue indefinitely.

Definition 13.37 A partial function f : X → Y is a subset of X × Y such that if
(x, y1) ∈ f and (x, y2) ∈ F , then y1 = y2. We say that f is defined for x if there exists
y ∈ Y such that (x, y) ∈ f . Otherwise, we say that f is undefined for x.

We can be certain that the function f of Example 13.36 is not a primitive recursive
function because all functions of this type are total functions. This shows that even if
the value function p of a predicate is primitive recursive, the function constructed with
the minimization of p is not necessarily primitive recursive. Such functions are part of
the set of recursive functions, which is defined below.
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Definition 13.38 The families of recursive functions and recursive predicates are de-
fined as follows:

1. The successor, zero, and projection functions are recursive.
2. Let g1, g2, . . . , gk, and h be recursive functions. Let f be the composition of h with

g1, g2, . . . , gk. Then f is a recursive function.
3. Let g and h be two recursive functions. Let f be defined by the recurrence with base

g and step h. Then f is a recursive function.
4. A predicate is called recursive if its value function is recursive. Similarly, it is called

total if its value function is a total function.
5. Let P be a total recursive predicate over n + 1 variables. The function f obtained

by the minimization of |P | is a recursive function.
6. A function is recursive if it can be constructed using a finite number of composi-

tion, recurrence, and minimization operations, starting from the successor, zero,
and projection functions.

The first three items in the above definition imply that all primitive recursive func-
tions are themselves recursive. Example 13.36 shows formally that the set of primitive
recursive functions is a proper subset of the set of recursive functions. We state without
proof the following result.

Proposition 13.39 The Ackermann function defined in Example 13.34 is a recursive
function.

Theorem 13.40 All recursive functions are T-calculable.

Proof: We have already shown that the successor, zero, and projection functions are
T-calculable. Moreover, Theorem 13.32 has already shown the closure of T-calculability
with respect to the operations of composition and recurrence. It remains to show that
the set of T-calculable functions contains the minimization of recursive predicates.

Let f(x1, . . . , xn) = μz[p(x1, . . . , xn, z)], where p(x1, . . . , xn, z) is the value function
of a total T-calculable predicate, calculated with Turing machine Π.

1. The tape has an initial configuration of

Bx1Bx2B . . . BxnB.

2. We append the number 0 to the right end of the tape, obtaining

Bx1Bx2B . . . BxnB0B.

We call this value the minimization index, denoted by j.
3. We duplicate the entries of the tape, appending them to the right end of the tape,

resulting in the following configuration:

Bx1Bx2B . . . BxnBjBx1Bx2B . . . BxnBjB.
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4. Machine Π is applied to the copies of the initial entries, yielding

Bx1Bx2B . . . BxnBjBp(x1, . . . , xn, j)B.

5. If p(x1, . . . , xn, j) = 1, then f(x1, . . . , xn) = j, and the rest of the entries are erased.
If not, the value p(x1, . . . , xn, j) is erased and the minimization index j incremented
using the successor function. The algorithm continues by returning to step 3.

If f(x1, . . . , xn) is defined, then the algorithm will eventually find the correct value.
If it is not defined, then the machine will continue calculating indefinitely, as specified
in Definition 13.5. �

This theorem shows that a large number of functions are calculable with Turing
machines. In fact, the relationship between Turing machines and recursive functions is
even tighter, as shown by the following theorem (which will not be proved here).

Theorem 13.41 [6] A function is T-calculable if and only if it is recursive.

We will now introduce Church’s thesis, which makes the connection between our
intuitive notion of “calculability” and T-calculability.

This thesis is stated in many forms, but all forms being proven equivalent, we have
chosen to present the form that complements the previous theorem.

Church’s thesis A partial function is “calculable” if and only if it is recursive.

Thus, if we accept this thesis, then all “calculable” functions are T-calculable. This
leads to the following definition: a function is “calculable” if and only if there exists a
Turing machine that can calculate it.

The problem with this thesis is that it is impossible to prove, since we have no formal
definition of “calculable.” It would be possible to disprove it, however, by finding a
function that is calculable with a precise algorithm but for which no equivalent Turing
machine exists. However, there is no rigorous definition of an “algorithm” either. It
is interesting to note that all attempts to formalize the notion of an algorithm have
validated Church’s thesis; despite taking a variety of approaches, all such formalizations
have led to equivalent definitions of T-calculability.

13.4 Turing Machines versus Insertion–Deletion Systems and
the DNA Computer

We have seen Turing machines that can execute programs. Let us now construct simi-
larly a “DNA computer.” As with Turing machines, we start with a finite alphabet X
of symbols. In DNA computers this alphabet is naturally

X = {A,C,G, T}.
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Such a small alphabet may seem restrictive, but recall that ordinary computers use only
the binary alphabet {0, 1}.

We can construct strands (or words) with the symbols of this alphabet, and we
define X∗ to be the set of finite strands that can be constructed by the method of
Definition 13.3. In the case of DNA, X∗ represents the set of all strands of DNA that
could possibly be constructed using the four bases A, C, G, and T , including the “null”
strand.

In a Turing machine the words are the entries on the tape. The Turing machine has
a finite set of instructions that transform an entry on the tape into another entry on
the tape.

Here the instructions will transform strands of DNA into other strands of DNA. The
best-known model used in analyzing DNA computers is the insertion–deletion model.
The idea is to use enzymes to perform two basic operations:

• the deletion operation: remove a prescribed substrand of DNA at a precise location;
• the insertion operation: insert a prescribed substrand of DNA at a precise location.

We now formalize this model by rigorously defining the operations of insertion and
deletion, often called production rules.

Definition 13.42 1. Insertion. If x = x1x2 is a portion of a word z = v1xv2 ∈ X∗,
we may insert a sequence u ∈ X∗ between x1 and x2, yielding the word w = v1yv2,
where y = x1ux2. We describe this operation using the following simplified notation:

x =⇒I y.

We say that y is derived from x by the insertion production rule. (It is understood
that x and y may be portions of larger words.) This rule is represented by a triplet
(x1, u, x2)I .

2. Deletion. If x = x1ux2 is a portion of a word z = v1xv2 ∈ X∗, we may delete the
sequence u, yielding the word w = v1yv2 where y = x1x2. We use the notation

x =⇒D y

and say that y is derived from x by the deletion production rule. This rule is repre-
sented by a triplet (x1, u, x2)D.
As such, each rule of insertion and deletion can be seen as an element of (X∗)3.

We introduce the general notation x =⇒ y to say that y was derived from x using
one of the production rules. If y was derived from x through the application of several
production rules applied one after the other, we use the notation

x =⇒∗ y.
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Definition 13.43 An insertion–deletion system is a 3-tuple

ID = (X, I,D)

where X is an alphabet, I is the set of insertion rules, and D is the set of deletion rules.
In the case of DNA, the alphabet X = {A,G, T,C} is formed of the four bases. Both I
and D are subsets of (X∗)3.

Theoretically, this model is very efficient. In fact, we will prove that any recursive
problem is able to be calculated using insertion and deletion operations. However, it is
often very difficult to find a practical algorithm that will solve a given problem using
only insertions and deletions.

Theorem 13.44 [3] For each Turing machine there exists an insertion–deletion system
that executes the same program.

Remark: This statement is rather vague and difficult to understand. Stating it formally
would require introducing a number of difficult notions such as formal languages and
grammars. In simple words, the theorem means that for each Turing machine (that we
can identify to a program), we can construct an insertion–deletion system that executes
the program, that is, the different instructions of the Turing machine. For a Turing
machine, to carry out one operation, a tape input is needed as well as the state of the
machine, and the position of the pointer.

We associate a DNA strand to each 3-tuple formed by a tape input, the state of the
machine, and the position of the pointer. A portion of the strand corresponds to the tape
input, another one contains the information on the state of the machine, and yet another
stores the position of the pointer. The proof discussed below gives, for each instruction
of the Turing machine, a set of insertions and deletions transforming the strand into
a strand corresponding to the new 3-tuple. The corresponding sequence of insertions
and deletions must transform the first portion of the chain so that it corresponds to the
new tape input. It must also cut the portions containing the information on the old
state and the old position of the pointer and replace them by new portions of strand
corresponding to the new state and the new position of the pointer.

Sketch of proof of Theorem 13.44: We want to show that all of the actions per-
formed on a tape by a Turing machine can also be performed on words by an insertion–
deletion system. To do this, for each transition that may be performed on the tape by a
Turing machine we will construct an insertion–deletion system that performs the same
action on a word of symbols representing the input on the tape.

Let M = (Q,X,ϕ) be a Turing machine. If ϕ(qi, xi) = (qj , xj , c), we define (qi, xi) →
(qj , xj , c), where c ∈ {−1, 0, 1}. We will consider each case c = 0, c = 1 and c = −1.
We must verify that for each of these transition rules there exists an equivalent set of
production rules of an insertion–deletion system ID = (N, I,D), where

N = X ∪ Q ∪ {L,R,O} ∪ {q′i : qi ∈ Q}.
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The role of the sets {q′i : qi ∈ Q} and {L,R,O} will be made clear in the proof. For each
transition rule of the Turing machine, the goal is to construct a sequence of insertions
and deletions that when applied in the prescribed order, have the same effect as the
transition rule. However, a word of a warning: we must ensure that these insertions
and deletions cannot occur in any order other than the prescribed one, thus producing
a different result from the one prescribed by the Turing machine.

We will use many sequences of symbols throughout this proof. To help make things
clear, keep in mind that μ, μ1, μ2, ν, xi, xj , ρ, σ, τ ∈ X and that qi, qj ∈ Q.

1. For each rule of the form (qi, xi) → (qj , xj , 0) we will add to ID the follow-
ing three rules: (qixi, qjOxj , ν)I , (μ, qixi, qjOxj)D, and (ρσqj , O, xj)D, for all
μ, ν, ρ, σ ∈ X. In fact, for each character ν ∈ X we must add a rule to ID of
the form (qixi, qjOxj , ν)I , and likewise for the two other rules. Since X is finite, we
will therefore add only a finite number of rules to ID.
Thus, if we process a word of the form μqixiν, we will perform the following sequence
of operations:

μqixiν =⇒I μqixiqjOxjν =⇒D μqjOxjν =⇒D μqjxjν.

To begin with, we had the word μqixiν. First, we inserted qjOxj between qixi and
ν. This operation was followed by two deletions: the first removed qixi, while the
second removed the remaining O between qj and xj . The final result is μqjxjν,
which is exactly the word we wanted. Recall that the symbol qj represents the
pointer state, and is found immediately before the symbol being pointed to. Thus,
the previous operations have allowed us to proceed from configuration μxiν in state
qi to configuration μxjν in state qj .
Why did we use this O symbol? Could we not just have executed

μqixiν =⇒I μqixiqjxjν =⇒D μqjxjν?

The next transition to be executed is (qj , xj) → (qk, xk, c). We need to ensure that
the system does not start this operation before finishing the present one. That is,
qixi needs to be erased before qjxj is modified. The presence of the O between
qj and xj ensures that the pattern qjxj cannot be matched until after the O is
removed.

2. For each rule of the form (qi, xi) → (qj , xj , 1) we will add to ID the following six rules:
(qixi, q

′
iOxj , ν)I , (μ, qixi, q

′
iOxj)D, (ρσq′i, O, xj)D, (q′ixj , qjR, ν)I , (μ, q′i, xjqjR)D,

and (τxjqj , R, ν)D, for all μ, ν, ρ, σ, τ in X.
Thus, if we process a word of the form μqixiν, we will perform the following sequence
of operations:

μqixiν =⇒I μqixiq
′
iOxjν =⇒D μq′iOxjν =⇒D μq′ixjν

=⇒I μq′ixjqjRν =⇒D μxjqjRν =⇒D μxjqjν.

Here we see that the first three operations simply repeat those that were performed
for the rule (qi, xi) → (qj , xj , 0). These three productions, one insertion and two
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deletions, allow us to exchange xi for xj without moving the pointer. We use an
artificial state q′i to signify that the operation is not yet finished, thus preventing
other transition rules of the Turing machine from starting. The three following
operations move the pointer to the right and finally replace q′i with the actual state
qj . The machine is now ready to execute the command (qj , ν) → (qk, xk, c) with
c ∈ {−1, 0, 1}, if such a command exists.
Here we again used artificial symbols (O, R, and q′i) to force production rules to
be applied in the exact order we specify. For example, the rule (ρσq′i, O, xj)D is
used to ensure that we cannot remove the O from μqixiq

′
iOxjν before removing

qixi. In fact, in configuration μqixiq
′
iOxjν, the artificial state q′i is preceded by a

unique symbol xi ∈ X, itself preceded by a state symbol. This works because we
can remove O only when the symbol q′i is preceded by two symbols from X (one of
which could be B). We let the reader convince himself (herself) of the necessity of
the remaining production rules.

3. For each rule of the form (qi, xi) → (qj , xj ,−1) we will add to ID the follow-
ing six rules: (qixi, q

′
iOxj , ν)I , (μ2, qixi, q

′
iOxj)D, (ρσq′i, O, xj)D, (μ1, qjL, μ2q

′
ixj)I ,

(qjLμ2, q
′
i, xj)D, and (qj , L, μ2xj)D for all μ1, μ2, ν, ρ, σ ∈ X.

Thus, if we process a word of the form μ1μ2qixiν, we will perform the following
sequence of operations:

μ1μ2qixiν =⇒I μ1μ2qixiq
′
iOxjν =⇒D μ1μ2q

′
iOxjν

=⇒D μ1μ2q
′
ixjν =⇒I μ1qjLμ2q

′
ixjν =⇒D μ1qjLμ2xjν =⇒D μ1qjμ2xjν.

Therefore, all of the commands (qj , ν) → (qk, xk, c) with c ∈ {−1, 0, 1} may be
performed by an insertion–deletion system. �
This theorem shows that an insertion–deletion system has at least the computational
power of a Turing machine: all functions that can be calculated on a Turing machine can
also be calculated on a DNA computer using insertions and deletions. This illustrates
how powerful a DNA computer is in theory.

13.5 NP-Complete Problems

This section will be relatively light in theory, and concentrate more on examples.
NP-complete problems are a very important class of problems in computer science.

These are problems that are simple to describe, often extremely important in their
respective applications, yet difficult to solve using a computer. The precise definition
of NP-completeness can be found in [6].

13.5.1 The Hamiltonian Path Problem

An example of an NP-complete problem is the Hamiltonian path problem, as discussed
earlier in Section 13.2. Recall that the problem consists in finding a path through a
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directed graph that passes through each node exactly once. It is easy to imagine real-
world applications that need to solve such a problem, for example in the domain of
transportation.

Looking at the simple example from Figure 13.1, the solution may be found easily
by hand. In fact, the solution is to pass through the seven nodes in the following order:
0, 3, 5, 1, 2, 4, 6. Finding the solution is even easier with a conventional computer: even
with a rudimentary and inefficient algorithm the calculation takes only a fraction of a
second.

What makes a problem “complex”? It is related to the amount of time necessary
to find a solution as a function of the input size. For example, classic algorithms for
solving the Hamiltonian path problem require time exponential in the number of nodes
in the graph. Beyond a certain number of nodes it becomes effectively impossible for
a computer to find the solution. Even with graphs containing only 100 nodes, modern
computers require an inordinate amount of time to find a solution. This comes from the
fact that conventional computers are sequential: each operation is performed one after
the other. This is the reason why computer scientists are interested in parallelism.

We already mentioned that Adleman spent seven days in the laboratory to come up
with the simple solution above. So what exactly is the advantage of a DNA computer?
A DNA computer is able to perform billions of operations in parallel, and this ability
is what fascinates researchers. The slowest steps in performing calculations with a
DNA computer are those that must be performed by humans in a laboratory. With the
method proposed by Adleman, the number of such steps is linear in the number of nodes
in the graph. However, it should be remarked that Adleman’s method will not scale
particularly well for another reason. Although the number of steps to be performed
in the laboratory is linear with the number of nodes, the number of potential paths
through these nodes remains exponential. With a billion snippets of DNA in a test
tube the millions of generated paths will cover all paths in a small graph with very high
probability. However, when there are billions of possible paths to consider, it becomes
very probable that not all of them will be generated. Other practical problems can
occur in isolating such a small fraction of all generated DNA strands. Thus, much work
remains to be done before DNA computers can have their parallelism fully exploited.

13.5.2 Satisfiability

Another example of a classic NP-complete problem is that of satisfiability. This problem
can be efficiently solved using a DNA computer in a method similar to that used by
Adleman for the Hamiltonian path problem. This shows that the general approach
taken by Adleman is not completely specific to the Hamiltonian path problem.

The problem of satisfiability concerns itself with logical statements built using
the Boolean operators ∨ (OR), ∧ (AND), and ¬ (NOT) and the Boolean variables
x1, . . . , xn, which may each take a value of TRUE or FALSE. We consider two exam-
ples.
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Example 13.45 Consider the statement α, defined as

α = (x1 ∨ x2) ∧ ¬x3.

The value of α is the value of the logical statement when values for x1, x2, and x3 have
been substituted. As such, α will be either TRUE or FALSE, depending on the values
of the variables. For example, if x1, x2, and x3 are all TRUE, then α is FALSE.

The problem of satisfiability asks the following question: can we assign truth values
to the variables x1, x2, and x3 such that α is TRUE? In this case, it is simple to see
that we can. In fact, we could simply let x1 = x2 = TRUE and x3 = FALSE. We say
that we are able to verify the logical equation α = TRUE and that α is satisfiable.

Example 13.46 Now consider the logical statement

β = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x2).

In this case we can easily convince ourselves that there is no configuration of truth values
for the variables such that β = TRUE. Hence, β is not satisfiable.

Definition 13.47 A logical statement built using the Boolean operators ∨ (OR), ∧
(AND), and ¬ (NOT) and Boolean variables x1, . . . , xn is satisfiable if there exists an
assignment of truth values to the variables such that the statement becomes true.

Example 13.45 is simple to visualize, and equally simple for a computer to analyze,
even using the most inefficient of algorithms. In fact, a computer may simply enumerate
the 23 assignments of truth values (there are 3 variables, and each of them can take one
of 2 values), and evaluate the statement for each of them. However, such an approach
quickly breaks down when we are dealing with a large number of variables. With 100
variables there are already 2100 possible configurations to be tested. In the general case
there is no known algorithm that is more efficient than the exhaustive approach.

This large search space is one of the reasons why DNA computers seem suitable for
solving this problem. In fact, like any algorithm based on an “exhaustive search” (which
requires a computer to check all possible solutions, one after the other), this algorithm
benefits greatly from the massive parallelism inherent in DNA computing. In effect, a
DNA computer is able to test all solutions at the same time. The problem then becomes
to extract the correct solution, if it exists.

To start, we need to find a method that will construct all possible solutions as strands
of DNA. If we have 3 variables, we need a method that allows us to uniquely encode
each of the 23 = 8 possibilities. This is possible with the help of a little graph theory.
We model each of the possible assignments of truth values as a maximal path through
the graph shown in Figure 13.10. There is a bijection between the maximal paths in the
graph and the sequences of truth value assignments to all variables. We denote FALSE
by 0 and TRUE by 1. Node a0

j represents assigning a value of 0 to xj , node a1
j represents

assigning a value of 1 to xj , and the nodes vi are simply spacers. For example, the path
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a0
1v1a

0
2v2a

0
3v3 represents assigning FALSE to each of the three variables xi. It is easy

to see that all of the possible paths of length 5 (they are the maximal ones) enumerate
exactly the 8 possible assignments of truth values.

Fig. 13.10. Truth variable assignment graph for logical statement α or any logical statement
with three variables.

This is useful because the first step of the DNA computing algorithm is to generate
many copies of each possible path. To do this, we will use the same technique used by
Adleman: encoding nodes as unique strands of DNA and directed edges as complemen-
tary strands that will join two nodes. More specifically, each node will be encoded by a
strand of length 2N , and each directed edge as the complement of the last N bases from
the departure node followed by the complement of the first N bases from the destination
node. The exact value of N depends on the size of the problem to be solved; it must be
large enough that each node and edge can be uniquely labeled.

As before, we assemble a large quantity of each DNA strand encoding for nodes
and directed edges. After a given amount of time, these strands of DNA will join to
create longer strands representing the possible paths through the graph. With high
probability, all of the possible paths will be enumerated. It remains to extract those
paths that correspond to possible solutions of the logical statement, if such paths exist.

The first step is to transform the statement into conjunctive normal form, such that

α = C1 ∧ C2 ∧ C3 ∧ · · · ∧ Cm,

where the Ci are logical statements using only ∨ and ¬. A theorem from logic ensures
that such a transformation is always possible. It is done using the following rules:

1. For all x1, x2, x3,
x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3).

2. For all x1, x2, x3,
x1 ∨ (x2 ∧ x3) = (x1 ∨ x2) ∧ (x1 ∨ x3).

3. For all x1, x2,
¬(x1 ∨ x2) = ¬x1 ∧ ¬x2.
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4. For all x1, x2,

¬(x1 ∧ x2) = ¬x1 ∨ ¬x2.

Note that although the conversion always exists, it is not always easy to find it. In
fact, the known algorithms for converting to conjunctive normal form are quite complex
and sometimes require a relatively long time to run. However, in many cases the logical
statement is already given in the appropriate form or is easy to convert. The statement
in Example 13.45 is already in conjunctive normal form using C1 = x1∨x2 and C2 = ¬x3.

To satisfy a logical statement of the form C1 ∧ · · · ∧Cm we must satisfy C1, and we
must satisfy C2, · · · , and we must satisfy Cm.

The conversion to conjunctive normal form is used to guide the following procedure.
We start by extracting all strands that satisfy statement C1. In our case, C1 = x1 ∨ x2,
so we want to extract all strands that encode x1 or x2 as 1.

This can be done by first extracting all solutions that encode x1 as 1. To do this,
we again borrow from Adleman’s technique. We place in test tube A strands of DNA
encoding the complement of edge a1

1v1, each of these being attached to a small particle
of iron. These attract all strands containing a1

1v1, while the other chains remain in the
solution. We then attract these using a magnet to the border of test tube A. We pour
the rest of the solution in test tube B. We put back some liquid free of DNA in test
tube A and separate the strands from the iron particles.

In order for x1 ∨ x2 to be true, it could also be that x2 = 1. Thus, we repeat the
procedure on the remaining strands rejected in the first step and now in test tube B,
this time selecting strands containing the directed edge a1

2v2. The strands retained at
this step are placed back into the solution of test tube A containing the strands selected
in the previous step. We now have a single test tube containing all strands encoding for
x1 = 1 or x2 = 1. So the remaining strands in test tube B can be discarded.

Thus, we now have all strands that satisfy statement C1. We can now repeat the
same procedure to extract all strands that satisfy statement C2, with the surviving
strands therefore satisfying both C1 and C2, hence satisfying C1 ∧ C2. In our example,
C2 = ¬x3. Thus we need to extract all strands encoding x3 = 0. In the general case
this procedure is repeated for each Ci.

We may ask ourselves whether a DNA computer is required to solve a problem in
conjunctive normal form, or whether other algorithms would be more efficient. Suppose
that α = C1 ∧ C2 ∧ C3 ∧ · · · ∧ Cm and that all Ci are formed from n distinct variables
xj and their negations ¬xj (it could happen that not all variables appear in each Ci).
Then there are 2n paths in the graph. However, as we have seen, there are at most n
verifications to do for each Ci, so at most a total of mn verifications. Hence the method
is an improvement compared to the systematic exploration of all paths, unless m is very
large compared to n.
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13.6 More on DNA Computers

13.6.1 The Hamiltonian Path Problem and Insertion–Deletion Systems

Section 13.4 showed that all recursive functions can be calculated using a DNA com-
puter, performing only insertion and deletion operations. However, Adleman’s solution
to the Hamiltonian path problem did not use any insertions or deletions. As discussed
in the introduction, this is because theoretical algorithms and the best algorithms in
practice are often far from each other. This is equally true for Turing machines. Con-
sider the function add(m,n) = m + n. Being a primitive recursive function, the proof
of Theorem 13.32 provides an algorithm on a Turing machine to calculate it. This al-
gorithm is recursive, applying the successor function n times. However, the algorithm
depicted in Figure 13.8 (constructed in Example 13.9) calculates it in a much simpler
manner!

The DNA computer algorithm solving the Hamiltonian path problem using only
insertions and deletions is no doubt much more complex than that presented by Adle-
man. However, given that there are so few algorithms conceived for DNA computers it
is extremely hard to judge which biological operations will be used the most, provided
that one day, the gap between theory and practicality is bridged.

13.6.2 Current Limits of DNA Computers

Up until now we have painted a rather rosy picture of DNA computers. We have shown
how to use to DNA computers to solve a few difficult mathematical problems. Both
of these algorithms have played off of the biggest strength of DNA computers, their
massive parallelism, which lets us test effectively all possible configurations simultane-
ously instead of sequentially. Moreover, we have seen that DNA computers are also
fully capable of computing anything that may be computed using Turing machines, and
thus they are potentially very powerful.

However, one must keep in mind that all of our theoretical models have made one
rather presumptuous hypothesis: that nature is ideal, and we can manipulate DNA
strands with perfect precision. In reality, this is far from being the case. In fact, in
nature it happens often that DNA strands in solution break (hydrolize) spontaneously.
Similarly, there are often errors when two complementary strands unite. For example,
the strand

AAGTACCA

with complement
TTCATGGT

could pair up with a “false complement” that matches very closely its true complement.
Thus, we could find ourselves with the double strand

A A G T A C C A
T T T A T G G T
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where a single G has been paired with a T instead of a C. Such an error could be
a problem for any algorithm, such as that of Adleman, which relies implicitly on the
perfect pairing of complements. Research is under way to counter these problems.
Certain researchers have proposed performing the calculations inside of a living cell (in
vivo) rather than simply in a solution. In fact, living cells already have several advanced
control mechanisms for dealing with such errors.

It should be noted that the Hamiltonian path experiment that was performed by
Adleman in 1994 was repeated (without success!) by Kaplan, Cecci and Libchaber in
1995. Their experiment produced poor results at the electrophoresis step. The location
on the plate that should have contained only paths of length 7 contained many contam-
inants (paths with fewer or more than seven nodes). The gel used in the electrophoresis
had many imperfections, but more importantly the strands of DNA where often folded
over themselves too much and did not travel through the gel with the expected veloc-
ity. Adleman himself admitted repeating the electrophoresis step several times before
obtaining satisfactory results.

Using Adleman’s approach there is always a risk that the solution path will not
actually be generated. Let us look at the graph of Figure 13.1. There are paths, called
cycles, that have the same first and last node, for instance the path 12351. Nothing
prevents the existence of an infinite path always repeating this loop. So the number of
possible paths is infinite, while the quantity of DNA material in the test tube is finite.
We must manage that the quantity of DNA in the test tube be sufficient to ensure, with
very high probability, that all paths with length ≤ N are generated, where N is larger
than the number of nodes. Of course, there is no 100% guarantee that they will all be
present. It may happen that the solution, even if it exists, is not in the test tube.

Using this type of algorithm, if we have found a solution, then we know with certainty
that it is a solution. On the other hand, if we do not find a solution, we are not
completely certain that a solution does not exist. All that we are able to say is that
there is a very high probability that no solution exists. Thus, such algorithms are
inherently probabilistic.

There is also a problem with the theoretical model of insertion–deletion systems. We
assumed that it is possible to perform an arbitrary insertion and an arbitrary deletion.
Since these operations are actually performed by enzymes, we have implicitly assumed
that there are effectively an infinite number of enzymes able to perform any insertions
and deletions we desire, and moreover that we can place a large number of them together
in a test tube, where they will work as intended without any interference. In reality, we
have not yet mastered biochemistry to this point, and we do not have a great enough
understanding of enzymes to be able to effectuate arbitrary insertions or deletions.

Can we program a DNA computer? Conventional computers are not built to
perform a single calculation. Rather, we are able to program them explicitly, allowing
them to run any number of algorithms. From what we have seen, it is tempting to
assume that DNA computers are effectively impossible to program in such a manner.
Indeed, the method used by Adleman is adapted to the special problem (or type of
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problem) to be solved. But we have also seen that DNA computers are able to act as
Turing machines. There exists a universal Turing machine [6], which when provided as
input the instructions of another Turing machine M and also a problem instance ω is
able to produce the same output as would have been produced by feeding ω to M . Such
a Turing machine is therefore programmable, and thus DNA computers are similarly
theoretically programmable.

The challenges that must be overcome in order to make this technology a reality are
enormous. But the concepts are very seductive and attract a great deal of research.

13.6.3 A Few Biological Explanations Concerning Adleman’s Experiment

Section 13.2 presented an overview of the method applied by Adleman in order to solve
an instance of the Hamiltonian path problem. The algorithm consisted of five steps:

• select all paths that start at node 0 and finish at node 6;
• from among these, select all paths that have the desired length of seven nodes;
• from the remaining paths, select those that contain all nodes;
• test to see whether any paths (solutions) remain;
• analyze the solution(s) in order to determine the paths they encode.

We briefly discussed each of these steps, without delving too far into the chemistry.
Here we will discuss in detail the method used by Adleman to perform the first step of
the algorithm.

Adleman used a gene amplification technique known as PCR (polymerase chain
reaction). The idea is to replicate only those chains containing the correct starting and
finishing nodes until they completely dominate all others.

In this example we want to replicate the chains starting with node 0 (encoded by
AGTTAGCA) and terminating with node 6 (encoded by CCGAGCAA). Looking at
Figure 13.1, we observe that it is impossible to arrive at node 0 from any other node,
and that it is similarly impossible to leave node 6. Thus, if node 0 is encoded in a
strand it must be at the beginning of the strand. Similarly, the encoding for node 6 is
always found at the end of a chain. Thus, a chain that satisfies both of these properties
resembles

T C G T ... G G C T
| | | | ... | | | |

A G T T A G C A ... C C G A G C A A

Nature has devised a very powerful mechanism for replicating strands of DNA: DNA
polymerase. This enzyme is able to complete the complementary strand of a paired DNA
molecule, provided that the first few bases (a primer) are already in place.

Polymerase can work in only one direction. If we apply a primer, the reaction is
able to proceed in only one direction from that primer. We will rewrite our chains using
the notation of biochemists, marking one end of the strand as the 3′ end, and the other
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as the 5′ end (the origin of this notation will be explained shortly). It is important
to note that polymerase is able to proceed only in the 5′ to 3′ direction, and that a
5′− 3′ oriented chain is able to pair only with a 3′− 5′ oriented complement. Using this
notation, a chain with the desired starting and ending nodes is of the form

3′ 5′

T C G T ... G G C T
| | | | ... | | | |

A G T T A G C A ... C C G A G C A A
5′ 3′

How can we use polymerase to multiply the desired strands of DNA? The first step
is to separate the double strands of DNA into single strands. This is done by simply
heating the solution to an appropriate temperature. The double strands thus separate
into two types of strands: “node strands” and “edge strands.” For example, the double
strand

3′ 5′

T C G T ... G G C T
| | | | ... | | | |

A G T T A G C A ... C C G A G C A A
5′ 3′

produces an edge strand of

3′ 5′

T C G T ... G G C T

and a node strand of

5′ 3′

A G T T A G C A ... C C G A G C A A

Explaining the 5′ − 3′ notation. Let us first consider a simple DNA strand. Its
backbone is formed from a chain of sugars linked together. Each sugar contains five
carbon atoms, numbered from 1′ to 5′. Each base is attached to one sugar. It is
bonded to carbon 1′ of its associated sugar, while a hydroxyl group (OH) is attached
to carbon 3′ on one side and a phosphate to carbon 5′ on the other side. When two
sugars corresponding to two neighboring bases connect, the hydroxyl group (3′) of one
attaches to the phosphate (5′) of the other.

Thus if we imagine a strand of DNA, the sugar of its first base being connected by
its hydroxyl group to the phosphate of a second base, then its own phosphate group
is unattached and exposed. Consequently, this first base is labeled the 5′ end of the
molecule. Similarly, the last base in the strand has an exposed hydroxyl group, and is
therefore labeled the 3′ end. This DNA single strand therefore has a 5′− 3′ orientation.
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A single strand with 5′−3′ orientation can link only with one with 3′−5′ orientation
to form a double strand. The chains of sugar are located on the outer side of the double
helix and form its backbone. The pairing of bases is by means of hydrogen bonds.
Replication in Adleman’s experiment. Adleman introduced into the solution a
large number of two types of primers. The first encodes the name of node 0 (AGCA)
and is called the node primer. The second encodes the complement of the prename of
node 6 (GGCT ) and is called the edge primer. The primers will pair up with their
complements. For example, the edge strand

3′ 5′

T C G T ... G G C T

will pair up with the node primer to form the partial double strand

3′ 5′

T C G T ... G G C T
A G C A
5′ 3′

Similarly, the node strand

5′ 3′

A G T T A G C A ... C C G A G C A A

will pair up with the edge primer to form the partial double strand

3′ 5′

G G C T
A G T T A G C A ... C C G A G C A A
5′ 3′

The DNA polymerase will attach itself to the 3′ ends of the primers and fabricate
the rest of the complement strand, leaving almost complete double strands. For that
purpose it uses free bases that have been added to the solution. Thus, each original
double strand starting with a 0 and ending with a 6 has now been replicated, doubling
the number of such strands. This process can be repeated several times, and after a few
repetitions these strands will dominate all others.

We will walk through an example that clearly demonstrates the entire replication
process.

Example 13.48 Consider a double strand consisting only of nodes 0 and 6 and the
single edge connecting them:

3′ 5′

T C G T G G C T
A G T T A G C A C C G A G C A A
5′ 3′
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By heating this double strand we obtain the two single strands TCGTGGCT and AGTT -
AGCACCGAGCAA. The primers will attach themselves to these single strands, form-
ing two partial double strands,

3′ 5′

G G C T
A G T T A G C A C C G A G C A A
5′ 3′

and
3′ 5′

T C G T G G C T
A G C A
5′ 3′

DNA polymerase will attach itself to the 3′ ends of the primers and complete the repli-
cation, yielding the following two double strands:

3′ 5′

T C A A T C G T G G C T
A G T T A G C A C C G A G C A A
5′ 3′

and
3′ 5′

T C G T G G C T
A G C A C C G A
5′ 3′

The solution is again heated and cooled, separating the newly formed double strands into
single strands. Notice that from the two initial strands, one cycle of this process leaves
us with four strands with the same properties as the originals, the edge strand being
slightly longer than initially, while the node strand is slightly shorter.

Consider now a double strand encoding for nodes 0 and 1:

3′ 5′

T C G T C T T T
A G T T A G C A G A A A C T A G
5′ 3′

After heating we obtain the two single strands

TCGTCTTT and AGTTAGCAGAAACTAG.

Only the node primer AGCA can attach to one of these single strands, yielding
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3′ 5′

T C G T C T T T
A G C A
5′ 3′.

This strand can be doubled using DNA polymerase. Thus, we see that strands encoding
for a starting node of 0 or an ending node of 6 will also be replicated. However, each
round of replication will produce only one additional strand instead of two, thus the
strands starting with node 0 and ending with node 6 will eventually dominate them.

These operations are repeated several times, in a continuous cycle of heating
(whereby strands are separated) and cooling (whereby strands bond with primers and
are replicated). Thus, the number of strands with the correct starting and ending nodes
will grow exponentially, doubling at each cycle. Meanwhile, the strands satisfying nei-
ther the right starting nor ending node will never be replicated, and remain the same
in number. Strands with either the right starting node or the right ending node will be
replicated, but at a much smaller rate than the interesting ones, as shown in Example
13.48.

Thus, after n cycles there are 2n truncated node and edge strands for each of the
strands starting at node 0 and ending at node 6. Among this multitude of strands, we
hope that if n is sufficiently large, the number of strands starting at node 0 and ending
at node 6 becomes sufficiently important that we can hope to find them when using the
other steps of Adleman’s technique.

13.7 Exercises

Turing machines

1. Let Figure 13.11 represent the function ϕ of a Turing machine M , and consider the
initial configuration

B111111B11111B11111B11B.

At the beginning of operation the pointer points to the leftmost B. Describe the action of
the machine and calculate the final position of the pointer when the machine terminates.

Fig. 13.11. The function ϕ for Exercise 1.
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2. (a) Construct a Turing machine that duplicates a unary number to the right of an
existing one, with a blank between them. At the end of the calculation the pointer
should be returned to the blank preceding the first number.
(b) Construct a Turing machine that permits the copying of a number k times. Use
induction.

3. (a) Construct a Turing machine that is able to translate a sequence of symbols (con-
taining no blank symbols) by n cells.
(b) Construct a Turing machine that is able to translate k sequences of symbols (each
separated by a blank symbol) by n cells.
(c) Consider a sequence of symbols preceded by an arbitrary number of blanks. Con-
struct a Turing machine that will translate the sequence of nonblank symbols to the
left until it is preceded by only one blank. For example, the machine will transform
BBBBBBxB to BxB.

4. Construct a Turing machine that calculates the predecessor function.

5. Construct a Turing machine that calculates the function cosgn : N → N defined by

cosgn(n) =

{
1, n = 0,
0, n ≥ 1.

6. Verify that

|¬P1| = cosgn(p1),
|P1 ∨ P2| = sgn(p1 + p2),
|P1 ∧ P2| = p1 ∗ p2,

correspond to the value functions of the Boolean operators AND, OR, and NOT. The
truth tables for these operators are given in Section 15.7 of Chapter 15.

7. (a) Explain how to construct a Turing machine that calculates the function

f : N × N → {0, 1} ⊂ N

defined by

f(x, y) =

{
1, x = y,

0, otherwise.

(b) Describe how to construct a Turing machine that calculates the function
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f : N × N → {0, 1} ⊂ N

defined by

f(x, y) =

{
1, x ≥ y,

0, otherwise.

8. Construct a Turing machine that exchanges two numbers on the tape. For example,
starting with configuration BxByB the machine will terminate with the configuration
ByBxB. The question is easier if we use the alphabet {B, 1, A}, where A will be used as
a marker on the ribbon. Note that it is not necessary that the B to the left of y be the
first entry on the ribbon (in other words, do not worry about translating the result).

9. Given a Turing machine M that calculates multiplication with two numbers, describe
how to construct a Turing machine that calculates the factorial function.

10. The functions lt(x, y), gt(x, y), and eq(x, y) were defined in (13.1).
(a) Explain how to construct a Turing machine that calculates lt(x, y).
(b) Explain how to construct a Turing machine that calculates gt(x, y).
(c) Explain how to construct a Turing machine that calculates eq(x, y).

Recursive functions

11. Show that the functions sgn and cosgn defined by{
sgn(0) = 0,
sgn(y + 1) = 1,

{
cosgn(0) = 1,

cosgn(y + 1) = 0,

are primitive recursive functions.

12. Show that the function f : N×N → N defined by f(m,n) = mn + 3n2 + 1 is primitive
recursive.

13. Show that the following functions are recursive:
(a)

abs(x, y) = |x − y|.

(b)

max(x, y) =

{
x, x ≥ y,

y, x < y.

(c)
f(x) = %log2(x)&.
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Here f(x) is a total function that maps x to the integer part of log2 x.
(d)

div(x, y) = %x/y&.
Here div(x, y) is the integer part of the quotient x/y. For example, div(7, 3) = 2.
(e)

rem(x, y) = x (mod y).

This function is the remainder after integer division. For example, rem(7, 3) = 1.
(f)

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5, x = 0,
2, x = 1,
4, x = 2,
3x, x > 3.

14. Show that if g is a primitive recursive function of n+1 variables, then f(x1, . . . , xn, y) =∑y
i=0 g(x1, . . . , xn, i) is a primitive recursive function.

Insertion–deletion systems

15. Develop an algorithm that performs addition of two numbers using insertions and
deletions. Use the alphabet X = {0, 1}.

Satisfiability

16. Give the variable assignment graph (like that of Figure 13.10) associated with the
statement of Example 13.46.

17. (a) Consider the logical statement

γ = (x1 ∧ x2) ∨ (¬x3 ∧ x4),

where x1, x2, x3, and x4 are Boolean variables. Express γ in conjunctive normal form.
(b) Repeat the same question with the statement

δ = (¬(x1 ∨ x2)) ∨ (¬(x3 ∨ ¬x4)).

(c) Give the variable assignment graph associated with statement γ.
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14

Calculus of Variations
and Applications1

This chapter is a little more “classic” than the others. It introduces calculus of vari-
ations, an elegant field not often covered in modern math curricula. A knowledge of
multivariable calculus will suffice, but it helps to also have a familiarity with differential
equations.
This chapter covers more material than can be covered in a week of classes. If you
want to dedicate only a week of time to this chapter, you could start by motivating
the material with a few examples that require minimizing a functional (Section 14.1).
Afterward, you may move on to the Euler–Lagrange equation and the Beltrami identity
(Section 14.2). Finally, finish the week by solving the problems listed in Section 14.1,
including the classic brachistochrone problem (Section 14.4). Covering the rest of the
material in this chapter will easily require a second and maybe even a third week.
However, the level of difficulty remains constant through the chapter, there being no
advanced sections.
Several sections study the properties of cycloids, the solutions to the brachistochrone
problem: the tautochrone property is detailed in Section 14.6, and Huygens’s isochronous
pendulum is studied in Section 14.7. These two sections do not specifically use calcu-
lus of variations, but are examples of modeling having given hope, in their time, of
technological applications.
All other sections discuss specific problems with solutions in calculus of variations: the
fastest tunnel (Section 14.5), soap bubbles (Section 14.8), and isoperimetric problems
such as suspended cables, self-supporting arches (both in Section 14.10), and liquid
telescopes (Section 14.11).

Section 14.9 discusses Hamilton’s principle for classical mechanics, which reformu-

lates the field using the principles of calculus of variations. Less technological than the

others, this section offers a cultural enrichment to math students who have been in-

troduced to Newtonian classical mechanics but who have not had the chance to further

their studies in physics.

1The first version of this chapter was written by Hélène Antaya as an undergraduate math
student.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 14, c© Springer Science+Business Media, LLC 2008
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14.1 The Fundamental Problem of Calculus of Variations

Calculus of variations is a branch of mathematics dealing with the optimization of
physical quantities (such as time, area, or distance). It finds applications in many
diverse fields, such as aeronautics (maximizing the lift of an airplane wing), sporting
equipment design (minimizing air resistance on a bicycle helmet, optimizing the shape
of a ski), mechanical engineering (maximizing the strength of a column, a dam, or an
arch), boat design (optimizing the shape of a boat hull), physics (calculating trajectories
and geodesics in both classical mechanics and general relativity).

We begin with two examples illustrating the types of problems that may be solved
using calculus of variations.

Example 14.1 This example is very simple and we already know the answer. However,
formalizing it will be of help later. The problem consists in finding the shortest path
between two points in the plane, A = (x1, y1) and B = (x2, y2). We already know that
the answer is simply the straight line connecting the two points, but we will go through
this solution using the framework of calculus of variations. Suppose that x1 
= x2 and
that it is possible to write the second coordinate as a function of the first. Then the
path is parameterized by (x, y(x)) for x ∈ [x1, x2], where y(x1) = y1 and y(x2) = y2.
The quantity I that we wish to minimize is the length of the path between A and B.
This length depends on the specific trajectory being followed, and is thus a function of
y, I(y). This “function of a function” is called a functional.

Fig. 14.1. A trajectory between the two points A and B.
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Each step Δx corresponds to a step along the trajectory whose length Δs depends on
x. The total length of the trajectory is given by

I(y) =
∑

Δs(x).

Using the Pythagorean theorem, the length of Δs can be approximated (provided Δx is
sufficiently small) as Δs(x) =

√
(Δx)2 + (Δy)2, as shown in Figure 14.1. Thus

Δs =
√

(Δx)2 + (Δy)2 =

√
1 +

(
Δy

Δx

)2

Δx.

As Δx tends to zero the fraction Δy
Δx becomes the derivative dy

dx , and the integral I may
be rewritten as

I(y) =
∫ x2

x1

√
1 + (y′)2dx. (14.1)

Finding the shortest path between the points A and B may be stated, using the
language of calculus of variations, as follows: what trajectory (x, y(x)) between the points
A and B minimizes the functional I? We will return to this problem in Section 14.3.

This first example is not likely to convince anyone of the utility of calculus of varia-
tions. The problem posed (find the path (x, y(x)) minimizing the integral I) seems way
too difficult a method for finding the solution to a problem whose answer is known to
be simple. This is why we provide a second example, whose solution is decidedly less
obvious.

Example 14.2 What is the best shape for a skateboard ramp? Half-pipes are very
popular in skateboarding and also in snowboarding, a sport that became an Olympic
discipline at the 1998 Nagano Olympics. They have a lightly rounded bowl shape. The
athlete, either on a skateboard or a snowboard, travels from one side to the other and
performs acrobatic stunts at the summits. Three possible profiles for a half-pipe are
shown in Figure 14.2. The three shapes all have the same extreme points (A and C)
and the same base (B). The bottommost profile requires a small explanation: one must
imagine adding a small quarter of a circle in each corner, thus allowing the vertical
speed to be transformed into horizontal speed, and then to take the limit as the radius
of the circles go to zero. This profile would be fairly dangerous because it contains right
angles; however, it allows the athlete to pick up a great deal of speed very quickly, since
the path starts with a vertical drop starting at A. The topmost path consists in the two
straight line segments AB and BC, and is therefore the shortest possible path going from
A through B to C.

What exactly do we mean by “the best shape”? This formulation is hardly mathe-
matical. We will refine it as follows: what shape will permit the athlete to travel between
points A and B in the least amount of time? With this precise definition, what is the
best shape? Should the path giving the greatest speed (at the expense of a longer overall
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Fig. 14.2. Three candidate profiles for the best half-pipe.

distance) be taken? Should the path covering the shortest distance be taken? Or should
it be something between these two extremes, such as the smooth profile in Figure 14.2?

It is relatively easy to calculate the time taken to travel the two extreme profiles. But
we will show that the best profile is actually a smooth curve between these two extremes.
To this end, we show how to calculate the travel time for a smooth curve described by
(x, y(x)).

Lemma 14.3 We choose our coordinate system such that the y axis is oriented down-
ward and the x axis proceeds from point A to B and we choose a profile described by a
curve y(x), where A = (x1, y(x1)) and B = (x2, y(x2)). We consider the time taken for
a point mass, propelled only by the force of gravity, to travel from point A to point B.
The time is given by the integral

I(y) =
1√
2g

∫ x2

x1

√
1 + (y′)2√

y
dx. (14.2)

Proof. The key to calculating the travel time is the physical principle of conservation of
energy. The total energy E of a point mass is the sum of its kinetic energy (T = 1

2mv2)
and its potential energy (V = −mgy). (Warning: the negative sign in our potential
energy term comes from us using an inverted y axis.) In these equations m is the mass
of the point, v its speed, and g the acceleration due to gravity. The constant g is
approximately g = 9.8 m/s2 on the surface of the Earth. The total energy E = T +V =
1
2mv2 − mgy of the point mass is constant throughout its trip along the curve. If its
speed is zero at A, then E is initially zero, and remains so along the entire trajectory.
Thus the speed of the point mass is related strictly to its height through the equation
E = 0, which simplifies to 1

2mv2 = mgy and finally

v =
√

2gy. (14.3)

The time taken to travel the path is the sum over all the infinitesimally small dx of the
time dt taken to travel the corresponding distance ds. The time is the quotient of the
distance ds divided by its speed at the moment. Thus
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I(y) =
∫ B

A

dt =
∫ B

A

ds

v
.

Example 14.1 showed that for infinitesimal dx, then ds =
√

1 + (y′)2dx, where y′ is the
derivative of y with respect to x. The travel time is thus given by the integral (14.2).
�
A return to Example 14.2. By Lemma 14.3, the integral to minimize is (14.2),
where we have the boundary conditions A = (x1, 0) and B = (x2, y2). The problem
of finding the best shape for a half-pipe is thus equivalent to finding the function y(x)
that minimizes the integral I. This problem seems much harder than the one of our
first example!

The two problems shown in Examples 14.1 and 14.2 both belong to the domain of
calculus of variations. It is possible that they remind you of optimization problems as
encountered in calculus. These problems require you to find the extrema of a function
f : [a, b] → R, which can be found at precisely those points where the derivative vanishes
or at the extreme points of the interval. Calculus provides us with an extremely powerful
tool for solving these problems. However, the problems of Examples 14.1 and 14.2 are
of a different breed. In calculus the quantity that varies as we search for the extrema of
f(x) is a simple variable x; in calculus of variations, the quantity that varies is itself a
function, y(x). We will show that the familiar tools of calculus are sufficiently powerful
to allow us to resolve the problems of Examples 14.1 and 14.2.

We now state the fundamental problem of calculus of variations:

Fundamental problem of calculus of variations. Given a function f = f(x, y, y′),
find the functions y(x) corresponding to the extremal points of the integral

I =
∫ x2

x1

f(x, y, y′)dx,

subject to the boundary conditions{
y(x1) = y1,

y(x2) = y2.

How do we identify the functions y(x) that maximize or minimize the integral I?
Like the vanishing derivative for variables, the Euler–Lagrange condition characterizes
precisely these functions.

14.2 Euler–Lagrange Equation

Theorem 14.4 A necessary condition for the integral

I =
∫ x2

x1

f(x, y, y′) dx (14.4)



452 14 Calculus of Variations

to attain an extremum subject to the boundary conditions{
y(x1) = y1,

y(x2) = y2,
(14.5)

is that the function y = y(x) satisfy the Euler–Lagrange equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (14.6)

Proof. We consider only the case of a minimum, but a maximum may be treated
similarly.

Suppose that the integral I attains a minimum for a particular function y∗ that
satisfies y∗(x1) = y1 and y∗(x2) = y2. If we deform y∗ by applying certain variations,
while maintaining the boundary conditions of (14.5), the integral I must increase, since
it was minimized by y∗. We consider deformations of a particular type, described by a
family of functions Y (ε, x) representing curves between the points (x1, y1) and (x2, y2):

Y (ε, x) = y∗(x) + εg(x). (14.7)

Here ε is a real number and g(x) is an arbitrary but fixed differentiable function. The
function g(x) must satisfy the condition g(x1) = g(x2) = 0, which in turn guarantees
that Y (ε, x1) = y1 and Y (ε, x2) = y2 for all ε. The term εg(x) is called a variation of
the minimizing function, from which comes the name calculus of variations.

Using this family of deformations, the integral I becomes a function I(ε) of a real
variable:

I(ε) =
∫ x2

x1

f(x, Y, Y ′) dx.

The problem of finding the extrema of I(ε) for this family of deformations is thus an
ordinary optimization problem in calculus. We thus calculate the derivative dI

dε in order
to find the critical points of I(ε):

I ′(ε) =
d

dε

∫ x2

x1

f(x, Y, Y ′) dx =
∫ x2

x1

d

dε
f(x, Y, Y ′) dx.

By the chain rule we obtain

I ′(ε) =
∫ x2

x1

(
∂f

∂x

∂x

∂ε
+

∂f

∂y

∂Y

∂ε
+

∂f

∂y′
∂Y ′

∂ε

)
dx. (14.8)

But in (14.8), ∂x
∂ε = 0, ∂Y

∂ε = g(x), and ∂Y ′
∂ε = g′(x). We have therefore that

I ′(ε) =
∫ x2

x1

(
∂f

∂y
g +

∂f

∂y′ g
′
)

dx. (14.9)
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The second term of (14.9) may be integrated by parts:∫ x2

x1

∂f

∂y′ g
′ dx =

[
∂f

∂y′ g
]x2

x1

−
∫ x2

x1

g
d

dx

(
∂f

∂y′

)
dx,

where the term between brackets on the left disappears, since g(x1) = g(x2) = 0. Thus,
we have that ∫ x2

x1

∂f

∂y′ g
′ dx = −

∫ x2

x1

g
d

dx

(
∂f

∂y′

)
dx, (14.10)

and the derivative I ′(ε) becomes

I ′(ε) =
∫ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
g dx.

By our hypothesis the minimum of I(ε) is found at ε = 0, since that is precisely
when Y (x) = y∗(x). The derivative I ′(ε) must therefore be zero when ε = 0:

I ′(0) =
∫ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)] ∣∣∣∣
y=y∗

g dx = 0.

The notation |y=y∗ indicates that the quantity is evaluated when the function Y is the
particular function y∗. Recall that the function g is arbitrary. Thus, in order for I ′(0)
to remain zero regardless of g, it must be that(

∂f

∂y
− d

dx

(
∂f

∂y′

)) ∣∣∣∣
y=y∗

= 0,

which is precisely the Euler–Lagrange equation. �

In certain cases we can use simplified forms of the Euler–Lagrange equation that
allow us to find solutions with ease. One of these “shortcuts” is the Beltrami identity.

Theorem 14.5 In the case that the function f(x, y, y′) in the interior of the integral
(14.4) is explicitly independent of x, a necessary condition for the integral to have an
extremum is given by the Beltrami identity, a particular form of the Euler–Lagrange
equation:

y′ ∂f

∂y′ − f = C, (14.11)

where C is a constant.

Proof. Calculate d
dx

(
∂f
∂y′

)
in the Euler–Lagrange equation. By the chain rule and the

fact that f is independent of x we obtain



454 14 Calculus of Variations

d

dx

(
∂f

∂y′

)
=

∂2f

∂y∂y′ y
′ +

∂2f

∂y′2 y′′.

Thus the Euler–Lagrange equation becomes

∂2f

∂y∂y′ y
′ +

∂2f

∂y′2 y′′ =
∂f

∂y
. (14.12)

To obtain Beltrami’s identity we need to show that the derivative with respect to x of
the function h = y′ ∂f

∂y′ − f is zero. Calculating this derivative yields

dh

dx
=

(
∂f

∂y′ y
′′ +

∂2f

∂y∂y′ y
′2 +

∂2f

∂y′2 y′y′′
)
−
(

∂f

∂y
y′ +

∂f

∂y′ y
′′
)

= y′
(

∂2f

∂y∂y′ y
′ +

∂2f

∂y′2 y′′ − ∂f

∂y

)
= 0,

where the last equality comes from (14.12). �

Before giving examples of the use of the Euler–Lagrange equation it is worthwhile
to make a few comments.

The Euler–Lagrange and Beltrami equations are differential equations for the func-
tion y(x). In other words, they are equations that relate the function y to its derivatives.
Solving differential equations is one of the most important applications of differential
and integral calculus with many applications in science and engineering.

An easy example of a differential equation is y′(x) = y(x) or simply y′ = y. “Read-
ing” this differential equation gives a hint of its solution: which function y is equal to
its derivative y′? Most people will remember that the exponential function has this
property. If y(x) = ex, then y′(x) = ex. Actually, the most general solution of y′ = y is
y(x) = cex, where c is a constant. This constant can be determined using a boundary
condition like (14.5). There are no systematic methods for finding solutions to differ-
ential equations. This in itself is not terribly surprising: a simple differential equation
such as y′ = f(x) has the following solution y =

∫
f(x)dx. However, there does not

always exist a closed form even if it is known that a solution exists and the integral∫ b

a
f(x)dx can be numerically integrated. As with integration techniques, there exist

a number of ad hoc and special-case methods that may be used to solve common and
relatively simple differential equations. We will see some of these techniques in some of
the solutions presented in this chapter. Where one cannot find closed-form solutions,
it is possible to use theoretical techniques to prove the existence and uniqueness of the
solutions, and numerical techniques for calculating them approximately. Such methods
are beyond the scope of this chapter, but are discussed in [2], for example.

Much as in the optimization of a single-variable function, the Euler–Lagrange equa-
tion sometimes returns several solutions, and further tests are required to determine
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which are minima, which are maxima, and which are neither a maximum nor a min-
imum. Moreover, these extrema may be only local extrema rather than global ones.
What is a critical point? For a function of a single real variable, a critical point is a
point where the derivative of the function vanishes. Such a point may be an extremum
or an inflection point. And for a real function of two variables, critical points can also
be saddle points. In the framework of calculus of variations we will say that a function
y(x) is a critical point if it is a solution to the associated Euler–Lagrange equation.

One last warning. If we reread the proof of the Euler–Lagrange equation we will
see that it makes sense only if the function y is twice differentiable. But it is entirely
possible for a real solution to an optimization problem to be a function that is not
everywhere differentiable on its domain. An example of a such a situation is found in
the following problem: for a specified volume and height, find the profile that should be
given to a column of revolution such that it can support the most weight from above.
We will not go into the equations describing this problem, but its history is interesting.
Lagrange thought he had proved that the best shape was simply a cylinder, but in
1992, Cox and Overton [3] proved that the best shape is that shown in Figure 14.3.
Strictly speaking, Lagrange’s computations did not contain any errors. He obtained the
best solution among the set of differentiable functions, but Cox and Overton’s optimal
solution is not differentiable.

Fig. 14.3. Cox and Overton’s optimal load-bearing column.

The column profile problem is not an isolated example. As it turns out, soap bubbles
(Section 14.8) can also contain angles. In fact, problems in calculus of variations (also
called variational problems) often have nondifferentiable solutions. In order to solve
these problems we must first generalize our notion of the derivative, a subject falling
under the heading of nonsmooth analysis.

14.3 Fermat’s Principle

We are now ready to solve the two examples introduced in Section 14.1.
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Example 14.6 A return to Example 14.1. As stated earlier, the answer to the first
problem is intuitively obvious. What is the shortest path between the points A = (x1, y1)
and B = (x2, y2) in the plane? Using the Euler–Lagrange equation to solve this problem
leads us to another simple example of a differential equation. We have already posed
this problem as a variational one: what is the function y(x) that minimizes the integral

I(y) =
∫ x2

x1

√
1 + (y′)2dx

subject to the boundary conditions {
y(x1) = y1,

y(x2) = y2.

The function f(x, y, y′) is therefore
√

1 + (y′)2. Since the three variables x, y, and y′

are independent, this function depends on neither x nor y. So we only need to calculate
the second term of the Euler–Lagrange equation:

∂f

∂y′ =
y′√

1 + (y′)2

and

d

dx

(
∂f

∂y′

)
=

y′′

(1 + (y′)2)
3
2
.

The shortest path is described by the function y that satisfies the Euler–Lagrange equa-
tion. In other words, it is the one that satisfies the differential equation

y′′

(1 + (y′)2)
3
2

= 0.

Since the denominator is always positive, we can multiply both sides of the equation by
this quantity, leaving us with

y′′ = 0.

Even if you have not yet taken a course on differential equations you can likely identify
the function y that satisfies the above relation. Solving the differential equation amounts
to answering the following question: what function has the function that is everywhere
0 as its second derivative? The simple answer is that all first-order polynomials y(x) =
ax + b have this property. These polynomials depend on two parameters a and b that
must be determined so as to satisfy the boundary conditions y(x1) = y1 and y(x2) = y2.
(Exercise!) Thus, calculus of variations has assured us that the shortest path between
two points is indeed the straight line through these points!
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This exercise has shown us how to apply the Euler–Lagrange equation. Despite its
simplicity, this example can quickly be generalized into much more difficult problems.

We know that light travels in a straight line while it is in material with a constant
density, and that it refracts when passing between materials with different densities.
Moreover, we know that light reflects from a mirror with an angle of reflection equal to
its angle of incidence. Fermat’s principle summarizes these rules as a statement that
leads immediately to variational problems: light follows the trajectory that takes the
shortest time to travel (see Section 15.1 of Chapter 15).

The speed of light in a vacuum, denoted by c, is fundamental physical constant
(approximately equal to 3.00 × 108 m/s). However, the speed of light is not the same
in gas or other materials such as glass. The speed of light through such materials, v,
is often expressed with the help of the material’s index of refraction n as v = c

n . If
the material is homogeneous, we have that n and therefore v are constant. Otherwise,
n depends on (x, y). A simple example to consider is the index of refraction of the
atmosphere, which varies as a function of the density and therefore the altitude (the
situation is actually slightly more complex than that, since the speed of light can also
depend on the wavelength of the particular beam). If we limit ourselves to motion in
a plane, integral (14.1) from the above example must be changed to take into account
this variable speed:

I =
∫ x2

x1

dt =
∫ x2

x1

n(x, y)
ds

c
=

∫ x2

x1

n(x, y)

√
1 + (y′)2

c
dx.

Here dt represents an infinitesimally small interval of time and ds a correspondingly
small length along the trajectory (x, y(x)) described by

√
1 + (y′)2dx. If n is constant

then n and c can be factored out of the integral and we are again left with the problem
of Example 14.1.

However, if the material is not homogeneous then the speed of light varies as it
travels through the material, and the quickest path is no longer a straight line. The
light is therefore refracted, meaning that its path will deviate from a straight line.
Engineers must take this fact into account when designing telecommunications systems
(in particular when dealing with short wavelengths).

14.4 The Best Half-Pipe.

We are now ready to tackle the more difficult problem of finding the best shape for
a half-pipe. This is actually a much older problem in modern guise. In fact, its first
formulation precedes the invention of the skateboard by nearly three centuries! In the
seventeenth century, Johann Bernoulli announced a contest that occupied the greatest
minds of the time. He published the following problem in Leipzig’s Acta Eruditorum:
“Given two points A and B in a vertical plane, what is the curve traced out by a point
acted on only by gravity, that starts at A and reaches B in the shortest time?” The
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problem was referred to as the brachistochrone problem, which literally means “the
shortest time.” It is known that five mathematicians proposed solutions to this problem:
Leibniz, L’Hôpital, Newton, and both Johann and Jacob Bernoulli [7].

The integral to minimize was shown in (14.2) as

I(y) =
1√
2g

∫ x2

x1

√
1 + (y′)2√

y
dx,

and the function f = f(x, y, y′) is therefore

f(x, y, y′) =

√
1 + (y′)2√

y
.

Since x does not explicitly appear in f , we can apply the Beltrami identity (see Theo-
rem 14.5). The best half-pipe is therefore described by the function y satisfying

y′ ∂f

∂y′ − f = C.

Expanding this yields
(y′)2√

1 + (y′)2
√

y
−

√
1 + (y′)2√

y
= C.

We can simplify this expression by putting the two terms over a common denominator:

−1√
1 + (y′)2

√
y

= C.

Solving for y′, we obtain the differential equation

dy

dx
=

√
k − y

y
, (14.13)

where k is a constant equal to 1
C2 .

This differential equation is difficult even for someone who has taken a course in
differential equations. In fact, it is impossible to express y as a simple function of x.
The following trigonometric substitution will allow us to integrate the equation:√

y

k − y
= tanφ.

The function φ is a new function of x. Isolating y, we obtain

y = k sin2(φ).

The derivative of φ(x) can be calculated using the chain rule, yielding
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dφ

dx
=

dφ

dy
· dy

dx
=

1
2k(sin φ)(cos φ)

· 1
(tan φ)

=
1

2k sin2 φ
.

A typical method for resolving this equation involves rewriting it in the form

dx = 2k sin2 φ dφ,

which indicates the relationship between the two infinitesimal values dx and dφ. Inte-
grating both sides yields

x = 2k
∫

sin2 φ dφ = 2k
∫

1 − cos 2φ

2
dφ = 2k

(
φ

2
− sin 2φ

4

)
+ C1.

We have chosen the initial point A of the trajectory as the origin of the coordinate
system (see Figure 14.2). This choice permits us to fix the constant of integration C1.
At A, the two coordinates x and y are both zero. Thus, the equation y = k sin2 φ forces
φ = 0 (or an integer multiple of π). Substituting this into the above equation for x
yields x = C1, which therefore forces C1 = 0. Finally, by substituting k

2 = a and 2φ = θ
we obtain {

x = a(θ − sin θ),
y = a(1 − cos θ).

(14.14)

These are the parametric equations describing a cycloid. The cycloid is the curve traced
out by a fixed point on the edge of a circle of radius a rolling in a straight line (see
Figure 14.4).

Fig. 14.4. Constructing a cycloid.

Thus, this is the best shape for a half-pipe. More specifically, this is the shape that
allows an athlete, powered only by gravity, to travel from point A to point B in the
least amount of time. The smooth curve drawn between the two extreme profiles of
Figure 14.2 is a cycloid.

Cycloids are very well known by geometers, since they possess a few other interesting
properties. For example, Christiaan Huygens discovered that the period of oscillation of
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a ball along a cycloid is constant, regardless of its amplitude. In other words, if we place
an object anywhere along the side wall of a cycloid, then accelerated only by gravity, it
will take exactly the same amount of time to reach the bottom. This independence of
the period of oscillation from the amplitude is called the tautochrone property. We will
prove this in Section 14.6.

14.5 The Fastest Tunnel

We will now discuss a generalization of the brachistochrone that has the potential (in
theory) to completely revolutionize transportation. Suppose that we could build a
tunnel through the Earth’s crust connecting any city A to any other city B in the
world. If we neglect friction, a train departing A with zero speed would accelerate as
the tunnel gets closer to the center of the Earth and then decelerate as it gets further,
finally arriving at B with exactly zero speed! There would be no need for engines, fuel,
or brakes! We will push the limits of this fantasy further yet: we will determine the
profile of the tunnel that will be traversed in the shortest time.

Fig. 14.5. A tunnel between two cities A and B.

Exercise 13 will show that the transit time of such a tunnel between New York and
Los Angeles is a little less than half an hour, compared to roughly five hours by air (the
great circle route between New York and Los Angeles is roughly 3940 km long). But
do not try to buy your tickets yet. This revolutionary transit system has a few difficult
problems to overcome. If the two cities being considered are sufficiently far apart, the
optimal tunnel between them goes deeper than the Earth’s crust and has to travel
through its liquid core! What materials can resist the high temperatures and pressures
encountered at such depths? Even if we were to overcome such engineering difficulties



14.5 The Fastest Tunnel 461

there would remain the very real problem of cost. Only the largest of cities (those with
many millions of inhabitants) are able to afford building subway lines; the net length of
these tracks rarely exceeds a few hundred kilometers (1160 km for the New York subway
system). The tunnel running under the English channel is only 50 km long. Opened in
1994, it cost 16 billion euros to build. And there are others: Japan’s Seikan rail tunnel
is 53.85 km long, and the Swiss are in the middle of building (to be finished in 2015)
the Gothard tunnel, whose final length will be 57 km. (Exercise: estimate the size of
the hill with 30-degree slopes formed by the Earth removed from the construction of
any of these tunnels.) Despite the utopian nature of the following discussion, it remains
an elegant exercise.

We can model this situation using physics. We model the Earth as a uniform solid
sphere of material with constant density, and the two cities A and B as points on its
surface. We will draw the tunnel in the plane defined by the two cities and the center
of the sphere, and parameterize it with the curve (x, y(x)). The goal of this exercise is
again to find the curve (x, y(x)) that will be traversed in the shortest amount of time
when powered by gravity alone. What is the difference between this problem and the
brachistochrone? The main difference is that the strength and the direction of the force
of gravity changes as a function of our position along the path.

As with the brachistochrone, the problem is to minimize the integral

T =
∫

ds

v
, (14.15)

where v designates the speed of the object at point (x, y(x)) along its path and ds is an
infinitesimally small piece of the trajectory with length

ds =
√

1 + (y′)2 dx. (14.16)

The speed v will be slightly more difficult to express, since the force of gravity is variable.

Proposition 14.7 The gravitational force at a point a distance r =
√

x2 + y2 from the
center of the solid sphere of radius R > r and constant density is oriented toward the
center of the sphere and has a magnitude of

|F | =
GMm

R3
r,

where M is the mass of the sphere and G is Newton’s gravitational constant.

For now, we will take this classical result on faith and continue our discussion. However,
a full proof can be found at the end of the section.

The speed v at point (x, y(x)) will again be calculated using the principle of the
conservation of energy. This principle says that in the absence of friction, the total
energy of an object in motion (that is, the sum of its potential and kinetic energies)
remains constant. At the beginning of the trip the speed is assumed to be zero, thus
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the object has zero kinetic energy. And since the trajectory starts at the surface of the
Earth, the potential energy will be evaluated using r = R. The relationship between
gravitational force and potential energy is given by F = −∇V . Since F depends only
on the distance r from the center of the sphere, this is easily calculated as

V =
GMmr2

2R3
.

The potential energy is determined only up to some additive constant, which we choose
to be V (r) = 0 at r = 0. The total energy of the object at the beginning of its trip is
therefore given by

E =
1
2
mv2 + V (r) = 0 +

GMmr2

2R3

∣∣∣∣
r=R

=
GMm

2R
.

We are now in a position to calculate the speed v of the object as a function of its
position (x, y(x)). By the conservation of energy it follows that

GMm

2R
=

mv2

2
+

GMm

2R3
r2

and therefore

v =

√
GM(R2 − r2)

R3
.

Letting g = GM
R2 , which corresponds to the force of gravity at the surface of the Earth,

we can simplify the speed to

v =
√

g

R

√
R2 − r2 =

√
g

R

√
R2 − x2 − y2. (14.17)

Using (14.15), (14.16), and (14.17), the travel time of the object can be expressed as

t =

√
R

g

∫ xB

xA

√
1 + (y′)2√

R2 − x2 − y2
dx.

We thus end up with an expression very similar to that describing the brachistochrone.
Using the Euler–Lagrange equation leads to the curve shown in Figure 14.6, whose
parametric equations are

x(θ) = R

[
(1 − b) cos θ + b cos

(
1 − b

b
θ

)]
,

y(θ) = R

[
(1 − b) sin θ − b sin

(
1 − b

b
θ

)]
,

(14.18)

with b ∈ [0, 1]. This curve is called a hypocycloid. We will not step through the details
of this solution here. The reader is encouraged to verify that 14.18 is in fact a solution,



14.5 The Fastest Tunnel 463

(a) θ ∈ [0, 3π] (b) A tunnel following a
hypocycloid trajectory

Fig. 14.6. A hypocyloid with b = 0.15.

but the calculation is a little tedious, and mathematical software might be of use. In
the particular case b = 1

2 , the hypocycloid is in fact a straight line segment, since
x ∈ [−R,R] and y = 0. We showed that the cycloid is drawn by a point on the edge
of a circle rolling in a straight line. Similarly, the hypocycloid is drawn by a point on
the edge of a circle of radius a rolling along the inside of another circle of radius R (the
parameter b of (14.18) is b = a

R ). Some of you may remember Hasbro’s SpiroGraph
toy, which involved placing a pencil inside a disk that rolled along the interior of a
large ring (one of the many configurations of this toy). In order to draw a hypocycloid
with the SpiroGraph, the pencil would have to be placed exactly at the periphery of
the disc. It is interesting to note the strong similarities between this problem and the
earlier brachistochrone problem.

Proof of Proposition 14.7. We consider a uniform sphere and we study the grav-
itational force induced by this sphere on a point mass P somewhere inside the sphere.
Without loss of generality we may assume that the point mass P is placed along the x
axis at a distance r ≤ R from the origin (see Figure 14.7). We use spherical coordinates
centered at P : ⎧⎪⎨

⎪⎩
x = ρ sin θ,

y = ρ cos θ cos φ,

z = ρ cos θ sin φ,

where θ ∈ [−π
2 , π

2 ], ρ ≥ 0, and φ ∈ [0, 2π]. The Jacobian of this change of coordinates
is ρ2 cos θ ≥ 0, and therefore the infinitesimal volumes of integration are related by
dx dy dz = ρ2 cos θ dρ dθ dφ.

Due to symmetry, the sphere with center P and radius b = R−r has a net attraction
of zero on the point P . Thus, the net gravitational force exerted on P depends on the
remaining volume of the larger sphere, as indicated by the shaded region in Figure 14.7.
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Fig. 14.7. The variables characterizing the interior point P .

The gravitational force exerted by a small element with volume dx dy dz and centered
at (x, y, z) is proportional to the vector (x,y,z)

(x2+y2+z2)
3
2
dx dy dz. The total gravitational

force is the sum of all of these small contributions. For reasons of symmetry it follows
that the y and z components of this force are zero.

The (amplitude of the) total force is therefore given by the following triple integral:

F = mGμ

∫∫∫
x

(x2 + y2 + z2)
3
2

dx dy dz,

where μ is the density of the sphere, G is Newton’s gravitational constant, and m is the
mass of the point mass P . The domain of integration is the volume described by the
shaded part of Figure 14.7, which is the interior of the large sphere minus the smaller
sphere of radius b centered at P . To calculate this integral we first transform it to
spherical coordinates:

F = mGμ

∫∫∫ (
ρ sin θ

ρ3
ρ2 cos θ

)
dφ dρ dθ.

We must now express the limits of this integral in terms of these new coordinates. The
coordinates of a point on the inner sphere satisfy x2+y2+z2 = ρ2, where ρ = b = R−r.
The coordinates of points on the surface of the outer sphere satisfy (x+r)2+y2+z2 = R2,
or equivalently

(ρ sin θ + r)2 + ρ2 cos2 θ cos2 φ + ρ2 cos2 θ sin2 φ = R2,

which simplifies to
ρ2 + r2 + 2rρ sin θ = R2.
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This equation has two roots. We take

ρ = −r sin θ +
√

r2 sin2 θ − r2 + R2

so that ρ ≥ 0. Since we have expressed the limits in spherical coordinates, we can now
evaluate the triple integral F :

F = mGμ

∫ π
2

−π
2

∫ −r sin θ+
√

R2−r2 cos2 θ

R−r

∫ 2π

0

(
ρ sin θ

ρ3

)
ρ2 cos θ dφ dρ dθ

= 2πmGμ

∫ π
2

−π
2

∫ −r sin θ+
√

R2−r2 cos2 θ

R−r

sin θ cos θ dρ dθ

= 2πmGμ

∫ π
2

−π
2

sin θ cos θ(−r sin θ +
√

R2 − r2 cos2 θ + r − R) dθ

= 2πmGμ

∫ π
2

−π
2

(
−r sin2 θ cos θ + sin θ cos θ

√
R2 − r2 cos2 θ + (r − R)

sin 2θ

2

)
dθ

= 2πmGμ

(
−r sin3 θ

3

∣∣∣∣
π
2

−π
2

+
1

3r2
(R2 − r2 cos2 θ)

3
2

∣∣∣∣
π
2

−π
2

− (r − R) cos 2θ

4

∣∣∣∣
π
2

−π
2

)
.

The last two terms are equal to 0. Thus we have that

F = −4π

3
rmGμ.

The negative sign indicates that the force is directed toward the center of the Earth.
Finally, if M is the mass of the Earth, we have that μ = M

4πR3/3 and

|F | =
GMm

R3
r.

�

14.6 The Tautochrone Property of the Cycloid

Recall that the cycloid is parameterized by{
x(θ) = a(θ − sin θ),
y(θ) = a(1 − cos θ),

(14.19)

as a function of the variable θ ∈ [0, 2π]. (Figure 14.8 shows such a cycloid; the y axis is
oriented downward.) The peaks of the cycloid are at the points θ = 0 and 2π, while the
lowest point is at θ = π. Consider placing a ball with mass m at the point (x(θ0), y(θ0))
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for some θ0 < π and letting it go with zero initial velocity. If friction is negligible,
then the ball will oscillate between the point (x(θ0), y(θ0)) and its corresponding point
(x(2π − θ0), y(2π − θ0)) on the opposite side of the bottom. One trip back and forth
is a single period of this oscillation. The goal of this section is to prove that the time
taken to complete a period is independent of θ0.

Proposition 14.8 Let T (θ0) be the period of oscillation for a ball released at (x(θ0), y(θ0)).
Then

T (θ0) = 4π
√

a

g
. (14.20)

The period is therefore independent of θ0.

Proof. The period is equal to 4τ(θ0), where τ(θ0) is the time taken for the ball to roll
from its starting point to the lowest point of the cycloid, (x(π), y(π)). We will show
that τ(θ0) = π

√
a
g .

Fig. 14.8. The starting position (x(θ0), y(θ0)) of the ball and the components of its velocity
at a later time.

Let vy(θ) be the vertical component of the velocity of the ball at position θ. Then
we have that

τ(θ0) =
∫ τ(θ0)

0

dt =
∫ y(π)

y(θ0)

dy

vy(θ)
=

∫ π

θ0

1
vy(θ)

dy

dθ
dθ. (14.21)

By (14.19) we see that
dy

dθ
= a sin θ.

We must calculate vy(θ). Again, we may use the conservation of energy. As with (14.3),
the total speed v(θ) of the ball at points (x(θ), y(θ)) depends on the vertical distance
traveled,

h(θ) = y(θ) − y(θ0) = a(cos θ0 − cos θ),

and therefore
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v(θ) =
√

2gh(θ) =
√

2ga
√

cos θ0 − cos θ.

The vertical component of this velocity may be computed as

vy(θ) = v(θ) sin φ, (14.22)

where φ is the angle between the direction of the ball and the horizontal. Since

tan φ =
dy

dx
=

dy

dθ

/
dx

dθ
=

sin θ

1 − cos θ
,

we have
1 + tan2 φ =

2
1 − cos θ

and therefore

sin φ =
√

1 − cos2 φ =

√
1 − 1

1 + tan2 φ
=

√
1 + cos θ

2
. (14.23)

(Careful! Since the y axis is oriented downward, the angle φ increases in the clockwise
direction rather than counterclockwise. Thus, the angle φ indicated in Figure 14.8 is
positive.) Thus we get

vy(θ) =
√

ga
√

cos θ0 − cos θ
√

1 + cos θ. (14.24)

The integral in (14.21) is now explicit in terms of θ0 and θ. Since sin θ is positive for
0 ≤ θ ≤ π, then sin θ =

√
1 − cos2 θ and we obtain

1
vy(θ)

dy

dθ
=

a sin θ√
ga

√
cos θ0 − cos θ

√
1 + cos θ

=
√

a

g

√
(1 − cos θ)(1 + cos θ)√

cos θ0 − cos θ
√

1 + cos θ

=
√

a

g

√
1 − cos θ√

cos θ0 − cos θ
. (14.25)

Thus

τ(θ0) =
√

a

g
I(θ0), where I(θ0) =

∫ π

θ0

√
1 − cos θ√

cos θ0 − cos θ
dθ.

It remains only to evaluate the integral I(θ0). The first step is to rewrite it as

I(θ0) =
∫ π

θ0

sin θ
2√

cos2 θ0
2 − cos2 θ

2

dθ,

using the fact that
√

1 − cos θ =
√

2 sin θ
2 and cos θ = 2 cos2 θ

2 − 1. In order to evaluate
the integral we use a change of variables:
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u =
cos θ

2

cos θ0
2

with du = − sin θ
2

2 cos θ0
2

dθ.

Under this change of variables θ = θ0 and θ = π correspond to u = 1 and u = 0,
respectively. Thus the integral becomes

I(θ0) = −
∫ 0

1

2√
1 − u2

du = −2 arcsin(u)
∣∣0
1

= π,

which completes the proof. �

Note that the proof of this section also allows us to calculate the time taken for a
ball to travel between (0, 0) and (x(θ), y(θ)); integral (14.21) remains valid, requiring
only a change in the limits.

Corollary 14.9 The time taken for a ball, acted upon only by gravity, to travel along
a cycloid from point θ = 0 to θ is given by

T (θ) =
√

a

g
θ.

In particular, T (π) = π
√

a
g (this is the same as τ(θ0) calculated above) and T (2π) =

2π
√

a
g (the shortest time taken to travel from (0, 0) to (2πa, 0) using only gravity).

Proof. The integrand is the same as that of (14.25). Substituting 0 as the lower limit
and θ as the upper limit yields

T (θ) =
∫ T (θ)

0

dt =
√

a

g

∫ θ

0

sin θ
2√

1 − cos2 θ
2

dθ =
√

a

g

∫ θ

0

dθ =
√

a

g
θ.

�

14.7 An Isochronous Device

When first discovered, the tautochrone property of the cycloid created quite a stir among
clockmakers. If we can force a particle to travel without friction along a cycloidal path
under the effect of gravity, then it will oscillate with a period of

(
4π

√
a
g

)
, regardless

of the amplitude of the motion. This is not the case for classic pendulums that swing
along a circular arc. For such pendulums the period increases as the angle of maximum
displacement increases. Thus in order for such clocks to run true, the pendulum must
be precisely positioned when started, and the amplitude must remain constant over
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days. In practice, the difference in the period can be neglected if the amplitude of the
pendulum is sufficiently small, but the clock will never be precise.2

Having discovered the tautochrone property of the cycloid, Huygens had the idea
of building a clock whose pendulum would be forced to travel a cycloidal path. At the
time, any improvement in the accuracy of clocks implied a corresponding improvement
in the accuracy of astronomy and navigation. In fact, having accurate clocks was nearly
a question of life or death for maritime navigators. In order to accurately determine
their longitude they needed to know the time of day to high precision. However, the
imprecise clocks of the era accrued error relatively quickly. Such imprecision could be
dangerous, for it could lead navigators to calculate their position as being in safe waters
when in reality they were not.

We will describe the device imagined by Huygens, which forced the mass of a pen-
dulum to follow a cycloidal path. The problem with this device is that the friction
involved slows down the pendulum much more rapidly than a traditional pendulum.

Fig. 14.9. Huygens’s device and two positions of the pendulum.

Huygens imagined two “bumpers” with a cycloidal profile of parameter a, and a
pendulum of length 4a suspended between the two of them (see Figure 14.9). As the
pendulum swings, its string is pressed against the cycloidal bumpers for a length l(θ),
running flat with the bumper between the points (0, 0) and Pθ. The loose part of the
string is a line segment that is tangent to the cycloid at the point Pθ.

Proposition 14.10 In the absence of friction, Huygens’s pendulum (as shown in Fig-
ure 14.9) is isochronous (in other words, it has a constant period of oscillation regardless
of the amplitude of the motion).

2You may already have studied the motion of pendulums in a physics course. The differential

equation describing their motion is d2

dt2
θ = − g

l
sin θ, which may be approximated by d2

dt2
θ =

− g
l
θ under the hypothesis that θ remains close to 0. (l is the length of the pendulum’s

cord.) This approximation yields the solution θ(t) = θ0 cos(
√

g
l
(t − t0)), which has a period

independent of the amplitude θ0. However, this approximation is invalid for sufficiently large
θ0.
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Proof. The position of the end of the pendulum is given by the equation

Pθ + (L − l(θ))T (θ) = X(θ), (14.26)

where Pθ is the point of tangency, T (θ) is the unit tangent vector at Pθ, and (L− l(θ)) is
the length of the string that remains free. The quantity X(θ) represents the position of
the end of the pendulum as a function of the parameter θ. (Careful: θ is the parameter
that traces out the cycloid, and not the angle that the pendulum makes with the vertical
axis.)

We begin by finding the components of the vector Pθ. This is straightforward, since
Pθ parameterizes the cycloid; thus

Pθ = (a(θ − sin θ), a(1 − cos θ)) .

In order to find the tangent vector to the cycloid at the point θ, it suffices to differentiate
the components of Pθ individually:

V (θ) = (a(1 − cos θ), a sin θ) .

To make this a unit tangent vector, we simply renormalize it by its length,

|V (θ)| =
√

a2(1 − cos θ)2 + a2 sin2 θ =
√

2a
√

1 − cos θ,

yielding

T (θ) =
V (t)
|V (t)| =

(√
1 − cos θ√

2
,

sin θ√
2
√

1 − cos θ

)
.

The length of the cable has been set to L = 4a. Thus it remains only to calculate the
value l(θ), corresponding to the length of the perimeter of the cycloid between the points
(0, 0) and Pθ (see Figure 14.9). This can be accomplished by evaluating the following
integral:

l(θ) =
∫ θ

0

√
(x′)2 + (y′)2 dθ =

∫ θ

0

a
√

2
√

1 − cos θ dθ. (14.27)

This integral can be simplified by recalling that
√

1 − cos θ =
√

2 sin θ
2 , yielding

l(θ) =
∫ θ

0

a
√

2
√

2 sin
θ

2
dθ =

[
−4a cos

θ

2

]θ

0

= −4a cos
θ

2
+ 4a.

We now have all the tools necessary to describe the trajectory X(θ). Before we
proceed, we simplify the expression for the vector between the point of tangency Pθ and
the end X(θ) of the pendulum:
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−−−−−→
PθX(θ) = (L − l(θ))T (θ)

= 4a cos θ
2

(√
1 − cos θ√

2
,

sin θ√
2
√

1 − cos θ

)

= 4a

(√
1 − cos θ

√
1 + cos θ

2
,
(cos θ

2 )(2 sin θ
2 cos θ

2 )√
2
√

2 sin θ
2

)

= 2a(
√

1 − cos2 θ, 2 cos2
θ

2
)

= 2a(sin θ, 1 + cos θ).

Adding the coordinates for the point of tangency Pθ, we finally obtain

X(θ) = (aθ − a sin θ + 2a sin θ, a − a cos θ + 2a + 2a cos θ)
= (a(θ + sin θ), a(1 + cos θ) + 2a)
= (a(φ − sin φ) − aπ, a(1 − cos φ) + 2a),

where we have applied the substitution φ = θ+π and the two identities sin θ = − sin(θ+
π) and cos θ = − cos(θ +π). This curve is thus a cycloid translated by (−πa, 2a). Thus,
Huygens’s device forces the extremity X(θ) of the pendulum to follow a cycloidal path.
�

14.8 Soap Bubbles

What is the form that an elastic sheet will take when it is attached to the edges of a
rigid frame? This question has a simple and intuitive answer when the entire perimeter
of the frame lies in a plane: the sheet will also lie in the plane of the frame. For example,
the skin of a drum is flat, lying within the plane defined by the perimeter of the drum.
Calculus of variations is hardly necessary in this case, but what about when the frame
does not lie in a plane? As you may have guessed, the answer is much less evident!
Nonetheless, finding the answer to this problem is little more than child’s play. Armed
with nothing more than a little soapy water and a piece of wire that can be bent into
any shape, anyone can find the solution. When dipped into the soapy water, the film
formed inside the frame will give the experimental answer to the question we have just
posed.

In the last half century, architecture has distanced itself from the world of vertical
walls and flat roofs. Many large projects have chosen to incorporate nonplanar surfaces,
particularly roofs. Although the materials used are far from being elastic and supple,
the shapes they take often resemble those of elastic sheets attached to exotic frames.

Calculus of variations allows us to solve this question by noting that the ideal surface
is that with minimum surface area. (To convince yourself, recall that the tension in an
elastic is at its minimum when it is not stretched. Minimizing the length of an elastic
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band and the area of an elastic sheet both serve to minimize the tension of the material.)
Thus, answering our question amounts to minimizing the integral

I =
∫∫

D

√
1 +

(
∂f

∂x

)2

+
(

∂f

∂y

)2

dx dy, (14.28)

which represents the surface area of a function f = f(x, y) situated above a domain D
whose perimeter is a closed curve C (the image of the frame). Under this formulation,
the question is equivalent to that of minimal surfaces in classical geometry.

Finding the function f that minimizes integral (14.28) requires deriving a form of
the Euler–Lagrange equation for functionals defined by two-dimensional integrals. This
is not too difficult, and is left to the reader in Exercise 16. For the present discussion we
limit ourselves to surfaces of revolution that may be cast as one-dimensional problems.

Example 14.11 We consider a frame consisting of two parallel circles y2 + z2 = R2

situated in the planes x = −a and x = a. Consider a curve z = f(x) such that
f(−a) = R and f(a) = R. The surface of revolution created by rotating this curve
around the x axis is a surface that is attached to the two circular frames. We will leave
it as an exercise to the reader (Exercise 15) to show that the area of this surface is given
by the formula

I = 2π
∫ a

−a

f
√

1 + f ′2dx. (14.29)

Minimizing this integral amounts to solving the associated Beltrami identity

f ′2f√
1 + f ′2 − f

√
1 + f ′2 = C,

which may be rewritten as
f√

1 + f ′2 = C.

Thus we have that

f ′ = ± 1
C

√
f2 − C2.

In order to solve this differential equation we rewrite it as

df√
f2 − C2

= ± 1
C

dx

and integrate both sides, yielding

arccosh(f/C) = ± x

C
+ K±.
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There are two constants of integration (K±) because the solution is given as the union
of two functions, x = g±(z), one for each side of x = 0. Applying cosh to both sides
leaves

f = C cosh
( x

C
± K±

)
.

Here we have made use of the hyperbolic cosine (defined using the exponential function
as cosh x = 1

2 (ex + e−x)) and its inverse arccosh. Since we want these two functions
to agree for x = 0, we define K+ = −K− = K. It is a good exercise to verify that the
derivative of arccosh x is 1/

√
x2 − 1, and in doing so justify the above integration.

Since f(−a) = f(a) = R, we must have that{
K = 0,
C cosh( a

C ) = R.

The second equation fixes C, but only implicitly.
The curve y = C cosh

(
x
C + K

)
is called a catenary, and the surface obtained by

rotating its graph about the x axis is called the catenoid. (See Figure 14.10.) We will
discuss it in further detail later.

Fig. 14.10. Two points of view of the elastic sheet joining two rings with equal diameter.

It is rare in mathematics that solutions to analytic problems can be constructed and
verified, at least approximately, with a toy. As discussed in the introduction to this
section, some flexible wire and soapy water is all that is needed to do exactly that for
this particular problem. Experimentation also allows us to explore the limitations of
calculus of variations, some of which were mentioned in Section 14.2 (see the discussion
regarding the optimal column). We encourage the reader to find a “good” recipe for
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soapy water on the Internet, and to experiment with diverse shapes. We recommend
that you try using the skeleton of a cube as a frame!

Soap bubbles give a simple way to answer several other questions. Here is one:

Example 14.12 The three cities and a soapy film. Suppose that we have three
cities located on a perfectly flat surface. We wish to join these three cities using the
shortest possible route. How do we proceed?

We begin by identifying the cities as three points A, B, and C. Next we construct a
model consisting of two parallel plates made of transparent material, joined by perpen-
dicular bars attached between the points corresponding to A, B, and C on each plate.
The entire model is then dipped in soapy water and removed. The film joining the three
bars will be a minimal surface. Its profile (when viewed through one of the transparent
plates) describes the shortest network of roads between the three cities.

Fig. 14.11. The dotted lines indicate the shortest road network connecting the three cities at
the corners of the triangle.

It is somewhat surprising to note that the shape of the soap film does not always
correspond to the two shortest edges of the triangle. In fact, if the angles of the triangle
ABC are all smaller than 2π

3 , we obtain a shorter network by passing through an inter-
mediate point somewhere between the three cities, as shown at the left in Figure 14.11.
In contrast, if one of the angles is greater than or equal to 2π

3 then the two incident
edges form the shortest network of roads, as shown at the right in Figure 14.11.

The intermediate point between the three cities that minimizes the net distance to all
of the cities is called a Fermat point. The position of the Fermat point can be found by
inscribing an equilateral triangle along each side of the triangle, with its peak away from
the interior of the triangle. Then, each corner of the triangle is joined with the peak of
the equilateral triangle associated with the opposite face. The three lines will intersect
at the Fermat point. It will be located inside the triangle only when the three angles of
the triangle are all less than 2π

3 (see Figure 14.12).
Exercise 18 will show that the path constructed in this manner is indeed the shortest.
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Fig. 14.12. Constructing a Fermat point.

This technique generalizes to networks of more than three cities. It may be used to
find the shortest network of roads connecting them. The generalized problem is in fact
quite old, and is known as the minimum Steiner tree problem.

The minimum Steiner tree problem. The problem can be stated as follows: given n
points in the plane, find the shortest network connecting all of the points. It is relatively
simple to convince yourself that such a network consists only of line segments (any curve
can be replaced by a shorter polygonal line). Moreover, we can convince ourselves that
the network will contain no closed triangles, since the above example showed how most
efficiently to connect the corners of a triangle. A similar argument will show that the
network can contain no closed polygons, and hence no cycles. In graph theory such a
network is called a tree.

Minimal surfaces play a natural role in numerous applications. If you keep your eyes
open, you will likely encounter a few of them in your studies.

14.9 Hamilton’s Principle

Hamilton’s principle is one of the greatest successes of calculus of variations. It allows
problems from classical mechanics and several other domains of physics to be recast as
variational problems.

According to Hamilton’s principle, a system in motion will always follow the trajec-
tory that optimizes the following integral:

A =
∫ t2

t1

Ldt =
∫ t2

t1

(T − V ) dt, (14.30)
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where L, called the Lagrangian, is the difference between the kinetic energy T of the
system and its potential energy V . For historic reasons, this integral is called the action
integral. Thus Hamilton’s principle is also referred to as the principle of least action.3

In many systems, the kinetic energy depends only on the speed of an object (in the
case of a moving object, the kinetic energy is given by 1

2mv2, where v is the speed of
the object and m its mass), and the potential energy depends only on its position. In
such systems the Lagrangian L is in fact a function L = L(t,y,y′), where y = y(t) is
the position vector and y′ = dy

dt the corresponding velocity vector. Thus we have an
action integral of the form

A =
∫ t2

t1

L(t,y,y′) dt,

where the time t now plays the role of the space variable x in Theorem 14.4.
The vector y describes the position of the entire system. Thus, the number of

coordinates required depends on the details of the particular system being considered.
If we are describing the motion of a particle in a plane or space, then we would have
y ∈ R2 or y ∈ R3, respectively. It the system contains two particles moving in the plane
we would have y = (y1,y2) and therefore y ∈ R4, where y1 represents the position of
the first particle and y2 the position of the second. In general, a system whose position
is fully described by a vector y ∈ Rn is said to have n degrees of freedom. (See Chapter
3 for a discussion of degrees of freedom in another context.)

If y = (y1, . . . , yn) ∈ Rn, the Lagrangian takes the form L = L(t, y1, . . . , yn,
y′
1, . . . , y

′
n). The Euler–Lagrange equations can be generalized to describe problems

with n degrees of freedom. For example, the form discussed below describes a system
with two degrees of freedom.

Theorem 14.13 Consider the integral

I(x, y) =
∫ t2

t1

f(t, x, y, x′, y′) dt. (14.31)

The pair (x∗, y∗) minimizes this integral only if (x∗, y∗) is a solution to the following
system of Euler–Lagrange equations:

∂f

∂x
− d

dt

(
∂f

∂x′

)
= 0,

∂f

∂y
− d

dt

(
∂f

∂y′

)
= 0.

3 It is difficult to understand exactly why nature behaves in such a manner as to minimize
the difference between kinetic and potential energies. Why this difference rather than any of the
many other possible differences? Most physics texts are surprisingly silent on this point. In his
introductory physics courses, Feynman devotes an entire chapter to the principle of least action.
His amazement with the subject stems not from the fact that nature minimizes the difference
between kinetic and potential energies, but rather from the existence of such a simple formula
that describes physical interactions. For those who wish to explore the connection between
calculus of variations and physics further, Feynman’s course is an excellent starting point [5].
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In our previous examples the behavior of the solution was fixed by the boundary
conditions of the function y. For example, the constants of integration that arise in
finding the cycloid are determined by knowing that it starts at (x1, y1) and ends at
(x2, y2). In physics, rather than defining the starting and ending points of a particle,
it is more common to describe the initial conditions of the system by defining both the
position and velocity of the particle. We demonstrate this approach in the following
example.

Example 14.14 Projectile motion. As an example of Hamilton’s principle we con-
sider the trajectory of a projectile of mass m. We suppose that air friction is negligible.
The projectile is launched at time t1 = 0 from an initial position (x(0), y(0)) = (0, h)
with an initial velocity v0 at an angle θ above the horizontal. Using the angle of the
velocity vector, the components will be (v0x, v0y) = |v0|(cos θ, sin θ).

The action of such a projectile (see (14.30)) is described by

A =
∫ t2

t1

L(t, x, y, x′, y′)dt =
∫ t2

t1

(T − V )dt,

where ′ denotes the time derivative. The kinetic energy of the projectile is T = 1
2m|v|2

and the potential energy is V = mgy. Since the square of the magnitude of the velocity
vector is given by |v|2 = (x′)2 + (y′)2, the integral may be rewritten in terms of the
variables x, y, x′, and y′ as

A =
∫ t2

t1

m
(

1
2 (x′)2 + 1

2 (y′)2 − gy
)
dt.

The equations describing the motion of the projectile are found with the help of the
two-dimensional Euler–Lagrange equations described in Theorem 14.13, where the La-
grangian L = m

(
1
2 (x′)2 + 1

2 (y′)2 − gy
)

is the function whose integral is to be optimized.
We use equivalently f = L

m . The first equation yields

0 =
∂f

∂x
− d

dt

(
∂f

∂x′

)
= − d

dt
(x′) = −x′′, (14.32)

where the second equality follows from the fact that L is independent of x. Since the
second derivative of x is zero, its first derivative must be a constant. We already know
the value of this constant: it is the horizontal component of the initial velocity of the
particle, v0x. Thus

x′ = v0x = |v0| cos θ.

Thus we have demonstrated a well-known physical fact: in the absence of friction, a
thrown object has a constant horizontal speed. A second integration gives the x coordi-
nate of the particle as a function of time: x = v0xt + a. The constant of integration a
can also be determined using the initial conditions. Given that x(0) = 0, it follows that
a = 0 and therefore
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x = v0xt = |v0|t cos θ.

The second Euler–Lagrange equation leads to

0 =
∂f

∂y
− d

dt

(
∂f

∂y′

)
= −g − d

dt
y′ = −g − y′′,

which simplifies to
y′′ = −g. (14.33)

Thus, in the vertical direction the particle is subject to a constant downward force due
to gravity. Integrating this once yields

y′ = −gt + b,

where the constant of integration b is fixed by the initial vertical velocity v0y of the
particle. Indeed, at t1 = 0, the vertical velocity is y′ = |v0| sin θ. Thus it follows that

y′ = −gt + |v0| sin θ.

Integrating again yields the vertical position of the particle as a function of time, yielding

y =
−gt2

2
+ |v0|t sin θ + c.

The constant c is equal to the initial y coordinate of the particle, and therefore c = h.
Thus the complete trajectory of the particle is given by

x = v0xt = |v0|t cos θ and y =
−gt2

2
+ |v0|t sin θ + h. (14.34)

As we will now show, these equations parameterize a parabola when θ 
= ±π
2 . Indeed,

if cos θ 
= 0, then t = x/(|v0| cos θ). This allows the coordinate y to be rewritten as a
function of x, yielding

y =
−gx2

2|v0|2cos2θ
+ x tan θ + h,

the anticipated parabola. The case cos θ = 0 corresponds to a vertical launch (either
upward or downward), and the corresponding trajectory is simply a vertical line.

Note that both (14.32) and (14.33) are the equations that we would have arrived
at had we applied Newton’s laws. Here they appeared naturally as a consequence of
Hamilton’s principle.

Example 14.15 Spring motion. This simple example is explored in Exercise 14.
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Example 14.16 Systems in equilibrium. Systems in equilibrium can be easily sim-
plified. The configuration of such systems remains constant for all time, and thus the
Lagrangian is a constant as a function of time. If we want the action integral

∫ t2
t1

Ldt to
attain an extremum, then the underlying Lagrangian must itself have some extremum.
We will see several examples of this in Section 14.10: suspended cables, self-supporting
arches, and liquid mirrors.

The reformulation of physical laws into variational problems using Hamilton’s prin-
ciple is not limited to classical mechanics. In fact, the principle of least action plays an
important role in quantum mechanics, electromagnetism, general relativity, and in both
classic and quantum field theory.

14.10 Isoperimetric Problems

Isoperimetric problems are an important class of variational problems. They represent
problems in which the optimization is subject to one or more constraints.

The term “isoperimetric problems” likely does not make you think of optimization
with constraints. However, they have been given this name due to their origin, a problem
from antiquity. Given a fixed perimeter, the problem asked to find the geometric figure
that encloses the largest possible area. The answer is, perhaps intuitively, the circle.
The techniques developed in this section show how to use calculus of variations to answer
this and other similar questions. We begin by presenting a variant of this problem.

Example 14.17 We wish to maximize the integral

I =
∫ x2

x1

y dx

under the constraint that

J =
∫ x2

x1

√
1 + (y′)2 dx = L,

where L is a constant that represents the length of the curve. The perimeter is therefore
L + (x2 − x1). The first integral computes the area under the curve y(x) between the
points x1 and x2, while the second computes its length.

A review of Lagrange multipliers. For functions with real variables, the problem of
optimization with constraints it solved using the classic method of Lagrange multipliers.
We discuss the broad strokes of the technique. We wish to find the extrema of a two-
variable function F = F (x, y) under the constraint G(x, y) = C. We can imagine
walking along the contour of points where G(x, y) = C. Since the contours of F and
G are generally distinct, walking along the G = C contour crosses many contours of
F . Thus, we can increase or decrease the value of F by walking along this contour.
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Fig. 14.13. Explaining the role of Lagrange multipliers.

When the contour G = C touches tangentially a contour of F , then movements in both
directions along the G = C contour change the value of F in the same direction. Thus,
such a point corresponds to a local extremum of the constrained optimization. More
precisely, extrema occur where the gradients ∇F and ∇G are parallel; in other words,
where ∇F ‖ ∇G and therefore ∇F = λ∇G for some real λ. This λ is known as a
Lagrange multiplier. Figure 14.13 shows a graphical depiction of the intuition behind
this technique. The constraint G = C is shown as a black closed curve, while several
contours of F are shown in gray. Two constrained extrema can be found at the indicated
points, both occurring where the contours are tangential. Thus, for functions of real
variables, optimization with a constraint amounts to solving{

∇F = λ∇G,

G(x, y) = C.

This technique can be generalized to handle multiple constraints. As shown without
proof in the following theorem, the technique may also be extended to constrained
variational problems.

Theorem 14.18 A function y(x) which is an extremum of the integral I =
∫ x2

x1
f(x, y, y′) dx

under the constraint J =
∫ x2

x1
g(x, y, y′) dx = C is a solution to the Euler–Lagrange dif-

ferential equation associated with the functional

M =
∫ x2

x1

(f − λg)(x, y, y′)dx.

Thus we must resolve the following system:⎧⎪⎪⎨
⎪⎪⎩

d

dx

(
∂(f − λg)

∂y′

)
=

∂(f − λg)
∂y

,

J =
∫ x2

x1

g(x, y, y′) dx = C.
(14.35)
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If f and g are independent of x we can again appeal to Beltrami’s identity and instead
solve the following system:⎧⎪⎪⎨

⎪⎪⎩
y′ ∂(f − λg)

∂y′ − (f − λg) = K,

J =
∫ x2

x1

g(x, y, y′) dx = C.
(14.36)

Example 14.19 A suspended cable. Suppose that we have a cable suspended between
two points, for example a high-voltage power line suspended between two poles (Figure
14.14). Intuitively, we know that if the cable is longer than the distance between the two
points it will sag and form a curve. The constrained Euler–Lagrange equations will allow
us to deduce that this curve is a catenary and gives its exact equation. The functional to
minimize will be that of the potential energy of the cable. Since the cable is stationary
and has no kinetic energy, this is another example of Hamilton’s principle at work (see
Example 14.16).

Fig. 14.14. What equation describes the shape of this suspended cable?.

Suppose that the cable has linear density σ (where linear density is mass per unit of
length) and that L is its length. Since the potential energy of a mass m at height y is
mgy, the potential energy of an infinitesimal piece of cable of length ds at height y is
therefore σgy ds. Thus, the potential energy of the entire cable is given by

I = σg

∫ L

0

y ds,

or equivalently,

I = σg

∫ x2

x1

y
√

1 + (y′)2 dx. (14.37)

The constraint to be satisfied is that of the length L of the cable. Thus, we must have
that
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J =
∫ x2

x1

√
1 + (y′)2 dx = L.

This problem is therefore an isoperimetric problem.
Since neither f = y

√
1 + (y′)2 nor g =

√
1 + (y′)2 depends on x, we can use the

Beltrami identity from Theorem 14.18 and apply it to the function

F = σgy
√

1 + (y′)2 − λ
√

1 + (y′)2 = (σgy − λ)
√

1 + (y′)2.

Substituting the above function into the Beltrami identity

y′ ∂F

∂y′ − F = C

yields
(y′)2(σgy − λ)√

1 + (y′)2
− (σgy − λ)

√
1 + (y′)2 = C,

which may be simplified to

− σgy − λ√
1 + (y′)2

= C.

Solving for y′ yields

dy

dx
= ±

√(
σgy − λ

C

)2

− 1. (14.38)

Like that of the brachistochrone, this differential equation is separable, meaning that the
parts depending on x and y may be moved to opposite sides of the relation:

dx = ± dy√(
σgy−λ

C

)2

− 1

.

This method allows us to find x as a function of y. However, knowing the rough form
of the solution (Figure 14.14), we see that we will need two functions to describe it in
this manner, one for the left half and another for the right.

As before, this approach allows us to integrate the two sides of the differential equa-
tion, leading to

x = ± C

σg
arccosh

(
σgy − λ

C

)
+ a±,

where a± is a constant of integration. Thus

x − a± = ± C

σg
arccosh

(
σgy − λ

C

)
.

Since the function cosh is even (cosh x = cosh(−x)), it follows that
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σgy − λ

C
= cosh

σg

C
(x − a±).

Finally, we arrive at

y =
C

σg
cosh

σg

C
(x − a±) +

λ

σg
.

As in our earlier discussion in Example 14.11, it follows that a+ = a− = a in order for
the two equations to meet smoothly in the middle.

Thus we see that a suspended chain (assumed to be perfectly uniform and flexible) will
naturally take the form of a catenary as in Example 14.11. In order to find the values
of C, a, and λ we must solve the system of three equations implied by the boundary
conditions: ⎧⎪⎨

⎪⎩
J = L,

y(x1) = y1,

y(x2) = y2.

Note that in some cases it is very difficult to express the values of C, a, and λ in terms
of L, x1, y1, x2, and y2. In these cases it is necessary to use numerical methods.

Like the cycloid, the catenary is a shape found throughout nature. In fact, it is
even the name given to the system of electric cables suspended above railroad tracks.
We also find inverted catenaries: this is the optimal form for a self-supporting arch.
Additionally, in Section 14.8 we saw that a soap bubble stretched between two rings is
a catenoid, that is, the surface of revolution with a catenary as generatrix.

Example 14.20 Self-supporting arch. The use of arches as a weight-bearing ar-
chitectural structure dates back probably to Mesopotamia. Almost all civilizations and
epochs have left examples of this long-lasting structure. Many forms exist, but one can
be singled out for its properties: it is the catenary arch. We will say that an arch is
self-supporting if the forces responsible for its equilibrium originate from its own weight
and are transmitted tangentially to the curve defined by the arch and if other stress
forces in the building material can be neglected.4 An example of such an arch is shown

4This is certainly not the case for all arches. Let us imagine an extreme case in which two
(vertical) walls are separated by exactly the width of three bricks. This allows to squeeze in
three bricks and, if the pressure on them is sufficient (that is, if the fit is extremely tight),
the bricks could stand in the void, without falling. These three bricks form a horizontal arch.
The middle brick should fall due to gravity (a vertical force) but is held there by the other
two bricks. The latter are in contact with the walls and are subjected only to horizontal forces
(from the wall) and one vertical force (gravity). The internal structure of the material must
transform the horizontal forces into vertical ones on the middle brick. These forces due to
(minute) molecular deformation of the material are known as stress forces. They give rise
to compression, shear, and torsion in the material. Many construction materials, including
stone and concrete, resist well under compression, but not under shear and torsion. An arch
minimizing stress within its components can therefore be useful.
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in Figure14.15(b). We will not use calculus of variations in the example, but rather we
will use an indirect method to show that the inverted catenary does in fact maximize the
potential energy of the arch under the constraint that the length is fixed.

Rather than approaching the problem as in Example 14.19, we will work backward.
We will compute the shape of a self-supporting arch and show that it satisfies the Euler–
Lagrange equation associated with (14.37) under the constraint that the length is fixed.

We will use nearly the same model as that of the suspended cable. As shown in
Figure 14.15, they are effectively the same and agree up to symmetry. Consider a

(a) A suspended cable (b) A self-supporting arch

Fig. 14.15. Modelling a suspended cable and a self-supporting arch.

section of a chain or an arch that is above the segment [0, x] of the x axis. Since the
section is in equilibrium, then the net sum of forces acting on it must be zero. For the
suspended chain, there are three forces at work: the weight Px, the tension F0 at the
point (0, y(0)), and the tension Tx at the point (x, y(x)). In the case of the arch, there
are three similar forces in play except that the forces F0 and Tx are inverted. The force
F0 = (f0, 0) is constant, but both Px and Tx are dependent on x. Gravity acts in the
vertical direction; thus Px = (0, px). Let Tx = (Tx,h, Tx,v). Saying that the sum of forces
must be zero yields the following equations:{

Tx,h = −f0,

Tx,v = −px.
(14.39)

Let θ be the angle between the tangent of the curve at B and the horizontal. Then it
follows that {

Tx,h = |Tx| cos θ,

Tx,v = |Tx| sin θ,

and
y′(x) = tan θ.

Let σ be the linear density, g the gravitational constant, and L(x) the length of the
section of curve we are considering. Then px = −L(x)gσ. Putting these data into
(14.39) yields
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|Tx| cos θ = −f0,

|Tx| sin θ = L(x)σg.

Dividing the second equation by the first leaves

tan θ = y′ = −σg

f0
L(x).

We take the derivative, arriving at

y′′ = −σg

f0
L′(x) = −σg

f0

√
1 + y′2, (14.40)

using the fact that L′(x) =
√

1 + y′2. (Recall that in Example 14.1 the infinitisemal
increase in the length of a curve was computed to be ds =

√
1 + y′2dx. This means that

the derivative of this length is L′ = ds
dx .)

It is an easy exercise in differential calculus to check that

y(x) = − f0

σg
cosh

(
σg

f0
(x − x0)

)
+ y0

satisfies the equation (14.40) above. To get the maximum in x = 0, one has to set
x0 = 0. The curve then intercepts the x axis in ±x1, where x1 depends on y0. This
constant y0 is determined by the requirement that the length of the curve between −x1

and x1 be equal to L. The remarkable property of y(x) is that it is also a solution
of the Beltrami equation (14.38) used for the cable if the constant C is set to f0 and
the Lagrange multiplier λ to σgy0. (Again checking this is a straightforward exercise in
calculus!) The solution y(x) is therefore a critical point of the functional potential energy
(14.37) under the constraint of fixed length. Or in other words, the self-supporting arch
is a critical point of the potential energy, under the constraint of a given arch length!

We are sure that it is not a minimum. Is it a maximum under the constraint that
the arch length is fixed? It is easy to convince ourselves that this is the case. Here
again we will make use of the earlier solution to the suspended cable. In that case,
all other solutions (for example, that shown in Figure 14.16(a)) had a higher potential
energy than the catenary. By symmetry, all forms other than the inverted catenary (for
example that of Figure 14.16(b)) must have a lower potential energy.

Example 14.20 shows that the catenary arch has the lowest possible internal stress
forces. This is in contrast to a circular arch, where portions of the arch nearer the peak
endure higher stresses than those at the base. It is not surprising that this shape is used
in architecture. Perhaps the most famous example is the “Gateway Arch” of St. Louis,
Missouri. Similarly, the arches of many buildings have a catenary shape. Each winter
in Jukkasjärvi, Sweden, sees the construction of the Icehotel, built entirely of ice. Since
ice is brittle, it becomes important to minimize stresses. It is for this reason that the
builders of the Icehotel have chosen to construct most arches in the form of a catenary.
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(a) A suspended cable (b) A self-supporting arch

Fig. 14.16. Another possible form for a suspended cable and a self-supporting arch.

For the same reason, the optimal profile for constructing an igloo is a catenary. One
may wonder whether the Inuits knew this intuitively long before the rest of us?

The famous Catalan architect Antoni Gaud́ı knew not only of the properties of the
catenary arch, but also of its intimate ties with the shape taken by cables under their
own weight. To study complex system of arches where, for example, the feet of some
rest on the heads of others, he devised the following system. He would attach to the
ceiling small chains tied to each other the way the arches were meant to be. He would
then look at the resulting structure through a mirror on the floor in order to “read” the
form to give to the arches he had in mind.

14.11 Liquid Mirrors

In order to focus light onto a single point, the mirrors in telescopes must have the
shape of a paraboloid of revolution (see section 15.2.1). The precise construction of
such mirrors is therefore very important in astronomy. The difficulties in constructing
such mirrors are enormous, since they are sometimes very large (the Hale telescope on
Mount Palomar is more than 5 m in diameter, and it is not even the largest!).

As a way of getting around these difficulties, some physicists had the idea of building
liquid mirrors, obtained by rotating a round container of fluid at a constant speed.
The first to describe this idea was the Italian Ernesto Capocci in 1850. In 1909 the
American Robert Wood built the first liquid telescopes with mercury. Since the quality
of the image was low, the idea was not seriously pursued until 1982, when the team
of Ermanno F. Borra, at Laval University (Quebec), started working actively on the
project. Now several teams worked on the project, including that of Paul Hickson, at
the University of British Columbia. The different technical difficulties were mastered,
one after the other, and the liquid telescope was here to stay. The paper [6] gives a
history of the subject.

Before going further, let us start by explaining the principle. When a liquid contained
in a cylinder rotates at constant speed, its shape is a paraboloid of revolution, so the
exact shape of a telescope mirror! We will prove this fact with the help of calculus of
variations. Such mirrors can be constructed using any reflective liquid, such as mercury.
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There are many advantages to this technology: these mirrors are much cheaper than
traditional mirrors and they nonetheless have an extremely high quality surface finish.
As such, it is possible to construct very large liquid mirrors. Moreover, it is very easy
to change the focal length of these mirrors, simply by adjusting the speed of rotation.
The largest problem with these mirrors is that it is impossible to orient them in any
direction other than vertical. Thus, telescopes using such mirrors are able to observe
only the portion of the sky directly above them, unless we use additional mirrors.

Among the problems solved by the researchers we find elimination of vibrations;
control of the rotation speed, which must be perfectly constant; and elimination of
atmospheric turbulence near the surface of the mirror. Since we cannot orient the tele-
scope to counter the rotation of the Earth (see Exercise 18 of Chapter 3), the observed
celestial objects leave traces of light, similar to what you see on night photos. Borra’s
team solved the problem by replacing the traditional film by a CCD (Charge Couple
Device, which, for instance, replaces film in digital cameras), and the technique is called
the sweeping technique. This same team also built liquid mirrors in the 1990s with
diameter up to 3.7 m that produced images of excellent optic quality.

Near Vancouver, Canada, Hickson’s team built a telescope equipped with a liquid
mirror with a diameter of six meters, the Large Zenith Telescope (LZT). Even if we
cannot orient them, these telescopes are useful. Indeed, when one wants to study the
density of far-away galaxies, the zenith is a direction as interesting as any other. During
the time the telescope with a liquid mirror is being used, the other more-expensive
telescopes can be used for other purposes.

Now that the images produced by liquid mirror telescopes are very satisfactory, there
are numerous new ambitious projects. Among these let us mention the ALPACA project

Fig. 14.17. A liquid mirror.
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(Advanced Liquid-Mirror Probe for Astrophysics, Cosmology and Asteroids) concerned
with the installation of a telescope with a liquid mirror of diameter 8 m on the summit of
a Chilean mountain. Exercise 5 of Chapter 15 describes the disposition of the mirrors of
this future telescope: only the primary mirror is liquid, while the secondary and tertiary
mirrors are glass. And Roger Angel, from the University of Arizona, is the manager
of an international team that with the support of NASA (National Aeronautics and
Space Administration) is developing plans for a telescope with a liquid mirror that
could be installed on the moon! Indeed, telescopes with liquid mirrors are much easier
to transport than large glass mirrors. Also, a telescope on the moon would profit from
the absence of atmosphere, which on Earth, produces fuzzy images. Moreover, due to
the low gravity and the absence of air, which eliminates turbulence close to the surface
of the mirror, a project for a mirror of 100 m diameter is being considered! Borra’s
team has already made progress in replacing mercury, which freezes at −39◦ C by an
ionic liquid that does not evaporate and stays liquid above −98◦ C.

Borra’s team is also working on techniques to deform liquid mirrors so that they
can observe in directions other than straight up. Since mercury is very heavy, efforts
are being made to replace it with a magnetic liquid (called a ferrofluid) that can easily
be deformed by an external magnetic field. Unfortunately, ferrofluids are not reflective.
The team at Laval University resolved this problem through the use of a thin film of
silver nanoparticles called MELLF (MEtal Liquid Like Film), which is very reflective
and conforms to the surface of the underlying ferrofluid. Research into these mirrors
continues.

Using Hamilton’s principle it is possible to prove that the surface of a liquid mirror
is a paraboloid of revolution.

Proposition 14.21 We consider a vertical cylinder of radius R that is full of liquid up
to a height h. If the liquid in the cylinder is rotated at a constant angular velocity ω
about its axis, then the surface of the liquid will be a paraboloid of revolution whose axis
is the axis of the cylinder. The form of the paraboloid is independent of the density of
the liquid.

Proof. We will use the cylindrical coordinates (r, θ, z), where (x, y) = (r cos θ, r sin θ).
The liquid is in a cylinder of radius R. We assume that the surface of the liquid is a
surface of revolution described by z = f(r) = f(

√
x2 + y2). Identifying the shape of

this surface amounts to finding the function f . In order to do this, we apply Hamilton’s
principle. Since the system is in equilibrium, this is done by finding the extremum of
the Lagrangian L = T − V (see Example 14.16).

Calculating the potential energy V . We divide the liquid into infinitesimally small
elements of volume centered at (r, θ, z) with side lengths dr, dθ, and dz. Thus the
volume of such an element is dv ≈ r dr dθ dz. Suppose that the density of the liquid is
σ. Then the mass of such an element is given by dm ≈ σr dr dθ dz. Since the height of
the element is z, its potential energy is given by dV = σgr dr dθ z dz.

We now sum across all of the elements to determine the total potential energy:
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V =
∫

dV = σg

(∫ 2π

0

dθ

)
·
∫ R

0

(∫ f(r)

0

z dz

)
r dr

= 2σgπ

∫ R

0

z2

2

∣∣∣∣f(r)

0

r dr

= σgπ

∫ R

0

(f(r))2r dr.

Calculating the kinetic energy T . If u represents the speed of an element of volume,
then its kinetic energy is given by dT = 1

2u2dm, where dm ≈ σr dr dθ dz is its mass.
Since the angular speed ω is constant, the speed of an element at a distance r from the
axis is given by u = rω. Thus the total kinetic energy of the system is

T =
∫

dT =
1
2
σω2

(∫ 2π

0

dθ

)
·
∫ R

0

(∫ f(r)

0

dz

)
r3dr

= σπω2

∫ R

0

f(r)r3 dr.

Applying Hamilton’s principle. Recall that Hamilton’s principle aims to minimize
the value of the integral

∫ t2
t1

(T −V )dt. Since we are in equilibrium, this integral will be
minimized when the integrand T − V is itself minimized. We have

T − V = σπ

∫ R

0

(f(r)ω2r3 − g(f(r))2r) dr,

which is of the form

σπ

∫ R

0

G(r, f, f ′) dr

with G(r, f, f ′) = f(r)ω2r3 − g(f(r))2r.
The minimization of I is subject to one constraint: the volume of the liquid must

remain constant at Vol = πR2h. Since the surface of the liquid is a surface of revolution,
this volume is given by

Vol =
∫ 2π

0

dθ ·
∫ R

0

(∫ f(r)

0

dz

)
r dr = 2π

∫ R

0

rf(r) dr. (14.41)

Theorem 14.18 allows us to resolve this problem under the volume constraint. We
must replace G with the function F (r, f, f ′) = σω2f(r)r3 − σg(f(r))2r − 2λrf(r). The
Euler–Lagrange equation for F is

∂F

∂f
− d

dr

(
∂F

∂f ′

)
= 0.
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Since the function F does not explicitly depend on f ′, in this particular case the equation
may be simplified to ∂F

∂f = 0, or

σω2r3 − 2σgrf(r) − 2λr = 0.

The function f is therefore

f(r) =
ω2r2

2g
− λ

σg
, (14.42)

which describes a parabola. There are several interesting properties to note at this
point. The form of the parabola depends only on the speed of the angular rotation
and gravity, since the coefficient of r2 is ω2

2g . It is somewhat surprising to note that the
density σ of the liquid has absolutely no impact on the shape of the parabola. The term
λ
σg represents a vertical translation of the parabola. Its specific value is determined by
the volume of the liquid, which remains fixed.

It remains to calculate the value of λ using the constraint Vol = πR2h. The expres-
sions for the volume of the liquid (14.41) and the profile f of the liquid (14.42) allow us
to obtain

Vol = 2π
∫ R

0

(
ω2r2

2g
− λ

σg

)
r dr

= 2π
[
ω2r4

8g
− λr2

2σg

]R

0

=
πω2R4

4g
− πλR2

σg
.

Since the volume is constant (πR2h), this allows us to fix the constant λ as

λ =
σω2R2

4
− σgh

and to give f its final form

f(r) =
ω2r2

2g
− ω2R2

4g
+ h.

We now have the equation defining the precise form of the paraboloid of revolution
created by spinning the liquid at a constant speed. �

14.12 Exercises

The fundamental problem of calculus of variations
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1. An airplane5 must travel from point A to point B, both at zero altitude and separated
from each other by a distance d. In this problem we assume that the surface of the
Earth is actually a plane. An airplane costs more money to fly at a lower altitude than
at a higher one. We wish to minimize the cost of a trajectory between the points A and
B. The trajectory will be a curve through the vertical plane passing through the points
A and B. The cost of traveling a distance ds at an altitude h is constant and given by
e−h/Hds.
(a) Choose a coordinate system that is well suited to this problem.
(b) Give an expression for the cost of the voyage between the points A and B, and
express the problem of minimizing this cost as a variational problem.
(c) Derive the associated Euler–Lagrange or Beltrami equation, as appropriate.

The brachistochrone

2. What is the specific equation describing the cycloid on which a point mass will travel
when falling between the points (0, 0) and (1, 2) in a minimum amount of time? How
long will the particle take to travel this path? Use mathematical software to perform
these calculations.

3. Calculate the area beneath an arch with a cycloidal profile. Is it related to the area of
the circle that generated the cycloid?

4. Verify that the vector tangent to the cycloid (a(θ − sin θ), a(1 − cos θ)) is vertical at
θ = 0.

5. Find out whether real half-pipes have a cycloidal profile.

6. (a) Let (x1, y1) and (x2, y2) be such that the brachistochrone between the two departs
(x1, y1) vertically and arrives at (x2, y2) horizontally. Show that y2−y1

x2−x1
= 2

π .
(b) Show that if y2−y1

x2−x1
< 2

π , then the point mass traveling along a brachistochrone
between the two points descends lower than y2 before arriving at the point (x2, y2).
Verify that such a solution still exists even for y1 = y2 (in the absence of friction). That
is, the quickest path between two horizontal points descends below them.

7. (a) Calculate the time taken to descend from (0, 0) to Pθ = (a(θ − sin θ), a(1− cos θ))
by traveling along the straight line between the points. (Use equation (14.2) and replace
y by the equation for the straight line.)
(b) Compare this with the time taken to travel along the brachistochrone between the
two points, and show that the straight-line path always takes longer.
(c) Show that the time taken to travel along the straight line between the points tends
to infinity as the line approaches being horizontal.

5This problem has been taken from course notes by Francis Clarke.
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8. We are looking for the fastest way to travel between the point (0, 0) and a point on
the vertical line x = x2 to its right. We know that we must follow the path of a cycloid
(14.19), but we do not know for which value of a.
(a) For a fixed a, show that the time taken to travel along the cycloid is

√
a
g θ, where

θ is determined implicitly by a(θ − sin θ) = x2.
(b) Show that the minimum occurs when θ = π. In other words, show that the
minimum occurs when the cycloid intersects the line x = x2 horizontally.

An isochronous device

9. Here we explore another interesting property of the inverted catenary. In order to solve
this problem you will have to draw inspiration from Huygens’s isochronous device, as
explored in Section 14.7.
(a) Show that the inverted catenary y = − cosh x +

√
2 intersects the x axis at the

points x = ln(
√

2 − 1) and x = ln(
√

2 + 1). Show that the slope is 1 at the point
x = ln(

√
2 − 1) and −1 at the point x = ln(

√
2 + 1).

(b) Show that the curve between these two points has length 2.
(c) We construct a track consisting of a succession of such curves, connected one after
the other as shown in Figure 14.18. Consider a bicycle with square wheels with side
length 2. Show that as the bicycle travels along this track the center of its wheels will
always remain at height

√
2. Suggestion: Consider a single square wheel rolling along

the surface without slipping. At the point of departure, one of the corners of the wheel
is situated at the junction between two connecting catenaries, such that it is tangent to
both of them.

The fastest tunnel

10. We consider a circle x2 + y2 = R2 with radius R and a smaller circle with radius a < R
rolling along the inside of the larger circle. At the point of departure the two circles
are tangent at the point P = (R, 0). Show that as the smaller circle rotates along the
inside of the larger, the point P traces out a hypocycloid as described in (14.18) with
b = a

R .

Fig. 14.18. The square wheels of a bicycle traveling along a path of inverted catenaries (see
Exercise 9).
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11. (a) In the case of b = 1
2 verify that the movement of a particle traveling through the

tunnel described by the hypocycloid of equation (14.18) is the same as the oscillations
of a spring along a line (calculate the position of the particle as a function of time).
(b) Deduce that the period of the motion is independent of the height of the departure
point.
(c) Determine the time taken for a point to travel between a point P and the antipodal
point −P , traveling along a straight line through the center of the Earth and being acted
upon only by the force of gravity. (The radius of the Earth is roughly 6365 km.)

12. Consider releasing a particle with zero initial velocity at height h in a hypocycloidal
tunnel with parameter b. Show that for any value of b, the particle will oscillate in the
tunnel with a period independent of h. That is, show that the motion of the particle
through the tunnel is isochronous (see the discussion in Section 14.7). Determine the
length of the period.

13. The exercise aims to calculate the travel time between New York and Los Angeles,
assuming that we travel through a hypocycloidal tunnel between the cities. You might
want to use the help of a mathematical software package to perform these calculations.
The tunnel travels through the plane defined by the two cities and the center of the
Earth. Assume that the radius of the Earth is given by R = 6365 km.
(a) New York is at roughly 41 degrees north latitude and 73 degrees west longitude.
Los Angeles is situated approximately at 34 degrees north latitude and 118 degrees west
longitude. Calculate the angle φ between the two vectors joining the center of the Earth
to the two cities.
(b) Given a hypocycloidal as in (14.18) and an initial point P0 = (R, 0) corresponding
to θ = 0, calculate the first positive value θ0 such that Pθ0 = (x(θ0), y(θ0)) is on the
circle with radius R. Calculate the angle ψ between the vectors

−−→
OP 0 and

−−→
OP θ0 .

Fig. 14.19. A square wheel turning along a path of inverted catenaries (see Exercise 9). The
positions of a spoke have been drawn.
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(c) Setting φ = ψ, calculate the parameter b of the hypocycloid corresponding to the
tunnel between New York and Los Angeles.
(d) Calculate the time taken for a particle to travel along the hypocycloidal tunnel
between New York and Los Angeles, under the effect of gravity only. (You may use the
results of Exercise 12 to assist you in this).
(e) Calculate the maximum depth of the tunnel.
(f) Calculate the speed attained by the particle at the deepest point of the tunnel.

Hamilton’s principle

14. (a) The potential energy stored in a compressed spring is proportional to the square of
its deformation x from its position at equilibrium: V (x) = 1

2kx2, where k is a constant.
This is called Hooke’s law. We suppose that one end of a massless spring is attached to
a rigid wall, and the other end is attached to a mass m. We fix the position x of m to
be 0 when the spring is at equilibrium. Write the Lagrangian and the action integral
describing the motion of this mass.
(b) Show that Hamilton’s principle yields the classic equation for the motion of a mass
attached to a spring: x′′ = −kx/m, where x′′ is the second derivative of the position of
the mass.
(c) Assuming the particle is released without speed at the position x = 1 and time
t = 0, show that its trajectory is described by the equation x(t) = cos(t

√
k/m).

Soap bubbles

15. Consider the surface created by rotating the curve z = f(x) around the x axis, for
x ∈ [a, b]. Show that its area is given by

2π

∫ b

a

f
√

1 + f ′2dx.

16. (a) Show that the area of a surface given by the graph z = f(x, y) above a region of
the plane D is given by the double integral

I =
∫∫

D

√
1 + f2

x + f2
y dx dy,

where fx = ∂f
∂x and fy = ∂f

∂y .
(b) Suppose that the domain D is a rectangle [a, b] × [c, d]. Consider a function f
satisfying the boundary conditions⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f(a, y) = g1(y),
f(b, y) = g2(y),
f(x, c) = g3(x),
f(x, d) = g4(x),
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where g1, g2, g3, g4 are functions that satisfy g1(c) = g3(a), g1(d) = g4(a), g2(c) = g3(b),
g2(d) = g4(b). Show that such a function f that minimizes I satisfies the Euler–Lagrange
equation given by

fxx(1 + f2
y ) + fyy(1 + f2

x) − 2fxfyfxy = 0. (14.43)

Suggestion: You need to work through an analogue of the proof to Theorem 14.4.
Suppose that the integral attains a minimum at f∗ and consider a variation F = f∗+εg
where g is zero-valued along the boundary of D. Then I becomes a function of ε, and
you need to show that its derivative at ε = 0 is zero. To this end, transform the double
integral into an iterated integral in order to apply integration by parts. One part of the
function will need to be integrated with respect to x and then y, while another part
requires proceeding in the opposite order. There is a fair amount of work required.

17. Show that the helicoid given by z = arctan y
x is a minimal surface. To do this you must

show that the function f(x, y) = arctan y
x satisfies equation (14.43).

Three cities and a soapy film: the problem of minimal Steiner trees

18. (a) Let A,B,C be the three corners of a triangle and let P be its associated Fermat
point, that is, the point P = (x, y) chosen such that |PA| + |PB| + |PC| is minimum.
Prove that −→

PA

|PA| +
−−→
PB

|PB| +
−−→
PC

|PC| = 0.

Hint: Take the partial derivatives with respect to x and y.
(b) Show that the only way that three unit vectors can have a zero sum is if they form
an angle of 2π

3 between them.
(c) Consider the construction shown in Figure 14.12. Show that the three inscribed
lines must intersect at a single point and that this point is in the triangle if and only if
the three internal angles of the triangle are less than 2π

3 .
(d) If the three angles of the triangle ABC are less than 2π

3 , show that there exists a
unique point P inside the triangle such that the vectors

−→
PA,

−−→
PB, and

−−→
PC intersect at

angles of 2π
3 .

Hint: The locus of points that subtend the segment AB with a given angle θ consists
of the union of two arcs of a circle, as shown in Figure 14.20. The point P is therefore
at the intersection of three circular arcs, each of which subtends one of the sides of the
triangle ABC with an angle of 2π

3 .
(e) If the three angles of the triangle ABC are less than 2π

3 , show that the three lines
constructing the Fermat point intersect at an angle of π

3 . Hint: Let A′ (resp. B′, C ′) be
the third corner of the equilateral triangle constructed on BC (resp. AC, AB). Show
that the three vectors

−−→
AA′,

−−→
BB′, and

−−→
CC ′ intersect each other at an angle of 2π

3 . This
can be done by calculating the scalar product between each pair of vectors. Without
loss of generality, suppose that A = (0, 0), B = (1, 0), and C = (a, b).
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Fig. 14.20. The locus of points subtending the segment AB with angle θ (see Exercise 18).

(f) Deduce that the intersection points of these lines is a Fermat point only if it lies
inside the triangle.
(g) Use the calculation in (e) to show that

|AA′| = |BB′| = |CC ′|.

19. We consider the problem of finding the minimal Steiner tree for a set of four points
situated at the corners of a square. The optimal solution is shown in Figure 14.21,
in which all of the angles are 120 degrees. Showing that this network is the shortest
possible is difficult. We will content ourselves with answering a subquestion.
(a) Show that the length of the network is smaller than the length of the two diagonals.

(b) Can you guess the minimal Steiner tree associated with the four corners of a
rectangle?

Isoperimetric problems

20. Consider the graph of a function y(x) that joins the points (x1, 0) and (x2, 0). We
wish to maximize the area between the function and the x axis under the constraint
that the perimeter of the region is L (see Example 14.17 discussed at the beginning of
Section 14.10). Derive the Euler–Lagrange equation for the associated functional M of
Theorem 14.18. Resolve the equation and show that the solution is an arc of a circle.
What condition must be satisfied by L, x1, and x2?

21. The form of a suspension bridge. In contrast to a suspended cable, the form of
the main cables in a suspension bridge are not catenary, but rather parabolic. The
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Fig. 14.21. The minimal Steiner tree for four points situated at the four corners of a square
(see Exercise 19).

difference is that the weight of the cable is negligible compared to the weight of the
attached bridge deck.
(a) Model the forces acting on the cable as in Example 14.20. Use the force diagram
to deduce the differential equation that must be satisfied by the function defining the
form of the curve. In this case, the weight Px is proportional to dx and not to ds as in
the case of the suspended cable.
(b) Show that the solution is a parabola.
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15

Science Flashes

This chapter presents a variety of Science Flashes, small self-contained subjects that

can each be covered in an hour or two. Most of these are geometric in nature, and

many of these require little more than a familiarity with basic Euclidean geometry.

Each section is independent. Several of the subjects may be treated as exercises: the

lecturer can explain the problem in class, and the text can serve as an answer guide

that is looked at only after the student has worked on the problem. Some of them are

referred to as complementary material in the other chapters.

Notation. Throughout this chapter we will denote the length of a line segment AB by
|AB|.

15.1 The Laws of Reflection and Refraction

The law of reflection describes the trajectory of a beam of light as it is reflected by a
mirror. The law of refraction describes the trajectory of a beam of light as it passes
from one uniform material to another (for example, from air into water). These two
laws, seemingly quite different, can be united into one elegant principle.

The law of reflection. As a beam of light arrives at the surface of a mirror it is
reflected such that the angle of incidence is equal to the angle of reflection (see Figure
15.1).

A simple principle allows us to reformulate the law of reflection: light always travels
the shortest path between two points A and B with one point on the mirror.

We will show that this principle implies the law of reflection.

Theorem 15.1 Let A and B be two points located on the same side of a mirror. Con-
sider a beam of light going from point A to point B and touching the mirror in a point
P . Then the shortest path is the one for which AP and PB make equal angles with the
mirror as in the law of reflection.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 15, c© Springer Science+Business Media, LLC 2008
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Fig. 15.1. The law of reflection.

Proof: Let Q be a point of the mirror. Consider a path from A to B composed of
segment AQ followed by segment QB as in Figure 15.2. The length of the path traveled
by the beam is equal to |AQ| + |BQ| (the length of AQ plus the length of QB). Let
A′ be the point symmetric to A with respect to the mirror. So AA′ is perpendicular
to the mirror and cuts the mirror in R such that |AR| = |A′R|. The two triangles
ARQ and A′RQ are congruent, since they have two equal sides |AR| = |A′R| and RQ

on both sides of an equal angle ÂRQ = Â′RQ = π
2 . It follows that |AQ| = |A′Q|.

Then the length of the path traveled by the beam is equal to |A′Q| + |QB|. Compare

Fig. 15.2. The law of reflection and the shortest path.

this with the path AP and then PB, where ÂPR = B̂PS. By taking Q = P in the
previous calculation we have that |AP | = |A′P |. Then the length of the path, given
by |AP | + |PB|, is equal to |A′P | + |PB|. We have on one side ÂPR = B̂PS and on
the other side ÂPR = Â′PR, since the triangles APR and A′PR are congruent. This
yields B̂PS = Â′PR. We deduce that P lies on the segment A′B by Lemma 15.2 below.
Since P lies on the segment A′B, then |A′P | + |BP | = |A′B|. Since the line segment
joining two points is the shortest path between the two points A′ and B, we have for
Q 
= P ,

|A′P | + |PB| = |A′B| < |A′Q| + |QB| = |AQ| + |QB|.
�



15.1 The Laws of Reflection and Refraction 503

Lemma 15.2 We consider a line (D), a point P of (D), and two points A and B

located on each side of (D) as in Figure 15.3. If ÂPR = B̂PS, then A, P , and B are
collinear.

Fig. 15.3. If ÂPR = B̂PS, then A, P , and B are aligned.

Proof. Consider Figure 15.3 and let us extend the line segment PA into a line (D′).
The point P lies on (D′). Since two vertically opposite angles are equal, the angle
between the lower part of (D′) and PS is equal to ÂPR. However, the segment PB
also has this property. Hence PB is included in (D′). �

Remark. The geometric proof of Theorem 15.1 is very elegant. It uses the simple
principle that the line segment between two points is the shortest path between them.
We will see that the ideas introduced in this proof will be used in the proof of the
remarkable properties of the parabola, ellipse, and hyperbola (Section 15.2).

The law of refraction. This second law allows us to calculate the deviation of a
beam of light as it travels through a uniform material with speed v1 and transitions
into another uniform material where it travels with speed v2. Let θ1 be the angle of
the beam of light through the first material, as measured from the perpendicular of the
interface between the two materials. Similarly, let θ2 be the angle of the beam of light
through the second material, measured from the same perpendicular (see Figure 15.4).
Then the law of refraction states that

sin θ1

sin θ2
=

v1

v2
.
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Fig. 15.4. The law of refraction.

It seems obvious that the previous principle, namely that light travels along the
shortest path, does not accurately describe the law of refraction. As such, it does not
unify the laws of reflection and refraction. However, when we were discussing the law of
reflection, the speed of the beam did not change, since it was always traveling through
a single uniform material. Thus, if the law of reflection seeks to minimize the length of
the path between two points, this is entirely equivalent to minimizing the time taken
to travel the path between the same two points. It is this principle that will unite the
two seemingly distinct laws of reflection and refraction.

Principle: In the law of refraction, as in the law of reflection, light traveling between
two points A and B follows the quickest possible path.

Theorem 15.3 We consider two uniform materials separated by a plane. Let A and
B be two points located on opposite sides of the separating plane. Let v1 be the speed of
light in the material containing A and v2 the speed of light in the material containing
B. The fastest path between A and B is the one that crosses the separating plane at
the point P defined by the fact that the angles θ1 and θ2 between AP and PB and the
normal to the separating plane are those given by the law of refraction, namely

sin θ1

sin θ2
=

v1

v2
.

Proof: We will give the proof only for the planar problem (see Figure 15.5). The easiest
proof uses differential calculus. Suppose that the beam of light transitions between
media at the point Q with horizontal coordinate x (thus |OQ| = x) and let l = |OR|.
Let h1 = |AO| and h2 = |BR|. We calculate the travel time T (x) between A and B.
This time is equal to

T (x) =
|AQ|
v1

+
|QB|
v2

=

√
x2 + h2

1

v1
+

√
(l − x)2 + h2

2

v2
.
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Fig. 15.5. The law of refraction and the quickest path.

To minimize this time, we are looking for a value of x such that T ′(x) = 0. Since

T ′(x) =
x

v1

√
x2 + h2

1

− (l − x)
v2

√
(l − x)2 + h2

2

,

then T ′(x∗) = 0 for x∗ satisfying

x∗
v1

√
x2∗ + h2

1

=
(l − x∗)

v2

√
(l − x∗)2 + h2

2

.

The result follows by observing that

x∗√
x2∗ + h2

1

= sin θ1,
(l − x∗)√

(l − x∗)2 + h2
2

= sin θ2.

We can easily verify that T ′′(x∗) > 0, and therefore that x∗ is a minimum. In fact,

T ′′(x) =
h2

1

v1(x2 + h2
1)3/2

+
h2

2

v2((l − x)2 + h2
2)3/2

.

�
A beam of light always chooses the quickest path. We see right away the beauty

of this principle: not only is it elegant in and of itself, but it allows us to consider
new questions. For instance, we understand how to calculate the path traveled by light
through heterogeneous media using differential and integral calculus.
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The principle of optimization in physics. In fact, this is only one of many examples
where the laws of physics seemingly obey a principle of optimization. All of Lagrangian
mechanics is built upon a similar principle, as exploited by variational calculus (see
Chapter 14). We give a few examples:

• A high-tension cable between two poles describes a curve. What is the formula of
this curve? We can calculate its equation and see that it is a catenary, as described
by a hyperbolic cosine. Recall that the hyperbolic cosine is defined as

cosh x =
ex + e−x

2
.

Why does it take this shape? Among all paths of the same length between the two
poles, this is the one that minimizes the potential energy of the suspended cable.
More details in Section 14.10 of Chapter 14.

• If we rotate a cylinder full of liquid at a constant angular velocity about its central
axis, the surface of the liquid forms a paraboloid of revolution, or circular paraboloid.
In this system we are not only considering potential energy but also kinetic energy.
The surface of the liquid must be the one that minimizes the Lagrangian of the
system, which is the difference between the potential and kinetic energies. This
calculation is performed in Section 14.11 of Chapter 14.

We return to the law of refraction. If we know the angle θ1 with the normal in the
first material, we can calculate the angle θ2 with the normal in the second material
using

sin θ2 =
v2 sin θ1

v1
.

But does this equation always have a solution? If v2 > v1 and sin θ1 > v1
v2

, then
v2 sin θ1

v1
> 1, which cannot be the sine of any angle. Thus, if the angle θ1 is too large,

meaning the beam arrives at too oblique an angle, then it will not actually enter the
second material but will instead be reflected. How? Now we understand the power
of the general principle stated above: to go from A to B the beam must follow the
fastest path touching the separating surface between the two materials. Hence it must
be reflected such that the angle of incidence is equal to the angle of reflection.

Fiber optics. Optical fibers are transparent cables within which light beams travel.
Since the speed of light is slower in the cable than it is in air, the beams will be reflected
if they arrive at the boundary with too great an angle with the normal (see Figure 15.6).

Fiber optics is often used in high-speed telecommunications networks because it
allows the simultaneous transmission of many signals without any interference between
them. Engineers face many challenges in designing and building fiber optic cables, and
many of these can be the subject of a project (dispersion of waves, cables with refractive
index varying with the distance to the axis of the fiber, signal separation when signals
emerge, etc).
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Fig. 15.6. The propagation of a beam of light in a fiber optic cable.

Short waves. Electromagnetic waves are roughly broken down into a variety of fam-
ilies including visible, ultraviolet, X rays, and radio waves. These families are defined
based on the frequencies of the waves they encompass. For example, radio waves gen-
erally start at just a few hertz and go up to several hundred gigahertz.1 In North
America, commercial radio stations transmitting through amplitude modulation (AM)
use frequencies around the 1 MHz2 mark, while stations transmitting through frequency
modulation (FM) use higher frequencies, around 100 MHz. Between these two spectra
lies the family of waves known as short waves, from 3 to 30 MHz. Regardless of trans-
mission power, the curvature of the Earth limits the reception radius of any antenna.
Despite this, short waves (and other waves of lower frequency) are regularly transmitted
much further than is possible by simple line of sight. This is because they are reflected
by the higher layers of the ionosphere.

The atmosphere is a nonuniform medium. It is broken down into three major layers:

• the troposphere, from the Earth’s surface to 15 km above it;
• the stratosphere, from 15 to 40 km; and
• the ionosphere, from 40 to 400 km.

In the higher levels of the ionosphere, ionized gases act as a mirror for short waves. The
exact nature of these gases, and the reflections they produce, varies greatly depending
on the time of day. Under favorable conditions it is possible for a signal to be reflected
by the ionosphere and the Earth several times. The exact calculation of the trajectory
taken by the signal must also take into account the layers below the ionosphere, since
they refract the signal.

Localizing lightning strikes. In Section 1.3 of Chapter 1 it is seen that lightning
strikes generate electromagnetic waves traveling through the atmosphere that are oc-
casionally reflected by the ionosphere. When this happens, certain lightning strike
detectors will detect the initial bolt of lightning, while others will detect its reflection.

11 gigahertz = 1 GHz = 109 Hz.
21 megahertz = 1 MHz = 106 Hz.
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15.2 A Few Applications of Conics

15.2.1 A Remarkable Property of the Parabola

Legends say that Archimedes (287–212 BC) lit a Roman fleet of ships on fire as they
were attacking Syracuse, his hometown on the island of Sicily. Supposedly, he did so by
making use of the remarkable property of parabolas we will discuss below.

Most readers will certainly recall the basic equation of a parabola, y = ax2, whose
base lies at the origin and which is symmetric about the vertical axis. There exists an
equivalent geometric formulation:

Definition 15.4 A parabola is the locus of points in the plane that are at an equal
distance to a point F (called the focus of the parabola) and a line (Δ), the directrix of
the parabola (see Figure 15.7).

Given a parabola with equation y = ax2, it is relatively simple to identify both the
focus and the directrix.

Fig. 15.7. The geometric definition of a parabola.

Proposition 15.5 The focus of the parabola y = ax2 is the point (0, 1
4a ), and the

directrix is the line with equation y = − 1
4a .

Proof. By symmetry, the focus must be along the axis of symmetry of the parabola
(the y axis in this case), and the directrix must be perpendicular to this axis. Thus

F = (0, y0) and (Δ) = {(x, y1) | x ∈ R}.
We can see already that y1 = −y0, since (0, 0) is on the parabola. If a point belongs
to the parabola it is of the form (x, ax2), and its distance from both the focus and the
directrix will be the same if
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|(x, ax2) − (0, y0)| = |(x, ax2) − (x,−y0)|.

We square both sides to get rid of radicals,

|(x, ax2) − (0, y0)|2 = |(x, ax2) − (x,−y0)|2.

This yields x2 + (ax2 − y0)2 = (x − x)2 + (ax2 + y0)2, or equivalently

x2 + a2x4 − 2ax2y0 + y2
0 = a2x4 + 2ax2y0 + y2

0 ,

which finally reduces to
x2(1 − 4ay0) = 0,

which must be satisfied for all x. Hence the coefficient of x2 must be zero: 1−4ay0 = 0,
which yields y0 = 1

4a . Thus, the focus is at (0, 1
4a ) and the directrix has the equation

y = − 1
4a . �

In order to understand the remarkable property about to be described we must first
imagine that the interior of the parabola is a mirror. All beams of light reflecting off a
point of the parabola will therefore satisfy the law of reflection: the angle of incidence
of any such beam will be equal to the angle of reflection, both measured with respect to
the line tangent to the parabola at that point. (See Section 15.1 for more on the law of
reflection.) The following theorem describes the remarkable property of the parabola.

Fig. 15.8. A remarkable property of the parabola.

Theorem 15.6 The remarkable property of the parabola. All beams parallel to
the axis of the parabola and reflected on its surface will pass through the focus of the
parabola.
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Proof: Consider the parabola with the equation y = f(x), where f(x) = ax2. We
will be considering the abstract function f(x) for most of these calculations in order
to allow us to reuse them in Theorem 15.7, which deals with the reciprocal of this
theorem. Let (x0, y0) be a point on the parabola and let θ be the angle of incidence
formed between the beam and the tangent to the parabola at the point (x0, y0). For
reasons of symmetry we can limit ourselves to x0 ≥ 0. Looking at Figure 15.8 and
using that vertically opposite angles are equal, we can see that the reflected beam will
form an angle of 2θ with the vertical, thus an angle of π

2 − 2θ with the horizontal. The
equation of the reflected beam is therefore

y − y0 = tan
(π

2
− 2θ

)
(x − x0) (15.1)

(this is where we make use of the fact that x0 ≥ 0, since we would have to add a negative
sign in the case that x0 < 0). We must calculate tan(π

2 − 2θ) as a function of x0. The
slope of the tangent to the parabola is given by f ′(x0) = 2ax0. Since the angle between
the tangent and the horizontal is π

2 − θ, we have that

tan
(π

2
− θ

)
= cot θ = f ′(x0) = 2ax0.

Also
tan

(π

2
− 2θ

)
= cot 2θ.

Since cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ, we obtain that

cot 2θ =
cos2 θ − sin2 θ

2 sin θ cos θ
=

cos2 θ−sin2 θ
sin2 θ

2 sin θ cos θ
sin2 θ

=
cot2 θ − 1

2 cot θ
.

This yields

cot 2θ =
(f ′(x0))2 − 1

2f ′(x0)
=

4a2x2
0 − 1

4ax0
.

The point of intersection between the reflected beam and the vertical axis of the parabola
is found by substituting x = 0 into the equation (15.1) for the reflected beam and by
observing that y0 = f(x0). We obtain that

y = f(x0) − x0
(f ′(x0))2 − 1

2f ′(x0)
.

We now use the fact that f(x) = ax2. In doing so we obtain

y =
1
4a

,

which is to say that the point of intersection (0, y) of the reflected beam with the vertical
axis is independent of the vertical incoming ray, and so of the point of reflection being
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considered. Moreover, observe that the point of intersection of all reflected beams with
the vertical axis, (0, 1

4a ), is precisely the focus of the parabola. �
The converse is also true:

Theorem 15.7 The parabola is the only curve with the property that there exists a
direction for which all incident beams parallel to this direction will be reflected by the
curve through a single point.

Discussion of the proof. This theorem is decidedly more advanced than the last.
If we consider a curve with the equation y = f(x) then we must resolve the differential
equation we considered above,

f(x0) − x0
(f ′(x0))2 − 1

2f ′(x0)
= C,

where C is a constant. This is equivalent to the differential equation (we substitute
x0 = x to have a more standard form)

2f(x)f ′(x) − x(f ′(x))2 − 2Cf ′(x) + x = 0.

We will not pursue the solution here. However, those readers familiar with the theory
of differential equations will note that this is a nonlinear first-order equation. �

We will give a geometric proof of Theorem 15.6 using only the geometric definition
of the parabola as introduced in Definition 15.4.

Geometric proof of Theorem 15.6. We reason with reference to Figure 15.9. We

Fig. 15.9. The geometric proof of the remarkable property of the parabola.

consider a parabola with focus F and directrix (Δ). Let P be a point on the parabola
and let A be its projection on the directrix (Δ). By the definition of the parabola
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we know that |PF | = |PA|. Let B be the middle of the segment FA and let (D)
be the line passing through P and B. Since the triangle FPA is isosceles, we know
that F̂PB = ÂPB. The theorem will be proved if we can show that the line (D) is
tangent to the parabola at P . Indeed, consider the extension PC of PA, which is the
incident beam. The angle that PC makes with (D) is equal to the angle ÂPB (vertically
opposite angles), which is itself equal to the angle F̂PB. Thus, if the line (D) behaved
as a mirror and if PC were the incident beam, then PF would be the reflected beam.

We must now prove that the line (D) defined above is tangent to the parabola at P .
We will do this by showing that all of the points of (D), save P , lie below the parabola.
Indeed, it is easy to convince oneself that any straight line through P other than the
tangent line has some points lying above the parabola; see Figure 15.10.

Fig. 15.10. The tangent line to the parabola at P is the only straight line through P that has
no point above the parabola.

How do we prove that a point lies below the parabola? We come back to the
geometric property defining a parabola, which can be rewritten as follows: let R be a
point in the plane and let S be its orthogonal projection onto the directrix. Then we
have ⎧⎪⎨

⎪⎩
|FR| < |SR| if R is above the parabola,
|FR| = |SR| if R is on the parabola, and
|FR| > |SR| if R is below the parabola.

(15.2)

Let R be a point of (D) distinct from P and let S be its projection on (Δ). The
triangles FPR and PAR are congruent, since they have an equal angle between two
equal sides. Thus |FR| = |AR|. Additionally, since AR is the hypotenuse of the right
triangle RSA, then |SR| < |AR|. Thus, |SR| < |FR|, and by (15.2) we have that R is
below the parabola. �

Is this property really all that remarkable? Theorem 15.7 affirms that it is, and
that this property uniquely defines the parabola. How is this property used in practice?
Consider Figure 15.11. A flat mirror reflects parallel beams of light as parallel beams
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of light in another direction, a circular mirror reflects parallel beams into unfocused
beams, while a parabola reflects all incoming beams parallel to its central axis through
a unique focal point. Thus, it is no surprise that parabolas find many technological
applications.

(a) flat mirror (b) circular mirror (c) parabolic mirror

Fig. 15.11. Comparing reflected beams with a flat mirror, a circular mirror, and a parabolic
mirror.

Parabolic antennas. A parabolic antenna is usually oriented such that its central axis
is pointed directly at the source of the signal (often a satellite) it is meant to receive.
The physical receiver is then placed at the focal point of the antenna. Figure 15.12
shows a parabolic antenna at the entrance of the city of Höfn, Iceland. In Iceland,
a country full of mountains and fjords, it is not always possible to aim an antenna
directly at the desired satellite. Thus when passing some mountain gaps one observes
pairs of parabolic antennas, each one aiming at a different valley floor below. One of the
antennas is a receiver, relaying the received signal to the second antenna, which finally
sends the signal to the antenna in the second valley floor.

Radar. Radar receivers also have a parabolic shape. The difference between these and
standard satellite antennas is that the position of the axis is variable and the radar itself
is the source of a signal that is emitted along its central axis. When the electromagnetic
waves hit an object, they are reflected. A portion of these reflected waves will return to
the transmitter (those that strike faces of the object that are perpendicular to the path
of the signal). These beams will then strike the parabolic antenna and will be reflected
to the receiver, situated at the focus. In order to cover many directions the radar is in
constant rotation, with its axis remaining roughly horizontal.

Car headlights. The light bulb is located at the focus and emits light in all directions.
All beams emitted behind the bulb are then reflected into beams parallel to the axis.

Telescopes. Once again we aim the telescope such that its axis is pointing toward the
object or portion of the sky we wish to observe. The light is arriving from sufficiently far
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Fig. 15.12. A parabolic antenna at the entrance to the city of Höfn, Iceland.

away that the beams are essentially parallel when they arrive at the receiver, where they
are all reflected through the focus. Telescopes of this sort suffer from one big problem:
the image is created at the focus of the mirror, which is itself above the mirror. But the
observer (in this case the device capturing the image) should not be above the mirror,
since it will obstruct and itself appear in the image. Thus a second mirror is used.
There are two classical ways to proceed.

1. The first uses a flat mirror placed at an oblique angle, as shown in Figure 15.13.
Such a telescope is called a Newton telescope.

2. The second type uses a convex (secondary) mirror situated above the large primary
mirror. In this case the two mirrors are not necessarily parabolic, since it is the
composition of the action of the two mirrors that focuses the image to a single
point (see Figure 15.14). However, we may choose to construct the primary mirror
as a parabolic mirror. In this case the secondary mirror is a convex hyperbolic
mirror aligned such that the focus of the parabola is also a focus of the hyperbola.
This particular choice for the secondary mirror is due to a remarkable property of
hyperbolic mirrors that is discussed in Section 15.2.3. Such a telescope is called a
Schmidt–Cassegrain telescope.

3. Recently there have appeared telescopes with liquid mirrors. Exercise 15.48 shows
the plan of the telescope ALPACA to be installed on top of a Chilean mountain.
For more on telescopes with liquid mirrors see Section 14.11 of Chapter 14.

Solar furnace: Solar furnaces are one method of using sunlight to produce electricity.
Several of them have been constructed near the city of Odeillo, in the French Pyre-
nees. Odeillo is home to the PROMES laboratory of CNRS (Laboratoire PROcédés,
Matériaux et Énergie Solaire du Conseil National de la Recherche Scientifique, or the
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Fig. 15.13. Newton telescope.

Fig. 15.14. Schmidt–Cassegrain telescope.

Processes, Materials, and Solar Energy Laboratory of the National Council on Scientific
Research). The amount of sun received in the area is exceptional. The largest furnace
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Fig. 15.15. The largest solar furnace at Odeillo. Several heliostats can be seen in the fore-
ground. (Photo by Serge Chauvin.)

generates more than 1 megawatt3 (see Figure 15.15). In comparison, there exist roughly
250 hydroelectric dams in France with power outputs between a few tens of kilowatts4

to a few hundred megawatts. The largest hydroelectric dams in Quebec produce be-
tween 1000 and 2000 megawatts. Individual wind turbines can often produce around
600 kilowatts. The solar furnace shown in Figure 15.15 consists of a large parabolic
mirror with a surface area of 1830 square meters. Its central axis is horizontal and
the focus is situated 18 meters ahead of the mirror. Since it is not feasible to orient
the entire mirror and furnace toward the sun, a set of 63 heliostats with a combined
surface area of 2835 square meters is used instead (see Figure 15.16). A heliostat is
simply a mirror driven by a clock mechanism that allows the mirror to reflect sunlight
in a constant direction throughout the day. Heliostats are installed and programmed to
ensure that they reflect the sun toward the parabola such that the beams are parallel
to the central axis of the solar furnace at all times. This requires the solar furnace
to be oriented to the north! The collected beams are then reflected toward the focus

31 megawatt = 106 watts.
41 kilowatt = 103 watts.
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Fig. 15.16. Heliostats redirect the solar rays toward the primary parabolic mirror of Odeillo’s
solar furnace (photo by Serge Chauvin).

of the parabola, where they heat a container of hydrogen to very high temperature.
This source of heat is transformed into mechanical power to run an electrical generator,
the mechanism being called the “Stirling cycle.” Research focuses on improving the
net efficiency of the transformation of heat into electricity. Currently, such systems see
roughly 18% efficiency.

A return to legend of Archimedes. Archimedes’ use of parabolas (according to
legend) was to construct large parabolic mirrors whose axes were pointed at the sun and
whose foci were meant to be as close as possible to the ships of the Roman fleet. Modern
technology would probably be capable of building mirrors of the scale and reflective
quality necessary to ignite the sail of a distant ship. However, it is doubtful that the
technology of the time was sufficiently advanced to build such defensive weapons, even
using aligned polished metal shields. A group of engineers from the Massachusetts
Institute of Technology, in Cambridge, recently tested the feasibility of such a device.5

Using 127 one-square-foot mirrors (≈ 0.1 m2) they succeeded, after a few attempts, to
ignite a 10-foot-long (≈ 3 m) model of a boat situated roughly 100 feet (≈ 30 m)from the

5http://web.mit.edu/2.009/www/experiments/deathray/10 ArchimedesResult.html.
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mirrors. The experiment was criticized because the engineers used modern materials
that would not have been available in the time of Archimedes, and the target was
positioned closer than reported by the legend. However, despite these criticisms the
successful test indicates that the concept is not as absurd as it may at first seem.

Unlike the engineers at MIT, Archimedes could not simply buy hundreds of highly
reflective mirrors from the local hardware store! However, could he have used hundreds
of highly polished metal shields stacked side by side? Although doubtful, we are unable
to exclude this possibility.

15.2.2 The Ellipse

Recall the geometric definition of an ellipse.

Definition 15.8 An ellipse is the locus of points in the plane such that the sum of their
distances from two points F1 and F2 (called the foci) is equal to some constant C, where
C > |F1F2|.

Ellipses have a remarkable property quite similar to that of parabolas.

Theorem 15.9 The remarkable property of the ellipse. Any ray of light leaving
one focus and reflected by the interior of the ellipse will arrive at the other focus.

Proof. We will provide a geometric proof using only Definition 15.8, which may be
rewritten as follows: if R is a point in the plane, then⎧⎪⎨

⎪⎩
|F1R| + |F2R| < C if R is inside the ellipse,
|F1R| + |F2R| = C if R is on the ellipse,
|F1R| + |F2R| > C if R is outside the ellipse.

(15.3)

Imagine a beam originating at F1 and consider the point P where it intersects the ellipse
(see Figure 15.17). Let (D) be the line passing through P and making the same angle
with both F1P and F2P . We must show that this line is tangent to the ellipse at P .
Here again we will use the fact that any straight line through P other than the tangent
line to the ellipse has points inside the ellipse (see Figure 15.18). So we must show that
any point R along (D) except P satisfies |F1R| + |F2R| > C.

Let F be the point symmetric to F1 with respect to (D). Since P and R are
both on (D), we have that |FP | = |F1P | and |FR| = |F1R|. Hence the triangles
F1PR and FPR are congruent, since they have three equal sides. Thus it follows that
F̂PR = F̂1PR. Since F̂1PR = F̂2PS by definition of (D), we have that F̂PR = F̂2PS,
allowing us to conclude that F2, F , and P are collinear by Lemma 15.2. It follows that
|FF2| = |FP | + |PF2| and

|F1R| + |F2R| = |FR| + |F2R| > |FF2|.
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Fig. 15.17. A remarkable property of the ellipse.

Fig. 15.18. The tangent line to the parabola at P is the only straight line through P that has
no point inside the ellipse.

We also have
|FF2| = |FP | + |PF2| = |F1P | + |PF2| = C.

Hence |F1R| + |F2R| > C, allowing us to conclude that R is outside of the ellipse. �

Elliptical mirrors. Elliptical mirrors are studied in geometric optics and are currently
used in a variety of applications. While parabolic mirrors are able to convert a point
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source of light (for example, a light bulb) into a parallel beam of light (as is done in car
headlights), an elliptical mirror reflects a pencil of rays originating from one point to
a pencil of rays converging to another point. This property is used in certain types of
film projectors where an elliptical mirror collects the light from the bulb and reflects it
through the narrow aperture of the lens so that it passes through the film. Also, certain
telescope designs employ elliptical secondary mirrors.

Elliptical arches. The described property of ellipses can also be observed with sound
waves. For example, the arches in the Paris subway are roughly elliptical. Thus, if you
are situated near the focus on one side of the tracks you can clearly hear a group of
people situated near the focus on the other side of the tracks. In some cases, you can
actually hear them more clearly than you would another person closer to you and on
the same side of the tracks as you.

15.2.3 The Hyperbola

Recall the geometric definition of a hyperbola.

Definition 15.10 A hyperbola is the locus of points in the plane such that the absolute
value of the difference of their distances from two points F1 and F2 (called the foci) is
equal to some constant C, where C < |F1F2|. In other words, P is on the hyperbola if
and only if

| |F1P | − |F2P | | = C.

A hyperbola has two branches. The branch attached to the focus F1 is the set of points
P such that |F2P | − |F1P | = C, while the branch attached to the focus F2 is the set of
points P such that |F1P | − |F2P | = C.

Hyperbolas have the following remarkable property:

Theorem 15.11 The remarkable property of the hyperbola. Any beam aimed
at the focus of one branch of a hyperbola and striking the exterior of this branch will be
reflected toward the focus of the other branch (see Figure 15.19).

Proof. We leave the proof to Exercise 4. It is quite similar to that of Theorem 15.9.�

Hyperbolic mirrors. Convex mirrors with a hyperbolic profile are studied in geo-
metric optics and have various applications, one of which is their use in cameras. As
discussed earlier, they are also used as the secondary mirror in Schmidt–Cassegrain-
type telescopes (Figure 15.14). In such a telescope the first focus of the hyperbola is
coincident with the focus of the parabolic primary mirror. The hyperbolic mirror serves
to reflect the image through the second focal point of the hyperbola, which is situated
below it.
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Fig. 15.19. A remarkable property of the hyperbola.

15.2.4 A Few Clever Tools for Drawing Conics

Given the general importance of conic sections, many ingenious methods for drawing
them have been devised. The geometric definition of an ellipse allows it to be drawn
quite easily by attaching a string of length C to the two foci F1 and F2 of the ellipse.
We then draw the ellipse by ensuring that the string stays taut as we move the pencil
(see Figure 15.20). This approach is not accurate unless the pencil is held perfectly
perpendicular to the drawing surface. In Exercise 7 we will discuss a much more accurate
approach. Exercise 8 presents a method for drawing a hyperbola similar to the string
method for drawing an ellipse. Exercise 9 presents a method for drawing a parabola
that makes use of a string and a carpenter’s square.

15.3 Quadratic Surfaces in Architecture

Architects like creating audacious forms; just think of Gaud́ı’s houses or the Montreal
Olympic stadium. Other times it is engineers who, for structural reasons and optimiza-
tion of strength, conceive of curved surfaces; consider cooling towers of nuclear reactors
and hydroelectric dams, for example. Constructing the forms for pouring the concrete
of these structures is a nontrivial problem, since the surfaces are not planar.

Certain mathematical surfaces, called ruled surfaces, have a remarkable mathemat-
ical property: they contain one or several families of lines such that any point on the
surface will lie on at least one line in the family. A simple example of such a surface is
a cone. This is our first example of a quadratic surface (also called quadric). However,
not all quadratic surfaces are ruled surfaces. As examples, neither the sphere nor the
ellipsoid contains even a single straight line.
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Fig. 15.20. Drawing an ellipse by attaching a cord to its foci.

The hyperboloid of one sheet (Figure 15.21) is another example of a ruled surface;
in fact, it can be constructed by two distinct families of lines.

Fig. 15.21. A hyperboloid of revolution of one sheet.

Another quadratic surface often used in architecture is the hyperbolic paraboloid, or
saddle (see Figure 15.22). Some roofs of buildings have been built with this form.

Earlier, when we were discussing parabolic mirrors, these were more precisely circular
paraboloids (see Figure 15.23(a)). Elliptic mirrors are actually portions of ellipsoids of
revolution (see Figure 15.23(b)), while hyperbolic mirrors are part of a hyperboloid
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(a) (b)

Fig. 15.22. Two hyperbolic paraboloids, or saddle surfaces.

of revolution of two sheets (see Figure 15.23(c)). Thus we have identified three more
quadratic surfaces with important technological applications.

(a) circular paraboloid (b) two portions of an ellip-
soid

(c) one sheet of a hyper-
boloid of two sheets

Fig. 15.23. Quadratic shapes often used as mirrors.

Here, we will be studying two quadratic ruled surfaces: the hyperboloid of one sheet
and the hyperbolic paraboloid.

Definition 15.12 A quadratic surface is a surface that may be described by the equation

P (x, y, z) = 0,

where P is a degree-2 polynomial in the variables (x, y, z).
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When studying quadratic surfaces one often encounters complicated polynomials P .
So one often performs a change of coordinates that preserves both distances and angles
(such a change of coordinates is called an isometry; see Chapter 2) in order to return
the equation to a simpler canonical form in which we can read the geometry. It is the
equivalent in three dimensions of what we do in two dimensions when we choose to
consider the ellipse aligned to the axes with canonical equation

x2

a2
+

y2

b2
= 1.

In this form the axes of symmetry of the ellipse are themselves the axes of the coordinate
system.

The hyperboloid of one sheet. Under appropriately chosen orthonormal coordinates
this surface has the canonical equation

x2

a2
+

y2

b2
− z2

c2
= 1. (15.4)

If we intersect this surface with a plane containing the z axis, thus of the form Ax+By =
0, then the intersection describes a hyperbola in this plane. Alternatively, if we intersect
this surface with a plane parallel to the xy plane, thus of the form z = C, then the
intersection describes an ellipse in this plane.

Cooling towers of nuclear reactors often take on the form of a hyperboloid of one
sheet of revolution: in this case we have a = b in (15.4) (see Figure 15.21). We will
discuss the advantages of this form after the following proposition.

Proposition 15.13 We consider two circles x2 + y2 = R2 situated in the planes z =
−z0 and z = z0. Let φ0 ∈ (−π, 0) ∪ (0, π] be a fixed angle. Then the union of the
lines (Dθ), where (Dθ) is the line joining the point P (θ) = (R cos θ,R sin θ,−z0) on the
first circle to the point Q(θ) = (R cos(θ + φ0), R sin(θ + φ0), z0) on the second circle,
is a hyperboloid of revolution of one sheet if φ0 
= π and is a cone if φ0 = π (see
Figure 15.24).

Proof. The line (Dθ) passes through the point P (θ) in the direction
−−−−−−→
P (θ)Q(θ). Thus,

it is the set of points
{(x(t, θ), y(t, θ), z(t, θ))|t ∈ R}

with ⎧⎪⎨
⎪⎩

x(t, θ) = R cos θ + tR(cos(θ + φ0) − cos θ),
y(t, θ) = R sin θ + tR(sin(θ + φ0) − sin θ),
z(t, θ) = −z0 + 2tz0.

(15.5)

We must eliminate t and θ in order to find the equation of the surface. To do this we
calculate x2(t, θ) + y2(t, θ). We see that
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Fig. 15.24. The lines generating a hyperboloid of revolution of one sheet.

x2(t, θ) = R2[cos2 θ + t2(cos2(θ + φ0) − 2 cos(θ + φ0) cos θ + cos2 θ)
+2t cos θ(cos(θ + φ0) − cos θ)]

and

y2(t, θ) = R2[sin2 θ + t2(sin2(θ + φ0) − 2 sin(θ + φ0) sin θ + sin2 θ)
+2t sin θ(sin(θ + φ0) − sin θ)],

which yields

x2(t, θ) + y2(t, θ) = R2[1 + 2t2(1 − (cos θ cos(θ + φ0) + sin θ sin(θ + φ0)))
−2t + 2t(cos θ cos(θ + φ0) + sin θ sin(θ + φ0))].

Observe that

cos θ cos(θ + φ0) + sin θ sin(θ + φ0) = cos((θ + φ0) − θ) = cos φ0,

yielding

x2(t, θ) + y2(t, θ) = R2[1 + 2t2(1 − cos φ0) − 2t(1 − cos φ0)]
= R2[1 + 2(t2 − t)(1 − cos φ0)].

(15.6)

We have made progress: the parameter θ has been eliminated. In order to remove t we
must now consider z2(t, θ):

z2(t, θ) = z2
0(1 + 4(t2 − t)),

from which it follows that
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t2 − t =
z2(t, θ) − z2

0

4z2
0

.

Substituting this into (15.6) and omitting the dependence on t and θ of x, y, z, we obtain

x2 + y2 = R2

[
1 +

1
2
(1 − cos φ0)

z2 − z2
0

z2
0

]
, (15.7)

which is the equation of a hyperboloid of revolution of one sheet. In fact, to obtain the
canonical form

x2

a2
+

y2

a2
− z2

c2
= 1

it suffices to choose ⎧⎨
⎩a = R

√
1+cos φ0

2 ,

c = z0
√

1+cos φ0√
1−cos φ0

,

if 1 + cos φ0 
= 0, equivalently cosφ0 
= −1 or again φ0 
= π. For φ0 = π we simplify to

x2 + y2 =
R2

z2
0

z2,

which is the equation of a cone (see Exercise 10).
So we have shown that all lines (Dθ) lie on our quadratic surface (hyperboloid or

cone). But does the quadratic surface contain other points? It is easy to show that this
is not the case. Indeed, our surface is the union of circles located in the set of planes
z = z1, for z1 ∈ R (in the case of the cone, one circle is reduced to a point when z1 = 0).
If we let z = z1 in (15.5) we obtain t = z1+z0

2z0
. Replacing this value in (x(t, θ), y(t, θ)),

we must show that the set of these points for t = z1+z0
2z0

and θ ∈ [0, 2π] is a circle.
We will use the trigonometric formulas

cos(a + b) = cos a cos b − sin a sin b,
sin(a + b) = sin a cos b + cos a sin b.

(15.8)

This allows us to write{
x(t, θ) = R(1 + t(cos φ0 − 1)) cos θ − tR sin φ0 sin θ,

y(t, θ) = R(1 + t(cos φ0 − 1)) sin θ + tR sin φ0 cos θ.

Let α = R(1+ t(cos φ0 −1)) and β = tR sin φ0. Let us write (α, β) in polar coordinates:
(α, β) = (r cos ψ0, r sin ψ0). Then{

x(t, θ) = r cos ψ0 cos θ − r sin ψ0 sin θ = r cos(θ + ψ0),
y(t, θ) = r cos ψ0 sin θ + r sin ψ0 cos θ = r sin(θ + ψ0),

where the last equality again used (15.8). In this form it is clear that all points of the
circle of radius r are attained when θ ∈ [0, 2π].
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�

We have now seen that a hyperboloid of revolution of one sheet can be described as
a family of straight lines. If you consider Figure 15.24 you can easily imagine a second
family of such lines that is the mirror image of the first (see Exercise 12). Such a surface
is said to be doubly ruled, since it may be constructed by either of two distinct families
of straight lines. This is an advantage when such a form is realized in concrete. Not
only can the pouring form be constructed using only straight pieces of wood, provided
they are thin enough, but the concrete itself can be reinforced with two sets of straight
pieces in two different directions. This greatly simplifies the construction of the pouring
form and allows for an extremely solid structure.

The hyperbolic paraboloid. Under appropriately chosen orthonormal coordinates
this surface has the canonical equation

z =
x2

a2
− y2

b2
, (15.9)

where a, b > 0 (see Figure 15.22). The intersection of this surface with a plane containing
the z axis (a plane with the equation Ax + By = 0) is either a parabola or a horizontal
line. On the other hand, the intersection of this surface with a plane parallel to the xy
plane (a plane with the equation z = C) is a hyperbola in this plane if C 
= 0, and two
straight lines if C = 0.

Proposition 15.14 Let B,C > 0. Let (D1) and (D2) be the lines given by

(D1)

{
z = −Cx,

y = −B,
(D2)

{
z = Cx,

y = B.

We consider the line (Δx0) joining the point P (x0) = (x0,−B,−Cx0) of (D1) to the
point Q(x0) = (x0, B,Cx0) of (D2). Then the union of the family of lines (Δx0) is a
hyperbolic paraboloid (see Figure 15.25).

Proof. The line (Δx0) passes through P (x0) with direction
−−−−−−−−→
P (x0)Q(x0). Thus it is

the set of points

(x(t, x0), y(t, x0), z(t, x0)) = (x0,−B + 2Bt,−Cx0 + 2Ctx0),

yielding

z = Cx0(2t − 1) =
C

B
x0y =

C

B
xy.

If we substitute {
x = 1√

2
(X − Y ),

y = 1√
2
(X + Y ),

(15.10)
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Fig. 15.25. Two families of straight lines on a hyperbolic paraboloid.

then the equation becomes

z =
C

B
xy =

C

2B
(X2 − Y 2).

We immediately recognize the equation of a hyperbolic paraboloid. Remark: the change
of variables of (15.10) is simply a rotation by π

4 of the coordinate system.
Here again we must show that any point of the hyperbolic paraboloid lies on one

of the lines. Let (x, y, z) be a point on the hyperbolic paraboloid. It suffices to show
that there exist x0 and t such that (x, y, z) = (x(t, x0), y(t, x0), z(t, x0)). Of course we
choose x0 = x. By letting y = −B + 2Bt we get t = y+B

2B . Since z is on the hyperbolic
paraboloid, we have z = C

B xy. This yields

z =
C

B
x(−B + 2Bt) = Cx(2t − 1) = z(t, x0).

Hence (x, y, z) = (x(t, x0), y(t, x0), z(t, x0)) for x0 = x and t = y+B
2B , which ensures that

(x, y, z) is on the line (Δx). �
Proposition 15.14 suggests a method to construct a roof in the shape of a hyperbolic

paraboloid. We place beams along (D1) and (D2) and we cover them with thinner
beams or thin boards placed as the lines (Δx0).

15.4 Optimal Cellular Antenna Placement in a Region

Cellular telephony is now a part of everyday life, with many companies offering service.
In order to do this, each of these companies must first place antennas across the area
they wish to serve in such a manner that (nearly) all points in the area may be served
by a nearby antenna. At present, cellular services are quite reliable in and around large
urban areas, but there are many remote regions that do not have access.
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Suppose that a company wants to place antennas in a large territory so as to provide
service to all points in the territory. In simpler terms, they wish to place the antennas
in the territory in a manner such that every point will be no more than a distance r
from the nearest antenna. The company considers several possible placement plans in
order to determine which one requires the least number of antennas. For now we will
consider only regular networks, and we will be comparing the following three schemes:

• placing antennas on a regular triangular network;
• placing antennas on a square network; and,
• placing antennas on a hexagonal network.

We will assume that the territory is sufficiently large and not too narrow so that we
may safely ignore precisely what happens along its border.

Placing antennas on a regular triangular network. Consider covering a large city
by placing antennas at the vertices of a regular triangular network. Two neighboring
antennas are at a distance a, the side length of the equilateral triangles building up the
network. In such a triangle the point that is the furthest away from the three corners
is the center of the circle circumscribed about the triangle, which is the intersection
point of the three perpendicular bisectors. Since the triangle is equilateral, this point is
also the center of gravity situated at the intersection of the three medians. The length
of the median is given by h = a cos π

3 =
√

3
2 a. The second median crosses the first at

the center of gravity of the triangle, which is situated two-thirds of the way along the
median from a vertex. Thus, the center of gravity is at a distance of 2

3

√
3

2 a = 1√
3
a from

the vertices of the triangle. Because the antennas are at the vertices of the triangle
and the center of gravity is the furthest point, each antenna must reach this point, thus
requiring r ≥ 1√

3
a. In order to minimize the number of antennas we take r = 1√

3
a.

Hence we must take triangles with side lengths a =
√

3r. In conclusion, if the signal
emitted by the antenna is usable up to a distance of r and the antennas are placed at
the corners of a network of equilateral triangles, then we must take triangles with side
lengths a ≤ √

3r in order to ensure that all points in the territory will receive a usable
signal.

Consider an n × n square territory for n much larger than r (see Figure 15.26). We
will ignore exact behavior at the boundary. To traverse the square horizontally we need
a line of n√

3r
points. Successive lines are situated a vertical distance h from one another.

Since h =
√

3a
2 = 3

2r, we need n
h = 2n

3r lines to cover the entire square. Thus, we require

2
3
√

3
n2

r2
≈ 0.385

n2

r2
(15.11)

points (or antennas) in total. This number is proportional to n2, the area of the region
to be covered.

In doing this calculation we neglected to discuss precisely how the points are aligned
with respect to the boundary of the region. Should we put antennas along the boundary
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Fig. 15.26. A regular triangular network.

of the region or should we start the first row in its interior? At what lateral distance
from the left boundary of the region should we place the first antenna? These questions
are harder to answer than the simple calculation we performed above. However, we
can easily convince ourselves that the difference in the number of antennas implied
by the various possible placements near the boundaries is bounded above by Cn, for
some positive constant C. If n is sufficiently large, then this difference quickly becomes
negligible with respect to the bound given in equation (15.11), which is proportional
to n2. This remark is equally valid for the following discussion of regular square and
hexagonal networks.

Placing antennas on a square network. Consider a square with side length a. In
such a square the point that is the farthest away from the corners is the center of gravity
situated at the intersection of the two diagonals. This point is at a distance of r = 1√

2
a

from the four corners. Thus we must use squares with side lengths of a ≤ √
2r.

Now consider an n × n square region for n much larger than r (see Figure 15.27).
We will partition this region using a regular square network with side length a and
place antennas at each of the nodes of the network. As discussed above, we may ignore

Fig. 15.27. Square network.
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the details of positioning antennas near boundaries. We require a line of n√
2r

points to
traverse the region horizontally and n√

2r
horizontal lines. Thus, we require

1
2

n2

r2
≈ 0.5

n2

r2

antennas to cover the region.

Placing antennas on a hexagonal network. Now consider a regular hexagon with
side length a. The point the farthest away from the vertices is the center of the hexagon
situated at a distance a from each of the six vertices. Thus we must take hexagons with
side length a = r.

To cover an n×n territory (see Figure 15.28), we will orient the hexagons such that

Fig. 15.28. Regular hexagonal network.

two of their edges are horizontal. We remark that along each horizontal line containing
nodes of the network they are separated by distances r, 2r, r, 2r, r, 2r, . . . . Thus the
average distance between two successive points is 3

2r. Hence, to traverse the region
horizontally we require 2n

3r points. Each successive line is separated vertically by a
distance h, where h =

√
3

2 r. Thus we require n
h = 2n√

3r
horizontal lines to cover the

entire region. In total we require

4
3
√

3
n2

r2
≈ 0.770

n2

r2

antennas, twice as many as are required using a triangular network.

If we compare the above three solutions, we see that the regular triangular parti-
tioning is by far the most efficient, followed by the square partitioning and finally the
hexagonal partitioning.

Just by visually inspecting the resulting networks we could have guessed that the
triangular network would be exactly twice as efficient as the hexagonal network. In
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fact, connecting the centers of the hexagons forms a regular triangular network (see
Figure 15.29). The center of each triangle is situated at one of the nodes of the hexagonal

Fig. 15.29. Dual triangular and hexagonal networks.

network. This point is thus at exactly a distance r from the nearest triangle vertices.
Along each horizontal line through the overlaid graphs we find two hexagon vertices for
every triangle vertex.

15.5 Voronoi Diagrams

In this section we consider a problem that is in some sense the inverse to that in Section
15.4 (but you do not need to have read it). Suppose that we have a certain number of
antennas distributed across a given region. We wish to divide this region into cells such
that

• each cell contains exactly one antenna;
• each cell contains exactly the set of of points that are closer to the associated antenna

than any other antenna (see Figure 15.30).

The set of cells obtained in this manner is called the Voronoi diagram of the anten-
nas. In reality, antenna placement is subject to several constraints, both urban (zoning
rules, availability of land, etc.) and geographic (antennas are more efficient if placed at
peaks rather than in valleys). Drawing the Voronoi diagram for a network of antennas
allows the planners to easily visualize poorly serviced areas and to plan new antenna
placements.

A historical note. The Ukrainian mathematician Voronoi (1868–1908) defined the
concept of Voronoi diagrams in arbitrary dimensions, but it was Dirichlet (1805–1859)
who first studied them in detail in two and three dimensions. For this reason they are
also called Dirichlet tessellations. Diagrams of this sort have actually been around since
at least 1644, appearing in Descartes’s notebooks.
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Fig. 15.30. A Voronoi diagram.

We can conceptually replace the antennas by post offices, hospitals, or even schools.
In this last case it allows us to precisely determine the optimal school attendance areas
such that each student will go to the closest school. As can be seen, Voronoi diagrams
have numerous applications.

We describe the problem in mathematical terms.

Definition 15.15 Let S = {P1, . . . , Pn} be a set of distinct points in a region D ⊂ R2.
The points Pi are called sites.

1. For each site Pi the Voronoi cell of Pi, denoted by V (Pi), is the set of points of D
that are closer (or as close) to Pi than to any other site Pj:

V (Pi) = {Q ∈ D, |PiQ| ≤ |PjQ|, j 
= i}.

2. The Voronoi diagram of S, denoted by V (S), is the decomposition of D into Voronoi
cells.

To decide how to approach the problem we will first consider the case D = R2 and
S = {P,Q} with P 
= Q.

Proposition 15.16 Let P and Q be two distinct points in the plane. The perpendicular
bisector (or mediatrix) of the segment PQ is the locus of points at equal distance from
P and Q. This locus is the straight line (D) that is normal to the segment PQ and
that passes through its midpoint. All points R on one side of (D) satisfy |PR| < |QR|,
while all those on the other side satisfy |PR| > |QR|. Thus, the Voronoi diagram
of S = {P,Q} is the partition of R2 into two closed half-planes bounded by (D) (see
Figure 15.31).
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Fig. 15.31. Voronoi diagram of two points P and Q.

Proof. The proof is left as an exercise to the reader. �
We now have the basic ingredients necessary to find the Voronoi cell V (Pi) of a site

Pi belonging to a collection of sites S = {P1, . . . , Pn}. We will limit ourselves to the
case D = R2, but the concept is similar in higher dimensions (see Figure 15.32).

Fig. 15.32. A Voronoi cell.

Proposition 15.17 Given a set of sites S = {P1, . . . , Pn}, for each pair of points
(Pi, Pj) the perpendicular bisector of the segment PiPj divides the plane into two closed
half-planes Πi,j and Πj,i, the first containing Pi and the second containing Pj. The
Voronoi cell V (Pi) of the site Pi is the intersection of the half-planes Πi,j for j 
= i (see
Figure 15.32):

V (Pi) =
⋂
j �=i

Πi,j .
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Proof. The proof is simple. Let Ri =
⋂

j �=i Πi,j . We must show that Ri = V (Pi).
Consider a point R ∈ Ri. Then for all j 
= i we have that R ∈ Πi,j . Thus |PiR| ≤ |PjR|
for all j 
= i. Hence R ∈ V (Pi) by the definition of V (Pi). So we have that Ri ⊂ V (Pi).
Now suppose that R /∈ Ri: then there exists j 
= i such that R /∈ Πi,j . Therefore
|PiR| > |PjR| and finally R /∈ V (Pi).

So we can conclude that Ri = V (Pi). �
We now consider the general form of Voronoi diagrams.

Definition 15.18 A subset D of the plane is convex if for all points P,Q ∈ D the
segment PQ lies within D.

Figure 15.33 gives an example of both a convex and a nonconvex set.

(a) A convex set (b) A nonconvex set

Fig. 15.33. Convex and nonconvex sets.

Proposition 15.19 A Voronoi cell is a convex set. If the cell is finite (lies within some
disk with finite radius r), then it is a polygon.

Proof. We present a rough idea of the proof, leaving the rest as an exercise. The
entire proof centers on the following two facts: a half-plane is a convex set, and the
intersection of convex sets is itself convex. �
Constructing Voronoi diagrams. It is not easy in practice to construct the Voronoi
diagram of a set S of sites, especially when S is large. Research into algorithms for con-
structing these diagrams is ongoing and active in both combinatorial and computational
geometry. However, there exists a large number of software packages and programming
languages that allow for the efficient calculation of Voronoi diagrams. For example,
Figures 15.30 and 15.32 were both created using a built-in function of Mathematica.
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Voronoi diagrams are often displayed along with their “dual” Delaunay triangu-
lations. An equally important problem in combinatorial geometry is to construct a
partition of a set into triangles (called a triangulation), so that either two triangles have
empty intersection or they share a common edge. Given a set S of sites and its Voronoi
diagram, we can construct the Delaunay triangulation as follows: the vertices of the
triangles are the sites S; we connect the sites Pi and Pj with the segment PiPj if the
cells V (Pi) and V (Pj) share a common edge (see Figure 15.34).

Fig. 15.34. The Delaunay triangulation (shown in thick black lines) associated with the
Voronoi diagram of Figure 15.32 (shown in thin gray lines).

Given a set of sites, there exist many possible triangulations whose corners lie on the
sites in S. However, the Delaunay triangulation is a triangulation with more equilateral
(less flattened) triangles on average than others. Because of this property, Delaunay tri-
angulations find use in many applied problems, in particular when meshes are required.
(See also Exercise 24.)

The reciprocal problem. We have seen that given a set S of sites, we can calcu-
late the associated Voronoi diagram that partitions the region into convex cells. More
specifically, bounded cells are convex polygons, while nonbounded cells have a bound-
ary consisting of a finite number of connected line segments and two half-rays. There is
nothing stopping us from generalizing this problem to partitioning a surface rather than
a planar region. The reciprocal problem, however, is harder: suppose that we have a
partition of the plane (or a surface) into cells as described above. Under what conditions
does there exist a set of sites S such that the provided diagram is the Voronoi diagram
V (S) of S? We can easily think of a modeling process that produces Voronoi diagrams.
Suppose we were to light a small fire at each site, which was to spread outward in all
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directions at a constant velocity. The points where the fire from two sites meet will de-
scribe the edges of the boundaries, while the points where the fires from three or more
sites meet will be precisely the corners of the cells (see Chapter 4 for another problem
using such a modeling technique, particularly Exercise 19 of that chapter). Another
similar model is provided when sites are taken as points of a piece of blotting paper,
and we put drops of ink on the sites that spread in all directions at constant velocity.
The cell of a site is the set of points that have been reached first by the ink of that site.
If we have some reason to think that the partition of the surface we are inspecting has
been constructed by a process similar to those above, then it is likely that there will be
an associated set of sites S. However, if we have no idea how the partition was created,
then the problem must be approached in purely mathematical terms. We will discuss
some simple cases in Exercise 26.

15.6 Computer Vision

In this section we consider only a small part of computer vision, which consists in
reconstructing depth information starting from 2D images. We start with two photos
taken by two observers situated at O1 and O2. In our model the images of the point P
are P1 and P2 respectively. These points are situated at the intersection of the planes
of projection and the lines (D1) and (D2) joining P to O1 and O2, respectively (see
Figure 15.35). In Figure 15.35 the same plane of projection has been taken for each
image, but this is not required. The plane of projection corresponds to the plane of the
film or sensor of the camera.

The points Oi and Pi are known, so they uniquely define the line (Di) as the line
joining them. Since P1 and P2 are images of the same point, then (D1) and (D2) will
intersect at a unique point P . This allows us to compute the location of P .

Let us do the details of the computation. We choose a system of axes such that
O1 and O2 are located on the x axis and the origin lies exactly midway between the
two. We choose the units such that O1 = (−1, 0, 0) and O2 = (1, 0, 0). We choose
the y axis to be horizontal and scale it such that the planes of projection lie within
the plane y = 1. The z axis is vertical and its scale can be chosen arbitrarily. Under
this coordinate system the coordinates of the points Pi are (xi, 1, zi). They are known
because they can be measured directly from each of the photos.

Let (a, b, c) be the coordinates of P . These are the unknowns. To find them we will
use the parametric equations of the lines (Di). The line (D1) passes through O1 and its
direction is given by the vector

−−−→
O1P1 = (x1 + 1, 1, z1). Thus, (D1) is the set of points

(D1) = {(−1, 0, 0) + t1(x1 + 1, 1, z1)|t1 ∈ R}.

Similarly we have that
−−−→
O2P2 = (x2 − 1, 1, z2) and therefore

(D2) = {(1, 0, 0) + t2(x2 − 1, 1, z2)|t2 ∈ R}.
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Fig. 15.35. Two photos taken from different points of view.

The point P is the intersection point of (D1) and (D2). To find it we look for t1 and
t2 such that the point of (D1) corresponding to t1 coincides with the point of (D2)
corresponding to t2: ⎧⎪⎨

⎪⎩
−1 + t1(x1 + 1) = 1 + t2(x2 − 1),
t1 = t2,

t1z1 = t2z2.

(15.12)

The second equation gives us t1 = t2. Replacing in the first equation yields

t1 =
2

x1 − x2 + 2
. (15.13)

Observe that x1 − x2 + 2 > 0; thus t1 is positive. In fact, looking at Figure (15.35) we
see that the distance between P1 and P2 is given by x2 − x1 and is smaller than the
distance between O1 and O2, which is 2. Now consider the third equation of (15.12).
Since t1 = t2 
= 0, it tells us that z1 = z2: this is a necessary condition for the points P1

and P2 to be projections of the same point P . In fact, if we take two arbitrary points
P1 and P2, the lines (D1) and (D2) will generally not intersect. The condition z1 = z2

ensures that the two lines are situated in the same plane z = z1y and therefore that
they will intersect if x1 − x2 
= 2.

We now have located the point P :
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(a, b, c) = (−1, 0, 0) +
2

x1 − x2 + 2
(x1 + 1, 1, z1)

=
(

x1 + x2

x1 − x2 + 2
,

2
x1 − x2 + 2

,
2z1

x1 − x2 + 2

)
.

Remark. This is the mechanism behind our own depth perception. Our eyes observe
the same scene from two points of view, and our brain uses geometry to “calculate” the
depth of individual objects in the scene. Thus we must first understand the geometry
behind depth perception before we can teach computers to do the same thing.

15.7 A Brief Look at Computer Architecture

Computers are built primarily with integrated circuits. The basic building block is the
transistor, which may be roughly equated to an electrical switch. It is the precise layout
and connection of millions of these transistors that allows a computer to do its work
and in particular to compute operations.

We will consider only very simple electric circuits consisting entirely of switches.
Each switch can take one of two positions, which we will associate with the numbers 0
and 1.

In this section we limit ourselves to showing how to construct circuits that can effec-
tuate basic mathematical operations on the set S = {0, 1}. Programming languages are
designed to allow compact and readable representations of complex calculations, which
are in turn translated into long series of basic operations. Computers are designed
to perform these basic operations, placing their results in appropriate places in mem-
ory. Early computers could perform only a single operation at a time, while modern
computers typically perform many operations in parallel.

We will consider several basic operations performed by all modern computers and the
electric circuits that realize them. Specifically, we will consider the Boolean operators
NOT, AND, OR, and XOR (exclusive or), which operate on the set S = {0, 1}. The
value 0 will be used to indicate an absence of electrical current, while 1 will mean that
current is flowing.

The AND operator. The function AND : S × S → S is given by the following table:

AND 0 1
0 0 0
1 0 1

(15.14)

Why do we call this operator “AND”? Suppose that A and B are two statements. We
can assign each of them a truth value in S, 0 meaning that the statement is false and
1 meaning that it is true. Consider the logical statement A AND B. This statement
is true only if A and B are both true. In the three other cases (A true and B false, A
false and B true, A false and B false), the statement A AND B is false and therefore is
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assigned the value 0. This is exactly the operation described in the above table. Notice
that the AND operator is also equivalent to multiplication modulo 2, an operation of
arithmetic modulo 2 that is used in several other chapters. A simple circuit modeling

Fig. 15.36. A circuit realizing the AND operator.

this operation is shown in Figure 15.36. There are two switches in the circuit, each
one corresponding to one of the two inputs. When the input is 1, the switch is closed
and current flows through it. When the input is 0, the switch is open and no current
may flow through it. It is easy to see that current will flow through the entire circuit
if and only if both switches are closed. Current flowing through the entire circuit (and
illuminating the bulb at the end) indicates an output of 1, while absence of current
yields an output of 0.

Table (15.14) may be rewritten in the following form:

INPUT A INPUT B OUTPUT
0 0 0
0 1 0
1 0 0
1 1 1

(15.15)

The OR operator. This is the function OR : S × S → S given in the following table:

OR 0 1
0 0 1
1 1 1

(15.16)

The statement A OR B is true when at least one of the statements A and B is true.
Thus, the only time it is false is when the two statements A and B are both false.
A simple circuit implementing this operation is shown in Figure 15.37. The rules of
operation are the same as for the AND switch, but this time the two switches are in
parallel. It is easy to see that current will flow through the circuit if either of the two
switches is closed. Once again, current flowing through the circuit indicates a value of
1 or true, and vice versa. As with the AND operator we may rewrite table (15.16) as
follows:
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Fig. 15.37. A circuit realizing the OR operator.

INPUT A INPUT B OUTPUT
0 0 0
0 1 1
1 0 1
1 1 1

(15.17)

The XOR operator (sometimes written ⊕). The XOR operator is the function
XOR : S × S → S, given by the table

XOR 0 1
0 0 1
1 1 0

(15.18)

The statement A XOR B is true if and only if exactly one of the two statements A and
B is true and the other is false, from which comes the name exclusive or. We remark
that the truth table of the XOR operator is the same as that of addition modulo 2,
which we have met in other chapters. A circuit implementing this operation is shown

Fig. 15.38. A circuit realizing the XOR operator.

in Figure 15.38. This circuit is slightly more subtle than the others thus far. The left
switch is in the upper position when the input is 1 (the switch is on), and in the lower
position when the input is 0 (the switch is off). The right switch behaves in the opposite
manner. Thus, we see that current will flow through the circuit when one of the switches
is on and the other is off. We rewrite table (15.18) as follows:
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INPUT A INPUT B OUTPUT
0 0 0
0 1 1
1 0 1
1 1 0

(15.19)

The NOT operator. The NOT operator is the function NOT : S → S given by{
NOT(0) = 1,
NOT(1) = 0,

(15.20)

or equivalently
INPUT OUTPUT

0 1
1 0

(15.21)

Consider Figure 15.39. There is exactly one switch that receives the input. The bulb

Fig. 15.39. A circuit realizing the NOT operator.

acts as a resistive load. The switch is situated on a parallel branch that has a lower
resistance, than that of the bulb. When the input is 1 the switch is closed, the current
will flow through the branch of less resistance, and the bulb will not be lit. However,
when the switch is open (the input is 0), the current will flow through the only available
branch and thus the bulb will be lit.

Some further thoughts. We pause to extract some deeper ideas from these simple
examples.

1. When discussing the NOT operator we said that the bulb will not illuminate when
the switch is closed. However, in real circuits a portion of the current will still
flow through the upper branch and the bulb will in fact be dimly lit. Although we
may consider our inputs and outputs as discrete values, current flow is effectively
a continuous quantity. Thus, in real computers 0 and 1 values are distinguished
through the use of a threshold. A current below the threshold value is interpreted
as a 0, while one above it is considered as 1.
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2. Each circuit considered so far has been self-contained, with inputs taking the form
of switches, and outputs the form of light bulbs. It is easy to imagine that the
switches acting as inputs may actually be controlled by some external process, for
instance another circuit. Our input can then be the output of that circuit. Similarly,
it is entirely possible that the output light bulbs act as inputs to yet other circuits.
This is the case in modern computers, where the outputs could be used as inputs
for further operations.

There exist other Boolean operators commonly used in computers: NAND and NOR.
They are defined as {

A NAND B ⇐⇒ NOT(A AND B),
A NOR B ⇐⇒ NOT(A OR B).

(15.22)

Given their definition, we see that they may be implemented by combining a NOT
circuit with an AND and OR circuit, respectively. However, they may be more efficiently
realized by smaller circuits. As such, these two operators are often added to the list
of basic Boolean operators. These two operators are called universal. Exercise 34 will
explain why.

A first small step toward computers. Computers are built from transistors, which
may be visualized as sophisticated switches. Analogously, we may consider them as
“discriminators,” working in only one direction, much as, for example, a door whose
frame allows it to be opened in one direction only. A transistor can deliver an output
without being affected by what happens afterward. For that, rather than interpreting
the presence of a current as a 1, transistors use voltage differentials as input. When
the voltage differential across its inputs is greater than a given threshold and has the
proper sign, this creates a current that “opens” the door.

A word on very large scale integration systems (VLSI). Transistors can be used
to create diverse logic families: TTL, ECL, NMOS, CMOS, etc. The beauty of these
logic families is that transistors are assembled together to create “gates” that realize the
AND, OR, XOR, and NOT operators (and often also the NAND and NOR operators).
Each output can be used as the input of another circuit. This allows for the assembly
of extremely complex circuits using many millions of gates and individual transistors.
In most of these logic families the voltage differential represents the logical level and
the current transports the charge that is required to attain these differentials. MOS
transistors have historically been made in three layers: a layer of silicon, a layer of oxide
(insulator), and a layer of metal (acting as the switch). Nowadays, the metal layer has
been replaced by polycrystalline silicon and the insulating layer is extremely thin, being
on the order of 12 Å (1 Å = 1 angstrom = 10−10 m). For comparison, a typical atomic
bond has a length of approximately 2 Å. By far, CMOS is the most commonly used
logic family. Along with NMOS/PMOS its efficiency resides in the fact that current
flows only while the transistor state is in transition, in contrast to our simple circuits
using light bulbs. Transition between logic states is effectuated by a transfer of charge,
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carried by a current. Once the transfer of charge has been completed, current no longer
flows. Thus, while in a steady state such transistors do not use energy. This allows for
the construction of extremely large integrated circuits (more than a billion transistors)
with reasonable energy consumption (< 150 W).

From a practical point of view, NAND and NOR gates are more important. This is
because with CMOS technology, they are more easily and naturally constructed than
other gates. Similarly, for practical reasons (NMOS transistors are better than PMOS
transistors), NAND gates are preferred over NOR gates.

15.8 Regular Pentagonal Tiling of the Sphere

A few years ago, one of the authors (C.R.) was approached by Pierre Robert, called
“Pierre the Juggler,” woodworker and juggler, who constructs large balls for jugglers
and acrobats to balance on. He had constructed a 50-cm-diameter wooden ball on which
he wanted to paint five-pointed stars in a regularly tiled manner (see Figure 15.40). (In
fact, in Quebec it is still common for woodworkers to work in imperial units; thus he
had actually constructed a ball with a radius of 20 inches.)

Fig. 15.40. A circus ball painted with a regular tiling of five-pointed stars.

There exists a regular polyhedron whose 12 faces are regular pentagons, called the
dodecahedron (see Figure 15.41). Since this polyhedron is regular, it may be inscribed
in a sphere, meaning that all of its vertices lie along the surface of a sphere. Thus,
the artist was in fact asking for a method of finding the vertices of the dodecahedron
inscribed in the sphere he had constructed.

Drawing on a sphere. A woodworker who needs to draw on the surface of a sphere
cannot do so using a ruler. However, a compass works quite well. So this will be our
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Fig. 15.41. A dodecahedron.

tool for finding the vertices of the inscribed dodecahedron. Once we have specified two
points on the surface of the sphere, we can easily draw a great-circle arc between the two
points by holding a string between the two points. Assuming that the friction between
the string and the ball is negligible, the string will tend to follow a great-circle route.
This method is sufficient if we do not require high precision. If we wish a more precise
technique we must use a compass, calculating both its opening angle and the precise
spot where to place its point (see Exercise 41).

Using a compass to draw on a sphere. If we place the point of a compass at a
point N on the surface of a sphere and give it an opening of r′, then we will draw a
circle of radius r 
= r′ on the surface of the sphere (see Figure 15.45). The actual center
P of the circle will lie in the interior of the sphere and is therefore not situated at N .
However, all of the points along the circle just drawn will lie at a distance r′ from N .
We must pay close attention to this subtlety throughout our discussion. The actual
relation between the radius of the circle r and the opening of the compass r′ depends
on the radius R of the sphere. It will be discussed later.

We will present a solution for drawing the vertices of the inscribed dodecahedron.
Here are the symbols we will use in our discussion:

• R is the radius of the sphere;
• a is the length of an edge of the dodecahedron inscribed on the sphere;
• d is the length of a diagonal of a pentagonal face of the dodecahedron;
• r is the radius of the circle circumscribed about a pentagonal face;
• r′ is the opening that must be given to a compass in order to draw a circle of radius

r on a sphere of radius R.
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Main ingredients of the solution. The first step is to calculate the length a of an
edge and the length d of a diagonal of a pentagonal face of a dodecahedron, when the
dodecahedron is inscribed in a sphere of radius R. As such it looks very difficult.

• Luckily we will be able to use a remarkable property of the dodecahedron: the
diagonals of the pentagons are the edges of cubes inscribed on the dodecahedron.
There are five such cubes (see Figure 15.42 and Exercise 44).

(a) (b) (c) (d) (e)

Fig. 15.42. The five cubes inscribed on a dodecahedron.

• Thus we have already reduced the problem to one that is slightly simpler. Each of
these five cubes is itself inscribed in the sphere. Thus, we are looking for the edge
length d of a cube inscribed in a sphere of radius R. We leave the actual calculation
of this relationship to Exercise 39:

d =
2√
3
R.

• We must now find the relation between a and d. Since edges of the inscribed cube
are diagonals of the inscribed pentagons, the problem is reduced to a planar one.
Given a regular pentagon with side lengths a, find the length of its diagonal d (see
Figure 15.43). The formula is evident after inspecting Figure 15.43 and noticing
that the interior angles of the pentagon are 3π

5 . We leave this part to Exercise 36.
The length is given by

d = 2a cos
π

5
.

Thus, we now know that

a =
d

2 cos π
5

=
R√

3 cos π
5

.

Drawing the vertices of the dodecahedron. We have now seen the main ingredients
necessary. We choose a random point P1 on the sphere that will be one vertex of the
dodecahedron. Each vertex is adjacent to three other vertices that are a distance a
from P1. Thus, we draw a circle C1 centered at P1 using a compass opened to a length
of a. (P1 is not in the plane of this circle!). We choose a random point P2 along this
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Fig. 15.43. A diagonal of a pentagon.

circle, which will be a second vertex of the dodecahedron. From this moment onward
all of the vertices of the dodecahedron are uniquely determined. There are two other
vertices P3 and P4 that lie along the circle C1. Since these are situated a distance d from
each other, we find them by finding the intersections of C1 with the circle C2 drawn by
placing the point of the compass at P2 and setting its opening to d. We continue this
process by drawing a circle about the point P2 using a compass opening of a, and then
finding the two other vertices of the dodecahedron along this circle: they are located at
distance d from P1. We iterate this process for each of the other vertices (there are 20
vertices).

In our example we have that R = 25cm, yielding a ≈ 17.9 cm and d ≈ 28.9 cm.
The method given allows us to mark the vertices of the dodecahedron but not the

centers of the pentagonal faces. In order to mark the center of each face we require one
more ingredient. We proceed in two steps. We begin by finding the radius r of the circle
circumscribed about a regular pentagon with side length a (see Figure 15.44). We leave

Fig. 15.44. Radius of the circle circumscribed about a regular pentagon.

it to Exercise 40 to show that this radius r is given by
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r =
a

2 sin π
5

.

Thus we have that
r =

R

2
√

3 sin π
5 cos π

5

=
R√

3 sin 2π
5

. (15.23)

The missing ingredient at this step is the distance between the center (on the surface
of the sphere) of the spherical pentagon and its vertices. This distance is the opening
that must be given to the compass in order for it to draw the circle circumscribed about
the pentagon when the point of the compass is placed at the center of the spherical
pentagon. It can be determined as a special case of the following proposition.

Proposition 15.20 We wish to draw a circle of radius r on a sphere of radius R. To
do this we place the point of a compass at a point N , and give it an opening of

r′ =

√
r2 +

(
R −

√
R2 − r2

)2

. (15.24)

Proof. We assume that the circle we wish to draw is located in a horizontal plane (see
Figure 15.45). We must calculate the length r′ = |NA|. We do this by applying the

Fig. 15.45. To draw the circle centered at P with radius r we place the point of the compass
at N and give the compass an opening of r′.

Pythagorean theorem to the two right triangles OPA and APN . This yields

h =
√

R2 − r2,
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and finally
r′ =

√
r2 + (R − h)2.

�
In our case, the radius r of the circle circumscribed about a pentagon is given by

equation (15.23), which yields

h = R

√
1 − 1

3 sin2 2π
5

.

Thus

R − h = R

(
1 −

√
1 − 1

3 sin2 2π
5

)
.

Using a calculator we obtain that r′ ≈ 0.641R. For R = 25 cm, this opening is r′ ≈ 16.0
cm.

An alternative method of drawing. Choose N on the surface of the sphere and
draw the circle C obtained by placing the point of the compass at N and setting its
opening to a length of r′. Choose a point A1 on this circle that will be a vertex of the
dodecahedron. Place the point of the compass at A1 and set its opening to a length of
a. Find the two points of intersection A2 and A3 between this circle and the circle C.
Moving the compass first to A2 and then to A3 (while keeping the same opening a!)
yields the two other vertices of the pentagonal face lying along the circle C.

We now look for the center of a second pentagonal face. Such a center is, for example,
situated at a distance r′ from each of the points A1 and A2. To find this we give the
compass an opening of r′ and draw the two circles centered at A1 and A2. These two
circles will intersect at two points, one of them being the point N and the other being
the center of the other pentagonal face containing the vertices A1 and A2. We repeat
this process until we have found all of the vertices and all of the centers.

This problem contains one last piece of mathematics known in the ancient world.
The formula for a makes use of the value cos π

5 , which we can easily calculate using a
calculator. However, we will show that

Theorem 15.21

cos
π

5
=

1 +
√

5
4

.

Proof. The proof is simplified using Euler’s formula and complex numbers:

eiθ = cos θ + i sin θ.

We have that
ei π

5 = cos
π

5
+ i sin

π

5
.
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Moreover, using the properties of exponentials we have that

(ei π
5 )5 = eiπ = cos π + i sin π = −1. (15.25)

On the other hand,

(ei π
5 )5 =

(
cos

π

5
+ i sin

π

5

)5

.

Substituting c = cos π
5 and s = sin π

5 , we obtain

(ei π
5 )5 = c5 + 5ic4s − 10c3s2 − 10ic2s3 + 5cs4 + is5. (15.26)

Since the real and imaginary parts of equations (15.25) and (15.26) are independently
equal, we obtain the following system of two equations:

c5 − 10c3s2 + 5cs4 = −1,
5c4s − 10c2s3 + s5 = 0. (15.27)

The second equation of (15.27) can be factored as s(5c4 − 10c2s2 + s4) = 0, and since
s 
= 0, we obtain

5c4 − 10c2s2 + s4 = 0. (15.28)

Let C = cos 2π
5 . We have the following trigonometric formula:

c2 =
1 + C

2
, s2 =

1 − C

2
. (15.29)

Substituting into (15.28) yields

16C2 + 8C − 4 = 4(4C2 + 2C − 1) = 0.

This equation has both a positive and a negative root. Since C = cos 2π
5 > 0, we have

C = cos
2π

5
=

−1 +
√

5
4

.

From this and (15.29) we can deduce

c2 =
3 +

√
5

8
and s2 =

5 −√
5

8
. (15.30)

The first equation of (15.27) can be rewritten as

c(c4 − 10c2s2 + 5s4) = −1,

from which it follows that

c = − 1
c4 − 10c2s2 + 5s4

= − 1
1 −√

5
=

1 +
√

5
4

.

�
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15.9 Laying Out a Highway

In civil engineering, when a highway is planned it is first drawn on a map. At some
point, this layout of the highway must be marked out on the ground itself. To do
this, the path of the highway is marked out using pickets, small wooden sticks typically
brightly painted or with an attached brightly colored flag. Usually, the path of the
highway will be closely approximated using straight-line segments and circular arcs.

Suppose that we wish to place pickets along the arc of a circle, each picket placed
at a distance a from the next (for example, a = 10 m or a = 30 m). We assume that

Fig. 15.46. Marking off a highway.

the segments SP and QT have already been marked out and that we need to mark an
arc of a circle of radius R tangent to SP and QT . The plan of the engineers has been
drawn such that such an arc exists! Then the center of the arc is the point O that is
the intersection point of the line through P perpendicular to PS with the line through
Q perpendicular to QT . If the plan is exact and has been accurately reproduced on
the ground, then this point O is at distance R from P and Q. We now wish to place
pickets along the arc of the circle centered at O with radius R and extreme points P
and Q. The first point B to be marked will be at distance a from P . To mark it we
need to determine the angle α between the line PS (the tangent of the circle at P ) and
the segment PB. Indeed, this allows us to mark the highway while staying on it.

Proposition 15.22 (i) α = θ
2 , where θ is the angle subtending the chord PB.

(ii) α = arcsin a
2R .

Proof.
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(i) Observe that OP is perpendicular to PS. Thus

α =
π

2
− ÔPB.

Since the triangle OPB is isosceles, we have that

ÔBP = ÔPB =
π

2
− α.

Moreover, the sum of the angles of the triangle is π. Thus

ÔPB + ÔBP + P̂OB = 2
(π

2
− α

)
+ θ = π − 2α + θ = π.

It follows that 2α = θ, which proves (i).
(ii) Let X be the center of PB. Then OX is perpendicular to PB, since the triangle

PBO is isosceles and
PX =

a

2
= R sin

θ

2
.

Since θ
2 = α, then

a = 2R sin α,

proving (ii).

�
It suffices to place the picket B at a distance a from P along the straight line that

forms an angle of α = arcsin a
2R with the segment SP . This is a simple operation using

standard surveying tools.

15.10 Exercises

The laws of reflection and refraction

1. We place two mirrors in the base of a box such that they form a right angle with
each other. Show that any incoming vertical ray will be reflected parallel to itself (see
Figure 15.47).

2. Exercise 18 of Chapter 1 discusses the operation of the sextant, a navigational instru-
ment relying on the law of reflection. If you have not already done so, answer this
question.

Conics

3. We already considered this problem in the plane. What we call a parabolic mirror is
actually a circular paraboloid
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Fig. 15.47. Two perpendicular mirrors as in Exercise 1.

z = a(x2 + y2).

If all of the incoming rays arrive parallel to the axis of the mirror and are reflected
according to the law of reflection, then show that all of the reflected rays pass through
the same point, namely (0, 0, 1

4a ). To do this, use the planar result with the curve
z = ax2 and then make an argument for the general case by using the symmetry of the
mirror for all rotations about its axis of revolution. The reflected ray will lie within the
plane implied by the initial ray and the central axis of the paraboloid.

4. The remarkable property of the hyperbola. Consider a line L passing through a
focal point of the hyperbola and a point P on the associated branch of the hyperbola.
Let L′ be the line symmetric to L about the tangent line to the hyperbola at P . Show
that L′ passes through the second focal point of the hyperbola (see Figure 15.19).

5. The telescope with liquid mirror from the ALPACA project. The plan of the
telescope ALPACA to be installed on top of a Chilean mountain is given in Figure 15.48.
Explain which conic shapes should be given to the three mirrors and how to place
their respective foci. (More information on this telescope is given in Section 14.11 of
Chapter 14.)

6. Rather than turning the large parabolic mirror, a solar furnace makes use of an array of
smaller heliostats that reflect the sun’s rays such that they strike the parabolic mirror
parallel to its axis. For this exercise we assume that the heliostat consists of a flat
mirror. At each point on the surface of this mirror a ray of light arrives that must be
reflected parallel to the axis of the solar furnace.
(a) Show that the normal of the heliostat at a point P must bisect the angle between
the incoming rays of sunlight striking P and the line originating from P that is parallel
to the axis of the solar furnace.
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Fig. 15.48. The telescope from the ALPACA project (Exercise 5).

(b) In order to express directions we must first equip ourselves with a coordinate
system. A direction is given by a unit vector. The tip of this vector lies along the unit
sphere and may therefore be expressed in spherical coordinates as

(cos θ cos φ, sin θ cos φ, sin φ),

where θ ∈ [0, 2π] and φ ∈ [−π
2 , π

2 ]. Show that if

Pi = (cos θi cos φi, sin θi cos φi, sin φi), i = 1, 2,

then the direction of the bisector of the angle P̂1OP2 is given by the vector v
|v| , where

v =
−−→
OP1 +

−−→
OP2.

Remark: The mirror on a heliostat is mounted to a gimbal, which is automatically
adjusted according to the position of the sun during the course of the day. Using
spherical coordinates shows that two rotations are sufficient for the mirror to be adjusted
to any required orientation. (For more details on controlling motion about axes of
rotation refer to Chapter 3.)

7. Here we discuss a tool used by carpenters and woodworkers for drawing ellipses. The
tool consists of a square block within which there are two tracks in the shape of a plus
sign. Each track houses a small block that is free to slide within it. The block labeled
A slides vertically, and the block labeled B horizontally. From the centers A and B of
each little block there is a small post perpendicular to the tool that attaches to an arm.
The arm is rigid and moves in a plane parallel to the tool. Thus the distance between
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the two posts is constant and equal to d = |AB|. The rigid arm has a total length of
L. At the far end of the arm a pencil is attached. Refer to Figure 15.49 for a simple
diagram of this device.

Fig. 15.49. A tool for drawing an ellipse (Exercise 7).

(a) Allowing the rigid arm to rotate about the vertical posts and letting the little
blocks slide with the tracks, show that the pencil tip will draw an ellipse.
(b) How must d and L be chosen such that the drawn ellipse has semiaxes with lengths
a and b?

8. A hyperbola is the set of points P in the plane whose absolute values of the differences
between their distances from two points F1 and F2 are a constant r:∣∣ |F1P | − |F2P | ∣∣ = r. (15.31)

We present a technique for drawing one branch of a hyperbola using only a straightedge,
a pencil, and a piece of string. The straightedge is attached to and free to pivot around
the first focal point F1. At the far end of the straightedge A we attach a piece of string
of length � whose other end is attached to the second focal point F2. The pencil is held
tightly against the side of the straightedge such that the string remains taut, as shown
in Figure 15.50.
(a) Show that the tip of the pencil will draw one branch of a hyperbola.
(b) What length � must be chosen for the string if the straightedge is of length L, and
we wish the drawn hyperbola to correspond to equation (15.31)?
(c) Describe how to draw the second branch of the hyperbola.

9. We describe a device for drawing a parabola. We affix a straightedge along a line (D).
Along this we will slide a square. A string of length L is attached to the tip of the
square at a height h above the straightedge, with the other end attached to a point O
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Fig. 15.50. Drawing a hyperbola with a straightedge (Exercise 8).

at a height h1 above the straightedge. A pencil is held tightly against the vertical side
of the square such that the string remains taut (see Figure 15.51). If the pencil is at P
and the upper point of the straightedge is A, then, provided the string is taut, it follows
that |AP | + |OP | = L. Let h2 = h − h1.

Fig. 15.51. Drawing a parabola (see Exercise 9).

(a) If L > h2 show that the tip of the pencil will draw an arc of the parabola. (Hint:
use a coordinate system centered at O and consider the coordinates (x, y) of the point
P .)
(b) Show that the point O is the focal point of the parabola.
(c) Show that the arc of the parabola that will be drawn will be tangent to the
straightedge (D) if h1 = L−h2

2 . In this case, find the directrix of the parabola.
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(d) Show that the bottom of the parabola is an extreme point of the drawn arc if and
only if L−h2

2 ≤ h1.

Quadratic surfaces

10. Show that the equation
x2 + y2 = C2z2

with C > 0 describes a cone with circular cross section.

11. Consider two ellipses x2

a2 + y2

b2 = 1 situated in the planes z = −z0 and z = z0. Let
φ0 ∈ (−π, 0) ∪ (0, π] be a fixed angle. Let (Dθ) be the line between the point P (θ) =
(a cos θ, b sin θ,−z0) on the first ellipse and the point Q(θ) = (a cos(θ + φ0), b sin(θ +
φ0), z0) on the second ellipse. Show that the union of the lines (Dθ) is a hyperboloid
of one sheet if φ0 
= π and a cone with elliptical cross section if φ0 = π. What is the
surface if φ0 = 0?

12. (a) In Proposition 15.13 and Exercise 11 we constructed a hyperboloid of one sheet as
the union of a family of straight lines. Show that there exists a second family of lines
(D′

θ) whose union describes the same surface.
(b) Show that in the limiting case in which the family of lines describes a cone, these
two families are actually one and the same.

13. Show that for any point on a hyperboloid of one sheet, the plane tangent to the hyper-
boloid at this point intersects the hyperboloid along two straight lines. (In particular,
there exist points on the surface on each side of the tangent plane. This is a property
of surfaces with negative Gaussian curvature.)

14. Show that for any point on a hyperbolic paraboloid, the plane tangent to the surface
at this point intersects it along two straight lines.

15. In this problem we use cylindrical coordinates (x, y, z) = (r cos θ, r sin θ, z). The helicoid
is defined by the parametric equations⎧⎪⎨

⎪⎩
x = r cos θ,

y = r sin θ,

z = Cθ,

where C is a constant. Attempt to visualize this surface (drawing it if you can!) and
show that it is a ruled surface. (We can use this surface as a base for constructing a
spiral staircase.)

Partitioning a region
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16. We consider regular triangular partitions of a large region in which the triangles are
all congruent, but are not equilateral. In a regular partition we have horizontal rows
of triangles, which alternate, one up, one down. Show that the equilateral triangular
network is the most efficient in terms of antenna count.

17. We consider the same regular networks presented in Section 15.4: regular equilateral
triangular networks, regular square networks, and regular hexagonal networks. However,
in this exercise, we change the optimization constraint. We wish to use the network
whose total edge length (the sum of the lengths of all edges in the network) is minimal,
under the constraint that each cell has an area of A. Show that the hexagonal network
is the most efficient, followed by the square network and finally the triangular network.

(Motivation: Honeycombs are hexagonal in shape. For a long time it was conjectured
that this was to minimize the amount of wax needed and that bees had evolved to choose
this form for that reason. In fact, if the individual cells are sufficiently deep (such that
the wax required to build the bottom is negligible compared to that used to build the
sides) then this is the optimal layout. However, it is now known that the form of the
bottom constructed by the bees is not optimal.)

18. We fill a large planar region with nonoverlapping disks of radius r. We use two methods:
in the first method we place the centers of the disks on a square network (Figure 15.52
(a)) and in the second method we place them on a regular triangular network of equi-
lateral triangles (Figure 15.52 (b)). Which method gives the denser filling? Suggestion:

Fig. 15.52. The two methods for filling a planar region with disks (Exercise 18).

compute the proportion of each square covered by portions of disks in case (a) and the
proportion of each triangle covered by portions of disks in case (b).

Voronoi diagrams

19. Generalize Proposition 15.17 to the case of an arbitrary region D in the plane.
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20. We can also define Voronoi diagrams for a set of sites in R3. Propose a definition of
such a diagram, and equivalents for Propositions 15.16 and 15.17.

21. Describe the Voronoi diagram for a set of three sites forming the corners of an equilateral
triangle.

22. Give the conditions on the positions of a set of four points S = {P1, P2, P3, P4} so
that the Voronoi diagram of S contains a triangular cell.

23. Consider a convex polygon with n sides and a point P1 in the interior of this polygon.
(a) Give an algorithm for adding n other points P2, . . . , Pn+1 such that the polygon will
be the only closed cell of the Voronoi diagram of S = {P1, . . . , Pn+1} (see Figure 15.32).
(b) Give an algorithm for adding the n half-lines needed to complete the Voronoi
diagram.

24. This exercise discusses the Delaunay triangulation, whose definition we recall here.
Consider the Voronoi diagram of a set S = {P1, . . . , Pn} of points. We connect points
Pi and Pj if the cells V (Pi) and V (Pj) have an edge in common. The resulting set of
lines forms the Delaunay triangulation of S.
(a) Verify that if each corner in the Voronoi diagram has at most three incoming edges,
the described construction will create triangles.
(b) Verify that each corner P in the Voronoi diagram is the center of a circle cir-
cumscribed about a triangle in the Delaunay triangulation. Moreover, verify that the
circumscribed circle passes through the three sites whose cells meet at P . (This question
provides another way to show that the perpendicular bisectors of the three sides of a
triangle meet at a point.)

25. Construct a set of sites S such that Figure 15.28 is its Voronoi diagram and construct
the associated Delaunay triangulation.

26. Here we consider the inverse problem to finding a Voronoi diagram. Given a partitioning
of the plane into cells, we wish to know whether there exists a set of sites S whose Voronoi
diagram is given by the partitioning of the plane.
(a) We start by considering the case of three half-rays (D1), (D2), and (D3), as in
Figure 15.53(a). We are asking whether there exists a set of sites S = {A,B,C} such
that the half-rays form the Voronoi diagram of S. The discussion is different depending
on whether the point of intersection O of (D1), (D2), and (D3) lies within the triangle
ABC. Show that a necessary condition for O to lie within the triangle ABC is that
α, β, γ > π

2 and show that if A,B,C exist, the angles of Figure 15.53(b) have the values
given in the Figure.
(b) Show that if we choose A within the angle formed by (D1) and (D2), then there
exist B and C such that (D1), (D2), and (D3) form the Voronoi diagram of S =
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(a) The half-rays (Di) and the sites A, B,
C

(b) The various angles of the diagram

Fig. 15.53. The lines and angles of the Voronoi diagram of Exercise 26(a).

{A,B,C} if and only if A lies along the half-line originating at O and making an angle
of π − γ with (D1) and an angle of π − β with (D2).

(c) Now consider Figure 15.54(a) in the case that α < π
2 and β, γ > π

2 . Show that the
various angles of the final diagram are those shown in Figure 15.54(b).

(a) The half-rays (Di) and the sites A, B,
C

(b) The various angles of the diagram

Fig. 15.54. The lines and angles of the Voronoi diagram of Exercise 26(c).



15.10 Exercises 561

(d) Conclude that if we have a partitioning of the plane into cells as in Figure 15.55,
then there does not always exist a set of sites S = {A,B,C,D} such that the partitioning
describes the Voronoi diagram of S.

Fig. 15.55. A partitioning of the plane for Exercise 26(d).

(e) Can you describe what happens in the intermediate case of α = π
2 ?

Computer vision

27. Consider Figure 15.35 with points O1 = (−1, 0, 0) and O2 = (1, 0, 0), and with the
projections P1 and P2 of a point P both lying within the plane y = 1. The image of P
on the ith photo is the intersection of the line OiP with the projection plane y = 1.
(a) Show that the image of a vertical line is a vertical line on each of the projections.
(b) Describe the set of points in space that are hidden by P in the first projection.
How will these points appear in the second projection?
(c) We consider an oblique line of the form (a, b, c) + t(α, β, γ), for t ∈ R where
α, β, γ > 0. Show that the image of the points on this line in the first projection is a
line. Now consider only the image of the points (x, y, z) for the half-ray y > 1. Show
that the image of the point at infinity on this half-ray depends only on (α, β, γ) and is
independent of (a, b, c).

28. We have seen that if we take two photos from different points of view of the same point
P , we can calculate the position of the point P . However, this is not possible if we have
only one photo. A rather clever individual had the following idea for getting away with
taking only one photo: he places a mirror in the scene such that points P in front of the
mirror and their reflections P ′ both appear in the photo (see Figure 15.56). Assuming
that the position and orientation of the mirror are known, explain how this information
allows the observer to calculate the position of the point P .

A brief look at computer architecture
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Fig. 15.56. A single photo using a mirror (for Exercise 28).

29. Design a simple electrical circuit that calculates

(A AND B) OR (C AND D).

30. Design a simple electrical circuit that calculates

(A OR B) AND (C OR D).

31. Design a simple electrical circuit that calculates

((A OR B) AND (C OR D)) OR (E AND F ).

32. (a) Show that we can define the OR and XOR operators using only the NOT and
AND operators.
(b) Show that we can define the AND and XOR operators using only the NOT and
OR operators.
(c) Show that we can define the AND and OR operators using only the NOT and
XOR operators. (This question is more difficult than the first two.)

33. Construct the tables describing the NAND and NOR operators defined in (15.22).
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34. The NAND and NOR operators are called the universal Boolean operators because just
one of these operators can be used to construct all of the others. This exercise guides you
through the first steps of this construction. Afterward, we may apply the constructions
from Exercise 32.
(a) Show that we can define the NOT operation from the NAND operation alone.
(b) Show that we can define the NOT operation from the NOR operation alone.
(c) Show that we can construct the AND operation using only NAND operations.
(d) Show that we can construct the OR operation using only NAND operations.

35. A single fixture illuminates a stairwell. Two switches allow the light to be turned on
or off, one at the bottom of the stairs and the other at the top. The electrician wired
the switches using the circuit we constructed for one of the Boolean operators. Which
one?

Regular pentagonal tiling of the sphere

36. (a) Show that each internal angle of a regular polygon with n sides is exactly π(n−2)
n .

(b) Deduce that the interior angles of a regular pentagon are 3π
5 and that the length

d of a diagonal of a pentagon with side lengths a (see Figure 15.43) is given by

d = 2a cos
π

5
.

37. A tetrahedron is a regular polyhedron formed from four equilateral triangles (see Figure
15.57).
(a) Calculate the height of a regular tetrahedron with edge length a.

Fig. 15.57. A regular tetrahedron (see Exercise 37).
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(b) What is the radius r of a circle circumscribed around an equilateral triangle with
side length a?
(c) Consider the sphere of radius R circumscribed around a regular tetrahedron with
edge length a. Calculate R as a function of a.
(d) Show that the distance from a vertex to the intersection points of the four altitudes
of a regular tetrahedron is 3

4 the length of the altitudes.

38. Show that an appropriate choice of diagonals of the faces of a cube forms a regular
tetrahedron. How many different tetrahedra do we get?

39. (a) Show that the edge length d of a cube inscribed in a sphere with radius R is

d =
2√
3
R.

(b) With the help of a compass, explain how to draw the vertices of an inscribed cube
on the surface of the circumscribing sphere.
(c) If we project (from the center of the sphere) the edges of the inscribed cube onto
the surface of the sphere, we divide the surface of the sphere into six equal regions. The
centers of these regions are the vertices of the regular octahedron (see Figure 15.58)
inscribed in the sphere. Explain how to mark these vertices using a compass.

Fig. 15.58. An octahedron.

40. Show that the radius r of a circle circumscribed about a regular pentagon with side
length a (see Figure 15.44) is given by

r =
a

2 sin π
5

.

41. (a) What is the opening R′ that must be given to a compass in order to draw a great
circle around a sphere with radius R?
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(b) You are given two points P and Q on the surface of a sphere with radius R. Using
only a compass, explain how to draw the great circle passing through P and Q. Under
what condition on P and Q will this great circle be unique?

42. You have a sphere of diameter 30 cm on which you wish to reproduce a map of the
Earth. You choose a random point that you label the North Pole.
(a) Using only a compass, explain how to draw the equator and find the South Pole.
(b) Explain how to draw the two tropics: these are the parallels of latitude at 23.5
degrees north and south of the equator.
(c) Explain how to draw the polar circles: these are the parallels of latitude at 66.5
degrees north and south of the equator.
(d) Explain how to draw any line of meridian, which you will then label the Greenwich
meridian.
(e) Explain how to draw the meridian of longitude corresponding to 25 degrees west.

43. There exist five regular polyhedra: the tetrahedron, the cube, the octahedron, the
dodecahedron and the icosahedron. The icosahedron is shown in Figure 15.59. It has
12 vertices and 20 faces, while the dodecahedron has 20 vertices and 12 faces.

Fig. 15.59. An icosahedron.

(a) Show that the centers of the faces of a dodecahedron are the vertices of an icosa-
hedron and vice versa. We say that these two polyhedra are dual.
(b) Describe a method for marking the vertices of an inscribed icosahedron on the
surface of the sphere.
(c) Each vertex of an icosahedron is shared by five faces. Using only five different
colors, there exists a method of coloring the faces of an icosahedron such that the
five faces meeting at each vertex each have a different color. Can you propose such a
coloring? Is it possible to color the faces such that each vertex, when seen from above,
has its adjacent faces colored in the same order?
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44. Explain why the diagonals of the pentagons of a dodecahedron form a cube. Hint:
Consider the symmetries of the dodecahedron, for example the mediating plane of two
such diagonals. It may actually be useful to construct a dodecahedron and draw all of
the diagonals.
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limit 307
theorem 316

octahedron 564, 565
octave 294
Odeillo 517
open proposition 420
operator 326, 333

μ 424
minimization 424

optimal strategy 133
OR 419, 562
order of an element of a group 23, 229, 232
orientation 89, 102
orthodrome 35, 39
orthogonal

matrix 91, 353, 380
transformation 91, 94

orthonormal basis 92, 102
oscilloperturbograph 15, 37
output 542
Overton 455
oxide 543

Page, L. 268, 280
PageRank 265

improved 278
simplified 277

parabola 147, 478, 508
direction 508

drawing 555
focus 508
geometric definition 508

parabolic antenna 513
paraboloid

circular 506, 522, 553
hyperbolic 522, 527, 557
of revolution 486, 506

parallel 28
parallelism 407, 435
parameterization 30
parity bit 174
partial function 424
Penrose, R. 67
pentagon 546
period 25, 48, 244, 245, 246, 250

minimal 26, 244, 251
periodic 244
perpendicular bisector 146, 533
Peters atlas 2, 29
phase 317
Philips 177, 291, 313
phosphate 438
picture element (pixel) 351
pitch 110
pixel (picture element) 138, 339, 351, 372
PMOS, p-channel MOSFET (metal-oxide-

semiconductor field-effect transistor)
543

pointer 410
Pollard, H. 220
polycrystalline silicon 543
polygon 148, 535
polyhedra

regular 565
polymerase 437
polynomial

characteristic 96
irreducible 189
primitive 23, 250, 260

Pomerance, C. 220
quadratic sieve 220

Popolansky function 16, 37
potential difference 543
power tower 419
predecessor function 419
predicate 420
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primitive recursive 421
recursive 425

pressure 484
primality test 223
prime number theorem 221
primer 437
primitive polynomial 23, 250
primitive recursive function 417
primitive root 23, 192, 229, 244
principal (savings) 156
principle

Fermat 457
Hamilton’s 475
of least action 476
of optimization 506

probability, law of 243
processing, signal 14
production rule

deletion 427
insertion 427

projection 330
equivalent 30
gnomonic 28
horizontal onto a cylinder 29
Lambert 36
Lambert cylindrical 29
Mercator 31, 39

universal transverse 36
orthographic 28
stereographic 28, 40
transverse Mercator 36

projection function 414
PROMES (Laboratoire PROcédés, Matériaux

et Énergie Solaire) 517
proper (affine transformation) 53
proper subtraction function 419
pseudorandom 19, 242, 243

quadratic residue 225, 230
quadratic surface 522, 523
quadric 522
quantization 388, 390

table 390, 391
quantum calculation 233
quantum computer 231, 233, 234

parallelism 233
quantum bit 233

quantum calculation 233
qubit 233
superposed state 233

quantum mechanics 233
qubit 233

radar 514
random experiment 222
random process 271
random sequence 242
random variable 261

exponential 261
geometric 222
uniform 261

receiver 2
rectangular parallelepiped 149
recurrence 417, 425
recursive function 425
recursive predicate 425
redundancy 174, 180
Reed–Solomon (code) 177, 193
reflection 48, 353

glide 50
region 120
regular (affine transformation) 53
regular polyhedra 565
relativity

general 10
special 10

representation
unary 413

rhumb line 35
right-hand rule 102
risk management 18
risk zones 18
Rivest, R.L. 210
robot 85
roll 110
root, primitive 23, 192, 229, 244
rotation 85, 91, 101, 330, 353
RSA algorithm (Rivest, Shamir, Adleman)

210
encryption 213–219
Shor’s algorithm 231

ruled surface 522

sampling theorem 314



578 Index

sand dune 143
satellite 2

signal 2
satisfiability 431, 444
satisfiable 432
Saxena, N. 230
scalar product 92, 198
scale 292

heptatonic 293
hertz (Hz) 296
interval 294
note 292
pentatonic 293
Pythagorean 317
temperament 296, 317
Zarlino 317

Schubert, F. 319
Schwarzschild metric 10
self-similarity 327, 348
self-supporting arch 483
set

compact 339, 341
sextant 1, 39, 552
sgn function 419
Shamir, A. 210
Shannon, C.E. 316
shape

analysis of 120
recognition of 120

Shor’s algorithm 231, 232
Shuttle Remote Manipulator System (SRMS)

110, 114
Sierpiński triangle 332
sieve

number field 220
quadratic 220

signal
filtering 14
periodic 19
pseudorandom 19

signing a message 218
silver nanoparticules 488
simplex 282
simply connected 134
simulation 243, 261
sinc function 314
site 533

skateboard 449, 455, 457
skeleton 121

linear portion 130
region 120
r-skeleton 123
surface portion 130

snowboard 449
soap bubbles 471
solar furnace 517
Solomon (see Reed–Solomon) 177
Sony 177, 291, 313
sound

aliasing 321
beat pattern 321
frequency 292

fundamental 304
harmonic 304

hearing threshold 307
hertz (Hz) 296
intensity 308
pitch 292
volume 292

space
complete 338
metric 338

spatiotemporal density 15
speed of light 3
spherical coordinates 31, 87
SpiroGraph 463
SRMS (Shuttle Remote Manipulator System)

110, 114
stacking spheres 120
stationary regime 275
statistical models 15
statistical test 244
Steiner

minimum tree 475
Stirling cycle 517
stratosphere 507
subgroup 226
successor function 413
sugar 438
superposed state 233
surgery 111, 119, 133
suspended chain 481
switch 539
symmetry 49, 58, 98, 353
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glide reflection 50

tape alphabet 412
tautochrone 460, 465
T-calculability 413, 421, 426
telescope 115, 514

ALPACA 487, 515, 553
liquid mirror 486, 515, 553
Newton 514
primary mirror 514
Schmidt–Cassegrain 515
secondary mirror 514

temperament 296, 317
equal 296

tension 484
tessellation, of Dirichlet 533
tetrahedron 149, 563, 565
tetration function 419
theodolite 11
theorem

Chinese remainder 238
collage 344
Dirichlet 305
Euler 216
Fermat’s little 216
fixed-point of Banach 326, 339
Frobenius 281–284, 282
implicit function 140
Lagrange 23, 227
prime number 221
sampling 314
Wilson 238

threshold 542
of detection 15
of tolerance 120

thymine 405
tile 352
tiling 64–67

aperiodic 66
Archimedean 71, 73

time
exponential 231
polynomial 231
subexponential 232

topology 135
total function 416
totally disconnected 348

trace 24, 101
transform

discrete cosine 378, 388
transformation

affine 327–330, 328
proper 53
regular 53

conformal 32
Fourier 326
linear 53
orthogonal 91, 92, 94

transistor 539, 543
MOS 543

translation 53, 91, 94, 328
transpose 92
transverse Mercator projection 36
tree 135, 475
triangulation 535, 558

Delaunay 535, 558
troposphere 507
truth value 420, 539
TTL (Transistor–Transistor Logic) 543
tunnel

English Channel 461
Gothard 461
Seikan 461

Turing machine 412, 426
blank symbol 409
calculable function 413
configuration 413

final 413
initial 413

halting state 412
initial state 410
operation 409
pointer 410
pointer state 410
standard 412
tape alphabet 412
T-calculable 413

unary representation 413
uniform continuity 338
uniform resource locator 268
unison 293
universal joint 114
URL (uniform resource locator) 268
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UTM (Universal Transverse Mercator) 36

Vandermonde (determinant) 197, 321
variance 355
variation 452
variational calculus 506
vector field 135

flow 135
vector space 179
VLSI (very large scale integration) 543
von Koch snowflake 363
Voronoi

cell 533, 534
diagram 151, 532, 533, 558

waves 507
electromagnetic 13, 507

radio 507
short 457, 507
ultraviolet 507

wedge 131
Whittaker, J.M. 316
Wilson’s theorem 238
wind turbine 517
Winograd, T. 268
Wood, R. 486

XOR 562

Yahoo 265
yaw 110

zero function 414


