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Preface to the Second Edition

Compared to the first edition, we have made few changes to the first six chapters.
They are intended for a first one semester course in probability with some statistics.
It is assumed that the reader has had a calculus course but the book is written so
that the calculus difficulties of the students do not obscure the probability content.
Since probability concepts are not easy to grasp, we drastically limit the number
of topics and concentrate on a few concepts that every student should thoroughly
understand in a first probability and statistics course. Statistics are introduced as
early as possible in the book in order to provide interesting and useful applications
of probability.

The main difference with the first edition is the addition of Sect. 8.4, Chaps. 9
and 10. Chapters 7–10 (with supplements from previous chapters) are now intended
for a course in Mathematical Statistics. These last chapters rely heavily on calculus
of one and several variables. Chapter 10 requires linear algebra. In Chap. 7, moment
generating functions are introduced and used to study sums of random variables and
convergence of sequences of random variables. Chapter 8 deals with transformations
of random variables (using distribution function). Random vectors are introduced
and are used to prove a number of facts regarding expectation, variance, covariance,
and normal samples. We added Sect. 8.4 to cover conditional distributions and
conditional expectations. The first three sections of Chap. 9 deal with finding
estimators (moments, maximum likelihood) and comparing estimators (sufficiency,
Rao–Blackwell Theorem). We chose not to cover the most general cases, we
instead concentrated on the exponential family of distributions. This provides many
interesting examples and the theory applied to it is considerably simpler than the
general theory. Section 9.4 provides an introduction to Bayesian statistics. Finally,
in Chap. 10 we wrote a brief introduction to multiple regression in which we try to
balance applications and theory.
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Preface to the First Edition

This book is intended as a text for a first one semester course in probability with
some statistics. It is assumed that the reader has had a calculus course. At the
University of Colorado, we teach this course to a number of majors, including
computer science, electrical engineering, mathematics, and physics. In the last few
years, some engineering professional societies have suggested that statistics be
taught to students and so we have included statistics in the traditional one semester
probability course. My main motivation to write this book was that the many good
books on probability and statistics are intended for 1-year courses and are very
extensive. Anyone who has taught probability knows that it is a hard subject for
most students. For this reason I have decided to drastically limit the number of
topics and concentrate on a few concepts that I feel every student should thoroughly
understand in a first probability and statistics course. I have also decided to introduce
statistics as early as possible in the book in order to provide interesting and useful
applications of probability.

I have tried to write this book so that the calculus difficulties of the students do
not obscure the probability content. I have kept theory to a minimum and I have
concentrated on interesting examples. Chapter 1 has the basic rules of probability
and conditional probability with some interesting applications such as Bayes’ rule
and the birthday problem. In Chap. 2 discrete and continuous random variables,
expectation, and variance are introduced. Chapter 2 is mostly computational with
few probability concepts and many applications of calculus. In Chaps. 3 and 4,
we get to the heart of the subject: binomial distribution, normal approximation
to the binomial, Poisson distribution, Law of Large Numbers, and Central Limit
Theorem. I also cover the Poisson approximation to the binomial (in a nonstandard
way) and the Poisson scatter theorem. In Chap. 5, we apply some of the concepts
of the preceding chapters to introduce statistics. We cover confidence intervals
and hypothesis testing for large samples, we also introduce Student tests to deal
with small samples and a nonparametric test. Finally, we test independence and
goodness of fit using chi-square tests. Chapter 6 is a short introduction to linear
regression. Chapters 7 and 8 rely heavily on calculus of one and several variables to
study sums of random variables (via moment generating functions), transformations
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Preface to the First Edition vii

of random variables (using distribution functions), and transformations of random
vectors. In Chap. 8, we prove a number of facts regarding expectation, variance, and
covariance that are used throughout the book. We also prove facts about normal
samples that are useful in statistics.

There are at least two ways to use this book for a one semester course. In both
ways, one should first cover the first four chapters. Then one might choose to
do some statistical applications and cover Chaps. 5 and 6 or one might choose to
concentrate on probability and cover Chaps. 7 and 8.
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Chapter 1
Probability Space

1.1 The Axioms of Probability

The study of probability is concerned with the mathematical analysis of random
experiments such as tossing a coin, rolling a die, or playing at the lottery. Each time
we perform a random experiment there are a number of possible outcomes. We now
define the notions of sample space and event.

Sample Space and Events

The sample space � of a random experiment is the collection
of all possible outcomes of the random experiment.

An event is a subset of �.

Example 1. Toss a coin. There are only two possible outcomes and the sample space
is � D fH; T g. The event A D fH g is equivalent to the event “the outcome was
heads.”

Example 2. Roll a die. This time the sample space is � D f1; 2; 3; 4; 5; 6g. The
event B D f1; 3; 5g is equivalent to the event “the die showed an odd face.”

Example 3. The birthday of someone. The sample space has 365 points (ignoring
leap years).

Example 4. We count the number of rolls until we get a 6. Here � D f1; 2; : : : g.
That is, the sample space consists of all strictly positive integers. Note that this
sample space has infinitely many points.

We define next some useful relations among events.
If A is an event included in the sample space � then the event consisting of all

the points of � not included in A is called the complement of A and is denoted
by Ac .

R.B. Schinazi, Probability with Statistical Applications,
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2 1 Probability Space

Assume that A and B are two events then the intersection of A and B is the set
of points that are both in A and B . The intersection of A and B is denoted by AB

or by A \ B .
If A and B are two events then the union of A and B is the set of points that are

in A or in B (they may be in both). The union of A and B is denoted by A [ B .
The empty set is denoted by ;. Two events are said to be disjoint or mutually

exclusive if
AB D ;:

More generally, a sequence of events A1; A2; : : : in � is said to be mutually
exclusive if

Ai Aj D ; for i 6D j:

Example 5. Let A be the event that a student is female, B the event that a student
takes french, and C the event that a student takes calculus.

What is the event “a student is female and takes calculus”? We want both A and
C so the event is AC.

What is the event “a student does not attend calculus”? We want everything not
in C so the event is C c .

What is the event “a student takes french or calculus”? We want everything in A

and everything in B so the event is A [ B .
We now state a few important set theories identities.

Set Identities

Let A and B be two events. We have that

.A [ B/c D AcBc:

.A \ B/c D Ac [ Bc:

A D AB [ ABc

The identities above are not difficult to establish. For instance, for the first one
we have that x belongs to .A [ B/c if and only if x does not belong to A [ B ,
this in turn is equivalent to x not belonging to A AND not belonging to B , which is
equivalent to x belonging to Ac and to Bc and thus to AcBc .

We now give the rules of probability.

Axioms of Probability

(i) For any event A in � we have 0 � P.A/ � 1.
(ii) P.�/ D 1.
(iii) For a finite or infinite sequence of disjoint events Ai we
have

P.[Ai / D
X

P.Ai /:



1.1 The Axioms of Probability 3

Consequences

C1. If AB D ; then by (iii)

P.A [ B/ D P.A/ C P.B/:

C2. P.Ac/ D 1 � P.A/:

We now prove it. Note that

A [ Ac D �:

Hence,
P.A [ Ac/ D 1:

By C1
P.A [ Ac/ D P.A/ C P.Ac/:

Hence, P.Ac/ D 1 � P.A/ and C2 is proved.
C3. P.;/ D 0.

Observe that �c D ; and by C2

P.�c/ D 1 � P.�/ D 1 � 1 D 0:

C4. Using that AB \ ABc D ; and that A D AB [ ABc we get by (iii) that

P.A/ D P.AB/ C P.ABc/:

C5. Using that A [ B D ABc [ B and that the last two events are disjoint we
get by C1 that P.A [ B/ D P.ABc/ C P.B/. Now using C4 we know that
P.ABc/ D P.A/ � P.AB/. Thus, for any two events A and B (in particular
they do not need to be disjoint) we have

Union of Two Events

P.A [ B/ D P.A/ C P.B/ � P.AB/:

Example 6. We pick at random a person in a certain population. Let A be the event
that the person selected attends college. Let B be the event that the person selected
speaks french. Assume that the proportion of persons attending college and speaking
french in the population are 0.1 and 0.02, respectively. Then it makes sense to define
P.A/ D 0:1 and P.B/ D 0:02. Assume also that the proportion of people attending
college and speaking french is 0.01. That is, P.AB/ D 0:01.

What is the probability that a person picked at random does not attend college?
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This is the event Ac . By C2 we have

P.Ac/ D 1 � P.A/ D 0:9:

What is the probability that a person picked at random speaks french or attends
college?

This is the event A [ B . By C5 we have

P.A [ B/ D P.A/ C P.B/ � P.AB/ D 0:1 C 0:02 � 0:01 D 0:11:

What is the probability that a person speaks french and does not attend college?
This is the event AcB . According to C4 we have

P.AcB/ D P.B/ � P.AB/ D 0:02 � 0:01 D 0:01:

1.1.1 Equally Likely Outcomes

We start by considering an example.

Example 7. Roll a fair die. Then � D f1; 2; 3; 4; 5; 6g. If all the outcomes are
equally likely we define

P.i/ D 1

6
for i D 1; : : : ; 6:

What is the interpretation of the statement P.1/ D 1=6? If we roll the die many
times the frequency of observed 1’s (i.e., the observed number of 1’s divided by the
total number of rolls) should be close to 1/6.

What is the probability of the die showing an odd face? By axiom of probability
(iii) we have that

P.odd/ D P.f1; 3; 5g/ D P.f1g/ C P.f3g/ C P.f5g/ D 3

6
:

More generally, we have the following.

Equally Likely Outcomes

Consider a finite sample space � with finitely many outcomes
assumed to be equally likely. Let jAj be the number of elements
in A. Then

P.A/ D jAj
j�j

for every event A.



Exercises 1.1 5

It is easy to check that P defined by the formula above satisfies the three axioms
of probability and thus is a probability on �.

Example 8. Toss two fair coins. This time we have four equally likely outcomes
� D fHH; HT; TH; TTg.

P.at least 1 head/ D jfHH; HT; THgj
4

D 3

4
:

Example 9. Roll two dice. What is the probability that the sum is 11? The most
natural sample space is all the possible sums: so all integers from 2 to 12. But these
outcomes are not equally likely so it is not a good choice. Instead we pick for � the
collection of all ordered pairs: f.1; 1/; .1; 2/; : : : ; .2; 1/; .2; 2/; : : : ; .6; 5/; .6; 6/g:
There are 36 equally likely outcomes in �.

P.sum is11/ D jf.5; 6/; .6; 5/gj
36

D 2

36
:

Example 10. Roll two dice. What is the probability that the sum of the two dice is
4 or more? It is quicker to compute the probability that the sum is 3 or less which is
the complement of the event we want.

P.sum is3or less/ D jf.1; 1/; .1; 2/; .2; 1/gj
36

D 3

36
:

Therefore,

P.sum is4or more/ D 1 � 3

36
D 33

36
:

Exercises 1.1

1. Let A be the event that a person attends college and B be the event that a person
speaks french. Using intersections, unions or complements describe the following
events.

(a) A person does not speak french.
(b) A person speaks french and does not attend college.
(c) A person is either in college or speaks french.
(d) A person is either in college or speaks french but not both.

2. Let A and B be events such that P.A/ D 0:6, P.B/ D 0:3, and P.AB/ D 0:1.

(a) Find the probability that A or B occurs.
(b) Find the probability that exactly one of A or B occurs.
(c) Find the probability that at most one of the two events A and B occurs.
(d) Find the probability that neither A nor B occurs.
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3. Toss three fair coins.

(a) What is the probability of having at least one head?
(b) What is the probability of having exactly one head?

4. Roll two fair dice.

(a) What is the probability that they do not show the same face?
(b) What is the probability that the sum is 7?
(c) What is the probability that the maximum of the two faces is at least 3?

5. In a college it is estimated that 1/4 of the students drink, 1/8 of the students
smoke, and 1/10 smoke and drink. Picking a student at random,

(a) What is the probability that the student does not drink nor smoke?
(b) What is the probability that a student smokes or drinks?

6. A roulette has 38 pockets, 18 are red, 18 are black, and 2 are green. I bet on red,
you bet on black.

(a) What is the probability that I win?
(b) What is the probability that at least one of us wins?
(c) What is the probability that at least one of us loses?

7. Roll 3 dice.

(a) What is the probability that you get 3 7’s?
(b) What is the probability that you get a triplet?
(c) What is the probability that you get a pair?

8. I buy many items at a grocery store. What is the probability that the bill be a
whole number?

9. If A � B , show that P.AcB/ D P.B/ � P.A/.

10. Show that for any three events A, B , C we have

P.A[B [C / D P.A/CP.B/CP.C /�P.AB/�P.AC /�P.BC /CP.ABC /:

Can you guess what the formula is for the union of four events?

1.2 Conditional Probabilities and Bayes’ Formula

Example 1. Roll two dice successively and observe the sum. As we observed before
we should take for our sample space the 36 ordered pairs. Let A be the event “the
sum is 11.” Since all the outcomes are equally likely we have that

P.A/ D jf.5; 6/; .6; 5/gj
36

D 1

18
:
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Let B be the event “the first die shows a 6.” We are now interested in the following
question: if we observe the first die and it shows a 6, how does this affect the
probability of observing a sum of 11? In other words, given B , what is the
probability of A? Observe that for this question our sample space is B . The notation
for the preceding probability is

P.AjB/

and is read “probability of A given B .” Given that the first die shows a 6 there is
only one possibility for the sum to be 11. The second die needs to show 5. The
probability of this event is 1/6. Thus,

P.AjB/ D 1

6
:

More generally, we have the following definition.

Conditional Probability

Assume that P.B/ > 0. The probability of A given B is defined
by

P.AjB/ D P.AB/

P.B/
:

In the case of equally likely outcomes the formula becomes

P.AjB/ D jABj
jBj :

By using the definition above it is easy to see that the rules of probability apply
to conditional probabilities. In particular,

P.A [ BjC / D P.AjC / C P.BjC /if A and B are disjoint

and
P.AcjB/ D 1 � P.AjB/:

Example 2. We pick at random a person in a certain population. Let A be the
event that the person selected attends college. Let B be the event that the person
selected speaks french. Assume that the proportion of persons attending college and
speaking french in the population are 0.1 and 0.02, respectively. Assume also that
the proportion of people attending college and speaking french is 0.01. Given that
the person we picked speaks french, what is the probability that this person attends
college? We want

P.AjB/ D P.AB/

P.B/
D 0:01

0:02
D 1

2
:
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Given that the selected person attends college, what is the probability that this person
speaks french? This time we want

P.BjA/ D P.AB/

P.A/
D 0:01

0:1
D 0:1:

Given that the selected person attends college, what is the probability that this person
does not speak french?

P.BcjA/ D 1 � P.BjA/ D 1 � 0:1 D 0:9:

The previous two examples show how to compute conditional probabilities by using
unconditional probabilities. In many situations, as we are going to see next, it is
the reverse that is useful: the conditional probabilities are easy to compute and we
use them to compute unconditional probabilities. Note first that the definition of
conditional probability is equivalent to the following rule.

Multiplication Rule

P.AB/ D P.AjB/P.B/:

Example 3. A factory has an old (O) and a new (N) machine. The new machine
produces 70% of the products and 1% of these products are defective. The old
machine produces the remainder 30% of the products and of those 5% are defective.
All products are randomly mixed. What is the probability that a product picked at
random is defective and produced by the new machine?

Let D be the event that the product picked at random is defective. Note that the
following probabilities are given.

P.N / D 0:7; P.O/ D 0:3; P.DjN / D 0:01andP.DjO/ D 0:05:

We want the probability of DN . By the multiplication rule we have

P.DN/ D P.DjN /P.N / D 0:01.0:7/ D 0:007:

Assume now that we are interested in the probability that a product picked at
random is defective. We can write

P.D/ D P.DN/ C P.DO/:

That is, a defective product may come from the new or the old machine. Now we
use the multiplication rule twice to get

P.D/ D P.DjN /P.N / C P.DjO/P.O/ D 0:01.0:7/ C 0:05.0:3/ D 0:022:
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That is, we get the overall defective proportion by taking the weighted average of
the defective proportions. This is a very useful way of proceeding and we now state
the rule in its general form.

Rule of Average

For any events A and B we have

P.A/ D P.AjB/P.B/ C P.AjBc/P.Bc/:

More generally, if the events B1, B2, : : : , Bn are mutually
exclusive and if their union is the whole sample space � then

P.A/ D P.AjB1/P.B1/CP.AjB2/P.B2/C� � �CP.AjBn/P.Bn/:

We now apply the rule of average to another example.

Example 4. We have three boxes labeled 1, 2, and 3. Box 1 has one white ball and
two black balls, Box 2 has two white balls and one black ball, and Box 3 has three
white balls. One of the three boxes is picked at random and then a ball is picked
from this box. What is the probability that the ball picked is white?

Let W be the event “the ball picked is white.” We use the rule of average and get

P.W / D P.W j1/P.1/ C P.W j2/P.2/ C P.W j3/P.3/:

The conditional probabilities above are easy to compute. We have

P.W j1/ D 1

3
; P.W j2/ D 2

3
; P.W j3/ D 1:

Thus,

P.W / D 1

3
� 1

3
C 2

3
� 1

3
C 1 � 1

3
D 2

3
:

As we have just seen the conditional probability P.W j1/ is easy to compute.
What about P.1jW /? That is, given that we picked a white ball what is the
probability that it came from box 1?

In order to answer this question we start by using the definition of conditional
probability.

P.1jW / D P.1W /

P.W /
:
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Now we use the multiplication rule for the numerator and the average rule for the
denominator. We get

P.1jW / D P.W j1/P.1/

P.W j1/P.1/ C P.W j2/P.2/ C P.W j3/P.3/
:

Numerically, we have

P.1jW / D 1=3 � 1=3

2=3
D 1

6
:

Note that P.1jW / is twice less likely than P.1/. That is, given that the ball drawn
is white box 1 is less likely to have been picked than boxes 2 and 3. Since box 1 has
less white balls than the other boxes this is not surprising. The preceding method
applies each time we want the conditional probability P.AjB/ but what is readily
available is the conditional probability P.BjA/. We now state the general form of
this useful formula.

Bayes’ Formula

For any events A and B we have

P.BjA/ D P.AjB/P.B/

P.AjB/P.B/ C P.AjBc/P.Bc/
:

More generally, if the events B1, B2, : : : , Bn are disjoint and if their union is
the whole sample space � then for every i D 1; : : : ; n

P.Bi jA/ D P.AjBi /P.Bi /

P.AjB1/P.B1/ C P.AjB2/P.B2/ C � � � C P.AjBn/P.Bn/
:

As observed in Example 4, Bayes’ formula is an easy consequence of the defi-
nition of conditional probabilities and the rule of average. Rather than memorizing
it the reader should get familiar with the way to derive it. Next we give another
example of use of the Bayes’s rule.

Example 5. It is estimated that 10% of the population has a certain disease. A
diagnostic test is available but is not perfect. There are two possible misdiagnoses.
A healthy person may be misdiagnosed as sick with a probability of 5%. A person
with the disease may be misdiagnosed as healthy with a probability of 1%. Given
that a person picked at random is diagnosed with the disease, what is the probability
that this person is actually sick?

Let D be the event that the person has the disease and + be the event that the
person is diagnosed as having the disease. We are asked to compute the conditional
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probability P.DjC/. Note that P.CjD/ D 1 � 0:01 D 0:99 but P.DjC/ is not as
readily available so we use Bayes’ formula.

P.DjC/ D P.DC/

P.C/
D P.CjD/P.D/

P.CjD/P.D/ C P.CjDc/P.Dc/
:

We know that P.D/ D 0:1 so P.Dc/ D 0:9. As observed before P.CjD/ D 0:99

and P.CjDc/ D 0:05. Thus,

P.DjC/ D 0:99 � 0:1

0:99 � 0:1 C 0:05 � 0:9
D 0:69:

So given that the person has tested positive the probability that this person actually
has the disease is only 0.69.

1.2.1 Symmetry

It is sometimes possible to avoid lengthy computations by invoking symmetry in a
problem. We give next such an example.

Example 6. You are dealt two cards from a deck of 52 cards. What is the probability
that the second card is black?

One way to answer the preceding question is to condition on whether the first
card is black. Let B and R be the events “the first card is black” and the “first card
is red,” respectively. Let A be the event “the second card is black.” We have

P.A/ D P.AR/ C P.AB/ D P.AjR/P.R/ C P.AjB/P.B/

D
�

26

51

��
1

2

�
C
�

25

51

��
1

2

�
D 1

2
:

Now we show how a symmetry argument yields this result. By symmetry we have

P.the second card is red/ D P.the second card is black/:

Since

P.the second card is red/ C P.the second card is black/ D 1:

We get that

P.the second card is black/ D 1

2
:
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Exercises 1.2

1. Consider the student population in a college campus. Assume that 55% of the
students are female. Assume that 20% of the male drink and 10% of the female
drink.

(a) Pick a female student at random, what is the probability that she does not drink?
(b) Pick a student at random, what is the probability that the student does not drink?
(c) Pick a student at random, what is the probability that this student is male and

drinks?

2. A company has two factories A and B. Assume that factory A produces 80% of
the products and B the remaining 20%. The proportion of defectives are 0.05 for A
and 0.01 for B.

(a) What is the probability that a product picked at random comes from A and is
not defective?

(b) What is the probability that a product picked at random is defective?

3. Consider two boxes labeled 1 and 2. In box 1 there are two black balls and three
white balls. In box 2 there are three black balls and two white balls. We pick box 1
with probability 1/3 and box 2 with probability 2/3. Then we draw a ball in the box
we picked.

(a) Given that we pick box 2 what is the probability of drawing a white ball?
(b) Given that we draw a white ball what is the probability that we picked box 1?
(c) What is the probability of picking a black ball?

4. Consider an electronic circuit with components C1 and C 2. The probability that
C1 fails is 0.1. If C1 fails the probability that C 2 fails is 0.15. If C1 works the
probability that C 2 fails is 0.05.

(a) What is the probability that both components fail?
(b) What is the probability that at least one component works?
(c) What is the probability that C 2 works?

5. Suppose five cards are dealt from a deck of 52 cards.

(a) What is the probability that the second card is a queen?
(b) What is the probability that the fifth card is a heart?

6. Two cards are dealt from a deck of 52 cards. Given that the first card is red what
is the probability that the second card is a heart?

7. A factory tests all its products. The proportion of defective items is 0.01. The
probability that the test will catch a defective product is 0.95. The test will also
reject nondefective products with probability 0.01.
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(a) Given that a product passes the test, what is the probability that it is defective?
(b) Given that the product does not pass the test, what is the probability that the

product is defective?

8. Consider the following game. There are three balls in a box, two are white and
one is black. You win the game if you pick a white ball. You draw a ball but you
do not see the color of the ball. Then someone takes out of the box a white ball.
So at this point there is only one ball left in the box. At this point the rules of the
game allow you to switch your ball with the one remaining in the box. What is the
best strategy: to switch balls or not? In order to decide, compute the probability of
winning for each strategy.

9. Two cards are randomly selected from a 52 cards deck. The two cards are said
to form a blackjack if one of the cards is an ace and the other is either a ten, a jack,
a queen, or a king. What is the probability that the two cards form a blackjack?

10. Two dice are rolled. Given that the sum is 9, what is the probability that at least
one die showed 6?

11. Assume that 1% of men and 0.01% of women are color blind. A color blind
person is chosen at random. What is the probability that this person is a man?

12. Hemophilia is a genetic disease that is caused by a recessive gene on the X
chromosome. A woman is said to be a carrier of the disease if she has the hemophilia
gene on one X chromosome and the healthy gene on the other X chromosome. A
woman carrier has probability 1/2 of transmitting the disease to each son since a son
will get an X chromosome from the mother and a Y chromosome from the father.
Because of her family history a woman is thought to have a 50% chance of being a
carrier before having children. Given that this woman has three healthy sons, what
is the probability that she is a carrier?

1.3 Independent Events

We start with Example 4 of the preceding section.

Example 1. We have three boxes labeled 1, 2, and 3. Box 1 has one white ball and
two black balls, Box 2 has two white balls and one black ball, and Box 3 has three
white balls. One of the three boxes is picked at random and then a ball is picked
from this box. Given that we draw a white ball what is the probability that we have
picked box 1?

We have already computed this conditional probability and found it to be 1/6.
On the other hand the (unconditional) probability of picking box 1 is 1/3. So the
information that the ball drawn is white changes the probability of picking box 1. In
this sense we say that the events A D f box 1 is picked g and B D f a white ball is
drawn g are not independent. This leads to the following definition.
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Independent Events

Two events A and B are said to be independent if

P.AB/ D P.A/P.B/:

We have the following consequences from this definition.

C1. Assume that P.B/ > 0. By using the definition of conditional probability we
see that if A and B are independent if and only if

P.AjB/ D P.A/:

C2. If A and B are independent so are A and Bc . In order to see this write that

P.A/ D P.AB/ C P.ABc/:

By using C1 we get

P.ABc/ D P.A/ � P.A/P.B/ D P.A/.1 � P.B// D P.A/P.Bc/

and this shows that A and Bc are independent.
C3. If A and B are independent so are Ac and Bc .

Example 2. Consider again the three boxes of Example 1 but this time we put the
same number of white balls in each box. For instance, assume that each box has two
white balls and one black ball. Are the events A D f box 1 is picked g and B D f a
white ball is drawn g independent?

By Bayes’ formula we have

P.AjB/ D 1=3 � 2=3

1=3 � 2=3 C 1=3 � 2=3 C 1=3 � 2=3
D 1

3
D P.A/:

So this time A and B are independent. This should be intuitively clear: this time the
fact the ball drawn is white does not yield additional information about which box
was picked since all boxes have the same proportion of white balls.

Example 3. Assume that A and B are independent events such that P.A/ D 0:1

and P.B/ D 0:3: What is the probability that A or B occurs?
We want P.A [ B/. Recall that

P.A [ B/ D P.A/ C P.B/ � P.AB/:

By C1 we have

P.A [ B/ D 0:1 C 0:3 � 0:1 � 0:3 D 0:37:
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Example 4. Assume that A and B are independent, can they also be disjoint?
If A and B are disjoint then AB D ;: Thus, P.AB/ D 0. However, if A and B

are also independent then

P.AB/ D P.A/P.B/ D 0:

Thus, P.A/ D 0 or P.B/ D 0. So if A and B are independent they may be disjoint
if and only if one of these events has probability zero.

Example 5. Assume two components are in series as below.

Assume that each component fails independently of the other with probability
0.01. What is the probability that the circuit fails?

In order for the circuit to fail we must have that one of the two components fails.
Let A be the event that the left component fails and B be the event that the right
component fails. So the probability of failure is

P.A [ B/ D P.A/ C P.B/ � P.AB/ D 0:01 C 0:01 � 0:0001 D 0:0199:

Example 6. Assume two components are in parallel as below.

Assume they fail independently with probability 0.01. What is the probability
that the circuit fails?

The circuit fails if both components fail.

P.AB/ D P.A/P.B/ D 0:0001:

As expected the reliability of a parallel circuit is superior to the reliability of a
series circuit. However, it is the independence assumption that greatly increases the
reliability. The independence assumption may or may not be realistic.
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Exercises 1.3

1. Assume that A and B are independent events with P.A/ D 0:2 and
P.B/ D 0:5.

(a) What is the probability that exactly one of the events A and B occurs?
(b) What is the probability that neither A nor B occurs?
(c) What is the probability that at least one of the events A or B occurs?

2. Two cards are successively dealt from a deck of 52 cards. Let A be the event
“the first card is an ace” and B be event “the second card is a spade.” Are these two
events independent?

3. Two cards are successively dealt from a deck of 52 cards. Let A be the event “the
first card is an ace” and B be event “the second card is an ace.” Are these two events
independent?

4. Roll two dice. Let A be the event “there is at least one 6” and B the event “the
sum is 7.” Are these two events independent?

5. Assume that the proportion of male students that drink is 0.2. Assume that there
are 60% of male students and 40% of female students.

(a) Pick a student at random. What should the proportion of female drinkers be
in order for the events “the student is male” and “the student drinks” be
independent?

(b) Does your answer in (a) depend on the proportion of male students?

6. Show C3.

7. Assume that 3 components are as below.

Assume that each component fails independently of the others with probability
pi , for i D 1; 2; 3. Find the probability that the circuit fails in function of the p0

i s.

8. (a) Roll one die 4 times. What is the probability of rolling at least one 6?
(b) Roll two dies 24 times. What is the probability of rolling at least one double 6?



1.4 Three or More Events 17

9. Two cards are dealt from a 52 cards deck.

(a) What is the probability of getting a pair?
(b) What is the probability of getting two cards of the same suit?

1.4 Three or More Events

In this section we deal with probabilities involving several events. Our main tool is
a generalization of the multiplication rule of Sect. 1.3. We now derive it for three
events A, B , and C . We start by using the multiplication rule for the two events AB
and C .

P.ABC/ D P.C \ .AB// D P.C jAB/P.AB/:

By the same multiplication rule

P.AB/ D P.BjA/P.A/:

Hence,

P.ABC/ D P.C jAB/P.BjA/P.A/ D P.A/P.BjA/P.C jAB/:

The same computation can be done for an arbitrary number of events and yields the
following.

Multiplication Rule for Three or More Events

Consider n events A1; A2; : : : ; An: The probability of the intersection of
these n events can be written by using the following conditional probabi-
lities.

P.A1A2 : : : An/ D P.A1/P.A2jA1/P.A3jA1A2/ : : : P.AnjA1A2 : : : An�1/:

We now apply this formula to several examples.

Example 1. Deal four cards from a deck of 52 cards. What is the probability to get
four aces?

Let A1 be the event that the first card is an ace, let A2 be the event that the second
card is an ace and so on. We want to compute the probability of A1A2A3A4. We use
the multiplication rule above to get.

P.A1A2A3A4/ D P.A1/P.A2jA1/P.A3jA1A2/P.A4jA1A2A3/:
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The probability of A1 is 4/52. Given that the first card is an ace the probability that
the second card is an ace is 3/51 and so on. Thus,

P.A1A2A3A4/ D 4

52
� 3

51
� 2

50
� 1

49
D 24

6; 497; 400
:

A pretty slim chance to get four aces!

Example 2. We now deal with the famous birthday problem. Assume that there are
50 students in a class. What is the probability that at least two students have the
same birthday?

It is easier to deal with the complement of this event. That is, we are going to
compute the probability that all 50 students were born on different days. Assume
that we are going through a list of the 50 birthdays in the class. Let B2 be the event
that the second birthday in the list is different from the first. Let B3 be event that
the third birthday on the list is different from the first two. More generally, let Bi be
the event that the i th birthday on the list is different from the first i � 1 birthdays
for i D 2; 3; : : : ; 50. We want to compute the probability of B2B3 : : : B50. By the
multiplication rule we have

P.B2B3 : : : B50/ D P.B2/P.B3jB2/P.B4jB2B3/ : : : P.B50jB2B3 : : : B49/:

Ignoring the leap years, we assume that there are 365 days in a year. We also
assume that all days are equally likely for birthdays. Note that P.B2/ D 364=365:

Given that the first two birthdays are distinct the third birthday has only 363
choices in order to be distinct from the first two. So P.B3jB2/ D 363=365: The
same reasoning shows that P.B4jB3B2/ D 362=365: By doing the same type of
computation for every term in the product above we get

P.B2B3 : : : B50/ D 364

365
� 363

365
� 362

365
� � � � � 316

365
:

The numerical computation gives a value of 0.96 for the probability of having at
least two students having the same birthday in a class of 50! More generally, we
have that

P.n people have n distinct birthdays/ D 364 � 363 � � � � � .365 � n C 1/

365n�1
:

The product above decreases rapidly to 0. If n D 23 we get that this product is about
0.50. For n D 45 it is about 0.05. Exercise 10 below will show how to approximate
the product above by an exponential function. Note that if there are 365 people or
more then the probability of having 365 or more distinct birthdays is zero.
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1.4.1 Independence

We now consider the independence property for several events. We have the
following definition.

Independent Events

Three events A, B and C are said to be independent if the following
conditions hold

P.ABC / D P.A/P.B/P.C /

P.AB/ D P.A/P.B/; P.AC / D P.A/P.C / and P.BC / D P.B/P.C /:

In general, n events are independent if for every integer k such that 2 � k � n

and any choice of k events (among the n we are considering) the probability
of the intersection of these k events is the product the probabilities of the k

events.

The number of conditions to be checked grows rapidly with the number of
events. It will be in general difficult to check that more than three events are
independent. Typically, we will assume that events are independent (if that seems
like a reasonable hypothesis) and then use the multiplication rule above to compute
probabilities of interest. We illustrate this point next.

Example 3. Consider a class of 50 students. What is the probability that at least one
of the students was born on December 25?

This is yet another case where it is easier to look at the complement of the event.
We look at the list of birthdays in the class. Let Ai be the event that the i th student
in the list was not born on December 25, for 1 � i � 50: It is reasonable to assume
that the Ai are independent: to know whether or not a certain student was born on
December 25 does not give us additional information about the birthdays of other
students (unless there are twins in the class and we assume that is not the case...).
By the independence assumption we have

P.A1A2 : : : A50/ D P.A1/P.A2/ : : : P.A50/:

Note that each Ai has probability 364/365. Thus,

P.A1A2 : : : A50/ D
�

364

365

�50

D 0:87:

That is, the probability that at least one student in a class of 50 was born on a certain
fixed day is about 0.13. The reader should compare this value with the value in
Example 2.

Example 4. How many students should we have in a class in order to have at least
one birthday on December 25 with probability at least 0.5?
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Let n be the minimum number of students that satisfies the condition above. We
use the events Ai , for 1 � i � n, defined in Example 3. We want

P.A1A2 : : : An/ � 0:5:

By independence we have that
�

364

365

�n

� 0:5:

We take logarithms on both sides of the inequality to get

n ln

�
364

365

�
� ln.0:5/:

Recall that ln x < 0 if x < 1. Thus,

n � ln.0:5/

ln.364=365/
:

Numerically we get that n needs to be at least 253.

Exercises 1.4

1. Assume that three friends are randomly assigned to five classes. What is the
probability that they are all in distinct classes?

2. Five cards are dealt from a 52 cards deck.

(a) What is the probability that the five cards are all hearts?
(b) What is the probability of a flush (all cards of the same suit)?

3. Roll 5 fair dice. What is the probability that at least two dice show the same face?

4. What is the probability of getting at least one 6 in 10 rolls of a fair die?

5. Assume that the chance to win at the lottery with one ticket is 1/1,000,000.
Assume that you buy one ticket per week. How many weeks should you play to
have at least 0.5 probability of winning at least once?

6. Three electric components are in parallel. Each component fails independently
of the others with probability pi , i D 1; 2; 3. What is the probability that the circuit
fails?

7. Three electric components are in series. Each component fails independently of
the others with probability pi , i D 1; 2; 3. What is the probability that the circuit
fails?
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8. Roll a die 4 times.

(a) What is the probability of getting 4 times the same face?
(b) What is the probability of getting 3 times the same face?

9. The probability of winning a certain game is 1=N for some fixed N . Show that
you need to play the game approximately 2

3
N times in order for the probability

to win at least once be 0.5 or more. (Use that ln 2 is approximately 2/3 and that
ln.1 � 1=N / is approximately �1=N for N large.)

10. In this exercise we are going to derive an approximate formula for the birthday
problem (Example 2). Our starting point is that

pn D P.npeople have n distinct birthdays/ D 364 � 363 � � � � � .365 � n C 1/

365n�1
:

(a) Show that ln.pn/ D ln.1�1=365/C ln.1�2=365/C� � �C ln.1� .n�1/=365/.
(b) Use that ln.1 � x/ is approximately �x for x near zero to show that

ln.pn/ is approximately �1=365 � 2=365 � � � � .n � 1/=365.
(c) Show that 1 C 2 C 3 C � � � C n D n.n C 1/=2.
(d) Use (c) in (b) to show that ln.pn/ is approximately �n.n�1/

2�365
.

(e) Show that pn is approximately

e
�n.n�1/

2�365 :

(f) Compute pn for n D 5; 10; 20; 30; 40; 50 by using the exact formula and the
approximation.

11. Take four persons at random. What is the probability that they are all born on
different months?

Review Exercises for Chap. 1

1. Assume that P.A/ D 0:1 and P.AB/ D 0:05.

(a) What is the probability of A occurs and B does not occur?
(b) What is the probability that A or B do not occur?

2. I draw one card from a deck of 52 cards. Let A be the event “I draw a king” and
let B be the event “I draw a heart.” Are A and B independent?

3. Roll three dice. What is the probability of getting at least one 6?

4. I draw five cards from a deck of 52 cards.
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(a) What is the probability that I get four kings?
(b) What is the probability that I get 4 of a kind?

5. (a) I roll a die until the first 6 appears. What is the probability that I need 6 or
more rolls?

(b) How many times should I roll the die so that I get at least one 6 with probability
at least 0.9?

6. I draw five cards from a deck of 52 cards.

(a) What is the probability that I get no spade.
(b) What is the probability that I get no black cards?

7. I draw cards from a deck until I get a spade.

(a) What is the probability that I need exactly seven draws?
(b) Given that six or more draws are required, what is the probability that exactly

seven draws are required?

8. Box 1 contains two red balls and three black balls. Box 2 contains six red balls
and b black balls. We pick one of the two boxes at random and draw a ball from that
box. Find b so that the color of the ball is independent of which box is picked.

9. 0’s and 1’s are sent down a communication channel. Assume that P (receive
0jtransmit 0)=P (receive 1jtransmit 1)=0.99. Assuming that 0’s and 1’s are equally
likely, what is the probability of a transmission error?

10. A student goes to class on a snowy day with probability 0.5 and on a nonsnowy
day with probability 0.8. Assume that 10% of the days in January are snowy. Given
that the student was in class on January 28, what is the probability that it snowed
that day?

11. One die is biased and the probability of a 6 is 1/2. The other die is fair. You pick
one die at random and roll it. Given that you got a 6, what is the probability that you
picked the biased die?

12. Consider a placement test for Calculus. Assume that 80% of the students pass
the placement test and that 70% of the students pass Calculus. Experience has shown
that given that a student has failed the placement test there is a 90% probability that
the student will fail Calculus. Pick a student at random. Let A be the event “the
student passes the placement test,” let B be event “the student passes Calculus.”

(a) Show that
P.AB/ D P.A/ � P.ABc/:

(b) Use (a) to compute P.AB/.
(c) Given that a student passed the placement test what is the probability that the

student will pass Calculus?

13. Consider a slot machine with three wheels, each marked with 20 symbols. On
the central wheel, nine of 20 symbols are bells, on the left and right wheels there is
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one bell. In order to win the jackpot one has to get three bells. Assume that the three
wheels spin independently and that every symbol is equally likely.

(a) What is the probability of hitting the jackpot?
(b) What is the probability of getting exactly two bells?
(c) Can you think of another distribution of bells that does not change the

probability of hitting the jackpot but decreases the probability of getting exactly
two bells?

14. Assume that A, B , and C are independent events with probabilities 1/10, 1/5,
and 1/2, respectively.

(a) Compute P.ABC/.
(b) Compute P.A [ B [ C /.
(c) What is the probability that exactly one of A, B , or C occurs?

15. A tosses one coin and B tosses two coins. The winner is the player who gets
the most heads. In case of an equal number of heads A wins.

(a) Compute the probability that B wins given that A gets 0 heads.
(b) Compute the probability that B wins given that A gets 1 heads.
(c) Compute the probability that B wins.
(d) Change the game so that A tosses 2 coins and B tosses 3 coins. The winner is

still the player who gets the most heads. In case of an equal number of heads A
wins. Compute the probability that B wins in the new game.

16. A rolls one die and B rolls two dice. The winner is the player who gets the most
6’s. In case of an equal number of 6’s A wins. What is the probability that A wins?



Chapter 2
Random Variables

2.1 Discrete Random Variables

We start with an example.

Example 1. Toss two fair coins. Let X be the number of heads. X is a function from
the sample space � D fHH; HT; TH; T T g into the set f0; 1; 2g. The distribution
of X is given by the following table.

k 0 1 2
P.X D k/ 1/4 1/2 1/4

More generally, we have the following definition.

Discrete Random Variables

A discrete random variable is a function from a sample
space � into a countable set (usually the positive integers).
The distribution of a random variable X is the sequence of
probabilities P.X D k/ for all k in the range of X . We
must have

P.X D k/ � 0 for every k and
X

k

P.X D k/ D 1:

The term discrete refers to the fact that the random variables, in this section,
take values in countable sets. Next section deals with continuous random variables:
random variables whose range include intervals of the real numbers. We now give
several examples of important discrete random variables.

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7 2, © Springer Science+Business Media, LLC 2012
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2.1.1 Bernoulli Random Variables

These are the simplest possible random variables. Perform a random experiment
with two possible outcomes: success or failure. Set X D 1 if the experiment is
a success and X D 0 if the experiment is a failure. Such a 0–1 random variable
is called a Bernoulli random variable. The usual notation is P.X D 1/ D p and
P.X D 0/ D q D 1 � p.

Example 2. Roll a fair die. We say that we have a success if we roll a 6. Thus, the
probability of success is P.X D 1/ D 1=6. We have p D 1=6 and q D 5=6.

2.1.2 Discrete Uniform Random Variables

Example 3. Roll a fair die. Let X be the face shown. The distribution of X is given
by the following table.

k 1 2 3 4 5 6
P.X D k/ 1/6 1/6 1/6 1/6 1/6 1/6

Below we graph this distribution.

1 2 3 4 5 6

1/6

This is called a uniform random variable. Uniform refers to the fact that all
possible values of X are equally likely.

2.1.3 Geometric Random Variable

Example 4. Roll a fair die until you get a 6. Let X be the number of rolls to get the
first 6. The possible values of X are all strictly positive integers. Note that X D 1

if and only if the first roll is a 6. So P.X D 1/ D 1=6. In order to have X D 2 the
first roll must be anything but 6 and the second one must be 6. By independence of
the different rolls we get P.X D 2/ D 5=6 � 1=6: More generally, in order to have
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X D k the first k � 1 rolls cannot yield any 6 and the kth roll must be a 6. Thus,

P.X D k/ D
�

5

6

�k�1

� 1

6
for all k � 1:

Next, we graph this distribution

1 2 3 4 5

1/6

Such a random variable is called geometric. More generally, we have the
following.

Geometric Random Variables

Consider a sequence of independent identical trials. As-
sume that each trial can result in a success or a failure. Each
trial has a probability p of success and q D 1�p of failure.
Let X be the number of trials up to and including the first
success. Then X is called a geometric random variable.
The distribution of X is given by

P.X D k/ D qk�1p for all k � 1:

Note that a geometric random variable may be arbitrarily large since the above
probabilities are never 0. In order to check that the sum of these probabilities is 1
we need the following fact about geometric series:

Geometric Series

X

k�0

xk D 1

1 � x
for all x 2 .�1; 1/:
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We have that

X

k�1

P.X D k/ D
X

k�1

qk�1p D p
X

k�0

qk D p

1 � q
D 1:

Example 5. Toss a fair coin until you get tails. What is the probability that exactly
three tosses were necessary?

In this example we have p D q D 1=2: So

P.X D 3/ D q2p D 1

8
:

What is the probability that three or more tosses were necessary?
Note that the event “three or more tosses are necessary” is the same as the event

“the first two tosses are heads.” Thus,

P.X � 3/ D q2 D 1

4
:

Example 6. Consider X a geometric random variable. What is the probability that
X is strictly larger than r?

The event “X > r” is the same as the event “the first r trials are failures.” Thus,

P.X > r/ D qr :

Example 7. Let X be a geometric random variable. Given that X > r what is the
probability that X > r C s?

We want

P.X > r C sjX > r/ D P.fX > r C sg \ fX > rg/
P.X > r/

;

where the equality comes from the definition of a conditional probability. Note that
the intersection fX > r C sg \ fX > rg is simply fX > r C sg. Thus,

P.X > r C sjX > r/ D P.X > r C s/

P.X > r/
:

By Example 6, we know that P.X > r/ D qr : So

P.X > r C sjX > r/ D qrCs

qr
D qs D P.X > s/:

That is, given that we had r failures the probability of getting an additional s failures
is the same as getting s failures to start with. In this sense, the geometric distribution
is said to have the memoryless property.
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Example 8. Two players roll a die. If the die shows 6 then A wins if the die shows
1 or 2 then B wins. The die is rolled until A or B wins. What is the probability that
A wins?

Let T be the number of times the die is rolled. Note that the events fT D ng are
disjoint. We have

P.A/ D
X

n�1

P.A \ fT D ng/:

The event “A wins in n rolls” is the same as the event “the first n � 1 rolls are
draws and the nth roll is a 6.” Note that the probability that a roll results in a draw
is 3/6. Then

P.A \ fT D ng/ D
�

1

2

�n�1

� 1

6
:

Summing the geometric series we get

P.A/ D
X

n�1

�
1

2

�n�1

� 1

6
D 1

3
:

Note that the probability that A wins is

P.A/ D 1

3
D 1=6

1=6 C 2=6
;

where 1/6 is the probability of A winning in 1 roll and 2/6 is the probability of B

winning in 1 roll.

Exercises 2.1

1. Toss three fair coins. Let X be the number of heads.

(a) Find the distribution of X .
(b) Compute P.X � 2/.

2. Roll two dice. Let X be the sum of the faces. Find the distribution of X .

3. Recall that there are 38 pockets in a roulette and that 18 are red. I bet on red until
I win. Let X be the number of bets I make.

(a) What is the probability that X is 2 or more?
(b) What is the probability that X is exactly 2?

4. I roll four dice. I win if I get at least one 6. What is the probability of winning?
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5. Roll two fair dice. Let X be the largest of the two faces. What is the distribution
of X?

6. I draw two cards from a deck of 52. Let X be the number of aces I draw. Find
the distribution of X .

7. How many times should I toss a fair coin in order to get tails at least once with
probability 90%?

8. In a lottery there are 100 tickets numbered from 1 to 100. Let X be the ticket
drawn at random. What is the distribution of X?

9. I roll a die until I get a 6. Given that the first two rolls were not 6’s, what is the
probability I need 5 rolls or more in order to get a 6?

10. A and B roll a die. A wins if the die shows a 6 and B wins if the die shows a 1.
The die is rolled until someone wins.

(a) What is the probability that A wins?
(b) What is the probability that B wins?
(c) Let T be the number of times the die is rolled. Find the distribution of T .

11. Let X be a discrete random variable.

(a) Show that

P.X D k/ D P.X > k � 1/ � P.X > k/:

(b) Assume that for all k � 1 we have P.X > k/ D qk . Use (a) to show that X is
a geometric random variable.

2.2 Continuous Random Variables

We start with the following definition.

Continuous Random Variables

A continuous random variable is a function from a sample
space � to an interval of the real numbers. The distribution
of a continuous random variable X is determined by its
density function f as follows. For all a < b we have that

P.a < X < b/ D
Z b

a

f .x/dx:
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The function f is positive, continuous (except possibly at
finitely many points) and

Z
f .x/dx D 1;

where the integral is taken on the largest interval on which
f is strictly positive.

The shaded area below represents the probability that the random variable be
between 2 and 4.

–4 –2 2 4 6 8
x

0.05

0.1

0.15

0.2

Note that for a continuous random variable X the following probabilities are all
equal.

P.a � X < b/ D P.a � X � b/ D P.a < X � b/ D P.a < X < b/:

This is so because integrals of the type
R a

a
f .x/dx are always 0. In general, the

above equalities do not hold for discrete random variables.
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Example 1. Let X have density f .x/ D cx2 for x in [�1,1] and f .x/ D 0

elsewhere. Find c.
We must have Z 1

�1

cx2dx D 1:

After integrating we get

c

�
2

3

�
D 1

and therefore c D 3=2.
What is the probability that X is larger than 1/2?

P.X > 1=2/ D
Z 1

1=2

f .x/dx D
Z 1

1=2

�
3

2

�
x2dx D 7

16
:

We next give two examples of important continuous random variables.

2.2.1 Continuous Uniform Random Variables

Example 2. Let X be a random variable with density f .x/ D 1 for x in [0,1] and
f .x/ D 0 elsewhere. Since the density of X is flat on [0,1], X is said to be uniform
on [0,1]. Next we graph the density of X .

10

1

Note that Z 1

0

f .x/dx D
Z 1

0

dx D 1:

What is the probability of X to be in the interval (1/2, 3/4)?
We have that

P.1=2 < X < 3=4/ D
Z 3=4

1=2

f .x/dx D 1

4
:
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What is the probability that X is larger than 1/2?

P.X > 1=2/ D
Z 1

1=2

f .x/dx D 1

2
:

More generally, we have the following.

Continuous Uniform Random Variables

A continuous random variable X is uniform on the interval
Œa; b� if the density of X is

f .x/ D 1

b � a
for x 2 Œa; b�:

Note that the density of a uniform is always a constant on some interval and that
the constant must be picked so that the area under the density is 1.

2.2.2 Exponential Random Variables

Example 3. Let T be a random variable with density f .t/ D e�t for t � 0. Below
is the graph of f .

1

0.8

0.6

0.4

0.2

0
2 4 6 8 10

x
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We first check that the area under the curve is 1.

Z A

0

e�t dt D 1 � e�A:

By letting A go to infinity we get that the improper integral converges and that

Z 1

0

e�t dt D 1:

What is the probability that T is larger than 1?

P.T > 1/ D
Z 1

1

e�t dt D e�1:

What is the probability that T is less than 1?

P.T � 1/ D 1 � P.T > 1/ D 1 � e�1:

We next state the definition of an exponential random variable.

Exponential Random Variables

A random variable X with density f .x/ D ae�ax for
x � 0 is said to be an exponential random variable with
parameter (or rate) a > 0.

Example 4. Let T be an exponential random variable with parameter a. What is the
probability that T is larger than s?

P.T > s/ D
Z 1

s

ae�at dt D e�as :

Example 5. Let T be an exponential random variable with parameter a. Given that
T is larger than s, what is the probability that T is larger than t C s?

We want the conditional probability

P.T > t C sjT > s/ D P.fT > t C sg \ fT > sg/
P.T > s/

:

Note that the intersection of the events T > t C s and T > s is the event T > t C s.
Thus,

P.T > t C sjT > s/ D P.T > t C s/

P.T > s/
:
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By using the computation in Example 4 we get

P.T > t C sjT > s/ D e�a.tCs/

e�as
D e�at D P.T > t/:

So exactly as for the geometric distribution of the preceding section we say that
the exponential distribution has the memoryless property.

Exercises 2.2

1. Let f .x/ D cx.1 � x/ for x in [0,1] and f .x/ D 0 elsewhere. Find c so that f

is a density function.

2. Let the graph of the density f be a triangle for x in [�1,1]. Find f .

3. Let X be the density of an uniform random variable on [�2,4]. Find the density
of X .

4. Let T be the waiting time for a bus. Assume that T has an exponential density
with rate 3 per hour.

(a) What is the probability of waiting at least 20 min for the bus?
(b) Given that we have waited 20 min, what is the probability of waiting an

additional 20 min for the bus?
(c) Under which conditions is the exponential model appropriate for this problem?

5. Let T be a waiting time for a bus. Assume that T has a uniform distribution on
[0,40].

(a) What is the probability of waiting at least 20 min for the bus?
(b) Given that we have waited 20 min, what is the probability of waiting an

additional 10 min for the bus?

6. Let Y have a density g.y/ D cye�2y for y � 0. Find c.

7. Let X have density f .x/ D xe�x for x � 0. What is the probability that X is
larger than 3?

8. Let T have density g.t/ D 4t3 for t in [0,1].

(a) What is the probability that T is between 1/4 and 3/4?
(b) What is the probability that T is larger than 1/2?

9. (a) Show that for any random variable X we have

P.a < X < b/ D P.X < b/ � P.X � a/:

(b) Assume that the random variable X is continuous and is such that P.X > s/ D
e�2s . Use (a) to compute P.a < X < b/.

(c) Find the density of X .
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2.3 Expectation

As we have seen in the preceding two sections knowing the distribution of a random
variable entails knowing a lot of information. For a discrete random variable X the
distribution is given by the sequence P.X D k/ for every k in the range of X . For
a continuous random variable X the distribution is given by the density function f .
For many problems it is enough to have a rough idea of the distribution and one
tries to summarize the distribution by using a few numbers. The most important of
these numbers is the expectation or the average value of the distribution. We first
deal with discrete random variables.

Expectation of a Discrete Random Variable

The expectation (or mean) of the discrete random variable
X is denoted by E.X/ and is given by

E.X/ D
X

k

kP.X D k/;

where the sum is taken over all the values in the range of X .

If a random variable may take infinitely many values then the computation of its
expectation involves an infinite series. The expectation is defined only if the infinite
series converges (see Exercise 18).

Note that the expectation of X is a measure of location of X .

Example 1. We perform an experiment with two possible outcomes: failure or
success. If we have a success we set X D 1. If we have a failure we set X D 0. Let
P.X D 1/ D p. What is the expectation of this Bernoulli random variable?

E.X/ D
X

k

kP.X D k/ D 0 � .1 � p/ C 1 � p D p:

Thus we can state,

Expectation of a Bernoulli Random Variable

Let X be a Bernoulli random variable with probability of
success p. That is, X may take only values 0 and 1 and
P.X D 1/ D p. Then,

E.X/ D p:
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For instance, if we toss a fair coin and set X D 1 if we have heads and X D 0

if we get tails then E.X/ D 1=2. What is the meaning of the value 1/2 since X can
only take values 0 and 1?

The Law of Large Numbers that we will now (loosely) describe gives a physical
meaning to the notion of expectation.

Law of Large Numbers

We make n independent and identical random experiments. Each experiment
has a random outcome with the same distribution as the random variable X .
The Law of Large Numbers states that as n goes to infinity the average over the
n outcomes approaches E.X/.

We now come back to Example 1. The Law of Large Numbers states that if we
toss a coin many times then the ratio of heads over the total number of tosses will
approach 1/2. This gives a physical meaning to the expected value and also explains
why this is a crucial notion.

Example 2. Roll a fair die. Let X be the face shown. We have P.X D k/ D 1=6

for every k D 1; 2; : : : ; 6. Thus,

E.X/ D
X

k

kP.X D k/ D
6X

kD1

k

6
D 7

2
:

Example 3. The preceding example gave the expected value of a discrete uniform
random variable in a particular case. We now treat the general case. Assume that X is
a discrete uniform random variable on the set f1; 2; : : : ; ng. Thus, P.X D k/ D 1=n

for k D 1; 2; : : : ; n. So

E.X/ D
nX

kD1

kP.X D k/ D 1

n

nX

kD1

k:

Thus, we need to compute the sum of the first n integers. Let Sn be this sum and we
write Sn in two different ways.

Sn D 1 C 2 C � � � C .n � 1/ C n

Sn D n C .n � 1/ C � � � C 2 C 1

We now add both equations to get

2Sn D .n C 1/ C .n C 1/ C � � � C .n C 1/:
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There are n terms equal to n C 1 on the r.h.s. Thus,

2Sn D n.n C 1/

and we get

Sn D n.n C 1/

2
:

Going back to the computation of the expected value we have:

E.X/ D n C 1

2
:

Note that if we let n D 6 we get the particular case of Example 1.

Example 4. We now deal with geometric random variables. Let X be the number
of independent and identical trials to get the first success. We denote by p the
probability that a given trial be a success and q D 1 � p. The distribution of X

is given by

P.X D k/ D qk�1pfor allk D 1; 2; : : : :

Thus,

E.X/ D
1X

kD1

kqk�1p D p

1X

kD1

kqk�1:

Recall that
1X

kD0

xk D 1

1 � x
forx 2 .�1; 1/:

Recall also that power series are infinitely differentiable on their interval of
convergence (except possibly at the boundary points). Thus, by taking derivatives
on both sides of the preceding equality we get

1X

kD1

kxk�1 D 1

.1 � x/2
forx 2 .�1; 1/:

We plug x D q and get for the expected value

E.X/ D p

1X

kD1

kqk�1 D p
1

.1 � q/2
D 1

p
:
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Expectation of a Geometric Random Variable

Let X be the number of independent and identical trials up to and including the
first success. We denote by p the probability that a given trial be a success and
q D 1 � p. Then,

E.X/ D 1

p
:

Example 5. Roll a die until you get a 6. What is the expected number of rolls?
Let T be the number rolls to get a 6. This is a geometric random variable with

p D 1=6. Thus, E.T / D 6.

2.3.1 Continuous Random Variables

We start by defining the expected value for a continuous random variable.

Expectation of a Continuous Random Variable

Assume that X is a continuous random variable with density f . The expected
value (or mean) of X is then

Z
xf .x/dx;

where the integral is taken on the largest interval on which f is strictly positive.

Example 6. Assume that X is uniformly distributed on Œa; b�. What is its expected
value?

Using that the density of X is f .x/ D 1
b�a

for x in Œa; b�, we get

E.X/ D
Z b

a

xf .x/dx D 1

b � a

�
b2

2
� a2

2

�
D a C b

2
:

We get

Expectation of a Continuous Uniform Random Variable

Assume that X is uniformly distributed on Œa; b�. Then

E.X/ D a C b

2
:
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Example 7. Assume T is exponentially distributed with rate a. What is its expected
value?

We integrate by parts to get

E.T / D
Z 1

0

tf .t/dt D
Z 1

0

tae�at dt D �te�at
�1

0
C
Z 1

0

e�at dt D 1

a
:

Expectation of an Exponential Random Variable

Assume T is exponentially distributed with rate a. Then,

E.T / D 1

a
:

2.3.2 Other Measures of Location

To summarize the location of a distribution it is often a good idea to use more than
one number. Besides the mean, there are two other important measures of location.
The first one is the median.

Median of a Random Variable

A median m of a random variable X is a number m such
that P.X � m/ and P.X � m/ are both at least 1/2.

As we will show in the exercises a median gives less weight to the extreme values
of the distribution than the mean.

Example 8. Roll a die. Let X be the face shown. Note that P.X � 3/ D 2=3 and
P.X � 3/ D 1=2. So 3 is a median. Observe that 4 is also a median and actually any
number in [3,4] is a median. Recall that the mean in this case is 3.5. This example
shows that a discrete random variable may have several medians.

Unlike what may happen for discrete random variables there is a unique median
for continuous random variables. If the continuous variable X has density m then
the median of X is such that

Z 1

m

f .x/dx D
Z m

�1
f .x/dx D 1

2
:
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Example 9. Let T be an exponential random variable with rate 1. What is its
median?

We solve the equation

P.T > m/ D P.T � m/ D
Z 1

m

e�t dt D e�m D 1

2
:

Thus m D ln 2. Note that P.T < ln 2/ D 1 � P.T > ln 2/ D 1=2: So ln 2 is the
unique median of this distribution.

An other measure of location, only defined for discrete random variables, is the
mode.

Mode of a Discrete Random Variable

A mode M of a discrete random variable X is a number M

such that P.X D M / is maximum.

Example 10. For the uniform distribution on f1; 2; : : : ; 6g there are 6 modes: M D
1; 2; 3; 4; 5; 6.

2.3.3 The Addition Rule

The following rule holds for any type (continuous or discrete) of random variables.

Addition Rule

Let X and Y be two random variables defined on the same
sample space �. Then,

E.X C Y / D E.X/ C E.Y /:

More generally, if X1; X2; : : : ; Xn are all defined on � we
have

E.X1 CX2 C� � �CXn/ D E.X1/CE.X2/C� � �CE.Xn/:
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As the next examples will show this is a very important rule. Its proof involves
the joint distribution of several random variables. We will prove this formula when
we will see joint distributions in 8.3.

Example 11. I roll two dice. Let S be the sum of the two dice. What is the expected
value of S?

Let X be the value of the first die and Y be the value of the second die. Then
S D X C Y . According to the addition rule we have

E.S/ D E.X/ C E.Y /:

But Example 1 tells us that E.X/ D E.Y / D 7=2: Thus,

E.S/ D 7:

We could have computed E.S/ by first computing the distribution of S and then
averaging but this would have taken a lot longer.

2.3.4 Computing the Expectation By Breaking
Up the Random Variable

In many cases the distribution of a given random variable is too involved to be
computed. In some of those cases it is possible to break up a random variable into
a sum of Bernoulli random variables. By using the addition rule we then get the
mean of the random variable with the involved distribution without computing its
distribution. We next give such an example.

Example 12. Assume that three people enter independently an elevator that goes
to five floors. What is the expected number of stops S that the elevator is going to
make?

Instead of computing the distribution of S we break S into a sum of 5 Bernoulli
random variables as follows. Let X1 D 1 if at least one person goes to floor 1,
otherwise we set X1 D 0. Likewise let X2 D 1 if at least one person goes to
floor 2, otherwise we set X2 D 0. We do the same for the five possible choices.
We have

S D X1 C X2 C � � � C X5:

Note that X1 D 0 if none of the three people pick floor 1. Thus,

P.X1 D 0/ D
�

4

5

�3

:
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The probability of success for X1 is p D P.X1 D 1/ D 1 � .4=5/3: All the Xi have
the same Bernoulli distribution. By the addition rule we have

E.S/ D 5p D 5

 
1 �

�
4

5

�3
!

D 61

25
D 2:44:

We now compute E.S/ by using the distribution of S . The random variable S may
only take values 1, 2, and 3. In order to have S D 1, the second and third person
need to pick the same floor as the first person. Thus,

P.S D 1/ D
�

1

5

�2

:

To have S D 2, there are two possibilities: either the second person picks the
same floor as the first one and the third a different floor (the probability of that
is (1/5)(4/5)) or the second person picks a different floor from the first one and the
third one picks one of the two floors that have already been picked (the probability
of that is (4/5)(2/5)). Thus,

P.S D 2/ D
�

1

5

��
4

5

�
C
�

4

5

��
2

5

�
:

Finally, S D 3 happens only if the three persons pick distinct floors:

P.S D 3/ D
�

4

5

��
3

5

�
:

Thus,

E.S/ D 1 � 1

25
C 2 � 12

25
C 3 � 12

25
D 61

25
:

So even in this very simple case (S has only three values after all) it is better to
compute the expected value of S by breaking S in a sum of 0–1 random variables
rather than compute the distribution of S .

Example 13. Let B be the number of distinct birthdays in a class of 50 students.
What is the E.B/?

The distribution of B is clearly fairly involved. We are going to break B into a
sum of Bernoulli random variables. Set X1 D 1 if at least one student was born on
January 1, otherwise set X1 D 0. Set X2 D 1 if at least one student was born on



44 2 Random Variables

January 2, otherwise set X2 D 0. We define Xi like above for every one of the 365
days of the calendar. We claim that

B D X1 C X2 C � � � C X365:

This is so because the r.h.s. counts all the days on which at least one student has his
birthday. Moreover, the Xi are Bernoulli random variables. In order for X1 D 0 we
must have that none of the 50 students was born on January 1. Thus,

P.X1 D 0/ D
�

364

365

�50

:

The probability of success for X1 is p D 1 � �
364
365

�50
: We do the same for every

Xi and they all have the same p (which is also the expected value of a Bernoulli
random variable). By the addition rule we have

E.B/ D E.X1/ C E.X2/ C � � � C E.X365/ D 365p D 365

 
1 �

�
364

365

�50
!

:

Numerically, we get

E.B/ D 46:79:

From Example 2 in Sect. 1.4 we know that the probability of having at least two
students born on the same day is 0.96. However from the value of E.B/ we
see that more than two students born on the same day or more than one set
of students born on the same day are not that likely, otherwise E.B/ would be
lower.

Example 14. The collector’s problem. Assume that a certain brand of cereals has a
cartoon character in each box. There are r different cartoon characters. What is the
expected number of cereal boxes that need to be purchased in order to get all the
cartoon characters?

Let T1 be the number of boxes needed to get the first character. Obviously,
T1 D 1. Let T2 be the number of boxes needed to get the second (different) character.
Since we have already one character every time we buy a box there is a probability 1

r

of getting the same character we already have and a probability r�1
r

to get a different
one. Hence, T2 is a geometric random variable with success probability r�1

r
. More

generally, let Tk be the number of boxes needed to get the kth different character
given that we have already k � 1 different characters. Since we have already
k � 1 characters every time we purchase a box the probability to get a kth different
character is r�.k�1/

r
. That is, Tk is a geometric random variable with probability of
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success r�kC1
r

for k D 2; : : : ; r . The number of boxes needed to have a complete
collection is therefore

T1 C T2 C � � � C Tr:

Recall that the expected value of a geometric random variable with success
probability p is 1=p. Hence, the expected number of boxes needed to have the
complete collection is:

E.T1 C T2 C � � � C Tr/ D 1 C r

r � 1
C r

r � 2
C � � � C r

2
C r

1
:

It is convenient to rewrite the formula as

E.T1 C T2 C � � � C Tr/ D r

�
1 C 1

2
C � � � C 1

r

�
:

As r goes to infinity one can show that

1 C 1

2
C � � � C 1

r
� ln r

in the sense that the ratio goes to 1. Hence, the expected number of boxes needed to
complete the collection is approximately r ln r .

2.3.5 Fair Gambling

Example 15. We roll a die. You pay me $b if the die shows 5 or 6. I pay you $1
otherwise. Clearly, the probabilities of winning are not the same for both players.
Can we pick b so that this is a fair game?

Assume we play this game many times. By the Law of Large Numbers my
average winnings will be close to my expected winnings. We will say that the game
is fair if the expected winnings (of each player) are 0. So that in the long run my
average winnings will approach 0.

In this particular case let W be my winnings in 1 bet. We have that W D b with
probability 1/3 and W D �1 with probability 2/3. Thus,

E.W / D b � 1

3
C .�1/ � 2

3
:

We want E.W / D 0. Solving for b we get b D 2. Since I am twice less likely to
win than you are you should pay me twice as much when I win.
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2.3.6 Expectation of a Function of a Random Variable

As we will see in the next section it is often necessary to compute E.X2/ for a
random variable X . This is NOT E.X/2. We could compute the distribution of X2

and use the distribution to compute the expected value. However, there is a quicker
way to do things and it is contained in the following formula.

Expectation of a Function of X

Let X be a random variable and g be a real valued function.
For instance, g.x/ D x2. Then if X is discrete we have

E.g.X// D
X

k

g.k/P.X D k/:

If X is continuous with density f then

E.g.X// D
Z

g.x/f .x/dx:

Example 16. Let X be a discrete random variable such that P.X D �1/ D 1=3,
P.X D 0/ D 1=2, and P.X D 2/ D 1=6. What is E.X2/?

We use the formula above with g.x/ D x2 to get

E.X2/ D .�1/2 � 1

3
C 02 � 1

2
C .2/2 � 1

6
D 1:

Example 17. Let X be uniformly distributed on [0,1]. What is E.X3/?
This time we use the formula with g.x/ D x3. We get

E.X3/ D
Z 1

0

x3f .x/dx D 1

4
:

Another case which is of particular interest is when g.x/ D ax Cb. Assume that
X is a discrete random variable. Then we use the formula above to get

E.aX C b/ D
X

k

.ak C b/P.X D k/ D a
X

k

kP.X D k/

C b
X

k

P.X D k/ D aE.X/ C b:

The same formula may be derived for continuous random variables. We have the
following for continuous and discrete random variables.
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Expectation of a Linear Function of X

E.aX C b/ D aE.X/ C b:

The following observation gives the expectation without any computation pro-
vided we have a symmetric distribution.

Symmetric Case

Let f be the density of a continuous random variable X .
Assume that there is a � 0 such that

f .a C x/ D f .a � x/

for every x. Then, E.X/ D a (if E.X/ exists!).

We now show this property. Assume first that a D 0. That is,

f .x/ D f .�x/

for every x. We have

E.X/ D
Z Cb

�b

xf .x/dx;

where b is a positive number or C1. Let g.x/ D xf .x/, note that g is an odd
function. That is,

g.�x/ D �g.x/

for every x. Hence, E.X/ is the integral of an odd function on a symmetric interval.
It is easy to see that this integral must be 0 and therefore E.X/ D 0. We are done in
the case a D 0.

If a > 0 let Y D X � a. One can check (this will be done in Sect. 8.1) that the
density of Y is fY .x/ D f .a C x/. This implies that

fY .x/ D f .a C x/ D f .a � x/ D fY .�x/:

That is, Y has a symmetry at 0 and therefore by the case a D 0 we know that
E.Y / D 0. But

E.Y / D E.X/ � a D 0:

Hence, E.X/ D a and we are done.
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Exercises 2.3

1. What is the expected value of a random variable uniformly distributed on
f�1,0,3g.

2. Toss two fair coins. What is the expected number of heads?

3. The probability of finding someone in favor of a certain initiative is 0.01. We
interview people at random until we find a person in favor of the initiative. What is
the expected number of interviews?

4. Roll two dice. What is the expected value of the maximum of the two dice?

5. Let X be exponentially distributed with mean 1/2. What is the density of X?

6. Let U be a random variable which is uniformly distributed on [�1,2].

(a) Compute the mean of U .
(b) What is the median of U ?

7. Let X have the following density.

0 1 2

(a) Find the expected value of X .
(b) How good is E.X/ as a measure of location of X?

8. Let f .x/ D 3x2 for x in [0,1]. Let X be a random variable with density f .

(a) What is E.X/?
(b) What is the median of X?

9. Let X be a random variable such that P.X D 0/ D 1=5 and P.X D 4/ D 4=5.
Find the mean, medians, and modes.

10. Let T be exponentially distributed with rate a. Find the median of T in function
of a.

11. Roll four dice. What is the expected value of the sum?

12. There are three components in a circuit. Each one of them fails with probability
p. The failure of one component may influence the other components in a way that
is not well understood. What is the expected number of working components?
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13. Let B be the number of distinct birthdays in a class of 200 students. What is
the E.B/?

14. There are eight people in a bus and five bus stops ahead. What is the expected
number of stops the bus will have to make for these eight people?

15. I roll four dice. If there is at least one 6 you pay me $1. If there are no 6’s I pay
you $1.

(a) Is this a fair game?
(b) How would you make it into a fair game?

16. Let X be uniform on f1; 2; : : : ; 6g. What is E.X2/?

17. Let X be exponentially distributed with rate 1. What is E.X2/?

18. In this problem we give an example of a discrete random variable for which the
expectation is not defined.

(a) Use the fact that

1X

kD1

1

k2
D �2

6

to find c so that P.X D k/ D c=k2 is a probability distribution.
(b) Show that the expectation of the random variable defined above does not exist.

19. This problem gives an example of a continuous random variable that has no
expectation.

(a) Show that f .x/ D 2
�.1Cx2/

for x > 0 is a density function.
(b) Show that a random variable with the density above has no expectation.

20. I roll a die repeatedly.

(a) What is the expected number of rolls to get three different faces?
(b) What is the expected number of rolls to get all six faces?

2.4 Variance

We have seen in Sect. 2.3 that the expectation is a measure of location for a
distribution. Next we are going to define a measure of dispersion: the variance.
A small variance will mean that the distribution is concentrated around the mean
and that the mean is a good measure of location. A large variance will mean
that the distribution is dispersed and that no value is really typical for this
distribution.



50 2 Random Variables

Variance of a Random Variable

Let X be random variable with mean E.X/ D �. The
variance of X is denoted by Var.X/ and is defined by

Var.X/ D EŒ.X � �/2�:

The following formula for the variance is useful for com-
putational purposes

Var.X/ D E.X2/ � �2:

Finally, the standard deviation of X is denoted by SD.X/

and is defined by

SD.X/ D
p

Var.X/:

We now list the consequences of these definitions.

Consequences

C1. The variance of a random variable is ALWAYS positive or 0. This is so because
the variance is the expected value of the positive random variable .X � �/2.

C2. The variance of a random variable X is 0 if and only if X is a constant. For a
discrete random variable this can be seen from the formula

EŒ.X � �/2� D
X

k

.k � �/2P.X D k/:

If this sum is 0 it means that every term must be 0 since these are all positive
terms. But the sum of the P.X D k/ is 1 so at least some of these terms are
nonzero. It is easy to see that for exactly one k P.X D k/ is not 0 and that
corresponds to k D �. Thus, X is a constant equal to �.

For a continuous random variable (that is a random variable whose density
is strictly positive on some interval) one can show that the variance is always
strictly positive.
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C3. An easy consequence of the definition of variance is that

Properties of Variance

For any random variable X and constants a and b we have
that

Var.aX C b/ D a2Var.X/:

SD.aX C b/ D jajSD.X/:

Observe that the translation by b has no effect on the variance of aX C b.
Intuitively, this is clear since the variance measures the dispersion, not the location,
of a random variable.

Example 1. We start with the Bernoulli distribution. Assume that X takes values
0 and 1. We denote P.X D 1/ D p and P.X D 0/ D 1 � p D q. What is the
variance of X?

We have that
E.X/ D p:

We now compute

E.X2/ D 02 � q C 12 � p D p:

Thus,

Var.X/ D E.X2/ � E.X/2 D p � p2 D pq:

Variance of a Bernoulli Random Variable

Assume that X takes values 0 and 1. We denote P.X D
1/ D p and P.X D 0/ D 1 � p D q. Then,

Var.X/ D pq:

Example 2. What is the variance of the discrete random variable uniformly dis-
tributed on f1; 2; 3; 4; 5; 6g?

We know that E.X/ D 7=2:

We now compute

E.X2/ D 12 � 1

6
C 22 � 1

6
C � � � C 62 � 1

6
D 91

6
:
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Thus,

Var.X/ D E.X2/ � E.X/2 D 91

6
� 49

4
D 35

12
:

So the standard deviation is approximately 1.7. It is large for a distribution on
f1; : : : ; 6g. But this is not surprising since the extreme values have the same weight
as the middle values for this distribution.

Example 3. We now turn to the variance of a geometric random variable. We have
independent identical trials that have a probability p of success. Let T be the number
of trials to get the first success. The random variable T has a geometric distribution
and we know that

E.T / D 1

p
:

As before we need to compute E.T 2/. In this case it is easier to compute
E.T .T � 1// first. We need a new fact about geometric series. Recall that for every
x in (�1,1) we have

1X

kD0

xk D 1

1 � x
:

Power series are infinitely differentiable on their interval of convergence. We take
derivatives twice in the formula above to get:

1X

kD2

k.k � 1/xk�2 D 2

.1 � x/3
: (2.2)

Now we compute

E.T .T � 1// D
1X

kD1

k.k � 1/P.T D k/

D
1X

kD2

k.k � 1/qk�1p D pq

1X

kD2

k.k � 1/qk�2:

We let x D q in (2.2) to get

E.T .T � 1// D 2pq

.1 � q/3
D 2q

p2
:

We have that

E.T 2/ D E.T .T � 1// C E.T / D 2q

p2
C 1

p
:
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Finally,

Var.T / D E.T 2/ � E.T /2 D 2q

p2
C 1

p
� 1

p2
D 2q C p � 1

p2
:

Note that p C q D 1, so 2q C p � 1 D q. Hence,

Var.T / D q

p2
:

Variance of a Geometric Random Variable

Assume that we have independent identical trials that have
a probability p of success. Let T be the number of trials to
get the first success. Then,

Var.T / D q

p2
:

We now compute variances for a few continuous random variables.

Example 4. Assume that X is uniformly distributed on Œa; b�. Then

E.X/ D a C b

2
:

We compute E.X2/.

E.X2/ D
Z b

a

x2f .x/dx D 1

b � a

Z b

a

x2dx D 1

3.b � a/
.b3�a3/ D b2 C ab C a2

3
:

Thus,

Var.X/ D E.X2/ � E.X/2 D b2 � 2ab C a2

12
D .b � a/2

12
:

Variance of a Continuous Uniform Random Variable

Assume that X is uniformly distributed on Œa; b�. Then

Var.X/ D .b � a/2

12
:
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We now deal with exponential random variables.

Example 5. Assume that T is exponentially distributed with rate a. Then, E.T / D
1=a. We have

E.T 2/ D
Z 1

0

t2f .t/dt D
Z 1

0

t2ae�at dt:

We do an integration by parts to get

E.T 2/ D �t2e�at
�1
0

C
Z 1

0

2te�at dt D 2

a

Z 1

0

tae�at dt D 2

a2
;

where we have used that E.T / D 1=a to get the last equality. So

Var.T / D E.T 2/ � E.T /2 D 2

a2
� 1

a2
D 1

a2
:

That is, the mean and the standard deviation are equal for an exponential distribu-
tion. This shows that exponential distributions are rather dispersed.

Variance of an Exponential Random Variable

Assume that T is exponentially distributed with rate a.
Then,

Var.T / D 1

a2
:

Example 6. Consider Y with the following density.

0 1 2

1

What is the Var.Y /?
The density of Y is f .y/ D y for y in [0,1] and f .y/ D 2 � y for y in [1,2].

The mean of Y is 1 because of the symmetry of the density. We confirm this by
computation.
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E.Y / D
Z 2

0

yf .y/dy D
Z 1

0

y2dy C
Z 2

1

y.2 � y/dy:

Thus,

E.Y / D y3=3
�1
0

C y2
�2
1

� y3=3
�2
1

D 1:

We now deal with E.Y 2/.

E.Y 2/ D
Z 2

0

y2f .y/dy D
Z 1

0

y3dy C
Z 2

1

y2.2 � y/dy:

So

E.Y 2/ D y4=4
�1
0

C 2y3=3
�2
1

� y4=4
�2
1

D 7

6
:

Var.Y / D E.Y 2/ � E.Y /2 D 7

6
� 1 D 1

6
:

2.4.1 Independent Random Variables

We will need to compute the variance of sums of random variables. This turns out to
a simple task only when the random variables in the sum are independent. We start
by defining independence for random variables.

Independent Random Variables

Two discrete random variables X and Y are said to be independent if

P.fX D xg \ fY D yg/ D P.X D x/P.Y D y/for ALLx; y:

Two continuous random variables X and Y are said to be independent if for
ALL real numbers a < b; c < d we have

P.fa < X < bg \ fc < Y < d g/ D P.a < X < b/P.c < Y < d/:

We now examine two examples.

Example 7. Roll two dice. Let X be the face shown by the first die and S be the
sum of the two dice. Are X and S independent?
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Intuitively it is clear that the answer should be no. It is enough to find one x and
one y such that

P.fX D xg \ fS D yg/ 6D P.X D x/P.S D y/

in order to show that X and S are not independent. For instance, take x D 1 and
y D 12. Clearly if one die shows 1 the sum cannot be 12. So P.fX D 1g \ fS D
12g/ D 0. However, P.X D 1/ and P.S D 12/ are strictly positive so P.fX D
1g \ fS D 12g/ 6D P.X D 1/P.S D 12/. X and S are not independent.

Example 8. Toss two fair coins. Set X D 1 if the first coin shows heads, set X D 0

otherwise. Set Y D 1 if the second coin shows heads, set Y D 0 otherwise. Are X

and Y independent?
Our sample space is � D f.H; H/; .H; T /; .T; H/; .T; T /g: We need to examine

the 4 possible outcomes for .X; Y /. Note that the event fX D 0g \ fY D 0g is the
event f.T; T /g and that has probability 1/4. Note that P.X D 0/ D 2=4 D P.Y D
0/. So the product rule holds for x D 0 and y D 0. We now examine x D 0 and
y D 1. The event fX D 0g \ fY D 1g is the event f.T; H/g. This has probability
1/4. Since P.Y D 1/ D 2=4 the product rule holds in this case as well. The two
remaining cases are symmetric to the cases we just examined. We may conclude
that X and Y are independent.

2.4.2 Variance of a Sum of Random Variables

If X and Y are independent it is easy to compute the variance of X C Y .

Variance of a Sum of Independent Random Variables

Assume that X and Y are two INDEPENDENT random variables defined on
the same sample space �. Then,

Var.X C Y / D Var.X/ C Var.Y /:

More generally, if X1; X2; : : : ; Xn are independent random variables then

Var.X1; X2 C � � � C Xn/ D Var.X1/ C Var.X2/ C � � � C Var.Xn/:

Example 9. Roll 2 dice. Let S be the sum of the two dice. What is the variance
of S?
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Let X and Y be the faces shown by each die. From Example 2 we know that
Var.X/ D Var.Y / D 35=12: Since X and Y are independent we get that

Var.S/ D Var.X C Y / D Var.X/ C Var.Y / D 2 � 35

12
D 35

6
:

Example 10. Assume that X and Y are independent random variables with

Var.X/ D 2 Var.Y / D 3:

What is the variance of 2X � 3Y ?
From the definition of independence it is to see that if X and Y are independent

so are 2X and �3Y . Thus,

Var.2X � 3Y / D Var.2X/ C Var.�3Y / D 4Var.X/ C 9Var.Y / D 35:

Exercises 2.4

1. What is the variance of a random variable uniformly distributed on f�1; 0; 3g?

2. Let X be a random variable such that P.X D 0/ D 1=5 and P.X D 4/ D 4=5.
Find the variance of X .

3. The probability of finding someone in favor of a certain initiative is 0.01. We
interview people at random until we find a person in favor of the initiative. What is
the standard deviation of the number of interviews?

4. Roll two dice.

(a) What is the variance of the maximum of the two dice?
(b) Compare the result of (a) to the variance of a single roll obtained in Example 2.

5. Let X have density f .x/ D x2e�x=2. What is the variance of X?

6. Let U be a random variable which is uniformly distributed on [�1,2]. What is
the variance of U ?

7. Consider the random variables X and Y with densities f .x/ D 3
2
x2 for x in

Œ�1; 1� and g.x/ D 3
4
.1 � x2/ for x in Œ�1; 1�, respectively.

(a) Sketch the graphs of f and g. Based on the graphs which random variable
should have the largest variance?

(b) Compute the variances of X and Y .
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8. Let f .x/ D 3x2 for x in [0,1]. Let X be a random variable with density f . What
is the variance of X?

9. Let X have variance 2. What is the variance of �3X C 1?

10. Let X be a measure in cm and let Y be the measure of the same object in inches.
How are SD.X/ and SD.Y / related?

11. Roll two dice successively. Let X be the face of the first die and Y be the face
of the second die.

(a) Find Var.X � Y /.
(b) Find Var.jX � Y j/.
12. A circuit has three components that work independently one of each other with
probability pi for i D 1; 2; 3. Let S be the number of components that work. Find
the variance of S .

2.5 Normal Random Variables

We start by giving the following definition.

Normal Random Variables

The continuous random variable X is said to be a normal
random variable with mean � and standard deviation � if
it has the density

f .x/ D 1p
2��

e�.x��/2=2�2

:

There are several things to be checked here: that f is a density, that E.X/ D �

and that Var.X/ D �2. Since these computations involve calculus only they will be
left as exercises.

The case � D 0 and � D 1 is of particular interest. The density becomes

f .x/ D 1p
2�

e�x2=2:

See Fig. 2.1 for the graph of f .
We also graph below the densities of two normal densities with � D 2, see

Fig. 2.2. One has a standard deviation equal to 1 and the other one a standard
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x

Fig. 2.1

deviation equal to 2. They both have the characteristic bell-shaped form. However,
one can see below how much more spread out the curve with � D 2 is compared to
the one with � D 1.

Standard Normal Random Variable

The continuous random variable Z is said to be a standard
normal random variable if it has the density

f .z/ D 1p
2�

e�z2=2:

That is, Z is a normal random variable with mean 0 and
standard deviation 1.

The notation Z will be reserved to standard normal random variables. In
order to compute probabilities involving Z we will need to integrate its density.
Unfortunately, there is no explicit formula for antiderivatives of 1p

2�
e�z2=2. We will

need to rely on a numerical table provided in the appendix. What is provided is a
table for the function

ˆ.x/ D P.0 < Z < x/ D
Z x

0

1p
2�

e�z2=2:
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Example 1. What is the probability that a standard normal random variable Z is
larger than 1?

We have that

P.Z > 1/ D 1=2 � ˆ.1/ D 1=2 � 0:34 D 0:16:

Example 2. What is the probability that a standard normal random variable Z is
larger than �1?

By symmetry of the distribution of Z we have

P.Z > �1/ D P.Z < 1/ D 0:84:

Example 3. What is the value below which a standard normal random variable is
with probability 90%?

We want c such that

P.Z < c/ D 1

2
C ˆ.c/ D 0:9:

We see from the table that c is between 1.28 and 1.29. Since c is closer to 1.28, we
take c D 1:28:
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Example 4. What is the value below which a standard normal random variable is
with probability 20%?

This time we want c such that

P.Z < c/ D 0:2:

Note that c is negative. By symmetry we have that

P.Z < c/ D P.Z > �c/ D 1

2
� ˆ.�c/ D 0:2:

Thus,
ˆ.�c/ D 0:3:

We read in the table that �c is approximately 0.84. Thus, we have c D �0:84:

Example 5. What is the probability that a standard normal random variable Z is
between �2 and 2?

P.�2 < Z < 2/ D 2P.0 < Z < 2/ D 2ˆ.2/ � 0:95:

So there is only a 5% chance that a standard normal distribution is larger than 2 or
smaller than �2.

One of the nice properties of the normal distributions is that they can easily be
transformed into standard normal distributions as the property below shows.

Standardization

If X has normal distribution with mean � and standard
deviation � then the random variable

X � �

�

is a standard normal random variable.

What is remarkable here is not that X��

�
has mean 0 and standard deviation 1.

This is true for any random variable that has a mean and a standard deviation as
will be shown below. What is remarkable is that after shifting and scaling a normal
random variable we still get a normal random variable.

We now compute the expected value and standard deviation of X��

�
.

E

�
X � �

�

�
D 1

�
.E.X/ � �/ D 0;
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where the last equality comes from the fact that E.X/ D �. For the variance
we have

Var

�
X � �

�

�
D 1

�2
Var.X � �/ D 1

�2
Var.X/ D 1:

We now give a few examples on how to use the property above.

Example 6. Assume that heights of 6 years old are normally distributed with mean
100 cm and standard deviation 2 cm. What is the probability that a 6 years old taken
at random is at least 105 cm tall?

Let X be height of the child picked at random. We want P.X > 105/. We
standardize X to get

P.X > 105/ D P

�
X � 100

2
>

105 � 100

2

�
D P.Z > 2:5/ � 0:01:

So there is only a 1% probability that a child taken at random be at least
105 cm tall.

Example 7. What is the height above which 90% of the 6 years old are?
We want h such that P.X > h/. We standardize X again to get

P.X > h/ D P

�
X � 100

2
>

h � 100

2

�
D P

�
Z >

h � 100

2

�
D 0:9:

Note that h�100
2

must be negative. By symmetry of the distribution of Z we have
that

P

�
Z >

h � 100

2

�
D P

�
Z <

�h C 100

2

�
D 0:9:

So according to the Normal table we have

�h C 100

2
D 1:28:

We solve for h and get that h is approximately 97.44 cm.

Example 8. Let X be normally distributed with mean � and standard deviation � .
What is the probability that X is 2� or more away from its mean?

We want

P.fX > � C 2�g [ fX < � � 2�g/ D P.X > � C 2�/ C P.X < � � 2�/;
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where the last equality comes from the fact that the two events are disjoint. We
standardize X to get

P.fX > � C 2�g [ fX < � � 2�g/ D P

�
X � �

�
> 2

�
C P

�
X � �

�
< �2

�

D P.Z > 2/ C P.Z < �2/ D 0:05:

2.5.1 Extreme Observations

As we have just seen the normal distribution is concentrated around its mean and it
is unlikely that an observation taken at random is more than 2� away from its mean
(see Example 8). However, if we make several independent observations what is the
probability that the largest or the smallest of the observations is far away from the
mean? We look next at a particular example.

Example 9. Assume that heights of 6 years old are normally distributed with mean
100 cm and standard deviation 2 cm. In a group of 25 children what is the probability
that the tallest of the group is at least 105 cm tall?

Let X1; : : : ; X25 be the heights of the 25 children in the group. We are interested
in the probability that the maximum of these random variables be at least 105. It is
easier to deal with the complement of the preceding event. Note that the maximum
of the 25 observations is less than 105 cm if and only if each one of the observations
is less than 105 cm. Thus,

P.max.X1; : : : ; X25/ < 105/ D P.fX1 < 105g \ fX2 < 105g \ � � � \ fX25 < 105g/
D P.X1 < 105/P.X2 < 105/ : : : P.X25 < 105/;

where the last equality comes from the independence of the Xi . According to
Example 6, we have that P.X1 < 105/ is P.Z > 2:5/ D 0:9876 and this
probability is the same for each Xi since they all have the same distribution. Thus,

P.max.X1; : : : ; X25/ < 105/ D .0:9876/25 � 0:73:

That is, the probability that the tallest child in a group of 25 is at least 105 is
0.27. As the group increases this probability increases as well. For a group of 50
this probability becomes about 0.5. For a group of 100 this probability becomes
about 0.7.

The important conclusion of this example is the following. Extreme observations
(especially if there are many observations) are likely to be far from a typical
observation.
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Exercises 2.5

1. Let Z be a standard normal random variable. Compute the following.

(a) P.Z > 1:52/.
(b) P.Z > �1:15/.
(c) P.�1 < Z < 2/.
(d) P.�2 < Z < �1/.

2. Let Z be a standard normal random variable. What is the value above which Z

is with 99% of probability?

3. Assume that X is normally distributed with mean 3 and standard deviation 2.

(a) P.X > 3/ D?
(b) P.X > �1/ D?
(c) P.�1 < X < 3/ D?
(d) P.jX � 2j < 1/ D?

4. Assume that the diameter of a ball bearing is normally distributed with mean
1 cm and standard deviation 0.05 cm. A ball bearing is considered defective if its
diameter is larger than 1.1 cm or smaller than 0.9 cm.

(a) What is the proportion of defective ball bearings?
(b) Find the diameter above which 99% of the diameters are.

5. Assume that X is normally distributed with mean 5 and standard deviation � .
Find � so that P.X > 4/ D 0:95:

6. Assume that the annual snow fall at some place is normally distributed with
mean 20 in. and standard deviation 8 in.

(a) What is the probability that the snow fall be less than 5 in. on a given year?
(b) What is the probability that the smallest annual snow fall in the next 20 years

will be less than 5 in.?

7. Let Z be a standard normal random variable with density

f .z/ D 1p
2�

e�z2=2:

In this exercise we will check that f is actually a density.

(a) Change the variables from Cartesian to polar to show that

Z C1

�1

Z C1

�1
e�.x2Cy2/=2dxdy D

Z 1

0

Z 2�

0

e��2=2�d�d�:

(b) Show that the r.h.s. of (a) is 2� .
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(c) Show that the l.h.s. of (a) is

�Z C1

�1
e�x2=2dx

�2

:

(d) Conclude that f is a density.

8. Let Z be a standard normal random variable.

(a) Compute E.Z/.
(b) Compute Var.Z/.

9. Let

f .x/ D 1p
2��

e�.x��/2=2:

Show that f has inflection points at � C � and � � � .

Review Exercises for Chap. 2

1. Three people toss one fair coin each. The winner is the one whose coin shows a
face different from the two others. If the three coins show the same face then there
is a new round of tosses, until someone wins.

(a) What is the probability of exactly one round of tosses?
(b) What is the probability that at least three rounds of tosses are necessary?

2. A and B take turns rolling a die. A starts. The winner is the first one that rolls a
6. What is the probability that A wins?

3. Two people play the following game. They toss two fair coins. If the two coins
land on heads then A wins. If one coin lands on heads and the other on tails then
B wins. If the two coins land on tails then the coins are tossed again until someone
wins. What is the probability that B wins?

4. The probability of finding someone in favor of a certain initiative is 0.01. We
interview people at random until we find a person in favor of the initiative. What is
the probability that we need to conduct 50 or more interviews?

5. Draw five cards from a 52 cards deck.

(a) Explain why the probability that the second card is red is the same as the
probability that the second card is black.

(b) What is the expected number of red cards among the five cards that have been
drawn.
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(c) What is the expected number of hearts in five cards dealt from a deck of 52
cards?

6. Assume that car batteries lifetimes follow an exponential distribution with mean
3 years.

(a) What is the probability that a battery lasts 10 years or more?
(b) In a group of ten batteries what is the probability that at least one will last 10

years or more?
(c) How many batteries do we need in order to have at least one last 10 years or

more with probability 0.9?

7. Let X a random variable with density f .x/ D ce�jxj.

(a) Find c.
(b) What is the P.X > 1/?

8. Let X have density g.x/ D c.x � 1/2 for x in [0,2].

(a) Find c.
(b) Find E.X/.
(c) Find Var.X/.

9. Let Y be a random variable with density f .y/ D c.�.y � 1/2 C 2/ for y in
[0,2].

(a) Sketch the graphs of g in Exercise 8 and of f .
(b) Which random variable X or Y do you expect to have the highest variance?
(c) Confirm your prediction by doing a computation.

10. Roll two dice. I win $1 if the sum is 7 or more. I lose $b if the sum is 6 or less.
Find b so that this is a fair game.

11. Toss five fair coins.

(a) What is the expected number of heads?
(b) What is the variance of the number of heads?

12. Suppose atoms of a given kind have an exponential distributed lifetime with
mean 30 years. What is the expected number of atoms still present after 30 years if
we start with 1023 atoms?

13. Ball bearings are manufactured with diameters that are normally distributed
with mean 1 cm and standard deviation 0.05 cm. Assume that 1,000 ball bearings
are manufactured. What is the expected number of ball bearings whose diameter is
at least 1.1 cm?

14. Assume that the random variable T is such that E.T / D 1 and E.T .T � 1/ D
2. What is the standard deviation of T ?

15. It is believed that in the 1700s in Europe life expectancy at birth was only
around 40 years. That is, a newborn baby could expect on average to live 40 years.
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It is also known that child mortality was extremely high. Maybe, as many as 50%
of all babies did not make it to their fifth birthday.

(a) Compare the median life span to the expected life span.
(b) Were people old at 35?

16. I have 100 balls in an urn numbered from 1 to 100. I draw at random one ball
at a time and then I put it back in the urn.

(a) What is the expected number of draws to get ten different numbers?
(b) What is the expected number of draws to get all the 100 different numbers?



Chapter 3
Binomial and Poisson Random Variables

3.1 Counting Principles

Before stating the fundamental principle of counting we give an example.

Example 1. Assume that a restaurant offers five different specials and for each one
of them you can pick either a salad or a soup. How many choices do you have?

In this simple example we can just enumerate all the possibilities. Number the
specials from 1 to 5 and let S denote the salad and O denote the soup. There are ten
possibilities:

.1; S/ .2; S/ .3; S/ .4; S/ .5; S/

.1; O/ .2; O/ .3; O/ .4; O/ .5; O/

This is so because we have two selections to make, one with two choices and the
other one with five choices. Thus, in all there are 2 � 5 D 10 choices.

The Multiplication Rule

If we have r successive selections with nk choices at the
kth step, for k D 1; : : : ; r , then in all we have n1 � n2 �
� � � � nr possibilities.

Example 2. Consider an answer sheet with five categories for age, two categories
for sex, three categories for education. How many possible answer sheets are there?

In this example we have r D 3, n1 D 5, n2 D 2, and n3 D 3. Thus, in all there
are 5 � 2 � 3 D 30 possibilities.

Example 3. In a true/false test there are ten questions. How many different ways
can this test be answered?

This time we have ten successive selections to be made and for each selection we
have two choices. In all there are 2 � 2 � � � � � 2 D 210 possibilities.

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7 3, © Springer Science+Business Media, LLC 2012
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Example 4. How many arrival orders are there for three runners?
We call the three runners A, B, and C. A has three possible arrival positions.

Once the arrival of A is fixed then B has only two possible arrival positions. Once
the arrivals of A and B are fixed there is only one possible arrival position for C.
Thus, we may use the multiplication rule to get that in all there are 3 � 2 � 1 D 6

possibilities.
The preceding example illustrates a consequence of the multiplication rule which

is particularly important.

Permutations

For any positive integer n define n factorial as

nŠ D n � .n � 1/ � .n � 2/ � � � � � 1 for n � 1

and
0Š D 1:

A particular labeling of n distinct objects is called a
permutation of these n objects. The number of possible
permutations of n objects is nŠ.

Note that in Example 4 we are counting the number of permutations of three
runners. The number of permutations is 3Š D 6.

Example 5. How many ways are there to put seven different books on a shelf?
Again we need to count the number of permutations of seven distinct objects. We

get 7Š D 5; 040 possibilities.
Note that the factorials can be computed inductively by using the formula

nŠ D n � .n � 1/Š:

Factorials grow very fast (see Exercise 10).
In many situations we want to pick a set of (nonordered) k objects among n

objects where k � n. How many ways are there to do that?
Let

�
n
k

�
(it is read “n choose k”) be the number of ways to pick a subset of k

objects among n objects. For the first object we pick we have n choices, for the
second one we have n � 1 choices, for the third one n � 2 choices and so on. For
the kth object we have .n � k C 1/ choices. So according to the multiplication rule
we have n � .n � 1/ � .n � 2/ � � � � � .n � k C 1/ ways to pick an ordered set of k

objects. We know that a set of k objects has kŠ permutations. That is, for every set
of k objects there is kŠ ways to order it. Thus, we have that

The number of ways to pick an ordered set of k objects D kŠ

�
n

k

�
:
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So

n � .n � 1/ � .n � 2/ � � � � � .n � k C 1/ D kŠ

�
n

k

�
:

Observe that

n � .n � 1/ � .n � 2/ � � � � � .n � k C 1/ D nŠ

.n � k/Š
:

Thus,
�

n

k

�
D nŠ

kŠ.n � k/Š
:

Ordered and Nonordered Sets

The number of ways to pick an ordered set of k elements out of n elements is

n � .n � 1/ � .n � 2/ � � � � � .n � k C 1/:

A particular way to pick a nonordered set of k elements out of n is called a
combination. The number of combinations of k elements out of n is given by
the binomial coefficient �

n

k

�
D nŠ

kŠ.n � k/Š
:

Example 6. Three awards will be given to three distinct students in a group of ten
students. How many ways are there to give these three awards?

We want to know how many subsets of three students can be picked out of a set
of ten students. This is exactly

�
10

3

�
D 10Š

3Š7Š
D 10 � 9 � 8

3 � 2
D 120:

Example 7. In a contest, ten students will be ranked and the top 3 will get gold,
silver, and bronze medals, respectively. How many ways are there to give these
three medals?

This is different from Example 6 because the order of the three students picked is
important. There are ten possible choices for the gold medal, there are nine choices
for the silver medal, and there are eight choices for the bronze. So according to the
multiplication rule there are 10 � 9 � 8 ways to give these medals. That is 720 ways.
Note that this is 6 (i.e., 3!) times more ways than in Example 6.
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Example 8. In a business meeting seven people shake hands. How many hand-
shakes are there in all?

There are as many handshakes as there are sets of 2 people among 7. So the
number is �

7

2

�
D 7Š

2Š5Š
D 21:

Example 9. How many distinct strings of letters can be made out of the word
CARE?

Every permutation of theses four distinct letters will give a distinct string of
letters. Thus, there are 4Š D 24 distinct strings of letters.

Example 10. How many distinct strings of letters can be made out of the word
PEPPER?

There are 6! possible permutations of these six letters. However, there are
only four distinct letters in this word. For instance, if we permute the P’s only
(there are 3! such permutations) we get the same string of letters. If we permute
the E’s only (there are 2! such permutations) we also get the same string. Thus,
there are

6Š

2Š3Š
D 60

distinct strings of letters.

Example 11. How many distinct strings can we make with three 1’s and two 0’s?
This is exactly the same problem as Example 10. Note that there are 5!

permutations but since there are three 1’s and two 0’s the total number of distinct
strings is:

5Š

3Š2Š
D
�

5

2

�
D 10:

Example 12. You are dealt five cards from a 52 cards deck. What is the probability
of getting a full house (three of a kind and a pair of another kind)?

We first observe that there are
�

52
5

�
equally likely hands. Next we use the

multiplication rule. There are 13 � 12 ways to pick two distinct kinds (one
for the pair, another one for the triplet). Once we have picked the pair kind
there are

�
4
2

�
choices to make a pair. For the triplet there are

�
4
3

�
choices. So

there are

13 � 12 �
�

4

2

�
�
�

4

3

�
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ways to pick a full house. Assuming that all hands are equally likely we get that the
probability of a full house is

13 � 12 �
�

4

2

�
�
�

4

3

�

�
52

5

� � 0:001

Example 13. You are dealt five cards from a 52 cards deck. What is the probability
of getting three of a kind ?

There are
�

13
1

�
ways to pick the kind for the triplet. Once the kind of the triplet is

picked there are
�

4
3

�
ways to pick three cards to make a triplet. There are

�
12
2

�
ways

to pick the two remaining kinds. Note that this is NOT 12�11, this is so because the
two remaining cards are exchangeable: a queen and a king is the same as a king and
a queen for the two remaining cards. Once the kind of each remaining card has been
picked then there are

�
4
1

�
to pick a card for each kind. Thus, the number of ways to

pick three of a kind is
�

13

1

��
4

3

��
12

2

��
4

1

��
4

1

�
:

By dividing the formula above by
�

52
5

�
we get a probability of 0.02.

3.1.1 Properties of the Binomial Coefficients

The
�

n
k

�
are also called binomial coefficients because of their role in the binomial

theorem that we will see below. We start by listing a few useful properties of these
coefficients.

P1. Recall that 0Š D 1 so

�
n

0

�
D 1 for every integer n � 0:

P2. For all integers n � 1 and k � 1 we have that

�
n

k

�
D
�

n � 1

k � 1

�
C
�

n � 1

k

�
:

In order to see the preceding identity fix a particular element out of the n

elements we have and call it O. We have two possible types of subsets of k

elements. The ones that contain O and the ones that do not contain O. There
are

�
n�1
k�1

�
subsets of k elements that contain O. This is so because if we pick
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O then we need to pick k � 1 elements out of n � 1. There are
�

n�1
k

�
subsets

of k elements that do not contain O. By adding the two preceding binomial
coefficients we get all the subsets of k elements out of n. This proves P2.

P3. For all integers n � 0 and k � 0 we have that

�
n

k

�
D
�

n

n � k

�
:

Each time we pick k out of n elements, we do not pick n� k out of n elements.
So there are as many subsets with k elements as there are with n � k elements.
This proves P3.

P4. Pascal’s triangle. This is a convenient way to compute the binomial coefficients
by using the preceding properties.

k 0 1 2 3 4 5

n
0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

One reads
�

n
k

�
at the intersection of row n and column k. For instance,�

4
2

� D 6. The triangle is constructed by using Property P2. For instance,

�
4

2

�
D
�

3

1

�
C
�

3

2

�
:

That is, we get 6 by adding the 3 immediately above and the 3 above and to the
left. Note that Pascal’s triangle is symmetric and that is a consequence of P3.

We now turn to the binomial theorem.

Binomial Theorem

For any integer n � 0 and any real numbers a and b we
have that

.a C b/n D
nX

kD0

�
n

k

�
akbn�k:
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We will see why the Theorem holds on a particular example. Take n D 4 then

.a C b/4 D .a C b/ � .a C b/ � .a C b/ � .a C b/:

All the terms in the expansion come from these four products. So all the terms must
have degree 4. That is all the terms are of the type ai bj where i C j D 4. To
get a4 we must pick a in each one of the four terms in the product and there is
only one way to do that. In the final expansion there is only one a4. To get a3b we
need to pick a’s from three of the four terms in the product and there are

�
4
3

� D 4

ways to do that. In the final expansion there are 4 a3b. To get a2b2 we need to
pick 2 a’s and there are

�
4
2

� D 6 ways to do that. Using the symmetry property P3
we get

.a C b/4 D a4 C 4a3b C 6a2b2 C 4ab3 C b4:

Exercises 3.1

1. Someone has three pairs of shoes, two pairs of pants and four shirts. In how
many ways can he get dressed?

2. A test is composed of 12 questions. Each question can be true, false, or blank.
How many ways are there to answer this test?

3. In how many ways can seven persons stand in line?

4. How many five cards hands are there out of a deck of 52?

5. Two balls are red and three are blue. How many ways are there to line the balls?

6. License plates have three letters and four numbers. How many different license
plates can be made?

7. In a class of 21 in how many ways can a professor give out three A’s?

8. In a class of 21 in how many ways can a professor give out three A’s and three
B’s?

9. Assume that eight horses are running and that three will win.

(a) How many ways are there to pick the unordered three winners?
(b) How many ways are there to pick the ordered three winners?

10. According to Stirling’s formula we have that

nŠ � p
2�nnC1=2e�n:

That is, the ratio of the two sides tends to 1 as n goes to infinity. Use Stirling’s
formula to approximate 10!, 20!, and 50!. How good are these approximations?
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11. Use Pascal’s triangle to compute
�

10
k

�
for k D 0; : : : ; 10.

12. You are dealt five cards from a 52 cards deck. What is the probability
that

(a) You get exactly one pair?
(b) You get two pairs?
(c) You get a straight flush (five consecutive cards of the same suit)?
(d) A flush (five of the same suit but not a straight flush)?
(e) A straight (five consecutive cards but not a straight flush)?

13. (a) Show that
nX

kD0

�
n

k

�
D 2n:

(b) Use (a) to show that a set of n elements has 2n subsets.

14. Compute
nX

kD0

�
n

k

�
.�1/k:

15. Expand .x C y/7.

3.2 Binomial Random Variables

Recall that Bernoulli random variable X is a random variable with two possible
outcomes, usually denoted by 0 and 1. Think of 0 as being a failure and 1 as being
a success. Assume that P.X D 1/ D p and P.X D 0/ D 1 � p. Consider n

independent and identically distributed Bernoulli random variables X1; X2; : : : ; Xn

and let B be the number of successes among these n experiments. In other words,
we have that

B D X1 C X2 C � � � C Xn:

The random variable B is said to have a binomial distribution with parameters n

and p.
We are now going to derive the distribution of B . One of the ways B may be

equal to k is if the first k Bernoulli random variables are successes and the last
n � k are failures. This happens with probability pk.1 � p/n�k . However, there are
as many ways for B D k as there are ways to distribute k 1’s and n � k 0’s among
n places. This is the same problem as the one we solved in Example 11 in 3.1.
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We want the number of distinct strings that have length n and k 1’s. There are
nŠ

kŠ.n�k/Š
distinct strings. Thus,

P.B D k/ D
�

n

k

�
pk.1 � p/n�k:

We now summarize these facts about the binomial distribution in the box below.

Binomial Random Variables

Consider n independent and identically distributed Bernoulli random variables
X1; X2; : : : ; Xn. Let P (success in the i th trial) D P.Xi D 1/ D p, for i D
1; : : : ; n. Let B be the number of successes among these n experiments. That is,

B D X1 C X2 C � � � C Xn:

The random variable B is said to have a binomial distribution with parameters
n and p. We have that,

P.B D k/ D
�

n

k

�
pk.1 � p/n�k:

Note that for a binomial B with parameters n and p the formula simplifies for
the extreme values

P.B D 0/ D .1 � p/n and P.B D n/ D pn

and that by the binomial Theorem

nX

kD0

P.B D k/ D
nX

kD0

�
n

k

�
pk.1 � p/n�k D .p C 1 � p/n D 1:

Example 1. Roll a fair die 5 times. What is the probability of getting exactly
two 6’s?

In this case we are doing n D 5 identical experiments. The probability of success
is p D 1=6 and B is the number of 6’s (or successes) we get in 5 trials. Thus,

P.B D 2/ D
�

5

2

��
1

6

�2 �
5

6

�3

D 10
53

65
� 0:16:
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Example 2. What is the probability of getting at least one 6 in five rolls?
We want the probability of fB � 1g. It is quicker to compute the probability of

the complement of fB � 1g which is fB D 0g.

P.B D 0/ D .1 � p/n D
�

5

6

�5

� 0:4:

Thus, the probability of getting at least one 6 in 5 rolls is approximately 0.6.

Example 3. Assume that births of boys and girls are equally likely. What is the
probability that a family with three children have three girls?

This time we have n D 3 trials and each has a probability of success (having a
girl) equal to p D 1=2. We want

P.B D 3/ D
�

1

2

�3

D 1

8
:

Example 4. Consider four families, each with three children. What is the probabil-
ity that exactly one family has three girls?

We have n D 4 trials and a trial is success if the corresponding family has exactly
three girls. According to Example 3 the probability of success is 1/8. Thus,

P.B D 1/ D
�

4

1

��
1

8

�1 �
7

8

�3

� 0:33:

Binomial coefficients grow very fast. Next we give an algorithm that allows
the computation of a binomial distribution while avoiding the computation of the
binomial coefficients.

Computational Formula for the Binomial Distribution

Let B be a binomial random variable with parameters n and p. We have that

P.B D 0/ D .1 � p/n

and

P.B D k/ D p

1 � p

n � k C 1

k
P.B D k � 1/ for k D 1; 2; : : : ; n:
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We derive the preceding formula. Let k � 1,

P.B D k/ D
�

n

k

�
pk.1 � p/n�k D nŠ

kŠ.n � k/Š
pk.1 � p/n�k

D p

1 � p

n � k C 1

k

nŠ

.k � 1/Š.n � k C 1/Š
pk�1.1 � p/n�kC1

D p

1 � p

n � k C 1

k
P.B D k � 1/:

We now apply the preceding formula to an example.

Example 5. Find the distribution of a binomial random variable with n D 8 and
p D 0:2.

We have that
P.B D 0/ D .1 � p/n D .0:8/8 � 0:17:

We use the recursion for k � 1

P.B D k/ D p

1 � p

n � k C 1

k
P.B D k � 1/ D 1

4

8 � k C 1

k
P.B D k � 1/:

For instance,

P.B D 1/ D 1

4
8P.B D 0/ � 0:34:

We summarize the distribution in the table below.

k 0 1 2 3 4 5 6 7 8

P.B D k/ 0:17 0:34 0:29 0:15 0:05 0:01 0:001 0 0

Note that P.B D 7/ and P.B D 8/ are small but strictly positive. In the table above
we are keeping only the first three decimals and this is why they appear to be 0.

We now turn to the mean and variance of the binomial distribution.

Mean and Variance of a Binomial Distribution

Assume that B is a binomial random variable with parameters n and p. We
have that

E.B/ D np

and
Var.B/ D np.1 � p/ D npq:
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Recall that a binomial random variable B is a sum of independent identically
distributed Bernoulli random variables. That is,

B D X1 C X2 C � � � C Xn:

Thus,

E.B/ D E.X1/ C E.X2/ C � � � C E.Xn/

and using that E.Xi / D p for i D 1; : : : ; n we get

E.B/ D np:

Recall that Var.Xi/ D p.1 � p/ D pq and that the variance of the sum of
independent random variables is the sum of the variances. Thus,

Var.B/ D Var.X1/ C � � � C Var.Xn/ D npq:

Example 6. Roll a die 30 times, what is the expected number of 5’s?
The number of 5’s is a binomial random variable with parameters n D 30 and

p D 1=6. So the expected number of 5’s is np D 5.

Example 7. Assume that 100 components have exponential lifetimes with mean 1
year. Assume that the components fail independently one of the other. What is the
expected number of components that have not failed after 2 years?

Let B be the number of components that have not failed after 2 years. We may
write

B D X1 C � � � C X100;

where Xi D 1 if the i th component has not failed after 2 years and Xi D 0

otherwise, for i D 1; : : : ; 100. The Xi are independent identically distributed
Bernoulli random variables with probability of success

p D
Z 1

2

e�t dt D e�2:

So B is a binomial random variable with parameters 100 and p and the expected
value of B is

E.B/ D np D 100e�2 � 13:53:

Another measure of location is the mode. Recall that a mode M (not necessarily
unique) of a discrete random variable B is such that P.B D M / is the maximum
of all the P.X D k/.
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Mode of a Binomial Random Variable

Let B be a binomial random variable with parameters n and p. If np C p is
not an integer then there is a unique mode M which is the greatest integer less
than np C p. If np C p is an integer then there are two modes np C p and
np C p � 1.

See Exercise 10 for a proof of the formula above.

Example 8. Roll a die 30 times. What is the most likely number of 6’s we
will get?

The number of 6’s is a binomial random variable with parameters n D 30 and
p D 1=6. We first examine np C p D 5 C 1=6. This is not integer, therefore we
have a unique mode: the largest integer below 5 C 1=6, that is 5. The most likely
number of 6’s is 5.

Note that if we roll the die 35 times then np C p D 6 and we have two modes
np C p D 6 and np C p � 1 D 5. So if we roll the die 35 times there are two most
likely numbers of 6’s: 5 and 6.

3.2.1 Normal Approximation to the Binomial Distribution

As n gets big the computation of something like P.B � a/ may involve the
computation of many binomial probabilities. The most important technique around
this problem is the following normal approximation.

Normal Approximation

Let B be a binomial distribution with parameters n and p. As n increases the
distribution of B�npp

npq
approaches the distribution of a standard normal random

variable Z in the sense that for any a � b we have

P.a � B � b/ � P

�
a � np � 1=2p

npq
� Z � b � np C 1=2p

npq

�
as n ! 1:

We are using a continuous random variable Z to approximate a discrete random
variable B . This is why we enlarge the interval by 1/2 on both sides. This is
especially important if a D b or if

p
npq is small.

As the figures below illustrate, the larger the n is the closer a binomial histogram
is from a normal curve. Another fact that can be seen below is that the convergence
toward the normal curve is quicker when p is closer to 1/2.
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0.1
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Example 9. Roll a fair die 36 times, what is the probability that we get exactly six
6’s?

Let B be the number of 6’s we get in 36 rolls. Then B is a binomial distribution
with parameters 36 and 1/6. We first compute the exact probability.

P.B D 6/ D
�

36

6

��
1

6

�6 �
5

6

�30

� 0:176

We now use the normal approximation. Note that np D 6 and npq D 5.

P.B D 6/ � P

�
6 � 6 � 1=2p

5
� Z � 6 � 6 C 1=2p

5

�
� 0:174:

So even in this example with n not so large and p not close to 1/2 the approximation
is good.

Example 10. A hotel has accepted 210 reservations but it has only 200 rooms.
It is assumed that guests will actually show up independently of each other with
probability 0.9. What is the probability that the hotel will not have enough rooms?

Let B be the number of guests that will actually show up. This is a binomial
random variable with parameters 210 and 0.9. The mean number of guests showing
up is np D 189 and the variance is npq D 18:9. The normal approximation yields

P.201 � B/ � P

�
201 � 189 � 1=2p

18:9
� Z

�
D P.2:64 � Z/ � 0:004:

It is rather unlikely that not enough rooms will be available.
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Example 11. Assume that a fair coin is tossed 10,000 times. Let B be the number
of heads. What is the probability of getting exactly 5,000 heads?

We use the normal approximation to get

P.B D 5000/ � P

�
5000 � np � 1=2p

npq
� Z � 5000 � np C 1=2p

npq

�
:

The mean is np D 5; 000 and the standard deviation
p

npq D 50. Thus,

P.B D 5000/ � P.�0:01 � Z � 0:01/ � 0:008:

So the probability of getting exactly 5,000 heads is rather slim: less than 1%.
Note that npCp D 5;000C1=2 and so the most likely number of heads is 5,000.

However, there are so many possible values that any fixed number of heads is rather
unlikely.

Example 12. Assume that a fair coin is tossed 10,000 times. Let B be the number
of heads. Find a so that B is between E.B/�a and E.B/Ca with probability 0.99.

The expected value for B is np D 10;000 � 1=2 D 5;000: We want a so that

P.E.B/ � a � B � E.B/ C a/ � P

��a � 1=2p
npq

� Z � a C 1=2p
npq

�
D 0:99:

Using the normal table we get

a C 1=2p
npq

D 2:57:

Thus,

a D 2:57
p

npq � 1

2
:

In this particular case we get a D 128. So with 99% of confidence the number of
heads will be in the interval [5;000 � 128; 5;000 C 128], which is rather narrow
considering that we are performing 10,000 tosses. The important lesson of this
example is that the number of successes of a binomial with parameters n and p is in
the interval .np � .2:57

p
npq � 1=2/; np C .2:57

p
npq � 1=2// with probability

0.99 when n is large. In particular, typical deviations from the mean are of
order

p
n.
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3.2.2 The Negative Binomial

Example 13. Roll a fair die. What is the probability that the second 6 appears at the
10th roll?

Note that the event A D fthe second 6 appears at the 10th rollg is the intersection
of the two events B D fthere is exactly one 6 in the first 9 rollsg and C D fthe 10th
roll is a 6g. Moreover, B and C are independent since B depends on the first 9 rolls
and C depends on the 10th roll. Note that the number of 6’s in 9 rolls is a binomial
with parameters 9 and 1/6. Moreover, P.C / D 1=6. Thus,

P.A/ D P.B/P.C / D
�

9

1

��
1

6

��
5

6

�8 �
1

6

�
D 9

58

610
� 0:06:

More generally, we have the following

Negative Binomial

Assume that we perform identical and independent trials, each trial having a
probability of success equal to p. Let r be an integer larger than or equal to 1.
Let Br be the number of trials until the r th success. Then Br is called a negative
binomial random variable with parameters r and p. Moreover, we have

P.Br D k/ D
�

k � 1

r � 1

�
pr�1.1 � p/k�rp D

�
k � 1

r � 1

�

� pr.1 � p/k�r for k D r; r C 1; : : : :

Note that in the case r D 1, B1 is the number of trials until the first success. This
is exactly a geometric random variable and the formula above simplifies to

P.B1 D k/ D p.1 � p/k�1 for k D 1; 2; : : : :

Example 14. What is the probability that the fifth child of a couple is their second
girl?

This is a negative binomial with r D 2 and p D 1=2. Thus,

P.B2 D 5/ D
�

4

1

��
1

2

��
1

2

�3 �
1

2

�
D 4

25
D 1

8
:

We now turn to the mean and variance of a negative binomial random variable.
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Mean and Variance of a Negative Binomial

Let Br be a negative binomial random variable with parameters r and p. Then,

E.Br/ D r

p

Var.Br/ D r.1 � p/

p
:

We derive the formulas above by breaking Br into a sum of simpler random
variables. Let G1 the number trials until the first success, G1 is a geometric random
variable with parameter p. Let G2 be the number of trials from the first success until
the second success. The random variable G2 is also geometric and G1 and G2 are
independent. More generally, we define Gi to be the number of trials between the
.i � 1/th success and the i th success for i D 1; 2; : : : ; r . It is easy to see that

Br D G1 C G2 C � � � C Gr:

All the Gi are independent and identically distributed according to a geometric.
Recall that E.G1/ D 1=p. Thus,

E.Br/ D rE.G1/ D r

p
:

By using the independence of the Gi and the fact that Var.G1/ D .1 � p/=p we get

Var.Br/ D rVar.G1/ D r.1 � p/

p
:

Example 15. Roll a fair die. How many rolls are expected to get the third 6?
The number of trials to get the third 6 is a negative binomial with parameters

r D 3 and p D 1=6. So

E.B3/ D 3

1=6
D 18:

Exercises 3.2

1. Toss a fair coin 4 times.

(a) What is the probability of getting at least 1 heads?
(b) What is the probability of getting at least 3 heads?
(c) What is the probability of getting exactly 2 heads?
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2. Roll two fair dice 5 times.

(a) What is the probability of getting at least one sum equal to 7?
(b) What is the probability of getting at least two sums larger than or equal to 7?

3. Toss a fair coin 7 times. Let B be the number of heads.

(a) Draw the histogram of the distribution of B .
(b) What is the mean of B?
(c) What is the mode of B?

4. Toss a fair coin 11 times. What is the most likely number of heads?

5. Given that there were 5 heads in 12 tosses of a fair coin.

(a) What is the probability that the first toss was head?
(b) What is the probability that the last two tosses were heads?
(c) What is the probability that at least two of the first five tosses were heads?

6. Assume that 100 components have normal lifetimes with mean 1 year and
standard deviation 6 months. Assume that the components fail independently one
of the other.

(a) What is the probability that at least 2 components have not failed after 2 years?
(b) What is the expected number of components that have not failed after 2 years?

7. Assume that 500 invitations have been sent out for a given event. Assume that
each person shows up independently of the others with probability 0.6.

(a) What is the probability that 250 or less people show up?
(b) Find b so that the number of people that show up is b or larger with

probability 0.9.

8. Roll a fair die 360 times.

(a) What is the probability to get exactly 60 1’s?
(b) Find a so that the number of 1’s is in the interval Œ60�a; 60Ca� with probability

95%.

9. Toss a fair coin 100 times.

(a) What is the probability of getting exactly 50 heads?
(b) Assume that 25 probability students toss a fair coin 100 times each. What is the

probability that at least one student gets exactly 50 heads?

10. In this exercise we derive the formulas for the mode. Let B be a binomial with
parameters n and p.

(a) By using the computational formula for the binomial distribution show that
P.B D k � 1/ � P.B D k/ if and only if k � np C p.

(b) By definition of the mode M we must have simultaneously P.B D M � 1/ �
P.B D M / and P.B D M C 1/ � P.B D M /. Use (a) to show that
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np C p � 1 � M � np C p:

(c) Show that there is only one integer M solution of the double inequality in (b)
when np C p is not an integer.

(d) Show that there are two solutions to the double inequality in (b) when np C p

is an integer.

11. In 1975, in Columbus Ohio there were 12 cases of childhood leukemia. The
expected number is 6 per year (Morbidity and mortality weekly report, July 25 1997,
p 671–674). Assume that there are 200,000 children under 15 in that area and that
each one has the same probability 3 � 10�5 of being hit by leukemia in a given
year.

(a) Use the computational formula for the binomial distribution to compute the
probability of having 12 or more cases of leukemia in a given year.

(b) Assume that there are 200 regions in the United States with the same number of
children and the same probability for each child to be struck by leukemia. What
is the probability that at least one region will get 12 cases or more?

(c) Considering (a) and (b), would you attribute the cluster in Columbus to chance
alone?

12. Toss a fair coin.

(a) What is the probability that the third head occurs at the eighth toss?
(b) What is the expected number of tosses to get the tenth head?

13. Items are examined sequentially at a manufacturing plant. The probability that
an item is defective is 0.05.

(a) What is the probability that the first 20 items examined are not defective?
(b) What is the expected number of examined items until we get the fifth defective?

14. What is the probability that the fifth child of a couple is their third girl?

3.3 Poisson Random Variables

We start with the definition.

Poisson Random Variables
The random variable N is said to have a Poisson distribu-
tion with mean 	 if

P.N D k/ D e�	 	k

kŠ
for k D 0; 1; : : : :
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Later in this section we will show that a random variable with the distribution
above has indeed mean 	. Typically the Poisson distribution appears when we
count the number of occurrences of events that have small probabilities and are
independent.

Example 1. Consider a fire station that serves a given neighborhood. Each resident
has a small probability of needing help on a given day and most of the time
people need help independently of each other. The number of calls a fire station
gets on a given day may be approximated by a Poisson random variable with
mean 	. The parameter 	 may be taken to be the observed average. Assume that
	 D 6. What is the probability that a fire station get 2 or more calls in a given
day?

P.N � 2/ D 1 � P.N D 0/ � P.N D 1/ D 1 � e�	 � 	e�	 D 1 � 7e�6 � 0:98:

Example 2. Assume that a book has an average of one misprint every ten pages.
What is the probability that a given page has no misprint?

Consider all the words in a given page, we may assume that each one of them
has a small probability of being misprinted. We may also assume that each word is
misprinted independently of the other words. With these assumptions the Poisson
distribution is adequate. The mean number of misprints per page is 	 D 0:1. Thus,

P.N D 0/ D e�	 D e�0:1 � 0:9:

The next property shows that a binomial distribution with parameters n and p

may be approximated by a Poisson distribution with mean 	 D np.

Poisson Approximation of the Binomial

Let B be a binomial random variable with parameters n and
p. Let N be a Poisson random variable with mean 	 D np

then for every k � 0

P.B D k/ � P.N D k/ for small p:

The smaller the p is the better the approximation above is, for more details see
Hodges and Le Cam, Annals of Mathematical Statistics (1960), pp 737–740. Thanks
to the Poisson approximation we replace a two parameters distribution by a one
parameter distribution and we avoid the computation of binomial coefficients. Note
that if B is a binomial random variable with parameters n and p then

P.B D 0/ D .1 � p/n:
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Recall from Calculus that

lim
p!0

ln.1 � p/

�p
D 1:

Therefore,

P.B D 0/ D .1 � p/n D exp.n ln.1 � p// � exp.�np/ D P.N D 0/;

where the approximation holds for p small enough. In order to prove that a binomial
with small p may be approximated by a Poisson we need to show that for every
k � 0 it is true that P.B D k/ � P.N D k/. For a proof see the reference above.

Example 3. During a recent meteor shower it was estimated that the probability
of a given satellite to be hit by a meteor is 1/1,000. Assuming that there are 500
satellites around the Earth and that they get hit independently one of the other, what
is the probability that no satellite will be hit?

Let B be the number of satellites hit. Under these assumptions B has a binomial
distribution with parameters 500 and 1/1,000. We have

P.B D 0/ D
�

1 � 1

1; 000

�500

� 0:6064:

We now use the Poisson approximation with np D 1=2. We have

P.N D 0/ D 1 � e�	 D e�1=2 � 0:6065:

One can see that the approximation is excellent in this case.
What is the probability that two or more satellites are hit?
This time we want

P.N � 2/ D 1�P.N D 0/�P.N D 1/ D 1�e�	 �	e�	 D 1� 3

2
e�1=2 � 0:09:

The next example will use the following algorithm to compute the distribution of
a Poisson random variable.

Computational Formula for the Poisson Distribution

Let N be a Poisson random variable with mean 	 then its distribution may be
computed inductively by using the following algorithm.

P.N D 0/ D e�	

P.N D k/ D 	

k
P.N D k � 1/ for all k � 1:
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The formula above is easy to derive. Assume k � 1, then

P.N D k/ D e�	 	k

kŠ
D e�	 	

k

	k�1

.k � 1/Š
D 	

k
P.N D k � 1/:

Example 4. Assume that a hospital serves 100,000 people and that each person may
get hit by a certain disease with probability 3 � 10�5 per year, independently one of
the other. What is the probability that the hospital will see six or more cases of the
disease in a given year?

Under the assumptions the number of cases of the disease follows a binomial with
parameters n D 100;000 and p D 3�10�5. We use the Poisson approximation with
mean 	 D np D 3. We want

P.N � 6/ D 1 �
5X

kD0

P.N D k/:

We use the computational formula to get

k 0 1 2 3 4 5

P.N D k/ 0:05 0:15 0:22 0:22 0:17 0:1

Thus,
P.N � 6/ � 1 � 0:91 D 0:09:

In many situations we may need more involved models than the simple binomial
in Example 4. For instance, in the case of cancer the probability of getting hit
increases significantly with age. So a more realistic model should separate people
in age classes. The total number of cancer cases is then a sum of binomial random
variables with different p’s. This is not a binomial random variable. However, the
next result shows that we may still use the Poisson approximation when all the p’s
are small.

Poisson Approximation of a Sum of Binomial Random
Variables

Let Bi , for i D 1; : : : ; r , be independent binomial random variables with
parameters ni and pi . Let

	 D n1p1 C � � � C nrpr

and N be a Poisson random variable with mean 	. Then for every k � 0

we have

P.B1 C B2 C � � � C Br D k/ � P.N D k/ when all the p0
i s are small.
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Example 5. Assume that a hospital serves 100,000 people that are in three different
class ages. Assume that an individual in class i has a probability pi (independently
of all the other individuals) of getting a certain disease. Class 1 has n1 D 50; 000

individuals and p1 D 2 � 10�5, class 2 has n2 D 30; 000 individuals and p2 D
5 � 10�5 and class 3 has n3 D 20; 000 individuals and p3 D 10�4. What is the
probability that on a given year this hospital sees three or more cases of the disease?

For each class i the number of cases Bi follows a binomial with parameters
ni and pi . We are interested in the event B1 C B2 C B3 � 3: Since the Bi

are independent and the pi ’s are small we may use the Poisson approximation.
Let

	 D n1p1 C n2p2 C n3p3 D 4:5

and let N be a Poisson random variable with mean 	. We have

P.B1 C B2 C B3 � 3/ � P.N � 3/ D 1 � .P.N D 0/ C P.N D 1/ C P.N D 2//

D1 � e�	 � 	e�	 � 	2e�	=2 � 0:83:

We now turn to a property that shows that the Poisson distribution is bound to
appear in many situations. Consider a finite interval I that gets random hits (the
interval may represent a time interval and the hits may represent incoming telephone
calls). Assume the following two hypotheses:

(1) A given point of I may get hit at most once
and

(2) Divide I in equal subintervals then each subinterval gets hit with the same
probability and independently of the other subintervals.

Poisson Scatter Theorem

Under hypotheses (1) and (2) there is a number 	 > 0 such that the total number
of hits on I follows a Poisson distribution with mean 	. Let L be the length of
I then any subinterval of I with length ` has a Poisson distribution with mean
	`=L.

For a proof of this theorem, see Probability by Pitman.

Example 6. Consider a telephone exchange on a Monday from 2:00 to 3:00 p.m.
Assume that there is an average of 120 calls during this time period. What is the
probability of getting at least four calls in a 3-min interval?

It may be reasonable to assume that hypotheses (1) and (2) hold (the only
question about this is whether each subinterval of time is equally likely to get calls).
Then according to the Poisson scatter Theorem the number of calls during a 3-min
interval follows a Poisson distribution with mean 120 � 3=60 D 6.
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P.N � 4/ D 1 � .P.N D 0/ C P.N D 1/ C P.N D 2/ C P.N D 3//

D 1 � e�6 � 6e�6 � 62

2
e�6 � 63

3Š
e�6 � 0:85:

The Poisson scatter Theorem holds in any dimension. For instance, it may be
used to count the number of stars that appear on a photographic plate or the number
of raisins in a cookie. In the first case we replace length by area and in the second
one we replace length by volume.

Example 7. Assume that rain drops are hitting a square with side 10 in. Assume
that the average is 30 drops per minute. What is the probability that a subsquare
with side 2 in. does not get hit in a given minute?

Again it seems reasonable to assume that hypotheses (1) and (2) hold. The
number of rain drops in the subsquare follows a Poisson distribution with mean
30 � 22=102 D 1:2. Thus,

P.N D 0/ D e�1:2 � 0:3:

Example 8. Assume that a given document has in average two misprints per page.
Given that there are no misprints in the first half of a page, what is the probability
that there will be two or more misprints in the second half of this page?

It is reasonable to assume that hypotheses (1) and (2) hold and therefore the
number of misprints in the two half pages are independent. Let A be the event “there
are no misprints in the first half of the page” and let B be the event “there are at least
two misprints in the second half of the page.” Let N be the number of misprints in
the second half page. According to the Poisson scatter Theorem N follows a Poisson
distribution with mean 2 � 1=2 D 1: Thus, we have

P.BjA/ D P.B/ D P.N � 2/ D 1 � .P.N D 0/ C P.N D 1// D 1 � 2e�1:

For some of the computations below it will be useful to recall the following from
Calculus.

Taylor Series for the Exponential Function
We have

ex D
1X

kD0

xk

kŠ
for every x:

In particular we see that if N is a Poisson random variable with mean 	 we have

1X

kD0

P.N D k/ D
1X

kD0

e�	 	k

kŠ
D e�	e	 D 1:
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We are now going to compute the mean and variance of a Poisson random
variable N with mean 	. We have

E.N / D
1X

kD0

kP.N D k/ D
1X

kD1

ke�	 	k

kŠ
D e�		

1X

kD1

	k�1

.k � 1/Š
:

By shifting the summation index we get

1X

kD1

	k�1

.k � 1/Š
D

1X

kD0

	k

kŠ
D e	:

Thus,

E.N / D e�		

1X

kD1

	k�1

.k � 1/Š
D e�		e	 D 	:

We now turn to the computation of the variance of N . It turns out that it is easier to
compute E.N.N � 1// than E.N 2/. We have

E.N.N �1// D
1X

kD0

k.k�1/P.N D k/ D
1X

kD2

k.k�1/e�	 	k

kŠ
D e�		2

1X

kD2

	k�2

.k � 2/Š
:

We shift again the summation index to get

E.N.N � 1// D e�		2

1X

kD2

	k�2

.k � 2/Š
D e�		2e	 D 	2:

So E.N.N � 1// D 	2 and therefore

E.N 2/ D E.N.N � 1/ C E.N / D 	2 C 	:

By definition of the variance we have

Var.N / D E.N 2/ � E.N /2 D 	:

We now summarize the computations above.

Mean and Variance of a Poisson Random Variable
Let N be a Poisson random variable with mean 	 then

E.N / D Var.N / D 	:
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Example 9. We have seen that the distribution of binomial random variable B with
parameters n and p may be approximated by a Poisson distribution with mean 	 D
np if p is small. We also know that B may be approximated by a Normal distribution
if n is large. This implies that if n is large and p small then a Poisson random
variable with mean 	 may be approximated by a normal distribution. In fact, the
larger 	 the better the approximation. In this example, we will compute P.N D 5/

exactly and by using a normal approximation for a Poisson random variable N with
mean 7. The exact computation is

P.N D 5/ D e�7 75

5Š
� 0:13:

We now use the normal approximation.

P.N D 5/ D P.4:5 � N � 5:5/ D P

�
4:5 � E.N /

SD.N /
� N � E.N /

SD.N /
�5:5 � E.N /

SD.N /

�
:

We now approximate the distribution of N �E.N /

SD.N /
by the distribution of a standard

normal distribution Z. Thus,

P.N D 5/ � P

�
4:5 � 7p

7
� Z � 5:5 � 7p

7

�
D P.�0:94 � Z � �0:57/ � 0:11:

Mode of a Poisson Random Variable

Let N be a Poisson random variable with mean 	. If 	 is an integer then N

has two modes: 	 and 	 � 1. If 	 is not integer then N has a unique mode: the
largest integer smaller than 	.

For a proof see Exercise 10 below.

Exercises 3.3

1. Assume that books from a certain publisher have an average of one misprint
every 20 pages.

(a) What is the probability that a given page has two or more misprints?
(b) What is the probability that a book of 200 pages has at least one page with two

or more misprints?

2. Suppose that cranberries muffins have an average of six cranberries.

(a) What is the probability that half a muffin has at least four cranberries?
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(b) What is the probability that half a muffin has two or less cranberries?
(c) Given that the first half of my muffin had two cranberries or less, what is the

probability that the second half has four or more cranberries?

3. Assume that you bet 200 times on 7 at the roulette (there are 38 possible slots).
What is the probability that you win at least 3 times?

4. (a) Use the computational formula to compute P.N D k/ for k D 0; 1; : : : ; 10

for a Poisson random variable with mean 	 D 5.
(b) What are the modes of the distribution in (a)?

5. Assume that 1,000 individuals are screened for a condition that affect 1% of
the general population. What is the probability that exactly ten individuals have the
condition?

6. Assume that an elementary school has 500 children.

(a) What is the probability that at least one child was born on April 15?
(b) What is the probability that at least three children were born on April 15?

7. The number of incoming phone calls at a telephone exchange is modeled using
a Poisson distribution with mean 	 D 2 per minute.

(a) What is the probability of having five or less calls in a 3-min interval?
(b) Given that there were seven calls in the first 3 min, what is the probability that

there were no calls during the first minute?
(c) Show that given that there were n calls during the first t minutes the number

of calls during the first s < t minutes follows a binomial with parameters s=t

and n.

8. Suppose that the probability of a genetic disorder is 0.05 for men and 0.01 for
women. Assume that 50 men and 100 women are screened.

(a) Compute the exact probability that exactly two individuals among the 150 that
have been screened have the disorder.

(b) Use the Poisson approximation for a sum of binomial random variables to
compute the approximate probability of the event in (a).

9. Assume that 1% of men under 20 experience hair loss and that 10% of men
over 30 experience hair loss. A sample of 20 men under 20 and 30 men over 30 are
examined. What is the probability that four or more men experience hair loss?

10. In this problem we are going to find a formula for the mode of a Poisson
distribution.

(a) Use that

P.N D k/ D 	

k
P.N D k � 1/ for k � 1

to show that P.N D k/ � P.N D k � 1/ if and only if 	 � k.
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(b) Show that P.N D k/ � P.N D k C 1/ if and only if 	 � k C 1.
(c) Show that the mode M of N must satisfy the double inequality

	 � 1 � k � 	:

(d) Show that if 	 is an integer then there are two modes 	 and 	 � 1. Show that
if 	 is not an integer then there is a unique mode which is the largest integer
smaller than 	.

11. Let N be a Poisson random variable with mean 10.

(a) What is the exact probability that N D 10?
(b) Use the normal approximation of Example 9 to compute the probability in (a).

Review Exercises for Chap. 3

1. How many distinct string of letters can we get from the word TOUGH?

2. How many distinct string of letters can we get from the word PROBABILITY?

3. Roll three dice.

(a) What is the probability of getting a sum equal to 10?
(b) What is the probability of getting a sum equal to 9?

4. Assume you toss a coin 100 times and you get 32 heads. Do you think this is a
fair coin? (hint: assume it is a fair coin and compute the probability of getting 32 or
less heads).

5. Roll a pair of dice 10 times.

(a) What is the probability to get at least once a pair of 6’s?
(b) What is the probability of getting twice a pair of 6’s?
(c) What is the probability of getting the first pair of 6’s at the tenth roll?

6. Roll a die.

(a) What is the probability of getting the first 6 at or before the fifth roll?
(b) What is the probability of getting the third 6 at the tenth roll?
(c) What is the expected number of rolls to get the fifth 6?
(d) Given that the second 6 occurred at the tenth roll, what is the probability that

the first 6 occurred at the fifth roll?

7. A gambler bets repeatedly $1 on red at the roulette (there are 18 red slots and 38
slots in all). He wins $1 if red comes up loses $1 otherwise. What is the probability
that he will be ahead

(a) After 100 bets?
(b) After 1,000 bets?
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8. Assume that each passenger shows up independently of the others with proba-
bility 0.95. How many tickets should the airline sell for a flight on an airplane with
200 seats so that, with probability 0.99, each passenger that shows up gets a seat on
the flight?

9. A company has three factories A, B, and C. A has manufactured 1,000 items, B
has manufactured 1,500 items, and C has manufactured 2,000 items. Assume that
the probability that an item be defective is 0.003 for A, 0.002 for B, and 0.001 for
C. What is the probability that the total number of defective items is 7 or larger?

10. Assume that lamp bulbs have exponential life times with mean 2 years. What
is the probability that in a box of ten

(a) Exactly two will last at least 2 years?
(b) None will last more than 1 year?
(c) What is the expected number of lamp bulbs that will last at least 2 years?

11. Assuming that boys and girls are equally likely, how many children should a
couple plan to have in order to have at least one boy and one girl with probability
0.99?

12. In average there is one defect per 100 m of magnetic tape.

(a) What is the probability that 150 m of tape have no defect?
(b) Given that the first 100 m of tape had no defect what is the probability that the

whole 150 m have no defect?
(c) Given that the first 100 m of tape had at least one defect what is the probability

that the whole 150 m have exactly two defects?

13. Assume you bet $1 100 times on 7 (there are 38 equally likely slots). If 7 comes
up you win $35, otherwise you lose your $1.

(a) What are your expected winnings?
(b) What is the probability that you are ahead after 100 bets?
(c) What is the probability that you have lost $100?

14. Assume you bet $1 100 times on red (there are 38 equally likely slots and 18
are red). If red comes up you win $1, otherwise you lose your $1.

(a) What are your expected winnings?
(b) What is the probability that you are ahead after 100 bets?
(c) What is the probability that you have lost $100?

15. Assume that 49 students each toss a fair coin 100 times.

(a) What is the probability that at least one student gets 60 or more heads?
(b) What is the probability that at least three students get at least 60 heads?

16. Assume that on average there are five raisins per cookie.

(a) What is the probability that in a package of ten cookies all the cookies have at
least one raisin?
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(b) How many raisins should each cookie have in average so that the probability in
(a) is 0.99?

17. Assume that 10% of the population are left-handers. What is the probability
that in a class of 40 there are at least three left-handers?

18. Roll a die four times. What is the probability of

(a) Getting a pair?
(b) Getting three of a kind?
(c) Getting four of a kind?
(d) Getting two pairs?
(e) Four distinct faces?



Chapter 4
Limit Theorems

4.1 The Law of Large Numbers

Assume that we want to know the mean lifetime of a certain type of battery. A
natural way to do that is to pick at random a sample of 100 identical batteries,
measure the lifetime for each battery and then compute the average lifetime in our
sample. The law of large numbers will show that if the sample is large enough then
the sample average should be close to the true mean with high probability. We now
formalize these ideas.

Let X1; : : : ; Xn be n independent identically distributed (i.i.d. in short) random
variables. These may represent, for instance, the lifetimes of a sample of n batteries.
Typically, the distributions of the Xi will not be known. However, we will assume
that the mean and the variance exist (but are not known). We denote the variance
and the mean of Xi by � and � , respectively.

E.X1/ D E.X2/ D � � � D E.Xn/ D � and Var.X1/ D Var.X2/

D � � � D Var.Xn/ D �2:

We would like to estimate �. A natural estimator for � is

NX D X1 C X2 C � � � C Xn

n
:

That is, we estimate the true mean � by using the average over the sample NX . Note
that NX is a random variable whose value varies with the sample over which we are
averaging. We start by computing the mean and the variance of NX in function of �

and � . Recall that the expectation is a linear operator.

R.B. Schinazi, Probability with Statistical Applications,
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The Expectation is Linear
Let ai , 1 � i � n, be a sequence of real numbers. Let Xi , 1 � i � n, be a
sequence of random variables defined on the same sample space. We have

E.a1X1 C a2X2 C � � � C anXn/ D a1E.X1/ C a2E.X2/ C � � � C anE.Xn/:

Note that by the linearity of the expectation we have

E.X1 CX2 C� � �CXn/ D E.X1/CE.X2/C� � �CE.Xn/ D �C�C� � �C� D n�:

Again by the linearity of the expectation we have

E. NX/ D E

�
X1 C X2 C � � � C Xn

n

�
D 1

n
E.X1 C X2 C � � � C Xn/ D 1

n
n� D �:

That is, the expected value of NX is the same as the expected value of each random
variable Xi . We now compute the variance of NX in order to investigate the dispersion
of NX . We first recall an important property of the variance.

Variance of a Sum of INDEPENDENT Random Variables
Let ai , 1 � i � n, be a sequence of real numbers. Let Xi , 1 � i � n, be a
sequence of independent random variables defined on the same sample space.
We have

Var.a1X1 Ca2X2 C� � �CanXn/ D a2
1Var.X1/Ca2

2Var.X2/C� � �Ca2
nVar.Xn/:

Let X1; X2; : : : ; Xn be i.i.d. random variables. We start by computing

Var.X1 C X2 C � � � C Xn/ D Var.X1/ C Var.X2/ C � � � C Var.Xn/

D �2 C �2 C � � � C �2 D n�2:

Var. NX/ D Var

�
X1 C X2 C � � � C Xn

n

�
D 1

n2
Var.X1 C X2 C � � � C Xn/

D 1

n2
n�2 D �2

n
:

We summarize these results below.
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Expected Value and Variance of the Sample Average
Let X1; X2; : : : ; Xn be independent and identically distributed random variables
with mean � and variance �2. Then,

E. NX/ D E

�
X1 C X2 C � � � C Xn

n

�
D �

and

Var. NX/ D Var

�
X1 C X2 C � � � C Xn

n

�
D �2

n
:

That is, the expected value of NX is � and its distribution is more and more
concentrated around � as the sample size n increases.

The variance of NX is one measure of the distance between NX and its mean �.
Observe that the variance of NX converges to 0 as n goes to infinity. In this sense this
means that NX converges to � as n goes to infinity. In other words, we have justified
mathematically the natural idea of taking the sample average to estimate the mean
of the distribution.

Example 1. Assume that we use a sample of 100 identical batteries to estimate
the lifetime of a battery. Denote the mean and standard deviation of the lifetime
distribution by � and � , respectively. What are the mean and standard deviation of
the sample average NX?

According to the formula above

E. NX/ D � and Var. NX/ D �2

100
:

Thus, SD. NX/ D �=10: That is, the distribution of NX is 10 times more concentrated
that the distribution of X1.

Since the variance of NX goes to 0 as the sample size n goes to infinity we know
that NX approaches �. But this is not very precise. For instance, it would be more
useful to be able to say that NX is within 0.1 of � with probability 0.95. We are now
going to work toward this goal.

Markov’s Inequality
Let X � 0 be a positive random variable with mean �.
Then, for any b > 0 we have

P.X � b/ � �

b
:
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Example 2. Find a bound on the probability that a positive random variable be
larger than 10 times its mean.

We want a bound on P.X > 10�/. We use Markov’s inequality with b D 10�

to get

P.X > 10�/ � �

10�
D 1

10
:

What is interesting here is that for ANY positive random variable X (that has a
mean) this probability is bound by 0.1.

We now prove Markov’s inequality for a continuous random variable. The proof
for a discrete random variable is very similar. Let f be the density of X . We have

E.X/ D
Z 1

0

xf .x/dx D
Z b

0

xf .x/dx C
Z 1

b

xf .x/dx �
Z 1

b

xf .x/dx:

The preceding inequality holds since X is assumed to be positive. Note that

Z 1

b

xf .x/dx � b

Z 1

b

f .x/dx D bP.X � b/:

Thus,

P.X � b/ � E.X/

b

and this proves Markov’s inequality.
A consequence of Markov’s inequality is Chebyshev’s inequality. The latter gives

a bound on the dispersion of a random variable.

Chebyshev’s Inequality
Let X be a random variable with mean � and variance �2.
Then, for any b > 0 we have

P.jX � �j � b/ � �2

b2
:

Example 3. Let X be a random variable with mean � and variance �2. Give an
upper bound on the probability that X is more than 2� away from its mean �.

We want P.jX � �j � 2�/. We use Chebyshev’s inequality with b D 2� to get

P.jX � �j � 2�/ � �2

.2�/2
D 1

4
:
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So an upper bound is 1/4. Again, what is remarkable here is that this bound holds
for ANY random variable with a variance. The bound given by Chebyshev may
be quite crude. For instance, note that if X is a normal random variable then the
probability of being at least 2� away from � is about 0.05 while the bound given by
Chebyshev’s inequality for the same probability is 0.25.

We now prove Chebyshev’s inequality. Let X be a random variable with mean �

and standard deviation � . Define the random variable

Y D .X � �/2:

Note that E.Y / D Var.X/ D �2. We apply Markov’s inequality to Y (which is a
positive random variable)

P.Y > b2/ � E.Y /

b2
:

The event fY > b2g may also be written as the event fjX � �j > bg. Thus,

P.Y > b2/ D P.jX � �j > b/ � E.Y /

b2
D �2

b2

and the proof of Chebyshev’s inequality is complete.
We are now ready to state the Law of large numbers.

Law of Large Numbers
Let X1; X2; : : : ; Xn be a sequence of independent identically distributed ran-
dom variables with mean � and variance �2. Then, for any b > 0 we have

lim
n!1 P

�
jX1 C X2 C � � � C Xn

n
� �j � b

�
D 0:

Moreover, we have that

P

�
jX1 C X2 C � � � C Xn

n
� �j � b

�
� �2

b2n
:

What the Law of large numbers tells us is that the probability that NX deviates
from � by an arbitrarily small b > 0 goes to 0 as the sample size n goes to infinity.
Note that there are different versions of the Law of large numbers. The version we
just stated is the weak law of large numbers as opposed to the strong law of large
numbers:

P

�
lim

n!1
X1 C X2 C � � � C Xn

n
D �

�
D 1:
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The strong law of large numbers is proved in more advanced probability courses
because it involves more advanced mathematics.

We now prove the weak version. We apply Chebyshev’s inequality to the random
variable NX . By using that E. NX/ D � and Var. NX/ D �2=n we get for any b > 0

P.j NX � �j � b/ � �2

nb2
:

This yields the inequality above. Moreover, as n goes to infinity the right-hand side
converges to 0 and this proves the Law of large numbers.

Example 4. Consider a fair die whose probability to show a 6 is p. Roll the die
n times, for each roll let Xi D 1 if the die shows a 6 and Xi D 0 otherwise, for
i D 1; : : : ; n. The random variables X1; X2; : : : ; Xn are i.i.d. and have a Bernoulli
distribution with probability of success p. Recall that for each i we have

E.Xi/ D 0 � .1 � p/ C 1 � p D p:

Thus, according to the Law of large numbers we have that for any b > 0

lim
n!1 P

�
jX1 C X2 C � � � C Xn

n
� pj � b

�
D 0:

This gives a physical interpretation to the notion of probability. When we say that
the probability of a 6 is 1/6 (i.e., p D 1=6), it means that if we roll the die n times
the ratio of the number of 6’s that appear over n will approach 1/6 as n goes to
infinity.

Example 5. Assume we roll a die 3,600 times and we get 557 6’s. Let p be the
probability of getting a 6. Find an interval that contains p with probability 0.95.

We use the Bernoulli random variables defined in Example 4. According to the
inequality above, we have

P

�
jX1 C X2 C � � � C Xn

n
� pj � b

�
� �2

b2n
;

where �2 is the variance of each Xi . Since the Xi are Bernoulli random variables
�2 D p.1 � p/. We do not know p (this is what we are estimating) so we do not
know � . However, p.1 � p/ is always less than 1/4 for p in [0,1] (graph p.1 � p/

as a function of p and you will see why). Hence,

�2

b2n
� 1

4b2n
:

Therefore,

P

�
jX1 C X2 C � � � C Xn

n
� pj � b

�
� 1

4b2n
:



4.1 The Law of Large Numbers 105

We want
1

4b2n
D 0:05:

Using that n D 3;600 we get b D 0:04. For this sample we have NX D 557
3600

. So the
confidence interval with confidence at least 0.95 is

�
X1 C X2 C � � � C Xn

n
� b;

X1 C X2 C � � � C Xn

n
C b

�

D .0:15 � 0:04; 0:15 C 0:04/

D .0:11; 0:19/:

Such an interval (with a probability attached to it) is called a confidence interval.
The confidence interval above is obtained by using Chebyshev’s inequality. This

inequality holds for all random variables (that have a variance) and in particular for
the most dispersed ones. As a consequence the confidence interval we got above is
larger than it could be (its confidence is also larger than 0.95). The Central Limit
Theorem that we will see in the next section will give us a narrower interval for 0.95
confidence.

Example 6. This example will introduce a numerical integration method called
Monte Carlo integration. Let g be a continuous function on [0,1]. Let U1;

U2; : : : ; Un be a sequence of i.i.d. uniform random variables on [0,1]. Observe
that g.U1/; g.U2/; : : : ; g.Un/ is also a sequence of i.i.d.random variables and the
Law of large numbers can be applied to get

lim
n!1

g.U1/ C � � � C g.Un/

n
D E.g.U1//:

Recall that if U1 has density f then

E.g.U1// D
Z

g.x/f .x/dx:

In this case f .x/ D 1 for x in [0,1] and f .x/ D 0 otherwise. Thus,

E.g.U1// D
Z 1

0

g.x/dx

and

lim
n!1

g.U1/ C � � � C g.Un/

n
D
Z 1

0

g.x/dx:

In other words, the average g.U1/C���Cg.Un/

n
approaches

R 1

0
g.x/dx as n goes to

infinity. For instance, we take g.x/ D x, n D 10 and use the random numbers:
0.382, 0.101, 0.596, 0.885, 0.899, 0.958, 0.014, 0.407, 0.863, 0.139. We get

g.U1/ C � � � C g.Un/

n
D U1 C � � � C Un

n
D 0:52
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Thus, 0.52 is the approximation we get for the integral

Z 1

0

g.x/dx D
Z 1

0

xdx D 0:5:

Exercises 4.1

1. Assume that X1; : : : ; Xn is a sequence of i.i.d. random variables with mean 3
and standard deviation 2.

(a) What is the mean of X1 C X2 C � � � C Xn?
(b) What is the mean of NX?
(c) What is the standard deviation of X1 C X2 C � � � C Xn?
(d) What is the standard deviation of NX?

2. Find an upper bound on the probability that a positive random variable be 100
times larger than its mean.

3. Assume that the random variable X has mean 3 and standard deviation 2.

(a) Find an upper bound on the probability that X is at least 3� away from its mean.
(b) Find an upper bound on the probability that X is larger than 11.

4. Let U be uniform in [0,1].

(a) Compute the probability that U be at least � away from its mean.
(b) Use Chebyshev’s inequality to give an upper bound on the probability that U

be at least � away from its mean.

5. Let S be a binomial random variable with n D 10 and p D 0:2.

(a) Compute the probability that S be at least 2� away from its mean.
(b) Use Chebyshev’s inequality to give an upper bound on the probability that S be

at least 2� away from its mean.

6. (a) Use Monte Carlo integration to estimate

Z 1

0

e� x2

2 dx:

(b) Use the normal table to check the accuracy of the estimate in (a).

7. It is assumed that each line of a given document has a mean of 15 words.

(a) Find an upper bound on the probability that a given line has 30 words or more.
(b) Assume that the standard deviation is � D 3. Find a better upper bound for the

event in (a).
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8. Consider a random variable X such that P.X D �1/ D P.X D 1/ D 1=2.

(a) Compute E.X/.
(b) Compute Var.X/.
(c) Compute P.jX � �j � 1/.
(d) Show that Chebyshev’s inequality is an equality for P.jX � �j � 1/. (This

shows that Chebyshev’s inequality may not be improved if it is to hold for all
random variables with a variance).

9. Show that if p belongs to [0,1] then p.1 � p/ � 1=4.

10. This is concerned with Monte Carlo integration. Let g be a continuous function
on [0,1] and let U be an uniform random variable. Show that E.g.U // and
Var.g.U // exist. (Hence, the Law of Large Numbers applies to the sequence
g.U1/; g.U2/; : : : ; g.Un/ : : : ).

11. Let U1, U2, : : : be a sequence of i.i.d. uniform random variables on Œ0; 1�.

(a) Show that

lim
n!1

1

n

� 1

1 C U1

C 1

1 C U2

C � � � C 1

1 C Un

�
D ln 2:

(b) Do a simulation to check the result in (a).

12. Do a simulation to estimate the number � .

4.2 Central Limit Theorem

Consider a sequence X1; X2; : : : ; Xn of i.i.d. random variables with mean � and
standard deviation � . We have seen that NX the sample average has mean �

and standard deviation �=
p

n. This shows that NX has a distribution that is more and
more concentrated around the mean �. Actually a lot more is true: the distribution
of NX approaches a normal distribution with mean � and standard deviation �=

p
n.

Central Limit Theorem
Let X1; X2; : : : ; Xn be a sequence of independent identically distributed ran-
dom variables with mean � and variance �2. Then the distribution of NX D
X1CX2C���CXn

n
approaches a normal distribution in the following sense. For any

a < b we have that

lim
n!1 P

 
a <

NX � �

�=
p

n
< b

!
D P.a < Z < b/;



108 4 Limit Theorems

where Z has a standard normal distribution. Equivalently, the sum S D X1 C
X2 C � � � C Xn also approaches a normal distribution. That is,

lim
n!1 P

�
a <

S � n�

�
p

n
< b

�
D P.a < Z < b/

We will sketch a proof of the Central Limit Theorem in 7.2. The remarkable fact
of this result is that it does not matter what the distribution of the Xi is (provided
it has a variance) when we average or sum many i.i.d. random variables we get
a normal distribution. The Central Limit Theorem (CLT in short) shows why the
normal distribution is so crucial in Probability. We illustrate this Theorem with the
histograms of NX for n D 1, n D 3, and n D 5.

0.1

0.2

0.3
n=1

0 15 30 45 60

0.1

0.2

0.3
n=3

0 5 10 15 20 25 30 35

0.1

0.2

0.3 n=5

0 123 6 9 15 18 21 24 27

One can see above that when we average even a few random variables there is a
departure from the original shape and there is a tendency toward the bell-like shape.

Note that in order to apply the CLT to a random variable Y (we have two choices
for Y : NX and S ) we need to standardize it. The CLT states that the distribution of

Y � E.Y /

SD.Y /
approaches the distribution of Z:

In particular, if Y D S D X1 C X2 C � � � C Xn we have that E.S/ D n� and
Var.S/ D n�2. Thus, the distribution of

S � n�

�
p

n
approaches the distribution of Z:

On the other hand if Y D NX then we use that E. NX/ D � and that SD. NX/ D �=
p

n

to show that the distribution of

NX � �

�=
p

n
approaches the distribution of Z:

Example 1. We will show that the normal approximation to the binomial is a
particular case of the CLT. Consider a binomial random variable S with parameters
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n and p. Then, S can be written as a sum of n Bernoulli random variables Xi with
probability of success p. We have E.Xi / D p and Var.Xi/ D p.1 � p/. Since the
Xi are i.i.d. we may apply the CLT to the sum of Xi to get that the distribution of

S � npp
np.1 � p/

approaches the distribution of Z:

This is what the normal approximation to the binomial says. Recall that because we
are using a continuous random variable to approach a discrete one we also enlarge
the interval by 1/2 on both sides. That is, we replace P.a � S � b/ by P.a�1=2 �
S � b C 1=2/ before applying the Central Limit Theorem.

Example 2. Toss a fair coin. Each time it lands on heads you win $1, each time
it lands on tails I win $1. What is the probability that after 100 tosses you will be
winning at least 10$?

Let T be your winnings after 100 tosses. We may write T as the sum of the
winnings for each toss:

T D X1 C � � � C X100;

where Xi (for 1 � i � 100) is 1 with probability 1/2 or �1 with probability 1/2. For
each i we have that

E.Xi/ D 1

2
� 1 C 1

2
� .�1/ D 0:

We also have that

E.X2
i / D 1

2
� .1/2 C 1

2
� .�1/2 D 1:

Since E.Xi/ D 0, Var.Xi/ D E.X2
i / D 1. The random variables Xi are i.i.d. so we

may use the CLT to get that the distribution of

T � n � 0

1
p

100
approaches the distribution of Z:

Thus,

P.T � 10/ D P

�
T

10
� 1

�
� P.Z � 1/ D 0:16:

So the probability that you are ahead by at least $10 is about 0.16. Note that with the
same reasoning we get that the probability that you are ahead by at least $20 after
100 bets is about P.Z � 2/ D 0:02. This is rather unlikely and if this happens one
may start to get suspicious about the fairness of the coin.

Example 3. Assume we roll a die 3,600 times and we get 557 6’s. Let p be the
probability of getting a 6. Use the CLT to find an interval that contains p with
probability 0.95.
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This is the same question as in Example 5 in Sect. 4.1. We now have the CLT
at our disposal so we will use it. Let Xi D 1 if the die shows a 6 and Xi D 0

otherwise, for i D 1; : : : ; n. The random variables X1; X2; : : : ; Xn are i.i.d. and
have a Bernoulli distribution with probability of success p. Recall that for each i we
have

E.Xi/ D p and Var.Xi / D p.1 � p/:

We want c so that

P.j NX � pj < c/ D 0:95:

According to the CLT the distribution of

NX � pp
p.1 � p/=

p
n

approaches the distribution of Z:

Thus,

P

 
j NX � pj

p
p.1 � p/=

p
n

<
c

p
p.1 � p/=

p
n

!
� P

 
jZj <

c
p

p.1 � p/=
p

n

!
:

We use the normal table to get

cp
p.1 � p/=

p
n

D 1:96:

Thus,

c D 1:96

p
p.1 � p/p

n
:

Since we do not know p (this is what we are estimating) we use again thatp
p.1 � p/ � 1=2 to get that

c � 1:96

2
p

3600
D 0:0016:

The confidence interval is
�

557

3600
� 0:0016I 557

3600
C 0:0016

�
:

Note that this interval is much narrower (and therefore better) than the interval we
got in Example 5 in Sect. 4.1. This is so because CLT is a much stronger result than
Chebyshev’s inequality. The price to pay is that CLT is much more difficult to prove
than Chebyshev’s inequality.
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Example 4. Assume that we have 25 batteries whose lifetime are exponentially
distributed with mean 2 h. If the batteries are used one at the time, with a failed
battery replaced immediately by a new one, what is the probability that after 50 h
there is still a working battery?

Let Xi be the lifetime of the i th battery for i D 1; : : : ; 25. We want to compute

P.X1 C � � � C X25 > 50/:

The distribution of a sum of exponentially distributed random variables is not
exponentially distributed. To solve this question it is easier to use the CLT rather
than use the exact distribution of the sum. The CLT applies since we have an i.i.d.
sequence of random variables. Recall that for an exponential random variable the
mean and the standard deviation are equal. Thus, in this case we have � D � D 2.
According to the CLT the distribution of

X1 C � � � C X25 � 25�

�
p

25
approaches the distribution of Z:

We have that

P.X1 C � � � C X25 > 50/ D P

�
X1 C � � � C X25 � 25 � 2

2
p

25
>

50 � 25 � 2

2
p

25

�

� P.Z > 0/ D 0:5:

So there is a probability of around 50% that the batteries will last at least 50 h.

Example 5. We continue Example 4. How many batteries should we have so that
there is still a working battery after 50 h with probability 0.9?

This time we are looking for n such that

P.X1 C � � � C Xn > 50/ D 0:9;

where Xi is the lifetime of the i th battery. Again we use the CLT to get

P.X1 C X2 C � � � C Xn > 50/ D P

�
X1 C X2 C � � � C Xn � n�

�
p

n
>

50 � n�

�
p

n

�

� P

�
Z >

50 � n�

�
p

n

�

Since we want the probability above to be 0.9, we use the normal table to get

50 � n�

�
p

n
D �1:28:
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We have that � D � D 2. Set x D p
n and we get the quadratic equation

x2 � 1:28x � 25 D 0:

The only positive solution is x D p
n D 5:68, thus the smallest corresponding

integer n is 33. That is, we need at least 33 batteries if we want that there is still a
working battery after 50 h, with probability 0.9.

The CLT tells us that the approximate distribution of a sum (or average) of n i.i.d.
random variables is normal when n is large. However, it does NOT say that every
distribution is normal! If the sample size n is not large enough we need to have more
information about the specific distribution we are dealing with and we cannot use
the CLT.

Exercises 4.2

1. Assume that you bet 100 times $1 on red at the roulette (probability of winning
$1 is 18/38).

(a) What are your expected winnings (or losses) after 100 bets?
(b) What is the probability that you are at least $10 ahead after 100 bets?
(c) Compare (b) to Example 2.

2. Assume that we toss a coin 400 times and we get 260 heads.

(a) Give a confidence interval for p the probability of getting heads with confidence
0.99.

(b) Is this a fair coin?

3. A small airplane can take off with a maximum of 2,000 kg (no luggage!).
Assume that passengers have a mean weight of 70 kg with a SD of 15 kg.

(a) What is the probability that 25 passengers will overload the plane?
(b) Find the maximum number of passengers that will not overload the plane with

probability 0.99.

4. Assume that first graders have a mean height of 100 cm with SD of 8 cm.

(a) What is the probability that the average height in a class of 30 is over 105 cm?
(b) What is the probability that at least one child is more than 105 cm high?
(c) What assumption did you make to answer (b)?

5. How many times should you toss a fair coin in order to get at least 100 heads
with probability 0.9?

6. A bank teller takes a mean of 2 min with a standard deviation of 30 s to serve
a client. Assuming that there is at least one client waiting at all times, what is the
probability that the teller will serve at least 25 clients in 1 h?
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7. The average grade a professor hands out is 80 with SD of 10.

(a) What is the probability that in a class of 50 the average grade is below 75?
(b) How large should the class be so that the average grade is in the interval [75,85]

with probability 0.95?

8. Roll a fair die. What is the probability that the sum of the first 100 rolls will be
over 300?

9. Let X1; : : : ; Xn be a sequence of i.i.d. random variables with mean 0 and SD 5.
Let S be the sum of the Xi .

(a) What is the probability that S exceeds 10 for n D 100?
(b) How large should n be so that at least one of the Xi is larger than 10?
(c) What assumption did you make to answer (b).

10. Example 3 shows that a confidence interval with confidence a for a proportion
p has length 2c where

c D za

2
p

n

and za is such that
P.jZj < za/ D a:

(a) Does c increase or decrease as the sample size n increases?
(b) What is za for a D 0:9?
(c) Does c increase or decrease as the confidence a increases?



Chapter 5
Estimation and Hypothesis Testing

5.1 Large Sample Estimation

5.1.1 Confidence Interval for a Proportion

Example 1. In a poll of 100 randomly selected voters, 35 expressed support for
initiative A. How does one estimate the proportion of voters in the whole population
that supports initiative A based on the sample of 100? How much confidence do we
have on our estimate?

Let p be the population proportion of voters in favor of A. A natural estimator
for p is Op: the sample proportion of voters in favor of A. Note that p is an unknown
constant while Op is a random variable: every sample we pick gives a different Op.

Let Xi D 0 if the i th voter is against A and let Xi D 1 otherwise, for i D
1; 2; : : : ; 100: Then,

Op D X1 C X2 C � � � C Xn

n
:

Note that X1; X2; : : : ; Xn are Bernoulli random variables and that P.Xi D 1/ D p,
the parameter we want to estimate. We assume that the sample is picked at random.
That is, the Xi are independent and identically distributed. Recall that E.Xi/ D p

and so by the linearity of the expectation we get

E. Op/ D E

�
X1 C X2 C � � � C Xn

n

�
D 1

n
E.X1 C X2 C � � � C Xn/

D 1

n
nE.X1/ D E.X1/ D p:

That is, the expected value of Op is p, Op is said to be an unbiased estimator of p. We
also know, by the Law of large numbers, that if the observations Xi are i.i.d. then
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Op converges to p as the sample size n increases. So at this point we may say that
Op D 35

100
is an estimate of p. But what confidence do we have in this estimate? In

order to answer this question, we will now compute a confidence interval for p based
on Op. That is, we would like to find c such that p is in the interval . Op�c; OpCc/ with
probability 0.95. We need the variance of Op. We use that the Xi are independent,
that the variance is a quadratic operator, and that the variance of a Bernoulli random
variable is p.1 � p/ to get

Var. Op/ D Var

�
X1 C X2 C � � � C Xn

n

�
D 1

n2
Var.X1 C X2 C � � � C Xn/

D 1

n2
nVar.X1/ D p.1 � p/

n
:

We start by writing that c should be such that

P.j Op � pj < c/ D 0:95:

If the sample size n is large enough we know, by the Central Limit Theorem, that

Op � pp
p.1 � p/=n

has an approximately standard normal distribution.

Hence,

P.j Op � pj < c/ D P

 ˇ̌
ˇ̌
ˇ

Op � p
p

p.1 � p/=n

ˇ̌
ˇ̌
ˇ <

c
p

p.1 � p/=n

!
D 0:95:

Let Z be a standard normal random variable, we get

P

 
jZj <

cp
p.1 � p/=n

!
D 0:95:

Using the normal table we have that

c
p

p.1 � p/=n
D 1:96:

The above equation has two unknowns: n and p. If n is large enough it is reasonable
to estimate p by Op. We get that c is approximately

c D 1:96

p Op.1 � Op/p
n

:
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Numerically, we get that c D 0:09. Therefore, we may say that with confidence 0.95
the population proportion is in the interval

. Op � c; Op C c/ D .0:35 � 0:09; 0:35 C 0:09/ D .0:26; 0:44/:

One interpretation for the confidence interval above is the following. If we take
many samples of 100 voters then 95% of the confidence intervals we get contain p.
Of course, we may be unlucky and draw a sample that will yield an interval that
does not contain p. This will happen 5% of the time.

Note also that the computations above work only for RANDOM samples. Asking
the opinion of your 100 best friends does not work! One way to draw a random
sample from a population is to label all the population and then pick labels at random
to get a sample. This is more or less what is done with political polls: phone numbers
are selected at random to make up a sample. However, more and more people have
only cellular phones and they will not be selected if only land lines are picked in
the sample. Since cellular phones only households tend to be younger this could
skew the sample toward older people. There are many other things to be cautious
about when designing a statistical experiment, see for instance “Introduction to the
practice of Statistics” by Moore and McCabe, Freeman.

We now give the general form of a confidence interval for a proportion.

Confidence Interval for a Proportion
Draw a random sample of size n from a large population with unknown
proportion p of successes. Let Op be the sample proportion of successes. Then,
for large n

. Op � c; Op C c/

is a confidence interval with confidence a where

c D za

p Op.1 � Op/p
n

;

where za is such that
P.jZj < za/ D a

and Z is a standard normal distribution.

Example 2. Find a confidence interval with confidence 0.99 for the proportion in
Example 1.

The only difference with Example 1 is the level of confidence. This time a D 0:99.
According to the normal table

P.jZj < 2:57/ D 0:99
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so

c D 2:57

p Op.1 � Op/p
n

:

Numerically, we get c D 0:12: Therefore, we may say that with confidence 0.99 the
population proportion is in the interval

. Op � c; Op C c/ D .0:35 � 0:12; 0:35 C 0:12/ D .0:23; 0:47/:

Note that at the level 0.99 we get a larger confidence interval. So we increased
the confidence (from 95 to 99%) but we decreased the precision (we got a larger
interval). The only way to increase the confidence without decreasing the precision
is to increase the sample size.

Example 3. How large should a random sample be to get an estimate of the
population proportion within 0.01 with confidence 0.95?

We want to know how large n should be in order to get c D 0:01. Since the
confidence is a D 0:95 we get that za D 1:96. We need to solve in n the following
equation

c D za

p
p.1 � p/p

n
:

Here we do not know Op so we use the original p in our formula. A little algebra
yields

n D
� za

c

�2

p.1 � p/:

However, we do not know p. Note that p is in [0,1] and that the function g.p/ D
p.1 � p/ has a maximum for p D 1=2. Thus,

p.1 � p/ � 1

4
for all p inŒ0; 1�:

We get that

n �
� za

c

�2 1

4
:

Numerically, we get
n � 9;604:

That is, in order to get a precision of 0.01 with confidence 0.95 we need a sample
of the order of 10,000. Note that this estimate is based on a worst case scenario: we
did the computation assuming p D 0:5. If we assume p D 0:1 for instance then
n D 3;457, about three times smaller! In practice we use p D 0:5 when we have no
idea what to expect for p.
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5.1.2 Confidence Interval for a Mean

Example 4. Assume that 500 lamp bulbs have been tested and the average lifetime
for this sample has been 562 days. Give a confidence interval at the level 90% for
the mean lifetime of this brand of lamp bulb.

We assume that we have a random sample. That is, if we denote by X1; X2; : : : ;

X500 the 500 lifetimes observed in the sample then we assume that this is an i.i.d.
sequence of random variables. Denote the mean lifetime by � and the corresponding
standard deviation by � . We want to estimate �. A natural estimator for � is the
sample average

NX D X1 C X2 C � � � C Xn

n
:

Recall from Chap. 4 that

E. NX/ D � and Var. NX/ D �2

n
:

That is, NX is an unbiased estimator of �. One way to measure the precision of our
estimator is to compute E.. NX � �/2/. This is one way to measure the distance
between the random variable NX and the constant �. Since the expected values of NX
is � we get by the definition of the variance that

E.. NX � �/2/ D Var. NX/ D �2

n
:

That is, the precision of our estimator NX increases as the sample size n increases. In
order to compute a confidence interval for � we need c such that

P.j NX � �j < c/ D 0:9:

We standardize the left-hand side

P

 
j NX � �j
�=

p
n

<
c

�=
p

n

!
D 0:9:

Since we are assuming that the Xi are i.i.d. and n is large we may use the Central
Limit Theorem to get that

NX � �

�=
p

n
has an approximately standard normal distribution.

Let Z be a standard normal random variable, we have

P

�
jZj <

c

�=
p

n

�
D 0:9:
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From the normal table we get

c

�=
p

n
D 1:64:

However, we usually do not know � . We will show later on that

S2 D 1

n � 1

nX

iD1

.Xi � NX/2

is an unbiased estimator for �2.
We use S to estimate � and get that

c D 1:64Sp
n

:

Going back to the observations X1; X2; : : : ; Xn one may compute S . Assume that in
this example S D 112 days. Then, c D 8. Thus, a confidence interval for the mean
lifetime � of a lamp bulb, at the 90% level, is

.562 � 8; 562 C 8/ D .556; 570/:

Note that this is rather precise thanks to the large size of the sample.

Confidence Interval for a Mean
Draw a random sample of size n, X1; X2; : : : ; Xn, from a large population with
unknown mean �. Let NX be the sample mean. Let

S2 D 1

n � 1

nX

iD1

.Xi � NX/2

be the sample variance. Then, for large n

. NX � c; NX C c/

is a confidence interval for � with confidence a where

c D za

Sp
n

and za is such that

P.jZj < za/ D a

and Z is a standard normal distribution.
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Example 5. Find a confidence interval for the mean in Example 4 with confi-
dence 0.95

We have that

c D za

Sp
n

D 1:96
112p
500

� 10:

So at the level 0.95 we have the confidence interval

.562 � 10;562 C 10/ D .552;572/

for the mean lifetime of a lamp bulb.

We now go back to the sample standard deviation S . We first establish a
computational formula for S . We expand the square below to get

nX

iD1

.Xi � NX/2 D
nX

iD1

X2
i � 2

nX

iD1

Xi
NX C

nX

iD1

. NX/2:

Using that
Pn

iD1 Xi D n NX we get that

nX

iD1

.Xi � NX/2 D
nX

iD1

X2
i � 2n. NX/2 C n. NX/2 D

nX

iD1

X2
i � n. NX/2:

Thus, we get the following computational formula for S2:

S2 D 1

n � 1

nX

iD1

X2
i � n

n � 1
. NX/2:

We use the preceding formula to compute the expected value of S2. First, recall that
for any random variable X (that has a variance)

Var.X/ D E.X2/ � E.X/2:

Hence,
E.X2/ D Var.X/ C E.X/2: (5.1)

Going back to

S2 D 1

n � 1

nX

iD1

X2
i � n

n � 1
. NX/2

and taking expectations we have

E.S2/ D 1

n � 1

nX

iD1

E.X2
i / � n

n � 1
E.. NX/2/:
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Using formula (5.1) we get

E.X2
i / D Var.Xi / C E.Xi/

2 D �2 C �2;

and

E.. NX/2/ D Var. NX/ C E. NX/2 D �2

n
C �2:

Hence,

E.S2/ D 1

n � 1
n.�2 C �2/ � n

n � 1

�
�2

n
C �2

�
D �2:

This shows that S2 is an unbiased estimator of �2.

Sample Variance
Let X1; X2; : : : ; Xn be i.i.d. random variables with mean � and variance �2

from a large population with unknown mean �. Then, the sample variance

S2 D 1

n � 1

nX

iD1

.Xi � NX/2

is an unbiased estimator of �2. Moreover, we have the following computational
formula for S2:

S2 D 1

n � 1

nX

iD1

X2
i � n

n � 1
. NX/2:

5.1.3 Confidence Interval for a Difference of Proportions

Example 6. In a political poll of 100 randomly selected voters, 35 expressed support
for initiative A in Boulder. In Colorado Springs in a poll of 200 randomly selected
voters, 50 expressed support for initiative A. Find a confidence interval, with
confidence 0.9, for the difference between the proportions of supporters of initiative
A in Boulder and in Colorado Springs.

Let p1 and p2 be the proportions of the population in Boulder and in Colorado
Springs that support A, respectively. Let n1 and n2 be the sample sizes taken in
Boulder and Colorado Springs, respectively. We would like a confidence interval
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for p1 � p2 with confidence 0.9. A natural estimator for p1 � p2 is Op1 � Op2. We
would like to find c so that

P.j. Op1 � Op2/ � .p1 � p2/j < c/ D 0:9:

In order to find c we need some information regarding the distribution of Op1� Op2. We
know that if the sample size n1 is large enough then by the Central Limit Theorem
Op1 is approximately normally distributed. The same holds for Op2. Since Op1 and Op2

are independent one can show that Op1 � Op2 is approximately normally distributed as
well. Since Op1 and Op2 are unbiased estimators of p1 and p2, respectively, we have
that

E. Op1 � Op2/ D p1 � p2:

Since Op1 is the average of n1 i.i.d. Bernoulli random variables we have that

Var. Op1/ D 1

n2
1

n1p1.1 � p1/ D p1.1 � p1/

n1

:

Using that Op1 and Op2 are independent we get that

Var. Op1 � Op2/ D Var. Op1/ C Var. Op2/ D p1.1 � p1/

n1

C p2.1 � p2/

n2

:

We are now ready to normalize to get

P

0

B@j . Op1 � Op2/ � .p1 � p2/q
p1.1�p1/

n1
C p2.1�p2/

n2

j <
c

q
p1.1�p1/

n1
C p2.1�p2/

n2

1

CA D 0:9:

We use that

. Op1 � Op2/ � .p1 � p2/q
p1.1�p1/

n1
C p2.1�p2/

n2

is approximately a standard normal distribution

to get that

P

0

B@jZj <
cq

p1.1�p1/

n1
C p2.1�p2/

n2

1

CA D 0:9;

where Z is a standard normal random variable. Using the normal table we get

cq
p1.1�p1/

n1
C p2.1�p2/

n2

D 1:64:
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For n1 and n2 large enough we may use Op1 and Op2 to approximate p1 and p2,
respectively. Thus,

c � 1:64

s
Op1.1 � Op1/

n1

C Op2.1 � Op2/

n2

:

In this example we have n1 D 100, n2 D 200, Op1 D 0:35 and Op2 D 0:25. Thus,
c D 0:09. At the level 90% the confidence interval for p1 � p2 is

. Op1 � Op2 � c; Op1 � Op2 C c/ D .0:01; 0:19/:

We now summarize the preceding technique.

Confidence Interval for the Difference Between Two
Proportions

Draw a random sample of size n1 from a large population with unknown
proportion p1 of successes and an independent random sample of size n2

from another large population having a proportion p2 of successes. For large
n1 and large n2

. Op1 � Op2 � c; Op1 � Op2 C c/

is a confidence interval with confidence a where

c D za

s
Op1.1 � Op1/

n1

C Op2.1 � Op2/

n2

and za is such that
P.jZj < za/ D a

and Z is a standard normal distribution.

5.1.4 Confidence Interval for a Difference of Two Means

Example 7. Assume that n1 D 500 lamp bulbs from brand 1 have been tested. The
average lifetime for this sample is NX1 D 562 days the standard deviation for the
sample is S1 D 112. Similarly, n2 D 300 lamp bulbs from brand 2 have been tested.
The average lifetime for this sample is NX2 D 551 days and the standard deviation
for the sample is S2 D 121. Give a confidence interval at the level 95% for the
difference of mean lifetimes of the two brands of lamp bulb. Is there evidence that
brand 1 lasts longer than brand 2?

Let �1 and �2 be the unknown mean lifetimes of brands 1 and 2, respectively.
We would like a confidence interval for �1 � �2. We use NX1 � NX2 as an estimator
of �1 � �2. We want c such that
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P.j. NX1 � NX2/ � .�1 � �2/j < c/ D 0:95:

In order to find c we need to know the distribution of the expression above. By the
Central Limit Theorem NX1 and NX2 are approximately normally distributed if the
samples sizes are large enough. If the two samples are independent then one can
show that NX1 � NX2 is also approximately normally distributed. Since NX1 and NX2 are
unbiased estimators of �1 and �2 we have that

E. NX1 � NX2/ D �1 � �2:

Since NX1 and NX2 are independent we get

Var. NX1 � NX2/ D Var. NX1/ C Var. NX2/ D �2
1

n1

C �2
2

n2

:

We are now ready to normalize to get

P

0

B@
j. NX1 � NX2/ � .�1 � �2/jq

�2
1 =n1 C �2

2 =n2

<
cq

�2
1 =n1 C �2

2 =n2

1

CA D 0:95:

By the normal approximation,

P

0

B@jZj <
cq

�2
1 =n1 C �2

2 =n2

1

CA D 0:95:

According to the normal table,

cq
�2

1 =n1 C �2
2 =n2

D 1:96:

However, the variances �2
1 and �2

2 are not known. If n1 and n2 are large it is
reasonable to use the sample variances S2

1 and S2
2 in order to estimate them.

c � 1:96

q
S2

1 =n1 C S2
2 =n2:

Numerically, we get c � 17. Thus, the confidence interval for �1 � �2 at the level
0.95 is

. NX1 � NX2 � c; NX1 � NX2 C c/ D .�6; 28/:
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Note that 0 is in the above interval. This shows that �1 and �2 could be equal. So
there is no evidence that brand 1 lasts longer than brand 2.

Confidence Interval for the Difference Between Two Means
Draw a random sample of size n1 from a large population with unknown mean
�1 and an independent random sample of size n2 from another population
having mean �2. We denote the sample average by NXi and the sample standard
deviation by Si , for i D 1; 2. For large n1 and large n2

. NX1 � NX2 � c; NX1 � NX2 C c/

is a confidence interval with confidence a where

c D za

q
S2

1 =n1 C S2
2 =n2

and za is such that
P.jZj < za/ D a

and Z is a standard normal distribution.

Exercises 5.1

1. Consider the following scores: 87, 92, 58, 64, 72, 43, 75. Compute the average
score NX and the standard deviation S .

2. The English statistician Karl Pearson once tossed a coin 24,000 times and
obtained 12,012 heads. Find a confidence at the level 0.99 for the probability of
heads.

3. A poll institute claims that its estimate of a proportion is within 0.02 of the true
value with confidence 0.95. How large must the sample be?

4. A poll institute has interviewed 1,000 people and gives an estimate of a
proportion within 0.01. What is the confidence of this estimate?

5. Of 250 Ponderosa pines attacked with a certain type of beetle, 34 died. Find a
confidence interval at the level 0.9 for the proportion of trees that die when attacked
by this type of beetle.

6. The heights of 25 6-year-old boys average 85 cm with a standard deviation of 5
cm. Find a confidence interval at the level 0.95 for the mean height of a 6-year-old
boy of that population.
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7. A researcher has measured the yields of 40 tomato plants and found that the
sample average yield per plant to be 5 pounds with a sample standard deviation of
1.7 pound. Find a confidence interval for the mean yield at the level 0.9.

8. The English statistician Karl Pearson once tossed a coin 24,000 times and
obtained 12,012 heads. The English mathematician John Kerrich tossed a coin
10,000 times and obtained 5,067. Find a confidence at the level 0.99 for the
difference of the probabilities of heads for the two coins.

9. The same final exam is given to several sections of calculus. Each professor gets
to grade 50 papers taken at random from the pile. Professor A has an average of 75
with a standard deviation of 12. Professor B has an average of 79 with a standard
deviation of 8.

(a) Find a confidence interval for the difference in mean scores between Professors
A and B.

(b) Is there evidence that Professor A is harsher than Professor B?

10. In March a poll indicates that 104 out of 250 voters are in favor of initiative A.
In October another (independent of the first one) indicates that 140 out of 300 voters
are in favor of initiative A.

(a) Find a confidence interval for the difference of proportions of voters in favor of
initiative A in March and October.

(b) Based on (a) would you say that there is statistical evidence that support has
increased for initiative A?

11. A researcher wants to compare the yield of two varieties of tomatoes. The first
variety of 40 tomato plants has a sample average yield per plant of 5 pounds with a
sample standard deviation of 1.7 pound. The second variety of 50 tomato plants has
a sample average yield per plant of 4.5 pounds with a sample standard deviation of
1.2 pound.

(a) Find a confidence interval for the difference in mean yield at the level 0.9.
(b) Based on (a), would you say that variety 1 yields more than variety 2?

12. Consider a random sample X1; : : : ; Xn of size of a uniform random variable on
Œ0; a�. Recall that E.X1/ D a=2.

(a) Find an unbiased estimator Oa for a.
(b) Compute E.. Oa � a/2/ (this indicates how close Oa is to a).

13. Compute the expected value of

1

n

nX

iD1

.Xi � NX/2:

(You can use that E.S2/ D �2).
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5.2 Hypothesis Testing

5.2.1 Testing a Proportion

Example 1. A manufacturer claims that he produces strictly less than 5% defective
items. A sample of 100 items is taken at random and 4 are found to be defective.
Test the claim of the manufacturer.

We denote the true proportion of defective items by p. The claim of the
manufacturer is that p < 0:05. We want to test whether this claim holds based
on the observations. There are two possible errors. We may reject the claim of the
manufacturer although it is true or we may accept the claim of the manufacturer
although it is not true. The test we will perform is not symmetric and the errors
cannot be both small. We set up the test so that the error we minimize is the one that
accepts the claim of the manufacturer although it is not true. This is so because we
are testing the manufacturer’s claim and he should have the burden of proof. The
manufacturer’s claim is called the alternative hypothesis and it is denoted by Ha.
The negation of this claim is called the null hypothesis and is denoted by H0. So the
test we would like to perform is

H0 W p � 0:05:

Ha W p < 0:05:

It is convenient to have an equality for the null hypothesis. It turns out that it
is always possible to replace an inequality by an equality in the null hypothesis
without changing the test. The reason is a little involved so we will omit it but we
will actually test

H0 W p D 0:05:

Ha W p < 0:05:

Hypothesis Testing
The claim you want to test should be your alternative hypothesis and is denoted
by Ha. The negation of that claim is called the null hypothesis and is denoted
by H0. The test is determined by the level of significance. This is the probability
of making the so-called error I: rejecting H0 although H0 is true.

We need to make a decision: reject H0 (the manufacturer’s claim is accepted) or
do not reject H0 (the manufacturer’s claim is not accepted). We make this decision
based on the observations. Given that the alternative hypothesis is p < 0:05, we will
reject H0 is the sample proportion is low. We define the rejection region (the region
where the null hypothesis is rejected) to be

R D f Op < 0:04g;
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where 0.04 is the sample proportion for this particular example. We now compute
the probability of error I (reject the null hypothesis when in fact the null hypothesis
is true). This is the so-called P value.

P D P.reject H0jH0 is true/ D P. Op < 0:04jp D 0:05/:

Since the sample is large enough we may use the CLT to get

P D P

 
Op � 0:05p

0:05.0:95/=n
<

0:04 � 0:05p
0:05.0:95/=n

!
D P.Z < �0:46/ D 0:32:

This computation shows that the probability of making error I is pretty high: 32%.
What this test is telling us is that although we observe 4% of defective items in the
sample there is a high probability (32%) that this was due to chance and that the
actual proportion of defective items is equal to or larger than 5%. Therefore, we
do not reject the null hypothesis. We conclude that there is not enough evidence to
support the claim of the manufacturer.

P Value and Significance Level
The P value of a test is the probability that we make error I: reject H0 although
H0 is true. We give ourselves a significance level a (usually 5%). To perform a
test at the significance level a we do the following. If P < a we reject H0. If
the P > a we do not reject H0.

We summarize the P value method for testing a proportion.

P Value for Testing a Proportion
Assume we have a large random sample with a proportion Op of successes. We
use this sample to test the true proportion of successes p. Let p0 be a fixed
number in [0,1]. For the test

H0 W p D p0

Ha W p < p0

and a sample size n large enough the P value is

P D P

 
Z <

Op � p0p
p0.1 � p0/=n

!
;
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where Op is the sample proportion and n is the size of the random sample. For
the test

H0 W p D p0

Ha W p > p0

and a sample size n large enough the P value is

P D P

 
Z >

Op � p0p
p0.1 � p0/=n

!
:

Example 2. Candidate A claims that more than 10% of the voters are in his favor.
In a poll candidate A got 121 votes in a random sample of 1,000. Test the claim
of A.

Let p be the proportion of voters in favor of candidate A. The alternative
hypothesis should be p > 0:1 since this is the claim we want to test. Therefore,
the test is

H0 W p D 0:1

Ha W p > 0:1:

Since the alternative hypothesis is p > 0:1 we will reject the null hypothesis if the
sample proportion Op is too large. Hence, the rejection region is

	
Op >

121

1;000



:

The P value is

P D P

 
Z >

Op � p0p
p0.1 � p0/=n

!

D P

 
Z >

0:121 � 0:1p
0:1.0:9/=.1;000/

!
D P.Z > 2:21/ D 0:01:

Since P < 0:05, at the level 5% we reject H0: there is statistical evidence supporting
the claim of candidate A.



5.2 Hypothesis Testing 131

5.2.2 Testing a Mean

Example 3. A manufacturer of lamp bulbs claims that the mean lifetime of his lamp
bulbs is 1,000 h. The average lifetime in a sample of 200 bulbs is 1,016 h with a
standard deviation of 102 h. Test the claim of the manufacturer.

Let � be the true lifetime mean of a lamp bulb. The claim of the manufacturer is
that � > 1;000. So this should be our alternative hypothesis. Therefore, the test is
going to be

H0 W � D 1;000

Ha W � > 1;000:

To take our decision on � we use NX : the average lifetime in the sample. Given that
the alternative hypothesis is � > 1; 000 the rejection region is

R D f NX > 1;016g:

We compute the P value.

P D P. NX > 1;016j� D 1;000/:

If the sample size is large enough we may use the CLT to get

P D P

 NX � 1;000

S=
p

n
>

1;016 � 1;000

S=
p

n

!
� P.Z > 2:21/ D 0:01:

So at any level larger than 0.01 we reject H0. In particular at the standard level 0.05
we reject H0. There is statistical evidence supporting the manufacturer’s claim.

As we mentioned before the test is determined by the error I level. The other
possible error is the so-called error II: reject Ha when Ha is true. We now compute
the probability of error II. The probability of error II can be computed for any
� > 1;000 (since this is the alternate hypothesis). For this example we pick
� D 1;020. In order to make an error II the sample needs to be outside the rejection
region (so that we do not reject H0). Therefore,

P.error II/ D P. NX � 1;016j� D 1;020/ D P

 NX � 1;020

S=
p

n
� 1;016 � 1;020

S=
p

n

!
:

That is,

P.error II/ D P.Z < �1:94/ D 0:03:
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P Value for Testing a Mean
Assume we have a large random sample with average NX and standard deviation
S . We would like to use this sample to test the true mean of the population �.
Let �0 be a fixed number. For the test

H0 W � D �0

Ha W � < �0

the P value is

P D P

 
Z <

NX � �0

S=
p

n

!
:

For the test

H0 W � D �0

Ha W � > �0

the P value is

P D P

 
Z >

NX � �0

S=
p

n

!
:

Example 4. A farmer is supposed to deliver chickens to a grocery store that weigh 3
pounds in average. The grocery store claims that the chickens are in average under
3 pounds. A random sample of 100 chicken has an average of 46 ounces and a
standard deviation of 5 ounces. Test the claim of the store.

The claim we want to test is � < 48. This should be our alternative hypothesis.
So we perform the test

H0 W � D 48

Ha W � < 48:

We compute the P value.

P D P

 
Z <

NX � �0

S=
p

n

!
D P

�
Z <

46 � 48

5=
p

100

�
D P.Z < �4/:

This P value is practically 0. So at any reasonable level (1, 5, or 10%) we should
reject the null hypothesis. There is strong statistical evidence to support the claim
of the grocery store.

All the tests we have performed so far were one-sided. Next we give an example
of a two-sided test.
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Example 5. We want to test whether a certain medication has an effect on the
blood pressure. A group of 100 male patients 35–44 years is given the medi-
cation. The average blood pressure in this group is 120 with a standard devi-
ation of 10. For this age range the blood pressure in the population is known
to be 128.

Since we are told to just test any effect we should test

H0 W � D 128

Ha W � 6D 128

The rejection region is two-sided:

R D f NX < 120 or NX > 136g:

The value 120 is as always what was observed in the sample and since 128�120 D 8

we get the value 136 by doing 128 C 8. We now compute the P value

P D P. NX < 120or NX > 136j� D 128/ D 2P. NX > 136j� D 128/

since the rejection region is symmetric with respect 128. Therefore,

P D 2P

�
Z >

136 � 128

S=
p

n
/ D 2P.Z > 8

�
:

This P value is extremely small. We reject the null hypothesis, there is strong
evidence that the medication has an effect on blood pressure.

5.2.3 Testing Two Proportions

Example 6. Test whether candidate A has more support in Colorado Springs than
in Boulder. In a poll of 1,000 voters candidate A got 42% of the votes in Colorado
Springs. In Boulder he got 39% of the votes in a poll of 500 voters.

Let p1 and p2 be respectively the true proportions of voters in favor of A in
Colorado Springs and in Boulder. We want to test whether p1 > p2. So we want to
perform the test

H0 W p1 D p2

Ha W p1 > p2:
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It is convenient to observe that this test can be expressed as a one parameter test
with parameter p1 � p2 by writing it as

H0 W p1 � p2 D 0

Ha W p1 � p2 > 0

The parameter p1 � p2 is estimated by Op1 � Op2 and for these samples we have
Op1 � Op2 D 0:42 � 0:39 D 0:03: Therefore the rejection region is

R D f Op1 � Op2 > 0:03g:

We compute the P value for this test.

P D P. Op1 � Op2 > 0:03jp1 � p2 D 0/:

We use that

E. Op1 � Op2/ D p1 � p2 and Var. Op1 � Op2/ D p1.1 � p1/=n1 C p2.1 � p2/=n2:

For n1 and n2 large and if the two random samples are independent we may use the
CLT to get

P D P

 
Z >

0:03p
p1.1 � p1/=n1 C p2.1 � p2/=n2

ˇ̌
p1 � p2 D 0

!
:

We need to estimate p1 and p2 in the expression. Given that we are assuming that
p1 D p2 we use the pooled estimate

Op D n1 Op1 C n2 Op2

n1 C n2

:

Thus,

P D P

 
Z >

0:03
p Op.1 � Op/.1=n1 C 1=n2/

!
:

Numerically, we get Op D 0:41 and that P D P.Z > 1:11/ D 0:13. At the 5% (or
10%) level we do not reject H0. There is no evidence that the support of candidate
A is larger in Colorado Springs than in Boulder.

P Value for Testing Two Proportions
We have two independent random samples of size n1 and n2 respectively from
two distinct populations. Let p1 and p2 be respectively the true proportions of
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successes in populations 1 and 2. Let Op1 and Op2 be the corresponding sample
proportions. For the test

H0 W p1 D p2

Ha W p1 < p2

the P value is

P D P

 
Z <

Op1 � Op2p Op.1 � Op/.1=n1 C 1=n2/

!
;

where

Op D n1 Op1 C n2 Op2

n1 C n2

:

For the test

H0 W p1 D p2

Ha W p1 > p2

the P value is

P D P

 
Z >

Op1 � Op2p Op.1 � Op/.1=n1 C 1=n2/

!
:

5.2.4 Testing Two Means

Example 7. Test the claim that lamp bulbs from A last longer than lamp bulbs from
B. A sample of 200 lamp bulbs from A gave a sample average of 1,052 h and a
standard deviation of 151. A sample of 100 lamps from B gave a sample average of
980 h and a standard deviation of 102.

Let �1 and �2 be respectively the mean lifetimes of the lamp bulbs from
manufacturers A and B. We want to test whether �1 > �2. This is our alternative
hypothesis. We perform the test

H0 W �1 D �2

Ha W �1 > �2
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We rewrite the test as a one parameter test

H0 W �1 � �2 D 0

Ha W �1 � �2 > 0

Let n1 and n2 be the sample sizes from A and B, respectively. We denote the
sample averages from A and B by NX1 and NX2, respectively, and the sample standard
deviations by S1 and S2. The rejection region is of the type

R D f NX1 � NX2 > cg:

We compute the P value so we take c D 1; 052 � 980 D 72: We have that

P D P. NX1 � NX2 > 72j�1 � �2 D 0/:

Assuming the sample sizes are large enough and that the two random samples are
independent we get by the Central Limit Theorem that

P � P

0

B@Z >
72q

S2
1 =n1 C S2

2 =n2

1

CA D P.Z > 4:87/:

This is an extremely small P value. At any reasonable level we reject H0. There
is strong statistical evidence supporting the claim that lamp bulbs from A last
longer than lamp bulbs from B. In order to estimate how much longer lamp bulbs
from brand A last we may compute a confidence interval. For instance with 95%
confidence we get the following confidence interval for �1 � �2

. NX1 � NX2 � c; NX1 � NX2 C c/;

where

c D za

q
S2

1 =n1 C S2
2 =n2:

We have za D 1:96 and c � 29. So the confidence interval for �1 � �2 with 0.95
confidence is .43; 101/:

P Value for Testing Two Means
Draw a random sample of size n1 from a large population with unknown mean
�1 and an independent random sample of size n2 from another population
having mean �2. We denote the sample average by NXi and the sample standard
deviation by Si , for i D 1; 2. For large n1 and large n2 to test
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H0 W �1 D �2

Ha W �1 > �2

the P value is

P D P

0

B@Z >
NX1 � NX2q

S2
1 =n1 C S2

2 =n2

1

CA:

To test

H0 W �1 D �2

Ha W �1 < �2

the P value is

P D P

0
B@Z <

NX1 � NX2q
S2

1 =n1 C S2
2 =n2

1
CA:

5.2.5 A Few Remarks

The confidence intervals and hypothesis testing we have performed all assume that
the samples are RANDOM and LARGE. However, it is possible to analyze small
samples (this might be necessary in areas like medicine for which one does not
always control the sample sizes) by using different techniques. We will give two
such examples in the next section.

For hypothesis testing we have concentrated on one error: rejecting the null
hypothesis when it is true. This is called a type I error. There is another possible
error which is not rejecting the null hypothesis when it is not true. This is called a
type II error. As we have seen it is the type I error that determines a test. However,
two different tests with the same type I error may be compared by computing the
type II errors. The test with the lower type II error (given a type I error) is the
better one.

Exercises 5.2

1. The manufacturer claims that less than 5% of the items it manufactured are
defective. Assume that in a random sample of 1,000 items 40 are defective.

(a) Test the claim of the manufacturer at the level 10%.
(b) Compare the conclusion of (a) to the conclusion of Example 1.
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2. A pharmaceutical company claims that its new drug is more efficient than the
existing one that cures about 70% of the cases treated. In a random sample of 96
patients 81 were cured by the new drug.

(a) What test should the company perform to prove its point?
(b) Perform the test stated in (a) and draw a conclusion.

3. Test whether drug A is more effective than drug B. Drug A was given to 31
patients and 25 recovered. Drug B was given to 42 patients and 32 recovered.

4. Pesticide A killed 15 of 35 cockroaches and pesticide B killed 20 of 35
cockroaches. Compare the two pesticides.

5. Test whether a certain brand of radon detectors are undermeasuring radon levels.
Each detector is exposed to 100 standard units of radon. For a sample of 25
detectors, the average reading was 97 with a standard deviation of 8.

6. Is there evidence that children from vegetarian families are not as tall as children
in the general population? The heights of 25 6-year-old boys from vegetarian
families average 85 cm with a standard deviation of 5 cm. The average height for
the general population of 6-year-old boys is 88 cm.

7. With pesticide A in a sample of 40 plants the average yield per plant is 5 pounds
with a sample standard deviation of 1.7 pound. Using pesticide B in a sample of
30 plants the average yield is 4.5 pounds with a standard deviation of 1.5 pound.
Compare the two pesticides.

8. To study the effect of a drug on pulse rate the available subjects were divided at
random in two groups of 30 persons each. The first group was given the drug. The
second group was given a placebo. The treatment group had an average pulse rate
of 67 with a standard deviation of 8. The placebo group had an average pulse rate of
71 with a standard deviation of 10. Test the effectiveness of the drug.

9. An aptitude test is given in 6th grade. The 150 boys average 75 with a standard
deviation of 10 and the 160 girls average 87 with a standard deviation of 8. Test the
claim that girls are in average 10 points above boys.

10. A coin is tossed 12 times and nine tails are observed. Is there evidence that
the coin is biased? (The sample is too small to use the CLT but you may use the
binomial distribution for the number of heads in 12 tosses).

11. I want to test whether the random number generator on my computer is
consistent with an uniform distribution on Œ0; 1�. It generated 100 random numbers
with average 0.53 and standard deviation 0.09.

(a) Perform a test (recall that an uniform has mean 0.5).
(b) Compute the probability of error II if the mean of the random number generator

is actually 0.51.
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12. A roulette has 38 slots and 18 red slots.

(a) What is the probability of a red slot for a well-balanced roulette wheel?
(b) Explain how you would proceed to test whether this roulette wheel is well

balanced.

5.3 Small Samples

In the previous two sections we have used the Central Limit Theorem to get
confidence intervals and perform hypothesis testing. Usually the CLT may be safely
applied for random samples of size 25 or larger. In this section, we will see two
alternatives for smaller sample sizes.

5.3.1 If the Population is Normal

Assuming we have a random sample of size n from a normal population then it is
possible to compute the exact distribution of the normalized sample mean (recall
that the CLT only gives an approximate distribution). We now state this result
precisely.

Distribution of the Sample Mean
Assume that X1; X2; : : : ; Xn are observations from a random sample taken in
a NORMAL population. Let � be the true mean. Let NX and S be respectively
the sample average and the sample standard deviation. Then

NX � �

S=
p

n

follows a student distribution with n�1 degrees of freedom. A Student random
variable with r degrees of freedom will be denoted by t.r/.

Student distributions are very similar to the normal standard distributions: they
are bell shaped and symmetric around the y axis. The only difference is that the
tails of the Student distribution are larger than the tails of the standard normal
distribution. That is, the probability of an extreme value is higher for a Student
distribution than for a standard normal distribution. However, as the number of
degrees of freedom increases Student distributions are closer and closer to the
standard normal distribution (as it should be according to the CLT).

The graph below compares a Student distribution with 2 degrees of freedom with
a standard normal distribution. One sees for instance that it is a lot more likely for
t.2/ to be larger than 3 than it is for Z to be larger than 3.
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Example 1. Assume that the weights of five 9-year-old boys are 25, 28, 24, 26, and
24 kg in a certain population. Find a confidence interval for the mean weight of
9-year-old boys in that population.

We first need to compute the sample average and standard deviation.

NX D 2 � 24 C 25 C 26 C 28

5
D 25:4:

We have the following computational formula for S2

S2 D 1

n � 1

nX

iD1

X2
i � n

n � 1
. NX/2:

We compute the sum of the squares first

nX

iD1

X2
i D 3; 237

and we get

S2 D 1

4
3; 237 � 5

4
25:42 D 2:8:
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As always we use the sample average to estimate the true mean �. Thus, we look
for c such that

P.j NX � �j < c/ D 0:9:

We normalize to get

P

 
j NX � �j
S=

p
n

<
c

S=
p

n

!
D 0:9:

At this point we need the distribution of
NX��

S=
p

n
. The sample is much too small to

invoke the CLT. However, it may be reasonable to ASSUME that the weight is

normally distributed. In that case
NX��

S=
p

n
follows a Student distribution with 4 degrees

of freedom t.4/. Thus,

P

�
jt.4/j <

c

S=
p

n

�
D 0:9:

We now use the t table to get that

c

S=
p

n
D 2:13:

Solving for c we get c D 1:6. Thus, the confidence interval for the true mean weight
of 9 years old is

. NX � c; NX C c/ D .25:4 � 1:6; 25:4 C 1:6/ D .23:8; 27/:

If we were using the standard normal distribution then we would have had

c

S=
p

n
D 1:64

instead of 2.13 and the confidence interval would have been narrower. However, the
sample size is too small to invoke the CLT in this case. Next we summarize the
method to find a confidence interval for the mean.

Confidence Interval for a Mean
Draw a random sample of size n, X1; X2; : : : ; Xn, from a NORMAL population
with unknown mean �. Let NX be the sample mean. Let S2 be the sample
variance. Then,

. NX � c; NX C c/

is a confidence interval for � with confidence a where

c D ta
Sp
n
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and ta is such that

P.jt.n � 1/j < ta/ D a

and t.n � 1/ is a Student distribution with n � 1 degrees of freedom.

Example 2. A certain pain medication is said to provide more than 3 h of relief.
We would like to test this claim. The medication is given to 6 patients. The average
relief time is 200 min and the standard deviation is 40 min. The test is

H0 W � D 180

Ha W � > 180

We compute the P value for this test.

P D P. NX > 200j� D 180/ D P

 NX � 180

S=
p

n
>

200 � 180

S=
p

n

!
:

Assuming that the time of relief is normally distributed we get that NX�180

S=
p

n
follows a

Student distribution t.5/. Thus,

P D P.t.5/ > 1:22/ � 0:15

At the 5% level the null hypothesis is not rejected. There is not enough evidence to
support the claim that the medication provides more than 3 h of relief.

P Value for Testing a Mean
Assume we have a random sample of size n from a NORMAL population with
average NX and standard deviation S . The true mean of the population is �. Let
�0 be a fixed number. For the test

H0 W � D �0

Ha W � < �0

the P value is

P D P

 
t.n � 1/ <

NX � �0

S=
p

n

!
;

where t.n � 1/ is a Student distribution with n � 1 degrees of freedom. For the
test
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H0 W � D �0

Ha W � > �0

the P value is
P D P

 
t.n � 1/ >

NX � �0

S=
p

n

!
:

5.3.2 Comparing Two Means with Two Small Samples

A company claims that its new fertilizer works better than the old one. To test the
claim ten identical small plots are fertilized, five with the new fertilizer and five
with the old fertilizer. The average yield with the new fertilizer is 123 pounds of
tomatoes and the standard deviation is 6 pounds. For the old fertilizer the average is
116 pounds and the standard deviation is 7 pounds. We perform the test

H0 W �1 D �2

Ha W �1 > �2

The rejection region is

f NX1 � NX2 > 123 � 116g:

The samples are too small to use the CLT. However, assuming that the yields
are normally distributed and that the true variances are equal we have that under
�1 D �2

NX1 � NX2

S
q

1
n1

C 1
n2

follows a Student distribution with n1 C n2 � 2 degrees of freedom where S2 is
defined by

S2 D .n1 � 1/S2
1 C .n2 � 1/2S2

2

n1 C n2 � 2
:

Going back to our example we have NX1 D 123, S1 D 6, NX2 D 116, S1 D 7,
n1 D n2 D 5. Hence,

S2 D 4 � 62 C 4 � 72

8
D 42:5:
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Hence, the P value is

P D P

0

B@
NX1 � NX2

S
q

1
n1

C 1
n2

>
7

S
q

1
n1

C 1
n2

1

CA D P.t.8/ > 1:7/:

According to the Student table the P value is between 5 and 10%. So at the 5% level
we would not reject the null hypothesis. There is not enough evidence to claim that
the new fertilizer yields more tomatoes.

Note that we assumed that the variances were the same to compare the two
means. When the variances are not the same a different Student test must be
performed. See for instance 6.5 in “Statistical Methods in Biology” by N.T.J. Bailey,
Cambridge University Press, Third Edition.

5.3.3 Matched Pairs

Assume we want to test the effect of a course on students. We test the students before
and after a course to assess the effectiveness of the course. We should not analyze
such data as two independent samples. Our two samples techniques work for two
INDEPENDENT samples. We do not have independence here since we are testing
the same individuals in the two samples. We have matched pairs instead. In such
a case we should analyze the difference between the two tests for each individual.
We may apply a one sample technique to the differences. Next we treat such an
example.

Example 3. Does a certain course help the students? Ten students are given two
similar tests before and after a course. Here are their grades

Before 71 72 85 90 55 61 76 78 79 85
After 73 75 89 92 50 68 82 81 86 80

We start by computing the gain per student. We get 2, 3, 4, 2, �5, 7, 6, 3, 7,
and �5. We get an average gain of 2.4 and a sample standard deviation of 4.3. Let �

be the true gain after the course. We would like to test

H0 W � D 0

Ha W � > 0
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Assuming that the gains are normally distributed we use a Student test. The P

value is

P D P

 
t.9/ >

NX
S=

p
10

!
D P.t.9/ > 1:75/:

A Student table yields that the P value is strictly between 0.05 and 0.1. At the 5%
level we cannot reject the null hypothesis. There is not enough evidence to claim
that the course increases the test scores.

Note that we can use this matched pair technique for large samples as well. If the
sample size is large enough we do not need the normality assumption we just use
the CLT.

5.3.4 Checking Normality

How do we decide whether the assumption of normality is reasonable? This is what
the next example is about.

Example 4. Consider the following data: 10.8, 9.6, 10.2, 9.8, 6.9, 8.7, 12.2, 10.4,
11.7, 9.0, 7.4, 13.2, 10.9, 9.5, 11.0, 6.9, 12.9, 6.2, 9.2, 16.9. Could these numbers
come from a normal population? We first draw an histogram.

6 8 10 12 14 16

1

2

3

4

5

This histogram is kind of bell shaped and symmetric. However, interpreting an
histogram is subjective. We may quantify this interpretation by using the fact that
68% of normal observations should be within one standard deviation of the mean
and 95% of the observations should be within two standard deviations of the mean.
See Exercise 5.2.
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However, there is a more precise way to assess normality which is provided by a
normal quantile plot. We have a sample of 20 and the smallest observation is 6.2. So
6.2 is the 1/20 or 0.05 quantile of the data. The 0.05 quantile for a standard normal
distribution is the number with an area of 0.05 to its left. So the 0.05 quantile for a
standard normal is �1.64. The first point on the normal quantile plot is (6.2,�1.64).
The second smallest observation is 6.9. So this is the 2/20 or 0.1 quantile of the data.
The 0.1 quantile of a standard normal distribution is �1.28. The second point of our
normal quantile plot is (6.9,�1.28) and so on. Below is the normal quantile plot for
our data.
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If the distribution of the observations is normally distributed then the normal
quantile plot is close to a line. This is so because if X is normally distributed
with mean � and standard deviation � then X��

�
is a standard normal distribution.

So there is a linear relation between the quantiles of any two normally distributed
random variables.

In this particular example one sees that the points are reasonably aligned and we
may conclude that our observations come from an approximately normal population.

5.3.5 The Sign Test

If the population is clearly not normal and the sample is too small to use the CLT we
still have the following sign test at our disposal. This is a test that may be performed
without assuming that the random variables follow a normal distribution. We still
need to have a sample of n i.i.d. random variables but nothing will be assumed about
the distribution of these random variables. We will explain the test on an example.
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Example 5. We would like to test the following claim: the median height of a
6-year-old boy in this population is at least 84 cm. Assume that the heights in
centimeter of 11 6-year-old boys are the following: 80, 93, 85, 87, 79, 85, 85, 86,
89, 90, and 91. So our test is

H0 W m D 84

Ha W m > 84;

where m is the true median of the population. If the median of the distribution of
the continuous random variable X is m then by definition of m we have

P.X > m/ D P.X � m/ D 1=2:

Let B be the number of observations above 84. Under the null hypothesis m D 84,
B is a binomial random variable with parameters n D 11 and p D 1=2 (since there
is the same chance for an observation to fall below or above 84). The sign test is
based on the random variable B . We should reject the null hypothesis if B is too
large. In this sample we note

�
0
1

�
that B D 9. We compute the P value for the

sign test

P D P.B � 9jm D 84/ D
�

11

9

��
1

2

�11

C
�

11

10

��
1

2

�11

C
�

11

11

��
1

2

�11

:

We get a P value of 0.03. Thus, at the 5% level we reject the null hypothesis: there
is statistical evidence that the median height in this population is at least 84 cm.

Example 6. Test the claim that the median weight loss for a certain diet is larger
than 5 pounds. The diet is tested on eight people. Here are the weights before and
after the diet

Before 181 178 205 195 202 176 180 177
After 175 171 196 192 190 168 176 171

Let m be the true median weight loss. We want to test

H0 W m D 5

Ha W m > 5

We first compute the weight losses: 6, 7, 9, 3, 12, 8, 4, 6. Let B be the number of
weight losses larger than 5. Under m D 5, B follows a binomial with parameters
n D 8 and p D 1=2. Thus, the P value is

P D P.B � 6jm D 5/ D
�

8

6

��
1

2

�8

C
�

8

7

��
1

2

�8

C
�

8

8

��
1

2

�8

D 0:14:
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At the level 5 or 10% there is not enough evidence to reject the null hypothesis. That
is, there is not enough evidence to claim that the median weight loss of the diet is at
least 5 pounds.

Example 7. Farm worker X claims that he picks more apples than farm worker Y.
Here are the quantities picked by both workers over 7 days:

X 201 179 159 192 177 170 182
Y 172 165 161 184 174 142 190

We test
H0 W X and Y pick the same quantity

Ha W X picks more than Y

In order to perform the test we use the random variable B: the number of days that
X outperforms Y. In this sample B D 5. Under the null hypothesis B is a binomial
with parameters n D 7 and p D 1=2. The P value is

P.B � 5jH0/ D
�

7

5

��
1

2

�7

C
�

7

6

��
1

2

�7

C
�

7

7

��
1

2

�7

D 29

27
D 0:23

We do not reject the null hypothesis. There is not enough evidence to claim that X
picks more apples than Y.

Exercises 5.3

1. (a) What is P.t.3/ > 2/?
(b) Compare (a) with P.Z > 2/.

2. Consider the observations of Example 4.

(a) What percentage of the observations are within 1 standard deviation of the
mean?

(b) What percentage of the observations are within 2 standard deviations of the
mean?

(c) Is it reasonable to assume that these observations come from a normal
population?

3. Some components in the blood tend to vary normally over time for each
individual. Assume that the following levels for a given component were measured
on a single patient: 5.5, 5.2, 4.5, 4.9, 5.6, and 6.3.

(a) Test the claim that the mean level for this patient is above 4.7.
(b) Find a confidence interval with 0.95 confidence for the mean level of this

patient.

4. Assume that a group of ten eighth graders taken at random averaged 85 on a test
with a standard deviation of 7.
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(a) Is there evidence that the true mean grade for this population is above 80?
(b) Find a confidence interval for the true mean grade.
(c) What assumptions did you make to answer (a) and (b)?

5. Eight students were given a placement test and after a week of classes were given
again a placement test at the same level. Here are their scores.

Before 71 78 80 90 55 65 76 77
After 75 71 89 92 61 68 80 81

(a) Test whether the scores improved after 1 week by performing a student test.
(b) Test whether the scores improved after 1 week by performing a sign test.

6. In an agricultural field trial, researchers tested two varieties of tomatoes in ten
plots. In eight of the plots variety A yielded more than variety B. Is this enough
evidence to say that variety A yields more than variety B?

7. A diet was tested on nine people. Here are their weights before and after the diet.

Before 171 178 180 190 165 165 176 177 182
After 175 171 182 161 168 156 165 171 175

(a) Test whether the diet makes lose at least 5 pounds by performing a Student test.
(b) Check whether it is reasonable to assume normality in (a).
(c) Perform a sign test for the hypothesis in (a).

8. A test given to 12 male students has an average of 75 and standard deviation of
11. The same test given to ten female students has an average of 81 with a standard
deviation of 8.

(a) Is there evidence that the female students outperform the male students?
(b) Find a confidence interval for the difference of the true means.

9. Does Calculus improve the algebra skills of the students? At the beginning of the
semester 100 Calculus students were given an algebra test and got an average of 79
and a standard deviation of 15. At the end of the semester the same 100 students
were given another algebra test for which the average was 85 and the standard
deviation was 12. The standard deviation for the differences between the two tests
is 5. Perform a test.

10. We would like to assess the effect of a medication on blood pressure. The
medication is given to 12 patients. This group has an average blood pressure of
131 and a standard deviation of 5. Another group of ten patients is given a placebo
and their average is 127 and the standard deviation is 4.

11. Consider the data in Example 7.

(a) Perform a student test.
(b) What assumptions do you need to perform the test in (a)?
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5.4 Chi-Square Tests

In this section we will see two Chi-Square tests. We will first test whether two
variables are independent. Our second test will check whether given observations fit
a theoretical model. We start by introducing the Chi-Square distributions.

Chi-Square Distributions
The random variable X is said to have a chi-square dis-
tribution with n degrees of freedom if it is a continuous
random variable with density

f .x/ D 1

2n=2
.n=2/
xn=2�1e�x=2; x > 0

where


.a/ D
Z 1

0

xa�1e�xdx for a > 0:

The notation for a chi-square random variable with n

degrees of freedom is �2.n/.

The function 
 appears in a number of different branches of mathematics but
cannot be defined more explicitly. However, it is possible to compute some values
of the function explicitly. For instance,


.1/ D
Z 1

0

x1�1e�xdx D �e�x

�1

0

D 1:

An integration by parts gives


.2/ D
Z 1

0

x2�1e�xdx D �xe�x

�1

0

C
Z 1

0

e�xdx D 
.1/ D 1:

More generally, an integration by parts shows that


.a C 1/ D a
.a/:

In particular, for a positive integer n using the identity above repeatedly gives


.n/ D .n � 1/Š

We now sketch the graphs of three densities of chi-square random variables.
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From left to right we have the chi distributions with 1, 4, and 6 degrees of
freedom, respectively.

5.4.1 Testing Independence

Example 1. Is there a relation between the level of education and smoking? Assume
that a random sample of 200 was taken with the following results.

Smoker Non smoker
Education
8 years or less 9 38
12 years 21 80
16 years 5 47

In the test we are going to perform the null hypothesis will be that there is no
association between the two variables. That is, H0 will be that education level and
smoking are independent. The alternative hypothesis is that there is an association
between the two variables. In order to take a decision we will compare the counts in
our sample to the expected counts under the null hypothesis. We now explain how
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to compute the expected counts under the null hypothesis. There are 9 people with
8 years of education or less that smoke. The probability that someone in the sample
has 8 years or less of education is

9 C 38

200
D 47

200
:

The probability that someone in the sample be a smoker is

9 C 21 C 5

200
D 35

200
:

Thus, under the assumption that level of education and smoking are independent we
get that the probability that someone taken at random in the sample has 8 years or
less of education and smoke is

47

200
� 35

200
:

The expected number of people who have 8 years or less of education and smoke is
therefore

200 � 47

200
� 35

200
D 47 � 35

200
:

More generally we have the following,

Expected Count Under the Independence Assumption

Expected count D row total � column total

sample size

We now go back to the data of Example 1 and compute the expected counts for
all the cells.

Expected Counts
Smoker Non smoker

Education
8 years or less 8.225 38.775
12 years 17.675 83.325
16 years 9.1 42.9

Testing Independence
Assume that we want to test whether two variables are related. The null
hypothesis is H0 W the two variables are independent. We use the statistic
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X2 D
X (observed�expected)2

expected

The random variable X2 follows approximately a �2..r �1/.c�1// distribution
where r and c are the number of rows and columns, respectively. Therefore the
P value for this test is given by

P.�2..r � 1/.c � 1// > X2/:

The approximation of X2 by a chi-square distribution gets better as the sample
size increases and is more reliable if every expected cell has a count of five or more.

We now go back to the data of Example 1 to perform the test. We compute X2.

X2 D .9 � 8:225/2

8:225
C .38 � 38:775/2

38:775
C .21 � 17:675/2

17:675

C .80 � 83:325/2

83:325
C .5 � 9:1/2

9:1
C .47 � 42:9/2

42:9
D 3:09:

We have three categories for education so r D 3 and two categories for smoking so
c D 2. Thus, .r � 1/.c � 1/ D 2 and X2 follows approximately a �2.2/. The P

value for Example 1 is

P D P.�2.2/ > 3:09/:

According to the chi-square table the P value is larger than 0.1. At the 5% level we
do not reject H0. It does not appear that there is an association between education
level and smoking.

5.4.2 Goodness-of-Fit Test

We now turn to another important test: goodness-of-fit. We start with an example.

Example 2. Consider the following 25 observations: 0, 3, 1, 0, 1, 1, 1, 3, 4, 3, 2,
0, 2, 0, 0, 0, 4, 2, 3, 4, 1, 6, 1, 4, 1. Could these observations come from a Poisson
distribution?

Recall that a Poisson distribution depends only on one parameter: its mean. We
use the sample average to estimate the mean. We get

NX D 47

25
D 1:88:
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Let N be a Poisson random variable with mean 1.88. We have that

P.N D 0/ D e�1:88 D 0:15

and therefore the expected number of 0’s in 25 observations is 25 � e�1:88 D 3:81:

Likewise we have that

P.N D 1/ D 1:88e�1:88 D 0:29

and the expected number of 1’s in 25 observations is 7.17. We also get that the
expected number of 2’s is 6.74 and the expected number of 3’s is 4.22. The
probability that N is 4 or more is

P.N � 4/ D 0:12:

Thus, the expected number of observations larger than 4 is 3. We summarize these
computations in the table below.

0 1 2 3 4 or more
Observed 6 7 3 4 5
Expected 3.81 7.17 6.74 4.22 3

The test we are going to perform compares the expected and observed counts in
the following way.

Goodness-of-Fit
We want to test whether some observations are consistent with a certain
distribution F (F may be for instance a Poisson distribution or a normal
distribution). The null hypothesis is H0 W The observations follow a distribution
F . We use the statistic

X2 D
X (observed�expected)2

expected
:

The random variable X2 follows approximately a �2.r � 1 � d/ distribution
where r is the number of categories of observations and d is the number of
parameters that must be estimated for the distribution F . Therefore the P value
for this test is given by

P.�2.r � 1 � d/ > X2/:

We use the preceding test on Example 2. In that case the categories are 0, 1, 2, 3,
and 4 or more. So r D 5. The Poisson distribution depends on one parameter (its
mean) therefore d D 1. We now compute X2.
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X2 D .6 � 3:81/2

3:81
C .7 � 7:17/2

7:17
C .3 � 6:74/2

6:74

C .4 � 4:22/2

4:22
C .5 � 3/2

3
D 4:68:

We know that X2 follows approximately a chi-square distribution with r � 1 �
d D 5 � 1 � 1 D 3 degrees of freedom so the P value is.

P D P.�2.3/ > 4:68/:

Since the P -value is larger than 0.1 we do not reject the null hypothesis. That is,
these observations are consistent with a Poisson distribution.

Example 3. The observations of Example 2 were in fact generated as Poisson
observations with mean 2 by a computer random generator. We now test whether
these observations are consistent with a Poisson distribution with mean 2. That is
our null hypothesis is now H0: the observations follow a Poisson distribution with
mean 2. The only difference with Example 1 is that now we do not need to estimate
the mean of the Poisson distribution. In particular, for this example d D 0. We
compute the expected counts.

0 1 2 3 4 or more
Observed 6 7 3 4 5
Expected 3.38 6.77 6.77 4.51 3.75

This time X2 D 4:62: We have that r � d � 1 D 5 � 0 � 1 D 4:

P D P.�2.4/ > 4:62/ > 0:1:

We do not reject the null hypothesis. These observations are consistent with a mean
2 Poisson distribution.

The following example deals with continuous distributions.

Example 4. Are the following observations consistent with a normal distribution?
66, 64, 59, 65, 81, 82, 64, 60, 78, 62
65, 67, 67, 80, 63, 61, 62, 83, 78, 65
66, 58, 74, 65, 80

The sample average is 69 and the sample standard deviation is 8 (we are
rounding to the closest 1 to simplify the subsequent computations). We will now
try to fit the observations to a normal distribution with mean 69 and standard
deviation 8.

We first pick the number of categories, keeping in mind that the chi-square
approximation is best when there are at least five expected counts per cell. We pick
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five categories. Using the standard normal table we find the 20th, 40th, 60th, and
80th percentiles. For instance, we read in the standard normal table that

P.Z < �0:84/ D 0:2

and so the 20th percentile of a standard normal distribution is �0.84. Likewise we
find the four percentiles in increasing order

�0:84; �0:25; 0:25; 0:84

Recall that if X is a normal random variable with mean 69 and standard deviation
8, then

X � 69

8

is a standard normal random variable. So, for instance, the 20th percentile of a
normal random variable with mean 69 and standard deviation 8 is

69 C 8.�0:84/ D 62:28:

Likewise the 40th, 60th, and 80th percentiles of a normal random variable with
mean 69 and standard deviation 8 are 67, 71, 75.72. We round these percentiles to
the nearest one. We now compare the observed and expected counts.

Category (�1, 62] (62, 67] (67,71) [71, 76) [76, 1)
Observed 6 11 0 1 7
Expected 5 5 5 5 5

We compute the statistic

nX2 D
X (observed�expected)2

expected
D 16:4:

We had to estimate two parameters (� and �) so d D 2 and X2 is approximately a
chi-square random variable with r � d � 1 D 5 � 2 � 1 D 2 degrees of freedom.
We get the P value

P.�2.2/ > 16:4/ < 0:01:

So we reject the null hypothesis. These observations are not consistent with a normal
distribution.

Observe that the goodness of fit test is especially useful when we reject the null
hypothesis. In that case we conclude that the observations are unlikely to come
from the distribution we are testing. On the other hand when we do not reject the
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null hypothesis we are simply saying that the observations are consistent with the
distribution we are testing. There may be a number of other distributions for which
this is true as well.

Exercises 5.4

Problems 1–5 use data from the American Mathematical Society regarding new
doctorates in mathematics (Notices of the AMS January 1998). Types I–III are
groups of mathematics departments as ranked by the AMS.

1. The following table gives the number of new PhD’s in mathematics according to
their area of concentration and the type of department that granted their degree.

Area Algebra Geometry Probability and stat.
Institution
I 21 28 9
II 10 7 4
III 3 1 3

Is it true that certain types of institutions graduate more students in one area than
in others?

2. The table below breaks down the number of graduates in 1997 according to their
gender and area of concentration.

Area Algebra Geometry Probability and stat.
Gender
Male 123 118 194
Female 37 23 98

Is the distribution of area of concentrations for female students different from the
distribution for male students?

3. The following table gives the numbers of employed new graduates according
to the type of their granting institution and the type of employer. Does the type of
employer depend on the type of granting institution?

Granting inst. I public I private II
Employer
I public 35 19 6
I private 13 25 2
II 14 7 16
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4. The next table breaks down the number of new graduates according to gender
and granting institution.

Granting inst. I public I private II III
Gender
Male 239 157 175 96
Female 58 30 63 36

Is the distribution of granting institutions for female students different from the
distribution for male students?

5. The table below breaks down the number of employed new graduates per type
of employer and citizenship. Does the type of employer depend on citizenship?

Citizenship US Non-US
Employer
PhD dept. 100 111
Non-PhD dept. 177 59
Nonacademic 104 160

6. Test whether the following observations are consistent with a Poisson distribu-
tion: 1, 4, 2, 7, 4, 3, 0, 2, 5, 2, 3, 2, 1, 5, 5, 0, 3, 2, 2, 2, 2, 1, 4, 1, 2, 4.

7. Test whether the following observations are consistent with a standard normal
distribution:
1.70, 0.11, 0.14, 0.81, 2.19
�1.56, �0.67, 0.89, �1.24, 0.26
�0.05, 0.72, 0.29, �1.09, �0.43
�2.23, �1.68, 0.23, 1.17, �0.87
�0.28, 1.11, �0.43, �0.16, �0.07

8. Test whether the following observations are consistent with a uniform distribu-
tion on [0,100].
99, 53, 18, 21, 20, 53, 58, 4, 32, 51
24, 51, 62, 98, 2, 48, 97, 64, 61, 18
25, 57, 92, 72, 95

9. Let T be an exponential random variable with mean 2. That is, the density of T

is f .t/ D 1
2
e

�t
2 for t � 0. Find the 20th percentile of T .

10. Test whether the following observations are consistent with an exponential
distribution.
13, 7, 14, 10, 12, 8, 8, 8, 10, 9
8, 10, 5, 14, 13, 7, 11, 11, 10, 8
10, 10, 13, 9, 10
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11. (a) Show that the function 
:


.a/ D
Z 1

0

xa�1e�xdx

is defined on .0; 1/.
(b) Show that 
.a C 1/ D a
.a/:

(c) Show that 
.n/ D .n � 1/Š for any positive integer n.



Chapter 6
Linear Regression

6.1 Fitting a Line to Data

We start by an example.

Example 1. We consider state taxes and state debts, per capita, for 10 American
states (data from The World Almanac and Book of Facts 1998).

x D Debt 884 720 798 1,526 899 4,719 4,916 1,085 781 4,377
y D Taxes 1,194 1,475 1,365 1,686 1,209 2,282 2,224 1,311 1,317 2,422

We would like to see whether there is a linear relationship between per capita
taxes and per capita debt. We start by plotting the points. Let x denote the state debt
per capita and y denote the tax per capita. We get
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It looks like there is an approximate linear relation between x and y. How
can we find a line that fits the data? The most used criterion is the least-squares
criterion.

The Least Squares Regression Line
Assume that we have n observations .xi ; yi / and we want the line that best fits
these observations. More precisely, we would like to predict y from x by using
a line. The line Obx C Oa is said to be the least squares regression line of y on x

if
nX

iD1

.yi � .bxi C a//2

is minimum for a D Oa and b D Ob. The values of Oa and Ob are given by

Ob D n
Pn

iD1 xi yi �Pn
iD1 xi

Pn
iD1 yi

n
Pn

iD1 x2
i � .

Pn
iD1 xi /2

and

Oa D Ny � Ob Nx:

Remarks

1. Note that
Pn

iD1.yi � .bxi C a//2 represents the total error we make when we
replace yi by bxi C a. This is why we want a and b to minimize this sum. Other
choices are possible for the error such as

Pn
iD1 jyi � .bxi C a/j. However, the

advantage of the sum of squares is that we can get explicit expressions for Oa and
Ob. Explicit expressions are not available if the error is taken to be the sum of
absolute values.

2. Note also that the variables x and y do not play symmetric roles here. We are
trying to predict y from x. If we want to predict x from y then we should
minimize

Pn
iD1.xi � .byi C a//2. We would get the regression line of x on

y and the reader may check that this is a different line from the regression line of
y on x.

3. Finally, note that the relation Oa D Ny � Ob Nx shows that the regression line passes
through the point of averages . Nx; Ny/.

We now go back to the data of Example 1 and compute Oa and Ob. We write the
intermediate computations in a table.
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xi yi x2
i y2

i xi yi

884 1,194 781,456 1,425,636 1,055,496
720 1,475 518,400 2,175,625 1,062,000
798 1,365 636,804 1,863,225 1,089,270

1,526 1,686 2,328,676 2,842,596 2,572,836
899 1,209 808,201 1,461,681 1,086,891

4,719 2,282 22,268,961 5,207,524 10,768,758
4,916 2,224 24,167,056 4,946,176 10,933,184
1,085 1,311 1,177,225 1,718,721 1,422,435

781 1,317 609,961 1,734,489 1,028,577
4,377 2,422 19,158,129 5,866,084 10,601,094

Sums: 20,705 16,485 72,454,869 29,241,757 41,620,541

We get that

Ob D 10.41;620;541/ � .20;705/.16;485/

10.72;454;869/ � .20;705/2
� 0:25

and that
Oa D Ny � Oa Nx D 1;648:5 � .0:25/2;070:5 � 1;131:

So that the equation of the regression line is

y D 0:25x C 1;131:

One can see below that the regression line fits well the scatter plot.
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The regression line main use is to make predictions. For instance, if the debt per
capita is $6,000 in a state then we plug x D 6;000 in the regression line and get that
the predicted tax y is

y D 0:25 � 6;000 C 1;131 D 2;631:
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Example 2. We consider the population, in millions, of the United States from 1790
to 1900.

Year Population Year Population
1790 3.9 1850 23.2
1800 5.3 1860 31.4
1810 7.2 1870 39.8
1820 9.6 1880 50.2
1830 12.9 1890 62.9
1840 17.1 1900 76.0

The scatter plot below shows that there is a relation between population and year
but that this relation is not linear.
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It looks like the population has grown exponentially over the period of time we
consider. Let x be the year and y the population, if y is an exponential function of
x as

y D cedx

then by taking logarithms on both sides we get

ln.y/ D dx C ln.c/:

Therefore, we may test our hypothesis that the population grew exponentially
fast during the period 1790–1900 by trying to find a linear relation between the
logarithm of the population and the year. Our transformed data is
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Year ln(Population) Year ln(Population)
1790 1.36 1850 3.14
1800 1.67 1860 3.45
1810 1.97 1870 3.68
1820 2.26 1880 3.92
1830 2.56 1890 4.14
1840 2.84 1900 4.33

The regression line fits the data remarkably well. See below.
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The equation of the regression line is

ln.y/ D 0:0275x � 47:77:

We plug x D 1; 872 in the preceding equation to predict the population in 1872.
We get ln.y/ D 3:71 and therefore y D 40:8. Thus, the model predicts that the
population in 1872 was 40.8 millions in the United States. This figure is in good
agreement with the actual figure. We plug x D 2; 000 and we get y D 1; 380:2. The
prediction of the model is that the population of the United States in 2000 will be 1
billion and 380 millions people. This is in gross disagreement with the actual figure
(around 260 millions). We used the data from 1790 to 1900 to get this regression
line. The year 2000 is well off this range. This example illustrates the fact that as
we get away from the range of x for which the regression was made the predictions
may become very unreliable.

6.1.1 Sample Correlation

When one looks for a relation between x and y the starting point should always
be a scatter plot. However, the relation between x and y is rarely obvious and it is
interesting to have a measure of the strength of the linear relation between x and y.
This is where correlation comes into play.
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Sample Correlation
Assume that we have n observations of the variables x and y that we denote by
.xi ; yi /. The sample correlation r for this data is

r D 1

n � 1

nX

iD1

�
xi � Nx

sx

��
yi � Ny

sy

�
;

where Nx D 1
n

Pn
iD1 xi and s2

x D 1
n�1

Pn
iD1.xi � Nx/2. The coefficient r is

always in the interval [�1,1] and measures the strength of the LINEAR relation
between x and y. If jr j is close to 1 there is a strong linear relation between x

and y. If jr j is close to 0 then there is no linear relation between x and y. A
computational formula for r is

r D
Pn

iD1 xi yi � 1
n

Pn
iD1 xi

Pn
iD1 yi

.n � 1/sxsy

:

Next we examine three typical situations.
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For the scatter plot on the left there is no linear relation between x and y. In this
case the correlation coefficient r will be close to 0. For the scatter plot in the middle
there is a positive linear relation between x and y and so r will be close to 1. Finally,
for the scatter plot on the right there is a negative relation between x and y and so
r will be close to �1. It is possible to show that r D 1 or �1 if and only if all the
points are aligned.

Example 3. We compute the sample correlation for the data of Example 1. We use
the computational formula for sx and sy ,

s2
x D 1

n � 1

 
nX

iD1

x2
i � n. Nx/2

!
D 1

9
.72;454;869 � 10 � .2;070:5/2/ D 3;287;241:
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Similarly,

s2
y D 1

9
.29;241;757 � 10 � .1;648:5/2/ D 229;582:

Therefore we get that sx D 1; 813 and sy D 479. Thus, the correlation coefficient

rD
Pn

iD1 xi yi � 1
n

Pn
iD1 xi

Pn
iD1 yi

.n � 1/sxsy

D41;620;541 � 1
10

20;705 � 16;485

9.1;813/.479/
� 0:96:

This computation shows a very strong positive linear relation between tax
and debt.

We now state an interesting relation between the correlation coefficient and the
equation of the regression line.

Correlation and Regression
Let r be the sample correlation for variables x and y. Let ObxC Oa be the equation
of the regression line of y on x then

Ob D r
sy

sx

and

Oa D Ny � Ob Nx:

Example 4. We compute the equation of the regression line of y on x for the data
in Example 1 by using the formulas above. First,

Ob D r
sy

sx

D 0:96
479

1; 813
D 0:25:

For Oa we use

Oa D Ny � Ob Nx D 1; 648:5 � .0:25/.2; 070:5/ D 1; 131:

Exercises 6.1

1. Here is the population data for the United States from 1900 to 1990.
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Year Population Year Population
1900 76.0 1950 151.3
1910 92.0 1960 179.3
1920 105.7 1970 203.3
1930 122.8 1980 226.5
1940 131.7 1990 248.7

(a) Make a scatter plot.
(b) Did the population increase exponentially fast during this period?
(c) Do a regression explaining the log of the population in function of the year.
(d) Does the model in (c) look adequate?
(e) Predict the population in 2000 by using this model.

2. Use the data of Example 1 to do a regression where the roles of x and y are
inverted. That is, take y to be the debt per capita and x the tax per capita.

(a) Find the equation of the regression line.
(b) Is this the same line as the one we found in Example 1?

3. As the scatter plot from Example 1 shows the data we have analyzed so far has
two clusters. One with small tax debt and the other one with high tax debt. We
now add 4 points with intermediate tax debt, the first coordinate represents the debt,
the second one the corresponding tax: (3066,1713), (3775,1891), (2282,952), and
(2851,1370). So the modified data of Example 1 has now 14 points.

(a) Compute the correlation coefficient debt/tax for the modified data.
(b) Compute the equation of the new regression line.
(c) Compare the fit of the regression line in this problem to the fit of the regression

line in Example 1.

4. In recent years there has been a significant increase of tuberculosis in the US.
We will examine whether there seems to be a linear relation between the number of
cases of AIDS and the number of cases of tuberculosis. In the following table we
write the rate per 100,000 population for nine states in 1998 (the data are from the
Center for Disease Control).

State Tuberculosis AIDS
California 11.8 367
Florida 8.7 538
Georgia 8.3 307
Illinois 7.1 189
Maryland 6.3 390
New Jersey 7.9 496
New York 11.0 715
Pennsylvania 3.7 175
Texas 9.2 284
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(a) Draw a scatter plot.
(b) Compute the correlation coefficient between AIDS and tuberculosis.

5. Here are the death rates (per 100,000 persons) per age in the US in 1978 (data
from US Department of Health).

Age Death rate Age Death rate
42 296.1 67 2,463.0
47 471.6 72 3,787.4
52 742.4 77 6,024.2
57 1,115.9 82 8,954.0
62 1,774.2

(a) Draw a scatter plot.
(b) Based on (a) should you transform the data in order to have a linear relation?
(c) Compute an adequate regression line.

6. The following table gives the per capita health expenditures in the US.

Year Expenditure Year Expenditure
1940 30 1970 367
1950 82 1971 394
1955 105 1972 438
1960 146 1973 478
1965 211 1974 534

1975 604

(a) Draw a scatter plot.
(b) Do a regression of the log of expenditures on the year.
(c) Compute the correlation coefficient for log of expenditures and year.
(d) Does the model in (b) seem adequate?

7. The following table gives the death rates (100,000 persons) for cancer of the
respiratory system in the US.

Year Rate Year Rate
1950 14.5 1970 47.6
1955 20.6 1975 56.7
1960 30.5 1977 61.5
1965 36 1978 62.5

(a) Draw a scatter plot.
(b) Find the regression line for the death rate on the year.
(c) What is the correlation coefficient for the rate and year?
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6.2 Inference for Regression

The regression line introduced in the preceding section is based on a sample. If we
change the sample we will get another regression line. Therefore, it is important to
know how much confidence we may have on our regression line. In particular, in this
section we will get confidence intervals for the coefficients of the regression line. In
order to do so we need an underlying probability model that we now formulate. We
will assume that the variable y we wish to explain is random and that the explanatory
variable x is deterministic (i.e., nonrandom). We have n observations .xi ; yi / for
i D 1; 2; : : : ; n. We assume that

yi D bxi C a C ei ;

where the ei are random variables. We also assume that the ei are independent and
normally distributed with mean 0 and standard deviation � . Observe that our model
has three parameters a, b, and � . Note also that since bxi C a is a constant and
E.ei/ D 0 we get

E.yi / D bxi C a C E.ei/ D bxi C a:

That is, the model assumes that the mean of a variable yi corresponding to xi

is bxi C a. However, the random variable yi varies around its mean. The model
assumes that ei , the variation of yi around its mean, is normally distributed with
standard deviation � . Therefore, the model makes four major assumptions: the
mean of yi is a linear function of xi , the variables ei are normally distributed, the
standard deviation is the same for all the ei and the ei are independent of each
other.

To estimate a and b we use the estimators Oa and Ob that we have given in Sect. 6.1.
To predict the y corresponding to xi we use

Oyi D Obxi C Oa:

For i D 1; 2; : : : ; n let
Oei D yi � Oyi :

They are the residuals and they represent the error between the observation yi and
the prediction Oyi .

Estimating the Regression Parameters
Assume that

yi D bxi C a C ei for i D 1; : : : ; n

and that the ei are independent and normally distributed with mean 0 and
standard deviation � . Then a and b are estimated by
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Ob D n
Pn

iD1 xi yi �Pn
iD1 xi

Pn
iD1 yi

n
Pn

iD1 x2
i � .

Pn
iD1 xi /2

and

Oa D Ny � Ob Nx:

The parameter �2 is estimated by

s2 D 1

n � 2

nX

iD1

.yi � . Obxi C Oa//2 D 1

n � 2

nX

iD1

Oe2
i :

Note that to get s2 we divide by n � 2 even though there are n terms in the sum.
This is similar to what we do to compute the sample variance of a random variable
(there, we divide by n�1). By dividing by n�2 we get an unbiased estimator of �2.
That is,

E.s2/ D �2:

Example 1. We use the data of Example 1 in Sect. 7.1 to get estimates of the
regression parameters. We have already computed the regression line

y D 0:25x C 1; 131:

So to get the predicted Oyi below we compute

Oyi D 0:25xi C 1;131:

xi yi Oyi Oei Oe2
i

884 1,194 1,352 �158 24,964
720 1,475 1,311 164 26,896
798 1,365 1,331 �34 1,156
1,526 1,686 1,513 �173 29,929
899 1,209 1,356 �147 21,609
4,719 2,282 2,311 �29 841
4,916 2,224 2,360 �136 18,496
1,085 1,311 1,402 �91 8,281
781 1,317 1,326 �9 81
4,377 2,422 2,225 197 38,809

Sum: 171,062

Thus, we get

s2 D 1

n � 2

nX

iD1

Oe2
i D 1

8
171;062 D 21;383:



172 6 Linear Regression

Therefore, s D 146 is an estimate of � . We will now use the estimators Oa, Ob,
and s to get confidence intervals for a and b. We first need information about the
distributions of Oa and Ob.

Distribution of Oa and Ob
Consider the model

yi D bxi C a C ei

with the assumptions that the ei are independent, normally distributed with
mean 0 and variance �2. Assume that we have n observations. Then,

Oa � a

s Oa
and

Ob � b

s Ob

follow a Student distribution with n � 2 degrees of freedom where,

s Oa D s

s
1

n
C Nx2

Pn
iD1.xi � Nx/2

and

s Ob D spPn
iD1.xi � Nx/2

:

Note that the above holds only if we assume that the ei are independent,
NORMALLY distributed with mean 0 and the SAME � . The statistical analysis
we will do below is only valid under these assumptions. We will discuss below how
to check these assumptions.

The crucial step in any regression analysis is to test whether or not b D 0. If we
cannot reject the null hypothesis b D 0 then the conclusion should be that there is
no statistical evidence that there is a linear relation between the variables y and x.
In other words our model is not adequate for the problem and we have to look for
another model.

Example 2. We are going to test whether b D 0 for the data of Example 1. In order
to perform the test we need to compute

nX

iD1

.xi � Nx/2 D
nX

iD1

x2
i � 2 Nx

nX

iD1

xi C n Nx2 D
nX

iD1

x2
i � 1

n

 
nX

iD1

xi

!2

:
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We now may use the table in Example 1, Sect. 6.1 to get

nX

iD1

.xi � Nx/2 D 72;454;869 � 1

10
.20;705/2 D 29;585;166:5:

From Example 1, we know that s D 146. Thus,

s Ob D spPn
iD1.xi � Nx/2

D 146p
29;585;166:5

D 0:03:

We have already computed Ob D 0:25. The test we want to perform is

H0 W b D 0

Ha W b 6D 0

This is a two-sided test. The rejection region is

f Ob > 0:25or Ob < �0:25g:

We now compute the P value for this test. By the symmetry of the rejection region
we get

P D 2P. Ob > 0:25jb D 0/ D 2P

�
t.n � 2/ >

0:25

0:03

�
D 2P.t.8/ > 8/:

According to the Student table this P value is extremely small and we reject the null
hypothesis with very high confidence. That is, there is strong statistical evidence that
there is a positive relation between x (state debt) and y (state tax).

Example 3. Since we have rejected the hypothesis b D 0 we should find a
confidence interval for b. For a confidence interval with 0.95 confidence we want c

such that

P.j Ob � bj < c/ D 0:95:

Therefore,

P.j Ob � bj < c/ D P

 
j Ob � bj

s Ob
<

c

s Ob

!
D P

�
jt.n � 2/j <

c

s Ob

�
D 0:95:

We use the Student table to get

c

s Ob
D 2:3:
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So

c D 2:3 � 0:03 D 0:07:

Therefore, a confidence interval at the 95% level for b is (0.18;0.32).
We now turn our attention to confidence intervals for the predicted and mean

values of y. For a given value x0 of the variable x there are two possible
interpretations for Obx0 C Oa: It could be an estimate of the mean value of y

corresponding to x0 or it could be a prediction for a y corresponding to x0. As
we are going to see below there is more variation in predicting an individual y than
in predicting its mean.

Predicting E.y/

The ratio

E.y/ � .bx0 C a/

sy

follows a Student distribution with n � 2 degrees of freedom where E.y/ D
Obx0 C Oa and

sy D s

s
1

n
C .x0 � Nx/2

Pn
iD1.xi � Nx/2

:

Example 4. We will now compute a confidence interval for the mean tax per capita
corresponding to debt per capita of $3,000. We use the data of Example 1. We have
x0 D 3;000. In Example 2 we have already computed

nX

iD1

.xi � Nx/2 D 29;585;166:5:

We also have that Nx D 2; 070:5 and that s D 146. Therefore,

sy D s

s
1

n
C .x0 � Nx/2

Pn
iD1.xi � Nx/2

D 146

s
1

10
C .3;000 � 2;070:5/2

29;585;166:5
D 52:

In this example we have that

Obx0 C Oa D 1;881:
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Since . Obx0COa/�.bx0Ca/

sy
follows a Student with n � 2 D 8 degrees of freedom we get

that a confidence interval with 95% confidence for the mean tax corresponding to a
debt of 3,000 per capita is

.1;881 � 2:3sy; 1;881 C 2:3sy/ D .1;761I 2;001/:

Predicting y

The ratio

y � .bx0 C a/

sy

follows a Student distribution with n�2 degrees of freedom where y D Obx0C Oa
and

sy D s

s

1 C 1

n
C .x0 � Nx/2

Pn
iD1.xi � Nx/2

:

Note that the standard error for predicting an individual y is larger than the
standard error for estimating the mean E.y/.

Example 5. We now compute a confidence interval for a predicted tax based on a
debt of $3,000. The only difference with Example 4 is that the standard deviation sy

is now

s

s

1 C 1

n
C .x0 � Nx/2

Pn
iD1.xi � Nx/2

D 155:

Note that the standard deviation has tripled compared to Example 4. With 95%
confidence we get that the predicted tax corresponding to 3,000 debt is in the interval

.1; 881 � 2:3sy I 1; 881 C 2:3sy/ D .1; 515I 2; 238/:

6.2.1 Checking the Assumptions of the Model

We will now check some of the assumptions we made for the model. We start by
plotting the residuals Oei for the data of Example 1.

The important thing to check here is that there is no special pattern. For instance,
it could be that the residuals increase, decrease in a regular way or have a special
clustering. In this case there seems that there is no special pattern emerging.
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The second important plot is the normal quantile plot for the residuals (see
Sect. 5.3 for more details). We now plot the normal quantile plot for the residuals in
Example 1.
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Recall that when the variable is normally distributed the points in this plot are
aligned. The pattern here is not too far from a straight line so the assumption of
normality seems reasonable in this case. In summary, based on the two plots above
we may conclude that the assumptions of the model (normality and independence
of the residuals, same �) are not violated in this example.

Exercises 6.2

1. (a) Test whether a is 0 for the data of Example 1.
(b) Find a confidence interval for a with confidence 0.99.

2. Consider the data about the US population in Exercise 1 in Sect. 6.1.

(a) Do a regression of the log of the population on the year.
(b) Test whether b D 0.
(c) Give a confidence interval for the US population in 2000.

3. Consider the data on death rates from Exercise 5 in Sect. 6.1.

(a) Compute the regression line of log of death rate on age.
(b) Test whether b D 0 for the model in (a).
(c) Plot the residuals of the model in (a).
(d) Plot the normal probability quantiles for the residuals.
(e) Based on (c) and (d) would you say that the assumptions of the model hold in

this case?

4. Consider the data in Exercise 6 in Sect. 6.1.

(a) Do a regression of the log of expenditures on the year.
(b) Test the adequacy of the model.
(c) Test the assumptions of the model.

5. Consider the data of Exercise 4 in Sect. 6.1.

(a) Do a regression of the tuberculosis rate on the AIDS rate.
(b) Test whether there is a linear relation between the two rates.

6. Consider the data of Exercise 6.7 in Sect. 6.1 about the death rate for cancer of
the respiratory system.

(a) Test whether there is a linear relation between death rate and year.
(b) Give a confidence interval for the death rate of year 1985.

7. The table below gives the number of years a person alive at 65 in a given year is
expected to live.
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Year Life expectancy Year Life expectancy
1900 11.9 1975 16.0
1950 13.9 1977 16.3
1960 14.3 1979 16.3
1970 15.2

(a) Test whether there is a linear relation between life expectancy and year.
(b) Give a confidence interval for the life expectancy at age 65 in the year 2000.
(c) Does the answer in (b) look accurate?



Chapter 7
Moment Generating Functions and Sums
of Independent Random Variables

7.1 Moment Generating Functions

The purpose of this chapter is to introduce moment generating functions (mgf).
We have two applications in mind that will be covered in the next section. We will
compute the distribution of some sums of independent random variables and we will
indicate how moment generating functions may be used to prove the Central Limit
Theorem. We start by defining moment generating functions.

Moment Generating Functions
The moment generating function of a random variable X is defined by

MX .t/ D E.etX/:

In particular, if X is a discrete random variable then

MX .t/ D
X

k

etkP.X D k/:

If X is a continuous random variable and has a density f then

MX .t/ D
Z

etxf .x/dx:

Note that the mgf is not necessarily defined for all t (because of convergence
problems of the series or of the generalized integral). It is useful even if it is defined
on a small interval. We start by computing some mgf.

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7 7, © Springer Science+Business Media, LLC 2012
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Example 1. Consider a binomial random variable S with parameters n and p.
Compute its mgf.

We have that

MS.t/ D E.etS / D
nX

kD0

etkP.S D k/ D
nX

kD0

etk

�
n

k

�
pk.1 � p/n�k

D
nX

kD0

�
n

k

�
.et p/k.1 � p/n�k:

We now use the binomial Theorem

.x C y/n D
nX

kD0

�
n

k

�
xkyn�k

with x D et p and y D .1 � p/ to get

MS.t/ D .pet C 1 � p/n for all t:

Example 2. Let N be a Poisson random variable with mean 	. We have

MN .t/ D E.etN / D
1X

kD0

etkP.N D k/ D
1X

kD0

etke�	 	k

kŠ
D

1X

kD0

e�	 .et 	/k

kŠ
:

Recall that

ex D exp.x/ D
1X

kD0

xk

kŠ
:

We use this power series expansion with x D et 	 to get

MN .t/ D e�	 exp.et	/ D exp.	.�1 C et // for all t:

We now give an example of computation of mgf for a continuous random
variable.

Example 3. Assume X is exponentially distributed with rate 	. Its mgf is

MX.t/ D E.etX / D
Z 1

0

etx	e�	xdx D
Z 1

0

	e.t�	/xdx:

Note that the preceding improper integral is convergent only if t � 	 < 0. In that
case we get

MX.t/ D 	

	 � t
for t < 	:

The moment generating functions get their name from the following property.
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Moments of a Random Variable
Let X be a random variable and k � 1 be an integer. The expectation E.Xk/

is called the kth moment of X . If X has a moment generating function MX

defined on some interval .�r; r/ for r > 0 then all the moments of X exist
and

E.Xk/ D M
.k/
X .0/;

where M
.k/
X designates the kth derivative of MX .

Example 4. We will use the formula above to compute the moments of the Poisson
distribution. Let N be a Poisson random variable with mean 	. Then MN is defined
everywhere and

MN .t/ D exp.	.�1 C et //:

Note that the first derivative is

M 0
N .t/ D 	et exp.	.�1 C et //:

Letting t D 0 in the formula above yields

E.X/ D M 0
N .0/ D 	:

We now compute the second derivative

M 00
N .t/ D 	et exp.	.�1 C et // C 	2e2t exp.	.�1 C et //:

Thus,

E.X2/ D M 00
N .0/ D 	 C 	2:

Note that

Var.X/ D E.X2/ � E.X/2 D 	:

Example 5. We now compute the mgf of a standard normal distribution. Let Z be a
standard normal distribution. We have

MZ.t/ D E.eZt / D
Z 1

�1
1p
2�

ezt e�z2=2dz D
Z 1

�1
1p
2�

ezt�z2=2dz:
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Note that we may “complete the square” to get

zt � z2=2 D �.z � t/2=2 C t2=2:

Thus,

MZ.t/ D
Z 1

�1
1p
2�

e�.z�t /2=2Ct 2=2dz D et 2=2

Z 1

�1
1p
2�

e�.z�t /2=2dz:

Note that g.z/ D 1p
2�

e�.z�t /2=2 is the density of a normal distribution with mean t

and standard deviation 1. Thus,

Z 1

�1
1p
2�

e�.z�t /2=2dz D 1

and

MZ.t/ D et 2=2:

Example 6. We may use Example 5 to compute the moments of a standard normal
distribution.

M 0
Z.t/ D tet 2=2:

Letting t D 0 above we get

E.Z/ D 0:

We have

M 00
Z.t/ D et 2=2 C t2et 2=2:

So

E.Z2/ D M 00
Z.0/ D 1:

We also compute the third moment

M
.3/
Z .t/ D tet 2=2 C 2tet 2=2 C t3et 2=2:

We get

E.Z3/ D M
.3/
Z .0/ D 0:
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Example 7. We now use the computation in Example 5 to compute the mgf of a
normal random variable X with mean � and standard deviation � . We have used
already many times the fact that the random variable Z defined as

Z D X � �

�

is a standard normal distribution. We will provide a proof in Sect. 8.1. Assuming
this fact we have

MX.t/ D M�ZC�.t/ D E.et .�ZC�//:

Observe that et� is a constant so

MX.t/ D et�E.et�Z/ D MZ.t�/:

We now use that MZ.t/ D et 2=2 to get

MX.t/ D exp.t�/ exp.t2�2=2/ D exp.t� C t2�2=2/:

Our next example deals with the Gamma distribution.

Example 8. A random variable X is said to have a Gamma distribution with
parameters r > 0 and 	 > 0 if its density is

f .x/ D 	r


.r/
e�	xxr�1 for x > 0;

where


.r/ D
Z 1

0

xr�1e�xdx:

The improper integral above is convergent for all r > 0. Moreover, an easy induction
proof shows that


.n/ D .n � 1/Š for all integers n � 1:

Observe that a Gamma random variable with parameters r D 1 and 	 is an
exponential random variable with parameter 	.

We now compute the mgf of a Gamma random variable with parameters r and 	.

MX.t/ D E.etX / D
Z 1

0

etx 	r


.r/
e�	xxr�1dx:
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The preceding improper integral converges only for t < 	. Note that

g.x/ D .	 � t/r


.r/
xr�1e�.	�t /x

is the density of a Gamma random variable with parameters r and 	 � t . Thus,

Z 1

0

g.x/dx D .	 � t/r


.r/

Z 1

0

xr�1e�.	�t /xdx D 1:

Hence,
Z 1

0

xr�1e�.	�t /xdx D 
.r/

.	 � t/r

and

MX.t/ D
Z 1

0

etx 	r


.r/
e�	xxr�1dx D 	r


.r/


.r/

.	 � t/r
D 	r

.	 � t/r
for t < 	:

Example 9. We now compute the expected value and the variance of a Gamma
distribution with parameters r > 0 and 	 > 0. According to Example 8 we have

MX .t/ D 	r

.	 � t/r
for t < 	:

Hence,

M 0
X.t/ D .�r/.�1/

	r

.	 � t/rC1

and

M 0
X .0/ D r

	r

	rC1
D r

	
:

Therefore,

E.X/ D r

	
:

We now turn to the second moment

M 00
X.t/ D r.�r � 1/.�1/

	r

.	 � t/rC2
:

In particular,

M 00
X .0/ D r.r C 1/

	r

	rC2
D r.r C 1/

	2
:
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Therefore,

Var.X/ D E.X2/ � E.X/2 D r.r C 1/

	2
�
� r

	

�2 D r

	2
:

We summarize our findings about the Gamma distribution below.

Gamma Distribution
A random variable X is said to have a Gamma distribution with parameters
r > 0 and 	 > 0 if its density is

f .x/ D 	r


.r/
e�	xxr�1 for x > 0

where


.r/ D
Z 1

0

xr�1e�xdx:

Its moment generating function is

MX .t/ D 	r

.	 � t/r
for t < 	:

We also have

E.X/ D r

	
and Var.X/ D r

	2
:

Exercises 7.1

1. Compute the moment generating function of a geometric random variable with
parameter p.

2. Compute the mgf of an uniform random variable on [0,1].

3. Compute the first three moments of a binomial random variable by taking
derivatives of its mgf.

4. Compute the first moment of a geometric random variable by using Exercise 7.1.

5. Compute the first two moments of an uniform random variable on [0,1] by using
Exercise 7.2.

6. Compute the fourth moment of a standard normal distribution Z.
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7. What is the mgf of a normal distribution with mean 1 and standard deviation 2?

8. Use the mgf in Example 7 to compute the first two moments of a normal
distribution with mean � and standard deviation � .

9. We defined the function 
 for all r > 0 by


.r/ D
Z 1

0

xr�1e�xdx:

(a) Make a change of variables to show that for all 	 > 0 and r > 0

Z 1

0

e�	x	rxr�1dx D 
.r/:

(b) Show that for all r > 0 and 	 > 0

	r


.r/

Z 1

0

e�	xxr�1dx D 1

(c) Show that

.n/ D .n � 1/Š for all integers n � 1:

10. A random variable with density

f .x/ D 1

2n=2
.n=2/
xn=2�1e�x=2

is said to be a Chi-square random variable with n degrees of freedom (n � 1 is an
integer).

(a) Show that a Chi-square random variable is also a Gamma random variable.
(b) Find the expected value and the variance of a Chi-square random variable with

n degrees of freedom.

11. Show that the improper integral
Z 1

0

e�	x	rxr�1dx

converges for all r > 0. (You need to show convergence near 0 when 0 < r < 1 and
near 1 for all r > 0).

12. Let Z be a standard normal distribution.

(a) Show that for any integer k � 2 we have

E.Zk/ D .k � 1/E.Zk�2/:

(Use integration by parts.)
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(b) Use (a) to compute E.Z4/ and E.Z5/.
(c) More generally, show that for all integer n � 2 we have

E.Z2n�1/ D 0 and E.Z2n/ D 1 � 3 � 5 � : : : .2n � 1/:

7.2 Sums of Independent Random Variables

We first summarize the mgf we have computed in Sect. 7.1.

Random variable Moment generating function
Binomial .n; p/ .pet C 1 � p/n

Poisson .	/ exp.	.�1 C et //

Exponential .	/ 	
	�t

for t < 	

Normal .�; �2/ exp.t� C t 2�2=2/

Gamma .r; 	/ 	r

.	�t/r for t < 	

We will use moment generating functions to show the following important
property of normal random variables.

Linear Combination of Independent Normal Random
Variables

Assume that X1; X2; : : : ; Xn are independent normal random variables
with mean �i and variance �2

i . Let a1; a2; : : : ; an be a sequence of real
numbers. Then

a1X1 C a2X2 C � � � C anXn

is also a normal variable with mean

a1�1 C a2�2 C � � � C an�n

and variance

a2
1�2

1 C a2
2�2

2 C � � � C a2
n�2

n :

In words, a linear combination of independent normal random variables is
normal. We apply this property in the following two examples.

Example 1. Assume that in a population heights are normally distributed. The mean
height for men is 172 cm with SD 5 cm and for women the mean is 165 cm with
SD 3 cm. What is the probability that a woman taken at random be taller than a man
taken at random?
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Let X be the man’s height and let Y be the woman’s height. We want P.X <

Y / D P.Y � X > 0/. According to the preceding property Y � X is normally
distributed with

E.Y � X/ D E.Y / � E.X/ D 165 � 172 D �7

and

Var.Y � X/ D Var.Y / C Var.X/ D 32 C 52 D 34:

We normalize Y � X to get

P.X < Y / D P.Y � X > 0/ D p

�
Y � X � .�7/p

34
>

0 � .�7/p
34

�

D P

�
Z >

7p
34

�
D 0:12:

Example 2. Assume that at a University salaries of junior faculty are normally
distributed with mean 40,000 and SD 5,000. Assume also that salaries of senior
faculty are normally distributed with mean 60,000 and SD 10,000. What is the
probability that the salary of a senior faculty taken at random is at least twice the
salary of a junior faculty taken at random?

Let X be the salary of the junior faculty and Y be the salary of the senior faculty.
We want P.Y > 2X/. We know that Y � 2X is normally distributed. We express
all the figures in thousands of dollars to get

E.Y �2X/ D �20 and Var.Y �2X/ D Var.Y /C4Var.X/ D 102 C4�52 D 200:

We normalize to get

.Y � 2X > 0/ D P

�
Y � 2X � .�20/p

200
>

0 � .�20/p
200

�

D P

�
Z >

20p
200

�
D 0:08:

Before proving that a linear combination of independent normally distributed
random variables is normally distributed we need two properties of moment
generating functions that we now state.

P1. The moment generating function of a random variable characterizes its distri-
bution. That is, if two random variables X and Y are such that

MX .t/ D MY .t/ for all t in .�r; r/

for some r > 0 then X and Y have the same distribution.
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P1 is a crucial property. It tells us that if we recognize a moment generating
function then we know what the underlying distribution is.

P2. Assume that the random variables X1; X2; : : : ; Xn are independent and have
moment generating functions. Let S D X1 C X2 C � � � C Xn, then

MS.t/ D MX1.t/MX2.t/ : : : MXn.t/:

The proof of P1 involves mathematics that are beyond the scope of this book.
For a proof of P2 see P2 in Sect. 8.3. We now prove that a linear combination of
independent normally distributed random variables is normally distributed. Assume
that X1; X2; : : : ; Xn are independent normal random variables with mean �i and
variance �2

i . Let a1; a2; : : : ; an be a sequence of real numbers. We compute the mgf
of a1X1 C a2X2 C � � � C anXn. The random variables ai Xi are independent so by
P2 we have

Ma1X1Ca2X2C���CanXn.t/ D Ma1X1.t/Ma2X2.t/ : : : ManXn.t/:

Note that by definition

Mai Xi .t/ D E.etai Xi / D MXi .ai t/:

We now use the mgf corresponding to the normal distribution to get

Mai Xi .t/ D exp.ai t�i C a2
i t2�2

i =2/:

Thus,

Ma1X1Ca2X2C���CanXn.t/ D exp.a1t�1 C a2
1t2�2

1 =2/ � � � � � exp.ant�n C a2
nt2�2

2 =2/:

Therefore,

Ma1X1Ca2X2C���CanXn.t/ D exp..a1�1 C � � � C an�n/t C .a2
1�2

1 C � � � C a2
n�2

n/t2=2/:

This is exactly the mgf of a normal random variable with mean

a1�1 C � � � C an�n

and variance

a2
1�2

1 C � � � C a2
n�2

n :

So according to property P1 this shows that a1X1 C � � � C anXn follows a normal
distribution with mean and variance given above.

Example 3. Let T1; : : : ; Tn be i.i.d. exponentially distributed random variables with
rate 	. What is the distribution of T1 C T2 C � � � C Tn?
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We compute the mgf of the sum by using Property P2.

MT1CT2C���CTn.t/ D MT1.t/MT2 .t/ : : : MTn.t/ D M n
T1

.t/

since all the Ti have all the same distribution they also have the same mgf

MT1.t/ D 	

	 � t
:

Hence,

MT1CT2C���CTn.t/ D
�

	

	 � t

�n

:

This is not the mgf of an exponential distribution. However, it is the mgf of a Gamma
distribution with parameters n and 	. That is, we have the following.

Sum of i.i.d. Exponential Random Variables
Let T1; : : : ; Tn be i.i.d. exponentially distributed random
variables with rate 	. Then T1 CT2 C� � �CTn has a Gamma
distribution with parameters n and 	.

Example 4. Assume that you have two batteries that have an exponential lifetime
with mean 2 h. As soon as the first battery fails you replace it with a second battery.
What is the probability that the batteries will last at least 4 h?

The total time, T , the batteries will last is a sum of two exponential i.i.d. random
variables. Therefore, T follows a Gamma distribution with parameters n D 2 and
	 D 1=2. We use the density of a Gamma distribution (see Example 8 in 1 and note
that 
.2/ D 1) to get

P.T > 4/ D
Z 1

4

	2te�	t dt D 3e�2 D 0:41;

where we use an integration by parts to get the second equality.

Example 5. Let X and Y be two independent Poisson random variables with means
	 and �, respectively. What is the distribution of X C Y ?

We compute the mgf of X C Y . By property P2 we have that

MXCY .t/ D MX.t/MY .t/:

Thus,

MXCY .t/ D exp.	.�1 C et // � exp.�.�1 C et // D exp..	 C �/.�1 C et //:

This is the moment generating function of a Poisson random variable with mean
	C�. Thus, by property P1, X CY is a Poisson random variable with mean 	C�.
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We state the general result.

Sum of Independent Poisson Random Variables
Let N1; : : : ; Nn be independent Poisson random variables with means
	1; : : : ; 	n, respectively. Then,

N1 C N2 C � � � C Nn

is a Poisson random variable with mean

	1 C 	2 C � � � C 	n:

Only a few distributions are stable under addition. Normal and Poisson distribu-
tions are two of them.

Example 6. Assume that at a given hospital there is on average two births of twins
per month and one birth of triplets per year. Assume that both are Poisson random
variables. What is the probability that on a given month there are four or more
multiple births?

Let N1 and N2 be the number of births of twins and of triplets on a given month,
respectively. Then N D N1 C N2 is a Poisson random variable with mean 	 D
2 C 1=12 D 25=12. We have that

P.N � 4/ D 1 � P.N D 0/ � P.N D 1/ � P.N D 2/ � P.N D 3/

D 1 � e�	 � 	e�	 � 	2e�	=2 � 	3e�	=3Š D 0:16:

As noted before, when we sum two random variables with the same type of
distribution we do not, in general, get the same distribution. Next, we will look
at such an example.

Example 7. Roll two fair dice. What is the distribution of the sum?
Let X and Y be the faces shown by the two dice. The random variables X and Y

are discrete uniform random variables on f1; 2 : : : ; 6g. Let S D X C Y . Note that S

must be an integer between 2 and 12. We have that

P.S D 2/ D P.X D 1I Y D 1/ D P.X D 1/P.Y D 1/ D 1

36
;

where we use the independence of X and Y to get the second equality. Likewise,
we have that

P.S D 3/ D P.X D 1I Y D 2/ C P.X D 2I Y D 1/ D 2

36
:
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The method above can be applied to get P.S D n/ for any n. We get

P.S D n/ D
n�1X

kD1

P.X D k/P.Y D n � k/ for n D 2; 3 : : : ; 12:

The computations yield

k 2 3 4 5 6 7 8 9 10 11 12

P.X D k/ 1=36 2=36 3=36 4=36 5=36 6=36 5=36 4=36 3=36 2=36 1=36

Note that S is not an uniform random variable. In this case using the moment
generating function does not help. We could compute the mgf of S but it would not
correspond to any distribution we know.

We now state the general form of the distribution of the sum of two independent
random variables.

Sum of Two Independent Random Variables
Let X and Y be two discrete independent random variables. The distribution of
X C Y may be computed by using the following formula.

P.X C Y D n/ D
X

k

P.X D k/P.Y D n � k/:

If X and Y are independent continuous random variables with densities f and
g then X C Y has density h that may be computed by using the formula

h.x/ D
Z C1

�1
f .y/g.x � y/dy D

Z C1

�1
g.y/f .x � y/dy:

The operation
R C1

�1 f .y/g.x � y/dy is called the convolution of f and g. The
convolution formula for continuous random variables will be proved in Chap. 8.
Next, we apply the preceding formula to uniform random variables.

Example 8. Let U and V be two independent uniform random variables on [0,1].
The density for both of them is f .x/ D 1 for x in [0,1]. Let S D U C V and let h

be the density of S . We have that

h.x/ D
Z C1

�1
f .y/f .x � y/dy:
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Note that f .y/ > 0 if and only if y is in [0,1]. Note also that f .x � y/ > 0 if and
only if x � y is in [0,1], that is y is in Œ�1 C x; x�. Thus, f .y/f .y � x/ > 0 if and
only if y is simultaneously in [0,1] and in Œ�1 C x; x�. So

h.x/ D
Z x

0

dy D x if x is in Œ0; 1�

and

h.x/ D
Z 1

�1Cx

dy D 2 � x if x is in Œ1; 2�:

Observe that the sum of two uniform random variables is not uniform, the density
has a triangular shape instead.

Example 9. Let X and Y be two independent exponentially distributed random
variables with rates 1 and 2, respectively. What is the density of X C Y ?

The densities of X and Y are f .x/ D e�x for x > 0 and g.x/ D 2e�2x for
x > 0, respectively. The density h of the sum X C Y is

h.x/ D
Z C1

�1
f .y/g.x � y/:

In order for f .y/g.x � y/ > 0 we need y > 0 and x � y > 0. Thus,

h.x/ D
Z x

0

e�y2e�2.x�y/dy for x > 0:

We get
h.x/ D 2.e�x � e�2x/ for x > 0:

Note that this is not the density of an exponential distribution. If the two rates
were the same we would have obtained a Gamma distribution for the sum but with
different rates we get yet another distribution.

Our final application of moment generating functions regards the convergence of
sequences of random variables. Our main tool will be the following Theorem.

Convergence in Distribution
Consider a sequence of random variables X1; X2; : : : and their corresponding
moment generating functions M1; M2; : : : . Assume that there is r > 0 such
that for every t in .�r; r/

lim
n!1 Mn.t/ D M.t/:

Then M is the moment generating function of some random variable X and the
distribution of Xn approaches the distribution of X as n goes to infinity.
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The result above is a particular case of a deep probability result called Levy’s
Continuity Theorem.

Example 10. Consider a sequence of binomial random variables Xn for n � 1. Each
Xn is a binomial with parameters .n; pn/ where pn is a sequence of strictly positive
numbers. Assume also that npn converges to some 	 > 0 as n goes to infinity. We
will show that Xn converges in distribution to a mean 	 Poisson random variable.

For n � 1 the mgf of Xn is

Mn.t/ D .1 � pn C pnet /n

and so
ln Mn.t/ D n ln.1 � pn C pnet /:

Observe that
pn D npn

n

and since npn converges to 	 we see that pn converges to 0. Hence, for fixed t ,
�pn C pnet converges to 0 as well. We multiply and divide by �pn C pnet to get

ln Mn.t/ D ln.1 � pn C pnet /

�pn C pnet
n.�pn C pnet /:

Now, recall from Calculus that

lim
x!0

ln.1 C x/

x
D 1:

In particular if xn is a nonzero sequence converging to 0 we have

lim
n!1

ln.1 C xn/

xn

D 1:

We apply this result to xn D �pn C pnet to get

lim
n!1

ln.1 � pn C pnet /

�pn C pnet
D 1:

Observe also that
n.�pn C pnet / D npn.�1 C et /

converges to 	.�1 C et /. Hence,

ln Mn.t/ converges to 	.�1 C et /

and
Mn.t/ converges to exp.	.�1 C et //:
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Since exp.	.�1 C et // is the mgf of a mean 	 Poisson random variable we
have proved that the sequence Xn converges in distribution to a mean 	 Poisson
distribution.

Next we prove the Central Limit Theorem using the same technique.

7.2.1 Proof of the Central Limit Theorem

We now sketch the proof of the Central Limit Theorem in the particular case
where the random variables have moment generating functions (in the general
case it is only assumed that the random variables have finite second moments).
Let X1; X2; : : : ; Xn be a sequence of independent identically distributed random
variables with mean � and variance �2. Assume that there is r > 0 such that each
Xi has a mgf defined on .�r; r/. Let

NXn D X1 C X2 C � � � C Xn

n
:

We want to show that the distribution of

Tn D
NXn � �

�=
p

n

approaches the distribution of a standard normal distribution. We start by computing
the moment generating function of Tn. For every n we denote the mgf of Tn by Mn.
By definition of the mgf

Mn.t/ D E.etTn/ D E

 
exp

 
t

NXn � �

�=
p

n

!!
D E

 
exp

 
t
p

n
NXn � �

�

!!
:

Observe now that NXn � �

�
D 1

n

nX

iD1

Xi � �

�
:

Let Yi D Xi ��

�
. We have that

Mn.t/ D E

 
exp

 
t

p
n

n

nX

iD1

Yi

!!
:

Since the Yi are independent we get by P2 that

Mn.t/ D MY

�
tp
n

�n

:
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We now write a third degree Taylor expansion for MY .

MY

�
tp
n

�
D MY .0/ C tp

n
M 0

Y .0/ C t2

2n
M 00

Y .0/ C t3

6n3=2
M 000

Y .sn/

for some sn in .0; tp
n
/. Since the Yi are standardized we have that

M 0
Y .0/ D E.Y / D 0 and M 00

Y .0/ D E.Y 2/ D Var.Y / D 1:

We also have (for any random variable) that MY .0/ D 1: Thus,

MY

�
tp
n

�
D 1 C t2

2n
C t3

6n3=2
M 000

Y .sn/;

and

ln.Mn.t// D ln

�
MY

�
tp
n

�n�
D n ln

�
MY

�
tp
n

��

D n ln

�
1 C t2

2n
C t3

6n3=2
M 000

Y .sn/

�
:

Let xn D t 2

2n
C t 3

6n3=2 M 000
Y .sn/. Then

n ln

�
MY

�
tp
n

��
D n ln.1 C xn/ D nxn

ln.1 C xn/

xn

:

Since sn converges to 0 M 000
Y .sn/ converges to M 000

Y .0/ as n goes to infinity and xn

converges to 0. Thus,

lim
n!1 nxn D t2

2
and lim

n!1
ln.1 C xn/

xn

D 1:

Therefore,

lim
n!1 ln.Mn.t// D t2

2
and lim

n!1 Mn.t/ D et 2=2:

That is, the sequence of moment generating functions of the sequence
NXn��

�=
p

n

converges (as n goes to infinity) to the moment generating function of a standard

normal distribution. This is enough to prove that the distribution of
NXn��

�=
p

n
converges

to the distribution of a standard normal random variable and concludes the sketch
of the proof of the CLT.
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Exercises 7.2

1. The weight of a manufactured product is normally distributed with mean 5 kg
and SD 0.1 kg.

(a) Take two items at random what is the probability that they have a weight
difference of at least 0.3 kg?

(b) Take three items at random, what is the probability that the sum of the three
weights is less than 14.8 kg?

2. Consider X a binomial random variable with parameter n D 10 and p. Let Y

be independent of X and be a binomial random variable with n D 15 and p. Let
S D X C Y .

(a) Find the mgf of S .
(b) What is the distribution of S?

3. Let X be normally distributed with mean 10 and SD 1. Let Y D 2X � 30.

(a) Compute the mgf of Y .
(b) Use (a) to show that Y is normally distributed and to find the mean and SD of Y .

4. Let X be the number of students from University A that get into Medical School
at University B. Let Y be the number of students from University A that get into Law
School at University B. Assume that X and Y are two independent Poisson random
variables with means 2 and 3, respectively. What is the probability that X C Y is
larger than 5?

5. Assume that 6 years old weights are normally distributed with mean 20 kg and
SD 3 kg. Assume that male adults weights are normally distributed with mean 70 kg
and SD 6 kg. What is the probability that the sum of the weights of three children is
larger than an adult’s weight?

6. Assume you roll a die 3 times, you win each time you get a 6. Assume you toss
a coin twice, you win each time heads come up. Compute the distribution of your
total number of wins.

7. Find the density of a sum of three independent uniform random variables on
[0,1]. You may use the result for the sum of two uniform random variables in
Example 8.

8. Let X and Y be two independent random variables with density f .x/ D 2x for
0 < x < 1. Find the density of X C Y .

9. (a) Use moment generating functions to show that if X and Y are independent
binomial random variables with parameters n and p, and m and p, respectively,
then X C Y is also a binomial random variable.

(b) If the probability of success are distinct for X and Y , is X C Y a binomial
random variable?
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10. Let X and Y be two geometric random variables with the same parameter p.
That is,

P.X D k/ D P.Y D k/ D p.1 � p/k�1 for k D 1; 2; : : :

Show that

P.X C Y D n/ D .n � 1/p2.1 � p/n�2 for n D 2; 3; : : : :

11. Let X and Y be two independent exponential random variables with parameters
a and b, respectively. Assume that a 6D b. Find the density of X C Y .

12. Let X1; X2; : : : ; Xn be a sequence of independent Gamma random variables
with parameters .r1; 	/; .r2; 	/; : : : ; .rn; 	/. That is, they all have the same param-
eter 	 but have possibly different parameters ri . Show that X1 C X2 C � � � C Xn is
also a Gamma random variable. With what parameter?

13. Let X and Y be two independent Gamma random variables with parameters
.r; 1/ and .s; 1/, respectively.

(a) We know that X C Y has density h such that

h.x/ D
Z

f .y/g.x � y/dy;

where f and g are the densities of Y and X , respectively. Show that

h.x/ D 1


.s/
.r/
exp.�x/

Z x

0

.x � y/s�1yr�1dy:

(b) By Exercise 12 we know that X C Y is a Gamma random variable with
parameters .1; r C s/. Hence, we have that h must also be

h.x/ D 1


.r C s/
exp.�x/xrCs�1:

(c) Let x D 1 in the formulas in (a) and (b) to get

Z 1

0

.1 � y/s�1yr�1dy D 
.r/
.s/


.r C s/
:

(d) Use that 
.n/ D .n � 1/Š for all integers n � 1 to compute

Z 1

0

.1 � y/5y6dy:

14. Let X be a Gamma random variable with parameters .r; 	/.

(a) Let Y D 	X . Show that

MY .t/ D MX.	t/:
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(b) Show that Y is also a Gamma random variable. With what parameter?

15. Let Xn be a sequence of geometric random variables. Each Xn has a parameter
pn. Assume that pn is a strictly positive sequence converging to 0. Let Mn be the
mgf of pnXn.

(a) Show that

Mn.t/ D pnetpn

1 � .1 � pn/etpn
:

(b) Show that for every t

lim
n!1 Mn.t/ D 1

1 � t
:

(Recall that limx!0
ex�1

x
D 1:)

(c) What is the limiting distribution of nXn as n goes to infinity?

16. Let Xn be a sequence of Poisson random variables. For each n, Xn has mean n.
We are going to show that

Yn D Xn � np
n

converges in distribution to a standard normal. Let Mn be the mgf of Yn.

(a) Show that

ln.Mn.t// D �t
p

n C n
�
�1 C e

t
p

n

�
:

(b) Show that for every t

lim
n!1 ln.Mn.t// D t2

2
;

and conclude. To compute the limit you may use that

lim
x!0

ex � .1 C x/

x2=2
D 1:



Chapter 8
Transformations of Random Variables
and Random Vectors

8.1 Distribution Functions and Transformations of Random
Variables Distribution Functions

The notion of distribution function is especially useful when dealing with continu-
ous random variables.

Distribution Function

Let X be a random variable. The function

F.x/ D P.X � x/

is called the distribution function of X . If X is a continuous random variable
with density f then

F.x/ D
Z x

1
f .t/dt:

Recall that if X is a continuous random variable with density f then for any a

and b such that �1 � a � b � C1 we have

P.a � X � b/ D
Z b

a

f .x/dx:

Therefore, if X has density f and distribution function F then

F.x/ D P.X � x/ D
Z x

�1
f .t/dt:

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7 8, © Springer Science+Business Media, LLC 2012
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By the Fundamental Theorem of Calculus if f is continuous at x then F is
differentiable at x and

F 0.x/ D f .x/:

The preceding equality shows that if we know the distribution function then we
know the density and therefore the distribution of a continuous random variable.
This is true for any random variable: a distribution function determines the
distribution of a random variable.

Next we compute a few distribution functions.

Example 1. Let U be a uniform random on [0,1]. That is, the density of U is f .u/ D
1 for u in [0,1] and f .u/ D 0 elsewhere. The distribution function F of U is

F.u/ D
Z u

�1
f .x/dx:

In order to compute F explicitly we need to consider three cases. If u � 0 then f is
0 on .�1; u/ and F.u/ D 0. If 0 < u < 1 then

F.u/ D
Z u

�1
f .x/dx D

Z u

0

f .x/dx D
Z u

0

dx D u:

Finally, if u � 1 then

F.u/ D
Z u

�1
f .x/dx D

Z C1

�1
f .x/dx D 1:

This is so because if u � 1 then f is 0 on .u; C1/ and the integral of a density
function on the whole line is always 1. Summarizing the computations above we get

F.u/ D 0 if u � 0

F.u/ D u if 0 < u < 1

F.u/ D 1 if u � 1

Below we sketch the graph of F .

0 1

1
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There are three features of the graph above that are typical of all distribution
functions and that we now state without proof (the proofs are not especially difficult
but require more mathematics than we need at this level).

Properties of Distribution Functions

Let F be the distribution function of a random variable X . Then, we have the
following three properties.

(i) limx!�1 F.x/ D 0:

(ii) F is an increasing function. That is, if x1 < x2 then F.x1/ � F.x2/.
(iii) limx!C1 F.x/ D 1:

Example 2. Let T be an exponential random variable with rate 	. What is its
distribution function?

The density of T is f .t/ D 	e�	t for t � 0. Thus, F.t/ D 0 for t � 0 and for
t > 0 we have that

F.t/ D
Z t

�1
f .x/dx D

Z t

0

f .x/dx D �e�	x�t0 D 1 � e�	t :

We have that

F.t/ D 0 if t � 0

F.t/ D 1 � e�	t if t > 0

One can easily check that the three properties of distribution functions hold here as
well.

In the next example we give a first application of the notion of distribution
function.

Example 3. Assume that T1 and T2 are two independent exponentially distributed
random variables with rates 	1 and 	2, respectively. Let T be the minimum of T1

and T2, what is the distribution of T ?
Let F be the distribution function of T . We have that

F.t/ D P.T � t/ D P.min.T1; T2/ � t/ D 1 � P.min.T1; T2/ > t/:

Observe that min.T1; T2/ > t if and only if T1 > t and T2 > t . Thus, since we are
assuming that T1 and T2 are independent we get

F.t/ D 1 � P.T1 > t/P.T2 > t/ D 1 � .1 � F1.t//.1 � F2.t//;
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where F1 and F2 are the distribution functions of T1 and T2, respectively. Using the
form of the distribution function given in Example 2 we get

F.t/ D 1 � e�	1te�	2t D 1 � e�.	1C	2/t for t � 0:

Therefore, the computation above shows that the minimum of two independent
exponential random variables is also exponentially distributed and its rate is the
sum of the two rates.

Next we look at the maximum of three random variables.

Example 4. Let U1, U2, and U3 be three independent random variables uniformly
distributed on [0,1]. Let M be the maximum of U1; U2; U3. What is the density
of M ?

We are going to compute the distribution function of M and then differentiate to
get the density. Let F be the distribution function of M . We have that

F.x/ D P.M � x/ D P.max.U1; U2; U3/ � x/:

We have that max.U1; U2; U3/ � x if and only if Ui � x for i D 1; 2; 3. Thus, due
to the independence of the Ui we get

F.x/ D P.U1 � x/P.U2 � x/P.U3 � x/ D F1.x/F2.x/F3.x/:

According to Example 1 we have

F.x/ D 0 if x � 0

F.x/ D x3 if 0 < x < 1

F.x/ D 1 ifx � 1

Thus, the density of M that we denote by f is

f .x/ D F 0.x/ D 3x2 for x in Œ0; 1�:

Observe that the maximum of uniform random variables is not uniform!
In Examples 3 and 4 in order to compute the distribution of a minimum and a

maximum we have used distribution functions. This is a general method that we
may summarize below.

Maximum and Minimum of Independent Random Variables

Let X1; X2; : : : ; Xn be independent random variables with distribution func-
tions F1; F2; : : : ; Fn, respectively. Let Fmax and Fmin be the distribution func-
tions of the random variables max.X1; X2; : : : ; Xn/ and min.X1; X2; : : : ; Xn/,
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respectively. Then,
Fmax D F1F2 : : : Fn

and
Fmin D 1 � .1 � F1/.1 � F2/ : : : .1 � Fn/:

We now give an example of distribution function for a discrete random variable.

Example 5. Flip two fair coins and let X be the number of tails. The distribution of
X is given by

x 0 1 2
P.X D x/ 1/4 1/2 1/4

Observe that if 0 � x < 1 then

F.x/ D P.X � x/ D P.X D 0/ D 1

4

while if 1 � x < 2 then

F.x/ D P.X � x/ D P.X D 0/ C P.X D 1/ D 3

4
:

Therefore the distribution function of this discrete random variable is then given by

F.x/ D 0 if x < 0

F.x/ D 1

4
if 0 � x < 1

F.x/ D 3

4
if 1 � x < 2

F.x/ D 1 if x � 2

The graph is given below.

1 20

1/4

3/4

1

Note that distribution functions of discrete random variables are always
discontinuous.
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8.1.1 Simulations

Simulations are another type of application of distribution functions. We will see
how one can simulate a random variable with a given distribution by using a
simulation of an uniform random variable. Many computer random simulators
create numbers that behave approximately as observations of independent uniform
random variable on [0,1]. So our problem is to go from an uniform distribution
to another distribution. We start by considering a continuous random variable X .
Assume that the distribution function F of X is strictly increasing and continuous so
that the inverse function F �1 is well defined. Let U be an uniform random variable
on [0,1]. We have that

P.F �1.U / � x/ D P.U � F.x// D F.x/

since F.x/ is always in [0,1] and P.U � x/ D x for x in [0,1]. This shows the
following.

Simulation of a Continuous Random Variable

Let X be a continuous random variable with a strictly increasing distribution
function F . Let U be an uniform random variable on [0,1]. Then F �1.U / has
the same distribution as X . That is, to simulate X it is enough to simulate an
uniform random variable U and then compute F �1.U /.

Example 6. A computer random simulator gives us the following ten random
numbers: 0.38, 0.1, 0.6, 0.89, 0.96, 0.89, 0.01, 0.41, 0.86, 0.13. Simulate ten
independent exponential random variables with rate 1.

By Example 2 we know that the distribution function F of an exponential random
variable with rate 1 is

F.x/ D 1 � e�x:

We compute F �1. If
y D 1 � e�x

then
x D � ln.1 � y/:

Thus,

F �1.x/ D � ln.1 � x/:

We now compute F �1.x/ for x D 0:38; 0:1; 0:6; 0:89; 0:96; 0:89; 0:01; 0:41;

0:86; 0:13: We get the following ten observations for ten independent exponential
rate 1 random variables: 4.78, 1.05, 0.92, 2.21, 3.22, 2.21,4.6, 5.28, 1.97, 1.39.
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Example 7. How do we simulate a standard normal distribution? In this case the
distribution function is

F.x/ D 1p
2�

Z x

�1
e�t 2=2dt:

This is not an expression which is easy to use. Instead we use the normal table. For
instance, if we want F �1.0:38/ we are looking for z such that P.Z � z/ D 0:38.
Hence, P.0 � Z � �z/ D 0:12. We read in the table �z D 0:31, that is, z D �0:31.
Using the 10 random numbers from Example 6 we get we following ten observations
for a standard normal distribution: �0:31, �1.28, 0.25, 1.22, 1.75, 1.22, �2.33,
�0.23, 1.08, �1.13.

Example 8. Simulate a normal distribution X with mean � D 5 and variance
�2 D 4. We know that if Z is a standard normal distribution then � C �Z is
a normal distribution with mean � and variance �2. We can use the simulation
of Z in Example 7 to get simulations of X . For instance, if Z D �0:31 then
X D 5C.�0:31/�2 D 4:38: Here are the ten observations for a normal distribution
X with mean � D 5 and variance �2 D 4. We have: 4.38, 2.44, 5.5, 7.44, 8.5, 7.44,
0.34, 4.54, 7.16, 2.74.

We now turn to the simulation of discrete random variables. Consider a discrete
random variable X with k values: 0; 1; 2; : : : ; k. Denote P.X D i/ D pi for i D
1; 2; : : : ; k: Let U be an uniform random variable. The following algorithm uses a
simulation of U to give a simulation of X .

If U < p0 set X D 0:

If p0 � U < p0 C p1 set X D 1:

More generally, for i D 1; 2; : : : ; k.

If p0 C p1 C � � � C pi�1 � U < p0 C p1 C � � � C pi�1 C pi set X D i:

Recall that for 0 � a � b � 1 we have

P.a � U � b/ D b � a:

Thus,

P.X D 0/ D P.U < p0/ D p0 and P.X D 1/ D P.p0 � U < p0 C p1/ D p1:

More generally, this algorithm yields P.X D i/ D pi for i D 1; 2; : : : ; k: That is,
we are able to simulate X from a simulation of U . We now use this algorithm on an
example.
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Example 9. Let X be a binomial with parameters n D 2 and p D 1=2. The
distribution of X is given by p0 D 1=4, p1 D 1=2 and p2 D 1=4. A random
generator gives us the following random numbers: 0.38, 0.1, 0.6, 0.89, 0.96, 0.89,
0.01, 0.41, 0.86, 0.13. Note that

p0 � 0:38 � p0 C p1:

Thus, the first simulation for the random variable X is X D 1. The second random
number is 0:1 < p0. This corresponds to X D 0 and so on. We get the following
simulation of 10 independent random variables with the same distribution as X : 1,
0, 1, 2, 2, 2, 0, 1, 2, 0.

8.1.2 Transformations of Random Variables

At this point we know relatively few different continuous distributions: uniform,
exponential, and normal are the main distributions we have seen. In this section we
will see a general method to obtain many more distributions from the known ones.
We start with an example.

Example 10. Let U be an uniform random variable on [0,1]. Define X D U 2. What
is the distribution of X?

We use the distribution function F of X .

F.x/ D P.X � x/ D P.U 2 � x/ D P.U � p
x/:

Recall that P.U � y/ D y for y in [0,1]. Thus,

F.x/ D p
x for 0 � x � 1:

Note that F is differentiable on .0; 1� and let

f .x/ D F 0.x/ D 1

2
p

x
for 0 < x � 1:

Let a be in .0; 1/. By the Fundamental Theorem of Calculus we have for x in .0; 1/,

Z x

a

f .t/dt D F.x/ � F.a/:

Now let a go to 0 to get Z x

0

f .t/dt D F.x/:

That is, f is the density of X .
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In fact the preceding example gives a general method to compute the density of
the transformed random variable. We first compute the distribution function of the
transformed random variable. Assuming the distribution function is regular enough
(which will always be the case for us) the density of the transformed variable is the
derivative of the distribution function.

Example 11. Let X be a continuous random variable with density f , let a be a
constant and Y D X � a, what is the density of Y ?

We first compute the distribution function of Y .

FY .y/ D P.Y � y/ D P.X � a � y/ D P.X � y C a/ D FX .y C a/;

where FX is the distribution function of X . By taking the derivative of FY with
respect to y we get

fY .y/ D d

dy
FX .y C a/ D fX .y C a/;

where fX and fY are the densities of X and Y , respectively.

Example 12. The Chi-Square distribution. Let Z be a standard normal random
variable. What is the density of Y D Z2?

We have for y � 0

FY .y/ D P.Y � y/ D P.Z2 � y/ D P.�p
y � Z � p

y/ D FZ.
p

y/�FZ.�p
y/:

Recall that the density of Z is

fZ.z/ D 1p
2�

e�z2=2:

Using the chain rule we get

d

dy
FY .y/ D fY .y/ D fZ.

p
y/ � 1

2
p

y
� fZ.�p

y/ � �1

2
p

y
:

Hence, the density of Y is

fY .y/ D 1p
2�

y�1=2e�y=2 for y > 0:

This is the density of the so-called Chi-Square distribution with one degree of
freedom.

Example 13. Let T be exponentially distributed with mean 1. What is the distribu-
tion of X D p

T ?
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Take x � 0;

FX .x/ D P.X � x/ D P.
p

T � x/ D P.T � x2/ D
Z x2

0

e�t dt D 1 � e�x2

:

Thus, the density of X is

d

dx
FX .x/ D fX .x/ D 2xe�x2

for x � 0:

Next we finally prove a property of normal random variables that we have already
used many times.

Example 14. Let X be normal random variable with mean � and standard deviation
� . Show that Y D X��

�
is a standard normal random variable.

We compute the distribution function of Y :

FY .y/ D P.Y � y/ D P

�
X � �

�
� y

�
D P.X � � C �y/ D FX .� C �y/:

We take derivatives to get

fY .y/ D fX .� C �y/ � �:

Recall that the density of X is

fX .x/ D 1

�
p

2�
e� .x��/2

2�2 :

Thus,

fY .y/ D 1p
2�

e� y2

2 :

This proves that Y is a standard normal distribution.

Exercises 8.1

1. Compute the distribution function of a uniform random variable on [�1,2].

2. Assume that waiting times for buses from lines 5 and 8 are exponentially
distributed with means 10 and 20 min, respectively. I can take either line so I will
take the first bus that comes.

(a) Compute the probability that I will have to wait at least 15 min?
(b) What is the mean time I will have to wait?
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3. Consider a circuit with two components in parallel. Assume that both compo-
nents have independent exponential lifetimes with means 1 and 2 years, respec-
tively.

(a) What is the probability that the circuit lasts more than 3 years?
(b) What is the expected lifetime of the circuit?

4. Assume that T1 and T2 are two independent exponentially distributed random
variables with rates 	1 and 	2, respectively. Let M be the maximum of T1 and T2,
what is the density of M ?

5. Roll a fair die. Let X be the face shown. Graph the distribution function of X .

6. Consider a standard normal random variable Z. Use a normal table to sketch the
graph of the distribution function of Z.

7. Simulate 10 observations of a normal distribution with mean 3 and standard
deviation 2.

8. Simulate 10 observations of a Poisson distribution with mean 1.

9. Simulate 20 observations of a Bernoulli distribution with parameter p D 1=4.

10. Simulate 10 observations of an exponential distribution with mean 2.

11. Simulate 10 observations of a geometric distribution with parameter p D 1=3.

12. Let X be a random variable with distribution function F.x/ D x2 for x in
[0,1].

(a) What is P.X < 1=3/ D?
(b) What is the expected value of X?

13. Let U1; U2; : : : ; Un be n i.i.d. uniform random variables on [0,1].

(a) Find the density of the maximum of the Ui .
(b) Find the density of the minimum of the Ui .

14. Let U be an uniform random variable on [0,1]. Define X D p
U . What is the

density of X?

15. Let T be exponentially distributed with mean 1. What is the expected value of
T 1=3?

16. Let Z be a standard normal distribution. Find the density of X D eZ . (X is
called a lognormal random variable).

17. Let U be uniform on [0,1]. Find the density of Y D ln.1 � U /:

18. Let T be exponentially distributed with rate 	. Find the density of T 1=a where
a > 0. (T 1=a is called a Weibull random variable with parameters a and 	).

19. Let X be a continuous random variable, let a > 0 and b be two real numbers
and let Y D aX C b.
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(a) Show that

fY .y/ D 1

a
fX

�
y � b

a

�
:

(b) Show that if X is normally distributed then so is Y D aX C b.
(c) If X is exponentially distributed, is Y D aX Cb also exponentially distributed?

20. Consider the discrete random variable X with the following distribution.

x �2 �1 2
P.X D x/ 1/4 1/2 1/4

Find the distribution Y D X2.

8.2 Random Vectors

In this section we introduce the notion of random vectors and joint distributions.

Density of a Continuous Random Vector

Let X and Y be two continuous random variables. The density of the vector
.X; Y / is a positive function f such that

Z C1

�1

Z C1

�1
f .x; y/dxdy D 1:

For a < b and c < d we have

P.a < X < bI c < Y < d/ D
Z b

a

Z d

c

f .x; y/dxdy:

More generally, for a function g we have

E.g.X; Y // D
Z C1

�1

Z C1

�1
g.x; y/f .x; y/dxdy

provided the expectation of g.X; Y / exists.

Example 1. Assume that .X; Y / is uniformly distributed on the disc C D f.x; y/ W
x2 C y2 � 1g: What is the density of .X; Y /?
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Since we want a uniform distribution, we let f .x; y/ D c for .x; y/ in C,
f .x; y/ D 0 elsewhere. We want

Z Z

C
f .x; y/ D 1 D c � area.C/:

Thus, c D 1=� .
At this point the reader may want to review Fubini’s Theorem from Calculus. It

gives sufficient conditions to integrate multiple integrals one variable at the time.
Note that if the random vector .X; Y / has a density f then for any a < b we

have

P.a < X < b/ D P.a < X < bI �1 < Y < C1/ D
Z b

a

Z C1

�1
f .x; y/dxdy:

Let

fX .x/ D
Z C1

�1
f .x; y/dy

then

P.a < X < b/ D
Z b

a

fX .x/dx:

That is, fX is the density of X . We now state this result.

Marginal Densities

Let .X; Y / be a random vector with density f . Then the densities of X and Y

are denoted respectively by fX and fY and are called the marginal densities.
They are given by

fX .x/ D
Z C1

�1
f .x; y/dy and fY .y/ D

Z C1

�1
f .x; y/dx:

Example 2. We consider again the uniform random vector on the unit disc from
Example 1. What are the marginals of X and Y ?

Since x2 C y2 � 1, if we fix x in [�1,1] then y varies between �p
1 � x2 and

Cp
1 � x2. Thus,

fX .x/ D
Z C1

�1
f .x; y/dy D fX .x/ D

Z Cp
1�x2

�p
1�x2

1=�dy:

Therefore,

fX .x/ D 2

�

p
1 � x2 for x in Œ�1; 1�:
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By symmetry we get that

fY .y/ D 2

�

p
1 � y2 for y in Œ�1; 1�:

Note that although the vector .X; Y / is uniform X and Y are not uniform random
variables.

Recall that two random variables X and Y are said to be independent if for any
a < b and c < d we have

P.a < X < bI c < Y < d/ D P.a < X < b/P.c < Y < d/:

This definition translates nicely into a property of densities that we now state without
proof (the proof is beyond the mathematical level of this text).

Independence

Let .X; Y / be a random vector with density f and marginal densities fX and
fY . The random variables X and Y are independent if and only if

f .x; y/ D fX .x/fY .y/:

Example 3. We continue to analyze the uniform distribution on a disc from
Example 1. Are X and Y independent?

Recall that in this case we have f .x; y/ D 1=� on C D f.x; y/ W x2 C y2 � 1g
and 0 elsewhere. We computed fX and fY in Example 2 and clearly f .x; y/ 6D
fX .x/fY .y/: We conclude that X and Y are not independent.

Example 4. Consider two electronic components that have independent exponential
lifetimes with means 1 and 2 years, respectively. What is the probability that
component 1 outlasts component 2?

Let T and S be respectively the lifetimes of components 1 and 2. We want
P.T > S/. In order to compute this type of probability we need the joint distribution
of .T; S/. Since the two random variables are assumed to be independent we have
that the joint density is

f .t; s/ D fT .t/fS .s/ D e�t e�s=2=2 for t � 0; s � 0:

We now compute

P.T > S/ D
Z 1

sD0

Z 1

tDs

e�t e�s=2=2dtds:
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We first integrate in t and then in s to get

P.T > S/ D
Z 1

sD0

e�se�s=2=2ds D 1

3
:

Example 5. Assume that my arrival time at the bus stop is uniformly distributed
between 7:00 and 7:05. Assume that the arrival time of the bus I want to take is
uniformly distributed between 7:02 and 7:04. What is the probability that I catch
the bus?

To simplify the notation we do a translation of 7 h. Let U be my arrival time, it
is uniformly distributed on [0,5]. Let V be the arrival time of the bus, it is uniformly
distributed on [2,4]. We want the probability P.U < V /. It is natural to assume that
U and V are independent. So we get

P.U < V / D
Z 4

vD2

Z v

uD0

1

2
� 1

5
dudv D

Z 4

vD2

v

10
dv D 3

5
:

We now turn to an example of a discrete joint distribution.

Example 6. Let X and Y be two random variables with the following joint
distribution.

X 0 1 2
Y

1 1/8 1/8 1/4
2 1/8 0 1/8
3 1/8 1/8 0

By replacing integrals by sums we get the marginals of X and Y in a way which
is analogous to the continuous case. To get the distribution of X we sum the joint
probabilities from top to bottom.

X 0 1 2
P.X D x/ 3/8 1/4 3/8

To get the distribution of Y we sum the joint probabilities from left to right.

Y 1 2 3
P.Y D y) 1/2 1/4 1/4

Two discrete random variables X and Y are independent if and only if

P.X D xI Y D y/ D P.X D x/P.Y D y/ for all x; y:

In this example we see that X and Y are not independent since

P.X D 1I Y D 2/ D 0 and P.X D 1/P.Y D 2/ D 3=16:
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8.2.1 Proof That the Expectation is Linear

We start by proving the addition formula for expectation that we have already used
many times. Assume that X and Y are continuous random variables with joint
density f and that their expectations exist. Then, by using the linearity of the
integral we get

E.X C Y / D
Z 1

xD�1

Z 1

yD�1
.x C y/f .x; y/dxdy

D
Z 1

xD�1

Z 1

yD�1
xf .x; y/dxdy C

Z 1

xD�1

Z 1

yD�1
yf .x; y/dxdy:

Note that
Z 1

xD�1

Z 1

yD�1
xf .x; y/dxdy D

Z 1

xD�1
x

�Z 1

yD�1
f .x; y/dy

�

D
Z 1

xD�1
xfX .x/dx D E.X/:

Similarly, we have that
Z 1

xD�1

Z 1

yD�1
yf .x; y/dxdy D E.Y /:

Hence,
E.X C Y / D E.X/ C E.Y /:

The preceding computation holds provided the integrals are finite. A sufficient
condition for that is to assume that EjX j and EjY j are finite.

For any constant a and random variable X we have

E.aX/ D
Z

axfX .x/dx D a

Z
xfX .x/dx D aE.X/:

Therefore, we have proved the following (the proof is analogous for discrete random
variables):

The Expectation is a Linear Operator

Let X and Y be random variables such that EjX j and EjY j
are finite then

E.X C Y / D E.X/ C E.Y /:

For any constant a we have

E.aX/ D aE.X/:
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8.2.2 Covariance

As we will see covariance and correlation are measures of the joint variations of X

and Y .

Covariance

Assume that X and Y are two random variables such that E.X2/ and E.Y 2/

exist. The covariance of X and Y is defined by

Cov.X; Y / D EŒ.X � E.X//.Y � E.Y //�:

A computational formula for the covariance is

Cov.X; Y / D E.XY / � E.X/E.Y /:

We prove the computational formula. Note first that

.X � E.X//.Y � E.Y // D XY � XE.Y / � E.X/Y C E.X/E.Y /:

By taking the expectation on both sides we get

Cov.X; Y / D EŒXY � XE.Y / � E.X/Y C E.X/E.Y /�:

Recalling that E.X/ and E.Y / are constants and that the expectation is linear we
have

Cov.X; Y / D EŒXY � � EŒXE.Y /� � EŒE.X/Y � C EŒE.X/E.Y /�

D E.XY / � E.X/E.Y / � E.X/E.Y / C E.X/E.Y /

D E.XY / � E.X/E.Y /:

The formula is proved.

Properties of the Covariance

The covariance is symmetric. That is,

Cov.X; Y / D Cov.Y; X/:

The covariance is bilinear. That is, for any constants a and b

Cov.aX; bY / D aCov.X; bY / D abCov.X; Y /;
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and for any random variables U , V , and W

Cov.U; V C W / D Cov.U; V / C Cov.U; W /:

Note that

Cov.Y; X/ D E.YX/ � E.Y /E.X/ D E.XY / � E.X/E.Y / D Cov.X; Y /:

Hence, the covariance is symmetric. That the covariance is bilinear (i.e., linear in
each coordinate) is a direct consequence of the linearity of the expectation. We now
prove bilinearity. Let a be a constant then

Cov.aX; Y / D E.aXY /�E.aX/E.Y / D aE.XY /�aE.X/E.Y / D aCov.X; Y /:

Using the fact just proved and symmetry we get

Cov.aX; bY / D aCov.X; bY / D aCov.bY; X/ D abCov.Y; X/ D abCov.X; Y /:

Finally, let U , V , and W be random variables we have

Cov.U; V C W / D EŒU.V C W /� � E.U /E.V C W /

D E.U V C U W / � E.U /.E.V / C E.W //:

Using the linearity of expectation we get

Cov.U; V C W / D E.U V / � E.U /E.V / C E.U W / � E.U /E.W /

D Cov.U; V / C Cov.U; W /:

This completes the proof that covariance is bilinear.

Example 7. Let .X; Y / be uniformly distributed on the triangle T D f.x; y/ W 0 <

y < x < 2g: It is easy to see that the density of .X; Y / is f .x; y/ D 1=2 for .x; y/

in T and 0 elsewhere. We start by computing the marginal densities of X and Y .

fX .x/ D
Z x

0

1=2dy D 1

2
x for x in Œ0; 2�:

fY .y/ D
Z 2

y

1=2dx D 1

2
.2 � y/ for y in Œ0; 2�:

We note that X and Y are not uniformly distributed and are not independent. We
now compute the expectations and standard deviations of X and Y .

E.X/ D
Z 2

0

x
1

2
xdx D 4

3
:
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We have that

E.X2/ D
Z 2

0

x2 1

2
xdx D 2:

Thus,

Var.X/ D E.X2/ � E.X/2 D 2

9
:

We have

E.Y / D
Z 2

0

y
1

2
.2 � y/dy D 2

3

and

E.Y 2/ D
Z 2

0

y2 1

2
.2 � y/dy D 2

3
:

Thus,

Var.Y / D 2

9
:

We still need to compute

E.XY / D
Z 2

xD0

Z x

yD0

xyf .x; y/dxdy D 1

2

Z 2

xD0

x

�
x2

2

�
dx D 1:

We now may compute the covariance of X and Y .

Cov.X; Y / D E.XY / � E.X/E.Y / D 1 �
�

4

3

�
�
�

2

3

�
D 1

9
:

Our next goal is a formula for the variance of the sum of random variables. Recall
that

Var.X/ D EŒ.X � E.X//2�:

Therefore, for any two random variables X and Y we have

Var.X C Y / D EŒ.X C Y � E.X C Y //2�

D EŒ.X � E.X//2 C 2.X � E.X//.Y � E.Y // C .Y � E.Y //2�:

By using the linearity of the expectation and the definition of the covariance we get

Var.X C Y / D Var.X/ C Var.Y / C 2Cov.X; Y /:

Variance of a Sum

For any random variables X and Y we have

Var.X C Y / D Var.X/ C Var.Y / C 2Cov.X; Y /
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provided Var.X/ and Var.Y / exist. In particular

Var.X C Y / D Var.X/ C Var.Y /

if and only if Cov.X; Y / D 0.

We now introduce the notion of correlation.

Correlation

Assume that E.X2/ and E.Y 2/ exist. The correlation of X and Y is defined by

Corr.X; Y / D Cov.X; Y /

SD.X/SD.Y /
:

For any random variables X and Y the correlation between X and Y is always
in [�1,1]. The correlation between X and Y is �1 or 1 if and only if there are
constants a and b such that Y D aX C b.

Correlations are standardized covariances: Correlations are always in [�1,1]. So it
is easier to interpret a correlation than a covariance. We now prove that correlations
are always in [�1,1]. Let X and Y be two random variables such that E.X2/ and
E.Y 2/ exist. Assume that SD.X/ and SD.Y / are strictly positive. If SD.X/ or
SD.Y / is 0, see the exercises. Let

U D X

SD.X/
C Y

SD.Y /
:

Using the formula for the variance of a sum we get

Var.U / D Var

�
X

SD.X/

�
C Var

�
Y

SD.Y /

�
C 2Cov

�
X

SD.X/
;

Y

SD.y/

�
:

Recall that Var is quadratic. That is, for any constant a, Var.aX/ D a2Var.X/. In
particular,

Var

�
X

SD.X/

�
D 1

SD.X/2
Var.X/ D 1

and similarly Var. Y
SD.Y /

/ D 1. Using the bilinearity of covariance we get

Cov

�
X

SD.X/
;

Y

SD.y/

�
D 1

SD.X/SD.Y /
Cov.X; Y / D Corr.X; Y /:
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Hence, going back to the variance of U we have

Var.U / D 1 C 1 C 2Corr.X; Y / D 2.1 C Corr.X; Y //:

Since Var.U / � 0 (a variance is always positive) this yields 1 C Corr.X; Y / � 0.
That is, a correlation is always larger than or equal to �1.

Note also that Corr.X; Y / D �1 only if Var.U / D 0. The variance can be 0 only
if the random variable is a constant. That is,

U D X

SD.X/
C Y

SD.Y /
D c

for some constant c. Since SD.X/, SD.Y / and c are constants there is a linear
relation between X and Y when Corr.X; Y / D �1.

We now turn to the inequality Corr.X; Y / � 1. It is very similar to what we just
did. Let

V D X

SD.X/
� Y

SD.Y /
:

Doing computations very similar to the ones we just did we get

Var.V / D 2.1 � Corr.X; Y //:

Since Var.V / � 0 we get Corr.X; Y / � 1. Moreover, Corr.X; Y / D 1 only if V is
a constant and therefore there is a linear relation between X and Y .

Remark 1. A positive correlation indicates that when one random variable is large
the other one tends to be large too. Conversely, a negative correlation indicates that
when one random variable is large the other one tends to be small.

Correlation and Independence

If Corr.X; Y / D 0 then X and Y are said be uncorrelated. If
X and Y are independent then they are uncorrelated. However,
uncorrelated random variables need not be independent.

We now show that independent random variables are uncorrelated. We do
the proof in the continuous case, the discrete case is similar. Let X and Y be
independent. Thus,

f .x; y/ D fX .x/fY .y/:
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By using the independence property above we get

E.XY / D
Z 1

xD�1

Z 1

yD�1
xyf .x; y/dxdy

D
Z 1

xD�1
fX .x/dx

Z 1

yD�1
fY .y/dy D E.X/E.Y /:

Therefore Cov.X; Y / D 0 and Corr.X; Y / D 0. As the next example shows
uncorrelated random variables do not need to be independent.

Example 8. We go back to Example 7 for which we have already computed the
variances and covariance. The correlation between X and Y is

Corr.X; Y / D Cov.X; Y /

SD.X/SD.Y /
D 1=9p

2=9
p

2=9
D 1

2
:

This positive correlation indicates that when one variable is large it is likely that the
other variable will be large as well.

Example 9. We go back to the uniform random vector on the disc C D f.x; y/ W
x2 C y2 � 1g. We have shown already in Example 3 that X and Y are not
independent. However, we will show now that they are uncorrelated.

E.XY / D
Z 1

xD�1

Z p
1�x2

yD�p
1�x2

xy
1

�
dydx:

Note that when we integrate in y we get

Z p
1�x2

yD�p
1�x2

ydy D 0:

Therefore E.XY / D 0. On the other hand from Example 2 we have the following
density for X

fX .x/ D 2

�

p
1 � x2 for x in Œ�1; 1�:

We compute

E.X/ D
Z 1

�1

xfX .x/dx D 2

�

��1

2

�
.1 � x2/3=2

i1

xD�1
D 0:

By symmetry we also have that E.Y / D 0. Therefore,

Cov.X; Y / D Corr.X; Y / D 0
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although X and Y are not independent. This is so because correlation measures the
strength of the LINEAR relation between X and Y . Here there is no linear relation
but the random variables are related in some other way.

8.2.3 Transformations of Random Vectors

A consequence of multivariate calculus is the following formula for the density of a
transformed random vector.

Density of a Transformed Random Vector

Let .X; Y / be a random vector with density f . Let .U; V / be such that

U D g1.X; Y / and V D g2.X; Y /:

Assume that the transformation .x; y/ �! .g1.x; y/; g2.x; y// is one to one
with inverse

X D h1.U; V / and Y D h2.U; V /:

Then the density of the transformed random vector .U; V / is

f .h1.u; v/; h2.u; v//jJ.u; v/j;

where J.u; v/ is the following determinant

ˇ̌
ˇ̌@h1=@u @h1=@v
@h2=@u @h2=@v

ˇ̌
ˇ̌

We now use the preceding formula on an example.

Example 10. Let X and Y be two independent standard normal distributions. Let
U D X=Y and V D X . What is the density of .U; V /?

We see that .x; y/ �! .u; v/ is a one to one transformation from R� � R� on to
itself where R� is the set of all reals different from 0. We invert the transformation
to get

X D V and Y D V

U
:

We now compute the Jacobian

J.u; v/ D
ˇ̌
ˇ̌ 0 1

�v=u2 1=u

ˇ̌
ˇ̌ D v

u2
:
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Since we assume that X and Y are independent standard normal distributions we
have

f .x; y/ D 1p
2�

e�x2=2 1p
2�

e�y2=2:

Therefore, the density of .U; V / is

1

2�
e�v2=2e�v2=.2u2/jJ.u; v/j D 1

2�
exp

��v2

2

�
1 C 1

u2

�� jvj
u2

:

We may now use this joint density to get the marginal density of U . We integrate
the density above in v to get

fU .u/ D
Z 1

�1
1

2�
exp

��v2

2

�
1 C 1

u2

�� jvj
u2

dv:

Observe that the integrand above is an even function of v. Thus,

fU .u/ D 2

Z 1

0

1

2�
exp

��v2

2

�
1 C 1

u2

��
v

u2
dv

D � 1

�

1

1 C 1=u2

1

u2
exp

��v2

2

�
1 C 1

u2

��#1

vD0

:

Hence,

fU .u/ D 1

�

1

1 C u2
:

Therefore, the ratio of two standard normal random variables follows the density
above which is called the Cauchy density. Note that E.U / does not exist (see
Exercise 10).

Example 11. Let X and Y be two exponential and independent random variables
with rates a and b, respectively. Let U D min.X; Y / and V D max.X; Y /. What is
the joint density of .U; V /?

Note that if X < Y then U D X and V D Y . The Jacobian is then 1. The portion
of the density of .U; V / corresponding to the domain X < Y is then

ae�aube�bv for 0 < u < v:

If X > Y then U D Y and V D X . Again the Jacobian is 1. The portion of the
density of .U; V / corresponding to the domain X > Y is

ae�avbe�bu for 0 < u < v:
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We add the two parts to get the joint density of .U; V /:

ae�aube�bv C ae�avbe�bu for 0 < u < v:

Are U and V independent?
We compute

fU .u/ D
Z 1

vDu
.ae�aube�bv C ae�avbe�bu/dv

D ae�.auCbu/ C be�.auCbu/ D .a C b/e�.aCb/u:

That is, the minimum of two independent exponential random variable is exponen-
tially distributed and its rate is the sum of the rates. Using distribution functions in
8.1 we had already seen this result. We now compute the density of V .

fV .v/ D
Z v

uD0

.ae�aube�bv C ae�avbe�bu/du D b.1 � e�av/e�bv C a.1 � e�bv/e�av:

It is easy to see that the joint distribution of .U; V / is not the product of fU and fV .
Therefore, U and V are not independent.

Example 12. Assume that X and Y are independent exponential random variables
with rates a and b, respectively. Find the density of X=Y .

We could set U D X=Y and V D X , find the density of .U; V / and then find the
density of U . However, in this case since exponential functions are easy to integrate
we may use the distribution function technique of 8.1. Let U D X=Y . We have that

FU .u/ D P.U � u/ D P.X=Y � u/ D P.X � uY /:

Since X and Y are independent we know the joint density of .X; Y /. Thus, by
integrating in y we get

FU .u/ D
Z 1

xD0

Z 1

yDx=u
ae�axbe�bydydx D

Z 1

xD0

ae�axe�bx=udx:

Hence, by integrating in x we have

FU .u/ D a

a C b=u
for u > 0:

We now differentiate the distribution function to get the density of U :

fU .u/ D ab

.au C b/2
for u > 0:

We can now prove a formula that we used in Chap. 7.
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Convolution Formula

Assume that X and Y are independent continuous random variables with
densities fX and fY , respectively. Let U D X C Y then the density fU is
given by

fU .u/ D
Z C1

�1
fX .v/fY .u � v/dv:

To prove the formula set U D X C Y and V D X . The Jacobian of this
transformation is �1 and the joint density of .U; V / is

f .u; v/ D fX .v/fY .u � v/:

Then

fU .u/ D
Z C1

�1
fX .v/fY .u � v/dv

and the formula is proved.

Example 13. Assume that X and Y are independent Gamma random variables with
parameters .r; 	/ and .s; 	/, respectively. What is the distribution of X=Y ?

Let U D X=Y and V D X . We see that .x; y/ �! .u; v/ is a one to one
transformation from .0; 1/ � .0; 1/ to itself and the Jacobian already computed in
Example 10 is v=u2. The density of .X; Y / is

	r


.r/
xr�1 exp.�	x/

	s


.s/
ys�1 exp.�	y/:

Hence, the density of .U; V / is

f .u; v/ D 	rCs


.r/
.s/
vr�1 exp.�	v/

� v

u

�s�1

exp
�
�	

v

u

� v

u2
:

Our goal is to compute the marginal density of U and hence to integrate the
preceding joint density with respect to v. This is why we rearrange the joint density
as follows:

f .u; v/ D 	rCs

usC1
.r/
.s/
vrCs�1 exp

�
�	

�
1 C 1

u

�
v

�
:

Now, for any � > 0 and a > 0 we have

Z 1

0

1


.a/
�axa�1 exp.��x/dx D 1:
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This is so because the integrand is a Gamma density with parameters .a; �/. Hence,

Z 1

0

xa�1 exp.��x/dx D 
.a/

�a
:

We use this formula with a D r C s and � D 	.1 C 1=u/ to get

Z 1

0

vrCs�1 exp

�
�	

�
1 C 1

u

�
v

�
dv D 
.r C s/

	rCs.1 C 1
u /rCs

:

Therefore, Z 1

0

f .u; v/dv D 	rCs

usC1
.r/
.s/


.r C s/

	rCs.1 C 1
u /rCs

:

Hence, the density of U D X=Y is


.r C s/


.r/
.s/

ur�1

.u C 1/rCs
for u > 0:

We will use this computation to introduce in the next example the beta distribution
which plays an important role in statistics.

Example 14. Assume that X and Y are independent Gamma random variables with
parameters .r; 	/ and .s; 	/, respectively. What is the distribution of B D X=.X C
Y /?

Since X and Y are positive random variables the random variable B takes values
in .0; 1/. We will get the density of B through its distribution function FB . Let t be
in .0; 1/. Note that B can be written as

B D U

U C 1
;

where U D X=Y . Thus, B � t is equivalent to

U � t

1 � t
:

Using this observation we get

FB.t/ D P.B � t/ D P

�
U � t

1 � t

�
:

By the chain rule we have

d

dt
P

�
U � t

1 � t

�
D fU

�
t

1 � t

�
� 1

.1 � t/2
;
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where fU is the density of U which was computed in Example 13. Hence, the
density fB of B is

fB.t/ D 
.r C s/


.r/
.s/

ur�1

.u C 1/rCs
� 1

.1 � t/2
;

where

u D t

1 � t
:

After a little algebra we get

fB.t/ D 
.r C s/


.r/
.s/
t r�1.1 � t/s�1 for t in .0; 1/:

This is the density of a so-called Beta distribution with parameters .r; s/.

The Beta Distribution

Let r > 0 and s > 0 then the Beta distribution with parameters .r; s/ has
density


.r C s/


.r/
.s/
t r�1.1 � t/s�1 for t in .0; 1/:

The expected value is r
rCs

and the variance is rs
.rCs/2.rCsC1/

:

We first compute the expected value. Let B be a Beta distribution with parameters
.r; s/. We have

E.B/ D
Z 1

0

t

.r C s/


.r/
.s/
t r�1.1 � t/s�1dt D

Z 1

0


.r C s/


.r/
.s/
t r .1 � t/s�1dt:

Note that for any a > 0 and b > 0 we have

Z 1

0


.a C b/


.a/
.b/
ta�1.1 � t/b�1dt D 1;

since the integrand is the density of a Beta distribution with parameters .a; b/.
Hence,

Z 1

0

ta�1.1 � t/b�1dt D 
.a/
.b/


.a C b/
(8.1)
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We apply this formula with a D r C 1 and b D s to get

Z 1

0

t r .1 � t/s�1 D 
.r C 1/
.s/


.r C s C 1/
:

Thus,

E.B/ D 
.r C s/


.r/
.s/

Z 1

0

t r .1 � t/s�1dt D 
.r C s/


.r/
.s/


.r C 1/
.s/


.r C s C 1/
:

The function 
 is defined on .0; C1/ by


.a/ D
Z 1

0

xa�1e�xdx:

Hence, by integration by parts


.a C 1/ D
Z 1

0

xae�xdx D �e�xxa
i1

0
C
Z 1

0

axa�1e�xdx D a
.a/;

where we use that a > 0. This yields the useful formula:


.a C 1/ D a
.a/ (8.2)

We apply this to get


.r C 1/


.r/
D r and


.r C s/


.r C s C 1/
D 1

r C s
:

Therefore,

E.B/ D r

r C s
:

We now turn to the second moment of B

E.B2/ D
Z 1

0

t2 
.r C s/


.r/
.s/
t r�1.1 � t/s�1dt D

Z 1

0


.r C s/


.r/
.s/
t rC1.1 � t/s�1dt:

We apply formula (8.1) with a D r C 2 and b D s to get

Z 1

0

t rC1.1 � t/s�1 D 
.r C 2/
.s/


.r C s C 2/
:

Hence,

E.B2/ D 
.r C s/


.r/
.s/


.r C 2/
.s/


.r C s C 2/
:
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By (8.2)


.r C s C 2/ D .r C s C 1/
.r C s C 1/ D .r C s C 1/.r C s/
.r C s/

and

.r C 2/ D .r C 1/r
.r/:

Therefore,

E.B2/ D r.r C 1/

.r C s C 1/.r C s/
:

The variance is

Var.B/ D E.B2/ � E.B/2 D r.r C 1/

.r C s C 1/.r C s/
�
�

r

r C s

�2

D rs

.r C s C 1/.r C s/2
:

This completes the computation.

Exercises 8.2

1. Consider an uniform random vector on the triangle f.x; y/ W 0 � x �
y � 1g.

(a) Find the density of the vector .X; Y /.
(b) Find the marginal densities fX and fY .
(c) Are the two random variables X and Y independent?

2. Consider an uniform random vector on the square f.x; y/ W 0 � x � 1I 0 � y �
1g.

(a) Find the density of the vector .X; Y /.
(b) Find the marginal densities fX and fY .
(c) Are the two random variables X and Y independent?

3. Redo Example 5 assuming that the bus leaves at 7:03 precisely. What is the
probability that I catch the bus?

4. Two friends have set an appointment between 8:00 and 8:30. Assume that the
arrival times of the two friends are independent and uniformly distributed between
8:00 and 8:30. Assume also that the first that arrives waits for 15 min and then
leaves. What is the probability that the friends miss each other?

5. Roll two dice. Let X be the sum and Y the minimum of the two dice.

(a) Find the joint distribution of .X; Y /.
(b) Are X and Y independent?
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6. Consider an uniform random vector on the triangle f.x; y/ W 0 � x � y � 1g.
Find the correlation between X and Y .

7. Roll two dice. Let X be the sum and Y the minimum of the two dice. Find the
correlation between X and Y .

8. Compute the correlation for the random variables of Example 6.

9. Let X and Y be two independent exponential random variables with rates 	 and
�, respectively. What is the probability that X is less than Y ?

10. Show that if U has a Cauchy density fU .u/ D 1
�

1
1Cu2 then E.U / does not exist.

11. Let X and Y be two independent exponential random variables with rate 	.

(a) Find the joint density of .X C Y; X=Y /.
(b) Find the density of X=Y .
(c) Show that X C Y and X=Y are independent.

12. Let X and Y be two exponential and independent random variables with rate
a. Let U D min.X; Y /, V D max.X; Y / and D D V � U .

(a) Find the joint density of .U; D/.
(b) Are U and D independent?

13. Let X and Y be two exponential independent random variables with rate 1. Let
U D X=.X C Y /.

(a) Find the distribution function of U .
(b) Find the density of U .

14. Let X and Y be two independent uniform random variables.

(a) Find the density of XY .
(b) Find the density of X=Y .

15. Let X and Y be two exponential and independent random variables with rate
a. Let U D X and V D X C Y . Find the joint density of .U; V /.

16. Let T1, T2 : : : Tn be independent exponential random variables with rates a1;

a2 : : : ; an. Let S D min.T1; T2; : : : ; Tn/.

(a) Show that S is exponentially distributed with rate a1 C a2 C � � � C an.
(b) Fix k in f1; : : : ; ng, let Sk D mini 6Dk Ti . That is Sk is the minimum of the Ti for

i 6D k. Find the density of the vector .Tk; Sk/.
(c) Show that the event fS D Tkg has the same probability as the event fTk < Skg.
(d) Prove that the probability that the minimum of the Ti for 1 � i � n is Tk is

ak

a1 C a2 C � � � C an

:
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17. Let X and Y be two random variables that have a variance. Find a formula for
Var.X � Y / that uses Var.X/, Var.Y / and Cov.X; Y /.

18. (a) Using that Corr.X; Y / is in Œ�1; 1� show that

jE.XY /j � SD.X/SD.Y /:

(b) In which cases is the inequality in (a) an equality?

19. Let Z be a standard normal random variable. Let Y D Z2.

(a) Show that Y and Z are uncorrelated.
(b) Are Y and Z independent?

20. Assume that SD.X/ D 0.

(a) Show that X is a constant.
(b) Show that Cov.X; Y / D 0 for all Y .

21. Consider a Beta distribution with parameters .r; s/.

(a) Sketch the graph of the density for r D 1 and s D 1.
(b) Sketch the graph of the density for r D 10 and s D 30.

22. Consider a Beta random variable B with parameters .r; s/.

(a) Compute the third moment of B .
(b) Compute the fourth moment of B .
(c) Can you guess what the formula is for the r th moment?

8.3 Transformations of Normal Vectors

We start this section by tying some lose ends concerning normal random variables.

Two Important Integrals
Z 1

�1
e� x2

2 dx D p
2�

and




�
1

2

�
D p

�:

Note that the first result proves that 1p
2�

e� x2

2 is indeed a probability density! To
prove it let

I D
Z 1

�1
e� x2

2 dx:
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Consider the double integral

Z 1

�1

Z 1

�1
e� x2

2 e� y2

2 dxdy:

By integrating first in x and then in y we get

Z 1

�1

Z 1

�1
e� x2

2 e� y2

2 dxdy D I 2:

We now compute the double integral by changing to polar coordinates. Let x D
r cos � and y D r sin � . The Jacobian of this transformation is r and the domain
.�1; C1/ � .�1; C1/ for .x; y/ corresponds to the domain .0; 1/ � .0; 2�/

for .r; �/. Hence,

I 2 D
Z 1

�1

Z 1

�1
e� x2

2 e� y2

2 dxdy D
Z 2�

�D0

Z 1

rD0

e� r2

2 rdrd�:

Note that Z 1

rD0

e� r2

2 rdr D �e� r2

2

i1
0

D 1

and so

I 2 D 2� and I D p
2�

This completes the computation of the first integral.
To compute the second integral we will use probability densities. Recall from 8.1

that if Z is a standard normal distribution then Y D Z2 has the following density

fY .y/ D 1p
2�

y�1=2e�y=2 for y > 0:

On the other hand a Gamma random variable X with parameters .1=2; 1=2/ has
density

fX .x/ D .1=2/1=2


.1=2/
x�1=2e�x=2 for x > 0:

Let g.x/ D x�1=2e�x=2. We see that

fY .x/ D C1g.x/ and fX .x/ D C2g.x/;

where C1 and C2 are constants. Since

Z 1

0

fY .x/dx D
Z 1

0

fX .x/dx D 1
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we have

C1

Z 1

0

g.x/dx D C2

Z 1

0

g.x/dx:

Since
R1

0
g.x/dx > 0 we conclude that C1 D C2. That is,

1p
2�

D .1=2/1=2


.1=2/

and we get




�
1

2

�
D p

�:

Next we construct Chi-square and Student distributions by using normal random
variables. First, recall that a Gamma random variable with parameters r > 0 and
	 > 0 has density

f .x/ D 	r


.r/
xr�1e�	x for all x > 0;

where


.r/ D
Z 1

0

xr�1e�xdx:

The moment generating function of the Gamma random variable with parameters r

and 	 has been computed in 7.1 and we found that

MX .t/ D
�

	

	 � t

�r

for t < 	:

Assume that X1; X2; : : : ; Xn are independent Gamma random variables with param-
eters .r1; 	/; .r2; 	/; : : : ; .rn; 	/, respectively. Then,

MX1CX2C���CXn.t/ D E.et .X1CX2C���CXn// D E.etX1/E.etX2/ : : : E.etXn/;

where the last equality comes from the independence of the Xi . We now use the
formula for the moment generating function of a Gamma to get

MX1CX2C���CXn.t/ D
�

	

	 � t

�r1
�

	

	 � t

�r2

: : :

�
	

	 � t

�rn

D
�

	

	 � t

�r1Cr2C���Crn

:

Recall that a moment generating function determines the distribution of a random
variable. Therefore, the computation above shows that the sum of independent
Gamma random variables with the same 	 is a Gamma distribution.
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Sum of Gamma Random Variables

Assume that X1; X2; : : : ; Xn are independent Gamma random variables with
parameters .r1; 	/; .r2; 	/; : : : ; .rn; 	/, respectively (note that they all have the
same 	). Then, X1CX2C� � �CXn is a Gamma random variable with parameters
.r1 C r2 C � � � C rn; 	/.

We use the preceding fact about Gamma distributions to show the following
property of standard normal variables.

Chi-Square Distribution

Assume that Z1; Z2; : : : ; Zn are independent standard normal distributions.
Then,

X D Z2
1 C Z2

2 C � � � C Z2
n

is called a Chi-square random variable with n degrees of freedom. Its density
is given by

f .x/ D 1

2n=2
.n=2/
xn=2�1e�x=2 for x > 0:

We note that 1p
2�

y�1=2e�y=2 is the density of a Gamma with parameters 1/2 and
1/2. Hence,

X D Z2
1 C Z2

2 C � � � C Z2
n

is a sum of n independent Gamma random variables with parameters 1/2 and 1/2.
Therefore, X is a Gamma random variable with parameters r D n=2 and 	 D 1=2.
Thus, the density of X is

f .x/ D .1=2/n=2


.n=2/
xn=2�1e�x=2 for all x > 0:

We have seen in Chap. 5 that Chi-square distributions play a pivotal role in statistics.
See Sect. 5.4 for sketches of the graph of Chi-square densities and for statistical
applications. Another important distribution in statistics is the Student distribution.

Student Distribution

Let Z be a standard normal random variable and X be a Chi-square random
variable with r degrees of freedom. Assume that X and Z are independent.
Then,

T D Z
p

X=r
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is a Student random variable with r degrees of freedom. Its density is

f .t/ D 
. rC1
2

/


.r=2/
p

�r
.1 C t2=r/�.rC1/=2:

As r increases to infinity the density of a Student with r degrees of freedom
approaches the density of a standard normal distribution (see Sect. 5.3). We now
find the density of a Student with r degrees of freedom. Let

T D Zp
X=r

and U D X:

We invert the relations above to get

Z D T
p

U=r and X D U:

The Jacobian of the transformation above is

ˇ̌
ˇ̌
p

u=r t=.2
p

ur/

0 1

ˇ̌
ˇ̌ D

p
u=r:

Since Z and X are independent the joint density of .Z; X/ is

1p
2�2r=2
.r=2/

e�z2=2xr=2�1e�x=2 for any z; x > 0

The joint density of .T; U / is then

1p
2�2r=2
.r=2/

e�t 2u=.2r/ur=2�1e�u=2
p

u=r for any t; u > 0:

In order to get the density of T we integrate the joint density of .T; U / in u. We get

fT .t/ D 1p
2�r2r=2
.r=2/

Z 1

0

u
rC1

2 �1e�u. t2

2r C1=2/du:

To compute the preceding integral, we use a Gamma density in the following way.
We know that

Z 1

0

	s


.s/
xs�1e�	xdx D 1
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for all s > 0 and 	 > 0. This is so because the integrand above is the density of a
Gamma random variable with parameters s and 	. Therefore,

Z 1

0

xs�1e�	xdx D 
.s/

	s
:

Now let s D rC1
2

and 	 D t 2

2r
C 1=2 we get

Z 1

0

u
rC1

2 �1e�u. t2

2r C1=2/du D 
. rC1
2

/

�
t 2

2r
C 1=2

� rC1
2

:

Thus,

fT .t/ D 1p
2�r2r=2
.r=2/


. rC1
2

/

. t2

2r
C 1=2/

rC1
2

D 
. rC1
2

/


.r=2/
p

�r
.1 C t2=r/�.rC1/=2;

and the computation of the Student density is complete. We now introduce the Fisher
distribution.

F Distribution

Assume that X and Y are independent Chi-square random variables with m

and n degrees of freedom, respectively. Then the distribution of

X=m

Y=n

is called the F distribution (after R.A. Fisher) with .m; n/ degrees of freedom.
Its density is

f .v/ D 
..m C n/=2/


.m=2/
.n=2/

�m

n

�m=2

vm=2�1
�
1 C m

n
v
��.nCm/=2

for v > 0:

In order to compute the density of a F distribution we go back to Gamma
distributions. Recall from 8.2 that if X and Y are independent Gamma random
variables with parameters .r; 	/ and .s; 	/, respectively then the density of U D
X=Y is


.r C s/


.r/
.s/

ur�1

.u C 1/rCs
for u > 0:
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Since a Chi-square random variable with m degrees of freedom is a Gamma random
variable with parameters r D m=2 and 	 D 1=2 we get that X=Y has density


..m C n/=2/


.m=2/
.n=2/

um=2�1

.u C 1/.mCn/=2
for u > 0:

Let

V D X=m

Y=n
;

then

V D n

m

X

Y
D n

m
U D cU;

where c D n=m. Let FU and FV be the distribution functions of U and V . We have

FV .v/ D P.V � v/ D P.U � v=c/ D FU .v=c/:

By taking derivatives and using the chain rule we get

fV .v/ D 1

c
fU .v=c/ D m

n
fU

�m

n
v
�

;

where fU and fV are the densities of U and V . Hence, for v > 0

fV .v/ D 
..m C n/=2/


.m=2/
.n=2/

. m
n

v/m=2�1

. m
n

v C 1/.mCn/=2

D 
..m C n/=2/


.m=2/
.n=2/

�m

n

�m=2

vm=2�1
�
1 C m

n
v
��.nCm/=2

This completes our computation.

8.3.1 Variance of a Vector

We first need to define the expected value of a random vector or a random matrix.

Expected Value of a Random Matrix

Let X be a random matrix with i; j component Xi;j . We define the expected
value of X as the matrix with i; j components E.Xi;j /. If A and B are constant
matrices then

E.AX/ D AE.X/

and
E.XB/ D E.X/B:
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In order for the formulas above to make sense the dimensions of the matrices
X , A and B must be adequate to allow for matrix multiplication. We prove the first
property. The i; j component of AX is

.AX/i;j D
X

k

Ai;kXk;j :

Therefore, the i; j component of E.AX/ is

E.AX/i;j D E

 
X

k

Ai;kXk;j

!
D
X

k

Ai;kE.Xk;j /;

where we use that the expectation is linear and the Ai;k are constant (i.e., nonran-
dom). On the other hand the i; j component of AE.X/ is

.AE.X//i;j D
X

k

Ai;kE.Xk;j /:

This proves that

E.AX/ D AE.X/:

The proof of the right multiplication formula is done in a similar way and we omit it.
The transpose of a matrix A is denoted by A0. It is obtained by switching the

rows and columns of A. For instance, if

A D
�

1 2 3

4 5 6

�
;

then

A0 D
0

@
1 4

2 5

3 6

1

A :

We now define the variance of a random vector X.

Variance of a Random Vector

The variance of a random vector X is the matrix

Var.X/ D E.XX0/ � E.X/E.X0/:

The .i; j / component of the matrix Var.X/ is Cov.Xi; Xj /. If A is a constant
matrix then

Var.AX/ D AVar.X/A0:
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Recall that Cov.Xi ; Xi/ D Var.Xi/ so that the diagonal of the variance matrix is
made up of variances.

Next we check that the variance matrix is composed of covariances in the case of
a vector with two components.

Assume that

X D
�

X1

X2

�
:

Then,

X0 D .X1X2/ ;

and

XX0 D
�

X2
1 X1X2

X1X2 X2
2

�
:

Hence,

E.XX0/ D
 

E.X2
1 / E.X1X2/

E.X1X2/ E.X2
2 /

!
:

On the other hand

E.X/E.X0/ D
 

E.X1/

E.X2/

!
E.X1/E.X2/ D

�
E.X1/

2 E.X1/E.X2/

E.X1/E.X2/ E.X2/
2

�
:

Thus,

Var.X/ D E.XX0// � E.X/E.X0/ D
�

Var.X1/ Cov.X1; X2/

Cov.X1; X2/ Var.X2/

�
:

Note also that if X has only one component (X is then a random variable) then
X0 D X and the variance matrix has just one component which is the variance of the
random variable X.

We now prove that Var.AX/ D AVar.X/A0. Let A and B be two matrices. We
have from linear algebra that

.AB/0 D B 0A0:

Hence,

AX.AX/0 D AXX0A0:

Taking the expectation on both sides and using the linearity of the expectation we get

EŒAX.AX/0� D AEŒXX0�A0:
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We also have

E.AX/ D AE.X/ and EŒ.AX/0� D E.X0A0/ D E.X0/A0:

Thus,

Var.AX/ D EŒAX.AX/0� � E.AX/EŒ.AX/0�

D AEŒXX0�A0 � AE.X/E.X0/A0

D AVar.X/A0:

8.3.2 Normal Random Vectors

We now define normal vectors.

Normal Random Vectors

The vector X D

0
BBBBB@

X1

X2

:

:

Xn

1
CCCCCA

is said to be a normal random vector if there is n �

n matrix A, n independent standard normal variables Z1; Z2; : : : ; Zn and a
constant vector b such that

X D AZ C b;

where Z D

0

BBBBB@

Z1

Z2

:

:

Zn

1

CCCCCA
:

In order to analyze some of the properties of normal random vectors our main
tool will be multivariate moment generating functions. Let X be a random vector
with n components. The moment generating function of X is defined by

MX.t/ D E.exp.t0X//;

where t is a column vector with n components.
Multivariate moment generating functions have the two following important

properties.
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P1. Assume that

MX.t/ D MY.t/ for all t in Œ�r; r�n

for some r > 0 then the random vectors X and Y have the same distribution.

Property (P1) tells us the moment generating function completely characterizes the
distribution of a random vector.

P2. Let X1; X2; : : : ; Xn be random variables and X be the random vector whose
components are X1; X2; : : : ; Xn. Then, X1; X2; : : : ; Xn are independent if and
only if

MX.t/ D MX1.t1/MX2.t2/ : : : MXn.tn/

for all column vectors t in Œ�r; r�n for some r > 0 and where t1; t2; : : : ; tn are the
components of t.

That is, in order for X1; X2; : : : ; Xn to be independent it is necessary and sufficient
that the moment generating function of the vector X be the product of the moment
generating functions of the random variables X1; X2; : : : ; Xn.

The proof of (P1) involves some advanced mathematics and we will skip it.
However, assuming (P1) it is easy to prove (P2) and we will now do that. First,
assume that the random variables X1; X2; : : : ; Xn are independent. The density of
the vector X is fX1.x1/fX2.x2/ : : : fXn.xn/. Therefore,

MX.t/ D
Z 1

x1D�1

Z 1

x2D�1
: : :

Z 1

xnD�1
exp.t1x1 C � � � C tnxn/fX1.x1/ : : : fXn.xn/dx1 : : : dxn:

Since,

exp.t1x1 C t2x2 C � � � C tnxn/ D exp.t1x1/ exp.t2x2/ : : : exp.tnxn/

we can integrate with respect to each xi separately to get

MX.t/ D MX1.t1/MX2.t2/ : : : MXn.tn/:

We now prove the converse. Assume that the moment generating function of X
is the product of the generating functions of the variables X1; X2; : : : ; Xn. Then
MX is equal to the moment generating function of a vector whose components
X1; X2; : : : ; Xn are independent. By using (P1) we see that the random variables
X1; X2; : : : ; Xn are independent. This completes the proof of (P2).

We will now compute the joint moment generating function of a normal vector.
First recall two important properties of normal random variables from Chap. 7.
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Properties of Normal Random Variables

Let X be a normal random variable with mean � and standard deviation � then
the moment generating function of X is

MX.t/ D E.etX / D exp

�
�t C �2 t2

2

�
:

Let X1; X2; : : : ; Xn be a sequence of independent normal random variables and
let t1; t2; : : : ; tn be a sequence of real numbers. Let t be the column vector with
components t1; t2; : : : ; tn then the linear combination

t0X D
nX

iD1

ti Xi

is also a normal random variable.

We use the properties of normal random variables to get the following properties
of normal vectors.

Properties of Normal Random Vectors

Assume that X is a normal vector. Then, each component Xi is a normal random
variable and a linear transformation of X is also a normal vector.

We now prove the properties. We know that

X D AZ C b;

where Z is a random vector whose components are i.i.d. standard normal random
variables, A is a constant matrix and b is a constant vector. Therefore, the i

component of X is
Xi D

X

j

Ai;j Zj C bi :

That is, Xi is the sum a linear combination of independent normal random variables
and a constant bi . Thus, Xi is a normal random variable.

Assume now that Y D C X for some matrix C . Then,

Y D CAZ C C b:
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This shows that Y is a normal vector where in the definition CA plays the role of A

and C b plays the role of b. This completes the proof.
Let

L D t0X;

where X is a normal vector. Then L is also a normal vector since it is a linear
transformation of X. Actually, L has only one component and is therefore a normal
random variable.

We compute the moment generating function of L.

ML.s/ D E.esL/ D exp.E.L/s C Var.L/s2=2/:

Recall that if A is a matrix then

E.AX/ D AE.X/

and

Var.AX/ D AVar.X/A0:

Hence, with t0 playing the role of A

E.L/ D E.t0X/ D t0E.X/

and

Var.L/ D t0Var.X/.t0/0 D t0Var.X/t;

where we used that .t0/0 D t.
We substitute E.L/ and Var.L/ in ML to get

ML.s/ D exp

�
st0E.X/ C s2

2
t0Var.X/t

�
:

There is a simple relation between the moment generating function of the vector X
at t and the moment generating function of L.

MX.t/ D E.exp.t0X// D E.exp.L// D ML.1/:

We plug s D 1 in the formula for ML.s/ to get

MX.t/ D exp

�
t0E.X/ C 1

2
t0Var.X/t

�
:
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The Moment Generating of a Normal Vector

Let X D

0
BBBBB@

X1

X2

:

:

Xn

1
CCCCCA

is a normal vector if and only if the moment generating

function of X is

MX.t/ D exp.t0E.X/ C 1

2
t0Var.X/t/:

The following is useful to prove that a vector is normal.

Independent Components

If the random variables X1; X2; : : : ; Xn are independent and normally dis-

tributed then the vector X D

0

BBBBB@

X1

X2

:

:

Xn

1

CCCCCA
is a normal vector.

We have at least two ways to show this. We may find a matrix A and a
vector b such that X D AZ C b where Z is a vector whose components are
independent standard normal random variables (see the exercises) or we may use
moment generating functions. We use moment generating functions. Since the Xi

are assumed to be independent we have by property (P2)

MX.t/ D MX1.t1/MX2.t2/ : : : MXn.tn/:

Since the Xi are normally distributed, we have for each i D 1; 2; : : : ; n

MXi .s/ D exp.�i s C s2�2
i =2/:

Thus,

MX.t/ D exp.�1t1 C t2
1 �2

1 =2/ exp.�2t2 C t2
2 �2

2 =2/ : : : exp.tn�ntn C t2
n�2

n=2/

D exp

 
nX

iD1

ti �i C
nX

iD1

t2
i �2

i =2

!
:
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Note that E.X/ is the column vector whose i component is �i . Hence,

nX

iD1

ti �i D t0E.X/:

Since the Xi are independent Cov.Xi ; Xj / D 0 for i 6D j and so Var.X/ is a
diagonal matrix whose i; i term is �2

i . Observe also that

nX

iD1

t2
i �2

i =2 D 1

2
t0Var.X/t:

Therefore,

MX.t/ D exp

�
t0E.X/ C 1

2
t0Var.X/t

�
:

This is the moment generating function of a normal vector. By property (P1) this
proves that X is a normal vector.

An easy consequence of the form of the moment generating function for a normal
vector is the following property.

Independence and Covariance

Assume that X is a normal random vector. Let Xi and Xj be two components
of X. Then Xi and Xj are independent if and only if

Cov.Xi ; Xj / D 0:

We already knew that if Xi and Xj are independent then Cov.Xi ; Xj / D 0. What
is remarkable here is that the converse holds for normal random vectors. We now
prove it. Assume that X is a normal random vector with n components and such that
Cov.Xi; Xj / D 0. Define the vector Y as

Y D
�

Xi

Xj

�
:

Let A be the matrix with 2 rows and n columns such that all components are 0
except for the .1; i/ and .2; j / components which are both 1. It is easy to check that

Y D AX:

Therefore, Y is obtained through a linear transformation of the normal vector X and
is also a normal vector. Hence, the moment generating function of Y is

MY.t/ D exp

�
t0E.Y/ C 1

2
t0Var.Yt/

�
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The variance matrix of Y is easily computed,

Var.Y/ D
�

Var.Xi/ Cov.Xi ; Xj /

Cov.Xi ; Xj / Var.Xj /

�
D
�

Var.Xi/ 0

0 Var.Xj /

�
:

We use this to get
t0Var.Y/t D t2

1 Var.Xi/ C t2
2 Var.Xj /;

where t1 and t2 are the two components of t. On the other hand

t0E.Y/ D t1E.Xi/ C t2E.Xj /:

Hence,

MY.t/ D exp.t1E.Xi / C t2
1 Var.Xi/=2/ exp.t2E.Xj / C t2

2 Var.Xj /=2/

D MXi .t1/MXj .t2/:

By property (P2) this proves that Xi and Xj are independent.
Note that in order to use the property above one must first prove that X is a

normal vector. Showing that the marginal densities are normal is not enough. In the
exercises we give an example of two normal random variables whose covariance is
0 and that are not independent. This is so because although the marginal densities
are normal the joint density is not.

8.3.3 The Joint Distribution of the Sample Mean and Variance
in a Normal Sample

Let X1; X2; : : : ; Xn be independent, normally distributed with mean � and standard
deviation � . As we have seen in 5.1

NX D X1 C X2 C � � � C Xn

n

is an unbiased estimator of the mean � and

S2 D 1

n � 1

nX

iD1

.Xi � NX/2

is an unbiased estimator of �2. That is,

E. NX/ D � and E.S2/ D �2:
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NX and S2 are called the sample mean and the sample variance of the sample
X1; : : : ; Xn. We will show that NX � �

S=
p

n

follows a Student distribution with n � 1 degrees of freedom. This is an important
result in statistics that we have used in 5.3. Let

X D

0

BBBBB@

X1

X2

:

:

Xn

1

CCCCCA
D D

0

BBBBB@

NX
X1 � NX
X2 � NX

:

Xn � NX

1

CCCCCA
:

Note that

D D

0

BBBBB@

1=n 1=n : : : 1=n

1 � 1=n �1=n : : : �1=n

�1=n 1 � 1=n : : : �1=n

: : : : : :

�1=n �1=n : : : 1 � 1=n

1

CCCCCA
X:

Since its components are normal and independent the vector X is normal. Thus, D
is the image by a linear transformation of a normal vector. Hence, D is a normal
random vector as well. We now compute for i D 1; : : : ; n

Cov. NX; Xi � NX/ D Cov. NX; Xi/ � Cov. NX; NX/:

Recall that

Cov. NX; NX/ D Var. NX/ D �2

n
:

We now turn to

Cov. NX; Xi / D 1

n

nX

j D1

Cov.Xj ; Xi /:

Note that Cov.Xj ; Xi / D 0 for i 6D j since Xi and Xj are independent. Thus,

Cov. NX; Xi/ D 1

n
Cov.Xi ; Xi/ D �2

n
:

Therefore,
Cov. NX; Xi � NX/ D 0

and since D is a normal random vector this is enough to show that, for every i D
1; : : : ; n, NX and Xi � NX are independent. Since S2 depends only on the differences
Xi � NX we have proved the following.
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The Sample Mean and Sample Variance are Independent

Let X1; X2; : : : ; Xn be independent, NORMALLY distributed with mean � and
standard deviation � . Then, the sample mean

NX D X1 C X2 C � � � C Xn

n

and the sample variance

S2 D 1

n � 1

nX

iD1

.Xi � NX/2

are independent.

This independence result relies heavily on the normality of the sample.
We know from 7.2 that a linear combination of independent normal random

variables is also a normal variable. Therefore, NX is normally distributed with mean
� and variance �2=n. We now turn to the distribution of S2. We start with

nX

iD1

.Xi � NX/2 D
nX

iD1

.Xi � � C � � NX/2

D
nX

iD1

.Xi � �/2 C 2

nX

iD1

.Xi � �/.� � NX/ C
nX

iD1

.� � NX/2:

Note that

nX

iD1

.Xi � �/.� � NX/ D .� � NX/.n NX � n�/ D �n.� � NX/2;

and
nX

iD1

.� � NX/2 D n.� � NX/2:

Thus,

.n � 1/S2 D
nX

iD1

.Xi � NX/2 D
nX

iD1

.Xi � �/2 � n.� � NX/2:

We divide the preceding equality by �2 to get

.n � 1/S2=�2 D
nX

iD1

�
Xi � �

�

�2

� n

 
� � NX

�

!2

:
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The random variable
nX

iD1

�
Xi � �

�

�2

is the sum of the squares of n independent standard normal random variables. Thus,
it is a Chi-square random variable with n degrees of freedom. On the other hand

n

 
� � NX

�

!2

D
 NX � �

�=
p

n

!2

is the square of a standard normal random variable (since the expected value of NX
is � and its standard deviation is �=

p
n). So it is a Chi-square random variable with

one degree of freedom. We are now going to find the distribution of S2 by using
moment generating functions. We rewrite the identity

.n � 1/S2=�2 D
nX

iD1

�
Xi � �

�

�2

� n

 
� � NX

�

!2

as

.n � 1/S2=�2 C n

 
� � NX

�

!2

D
nX

iD1

�
Xi � �

�

�2

:

We compute the moment generating functions:

E

"
exp

0

@t.n � 1/S2=�2 C tn

 
� � NX

�

!2
1

A
#

D E

"
exp

 
t

nX

iD1

�
Xi � �

�

�2
!#

:

We use also that S2 and NX are independent to get

EŒexp.t.n�1/S2=�2�E

"
exp

0

@tn

 
� � NX

�

!2
1

A
#

D E

"
exp

 
t

nX

iD1

�
Xi � �

�

�2
!#

:

Recall that a Chi-square random variable with k degrees of freedom has a
moment generating function .1 � 2t/�k=2. Hence,

E

"
exp

0

@tn

 
� � NX

�

!2
1

A
#

D .1 � 2t/�1=2;
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and

E

"
exp

 
t

nX

iD1

�
Xi � �

�

�2
!#

D .1 � 2t/�n=2:

Therefore,

EŒexp.t.n � 1/S2=�2�.1 � 2t/�1=2 D .1 � 2t/�n=2;

and

EŒexp.t.n � 1/S2=�2� D .1 � 2t/�.n�1/=2:

That is, .n � 1/S2=�2 follows a Chi-square distribution with n � 1 degrees of
freedom.

Finally, since
NX � �

�=
p

n

is a standard normal random variable which is independent of .n � 1/S2=�2 (a Chi-
square random variable with n � 1 degrees of freedom) we have that

NX��

�=
p

nq
.n�1/S2

.n�1/�2

D
NX � �

S=
p

n

follows a Student distribution with n � 1 degrees of freedom. We now summarize
our results.

Joint Distribution of the Sample Mean and the Sample
Variance

Let X1; X2; : : : ; Xn be independent, NORMALLY distributed with mean �

and standard deviation � . Then,

.n � 1/S2=�2

follows a Chi-square distribution with n � 1 degrees of freedom. Moreover,

NX � �

S=
p

n

is a Student random variable with n � 1 degrees of freedom.
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Exercises 8.3

1. Show that if C1g.x/ and C2g.x/ are both density functions then C1 D C2.

2. (a) Assume that X and Y are independent Chi-square random variables with
degrees of freedom n and m, respectively. Show that X CY is also a Chi-square
random variable with n C m degrees of freedom.

(b) Assume that X and Y are independent and that X and X C Y are Chi-square
random variables with degrees of freedom n and m, respectively. Show that Y

is also a Chi-square random variable with m � n degrees of freedom.

3. Use a Gamma density to compute the following integral.

Z 1

0

x5e�2xdx:

4. Assume that the vector X has three independent components X1, X2 and X3 with
Var.Xi/ D �2

i :

(a) Write the variance matrix of the vector X.
(b) Let Y1 D X1, Y2 D X1 C X2 and Y3 D X1 C X2 C X3. Find the matrix A such

that Y D AX.
(c) Find the variance matrix of the vector Y.
(d) Are the components of Y independent?

5. Assume that Var.X/ D 1, Var.Y / D 2 and Cov.X; Y / D �1. Compute
Cov.X � 2Y; X C Y /.

6. Assume that

�
X

Y

�
is a normal vector with E.X/ D 1, Var.X/ D 1, E.Y / D �1,

Var.Y / D 2 and Cov.X; Y / D �1. Find the moment generating function of the

vector

�
X C Y

X � Y

�
.

7. Assume that X1 and X2 are independent normally distributed random variables
with means �1, �2 and standard deviations �1, �2, respectively. Show that X D�

X1

X2

�
is a normal vector by finding a matrix A and a vector b such that

X D AZ C b;

where Z D
�

Z1

Z2

�
and Z1 and Z2 are independent standard normal random

variables.
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8. Assume that X1 and X2 are independent normally distributed random variables
with mean � and standard deviation � . Let

Y D
�

X1 � X2

X1 C X2

�
:

(a) Is Y a normal vector?
(b) Compute Var.Y/.
(c) Are X1 � X2 and X1 C X2 independent?

9. In this exercise we will construct two normal random variables X and Y such
that Cov.X; Y / D 0 and such that X and Y are not independent. Let

n.x; y/ D 1

2�
exp.�.x2 C y2/=2/:

That is, n is the joint density of two independent standard normal random variables.
Let D1, D2, D3, and D4 be the interiors of the circles with radius 1 and centered at
(2,2), (�2,2), (�2,�2), and (2,�2), respectively. Define

f .x; y/ D n.x; y/ for .x; y/ not in D1 [ D2 [ D3 [ D4

f .x; y/ D n.x; y/ C m for .x; y/ in D1

f .x; y/ D n.x; y/ � m for .x; y/ in D2

f .x; y/ D n.x; y/ C m for .x; y/ in D3

f .x; y/ D n.x; y/ � m for .x; y/ in D4;

where m is a constant small enough so that f .x; y/ is always strictly positive.

(a) Show that f is a density.
(b) Show that X and Y are standard normal random variables.
(c) Compute the covariance of X and Y .
(d) Show that X and Y are not independent.

10. Assume that .X; Y / is a normal vector with Var.X/ D 1, Var.Y / D 2 and
Cov.X; Y / D �1. Find a so that X and X C aY are independent.

11. Show that a Student distribution has an expectation equal to 0.

12. (a) Find the expectation and the variance of a Chi-square random variable with
n degrees of freedom.

(b) Find a normal approximation to a Chi-square distribution with n degrees of
freedom as n goes to infinity.



254 8 Transformations of Random Variables and Random Vectors

13. Find the expected value and the variance of a F distribution with .m; n/ degrees
of freedom.

14. Let X1; X2; : : : ; Xn be random variables and t1; t2; : : : ; tn be constants.
Show that

Var

 
nX

iD1

ti Xi

!
D

nX

iD1

nX

j D1

ti tj Cov.Xi ; Xj /:

15. Consider a normal vector X. Assume that

X D AZ;

where Z is a normal vector whose components are independent standard normal
random variables and A is an invertible matrix. In this exercise we will compute the
density of X.

(a) Show that the density of the vector Z is

f .z1; : : : ; zn/ D 1

.2�/n=2
exp

�
�1

2
z0z
�

;

where z is the vector whose components are z1; : : : ; zn.
(b) Use the change of variables formula to show that the density of vector X is

f .x1; : : : ; xn/ D 1

.2�/n=2
det.A�1/ exp

�
�1

2
.A�1x/0.A�1x/

�
;

where x is the vector whose components are x1; : : : ; xn and det.A�1/ is the
determinant of A�1.

(c) Let † be the variance matrix of X. Show that

† D AA0;

and that † is invertible. Recall that for two same size square matrices M and N

det.MN / D det.M /det.N /

and that matrix M is invertible if and only if det.M / is not 0. Recall also that
det.M 0/ D det.M /.

(d) Show that the density of vector X is

f .x1; : : : ; xn/ D 1

.2�/n=2
det.†/�1=2 exp

�
�1

2
x0†�1x

�
:
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8.4 Conditional Distributions and Expectations

We start with an example for the discrete case.

Example 1. Let X and Y be two random variables with the following joint
distribution.

X 0 1 2
Y

1 1/8 1/8 1/4
2 1/8 0 1/8
3 1/8 1/8 0

By definition of conditional probabilities we have

P.X D 0jY D 1/ D P.X D 0I Y D 1/

P.Y D 1/
D 1=8

1=2
D 1

4
;

where we read P.X D 0I Y D 1/ D 1=8 in the table and

P.Y D 1/ D P.X D 0I Y D 1/ C P.X D 1I Y D 1/ C P.X D 2I Y D 1/

D 1

8
C 1

8
C 1

4
D 1

2

Similarly, we get

P.X D 1jY D 1/ D 1=8

1=2
D 1

4
;

and

P.X D 2jY D 1/ D 1=4

1=2
D 1

2
:

The conditional distribution of X given Y D 1 is

x 0 1 2
P.X D xjY D 1/ 1/4 1/4 1/2

We now give the definition in the discrete case.

Conditional Distribution, Discrete Case

Let X and Y be two discrete random variables. Assume that y is such that
P.Y D y/ > 0. The conditional distribution of X given Y D y is given by

P.X D xjY D y/ D P.X D xI Y D y/

P.Y D y/

for all possible values x of the random variable X .
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A word on notation we use “,” or “;” equivalently between two events. It
designates the intersection of the two events.

As the next example illustrates we sometimes know the conditional distribution
of a random variable and use it to get the (unconditioned) distribution of the random
variable.

Example 2. Assume that the number of customers going into a bank between 2:00
and 3:00 PM has a Poisson distribution with rate 	. Assume that each customer
has a probability p of being female. Assume also that arrivals are female or not
independently of each other. What is the distribution of the number of female
customers between 2:00 and 3:00 p.m.?

Let N be the total number of customers and F be the number of female
customers. We now compute the distribution of F . For any fixed positive integer
f we have

P.F D f / D
X

n�f

P.N D nI F D f /;

where n � f since there are more arrivals than female arrivals. By definition of the
conditional probability

P.N D nI F D f / D P.F D f jN D n/P.N D n/:

Given that N D n, F is the number of females among n customers. We are told
that each arriving customer has a probability p of being female and that arrivals are
female or male independently of each other. Hence, given N D n the number of
females F is a binomial distribution with parameters n and p. That is,

P.F D f jN D n/ D
�

n

f

�
pf .1 � p/n�f :

Since

P.N D n/ D exp.�	/
	n

nŠ
;

we have

P.N D nI F D f / D P.F D f jN D n/P.N D n/

D
�

n

f

�
pf .1 � p/n�f exp.�	/

	n

nŠ
:

Now,
�

n

f

�
1

nŠ
D 1

f Š.n � f /Š
:
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and by splitting 	n in 	f 	n�f we get

P.N D nI F D f / D .	p/f

f Š
exp.�	/.1 � p/n�f 	n�f

.n � f /Š
:

We use this last formula in the sum

P.F D f / D
X

n�f

P.N D nI F D f / D .	p/f

f Š
exp.�	/

X

n�f

..1 � p/	/n�f

.n � f /Š
:

Finally, note that

X

n�f

..1 � p/	/n�f

.n � f /Š
D
X

k�0

..1 � p/	/k

kŠ
D exp..1 � p/	/:

Hence,

P.F D f / D .	p/f

f Š
exp.�	/ exp..1 � p/	/ D .	p/f

f Š
exp.�	p/:

That is, F is also Poisson distributed and its rate is 	p.
We now deal with the continuous case.

Conditional Distribution, Continuous Case

Assume that X and Y are continuous random variables with joint density f .
Let fY be the marginal density of the random variable Y . Let y be a fixed
number such that fY .y/ > 0. The conditional density of X given Y D y is
defined to be

f .xjy/ D f .x; y/

fY .y/
:

We will also use the notation f .xjY D y/ for f .xjy/ when we will want to
emphasize that y is a value of the random variable Y .

Example 3. Take .X; Y / uniformly distributed on the two dimensional unit disc.
That is,

f .x; y/ D 1

�
for x2 C y2 � 1:

Given y D 1=2 what is the conditional density of X? In 8.2 we computed the
marginal density

fY .y/ D 2

�

p
1 � y2 for y 2 Œ�1; 1�:
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So by definition of the conditional density we have

f .xjY D 1=2/ D f .x; 1=2/

fY .1=2/
D

1
�

2
�

p
1 � .1=2/2

for x2 C .1=2/2 � 1:

That is,

f .xjY D 1=2/ D 1p
3

D
p

3

3
for �

p
3

2
� x �

p
3

2
:

So X conditioned on Y D 1=2 is uniformly distributed on Œ�
p

3
2

;
p

3
2

�. There is
nothing special about Y D 1=2, of course. One can show that for any y in Œ�1; 1�

the conditional density of X given Y D y is uniform on Œ�p1 � y2;
p

1 C y2�.

Example 4. Assume that X is picked uniformly in .0; 1/ and then Y is picked
uniformly in .0; X/. What is the distribution of .X; Y /?

From the information above we get that the conditional distribution of Y given
X D x is uniform in .0; x/. That is,

f .yjx/ D 1

x
for y 2 .0; x/:

We use the formula for conditional density to get

f .x; y/ D f .yjx/fX .x/ D 1

x
for 0 < y < x < 1;

where we are using that fX .x/ D 1 for x in Œ0; 1� and 0 otherwise. We see that
.X; Y / is not uniformly distributed. Is Y uniformly distributed? We compute

fY .y/ D
Z 1

y

f .x; y/dx D
Z 1

y

1

x
dx D � ln y for y 2 .0; 1/:

Hence, Y is not uniformly distributed either.

8.4.1 Conditional Expectations

Example 5. In Example 2 the conditional distribution of F given N D n is a
binomial distribution with parameters n and p. Hence, its expected value denoted
by E.F jN D n/ is

E.F jN D n/ D np:

Now, n is a value of the random variable N . This allows us to introduce a new
random variable denoted by E.F jN / and defined as follows. The random variable
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E.F jN / is E.F jN D n/ D np when N D n. E.F jN / is called the conditional
expectation of F given N . In this example we have

E.F jN / D Np:

Note that E.F jN / D g.N / where g is deterministic (i.e., nonrandom), indeed
g.x/ D px. This is a general fact: the conditional expectation of a random variable
X given Y is always a function of Y .

Example 6. Consider Example 4. The random variable X is uniformly distributed
on .0; 1/. Given X D x then Y is uniformly distributed on .0; x/. Since the expected
value of an uniform distribution on .0; x/ is x=2 we have

E.Y jX D x/ D x

2
:

Hence,

E.Y jX/ D X

2
:

Conditional Expectation

Let X and Y be two random variables. Let E.X jY D y/ be the expected value
of the distribution of X conditioned on Y D y. The random variable E.X jY /

is defined to be E.X jY D y/ on the event Y D y. It is called the conditional
expectation of X given Y . Moreover, E.X jY / D g.Y / where

g.y/ D 1

fY .y/

Z
xf .x; y/dx if X and Y are continuous

and

g.y/ D 1

P.Y D y/

X

x

xP.X D x; Y D y/ if X and Y are discrete:

This is not the most general definition of conditional expectation but it will be
enough for our purposes. Provided the conditional distribution is well defined (i.e.,
fY .y/ > 0 in the continuous case and P.Y D y/ > 0 in the discrete case) and
the corresponding expected values exist our definition is fine. We now check the
existence of the function g. Assume that X and Y are continuous random variables
with joint density f , the computation for discrete random variables is similar and
we omit it. By the definitions of expectation and conditional distribution we get

E.X jY D y/ D
Z

xf .xjy/dx D
Z

x
f .x; y/

fY .y/
dx D 1

fY .y/

Z
xf .x; y/dx:
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As expected the expression above depends on y only. Define g by

g.y/ D 1

fY .y/

Z
xf .x; y/dx:

For every y such that fY .y/ > 0 we have

E.X jY D y/ D g.y/:

By the definition of the conditional expectation we get E.X jY / D g.Y /. This
proves the existence of the function g and also gives an explicit expression for g

that will be useful below.
We now turn to some of the properties of conditional expectations.

P1. We have that
EŒE.X jY /� D E.X/:

First note that since E.X jY / is a random variable it makes sense to compute its
expectation. We now prove this formula in the continuous case. We have E.X jY / D
g.Y / for the function g defined above. Recall that, if the expected value exists we
have

E.g.Y // D
Z

g.y/fY .y/dy:

Hence,

EŒE.X jY /� D E.g.Y // D
Z

g.y/fY .y/dy:

We now use the expression of g above to get

EŒE.X jY /� D
Z

g.y/fY .y/dy D
Z

1

fY .y/

Z
xf .x; y/dxfY .y/dy

D
Z Z

xf .x; y/dxdy:

Now use that Z
f .x; y/dy D fX .x/

to have

EŒE.X jY /� D
Z

xfX .x/dx D E.X/

which completes the computation. Note that we have freely interchanged the
integration order. This is fine provided the function we integrate is regular enough.
That will always be the case in our examples.
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Example 7. We go back to Example 4. We have noted that E.Y jX/ D X=2:

Therefore,

EŒE.Y jX/� D E.X=2/ D 1

4
;

since X is uniformly distributed in .0; 1/ and E.X/ D 1=2. We now check property
P 1 by computing E.Y / directly. We have computed

fY .y/ D � ln y for y 2 .0; 1/:

Doing an integration by parts we get

E.Y / D
Z 1

0

�y ln ydy D �1

2
y2 ln y

i1

0
C 1

2

Z 1

0

ydy D 1

4
y2
i1

0
D 1

4
:

We do have EŒE.Y jX/� D E.X/:

Example 8. Let N and F be two discrete random variables. Assume that the
conditional distribution of F given N D n is binomial with parameters n and p.
Hence, E.F jN D n/ D np and E.F jN / D pN . By P1 we get

E.F / D EŒE.F jN /� D E.pN / D pE.N /:

The point of this example is that sometimes conditional distributions can be used to
compute (unconditional) expectations.

P2. Assume that X and Y are independent. Then,

E.X jY / D E.X/:

Property P2 is intuitively reasonable. If X and Y are independent then condi-
tioning on Y should not change the distribution of X and hence its expected value.
To prove P2 we use the function g again. Assuming that X and Y are continuous
random variables we know that

E.X jY D y/ D g.y/;

where

g.y/ D 1

fY .y/

Z
xf .x; y/dx:

Since X and Y are independent

f .x; y/ D fX.x/fY .y/;
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and

g.y/ D 1

fY .y/

Z
xf .x; y/dx D 1

fY .y/

Z
xfX .x/fY .y/dx

D 1

fY .y/
fY .y/

Z
xfX .x/dx:

That is,

g.y/ D
Z

xfX .x/dx D E.X/:

The function g is the constant E.X/. Therefore, E.X jY / is also this constant and
P2 is proved.

P3. The conditional expectation is linear. That is, let U , V , and W be random
variables and a and b be constants then

E.aU C bV jW / D aE.U jW / C bE.V jW /:

P3 is a consequence of the linearity of the expectation. We omit this proof.

P4. Let h be a function, X and Y random variables then

E.h.Y /X jY / D h.Y /E.X jY /:

This last property can be quite useful in the computation of conditional expecta-
tions, we will use it below. We now give the steps to prove it. We have

E.h.Y /X jY D y/ D E.h.y/X jY D y/ D h.y/E.X jY D y/;

where the first equality is intuitively clear but requires a proof. One way to do
this is to compute the joint distribution of h.Y /X and Y and then the conditional
distribution of h.Y /X given Y D y. The second equality just uses the linearity of
conditional expectations since h.y/ is a constant. This yields P4.

P5. Let h be a function and Y a random variable then

E.h.Y /jY / D h.Y /:

This is not really a surprise. Conditioning on Y does not change the distribution
of h.Y /. We now prove P5. Let X D 1 in P4, then

E.h.Y /jY / D h.Y /E.1jY /:

A constant is independent of any other random variable, hence by P2

E.1jY / D E.1/ D 1:

This concludes the proof of P5.
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8.4.1.1 Prediction and Conditional Expectations

One of the main questions in statistics is, given a sample, how to find an optimal
estimator. In Bayes’ estimation in particular we are concerned with how to find
a function of Y (representing the sample) which is closest to X (representing the
parameter we are estimating). This turns out to be E.X jY /.

Prediction and Conditional Expectation

Let X and Y be two random variables such that X has a finite second moment.
We look for the minimum of

EŒ.X � h.Y //2�

over all functions h such that h.Y / has a finite second moment. The minimum
is attained for

h.Y / D E.X jY /:

In words, the best predictor X based on Y is the conditional expectation E.X jY /.
Note that our definition of “best” is with respect to the mean quadratic distance
EŒ.X � h.Y //2� (this is why we need X and h.Y / to have a second moment). If we
pick a different distance we may end up with a different optimal predictor. We now
prove this result. Define g as

g.Y / D E.X jY /:

We have

EŒ.X � h.y//2� D EŒ.X � g.Y / C g.Y / � h.y//2�

D EŒ.X � g.y//2� C EŒ.g.Y / � h.y//2�

C2EŒ.X � g.y//.g.Y / � h.y//�

We will show that the double product is 0. Once this is done, since EŒ.g.Y / �
h.y//2� � 0 (the expected value of a positive random variable is positive) we have

EŒ.X � h.y//2� � EŒ.X � g.y//2�;

for all h. This shows that for any h, EŒ.X � h.y//2� is larger than EŒ.X � g.y//2�

and we will be done.
We now show that the double product is 0. By P4

EŒ.h.Y / � g.Y //X jY � D .h.Y / � g.Y //E.X jY / D .h.Y / � g.Y //g.Y /:
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By taking expectations on both sides and using (P1) we have

EŒ.h.Y / � g.Y //X� D EŒ.h.Y / � g.Y //g.Y /�:

We move the right-hand side to the left and use the linearity of expectations to get

EŒ.h.Y / � g.Y //.X � g.Y //� D 0:

This proves that the double product is 0 and we are done.

Example 9. Consider Example 4 again. The random variable X is uniformly dis-
tributed on .0; 1/. Given X D x then Y is uniformly distributed on .0; x/. What is
the best predictor of Y of the form h.X/?

We know that the best predictor of Y based on X is E.Y jX/. Since

E.Y jX/ D X

2

the best predictor of Y is X=2.

Example 10. Let

�
X

Y

�
be a normal vector. What is E.X jY /?

In a first step we find a so that X � aY and Y are independent. First note that the

vector

�
X � aY

Y

�
can be obtained from

�
X

Y

�
by a linear transformation

A D
�

1 �a

0 1

�
:

Hence,

�
X � aY

Y

�
is also a normal vector. We know that coordinates of a random

vector are independent if and only if they are uncorrelated. Hence, we need to find
a such that

Cov.X � aY; Y / D 0:

Recall that Cov is a bilinear operator (i.e., linear in each coordinate). Therefore,

Cov.X � aY; Y / D Cov.X; Y / � aCov.Y; Y / D 0:

Since Cov.Y; Y / D Var.Y / we get

a D Cov.X; Y /

Var.Y /
:
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We now turn to the computation of the conditional expectation. Using that X � aY

and Y are independent, by P2 we have

E.X � aY jY / D E.X � aY /:

We use the linearity of expectations and conditional expectations on both sides to get

E.X jY / � aE.Y jY / D E.X/ � aE.Y /:

Since E.Y jY / D Y ,

E.X jY / D a.Y � E.Y // C E.X/:

Hence, the best predictor of X based on Y is a linear function of Y . It is a remarkable
fact that we get a linear function given the vast set of functions at our disposal.

Exercises 8.4

1. For the distribution in Example 1,

(a) Compute the conditional distribution of X given Y D 2.
(b) Compute the conditional distribution of Y given X D 0.

2. Assume that X and Y are discrete independent random variables. Show that for
all k and j

P.X D j; X C Y D k/ D P.X D j /P.Y D k � j /:

3. Assume that X and Y are independent binomial random variables with parame-
ters .n; p/ and .`; p/, respectively.

(a) Show that for 0 � j � k

P.X D j jX C Y D k/ D

�
n

j

��
`

k � j

�

�
n C `

k

� :

(Recall the sum of two independent binomials with the same p is also a
binomial).

(b) Use (a) to prove that

kX

j D0

�
n

j

��
`

k � j

�
D
�

n C `

k

�
:
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4. Let X and Y be two discrete random variables. Assume that y is such that
P.Y D y/ > 0. Show that

X

x

P.X D xjY D y/ D 1;

where the sum is over all possible values x of X .

5. Consider Example 3. Fix y in Œ�1; 1�. Show that the conditional density of X

given Y D y is uniform on Œ�p1 � y2;
p

1 C y2�.

6. Consider Example 4. Compute the conditional density of X given Y D y for a
fixed y in .0; 1/.

7. The joint density of .X; Y / is given by

f .x; y/ D exp.�y/ for 0 < x < y:

(a) Check that f is indeed a density.
(b) Fix y > 0. Show that the conditional density of X given Y D y is uniform in

.0; y/.
(c) Compute the conditional density of Y given X D x for a fixed x > 0.

8. Assume that X and Y are continuous random variables. Show that for each y

such that fY .y/ > 0 we have

Z C1

�1
f .xjy/dx D 1:

9. Assume that X and Y are independent and Poisson distributed with rates 	 and
�, respectively. Fix a positive integer n.

(a) Show that for any positive integer k � n

P.X D kjX C Y D n/ D
�

n

k

��
	

	 C �

�k �
1 � 	

	 C �

�n�k

:

(b) What is the conditional distribution of X given X C Y D n?
(c) What is E.X jX C Y /?

10. Consider X and Y with joint density

f .x; y/ D x C y for 0 < x < 1 and 0 < y < 1:

(a) What is E.X jY /?
(b) What is E.X/?
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11. 1. Consider X and Y with joint density

f .x; y/ D 8xy for 0 < y < x < 1:

(a) What is E.X jY /?
(b) What is E.XY 2jY /?

12. Consider Example 4. Show that the best predictor of X based on Y is

� 1

ln Y
.1 � Y /:

13. Assume that X and Y are discrete random variables.

(a) Show that
E.X jY / D g.Y /;

where

g.y/ D 1

P.Y D y/

X

x

xP.X D x; Y D y/:

(b) Prove P1 in the discrete case.
(c) Prove P2 in the discrete case.

14. Consider a sequence X1; : : : ; Xn; : : : of i.i.d. discrete random variables with
expected value �. Let N be a random variable taking values on natural numbers and
independent of X1; : : : ; Xn; : : : . Define Y as

Y D
NX

iD1

Xi ;

so Y is a sum of a random number of random variables.

(a) Show that
P.Y D kjN D n/ D P.X1 C � � � C Xn D k/:

(b) Use (a) to show that
E.Y jN D n/ D n�:

(c) Compute E.Y /.

15. Let X and Y be two random variables such that E.X jY / is a constant c.

(a) Show that c D E.X/.
(b) Show that

E.XY / D EŒE.XY jY /� D EŒYE.X jY /�:

(c) Use that E.X jY / is a constant in (b) to get

E.XY / D E.X jY /E.Y /
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and conclude that
E.XY / D E.X/E.Y /:

That is, X and Y are uncorrelated.

16. Assume that X is a Bernoulli random variable and that Y is a discrete random
variable. Show that

E.X jY D y/ D P.X D 1jY D y/:

17. Let .X; Y / be a normal vector with E.X/ D 1, E.Y / D 2, Cov.X; Y / D �1,
Var.X/ D 1 and Var.Y / D 3. What is E.X jY /?

18. Let X and Y be independent and having the same distribution.

(a) Show that
E.X jX C Y / D E.Y jX C Y /:

(b) Explain why
E.X C Y jX C Y / D X C Y:

(c) Use (a) and (b) to show that

E.X jX C Y / D 1

2
.X C Y /:



Chapter 9
Finding and Comparing Estimators

9.1 Finding Estimators

In Chap. 5 we were concerned with the problem of estimating the mean of a certain
distribution. Assume that X1; X2; : : : ; Xn is an i.i.d. sample of the distribution of
interest. Let � be the mean of this distribution. Then, a natural way to estimate � is
to use

O� D 1

n
.X1 C X2 C � � � C Xn/ D NX:

This is what we did in Chap. 5. However, is NX the best way to estimate �? What
does “best” mean? What if I am interested in estimating not the mean but something
else? This chapter will be concerned with such questions. We start by defining
estimators.

Estimators
Let X1; X2; : : : ; Xn be an i.i.d. sample of a given distribution with parameter � .
An estimator of � is any function of the sample X1; X2; : : : ; Xn. The function
cannot depend on � .

We now introduce our first method to find an estimator.

9.1.1 The Method of Moments

We consider an example first.

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7 9, © Springer Science+Business Media, LLC 2012
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Example 1. Consider the exponential distribution with parameter � . It has the
probability density f .x/ D � exp.��x/: Its first moment is 1=� (see Example 7
in Sect. 2.3). Hence,

� D 1

�1

and the method of moment estimator (or m.m.e.) for � is

O� D 1

O�1

D 1

NX :

For instance, assume that we have the following 20 observations 2.9983, 0.2628,
0.9335, 0.6655, 2.2192, 1.4359, 0.6097, 0.0187, 1.7226, 0.5883, 0.9556, 1.5699,
2.5487, 1.3402, 0.1939, 0.5204, 2.7406, 2.4878, 0.5281, 2.2410. The sample
average is 1:329 and O� D 0:7524.

We summarize the method below.

The Method of Moments Estimator
For any natural number k � 1, �k D E.Xk/ is called the kth moment of the
random variable X (if it exists!). Hence, �1 is the expectation. Assume that
we want to estimate the parameter � of the distribution of X . The method of
moments consists in computing as many moments of X as necessary in order
to have an equation in � that can be solved as a function of the moments of X .
Then each moment E.Xk/ that appears in the solution is estimated using

O�k D 1

n

�
Xk

1 C Xk
2 C � � � C Xk

n

�
:

Example 2. Let X be a discrete random variable uniformly distributed over
f1; 2; : : : ; �g. That is,

P.X D m/ D 1=� for m in f1; 2; : : : ; �g:

As computed in Sect. 2.3 we have

�1 D 1 C �

2
:

Therefore,
� D 2�1 � 1

and the m.m.e. in this case is

O� D 2 O�1 � 1 D 2 NX � 1:
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Assume that we have the following observations: 5, 2, 1, 3, 2, 2, 2, 6, 2, 3. The
average is 2.8 and O� D 4:6.

Example 3. Let X be a normal random variable with mean � and variance �2. We
have E.X/ D �. Hence, the method of moments estimator of � is NX . In order to
have the estimator for � D �2 we need another equation. Namely,

� D �2 D E.X2/ � E.X/2:

Hence, the method of moments estimator of � is

O� D O�2 � O�2
1:

We now show that this is a different estimator from the estimator S2 we have used
so far. Recall that

S2 D 1

n � 1

nX

iD1

.Xi � NX/2:

Expanding the squares gives

S2 D 1

n � 1

 
nX

iD1

X2
i � 2 NX

nX

iD1

Xi C n. NX/2

!
:

Since

nX

iD1

Xi D n NX

we get

S2 D 1

n � 1

nX

iD1

X2
i � n

n � 1
. NX/2 D n

n � 1
. O�2 � O�2

1/;

which is indeed different from O� .
Very little is used about the normal distribution in this example. In fact, the

method of moments estimator of � is always NX . However, the estimator for
the variance may be different from O�2 � O�2

1. This may happen for instance if
the distribution has only one parameter such as in Examples 1 and 2. See the
following example and the exercises.

Example 4. Consider a Poisson distribution with parameter 	. We have E.X/ D 	.
Hence, the method of moments estimator for 	 is NX . But the variance of a Poisson
is also 	 (see Sect. 3.3). Hence, the m.m.e. for the variance is this case is also NX .
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Example 5. Let X be distributed according to a Gamma distribution with parame-
ters r and 	. We have (see Sect. 7.1)

E.X/ D �1 D r

	
and E.X2/ D �2 D r.r C 1/

	2
:

We need to solve these two equations in r and 	. We have

�2 D
� r

	

�2 C r

	2
:

We substitute r
	

by �1 to get

�2 D �2
1 C �1

	
:

Hence,

	 D �1

�2 � �2
1

;

and

r D 	�1 D �2
1

�2 � �2
1

:

This yields the following method of moments estimates

O	 D O�1

O�2 � O�2
1

and Or D O�2
1

O�2 � O�2
1

:

9.1.2 The Method of Maximum Likelihood

I have two seemingly identical coins. One is biased and it shows tails with
probability 3/4 and the other one is honest and shows tails with probability 1/2. I
pick one of the coins at random and toss it three times. I get two tails and one heads.
Is this the biased coin? I cannot answer this question with certainty but I can decide
what this coin is more likely to be given the results of my experiment. If it is the
biased coin the probability of getting two tails and one heads is (the number of tails
in three tosses is a binomial random variable)

3

�
3

4

�2 �
1

4

�
D 27

64
� 0:42:

On the other hand if this is the honest coin then the probability of getting two tails
and one heads is

3

�
1

2

�2 �
1

2

�
D 3

8
� 0:38:

Hence, based on our sample it is more likely that we picked the biased coin than the
honest coin.
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We now rephrase this question a little more formally. Let p be the probability
of tails of the coin we picked. We know that p can be either 3/4 or 1/2. We toss
the coin 3 times and this yields an i.i.d. sample. We get two tails and one heads
in our sample. The probability (or likelihood) of such a result is 3p2.1 � p/. The
maximum likelihood occurs for p D 3=4. In this particular example the parameter
can take only two possible values. In general, the parameter can take any value in a
given interval. In this example the maximum likelihood estimator is Op D 3=4.

We next state an important definition. First, a word on notation. If X is a random
variable we denote by x an observation of this random variable. For instance, if I
roll a fair die then X can be defined as the face shown and x D 5 is a particular
observation. It is important to use upper case letters for the random variables and
lower case for observations.

The Likelihood Function
Let X1; X2; : : : ; Xn be an i.i.d. sample of a given distribution with parameter � .
If the distribution is discrete then the likelihood function L of the sample is
defined as

L.� I x1; : : : ; xn/ D P.X1 D x1j�/P.X2 D x2j�/ : : : P.Xn D xnj�/:

If the distribution is continuous with density function f then the likelihood
function L of the sample is defined as

L.� I x1; : : : ; xn/ D f .x1j�/ : : : f .xnj�/:

A word on notation. We use f .xj�/ and P.X D xj�/ to emphasize that these
functions depend on � . More precisely, given � we know these functions. This
is why we use the conditional notation “j� .” We now summarize the maximum
likelihood method.

The Maximum Likelihood Estimator
Let X1; X2; : : : ; Xn be an i.i.d. sample of a given distribution with parameter � .
Let L be the likelihood function of this sample. Given the observations
x1; x2; : : : ; xn, the maximum likelihood estimator (or m.l.e.) of � (if it exists!)
is the value O� that maximizes L as a function of � . In other words, for all
possible � we must have

L.� I x1; : : : ; xn/ � L. O� I x1; : : : ; xn/:
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Example 6. Consider the exponential distribution with parameter � . In Example 1
we showed that the m.m.e. of � is

O�m D 1

O�1

D 1

NX :

We now find the m.l.e. of � . Assume that we have an i.i.d. sample X1; X2; : : : ; Xn.
The likelihood function is

L.� I x1; : : : ; xn/ D f .x1j�/ : : : f .xnj�/

D � exp.��x1/ : : : � exp.��xn/ D �n exp.��.x1 C � � � C xn//

provided x1; x2; : : : ; xn are all strictly positive. The function L is 0 otherwise.
Given x1; : : : ; xn we want to find the maximum of L as a function of � only. L

is clearly differentiable in � for any � in .0; 1/. Hence, if it has a maximum then
the derivative of L should be 0 at that point. Instead of looking for a maximum for
L it is more convenient and equivalent to look for a maximum for ln L. We have

ln L.�/ D n ln � � �.x1 C � � � C xn/:

We take the derivative with respect to � to get

d

d�
ln L.�/ D n

�
� .x1 C � � � C xn/:

Hence, this derivative is 0 if and only if � D 1= Nx (the lower case x is not a typo, we
are averaging on the observations). The fact that the derivative is 0 at � D 1= Nx does
not necessarily imply that there is a maximum there. To determine whether we have
a maximum we know from Calculus that there are at least two tests that we may
use: the first derivative test or the second derivative test. We compute the second
derivative

d2

d�2
ln L.�/ D �n

�2
;

which is strictly negative for all � and in particular for � D 1= Nx. By the second
derivative test ln L and therefore L has a maximum at � D 1= Nx. Hence, we have
found the m.l.e. of � it is

O�l .x1; : : : ; xn/ D 1

Nx :

A more compact way to write this is

O�l D 1

NX :

The m.m.e. and the m.m.l. coincide in this case.
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Example 7. Recall that the Poisson distribution with parameter 	 has the following
distribution

P.X D xj	/ D exp.�	/
	x

xŠ

for all positive integers x. Hence, the likelihood function is

L.	I x1; : : : ; xn/ D P.X1 D x1j	/P.X2 D x2j	/ : : : P.Xn D xnj	/

D exp.�n	/
	x1C���Cxn

x1Š : : : xnŠ
:

Therefore,

ln L.	/ D �n	 C .x1 C � � � C xn/ ln 	 � ln.x1Š : : : xnŠ/:

This function is differentiable for all 	 > 0. We have

d

d	
ln L.	/ D �n C x1 C � � � C xn

	
:

Hence, this derivative is 0 only for 	 D Nx. It is easy to check that the second
derivative is always strictly negative and therefore the m.l.e. for 	 is O	 D NX . Once
again the m.m.e. and m.l.e. coincide.

The next example shows that the m.l.e. and m.m.e. need not coincide.

Example 8. Let X be a discrete random variable uniformly distributed over
f1; 2; : : : ; �g. In Example 2 we have shown that the m.m.e. is O�m D 2 O�1 � 1 D
2 NX � 1: We now find the m.l.e. for � that we denote by O�l . Assume that we have the
i.i.d. sample X1; X2; : : : ; Xn with the corresponding observation x1; x2; : : : ; xn: The
xi are natural numbers in f1; 2; : : : ; �g. By the definition the likelihood function
L is

L.� I x1; : : : ; xn/ D P.X1 D x1j�/P.X2 D x2j�/ : : : P.Xn D xnj�/ D 1

�n
:

Given x1; x2; : : : ; xn we need to decide whether the function L (as a function of �

only) has a maximum and if so where? In order to do so we rewrite L as a function
of � only. We have

L.�/ D 1

�n
if � � x1; � � x2; : : : ; � � xn:

If the condition � � x1; � � x2; : : : ; � � xn fails it means that one of the
observation is strictly larger than � . That cannot happen and therefore if this
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condition fails we have L.�/ D 0. It is easy to see that the condition � � x1; � �
x2; : : : ; � � xn is actually equivalent to � � max.x1; : : : ; xn/: Let

x.n/ D max.x1; : : : ; xn/:

We have

L.�/ D 1

�n
if � � x.n/

and L.�/ D 0 if � < x.n/. Note that

ln L.�/ D �n ln �

and the derivative is �n=� which is never 0. This expression is negative for all
positive � . Hence, ln L is decreasing for all � in the domain of ln L which is
.x.n/; 1/. Therefore the maximum value for ln L is attained when � is minimum.
This minimum value of � is x.n/. Any � less than that results in L D 0. Hence, we
have found the m.l.e. It is

O�l D X.n/ D max.X1; : : : ; Xn/:

Observe that it is quite different from the m.m.e. Taking the numerical values from
Example 2 we get O�l D 6 while the m.m.e. was shown to be Sect. 4.6.

Example 9. Consider an i.i.d. sample of a normal distribution with mean � and
variance �2. In this case we have two unknown parameters. Recall that the density is

f .xj�; �/ D 1p
2��

exp

�
� .x � �/2

2�2

�
:

Hence, the likelihood function is

L.�; � I x1; : : : ; xn/ D 1p
2�

n
�n

exp

�
� .x1 � �/2 C � � � C .xn � �/2

2�2

�
:

Given the observations x1; : : : ; xn we have

ln L.�; �/ D �n ln
p

2� � n ln � � .x1 � �/2 C � � � C .xn � �/2

2�2
:

The partial derivatives of ln L are

d

d�
ln L D 1

�2

nX

iD1

.xi � �/
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and

d

d�
ln L D � n

�
C 1

�3

nX

iD1

.xi � �/2:

We now solve the system of equations

d

d�
ln L D 0

d

d�
ln L D 0

The first equation gives the solution

O� D Nx:

Multiplying the second equation by �3 yields

�n�2 C
nX

iD1

.xi � �/2 D 0:

Substituting Nx for � in the second equation gives

O� D
vuut1

n

nX

iD1

.xi � Nx/2:

We need now to check that ln L is maximum for . O�; O�/. We use a second derivative
test for a two variables function. From Calculus we know that if at the point . O�; O�/

we have

d2

d�2
ln L < 0 and

d2

d�2
ln L

d2

d�2
ln L �

�
d2

d�d�
ln L

�2

> 0

then ln L has a maximum at . O�; O�/. We now compute the second partial derivatives.
We have

d2

d�2
ln L.�; �/ D � n

�2

which is always negative. We have

d2

d�2
ln L D n

�2
� 3

�4

nX

iD1

.xi � �/2:
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We compute the value of the last function at the point . O�; O�/ and we get

d2

d�2
ln L. O�; O�/ D n

O�2
� 3

O�4
n O�2 D �2n

O�2
:

We also need

d2

d�d�
ln L.�; �/ D � 2

�3

nX

iD1

.xi � �/:

To compute the value of the preceding function at the point . O�; O�/ we substitute �

by Nx. Since
Pn

iD1.xi � Nx/ D 0 (why?) we have

d2

d�d�
ln L. O�; O�/ D 0:

Hence, at . O�; O�/ we get

d2

d�2
ln L

d2

d�2
ln L �

�
d2

d�d�
ln L

�2

D
�
� n

O�2

��
�2n

O�2

�
> 0:

This concludes the proof that ln L has a maximum at . O�; O�/. This is the m.l.e. of
.�; �/. Note that it is the same as the m.m.e.

Exercises 9.1

1. (a) Show that the estimator for the variance O� D O�2 � O�2
1 found in Example 3

can also be written as

O� D 1

n

nX

iD1

.Xi � NX/2:

(b) Show that S2 is different from O� .

2. Find the method of moments estimator of the variance for exponential distribu-
tion with parameter � .

3. Let X be a discrete random variable uniformly distributed over f1; 2; : : : ; �g.
Find the method of moments estimator of the variance of X .

4. Assume that an i.i.d. sample of a Gamma distribution with parameters r and 	

is 5.95, 7.84, 3.24, 4.71, 5.12, 10.09, 4.18, 3.92, 6.36, 2.51. Use Example 4 to get
numerical estimates for r and 	.



Exercises 9.1 279

5. Let U be a continuous random variable uniformly distributed on Œ��; ��. Find
the method of moments estimator for � .

6. Let U be a continuous random variable uniformly distributed on Œ0; ��.

(a) Find the method of moments estimator for � .
(b) Compute the m.m.e. given the following observations 0.1158, 0.7057, 1.6263,

0.0197, 0.2778, 0.4055, 0.3974, 1.2076, 0.5444, 0.3976.

7. Show that the condition � � x1; � � x2; : : : ; � � xn is equivalent to � �
max.x1; : : : ; xn/:

8. Let f be a strictly positive function. Show that f is maximum at a if and only
if ln f is maximum at a.

9. Show that
Pn

iD1.xi � Nx/ D 0.

10. Recall that a Bernoulli random variable X has the following distribution.
P.X D 1jp/ D p and P.X D 0jp/ D 1 � p.

(a) Find the m.m.e. of p.
(b) Show that the distribution of X can be written as

P.X D xjp/ D px.1 � p/1�x for x D 0 or 1:

(c) Use (b) to find the m.l.e. of p.

11. The Pareto distribution has density

f .xja; �/ D �a� x���1 for x � a:

Take a D 1 and assume that � is an unknown parameter somewhere in .1; 1/.

(a) Check that f is indeed a probability density.
(b) Find the m.m.e. of � .
(c) Find the m.l.e. of � .

12. Consider the continuous uniform distribution in Œ0; ��.

(a) Find the m.l.e. of � .
(b) Use the observations of Exercise 6 to compute the m.l.e.

13. Consider the continuous uniform density on Œ� � 1=2; � C 1=2�.

(a) Given observations x1 : : : xn show that the likelihood function is

L.�/ D 1 if max.x1; : : : ; xn/ � 1=2 � � � min.x1; : : : ; xn/ C 1=2

and 0 otherwise.
(b) Show that �l D 1

2
.min.x1; : : : ; xn/ C max.x1; : : : ; xn// is an m.l.e.
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(c) Show that there are infinitely many m.l.e.’s of � in this case.
(d) Find the m.m.e. of � .

14. Consider a geometric distribution with parameter p. That is,

P.X D xjp/ D .1 � p/x�1p for x D 1; 2; : : :

(a) Find the m.m.e. of p.
(b) Find the m.l.e. of p.

15. Let x1; x2; : : : ; xn be n real numbers. Let f be the function

f .�/ D
nX

iD1

.xi � �/2:

Show that f attains its minimum at

� D Nx D 1

n

nX

iD1

xi :

16. Let x1; x2; : : : ; x2nC1 be 2n C 1 real numbers. Define the function f by

f .�/ D
2nC1X

iD1

jxi � � j:

Let m be the median of the sample x1; x2; : : : ; x2nC1. That is, there are as many
observations below m as there are above m. The median is unique because our
sample size is odd. We will show in this exercise that f is minimum for � D m. Let
a > 0.

(a) Show that if xi � m then jxi �.mCa/j D jxi �mjCa; if m < xi < mCa then
jxi �.mCa/j D �jxi �mjCa; if xi � mCa then jxi �.mCa/j D jxi �mj�a.

(b) Let A be the set of indices i such that xi � m, B be the set of indices i such
that m < xi < m C a and C be the set of indices i such that xi � m C a. Show
that

f .m C a/ D
X

i2A

.jxi � mj C a/ C
X

i2B

.�jxi � mj C a/ C
X

i2C

.jxi � mj � a/:

(c) Use (b) to get

f .m C a/ D f .m/ C a.jAj C jBj � jC j/ � 2
X

i2B

jxi � mj;

where jAj is the number of elements in A.
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(d) Using that if i is in B then jxi � mj < a we get

f .m C a/ � f .m/ C a.jAj � jBj � jC j/:
(e) Show that jAj � jBj C jC j and conclude that

f .m C a/ � f .m/:

(f) Redo the steps above to get f .m�a/ � f .m/ and conclude that f is minimum
at m.

17. Consider the Laplace distribution with density

f .xj�/ D 1

2
exp.�jx � � j/:

(a) For an odd sample size find the m.l.e. of � (use Exercise 16).
(b) Find the m.m.e. of � .
(c) Use the following observations to compute the m.m.e. and the m.l.e. of � :

4.1277, �0.2371, 3.4503, 2.7242, 4.0894, 3.0056, 3.5429, 2.8466, 2.5044,
2.0306, �0.1741.

9.2 Comparing Estimators

In order to compare two estimators of the parameter � we will measure how close
each estimator is to the parameter we want to estimate. If estimator 1 is closer to
the parameter than estimator 2 then estimator 1 is said to be better than estimator
2. Hence, “better” depends heavily on what the measure of closeness is. There are
many possible choices to measure closeness but by far the most used is the mean
square error (or quadratic mean distance) that we now define. Assume that O� is an
estimator for � . The mean square error between � and O� is

d. O�; �/ D E.. O� � �/2/:

Note that O� is a random variable (it will change from sample to sample) so . O� � �/2

is also a random variable. To measure how close O� is to � we would like something
nonrandom. This is why we take the expectation of . O� � �/2 to define d. O�; �/.
Another natural choice for d. O�; �/ is E.j O� � � j/. The problem with this choice
is that it is a lot less convenient mathematically. This is why we will stick with the
mean square error.

Example 1. Let � and �2 be the mean and variance of a given distribution. Assume
we use NX to estimate �. Then (see Sect. 4.1)

d. NX; �/ D E.. NX � �/2/ D Var. NX/ D �2

n
:
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If we use X1 (the first observation) to estimate � then

d.X1; �/ D E..X1 � �/2/ D Var.X1/ D �2:

Hence, for all n � 2, NX is a better estimator of � than X1 is. This is not surprising
given that NX uses a lot more information about the sample than X1 does.

The following property of mean square errors is often useful.

The Mean Square Error Formula
Assume that O� is an estimator of the parameter � . The corresponding mean
square error is defined as

d. O�; �/ D E.. O� � �/2/:

The following formula is useful in computing the mean square error:

E.. O� � �/2/ D Var. O�/ C .E. O�/ � �/2:

In order to prove this formula it is important to remember that the expectation is
linear. That is, E.aX/ D aE.X/ and E.X C Y / D E.X/ C E.Y / where X and Y

are random variables and a is a real number. It is also important to realize that O� is
a random variable while E. O�/ and � are numbers. Moreover, the expected value of
a number is the number itself. We have

. O� � �/2 D . O� � E. O�/ C E. O�/ � �/2

D . O� � E. O�//2 C 2. O� � E. O�//.E. O�/ � �/ C .E. O�/ � �/2:

Note that

E.. O� � E. O�//2/ D Var. O�/

and since .E. O�/ � �/2 is a number it is equal to its expectation. Hence, the formula
is proved provided the expectation of the cross product above is 0. We now show
that.

. O� � E. O�//.E. O�/ � �/ D O�E. O�/ � O�� � E. O�/2 C E. O�/�:

We now take expectations across the equality above to get

E.. O� � E. O�//.E. O�/ � �// D E. O�E. O�// � E. O��/ � E. O�/2 C E. O�/�:
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We have

E. O�E. O�// D E. O�/E. O�/ D E. O�/2

and E. O��/ D �E. O�/. Therefore,

E.. O� � E. O�//.E. O�/ � �// D 0

and the formula is proved.
In applying the mean square error formula we will sometimes need to compute

the variance of the sample average. We now recall this useful formula.

The Expectation and Variance of the Sample Average
Assume that X1; : : : ; Xn is an i.i.d. sample of a distribution with mean � and
variance �2. Then,

E. NX/ D � and Var. NX/ D �2

n
:

Example 2. Consider a random variable X having the uniform distribution on Œ0; ��.
The expected value of X is �=2 (see Sect. 2.3). Hence, given an i.i.d. sample the
m.m.e. of � is O�m D 2 NX . Therefore, E. O�m/ D � . In this case, the mean square error
formula for O�m is reduced to

d. O�m; �/ D Var. O�m/ D 4Var. NX/;

where we are using that the Variance is a quadratic operator (see Sect. 2.4). Since
Var.X1/ D �2=12 (see Sect. 2.4) we have

d. O�m; �/ D �2

3n
:

There is another rather natural estimator of � . Since the range of possible values
is Œ0; �� another candidate to estimate � is the largest observation in the sample.
Moreover, it turns out that the largest observation in the sample is the maximum
likelihood estimator of � (for a very similar computation see Example 8 in Sect. 9.1).
For a sample X1; : : : ; Xn we denote by X.n/ the largest observation. For instance, if
we have the three observations X1 D 1:1, X2 D 0:7, X3 D 0:9 then X.3/ D 1:1:

We will now compute the mean square error for X.n/ in order to decide whether it is
a better estimator than 2 NX . We first compute the distribution function F.n/ of X.n/.
For x in Œ0; �� we have

F.n/.x/ D P.X.n/ � x/ D P.X1 � x; : : : ; Xn � x/;
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where we are using the fact that the largest observation is less than x if and only if
every observation is less than x. We now use that the observations are independent
to get

F.n/.x/ D P.X1 � x/ : : : P.Xn � x/ D F.x/n;

where we used also that the observations are identically distributed. We denote their
common distribution function by F . We have for x in Œ0; ��

F.x/ D P.X1 � x/ D
Z x

0

1

�
dx D x

�
:

Hence,

F.n/.x/ D
�x

�

�n

:

By taking the derivative (with respect to x) of F.n/ we get the density function of
X.n/ denoted by f.n/. For x in Œ0; ��

f.n/.x/ D n

�n
xn�1:

We now use this density function to compute the mean square error of X.n/. Starting
with the expected value we have

E.X.n// D
Z �

0

x
n

�n
xn�1dx D n

n C 1
�:

For the second moment,

E.X2
.n// D

Z �

0

x2 n

�n
xn�1dx D n

n C 2
�2:

Hence, the variance of X.n/ is

Var.X.n// D n

n C 2
�2 �

�
n

n C 1
�

�2

D n

.n C 2/.n C 1/2
�2:

According to the mean square error formula we also need to compute

.E.X.n// � �/2 D
�

n

n C 1
� � �

�2

D 1

.n C 1/2
�2:
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Finally,

d.X.n/; �/ D Var.X.n// C .E.X.n// � �/2

D n

.n C 2/.n C 1/2
�2 C 1

.n C 1/2
�2 D 2

.n C 2/.n C 1/
�2

It is easy to check that for all n � 3 we have

2

.n C 2/.n C 1/
<

1

3n
:

That is, for n � 3 and every �

d.X.n/; �/ < d.2 NX; �/:

Therefore, X.n/ is a better estimator than 2 NX for all n � 3.
Now that we know how to compare two estimators a natural question is to search

for the best estimator. It turns out that there is no such thing as a “best” estimator
unless we restrict our search. To see why assume that O�1 is the “best” estimator of � .
This means that for any other estimator O�2 we must have

d. O�1; �/ � d. O�2; �/

for all possible � . Let I be the set of all possible � . Let �0 be a fixed value in I and
let O�2 D �0. This is a terrible estimator: it does not use the sample information at
all. It is always the constant �0. However,

d. O�2; �0/ D 0:

That is, it is a perfect estimator when � D �0. So if we want the inequality d. O�1; �/ �
d. O�2; �/ to hold for all � we need to have d. O�1; �0/ D 0 as well. But this implies that
O�1 D �0 when � D �0. This must be true for all �0 in I . That is O�1 D � all � in I . In
other words, the best estimator would have to be perfect. It would give us the true
value of the parameter every time! Since an estimator is a function of the sample
there is no such thing as a perfect estimator. Hence, there is no “best” estimator O�1.

What we can do, however, is look for the best estimator under some constraint.
A natural class of estimators that turns out to be very fruitful mathematically (under
the mean square error criterion we are using) is the class of unbiased estimators that
we now define.



286 9 Finding and Comparing Estimators

Unbiased Estimators
The estimator O� is said to be an unbiased estimator of � if
E. O�/ D � .

Example 3. We go back to the continuous uniform distribution on Œ0; �� of ex-
ample 2. Recall that the m.m.e. is O�m D 2 NX and that E. O�m/ D � . Hence, O�m

is an unbiased estimator of � . On the other hand the m.l.e. estimator is X.n/ the
largest observation in the sample. We computed E.X.n// D n

nC1
�: Therefore, X.n/

is a biased estimator of � . However, we proved in Example 2 that X.n/ is a better

estimator than O�m. So by looking only for unbiased estimators we may very well
miss better estimators.

Observe that for unbiased estimators the mean square error is really only the
variance of the estimator.

The Mean Square Error for an Unbiased Estimator
Assume that O� is an unbiased estimator of the parameter � . Then,

d. O�; �/ D E.. O� � �/2/ D Var. O�/:

It turns out that unbiased estimation is particularly well understood for a certain
class of probability distributions. We will define this class. We first need a definition.

Support of a Probability Distribution
The support of a probability distribution is the set of x’s such that f .xj�/

(continuous case) or of the probability distribution P.X D xj�/ (discrete case)
is strictly positive.

For instance, a Bernoulli distribution with parameter p is

P.X D xjp/ D px.1 � p/1�x

for x D 0 and x D 1. For any other x, P.X D xjp/ D 0. The support of a Bernoulli
distribution is therefore f0; 1g.

Exponential Family of Probability Distributions
A family of probability distributions with parameter � is said to be an
exponential family of probability distributions if the logarithm of the density
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function f .xj�/ (continuous case) or of the probability distribution P.X D
xj�/ (discrete case) can be written as

a.�/t.x/ C b.�/ C r.x/:

Moreover, the support of the distribution must be the same for each � . In
addition, the set I of all possible values for � must be an open interval of real
numbers and the functions a and b must have continuous second derivatives.

The term “exponential family” is widely used but is unfortunate. If y > 0 then
y is the exponential of log y: a positive number is always the exponential of its
logarithm. The point here is that f .xj�/ is the exponential of a.�/t.x/Cb.�/Cr.x/

for some functions a, b, r and t . This is not as general one may think at first
glance. For instance, the function x� cannot be written as a.�/t.x/ C b.�/ C r.x/.
Hence, a family of densities of the type C.�/ exp.�x� / is not an exponential
family! However, most of the models we have encountered so far can be written
as exp.a.�/t.x/ C b.�/ C r.x//. What will prevent some of them from being an
exponential family is the additional condition that the support of the distribution
does not depend on � . See for example the uniform density below.

Example 4. Consider a family of Bernoulli random variable with parameter p. That
is,

P.X D xjp/ D px.1 � p/1�x;

where x D 0 or 1. We have

ln.P.X D xjp// D x log p C .1 � x/ log.1 � p/ D x log

�
p

1 � p

�
C log.1 � p/;

for x D 0 or 1. We can set a.p/ D log.
p

1�p
/, b.p/ D log.1 � p//, t.x/ D x and

r.x/ D 0. The support of the distribution is f0; 1g and does not depend on p. The
possible values for p are in I D .0; 1/, an open interval, and the functions a and b

are infinitely differentiable on I . This shows the collection of Bernoulli distributions
with parameter p is an exponential family.

Example 5. Consider the family of normal distributions with mean � and standard
deviation 1. We have

f .xj�/ D 1p
2�

exp

�
� .x � �/2

2

�
for x in .�1; C1/:

Thus,
ln.f .xj�// D �x � �2=2 � log.

p
2�/ � x2=2:
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We set a.�/ D �, b.�/ D �2=2, t.x/ D x, r.x/ D � log.
p

2�/ � x2=2. The
support of the distribution is the whole real line and therefore does not depend on
�. The functions a and b are clearly infinitely differentiable on the whole real line
I (� can be any real number). Therefore, the collection of normal distributions with
mean � and standard deviation 1 is an exponential family.

Example 6. Consider X the family of uniform distribution on Œ0; ��. We have

f .xj�/ D 1

�
for x in Œ0; ��

and f .xj�/ D 0 for all other x. In this case the support of the distribution depends
on � (it is Œ0; ��). Hence, the family of uniform distributions is NOT an exponential
family.

Exercises 9.2

1. Find two random variables X and Y such that

EjX � 1j < EjY � 1j

and
E..X � 1/2/ > E..Y � 1/2/:

Hence, X is closer to 1 under the first distance and Y is closer to 1 under the second
distance.

2. Consider the continuous uniform distribution on Œ0; �� of Example 2. We com-
puted E.X.n// D n

nC1
�: Let Tn D nC1

n
X.n/

(a) Show that Tn is an unbiased estimator of � .
(b) Is Tn a better estimator than X.n/?

3. Consider a family of geometric random variables with parameter p. That is,

P.X D xjp/ D p.1 � p/x�1;

where x � 1 is a positive integer. Show that this is an exponential family.

4. Consider the family of normal distributions with mean � and standard deviation
� . We have

f .xj�/ D 1

�
p

2�
exp

�
� .x � �/2

2�2

�
:
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(a) Assume that � is known. Show that this is an exponential family with
parameter �.

(b) Assume that � is known. Show that this is an exponential family with
parameter � .

5. We know that (see Example 2) that O�m D 2 NX is an unbiased estimator of � with
variance �2

3n
. The purpose of this exercise is to show that even if we limit ourselves

to estimators of the form a NX then O�m is not the best choice. That is, there are better
choices than a D 2.

(a) Show that

d.a NX; �/ D a2 �2

12n
C �2

�a

2
� 1

�2

:

(b) Show that d.a NX; �/ is minimum for a0 D 6n
3nC1

. The estimator a0
NX is the best

in the class of estimators a NX .
(c) Show that the estimator found in (b) is biased.

6. Consider the family of normal distributions with mean 0 and standard deviation
� . Our parameter is � D �2.

(a) Show that

O� D 1

n

nX

iD1

X2
i

is an unbiased estimator of � .
(b) Show that

Var. O�/ D 2
�4

n
:

(You may want to use that the fourth moment of a standard normal is 3).

7. Consider a family of exponential distributions with expectation ˛. That is,

f .xj˛/ D 1

˛
e

�1
˛ x for x > 0:

(a) Show that NX is an unbiased estimator of ˛.
(b) Show that n

nC1
NX is the best estimator of ˛ in the class of all estimators a NX .

8. Consider the family of distributions with density

f .xj�/ D 1

2�
exp

�
�jxj

�

�
for x 2 .�1; C1/:
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(a) Is this an exponential family of distributions?
(b) Compute E.jX j/.
(c) Find an unbiased estimator for � .

9. Consider the family of Pareto distributions

f .xj�/ D �

.1 C x/�C1
for x > 0;

where � is in .1; 1/.

(a) Is this an exponential family of distributions?
(b) Compute E.X/.
(c) NX is an unbiased estimator of what parameter?

10. In this exercise we give an example where all the estimators are biased. Assume
we have a sample of size 1 of a binomial distribution with parameters .10; p/. We
would like an unbiased estimator for log p. By contradiction assume that there is
such an estimator Op. Given the observation x (which is an integer between 0 and
10), Op must be a function of x. Let g be this function. That is, Op D g.x/.

(a) Show that

E. Op/ D
10X

xD0

g.x/
10

x
px.1 � p/10�x :

(b) Explain why E. Op/ cannot be log p whatever the choice of g is. Hence, any
estimator of log p is necessarily biased.

9.3 Sufficient Statistics

So far we have seen methods for finding and comparing estimators. In this section
we will see how it is sometimes possible to improve an estimator or even to find a
minimum variance unbiased estimator (m.v.u.e.). The central idea is sufficiency.

Sufficient Statistics
Let X1; X2; : : : ; Xn be an i.i.d. sample of a distribution with parameter � . A
statistic S (i.e., a function of .X1; X2; : : : ; Xn/) is said to be sufficient for � if
the conditional distribution of X1; X2; : : : ; Xn given S D s does not depend
on � .
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The idea behind this definition is that all the information about � is contained
in the sufficient statistic S . There is no need to look at the whole sample
.X1; X2; : : : ; Xn/, it is sufficient to only look at S .

Example 1. Consider X1; X2; : : : ; Xn an i.i.d. sample of the Bernoulli distribution
with P.Xi D 1j�/ D � . Is X1 a sufficient statistic?

For x1; : : : ; xn a sequence in f0; 1g we compute

P.X1 D x1 : : : Xn D xnjX1 D x1/ D P.X1 D x1 : : : Xn D xn/

P.X1 D x1/
:

In fact the notation should be P.X1 D x1 : : : Xn D xnj� I X1 D x1/ instead of
P.X1 D x1 : : : Xn D xnjX1 D x1/. To simplify the notation we omit � . Recall that
P.Xi D xi / D �xi .1 � �/1�xi . Therefore,

P.X1 D x1 : : : Xn D xnjX1 D x1/ D �x1.1 � �/1�x1 : : : �xn.1 � �/1�xn

�x1.1 � �/1�x1
:

Hence, if we let t D Pn
iD2 xi

P.X1 D x1 : : : Xn D xnjX1 D x1/ D �t .1 � �/n�t :

Clearly the conditional distribution of X1; X2; : : : ; Xn given X1 D x1 depends on � .
Therefore, X1 is not a sufficient statistic.

Let S D Pn
iD1 Xi , we are going to show that S is a sufficient statistic. Since S

is a sum of i.i.d. Bernoulli random variables it is a binomial random variable and we
have for s D 0; 1; : : : ; n

P.S D s/ D
�

n

s

�
�s.1 � �/n�s:

Note that if s D Pn
iD1 xi then fS D sg is a subset of fX1 D x1 : : : Xn D xng.

Therefore,

P.X1 D x1 : : : Xn D xnjS D s/ D P.X1 D x1 : : : Xn D xn/

P.S D s/

and

P.X1 D x1 : : : Xn D xnjS D s/ D �s.1 � �/n�s

�
n

s

�
�s.1 � �/n�s

D 1
�

n

s

� :

This time all the �’s cancel and the conditional distribution of X1; X2; : : : ; Xn given
S D s does not depend on � . The statistic S is indeed sufficient. What is remarkable
here is that a single number S summarizes all the information regarding � which is
contained in the (usually) very long vector .X1; X2; : : : ; Xn/.
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The definition of sufficiency does not give a method to find a sufficient statistic.
The next result does exactly that.

A Factorization Criterion for Sufficiency
Let X1; X2; : : : ; Xn be an i.i.d. sample of a distribution with parameter � . A
statistic S is sufficient if and only if the likelihood function L can be factored
as follows

L.� I x1; : : : ; xn/ D g.� I S.x1; : : : ; xn//h.x1; : : : ; xn/;

where g and h are positive functions.

In words, the statistic S is sufficient if and only if L can be factored in a function
of S and � and a function that does not depend on � .

Example 2. Consider X1; X2; : : : ; Xn an i.i.d. sample of the exponential distribution
with parameter � . The likelihood function is

L.� I x1; : : : ; xn/ D �n exp.��.x1 C x2 C � � � C xn//;

for positive reals x1; : : : ; xn. Let S.x1; : : : ; xn/ D x1 C � � � C xn and

g.� I s/ D �n exp.��s/:

Set h.x1; : : : ; xn/ D 1 if all xi are positive and 0 otherwise. Note that h does not
depend on � . We have

L.� I x1; : : : ; xn/ D g.� I S.x1; : : : ; xn//h.x1; : : : ; xn/:

This proves that S D Pn
iD1 Xi is a sufficient statistic.

Example 3. Consider X1; X2; : : : ; Xn an i.i.d. sample of the uniform distribution in
Œ0; ��. The likelihood function is

L.� I x1; : : : ; xn/ D 1

�n
if all xi 2 Œ0; ��

and L.� I x1; : : : ; xn/ D 0 otherwise. Let x.n/ be the largest of all x0
i s. We can rewrite

the function L as

L.� I x1; : : : ; xn/ D 1

�n
if 0 � x.n/ � �;

and L D 0 otherwise. Let S.x1; : : : ; xn/ D x.n/ and

g.� I s/ D 1

�n
if s � �:
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Set h.x1; : : : ; xn/ D 1 if all xi are positive and 0 otherwise. We have

L.� I x1; : : : ; xn/ D g.� I S.x1; : : : ; xn//h.x1; : : : ; xn/:

The factorization criterion shows that S D X.n/ is a sufficient statistic for � .
Next we give an example of sufficient statistics for a two dimensional parameter.

Example 4. Consider the family of normal distributions with mean � and standard
deviation � . Both � and � are unknown and therefore we have a two dimensional
parameter � D .�; �/. The likelihood function in this case is

L.� I x1; : : : ; xn/ D 1

�n.2�/n=2
exp

 
� 1

2�2

nX

iD1

.xi � �/2

!
:

After expanding the squares inside the exponential we get

L.� I x1; : : : ; xn/ D 1

�n.2�/n=2
exp

 
� 1

2�2

 
nX

iD1

x2
i � 2�

nX

iD1

xi C n�2

!!
:

Let the function g be

g.s; t; �; �/ D 1

�n.2�/n=2
exp

�
� 1

2�2
.s � 2�t C n�2/

�
:

It is easy to check that

L.� I x1; : : : ; xn/ D g

 
nX

iD1

x2
i ;

nX

iD1

xi ; �; �

!
:

It turns out that the factorization criterion stated above holds for multi dimensional
statistics. Hence, the two dimensional statistic

 
nX

iD1

X2
i ;

nX

iD1

Xi

!

is sufficient for .�; �/.
We now state that exponential families always have a sufficient statistic.

Exponential Families and Sufficiency
Recall that a family of probability distributions with parameter � is an
exponential family if and only if its logarithm can be written as

a.�/t.x/ C b.�/ C r.x/ for x 2 A;
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where the support of the distribution A does not depend on � . Consider an i.i.d.
sample X1; X2; : : : ; Xn of such a family then

S D
nX

iD1

t.Xi /

is sufficient.

This result is easy to prove. For, the likelihood function for an i.i.d. sample is

L.� I x1; : : : ; xn/ D exp

 
a.�/

nX

iD1

t.xi / C nb.�/ C
nX

iD1

r.xi /

!
for x 2 A:

Let S.x1; : : : ; xn/ D Pn
iD1 t.Xi / and

g.� I s/ D exp.a.�/s C nb.�//

Set h.x1; : : : ; xn/ D exp
�Pn

iD1 r.xi /
�

if all xi are in A and 0 otherwise. We have

L.� I x1; : : : ; xn/ D g.� I S.x1; : : : ; xn//h.x1; : : : ; xn/:

By the factorization criterion S is a sufficient statistic.

Example 5. Consider the family of normal distributions with mean � and standard
deviation 1. We have shown in Sect. 9.2 that this is an exponential family with
t.x/ D x. Hence,

S D
nX

iD1

t.Xi / D
nX

iD1

Xi

is sufficient for �.
Sufficiency turns out to be a very useful criterion to get the best unbiased

estimator. We first define “best.”

Minimum Variance Unbiased Estimator
Consider an exponential family with parameter � . Let O� be an unbiased
estimator of � such that Var. O�/ is smaller than the variance of all other unbiased
of � . Then, O� is said to be a minimum variance unbiased estimator (m.v.u.e) of
� . In particular, no unbiased estimator has a lower variance than O� .

Next we give a criterion to find an m.v.u.e based on a sufficient statistic. This is
a particular case of the Lehmann–Scheffé Theorem.
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M.V.U.E. and Sufficiency
Consider an exponential family of probability distributions with parameter � .
Let R D g.S/ be an unbiased estimator of �.�/ where S is a sufficient
statistic and g is a function. Then R is a minimum variance unbiased estimator
(m.v.u.e.) of �.�/.

Hence, it is enough to have an unbiased estimator which is a function of S to
have an optimal unbiased estimator.

Example 6. Consider the Poisson distribution with mean � . That is,

P.X D xj�/ D exp.��/
�x

xŠ
D exp.�� C x log � � log xŠ/;

where � is in I D .0; 1/. Set a.�/ D log.�/, b.�/ D �� , t.x/ D x and r.x/ D
� log xŠ. Note that P.X D xj�/ > 0 if and only if x is a positive integer or 0.
Hence the support of the distribution does not depend on � . Moreover, a and b

are infinitely differentiable on I . Therefore, the family of Poisson distributions is
exponential. Hence,

S D
nX

iD1

Xi

is sufficient for � . Since � is the mean of this distribution we know that NX is
an unbiased estimator of � . On the other hand NX D g.S/ where g.x/ D x=n.
Therefore, NX is an m.v.u.e. This is the best unbiased estimator where “best” refers
to the usual quadratic distance.

Assume now that we would like an m.v.u.e. for exp.��/ (instead of �) for the
Poisson distribution. It is easy to think of an unbiased estimator but not so easy
to find one which is a function of S . The next result gives as a method to do
just that.

Conditional Expectation, M.V.U.E. and Sufficiency
Consider an exponential family of probability distributions with parameter � .
Let R be an unbiased estimator of �.�/, let S be a sufficient statistic. Then
the conditional expectation E.RjS/ is a minimum variance unbiased estimator
(m.v.u.e.) of �.�/.

This is a rather remarkable result. Take any unbiased estimator of �.�/, by
taking the conditional expectation with respect to the sufficient statistic we get an
m.v.u.e.!
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Example 7. Consider again the family of Poisson distributions with parameter � .
Let �.�/ D exp.��/. We want to find an m.v.u.e. for �.�/. The first step is to find
an unbiased estimator. For an i.i.d. sample X1 : : : Xn let R D 1 if X1 D 0 and
R D 0 if X1 > 0. This is not a great estimator: we will estimate exp.��/ by 0
or 1 depending on what X1 is and ignore the rest of the sample! However, it is an
unbiased estimator and to get an m.v.u.e. it is enough to compute the conditional
expectation of R with respect to a sufficient statistic. Note that

P.R D 1/ D P.X1 D 0/ D �.�/ D exp.��/:

Since R is a Bernoulli random variable E.R/ D P.R D 1/. Hence, R is an
unbiased estimator of �.�/. On the other hand we know that

S D
nX

iD1

Xi

is a sufficient statistic. We now compute E.RjS/. Since R is a Bernoulli random
variable we have for any positive integer s

E.RjS D s/ D P.R D 1jS D s/ D P.X1 D 0I S D s/

P.S D s/
:

Note that

fX1 D 0I S D sg D fX1 D 0g \
(

nX

iD2

Xi D s

)
;

two independent events. Moreover, recall that a sum of independent Poisson random
variables is a Poisson random variable whose rate is the sum of the rates. Therefore,

P

 
nX

iD2

Xi D s

!
D exp.�.n � 1/�/

..n � 1/�/s

sŠ

and

P.S D s/ D exp.�n�/
.n�/s

sŠ
:

Hence,

E.RjS D s/ D exp.��/ exp.�.n � 1/�/..n � 1/�/s=sŠ

exp.�n�/.n�/s=sŠ
D
�

n � 1

n

�s

:

Therefore, an m.v.u.e. for exp.��/ is . n�1
n

/S .
We have chosen to concentrate on exponential families in this Section because

this is where most of the applications are and the theory is simpler. Next, we state a
result that illustrates why sufficiency is a powerful tool in general and not only for
exponential families.
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Rao–Blackwell Theorem
Consider a distribution family depending on � and assume that it has a sufficient
statistic S . Let R be an estimator of � and let R0 D E.RjS/. Then R0 is a better
estimator than R in that

d.R0; �/ � d.R; �/;

for all � .

In words, one always improves an estimator by computing its conditional
expectation with respect to a sufficient statistic. The proof is based on the following
property of conditional expectation.

Lemma 1. For any random variables X and Y we have

VarŒE.X jY /� � Var.X/:

That is, the variance of the conditional expectation is less than the variance of the
(unconditioned) variable. We now prove the Lemma.

By definition
Var.X/ D E.X2/ � E.X/2:

By Property P1 (Sect. 8.4) we have

Var.X/ D E.E.X2jY // � E.E.X jY //2:

We now subtract and add E.E.X jY /2/ to get

Var.X/ D EŒE.X2jY / � E.X jY /2� C EŒE.X jY /2� � EŒE.X jY /�2:

Observe now that

EŒE.X jY /2� � EŒE.X jY /�2 D VarŒE.X jY /�;

so
Var.X/ D EŒE.X2jY / � E.X jY /2� C VarŒE.X jY /�:

Conditioned on Y D y

E.X2jY D y/ � E.X jY D y/2 D Var.X jY D y/:

A variance is of course always positive so for all y

E.X2jY D y/ � E.X jY D y/2 � 0
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and the corresponding random variable E.X2jY / � E.X jY /2 is positive as well.
Therefore, Var.X/ is the sum of the positive term EŒE.X2jY / � E.X jY /2� and
VarŒE.X jY /�. Hence,

Var.X/ � VarŒE.X jY /�:

The proof of the Lemma is complete.
It is now easy to complete the proof of Rao–Blackwell Theorem. Recall that

d.R; �/ D E..R � �/2/:

and the formula
d.R; �/ D Var.R/ C .E.R/ � �/2:

Since E.R0/ D E.R/ (why?) in order to compare d.R; �/ to d.R0; �/ we only need
to compare Var.R/ to Var.R0/. According to the Lemma

Var.R/ � Var.R0/

and so this completes the proof of the Theorem. However, the attentive reader
will have noticed that we have not used the main hypothesis of the Theorem:
sufficiency of S ! In fact the hypothesis has been implicitly used. We have defined
R0 D E.RjS/. The problem is that R0 could very well depend on � . If R0 depends
on � it is not an estimator of �! It is because S is sufficient that R0 does not depend
on � and is therefore an estimator of � . The sufficiency hypothesis is crucial in
providing a true estimator of � .

Exercises 9.3

1. Consider the family of normal distributions with mean 0 and
standard deviation � .

(a) Show that
Pn

iD1 X2
i is a sufficient statistic for � .

(b) Find an m.v.u.e. for �2.

2. Consider the family of normal distributions with mean � and standard deviation
� D 1. Find an m.v.u.e. for �.

3. Consider X1; X2; : : : ; Xn an i.i.d. sample of the exponential distribution with
parameter � . That is, the density is

f .xj�/ D �e��x for x > 0

and 0 otherwise.
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(a) Show that NX is an m.v.u.e. of 1=� .
(b) Recall that a sum of n i.i.d. random variables with parameter � has a 


distribution with parameters n and � and density

g.sj�/ D 1

.n � 1/Š
�nsn�1e��s:

Use g to compute the expected value of

1Pn
iD1 Xi

:

(c) Show that
O� D n � 1Pn

iD1 Xi

is an m.v.u.e. of � .
(d) Show that the variance of O� is �2=.n � 2/.
(e) Explain why 1= NX is also a natural choice to estimate � . Compare its mean

square error to the one of O� .

4. Consider a family of Poisson distributions with parameter � . We want to estimate
�.�/ D exp.��/ D P.X D 0/. For an i.i.d. sample X1 : : : Xn let R D 1 if X1 D 0

and R D 0 if X1 > 0. In Example 6 we have computed

R0 D E.RjS/ D
�

n � 1

n

�S

;

where S is the sum of the Xi . We have shown that R0 is an m.v.u.e. of �.�/. Here
are the values of a sample of size 50:

0 2 4 2 5 2 3 1 0 2 2 1 0 1 0 2 2 2 1 2 0 4 0 3 1 1 4 1 3 4 1 3 1 4 0 1 0 2 0 5 1 3 2
2 3 2 2 3 3 0

(a) Compute R and R0 for this sample.
(b) Let B be the number of 00s in the sample. Show that B is a binomial random

variable with parameters n and �.�/.
(c) Show that B 0 D B=n is an unbiased estimator of �.�/. Compute B 0 for the

sample above.
(d) Compute the variance of B 0.
(e) Compute the variance of R0 and compare it to the variance of B 0.

5. Consider again the family of Poisson distributions with parameter � . Let �.�/ D
exp.��/.

(a) Explain why exp.� NX/ is a reasonable choice to estimate �.�/.
(b) Show that n goes to infinity . n�1

n
/S approaches exp.� NX/.

(c) Compute the variance of exp.� NX/.
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6. Consider the family of normal distributions with mean � and known standard
deviation � . Is NX an m.v.u.e. of �?

7. Consider a family of exponential distributions with expectation ˛. That is,

f .xj˛/ D 1

˛
exp

�
� 1

˛
x

�
:

Show that NX is an m.v.u.e. of ˛.

8. Consider the family of distributions with density

f .xj�/ D e�.x��/ if x � �

and f .xj�/ D 0 for x < � .

(a) Is this an exponential family of distributions?
(b) Find a sufficient statistic for � .

9. Consider an i.i.d. sample of random variables with density

�

2
exp.�� jxj/:

(a) Show that this is an exponential family of distributions.
(b) Compute EjX j.
(c) Find a function � such that you have an m.v.u.e. for �.�/.

10. Consider an i.i.d. sample of random variables with density

�x���1 for x � 1:

Find a sufficient statistic.

11. Consider an i.i.d. sample of 
 random variables. The density is

g.sj�/ D 1

.k � 1/Š
�ksk�1e��s

where k is a known positive integer and � is the unknown parameter. Show that
 

˘n
iD1Xi ;

nX

iD1

Xi

!

is a sufficient statistic.

12. Consider X; Y i.i.d. with density �e��x for x � 0. Let T D X C Y .

(a) Show that the conditional distribution of X jT D t is

f .xjt/ D 1

t
for 0 < x < t:
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(b) How come there is no � in f .xjt/?
(c) Compute P.X > 2jT D t/.

13. Consider a sequence X1; : : : ; Xn; : : : of i.i.d. random variables with expected
value � and variance equal to 1. Let R D E. NX jX1/.

(a) Show that

R D 1

n
X1 C n � 1

n
�:

(b) Compute Var.R/ and compare it to Var. NX/.
(c) Explain why R is not an estimator of �.

9.4 Bayes’ Estimators

So far � has always been an unknown parameter. In this section we will use instead
the Bayesian approach for which � is the value of a random variable. First a
word on notation: we have consistently used upper case letters (such as X ) for a
random variable and the corresponding lower case letter (x) for a possible value.
The upper case letter corresponding to � is ‚. We will give ourselves a so-called
prior distribution for the random variable ‚ and � will be a possible value of ‚. We
use the word “prior” because it is a distribution we pick before (i.e., prior) having
a sample of observations. Once we have a sample we compute the conditional
distribution of ‚ given the sample. This is the so-called posterior distribution of ‚.
We start with an example.

Example 1. Consider a family of Bernoulli distributions with parameter � . Assume
we know nothing about � except that it is in Œ0; 1�. We give ourselves an uniform
distribution for ‚: f .�/ D 1 for all � in Œ0; 1�. The choice of an uniform (a flat
distribution) shows that � could be anywhere in Œ0; 1�. Given ‚ D � the Bernoulli
probability distribution is

f .xj�/ D �x.1 � �/1�x

for x D 0 or 1. Given an i.i.d. sample X1; : : : ; Xn the posterior distribution of ‚ is
by definition the distribution of ‚ given X1; : : : ; Xn. We now compute it. First we
compute the probability distribution of the vector .X1; X2; : : : ; Xn; ‚/. Let

s D
nX

iD1

xi :

Then,

f .x1; : : : ; xn; �/ D f .x1; : : : ; xnj�/f .�/ D �x1.1 � �/1�x1 : : : �xn.1 � �/1�xn

D �s.1 � �/n�s for � 2 Œ0; 1�
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We are now ready to compute the posterior distribution of ‚.

f .� jx1; : : : ; xn/ D f .x1; : : : ; xn; �/

f .x1; : : : ; xn/
D �s.1 � �/n�s

f .x1; : : : ; xn/
for � 2 Œ0; 1�;

where f .x1; : : : ; xn/ is the density of the vector .X1; : : : ; Xn/. We will now try to
identify the posterior distribution with as few computations as possible. Recall that
the beta density with parameters a and b is


.a C b/


.a/
.b/
�a�1.1 � �/b�1 for � 2 Œ0; 1�:

Letting s D a � 1 and n � s D b � 1 we see that the posterior looks like a
beta distribution with parameters a D s C 1 and b D n � s C 1. Except that
instead of having 
.aCb/


.a/
.b/
we have 1

f .x1;:::;xn/
. Are these two quantities equal? Since


.aCb/


.a/
.b/
�a�1.1 � �/b�1 is a probability density its integral is 1 and therefore

Z 1

0

�a�1.1 � �/b�1d� D 
.a/
.b/


.a C b/
:

But the integral of the posterior distribution is also 1. Hence,

Z 1

0

�a�1.1 � �/b�1

f .x1; : : : ; xn/
d� D 1

f .x1; : : : ; xn/

Z 1

0

�a�1.1 � �/b�1d� D 1;

and

Z 1

0

�a�1.1 � �/b�1d� D f .x1; : : : ; xn/:

Therefore,

f .x1; : : : ; xn/ D 
.a/
.b/


.a C b/
:

This proves that the posterior distribution is indeed a beta distribution with
parameters a D s C 1 and b D n � s C 1 where s is the sum of the xi and n

is the size of the sample. This is in fact a general method: if you can identify the
posterior distribution up to a term constant in � (such as 1

f .x1;x2;:::;xn/
in this example)

then that is the distribution you are looking for.

Here is an i.i.d. sample of 50 Bernoulli random variables. 0 0 1 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0. The size of
this sample is n D 50 and the sum of the xi is s D 11. Hence, with an uniform prior
distribution for ‚ we get a posterior which is a beta distribution with parameters
a D s C 1 D 12 and b D n � s C 1 D 40. See Fig. 9.1 below.
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Fig. 9.1 Observe how we go from a flat prior distribution to a rather pointed posterior distribution

We summarize the method below.

Prior and Posterior Distributions
Consider � as the value of a random variable ‚ rather than a fixed number. Let
f .�/ be the prior distribution of ‚. Let X1; X2; : : : ; Xn be an i.i.d. sample of a
distribution that depends on � . The posterior distribution of ‚ is the conditional
distribution of ‚ given the observations x1; : : : ; xn of the sample.

We should use the posterior distribution to estimate � . For instance, in Example 1
we could use the beta distribution to compute the probability that ‚ is between 0.1
and 0.3, say. But in many situations we would like to have a number to work with.
A natural choice for a Bayes’ estimator of � is the expected value of the posterior
distribution. This turns out to also be the optimal choice in the sense defined below.

Bayes’ Estimator
The Bayes’ estimator T � of � is

T � D E.‚jX1 : : : ; Xn/:

That is, T � is the conditional expectation of ‚ given .X1; : : : ; Xn/.



304 9 Finding and Comparing Estimators

Recall from Sect. 8.4 that the minimum of

EŒ.‚ � h.X1; : : : ; Xn/2�

over all the functions h is attained by

h.X1 : : : ; Xn/ D E.‚jX1 : : : ; Xn/:

Example 2. We go back to Example 1. We showed that with an uniform prior we
get a beta posterior with parameters a D s C1 and b D n�s C1 where n is the size
of the sample and s is the sum of the observations. To get the Bayes’ estimator we
need the expected value of a beta distribution. We do the computation now. Assume
that B has a beta distribution with parameters a and b.

E.B/ D 
.a C b/


.a/
.b/

Z 1

0

��a�1.1 � �/b�1d� D 
.a C b/


.a/
.b/

Z 1

0

�a.1 � �/b�1d�:

The integrand (up to a constant) is the density of a beta with parameters aC1 and b.
Hence,

Z 1

0

�a.1 � �/b�1d� D 
.a C 1/
.b/


.a C b C 1/
:

Therefore,

E.B/ D 
.a C b/


.a/
.b/


.a C 1/
.b/


.a C b C 1/
D 
.a C b/


.a C b C 1/


.a C 1/


.a/
:

Recall that


.x/ D .x � 1/
.x � 1/

for all x > 1. Hence, we have

E.B/ D a

a C b
:

Therefore, the Bayes’ estimator in this example is

Pn
iD1 Xi C 1

n C 2
:

This is close but not identical to the m.v.u.e. which was found to be NX . We now
compare these two estimators for the sample of Example 1. Recall that n D 50

and s D 11. Hence, the m.v.u.e. is 11=50 D 0:22 and the Bayes’ estimator is
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12=52 D 0:23. The sample was actually from a Bernoulli with � D 0:25 so the
Bayes’ estimate is slightly closer to the true value in this case.

Example 3. Let X1; : : : ; Xn be an i.i.d. sample with a normal distribution with mean
� and variance 1. Let ‚ have a standard normal (i.e., mean 0 and variance 1) prior
distribution. Compute the Bayes’ estimate.

We have the prior

f .�/ D 1p
2�

exp.��2=2/

and given � the distribution of an observation is

f .xj�/ D 1p
2�

exp

�
�1

2
.x � �/2

�
:

Therefore,

f .x1; : : : ; xnj�/ D 1

.
p

2�/n
exp

 
�1

2

nX

iD1

.xi � �/2

!
:

Hence, the posterior distribution is:

f .� jx1; : : : ; xn/ D f .x1; : : : ; xnj�/f .�/

f .x1; : : : ; xn/

D 1

f .x1; : : : ; xn/

1

.
p

2�/n
exp

 
�1

2

nX

iD1

.xi � �/2

!

� 1p
2�

exp.��2=2/

D 1

f .x1; : : : ; xn/

1

.
p

2�/nC1
exp

 
�1

2

nX

iD1

.xi � �/2 � 1

2
�2

!

The important part of this expression is the part that contains � . As remarked earlier
if we can identify that part as a known distribution we will be done and we will
not have to compute f .x1; : : : ; xn/. To that purpose we concentrate on the terms
containing � . By expanding the square we have

1

2

nX

iD1

.xi � �/2 C 1

2
�2 D 1

2

 
nX

iD1

x2
i � 2�

nX

iD1

xi C n�2 C �2

!
:
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Hence,

1

2

nX

iD1

.xi � �/2 C 1

2
�2 D n C 1

2

 
�2 � 2

n C 1
�

nX

iD1

xi C 1

n C 1

nX

iD1

x2
i

!
:

We now “complete the square” to get

1

2

nX

iD1

.xi � �/2 C 1

2
�2 D n C 1

2

 
� � 1

n C 1

nX

iD1

xi

!2

� n C 1

2

 
1

n C 1

nX

iD1

xi

!2

C 1

2

nX

iD1

x2
i :

We plug this side computation into the posterior distribution to get

f .� jx1; : : : ; xn/ D g.x1; : : : ; xn/ exp

0

@�n C 1

2

 
� � 1

n C 1

nX

iD1

xi

!2
1

A ;

where

g.x1; : : : ; xn/ D 1

f .x1; : : : ; xn/

1

.
p

2�/nC1

� exp

0

@n C 1

2

 
1

n C 1

nX

iD1

xi

!2

� 1

2

nX

iD1

x2
i

1

A :

We state the exact expression of g for the sake of completeness but we only need
to know that it does not depend on � . We are now ready to identify the posterior
distribution as a normal distribution. Recall that a normal distribution with mean �

and variance �2 has density

1

�
p

2�
exp

�
� 1

2�2
.� � �/2

�
:

Therefore, the posterior distribution is a normal distribution with mean 1
nC1

Pn
iD1 xi

and variance 1=.n C 1/. Hence, the Bayes’ estimate for � is

1

n C 1

nX

iD1

Xi :



Exercises 9.4 307

Example 4. Here is an i.i.d. sample for a normal distribution with unknown mean
and variance 1.

1.5377 2.8339 �1.2588 1.8622 1.3188 �0.3077 0.5664 1.3426 4.5784 3.7694
�0.3499 4.0349 1.7254 0.9369 1.7147 0.7950 0.8759 2.4897 2.4090 2.4172 1.6715
�0.2075 1.7172 2.6302 1.4889 2.0347 1.7269 0.6966 1.2939 0.2127

According to Example 3, with a standard normal prior we get a posterior with
mean 1

nC1

Pn
iD1 xi and variance 1=.n C 1/. Here n D 30 and

Pn
iD1 xi D 46:5569.

Hence, the Bayes’ estimate is 1.5018. On the other hand the m.v.u.e. in this case is
NX which for this sample is 1.5519.

What is the probability that ‚ is between 1.3 and 1.5? This can be computed
using the posterior distribution which is normally distributed with mean 1.5018 and
variance 1/31. Hence,

P.1:3 < ‚ < 1:5jx1 : : : x30/ D P.�1:12 < Z < �0:01/ D 0:36;

where Z is a standard normal variable.

Exercises 9.4

1. Use the method of Example 2 to compute the variance of a beta distribution with
parameters a and b.

2. In Example 1, estimate the probability that ‚ is between 0.2 and 0.3 using the
posterior distribution. (You will need to compute the integral numerically.)

3. Consider a family of Bernoulli distributions as in Example 1. Instead of taking
an uniform prior as we did there take a prior which is a beta with parameters a D
b D 2.

(a) Sketch on the same graph the density of an uniform and the density of a beta
with parameters 2 and 2.

(b) Compute the posterior distribution.
(c) Compute the Bayes’ estimator on the sample of Example 1.

4. Sketch the graphs of the prior and posterior densities of Example 3. Use the
sample of Example 4.

5. Let X1; : : : ; Xn be an i.i.d. sample of a Poisson distribution with mean � . Let ‚

have an exponential with parameter 1 prior distribution. That is, its density is

f .�/ D exp.��/ for � > 0:
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(a) Show that the posterior distribution is a Gamma with parameters 1 C Pn
iD1 xi

and n C 1.
(b) Find the Bayes’ estimator.

6. (a) Show that for a > 1 and b > 0 we have
Z 1

0

xa�1 exp.�bx/ D 
.a/

ba
:

(b) Use (a) to compute the expected value of exp.�X/ where X has a Gamma
distribution with parameters a and b.

(c) In Exercise 5 we have shown that for a Poisson distribution if the prior is
exponentially distributed then the posterior has a Gamma distribution. Use this
result and (b) to find a Bayes’ estimator for exp.��/ where � is the mean of a
Poisson distribution with mean � .

7. Recall that the first two moments of a Gamma distribution with parameters a and
b are a=b and a.a C 1/=b2, respectively.

(a) Find a and b given that the first moment is 1 and the second is 3.
(b) Use a prior Gamma distribution with the parameters above to find a Bayes’

estimate for the mean of a Poisson distribution.

8. Let X1; : : : ; Xn be an i.i.d. sample with a normal distribution with mean � and
variance 1. Let ‚ have a normal mean a and variance 1 prior distribution. Compute
the Bayes’ estimate. (You may want to imitate the computation of Example 3.)

9. Let X1; : : : ; Xn be an i.i.d. sample of a normal distribution with mean 0 and
variance 1=� . Note that for computational convenience our parameter is the inverse
of the variance. Let ‚ have an exponential mean 1 prior distribution.

(a) Show that the posterior distribution has density

1

f .x1; : : : ; xn/

1

.
p

2�/n
�n=2 exp

 
�1

2
�

nX

iD1

x2
i

!
exp.��/

for � > 0, where f .x1; : : : ; xn/ is the density of the vector .X1; : : : ; Xn/.
(b) Show that the distribution in (a) is a Gamma distribution and identify the

parameters.
(c) Find the Bayes’ estimate.

10. Consider an i.i.d. sample from an uniform distribution on Œ0; ��. Assume that
the prior distribution of ‚ is uniform on Œ0; 1�.

(a) Show that the density of .X1; : : : ; Xn; ‚/ is

f .x1; : : : ; xn; �/ D 1

�n
for � 2 .x.n/; 1/;

where x.n/ is the largest value of the sample.
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(b) Show that the density of .X1; : : : ; Xn/ is

f .x1; : : : ; xn/ D
Z 1

x.n/

1

�n
d�:

(c) Using (a) and (b) compute the posterior distribution.
(d) Compute the Bayes’ estimator.



Chapter 10
Multiple Linear Regression

10.1 The Least Squares Estimate

The main purpose of this chapter is to predict the value of some variable Y based
on a given set of variables Xi where i D 1; 2; : : : ; p � 1 and p is an integer larger
than or equal to 2. The following example will be examined in detail throughout this
chapter.

Example 1. For a given country let Y be the under 5 infant mortality (number of
children dead by age 5 per 1,000 births), X1 the percentage of children vaccinated
against measles, X2 the percentage of children vaccinated against diphtheria,
tetanus, and pertussis infections (a single vaccine called DPT3 takes care of the
three infections), X3 the percentage of the population that has access to clean water
and let X4 be the percentage of population that have access to sanitation (sewage
system, septic tanks, and so on). In this case we would have p � 1 D 4, that is,
p D 5.

The simplest model to predict Y using X1; X2; : : : ; Xp�1 is a linear model:

Y D b0 C b1X1 C b2X2 C � � � C bp�1Xp�1;

where b0, b1, b2, : : : ; bp�1 are constants to be estimated. Note that this is a
generalization of what we did in Chap. 6. There we had only one explanatory
variable X and therefore we had p D 2. When p D 2 the model is called a simple
regression model. For p � 3 we call it a multiple linear regression model.

The first step is to estimate the constants bi , i D 0; 1; 2; : : : ; p �1. The estimates
will be based on observations. Assume that we have a sample of n observations:

.yi ; xi;1; xi;2; : : : ; xi;p�1/fori D 1; 2; : : : n;

where the yi are observations of Y , the xi;1 are observations of the variable X1, the
xi;2 are observations of the variable X2 and so on. To avoid double indices and other

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7 10, © Springer Science+Business Media, LLC 2012

311
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cumbersome notations it is better to formulate the model in terms of matrices. Let
Y, b, and X be

Y D

0

BBBBB@

y1

y2

:

:

yn

1

CCCCCA
b D

0

BBBBB@

b0

b1

:

:

bp�1

1

CCCCCA
X D

0

BBBBB@

1 x1;1 x1;2 : : : x1;p�1

1 x2;1 x2;2 : : : x2;p�1

1 x3;1 x3;2 : : : x3;p�1

: : : : : : :

1 xn;1 xn;2 : : : xn;p�1

1

CCCCCA
:

Note that the first column of X corresponds with the constant in the linear model, the
second column corresponds with the variable X1, the third column with the variable
X2, and so on. Observe also that Y is a column vector with n components, b is a
column vector with p components and that X is a n � p matrix. We can rewrite the
multiple linear regression in matrix form as

Y D Xb:

Example 2. Going back to Example 1 here is some of the data extracted from the
databases of the World Health Organization

http://www.who.int/whosis/whostat/2010/en/index.html

Afghanistan 257 75 85 48 37

Albania 14 98 99 97 98

Algeria 41 88 93 83 95

Andorra 4 98 99 100 100

Angola 220 79 81 50 57

: : : : : :

: : : : : :

Zimbabwe 96 66 62 82 44

We will actually be working with a list of 163 countries. Hence, the table above has
163 rows. The complete table can be downloaded from my webpage

http://www.uccs.edu/�rschinaz/.
The first column corresponds to infant mortality, the second to measles vaccina-

tion, the third to DPT3 vaccination, the fourth to clean water access and the fifth to
sanitation access. Hence,

X D

0

BBBBBBB@

1 75 85 48 37

1 98 99 97 98

1 88 93 83 95

1 98 99 100 100

1 79 81 50 57

: : : :

1

CCCCCCCA

Y D

0

BBBBBBB@

257

14

41

4

220

:

1

CCCCCCCA

http://www.who.int/whosis/whostat/2010/en/index.html
http://www.uccs.edu/~rschinaz/.
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Going back to the model
Y D Xb;

what is the best estimate of b? As we have seen already “best” is relative to the
criterion we choose. We will use the least squares criterion. That is, we want to find
an estimate of b that we denote by Ob that minimizes the quantity

S.b/ D
nX

iD1

.yi � b0 � b1xi;1 � b2xi;2 � � � � � bp�1xi;p�1/2:

We first compute the partial derivative of S with respect to b0:

d

db0

S D
nX

iD1

2.�1/.yi � b0 � b1xi;1 � b2xi;2 � � � � � bp�1xi;p�1/:

We set the partial derivative equal to 0 and we get the equation

nb0 C b1

nX

iD1

xi;1 C b2

nX

iD1

xi;2 C � � � C bp�1

nX

iD1

xi;p�1 D
nX

iD1

yi :

Fix j in f1; 2 : : : ; p � 1g and take the partial derivative with respect to bj :

d

dbj

S D
nX

iD1

2.�xi;j /.yi � b0 � b1xi;1 � b2xi;2 � � � � � bp�1xi;p�1/:

Setting this partial derivative equal to 0 yields for j D 1; 2; : : : ; p � 1 :

b0

nX

iD1

xi;j C b1

nX

iD1

xi;j xi;1 C � � � C bp�1

nX

iD1

xi;j xi;p�1 D
nX

iD1

yi xi;j :

Hence, we have the following system of p equations and p unknowns b0;

b1; : : : ; bp�1. The first equation is

nb0 C b1

nX

iD1

xi;1 C b2

nX

iD1

xi;2 C � � � C bp�1

nX

iD1

xi;p�1 D
nX

iD1

yi ;

and the other p � 1 equations are

b0

nX

iD1

xi;j C b1

nX

iD1

xi;j xi;1 C � � � C bp�1

nX

iD1

xi;j xi;p�1 D
nX

iD1

yi xi;j ;

for j D 1; 2; : : : ; p � 1.
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We will use matrices to reduce this system of equations to a single matrix
equation. Recall that X0 is the transpose of matrix X: we exchange rows and
columns. Hence,

X0 D

0

BBBBB@

1 1 1 : : : 1

x1;1 x2;1 x3;1 : : : xn;1

x1;2 x2;2 x3;2 : : : xn;2

: : : : : : :

x1;p�1 x2;p�1 x3;p�1 : : : xn;p�1

1

CCCCCA

and

X0X D

0

BBBB@

1 1 1 : : : 1

x1;1 x2;1 x3;1 : : : xn;1

x1;2 x2;2 x3;2 : : : xn;2

: : : : : : :

x1;p�1 x2;p�1 x3;p�1 : : : xn;p�1

1

CCCCA

0

BBBB@

1 x1;1 x1;2 : : : x1;p�1

1 x2;1 x2;2 : : : x2;p�1

1 x3;1 x3;2 : : : x3;p�1

: : : : : : :

1 xn;1 xn;2 : : : xn;p�1

1

CCCCA

After multiplication we get

X0X D

0

BBBBB@

n
Pn

iD1 xi;1

Pn
iD1 xi;2 : : :

Pn
iD1 xi;p�1

Pn
iD1 xi;1

Pn
iD1 x2

i;1

Pn
iD1 xi;1xi;2 : : :

Pn
iD1 xi;1xi;p�1

: : : : : : :

: : : : : : :Pn
iD1 xi;p�1

Pn
iD1 xi;p�1xi;1

Pn
iD1 xi;p�1xi;2 : : :

Pn
iD1 x2

i;p�1

1

CCCCCA

Note that X0 is a p � n matrix (p rows, n columns) and that X is a n � p matrix.
Therefore, X0X is a square p � p matrix. It is now easy to check that the system of
equations above can be written as

X0Xb D X0Y:

These are the so-called normal equations. If X0X is an invertible matrix the equation
has a unique solution

Ob D .X0X/�1X0Y:

The Least Squares Estimate
Assume that we have a sample of n observations of the variables
.Y; X1; : : : ; Xp�1/:

.yi ; xi;1; xi;2; : : : ; xi;p�1/ for i D 1; 2; : : : ; n:

The best linear approximation of Y by .X1; X2; : : : ; Xp�1/ is
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Y D Ob0 C Ob1X1 C � � � C Obp�1Xp�1;

where
Ob D .X0X/�1X0Y:

The solution Ob is the “best” with respect to the least squares criterion. That is,
the function

S.b/ D
nX

iD1

.yi � b0 � b1xi;1 � b2xi;2 � � � � � bp�1xi;p�1/2

is minimum for b D Ob.

At this point we only know that S has a critical point at Ob. That is, all the partial
derivatives of S at Ob are 0. Since S is differentiable everywhere we know that if it
has a minimum at Ob then Ob must be a critical point. However, we still need to check
that a minimum actually occurs at Ob and we will do this after the next example.

Example 3. We go back to the World Health Organization (WHO) data. From
Example 2 the matrix X is a 163 � 5 matrix.

X D

0
BBBBBBB@

1 75 85 48 37

1 98 99 97 98

1 88 93 83 95

1 98 99 100 100

1 79 81 50 57

: : : :

1
CCCCCCCA

:

Hence, X0 is a 5 � 163 matrix.

X0 D

0

BBBBB@

1 1 1 1 1 :

75 98 88 98 79 :

85 99 93 99 81 :

48 97 83 100 50 :

37 98 95 100 57 :

1

CCCCCA
;

and X0X is a 5 � 5 matrix

X0X D

0

BBBBB@

163 14034 14181 13947 11429

14034 1239626 1250968 1226664 1028337

14181 1250968 1266817 1238697 1038277

13947 1226664 1238697 1240959 1046217

11429 1028337 1038277 1046217 950577

1

CCCCCA
:
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The determinant of X0X is approximately 2:7729 � 1019, (clearly not 0!) and the
matrix can be inverted. The inverse matrix of X0X is approximately (rounding to the
fifth decimal)

.X0X/�1 D 10�5

0

BBBBB@

35713 �171 �126 �229 146

�171 26 �22 �2 0

�126 �22 23 0 0

�229 �2 0 7 �3

146 0 0 �3 2

1

CCCCCA
:

Finally, we can use the normal equations to get

Ob D

0

BBBBB@

Ob0

Ob1

Ob2

Ob3

Ob4

1

CCCCCA
D .X0X/�1X0Y D

0

BBBBB@

284:51

�0:19113

�0:31886

�1:7055

�0:59177

1

CCCCCA
:

In other words, the least square method tells us that the best linear approximation of
Y using the variables X1, X2, X3 and X4 is given by the equation

Y D 284:5 � 0:19X1 � 0:32X2 � 1:7X3 � 0:59X4:

We now prove that the function S actually has a minimum at Ob. We will use
the following properties. For any matrices A and B with appropriate dimensions
we have

.AB/0 D B0A0;

.A0/0 D A;

and
.A C B/0 D A0 C B0:

We will express S as a matrix product. First observe that if a is a column vector
with n components a1; a2; : : : ; an then

a0a D
nX

iD1

a2
i :

Moreover, note that Y � Xb is a column vector with n components. For i D 1; : : : ; n

the i component is yi � b0 � b1xi;1 � b2xi;2 � � � � � bp�1xi;p�1. Hence,

S.b/ D
nX

iD1

.yi � b0 � b1xi;1 � b2xi;2 � � � � � bp�1xi;p�1/2 D .Y � Xb/0.Y � Xb/:
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We subtract and add X Ob to get

S.b/ D .Y � Xb/0.Y � Xb/ D .Y � X Ob C X. Ob � b//0.Y � X Ob C X. Ob � b//:

Expanding the right-hand side yields

S.b/ D .Y � X Ob/0.Y � X Ob/ C .X. Ob � b//0.X. Ob � b//

C .Y � X Ob/0.X. Ob � b// C .X. Ob � b//0.Y � X Ob/:

We will show now that the last two terms are 0. Note that

Œ.Y � X Ob/0.X. Ob � b//�0 D .X. Ob � b//0.Y � X Ob/:

Hence it is enough to show that

.Y � X Ob/0.X. Ob � b// D 0:

We have

.Y � X Ob/0.X. Ob � b// D .Y0 � Ob0X0/.X. Ob � b// D .Y0X � Ob0X0X/. Ob � b/:

We use now that Ob is a solution of the normal equations. That is,

X0X Ob D X0Y:

Therefore,
Ob0X0X D Y0X

and

.Y � X Ob/0.X. Ob � b// D .Y0X � Ob0X0X/. Ob � b/ D .Y0X � Y0X/. Ob � b/ D 0:

Hence,
S.b/ D .Y � X Ob/0.Y � X Ob/ C .X. Ob � b//0.X. Ob � b//:

Observe now that a0a � 0 for any column vector a. Therefore,

.X. Ob � b//0.X. Ob � b// � 0:

This implies that for any column vector b with n components we have

S.b/ � .Y � X Ob/0.Y � X Ob/ D S. Ob/:
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That is, S has a minimum at Ob. Moreover, this minimum is unique since S is
differentiable everywhere and has a unique critical point at Ob.

In Chap. 6 we have dealt with simple linear regression. That is, the case p D 2.
In the next example we check that our matrix computations yield the same formula
we had in Chap. 6.

Example 4. Consider the case p D 2. That is, the model is

Y D b0 C b1X:

We have n observations of .Y; X/ denoted by .yi ; xi / for i D 1; 2; : : : ; n. The
matrix notation for this particular case is

Y D

0

BBBBB@

y1

y2

:

:

yn

1

CCCCCA
b D

�
b0

b1

�
X D

0

BBBBB@

1 x1

1 x2

: :

: :

1 xn

1

CCCCCA
:

We have

X0X D
�

n
Pn

iD1 xiPn
iD1 xi

Pn
iD1 x2

i

�
:

Recall from linear algebra that a matrix

A D
�

a b

c d

�

is invertible if and only if det.A/ D ad � bc 6D 0. If so the inverse matrix is

A�1 D 1

det.A/

�
d �b

�c a

�
:

We go back to X0X. Its determinant is

n

nX

iD1

x2
i �

 
nX

iD1

xi

!2

:

It turns out that this determinant is 0 if and only if all the xi are equal (see the
exercises). Assuming that this is not the case we have

.X0X/�1 D 1

det.X0X/

� Pn
iD1 x2

i �Pn
iD1 xi

�Pn
iD1 xi n

�
:

We also have

X0Y D
� Pn

iD1 yiPn
iD1 xi yi

�
:
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By the normal equations

Ob D
 Obo

Ob1

!
D .X0X/�1X0Y

D 1

det.X0X/

 Pn
iD1 x2

i

Pn
iD1 yi � .

Pn
iD1 xi /.

Pn
iD1 xi yi /

n
Pn

iD1 xi yi � .
Pn

iD1 xi /.
Pn

iD1 yi /

!
:

It is now easy to check that the formula is the same as the one used in Chap. 6.

Exercises 10.1

1. Give an example of a function with a critical point and no minimum or
maximum.

2. Let a and b be two column vectors with n components each.

(a) Is ab0 a number, a matrix? Specify the dimension if it is a matrix.
(b) Same question for a0b.
(c) What is the .i; j / term of ab0?

3. Show that if a is a column vector then a0a � 0.

4. In Example 3 the least square method tells us that the best linear approximation
of Y using the variables X1, X2, X3, and X4 is given by the equation

Y D 284:5 � 0:19X1 � 0:32X2 � 1:7X3 � 0:59X4:

(a) Explain why we should expect the coefficients of X1; X2; X3; X4 to be negative.
(b) In your opinion what are the most important variables in explaining Y ? Explain

your reasoning.

5. Compute the best linear approximation of Y using only the variables X3 and X4

for Example 3.

6. Compute the best linear approximation of Y using only the variable X4 for
Example 3.

7. A square matrix P is said to be idempotent if P 2 D P � P D P .

(a) Give an example of a 2 � 2 matrix which is idempotent.
(b) Let I be the unit matrix (it has a 1 on every diagonal entry and a 0 everywhere

else) with the same dimension as P . Show that if P is idempotent so is I � P .
(c) If P is idempotent compute P n for every natural n.
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8. (a) Find a matrix P such that

OY D P Y:

(b) Show that P is idempotent.

9. In this exercise we prove that the determinant in Example 4 is not 0 unless all the
xi are equal.

Let x1; x2; : : : ; xn and y1; x2; : : : ; yn be two fixed finite sequences of real
numbers. Define the function R by

R.u/ D
nX

iD1

.uxi C yi /
2:

(a) Show that

R.u/ D u2

nX

iD1

x2
i C 2u

nX

iD1

xi yi C
nX

iD1

y2
i :

(b) Show that R.v/ D 0 for some v if and only if for every i D 1; : : : ; n we have
yi D �vxi . If that is the case the sequences xi and yi are said to be proportional.

(c) Show that if the sequences xi and yi are not proportional then R.u/ > 0 for
every u.

(d) Show that if the sequences xi and yi are not proportional then

 
nX

iD1

xi yi

!2

<

nX

iD1

x2
i

nX

iD1

y2
i :

This is Cauchy’s inequality. To prove the inequality note that R is a second
degree polynomial (as a function of u). For it to be always strictly positive its
discriminant needs to be negative.

(e) Use Cauchy’s inequality with yi D 1 for all i to show that the determinant in
Example 4 is not 0 unless all the xi are equal.

10. Let A be a matrix.

(a) Show that .A0/0 D A.
(b) A matrix B is said to symmetric if B 0 D B . Give an example of a 3 � 3 matrix

which is symmetric.
(c) Let B be a matrix. Show that B 0B is a symmetric matrix.

11. Let A be an invertible matrix.

(a) Show that A0 is also invertible and .A0/�1 D .A�1/0. (Start with AA�1 D I

where I is the identity matrix and then take transposes on both sides of the
equality).

(b) Show that if A is symmetric (i.e., A0 D A) then so is A�1.
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10.2 Statistical Inference

The least squares method used in the preceding section gives a linear equation to
explain how Y varies as a function of one or several variables X . In this section we
will use statistical inference to decide how good this equation is. In order to do so
we need an underlying probability model that we now formulate. We will assume
that the variable Y we wish to explain is random and that the explanatory variables
X1; : : : ; Xp are deterministic (i.e., nonrandom). Assume that we have a sample of n

observations:

.yi ; xi;1; xi;2; : : : ; xi;p�1/ for i D 1; 2; : : : ; n;

where the yi are observations of Y , the xi;1 are observations of the variable X1,
the xi;2 are observations of the variable X2 and so on. Recall the notation from
Sect. 10.1:

Y D

0

BBBBB@

y1

y2

:

:

yn

1

CCCCCA
b D

0

BBBBB@

b0

b1

:

:

bp�1

1

CCCCCA
X D

0

BBBBB@

1 x1;1 x1;2 : : : x1;p�1

1 x2;1 x2;2 : : : x2;p�1

1 x3;1 x3;2 : : : x3;p�1

: : : : : : :

1 xn;1 xn;2 : : : xn;p�1

1

CCCCCA
:

We now state our assumptions. They will be in force for the rest of this chapter.

The Model
We assume the following model

Y D Xb C e;

where e is a column vector with n components ei . The random vector e is
assumed to be normal and

E.e/ D 0;

where 0 is the 0 vector with n components. Moreover, e has a variance matrix

Var.e/ D �2In;

where In is the n � n identity matrix (it has a 1 at each diagonal entry and 0’s
everywhere else) and � > 0 is a parameter that will need to be estimated.

There are several important consequences of these assumptions that we now
review.
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1. Using that X and b are not random we have

E.Y/ D E.Xb/ C E.e/ D Xb:

Hence, the model Y D Xb C e implies that E.Y/ is a linear function of the
variables X and e represents the random fluctuations of Y around its expected
value.

2. Since Var.e/ is assumed to be diagonal we have that all covariances Cov.ei ; ej /

for i 6D j are 0. Using that e is a normal vector this implies that ei and ej are
independent for all i 6D j .

3. For every i we have Var.ei/ D �2. That is, all the ei are assumed to have the
same variance.

4. Since e is a normal vector the vector Y

Y D Xb C e;

is also normal and its variance is

Var.Y/ D Var.e/ D �2In:

In particular, Yi and Yj are independent for all i 6D j .
When doing a linear regression the first task is to test whether b1 D b2 D � � � D

bp�1 D 0. If we cannot reject b1 D b2 D � � � D bp�1 D 0 we can conclude that the
model is not adequate. That is, our assumption that E.Y / is a linear function of the
X ’s is not adequate. We now construct such a test.

Let

1 D

0

BBBBB@

1

1

:

:

1

1

CCCCCA

be a column vector with n components all equal to 1 and let

NY D

0

BBBBB@

Ny
Ny
:

:

Ny

1

CCCCCA

be a column vector with n components all equal to Ny D 1
n

Pn
iD1 yi . We now define

the sums of squares that will determine how fit the model is.

SST D
nX

iD1

.yi � Ny/2 D .Y � NY/0.Y � NY/;
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where SST is called the total sum of squares. Let

OY D X Ob:

That is, OY is the vector of y’s predicted by the least squares method. If OY is close
enough to Y (the observed y0s) then the model is probably adequate. To measure
closeness we define another sum of squares

SSE D
nX

iD1

.yi � Oyi /
2 D .Y � OY/0.Y � OY/:

The sum of squares SSE is called the residual error sum of squares. This is so
because each yi � Oyi represents the “error” made by the linear approximation. The
smaller SSE is compared to SST the better the model is. The third sum of squares is
defined by

SSR D
nX

iD1

. Oyi � Ny/2 D . OY � NY/0. OY � NY/;

the sum of squares due to regression. Next we state the formula relating the different
sums of squares.

Partitioning the Total Sum of Squares
We have the following partitioning of the total sum of squares:

SST D SSE C SSR:

We now prove this formula. We subtract and add OY to get

SST D .Y � NY/0.Y � NY/ D .Y � OY C OY � NY/0.Y � OY C OY � NY/:

We expand the product to get

SST D .Y � OY/0.Y � OY/C.Y � OY/0. OY� NY/C. OY� NY/0.Y � OY/C. OY� NY/0. OY� NY/:

The first term in the r.h.s. is SSE and the last term is SSR. So we only need to show
that the two middle terms are 0. Note that the second term is the transpose of the
third. Hence it is enough to show that the third term is 0. We now do that.

. OY � NY/0.Y � OY/ D OY0.Y � OY/ � NY0.Y � OY/: (10.1)

Recall the normal equations
X0X Ob D X0Y:
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Since
X0Y � X0X Ob D X0.Y � X Ob/ D X0.Y � OY/

we get
X0.Y � OY/ D 0; (10.2)

where 0 is a column vector with all its p components equal to 0. Going back to
(10.1) and using (10.2) we have

OY0.Y � OY/ D .X Ob/0.Y � OY/ D Ob0X0.Y � OY/ D Ob00 D 0:

Finally, we need to show that the second term in the r.h.s of (10.1) is also 0. Recall
that the first row of X0 has only 1’s. Hence the first component of the column vector
X0.Y � OY/ is the sum of residuals

Pn
iD1.yi � Oyi /. Using (10.2) we get

nX

iD1

.yi � Oyi / D 0:

Recalling that NY is a column vector whose components are all Ny we get

NY0.Y � OY/ D
nX

iD1

Ny.yi � Oyi / D Ny
nX

iD1

.yi � Oyi / D Ny � 0 D 0:

This completes the proof of the formula SST D SSR C SSE.

Example 1. Here are the three sums of squares for Example 3 in 10.1. We have

SST D 537; 638;

SSE D 129; 914

and
SSR D 407; 724:

Note that SSE C SSR D 537; 638 which is equal to SST as it should.

A first measure of the goodness of fit of the linear model is the following statistic.

The R2 Statistic
The R2 statistic is defined by

R2 D SSR

SST
:

The coefficient R is always in Œ0; 1�. The closer it is to 1 the better the linear
model fits the data.
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Example 2. We compute R2 for our example. For example 1 we have

R2 D SSR

SST
D 407; 724

537; 638
D 0:76

and taking the square root we get R D 0:87 which is pretty high and shows a good
fitness of the linear model.

Remark 2. It is easy to artificially increase R2 making the model appear better than
it is. Every time we add an explanatory variable R2 increases. So if we add enough
explanatory variables (even if they have nothing to do with the model!) we can
get as close to 1 as we want. This, of course, is not recommended. The point of a
mathematical model is to explain something in the simplest possible way. Hence,
one should strive to keep p as low as possible.

We are now ready to test whether the model is adequate.

Testing the Model
To test

H0 W b1 D b2 D � � � D bp D 0

against
Ha W at least one bi for 1 � i � p is not 0

we use the statistic

F D SSR=.p � 1/

SSE=.n � p/
;

where p � 1 is the number of explanatory variables X1; X2; : : : ; Xp�1 and n

is the number of observations in the sample. Under the null hypothesis H0, F

follows an F distribution with degrees .p � 1; n � p/. The P -value of the test
is given by

P D P.F.p � 1; n � p/ > F /:

Recall that e is normal with mean 0 and variance �2In. Under the null hypothesis
SSR and SSE are independent and are distributed according to a Chi-Square
distribution with degrees p � 1 and n � p, respectively. This is why F follows
an F distribution with degrees p � 1 and n � p. The proof of this fact as well as the
other proofs we omit in this chapter are very well done in Chaps. 2 and 3 in Linear
Models by S.R.Searle, 1971, John Wiley.

Example 3. We now perform the test on our example. We have p D 5 and n D 163.
The statistic F is

F D SSR=.p � 1/

SSE=.n � p/
D SSR=4

SSE=158
D 124:
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The P value
P.F.4; 158/ > 124/

is very small: the F table yields

P.F.4; 100/ > 5:02/ D 0:001 and P.F.4; 200/ > 4:81/ D 0:001:

Therefore, P.F.5; 158/ > 210/ is much smaller than 0.001. Hence we reject the
null hypothesis. This tells us only that at least one of the bi for 1 � i � 5 is
significantly different from 0. We are now going to construct a test to test individual
bi ’s. For a given i , if we cannot reject bi D 0 it means that the corresponding Xi

does not contribute significantly in explaining the variable Y .
Recall from last section that the least squares estimate of b is

Ob D AY;

where
A D .X0X/�1X0

is a nonrandom matrix. Hence

E. Ob/ D AE.Y/ D AXb D .X0X/�1X0Xb D b:

This proves the following result.

Unbiased Estimator
Under the assumptions of the model the least squares estimate

Ob D .X0X/�1X0Y

is an unbiased estimator of b.

We now turn to Var. Ob/. Recall from Sect. 8.3 that if A is nonrandom matrix and
T is a random matrix then

Var.AT/ D AVar.T/A0:

Writing again
Ob D AY;

where

A D .X0X/�1X0
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we get
Var. Ob/ D AVar.Y/A0 D .X0X/�1X0�2InŒ.X0X/�1X0�0:

Observe now that X0X is a symmetric matrix (i.e., it is equal to its transpose). The
inverse (if it exists) of a symmetric matrix is also symmetric hence

Œ.X0X/�1X0�0 D X.X0X/�1;

and

Var. Ob/ D �2.X0X/�1X0X.X0X/�1 D �2.X0X/�1:

We state the result we just proved.

Variance of the Estimator
Under the assumptions of the model we have

Var. Ob/ D �2.X0X/�1:

From the result above we see that the variance of Obi (the i component of Ob) is

Var. Obi / D �2cii

where ci i is the i term in the diagonal of .X0X/�1. In order to test bi we still need
an estimate for �2.

Estimating the Variance
An unbiased estimator of �2 is

O�2 D SSE

n � p
:

We will prove this in the exercises.

Example 4. For our example

O�2 D SSE

n � p
D 129; 914

158
D 822;

and an estimate for � is then
p

822 D 28:
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We are now ready to test individual bi ’s.

The Distribution of Obi

Under the normal assumptions of the model for i D 0; 1; : : : ; p � 1

Obi � bip
O�2ci i

follows a Student distribution with n � p degrees of freedom, where ci i is the
i term in the diagonal of .X0X/�1.

The property above is a consequence of the following facts: Ob is a normal vector
(why?), Ob and SSE are independent and SSE has a Chi-square distribution with n�p

degrees of freedom. The proofs can be found in Searle (1971).
We now apply this property to test individual bi ’s in our example.

Example 5. Recall that X1 is the percentage of children vaccinated against measles.
We perform the test

H0 W b1 D 0

Ha W b1 6D 0:

From Example 3 in 10.1 we have

.X0X/�1 D 10�5

0

BBBBB@

35713 �171 �126 �229 146

�171 26 �22 �2 0

�126 �22 23 0 0

�229 �2 0 7 �3

146 0 0 �3 2

1

CCCCCA
:

Since we numbered our bi ’s starting at i D 0 the rows and columns of the matrix
also start at 0. Hence, we read c11 D 26 � 10�5.

p
O�2c11 D

p
822 � 26 � 10�5 D 0:46:

Hence,
Ob1p
O�2c11

D �0:19

0:46
D �0:41;

where Ob1 was computed in Example 3 in 10.1. Therefore, the P value for this two-
sided test is

P D 2P.t.158/ < �0:41/ D 0:68:
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We cannot reject the null hypothesis. Hence, the measles vaccination rate does not
appear to have a significant role in the rate of infant mortality.

10.2.1 Geometric Interpretation

As seen above a consequence of the normal equations is (2)

X0.Y � OY/ D 0:

This shows that the dot product of each column of X with the residual vector Y � OY
is 0. That is the residual vector is perpendicular to each column vector of X and
therefore to the vector space spanned by the column vectors of X. Since OY D X Ob
we also know that OY belongs to the vector space spanned by the column vectors of
X. This implies that the predicted vector OY is the orthogonal projection of Y on this
vector space.

Remark 3. The different tests we described in this section all depend on the
assumptions about the model. In practice it is important to check these assumptions
as we did in 6.2 for the simple linear regression. In particular one should perform
an analysis of the residuals yi � Oyi . More precisely, one should check whether
the residuals appear to have equal variance, are uncorrelated and are normally
distributed. See for instance Chap. 7 in A second course in statistics (Fifth edition)
by W. Mendenhall and T. Sincich.

Exercises 10.2

1. (a) In Example 5 above we tested the relevance of X1 in the model. Test the
relevance of the other variables.

(b) Consider the model explaining Y with only variables X3 and X4. Compute the
new .X0X/�1, Ob, O�2.

(c) Compute R2 for the model in (b) and compare it to the R2 for the full model
that was computed in Example 2.

(d) For the model in (b) test whether b3 D b4 D 0 and test also whether the
individual bi ’s are 0.

(e) Consider a model explaining Y with only the variable X4. Compare this model
to the model in (b).

(f) Discuss the practical implications of your findings.

2. (a) Use the World Health Organization data at http://www.who.int/whosis/
whostat/2010/en/index.html to get a linear equation explaining life expectancy
at birth using the following explanatory variables: under 1 mortality rate,
under 5 mortality rate and adult mortality rate.

http://www.who.int/whosis/whostat/2010/en/index.html
http://www.who.int/whosis/whostat/2010/en/index.html
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(b) Perform all the relevant tests.
(c) Based on the tests performed in (b) decide whether you should eliminate one or

more explanatory variables. If so compare the full model to the reduced model.
(d) Discuss the practical implications of your findings.

3. Show that Ob is a normal vector.

4. (a) Show that
SST � SSR D Y0Y � OY0 OY � 2.Y � OY/0 NY:

(b) Use (a) to conclude that

SST � SSR D Y0Y � OY0 OY:

(Recall that the sum of residuals is 0).
(c) Use (b) to show that

Y0Y D .Y � OY/0.Y � OY/ C OY0 OY:

5. (a) Use that
X0.Y � OY/ D 0

to get
OY0.Y � OY/ D 0:

(b) Give a geometrical interpretation of (b).

6. Recall that

R2 D SSR

SST
and F D SSR=.p � 1/

SSE=.n � p/
:

Show that

F D R2=.p � 1/

.1 � R2/.n � p/
:

7. In this exercise we prove that SSE=.n � p/ is an unbiased estimator of �2:

(a) Show that
OY D PY;

where
P D X.X0X/�1X0Y:

(b) Show that
SSE D Y0.In � P/Y;

where In is the n � n identity matrix. (Use 4 (a)).



Exercises 10.2 331

(c) Show that

E.Y0.In � P/Y/ D E.Y0/.In � P/E.Y/ C �2trace.In � P/:

(Use that if T is a random vector and A is a nonrandom matrix then E.T0AT/ D
E.T0/AE.T/ C trace.AVar.T//; where the trace of a matrix is the sum of its
diagonal terms.)

(d) Show that
.In � P/E.Y/ D 0

and hence
E.Y0.In � P/Y/ D �2trace.In � P/:

(e) Show that
trace.P/ D trace.Ip/ D p:

(You may use that trace.AB/ D trace.BA/ for any same size square matrices
A and B).

(f) Use (e) to show that

E.Y0.In � P/Y/ D �2.n � p/:

(g) Show that SSE=.n � p/ is an unbiased estimator of �2:



Further Reading

Probability

The following two references are at a slightly higher level than this book. They cover
additional topics and examples in probability. They are:

The essentials of probability by R. Durrett (The Duxbury Press)
Probability by J. Pitman (Springer Verlag).
An introduction to probability theory and its applications by W. Feller (Volume I,

third edition, Wiley) is at a substantial higher level than this book. It has influenced
several generations of probabilists and covers hundreds of interesting topics. It is a
GREAT book.

Statistics

A very good elementary introduction to statistics is Introduction of the practice
of statistics by D. Moore and G. McCabe (second edition, Freeman). A more
mathematical approach to statistics is contained in Probability and Statistics by
K. Hastings (Addison-Wesley).

At an intermediate level the reader may read Introduction to the Theory of
statistics by A.M. Mood, F.A. Graybill and D.C. Boes (third edition, McGraw Hill)
and Mathematical statistics and data analysis by J.A. Rice (third edition, Thomson).

For simple and multiple linear regression A second course in statistics (Fifth
edition) by W. Mendenhall and T. Sincich is a good text focussing on the applied
side of things. For the theory Linear Models by S.R. Searle, 1971, John Wiley is a
good text. The reader will find all the proofs that we omitted in Chap. 10.

To find the mathematical proofs that were omitted in Chap. 9 as well as many
other results the reader may consult The theory of statistical inference by S. Zacks
(Wiley). This is an advanced text.

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7, © Springer Science+Business Media, LLC 2012
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Discrete Distributions

Bernoulli with parameter p:

P.X D 0/ D 1 � p and P.X D 1/ D p

E.X/ D p

Var.X/ D p.1 � p/

MX.t/ D 1 � p C pet :

Binomial with parameters n and p:

P.X D k/ D
�

n

k

�
pk.1 � p/n�k for k D 0; 1; : : : ; n:

E.X/ D np

Var.X/ D np.1 � p/

MX.t/ D .1 � p C pet /n:

Geometric with parameter p:

P.X D k/ D .1 � p/k�1p for k D 0; 1; : : : :

E.X/ D 1

p

Var.X/ D 1 � p

p2

MX .t/ D pet

1 � .1 � p/et
:

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7, © Springer Science+Business Media, LLC 2012
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Poisson with parameter 	:

P.X D k/ D e�	 	k

kŠ
for k D 0; 1; : : : :

E.X/ D 	

Var.X/ D 	

MX.t/ D exp.	.et � 1//:

Continuous Distributions

Beta with parameters .a; b/:

f .x/ D 
.a C b/


.a/
.b/
xa�1.1 � x/b�1 for 0 < x < 1

E.X/ D a

a C b

Var.X/ D ab

.a C b/2.a C b C 1/

Exponential with parameter a:

f .x/ D ae�ax for x > 0

E.X/ D 1

a

Var.X/ D 1

a2

MX.t/ D a

a � t
for t < a:

Gamma with parameters .r; 	/:

f .x/ D 	r


.r/
xr�1e�	x for x > 0

E.X/ D r

	

Var.X/ D r

	2

MX .t/ D
�

	

	 � t

�r

for t < 	:
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Normal with mean � and standard deviation � :

f .x/ D 1

�
p

2�
e� 1

2�2 .x��/2

for � 1 < x < C1

E.X/ D �

Var.X/ D �2

MX.t/ D e�tC 1
2 �2t2

:

Standard normal:

f .x/ D 1p
2�

e� 1
2 x2

for � 1 < x < C1

E.X/ D 0

Var.X/ D 1

MX.t/ D e
1
2 t2

:

Uniform on Œa; b�:

f .x/ D 1

b � a
for a < x < b

E.X/ D a C b

2

Var.X/ D .b � a/2

12
:



Normal Table

The table below gives P.0 < Z < z/ for a standard normal random variable Z. For
instance P.0 < Z < 0:43/ D 0:1664.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

(continued)

R.B. Schinazi, Probability with Statistical Applications,
DOI 10.1007/978-0-8176-8250-7, © Springer Science+Business Media, LLC 2012

339



340 Normal Table

(continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990



Student Table

The table below gives ta such that P.jt.n/j < ta/ D a where t.n/ is a Student
distribution with n degrees of freedom. For instance, we read that P.jt.5/j <

1:48/ D 0:8.

n a D 0:6 a D 0:7 a D 0:8 a D 0:9 a D 0:95

1 1.38 1.96 3.08 6.31 12:71

2 1.06 1.39 1.89 2.92 4:30

3 0.98 1.25 1.64 2.35 3:18

4 0.94 1.19 1.53 2.13 2:78

5 0.92 1.16 1.48 2.02 2:57

6 0.91 1.13 1.44 1.94 2:45

7 0.90 1.12 1.41 1.89 2:36

8 0.89 1.11 1.40 1.86 2:31

9 0.88 1.10 1.38 1.83 2:26

10 0.88 1.09 1.37 1.81 2:23

11 0.88 1.09 1.36 1.80 2:20

12 0.87 1.08 1.36 1.78 2:18

13 0.87 1.08 1.35 1.77 2:16

14 0.87 1.08 1.35 1.76 2:14

15 0.87 1.07 1.34 1.75 2:13

16 0.86 1.07 1.34 1.75 2:12

17 0.86 1.07 1.33 1.74 2:11

18 0.86 1.07 1.33 1.73 2:10

19 0.86 1.07 1.33 1.73 2:09

20 0.86 1.06 1.33 1.72 2:09

21 0.86 1.06 1.32 1.72 2:08

22 0.86 1.06 1.32 1.72 2:07

23 0.86 1.06 1.32 1.71 2:07

24 0.86 1.06 1.32 1.71 2:06

25 0.86 1.06 1.32 1.71 2:06

1 0.84 1.04 1.28 1.64 2:01
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Chi-Square Table

The table below gives �a such that P.�.n/ < �a/ D a where �.n/ is a Chi-
Square distribution with n degrees of freedom. For instance, we read that P.�.6/ <

1:64/ D 0:05.

n a D 0:01 a D 0:05 a D 0:90 a D 0:95 a D 0:99

1 0:00 0:00 2:71 3:84 6:63

2 0:02 0:10 4:61 5:99 9:21

3 0:11 0:35 6:25 7:81 11:34

4 0:30 0:71 7:78 9:49 13:28

5 0:55 1:15 9:24 11:07 15:09

6 0:87 1:64 10:64 12:59 16:81

7 1:24 2:17 12:02 14:07 18:48

8 1:65 2:73 13:36 15:51 20:09

9 2:09 3:33 14:68 16:92 21:67

10 2:56 3:94 15:99 18:31 23:21

11 3:05 4:57 17:28 19:68 24:72

12 3:57 5:23 18:55 21:03 26:22

13 4:11 5:89 19:81 22:36 27:69

14 4:66 6:57 21:06 23:68 29:14

15 5:23 7:26 22:31 25:00 30:58

16 5:81 7:96 23:54 26:30 32:00

17 6:41 8:67 24:77 27:59 33:41

18 7:01 9:39 25:99 28:87 34:81

19 7:63 10:12 27:20 30:14 36:19

20 8:26 10:85 28:41 31:41 37:57

21 8:90 11:59 29:62 32:67 38:93

22 9:54 12:34 30:81 33:92 40:29

23 10:20 13:09 32:01 35:17 41:64

24 10:86 13:85 33:20 36:42 42:98

25 11:52 14:61 34:38 37:65 44:31
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Index

B
Bayes estimator, 301
Bayes’ Formula, 10
Bernoulli random variable, 26

expectation, 36
variance, 51

Beta distribution, 227
Binomial coefficient, 71

Pascal triangle, 74
Binomial random variable, 76

expectation, variance, 79
Binomial Theorem, 74
Birthday problem, 18, 21, 43

C
Central Limit Theorem, 107

proof, 195
Chebyshev’s inequality, 102
Chi-square distribution, 150, 234
Chi-square tests, 150
Conditional distribution

continuous case, 257
discrete case, 255

Conditional probability, 7
Confidence interval

difference of means, 124
difference of proportions, 122
mean, 119
proportion, 115

Convergence in distribution, 193
Convolution formula, 192
Correlation

random variables, 219
sample, 165

Covariance, 217

D
Density of a random variable, 30
Density of a random vector, 211
Distribution function, 201

E
Expectation

continuous random variable, 39
discrete random variable, 36
linearity, 41, 47, 216
random matrix, 238
sample average, 101

Exponential families of distributions, 295
Exponential random variable, 34

expectation, 40
memoryless property, 35
sum, 190
variance, 54

F
Factorial, 70
F distribution, 237
Fisher information, 285

G
Gamma random variable, 184

sum, 234
Geometric random variable, 27

expectation, 39
variance, 53

Goodness of fit test, 153

H
Hemophilia, 13
Hypothesis test, 128
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I
Independence

events, 14
random variables, 55, 213

J
Joint distributions

continuous, 212
discrete, 215

L
Law of Large numbers, 36, 100
Least squares

multiple regression, 315
regression line, 161

Leukemia, 87
Lognormal distribution, 211

M
Marginal densities, 213
Markov’s inequality, 101
Matched pairs, 144
Maximum likelihood estimation, 272
Maximum of random variables, 63, 204
Mean. See Expectation
Mean square error, 284
Median, 40
Memoryless, 28, 35
Minimum of random variables, 204
Mode

binomial, 80
definition, 41
Poisson, 94

Moment, 180
Moment generating function, 179, 241
Monte-Carlo integration, 105

N
Negative binomial, 84
Normal quantile plot, 146
Normal random variable, 58

approximation to the binomial, 81
approximation to the Poisson, 94
linear combination, 187

Normal random vectors, 241

O
Overbooking, 88

P
Pascal triangle, 74
Permutation, 70
Poisson random variable, 87

approximation to a sum of binomials,
87

approximation to the binomial, 88
mean, 93
scatter theorem, 91
variance, 94

Posterior distribution, 301
Prior distribution, 301
P-value, 132

R
Random variables

Bernoulli, 26
beta, 228
binomial, 76
Cauchy density, 231
chi-square, 150, 234
exponential, 34
F, 237
gamma, 184
geometric, 27
lognormal, 211
negative binomial, 84
normal, 58
Poisson, 87
student, 235
uniform continuous, 32
uniform discrete, 26
Weibull, 211

Rao–Blackwell Theorem, 298
Regression line, 161

S
Sample average, 97

expectation, 100
variance, 100

Sample correlation, 165
Simulation, 206
Slot machine, 24
Standard deviation, 50
Standard normal, 59
Stirling’s formula, 75
Student random variable, 138, 235
Sufficiency

definition, 291
factorization criterion, 293

Sum of random variables, 186, 225
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T
Test

goodness of fit, 153
independence, 151
mean, 131
proportion, 128
sign, 146
two means, 136
two proportions, 133

Transformation of a random variable, 208
Transformation of a random vector, 223
Type I error, 137
Type II error, 137

U
Unbiased estimators, 285

V
Variance, 50

linear combination, 100
random vector, 238
sample, 121
sample average, 100
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