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Preface

The phrase “Applied Stochastic Processes“ refers to stochastic processes
that are commonly used as mathematical models of random phenomena that
evolve over time or space. Since randomness is ubiquitous in our universe,
and maybe beyond, the application areas have been very diverse. Here are
some examples.

Telecommunications: Sizing networks, antenna coverage, traffic control,
alternate routing, and voice recognition.

Computers: Network design, parallel processing, artificial intelligence, pat-
tern recognition, and performance optimization.

Manufacturing: Forecasting, planning, scheduling, facility location, and
resource management.

Finance: Portfolios, option pricing, pension funds, and forecasting.

Insurance: Risk analysis, demographics, investments, and diversification.

Internet: Design, control, optimal searching, parallel processing, advertis-
ing, and pattern recognition.

Call-centers: Forecasting, staffing, alternate routing, and optimal design.

Airlines: Scheduling, maintenance, ticket pricing, and overbooking.

Supply chains: Network design, inventory control, transhipping, alternate
sources, and contracting.

Military: Logistics, scheduling, maintenance, targeting, intelligence, pur-
chasing, and war games.

Infrastructure: Reliability and maintenance of roads, buildings, bridges,
dams, levees, and utilities.

Airports: Traffic control, emergencies, security, and runway design.

Inventory control: Retail and rental items, blood, oil, water, and food.

Security: Computers, homeland, banks, phones, and data files.

Medicine: DNA sequencing, diagnoses, epidemics, and vaccines.

Energy: Planning, control, sharing, storage, and disasters.

vii
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Other major applications have been in academic disciplines (e.g., Statis-
tics, Mathematics, Engineering, Physics, Biology, Social Sciences and Busi-
ness), and in subjects related to government (e.g., NASA, NIH and NIST).

The documentation of stochastic applications is in company and govern-
ment technical reports, academic conference proceedings, and journals. Jour-
nals that publish research on applied stochastic processes include Advances in
Applied Probability, Annals of Applied Probability, Journal of Applied Prob-
ability, Probability in the Engineering and Informational Sciences, Queueing
Systems: Theory and Applications, and Stochastic Processes and their Appli-
cations.

The focus of this book is on the principal stochastic processes used in
applications that are as follows. This list corresponds to the chapter titles.

1. Markov Chains in Discrete Time
2. Renewal and Regenerative Processes
3. Poisson Processes
4. Continuous-time Markov Chains
5. Brownian Motion.

The book describes basic properties of these stochastic processes and il-
lustrates how to use the processes to model systems and solve problems.
The presentation is at an introductory level for readers familiar with random
variables, distribution functions, manipulations with expectations, and ele-
mentary real analysis. Knowledge of stochastic processes or measure theory
is not required. A review of conditional probabilities is in the first chapter,
and additional background material on probability and real analysis is sum-
marized in the appendix.

The book has two aims. One aim is to present theorems and examples of
applied stochastic processes as in most introductory textbooks. So the book
would be suitable for one or two courses on applied stochastic processes.

The second aim is to go beyond an introduction and provide a comprehen-
sive description of the processes in the first four chapters mentioned above,
and a considerable coverage of Brownian motion (not including stochastic
integration). In this regard, the book emphasizes the following.

• Careful and complete proofs that illustrate stochastic reasoning and the
algebra and calculus of probabilities and expectations.

• The use of point processes as a vehicle to represent special transition
times in Markov chains, space-time Poisson processes, Brownian/Poisson par-
ticle systems, and regeneration times in complex systems.

• Techniques for constructing or formulating processes (e.g., clock times,
sample-process representations for Poisson processes, marking and transform-
ing of processes, and subordination of processes).

• Mathematical tools and techniques for stochastic analysis including
Laplace functionals and Palm probabilities for point processes, coupling, Lévy
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formulas for functionals of Markov chains, martingales, stopping times, func-
tional central limit theorems, and convergence concepts.

• Poisson processes in space as well as time, marked Poisson processes,
and Poisson limits of sparse point processes.

• Regenerative phenomena (e.g., crude regenerations in key renewal the-
orem, and regenerate-increment processes as a framework for various strong
laws of large numbers and central limit theorems).

A major theme of the book, and of applied stochastic processes in general,
is the establishment of limiting distributions and averages for quantities of
interest. Accordingly, there is an extensive coverage of characterizations of
limiting distributions of the principal processes, strong laws of large numbers
for evaluating limiting averages for the processes, central limit theorems that
describe deviations of the averages, limit theorems for approximating sparse
point processes by Poisson processes, and functional central limit theorems
for approximating various processes by functions of Brownian motion.

Each chapter contains numerous examples and exercises that illustrate
applications or extensions of the theorems. Several sections are devoted to
stochastic networks, queueing systems, branching populations, reversible pro-
cesses, Markov chain Monte Carlo models, compound Poisson processes,
Gaussian processes, and Brownian bridge.

Important topics in applied stochastic processes that the book does not
cover include diffusion processes, stationary processes, stochastic integrals
and differential equations, interacting particle systems, simulation, Gibbs
fields, finance models, large deviations, and stochastic control (Markov deci-
sion models). Most of these topics are in more advanced texts, and the rest
are broad enough to be subjects of specialized monographs.

I will close with a few acknowledgements. First, I am grateful to William
Feller for writing his 1950 book Introduction to Probability and its Applica-
tions. It opened my eyes to the notion that “One can make sense out of the
nonsense of randomness”, which sparked my interest in probability. I cannot
give enough thanks to Erhan Cinlar, my Ph.D. advisor, who has been a kind
friend as well as a mentor. I am also very appreciative to those who have
developed the knowledge of stochastic processes — I made extensive use of
their works in writing the book, especially the work of Olav Kallenberg 2004.

My loving wife Joan contributed to the clarity of the exposition by advising
me to “reach the reader” by adopting a writing style that is not overly terse
and easy to read. My colleague Steve Hackman prodded me along similar
lines on editorial issues. Careful readings by Brian Fralix, Anton Kleywegt,
Evsey Morozov, Christian Rau, and Georgia Tech students were very helpful
in catching many typos and errors. I thank all of you for helping me on this
project.

Richard Serfozo
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Chapter 1

Markov Chains

A sequence of random variables X0, X1, . . . with values in a countable set S is
a Markov chain if at any time n, the future states (or values) Xn+1, Xn+2, . . .
depend on the historyX0, . . . , Xn only through the present state Xn. Markov
chains are fundamental stochastic processes that have many diverse applica-
tions. This is because a Markov chain represents any dynamical system whose
states satisfy the recursion Xn = f(Xn−1, Yn), n ≥ 1, where Y1, Y2 . . . are
independent and identically distributed (i.i.d.) and f is a deterministic func-
tion. That is, the new state Xn is simply a function of the last state and
an auxiliary random variable. Such system dynamics are typical of those for
queue lengths in call centers, stresses on materials, waiting times in produc-
tion and service facilities, inventories in supply chains, parallel-processing
software, water levels in dams, insurance funds, stock prices, etc.

This chapter begins by describing the basic structure of a Markov chain
and how its single-step transition probabilities determine its evolution. For in-
stance, what is the probability of reaching a certain state, and how long does
it take to reach it? The next and main part of the chapter characterizes the
stationary or equilibrium distribution of Markov chains. These distributions
are the basis of limiting averages of various cost and performance param-
eters associated with Markov chains. Considerable discussion is devoted to
branching phenomena, stochastic networks, and time-reversible chains. In-
cluded are examples of Markov chains that represent queueing, production
systems, inventory control, reliability, and Monte Carlo simulations.

Before getting into the main text, a reader would benefit by a brief review
of conditional probabilities in Section 1.22 of this chapter and related material
on random variables and distributions in Sections 1–4 in the Appendix. The
rest of the Appendix, which provides more background on probability, would
be appropriate for later reading.

R. Serfozo, Basics of Applied Stochastic Processes,
Probability and its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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1.1 Introduction

This section introduces Markov chains and describes a few examples.
A discrete-time stochastic process {Xn : n ≥ 0} on a countable set S

is a collection of S-valued random variables defined on a probability space
(Ω,F , P ). The P is a probability measure on a family of events F (a σ-field)
in an event-space Ω.1 The set S is the state space of the process, and the
value Xn ∈ S is the state of the process at time n. The n may represent a
parameter other than time such as a length or a job number.

The finite-dimensional distributions of the process are

P{X0 = i0, . . . , Xn = in}, i0, . . . , in ∈ S, n ≥ 0.

These probabilities uniquely determine the probabilities of all events of the
process. Consequently, two stochastic processes (defined on different probabil-
ity spaces or the same one) are equal in distribution if their finite-dimensional
distributions are equal. Various types of stochastic processes are defined by
specifying the dependency among the variables that determine the finite-
dimensional distributions, or by specifying the manner in which the process
evolves over time (the system dynamics).

A Markov chain is defined as follows.

Definition 1. A stochastic process X = {Xn : n ≥ 0} on a countable set S
is a Markov Chain if, for any i, j ∈ S and n ≥ 0,

P{Xn+1 = j|X0, . . . , Xn} = P{Xn+1 = j|Xn}, (1.1)

P{Xn+1 = j|Xn = i} = pij . (1.2)

The pij is the probability that the Markov chain jumps from state i to state
j. These transition probabilities satisfy

∑
j∈S pij = 1, i ∈ S, and the matrix

P = (pij) is the transition matrix of the chain.

Condition (1.1), called the Markov property, says that, at any time n, the
next state Xn+1 is conditionally independent of the past X0, . . . , Xn−1 given
the present state Xn. In other words, the next state is dependent on the
past and present only through the present state. The Markov property is an
elementary condition that is satisfied by the state of many stochastic phe-
nomena. Consequently, Markov chains, and related continuous-time Markov
processes, are natural models or building blocks for applications.

Condition (1.2) simply says the transition probabilities do not depend on
the time parameter n; the Markov chain is therefore “time-homogeneous”. If
the transition probabilities were functions of time, the process Xn would be a
non-time-homogeneous Markov chain. Such chains are like time-homogeneous

1 Further details on probability spaces are in the Appendix. We follow the convention of
not displaying the space (Ω,F , P ) every time random variables or processes are introduced;
it is mentioned only when needed for clarity.
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chains, but the time dependency introduces added accounting details that we
will not address here. See Exercises 12 and 13 for further insights.

Since the state space S is countable, we will sometimes label the states by
integers, such as S = {0, 1, 2, . . .} (or S = {1, . . . ,m}). Under this labeling,
the transition matrix has the form

P =

⎡

⎢
⎢
⎢
⎢
⎣

p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎦

We end this section with a few preliminary examples.

Example 2. Binomial Markov Chain. A Bernoulli process is a sequence of
independent trials in which each trial results in a success or failure with
respective probabilities p and q = 1−p. LetXn denote the number of successes
in n trials, for n ≥ 1. By direct reasoning, it follows that Xn has a binomial
distribution with parameters n and p:

P{Xn = k} =

(
n

k

)

pk(1− p)n−k, 0 ≤ k ≤ n.

Now, suppose at the nth trial that Xn = i. Then at the next trial, Xn+1

will equal i + 1 or i with probabilities p and 1 − p, respectively, regardless
of the values of X1, . . . , Xn−1. Thus Xn is a Markov chain with transition
probabilities pi,i+1 = p, pii = 1 − p and pij = 0 otherwise. This binomial
Markov chain is a special case of the following random walk.

Example 3. Random Walk. Suppose Y1, Y2, . . . are i.i.d. integer-valued ran-
dom variables, and define X0 = 0 and

Xn =

n∑

m=1

Ym, n ≥ 1.

The process Xn is a random walk on the set of integers S, where Yn is the
step size at time n. A random walk represents a quantity that changes over
time (e.g., a stock price, an inventory level, or a gambler’s fortune) such that
its increments (step sizes) are i.i.d. Since Xn+1 = Xn + Yn+1, and Yn+1 is
independent of X0, . . . , Xn, it follows that, for any i, j ∈ S and n ≥ 0,

P{Xn+1 = j|X0, . . . , Xn−1, Xn = i}
= P{Xn + Yn+1 = j|Xn = i} = P{Y1 = j − i}.

Therefore, the random walkXn is a Markov chain on the nonnegative integers
S with transition probabilities pij = P{Y1 = j − i}.
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When the step sizes Yn take values 1 or −1 with p = P{Y1 = 1} and
q = P{Y1 = −1}, the chain Xn is a simple random walk. Its transition
probabilities, for each i, are

pi,i+1 = p, pi,i−1 = q, pij = 0, for j �= i+ 1 or i− 1.

This type of walk restricted to a finite state space is described next.

Example 4. Gambler’s Ruin. Consider a Markov chain on S = {0, 1, . . . ,m}
with transition matrix

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . . .
q 0 p 0 . . .
0 q 0 p 0 . .
. . . . . . . . .
. . . 0 q 0 p
. . . . . . 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

One can interpret the state of the Markov chain as the fortune of a Gambler
who repeatedly plays a game in which the Gambler wins or loses $1 with
respective probabilities p and q = 1 − p. If the fortune reaches state 0, the
Gambler is ruined since p00 = 1 (state 0 is absorbing — the chain stays there
forever). On the other hand, if the fortune reaches m, the Gambler retires
with the fortune m since pmm = 1 (m is another absorbing state).

A versatile generalization to state-dependent gambles (and other applica-
tions as well) is with a transition matrix

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

r0 p0 0 . . . . . . . . . . . .
q1 r1 p1 0 . . . . . . . .
0 q2 r2 p2 0 . . . .
. . . . . . . . . . . . . . . . . .
. . . . 0 qm−1 rm−1 pm−1

. . . . . . . . . . qm rm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

In this case, the outcome of the game depends on the Gambler’s fortune.
When the fortune is i, the Gambler either wins or loses $1 with respective
probabilities pi or qi, or breaks even (the fortune does not change) with
probability ri. Another interpretation is that the state of the chain is the
location of a random walk with state-dependent steps of size −1, 0, or 1.

Markov chains are common models for a variety of systems and phenom-
ena, such as the following, in which the Markov property is “reasonable”.

Example 5. Flexible Manufacturing System. Consider a machine that is capa-
ble of producing three types of parts. The state of the machine at time period
n is denoted by a random variable Xn that takes values in S = {0, 1, 2, 3},
where 0 means the machine is idle and i = 1, 2 or 3 means the machine pro-
duces a type i in the time period. Suppose the machine’s production schedule
is Markovian in the sense that the next type of part it produces, or a possible
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idle period, depends only on its current state, and the probabilities of these
changes do not depend on time. Then Xn is a Markov chain. For instance,
its transition matrix might be

P =

⎡

⎢
⎢
⎣

1/5 1/5 1/5 2/5
1/10 1/2 1/10 3/10
1/5 0 1/5 3/5
1/5 0 2/5 2/5

⎤

⎥
⎥
⎦

Such probabilities can be estimated as in Exercise 65, provided one can ob-
serve the evolution of the system. Otherwise, the probabilities can be deter-
mined by subjective reasoning or other techniques.

Note that at any period in which the machine produces a type 1 part, in
the next period it produces a type 1, 2 or 3 part with respective probabilities
1/2, 1/10, and 3/10. Also, whenever the machine is idle, it remains idle in the
next period with probability 1/5. Consequently, the probability the machine
is idle for m periods is (4/5)(1/5)m−1, which is a geometric distribution with
parameter 4/5 and mean 1.25 periods; see Exercise 6.

1.2 Probabilities of Sample Paths

A basic issue in analyzing the structure of a stochastic process is to describe
its finite-dimensional distributions. This section shows that these distribu-
tions for a Markov chain Xn are simply products of its transition probabili-
ties and the probability distribution of the initial stateX0. Finite-dimensional
distributions and more general properties of sample paths2 are conveniently
expressed by n-step transition probabilities, which are obtained as the nth
product of the transition matrix.

Proposition 6. Suppose Xn is a Markov chain on S with transition probabil-
ities pij and initial distribution αi = P{X0 = i}. Then, for any i0, . . . , in ∈ S
and n ≥ 0,

P{X0 = i0, . . . , Xn = in} = αi0pi0,i1 · · · pin−1,in .

Proof. Proceeding by induction, this statement is obvious for n = 0. Now,
assume it is true for some n, and let An = {X0 = i0, . . . , Xn = in}. Then the
statement is true for n+ 1, since

P (An+1) = P (An)P{Xn+1 = xn+1|An} = αi0pi0,i1 · · · pin−1,inpin,in+1 ,

2 A sample path of a stochastic process Xn is a realization of it as a function of time. For
instance, if X0(ω) = i0, . . . ,Xn(ω) = in, then i0, . . . , in is the sample path associated with
the outcome ω.
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where P{Xn+1 = xn+1|An} = pin,in+1 by the Markov property.

Proposition 6 says that the probability the Markov chain traverses a path
i0, i1, . . . , in is just the multiplication pi0,i1 · · · pin−1,in of the probabilities of
these transitions. Therefore, the probability that the Markov chain up to time
n has a sample path in a subset P of Sn+1 is

P{(X0, . . . , Xn) ∈ P} =
∑

(i0,...,in)∈P
P{X0 = i0}pi0,i1 · · · pin−1,in . (1.3)

For instance, if the Xn are the monthly profits of a company, then the
probability its profits will increase throughout n months is

P{X0 ≤ X1 ≤ . . . ≤ Xn|X0 = i0} =

∞∑

i1=i0

pi0,i1 · · ·
∞∑

in=in−1

pin−1,in .

Also, the profit in the third month has the distribution

P{X3 = j|X0 = i0} =
∑

i1∈S
pi0i1

∑

i2∈S
pi1i2pi2j .

Many probabilities like these for the Markov chain can be expressed con-
veniently in terms of the transition matrix P = (pij) and its nth product Pn,
n ≥ 0. By definition, P0 = I (the identity matrix), and Pn = Pn−1P, for
n ≥ 1. Let pnij denote the (i, j)th entry of Pn (so Pn = (pnij)).

3 Then by the
definition of matrix multiplication,

pnij =
∑

i1,...,in−1∈Sn−1

pi,i1pi1,i2 · · · pin−1,j. (1.4)

Remark 7. n-Step Probabilities. The probability P{Xn = j|X0 = i} is the
sum of the probabilities of all paths of the form i, i1, . . . , in−1, j, which is the
sum in (1.4). Consequently,

P{Xn = j|X0 = i} = pnij .

This probability can be obtained upon computing Pn. Furthermore, denoting
the initial distribution αi = P{X0 = i} as a row vector α = (αi), we have

P{Xn = j} = ( αPn)j ,

which is the jth value of the row-vector αPn.

Interestingly, the multiplication property of matrices Pm+n = PmPn, for
m,n ≥ 1, yields the Chapman-Kolmogorov equations

3 Keep in mind that n in pnij is not the usual multiplication operation, but Pn “is” the nth
product of P.
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pm+n
ij =

∑

k∈S
pmikp

n
kj , i, j ∈ S.

This says that the probability the chain moves from i to j in m+ n steps is
equal to the probability that it moves from i to any k ∈ S in m steps, and
then it moves from k to j in n more steps. The following examples involve
n-step probabilities.

Example 8. Expected Costs or Utilities. Suppose there is a value fn(i) ∈ R

associated with the Markov chain being in state i at time n. The value could
be a cost, reward or some utility parameter. Then the mean value at time n,
assuming it exists, is

E[fn(Xn)] =
∑

j∈S
P{Xn = j}fn(j)

=
∑

j∈S
( αPn)jfn(j) = αPnfn,

where fn = (fn(i)) is a column vector of the values. Furthermore, the mean
value up to time n is

E[

n∑

m=1

fm(Xm)] =

n∑

m=1

αPmfm.

Example 9. Taboo Probabilities. There are many probabilities for a Markov
chain involving paths that avoid a specified region in the state space. In
particular, consider the taboo probability

Ap
n
ij = P{X1, . . . , Xn−1 �∈ A,Xn = j|X0 = i},

that the chain Xn moves from state i to state j in n steps without entering
a taboo set A ⊂ S. Then as in (1.3) and Remark 7,

Ap
n
ij =

∑

i1,...,in−1∈Ac

pi,i1pi1,i2 · · · pin−1,j = qnij , i, j ∈ Ac,

where Qn = (qnij) is the nth product of Q = (pij ; i, j ∈ Ac) (the matrix P
restricted to Ac = S\A).

Example 10. Maxima of a Markov Chain. Suppose the Markov chain Xn has
the state space S = {1, 2, . . .} and consider the maximum process

Mn = max
0≤m≤n

Xm, n ≥ 0.

For instance, if Xn is the stress on a part at time n and X0 = i, then the
probability the stress does not exceed a level � > i up to time n is
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P{Mn ≤ �|X0 = i} = P{X1 ≤ �, . . . , Xn ≤ �|X0 = i} =

�∑

j=1

qnij ,

whereQn = (qnij) is the nth product of Q = (pij ; i, j ≤ �). TheMn is generally
not a Markov chain, but it is when the Xn are i.i.d. (see Exercise 17).

1.3 Construction of Markov Chains

This section addresses the following questions. Is there a general framework
for constructing or identifying Markov chains? Is there a Markov chain asso-
ciated with any transition matrix? If so, how is it constructed? How can one
simulate a Markov chain? These questions are answered by the first result
that shows how to formulate a Markov chain as a function of i.i.d. random
variables.

Recall that the random walk in Example 3 is “constructed” with i.i.d. ran-
dom variables. That is, its evolution is represented by the recursive equation
Xn = Xn−1 + Yn, n ≥ 1, where X0 = 0, and Yn are i.i.d. random variables.
Here is an analogous and more general construction of a Markov chain via a
general recursive equation.

Proposition 11. Suppose {Xn : n ≥ 0} is a stochastic process on S of the
form

Xn = f(Xn−1, Yn), n ≥ 1, (1.5)

where f : S×S′ → S and Y1, Y2, . . . are i.i.d. random variables with values in
a general space S′ that are independent of X0. Then Xn is a Markov chain
with transition probabilities pij = P{f(i, Y1) = j}.

Proof. The result will follow upon showing that, for any i, j and n,

P{Xn+1 = j|X0, . . . , Xn−1, Xn = i}
= P{f(i, Yn+1) = j|X0, . . . , Xn−1, Xn = i}
= P{f(i, Yn+1) = j} = pij .

The first equality follows since Xn+1 = f(i, Yn+1) given Xn = i. The second
equality is due to the fact that Yn+1 is independent of (X0, . . . , Xn), because
this vector, by (1.5), is a function of (X0, Y1, . . . , Yn), which is independent
of Yn+1 by assumption. The last equality follows by the definition of pij and
fact that Yn+1 and Y1 have the same distribution.

Proposition 11 is useful for identifying stochastic processes that are Markov
chains. This approach is often easier than verifying the Markov property
directly; illustrations are in the next section.

We now establish that any Markov chain can be constructed as in Propo-
sition 11. The proof uses the following fact (Exercise 11 gives a similar result
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for general random variables and discusses how the result is used to generate
random samples from a distribution).

Remark 12. Uniform Representation of a Random Variable. Let α be a prob-
ability measure on S = {0, 1, . . .}, and let U be a random variable that has a
uniform distribution on [0, 1]. Define X = h(U), where

h(u) = j if u ∈ Ij , for some j ∈ S, (1.6)

and Ij = [
∑j−1

k=0 αk,
∑j
k=0 αk). Then P{X = j} = αj . This follows since

P{h(U) = j} = P{U ∈ Ij} = αj .

Theorem 13. (Construction of Markov Chains) Let pij be Markovian transi-
tion probabilities, and let α be a probability measure on S. Label the elements
of S such that S = {0, 1, . . .}. Suppose U0, U1, . . . are i.i.d. with a uniform
distribution on [0, 1]. Assume X0 = h(U0), where h is given by (1.6). Define
Xn = f(Xn−1, Un), n ≥ 1, where, for each i,

f(i, u) = j if u ∈ Iij , for some j ∈ S, (1.7)

and Iij = [
∑j−1

k=0 pik,
∑j

k=0 pik). Then {Xn : n ≥ 0} is a Markov chain with
initial distribution α and transition probabilities pij.

Proof. By Remark 12, X0 has the distribution αj . Furthermore, by Proposi-
tion 11, Xn is a Markov chain with transition probabilities

P{f(i, U1) = j} = P{U1 ∈ Iij} = pij .

We are now ready to establish that there exists a Markov chain associated
with any transition matrix.

Corollary 14. (Existence of Markov Chains) For any Markovian transition
probabilities pij and probability measure α on S, there exists a Markov chain
{Xn : n ≥ 0} on S with transition probabilities pij and initial distribution α.

Proof. Corollary 6 in the Appendix says that, for any specified countable col-
lection of distributions on R, there exist a probability space and independent
random variables on it that have the specified distributions. This justifies
the existence of the random variables Un in Theorem 13, which in turn jus-
tifies the existence of a Markov chain {Xn : n ≥ 0} on S with transition
probabilities pij and initial distribution α.

Theorem 13 also yields the following simulation procedure.

Remark 15. Simulation of a Markov Chain. One can generate an n-step path
i0, i1, . . . , in of a Markov chain with transition probabilities pij and initial
distribution α as follows. First generate values u0, u1, . . . , un from a uniform
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distribution on [0, 1]. Then set i0 = h(u0) and im = f(im−1, um), 1 ≤ m ≤
n−1, where h and f are defined respectively by (1.6) and (1.7). The resulting
i0, i1, . . . , in is the desired n-step path of the Markov chain.

1.4 Examples

This section contains more examples of Markov chains. Some of these are
justified by verifying the Markov property, while others are justified by the
recursive-equation framework in Proposition 11.

Example 16. Machine Deterioration Model. A machine is continuously used
to perform a certain job (e.g., a fork-lift truck in a bottling plant, or a metal
cutting tool), and Xn denotes its state of deterioration at time n, where the
set of states is S = {0, 1, . . . , �}. When the machine’s deterioration is in state
i < �, in the next time period it either remains at that level with probability
pii or it increases to a level j > i with probability pij > 0. When the machine
is in state �, in the next time period it either remains there with probability
p�� or it enters state 0 with probability p�0 = 1− p��. Entering state 0 means
the machine is replaced with a new one (or is repaired to be like new). These
movements are independent of the past history of the machine.

Under these assumptions, Xn is a Markov chain with transition matrix

P =

⎡

⎢
⎢
⎢
⎢
⎣

p00 p01 p02 . . . . . . .
0 p11 p12 p13 . . . . .
0 0 0 p22 p23 . .
. . . . . . . . . . . . . . . .
p�0 . . . . . 0 0 p��

⎤

⎥
⎥
⎥
⎥
⎦

Example 17. (s, S) Inventory Model. A commodity is stocked in a warehouse
to satisfy continuing demands, and the demands D1, D2, . . . in time periods
1, 2, . . . are i.i.d. nonnegative integer-valued random variables. The inventory
is controlled by the following (s, S) inventory-control policy, where s< S are
predetermined integers. At the end of period n− 1, the inventory level Xn−1

is observed, and one of the following actions is taken:
• Replenish the stock (instantaneously) up to the level S if Xn−1 ≤ s.
• Do not replenish the stock if Xn−1 > s.

Assume X0 ≤ S for simplicity and that X0 is independent of the Dn.
Under this control policy, the inventory level satisfies the recursion

Xn =

{
S−Dn if Xn−1 ≤ s
Xn−1 −Dn if s< Xn−1 ≤S, n ≥ 1.

Therefore, by Proposition 11, Xn is a Markov chain with
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pij =

{
P{D1 = S− j} if i ≤ s
P{D1 = i− j} if s< i ≤S.

Example 18. Movement on a Graph. Suppose that an item moves on the di-
rected graph shown below, where pij is the probability the item moves from
node i to node j, independent of its past history. The item spends exactly one
time period at each node it visits, and so pii = 0 for each i. Then the location
of the item Xn at time n is a Markov chain on the set of nodes S = {1, . . . , 7}.
For instance, the nodes could represent machines in a manufacturing facility,
where a job moves from machine 1 to 7. It spends one time period at each
machine it visits, and its random path through the machines, which requires
4 time periods, is determined by its type or other factors. When a job is
finished at machine 7, another job immediately begins at machine 1, and this
4-period manufacturing cycle is repeated indefinitely, with exactly one job
in the system at any time. In this setting, the Markov chain Xn records the
machine location of a typical job.

� �
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Fig. 1.1 Markov Chain on a Graph

Example 19. Success Runs. Suppose Xn is a Markov chain with transition
matrix

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− p0 p0 0 . . . . .
1− p1 0 p1 0 . . .
1− p2 0 0 p2 0 . .
. . . . . . . . . . . . . . .
1− pm . . . . 0 0 pm
. . . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

This is a model for success runs in a sequence of independent events that
result in a success or failure. Namely, Xn denotes the number of successes
since the last failure prior to the nth event, and upon having i successes,
the next event results in a success with probability pi, or a failure with
probability 1 − pi, where 0 < pi < 1. For instance, as a model of accidents
in a manufacturing plant, Xn could denote the number of weeks without an
accident up to week n.

Example 20. Age and Residual Processes for Discrete-Time Renewals. Sup-
pose ξ1, ξ2, . . . are i.i.d. positive integer-valued random variables with ri =
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P{ξ1 = i}. The times Tn =
∑n
m=1 ξm form a discrete-time renewal process,

where Tn is the time of the nth renewal (general renewal processes are studied
in the next chapter). Consider the process

Xn = n− Tk−1 if n ∈ [Tk−1, Tk).

This is the time since the last renewal prior to or at time n, and Xn is called
the age process for the renewals. Clearly, Xn is a success-runs Markov chain
as above, where

pi0 = 1− pi = ri+1/(1−
i∑

k=1

rk)

is the probability of a renewal in the next time period conditioned that the
renewal time was greater than i.

A related process is

X ′
n = Tk − n if n ∈ [Tk−1, Tk),

which is the time to the next renewal after time n. The X ′
n is the residual

process for the renewals. It is a Markov chain on S = {0, 1, . . .} that decreases
by one unit in each time period until it reaches 0, and then it jumps to state
j with probability rj+1. Thus, its transition probabilities are

pi,i−1 = 1, i ≥ 1; p0j = rj+1, j ≥ 0; pij = 0 otherwise.

As an example, suppose that jobs are processed one at a time and the
processing times are ξ1, ξ2, . . . Then Xn denotes the age of the job being
processed at time n; age meaning the length of time the job has been in
process counting time n. Here 1− pi is the probability that a job of age i is
finished in the next period. The other random variable X ′

n denotes the time
needed to finish the job being processed at time n.

A variety of queueing and inventory models for systems such as computer
systems may be more realistic in discrete time rather than continuous time.
The next examples are abstract models for such systems. They have the
extraordinary property that their system state is a tractable function of i.i.d.
random variables based on the fundamental recursion in Proposition 11.

Example 21. Discrete-Time M/M/1 Queueing System. Consider a single-
server processing system in which items arrive according to a Bernoulli pro-
cess as in Example 2, where p is the probability of an arrival (a success)
at any discrete time. The service times of the items are i.i.d. and indepen-
dent of the arrival process, and each service time has a geometric distribution
q(1−q)n−1, n ≥ 1, with parameter q and mean 1/q, where q is the probability
of a service completion in any discrete time.

Let Xn denote the number of items in the system at time n. Under these
assumptions, the Xn satisfy the recursion Xn = (Xn−1 + Vn − Un)

+, where
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Vn is the number of (potential) arrivals and Un is the number of (potential)
service completions at time n. Under these assumptions, Un and Vn take
values in {0, 1} and (Un, Vn), n ≥ 1, are i.i.d. We also assume they are
independent of X0.

Then by Proposition 11, Xn is a Markov chain on the nonnegative integers
S with transition probabilities pij = P{(i + V1 − U1)

+ = j}, which are, for
i ≥ 1,

p01 = p, p00 = 1− p,

pi,i+1 = p(1− q), pi,i−1 = q(1− p), pi,i = pq + (1− p)(1 − q).

That is, at each time when at least one item is in service, there may be
an arrival and no service completion with probability p(1 − q), or a service
completion and no arrival with probability q(1−p), or no change in the system
with probability pq + (1 − p)(1 − q) (an arrival and a departure occur, or
neither occurs). The Xn is called a discrete-time M/M/1 queueing process4

(analogous queueing processes in continuous time are studied in the next
chapters).

One can also view Xn as a random walk, or the size of a population
in which a single birth or death occurs with the preceding probabilities. One
can model other variations of this queueing system (e.g., with limited waiting
space for items, or with batch arrivals) by the input-output model in the next
example.

Hereafter, we will use the following standard shorthand notation.

Definition 22. Random variablesX and Y are equal in distribution, denoted

by X
d
= Y , if they have the same distribution. The same notation applies if

X and Y are random vectors or more general random elements.

We will now describe a general Markov chain for analyzing queueing sys-
tems, including the preceding M/M/1 system.

Example 23. Input-Output Process as a Reflected Random Walk. Consider
an input-output system in which the quantity of items Xn in the system
(possibly negative) at the end of time period n is in a set S of all integers in
a fixed interval [a, b]. The a and b are integers that may be infinite.

In each period n, the system has a “potential” input (or increase) Vn and
“potential” output (or decrease) Un. The pairs (Un, Vn), n ≥ 1, are i.i.d.
non-negative integer-valued vectors, and are independent of X0. Part or all
of an arriving quantity is rejected (or disregarded) to the extent that its
admittance would force the system state to exceed b. Similarly, outputs are
disregarded to the extent that they would move the system state below a.
Inputs and outputs occurring at the same time cancel each other.

4 In M/M/1, the M stands for memoryless or Markovian when referring to the memoryless
geometric distribution (Exercise 7) of inter-arrival times and service times, and 1 refers to
the number of servers.
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Then the quantity in the system at time n satisfies the recursion5

Xn = a ∨ [b ∧ (Xn−1 + Vn − Un)], n ≥ 1. (1.8)

By Proposition 11, Xn is a Markov chain on S with transition probabilities

pij = P{a ∨ [b ∧ (i + V1 − U1)] = j}. (1.9)

This Markov chain has the extraordinary property that its recursive equa-
tion (1.8) has a closed form solution for Xn. To see this, consider the random
walk or netput process

Zn =

n∑

m=1

(Vm − Um).

Note that

Xn = X0 + Zn −
n∑

m=1

[
(Xm−1 + Vm − Um − b)+

−(a− (Xm−1 + Vm − Um))
+
]
.

This says Xn is the netput Zn compensated by the quantities in the sum that
are disregarded to keep the chain in its state space S. In other words, Xn is
the random walk Zn “reflected” at the boundaries a and b.

One can show by induction, or direct substitution (Exercise 19) that the
Xn satisfying (1.8) has the form

Xn =
[
(X0 + Zn) ∧ [b+ min

1≤m≤n
(Zn − Zm)]

]
(1.10)

∨
max

1≤m≤n

[
(a+ Zn − Zm) ∧ [b+ min

m+1≤�≤n
(Zn − Z�)]

]
.

Because Vn − Un are i.i.d., the distribution of the increments of Zn in the
preceding expression has the simplification

(Zn − Z1, Zn − Z2, . . . , Zn − Zn−1)
d
= (Zn−1, Zn−2, . . . , Z1).

Consequently, Xn in (1.10) has the simpler form (in distribution)

Xn
d
=
[
(X0 + Zn) ∧ (b + min

0≤m≤n−1
Zm)

]
(1.11)

∨
max

0≤m≤n−1

[
(a+ Zm) ∧ (b + min

0≤�≤n−m−1
Z�)

]
.

Here Z0 = 0. This formula describes the distribution of Xn as a function of
the distribution of the netput process Zn (the basic “system data”).

5 x ∨ y = max{x, y} and x ∧ y = min{x, y}; we also use x+ = 0 ∨ x.
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In particular,

Xn
d
=

⎧
⎨

⎩

(X0 + Zn) ∨
(
a+max0≤m≤n−1 Zm

)
, if b = ∞,

(X0 + Zn) ∧
(
b+min0≤m≤n−1 Zm

)
, if a = −∞.

(1.12)

For instance, when a = 0, b = ∞ and X0 = 0,

Xn
d
= max

0≤m≤n
Zm. (1.13)

Note that the M/M/1 queue in Example 21 has this nice representation.

The preceding input-output model applies to a variety of contexts. For
instance, the input-output variables Vn and Un need not be inputs or outputs
in the usual sense. Here is an example.

Example 24. Waiting Times in a G/G/1 Queue.6 Suppose that items arrive
to a processing system at integer-valued times 0 < T1 < T2 < . . . such that
the inter-arrival times Un = Tn − Tn−1 are i.i.d., where T0 = 0. The arrival
at time Tn has an integer-valued service time Vn, and the Vn are i.i.d. and
independent of the arrival times. The service discipline is first-come-first-
served with no preemptions.

Of paramount interest are the times that items wait in the queue before
receiving service. Let Wn denote the time in queue of the item that arrives
at time Tn. Then Dn = Tn+Wn + Vn is the departure time of the nth item.
We define Wn by induction. For simplicity, assume the system is empty at
time 0. Then clearly W1 = 0 and, assuming W1, . . . ,Wn−1 are defined,

Wn =

{
0 if Dn−1 < Tn
Dn−1 − Tn otherwise.

SubstitutingDn−1 = Tn−1+Wn−1+Vn−1 in this expression yields the Lindley
recursion

Wn = (Wn−1 + Vn−1 − Un)
+, n ≥ 1.

Note that Wn is a reflected random walk as in Example 23, where the po-
tential input and output quantities are now the service times and inter-arrival
times (here Vn−1 can be replaced by Vn under the assumptions). Therefore,

as in (1.13), Wn is a Markov chain with Wn
d
= max0≤m≤n Zm.

The framework in Example 23 also covers the variation in which the wait-
ing times Wn are restricted to not exceed a finite level b. For instance, a
system controller may ensure that if an item’s waiting time reaches b, then
the item is served by an auxiliary server (possibly at a higher cost, but outside
of the model).

6 The G/G/1 stands for i.i.d. inter-arrival times with a general distribution, i.i.d. service
times with a general distribution, and processing by 1 server.
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1.5 Stopping Times and Strong Markov Property

We will now begin a detailed study of the evolution of Markov chains. This
section describes the strong Markov property, which is a generalization of
the one-step look-ahead Markov property (1.1). It is used for evaluating con-
ditional probabilities conditioned at certain “random times” called stopping
times. One important consequence is a regenerative property that the times
between entrances of a Markov chain to a fixed state are i.i.d.

We start with preliminaries on stopping times.

Definition 25. A random variable τ that takes values in {0, 1, . . . ,∞} is
a stopping time for a process {Xn : n ≥ 0} if, for any finite n, the event
{τ = n} is a function of the history X0, . . . , Xn up to time n. Exercise 23
gives additional characterizations.

Stopping times are also called optional times, or Markov times when Xn

is a Markov chain. Important examples are hitting times. A hitting time of a
subset A ⊂ S by a process Xn is defined by

τ = min{n ≥ 1 : Xn ∈ A}.

This is infinite, by convention, when no such n exists. The τ is sometimes
called a first entrance or return time7 to A. It is a stopping time since

{τ = n} = {X1, . . . , Xn−1 /∈ A,Xn ∈ A}.

Constants, of course, are stopping times. There are many ad hoc examples
of stopping times such as

τ = min{n ≥ 2 : Xn = Xn−1 = Xn−2},

the first time the chain remains in the same state for 3 periods.
On the other hand, many random times τ for which {τ = n} involves

information about the future Xn+1, Xn+2, . . . are not stopping times. An
example is the last exit time from a set A defined by

τ = sup{n ≥ 1 : Xn ∈ A},

which is infinite when the set is empty.
The Markov property (1.1) says that, at any time n, knowing the present

state Xn, the next state Xn+1 is conditionally independent of the past
X0, . . . , Xn−1. We will now establish the strong Markov property that at
any finite stopping time (or any deterministic time), the future of the pro-
cess is conditionally independent of the past given the present state, and the
distribution of the future is equal to that of the original chain.

7 A variation of τ is τ ′ = min{n ≥ 0 : Xn ∈ A}. Clearly τ ′ = τ if X0 /∈ A and τ ′ = 0 if
X0 ∈ A.
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Theorem 26. (Strong Markov Property) Suppose that τ is a finite-valued
stopping time for a Markov chain Xn on S. Then, for any i ∈ S and
i1, i2, . . . , j1, . . . , jm ∈ S and m ≥ 1,

P{Xτ+1 = j1, . . . , Xτ+m = jm

∣
∣
∣X0 = i0, . . . , Xτ−1 = iτ−1, Xτ = i}

= P{X1 = j1, . . . , Xm = jm|X0 = i}. (1.14)

Proof. For simplicity, let us write (1.14) as

P (Aτ |Bτ ) = P (A0|X0 = i), (1.15)

where An = {Xn+1 = j1, . . . , Xn+m = jm} and

Bn = {X0 = i0, . . . , Xn−1 = in−1, Xn = i}.

To prove (1.15), first note that by conditioning on τ ,

P (Aτ |Bτ ) =
∞∑

n=0

P (Aτ |Bτ , τ = n)P{τ = n|Bτ}. (1.16)

Next, observe that8

P (Aτ |Bτ , τ = n) =
P (An, Bn, τ = n)

P (Bn, τ = n)
.

Since τ is a stopping time, {τ = n} is determined by X0, . . . , Xn, and so
Bn = Bn ∩ {τ = n} when P (Bn, τ = n) > 0. Using this fact in the preceding
display, we have

P (Aτ |Bτ , τ = n) =
P (An, Bn)

P (Bn)
.

Furthermore, expressing the last two probabilities as multiplications of tran-
sition probabilities as in Proposition 6 and canceling terms, we obtain

P (An, Bn)

P (Bn)
= pi,j1 · · · pjm−1,jm = P (A0|X0 = i).

Using the preceding two displays in (1.16) proves (1.15).

The Strong Markov Property stated in (1.14) for onlym steps in the future
also applies to the entire future of the chain as follows.

Remark 27. Probabilities of the Infinite Future. Property (1.14) is equivalent
to the following: For any i ∈ S and B ∈ S∞,

8 In expressions like these, commas are often used instead of set intersection; e.g.
P (Aτ , Bτ , τ = n) = P (Aτ ∩ Bτ ∩ {τ = n})
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P{(Xτ+1, Xτ+2, . . .) ∈ B|X0, . . . , Xτ−1, Xτ = i} (1.17)

= P{(X1, X2, . . .) ∈ B|X0 = i}.

This equivalence follows since the distribution (or conditional distribution)
of an infinite sequence (Y1, Y2, . . .) of random variables is determined by the
distributions of its finite parts (Y1, . . . , Ym) for m ≥ 1. Another equivalent
statement is that, for any bounded function f : S∞ → R+,

E[f(Xτ+1, Xτ+2, . . .)|X0, . . . , Xτ−1, Xτ = i] (1.18)

= E[f(X1, X2, . . .)|X0 = i].

The equivalence of (1.17) and (1.18) follows by basics of equality in distri-
bution; see Exercise 18 ((a) and (b) in this exercise have the same form as
(1.17) and (1.18)).

The strong Markov property says, loosely speaking, that a Markov chain
regenerates, or starts anew, at a stopping time. For instance, if τ is the hitting
time of a state i and it is finite, then since Xτ = i,

P{Xτ+m ∈ A} = E[P{Xτ+m ∈ A|X0, . . . , Xτ}] = P{Xm ∈ A|X0 = i}.

Let us extend this idea to see what happens at successive entry times of
a state. Suppose state i is such that the Markov chain Xn enters i infinitely
often. For simplicity, assume X0 = i. The times 0 = τ0 < τ1 < τ2 < · · · at
which the chain enters (or hits) i are defined recursively by

τn = min{m > τn−1 : Xm = i}, n ≥ 1. (1.19)

These are stopping times of Xn since9

{τn > �} = {
�∑

m=1

1(Xm = i) < n}.

The next result is a special case of the more general regenerative property
in Proposition 67 below.

Proposition 28. (Inter-arrival Times at a State) Under the preceding as-
sumptions, the times ξn = τn − τn−1, n ≥ 1, between entrances to state i are
i.i.d.

Proof. We will show by induction that ξ1, . . . , ξn are i.i.d. for n ≥ 1. The
statement is obviously true for n = 1. Next, assume it is true for some n. To
prove ξ1, . . . , ξn+1 are i.i.d., it suffices by Exercise 20 to show that, for any
m and n,

9 We frequently use the indicator function 1(·) which is 1 or 0 according as the “statement”
(·) is true or false.
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P{ξn+1 = m|ξ1, . . . , ξn} = P{ξ1 = m|X0 = i}.

But this follows by the strong Markov property at τn where Xτn = i, and the
fact that (ξ1, . . . , ξn) is a function of X1, . . . , Xτn .

Example 29. Busy Period. Consider the M/M/1 queueing chain Xn in Ex-
ample 21, where p is the probability of an arrival at any discrete time, and q
is the probability of a service completion in any discrete time. Suppose p < q,
which ensures that the system empties out infinitely often (see Exercise 50).
Let 0 ≤ τ1 < τ2 < · · · denote the times at which the queue becomes empty
(i.e., Xn hits 0). Then by Proposition 28, the durations ξn = τn−τn−1, n ≥ 2,
between the successive empty times are i.i.d.

Let us see what else we can glean from this property. We can write ξn =
γn+ βn, where γn is the time until the next arrival after time τn−1 when the
system becomes empty, and βn is the length of the busy period starting at
time τn−1 + γn. By the strong Markov property at τn−1, where Xτn−1 = 0,

P{γn > m} = E[P{γn > m|X0, . . . , Xτn−1}]
= P{γ1 > m|X0 = 0} = (1 − p)m.

This is simply the geometric probability of a typical arrival time. Further-
more, it follows by the more general regenerative property in Proposition 67
below that the durations of the busy periods βn are i.i.d. for n ≥ 2. Although
there are no known formulas for the distributions of these times, Exercise 51
shows that E[β1|X(0) = 0] = 1 + 1/(q − p).

1.6 Classification of States

Depending on its transition probabilities, a Markov chain may visit some
states infinitely often and visit other states only a finite number of times over
the infinite time horizon. Also, if a state is visited infinitely often, the mean
time between visits may be infinite or finite. These properties are the basis
of a classification of states of a Markov chain, which we now present.

Throughout this section, Xn will denote a Markov chain on S with tran-
sition probabilities pij . The form of the distribution of X0 is not important
for many results, and so we will often use conditional probabilities and ex-
pectations given X0 = i, and express them as

Pi(A) = P{A|X0 = i}, Ei[Z] = E[Z|X0 = i}.

For instance, Pi{Xn = j} = pnij .
We begin by studying the hitting times

τj = min{n ≥ 1 : Xn = j}, j ∈ S.
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Consider the probability

fnij = Pi{τj = n}, n ≥ 1,

that the chain starting at i enters j for the “first time” at the nth step. These
probabilities are expressible in terms of the pij by the following recursive
equations. The proof is a classic use of a “first-step analysis” that involves
conditioning on X1 and using the Markov property.

Proposition 30. For i, j ∈ S, f1
ij = pij and

fnij =
∑

k �=j
pikf

n−1
kj , n ≥ 2. (1.20)

Proof. This expression follows, since conditioning on X1 and using the
Markov property,

fnij =
∑

k �=j
Pi{τj = n|X1 = k}Pi{X1 = k} =

∑

k �=j
pikf

n−1
kj .

Another important quantity for the chain is the probability that beginning
at i it ever hits j, which is

fij = Pi{τj < ∞} =

∞∑

n=1

fnij .

Note that summing (1.20) over all n yields the linear equations

fij = pij +
∑

k �=j
pikfkj , i, j ∈ S. (1.21)

Further properties of the passage or hitting probabilities fij are in Section 1.7.
We are now ready to start classifying states of the Markov chain Xn.

Definition 31. A state i is recurrent if fii = 1 (the chain returns to i with
probability one), and i is transient if it is not recurrent. A recurrent state i
is positive recurrent if Ei[τi] < ∞, and it is null recurrent if Ei[τi] = ∞.

The recurrent or transient nature of a state j depends on the number of
visits the Markov chain Xn makes to that state, which we denote by

Nj =

∞∑

n=0

1(Xn = j).

These quantities, which may be infinite, are related to the successive times
0 < τ1(j) < τ2(j) < . . . at which the chain enters j (recall (1.19)), where
τ1(j) = τj . Namely,



1.6 Classification of States 21

Pi{Nj ≥ n} = Pi{τn(j) < ∞}, n ≥ 1. (1.22)

By the definition of Nj and Ei[1(Xn = j)] = pnij , we have

Ei[Nj ] =
∞∑

n=0

pnij . (1.23)

The distribution of Nj in terms of the fij is as follows.

Proposition 32. For i, j ∈ S,

Pi{Nj > n} = fij(fjj)
n, n ≥ 0, (1.24)

and Pi{Nj = 0} = 1− fij. Hence

Pi{Nj = ∞} =

{
0 if fjj < 1
fij if fjj = 1.

Furthermore, Ei[Nj ] = 0 if fij = 0; and otherwise,

Ei[Nj ] =

{
fij/(1− fjj) if fjj < 1
∞ if fjj = 1.

(1.25)

In particular, if i is transient, then Pi{Ni = n} = (1 − fii)f
n−1
ii , which is a

geometric distribution with mean 1/(1− fii).

Proof. Proceeding by induction, (1.24) is true for n = 0 by the definition of
fij . Next, assume (1.24) is true for some n− 1. Using {Nj > n} ⊆ {Nj ≥ n}
and (1.22),

Pi{Nj > n} = Pi{Nj ≥ n,Nj > n} (1.26)

= Pi{Nj ≥ n}Pi{Nj > n|τn(j) < ∞}.

From the strong Markov property at τn(j) and Xτn(j) = j, it follows that

Pi{Nj > n|τn(j) < ∞} = fjj .

Applying this and the induction hypothesis to the last line in (1.26) yields
(1.24) for n, which completes the induction.

Next, note that from (1.24), we have

Pi{Nj = ∞} = lim
n→∞

Pi{Nj > n} = fij1(fjj = 1).

Finally (1.25) follows from (1.24) and the formula in Exercise 5 for means.

Here are characterizations for a state to be recurrent or transient.
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Corollary 33.

State i is recurrent ⇐⇒ Pi{Ni = ∞} = 1 ⇐⇒ Ei[Ni] =

∞∑

n=0

pnii = ∞.

Equivalently,

State i is transient ⇐⇒ Pi{Ni <∞} = 1 ⇐⇒ Ei[Ni] =

∞∑

n=0

pnii < ∞.

Proof. In the first assertion, the forward implications follow by Proposition 32
and (1.23). Also, Ei[Ni] = ∞ implies i is recurrent by (1.25).

Corollary 34. If j is transient, then limn→∞ pnij = 0, for each i.

Proof. From the definition of Nj, Proposition 32 and Corollary 33,

∞∑

n=0

pnij = Ei[Nj ] = fijEj [Nj ] <∞.

Since this sum is finite, pnij → 0 for each i.

To continue classifying the evolution of the Markov chain Xn on S, we will
use the following terminology. State j is accessible from state i, denoted by
i → j, if pnij > 0 for some n ≥ 1 (i.e., fij > 0). States i and j communicate
with each other, denoted by i ↔ j, if i → j and j → i. This communi-
cation relation ↔ is an equivalence relation; see Exercise 24. Consequently,
there exists a partition of S into disjoint equivalence classes, which we call
communication classes.

A set of states C in S is said to be closed if no state outside of C is
accessible from any state in C (pij = 0 for any i ∈ C, j /∈ C). If C = {i} (a
singleton set) is closed, then i is an absorbing state (i.e., pii = 1). A closed
set may contain several communication classes. Note that if C1 and C2 are
closed, then so is C1 ∩ C2, which is generally not empty unless the Ci are
non-identical communication classes. The C is an irreducible set if i ↔ j for
any i, j ∈ C. The communication classes are therefore irreducible.

In addition, we say that the set C is recurrent if all of its states are recur-
rent. Similarly, C is transient (or positive recurrent or null recurrent, etc.) if
all its states are of that type. A communication class need not be closed if it
is transient, but the class is closed when it is recurrent.

Proposition 35. A recurrent communication class is closed.

Proof. Suppose C is a communication class that is not closed. Then there
exist i ∈ C and j �∈ C such that pij > 0; and j �→ i. Since a return to i is not
possible if j is entered, 1− fii ≥ pij > 0. But this contradicts fii = 1, which
holds because i is recurrent. Thus C is closed.
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Another concept for classifying Markov chains is a subtle property con-
cerning the times between visits to a state. In Example 18, the times between
visits to each state are multiples of 4 (they are periodic with period 4). In
general, the period di of a state i is the greatest common divisor of all n that
satisfy pnii > 0. In other words, di is the largest integer such that pnii > 0 if
and only if n is a multiple of di. State i is aperiodic if di = 1, and otherwise it
is periodic. For instance, in Examples 5 and 16, each state is aperiodic; and
the random walk in Example 3 is periodic with period 3 if each step size is
a multiple of 3. Exercise 25 shows that within a communication class, each
state has the same period. Therefore, if pii > 0 for any i in a communication
class, then all the states in the class are aperiodic.

Example 36. Consider a Markov chain on S = {1, 2, . . . , 7} with transition
probabilities

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

.5 .4 .1 0 0 0 0
0 .8 0 0 0 .1 .1
0 0 0 0 0 0 1
.5 0 0 0 .5 0 0
.3 0 0 0 .7 0 0
0 .3 .7 0 0 0 0
0 0 0 0 0 .8 .2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

From the transition graph in Figure 1.2, one can see that C = {2, 3, 6, 7}
and S are the only two closed sets. Also, C is a communication class and
T = {1, 4, 5} are communication classes. From results below, it follows that
C is a class of positive recurrent states and T is a class of transient states.
Furthermore, the states in these classes are aperiodic.

.5 .8 .2

.7

.1.4

.7.5

.1 .8.3.1.3.5

4

7
.1

1

65 3

2

Fig. 1.2 Transition Graph for Example 36

We now establish the major result that all of the states in an irreducible
set are of the same type, and they have the same period.

Theorem 37. Suppose a set of states C is irreducible. Then C is either re-
current or transient. If C is recurrent, then it is either positive recurrent or
null recurrent. In addition, each state in C has the same period.
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The proof will use the following characterization of null recurrence, which
is proved in Section 1.20 by a coupling argument.

Theorem 38. For an irreducible Markov chain on S with transition proba-
bilities pij, a recurrent state i is null-recurrent if and only if

lim
n→∞

pnii = 0.

In this case, limn→∞ pnji = 0, for j ∈ S.

Proof of Theorem 37. To prove C is either recurrent or transient, it suffices
to prove the following statements:
(a) If some i ∈ C is recurrent and j ∈ C, then j is recurrent.
(b) If some i ∈ C is transient and j ∈ C, then j is transient.
Clearly (b) follows from (a). Indeed, if i ∈ C is transient, then no state in C
can be recurrent by (a), and hence all states in C must be transient.

To prove (a), suppose i ∈ C is recurrent, and choose j ∈ C. Since i ↔ j,
there exist m and n such that a = pmjip

n
ij > 0. Using Pm+n+� = PmP�Pn,

pm+n+�
jj ≥ pmjip

�
iip

n
ij = ap�ii. (1.27)

Therefore,
∑∞
�=0 p

�
jj ≥ a

∑∞
�=0 p

�
ii. By Corollary 33, the last sum is infinite

since i is recurrent, and hence the first sum is infinite, proving that j is
recurrent.

Next, consider the case in which C is recurrent. To prove C is positive
recurrent or null recurrent, it suffices to prove the following statements.
(c) If some i ∈ C is positive recurrent and j ∈ C, then j is positive recurrent.
(d) If some i ∈ C is null recurrent and j ∈ C, then j is null recurrent.

Arguing as above, it follows that (c) implies (d). It remains to prove (c).
We will use the negation of the assertion in Theorem 38, which is that

i is positive recurrent ⇐⇒ lim supn→∞ pnii > 0. (1.28)

Now, suppose i ∈ C is positive recurrent and j ∈ C. From (1.27), which is
also valid here, and (1.28), we have

lim sup
n→∞

pnjj ≥ a lim sup
n→∞

pnii > 0.

Thus, the limit superior term for pnjj is positive, and so j is positive recurrent
by (1.28).

The proof that each state in C has the same period is Exercise 25.

An irreducible Markov chain on a finite state space is automatically posi-
tive recurrent by the following result.

Corollary 39. If a closed communication class is finite, then it is positive
recurrent.
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Proof. By Theorem 37, a closed communication class C is either transient
or positive recurrent or null recurrent. Therefore, it suffices to show that
C cannot be transient or null recurrent. Suppose i ∈ C is transient. Then
each j ∈ C is transient by statement (b) in the proof of Theorem 37, and
so pnij → 0 by Corollary 34. Therefore, since C is finite, we would have the
contradiction

1 = Pi{Xn ∈ C} =
∑

j∈C
pnij → 0.

Thus C is not transient. A similar argument shows that C is not null recur-
rent; here one uses pnij → 0 from Theorem 38.

We end this section by describing a canonical decomposition of the Markov
chain Xn on S. The starting point is the fact that one can partition S into
disjoint communication classes; the classes are irreducible, but not necessarily
closed. Let C1, C2, . . . denote the finite or infinite sequence of communication
classes that are recurrent, and hence closed by Proposition 35. Then set
T = S\ ∪k Ck. Clearly, T is transient because it consists of communication
classes that are not recurrent. Of course, T is not necessarily closed, and it
may be empty, or it may be equal to S.

The transition matrix of Xn, with its rows arranged so the sets of states
C1, C2, . . . , T appear in that order, has the form

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1 0 0 · · · 0
0 P2 0 · · · 0
0 0 P3 · · · 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
Q1 Q2 Q2 · · · Q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.29)

where

Pk = (pij : i, j ∈ Ck), Qk = (pij : i ∈ T, j ∈ Ck), Q = (pij : i, j ∈ T ).

In summary, these observations establish that the Markov chain Xn on S
has the following structure.

Theorem 40. (Decomposition Property) The state space has the unique rep-
resentation S = T ∪C1 ∪C2 ∪ . . ., where T is the set of transient states, and
C1, C2, . . . are closed, irreducible recurrent sets. The transition matrix has the
form (1.29).

This decomposition tells us that if the Markov chain starts in a recurrent
set Ck, then it moves within that set forever under the transition probabilities
in Pk. On the other hand, if the chain starts in the transient set T , then it
moves within T and either enters one of the recurrent sets and remains in
that set thereafter, or it may remain in T forever, provided T is infinite (a
finite T cannot be closed by Corollary 39).
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Example 41. Consider a Markov chain on S = {1, 2, . . . , 9} whose transition
matrix has the following form, where 
 means a positive probability.

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 
 
 
 0 0 0

 
 
 0 0 
 0 0 0
0 0 
 0 0 0 0 0 0

 
 0 
 0 0 0 0 0
0 0 0 0 
 0 0 
 0
0 0 0 0 0 0 
 0 0
0 0 0 0 0 
 0 0 

0 0 0 0 
 0 0 
 0
0 0 0 0 0 
 0 0 


⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Tracing out the transition graph of this chain, one can see that its closed
irreducible sets are C1 = {3}, C2 = {5, 8} and C3 = {6, 7, 9}; and its set of
transient states is T = {1, 2, 4}. Now, based on these sets and Theorem 40,
reordering the states in the order 3, 5, 8, 6, 7, 9, 1, 2, 4 yields the more infor-
mative transition matrix:

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣


 0 0 0 0 0 0 0 0

0 
 
 0 0 0 0 0 0
0 
 
 0 0 0 0 0 0

0 0 0 
 
 0 0 0 0
0 0 0 
 0 
 0 0 0
0 0 0 
 0 
 0 0 0

0 
 0 
 0 0 0 0 


 0 0 
 0 0 
 
 0

 0 0 0 0 0 0 
 


⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We end the classification of Markov chains with a few more terms. The
Markov chain Xn is irreducible if its state space S is irreducible. In that case,
by Theorems 37 and 40, all states of the chain are either positive recurrent,
null recurrent or transient, and all states have the same period. The Markov
chain is called ergodic if it is irreducible, and its states are positive recurrent
and aperiodic.

The limiting behavior of ergodic Markov chains is the main topic for the
rest of this chapter. Before getting into this, further insight on the movement
of a Markov chain between subsets of its state space are given in the next
section followed by a section on branching processes.

1.7 Hitting and Absorption Probabilities

Basic performance measures for a Markov chain are as follows.
• The probability that a chain will ever hit a specified set of states (e.g., a
desired stock price).
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• The probability that a chain, beginning in transient states, will be absorbed
in a certain recurrent class of states.
• The mean time for a chain to hit a set, or to be absorbed in recurrent
states.
This section characterizes these and related quantities.

Throughout this section, Xn will be a Markov chain on S with transition
probabilities pij . Let S0 and S1 be disjoint (nonempty) subsets of the state
space S. Define

τ = min{n ≥ 1 : X0, X1, . . . , Xn−1 ∈ S0, Xn ∈ S1}.

This is infinite when no such n exists. The τ is the time at which the chain
exits S0 for the first time and enters S1, or the time at which the chain first
hits S1 without passing through the set (S0 ∪ S1)

c (which may be empty).
Clearly τ is a stopping time of the chain Xn.

We will first consider the hitting or entrance probabilities

γi = Pi{τ <∞}, i ∈ S0.

Clearly γi is the probability the chain starting at i ∈ S0 eventually enters
or hits S1 without passing through (S0 ∪ S1)

c (or simply the probability the
chain hits S1 from S0). To avoid degenerate cases, assume the chain does not
stay in S0 forever:

Pi{Xn ∈ S0, n ≥ 0} = 0, i ∈ S0. (1.30)

This general formulation of hitting-probabilities covers a variety of events,
including the following.
(a) A chain hits a single state or set B (S0 = Bc, S1 = B).
(b) A chain beginning in its set of transient states T is absorbed in a recur-
rent class C (S0 = T , S1 = C).
(c) A chain hits a set B without passing through a set A (S0 = (A ∪ B)c,
S1 = B).
(d) A chain beginning in its set of transient states T is absorbed in a recur-
rent class C at a state k ∈ C (S0 = T , S1 = {k}).

The next result characterizes the hitting probabilities γ = (γi : i ∈ S0) in
terms of r = (ri : i ∈ S0) and Q = (qij : i, j ∈ S0), where

ri =
∑

j∈S1

pij , qij = pij , i, j ∈ S0.

Theorem 42. The probabilities γi of hitting S1 from S0 satisfy

γi = ri +
∑

j∈S0

pijγj , i ∈ S0. (1.31)
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This in matrix notation is γ = r + Qγ. Moreover, γ =
∑∞

n=0Q
nr, and this

is the smallest solution to the equation

y = r +Qy, y ≥ 0. (1.32)

If S0 is finite, then γ = (I −Q)−1r and this is the unique solution to (1.32).

Proof. Assertion (1.31) follows since, by conditioning on X1,

γi =
∑

j∈S
Pi{γ <∞|X1 = j}pij

=
∑

j∈S
[1(j ∈ S1) + γj1(j ∈ S0)]pij .

Next, by the definitions of rj and qij and taboo-probability reasoning as
in Example 9,

γi =
∞∑

n=1

Pi{τ = n}

=

∞∑

n=1

∑

j∈S0

Pi{X1, . . . , Xn−2 ∈ S0, Xn−1 = j}P{Xn ∈ S1|Xn−1 = j}

=

∞∑

n=1

∑

j∈S0

qn−1
ij rj .

Thus, in matrix notation γ =
∑∞

n=0Q
nr.

Now, suppose y is any nonnegative solution to y = r + Qy. Then by
induction

y =

n∑

m=0

Qmr +Qn+1y, n ≥ 0.

Consequently,

y ≥ lim
n→∞

n∑

m=0

Qmr =

∞∑

m=0

Qmr = γ.

Thus γ is the smallest solution to y = r +Qy.
Next, suppose S0 is finite. To show γ is the unique solution to y = r+Qy,

let y be any solution and set x = y − γ. Clearly x = Qx and by induction
x = Qnx. Now Qn → 0 since by (1.30),

qnij ≤ Pi{Xm ∈ S0,m ≤ n− 1} → 0.

Therefore, x = Qnx → 0, which proves that γ is the unique solution to
y = r +Qy.

From γ = r + Qγ, it follows that γ = (I − Q)−1r, provided the inverse
(I − Q)−1 of I − Q exists. But this exists by a basic property of linear
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algebra, since the preceding paragraph showed that the only solution of the
finite linear equations (I −Q)x = 0 is x = 0.

We now consider expected hitting times and related random quantities.
Fix a subset B of S and let τB = min{n ≥ 1 : Xn ∈ B}. For each i ∈ Bc,
assume Pi{τB <∞} = 1. For f : S → R+, define

vi = Ei[

τB−1∑

n=0

f(Xn)], i ∈ Bc.

The f(j) would typically be a cost or utility for the chain visiting state j.
Then vi would be the expected utility up to the time the chain enters B. An
important example is the expected time vi = Ei[τB] to hit B (here f(j) ≡ 1).
As another example, vi is the expected number of visits Xn makes to a fixed
state k ∈ Bc before it enters B, when f(j) = 1(j = k).

From the proof of Theorem 42, it is clear that the following result is true.

Theorem 43. The assertions and proof of Theorem 42 hold with

γi = vi, and ri =
∑

j∈B
pijf(j), i ∈ Bc,

where it is assumed that each ri <∞.

Example 44. Gambler’s Ruin Model. Consider the random walk Xn on S =
{0, 1, . . . ,m} as in Example 4, where Xn is the fortune of a gambler at the
nth play of a game. At each play, the gambler wins or loses one dollar with
respective probabilities p and q = 1−p. Clearly 0 and m are absorbing states
and states 1, . . . ,m − 1 are transient states. Let γi be the probability that
the gambler goes broke (enters state 0) when starting with X0 = i dollars.
Theorem 42 tells us that the probabilities γi are the unique solution to the
difference equation

γi = qγi−1 + pγi+1, 1 ≤ i ≤ m− 1,

with boundary conditions γ0 = 1 and γm = 0. We will solve this by a method
analogous to that used for differential equations.

Consider a solution of the form γi = ri, where r is a parameter to be
determined. Substituting this in the preceding equation and dividing by ri−1,
we obtain pr2 − r + q = 0, which has roots r1 = 1, r2 = q/p. In case r1 �= r2
(i.e. p �= 1/2), the general solution is γi = a1r

i
1 + a2r

i
2, where the coefficients

are given by the boundary conditions

1 = γ0 = a1 + a2, 0 = γm = a1 + a2(p/q)
m.

Therefore the solution is
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γi =
(q/p)i − (q/p)m

1− (q/p)m
, if p �= 1/2.

Furthermore, letting q/p → 1 in this expression and using L’Hospital’s rule
we obtain the solution γi = 1− i/m, if p = q = 1/2.

In addition, the probability that starting at i the gambler reachesm before
being ruined is 1−vi, since the fortune eventually is absorbed in 0 or m. The
expected time the game lasts before the gambler’s fortune reaches 0 or m is
the subject of Exercise 45.

1.8 Branching Processes

This section describes a classical Markov chain model for describing the size
of a population in which each member of the population independently pro-
duces offspring. The main issue is under what conditions does the population
explode to infinity or become extinct in a finite time. The principal results
are a characterization of the probability of extinction and a procedure for
computing it.

Consider a population of identical items that evolves in discrete time as
follows. Each item in the population lives for a single time period and at
the end of its one-period life it produces k items with probability pk, k ≥ 0,
independently of the other items. This off-spring probability measure has a
finite mean μ, and p0 ∈ (0, 1). Consequently, whenever the population size is
i, the probability that the population dies out in the next time period is pi0.
A major quantity of interest is the probability that the population eventually
becomes extinct.

Let Xn denote the population size at time n. For simplicity, assumeX0 = 1
(the caseX0 > 1 is covered in Exercise 61). This process satisfies the recursive
formula Xn+1 = 0 when Xn = 0, and otherwise,

Xn+1
d
= ξn1 + ξn2 · · ·+ ξnXn , n ≥ 0, (1.33)

where ξn1, ξn2, . . . are i.i.d. random variables with probability measure p that
are independent of Xn. The interpretation is that the ith item present at
time n produces ξni items at time n+ 1.

From this representation it follows by Proposition 11 that Xn is a Markov
chain. It is clear that the chain is aperiodic, 0 is an absorbing state, and the
other states are transient. Because of the representation (1.33), the analysis
in this section is based on properties of sums of i.i.d. random variables, not
involving knowledge of Markov chains.

Some indication of the growth of Xn is given by its mean. Conditioning
on Xn−1 and using (1.33), we have
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E[Xn] = E
[
E[Xn|Xn−1]

]
= μE[Xn−1].

Then iterating this backward and using X0 = 1 yields

E[Xn] = μn. (1.34)

From this one can see how the mean population evolves as a function of the
mean production μ of each item. In particular, E[Xn] converges to 0, 1 or ∞
according as μ is < 1, = 1, or > 1.

We will now discuss the possibility of the population becoming extinct in
terms of

zn = P{Xn = 0}, n ≥ 1,

which is the probability of extinction before or at time n. Clearly zn is increas-
ing, since Xn = 0 implies Xn+1 = 0. This and zn ≤ 1 ensure the existence of
the limit

z = lim
n→∞

zn,

which is the probability the population eventually becomes extinct.
To characterize the extinction probabilities zn and z, we will use

φ(s) =

∞∑

k=0

pks
k, 0 ≤ s ≤ 1,

which is the generating function of the single-item production. Here are some
preliminary insights.

Proposition 45. The time-dependent extinction probabilities zn are given by
z1 = p0 and

zn = φ(zn−1), n ≥ 2. (1.35)

In addition, the extinction probability z ∈ (p0, 1] is such that z = φ(z); so z
is a fixed point of φ.

Proof. Since X0 = 1, we have, upon conditioning on X1,

zn =

∞∑

k=1

P{Xn = 0|X1 = k}pk, n ≥ 1.

When X1 = k, each of these k items generates a separate subpopulation,
and so the population at time n is the union of k i.i.d. subpopulations that
have evolved for n − 1 time units. Therefore, P{Xn = 0|X1 = k} = zkn−1.
Substituting this in the preceding display proves (1.35). Furthermore, since
the generating function φ(s) is continuous and zn → z, then letting n → ∞
in (1.35) yields z = φ(z).

The preceding result says the extinction probability z is a fixed point of φ
and z is obtainable by the recursion (1.35). Here is a characterization of z.
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Theorem 46. If μ ≤ 1, then z = 1. If μ > 1, then z is the unique s in (0, 1)
that satisfies s = φ(s).

Proof. If μ < 1, then by (1.34),

P{Xn ≥ 1} ≤ E[Xn] = μn → 0.

Therefore z = limn→∞(1−P{Xn ≥ 1}) = 1. If μ > 1, then Lemma 47 below
establishes that φ has a unique fixed point in (0, 1), which is necessarily the
extinction probability z by Proposition 45. Finally, if μ = 1, the only case of
interest is p0 + p1 < 1, since p0 > 0. Then another application of Lemma 47
yields z = 1.

Lemma 47. In the context of Theorem 46, if μ > 1 or if μ = 1 and p0+p1 <
1, then the generating function φ(s) is strictly convex. Moreover, φ(s) has a
unique fixed point z in (p0, 1) if μ > 1, and z = 1 if μ = 1.

Proof. Under the assumptions, φ is strictly convex since

φ
′′
(s) =

∞∑

k=2

k(k − 1)pks
k−1 > 0, s ∈ [0, 1].

Also, the graph of φ(s) goes through the point (1, 1) and its slope there is
φ′(1) = μ ≥ 1. Therefore, if μ > 1, there is exactly one s < 1 for which
s = φ(s). That is, φ has a unique fixed point z in (p0, 1). The graphs in
Figure 1.3 show the two possibilities

z < 1 if φ′(1) = μ > 1, and z = 1 if φ′(1) = μ = 1.

p0

10

1

φ(s)
p0

10

1

φ(s)

Fig. 1.3 Graph of φ(s)

For the interesting case in which μ > 1, the extinction probability z is the
unique solution of the equation s = φ(s), for s ∈ (0, 1) (which is a polynomial
equation when the quantity an item can produce is bounded). The solution
can sometimes be obtained when φ(s) has a nice form such as in Exercise 62.

As another example, consider the elementary case in which each item can
produce at most 2 items. Then the extinction probability z is the solution of
the quadratic equation s = p0 + p1s + p2s

2. Thus z = min{p0/p2, 1}. More
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generally, when each item can produce at mostm items, then z is the solution
of a polynomial equation of order m.

Here is an easy way to find bounds on z.

Remark 48. Bounds. In case μ > 1, suppose 0 < a ≤ b < 1 are such that
φ(a) ≥ a and φ(b) ≤ b. Then a ≤ z ≤ b by Figure 1.3.

For practical applications, one can compute the extinction probability by
the recursion (1.35) as follows.

Remark 49. Computation of Extinction Probability. When μ > 1, the follow-
ing procedure yields a value z∗ that is within ε of z. Let z0 = 0 and compute
z1, z2, . . . by zn = φ(zn−1). Stop at

z∗ = min{zn : φ(zn + ε) ≤ zn + ε}.

Then zn ↑ z∗ and Remark 48 ensure that 0 ≤ z − z∗ ≤ ε.

1.9 Stationary Distributions

We now turn to the main theme of characterizing the long run or limiting
behavior of ergodic Markov chains in terms of their stationary distributions.
This section introduces the notion of a stationary distribution for a Markov
chain and shows that a Markov chain is stationary if its initial distribution
is a stationary distribution. The rest of the section is devoted to establish-
ing the existence of stationary distributions for positive recurrent Markov
chains. Included are general formulas for stationary distributions and exam-
ples showing how to evaluate such distributions.

Definition 50. A probability measure π on S is a stationary distribution for
the Markov chain Xn (or for P) if

πi =
∑

j

πjpji, i ∈ S. (1.36)

This equation in matrix notation is π = πP, where π = (πi : i ∈ S) is a row
vector. In general, any measure η with

∑
i ηi ≤ ∞ that satisfies η = ηP is an

invariant measure for P.

A Markov chain may have an infinite number of stationary distributions
or invariant measures; see Exercise 30. We begin by relating stationary dis-
tributions to stationary processes.

Definition 51. A stochastic process {Xn : n ≥ 0} on a general state space
is stationary if, for any n ≥ 0,
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(Xn, . . . , Xn+k)
d
= (X0, . . . , Xk), k ≥ 1. (1.37)

That is, the finite-dimensional distributions of Xn remain the same if the
time is shifted by any amount n. A stationary process is sometimes said to
be a process that is in equilibrium or in steady state.

If a process Xn is stationary, then necessarily the distribution of each Xn

does not depend on n (i.e., Xn
d
= X0, n ≥ 1). This simpler condition is

also sufficient for a Markov chain to be stationary as we now justify. Also,
a Markov chain is stationary if and only it its initial state has a stationary
distribution.

Proposition 52. The following statements are equivalent for the Markov
chain Xn.
(a) Xn is stationary.

(b) Xn
d
= X0, n ≥ 1.

(c) The distribution of X0 is a stationary distribution.

Proof. Because the finite-dimensional probabilities of the Markov chain are
simply products of transition probabilities, the stationarity criterion (1.37)
is equivalent to

P{Xn = i0}
k∏

m=1

pim−1,im = P{X0 = i0}
k∏

m=1

pim−1,im , i0, . . . , ik ∈ S.

In light of this, (a) is equivalent to (b).
Next, note that (b) is equivalent to

P{X0 = i} =
∑

j

P{X0 = j}pnji, n ≥ 1.

Then (b) implies (c), since the last equality for n = 1 is statement (c).
Conversely, if (c) holds, then one can show by induction that the preceding
equality holds for each n ≥ 1, and hence (c) implies (b).

We are now ready to present the major result that any positive recurrent
Markov chain has a stationary distribution. This is based on the following
preliminary result that an irreducible, recurrent Markov chain has a unique
invariant measure up to a multiple by a constant.

Consider the measure η on S defined as follows. For any fixed i ∈ S, let
τi = min{n ≥ 1 : Xn = i}, and define ηi = 1 and

ηj = Ei[

τi−1∑

n=0

1(Xn = j)], j ∈ S\{i}. (1.38)

The ηj (a function of i) is the expected number of visits Xn makes to state j
in between visits to i. The measure η is positive if each ηj is positive. Another
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way of writing the preceding expression is

ηj =

∞∑

n=0

Pi{Xn = j, τi > n}, j ∈ S\{i}. (1.39)

This follows by taking expectations of the identity10

τi−1∑

n=0

1(Xn = j) =

∞∑

n=0

1(Xn = j, τi > n).

The proof of the following result is at the end of this section.

Theorem 53. (Invariant Measures) If the Markov chain Xn is irreducible
and recurrent, then η defined by (1.38) is a positive invariant measure for the
chain. This invariant measure is unique up to multiplication by a constant.

In some instances, the invariant measure (1.38) for an irreducible recur-
rent Markov chain is finite and hence can be normalized to be a stationary
distribution. This is true, of course, when the state space is finite. It is also
true for infinite state spaces when the chain has the added condition of being
positive recurrent. Here is a more general result that an irreducible chain has
a positive stationary distribution if and only if it is positive recurrent.

Theorem 54. (Stationary Distributions) An irreducible Markov chain Xn

has a positive stationary distribution if and only if all of its states are posi-
tive recurrent. In that case, the stationary distribution is unique and has the
following form: For any fixed i ∈ S,

πj =
Ei

[∑τi−1
n=0 1(Xn = j)

]

μi
, j ∈ S, (1.40)

where τi = min{n ≥ 1 : Xn = i} and μi = Ei[τi]. Another expression for this
distribution is

πj = 1/μj, j ∈ S. (1.41)

Proof. Suppose the irreducible chainXn has a positive stationary distribution
π. We first show that the chain is not transient. Suppose to the contrary
that it is transient. Since π = πP, we have π = πPn, for n ≥ 1. Also, by
Corollary 34, pnij → 0 as n → ∞ for each j. Therefore, by the dominated

convergence theorem for sums,11

πj =
∑

i

πip
n
ij → 0.

But this contradicts πj > 0. Thus the chain is not transient.

10 Identities like
∑τ−1

n=0 Yn =
∑∞

n=0 Yn1(τ >n) are convenient for computing expectations.
11 As an example, for a probability measure p on S and bounded fn : S → R such that
fn(i) → f(i), it follows that

∑
i fn(i)pi →

∑
i f(i)pi.
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Now, since the chain is irreducible but not transient, it must be recurrent
by Theorem 37. To prove the chain is positive recurrent, it suffices to show
that Ei[τi] is finite for some i. Let η be defined as in (1.38); it is the unique
positive invariant measure for the chain by Theorem 53. Because the chain is
assumed to have a stationary distribution π, this distribution is a multiple of
η, and hence it must have the form πj = ηj/

∑
k ηk, where

∑
k ηk is necessarily

finite. Now by Exercise 5, an interchange of sums, and expression (1.39) for
ηj , we have

Ei[τi] =

∞∑

n=0

Pi{τi > n} =

∞∑

n=0

∑

k

Pi{Xn = k, τi > n}

=
∑

k

ηk < ∞. (1.42)

Thus i is positive recurrent, and hence the chain is positive recurrent.
Now consider the converse and assume the chain is positive recurrent.

Then
∑

k ηk = μi is finite as we saw in (1.42). Hence πj = ηj/μi, which is
(1.40), is the unique positive stationary distribution for the chain.

Finally, note that ηi = 1 and (1.38) imply πi = 1/μi, and this is true for
any fixed i. Thus, it follows that (1.41) is an alternative expression for the
distribution in (1.40).

The preceding theorem yields the following criterion for ergodicity that is
very useful for applications.

Corollary 55. An irreducible aperiodic Markov chain is ergodic if and only
if it has a stationary distribution. In this case, the stationary distribution is
positive and has the form shown in Theorem 54.

Proof. If a Markov chain is ergodic, it has a positive stationary distribution
by Theorem 54. Conversely, if an irreducible aperiodic Markov chain has a
stationary distribution, then this stationary distribution is positive by The-
orem 53, and hence is ergodic by Theorem 54.

Although (1.40) and (1.41) are closed-form expressions for this distribu-
tion, they are typically not used to obtain numerical values for π. They come
in handy, however, for the analysis or modeling of ergodic Markov chains
(e.g., Proposition 69 below).

For an irreducible, aperiodic Markov chain, a common approach for de-
termining whether or not the chain is ergodic is as follows. First, find (if
possible) a positive invariant measure η that satisfies the equations η = ηP .
This is typically done algebraically, or by a computer package or by verifying
by substitution that a candidate distribution satisfies the equations. Then
find conditions under which η is finite or infinite. When η is finite, it can
be normalized to be the stationary distribution of the chain, and hence the
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chain is ergodic. On the other hand, when η is infinite, the chain is either
null-recurrent or transient. Here are two illustrations.

Example 56. Consider the flexible manufacturing system in Example 5 in
which Xn is the state of a machine, which can be idle (state 0) or producing
a type i part (i = 1 or 2 or 3). Suppose Xn is a Markov chain with transition
matrix

P =

⎡

⎢
⎢
⎣

.1 .2 .2 .5

.3 .4 0 .3

.4 0 .4 .2

.3 0 .2 .5

⎤

⎥
⎥
⎦

This chain is clearly ergodic since it is irreducible, finite and aperiodic. The
equations π = πP are

π0 = .1π0 + .3π1 + .4π2 + .3π3

π1 = .2π0 + .4π1

π2 = .2π0 + .4π2 + .2π3

π3 = .5π0 + .3π1 + .2π2 + .5π3

That is,

−9π0 + 3π1 + 4π2 + 3π3 = 0

2π0 − 6π1 = 0

2π0 − 6π2 + 2π3 = 0

5π0 + 3π1 + 2π2 − 5π3 = 0

We will fix π0 and solve the last set of equations for the other variables, and
then use 1 =

∑
i πi to find π0. From the second and third equations in the

last display, π1 = π0/3, and π2 = π0/3+ π3/3. Substituting these in the first
equation yields π3 = 20π0/13, and then π2 = 11π0/13. The fourth equation
is not needed. Finally, using 1 =

∑
i πi, we obtain the stationary distribution

π =
( 39

145
,
13

145
,
33

145
,
60

145

)
.

This distribution tells us, for instance, that the machine works on a type 3
part about 41% of the time, and it is idle more than 25% of the time.

Example 57. Machine Deterioration: Stationary Distribution. Consider Ex-
ample 16 in which the Markov chain Xn denotes the state of deterioration of
a machine over time with transition matrix
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P =

⎡

⎢
⎢
⎢
⎢
⎣

p00 p01 p02 . . . . . . .
0 p11 p12 p13 . . . . .
0 0 p22 p23 p24 . .
. . . . . . . . . . . . . . . .
p�0 . . . . . 0 0 p��

⎤

⎥
⎥
⎥
⎥
⎦

Assume the pij are positive. Then the chain is ergodic since it is irreducible
and aperiodic and finite. The system of equations π = πP is

π0 = π0p00 + π�p�0

πi =

i∑

j=0

πjpji, 1 ≤ i ≤ �.

Because of the structure of these equations, they have a tractable algebraic
solution, which one can see by considering them one at a time in the order
i = 0, 1, . . . Namely, the solution to the last � equations, for a fixed π0, is
πi = π0ci, where the ci are given recursively by c0 = 1 and

ci =
1

1− pii

i−1∑

j=1

cjpji, 1 ≤ i ≤ �.

Then from 1 =
∑�
i=0 πi, it follows that π0 = (

∑�
i=0 ci)

−1. Thus, the station-
ary distribution of the chain is

πi =
ci

∑�
j=0 cj

, 0 ≤ i ≤ �.

The remainder of this section is devoted to the proof of Theorem 53, which
is restated here.

Theorem 58. (Invariant Measures) If the Markov chain Xn is irreducible
and recurrent, then η defined by (1.38) is a positive invariant measure for the
chain. This invariant measure is unique up to multiplication by a constant.

Proof. The first task is to verify η = ηP. From (1.39),

ηj =
∞∑

n=0

Pi{Xn = j, τi > n},

where i is a fixed reference state. For a more convenient expression, let Q =
(qk�), where qk� = pk�1(� �= i), and denote its nth product by Qn = (qnk�),
where qk� = 1(k = �). Expressing τi in terms of the Xm, and using products
of probabilities as in Section 1.2, we have for n ≥ 1 and j �= i,

Pi{Xn = j, τi > n} = Pi{Xm �= i, 1 ≤ m ≤ n− 1, Xn = j} = qnij .



1.9 Stationary Distributions 39

This is the taboo probability of moving from i to j in n steps while avoiding
i. Thus, in matrix notation, the vector η (including ηi = 1), has the form

η =

∞∑

n=0

eiQ
n, (1.43)

where ei is the m-dimensional row vector with 1 in position i and 0 elsewhere.
Using a little algebra on this sum and noting that Q is P with zeros in column
i, we have

η = ei +
∞∑

n=1

eiQ
n−1Q = ei + ηQ = ηP.

Thus, η is an invariant measure.
To prove each ηj is finite, suppose to the contrary that ηj = ∞ for some

j �= i. Since i ↔ j, there is an m such that pmji > 0. Also, η = ηP implies
η = ηPm by induction. Then we obtain the contradiction

1 = ηi =
∑

k

ηkp
m
ki ≥ ηjp

m
ji = ∞.

Therefore, each ηj is finite. Furthermore, each ηj is positive because there is
an � such that p�ij > 0, and so using ηi = 1,

ηj =
∑

k

ηkp
�
kj ≥ ηip

�
ij = p�ij > 0.

To prove η is unique up to multiplication by a constant, let γ be another
positive invariant measure. Assume γi = 1, where i is the fixed reference state
in the definition of η. There is no loss in generality in this assumption since
any such measure can be normalized by dividing by γi. Let ζ = γ − η. The
proof will be complete upon showing that ζ = 0.

We first show that ζ ≥ 0. Note that γ = γP can be written as

γ = ei + γQ. (1.44)

Then by induction,

γ =

n∑

m=0

eiQ
m + γQn+1, n ≥ 0.

Since the last term is nonnegative,

γ ≥
n∑

m=0

eiQ
m →

∞∑

m=0

eiQ
m = η.

Thus ζ = γ − η ≥ 0.
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Next, subtracting η = ηP from γ = γP yields ζ = ζP. This implies ζ =
ζPn, n ≥ 1. Using this and ζi = 1− 1 = 0, we have

0 = ζi =
∑

j �=i
ζjp

n
ji, n ≥ 1. (1.45)

By the irreducibility of the chain, for each j, there is an nj such that p
nj

ji > 0.
Then ζ ≥ 0 and (1.45) imply that ζj = 0 for each j.

1.10 Limiting Distributions

We have seen that a positive recurrent Markov chain has a unique stationary
distribution π that satisfies the balance equations π = πP. This section shows
that this stationary distribution is also the limiting distribution when the
Markov chain is ergodic.

Suppose Xn is a Markov chain on S with transition probabilities pij . A
probability measure π is the limiting distribution of the chain if

lim
n→∞

P{Xn = i} = πi, i ∈ S.

Note that π does not depend on the distribution of X0. Exercise 31 shows
that a limiting distribution for a Markov chain is always a stationary distri-
bution — no additional assumptions on the chain are needed. On the other
hand, there are non-ergodic chains with stationary distributions that are not
limiting distributions.

Here is the major result concerning limiting distributions for ergodic
Markov chains.

Theorem 59. If a Markov chain is ergodic, then its stationary distribution
is its limiting distribution, which is positive.

Proof. The assertion follows by the coupling described in Theorems 110 and
111 below. Theorem 54 ensures that π is positive. An alternative approach
is to prove the assertion by applying the discrete-time version of the renewal
theorem; see the proof of Theorem 51 in Chapter 2.

The next result, which includes Corollary 55, says that the existence of a
limiting distribution is another criterion for ergodicity.

Corollary 60. For an irreducible, aperiodic Markov chain, the following
statements are equivalent.
(a) The chain is ergodic.
(b) The chain has a stationary distribution.
(c) The chain has a limiting distribution.
When these statements hold, the stationary and limiting distributions are the
same, and it is positive.
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Proof. The equivalence of (a) and (b) follows by Corollary 55. Next, (a) ⇒
(c) by Theorem 59, and (c) ⇒ (b) by Exercise 31. The equality and positive-
ness of the stationary and limiting distributions follow by Theorem 59 and
Corollary 55.

The rest of this section covers properties of limiting distributions. We will
often use the notion of convergence in distribution of random variables defined
as follows (later, we use this convergence for more general random elements).
In particular, if a Markov chain Xn has a limiting distribution π, then Xn

converges in distribution to a random variable X with distribution π.

Definition 61. Random variables Xn with values in S converge in distribu-

tion to a random variable X , denoted by Xn
d→ X , if

lim
n→∞

P{Xn = i} = P{X = i}, i ∈ S.

The Appendix points out that Xn
d→ X is equivalent to

E[f(Xn)] → E[f(X)], for any bounded f : S → R. (1.46)

This characterization of convergence in distribution yields the following result
for Markov chains.

Remark 62. Limits of Expectations. The Markov chain Xn has a limiting dis-
tribution π if and only if, for any bounded function f : S → R,

lim
n→∞

E[f(Xn)] =
∑

i

f(i)πi.

The last limit statement also justifies the limiting average

n−1
n∑

m=1

E[f(Xm)] →
∑

i

f(i)πi.

This follows by the property that n−1
∑n

m=1 am → a if an → a. More general
averages are in Remark 78 and Exercises 34 and 36.

A useful property of ergodic Markov chains is that many functions of it
also have limiting distributions. This is because of the following elementary
but important result, which says that the distant future of an ergodic Markov
chain behaves as if the chain were stationary.

Proposition 63. (Asymptotic Stationarity). An ergodic Markov chain Xn

is asymptotically stationary in the sense that

(Xn, Xn+1, . . .)
d→ (X̄0, X̄1, . . .), as n→ ∞, (1.47)

where X̄n is a stationary version of Xn (the chain X̄n is stationary and it
has the same transition probabilities as Xn).
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Proof. Since P{Xn = i} → P{X̄0 = i} and Xn and X̄n have the same
transition probabilities, it follows that, for B ⊂ S∞,

P{(Xn, Xn+1, . . .) ∈ B} =
∑

i

P{Xn = i}Pi{(i, X̄1, X̄2, . . .) ∈ B}

→
∑

i

P{X̄0 = i}Pi{(i, X̄1, X̄2, . . .) ∈ B}

= P{(X̄0, X̄1, . . .) ∈ B}.

The convergence is of the form (1.46) for f(i) = Pi{(i, X̄1, X̄2, . . .) ∈ B}.
This proves (1.47).

Remark 64. By properties of convergence in distribution, each of the following
statements is equivalent to (1.47). For any bounded f : S∞ → R,

E[f(Xn, Xn+1, . . .)] → E[f(X̄0, X̄1, . . .)],

f(Xn, Xn+1, . . .)
d→ f(X̄0, X̄1, . . .).

Example 65. For an ergodic Markov chain Xn on a countable set S of real
numbers, we know by Proposition 63 and Remark 64 that

Xn+1 −Xn
d→ X̄1 − X̄0,

max{Xn, Xn+1} d→ max{X̄0, X̄1}.

In other words,

lim
n→∞

P{Xn+1 −Xn = k} =
∑

i

πipi,i+k,

lim
n→∞

P{max{Xn, Xn+1} ≤ k} =
∑

i≤k

∑

j≤k
πipij .

1.11 Regenerative Property and Cycle Costs

The strong Markov property says, loosely speaking, that a Markov chain re-
generates, or starts anew, at a stopping time. This section describes a related
result that if a Markov chain enters a fixed state infinitely often, then it re-
generates each time it enters the state, and its sample-path segments between
entrances to the state are i.i.d. This fundamental “regenerative” property is
the key to obtaining strong laws of large numbers for ergodic Markov chains
that we present in the next section, and for obtaining related central limit
theorems that we present in Chapter 2. We also present a formula for the
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mean of certain costs or utilities in a regenerative cycle. Basics of more general
regenerative processes are covered in Chapter 2.

We begin by identifying a regenerative property that any ergodic Markov
chain has. Suppose a Markov chain Xn on S has a state i that it enters
infinitely often (this would be true for any state when the chain is irreducible
and recurrent). For this fixed state i, let 0 = τ0 < τ1 < τ2 < · · · denote the
times at which the chain hits i. Recall that the times τn − τn−1 between the
entrances to i are i.i.d. by Proposition 28. This is part of the more general
regenerative property described as follows.

The nth segment (or cycle) of the Markov chain in the time interval
[τn−1, τn) is defined by

ζn =
(
τn − τn−1, {Xm : m ∈ [τn−1, τn)}

)
, n ≥ 1.

The segment ζn takes values in {(m, j) : m ≥ 1, j ∈ {i} × Sm−1}, and it
contains all the information about the sample path of the chain in the time
interval [τn−1, τn).

Definition 66. The Markov chain Xn is regenerative over the times τn if
the segments ζn, for n ≥ 1, are i.i.d. In particular, τn − τn−1 are i.i.d. More
general regenerative processes are studied in the next chapter.

Proposition 67. (Regenerative Property) If the Markov chain Xn starting
at X0 = i enters state i infinitely often, then the chain is regenerative over
the times τn at which the chain enters i.

Proof. This follows by the proof of Proposition 28 with ζn in place of ξn.

Example 68. Consider the (s, S) inventory model in Example 17, where Xn is
the inventory level in period n. Assuming the demands are positive, it follows
that this Markov chain Xn enters state S, where the inventory is replenished,
infinitely often. Then this chain is regenerative over the replenishment times
τ1 < τ2 < . . . . Consequently, the times between replenishment τn − τn−1 are
i.i.d. Also, since the evolutions of the inventory in these cycles are i.i.d., there
are many performance parameters that are i.i.d. such as:

• The amounts of time Yn =
∑τn−1

m=τn−1
1(Xm > i) in the cycles during

which the inventory exceeds i.
• The numbers of demands Nn =

∑τn−1
m=τn−1

1(Xm+1 < Xm) in the cycles
that are satisfied.

The regenerative property plays an important role in determining average
costs or performance values for a Markov chain. A variety of costs or utility
functions for a Markov chain are of the form

∑n
m=0 Vm, where Vn are values

associated with the chain at time n. Then next result is a formula for the
mean of such a cost function in a regenerative cycle. The formula is due to the
form of a stationary distribution expressed as (1.40). We use the formula in
the next sections to describe limiting values in strong laws of large numbers.
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Proposition 69. (Cycle Costs) Let Xn be an irreducible positive recurrent
Markov chain with stationary distribution π. Suppose Vn, n ≥ 1, are real-
valued random variables associated with the chain such that

Ei[Vn|X0, . . . , Xn] = aXn , n ≥ 0,

where aj are constants. Then, for the hitting time τi of a fixed state i,

Ei

[ τi−1∑

n=0

Vn

]
= π−1

i

∑

j

ajπj , (1.48)

provided the last sum is absolutely convergent.12

Proof. Noting that {τi > n} is a function of X0, . . . , Xn, and using the pull-
through formula for conditional probabilities, the left-hand side of (1.48) is

Ei

[ ∞∑

n=0

Vn1(τi > n)
]
= Ei

[
Ei

[ ∞∑

n=0

1(τi > n)Vn

∣
∣
∣X0, . . . , Xn

]]

= Ei

[ ∞∑

n=0

1(τi > n)aXn

]
=
∑

j

ajEi

[ ∞∑

n=0

1(Xn = j, τi > n)
]

= π−1
i

∑

j

ajπj .

The last equality is due to Theorem 54 and (1.39), and the equality before it
uses Fubini’s theorem in the appendix and the assumption that

∑
j |aj |πj is

finite.

A typical example of (1.48), for f : S2 → R, is

Ei

[ τi−1∑

n=0

f(Xn, Xn+1)
]
= π−1

i

∑

j

[∑

k

f(j, k)pjk

]
πj . (1.49)

In this case,

E[f(Xn, Xn+1)|X0, . . . , Xn] =
∑

k

f(Xn, k)pXnk.

Here is an illustration of the use of (1.49).

Example 70. Let Xn denote the M/M/1 queueing chain as in Example 21.
Assume that p < q, which says the probability of an arrival is less than the
probability of a service completion in a time period. Then by Exercise 50,
the stationary distribution is πi = ρi−1(1 − ρ)p/q, i ≥ 1 and π0 = 1 − p/q,

12 A sum
∑

j cj is absolutely convergent if
∑

j |cj| is finite.
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where ρ = p(1 − q)/[q(1 − p)]. The ρ is the traffic intensity. Let us consider
the number of customers N that are served in a busy period (between visits
to state 0). Since N is also the number of arrivals in a busy period, assuming
X0 = 0,

N =

τ0−1∑

n=0

1(Xn+1 = Xn + 1).

From p01 = p, pj,j+1 = p(1− q), j ≥ 1, and (1.49),

E0[N ] = π−1
0

∑

j

πjpj,j+1 = p(1− q)[1 + (1− ρ)p/q

∞∑

j=1

ρj−1].

Thus, we have the result E0[N ] = qρ/(1− ρ).

1.12 Strong Laws of Large Numbers

Many properties or performance measures of a stochastic process are ex-
pressed as limiting averages, e.g., the average amount of time the process
spends in a state, or the average cost of running the process. Such an average
is usually expressed as a strong law of large numbers (SLLN), where the limit
is a function of the limiting distribution of the process. In this section, we
present several strong laws of large numbers for ergodic Markov chains.

We begin with a motivating example.

Example 71. Multi-Type Job Processing. A system processes several types of
jobs, where S denotes the set of job types. Suppose that a sequence of jobs
it processes (labeled by job type) is an ergodic Markov chain Xn on S with
stationary distribution π (here the label n refers to the order in a sequence
and is not a time parameter in the usual sense). The revenue received from
each type-i job is f(i), where f : S → R+. Our interest is in the average
revenue per job processed over the infinite time horizon.

First, note that the average revenue per job from the first n jobs is
n−1

∑n
m=1 f(Xm). Then by Theorem 74 below, the average revenue per job

(over the infinite horizon) is the limiting average13

lim
n→∞

n−1
n∑

m=1

f(Xm) =
∑

i

f(i)πi a.s.

In applications like this, rewards or utility values are sometimes “random”
functions of the process. For instance, in this job-processing setting, suppose
the processing times of a type-i job are i.i.d. random variables with mean

13 a.s. stands for almost surely, which means with probability one. For instance, Yn → Y
a.s. means P{limn→∞ Yn = Y } = 1, and Y > Z a.s. means P{Y > Z} = 1.
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ai, independent of other jobs and the order in which they are processed. Let
V1, V2, . . . denote the processing times of the respective jobs X1, X2, . . . Then
by Theorem 75 below, the average processing time per job is

lim
n→∞

n−1
n∑

m=1

Vm =
∑

i

aiπi a.s.

As we will see shortly, the average cost and processing time in the preceding
example are examples of a SLLN. Such laws are applications of the following
one, which is proved in standard texts on probability theory.

Theorem 72. (Classical SLLN) If Y1, Y2, . . . are i.i.d. random variables with
a mean that may be infinite, then

lim
n→∞

n−1
n∑

m=1

Ym = E[Y1] a.s.

We will now describe analogous results for Markov chains. More general
SLLNs for regenerative processes are in Chapter 2. For this discussion, sup-
pose Xn is an ergodic Markov chain on S with transition probabilities pij
and stationary distribution π.

We first consider limiting averages associated with hitting times of a state.
Fix a state i, and let 0 < τ1 < τ1 < · · · denote the successive times at which
the chain hits or enters state i. Define

Ni(n) =

n∑

m=1

1(Xm = i),

which is the number of times the chain hits i in the first n time periods.

Proposition 73. The average time between visits to state i is

lim
n→∞

n−1τn = 1/πi a.s. (1.50)

The average number of visits to state i is

lim
n→∞

n−1Ni(n) = πi a.s. (1.51)

Proof. We can write

n−1τn = n−1τ1 + (1− 1/n)
[
(n− 1)−1

n∑

m=2

(τm − τm−1)
]
.

Exercise 33 justifies n−1τ1 → 0 a.s. Also, by Proposition 28, the times τm −
τm−1 between entrances to state i are i.i.d. for m ≥ 2, and their mean is
μi = 1/πi by Theorem 54. Then the classical SLLN ensures that the bracketed
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term in the preceding expression converges to 1/πi a.s. Combining these
observations14 proves (1.50).

In addition, (1.51) follows from (1.50) by Theorem 10 in Chapter 2.

We are now ready to present two results that establish limiting averages
like those in Example 71. The first result is a SLLN, also called an ergodic
theorem, for ergodic Markov chains.

Theorem 74. For the ergodic Markov chain Xn with stationary distribution
π and any f : S → R,

lim
n→∞

n−1
n∑

m=1

f(Xm) =
∑

i

f(i)πi a.s.,

provided the sum is absolutely convergent.

This SLLN justifies the approximation

n∑

m=1

f(Xm) ≈ n
∑

i

f(i)πi, for large n.

In addition, the distribution of the sum
∑n

m=1 f(Xm) can be approximated
by a normal distribution with mean n

∑
i f(i)πi as shown by the central limit

theorem for Markov chains in Example 68 in Chapter 2.
Theorem 74 is a special case of the next SLLN for “random” functions

of ergodic Markov chains. Here we use the following conditional probability
terminology. Random variables Y1, Y2, . . . are conditionally independent given
the Markov chain X = {Xn} if, for any y1, . . . , ym and m,

P{Y1 ≤ y1, . . . , Ym ≤ ym|X} =

m∏

k=1

P{Yk ≤ yk|X}.

If in addition, P{Yk ≤ y|X} = P{Yk ≤ y|Xk}, independent of k, then we
say Y1, Y2, . . . are conditionally independent given {Xn} with distributions
P{Y1 ≤ y|X1}. For instance, in Example 71 the processing times V1, V2, . . .
of the respective jobs X1, X2, . . . are conditionally independent given {Xn}
with distributions P{V1 ≤ v|X1 = i} that have means ai, i ∈ S.

Theorem 75. Associated with the ergodic Markov chain Xn, suppose Vn,
n ≥ 1 are random variables that are conditionally independent given {Xn}
with distributions P{V1 ≤ v|X1 = i} that have means ai, i ∈ S. Then

14 One often establishes convergence by exploiting the following properties, which follow
automatically from the analogous limit statements for real numbers. If Yn → Y a.s. and
Zn → Z a.s., then Yn + Zn → Y + Z a.s. and YnZn → Y Z a.s.. Also, Yνn → Y a.s. for
integer-valued νn → ∞ a.s.
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lim
n→∞

n−1
n∑

m=1

Vm =
∑

i

aiπi a.s., (1.52)

provided the sum is absolutely convergent.

Proof. We will use the notation Ni(n) and τn in Proposition 73 for a fixed
state i, and assume X0 = i. Consider the sequence

Zn =
(
τn − τn−1, {(Xm, Vm) : m ∈ [τn−1, τn)}

)
, n ≥ 1.

This Zn contains all the information about the process {(Xm, Vm) : m ≥ 0}
in the time interval [τn−1, τn), where τ0 = 0. It follows as in Proposition 67
that the Zn are i.i.d. Consequently, the values

Yk =

∞∑

m=1

Vm1(τk−1 < m ≤ τk), k ≥ 1,

accumulated in the respective intervals (τk−1, τk] are i.i.d., since they are
deterministic functions of the Zk. Then by the classical SLLN and Proposi-
tion 69,

n−1
n∑

k=1

Yk → E[Y1] = π−1
i

∑

j

ajπj a.s. (1.53)

Next, we show that this limit leads to (1.52). First assume the Vm are
nonnegative. Note that15

n−1

Ni(n)∑

k=1

Yk ≤ n−1
n∑

m=1

Vm ≤ n−1

Ni(n)+1∑

k=1

Yk. (1.54)

Applying (1.51) and (1.53) to the left-hand side of (1.54), we have

[
Ni(n)/n

][
Ni(n)

−1

Ni(n)∑

k=1

Yk

]
→ πiE[Y1] =

∑

j

ajπj a.s.

A similar argument shows that the right-hand side of (1.54) has this same
limit. Consequently, n−1

∑n
m=1 Vm also has the limit

∑
j ajπj , since it is

sandwiched between these two terms.

For general Vm, we can write Vm = V +
m − V −

m , where V +
m = max{0, Vm}

and V −
m = −min{Vn, 0}. Then by what we just proved,

15 Here and below, we use the convention that
∑0

n=1(·) = 0.
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n−1
n∑

m=1

Vm = n−1
n∑

m=1

V +
m − n−1

n∑

m=1

V −
m

→
∑

j

a+j πj −
∑

j

a−
j πj =

∑

j

ajπj a.s.

Example 76. Functions Involving Auxiliary Variables. In the setting of Theo-
rem 75, a typical random function or value associated with the Markov chain
has the form Vn = g(Xn, Yn), where Yn are auxiliary variables in S′ and
g : S×S′ → R. For instance, Yn might represent the state of an environment
or cost that affects the value at time n, and g(i, y) is the value whenever the
chain is in state i and the auxiliary variable is in state y. Assume the Yn
are i.i.d. and independent of the chain. Then according to Theorem 75, the
average value is

n−1
n∑

m=1

g(Xm, Ym) →
∑

i

E[g(i, Y1)]πi a.s.,

provided the last sum is absolutely convergent.

This section ends with a few observations about limiting averages. Intu-
ition suggests that a limiting average for a stochastic process should be the
mean value associated with a stationary version of the process. Although this
is not generally true, it is for the Markov averages above.

Remark 77. Stationary Chains. Suppose X̄n is a stationary version of the
ergodic Markov chain Xn in the preceding results (both chains have the
same transition probabilities, but X̄n is stationary). By Proposition 52, each
X̄n has the distribution π, and so in the context of the preceding results,

E[f(X̄n)] =
∑

i

f(i)πi,

E[Vn] =
∑

j

E[Vn|X̄n = j]πj =
∑

j

ajπj .

That is, the limiting averages in Theorems 74 and 75 are the means of single-
period values when the chain is in equilibrium.

Do limiting averages exist for “expected values” analogous to those in the
preceding SLLN?

Remark 78. Limit Laws for Expectations. The limiting averages in Propo-
sition 73 and Theorems 74 and 75 are also true for expected values. For
instance, n−1E[τn] → 1/πi and

n−1
n∑

m=1

E[Vm] →
∑

i

aiπi.
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Such results for expected values follow by a discrete-time version of the key
renewal theorem in Chapter 2 for functions of regenerative processes.

Although these limits for means hold for regenerative processes, they gen-
erally do not hold for any non-regenerative sequence that obeys a SLLN.

1.13 Examples of Limiting Averages

This section contains several corollaries and illustrations of the strong laws of
large numbers in the preceding section. For this discussion, suppose Xn is an
ergodic Markov chain on S with transition probabilities pij and stationary
distribution π.

Costs or utilities associated with “jumps” of the Markov chainXn are often
modeled by sums of the form

∑n
m=1 f(Xm−1, Xm), where f(i, j) is the cost

of a jump from i to j. Averages of such sums are described by the following
extension of Theorem 74.

Corollary 79. For a fixed integer �, the process X̃n = (Xn, . . . , Xn+�) is an
ergodic Markov chain on S�+1 with stationary distribution

π(i) = πi0pi0,i1 · · · pi�−1,i� .

Hence, for f : S�+1 → R,

lim
n→∞

n−1
n∑

m=1

f(X̃m) =
∑

i∈S�+1

f(i)π(i) a.s.,

provided the sum is absolutely convergent.

Proof. The first assertion follows by Exercise 28, and the second assertion is
an example of Theorem 74.

The following are basic properties of ergodic Markov chains that are man-
ifestations of limiting averages.

Example 80. Movements Between Sets. The average number of transitions
the chain makes from a set A to a set B per unit time is

λ(A,B) = lim
n→∞

n−1
n∑

m=1

1(Xm−1 ∈ A,Xm ∈ B) a.s.

This limit exists by Corollary 79 with � = 1 and f(i, j) = 1(i ∈ A, j ∈ B),
and it is

λ(A,B) =
∑

i∈A
πi

∑

j∈B
pij .

This quantity is often called the rate at which the chain moves from A to B.
It is also the mean number of transitions the chain makes from A to B per
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unit time when the chain is in equilibrium; recall Remark 77. In particular,
the rate at which the chain moves from state i to state j is λ(i, j) = πipij ,
and therefore

λ(A,B) =
∑

i∈A

∑

j∈B
λ(i, j).

Example 81. Balance Equations. In terms of rates of movements, the total
balance equations for the Markov chain have the following interpretation:
For i ∈ S,

πi =
∑

j

πjpji is equivalent to λ(i, S) = λ(S, i).

This says that the rate at which the chain moves out of i is equal to the rate
at which it moves into state i. More generally,

λ(A,Ac) = λ(Ac, A), (1.55)

which says that the rate at which the chain moves out of a set A is the rate
at which it moves into A. To prove (1.55), first observe that summing the
balance property πi =

∑
j πjpji on i ∈ A, we have λ(A,S) = λ(S,A). Then

subtracting λ(A,A) from these terms yields (1.55).

The next example is an extension of Proposition 73.

Example 82. Entrance Rates into Sets. The number of entrances the Markov
chain makes into a set A ⊂ S up to time n is defined by

νA(n) =
n∑

m=1

1(Xm−1 �∈ A,Xm ∈ A).

By Example 80, the average number of entrances per unit time into A is

λ(A) = lim
n→∞

n−1νA(n) =
∑

i∈Ac,j∈A
πipij . (1.56)

This is the same as the rate λ(Ac, A) at which the chain enters A.
A related quantity is the nth time the chain enters the set A, which is

τA(n) = min{m : νA(m) = n}. The limiting averages of these times is

lim
n→∞

n−1τA(n) = 1/λ(A) a.s.

This follows since νA(τA(n)) = n and τA(n) → ∞; and so by (1.56),

n−1τA(n) =
(νA(τA(n))

τA(n)

)−1

→ 1/λ(A) a.s.
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Example 83. Average Sojourn Time in a Set. Let Wn(A) denote the amount
of time the Markov chain spends in a set A on its nth sojourn in that set.
Then the average sojourn or waiting time in A is

W (A) = lim
n→∞

n−1
n∑

m=1

Wm(A) a.s.

We will prove that this limit exists and

W (A) =
1

λ(A)

∑

i∈A
πi. (1.57)

First note that by the definition of the waiting times and the τA(n) from
the preceding example,

n∑

m=1

Wm(A) =
∑

i∈A
Ni(τA(n)),

where Ni(n) is the cumulative sojourn time in state i up to time n. Then
(1.57) follows, since by the preceding example and n−1Ni(n) → πi from
Proposition 73, we have

n−1
n∑

m=1

Wm(A) = (τA(n)/n)
[∑

i∈A
τA(n)

−1Ni(τA(n))
]

→ 1

λ(A)

∑

i∈A
πi.

Example 84. Machine Deterioration: Average Time Machine is Good. Con-
sider the ergodic Markov chain Xn in Example 57 that denotes the state of
deterioration of a machine. Its stationary distribution is

πi =
ci

∑�
k=0 ck

, 0 ≤ i ≤ �,

where c0 = 1 and ci = (1− pii)
−1

∑i−1
j=1 cjpji.

Suppose the sets of “acceptable” states and “bad” states of the machine
are A = {0, 1, 2} and B = {�− 2, �− 1, �}, respectively (assume � ≥ 5). Then
the preceding examples yield the following properties. The rate at which the
machine jumps from being acceptable to being bad is

λ(A,B) =
∑

i∈A,j∈B
πipij =

2∑

i=0

ci
∑�

k=0 ck

�∑

j=�−2

pij .
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The rate at which the machine enters an acceptable state is

λ(A) =
�∑

i=3

ci
∑�
k=0 ck

2∑

j=0

pij .

The average time the machine is in an acceptable state is

W (A) =
1

λ(A)

∑

k∈A
πk =

1 + c1 + c2
∑�
i=3 ci

∑2
j=0 pij

.

1.14 Optimal Design of Markovian Systems

This section explains how one can use average cost formulas for Markov chains
to determine optimal design parameters for systems.

Consider a Markov chain on a space S whose transition probabilities pij(x)
are a function of a variable x in a set. The x is a design parameter (a vector or
any type of variable) that can be selected to minimize the cost of running the
Markov chain. In particular, suppose, for each x that pij(x) determines an
ergodic Markov chain and denote its stationary distribution by πi(x), i ∈ S.
Assume there is a cost f(i, x) whenever the chain visits state i, and a cost
g(i, j, x) whenever the chain jumps from i to j. Then by Theorem 74 above,
the average cost under the design variable x is

φ(x) =
∑

i

πi(x)[f(i, x) +
∑

j

pij(x)g(i, j, x)], (1.58)

provided the sum is absolutely convergent. The aim is to find a value of x
that minimizes this cost.

For instance, in the (s, S) inventory model in Example 17, one may want
to find values of s and S that minimize the average cost.

In some cases, it might be convenient to first determine the stationary
distributions π(x) for each x and then minimize φ(x) by an appropriate algo-
rithm. When there are only a small number of x-values, a total enumeration
approach might be feasible.

Another more general approach is to determine the stationary distribu-
tions simultaneously with minimizing the cost by the following non-linear
mathematical program:

min
x

∑

i

πi(x)[f(i, x) +
∑

j

pij(x)g(i, j, x)]
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subject to

πi(x) =
∑

j

πj(x)pji(x), i ∈ S,

∑

i

πi(x) = 1, πi(x) > 0, i ∈ S.

A procedure for solving this would depend on the structure of the problem.
The preceding is a generic design problem for a Markovian system. It is

a “static” optimization problem in that an optimal x is selected once (at
time 0) and the system is run indefinitely with x set at this value. This is
different from a “dynamic” optimization problem in which one can vary a
parameter x as the system evolves to minimize the cost. For instance, one
might vary the service rate in a queueing system as the queue length varies.
Such a problem is a Markov decision problem (or a stochastic control, or
dynamic programming problem).

Example 85. Optimal Machine Replacement. Consider the machine deterio-
ration model in Example 16 in which Xn denotes the state of deteriora-
tion of a machine (or equipment) at time n. The Xn is a Markov chain on
S = {0, 1, . . . , �} with transition matrix

P =

⎡

⎢
⎢
⎢
⎢
⎣

p00 p01 p02 . . . .
0 p11 p12 p13 . . .
0 0 0 p22 p23 .
. . . . . . . . .
p�0 . . . 0 0 p��

⎤

⎥
⎥
⎥
⎥
⎦

Now, suppose there is a cost h(i) for operating the machine in state i and a
cost C for replacing the machine, where

h(0) ≤ h(1) ≤ · · · ≤ h(�) < C.

Because of these costs, it may be beneficial to replace the machine before it
reaches state �.

Accordingly, let us consider the following control-limit policy: Replace the
machine in the next time period putting its state to 0 when and only when
the machine’s state equals or exceeds a state x (the control limit).

Under this policy, the transition probabilities of the chain are

pij(x) =

{
pij if 0 ≤ i ≤ x− 1
1(j = 0) if x ≤ i ≤ �.

This chain is clearly ergodic. By Example 57, its stationary distribution is

πi(x) =
ci(x)

∑�
i=0 ci(x)

, 0 ≤ i ≤ �,
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but under the control, the ci(x) are given recursively by c0(x) = 1 and

ci(x) =

{
(1− pii)

−1
∑i−1

j=0 cj(x)pji, 1 ≤ i ≤ x− 1,
∑x−1
j=0 cj(x)pji, x ≤ i ≤ �.

Now by (1.58), the average cost of the system is

φ(x) =

�∑

i=0

πi(x)[h(i) + C1(x ≤ i ≤ �)].

For specific costs and transition probabilities, one can readily compute φ(x)
from the preceding formulas for each x = 1, . . . , �, and then select a control
limit x that minimizes the cost.

Although this optimal control-limit policy is a static policy, it is often
optimal in the dynamic sense. Indeed, assume that, for each k,

�∑

i′=k

pii′ ≤
�∑

i′=k

pji′ , when i ≤ j.

In other words, the deterioration is higher in worse states, which would gener-
ally be true. Under this monotonicity condition, it is known from the theory
of Markov decision processes (e.g., see [90] and examples in [33, 76, 109])
that within the class of all dynamic machine replacement policies, there is
a control-limit policy that is optimal. Thus, the optimal control-limit policy
described above is also optimal in the dynamic sense.

1.15 Closed Network Model

We will now present two Markov chain models of networks in which discrete
items move among nodes. This section describes a model for a closed network
in which a fixed number of items move indefinitely among the nodes. The next
section describes a model for an open network in which items enter from out-
side and move among the nodes for a while and eventually exit the network.

The notation here is different from above. A typical state i will now be
denoted by a vector x = (x1, . . . , xm) with nonnegative integer entries, and
transition and stationary probabilities pij and πi will now be denoted by
p(x, y) and π(x).

Consider a network in which ν items move in discrete time amongm nodes
(or processing stations) in the set M = {1, . . . ,m}. The state of the network
at time n is denoted by the random vector Xn = (X1

n, . . . , X
m
n ), where X i

n

denotes the number of items at node i, and
∑m

i=1X
i
n = ν. The state space

is the set S of all vectors x = (x1, . . . , xm) with nonnegative integer-valued
entries such that

∑m
i=1 xi = ν.
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At each time period, exactly one item moves from its current node to an-
other node or returns to the same node according to prescribed probabilities.
Specifically, whenever the process is in a state x, one item is selected to move
from node i with probability pi(xi), and that item moves to a node j with
a prescribed routing probability pij , for i, j in M. In other words, one item
moves from node i to node j with probability pi(xi)pij , and this movement
is independent of the past history. These selection and routing probabilities
are such that pi(0) = 0, pi(k) > 0 if k > 0; and

m∑

i=1

pi(xi) = 1,

m∑

j=1

pij = 1, x ∈ S, i ∈ M.

Under these assumptions, Xn is a Markov chain. Now, a typical transition
is of the form x → x−ei+ej (one item moves from node i to node j) with prob-
ability pi(xi)pij . Here ei is the ith unit vector with 1 in position i and 0 else-
where. Therefore, the transition probabilities p(x, y) = P{X1 = y|X0 = x}
are

p(x, y) =

{
pi(xi)pij if y = x− ei + ej for some i, j ∈ M

0 otherwise.

The communication properties of this chain are determined by the routing
probabilities pij . Indeed, Exercise 40 shows that the chain is irreducible or
aperiodic if and only if pij has these respective properties. One can envision
these routing probabilities as defining a virtual or artificial Markov chain that
depicts the state of a single item moving in M with a service time at each
node being exactly one time unit. This virtual chain evolves like the network
chain Xn with ν = 1.

For simplicity, we will assume the routing probabilities pij are ergodic with
stationary distribution wi. That is, wi satisfies the traffic equations

wi =
∑

j

wjpji, i ∈ M.

Exercise 40 ensures that Xn is ergodic when it is aperiodic, since its state
space is finite. The stationary distribution of the network chain is as follows.16

Theorem 86. The stationary distribution for the closed-network Markov
chain Xn described above is

π(x) = cf1(x1) · · · fm(xm), x ∈ S, (1.59)

where fi(xi) = wxi

i

∏xi

k=1 pi(k)
−1. The normalization constant c is given by

c−1 =
∑

x∈S
f1(x1) · · · fm(xm).

16 Here and below, we use the convention that
∏0

k=1(·) = 1.
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Proof. It suffices to show that π given by (1.59) satisfies the balance equations
π(x) =

∑
y π(y)p(y, x).

Since any transition into x has the form x+ ei − ej → x,

∑

y

π(y)p(y, x) =
∑

i,j

π(x + ei − ej)p(x+ ei − ej , x)1(xj > 0).

From the definitions of π and the transition probabilities, when xj > 0,

π(x+ ei − ej) = π(x)
wipj(xj)

wjpi(xi + 1)
,

p(x+ ei − ej , x) = pi(xi + 1)pij .

Substituting these expressions in the preceding display yields

∑

y

π(y)p(y, x) = π(x)
∑

j

pj(xj)
(
w−1
j

∑

i

wipij

)
= π(x).

The last equality follows since
∑

j pj(xj) = 1, and the stationary distribution
wi of the routing probabilities satisfies wj =

∑
i wipij . Thus π satisfies the

balance equations π = πP, and hence it is the stationary distribution.

In the preceding result, the stationary distribution

π(x1, . . . , xm) = cf1(x1) · · · fm(xm)

is the “joint distribution” for the network process in equilibrium. This distri-
bution provides expressions for many performance parameters of the network.
To describe c and the marginal distributions of π, we will use the functions

fI(k) =
∑

∑
i∈I xi=k

∏

i∈I
fi(xi), 0 ≤ k ≤ ν, I ⊂ M.

This fI is the convolution17 of the functions fi, i ∈ I.
First note that c = fM(ν)

−1. Next, note that the equilibrium distribution
of the number of items in a subset of nodes I is

πI(k) =
∑

x∈S
π(x1, . . . , xm)1(

∑

i∈I
xi = k)

= cfI(k)fIc(ν − k), 0 ≤ k ≤ ν.

In particular, if I = {i}, the ith “marginal distribution” of the number of
items in node i is

πi(k) = fi(k)fM\{i}(ν − k)/fM(ν), 0 ≤ k ≤ ν.

17 Properties of convolutions, which are not needed here, are in the Appendix.
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A standard performance parameter for the network is the average time
items wait at a node or in a set of nodes.

Example 87. Rates of Item Movements. We first consider the rate at which
items move from node i to node j, which is

r(i, j) = lim
n→∞

n−1
n∑

m=1

1(Xm = Xm−1 − ei + ej). (1.60)

By Corollary 79 and the definitions of π(x) and p(x, y),

r(i, j) =
∑

x∈S
π(x)p(x, x − ei + ej)1(xi ≥ 1)

= wipij
∑

x∈S
π(x − ei)1(xi ≥ 1).

Now the last sum equals fM(ν−1)/fM(ν), the normalization constant for the
closed network with ν items divided by the constant for the network with
ν − 1 items. Therefore

r(i, j) =
fM(ν − 1)

fM(ν)
wipij .

Furthermore, the rate r(I, J) at which items move from a set of nodes I to a
set of nodes J is (1.60) summed over i ∈ I and j ∈ J . Consequently,

r(I, J) =
fM(ν − 1)

fM(ν)

∑

i∈I
wi

∑

j∈J
pij .

Example 88. Average Empty Times. Next, consider the average length of time
that a set of nodes I is empty, which is the average time W (SI) that Xn

spends in SI = {x ∈ S :
∑

i∈I xi = 0}. By Example 83,

W (SI) =
1

λ(ScI , SI)

∑

x∈SI

π(x),

where

λ(ScI , SI) =
∑

y∈Sc
I

∑

x∈SI

π(y)p(y, x)

=
∑

x∈SI

∑

j∈Ic

∑

i∈I
π(x − ej + ei)p(x− ej + ei, x)

=
∑

x∈SI

π(x)
∑

j∈Ic
pj(xj)w

−1
j

∑

i∈I
wipij .
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Example 89. Equally-Likely Item Selection. Consider the closed network de-
scribed above in which at each time period, any one of the ν items is randomly
chosen (or is equally-likely) to move. That is, the probability that one of the
xi items at node i is selected is

pi(xi) = xi/ν.

In this case, the stationary distribution of the ergodic network Markov chain
Xn is the multinomial distribution18

π(x) =
ν!

x1! · · ·xm!
wx1

1 · · ·wxm
m , x ∈ S.

This result says that the joint distribution of the quantities of items in the
nodes in equilibrium is equal to the multinomial distribution of quantities of
items in m boxes, when ν items are independently put in the m boxes with
respective probabilities w1, . . . , wm.

From the structure of the multinomial distribution, it follows that the
equilibrium distribution of the quantity of items in a subset of nodes I is a
binomial distribution with parameters ν and p =

∑
i∈I wi. More generally,

if I, J , K is a partition of M, then the joint equilibrium distribution of the
numbers of items in these subsets is the multinomial distribution

πI,J,K(i, j, k) =
ν!

i!j!k!
piIp

j
Jp

k
K , i+ j + k = ν,

where pI =
∑

i∈I wi, and pJ and pK are defined similarly.

1.16 Open Network Model

We will now consider an open m-node network in which items occasionally
enter the network from outside and move among the nodes, as in the closed
network above, but eventually the items exit the network. Much of the no-
tation will be similar to that in the last section. The state of the network is
denoted by the random vector Xn = (X1

n, . . . , X
m
n ), where X i

n denotes the
number of items at node i at time n, and the state space is S = Z

m
+ .

For a typical state x = (x1, . . . , xm), an item at node i is selected to move
(as in the closed network) with probability pi(xi), and pij is the probability
the item is routed to node j. In addition, p0(|x|) will denote the probability

18 Here the normalization constant in (1.59) is c = ν! because of w1 + · · ·+ wm = 1 and
the multinomial formula

(a1 + · · ·+ am)ν =
∑

x:
∑

i xi=ν

ν!

x1! · · ·xm!
ax1
1 · · · axm

m .
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that an item enters the network from outside, as a function of |x| =
∑m

i=1 xi,
the number of items in the network. Also, p0j and pi0 will denote the re-
spective probabilities that an item from outside is routed to node j and an
item at node i exits the network (think of 0 as the “outside node”). These
probabilities are such that

p0(|x|) +
m∑

i=1

pi(xi) = 1, x ∈ S,

m∑

j=0

pij = 1, 0 ≤ i ≤ m.

A network transition at each time period is triggered by exactly one of the
following events:
• One item moves from outside the network to some node j in the network
with probability p0(|x|)p0j .
• One item at some node i moves to a node j in the network with probability
pi(xi)pij .
• One item at some node i exits the network with probability pi(xi)pi0.

Under these assumptions, Xn is a Markov chain with transition probabil-
ities

p(x, y) =

⎧
⎨

⎩

p0(|x|)p0j if y = x+ ej for some 1 ≤ j ≤ m
pi(xi)pij if y = x− ei + ej for some 1 ≤ i ≤ m, 0 ≤ j ≤ m
0 otherwise.

Here e0 = 0.
As in the closed network, the single-item routing probabilities pij deter-

mine the communication properties of the open-network chain Xn. Assume
the routing probabilities pij on {0, . . . ,m} are irreducible and aperiodic. Let
w = (w0, . . . , wm), with w0 = 1, be an invariant measure of pij ; that is,

wi =

m∑

j=0

wjpji, 0 ≤ i ≤ m.

Then an argument as in Exercise 40 proves that Xn is irreducible and
aperiodic.

The state space may be finite or infinite. It is infinite if p0(k) > 0 for
each k ≥ 0. On the other hand, assume that if p0(k) = 0 for some k, then
p0(�) = 0, for � ≥ k. Then the total quantity of items in the network cannot
exceed max{k : p0(k) > 0} and the state space is finite (assuming the initial
quantity is below this maximum).

Theorem 90. The open-network Markov chain Xn described above is ergodic
if and only if the state space is finite or
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c−1 =
∑

x∈S

|x|−1∏

k=0

p0(k)

m∏

i=1

fi(xi) <∞,

where fi(xi) = wxi

i

∏xi

k=1 pi(k)
−1. In that case, its stationary distribution is

π(x) = c

|x|−1∏

k=0

p0(k)

m∏

i=1

fi(xi), x ∈ S. (1.61)

Proof. Similarly to the proof of Theorem 86, one can show that π given
by (1.61) with c = 1 is an invariant measure for the chain; this is left as
Exercise 41. This observation, in light of Theorem 54, proves the assertions.

Marginal distributions and rates of item movements for open networks are
similar to those for closed networks. However, there are a few simplifications.

Example 91. Independent Quantities at Nodes. Suppose the entry probabili-
ties for the open network are p0(k) = p, k ≥ 0. Then the joint distribution
(1.61) is the product π(x) =

∏m
i=1 πi(xi) of the marginal distributions

πi(k) = ci(pwi)
k

k∏

�=1

pi(�)
−1, k ≥ 0,

where c−1
i =

∑∞
k=0(pwi)

k
∏k
�=1 pi(�)

−1. So in equilibrium the state compo-
nents X1

n, . . . , X
m
n are independent for each fixed n.

Also, similarly to Example 87, the rate at which items move from node i
to node j is

r(i, j) = wipij , 0 ≤ i, j ≤ m.

1.17 Reversible Markov Chains

We will now study an important class of “reversible” Markov chains. An er-
godic Markov chain is reversible if its rate of transitions from one state to
another is equal to the rate of the transitions in the reverse order. When
the ergodic chain is stationary, the reversibility condition is equivalent to a
“time-reversibility” property that, at any instant, the future of the process is
stochastically indistinguishable from viewing the process in reverse time. A
remarkable feature of an ergodic reversible Markov chain is that its equilib-
rium distribution has a known universal product-form (a product of a ratios
of transition probabilities). Further properties of reversible Markov chains in
continuous time are covered in Chapter 4.

Throughout this section, Xn will denote an irreducible Markov chain on
S with transition probabilities pij .
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Definition 92. The Markov chain Xn is reversible if there is a measure η on
S that satisfies the detailed balance equations

ηipij = ηjpji, i �= j in S. (1.62)

We also say that Xn (or pij) is reversible with respect to η.

The η in this definition is an invariant measure for the chain, since sum-
ming (1.62) over j yields ηi =

∑
j ηjpji. When η is finite, it can be normalized

to be the stationary distribution of the chain. This definition of reversibility is
related to the property of a chain being “reversible in time”; see Exercise 67.

Note that if Xn is reversible, then it has the two-way communication prop-
erty: for each i �= j in S, the probabilities pij and pji are both positive or
both equal to 0. This property yields the criterion that a chain is “not” re-
versible if a transition from some i to j is possible, but the reverse transition
is not possible. For instance, the success runs chain in Example 19 is not
reversible since a transition from a state i > 1 to 0 is possible but the reverse
transition is not possible. Because of the two-way communication property,
a periodic Markov chain with period greater than 2 cannot be reversible; see
Exercise 57.

A distinguishing characteristic of a reversible Markov chain is describable
in terms of the rate of its transitions between sectors of its state space as
follows; this is an immediate consequence of (1.62).

Remark 93. Suppose Xn has an invariant measure η. Then Xn is reversible
with respect to η if and only if

∑

i∈A,j∈B
ηipij =

∑

j∈A,i∈B
ηjpji, A,B ⊂ S.

That is λ(A,B) = λ(B,A), using the rate notation of Example 80. Therefore,
when the chain is ergodic, the rate of transitions between any two sets is equal
to the rate of the reverse transitions.

A quintessential reversible chain is as follows.

Example 94. Random Walk. Consider a random walk Xn on S = {0, 1, . . .}
with transition probabilities

P =

⎡

⎢
⎢
⎣

r0 p0 0 . . . . . . .
q1 r1 p1 0 . . . .
0 q2 r2 p2 0 · · ·
. . . . . . . . . . . . . . .

⎤

⎥
⎥
⎦

Assume the pi and qi are positive. Then clearly this Markov chain is irre-
ducible. Now, its detailed balance equations (1.62) (for the two respective
cases j = i+ 1, and j = i− 1 ) are

ηipi = ηi+1qi+1, i ≥ 0, ηiqi = ηi−1pi−1, i ≥ 1.
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Note that these equations are the same. The last one is the recursive equation
ηi = ηi−1pi−1/qi. Iterating this backward, we arrive at the solution

ηi = η0

i∏

j=1

pj−1/qj, i ≥ 1, (1.63)

where η0 is any positive number. Consequently, the chain is reversible and
this η is a positive invariant measure. Furthermore, this measure is finite if
and only if γ =

∑∞
i=1

∏i
j=1 pj−1/qj is finite.

Thus, the chain is ergodic if and only if γ < ∞. In that case, η given by
(1.63) is the stationary distribution for the chain, where η0 = (1 + γ)−1.

Now, consider the chain restricted to S = {0, 1, . . . ,m} so that its transi-
tion matrix is

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

r0 p0 0 . . . . . . . . . . . .
q1 r1 p1 0 . . . . . . . .
0 q2 r2 p2 0 . . . .
. . . . . . . . . . . . . . . . . .
. . . . 0 qm−1 rm−1 pm−1

. . . . . . . . . . qm rm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The detailed balance equations for this chain are the same as those above,
and hence it is reversible and its stationary distribution is as above with
γ =

∑m
i=1

∏i
j=1 pj−1/qj . We will see later in Chapter 4 that such restrictions

of reversible Markov chains to smaller subspaces are also reversible and their
stationary distributions are simply restrictions of the stationary distributions
of the original chains.

Exercises 50 and 52 discuss related queueing models.

The most remarkable property of a reversible Markov chain is that an
invariant measure for it is automatically given by expression (1.64) below,
which is a product of ratios of the transition probabilities (we saw this in
(1.63) above). In this result, a sequence of states i0, . . . , in in S is a path from
i0 to in if pik−1,ik > 0, k = 1, . . . , n.

Theorem 95. If the Markov chain Xn is reversible, then an invariant mea-
sure for it is ηi0 = 1 and

ηi =

�∏

k=1

pik−1,ik

pik,ik−1

, i ∈ S\{i0}, (1.64)

where i0 is a fixed state and i0, i1, . . . , i� = i is any path from i0 to i.

A proof of Theorem 95 is contained below in the proof of (c) implies (a) in
Theorem 97.

Remark 96. One can construct the invariant measure η in (1.64) by the fol-
lowing recursion. Let S0 = {i0} and
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Sn+1 = {i ∈ S\Sn : pij > 0 for some j ∈ Sn}.

Then set ηi0 ≡ 1 and, for each n ≥ 1, define

ηi =
pji
pij

ηj , for i ∈ Sn+1\Sn and any j ∈ Sn with pji > 0.

The “universal” invariant measure (1.64) of a reversible Markov chain is
based on the following Kolmogorov criterion for reversibility. Statement (c)
is a “ratio form” of Kolmogorov’s criterion, which justifies that (1.64) is the
same for any path from i0 to i. With no loss in generality, we assume that
the Markov chain Xn has the two-way communication property.

Theorem 97. The following statements are equivalent.
(a) The Markov chain Xn is reversible.
(b) (Kolmogorov Criterion) For each i0, . . . , i� in S with i� = i0,

�∏

k=1

pik−1,ik =

�∏

k=1

pik,ik−1
.

(c) For each path i0, . . . , i� in S, the product
∏�
k=1

pik−1,ik

pik,ik−1

depends on

i0, . . . , i� and � only through i0 and i�.

Proof. (a) ⇒ (b). If Xn is reversible with respect to η, then, for each i0, . . . , i�
in S with i� = i0,

�∏

k=1

ηik−1
pik−1,ik =

�∏

k=1

ηikpik,ik−1
.

Canceling the η’s yields (b).
(b) ⇒ (c). To prove (c), it suffices to show

�∏

k=1

pik−1,ik

pik,ik−1

=

m∏

k=1

pjk−1,jk

pjk,jk−1

, (1.65)

where i0, . . . , i� and j0, . . . , jm are two paths with i0 = j0 and i� = jm. Since
i0, . . . , i�, jm−1, . . . , j1, j0 is a path from i0 to itself, (b) implies

�∏

k=1

pik−1,ik

m∏

k=1

pjk,jk−1
=

m∏

k=1

pjk−1,jk

�∏

k=1

pik,ik−1
.

These quantities are positive, by the definition of a path. Then dividing both
sides of this equation by the second and fourth products yields (1.65).
(c) ⇒ (a). Suppose (c) holds. We will show that Xn is reversible with respect
to η defined by (1.64). For a fixed i, let i0, . . . , i� = i be a path from i0 to i.
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Choose any j such that pij > 0. Then

ηipij = pji

�∏

k=1

pik−1,ik

pik,ik−1

pij
pji

= pjiηj .

These detailed balance equations also hold trivially for i, j such that pij =
pji = 0. Thus Xn is reversible with respect to η.

To verify the Kolmogorov criterion (b), or its ratio analogue (c), one may
not have to consider all possible sequences or paths in S. In many instances,
certain properties of pij and S lead to simpler versions of the Kolmogorov
criterion. In particular, for some processes on vector state spaces only a small
family of paths generated by the basis vectors need be considered. Here is
another type of simplification.

Remark 98. The Kolmogorov criterion holds for all paths, if it holds for paths
consisting of distinct states (aside from the same beginning and end states).
This is because any path can be partitioned into subpaths of distinct states.

Reversibility of the Markov chain Xn can sometimes be recognized from
the form of its communication graph. This is an undirected graph whose set
of vertices is the state space S, and there is an edge linking a pair i, j if either
pij or pji is not 0. The graph is connected when Xn is irreducible (which we
have assumed).

Theorem 99. If the Markov chain Xn has an invariant measure η, and its
communication graph is a tree, then it is reversible with respect to η.

Proof. Suppose i, j are vertices in the communication graph that are linked
by an edge. Let Ai be the set of all the states in S reachable from i if the
edge between i and j were deleted. Since the graph is a tree, it follows by the
definition of Ai that

ηipij = λ(Ai, A
c
i ), ηjpji = λ(Aci , Ai),

where λ(A,B) =
∑

k∈A,�∈B ηkpk�. Furthermore, we know from Example 81
that λ(A,Ac) = λ(Ac, A), for any A ⊂ S. Therefore, the terms in the preced-
ing display are equal, and so η satisfies the detailed balance equations, which
proves the assertion.

Note that the communication graph of the random walk Example 94 is a
tree, but there are many reversible processes whose communication graphs
are not trees.

Example 100. Random Walk on a Circle. Suppose the Markov chain Xn takes
values on the set of states S = {0, 1, . . . , �} arranged clockwise on a circle.
From state i the chain can move to state i+ 1 with probability pi and move
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to state i−1 with probability qi = 1−pi, where �+1 = 0 and 0−1 = �. This
circular random walk may not be reversible like the standard random walk
in Example 94. Note that its communication graph is a circle (not a tree).
Consequently, a path of distinct states from any state back to itself consists
of all the states. In this case, the Kolmogorov criterion for reversibility is

p0 · · · p� = q0 · · · q�. (1.66)

In other words, the chain is reversible if and only if (1.66) holds. In this case,
the stationary distribution given by (1.64) is

πi = π0

i∏

k=1

pk−1/qk, 1 ≤ i ≤ �,

where π−1
0 = 1 +

∑�
i=1

∏i
k=1 pk−1/qk.

When this chain is not reversible, its stationary distribution is still
tractable; see Exercise 56. Even if the pi are all the same, the chain may
not be reversible.

The following is another example in which the Kolmogorov ratio criterion
simplifies considerably.

Example 101. McCabe’s Library. Consider a finite collection of books (or
items or data) labeled 1, . . . ,m that are placed in a row on a bookshelf.
The successive book selections (one-at-a-time) by users are independent, and
each user selects book b with probability pb. When a book at location 1 is
selected, it is returned to that location. When a book at location k ≥ 2 is
selected, it is returned to location k − 1, and the book there is placed in
location k. This rearrangement is done before the next book is selected. The
state of the library at any selection is a vector i = (i1, . . . , im), where ik
denotes the book at location k. Then the state of the library at successive
book selections is a Markov chain Xn on the set S of all m! permutations of
the books (1, . . . ,m). Its transition probabilities are

pij =

{
pik if the book ik at location k is selected, for some k,
0 otherwise.

In the first line, j is the vector obtained from i after selecting book ik at
location k.

We will show the Markov chain is reversible by applying the Kolmogorov
ratio criterion. Consider any path i0, . . . , i� of distinct states. Let b1, . . . , b�
denote the book selections that determine this path starting with i0. Now,
for the reverse path i�, . . . , i0, let b′1, . . . , b

′
� denote the book selections that

determine this reverse path starting with i�. Then the Kolmogorov ratio is
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�∏

n=1

pin−1,in

pin,in−1

=

�∏

n=1

pbn
pb′

n

.

This product simplifies as follows. To move from i0 to i�, each book i�k with
(i�k < i0k) has to be selected at least i0k − i�k times; and after the (i0k − i�k)-th
selection, each subsequent bn book selection has to be compensated by the
associated book b′n. Similarly, to move in reverse from i� to i0, each book
i0k with (i0k < i�k) has to be selected at least i�k − i0k times; and after the
(i�k− i0k)-th selection, each subsequent b′n selection has to be compensated by
the associated bn. Consequently,

�∏

n=1

pin−1,in

pin,in−1

=

m∏

k=1

p
(i0k−i�k)
i�k

. (1.67)

Here is a typical path and its reverse path, with the book selections above
the arrows.

(1, 2, 3, 4)
3−→ (1, 3, 2, 4)

3−→ (3, 1, 2, 4)
2−→ (3, 2, 1, 4)

4−→ (3, 2, 4, 1)

(1, 2, 3, 4)
2←− (1, 3, 2, 4)

1←− (3, 1, 2, 4)
1←− (3, 2, 1, 4)

1←− (3, 2, 4, 1)

Then the product (1.67), with (i0k − i�k : 1 ≤ k ≤ 4) = (−3, 0, 2, 1), is

p23p2p4
p31p2

= p−3
1 p23p4.

Note that the product (1.67) does not depend on the interior states
i1, . . . , i�−1 of the path. Then by Theorem 97, the Markov chain Xn is re-
versible, and an invariant measure for it is the product (1.67) evaluated at
i� = i, where i0 is fixed. Therefore, setting i0 = (1, . . . ,m), the stationary
distribution is

πi = c

m∏

k=1

p
(k−ik)
ik

, i ∈ S, (1.68)

where c is the normalization constant under which this is a distribution.
A similar model applies for an infinite book collection. This model assumes

the state space S is the set of all permutations of the books (1, 2, . . .) obtained
by a finite number of book selections. The argument above yields the same
invariant measure (1.68), where m is replaced by min{k : ik′ = k′, k′ > k},
the first location in i after which all the books are in their starting locations.
See Exercise 58 for some details on these models.
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1.18 Markov Chain Monte Carlo

This section describes a few standard Markov chains that are used in Monte
Carlo simulations. The field of simulation and related statistics (e.g., see [43])
is very important for numerical explorations of systems, but our discussion
will not go beyond an introduction to Markov chain procedures for estimation
of system parameters.

There are a variety of statistical problems in which one uses Monte Carlo
simulations for estimating expectations of the form

μ =
∑

i∈S
g(i)πi,

where π is a specified probability measure and g : S → R. A standard Markov
chain Monte Carlo approach is to construct an ergodic Markov transition
matrix whose stationary distribution is π. Then for a sample path X1, . . . , Xn

of the chain, an estimator for μ is

μ̂n = n−1
n∑

m=1

g(Xm).

By Theorem 74 for Markov chains, μ̂n → μ a.s., and so μ̂n is a consistent
estimator19 of μ. Other consistent estimators are given in Exercise 59.

In some applications, the target distribution has the form πi = cηi, where
η is known, but the normalization constant c is unknown and is difficult to
compute. In this case, one can obtain consistent estimators for c as well as μ
as in Exercise 59.

For a particular application, one would simulate the Markov chain for a
large number of steps n, and then take the resulting μ̂n as an approximate
value of μ. An implementation of this procedure requires the formulation of
an ergodic Markov chain whose stationary distribution is π. There are many
ways this can be done.

One approach is to use a reversible Markov chain whose transition proba-
bilities have the form

pij = r(i, j)/πi, i, j ∈ S, (1.69)

where r(i, j) = r(j, i). This chain is clearly reversible with stationary distri-
bution π, provided the r(i, j) are chosen so that the chain is ergodic. Here
are two standard examples.

Example 102. Hastings-Metropolis Markov Chain. Let π be a positive proba-
bility measure on S, and consider a Markov chain with transition probabilities

19 A statistic θ̂n that is a function of observed values X1, . . . , Xn, is a consistent estimator
of a parameter θ if θ̂n → θ a.s. as n → ∞.
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pij =

{
γij min{1, πjγji/(πiγij)} if j �= i,
1−

∑
k �=i pik if j = i.

(1.70)

Here γij are probabilities that one selects such that the chain is ergodic.
These transition probabilities may seem rather artificial, but they are

amenable to easy simulations for obtaining estimates discussed above. Note
that the Markov chain is reversible with stationary distribution π, since pij
can be written as in (1.69) with r(i, j) = min{πiγij , πjγji}.

An important feature of the pij is that they do not depend on the normal-
ization constant c, where πi = cηi; it is often difficult to calculate c. Also,
the probabilities simplify to pij = γij min{1, πj/πi} when γij = γji, for each
i and j.

A Hastings-Metropolis simulation generates transitions according to the
probabilities (1.70) as follows. Whenever the chain is in state i, the next state
is determined by the following steps.
(1) Select a state j with probability γij .
(2) If state j is selected, then choose j as the next state with probability
min{1, πjγji/(πiγij)}; and otherwise choose the current state i to be the
next state.
These steps are repeated for successive transitions.

The preceding example is for a single- or multi-dimensional state space;
the next example is for the latter case.

Example 103. Gibbs Sampler. Let π be a probability measure on a set S of
vectors of the form i = (i1, . . . , im), and let (Y1, . . . , Ym) denote a random
vector with probability measure π. Consider a Markov chain with transition
probabilities

pij = m−1P{Yk = jk|Y� = i�, � �= k}, if j� = i�, � �= k, for some k. (1.71)

Also, pij = 0 otherwise. An easy check shows that these probabilities are of
the form (1.69), and hence the Markov chain is reversible with stationary
distribution π.

A Gibbs simulation generates transitions according to (1.71) as follows.
Whenever the chain is in state i, the next state is determined by changing a
single component of i by the following steps.
(1) Randomly select a component of i that is to be changed: component k is
selected with probability 1/m.
(2) For the component k to be changed, choose a value jk with probability
P{Yk = jk|Y� = i�, � �= k}, and then take the new state j to be i with ik
changed to jk.
These steps are repeated for successive transitions.

A variation of this simulation can be constructed by changing the compo-
nents one at a time in a specified order, and repeating this indefinitely. The
resulting Markov chain has the stationary distribution π, but it may not be
reversible (which is not essential for estimations).
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Hastings-Metropolis and Gibbs Sampler Markov chains are illustrated by
the following example.

Example 104. Hastings-Metropolis Simulation. We will consider a probability
measure π on the set of vectors S = {0, 1, . . . , L}m. Let M denote any family
of subsets of {1, . . . ,m}, and, for i = (i1, . . . , im) ∈ S and A ∈ M, let
iA =

∑
k∈A ik. Suppose that π has the form

πi = c
∏

A∈M
fA(iA),

where fA, A ∈ M, are positive functions that are known. This type of distri-
bution arises in stochastic networks, where iA is the number of items at the
nodes in A.

To construct a Hastings-Metropolis simulation, we only need to decide
which transitions are to be feasible and to choose the transition probabilities
γij. Assume the feasible transitions from a state i will be into the set

S(i) = {i− ek + e� ∈ S : k �= � ∈ {0, 1, . . . ,m}}.

Recall that i − ek + e� is the vector i with one unit subtracted from ik and
one unit added to i�. The number of its elements is |S(i)| ≤ m(m+1). Next,
assume γij = 1/|S(i)|, which means that each j ∈ S(i) is equally likely. Then
the transition probabilities (1.70) are

pij =
1

|S(i)| min{1, πj/πi}, j ∈ S(i).

Letting Mk = {A ∈ M : k ∈ A}, it follows by the definition of πi that

πj
πi

=

∏
A∈Mk\M�

rA(iA)
∏
A′∈M�\Mk

rA′(iA′ + 1)
, for j = i− ek + e�, (1.72)

where rA(n) = fA(n− 1)/fA(n) and M0 is the empty set. Assume the func-
tions fA are such that the Markov chain is ergodic. Then the simulation
generates transitions as follows.

Whenever the chain is in state i, the simulation obtains the next state by
the following rules.
(1) Randomly select a state j ∈ S(i) with probability 1/|S(i)|.
(2) If j is selected, then choose it as the next state with probability min{1,
πj/πi}, and otherwise, choose the current state i to be the next state.

Example 105. Gibbs Sampler Simulation. Suppose that (Y1, . . . , Ym) has the
joint distribution π in the preceding example. Then a Gibbs simulation gen-
erates transitions as follows.

Whenever the chain is in state i, the next state is determined by changing
a single component of i by the following steps.
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(1) Select a component k of i that is to be changed with probability 1/m.
(2) For the component k to be changed, choose a value jk ∈ {0, 1, . . . , L}
with probability

P{Yk = jk|Y� = i�, � �= k} =

∏
A∈Mk

fA(iA + jk − ik)
∑L

j′
k=0

∏
A∈Mk

fA(iA + j′
k − ik)

,

where j� = i�, � �= k, for some k. Then take the new state j to be i with ik
changed to jk.

1.19 Markov Chains on Subspaces

This section discusses two types of Markov chains that are associated with
observing a Markov chain on parts of its state space.

The first type of chain in the following example addresses the questions: If
one observes a Markov chain only on a certain subset of states, is the observed
sequence of states a Markov chain? If so, what are its transition probabilities,
and does it inherit the stationary distribution of the parent chain?

Example 106. Markov Chain on a Subspace. Let Xn be an irreducible Markov
chain on S. Suppose the hitting time of a fixed subset S′ ⊂ S is finite starting
from at any state; then the successive times that it visits S′ are finite. Let
X ′
n denote the state of the chain at its nth visit to S′. By the strong Markov

property for Xn at the hitting times of S′, it follows that X ′
n is an irreducible

Markov chain on S′. This chain is called the restriction of Xn to S′.
We will show that its transition probabilities are

p′
ij = pij +

∑

k �∈S′

pikγkj , (1.73)

where γkj is the probability the chain Xn beginning in state k eventually
hits S′ in state j (such hitting probabilities are described in Section 1.7). In
addition, we show that if Xn is recurrent, then so is X ′

n, and an invariant
measure for it is an invariant measure for Xn restricted to S′.

To derive the transition probabilities, note that a transition of X ′
n out

of a state i consists of (instantaneously) selecting a sequence of states, say
k1, k2, . . . , k�, by the probabilities pik1 , pk1,k2 , . . . , pk�,j until some j ∈ S′ is
reached. Then, conditioning on the first selection, the transition probabilities
of X ′

n are

p′
ij = pij +

∞∑

�=1

∑

k1,...,k� �∈S′

pik1pk1,k2 · · · , pk�,j .

The last sum can also be written as in (1.73), which proves (1.73).
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Clearly X ′
n is recurrent when Xn is. Next, recall from Theorem 53 that an

invariant measure for Xn is as follows: For a fixed i ∈ S,

ηj = Ei

[ τi−1∑

n=0

1(Xn = j)
]
, j ∈ S. (1.74)

The ηj is the expected number of visits Xn makes to state j in between visits
to the fixed reference state i. However, for i, j ∈ S′, the ηj is also the expected
number of visits X ′

n makes to j between visits to i. Thus by Theorem 53, the
ηj above for i, j ∈ S′ defines an invariant measure for X ′

n.

The next type of Markov chain addresses the questions: Can the stationary
distribution of a Markov chain be constructed by determining the stationary
distributions of the chain restricted to certain subsets of the state space by
pasting these distributions together? If so, is there a procedure for doing the
pasting?

Example 107. Star-Like Collage of Subchains. Let Xn be an irreducible
Markov chain on S. Suppose S0, S1, S2, . . . is a countable partition of S such
that whenever the chain is in any Sk, it can only take transitions into S0∪Sk.
The partition is star-like in that to move from one set in the partition to an-
other the chain must go through S0. Assume that the chain restricted to each
set S0 ∪ Sk is ergodic with stationary distribution pki , i ∈ S0 ∪ Sk.

For simplicity, assume S0 consists of the single state 0; see Exercise 60
for the case when S0 is not a singleton. Under these conditions, a natural
candidate for the stationary distribution of Xn is

πi = π0ckp
k
i , if i ∈ S0 ∪ Sk for some k,

where π0 and ck are to be determined. This is a collage (or pasting together)
of the stationary distributions pk of the subchains.

First note that ck = 1/pk0, since π0 = π0ckp
k
0 because S0 = {0}. In addi-

tion, π0 is determined by

1 =
∑

i

πi = π0 + π0
∑

k

ck
∑

i∈Sk

pki .

Thus, we have the following result. If the preceding double sum is finite,
then Xn is ergodic and its stationary distribution from above would be

πi = π0p
k
i /p

k
0 , if i ∈ Sk for some k, (1.75)

and π0 =
(
1+

∑
k

∑
i∈Sk

pki /p
k
0

)−1
. An easy check shows that this distribution

satisfies π = πP.

Example 108. Dual Birth-Death Subprocesses. Suppose Xn takes values in
the set of integers. Assume that in order for it to move between the positive
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and negative integers it must pass through 0 and, it can enter 0 only from
states 1 or −1. Furthermore, assume that the chain behaves like an ergodic
birth-death process on the nonnegative integers with stationary distribution
p1i = (1 − ρ1)ρ

i−1, where 0 < ρ1 > 1. Similarly, the chains behavior on the
nonpositive integers is that of a birth-death process with stationary distri-
bution p2i = (1 − ρ2)ρ

i−1. This process is an example of the model above
in which the communication graph of the process is a star with center set
S0 = {0} and point sets S1 = {1, 2, . . .} and S2 = {. . . ,−2,−1}. Under the
assumptions, the stationary distribution of the process is

πi =

{
π0ρ

i−1
1 , i ≥ 1,

π0ρ
i−1
2 , i ≤ 1,

where π−1
0 = 1 + 1/(1− ρ1) + 1/(1− ρ2).

Example 109. Random Walks on Intersecting Circles. The random walk on
discrete points on a circle described in Example 100 has a tractable station-
ary distribution, even when it is not reversible (Exercise 56). Consider the
generalization of a random walk on several ellipses that have 0 as a common
point. Then the stationary distribution of the random walk is a collage of the
stationary distributions on the ellipses.

1.20 Limit Theorems via Coupling

The material in this section was used to classify states of a Markov chain
(Theorem 37), and to prove the important property that a stationary distri-
bution is a limiting distribution (Theorem 59).

The first result is that if two independent irreducible and recurrent Markov
chains have the same transition probabilities, then the difference between
their distributions converges to 0 as time tends to infinity. It is based on con-
structing Markov chains on a common probability space with certain prop-
erties. This is an example of coupling, which refers to constructing stochastic
processes (not necessarily on the same probability space) in order to prove
convergence in distribution, stochastic ordering, rates of convergence of prob-
ability measures, etc.

Theorem 110. Suppose Xn and Yn are independent, irreducible, aperiodic
recurrent Markov chains on S with arbitrary initial distributions, but with
the same transition probabilities. Then

sup
i

|P{Xn = i} − P{Yn = i}| → 0, as n→ ∞. (1.76)

Proof. For a fixed state i0, let τ = min{n ≥ 1 : Xn = Yn = i0}. Clearly τ is
a stopping time of the process Zn = (Xn, Yn), n ≥ 0. Under the hypotheses,
Exercise 27 shows that Zn is an irreducible recurrent Markov chain on S2.
Consequently, τ < ∞ a.s.
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Let pij denote the transition probabilities for the two Markov chains Xn

and Yn. To prove their distributions get close to each other, the key obser-
vation is that the two chains are both equal to i0 at time τ and, at any time
thereafter, they have the same (conditional) distribution, since the chains
have the same transition probabilities. In particular, since Xm = Ym = i0
when τ = m, it follows by the strong Markov property that, for n > m,

P{Xn = i|τ = m} = pn−m
i0,i

= P{Yn = i|τ = m}. (1.77)

Next, define X∗
n = Xn for n ≤ τ and X∗

n = Yn otherwise. Clearly the chain
X∗
n is equal in distribution to the chain Xn, since both chains have the same

transition probabilities and initial distribution. Using this fact and (1.77),

|P{Xn = i} − P{Yn = i}| = |P{X∗
n = i} − P{Yn = i}|

= |P{X∗
n = i, τ > n} − P{Yn = i, τ > n}|

≤ 2P{τ > n} → 0.

This proves (1.76).

Recall from Theorem 59 that the stationary distribution for an ergodic
Markov chain is also its limiting distribution. This result follows from state-
ment (1.78) below that the probability measure of an ergodic Markov chain
converges in total variation distance20 to its stationary probability measure.
This mode of convergence, of course, implies convergence in distribution.

Theorem 111. (Limiting Distributions) If Xn is an ergodic Markov chain
with stationary distribution π, then

sup
i

|P{Xn = i} − πi| → 0, as n→ ∞. (1.78)

Hence π is the limiting distribution of Xn.

Proof. Let Yn be a Markov chain defined on the same probability space as
Xn with the same transition probabilities as Xn. Suppose the two chains are
independent and that Yn is stationary. Then P{Yn = i} = πi. Thus (1.78)
follows by Theorem 110.

Next, we use Theorem 110 to prove the following result, which is a re-
statement of Theorem 38. This characterization of null-recurrence was used
for classifying states of a Markov chain.

Theorem 112. For an irreducible, aperiodic Markov chain on S with tran-
sition probabilities pij , a recurrent state i is null-recurrent if and only if

20 The total variation distance between two probability measures P and P ′ on a space S
is d(P, P ′) = supB |P (B) − P ′(B)|, where the supremum is over all sets B in the σ-field
of S. When S is countable, d(P, P ′) = 1/2

∑
i∈S |P (i) − P ′(i)|. Probability measures Pn

on S converge in total variation distance to a probability measure P if d(Pn, P ) → 0 as
n → ∞.
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lim
n→∞

pnii = 0. (1.79)

In this case, limn→∞ pnji = 0, for j ∈ S.

Proof. We will prove the equivalent statement that i is positive recurrent if
and only if

lim sup
n→∞

pnii > 0. (1.80)

First assume (1.80) holds. Then the diagonal selection principle21 applied
to the probabilities pnij yields the existence of a strictly increasing subse-
quence nm and constants γj such that γi > 0 and limm→∞ pnm

ij = γj , j ∈ S.
Furthermore,

lim
m→∞

pnm

kj = γj , k ∈ S.

Indeed, applying Theorem 110 to the middle term in the following, we have

|pnm

kj − γj | ≤ |pnm

kj − pnm

ij |+ |pnm

ij − γj | → 0.

We will now show that γ is a finite invariant measure. The γ is finite, since
Fatou’s lemma for sums22 yields

∑

j

γj =
∑

j

lim
m→∞

pnm

ij ≤ lim inf
m→∞

∑

j

pnm

ij = 1.

Next, by the Chapman-Kolmogorov equations,

pnm+1
ij =

∑

k

pnm

ik pkj =
∑

k

pikp
nm

kj .

Then applying Fatou’s lemma to the first sum and the dominated convergence
theorem to the second sum yields

∑

k

γkpkj ≤
∑

k

pikγj = γj .

If this inequality is a strict inequality for some j’s, then summing on j,

∑

k

γk =
∑

j

∑

k

γkpkj <
∑

j

γj ,

which is a contradiction. Thus, γj =
∑

k γkpkj , and hence γ is an invariant
measure.

21 The diagonal selection principle for bounded real numbers {aj(n) : j ∈ S, n ≥ 1}
states that there exists a strictly increasing subsequence of integers nm such that the limit
limm→∞ aj(nm) exists for each j.
22 From Theorem 12 in the Appendix,

∑
j lim infn→∞ aj(n) ≤ lim infn→∞

∑
j aj(n), for

aj(n) that are bounded from below.
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Now γ is a multiple of the invariant measure η in Theorem 53. From (1.42),
the mean time between entrances to state i is given by μi =

∑
k ηk, and this,

being a multiple of
∑

k γk, is finite. Thus i is positive recurrent.
The next step is to show that if i is positive recurrent then (1.80) holds.

The positive recurrence of i implies (using the notation in the last paragraph)
that μi =

∑
k ηk is finite. Then πj = ηj/μi is a stationary distribution for

the chain. Now if the chain is aperiodic, Theorem 110 with P{Y0 = j} = πj ,
j ∈ S, yields pnii → πi > 0, which proves (1.80). Also, when the chain is
periodic, (1.80) follows from a slight variation of Exercise 29.

Finally, assume (1.79) holds. Using the strong Markov property,

pnji =

n∑

m=1

fmji p
n−m
ii , i, j ∈ S.

Recall that fmji is the probability that, starting at j, the first entrance of the
chain to i is at time m. Then as n→ ∞, the dominated convergence theorem
yields pnji → 0, since (1.79) ensures fmji p

n−m
ii 1(m ≤ n) → 0.

1.21 Criteria for Positive Recurrence

We know by Theorem 54 that an irreducible Markov chain is positive recur-
rent if and only if it has a stationary distribution. For a complicated Markov
chain, it may not be feasible to obtain a closed-form expression for its in-
variant measure or stationary distribution. However, it is still of interest to
establish that an irreducible Markov chain is positive recurrent. One criterion
for this is that the time to return to a fixed state has a finite mean (recall
Theorem 54). This section presents more general criteria for positive recur-
rence based on showing that the time to hit a finite subset of states (instead
of a fixed state) has a finite mean.

As usual, let Xn denote a Markov chain on S with transition probabilities
pij . Consider the hitting time τF = min{n ≥ 1 : Xn ∈ F} of F ⊂ S. We
begin with a preliminary result.

Proposition 113. If Xn is irreducible, and there is a finite set F ⊂ S such
that b = maxj∈F Ej [τF ] < ∞, then Xn is positive recurrent.

Proof. It suffices to show that a single state in F is positive recurrent. To
this end, consider the restriction of the chain to F defined by X ′

n = XτF (n),
where τF (n) is the nth time Xn visits F and X ′

n is the state of the chain at
that visit. Example 106 showed that X ′

n is an irreducible Markov chain on
F ; and it is positive recurrent since F is finite.

Now, for a fixed i ∈ F , the hitting time τi = min{n ≥ 1 : Xn = i} has the
form
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τi =

∞∑

m=0

(τF (m+ 1)− τF (m))1(τ ′
i > m),

where τF (0) = 0 and τ ′
i = min{n ≥ 1 : X ′

n = i}. Using the strong Markov
property of Xn at τF (m),

Ei[τi] =

∞∑

m=0

Ei

[
E
[
(τF (m+ 1)− τF (m))1(τ ′

i > m)
∣
∣
∣X0, X1, . . . , XτF (m)

]]

=

∞∑

m=0

Ei

[
EX′

m
[τF ]1(τ

′
i > m)

]
.

The last line uses the pull-through formula (1.90) and the fact that the event
{τ ′
i > m} = {Xτk �= i; k ≤ τF (m)} is a function of X0, X1, . . . , XτF (m).

The positive recurrence of X ′
n ensures that Ei[τ

′
i ] < ∞. Using this and the

assumption EX′
m
[τF ] ≤ b in the preceding, we have

Ei[τi] ≤ b

∞∑

m=0

Pi{τ ′
i > m} = bEi[τ

′
i ] <∞.

Thus i is positive recurrent for Xn.

The next result shows that the finite mean-hitting-time condition in Propo-
sition 113 is satisfied if there exist a function v and a set F that satisfy (1.82).
The function v assigns a real number to each state, which provides an “ar-
tificial” v-ordering of the states. The assumption (1.82) is equivalent to the
existence of an ε > 0 such that

Ei[v(X1)] < v(i)− ε, i ∈ F c. (1.81)

That is, the mean v-order of the chain decreases at each of its jumps initiated
outside the finite set F . This ensures (the main part of the proof) that

Ej [τF ] < ε−1v(j) < ∞, j ∈ F c.

Finding such a function v is often done by trial and error since there are
no known procedures for constructing it. Sufficient conditions for v(i) = i are
in the follow-on example.

Theorem 114. (Foster’s Criterion) Suppose Xn is an irreducible Markov
chain, and there are a function v : S → R+ and a set F such that
Ei[v(X1)] <∞, i ∈ F , and

sup
i∈F c

Ei[v(X1)− v(X0)] < 0. (1.82)

Then Ei[τF ] <∞, i ∈ S. Furthermore, Xn is positive recurrent if F is finite.
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Proof. Let τ = τF . We first prove Ej [τ ] < ∞, j ∈ F c. Fix j ∈ F c and let
γj(n) = Ej [v(Xn)1(τ > n)]. Conditioning on Hn = (X0, . . . , Xn) and using
{τ > n+ 1} ⊆ {τ > n}, we have

γj(n+ 1) ≤ Ej

[
Ej [v(Xn+1)1(τ > n)|Hn]

]
.

Since 1(τ > n) is a function of Hn, and Xn ∈ F c when τ > n, it follows by
(1.81) that there is an ε > 0 such that

Ej [v(Xn+1)1(τ > n)|Hn] = 1(τ > n)EXn [v(Xn+1)]

< 1(τ > n)(v(Xn)− ε).

Using this inequality in the preceding display yields

γj(n+ 1) < γj(n)− εPj{τ > n}.

Iterating this inequality for n, n− 1, . . . , 1, we have

0 ≤ γj(n+ 1) < γj(0)− ε

n∑

k=0

Pj{τ > k}.

Letting n→ ∞, the sum converges to Ej [τ ], and therefore

εEj [τ ] < γj(0) = v(j) <∞, j ∈ F c. (1.83)

The aim is to prove Ei[τ ] < ∞ for all i ∈ S, and so it remains to show
Ei[τ ] <∞, i ∈ F . But this follows since conditioning on X1 and using (1.83),

Ei[τ ] =
∑

j∈F
pij +

∑

j∈F c

pij(1 + Ej [τ ]) ≤ 1 + ε−1
∑

j∈F c

pijv(j) <∞.

Finally, if F is finite, then Xn is positive recurrent by Proposition 113.

Example 115. Pake’s Criterion. An irreducible Markov chain Xn on the non-
negative integers S is positive recurrent if Ei[X1] < ∞, i ∈ S, and

lim sup
i→∞

Ei[X1 − i] < 0. (1.84)

This result is a special case of Foster’s criterion with v(i) = i, since (1.84)
implies that there is an i∗ such that supi≥i∗ Ei[X1 − i] < 0.

Example 116. Fork-Join Processing System. Consider a fork-join network
shown in Figure 1.4 that processes jobs as follows. Jobs arrive according to a
Bernoulli process, where p is the probability of an arrival at any discrete time.
Each job arriving to the system instantaneously splits into m tasks, which are
simultaneously assigned to the m nodes for processing. The m nodes operate
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like M/M/1 service systems in discrete time as in Example 21, but not more
than one job can be completed in each time period. The service time at node
i has a geometric distribution where qi is the probability of a service com-
pletion in any discrete time. When all of its m tasks are finished, the job is
completed and exits the system.

Fork-join networks are natural models for a variety of computer, telecom-
munications and manufacturing systems that involve parallel processing. For
instance, a fork-join computer or telecommunications network typically repre-
sents the processing of computer programs, data packets, telephone calls, etc.
that involve parallel multi-tasking and splitting and joining of information.
A manufacturing fork-join network represents the assembly of a product or
system that requires several parts processed simultaneously at separate work
stations or plant locations. A supply chain fork-join network typically rep-
resents filling an order by obtaining several products simultaneously from
vendors (or warehouses or manufacturing plants).

1

2

m

Fork -Node

Jobs

Join -Node

Tasks

Tasks

Tasks

Fig. 1.4 Fork-Join Network.

The state of the fork-join network in Figure 1.4 at time n is represented by
a vector-valued process Xn with states x = (x1, . . . , xm), where xi denotes
the quantity of tasks at node i. Under the assumptions above,Xn is a Markov
chain with transition probabilities

p(x, x+ (1, 1, . . . , 1)) = p

m∏

j=1
xj>0

(1− qj)

p(x, x − ei) = qi1(xi > 0)(1 − p)

m∏

j=1,
j �=i
xj>0

(1− qj), 1 ≤ i ≤ m.
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Also, p(x, x) = 1− the sum of the preceding probabilities, and p(x, y) = 0
elsewhere. Here ei is the vector with 1 in position i and 0 elsewhere. This
network chain Xn is one of those infamous queueing processes whose station-
ary distribution is intractable.

However, we can use Foster’s criterion to prove that the chain is positive
recurrent under the assumption

p < qi, 1 ≤ i ≤ m. (1.85)

That is, the arrival rate is less than the service rate at each node. Exercise 68
shows that (1.85) is a necessary as well as a sufficient condition for Xn to be
positive recurrent.

A natural first guess is that Foster’s criterion will work with the linear
function v(x) =

∑m
i=1 xi, but it does not as Exercise 68 verifies. A second

choice is to consider the quadratic function v(x) =
∑m
i=1 x

2
i . Clearly,

Ex[v(X1)] ≤
m∑

i=1

(xi + 1)2 <∞, x ∈ S.

Next, for x ≥ (1, 1, . . . , 1), consider

D(x) = Ex[v(X1)]− v(x) =
∑

y �=x
p(x, y)(v(y) − v(x))

= p(x, x + (1, 1, . . . , 1))

m∑

i=1

(2xi + 1) +

m∑

i=1

p(x, x− ei)(−2xi + 1)

=

m∏

j=1

(1 − qj)

m∑

i=1

g(xi)

1− qi
,

where g(xi) = 2xi(p− qi) + p(1− qi) + qi(1− p).
The aim is to find a finite set F for which supx∈F c D(x) < 0. Note that

assumption (1.85) ensures that D(x) is decreasing in x. Now, the smallest
vector b = (b1, . . . , bm) for which D(b) < 0 is defined by

bi = min{xi ≥ 1 : g(xi) < 0}.

Then setting F = {x : xi < bi, 1 ≤ i ≤ m}, it follows that

D(x) ≤ D(b) < 0, x ∈ F c.

Thus the network chain Xn is positive recurrent by Foster’s criterion.
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1.22 Review of Conditional Probabilities

Applied probability involves extensive use of conditional probabilities and ex-
pectations. This section reviews these concepts for discrete random variables;
analogous properties for continuous and general random variables are in the
Appendix.

For this discussion,X and Y are discrete random variables that take values
in countable sets S and S′, respectively; and X and Y are defined on the same
underlying probability space. For instance, X and Y could be discrete, real-
valued random variables or vectors.

The conditional probability measure of Y given X = x, for x ∈ S, is

p(y|x) = P{Y = y|X = x} =
P{X = x, Y = y}

P{X = x} , y ∈ S′,

provided P{X = x} > 0. This proviso will be assumed for all conditional
probabilities without mention. For a real-valued Y (S′ ⊂ R), the conditional
expectation (or mean) of Y given X = x is

E[Y |X = x] =
∑

y

yp(y|x), x ∈ S.

provided the sum is absolutely convergent. Unless specified otherwise, all the
expectations in this section are assumed to be finite.

Consider a random variable of the form g(Y ), where g : S′ → R. Then as
above, the conditional expectation of g(Y ) given X = x is

E[g(Y )|X = x] =
∑

y

g(y)p(y|x), x ∈ S.

Conditional probabilities are often used to determine the distribution or
mean of a random variable as follows. Suppose the issue is to find the distri-
bution of Y or the mean of g(Y ), when the conditional probabilities p(y|x)
given X = x are known and p(x) = P{X = x} are also known. Using
P{Y = y} =

∑
x P{X = x, Y = y} and the definitions above,

P{Y = y} =
∑

x

p(y|x)p(x), E[g(Y )] =
∑

x

[∑

y

g(y)p(y|x)
]
p(x). (1.86)

Examples are given in Exercises 1 and 3.
We will often use the following standard shorthand notation for condi-

tional probabilities and expectations. The conditional probability measure of
Y given X (without specifying the value of X) is defined by

P{Y = y|X} = p(y|X) y ∈ S′.
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Similarly, the conditional expectation of g(Y ) given X is

E[g(Y )|X ] = h(X),

where h(x) = E[g(Y )|X = x]. That is, E[Y |X ] =
∑
y g(y)p(y|X). Note that

these shorthand representations of conditional probabilities and expectations
are random variables that are deterministic functions of X . With this nota-
tion, (1.86) becomes

P{Y = y} = E[P{Y = y|X}], E[g(Y )] = E[E[g(Y )|X ].

The last formula is a special case of a result for general random variables
as described in the Appendix. Namely, for a random variable X that takes
values in a general space and a real-valued random variable Y ,

E[Y ] = E[E[Y |X ] ]. (1.87)

This is a frequently-used formula for expectations.
Many properties of probabilities and expectations extend to conditional

probabilities and expectations. For instance, suppose Z is an S′′-valued
random variable on the same probability space as X and Y . Then23 for
h : S′′ → R,

E[g(Y ) + h(Z)|X ] = E[g(Y )|X ] + E[h(Z)|X ],

E[g(Y )|X ] ≤ E[h(Z)|X ] when g(Y ) ≤ h(Z).

Another variation involves multiple conditioning, such as

E[h(Z)|X ] =
∑

y

E[h(Z)|X,Y = y]P{Y = y|X}.

An important point is that conditioning on X = x, allows one to replace
X by x throughout in certain instances. In particular, from the definition of
conditional expectation, for G : S × S′ → R,

E[G(X,Y )|X = x] = E[G(x, Y )|X = x], x ∈ S. (1.88)

Moreover, E[G(x, Y )|X = x] = E[G(x, Y )], when X and Y are independent.
For instance, E[X(Y −X)|X = x] = xE[(Y −x)|X = x]. Similar expressions
hold for conditional probabilities, such as

P{X2 + |Y −X | ≤ z|X = x} = P{x2 + |Y − x| ≤ z|X = x}.

In addition, for H : S × S′ → R,

23 Statements like g(Y ) ≤ h(Z), E[g(Y )|X] > V and Y = 0 hold a.s. but it is standard to
suppress a.s.



1.22 Review of Conditional Probabilities 83

E[G(X,Y )|H(X,Y )] (1.89)

=
∑

x

E[G(x, Y )|H(x, Y ), X = x]P{X = x|H(X,Y )}.

Expression (1.88) also yields the pull-through formula: For f : S → R,

E[f(X)g(Y )|X ] = f(X)E[g(Y )|X ]. (1.90)

That is, any function of the conditioning variable X can be pulled out of the
expectation.

In some cases, we use conditioning statements in which only some of the
variables are specified. For instance,

P{Y = y|V, Z,X = x} = h(V, Z, x),

where h(v, z, x) = P{Y = y|V = v, Z = z,X = x}.
Another important concept related to Markov chains is that of conditional

independence. Recall that X and Y are independent if

P{X = x, Y = y} = P{X = x}P{Y = y}, x ∈ S, y ∈ S′.

Equivalently, for any f : S → R,

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Analogously, Y and Z are conditionally independent given X if

P{Y = y, Z = z|X} = P{Y = y|X}P{Z = z|X}, y ∈ S′, z ∈ S′′.

Equivalently, E[g(Y )h(Z)|X ] = E[g(Y )|X ]E[h(Z)|X ] for any functions g
and h for which the expectations exist. More generally, S′-valued random
variables Y1, . . . , Yn are conditionally independent given X if

P{Y1 = y1, . . . , Yn = yn|X} =
n∏

k=1

P{Yk = yk|X}.

Frequent use is made of the property that if Y is conditionally independent
of X1, . . . , Xn−1 given Xn, then

P{Y = y|X1, . . . , Xn−1, Xn = i} = P{Y = y|Xn = i}.
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1.23 Exercises

The first four exercises deal with conditional probabilities and expectations
that are reviewed in Section 1.22.

Exercise 1. The length of time in microseconds for a computer to perform
a task of type i has a geometric distribution (1− pi)p

n−1
i , n ≥ 1, with mean

1/(1−pi), for i = 1, . . . , �. Also, the type of task to be worked on is a random
variable X , where p(i) = P{X = i} is known for i = 1, . . . ,m. Under these
assumptions, the time T to perform a task has the conditional probability
measure P{T = n|X = i} = (1 − pi)p

n−1
i . Find expressions for E[T |X = i],

P{T = n} and ET .

Exercise 2. Suppose X1, X2, . . . are real-valued i.i.d. random variables with
mean μ and variance σ2 that represent times to process jobs. The number
of jobs to be processed in a week is a nonnegative integer-valued random
variable N that is independent of the Xn. Prove that the mean and variance
of the time to do the N jobs are

E[

N∑

n=1

Xn] = μE[N ], Var[
∑N
n=1Xn] = E[N ]σ2 + μ2Var[N ].

Exercise 3. Poisson Random Variable with a Randomized Mean. The num-
ber of sales of a product in a period of length t has a Poisson probability
measure pλt(n) = (λt)ne−λt/n!, n ≥ 0, with mean λt. This is true when the
sales over time occur according to a Poisson process with rate λ. Consider a
variation of this setting in which the rate λ is a random variable Λ that may
depend on the economic environment and other factors, but it is not affected
by the sales. In this case, the number of sales N in the period of length t has
the properties

P{N = n|Λ = λ} = pλt(n), E[N |Λ = λ] = λt.

Letting FΛ(λ) denote the distribution of Λ, show that

E[N ] = tE[Λ], P{N = n} =

∫

R+

pλt(n)FΛ(dλ).

Exercise 4. Continuation. In the context of the preceding exercise, suppose
the revenue from each sale is r, and the cost associated with making n sales
is
∑n

k=1 Yk, where Yk is the cost to make the kth sale. Assume Y1, Y2, . . . are
i.i.d. with mean μ and variance σ2, and the Yk are independent of Λ and the
number of sales N . The net revenue from the N sales is

ZN =

N∑

k=1

(r − Yk).



1.23 Exercises 85

Show that the mean and variance of this revenue are

E[ZN ] = tE[Λ](r − μ), Var[ZN ] = tE[Λ][σ2 + (r − μ)2].

You can use the results in Exercise 2. Recall that the mean and variance of
the Poisson distribution pλt are both λt.

Exercise 5. For a nonnegative integer-valued random variable N , prove

E[N ] =

∞∑

n=0

P{N > n}.

Exercise 6. Geometric Sojourn Times in a State. For a Markov chain Xn

with pii > 0, the distribution of the sojourn time in state i is Pi{τi = n},
where τi = min{n ≥ 1 : Xn �= i}. Show that

Pi{τi = n} = (1− pii)p
n−1
ii , n ≥ 1,

which is a geometric distribution with parameter 1 − pii. Use Exercise 5 to
show E[τi] = 1/(1− pii).

Exercise 7. Geometric Memoryless Property. Suppose X is a random vari-
able with values in {1, 2, . . .}. Show that X has a geometric distribution if
and only if it satisfies the memoryless property

P{X > n+ 1|X > n} = P{X > 1}, n ≥ 0.

Hint: What is the unique solution of f(n+ 1) = f(1)f(n), n ≥ 0?
This memoryless property is analogous to the memoryless property of expo-
nential random variables in Exercise 1 in Chapter 3.

Exercise 8. Perishable Inventory or Perishable Service Model. Quantities
of a perishable resource arrive to a system in discrete time periods to satisfy
demands. The resource is only available for a single time period, but unsatis-
fied demands are backlogged. For instance the resource might be food, blood
or human organs that perish after a certain time period, or cargo space on
an airline that disappears when the airline departs. This system could also
be viewed as a queueing model in which potential services are occasionally
available, but they are unused when there are no units waiting for services.
Let Un denote the quantity of the resource that is demanded in period n,
and let Vn denote the quantity of the resource that arrives. Assume the pairs
(Un, Vn), for n ≥ 1, are i.i.d. nonnegative integer-valued random variables.
Let Xn denote the quantity of the resource that is backlogged at time n.
Show that Xn is an input-output Markov chain process as in Example 23.
Specify its transition probabilities when U1 and V1 are independent Poisson
random variables with respective means α and β.
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Exercise 9. Moran Storage Model. A reservoir with capacity c receives inputs
V1, V2, . . . in discrete time periods, where Vn are i.i.d. nonnegative integer-
valued random variables. In a period when the reservoir has room for y ad-
ditional units (the reservoir level is c − y), and v units of input occur, then
(v − y)+ units of the input are discarded. In addition, the reservoir releases
a non-random quantity of u units of water in each time period provided the
reservoir level exceeds u, otherwise it releases all the water in the dam. Let
Xn denote the amount of water in the reservoir at (the end of) time period
n. Justify that Xn is a reflected random walk Markov chain and express its
transition probabilities as a function of the distribution qn = P{V1 = n}.

Exercise 10. Two-State Markov Chain. Consider a machine (or a production
system) that alternates, in discrete time, between being in operation (state
1) or being down for repair or reloading (state 2). The successive durations
of time during which the machine is in operation are i.i.d. and the successive
time durations the machine is down are i.i.d. and independent of the operation
times. Let Xn denote the state of the machine at time n. Determine the type
of distributions for the operation times and down times in order for Xn to
be a Markov chain on S = {1, 2} with transition matrix

P =

[
1− a a
b 1− b

]

,

where all the entries are positive. Specify the meaning of the probability
a, and specify the relation between a and the mean of a typical machine
operation time. Show that

Pn =
1

a+ b

[
b a
b a

]

+
(1 − a− b)n

a+ b

[
a −a
−b b

]

.

Find P{Xn = 1|X0 = 1}, for n ≥ 1. Establish that the chain is ergodic and
its stationary distribution is π1 = b/(a+b) and π2 = a/(a+b). This two-state
Markov chain can be used to model a variety of situations. Describe one.

Exercise 11. Uniform Representation and Simulation of a Random Vari-
able. For a distribution function F , its left-continuous inverse is

F−1(u) = inf{x : F (x) ≥ u}.

Show that if U has a uniform distribution on the interval [0, 1], then the
random variable X = F−1(U) has the distribution F . (Use the fact that
F (x) ≥ u if and only if F−1(u) ≤ x.)

Because of this property, one can generate a random sample of values from
F by using the uniform distribution. First, one generates a random sample
U1 = u1, . . . , Un = un from the uniform distribution on [0, 1]. Then the values
x1 = F−1(u1), . . . , xn = F−1(un) form a random sample from F .
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Exercise 12. Non-homogeneous Markov Chains. A stochastic process {Xn :
n ≥ 0} on S is a non-homogeneous Markov chain if it satisfies the Markov
property

P{Xn+1 = j|X0, . . . , Xn−1, Xn = i} = P{Xn+1 = j|Xn = i} = pij(n),

where the transition probabilities pij(n) are functions of n. Show that the
two-dimensional process Yn = (Xn, n) is a time-homogeneous Markov chain
and specify its transition probabilities. Because of this formulation, some
properties of non-homogeneous Markov chains (e.g., Markov decision prob-
lems) can be obtained from the theory of homogeneous Markov chains.

Exercise 13. Continuation. Suppose {Xn : n ≥ 0} is a stochastic process
on S of the form Xn+1 = fn+1(Xn, Yn+1), n ≥ 0, where Y1, Y2, . . . are
independent S′-valued random variables that are independent of X0, and
fn : S × S′ → S. Show that Xn is a non-time-homogeneous Markov chain
with transition probabilities pij(n) = P{fn(i, Yn) = j}.

Exercise 14. Unit-Demand Inventory System. Consider an inventory or
input-output system in discrete time, where Xn denotes the quantity of items
in the system at the beginning of the nth period. At the beginning of each
period, the inventory decreases by one unit provided the inventory level is
positive, and otherwise the inventory remains at 0 until the end of the period.
At the end of the nth period, the inventory is replenished by an amount Vn,
where the Vn are i.i.d. and independent of X0, . . . , Xn−1 with distribution
pi = P{V1 = i}, i ≥ 0. Under these assumptions Xn+1 = (Xn − 1 + Vn) if
Xn > 0 and Xn+1 = Vn if Xn = 0. Justify that Xn is a Markov chain and
specify its matrix of transition probabilities. Is this Markov chain a special
case of another one in this chapter?

Exercise 15. Continuation: Unit-Supply Inventory System. A dual of the
model in the preceding exercise is an inventory system, where in each period,
the inventory is replenished by one unit and it decreases by Un (if possible).
Then the inventory at the beginning of period n+1 is Xn+1 = (Xn−Un+1)+.
Assume Un are i.i.d. with distribution pi = P{U1 = i}, i ≥ 0. Justify that
Xn is a Markov chain and specify its matrix of transition probabilities.

Exercise 16. At a dock where trucks are unloaded one-at-a-time, it was
observed that a small truck was followed by a large truck 10% of the time,
and a large truck was followed by a small truck 60% of the time. Define a
Markov chain model for representing the type of truck being unloaded and
find the percentage of large trucks that are unloaded. Suppose the times to
unload the small trucks are i.i.d. with mean μ and the times to unload the
large trucks are i.i.d. with mean μ′. Find the percentage of unloading time
devoted to large trucks.
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Exercise 17. Extreme-value Process. Suppose Yn are i.i.d. integer-valued
random variables with distribution pk = P{Y1 = k}, where this probabil-
ity is positive for some k > 0. Define X0 = 0 and Xn = max{Y1, . . . , Yn}.
Let τ0 = 0 and τn+1 = min{m > τn|Xm > Xτn}, n ≥ 0. Then X ′

n = Xτn is
the nth record value. Justify that Xn and X ′

n are Markov chains and specify
their transition probabilities. In addition, classify their states.

Exercise 18. The equality in distribution X
d
= Y of random variables is

equivalent to E[f(X)] = E[f(Y )] for any nonnegative function f on the set
of values of the variables. This equivalence also holds for stochastic processes
X and Y . Analogous equivalences hold for conditional expectations. In par-
ticular, for discrete random variables Y , Y ∗, Z and Z∗ in S,show that the
following statements are equivalent:
(a) P{Y ∈ B|Z} = P{Y ∗ ∈ B|Z∗}, B ∈ S
(b) E[f(Y )|Z] = E[f(Y ∗)|Z∗], f : S∞ → R.
These statements are like (1.17) and (1.18).

Exercise 19. Reflected Random Walks . Show by induction or substitution
that the solution to the recursionXn = a∨[b∧(Xn−1+Vn−Un)] in Example 23
is given by (1.10).

Exercise 20. Let Y1, . . . , Yn+1 be random variables (possibly in a general
space) such that Y1, . . . , Yn are i.i.d. Show that if Yn+1 is independent of

Y1, . . . , Yn and Yn+1
d
= Y1, then Y1, . . . , Yn+1 are i.i.d.

Exercise 21. Suppose {Xn : n ≥ 0} is an S-valued stochastic process of
the form Xn+1 = f(Xn, Yn+1), n ≥ 0, where Yn are S′-valued random
variables such that, for each n ≥ 0, Yn+1 is conditionally independent of
Hn ≡ {Xk−1, Yk, k ≤ n}, and Gi(A) = P{Yn+1 ∈ A|Xn = i} is independent
of n. Show that Xn is a Markov chain and specify its transition probabilities.

Exercise 22. Continuation. Consider the processes Xn and Yn in the pre-
ceding exercise with the history Hn changed to Hn ≡ {Xk−1, Yk+1, k ≤
n−1, Xn−1} (it no longer contains Yn). Is Xn is a Markov chain? If so specify
its transition probabilities. Answer this under the additional assumption that
Gi,i′(A) = P{Yn+1 ∈ A|Xn = i, Yn = i′} is independent of n.

Exercise 23. Stopping Time Criteria. Let τ be a random variable that takes
values in {0, 1, . . . ,∞}. Show that the following are equivalent statements:
(a) τ is a stopping time for a Markov chain Xn.
(b) {τ > n} is determined by X0, . . . , Xn for any finite n.
(c) {τ ≤ n} is determined by X0, . . . , Xn for any finite n.
(d) 1(τ = n) = hn(X0, . . . , Xn) for some hn : Sn+1 → {0, 1}.

Exercise 24. Communication is an Equivalence Relation. Show that i → j in
S if and only if there are states i1, . . . , in ∈ S such that pi,i1pi1,i2 · · · pin,j > 0.
Show that the communication relation ↔ is an equivalence relation in that
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it satisfies the following properties.
Reflexive: i↔ i, i ∈ S.
Symmetric: i ↔ j if and only if j ↔ i, i, j ∈ S.
Transitive: If i↔ j and j ↔ k, then i ↔ k, i, j, k ∈ S.

Exercise 25. Show that, for an irreducible class C, each of its states has the
same period. Hint: Suppose i, j ∈ C have periods di and dj . Let m and n be
the smallest integers such that a = pmjip

n
ij > 0. Then use (1.27) along with

pm+n
ii ≥ pnijp

m
ji = a to prove di ≤ dj . Then reverse the roles of i and j.

Exercise 26. Consider a Markov chain on S = {1, 2, . . . , 10} whose transi-
tion matrix has the following form, where 
 means a positive probability.

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣


 0 0 
 0 0 0 0 0 0
0 
 0 0 0 
 0 0 0 0
0 0 
 0 0 0 0 0 
 


 0 0 
 0 0 0 0 0 0
0 
 
 
 0 
 
 0 0 0
0 
 0 0 0 
 0 0 0 0
0 
 
 0 
 0 
 
 0 0
0 0 0 0 0 0 0 
 0 0
0 0 
 0 0 0 0 0 0 

0 0 
 0 0 0 0 0 
 


⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Draw the transition graph of this chain and identify its transient and closed
irreducible sets. Display a more informative transition matrix for the chain
by reordering the states according to Theorem 40.

Exercise 27. Suppose Xn and X ′
n are independent ergodic Markov chains

on the spaces S and S′ with transition probabilities pij and p
′
ij and stationary

distributions π and π′, respectively. Show that Zn = (Xn, X
′
n) is an ergodic

Markov chain on S × S′ with transition probabilities pij,k� = pikp
′
j�, and its

stationary distribution is πij = πiπ
′
j .

Exercise 28. Let Xn be an ergodic Markov chain on S with transition prob-
abilities pij and stationary distribution π. Show that X̃n = (Xn, . . . , Xn+�)
is an ergodic Markov chain on S�+1 with stationary distribution

π(i) = πi0pi0,i1 · · · pi�−1,i� .

Exercise 29. For an irreducible Markov chain Xn with period d, show that
X∗
n = Xnd is an irreducible aperiodic Markov chain and specify its transition

probabilities. Show that τi = min{n ≥ 1 : Xn = i} is a multiple of τ∗
i =

min{n ≥ 1 : X∗
n = i}. Use Theorem 110 to prove that if i is positive recurrent,

then limn→∞ pndij = d/Ei[τi]. Use this result to prove (1.80).
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Exercise 30. Infinite Number of Stationary Distributions. ConsideraMarkov
chain, as in Theorem 40, whose state space S is the union of closed irreducible
recurrent classes C1, . . . , Cm with associated transition matrices P1, . . . ,Pm,
respectively. Suppose π�i , i ∈ C�, is a stationary distribution for P� (π

�P� =
π�), � = 1, . . . ,m. Show that, if α is an initial distribution for X0, then
πi =

∑m
�=1 αiπ

�
i1(i ∈ C�) is a stationary distribution for the chain. In fact, all

stationary distributions can be obtained this way.

Exercise 31. Using the dominated convergence for sums, show that a lim-
iting distribution for a Markov chain (which need not be ergodic) is a sta-
tionary distribution. Give an example of a non-ergodic Markov chain with a
stationary distribution that is not a limiting distribution.

Exercise 32. Success Runs. Let Xn denote the success runs Markov chain
in Example 19. Find an expression for the probability f00 of ever reaching
state 0 starting from 0. Show that the chain is irreducible, and it is recurrent
if and only if

∑
i(1− pi) = ∞. In that case, show that an invariant measure

for the chain is ηi =
∏i−1
j=0 pj , i ≥ 0.

Exercise 33. Suppose Y1, Y2, . . . are i.i.d. random variables with a finite
mean μ. Show that n−1Y1 → 0, and that n−1Yn → 0, a.s. as n → ∞. Hint:
use Yn =

∑n
m=1 Ym −

∑n−1
m=1 Ym. Next, suppose for some positive integer k

that Ym, m > k are i.i.d. with mean μ, and Y1, . . . , Yk are general random
variables with finite means (they need not be independent or independent of
the other Ym’s). Show that n−1

∑n
m=1 Ym → μ a.s. as n → ∞. (This result

also holds for a random k).

Exercise 34. Limits of Expectations. Let Xn be an ergodic Markov chain on
S with stationary distribution π. Show that, for B ⊂ S�+1,

lim
n→∞

P{(Xn, . . . , Xn+�) ∈ B} =
∑

i∈B
p(i),

where i = (i0, . . . , i�) and p(i) = πi0pi0,i1 · · · pi�−1,i� . Show that, for bounded
f : S�+1 → R,

lim
n→∞

E[f(Xn, . . . , Xn+�)] =
∑

i∈S�+1

f(i)p(i).

Exercise 35. Brand Switching. A Markov chain model for approximating
the sales of several brands of a particular product that customers continually
purchase (e.g., shampoo, soda, bread) is as follows. Suppose there are four
brands of a product labeled 1, 2, 3, 4, and the successive brands that a typical
customer chooses to purchase over time is a Markov chain Xn with transition
matrix

P =

⎡

⎢
⎢
⎣

.7 .1 .1 .1

.2 .4 .2 .2
0 .5 .4 .1
0 0 .2 .8

⎤

⎥
⎥
⎦
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For instance, upon buying brand 3, a customer’s next purchase is brand 2,
3 or 4 with respective probabilities .5, .4, .1, independent of past purchases.
Show that the fraction of sales over time of brands 1 and 2 are 6/67 and 9/67,
respectively. Suppose the profits from the four brands are $10, $12, $15, $16
per sale. Show that the average profit from the four brands is $984/67 ≈
$14.70 per sale, and the average profit from only brands 1 and 3 combined is
$300/67 ≈ $4.48 per sale (of all brands). Is brand 4 more profitable per sale
than brands 1 and 2 combined?

Exercise 36. Setup Costs in Processing Systems. As in Example 71, sup-
pose the ergodic Markov chain Xn with stationary distribution π denotes a
sequence of jobs a system processes (labeled by job type). Assume that when-
ever the system switches from processing a type i job to processing a type j
job, the system incurs a setup cost v(i, j) measured in time or money. Then
the average setup cost per job processed is γ = limn→∞ n−1

∑n
m=1 v(Xn−1,

Xn). Find an expression for this average. Find an expression for the average
setup cost γ(i) per job processed for switching from a type i job to another
type of job, where γ =

∑
i γ(i).

Exercise 37. Renewal Age Process . Let Xn denote the renewal age process
in Example 20, where the renewals times are i.i.d. machine lifetimes with
distribution F and mean μ, and F (1) > F (0) = 0. Prove that Xn is ergodic
and that its stationary distribution is πi = [1 − F (i)]/μ. Suppose there is a
cost C each time the machine is replaced and a cost hi for each period in
which the age is i. Give an expression for the average cost for the chain.

Exercise 38. Continuation. Jobs are processed one at a time and the pro-
cessing times are nonnegative integer-valued i.i.d. random variables with dis-
tribution F and mean μ. As in Example 20, let Xn denote the age of the job
being processed at time n, and let X ′

n denote the time needed to finish the
job in process at time n. Show that X ′

n is an ergodic Markov chain and that
its stationary distribution is the same as that for Xn.

Exercise 39. Let Xn denote the number of visitors at a certain web site
(e.g., a food recipe site) at time n. At each time period, each visitor at the
site independently leaves with probability p, and the number of new visitors
that enter the site has a Poisson distribution with mean λ (independent of
everything else). Show thatXn is a Markov chain and determine its transition
probabilities. Find a condition on p and λ under which the chain is ergodic.
Show that its stationary distribution is a Poisson distribution and specify its
mean.

Exercise 40. Closed Network Process . Show that the network chain Xn in
Section 1.15 is irreducible or aperiodic or reversible if and only if the routing
probabilities pij have these respective properties.
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Exercise 41. Open Network Process . For the open network process described
in Theorem 90, show that π given by (1.61) with c = 1 is an invariant measure
for the network chain. Start with

∑

y

π(y)p(y, x) =

m∑

i=1

m∑

j=1

π(x + ei − ej)p(x + ei − ej , x)1(xj > 0)

+

m∑

i=1

π(x+ ei)p(x+ ei, x) +

m∑

j=1

π(x− ej)p(x− ej , x)1(xj > 0).

Exercise 42. Doubly Stochastic Chains. A Markov chain is doubly stochas-
tic if its transition probabilities pij satisfy

∑
i pij = 1, for each j. Show that

a doubly stochastic Markov chain on a state space with m states has a sta-
tionary distribution πi = 1/m.

Exercise 43. Ehrenfest Chain. Consider a system in which ν particles move
in discrete time between two locations 1 and 2. At each time period, a particle
chosen at random moves from its location to the other one. Let Xn denote the
number of particles in location 1 at time n. Justify that Xn is an irreducible
Markov chain with period 2 and show that its stationary distribution is a
binomial distribution.

Exercise 44. Random Walk on a Graph. Consider a connected graph with
m nodes, and let Gi denote the set of nodes adjacent to node i. Whenever
the particle is at node i, it moves to any j ∈ Gi with equal probability (i.e.,
1/|Gi|). Let Xn denote the location of the particle at time n. Show that
Xn is a Markov chain and specify its transition probabilities. Is the chain
irreducible? aperiodic? recurrent? Assuming the graph is such that the chain
is ergodic, show that its stationary distribution is πi = |Gi|/2|S|.

Exercise 45. Expected Length of Gambling Game. In the Gambler’s ruin
model in Examples 4 and 44, let vi denote the expected length of time until
the gambler’s fortune Xn reaches 0 or m, starting with the fortune i. Verify

vi =
m

q − p

[ i

m
− 1− (q/p)i

1− (q/p)m

]
, if p �= 1/2,

and vi = i(m − i), if p = 1/2. Find an expression for the mean number of
times v̂i the gambler’s fortune equals i before it reaches 0 or m, when X0 = i.

Exercise 46. Continuation. Consider the gambler’s random walk in the pre-
ceding exercise in which there is no upper bound m at which the gambler
stops playing. That is, the fortune Xn moves in S = {0, 1, . . .} until it is
absorbed at 0 or remains positive forever. Let γi denote the probability of
being absorbed at 0 when X0 = i. Show that γi = 1 if q ≥ p, and that the
mean length of the game starting at i is i/(q− p) if q > p. Thus a gambler is
bound to loose in a series of gambles if the odds are not favorable.
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In addition, show that γi = (q/p)i if p > q. Use the facts that γi must be
bounded and

∑∞
i=1 γi = 1.

Exercise 47. Pattern Occurrences in Bernoulli Process. Let Yn denote a
Bernoulli process with P{Yn = 1} = p and P{Yn = 0} = q = 1− p. Suppose
one is interested in the occurrence of a three-letter pattern in the sequence
Yn. Let Xn = Yn−2Yn−1Yn, for n ≥ 2. Show that Xn is an ergodic Markov
chain and find its stationary distribution.

In particular, consider the occurrence of the three-letter pattern 101 (var-
ious pattern occurrences like this are of interest in DNA sequences). Let
τ = inf{n ≥ 2 : Xn = 101}, and define Gk(s) = E[sτ |X0 ∈ Ak], where

A0 = {000, 100}, A1 = {001, 011, 111}, A2 = {110, 010}, A3 = {101}.

Find an expression for G0(s). Begin by justifying that

G0(s) = s[pG1(s) + qG0(s)], G1(s) = s[qG2(s) + pG0(s)]

and G2(s) = s[p+ qG0(s)], and then solve for G0(s). Find a tractable expres-
sion for E[τ |X0 ∈ A0].

Exercise 48. Moving Averages. Let Xn be an ergodic Markov chain with
stationary distribution π. Consider the moving average process

Yn =

�∑

m=−k
amf(Xn+m), for k, � ≥ 0, am ∈ R, and f : S → R.

Specify the limiting distribution of Yn for k = 2 = m, and give a formula for
limn→∞ E[Yn].

Exercise 49. Exhaustive Parallel Processing. A set of m jobs are processed
in parallel until they are all completed. At the completion time, another m
jobs instantaneously enter the system and are processed similarly. This is
repeated indefinitely. Assume the times to process jobs are independent with
a geometric distribution with mean 1/p. Let Xn denote the number of jobs
being processed at time n. Show thatXn is a Markov chain on S = {1, . . . ,m}
and specify its transition probabilities (whenever all the jobs in the system
are completed simultaneously, the next state is m). Show that the chain is
ergodic and that an invariant distribution can be computed by the recursive
formula

πm−k =
qm−k

1− qm−k

k∑

j=1

πm−k−j

(
m− k − j

j

)

pj ,

for k = 1, . . . ,m starting with πm = 1, where q = 1−p. Use this formula (and
successive substitutions) to derive an explicit expression for the stationary
distribution when m = 3.
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Exercise 50. M/M/1 Queueing System. Suppose Xn is the number of cus-
tomers in the system in the M/M/1 system in Example 21, where p is the
probability of an arrival, and q is the probability of a service completion at
any discrete time. Show that an invariant measure for this Markov chain is
πi = ρi, for i ≥ 1 and π0 = 1− q, where ρ = p(1 − q)/[q(1 − p)]. Prove that
the chain is ergodic if and only if p < q, and in this case πi = ρi−1(1− ρ)p/q,
i ≥ 1 and π0 = 1− p/q is its stationary distribution. Is this chain reversible?
Suppose there is a cost s per unit time for serving a customer and a cost h per
unit time of holding a customer in the system. Show that the average cost per
unit time is p(1−p)[s+h/(q−p)]. Now, assume there is a rewardR for serving
a customer. Show that the average net reward is p(1− p)[R− s− h/(q− p)].

Exercise 51. Continuation. Consider the M/M/1 queueing model in the
preceding exercise with p < q. Example 29 pointed out that the regenerative
property of Markov chains in Proposition 67 implies that thetimes between
empty epochs ξn are i.i.d. and the durations of the busy periods βn are i.i.d.
for n ≥ 2. Find an expression for E0[ξ1] and show that

E0[β1] = 1 + 1/(q − p).

Verify that E0[β1] tends to ∞ as p ↑ q (the traffic is heavy), and it tends to
1 + 1/q as p→ 0 (the traffic is light).

Exercise 52. Sharing a Buffer. Let Xn and X ′
n be independent M/M/1

queue-length processes as in the preceding exercise with parameters,

ρ = p(1− q)/[q(1− p)], ρ′ = p′(1 − q′)/[q′(1− p′)].

Now, consider the modification in which these queues must share a common
buffer with capacity C so that a new arrival (in either system) is blocked
from entering and disregarded when the buffer is full. Let Yn and Y ′

n denote
the resulting queue-length processes (which are now dependent). Show that
Zn = (Yn, Y

′
n) is a Markov chain on the state space S̃ = {(i, i′) : 0 ≤ i+ i′ ≤

C} and specify its transition probabilities. Show that this chain is reversible
and its stationary distribution has the form π(i,i′) = cρi(ρ′)i

′
.

(These results follow from the definition of reversibility and a little algebra.
Chapter 4 covers related models based on the following properties. (a) If Xn

and X ′
n are independent reversible Markov chains, then (Xn, X

′
n) is also a

reversible Markov chain. (b) If Xn is a reversible Markov chain on S with
respect to π, then its restriction to a subset S̃ ⊂ S is also reversible with
respect to π restricted to S̃.)

Exercise 53. Let S0 = 0 and Sn = Y1 + · · ·Yn, for n ≥ 1, where Yk are
i.i.d. nonnegative integer valued random variables. Let Xn denote the unit
in the integer expansion of Sn (so Xn equals Sn modulo 10; if Sn = 321,
then Xn = 1). Show that Xn is a Markov chain and specify its transition
probabilities. Under what conditions is Xn irreducible. Assuming it is, find its
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stationary distribution. (Similar properties hold when Xn equals Sn modulo
10k for some k ≥ 1.)

Exercise 54. In the context of Example 71, suppose the cost of processing
a type-i job in time v is c(i, v), where c : S × R+ → R. Then c(Xn, Vn)
is the cost of processing job Xn. Find an expression for the average cost of
processing jobs, which is limn→∞ n−1

∑n
m=1 c(Xm, Vm).

Exercise 55. Random Walk on an Edge-Weighted Graph. Consider a Markov
chain Xn on the set of vertices S of a finite graph. Associated with each pair
of vertices i and j there is a nonnegative weight wij , which is 0 if (i, j) is not
an edge; and the probability of a transition from i to j is directly proportional
to this weight. Therefore, its transition probabilities are pij = wij/

∑
k wik.

Assume the chain is irreducible. Show that the Markov chain is reversible
and its stationary distribution is

πi =
∑

j

wij/
∑

k,�

wk�, i ∈ S.

Find a formula for the average sojourn time of the chain in a subset A of
vertices.

Exercise 56. Determine the stationary distribution of the random walk on a
circle described in Example 100. Use the property that the balance equations
for i = 1, . . . , �− 1 are the same as those for a standard random walk, and so
πi = π0

∏i
k=1 pk−1/qk for i ≤ � − 1. Then solve for π� and π0. Consider the

special case pi = p and qi = 1− p for all i. For what value of p is the random
walk reversible?

Exercise 57. Show that if a Markov chain is periodic with period greater
than 2, then the chain is not reversible. For the random walk in Example 94,
specify its periodicity for the following cases:

(a) ri = 0 for each i. (b) ri > 0 for some i.

Exercise 58. McCabe Library. Consider Example 101 for a library of three
books. Compute the product (1.67) for the following path of states

(1, 2, 3) → (2, 1, 3) → (2, 3, 1) → (3, 2, 1) → (3, 1, 2).

An alternate way of modeling the state of the library is by the vector
z = (z1, . . . , zm), where zb denotes the location of book b. This z is the
inverse of the corresponding state i (which lists how the books are arranged
on the shelf); indeed, zik = k and izb = b. Use this one-to-one correspondence
between i’s and z’s, to show that the successive values of this shelf variable
Zn is a reversible Markov chain. Describe the transition probabilities of Zn
in terms of the probabilities pb of the book selections, and show that its
stationary distribution is
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π(z) = c

m∏

b=1

pzbb , z ∈ S.

One can make use of the results in Example 101, since Zn = z if and only if
the zbth component of the process Xn equals b for each b.

Exercise 59. Markov Chain Monte Carlo. In the context of Section 1.18,
consider the estimator of μ given by

μ̂n =

∑n
m=1 g(Xm)η(Xm)/γ(Xm)
∑n
m=1 η(Xm)/γ(Xm)

,

where γ is any fixed positive probability measure (it gives flexibility in im-
plementing the estimation). Show that μ̂n is a consistent estimator of μ.

Suppose the target distribution has the form πi = cη(i), where the nor-
malization constant c is unknown or is too difficult to compute. Show that a
consistent estimator for c−1 is ĉ−1

n = n−1
∑n

m=1 η(Xm)/γ(Xm).

Exercise 60. Star-Like Collage. Consider the Markov chain Xn in Example
107 with the variation that the set S0 may consist of more that one state. In
addition to the assumption that the chain restricted to each S0∪Sk is ergodic
with stationary distribution pki , assume the chain restricted to S0 is ergodic
with stationary distribution p0i . Show that Xn is ergodic and its stationary
distribution is

πi =

{
π0p

0
i if i ∈ S0

π0ckp
k
i if i ∈ Sk for some k,

where π0 =
[
1 +

∑
k �=0(ck − 1)

]−1
and ck =

[∑
i∈S0

pki
]−1

. Also, show that
π0 =

∑
i∈S0

πi.

Exercise 61. Branching Process Properties. Consider the branching process
Xn defined by (1.33), with the generalization that X0 is a random variable
that is independent of the ξni. Show that E[Xn] = μnE[X0]. For the case
μ > 1, show that the extinction probability is

lim
n→∞

P{Xn = 0} =

∞∑

i=1

ziP{X0 = i},

where z is the unique fixed point of φ(s) in (0, 1). Assuming X0 = 1 and
σ2 = Var[ξn1], show that

Var[Xn+1] = μ2Var[Xn] + μnσ2,

Var[Xn] = σ2(μ2n−2 + μ2n−3 + · · ·μn−1), n ≥ 1.

Exercise 62. Geometric Branching Process. Consider a branching process in
which each item produces k items with probability pk = pqk, k ≥ 0, where
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q = 1 − p. Determine the extinction probability z, and specify conditions
under which z = 1 and z < 1. Show by induction that

E[sXn ] =
p[an − qsan−1]

an+1 − qsan
, when p �= q,

where an = qn − pn. Let p → 1/2 in this expression to obtain an expression
for E[sXn ] when p = q = 1/2. Use this last generating function to obtain

P{Xn = 0} = n/(n+ 1), when p = q.

Exercise 63. Consider a branching process in which each item produces k
items with probability 1/4, where 0 ≤ k ≤ 3. First show that the extinction
probability z is in the interval [.30, .50]. Then compute the extinction proba-
bility of the process by the procedure in Remark 49 for ε = .001. Alternatively,
the probability can be obtained – you need not do this – by solving the cubic
equation s = (1/4)(s3 + s2 + s+ 1).

Exercise 64. Total Progeny in Branching. Let Xn denote the branching pro-
cess defined by (1.33), where X0 = 1. The total progeny in this branching
process is Y =

∑∞
n=0Xn. Of course, P{Y < ∞} = z (the extinction proba-

bility). Show that when μ < 1,

E[Y ] = 1/(1− μ), Var[Y ] = Var[X1]/(1− μ)3.

Prove that the generating function G(s) = E[sY ] satisfies G(s) = sφ(G(s)).
It is also true (you need not prove it) that G(s) is the unique solution of
γ = sφ(γ), γ ∈ (0, z]. Using this result, find G(s) for the geometric branching
in Exercise 62.

Exercise 65. Estimation of Transition Probabilities . Suppose one wants to
estimate the transition probabilities of an ergodic Markov chain Xn based on
observing X0, . . . , Xn, where the number of states is known. An estimator of
its transition probability pij is

p̂ij(n) =

∑n
k=1 1(Xk−1 = i,Xk = j)
∑n
k=1 1(Xk−1 = i)

, i, j ∈ S.

This is the portion of the times the chain moves to j upon leaving i. Show
that p̂ij(n) is a consistent estimator of pij in that p̂ij(n) → pij a.s. as n→ ∞.

Exercise 66. Suppose Xn is an ergodic Markov chain that is stationary.
Show that the following statements are equivalent.
(a) Xn is reversible.

(b) (Xn, Xn+1)
d
= (Xn+1, Xn), n ≥ 1.

(c) (X1, X2, . . . , Xn)
d
= (Xn, . . . , X2, X1), n ≥ 1.
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Exercise 67. Time-Reversible Chains. A Markov chain Xn is reversible in
time if, for any ν ≥ 1,

(Xν , Xν−1, . . . , Xν−n)
d
= (X0, X1, . . . , Xn), n ≥ ν.

That is, the chain viewed in reverse time beginning at ν (like viewing a video
tape in reverse) is equal in distribution to viewing the chain in the forward
direction. Show that a Markov chain is time-reversible if and only if it is
stationary and reversible (in the usual sense).

Exercise 68. Fork-Join System. Prove that (1.85) is also a necessary con-
dition for the fork-join Markov chain Xn in Example 116 to be positive re-
current. Also, discuss why Foster’s criterion does not work to prove positive
recurrence with the linear function v(x) =

∑m
i=1 xi.



Chapter 2

Renewal and Regenerative Processes

Renewal and regenerative processes are models of stochastic phenomena in
which an event (or combination of events) occurs repeatedly over time, and
the times between occurrences are i.i.d. Models of such phenomena typically
focus on determining limiting averages for costs or other system parameters,
or establishing whether certain probabilities or expected values for a system
converge over time, and evaluating their limits.

The chapter begins with elementary properties of renewal processes, in-
cluding several strong laws of large numbers for renewal and related stochastic
processes. The next part of the chapter covers Blackwell’s renewal theorem,
and an equivalent key renewal theorem. These results are important tools
for characterizing the limiting behavior of probabilities and expectations of
stochastic processes. We present strong laws of large numbers and central
limit theorems for Markov chains and regenerative processes in terms of a
process with regenerative increments (which is essentially a random walk
with auxiliary paths). The rest of the chapter is devoted to studying regenera-
tive processes (including ergodic Markov chains), processes with regenerative
increments, terminating renewal processes, and stationary renewal processes.

2.1 Renewal Processes

This section introduces renewal processes and presents several examples. The
discussion covers Poisson processes and renewal processes that are “embed-
ded” in stochastic processes.

We begin with notation and terminology for point processes that we use
in later chapters as well. Suppose 0 ≤ T1 ≤ T2 ≤ . . . are finite random times
at which a certain event occurs. The number of the times Tn in the interval
(0, t] is

N(t) =

∞∑

n=1

1(Tn ≤ t), t ≥ 0.

R. Serfozo, Basics of Applied Stochastic Processes,
Probability and its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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We assume this counting process is finite valued for each t, which is equivalent
to Tn → ∞ a.s. as n→ ∞.

More generally, we will consider Tn as points (or locations) in R+ (e.g., in
time, or a physical or virtual space) with a certain property, and N(t) is the
number of points in [0, t]. The process {N(t) : t ≥ 0}, denoted by N(t), is
a point process on R+. The Tn are its occurrence times (or point locations).
The point process N(t) is simple if its occurrence times are distinct: 0 < T1 <
T2 < . . . a.s. (there is at most one occurrence at any instant).

Definition 1. A simple point process N(t) is a renewal process if the inter-
occurrence times ξn = Tn−Tn−1, for n ≥ 1, are independent with a common
distribution F , where F (0) = 0 and T0 = 0. The Tn are called renewal times,
referring to the independent or renewed stochastic information at these times.
The ξn are the inter-renewal times, and N(t) is the number of renewals in
(0, t].

Examples of renewal processes include the random times at which: cus-
tomers enter a queue for service, insurance claims are filed, accidents or emer-
gencies happen, or a stochastic process enters a special state of interest. In
addition, Tn might be the location of the nth vehicle on a highway, or the lo-
cation of the nth flaw along a pipeline or cable, or the cumulative quantity of
a product processed in n production cycles. A discrete-time renewal process
is one whose renewal times Tn are integer-valued. Such processes are used
for modeling systems in discrete time, or for modeling sequential phenomena
such as the occurrence of a certain character (or special data packet) in a
string of characters (or packets), such as in DNA sequences.

To define a renewal process for any context, one only has to specify a
distribution F with F (0) = 0 for the inter-renewal times. The F in turn
defines the other random variables. More formally, there exists a probability
space and independent random variables ξ1, ξ2, . . . defined on it that have the
distribution F (see Corollary 6 in the Appendix). Then the other quantities
are Tn =

∑n
k=1 ξk and N(t) =

∑∞
n=1 1(Tn ≤ t), where Tn → ∞ a.s. by the

strong law of large numbers (Theorem 72 in Chapter 1).
Here are two illustrations.

Example 2. Scheduled Maintenance. An automobile is lubricated when its
owner has driven it L miles or every M days, whichever comes first. Let
N(t) denote the number of lubrications up to time t. Suppose the numbers
of miles driven in disjoint time periods are independent, and the number of
miles in any time interval has the same distribution, regardless of where the
interval begins. Then it is reasonable that N(t) is a renewal process. The
inter-renewal distribution is F (t) = P{τ ∧M ≤ t}, where τ denotes the time
to accumulate L miles on the automobile.

This scheduled maintenance model applies to many types of systems where
maintenance is performed when the system usage exceeds a certain level L
or when a time M has elapsed. For instance, in reliability theory, the Age
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Replacement model of components or systems, replaces a component with
lifetime τ if it fails or reaches a certain age M (see Exercise 19).

Example 3. Service Times. An operator in a call center answers calls one at
a time. The calls are independent and homogeneous in that the callers, the
call durations, and the nature of the calls are independent and homogeneous.
Also, the time needed to process a typical call (which may include post-call
processing) has a distribution F . Then one would be justified in modeling
the number of calls N(t) that the operator can process in time t as a renewal
process. The time scale here refers to the time that the operator is actually
working; it is not the real time scale that includes intervals with no calls,
operator work-breaks, etc.

Elementary properties of a renewal process N(t) with inter-renewal distri-
bution F are as follows. The times Tn are related to the counts N(t) by

{N(t) ≥ n} = {Tn ≤ t},
TN(t) ≤ t < TN(t)+1.

In addition, N(Tn) = n and

N(t) = max{n : Tn ≤ t} = min{n : Tn+1 > t}.

These relations (which also hold for simple point processes) are used to derive
properties of N(t) in terms of Tn, and vice versa.

We have a good understanding of Tn =
∑n

k=1 ξk, since it is a sum of
independent variables with distribution F . In particular, by properties of
convolutions of distributions (see the Appendix), we know that

P{Tn ≤ t} = Fn�(t),

which is the n-fold convolution of F . Then {N(t) ≥ n} = {Tn ≤ t} yields

P{N(t) ≤ n} = 1− F (n+1)�(t). (2.1)

Also, using E[N(t)] =
∑∞
n=1 P{N(t) ≥ n} (see Exercise 1), we have

E[N(t)] =

∞∑

n=1

Fn�(t). (2.2)

The following result justifies that this mean and all moments of N(t) are
finite. Properties of moment generating functions are in the Appendix.

Proposition 4. For each t ≥ 0, the moment generating function E[eαN(t)]
exists for some α in a neighborhood of 0, and hence E[N(t)m] <∞, m ≥ 1.

Proof. It is clear that if 0 ≤ X ≤ Y and Y has a moment generating function
on an interval [0, ε], then so does X . Therefore, to prove the assertion it
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suffices to find a random variable larger than N(t) whose moment generating
function exists.

To this end, choose x > 0 such that p = P{ξ1 > x} > 0. Consider the sum
Sn =

∑n
k=1 1(ξk > x), which is the number of successes in n independent

Bernoulli trials with probability of success p. The number of trials until the
mth success is Zm = min{n : Sn = m}.

Clearly xSn < Tn, and so

N(t) = max{n : Tn ≤ t} ≤ max{n : Sn = �t/x�} ≤ Z
t/x�+1.

Now Zm has a negative binomial distribution with parameters m and p, and
its moment generating is given in Exercise 2. Thus, Z
t/x�+1 has a generating
function, and hence N(t) has one as well. Furthermore, this existence en-
sures that all moments of N(t) exist (a basic property of moment generating
functions for nonnegative random variables).

Keep in mind that the preceding properties of the renewal process N(t)
are true for any distribution F with F (0) = 0. When this distribution has
a finite mean μ and finite variance σ2, the distribution of N(t), for large t,
is approximately a normal distribution with mean t/μ and variance tσ2/μ3

(this follows by the central limit theorem in Example 67 below). Refined
asymptotic approximations for the mean of N(t) are given in Proposition 84.

The rest of this section is devoted to examples of renewal processes. The
most prominent renewal process is as follows.

Example 5. Poisson Process. Suppose the i.i.d. inter-renewal times of the re-
newal process N(t) have the exponential distribution F (t) = 1 − e−λt with
rate λ (its mean is λ−1). Then as we will see in the next chapter, N(t) is
Poisson process with rate λ.

In this case, by properties of convolutions

P{Tn ≤ t} = Fn�(t) =

∫ t

0

λnxn−1 e−λx

(n− 1)!
dx.

This is a gamma distribution with parameters n and λ. Alternatively,

P{Tn ≤ t} = 1−
n−1∑

k=0

(λt)k

k!
e−λt.

This is justified by noting that the derivative of the summation equals the
integrand (the gamma density) in the preceding integral. Then using the
relation {N(t) ≥ n} = {Tn ≤ t}, we arrive at

P{N(t) ≤ n} =
n∑

k=0

(λt)k

k!
e−λt.

This is the Poisson distribution with mean E[N(t)] = λt.
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Poisson processes are very important in the theory and applications of
stochastic processes. We will discuss them further in Chapter 3. Note that the
discrete-time analogue of a Poisson process is the Bernoulli process described
in Exercise 2.

Example 6. Delayed Renewal Process. Many applications involve a renewal
process N(t) with the slight difference that the first renewal time ξ1 does
not have the same distribution as the other ξn, for n ≥ 2. We call N(t) a
delayed renewal process. Elementary properties of delayed renewal processes
are similar to those for renewal processes with the obvious changes (e.g., if ξ1
has distribution G, then the time Tn of the nth renewal has the distribution
G 
 F (n−1)�(t)). More important, we will see that many limit theorems for
renewal processes apply to delayed renewal processes.

In addition to being of interest by themselves, renewal processes play an
important role in analyzing more complex stochastic processes. Specifically,
as a stochastic process evolves over time, it is natural for some event as-
sociated with its realization to occur again and again. When the “embed-
ded” occurrence times of the event are renewal times, they may be useful for
gleaning properties about the parent process. Stochastic processes with em-
bedded renewal times include discrete- and continuous-time Markov chains,
Markov-Renewal processes and more general regenerative processes (which
are introduced in later chapters).

The next example describes renewal processes embedded in ergodic Markov
chains due the regenerative property of Markov chains.

Example 7. Ergodic Markov Chain. Let Xn denote a discrete-time Markov
chain on a countable state space that is ergodic (aperiodic, irreducible and
positive recurrent). Consider any state i and let 0 < ν1 < ν2 < . . . denote the
(discrete) times at which Xn enters state i. Theorem 67 in Chapter 1 showed
that the times νn form a discrete-time renewal process when X0 = i. These
times form a delayed renewal process when X0 �= i. The Bernoulli process in
Exercise 2 is a special case.

Example 8. Cyclic Renewal Process. Consider a continuous-time stochastic
process X(t) that cycles through states 0, 1, . . . ,K − 1 in that order, again
and again. That is, it starts at X(0) = 0, and its nth state is j if n = mK+ j
for some m. For instance, in modeling the status of a machine or system,
X(t) might be the amount of deterioration of a system, or the number of
shocks (or services) it has had, and the system is renewed whenever it ends
a sojourn in state K − 1.

Assume the sojourn times in the states are independent, and let Fj denote
the sojourn time distribution for state j, where Fj(0) = 0. The time for the
process X(t) to complete a cycle from state 0 back to 0 has the distribution
F = F0 
 F1 
 · · ·
 FK−1. Then it is clear that the times at which X(t) enters
state 0 form a renewal process with inter-renewal distribution F . We call
X(t) a cyclic renewal process.
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There are many other renewal processes embedded in X(t). For instance,
the times at which the process enters any fixed state i form a delayed renewal
process with the same distribution F . Another more subtle delayed renewal
process is the sequence of times at which the processes X(t) bypasses state 0
by jumping from state K−1 to state 1 (assuming F0(0) > 0); see Exercise 7.
It is quite natural for a single stochastic process to contain several such
embedded renewal processes.

Example 9. Alternating Renewal Process. An alternating renewal process is a
cyclic renewal process with only two states, say 0 and 1. This might be ap-
propriate for indicating whether a system is working (state 1) or not working
(state 0), or whether a library book is available or unavailable for use.

2.2 Strong Laws of Large Numbers

This section begins our study of the long run behavior of renewal and related
stochastic processes. In particular, we present a framework for deriving strong
laws of large numbers for a variety of processes. We have already seen SLLNs
in Chapter 1 for sums of i.i.d. random variables and for functions of Markov
chains.1

Throughout this section, assume that N(t) is a point process on R+ with
occurrence times Tn. With no loss in generality, assume that N(t) ↑ ∞ a.s.
as t → ∞. The first result says that Tn satisfies a SLLN if and only if N(t)
does. Here 1/μ is 0 when μ = ∞.

Theorem 10. For a constant μ ≤ ∞ (or random variable), the following
statements are equivalent:

lim
n→∞

n−1Tn = μ a.s. (2.3)

lim
t→∞

t−1N(t) = 1/μ a.s. (2.4)

Proof. Suppose (2.3) holds. We know TN(t) ≤ t < TN(t)+1. Dividing these
terms by N(t) (for large enough t so N(t) > 0), we have

TN(t)

N(t)
≤ t

N(t)
<

TN(t)+1

N(t) + 1

N(t) + 1

N(t)
.

Supposition (2.3) along with N(t) ↑ ∞ and (N(t) + 1)/N(t) → 1 ensure
that the first and last terms in this display converge to μ. Since t/N(t) is
sandwiched between these terms, it must also converge to their limit μ. This
proves (2.4).

1 The limit statements here and below are for the a.s. mode of convergence, but we some-
times suppress the term a.s., especially in the proofs.
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Conversely, suppose (2.4) holds. When N(t) is simple, N(Tn) = n, and
so Tn/n = Tn/N(Tn) → μ, which proves (2.3). When N(t) is not simple,
N(Tn) ≥ n and (2.3) follows by Exercise 18.

Corollary 11. (SLLN for Renewal Processes) If N(t) is a renewal process
whose inter-renewal times have a mean μ ≤ ∞, then

t−1N(t) → 1/μ a.s. as t→ ∞.

Proof. This follows by Theorem 10, since the classical SLLN (Theorem 72 in
Chapter 1) ensures that n−1Tn → μ.

Example 12. Statistical Estimation. Suppose N(t) is a Poisson process with
rate λ, but this rate is not known, and one wants to estimate it. One approach
is to observe the process for a fixed time interval of length t and record N(t).
Then an estimator for λ is

λ̂t = t−1N(t).

This estimator is unbiased in that E[λ̂t] = λ. It is also a consistent estimator

since λ̂t → λ by Corollary 11. Similarly, if N(t) is a renewal process whose
inter-renewal distribution has a finite mean μ, then μ̂t = t/N(t) is a consistent
estimator for μ (but it is not unbiased).

Of course, if it is practical to observe a fixed number n of renewals (rather
than observing over a “fixed” time), then n−1Tn is an unbiased and consistent
estimator of μ.

We now present a framework for obtaining limiting averages (or SLLNs)
for a variety of stochastic processes. Consider a real-valued stochastic process
{Z(t) : t ≥ 0} on the same probability space as the point process N(t). Our
interest is in natural conditions under which the limit of its average value
t−1Z(t) exists. For instance, Z(t) might denote a cumulative utility (e.g.,
cost or reward) associated with a system, and one is interested in the utility
per unit time t−1Z(t) for large t.

The following theorem relates the limit of the time average t−1Z(t) to the
limit of the embedded interval average n−1Z(Tn). An important quantity is

Mn = sup
Tn−1<t≤Tn

|Z(t)− Z(Tn−1)|,

which is the maximum fluctuation of Z(t) in the interval (Tn−1, Tn]. We
impose the rather weak assumption that this maximum does not increase
faster than n does.

Theorem 13. Suppose that n−1Tn → μ a.s. as n → ∞, where μ ≤ ∞ is
a constant or random variable. Let a be a constant or random variable that
may be infinite when μ is finite, and consider the limit statements



106 2 Renewal and Regenerative Processes

lim
t→∞

t−1Z(t) = a/μ a.s. (2.5)

lim
n→∞

n−1Z(Tn) = a a.s. (2.6)

Statement (2.5) implies (2.6). Conversely, (2.6) implies (2.5) if the process
Z(t) is increasing, or if limn→∞ n−1Mn = 0 a.s.

Proof. Clearly (2.5) implies (2.6) since

n−1Z(Tn) = T−1
n Z(Tn)(Tn/n) → a.

Next, suppose (2.6) holds, and consider

t−1Z(t) = t−1Z(TN(t)) + r(t).

where r(t) = t−1[Z(t) − Z(TN(t))]. By Theorem 10, n−1Tn → μ implies
N(t)/t→ 1/μ. Using the latter and (2.6), we have

t−1Z(TN(t)) = [Z(TN(t))/N(t)][N(t)/t] → a/μ.

Then to prove t−1Z(t) → a/μ, it remains to show r(t) → 0.
In case Z(t) is increasing, (2.6) and N(t)/t→ 1/μ ensure that

|r(t)| ≤
[Z(TN(t)+1)− Z(TN(t))]

N(t)

N(t)

t
→ 0.

Also, in the other case in which n−1Mn → 0,

|r(t)| ≤ [MN(t)+1/(N(t) + 1)][(N(t) + 1)/t] → 0.

Thus r(t) → 0, which completes the proof that (2.6) implies (2.5).

Here is a consequence of Theorem 13 that applies to processes with regen-
erative increments, which are discussed in Section 2.10.

Corollary 14. If N(t) is a renewal process, and (Z(Tn) − Z(Tn−1),Mn),
n ≥ 1, are i.i.d. with finite means, then

t−1Z(t) → E[Z(T1)− Z(0)]/E[T1] a.s. as t→ ∞. (2.7)

Proof. By the classical SLLN, n−1Z(Tn) → E[Z(T1)−Z(0)]. Also, since Mn

are i.i.d., it follows by Exercise 33 in the preceding chapter that n−1Mn → 0.
Then Theorem 13 yields (2.7).

We will see a number of applications of Theorem 13 throughout this chap-
ter. Here are two elementary examples.

Example 15. Renewal Reward Process. Suppose N(t) is a renewal process as-
sociated with a system in which a reward Yn (or cost or utility value) is
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received at time Tn, for n ≥ 1. Then the total reward in (0, t] is2

Z(t) =
∞∑

n=1

Yn1(Tn ≤ t) =

N(t)∑

n=1

Yn, t ≥ 0.

For instance, Yn might be claims received by an insurance company at times
Tn, and Z(t) would represent the cumulative claims.

The process Z(t) is a renewal reward process if the pairs (ξn, Yn), n ≥ 1,
are i.i.d. (ξn and Yn may be dependent). Under this assumption, it follows
by Theorem 13 that the average reward per unit time is

lim
t→∞

t−1Z(t) = E[Y1]/E[ξ1] a.s.,

provided the expectations are finite. This result is very useful in many diverse
contexts. One only has to justify the renewal conditions and evaluate the
expectations. In complicated systems with many activities, a little thought
may be needed to identify the renewal times as well as the associated rewards.

Example 16. Cyclic Renewal Process. Let X(t) be a cyclic renewal process on
0, . . . ,K − 1 as in Example 8. Recall that the entrance times to state 0 form
a renewal process, and the mean inter-renewal time is μ = μ0 + · · ·+ μK−1,
where μi is the mean sojourn time in state i. Suppose a cost or value f(i)
per unit time is incurred whenever X(t) is in state i. Then the average cost
per unit time is

lim
t→∞

t−1

∫ t

0

f(X(s))ds =
1

μ

K−1∑

i=0

f(i)μi a.s.. (2.8)

This follows by applying Corollary 13 to Z(t) =
∫ t
0
f(X(s))ds and noting

that E[Z(T1)] =
∑K−1
i=0 f(i)μi.

A particular case of (2.8) says that the portion of time X(t) spends in a
subset of states J is

lim
t→∞

t−1

∫ t

0

1(X(s) ∈ J)ds =
1

μ

∑

j∈J
μj a.s..

2.3 The Renewal Function

This section describes several fundamental properties of renewal processes in
terms of the their mean value functions.

2 Recall the convention that
∑0

n=1(·) = 0.
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For this discussion, suppose that N(t) is a renewal process with inter-
renewal distribution F with a finite mean μ. We begin by showing that the
mean value function E[N(t)] contains all the probabilistic information about
the process. It is more convenient to use the slight variation of the mean value
function defined as follows.

Definition 17. The renewal function associated with the distribution F (or
the process N(t)) is

U(t) =

∞∑

n=0

Fn�(t), t ∈ R, (2.9)

where F 0�(t) = 1(t ≥ 0). Clearly U(t) = E[N(t)] + 1, for t ≥ 0, is the
expected number of renewals up to time t, including a “fictitious renewal” at
time 0.

Note that U(t) is similar to a distribution function in that it is nonde-
creasing and right-continuous on R, but U(t) ↑ ∞ as t → ∞. Keep in mind
that U(t) is 0 for t < 0 and it has a unit jump at t = 0. Although a renewal
function is ostensibly very simple, it has some remarkable uses as we will
soon see.

Our first observation is that if the inter-renewal times are continuous ran-
dom variables, then the renewal function has a density.

Proposition 18. Suppose the inter-renewal distribution F has a density f .
Then U(t) also has a density for t > 0, and it is U ′(t) =

∑∞
n=1 f

n�(t). In
addition,

P{N(t) > N(t−)} = 0, t ≥ 0. (2.10)

Proof. The first assertion follows since U(t) =
∑∞
n=0 F

n�(t), and the deriva-
tive of Fn�(t) is fn�(t). The second assertion, which is equivalent to N(t)−
N(t−) = 0 a.s., will follow if E[N(t) − N(t−)] = 0. But the last equal-
ity is true since, by the monotone convergence theorem (Theorem 13 in the
Appendix) and the continuity of U ,

E[N(t−)] = E[lim
s↑t

N(s)] = lim
s↑t

U(s)− 1 = U(t)− 1 = E[N(t)].

Expression (2.10) tells us that the probability of a renewal at any time is
0, when the inter-renewal times are continuous. Here is an important case.

Remark 19. If N(t) is a Poisson process with rate λ, then the probability of
a jump at any time t is 0.

Some of the results below have slight differences depending on whether
the inter-renewal distribution is or is not arithmetic. The distribution F is
arithmetic (or periodic) if it is piecewise constant and its points of increase
are contained in a set {0, d, 2d, . . .}; the largest d > 0 with this property is
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the span. In this case, it is clear that the distributions Fn� and the renewal
function U(t) also have this arithmetic property. If F is not arithmetic, we
call it non-arithmetic. A distribution with a continuous part is necessarily
non-arithmetic.

The rest of this chapter makes extensive use of Riemann-Stieltjes integrals;
see the review in the Appendix. In particular, the expectation of a function
g : R → R on a finite or infinite interval I with respect to F will be expressed
as the Riemann-Stieltjes integral3

∫

I

g(t)dF (t).

All the functions in this book like g are assumed to be measurable (see the
Appendix); we will not repeat this assumption unless emphasis is needed.
Riemann-Stieltjes integrals with respect to U are defined similarly, since U
is like a distribution function. A typical integral is

∫

[0,b]

g(t)dU(t) = g(0) +

∫

(0,b]

g(t)dU(t).

The right-hand side highlights that g(0)U(0) = g(0) is the contribution from
the unit jump of U at 0. Since U(t) = 0 for t < 0, we will only consider
integrals with respect to U on intervals in R+.

An important property of the renewal function U(t) is that it uniquely
determines the distribution F . To see this, we will use Laplace transforms.
The Laplace-Stieltjes or simply the Laplace transform of F is defined by

F̂ (α) =

∫

R+

e−αtdF (t), α ≥ 0.

A basic property is that the transform F̂ uniquely determines F and vice
versa. The Laplace transform Û(α) of U(t) is defined similarly. Now, taking
the Laplace transform of both sides in (2.9), we have

Û(α) =

∞∑

n=0

F̂n�(α) =

∞∑

n=0

F̂ (α)n = 1/(1− F̂ (α)).

The last equation follows by Fubini’s theorem. This yields the following result.

Proposition 20. The Laplace transforms Û(α) and F̂ (α) determine each
other uniquely by the relation Û(α) = 1/(1− F̂(α)). Hence U and F uniquely
determine each other.

One can sometimes use this result for identifying that a renewal process
is of a certain type. For instance, a Poisson process has a renewal function

3 This integral is the usual Riemann integral
∫
I
g(t)f(t)dt when F has a density f . Also,

∫
I
h(t)dt is written as

∫ b
a
h(t)dt when I is (a, b] or [a, b] etc.
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U(t) = λt+1, and so any renewal process with this type of renewal function
is a Poisson process.

Remark 21. A renewal process N(t), whose inter-renewal times have a finite
mean, is a Poisson process with rate λ if and only if E[N(t)] = λt, for t ≥ 0.

Other examples of renewal processes with tractable renewal functions are
those whose inter-renewal distribution is a convolution or mixture of exponen-
tial distributions; see Exercises 6 and 12. Sometimes the Laplace transform
Û(α) = 1/(1− F̂ (α)) can be inverted to determine U(t). Unfortunately, nice
expressions for renewal processes are the exception rather than the rule.

In addition to characterizing renewal processes as discussed above, renewal
functions arise naturally in expressions for probabilities and expectations of
functions associated with renewal processes. Such expressions are the focus
of much of this chapter.

The next result describes an important family of functions of point pro-
cesses as well as renewal processes. Expression (2.11) is a special case of
Campbell’s formula in the theory of point processes (see Theorem 106 in
Chapter 4). Here and in other places in the book the phrase “provided the
integral exists” means that the Lebesgue (or Riemann-Stieltjes) integral ex-
ists. A Lebesgue integral is a generalization of a Riemann-Stieltjes integral;
see the Appendix, Section 6.4. The proof below uses the monotone and dom-
inated convergence theorems applied to Riemann-Stieltjes integrals with a
Lebesgue integral as the possible limit.

Theorem 22. Let N(t) be a simple point process with point locations Tn such
that η(t) = E[N(t)] is finite for each t. Then for any function f : R+ → R,

E
[N(t)∑

n=1

f(Tn)
]
=

∫

(0,t]

f(s)dη(s), t ≥ 0, (2.11)

provided the integral exists. Moreover, if X1, X2, . . . are random variables
defined on the same probability space as the process N(t) such that E[Xn|Tn =
s] = f(s), independent of n. Then

E
[N(t)∑

n=1

Xn

]
=

∫

(0,t]

f(s)dη(s), t ≥ 0, (2.12)

provided the integral exists.

Proof. We will prove (2.11) by a standard approach for proving formulas for
integrals. For convenience, denote the equality (2.11) by Σ(f) = I(f). First,
consider the simple piecewise-constant function

f(s) =
m∑

k=1

ak1(s ∈ (sk, tk]),
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for fixed 0 ≤ s1 < t1 < · · · ≤ sm < tm ≤ t. In this case,

Σ(f) = E
[ m∑

k=1

ak[N(tk)−N(sk)]
]

=
m∑

k=1

ak[η(tk)− η(sk)] = I(f).

Next, for any nonnegative function f one can define simple functions fm
as above such that fm(s) ↑ f(s) as m→ ∞ for each s. For instance,

fm(s) = m ∧ (�2mf(s)�/2m)1(s ∈ [−2m, 2m]).

Then by the monotone convergence theorem (see the Appendix, Theorem 13)
and the first part of this proof,

Σ(f) = lim
m→∞

Σ(fm) = lim
m→∞

I(fm) = I(f).

Thus, (2.11) is true for nonnegative f .
Finally, (2.11) is true for a general function f , since f(s) = f(s)+ − f(s)−

and the preceding part of the proof for nonnegative functions yield

Σ(f) = Σ(f+)−Σ(f−) = I(f+)− I(f−) = I(f).

It suffices to prove (2.12) for nonnegativeXn. Conditioning on Tn, we have

E
[N(t)∑

n=1

Xn

]
=

∞∑

n=1

E
[
E[Xn1(Tn ≤ t)|Tn]

]
=

∞∑

n=1

E
[
1(Tn ≤ t)E[Xn|Tn]

]

=

∞∑

n=1

E
[
1(Tn ≤ t)f(Xn)

]
.

Then applying (2.11) to the last term yields (2.12).

Remark 23. Theorem 22 applies to a renewal process N(t) with its renewal
function U being equal to η. For instance, (2.12) would be

E
[N(t)∑

n=1

Xn

]
=

∫

(0,t]

f(s)dU(s).

Note that this integral does not include the unit jump of U at 0. An extension
that includes a value X0 with f(0) = E[X0] would be

E
[N(t)∑

n=0

Xn

]
=

∫

[0,t]

f(s)dU(s). (2.13)
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This remark yields the following special case of a general Wald identity
for stopping times in Corollary 25 in Chapter 5.

Corollary 24. (Wald Identity for Renewals) For the renewal process N(t),

E[TN(t)+1] = μE[N(t) + 1], t ≥ 0.

Proof. Using Remark 23 with f(s) = E[ξn+1|Tn = s] = μ, it follows that

E[TN(t)+1] = E
[N(t)∑

n=0

ξn+1

]

= μU(t) = μE[N(t) + 1].

In light of this result, one might suspect that E[TN(t)] = μE[N(t)]. How-
ever, this is not the case. In fact, E[TN(t)] ≤ μE[N(t)]; and this is a strict
inequality for a Poisson process; see Exercise 22.

Example 25. Discounted Rewards. Suppose a renewal process N(t) has re-
wards associated with it such that a reward (or cost) Yn is obtained at the
nth renewal time Tn. The rewards are discounted continuously over time and
if a reward y occurs a time t, it has a discounted value of ye−αt. Then the
total discounted reward up to time t is

Z(t) =

N(t)∑

n=1

Yne
−αTn .

As in Theorem 22, assume there is a function f : R+ → R such that
E[Yn|Tn = s] = f(s), independent of n. Then applying Remark 23 to
Xn = Yne

−αTn yields

E[Z(t)] =

∫

(0,t]

e−αsf(s)dU(s).

The next examples describe several systems modeled by renewal processes
with the same type of inter-renewal distribution shown in (2.14) below (also
see Exercise 16).

Example 26. Single-Server System. Pallets are scheduled to arrive at an auto-
matically guided vehicle (AGV) station according to a renewal process N(t)
with inter-arrival distribution F . The station is attended by a single AGV,
which can transport only one pallet at a time. Pallets scheduled to arrive
when the AGV is already busy transporting a pallet are diverted to another
station. Assume the transportation times are independent with common dis-
tribution G.
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Let us consider the times T̃n at which the AGV begins to transport a pallet
(the times at which pallets arrive and the AGV is idle). For simplicity, assume

a transport starts at time 0. To describe T̃1, let τ denote a transport time for
the first pallet. Then T̃1 equals τ plus the waiting time TN(τ)+1 − τ for the

next pallet to arrive after transporting the first pallet. That is, T̃1 = TN(τ)+1.
When the next pallet arrives at time TN(τ)+1, the system is renewed and these

cycles are repeated indefinitely. Thus T̃n are renewal times.
The inter-renewal distribution of T̃1 and its mean have reasonable expres-

sions in terms of the arrival process. Indeed, conditioning on τ , which is
independent of N(t), yields

P{T̃1 ≤ t} =

∫

R+

P{TN(x)+1 ≤ t}dG(x). (2.14)

Also, if F has a finite mean μ, then by Wald’s identity,

E[T̃1] =

∫

R+

E[TN(x)+1]dG(x) = μ

∫

R+

U(x)dG(x).

Example 27. G/G/1/1 System. Consider a system in which customers arrive
at a processing station according to a renewal process with inter-arrival dis-
tribution F and are processed by a single server. The processing or service
times are independent with the common distribution G, and are indepen-
dent of the arrival process. Also, customer arrivals during a service time are
blocked from being served — they either go elsewhere or go without service.
In this context the times T̃n at which customers begin services are renewal
times as in the preceding example with inter-renewal distribution (2.14). This
system is called a G/G/1/1 system: G/G means the inter-arrival and service
times are i.i.d. (with general distributions) and 1/1 means there is one server
and at most one customer in the system.

Example 28. Geiger Counters. A classical model of a Geiger counter assumes
that electronic particles arrive at the counter according to a Poisson or re-
newal process. Upon recording an arrival of a particle, the counter is locked
for a random time during which arrivals of new particles are not recorded. The
times of being locked are i.i.d. and independent of the arrivals. Under these
assumptions, it follows that the times T̃n at which particles are recorded are
renewal times, and have the same structure as those for the G/G/1/1 system
described above. This so-called Type I model assumes that particles arriving
while the counter is locked do not affect the counter.

A slightly different Type II Geiger counter model assumes that whenever
the counter is locked and a particle arrives, that particle is not recorded, but
it extends the locked period by another independent locking time. The times
at which particles are registered are renewal times, but the inter-renewal
distribution is more intricate than that for the Type I counter.
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2.4 Future Expectations

We have just seen the usefulness of the renewal function for characterizing
a renewal process and for describing some expected values of the process.
In the following sections, we will discuss the major role a renewal function
plays in describing the limiting behavior of probabilities and expectations
associated with renewal and regenerative phenomena. This section outlines
what to expect in the next three sections, which cover the heart of renewal
theory.

The analysis to follow will use convolutions of functions with respect to
the renewal function U(t), such as

U 
 h(t) =

∫

[0,t]

h(t− s)dU(s) = h(0) +

∫

(0,t]

h(t− s)dU(s),

where h is bounded on finite intervals and equals 0 for t < 0.
We will see that many probabilities and expectations associated with a

renewal process N(t) can be expressed as a function H(t) that satisfies a
recursive equation of the form

H(t) = h(t) +

∫

[0,t]

H(t− s)dF (s), t ≥ 0.

This “renewal equation”, under minor technical conditions given in the next
section, has a unique solution of the form H(t) = U 
 h(t).

The next topic we address is the limiting behavior of such functions as
t → ∞. We will present Blackwell’s theorem, and an equivalent key renewal
theorem, which establishes

lim
t→∞

U 
 h(t) =
1

μ

∫

R+

h(s)ds.

This is for non-arithmetic F ; an analogous result holds for arithmetic F .
Also, the integral is slightly different from the standard Riemann integral.

We cover the topics outlined above— Renewal Equations, Blackwell’s The-
orem and the Key Renewal Theorem— in the next three sections. Thereafter,
we discuss applications of these theorems that describe the limiting behavior
of probabilities and expectations associated with renewal, regenerative and
Markov chains.

2.5 Renewal Equations

We begin our discussion of renewal equations with a concrete example.



2.5 Renewal Equations 115

Example 29. Let X(t) be a cyclic renewal process on 0, 1, . . . ,K − 1, and
consider the probability H(t) = P{X(t) = i} as a function of time, for a fixed
state i. To show H(t) satisfies a renewal equation, the standard approach is
to condition on the time T1 of the first renewal (the first entrance to state
0). The result is

H(t) = P{X(t) = i, T1 > t}+ P{X(t) = i, T1 ≤ t}, (2.15)

where the last probability, conditioning on the renewal at T1, is

∫

[0,t]

P{X(t) = i|T1 = s}dF (s) =

∫

[0,t]

H(t− s)dF (s).

Therefore, the recursive equation (2.15) that H(t) satisfies is

H(t) = h(t) + F 
 H(t),

where h(t) = P{X(t) = i, T1 > t}. This type of equation is a renewal equa-
tion, which is defined as follows.

Definition 30. Let h(t) be a real-valued function on R that is bounded on
finite intervals and equals 0 for t < 0. The renewal equation for h(t) and the
distribution F is

H(t) = h(t) +

∫

[0,t]

H(t− s)dF (s), t ≥ 0, (2.16)

where H(t) is a real-valued function. That is H = h + F 
 H . We say H(t)
is a solution of this equation if it satisfies the equation, and is bounded on
finite intervals and equals 0 for t < 0.

We first observe that a renewal equation has a unique solution.

Proposition 31. The function U 
h(t) is the unique solution to the renewal
equation (2.16).

Proof. Clearly U 
 h(t) = 0 for t < 0, and it is bounded on finite intervals
since

sup
s≤t

|U 
 h(s)| ≤ sup
s≤t

|h(s)|U(t) <∞, t ≥ 0.

Also, U 
h is a solution to the renewal equation, since by the definition of U
and F 0� 
 h = h,

U 
 h =
(
F 0� + F 


∞∑

n=1

F (n−1)�
)

 h = h+ F 
 (U 
 h).

To prove U
h is the unique solution, letH(t) be any solution to the renewal
equation, and consider the differenceD(t) = H(t)−U
h(t). From the renewal
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equation, we have D = F 
D, and so iterating this yields D = Fn� 
D. Now,
the finiteness of U(t) implies Fn�(t) → 0, as n → ∞, and hence D(t) = 0
for each t. This proves that U 
 h(t) is the unique solution of the renewal
equation.

The standard approach for deriving a renewal equation is by conditioning
on the first renewal time to obtain the function h(t) (recall Example 29).
Upon establishing that a function H(t) satisfies a renewal equation, one au-
tomatically knows that H(t) = U 
 h(t) by Proposition 31. For instance,
Example 29 showed that the probability P{X(t) = i} for a cyclic renewal
process satisfies a renewal equation for h(t) = P{X(t) = i, T1 > t}, and
hence

P{X(t) = i} = U 
 h(t). (2.17)

Although H(t) = U 
 h(t) is a solution of the renewal equation, it is not
an explicit expression for the function H(t) in that h(t) generally depends
on H(t). For instance, h(t) = P{X(t) = i, T1 > t} in (2.17) is part of the
probability H(t) = P{X(t) = i}.

Only in very special settings is the formula H(t) = U 
 h(t) tractable
enough for computations. On the other hand, we will see in Section 2.7 that
the function U 
 h(t) is the framework of the Key Renewal Theorem that
yields limit theorems for a variety of stochastic processes.

2.6 Blackwell’s Theorem

The next issue is to characterize the limiting behavior of functions of the
form U 
h(t) as t→ ∞. This is based on the limiting behavior of U(t), which
we now consider.

Throughout this section, assume that N(t) is a renewal process with re-
newal function U(t) and mean inter-renewal time μ, which may be finite or
infinite. In Section 2.2, we saw that N(t)/t→ 1/μ a.s., and so N(t) behaves
asymptotically like t/μ as t → ∞ (recall that 1/μ = 0 when μ = ∞). This
suggests U(t) = E[N(t)]+1 should also behave asymptotically like t/μ. Here
is a confirmation.

Theorem 32. (Elementary Renewal Theorem)

t−1U(t) → 1/μ, as t→ ∞.

Proof. For finite μ, using t < TN(t)+1 and Wald’s identity (Corollary 24),

t < E[TN(t)+1] = μU(t).

This yields the lower bound 1/μ < t−1U(t). Also, this inequality holds triv-
ially when μ = ∞. With this bound in hand, to finish proving the assertion
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it suffices to show
lim sup
t→∞

t−1U(t) ≤ 1/μ. (2.18)

To this end, for a constant b, define a renewal process N(t) with inter-
renewal times ξn = ξn ∧ b. Define Tn and U(t) accordingly. Clearly, U(t) ≤
U(t). Also, by Wald’s identity and TN(t)+1 ≤ t+ b (since the ξn are bounded

by b),
E[ξ1 ∧ b]U(t) = E[TN(t)+1] ≤ t+ b.

Consequently,

t−1U(t) ≤ t−1U(t) ≤ 1 + b/t

E[ξ1 ∧ b]
.

Letting t → ∞ and then letting b → ∞ (whereupon the last fraction tends
to 1/μ, even when μ = ∞), we obtain (2.18), which finishes the proof.

A more definitive description of the asymptotic behavior of U(t) is given
in the following major result.

Theorem 33. (Blackwell) For non-arithmetic F and a > 0,

U(t+ a)− U(t) → a/μ, as t→ ∞.

If F is arithmetic with span d, the preceding limit holds with a = md for any
integer m.

Proof. A proof for non-arithmetic F using a coupling argument is in Sec-
tion 2.15 below. A simpler proof for the arithmetic case is as follows.

Suppose F is arithmetic and, for simplicity, assume the span is d = 1.
Then renewals occur only at integer times, and pi = F (i) − F (i − 1) is the
probability that an inter-renewal time is of length i, where p0 = 0.

We will represent the renewal times by the backward recurrence time pro-
cess {A(t) : t = 0, 1, 2, . . .}, which we know is a Markov chain with transition
probabilities

pi0 =
pi∑∞
j=i pj

= 1− pi,i+1, i ≥ 0.

(recall Example 20 and Exercises 37 and 38 in Chapter 1). This chain is
irreducible, and hits state 0 at and only at the renewal times. Then the chain
is ergodic since the time between renewals has a finite mean μ. Theorem 54
in Chapter 1 yields P{A(t) = 0} → 1/μ (the representation for π0).

Then because U(t+m)−U(t) is the expected number of renewals exactly
at the times t+ 1, . . . , t+m, it follows that

U(t+m)− U(t) =

m∑

k=1

P{A(t+ k) = 0} → m/μ, as t→ ∞.

Blackwell’s theorem says that the renewal function U(t) is asymptotically
linear. This raises the question: “Does the asymptotic linearity of U(t) lead
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to a nice limit for functions of the form U 
 h(t)?” The answer is yes, as we
will see shortly.

As a preliminary, let us investigate the limit of U 
 h(t) for a simple
piecewise-constant function

h(s) =

m∑

k=1

ak1(s ∈ [sk, tk)),

where 0 ≤ s1 < t1 ≤ s2 < t2 < · · · ≤ sm < tm < ∞. In this case,

U 
 h(t) =

∫

[0,t]

h(t− s)dU(s) =

m∑

k=1

ak

∫ t

0

1(t− s ∈ [sk, tk))dU(s)

=

m∑

k=1

ak[U(t− sk)− U(t− tk)]. (2.19)

The last equality follows since the integral is over s ∈ [t − tk, t − sk), and
U(t) = 0 when t < 0. By Theorem 33, we know

U(t− sk)− U(t− tk) → (tk − sk)/μ.

Applying this to (2.19) yields

lim
t→∞

U 
 h(t) =
1

μ

m∑

k=1

ak(tk − sk) =
1

μ

∫

R+

h(s)ds. (2.20)

This result suggests that a limit of this form would also be true for general
functions h(t). That is what we will establish next.

2.7 Key Renewal Theorem

This section will complete our development of renewal functions and solutions
of renewal equations. The issue here is to determine limits of functions of the
form U 
 h(t) as t→ ∞.

We begin with preliminaries on integrals of functions on the infinite axis
R+. Recall that the Riemann integral

∫ t
0 h(s)ds is constructed by Riemann

sums on grids that become finer and finer (see Definition 86 below). The in-
tegral exists when h is continuous on [0, t], or is bounded and has a countable
number of discontinuities. Furthermore, the Riemann integral of h on R+ is
defined by ∫

R+

h(s)ds = lim
t→∞

∫ t

0

h(s)ds, (2.21)

provided the limit exits. In that case, h is Riemann integrable on R+.
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The Key Renewal Theorem requires a slightly different notion of a func-
tion being directly Riemann integrable on R+. A DRI function is defined in
Section 2.17, where an integral is constructed “directly” on the entire axis
R+ by Riemann sums, analogously to the construction of a Riemann integral
on a finite interval. A DRI function is Riemann integrable in the usual sense,
but the converse is not true; see Exercise 32.

For our purposes, we only need the following properties from Proposi-
tion 88 below (also see Exercise 33).

Remark 34. A function h : R+ → R is DRI in the following cases.
(a) h(t) ≥ 0 is decreasing and Riemann integrable.
(b) h is continuous except possibly on a set of Lebesgue measure 0, and
|h(t)| ≤ b(t), where b is DRI.

Here is the main result. Its proof is in Section 2.17.

Theorem 35. (Key Renewal Theorem) If F is non-arithmetic and h(t) is
DRI, then

lim
t→∞

U 
 h(t) =
1

μ

∫

R+

h(s)ds. (2.22)

Remark 36. This theorem is equivalent to Blackwell’s Theorem 33, which
asserts that U(t+a)−U(t) → a/μ. Indeed, Section 2.17 shows that Blackwell’s
theorem implies the Key Renewal Theorem. Conversely, (2.22) applied to
h(s) = 1(a < s < t + a) (so h(t − s) = 1(t − a < s ≤ t)) yields Blackwell’s
theorem.

An analogous key renewal theorem for arithmetic F is as follows. It can
also be proved by Blackwell’s renewal theorem — with fewer technicalities —
as suggested in Exercise 31.

Theorem 37. (Arithmetic Key Renewal Theorem) If F is arithmetic with
span d, then for any u < d,

lim
n→∞

U 
 h(u+ nd) =
d

μ

∞∑

k=0

h(u + kd),

provided the sum is absolutely convergent.

The next order of business is to show how the limit statement in the
key renewal theorem applies to limits of time-dependent probabilities and
expected values of stochastic processes. We know that any function H(t)
that satisfies a renewal equation has the form H(t) = U 
 h(t). It turns out
that this functional form is “universal” in the following sense.

Proposition 38. Any function H(t) that is bounded on finite intervals and
is 0 for t < 0 can be expressed as

H(t) = U 
 h(t), where h(t) = H(t)− F 
 H(t).
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Proof. This follows since U = F 0� + U 
 F , and so

H = F 0� 
 H = (U − U 
 F ) 
 H = U 
 (H − F 
 H).

Knowing that U 
h(t) is a universal form for any function that is bounded
on finite intervals, the remaining issue is, “How to relate U 
 h(t) to prob-
abilities and expectations of stochastic processes?” A natural vehicle is the
following type of stochastic process.

Definition 39. A real-valued stochastic process X(t) is crudely regenerative
at a positive random time T if

E[X(T + t)|T ] = E[X(t)], t ≥ 0, (2.23)

and these expectations are finite.

An important connection between crudely regenerative processes and func-
tions U 
 h(t) is as follows.

Proposition 40. Suppose that X(t) is a crudely regenerative process at T ,
which has the distribution F . If E[X(t)] is bounded on finite intervals, then

E[X(t)] = U 
 h(t), where h(t) = E[X(t)1(T > t)].

Proof. Applying Proposition 38 to H(t) = E[X(t)], it follows that E[X(t)] =
U 
 h(t), where

h(t) = H(t)− F 
 H(t) = E[X(t)]−
∫

[0,t]

E[X(t− s)]dF (s).

By the crude regeneration property, E[X(t)|T = s] = E[X(t− s)], s ≤ t, and

h(t) = E[X(t)]−
∫

[0,t]

E[X(t)|T = s]dF (s) = E[X(t)1(T > t)].

This completes the proof.

The family of crudely regenerative processes is very large; it includes er-
godic Markov chains in discrete and continuous time, regenerative processes,
and many functions of these processes as well. More details on these pro-
cesses are in the next sections. Typically, X(t) is a real-valued function of
one or more stochastic processes. An important example is a probability
P{Y (t) ∈ A} = E[X(t)], when X(t) = 1(Y (t) ∈ A).

The following major result is a version of the key renewal theorem that
characterizes limiting distributions and expectations. Many applications in
the next sections are based on this formulation.

Theorem 41. (Crude Regenerations) Suppose that X(t) is a real-valued pro-
cess that is crudely regenerative at T , and define M = sup{|X(t)| : t ≤ T }.
If T is non-arithmetic and M and MT have finite means, then
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lim
t→∞

E[X(t)] =
1

μ

∫

R+

h(s)ds, (2.24)

where h(t) = E[X(t)1(T > t)].

Proof. Since E[X(t)] = U 
 h(t) by Proposition 40, where T has the non-
arithmetic distribution F , the assertion (2.24) will follow by the key renewal
theorem provided h(t) is DRI.

To prove this, note that |h(t)| ≤ b(t) = E[M1(T > t)]. Now, by the
dominated convergence theorem in the Appendix and E[M ] < ∞, we have
b(t) ↓ 0. Also,

∫

R+

b(s)ds = E
[ ∫ T

0

M ds
]
= E[MT ] <∞. (2.25)

Then b(t) is DRI by Remark 34 (a), and so h(t) is DRI by Remark 34 (b).

2.8 Regenerative Processes

The primary use of the key renewal theorem is in characterizing the limit-
ing behavior of regenerative processes and their relatives via Theorem 41.
This section covers limit theorems for regenerative processes, and the next
three sections cover similar results for Markov chains, and processes with
regenerative increments.

We begin by defining regenerative processes. Loosely speaking, a discrete-
or continuous-time stochastic process is regenerative if there is a renewal
process such that the segments of the process between successive renewal
times are i.i.d. More precisely, let {X(t) : t ≥ 0} denote a continuous-time
stochastic process with a state space S that is a metric space (e.g., the Eu-
clidean space Rd or a Polish space; see the Appendix). This process need not
be a jump process like the continuous-time Markov chains we discuss later.
However, we assume that the sample paths of X(t) are right-continuous with
left-hand limits a.s. This ensures that the sample paths are continuous except
possibly on a set of Lebesgue measure 0.

Let N(t) denote a renewal process on R+, defined on the same probability
space asX(t), with renewal times Tn and inter-renewal times ξn = Tn−Tn−1,
which have a distribution F with a finite mean μ.

Definition 42. For the process {(N(t), X(t)) : t ≥ 0}, its sample path in the
time interval [Tn−1, Tn) is described by

ζn = (ξn, {X(Tn−1 + t) : 0 ≤ t < ξn}). (2.26)

This ζn is the nth segment of the process. The process X(t) is regenerative
over the times Tn if its segments ζn are i.i.d.
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Classic examples of regenerative processes are ergodic Markov chains in
discrete and continuous time. An important fact that follows directly from the
definition is that functions of regenerative processes inherit the regenerative
property.

Remark 43. Inheritance of Regenerations. If X̃(t) with state space S̃ is re-

generative over Tn, then X(t) = f(X̃(t)) is also regenerative over Tn, for any

f : S̃ → S.

For instance, we can express the distribution of a regenerative process X̃(t)

as the expectation P{X̃(t) ∈ B} = E[X(t)], where X(t) = 1(X̃(t) ∈ B) (a

function of X̃) is a real-valued regenerative process.
To include the possibility that the first segment of the process X(t) in

the preceding definition may differ from the others, we say X(t) is a delayed
regenerative process if ζn are independent, and ζ2, ζ3, . . . have the same dis-
tribution, which may be different from the distribution of ζ1. We discuss more
general regenerative-like processes with stationary segments in Section 2.19.

Remark 44. Regenerative processes are crudely regenerative, but not vice
versa.

Indeed, if X(t) is regenerative over the times Tn, then X(t) is crudely
regenerative at T1. Next, consider the process X(t) = Xn(t), if t ∈ [n− 1, n]
for some n, where {Xn(t) : t ∈ [0, 1]} for n ≥ 1, are independent stochastic
processes with identical mean functions (E[Xn(t)] = E[X1(t)] for each n),
but non-identical variance functions. Clearly X is crudely regenerative at
T = 1, but it is not regenerative.

To proceed, a few comments are in order concerning convergence in dis-
tribution. For a process X(t) on a countable state space S, a probability
measure P on S is the limiting distribution of X(t) if

lim
t→∞

P{X(t) ∈ B} = P(B), B ⊂ S. (2.27)

This definition, however, is too restrictive for uncountable S, where (2.27)
is not needed for all subsets B. In particular, when the state space S is
the Euclidean space R

d, then P on S = R
d is defined to be the limiting

distribution of X(t) if (2.27) holds for B ∈ S (the Borel sets of S) such that
P(∂B) = 0, where ∂B is the boundary of B.

Equivalently, P on S is the limiting distribution of X(t) if

lim
t→∞

E[f(X(t))] =

∫

S

f(x)P(dx), (2.28)

for any continuous function f : S → [0, 1]. This means that the distribution
of X(t) converges weakly to P (see Section 6.9 in the Appendix for more
details on weak convergence).
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We are now ready to apply Theorem 41 to characterize the limiting dis-
tribution of regenerative processes. For simplicity, assume throughout this
section that the inter-renewal distribution F (for the times between regener-
ations) is non-arithmetic.

Theorem 45. (Regenerative Processes) Suppose the process X(t) on a met-
ric state space S (e.g. Rd) with Borel σ-field S is regenerative over Tn. For
f : S → R define M = sup{|f(X(t))| : t ≤ T1}. If M and MT1 have finite
means, then

lim
t→∞

E[f(X(t))] =
1

μ
E
[ ∫ T1

0

f(X(s))ds
]
. (2.29)

In particular, the limiting distribution of X(t) is

P(B) = lim
t→∞

P{X(t) ∈ B} =
1

μ
E
[ ∫ T1

0

1(X(s) ∈ B)ds
]
, B ∈ S. (2.30)

Proof. Assertion (2.29) follows by Theorem 41, since f(X(t)) is regenerative
over Tn and therefore it satisfies the crude-regeneration property. Clearly,
(2.30) is a special case of (2.29).

Theorems 41 and 45 provide a framework for characterizing limits of ex-
pectations and probabilities of regenerative processes. For expectations, one
must check that the maximum M of the process during an inter-renewal in-
terval has a finite mean. The main step in applying these theorems, however,
is to evaluate the integrals

∫
R+

h(s)ds or
∫
S
f(x)P(dx). Keep in mind that

one need not set up a renewal equation or check the DRI property for each
application — these properties have already been verified in the proof of
Theorem 41.

Theorem 45 and most of those to follow are true, with slight modifications,
for delayed regenerative processes. This is due to the property in Exercise 42
that the limiting behavior of a delayed regenerative process is the same as
the limiting behavior of the process after its first regeneration time T1. Here
is an immediate consequence of Theorem 45 and Exercise 42.

Corollary 46. (Delayed Regenerations) Suppose the process X(t) with a
metric state space S is a delayed regenerative process over Tn. If f : S → R

is such that the expectations of M = sup{|f(X(t))| : T1 ≤ t ≤ T2} and Mξ2
are finite, then

lim
t→∞

E[f(X(t))] =
1

μ
E
[ ∫ T2

T1

f(X(s)) ds
]
.

In particular, the limiting distribution of X(t) is

P(B) =
1

μ
E
[ ∫ T2

T1

1(X(s) ∈ B)ds
]
, B ∈ S.
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We end this section with applications of Theorem 45 to three regenerative
processes associated with a renewal process.

Definition 47. Renewal Process Trinity. For a renewal process N(t), the
following three processes provide more information about renewal times:

A(t) = t− TN(t), the backward recurrence time at t (or the age), which is
the time since the last renewal prior to t.

B(t) = TN(t)+1 − t, the forward recurrence time at t (or the residual re-
newal time), which is the time to the next renewal after t.

L(t) = ξN(t)+1 = A(t) + B(t), length of the renewal interval covering t.

For instance, a person arriving at a bus stop at time t would have to wait
B(t) minutes for the next bus to arrive, or a call-center operator returning
to answer calls at time t would have to wait for a time B(t) before the next
call. Also, if a person begins analyzing an information string at a location t
looking for a certain character (or pattern), then A(t) and B(t) would be the
distances to the left and right of t where the next character occurs.

Note that the three-dimensional process (A(t), B(t), L(t)) is regenerative
over Tn, and so is each process by itself. Each of the processes A(t) and B(t)
is a continuous-time Markov process with piece-wise deterministic paths on
the state space R+; see Exercises 34 and 35. A convenient expression for their
joint distribution is, for 0 ≤ x < t, y ≥ 0,

P{A(t) > x,B(t) > y} = P{N(t+ y)−N((t− x)−) = 0}. (2.31)

This is simply the probability of no renewals in [t− x, t + y]. Although this
probability is generally intractable, one can show that it is the solution of a
renewal equation, and so it has the form U 
 h(t); see Exercises 36 and 37.

Example 48. Trinity in Equilibrium. One can obtain the limiting distribu-
tions of A(t) and B(t) separately from Theorem 45. Instead, we will derive
their joint limiting distribution. Since (A(t), B(t)) is regenerative over Tn,
Theorem 41 yields

lim
t→∞

P{A(t) > x,B(t) > y} = 1− 1

μ

∫ x+y

0

[1− F (s)]ds, (2.32)

since, by the definitions of the variables,

h(t) = P{A(t) > x,B(t) > y, T1 > t} = P{T1 > t+ y}1(t > x).

From (2.32), it immediately follows that

lim
t→∞

P{A(t) ≤ x} = lim
t→∞

P{B(t) ≤ x} =
1

μ

∫ x

0

[1− F (s)]ds. (2.33)
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This limiting distribution, which is called the equilibrium distribution asso-
ciated with F , is important in other contexts. We will see its significance in
Section 2.15 for stationary renewal processes.

One can also obtain the limiting distribution of L(t) = A(t) + B(t) by
Theorem 41. Namely,

lim
t→∞

P{L(t) ≤ x} =
1

μ

∫

[0,x]

sdF (s), (2.34)

since

h(t) = P{L(t) ≤ x, T1 > t} = P{T1 ≤ x, T1 > t} = (F (x)− F (t))1(x > t).

Alternatively, one can derive (2.34) directly from (2.32).

Additional properties of the three regenerative processes A(t), B(t) and
L(t) are in Exercises 34–41. These processes are especially nice for a Poisson
process.

Example 49. Poisson Recurrence Times. If N(t) is a Poisson process with
rate λ, then from (2.31)

P{A(t) > x,B(t) > y} = e−λ(x+y), 0 ≤ x < t, y ≥ 0, (2.35)

which is the Poisson probability of no renewals in an interval of length x+ y.
In particular, setting x = 0, and then y = 0, yields

P{B(t) > y} = e−λy, P{A(t) > x} = e−λx1(x < t).

Thus B(t) is exponentially distributed with rate λ; this also follows by the
memoryless property of the exponential distribution (Exercise 1 in Chapter
3). Note that A(t) has the same exponential distribution, but it is truncated
at x = t. The limiting distribution of each of these processes, however, is
exponential with rate λ. Since L(t) = A(t) + B(t), its distribution can be
obtained from (2.35); its mean is shown in Exercise 39.

Even though recurrence time processes A(t) and B(t) are typically not
tractable for a fixed t, their equilibrium distribution Fe in (2.33) may be.

Example 50. Uniformly Distributed Renewals. Suppose N(t) is a renewal pro-
cess with uniform inter-renewal distribution F (x) = x, for x ∈ [0, 1]. Its
associated equilibrium distribution (2.33) is simply Fe(x) = 2x− x2.

Interestingly, Fe(x) ≥ F (x) for each x. That is, the distribution Fe for the
forward recurrence time B(t) in equilibrium is greater than the distribution
F of the forward recurrence time B(0) = ξ1 at time 0. This means that B(t)
in equilibrium is stochastically smaller than B(0). This is due to the fact that
the failure rate F ′(x)/(1 − F (x)) = 1/(1 − x) of F is increasing. Compare
this property with the inspection paradox in Exercise 39.
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2.9 Limiting Distributions for Markov Chains

This section covers the classical renewal argument for determining the limit-
ing distributions of ergodic Markov chains. The argument uses limit theorems
in the preceding section, which are manifestations of the key renewal theorem
for regenerative processes. We present a similar characterization of limiting
distributions for continuous-time Markov chains in Chapter 4.

Assume that Xn is an ergodic Markov chain on a countable state space S,
with limiting distribution

πj = lim
n→∞

P{Xn = j}, j ∈ S,

which does not depend on X0. Recall that Theorems 59 and 54 in Chapter 1
established that the limiting distribution is also the stationary distribution
and it is the unique distribution π that satisfies the balance equation π = πP.
They also showed (via a coupling proof) that the stationary distribution has
the following form, which we will now prove by a classical renewal argument.

Theorem 51. (Markov Chains) The ergodic Markov chain Xn has a unique
limiting distribution given as follows: for a fixed i ∈ S,

πj =
1

μi
E
[ τ1(i)−1∑

n=0

1(Xn = j)
∣
∣
∣X0 = i

]
, j ∈ S, (2.36)

where μi = E[τ1(i)|X0 = i]. Another expression for this probability is

πj =
1

μj
, j ∈ S. (2.37)

Proof. We will prove this by applying the key renewal theorem. The main
idea is that the strong Markov property ensures that Xn is a (discrete-time)
delayed regenerative process over the times 0 < τ1(i) < τ2(i) < . . . at which
Xn enters a fixed state i (Theorem 67 in Chapter 1). In light of this fact, the
assertion (2.36) follows by Corollary 46. Also, setting i = j in (2.36) yields
(2.37), since the sum in (2.36) is the sojourn time in state j, which is 1.

2.10 Processes with Regenerative Increments

Many cumulative cost or utility processes associated with ergodic Markov
chains and regenerative processes can be formulated as processes with regen-
erative increments. These processes are basically random walks with auxiliary
paths or information. We will show that the classical SLLN and central limit
theorem for random walks extend to processes with regenerative increments.
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This section presents a SLLN based on material in Section 2.2, and Section
2.13 presents a central limit theorem. Functional central limit theorems for
random walks and processes with regenerative increments are the topic of
Section 5.9 in Chapter 5.

For this discussion, N(t) will denote a renewal process whose inter-renewal
times ξn = Tn − Tn−1 have a distribution F and finite mean μ.

Our focus will be on the following processes that are typically associated
with cumulative information of regenerative processes.

Definition 52. Let Z(t) be a real-valued process with Z(0) = 0 defined on
the same probability space as a renewal processN(t). For the two-dimensional
process {(N(t), Z(t)) : t ≥ 0}, its increments in the time interval [Tn−1, Tn)
are described by

ζn = (ξn, {Z(t+ Tn−1)− Z(Tn−1) : 0 ≤ t < ξn}).

The process Z(t) has regenerative increments over the times Tn if ζn are i.i.d.
A process with “delayed” regenerative increments is defined in the obvious
way, where the distribution ζ1 is different from the others.

Under this definition, (Tn − Tn−1, Z(Tn)− Z(Tn−1)) are i.i.d. These i.i.d.
increments of N and Z leads to many nice limit theorems based on properties
of random walks.

A primary example of a process with regenerative increments is a cumula-
tive functional Z(t) =

∫ t
0 f(X(s))ds, where X(t) is regenerative over Tn and

f(i) is a cost rate (or utility rate) when the process X(t) is in state i.
Hereafter, assume that Z(t) is a process with regenerative increments over

Tn. Keep in mind that Z(0) = 0. Although the distribution and mean of Z(t)
are generally not tractable for computations, we do have a Wald identity for
some expectations.

Proposition 53. (Wald Identity for Regenerations) For the process Z(t)
with regenerative increments and finite a = E[Z(T1)],

E[Z(TN(t)+1)] = aE[N(t) + 1], t ≥ 0. (2.38)

Proof. By Theorem 22,

E[Z(TN(t)+1)] = E

⎡

⎣
N(t)∑

n=0

[Z(Tn+1)− Z(Tn)]

⎤

⎦ = a ∪ (t).

By the classical SLLN, we know that

n−1Z(Tn) = n−1
n∑

k=1

[
Z(Tk)− Z(Tk−1)

]
→ E[Z(T1)], a.s. as n→ ∞.

This extends to Z(t) as follows, which is a special case of Corollary 14. Here

Mn = sup
Tn−1<t≤Tn

|Z(t)− Z(Tn−1)|, n ≥ 1.
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Theorem 54. For the process Z(t) with regenerative increments, suppose the
mean of Mn is finite, and E[T1] and a = E[Z(T1)] exist, but are not both
infinite. Then t−1Z(t) → a/μ, a.s. as t→ ∞.

The next result is a special case of Theorem 54 for a functional of a re-
generative process, where the limiting average is expressible in terms of the
limiting distribution of the regenerative process. The convergence of the ex-
pected value per unit time is also shown in (2.40); a refinement of this is
given in Theorem 85 below.

Theorem 55. Let X(t) be a regenerative process over Tn with a metric state
space S (e.g. Rd), and let P denote the limiting distribution of X(t) given
by (2.30), where μ = E[T1] is finite. Suppose f : S → R is such that
∫ T1

0 |f(X(s))|ds and |f(X)| have finite means, where X has the distribution
P. Then

lim
t→∞

t−1

∫ t

0

f(X(s))ds = E[f(X)], a.s. (2.39)

If, in addition, E[T1
∫ T1

0 |f(X(s))|ds] is finite, and T1 has a non-arithmetic
distribution, then

lim
t→∞

t−1E
[ ∫ t

0

f(X(s))ds
]
= E[f(X)]. (2.40)

Proof. Applying Theorem 54 to Z(t) =
∫ t
0
f(X(s))ds and noting that

E[Mn] ≤ E[

∫ T1

0

|f(X(s))|ds] <∞,

we obtain t−1Z(t) → E[Z(T1)]/μ. Then (2.39) follows since by expression
(2.29) for P,

E[Z(T1)]/μ =
1

μ
E
[ ∫ T1

0

f(X(s))ds
]

=

∫

S

f(x)P(dx) = E[f(X)].

To prove (2.40), note that E[f(X(t))] → E[f(X)] by Theorem 45. Then

(2.40) follows by the fact that t−1
∫ t
0 g(s)ds→ c if g(t) → c.

Remark 56. Limiting Averages as Expected Values. The limit (2.39) as an
expected value is a common feature of many strong laws of large numbers

when f(X(t))
d→ f(X). However, there are non-regenerative processes that

satisfy the strong law (2.39), but not (2.40).
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2.11 Average Sojourn Times in Regenerative Processes

We now show how SLLNs yield fundamental formulas, called Little laws,
that relate the average sojourn times in queues to the average input rate and
average queue length. We also present similar formulas for average sojourn
times of a regenerative process in a region of its state space.

Consider a general service system or input-output system where discrete
items (e.g., customers, jobs, data packets) are processed, or simply visit a
location for a while. The items arrive to the system at times τn that form a
point process N(t) on R+ (it need not be a renewal process). Let Wn denote
the total time the nth item spends in the system. Here the waiting or sojourn
time Wn includes the item’s service time plus any delay waiting in queue for
service. The item exits the system at time τn + Wn. Then the quantity of
items in the system at time t is

Q(t) =
∞∑

n=1

1(τn ≤ t < τn +Wn), t ≥ 0.

There are no assumptions concerning the processing or visits of the items
or the stochastic nature of the variablesWn and τn, other than their existence.
For instance, items may arrive and depart in batches, an item may reenter
for multiple services, or the items may be part of a larger network that affects
their sojourns.

We will consider the following three standard system performance param-
eters:

L = lim
t→∞

t−1

∫ t

0

Q(s)ds average quantity in the system,

λ = lim
t→∞

t−1N(t) arrival rate,

W = lim
n→∞

n−1
n∑

k=1

Wk average waiting time.

There are many diverse systems in which two of the averages L, λ, and
W exist, and the issue is whether the third one exists. We will consider this
issue under the following assumption, which is very natural for most queueing
systems.
Empty-System Assumption. Let Tn denote the nth time at which an item
arrives to an empty system, i.e., Q(Tn−) = 0 and Q(Tn) > 0. Assume the
times Tn form a point process on R+ such that the limit μ = limn→∞ n−1Tn
exists and is positive.4 This simply says that the system empties out infinitely
often, and it does so at times that have a limiting average.

4 Keep in mind that the arrival process N(t) is “not” the counting process associated with
these empty times Tn.



130 2 Renewal and Regenerative Processes

Theorem 57. (Little Law) Suppose the system described above satisfies the
empty-system assumption. If any two of the averages L, λ or W exists, then
the other one also exists, and L = λW .

Proof. With no loss in generality, we may assume the system is empty at
time 0 and an item arrives. We begin with the key observation that in the
time interval [0, Tn), all of the νn = N(Tn−) items that arrive in the interval
also depart by the empty-system time Tn, and their total waiting time is

νn∑

k=1

Wk =
∞∑

k=1

∫ Tn

0

1(τk ≤ s < τk +Wk)ds =

∫ Tn

0

Q(s)ds. (2.41)

The first equality follows since the system is empty just prior to Tn, and the
second equality follows from the definition of Q(t).

Also, observe that under the assumptions t−1N(t) → λ and Tn/n→ μ,

n−1νn = T−1
n N(Tn−)(n−1Tn) → λμ. (2.42)

First assume that λ and W exist. Then by (2.41), we have

n−1

∫ Tn

0

Q(s) ds = (νn/n)ν
−1
n

νn∑

k=1

Wk → λμW.

Therefore, an application of Theorem 13 to the nondecreasing process Z(t) =
∫ t
0
Q(s) ds and the times Tn yields

L = lim
t→∞

t−1Z(t) = λW.

Next, assume that λ and L exist. Then by (2.41),

n−1
νn∑

k=1

Wk = (n−1Tn)
(
T−1
n

∫ Tn

0

Q(s)ds
)
→ μL, a.s. as t→ ∞.

Now, by a discrete-time version of Theorem 13 for the nondecreasing process
Z ′
n =

∑n
k=1Wk and integer-valued indices νn, which satisfy (2.42), it follows

that
W = lim

n→∞
n−1Z ′

n = L/λ.

Thus, W exists and L = λW .
Exercise 23 shows that if L and W exist then λ exists and L = λW .

The preceding Little law applies to a wide variety of queueing systems as
long as two of the averages λ, L or W exist. Here are a few examples.

Example 58. Regenerative Processing System. Suppose the system described
above satisfies the empty-system assumption, the arrival process is a renewal
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process with a finite mean 1/λ, and Q(t) is a regenerative process over the

empty-system times Tn. Assume that T1 and
∫ T1

0 Q(s)ds have finite means.
By the SLLN for the renewal input process, the arrival rate is λ. Also,

applying Theorem 54 to Z(t) =
∫ t
0 Q(s)ds, we have L = E[

∫ T1

0 Q(s)ds]/E[T1].
Therefore, by Theorem 57, the average waiting time W exists and L = λW ;

that is, W = E[
∫ T1

0 Q(s)ds]/(λE[T1]).

In some queueing systems, the Little law L = λW we have been discussing
for averages has an analogue in which the averages are means.

Example 59. Little Laws for Means. Consider the system in the preceding ex-
ample with the additional assumption that the sequence of sojourn timesWn

is regenerative over the discrete times νn = N(Tn−). Since Q(t) is regenera-
tive over Tn, and Wn is regenerative over νn,

Q(t)
d→ Q as t→ ∞, and Wn

d→W as n→ ∞,

where the distributions of Q and W are described in Theorem 45. Further-
more, by Theorem 55,

L = lim
t→∞

t−1

∫ t

0

Q(s)ds = E[Q] a.s.,

W = lim
n→∞

n−1
n∑

k=1

Wk = E[W ] a.s.

Also, the renewal arrival rate λ can be represented as λ = E[Ñ(1)], where
Ñ(t) is a stationary version of N(t) as described in Theorem 76 below. Then
the Little law L = λW that holds for averages has the following analogue for
expected values:

E[Q] = E[Ñ(1)]E[W ].

Example 60. G/G/1 Queueing System. A general example of a regenerative
queueing system is a G/G/1 system, where arrivals form a renewal process
with mean inter-arrival time 1/λ, the services times are i.i.d., independent
of the arrivals, and customers are served by a single server under a first-in-
first-out (FIFO) discipline. Assume that the mean service time is less than

the mean inter-arrival time, and that T1 and
∫ T1

0
Q(s)ds have finite means.

In this case, the sojourn times Wn are regenerative over νn = N(Tn−), and
W exists by Theorem 118 in Chapter 4. Then it follows by Theorem 57 that
the average queue length L exists and L = λW .

Special cases of the G/G/1 system are an M/G/1 system when the ar-
rival process is a Poisson process, a G/M/1 system when the service times
are exponentially distributed, and an M/M/1 system when the arrivals are
Poisson and the service times are exponential.
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Theorem 57 also yields expected waiting times in Jackson networks, which
we discuss in Chapter 5.

There are several Little laws for input-output systems and general utility
processes not related to queueing [101]. The next result is an elementary but
very useful example.

Let X(t) be a regenerative process over Tn with state space S. Assume
X(t) is a pure jump process (piecewise constant paths, etc.) with a limiting
distribution p(B) = limn→∞ P{X(t) ∈ B}, which is known. Let B denote
a fixed subset of the state space whose complement Bc is not empty. The
expected number of times that X(t) enters B between regenerations is

γ(B) = E
[∑

n

1
(
X(τn−1) ∈ Bc, X(τn) ∈ B, τn ∈ (T1, T2]

)]
,

where τn is the time of the nth jump of X(t). The expected number of
transitions of X(t) between regenerations is γ(S), which we assume is finite.

Consider the average sojourn time of X(t) in B defined by

W (B) = lim
n→∞

n−1
n∑

k=1

Wk(B),

where Wn(B) is its sojourn time in B at its nth visit to the set.

Proposition 61. (Sojourns in Regenerative Processes) For the regenerative
process X(t) defined above, its average sojourn time in B exists and is
W (B) = p(B)γ(S)/γ(B).

Proof. Consider Q(t) = 1(X(t) ∈ B) as an artificial queueing process that
only takes values 0 or 1. Clearly Q(t) is regenerative over Tn, since X(t) is
regenerative over Tn; and Q(t) satisfies the empty-system assumption. Now,
the limiting average of Q(t) is

L = lim
t→∞

t−1

∫ t

0

1(X(s) ∈ B) ds = p(B).

The arrival rate λ is the rate γ(B)/γ(S) at which X(t) enters B. Thus,
Theorem 57 yields p(B) = λW (B) = (γ(B)/γ(S))W (B), which proves the
assertion.

2.12 Batch-Service Queueing System

For service systems that process items in batches, a basic problem is to de-
termine when to serve batches and how many items should be in the batches.
This is a dynamic control problem or a Markov decision problem. We will
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address this problem for a particular setting and show how to obtain certain
control parameters by using a SLLN for regenerative processes.

Consider a single-server station that serves items or customers in batches
as follows. Items arrive to the station according to a Poisson process with rate
λ and they enter a queue where they wait to be served. The server can serve
items in batches, and the number of items in a batch can be any number
less than or equal to a fixed number K ≤ ∞ (the service capacity). The
service times of the batches are independent, identically distributed and do
not depend on the arrival process or the batch size (think of a computer,
bus, or truck). Only one batch can be served at a time and, during a service,
additional arrivals join the queue.

The server observes the queue length at the times at which an arrival
occurs and the server is idle, or whenever a service is completed. At each of
these observation times, the server takes one of the following actions:
• No items are served.
• A batch consisting of all or a portion of the items waiting is served (the
batch size cannot exceed i ∧K, where i is the queue length).

These actions control the batch sizes and the timing of the services. If the
server takes the first action, the next control action is taken when the next
item arrives, and if the server takes the second action to serve a batch, the
next control action is taken when the service is completed. A control policy
is a rule for selecting one of these actions at each observation time. The
general problem is to find a control policy that minimizes the average cost
(or discounted cost) of serving items over an infinite time horizon.

This Markov decision problem was solved in [33] for natural holding and
service cost functions for both the average-cost and discounted-cost criteria.
In either case, the main result is that there is an optimal M -policy of the
following form: At each observation time when the queue length is i, do not
serve any items if i < M , and serve a batch of i∧K items if i ≥M . Here M
is an “optimal” level that is a function of the costs.

We will now describe an optimal level M for a special case. Suppose the
system is to operate under the preceding M -policy, where the capacity K
is infinite, and the service times are exponentially distributed with rate γ.
Assume there is cost C for serving a batch and a cost hi per unit time for
holding i items in the queue.

Theorem 62. Under the preceding assumptions, the average cost per unit
time is minimized by setting the level M to be

M = min{m ≥ 0 : m(m+ 1) ≥ 2[(λ/γ)2pm + Cλ/h]}, (2.43)

where p = λ/(λ+ γ).

Proof. LetXm(t) denote the number of items in the queue at time t, when the
system is operated under an m-policy. Let Tn denote the time at which the
server initiates the nth service terminates, and let N(t) denote the associated
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counting process. For simplicity, assume that a service has just been com-
pleted at time 0, and let T0 = 0.

We will show that, under the m-policy with exponential service times, the
Tn are renewal times; and the service plus holding cost in [0, t] is

Zm(t) = CN(t) + h

∫ t

0

Xm(s) ds.

Next, we will establish the existence of the average cost

f(m) = lim
t→∞

t−1Zm(t),

and then show that f(m) is minimized at the M specified in (2.43).
Let Qn denote the number of items in the system at time Tn of the nth

service completion, for n ≥ 0. Note that Qn is just the number of arrivals that
occur during the nth service period, since all the waiting items are served in
the batch. Because of the exponential service times, Qn, for n ≥ 1, are i.i.d.
with

P{Qn = i} =

∫

R+

(λt)ie−λt

i!
γe−γt dt = pi(1− p), i ≥ 0. (2.44)

For notational convenience, assume the initial queue length Q0 has this dis-
tribution and is independent of everything else.

Next, observe that the quantity Qn determines the time ξn+1 = Tn+1−Tn
until the next service initiation. Specifically, if Qn ≥ m, then ξn+1 is simply a
service time; and if Qn = i < m, then ξn+1 is the time it takes for m− i more
items to arrive plus a service time. Since the Qn are i.i.d., it follows that
Tn are renewal times. Furthermore, conditioning on Q0, the inter-renewal
distribution is

P{ξ1 ≤ t} = P{Q0 ≥ m}Gγ(t) +
m−1∑

i=0

P{Q0 = i}G(m−i)�
λ 
 Gγ(t),

where Gλ is an exponential distribution with rate λ.
Then using the distribution (2.44), the inter-renewal distribution and its

mean (indexed by m) are:5

P{ξ1 ≤ t} = pmGγ(t) + (1 − p)

m−1∑

i=0

piG
(m−i)�
λ 
 Gγ(t),

μm = γ−1 +mλ−1 − (1− pm)γ−1.

Now, the increasing process Zm(t) is such that Zm(Tn) − Zm(Tn−1), for
n ≥ 1, are i.i.d. with mean

5 The identity
∑k

i=1 ip
i−1 = d

dp
(
∑k

i=0 p
i) is used to derive the formula for μm.
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E[Zm(T1)] = C + hE
[ ∫ T1

0

Xm(s) ds
]
.

Then by Theorem 13, the average cost, as a function of m, is

f(m) = lim
t→∞

t−1Zm(t) = μ−1
m E[Zm(T1)].

To evaluate this limit, let Ñ(t) denote the Poisson arrival process with
exponential inter-arrival times ξ̃n, and let τ denote an exponential service
time with rate γ. Then we can write

∫ T1

0

Xm(s) ds = Q0τ+

∫ τ

0

Ñ(s) ds+

m−1∑

i=0

1(Q0 = i)

m−i∑

k=1

(i+k−1)ξ̃k. (2.45)

The first two terms on the right-hand side represent the holding time of items
during the service period, and the last term represents the holding time of
items (which is 0 if Q0 ≥ m) prior to the service period. Then from the
independence of Q0 and τ and Exercise 14,

E
[ ∫ T1

0

Xm(s) ds
]
=
[
1/(1− p)γ + λ/γ2 + (1− p)λ−1

m−1∑

i=0

pi
m−i∑

k=1

(i+ k− 1)
]
.

Substituting this in the expression above for f(m), it follows from lengthy
algebraic manipulations that

f(m+ 1)− f(m) = h(1− pm+1)Dm/(λ
2μmμm+1),

where Dm = m(m + 1) − 2[(λ/γ)2pm + Cλ/h]. Now, Dm is increasing in m
and the other terms in the preceding display are positive. Therefore f(m)
is monotone decreasing and then increasing and has a unique minimum at
M = min{m : Dm ≥ 0}, which is equivalent to (2.43).

Analysis similar to that above yields a formula for the optimal level M
when the service capacity K is finite; see Exercise 52 in Chapter 4.

2.13 Central Limit Theorems

For a real-valued process Z(t) with regenerative increments over Tn, we know
that under the conditions in Theorem 54,

Z(t)/t→ a = E[Z(T1)]/E[T1] a.s. as t→ ∞.

In other words, Z(t) behaves asymptotically like at. Further information
about this behavior can be obtained by characterizing the limiting
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distribution of the difference Z(t) − at as t → ∞. We will now present a
central limit theorem that gives conditions under which this limiting distri-
bution is a normal distribution. Special cases of this result are CLT’s for
renewal and Markovian processes.

We will obtain the CLT for regenerative processes by applying the follow-
ing classical CLT for sums of independent random variables (which is proved
in standard probability texts). The analysis will involve the notion of conver-
gence in distribution of random variables; see Section 6.9 in the Appendix.

Theorem 63. (Classical CLT) Suppose X1, X2, . . . are i.i.d. random vari-
ables with mean μ and variance σ2 > 0, and define Sn =

∑n
m=1(Xm − μ).

Then

P{Sn/n1/2 ≤ x} →
∫ x

−∞

e−y2/(2σ2)

σ
√
2π

dy, x ∈ R.

This convergence in distribution is denoted by

Sn/n
1/2 d→ N(0, σ2), as n→ ∞,

where N(0, σ2) is a normal random variable with mean 0 and variance σ2.

We will also use the following result for randomized sums; see for instance
p.216 in [26]. This result and the ones below are contained in the functional
central limit theorems in Chapter 5, which focus on the convergence of entire
stochastic processes instead of random variables.

Theorem 64. (Anscombe) In the context of Theorem 63, let N(t) be an
integer-valued process defined on the same probability space as the Xn, where

N(t) may depend on the Xn. If t
−1N(t)

d→ c, where c is a positive constant,
then

SN(t)/t
1/2 d→ N(0, cσ2), as t→ ∞.

The following is a regenerative analogue of the classical CLT.

Theorem 65. (Regenerative CLT) Suppose Z(t) is a real-valued process with
regenerative increments over Tn such that μ = E[T1] and a = E[Z(T1)]/μ
are finite. In addition, let

Mn = sup
Tn−1<t≤Tn

|Z(t)− Z(Tn−1)|, n ≥ 1,

and assume E[M1] and σ
2 = Var[Z(T1)− aT1] are finite, and σ > 0. Then

(Z(t)− at)/t1/2
d→ N(0, σ2/μ), as t → ∞. (2.46)

Proof. The process Z(t) is “asymptotically close” to Z(TN(t)), when divid-

ing them by t1/2, because their difference is bounded by MN(t)+1, which
is a regenerative process that is 0 at regeneration times. Consequently, the
normalized process
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Z̃(t) = (Z(t)− at)/t1/2

should have the same limit as the process

Z ′(t) = (Z(TN(t))− aTN(t))/t
1/2.

Based on this conjecture, we will prove

Z ′(t)
d→ N(0, σ2/μ), as t→ ∞, (2.47)

|Z̃(t)− Z ′(t)| d→ 0, as t → ∞. (2.48)

Then it will follow by a standard property of convergence in distribution (see
Exercise 53 of Chapter 5), that

Z̃(t) = Z ′(t) + (Z̃(t)− Z ′(t))
d→ N(0, σ2/μ).

To prove (2.47), note that

Z ′(t) = t−1/2

N(t)∑

n=1

Xn,

where Xn = Z(Tn) − Z(Tn−1) − a(Tn − Tn−1). Since Z(t) has regenerative
increments over Tn, the Xn are i.i.d. with mean 0 and variance σ2. Also,
t−1N(t) → 1/μ by the SLLN for renewal processes. In light of these observa-
tions, Anscombe’s theorem above yields (2.47).

To prove (2.48), note that

Z̃(t)− Z ′(t) = t−1/2[Z(t)− Z(TN(t))− a(t− TN(t))].

Then letting Yn = Mn + a(Tn+1 − Tn), it follows that

|Z̃(t)− Z ′(t)| ≤ t−1/2YN(t) =
√
N(t)/t

(
N(t)−1/2YN(t)

)
.

Since Z(t) has regenerative increments, the Yn are i.i.d., and so

n−1/2Yn
d
= n−1/2Y1 → 0 a.s.

Using this and N(t)/t→ 1/μ a.s. in the preceding proves (2.48).

An important use of a CLT is to find confidence intervals for certain pa-
rameters. Here is an example.

Example 66. Confidence Interval for the Mean. Under the assumptions of
Theorem 65, let us construct a confidence interval for the mean a of the
regenerative-increment process Z(t) based on observing the process up to a
fixed time t. Assume (which is reasonable) that we do not know the variance
parameter σ2 = Var[Z(T1)− aT1].
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Note that by applications of SLLNs, it follows that

S(t2) = (N(t)/t)
[
N(t)−1

N(t)∑

k=1

(Z(tk)− Z(Tk−1)
2 − (Z(t)/t)2

]
→ σ2/μ a.s.

This combined with Theorem 65 yields

(Z(t)− at)/S(t)t1/2
d→ N(0, 1).

Then an approximate confidence interval for a with confidence coefficient
1− α is [

Z(t)/t− zα/2S(t)t
−1/2, Z(t)/t+ zα/2S(t)t

−1/2
]
,

where P{−zα/2 ≤ N(0, 1) ≤ zα/2} = 1−α. This follows since, for large t, we
have the approximation

1− α ≈ P{−zα/2 ≤ (Z(t)− at)/S(t)t1/2 ≤ zα/2}
= P{Z(t)/t− zα/2S(t)t

−1/2 ≤ a ≤ Z(t)/t+ zα/2S(t)t
−1/2}.

Similar asymptotic confidence intervals for sums of i.i.d. variables are in [99].
Insights on simulation procedures for this and related models are in [43].
What would be an analogous confidence interval when Z(t) is observed

only at regeneration times? See Exercise 52.

Applying Theorem 65 to a regenerative-increment process involves de-
termining conditions on the process under which the main assumptions are
satisfied and then finding expressions for the normalization constants a and σ.
Here are some examples.

Example 67. CLT for Renewal Processes. Suppose that N(t) is a renewal
process whose inter-renewal distribution has a finite mean μ and variance σ2.
Then Z(t) = N(t) satisfies the assumptions in Theorem 65, and so

(N(t)− t/μ)/t1/2
d→ N(0, σ2/μ3), as t→ ∞,

where
a = 1/μ, Var[Z(T1)− aT1] = σ2μ−2.

Example 68. CLT for Markov Chains. Let Xn be an ergodic Markov chain
on S with limiting distribution π. Consider the sum

Zn =

n∑

m=1

f(Xm), n ≥ 0,

where f(j) is a real-valued cost or utility for the process being in state j. For
simplicity, fix an i ∈ S and assume X0 = i a.s. Then Zn has regenerative
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increments over the discrete times νn at which Xn enters state i. We will
apply a discrete-time version of Theorem 65 to Zn.

Accordingly, assume μi = E[ν1] and E
[
max1≤n≤ν1 |Zn|

]
are finite. The

latter is true when E
[∑ν1

n=1 |f(Xn)|
]
is finite. In addition, assume

a =
1

μi
Ei[Zν1 ] =

∑

j∈S
πjf(j), and σ2 =

1

μi
Var[Zν1 − aν1]

are finite and σ > 0. Letting f̃(j) = f(j)− a, Exercise 54 shows that

σ2 = E[f̃(X0)
2] + 2

∞∑

n=1

E[f̃(X0)f̃(Xn)], (2.49)

where P{X0 = i} = πi. Then Theorem 65 (in discrete time) yields

(Zn − an)/n1/2 d→ N(0, σ2), as n→ ∞. (2.50)

This result also applies to random functions of Markov chains as follows
(see Exercise 33 in Chapter 4 for a related continuous-time version). Suppose

Zn =
n∑

m=1

f(Xm, Ym), n ≥ 0,

where f : S × S′ → R, and Ym are conditionally independent given Xn

(n ≥ 0), and P{Ym ∈ B|Xn, n ≥ 0} only depends on Xm and B ∈ S′. Here
S′ need not be discrete. In this setting, the cost or utility f(Xm, Ym) at time
m is partially determined by the auxiliary or environmental variable Ym. Then
the argument above yields the CLT (2.50). In this case, a =

∑
j∈S πjα(j),

α(j) = E[f(j, Y1)], and

σ2 = E[(f(X0, Y1)− α(X0))
2] + 2

∞∑

n=1

E[m(X0, Xn)],

where m(j, k) = E[(f(j, Y1)− α(j))(f(k, Y2)− α(k))].

2.14 Terminating Renewal Processes

In this section, we discuss renewal processes that terminate after a random
number of renewals. Analysis of these terminating (or transient) renewal pro-
cesses uses renewal equations and the key renewal theorem applied a little
differently than above.

Consider a sequence of renewal times Tn with inter-renewal distribution F .
Suppose that at each time Tn (including T0 = 0), the renewals terminate with
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probability 1−p, or continue until the next renewal epoch with probability p.
These events are independent of the preceding renewal times, but may depend
on the future renewal times.

Under these assumptions, the total number of renewals ν over the entire
time horizon R+ has the distribution

P{ν ≥ n} = pn, n ≥ 0,

and E[ν] = p/(1− p). The number of renewals in [0, t] is

N(t) =
∞∑

n=1

1(Tn ≤ t, ν ≥ n), t ≥ 0.

Of course N(t) → ν a.s. Another quantity of interest is the time Tν at which
the renewals terminate.

We will also use the following equivalent formulation of this terminating
renewal process. Assume that N(t) counts renewals in which the independent
inter-renewal times have an improper distribution G(t), with p = G(∞) < 1.
Then p is the probability of another renewal and 1 − p = 1 − G(∞) is the
probability that an inter-renewal time is “infinite”, which terminates the
renewals. This interpretation is consistent with that above since necessarily
G(t) = pF (t), where F as described above is the conditional distribution of
an inter-renewal time given that it is allowed (or is finite).

Similarly to renewal processes, we will address issues about the process
N(t) with the use of its renewal function

V (t) =
∞∑

n=0

Gn�(t) =
∞∑

n=0

pnFn�(t).

We first observe that the counting process N(t) and the termination time
Tν are finite a.s., and their distributions and means are

P{N(t) ≥ n} = Gn�(t), E[N(t)] = V (t)− 1,
P{Tν ≤ t} = (1− p)V (t), E[Tν ] = pμ/(1− p).

(2.51)

To establish these formulas, recall that the events ν = n (to terminate at n)
and ν > n (to continue to the n+1st renewal) are assumed to be independent
of T1, . . . , Tn. Then

P{N(t) ≥ n} = P{ν ≥ n, Tn ≤ t} = pnFn�(t) = Gn�(t),

E[N(t)] =

∞∑

n=1

P{N(t) ≥ n} = V (t)− 1.

Similarly, using the independence and Tν =
∑∞

n=0 1(ν = n)Tn,
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P{Tν ≤ t} =

∞∑

n=0

P{ν = n, Tn ≤ t} = (1− p)

∞∑

n=0

pnFn�(t),

E[Tν ] =

∞∑

n=1

P{ν = n}E[Tn] = μp/(1− p).

Although a regular renewal function tends to infinity, the renewal function
for a terminating process has a finite limit.

Remark 69. As t → ∞

V (t) =

∞∑

n=0

pnFn∗(t) → 1/(1− p).

Corollary 71 below describes the convergence rate.

We will now discuss limits of certain functions associated with the termi-
nating renewal process. As in Proposition 31, it follows that H(t) = V 
 h(t)
is the unique solution to the renewal equation

H(t) = h(t) +G 
 H(t).

We will consider the limiting behavior of H(t) for the case in which the limit

h(∞) = lim
t→∞

h(t)

exists, which is common in applications. Since V (t) → 1/(1− p) and h(t) is
bounded on compact sets and converges to h(∞), it follows by dominated
convergence that

H(t) = h 
 V (t) = h(∞)V (t) +

∫

[0,t]

[h(t− s)− h(∞)]dV (s)

→ h(∞)/(1− p) as t→ ∞. (2.52)

The next result describes the rate of this convergence under a few more
technical conditions. Assume there is a positive β such that

∫

R+

eβtdG(t) = 1.

The existence of a unique β is guaranteed under the weak condition that∫
R+

eβtdG(t) is finite for some β > 0. Indeed, this function of β is continuous

and increasing and, being finite at one point, its range contains the set [p,∞);
thus, it must equal 1 for some β. We also assume the distribution

F#(t) =

∫

[0,t]

eβsdG(s)

is non-arithmetic and has a mean μ#.
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Theorem 70. In addition to the preceding assumptions, assume the function
eβt[h(t)− h(∞)] is DRI. Then

H(t) = h(∞)/(1− p) + ce−βt/μ# + o(e−βt), as t→ ∞, (2.53)

where c =
∫
R+

eβs[h(s)− h(∞)] ds− h(∞)/β.

Proof. Multiplying the renewal equation H = h + G 
 H by eβt yields the
renewal equation H# = h#+F# 
H# where H#(t) = eβtH(t) and h#(t) =
eβth(t).

We can now describe the limit of H(t) − h(∞)/(1 − p) by the limit of
H#(t)− v(t), where v(t) = eβth(∞)/(1− p). From Lemma 83 below,

H#(t) = v(t) +
1

μ#

∫

R+

h(s) ds+ o(1), as t→ ∞, (2.54)

provided h(t) = h#(t)− v(t) + F# 
 v(t) is DRI. In this case,

h(t) = eβt[h(t)− h(∞)]−
[h(∞)eβt

1− p
(p−G(t))

]
. (2.55)

Now, the first term on the right-hand side is DRI by assumption. Also,

eβt(p−G(t)) ≤
∫

(t,∞)

eβsdG(s) = 1− F#(t).

This bound is decreasing to 0 and its integral is μ#, and so the last term
in brackets in (2.55) is DRI. Thus h(t) is DRI. Finally, an easy check shows
that

∫
R+

h(s) ds = c, the constant in (2.53). Substituting this in (2.54) and

dividing by eβt yields (2.53).

Corollary 71. Under the assumptions preceding Theorem 70,

V (t) = 1/(1− p)− e−βt/(βμ#) + o(e−βt),

P{Tν > t} = (1 − p)e−βt/(βμ#) + o(e−βt), as t→ ∞.

Proof. The first line follows by Theorem 70 with h(t) = 1, since by its defi-
nition, V (t) = 1+G
V (t). The second follows from the first line and (2.51).

Example 72. Waiting Time for a Gap in a Poisson Process. Consider a Pois-
son process with rate λ that terminates at the first time a gap of size ≥ c
occurs. That is, the termination time is Tν , where ν = min{n : ξn+1 ≥ c},
where ξn = Tn − Tn−1 and Tn are the occurrence times of the Poisson pro-
cess. Now, at each time Tn, the process either terminates if ξn+1 ≥ c, or it
continues until the next renewal epoch if ξn+1 < c. These events are clearly
independent of T1, . . . , Tn.
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Under these assumptions, the probability of terminating is

1− p = P{ξn+1 ≥ c} = e−λc.

The conditional distribution of the next renewal period beginning at Tn is

F (t) = P{ξn+1 ≤ t|ξn+1 < c} = p−1(1− e−λt), 0 ≤ t ≤ c.

Then from (2.51), the distribution and mean of the waiting time for a gap of
size c are

P{Tν ≤ t} = e−λcV (t), E[Tν ] = (eλc − 1)/λ.

Now, assume λc > 1. Then the condition
∫
R+

eβtpdF (t) = 1 above for

defining β reduces to λe(β−λ)c = β, for β < λ. Such a β exists as in Figure 1.3
in Chapter 1 for the branching model. Using this formula and integration by
parts, we have

μ# =

∫

[0,c]

teβtpdF (t) = (cβ − 1)/(β − λ).

Then by Corollary 71,

P{Tν > t} =
(1− β/λ

1− βc

)
e−β(t+c) + o(e−βt), as t→ ∞.

Example 73. Cramér-Lundberg Risk Model. Consider an insurance company
that receives capital at a constant rate c from insurance premiums, invest-
ments, interest etc. The company uses the capital to pay claims that arrive ac-
cording to a Poisson process N(t) with rate λ. The claim amounts X1, X2, . . .
are i.i.d. positive random variables with mean μ, and are independent of the
arrival times. Then the company’s capital at time t is

Zx(t) = x+ ct−
N(t)∑

n=1

Xn, t ≥ 0,

where x is the capital at time 0.
An important performance parameter of the company is the probability

R(x) = P{Zx(t) ≥ 0, t ≥ 0},

that the capital does not go negative (the company is not ruined). We are
interested in approximating this survival probability when the initial capital
x is large. Exercise 25 shows that R(x) = 0, regardless of the initial capital
x, when c < λμ (the capital input rate is less than the payout rate).

We will now consider the opposite case c > λμ. Conditioning on the time
and size of the first claim, one can show (e.g., see [37, 92, 94]) that R(x)
satisfies a certain differential equation whose corresponding integral equation
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is the renewal equation

R(x) = R(0) +R 
 G(x), (2.56)

where R(0) = 1− λμ/c and

G(y) = λc−1

∫ y

0

P{X1 > u} du.

The G is a defective distribution with G(∞) = λμ/c < 1. Then applying
(2.52) to R(x) = h 
 V (x) = R(0)V (x), we have

R(x) → R(0)/(1− λμ/c) = 1, as x→ ∞.

We now consider the rate at which the “ruin” probability 1 − R(x) con-
verges to 0 as x → ∞. Assume there is a positive β such that

λc−1

∫

R+

eβxP{X1 > x} dx = 1,

and that

μ# = λc−1

∫

R+

xeβxP{X1 > x} dx <∞.

Then by Theorem 70 (with R(x), R(0) in place of H(t), h(t)), the probability
of ruin has the asymptotic form

1−R(x) =
1

βμ#
(1 − λμ/c)e−βx + o(e−βx), as x→ ∞.

2.15 Stationary Renewal Processes

Recall that a basic property of an ergodic Markov chain is that it is stationary
if the distribution of its state at time 0 is its stationary distribution (which
is also its limiting distribution). This section addresses the analogous issue of
determining an appropriate starting condition for a delayed renewal process
so that its increments are stationary in time.

We begin by defining the notion of stationarity for stochastic processes
and point processes. A continuous-time stochastic process {X(t) : t ≥ 0} on a
general space is stationary if its finite-dimensional distributions are invariant
under any shift in time: for each 0 ≤ s1 < . . . < sk and t ≥ 0,

(X(s1 + t), . . . , X(sk + t))
d
= (X(s1), . . . , X(sk)). (2.57)
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Remark 74. A Markov process X(t) is stationary if X(t)
d
= X(0), t ≥ 0. This

simpler criterion follows as in the proofs of Proposition 52 in Chapter 1 and
Exercise 55.

Now, consider a point process N(t) =
∑

n 1(τn ≤ t) on R+, with points
at 0 < τ1 < τ2 < . . . Another way of representing this process is by the
family N = {N(B) : B ∈ B+}, where N(B) =

∑
n 1(τn ∈ B) is the number

of points τn in the Borel set B. We also define B + t = {s + t : s ∈ B}.
The process N is stationary (i.e., it has stationary increments) if, for any
B1, . . . , Bk ∈ B+,

(N(B1 + t), . . . , N(Bk + t))
d
= (N(B1), . . . , N(Bk)), t ≥ 0. (2.58)

A basic property of a stationary point process is that its mean value function
is linear.

Proposition 75. If N is a stationary point process and E[N(1)] is finite,
then E[N(t)] = tE[N(1)], t ≥ 0.

Proof. To see this, consider

E[N(s+ t)] = E[N(s)] + E[N(s+ t)−N(s)] = E[N(s)] + E[N(t)].

This is a linear equation f(s + t) = f(s) + f(t), s, t ≥ 0. The only nonde-
creasing function that satisfies this linear equation is f(t) = ct for some c. In
our case, c = f(1) = E[N(1)], and hence E[N(t)] = tE[N(1)].

We are now ready to characterize stationary renewal processes. Assume
that N(t) is a delayed renewal process, where the distribution of ξ1 is G,
and the distribution of ξn, n ≥ 2, is F , which has a finite mean μ. The
issue is how to select the initial distribution G such that N is stationary.
The answer, according to (iv) below, is to select G to be Fe, which is the
limiting distribution of the forward and backward recurrence times for a
renewal process with inter-renewal distribution F . The following result also
shows that the stationarity ofN is equivalent to the stationarity of its forward
recurrence time process.

Theorem 76. The following statements are equivalent.
(i) The delayed renewal process N is stationary.
(ii) The forward recurrence time process B(t) = TN(t)+1 − t is stationary.
(iii) E[N(t)] = t/μ, for t ≥ 0.

(iv) G(t) = Fe(t) =
1
μ

∫ t
0 [1 − F (s)]ds.

When these statements are true, P{B(t) ≤ x} = Fe(x), for t, x ≥ 0.

Proof. (i) ⇔ (ii): Using Tn = inf{u : N(u) = n}, we have

B(t) = TN(t)+1 − t = inf{u− t : N(u) = N(t) + 1} (2.59)

d
= inf{t′ : N((0, t′] + t) = 1}.
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Consequently, the stationarity property (2.58) of N implies B(t)
d
= B(0),

t ≥ 0. Then B is stationary by Remark 74, because it is a Markov process
(Exercise 55).

Conversely, since N counts the number of times B(t) jumps upward,

N(A+ t) =
∑

u∈A
1(B(u+ t) > B((u + t)−)). (2.60)

Therefore, the stationarity of B implies N is stationary.
(i) ⇒ (iii): IfN is stationary, Proposition 75 ensuresE[N(t)] = tE[N(1)].

Also, E[N(1)] = 1/μ since t−1E[N(t)] → 1/μ by Proposition 32. Therefore,
E[N(t)] = t/μ.

(iii) ⇒ (iv): Assume E[N(t)] = t/μ. Exercise 53 shows U 
 Fe(t) = t/μ,
and so E[N(t)] = U 
 Fe(t). Another expression for this expectation is

E[N(t)] =
∞∑

n=1

G 
 F (n−1)�(t) = G 
 U(t).

Equating these expressions, we have U 
Fe(t) = G
U(t). Taking the Laplace
transform of this equality yields

Û(α)F̂e(α) = Ĝ(α)Û(α), (2.61)

where the hat symbol denotes Laplace transform; e.g., Ĝ(α) =
∫
R+

e−αtdG(t).

By Proposition 20, we know Û(α) = 1/(1 − F̂ (α)) is positive. Using this in
(2.61) yields F̂e(α) = Ĝ(α). Since these Laplace transforms uniquely deter-
mine the distributions, we obtain G = Fe.

(iv) ⇒ (ii): By direct computation as in Exercise 37, it follows that

P{B(t) > x} = 1−G(t+ x) +

∫

[0,t]

[1− F (t+ x− s)]dV (s), (2.62)

where V (t) = E[N(t)] = G 
 U(t). Now, the assumption G = Fe, along with
U 
 Fe(t) = t/μ from Exercise 53, yield

V (t) = G 
 U(t) = U 
 G(t) = U 
 Fe(t) = t/μ.

Using this in (2.62), along with a change of variable in the integral, we have

P{B(t) > x} = 1−G(t+ x) + Fe(x + t)− Fe(x). (2.63)

Since G = Fe, this expression is simply P{B(t) > x} = 1 − Fe(x), t ≥ 0.
Thus, the distribution of B(t) is independent of t. This condition is sufficient
for B(t) to be stationary since it is a Markov process (see Exercise 55).

Example 77. Suppose the inter-renewal distribution for the delayed renewal
process N is the beta distribution
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F (t) = 30

∫ t

0

s2(1− s)2 ds, t ∈ [0, 1].

The equilibrium distribution associated with F is clearly

Fe(t) = 2t− 5t4 + 6t5 − 2t6, t ∈ [0, 1].

Then by Theorem 76, N is stationary if and only if G = Fe.

One consequence of Theorem 76 is that Poisson processes are the only non-
delayed renewal processes (whose inter-renewal times have a finite mean) that
are stationary.

Corollary 78. The renewal process N(t) with no delay, and whose inter-
renewal times have a finite mean, is stationary if and only if it is a Poisson
process.

Proof. By Theorem 76 (vi), N(t) is stationary if and only if E[N(t)] = t/μ,
t ≥ 0, which is equivalent to N(t) being a Poisson process by Remark 21.

An alternate proof is to apply Theorem 76 (iii) and use the fact (Exercise 4
in Chapter 3) that F = Fe if and only if F is an exponential distribution.

Here is another useful stationarity property.

Remark 79. If N(t) is a stationary renewal process, then

E
[N(t)∑

n=1

f(Tn)
]
=

1

μ

∫ t

0

f(s)ds.

This follows by Theorem 22 and E[N(t)] = t/μ.

Many stationary processes arise naturally as functions of stationary pro-
cesses (two examples are in the proof of Theorem 76). A general statement
to this effect is as follows; it is a consequence of the definition of stationarity.

Remark 80. Hereditary Property of Stationarity. Suppose X(t) is a stationary
process. Then the process Y (t) = f(X(t)) is also stationary, where f is a
function on the state space of X to another space. More generally, Y (t) =
g({X(s+t) : s ≥ 0}) is stationary, where g is a function on the space of sample
paths of X to some space. Analogously, N is a stationary point process if,
for any bounded set B and t > 0,

N(B + t) = g({X(s+ t) : s ≥ 0}, B) (2.64)

(see for instance (2.59) and (2.60)).

Example 81. Let X(t) be a delayed regenerative process (e.g., a continuous-
time Markov chain as in Chapter 4) over the times 0 < T1 < T2 < . . . at
which X(t) enters a special state x∗. Let N denote the point process of these
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times. If X(t) is stationary, then N is a stationary renewal process. This
follows since, like (2.64),

N(B + t) =
∑

s∈B
1(X((s+ t)−) �= x∗, X(s+ t) = x∗).

Although the bounded set B may be uncountable, only a finite number of its
values will contribute to the sum.

Because a stationary renewal process N(t) has a stationary forward recur-
rence time process, it seems reasonable that the backward recurrence time
process A(t) = t − TN(t) would also be stationary. This is not true, since
the distribution of A(t) is not independent of t; in particular, A(t) = t, for
t < T1. However, there is stationarity in the following sense.

Remark 82. Stationary Backward Recurrence Time Process. Suppose the sta-
tionary renewal process is extended to the negative time axis with (artificial
or virtual) renewals at times . . . < T−1 < T0 < 0. One can think of the
renewals occurring since the beginning of time at −∞. Consistent with the
definition above, the backward recurrence process is

A(t) = t− Tn, if t ∈ [Tn, Tn+1), for some n ∈ R.

Assuming N is stationary on R+, the time A(0) = T1 to the first renewal has
the distribution Fe. Then one can show, as we proved (i)⇔ (ii) in Theorem 76,
that the process {A(t) : t ∈ R} is stationary with distribution Fe.

2.16 Refined Limit Laws

We will now describe applications of the key renewal theorem for functions
that are not asymptotically constant.

The applications of the renewal theorem we have been discussing are for
limits of functions H(t) = U 
 h(t) that converge to a constant (i.e., H(t) =
c+ o(1)). However, there are many situations in which H(t) tends to infinity,
but the key renewal theorem can still be used to describe limits of the form
H(t) = v(t)+ o(1) as t→ ∞, where the function v(t) is the asymptotic value
of H(t).

For instance, a SLLN Z(t)/t → b suggests E[Z(t)] = bt + c + o(1) might
be true, where the constant c gives added information on the convergence. In
this section, we discuss such limit theorems.

We first note that an approach for considering limits H(t) = v(t) + o(1) is
simply to consider a renewal equation for the function H(t)− v(t) as follows.

Lemma 83. Suppose H(t) = U 
 h(t) is a solution of a renewal equation for
a non-arithmetic distribution F , and v(t) is a real-valued function on R that
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is bounded on finite intervals and is 0 for negative t. Then

H(t) = v(t) +
1

μ

∫

R+

h(s) ds+ o(1), as t→ ∞, (2.65)

provided h(t) = h(t) − v(t) + F 
 v(t) is DRI. In particular, for a linear
function v(t) = bt,

H(t) = bt+
b(σ2 + μ2)

2μ
+

1

μ

∫

R+

(h(s)− bμ) ds+ o(1), as t→ ∞, (2.66)

where σ2 is the variance of F , provided h(t)− bμ is DRI.

Proof. Clearly H − v satisfies the renewal equation

H − v = (h− v + F 
 v) + F 
 (H − v).

Then H − v = U 
 h by Proposition 31, and its limit (2.65) is given by the
key renewal theorem.

Next, suppose v(t) = bt and h(t) − bμ is DRI. Then using μ =
∫
R+

[1 −
F (x)] dx and the change of variable x = t− s in the integral below, we have

h(t) = h(t)− bt+ b

∫ t

0

F (t− s) ds

= h(t)− bμ+ bg(t),

where g(t) =
∫∞
t

[1− F (x)] dx. Now g(t) is continuous and decreasing and

∫ ∞

0

g(t) dt =
1

2

∫

R+

t2dF (t) =
σ2 + μ2

2
. (2.67)

Then g(t) is DRI by Proposition 88 (a), and hence h(t) = h(t)− bμ+ bg(t) is
DRI. Thus, by what we already proved, (2.65) is true but it reduces to (2.66)
in light of (2.67).

Our first use of the preceding result is a refinement of t−1U(t) → 1/μ from
Proposition 32.

Proposition 84. If N(t) is a renewal process whose inter-renewal times have
a non-arithmetic distribution with mean μ and variance σ2, then

U(t) = t/μ+ (σ2 + μ2)/2μ2 + o(1), as t→ ∞.

Proof. This follows by Lemma 83 with H(t) = U(t), h(t) = 1, and v(t) = t/μ
(that h(t)− bμ is DRI need not be verified since it equals 0).

We will now apply Lemma 83 to a real-valued stochastic process Z(t)
whose sample paths are right-continuous with left-hand limits. Assume
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that Z(t), has crude regenerative increments at T in the sense that

E[Z(T + t)− Z(T )|T ] = E[Z(t)], t ≥ 0. (2.68)

If Z(t) has regenerative increments over Tn, then Z(t) has crude regenerative
increments at T1.

Theorem 85. For the process Z(t) defined above, let

M = sup{|Z(T )− Z(t)| : t ≤ T }.

If the expectations of M , MT , T 2, |Z(T )|, and
∫ T
0
|Z(s)|ds are finite, then

E[Z(t)] = at/μ+ a(σ2 + μ2)/2μ2 + c+ o(1), as t→ ∞, (2.69)

where a = E[Z(T )] and c = 1
μE

[ ∫ T
0 Z(s)ds− TZ(T )

]
.

Proof. Because Z(t) has crude regenerative increments, it would be natural
that that t−1E[Z(t)] → a/μ. So to prove (2.69), we will apply Lemma 83
with v(t) = at/μ.

We first derive a renewal equation for E[Z(t)]. Conditioning on T ,

E[Z(t)] = E[Z(t)1(T > t)] +

∫

[0,t]

E[Z(t)|T = s]dF (s).

Using E[Z(t)|T = s] = E[Z(t − s)] + E[Z(s)|T = s] from assumption
(2.68) and some algebra, it follows that the preceding is a renewal equation
H = h+ F 
 H , where H(t) = E[Z(t)] and

h(t) = a+ E
[
(Z(t)− Z(T ))1(T > t)

]
.

Now, by Lemma 83 for v(t) = at/μ, we have

E[Z(t)] = at/μ+
σ2 + μ2

2μ2
+

1

μ

∫

R+

g(s) ds+ o(1), as t→ ∞, (2.70)

provided g(t) = h(t)− a = E
[
(Z(t)− Z(T ))1(T > t)

]
is DRI. Clearly

|g(t)| ≤ b(t) = E[M1(T > t)].

Now, b(t) ↓ 0; and as in (2.25),
∫
R+

b(s)ds = E[MT ] is finite. Then b(t) is

DRI by Proposition 88 (a). Hence g(t) is also DRI by Proposition 88 (c).
Finally, observe that

∫

R+

g(t) dt = E
[ ∫ T

0

Z(s)ds− TZ(T )]
]
.

Substituting this formula in (2.70) proves (2.69).
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2.17 Proof of the Key Renewal Theorem∗

This section proves the key renewal theorem by applying Blackwell’s theorem,
which is proved in the next section.

The key renewal theorem involves real-valued functions that are integrable
on the entire axis R+ as follows.

Definition 86. Similarly to the definition of a Riemann integral on a finite
interval, it is natural to approximate the integral of a real-valued function
h(t) on the entire domain R+ over a grid 0, δ, 2δ, . . . by the upper and lower
Riemann sums

Iδ(h) = δ

∞∑

k=0

sup{h(s) : kδ ≤ s < (k + 1)δ},

Iδ(h) = δ

∞∑

k=0

inf{h(s) : kδ ≤ s < (k + 1)δ}.

The function h(t) is directly Riemann integrable (DRI) if Iδ(h) and Iδ(h) are
finite for each δ, and they both converge to the same limit as δ → 0. The
limit is necessarily the usual Riemann integral

∫

R+

h(s)ds = lim
t→∞

∫ t

0

h(s)ds,

where the last integral is the limit of the Riemann sums on [0, t].

A DRI function is clearly Riemann integrable in the usual sense, but the
converse is not true; see Exercise 28. From the definition, it is clear that h(t)
is DRI if it is Riemann integrable and it is 0 outside a finite interval. Also, h(t)
is DRI if and only if its positive and negative parts h+(t) and h−(t) are both
DRI. Further criteria for DRI are given in Proposition 88 and Exercise 33.

We are now ready for the main result.

Theorem 87. (Key Renewal Theorem) If h(t) is DRI and F is non-
arithmetic, then

lim
t→∞

U 
 h(t) =
1

μ

∫

R+

h(s)ds.

Proof. Fix δ > 0 and define hk = sup{h(s) : kδ ≤ s < (k + 1)δ} and

h(t) =

∞∑

k=0

hk1(kδ ≤ t < (k + 1)δ).

∗ The star at the end of a section title means the section contains advanced material that
need not be covered in a first reading.
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Define h(t) and hk similarly, with sup replaced by inf. Obviously,

U 
 h(t) ≤ U 
 h(t) ≤ U 
 h(t). (2.71)

Letting dk(t) = U(t− kδ)− U(t− (k + 1)δ), we can write (like (2.19))

U 
 h(t) =

∞∑

k=0

hkdk(t).

Now limt→∞ dk(t) = δ/μ by Theorem 33, and dk(t) ≤ U(δ) by Exercise 28.
Then by the dominated convergence theorem (see the Appendix, Theorem 14)
and the DRI property of h,

lim
δ→0

lim
t→∞

U 
 h(t) = lim
δ→0

δ

μ

∞∑

k=0

hk

= lim
δ→0

1

μ
Iδ(h) =

1

μ

∫

R+

h(s)ds.

This (double) limit is the same with h(t) and Iδ(h) replaced by h(t) and
Iδ(h). Therefore, the upper and lower bounds in (2.71) for U 
 h(t) have the
same limit 1

μ

∫
R+

h(s)ds, and so U 
h(t) must also have this limit. This proves

the assertion.

We end this section with criteria for a function to be DRI.

Proposition 88. Any one of the following conditions is sufficient for h(t) to
be DRI.
(a) h(t) ≥ 0 is decreasing and is Riemann integrable on R+.
(b) h(t) is Riemann integrable on [0, a] for each a, and Iδ(h) < ∞ for some
δ > 0.
(c) h(t) is continuous except possibly on a set of Lebesgue measure 0, and
|h(t)| ≤ b(t), where b(t) is DRI.

Proof. Suppose condition (a) holds. Since the usual Riemann integral of h on
R+ exists, we have

Iδ(h) ≤
∫

R+

h(s)ds ≤ Iδ(h).

Also, the decreasing property of h(t) implies Iδ(h) − Iδ(h) = δh(0) → 0 as
δ → 0. These observations prove h(t) is DRI.

Next, suppose (b) holds. We will write

Iδ(h) = Iδ[0, a/δ) + Iδ[a/δ,∞),

where Iδ[x,∞) = δ
∑∞
k=
x−1� sup{h(s) : kδ ≤ s < (k + 1)δ}. We will use

a similar expression for Iδ(h). Since h(t) is Riemann integrable on [0, a], it
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follows that Iδ[0, a/δ) and Iδ[0, a/δ) both converge to
∫ a
0
h(s)ds as δ → 0.

Therefore,

Iδ(h)− Iδ(h) = o(1) + Iδ[a/δ,∞)− Iδ[a/δ,∞), as δ → 0. (2.72)

Let γ be such that Iγ(h) < ∞. Then for any ε > 0, there is a large enough a
such that Iγ [a/γ,∞) < ε. Then clearly, for sufficiently small δ,

Iδ[a/δ,∞) ≤ Iδ[a/δ,∞) ≤ Iγ [a/γ,∞) < ε.

Using this in (2.72), we have

Iδ(h)− Iδ(h) ≤ o(1) + 2ε, as δ → 0.

Since this holds for any ε, it follows that h(t) is DRI.
Finally, (c) implies (b) since Iδ(h) ≤ Iδ(b). Thus h(t) is DRI.

2.18 Proof of Blackwell’s Theorem*

This section describes a coupling proof of Blackwell’s theorem. The proof
is more complicated than the one we presented above for arithmetic inter-
renewal times.

The classical proof of Blackwell’s theorem based on analytical properties
of the renewal function and integral equations is in Feller (1971). Lindvall
(1977) and Athreya, McDonald and Ney (1978) gave another probabilistic
proof involving “coupling” techniques. A nice review of various applications
of coupling is in Lindvall (1992). A recent refinement of the coupling proof is
given in Durrett (2005). The following is a sketch of his presentation when
the inter-renewal time has a finite mean (he gives a different proof for the
case of an infinite mean).

Let N(t) be a renewal process with renewal times Tn whose inter-renewal
times ξn have a non-arithmetic distribution and a finite mean μ. For conve-
nience, we will write Blackwell’s theorem (Theorem 33) as

lim
t→∞

E[N(t, t+ a]] = a/μ, (2.73)

where N(t, t+a] = N(t+a)−N(t). Now, this statement would trivially hold
if N(t) were a stationary renewal process, since in this case E[N(t, t + a]]
would equal a/μ by Proposition 75. So if one could construct a version of
N(t) that approximates a stationary process as close as possible, then (2.73)
would be true. That is the approach in the proof that we now describe.

On the same probability space as N(t), let N ′(t) be a stationary renewal
process with renewal times T ′

n, whose inter-renewal ξ′
n times for n ≥ 2 have

the same distribution as the ξn. The first and most subtle part of the proof
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is to construct a third renewal process N ′′(t) on the same probability space
that is equal in distribution to the original process N(t) and approximates
the stationary process N ′(t). We will not describe the construction of these
processes, but only specify their main properties.

In particular, for a fixed ε > 0, the proof begins by defining random
indices ν and ν′ such that |Tν − Tν′ | < ε. Then a third renewal process
N ′′(t) is defined (on the same probability space) with inter-renewal times
ξ1, . . . , ξν , ξ

′
ν′ , ξ′

ν′+1 . . . This process has the following properties:

(a) {N ′′(t) : t ≥ 0} d
= {N(t) : t ≥ 0} (i.e., their finite-dimensional distribu-

tions are equal).
(b) On the event {Tν ≤ t},

N ′(t+ ε, t+ a− ε] ≤ N ′′(t, t+ a] ≤ N ′(t− ε, t+ a+ ε]. (2.74)

This construction is an ε-coupling in that N ′′(t) is a coupling of N(t) that
is within ε of the targeted stationary version N ′(t) in the sense of condition
(b).

With this third renewal process in hand, the rest of the proof is as follows.
Consider the expectation

E[N(t, t+ a]] = E[N ′′(t, t+ a]] = V1(t) + V2(t), (2.75)

where

V1(t) = E
[
N ′′(t, t+ a]1(Tν ≤ t)

]
, V2(t) = E

[
N ′′(t, t+ a]1(Tν > t)

]
.

Condition (b) and E[N ′(c, d]] = (d− c)/μ (due to the stationarity) ensure

V1(t) ≤ E
[
N ′(t− ε, t+ a+ ε]1(Tν ≤ t)

]
≤ (a+ 2ε)μ.

Next, observe that E[N ′′(t, t + a]|Tν > t] ≤ E[N ′′(a)], since the worse-case
scenario is that there is a renewal at t. This and condition (b) yield

V2(t) ≤ P{Tν > t}E[N ′′(a)].

Similarly,

V1(t) ≥ E
[
N ′(t+ ε, t+ a− ε]−N ′′(t, t+ a]1(Tν > t)

]

≥ (a− 2ε)/μ− P{Tν > t}E[N ′′(a)].

Here we take ε < a/2, so that t + ε < t + a − ε. Combining the preceding
inequalities with (2.75), and using P{Tν > t} → 0 as t→ ∞, it follows that

(a− 2ε)/μ+ o(1) ≤ E[N(t, t+ a]] ≤ (a+ 2ε)/μ+ o(1).
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Since this is true for arbitrarily small ε, we obtain E[N(t, t + a]] → a/μ,
which is Blackwell’s result.

2.19 Stationary-Cycle Processes*

Most of the results above for regenerative processes also apply to a wider
class of regenerative-like processes that we will now describe.

For this discussion, suppose {X(t) : t ≥ 0} is a continuous-time stochastic
process with a general state space S, and N(t) is a renewal process defined
on the same probability space. As in Section 2.8, we let

ζn = (ξn, {X(Tn−1 + t) : 0 ≤ t < ξn})

denote the segment of these processes on the interval [Tn−1, Tn). Then {ζn+k :
k ≥ 1} is the future of (N(t), X(t)) beginning at time Tn. This is what an
observer of the processes would see beginning at time Tn.

Definition 89. The process X(t) is a stationary-cycle process over the times
Tn if the future {ζn+k : k ≥ 1} of (N(t), X(t)) beginning at any time Tn is
independent of T1, . . . , Tn, and the distribution of this future is independent of
n. Discrete-time and delayed stationary-cycle processes are defined similarly.

The defining property ensures that the segments ζn form a stationary
sequence, whereas for a regenerative process, the segments are i.i.d. Also, for
a regenerative process X(t), its future {ζn+k : k ≥ 1} beginning at any time
Tn is independent of the entire past {ζk : k ≤ n} (rather than only T1, . . . , Tn
as in the preceding definition).

All the strong laws of large numbers for regenerative processes in this
chapter also hold for stationary-cycle processes. A law’s limiting value would
be a constant as usual when ζn is ergodic (as in Section 4.18 in Chapter 4),
but the value would be random when ζn is not ergodic. We will not get into
these details.

As in Section 2.10, one can define processes with stationary-cycle incre-
ments. Most of the results above such as the CLT have obvious extensions to
these more complicated processes.

We end this section by commenting on limiting theorems for probabilities
and expectations of stationary-cycle processes.

Remark 90. Theorem 45 and Corollary 46 are also true for stationary-cycle
processes. This follows since such a process satisfies the crude-regeneration
property in Theorem 41 leading to Theorem 45 and Corollary 46.

There are many intricate stationary-cycle processes that arise naturally
from systems that involve stationary and regenerative phenomena. Here is
an elementary illustration.
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Example 91. Regenerations in a Stationary Environment. Consider a process
X(t) = g(Y (t), Z(t)) where Y (t) and Z(t) are independent processes and g is
a function on their product space. Assume Y (t) is a regenerative process over
the times Tn (e.g., an ergodic continuous-time Markov chain as in Chapter 4)
with a metric state space S. Assume Z(t) is a stationary process. One can re-
gard X(t) = g(Y (t), Z(t)) as a regenerative-stationary reward process, where
g(y, z) is the reward rate from operating a system in state y in environment
z. Now, the segments ζn defined above form a stationary process, and hence
X(t) is a stationary-cycle process.

In light of Remark 90, we can describe the limiting behavior of X(t) as we
did for regenerative processes. In particular, assuming for simplicity that g is
real-valued and bounded, Theorem 45 for stationary-cycle processes tells us
that

lim
t→∞

E[X(t)] =
1

μ
E
[ ∫ T1

0

g(Y (s), Z(s))ds
]
.

2.20 Exercises

Exercise 1. Show that if X is nonnegative with distribution F , then

E[X ] =

∫

R+

(1− F (x))dx.

One approach is to use E[X ] =
∫
R+

( ∫ x
0
dy
)
dF (x). (For an integer-valued X ,

the preceding formula is E[X ] =
∑∞

n=0 P{X > n} .)
For a general X with finite mean, use X = X+ −X− to prove

E[X ] =

∫

R+

(1− F (x))dx −
∫ 0

−∞
F (x)dx.

Exercise 2. Bernoulli Process . Consider a sequence of independent Bernoulli
trials in which each trial results in a success or failure with respective prob-
abilities p and q = 1− p. Let N(t) denote the number of successes in t trials,
where t is an integer. Show thatN(t) is a discrete-time renewal process, called
a Bernoulli Process. (The parameter t may denote discrete-time or any inte-
ger referring to sequential information.) Justify that the inter-renewal times
have the geometric distribution P{ξ1 = n} = pqn−1, n ≥ 1. Find the distri-
bution and mean of N(t), and do the same for the renewal time Tn. Show
that the moment generating function of Tn is

E[eαTn ] =
( peα

1− qeα

)n
, 0 < α < − log q.
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Exercise 3. Exercise 1 in Chapter 3 shows that an exponential random vari-
able X satisfies the memoryless property

P{X > s+ t|X > s} = P{X > t}, s, t > 0.

Prove the analogue P{X > τ + t|X > τ} = P{X > t}, for t > 0, where τ is a
positive random variable independent of X . Show that, for a Poisson process
N(t) with rate λ, the forward recurrence time B(t) = TN(t)+1 − t at time t
has an exponential distribution with rate λ. Hint: condition on TN(t).

Consider the forward recurrence time B(τ) at a random time τ indepen-
dent of the Poisson process. Show that B(τ) also has an exponential distri-
bution with rate λ.

Exercise 4. A system consists of two components with independent lifetimes
X1 and X2, where X1 is exponentially distributed with rate λ, and X2 has
a uniform distribution on [0, 1]. The components operate in parallel, and the
system lifetime is max{X1, X2} (the system is operational if and only if at
least one component is working). When the system fails, it is replaced by an-
other system with an identical and independent lifetime, and this is repeated
indefinitely. The number of system renewals over time forms a renewal pro-
cess N(t). Find the distribution and mean of the system lifetime. Find the
distribution and mean of N(t) (reduce your formulas as much as possible).
Determine the portion of time that (a) two components are working, (b) only
type 1 component is working, and (c) only type 2 component is working.

Exercise 5. Continuation. In the context of the preceding exercise, a typical
system initially operates for a time Y = min{X1, X2} with two components
and then operates for a time Z = max{X1, X2} − Y with one component.
Thereupon it fails. Find the distributions and means of Y and Z. Find the
distribution of Z conditioned that X1 > X2. You might want to use the
memoryless property of the exponential distribution in Exercise 3. Find the
distribution of Z conditioned that X2 > X1.

Exercise 6. Let N(t) denote a renewal process with inter-renewal distribu-
tion F and consider the number of renewals N(T ) in an interval (0, T ] for
some random time T independent of N(t). For instance, N(T ) might repre-
sent the number of customers that arrive at a service station during a service
time T . Find general expressions for the mean and distribution of N(T ).
Evaluate these expressions for the case in which T has an exponential dis-
tribution with rate μ and F = G2�, where G is an exponential distribution
with rate λ.

Exercise 7. Let X(t) denote the cyclic renewal process in Example 8, where
F0, . . . , FK−1 are the sojourn distributions in states 0, 1, . . . ,K − 1. Assume
p = F0(0) > 0, but Fi(0) = 0, for i = 1, . . . ,K − 1. Let Tn denote the times
at which the process X(t) jumps from state K − 1 directly to state 1 (i.e., it
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spends no time in state 0). Justify that the Tn form a delayed renewal process
with inter-renewal distribution

F (t) = p

∞∑

j=0

F1 
 · · · 
 FK−1 
 F̃
j�(t),

where F̃ (t) = F̃0 
F1 
 · · ·
FK−1(t), and F̃0(t) is the conditional distribution
of the sojourn time in state 0 given it is positive. Specify a formula for F̃0(t),
and describe what F̃ (t) represents.

Exercise 8. Large Inter-renewal Times . Let N(t) denote a renewal process
with inter-renewal distribution F . Of interest are occurrences of inter-renewal
times that are greater than a value c, assuming F (c) < 1. Let T̃n denote
the subset of times Tn for which ξn > c. So T̃n equals some Tk if ξk > c.
(Example 72 addresses a related problem of determining the waiting time for
a gap of size c in a Poisson process.) Show that T̃n are delayed renewal times
and the inter-renewal distribution has the form

F̃ (t) =

∞∑

k=0

F k�c 
 G(t),

where Fc(t) = F (t)/F (c), 0 ≤ t ≤ c (the conditional distribution of an inter-
renewal time given that it is ≤ c), and specify the distribution G(t) as a
function of F .

Exercise 9. Partitioning and Thinning of a Renewal Process. Let N(t) be
a renewal process with inter-renewal distribution F . Suppose each renewal
time is independently assigned to be a type i renewal with probability pi,
for i = 1, . . . ,m, where p1 + · · · + pm = 1. Let Ni(t) denote the number of
type i renewals up to time t. These processes form a partition of N(t) in
that N(t) =

∑m
i=1Ni(t). Each Ni(t) is a thinning of N(t), where pi is the

probability that a point of N(t) is assigned to Ni(t).
Show that Ni(t) is a renewal process with inter-renewal distribution

Fi(t) =
∞∑

k=1

(1 − pi)
k−1piF

k�(t).

Show that, for n = n1 + · · ·nm,

P{N1(t) = n1, . . . , Nm(t) = nm}

=
n!

n1! · · ·nm!
pn1
1 · · · pnm

m

[
F (n)�(t)− F (n+1)�(t)

]
.

For m = 2, specify an F for which N1(t) and N2(t) are not independent.

Exercise 10. Multi-type Renewals. An infinite number of jobs are to be pro-
cessed one-at-a-time by a single server. There are m types of jobs, and the
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probability that any job is of type i is pi, where p1 + · · · + pm = 1. The
service time of a type i job has a distribution Fi with mean μi. The service
times and types of the jobs are independent. Let N(t) denote the number of
jobs completed by time t. Show that N(t) is a renewal process and specify
its inter-renewal distribution and mean. Let Ni(t) denote the number of type
i jobs processed up to time t. Show that Ni(t) is a delayed renewal process
and specify limt→∞ t−1Ni(t).

Exercise 11. Continuation. In the context of Exercise 10, let X(t) denote
the type of job being processed at time t. Find the limiting distribution of
X(t). Find the portion of time devoted to type i jobs.

Exercise 12. Continuation. Consider the multi-type renewal process with
two types of renewals that have exponential distributions with rates λi, and
type i occurs with probability pi, , i = 1, 2. Show that the renewal function
has the density

U ′(t) =
λ1λ2 + p1p2(λ1 − λ2)

2e−(p1λ2+p2λ1)t

p1λ2 + p2λ1
, t > 0.

Exercise 13. System Availability. The status of a system is represented by an
alternating renewal process X(t), where the mean sojourn time in a working
state 1 is μ1 and the mean sojourn time in a non-working state 0 is μ0. The
system availability is measured by the portion of time it is working, which is
limt→∞ t−1

∫ t
0 X(s)ds. Determine this quantity and show that it is equal to

the cycle-availability measured by limn→∞ T−1
n

∫ Tn

0 X(s)ds.

Exercise 14. Integrals of Renewal Processes. Suppose N(t) is a renewal pro-
cess with renewal times Tn and μ = E[T1]. Prove

E
[ ∫ Tn

0

N(s) ds
]
= μn(n− 1)/2.

For any non-random t > 0, it follows by Fubini’s theorem that

E
[ ∫ t

0

N(s) ds
]
=

∫ t

0

E[N(s)] ds.

Assuming τ is an exponential random variable independent of N with rate
γ, prove

E
[ ∫ τ

0

N(s) ds
]
=

∫

R+

e−γtE[N(t)] dt.

Show that if N is a Poisson process with rate λ, then the preceding expec-
tation equals λ/γ2. (Integrals like these are used to model holding costs; see
Section 2.12 and the next exercise.)
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Exercise 15. Continuation. Items arrive to a service station according to
a Poisson process N(t) with rate λ. The items are stored until m have ac-
cumulated. Then the m items are served in a batch. The service time is
exponentially distributed with rate γ. During the service, items continue to
arrive. There is a cost hi per unit time of holding i customers in the system.
Assume the station is empty at time 0. Find the expected cost C1 of holding
the customers until m have arrived. Find the expected cost C2 for holding
the added arrivals in the system during the service.

Exercise 16. Customers arrive to a service system according to a Poisson
process with rate λ. The system can only serve one customer at a time and,
while it is busy serving a customer, arriving customers are blocked from get-
ting service (they may seek service elsewhere or simply go unserved). Assume
the service times are independent with common distribution G and are inde-
pendent of the arrival process. For instance, a contractor may only be able
to handle one project at a time (or a vehicle can only transport one item at
a time). Determine the following quantities:
(a) The portions of time the system is busy, and not busy.
(b) The number of customers per unit time that are served.
(c) The portion of customers that are blocked from service.

Exercise 17. Delayed Renewals. A point process N(t) is an m-step delayed
renewal process if the inter-occurrence times ξm+k, for k ≥ 1, are indepen-
dent with a common distribution F , and no other restrictions are placed on
ξ1, . . . , ξm. That is, Nm(t) = N(t)−N(Tm), for t ≥ Tm is a renewal process.
Show that Corollary 11 and Theorem 13 hold for such processes. Use the fact
that N(t) is asymptotically equivalent to Nm(t) in that

Nm(t)/N(t) = 1−N(Tm)/N(t) → 1, a.s. as t→ ∞.

Exercise 18. For a point process N(t) that is not simple, show that if
t−1N(t) → 1/μ as t → ∞, then n−1Tn → μ, as n → ∞. Hint: For a fixed
positive constant c, note that N((Tn−c)+) ≤ n ≤ N(Tn). Divide these terms
by Tn and take limits as n→ ∞.

Exercise 19. Age Replacement Model. An item (e.g., battery, vehicle, tool, or
electronic component) whose use is needed continuously is replaced whenever
it fails or reaches age a, whichever comes first. The successive items are
independent and have the same lifetime distribution G. The cost of a failure
is cf dollars and the cost of a replacement at age a is cr. Show that the
average cost per unit time is

C(a) = [cfG(a) + cr(1−G(a))]/

∫ a

0

(1−G(s))ds.

Find the optimal age a that minimizes this average cost.
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Exercise 20. Point Processes as Jump Processes. Consider a point process
N(t) =

∑∞
k=1 1(Tk ≤ t), where T1 ≤ T2 ≤ · · · . It can also be formulated as

an integer-valued jump process of the form

N(t) =
∞∑

n=1

νn1(T̂n ≤ t),

where T̂n are the “distinct” times at which N(t) takes a jump, and νn is the
size of the jump. That is, T̂n = min{Tk : Tk > T̂n−1}, where T̂0 = 0, and
νn =

∑∞
k=1 1(Tk = T̂n), n ≥ 1.

For instance, suppose Tn are times at which data packets arrive to a com-
puter file. Then T̂n are the times at which batches of packets arrive, and at
time T̂n, a batch of νn packets arrive. Suppose T̂n are renewal times, and
νn are i.i.d. and independent of the T̂n. Show that the number of packets
that arrive per unit time is E[ν1]/E[T̂1] a.s., provided these expectations are
finite. Next, assume T̂n form a Poisson process with rate λ, and νn has a
Poisson distribution. Find E[N(t)] by elementary reasoning, and then show
that N(t) has a Poisson distribution.

Exercise 21. Batch Renewals. Consider times Tn =
∑n

k=1 ξk, where the ξk
are i.i.d. with distribution F and F (0) = P{ξk = 0} > 0. The associated
point process N(t) is a renewal process with instantaneous renewals (or batch
renewals). In the notation of Exercise 20, N(t) =

∑∞
n=1 νn1(T̂n ≤ t), where

νn is the number of renewals exactly at time T̂n. Specify the distribution of
νn. Are the νn i.i.d.? Are they independent of T̂n? Specify the distribution
of T̂1 in terms of F .

Exercise 22. ProveE[TN(t)] = μE[N(t)+1]−E[ξN(t)+1]. IfN(t) is a Poisson
process, show that E[TN(t)] < μE[N(t)].

Exercise 23. Little Law. In the context of the Little law in Theorem 57,
show that if L and W exist, then λ exists and L = λW .

Exercise 24. Superpositions of Renewal Processes. Let N1(t) and N2(t) be
independent renewal processes with the same inter-renewal distribution, and
consider the sum N(t) = N1(t) + N2(t) (sometimes called a superposition).
Assuming that N(t) is a renewal process. prove that it is a Poisson process
if and only if N1(t) and N2(t) are Poisson processes.

Exercise 25. Production-Inventory Model. Consider a production-inventory
system that produces a product at a constant rate of c units per unit time
and the items are put in inventory to satisfy demands. The products may be
discrete or continuous (e.g., oil, chemicals). Demands occur according to a
Poisson process N(t) with rate λ, and the demand quantities X1, X2, . . . are
independent, identically distributed positive random variables with mean μ,
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and are independent of the arrival times. Then the inventory level at time t
would be

Zx(t) = x+ ct−
N(t)∑

n=1

Xn, t ≥ 0,

where x is the initial inventory level. Consider the probability R(x) =
P{Zx(t) ≥ 0, t ≥ 0} of never running out of inventory. Show that if c < λμ,
then R(x) = 0 no matter how high the initial inventory level x is. Hint: apply
a SLLN to show that Zx(t) → −∞ as t → ∞ if c < λμ, where x is fixed.
Find the limit of Zx(t) as t → ∞ if c > λμ. (The process Zx(t) is a classical
model of the capital of an insurance company; see Example 73.)

Exercise 26. LetH(t) = E[N(t)−N(t−a)1(a ≤ t)]. Find a renewal equation
that H satisfies.

Exercise 27. Non-homogeneous Renewals. Suppose N(t) is a point process
on R+ whose inter-point times ξn = Tn − Tn−1 are independent with distri-
butions Fn. Assuming it is finite, prove that E[N(t)] =

∑∞
n=1 F1 
 · · ·
Fn(t).

Exercise 28. Subadditivity of Renewal Function. Prove that

U(t+ a) ≤ U(a) + U(t), a, t ≥ 0.

Hint: Use a ≤ TN(a)+1 in the expression

N(t+ a)−N(a) =

∞∑

k=1

1(TN(a)+k ≤ t+ a).

Exercise 29. Arithmetic Blackwell Theorem. The proof of Theorem 33 for
arithmetic inter-arrival distributions was proved under the standard condition
that p0 = F (0) = 0. Prove the same theorem when 0 < p0 < 1. Use a similar
argument including the fact that renewals occur in batches and a batch size
has a geometric distribution with parameter 1− p0.

Exercise 30. Elementary Renewal Theorem via Blackwell. Prove the elemen-
tary renewal theorem (Theorem 32) by an application of Blackwell’s theorem.
One approach, for non-arithmetic F , is to use

E[N(t)] =


t�∑

k=1

[U(k)− U(k − 1)] + E[N(�t�)]− E[N(t)].

Then use the fact n−1
∑n
k=1 ck → c when ck → c.

Exercise 31. Arithmetic Key Renewal Theorem. Represent U 
 h(u + nd)
as a sum like (2.19), and then prove Theorem 37 by applying Blackwell’s
theorem.
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Exercise 32. Let h(t) =
∑∞

n=1 an1(n−εn ≤ t < n+εn), where an → ∞ and
1/2 > εn ↓ 0 such that

∑∞
n=1 anεn <∞. Show that h is Riemann integrable,

but not DRI.

Exercise 33. Prove that a continuous function h(t) ≥ 0 is DRI if and only
if Iδ(h) <∞ for some δ > 0.

The next eight exercises concern the renewal process trinity: the backward
and forward recurrence times A(t) = t− TN(t), B(t) = TN(t)+1 − t, and the
length L(t) = ξN(t)+1 = A(t) + B(t) of the renewal interval containing t.
Assume the inter-renewal distribution is non-arithmetic.

Exercise 34. Draw a typical sample path for each of the processes A(t),
B(t), and L(t).

Exercise 35. Prove that B(t) is a Markov process by showing it satisfies the
following Markov property, for x, y, t, u ≥ 0:

P{B(t+ u) ≤ y|B(s) : s < t,B(t) = x} = P{B(u) ≤ y|B(0) = x}.

Exercise 36. Formulate a renewal equation that P{B(t) > x} satisfies.

Exercise 37. Bypassing a renewal equation. Use Proposition 40 (without
using a renewal equation) to prove P{B(t) > x} =

∫
[0,t]

[1−F (t+x−s)]dU(s).

Exercise 38. Prove E[B(t)] = μE[N(t) + 1] − t. Assuming F has a finite
variance σ2, prove

lim
t→∞

E[A(t)] = lim
t→∞

E[B(t)] =
σ2 + μ2

2μ
.

Is this limit also the mean of the limiting distribution Fe(t) =
1
μ

∫ t
0
[1−F (s)]ds

of A(t) and B(t)?

Exercise 39. Inspection Paradox. Consider the length L(t) = ξN(t)+1 of the
renewal interval at any time t (this is what an inspector of the process would
see at time t). Prove the paradoxical result that L(t) is stochastically larger
than the length ξ1 of a typical renewal interval; that is

P{L(t) > x} ≥ P{ξ1 > x}, t, x ≥ 0.

This inequality is understandable upon observing that the first probability
is for the event that a renewal interval bigger than x “covers” t, and this is
more likely to happen than a fixed renewal interval being bigger than x. A
consequence of this result is E[L(t] ≥ E[ξ1], which is often a strict inequality.

Suppose μ = E[T1] and σ2 = Var[T1] are finite. Recall from (2.34) that
the limiting distribution of L(t) is 1

μ

∫ x
0
sdF (s). Derive the mean of this dis-

tribution (as a function of μ and σ2), and show it is ≥ μ.
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Show that if N(t) is a Poisson process with rate λ, then

E[L(t)] = λ−1[2− (1 + λt)e−λt].

In this case, E[L(t] > E[ξ1].

Exercise 40. Prove limt→∞ P{A(t)/L(t) ≤ x} = x, 0 ≤ x ≤ 1. Prove this
result with B(t) in place of A(t).

Exercise 41. Show that

lim
t→∞

E[A(t)kB(t)�(A(t) +B(t))m] =
E[T k+�+m1 ]

μ(k + �+ 1)
(
k+�
k

) .

Find the limiting covariance, limt→∞ Cov(A(t), B(t)).

Exercise 42. Delayed Versus Non-delayed Regenerations. Let X̃(t) be a real-
valued delayed regenerative process over Tn. ThenX(t) = X̃(T1+t), t ≥ 0 is a
regenerative process. Assuming X̃(t) is bounded, show that if limt→∞ E[X(t)]
exists (such as by Theorem 45), then E[X̃(t)] has the same limit. Hint: Take
the limit as t→ ∞ of

E[X̃(t)] =

∫

[0,t]

E[X(t− s)]dF (s) + E[X̃(t)1(T1 > t)].

Exercise 43. Dispatching System. Items arrive at a depot (warehouse or
computer) at times that form a renewal process with finite mean μ between
arrivals. Whenever M items accumulate, they are instantaneously removed
(dispatched) from the depot. Let X(t) denote the number of items in the
depot at time t. Find the limiting probability that there are pj items in the
system (j = 0, . . . ,M − 1). Find the average number of items in the system
over an infinite time horizon.

Suppose the batch size M is to be selected to minimize the average cost
of running the system. The relevant costs are a cost C for dispatching the
items, and a cost h per unit time for holding an item in the depot. Let C(M)
denote the average dispatching plus holding cost for running the system with
batch size M . Find an expression for C(M). Show that the value of M that
minimizes C(M) is an integer adjacent to the value M∗ =

√
2C/hμ.

Exercise 44. Continuation. In the context of the preceding exercise, find
the average time W that a typical item waits in the system before being
dispatched. Find the average waiting time W (i) in the system for the ith
arrival in the batch.

Exercise 45. Consider an ergodic Markov chain Xn with limiting distribu-
tion πi. Prove

lim
n→∞

P{Xn = j,Xn+1 = �} = πjpj�.
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One can show that (Xn, Xn+1) is a two-dimensional Markov chain that is
ergodic with the preceding limiting distribution. However, establish the limit
above only with the knowledge that Xn has a limiting distribution.

Exercise 46. Items with volumes V1, V2, . . . are loaded on a truck one at a
time until the addition of an arriving item would exceed the capacity v of the
truck. Then the truck leaves to deliver the items. The number of items that
can be loaded in the truck before its volume v is exceeded is

N(v) = min{n :

n∑

k=1

Vk > v} − 1.

Assume the Vn are independent with identical distribution F that has a
mean μ and variance σ2. Suppose the capacity v is large compared to μ.
Specify a single value that would be a good approximation for N(v). What
would be a good approximation for E[N(v)]? Specify how to approximate
the distribution of N(v) by a normal distribution. Assign specific numerical
values for μ, σ2, and v, and use the normal distribution to approximate the
probability P{a ≤ N(v) ≤ b} for a few values of a and b.

Exercise 47. Limiting Distribution of a Cyclic Renewal Process. Consider
a cyclic renewal process X(t) on the states 0, 1, . . . ,K − 1 as described in
Example 8. Its inter-renewal distribution is F = F0 
 · · · 
 FK−1, where Fi is
distribution of a sojourn time in state i having a finite mean μi. Assume one
of the Fi is non-arithmetic. Show that F is non-arithmetic. Prove

lim
t→∞

P{X(t) = i} =
μi

μ0 + . . .+ μK−1
.

Is this limiting distribution the same as limt→∞ t−1E[
∫ t
0
1(X(s) = i)ds], the

average expected time spent in state i? State any additional assumptions
needed for the existence of this limit.

Exercise 48. Consider aG/G/1 system as in Example 60. LetW ′
n denote the

length of time the nth customer waits in the queue prior to obtaining service.
Determine a Little law for the average wait W ′ = limn→∞ n−1

∑n
k=1W

′
k.

Exercise 49. System Down Time. Consider an alternating renewal process
that represents the up and down states of a system. Suppose the up times
have a distribution G with mean μ and variance σ2, and the down times have
a distribution G0 with mean μ0 and variance σ2

0 . LetD(t) denote the length of
time the system is down in the time interval [0, t]. Find the average expected

down time β = limt→∞ t−1E[D(t)]. Then show (D(t) − βt)/t1/2
d→ N(0, γ2)

and specify γ.

Exercise 50. Congestion in a Running Race. The following model was de-
veloped by Georgia Tech undergraduate students to assess the congestion in
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the 10-kilometer Atlanta Road Race, which is held every July 4th. After the
pack of elite runners begins the race, the rest of the runners start the race
a little later as follows. The runners are partitioned into m groups, with rk
runners assigned to group k, 1 ≤ k ≤ m, depending on their anticipated
completion times (the runners in each group being about equal in ability).
The groups are released every τ minutes, with group k starting the race at
time kτ (the groups are ordered so that the faster runners go earlier). Al-
though the group sizes rk are random, assume for simplicity that they are
not. Typical numbers are 10 groups of 5000 runners in each group. The aim
was to design the race so that the congestion did not exceed a critical level
that would force runners to walk. To do this, the students developed a model
for computing the probability that the congestion would be above the critical
level. (They used this model to determine reasonable group sizes and their
start times under which the runners would start as soon as possible, with a
low probability of runners being forced to walk.)

The students assumed the velocity of each runner is the same throughout
the race, the velocities of all the runners are independent, and the velocity
of each runner in group k has the same distribution Fk. The distributions Fk
were based on empirical distributions from samples obtained in prior races.
Using pictures of past races, it was determined that if the number of runners
in an interval of length � in the road was greater than b, then the runners in
that interval would be forced to walk. This was based on observing pictures
of congestion in past races where the runners had to slow down to a walk.

Under these assumptions, the number of runners in group k that are in an
interval [a, a+ �] on the road at time t is

Zka (t) =

rk∑

n=1

1(Vkn(t− kτ) ∈ [a, a+ �]),

where Vk1, . . . , Vkrk are the independent velocities of the runners in group k
that have the distribution Fk. Then the total number of runners that are in
[a, a+ �] at time t is

Za(t) =

m∑

k=1

Zka (t).

Specify how one would use the central limit theorem to compute the proba-
bility P{Za(t) > b} that the runners in [a, a + �] at time t would be forced
to walk.

Exercise 51. Confidence Interval. In the context of Example 66, suppose the
regenerative-increment process Z(t) is not observed continuously over time,
but only observed at its regeneration times Tn. In this case, the information
observed up to the nth regeneration time Tn is {Z(t) : t ≤ Tn}. First, find the
a.s. limit of Z(Tn)/n, and the limiting distribution of (Z(Tn) − aTn)/n

1/2.
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Then find an approximate confidence interval for the mean a analogous to
that in Example 66.

Exercise 52. Continuation. Use the CLT in Examples 67 and 68 to obtain
approximate confidence intervals for a renewal process and a Markov chain
comparable to the confidence interval in Example 66.

Exercise 53. Consider a delayed renewal process N(t) with initial distribu-
tion Fe(x) =

1
μ

∫ x
0 [1 − F (s)]ds. Prove E[N(t)] = U 
 Fe(t) = t/μ by a direct

evaluation of the integral representing the convolution, where U =
∑∞
n=0 F

n�.

Exercise 54. Justify expression (2.49), which in expanded form is

σ2 = μ−1
i Var[Zν1 − aν1] =

∑

j∈S
πj f̃(j)

2 + 2
∑

j∈S
πj f̃(j)

∑

k∈S

∞∑

n=1

pnjkf̃(k).

First show that E[Zν1 − aν1)] = 0, and then and use the expansion

Var[Zν1 − aν1] = Ei

[
[

ν1∑

n=1

f̃(Xn)]
2
]

= Ei

[ ν1∑

n=1

f̃(Xn)
2
]
+ 2Ei

[ ν1∑

n=1

Vn

]
, (2.76)

where Vn = f̃(Xn)
∑ν1

�=n+1 f̃(X�). Apply Proposition 69 from Chapter 1 to

the last two expressions in (2.76)(noting that
∑ν1
n=1 Vn =

∑ν1−1
n=0 Vn). Use the

fact that
Ei[Vn|Xn = j, ν1 ≥ n] = f̃(j)h(j),

where h(j) = Ej [
∑ν1

n=1 f̃(Xn)] satisfies the equation

h(j) =
∑

k∈S
pjkf̃(k) +

∑

k∈S
pjkh(k),

and hence h(j) =
∑

k∈S
∑∞

n=1 p
n
jkf̃(k).

Exercise 55. In the context of Theorem 76, show that if the distribution of
the residual time B(t) is independent of t, then it is a stationary process.
Hint: For any si, xi and t, let

Γt = {B(s1 + t) ≤ x1, . . . , B(sk + t) ≤ xk}.

Show that P{Γt|B(t) = x} = P{Γ0|B(0) = x}, and use this equality to prove
P (Γt) is independent of t.



Chapter 3

Poisson Processes

Poisson processes are used extensively in applied probability models. Their
importance is due to their versatility for representing a variety of physical
processes, and because a Poisson process is a natural model for a sum of
many sparse point processes. The most basic Poisson process, introduced in
the preceding chapter, is a renewal process on the time axis with exponential
inter-renewal times. This type of process is useful for representing times at
which an event occurs, such as the times at which items arrive to a network,
machine components fail, emergencies occur, a stock price takes a large jump,
etc. The first part of the present chapter continues the discussion of this basic
Poisson process by presenting several characterizations of it, including the
result that its point locations (i.e., occurrence times) on a finite time interval
are equal in distribution to order-statistics from a uniform distribution on
the interval.

Applications of classical Poisson processes often involve auxiliary marks or
random elements associated with the event occurrence times. For instance, if
items arrive to a network at times that form a Poisson process, then a typical
mark for an arriving item might be a vector denoting its route in the network
and its service times at the nodes on the route. A convenient approach for
analyzing such marks is to consider them as part of a larger “space-time”
marked Poisson process on a multidimensional space. The properties of these
processes are similar to those of “spatial” Poisson processes used for modeling
locations of discrete items in the plane or a Euclidean space such as cell phone
calls, truck delivery points, disease centers, geological formations, particles
in space, fish colonies, etc.

Following the discussion of classical Poisson processes on the time axis, we
describe the structure of contemporary Poisson processes on general spaces,
which includes space-time and spatial Poisson processes. The methodology
for Poisson processes on general spaces involves the use of counting processes
on general spaces and their representation by Laplace functionals. A Poisson
process on a general space is characterized in terms of a mixed binomial
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process. This is a generalization of the uniform order-statistic characterization
of a classical Poisson process.

Several sections describe summations, partitions, translations and general
transformations of Poisson processes. Included are applications of space-time
Poisson processes for analyzing particle systems and stochastic networks.
Next, we show that many properties of Poisson processes readily extend to
several related processes; namely, Cox processes (i.e., Poisson processes with
random intensities), compound Poisson processes, and cluster processes. The
final results are laws of small numbers (like central limit theorems) for rare
events or points, including the Poisson approximation for a binomial distri-
bution. They justify that a Poisson process is a natural limit for a collection
(or sum) of many sparse families of random points.

3.1 Poisson Processes on R+

As in the last chapter, we define a point process N = {N(t) : t ≥ 0} on R+ as
a counting process N(t) =

∑∞
n=1 1(Tn ≤ t), where 0 = T0 ≤ T1 ≤ T2 ≤ . . .

are random points (or times) such that Tn → ∞ a.s. as n → ∞. The point
process N is simple when the points are distinct (T0 < T1 < . . . a.s.).

We will also refer to the point process as the set of random variables
N = {N(B) : B ∈ B+}, where

N(B) =
∞∑

n=1

1(Tn ∈ B), B ∈ B+,

denotes the number of points in the set B, and B+ denotes the Borel sets in
R+ (see Section 6.1 in the Appendix). Note that N(B) is finite when B is
bounded since Tn → ∞ a.s. However, N(B) may be infinite when the set B
is not bounded, and E[N(B)] may be infinite even though N(B) is finite. In
addition, we write

N(a, b] = N((a, b]) = N(b)−N(a), a ≤ b.

In the last chapter, a renewal process with exponential inter-renewal times
was said to be a Poisson process. This characterization, as we show in the
next section, is equivalent to the following one.

Definition 1. A simple point process N = {N(t) : t ≥ 0} on R+ is a Poisson
process with rate λ > 0 if it satisfies the following properties.
• It has independent increments: N(s1, t1], . . . , N(sn, tn] are independent,
for s1 < t1 · · · < sn < tn.
• N(s, t] has a Poisson distribution with mean λ(t− s), for any s < t.

A Poisson process N with rate λ is sometimes called a homogeneous or
time-stationary Poisson process, or a classical Poisson process. Under the
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preceding definition, Theorem 4 below establishes that N is also a renewal
process whose inter-renewal times are independent exponentially distributed
with rate λ.

A number of elementary properties of N follow from this renewal charac-
terization. For instance, we saw in Example 5 that the time Tn of the nth
renewal has the distribution

P{Tn ≤ t} = P{N(t) ≥ n} = 1−
n−1∑

k=0

(λt)ke−λt/k!.

The derivative of this expression is f(t) = λn+1tne−λt/n!, and hence Tn has
a gamma distribution with parameters n and λ.

Keep in mind that all the properties of renewal processes apply to N . For
instance, t−1N(t) → λ a.s. by Corollary 11 in Chapter 2. Another important
fact is that the Poisson process N is also a continuous-time Markov chain as
in Chapter 4.

Some applications of Poisson processes involve only elementary properties
of the processes. Here are two examples.

Example 2. Comparing Arrival Times. Two types of items arrive at a station
for processing by independent Poisson processes with respective rates λ and
λ′. Of interest is the probability that n λ-arrivals come before the first λ′-
arrival. This probability can be expressed as

P{Tn < T ′} =
( λ

λ+ λ′

)n
,

where Tn is the time of the nth λ-arrival and T ′ is the time of the first λ′-
arrival. Indeed, since T ′ has an exponential distribution with rate λ′ and it
is independent of Tn,

P{Tn < T ′} =

∫ ∞

0

P{T ′ > t|Tn = t}P{Tn ∈ dt}

=

∫ ∞

0

e−λ′tP{Tn ∈ dt} = E[e−λ′Tn ] =
( λ

λ+ λ′

)n
.

The last term is the Laplace transform of the gamma random variable Tn
with parameters n and λ. More general results on comparing arrival times
are given in Exercises 6 and 21.

Example 3. Optimal Dispatching. Consider a system in which discrete items
arrive to a dispatching station according to a Poisson process N with rate
λ during a fixed time interval [0, T ]. The items might represent people to be
bussed, ships to be unloaded, computer data or messages to be forwarded,
material to be shipped, etc. There is a cost of h dollars per unit time of
holding one item in the system. Also, at any time during the period, the
items may be dispatched (or processed) at a cost of c dollars, and a dispatch
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is automatically done at time T . A dispatch is performed instantaneously
and all the items in the system at that time are dispatched. Consider a
dispatching policy defined by a vector (n, t1, . . . , tn), where n is the number
of dispatches to make in the period, and t1 < t2 < · · · < tn = T are the times
of the dispatches. The aim is to find a dispatching policy that minimizes the
expected cost.

We will show that the optimal solution is to have n∗ dispatches at the
times t∗i = iT/n∗, where

n∗ =

{
�x� if �x��x� ≥ x2

�x� otherwise, (3.1)

and x = T (hλ/2c)1/2.
This type of policy is a “static” policy in that it is implemented at the

beginning of the time period and remains in effect during the period regardless
of how the items actually arrive (e.g., there may be 0 items in a dispatch
at a predetermined dispatch time ti). A static policy might be appropriate
when it is not feasible or too costly to monitor the system and do real-time
dispatching. An alternative is to use a “dynamic” control policy that involves
deciding when to make dispatches based on the observed queue of units.
Exercise 11 asks if the policy above is optimal for non-Poisson processes.

To solve the problem, we will derive expressions for the total cost and its
mean, and then find optimal values of the policy parameters. Under a fixed
policy (n, t1, . . . , tn), the total cost is

Z = cn+ h

n∑

i=1

Wi,

whereWi is the amount of time that items wait in the system during the time
period (ti−1, ti]. Since N(a, b] is the number of arrivals in a time interval (a, b],
it follows that

Wi =

∫ ti

ti−1

N(ti−1, s] ds.

Using Fubini’s theorem and E[N(a, b]] = λ(b − a),

E[Wi] =

∫ ti

ti−1

E[N(ti−1, s]] ds

= λ

∫ ti

ti−1

(s− ti−1) ds = λ(ti − ti−1)
2/2.

Then the expected cost under the policy (n, t1, . . . , tn) is

f(n, t1, . . . , tn) = E[Z] = cn+
hλ

2

n∑

i=1

(ti − ti−1)
2.
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Therefore, the aim is to solve the optimization problem

min
n

min
t1,...,tn

f(n, t1, . . . , tn)], (3.2)

subject to ti−1 < ti and
∑n

i=1(ti − ti−1) = T .
It is well-known that the problem minx1...,xn

∑n
i=1 x

2
i , under the constraint∑n

i=1 xi = T , has the solution x∗
i = T/n. This result follows by dynamic

programming (backward induction), or by the use of Lagrange multipliers.
Applying this result to the problem (3.2), it follows that for fixed n, the

subproblem mint1,...,tn f(n, t1, . . . , tn) has the solution t∗i − t∗i−1 = T/n, so
that t∗i = iT/n. Also, note that

g(n) = f(n, t∗1, . . . , t
∗
n) = nc+ hλT 2/2n.

Then to solve (3.2), it remains to solve minn g(n). Viewing n as a continu-
ous variable x, the derivative g′(x) = c− hλT 2/(2x2) is nondecreasing. Then
g(x) is convex and it is minimized at x∗ = T (hλ/2c)1/2. So the integer that
minimizes g(n) is either �x∗� or �x∗�. Now g(�x∗�) ≤ g(�x∗�) if and only if
�x∗��x∗� ≥ (x∗)2. This yields (3.1).

3.2 Characterizations of Classical Poisson Processes

Another way of characterizing a Poisson process is that it has independent
increments and satisfies the following infinitesimal properties: the probability
of a point in a small interval is directly proportional to the interval length and
the probability of having more than one point in such an interval is essentially
0. These properties are the basis of differential equations for probabilities of
the process whose solutions are Poisson probabilities.

This section consists of the following theorem, which covers the character-
ization we just mentioned and the renewal characterization as well.

Theorem 4. For a simple point process N = {N(t) : t ≥ 0} on R+ and
λ > 0, the following statements are equivalent.
(a) N is a Poisson process with rate λ.
(b) N is a renewal process whose inter-renewal times are exponentially dis-
tributed with rate λ.
(c) N has independent increments and, for any t and h ↓ 0,

P{N(t, t+ h] = 1} = λh+ o(h), P{N(t, t+ h] ≥ 2} = o(h). (3.3)

Proof. (a) ⇒ (b). Assertion (b) states that ξn = Tn − Tn−1, n ≥ 1, are
independent and have an exponential distribution with rate λ. That is,

P (An) = e−λ
∑n

i=1 ti , n ≥ 1, (3.4)

where An = {ξ1 > t1, . . . , ξn > tn} for ti > 0.
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Assuming N is a Poisson process with rate λ, we will prove (3.4) by in-
duction. It is true for n = 1 since

P (A1) = P{ξ1 > t1} = P{N(t1) = 0} = e−λt1 .

Now assume (3.4) is true for some n− 1. Then

P (An) = P (An−1, ξn > tn) = P (An−1)P{ξn > tn|An−1}. (3.5)

Using Poisson properties of N ,

P{ξn > tn|An−1} = E [P{ξn > tn|An−1, Tn}]
= E [P{N(Tn, Tn + tn] = 0|An−1, Tn}]
= P{N(tn) = 0} = e−λtn .

Substituting this in (3.5), along with (3.4) for n− 1, yields (3.4) for n.
(b) ⇒ (c). Suppose (b) is true. By Corollary 78 in Chapter 2, we know

that N is stationary. In particular, N(t, t + h]
d
= N(h), for h, t ≥ 0. Now,

because the inter-renewal times are exponentially distributed with rate λ,

P{N(h) = 0} = P{T1 > h} = e−λh,

P{N(h) = 1} = P{T1 ≤ h, T2 > h} =

∫ h

0

e−λ(h−s)λe−λsds = λhe−λh.

Then using e−λh = 1− λh+ o(h) in these expressions yields (3.3).
The proof of (c) will be complete upon showing that N has independent

increments: for any s1 < t1 < · · · < sn < tn,

N(s1, t1], . . . , N(sn, tn], n ≥ 1, are independent.

Proceeding by induction, the statement is obviously true for n = 1. Next, as-
sume it is true for some n. Now, the statement for n+1 will follow by showing
that Zn = N(sn+1, tn+1] is independent of Yn = (N(s1, t1], . . . , N(sn, tn]).
Our proof will use the fact from Example 49 in Chapter 2 that the forward
recurrence time B(t) = TN(t)+1− t at time t is exponentially distributed with
rate λ, and it is independent of the renewals in [0, t].

Using this property at time tn, it follows that Zn is conditionally indepen-
dent of Yn given B(tn), and so

P{Yn = k|Zn} = E[P{Yn = k|B(tn), Zn}|Zn] = E[P{Yn = k|B(tn)}].

The last term is P{Yn = k}, which does not depend on Zn. Thus, Yn is
independent of Zn.
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(c) ⇒ (a). Assuming (c) is true, (a) will follow by proving N(s, t] has a
Poisson distribution with mean λ(t − s), for each s < t. We begin with the
case s = 0 and prove

pn(t) = P{N(t) = n} = (λt)ne−λt/n!, n ≥ 0.

We will establish this by deriving differential equations for the functions pn(t)
and showing that their solutions are the preceding Poisson probabilities.

Under the assumptions in (c), for n ≥ 1,

pn(t+ h) = P{N(t) = n,N(t, t+ h] = 0}
+P{N(t) = n− 1, N(t, t+ h] = 1}
+P{N(t+ h) = n,N(t, t+ h] ≥ 2}.

Since the last probability is ≤ P{N(t, t + h] ≥ 2} = o(h), and N has inde-
pendent increments, the preceding is

pn(t+ h) = pn(t)p0(h) + pn−1(t)p1(h) + o(h).

In light of this expression, pn(t) is right-continuous on R+ since p0(h) → 1
and p1(h) → 0 as h ↓ 0. From (3.3), we have p1(h) = λh+ o(h) and p0(h) =
1− p1(h)− o(h). Substituting these in the preceding expression yields

(pn(t+ h)− pn(t))/h = −λpn(t) + λpn−1(t) + o(h)/h.

Similar reasoning shows that pn(t) is left-continuous on (0,∞) and

(pn(t)− pn(t− h))/h = −λpn(t− h) + λpn−1(t− h) + o(h)/h.

Then letting h ↓ 0, yields the differential equations

p′
n(t) = −λpn(t) + λpn−1(t), n ≥ 1.

In case n = 0, a similar argument yields p′
0(t) = −λp0(t).

To solve this family of differential-difference equations, with boundary con-
ditions pn(0) = 1(n = 0), first note that p0(t) = e−λt satisfies the last differ-
ential equation. Then using this function and induction on n ≥ 1 it follows
that pn(t) = (λt)ne−λt/n!. This proves that N(t) has a Poisson distribution
with mean λt. Furthermore, by the same argument, one can show that N(s, t]
has a Poisson distribution with mean λ(t− s) for any s < t (in this case, one
uses pn(t) = P{N(s, t] = n}). This completes the proof that (c) implies (a).
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3.3 Location of Points

Many applications of Poisson processes involve knowledge about the locations
of their points. Statement (c) in Theorem 4 above suggests that the points of
a Poisson process are located independently in a uniform sense on R+. This
section gives a precise description of this property based on a multinomial
characterization of Poisson processes.

We begin with an important property of Poisson processes.

Remark 5. If N is a Poisson process with rate λ, then the probability that
it has a point at any fixed location t is 0 (i.e., P{N({t}) = 1} = 0). This
follows from Proposition 18 in Chapter 2 or from Proposition 30 below.

This remark implies that N(a, b]
d
= N(I), where I equals (a, b), [a, b], or

[a, b), for a < b. Thus, Definition 1 is equivalent to the following one.

Definition 6. A simple point process N is a Poisson process with rate λ
if and only if N(I1), . . . , N(In) are independent, for disjoint finite intervals
I1, . . . , In, and N(I) has a Poisson distribution with mean λ|I| for any finite
interval I. Here |I| denotes the length of I.

The next result is a characterization of a Poisson process involving a multi-
nomial distribution (3.6) of the numbers of its points in disjoint intervals.
Interestingly, (3.6) is independent of the rate λ. The analogous property for
Poisson processes on general spaces is given in Theorem 28 and Example 27.

Theorem 7. For a simple point process N = {N(t) : t ≥ 0} on R+ and
λ > 0, the following statements are equivalent.
(a) N is a Poisson process with rate λ.
(b) (Multinomial Property) For any t > 0, the quantity N(t) has a Poisson
distribution with mean λt, and, for any disjoint intervals I1, . . . , Ik in [0, t],
and nonnegative integers n1, . . . , nk,

P{N(I1) = n1, . . . , N(Ik) = nk|N(t) = n} =
n!

n1! · · ·nk!
pn1
1 · · · pnk

k , (3.6)

where n = n1 + · · ·+ nk and pi = |Ii|/t.

Proof. (a) ⇒ (b). Suppose (a) holds. By Definition 6, N has independent
Poisson increments over any disjoint intervals. Then letting I0 = [0, t]\∪ki=1Ii
and n0 = 0, the conditional probability in (3.6) is

P{N(Ii) = ni, 0 ≤ i ≤ k}
P{N(t) = n} =

∏k
i=0(λ|Ii|)nie−λ|Ii|/ni!

e−λt(λt)n/n!
.

This clearly reduces to the right-hand side of (3.6) since
∑k

i=0 |Ii| = t.
(b) ⇒ (a). Suppose (b) holds. Fix a t and choose any 0 = t0 < t1 < · · · <

tk = t and nonnegative integers n1, . . . , nk such that n = n1+ · · ·+nk. Define
Ii = (ti−1, ti] and Ai = {N(Ii) = ni}. Then under the properties in (b),
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P (∩ki=1Ai) = P{N(t) = n}P{∩ki=1Ai|N(t) = n}

=

k∏

i=1

[λ(ti − ti−1)]
ni

ni!
e−λ(ti−ti−1) =

k∏

i=1

P (Ai).

This proves that N(I1), . . . , N(Ik) are independent, and N(Ii) has a Poisson
distribution with mean λ(ti − ti−1).

The proof of (a) will be complete upon showing that the increments
N(s1, t1], . . . , N(sk, tk] are independent, for any s1 < t1 < · · · < sk < tk = t.
However, this independence follows because these increments are a subset of
the incrementsN(0, s1], N(s1, t1], N(t1, s2], . . . , N(sk, tk] over all the adjacent
intervals, which are independent as we just proved.

A special case of (3.6) is the binomial property: For I ⊆ [0, t] and k ≤ n,

P{N(I) = k|N(t) = n} =

(
n

k

)

(|I|/t)k(1 − |I|/t)n−k.

The multinomial property also yields the joint conditional distribution of
point locations in [0, t] given N(t) = n, as shown in (3.7) below.

Theorem 8. (Order Statistic Property) Suppose N is a Poisson process with
rate λ. Then, for any disjoint intervals I1, . . . , In in [0, t],

P
{
T1 ∈ I1, . . . , Tn ∈ In

∣
∣
∣N(t) = n

}
=
n!

tn

n∏

i=1

|Ii|. (3.7)

Hence, the joint conditional density of T1, . . . , Tn given N(t) = n is

fT1,...,Tn

(
t1, t2, . . . , tn

∣
∣
∣N(t) = n

)
=
n!

tn
, 0 < t1 < · · · < tn < t. (3.8)

The density (3.8) is the density of the order statistics of n independent uni-
formly distributed random variables on [0, t] (see Proposition 10 below).

Proof. Expression (3.7) follows since the conditional probability in it equals
P{N(Ii) = 1, 1 ≤ i ≤ n|N(t) = n}, which in turn equals the right-hand side
of (3.7) by the multinomial property (3.6).

Next, note that (3.7), for a1 < b1 < · · · < an < bn < t, is

P
{
Ti ∈ (ai, bi], 1 ≤ i ≤ n

∣
∣
∣N(t) = n

}
=

∫ b1

a1

· · ·
∫ bn

an

n!

tn
dt1 · · · dtn.

Then the integrand n!/tn is the conditional density as asserted in (3.8).

Example 9. Marginal Distributions. From (3.7), (3.8) and Exercise 28,
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P{Tk ≤ s|N(t) = n} =

n∑

j=k

(
n

j

)

(s/t)j(1− s/t)n−j,

fTk
(s|N(t) = n) =

n!

(k − 1)!(n− k)!
(s/t)k−1(1/t)(1− s/t)n−k, 0 ≤ s ≤ t.

This conditional distribution of Tk is the same as that of tY , where Y has
a beta distribution as shown in the Appendix with parameters a = k and
b = n − k + 1, and mean a/(a+ b). Taking advantage of this fact, it follows
easily that

E[Tk|N(t) = n] = E[tY ] = kt/(n+ 1).

In particular, for a single point,

P{T1 ≤ s|N(t) = 1} = s/t, 0 ≤ s ≤ t.

This is a uniform distribution on [0, t].

We referred to (3.8) as the density of n order statistics of independent
uniformly distributed random variables on [0, t]. This is justified by the fol-
lowing formula for the density of order statistics of a random sample with a
general density.

Proposition 10. (Order Statistics) SupposeX1, . . . , Xn are independent con-
tinuous random variables with density f , and let X(1) < · · · < X(n) de-
note the quantities X1, . . . , Xn in increasing order. These order statistics
X(1), . . . , X(n) have the joint density

f(x1, . . . , xn) = n!f(x1) · · · f(xn), x1 < · · · < xn. (3.9)

Proof. Choose any a1 < b1 < · · · < an < bn, and let Ii = (ai, bi], 1 ≤ i ≤ n.
Since X(1), . . . , X(n) is equally likely to be any one of the n! permutations of
X1, . . . , Xn,

P{X(i) ∈ Ii, 1 ≤ i ≤ n} = n!P{Xi ∈ Ii, 1 ≤ i ≤ n}

= n!

n∏

i=1

P{Xi ∈ Ii}

= n!

∫ b1

a1

· · ·
∫ bn

an

f(x1) · · · f(xn) dx1 · · · dxn.

This proves the density formula (3.9).
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3.4 Functions of Point Locations

Typical quantities of interest for a Poisson process N in a time interval [0, t]
are deterministic or random functions of the point locations T1, . . . , TN(t). A

classic example is
∑N(t)

n=1 f(Tn), where f : R+ → R. This section shows how
to analyze such functions in terms of random samples.

The following result is an immediate consequence of Theorem 8.

Corollary 11. (Order Statistic Tool) Let N be a Poisson process with rate
λ, and, for each n ≥ 1, let hn be a function from R

n
+ to some Euclidean or

more general space S, and let h0 ∈ S. Then, for t > 0,

hN(t)(T1, . . . , TN(t))
d
= hκ(X(1), . . . , X(κ)),

where X(1) < · · · < X(n) are the n order statistics associated with independent
random variables X1, . . . , Xn that are uniformly distributed on [0, t] for each
n, and κ is a Poisson random variable with mean λt, independent of the Xi.
Furthermore, if each hn(x1, . . . , xn) is symmetric (meaning it is the same for
any permutation of x1, . . . , xn), then

hN(t)(T1, . . . , TN(t))
d
= hκ(X1, . . . , Xκ). (3.10)

These expressions enable one to analyze a function of the random-length,
“dependent” variables T1, . . . , TN(t) by the simpler mixed random sample
X1, . . . , Xκ. The ideas here are related to the characterization of a Poisson
process by mixed binomial or sample processes in Theorem 28 below.

As an example, for f : R+ → R,

N(t)∑

n=1

f(Tn)
d
=

κ∑

n=1

f(Xn).

In this case, hn(x1, . . . , xn) =
∑n
i=1 f(xi) is symmetric. Here is another ex-

ample involving random functions.

Proposition 12. (Random Sums) Suppose N is a Poisson process with rate
λ, and define

Z(t) =

N(t)∑

n=1

f(Tn, Yn), (3.11)

where Y1, Y2 . . . are i.i.d. random elements in a space S, independent of N ,
and f : R+ × S → R. Assume φ(α, t) = E[eαf(t,Y1)] exists for α in a neigh-
borhood of 0 and t ∈ R. Then the moment generating function of Z(t) is

E[eαZ(t)] = e−λt(1−gt(α)), (3.12)

where gt(α) = t−1
∫ t
0
φ(α, s) ds. Hence,
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E[Z(t)] = λ

∫ t

0

E[f(s, Y1)] ds. (3.13)

Proof. First note that

E[eαZ(t)] = E
[
E[eαZ(t)|N(s), s ≤ t]

]

= E
[N(t)∏

n=1

E[eαf(Tn,Yn)|N(s), s ≤ t]
]

= E
[N(t)∏

n=1

φ(α, Tn)
]
.

Applying (3.10) with hn(x1, . . . , xn) =
∏n
i=1 φ(α, xi) to the last expression,

E[eαZ(t)] = E
[ κ∏

n=1

φ(α,Xn)
]
.

Then conditioning on κ, which is independent of the Xn’s, we have

E[eαZ(t)] = E
[ κ∏

n=1

E[φ(α,Xn)]
]
.

Clearly E[φ(α,Xn)] = gt(α), since Xn is uniformly distributed on [0, t].
Using this along with the independence of the Xn’s and the well-known Pois-
son generating function E[βκ] = e−λt(1−β), we obtain

E[eαZ(t)] = E[gt(α)
κ] = e−λt(1−gt(α)).

This proves (3.12). In addition, (3.13) follows, since the derivative of (3.12)
with respect to α at α = 0 is E[Z(t)] = tλg′

t(0)e
−λt(1−gt(0)), where gt(0) = 1

and g′
t(0) = φ′(0) = t−1

∫ t
0 E[f(x, Y1)] dx.

Example 13. Discounted Cash Flows. A special case of the sum (3.11) is

Z(t) =

N(t)∑

n=1

Yne
−γTn ,

where γ > 0. This is a standard model for discounted costs or revenues,
where γ is a deterministic discount rate. For instance, suppose that sales of
a product occur at times that form a Poisson process N with rate λ, and the
amount of revenue from the nth sale is a random variable Yn, independent
of N . Then the total discounted revenue up to time t is given by Z(t). By
(3.12) and (3.13), the moment generating function and mean of Z(t) are

E[eαZ(t)] = exp
{
− λt(1 − t−1

∫ t

0

E[eαe
−γxY1 ] dx)

}

E[Z(t)] = λE[Y1](1 − e−γt)/γ.



3.5 Poisson Processes on General Spaces 181

Example 14. Compound Poisson Process. Another example of (3.11) is Z(t) =
∑N(t)
n=1 Yn. This is like the preceding discounted cash flow, but without dis-

counting. Letting γ → 0 in the preceding example, it follows that

E[eαZ(t)] = e−λt(1−E[eαY1 ]),

E[Z(t)] = λtE[Y1].

This moment generating function of Z(t) is that of a compound Poisson
distribution with rate λt and distribution F (y) = P{Y1 ≤ y}, which is

P{Z(t) ≤ z} =

∞∑

n=0

e−λt(λt)nFn�(z)/n!, z ∈ R.

The process {Z(t) : t ≥ 0} is called a compound Poisson process; further
properties of it are in Section 3.15.

3.5 Poisson Processes on General Spaces

Applications of classical Poisson processes on R+ typically require knowledge
of Poisson processes on Euclidean and general spaces. In addition, there are
many spatial systems of points that can be modeled by Poisson processes.
Accordingly, the rest of this chapter will focus on basics of point processes and
Poisson processes on general spaces. This section introduces the terminology
we will use.

A “point process” is a counting process that represents a random set of
points in a space. The usual spaces are the real line, the plane, the multi-
dimensional Euclidean space R

d, or, more generally, a complete, separable
metric space (a Polish space). Following the standard convention, we will
discuss point processes on a polish space S. The exposition will be under-
standable by thinking of S as an Euclidean space. We let S denote the family
of Borel sets of S (see the Appendix), and let Ŝ denote the family of bounded
Borel sets (a set is bounded if it is contained in a compact set). We refer to
S simply as a space, and denote other spaces of this type by S′, S̃, etc.

We begin with an informal description of a point process. A random set of
points in S is a countable set of S-valued random elements {Xn} such that
only a finite number of the points are in any bounded set. Then

N(B) =
∑

n

δXn(B), B ∈ S,

denotes the number of points in B, where δx(B) = 1(x ∈ B) (a Dirac measure
with unit mass at x). This counting measure N , as we will define below, is a
point process on S with point locations {Xn}.
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Note that N takes values in the set M of all counting measures ν on (S,S)
that are locally finite (ν(B) < ∞, for bounded sets B). Each measure in M

has the form
ν(B) =

∑

n

δxn(B), B ∈ S, (3.14)

where {x1, . . . , xk} is its associated set of points, for 0 ≤ k ≤ ∞. There may
be more than one point at a location, and the order of the subscripts on the
locations is invariant under permutations. The set M is endowed with the
σ-field M generated by the sets {ν ∈ M : ν(B) = n}, for B ∈ S and n ≥ 0.

We are now ready for a formal definition.

Definition 15. A point process on a space S is a measurable map N from a
probability space (Ω,F , P ) to the space (M,M). The quantity N(B) is the
number of points in the set B ∈ S. By the formulation (3.14),

N(B) =
∑

n

δXn(B), B ∈ S, (3.15)

where the Xn denote the locations of the points of N .

For the following discussion, assume that N is a point process on the
space S. Technical properties of the spaces S and M are not used explicitly
in the sequel. One can simply think of N as a counting process on S = R

d

that is locally finite (N(B) < ∞ a.s. for bounded sets B). The probability
distribution of the point process N (i.e., P{N ∈ ·}) is determined by its
finite-dimensional distributions

P{N(B1) = n1, . . . , N(Bk) = nk}, B1, . . . , Bk ∈ Ŝ. (3.16)

In other words, two point processes N and N ′ on S are equal in distribution,

denoted by N
d
= N ′, if their finite-dimensional distributions are equal:

(N(B1) . . . , N(Bk))
d
= (N ′(B1) . . . , N

′(Bk)), B1, . . . , Bk ∈ Ŝ.

In constructing a point process, it suffices to define the probabilities (3.16)
on sets Bi that generate S. When S = R

d, “rectangles” of the form1 (a, b]
generate S.

The intensity measure (or mean measure) of the point process N is

μ(B) = E[N(B)], B ∈ S.

Note that μ(B) may be infinite, even if B is bounded. When S = R
d, the

intensity is sometimes of the form μ(B) =
∫
B λ(x)dx, where λ(x) is the rate

of N at the location x and dx denotes the Lebesgue measure. We call λ(x)
the location-dependent rate function of N .

1 Here x = (x1, . . . , xd) is a typical vector in Rd and (a, b] = {x ∈ Rd : ai < xi ≤ bi, 1 ≤
i ≤ d} is a half-open interval in Rd.



3.6 Integrals and Laplace Functionals of Poisson Processes 183

Our main focus hereafter will be on Poisson point processes.

Definition 16. A point process N on a space S is a Poisson process with
intensity measure μ that is locally finite if the following conditions are satis-
fied.
• N has independent increments: The quantities N(B1), . . . , N(Bn) are in-
dependent for disjoint sets B1, . . . , Bn in Ŝ.
• For each B ∈ Ŝ, the quantity N(B) is a Poisson random variable with mean
μ(B).

This definition uses the fact that N(B) = 0 a.s. when μ(B) = 0. Note
that the number of points N({x}) exactly at x has a Poisson distribution
with mean μ({x}); so N({x}) = 0 a.s. when μ({x}) = 0. From the definition,
it follows that the finite-dimensional distributions of a Poisson process are
uniquely determined by its intensity measure, and vice versa. That is, two
Poisson processes N and N ′ on S are equal in distribution if and only if their
intensity measures are equal.

Do Poisson processes exist? In other words, does there exist a point pro-
cess on a probability space that satisfies the properties in Definition 16? We
will establish the existence later when we show in Theorem 29 below that a
Poisson process can be characterized by independent random elements, which
do exist.

The family of Poisson processes on R+ contain the classical ones.

Example 17. Poisson Processes on R+. A Poisson process N on R+ (or on
R) with intensity measure μ is sometimes called a non-homogeneous Poisson
process. We denote its point locations (as we have been doing) by 0 < T1 ≤
T2 ≤ . . . instead of Xn, and call them “times” when appropriate. Here there
may be more than one point at a location. In this setting,N(B) =

∑
n δTn(B)

has a Poisson distribution with mean μ(B). We also write N(t) = N(0, t],
for t > 0, and N(a, b] = N((a, b]) and μ(a, b] = μ((a, b]), for a < b. When
μ(B) =

∫
B
λ(t)dt, we say N is a Poisson process with rate function λ(t). In

case μ(t) = E[N(t)] = λt, for some λ > 0, then N is a classical Poisson
process with rate λ, consistent with Definition 1. It is sometimes called a
homogeneous or stationary Poisson process with rate λ.

Results in the preceding sections for homogeneous Poisson processes have
obvious analogues for nonhomogeneous processes. For instance, N satisfies
the multinomial property (3.6) with pi = μ(Bi)/μ(0, t], and Exercise 29 de-
scribes its order statistic property.

3.6 Integrals and Laplace Functionals of Poisson
Processes

Laplace transforms are useful for identifying distributions of nonnegative ran-
dom variables and for establishing convergence in distribution of random
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variables. The analogous tool for point processes is a Laplace functional. This
section covers a few properties of Laplace functionals and related integrals
of point processes. These are preliminaries needed to establish the existence
of Poisson processes, the topic of the next section. The use of Laplace trans-
forms and functionals for establishing the convergence of random variables
and point processes are covered later in Sections 3.16 and 3.17.

We begin with a little review. Recall that the Laplace transform of a
nonnegative random variable X with distribution F is

F̂X(α) = E[e−αX ] =

∫

R+

e−αxdF (x), α ≥ 0.

This function uniquely determines the distribution of X in that X
d
= Y if

and only if F̂X(·) = F̂Y (·). For instance, the Laplace transform of a Poisson
random variable X with mean λ is

F̂X(α) =

∞∑

n=0

e−αne−λλn/n! = e−λ(1−e−α).

Now, if Y is a nonnegative integer-valued random variable with E[e−αY ] =

e−λ(1−e−α), then Y has a Poisson distribution with mean λ. Here is an ex-
ample for sums.

Example 18. Sums of Independent Poisson Random Variables. Let Y1, . . . , Yn
be independent Poisson random variables with respective means μ1, . . . , μn.
Then

∑n
i=1 Yi has a Poisson distribution with mean μ =

∑n
i=1 μi (which we

assume is finite when n = ∞). To see this result, note that by the indepen-
dence of the Yi and the form of their Laplace transforms,

E[e−α
∑n

i=1 Yi ] =

n∏

i=1

E[e−αYi ] = e−μ(1−e−α).

We recognize this as being the Laplace transform of a Poisson distribution
with mean μ, and so

∑n
i=1 Yi has this distribution.

The rest of this section covers analogous properties for Laplace functionals
of point processes. Consider a point process N =

∑
n δXn on a space S. The

“integral” of a function f : S → R+ with respect to N is simply the sum

Nf =

∫

S

f(x)N(dx) =
∑

n

f(Xn),

provided it is finite. It is finite when f has a compact support, meaning that
{x : f(x) > 0} is contained in a compact set. Similarly, the integral of
f : S → R+ with respect to a measure μ will be denoted by
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μf =

∫

S

f(x)μ(dx).

We will often use integrals of functions f in the set C+
K(S) of all continuous

functions f : S → R+ with compact support.

Definition 19. The Laplace functional of the point process N is

E[e−Nf ] = E
[
exp{−

∫

S

f(x)N(dx)}
]
, f : S → R+.

The function f is a “variable” of this expectation (just as the parameter α is
a variable in a Laplace transform E[e−αX ]).

The following result contains the basic property that the Laplace func-
tional of a point process uniquely determines its distribution (the proof is in
[61]). It also justifies that a Laplace functional is uniquely defined on the set
C+
K(S) viewed as “test” functions.

Theorem 20. For point processes N and N ′ on S, each one of the following

statements is equivalent to N
d
= N ′.

(a) Nf
d
= N ′f, f ∈ C+

K(S).

(b) E[e−Nf ] = E[e−N ′f ], f ∈ C+
K(S).

Laplace functionals are oftenmore convenient to use than finite-dimensional
distributions in deriving the distribution of a point process constructed as a
function of random variables or point processes. A standard approach for
establishing that a point process is Poisson is to verify that its Laplace func-
tional has the following form; this also yields its intensity measure.

Theorem 21. (Poisson Laplace Functional) For a Poisson process N on S
with intensity measure μ, and f : S → R+,

E[e−Nf ] = exp[−
∫

S

(1− e−f(x))μ(dx)].

Proof. First consider the simple function f(x) =
∑k
i=1 ai1(x ∈ Bi), for some

nonnegative a1, . . . , ak and disjoint B1, . . . , Bk in Ŝ. Then

Nf =
k∑

i=1

ai

∫

S

1(x ∈ Bi)N(dx) =
k∑

i=1

aiN(Bi).

Using this and the independence of the N(Bi), we have

E[e−Nf ] =
k∏

i=1

E[e−aiN(Bi)] = exp[−
k∑

i=1

μ(Bi)(1− e−ai)]

= exp[−
∫

S

(1 − e−f(x))μ(dx)].
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Next, for any continuous f : S → R+, there exist simple functions fn ↑
f (e.g., fn(x) = n ∧ (�2nf(x)�/2n)). Then by the monotone convergence
theorem (see the Appendix) and the first part of this proof,

E[e−Nf ] = lim
n→∞

E[e−Nfn ] = lim
n→∞

exp[−
∫

S

(1− e−fn(x))μ(dx)]

= exp[−
∫

S

(1− e−f(x))μ(dx)].

This completes the proof.

Recall that Example 18 uses Laplace transforms to prove that a sum of
independent Poisson random variables is Poisson. Here is an analogous result
for a sum of Poisson processes.

Theorem 22. (Sums of Independent Poisson Processes) Let N1, . . . , Nn de-
note independent Poisson processes on S with respective intensity measures
μ1, . . . , μn. Then their sum (or superposition) N =

∑n
i=1Ni is a Poisson

process with intensity measure μ =
∑n

i=1 μi. This is also true for n = ∞
provided μ is locally finite.

Proof. One can prove this, as suggested in Exercise 14, by verifying that N
satisfies the defining properties of a Poisson process. Another approach, using
Laplace functionals and Theorem 21, is to verify that

E[e−Nf ] = e−μh, f ∈ C+
K(S),

where h(x) = 1 − e−f(x). But this follows since by the independence of the
Ni and the form of their Laplace functionals in Theorem 21,

E[e−Nf ] =
n∏

i=1

E[e−Nif ] =

n∏

i=1

e−μih = e−μh.

Example 23. A company that produces a household cleaning fluid has a
bottle-filling production line that occasionally has to stop for repair due to
imperfections in the bottles or due to worker errors. There are four types of
line stoppages: (1) minor stop (under 30 minutes) due to bottle imperfection,
(2) major stop (over 30 minutes) due to bottle imperfection, (3) minor stop
due to worker error, and (4) major stop due to worker error. These four types
of stoppages occur according to independent Poisson processes with respec-
tive rates λ1, . . . , λ4. Then by Theorem 22, line stops due to any of these
causes occur according to a Poisson process with rate λ1+ · · ·+λ4. Similarly,
minor stops occur according to a Poisson process with rate λ1+λ3, and major
stops occur according to a Poisson process with rate λ2 + λ4. A model like
this was used in a study of a bottling plant by Georgia Tech students.
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We end this section with more insight on integrals Nf =
∑
n f(Xn) with

respect to a point process N . Expression (3.17) below says the mean of such
an integral equals the corresponding integral with respect to the intensity
measure. Theorem 22 in Chapter 2 for renewal processes is a special case.
The variance of Nf has the nice form (3.18), when N is Poisson.

Theorem 24. Let N =
∑

n δXn be a point process on S with intensity mea-
sure μ. For any f : S → R,

E
[∑

n

f(Xn)
]
=

∫

S

f(x)μ(dx), (3.17)

provided the integral exists. That is, E[Nf ] = μf . If in addition, N is a
Poisson process, then

Var
[∑

n

f(Xn)
]
=

∫

S

f(x)2μ(dx), (3.18)

provided the integral exists. That is, Var[Nf ] = μf2.

Proof. The proof of (3.17) is similar to that of Theorem 22 or Theorem 21.
Namely, first one shows E[Nf ] = μf is true when f is a simple function,
and then monotone convergence yields the equality for general f , which is a
monotone limit of simple functions.

To prove (3.18), note that by Theorem 21, we have

E[e−αNf ] = e−h(α), (3.19)

where h(α) =
∫
S
(1 − e−αf(x))μ(dx). The derivative of this expression at

α = 0, yields
E[Nf ] = h′(0)e−h(0) = μf.

Furthermore, taking the second derivative of (3.19) at α = 0, and using
h(0) = 1 and h′(0) = E[Nf ], we obtain

E[(Nf)2] = lim
α↓0

[
(h′(α))2e−h(α) − h′′(α)e−h(α)

]

= lim
α↓0

[ ∫

S

f(x)2e−αf(x)μ(dx) + (h′(α))2
]

=

∫

S

f(x)2μ(dx) + (E[Nf ])2.

This proves (3.18).

Example 25. Suppose N is a Poisson process on R+ with intensity measure
μ(B) =

∫
B
e−atdt, and consider
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Z =

∫ u

0

ce−btN(dt) =

N(u)∑

n=1

ce−bTn .

Here a, b, c, u are nonnegative constants. By Theorem 24,

E[Z] = c

∫ u

0

e−bte−atdt =
c[1− e−u(a+b)]

a+ b
,

Var[Z] = c2
∫ u

0

e−2bte−atdt =
c2[1− e−u(a+2b)]

a+ 2b
.

3.7 Poisson Processes as Sample Processes

Section 3.4 showed that a Poisson process on R+ can be characterized by
an order-statistic property of its point locations. This section presents an
analogous characterization of a Poisson process on a general space in terms
of sample processes. Using this result, we establish the existence of Poisson
processes. Sample processes are also useful as models by themselves as well
as building blocks for identifying Poisson processes.

A sample process is a fundamental point process defined as follows. Sup-
pose that X1, X2, . . . are i.i.d. random elements in the space S with distribu-
tion F (B) = P{X1 ∈ B}. The point process

N =
n∑

i=1

δXi

on S is a sample process for n samples from F .
Clearly, the number of samples N(B) in a set B has a binomial distribution

with parameters n and μ(B) (N is also called a binomial point process). In
what follows, we consider such a sample process in which the sample size is
a random variable that is independent of the samples; the resulting process
is called a mixed sample process.

We first consider Poisson processes with finite intensities.

Theorem 26. Suppose N is a point process on S with an intensity measure
μ such that 0 < μ(S) <∞. The N is a Poisson process if and only if

N
d
= Ñ =

κ∑

i=1

δX̃i
,

where Ñ is a mixed sample process for κ samples from the distribution
μ(·)/μ(S), and κ has a Poisson distribution with mean μ(S).
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Proof. To prove the assertion, it suffices to verify that the Laplace functional
of Ñ is the same as that in Theorem 21 for a Poisson process with intensity
measure μ. That is,

E[e−Ñf ] = exp[−
∫

S

(1− e−f(x))μ(dx)], f ∈ C+
K(S).

But this follows, since using the generating function E[zκ] = e−μ(S)(1−z) and
the fact that X̃1 has the distribution μ(·)/μ(S),

E[e−Ñf ] = E
[
E[e−

∑κ
i=1 f(X̃i)|κ]

]
= E

[(
E[e−f(X̃1)]

)κ]

= exp[−μ(S)(1− E[e−f(X̃1)])]

= exp[−
∫

S

(1 − e−f(x))μ(dx)].

Example 27. Fires occur in a region S of a city at locations X1, X2, . . . that
are independent with distribution F . Then the spatial locations of n fires in
S is given by the sample process N =

∑n
i=1 δXi . In particular, the number

of fires in a region B ∈ S has a binomial distribution with parameters n
and F (B). Furthermore, the numbers of fires in B1, . . . , Bk in S that form a
partition of S, have the multinomial distribution, for n = n1 + · · ·+ nk,

P{N(B1) = n1, . . . , N(Bk) = nk} =
n!

n1! · · ·nk!
F (B1)

n1 · · ·F (Bk)
nk .

Next, suppose the number of fires in a year is a Poisson random variable
κ with mean λ that is independent of the fire locations. Then the fires in S
are represented by Ñ =

∑κ
i=1 δXi , which is Poisson process with intensity

measure λF (·) by Theorem 26. In particular, the number of fires Ñ(B) in B
has a Poisson distribution with mean λF (B).

Theorem 26 has the following extension that says any Poisson process on
a bounded set is equal to a sample process on that set.

Theorem 28. A point process N on S with a locally finite intensity measure
μ is a Poisson process if and only if, for each B ∈ Ŝ with μ(B) > 0,

N(· ∩B)
d
= Ñ(·),

where Ñ is a mixed sample process of κ samples from the probability measure
μ(· ∩B)/μ(B), and κ has a Poisson distribution with mean μ(B).

Proof. This follows by applying Theorem 26 to each bounded set B, and
using the fact that the distribution of a Poisson process is determined (via
Laplace functionals) by its distribution on bounded sets (the supports of the
functions in the Laplace functional).
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The preceding characterization of a Poisson process yields the following
result.

Theorem 29. (Existence of Poisson Processes) For any locally finite measure
μ on S, there exists a Poisson process N on S with intensity measure μ.

Proof. First note that a sample process for a random-sized sample exists since
it is a function of an infinite collection of independent random variables, which
exist by Corollary 6 in the Appendix (i.e., one can construct a probability
space and the independent random variables on it). Then a Poisson process
N with a “finite” intensity measure μ exists since it is a sample process by
Theorem 26.

Next, consider the case when μ is infinite. Choose bounded sets B1, B2, . . .
in S that partition S such that μ(Bn) < ∞. By the preceding part of the
proof, there exists a Poisson process Nn on S, for each n, with intensity
μn(·) = μ(· ∩ Bn). By Theorem 6 in the Appendix, we can define these Nn
on a common probability space so that they are independent. Then define
N =

∑
nNn. By Theorem 22, N is a Poisson process on S with intensity∑

n μn = μ.

We end this section with a criterion for a Poisson process to be simple. A
point process N on S is simple if P{N({x}) ≤ 1, x ∈ S} = 1 (i.e., its point
locations are distinct).

Proposition 30. A Poisson process N with intensity measure μ is simple if
and only if μ({x}) = 0, x ∈ S. Hence any Poisson process on an Euclidean
space is simple if its intensity has the form μ(B) =

∫
B
λ(x)dx, for some rate

function λ(x).

Proof. In light of Theorem 28, it suffices to prove this when μ is finite. In this

case, N
d
= Ñ , where Ñ is a mixed sample process as in Theorem 26. Now

P (N is simple) = P (Ñ is simple) =

∞∑

n=2

P (Dn)P{κ = n},

where Dn = {X̃1, . . . , X̃n are distinct}. Then N is simple if and only if
P (Dn) = 1, for each n ≥ 2. The latter statement is true, by Exercise 39,
if and only if μ({x})/μ(S) = 0, x ∈ S. Hence N is simple if and only if
μ({x}) = 0, x ∈ S.

3.8 Deterministic Transformations of Poisson Processes

As we will see, many point processes involving complex phenomena or
systems can be represented by functions of Poisson processes. In these settings,
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a Poisson process is typically the basic data that defines or initializes a sys-
tem, and various characteristics of the system are deterministic or random
functions of the Poisson process. In particular, if part of a system’s infor-
mation is a point process (e.g., production completion times, or a random
function of the original Poisson points), it is natural to know whether that
point process is a Poisson process.

A basic issue in this regard is: If the point locations of a Poisson processes
are mapped to some space by a deterministic or random mapping, then do
the resulting new points also form a Poisson Process? This issue in a variety
of contexts is the underlying theme for the next six sections.

We begin in this section by considering deterministic maps such as the
following one.

Example 31. Suppose N is a Poisson process in the nonnegative quadrant
S = R

2
+ of the plane with intensity measure μ. Let N ′(r) denote the number

of points of N within a distance r from the origin. We can represent N ′

as a mapping of N in which a point (x, y) of N is mapped to its distance

g(x, y) =
√
x2 + y2 from the origin. Then,

N ′(r) = N({(x, y) ∈ S : g(x, y) ≤ r}).

In this example, N ′ simply records some characteristic (the distance to the
origin) of each point in the so-called data N .

By Theorem 32 below, N ′ is a Poisson process on R+ with mean measure
E[N ′(r)] = μ({(x, y) ∈ S : g(x, y) ≤ r}). This mean is clearly finite for each
r. In case the Poisson process N is homogeneous with a constant rate λ, then
E[N ′(r)] = λπr2.

We will now show that any general mapping of a Poisson process, such
as the one above, results in a new Poisson process. Suppose N is a Poisson
process on S with intensity measure μ. Consider a transformation of N in
which its points in S are mapped to a space S′ (possibly S) by the rule that
a point of N located at x ∈ S is mapped to the location g(x) ∈ S′, where
g : S → S′. Then the number of points mapped into B ∈ S′ is

N ′(B) =
∑

n

δg(Xn)(B), B ∈ S′.

This N ′ is a point process on S′, provided it is locally finite. In this case, we
say that N ′ is a transformation of N under the map g.

A more complete representation of this transformation is given by the
point process M on the product space S × S′ defined2 by

2 To define a random measure M on a product space, it suffices to define it on product
sets A × B (this also highlights the sets separately). For the case at hand, M(A × B) =∑

n δ(Xn,g(Xn))(A×B) automatically implies M(C) =
∑

n δ(Xn,g(Xn))(C), for C ∈ S×S′.
Mean measures E[M(A× B)] are also defined on product sets.
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M(A×B) =
∑

n

δ(Xn,g(Xn))(A×B), A ∈ S, B ∈ S′.

This is the number of points of N in A ∈ S that are mapped into B ∈ S′. So
M contains the original process N(·) = M(· × S′) as well as the transformed
process N ′(·) =M(S× ·). TheM is an example of a “marked” point process,
where g(Xn) is a “mark” associated with Xn. General marked point processes
are discussed in the next sections.

A better understanding of the processes M and N ′ is provided by the
inverse of g, which is

g−1(B) = {x ∈ S : g(x) ∈ B}, B ∈ S′.

Namely, using δg(Xn)(B) = δXn(g
−1(B)), it follows that, for A ∈ S, B ∈ S′,

M(A×B) = N(A ∩ g−1(B)), N ′(B) = N(g−1(B)). (3.20)

In other words, M and the transformed process N ′ behave like the original
process N on part of its space. Because of this,M and N ′ inherit the Poisson
property of N as follows.

Theorem 32. The marked point process M defined by (3.20) is a Poisson
process with

E[M(A×B)] = μ(A ∩ g−1(B)), A ∈ S, B ∈ S′. (3.21)

Hence the transformed process N ′ is a Poisson process on S′ with intensity
E[N ′(B)] = μ(g−1(B)), B ∈ S′, provided this measure is locally finite.

Proof. This result is a special case of Theorem 36 below, which is proved by
showing that the Laplace transform of M is the same as that for a Poisson
process with intensity (3.21).

Here is another proof that illustrates the sample-process characterization
of a Poisson process. For the case μ(S) <∞, we have

N
d
=

κ∑

m=1

δX̃n
, M

d
=

κ∑

m=1

δ(X̃n,g(X̃n)).

The first sum is a sample process of κ samples from μ(·)/μ(S) and κ has a
Poisson distribution with mean μ(S). The second sum, due to the definition
of M and the form of N , is a sample process on S×S′ of κ samples from the
distribution

F (A×B) = P{X̃1 ∈ A, g(X̃1) ∈ B} = μ(A ∩ g−1(B))/μ(S).

Therefore, M is a Poisson process with intensity measure given by (3.21).
This statement is also true for the case μ(S) = ∞ by Theorem 28, since the
preceding argument also applies to each bounded set in S × S′.
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In addition, since M is Poisson and N ′(·) = M(S × ·) is M on part of its
space, it follows that N ′ is Poisson with intensity E[M(S×B)] = μ(g−1(B)),
when this measure is locally finite.

A basic property of a Poisson process N on a product space S1×S2 is that
the projection N(S1×·) on S2 is also a Poisson process provided its intensity
E[N(S1 × ·)] is locally finite. This follows immediately from the definition of
a Poisson process. Here is an extension of this fact.

Example 33. Projections of a Poisson Process. Let N =
∑

n δXn denote
a Poisson process on S ⊆ S1 × · · ·Sm, with intensity μ, where Xn =
(X1n, . . . , Xmn). Let Ni =

∑
n δXin denote the projection of N on the sub-

space Si = {xi : x ∈ S}, and let Mi =
∑

n δ(Xn,Xin) be the marked point
process that describes the points in the domain and range of the mapping of
N by the projection map gi(x) = xi.

Then Mi is Poisson with intensity μi(A × B) = μ{x ∈ A : xi ∈ B} by
Theorem 32. Hence Ni(·) = Mi(S × ·) is a Poisson process with intensity
E[Ni(B)] = μ{x ∈ S : xi ∈ B}, provided this intensity is locally finite.

For instance, suppose N is a homogeneous Poisson process on R
m
+ with

rate λ. Then Ni(0, b] = ∞ a.s., but Mi still gives insights on the projection.
Next, consider the more general projection NI =

∑
n δgI(Xn) on the space

SI = {gI(x) : x ∈ S}, where gI(x) = (xi : i ∈ I), for I ⊆ {1, . . . ,m}. The
related process MI =

∑
n δ(Xn,gI(Xn)) on S × SI is Poisson by Theorem 32.

Hence NI(·) = M(S × ·) is Poisson with E[NI(B)] = μ{x ∈ S : gI(x) ∈ B},
provided this is locally finite.

Example 34. Let N =
∑
n δ(Xn,Yn) denote a Poisson process on the unit disc

S in R
2 with rate function λ(x, y). Consider the projection of N on the

interval S′ = [−1, 1], which is described by the process N ′ =
∑

n δXn on S′.
By Example 33, N ′ is Poisson with

E[N ′(a, b]] =

∫ b

a

∫ √
1−x2

−
√
1−x2

λ(x, y) dy dx.

More generally, projections on S′ = [−1, 1] from points located in sets like
Au = {(x, y) ∈ S : y ≥ u}, u ∈ (0, 1] are described by M =

∑
n δ((Xn,Yn),Xn)

on S × S′, which is Poisson with

E[M(Au × (a, b])] =

∫ b

a

∫ 1

u

λ(x, y) dy dx.

Next, consider the transformation N of N under which a point in the
unit disc S is mapped to the closest point on the unit circle C. To define
N , we represent a point in S by its polar coordinates (r, θ), where (x, y) =
(r cos θ, r sin θ), and view N =

∑
n δ(Rn,Θn) as a Poisson process on S =

{(r, θ) ∈ [0, 1]× [0, 2π)} with rate function λ(r cos θ, r sin θ). The unit circle
can be expressed as C = [0, 2π), since each point on it has the form (1, θ).
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The transformation under consideration maps a point at (r, θ) to (1, θ) (i.e.,
to θ ∈ C), and so the transformed process is N =

∑
n δΘn , which is simply

the projection of N on the coordinate set C. Therefore N is Poisson with

E[N(B)] =

∫

B

∫ 1

0

λ(r cos θ, r sin θ)dr dθ.

See Exercise 35 for more details on these processes.

3.9 Marked and Space-Time Poisson Processes

The last section showed how a deterministic transformation of a Poisson
process can be represented by a marked Poisson process. We now extend
this idea to random transformations that are represented by marked Poisson
processes. An important class of marked Poisson processes are space-time
Poisson processes.

The focus of this section is on a transformation of a Poisson process on
a space S in which each of its points is independently assigned a random
mark in a space S′ depending only on the particular point location. The
distributions of the marks will be determined by probability kernels.

A mark assigned to a point at x ∈ S, will take a value in a set B ∈ S′

according to a probability kernel p(x,B) from S → S′. Such a kernel is a
function p : S × S′ → [0, 1] such that p(·B) is a measurable function on S
and p(x, ·) is a probability measure on S′. Our interest will be in modeling
the initial points as well as the marks by a marked point process on S × S′.
The formal definition is as follows.

Definition 35. Let N =
∑

n δXn be a Poisson process on S with intensity μ.
Let M =

∑
n δ(Xn,Yn) be a point process on S × S′ such that

P{Y1 ∈ B1, . . . , Yn ∈ Bn|N} = p(X1, B1), . . . p(Xn, Bn) B1, . . . , Bn ∈ S′, n ≤ N(S),

where p(x,B) is a probability kernel from S to S′. The Yn are p-marks of
the Xn, and the point process M of the initial points and their marks is a
p-marked Poisson process associated with N .

The M is a space-time Poisson process when it is defined on R+ × S′ (or
R × S′) and R+ represents the time axis. The mean measure of M is given
by (3.22) below.

CallingM a Poisson process in this definition is justified by the next result,
which is an extension of Theorem 32 for deterministic marks.

Theorem 36. The point process M =
∑

n δ(Xn,Yn) in Definition 35 is a
Poisson process on S × S′ with intensity measure μM defined by
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μM (A×B) =

∫

A

p(x,B)μ(dx), A ∈ S, B ∈ S′. (3.22)

Hence, the point process of marks N ′ =
∑

n δYn is a Poisson process on S′

with intensity μ′(B) =
∫
S
p(x,B)μ(dx), B ∈ S′, provided this is locally finite.

Proof. It suffices by Theorem 21 to show that the Laplace functional of M is
the same as that for a Poisson process on S× S′ with intensity measure μM .
Since Yn are p-marks of the Xn,

E[e−Mf ] = E
[
E[e−

∑
n f(Xn,Yn)|N ]

]

= E
[∏

n

∫

S′
e−f(Xn,y)p(Xn, dy)

]

= E
[
exp

{∑

n

log

∫

S′
e−f(Xn,y)p(Xn, dy)

}]
.

Letting h(x) = − log
∫
S′ e

−f(x,y)p(x, dy) in the last line, and using the Laplace
functional of N as in Theorem 21, we have

E[e−Mf ] = E[e−
∫
S′ h(x)N(dx)]

= exp[−
∫

S

(1 − e−h(x))μ(dx)]

= exp[−
∫

S×S′
(1− e−f(x,y))μM (dx, dy)].

The last line by Theorem 21 is the Laplace functional of a Poisson process
with mean measure μM and hence M is such a Poisson process.

In addition N ′(B) =M(S ×B) is M on part of its state space, and so N ′

is Poisson with intensity μ′(B) = μM (S ×B) =
∫
S
p(x,B)μ(dx).

Here are some examples. Further applications are in the next sections and
in Exercises 47, 49 and 32.

Example 37. Marked Tornados. Suppose N =
∑
n δXn is a Poisson process

on a region S of a country that represents locations of tornados that might
occur in a year. For simplicity, assume its intensity μ(S) is finite. Additional
information about the tornados is naturally recorded by marks Yn associated
with the tornados at the respective locations Xn. For instance, Yn might
record the cost to repair the damage, the number of deaths, or a vector of
auxiliary information for tornado Xn. Assume the Yn take values in a space
S′ and are p-marks of the Xn. Then the tornado information is conveniently
represented by the p-marked Poisson processes

M =
∑

n

δ(Xn,Yn), N ′ =
∑

n

δYn .
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Example 38. Maxima of Marks. Suppose that events occur over the time axis
R+ according to a Poisson process N =

∑
n δTn with intensity measure μ.

The event that occurs at time Tn produces a real-valued random variable Yn.
Assume the Yn are p-marks of the Tn, where p(t, ·) is the distribution of a
mark at time t. Consider the cumulative maxima process

V (t) = max
n≤N(t)

Yn, t ≥ 0,

where V (t) = 0 when N(t) = 0. For instance, this could be the maxima of
heights of solar flares on a region of the sun, where the flares occur at times
that form a Poisson process.

One can obtain information about this maxima process via the space-time
Poisson process M =

∑
n δ(Tn,Yn) on R+ × R with intensity

E[M((0, t]×B)] =

∫

(0,t]

p(s,B)μ(ds).

For instance, the event {V (t) ≤ y} equals {M((0, t]× (y,∞)) = 0}, and so

P{V (t) ≤ y} = e
−

∫
(0,t]

p(s,(y,∞))μ(ds)
.

Also, if μ(t) = λt and p(t, ·) = G(·), independent of t, then V (t) is a
continuous-time Markov process with transition probabilities

P{V (s+ t) ≤ y|V (s) = x} = 1(x ≤ y)P{M((s, s+ t]× (y,∞)) = 0}
= 1(x ≤ y)e−λt(1−G(y)).

Example 39. Serial Marking of a Poisson Process. Theorem 36 for a single
marking of a Poisson process extends to a series of markings as follows.
Starting with a Poisson process N =

∑
n δXn , if Yn are p-marks of Xn,

then M =
∑

n δ(Xn,Yn) is a Poisson process. Similarly, if Y ′
n are p′-marks of

(Xn, Yn), thenM
′ =

∑
n (Xn, Yn, Y

′
n) is again a Poisson process. These mark-

ing steps can be continued several times, with the end result being a Poisson
process from which one can “read off” many results. In addition to serial
markings in applications, they are useful for proving results for compound
Poisson processes as discussed in Section 3.15.

3.10 Partitions and Translations of Poisson Processes

In this section, we continue our study of transformations of Poisson processes
by considering partitioning and translations of the points of a Poisson process.
We show how these two types of transformations can be modeled as marked
Poisson processes.
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We begin with a special kind of partitioning.

Example 40. Thinning of a Poisson Process. Let N be a Poisson process on
S with intensity μ. Suppose the points of N are deleted according to the rule
that a point at x is retained with probability p(x), and the point is deleted
with probability 1 − p(x). Let N1 and N2 denote the resulting processes of
retained and deleted points, respectively, where N = N1 + N2. By Proposi-
tion 41 below, N1 and N2 are independent Poisson processes with respective
mean measures

E[N1(A)] =

∫

A

p(x)μ(dx), E[N2(A)] =

∫

A

(1− p(x))μ(dx), A ∈ S.

Interestingly, N1 and N2 are independent even though N = N1 +N2.
As an example, suppose a web site that sells products has visitors arriving

to it according to a Poisson process N with rate λ. Suppose p percent of
these visitors buy a product, which means that each visitor independently
buys a product with probability p. Then from the preceding result, the times
of sales form a Poisson process with rate pλ, and the visits without sales
occur according to a Poisson process with rate (1− p)λ.

The preceding thinning model is a special case of the following partitioning
procedure for decomposing a point process into several subprocesses. Con-
sider a Poisson process N on S with intensity μ. Suppose N is partitioned
into a countable family of processes Ni, i ∈ I, on S by the following rule.
Partitioning Rule: A point of N at x is assigned to subprocess Ni with prob-
ability p(x, i), where

∑
i∈I p(x, i) = 1.

The processes Ni form a partition of N in that N =
∑

i∈I Ni.

Proposition 41. (Partitioning of a Poisson Process) The subprocesses Ni,
i ∈ I, of the Poisson process N are independent Poisson processes with in-
tensities

E[Ni(B)] =

∫

B

p(x, i)μ(dx), B ∈ S, i ∈ I.

Proof. Let M(B × {i}) denote the number of points of N in B that are as-
signed to Ni. That is, M(B × {i}) = Ni(B). Clearly, M is a marked Poisson
process on S × I associated with N , where the marks have the distribution
p(x, i). Since M has independent increments and the subprocesses Ni rep-
resent M on the disjoint subsets S × {i}, for i ∈ I, they are independent
Poisson processes. Furthermore,

E[Ni(B)] = E[M(B × {i})] =
∫

B

p(x, i)μ(dx).

The preceding result for partitions is the opposite of the result that a sum
of independent Poisson processes is also Poisson (recall Theorem 22). Here is
a typical partition model.
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Example 42. Suppose telephone calls in a region S of the USA occur according
to a space-time Poisson process M on R+ × S, where M((0, t]× B) denotes
the number of calls connected in the subregion B ⊆ S in the time interval
(0, t], and E[M((0, t]×B)] = λtμ(B). There are three types of calls: (1) Long
distance calls outside the USA. (2) Long distance calls within the USA. (3)
Local calls. The calls are independent, and a call at time t and location x is
a type i call with probability p(t, x; i), i = 1, 2, 3. Then by Proposition 41,
the number of type i calls occur according to a space-time Poisson process
Mi with

E[Mi((0, t]×B)] = λ

∫ t

0

∫

B

p(s, x; i)μ(dx)ds.

Furthermore, M1,M2,M3 are independent and M = M1 +M2 +M3.

The next two examples illustrate indirect uses of thinning.

Example 43. Simulating a Non-Homogeneous Poisson Process. Suppose that
N =

∑
n δXn denotes a Poisson process on a bounded Euclidean space S with

mean measure Λ(A) =
∫
A
λ(x) dx and rate function λ(x).

Let us represent N as a thinning of a homogeneous Poisson process
N̄ =

∑
n δX̄n

on S with rate 1. Accordingly, suppose that Yn are location-
dependent marks of X̄n with P{Yn = 1|N̄} = p(X̄n) = 1 − P{Yn = 0|N̄}
where p(x) = λ(x)/Λ(S). These marks form a p(x)-thinning of N̄ and the
resulting process is

∑

n

YnδX̄n

d
= N.

This thinning representation of N justifies the following procedure from
[79] for simulating N via a realization of N̄ . Construct a realization of the
point locations of N̄ , say x̄1, . . . , x̄m in S. Next, independently thin the points
such that x̄n is retained with probability p(x̄n) and it is deleted otherwise,
for 1 ≤ n ≤ m. Then the retained points x1, . . . , x� form a realization of N ,
because of its representation above.

Example 44. Terminating Poisson Process. Suppose that errors in a software
package occur (while it is running) at times Tn that form a Poisson process on
R+ with rate λ. Each error is detected with probability 1− p independent of
everything else. Then the time to detect the first error is Tν =

∑ν
i=1Xi, where

X1, X2, . . . are the exponential times between errors and ν is the number of
errors until the first one is detected. The ν is a random variable independent
of the Xn with the geometric distribution P{ν = n} = (1 − p)pn−1, n ≥ 1.
The Tν can be viewed as the time at which the Poisson process terminates.
Exercise 5 shows that Tν is exponentially distributed with rate (1−p)λ, since
it is a geometric sum of exponential variables.

An alternate proof is to consider the process of detected errors as a thinning
of the Poisson error process, where 1−p is the probability of retaining a point.
The resulting thinned process is a Poisson process with rate (1− p)λ, and Tν
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is the time to its first point. This proves Tν is exponentially distributed with
rate (1− p)λ.

Splitting and merging of flows in a network, as we now show, are typical
examples of partitioning and summing of point processes.

Example 45. Routing in a Graph. Consider the directed graph shown in Fig-
ure 3.1 in which units are routed in the directions of the arrows. Let Nij(t)
denote the number of units that are routed on the arc from node i to node j
in the time interval (0, t]. Assume that items enter the graph by independent
Poisson processes N0j , j = 1, 2, 3 on R+ with respective rates λ0j , j = 1, 2, 3.
Upon entering the graph, each item is routed independently through the
graph according to the probabilities on the arcs, and there are no delays at
the nodes (travel through the graph is instantaneous). For instance, an item
entering node 3 is routed to node 5 or node 6 with respective probabilities
p35 and p36, where p35 + p36 = 1.
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Fig. 3.1 Partitioning and Merging of Flows

Our results on partitions and sums of Poisson processes yield the following
properties. First note that flows N12 and N13 are independent Poisson pro-
cesses with rates λ12 = p12λ01 and λ13 = p13λ01, since they form a partition
of N01. Next, the flow into node 2 is the sum N02 + N12 (of independent
flows) and hence is Poisson with rate λ02 + p12λ01. Similar properties extend
to the other flows in the graph. Specifically, each flow Njk from j to k is a
Poisson process, and one can evaluate their rates λjk in the obvious way. For
instance, knowing λ12 and λ13 as mentioned above,

λ23 = p23(λ02 + λ12), λ36 = p36(λ03 + λ13 + λ23),
λ35 = p35(λ03 + λ13 + λ23), λ60 = λ36 + p56λ35.

Also, some of the flows are independent (denoted by ⊥), while some are not
independent (denoted by �⊥). Examples are

N12 ⊥ N13, N36 ⊥ N56, N36 ⊥ N24, N13 ⊥ N24

N12 �⊥ N24, N35 �⊥ N40, N13 �⊥ N60, N23 �⊥ N40.

In addition, the flow Ni =
∑
j Nji through each node i is a Poisson process

with intensity
∑
j λji. Clearly all the Ni’s are dependent. If the arc between



200 3 Poisson Processes

5 and 4 did not exist, however, then N4 would be independent of N3, N5,
and N6.

We end this section with another natural transformation of a Poisson pro-
cess involving translating its points within the same space. Suppose that N is
a Poisson process on S = R

d with intensity measure μ. Assume that a point of
N at x is independently translated to another location x+Y by a random vec-
tor Y in S that has a distribution Gx(·). That is, x is mapped into a set B ⊆ S
by a probability kernel p(x,B) = Gx(B− x), where B− x = {y− x : y ∈ B}.
Let M(A × B) denote the number of points of N in A that are translated
into B. Then the process N ′(B) = M(S × B) denotes the number of points
of N translated into B. The definition of marked Poisson processes yields the
following result.

Proposition 46. (Translation of a Poisson process) The translation pro-
cesses M and N ′ defined above are Poisson processes and, for A,B ⊆ R

d
+,

E[M(A×B)] =

∫

A

Gx(B − x)μ(dx), E[N ′(B)] =

∫

S

Gx(B − x)μ(dx).

Example 47. Trees in a Forest. The locations (Xn, Yn) of a certain type of
tree in a forest form a Poisson process with intensity measure μ. Suppose the
height of a tree at a location (x, y) has a distribution Gx,y(·). That is, the
height Zn of the tree at location (Xn, Yn) is a mark, andM =

∑
n δ(Xn,Yn,Zn)

forms a marked Poisson process with

E[M(A×B × (0, b])] =

∫

A

∫

B

Gx,y(b)μ(dx dy).

After several years of growth, it is anticipated that the increase in height
for a tree has a distribution H(x,y,z)(·), where (x, y) is the location and z is the
original height. In other words, the increases Z ′

n are p-marks of (Xn, Yn, Zn)
with p((x, y, z), ·) = H(x,y,z)(·). Then the collection of trees is depicted by the
point process M ′ =

∑
n δ(Xn,Yn,Zn+Z′

n)
. By Proposition 46, M ′ is a Poisson

process with

E[M ′(A×B × (0, b])] =

∫

A

∫

B

∫

R+

H(x,y,z)(b− z)Gx,y(dz)μ(dx dy).

In the preceding example, a little more realism could be added by con-
sidering the possibility that while some trees grow as indicated, other trees
may die according to a location-dependent thinning. Then one would have
a combined translation–thinning transformation. Similarly, complicated sys-
tems might involve transformations involving a combination of translations,
thinnings, partitions, deterministic maps, and random transformations.
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3.11 Markov/Poisson Processes

In this section, we discuss a discrete-time Markov chain whose state at each
time is a spatial Poisson process. This Markov/Poisson process is formulated
by successive transformations of Poisson processes. This model reveals an
interesting property of invariant measures of Markov chains.

We will describe a Markov/Poisson process in the context of a particle
system. Consider a family of particles that move about in a space S (e.g.,
R
d, or a countable set) as follows. At time 0, the particles are located in

S according to a point process N0 on S. Thereafter, each particle moves
independently in S at discrete times as if it were a Markov chain3 on the
space S with the one-step transition kernel p(x,B). That is, a particle located
at x at time n moves into a set B at time n+1 with probability p(x,B). Then
a particle in state x at time 0 will be in a set B at time n with probability
pn(x,B). These n-step probabilities are defined by the recursion4

pn(x,B) =

∫

S

pn−1(y,B)p(x, dy), n ≥ 1.

As in the setting of countable state space Markov chains, a measure μ on S
is an invariant measure of p(x,B) if

∫

S

p(x,B)μ(dx) = μ(B), B ∈ S. (3.23)

Consider the point process Nn on S that represents the locations of the
points at time n. The sequence Nn is a discrete-time Markov chain that takes
values in the set of counting measures on S. This follows since the point
locations of Nn+1 depend on N0, . . . , Nn only through the point locations
of Nn and the one-step transition probabilities (which are functions of the
p(x,B) that do not depend on n).

As above, we will analyze the Markov chain Nn via the marked point
processes Mn on S2, where Mn(A×B) denotes the number of particles in A
at time 0 that are in B at time n. The sequence Mn is a Markov chain for
the same reason that Nn is.

Theorem 48. Suppose N0 is a Poisson process with intensity measure μ.
Then each Mn is a Poisson process on S2 with

E[Mn(A×B)] =

∫

A

pn(x,B)μ(dx), A,B ∈ S,

3 The definition of a Markov chain in Chapter 1 extends readily to uncountable state
spaces, as is the case here. This example should be understandable by thinking of the
probability kernel as a transition probability for a countable state space and interpreting
the notions of invariant and stationary distributions as one would for a countable state
space.
4 When S is countable, the matrix (pn(x, y)) is the nth product of the matrix (p(x, y)).
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and Nn is a Poisson process with E[Nn(B)] =
∫
S
pn(x,B)μ(dx). If in ad-

dition, the intensity μ for N0 is an invariant measure of p(x,B), then
{Nn : n ≥ 0} is a stationary Markov chain, and each Nn is a Poisson process
on S with intensity μ.

Proof. Think of Mn as a transformation of N0 in which a point of N0 at x
is independently mapped into a point of Mn in a set A×B with probability
kernel r(x,A × B) = 1(x ∈ A)pn(x,B). Then by Theorem 36, Mn is a r-
marked Poisson process associated with N0 and its intensity is given by

E[Mn(A×B)] =

∫

S×S′
r(x,A ×B)μ(dx) =

∫

A

pn(x,B)μ(dx).

Furthermore, Nn is also Poisson and its intensity as shown is locally finite
since μ is. This proves the first assertion.

Next, suppose that μ is an invariant measure for N0. Then an induction
argument using (3.23) shows that

∫
S
pn(x,B)μ(dx) = μ(B), B ∈ S, n ≥ 1.

Thus E[Nn(B)] = μ(B), and so the Markov chain Nn is stationary.

Consider the stationary Markov/Poisson Particle process Nn described in
the preceding theorem. Being a stationary Markov chain, the distribution of
N0 (a Poisson process on S with intensity μ) is the stationary and limiting
distribution of the chain. This distribution, as we saw in Chapter 1, describes
many performance measures of the particle system. Here is an illustration.

Example 49. Set with no particles. Let us see what we can say about how
likely it is that there are no particles in a set B ∈ S when μ(S) < ∞. From
the stationary nature of the Markov chain Nn, it is clear that the portion of
time that a set B contains no particles is P{N0(B) = 0} = e−μ(B).

Next, consider the average duration of timeW (B) that the set B is empty;
W (B) = limn→∞ n−1

∑n
k=1Wk(B), whereW1(B),W2(B), . . . are the succes-

sive durations of (discrete) time that B is empty. We will determineW (B) by
the Little law in Theorem 57 in Chapter 2 for the artificial queueing process
Qn = 1(Nn(B) = 0) (this is 1 when B is empty and 0 otherwise).

The average queue length (in discrete time) is

L(B) = lim
n→∞

n−1
n∑

k=1

Qk = P{N0(B) = 0} = e−μ(B) a.s.

Also, the rate at which the queue becomes empty is

λ(B) = lim
n→∞

n−1
n∑

k=1

1(Nk−1(B) > 0, Nk(B) = 0)

= P{N0(B) > 0, N1(B) = 0} a.s.

Using the stationarity of Nn,



3.12 Poisson Input-Output Systems 203

λ(B) = P{N1(B) = 0} − P{N0(B) = 0, N1(B) = 0}
= e−μ(B) − e−μ(B)P{N1(B) = 0|N0(B) = 0}.

By the sample process representation of the Poisson process N0 on Bc, a
typical point in Bc is located in a set C ⊆ Bc with probability μ(C)/μ(Bc).
Then the probability that a typical point in Bc does not enter B in the next
step is r =

∫
Bc p(x,B

c)μ(dx)/μ(Bc). Using this,

P{N1(B) = 0|N0(B) = 0} = E[P{N1(B) = 0|N0(B) = 0, N0(B
c)}]

= E[rN0(B
c)] = e−μ(Bc)(1−r).

Substituting this expression in the preceding display yields

λ(B) = e−μ(B)[1− e−
∫
Bc p(x,B)μ(dx)].

Since this quantity is positive, Theorem 57 in Chapter 2 ensures that the
limit W (B) exists and L(B) = λ(B)W (B). Consequently,

W (B) = [1− e−
∫
Bc p(x,B)μ(dx)]−1.

3.12 Poisson Input-Output Systems

This and the next section show how one can use marked Poisson processes to
model many processing systems with Poisson input, and arrival-dependent
service times, and no queueing. Here we describe Mt/Gt/∞ systems, which
are time-dependent versions of a classical M/G/∞ system. The results in-
volve formulating processes of interest as functions of a space-time Poisson
input process, and then characterizing several system features by applying
the results above for translations, projections and random transformations.

Consider a general processing system that operates as follows. Items arrive
at times that form a Poisson process on R+ with intensity measure μ. An item
that arrives at time t spends a random amount of time in the system that
has a distribution Gt(·) and then departs. This sojourn time is independent
of the other items in the system and everything else. The items may arrive
in batches at any time t for which μ({t}) > 0; the batch size has a Poisson
distribution with mean μ({t}). The items in this batch may not depart at
the same time since their sojourn times are independent.

Let Q(t) denote the quantity of items in the system at time t that arrived
after time 0. We are not considering items that may be in the system at time
0. The process {Q(t) : t ≥ 0} is an Mt/Gt/∞ process with time-dependent
arrivals and services.

The process Q(t) is a typical model for the quantity of items in a service
system with a large number of parallel servers (envisioned as infinite servers)
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in which there is essentially no queueing prior to service. For instance, Q(t)
could be the number of: (1) Computers being used in a wireless network with
a high capacity. (2) Groups of people dining in a cafeteria. (3) Vehicles in
a parking lot. (4) Patients in a hospital. (5) Calls being processed in a call
center.

To analyze the process Q(t), the first step is to define it by the system
data. The data is represented by the marked point process M =

∑
n δ(Tn,Vn)

on R
2
+, where Tn is the arrival time of the nth item and Vn is its sojourn

or service time. The Vn are location-dependent marks of the Tn with the
distribution p(t, B) = Gt(B), and M is a space-time Poisson process with
E[M(A×B)] =

∫
AGs(B)μ(ds).

Since the quantity Q(t) is a function of the arrival times Tn and departure
times Tn+ Vn of the items, let us consider the marked point process of these
arrival/departure times, which is

N =
∑

n

δ(Tn,Tn+Vn), on S = {(t, u) ∈ R
2
+ : u ≥ t}.

This process N is a transformation of M by the map g(t, v) = (t, t+v). Then
N is a space-time Poisson process by Theorem 32. In particular, the quantity
N((a, b]× (c, d]), where b ≤ c, is the number of items that arrive in (a, b] and
depart in (c, d], and its mean is

E[N((a, b]× (c, d])] =

∫

(a,b]

[Gs(d− s)−Gs(c− s)]μ(ds).

Using the preceding notation, the quantity of items in the system at time
t is defined by

Q(t) =
∑

n

1(Tn ≤ t, Tn + Vn > t) = N((0, t]× (t,∞]).

Since N is a Poisson process, it follows that Q(t) has a Poisson distribution
with

E[Q(t)] =

∫

(0,t]

[1−Gs(t− s)]μ(ds). (3.24)

Although the distribution of each Q(t) is Poisson, the entire process is not.
In addition to analyzing the number of items in the system, one may want

information about the departure process. This is useful when the departures
form an arrival process into another service system. Now, the total number of
departures in (0, t] is D(t) =

∑
n 1(Tn+Vn ≤ t). That is, D is the projection

of N on its second coordinate, and so D is a Poisson process with

E[D(t)] = E[N(t)−Q(t)] =

∫

(0,t]

Gs(t− s)μ(ds).
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Example 50. M/G/∞ System. Consider the special case of the preceding sys-
tem in which the Poisson arrival process is homogeneous with rate λ and
the service distribution Gt(·) = G(·) is independent of t. This is a classical
M/G/∞ system with arrival rate λ and service distribution G. In this case,
Q(t) has a Poisson distribution and from (3.24) (with u = t− s),

E[Q(t)] = λ

∫ t

0

[1−G(u)]du.

Suppose that G has a mean α. Then it follows by Exercise 32 that the limiting
distribution of Q(t) is Poisson with rate λα, as t → ∞.

In addition, the total number of departures D(t) in the time interval (0, t]
is a Poisson process with

E[D(t)] = λ

∫ t

0

G(s)ds.

An abstraction of the Mt/Gt/∞ system we just discussed is as follows.

Example 51. Poisson Input-Output-Mobility Model. Consider a system in
which items enter a space S at times T1 ≤ T2 ≤ . . . that form a Pois-
son process with intensity measure μ. The nth item that arrives at time Tn
moves in the space S for a while and then exists the system (by entering
the outside state 0). The movement is determined by a stochastic process
Yn = {Yn(t) : t ≥ 0} with state space S ∪ {0}, where the outside 0 is an
absorbing state (Yn(t) = 0 for all t > inf{s : Yn(s) = 0}). In particular, the
nth item enters S at the location Yn(0), and, at time t > Tn its location is
Yn(t− Tn). Let Y denote a function space that contains the sample paths of
Yn (e.g., Y could be a space of real-valued functions that are continuous, or
piece-wise constant).

Assume the Yn are location-dependent marks of Tn with distribution p(t, ·),
which is the conditional distribution of the process Yn starting at time t. For
simplicity, assume Yn depends on t only through its initial value Yn(0) (the
entry point in S of the nth point), whose distribution is denoted by Ft(·).
Then conditioning on Yn(0),

p(t, ·) =
∫

S

P{Yn ∈ ·|Yn(0) = x}Ft(dx). (3.25)

In other words, the system data is the process M =
∑

n δ(Tn,Yn) on R+ × Y,
which is a space-time Poisson process by Theorem 32.

Now, the number of items in the set B ∈ S at time t is given by

Nt(B) =
∑

n

1(Tn ≤ t, Yn(t− Tn) ∈ B) =
∑

n

δgt(Tn,Yn)(B),
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where gt(s, y) = y(t − s) and y ∈ Y. Since Nt is a transformation of the
Poisson process M by the map gt, it follows by Theorem 32 that Nt is a
Poisson process on S for each fixed t, and from (3.25),

E[Nt(B)] =

∫

(0,t]

∫

S

P t−s(x,B)Fs(dx)μ(ds),

where P t(x,B) = P{Yn(t) ∈ B|Yn(0) = x}.
Next, note that the number of departures from the set B in the time

interval (a, b] is

D((a, b]×B) =
∑

n

1(h(Tn, Yn) ∈ (a, b]×B),

where h(s, y) = (s, y(t−s)). This D is a transformation of the Poisson process
M by the map h, and so by Theorem 32, D is a space-time Poisson process
on R+ × S with

E[D((0, t]×B)] =

∫

(0,t]

∫

B

P t−s(x, {0})Fs(dx)μ(ds).

3.13 Network of Mt/Gt/∞ Stations

In this section, we show how the ideas in the preceding section extend to the
analysis of flows in a stochastic network of Mt/Gt/∞ stations. The network
dynamics are determined by marks of Poisson processes, and the analysis
amounts to formulating appropriate Poisson processes that represent param-
eters of interest, and then specifying their intensity measures.

Consider a network ofm service stations (or nodes) that operate as follows.
Items enter the network at times T1 ≤ T2 ≤ . . . that form a Poisson process
with intensity measure μ. The nth item entering the network at time Tn
selects, or is assigned, a random route Rn = (Rn1, . . . , RnLn) through the
network, where Rnk ∈ {1, . . . ,m} denotes the kth node the item visits, and
the length 1 ≤ Ln ≤ ∞may be random and depend on the Rnk. After visiting
the last node RnLn on its route, the item exits the network and enters node
0 (“outside” the network) and stays there forever.

Associated with the nth arrival is a vector of nonnegative sojourn (or visit)
times Vn = (Vn1, . . . , VnLn), where Vnk is the item’s sojourn time at node
Rnk. The time at which the item departs from node Rnk is

τnk = Tn +

k∑

j=1

Vnj , k ≤ Ln,

where τnLn is the time at which the item exits the network.
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The main assumption is that the route and waiting time vectors Yn =
(Rn,Vn) are marks of the arrival times Tn. This implies there are no inter-
actions among the items that affect their waiting times, so each node operates
like an Mt/Gt/∞ system. As above, we consider only those items that enter
the network “after” time 0. In summary, the system data is represented by
the space-time Poisson process M =

∑
n δ(Tn,Yn).

Many features of the network are expressible by space-time Poisson pro-
cesses of the form

Nt =
∑

n

δ(Tn,gt(Tn,Yn)), (3.26)

E[Nt((a, b]× B)] =

∫

(a,b]

P{gt(Tn, Yn)) ∈ B|Tn = s}μ(ds). (3.27)

One need only define the function gt for the application at hand; in some
cases, gt and Nt do not depend on t. Note that each Nt is a Poisson process
since it is a deterministic transformation of the Poisson process M .

Typical uses of these space-time Poisson processes are as follows.

Locations of Items at Time t. The space-time Poisson process describing
where the items are located is

Nt((a, b]×B) = # of items that arrive in the time interval (a, b]

that are in B ⊆ {0, 1, . . . ,m} at time t.

The location of the item at time t that arrives at time Tn is

gt(Tn, Yn) =

{
0 if τnLn ≤ t
Rnk if τn(k−1) ≤ t < τnk, for some k ≤ Ln.

(3.28)

Consequently, the quantities Qi(t) = Nt((0, t]×{i}), 1 ≤ i ≤ m, at the nodes
at a fixed time t are independent Poisson random variables with

E[Qi(t)] =

∫

(0,t]

P{gt(Tn, Yn) = i|Tn = s}μ(ds). (3.29)

Departure Process. The space-time Poisson process describing the times at
which items exit the network is

N((a, b]×B) = # of items arriving in (a, b] whose exit time from

the network is in B ⊆ R+.

The item arriving at Tn exits the network a time g(Tn, Yn) = τnLn .
Usually, the mean values (3.27) of the space-time Poisson processes would

be determined by the distributions of the routes and sojourn times of the
items. The routes depend on the structure of the network and the nature of
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the items and services. A standard assumption is that the routes are inde-
pendent and Markovian, where pjk denotes the probability of an item moving
to node k upon departing from node j. Then the probability of a particular
route (r1, . . . , r�) of nonrandom length � is p0r1 · · · pr�0. Another convention
is that there are several types of items and all items of the same type take
the same route. In this case, the probability of a route is the probability that
the item entering the network is the type that takes that route.

The simplest sojourn times at a node are those that are i.i.d., depending
on the node and independent of everything else. Then the sums of sojourn
times are characterized by convolutions of the distributions. The next level
of generality is that the service times are independent at the nodes, but their
distributions may depend on the route as well as the node. An example of
dependent service times is that an item entering a certain subset of routes is
initially assigned a service time according to some distribution and then that
time is its service time at “each” node on its route.

Here is a typical example of a network.

Example 52. Acyclic Network. Consider the stochastic network shown in Fig-
ure 3.2 that operates as described above with the following particular prop-
erties. Items arrive at the nodes 1, 2 and 3 from outside according to inde-
pendent Poisson processes with respective rates λ1, λ2, λ3. The sojourn or
service times at the nodes are independent random variables, and the sojourn
times at node i have the distribution Gi(·). When an item ends its sojourn
at node 1, it departs and enters node 2 with probability p12, or it enters node
3 with probability p13 = 1− p12. Analogously, departures from node 2 enter
node 3 with probability p23, or enter node 4 with probability p24 = 1 − p23.
Also, departures from node 3 enter node 5 (p35 = 1), and departures from
nodes 4 and 5 exit the network.

� �

� �

� � �

� � �

1

�

��
�
���

�
�
���

2

�

3 5

4

p12

p13

p24

p23

Fig. 3.2 Acyclic Network

The times T1 < T2 < . . . at which items enter the network from outside
form a Poisson process with rate λ = λ1 + λ2 + λ3, since this process is the
sum of the three independent Poisson processes flowing into nodes 1, 2 and
3. The probability that an arrival at any time Tn enters node i is λi/λ. This
is the probability that the exponential time of an arrival at i is smaller than
those exponential arrival times at the other nodes; see Exercise 2. The item
that arrives at time Tn traverses a route Rn = (Rn1, . . . , Rn�n) in R (the
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set of all routes), and its sojourn times at the �n nodes on the route are
Vn = (Vn1, . . . , Vn�n). The joint distribution of these marks Yn = (Rn,Vn)
as functions of the network data λi, Gi and pij is

P{Rn = r,Vn ≤ v|Tn} = p(r)

�∏

k=1

Grk(vk),

where p(r)= (λr1/λ)pr1r2 · · · pr�−1r� is the probability of route r = (r1, . . . , r�).
To analyze the quantity of items on the routes as well as at the nodes, let

us consider the space-time point process

Nt((a, b]×B) = # of items arriving in (a, b] whose route and node

location (r, i) is in B ⊆ R× {0, 1, . . . ,m} at time t.

As in (3.26), Nt is a Poisson process on R+ ×R× {0, 1, . . . ,m}, for fixed t,
where gt(Tn, Yn) = (Rn, ht(Tn, Yn)) and ht(Tn, Yn) is defined by (3.28). The
item that enters at Tn is at node ht(Tn, Yn) at time t.

In particular, the quantity of items

Qi(t) =
∑

r∈Ri

Nt((a, b]× {r} × {i})

at node i at time t has a Poisson distribution. The sum here is over all routes
in the set of routes Ri that contain node i. Also, for a fixed t, since Nt has
independent increments, it follows that Qi(t) is independent of Qj(t) if Ri

and Rj are disjoint. For instance, Q4(t) is independent of Q3(t) and Q5(t).
The next step is to evaluate the intensity of Nt. Let P

u
r (i) denote the

conditional probability that an item is at node i given that it is on route r
for a time u since it entered the network. By the independence of the sojourn
times,

Pur (i) =

{
Gr1 
 · · · 
 Gr�(u) if i = 0
Gr1 
 · · · 
 Grk−1


 Grk(u) if rk = i �= 0, for some k ≤ �.

Here G(t) = 1−G(t). For instance, the conditional probability that an item
is at node 3 at time t, given that it enters route r = (1, 2, 3, 5) at time s, is

G1 
 G2 
 G3(t− s) = P{τn2 ≤ t < τn3|Rn = r, Tn = s}
= P{ht(Tn, Yn) = 3|Rn = r, Tn = s}.

Then from (3.27), it follows that

E[Nt((a, b]× {r} × {i})] = λp(r)

∫ b

a

P t−sr (i)ds.
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The last integral equals
∫ b
a
Pur (i)du, under the change-of-variable u = t − s.

For example, the number of items arriving in (0, t] that are on route r =
(1, 2, 3, 5) and in node 3 at time t has a Poisson distribution with mean

E[Nt((0, t]× {r} × {3})] = λ1p12p23

∫ t

0

G1 
 G2 
 G3(u)du.

The process Nt yields considerable information about numbers of items
at nodes and on routes as well. For instance, the quantity Q3(t) of items
at node 3 at time t is the sum of the quantities of items on the routes in
R3 = {(3, 5), (2, 3, 5), (1, 3, 5), (1, 2, 3, 5)}, all the routes containing node 3.
Then Q3(t) has a Poisson distribution and its mean is

E[Q3(t)] =

∫ t

0

[
λ3G3(u) + λ2p23G2 
 G3(u) + λ1p13G1 
 G3(u)

+λ1p12p23G1 
 G2 
 G3(u)
]
du.

The term in brackets is λ
∑

r∈R3
p(r)Pur (3).

Similarly, the quantity of items on route r at time t is

Qr(t) = Nt((0, t]× {r} × {r1, . . . , r�}).

This quantity, being part of the Poisson processNt, has a Poisson distribution
whose mean is easy to calculate. For instance,

E[Q(2,4)(t)] =

∫ t

0

λ2p24[G2(u) +G2 
 G4(u)]du.

Let us now consider the departure times of the items from the nodes, which
are depicted by the process

N((a, b]×B) = # of items arriving in (a, b] whose departure times

from the 5 nodes are in B ⊆ R
5
+.

The departure times are well-defined since an item cannot visit a node more
than once. Now, N is a space-time Poisson process as in (3.26) and (3.27),
and the departure times at the 5 nodes are given by

g(Tn, Yn) = (g1(Tn, Yn), . . . , g5(Tn, Yn)),

where gi(Tn, Yn) =
∑�n
k=1 τnk1(Rnk = i), the departure time from node i of

the item that enters at Tn.
In particular, the departure process at node i is

Di(t) = N((0, t]× {(t1, . . . , t5) ∈ R
5
+ : ti ≤ t}), t ≥ 0.
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Now, Di is a Poisson process since it is the projection on the ith departure-
time coordinate of the Poisson process N . Its mean is

E[Di(t)] = λ

∫ t

0

P{gi(Tn, Yn) ≤ t|Tn = s}ds. (3.30)

For instance,

E[D3(t)] =

∫ t

0

[
λ3G3(u) + λ2p23G2 
 G3(u) + λ1p13G1 
 G3(u)

+ λ1p12p23G1 
 G2 
 G3(u)
]
du.

Similarly to the independence of quantities at the nodes, processesDi and Dj

are independent if Ri and Rj are disjoint. For instance, D4 is independent
of D3 and D5.

3.14 Cox Processes

This section describes a Poisson process with a random intensity measure.
The random intensity might represent a random environment or field that
influences the Poisson locations of points. Because the intensity is random,
the resulting process is rather general, but we will show that many of its
properties can be characterized by features of the parent Poisson process and
the intensity process. Chapter 5 covers similar material for Brownian motion
in a random environment.

Suppose that N is a point process on a space S and η is a random measure
on S that is locally finite a.s. and is defined on the same probability space
as N . The N is a Cox process directed by η if, conditioned on η, the N
is a Poisson process with conditional intensity measure η. Equivalently, the
conditional Laplace functional of N given η is

E[e−Nf | η] = exp{−
∫

S

(1 − e−f(x))η(dx)}, a.s. f ∈ C+
K(S). (3.31)

In particular,

P{N(B) = n | η} = e−η(B)η(B)n/n!,

and taking expectations,

P{N(B) = n} = E
[
e−η(B)η(B)n/n!

]
.

Note also that E[N(B)] = E[η(B)].
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A Cox process is sometimes called a conditional Poisson process, a dou-
bly stochastic Poisson process, or a Poisson process in a randomly changing
environment. Several characterizations of Cox processes appear in [61].

An important observation is that a Cox process on R+ can be characterized
as a homogeneous Poisson process with a random time parameter.

Remark 53. A point process N on R+ is a Cox process directed by η if and

only ifN(·) d
= N1(η

′(·)), whereN1 and η
′ are defined on a common probability

space such that N1 is a Poisson process with rate 1 and η′ d
= η. This follows

by the definition above and consideration of the Laplace functionals of the
processes. In case η is strictly increasing, one can show as in Exercise 43 in
Chapter 5 that N(·) = N1(η(·)) a.s., where N1 is defined on the same space
as X and η.

In some instances, one can formulate a Cox process as a transformation of
a Poisson process that has one more layer of randomness than those above.
For instance, let N be a Poisson process on R+ with intensity measure μ.
Consider a transformation of N in which a point of N at t is mapped to a
location γ(t), where γ(t) is a stochastic process on R+ that is independent
of N . Then the transformed process N ′(B) = M(γ−1(B)) is a Cox process
directed by η(B) =

∫
R+

1(γ(t) ∈ B)μ(dt), provided this is a.s. locally finite.

This follows since, by Theorem 32, N ′ is Poisson when γ(t) is deterministic.
As a second example, let N be a Poisson process on R+ with intensity

measure μ. Assume that N is partitioned into m subprocesses N1, . . . , Nm
by the rule that a point of N at t is assigned to the subprocess with the label
α(t), where α(t) is a stochastic process on {1, . . . ,m} that is independent
of N . Then as in Proposition 41, N1, . . . , Nm are conditionally independent
Poisson processes given α(·). Hence each Ni is a Cox process directed by

η(B) =

∫

B

1(α(t) = i)μ(dt).

Of course, the Ni are not independent since they all depend on α.
Because Cox processes are essentially Poisson processes with an extra ex-

pectation to account for the randomized mean measure, most results for
Poisson processes have counterparts for Cox processes. Here is one instance.

Example 54. If N1, . . . ,Nm are Cox processes on S directed by η1, . . . , ηm,
respectively, and (N1, η1), . . . , (Nm, ηm) are independent, then N = N1 +
· · ·Nm is a Cox process directed by η = η1 + · · · ηm.

Here is an illustration of a Cox input process for a Mt/Gt/∞ system.

Example 55. Regenerative-Modulated Poisson Process. In computer and tele-
communications systems, a standard model for the occurrences of an event
in time is a Cox process N on R+ directed by η(t) =

∫ t
0
f(Y (s)) ds, where

Y (t) is a regenerative process on a countable state space S that models a
changing environment in which events occur. For instance, a flow of data
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may be Poisson, but dependent on an environment (type or source of the
data, congestion in a network, etc.) that is changing according to Y (t).

Since the Cox process has the form N(t) = N1(η(t)), its behavior far out
in time is related to the limiting behavior of Y (t). For instance, suppose Y (t)
has a limiting distribution p on S. Then the limiting average of N is

t−1N(t) → λ =
∑

i∈S
f(i)pi, a.s. as t→ ∞.

This follows since by the SLLNs for Poisson processes and regenerative
processes, N1(t)/t→ 1 and η(t)/t→ λ a.s., and so

t−1N(t) = (η(t)/t)N1(η(t))/η(t) → λ, a.s. as t→ ∞.

Now, consider a variation of theMt/G/∞ system in which items arrive for
service according to the preceding Cox process N , and G is the distribution
of the independent service times. The system data is M =

∑
n δ(Tn,Vn) on

R
2
+, where Tn is the arrival time of the nth item, and Vn is its sojourn or

service time. Analogously to marked Poisson processes, M is a space-time
Cox process directed by η with

E[M([0, t)× [0, v))|η] =
∫

(0,t]

Gs(v)f(Y (s))ds.

Here dη(s) = f(Y (s))ds.
Consider the quantity of items Q(t) =

∑
n 1(Tn+Vn > t) in the system at

time t. As in (3.24), the “conditional” distribution of Q(t) given η is Poisson
with

E[Q(t)|η] =
∫ t

0

[1−G(t− s)]f(Y (s))ds.

Furthermore, under the additional assumptions that Y (t) is stationary and
G has a mean α, we have

lim
t→∞

P{Q(t) = n} =
∑

i∈S
P{Y (0) = i}(f(i)α)ne−f(i)α/n!. (3.32)

This limit is a conditional Poisson distribution with random mean αf(Y (0)).
To prove (3.32), note that

P{Q(t) = n} = E
[
(E[Q(t)|η])ne−E[Q(t)|η]/n!

]
,

E[Q(t)|η] d= f(Y (0))

∫ t

0

[1−G(u)]du
d→ αf(Y (0)).

In light of these properties, (3.32) follows from the dominated convergence
theorem for convergence in distribution (see the Appendix).
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3.15 Compound Poisson Processes

If a Poisson process has real-valued marks at its points, then the cumulative
value of the marks in time (or in a space) is a compound Poisson process.
This section is a brief description of such processes.

We first consider a classical compound Poisson process in time (as men-
tioned in Example 14).

Definition 56. Let N(t) be a homogeneous Poisson process on R+ with rate
λ, and let Yn be real-valued random variables that are i.i.d. with distribution
F and are independent of N . The stochastic process

Z(t) =

N(t)∑

n=1

Yn, t ≥ 0,

is a compound Poisson process with rate λ and distribution F .

The name comes from the fact that Z(t) has a compound Poisson distri-
bution with rate λt and distribution F :

P{Z(t) ≤ z} =

∞∑

n=0

e−λt(λt)nFn�(z)/n!, z ∈ R. (3.33)

Indeed, condition on N(t) and use P{Z(t) ≤ z|N(t) = n} = Fn�(z). Similar
conditioning on N(t) yields

E[Z(t)] = λtE[Y1], Var[Z(t)] = λtE[Y 2
1 ],

provided these moments exist. Finally, if the moment generating function
φ(α) = E[eαY1 ] exists for some α in a neighborhood of 0, then

E[eαZ(t)] = e−λt(1−φ(α)).

The stationary independent increments of the Poisson process N and the
i.i.d. property of its marks yield the following result.

Theorem 57. A compound Poisson process {Z(t) : t ≥ 0} has stationary,
independent increments: Z(t1) − Z(s1), . . . , Z(tn) − Z(sn), for s1 < t1 <
· · · sn < tn, are independent; and

Z(s+ t)− Z(s)
d
= Z(t), s, t ≥ 0.

Proof. Using the process M =
∑

n δ(Tn,Yn), we can write

Z(t) =
∑

n

Yn1(Tn ≤ t) =

∫

R

yM((0, t]× dy).
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Under the assumptions, M is a space-time Poisson process with

E[M((s, s+ t]×B)] = λtF (B).

Now, for any s1 < t1 < . . . sn < tn, consider the increments

Z(ti)− Z(si) =

∫

R

yM((si, ti]× dy), 1 ≤ i ≤ n.

They are independent since the point processes M((si, ti]× ·), for 1 ≤ i ≤ n,
on R are independent, because M has independent increments.

Next, note that E[M((s, s+t]×B)] = E[M((0, t]×B)]. SinceM is Poisson
and its distribution is uniquely determined by its intensity, it follows that

M((s, s+ t]× ·)] d= M((0, t]× ·) Consequently,

Z(s+ t)− Z(s) =

∫

R

yM((s, s+ t]× dy)
d
=

∫

R

yM((0, t]× dy) = Z(t).

Hence Z(t) has stationary increments.

The classical compound Poisson process described above has several nat-
ural extensions. For instance, instead of the Yn being independent of N , sup-
pose Yn are p-marks of Tn. Also, assume N has a general intensity μ. Then

the process Z(t) =
∑N(t)
n=1 Yn, for t ≥ 0, is a location-dependent compound

Poisson process with intensity measure μ and distribution p(t, ·). Many of its
properties follow directly from the fact that M =

∑
n δ(Tn,Yn) is a Poisson

process. For instance, see Exercises 54 and 55. Also, since M is Poisson, the
results above for Poisson processes extend to compound Poisson processes
by using a p-marking of M , which would be a “second” marking of N as
mentioned in Example 39. Exercise 54 illustrates these ideas for partitions of
compound Poisson processes.

There are other relatives of compound Poisson processes of the form
M(A) =

∑
n YnδXn(A), where N =

∑
n δXn is a Poisson process on a general

space, and the marks Yn are random vectors, matrices, or elements of a group
with an addition operation. Here is an example when Yn are point processes.

Example 58. Poisson Cluster Processes. Let N =
∑

n δXn denote a Poisson
process on a general space S with intensity measure μ. Suppose that each
point Xn generates a cluster of points in a space S′ that are represented by a
point process N ′

n. Assume the N ′
n are point processes on a space S′ that are

i.i.d. and independent of N . Then the number of points from the processes
N ′
n in a set B that are generated by points of N in the set A is

M(A×B) =
∑

n

N ′
n(B)δXn(A).
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This defines a point process M on S × S′ called a marked cluster process
generated by the Poisson process N ; the M(S × ·), provided it is locally
finite, is simply the cluster process on S′.

Since M(A × B) =
∑N(A)

n=0 N ′
n(B), it follows by conditioning on N that

M(A×B) has the compound Poisson distribution

P{M(A×B) ≤ n} =
∞∑

k=0

e−μ(A)μ(A)kF k�(n;B)/k!,

where F (n;B) = P{N ′
1(B) ≤ n}. Also, E[M(A × B)] = E[N(A)]E[N ′

1(B)]
and

Var[M(A×B)] = E[N(A)]Var[N ′
1(B)].

More general cluster processes, where the N ′
n are marks of Xn, are analyzed

in Exercise 57.

3.16 Poisson Law of Rare Events

Poisson processes are natural models for rare events in time, or rare points
in a space. This is partly due to a law of rarely occurring events in which a
sum of thin or rarefied point processes converges in distribution to Poisson
process. A classical case for random variables is a Binomial random variable
converging to a Poisson random variable as in Example 59 below. In this
section, we present a generalization of this result that gives conditions under
which a sum of many rare indicator random variables converges to a Poisson
random variable. Analogous results under which a sum of point processes
converges to a Poisson process are in the next section.

Here is a classical example of the Poisson law of rare events.

Example 59. Binomial Convergence to Poisson. Suppose Yn1, . . . , Ynn are
independent Bernoulli random variables with P{Yni = 1} = pn. Then
Zn =

∑n
i=1 Yni has a binomial distribution with parameters n and pn. If

npn → μ > 0 as n → ∞, then Zn
d→ Z, where Z has a Poisson distribution

with mean μ. This is a special case of the following result.

Theorem 60. (Poisson Law of Rare Events) Suppose Yn1, Yn2, . . ., for n ≥ 1,
are a countable number of independent random variables that take values 0
or 1, and satisfy the uniformly null property

sup
i
P{Yni = 1} → 0, as n→ ∞. (3.34)

Let Z be a Poisson random variable with mean μ. Then as n→ ∞,

Zn =
∑
i Yni

d→ Z if and only if
∑
i P{Yni = 1} → μ.
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Proof. We will use the property of Laplace transforms that Zn
d→ Z if and

only if E[e−αZn ] → E[e−αZ ]. By the independence of the Yni,

E[e−αZn ] =
∏

i

E[e−αYni ] =
∏

i

(1 − cni), α ≥ 0,

where cni = E[1− e−αYni]. Also, E[e−αZ ] = e−c, where c = μ(1− e−α), since
Z has a Poisson distribution with mean μ. From these observations,

Zn
d→ Z ⇐⇒ E[e−αZn ] → e−c ⇐⇒

∏

i

(1− cni) → e−c. (3.35)

Moreover, under the assumption (3.34) and cni ≤ (1 − e−α) < 1, it follows
by Lemma 61 below for cni = cμ−1P{Yni = 1}, that

∏

i

(1 − cni) → e−c ⇐⇒
∑

i

cni → c ⇐⇒
∑

i

P{Yni = 1} → μ.

Combining this string of equivalences with (3.35) proves the assertion.

The preceding proof of the Poisson convergence boils down to the following
result on the convergence of real numbers.

Lemma 61. Suppose cn1, cn2, . . ., for n ≥ 1, are a countable (possibly finite)
number of real numbers in (0, a], where a < 1, that satisfy the uniformly null
property

sup
i
cni → 0 as n→ ∞. (3.36)

Then, for any c > 0,

lim
n→∞

∏

i

(1− cni) = e−c if and only if lim
n→∞

∑

i

cni = c.

Proof. The assertion is equivalent to

sn = −
∑

i

log(1 − cni) → c if and only if sn =
∑

i

cni → c. (3.37)

Since log(1− cni) = −
∑∞
m=1 c

m
ni/m, the difference in these sums is

dn = sn − sn =
∑

i

c2ni

∞∑

m=2

cm−2
ni /m.

Using cni ≤ a and αn = supi cni, we have

dn ≤ 1

1− a

∑

i

c2ni ≤
αnsn
1− a

≤ αnsn
1− a

. (3.38)
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Now, if sn → c, then from (3.38) and (3.36) we have dn → 0, and hence
sn = sn − dn → c. Similarly, if sn → c, then sn = sn + dn → c. These
observations prove (3.37).

3.17 Poisson Convergence Theorems*

This section contains Poisson convergence theorems for sequences of point
processes. These results are extensions of the Poisson law of rare events in
Theorem 60 above. The main theorem here is that a sum of many indepen-
dent sparse point processes converges to a Poisson process. Consequently,
certain sums of renewal processes and rare transformations of a point pro-
cess converge to a Poisson process. Also included are examples justifying that
Poisson processes are reasonable approximations for thinnings and partitions
of a point process.

We will use the following notion of weak convergence, which is reviewed
in the Appendix. Suppose μ, μ1, μ2, . . . are probability measures on S. The
probabilities μn converge weakly to μ as n → ∞, denoted by μn

w→ μ, if
μnf → μf , as n → ∞, for each bounded continuous function f : S → R

(recall μf =
∫
S
f(x)μ(dx)). This is equivalent to

lim
n→∞

μn(B) = μ(B), B ∈ Ŝμ, (3.39)

where Ŝμ = {B ∈ Ŝ : μ(∂B) = 0}, the set of all bounded sets whose boundary
has μ-measure 0.

A sequence of random elements in a metric space converges in distribution
to a random element if their distributions converge weakly. In particular,
a sequence of point processes Nn on S converges in distribution to N as

n→ ∞, denoted by Nn
d→ N , if P{Nn ∈ ·} w→ P{N ∈ ·}. This weak conver-

gence is equivalent to the convergence of the finite-dimensional distributions
(condition (ii) in the next theorem).

A few points in our analysis use the slightly more general notion of vague
convergence of measures. Suppose μ, μ1, μ2, . . . are locally finite measures on
S. The measures μn converge vaguely to μ, denoted by μn

v→ μ, if

μnf → μf, as n→ ∞, for each f ∈ C+
K(S).

This is equivalent to (3.39) if all the measures are probability measures, so
vague convergence, in this case, is the same as weak convergence.

The following are several equivalent conditions for point processes to con-
verge in distribution. Here ŜN = {B ∈ Ŝ : N(∂B) = 0 a.s.}.

Theorem 62. For point processes N,N1, N2, . . . on S, the following state-
ments are equivalent as n→ ∞.
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(i) Nn
d→ N .

(ii) (Nn(B1), . . . , Nn(Bk))
d→ (N(B1), . . . , N(Bk)), B1, . . . , Bk ∈ ŜN .

(iii) Nnf
d→ Nf, f ∈ C+

K(S).
(iv) E[e−Nnf ] → E[e−Nf ], f ∈ C+

K(S).

A proof of this result is in [60]. Condition (ii) says the finite-dimensional
distributions of Nn converge to those of N . When S is an Euclidean space,
the sets Bi can be replaced by bounded rectangles. Condition (iii) relates the
convergence in distribution of integrals with respect to point processes to the
convergence of the processes. The convergence (iv) of Laplace functionals is

a convenient tool for proving Nn
d→ N , when the functionals can be factored

conveniently (as in the proof of Theorem 66 below).
Here is an elementary but useful fact. It justifies the convergence of a

Poisson process when its intensity converges (see Exercise 54 in Chapter 4).

Proposition 63. (Convergence of Poisson Processes) For each n ≥ 1, sup-
pose Nn is a Poisson process on a space S with intensity measure μn. If

μn
v→ μ and μ is locally finite, then Nn

d→ N , where N is a Poisson process
with intensity μ.

Proof. From Theorem 21, we know that E[e−Nnf ] = e−μnh, for f ∈ C+
K(S),

where h(x) = 1− e−f(x). By Theorem 62, we have μnh
v→ μh, and so

E[e−Nnf ] = e−μnh → e−μh = E[e−Nf ].

Thus, Nn
d→ N by Theorem 62.

We are now ready to consider the convergence of sums of point processes.
Here is a motivating example.

Example 64. Consider a sum N(t) =
∑n
i=1Ni(t), for t ≥ 0, where N1, . . . , Nn

are independent renewal processes. Of course, N is generally not a renewal
process. However, suppose the times between renewals for each process Ni
tend to be large (i.e., Fi(t) is small, where Fi is the inter-renewal distribu-
tion). Consequently, each contribution Ni(a, b] to N(a, b] would tend to be
0. In other words, each Ni rarely contributes a point to N on bounded in-
tervals. However, if the number n of these contributions is large, it might be
reasonable to approximate N by a Poisson process with intensity E[N(t)] =∑n
i=1 E[Ni(t)].
A Poisson convergence theorem justifying such an approximation is as

follows. The opposite situation in which Ni(a, b] tends to be large is addressed
in Exercise 59.

Theorem 65. (Sums of Renewal Processes) For n ≥ 1, let Nn(t) =
∑

iNni(t)
be a point process on R+, where Nn1, Nn2, . . . is a finite or countable number
of independent renewal processes and Nni has inter-renewal distribution Fni.
Assume the inter-renewal times are uniformly rare in that
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lim
n→∞

sup
i
Fni(t) = 0, t ≥ 0.

Let N be a Poisson process on R+ with intensity measure μ. Then Nn
d→ N ,

as n→ ∞ if and only if, for each t with μ({t}) = 0,

lim
n→∞

∑

i

Fni(t) = μ(t). (3.40)

Proof. This result follows by Theorem 66 below, since

∑

i

P{Nni(t) ≥ 2} =
∑

i

∫

(0,t]

Fni(t− s)Fni(ds)

≤ sup
i
Fni(t)

∑

i

Fni(t),

and (3.43) is the same as (3.40) because P{Nni(t) ≥ 1} = Fni(t).

The next result is a general Poisson convergence theorem for sums of
uniformly rare point processes. Suppose that

Nn =
∑

i

Nni, n ≥ 1,

is a point process on a space S, where Nn1, Nn2, . . . is a countable number
of independent point processes on S. Assume the point processes Nni are
uniformly null, meaning that

lim
n→∞

sup
i
P{Nni(B) ≥ 1} = 0, B ∈ Ŝ. (3.41)

Let N be a Poisson process on S with intensity measure μ.

Theorem 66. (Grigelionis) For the processes defined above, Nn
d→ N , as

n→ ∞ if and only if

lim
n→∞

∑

i

P{Nni(B) ≥ 2} = 0, B ∈ Ŝ, (3.42)

lim
n→∞

∑

i

P{Nni(B) ≥ 1} = μ(B), B ∈ Ŝμ. (3.43)

Proof. The convergence Nn
d→ N is equivalent, by Theorem 62, to

E[e−Nnf ] → E[e−Nf ], f ∈ C+
K(S). (3.44)

Using the independence of the Nni and letting cni = E[1− e−Nnif ], we have

E[e−Nnf ] =
∏

i

E[e−Nnif ] =
∏

i

(1− cni).
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Also, by Theorem 21, E[e−Nf ] = e−μh, where h(x) = 1− e−f(x). Combining
these observations, it follows that (3.44) is equivalent to

∏

i

(1− cni) → e−μh, f ∈ C+
K(S). (3.45)

Keep in mind that cni is a function of f .
We will complete the proof by applying Lemma 61 to establish that (3.42)

and (3.43) are necessary and sufficient for (3.45). First note that

cni = E[1− e−Nnif ] ≤ P{Nni(Sf ) ≥ 1},

where Sf is the support of f . Then (3.41) implies

sup
i
cni ≤ sup

i
P{Nni(Sf ) ≥ 1} → 0.

In light of this property, we can assume cni are in (0, a] for some a < 1. Then
Lemma 61 says that (3.45) is equivalent to

∑

i

E[1− e−Nnif ] =
∑

i

cni → μh, f ∈ C+
K(S). (3.46)

Therefore, it remains to show that (3.42) and (3.43) are necessary and suffi-
cient for (3.46).

To prove that (3.42) and (3.43) imply (3.46), consider

∑

i

cni =
∑

i

E[(1− e−Nnif )1(Nni(Sf ) = 1)] (3.47)

+
∑

i

E[(1− e−Nnif )1(Nni(Sf ) ≥ 2)].

The last sum is bounded by
∑

i P{Nni(Sf ) ≥ 2)} which converges to 0 by
assumption (3.42). The first sum on the right-hand side in (3.47) equals ηnh,
where

ηn(B) =
∑

i

E[Nni(B ∩ Sf )1(Nni(Sf ) = 1)] =
∑

i

P{Nni(B ∩ Sf ) = 1}.

The last sum has the same form as the sum in (3.42) minus the one in (3.43),

and so these assumptions imply ηn
v→ μ, which yields ηnh → μh. Using the

preceding observations in (3.47) proves that (3.42) and (3.43) are sufficient
for (3.46).

Conversely, suppose (3.46) is true. Applying this property to the function
f(x) = −1(x ∈ B) log s, where B ∈ Ŝ and s ∈ [0, 1], we have

Hn(s) =
∑

i

E[1− sNni(B)] → (1− s)μ(B), (3.48)



222 3 Poisson Processes

since h(x) = 1− e−f(x) = (1− s)1(x ∈ B). Then (3.43) follows since

∑

i

P{Nni(B) ≥ 1} = Hn(0) → μ(B). (3.49)

Next, consider the factorization

Hn(s) =
∑

i

[1−
∞∑

m=0

smP{Nni(B) = m}]

= (1− s)Hn(0) +
∑

i

∞∑

m=2

(s− sm)P{Nni(B) = m}.

This expression along with (3.48) and (3.49) yield

(s− s2)
∑

i

P{Nni(B) ≥ 2} ≤ Hn(s)− (1 − s)Hn(0) → 0.

Thus (3.46) is true. These observations prove that (3.46) implies (3.42) and
(3.43), which completes the proof.

Theorem 66 justifies Poisson limits for sums of independent renewal pro-
cesses (Theorem 65 and Exercise 59). Although Theorem 66 is for sums of
independent point processes, it also applies to certain sums of conditionally
independent point processes. We will consider the convergence of such sums
and their application to partitioning and thinning of point processes, follow-
ing a motivating example.

Example 67. A Thinned Process. Let N be a point process on R+ (e.g., a

renewal process) that satisfies t−1N(t)
d→ λ as t → ∞, where λ is a positive

constant. Suppose each point of N is independently retained with probability
p and deleted with probability 1−p. Let Np(t) denote the number of retained
points in (0, t]. When p is very small, the retained points are rare and so it
appears that it would be appropriate to approximate the p-thinning Np of N
by a Poisson process.

Let us see why. As p → 0, clearly Np would converge to 0. However, the
thinned process Np(p

−1t) with its time scale magnified by p−1 converges in
distribution to a Poisson process with rate λ. This convergence is a special
case of Corollary 70 below, which applies to general partitions of a point pro-
cess. Based on this convergence it follows that it is reasonable to approximate
Np by a Poisson process with rate pλ when p is small.

For the next result, suppose that Nn =
∑

j δXnj is a sequence of point
processes on a space S with intensity measures μn. Let Mn be a marked pn-
transformation ofNn on S×S′. We will specify conditions for the convergence
of Mn to a Poisson process, and then apply this to partitions of a point
process.



3.17 Poisson Convergence Theorems* 223

We will use the conditional mean measure of Mn given Nn, which is

ηn(A×B) = E[Mn(A×B)|Nn] =
∑

j

pn(Xnj , B)1(Xnj ∈ A)

=

∫

A

pn(x,B)Nn(dx), A ∈ S, B ∈ S′.

The convergence in distribution of these random mean measures ηn would
be consistent with the convergence of Mn. For such random measures, the

convergence ηn
d→ η is analogous to convergence in distribution of point

processes; equivalent statements for this are in Theorem 62 (with η in place
of N).

A natural prerequisite for Mn to converge is that the transformations
should be uniformly null. Accordingly, we will use the condition

lim
n→∞

sup
x∈A

pn(x,B) = 0, A ∈ Ŝ, B ∈ Ŝ′. (3.50)

Theorem 68. (Poisson Limit of Rare Transformations) Suppose the sequence

Mn of marked pn-transformations of Nn satisfies (3.50). Also, assume ηn
d→

μ as n → ∞, where μ is a (non-random) locally finite measure on S × S′.

Then Mn
d→ M as n → ∞, where M is a Poisson process on S × S′ with

intensity measure μ.

Proof. We can write Mn =
∑
iMni, where Mni = δXni,Yni and Yni are pn-

marks of the Xni, for i ≥ 1. Although the point processes Mni, i ≥ 1,
are not independent, they are conditionally independent given Nn. Clearly
P{Mni(B) ≥ 2|Nn} = 0 and, under assumption (3.50),

sup
i
P{Mni(A× B) ≥ 1|Nn} ≤ sup

x∈A
pn(x,B) → 0, A ∈ Ŝ, B ∈ Ŝ′.

Also, using ηn
d→ μ, we have, for A×B ∈ Ŝ × S′

μ,

∑

i

P{Mni(A×B) ≥ 1|Nn} = E[Mn(A×B)|Nn]

= ηn(A×B)
d→ μ(A×B).

Applying Theorem 66 to the conditional distribution of Mn given Nn, and
using Theorem 62, it follows that

E[e−Mnf |Nn] d→ E[e−Mf ], f ∈ C+
K(S).

Taking expectations of this and using the dominated convergence theorem
for convergence in distribution (Theorem 17 in the Appendix), we have

E[e−Mnf ] → E[e−Mf ]. Thus, Mn
d→M by Theorem 62.
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Example 69. Poisson Limits of Partitions. Let N(t) be a point process on
R+. Suppose N is partitioned as in Proposition 41 by the following rule:
Each point of N is assigned to subprocess i ∈ I (a countable set) with
probability p(i), independent of everything else, where

∑
i∈I p(i) = 1. Then

N =
∑

i∈I Ni, where Ni denotes the ith subprocesses in the partition.
We address the issue of finding conditions under which the subprocesses

{Ni : i ∈ I0}, for a subset I0 ⊆ I, are approximately independent Poisson
processes. A natural condition for this is that the points of N would rarely
be assigned to the subprocesses in I0, but would mostly be assigned to the
other subprocesses. The thinning in Example 67 is such a partition consisting
of two subprocesses, where I0 = {0} and I = {0, 1}.

To ensure that the subprocesses in I0 are sparse, we assume the parti-
tioning probabilities are functions of n such that pn(i) → 0, for i ∈ I0 (I is
necessarily infinite when I0 = I). Denote the ith subprocess by Nni(t). Its
conditional mean given N is E[Nni(t)|N ] = pn(i)N(t). This mean converges
to 0, which would not lead to a non-zero limit of Nni.

To obtain a non-zero limit, a normalization of the processesNni is in order.
Accordingly, assume there is a positive constant λ such that

t−1N(t)
d→ λ. (3.51)

This ensures that N(t) → ∞ and that the points of N appear at a positive
rate out to infinity. Next, assume the partitioning is uniformly rare on I0:
there exist positive constants an → ∞ and r(i), such that

lim
n→∞

anpn(i) = r(i), i ∈ I0. (3.52)

Under the preceding assumptions, it is natural to consider the convergence
of the point process

N̂ni(t) = Nni(ant), i ∈ I0.

This is a normalization of the partition-processes Nni under a rescaling of
time so that an is the new unit of time. The N̂ni on a “fixed” interval (0, t]
represents subprocess i on the interval (0, ant], which becomes larger as n→
∞. The choice of an for the time unit is because, as n→ ∞,

E[N̂ni(t)|N ] = anpn(i)(N(ant)/an)
d→ r(i)λ, i ∈ I0.

The following result describes the Poisson limits of the subprocesses. Inter-
estingly, the processes N̂ni for i ∈ I0 are dependent for each n but in the limit
they are independent. This convergence theorem justifies that the partition-
processes Nni, i ∈ I0, for large n are approximately independent Poisson
processes on R+ with respective rates anpn(i)λ ≈ r(i)λ, i ∈ I0.

Corollary 70. Under assumptions (3.51) and (3.52),
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(N̂ni : i ∈ I0)
d→ (Ni : i ∈ I0), as n→ ∞, (3.53)

where the limiting processes are independent homogeneous Poisson processes
with respective rates r(i)λ, i ∈ I0.

Proof. The partition of N we are studying is a special pn-transformation of
the process N(an·) with pn(t, B) =

∑
i∈B pn(i). Specifically, the number of

the N(ant) points assigned to subprocess i ∈ I0 is

N̂ni(t) = Mn((0, t]× {i}),

where Mn is a marked pn-transformation on R+ × I0 of N(an·) as in Theo-
rem 68. For each t ≥ 0 and B ⊆ I0,

sup
s≤t

pn(s,B) =
∑

i∈B
pn(i) → 0.

Furthermore, under assumptions (3.51) and (3.52),

ηn((0, t]×B) = E[Mn((0, t]×B)|N(an·)] = an
∑

i∈B
pn(i)(N(ant)/an)

d→ η((0, t]×B) =
∑

i∈B
r(i)λt.

Thus, the assumptions of Theorem 68 are satisfied, and so Mn
d→ M , where

M is a Poisson process with E[M((0, t]×B)] =
∑

i∈B r(i)λt. Hence, assertion

(3.53) follows since N̂ni(t) =Mn((0, t]× {i}).

3.18 Exercises

The first nine exercises concern properties of exponential random variables
that arise naturally in modeling. Each of these exercises has an analogue for
geometric distributions (the rate of an exponential distribution is analogous
to the probability (or parameter) p in a geometric distribution p(1− p)n−1).

Exercise 1. Memoryless Property. Show that an exponential random vari-
able X satisfies

P{X > s+ t|X > s} = P{X > t}, s, t > 0.

Explain why this is called a memoryless property. Show that a nonnegative
continuous random variable has an exponential distribution if and only if
it satisfies the memoryless property. Hint: Use the fact that a continuous
nonincreasing function f : R+ → R+ satisfies f(s+ t) = f(s)f(t), s, t ≥ 0, if
and only if f has the form f(t) = e−ct for some c ≥ 0.
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Exercise 2. Minima of Exponential Random Variables. Let X1, . . . , Xm be
independent exponential random variables with respective rates λ1, . . . , λm,
and define

Y = min
1≤i≤m

Xi, ν = argmin1≤i≤mXi.

Show that Y has an exponential distribution with rate λ =
∑m

i=1 λi, and

P{ν = i} = λi/λ.

Show that

P{X1 < X2 < · · · < Xm} =

m−1∏

k=1

λk∑m
j=k λj

.

Exercise 3. Continuation. In the context of the preceding exercise, prove
that ν and Y are independent, and that

E[min{X1, X2}|X1 ≤ X2] = 1/(λ1 + λ2),

P{Xj − Y > xj , j �= i | ν = i} = exp(−
∑

j �=i
λjxj).

Show that P{ν ∈ I|ν ∈ J} =
∑

i∈I λi/
∑
j∈J λj , for I ⊆ J in {1, . . . ,m}.

Exercise 4. Prove that a nonnegative distribution F is an exponential dis-
tribution if and only if F (t) = 1

μ

∫ t
0
[1−F (s)]ds for some μ > 0. In that case,

μ is the mean of F .

Exercise 5. Geometric Sum of Exponential Random Variables . Suppose
X1, X2, . . . are independent exponentially distributed with rate λ, and ν is
a random variable independent of the Xn with the geometric distribution
P{N = n} = pn−1(1− p), n ≥ 1. Prove that

P{
ν∑

i=1

Xi > t} = e−(1−p)λt

by using Laplace transforms. Also, prove it by using the representation

P{
ν∑

i=1

Xi > t} = P{N(t) < ν},

and conditioning on N(t), where N(t) is a Poisson process with rate λ inde-
pendent of ν. In addition, prove that

P{ν > m,

ν−m∑

i=1

Xi > t} = pme−(1−p)λt.



3.18 Exercises 227

Exercise 6. Let X1, . . . , Xn, Y be independent exponentially distributed
random variables with respective rates λ1, . . . , λn, μ. Show that

P{
n∑

i=1

Xi < Y } =

n∏

i=1

λi
λi + μ

=

n∏

i=1

P{Xi < Y }.

Show that if N(t) is a Poisson process with rate λ, and T is an independent

exponential random variable with rate μ, then P{N(T ) > n} =
(
λ/(λ+μ)

)n
.

Exercise 7. Exponential Series. Let X1, X2, . . . be independent exponen-
tially distributed random variables with respective rates λ1, λ2, . . . Show that

∞∑

n=1

Xn <∞ a.s. ⇐⇒
∞∑

n=1

λ−1
n < ∞.

(This property is used to prove Proposition 5 in the next chapter.) Hint: Use
Laplace transforms and the property of products that, for an ∈ (0, 1),

∞∏

n=1

an > 0 ⇐⇒
∞∑

n=1

(1− an) <∞.

Exercise 8. Show that if X is an exponential random variable with rate λ,
then for any h : R+ → R,

E[h(X)] = λE
[ ∫ X

0

h(u)du
]
,

provided the expectations exist. (This property is used to prove Theorem 52
in the next chapter.)

Exercise 9. Suppose that Fi, i ∈ I, is a finite collection of exponential dis-
tributions with respective rates λi, i ∈ I, that are distinct. For J ⊆ I, let FJ
denote the convolution of the distributions Fj , j ∈ J . Show that, for any real
numbers ai, and subsets Ji of I, for j ∈ I,

∑

k∈I
akFJk

(x) =
∑

i∈I
ciFi(x), (3.54)

where

ci = λi
∑

k∈I
ak1(i ∈ Jk)

∏

j∈Jk\{i}

λj
λj − λi

.

This assertion also holds when I is infinite, under the additional assumption
that the summations exist. Hint: Use the fact that the Laplace transform of
the left-hand side of (3.54) is
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L(u) =
∑

k∈I
ak

∏

j∈Jk

λj
λj + u

.

A standard partial sum expansion of this sum of products is

L(u) =
∑

i∈I
ci

λi
λi + u

, (3.55)

where ci = (λi + u)L(u)|u=−λi .

Exercise 10. A space station requires the continual use of two systems whose
lifetimes are independent exponentially distributed random variables X1 and
X2 with respective rates λ1 and λ2. When system 2 fails, it is replaced by
a spare system whose lifetime X3 is exponentially distributed with rate λ3,
independent of the other systems. Find the distribution of the time Y =
min{X1, X2 + X3} at which one of the systems becomes inoperative. Find
the probability that system 1 will fail before system 2 (with its spare) fails.

Exercise 11. Dispatching. In Example 3, what properties of the Poisson pro-
cess are not needed to obtain the optimal dispatching policy? What is the
optimal policy when the arrival process N(t) is a simple, stationary point
process with N(t) = λt, such as a stationary renewal process?

Exercise 12. Waiting to be Dispatched. Items arrive to a dispatching station
according to a Poisson process with rate λ, and all items in the system will be
dispatched at a time t. Example 3 shows that the expected time items wait
before being dispatched at time t is E[

∫ t
0
N(s)ds] = λ2/2. Suppose there is

a cost hw2 for holding an item in the system for a time w. Then the total
holding cost in (0, t] is C =

∑
n≥1 h(t− Tn)

2. Find E[C].

Exercise 13. Requests for a product arrive to a storage facility according to
a Poisson process with rate λ per hour. Given that n requests are made in a
t-hour time interval, find the probability that at least k requests were made
in the first hour. Is this conditional probability different if the beginning of
the one-hour period is chosen according to a probability density f(s) on the
interval [0, t− 1]?

Exercise 14. From Theorem 22, we know that the sum N = N1+ · · ·+Nn of
independent Poisson processes is Poisson. Prove this statement by verifying
that N satisfies the defining properties of a Poisson process.

Exercise 15. Meeting of Vehicles. Vehicles enter a one-mile stretch of a two-
way highway at both ends by independent Poisson processes and move at 60
miles per hour to the opposite end. Let λ and μ denote the rate of Poisson
arrivals at the two ends labeled 0 and 1. Assuming the highway is empty at
time 0, show that the probability is (λe−μ + μe−λ)/(λ + μ) that the first
vehicle that enters at either end does not encounter another vehicle coming
from the other direction during the one-mile stretch.
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Show that this probability is (λe−μ + μe−(λ+2μ))/(λ + μ) for such an en-
counter avoidance for the first vehicle to arrive from end 0. Hint: For this
second problem, let N1(t) denote the Poisson process of arrivals at end 1,
and let T denote the time of the first arrival at end 0. Then N1(T ) denotes
the number of arrivals at 1 before the first arrival at 0. Use its distribution
from Exercise 6.

Exercise 16. Show that a simple point process N on R+ is a Poisson process
with rate λ if and only if N has independent increments, E[N(1)] = λ, and,
for any t and n, the conditional joint density of T1, . . . , Tn given N(t) = n
is the same as the density of the order statistics of n independent uniformly
distributed random variables on [0, t].

Exercise 17. Shot Noise Process. Suppose that shocks (or pulses) to a sys-
tem occur at times that form a Poisson process with rate λ. The shock at
time Tn has a magnitude Yn and this decays exponentially over time with
rate γ. Then the cumulative effect of the shocks at time t is

Z(t) =

N(t)∑

n=1

Yne
−γ(t−Tn).

Assume Y1, Y2, . . . are i.i.d. independent of N with mean μ and variance σ2.
Find expressions for the mean and variance of Z(t) in terms of μ and σ2.

Exercise 18. Randomly Discounted Cash Flows. In the context of Exam-
ple 13, consider the generalization

Z(t) =

N(t)∑

n=1

Yne
−γnTn ,

where γ1, γ2, . . . are independent nonnegative discount rates with distribution
G that are independent of N and the Yn’s. Show that

E[Z(t)] = λE[Y1]

∫ t

0

∫

R+

e−γxG(dγ)dx.

Exercise 19. Calls arrive to an operator at a call center at times that form
a Poisson process N(t) with rate λ. The time τ devoted to a typical call has
an exponential distribution with rate μ, and it is independent of N . Then
N(τ) is the number of calls that arrive while the operator is busy answering
a call. Find the Laplace transform and variance of N(τ). Find P{N(τ) ≤ 1}.
Exercise 20. For a Poisson process N with rate λ, show that

E[T� − Tk|N(t) = n] = (�− k)/(n+ 1), k < � ≤ n, t > 0.

Find an expression for E[t− Tk|N(t) = n].
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Exercise 21. Two types of items arrive at a station for processing according
to independent Poisson processes with respective rates λ and λ′. Let Tm and
T ′
n denote the times of the mth and nth arrivals from the two respective

processes. Show that P{Tm < T ′
n} = P{Y ≥ m}, where Y has a binomial

distribution with parameters m+ n− 1 and λ/(λ+ λ′).

Exercise 22. Consider a set of N jobs that are assigned to m workers for
processing. Each job is randomly assigned to worker i with probability pi,
for i = 1, . . . ,m. Let Ni denote the number of items assigned to worker i, so
that N = N1 + · · ·+ Nm. Suppose N has a Poisson distribution with mean
λ. Describe the joint distribution of N1, . . . , Nm.

Exercise 23. Patients at an emergency room are categorized into m types.
Assume the arrivals of the m types of patients occur at times that form
independent homogeneous Poisson processes with respective rates λ1, . . . ,λm.
(a) Find the probability that a type 1 patient arrives before a type 2 patient.
(b) What is the probability that the next patient to arrive after a specified
time is of type 1?
(c) Find the probability that in the next 5 arrivals, there are exactly 3 type
1 patients.
(d) Find the probability that 3 type 1 patients arrive before the first type 2
patient.
(e) Find the probability that the next patient to arrive is of type 1, 2 or 3.

Exercise 24. Dynamic Servicing. Customers randomly request service at a
manufacturing facility during an eight-hour day according to a Poisson pro-
cess with intensity λt. The requested orders are satisfied as soon as possible,
but may be delayed due to machine workloads, worker schedules, machine
availability, etc. Past history shows that a request at time t will be satisfied
either: (1) That day. (2) The next day. (3) Some time later. The request at
time t is satisfied under scenario i with probability pi(t), and the expected
revenue for such an order is ri, where i = 1, 2, 3.
(a) Find the distribution of the number of requests in a day that are satisfied
under each scenario i, where i = 1, 2, 3.
(b) Find the daily expected revenue for satisfying the customers, and find
the variance of this revenue.
(This is an actual model of customer requests for orders of paper labels pro-
duced by a company.)

Exercise 25. Requests for a product (information or service) arrive from m
cities at times that form independent Poisson processes with rates λ1, . . . , λm.
Given that there are n requests from the cities in the time interval (0, t], find
the conditional probability that n1 are from city 1 and n2 are from city 2.
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Exercise 26. At the end of a production shift, it is anticipated that there
will be N jobs left to be processed, where N has a Poisson distribution with
mean μ. Suppose the jobs are processed in parallel and the times to complete
them are independent with a distribution G. Let Q(t) denote the number of
jobs in the system at time t, and letD(t) denote the number of jobs completed
in (0, t]. Find the distributions of Q(t) and D(t). Is D a Poisson process?

Answer this question when the jobs are processed serially (one at a time)
and G is an exponential distribution with rate λ.

Exercise 27. Let X(1) ≤ · · · ≤ X(n) denote the order statistics from a ran-
dom sample of size n from an exponential distribution with rate λ. Consider
the distances between points D1 = X(1), and Dk = X(k)−X(k−1), 2 ≤ k ≤ n.
Show that these distances are independent, and that Dk has an exponential
distribution with rate (n− k + 1)λ.

Exercise 28. Let X(1) ≤ · · · ≤ X(n) denote the order statistics of a random
sample from a continuous distribution F (x) with density f(x). Show that the
distribution and density of X(k) are

P{X(k) ≤ x} =

n∑

j=k

(
n

j

)

F (x)j(1− F (x))n−j ,

fX(k)
(x) =

n!

(k − 1)!(n− k)!
F (x)k−1f(x)(1 − F (x))n−k, x ∈ R.

Exercise 29. Point Locations for Non-Homogeneous Poisson Processes. Con-
sider a Poisson process N on R+ with rate function r(x), where r(x) > 0 for
each x. Prove the following Order Statistic Property:
The conditional density of T1, . . . , Tn given N(t) = n is

fT1,...,Tn

(
t1, t2, . . . , tn

∣
∣
∣N(t) = n

)
= n!f(t1) · · · f(tn),

for 0 < t1 < · · · < tn < t, where f(s) = r(s)/μ(0, t]. This is the joint density
of the order statistics of n i.i.d. random variables on [0, t] with density f(s).

Exercise 30. Consider a Poisson process N on R+ with point locations T1 <
T2 < . . . and rate function r(t) = 3t2.
(a) Show that Wn = Tn − Tn−1, n ≥ 1, are dependent.
(b) Find the distributions of T1 and Tn.
(c) Find the distribution of Wn.

Exercise 31. SupposeN is a Poisson process onR
2 with rate function λ(x, y)

at the location (x, y). For instance, N could represent locations of certain
types of animal nests, diseased trees, land mines, auto accidents, houses of
certain types of people, flaws on a surface, potholes, etc. Let Dn denote the
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distance from the origin to the n-th nearest point of N .
(a) Find an expression for the distribution and mean of D1.
(b) Find an expression for the distribution of Dn when λ(x, y) = λ.
(c) Are the differences Dn−Dn−1 independent (as they are for Poisson inter-
point distances on R)?
(d) Suppose there is a point located at (x∗, y∗). What is the distribution of
the distance to the nearest point?
(e) Is λ(x, y) = 1/(x2 + y2)1/2 a valid rate function for N to be a Poisson
process under our definition?
(f) Specify a rate function λ(x, y) under which P{N(R2) < ∞} = 1.

Exercise 32. Let M denote a Poisson process on R
d
+ with intensity μ. Show

that N(t) = M((0, t]d), for t ≥ 0, is a Poisson process on R+ with E[N(t)] =
μ((0, t]d). This fact for d = 2 provides an alternate approach to proving the
departure process in an Mt/Gt/∞ system is Poisson; see Section 3.12.

Exercise 33. Highway Model. Vehicles enter an infinite highway denoted by
R at times that form a Poisson process N on the time axis R+ with intensity
measure μ. For simplicity, assume the highway is empty at time 0. The vehicle
arriving at time Tn enters at a location Xn on the highway R and moves on it
with a velocity Vn for a time τn and then exits the highway. The velocity may
be negative, denoting a movement in the negative direction and vehicles may
automatically pass one another on the highway with no change in velocity.
The Xn are i.i.d. with distribution F and are independent of N . The pairs
(Vn, τn) are independent of N and, they are conditionally independent given
the Xn with

Gx(v, t) = P{Vn ≤ v, τn ≤ t|Xk, k ≥ 1, Xn = x},

a non-random distribution independent of n.
(a) Justify thatM =

∑
n δ(Tn,Xn,Vn,τn), is a Poisson process on R+×R

2×R+

and describe its intensity.
(b) Consider the departure process D on R × R+ where D(A × (a, b]) is
the number of departures from A in the time interval (a, b]. Justify that D
is a Poisson process and specify its intensity. Find the expected number of
departures in (0, t].
(c) For a fixed t, let Nt(A) denote the number of vehicles in A ⊆ R at time
t. Justify that Nt is a Poisson process on R and specify its intensity.
(d) Suppose a vehicle is at the location x ∈ R at time t and let X(t) denote
the distance to the nearest vehicle. Specify assumptions on μ, F and Gx(v, t)
that would guarantee that there is at most one point at any location on the
highway. Under these assumptions, find the distribution of X(t).

Exercise 34. Continuation. In the preceding highway model, assume there
are vehicles on the highway at time 0 at locations that form a Poisson process
N0(·) with rate λ, and this process is independent of the other vehicles.
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The sojourn times of these vehicles on the highway are like those of the
other vehicles vehicles, and they all operate under the distribution Gx(v, t) =
G(v)(1 − e−μt). Solve parts (b)–(d) of the preceding exercise.

Exercise 35. In the context of Example 34, suppose N is a homogeneous
Poisson process on the unit disc S in R

2 with rate λ. For the Poisson processes
N ′ and M related to the projection of N on the line S′ = [−1, 1, ], show that
the rate function of N ′ is 2λ

√
1− x2, and that

E[M(Au × (0, b])] = λ

∫ b

0

(
√
1− x2 − u) dx,

for Au = {(x, y) ∈ S : y ≥ u} and b ≤
√
1− u2.

Next, consider the transformation of N where a point in the unit disc S
is mapped to the closest point on the unit circle C. Under this map, using
polar coordinates,M(A×B) =

∑
n δ(Rn,Θn)(A)δΘn(B) denotes the number of

points of N in A that are mapped into B. Justify thatM is a Poisson process
on S×C, and give an expression for E[M(A×(0, b])], where A = {(r, θ) ∈ S :
θ ∈ (0, b], r ∈ [ 1

sin θ+cos θ , 1]} and b ≤ π/2 (note that x+y = r(sin θ+cos θ) ≥ 1
when (x, y) ∈ A).

For a fixed B, consider the process N(r) = M(Ar × B), r ∈ [0, 1], where
Ar is a disc in R

2 with radius r. Show that N is a Poisson process and specify
its rate function λ(r).

Exercise 36. Suppose N1, . . . , Nm are independent Poisson processes on a
space S with respective intensities μ1, . . . , μm, and let N =

∑m
i=1Ni, which

is a Poisson process with intensity μ = μ1 + · · ·μm. For instance, Ni(B)
might be the number of crimes of type i in a region B of a city and N(B)
is the total number of crimes. Show that the conditional distribution of
N1(B), . . . , Nm(B) given N(B) = n is a multinomial distribution.

Exercise 37. Let N1, . . . , Nm be independent Poisson processes on R+ with
location-dependent rates λ1(t), . . . , λm(t), respectively. Let τi denote the time
of the first occurrence in processNi. Find the distribution of τ = min1≤i≤m τi.
Find P{τi = τ}.

Exercise 38. Messages arrive to a web page at times that form a Poisson
process with rate λ. The messages are independently of high priority with
probability p, and each of these high priority messages is independently of
type i with probability pi, ≤ i ≤ m. Let Ni(t) denote the number of high
priority messages of type i that arrive in [0, t]. Are N1, . . . , Nm independent
Poisson processes? If so, specify their rates.

Exercise 39. Let X1, X2, . . . be i.i.d. random variables with a distribution
F . Show that X1, . . . , Xn are distinct with probability one for any n ≥ 2 if
and only if F is continuous. (This statement is also true if these are random
elements in a space S and “continuous F” is replaced by F ({x}) = 0, x ∈ S).
Hint: Use induction and P{X1 �= X2} =

∫
R
(1− F ({x})F (dx).
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Exercise 40. Poisson Processes are Infinitely Divisible. Let N be a Poisson
process on S with intensity μ. Using Laplace functionals, show that for each

n, there exist point processesN1, . . . , Nn that are i.i.d. andN
d
= N1+· · ·+Nn.

This says that N is infinitely divisible.

Exercise 41. As in Example 34, suppose N =
∑

n δ(Xn,Yn) is a Poisson
process on the unit disc S in R

2 with location-dependent rate λ(x, y). The
Poisson process M =

∑
n δ((Xn,Yn),Xn) on S × S′ represents the number of

points ofN that are projected onto the x-axis S′ = [−1, 1]. Give an expression
for the location-dependent intensity of M . Switching to polar coordinates as
in Example 34, describe the process M =

∑
n δ((Rn,Θn),Θn) that represents

the number of points of N that are mapped onto the unit circle C.

Exercise 42. Deposits to a bank account occur at times that form a Poisson
process with rate λ and the amounts deposited are independent random vari-
ables with distribution F (independent of the times). Also, withdrawals occur
at times that form a Poisson process with rate μ and the amounts deposited
are independent random variables with distribution G (independent of the
times). The deposits and withdrawals are independent. Let X(t) denote the
balance of the bank account at time t; the balance may be negative. Find the
mean, variance and distribution of X(t) when X(0) = 0.

Exercise 43. Suppose X(t) = minn≤N(t) Yn, for t ≥ 0, where N =
∑

n δTn is
a Poisson process on R+ and Yn are i.i.d. with distribution F , independent of
N . For instance, Yn could be bids on a property and X(t) is the smallest bid
up to time t. Find the distribution and mean of X(t). Answer this question
for the more general setting in which Yn are p-marks of Tn, where p(t, (0, y])
is the distribution of a typical mark at time t.

Exercise 44. E-mail Broadcasting. An official of an organization sends e-
mail messages to various subgroups of the organization at times that form a
Poisson process with intensity μ. Each message is sent to individual i with
probability pi, i = 1, . . . ,m, where m is the number of individuals in the
organization; and the message is sent at the same time to those selected
individuals. Let Ni(t) denote the number of messages individual i receives
from the official in the time interval (0, t]. Justify that Ni is a Poisson process
and specify its intensity.

Consider a subset of individuals I ⊆ {1, . . . ,m}. Specify whether or not
the processes Ni, i ∈ I, are independent. Is the sum

∑
i∈I Ni Poisson? If so,

specify its intensity.

Exercise 45. Continuation. In the setting of the preceding exercise, suppose
there is a probability ri that individual i will reply to an e-mail from the
official, and then send the reply within a time that has a distribution Gi(t).
Let Ri(t) denote the number of replies the official receives in (0, t] from all
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the messages sent to individual i. Is Ri Poisson? If so, specify its intensity.
Is the sum

∑
i∈I Ri Poisson? If so, specify its intensity.

Suppose individual i receives a message from the official, and is planning
to reply to it. Find the probability that before the reply is sent, another
message from the official will arrive?

Exercise 46. A satellite circles a body in outer space and records a special
feature of the body (e.g. rocks, water, low elevations) along a path it mon-
itors. As an idealized model, assume the feature occurs on the polar-angle
space S = [0, 2π] at angles Θ1 ≤ Θ2 . . . ≤ 2π that form a Poisson process with
intensity μ. We will only consider one orbit of the satellite. Suppose the satel-
lite is moving at a (deterministic) velocity of γ radians per unit time. Upon
observing an occurrence at Θn the satellite sends a message to a station that
receives it after a time τn. Suppose the transmission times τn are independent
with distribution G and are independent of the positions of the occurrences.
Consider the point process M on S ×R

2
+, where M((α, β]× (a, b]× (c, d]) is

the number of occurrences in the radian set (α, β] that are observed in the
time set (a, b] and received at the station in the time set (c, d]. Describe the
process M and its intensity measure in terms of the system data.

Next, let N(t) denote the number of messages received at the station in
(0, t] whose transmission time exceeds a certain limit L, where G(L) < 1.
Describe the process N and specify its intensity measure.

Exercise 47. Multiclass M/G/∞ System. Consider an M/G/∞ system in
which items arrive at times that form a Poisson process with rate λ. There
are m classes or types of items and pi is the probability that an item is of
class i. The processing time of a class i item has a distribution Gi(·). Assume
the system is empty at time 0. Let Qi(t) denote the quantity of class i items
in the system at time t. Specify its distribution. Determine whether or not
Q1(t), . . . , Qm(t) are independent. Let Di(t) denote the number of departures
of class i items in (0, t]. Describe these processes including their independence.

Exercise 48. Limiting Behavior of M/G/∞ System. Consider the M/G/∞
system in Section 3.12 with arrival rate λ and service distribution G, which
has a mean α. Show that the limiting distribution of the quantity of items
in the system Q(t) is Poisson with mean λα as t → ∞. Use the fact that
α =

∫∞
0

[1 −G(u)]du. Turning to the departures, consider the point process
Dt(B) on R+ that records the numbers of departures in a time set B after
time t. In particular, show that the number of departures Dt(0, b] in the
interval (t, t+ b] has a Poisson distribution with

E[Dt(0, b]] = λ
[ ∫ t+b

t

G(u + b)du−
∫ t+b

t

G(u)du
]
.

Show that the limiting distribution of Dt(0, b] is Poisson with mean λb. More
generally, show that the finite-dimensional distributions of Dt converge to
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those of a homogeneous Poisson process D with rate λ. This proves, in light

of Theorem 62, that Dt
d→ D.

Exercise 49. Spatial M/G/∞ System. Consider a system in which items
enter a space S at times T1 ≤ T2 ≤ . . . that form a Poisson process with
intensity measure μ. The nth item that arrives at time Tn enters S at the
location Xn and remains there for a time Vn and then exits the system.
Suppose Ft(·) is the distribution of the location in S of an item arriving at
time t, and G(t,x)(·) is the distribution of the item’s sojourn time at a location
x. More precisely, assume (Xn, Vn) are location-dependent marks of Tn with
distribution

p(t, A× (0, v]) =

∫

A

G(t,x)(v)Ft(dx).

Let Nt(B) denote the number of items in the set B ∈ S at a fixed time t.
Show that Nt is a Poisson process on S with

E[Nt(B)] =

∫

(0,t]

∫

B

[1−G(s,x)(t− s)]Fs(dx)μ(ds).

Next, let D((a, b] × B) denote the number of departures from the set B
in the time interval (a, b]. Show that D is a space-time Poisson process on
R+ × S and specify E[D((0, t]×B)].

Exercise 50. For the network in Example 52, justify that the following pro-
cesses are Poisson and specify their intensity measures.

D(t) = # of items that depart from the network in (0, t].

D1(t) = # of items that enter node 1 and

depart from the network in (0, t].

D(2,3,5)(t) = # of items that complete the route (2, 3, 5) in (0, t].

Justify that the following random variables, for a fixed t, have a Poisson
distribution and specify their means.

Q(t)= # of items that are in the network at time t.

Q1(t)= # of items that are beyond their first node at time t.

Q3|2(t)= # of items in node 3 at time t that came from node 2.

Exercise 51. Time Transformations and Cox Processes. Suppose that
N1(t) =

∑
n 1(Tn ≤ t) is a homogeneous Poisson process on R+ with rate λ,

and let η denote a locally finite measure on R+ with η(R+) = ∞. Consider
the process N(t) = N1(η(t)), t ≥ 0. Show that N is a Poisson process on R+

with intensity η. Do this by showing that N is a transformation of N1 under
a map g : R+ → R+; that is, find a g such that
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N(t) =
∑

n

1(Tn ≤ η(t)) =
∑

n

1(g(Tn) ≤ t).

This fact implies that if η is a locally finite random measure on R+ with
η(R+) = ∞ a.s., then N is a Cox process.

Exercise 52. Suppose that N is a Cox process on S directed by a locally-
finite random measure η. Show that E[N(B)] = Var[N(B)], for B ∈ S.

Exercise 53. Poisson Process Directed by a Cyclic Renewal Process. The
state of a system is represented by a continuous-time cyclic renewal process
X(t) on states 0, 1, . . . ,K−1 as in Example 8. The sojourn times in the states
are independent, and the sojourn time in state i has a continuous distribution
Fi with mean μi. By Exercise 47, limt→∞ P{X(t) = i} = μi/

∑K−1
k=0 μk.

Suppose the system fails occasionally such that, while it is in state i,
failures occur according to a Poisson process with rate λi, independent of
everything else. Let N(t) denote the number of failures in (0, t]. Show that

t−1N(t) →
∑K−1
k=0 λkμk
∑K−1

k=0 μk
, a.s. as t→ ∞.

Assume the system begins in state 0 and let τ denote the first time it returns
to state 0 (the time to complete a cycle). Show that

E[N(τ)] =

K−1∑

k=0

λkμk = Var[N(τ)].

Exercise 54. Location-Dependent Compound Poisson Process. Suppose that

Z(t) =
∑N(t)

n=0 Yn is a location-dependent compound Poisson process, where
N =

∑
n δTn is a Poisson process on R+ with intensity measure μ, and Yn

are p-marks of Tn. Show that the process Z(t) has independent increments
(the increments will not be stationary in general), and

E[Z(t)] =

∫

(0,t]

∫

R

yp(s, dy)μ(ds).

Suppose the moment generating function φs,t(α) =
∫
R
eαyFs,t(dy) exists,

where

Fs,t(y) =

∫

(s,t]

p(u, (0, y])μ(du)/μ(s, t].

Show that, for s < t,

E[eα[Z(t)−Z(s)]] = e−μ(s,t][1−φs,t(α)]. (3.56)

(This is the moment generating function of a compound Poisson distribution
with rate μ(s, t] and distribution Fs,t.) Use the fact
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E[eα[Z(t)−Z(s)]] = E[e
∫
R
yM((s,t]×dy)] = E[e−Mhs,t ],

where hs,t(u, y) = −αy1(u ∈ (s, t]) and M =
∑

n δ(Tn,Yn).

Exercise 55. Suppose Z1(t), . . . , Zm(t), are independent compound Poisson
processes with respective rates λ1, . . . , λm and distributions F1, . . . , Fm. Show
that Z(t) =

∑m
i=1 Zi(t) is a compound Poisson process with rate λ =

∑n
i=1 λi

and distribution F = λ−1
∑n

i=1 λiFi.

Exercise 56. Partition of a Compound Poisson Process. Suppose Z(t) =
∑N(t)
n=1 Yn, for t ≥ 0, is a location-dependent compound Poisson process with

intensity measure μ and distribution p(t, ·). Suppose the quantity Yn at time
Tn is partitioned into m pieces Y′

n = (Y ′
n1, . . . , Y

′
nm) so that Yn =

∑m
i=1 Y

′
ni.

These pieces are assigned to m processes defined by Zi(t) =
∑N(t)

n=1 Y
′
ni. They

form a partition of Z(t) in that Z(t) =
∑m
i=1 Zi(t). Assume the Y′

n are p′-
marks of (Tn, Yn), where p

′((t, y), B1×· · ·×Bm) is the conditional distribution
of a typical vector Y′

n given (Tn, Yn) = (t, y). Prove that Zi(t) is a compound
Poisson process with intensity μ and distribution p′(t, ·), and specify p′(t, ·).
Use the idea that the Y′

n are second marks of the Poisson process N as
discussed in Example 39, resulting in M ′ =

∑
n δ(Tn,Yn,Y′

n)
.

Exercise 57. Origin-Dependent Cluster Processes. The cluster process in
Example 58 has the form M(A × B) =

∑
nN

′
n(B)δXn(A), where N ′

n are
point processes on a space S′ generated by the points Xn in S. Instead of
assuming the N ′

n are independent of N , consider the more general setting
in which the N ′

n are p-marks of Xn. Let N
′
x be a point process on S′ such

that p(x,C) = P{N ′
x ∈ C}. Show (by conditioning on N) that the Laplace

functional of M is

E[e−Mf ] = exp[−
∫

S

(1− g(x))μ(dx)],

where g(x) = E[e−
∫
S′ f(x,x

′)N ′
x(dx

′)].

Exercise 58. The moments of a point process N on S are given by

E[N(A1)
n1 · · ·N(Ak)

nk ]

= (−1)n1+···+nk
∂n1+···+nk

∂tn1
1 · · · ∂tnk

k

E[e−Nf ]|t1=...=tk=0,

where f(x) =
∑k

i=1 ti1(x ∈ Ai). Prove this for k = 1 and k = 2. Use this fact
to find expressions for the first two moments of the cluster process quantity
M(A×B) in Exercise 57.

Exercise 59. Sums of Identically Distributed Renewal Processes. Suppose
that Ñ1, Ñ2 . . . are independent renewal processes with inter-renewal dis-
tribution F . By the strong law of large numbers, we know that the sum
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∑n
i=1 Ñi(t) converges to ∞ a.s. as n → ∞. (The discussion prior to Exam-

ple 65 addressed the opposite case where the sum tends to 0.) To normalize
this sum (analogously to that in a central limit theorem) so that it converges
to a non-degenerate limit, it is natural to rescale the time axis and consider
the process Nn(t) =

∑n
i=1 Ñi(t/n). This is the sum with 1/n as the new unit

of time. Assume the derivative λ = F ′(0) exists and is positive. Show that

Nn
d→ N , where N is a Poisson process with rate λ.

Exercise 60. Poisson Limit of Thinned Processes. Let Nn be a sequence of
point processes on S. Suppose Nn is subject to a pn(x) thinning: A point of
Nn at x is retained with probability pn(x) and is deleted with probability
1 − pn(x). Let N

′
n denote the resulting thinned process on S. Assume the

thinning is uniformly null in that

lim
n→∞

sup
x
pn(x) = 0, B ∈ Ŝ.

Show that N ′
n

d→ N ′, a Poisson process on S with intensity measure μ, if

∫

B

pn(x)Nn(dx)
d→ μ(B), B ∈ Ŝμ, as n→ ∞.



Chapter 4

Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a discrete-time Markov chain
with the modification that, instead of spending one time unit in a state,
it remains in a state for an exponentially distributed time whose rate de-
pends on the state. The methodology of CTMCs is based on properties of
renewal and Poisson processes as well as discrete-time chains. CTMCs are
natural candidates for modeling systems in real time such as production and
inventory systems, computer and telecommunications networks, and miscel-
laneous input-output systems. Many continuous-time processes have discrete-
time analogues; for instance, birth-death and Brownian motion processes are
continuous-time analogues of discrete-time random walks. One’s choice of a
continuous- or discrete-time model for a system typically depends on how
realistic it is, its ease in addressing the issues at hand, or in computing quan-
tities of interest.

A CTMC is a continuous-time Markov process on a countable state space
whose sample paths are right-continuous and piecewise-constant with finite
lengths, and the number of jumps in any finite time is finite. This type of
Markov process is represented by the sequence of states it visits and the
sojourn times at the visits.

Our study of these processes begins with Kolmogorov’s backward and for-
ward differential equations for the transition probabilities of a CTMC, and a
characterization of its infinitesimal transition rates. Next is a description of
properties of sample paths of CTMCs. Included is a “uniformization” prop-
erty that a CTMC with bounded transition rates can be represented as a
Markov chain that takes jumps at times that form a Poisson process.

Several sections are devoted to describing the equilibrium behavior of
CTMCs, including ergodic theorems for functions of CTMCs and Lévy-type
expressions for expectations. Then we give detailed descriptions of reversible
CTMCs, Jackson network processes, and multiclass networks.

Next, we show how Palm Probabilities are used to describe a CTMC con-
ditioned on the occurrence of a certain type of transition. For instance, in a
production system with queueing, one may be interested in the number of

R. Serfozo, Basics of Applied Stochastic Processes,
Probability and its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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items in the system conditioned that an arrival occurs. In this and analo-
gous situations, we present PASTA properties that “Poisson arrivals see time
averages”, or “Palm actions see time averages”.

The chapter ends with a description of M/G/1 and G/M/1 queueing pro-
cesses, and an introduction to Markov renewal processes, which are relatives
of a CTMC.

4.1 Introduction

In this section, we introduce CTMCs and describe some of their features.
A continuous-time stochastic process {X(t) : t ≥ 0} on a countable state

space S is a Markov process if it satisfies the Markov property: for each
i, j ∈ S and t, u ≥ 0,

P{X(t+ u) = j|X(t) = i,X(s), s < t} = P{X(u) = j|X(0) = i}.

This is a time-homogeneous process because the last probability does not
depend on t. Our interest is in such processes with nicely behaved sample
paths as follows.

Definition 1. A Markov process {X(t) : t ≥ 0} on a countable state space
S is a continuous-time Markov chain (CTMC) if its sample paths are right-
continuous and piecewise constant with finite lengths a.s., and the number of
transitions in any finite time interval is finite a.s. That is,

X(t) = Xn if t ∈ [Tn, Tn+1) for some n, (4.1)

where 0 = T0 < T1 < T2 < · · · are the jump times of the process, and Xn is
the state visited at time Tn. The Tn → ∞ a.s. and Xn �= Xn+1, for each n.
The sojourn time of the process in state Xn is ξn = Tn+1 − Tn.

1

Any process X(t) of the form (4.1) is called a jump process on S with
embedded process (Xn, ξn). Our first observation is a characterization of a
CTMC in terms of elementary properties of its embedded process.

Theorem 2. A jump process X(t) on S with embedded process (Xn, ξn) is a
CTMC if and only if
(i) Xn is a discrete-time Markov chain on S with transition probabilities
P = {pij}, where pii = 0, for each i.
(ii) For nonnegative t0, . . . , tm,

1 This differs from the renewal process notation, where ξn = Tn − Tn−1 is the nth inter-
renewal time.
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P{ξ0 ≤ t0, . . . , ξm ≤ tm|Xn, n ≥ 0} =

m∏

n=0

P{ξn ≤ tn|Xn}, (4.2)

and there are positive qi, i ∈ S, such that, for each n ≥ 0,

P{ξn ≤ t|Xn = i} = 1− e−qit, t ≥ 0, i ∈ S. (4.3)

Proof. This follows by Propositions 12 and 13 in Section 4.3.

In this theorem, the embedded Markov chain Xn may be transient, ir-
reducible, ergodic, etc. Subsequent sections show how X(t) inherits these
properties of Xn. Note that the process X(t) does not have absorbing states,
since its sojourn times in the states it visits are finite. For particular ap-
plications, one can describe Markov processes with the jump-like behavior
described above, but with absorbing states, by the techniques in Chapter 1
and this chapter. For instance, one can determine probabilities of absorb-
tion or times to absorbtion by the results in Section 1.7 in Chapter 1 and in
Section 4.6 below. Our study will not cover such Markov processes. Similar
statements apply to Markov processes that may have an infinite number of
jumps in a finite time, resulting in finite lifetimes.

Condition (4.2) says that the sojourn times ξn are conditionally indepen-
dent given the Xn, and condition (4.3) says that such a sojourn time in a
state i is exponentially distributed with rate qi.

Another way of stating Theorem 2 is as follows. This is a consequence of
the Markov property of discrete-time Markov chains on general state spaces.

Remark 3. A jump process X(t) with embedded process (Xn, ξn) is a CTMC
if and only if (Xn, ξn) is a discrete-time Markov chain on2 S × R+ with
transition probabilities

P{Xn+1 = j, ξn+1 ≤ t|Xn = i, ξn} = pij(1− e−qit), i, j ∈ S, t ≥ 0,

where qi are positive constants and P = {pij} is a Markov transition matrix
with each pii = 0.

Hereafter, we will adopt the notation of Theorem 2 for describing CTMCs.
In particular, we say that the defining parameters of the CTMC X(t) are
(αi, pij , qi), where αi = P{X(0) = i} is the initial distribution. We refer to
pij and qi as the main defining parameters. Theorem 22 below shows that
there exists a CTMC X(t) for any set of defining parameters (αi, pij , qi).
These parameters uniquely determine the distribution of a CTMC, and vice
versa, as follows.

Proposition 4. Two CTMCs have the same distribution if and only if their
defining parameters are equal.

2 This state space is not countable.
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Proof. It suffices to show that the following statements are equivalent.
(a) The two CTMCs have the same distribution.
(b) The embedded Markov chains for the CTMCs have the same distribution.
(c) The defining parameters for the CTMCs are equal.

Clearly (a) and (b) are equivalent by the construction of a CTMC. Also,
(b) and (c) are equivalent by the property from Chapter 1 that two Markov
chains have the same distribution if and only if their initial distributions and
transition probabilities are equal.

By its definition, a CTMC satisfies the regularity condition that Tn → ∞
a.s., which ensures that the CTMC is defined on the “entire” time axis.
This condition has the following characterization in terms of the defining
parameters of a CTMC.

Proposition 5. Suppose that conditions (i) and (ii) in Theorem 2 hold. Then
Tn → ∞ a.s. if and only if the qi are P-regular in the sense that

∞∑

n=0

q−1
Xn

= ∞ a.s. (4.4)

for any initial distribution for X0. In particular, Tn→∞ a.s. if supi∈S qi<∞
(which is true for finite S), or if the Markov chain Xn is recurrent.

Proof. Clearly Tn → ∞ a.s. means Z =
∑∞
n=0 ξn = ∞ a.s. Also, by condition

(ii) and E[ξn|Xn] = q−1
Xn

, we have

E[Z|Xn, n ≥ 0] =

∞∑

n=0

E[ξn|Xn] =

∞∑

n=0

q−1
Xn
.

In light of these observations, the assertion to be proved is that

E[Z|Xn, n ≥ 0] = ∞ a.s. ⇐⇒ P{Z = ∞} = 1. (4.5)

Now, Exercise 7 in Chapter 3 shows that an infinite sum of independent
exponential random variables is infinite a.s. if and only if the sum of their
means is infinite. Applying this to the exponential sojourn times conditioned
on the Xn, we have

P{Z = ∞|Xn, n ≥ 0} = 1 a.s. ⇐⇒ E[Z|Xn, n ≥ 0] = ∞ a.s.

On the other hand, using P{Z = ∞} = E[P{Z = ∞|Xn, n ≥ 0}], we have

P{Z = ∞|Xn, n ≥ 0} = 1 a.s. ⇐⇒ P{Z = ∞} = 1.

These two equivalences prove (4.5).
Next, if b = supi∈S qi < ∞, then q−1

Xn
≥ b−1, which clearly implies (4.4).

Finally, if Xn is recurrent, it visits some state i infinitely often, so q−1
i appears

an infinite number of times in the sum in (4.4), and hence that sum is infinite.
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4.2 Examples

To justify that a jump process is a CTMC, one typically verifies the conditions
in Theorem 2 that the sequence of states it visits is a discrete-time Markov
chain, and that its sojourn times are exponentially distributed; one must also
verify the P-regularity property. Here are some standard examples.

Example 6. Poisson Process. A Poisson process N(t) with rate λ is a jump
process whose state increases by unit jumps, and its sojourn times are in-
dependent and exponentially distributed with rate λ. Therefore, N(t) is a
CTMC with one-step transition probabilities pi,i+1 = 1, and exponential
sojourn rates qi = λ, which are obviously P-regular.

Example 7. Pure Birth Process. Suppose that X(t) represents the number of
occurrences of a certain event in the time interval [0, t]. Assume the inter-
occurrence times are independent, and the time between the ith and i +
1st occurrence is exponentially distributed with rate qi. Therefore, the state
increases by unit jumps, and the sojourn times are exponentially distributed.
The qi are P-regular if and only if

∑∞
i=0 q

−1
i = ∞. So assuming this is true,

X(t) is a CTMC on Z+ with parameters pi,i+1 = 1 and qi. For instance, the
X(t) might denote the number of times a system is repaired. In this case, the
qi would typically be increasing for a machine that wears out, but it would
be decreasing for a software package that is perfected as flaws are fixed.

This process is called a pure birth process because of the classical model
in which X(t) is the size of a population, and whenever the population size
is i, the time to the next birth is exponentially distributed with rate qi.

Note that if
∑∞
i=0 q

−1
i < ∞, the jump process X(t) could still be defined,

but only on the time interval [0, supn Tn), which is finite with a positive
probability. There would be an infinite number of births in this time interval.

Since a CTMC is essentially a Markov chain whose unit sojourn times in
the states are replaced by exponential times, any discrete-time Markov chain
has an analogous CTMC version. For instance, here is a continuous-time
analogue of Exercise 49 in Chapter 1.

Example 8. Exhaustive Parallel Processing. A set of m jobs are processed in
parallel until they are all completed. At the completion time, another m jobs
instantaneously enter the system and are processed similarly. This is repeated
indefinitely. Assume the times to process jobs are independent exponentially
distributed with rate λ. Let X(t) denote the number of jobs being processed
at time t. This is a jump process on S = {1, . . . ,m} and its embedded process
(Xn, ξn) satisfies, for 2 ≤ i ≤ m,

P{Xn+1 = i− 1, ξn+1 > t|(Xm, ξm),m ≤ n,Xn = i}
= P{min{Y1, . . . , Yi} > t} = e−iλt,
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where Y1, . . . , Yi are independent exponentially distributed with rate λ. Here
we use the property that the minimum of independent exponential random
variables is again exponential with rate that is the sum of the rates of the
variables. The other transition probability is

P{Xn+1 = m, ξn+1 > t|(Xm, ξm),m ≤ n,Xn = 1}
= P{Y1 > t} = e−λt.

Then by Remark 3, X(t) is a CTMC with parameters

pi,i−1 = 1, 2 ≤ i ≤ m, p1,m = 1,

and qi = iλ. The P-regularity is due to the finite state space.

The following example describes a general framework for formulating a
CTMC by clock times.

Example 9. Clock Times and Transition Rates. Suppose X(t) is a jump pro-
cess on S with embedded process (Xn, ξn) whose dynamics are as follows.
Whenever the process enters a state i, a set of independent clock times τij ,
j ∈ Si are started, where Si is the subset of states in S\{i} that can be reached
from state i in one step. The times τij are exponentially distributed with rates
qij . Then the sojourn time in state i is the minimum τi = minj∈Si τij , and
at the end of the sojourn, the process jumps to the state j ∈ Si for which
τij = τi.

Think of τij as the time to the next “potential” transition from i to j ∈ Si
with transition rate qij , and the clock time j that is the smallest of these
times “triggers” a transition from i to j.

Under these assumptions,

P{Xn+1 = j, ξn+1 > t|(Xm, ξm),m ≤ n,Xn = i} = P{τij = τi, τi > t}.

By the properties of exponential random variables in Exercise 2 of Chapter 3,
the sojourn time τi is exponentially distributed with rate qi =

∑
j∈Si

qij , and
it is independent of the event τij = τi, where P{τij = τi} = qij/qi. Therefore,
(Xn, ξn) is a Markov chain with transition probabilities

P{X1 = j, ξ1 > t|X0 = i, ξ0} =
qij
qi
e−qit.

Then X(t) is a CTMC with parameters pij = qij/qi and qi =
∑
j∈Si

qij ,
provided the qi are P-regular.

More insights on such transition rates are in Section 4.3. See Exercise 4 for
analogous discrete-time geometric clock times, and see Exercise 5 for clocks
associated with multiple sources that trigger transitions.

Example 10. Birth-Death Process. Suppose that X(t) represents the number
of discrete items in a population at time t, where births and deaths (or
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additions and departures) in the population occur as follows. Whenever the
population state is 0, the time to the next birth is exponentially distributed
with rate λ0. Also, whenever there are i ≥ 1 items in the population, the time
to the next (potential) birth is exponentially distributed with rate λi, and
the time to the next (potential) death is exponentially distributed with rate
μi. These times are independent and independent of the rest of the process.
Assume the birth and death rates are bounded.

Under these conditions, it follows as in the preceding example that X(t)
is a CTMC on Z+ with transition rates qi,i+1 = λi and qi,i−1 = μi. The
X(t) is called a birth-death process with birth rates λi and death rates μi. Its
exponential sojourn rates are qi = λi + μi, where μ0 = 0, and its one-step
transition probabilities are

pi,i+1 = λi/(λi + μi), pi,i−1 = μi/(λi + μi).

There are a variety of queueing processes and general input-output pro-
cesses that are birth-death processes. Here is a classic example.

Example 11. M/M/s Queueing Process. Consider a processing system in
which items arrive according to a Poisson process with rate λ. There are
s servers who process the items one at a time, where 1 ≤ s ≤ ∞. The
processing times are independent exponential random variables with rate μ,
independent of everything else. An item that arrives when all the s servers
are busy waits in a queue for processing; otherwise it goes to any available
server for processing. Whenever there are i items in the system, min{i, s}
items are being processed independently at rate μ, and so the time for a
potential departure (considered as a death) has an exponential distribution
with rate μi = μmin{i, s}. This is μi = iμ when s = ∞.

Let X(t) denote the number of items in the system at time t. Clearly,
X(t) is a birth-death CTMC with birth rate λ in each state, and death rate
μi = μmin{i, s} in state i ≥ 1. This process is called an M/M/s queueing
process.

Because X(t) counts the quantity of items, which are indistinguishable,
several service disciplines are possible (e.g., first-come-first-served, service in
random or arbitrary order, or last-come-last-served).

4.3 Markov Properties

This section proves Theorem 2 that characterizes a CTMC by its embedded
process. Included are an integral equation and the Chapman-Kolmogorov
equations for its transition probabilities.

For this discussion, X(t) will denote a continuous-time jump process on S
with embedded process (Xn, ξn). As in Chapter 1, we adopt the convention
that Pi{·} = P{ · |X(0) = i}, and let Ei[·] denote the associated conditional



248 4 Continuous-Time Markov Chains

expectation. We denote the transition probabilities of X(t) by

pij(t) = Pi{X(t) = j}, i, j ∈ S, t ≥ 0.

These probabilities will play a similar role for CTMCs that the n-step prob-
abilities play for a discrete-time Markov chain.

We begin with two results that prove Theorem 2. The integral equation
(4.6) yields the Kolmogorov differential equations in the next section that
determine transition rates and probabilities for CTMCs.

Proposition 12. If the jump process X(t) on S is such that its embedded
process satisfies conditions (i) and (ii) in Theorem 2, then X(t) is a CTMC
and its transition probabilities pij(t) satisfy, for i, j ∈ S and t > 0,

pij(t) = e−qit1(i = j) +

∫ t

0

∑

k �=i
pkj(t− v)qipike

−qiv dv. (4.6)

Proof. To prove X(t) is a CTMC, it suffices to verify the Markov property
that, for each i, j ∈ S and t, u ≥ 0,

P{X(t+ u) = j|X(t) = i,X(s), s < t} = pij(u). (4.7)

Consider the point process N(t) =
∑∞

n=1 1(Tn ≤ t), t ≥ 0, which denotes
the number of transitions of the X(t) up to time t. For fixed states i and j,
conditioning on N(t), we have

P{X(t+ u) = j|X(t) = i,X(s), s < t} (4.8)

=

∞∑

m=0

[am(t, u) + bm(t, u)]P{N(t) = m|X(t) = i,X(s), s < t},

where

am(t, u) = P{X(t+ u) = j, Tm+1 > t+ u|Fm(i, t)}
bm(t, u) = P{X(t+ u) = j, Tm+1 ≤ t+ u|Fm(i, t)}
Fm(i, t) = {N(t) = m,X(t) = i,X(s), s < t}.

By condition (ii) on the exponentially distributed sojourn times and the
memoryless property of the exponential sojourn time in state i, the condi-
tional distribution of the residual sojourn time Tm+1 − t at time t is expo-
nentially distributed with rate qi. Then

am(t, u) = 1(i = j)P{Tm+1 − t > u|Fm(i, t)} = 1(i = j)e−qiu.

Also, conditioning on Xm+1 and Tm+1 and using Remark 3,
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bm(t, u) =
∑

k �=i

∫ u

0

P{X(t+ u) = j|Tm+1 = t+ v,Xm+1 = k,Fm(i, t)}

×P{Xm+1 = k, Tm+1 − t ∈ dv|Fm(i, t)}

=
∑

k �=i

∫ u

0

pkj(u− v)qie
−qivpikdv.

Substituting these expressions for am(i, t) and bm(i, t) in (4.8), and noting
that they are independent of m and t, we have

P{X(t+ u) = j|X(t) = i,X(s), s < t} = 1(i = j)e−qiu (4.9)

+
∑

k �=i

∫ u

0

pkj(u− v)qie
−qivpikdv.

Since this expression is true for all t ≥ 0, by setting t = 0 on the left-hand
side, the right-hand side must equal pij(u). This proves (4.7), and it proves
(4.6) as well.

Proposition 13. If X(t) is a CTMC, then its embedded process (Xn, ξn)
satisfies conditions (i) and (ii) in Theorem 2.

Proof. First, consider the function gi(t) = Pi{ξ1 > t}. For any s, t ≥ 0,

gi(s+ t) = Pi{ξ1 > s}Pi{ξ1 > s+ t|ξ1 > s} = gi(s)gi(t).

The last equality uses the memory less property of the exponential distribu-
tion. It is well known that any nonnegative, decreasing function satisfying
such an equation has the form gi(t) = e−qit, for some qi. Moreover, a more
delicate justitication of this equality is needed (which is not included) since
the conditional probability requires conditioning on more than a finite num-
ber of values of X(t). A similar comment applies to the last display of the
proof. The qi is a positive number since gi(0) = 1, and so Pi{ξ1 > t} = e−qit.

Note that (Xn, Tn) that satisfies (i) and (ii) in Theorem 2 also satisfies the
second part of Remark 3. In light of this, to prove the proposition, it suffices
to show that, for i, j ∈ S, sk, t > 0, n ≥ 0,

P{Xn+1 = j, ξn+1 > t|Xk, ξk = sk, k ≤ n, Xn = i} = pije
−qit, (4.10)

for some qi > 0 and Markov transition probabilities pij , with pii = 0, i ∈ S.
We will show this is true for the qi above and the Markov probabilities

pij = Pi{X(ξ1) = j}. Using the Markov property of X(t) at the time tn =∑n
k=0 sk, the probability on the left-hand side of (4.10) equals

P{X(tn + ξn+1) = j, ξn+1 > t|X(tn) = i}
= P{X(tn + ξn+1) = j|X(tn) = i}

×P{ξn+1 > t|X(tn) = i,X(tn + ξn+1) = j}.
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Then (4.10) is true, since the last two probabilities equal Pi{X(ξ1) = j} = pij
and

P{X(u) = i, u ∈ [tn, tn + t]|X(v) = i, v ∈ [tn, t), X(tn + ξn+1) = j}
= P{X(u) = i, u ∈ [0, t]|X(v) = i, v ∈ [0, t), X(ξ1) = j}
= Pi{ξ1 > t} = e−qit.

Stopping times and the strong Markov property for discrete-time Markov
chains have natural analogues in continuous time.

Definition 14. A random variable τ in [0,∞] is a stopping time for a
continuous-time stochastic process {X(t) : t ∈ R+} if, for each t ∈ R+,
the event {T ≤ t} is a function of the history {X(s) : s ≤ t}.

Remark 15. Strong Markov Property. A CTMC satisfies the Strong Markov
Property, which is (4.7) with a stopping time in place of the time parameter
t. A proof is in [61].

Similarly to discrete-time Markov chains, the finite-dimensional distribu-
tions of X(t) are determined by the transition probabilities and the initial
distribution αi. Namely, for each i1, . . . , in in S and 0 = t0 < t1 < · · · < tn,

P{X(t1) = i1, . . . , X(tn) = in} (4.11)

=
∑

i0∈S
αi0

n∏

k=1

pik−1,ik(tik − tik−1
).

This follows by induction on n using the Markov property.

Remark 16. A consequence of (4.11) is that two CTMCs are equal in distri-
bution if and only if their initial distributions and transition probabilities are
equal.

The final observation of this section is that the transition probabilities
satisfy the Chapman-Kolmogorov equations

pij(s+ t) =
∑

k∈S
pik(s)pkj(t), i, j ∈ S, s, t ≥ 0.

This follows by applying (4.11) to

pij(s+ t) =
∑

k∈S
Pi{X(s) = k,X(s+ t) = j}.

Using matrix notation P(t) = {pij(t)}, the Chapman-Kolmogorov equa-
tions are P(s + t) = P(s)P(t), which means that the family of matrices
{P(t) : t ≥ 0} forms a semigroup. A CTMC is sometimes defined via this
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semigroup associated with a process that satisfies the Markov property; ad-
ditional technical conditions are needed to ensure that the chains are regular
and do not have “instantaneous” states. This approach, which will not be
covered here, yields the same type of CTMC we are considering.

4.4 Transition Probabilities and Transition Rates

This section continues the discussion of the transition probabilities pij(t)
for a CTMC X(t) with defining parameters (αi, pij , qi). We introduce the
notion of transition rates for the CTMC, and show how they are related to
its transition probabilities. The main result describes Kolmogorov differential
equations for the transition probabilities.

We first introduce another important family of parameters for a CTMC.

Definition 17. The transition rates of the CTMC X(t) are

qij = qipij , j �= i.

Expression (4.15) below verifies that these qij are indeed “infinitesimal”
transition rates in that, for i �= j,

pij(t) = qijt+ o(t) as t→ 0.

These rates are similar to the rates qij of the exponential clock-times in
Example 9, where pij = qij/qi and qi =

∑
j �=i qij .

We will now describe differential equations for the transition functions.
Here we simplify summations by using the negative rate

qii = −qi = −
∑

j �=i
qij .

Theorem 18. For each i, j ∈ S, the derivative p′
ij(t) exists and is continuous

in t, and
lim
t→0

pij(t) = 1(i = j). (4.12)

The pij(t) satisfy the Kolmogorov differential equations

p′
ij(t) =

∑

k

qikpkj(t), “Backward Equation” (4.13)

p′
ij(t) =

∑

k

pik(t)qkj . “Forward Equation” (4.14)

In particular,

p′
ij(0) =

{
qij if j �= i
−qi if j = i.

(4.15)
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Proof. Consider (4.6), which is (with the change of variable u = t− v)

pij(t) = e−qit

⎡

⎣1(i = j) +

∫ t

0

eqiu
∑

k �=i
qikpkj(u) du

⎤

⎦ . (4.16)

The integral is continuous in t since its integrand is bounded on finite in-
tervals, and so pij(t) is continuous. Then the integrand is continuous, and
so the derivative of the integral exists, which in turn implies that pij(t) is
differentiable in t. In addition, note that the limit (4.12) follows from (4.16).

Next, taking the derivative of (4.16) and using some algebra, we have

p′
ij(t) = −qipij(t) +

∑

k �=i
qikpkj(t).

This proves that p′
ij(t) is continuous in t, and that (4.13) holds. Letting t→ 0

in this equation and using (4.12) proves (4.15).
To prove (4.14), consider the Chapman-Kolmogorov equation

pij(t+ s) =
∑

k

pik(t)pkj(s).

Taking the derivative of this with respect to s yields

p′
ij(t+ s) =

∑

k

pik(t)p
′
kj(s).

The derivative of the sum follows by the bounded convergence theorem in the
Appendix. Letting s→ 0, we have p′

ij(t) =
∑
k pik(t)p

′
kj(0). Applying (4.15)

to the last term yields (4.14).

Using matrix notation, the differential equations (4.13) and (4.14) are

P′(t) = QP(t), P′(t) = P(t)Q.

The matrix Q = {qij} is the infinitesimal generator of the semigroup P(t).
The unique solution to either equation (with the condition P(0) = I) is

P(t) = etQ =
∞∑

n=0

tnQn/n!.

This is the matrix version of the well-known solution of the equations if P(t)
were simply a real-valued function.

There are only a few CTMCs for which the preceding infinite series ex-
pression for P(t) simplifies to a tractable formula. An example is the M/M/1
queueing process, but even this case is complicated [47] and is omitted. How-
ever, using another approach, the next section shows that the large class
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of CTMCs with bounded sojourn rates do indeed have tractable transition
probabilities that are expectations of Poisson distributions.

We end this section with several useful facts.

Remark 19. Suppose two CTMCs with the same state space have the same
initial distribution. Then the CTMCs are equal in distribution if and only if
their transition rates are equal. This follows since the CTMCs are equal in
distribution if and only if their transition probabilities are equal (Remark 16);
and two transition probability functions are equal if their associated transi-
tion rates are equal (Theorem 18).

We will see later in Example 50 that the mean measure of the point process
N(B) =

∑∞
n=1 1(Tn ∈ B), B ∈ B, of transition times is

E[N(B)] =

∫

B

E[qX(t)] dt, B ∈ B.

This mean measure tells us something about jump times.

Remark 20. The probability is 0 that a CTMC X(t) has a jump at any fixed
time t (i.e., X(t) �= X(t−), or N({t}) = 1) This follows since E[N({t})] = 0
by the preceding expression for the mean measure.

Here is another fact about sample paths.

Remark 21. A CTMC X(t) is continuous in distribution in that

lim
s→t

P{X(s) = j} = P{X(t) = j}, j ∈ S.

This follows since P{X(s) = j} =
∑

i P{X(0) = i}pij(s), and Theorem 18
ensures that pij(s) → pij(t) as s→ t.

4.5 Existence of CTMCs

We will now establish that there exists a CTMC for any set of defining
parameters. We also show how to define a CTMC by a jump process that
may have fictitious jumps from a state back to itself.

Theorem 22. There exists a CTMC for any set of defining parameters.

Proof. Consider a set of defining parameters (αi, pij , qi), where the qi are
necessarily P-regular by Proposition 4.4. Let Un, Vn, for n ≥ 0, denote in-
dependent random variables on a common probability space such that each
Un is uniformly distributed on [0, 1] and each Vn is exponentially distributed
with rate 1. The existence of these random variables follows from Corollary 6
in the Appendix.
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Now, let f be a function as in Theorem 14 in Chapter 1 such that
Xn = f(Xn−1, Un) is a Markov chain with transition matrix P and initial
distribution α. Next, let ξn = Vn/qXn . Then define X(t) to be the jump
process on S with embedded process (Xn, ξn).

The constructed process X(t) will be a CTMC with the desired properties
provided that the ξn satisfy conditions (4.2) and (4.3) in Theorem 2. But this
follows since, by the independence of the sequences Xn and Vn,

P{ξ0 ≤ t0, . . . , ξm ≤ tm|Xn, n ≥ 0} =
m∏

n=0

P{Vn ≤ tnqXn |Xn}

=

m∏

n=0

(1− e−tnqXn ).

Next, we reconsider the characterization of a CTMC in Theorem 2 and
show that the condition pii = 0, for each i, can be relaxed. Suppose (Xn, ξn)
is a Markov chain that satisfies assumptions (i)–(ii) in Theorem 2, with the
exception that 0 ≤ pii < 1 is allowed. Associated with this chain, define a
jump process X(t) by (4.1). For any state i where pii > 0, the chain Xn may
jump from i back to i several times in a row, but these jumps are not seen
in the process X(t) — they are “ fictitious” jumps.

Proposition 23. The process X(t) described above is a CTMC with one-step
transition probabilities p∗

ii = 0,

p∗
ij = pij/(1− pii), j �= i,

and exponential sojourn rates q∗
i = (1− pii)qi.

Proof. The sequence of “distinct” states that X(t) visits is X∗
n = Xνn , where

ν0 = 0 and

νn+1 = min{m > νn : Xm �= Xνn}, n ≥ 0.

The sojourn time in state X∗
n is ξ∗

n =
∑νn+1

m=νn+1 ξm. Then X(t) is a jump
process with embedded process (X∗

n, ξ
∗
n). To prove the assertion, it suffices

by Theorem 2 and Remark 3 to show that (X∗
n, ξ

∗
n) is a Markov chain with

transition probabilities

P{X∗
1 = j, ξ∗

1 > t|X∗
0 = i, ξ∗

0} = p∗
ije

−q∗
i t, (4.17)

and that the q∗
i are P

∗-regular. Exercise 26 shows that νn are stopping times of
the Markov chain (Xn, ξn), and so by the strong Markov property at time νn,

P{X∗
n+1 = j, ξ∗

n > t|X∗
n = i,X∗

m, ξ
∗
m,m < n} = Pi{Xν1 = j,

ν1∑

k=1

ξm > t}

= Pi{Xν1 = j}Pi{
ν1∑

k=1

ξm > t|Xν1 = j}. (4.18)
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By standard Markovian reasoning

Pi{Xν1 = j} =

∞∑

�=1

p�−1
ii pij = p∗

ij .

Next, recall that Exercise 5 in Chapter 3 showed that a geometric sum of
i.i.d. exponential random variables is again exponential, and note that ν1
conditioned on X(0) = i has a geometric distribution with mean 1/(1− pii).
Therefore

Pi{
ν1∑

k=1

ξm > t} = e−qi(1−pii)t.

Applying the last two displays to (4.18) and simplifying, it follows that
(X∗

n, ξ
∗
n) is a Markov chain with transition probabilities (4.17).

Next, using the P-regularity of the qi and E[νn+1|X∗
n] = 1/(1 − pX∗

n,X
∗
n
),

it follows, upon conditioning on X∗
n, that

∞ = E[

∞∑

n=0

1/qXn ] = E[

∞∑

n=0

νn+1/qX∗
n
] = E[

∞∑

n=0

1/q∗
X∗

n
].

Thus the q∗
i are P∗-regular.

4.6 Uniformization, Travel Times and Transition
Probabilities

This section gives more insight into the transient behavior of CTMCs. We
begin by describing a special CTMC whose exponential sojourn rates are all
the same and consequently it has tractable transition probabilities. Remark-
ably, any CTMC with bounded sojourn rates is equal in distribution to a
CTMC with uniform rates. The rest of the section shows how to derive travel
time distributions and transition probabilities based on sums of exponential
random variables.

Example 24. CTMC with Identical Sojourn Rates. Suppose that Xn is a
Markov chain with transition probabilities pij , with pii < 1. Assume that
the sojourn times ξn in the respective states Xn are independent exponen-
tially distributed with rate λ. Then the state of the chain at time t can be
expressed as

X(t) = XN(t), t ≥ 0,

where N(t) =
∑
n 1(Tn ≤ t) is a Poisson process on R+ with rate λ that

is independent of the Xn. The jump process X(t) is sometimes called the
Markov chain Xn subordinated to the Poisson process N(t) with parameters
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pij and λ. Furthermore, by Proposition 23, this subordinated Markov chain
X(t) is a CTMC, and its main defining parameters are

p∗
ij = pij/(1− pii), j �= i, q∗

i = λ(1 − pii).

A striking feature of the process X(t) is that its transition probabilities
have a tractable form. Indeed, conditioning on N(t),

pij(t) = E[Pi{XN(t) = j|N(t)}] = E[p
N(t)
ij ].

Therefore,

pij(t) =

∞∑

n=0

pnije
−λt(λt)n/n!. (4.19)

One can compute these probabilities by truncating the series.

Next, we establish the important result that any CTMC with bounded
exponential sojourn rates can be represented as a subordinated Markov chain.

Proposition 25. (Uniformization of a CTMC) Suppose X(t) is a CTMC on
S with defining parameters (αi, pij , qi), where the qi are bounded. Then the

process X(t) is equal in distribution to a subordinated Markov chain X̂(t)
with parameters α̂i = αi,

p̂ij = qij/λ, j �= i, p̂ii = 1− qi/λ, q̂i = λ,

for any fixed λ ≥ supi qi.

Proof. By Proposition 23, the subordinated chain X̂(t) is also a CTMC with
parameters

(αi,
p̂ij

1− p̂ii
, q̂i(1− p̂ii)) = (αi, pij , qi).

Since the latter are the parameters for X(t), it follows by Proposition 4 that
the processes X(t) and X̂(t) have the same distribution.

One consequence of this uniformization principle is that any CTMC with
bounded sojourn rates has transition probabilities of the form (4.19). This is
true for any birth-death process with bounded rates, such as an M/M/s sys-
tem with finite s. In addition, uniformization is a key tool in Markov decision
theory (e.g., [90, 54, 109]), where a continuous-time Markov decision process
is usually formulated by a simpler discrete-time Markov decision process.

We now turn to another approach for deriving transition probabilities that
involves evaluating sums of independent exponential sojourn times associated
with a path of states. A tool for this is the following proposition, which is of
general interest; Exercise 9 in Chapter 3 is a related result.
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Proposition 26. If Yk, k ∈ I, are independent exponentially distributed
random variables with rates qk that are distinct, then the distribution of
Z =

∑
k∈I Yk is the mixture of exponential distributions

FZ(t) =
∑

k∈I
(1− e−qkt)

∏

�∈I,� �=k

q�
q� − qk

, t ≥ 0. (4.20)

Proof. Consider the Laplace transform

L(α) = E[e−αZ ] =
∏

k∈I
E[e−αYk ] =

∏

k∈I

qk
α+ qk

.

This is a ratio of polynomials in α, in which the denominator has distinct
roots −qk, k ∈ I. Therefore, its partial-sum expansion is

L(α) =
∑

k∈I
ck

qk
α+ qk

, (4.21)

where
ck = (α + qk)L(α)

∣
∣
∣
α=−qk

=
∏

�∈I,� �=k

q�
q� − qk

.

Then the distribution with Laplace transform (4.21) is the mixture3 of expo-
nential distributions given by (4.20).

Example 27. Travel Times on Paths. Let ZI denote the travel time of a
CTMCX(t) on a path of states I = (i0, i1, . . . , im) whose exponential sojourn
rates are distinct. Then the distribution of ZI is given by (4.20). Moreover,
the travel time Z in a set P of such paths has the distribution

P{Z ≤ t} =
∑

I∈P
pIFZI (t),

where pI = P{X0 = i0}pi0,i1 · · · pim−1,im is the probability of traversing I.

Example 28. Machine Deterioration Model. Consider a CTMC X(t) that rep-
resents the state of deterioration of a machine at time t, where the set of states
is S = {0, 1, . . . , �}. Assume that its deterioration is nondecreasing (pij = 0,
j ≤ i ≤ �), and that p�,0 = 1, so after its stay in state �, it is replaced by a new
machine. Then the lifetime of a machine is its travel time Z in the set P of
all nondecreasing paths from 0 to �. Thus the machine life-time distribution
is as in Example 27.

Example 29. If X(t) is a pure birth process as in Example 7 with distinct
sojourn rates qi, then its transition probabilities are

3 Note that the coefficients ck may be negative and do not necessarily sum to 1.
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pij(t) =

j−1∑

k=i

[e−qjt − e−qkt]
qk

qk − qj

j−1∏

�=i
� �=k

q�
q� − qk

.

To see this, consider the travel time Z =
∑

k∈I Yk through the states I =
(i, i+ 1, . . . , j − 1), where Yi are the independent exponential sojourn times
in the states. Then

pij(t) = P{Z ≤ t < Z + Yj} =

∫ t

0

P{Yj > t− s}FZ(ds).

Substituting the exponential distribution for Yj and the distribution (4.20)
in this integral and integrating proves the assertion.

Sometimes transition probabilities can be determined by exploiting prop-
erties of Poisson processes as follows.

Example 30. M/M/∞ System. Suppose X(t) is an M/M/∞ process with
Poisson arrival rate λ and exponential service rate μ. To derive its transition
probabilities at time t, we will consider two independent populations of items:
those present at time 0, and those arrivals in (0, t) that are still in the system
at time t. Now, each item present at time 0 is still in the system at time t with
the probability e−μt that the residual service time exceeds t (the exponential
distribution is memoryless). Then if there are i items present at time 0, the
number of these still present at time t has the Binomial distribution with
parameters i and 1− e−μt.

Next, note that since this process is a special case of the M/G/∞ process
described in Chapter 3, we know that the number of the Poisson arrivals in
(0, t) that are still present at time t has a Poisson distribution with mean

η(t) =

∫ t

0

e−μ(t−s)λds = (λ/μ)(1 − e−μt).

Then the number of items in the system at time t is the sum of these inde-
pendent binomial and Poisson random variables. Consequently, the transition
probabilities are

pij(t) =

i∑

k=0

(
i

k

)

e−kμt(1− e−μt)i−k
η(t)j−k

(j − k)!
e−η(t).

4.7 Stationary and Limiting Distributions

The classification of states of a CTMC and its equilibrium behavior are closely
related to those properties of its embedded Markov chain. We will now char-
acterize stationary and limiting distributions for CTMCs by applying results
for discrete-time Markov chains in Chapter 1.
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For this discussion X(t) will denote a CTMC on S with embedded chain
(Xn, ξn) and defining parameters (αi, pij , qi). Also, qij and pij(t) will denote
its transition rates and transition probabilities.

Our first concern is a classification of states. This mirrors the classification
for the embedded chain Xn. A state i ∈ S is recurrent (or transient) for
X(t) if i is recurrent (or transient) for Xn. The process X(t) is irreducible
if Xn is. Recall the convention that Xn does not have any absorbing states;
consequently, neither does X(t). CTMCs do not have periodic states, because
their sojourn times in states are continuous random variables. However, their
embedded chains may be periodic in discrete time.

To describe positive recurrence, we will use the discrete- and continuous-
time first passage times νi = min{n ≥ 1 : Xn = i} and

τi = inf{t > ξ0|X(t) = i} =

νi−1∑

n=0

ξn.

A recurrent state i for X(t) is positive recurrent or null recurrent according as
the mean Ei[τi] is finite or infinite. Finally, X(t) is ergodic if it is irreducible
and all of its states are positive recurrent.

In relating X(t) to its embedded chain Xn, keep in mind that X(t) is
irreducible and recurrent if and only if Xn is irreducible and recurrent. On
the other hand, Exercise 28 shows that X(t) may be positive recurrent while
Xn is not, and vice versa. Of course, if the transition rates are bounded away
from 0 and ∞, then X(t) is ergodic if and only if Xn is.

Our last preliminary is a formula for relating mean cycle values of X(t) to
those of Xn.

Lemma 31. If X(t) is irreducible and recurrent, then, for f : S → R,

Ei[

∫ τi

0

f(X(t)) dt] = Ei[

νi−1∑

n=0

f(Xn)/qXn ], (4.22)

provided these means exist.

Proof. Using the pull-through property, the left side of (4.22) is

Ei[

νi−1∑

n=0

f(Xn)ξn] = Ei

[ ∞∑

n=0

1(νi > n)f(Xn)Ei[ξn|Xk, k ≤ n]
]

and the last expression equals the right side of (4.22).

We will now describe stationary and invariant measures for CTMCs.
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Definition 32. A probability measure p on S is a stationary distribution for
X(t) if

pi =
∑

j

pjpji(t), i ∈ S, t ≥ 0.

This equation in matrix notation is p = pP(t), where p = (pi : i ∈ S) is a row
vector. More generally, any measure γ on S that satisfies γ = γP(t), t ≥ 0,
is an invariant measure for X(t).

As in discrete time, a stationary distribution is sometimes called an equi-
librium distribution, and it is related to the notion of a stationary process.
The proof of the following result parallels that of Proposition 52 in Chap-
ter 1. Recall that a continuous-time process {X(t) : t ≥ 0} on a space S is
stationary if, for any s1 < · · · < sm,

(X(s1 + t), . . . , X(sm + t))
d
= (X(s1), . . . , X(sm)), t ≥ 0.

Proposition 33. For the CTMC X(t), which need not be irreducible or re-
current, the following statements are equivalent.
(a) X(t) is a stationary process.

(b) X(t)
d
= X(0), t > 0.

(c) The distribution of X(0) is a stationary distribution.

We will now establish the existence of an invariant measure forX(t). Recall
the transition-rate notation Q = {qij}, where qij = qipij (j �= i), and

qii = −qi =
∑

j �=i
qij .

Theorem 34. For an irreducible, recurrent CTMC X(t) and a nonnegative
measure γ on S, the following statements are equivalent.
(a) γ is an invariant measure for X(t).
(b) γiqi is an invariant measure for Xn.
(c) γ satisfies the balance equations γQ = 0, or equivalently,

γi
∑

j �=i
qij =

∑

j �=i
γjqji, i ∈ S. (4.23)

Furthermore, for a fixed i, the measure γ defined by

γj = Ei

[ ∫ τi

0

1(X(t) = j) dt
]
, j ∈ S, (4.24)

is a positive invariant measure for X(t), and this measure is unique up to a
multiplication by a constant.
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Proof. (a) ⇔ (c). For any measure γ on S, using the representation
P(t) = etQ, we have

γP(t) = γetQ = γ +

∞∑

k=1

tk

k!
γQk.

Thus γ is an invariant measure for X(t) (i.e., γP(t) = γ) if and only if
γQk = 0 for each k. But the latter (by induction) is equivalent to γQ = 0.

(b) ⇔ (c). Clearly (b) implies (c) since using pij = qij/qi,

γiqi =
∑

j �=i
γjqjpji =

∑

j �=i
γjqji.

Reversing the last two sums proves that (c) implies (b).

Theorem 35. For an irreducible, recurrent CTMC X(t) and a positive dis-
tribution measure p on S, the following statements are equivalent.
(a) X(t) is ergodic with stationary distribution p.
(b) p satisfies the equations pQ = 0.
(c) For a fixed i, Ei[τi] is finite, and

pj =
1

Ei[τi]
Ei

[ ∫ τi

0

1(X(t) = j) dt
]
, j ∈ S. (4.25)

Proof. The equivalence of (a) and (b) follows by Theorem 34 (statements (a)
and (c)).

Next, suppose X(t) is ergodic with stationary distribution p. Then each
Ei[τi] is finite and p is a positive distribution. Also, by Theorem 34, p must
be a multiple of γ in (4.24), and so, for a fixed i, we have pj = ciγj (ci as well
as γj depends on i). Then summing this on j yields 1 = ci

∑
j γj = ciEi[τi].

These observations imply pj = γj/Ei[τi], which is equivalent to (4.25). This
proves that (a) implies (c).

Finally, suppose (c) holds. The p given by (4.25) is positive and it is a
multiple of the invariant measure γ in (4.24). In addition, it clearly sums
to 1. Therefore it is a stationary distribution for X(t). This proves that (c)
implies (a).

Remark 36. Another representation of the distribution in (4.25) is

pj =
1

qjEj [τj ]
j ∈ S.

This follows from (4.25) by setting i = j.
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Recall that the preceding results do not require that Xn be ergodic. If it is,
however, the stationary distributions of X(t) and Xn are related as follows.

Proposition 37. If X(t) and Xn are ergodic with respective stationary dis-
tribution p and π, then

pj =
πj/qj∑
k πk/qk

, j ∈ S.

Proof. Remark 36 tell us that pj = 1/(qjEj [τj ]). Also, by Lemma 31 with
f(·) = 1 and Proposition 69 in Chapter 1,

Ej [τj ] = Ej

[ νj−1∑

n=0

q−1
Xn

]
= π−1

j

∑

k

πk/qk.

Combining these two observations proves the assertion.

Before getting into applications of stationary distributions, we will re-
late them to limiting distributions. We begin by describing the regenerative
property of CTMCs, which is comparable to Proposition 67 of Chapter 1 for
discrete-time chains. The proof, like that in discrete time, is by an application
of the strong Markov property in continuous time.

Proposition 38. An irreducible, recurrent CTMC X(t) is a delayed regen-
erative process over the times at which the process enters a fixed state.

We end this section by establishing that the stationary distribution of an
ergodic CTMC is also its limiting distribution. The limiting distribution of
the CTMC X(t) is defined by

pj = lim
t→∞

pij(t), i ∈ S,

provided the limits exist and do not depend on i.

Theorem 39. (Limiting Distribution) If the CTMC X(t) is ergodic, then its
stationary distribution given by (4.25) is its limiting distribution.

Proof. By Proposition 38, X(t) is a delayed regenerative process over the
hitting times of a state i. Also, the i.i.d. times between hitting i have a non-
arithmetic distribution due to the exponential sojourn times in the states.
Then by the characterization of limiting distributions for regenerative pro-
cesses in Corollary 46 in Chapter 2, it follows that the limiting distribution
of X(t) is the same as the stationary distribution given by (4.25).
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4.8 Regenerative Property and Cycle Costs

One use of stationary distributions is in evaluating means of functionals of
a CTMC in between successive visits to a fixed state. This section contains
formulas for two such “cycle” means. The formulas are of interest by them-
selves and are used to evaluate limiting averages of functionals, as we will see
in the next section. An analogous result for Markov chains is Proposition 69
in Chapter 1.

The first formula is for a cycle cost or utility that is an integral of a rate
function.

Proposition 40. If X(t) is an ergodic CTMC with stationary distribution
p, then, for f : S → R,

Ei

[ ∫ τi

0

f(X(t)) dt
]
=

1

piqi

∑

j

f(j)pj . (4.26)

provided the sum is absolutely convergent.

Proof. The left-hand side of (4.26) equals
∑
j f(j)Ei

[ ∫ τi
0 1(X(t) = j) dt

]
,

and this equals the right-hand side of (4.26) by (4.25) and Remark 36.

The next formula is for a cycle cost for a process with regenerative incre-
ments; see Section 2.10.

Proposition 41. Associated with as ergodic CTMC X(t) with stationary dis-
tribution p, suppose that {Z(t) : t ≥ 0} is a real-valued stochastic process with
delayed regenerative increments over the times at which X(t) enters a fixed
state i, and Z(0) = 0. Assume that

Ei

[
Z(Tn+1)− Z(Tn)

∣
∣
∣Xm,m ≤ n

]
= hi(Xn), i ∈ S, n ≥ 0,

for some hi : S → R. Then

Ei[Z(τi)] =
1

piqi

∑

j

hi(j)pjqj , (4.27)

provided the sum is absolutely convergent.

Proof. Since {νi > n} is a function of X0, . . . , Xn, using the pull-through
property for conditional probabilities and the hypotheses,
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Ei[Z(τi)] = Ei

[ νi−1∑

n=0

[Z(Tn+1)− Z(Tn)]
]

= Ei

[ ∞∑

n=0

1(νi > n)Ei

[
[Z(Tn+1)− Z(Tn)]

∣
∣
∣X0, . . . , Xn

]]

= Ei

[ νi−1∑

n=0

hi(Xn)
]
.

Applying Lemma 31 to the last term and then using Proposition 40, we obtain

Ei[Z(τi)] = Ei

[ ∫ τi

0

hi(X(t))qX(t) dt
]
=

1

piqi

∑

j

hi(j)pjqj .

4.9 Ergodic Theorems

In this section, we present several SLLNs for CTMCs that apply to a vari-
ety of functionals associated with cost and performance parameters. These
results follow from the general SLLN for processes with regenerative incre-
ments covered in Chapter 2. Included are insights on the rate of convergence
of the SLLNs, based on the refined SLLN in Chapter 2.

For this development, X(t) will be an ergodic CTMC with stationary
distribution p, and τi is the hitting time of state i.

Theorem 42. Suppose that {Z(t) : t ≥ 0} is a real-valued stochastic process
that has delayed regenerative increments over the times at which X(t) enters
a fixed state i, and Z(0) = 0. Assume Ei[supt≤τi |Z(t)| ] is finite, and

Ei

[
Z(Tn+1)− Z(Tn)

∣
∣
∣Xm,m ≤ n

]
= h(Xn), n ≥ 0,

for some h : S → R. Then assuming the sum is absolutely convergent,

lim
t→∞

t−1Z(t) =
∑

j

h(j)qjpj a.s.

Proof. By the SLLN for processes with regenerative increments (Theorem 54
in Chapter 2), we have

lim
t→∞

t−1Z(t) = Ei[Z(τi)]/Ei[τi] a.s.

But this limit is finite and equals
∑
j h(j)qjpj by (4.27) and Remark 36.

The process Z(t) in the preceding theorem is a general model for various
functionals of the CTMC X(t). Here are some illustrations.
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Example 43. Jump Times. Consider the process N(t) =
∑∞

n=1 1(Tn ≤ t),
which records the number of jump times Tn in (0, t]. This point process is of
interest by itself and it is used in functionals based on jump times.

The average number of jumps per unit time (or rate of N(t)) is

lim
t→∞

t−1N(t) =
∑

j

pjqj a.s.,

provided the sum is finite. This follows by Theorem 42 with Z(t) = N(t) and
Z(Tn+1)− Z(Tn) = 1.

In addition, knowing the rate of N(t), Theorem 10 in Chapter 2 tells us
that the average sojourn time over all the states determined by the Xn is

lim
n→∞

n−1
n−1∑

m=0

ξm = 1/
∑

j

pjqj a.s.

Example 44. Integral Functionals. Suppose Z(t) =
∫ t
0
V (s) ds, where V (t) is

a delayed regenerative process over the times at which X(t) enters a fixed
state. Then the integral process Z(t) has delayed regenerative increments
over these times. The V (t) might be a cost or utility rate at time t as-
sociated with a CTMC and auxiliary environmental information, such as
V (t) = g(X(t), Y (t)), for g : S×S′ → R. The limit statement in Theorem 42
will be true for a particular application upon verifying the other assumptions
in the theorem.

The preceding example sets the stage for the following classical result.

Theorem 45. (SLLN for CTMCs). For the ergodic CTMC X(t) with sta-
tionary distribution p, and a function f : S → R,

lim
t→∞

t−1

∫ t

0

f(X(s)) ds =
∑

j

f(j)pj a.s., (4.28)

provided the sum is absolutely convergent.

Proof. First note that, for n ≥ 0,

Ei

[ ∫ Tn+1

Tn

f(X(t)) dt
∣
∣
∣Xm,m ≤ n

]
= Ei[f(Xn)ξn|Xn] = f(Xn)q

−1
Xn
. (4.29)

This also holds with |f(j)| in place of f(j). Then using (4.27),

Ei[sup
t≤τi

|Z(t)| ] ≤ Ei

[ ∫ τi

0

|f(X(t))| dt
]
=

1

piqi

∑

j

|f(j)|pj . (4.30)

This quantity is finite by assumption. Thus (4.28) follows by Theorem 42.



266 4 Continuous-Time Markov Chains

The preceding SLLN has the following rate of convergence.

Example 46. Refined SLLN. In the context of the preceding theorem, assume
the time between entrances to a fixed state i has a finite variance σ2

i , and let
μi = Ei[τi] = 1/qipi. Then

E
[ ∫ t

0

f(X(s)) ds
]
= [t+ (σ2

i + μ2
i )/2μi]

∑

j

f(j)pj

−
∑

j

f(j)pj/qj + o(1), as t→ ∞. (4.31)

In particular, the expected time spent in state i has the asymptotic behavior

E
[ ∫ t

0

1(X(s) = i) ds
]
= tpi + pi[(σ

2 + μ2
i )/2μi − 1/qi] + o(1), as t→ ∞.

Applying Theorem 85 in Chapter 2 to Z(t) =
∫ t
0
f(X(s)) ds yields (4.31);

the required constants are (see Corollary 40)

a = Ei[Z(τi)] = μi
∑

j

f(j)pj ,

c = − 1

μi
Ei

[ ∫ τi

0

f(X(t)) dt
]
= −

∑

j

f(j)pj/qj .

Example 44 and Theorem 45 concerned integrals of cost or utility “rates”.
Here is another type of functional associated with transition times.

Example 47. Functionals of Embedded Processes. Suppose Z(t) =
∑N(t)
n=0 Vn,

where Vn is a cost or parameter associated with the jump time Tn. As an
example, suppose that g(i, j, t, y) is a cost incurred at the beginning of a
sojourn time of length t in state i that ends with a jump to state j, and y is
an auxiliary variable. Then

Vn = g(Xn, Xn+1, ξn, Yn), n ≥ 0,

is the cost incurred at time Tn, where Yn are auxiliary random variables
and T0 = 0. Assume the Yn are i.i.d. and independent of the CTMC. By
the exponential sojourn time and jump probabilities pjk, the expected cost
incurred at time Tn in state Xn = j is

h(j) = E[Vn|Xm,m ≤ n− 1, Xn = j]

=
∑

k �=j
pjk

∫ ∞

0

E[g(j, k, t, Y1)]qje
−qjt dt.

Assume this exists and is finite when g is replaced by |g|.
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Under these assumptions, the average cost is

lim
t→∞

t−1

N(t)∑

n=0

Vn =
∑

j

h(j)qjpj a.s.

=
∑

j

pj

[∑

k �=j
qjk

∫ ∞

0

E[g(j, k, t, Y1)]qje
−qjt dt

]
, (4.32)

provided the sum is absolutely convergent. In particular,

lim
t→∞

t−1

N(t)∑

n=0

g(Xn, Xn+1) =
∑

j

pj
∑

k �=j
qjkg(j, k) a.s., (4.33)

Expression (4.32) will follow by Theorem 42 upon verifying its assump-
tions. Clearly,

Ei[Z(Tn+1)− Z(Tn)|Xm,m ≤ n] = Ei[Vn|Xn] = h(Xn),

Also,

Ei[ sup
t≤τi

|Z(t)| ] ≤ Ei

[N(τi)∑

n=0

|Vn|
]
,

and, similarly to (4.30), the last term is finite when the right-hand side of
(4.32) is absolutely convergent. Thus Theorem 42 yields (4.32).

A typical application of the SLLN (4.32) involves defining Vn by an ap-
propriate function g, evaluating the mean function h(j), and verifying the
absolute convergence of the sum

∑
j h(j)qjpj . Here is an illustration.

Example 48. Consulting Company. Potential projects arrive to a consulting
company according to a Poisson process with rate λ. The times to do the
projects are independent exponentially distributed with rate μ. The company
is small and can only handle one project at a time. Therefore, when it is
working on a project, any potential projects that arrive are rejected.4 Suppose
the revenues from completing the projects are i.i.d. with mean α and the
revenue from the rejected projects are i.i.d. with mean ᾱ (which may be
higher than α due to a tarnished image of the company). Of interest are the
average revenue from completing the projects and the average revenue lost
from the rejected projects.

To derive these averages, let X(t) denote the state of the company at time
t, where the states are 1 if a job is in service and 0 otherwise. ClearlyX(t) is a
CTMC with transition rates q10 = μ (the service rate) and q01 = λ (the rate
of the Poisson arrival process, which has stationary independent increments).

4 This model, which is sometimes called an M/M/1/1 system, might also be appropriate
for any service station or computer that can only work on one job at a time.
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It is easily seen that the stationary distribution of this two-state CTMC is5

p0 = λ−1/(λ−1 + μ−1) = μ/(λ+ μ), p1 = 1− p0 = λ/(λ+ μ).

The revenue received at time Tn for completing a project when the com-
pany is in state Xn is Vn = Yn1(Xn = 0) , where Y1, Y2, . . . are i.i.d. project
revenues, independent of the CTMC, with mean α. Although this revenue
may be received any time during the engagement of a project, we assume,
with no loss in generality, that it is received at the beginning of a project.
Then it follows from (4.33) that the average revenue from completing the
projects is

lim
t→∞

t−1

N(t)∑

n=0

Vn = αp0 a.s.

To formulate the lost revenue from rejected projects, note that when the
company is busy on a project, the lost revenue can be represented by a com-
pound Poisson processM(t) with rate λ and the distribution of an increment
is that of a single lost-project with mean ᾱ. Then the lost-project revenue
at time Tn is V ′

n = Mn(ξn)1(Xn = 1), where Mn are i.i.d. compound Pois-

son processes with Mn
d
= M that are independent of the (Xn, ξn). Although

the arrival times of rejected projects occur during a sojourn time in state
1, we assume, with no loss in generality, that their lost-project revenues are
incurred at time Tn. Note that V ′

n has the form V ′
n = g(Xn, ξn,Mn) as in

(4.32) and

h(j) = E[V ′
n|Xn = j] = E[Mn(ξn)|Xn = j]ᾱ1(j = 1) = λμ−1ᾱ1(j = 1).

Therefore, by (4.32), the average lost-revenue is

lim
t→∞

t−1

N(t)∑

n=0

V ′
n = λμ−1ᾱp1 a.s.

One could use the preceding information to maximize profit. For instance,
suppose the service rate μ could be varied by changing the number of workers
or amount of overtime, and the cost per unit time of having a rate μ is C(μ).
Then the average revenue would be αp0 − λμ−1ᾱp1 − C(μ). One could then
select μ to maximize this average revenue.

Another quantity of interest is the average number of projects that take
longer than d days to complete. As a slightly different application of (4.32),
the average number of projects that take longer than d days to complete is

lim
t→∞

t−1

N(t)∑

n=0

1(Xn = 1, ξn > d) = p1e
−dμ a.s.

5 The two-state Markov chain was covered in Exercise 10 in Chapter 1.
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Our next example concerns rates of several types of transitions associ-
ated with the ergodic CTMC X(t) with stationary distribution p. Analogous
results for discrete-time are in Section 1.13.

Example 49. Movement Between Sets. The average number of transitions the
CTMC makes from a set of states A to a set of states B per unit time is

λ(A,B) = lim
t→∞

t−1

N(t)∑

n=0

1(Xn ∈ A,Xn+1 ∈ B).

By (4.33) this limit exists and equals

λ(A,B) =
∑

i∈A
pi
∑

j∈B
qij .

In particular, the rate at which the CTMC moves from i to j is λ(i, j) = piqij .
Recall that the total balance equations for the CTMC are

pi
∑

j �=i
qij =

∑

j

pjqji, i ∈ S.

This is equivalent to λ(i, S) = λ(S, i). That is, the rate at which the CTMC
moves out of state i is equal to the rate at which it moves into i. More
generally, it follows as in Chapter 1 that λ(A,Ac) = λ(Ac, A), the rate at
which the chain moves out of a set A is the rate at which it moves into A.

The number of entrances the CTMC makes into a set A ⊂ S up to time t
is defined by

NA(t) =

N(t)∑

n=0

1(Xn �∈ A,Xn+1 ∈ A).

Then as above, the average number of entrances per unit time into A is

λ(A) = lim
t→∞

t−1NA(t) =
∑

i∈Ac,j∈A
piqij a.s.

This is the same as the rate λ(Ac, A) at which the chain enters A.
A related quantity is the nth time the chain enters the set A, which is

τA(n) = min{t : NA(t) = n}. By Theorem 10 in Chapter 3, the limiting
average of these times is limt→∞ n−1τA(n) = 1/λ(A) a.s.

4.10 Expectations of Cost and Utility Functions

We have been discussing limiting averages for functionals of CTMCs. We
now switch back to finite time and present an important formula for means
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of functionals of CTMCs. In addition to being useful for cost functions, the
formula is a key tool for our analysis of Palm probabilities later in Sections
4.15 and 4.16.

Here X(t) will denote a CTMC with the usual notation, but with no other
assumptions about it being ergodic, etc. We begin with two examples of the
upcoming main result.

Example 50. Mean Measure of Transition Times. Consider the point process
N(t) =

∑∞
n=1 1(Tn ≤ t) of transition times of X(t). Its mean by (4.35) is

E[N(t)] =

∫ t

0

E[qX(s)] ds, t ≥ 0,

provided the integral exists. This mean is finite if
∑

i qi < ∞. In particular,
if X(t) is stationary with distribution p, then

E[N(t)] = tE[N(1)] = t
∑

i

piqi.

Example 51. Discounted Rewards. Suppose X(t) is in equilibrium with sta-
tionary measure p, and a discounted reward r(i)e−αt is received whenever it
enters state i at time t. Then the expected total discounted reward over the
infinite horizon is

E
[ ∞∑

n=1

r(Xn)e
−αTn

]
=

∫

R+

E[qX(t)r(X(t))]e−αt dt

= α−1
∑

i

piqir(i).

The preceding are examples of the following main result, which is formula
(4.35) for the mean of various functions ofX(t). This result is a generalization
of the Lévy formula in Example 53 below.

Theorem 52. Suppose {Vn : n ≥ 1} are real-valued random variables asso-
ciated with the CTMC X(t). Assume that the conditional expectations

h(ζn) = E[Vn|ζn], n ≥ 1, (4.34)

exist, where ζn = (Tn, Xn−1, Xn) and h : R+ × S2 → R is independent of n.
Then

E
[ ∞∑

n=1

Vn

]
=

∫

R+

E
[ ∑

j �=X(t)

qX(t),jh(t,X(t), j)
]
dt, (4.35)

provided the last integral is finite with |h| in place of h.

Proof. By Exercise 8 in Chapter 3, we know that if ξ is an exponential random

variable with rate λ, then E[h(ξ)] = λE[
∫ ξ
0 h(u) du]. Using an analogous



4.10 Expectations of Cost and Utility Functions 271

expression for conditional expectations applied to ξn−1, along with (4.34)
and Markov properties of (Xn, ξn), we have

E[Vn] = E
[
E[Vn|ζn]

]
= E[h(ζn)]

= E
[
E[h(Tn−1 + ξn−1, Xn−1, Xn)|Tn−1, Xn−1, Xn]

]

= E
[
qXn−1

∫ ξn−1

0

h(Tn−1 + u,Xn−1, Xn) du
]

= E
[
qXn−1

∫ Tn

Tn−1

h(t,Xn−1, Xn) dt
]
.

The change-of-variable t = Tn−1 + u is used for the last line. Under further
conditioning,

E[Vn] = E
[ ∑

j �=Xn−1

E
[
qXn−1

∫ Tn

Tn−1

h(t,Xn−1, j) dt
∣
∣
∣Xn−1, Tn−1, Xn = j

]

×P{Xn = j|Tn−1, Xn−1}
]

= E
[ ∑

j �=Xn−1

qXn−1,j

∫ Tn

Tn−1

h(t,Xn−1, j) dt
]
.

The last line uses the fact that the conditional probability in the second line
is qXn−1,j/qXn−1 . Finally, using Xn−1 = X(t) for t ∈ [Tn−1, Tn)

E
[ ∞∑

n=1

Vn

]
= E

[ ∞∑

n=1

∑

j �=Xn−1

qXn−1,j

∫ Tn

Tn−1

h(t,Xn−1, j) dt
]

=

∫

R+

E
[ ∑

j �=X(t)

qX(t),jh(t,X(t), j)
]
dt.

Here are two examples.

Example 53. Lévy Formula. For f : S2 → R and t ≥ 0,

E
[N(t)∑

n=1

f(Xn−1, Xn)
]
=

∫ t

0

E
[ ∑

j �=X(s)

qX(s),jf(X(s), j)
]
ds,

provided the last integral is finite with |f | in place of f . This formula is a
special case of Theorem 52, since

N(t)∑

n=1

f(Xn−1, Xn) =

∞∑

n=1

f(Xn−1, Xn)1(Tn ≤ t).
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Example 54. For f : R+ × S → R,

E
[ ∞∑

n=1

f(Tn, Xn)
]
=

∫

R+

E[qX(t)f(t,X(t))] dt,

provided integral is finite with |f | in place of f .

Remark 55. The results above also apply with obvious modifications to the
process {X(t) : t ∈ R} defined on the entire time axis R, which is natural
when considering stationary processes. In particular, the transition times
would be labeled · · · < T−2 < T−1 < T0 ≤ 0 < T1 < T2 · · · , and

∑∞
n=1 and∫

R+
would be replaced by

∑
n∈Z

and
∫
R
.

4.11 Reversibility

The focus in this and the next few sections will be on describing reversible
CTMCs. Recall that Chapter 1 introduced the notion of reversibility for
discrete-time Markov chains. We now describe an analogous reversibility for
CTMCs The results includes a canonical formula for the stationary distribu-
tion of reversible processes and a characterization of a CTMC in reverse time.
The next section describes several tools for formulating reversible CTMCs
and further examples.

As usual, X(t) will denote a CTMC with embedded process (Xn, ξn) and
the standard notation. We begin with terminology on reversibility.

Definition 56. A CTMC X(t) (or its transition rate matrix qij) is reversible
with respect to a measure γ on S if γ satisfies the detailed balance equations

γiqij = γjqji i �= j ∈ S. (4.36)

Our first observation is that if X(t) is reversible with respect to γ, then γ
is an invariant measure for the chain. This follows since summing the detailed
balance equations on j yields the total balance equations γQ = 0 or

γi
∑

j �=i
qij =

∑

j �=i
γjqji.

Of course, when γ is finite, it can be normalized to be the stationary distri-
bution of the process.

Another observation is that the reversibility of X(t) is equivalent to the
reversibility of its embedded chain Xn. In other words, X(t) is reversible with
respect to γ if and only if Xn is reversible with respect to πi = γiqi, i ∈ S.
This follows by the definition of reversibility and qij = qipij .

The definition of reversibility for CTMCs is essentially the same as that
for discrete-time Markov chains in Chapter 1; the only difference is that
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transition rates are used instead of transition probabilities. However, re-
versibility in continuous time has more interesting applications as we will see.

The discrete-time results in Chapter 1 also apply (with transition rates
in place of transition probabilities) to CTMCs, and so we can exploit these
results here. For instance, if X(t) is reversible, then it has the two-way com-
munication property: for each i �= j in S, the transition rates qij and qji are
both positive or both equal to 0. Also, X(t) is reversible with respect to γ if
and only if

∑

i∈A,j �=i∈B
γiqij =

∑

j∈B,i�=j∈A,
γjqji, A,B ⊂ S.

This says that the rate of transitions between any two sets is equal to the
rate of the reverse transitions, when the chain is ergodic.

The important characterization of invariant measures in Theorem 95 in
Chapter 1 has the following continuous-time analogue.

Theorem 57. If a CTMC X(t) is reversible, then an invariant measure for
it is γi0 = 1 and

γi =

�∏

k=1

qik−1,ik

qik,ik−1

, i ∈ S\{i0},

where i0 is a fixed state and i0, i1, . . . , i� = i is any path from i0 to i.

Here is the companion result.
Kolmogorov Criterion. A CTMCX(t) with the two-way communication prop-
erty is reversible if and only if, for each n ≥ 3 and i1, . . . , in in S with in = i1,
and ik �= ik+1, 1 ≤ k ≤ n− 1,

n−1∏

k=1

qik,ik+1
=

n−1∏

i=1

qik+1,ik .

Quintessential examples of reversible processes are birth-death processes,
includingM/M/s queueing processes. These are special cases of the following
general models.

Example 58. Up-Down Process. Let X(t) = (X1(t), . . . , Xm(t)) be a CTMC
on S = Z

m
+ , where a typical state is denoted by x = (x1, . . . , xm). The CTMC

might represent quantities of jobs at m processing stations, stock levels of m
products in a warehouse, outstanding orders at m part suppliers, or simply
locations of items moving in the plane. Consider the general case in which
the only movements may be up or down according to the transition rates

qxy =
u(y)

u(x)
1(x < y) +

v(x)

v(y)
1(x > y),

where u(·) and v(·) are positive functions on S.
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Viewing ũ(x)=−logu(x) as a potential function, u(y)/u(x)= e−(ũ(y)−ũ(x))

reflects the change in potential by component “increases” from x to y. Sim-
ilarly v(x)/v(y) reflects a “decrease” in potential. An easy check shows that
X(t) is reversible with respect to γx = u(x)/v(x). This model has an obvious
extension to a partially-ordered state space S (e.g., one can model excursions
on partially-ordered graphs).

Example 59. Batch Birth-Death Processes. A special case of the preceding
process is a CTMC X(t) = (X1(t), . . . , Xm(t)) that describes the numbers
of items in m populations, where Xi(t) is the number of items in the ith
population. The population state x may increase to x+a or decrease to x−a,
where a is a positivem-vector in a fixed subset A of S of allowable increments.
For simplicity, assume the set A contains the unit vectors e1, . . . , em, where
ei is the vector with 1 in position i and 0 elsewhere.

Assume that λi(xi) is a single-unit birth rate in population i when xi are
present, and that the birth rate of a batch of size ai is

λi(xi)λi(xi + 1) · · ·λi(xi + ai − 1).

This is like a compound transition xi → xi + 1 → · · · → xi + ai occur-
ring instantaneously under the single birth rate function λi(·). Single death
rates μi(xi) and batch death rates are defined similarly. In other words, the
transition rates of the CTMC are

qxy =
∑

a∈A

[
m∏

i=1

ai∏

k=1

λi(xi + k − 1)1(y = x+ a)

+

m∏

i=1

ai∏

k=1

μi(xi − k + 1)1(y = x− a)

]

.

Note that these transition rates are the same as those in the preceding
example with

u(x) =
m∏

i=1

xi∏

k=1

λi(k − 1), v(x) =
m∏

i=1

xi∏

k=1

μi(k).

Therefore, an invariant measure for this process is

γx =

m∏

i=1

xi∏

k=1

λi(k − 1)/μi(k).

Interestingly, because of the multiplicative nature of the batch rates, this
measure does not depend on the form of the set A of batch sizes as long as it
contains the m unit vectors. In particular, any process has the same invariant
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measure as the birth-death process with “single” births and deaths in which
A = {e1, . . . , em}.

Example 60. Classical Birth-Death Processes and Queues. From the preceding
example, it follows that a classical birth-death process X(t) as in Example 10
with birth and death rates λi and μi, respectively, is reversible with respect
to the measure γ0 = 1 and

γi =
λ0 · · ·λi−1

μ1 · · ·μi
, i ≥ 1.

Then the process is ergodic if and only if the sum of these γi is finite. In that
case, its stationary distribution is pi = cγi, i ≥ 0, where c−1 =

∑∞
i=0 γi.

In particular, the classical M/M/s queueing process in Example 11 with
Poisson arrival rate λ and service rate μ is reversible. The process with s = ∞
servers is automatically ergodic and the process with 1 ≤ s < ∞ servers is
ergodic if and only if λ < sμ. Their stationary distributions are as follows.

M/M/1 system with λ < μ: pi = (1− λ/μ)(λ/μ)i, i ≥ 0.

M/M/s system with λ < sμ and s < ∞:

pi =

{
c(λ/μ)i/i! 0 ≤ i ≤ s

ps(λ/sμ)
i−s i > s.

M/M/∞ system: pi = e−λ/μ(λ/μ)i/i! i ≥ 0.

We end this section by showing how the reversibility of the CTMC X(t)
via detailed balance equations is related to X(t) viewed backward in time.
For a fixed τ > 0, consider the process

Xτ(t) = X(τ − t), 0 ≤ t ≤ τ.

Each sample path of this process corresponds to a sample path of X(t) in
reverse time starting at τ (like viewing a video tape in reverse). The process
{Xτ(t) : 0 ≤ t ≤ τ} is called the time reversal of X(t) at τ .6

Lemma 61. The process Xτ (t) is a non-time-homogeneous CTMC with
time-dependent transition probabilities, for 0 ≤ s ≤ t ≤ τ ,

P{Xτ(t) = j|Xτ(s) = i} =
P{X(τ − t) = j}
P{X(τ − s) = i}pji(t− s). (4.37)

6 Note that Xτ (t) has “left-continuous” paths instead of the conventional right-continuous
paths. The right-continuous version X((τ − t)−) is a little cumbersome.
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If in addition X(t) is stationary with distribution p, then Xτ (t) is a time-
homogeneous CTMC that is stationary, and its transition probabilities (4.37)
reduce to

p−1
i pjpji(t), t ∈ [0, τ ]. (4.38)

Hence its transition rates are p−1
i pjqji.

Proof. Consider the probability

P{Xτ(t) = j|Xτ (s) = i, A} =
P{X(τ − t) = j,X(τ − s) = i, A}

P{X(τ − s) = i, A} ,

for any event A that is a function of {Xτ(u) : 0 ≤ u < s}, and 0 < s ≤ t < τ .
To prove the first assertion, it suffices to show that this fraction equals the
right side of (4.37). But this equality follows since the denominator equals

P{X(τ − s) = i}P (A|X(τ − s) = i)

and the numerator equals

P{X(τ − t) = j}P{X(τ − s) = i|X(τ − t) = j}P (A|X(τ − s) = i),

because A is a function of {X(u) : τ < u < τ + s} and X(t) is Markovian.
When X(t) is stationary with distribution p, then clearly the transition

probabilities (4.37) (for s = 0) reduce to (4.38), and the associated transition
rates, by Theorem 18, are p−1

i pjqji. Therefore, X(t) is a time-homogeneous
CTMC. In addition,Xτ (t) = X(τ−t) has the distribution p for each t ∈ [0, τ ],
and hence Xτ (t) is stationary with distribution p by Proposition 33.

The notion of a time-reversal process on a finite time interval has a natural
extension to the entire time axis.

Definition 62. The time-reversal of an ergodic CTMC X(t), with transi-
tion rates qij and stationary distribution p, is a CTMC X̄(t) with initial
distribution p and transition rates

q̄ij = p−1
i pjqji.

The finite-dimensional distributions of X̄(t) are the reverse-time of those for
X(t) as depicted by property (4.39) below.

Proposition 63. If the CTMC X(t) is stationary with distribution p, then
its time-reversal X̄(t) is stationary with distribution p and

(X̄(t1), . . . , X̄(tn))
d
= (X(τ− t1), . . . , X(τ− tn)), t1 < . . . < tn ≤ τ. (4.39)

Proof. By Remark 19, two CTMCs are equal in distribution if and only if
their initial distributions and transition rates are equal. Then by the descrip-
tion of Xτ (t) in Lemma 61 when X(t) is stationary, it follows that X̄(t) and
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Xτ (t) on [0, τ ] are equal in distribution. This proves (4.39). Also, X̄(t) being
stationary on [0, τ ], for each τ , implies that it is stationary on [0,∞).

The CTMC X(t) is defined to be reversible in time if it is equal in distri-
bution to its time-reversal process X̄(t); that is (in light of (4.39)),

(X(t1), . . . , X(tn))
d
= (X(τ − t1), . . . , X(τ− tn)), t1 < . . . < tn ≤ τ. (4.40)

How is this time-reversibility related to the (algebraic) reversibility we have
been discussing?

Proposition 64. The CTMC X(t) is reversible in time if and only if it is
stationary and reversible.

Proof. We will use the property that two CTMCs are equal in distribution if
and only if their initial distributions and transition rates are equal. Suppose
X(t) is reversible in time. Then the transition rates q̄ij = p−1

i pjqji of X̄(t)
are equal to the rates qij of X(t), which implies piqij = pjqji. Thus, X(t) is

reversible. In addition, (4.40) implies X(0)
d
= X(τ) for each τ , and so X(t)

is stationary by Proposition 33.
Conversely, suppose X(t) is stationary and reversible and its distribution

is p. Then by Proposition 63, X̄(t) is a stationary CTMC with distribution
p. Also, the reversibility supposition implies

q̄ij = p−1
i pjqji = qij .

Thus, X̄(t) and X(t) are equal in distribution, and hence X(t) is reversible
in time.

Remark 65. For a CTMC {X(t) : t ∈ R} on the entire time axis R, the
time-reversibility definition (4.40) is equivalent to

(X(t1), . . . , X(tn))
d
= (X(tn), . . . , X(t1)), t1 < . . . < tn in R.

4.12 Modeling of Reversible Phenomena

There are a surprising number of complex systems that can be modeled by
functions of reversible processes or by reversible transition rates. This section
illustrates this with a few key principles of reversibility that help one identify
or construct reversible processes.

For this discussion,X(t) will denote a CTMC on S. Since many interesting
models are in multi-dimensional spaces, we adopt slightly different notation
and let q(x, y), for x, y ∈ S, denote its transition rates, and let p(x, y), q(x)
and γ(x) denote the usual transition probabilities, sojourn rates and invariant
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measure. For simplicity, assume that all the transition rates in this section are
irreducible and recurrent, and hence they have positive invariant measures.

The examples in this section are based on elementary properties of re-
versibility that follow directly from the definition. We begin with two prop-
erties that are often applied together.

Proposition 66. (State Space Truncation) Let q(x, y) be a transition rate
function on S̃ that is reversible with respect to γ. If X(t) is a CTMC on a
subset S ⊂ S̃ with transition rates q(x, y) for x, y ∈ S, then X(t) is reversible
with respect to γ restricted to S.

In other words, a reversible process restricted to a subset of its state space
is also reversible. The next observation is that a vector-valued CTMC of
independent reversible components is reversible. The first assertion uses the
fact that two independent CTMCs cannot have a common jump time; this is
due in part to Remark 20 that says the probability is 0 that a CTMC has a
jump at a fixed time.

Proposition 67. (Juxtaposition of Processes) If X1(t), . . . , Xm(t) are inde-
pendent CTMCs on spaces S1, . . . , Sm, then X(t) = (X1(t), . . . , Xm(t)) on
S = S1 × · · · × Sm is a CTMC with transition rates

q(x, y) = qi(xi, yi) if xj = yj, j �= i, for some i.

where x = (x1, . . . , xm) and qi(xi, yi) are the transition rates for Xi(t). If
in addition each Xi(t) is reversible with respect to γi, then X(t) is reversible
with respect to γ(x) = γ1(x1) · · · γm(xm).

Reversible processes arise in many contexts where several independent
reversible processes are linked together by certain interactions or constraints.
This is exemplified by the following application of the preceding results.

Example 68. Birth-Death and Queueing Processes: Dynamic Population Con-
straints . Consider a birth-death process (e.g., an M/M/s queueing process)
with invariant measure γ(x) as in Example 60. We will discuss two varia-
tions of this process in which the quantity of items allowed in the system
is bounded. These apply naturally to M/M/s queues in which the waiting
space for items is limited.

First, assume the allowable number of items in the population is a fixed
constant m, so that there are no births when the system is full (e.g., arrivals
to a queue are turned away). Let X(t) denote the quantity of items in the
population at time t. By Proposition 66, it follows that X(t) is a reversible
CTMC on S = {0, 1, . . . ,m} with respect to the invariant measure γ of the
unconstrained process restricted to S.

In particular, if m = s, there is no queueing, and the limiting probability
of a full system (the Erlang Loss Probability) is

ps =
(λ/μ)s/s!

∑s
i=0(λ/μ)

i/i!
.
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Next, consider the more complicated situation in which the number of
items in the system at time t, denoted by X(t), cannot exceed a value Y (t).
Assume that Y (t) operates as a reversible Markov process on a subset of Z+

with transition rates qY (y, y
′) and stationary distribution pY (y), but it is

constrained by the inequality X(t) ≤ Y (t). That is, whenever X(t) = Y (t),
there are no births; also, transitions of Y (t) below X(t) are not allowed.
More precisely, assume that (X(t), Y (t)) is an irreducible CTMC on the space
S = {(x, y) ∈ Z

2
+ : x ≤ y}, and its transition rates are

q((x, y), (x′, y′)) = qX(x, x′)1(y′ = y, x′ ≤ y) (4.41)

+qY (y, y
′)1(x′ = x, y′ ≥ x).

Here qX(x, x′) is the transition rate function for the unrestricted birth-death
process on the nonnegative integers.

Since qX(x, x′) and qY (y, y
′) are reversible, the transition rates (4.41) with-

out the inequality constraints x′ ≤ y are as in Proposition 67. Consequently,
(4.41) without the inequality constraints is reversible with respect to the
product measure γ(x)pY (y). Thus, by Proposition 66, the (X(t), Y (t)) is re-
versible with respect to p(x, y) = γ(x)pY (y).

The next observation is that a transition rate function is reversible if it is
a multiplication or compounding of reversible transition functions. This also
follows directly from the definition of reversibility.

Proposition 69. (Compound Transition Rates) Suppose the transition rates
of a CTMC X(t) are of the form

q(x, y) = q1(x, y) · · · qm(x, y), x �= y ∈ S,

where qi(x, y) is a transition rate function on S, for 1 ≤ i ≤ m. If each
qi(x, y) is reversible with invariant measure γi, then X(t) is invariant with
respect to γ(x) = γ1(x1) · · · γm(xm).

Using this property, the truncations of states in Proposition 66 has the fol-
lowing extension to modifications as well as truncations of transitions.

Example 70. Transition Modifications. Consider a CTMC on S̃ whose transi-
tion rates q̃(x, y) are modified by multiplying it by a transition rate function
r(x, y) on a subset S ⊆ S̃. The resulting process X(t) is a CTMC on S with
transition rates

q(x, y) = r(x, y)q̃(x, y), x, y ∈ S.

Suppose q̃(x, y) is reversible on S̃ with respect to a positive γ̃. Then X(t) is
reversible if and only if r(x, y) is reversible. In this case, an invariant measure
for X(t) is γ(x) = ρ(x)γ̃(x), where ρ is an invariant measure for r(x, y). This
follows from Proposition 69 and the definition of reversibility. For instance,
the function r(x, y) might simply be symmetric (r(x, y) = r(y, x), x, y ∈ S).
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There are many rate-modification functions r(x, y) on a space S̃ ⊆ R
m
+ ,

such as

r(x, y) = 1(x ≤ y) + 1(x ≥ y) (transitions are either up or down),

r(x, y) = 1(max
j

{|yj − xj |} ≤ b) (component differences are ≤ b).

Here are three more illustrations.

Example 71. Jumps Affected by a Random Environment. Suppose the tran-
sition rate function q̃(x, y) represents a CTMC on S̃ that is subject to a
random environment that affects its jumps as follows. Whenever the process
is in state x, a jump to a new state y is allowed with probability r(x, y) and
is not allowed with positive probability 1− r(x, y). This jump modification is
independent of everything else. The resulting system processX(t) is a CTMC
as in Example 70.

Example 72. Resource Constraints. Consider Example 70, where q̃(x, y) rep-
resents a system on S̃ ⊆ R

m
+ that requires certain resources to sustain

it. In particular, assume that whenever it is in a state x = (x1, . . . , xm),
it requires a quantity aijxj of a resource i ∈ I for each component j,
and bi is the maximum of the resource i that is available. Then setting
r(x, y) = 1(

∑
j aijyj ≤ bi, i ∈ I) constrains the system to new states y

that do not exceed the resources.

Example 73. Communication Network with Capacity Constraints and Block-
ing. Consider a communication network, as introduced in [21], that services
m types of items. The items arrive to the network according to independent
Poisson processes with respective rates λ1, . . . , λm. For its communication
across the network, each type j unit requires the simultaneous use of aij
channels on link i for each i in the set I of links of the network. Some of the
aij may be 0. If these quantities of channels are available, they are assigned to
the item, and the item holds the channels for a time that is exponentially dis-
tributed with rate μj . At the end of this time, the item releases the channels
and exits the network. The total number of channels available on link i ∈ I
is bi. If an item arrives and its required channel quantities are not available,
then it cannot enter the network (it is blocked from entering or lost).

Let X(t) = (X1(t), . . . , Xm(t)) denote the numbers of the m types of items
in the network at time t. When X(t) is in state x = (x1, . . . , xm), the number
of channels in use on link i is

∑
j aijxj . Then the state space of X(t) is

S = {x : 0 ≤
∑

j

aijxj ≤ bi, i ∈ I}.

Note that if the state of the process is x, then a type j item cannot enter the
network when
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x ∈ Bj = {x :
∑

k

aikxk > bi − aij , for some i ∈ I}.

Without these constraints, one can view the Xi(t) as independent birth-
death processes (Example 59) with respective birth and death rates λi and
μi, for 1 ≤ i ≤ m. Under these constraints, by Propositions 66 and 67,
X(t) is a multivariate birth–death process with single-unit movements that
is constrained to be in S, and its stationary distribution is

p(x) = c
m∏

j=1

(λj−1/μj)
xj , x ∈ S,

where c is the normalization constant.
Many network performance parameters can be expressed in terms of this

distribution. Of prime importance is the probability that an item is blocked
from entering the network. The probability that a type j arrival is blocked in
equilibrium is p(Bj) =

∑
x∈Bj

p(x). Ideally, the channel capacities bi would
be sized such that this blocking probability would be less than some small
amount such as .01.

One may also be interested in which links cause the blocking. For instance,
the probability that a type j item is blocked because the load on link i is full
is
∑

x∈Bj
p(x)1(

∑
k aikxk > bi).

What is the average number of type j items blocked per unit time? To
determine this, consider τj(t) =

∫ t
0 1(X(s) ∈ Bj) ds, which is the amount

of time in [0, t] that type j items are blocked. Now, the number of type j
items blocked in [0, t] can be expressed as Nj(τj(t)), where Nj(t) is a Poisson
process with rate λj that is independent of X(t). Thus, by the strong law of
large numbers for Nj(t) and for τj(t), the number of type j items blocked
per unit time is

lim
t→∞

t−1Nj(τj(t)) = lim
t→∞

τj(t)
−1Nj(τj(t))τj(t)/t = λjp(Bj) a.s..

A process for assessing loads on the network is Y (t) = (Y i(t) : i ∈ I),
where Y i(t) =

∑
j aijX

j(t) is the number of channels on link i that are in
use at time t. Although this process Y (t) is not Markovian, its stationary
distribution, as a function of p, is

pY (y) =
∑

x∈S
p(x)1(

∑

j

aijxj = yi, i ∈ I).

This distribution can be used to determine various performance parameters
such as the percent of time that link i is idle or the stationary probability that
link i has more channels in use than link k. Another parameter of interest is
the average number of channels in use on link i, which is

∑
j aij

∑
x∈S xjp(x).
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4.13 Jackson Network Processes

In Chapter 1, we introduced Jackson network processes in discrete time as
examples of Markov chains. These models are appropriate when arrivals to
the network and service completions occur exactly at discrete times. On the
other hand, in many communications and industrial processing networks, ar-
rivals typically occur at times that form Poisson processes or point processes
in continuous time, such as those that can be approximated by Poisson pro-
cesses as in Chapter 3. In addition, the processing times may be more real-
istic as continuous random variables. In these cases, it is appropriate to use
continuous-time models. An important family of such models are Jackson
network processes that are CTMCs. This section describes the equilibrium
behavior of these Jackson network processes, and the next section describes
a related family of network processes.

The network terminology here will be somewhat like that in Section 1.15.
Consider an m-node network in which discrete items move among the nodes.
The state of the network at time t will be represented by a CTMC X(t) =
(X1(t), . . . , Xm(t)), where Xi(t) denotes the number of items at node i. The
state space S is a set of vectors x = (x1, . . . , xm) with nonnegative integer
entries, and q(x, y) denotes the transition rates. We also use |x| =

∑m
i=1 xi.

Typical nodes will be labeled i, j, k, . . .
The network may be any one of the following types.
• Closed network with ν items and S = {x : |x| = ν}.
• Open network with unlimited capacity and S = {x : |x| < ∞}.
• Open network with finite capacity ν and S = {x : |x| ≤ ν}.

Think of the items as moving in the node set

M =

{
{1, . . . ,m} if the network is closed

{0, 1, . . . ,m} if the network is open.

A typical transition is triggered by the movement of a single item. When
the network is in state x and one item moves from some i to j in M, the
network has a transition

x → Tijx = x− ei + ej.

Here ei is the m-dimensional vector with 1 in position i and 0 elsewhere,
and e0 is the zero vector. Most of the following development applies to any
of the preceding types of networks; we designate the network type when the
distinction is needed.

The movement of items and the resulting transition rates of X(t) are
conveniently described by clock times as in Example 9. Specifically, assume
that whenever the network is in state x, the time to the next movement of
a single item from node i to node j, resulting in a transition x → Tijx, is
exponentially distributed with rate λijφi(xi), where φ0(·) = 1. The λij are
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nonnegative with each λii = 0 (this is for convenience — Exercise 39 shows
how it can be relaxed). The φi(xi) is positive except that φi(xi) = 0 if xi = 0
and i �= 0.

Under this assumption of independent exponential times to item move-
ments, the network process X(t) is a CTMC with transition rates

q(x, y) =

{
λijφi(xi) if y = Tijx for some j �= i in M

0 otherwise.

We call X(t) a Jackson network process.
Before describing its behavior, a few comments are in order. The exponen-

tial sojourn time of X(t) in state x has the rate

q(x) =
∑

i

φi(xi)
∑

j

λij ,

and the one-step transition probability is p(x, y) = q(x, y)/q(x). Whenever
the process is in state x and an item moves out of node i, the probability
that the item moves to node j is

pij = p(x, Tijx)/
∑

k

p(x, Tikx) = λij/
∑

k

λik, i, j ∈ M.

Since this probability is independent of x, one can view the items as being
independently routed at each transition via the Markov chain routing proba-
bilities pij .

We follow the standard convention that λij may either be a routing prob-
ability (with

∑
k∈M

λik = 1) or a nonnegative intensity of selecting the nodes
i and j, and call it the i-to-j routing rate. For an open, unlimited-capacity
network, the routing assumption implies that items enter the network at the
nodes according to independent Poisson processes with respective rates λ0j
(this is proved in Example 95); and λ0j = 0 means that node j does not have
arrivals from outside. Think of λij as the transition rates of a CTMC that
determine the movement of a single item in the node set M (which includes
0 when the network is open), and pij are its one-step transition probabilities.

The φi(xi) is the service rate or departure intensity at node i when the
network state is x. Since this rate does not depend on xk for k �= i, the nodes
are said to “operate” independently. For instance, if node i operates like an
M/M/s system with s independent servers that serve at the rate μi, then
φi(xi) = μimin{xi, s}1(xi ≥ 1).

Another interpretation is that φj(xi) represents an egalitarian processor-
sharing scheme in which at any instant, the time to the next “potential”
departure of any particular item at the node is exponentially distributed
with rate φi(xi)/xi, independent of the other items. That is, node i works on
the each item with this rate, and all the items receive service simultaneously.
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These service and routing rates may have other interpretations for general
movements of items or particles.

In a transition x → Tijx, we refer to a “single item” moving from i to j.
However, more than one item may actually move in the transition, as long as
the node populations before and after the transition are x and Tijx, respec-
tively. For instance, in a manufacturing network, a part exiting a certain node
i may be considered as a completed part that actually exits the network and
triggers another item outside the network to take its place and enter node j.

We are now ready to describe the equilibrium behavior of the three types
of Jackson processes we have been discussing. With no loss in generality,
we assume the routing rates λij are irreducible. This is equivalent to X(t)
being irreducible; see Exercise 37. Let wi, i ∈ M, denote a positive invariant
measure that satisfies the routing balance equations or traffic equations

wi
∑

j∈M

λij =
∑

j∈M

wjλji, i ∈ M. (4.42)

To simplify some expressions, we assume w0 = 1 when the network is open.7

Theorem 74. If X(t) is a closed Jackson process with ν items, then it is
ergodic and its stationary distribution is

p(x) = cf1(x1) · · · fm(xm), x ∈ S = {x : |x| = ν}, (4.43)

where fi(xi) = wxi

i

∏xi

k=1 φi(k)
−1 and the wi satisfy (4.42). The normaliza-

tion constant is

c =
(∑

x∈S
f1(x1) · · · fm(xm)

)−1

.

Theorem 75. If X(t) is an open Jackson process with finite capacity ν, then
the assertions of Theorem 74 apply to this process with S = {x : |x| ≤ ν}.

Theorem 76. If X(t) is an open Jackson process with unlimited capacity,
then it has an invariant measure of the form (4.43) with S = {x : |x| < ∞}.
Hence, the process is ergodic if and only if

c−1
i =

∞∑

k=0

fi(k) < ∞, 1 ≤ i ≤ m.

In this case, its stationary distribution is

p(x) = p1(x1) · · · pm(xm), x ∈ S,

where pi(xi) = cifi(xi).

7 Recall the convention that
∏0

k=1(·) = 1.
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Proof. To prove these theorems, it suffices to show that p given by (4.43)
satisfies the balance equations, which in this case are

p(x)
∑

i,j∈M

q(x, Tijx) =
∑

i,j∈M

p(Tjix)q(Tjix, x), x ∈ S. (4.44)

This proof by substitution is comparable to the proof of Theorem 86 in
Chapter 1 for the closed network in discrete time. The substitution is the same
for each type of state space. The other details in Theorem 76 are obvious.

Remark 77. Product-Form Distributions. The stationary distributions in the
three preceding results have a product form, but only the last one for an
open unlimited-capacity network represents a product of probabilities for
independent random variables. In this case, if one were to take a snapshot
of the node quantities X1(t), . . . , Xm(t) at a fixed time t, they would be
independent random variables with distributions as in Theorem 76. Of course,
these node quantities at different times are not independent.

Remark 78. Partial Balance. The stationary distribution p in the preceding
results, which satisfies the total balance equations (4.44), also satisfies the
partial-balance equations

p(x)
∑

j∈M

q(x, Tijx) =
∑

j∈M

p(Tjix)q(Tjix, x), i ∈ S, x ∈ S.

Summing these equations on i yields the total balance equations. From the
law of large numbers for CTMCs, the partial balance equations say that the
average number of items departing from node i per unit time when X(t) is
in state x equals the average number of items entering node i per unit time
that land X(t) in state x. Or, loosely speaking, the equilibrium flow of items
out of node i, for any state x, equals the flow into i. Because of this, the
equations are also called station balance equations.

Remark 79. Traffic Equations. Although the traffic equations (4.42) precede
the theorems and are ostensively an assumption, they are also a consequence
of the results. Namely, upon substituting the measure p given by (4.43) in
the preceding partial balance equations, the service-rate functions cancel and
the traffic equations are what is left. In other words, the traffic equations
are a necessary and sufficient condition for p to satisfy the partial balance
equations.

The modeling of a network by a Jackson process typically involves specify-
ing the nodes and service actions, verifying the assumption of an exponential
time to a transition and identifying the routing and service rates. The next
step is to solve the routing equations for the parameters wi, the only unknown
parameters for the stationary distribution. With the stationary distribution
in hand, one can then derive various network performance parameters.



286 4 Continuous-Time Markov Chains

The following model of a maintenance network is similar to those in indus-
trial and military settings for maintaining expensive equipment to produce
goods or services or to perform a mission.

Example 80. Production–Maintenance Network. Consider a system shown in
Figure 4.1 in which ν machines (subsystems, trucks or electronic equipment)
are available for use at a facility or location called node 1. At most s1 machines
can be in use at node 1 at any time for producing goods or services. Therefore,
if x1 machines are present then min{x1, s1} of these will be in use. After a
machine is put into use, it operates continuously until it fails or degrades to
a point that it requires a repair. The total operating time is exponentially
distributed with rate μ1. At the end of this time, the machine is transported
to a repair facility. The transportation system (which may involve initial
processing and rail or air travel) is called node 2, and the machine’s time at
this node is exponentially distributed with rate μ2; there is no queueing for
the transportation.

The repair facility consists of nodes 3, 4, 5, which are single-server nodes
with respective rates μ3, μ4, μ5. Depending on the nature of the repair, the
machine goes to one of these nodes with respective probabilities p23, p24, p25.
After its repair, the machine goes to another transportation system, called
node 6, for an exponentially distributed time with rate μ6. And then it enters
node 1 to begin another production/repair cycle.

�
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Fig. 4.1 Production–Maintenance Network

Let X(t) denote the process representing the numbers of machines at the
six nodes at time t. Under the preceding assumptions,X(t) is a closed Jackson
process in which each node i is an si-server node, where

s2 = s6 = ∞, s3 = s4 = s5 = 1.

The service rate of each server at node i is μi. The routing intensities are the
routing probabilities

λij = 1, (i, j) ∈ {(1, 2), (3, 6), (4, 6), (5, 6), (6, 1)}, λ2j = p2j , j = 3, 4, 5.

the other λij ’s are 0. A solution of the traffic equations (4.42) for these routing
probabilities is wi = 1 for i = 1, 2, 6 and wi = p2i for i = 3, 4, 5. Then by
Theorem 74, the stationary distribution of X(t) is
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p(x) = c
1

x2!x6!

x1∏

k=1

1

min{k, s1}

6∏

i=1

(wi/μi)
xi , x ∈ S,

where c is the normalization constant.
The quality of this maintenance system is measured by the number of

machines in productive use at node 1. Suppose the aim is to find the number
of machines ν∗ to provision for the network such that the probability of
having less than x̄1 machines in use at node 1 in equilibrium is below β (e.g.,
.10). From the stationary distribution above, it follows that the equilibrium
probability of having less than x̄1 machines at node 1 (as a function of ν) is

α(ν) =
∑

x

p(x)1(xi < x̄1)

= c

x̄1−1∑

n=0

1

μn1n!

∑

x2,...,x6

1(

6∑

j=2

xj = ν − n)
1

x2!x6!

6∏

j=2

(wj/μj)
xj .

Then the provisioning quantity ν∗ = min{ν : h(ν) ≤ β} is obtained by
computing α(ν) for ν = x̄1, x̄1 + 1 . . . until it falls below β.

4.14 Multiclass Networks

This section shows how the Jackson network models with homogeneous items
extend to networks with multiple types of items, where the routing and ser-
vices may depend on an item’s type. The difference is that we now keep
track of the number of items of each type at a node and envision each item
as moving within a set of class-node indices. We will describe the equilibrium
behavior of two types of multiclass networks.

The first model is for an open network in which each item chooses a par-
ticular route through the network, and the item’s class label at any instant
is designated by the route it is traversing and its stage on the route. Con-
sider an open m-node network that processes items that travel through it
as follows. A typical route of an item is a finite sequence r = (r1, . . . , r�) of
nodes inside the network, where rs is the node the item visits at stage s of
its route, 1 ≤ s ≤ �; the length of the route � = �(r) depends on the route.
Upon leaving the last node r�, the item exits the network. A node may appear
more than once on a route, and the set of all relevant routes, for simplicity,
is finite. Items that traverse a route r arrive to the network according to a
Poisson process with rate λ(r), and these arrival processes are independent
for all the routes. Then the total arrival stream to the network is a Poisson
process with rate

∑
r λ(r).

The preceding description applies to several scenarios. One is that a de-
terministic route r is an attribute of an item and all items that traverse
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a given route are in the same class. A second scenario is that each item
carries a permanent class label that determines its route. A third possibil-
ity is that deterministic routes are obtained by random routes as follows.
The items arrive to the network by a Poisson process with rate λ, and each
item independently selects or is assigned a route r with probability p(r). In
this case, λ(r) = p(r)λ. For instance, a route may be selected by Markov
probabilities pjk such that p0r1pr1r2 · · · pr�−1r� is the probability of the route
r = (r1, . . . , r�). Combinations of the preceding scenarios yield further possi-
bilities.

To represent the network by a multiclass network process, we assign a class
label to each item to denote its routing status at any time in the network.
Namely, if an item is traversing route r and is at stage s in this route, we call
it a rs-item (which of course resides at node rs). Let M denote the set of all
route-stage labels rs, including the outside node 0 as well. Then the possible
states of the network are given by the state space

S = {x = (xrs : rs ∈ M\{0})},

where xrs denotes the number of rs-items in the network at node rs.
Like a Jackson network, assume that whenever the network is in state x,

the time to the next departure of an rs-item from its current node location
rs is exponentially distributed with rate φrs(x), independent of everything
else. The departing item goes immediately to its next node rs+1 and becomes
an r(s + 1)-item. In case s = �, the r�+1 = 0, which means that the route
is complete and the item exits the network. It is informative to think of
the items as moving in the route-stage set M as well as among the nodes
0, 1, . . . ,m.

Let {X(t) : t ≥ 0} denote the stochastic process representing the state
of the network in the space S. Under the preceding assumptions, X(t) is a
CTMC with transition rates

q(x, y) =

⎧
⎪⎨

⎪⎩

λ(r) if y = x+ er1 for some r

φrs(x) if y = x− ers + er(s+1) for some rs ∈ M

0 otherwise.

Here ers is the unit vector with 1 in component rs and 0 elsewhere, and
e0 = 0. Note that xi =

∑
rs xrs1(rs = i) is the number of items at node i

Assume that each node is a processor-sharing node with service rates

φrs(x) =
xrs
xi

μi(xi),

where i = rs. Here μi(xi) > 0 is a load-dependent service rate for the xi items
at node i that is apportioned equally among the xrs rs-items at the node. The
CTMC X(t) is a multiclass Kelly network process [67] with processor-sharing
nodes [67].
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Theorem 81. The Kelly network process has an invariant measure

p(x) =
∏

rs∈M

λ(r)νrfrs(x), x ∈ S,

where νr =
∑�
s=1 xrs (the number of items on route r) and

frs(x) =
1

xrs!

m∏

i=1

xi!

μi(1) · · ·μi(xi)
.

Proof. The rates at which the items move in the set M are

λ0,r1 = λ(r), λrs,r(s+1) = 1, rs �= 0.

The traffic equations for these routing rates are simply w0 = 1 and, for each
route r,

wr1 = λ(r), wrs = wr(s−1), s = 2, . . . , �.

A solution to these equations is wrs = λ(r) for each rs �= 0. Then like an
open Jackson network with unlimited capacity, X(t) is irreducible and one
can show by substitution that p(x) satisfies the balance equations and hence
it is an invariant measure for the process.

We will now consider a network model in which each item carries an at-
tribute or class label from a finite set. An item’s class is a distinguishing
characteristic that determines its routing or service rates; the route-stage
class label in the preceding model is an example. The class label may be per-
manent, or temporary and subject to change as the item moves. Examples of
permanent labels are:
• The size of an item when it is a batch of subunits such as data packets,
orders to be filled, or capacity of a circuit.
• The type of part or tool in a manufacturing network.
• The origin or destination of a item.
• The general direction in which an item moves through the network (e.g.,
north to south).
Examples of temporary labels are:
• The status of a part as it is being produced.
• The number of nodes an item has visited.
• The number of times an item has been fed back to the node where it resides.
• The phase of service that an item is undergoing, when it has a phase-type
distribution.

Our focus will be on a network in which an item’s service rate at a node
is a compounding of two intensities — one intensity is a function of the
total number of items at the node, and the other intensity is a function of
the number of items in the same class as the one being served. The other
operating rules of the network are similar to those for Jackson networks.
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In particular, consider an open m-node network that processes discrete
items whose class at any instant is designated by an abstract label α, and
xαi denotes the number of α-items at node i. Here αi is in a set M of class
node pairs, including α0 for the outside node 0. Envision the items moving
within the set M. The evolution of the network is represented by a CTMC
{X(t) : t ≥ 0} with state space

S = {x = (xαi : αi ∈ M, i �= 0)}.

The number of items at node i is xi =
∑

α xαi.
Whenever the process is in a state x, a typical transition consists of an

α-item departing from node i and moving instantaneously into a node j and
entering there as a β-item. We denote this transition by x → x − eαi + eβj ,
where eαi denotes the unit vector with a 1 in component αi and 0 elsewhere,
and eα0 = 0. It is allowable that i = j or α = β, provided αi �= βj.

Assume the transition rates of the process X(t) are of the form

q(x, y) =

{
λαi,βjφαi(x) if y = x− eαi + eβj for some αi �= βj in M

0 otherwise.

The φαi(·) are service rate functions or intensities, and λαi,βj are routing
rates or intensities. We will consider service rates of the form φα0(x) = 1 and

φαi(x) = gαi(xi)hαi(xαj), i �= 0, (4.45)

where gαi(xi) is the node intensity and hαi(xαi) is the class intensity. The
routing rates λαj,βk may be reducible, but they do not contain transient
states.

It is clear that the structure for this multiclass network X(t) is basically
the same as that of a Jackson network. Consequently, the theory of Jack-
son networks also applies to this multiclass analogue —one just replaces the
single-node subscripts i with a double subscript αi. In particular, an invariant
measure for it is as follows.

Theorem 82. For the multiclass network process X(t) described above, an
invariant measure is

p(x) =
∏

αi∈M

wxαi

αi fαi(x), x ∈ S,

where fα0(x) = 1,

fαi(x) =

xi∏

k=1

gαi(k)
−1

xαi∏

k′=1

hαi(k
′)−1, i �= 0,

and wαi are positive numbers, with wα0 = 1, that satisfy the traffic equations
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wαi
∑

βj∈M

λαi,βj =
∑

βj∈M

wβjλβj,αi, αi ∈ M. (4.46)

Note that a Kelly network process (with rs replaced by αi) is a special case
of this multiclass network. Several other examples are discussed in [101, 111];
here is another one.

Example 83. The multiclass network described above is a BCMP network, in-
troduced by Baskett, Chandy, Muntz, and Palacios in [9], if each of its nodes
is one of the following four types.
• First-Come, First-Served node with service rates φαi(x) = μi(xi). Each
item (as in a Jackson network) has an exponential service time with the
same load-dependent service rate μi(xi).
• Processor-Sharing node with service rates φαi(x) = xαix

−1
i μαi(xi). The

μαi(xαi) is a customer-load-dependent service rate, which is apportioned
equally among the xαi α-items at the node.
• Last-Come, First-Served with Preemption node with service rates as in the
preceding PS case.
• Infinite-Server node with service rates φαi(x) = xαiμαi(xαi).

An invariant measure for this BCMP network is p(x) =
∏
αi∈M

wxαi

αi fαi(x)
as in Theorem 82, where fα0(x) = 1 and the other functions are

fαi(x) =
1

μi(1) · · ·μi(xi)
FCFS

fαi(x) =
1

xαi!

xi!

μαi(1) · · ·μαi(xi)
PS or LCFSPR

fαi(x) =
1

xαi!

1

μαi(1) · · ·μαi(xαi)
IS.

This completes our discussion of networks.

4.15 Poisson Transition Times

In the next five sections, we will discuss the behavior of ergodic CTMCs at
their transition times. This section presents criteria under which the times of
a certain type of transition of a CTMC form a Poisson process. For instance,
in a stationary birth-death process, the times at which deaths occur form a
Poisson process, and in a Jackson network process, the times of departures
from certain nodes form independent Poisson processes. Probabilities of a
CTMC at these special transition times that form a Poisson process will be
the focus of the following four sections.
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For this discussion,8 X = {X(t) : t ∈ R} will denote an ergodic CTMC
with transition rates qij and stationary distribution p. We consider X on the
entire time axis since some of the results here are more natural for stationary
processes. Its transition times are depicted by the point process

N(B) =
∑

n∈Z

1(Tn ∈ B), B ∈ B,

where the transition times Tn are labeled such that

. . . < T−2 < T−1 < T0 ≤ 0 < T1 < T2 . . . .

By Example 50, E[N(B)] =
∫
B
E[qX(t)] dt. This is finite for bounded B if∑

i qi <∞.
The point process N of all the transition times is usually not a Poisson

process, although it is for a Markov chain subordinated to a Poisson pro-
cess. However, an important feature of a CTMC is that certain types of its
transition times may be Poisson processes. The results that follow give nec-
essary and sufficient conditions for such subsets of transition times of N to
be Poisson processes.

We begin by defining what is a “special” transition of the CTMC X . It
is natural to describe these transitions in terms of its sample paths. Let D

denote the set of all functions x : R → S that are right-continuous with left-
hand limits, and are piece-wise constant with a finite number of jumps in any
finite time interval.9 Recall that a typical sample path of X is a function in
D. In other words, the process X is a D-valued random variable (or a random
element in D). Accordingly, we assume the σ-field associated with D is the
smallest σ-field D under which, for each t, the projection map x → x(t) is
measurable: this ensures that each X(t) is a well-defined S-valued random
variable.

We will also refer to

StX = {X(t+ u) : u ∈ R}, t ∈ R,

which is the process X with its time parameter shifted10 by the amount t.
The StX is what an observer sees of the path at time t. It is natural to
describe a certain “transition” of X at a time t when StX is in a set T in D.

Definition 84. Suppose T ∈ D is such that

8 We will now use the shorthand notation X for the CTMC instead of X(t) as in the
preceding sections.
9 In Chapter 5,D = D[0, 1] denotes the space of functions on [0, 1] that are right-continuous
with left-hand limits, without the restrictions that they be piece-wise constant or take only
a finite number of jumps in a finite interval.
10 The St is the time-shift operator on D. The shift notation S and the state-space notation
S are different.
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x(0−) �= x(0), x ∈ T . (4.47)

We say that a T -transition of X occurs at time t if StX ∈ T . The times at
which these T -transitions occur are depicted by the point process NT on R

defined by

NT (B) =
∑

t∈B
1(StX ∈ T ) =

∑

n∈Z

1(STnX ∈ T , Tn ∈ B), B ∈ B.

These quantities are finite on bounded time sets B, since X can only take a
finite number of jumps in such sets.

Note that if a T -transition occurs at time t (StX ∈ T ), then condition
(4.47) ensures that X(t−) �= X(t), which implies that t is a jump time of X .

Example 85. Suppose X(t) denotes the value of a stock at time t. Then the
times at which the value increases are T -transitions, where

T = {x ∈ D : x(0) > x(0−)}.

The times between these transitions are the times between increases in the
stock value. This type of transition only involves values of X before and after
the transition; the past and future are not involved.

An example of a transition time that involves more sample-path infor-
mation is a time at which the stock value jumps into an interval (a, b) and
thereafter the stock value reaches b before it reaches the value a. In this case,

T = {x ∈ D : x(0−) /∈ (a, b), x(0) ∈ (a, b), hb(x) < ha(x)},

where ha(x) = inf{t > 0 : x(t) ≤ a} is the time at which the path x hits
(−∞, a] starting from time 0, and hb(x) is defined similarly. The time between
such transitions is the time for the stock value X to reach [b,∞) given that
it does not reach (−∞, a].

We begin with some elementary observations about the point process NT
of T -transitions. Its mean measure, which follows by the generalized Lévy
formula in Theorem 52 and Remark 55, is

E[NT (B)] =

∫

B

E[αT (X(t))] dt, B ∈ B,

where

αT (i) =
∑

j �=i
qijP{X ∈ T |X−1 = i,X0 = j}, i ∈ S. (4.48)

The quantity αT (i) is the infinitesimal rate at which a T -transition is initiated
from state i. Clearly, NT (B) ≤ N(B), and so E[NT (B)] ≤ E[N(B)].
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The next result establishes that NT is stationary when X is. However, NT
may be stationary when X is not, which is the case in some examples below.

Proposition 86. If X is stationary, then the point process NT of T -transi-
tions of X is stationary with rate

λT = E[NT (0, 1]] =
∑

i

piαT (i),

which is finite when
∑
i piqi < ∞.

Proof. From Section 2.15, NT is stationary if, for any B1, . . . , Bm ∈ B and
n1, . . . , nm,

P{NT (B1 + t) = n1, . . . , NT (Bm + t) = nm} is the same for each t. (4.49)

It suffices for the Bk to be bounded sets, since the distribution of NT is
determined by its finite-dimensional distributions on bounded sets. For a
bounded B, using the change-of-variable v = u− t,

NT (B + t) =
∑

u∈B+t

1(SuX ∈ T ) =
∑

v∈B
1(Sv(StX) ∈ T ).

Then the assumption StX
d
= X implies (4.49) for m = 1. A similar argument

justifies (4.49) for any m, and hence NT is stationary.

Our criteria for Poisson T -transitions involve the following concepts.

Definition 87. A T -transition has a uniform initiation rate λT if

αT (i) = λT , for each i ∈ S,

where αT (i) =
∑

j �=i qijP{X ∈ T |X−1 = i,X0 = j} is the infinitesimal
initiation rate of a T -transition from state i.

Definition 88. The future of NT is independent of the past of X if, for
each t ∈ R, the future quantities {NT (B) : B ⊂ (t,∞)} are independent of
{X(s) : s ≤ t}.

Here is our first criterion for NT to be Poisson.

Theorem 89. The following statements are equivalent.
(a) NT is a Poisson process with rate λT and the future of NT is independent
of the past of X.
(b) T has a uniform initiation rate λT .

Proof. First, suppose (b) is true. We will prove (a) for the case in which the
sojourn rates qi are bounded. A standard proof in [101] for unbounded rates
involves a martingale characterization of Poisson processes, which we do not
cover.
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By the uniformization principle in Proposition 25, the CTMC X is equal
in distribution to a CTMC X̂ = {X̂(t) : t ∈ R} — a subordinated Markov
chain — with transition probabilities

p̂ij = qij/λ, p̂ii = 1− qi/λ,

where λ = supi qi. The point process N̂ of its transition times is a Poisson
process with rate λ independent of the embedded states X̂n, n ∈ Z. Let N̂T
denote the point process of T -transitions for X̂.

Since X and X̂ are equal in distribution, any deterministic function of one
of them is equal in distribution to the function of the other one. In particular,
NT and N̂T are equal in distribution. Then to prove (a), it suffices to prove
(a) for N̂T and X̂.

To this end, note that by the independence of the Markov chain X̂n and
the Poisson process N̂ , it follows that N̂T is a thinning of N̂ , where the
probability of a point of N̂ being retained is

P{ST̄nX̂ ∈ T } =
∑

i

P{X̂n−1 = i}
∑

j �=i
p̂ijP{X̂ ∈ T |X−1 = i,X0 = j}

=
∑

i

P{X̂n−1 = i}αT (i)/λ = λT /λ.

Here we use p̂ij = qij/λ and the uniform initiation rate assumption. This
assumption also implies that a T -transition can be triggered from any state.
Thus by the Poisson thinning principle (Example 40 in Chapter 3), it follows
that N̂T is a Poisson process with rate λT .

In addition, note that since the Poisson process N̂ is independent of the
Markov chain X̂n, and N̂ has independent increments, it follows that the
future of N̂ is independent of the past of X̂ . The preceding arguments prove
that X̂ satisfies (a), which implies that X satisfies (a).

To prove the converse, suppose (a) is true. Then, for any i and t ≥ 0,

λT t = E[NT (0, t]] = E[NT (0, t]|X(0) = i]

=

∫ t

0

E[αT (X(s))|X(0) = i] ds.

The integrand is continuous in s since X is a CTMC. Taking the derivative
of this equation with respect to t yields

λT = E[αT (X(t))|X(0) = i], t ≥ 0.

Then, using the first jump time T1 = inf{t > 0 : X(t) �= X(0)}, we can write

λT = αT (i)P{T1 > t|X(0) = i}+ E[αT (X(t))1(T1 ≤ t)|X(0) = i].

Letting t ↓ 0 proves (b).



296 4 Continuous-Time Markov Chains

Example 90. Births in a Birth-Death Process. Suppose X denotes the popu-
lation size in an ergodic birth-death process with birth and death rates λi
and μi. Its transition rates are qij = λi1(j = i+ 1) + μi1(j = i− 1).

Consider the point process NT of the times at which births occur, where
T = {x ∈ D : x(0) = x(0−) + 1}. The initiation rate of births is clearly

αT (i) = qi,i+1 = λi, for each i ∈ S.

Then Theorem 89 yields the result that λi = λ, for each i, is a necessary and
sufficient condition for the birth process NT to be Poisson with rate λ and
future births are independent of the past of the process X . Note that this
conclusion is true forM/M/s queueing processes. This proves that the arrival
process is Poisson with rate λ, which is usually a preliminary assumption in
applications.

The Poisson criterion for T -transition times in the preceding result applies
to non-stationary as well as stationary CTMCs. Our next criterion for Pois-
son T -transitions is only for stationary CTMCs. This involves considering a
CTMC in reverse time and applying Theorem 89.

Recall that when X is stationary with distribution p, its time-reversal,
according to Proposition 63, is a stationary CTMC X̄ = {X̄(t) : t ∈ R} with
transition rates q̄ij = p−1

i pjqji. Note that the time reversal of T is the set T̄
of all paths x̄(t) in D such that x̄(t) = x(−t) at each continuity point of x,
for x ∈ T . Then the initiation rate of T̄ -transitions of X̄ is

ᾱT̄ (i) =
∑

j �=i
q̄ijP{X̄ ∈ T̄ |X̄−1 = i, X̄0 = j} (4.50)

= p−1
i

∑

j �=i
pjqjiP{X ∈ T |X−1 = j,X0 = i}.

We say that the time-reversal of T has a uniform initiation rate λT if

ᾱT̄ (i) = λT , for each i ∈ S.

Theorem 91. If X is stationary, the following statements are equivalent.
(a) NT is a Poisson process with rate λT and the future of X is independent
of the past of NT .
(b) The time-reversal of T has a uniform initiation rate λT .

Proof. Because of the Markov property, a T -transition of X has the same
probability as a T̄ -transition of X̄ . Furthermore, NT is equal in distribution
to the point process N̄T̄ of T̄ -transitions of X̄. Now, by Theorem 89, (b) is
equivalent to the statement that N̄T̄ is a Poisson process with rate λT and
the future of N̄T̄ is independent of the past of X̄, which is equivalent to (a).
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Example 92. Deaths in a Birth-Death Process. Suppose that X denotes the
birth-death process in Example 90, but now assume it is stationary. Consider
the point process NT of the times at which deaths occur, which means that
T = {x ∈ D : x(0) = x(0−) − 1}. Note that the rate at which deaths are
initiated from state i is

αT (i) =
∑

j �=i
qij1(j = i− 1) = μi1(i ≥ 1).

This is not the same for each i, even if the μi are all equal. Therefore Theo-
rem 89 does not apply to establish that NT is a Poisson process.

To see if Theorem 91 is applicable, we have to determine the initiation
rate of the reverse-time of death transitions. We know from Example 60 that
the stationary distribution of X(t) is pi = cλ0 · · ·λi−1/(μ1 · · ·μi). Then the
initiation rate (4.50) of the reverse-time of death transitions (which are birth
transitions for the time reversal of X) is

p−1
i

∑

j �=i
pjqji1(j = i+ 1) = p−1

i pi+1q(i+1),i = λi, for each i ∈ S.

Thus, by Theorem 91, λi = λ, for each i, is a necessary and sufficient condition
for NT to be a Poisson process with rate λ and the past departures are
independent of future births or deaths.

Of course, if the birth rate is the constant λ, then the death rate should
equal this birth rate since X is stationary. However, just because the point
process of birth times is Poisson, it is not immediately clear that the process
of death-times would be Poisson; but now we know it is.

A special case of this example says that the times of departures from a
stationary M/M/s queue is a Poisson process with the same rate as the
arrivals.

For multi-dimensional CTMCs such as Jackson network processes, one
may be interested in whether several point processes of transition times are
Poisson. We now show that the preceding criteria for Poisson T -transition
times extend to multiple transition processes. The key idea is to formulate
multiple processes as a partition of a Poisson process as in Section 3.10.

Theorem 93. For disjoint transition sets T1, . . . , T�, the following statements
are equivalent.
(a) The point processes NT1 , . . . , NT�

are independent Poisson processes with
respective rates λT1 , . . . , λT�

, and their futures are independent of the past of
X.
(b) Each Tk has a uniform initiation rate λTk

, for 1 ≤ k ≤ �.

Proof. Suppose (b) is satisfied. Then the initiation rate of T = ∪�k=1Tk is
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αT (i) =

�∑

k=1

αTk
(i) = λT , i ∈ S,

where λT =
∑�

k=1 λTk
. Then by Theorem 89, NT is a Poisson process with

rate λT and the future of NT is independent of the past of X .
Now, each of the T -transitions of X is independently triggered by a Tk-

transition (1 ≤ k ≤ �) (where Tk ⊆ T ) with probability

P{STnX ∈ Tk|STnX ∈ T }
= P{X ∈ Tk}/P{X ∈ T } = λTk

/λT .

That is, the processes NT1 , . . . , NT�
form a partition of NT with the preceding

probabilities. Therefore, by Corollary 41 in Chapter 3, these processes are
independent Poisson processes with respective rates λT1 , . . . , λT�

, and, being
parts of NT , their futures are independent of the past of X .

If (a) holds, then (b) follows by Theorem 89.

Here is a companion result for multiple Poisson processes for a stationary
CTMC; it follows by an obvious extension of the proof of Theorem 91.

Theorem 94. If the CTMC X is stationary, then for disjoint transition sets
T1, . . . , T�, the following statements are equivalent.
(a) NT1 , . . . , NT�

are independent Poisson processes with respective rates
λT1 , . . . , λT�

and their pasts are independent of the future of X.
(b) The time-reversal T̄k of Tk has a uniform initiation rate λ̄T̄k

, 1 ≤ k ≤ �.

Example 95. JacksonNetworks. Suppose thatX is an ergodic, infinite-capacity
open Jackson network process with routing rates λij and service rates φi(xi),
1 ≤ i ≤ m. Let I ⊂ {1, . . . ,m} denote the set of nodes at which arrivals can
enter the network from outside. Consider the point process

N0i(B) =
∑

t∈B
1(X(t) = X(t−) + ei), B ∈ B, i ∈ I,

of arrival times of items from outside the network into node i. The processes
N0i, i ∈ I, are independent Poisson processes with rates λ0i, i ∈ I; and their
futures are independent of the past of X . This follows by Theorem 93 since,
for each i ∈ I,

∑

y �=x
q(x, y)1(y = x+ ei) = λ0i, x ∈ S.

Now suppose X is stationary. Consider the point process Nj0 of departure
times (to outside) from node j in the set of nodes J that have departures.
Then Nj0, j ∈ J , are independent Poisson processes with rates wjλj0, j ∈ J ,
and their pasts are independent of the future of X . This follows by Theo-
rem 94 since, for each j ∈ J ,
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p(x)−1
∑

y �=x
p(y)q(y, x)1(y = x+ ej) = p(x)−1p(x+ ej)q(x + ej, x)

= wiλj0, x ∈ S.

In some cases, the point process of times at which items move from one node
to another is a Poisson processes, provided that a unit may make this move
only once during its stay in the network; this is true of acyclic networks as
in Exercise 30.

4.16 Palm Probabilities

This section continues the study of T -transitions by characterizing the past
and future of a CTMC at such a transition. The issue is how to evaluate any
probability for a CTMC conditioned that a T -transition occurs. Since the oc-
currence of a T -transition at any time has probability 0, we cannot use con-
ventional conditional probabilities. Instead, we formulate these conditional
probabilities as Palm probabilities. Further properties of Palm probabilities
are described in the next three sections.

As an example of what lies ahead, consider an M/M/1 queueing process
in equilibrium. Items arrive according to a Poisson process, and so the prob-
ability of an arrival at any time is 0. However, when an item does arrive to
the system, it is of interest to know the distribution of the number of items it
encounters in the system and the distribution of the arrival’s sojourn time in
the system. Viewing the arrival times as T -transitions, we will prove, using
Palm probabilities, that the distribution of the number of items an arrival
encounters is the stationary distribution of the process, and that the arrival’s
sojourn time has an exponential distribution.

For the following discussion, X = {X(t) : t ∈ R} will denote an er-
godic CTMC with transition rates qij and stationary distribution p. Unless
specified otherwise, we will assume that X is stationary. Then as noted in
Proposition 86, the rate at which a T -transition is initiated from state i is

αT (i) =
∑

j �=i
qijP{X ∈ T |X−1 = i,X0 = j},

and the point process NT of T -transitions of X is stationary with rate

λT = E[NT (0, 1]] =
∑

i

piαT (i).

The aim is to formulate conditional probabilities given that a T -transition
occurs. Recall that a T -transition of X occurs at time t if StX ∈ T . Given
that this event occurs, we want to find the conditional distribution of X , or
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NT , or other functions of X . These probabilities are not standard conditional
probabilities, since the probability that a transition occurs at any time is 0
(recall Remark 20). However, we can formulate these conditional probabilities
as Palm probabilities. A Palm probability is defined in more general contexts
as a Radon-Nikodým derivative, but for a CTMC, the definition reduces
simply to a ratio of rates.

Definition 96. The Palm probability of a stationary CTMC X conditioned
that a T -transition occurs at any time t is the probability measure PT defined,
for any event A generated11 by the process X , as

PT (A) =
1

λT

∑

i

pi
∑

j �=i
qijP{A, X ∈ T |X−1 = i,X0 = j}.

This probability for a transition at time t is independent of t, and so it is
often associated with a transition at time 0.

The meaning of a Palm probability as a limit of standard conditional prob-
abilities, like that of a Radon-Nykodym derivative, is given below in Proposi-
tion 97. Before getting into examples, we will comment on the definition and
present a few properties of Palm probabilities.

The Palm probability PT is defined as a function of the underlying prob-
ability P , and the two probabilities are different. In particular, while the
P -probability of a T -transition is 0, the PT -probability is 1 because

PT {NT ({0}) = 1} = PT {X ∈ T } = 1.

This property is consistent with saying that PT is a conditional probability
“given that a T -transition occurs” at time 0.

As another formulation, note that any event A generated byX is a function
of the sample paths of X , and so PT (A) = PT {X ∈ T ′

A}, where

T ′
A = {x ∈ T : A occurs for the path x}.

Consequently,

PT (A) =
λT ′

A

λT
=
E[NT ′

A
(a, b]]

E[NT (a, b]]
, a < b. (4.51)

This ratio is the expected number of T -transitions at which a T ′
A-event occurs

in a fixed time interval divided by the expected number of all T -transitions
in the interval (or the portion of T -transitions at which a T ′

A-event occurs).
The second ratio is due to E[NT (a, b]] = (b − a)λT since NT is stationary.

Another useful expression is, for any T ′ ⊂ T ,

11 The A is in the σ-field of events generated by the random variables {X(t) : t ∈ R}.
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PT {X ∈ T ′} =
1

(b− a)λT
E
[∑

n∈Z

1(SτnX ∈ T ′, τn ∈ (a, b])
]
, (4.52)

where · · · < τ−1 < τ0 ≤ 0 < τ1 < · · · are the occurrence times of the T -
transitions.

A Palm probability measure, like any probability measure, has an as-
sociated expectation, conditional probabilities, etc. For instance, for any
g : D → R, the function g(X) of the CTMC X under the probability PT
has the expectation

ET [g(X)] =
1

λT

∑

i

pi
∑

j �=i
qijE[g(X)|X−1 = i,X0 = j],

provided the double sum is finite for |g| in place of g.
Now, let us see how a typical Palm probability we are studying is related to

a standard conditional probability. The following result shows that the Palm
probability is a limit of conditional probabilities. The conditioning says that
there is at least one T -transition in (t, 0] and a T -transition is guaranteed
to occur at time 0 as t ↑ 0. This limit representation is analogous to that
for standard conditional probabilities conditioned on a continuous random
variable.

Proposition 97. For any event A generated by X,

PT (A) = lim
t↑0

P (A|X ∈ T , X(0) �= X(t)).

Proof. Letting T ′
A ⊂ T be as in (4.51),

P (A|X ∈ T , X(0) �= X(t)) =
P{X ∈ T ′

A, X(0) �= X(t)}
P{X ∈ T , X(0) �= X(t)} .

Conditioning on X(t), X(0) and using the stationarity of X along with limits
of transition probabilities in Theorem 18, we have, for t < 0,

(−t)−1P{X ∈ T , X(0) �= X(t)}
=
∑

i

pi
∑

j �=i
(−t)−1pij(−t)P{X ∈ T |X(t) = i, X(0) = j}

→ λT as t ↑ 0.

This limit statement also holds with T replaced by T ′
A. Combining these

observations yields

lim
t↑0

P (A|X ∈ T , X(0) �= X(t)) =
λT ′

A

λT
= PT (A).
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Palm probabilities for stationary processes and time-dependent Palm prob-
abilities for any non-stationary process are discussed in [60, 100]. Our study
is only an introduction that covers Palm probabilities for a CTMC viewed at
its transition times. We will not cover extensions (requiring more technical
material) that consider other random variables associated with the CTMC
or times that are not transition times. For instance, in analyzing an M/M/s
system, one may be interested in the times at which a service time exceeds a
certain high level, and the state of the system at those times. Or if a random
reward is received for processing each item, one may be interested in times
at which this reward is 0 due to a defective service.

The theory of Palm probabilities also applies to any stochastic process
(that need not be stationary or a CTMC), where one considers conditioning
on a point occurring at a time t and the Palm probability is a function of
t. The definition of time-dependent Palm probabilities for (non-stationary)
CTMCs is as follows. Here, we denote the expected infinitesimal rate at which
an T -transition is initiated at time t by

λT (t) = E[αT (X(t))]

=
∑

i

P{X(t) = i}
∑

j �=i
qijP{X ∈ T |X−1 = i,X0 = j}.

Definition 98. The time-dependent Palm probability of a CTMC X condi-
tioned that a T -transition occurs at time t ∈ R is the probability measure
P tT defined, for any event A generated by X , by

P tT (A) =
λT t

A
(t)

λT (t)
,

where T t
A = {x ∈ T : the event A occurs for the path Stx}.

It is natural to consider events based on StX (what an observer sees of X
from location t). So in particular,

P tT {StX ∈ T ′} =
λT ′(t)

λT (t)
, T ′ ⊂ T .

Is this definition consistent with Definition 96 for a stationary X? It is
because if X is stationary, then P{X(t) = i} = pi, and so P tT = PT , t ∈ R.
Another consistency condition is that for large t the time-dependent Palm
probability, for any non-stationary ergodic CTMC X , is approximately equal
to the stationary Palm probability.

Remark 99. Time-dependent Palm probabilities defined above converge to
stationary Palm probabilities in that

P tT {StX ∈ ·} w→ PT {X ∈ ·} as t→ ∞.

This follows from the definition of P tT since P{X(t) = i} → pi, i ∈ S.
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The preceding remark also holds for more general time-dependent Palm
probabilities of a stochastic process X that is asymptotically stationary
(which is a property of an ergodic CTMC; see Exercise 22).

Many properties of Palm probabilities for stationary properties that do
not require the process X to be in equilibrium (like those in the next section)
extend to time-dependent Palm probabilities. In these cases, probabilities
such as P tT {St ∈ T ′} are used in place of PT {X ∈ T ′}.

4.17 PASTA at Poisson Transitions

Using the material in the last two sections, we will now explore Palm proba-
bilities of the stationary CTMC X at its Poisson transition times. At such a
transition, the initiation rate of transitions is independent of the state, and
so it appears that the Palm probability of the state of the chain should be
the usual probability. For instance, in a stationaryM/M/s system at Poisson
arrival times, the distribution of the number of items an arrival encounters
should be the same as the stationary distribution. This property is an exam-
ple of a general theorem we now present.

The main result is as follows. It gives necessary and sufficient conditions
under which the Palm probability of the state of the stationary CTMC X
before (or after) a T -transition is equal to the ordinary probability of being
in that state. These equalities are in the same spirit as the classical PASTA12

property that “Poisson arrivals see time averages”.

Proposition 100. (PASTA Before a T -Transition). A necessary and suffi-
cient condition for

PT {X(0−) = i} = pi, i ∈ S,

is that T has a uniform initiation rate.
(PASTA After a T -Transition). A necessary and sufficient condition for

PT {X(0) = i} = pi, i ∈ S,

is that the reverse-time T has a uniform initiation rate.

This result coupled with Theorems 89 and 91 imply that if X satisfies
either one of these PASTA properties, then NT is a Poisson process.

Proof. Recall that T has a uniform initiation rate if αT (i) is the same for
each i. By the definition of PT ,

12 Since PASTA is a mind-arousing acronym associated with a popular comfort food, we
will also use it here to describe what one might call Palm “actions” see time averages.
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PT {X(0−) = i} =
piαT (i)

∑
k pkαT (k)

.

This ratio equals pi if and only if αT (i) =
∑
k pkα(k), for each i, which

is equivalent to T having a uniform initiation rate. This proves the first
assertion.

The second assertion follows by a similar argument since by an interchange
of sums

PT {X(0) = i} =

∑
j pjqjiP{X ∈ T |X−1 = j,X0 = i})

∑
� p�

∑
k q�kP{X ∈ T |X−1 = �,X0 = k}

=
piᾱT (i)

∑
k pkᾱT (k)

,

where ᾱT (i) = p−1
i

∑
j pjqjiP{X ∈ T |X−1 = j,X0 = i}.

Here is a classic illustration of PASTA that leads to the characterization of
sojourn times in queues.

Example 101. Waits in an M/M/s system. SupposeX(t) denotes the number
of items in an M/M/s system at time t, where s < ∞. Assume this CTMC is
stationary with distribution p; we know its stationary probabilities for i ≥ s
are pi = ps(λ/sμ)

i−s, where λ and μ are the arrival and service rates. We
saw in Examples 90 and 92 that the initiation rate of arrivals has a uniform
rate λ, and the time-reversal of departures also has a uniform initiation rate
of λ. Hence the arrival and departure processes are both Poisson processes
with rate λ.

Furthermore, because of these two uniform initiation rates, X satisfies the
before and after PASTA properties in Proposition 100, namely

PT {X(0−) = i} = pi = PT {X(0) = i}.

We will now explore other features of the queueing process at arrivals.
First, consider the waiting time W in the queue (prior to its service) of an
item that arrives at time 0. This is also the time W = min{t ≥ 0 : X(t) < s}
until a server is available at or after time 0. Viewing arrival times as T -
transitions with λT =

∑
i piqi,i+1 = λ and using Definition 96,

PT {W > 0} = PT {X(0) ≥ s}

=
1

λ

∞∑

i=s

piqi,i+1 = ps/(1− λ/sμ).

As an aside, note that the preceding probability is

PT {X(0) ≥ s} = P{X(0) ≥ s, A},
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where A is the event that following time 0 an arrival occurs before a service
completion. This is another illustration of the difference between PT and P .

Now, the rest of the distribution of W is

PT {W > t} =
1

λ

∞∑

i=s

piqi,i+1Pi+1{W > t}

= ps

∞∑

i=s

(λ/sμ)i−sP{M(t) ≤ i− s}.

Here M is a Poisson process with rate sμ representing the departure process
from the s busy servers. Then M(t) is the number of items that can enter
service by time t, and soM(t) ≤ i−s is the event that no more than the i−s
items the arrival encountered waiting in the queue at time 0 have entered
service by time t. Substituting the Poisson probabilities in the last display,
we obtain

PT {W > t} = PT {W > 0}P{W ∗ > t},

where W ∗ has an exponential distribution with rate sμ− λ.
Another way of expressing this result is

PT {W ≤ t|W > 0} = P{W ∗ ≤ t},

so the exponential time W ∗ is the duration of an arrival’s wait in the queue
given that there is a wait. Exercise 19 explores a slightly different “virtual”
waiting time process without Palm probabilities.

Next, note that the sojourn time in the system of an arrival at time 0 is
Ŵ = W + ξ, where ξ is a service time that is independent of W . Using this
independence, we have

PT {W + ξ ≤ t|W > 0} = P{W ∗ + ξ ≤ t},

where W ∗ and ξ are independent waiting and service times as above. There-
fore,

PT {Ŵ ≤ t} = PT {W = 0}P{ξ ≤ t}
+PT {W > 0}P{W ∗ + ξ ≤ t}.

Also,
ET [Ŵ ] = ET [ξ +W ] = 1/μ+ sμps/(sμ− λ)2.

For the M/M/1 system, the preceding shows that PT {W > 0} = λ/μ,
and Exercise 43 shows that the distribution of Ŵ reduces to an exponential
distribution with rate μ− λ.
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Let us see an example of when PASTA does not hold.

Example 102. Times of Jumps From One Set to Another. Consider the times
at which the CTMC X jumps from A to B, which are two disjoint, nonempty
subsets of S. These are T -transition times where

T = {x ∈ D : x(0−) ∈ A, x(0) ∈ B}.

Also, when A = Bc, these transition times are hitting times of B.
By the comments at the beginning of this chapter, the point process NT

of these transition times is stationary; the initiation rate of jumps from A to
B is αT (i) =

∑
j∈B qij1(i ∈ A), and and the rate of NT is

λT = E[NT (0, 1]] =
∑

i∈A
pi
∑

j∈B
qij .

Now, these transition times from A to B do not enjoy the PASTA properties
in Proposition 100. Indeed, a T -transition does not have a uniform initiation
rate since αT (i) = 0 on Ac and it is positive elsewhere. Similarly, the time-
reversal of T has the initiation rate

ᾱT̄ (i) = p−1
i

∑

j∈A
pjqji1(i ∈ B), i ∈ S,

and this is 0 on Bc and it is positive elsewhere.

4.18 Relating Palm and Ordinary Probabilities

This section presents formulas that relate expectations and probabilities un-
der PT to their counterparts under P , and vice versa. These basic formulas
are often used when studying stationary processes that are functions of a
stationary CTMC. Examples are given in the next section.

We begin by reviewing a few more properties of stationary processes that
need not be Markov processes. Suppose that X = {X(t) : t ∈ R} is a station-
ary process on a space S with sample paths in D. The following results also
apply to a stationary process X ′ with the time set R+, because there exists

a stationary process X on R such that X
d
= X ′ on R+.

Definition 103. A sample-path event A for the stationary process X is shift
invariant if

{X ∈ A} = {StX ∈ A}, t ∈ R.

The process X is ergodic if P{X ∈ A} = 0 or 1 for each shift invariant event.

A stationary “ergodic CTMC” is ergodic in this sense (so our earlier use
of ergodic is consistent with this one). This and other stationarity properties,
including the ergodic theorem below, are proved in [37, 61].
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The next result describes a large class of functions of a stationary process
X that are also stationary processes. As an elementary example, if Y (t) =
f(X(t)), where f : S → S′, then Y is stationary. In contrast, the Markov
property does not have a similar heredity property — if X is a Markov
processes, then Y is typically not a Markov process.

Proposition 104. Associated with the stationary process X with sample
paths in D, suppose

Y (t) = f(StX), t ∈ R,

where f is a function on D to some space S′, which need not be countable.
Then Y is stationary. If, in addition, X is ergodic, then so is Y .

Proof. The process Y is stationary, since by its definition and the stationarity
of X ,

StY = {Y (u+ t) : u ∈ R} = {f(Su(StX)) : u ∈ R}
d
= {f(SuX) : u ∈ R} = Y.

Next, assume X is ergodic. To prove Y is ergodic, it suffices to show that,
for any shift-invariant event A for Y , there is a corresponding shift-invariant
event for X . In this case, the corresponding event is

B = {x ∈ D : {f(Sux) : u ∈ R} ∈ A},

because clearly {StY ∈ A} = {StX ∈ B} for each t.

Here is an important ergodic theorem for stationary processes.

Theorem 105. Suppose the stationary process X is real-valued with sample
paths in D that are Lebesgue-integrable on bounded sets. If X is ergodic and
E|X(0)| is finite, then

lim
t→∞

t−1

∫ t

0

X(s) ds = E[X(0)] a.s.

The preceding properties of stationary processes also apply to discrete-
time processes — just replace the parameter t ∈ R by an integer n ∈ Z. For
instance, Theorem 105 would read: If {Xn : n ∈ Z} is a real-valued stationary
ergodic process with E|X(0)| < ∞, then

lim
n→∞

n−1
n∑

m=1

Xm = E[X0] a.s. (4.53)

This is an extension of the classical SLLN for i.i.d. sequences in Chapter 2.
We will now return to studying the stationary CTMC X and its Palm

probability measure PT for the point process NT of T -transition times
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. . . < τ−1 < τ0 ≤ 0 < τ1 < . . .

Applications often involve relating means and probabilities under PT to those
under P , or vice versa. The next three results are key tools for these relations.

Theorem 106. (Campbell Formula)13 For f : R× D → R,

E
[ ∫

R

f(t, StX)NT (dt)
]
= λT

∫

R

ET [f(t,X)] dt,

provided the expressions are finite with |f | in place of f .

Proof. We will apply the extended Lévy formula in Theorem 52 to evaluate
the expectation of ∫

R

f(t, StX)NT (dt) =
∑

n∈Z

Vn,

where Vn = f(Tn, S
TnX)1(STnX ∈ T ). Using the Markov property,

E[Vn|Tn = t,Xn−1 = i,Xn = j]

= E
[
f(t, STnX)1(STnX ∈ T )|Tn = t,Xn−1 = i,Xn = j

]

= E
[
f(t,X)1(X ∈ T )|X−1 = i,X0 = j

]
.

Then by Theorem 52 and the definition of PT ,

E
[∑

n∈Z

Vn

]
=

∫

R

∑

i

pi
∑

j �=i
qijE

[
f(t,X)1(X ∈ T )|X−1 = i,X0 = j

]
dt

= λT

∫

R

ET [f(t,X)]dt.

This proves the assertion.

A variety of stationary processes associated with X are as follows.

Proposition 107. For f : R× D → R, the process

Y (t) =

∫

R

f(t− u, SuX)NT (du), t ∈ R,

is stationary and ergodic, and

13 An analogous Campbell formula for a more general process Y and a Palm probability
PN for a point process N on R (that need not be stationary) with mean measure μ(B) =
E[N(B)], is

E
[∫

R

f(t, Y (t))N(dt)
]
=

∫

R

EN [f(t, Y (0))]μ(dt).
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E[Y (0)] = λT ET
[ ∫

R

f(u,X) du
]
,

provided this integral is finite with |f | in place of f .

Proof. Since there are a countable number of T -transitions of X , using the
change-of-variable v = u− t, we can write

Y (t) =
∑

u∈R

f(t− u, SuX)1(SuX ∈ T )

=
∑

v∈R

f(−v, Sv(StX))1(Sv(StX) ∈ T ).

This has the form Y (t) = φ(StX), where φ : D → R, and so Y is stationary
and ergodic by Proposition 104. Also, using Theorem 106 and v = −u,

E[Y (0)] = E
[ ∫

R

f(−u, SuX)NT (du)
]

= λT

∫

R

ET [f(−u,X)] du = λT

∫

R

ET [f(v,X)] dv.

The following is an explicit formula for P in terms of PT .

Corollary 108. (Inversion Formula) For g : D → R,

E[g(X)] = λT ET
[ ∫ τ1

0

g(StX) dt
]
, (4.54)

provided these expressions are finite with |g| in place of g. Hence

P{X ∈ A} = λT

∫ ∞

0

PT {StX ∈ A, τ1 ≥ t} dt.

Proof. We can write

g(StX) = g(StX)
∑

n∈Z

1(τn ≤ t < τn+1)

=

∫

R

g(St−u(SuX))1(t− u ∈ [0, h(SuX))NT (du),

where h(SuX) = inf{v > 0 : Sv(SuX) ∈ T }. Then Proposition 107 yields

E[g(X)] = λT ET
[ ∫

R

g(SuX)1(u ∈ [0, h(X)) du
]
.

This equality is the same as (4.54), since h(X) = τ1, when τ0 = 0. The second
assertion is a special case of (4.54).
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4.19 Stationarity Under Palm Probabilities

As in the preceding sections, suppose that X is a stationary CTMC and
. . . < τ−1 < τ0 ≤ 0 < τ1 < . . . are the occurrence times of T -transitions of X .
Consider the sequence {τn+1 − τn : n ∈ Z} of times between T -transitions.
This sequence is not stationary under P , but it is stationary under the Palm
probability PT . This property is an example of the main result here that the
sequence of sample paths of X observed at T -transition times is stationary
and ergodic under the Palm probability PT . Consequently, several families
of stationary processes associated with the CTMC satisfy a SLLN under PT .
We apply the main result to characterize sequences of sojourn and travel
times for CTMCs.

Since the CTMC X is stationary in the time parameter t, it might suggest
that the sequence {X(τn) : n ∈ Z} of X-values at the T -transitions should be
stationary in the parameter n. This sequence is not stationary under P , but
it is under PT . The justification for this statement comes from the following
important stationarity property for the sequence of sample paths of X at
transition times defined by

Yn = SτnX = {X(t+ τn) : t ∈ R}, n ∈ Z.

Theorem 109. The sequence {Yn : n ∈ Z} with values in D is stationary
and ergodic under the Palm probability PT .

Proof. The sequence Y = {Yn : n ∈ Z} is stationary if and only if

PT {SY ∈ C} = PT {Y ∈ C}, C ⊂ S∞,

where SY = {Yn+1 : n ∈ Z} is Y shifted by one time unit. To prove this
equality, consider

τ(x) = inf{t > 0 : Stx ∈ T }, x ∈ T

which is the time between the T -transition of x at time 0 and the first one
after 0 (a T -transition of x occurs at time 0 since S0x = x ∈ T ). Next, define
the transformation θ from T to T by θx = Sτ(x)x, for x ∈ T . Finally, define
the iterates θn by

θnx = θ(θn−1x), n ≥ 1.

Then it follows by induction, using Sτn+1X = Sτn+1−τn(SτnX), that

Sτnx = θnx, x ∈ T , n ≥ 0.

With this notation and (4.52), we have,14 for t ≥ 0,

14 Here we use the shorthand {SτnYk} = {SτnYk : n ∈ Z}, and represent other sequences
similarly.
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PT {Y ∈ C} =
1

tλT
E
[NT (t)∑

n=1

1({SτnY } ∈ C)
]

=
1

tλT
E
[NT (t)∑

n=1

1({θnX} ∈ C)
]
.

By a similar argument followed by the use of the preceding, we have

PT {SY ∈ C} =
1

tλT
E
[NT (t)∑

n=1

1({θn+1X} ∈ C)
]

= PT {Y ∈ C}+ 1

tλT
P{{θNT (t)+1X} ∈ C)}

− 1

tλT
P{{θX} ∈ C,NT (t) ≥ 1}.

The NT (t) ≥ 1 in the last statement is because it is implicit in the first
summation. Letting t→ ∞ proves PT {SY ∈ C} = PT {Y ∈ C}.

Since the CTMC X is ergodic, one can show, as in the proof of Proposition
104, that Y is ergodic.

The preceding result yields several important SLLNs. Since f(Yn) is sta-
tionary and ergodic, by a discrete-time version of Proposition 104, the fol-
lowing result is a consequence of the ergodic theorem in (4.53).

Corollary 110. (SLLN Under Palm Probabilities) For the stationary, er-
godic process Yn = SτnX in Theorem 109 and f : D → R,

lim
n→∞

n−1
n∑

m=1

f(Ym) = ET [f(Y1)] a.s. under PT , (4.55)

provided the last expectation is finite.

Example 111. Special cases of the preceding convergence a.s. under PT are

n−1
n∑

m=1

g(X(τm)) → ET [g(X(τ1))], n−1
n∑

m=1

(τm − τm−1) → ET [τ1],

for g : S → � and ET [|g(X(τ1))|] <∞. Here X(τn) is stationary and ergodic
by Theorem 109 since g(X(τn)) = f(Yn), where f(x) = g(x(0)). A similar
statement is true for the sequence τn − τn−1.

Theorem 109 provides the following framework for characterizing se-
quences of sojourn and travel times; the general mean-value formula (4.56)
is analogous to the Little law for queues in Theorem 57 in Chapter 2.
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Proposition 112. (Sojourn and Travel Times) Associated with T -transition
times τn of X, assume that Wn = h(SτnX) is a waiting time for a certain
event to occur, where h : D → R+. Then under PT the waiting time sequence
{Wn : n ∈ Z} is stationary and ergodic, and

lim
n→∞

n−1
n∑

m=1

Wm = ET [W0] a.s. under PT .

In addition, this limit is given by

E[Y (0)] = λT ET [W0], (4.56)

where Y (t) =
∑

n∈Z
1(τn ≤ t < τn +Wn), t ∈ R.

Proof. The first assertion follows by Proposition 104, Theorem 109, and
Corollary 110. Next, note that

Y (t) =

∫

R

1(0 ≤ t− u < h(SuX))NT (du).

Then (4.56) follows since by Proposition 107

E[Y (0)] = λT ET
[ ∫

R

1(0 ≤ u < W0) du
]
= λT ET [W0].

Here are several applications of the preceding proposition.

Example 113. Waiting Times in a Set. In the context of Proposition 112,
suppose the T -transition times τn are the times at which items enter a set
B. Let Wn = h(SτnX) be the sojourn time of X in B starting at time τn,
where h(x) = inf{t > 0 : x(t) ∈ Bc}.

Then by Propositions 112 and 86 with Y (t) = 1(X(t) ∈ B),

lim
n→∞

n−1
n∑

m=1

Wm =

∑
i∈B pi∑

i∈Bc pi
∑

j∈B qij
a.s. under PT .

Example 114. Waiting Times in an M/M/s system. Suppose that X is the
stationaryM/M/s queueing process as in Example 101, and the T -transition
times τn are the times at which items arrive to the system with rate λT = λ.
Let Wn = h(SτnX) denote the length of time the arrival at time τn spends
waiting for service, where h(x) = inf{t ≥ 0 : x(t) < s}, and note that

s ∧X(t) =
∑

n∈Z

1(τn ≤ t < τn +Wn), t ∈ R.

Therefore by Proposition 112, Wn is stationary and ergodic, where (4.56) is
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E[s ∧X(0)] = λET [W0].

Next, consider the time Ŵn = Wn + ξn that the arrival at time τn spends
in the system, where ξn is its service time. It follows that Ŵn is stationary
and ergodic since (Wn, ξn) is. The distributions and means of Wn and Ŵn

under PT were presented in Example 101.

Example 115. Inter-departure Times from an M/M/s system. Suppose X is
the stationary M/M/s queueing process as in Example 101. We know from
Example 90 that the point process NT (t) of departures is a Poisson process
with rate λT = λ (this is, of course, with respect to the underlying proba-
bility measure P ). Then the times between departures Wn = τn − τn−1 are
i.i.d. exponential random variables with rate λ. These times are considerably
different with respect to the Palm probability PT .

In fact the inter-departure times Wn satisfy the statements in Proposi-
tion 112, where Y (t) = X(t) and so E[X(0)] = λET [W0].

Here is a more complex example of a travel time whose mean is a function
of random lengths of the past and future of a Markov chain.

Example 116. Travel Times Between Two Sets. In Proposition 112, suppose
the T -transition times τn are the times at which the process X exits a set A
and thereafter enters a set B before returning to A. That is

T = {x ∈ D : x(0−) ∈ A, x(0) ∈ Ac, ηB(x) < ηA(x)},

where ηA(x) = inf{t > 0 : x(t) ∈ A}. Consider the travel timeWn = h(SτnX)
of X from A to B starting at time τn, where

h(x) = inf{t > 0 : x(t) ∈ B}, x ∈ T .

Let γi = P{ηB(X) < ηA(X)|X0 = i}, which is the probability that the
embedded Markov chain Xn hits B before A starting at i ∈ Ac. These hitting
probabilities are described in Section 1.7. Also, let γ̄i the probability of hitting
B before A starting at i ∈ Ac for the embedded Markov chain of the reverse-
time process X̄ as in Proposition 63 with transition rates q̄ij = p−1

i pjqji.
Then by Propositions 112 and 86

lim
n→∞

n−1
n∑

m=1

Wm =

∑
i/∈A∪B piγiγ̄i∑

i∈A pi
∑
j∈Ac qijγi

a.s. under PT

In this case,

E[Y (0)] =
∑

i/∈A∪B
piγiγ̄i.

To prove this, note that Y (t) is the indicator of X being in a traverse from
A to B at time t, and so
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Y (t) = 1(X(t) /∈ A ∪B, ηB(StX) < ηA(S
tX), η̄B(S

tX) < η̄A(S
tX)),

where η̄A(x) = sup{t < 0 : x(t) ∈ A}, the last exit time of x from A. Then
the expression above for E[Y (0)] follows by using the Markov property that
conditioned on X(0) = i, the past and future of X are independent, and
P{η̄B(X) < η̄A(X))|X(0) = i} = γ̄i.

This concludes our discussion of Palm probabilities.

4.20 G/G/1, M/G/1 and G/M/1 Queues

We will now study the equilibrium behavior of several classical queueing
processes. We begin with a G/G/1 single-server queueing system in which
the arrival times form a renewal process and the service times are i.i.d. The
first result establishes the convergence of the sequence of waiting times of
the items. Then the equilibrium behavior of the queue lengths as well as
the waiting times are characterized when the arrival process is Poisson (the
M/G/1 model), and when the service times are exponential (the G/M/1
model). The queue-length processes in these two models are regenerative
processes and their state at certain transition times are Markov chains that
have tractable stationary distributions.

We will consider a general processing system that operates as follows. Items
arrive to the system at times 0 < τ1 < τ2 < . . . that form a renewal process.
Denote the i.i.d. inter-arrival times by Un = τn − τn−1, where τ0 = 0. The
service times are i.i.d. nonnegative random variables Vn that are independent
of the arrival times. The service discipline is first-come-first-served with no
preemptions, and the inter-arrival and service times have finite means.

The traffic intensity of the process is ρ = E[V1]/E[U1], the arrival rate
1/E[U1] divided by the service rate 1/E[V1].

Let Q(t) denote the quantity of items in the system at time t, and let Wn

denote the length of time that the item arriving at time τn spends in the
queue before being processed. For simplicity, assume the system is empty at
time 0, so Q(0) = 0 and W0 = 0.

Definition 117. The process {Q(t) : t ≥ 0} is an G/G/1 queuing process.
Special cases are:

M/G/1 Process — The input process is Poisson.
G/M/1 Process — The service times are exponentially distributed.
M/M/1 Process — Poisson input process and exponential service times.

The first step is to formally define the processes Q(t) and Wn as functions
of the system data Un and Vn. Applying the inductive construction for anal-
ogous discrete-time waiting times in Example 24 in Chapter 1, we have the
Lindley recursion
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Wn = (Wn−1 + Vn−1 − Un)
+, n ≥ 1.

We also learned that, due to the i.i.d assumptions on the system data,

Wn = max
0≤m≤n

n∑

�=m+1

(V�−1 − U�)
d
= max

0≤m≤n
Zm, (4.57)

where Zn =
∑n

m=1(Vm − Um) and Z0 = 0.
Another quantity of interest is the time at which the nth item departs

which is
Dn = τn +Wn + Vn, n ≥ 1.

Using these functions of the system data, the quantity of items in the system
at time t is given by

Q(t) =
∞∑

n=1

1(τn ≤ t < Dn), t ≥ 0.

We will now study the limiting behavior of these processes. We were able
to describe many features of the M/M/1 queueing process Q(t) since it is a
CTMC. However, the G/G/1 system, and even the non-Markovian M/G/1
and G/M/1 processes are considerably more complicated, and so many of
their features do not have tractable expressions.

As a first step, we show that the waiting times Wn for the G/G/1 system
converge in distribution to a random variable W , and that this limit is a
finite-valued random variable if the traffic intensity is below 1. Limits of
waiting times in G/G/1 systems in heavy traffic (when the traffic intensity
is not below 1) are described later in Section 5.16.

Theorem 118. For the G/G/1 system, the waiting times Wn satisfy

Wn
d→ W = sup

0≤m<∞
Zm as n→ ∞. (4.58)

The limit W has the property

P{W = ∞} =

{
0 if ρ < 1
1 if ρ > 1.

(4.59)

Furthermore, F (t) = P{W ≤ t} satisfies the Wiener-Hopf integral equation

F (t) =

∫

(−∞,t]

F (t− s)dG(s), t ≥ 0,

where G(t) = P{Z1 ≤ t}, t ∈ R.
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Proof. By (4.57), we know Wn
d
= max0≤m≤nZm and, as n → ∞, this maxi-

mum increases a.s., and hence in distribution, to sup0≤m<∞ Zm. Thus (4.58)
is true.

Next, by the SLLN

lim
n→∞

n−1Zn → E[Z1] = (ρ− 1)E[U1] a.s.,

it follows that Zn → ∞ or −∞ a.s. according as ρ > 1 or ρ < 1. Then

P{ sup
0≤m<∞

Zm = ∞} =

{
0 if ρ < 1
1 if ρ > 1.

This proves (4.59) since W = max0≤m<∞ Zm.
Finally, using this representation for W , it follows that, for t ≥ 0,

F (t) =

∫

(−∞,t]

P{ sup
0≤m<∞

(Zm − Z1) ≤ t− Z1|Z1 = s}P{Z1 ∈ ds}

=

∫

(−∞,t]

P{ sup
1≤m<∞

Zm−1 ≤ t− s}dG(s)

=

∫

(−∞,t]

F (t− s)dG(s).

From the preceding result, we know that the waiting times have a limit
W , and the distribution of W satisfies a Wiener-Hopf integral equation. This
distribution has a tractable solution for the M/G/1 and G/M/1 queues. The
rest of this section derives these distributions along with properties of the
queue lengths.

First suppose that Q(t) is the M/G/1 queue-length process with Poisson
arrival process M with rate λ. Consider the quantity Xn = Q(Dn) of items
in the system at the departure time Dn of the nth item to enter the system.
This discrete-time process, which is embedded in the continuous-time process
Q(t), satisfies the recursion

Xn+1 = Xn + Yn − 1(Xn > 0), n ≥ 0,

where Yn = M(Dn, Dn + Vn+1] is the number of arrivals in the interval
(Dn, Dn + Vn+1] during the service period of the (n+ 1)th item.

Because the Poisson arrival process has stationary independent increments,

Yn
d
= M(V ), whereM(t) is a Poisson process with rate λ that is independent

of V
d
= Vn+1. Then

ak = P{Yn = k} =

∫

R+

e−λt(λt)k

k!
P{V ∈ dt}, (4.60)

E[Yn] = λE[V ] = ρ.
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This nicely structured process Xn has the following properties.

Theorem 119. (M/G/1 Model) The process {Xn : n ≥ 0} is an irreducible,
aperiodic Markov chain with transition matrix

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The Markov chain Xn is ergodic if and only if ρ < 1. In this case, its sta-
tionary distribution π has the generating function

G(s) =

∞∑

i=0

πis
i =

(1− ρ)(1 − s)ψ(λ(1 − s))

ψ(λ(1 − s))− s
, (4.61)

where ψ(s) = E[e−sV ].

Proof. The first assertion follows since under the queueing assumptions

P{Xn+1 = j|X0, . . . , Xn−1, Xn = i}
= P{Xn + Yn − 1(Xn > 0) = j|Xn = i}
= P{Y1 = j − i+ 1(i > 0)}.

The irreducibility and aperiodicity follow since the ai in (4.60) are positive.
Next, note that the balance equations π = πP are

πi = π0ai + π1ai + π2ai−1 + · · ·+ πi+1a0, i ≥ 0. (4.62)

Clearly πi+1a0 is a function of π0, . . . , πi. In particular, by inductively sum-
ming the first i + 1 equations and solving for πi+1a0 (for i = 0, 1, . . .), we
obtain the equations

πi+1a0 = π0bi + π1bi−1 + · · ·+ πib1, i ≥ 0, (4.63)

where bi = 1 −
∑i

j=0 aj . From this it is clear that, for π0 ≥ 0, there is a
unique solution π to these equations. The solution is positive when π0 > 0
since each bi > 0, and the solution is πi = 0 when π0 = 0.

Now, the solution π will be a distribution if and only if π0 > 0 and
G(1) = 1, where G(s) =

∑∞
i=0 πis

i. To determine when this occurs, note
that multiplying (4.62) by si and summing on i, we have

G(s) = π0H(s) + s−1[G(s) − π0]H(s),

where H(s) =
∑∞
i=0 ais

i. Then
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G(s) =
π0(1 − s)H(s)

H(s)− s
. (4.64)

Using L’Hõpital”s rule and H ′(1) = ρ as noted in (4.60), it follows that
G(1) = 1 if and only if π0 = 1− ρ. Hence π is a stationary distribution if and
only if ρ < 1.

We also know from (4.60) that

H(s) =

∫

R+

E[sM(t)]P{V ∈ dt} = ψ(λ(1 − s)),

where M(t) is a Poisson process with rate λ and E[sM(t)] = e−λ(1−s)t. Sub-
stituting this expression for H(s) and π0 = 1− ρ in (4.64) proves (4.61).

For this M/G/1 model with ρ < 1, it is clear that Q(t) is a regenerative
process at the times at which it enters state 0. Also, the time between regen-
erations has a finite mean, since the busy period discussed in Exercise 48 has
a finite mean. Hence Q(t) has a limiting distribution. Furthermore, one can
show that its limiting distribution is the same as the limiting distribution of
the embedded chain Xn (e.g., see [76]). In addition, the SLLN and central
limit theorem in Chapter 2 for regenerative-increment processes apply to this
queueing process.

Knowing the stationary distribution for an ergodic M/G/1 queueing pro-
cess, we can now characterize the limiting distribution of its waiting times.

Theorem 120. For the M/G/1 queueing process with ρ < 1, the waiting

times satisfy Wn
d→W as n→ ∞, and W has the Laplace transform

E[e−sW ] =
(1− ρ)s

s− λ+ λψ(s)
,

where ψ(s) = E[e−sV ].

Proof. The nth item departing from the system leaves behind Xn = Q(Dn)
items in the system, and so Xn equals the number of arrivals in the time
interval (τn, τn +Wn + Vn] during which the nth item is in the system. In
other words, Xn = M(τn, τn + Wn + Vn], where M is the Poisson arrival
process. Then using E[sM(t)] = e−λt(1−s), we have

E[sXn ] = E
[
E[sXn |Vn,Wn]

]
= E[e−λ(Wn+Vn)(1−s)]

= E[e−λ(1−s)Wn ]E[e−λ(1−s)V ].

By Theorem 119, Xn
d→ X , where E[sX ] = G(s) in (4.61). Then from the

preceding display

lim
n→∞

E[e−λ(1−s)Wn ] = G(s)/ψ(λ(1 − s)).
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From this with G(s) given by (4.61), we have Wn
d→W where

E[e−λ(1−s)W ] =
(1− ρ)(1 − s)

ψ(λ(1 − s))− s
,

which proves the assertion.

We will now present similar results for a G/M/1 queueing process Q(t)
with exponential service rate μ. Because of its complicated structure, our
focus will be on the embedded process X̂n = Q(τn−), which depicts the
quantity in the system just prior to the arrival time τn of the nth item. The
quantities X̂n satisfy the recursion

X̂n+1 = X̂n + 1− Ŷn, n ≥ 0,

where Ŷn is the number of items that depart in the time interval (τn, τn+1].
Because the exponential service times with rate μ are memoryless, the

residual service time of the item in service at time τn is exponential with
rate μ, and so the potential departures in an interval between arrivals occur
according to a Poisson process M̂(t) with rate μ. Consequently,

αk = P{Ŷn = k|X̂n = i} = P{M̂(U) = k} (4.65)

=

∫

R+

e−μt(μt)k

k!
P{U ∈ dt} if k < i,

where U
d
= Un is independent of the Poisson process M̂ . The only other

possibility for Ŷn is that all items are served in an inter-arrival time and so

βi = P{Ŷn = i+ 1|X̂n = i} = P{M̂(U) ≥ i+ 1} = 1−
k∑

�=0

α�.

These observations are the basis of the following result.

Theorem 121. (G/M/1 Model) The process {X̂n : n ≥ 0} is an irreducible,
aperiodic Markov chain with transition matrix

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0 α0 0 0 0 · · ·
β1 α1 α0 0 0 · · ·
β2 α2 α1 α0 0 · · ·
β3 α3 α2 α1 α0 · · ·
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The Markov chain Xn is ergodic if and only if ρ < 1. In this case, its sta-
tionary distribution is

πi = (1− r)ri, i ≥ 0,

where r is the unique root in (0, 1) of r = E[e−μ(1−r)U ].
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Proof. Under the queueing assumptions, X̂n is a Markov chain with the spec-
ified transition matrix since

P{X̂n+1 = j|X̂0, . . . , X̂n−1, X̂n = i} = P{Ŷn = i+ 1− j|X̂n = i}.

Also, the positive αi ensure that X̂n is irreducible and aperiodic.
For this Markov chain, the balance equations π = πP are

π0 =

∞∑

j=0

βjπj ,

πi =
∞∑

j=0

αjπj+i−1 i ≥ 1.

To solve this difference equation, we consider a solution of the form πi = cri

(this approach was used in the Gambler’s Ruin Model in Example 44 in
Chapter 1). Substituting this π in the last equation and dividing by ri−1, we
obtain r = φ(r), where

φ(r) =

∞∑

j=0

αjr
j = E[e−μ(1−r)U ].

The last equality is due to (4.65) and E[sM̂(t)] = e−μ(1−s)t.
We have shown that πi = cri is an invariant measure, where r satisfies

r = φ(r), and it is a finite measure if and only if 0 < r < 1. Now, we
know from the branching process Lemma 47 in Chapter 1 that the equation
r = φ(r) has a unique solution r in (0, 1) if and only if φ′(1) > 1. In this case,
φ′(1) = 1− ρ. Hence the Markov chain X̂n is ergodic if and only if ρ < 1 and
in that case its stationary distribution is πi = (1− r)ri.

For the G/M/1 model, the limiting distribution of the embedded chain
X̂n is not necessarily the limiting distribution of its parent process Q(t). In
fact, Q(t) does not even have a limiting distribution when the inter-arrival
times Un are a constant. However, the limiting distribution for X̂n yields a
tractable limiting distribution for the waiting times.

Theorem 122. For the G/M/1 queueing process with ρ < 1, the waiting

times satisfy Wn
d→W as n→ ∞, where P{W = 0} = 1− r,

P{W > t} = re−μ(1−r)t, t ≥ 0,

and r is the smallest root in (0, 1) of r = E[e−μ(1−r)U ].

Proof. We noted above that, because of the memoryless property of the
exponential service distribution, the potential departure times during an
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inter-arrival time form a Poisson process M̂(t) with rate μ. Then since the
arrival at time τn has to wait for the X̂n items ahead of it to be served, it
follows that

P{Wn > 0} = P{X̂n > 0}

P{Wn > t} = P{M̂(t) < X̂n} =
∞∑

k=0

P{X̂n > k}P{M̂(t) = k}.

By Theorem 121, P{X̂n > k} → rk+1 as n → ∞. Applying this to the

preceding display yields Wn
d→W , where P{W > 0} = r and

P{W > t} =

∞∑

k=0

rk+1P{M̂(t) = k} = re−μ(1−r)t.

The last equality is due to E[rM̂(t)] = e−μ(1−r)t.

4.21 Markov-Renewal Processes*

We end this chapter by describing a close relative of a CTMC called a Markov-
renewal process. This type of process is a jump process like a CTMC, but
the sojourn time in a state has a general distribution that may depend on
that state and the next state after the sojourn. Markov-renewal processes
may provide more precise models than a CTMC when the exponential so-
journ time assumption is not appropriate. Much of the theory of CTMCs
readily extends to these processes. We will only present a brief sketch of the
equilibrium behavior.

Definition 123. A jump process {X(t) : t ≥ 0} on S with embedded process
(Xn, ξn) is a Markov-renewal process if it satisfies the following conditions.
(i) Xn is a discrete-time Markov chain on S with transition probabilities
P = {pij}, where pii = 0, for each i.
(ii) For nonnegative t0, . . . , tm,

P{ξ0 ≤ t0, . . . , ξm ≤ tn|Xn, n ≥ 0} =

m∏

n=0

P{ξn ≤ tn|Xn, Xn+1},

and there are distributions Fij(t), i, j ∈ S, such that Fij(0) = 0 and, for each
n ≥ 0,

P{ξn ≤ t|Xn = i,Xn+1 = j} = Fij(t), t ≥ 0, i, j ∈ S.
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Some authors refer to X(t) as a semi-Markov process and (Xn, ξn) as
a Markov-renewal process. A typical example is the cyclic renewal process
studied in Chapter 3. The notation and many properties of CTMCs, such
as classifying states, carry over to Markov-renewal processes. For instance,
Proposition 4.4 justifies that the regularity of X(t) implies that the sojourn-
time distributions Fij are P-regular in the sense that their respective means
μij are finite and

∑∞
n=0 ξn = ∞ a.s.

For the following result, assume the embedded Markov chain Xn is ergodic
with stationary distribution π. Then X(t) is also recurrent and irreducible.
As in the preceding sections, the first entrance time of the Markov-renewal
process X(t) to a state i is τi =

∑νi−1
n=0 ξn, which is the sum of the sojourn

times until Xn reaches i. From Exercise 56,

Ei[τi] = π−1
i

∑

j∈S
πj

∑

�∈S
pj�μj�.

Assume this is finite. Then X(t) is positive recurrent. Finally, assume for
simplicity that at least one of the distributions Fij is non-arithmetic, which
ensures that the distribution of τi is also non-arithmetic. Under these assump-
tions, the process X(t) is an ergodic Markov-renewal process with transition
probabilities pij and sojourn distributions Fij .

The Markov-renewal process X(t) is a delayed regenerative process at the
times it enters a fixed state. Therefore, its limiting distribution is essentially
the same form as that for CTMCs in Theorem 39. The only difference is
that the mean sojourn time in state i is now

∑
j∈S pijμij instead of q−1

i for
CTMCs. The proof of the following is Exercise 56.

Theorem 124. The ergodic Markov-renewal process X(t) has the limiting
distribution, for a fixed i ∈ S,

pj =
1

Ei[τi]
E
[ ∫ τi

0

1(X(t) = j) dt
]
=

1

Ei[τi]

∑

�∈S
pj�μj�, j ∈ S.

Furthermore,

pj = πj
∑

�∈S
pj�μj�/

∑

i,�∈S
πipi�μi�, j ∈ S. (4.66)

Ergodic theorems for functionals of Markov-renewal processes are similar
to those for CTMCs in Theorems 42 and 45. One simply uses (4.66) as the
limiting distribution, and qj is replaced by 1/μj�.
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4.22 Exercises

Exercise 1. Compound Poisson Processes. Let X(t) denote a compound
Poisson process as in Section 3.15 in Chapter 3 with rate λ and jump-size
density f(i), i ∈ Z. Justify that X(t) is a CTMC and specify its transition
rates. Assuming X(t) is irreducible on Z, classify its states when the mean
of the density f is = 0 or is �= 0.

Exercise 2. Continuation. Let Xk(t), k = 1, . . . ,m, be independent com-
pound Poisson processes with rates λk and jump-size densities fk(i), i ∈ Z.
Show that X1(t)+X2(t), andX1(t)−X2(t) are CTMCs and that they are also
compound Poisson processes; specify their defining parameters. More gener-
ally, show that the process X(t) =

∑m
k=1 akXk(t), for ak ∈ Z, is a CTMC

and a compound Poisson process and specify its defining parameters. Hint:
the jump-size density of X(t) is a mixture of the fk.

Exercise 3. Input-Output System: Reflected Compound Poisson Process. Let
X(t) denote the value of a system (e.g., monetary account or storage area in a
computer) at time t that takes values in S = {i ∈ Z : a ≤ i ≤ b}, where a < b.
The value increases “potentially” by a compound Poisson process X1(t) with
rate λ1 and nonnegative jump-sizes with density f1, but part or all of an input
is rejected (or disregarded) to the extent that it would force X(t) to exceed b.
Also, the value decreases “potentially” by a compound Poisson process X2(t)
with rate λ2 and nonnegative jump-sizes with density g, but part or all of a
decrease is disregarded to the extent that it would force X(t) to fall below a.
That is, letting Z(t) = X1(t)−X2(t) and ΔX(t) = X(t)−X(t−),

X(t) = X(0)+Z(t)−
∑

0≤s≤t

[
(X(s−)+ΔX1(s)−b)+−(a−X(s−)+ΔX2(s))

+
]
.

This X(t) is the compound Poisson process Z(t) reflected at a and b. Note
that it is a continuous-time version of the reflected random walk in Example
23 in Chapter 1. Justify that X(t) is a CTMC and specify its transition rates.
For a = 0 and b = ∞, show that

lim
t→∞

P{X(t) ≤ i} = P{ sup
0≤s≤∞

Z(s) ≤ i}.

Exercise 4. Markov Chains Driven by Clock Times. Let {Xn : n ≥ 0} be a
stochastic process on S whose dynamics are as follows. Whenever the process
enters a state i, a set of independent clock times τij , j ∈ Si are started,
where Si is the subset of states in S that can be reached from state i in
one step. The times τij are geometrically distributed with parameters γij
(P{τij > m} = γmij ). Then the sojourn time in state i is the minimum
τi = minj∈Si τij , and, at the end of the sojourn, the process jumps to the
state j ∈ Si for which τij = τi. Find the distribution of τi.



324 4 Continuous-Time Markov Chains

Think of τij as the time to the next “potential” transition from i to j ∈ Si
with probability pij , and the clock time j that is the smallest of these times
“triggers” a transition from i to j. Show that Xn is a Markov chain with
transition probabilities

P{Xn+1 = j|Xm,m < n,Xn = i} = γij/
∑

k∈Si

γik.

Exercise 5. Multiclass Exponential Clocks. Consider a jump process {X(t) :
t ≥ 0} with countable state space S that evolves as follows. For each pair
of states i, j, there is a countable set of sources Y(i, j) that may trigger a
transition from i to j, provided that such a transition is possible. Specifically,
whenever the process X(t) is in state i, the time for source y to “potentially”
trigger a transition to j is exponentially distributed with rate qy(i, j), in-
dependent of everything else. Then the time for a transition from i to j is
the minimum of these independent exponential times, and so the potential
transition time from i to j is exponentially distributed with rate

qij =
∑

y∈Y(i,j)

qy(i, j).

Thus, as in Example 9, we know that X(t) is a CTMC with transition rates
qij , provided they are regular with respect to pij = qij/qi, where qi =

∑
j qij .

In this setting, the sources that trigger the transitions are of interest, espe-
cially if there are costs or rewards associated with the sources. By properties
of exponential variables, the probability that source y is the one that trig-
gers the transition is qy(i, j)/qij . Let Yn denote the source that triggers the
transition at time Tn+1. Consider the process

Y (t) = Yn+1, if t ∈ [Tn, Tn+1) for some n.

This Y (t) is the source that triggers the next transition at or after time t.
(a) Show that (X(t), Y (t)) is a CTMC on the set Ŝ = {(i, y) : i ∈ S, y ∈
∪i,j∈SY(i, j)}. Specify its exponential sojourn rates q(i,y) and its transition
probabilities p(i,y),(j,y′).
(b) Show that (Xn, Yn, Tn) is a discrete time Markov chain and specify the
following transition probabilities: For s, t ≥ 0, (i, y), (j, y′) ∈ Ŝ,

P{Xn+1 = j, Yn+1 = y′, Tn+1 > s+ t|Xn = i, Yn = y, Tn = s}.

Exercise 6. M/M/s System With Feedback. Consider the M/M/s queueing
system in Example 60 with the modification that upon completing its service,
an item is either fed back for another service with probability r, or it exits
the system with probability 1− r. In this case, the process X(t) representing
the number of items in the system would not change state at a feed-back
departure — it experiences a fictitious jump. Justify that X(t) is a CTMC
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with parameters p̂i,i = rμi/q̂i,

p̂i,i+1 = λ/q̂i, p̂i,i−1 = (1 − r)μi/q̂i, i ≥ 1,

and q̂i = λ+μi, where μi = min{i, s}. Show that X(t) can also be represented
as a CTMC with transition rates qi,i+1 = λ, qi,i−1 = (1 − r)μi. Specify its
parameters pij and qi under this alternative representation.

Exercise 7. Independence of Future and Past Given the Present. Suppose
that X(t) is a CTMC and for t > 0, let Y (t) be a random variable generated
by the past {X(s) : s < t} and let Z(t) be a random variable generated by
the future {X(u) : u > t}. Show that

E[Y (t)Z(t)|X(t)] = E[Y (t)|X(t)]E[Z(t)|X(t)].

Exercise 8. Two types of jobs, labeled 1 and 2, arrive to a processor accord-
ing to independent Poisson processes with rates λ1 and λ2. Let X(t) denote
the type of the last job arrival before time t. Show that X(t) is a CTMC and
specify its transition rates. Show that pij(t) = a + be−(λ1+λ2)t, and specify
the coefficients a and b. Show that the X(t) is ergodic and find its stationary
distribution.

Exercise 9. Yule Process. Consider a pure birth process with exponential
sojourn rates qi = iλ, for some λ > 0. Find an expression for pij(t). Hint:A
special case is p1j(t) = e−λt(1− e−λt)j−1, j ≥ 1.

Exercise 10. Search Process. Items arrive to a system of m cells labeled
1, . . . ,m at times that form a Poisson process with rate λ. Each arrival inde-
pendently enters cell i with probability αi and remains there until it is deleted
by a search. Independently of the arrivals, searches occur at times that form a
Poisson process with rate μ, and each search is performed at cell i with proba-
bility δi. If items are in the search cell, one item is deleted; otherwise no items
are deleted and the search is terminated. Let X(t) = (X1(t), . . . , Xm(t)) de-
note the numbers of items in the cells at time t. Justify that X(t) is a CTMC
and classify its states. Find an invariant measure for it. Prove that X(t) is
positive recurrent if and only if αiλ ≤ δiμ, 1 ≤ i ≤ m. Find the mean and
variance of the number of items in node i in equilibrium (that is E[Xi(0)]
and Var[Xi(0)] when X(t) is stationary).

Exercise 11. Continuation. In the search model in the preceding exercise,
suppose the system is constrained to haveX1(t) ≤ X2(t) ≤ · · · ≤ Xm(t). Find
an invariant measure for the resulting process X(t) with this constraint.

Exercise 12. Merging Process. Two types of items arrive to a merging sta-
tion at times that form two independent Poisson processes with respective
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rates λ1 and λ2. The units queue up and merge into pairs (one of each type)
as follows. Whenever a type 1 item arrives to the station, it either merges
with a type 2 item that is waiting at the station, or it enters a queue if are
no type 2 items present. Similarly, a type 2 arrival either merges with a type
1 item or it enters a queue. Let Xk(t) denote the number of type k items at
the station at time t (k = 1 or 2). Note that either X1(t) or X2(t) is 0 at
any time. Assume that the station can contain at most m items (which are
necessarily of one type), and when this capacity is reached, additional items
of the type in the queue are turned away. Examples of such a system are
automatically guided vehicles meeting products to be transported, or taxis
and customers pairing up at a station.

When the system is in equilibrium, find the following quantities:
• The probability of ik type k items at the station.
• The probability of more than i items at the station.
• The expected number of type ik items at the station.
Also, find the average number of type k items that are turned away and not
served. Hint: model the system by the process X(t) = X1(t)−X2(t).

Exercise 13. For an ergodic CTMC X(t), show that, for any state i ∈ S,

lim
n→∞

n−1Tn = Ei[τi].

Then show that t−1TN(t) → 1 a.s. as t→ ∞.

Exercise 14. Balking and reneging in an M/M/s system. Suppose that X(t)
is anM/M/s queueing process with arrival rate λ and service rate μ. Consider
the variation in which items balk at entering, such that when n items are in
the system, the arrival rate is biλ. For instance, bi could be the probability
that an arrival decides to enter the system when i items are in the system
(e.g., bi = 1(i ≤ K)). Assume bi = e−αi/μ, where i/μ is an estimate for
the average waiting time when i items are present and α > 0. Specify the
transition rates for the system, give a criterion for the process to be ergodic,
and determine its stationary distribution.

Next, consider the M/M/s process X(t) in which an item in the system
may renege and depart from the system with rate ri. That is, the time to the
next departure is the minimum of the service times of the items being served
and an independent exponential random variable with rate ri. Therefore,
when i items are in the system, the next potential departure is exponentially
distributed with rate μi∧ s+ ri−1. Determine when X(t) is ergodic, and find
its stationary distribution.

Finally, determine conditions under which X(t) is ergodic, and find its
stationary distribution if there is both balking and reneging as above.

Exercise 15. Multiclass Service System with Blocking. Consider a service
system that processes m classes of items, but it can serve only one class
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at any time. While it is serving items of class c, any arrivals of other classes
cannot enter the system and are turned away, but new type c arrivals may
enter. Assume class c items enter and depart such that the number in the
system behaves as an ergodic CTMC on the nonnegative integers with tran-
sition rates qc(x, y), and its stationary distribution pc(x) is known.

The system is represented as a CTMC X(t) with states x = (x1, . . . , xm),
where xc is the nonnegative number of class c items in the system — at most,
one of the xc’s is positive. Assume the system is empty at time 0. Now, the
state space S consists of a center S0 = {0} and point sets

Sc = {(x1, . . . , xm) : xc > 0, xl = 0, l �= c}, c = 1, . . . ,m,

such that the process X(t) can transfer from a state in Sc to a state in Sc′ ,
c′ �= c, only by passing through 0.

Under the preceding assumptions, the transition rates of X(t) are

q(x, y) =

{
qc(x, y) if x, y ∈ S0 ∪ Sc, for some c, and y = ec if x = 0,

0 otherwise.

Show that X(t) is ergodic and its stationary distribution is

π(x) = π(0)pc(xc)/pc(0), x ∈ Sc, c �= 0,

and π(0) = [1 +
∑

c �=0(pc(0)
−1 − 1)]−1. A related discrete-time model is in

Example 107 in Chapter 1.

Exercise 16. A Batch-Service System. Suppose that X(t) is a CTMC that
denotes the number of customers in a service system at time t whose transi-
tion rates are

qij = λ1(j = i+ 1) + μ1(j = max{0, i−K}).

Here λ, μ, andK are positive, and λ < Kμ. This represents a system in which
customers arrive by a Poisson process with rate λ and are served in batches
as follows. Whenever there are i ≥ K customers in the system, batches of K
customers depart at the rate μ; and whenever i < K customers are present,
all of the customers depart at the rate μ. Show that X(t) is ergodic and its
stationary distribution is pi = ri(1 − r), i ≥ 0, where r is the unique root in
(0, 1) of the equation μrK+1 − (λ+ μ)r + λ = 0.

Exercise 17. Continuation. Assume the batch-service process in the preced-
ing exercise is stationary. Let NT denote the point process of T -transition
times at which batches of size K depart from the system. Describe the set
T , and show that N is a Poisson process with rate μ+ λ(1 − r−1).

Exercise 18. Average Sojourn Time in a Set. LetWn(A) denote the amount
of time the CTMC spends in a set A on its nth sojourn in that set. The
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average sojourn or waiting time in A is

W (A) = lim
n→∞

n−1
n∑

m=1

Wm(A) a.s.

Show that W (A) = λ(A)−1
∑
i∈A pi. Use this to find the average duration of

time that an M/M/1 spends with less than K items in the system.

Exercise 19. M/M/s system. Let X(t) denote a stationary M/M/s queue-
ing process as in Example 60, with s < ∞, traffic intensity ρ = λ/sμ < 1,
and stationary distribution pi. Let Y (t) denote the number of items in the
queue waiting to be served (not in service) at time t. Show that Y (t) is a
stationary process and specify its distribution. Also, show that

E[Y (0)] =
p0ρ(sρ)

s

(1− ρ)2s!
.

Consider the waiting time W (t) = min{u ≥ t : X(u) < s} until a server is
available at or after time t (sometimes called the virtual waiting time in the
queue of an arrival at time t before it can enter service). Justify that W (t) is
a stationary process, and find E[W (0)]. Show that

P{W (0) ≤ t|X(0) = s} = 1− e−rt,

and specify the rate r. Show that P{W (0) > 0} = P{X(0) > s} and

P{W (0) > t} =

∞∑

i=s

piPi{M(t) < i− s} = P{X(0) > s}e−(sμ−λ),

where M(t) is a Poisson process with rate sμ denoting departure times when
s servers are busy. Finally, prove P{X(0) ≥ s+m} = (λ/sμ)m.

Exercise 20. Passage Times. Let X(t) be a CTMC with transition rates qij
(here qii = −qi). For a fixed set B in the state space S, consider the first
passage time τB = inf{t > ξ0 : X(t) ∈ B}. Show that the hitting probabilities
vi = Pi{τB < ∞} of set B are the smallest yi in [0, 1] that satisfy

∑

j

qijyj = 0, i ∈ Bc.

Show that the mean passage times vi = Ei[τB ] are the smallest nonnegative
yi that satisfy 1 +

∑
j∈Bc qijyj = 0, i ∈ Bc.

Exercise 21. Passage Values for Uniformized Chains. In the setting of the
preceding exercise, for f : S → R, consider the mean values

vi = Ei

[∫ τB

0

f(X(t))dt

]

, i ∈ S.
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Assuming λ = supi qi <∞, show that

vi = λ−1Ei

[
νB−1∑

n=0

f(X̂n)

]

.

where X̂n is a Markov chain and νB = inf{n ≥ 1 : X̂n ∈ B}. Specify the
transition probabilities p̂ij for X̂n in terms of the rates qij for X(t). Show
that the vector v has the form

v = eQ̂r =
(∑

j

∞∑

n=0

Q̂nijrj : i ∈ S
)

and specify the matrix Q̂ and the vector r.

Exercise 22. Asymptotic Stationarity. Suppose that X(t) is an ergodic
CTMC with stationary distribution p and, for t ≥ 0, let Z(t) be a real-
valued random variable generated by the future {X(u) : u > t}. Let X̄(t)
and Z̄(t) denote these processes when X̄(t) is a stationary version of X(t).

Show that (conditioning on X(t)), Z(t)
d→ Z̄(0), as t→ ∞.

(This asymptotic stationarity statement says in particular that StX
d→ X̄ .

A discrete-time version of this is in Proposition 63 in Chapter 1.)
Prove the asymptotic independence property that, for t < u, if t→ ∞ and

u− t→ ∞, then
P{X(t) = i,X(u) = j} → pipj.

For f : S → R and a < b, consider the process Y (t) =
∫ b
a
f(X(u + t))du.

Show that there exists a random variable Y such that Y (t)
d→ Y and give a

formula for E[Y ].

Exercise 23. Let X̂(t) and X(t) on S denote jump processes as described
prior to Proposition 23 with respective parameters (α̂i, p̂ij , q̂i) and (αi, pij , qi),
where p̂ii and pii are in [0, 1). Assume that α̂i = αi, qi ≥ q̂i, and

pij = q̂ip̂ij/qi, j �= i, pii = 1− q̂i(1− p̂ii)/qi.

Show that X̂(t) and X(t) are CTMCs that have the same distribution.

Exercise 24. Sampling a CTMC. Let X(t) be an ergodic CTMC on S with
stationary distribution pi. Suppose this CTMC is sampled (or observed) at
times T1 < T2 < . . . that are occurrence times of a renewal process with
inter-renewal distribution F . Show that the sampled values X(Tn) form a
Markov chain and specify its transition probabilities. Show that X(Tn) is
ergodic with the same stationary distribution pi that X(t) has. How would
you estimate the pi from observationsX(T0), X(T1), . . . , X(Tn)? That is, find
an estimator p̂i(n) of pi and show that it is consistent in that p̂i(n) → pi,
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for each i ∈ S, as n → ∞. Is the estimator the same if the sampling times
formed a Poisson process or if the inter-sampling times were a constant?

Exercise 25. M/M/1 Production-Inventory System. Consider the system
shown in Figure 4.2 consisting of anM/M/1 systemM that produces units of
a product and a warehouse W that houses the units until they are requested.
Demands for the product occur at times that form a Poisson process with
rate λ. An arriving demand is satisfied from the warehouse if a unit is avail-
able, otherwise the demand waits outside of W until a unit arrives from M
and then it is satisfied. In either case, the arrival also triggers a unit to be
produced at M, where the service rate of single server is μ > λ. Assume the
warehouse has a capacity L and, at time 0,W is full andM is empty. LetX(t)
denote the number of units in M at time t; this is also the number of demands
that are waiting for units. The number of units in W is W (t) = L − X(t).
What type of process is X(t)? Specify its stationary distribution.
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Fig. 4.2 M/M/1 Production-Inventory System

The system receives a reward at the arrival time of each demand: the
reward is R if the demand is satisfied immediately and is r if the demand
incurs a wait to be satisfied. Also, there is an inventory cost of h per unit time
of holding one unit in inventory. Find the average reward for the system and
the average holding cost. Then find the warehouse capacity L that maximizes
the average reward minus holding cost.

Exercise 26. Suppose (Xn, ξn) is a Markov chain as in Proposition 23 and
as in its proof let ν0 = 0 and νn+1 = min{m > νn : Xm �= Xνn}, n ≥ 0.
Show that each νn is a stopping time of the chain (Xn, ξn).

Exercise 27. Let X(t) be a birth-death process with state-dependent birth
and death rates λi and μi. Let νi = min{n ≥ 1 : Xn = i}. For a cost (or
value) function f : S × R+ → R, show that

E0

[ νk∑

n=1

f(Xn, ξn)
]
=

k−1∑

j=0

1

λjηj

j∑

i=0

(λi + μi)Ei[f(i, ξ1)]ηi, (4.67)

where ηj =
∏j
i=1 λi−1/μi. First derive an expression for
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vj = Ej

[ νj+1∑

n=1

f(Xn, ξn)
]
, 0 ≤ j ≤ k,

based on a first-step analysis and a recursive equation for the vj .
Use (4.67) to find an expression for E0[Tνi ], the mean first passage time

to state i.

Exercise 28. Counterexamples. Let X(t) be an irreducible CTMC with so-
journ rates qi whose embedded chain Xn is a random walk on S = Z+ with
transition probabilities p00 = q and

pij = p1(j = i+ 1) + q1(j = i− 1).

Show that any qi are P-regular if p ≤ 1/2.
Assuming p < q, show that Xn is ergodic and specify its stationary distri-

bution. In this case, find qi such that X(t) is not ergodic.
Assuming p = 1/2, show that Xn is not ergodic, but X(t) is ergodic for

qi = 1/ai and 0 < a < 1.

Exercise 29. Tandem Network . Suppose X(t) is a Jackson network process
for the tandem network shown in Figure 4.3, where arrivals enter node 1
according to a Poisson process with rate λ and each node i consists of a
single server with service rate μi. Show that X(t) is ergodic if and only if
λ < μi for each i. When it is ergodic, establish its stationary distribution.

λ� � � �� � �1 2 3 � � � � m� �

Fig. 4.3 Tandem Network

Now, assumeX(t) = (X1(t), . . . , Xm(t)) is stationary. Use the result in the
preceding exercise to find the average duration of time that there are more
than L items in the network. Find an expression for P{max1≤i≤mXi(0) > a}.
Assume μi = μ > λ, for each i, and determine P{

∑m
i=1Xi(0) > L}.

Exercise 30. Open Acyclic Jackson Network . Suppose X(t) is an ergodic
Jackson process representing the open network shown in Figure 4.4.

Let pij denote the probability that an item is routed from node i to node
j. Show that a solution to the traffic equations is w1 = p01,

w2 = p02 + w1p12, w3 = p03 + w1p13, w4 = w2p24, w5 = w3.

Assume X(t) is stationary and let Nij(t) denote the number of times an item
moves from node i to node j in a time interval [0, t]. Show that Nij is a
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Fig. 4.4 Open Acyclic Jackson Network

Poisson process with rate wiλij . In other words, the flow between each pair
of nodes in the network is a Poisson process. This property is true for any
network in which each item can visit a node at most once. While some of the
flows are independent, some of them are dependent.

Exercise 31. Input-Output System with Batch Arrivals. Let X(t) denote the
quantity of items in an input-output system that operates as follows. Batches
of items arrive at times that form a Poisson process with rate λ, and the
batch sizes are i.i.d. with geometric distribution (1 − α)αn−1. The items are
served by a single server and the service times are independent exponentially
distributed with rate μ > λ/(1−α). Justify that X(t) is a CTMC and specify
its transition rates. Show that its stationary distribution is

pi = p0
λ

μ

(
λ+ αμ

μ

)i−1

i ≥ 1.

Exercise 32. Continuation: Batch Services. Consider the system described
in the preceding example with the difference that at the end of a service time
with i items in the system, min{i,K} items depart, where K is the batch
service capacity. So those items present at the start of a service plus all the
arrivals during a service time up to the amount K depart at the end of the
service. HereKμ > λ/(1−α). Justify that the quantity of items in the system
X(t) is a CTMC with transition rates

qij = λ(1 − α)αk−11(j = i+ k)

+μ[1(j = i− B, i > K) + 1(j = 0, i ≤ K)].

Show that its stationary distribution is

pi = p0λr
i−1/(μ

K−1∑

k=0

rk), i ≥ 1,

where r is the unique solution (which you need not prove) in (0, 1) of

μrK + μ(1 − α)

K−1∑

k=0

rk = λ+ μ.
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Exercise 33. Central Limit Theorem. Let X(t) denote an ergodic CTMC
with limiting distribution pi = πi/qi/

∑
j∈S πj/qj, for i ∈ S, where π is

the stationary distribution for Xn, which is ergodic. Consider the functional
Z(t) =

∫ t
0
f(X(s)) ds, where f(i) denotes a value per unit time when X(t)

is in state i. Theorem 42 showed that t−1Z(t) → a =
∑

i∈S pif(i), a.s.,
provided the sum is absolutely convergent. For simplicity, fix i ∈ S and
assume X(0) = i. Specify conditions, based on Theorem 65 in Chapter 2,
under which

(Z(t)− at)/t1/2
d→ N(0, σ2), as t→ ∞.

Give an expression for σ2 using ideas in Example 68 in Chapter 3 and

Z(T1)− aT1 =

νi∑

k=1

[f(Xk)Yk − aYk],

where νi = min{n ≥ 1 : Xn = i} and Yn is the sojourn time of X(t) in Xn.

Exercise 34. Reversible Multiple Instantaneous Jumps. Let X̃(t) be a CTMC
on S with transition rates q̃ij . Define a CTMC X(t) with transition rates

qij =
∑n

m=1 q̃
m
ij , where Q̃m = {q̃mij } is the mth product of the matrix

Q̃ = {q̃ij} with each qii = 0 and n is fixed. This process is a variation of

X̃(t) in which each transition consists of up to n transitions of X̃(t) occur-
ring simultaneously. The compound rate qmij represents a “macro” transition

rate for m “instantaneous jumps” of X̃. Show that if X̃(t) is reversible with
respect to γ, then X(t) is reversible with respect to γ.

Exercise 35. Networks with Variable Waiting Spaces . Consider an m-node
open network process Xt = (X1

t , . . . , X
m
t ) that represents the numbers of

items at the nodes at time t. Suppose the waiting spaces at the nodes vary
such that Yt = (Y 1

t , . . . , Y
m
t ) is the maximum numbers of items allowed at

the nodes at time t. Suppose {(Xt, Yt) : t ≥ 0} is an irreducible CTMC on
S = {(x, y) ∈ SX × SY : x ≤ y}, where SX = {x : |x| < ∞} = SY . Assume
that its transition rates are

q((x, y), (x′, y′)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λjkφj(xj) if x′ = Tjkx, y
′ = y

and xk < yk for some j, k ∈ M

qY (y, y
′) if x′ = x and y′ ≥ x′.

0 otherwise.

The X is an open Jackson process whose node populations are restricted
by the process Y with transition rates qY . Assume that the routing rates
λjk are reversible with respect to wj , and that qY is reversible with respect
to πY . Show that the process (X,Y ) is reversible with respect to π(x, y) =
πY (y)

∏m
j=1 wj

∏xj

n=1 φ(n)
−1.
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Exercise 36. Suppose the transition rates q̃(x, y) represent a CTMC on S
that is reversible with respect to γ̃. Assume the process is subject to the
constraint that a transition is possible if and only if h(x, y) ≤ b, for some
h : S2 → R+ and b > 0, and denote the resulting process by X(t). Show that
this is a reversible CTMC and specify an invariant measure for it.

Exercise 37. Prove that a Jackson process is irreducible if and only if its
routing process is irreducible. Recall that λij is irreducible if and only if, for
any fixed i �= j in M , there are i1, . . . , i� in M such that λii1λi1i2 · · ·λi�j > 0.

Exercise 38. Parameters for Closed Jackson Process. The convolution f 
 g
of two real-valued functions g and h on Z+ is defined by

g 
 h(n) =

n∑

i=0

g(i)h(n− i), n ≥ 0.

For a sequence of such functions g1, g2, . . ., show by induction that

g1 
 · · · 
 gm(n) =
∑

x:|x|=n

m∏

i=1

gi(xi), n ≥ 0, m ≥ 1.

Show that the normalizing constant c in Theorem 74 for a closed Jackson
network process has the representation c−1 = f1 
 · · · 
 fm(ν).

Associated with a sector of nodes J , define xJ =
∑
j∈J xj , and let fJ

denote the convolution of the functions {fj, j ∈ J}. Assume the network
process X(t) is stationary and let XJ(t) =

∑
j∈J Xj(t). Show that, for any

disjoint sectors J1, . . . , J� whose union isM , the joint equilibrium distribution
of n1, . . . , n� items in these sectors is

P{XJ1(0) = n1, . . . , XJ�
(0) = n�} = c

�∏

i=1

fJi(ni), n1 + · · ·+ n� = ν.

From these distributions, one can obtain means, variances, covariances, and
other items of interest such as expected costs for the process. In particular,
show that the mean number of items in a sector J in equilibrium is

E[XJ(0)] = c

∞∑

n=1

nfJ(n)fJc(ν − n).

Exercise 39. Jackson Networks with Feedbacks at Nodes . Consider a Jackson
process under the usual assumption that, whenever it is in state x, the time
to the next departure from node i is exponentially distributed with rate
φi(xi), but the routing is a little different. Assume that an item departing
from node i enters node j with probability p̄ij , independently of everything
else, where the probability p̄ii of a feedback may be positive. Justify that the
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resulting process X(t) is a CTMC and specify its transition rates q(x, Tijx)
and exponential sojourn rate q(x) in state x.

Exercise 40. Busing System. Items arrive to a waiting station at times that
form a Poisson process with rate λ. “Buses” arrive to the station at times that
form a Poisson process with rate μ to take items immediately from the system.
If a bus arrives and finds the system empty, it departs immediately. Busing is
common in computer systems and material handling systems. Assume that
the number of items each bus can take is a random variable with the geometric
distribution pn−1(1 − p), n ≥ 1. Also, when there are no items in the queue
and an item arrives, then with probability p there is a bus available to take
the arrival without delay.

Show that if a bus arrives and finds i items waiting, then the actual number
Y that departs in a batch has the truncated geometric distribution

P{Y = n} = pn−1(1− p)1(n < i) + pn−11(n = i).

Let X(t) denote the number of items in the system at time t. Show that
it is a CTMC with transition rates

qi,i+1 = λ(1 − p)1(i = 0) + λ1(i ≥ 1),

qi,i−n = μpn−1(1− p)1(1 ≤ n ≤ i− 1) + μpi−11(n = i).

Show that X(t) is ergodic if and only if λ < μ + pλ, and in this case, its
stationary distribution is

pi = p0(1− p)λi/(μ+ pλ)i, i ≥ 1.

Exercise 41. Star-Shaped Network. Let X(t) denote a closed Jackson pro-
cess with ν items for the star-shaped or central-processor network shown in
Figure 4.5. Node 1 is the center node and nodes 2, . . . ,m are points of the
star such that the routing rates λ1j and λi1 are positive. All the other routing
rates are 0. Suppose node 1 operates like an M/M/∞ node with service rate
μ1, and the other nodes operate like M/M/1 nodes with service rate μi for
node i. Find a solution wi of the traffic equations, and then find the sta-
tionary distribution for X(t). Is this process reversible? Find the equilibrium
probability that there are no items at node 1.
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Fig. 4.5 Star-Shaped Network
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Exercise 42. Prove that a CTMC X(t) is reversible with respect to p if and
only if

pipij(t) = pjpji(t), i, j ∈ S. (4.68)

Hint: Consider the sum pij(t) =
∑∞

n=0 pij(t, n), where pij(t, n) is the prob-
ability of X(t) starting in state i and being in j at time t at the n-th state
visited by the process. To prove (4.68), it suffices to show (by induction) that

pipij(t, n) = pjpji(t, n), i, j ∈ S, n ≥ 0.

To prove the converse use pij(t) = qijt+ o(t), as t ↓ 0 from Theorem 18.

Exercise 43. Sojourn Times in an M/M/1 System. In the context of Ex-
ample 101, show that the sojourn time Ŵ for an arriving item in equilibrium
and its waiting time W prior to service satisfy

PT {Ŵ ≤ t} = PT {W ≤ t|W > 0} = 1− e−(μ−λ)t.

Exercise 44. Finite-Capacity Kelly Network. Consider the network process
in Theorem 81 with the modification that arrivals from outside are dependent
on the network such that q(x, x + er1) = λ(r)φr0(|x|). This would allow
for a finite capacity network by assuming φr0(n) = 0 for n = νr. For this
more general arrival rate, show that the invariant measure as in Theorem 81
would be

p(x) =
∏

rs∈M
λ(r)xrfrs(x)

|x|∏

k=1

φr0(k − 1), x ∈ S.

Exercise 45. Multiclass Jackson Network Process. Suppose X(t) is the mul-
ticlass network process X(t) in Theorem 82 with service intensities φαi(x) =
μαi(xαi), i �= 0, that do not depend on the quantity of items at the nodes.
Find an invariant measure for it. Next, consider the modification that α items
arrive to the network from outside with rate

φα0(x) = g0(|x|)hα0(|xα|),

where |xα| =
∑m

i=1 xαi is the number of α-items in the network. Show that
an invariant measure for X(t) has the form p(x) =

∏
αi∈M wxαi

αi fαi(x), with

fα0(x) =

|x|−1∏

k=0

g0(k)

|xα|−1∏

k′=0

hα0(k
′).

Exercise 46. Throughput Rates. SupposeX(t) is the multiclass network pro-
cess X(t) in Theorem 82 and assume it is ergodic. Find a simple expression
for the throughput (or average number of items that jump) from αi to βj
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ραi,βj = lim
t→∞

t−1
∑

s≤t
1(X(s) = X(s−)− eαi + eβj).

Next, assume the network is closed with ν items in it. Specify the stationary
distribution for X(t), and derive the throughput formula

ραi,βj = cνc
−1
ν−1wαiλαi,βj ,

where cν is the normalization constant for the network with ν items in it.

Exercise 47. Continuation. Suppose X(t) is the open multiclass network
process X(t) in the preceding exercise. Explain how the solutions wαi to the
traffic equations and throughput ραi,βj is changed or simplifies under the
following two scenarios.
(a) Each item carries a class label that does not change: λαi,βj = 0 if α �= β.

(b) The class changes are independent of the routing in that λαi,βj = λ̃αβ λ̄ij ,

where λ̃αβ and λ̄ij are irreducible transition rates for class changes and node
changes, respectively.

Exercise 48. Busy Period in an M/G/1 System. Suppose Q(t) is anM/G/1
queueing process with Poisson arrival times 0 < τ1 < τ2 < · · · , Q(0) = 0 and
ρ < 1. Consider T = inf{t > τ1 : Q(t) = 0}, which is the time at which the
system first becomes empty. Now T = τ1 +Y , where Y is the duration of the
busy period for the server. Find E[T ] and show that E[Y ] = ρ/λ(1− ρ).

Exercise 49. Scheduling Patients. Prior to having an operation at a hospital,
a patient is given a set of tests depending on the type of procedure (e.g., EKG,
sonogram, blood work). This has to be done at least one week before the
operation. Patients used to come in at their convenience, usually near noon
or late afternoon. To avoid congestion, the hospital required that patients
make an appointment for the test. The number of tests was such that patients
were scheduled to arrive every u minutes. (The following model is similar to
an actual study by Georgia Tech students for a hospital in Atlanta.)

As an idealized model, assume that patients do indeed arrive each u min-
utes, and the durations of the tests are independent exponentially distributed
with rate μ < 1/u. The tests are done one at a time and a patient arriving
when another one is being tested waits in a queue. Let Q(t) denote the num-
ber of patients in the system (waiting or being tested) at time t, and let Wn

denote the length of time the nth patient waits in the queue before being
tested. Find the distributions of the equilibrium queue length Q̃ and waiting
time W̃ . Determine what the time between tests u should be under the fol-
lowing criteria.
(a) Find the shortest u such that P{W̃ ≤ w} = .90 for fixed w.
(b) Find the shortest u such that E[W̃ ] ≤ w and P{Q̃ > m} ≤ .10 for fixed
w and m.
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Exercise 50. Fork-Join Processing System. Consider an m-node fork-join
network that processes jobs as follows. Jobs arrive every u time items (u
is a constant) and each job splits into m tasks, which are simultaneously
assigned to them nodes for processing. The nodes operate independently, and
each node processes jobs like a single-server G/M/1 system with independent
exponential service times with rate μ. When all the m tasks for a job are
finished, the job is complete and exits the system. The network is shown in
Figure 1.4 in Chapter 1, where the operating rules were different. Assume
the system is empty at time 0. Let X(t) = (X1(t), . . . , Xm(t)) denote the
numbers of tasks at the m nodes at time t., and find its limiting distribution.

Let W i
n denote the time to complete the task at node i for the nth job.

Then the sojourn time in the system for the nth job (i.e., the time to process

the job) is Wn = max{W 1
n , . . . ,W

m
n }. Show that Wn

d→ W as n → ∞, and
determine the distribution of W (which is a product of exponential distribu-
tions). Find the distribution of W when G is an exponential distribution.

Exercise 51. Extreme-value Process. Claims arrive at an insurance company
at times Tn that form a Poisson process N with rate λ. The size Yn of the
nth claim that arrives at time Tn has an exponential distribution with rate
μ and the claim sizes are independent of their arrival times. The maximum
claim up to time t is X(t) = maxk≤N(t) Yk. Justify that X(t) is a CTMC and
specify its defining parameters. Show that X(t) → ∞ a.s. as t → ∞, and
that

μX(t)− log(λt)
d→ Z,

where P{Z ≤ x} = exp{−e−x}, which is the Gumbel distribution. Evaluate
the distribution by conditioning on N(t) and using the exponential property
that if nan → a, then (1 − an)

n → e−a as n → ∞. As an intermediate step,

justify that μX(Tn)− log(λn)
d→ Z by evaluating the distribution of μX(Tn).

Exercise 52. Batch-Service System. Consider a batch-service system as in
Section 2.12 that processes items as follows. Items arrive to the station ac-
cording to a Poisson process with rate λ and they enter a queue where they
wait to be served. Items are processed in batches, and the number of items
in a batch can be any number less than or equal to K (the service capacity).
The service times of the batches are independent, exponentially distributed
with rate μ independently of everything else. Only one batch can be served
at a time and, during a service, additional arrivals join the queue. Batches
are served when and only when the queue length is equal or greater than
m (a control limit). In particular, if at the end of a service there are i ≥ m
items in the queue, then a batch of i∧K items is served; and when the queue
length is m − 1 and an arrival occurs, then a batch of size m is served. Let
Xn denote the queue length at the end of the nth service.

Show that the probability of n arrivals during a service is qpn, where
p = λ/(λ + μ) and q = 1 − p. Justify that Xn is a Markov chain with
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transition probabilities

pij =

{
qpj if i < K
qpj+k−i(1 − p) if K ≤ i ≤ j −K

and pij = 0 otherwise. Why don’t these probabilities depend onm? Assuming
λ < Kμ, prove that Xn is ergodic with stationary distribution πi = (10r)ri,
i ≥ 0, where r is the unique solution of qrK+1 − r + p = 0.

Exercise 53. Continuation. In the preceding batch-service model, let Tn de-
note the time of the nth service completion, where T0 = 0. Show that

E[T1|X0 = i] = (m− i)λ−11(i ≤ m) + μ−1.

Assume that C + ci is the cost for serving a batch of size i, and hi is the
cost per unit time for holding i items in the queue. Show that the expected
service plus holding cost in a time interval (Tn, Tn+1] given Xn = i is

f(i) = C + ci+ hiμ−1 + hλμ−2, i > m,

and for i ≤ m,

f(i) =
1

2
hm(m− 1)λ−1 − 1

2
hi(i− 1)λ−1 + C + cm+ hmμ−1 + hλμ−2.

Justify that the average cost for the system is

∞∑

i=0

f(i)πi/

∞∑

i=0

E[T1|X0 = i]πi.

This cost is a tractable function φ(m) of the control level m. This cost is
minimized at the smallest integer m ≤ K such that Dm ≥ 0, see [33], where

Dm = m
[1

2
(m+ 1) + λ/μ− c

]
− c2rm + c(c− λ/μ)− Cλ/h.

Exercise 54. Markov/Poisson Particle System. Consider a particle system
in a countable space S similar to the one in Section 3.11 with the following
modifications. Each particle moves independently in continuous time accord-
ing to an ergodic CTMC with transition probabilities pij(t) and stationary
distribution pi, i ∈ S. That is, pij(t) is the probability that a particle start-
ing in state i is in state j at time t. Assume the system is empty at time 0
and that particles enter the system according to a space-time Poisson process
M on R+ × S, where M((0, t] × B) is the number of arrivals in (0, t] that
enter B ⊆ S, and E[M((0, t]×{i})] = λtpi. Let Qi(t) denote the quantity of
particles in state i at time t. Show that

(Qi(t) : i ∈ S)
d→ (Qi : i ∈ S), as t→ ∞,
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where Qi are independent Poisson random variables with E[Qi] = λpi.

Exercise 55. Continuation. In the setting of the preceding exercise, suppose
at time 0 the number of particles in the system is a point process with in-
tensity μ that is independent of the space-time arrival process M of other
particles and all the particles move independently as above. The quantity of
particles in state i at time t is Xi(t) = Q0

i (t)+Qi(t), where Q
0
i (t) denotes the

quantity of particles in i at time t that were in the system at time 0. Show
that E[Q0

i (t)] =
∑

j∈S pji(t)μ(i), and find αi = limt→∞ E[Xi(t)]. Prove

Q0
i (t)

d→ Q0
i , as t → ∞, for i ∈ S,

where Q0
i are independent Poisson random variables with E[Qi] = pi. Show

that limt→∞ P{Xi(t) = n} = e−αi(αi)
n/n!.

Exercise 56. LetX(t) denote the ergodic Markov-renewal process as in The-
orem 124. Arguing as in Proposition 41, show that

Ei

[ ∫ τi

0

1(X(t) = j) dt
]
= π−1

i πj
∑

�∈S
pj�μj�,

Ei[τi] = π−1
i

∑

j∈S
πj

∑

�∈S
pj�μj�

Ei

[ ∫ τi

0

f(X(t)) dt
]
= π−1

i

∑

j∈S
πjf(j)

∑

�∈S
pj�μj�.

Use these formulas to prove Theorem 124.



Chapter 5

Brownian Motion

Brownian motion processes originated with the study by the botanist Brown
in 1827 of the movements of particles suspended in water. As a particle is
occasionally hit by the surrounding water molecules, it moves continuously
in three dimensions. Assuming the infinitesimal displacements of the particle
are independent and identically distributed, the central limit theorem would
imply that the size of a typical displacement (being the sum of many small
ones) is normally distributed. Then the continuous trajectory of the particle
in R

3 would have increments that are stationary, independent and normally
distributed. These are the defining properties of Brownian motion. This dif-
fusion phenomenon, commonly encountered in other contexts as well, gave
rise to the theory of Brownian motion and more general diffusion processes.

Brownian motion is one of the most prominent stochastic processes. Its im-
portance is due in part to the central limit phenomenon that sums of random
variables such as random walks, considered as processes in time, converge to
a Brownian motion or to functions of it. Moreover, Brownian motion plays
a key role in stochastic calculus involving integration with respect to Brow-
nian motion and semimartingales. This calculus is used to study dynamical
systems modeled by stochastic differential equations. For instance, in the
area of stochastic finance, stochastic differential equations are the basis for
pricing of options by Black-Scholes and related models. Brownian motion is
an important example of a diffusion process and it is a Gaussian process as
well. Several variations of Brownian motion arise in specific applications, such
as Brownian bridge in statistical hypothesis testing. In operations research,
the major applications of Brownian motion have been in approximations for
queueing systems, and there have also been applications in various areas such
as financial models and supply chains.

This chapter begins by introducing a Brownian motion as a Markov process
that satisfies the strong Markov property, and then characterizes a Brownian
motion as a Gaussian process. The second part of the chapter is a study of
hitting times of Brownian motion and its cumulative maximum process. This

R. Serfozo, Basics of Applied Stochastic Processes,
Probability and its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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includes a reflection principle for Brownian sample paths, and an introduction
to martingales and the optional stopping theorem for them.

The next major results are limit theorems: a strong law of large numbers
for Brownian motion and its maximum process, a law of the iterated loga-
rithm for Brownian motion, and Donsker’s functional limit theorem showing
that Brownian motion is an approximation to random walks. Applications of
Donsker’s theorem yield similar Brownian approximations for Markov chains,
renewal and regenerative-increment processes, and G/G/1 queueing systems.

Other topics include peculiarities of Brownian sample paths, geometric
Brownian motion, Brownian bridge processes, multidimensional Brownian
motion, Brownian/Poisson particle process, and Brownian motion in a ran-
dom environment.

5.1 Definition and Strong Markov Property

Recall that a random walk in discrete time on the integers is a Markov chain
with stationary independent increments. An analogous process in continuous
time on R is a Brownian motion. This section introduces Brownian motion as
a real-valued Markov process on the nonnegative time axis. Its distinguish-
ing features are that it has stationary, independent, normally-distributed in-
crements and continuous sample paths. It also satisfies the strong Markov
property.

We begin by describing a “standard” Brownian motion, which is also called
a Wiener process.

Definition 1. A real-valued stochastic process B = {B(t) : t ∈ R+} is a
Brownian motion if it satisfies the following properties.
(i) B(0) = 0 a.s.
(ii) B has independent increments and, for s < t, the increment B(t)−B(s)
has a normal distribution with mean 0 and variance t− s.
(iii) The paths of B are continuous a.s.

Property (ii) says that a Brownian motion B has stationary, independent
increments. From this one can show that B is a Markov process. Conse-
quently, a Brownian motion is a diffusion process — a Markov process with
continuous sample paths. The next section establishes the existence of Brown-
ian motion as a special type of Gaussian process. An introduction to Brownian
motion in R

d is in Section 5.14.
Because the increments of a Brownian motion B are stationary, inde-

pendent and normally distributed, its finite-dimensional distributions are
tractable. The normal density of B(t) with mean 0 and variance t is

fB(t)(x) =
1√
2πt

e−x2/2t.
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Denoting this density by ϕ(x; t), it follows by induction and properties (i)
and (ii) that, for 0 = t0 < t1 < · · · < tn and x0 = 0, the joint density of
B(t1), . . . , B(tn) is

fB(t1),...,B(tn)(x1, . . . , xn) =

n∏

m=1

ϕ(xm − xm−1;
√
tm − tm−1). (5.1)

Another nice feature is that the covariance between B(s) and B(t) is

E[B(s)B(t)] = s ∧ t. (5.2)

This follows since, for s < t,

Cov(B(s), B(t)) = E[B(s)B(t)] = E[B(s)[(B(t) −B(s)) +B(s)]]

= E[B(s)2] = s.

Several elementary functions of a Brownian motion are also Brownian mo-
tions; see Exercise 1. Here is an obvious example.

Example 2. Symmetry Property. The process −B(t), which is B reflected

about 0, is a Brownian motion (i.e., −B d
= B).

As a generalization of a standard Brownian motion B, consider the process

X(t) = x+ μt+ σB(t), t ≥ 0.

Any process equal in distribution to X is a Brownian motion with drift: x
is its initial value, μ is its drift coefficient, and σ > 0 is its variation. Many
properties of a Brownian motion with drift readily follow from properties of
a standard Brownian motion. For instance, X has stationary, independent
increments and X(t + s) − X(s) is normally distributed with mean μt and
variance σ2t. Drift and variability parameters may be useful in Brownian
models for representing certain trends and volatilities.

Now, let us see how Brownian motions are related to diffusion processes.
Generally speaking, a diffusion process is a Markov process with continuous
paths. Most diffusion processes in applications, however, have the following
form. Suppose that {X(t) : t ≥ 0} is a real-valued Markov process with
continuous paths a.s. that satisfies the following properties: For each x ∈ R,
t ≥ 0, and ε > 0,

lim
h↓0

h−1P{|X(t+ h)−X(t)| > ε|X(t) = x} = 0,

lim
h↓0

h−1E[X(t+ h)−X(t)|X(t) = x] = μ(x, t),

lim
h↓0

h−1E[(X(t+ h)−X(t))2|X(t) = x] = σ(x, t),
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where μ and σ are functions on R × R+. The X is a diffusion process on R

with drift parameter μ(x, t) and diffusion parameter σ(x, t).
As a prime example, a Brownian motion with drift X(t) = μt+ σB(t), is

a diffusion process whose drift and diffusion parameters μ and σ are inde-
pendent of x and t. Many functions of Brownian motions are also diffusions
(e.g., the Ornstein-Uhlenbeck and Bessel Processes in Examples 8 and 64).

We end this introductory section with the strong Markov property for
Brownian motion. Suppose that B is a Brownian motion on a probability
space (Ω,F , P ). Let FB

t ⊆ F be the σ-field generated by {B(s) : s ∈ [0, t]},
and assume FB

0 includes all sets of P -probability 0 to make it complete. A
stopping time of the filtration FB

t is a random time τ , possibly infinite, such
that {τ ≤ t} ∈ FB

t , t ∈ R+. The σ-field of events up to time τ is

FB
τ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ∈ R+}.

If τ1 and τ2 are two FB
t -stopping times and τ1 ≤ τ2, then FB

τ1 ⊆ FB
τ2 .

Theorem 3. If τ is an a.s. finite stopping time for a Brownian motion B,
then the process B′(t) = B(τ + t) − B(τ), t ∈ R+, is a Brownian motion
independent of FB

τ .

Proof. We will prove this only for a stopping time τ that is a.s. bounded
(τ ≤ u a.s. for some u > 0). Clearly B′ has continuous sample paths a.s. It
remains to show that the increments of B′ are independent and independent
of FB

τ , and B′(s+t)−B′(s) is normally distributed with mean 0 and variance
t. These properties will follow upon showing that, for any 0 ≤ t0 < · · · < tn,
and u1, . . . , un in R+,

E[eSn |FB
τ ] = e

1
2

∑n
i=1 u

2
i (ti−ti−1) a.s., (5.3)

where Sn =
∑n
i=1 ui[B

′(ti)−B′(ti−1)].
The proof of (5.3) will be by induction. First note that

E[eSn+1 |FB
τ ] = E

[
eSnE[eSn+1−Sn |FB

τ+tn ]
∣
∣
∣FB

τ

]
. (5.4)

Now, since τ + tn is a bounded stopping time, using Example 26 below,

E[eSn+1−Sn |FB
τ+tn ] = E[eun+1[B(τ+tn+1)−B(τ+tn)]|FB

τ+tn ]

= e
1
2u

2
n+1(tn+1−tn).

This expression with n = 0 and S0 = 0 proves (5.3) for n = 1. Next assuming
(5.3) is true for some n, then using the last display and (5.3) in (5.4) yields
(5.3) for n+ 1.
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5.2 Brownian Motion as a Gaussian Process

This section shows that Brownian motion is a special type of Gaussian Pro-
cess. Included is a proof of the existence of Gaussian processes, which leads
to the existence of Brownian motion.

We begin with a discussion of multivariate normal distributions. Suppose
that X1, . . . , Xn are normally distributed (not necessarily independent) ran-
dom variables with means m1, . . . ,mn. Then clearly, for u1, . . . , un ∈ R,

E
[ n∑

i=1

uiXi

]
=
∑

i

uimi, Var
[ n∑

i=1

uiXi

]
=
∑

i

∑

j

uiujcij , (5.5)

where cij = Cov(Xi, Xj). The vector (X1, . . . , Xn) is said to have a multivari-
ate normal (or Gaussian) distribution if

∑n
i=1 uiXi has a normal distribution

for any u1, . . . , un in R. In light of (5.5), the (X1, . . . , Xn) has a multivariate
normal distribution if and only if its moment generating function has the
form

E
[
e
∑n

i=1 uiXi

]
= exp

{∑

i

uimi +
1

2

∑

i

∑

j

uiujcij

}
, ui ≥ 0. (5.6)

The vector (or distribution) associated with the moment generating func-
tion (5.6) is called nondegenerate if the n× n matrix C = {cij} has rank n.
In this case, the joint density of (X1, . . . , Xn) is

f(x1, . . . , xn) =
1

√
(2π)n|C|

exp
{
− 1

2

∑

i

∑

j

ĉij(xi −mi)(xj −mj)
}
, (5.7)

where {ĉij} is the inverse of C and |C| is its determinant.
It turns out that any multivariate normal vector can be represented by

a nondegenerate one as follows. When C does not have rank n, it follows
by a property of symmetric matrices that there exists a k × n matrix A
with transpose At, where k ≤ n, such that C = AtA. Let X denote the
multivariate normal vector as a 1 × n matrix with mean vector m. Suppose
that Y is a 1×k nondegenerate multivariate vector of i.i.d. random variables
Y1, . . . , Yk that are normally distributed with mean 0 and variance 1. Then
the multivariate normal vector, has the representation

X
d
= m+ Y A. (5.8)

This equality in distribution follows because the moment generating function
of m+ Y A is equal to (5.6). Indeed,
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E

⎡

⎣exp
{ n∑

i=1

uimi +

n∑

i=1

ui(

k∑

j=1

aji)Yj

}
⎤

⎦ = exp

{
∑

i

uimi +
v

2

}

,

where interchanging the summations and using C = AtA,

v = Var

⎡

⎣
k∑

j=1

(
n∑

i=1

uiaji

)

Yj

⎤

⎦ =

k∑

j=1

(
n∑

i=1

uiaji

)2

=

k∑

j=1

(
n∑

i=1

uia
t
ij

)(
n∑

�=1

u�aj�

)

=
∑

i

∑

j

uiujcij .

A major characteristic of a Brownian motion is that its finite-dimensional
distributions are multivariate normal. Other stochastic processes with this
property are as follows.

Definition 4. A stochastic process X = {X(t) : t ∈ R+} is a Gaussian
process if (X(t1), . . . , X(tn)) has a multivariate normal distribution for any
t1, . . . , tn in R+. Discrete-time Gaussian processes are defined similarly.

A process X is Gaussian, of course, if and only if
∑n

i=1 uiX(ti) has a nor-
mal distribution for any t1, . . . , tn in R+ and u1, . . . , un in R. A Gaussian pro-
cessX is called nondegenerate if its covariance matrix cij = Cov(X(ti), X(tj))
has rank n, for any t1, . . . , tn in R+. In that case,

(
X(t1), . . . , X(tn)

)
has a

multivariate normal density as in (5.7).
The next result establishes the existence of Gaussian processes. It also

shows that the distribution of a Gaussian process is determined by its mean
and covariance functions. So two Gaussian processes are equal in distribution
if and only if their mean and covariance functions are equal. Let c(s, t) be a
real-valued function on R

2
+ that satisfies the following properties:

c(s, t) = c(t, s), s, t,∈ R+. (Symmetric)

For any finite set I ⊂ R+ and ut ∈ R,

∑

t∈I

∑

s∈I
usutc(s, t) ≥ 0. (Nonnegative-definite)

Theorem 5. For any real-valued function m(t) and the function c(s, t) de-
scribed above, there exists a Gaussian process {X(t) : t ∈ R+} defined on a
probability space (Ω,F , P ) = (RR+ ,BR+ , P ), with E[X(t)] = m(t) and

Cov(X(s), X(t)) = c(s, t), s, t,∈ R+.

Furthermore, the distribution of this process is determined by the functions
m(t) and c(s, t).
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Proof. We begin by defining finite-dimensional probability measures μI for
a process on (RR+ ,BR+ , P ). For any finite subset I in R+, let μI be the
probability measure specified by μI(×t∈IAt), At ∈ B, t ∈ I, that has the
joint normal moment generating function

G(uI) = exp
{∑

t∈I
utm(t) +

1

2

∑

t∈I

∑

s∈I
usutc(s, t)

}
, uI = (ut : t ∈ R+).

Note that for I ⊆ J ,

G(uJ) = G(uI), if ut = 0, t ∈ J\I.

Consequently, the joint normal distributions μI satisfy the consistency con-
dition that, for any I ⊆ J for finite J and At ∈ B, t ∈ J ,

μJ(×t∈JAt) = μI(×t∈IAt), if At = R for t ∈ J\I. (5.9)

Then it follows by Kolmogorov’s extension theorem (Theorem 5 in the Ap-
pendix), that there exists a stochastic process {X(t) : t ∈ R+} defined on the
probability space (Ω,F , P ) = (RR+ ,BR+ , P ), whose finite-dimensional prob-
ability measures are given by μI . Since the μI are determined by m(t) and
c(s, t), so is the distribution of X . Moreover, from the moment generating
function for the μI , it follows that

E[X(t)] = m(t), Cov(X(s), X(t)) = c(s, t).

Brownian motion is a quintessential example of a Gaussian process.

Proposition 6. A Brownian motion with drift X(t) = μt+ σB(t), t ≥ 0, is
a Gaussian process with continuous sample paths a.s. starting at X(0) = 0
and its mean and covariance functions are

E[X(t)] = μt, Cov(X(s), X(t)) = σ2(s ∧ t), s, t ∈ R+.

Proof. For any 0 = t0 < t1 < · · · < tn, letting Yi = X(ti)−X(ti−1), we have

n∑

i=1

uiX(ti) =

n∑

i=1

ui

i∑

k=1

Yi =

n∑

k=1

(
n∑

i=k

ui

)

Yk, u1, . . . , un ∈ R.

Now the increments Yi are independent, normally distributed random vari-
ables with mean 0 and variance σ2(ti− ti−1). Then the last double-sum term
has a normal distribution, and so (X(t1), . . . , X(tn)) has a multivariate nor-
mal distribution. Hence X is a Gaussian process, and its mean and variance
are clearly as shown.

The preceding characterization is useful for verifying that a process is
a Brownian motion, especially when the multivariate normality condition
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is easy to verify (as in Exercise 2). There are other interesting Gaussian
processes that do not have stationary independent increments; see Example 8
below and Exercise 10.

One approach for establishing the existence of a Brownian motion is to
construct it as a Gaussian process as follows.

Theorem 7. There exists a stochastic process {B(t) : t ≥ 0} defined on
a probability space (Ω,F , P ) = (RR+ ,BR+ , P ) such that B is a Brownian
motion.

Sketch of Proof. Let {B(t) : t ≥ 0} be a Gaussian process as constructed
in the proof of Theorem 5 with the special Brownian functions m(t) = 0
and c(s, t) = s ∧ t. A major result (whose proof is omitted) says that this
process has stationary independent increments, and B(t)−B(s), for s < t, is
normally distributed with mean 0 and variance t−s. A second step is needed,
however, to justify that such a process has continuous sample paths.

Since B(t)−B(s)
d
= (t− s)1/2B(1), for s < t, the process satisfies

E[|B(t)−B(s)|a] = (t− s)a/2E[|B(1)|a] <∞, a > 0.

Using this property, another major result shows that B can be chosen so that
its sample paths are continuous, and hence it is a Brownian motion. The re-
sults that complete the preceding two steps are proved in [64].

A Brownian motion is an example of a Markov process with continuous
paths that is a Gaussian process. Are there Markov processes with continu-
ous paths (i.e., diffusion processes), other than Brownian motions, that are
Gaussian? Yes there are — here is an important example.

Example 8. An Ornstein-Uhlenbeck Process is a stationary Gaussian process
{X(t) : t ≥ 0} with continuous sample paths whose mean function is 0 and
whose covariance function is

Cov(X(s), X(t)) =
σ2

2α
e−α|s−t|, s, t ≥ 0,

where α and σ are positive. This process as proved in [61] is the only station-
ary Gaussian process with a continuous covariance function that is a Markov
process. (Exercise 9 shows that a Gaussian processX is stationary if and only
if its mean function is a constant and its covariance function Cov(X(s), X(t))
only depends on |t− s|.)

It is interesting that the process X is also a function of a Brownian motion
B in that X is equal in distribution to the process

Y (t) = σe−αtB(eαt/2α), t ≥ 0.

To see this, note that Y has continuous sample paths and clearly it is Gaussian
since B is. In addition, E[Y (t)] = 0 for each t and, for s < t,
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Cov(Y (s), Y (t)) = σ2e−α(s+t)E
[
B(eαs/2α)B(eαt/2α)

]

=
σ2

2α
e−α(t−s).

Consequently, Y is a stationary Gaussian process and it has the same mean

and covariance functions as X . Hence Y
d
= X .

The Ornstein-Uhlenbeck process X defined above satisfies the stochastic
differential equation

dX(t) = −αX(t)dt+ σdB(t). (5.10)

The example above assumes that X(0) has a normal distribution with mean
0 and variance σ2. The solution of this equation is

X(t) = X(0)e−αt + σ

∫ t

0

e−α(t−s)dB(s).

The stochastic differential equation and the integral with respect to Brownian
motion, which is beyond the scope of this work, is discussed in [61, 64].

Scientists realized that the Brownian motion representation for a particle
moving in a medium was an idealized model in that it does not account for
friction in the medium. To incorporate friction in the model, Langevin 1908
proposed that the Ornstein-Uhlenbeck processX could represent the velocity
of a particle undergoing a Brownian motion subject to friction. He assumed
that the rate of change in the velocity satisfies (5.10), where−αX(t)dtmodels
the change due to friction; the friction works in the opposite direction to the
velocity and α is the coefficient of friction divided by the mass of the particle.
The stochastic process for this model was formalized later by Ornstein and
Uhlenbeck 1930 and Doob 1942.

5.3 Maximum Process and Hitting Times

For a Brownian motion B, its cumulative maximum process is

M(t) = max
s≤t

B(s), t ≥ 0.

This process is related to the hitting times

τa = inf{t > 0 : B(t) = a}, a ∈ R.

Namely, for each a ≥ 0 and t,

{τa ≤ t} = {M(t) ≥ a}. (5.11)
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In other words, the distribution of the maximum process is determined by
that of the hitting times and vice versa. This section presents expressions for
these distributions and an important property of the hitting times.

We begin with a preliminary fact.

Remark 9. The hitting time τa is an a.s. finite stopping time of B.

The τa is a stopping time since B has continuous paths a.s. Its finiteness
follows by Theorem 32 below, which is proved by the martingale optional
stopping theorem in the next section. The finiteness also follows by the con-
sequence (5.30) of the law of the iterated logarithm in Theorem 38 below.

The first result is a reflection principle that an increment B(t) − B(τ)
after a stopping time τ has the same distribution as the reflected increment

−(B(t) − B(τ)). This is basically the symmetry property B
d
= −B in Ex-

ample 2 manifested at the stopping time τ . A version of this principle for
stochastic processes is in Exercises 20 and 21.

Proposition 10. (Reflection Principle) If τ is an a.s. finite stopping time of
B, then, for any a and t,

P{B(t)−B(τ) ≤ a, τ ≤ t} = P{B(t)−B(τ) ≥ −a, τ ≤ t}.

Proof. Letting B′(t) = B(τ + t)−B(τ), t ≥ 0, we can write

B(t)−B(τ) = B′(t− τ), for τ ≤ t. (5.12)

By the strong Markov property in Theorem 3, B′ is a Brownian motion
independent of Fτ . Using this and (5.12) along with the symmetry property

B′ d
= −B′ and {τ ≤ t} ∈ Fτ ,

P{B(t)−B(τ) ≤ a, τ ≤ t} = E
[
P{B′(t− τ) ≤ a|τ ≤ t,Fτ}

]
P{τ ≤ t}

= E
[
P{−B′(t− τ) ≤ a|τ ≤ t}

]
P{τ ≤ t}

= P{B′(t− τ) ≥ −a, τ ≤ t}.

Then using (5.12) in the last probability completes the proof.

We will now apply the reflection principle to obtain an expression for the
joint distribution of B(t) and M(t).

Theorem 11. For x < y and y ≥ 0,

P{B(t) ≤ x,M(t) ≥ y} = P{B(t) ≥ 2y − x}, (5.13)

P{M(t) ≥ y} = 2P{B(t) ≥ y}.

Furthermore, M(t)
d
= |B(t)| for each t, and the density of M(t) is
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fM(t)(x) =
2√
2πt

e−x2/2t, x ≥ 0.

Hence
E[M(t)] =

√
2t/π, Var[M(t)] = (1− 2/π)t. (5.14)

Proof. Assertion (5.13) follows since by (5.11) and Proposition 10 with τ =
τy, B(τ) = y, and a = x− y, we have, for x ≤ y and y ≥ 0,

P{B(t) ≤ x,M(t) ≥ y} = P{B(t) ≤ x, τy ≤ t}
= P{B(t) ≥ 2y − x, τy ≤ t}
= P{B(t) ≥ 2y − x}.

The last equality is because 2y − x ≥ y and

{B(t) ≥ 2y − x} ⊆ {B(t) ≥ y} ⊆ {τy ≤ t}.

Next, using what we just proved with x = y, we have

P{M(t) ≥ y} = P{B(t) ≤ y,M(t) ≥ y}+ P{B(t) ≥ y,M(t) ≥ y}
= 2P{B(t) ≥ y}.

Taking the derivative of this with respect to y yields the density of M(t). In

addition, 2P{B(t) ≥ y} = P{|B(t)| ≥ y} implies M(t)
d
= |B(t)|. Exercise 11

proves (5.14).

Even though M(t)
d
= |B(t)| for each t, the processes M and |B| are not

equal in distribution; M is nondecreasing while |B| is not. Exercise 19 points

out the interesting equality in distribution M
d
= M −B for the processes.

Because of the reflection property −B d
= B of a Brownian motion B, its

minima is also a reflection of its maxima.

Remark 12. The minimum process for B is

M(t) = min
s≤t

B(s), t ≥ 0.

It is related to the maximum process M by M
d
= −M . Hence

P{M(t) ≤ a} = 2P{B(t) ≥ −a}, a < 0.

That M
d
= −M follows by M(t) = −maxs≤t−B(t) and the reflection prop-

erty −B d
= B. Also, Theorem 11 yields the distribution of M(t).

We will now obtain the distribution of the hitting time τa from Theo-
rem 11. This result is also a special case of Theorem 32 for hitting times for
a Brownian motion with drift, which also contains the Laplace transform of
τa and shows that E[τa] = ∞.
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Corollary 13. For any a ≥ 0,

P{τa ≤ t} = 2[1− Φ(a/
√
t)], t > 0,

where Φ is the standard normal distribution. Hence, the density of τa is

fτa(t) =
a√
2πt3

e−a2/2t, t > 0.

Proof. From (5.11), Theorem 11, and B(t)
d
=

√
tB(1), we have

P{τa ≤ t} = P{M(t) ≥ a}
= 2P{B(t) ≥ a} = 2[1− Φ(a/

√
t)].

Taking the derivative of this yields the density of τa.

The family of hitting times {τa : a ≥ 0} for B is an important process in
its own right. It is the non-decreasing left-continuous inverse process of the
maximum process M since

τa = inf{t : B(t) = a} = inf{t : M(t) = a}.

By Corollary 13, we know the density of τa and that E[τa] = ∞. Here is more
information about these hitting times.

Proposition 14. The process {τa : a ≥ 0} has stationary independent incre-
ments and, for a < b, the increment τb − τa is independent of Fτa and it is
equal in distribution to τ(b−a).

Proof. Since τb − τa = inf{t : B(τa + t) − B(τa) = b − a}, it follows by the
strong Markov property at τa that τb − τa is independent of Fτa and it is
equal in distribution to τb−a. Also, it follows by an induction argument that
{τa : a ≥ 0} has stationary independent increments.

5.4 Special Random Times

In this section, we derive arc sine and arc cosine probabilities for certain
random times of Brownian motion by applying properties of the maximum
process.

We first consider two random times associated with a Brownian motion B
on the interval [0, 1] and its maximum process M(t) = maxs≤t B(s). These
times have the same arc sine distribution, which is discussed in Exercise 14.

Theorem 15. (Lévy Arc Sine Law) For a Brownian motion B on [0, 1], the
time τ = inf{t ∈ [0, 1] : B(t) = M(1)} has the arc sine distribution
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P{τ ≤ t} =
2

π
arcsin

√
t, t ∈ [0, 1]. (5.15)

In addition, the time τ ′ = sup{t ∈ [0, 1] : B(t) = 0} has the same distribution.

Proof. First note that, for t ≤ 1,

τ ≤ t ⇐⇒ max
s≤t

B(s)−B(t) ≥ max
t≤s≤1

B(s)−B(t).

Denote the last inequality as Y1 ≥ Y2 and note that these random variables
are independent since B has independent increments. Now, by the translation
and symmetry properties of B and Theorem 11,

Y1
d
= M(t)

d
= |B(t)| d= t1/2|Z1|,

Y2
d
= M(1− t)

d
= |B(1 − t)| d= (1− t)1/2|Z2|,

where Z1 and Z2 are normal random variables with mean 0 and variance 1.
From these observations, we have

P{τ ≤ t} = P{Y1 ≥ Y2} = P{tZ2
1 ≥ (1− t)Z2

2}
= P{Z2

2/(Z
2
1 + Z2

2 ) ≤ t}, (5.16)

where we may take Z1 and Z2 to be independent. Then (5.15) follows since
the last probability, due to the symmetry property of the normal distribution,
is the arsine distribution by Exercise 14.

Next, note that by Remark 12 on the minimum process, we have

P{τ ′ < t} = P{max
t≤s≤1

B(s) > 0}+ P{ min
t≤s≤1

B(s) < 0}

= 2P{Y > −B(t)}.

where Y = maxt≤s≤1B(s) − B(t) is independent of B(t). By the symmetry
of B and Theorem 11, we have

−B(t)
d
= B(t)

d
= t1/2Z1,

Y
d
= M(1− t)

d
= |B(1− t)| d= (1 − t)1/2|Z2|,

where Z1 and Z2 are normal random variables with mean 0 and variance 1.
Assuming Z1 and Z2 are independent, the preceding observations and (5.16)
yield

P{τ ′ < t} = 2P{(1− t)1/2|Z2| < t1/2Z1}
= P{(1− t)Z2

2 < tZ2
1} = P{τ ≤ t}.

This proves that τ ′ also has the arc sine distribution.
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Next, we consider the event that a Brownian motion returns to the origin
0 in a future time interval.

Theorem 16. The event A that a Brownian motion B hits 0 in a time in-
terval [t, u] has the probability

P (A) =
2

π
arccos

√
t/u, where 0 < t < u. (5.17)

Proof. For t < u and u = 1, it follows by Theorem 15 that

P (A) = P{τ > t} = 1− 2

π
arcsin

√
t =

2

π
arccos

√
t.

The proof for u �= 1 is Exercise 15.

5.5 Martingales

A martingale is a real-valued stochastic process defined by the property that
the conditional mean of an “increment” of the process conditioned on past
information is 0. A random walk and Brownian motion whose mean step
sizes are 0 have this property. However, the increments of a martingale are
generally dependent, unlike the independent increments of a random walk or
Brownian motion. Martingales are used for proving convergence theorems,
analyzing hitting times of processes, finding optimal stopping rules, and pro-
viding bounds for processes. Moreover, they are key tools in the theory of
stochastic differential equations.

In this section, we introduce martingales and discuss several examples
associated with Brownian motion and compound Poisson processes. We also
present the important submartingale convergence theorem. The next two sec-
tions cover the optional stopping theorem for martingales and its applications
to Brownian motion.

Throughout this section, X = {X(t) : t ≥ 0} will denote a real-
valued continuous-time stochastic process that has right-continuous paths
and E[ |X(t)| ] <∞, t ≥ 0. Associated with the underlying probability space
(Ω,F , P ) for the process X , there is a filtration {Ft : t ≥ 0}, which is
a family of σ-fields contained in F that is increasing (Fs ⊆ Ft, s ≤ t)
and right-continuous (FB

t = ∩u>tFB
u ), and F0 contains all events with P -

probability 0. Furthermore, the process X is adapted to the filtration Ft in
that {X(t) ≤ x} ∈ Ft, for each t and x.

Definition 17. The process X is a martingale with respect to Ft if

E[X(t)|Fs] = X(s) a.s. 0 ≤ s < t. (5.18)

The process X is a submartingale if
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E[X(t)|Fs] ≥ X(s) a.s. 0 ≤ s < t.

If the inequality is reversed, then X is a supermartingale.

Taking the expectation of (5.18) yields the characteristic of a martingale
that

E[X(t)] = E[X(s)], s ≤ t.

The martingale condition (5.18) is equivalent to

E[X(t)−X(s)|Fs] = 0,

which says that the conditional mean of an increment conditioned on the
past is 0.

A classic illustration of a martingale is the value X(t) of an investment (or
the fortune of a gambler) at time t in a marketplace described by the events
in Ft. The martingale property (5.18) says that the investment is subject to
a “fair market” in that its expected value at any time t conditioned on the
environment Fs up to some time s < t is the same as the value X(s).

On the other hand, the submartingale property implies that the mar-
ket is biased toward “upward” movements of the value X resulting in
E[X(t)] ≥ X(s) a.s., for s ≤ t. Similarly, the supermartingle property implies
“downward” movements resulting in E[X(t)] ≤ X(s) a.s.

In typical applications, Ft = FY
t , which is the σ-field generated by the

events of a right-continuous process {Y (s) : s ≤ t} on a general state space.
In this setting, we say that X is a martingale with respect to Y . In some
instances, it is natural that X is a martingale with respect to the filtration
Ft = FX

t of its own history.
Martingales in discrete time are defined similarly. In particular, real-valued

random variables Xn with E[ |Xn| ] < ∞ form a martingale with respect to
increasing σ-fields Fn if

E[Xn+1|Fn] = Xn, n ≥ 0.

The Xn is a submartingale or supermartingale if the equality is replaced by ≥
or ≤, respectively. Standard examples are sums and products of independent
random variables; see Exercise 30.

Note that a Brownian motion B is a martingale with respect to itself since,
for s ≤ t,

E[B(t)|FB
s ] = E

[
B(t)−B(s)

∣
∣
∣B(s)

]
+B(s) = B(s).

Similarly, if X(t) = x+ μt+ σB(t) is a Brownian motion with drift, then

E[X(t)|FB
s ] = μ(t− s) +X(s), s ≤ t.
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Therefore,X is a martingale, submartingale, or supermartingale with respect
to B according as μ is = 0, > 0, or < 0.

We will also encounter several functions of Brownian motion that are mar-
tingales of the following type.

Example 18. Martingales For Processes with Stationary Independent Incre-
ments. Suppose that Y is a real-valued process that has stationary indepen-
dent increments and, for simplicity, assume that Y (0) = 0. Suppose that the
moment generating function ψ(α) = E[eαY (1)] exists for α in a neighborhood
of 0, and that E[eαY (t)] as a function of t is continuous at 0, for fixed α.

Then by Exercise 7, E[eαY (t)] = ψ(α)t and

E[Y (t)] = at, Var[Y (t)] = bt,

where a = E[Y (1)] and b = Var[Y (1)]. For instance, Y may be Brownian
motion with drift, a Poisson process or a compound Poisson process.

An easy check shows that two martingales with respect to Y are

Y (t)− at, and (Y (t)− at)2 − bt, t ≥ 0.

The means of these martingales are 0.
Next, consider the process

Z(t) = eαY (t)/ψ(α)t, t ≥ 0.

Clearly Z(t) is a deterministic, nonnegative function of {Y (s) : s ≤ t}, and
E[Z(t)] = 1. Then Z is a martingale (sometimes called an exponential mar-
tingale) with respect to Y . Indeed,

E[Z(t)|FY
s ] = Z(s)

E[eα(Y (t)−Y (s))|Z(s)]
ψ(α)t−s

= Z(s).

Example 19. Martingales for Brownian Motion. For a Brownian motion with
drift Y (t) = x+μt+σB(t), the preceding example justifies that the following
functions of Y are martingales with respect to B:

(Y (t)− x− μt)2 − σ2t, ec[Y (t)−x−μt]−e−c2σ2t/2

, t ≥ 0, c �= 0.

In particular, B(t)2 − t and ecB(t)−c2t/2 are martingales with respect to B.

Having a constant mean suggests that a martingale should also have a
nice limiting behavior. According to the next major theorem, many sub-
martingales as well as martingales converge a.s. to a limit. This result for
discrete-time processes also holds in continuous-time.

Theorem 20. (Submartingale Convergence) If Xn is a martingale, or a sub-
martingale that satisfies supnE[X+

n ] < ∞, then there exists a random variable
X with E[ |X | ] <∞ such that Xn → X a.s. as n→ ∞.
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This convergence can be viewed as an extension of the fact that a nonde-
creasing sequence of real numbers that is bounded converges to a finite limit.
For a submartingale, the nondecreasing tendency is E[Xn+1|Fn] ≤ Xn, and
a bound on E[X+

n ] is enough to ensure convergence a.s. — the submartingale
itself need not be nondecreasing.

The theorem establishes the existence of the limit X , but it does not
specify its distribution. Properties of X can sometimes be derived in specific
cases depending on characteristics of Xn.

In addition to the convergence Xn → X a.s., it follows by Theorem 15 in
the Appendix that E[ |Xn −X | ] → 0 as n→ ∞ when the Xn are uniformly
integrable.

Although Theorem 20 is a major result, we will only give the following ex-
ample since it is not needed for our results. For a proof and other applications,
see for instance [37, 61, 62, 64].

Example 21. Doob Martingale. Let Z be a random variable with E[ |Z| ] < ∞,
and let Fn be an increasing filtration on the underlying probability space for
Z. The conditional expectation

Xn = E[Z |Fn], n ≥ 1,

is a martingale with respect to Fn. Then by Theorem 20

X = lim
n→∞

E[Z|Fn] exists a.s.

That Xn is a martingale follows since

E[ |Xn| ] ≤ E
[
E[ |Z| |Fn]

]
= E[ |Z| ] < ∞,

E[Xn+1|Fn] = E
[
E[Z |Fn+1]

∣
∣
∣Fn]

]
= E[Z |Fn] = Xn.

Consider the case Xn = E[Z |Y1, . . . , Yn] in which Xn is a martingale with
respect to Yn. For instance, Xn could be an estimate for the mean of Z based
on observations Y1, . . . , Yn associated with Z. By an additional argument it
follows that the limit of Xn is X = E[Z |Y1, Y2, . . .]. Therefore,

E[Z |Y1, . . . , Yn] → E[Z |Y1, Y2, . . .] a.s. as n→ ∞.

In particular, if Z is the indicator of an event A in the σ-field generated by
Y1, Y2, . . ., then

P (A |Y1, . . . , Yn) → P (A) a.s. as n→ ∞.
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5.6 Optional Stopping of Martingales

This section presents the optional stopping theorem for martingales. It was
instrumental in the proof of the strong Markov property for Brownian motion
in Theorem 3; the next section uses it to analyze hitting times of Brownian
motion.

For the following discussion, suppose that X is a martingale with respect
to a filtration Ft, and that τ is a stopping time of the filtration: {τ ≤ t} ∈ Ft,
for each t.

We will now address the following questions: Is the martingale property,
E[X(t)] = E[X(0)] also true when t is a stopping time? More generally, is
E[X(σ)] = E[X(τ)] true for any stopping times σ and τ?

The optional stopping theorem below says that E[X(τ)] = E[X(0)] is
indeed true for a bounded stopping time τ . A corollary is that the equality
is also true for a finite stopping time when X satisfies certain bounds. This
would imply, for instance, that the expected value of an investment in a fair
market at the stopping time is the same as the initial value. In other words,
in this fair market, there would be no benefit for the investor to choose to
stop and freeze his investment at a time depending only on the past history
of the market (independent of the future).

There are several optional stopping theorems with slightly different as-
sumptions. For our purposes, we will use the following version from [61]. Its
discrete-time version is Theorem 28 below.

Theorem 22. Associated with the martingale X, assume that σ and τ are
stopping times of Ft such that τ is bounded a.s. Then

X(σ ∧ τ) = E[X(τ)|Fσ ] a.s. (5.19)

Hence E[X(τ)] = E[X(0)]. If σ is also bounded, then E[X(σ)] = E[X(τ)].

Proof. Our proof for this continuous time setting uses an approximation
based on the analogous discrete-time result in Theorem 28 below. For a fixed
n ∈ Z+, let X̄k = X(k2−n), k ∈ Z+. Clearly X̄k is a discrete-time martingale
with respect to F̄k = Fk2−n . Define

σn = �2nσ + 1�/2n, τn = �2nτ + 1�/2n.

Now σ′
m = 2nσm for fixed m, and τ ′

n = 2nτn are integer-valued stopping
times of F̄k. Then by Theorem 28 below,

X̄σ′
m∧τ ′

n
= E[X̄τ ′

n
|F̄σ′

m
] a.s.

This expression in terms of the preceding definitions is

X(σm ∧ τn) = E[X(τn)|Fσm ] a.s.
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Letting m→ ∞ in this expression results in σm → σ and

X(σ ∧ τn) = E[X(τn)|Fσ] a.s.

Then letting n→ ∞ in this expression yields (5.19). The justifications of the
last two limit statements, which are in [61], will not be covered here.

The assertion E[X(0)] = E[X(τ)] follows by taking expectations in (5.19)
with σ = 0. Finally, when σ as well as τ is bounded, then (5.19) and this
expression with the roles of σ and τ reversed yield

E[X(τ)|Fσ] = X(σ ∧ τ) = E[X(σ)|Fτ ] a.s.

Then expectations of these terms give E[X(σ)] = E[X(τ)].

Theorem 22 can also be extended to stopping times that are a.s. finite, but
not necessarily bounded. To see this, suppose that τ is an a.s. finite stopping
time of Ft. The key idea is that, for fixed s and t, the τ ∧ s and τ ∧ t are a.s.
bounded stopping times of Ft. Then by Theorem 22,

X(τ ∧ s) = E[X(τ ∧ t)|Fτ∧s], s < t.

This property justifies the following fact, which is used in the proof below.

Remark 23. Stopped Martingales. The stopped processX(τ∧t) is a martingale
with respect to Ft.

Corollary 24. Associated with the martingale X, suppose that τ is an a.s.
finite stopping time of Ft, and that either one of the following conditions is
satisfied.

(i) E
[
supt≤τ |X(t)|

]
<∞.

(ii) E[ |X(τ)| ] < ∞, and limu→∞ E[ |X(u)|1(τ > u)] = 0.
Then E[X(τ)] = E[X(0)].

Proof. Since X(τ ∧ t) is a martingale with respect to Ft, Theorem 22 implies
E[X(τ ∧ u)] = E[X(0)], for u > 0. Now, we can write

|E[X(τ)]− E[X(0)]| = |E[X(τ)]− E[X(τ ∧ u)]|
≤ E[ |X(τ)−X(u)|1(τ > u)] |.

If (i) holds, then |X(τ)−X(u)| ≤ 2Z, where Z = supt≤τ |X(t)|. Since τ is
finite a.s., 1(τ > u) → 0 a.s. as u → ∞, and so by the dominated convergence
theorem,

|E[X(τ)]− E[X(0)]| ≤ 2E[Z1(τ > u)] → 0.

On the other hand, if (ii) holds, then

|E[X(τ)]− E[X(0)]| ≤ E
[(

|X(τ)|+ |X(u)|
)
1(τ > u)

]
→ 0.

Thus, E[X(τ)] = E[X(0)] if either (i) or (ii) is satisfied.
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The next proposition and example illustrate computations involving op-
tional stopping.

Proposition 25. (Wald Identities) Let X be a process with stationary in-
dependent increments as in Example 18, with E[ |X(1)| ] < ∞ and ψ(α) =
E[eαX(1)]. Suppose τ is an a.s. finite stopping time of X. Then

E[X(τ)] = E[X(1)]E[τ ].

If in addition τ is bounded or E
[
supt≤τ |X(t)|

]
<∞, then

E[eαX(τ)ψ(α)−τ ] = 1, for any α with ψ(α) ≥ 1. (5.20)

Proof. Example 18 establishes that X(t) − E[X(1)]t is a martingale with
respect to X . Now, τ ∧ t is a bounded stopping time of X , and so by the
optimal stopping theorem, E[X(τ ∧ t)−E[X(1)](τ ∧ t)] = 0. Letting t→ ∞
in this expression, the dominated and monotone convergence theorems yield
E[X(τ)] = E[X(1)]E[τ ].

Similarly, Z(t) = eαX(t)ψ(α)−t is a martingale with respect to X , and
under the assumptions the optional stopping theorem or Corollary 24 imply
that E[Z(τ)] = E[Z(0)] = 1, which gives (5.20).

Example 26. Brownian Optional Stopping. For a Brownian motion B, we
know by Example 19 that the processes B(t) and B(t)2 − t are martingales
with respect to B with zero means. Then as in the preceding proposition, we
have the following result.

If τ is an a.s. finite stopping time of B, then E[B(τ)] = 0. In addition,
E[τ ] = E[B(τ)2] if τ is bounded a.s.

Example 19 also noted that X(t) = ecB(t)−c2t/2 is a martingale with re-
spect to B with mean 1. If τ is an a.s. bounded stopping time of B, then
E[X(τ)] = 1 by the optional stopping theorem. Consequently, the conditional
moment generating function for an increment of B following τ is

E[ec[B(τ+u)−B(τ)]|Fτ ] = ec
2u/2 = E[ecB(u)].

This was the key step in proving the strong Markov property ofB for bounded
stopping times.

The rest of this section is devoted to proving the discrete-time optional
stopping theorem used in the proof of Theorem 22. We begin with a prelim-
inary result.

Proposition 27. Let X and Y be random variables on a probability space,
and let F and G be two σ-fields on the space. Suppose there is an event
A ∈ F ∩ G such that X = Y a.s. on A and F = G on A (A ∩ F = A ∩ G).
Then E[X |F ] = E[Y |G] a.s. on A.
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Proof. Let Z = E[X |F ]−E[Y |G] and C = A∩{Z > 0}. Under the hypothe-
ses, C ∈ F ∩ G and

E[Z1C ] = E
[
E[X |F ]1C − E[Y |G]1C

]
= E[X1C − Y 1C ] = 0.

Here 1C is the random variable 1(ω ∈ C). Because a nonnegative random
variable V is 0 a.s. if and only if E[V ] = 0, it follows that Z1C = 0 a.s.,
which implies Z ≤ 0 a.s. on A. A similar argument with C = A ∩ {Z < 0},
shows Z ≥ 0 a.s. on A. This proves the assertion.

Theorem 28. Suppose that {Xn : n ∈ Z+} is a martingale with respect to
Fn, and that σ and τ are stopping times of Fn such that τ is bounded a.s.
Then

Xσ∧τ = E[Xτ |Fσ] a.s..

Hence E[Xτ ] = E[X0]. If σ is also bounded, then E[Xσ] = E[Xτ ].

Proof. For m ≤ n, one can show that Fτ = Fm on {τ = m}. Then by
Proposition 27 and the martingale property,

E[Xn|Fτ ] = E[Xn|Fm] = Xm = Xτ , a.s. on {τ = m}.

Since this is true for each m ≤ n, we have

E[Xn|Fτ ] = Xτ , a.s. if τ ≤ n a.s. (5.21)

Now, consider the case σ ≤ τ ≤ n a.s. Then Fσ ⊆ Fτ . Using this and
(5.21) for τ and for σ, we get

E[Xτ |Fσ] = E
[
E[Xn|Fτ ]

∣
∣
∣Fσ

]
= E[Xn|Fσ] = Xσ a.s.

In addition, E[Xτ |Fσ] = Xτ a.s. if τ ≤ σ ∧ n.
For the general case, similar reasoning using the preceding two results and

Proposition 27 yield

E[Xτ |Fσ] = E[Xτ |Fσ∧τ ] = Xσ∧τ a.s. on {σ ≤ τ}
E[Xτ |Fσ] = E[Xσ∧τ |Fσ] = Xσ∧τ a.s. on {σ > τ}.

This provesXσ∧τ = E[Xτ |Fσ] a.s. The other assertions follow as in the proof
of Theorem 22.

5.7 Hitting Times for Brownian Motion with Drift

We will now address the following questions for a Brownian motion with drift.
What is the probability that the process hits b before it hits a, for a < b?
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What is the distribution and mean of the time for the process to hit b? We
answer these questions by applications of the material in the preceding section
on martingales and optional stopping.

Consider a Brownian motion with drift X(t) = x+μt+σB(t), where B is
a standard Brownian motion. For a < x < b, let τa and τb denote the times
at which X hits the respective states a and b. In addition, let τ = τb ∧ τa,
which is the time at which X escapes from the open strip (a, b). Our focus
will be on properties of these hitting times.

Remark 29. Finiteness of Hitting Times. If μ ≥ 0, then τb is finite a.s. since
using Remark 9,

τb = inf{t ≥ 0 : X(t) = b} ≤ inf{t ≥ 0 : B(t) = (b − x)/σ} < ∞ a.s.

Similarly, τa is finite a.s. if μ ≤ 0. Also, τ is finite since either τa or τb is
necessarily finite.

We begin with a result for a Brownian motion with no drift.

Theorem 30. The probability that the process X(t) = x+σB(t) hits b before
a is

P{τb < τa} = (x− a)/(b− a). (5.22)

Also, E[τ ] = (x− a)(b− x)/σ2.

Proof. By Example 19, X is a martingale with respect to B with mean x.
Also, E[supt≤τ |X(t)|] is finite since X(t) ∈ (a, b) for t ≤ τ . Then by the
optional stopping theorem (Theorem 22) for τ ,

E[X(τ)] = E[X(0)] = x. (5.23)

Now, since τ = τa ∧ τb, we can write

X(τ) = a1(τa ≤ τb) + b1(τb < τa). (5.24)

Then
E[X(τ)] = a[1− P{τb < τa}] + bP{τb < τa}.

Substituting this in (5.23) and solving for P{τb < τa}, we obtain (5.22).
Next, we know by Example 19 that Z(t) = (X(t)−x)2−σ2t is a martingale

with respect to B. Then the optional stopping theorem for the bounded
stopping time τ ∧ t yields E[Z(τ ∧ t)] = E[Z(0)] = 0. That is,

σ2E[τ ∧ t] = E[(X(τ ∧ t)− x)2].

Now since τ ∧ t ↑ τ and X(t) is bounded for t ≤ τ , it follows by the monotone
and bounded convergence theorems that

σ2E[τ ] = E[(X(τ)− x)2].
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Then using (5.24) in the last expectation followed by (5.22), we have

σ2E[τ ] = (a− x)2P{τa ≤ τb}+ (b− x)2P{τb < τa}
= (x − a)(b− x).

The preceding result for a Brownian motion with no drift has the following
analogue for a Brownian motion X(t) = x+ μt+ σB(t) with drift μ �= 0.

Theorem 31. The probability that the process X hits b before a is

P{τb < τa} =
eαx − eαa

eαb − eαa
, (5.25)

where α = −2μ/σ2. In addition,

E[τ ] = μ−1
[
(a− x) + (b − a)P{τb < τa}

]
. (5.26)

Proof. As in Example 19, Z(t) = exp{cX(t) − cx − (cμ + c2σ2/2)t} is a
martingale with respect to B. Letting c = α, this martingale reduces to
Z(t) = eαX(t)−αx.

Now, E[supt≤τ |Z(t)|] is finite, since X(t) ∈ [a, b] for t ≤ τ . Then by
Corollary 24 on optional stopping,

1 = E[Z(0)] = E[Z(τ)] = e−αxE[eαX(τ)].

Now, using X(τ) = a1(τa ≤ τb) + b1(τb < τa) in this expression yields

eαx = eαa(1− P{τb < τa}) + eαbP{τb < τa}.

This proves (5.25).
To determine E[τ ], we apply the optional stopping theorem to the mar-

tingale B(t) = σ−1[X(τ) − x − μτ ] and the bounded stopping time τ ∧ t to
get 0 = E[B(τ ∧ t)]. That is,

μE[τ ∧ t] + x = E[X(τ ∧ t)].

Letting t → ∞ in this expression, we have τ ∧ t ↑ τ , and so the monotone
and bounded convergence theorems yield

μE[τ ] + x = E[X(τ)] = bP{τb < τa}+ a(1− P{τb < τa}).

This proves (5.26).

The last result of this section characterizes the distribution of the hitting
time τb for a Brownian motion X(t) = μt+ σB(t) with drift μ.

Theorem 32. Let τb denote the time at which the Brownian motion X hits
b > 0. If μ ≥ 0, then E[τb] = −b/μ (which is ∞ if μ = 0) and the Laplace
transform and density of τb are
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E[e−λτb ] = exp{−bσ−2[
√
μ2 + 2σ2λ− μ]}, (5.27)

fτb(x) =
b

σ
√
2πx3

exp{−(b− μx)2/(2σ2x}. (5.28)

If μ < 0, then τb may be infinite and P{τb < ∞} = e2bμ/σ
2

.

Proof. For the case μ < 0, it follows by (5.25) (with x = 0 and α > 0) that

P{τb < ∞} = lim
a→−∞

P{τb < τa} = e2bμ/σ
2

.

Next, consider the case μ ≥ 0. For positive constants α and λ, consider
the process Z(t) = eαX(t)−λt. This is a martingale (see Example 19) and it

reduces to Z(t) = ecB(t)−c2t/2, where

c = ασ, α = σ−2[
√
μ2 + 2σ2λ− μ].

This choice of α ensures that α2σ2/2 + αμ− λ = 0.
Now, applying the optional stopping theorem to the martingale Z(t) and

the bounded stopping time τb ∧ t, we obtain

1 = E[Z(0)] = E[Z(τb ∧ t)] = E[eαX(τb∧t)−λ(τb∧t)].

Since X is continuous a.s., we have

lim
t→∞

[αX(τb ∧ t)− λ(τb ∧ t)] = αb− λτb a.s.

Then by the preceding displays and the bounded convergence theorem,

1 = E[ lim
t→∞

Z(τb ∧ t)] = eαbE[e−λτb ].

This proves (5.27). Inverting this Laplace transform yields the density formula
(5.28). Finally, the derivative of this transform at λ = 0 yields E[τb] = −b/μ.

5.8 Limiting Averages and Law of the Iterated
Logarithm

This section contains strong laws of large numbers for Brownian motion and
its maximum process, and a law of the iterated logarithm for Brownian mo-
tion.

As usual B will denote a standard Brownian motion. The strong law of
large numbers for it is as follows.

Theorem 33. A Brownian motion B has the limiting average
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lim
t→∞

t−1B(t) = 0 a.s.

Proof. Since B has stationary independent increments, it has regenerative
increments with respect to the deterministic times Tn = n. Then the assertion
will follow by the SLNN in Theorem 54 in Chapter 2 for processes with
regenerative increments upon showing that n−1B(n) → 0 a.s., and

E
[

max
n−1≤t≤n

|B(t)|
]
< ∞. (5.29)

Now, the SLLN for i.i.d. random variables ensures that

n−1B(n) = n−1
n∑

m=1

[B(m)−B(m− 1)] → E[B(1)] = 0, a.s.

Also, (5.29) follows since E[M(1)] < ∞ and

max
n−1≤t≤n

|B(t)| d= max
0≤t≤1

|B(t)| ≤ M(1)−M(1),

where M(t) = mins≤tB(s)
d
= −M(t) by Remark 12.

If a real-valued process X , such as a Brownian motion or a functional of a
Markov process, has a limiting average t−1X(t) → c a.s., you might wonder
if its maximum M(t) = sups≤tX(s) also satisfies t−1M(t) → c a.s. Wonder
no longer. The answer is given by the next property, which is analogous to
the elementary fact that if n−1cn → c, then n−1

∑n
k=1 ck → c.

Proposition 34. Let x(t) and a(t) be real-valued functions on R+ such that

0 ≤ a(t) → ∞, a(t)−1x(t) → c, as t→ ∞.

Then the maximum m(t) = sups≤t x(s) satisfies limt→∞ a(t)−1m(t) = c.

Proof. For any ε > 0, let t′ be such that a(t)−1x(t) < c+ ε, for t ≥ t′. Then
for t ≥ t′,

a(t)−1x(t) ≤ a(t)−1m(t) = max
{
a(t)−1m(t′), a(t)−1 sup

t′≤s≤t
x(s)

}

≤ max
{
a(t)−1m(t′), c+ ε

}
.

Letting t→ ∞ in this display, it follows that

c ≤ lim inf
t→∞

a(t)−1m(t) ≤ lim sup
t→∞

a(t)−1m(t) ≤ c+ ε.

Since this is true for any ε, we have a(t)−1m(t) → c.

We will now apply this result to the maximum processM(t) = maxs≤tX(s)
for a Brownian motion with drift X(t) = x+ μt+ σB(t).
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Proposition 35. The Brownian motion with drift X and its maximum pro-
cess have the limiting averages

t−1X(t) → μ, t−1M(t) → μ a.s. as t→ ∞.

Proof. This follows since the SLLN t−1B(t) → 0 implies that

t−1X(t) = t−1x+ μ+ σt−1B(t) → μ a.s.,

and then t−1M(t) → μ a.s. follows by Proposition 34.

The preceding result implies that M(t) → ∞ or −∞ a.s. according as the
drift μ is positive or negative. This tells us something about the maximum

M(∞) = sup
t∈R+

X(t)

on the entire time axis. First, we have the obvious result

M(∞) = lim
t→∞

M(t) = ∞ a.s. when μ > 0.

Second, M(∞) = ∞ a.s. when μ = 0 by the law of the iterated logarithm in
(5.30) below.

For the remaining case of μ < 0, we have the following result.

Theorem 36. If μ < 0 and X(0) = 0, then M(∞) has an exponential dis-
tribution with rate −2μ/σ2.

Proof. The assertion follows, since letting t → ∞ in {M(t) > b} = {tb < t}
and using Theorem 32,

P{M(∞) > b} = P{τb < ∞} = e2μb/σ
2

.

We will now consider fluctuations of Brownian motions that are described
by a law of the iterated logarithm. Knowing that the limiting average of
Brownian motion B is 0 as t → ∞, a follow-on issue is to characterize its
fluctuations about 0. These fluctuations, of course, can be described for a
“fixed” t by the normal distribution of B(t); e.g., P{|B(t)| ≤ 2

√
t} ≈ .95.

However, to get a handle on rare fluctuations as t→ ∞, it is of interest to
find constants h(t) such that

lim sup
t→∞

B(t)

h(t)
= 1 a.s.

In other words, h(t) is the maximum height of the fluctuations of B(t) above
0, and B(t) gets near h(t) infinitely often (i.o.) as t→ ∞ in that

P{B(t) ∈ [h(t)− ε, h(t)] i.o.} = 1, ε > 0.
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Since the reflection −B is a Brownian motion, the preceding would also yield

lim inf
t→∞

B(t)

h(t)
= −1 a.s.

These fluctuations are related to those as t ↓ 0 as follows.

Remark 37.

lim sup
t→∞

B(t)

h(t)
= 1 a.s. ⇐⇒ lim sup

t↓0

B(t)

th(1/t)
= 1 a.s.

This is because the time-inversion process X(t) = tB(1/t) is a Brownian
motion by Exercise 2. Indeed, the equivalence is true since, using s = 1/t,

lim sup
t→∞

B(t)

h(t)
= lim sup

s↓0

X(s)

sh(1/s)
.

Remark 37 says that h(t) is the height function for fluctuations of B as
t → ∞ if and only if th(1/t) is the height function for fluctuations as t ↓ 0.
The height functions for both of these cases are as follows. The proof, due to
Khintchine 1924, is in [37, 61, 64].

Theorem 38. (Law of the Iterated Logarithm)

lim sup
t↓0

B(t)
√
2t log log(1/t)

= 1, lim sup
t→∞

B(t)√
2t log log t

= 1 a.s.

lim inf
t↓0

B(t)
√
2t log log(1/t)

= −1, lim inf
t→∞

B(t)√
2t log log t

= −1 a.s.

Note that the lim supt↓0 result implies that B(t) > 0 i.o. near 0, and so

inf{t > 0 : B(t) > 0} = 0 a.s.

Similarly, the lim inft↓0 result implies that B(t) < 0 i.o. near 0 a.s. Conse-
quently, B(t) = 0 i.o. near 0 a.s. because B has continuous paths a.s.

The other results for t → ∞ imply that, for any fixed a > 0, we have
B(t) > a and B(t) < −a i.o. a.s. as t → ∞, and so B passes through [−a, a]
i.o. a.s. Furthermore, the extremes of B are

sup
t∈R+

B(t) = ∞ a.s., inf
t∈R+

B(t) = −∞ a.s. (5.30)
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5.9 Donsker’s Functional Central Limit Theorem

By the classical central limit theorem (Theorem 63 in Chapter 2), we know
that a random walk under an appropriate normalization converges in dis-
tribution to a normal random variable. This section extends this result to
stochastic processes. In particular, viewing a random walk as a process in
continuous time, if the time and space parameters are rescaling appropri-
ately, then the random walk process converges in distribution to a Brownian
motion. This result, called Donsker’s functional central limit theorem, also
establishes that many functionals of random walks can be approximated by
corresponding functionals of Brownian motion.

Throughout this section Sn =
∑n
i=1 ξk will denote a random walk in which

the step sizes ξn are i.i.d. with mean 0 and variance 1. For each n, consider
the stochastic process

Xn(t) = n−1/2S
nt�, t ∈ [0, 1].

That is,

Xn(t) = n−1/2Sk if k/n ≤ t < (k + 1)/n for some k < n.

This process is a continuous-time representation of the random walk Sk in
which the location Sk is rescaled (or shrunk) to the value n−1/2Sk, and the
time scale is rescaled such that the walk takes [nt] steps in time t. Then as n
becomes large the steps become very small and frequent and, as we will show,
Xn converges in distribution to a standard Brownian motion B as n→ ∞.

We begin with the preliminary observation that the finite-dimensional dis-
tributions of Xn converge in distribution to those of B. That is, for any fixed
t1 < · · · < tk,

(Xn(t1), . . . , Xn(tk))
d→ (B(t1), . . . , B(tk)), as n→ ∞. (5.31)

In particular, for each fixed t, we have Xn(t)
d→ B(t), as n→ ∞.

The latter follows since n−1/2Sn
d→ B(1) by the classical central limit

theorem, and so

Xn(t) = (�nt�/n)1/2�nt�−1/2S
nt�
d→ t1/2B(1)

d
= B(t).

Similarly, (5.31) follows by a multivariate central limit theorem.
Expression (5.31) only provides a partial description of the convergence

in distribution of Xn to B; we will now give a complete description of the
convergence that includes sample path information.

Throughout this section, D = D[0, 1] will denote the set of all functions
x : [0, 1] → R that are right-continuous with left-hand limits. Assume that the
σ-field associated with D is the smallest σ-field under which the projection
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map x → x(t) is measurable, for each t. Almost every sample path of Xn is
a function in D, and so the process Xn is a D-valued random variable (or a
random element in D).

We will consider D as a metric space in which the distance between two
functions x and y is ‖x− y‖, based on the uniform or supremum norm

‖x‖ = sup
t≤1

|x(t)|.

Other metrics for D are discussed in [11, 112]. Convergence in distribution
of random elements in D, as in other metric spaces, is as follows. Random
elements Xn in a metric S convergence in distribution to X in S as n→ ∞,

denoted by Xn
d→ X in S, if

lim
n→∞

E[f(Xn)] = E[f(X)],

for any bounded continuous function f : S → R. The convergence Xn
d→ X

is equivalent to the weak convergence of their distributions

P{Xn ∈ ·} w→ P{X ∈ ·}. (5.32)

Several criteria for this convergence are in the Appendix.

An important consequence of Xn
d→ X in S is that it readily leads to the

convergence in distribution of a variety of functionals of the Xn as follows.

Theorem 39. (Continuous Mapping) Suppose that Xn
d→ X in S as n→ ∞,

and f : S → S′ is a measurable mapping, where S′ is another metric space.
If C ⊆ S is in the σ-field of S such that f is continuous on C and X ∈ C

a.s., then f(Xn)
d→ f(X) in S′ as n→ ∞.

Proof. Recall that Xn
d→ X is equivalent to (5.32), which we will denote by

μn
w→ μ. Then f(Xn)

d→ f(X) is equivalent to μnf
−1 w→ μf−1 since

P{f(Xn) ∈ A} = P{Xn ∈ f−1(A)} = μnf
−1(A).

Also note that by Theorem 10 in the Appendix, μn
w→ μ is equivalent to

lim inf
n→∞

μn(G) ≥ μ(G), for any open G ⊆ S.

Now using this characterization, for any open set G ⊆ S′,

lim inf
n→∞

μnf
−1(G) ≥ lim inf

n→∞
μn(f

−1(G)◦) ≥ μ(f−1(G)◦).

Here A◦ is the interior of the set A. Clearly f−1(G)◦ ⊃ C ∩ f−1(G), and
μ(C) = 1 by the assumption X ∈ C a.s. Then μ(f−1(G)◦) = μf−1(G). Using
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this in the preceding display yields lim infn→∞ μnf
−1(G) ≥ μf−1(G), which

proves μnf
−1 w→ μf−1, and hence f(Xn)

d→ f(X).

We are now ready to present the functional central limit theorem proved
by Donsker in 1951 for the continuous-time random walk process

Xn(t) = n−1/2S
nt�, t ∈ [0, 1].

Theorem 40. (Donsker’s FCLT) For the random walk process Xn defined

above, Xn
d→ B in D as n→ ∞, where B is a standard Brownian motion.

The proof of this theorem will follow after a few observations and prelimi-
nary results. Donsker’s theorem is called a “functional central limit theorem”
because, under the continuous-mapping theorem, many functionals of the
random walk also converge in distribution to the corresponding functionals
of the limiting Brownian motion. Two classic examples are as follows; we
cover other examples later.

Example 41. If Xn
d→ B in D, then, for t1 < · · · < tk ≤ 1,

(n−1/2S
nt1�, . . . , n
−1/2S
ntk�)

d→ (B(t1), . . . , B(tk)). (5.33)

This convergence is equivalent to (5.31). Now (5.33) says f(Xn)
d→ f(B),

where f : D → Rk is defined, for fixed t1 < · · · < tk, by

f(x) = (x(t1), . . . , x(tk)).

Clearly f is continuous on the set C of continuous functions in D and B ∈ C
a.s. Then (5.33) follows from the continuous-mapping theorem.

Example 42. The convergence Xn
d→ B implies

n−1/2 max
m≤n

Sm
d→ max

s≤1
B(s).

The distribution of the limit is given in Theorem 11. The convergence fol-
lows by the continuous-mapping theorem since the function f : D → R+

defined by f(x) = maxs≤1 x(s) is continuous in that ‖xn − x‖ → 0 implies
maxs≤1 xn(s) → maxs≤1 x(s).

Donsker’s FCLT is also called an invariance principle because in the con-

vergence Xn
d→ B, the Brownian motion limit B is the same for “any” dis-

tribution of the step size of the random walk, provided it has a finite mean
and variance. When the mean and variance are not 0 and 1, respectively, the
result applies with the following change in notation.
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Remark 43. If ξn are i.i.d. random variables with finite mean μ and variance
σ2, then (ξk−μ)/σ are i.i.d. with mean 0 and variance 1, and hence Donsker’s
theorem holds for

Xn(t) = n−1/2


nt�∑

k=1

(ξk − μ)/σ, t ∈ [0, 1].

Consequently, the random walk Sn =
∑n
k=1 ξk, for large n, is approximately

equal in distribution to a Brownian motion with drift. In particular, using

n1/2B(t)
d
= B(nt),

S
nt�
d≈ μ�nt�+ σB(nt), Sn

d≈ μn+ σB(n).

Does the convergence in distribution in Donsker’s theorem hold for pro-
cesses defined on the entire time axis R+? To answer this, consider the space
D[0, T ] of all functions x : [0, T ] → R that are right-continuous with left-
hand limits, for fixed T > 0. Similarly to D[0, 1], the D[0, T ] is a metric
space with the supremum norm. Now let D(R+) denote the space of all func-
tions x : R+ → R that are right-continuous with left-hand limits. Consider
D(R+) as a metric space in which convergence xn → x in D(R+) holds if
xn → x in D[0, T ] holds for each T that is a continuity point of x.

Remark 44. Convergence in D(R+). Donsker’s convergence Xn
d→ B holds in

D[0, T ], for each T , and in D(R+) as well. The proof for D[0, T ] is exactly
the same as that for D[0, 1]. The convergence also holds in D(R+), since B
is continuous a.s.

Donsker’s approach for proving Theorem 40 is to prove the convergence
(5.31) of the finite-dimensional distributions and then establish a certain
tightness condition. This proof is described in Billingsley 1967; his book and
one by Whitt 2002 cover many fundamentals of functional limit theorems
and weak convergence of probability measures on metric spaces.

Another approach for proving Theorem 40, which we will now present, is
by applying Skorohod’s embedding theorem. The gist of this approach is that
one can construct a Brownian motion B and stopping times τn for it such

that {Sn} d
= {B(τn)}. Then further analysis of Xn and B defined on the

same probability space establishes ‖Xn −B‖ P→ 0, which yields Xn
d→ B.

The key embedding theorem for this analysis is as follows. It says that
any random variable ξ with mean 0 and variance 1 can be represented as
B(τ) for an appropriately defined stopping time τ . Furthermore, any i.i.d.
sequence ξn of such variables can be represented as an embedded sequence
B(τn)−B(τn−1) in a Brownian motion B for appropriate stopping times τn.
The proof is in [37, 61].

Theorem 45. (Skorohod Embedding) Associated with the random walk Sn,
there exists a standard Brownian motion B with respect to a filtration and
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stopping times 0 = τ0 ≤ τ1 ≤ . . . such that τn − τn−1 are i.i.d. with mean 0

and variance 1, and {Sn} d
= {B(τn)}.

Another preliminary leading to Donsker’s theorem is the following Skoro-
hod approximation result that the uniform difference between the random
walk and a Brownian motion on [0, t] is o(t1/2) a.s. as t → ∞. This material
and the proof of Donsker’s theorem below is from Kallenberg 2004.

Theorem 46. (Skorohod Approximation of Random Walks) There exists a
standard Brownian motion B on the same probability space as the random
walk Sn such that

t−1/2 sup
s≤t

|S
s� −B(s)| P→ 0, as t→ ∞. (5.34)

Proof. Let B and τn be as in Theorem 45, and define them on the same
probability space as Sn (which is possible) so Sn = B(τn) a.s. Define

D(t) = t−1/2 sup
s≤t

|B(τ
s�)−B(s)|.

Then (5.34) is equivalent to P{D(t) > ε} → 0 for ε > 0.
To prove this convergence, let δt = sups≤t |τ
s� − s|, t ≥ 0. For a fixed

γ > 0, consider the inequality

P{D(t) > ε} ≤ P{D(t) > ε, t−1δt ≤ γ}+ P{t−1δt > γ}. (5.35)

Note that n−1τn → 1 a.s. by the strong law of large numbers for i.i.d. random
variables, and so t−1|τ
t� − t| → 0 a.s. Then the limiting average of the
supremum of these differences is t−1δt → 0 a.s. by Proposition 34.

Next, consider the modulus of continuity of f : R+ → R, which is

w(f, t, γ) = sup
r,s≤t, |r−s|≤γ

|f(r)− f(s)|, t ≥ 0.

Clearly
D(t) ≤ w(B, t+ tγ, tγ), when t−1δt ≤ γ.

Using this observation in (5.35) and {t−1/2B(r) : r ≥ 0} d
= {B(rt) : r ≥ 0}

from the scaling property in Exercise 2, we have

P{D(t) > ε} ≤ P{t−1/2w(B, t+ tγ, tγ) > ε}+ P{t−1δt > γ}
= P{w(B, 1 + γ, γ) > ε}+ P{t−1δt > γ}.

Letting t → ∞ (t−1δt → 0 a.s.), and then letting γ → 0 (B has continuous
paths a.s.), the last two probabilities tend to 0. Thus P{D(t) > ε} → 0,
which proves (5.34).

We will now obtain Donsker’s theorem by applying Theorem 46.
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Proof of Donsker’s Theorem. Let B and Sn = B(τn) a.s. be as in the proof
of Theorem 46, and define Bn(t) = n−1/2B(nt). Clearly

‖Xn −Bn‖ = n−1/2 sup
t≤1

|S
nt� −B(nt)| = n−1/2 sup
s≤n

|S
s� −B(s)|.

Then ‖Xn −Bn‖ P→ 0 by Theorem 46.
Next, note that, by Exercise 1, the scaled process Bn is a Brownian motion.

Now, as in [61], one can construct X̃n and a Brownian motion B̃ on the same

probability space such that (X̃n, B̃)
d
= (Xn, Bn). Then we have

‖Xn −B‖ d
= ‖X̃n − B̃‖ d

= ‖Xn −Bn‖ P→ 0.

This proves Xn
d→ B.

5.10 Regenerative and Markov FCLTs

This section presents an extension of Donsker’s FCLT for processes with
regenerative increments. This in turn yields FCLTs for renewal processes
and ergodic Markov chains in discrete and continuous time.

For this discussion, suppose that {Z(t) : t ≥ 0} is a real-valued process
with Z(0) = 0 that is defined on the same probability space as a renewal pro-
cess N(t) whose renewal times are denoted by 0 = T0 < T1 < . . . The incre-
ments of the two-dimensional process (N(t), Z(t)) in the interval [Tn−1, Tn)
are denoted by

ζn = (Tn − Tn−1, {Z(t)− Z(Tn−1) : t ∈ [Tn−1, Tn)}).

Recall from Section 2.10 that Z(t) has regenerative increments over Tn if ζn
are i.i.d.

Theorem 65 in Chapter 2 is a central limit theorem for processes with
regenerative increments. An analogous FCLT is as follows. Assuming they
are finite, let

μ = E[T1], a = E[Z(T1)]/μ, σ2 = Var[Z(T1)− aT1],

and assume σ > 0. In addition, let

Mn = sup
Tn<t≤Tn+1

|Z(t)− Z(Tn)|, n ≥ 0,

and assume E[M1] and E[T 2
1 ] are finite. For r > 0, consider the process
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Xr(t) =
Z(rt) − art

σ
√
r/μ

, t ∈ [0, 1].

This is the regenerative-increment process Z with space-time scale changes
analogous to those for random walks. A real-valued parameter r instead of
an integer is appropriate since Z is a continuous-time process.

Theorem 47. (Regenerative Increments) For the normalized regenerative-

increment process Xr defined above, Xr
d→ B as r → ∞, where B is a

standard Brownian motion.

The proof uses the next two results. Let D1 denote the subspace of func-
tions x in D that are nondecreasing with x(0) = 0 and x(t) ↑ 1 as t → 1.
The composition mapping from the product space D ×D1 to D, denoted by
(x, y) → x◦ y, is defined by x◦ y(t) = x(y(t)), t ∈ [0, 1]. Let C and C1 denote
the subspaces of continuous functions in D and D1, respectively.

Proposition 48. The composition mapping from D×D1 to D is continuous
on the subspace C × C1.

Proof. Suppose (xn, yn) → (x, y) in D×D1 such that (x, y) ∈ C ×C1. Using
the sup norm and the triangle inequality,

‖xn ◦ yn − x ◦ y‖ ≤ ‖xn ◦ yn − x ◦ yn‖+ ‖x ◦ yn − x ◦ y‖.

Now, the last term tends to 0 since x ∈ C is uniformly continuous. Also,

‖xn ◦ yn − x ◦ yn‖ = ‖xn − x‖ → 0.

Thus xn ◦ yn → x ◦ y in D, which proves the assertion.

The continuity of composition mappings under weaker assumptions is dis-
cussed in [11, 112]. The importance of the composition mapping is illustrated
by the following result. In the setting of Theorem 47, the regenerative- incre-
ment property of Z implies that

ξn = Z(Tn)− Z(Tn−1)− a(Tn − Tn−1)

are i.i.d. with mean 0 and variance σ2.

Lemma 49. Under the preceding assumptions, define the process

X ′
r(t) =

1

σ
√
r/μ

N(rt)∑

k=1

ξk, t ∈ [0, 1].

Then X ′
r
d→ B as r → ∞.
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Proof. Letting X̃r(t) =
1

σ
√
r/μ

∑
rt�
k=1 ξk, it follows by Donsker’s theorem that

X̃r
d→ μ1/2B as r → ∞. With no loss in generality, assume μ−1 < 1. Consider

the process

Yr(t) =

{
N(rt)/r if N(r)/r ≤ μ−1

t/μ if N(r)/r > μ−1.

Note that

X̃r ◦ Yr(t) =
1

σ
√
r/μ


rYr(t)�∑

k=1

ξk.

This equals X ′
r(t) when N(r)/r ≤ μ−1, and so for any ε > 0,

P{‖X ′
r − X̃r ◦ Yr‖ > ε} ≤ P{N(r)/r > μ−1} → 0.

The convergence follows since N(r)/r → μ−1 a.s. by the SLLN for renewal

processes (Corollary 11 in Chapter 2). This proves X ′
r − X̃r ◦ Yr d→ 0. Then

to prove X ′
r
d→ B, it suffices by Exercise 53 to show that X̃r ◦ Yr d→ B.

Letting I(t) = t, t ∈ [0, 1], note that

‖Yr − μ−1I‖ ≤ sup
t≤1

|N(rt)/r − μ−1t|

= r−1 sup
s≤r

|N(s)− μ−1s| → 0 a.s.

The convergence follows by Proposition 34 since the SLLN for N implies

r−1|N(r) − μ−1r| → 0 a.s. Now, we have (X̃r, Yr)
d→ (μ1/2B, μ−1I), where

the limit functions are continuous. Then Proposition 48 and Exercise 1 yield

X̃r ◦ Yr d→ μ1/2B ◦ μ−1I
d
= B.

Thus X̃r ◦ Yr d→ B, which completes the proof.

Remark 50. The assertion in Lemma 49 implies that

X ′
r(1) =

1

σ
√
r/μ

N(r)∑

k=1

ξk
d→ B(1),

which is Anscombe’s result in Theorem 64 in Chapter 2.

We now establish the convergence of Xr(t) = (Z(rt) − art)/(σ
√
r/μ).

Proof of Theorem 47. We can write

Xr(t) = X ′
r(t) +

√
μ

σ
Vr(t), (5.36)

where
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X ′
r(t) =

Z(TN(rt))− aTN(rt)

σ
√
r/μ

,

Vr(t) = r−1/2
[
Z(rt)− Z(TN(rt))− a(rt− TN(rt))

]
.

Recognizing that X ′
r is the process in Lemma 49, we have X ′

r
d→ B. Then the

proof of Xr
d→ B will be complete upon showing that Vr

d→ 0.
Letting

ξ̄n = sup
Tn<t≤Tn+1

|Z(t)− Z(Tn)|+ a(Tn+1 − Tn),

it follows that

‖Vr‖ ≤ r−1/2 sup
t≤1

ξ̄N(rt) =
√
N(r)/r

(
N(r)−1/2 sup

k≤N(r)

ξ̄k

)
.

The regenerative-increment property of Z implies that the ξ̄n are i.i.d. Then

n−1/2ξ̄n
d
= n−1/2ξ̄1 → 0 a.s.

Now N(r)−1/2 supk≤N(r) ξ̄k
P→ 0 by Proposition 34. Applying this to the pre-

ceding display and using N(r)/r → μ−1 a.s., we get ‖Vr‖ d→ 0. �

Since renewal processes and ergodic Markov chains are regenerative pro-
cesses, FCLTs for them are obtainable by Theorem 47. To see this, first note
that a renewal process N(t) has regenerative increments over its renewal
times Tn, and the parameters above are Mn = 1,

a = E[N(T1)]/μ = μ−1, Var[N(T1)− μ−1T1] = μ−2Var[T1].

Then the following is an immediate consequence of Theorem 47.

Corollary 51. (Renewal Process) Suppose N(t) is a renewal process whose
inter-renewal times have mean μ and variance σ2, and define

Xr(t) =
N(rt) − rt/μ

σ
√
r/μ3

, t ∈ [0, 1].

Then Xr
d→ B as r → ∞.

The particular case Xr(1)
d→ B(1) is the classical central limit theorem

for renewal processes, which we saw in Example 67 in Chapter 2; namely

N(r)− r/μ

σ
√
r/μ3

d→ B(1).

For the next result, suppose that Y is an ergodic CTMC on a countable
state space S with stationary distribution p. For a fixed state i, assume that
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Y (0) = i and let 0 = T0 < T1 < . . . denote the times at which Y enters state
i. Assume Ei[T

2
1 ] < ∞ and let μ = Ei[T1]. For f : S → R, assuming the

following integral exists, consider the process

Z(t) =

∫ t

0

f(Y (s))ds, t ≥ 0.

This has regenerative increments over the Tn and, assuming the sum is ab-
solutely convergent, Corollary 40 in Chapter 4 yields

a = Ei[Z(T1)]/μ =
∑

j

f(j)pj.

Assume Ei[M1] and σ2 = Var[Z(T1) − aT1] are finite, and σ > 0. Then
Theorem 47 for the CTMC functional Z is as follows. An analogous result
for discrete-time Markov chains is in Exercise 48.

Corollary 52. (CTMC) Under the preceding assumptions, for r > 0, define
the process

Xr(t) =

∫ rt
0 f(Y (s))ds− art

σ
√
r/μ

, t ∈ [0, 1].

Then Xr
d→ B as r → ∞.

5.11 Peculiarities of Brownian Sample Paths

While sample paths of a Brownian motion are continuous a.s., they are ex-
tremely erratic. This section describes their erratic behavior.

Continuous functions are typically monotone on certain intervals, but this
is not the case for Brownian motion paths.

Proposition 53. Almost every sample path of a Brownian motion B is
monotone on no interval.

Proof. For any a < b in R+, consider the event A = {B is nondecreasing on
[a, b]}. Clearly A = ∩∞

n=1An, where

An = ∩ni=1{B(ti)−B(ti−1) ≥ 0}

and ti = a + i(b − a)/n. The A is measurable since each An is. Because
P{B(ti) − B(ti−1) ≥ 0} = 1/2 and the increments of B are independent,
we have P (An) = 2−n, and so P (A) ≤ limn→∞ P (An) = 0. This conclu-
sion is also true for the event A = {B is nonincreasing on [a, b]}. Thus B is
monotone on no interval a.s.
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For the next result, we say that for a Brownian motion B on a closed inter-
val I, its local maximum is supt∈I B(t), and its local minimum is inft∈I B(t).
There are processes that have local maxima on two disjoint intervals that
are equal with a positive probability, but this is not the case for Brownian
motion.

Proposition 54. The local maxima and minima of a Brownian motion B
are a.s. distinct.

Proof. It suffices to show that, for disjoint closed intervals I and J in R+,

MI �= MJ a.s.,

where each of the quantities MI and MJ is either a local minimum or a local
maximum.

First, suppose MI and MJ are both local maxima. Let u denote the right
endpoint of I and v > u denote the left endpoint of J .

MJ −MI = sup
t∈J

[B(t) −B(v)]− sup
t∈I

[B(t)−B(u)] +B(v)−B(u).

The three terms on the right are independent, and the last one is nonzero a.s.
(since the increments are normally distributed). Therefore, MI �= MJ a.s.

This result is also true by similar arguments when each of the quantities
MI and MJ are both local minima, or when one is a local minimum and the
other is a local maximum.

We now answer the question: How much time does a Brownian motion
spend in a particular state?

Proposition 55. The amount of time that a Brownian motion B spends in
a fixed state a over the entire time horizon is the Lebesgue measure La of the
time set {t ∈ R+ : B(t) = a}, and La = 0 a.s.

Proof. Since La is nonnegative, it suffices to show E[La] = 0. For n ∈ Z+,
consider the process Xn(t) = B(�nt�/n), t ≥ 0. Clearly Xn(t) → B(t) a.s. as
n→ ∞ for each t. Then by Fubini’s theorem,

E[La] =

∫

R+

P{B(t) = a}dt =

∫

R+

lim
n→∞

P{Xn(t) = a}dt

≤ lim inf
n→∞

∫

R+

P{Xn(t) = a}dt.

The last integral (of a piecewise constant function) is 0 since Xn(t) has a
normal distribution, and so E[La] = 0.

Proofs of the next two results are in [61, 64].



5.12 Brownian Bridge Process 379

Theorem 56. (Dvoretzky, Erdös, and Kakutani 1961) Almost every sample
path of a Brownian motion B does not have a point of increase: for positive
t and δ,

P{B(s) ≤ B(t) ≤ B(u) : (t− δ)+ ≤ s < t < u ≤ t+ δ} = 0.

Analogously, every sample path of B does not have a point of decrease.

Theorem 57. (Paley, Wiener and Zygmund 1933) Almost every sample path
of a Brownian motion is nowhere differentiable.

More insights into the wild behavior of a Brownian motion path are given
by its linear and quadratic variations. The (linear) variation of a real-valued
function f on an interval [a, b] is

V ba (f) = sup
{ n∑

k=1

|f(tk)− f(tk−1)| : a = t0 < t1 < · · · < tn = b
}
.

If this variation is finite, then f has the following properties:
• It can be expressed as the difference f(t) = f1(t)− f2(t) of two increasing
functions, where f1(t) = V ta (f).
• The f has a derivative at almost every point in [a, b].
• Riemann-Stieltjes integrals of the form

∫
[a,b]

g(t)df(t) exist.

In light of these observations, Theorem 57 implies that almost every sample
path of a Brownian has an “unbounded” variation on any finite interval of
positive length. Further insight into the behavior of Brownian paths in terms
of their quadratic variation is in Exercise 33.

Because the sample paths of a Brownian motion B have unbounded vari-
ation a.s., a stochastic integral

∫
[a,b]X(t)dB(t) for almost every sample path

cannot be defined as a classical Riemann-Stieltjes integral. Another approach
is used for defining stochastic integrals with respect to a Brownian motion
or with respect to a martingale. Such integrals are the basis of the theory of
stochastic differential equations.

5.12 Brownian Bridge Process

We will now study a special Gaussian process called a Brownian bridge.
Such a process is equal in distribution to a Brownian motion on [0, 1] that is
restricted to hit 0 at time 1. An important application is its use in the non-
parametric Kolmogorov-Smirnov statistical test that a random sample comes
from a specified distribution. In particular, for large samples, the normalized
difference between the empirical distribution and the true distribution is ap-
proximately the maximum of a Brownian bridge.
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Throughout this section {X(t) : t ∈ [0, 1]} will denote a stochastic process
on R, and B(t) will denote a standard Brownian motion. The process X is
a Brownian bridge if it is a Gaussian process with mean 0 and covariance
function

E[X(s)X(t)] = s(1− t), 0 ≤ s ≤ t ≤ 1.

Such a process is equal in distribution to the following Brownian motion
“tied down” at 1.

Proposition 58. The process X(t) = B(t)− tB(1), t ∈ [0, 1], is a Brownian
bridge.

Proof. This follows since X is clearly a Gaussian process with zero mean and

E[X(s)X(t)] = E[B(s)B(t) − tB(s)B(1)]− sE[B(1)B(t)− tB(1)2]

= s(1− t), s < t.

The last equality uses E[B(u)B(v)] = u, for u ≤ v.

Because of its relation to Brownian motion, many basic properties of a
Brownian bridge X can be related to those of Brownian motion. For instance,
X has continuous paths that are not differentiable. Note that the negation
−X(t), and time reversal X(1 − t) are also Brownian bridges; related ideas
are in Exercises 49 and 50.

We will now show how a Brownian bridge is a fundamental process related
to empirical distributions. Suppose that ξ1, ξ2, . . . are i.i.d. random variables
with distribution F . The empirical distribution associated with ξ1, . . . , ξn is

Fn(t) = n−1
n∑

k=1

1(ξk ≤ x), x ∈ R, n ≥ 1.

This function is an estimator of F based on n samples from it. The estimator
is unbiased since clearly E[Fn(x)] = F (x). It is also a consistent estimator
since by the classical SLLN,

Fn(x) → F (x) a.s. as n→ ∞. (5.37)

This convergence is also uniform in x as follows.

Proposition 59. (Glivenko-Cantelli) The empirical distributions satisfy

sup
x

|Fn(x)− F (x)| → 0 a.s. as n→ ∞.

Proof. Consider any −∞ = x1 < x2 < · · · < xm = ∞, and note that since F
and Fn are nondecreasing, for x ∈ [xk−1, xk],

Fn(xk−1)− F (xk) ≤ Fn(x) − F (x) ≤ Fn(xk)− F (xk−1).
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Then

sup
x

|Fn(x) − F (x)| ≤ max
k

|Fn(xk−1)− F (xk)|+max
k

|Fn(xk)− F (xk−1)|.

Letting n → ∞ and letting the differences xk − xk−1 tend to 0, and then
applying (5.37) to the preceding display proves the assertion for continuous
F . Exercise 40 proves the assertion when F is not continuous.

An important application of empirical distributions concerns the following
nonparametric text that a sample comes from a specified distribution.

Example 60. Kolmorogov-Smirnov Statistic. Suppose that ξ1, ξ2, . . . are i.i.d.
random variables with a distribution F that is unknown. As mentioned above,
the empirical distribution Fn(x) is a handy unbiased, consistent estimator
of F . Now, suppose we want to test the simple hypothesis H0 that the sample
is from a specified distribution F , versus the alternative hypothesis H1 that
the sample is not from this distribution. One approach is to use the classical
chi-square test.

Another approach is to use a test based on the Kolmogorov-Smirnov statis-
tic defined by

Dn =
∑

x

|Fn(x) − F (x)|.

This is a measure of the distance between the empirical distribution Fn and
F (which for simplicity we assume is continuous). The test would reject H0 if
Dn > c, and accept it otherwise. The c would be determined by the probabil-
ity P{Dn > c|H0} = α, for a specified level of significance α. The conditioning
on H0 means conditioned that F is the true distribution.

When n is large, one can compute c by using the approximation

P{n1/2Dn ≤ x|H0} ≈ P{ sup
0≤t≤1

|B(t)− tB(1)| ≤ x}

= 2

∞∑

k=1

(−1)k+1e−2k2x2

.

This approximation follows from Theorem 61 below, and the summation for-
mula is from [37].

We will now establish the limiting distribution of the Kolmogorov-Smirnov
statistic.

Theorem 61. The empirical distribution Fn associated with a sample from
the distribution F satisfies

n1/2 sup
x

|Fn(x)− F (x)| d→ sup
0≤t≤1

|X(t)|, (5.38)

where X is a Brownian bridge.



382 5 Brownian Motion

Proof. From Exercise 40, we know that Fn = Gn(F (·)) and

sup
x

|Fn(x)− F (x)| = sup
0≤t≤1

|Gn(t)− t|,

where Gn(t) = n−1
∑n

k=1 1(Uk ≤ t) is the empirical distribution of the Un,
which are i.i.d. with a uniform distribution on [0, 1]. The ξn and Un are
defined on the same probability space.

In light of this observation, assertion (5.38) is equivalent to

n−1/2‖Yn‖ d→ ‖X‖,

where Yn(t) =
∑n
k=1(1(Uk ≤ t) − t), 0 ≤ t ≤ 1, and ‖x‖ = supt≤1 |x(t)|,

for x ∈ D. To prove this convergence, it suffices by the continuous-mapping

theorem to show that n−1/2Yn
d→ X in D, since the map x → ‖x‖ from D to

D is continuous (in the uniform topology).
Let κn be a Poisson random variable with mean n that is independent of

the Uk. We will prove n−1/2Yn
d→ X based on Exercise 53 by verifying

n−1/2Yκn

d→ X, (5.39)

n−1/2‖Yn − Yκn‖
P→ 0. (5.40)

Letting Nn(t) =
∑κn

k=1 1(Uk ≤ t), where Nn(1) = κn, we can write

n−1/2Yκn(t) = n−1/2(Nn(t)− nt)− tn−1/2(Nn(1)− n).

Now Nn is a Poisson process on [0, 1] with rate n by the mixed-sample rep-
resentation of Poisson processes in Theorem 26 of Chapter 3. Then from
the functional central limit theorem for renewal processes in Corollary 51,
the process n−1/2(Nn(t) − nt) converges in distribution in D to a Brownian
motion B.

Applying this to the preceding display, it follows that the process n−1/2

Yκn(t) converges in distribution in D to the process B(t)− tB(1), which is a
Brownian bridge. This proves (5.39).

Next, note that

n−1/2‖Yn − Yκn‖
d
= n−1/2 sup

0≤t≤1

∣
∣
∣

|n−κn|∑

k=1

(1(Uk ≤ t)− t)
∣
∣
∣

= n−1/2|κn − n|Zn, (5.41)

where Zn = sup0≤t≤1 |G|κn−n|(t)− t|. Since κn is the sum of n i.i.d. Poisson
random variables with mean 1, it follows by the classical central limit theorem

that n−1/2|κn − n| d→ |B(1)|. This convergence also implies |κn − n| P→ ∞.

Now sup0≤t≤1 |Gn(t) − t| P→ 0 by Proposition 59 and so this convergence
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is also true with n replaced by |κn − n|; that is, Zn
P→ 0. Applying these

observations to (5.41) verifies (5.40), which completes the proof.

5.13 Geometric Brownian Motion

This section describes a geometric Brownian and related processes that are
used for modeling stock prices or values of investments.

Let X(t) denote the price of a stock (commodity or other financial in-
strument) at time t. Suppose the value of the stock has many small up and
down movements due to continual trading. One possible model is a Brownian
motion with drift X(t) = x + μt + σB(t). This might be appropriate as a
crude model for local or short-time behavior. It is not very good, however,
for medium or long term behavior, since the stationary increment property
is not realistic (e.g., a change in price for the stock when it is $50 should be
different from the change when the value is $200).

A more appropriate model for the stock price, which is used in practice, is

X(t) = xeμt+σB(t). (5.42)

Any process equal in distribution to X is a geometric Brownian motion with
drift μ and volatility σ. Since E[eαB(t)] = eα

2t/2, the moments of X(t) are
given by

E[X(t)k] = xkekμt+k
2tσ2/2, k ≥ 1.

For instance,

E[X(t)] = xeμt+tσ
2/2 = x[1 + (μ+ σ2/2)t] + o(t) as t ↓ 0.

The X is a diffusion process that satisfies the differential property

dX(t) = (μ+ σ2/2)X(t)dt+ σX(t)dB(t).

We will not prove this characterization, but only note that by the moment
formula above, it follows that the instantaneous drift and diffusion parameters
for X are

μ(x, t) = (μ+ σ2/2)x, σ(x, t) = σ2x2.

Although the geometric Brownian motion X does not have stationary in-
dependent increments, it does have a nice property of ratios of the increments.
In particular, the ratio at the end and beginning of any time interval [s, s+ t]
is

X(t+ s)/X(s) = eμt+σ(B(s+t)−B(s)) d
= eμt+σB(t),

so its distribution is independent of s. Also, these ratios over disjoint equal-
length time intervals are i.i.d. This means that as a model for a stock price,
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one cannot anticipate any upward or downward movements in the price “ra-
tios”. So in this sense, the market is equitable (or not biased).

Does this also mean that the market is fair in the martingale sense that
X(t) is a martingale with respect to B? The answer is generally no.

However, X is a martingale if and only if μ + σ2/2 = 0 (a very special

condition). This follows since e−t(μ+σ2/2)X(t) is a martingale with respect
to B with mean x by Example 19 (and E[X(t)] = x when X(t) is such a
martingale).

The geometric Brownian model (5.42) has continuous paths that do not
account for large discrete-jumps in stock prices. To incorporate such jumps,
another useful model is as follows.

Example 62. Prices with Jumps. Suppose the price of a stock at time t is given
byX(t) = eY (t), where Y (t) is a real-valued stochastic process with stationary
independent increments (e.g., a compound Poisson or Lévy process). These
properties of Y also ensure that the price ratios are i.i.d. in disjoint, fixed-
length intervals.

Assume as in Exercise 7 that the moment generating function ψ(α) =
E[eαY (1)] exists for α in a neighborhood of 0, and E[eαY (t)] is continuous at
t = 0 for each α. Then it follows that

E[X(t)k] = ψ(k)t, k ≥ 1.

In particular, if Y (t) is a compound Poisson process with rate λ and its
jumps have the moment generating function G(α), then ψ(α) = e−λ(1−G(α)).
Consequently,

E[X(t)k] = e−λt(1−G(k)), k ≥ 1.

Other possibilities are that Y is a sum of a Brownian motion plus an
independent compound Poisson process, or that X is the sum of a geometric
Brownian motion plus an independent compound Poisson process.

We will not get into advanced investment models using geometric Brow-
nian motion such as Black-Scholes option pricing. However, the following
illustrates an elementary computation for an option.

Example 63. Stock Option. Suppose that the price of one unit of a stock at
time t is given by a geometric Brownian motion X(t) = eB(t). A customer
has the option of buying one unit of the stock at a fixed time T at a price
K, but the customer need not make the purchase. The value of the option
to the customer is (X(t)−K)+ since the customer will not buy the stock if
X(t) < K. We will disregard any fee that the customer would pay in order
to obtain the option.

The expectation of the option’s value is

E[(X(T )−K)+] =

∫ ∞

0

P{X(T )−K > x} dx

=

∫ ∞

0

P{B(T ) > log(x+K)} dx.
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This integral can be integrated numerically by using an approximation for
the normal distribution of B(T ). A variation of this option is in Exercise 39.

5.14 Multidimensional Brownian Motion

Brownian motions in the plane and in multidimensional spaces are natu-
ral models for phenomena driven by several independent (or dependent)
single-dimension Brownian motions. This section gives some insight into these
multidimensional processes.

A stochastic process B(t) = (B1(t), . . . , Bd(t)), t ≥ 0, in R
d is a multidi-

mensional Brownian motion if B1, . . . , Bd are independent Brownian motions
on R. Many basic properties of this process follow from results in one dimen-
sion. For instance, the multidimensional integral formula

∫

Rd

P{x+B(t) ∈ A}dx = |A|,

the Lebesgue measure of A, follows from the similar formula for d = 1 in
Exercise 6. The preceding integral is used in Section 5.15 for particle systems.

Applications of Brownian motions in R
d typically involve intricate func-

tions of the single-dimension components whose distributions determine sys-
tem parameters (e.g., Exercise 54). Here is another classical application.

Example 64. Bessel Processes. Associated with a Brownian motion B(t) in
R
d, consider its radial distance to the origin defined by

R(t) =
(
B1(t)

2 + · · ·+Bd(t)
2
)1/2

, t ≥ 0.

Any process equal in distribution to R is a Bessel process of order d.
When d = 1, we have the familiar reflected Brownian motion process

R(t) = |B(t)|. Exercise 19 mentioned that this is a Markov process and it
specifies its distribution (also recall Theorem 11).

The R(t) is also a Markov process on R for general d. Its transition prob-
ability P{R(t) ∈ A|R(0) = x} =

∫
A
pt(x, y) dy has the density

pt(x, y) = t−1(xy)1−d/2yd−1Id/2−1(xy/t),

where Iβ is the modified Bessel function of order β > −1 defined by

Iβ(u) =

∞∑

k=0

(u/2)2k+β

k!Γ (k + β + 1)
, u ∈ R.

This is proved in [61]. We will only derive the density of R(t) when R(0) = 0.
To this end, consider



386 5 Brownian Motion

R(t)2/t = (B1(t)
2 + · · ·+Bd(t)

2)/t
d
= B1(1)

2 + · · ·+Bd(1)
2.

The last sum of squares of d independent standard normal random variables
is known to have a χ-squared density f with d degrees of freedom. This f is
a gamma density with parameters α = d/2 and λ = 1/2 (see the Appendix).
Therefore, knowing that R(0) = 0,

P{R(t) ≤ r} = P{R(t)2/t ≤ r2/t} =

∫ r2/t

0

f(x) dx. (5.43)

The density of R(t) is shown in Exercise 55.
Although the hitting times of R(t) are complicated, we can evaluate their

means. Consider the time τa = inf{t ≥ 0 : R(t) = a} to hit a value a > 0. This
is a stopping time of R(t) and τa ≤ inf{t ≥ 0 : |B1(t)| = a} < ∞ a.s. since
the last stopping time is finite a.s. as noted in Theorem 11. Now, Exercise 56
shows that R(t)2− t is a martingale with mean 0. Then the optional stopping
result in Corollary 24 yields E[R(τa)

2 − τa] = 0. Therefore E[τa] = a2.

We will now consider a multidimensional process whose components are
“dependent” one-dimensional Brownian motions with drift. Let B(t) be a
Brownian motion in R

d, and let C = {cij} be a d × d matrix of nonneg-
ative real numbers that are symmetric (cij = cji) and nonnegative-definite
(
∑

i

∑
j uiujcij ≥ 0, for u ∈ R

d). As in the representation (5.8) of a multi-

variate normal vector, let A be a k × d matrix with transpose At and k ≤ d
such that AtA = C. Consider the process {X(t) : t ≥ 0} in R

d defined by

X(t) = x+ μt+B(t)A,

where x and μ are in R
d.

Any process equal in distribution to X is a generalized Brownian motion
in R

d with initial value x, drift μ and covariance matrix C = AtA.
A major use for multidimensional Brownian motions is in approximat-

ing multidimensional random walks. The following result is an analogue of
Donsker’s Brownian motion approximation for one-dimensional random walks
in Theorem 40.

Suppose that ξk, k ≥ 1, are i.i.d. random vectors in R
d with mean vector

μ = (μ1, . . . , μd) and covariances cij = E[(ξk,i − μi)(ξk,j − μj)], 1 ≤ i, j ≤ d.
Define the processes {Xn(t) : t ≥ 0} in R

d, for n ≥ 1, by

Xn(t) = n−1/2


nt�∑

k=1

(ξk − μ), t ≥ 0.

Theorem 65. Under the preceding assumptions, Xn
d→ X, as n→ ∞, where

X is a generalized Brownian motion on R
d starting at 0, with no drift, and

with covariance matrix {cij}.
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Sketch of Proof. Consider Xn,i(t) = n−1/2
∑
nt�

k=1 (ξk,i − μi), which is the ith

component of Xn. By Donsker’s theorem, Xn,i
d→ Xi for each i. Now, the

Cramér-Wold theorem states that (Xn,1, . . . , Xn,d)
d→ (X1, . . . , Xd) in R

d

if and only if
∑d

i=1 aiXn,i
d→

∑d
i=1 aiXi in R for any a ∈ R

d. However,
the latter holds by another application of Donsker’s theorem. Therefore, the
finite-dimensional distributions of Xn converge to those of X . To complete

the proof that Xn
d→ X , it suffices to verify a certain tightness condition on

the distributions of the processes Xn, which we omit.

5.15 Brownian/Poisson Particle System

This section describes a system in which particles occasionally enter an Eu-
clidean space and move about independently as Brownian motions and even-
tually exit. The system data and dynamics are represented by a marked
Poisson process like those in Chapter 2. The focus is on characterizing cer-
tain Poisson processes describing particle locations over time and departures
as intricate functions of the arrival process and particle trajectories. The
Brownian motion structure of the trajectories lead to tractable probabilities.

Consider a system of discrete particles that move about in the space R
d

as follows. The locations and entry times of the particles are represented by
the space-time Poisson process N =

∑
n δ(Xn,Tn) on R

d × R, where Xn is

the location in R
d at which the nth particle enters at time Tn. This Poisson

process is homogeneous in that

E[N(A× I)] = α|A|λ|I|,

where |A| is the Lebesgue measure of the Borel set A. Here λ is the arrival
rate of particles per unit time in any unit area, and α is the arrival rate per
unit area in any unit time period. Note that, for bounded sets A and I, the
N(A × I) is finite, but N(Rd × I) and N(A × R) are infinite a.s. (because
their Poisson means are infinite).

We assume that each particle moves in R
d independently as a d-dimensional

Brownian motion B(t), t ≥ 0, for a length of time V with distribution G and
then exits the space.

More precisely, let Vn, n ∈ Z, be independent with Vn
d
= V , and let Bn,

n ∈ Z, be independent with Bn
d
= B. Assume {Bn}, {Vn} are independent

and independent of N . Viewing the Bn and Vn as independent marks of
(Xn, Tn), the data for the entire system is defined formally by the marked
Poisson process

M =
∑

n

δ(Xn, Tn, Bn, Vn), on S = R
d × R× C(R,Rd)× R+.
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Here C(R,Rd) denotes the set of continuous functions from R to R
d. The

mean measure of M is given by

E[M(A× I × F × J)] = α|A|λ|I|P{B ∈ F}P{V ∈ J}.

The interpretation is that the nth particle has a space-time entry at
(Xn, Tn) and its location at time t is given by Xn + Bn(t − Tn), where
t − Tn ≤ Vn. At the end of its sojourn time Vn it exits the system at time
Tn + Vn from the location Xn +Bn(Vn).

Let us see where the particles are at any time t. It is not feasible to account
for all the particles that arrive up to time t, which is N(Rd × (−∞, t]) = ∞.
So we will consider particles that enter in a bounded time interval I prior to
t, which is t− I (e.g., t− [a, b] = [t− b, t− a]).

Now, the number of particles that enter Rd in a time interval I prior to t
and are in A at time t is

Nt(I ×A) =
∑

n

δ(Tn,Xn+Bn(t−Tn))(I ×A)1(Vn > t− Tn).

The Nt is a point process on R+ × R
d.

Proposition 66. The family of point processes {Nt : t ∈ R} is stationary in
t, and each Nt is a Poisson process on R+ × R

d with mean measure

E[Nt(I ×A)] = αλ|A|
∫

I

(1−G(u))du. (5.44)

Proof. By the form of its mean measure, the Poisson processM with its time
axis shifted by an amount t is

StM =
∑

n

δ(Xn,Tn+t,Bn,Vn)
d
= M, t ∈ R.

Therefore, M is stationary in the time axis. To prove that Nt is stationary
in t, it suffices by Proposition 104 in Chapter 3 to show that Nt = f(StM),
for some function f .

Accordingly, for a locally-finite counting measure ν =
∑

n δ(xn,tn,bn,vn) on

S, define the counting measure f(ν) on R+ × R
d by

f(ν) =
∑

n

δ(−tn,xn+bn(−tn))1(vn > −tn).

Then clearly, Nt = f(StM), which proves that Nt is stationary.
Next, note that Nt is a deterministic map of the Poisson process M re-

stricted to the subspace {(x, s, b, v) ∈ S : s ≤ t, v > t−s}, in which any point
(x, s, b, v) in the subspace is mapped to (s, x+ b(t−s)). Then by Theorem 32
in Chapter 2, Nt is a Poisson process with mean measure given by
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E[Nt(I ×A)] = αλ

∫

t−I

( ∫

Rd

P{x+B(t− s) ∈ A} dx
)
P{V > t− s}ds.

Because B is a Brownian motion, the integral in parentheses reduces to
|A| by Exercise 6. Therefore, using the change of variable u = t − s in the
last expression yields (5.44).

Next, let us consider departures from the system. The number of particles
that enter R

d during the time set I and depart from A during the time set
J is N̄(I ×A× J), where N̄ is a point process of the form

N̄ =
∑

n

δ(Tn,Xn+Bn(Vn),Tn+Vn) on {(s, x, u) ∈ R× R
d × R : s ≤ u}.

Proposition 67. The point process of departures N̄ is a Poisson process with
mean measure given by

E[N̄(I ×A× J)] = αλ|A|
∫

R+

|I ∩ (J − v)|dG(v). (5.45)

Proof. By its definition, N̄ is a deterministic map g of the Poisson processM ,
where g(Xn, Tn, Bn, Vn) = (Tn, Xn+Bn(Vn), Tn+Vn). Then by Theorem 32
in Chapter 2, N̄ is a Poisson process with mean

E[N̄(I×A×J)] = αλ

∫

I

∫

R+

1(s+v ∈ J)
( ∫

Rd

P{x+B(v) ∈ A} dx
)
dG(v) ds.

The integral in parentheses reduces to |A| by Exercise 6. Then an interchange
of the order of integration in the last expression yields (5.45).

There are several natural generalizations of the preceding model with more
dependencies among the marks and entry times and points, e.g., see Exercise
51. Although the processes Nt and N̄ may still be Poisson, their mean values
would be more complicated.

5.16 G/G/1 Queues in Heavy Traffic

Section 4.20 of Chapter 4 showed that the waiting times Wn for successive
items in a G/G/1 queueing system are a function of a random walk. This
suggests that the asymptotic behavior of these times can be characterized
by the Donsker Brownian motion approximation of a random walk, and that
is what we shall do now. We first describe the limit of Wn when the traffic
intensity ρ = 1, and then present a more general FCLT for the Wn when the
system is in heavy traffic: the traffic intensity is approximately 1.

Consider a G/G/1 queueing system, as in Section 4.20 of Chapter 4, in
which items arrive at times that form a renewal process with inter-arrival
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times Un, and the service times are i.i.d. nonnegative random variables Vn
that are independent of the arrival times. The service discipline is first-come-
first-served with no preemptions. The inter-arrival and service times have
finite means and variances, and the traffic intensity of the system is ρ =
E[V1]/E[U1]. For simplicity, assume the system is empty at time 0.

Our interest is in the length of time Wn that the nth arrival waits in the
queue before being processed. Section 4.20 of Chapter 4 showed that these
waiting times satisfy the Lindley recursive equation

Wn = (Wn−1 + Vn−1 − Un)
+, n ≥ 1,

and consequently,

Wn = max
0≤m≤n

n∑

k=m+1

(Vk−1 − Uk). (5.46)

Under the assumptions on the Un and Vn, it follows that

Wn
d
= max

0≤m≤n
Sm, (5.47)

where Sn =
∑n
m=1 ξm and ξm = Vm − Um.

In case ρ < 1, Theorem 118 of Chapter 4 noted that

Wn
d→ max

0≤m<∞
Sm.

In this section, we consider the limiting behavior of the waiting times Wn

when ρ equals or approaches 1, meaning that the system is in heavy traffic.
We begin with the case ρ = 1, and describe the asymptotic behavior of

the waiting times via the process

Ŵn(t) =
W
nt�

σ
√
n
, t ≥ 0.

Theorem 68. Suppose the G/G/1 system defined above has ρ = 1 and σ2 =
Var(ξ1) > 0. Then

Ŵn
d→M in D(R+) as n→ ∞,

where M(t) = maxs≤tB(s), the maximum process for a standard Brownian
motion B. Hence

Wn

σ
√
n

d→ M(1)
d
= |B(1)|.

Proof. Note that
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Ŵn(t)
d
=

1

σ
√
n

max
m≤
nt�

Sm =
1

σ
√
n
sup
s≤t

S[ns].

That is, Ŵn(t)
d
= f(Xn)(t), t ≥ 0, where

Xn(t) =
S
nt�
σ
√
n
, t ≥ 0,

and f : D(R+) → D(R+) is the supremum map defined by

f(x)(t) = sup
0≤s≤t

x(s), x ∈ D(R+).

Now the random walk Sn has steps with mean E[ξ1] = 0, since ρ = 1; and

σ2 = Var(ξ1). Then Xn
d→ B by Donsker’s theorem.

Next, it is clear that if ‖xn − x‖ → 0 in D[0, T ], then

‖f(xn)− f(x)‖ ≤ ‖xn − x‖ → 0 in D[0, T ].

Then since ‖Xn −B‖ P→ 0 in D[0, T ] for each T , it follows that

‖f(Xn)− f(B)‖ P→ 0 in D(R+).

This along with Ŵn = f(Xn) and f(B) =M proves Ŵn
d→M .

In particular, Ŵn(1)
d→M(1)

d
= |B(1)|, which proves the second assertion;

that M(1)
d
= |B(1)| follows by Theorem 11.

The preceding result suggests that for any G/G/1 system in which ρ ≈ 1,

the approximation Ŵn
d≈ M would be valid. A formal statement to this effect

is as follows.
Consider a family of G/G/1 systems indexed by a parameter r with inter-

arrival times U rn and service times V rn . Denote the other quantities by ρr,
W r
n , S

r
n =

∑n
m=1 ξ

r
m, etc., and consider the process

Ŵr(t) =
W r


rt�
σ
√
r
, t ≥ 0.

Theorem 69. Suppose the family of G/G/1 systems are such that ρr → 1,

sup
r
E[(ξr1 − E[ξr1 ])

2+ε] < ∞, for some ε > 0,

r1/2E[ξr1 ] → 0, Var(ξr1) → σ2 > 0, as r → ∞.

Then Ŵr
d→ M in D(R+) as r → ∞.
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Proof. As in the proof of Theorem 68, Ŵr = f(Xr), where f is the supremum
map and Xr(t) = S
rt�/σ

√
r, t ≥ 0. Then to prove the assertion, it suffices

to show that Xr
d→ B as r → ∞.

Now, we can write

Xr(t) = Yr(t) + (�rt�/r)r1/2E[ξr1 ],

where

Yr(t) =
1

σ
√
r


rt�∑

m=1

(ξrm − E[ξr1 ]).

Under the hypotheses, Yr
d→ B by a theorem of Prokhorov 1956, and hence

Xr
d→ B.

The preceding results are typical of many heavy-traffic limit theorems that
one can obtain for queueing and related processes by the framework presented
by Whitt [112]. In particular, when a system parameter, such as the waiting
time above, can be expressed as a function of the system data (cumulative
input and output processes), and that data under an appropriate normaliza-
tion converges in distribution, then under further technical conditions, the
system parameter also converges in distribution to the function of the limits
of the data. Here is one of the general models in [112].

Example 70. Generalized G/G/1 System. Consider a generalization of the
G/G/1 systems above in which the inter-arrival times U rn and service times
V rn (the system data) are general random variables that may be dependent.
Then the waiting times W r

n can still be expressed as a function of the system
data as in (5.46). In other words,

W r
n = S̃n − min

0≤m≤n
S̃m

where S̃n =
∑n
k=1(Vk−1 − Uk). As above, consider the processes

Ŵr(t) =
W r


rt�
σ
√
r
, Xr(t) =

S
rt�
σ
√
r
, t ≥ 0.

Then we can write Ŵr = h(Xr), where h : D(R) → D(R) is the one-sided
reflection map defined by

h(x)(t) = x(t) − inf
0≤s≤t

x(s), t ≥ 0.

The reflection map h (like the supremum map above) is continuous in the
uniform topology on D[0, T ] since

‖h(x)− h(y)‖ ≤ 2‖x− y‖, x, y ∈ D[0, T ].



5.17 Brownian Motion in a Random Environment 393

Then the continuous-mapping theorem yields the following result.

Convergence Criterion. If Xr
r→ X in D(R), then Ŵr

d→ W in D(R) as
r → ∞, where

W (t) = X(t)− inf
0≤s≤t

X(s), t ≥ 0.

To apply this for a particular situation, one would use properties of the
inter-arrival times and service times (as in Theorem 69) to verify Xr

r→ X .
There are a variety of conditions under which the limit X is a Brownian
motion, a process with stationary independent increments, or an infinitely
divisible process; and other topologies on D(R+) are often appropriate [112].

5.17 Brownian Motion in a Random Environment

Section 3.14 describes a Poisson process with a random intensity measure
called a Cox process. The random intensity might represent a random envi-
ronment or field that influences the locations of points. This section describes
an analogous randomization for Brownian motions in which the time scale is
determined by a stochastic process.

Let {X(t) : t ∈ R+} and η = {η(t) : t ∈ R+} be real-valued stochastic
processes defined on the same probability space, such that η(t) is a.s. non-
decreasing with η(0) = 0 and η(t) → ∞ a.s. as t → ∞. The process X is
a Brownian motion directed by η if the increments of X are conditionally
independent given η, and, for any s < t, the increment X(t) − X(s) has a
conditional normal distribution with variance τt − τs. These conditions, in
terms of the moment generating function for the increments of X , say that,
for 0 = t0 < t1 < · · · < tn and u1, . . . , un in R+,

E
[
exp

{ n∑

i=1

ui[X(ti)−X(ti−1)]
} ∣
∣
∣ η
]

(5.48)

= exp
{1

2

n∑

i=1

u2i [η(ti)− η(ti−1)]
}

a.s.

A directed Brownian motion is equal in distribution to a standard Brow-
nian motion with random time parameter as follows.

Remark 71. A process X is a Brownian motion directed by η if and only if

X
d
= B ◦ η′, where B and η′ are defined on a common probability space

such that B is a standard Brownian motion independent of η′, and η′ d
=

η. This follows by the definition above and consideration of the moment
generating function of the increments of the processes. The process B ◦η′ is a
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Brownian motion subordinated to η (like a Markov chain subordinated to a
Poisson process, which we saw in Chapter 4). In case η is strictly increasing,
Exercise 43 shows that X = B ◦ η a.s., where B is defined on the same
probability space as X and η.

A Brownian motion X directed by η inherits many properties of standard
Brownian motions. The proofs usually follow by conditioning on η and using
properties of this process. Here are some examples.

Example 72. E[X(t)] = 0, and Var[X(t)] = E[η(t)].

Example 73. Consider τXa = inf{t : X(t) ≥ a}. Then

P{τXa ≤ t} =

∫

R+

P{η(t) ≤ u}P{τa ∈ du},

where τa = inf{t : B(t) = a}.

Example 74. Suppose that X1, . . . , Xm are Brownian motions directed by
η1, . . . , ηm, respectively, and (X1, η1), . . . , (Xm, ηm) are independent. Then
X(t) = X1(t) + · · · + Xm(t) is a Brownian motion directed by η(t) =
η1(t) + · · · ηm(t).

Example 75. FCLT. For a Brownian motion X directed by η, define

Xr(t) = b−1/2
r X(rt) t ≥ 0,

where br → ∞ are constants. By Remark 71 and the scaling b
−1/2
r B

d
= B(br ·),

we can write Xr
d
= B ◦ Yr, where Yr(t) = η′(rt)/br and the Brownian motion

B and η′ are independent. Then by the property of the composition mapping
in Proposition 48, we obtain the following result, where I is the identity

function: If Yr
d→ I in D(R+), then Xr

d→ B in D(R+).

5.18 Exercises

For the following exercises, B will denote a standard Brownian motion.

Exercise 1. Show that each of the following processes is also a Brownian
motion.
(a) B(t+ s)−B(s) Translated process for a fixed time s.
(b) −B(t) Reflected process
(c) c−1/2B(ct) Scaling, for c > 0
(d) B(T )−B(T − t), t ∈ [0, T ], Time-reversal on [0, T ] for fixed T .
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Exercise 2. The time-inversion of a Brownian motion B is the process
X(0) = 0,

X(t) = tB(1/t), t > 0.

Prove that X is a Brownian motion. First show that X(t) → 0 a.s. as t ↓ 0.

Exercise 3. Suppose that h : R+ → R+ is a continuous, strictly increasing
function with h(0) = 0, and h(t) ↑ ∞. Find the mean and covariance functions

for the process B(h(t)). Show that B(h(t))
d
= X(t) for each t, where X(t) =

(h(t)/t)−1/2B(t). Are the processes B(h(·)) and X equal in distribution?

Exercise 4. For 0 < s < t, show that the conditional density of B(s) given
B(t) = b is normal with conditional mean and variance

E[B(s)|B(t) = b] = bs/t, Var[B(s)|B(t) = b] = s(t− s)/t.

For t1 < s < t2, show that

P{B(s) ≤ x|B(t1) = a, B(t2) = b} = P{B(s−t1) ≤ x−a|B(t2−t1) = b−a}.

Using these properties prove that the conditional density of B(s) given
B(t1) = a, B(t2) = b is normal with conditional mean and variance

a+ (b− a)(s− t1)

(t2 − t1)
and

(s− t1)(t2 − s)

(t2 − t1)
.

Exercise 5. Consider the process X(t) = ae−αt + σ2B(t), t ≥ 0, where
a, α ∈ R and σ > 0. Find the mean and covariance functions for this pro-
cess. Show that X is a Gaussian process by applying Theorem 5. Does X
have independent increments, and are these increments stationary? Is X a
martingale, submartingale or supermartingale with respect to B?

Exercise 6. For a density f on R that is symmetric (f(x) = f(−x), x ∈ R),
show that

∫

R

( ∫

A−x
f(y)dy

)
dx = |A| (The Lebesgue measure of A).

Use this to verify that, for a Brownian motion B(t),

∫

R

P{x+ μt+ σB(t) ∈ A}dx = |A|,

independent of t, μ and σ.

Exercise 7. Let Y (t) be a real-valued process with stationary independent
increments. Assume that the moment generating function ψ(α) = E[eαY (1)]
exists for α in a neighborhood of 0, and g(t) = E[eαY (t)] is continuous at
t = 0 for each α. Show that g(t) is continuous in t for each α, and that



396 5 Brownian Motion

g(t) = ψ(α)t. Use the fact that g(t + u) = g(t)g(u), t, u ≥ 0, and that the
only continuous solution to this equation has the form g(t) = etc, for some c
that depends on α (because g(t) depends on α). Show that

E[Y (t)] = tE[Y (1)], Var[Y (t)] = tVar[Y (1)].

Exercise 8. Let X(t) = μt+ σB(t) be a Brownian motion with drift, where
μ > 0. Suppose that a signal is triggered whenever M(t) = sups≤tX(s)
reaches the levels 0, 1, 2, . . .. So the nth signal is triggered at time τn =
inf{t : M(t) = n}, n ≥ 0. Show that these times of the signals form a
renewal process and find the mean, variance and Laplace transform of the
times between signals.

In addition, obtain this information under the variation in which a signal
is triggered wheneverM(t) reaches the levels 0 = L0 < L1 < L2 < . . . , where
Ln − Ln−1 are independent exponential random variables with rate λ.

Exercise 9. When is a Gaussian Process Stationary? Recall that a stochastic
process is stationary if its finite-dimensional distributions are invariant under
shifts in time. This is sometimes called strong stationarity. A related notion
is that a real-valued process {X(t) : t ≥ 0} is weakly stationary if its mean
function E[X(t)] is a constant and its covariance function Cov(X(s), X(t))
depends only on |t−s|. Weak stationarity does not imply strong stationarity.
However, if a real-valued process is strongly stationary and its mean and
covariance functions are finite, then the process is weakly stationary. Show
that a Gaussian process is strongly stationary if and only if it is weakly
stationary.

Exercise 10. Suppose that Yn, n ∈ Z, are independent normally distributed
random variables with mean μ and variance σ2. Consider the moving average
process

Xn = a0Yn + a1Yn−1 + · · ·+ amYn−m, n ∈ Z,

where a0, . . . , am are real numbers. Show that {Xn : n ∈ Z} is a Gaussian pro-
cess that is stationary and specify its mean and covariance functions. Justify
that this process is not Markovian and does not have stationary independent
increments.

Exercise 11. Derive the mean and variance formulas in (5.14) for M(t).

Exercise 12. Equal Cruise-Control Settings. Two autos side by side on a
highway moving at 65 mph attempt to move together at the same speed by
setting their cruise-control devises at 65 mph. As in many instances, nature
does not always correspond to one’s wishes and the actual cruise-control
settings are independent normally distributed random variables V1 and V2
with mean μ = 65 and standard deviation σ = 0.4. Find the probability that
the autos move at the same speed. Find P{|V1 − V2| < .3}.
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Exercise 13. Letting τa = inf{t : B(t) = a}, find the probability that B hits
0 in the time interval (τa, τb), where 0 < a < b.

Exercise 14. Arc sine Distribution. Let U = sin2θ, where θ has a uniform
distribution on [0, 2π]. Verify that P{U ≤ u} = arcsin

√
u, u ∈ [0, 1], which

is the arc sine distribution.
Let X1, X2 be independent normally distributed random variables with

mean 0 and variance 1. Show that X2
1/(X

2
1 + X2

2 )
d
= U . Hint: In the inte-

gral representation for P{X2
1/(X

2
1 +X2

2 ) ≤ u}, use polar coordinates where
(x1, x2) is mapped to r = (x21 + x22)

1/2 and θ = arctanx2/x1.

Is it true that U
d
= 1− U?

Exercise 15. Prove Theorem 15 for u �= 1. Using this result, find the distri-
bution of η = sup{t ∈ [0, u] : B(t) = 0} for u �= 1.

Exercise 16. Suppose that B and B̃ are independent Brownian motions.
Find the moment generating function of B̃(τa) at the time when B hits a,
which is τa = inf{t : B(t) = a}. Show that {B̃(τa) : a ∈ R+} considered as a
stochastic process has stationary independent increments.

Exercise 17. For the hitting time τ = inf{t > 0 : B(t) �∈ (−a, a)}, where
a > 0, prove that its Laplace transform is

E[e−λτ ] = 1/ arccos(a
√
2λ).

Mimic the proof of Theorem 32 using the facts that B(τ) is independent of
τ , and P{B(τ) = −a} = P{B(τ) = a} = 1/2.

Exercise 18. Continuation. In the context of the preceding exercise, verify
that E[τ ] = a2, and E[τ2] = 5a4/3.

Exercise 19. Let M(t) = sups≤tB(s), and consider the process X(t) =
M(t)−B(t), t ≥ 0. Show that

X(t)
d
= M(t)

d
= |B(t)|, t ≥ 0.

(The processes X and |B(·)| are Markov processes on R+ with the same
transition probabilities, and hence they are equal in distribution. However,
they are not equal in distribution to M , since the latter is nondecreasing.)

Show that

P{X(t) ≤ z|X(s) = x} =

∫ z

−∞
[ϕ(y − x; t− s) + ϕ(−y − x; t− s)] dy,

where ϕ(x; t) = e−x2/2t/
√
2πt. In addition, verify that

P{M(t) > a|X(t) = 0} = e−a2/2t.
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Exercise 20. Reflection Principle for Processes. Suppose that τ is an a.s.
finite stopping time for a Brownian motion B, and define

X(t) = B(t ∧ τ) − (B(t)−B(t ∧ τ)), t ≥ 0.

Prove that X is a Brownian motion. Hint: Show that X
d
= B by using the

strong Markov property along with the process B′(t) = B(τ + t) − B(τ),
t ≥ 0, and the representations

B(t) −B(t ∧ τ) = B′((t− τ)+), B(t) = B(t ∧ τ) +B′((t− τ)+).

Exercise 21. Continuation. For the hitting time τa = inf{t > 0 : B(t) = a},
show that the reflected process

X(t) = B(t)1(τa ≤ t) + (2a−B(t))1(τa > t)

is a Brownian motion. Use the result in the preceding exercise.

Exercise 22. Use the reflection principle to find an expression for

P{B(t) > y, min
s≤t

B(s) > 0}.

Exercise 23. The value of an investment is modeled as a Brownian motion
with drift X(t) = x + μt + σB(t), with an upward drift μ > 0. Find the
distribution of M(t) = mins≤tX(s). Use this to find the distribution of the
lowest value M(∞) = inft∈R+ X(t) when x = 0. In addition, find

P{X(t)−M(t) > a}, a > 0.

Exercise 24. The values of two stocks evolve as independent Brownian mo-
tions X1 and X2 with drifts, where Xi(t) = xi + μit+ σiBi(t), and x1 < x2.
Find the probability that X2 will stay above X1 for at least s time units.
Let τ denote the first time that the two values are equal. Find E[τ ] when
μ1 < μ2 and when μ1 > μ2.

Exercise 25. Show that

P{B(1) ≤ x|B(s) ≥ 0, s ∈ [0, 1]} = 1− e−x2/2.

Hint: Consider B̃(t) = B(1)− B(1 − t) and show that the conditional prob-
ability is equal to P{B̃(1) ≤ x|M̃ (1) = B̃(1)}, where M̃(t) = sups≤t B̃(s).

Exercise 26. Consider a compound Poisson process Y (t) =
∑N(t)

n=1 ξn, where
N(t) is a Poisson process with rate λ and the ξn are i.i.d. and independent of
N . Suppose ξ1 has a mean μ, variance σ2 and moment generating function
ψ(α) = E[eαξ1 ]. Show that the following are martingales with respect to Y :
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X1(t) = Y (t)− λμt, X2(t) = (Y (t)− λμt)2 − tλ(μ2 + σ2),

X3(t) = eαY (t)−λt(1−ψ(α)), t ≥ 0.

Find the mean E[Xi(t)], for each i.

Exercise 27. Suppose X(t) denotes the stock level of a certain product at

time t and the holding cost up to time t is Y (t) = h
∫ t
0 X(s) ds, where h is

the cost per unit time of holding one unit in inventory. Show that if X is a
Brownian motion B, then the mean and covariance functions of Z are

E[Y (t)] = 0, Cov(Y (s), Y (t)) = h2s2(t/2− s/6), s ≤ t.

Find the mean and covariance functions of Y if X(t) = x + μt + σB(t), a
Brownian motion with drift; or if X is a compound Poisson process as in the
preceding problem.

Exercise 28. Prove that Y (t) =
∫ t
0
B(s) ds, t ≥ 0, is a Gaussian process

with mean 0 and E[Y (t)2] = t3/3.
Hint: Show that Z =

∑n
i=1 uiX(ti) has a normal distribution for any

t1, . . . , tn in R+, and u1, . . . , un in R. Since a Riemann integral is the limit
of sums of rectangles, we know that Z = limn→∞ Zn, where

Zn =

n∑

i=1

ui

n∑

k=1

(ti/n)B(kti/n).

Justify that each Zn is normally distributed, and that its limit (using moment
generating functions) must also be normally distributed.

Exercise 29. Continuation. Suppose X(t) = exp{
∫ t
0
B(s) ds}, t ≥ 0. Verify

that E[X(t)] = et
6/6.

Exercise 30. Let Y = {Yn, n ≥ 0} be independent random variables (that
need not be identically distributed) with finite means. Suppose X0 is a de-
terministic function of Y0 with finite mean. Define

Xn = X0 +

n∑

i=1

Yi, X ′
n = X0

n∏

i=1

Yi, n ≥ 1.

Show that Xn is a discrete-time martingale with respect to Y if E[Yi] = 0.
How about if E[Yi] ≥ 0? Is Xn a martingale with respect to itself? What can
you say about X ′

n if the Yi are positive with E[Yi] = 1? or ≥ 1?

Exercise 31. Wald Equation for Discounted Sums . Suppose that ξ0, ξ1, . . .
are costs incurred at discrete times and they are i.i.d. with mean μ. Consider
the discounted cost process Zn =

∑n
m=0 α

mξm, where α ∈ (0, 1) is a discount
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factor. Suppose that τ is a stopping time of the process ξn such that E[τ ] < ∞
and E[ατ ] exists for some 0 < α < 1. Prove that

E[Zτ ] =
μ(1− αE[ατ ])

(1− α)
.

Do this by finding a convenient martingale and applying the optional stopping
theorem; there is also a direct proof without the use of martingales.

Next, consider the process Sn =
∑n

m=0 ξm, n ≥ 0, and show that

E[

τ∑

m=0

αmSm] =
μE[τ ]

1− α
− αμ(1 − αE[ατ ])

(1− α)2
.

Exercise 32. Continuation. In the preceding problem, are the results true
under the weaker assumption that ξ0, ξ1, . . . are such that E[ξ0] = μ and
E[ξn|ξ0, . . . , ξn−1] = μ, n ≥ 1?

Exercise 33. Quadratic Variation. Consider the quadratic increments

V (t) =
∑

i

(B(ti)−B(ti−1))
2

over a partition 0 = t0 < t1 < · · · < tk = t of [0, t]. Verify E[V (t)] = t and

Var[V (t)] =
∑

i

(ti − ti−1)
2Var[B(1)2].

Next, for each n ≥ 1, let Vn(t) denote a similar quadratic increment sum for
a partition 0 = tn0 < tn1 < · · · < tnkn = t, where maxk(tnk − tn,k−1) → 0.
Show that E[Vn(t)

2 − t] → 0 (which says Vn(t) converges in mean square
distance to t). The function t is the quadratic variation of B in that it is the
unique function (called a compensator) such that B(t)− t is a martingale.

One can also show that Vn → t a.s. when the partitions are nested.

Exercise 34. Random Time Change of a Martingale. Suppose that X is a
martingale with respect to Ft and that {τt : t ≥ 0} is a nondecreasing process
of stopping times of Ft that are bounded a.s. Verify that X(τt) is a martingale
with respect to Ft, and that its mean is E[X(τt)] = E[X(0)].

Exercise 35. Optional Switching. Suppose that Xn and Yn are two martin-
gales with respect to Fn that represent values of an investment in a fair
market that evolve under two different investment strategies. Suppose an in-
vestor begins with the X-strategy and then switches to the Y -strategy at an
a.s. finite stopping time τ of Fn, and that Xτ = Yτ . Then the investment
value would be
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Zn = Xn1(n < τ) + Yn1(n ≥ τ),

where Xτ is the value carried forward at time τ . Show that there is no benefit
for the investor to switch at τ by showing that Zn is a martingale. Use the
representation

Zn+1 = Xn+11(n < τ) + Yn+11(n ≥ τ)− (Xτ − Yτ )1(τ = n+ 1).

Exercise 36. Prove that if σ and τ are stopping times of Ft, then so are
σ ∧ τ and σ + τ .

Exercise 37. Prove that if X(t) and Y (t) are submartingales with respect
to Ft, then so is X(t) ∨ Y (t).

Exercise 38. Consider a geometric Brownian motion X(t) = xeB(t). Find
the mean and distribution of τa = inf{t : X(t) = a}.

Exercise 39. Recall the investment option in Example 63 in which a cus-
tomer may purchase a unit of a stock at a price K at time T . Consider this
option with the additional stipulation that the customer “must” purchase
a unit of the stock before time T if its price reaches a prescribed level a,
and consequently the other purchase at time T is not allowed. In this set-
ting, the customer must purchase the stock at the price a prior to time t,
if maxx≤tX(s) = eM(t) > a, where M(t) = maxs≤tB(s). Otherwise, the
option of a purchase at the price K is still available at time T . In this case,
the value of the option is

Z = (1 − a)1(M(T ) > log a) + (X(T )−K)+1(M(T ) ≤ log a).

Prove that

E[Z] = 2(1− a)[1− Φ(log a/
√
T )] +

∫ log a

0

∫ y

0

(ey −K)fT (x, y) dx dy,

where ft(x, y) is the joint density of B(t),M(t) and Φ is the standard normal
distribution. Verify that

ft(x, y) =
2(2y − x)√

2πt3
e−(2y−x)2/2t, x ≤ y, y ≥ 0.

Verify that E[Z] is minimized at the value a at which the integral term equals
the preceding term. This would be the worst scenario for the customer.

Exercise 40. Prove Proposition 59 when F is not continuous. Use the fact

from Exercise 11 in Chapter 1 that ξn
d
= F−1(Un), where Un are i.i.d. with

the uniform distribution on [0, 1]. By Theorem 16 in the Appendix, you can
assume the ξn and Un are on the same probability space. Then the empirical
distribution Gn(t) = n−1

∑n
k=1 1(Uk ≤ t) of the Un satisfies Fn = Gn(F (·)).

Conclude by verifying that
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sup
x

|Fn(x) − F (x)| = sup
t≤1

|Gn(t)− t| → 0 a.s. as n→ ∞,

where the limit is due to Proposition 59 for a continuous distribution.

Exercise 41. Let X be a Brownian motion directed by η. Suppose the pro-
cess η has stationary independent nonnegative increments and E[e−αη(t)] =
ψ(α)t, where ψ(α) = E[e−αη(1)]. Determine the moment generating function
of X(1) (as a function of ψ) and show that X has stationary independent
increments.

Exercise 42. Show that if Xn is a nonnegative supermartingale, then the
limit X = limn→∞ Xn exists a.s. and E[X ] ≤ E[X0]. Use the submartingale
convergence theorem and Fatou’s lemma.

Exercise 43. Let X be a Brownian motion directed by η, where the paths
of η are strictly increasing a.s. Show that X(t) = B(η(t)), t ∈ R+, where B
is a Brownian motion (on the same probability space as X and η) that is
independent of η.

Hint: Define B(t) = X(η̂(t)), where η̂(t) = inf{s ≥ 0 : η(s) = t}. Argue
that η̂(η(t)) = t and X(t) = B(η(t)), for each t, and that

E
[
exp

{ n∑

i=1

ui[B(ti)−B(ti−1)]
} ∣
∣
∣ η
]
= exp{1

2

n∑

i=1

u2i (ti − ti−1)} a.s.

Thus B is a Brownian motion and it is independent of η since the last ex-
pression is not random.

Exercise 44. As a variation of the model in Section 5.17, a real-valued pro-
cess X is a Brownian motion with drift μ and variability σ directed by η if,
for 0 = t0 < t1 < · · · < tn and u1, . . . , un in R+,

E
[
exp

{ n∑

i=1

ui[X(ti)−X(ti−1)]
} ∣
∣
∣ η
]

= exp
{ n∑

i=1

uiμ[η(ti)− η(ti−1)]
1

2

n∑

i=1

u2iσ
2[η(ti)− η(ti−1)]

}
a.s.

Show that if t−1η(t) → c a.s. for some c > 0, then

t−1X(t) → cμ, a.s. t−1 max
s≤t

X(s) → cμ a.s.

Exercise 45. Prove Theorem 39 on continuous mappings for “separable”
metric spaces by applying the coupling result for the a.s. representation of
convergence in distribution (Theorem 16 in the Appendix).
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Exercise 46. Use Donsker’s theorem to prove that

P{n−1/2(Sn −min
k≤n

Sk) > x} → e−x2/2.

Exercise 47. In the context of Donsker’s theorem, consider the range

Yn = max
k≤n

Sk −min
k≤n

Sk

of the random walk. Show that n−1/2Yn
d→ Y , where E[Y ] = 2

√
2/π. Express

Y as a functional of a Brownian motion.

Exercise 48. FCLT for Markov Chains. Let Yn be an ergodic Markov chain
on a countable state space S with stationary distribution π. For a function
f : S → R, consider the process

Xn(t) =
1

σ
√
n


nt�∑

k=1

[f(Yk)− a], t ∈ [0, 1].

Specify assumptions (and a, σ) under which Xn
d→ B as n→ ∞, and prove it.

Exercise 49. Show that if B is a Brownian motion, then (1− t)B(t/(1− t))
and tB(1 − t)/t) are Brownian bridges. In addition, show that if X is a
Brownian bridge, then (1+t)X(t/(1+t)) and (1+t)X(1/(1+t)) are Brownian
motions. Hint: Take advantage of the Gaussian property.

Exercise 50. For a Brownian bridge X , find expressions for the distribution
of M(1) = mint≤1X(t) and M(1) = maxt≤1X(t).

Exercise 51. Consider the Brownian/Poisson model in Section 5.15 with the
difference that the Poisson input process N is no longer time-homogeneous
and its mean measure is

E[N(A× I)] = α|A|Λ(I),

where Λ is a measure on the time axis R. As in Section 5.15, let Nt(I × A)
denote the number of particles that enter S in the time interval t− I and are
in A at time t. Verify that each Nt is a Poisson process with

E[Nt(I ×A)] = α|A|
∫

t−I
P{V > t− s}Λ(ds).

Is the family {Nt : t ∈ R} stationary as it is in Section 5.15?
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Exercise 52. Continuity of Addition in D × D. Assume that (Xn, Yn)
d→

(X,Y ) in D×D and Disc(X)∩Disc(Y ) is empty a.s., where Disc(x) denotes

the discontinuity set of x. Prove that Xn + Yn
d→ X + Y .

Exercise 53. Show thatXn
d→ X inD if X̂n

d→ X inD andXn−X̂n
d→ 0. Do

this by proving and applying the property that if Xn
d→ X in D and Yn

d→ y

in D for non-random y, then (Xn, Yn)
d→ (X, y) in D2 and Xn+ Yn

d→ X + y
in D, when X has continuous paths a.s.

Exercise 54. Suppose that (B1(t), B2(t)) is a Brownian motion in R
2, and

define τa = inf{t : B1(t) = a}. Then X(a) = B2(τa) is the value of B2

when B1 hits a. The process {X(a) : a ≥ 0} is, of course, a Brownian motion
directed by {τa : a ≥ 0}. Show that X has stationary independent increments
and that X(a) has a Cauchy distribution with density

f(x) =
1

aπ(1 + (x/a)2)
, x ∈ R.

Hint: Find the characteristic function of X(a).

Exercise 55. Consider the Bessel process R(t) =
(
B1(t)

2 · · ·Bd(t)2
)1/2

as in
(5.43). Show that its density is

fR(t) =
2

(2t)n/2Γ (n/2)
rd−1e−r2/2t.

Evaluate this for d = 3 by using the fact that Γ (α) = (α− 1)Γ (α− 1). Show
that Γ (1/2) =

√
π by its definition Γ (α) =

∫∞
0 xα−1e−x dx and the property

of the normal distribution that
√
2
∫∞
0
e−t2/2 dt =

√
π.

Exercise 56. Continuation. For the Bessel process R(t) in the preceding
exercise, show that R(t)2 − t is a martingale with mean 0.

Exercise 57. Suppose that X(t) is a Brownian bridge. Find an expression in
terms of normal distributions for pt = P{|X(1/2)−X(t)| > 0}. Is pt strictly
increasing to 1 on [1/2, 1]?

Exercise 58. Let X(t) denote a standard Brownian motion in R
3 and let

A denote the unit ball. Find the distribution of the hitting time τ = inf{t :
X(t) ∈ Ac}. Is τ d

= inf{t : |B(t)| > 1}?

Exercise 59. For the G/G/1 system described in Section 5.16, consider the
waiting times

Wn = max
0≤m≤n

n∑

�=m+1

(V�−1 − U�).

Show that if ρ > 1, then n−1Wn → E[V1 − U1] a.s. as n→ ∞.



Chapter 6

Appendix

This appendix covers background material from probability theory and real
analysis. Included is a review of elementary notation and concepts of prob-
ability as well as theorems from measure theory, which are major tools of
applied probability. More details can be found in the following textbooks:
Probability Theory — Billingsley 1968, Breiman 1992, Chung 1974, Durrett
2005, Feller 1972, Grimmett and Stirzaker 2001, Kallenberg 2004, Shiryaev
1995.
Real Analysis — Ash and Doléans-Dade 2000, Bauer 1972, Hewitt and
Stromberg 1965.

6.1 Probability Spaces and Random Variables

The underlying frame of reference for random variables or a stochastic process
is a probability space. A probability space is a triple (Ω,F , P ), where Ω is
a set of outcomes, F is a family of subsets of Ω called events, and P is a
probability measure defined on these events. The family F is a σ-field (or
σ-algebra): If A ∈ F , then so is its complement Ac, and if a sequence An is
in F , then so is its union ∪nAn.

The probability measure P satisfies the properties of being a measure: It
is a function P : F → [0, 1] such that, for any finite or countably infinite
collection of disjoint sets An in F ,

P (∪nAn) =
∑

n

P (An).

Furthermore, P satisfies P (Ω) = 1.
Under this definition, P (A) ≤ 1, P (Ac) = 1−P (A), where Ac = Ω\A (the

complement of A), and

R. Serfozo, Basics of Applied Stochastic Processes,
Probability and its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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P (A) ≤ P (B), A ⊂ B,

P (An) → P (A), if An ↑ A or An ↓ A.

The definition of a random variable involves the notion of a measurable
function. Suppose (S,S) and (S′,S′) are measurable spaces (sets with asso-
ciated σ-fields). A function f : S → S′ is measurable if

f−1(A) = {x ∈ S : f(x) ∈ A} ∈ E , for each A ∈ E ′.

That is, the set of all x’s that f maps into A is in E .
Typically, S will be the outcome spaceΩ, the real line R, the d-dimensional

Euclidean space Rd, or a metric space. We adopt the standard convention that
the σ-field S for S is its Borel σ-field — the smallest σ-field containing all
open sets in S (or the σ-field consisting of countable unions of open sets and
all complements of these). We sometimes write B and B+ for the Borel σ-
fields of R and R+. A useful property is that if f : S → S′ and g : S′ → S′′ are
measurable, then the composition function g ◦ f(x) = g(f(x)) is measurable.

The rest of this sections concerns classical real-valued random variables.
We discuss random variables on metric spaces in Section 6.3. A random vari-
able X on a probability space (Ω,F , P ) is a measurable mapping from Ω to
R. The measurability of X ensures that F contains all sets of the form

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B}, B ∈ B+. (6.1)

These are the types of events for which P is defined. One usually constructs
(or assumes) the σ-field F is large enough such that the random variables of
interest are measurable. For instance, if X , Y and Z are of interest, one can
let F = σ(X,Y, Z), the “smallest σ-field” containing all sets of the form (6.1)
for X , Y and Z, so that they are measurable.

A statement about events or random variables is said to hold almost surely
(a.s.) if the statement holds with probability one (some say the statement is
true almost everywhere (a.e.) on Ω with respect to P ). For instance X+Y ≤
Z a.s. Also, we sometimes omit a.s. from elementary statements like X = Y
and X ≤ Y that hold a.s.

All of the probability information of X in “isolation” (not associated with
other random quantities on the probability space) is contained in its distri-
bution function

F (x) = P{X ≤ x}, x ∈ R.

Here P{X ≤ x} = P ({ω : X(ω) ≤ x}). A distribution function has at most
a finite or countable number of discontinuities (which may be a dense set);
this is a well-known property of any increasing function. We sometimes write
the distribution as FX(x). Several standard distribution functions are in the
next section.

The random variable X is discrete if the range of X is a countable set S
in R. In this case, the probability function of X is P{X = x}, x ∈ S; and
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P{X ∈ A} =
∑

x∈A
P{X = x}, A ⊂ S.

The mean (or expectation) of X is

E[X ] =
∑

x∈S
xP{X = x},

provided the sum exists (it is absolutely convergent, meaning the sum of its
absolute values is finite).

The random variable X is continuous if there is a (measurable) density
function f : R → R+ such that

∫ ∞
−∞ f(x) dx = 1 and P{X ∈ A} =

∫
A f(x) dx,

A ⊂ R. Then the distribution of X is F (x) =
∫ x

−∞ f(y) dy, and so f(x) =
F ′(x), the derivative of F . The mean (or expectation) of X is

E[X ] =

∫ ∞

−∞
xf(x)dx,

provided the integral exists (the integral of its absolute value is finite).
There are random variables that are not discrete or continuous. Regardless

of whether the random variable X is discrete, continuous or general, its mean
will be denoted by

E[X ] =

∫

R

xdF (x),

a Riemann-Stieltjes integral defined in Section 6.4. In addition to its mean,
other summary measures of a random variable X are as follows. The nth
moment of X is E[Xn], and the nth moment about its mean μ = E[X ] is
E[(X − μ)n]. The variance of X is

Var[X ] = E[(X − μ))2] = E[X2]− μ2.

Whenever we refer to these moments, we assume they are finite.

6.2 Table of Distributions

The following are tables of some standard distributions and their means,
variances, and moment generating functions (which we discuss shortly).
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Discrete Random Variables
Random Variable P{X = x} E[X ] Var[X ] E[esX ]

Binomial
(
n
x

)
px(1− p)n−x np np(1− p) (pes + (1− p))n

n ≥ 1, p ∈ (0, 1) x = 0, 1, . . . , n

Poisson e−λλx/n! λ λ e−λ(1−e−s)

λ > 0 x = 0, 1, . . .

Geometric p(1− p)x−1 1
p

1−p
p2

pes

1−(1−p)es
p ∈ (0, 1) x = 1, 2, . . . ,

Negative Binomial
(
x−1
r−1

)
pr(1− p)x−r r

p
r(1−p)
p2 ( pes

1−(1−p)es )
r

r ≥ 1, p ∈ (0, 1) x = r, r + 1, . . .

Continuous Random Variables
Random Variable Density f(x) E[X ] Var[X ] E[esX ]

Normal e−(x−μ)2/2σ2

σ
√
2π

, x ∈ R μ σ2 eμs+σ
2s2/2

μ ∈ R, σ > 0

Exponential λe−λx, x ≥ 0 1
λ

1
λ2

λ
λ−s

λ > 0

Gamma∗ λαxα−1e−λx

Γ (α) , x ≥ 0 α
λ

α
λ2 ( λ

λ−s )
α

α ≥ 0, λ > 0

Uniform 1
b−a , a ≤ x ≤ b a+b

2
(b−a)2

12
ebs−eas

s(b−a)
on [a, b]

Beta Γ (a+b)
Γ (a)Γ (b)x

a−1(1− x)b−1 a
(a+b)

ab
(a+b)2(a+b+1) . . .

a, b > 0 0 ≤ x ≤ 1

∗The gamma density with integer α = n ≥ 1 is λnxn−1e−λx

(n−1)! ; it is called an

Erlang density. The gamma density with α = n/2 and λ = 1/2 is a ξ-squared
density with n degrees of freedom.
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6.3 Random Elements and Stochastic Processes

A unified way of discussing random vectors, stochastic processes and other
random quantities is in terms of random elements. Suppose one is interested
in a random element that takes values in a space S with a σ-field S. A ran-
dom element in S, defined on a probability space (Ω,F , P ), is a measurable
mapping X from Ω to S. The X is also called an S-valued random variable.

For our purposes, the space S will be a countable set, a Euclidean space
R
d, or a function space with a distance metric (for representing a stochastic

process). To accommodate these and other spaces as well, we adopt the stan-
dard convention that (S,S) is a Polish space. That is, S is a metric space
that is complete (each Cauchy sequence is convergent) and separable (there
is a countable dense set in S); and S is the Borel σ-field generated by the
open sets. A metric on S is a map d : S × S → R+ such that

d(x, y) = d(y, x), d(x, y) = 0 if and only if x = y,

d(x, z) ≤ d(x, y) + d(y, z), x, y, z ∈ S.

Our discussion of functions, integrals, convergence, etc. on S does not
require a familiarity of Polish spaces, since these concepts are understandable
by interpreting them as being on R

d. We use terminology involving Polish
spaces and random elements in this appendix because it allows for a rigorous
and unified presentation of background material, but this terminology is not
used throughout the book.

The probability distribution of a random element X in S is the probability
measure

FX(B) = P{X ∈ B} = P ◦X−1(B), B ∈ S.

If X and Y are random elements whose distributions are equal, we say that

X is equal in distribution to Y and denote this by X
d
= Y . The underlying

probability spaces for X and Y need not be the same.
Loosely speaking, a stochastic process is a collection of random variables

(or random elements) defined on a single probability space. Hereafter, we will
simply use the term “random elements” (which includes random variables),
and let (S,S) denote the Polish space where they reside.

A discrete-time stochastic process (or random sequence) is a collection of
random elements X = {Xn : n ≥ 0} in S defined on a probability space
(Ω,F , P ). The nonnegative integer n is a time parameter and S is the state
space of the process. The value Xn(ω) ∈ S is the state of the process at time
n associated with the outcome ω.

Note thatX is also a random element in the infinite product space S∞ with
the product σ-field S∞: the smallest σ-field generated by sets B1 × · · · ×Bn,
Bj ’s ∈ S. Its distribution P{X ∈ B}, for B ∈ S∞, is uniquely defined in
terms of its finite-dimensional distributions
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P{X1 ∈ B1, . . . , Xn ∈ Bn}, Bj ∈ S, n ≥ 1.

Consequently, if Y is another random element in S∞ whose finite-dimensional

distributions are equal to those of X , then X
d
= Y . We sometimes refer to

the process X = {Xn : n ≥ 0} by Xn.
Stochastic processes in continuous time are defined similarly to those in

discrete time, but their evolutions over time are typically more complicated. A
continuous-time stochastic process is a collection of random elements {X(t) :
t ≥ 0} in S defined on a probability space, where X(t, ω) is the state at time
t associated with the outcome ω. The function t → X(t, ω) from R+ to S,
for a fixed ω, is the sample path or trajectory associated with the outcome
ω. Accordingly, X(t) is a random function from R+ to S. More precisely, the
entire process X = {X(t) : t ≥ 0} is a random element in a space of functions
from R+ to S. We sometimes refer to the process by X(t).

A standard example is when the sample paths of X are in the set D(R+)
of functions from R+ to S that are right-continuous with left hand limits —
often called cadlag functions (from the French continu à droite, limites à
gauche). Then X is a random element in D(R+), with an appropriate metric
depending on one’s application (e.g., a uniform metric or a metric for the
Skorohod topology [11, 60, 113]), and P{X ∈ B} is for a Borel setB ⊂ D(R+)
of sample paths. The distribution of X is uniquely determined by its finite-
dimensional distributions

P{X(t1) ∈ B1, . . . , X(tn) ∈ Bn}, t1 < · · · < tn, Bj ∈ S, n ≥ 1.

In summary, a stochastic process is a family of random variables or ran-
dom elements defined on a probability space that contains all the probability
information about the process. We will use the standard convention of sup-
pressing the ω in random elements such as Xn or X(t), and not displaying
the underlying probability space (Ω,F , P ), unless it is essential for the ex-
position. Also, all the functions appearing in this book are measurable, and
we will mention this property only when it is needed.

6.4 Expectations as Integrals

We defined the mean of discrete and continuous random variables above.
These are special cases of the following definition for any real-valued random
variable.

Definition 1. Let X be a random variable with distribution function F (x) =
P{X ≤ x}. The mean (or expectation) of X is defined by the Riemann-
Stieltjes integral
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E[X ] =

∫

R

xdF (x),

provided the integral exists.

This general definition is needed for random variables that are not discrete
or continuous. For instance, if X has positive probabilities at points in a
countable set S, and also has a sub-density f(x) elsewhere on R, then

E[X ] =
∑

x∈S
xP{X = x} +

∫

R

xf(x) dx.

Riemann-Stieltjes integrals are similar to Riemann integrals in calculus.
A Riemann-Stieltjes integral of a function g : [a, b] → R with respect to F
is constructed by limits of the upper and lower Darboux sums Dχ and Dχ
defined on the set of points χ = {a = x0 < x1 < . . . < xn = b} by

Dχ =
n∑

j=1

sup{g(x) : xj−1 ≤ x ≤ xj}[F (xj)− F (xj−1)],

and Dχ is defined similarly with sup replaced by inf. The Riemann-Stieltjes
integral of g exists if, for any ε > 0, there is a set χ depending on g and ε
such that Dχ − Dχ < ε. When it exists, the integral has the form (e.g., see
[53]) ∫

[a,b]

g(x)dF (x) = inf
χ

Dχ = sup
χ

Dχ.

This integral is a Riemann integral
∫
[a,b]

g(x)f(x)dx (as in calculus), when

dF (x) = f(x)dx and dx is the Lebesgue measure on R.
Riemann-Stieltjes integrals on infinite intervals are defined similar to Rie-

mann integrals. For instance, for g : R → R,

∫

R

g(x)dF (x) = lim
a,b→∞

∫

[−a,b]
g(x)dF (x),

provided the limit exists and is finite.
For a function g : S → R on a metric space S, its integral with respect to

a measure μ on S is defined as a Lebesgue integral [53] denoted by

∫

S

g(x)μ(dx).

We denote the differential by μ(dx) instead of dμ(x) to emphasize that it is
not a Riemann-Stieltjes integral.

Another equivalent expression for the expectation of X in terms of the
probability P is the Lebesgue integral
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E[X ] =

∫

Ω

X(ω)P (dω).

A few properties of the expectation operator are E[a] = a, for a ∈ R,

E[X + Y ] = E[X ] + E[Y ], E[X ] ≤ E[Y ] if X ≤ Y ,

E[

n∑

j=1

ajXj ] =

n∑

j=1

ajE[Xj ].

6.5 Functions of Stochastic Processes

Many features of a stochastic process, or related quantities of interest, are
expressed as functions of the process. This section contains several examples
and a formula for evaluating expectations of real-valued functions of random
elements and processes.

Suppose that X is a random element in a Polish space S, such as a discrete-
or continuous-time process X = {Xn : n ≥ 0} or X = {X(t) : t ≥ 0},
and denote its distribution by FX(B) = P{X ∈ B}, B ∈ S. Consider a
measurable function g : S → S′ and define Y = g(X). This Y is a random
element in S′ since it is a composition of X and g, which are measurable.
When X is a continuous-time process, g(x) is a function on the space of
sample paths x = {x(t) : t ≥ 0}. The distribution of Y is

P{Y ∈ B} = P{g(X) ∈ B} = P{X ∈ g−1(B)},

where g−1(B) = {x ∈ S : g(x) ∈ B}. Then the distribution of Y as a function
of FX is the probability measure

FY (B) = FX ◦ g−1(B) = FX(g−1(B)), B ∈ S′.

In some cases, the function g is a standard measurable operation on real
numbers such as addition, subtraction, maximum, etc. For instance, if X =
{Xn : n ≥ 0} is a family of random variables, then Y = X1 + · · · + Xn

is a random variable for fixed n < ∞, since the addition function g(x) =
x1 + · · · + xn from R

∞ to R is measurable. Other standard examples of
random variables that are measurable functions of X include

n∏

j=1

Xj , max
1≤j≤n

Xj,

n∑

j=1

an(Xn −Xj).

Examples based on multiple compositions of functions are
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sup
n≥0

Xn − inf
n≥0

Xn, sup
n≥0

[
e−aXn

n∑

j=1

(Yj − Yj−1)
]
,

provided they exist.
Examples of g(X) for a continuous-time process X include analogues of

those above as well as

∫ t

0

X(t− s) ds,

∫

R+

e−a(t) inf
s≤t

X(s) dt.

In modeling a stochastic system, the state of the system, or a performance
measure for it, are often of the form Y (t) = g(t,X), where the process X rep-
resents the time-dependent system data, and the function g(t, x) represents
the dynamics of the system.

We will now describe a useful formula for the mean of a real-valued func-
tion Y = g(X) of the random element X . The mean of Y in terms of the
distribution FX of X is the Lebesgue integral

E[g(X)] =

∫

S

g(x)FX(dx), (6.2)

provided it exists. This follows since FY = FX ◦ g−1 and, by the change-of-
variable formula below, we have

E[Y ] =

∫

R

yFX ◦ g−1(dy) =

∫

S

g(x)FX(dx).

Change-of-variable Formula for Lebesgue integrals. Suppose F is a measure
on S, and g : S → S′ and h : S′ → R are measurable. Then

∫

S

h ◦ g(x)F (dx) =

∫

S′
h(y)F ◦ g−1(dy), (6.3)

provided both integrals exist (one exists if and only if the other one does).
Important functions of random variables are generating functions and

transforms. They are tools for characterizing distributions and evaluating
their moments. The moment generating function of a random variable X is

mX(s) = E[esX ] =

∫

R

esxdFX(x),

provided the integral exists for s in some interval [0, a], where a > 0. A
major property is that a moment generating function uniquely determines a
distribution and vice versa (mX = mY if and only if FX = FY ). Also, the
nth moment of X , when it exists, has the representation

E[Xn] = m
(n)
X (0),
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which is the nth derivative of mX at 0. Moment generating functions of some
standard distributions are given in Section 6.2 below.

Two variations of moment generating functions for special types of random
variables are as follows. For a “nonnegative” random variable X , its Laplace
transform (or the Laplace-Stieltjes transform of FX) is

E[e−sX ] =

∫

R+

e−sxdFX(x), s ≥ 0.

For a “discrete” random variable X whose range is contained in the nonneg-
ative integers, its generating function is

E[sX ] =

∞∑

n=0

snP{X = n}, −1 ≤ s ≤ 1.

Laplace transforms and generating functions play the same role as moment
generating functions in that they uniquely determine distribution functions
and yield moments of random variables. Laplace transforms are also defined
for increasing functions F that need not be bounded, such as renewal func-
tions, and they can also be extended to the complex plane. A similar state-
ment applies to generating functions.

A generalization of a moment generating function is a characteristic func-
tion. The characteristic function of a random variable X (or the Fourier-
Stieltjes transform of FX) is defined by

E[eisX ] =

∫

R

eisxdFX(x) s ∈ R,

where i =
√
−1 and eisx = cos sx+ i sin sx. A characteristic function, which

is complex-valued, exists for “any” random variable (or distribution func-
tion). In contrast, a moment generating function is real-valued, but it only
exists for a random variable whose moments exist. There is a one-to-one
correspondence between distribution functions and characteristic functions,
and moments are expressible by derivatives of characteristic functions at 0.
A characteristic function is typically used when the more elementary mo-
ment generating function, Laplace transform, or generating function are not
applicable.

The following are useful inequalities involving expectations of functions of
random variables. For a random variable X and increasing g : R → R+,

P{X ≥ x} ≤ E[g(X)]/g(x), Markov’s Inequality.

An example is

P{|X − E[X ]| ≥ x} ≤ Var[X ]/x2, Chebyshev’s Inequality.
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For random variables X,Y with finite second moments,

E|XY | ≤
√
E[X2]E[Y 2], Cauchy-Buniakovsky-Schwarz.

For random variables X1, . . . , Xn and convex g : Rn → R,

E[g(X1, . . . , Xn)] ≥ g(E[X1], . . . , E[Xn]), Jensen’s Inequality.

6.6 Independence

In this section, we define independent random variables and random elements,
and describe several functions of them including summations.

Random variables X1, . . . , Xn are independent if, for Borel sets B1, . . . , Bn
in R,

P{X1 ∈ B1, . . . , Xn ∈ Bn} =

n∏

j=1

P{Xj ∈ Bj} =

n∏

j=1

FXj (Bj).

An infinite family of random variables are independent if any finite collec-
tion of the random variables are independent. The same definitions apply
to independence of random elements such as the independence of stochastic
processes.

Many properties of functions of independent random elements can be an-
alyzed in terms of their distributions. Here is an important formula for ex-
pectations. Suppose X and Y are independent random elements in S and S′,
respectively, and g : S × S′ → R is measurable. Then by (6.2) and Fubini’s
theorem stated below, we have

E[g(X,Y )] =

∫

S×S′
g(x, y)FX(dx)FY (dy)

=

∫

S′

[ ∫

S

g(x, y)FX(dx)
]
FY (dy), (6.4)

provided the integral exists.
For the next result, we use the notion that a measure space (S,S, μ) is

σ-finite if there is a partition B1, B2, . . . of S such that μ(Bn) <∞, for each
n. A Polish space has this property.

Theorem 2. (Fubini) Suppose μ and η are measures on the respective σ-
finite spaces (S,S) and (S′,S′), and g : S × S′ → R is measurable. If g is
nonnegative or

∫
S×S′ |g(x, y)|μ(dx)η(dy) is finite, then
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∫

S×S′
g(x, y)μ(dx)η(dy) =

∫

S′

[ ∫

S

g(x, y)μ(dx)
]
η(dy)

=

∫

S

[ ∫

S′
g(x, y)η(dy)

]
μ(dx).

This says that if the integral exists on the product space, then it equals the
single-space integrals done separately (in either order).

A special case of (6.4) is

E[g(X)h(Y )] =

∫

S

g(x)FX(dx)

∫

S′
h(y)FY (dy) = E[g(X)]E[h(Y )].

This generalizes, for independent X1, . . . , Xn in S and gj : S → R, to

E[

n∏

j=1

gj(Xj)] =

n∏

j=1

E[gj(Xj)].

provided the expectations exist.

Example 3. Suppose X1, . . . , Xn are independent nonnegative random vari-
ables. Then the moment generating function of Y =

∑n
j=1Xj is

E[esY ] =

n∏

j=1

E[esXj ].

Now, assume each Xj has an exponential distribution with rate λ, and so
E[esXj ] = λ/(λ− s), 0 ≤ s < λ. Consequently, E[esY ] = [λ/(λ − s)]n, which
is the moment generating function of a gamma (or Erlang) distribution with
parameters λ and n (see Section 6.2). Hence Y has this gamma distribution.

One can also determine distributions of sums of independent random vari-
ables by convolutions of their distributions. Specifically, if X and Y are in-
dependent random variables, then

P{X + Y ≤ z} =

∫

R

FY (z − x)dFX (x). (6.5)

That is, FX+Y (z) = FX 
 FY (z), where 
 is the convolution operator defined
below. To prove (6.5), first note that by (6.2) (even for dependent X and Y ),
we have

P{X + Y ≤ z} = E[1(X + Y ≤ z)] =

∫

x+y≤z
FX,Y (dx× dy).

Then applying FX,Y (dx×dy) = dFX(x)dFY (y) (from the independence) and
Fubini’s theorem to this double integral yields (6.5).

Properties of convolutions are as follows. The convolution of two distribu-
tions F and G is defined by
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F 
 G(z) =

∫

R

G(z − x)dF (x). (6.6)

Note that F 
 G = G 
 F . Also, if F (0−) = G(0−) = 0, then

F 
 G(z) =

∫

(0,z]

G(z − x)dF (x).

If F and G have respective densities f and g, then the derivative of (6.6)
yields the formula

f 
 g(z) =

∫

R

g(z − x)f(x)dx.

These formulas reduce to sums when F and G are discrete distributions.
Convolutions of several distributions are defined in the obvious way, for

instance F 
G
H = F 
 (G
H), and if X , Y and Z are independent random
variables, then FX+Y+Z = FX 
 FY 
 FZ . The nth fold convolutions Fn�(x)
of a distribution F , for n ≥ 0, are defined recursively by F 0�(x) = 1(x ≥ 0)
and, for n ≥ 1,

Fn�(x) = F (n−1)� 
 F (x) = F 
 · · · 
 F (x), n convolutions.

If Tn = X1 + · · · + Xn where the Xj are independent with distribution F ,
then FTn = Fn�.

The definition (6.6) of a convolution also extends to more general functions
μ 
 h, where μ is a measure on R and h : R → R is such that the integral
exists. For example, renewal theory involves convolutions of the form

U 
 h(t) =

∫

[0,t]

h(t− s)dU(s),

where U(t) =
∑∞
n=0 F

n�(t), F (0) = 0 and h(t) is bounded on compact sets
and is 0 for t < 0.

6.7 Conditional Probabilities and Expectations

Section 1.22 in Chapter 1 reviewed fundamentals of conditional probabilities
and expectations for discrete random variables. This section continues the
review for random elements as well as non-discrete random variables.

Suppose X and Y , defined on a common probability space (Ω,F , P ), are
random elements in Polish spaces S and S′, respectively. A probability kernel
from S′ to S is a function p : S′ ×S → [0, 1] such that p(y, ·) is a probability
measure on S for each y ∈ S′, and p(·, B) is a measurable function for each
B ∈ S. There exists a probability kernel p(y,B) from S′ to S such that
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P{X ∈ B, Y ∈ B′} =

∫

B′
p(y,B)FY (dy), B,B′ ∈ S. (6.7)

The kernel p is unique in the sense that if p′ is another such kernel, then
p(Y, ·) = p′(Y, ·) a.s. (e.g., see [60]).

Definition 4. Using the preceding notation, the (random) probability mea-
sure

P{X ∈ B|Y } = p(Y,B), B ∈ S

is the conditional probability measure of X given Y . When X is a random
variable with a finite mean, the conditional expectation of X given Y is

E[X |Y ] =

∫

R

xp(Y, dx). (6.8)

Conditional probabilities and expectations — which are random quantities
— are sometimes written as non-random quantities

P{X ∈ B|Y = y} = p(y,B), E[X |Y = y] =

∫

R

xp(y, dx), y ∈ S′.

An important property of conditional expectations, which follows from the
definition, is

E[X ] = E[E[X |Y ]] =

∫

S′
E[X |Y = y]FY (dy).

Similarly, P{X ∈ B} = E[P{X ∈ B|Y }]. These formulas are useful tools for
evaluating the mean or distribution of X in terms of the conditional means
or distributions.

Another important property is that E[X |Y ] is a measurable function of
Y , because E[X |Y ] = h(Y ), where h(y) = E[g(X, y)] =

∫
S
xp(y, dx) is mea-

surable. Since Definition 4 is for random elements, Y may represent several
random elements. For instance E[X |Y, Z] is a measurable function of Y, Z
and

E[X |Z] = E
[
E[X |Y, Z]

∣
∣
∣Z
]
.

Definition 4 is consistent with the definition used for elementary random
variables. For instance, in case Y is a discrete random variable, the probability
kernel that satisfies (6.7) is

p(y,B) = P{X ∈ B|Y = y} = P{X ∈ B, Y = y}/P{Y = y}.

Next suppose X and Y are continuous random variables such that

P{X ∈ A, Y ∈ B} =

∫

A×B
f(x, y) dx dy,
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where f(x, y) is their joint density. Then the probability kernel satisfying
(6.7) is

p(y,B) =

∫

B

f(x, y)/f(y) dx.

The preceding notions extend to conditional probabilities P{X ∈ B|F}
and expectations E[X |F ] for conditioning on a σ-field F instead of a random
element. Definition 4 includes these cases when F = σ(Y ), the smallest σ-
field generated by Y . We will only use this general notation only in Chapter
5.

Here are some more properties of conditional expectations (assuming they
exist) for measurable f : S′ → R and g : S × S′ → R:

E[Xf(Y )|Y ] = f(Y )E[X |Y ],

E[g(X,Y )|Y = y] = E[g(X, y)|Y = y].

Furthermore, if X and Y are independent, then

E[g(X,Y )|Y = y] = E[g(X, y)],

or equivalently E[g(X,Y )|Y ] = E[h(Y )], where h(y) = E[g(X, y)]. Most of
the standard properties of expectations extend to conditional expectations.
For instance, P{X ∈ B|Y } = E[1(X ∈ B)|Y ],

E[X |Y ] ≤ E[Z|Y ] if X ≤ Z,

E[f(X) + g(Z)|Y ] = E[f(X)|Y ] + E[g(Z)|Y ].

6.8 Existence of Stochastic Processes

A stochastic process is commonly defined by designating a set of properties
that its distribution and sample paths must satisfy. The existence of the
process amounts to showing that there exist a probability space and functions
on it (the sample paths) that satisfy the designated properties of the process.
This section describes Kolmogorov’s theorem that is used for such a task.

For a stochastic process {X(t) : t ∈ R+} on a Polish space S, we mentioned
that any probability for it can be expressed in terms of its finite-dimensional
probability measures μI on SI . For any finite set I in R+, and At ∈ S, t ∈ I,

μI(×t∈IAt) = P{X(t) ∈ At, t ∈ I}. (6.9)

Here S is the Borel σ-field on S, and the product σ-field SI is used on SI .
These probability measures satisfy the consistency condition

μJ (· × SJ\I) = μI(·), I ⊂ J. (6.10)
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That is, for At ∈ S, t ∈ J ,

μJ(×t∈JAt) = μI(×t∈IAt), if At = S for t ∈ J\I.

Theorem 5. (Kolmogorov Extension Theorem) For probability measures μI
that satisfy the consistency condition (6.10), there exists a stochastic process
{X(t) : t ∈ R+} on S that is defined on a probability space (Ω,F , P ) such
that μI are its finite-dimensional distributions as in (6.9).

The proof of this result in [60] defines (Ω,F) = (SR+ , SR+), and defines P
by

P ( · × SJ
c

) = μJ(·).

Here μJ are probability measures for countable sets J that are extensions,
defined by (6.10), of the probability measures μI for finite sets I. Also, for
each t, the function X(t) from Ω to S is defined as the projection map

X(t) = X(t, ω) = ωt, ω = {ωt : t ∈ R+} ∈ Ω.

The preceding theorem also applies to processes in which the time param-
eter t takes values in other time sets such as R or the nonnegative integers.
Here is an important example.

Corollary 6. (Existence of Independent Random Elements) For probability
measures μ1, μ2, . . . on a Polish space S, there exist independent S-valued
random elements X1, X2, . . . defined on a probability space (Ω,F , P ) such
that P{Xj ∈ ·} = μj(·), j ≥ 1.

Recall that processes X and X ′ are equal in distribution, denoted by X
d
=

X ′, if their finite-dimensional probability measures are equal. However, their
sample paths need not be the same. For instance, suppose

X(t) = 0, X ′(t) = 1(ξ = t), t ∈ R+,

where ξ is exponentially distributed with rate λ. Clearly X
d
= X ′ since P{ξ =

t} = 0 for any t. On the other hand, their sample paths are not the same:
P{X(t) = 0, t ∈ R+} = 1, but P{X ′(t) = 0, t ∈ R+} = 0.

Although the consistency condition on finite-dimensional probability mea-
sures μI guarantees the existence of a stochastic process, additional condi-
tions on the μI are needed to infer that the sample paths of the process have
certain properties (e.g., that the paths are continuous, or right-continuous).
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6.9 Convergence Concepts

Many properties of stochastic processes are expressed in terms of convergence
of random variables and elements. There are several types of convergence,
but for our purposes we primarily use convergence with probability one and
convergence in distribution, which we now describe.

We begin with a review of convergence of real numbers. A sequence of real
numbers xn converges to some x ∈ R, denoted by limn→∞ xn = x, if, for any
ε > 0, there exists a number N such that

|xn − x| < ε, n ≥ N.

We sometimes refer to this convergence as xn → x.
One often establishes convergence with the quantities

lim inf
n→∞

xn = lim
n→∞

inf
k≥n

xk, lim sup
n→∞

xn = lim
n→∞

sup
k≥n

xk. (6.11)

This limit inferior and limit superior clearly satisfy

−∞ ≤ lim inf
n→∞

xn ≤ lim sup
n→∞

xn ≤ ∞.

If both of these quantities are equal to a finite x, then xn → x.
For insight into this result, let a and b denote the lim inf and lim sup in

(6.11) and assume they are finite. By its definition, a is the lower “cluster
value” of the xn’s in that xn is in the interval [a, a+ ε] infinitely often (i.o.),
for fixed ε > 0. Similarly, xn is in the interval [b− ε, b] i.o. Now xn does not
converge to a limit if a < b (since xn is arbitrarily close to both a and b i.o.).
On the other hand, xn → x if and only if a = b = x.

The preceding properties of real numbers readily extend to random vari-
ables. Suppose X,X1, X2, . . . are random variables on a probability space.
The sequence Xn converges with probability one to X if

lim
n→∞

Xn(ω) = X(ω), ω ∈ Ω′ ⊂ Ω,

where P (Ω′) = 1. We denote this convergence by

Xn → X, a.s. as n→ ∞.

Now, the quantities

lim inf
n→∞

Xn, lim sup
n→∞

Xn

are random variables, since the functions lim infn→∞ xn and lim supn→∞ xn
are measurable. If there is a random variable X such that
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lim inf
n→∞

Xn = lim sup
n→∞

Xn = X a.s.,

then Xn → X , a.s. as n → ∞. This follows by the analogous property for a
sequence of real numbers.

Next, we consider the convergence in probability as well as convergence
a.s. of random elements.

Definition 7. Let X,X1, X2, . . . be random elements in a metric space S,
where d(x, y) denotes the metric distance between x and y. The sequence Xn

converges a.s. to X in S, denoted by Xn → X a.s., if d(Xn, X) → 0 a.s. The

Xn converges in probability to X , denoted by Xn
P→ X , if

lim
n→∞

P{d(Xn, X) > ε} = 0, ε > 0.

Many applications involve establishing the convergence of a function
f(Xn), when Xn converges. A useful tool for this is the following.

Proposition 8. (Continuous-mapping Property) Suppose X,X1, X2, . . . are
random elements in a metric space S, and f : S → S′ where S′ is a metric
space. Assume f is continuous on S, or on a set B such that X ∈ B a.s. If
Xn → X a.s. in S, then f(Xn) → f(X) a.s. The same statement is true for
convergence in probability.

For instance, if (Xn, Yn) → (X,Y ) a.s. in R
2 , then

Xn + Yn → X + Y, XnYn → XY a.s. in R .

This follows since the addition and multiplication functions from R
2 to R are

continuous. Similarly, Xn/Yn → X/Y if Y �= 0 a.s. These statements also
hold for convergence in probability.

Another important mode of convergence of random variables and random
elements is convergence in distribution or weak convergence. A sequence of
distributions Fn on R converges weakly to a distribution F , denoted by Fn

w→
F , if

lim
n→∞

Fn(x) = F (x),

for all continuity points x of F . A sequence of random variables Xn converges

in distribution to a random variable X , denoted by Xn
d→ X , if FXn

w→ FX ,
as n→ ∞. This notion extends to metric spaces as follows.

Definition 9. A sequence of probability measures Pn on a metric space S
converge weakly to a probability measure P , denoted by1 Pn

w→ P , if

∫

S

f(x)Pn(dx) →
∫

S

f(x)P (dx),

1 Some authors use Pn ⇒ P instead of Pn
w→ P , and Xn ⇒ X instead of Xn

d→ X.
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for any bounded continuous f : S → R. Suppose that X and Xn are ran-
dom elements in S, possibly defined on different probability spaces. The Xn

converges in distribution to X , denoted by Xn
d→ X , if FXn

w→ FX , or equiv-
alently,

lim
n→∞

E[f(Xn)] = E[f(X)],

for any bounded continuous f : S → R. This definition is for random elements
in the same space S; we do not need the more general convergence for random
elements in different spaces.

The preceding modes of convergence for random elements in a metric space
S have the hierarchy

Xn → X a.s. =⇒ Xn
P→ X =⇒ Xn

d→ X.

Here are several characterizations of convergence in distribution.

Theorem 10. (Portmanteau theorem) For random elements X,X1, X2, . . .
in a metric space S, the following statements are equivalent.

(i) Xn
d→ X.

(ii) lim infn→∞ P{Xn ∈ G} ≥ P{X ∈ G}, for any open set G.
(iii) lim supn→∞ P{Xn ∈ F} ≤ P{X ∈ F}, for any closed set F.
(iv) P{Xn ∈ B} → P{X ∈ B}, for any Borel set B with X �= ∂B a.s.2

The convergence in distribution of random variables is equivalent to the

convergence of their characteristic functions. Specifically, Xn
d→ X in R if

and only if E[eisXn ] → E[eisX ], s ∈ R. Similar statements hold for mo-
ment generating functions, Laplace transforms or generating functions. The
continuous-mapping property in Proposition 8 extends to convergence in dis-
tribution as follows.

Theorem 11. (Continuous Mappings; Mann and Wald, Prohorov, Rubin)

Suppose Xn
d→ X in a metric space S, and B ∈ S is such that X ∈ B a.s.

Let f, f1, f2, . . . be measurable functions from S to a metric space S′.

(a) If f is continuous on B, then f(Xn)
d→ f(X).

(b) If fn(xn) → f(x), for any xn → x ∈ B, then fn(Xn)
d→ f(X).

As an example, for random variables Xn and Yn, suppose (Xn, Yn)
d→

(X,Y ) as n→ ∞. Then

Xn + Yn
d→ X + Y, XnYn

d→ XY.

This follows by the continuous-mapping theorem since addition and multi-
plication are continuous functions from R

2 to R. Caution: Such results may
not be true, however, when Xn and Yn are real-valued stochastic processes.

2 ∂B denotes the boundary of B.
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The next results address the following question for random variables Xn.
If Xn → X a.s. (or in probability or distribution), what are the additional
conditions under which E[Xn] → E[X ] or E|Xn −X | → 0?

Lemma 12. (Fatou) If Xn are nonnegative random variables (or are bounded
from below), then lim infn→∞ E[Xn] ≥ E[lim infn→∞ Xn].

Theorem 13. (Monotone Convergence) If Xn are nonnegative random vari-
ables (or are bounded from below) and Xn ↑ X a.s., then E[Xn] ↑ E[X ] as
n→ ∞, where E[X ] = ∞ is possible.

Theorem 14. (Dominated Convergence) If Xn are random variables such
that Xn → X a.s., where |Xn| ≤ Y and E[Y ] < ∞, then E|X | exists and
E[Xn] → E[X ] as n→ ∞.

These results describing the convergence of E[Xn] =
∫
Ω
Xn(ω)P (dω), are

random-variable versions of basic theorems for Lebesgue integrals (and for
summations as well). We will use the results a few times for real-valued
functions f, fn on a measurable space (S,S) with a measure μ. For instance,
the monotone convergence says that if 0 ≤ fn ↑ f , then

∫

S

fn(x)μ(dx) →
∫

S

f(x)μ(dx).

The next results address the convergence of E[Xn] when Xn converges in
probability.

Theorem 15. (Convergence in mean or in L1) Suppose Xn
P→ X in R, and

E|Xn| and E|X | are finite. Then the following statements are equivalent.
(i) E|Xn −X | → 0 (Xn converges to X in L1).
(ii) E|Xn| → E|X |.
(iii) The Xn are uniformly integrable in the sense that

lim
x→∞

sup
n≥0

E
[
|Xn|1(|Xn| ≥ x)

]
→ 0.

Some convergence theorems such as the preceding result and the domi-
nated convergence theorem are also true when the assumption that Xn → X

in probability or a.s. is replaced by the weaker assumption Xn
d→ X . This

is due to the following a.s. representation for convergence in distribution of
random elements.

Theorem 16. (Coupling; Skorohod, Dudley) Suppose Xn
d→ X in a Polish

space S. Then there exist random elements Yn and Y in S, defined on a single

probability space, such that Yn
d
= Xn, Y

d
= X, and Yn → Y a.s.

Loosely speaking, coupling is a method for comparing random elements
on different probability spaces, usually to prove convergence theorems or
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stochastic ordering properties. For instance, suppose Xn is a random element
in Sn defined on a probability space (Ωn,Fn, Pn), for n ≥ 0. Random elements
Yn in Sn defined on a single probability space (Ω,F , P ) form a coupling of

Xn if Yn
d
= Xn, n ≥ 0.

Theorem 16 and the classical dominated convergence yield the following
dominated convergence for convergence in distribution.

Theorem 17. Suppose Xn
d→ X in R and there exists a random variable Y

with finite mean such that |Xn| ≤d Y , meaning

P{|Xn| > x} ≤ P{Y > x}, x ≥ 0.

Then E|X | exists and E[Xn] → E[X ] as n→ ∞.



Bibliographical Notes

The history of theoretical stochastic processes can be found in books on
theoretical probability or stochastic processes. Extensive notes on this are in
[46, 61], and miscellaneous references are in the miscellaneous books [10, 18,
26, 37, 38, 41, 42, 62, 63, 84, 96, 102, 106, 114].

The history of applied stochastic processes parallels that of theoretical
work. The developments in applied stochastic processes stem from advances
in theoretical probability as well as from problems that cry out for solutions.
Standard texts on applied stochastic processes are [10, 27, 42, 46, 62, 63, 76,
78, 93, 94, 98], and those with a more specialized focus are [2, 54, 59, 109, 116].
Much of the material on actual applications has been presented in technical
reports or in specialized journals that is not conducive to a unified review. So
I will only comment on some of the main themes and representative references
while discussing the chapters.

Most of Chapter 1 on Markov chains is standard. Exceptions are the re-
flected random walk (a framework for several models), which is a discrete-
time version of the Skorohod equation for reflected Brownian motion [64],
and the network models are discrete-time versions of the continuous-time
Jackson network models in Chapter 4. Further background and more intri-
cate branching process models are discussed in [49, 58, 62, 63]. References on
general Markov processes are the early work [75] and the more current books
[38, 37, 41, 42, 61, 84, 96, 106]. Phase-type distributions and computational
algorithms, which were not covered, are discussed in [85].

Chapter 2 on Renewal and Regenerative Processes is a fairly thorough
coverage of the literature in the 1950s and 1960s, including the works [3, 42,
81, 107] and ending with [69] (only a few articles have appeared after this one).
Regenerative processes were popularized with the work of Smith [107]; many
applications continue to be based on analyzing processes at embedded times
that may or may not be regeneration times. The examples here and in other
chapters on reliability and maintenance, production systems, and insurance
are indicative of those fields; see for instance [4, 5, 8] and [22, 48, 94].
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The richness of the applications of Poisson processes led me to devote an
entire chapter to it. Chapter 3 covers classical Poisson processes, but goes
further to show the variety of Poisson processes in space and time and their
transformations that yield tractable models for systems. Standard references
on point processes are the early work of Poisson [87] and later works are
[16, 30, 60, 66]; further examples are in [6, 40, 44, 73, 101, 103]. The section
on batch-service queueing systems describes a classic Markov decision model
[33] (or stochastic dynamic programming model). Dynamic programming is
described in [77, 90, 109]. The Markov/Poisson particle model is an elemen-
tary example of independent particles [34]; interacting particle systems are
discussed in [80]. The Grigelionis theorem [45] showing that Poisson processes
are natural limits for sparse point processes, is analogous to the central limit
theory for summation processes converging to Brownian motion covered in
Chapter 5.

Queueing processes, input-output systems, and stochastic networks have
been a main part of applied stochastic processes. This is reflected in Chapter
4 on Continuous-Time Markov Chains. In addition to covering the basics
of CTMCs, the chapter provides numerous queueing and network models.
Sample references on early work on queueing processes are [20, 28, 40, 44, 57,
68, 70, 71, 72, 82, 91], books on queueing are [2, 6, 12, 13, 15, 28, 29, 39, 47,
59, 74, 88, 108, 116], and works on stochastic networks are [7, 9, 23, 25, 67,
92, 95, 99, 101, 110, 111]. Palm probabilities, that began with Palm [86], are
introduced to describe certain PASTA (Poisson actions see time averages)
properties [116] of queues and other processes.

The final chapter on Brownian motion covers many of its properties, with-
out getting into more advanced stochastic integration. Books that discuss
Brownian motion include [10, 18, 46, 61, 64]. Several key works on Donsker’s
functional central limit theorem [35, 36] and based on ideas of Prohorov and
Skorohod, followed by Billingsley, are [11, 35, 36, 104, 105]. Major appli-
cations in queueing and elsewhere are nicely reviewed in Whitt [55, 113];
also see the early work of Kingman 1961 and Iglehart and Whitt 1970 on
heavy-traffic queues. During the last three decades, there has been a sub-
stantial stream of articles on heavy-traffic systems, Brownian approxima-
tions and fluid queues. Much of this research has been done by Harrison
and his colleagues Bramson, Chen, Dai, Mandelbaum, Reiman, and Williams
[14, 16, 24, 25, 30, 31, 50, 51, 52, 77, 83, 92, 112].
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6. Baccelli, F. and P. Brémaud (1994). Elements of Queueing Theory. Springer, New

York.
7. Baccelli, F. and S. Foss (1994). Ergodicity of Jackson-type queueing networks. Queue-

ing Systems, 17, 5–72.
8. Barlow, R. and F. Proschan (1995). Mathematical Theory of Reliability. John Wiley

& Sons, New York.
9. Baskett, F., Chandy, K. M., Muntz, R. R. and F. G. Palacios (1975). Open, closed

and mixed networks of queues with different classes of customers. J. Assoc. Comput.
Mach., 22, 248–260.

10. Bhattacharya, R. N. and E. C. Waymire (1990). Stochastic Processes with Applica-
tions. John Wiley & Sons, New York.

11. Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons, New
York.

12. Borovkov, A. A. (1976). Stochastic Processes in Queueing theory. Springer, New
York.

13. Borovkov, A. A. (1984). Asymptotic Methods in Queueing theory. John Wiley & Sons,
New York.

14. Boxma, O. J. and J. W. Cohen (1999). Heavy-traffic analysis for the GI/G/1 queue
with heavy-tailed distributions. Queueing Systems, 33, 177–204.

15. Brandt, A., Franken, P. and B. Lisek (1990). Stationary Stochastic Models. John
Wiley & Sons, New York.

16. Bramson, M. (1998). State space collapse with application to heavy traffic limits for
multiclass queueing networks. Queueing Systems, 30, 89–148.

17. Brandt, A. and G. Last (1995). Marked Point Processes on the Real Line: The Dy-
namic Approach. Springer, New York.

18. Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.
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Notation

1(·) The indicator function that is 1 or 0 when (·)
is true or false

A(t) = t− TN(t) Backward recurrence time
B(t) = TN(t)+1 − t Forward recurrence time
B, B(t) Standard Brownian motion process
C+
K(S) Set of continuous f : S → R+ with compact

support
δx(A) = 1(x ∈ A) Dirac measure with unit mass at 1
D Set of right-continuous, piece-wise constant

functions x : R → S with left-hand limits,
and finite number of jumps in finite intervals

D = D[0, 1], D[0, T ], D(R) Set of real valued functions on [0, 1], [0, T ], R
that are right continuous with left-
hand limits

DRI Directly Riemann integrable
E Expectation operator
E[X |Y ], E[X |A] Conditional expectations
E[esX ] Moment generating function of X

F̂ (α) =
∫
R+

e−αtdF (t) Laplace transform of F

ei = (0, . . . , 0, 1, 0 . . . , 0) ith unit vector
F , Ft, Fn σ-field of events
Fτ σ-field of events up to stopping time τ
FY
t σ-field of events generated by process Y

f(t), g(t), h(t), H(t) Functions
f(t) = f+(t)− f−(t) f equals its positive part minus its negative part
F (t), G(t) Distribution functions
Fe(x) =

1
μ

∫ x
0
[1− F (s)]ds Equilibrium distribution of F

γi Invariant measure of a CTMC
H(t) = h(t) + F 
 H(t) Renewal equation
λ, λ(A) Arrival rate, and rate of entering A
μ, μ(A) Service rate or mean, and measure of A
M(t), M(A×B) Counting process, or Poisson process
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436 Notation

M(t) = maxs≤tB(s) Maxima of Brownian motion B
N(t) Counting process, or renewal process
NT Point process of T -transitions of a CTMC
N(μ, σ2) Normal random variable with mean μ and

variance σ2

P = (pij) Matrix of Markov chain transition probabilities
Random element X in S X is measurable map from a probability space

to S
PT (·) Palm probability of a T -transition of a CTMC
pij(t) Transition probability of a CTMC
pi, p(x) Stationary distributions of a CTMC
qi Exponential sojourn rate in state i of a CTMC
qij , q(x, y) Transition rates of a CTMC
Q = (qij) Transition rate matrix of a CTMC
R, R+ The real numbers and nonnegative real numbers
S A countable state space for Markov chains in

Chapter 1

S, S, Ŝ Polish space and its Borel sets and bounded
Borel sets

τ, τi, τi(n) Stopping time, and entrance times to state i
T Subset of sample paths in D
T -transition A jump time t of a CTMC X with StX ∈ T
Tn Time of nth event occurrence, or nth renewal

time, or time of nth jump in a CTMC
U(t) =

∑∞
n=0 F

n�(t) Renewal function
Xn, Yn Markov chains or sequences of random variables
X(t), Y (t), Z(t) Continuous-time stochastic processes
ξn = Tn − Tn−1 nth inter-renewal time, or time between event

occurrences
ξn = Tn+1 − Tn Sojourn time in a CTMC
W (t), W (A) Waiting time process or sojourn time in set A
Z, Z+ The integers and nonnegative integers

a.s. Almost surely, meaning with probability one
x ∨ y = max{x, y} Maximum of x and y
x ∧ y = min{x, y} Minimum of x and y

X(t)
d→ Y X(t) converges in distribution to Y as t→ ∞

X
d
= Y The distributions of X and Y are equal

x+ = max{0, x} Positive part of x
x− = −min{0, x} Negative part of x and x = x+ − x−
∑N(t)

n=1 (·) = 0 When N(t) = 0∏x
k=1(·) = 1 When x = 0

�x� Largest integer ≤ x, or the integer part of x
�x� Smallest integer ≥ x
f(t) = o(g(t)) as t→ t0 limt→t0 f(t)/g(t) = 0
f(t) = O(g(t)) as t→ t0 lim supt→t0 |f(t)|/|g(t)| <∞
a⇒ b, a⇔ a a implies b, and a is equivalent to b
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T -transitions of CTMC
Palm probability, 299–314

PASTA, 303–306
Poisson, 291–299

Arithmetic and non-arithmetic distribu-
tions, 108, 117

Asymptotic stationarity
CTMC, 329

Markov chain – discrete time, 41

Bernoulli process, 93, 156, 216

Borel sets, 122, 145, 406, 409
bounded, 170, 181

Brownian bridge, 380
as Gaussian process, 380

empirical distribution, 380
Kolmogorov-Smirnov statistic, 381

probability, 404
relation to Brownian motion, 403

Brownian motion, 341–404
arc sine law, 352

as diffusion process, 344
as Gaussian process, 347

Brownian/Poisson particle system, 387,
403

CTMC approximation, 376
definition, 342

Donsker’s theorem, 370
existence, 348

functions that are Brownian, 394
geometric Brownian motion, 383

heavy-traffic queueing approximation,
389

hitting times, 350, 361

in random environment, 393
law of iterated logarithm, 364

Markov chain – discrete time approxi-
mation, 403

maximum process, 349

SLLN, 365

minimum process, 351
multidimensional, 385

Bessel process, 385, 404

optional stopping, 360
peculairities of sample paths, 377–379

quadratic variation, 400
random walk approximation, 372

reflection principle, 350, 398

regenerative-increment approximation,
373

related martingales, 356

relation to Brownian bridge, 380, 403
renewal approximation, 376

Skorohod embedding, 371

SLLN, 364
strong Markov property, 344

symmetry property, 343
with drift, 343

Campbell formula, 110, 307

Central limit theorems
Anscombe theorem, 136, 375

CLT – renewal and regenerative, 135–139
CLT, Markov chains, 139, 170, 333

CLT, random walk, 166

Donsker’s FCLT, 368–373
FCLT – regenerative-increment and

Markov chains, 374

FCLT – renewal process, 376
Chebyshev’s inequality, 415

Composition mapping, 374, 394, 406, 412

Conditional expectation, 81, 355, 358, 417
Conditional probabilities, 81–83, 417
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Conditionally independent, 47

Confidence interval for mean, 137, 166

Continuous-mapping theorem, 369, 370,
382, 393, 402, 422, 423

Convergence

lim inf, 421

lim sup, 421

a.s., 47, 421

asymptotic stationarity, 41

coupling, 73

in distribution, 41, 42, 422

Donsker’s theorem, 370

FCLT, 370

in D(R+), 371

in D[0, 1], 369

invariance principle, 370

point processes, 218

queues in heavy traffic, 389

random walk, 372

in probability, 421, 422

in total variation, 74

martingales and submartingales, 357

of partitions, 224

rate for CTMC, 266

real numbers, 421

sums of point processes, 220

vague, 218

weak, 218, 422

Convolution, 416

inter-renewal time, 110

networks, 57, 227, 334

renewal function, 114, 167

sums, 101

Coupling, 24, 40, 73, 424

Covariance

Brownian bridge, 380

Brownian motion, 343, 347, 386

Gaussian process, 346

Jackson networks, 334

moving average, 396

Ornstein-Uhlenbeck, 348

renewal limits, 164

weakly stationary, 396

CTMC, 241–340

as a Markov jump process, 242

asymptotic stationarity, 329

Chapman Kolmogorov equations, 250

CLT, 333

compound Poisson process, 323

defining parameters, 243

existence, 253

finite dimensional distributions, 250

formulated by clock times, 246, 323

Jackson networks, 282–287, 298, 331,
334

Kolmogorov differential equations, 251
Lévy formula, 270
Markov property, 248, 325

Markov-Renewal process, 321
Markov/Poisson particle system, 339
multiclass networks, 287–291, 336

P-regular transition rates, 244, 245, 253,
322, 331

Palm probabilities, 299–314
Poisson transition times, 291–299

regenerative property, cycle costs, 263
reversibility, 272–281, 333
SLLN, 264–269

stationary and limiting distributions,
258–262

transition rates, 251, 253
uniform transition rates, 256, 329

Diagonal selection principle, 75
Distribution function, 406

χ-squared, 386

arc sine and arc cosine, 352, 353, 397
arithmetic and non-arithmetic, 108, 262
beta, 146, 178

exponential, 102, 125, 225, 366
geometric, 5, 12, 21, 85, 96
Gumbel, 338

multivariate normal, 345
table of continuous distributions, 408
table of discrete distributions, 407

Dominated convergence theorem, 424

Empirical distribution, 380, 402
Equilibrium distribution, see Stationary

distribution
Estimation

consistent estimator, 68, 96, 105, 380
CTMC stationary distribution, 330
empirical distribution, 380

Poisson rate, 105
simulation, 68
transition probabilities, 97

unbiased estimator, 105, 380
Extreme-value process, 88, 338

Fatou’s lemma, 424

Finite-dimensional distributions, 2, 410
Brownian motion, 343
convergence, 368

Gaussian, 347
independent random elements, 420
Kolmogorov consistency condition, 419
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Markov chain discrete time, 6

point process, 182

random element, 409

First entrance time, see Stopping time

Fubini’s theorem, 415

Hitting time, see Stopping time

Integral
convergence, 219, 424

directly Riemann integrable, 118, 151

expectation, 407, 410

Fubini theorem, 416

Laplace transform, 184

Lebesgue, 413

point process, 184, 187

renewal process, 159

Riemann integral, 118, 151
Riemann-Stieltjes, 109, 379, 410

Intensity measure, see Poisson process

Invariant measure, 260

CTMC, 260, 272

Jackson network, 284

Markov chain – discrete time, 35

Inventory model, 10, 43, 85, 87, 399

(s, S), 10, 43, 53

production-inventory, 161, 330
reflected random walk, 87

Jensen’s inequality, 415

Kolmogorov extension theorem, 420

Kolmogorov reversibility criterion, 64

Lévy formula, 270, 271

Laplace functional, 184

convergence, 219

moments, 238

Poisson, 185

Laplace transform, 109, 414
Limiting Distributions, 122

crude regenerations, 120

cyclic renewal process, 165

Kolmogorov-Smirnov statistic, 381

Markov chain in discrete time, 40–42,
74, 126

Markov-renewal process, 322

regenerative process, 121

renewal process, 124

SLLN, 47
stationary distribution, 90, 258

waiting times in G/G/1 queue, 315

Lindley recursion, 15, 314, 390

Locally finite measure, 182, 183, 186, 189,
190, 211, 218

M/M/1, see Queueing Process, M/M/s

Machine maintenance, see Production
model

Markov chain
transition probabilities, 3

Markov chain – discrete time, 1–98
absorbing state, 22

aperiodic state, 23
Chapman-Kolmogorov equations, 75

classification of states, 19–26
closed class, 22

communication graph, 73
construction, 9

coupling, 73
definition, 2
ergodic, 26, 36

existence, 9
first-step analysis, 20

Foster criterion, 76, 77
hitting probabilities, 26–30

hitting time, 16, 43
invariant measure, 35, 38

irreducible set, 22
limiting distribution, 40

maxima, 8
Monte Carlo, 68–71
non-homogeneous, 2, 87

null-communication relation, 22
null-recurrent state, 20

on subspace, 71
optimal design, 53

Pake criterion, 78
periodic state, 23

positive recurrent state, 20
rate of transitions, 50
regenerative property, 18, 43

reversible, 61–67
sample path probabilities, 6

simulation of, 9
SLLN, 46, 47

sojourn time, 51
stationary distribution, 35, 36

stopping time, 16, 43, 73, 88
strong Markov property, 17

taboo probability, 7, 28, 39
transient state, 20
transition graph, 23, 26

transition probabilities, 2, 6
two state, 86

Markov property
continuous time, 242, 248
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Markov chain – discrete time, 2

strong – Brownian motion, 344, 350
strong – continuous time, 250, 262

strong – discrete time, 16
Markov’s inequality, 414
Martingales and submartingales, 354–357

Brownian motion, 356
Brownian motion hitting times, 363, 364
convergence theorem, 357

optional stopping, 358, 360
stationary independent increments, 356

Mean measure, see Intensity measure
Measurable function, 109, 145, 369, 406,

407, 410
composition, 412

point process, 182
probability kernel, 417
random element, 409

Memoryless property
exponential distribution, 125, 225, 248

geometric distribution, 85
Markov property, 13

Modulus of continuity, 372

Moments
characteristic function, 414
generating function, 414

Laplace transform, 414
moment generating function, 413
random variable, 407

Monotone convergence theorem, 424
Moving average, 93

Optional stopping of martingales, 358–361

Order statistics, 178, 179, 229

P-regular transition rates, see CTMC
Palm probabilities for CTMC, 299–314

Campbell formula, 307
definition, 300
PASTA, 303

SLLN, 311
sojourn and travel times, 312

stationarity property, 310
time dependent, 302

Parallel processing, 79, 93, 157, 203, 230,
245

Particle system
Brownian/Poisson, 387
Ehrenfest, 92

Markov/Poisson, 201, 339
Point process, 100

Campbell formula, 110
cluster process, 238
compound, 214

convergence to Poisson, 218–225

counting process, 170

Cox process, 211
delayed renewal, 160

finite-dimensional distributions, 182
general space, 182

infinitely divisible, 234
integral, 184, 187

intensity measure, 182

Laplace transform, 185
marked, 192

Markov/Poisson, 201
mixed sample process, 188

moments, 238
multiple points, 161

non-homogeneous renewals, 162

order statistics, 229
partition, 197

Poisson, 170
Poisson cluster process, 215

Poisson process on general space, 183
queues, 129

regeneration times, 147

renewal, 100
sample process, 188

simple, 170
SLLN, 104, 160

space-time Poisson process, 194
stationary, 145

stationary renewal process, 145

sum of sparse processes, 220
thinning, 222, 239

transformation, 191
Poisson process, 169–239

Mt/Gt/∞ systems, 203, 206
approximation for partitions, 224

approximation for point-process sums,
220

as renewal process, 173
as sample process, 189

classical, 170
compound Poisson, 214

convergence to, 219

Cox process relative, 211
existence, 190

general space, 183
infinitesimal properties, 173

intensity measure, 182, 185
Laplace functional, 185

marks and p-marks, 194, 195, 197, 200

multinomial point locations, 176
order statistic property, 179

rare event approximation, 216
rate function, 183, 190, 198, 231
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simulation of, 198

space-time, 194, 203, 205, 207, 215, 236
splitting and merging, 199

thinning and partitioning, 197
transformations, 190–200

translations, 200
Polish space, see State space

Portmanteau theorem for convergence, 423
Probability distribution, see Distribution

function
Probability kernel, 417

Probability space, 2, 405
σ-field, 2, 405, 406

filtration, 354
probability measure, 2, 405

Processor-sharing, 291
Production model

dynamic servicing, 230
flexible manufacturing, 4, 37
fork-join network, 80, 98

job processing, 230
line interruptions, 186

machine availability, 86
machine deterioration, 10, 37, 52, 257

machine network, 11
machine replacement, 91

optimal machine replacement, 54
production-inventory, 161
production-maintenance network, 286

Pull-through property, 44, 77, 83, 259, 263

Queueing network, see Stochastic network

Queueing process
G/G/1

heavy traffic, 389–393
Little law, 131, 165

waiting time limits, 315
M/G/1 and G/M/1

waiting time and queue limits, 317–321
M/G/∞ and Mt/Gt/∞, 203–211
bounded queue, 278

departure process, 232
in space, 236

multiclass, 235
stationary distribution, 235

M/M/s
arrival process, 296

as birth-death process, 247
balking and reneging, 326
departure process, 297

production-inventory system, 330
stationary distribution, 275

waiting times, 304, 312
with feedbacks, 324

acyclic network, 208

batch service, 327, 338
optimal batch size, 132

merging process, 325
optimal dispatching, 172, 228

regenerative process
Little law, 129, 130

with blocking, 326
Queueing process in discrete time

M/M/1 system, 12

buffer sharing, 94
busy period, 19, 94

stationary distribution, 44
with costs, 94

closed and open networks, 55–61
fork-join network, 80

optimal design, 54
perishable service, 85
reflected random walk, 13

Random walk, 3, 13
approximated by Brownian motion, 372

continuous time, 370
Donsker’s FCLT, 368

gambler’s ruin, 4, 29, 92
in G/G/1 queues, 389, 403

multidimensional, 386
on circles, 65, 73, 95

on graphs, 92, 95
period, 95
range of, 403

reflected, 13, 86, 88, 323
reversible, 62

Skorohod embedding, 371
Rate function, see Poisson process

Record value, 88
Reflection

Brownian motion, 343, 367, 394
mapping, 392
principle of Brownian motion, 350, 351,

398

random walk, 13, 86–88
Regenerative process, 121–125

batch-service queue, 132–135
CLT, 136

crude regenerations, 120
definition, 121

inheritance, 122
limiting distribution, 123
Little law, 129

Regenerative-increment process, 126–128
CLT, 136

definition, 127
FCLT, 374
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SLLN, 128

Wald identity, 127

Renewal Process, 99–167

alternating, 104

Blackwell’s theorem, 116

cyclic, 103

definition, 100

delayed, 103

direct Riemann integrable, 119

elementary renewal theorem, 116

key renewal theorem, 119

renewal equation, 115

renewal function, 108

SLLN, 105

with rewards, 107

Renewal process

backward and forward recurrence time,
124

key renewal theorem proof, 151

refined limit laws, 148

SLLN for Markov chain – discrete time,
126

stationary, 144–148

stopping time, 112

terminating, 139–144

Reversible

CTMC, 272–281

Markov chain in discrete time, 61–67

simulation, 68

Simulation, 68–71

Gibbs sampler model, 69

Hastings-Metropolis model, 69

Markov chain in discrete time, 10

Poisson process, 198

random variable, 9, 86

Skorohod embedding theorem, 371

SLLN, 104–107

Brownian motion, 364–366
CTMC, 264–269

Markov chain – discrete time, 45–53

Palm probability, 311

renewal and regeneration, 105, 127, 148

Sojourn time

Markov chain in discrete time, 85

CTMC, 243, 246, 254, 257, 265, 312,
323, 327

cyclic renewal process, 107

highway, 233

Little law, 130

Markov chain in discrete time, 51

queues, 131, 207, 209, 304, 336, 338

random walk on graph, 95

regenerative process, 129–132

uniform rates in CTMC, 255

State space, 2, 181, 409, 424
Stationary distribution

backward recurrence time, 125, 148
forward recurrence time, 125, 145, 156

Markov chain – continuous time, 258–262

Markov chain – discrete time, 33–42
regenerative cycle costs, 42, 263

Stochastic network
BCMP, 291

fork-join, 337

Jackson, 282–287
departure process, 298

multiclass, 336
star-shaped, 335

tandem, 331

variable waiting space, 333
Kelly, 288, 336

multiclass, 287–291
Stochastic process, 2, 409

Bernoulli, 3

Bessel, 385, 404
birth-death, 247, 275, 278, 296, 297, 331

branching, 30–33
Brownian bridge, 379–383

Brownian motion, 341–404

compound Poisson, 181, 214–216, 238,
384, 398

diffusion, 343

finite-dimensional distributions, 2
Gaussian, 346–349, 379, 396

geometric Brownian motion, 383–385

Markov chain – continuous time, 241–340
Markov chain – discrete time, 1–98

martingale, 354–361
multidimensional Brownian motion,

385–387

Ornstein-Uhlenbeck, 348
point process, 100, 104, 110, 129, 145,

160, 161
Poisson, 169–239

random walk, 3
renewal and regenerative, 99–167

stationary, 33, 144, 155, 167, 260
submartingale, 355, 357, 401, 402

supermartingale, 355, 402

weakly stationary, 396
Stopping times

Brownain motion, 362, 371, 386
Brownian motion, 344, 350

coupling, 73

criterion, 88
CTMC, 250, 254, 330
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entrance time, 18, 20

filtration, 344

hitting time, 16, 20

Markov chain in discrete time, 16, 17

Markov chain regenerations, 18, 43

martingales, 358–361, 400

reflection principle, 398

renewal, 112

Skorohod embedding, 371

stopped martingale, 359

sums, 400

Subadditive renewal function, 162

Subordinated Brownian motion, 394

Subordinated Markov chain, 256, 292, 295

Success runs, 11

Supremum mapping, 391

Supremum norm on D(0,1], 369–371, 373,
374

Total variation distance, 74

Traffic equations, 289, 290

Traffic intensity, 45, 314

Transforms
characteristic function, 414

Laplace, 414
moment generating function, 414

Truncation of state space, 278, 279

Uniform norm, see Supremum norm on
D[0,1]

Uniformly integrable, 357, 424

Vague convergence, 218
Variance, 407

Brownian motion, 342
movimg average, 396
renewal integral, 187
renewal process, 102
shot-noise, 229
table of distributions, 407

Waiting time, see Sojourn time
Wald identity, 112, 116, 127, 360, 400
Weakly stationary, 396
Wiener process, see Brownian motion
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