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Preface

L-functions are important objects in modern number theory. They are gener-
ating functions formed out of local data associated with either an arithmetic
object or with an automorphic form. They can be attached to smooth pro-
jective varieties defined over number fields, to irreducible (complex or p-adic)
representations of the Galois group of a number field, to a cusp form or to
an irreducible cuspidal automorphic representation. All the L-functions have
in common that they can be described by an Euler product, i.e., a product
taken over prime numbers. In view of the unique prime factorization of integers
L-functions also have a Dirichlet series representation. The famous Riemann
zeta-function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

(
1 − 1

ps

)−1

may be regarded as the prototype. L-functions encode in their value-
distribution information on the underlying arithmetic or algebraic structure
that is often not obtainable by elementary or algebraic methods. For instance,
Dirichlet’s class number formula gives information on the deviation from
unique prime factorization in the ring of integers of quadratic number fields
by the values of certain Dirichlet L-functions L(s, χ) at s = 1. In particu-
lar, the distribution of zeros of L-functions is of special interest with respect
to many problems in multiplicative number theory. A first example is the
Riemann hypothesis on the non-vanishing of the Riemann zeta-function in
the right half of the critical strip and its impact on the distribution of prime
numbers. Another example are L-functions L(s,E) attached to elliptic curves
E defined over Q. The yet unproved conjecture of Birch and Swinnerton-Dyer
claims that L(s,E) has a zero at s = 1 whose order is equal to the rank of
the Mordell-Weil group of the elliptic curve E.

These notes present recent results in the value-distribution theory of such
L-functions with an emphasis on the phenomenon of universality. The starting
point of this theory is Bohr’s achievement at the first half of the twentieth
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century. He proved denseness results and first limit theorems for the values of
the Riemann zeta-function. Maybe the most remarkable result concerning the
value-distribution of ζ(s) is Voronin’s universality theorem from 1975, which
roughly states that any non-vanishing analytic function can be approximated
uniformly by certain shifts of the zeta-function in the critical strip. More
precisely: let 0 < r < 1

4 and suppose that g(s) is a non-vanishing continuous
function on the disc |s| ≤ r which is analytic in its interior. Then, for any
ε > 0, there exists a real number τ such that

max
|s|≤r

∣∣∣∣ζ (s+
3
4

+ iτ
)
− g(s)

∣∣∣∣ < ε;

moreover, the set of these τ has positive lower density:

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ (s+
3
4

+ iτ
)
− g(s)

∣∣∣∣ < ε

}
> 0.

This is a remarkable property! We say that ζ(s) is universal since it allows
uniform approximation of a large class of functions. Voronin’s universality
theorem, in a spectacular way, indicates that Riemann’s zeta-function is a
transcendental function; clearly, rational functions cannot be universal. In
some literature the validity of the Riemann hypothesis for abelian varieties
(proved by Hasse for elliptic curves and by Weil in the general case) is regarded
as evidence for the truth of Riemann’s hypothesis for ζ(s). However, the
zeta-function of an abelian variety is a rational function and so its value-
distribution is of a rather different type.

The Linnik–Ibragimov conjecture asserts that any Dirichlet series (which
has a sufficiently rich value-distribution) is universal. Meanwhile we know
quite many universal Dirichlet series; for instance, Dirichlet L-functions
(Voronin, 1975), Dedekind zeta-functions (Reich, 1980), Lerch zeta-functions
(Laurinčikas, 1997), and L-functions associated with newforms (Laurinčikas,
Matsumoto and Steuding, 2003). One aim of these notes is to prove an exten-
sion of Voronin’s universality theorem for a large class of L-functions which
covers (at least conjecturally) all known L-functions of number-theoretical
significance.

These notes are organized as follows. In the introduction, we give an
overview on the value-distribution theory of the classical Riemann zeta-
function and Dirichlet L-functions; also we touch some allied zeta-functions
which we will not consider in detail in the following chapters. In Chap. 2,
we introduce a class S̃ of Dirichlet series, satisfying certain analytic and
arithmetic axioms. The members of this class are the main actors in the
sequel. Roughly speaking, an L-function in S̃ has a polynomial Euler product
and satisfies some hypothesis which may be regarded as some kind of prime
number theorem; besides, we require analytic continuation to the left of
the half-plane of absolute convergence for the associated Dirichlet series in
addition with some growth condition. The axioms defining S̃ are kept quite
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general and therefore they may appear to be rather abstract and technical;
however, as we shall discuss later for many examples (in Chaps. 6, 12 and
13), they hold (or at least they are expected to hold) for all L-functions of
number theoretical interest. This abstract setting has the advantage that we
can derive a rather general universality theorem.

Our proof of universality, in the main part, relies on Bagchi’s probabilistic
approach from 1981. For the sake of completeness we briefly present in Chap. 3
some basic facts from probability theory and measure theory. In Chap. 4, we
prove along the lines of Laurinčikas’ extension of Bagchi’s method a limit
theorem (in the sense of weakly convergent probability measures) for functions
in the class S̃. In the following chapter we give the proof of the main result, a
universality theorem for L-functions in S̃. The proof depends on the limit theo-
rem of the previous chapter and the so-called positive density method, recently
introduced by Laurinčikas and Matsumoto to tackle L-functions attached to
cusp forms. Furthermore, we discuss the phenomenon of discrete universality;
here the attribute discrete means that the shifts τ are taken from arithmetic
progressions. This concept of universality was introduced by Reich in 1980.

In Chap. 6, we introduce the Selberg class S consisting of Dirichlet
series with Euler product and a functional equation of Riemann-type (and
a bit more). It is a folklore conjecture that the Selberg class consists of all
automorphic L-functions. We study basic facts about S and discuss the main
conjectures, in particular, the far-reaching Selberg conjectures on primitive
elements. We shall see that the class S̃ fits rather well into the setting of
the Selberg class S (especially with respect to Selberg’s conjectures). Hence,
our general universality theorem extends to the Selberg class, unconditionally
for many of the classical L-function and conditionally to all elements of S
subject to some widely believed but rather deep conjectures. However, the
Selberg class is too small with respect to universality; for instance, a Dirichlet
L-function to an imprimitive character does not lie in the Selberg class (by
lack of an appropriate functional equation) but it is known to be universal.
Furthermore, some important L-functions are only conjectured to lie in the
Selberg class, and, in spite of this, for some of them we can derive universality
unconditionally.

In the following chapter, we consider the value-distribution of Dirichlet
series L(s) with functional equation in the complex plane. Following Levin-
son’s approach from the 1970s, we shall prove asymptotic formulae for the
c-values of L, i.e., roots of the equation L(s) = c, and give applications in
Nevanlinna theory. In particular, we give an alternative proof of the Riemann–
von Mangoldt formula for the elements in the Selberg class.

The main themes of Chap. 8 are almost periodicity and the Riemann
hypothesis. Universality has an interesting feedback to classical problems.
Bohr observed that the Riemann hypothesis for Dirichlet L-functions asso-
ciated with non-principal characters is equivalent to almost periodicity in
the right half of the critical strip. Applying Voronin’s universality theorem,
Bagchi was able to extend this result to the zeta-function in proving that if
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the Riemann zeta-function can approximate itself uniformly in the sense of
Voronin’s theorem, then Riemann’s hypothesis is true, and vice versa. We
sketch an extension of Bagchi’s theorem to other L-functions.

Chapter 9 deals with the problem of effectivity. The known proofs of uni-
versality are ineffective, giving neither bounds for the first approximating shift
τ nor for their density (with the exception of particular results due to Garunk-
štis, Good, and Laurinčikas). We give explicit upper bounds for the density
of universality; more precisely, we prove upper bounds for the frequency with
which a certain class of target functions (analytic isomorphisms) can be uni-
formly approximated. Moreover, we apply effective results from the theory of
inhomogeneous diophantine approximation to prove several explicit estimates
for the value-distribution in the half-plane of absolute convergence.

In Chap. 10, we discuss further applications of universality, most of them
classical, e.g., an extension of Bohr’s and Voronin’s results concerning the
value-distribution inside the critical strip, and the functional independence
which covers Ostrowski’s solution of the Hilbert problem on the hyper-
transcendence of the zeta-function and some of its generalizations. Here a
function is called hyper-transcendental, if it does not satisfy any algebraic
differential equation. Further, we study the value-distribution of linear com-
binations of (strongly) universal Dirichlet series. A subtle consequence of this
strong concept of universality, and a big contrast to L-functions, can be found
in the distribution of zeros off the critical line. Very likely a (universal) Dirich-
let series satisfying a functional equation of Riemann-type has either many
zeros to the right of the critical line (as a generic Dirichlet series with periodic
coefficients) or none (as it is expected for L-functions). This seems to be the
heart of many secrets in the value-distribution theory of Dirichlet series.

Chapter 11 deals with Dirichlet series associated with periodic arithmeti-
cal functions. In general, these functions do not have an Euler product but
they are additively related to Dirichlet L-functions. Consequently, they share
certain properties with L-functions, e.g., a functional equation similar to the
one for Riemann’s zeta-function. We prove universality for a large class of
these Dirichlet series; in contrast to L-functions they can approximate uni-
formly analytic functions having zeros (provided their Dirichlet coefficients are
not multiplicative). Moreover, we study joint universality for Hurwitz zeta-
functions with rational parameters.

We conclude with joint universality; here joint stands for simultaneous
uniform approximation. In Chap. 12, we prove a theorem which reduces joint
universality for L-functions in S̃ to a denseness property in a related function
space. Of course, we cannot have joint universality for any set of L-functions;
for example, ζ(s) and ζ(s)2 cannot approximate any given pair of admissi-
ble target functions simultaneously. However, we shall prove that in some
instances twists of L ∈ S̃ with pairwise non-equivalent characters fulfill this
condition (e.g., Dirichlet L functions). In the following chapter we present sev-
eral further applications. For instance, we prove joint universality for Artin
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L-functions (which lie in the Selberg class if and only if the deep Artin con-
jecture is true). This universality theorem holds unconditionally despite the
fact that Artin L-functions might have infinitely many poles in their strip of
universality; this was first proved by Bauer in 2003 by a tricky argument.

At the end of these notes an appendix on the history of the general phe-
nomenon of universality in analysis is given. It is known that universality is a
quite regularly appearing phenomenon in limit processes, but among all these
universal objects only universal Dirichlet series are explicitly known. At the
end an index and a list of the notations and axioms which were used are given.

Value-distribution theory for L-functions with emphasis on aspects of uni-
versality was treated in the monographs of Karatsuba and Voronin [166] and
Laurinčikas [186]. However, after the publication of these books, many new
results and applications were discovered; we refer the reader to the surveys of
Laurinčikas [196] and of Matsumoto [242] for some of the progress made in the
meantime. The content of this book forms an extract of the authors habilita-
tion thesis written at Frankfurt University in 2003. We have added Chaps. 12
and 13 on joint universality and its applications as well as several remarks
and comments concerning the progress obtained in the meantime. Unfortu-
nately, we could not include the most current contributions as, for example,
the promising work [245] of Mauclaire which relates universality with almost
periodicity.

I am very grateful to Springer for publishing these notes; especially, I want
to thank Stefanie Zöller and Catriona M. Byrne from Springer, the editors of
the series Lecture Notes in Mathematics, and, of course, the anonymous referees
for their excellent work, their valuable remarks and corrections. Furthermore,
I am grateful to my family, my friends and my colleagues for their interest
and support, in particular those from the Mathematics Departments at the
universities of Frankfurt, Madrid, and Würzburg. Especially, I would like to
thank Ramūnas Garunkštis and Antanas Laurinčikas for introducing me to
questions concerning universality, Ernesto Girondo, Aleksander Ivić, Roma
Kačinskaitė, Kohji Matsumoto, Georg Johann Rieger, Jürgen Sander, Wolf-
gang Schwarz, and Jürgen Wolfart for the fruitful discussions, helpful remarks
and their encouragement. Last but not least, I would like to thank my wife
Rasa.

Jörn Steuding
Würzburg, December 2006



1

Introduction

The grandmother of all zeta-functions is the Riemann zeta-function.
David Ruelle

In this introduction we give some hints for the importance of the
Riemann zeta-function for analytic number theory and present first classic
results on its amazing value-distribution due to Harald Bohr but also the re-
markable universality theorem of Voronin (including a sketch of his proof).
Moreover, we introduce Dirichlet L-functions and other generalizations of the
zeta-function, discuss their relevance in number theory and comment on their
value-distribution. For historical details we refer to Narkiewicz’s monograph
[277] and Schwarz’s surveys [317, 318].

1.1 The Riemann Zeta-Function and the Distribution
of Prime Numbers

The Riemann zeta-function is a function of a complex variable s = σ+ it, for
σ > 1 given by

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(
1 − 1

ps

)−1

; (1.1)

here and in the sequel the letter p always denotes a prime number and the
product is taken over all primes. The Dirichlet series, and the Euler product,
converge absolutely in the half-plane σ > 1 and uniformly in each compact
subset of this half-plane. The identity between the Dirichlet series and the
Euler product was discovered by Euler [76] in 1737 and can be regarded as
an analytic version of the unique prime factorization of integers. The Euler
product gives a first glance on the intimate connection between the zeta-
function and the distribution of prime numbers. A first immediate consequence
is Euler’s proof of the infinitude of the primes. Assuming that there were only
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finitely many primes, the product in (1.1) is finite, and therefore convergent
for s = 1, contradicting the fact that the Dirichlet series defining ζ(s) reduces
to the divergent harmonic series as s→ 1+. Hence, there exist infinitely many
prime numbers. This fact is well known since Euclid’s elementary proof, but
the analytic access gives deeper knowledge on the distribution of the prime
numbers. It was the young Gauss [94] who conjectured in 1791 for the number
π(x) of primes p ≤ x the asymptotic formula

π(x) ∼ li(x), (1.2)

where the logarithmic integral is given by

li(x) = lim
ε→0+

{∫ 1−ε

0

+
∫ x

1+ε

}
du

log u
=
∫ x

2

du
log u

− 1.04 . . . ;

this integral is a principal value in the sense of Cauchy. Gauss’ conjecture
states that, in first approximation, the number of primes ≤ x is asymptotically

x
log x . By elementary means, Chebyshev [54, 55] proved around 1850 that for
sufficiently large x

0.921 . . . ≤ π(x)
log x
x

≤ 1.055 . . . .

Furthermore, he showed that if the limit

lim
x→∞π(x)

log x
x

exists, the limit is equal to one, which supports relation (1.2).
Riemann was the first to investigate the Riemann zeta-function as a func-

tion of a complex variable. In his only one but outstanding paper [310] on
number theory from 1859 he outlined how Gauss’ conjecture could be proved
by using the function ζ(s). However, at Riemann’s time the theory of func-
tions was not developed sufficiently far, but the open questions concerning
the zeta-function pushed the research in this field quickly forward. We shall
briefly discuss Riemann’s memoir. First of all, by partial summation

ζ(s) =
∑
n≤N

1
ns

+
N1−s

s− 1
+ s

∫ ∞

N

[u]− u

us+1
du; (1.3)

here and in the sequel [u] denotes the maximal integer less than or equal to u.
This gives an analytic continuation for ζ(s) to the half-plane σ > 0 except for
a simple pole at s = 1 with residue 1. This process can be continued to the
left half-plane and shows that ζ(s) is analytic throughout the whole complex
plane except for s = 1. Riemann gave the functional equation

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s), (1.4)



1.1 The Riemann Zeta-Function and the Distribution of Prime Numbers 3

−14 −12 −10 −8 −6 −4 −2

−0.15

−0.1

−0.05

0.05

0.1

Fig. 1.1. ζ(s) in the range s ∈ [−14.5, 0.5]

where Γ (s) denotes Euler’s Gamma-function; it should be noted that
Euler [76] had partial results in this direction (namely, for integral s and
for half-integral s; see [7]). In view of the Euler product (1.1) it is easily seen
that ζ(s) has no zeros in the half-plane σ > 1. It follows from the functional
equation and from basic properties of the Gamma-function that ζ(s) vanishes
in σ < 0 exactly at the so-called trivial zeros s = −2n with n ∈ N (see Fig. 1.1
for the first trivial zeros). All other zeros of ζ(s) are said to be non-trivial,
and we denote them by 	 = β + iγ. Obviously, they have to lie inside the
so-called critical strip 0 ≤ σ ≤ 1, and it is easily seen that they are non-real.
The functional equation (1.4), in addition with the identity

ζ(s) = ζ(s),

shows some symmetries of ζ(s). In particular, the non-trivial zeros of ζ(s) are
distributed symmetrically with respect to the real axis and to the vertical line
σ = 1

2 . It was Riemann’s ingenious contribution to number theory to point
out how the distribution of these non-trivial zeros is linked to the distribution
of prime numbers. Riemann conjectured that the number N(T ) of non-trivial
zeros 	 = β + iγ with 0 < γ ≤ T (counted according multiplicities) satisfies
the asymptotic formula

N(T ) ∼ T

2π
log

T

2πe
.

This was proved in 1895 by von Mangoldt [235, 236] who found more precisely

N(T ) =
T

2π
log

T

2πe
+ O(log T ). (1.5)

Riemann worked with the function t �→ ζ(1
2 + it) and wrote that very likely

all roots t are real, i.e., all non-trivial zeros lie on the so-called critical line
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Fig. 1.2. The reciprocal of the absolute value of ζ(s) for σ ∈ [−4, 4], t ∈ [−10, 40].
The zeros of ζ(s) appear as poles

σ = 1
2 . This is the famous, yet unproved Riemann hypothesis which we rewrite

equivalently as

Riemann’s Hypothesis. ζ(s) �= 0 for σ > 1
2 .

In support of his conjecture, Riemann calculated some zeros; the first one
with positive imaginary part is 	 = 1

2 + i14.134 . . . (see Fig. 1.2 and also
Fig. 8.1).∗ Furthermore, Riemann conjectured that there exist constants A
and B such that

1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s) = exp(A+Bs)

∏
�

(
1 − s

	

)
exp
(
s

	

)
.

This was shown by Hadamard [113] in 1893 (recall the Hadamard product
theorem from the theory of functions). Finally, Riemann conjectured the so-
called explicit formula which states that

∗ In 1932, Siegel [329] published an account of Riemann’s work on the zeta-function
found in Riemann’s private papers in the archive of the university library in
Göttingen. It became evident that behind Riemann’s speculation there was
extensive analysis and computation.
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π(x) +
∞∑

n=2

π(x1/n)
n

= li(x) −
∑

�=β+iγ
γ>0

(
li(x�) + li(x1−�)

)
(1.6)

+
∫ ∞

x

du
u(u2 − 1) log u

− log 2

for any x ≥ 2 not being a prime power (otherwise a term 1
2k has to be added on

the left-hand side, where x = pk); the appearing integral logarithm is defined
by

li(xβ+iγ) =
∫ (β+iγ) log x

(−∞+iγ) log x

exp(z)
z + δiγ

dz,

where δ = +1 if γ > 0 and δ = −1 otherwise. The explicit formula was proved
by von Mangoldt [235] in 1895 as a consequence of both product representa-
tions for ζ(s), the Euler product (1.1) on the one hand and the Hadamard
product on the other hand.

Riemann’s ideas led to the first proof of Gauss’ conjecture (1.2), the cel-
ebrated prime number theorem, by Hadamard [114] and de la Vallée-Poussin
[357] (independently) in 1896. We give a very brief sketch (for the details we
refer to Ivić [141]). For technical reasons it is of advantage to work with the
logarithmic derivative of ζ(s) which is for σ > 1 given by

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)
ns

,

where the von Mangoldt Λ-function is defined by

Λ(n) =

{
log p if n = pk with k ∈ N,

0 otherwise.
(1.7)

A lot of information concerning the prime counting function π(x) can be
recovered from information about

ψ(x) :=
∑
n≤x

Λ(n) =
∑
p≤x

log p+ O
(
x1/2 log x

)
.

Partial summation gives

π(x) ∼ ψ(x)
log x

.

First of all, we shall express ψ(x) in terms of the zeta-function. If c is a positive
constant, then

1
2πi

∫ c+i∞

c−i∞

xs

s
ds =

{
1 if x > 1,
0 if 0 < x < 1.

(1.8)
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This yields the Perron formula: for x �∈ Z and c > 1,

ψ(x) = − 1
2πi

∫ c+i∞

c−i∞

ζ ′

ζ
(s)

xs

s
ds. (1.9)

Moving the path of integration to the left, we find that the latter expression
is equal to the corresponding sum of residues, that are the residues of the
integrand at the pole of ζ(s) at s = 1, at the zeros of ζ(s), and at the pole of
the integrand at s = 0. The main term turns out to be

Res s=1

{
−ζ

′

ζ
(s)

xs

s

}
= lim

s→1
(s− 1)

(
1

s− 1
+ O(1)

)
xs

s
= x,

whereas each non-trivial zero 	 gives the contribution

Res s=�

{
−ζ

′

ζ
(s)

xs

s

}
= −x

�

	
.

By the same reasoning, the trivial zeros contribute
∞∑

n=1

x−2n

2n
=

1
2

log
(

1 − 1
x2

)
.

Incorporating the residue at s = 0, this leads to the the exact explicit formula

ψ(x) = x−
∑

�

x�

	
− 1

2
log
(

1 − 1
x2

)
− log(2π),

which is equivalent to Riemann’s formula (1.6). Notice that the right-hand side
of this formula is not absolutely convergent. If ζ(s) would have only finitely
many non-trivial zeros, the right-hand side would be a continuous function of
x, contradicting the jumps of ψ(x) for prime powers x. However, going on it
is much more convenient to cut the integral in (1.9) at t = ±T which leads to
the truncated version

ψ(x) = x−
∑
|γ|≤T

x�

	
+ O
( x
T

(log(xT ))2
)
, (1.10)

valid for all values of x. Next we need information on the distribution of the
non-trivial zeros. The largest known zero-free region for ζ(s) was found by
Vinogradov [359] and Korobov [173] (independently) who proved

ζ(s) �= 0 in σ ≥ 1 − c

(log |t| + 3)1/3(log log(|t| + 3))2/3
,

where c is some positive absolute constant; the first complete proof due
to Richert appeared in Walfisz [366]. In addition with the Riemann–von
Mangoldt formula (1.5) one can estimate the sum over the non-trivial zeros
in (1.10). Balancing out T and x, we obtain the prime number theorem with
the strongest existing remainder term:
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Theorem 1.1. There exists an absolute positive constant C such that for suf-
ficiently large x

π(x) = li (x) + O
(
x exp

(
−C (log x)3/5

(log log x)1/5

))
.

By the explicit formula (1.10) the impact of the Riemann hypothesis on the
prime number distribution becomes visible. Von Koch [172] showed that for
fixed θ ∈ [12 , 1)

π(x)− li (x) 	 xθ+ε ⇐⇒ ζ(s) �= 0 for σ > θ; (1.11)

here and in the sequel ε stands for an arbitrary small positive constant, not
necessarily the same at each appearance. With regard to known zeros of ζ(s)
on the critical line it turns out that an error term with θ < 1

2 is impossible.
Thus, the Riemann hypothesis states that the prime numbers are as uniformly
distributed as possible!

Many computations were done to find a counterexample to the Riemann
hypothesis. Van de Lune, te Riele and Winter [232] localized the first
1 500 000 001 zeros, all lying without exception on the critical line; moreover
they all are simple! By observations like this it is conjectured, that all or
at least almost all zeros of the zeta-function are simple. This so-called essen-
tial simplicity hypothesis has arithmetical consequences. Cramér [63] showed,
assuming the Riemann hypothesis,

1
logX

∫ X

1

(
ψ(x)− x

x

)2

dx ∼
∑

�

∣∣∣∣m(	)
	

∣∣∣∣2 , (1.12)

where the sum is taken over distinct zeros and m(	) denotes their multiplicity.
The right-hand side is minimal if all the zeros are simple. Going further,
Goldston, Gonek and Montgomery [103] observed interesting relations
between the essential simplicity hypothesis, mean-values of the logarith-
mic derivative of ζ(s), the error term in the prime number theorem, and
Montgomery’s pair correlation conjecture.

A classical density theorem due to Bohr and Landau states that most
of the zeros lie arbitrarily close to the critical line. Denote by N(σ, T ) the
number of zeros 	 = β + iγ of ζ(s) for which β > σ and 0 < γ ≤ T (counting
multiplicities). Bohr and Landau [34] (see also [224]) proved that

N(σ, T ) 	 T = O(N(T )) (1.13)

for any fixed σ > 1
2 . Hence, almost all zeros of the zeta-function are clustered

around the critical line. A refinement of their method led to bounds N(σ, T ) 	
T ξ with ξ < 1 (see [35, 49]); for instance:

Theorem 1.2. For any fixed σ with 1
2 < σ < 1,

N(σ, T ) 	 T 4σ(1−σ)+ε.

For the various improvements of this density estimate we refer to Ivić [141].
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Hardy [116] showed that infinitely many zeros lie on the critical line, and
Selberg [321] was the first to prove that a positive proportion of all zeros lies
exactly on σ = 1

2 . Let N0(T ) denote the number of zeros 	 of ζ(s) on the
critical line with imaginary part 0 < γ ≤ T . The idea to use mollifiers to
dampen the oscillations of |ζ(1

2 + it)| led Selberg to

lim inf
T→∞

N0(T +H)−N0(T )
N(T +H)−N(T )

> 0,

as long as H ≥ T 1/2+ε. Karatsuba [164] improved this result to H ≥ T 27/82+ε

by some technical refinements. The proportion is very small, about 10−6 as
Min calculated; a later refinement by Zhuravlev gives after all 2

21 if H = T (cf.
[165, p. 36]). However, the localized zeros are not necessarily simple. By an
ingenious new method, working with mollifiers of finite length, Levinson [216]
localized more than one third of the non-trivial zeros of the zeta-function on
the critical line, and as Heath-Brown [122] and Selberg (unpublished) discov-
ered, they are all simple. By optimizing the technique, Levinson himself and
others improved the proportion 1

3 slightly, but more recognizable is Conrey’s
idea in introducing Kloosterman sums. So Conrey [57] was able to choose a
longer mollifier to show that more than two-fifths of the zeros are simple and
on the critical line. Bauer [17, 18] improved this proportion slightly. The use
of longer mollifiers leads to larger proportions. Farmer [77] observed that if it
is possible to take mollifiers of infinite length, then almost all zeros lie on the
critical line and are simple. In [339], Steuding found a new approach (com-
bining ideas and methods of Atkinson, Jutila and Motohashi) to treat short
intervals [T, T + H], i.e., H = O(T ). It was proved that for H ≥ T 0.552 a
positive proportion of the zeros of the zeta-function with imaginary parts in
[T, T +H] lie on the critical line and are simple.

Recently, Garaev [81] showed that∑
0<γ<T

ζ′(�) �=0

|	ζ ′(	)|−1 � (log T )1/2;

the divergence of the series
∑

� |	ζ ′(	)|−1 was known before only subject to
the truth of the Riemann hypothesis (see [353, p. 374]). Garaev’s result was
slightly improved by himself [82] and Šleževičienė and Steuding [333] (inde-
pendently) by a factor (log T )1/4. Furthermore, using the results of [339] for
short intervals, in [319] it was proved that∑

T <γ<T+H

ζ′( 1
2 +iγ) �=0

∣∣∣∣ζ ′(1
2

+ iγ
)∣∣∣∣−1

� H(log T )−1/4

and ∑
T <γ<T+H

ζ′( 1
2 +iγ)�=0

∣∣∣∣ζ ′(1
2

+ iγ
)∣∣∣∣	 H(log T )9/4,
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both valid for T 0.552 ≤ H ≤ T . Such estimates measure how close the zeros
of the zeta-function are to being simple.

1.2 Bohr’s Probabilistic Approach

In the second decade of the twentieth century, Harald Bohr refined former
studies on the value-distribution of the Riemann zeta-function by applying
diophantine, geometric, and probabilistic methods. Especially, for us, his prob-
abilistic approach is of interest. It seems to be rather difficult to locate concrete
values taken by the zeta-function, but it is much easier to study how often
the values lie in a given set. As Bohr found out these frequencies follow strict
mathematical laws (analogously to quantum mechanics, where it is impos-
sible to locate simultaneously space and time of a particle by Heisenberg’s
uncertainty relation, but large numbers of particles obey statistical laws).

In the half-plane of absolute convergence σ > 1, we have

0 < |ζ(s)| ≤ ζ(σ).

Thus the values of ζ(s) in half-planes σ ≥ σ0 > 1 are lying in the disk of radius
ζ(σ0) centered in the origin. It can be shown that ζ(s) takes quite many of the
complex values inside this disk when t varies in R (very similar to the classic
theorem of Bloch in the theory of functions). On the other side ζ(σ) tends to
infinity as σ → 1+, and indeed Bohr [28] succeeded in proving

Theorem 1.3. In any strip 1 < σ < 1 + ε, ζ(s) takes any non-zero value
infinitely often.

Somehow it is more natural to study the logarithm of the zeta-function. To
define log ζ(s) for any s ∈ C, we choose the principal branch of the logarithm
on the intersection of the real axis with the half-plane of absolute convergence.
For other points s we define log ζ(σ+it) to be the value obtained from log ζ(2)
by continuous variation along the line segments [2, 2 + it] and [2 + it, σ + it],
provided that the path does not cross a zero or pole of ζ(s); if it does, then we
take log ζ(σ+it) = limε→0+ log ζ(σ+i(t+ε)). Of course, for other L-functions
we may proceed analogously. For σ > 1, we have

log ζ(s) = −
∑

p

log
(

1 − 1
ps

)
= −
∑

p

∞∑
k=1

1
kpsk

. (1.14)

For fixed prime p and fixed σ > 1, the set of values taken by the inner sum
in the series representation on the right-hand side is a convex curve while
t runs through R. Adding up all these curves gives, using some facts from
the theory of diophantine approximation, information on the values taken
by log ζ(s) itself. Actually, it follows that log ζ(s) takes any complex value in
1 < σ < 1+ε which, by exponentiation, leads to the assertion of Theorem 1.3.
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Fig. 1.3. ζ( 3
5

+ it) for t ∈ [0, 60]. The curve visits any neighbourhood of any given
point in the complex plane as t runs through the set of real numbers

The situation inside the critical strip is much more complicated. Here,
Bohr studied finite Euler products

ζM (s) :=
∏

p≤M

(
1 − 1

ps

)−1

. (1.15)

As M tends to infinity, these products do not converge any longer in the
critical strip but they approximate ζ(s) in the mean (we will meet this
ingenious idea several times later). The value-distribution of finite Euler prod-
ucts is treatable by the theory of diophantine approximation, and by their
approximation property this leads to information on the values taken by the
zeta-function inside the critical strip. In a series of papers Bohr and his col-
laborators discovered that the asymptotic behaviour of ζ(s) is ruled by prob-
ability laws on every vertical line to the right of σ = 1

2 . In particular, Bohr
and Courant [30] proved that for any fixed σ ∈ ( 1

2 , 1] the set of values ζ(σ+it)
with t ∈ R lies dense in the complex plane (see Fig. 1.3). Later, Bohr refined
these results significantly by applying probabilistic methods. Let R be an
arbitrary fixed rectangle in the complex plane whose sides are parallel to the
real and the imaginary axes, and let G be the half-plane σ > 1

2 where all
points are removed which have the same imaginary part as, and smaller real
part than, one of the possible zeros of ζ(s) in this region. Then a remarkable
limit theorem due to Bohr and Jessen [31, 32] states.

Theorem 1.4. For any σ > 1
2 , the limit

lim
T→∞

1
T

meas {τ ∈ [0, T ] : σ + iτ ∈ G, log ζ(σ + iτ) ∈ R}
exists.
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Here and in the sequel measA stands for the Lebesgue measure of a mea-
surable set A. The limit value of Theorem 1.4 may be regarded as the
probability how many values of log ζ(σ+it) belong to the rectangle R. Hattori
and Matsumoto [121] identified this limit distribution, which is too compli-
cated to be written down here. Next, for any complex number c, denote by
N c(σ1, σ2, T ) the number of c-values of ζ(s), i.e., the roots of the equation
ζ(s) = c, inside the region σ1 < σ < σ2, 0 < t ≤ T (counting multiplicities).
From the limit theorem mentioned above Bohr and Jessen [32] deduced

Theorem 1.5. Let c be a complex number �= 0. Then, for any σ1 and σ2

satisfying 1
2 < σ1 < σ2 < 1, the limit

lim
T→∞

1
T
N c(σ1, σ2, T )

exists and is positive.

In connection with the density Theorem 1.2 it follows that zeros are indeed
exceptional values of the zeta-function.

In 1935, Jessen and Wintner [149] proved limit theorems similar to the one
above by using more advanced methods from probability theory (infinite con-
volutions of probability measures). We do not mention further developments
of Bohr’s ideas by his successors Borchsenius, Jessen and Wintner but refer
for more details on Bohr’s contribution and results of his collaborators to the
monograph of Laurinčikas [186] and the survey of Matsumoto [242]. Bohr’s
line of investigations appears to have been almost totally abandoned for some
decades. Only in 1972, Voronin [361] obtained some significant generalizations
of Bohr’s denseness result.

Theorem 1.6. For any fixed numbers s1, . . . , sn with 1
2 < Re sk < 1 for

1 ≤ k ≤ n and sk �= s	 for k �= �, the set

{(ζ(s1 + it), . . . , ζ(sn + it)) : t ∈ R}

is dense in Cn. Moreover, for any fixed number s in 1
2 < σ < 1,

{(ζ(s+ iτ), ζ ′(s+ iτ), . . . , ζ(n−1)(s+ iτ)) : τ ∈ R}

is dense in Cn.

This result (in addition with Voronin’s universality Theorem 1.7) started
a second period of intensive research in this field. Comparable limit theo-
rems and related results were obtained, for example, by Laurinčikas [180] for
Dirichlet L-functions, by Matsumoto [239] for more general L-functions, and
recently by Šleževičienė [331] for powers of the zeta-function, to give only
some examples.
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We conclude this section with a short view on the value-distribution of
the Riemann zeta-function on the critical line which appears to be rather
different. It is conjectured but yet unproved that also the set of values of ζ(s)
taken on the critical line σ = 1

2 is dense in C. Selberg (unpublished) proved
that the values taken by an appropriate normalization of the Riemann zeta-
function on the critical line are normally distributed: let R be an arbitrary
fixed rectangle in the complex plane whose sides are parallel to the real and
the imaginary axes, then

lim
T→∞

1
T

meas

⎧⎨⎩t ∈ (0, T ] :
log ζ
(

1
2 + it

)√
1
2 log log T

∈ R

⎫⎬⎭
=

1
2π

∫∫
R

exp
(
−x

2 + y2

2

)
dxdy. (1.16)

The first published proof is due to Joyner [150]. Laurinčikas [184] obtained
results near the critical line, comparable to (1.16); more precisely, the weak
convergence of a suitably normalized measure to the normal distribution in
the region

1
2
≤ σ ≤ 1

2
+

1
log T

as T tends to infinity. Selberg’s limit theorem with remainder term includes
as a particular case the result

1
T

meas

{
t ∈ (0, T ] :

∣∣∣∣ζ (1
2

+ it
)∣∣∣∣ ≤ exp

(
y

√
1
2

log log T

)}

=
1√
2π

∫ y

−∞
exp
(
−x

2

2

)
dx+ O

(
(log log log T )2√

log log T

)
.

As Hejhal [130] recently confirmed, this holds uniformly in y. This uniformity
is rather useful. Ivić [143] pointed out how to deduce results on small values
taken by the zeta-function and results on gaps between the ordinates of con-
secutive zeros on the critical line. Laurinčikas and Steuding [208] investigated
applications to the distribution of large values (with respect to Ω-results on
one hand and the Lindelöf hypothesis on the other hand).

1.3 Voronin’s Universality Theorem

In 1975, Voronin [363, 364] proved a remarkable universality theorem for ζ(s)
which states, roughly speaking, that any non-vanishing analytic function can
be approximated uniformly by certain purely imaginary shifts of the zeta-
function in the critical strip.
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Theorem 1.7. Let 0 < r < 1
4 and suppose that g(s) is a non-vanishing con-

tinuous function on the disk |s| ≤ r which is analytic in the interior. Then,
for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ (s+
3
4

+ iτ
)
− g(s)

∣∣∣∣ < ε

}
> 0.

Thus the set of approximating shifts has positive lower density!
We say that ζ(s) is universal since appropriate shifts approximate uni-

formly any element of a huge class of functions. What might have been
Voronin’s intention for his studies which had led him to the discovery of
this astonishing universality property? First of all, Voronin’s universality the-
orem can be seen as an infinite dimensional analogue of the second part of
Theorem 1.6: the truncated Taylor series of the target function g(s) can be
approximated by the truncated Taylor series of a certain shift of zeta. This
becomes more clear in Sect. 10.1 when we will deduce the second assertion of
Theorem 1.6 from Theorem 1.7 as a particular case in a more general setting
(for more details we refer to the nice survey articles of Laurinčikas [198] and
Matsumoto [244]). Moreover, in Sect. 10.6 we shall indicate how to deduce the
first part from a refined version of Voronin’s universality theorem. Another
reason for Voronin’s investigations could have been Bohr’s concept of almost
periodicity with which we will get in touch in Sect. 8.2.

We give a brief sketch of Voronin’s argument following the book of
Karatsuba and Voronin [166]. The Euler product (1.1) is the key to prove
the universality theorem in spite of the fact that it does not converge in the
region of universality. However, as Bohr [29] observed, an appropriate trun-
cated Euler product (1.15) approximates ζ(s) in a certain mean-value sense
inside the critical strip; this is related to the use of modified truncated Euler
products in Voronin’s proof (see (1.19) and (1.20)).

It is more convenient to work with series than with products. Therefore,
we consider the logarithms of the functions in question. Since g(s) has no zeros
in |s| ≤ r, its logarithm exists and we may define an analytic function f(s) by
g(s) = exp f(s). First we approximate f(s) by the logarithm of a truncated
Euler product. Let Ω denote the set of all sequences of real numbers indexed
by the prime numbers in ascending order. Further, define for every finite subset
M of the set of all primes, every ω = (ω2, ω3, . . .) ∈ Ω, and all complex s,

ζM (s, ω) =
∏

p∈M

(
1 − exp(−2πiωp)

ps

)−1

.

Obviously, ζM (s, ω) is a non-vanishing analytic function of s in the half-plane
σ > 0. Consequently, its logarithm exists and is equal to

log ζM (s, ω) = −
∑
p∈M

log
(

1 − exp(−2πiωp)
ps

)
;
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in order to have a definite value we may choose the principal branch of the
logarithm. It might be unpleasant that f is only assumed to be continuous on
the boundary. However, since f(s) is uniformly continuous in the disk |s| ≤ r,
there exists some κ > 1 such that κ2r < 1

4 and

max
|s|≤r

∣∣∣f ( s
κ2

)
− f(s)

∣∣∣ < ε

2
.

The function f(s/κ2) is analytic and bounded on the disk |s| ≤ κr =: R, and
thus belongs to the Hardy space H2

R, i.e., the Hilbert space consisting of those
functions F (s) which are analytic for |s| < R with finite norm

‖F‖ := lim
r→R−

∫∫
|s|≤r

|F (s)|dσ dt.

Introducing the inner product

〈F,G〉 = Re
∫∫

|s|≤R

F (s)G(s) dσ dt,

H2
R becomes a real Hilbert space. Denote by pk the kth prime number. We

consider the series ∞∑
k=1

uk(s, ω),

where

uk(s, ω) := log

(
1 − exp(−2πiωpk

)

p
s+(3/4)
k

)−1

.

Here comes the first main idea. Riemann proved that any conditionally
convergent series of real numbers can be rearranged such that its sum
converges to an arbitrary preassigned real number. Pechersky [288] gener-
alized Riemann’s theorem to Hilbert spaces (Theorem 5.4). It follows, with
the special choice ω = ω0 = (1

4 ,
2
4 ,

3
4 , . . .), that there exists a rearrangement of

the series
∑
uk(s, ω0) for which

∞∑
j=1

ukj
(s, ω0) = f

( s
κ2

)
(the rather difficult and lengthy verification of the conditions of Pechersky’s
theorem uses classic results of Paley and Wiener and Plancherel from Fourier
analysis, a theorem on polynomial approximation due to Markov, and, most
importantly, the prime number Theorem 1.1). It might be interesting to notice
that in the older paper [362] Voronin had already developed the techniques
for proving universality – only a rearrangement theorem for function spaces
was not at hand. Recently, Garunkštis [87] found an argument to omit the
ineffective rearrangement.
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The tail of the rearranged series can be made as small as we please, say
of modulus less than ε

2 . Thus, it turns out that for any ε > 0 and any y > 0
there exists a finite set M of prime numbers, containing at least all primes
p ≤ y, such that

max
|s|≤r

∣∣∣∣log ζM

(
s+

3
4
, ω0

)
− f(s)

∣∣∣∣ < ε. (1.17)

The next and main step in Voronin’s proof is to switch from log ζM (s)
to the logarithm of the zeta-function. Of course, log ζ(s) has singularities at
the zeros of ζ(s), but since the set of these possibly singularities has measure
zero by density Theorem 1.2, they are negligible. Note that for many higher
L-functions (i.e., functions which satisfy a Riemann-type functional equation
with many Gamma-factors), which we shall consider later, no density results
of this strength are known.

Now we choose κ > 1 and ε1 ∈ (0, 1) such that κr < 1
4 and

max
|s|≤r

∣∣∣f ( s
κ

)
− f(s)

∣∣∣ < ε1. (1.18)

Putting Q = {p : p ≤ z} and E = {s = σ + it : −κr < σ ≤ 2, |t| ≤ 1}, one can
show, using the approximate functional equation for ζ(s) (i.e., a representation
as a Dirichlet polynomial related to (1.3)), that for any ε2 > 0∫ 2T

T

∫∫
E

∣∣∣∣ζ−1
Q

(
s+

3
4

+ iτ,0
)
ζ

(
s+

3
4

+ iτ
)
− 1
∣∣∣∣2 dσ dtdτ 	 ε42T, (1.19)

provided that z and T are sufficiently large, depending on ε2; here 0 :=
(0, 0, . . .); actually this is Hilfssatz 2 from Bohr [29]. Now define

AT =

{
τ ∈ [T, 2T ] :

∫∫
E+ 3

4

|ζ−1
Q (s+ iτ,0)ζ(s+ iτ) − 1|2 dσ dt < ε22

}
.

Then it follows from (1.19) that, for sufficiently large z and T ,

measAT > (1 − ε2)T, (1.20)

which is surprisingly large. It follows from Cauchy’s formula that, for suffi-
ciently small ε2,

max
|s|≤r

∣∣∣∣log ζ
(
s+

3
4

+ iτ
)
− log ζQ

(
s+

3
4

+ iτ,0
)∣∣∣∣	 ε2, (1.21)

provided τ ∈ AT , where the implicit constant depends only on κ. By (1.17)
there exists a sequence of finite sets of prime numbers M1 ⊂ M2 ⊂ . . . such
that ∪∞

k=1Mk contains all primes and
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lim
k→∞

max
|s|≤κr

∣∣∣∣log ζMk

(
s+

3
4
, ω0

)
− f
( s
κ

)∣∣∣∣ = 0. (1.22)

Let ω0 = (ω(0)
2 , ω

(0)
3 , . . .). By the continuity of log ζM

(
s+ 3

4 , ω0

)
, for any ε1 >

0, there exists a positive δ such that, whenever the inequalities

‖ω(0)
p − ωp‖ < δ for p ∈Mk (1.23)

hold, where ‖z‖ denotes the minimal distance of z to an integer, then

max
|s|≤κr

∣∣∣∣log ζMk

(
s+

3
4
, ω0

)
− log ζMk

(
s+

3
4
, ω

)∣∣∣∣ < ε1. (1.24)

Let
BT =

{
τ ∈ [T, 2T ] :

∥∥∥τ log p
2π

− ω(0)
p

∥∥∥ < δ

}
.

Now we consider
1
T

∫
BT

∫∫
|s|≤κr

∣∣∣ log ζQ

(
s+

3
4

+ iτ,0
)
− log ζMk

(
s+

3
4

+ iτ,0
) ∣∣∣2 dσ dtdτ,

respectively,∫∫
|s|≤κr

1
T

∫
BT

∣∣∣ log ζQ

(
s+

3
4

+ iτ,0
)
− log ζMk

(
s+

3
4

+ iτ,0
) ∣∣∣2 dτ dσ dt.

Putting

ω(τ) =
(
τ

log 2
2π

, τ
log 3
2π

, . . .

)
, (1.25)

we may rewrite the inner integral as∫
BT

∣∣∣∣log ζQ

(
s+

3
4
, ω(τ)

)
− log ζMk

(
s+

3
4
, ω(τ)

)∣∣∣∣2 dτ.

Next we need Weyl’s refinement of Kronecker’s approximation theorem.
Let ω(τ) be any continuous function with domain of definition [0,∞) and
range RN . Then the curve ω(τ) is said to be uniformly distributed mod 1 in
RN if, for every parallelepiped Π = [α1, β1] × . . . × [αN , βN ] with 0 ≤ αj <
βj ≤ 1 for 1 ≤ j ≤ N ,

lim
T→∞

1
T

meas {τ ∈ (0, T ) : ω(τ) ∈ Π mod 1} =
N∏

j=1

(βj − αj).

In some sense, a curve is uniformly distributed mod1 if the proportion of
the fractional values which lie in an arbitrary parallelepiped Π of the unit
cube coincides with the volume of Π. In questions about uniform distribution
mod 1 one is interested in the fractional part only. For a curve ω(τ) in RN ,
we define

{ω(τ)} = (ω1(τ) − [ω1(τ)], . . . , ωN (τ) − [ωN (τ)]),

where [x] denotes the integral part of x ∈ R.
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Lemma 1.8. (i) Let a1, . . . , aN be real numbers, linearly independent over Q,
and let γ be a subregion of the N -dimensional unit cube with Jordan content
Γ . Then

lim
T→∞

1
T

meas {τ ∈ (0, T ) : (τa1, . . . , τaN ) ∈ γ mod 1} = Γ.

(ii) Suppose that the curve ω(τ) is uniformly distributed mod 1 in RN . Let D
be a closed and Jordan measurable subregion of the unit cube in RN and let
Ω be a family of complex-valued continuous functions defined on D. If Ω is
uniformly bounded and equicontinuous, then

lim
T→∞

1
T

∫ T

0

f({ω(τ)})1D(τ) dτ =
∫
D
f(x1, . . . , xN ) dx1 . . . dxN

uniformly with respect to f ∈ Ω, where 1D(τ) is equal to 1 if ω(τ) ∈ D mod 1,
and 0 otherwise.

Note that the notion of Jordan content is more restrictive than the notion of
Lebesgue measure. But, if the Jordan content exists, then it is also defined
in the sense of Lebesgue and equal to it. A proof of Weyl’s theorem can be
found in his paper [370] or in Karatsuba and Voronin [166].

The unique prime factorization of integers implies the linear independence
of the logarithms of the prime numbers over the field of rational numbers.
Thus, in some sense, the logarithms of prime numbers behave like random
variables. This is the main reason why probabilistic methods can be applied
to the zeta-function or, more generally, to Euler products!

By Lemma 1.8(i), the curve ω(τ), defined by (1.25), is uniformly distrib-
uted mod 1. Application of Lemma 1.8(ii), to the curve ω(τ) yields

lim
T→∞

1
T

∫
BT

∣∣∣∣log ζQ

(
s+

3
4
, ω(τ)

)
− log ζMk

(
s+

3
4
, ω(τ)

)∣∣∣∣2 dτ

=
∫
D

∣∣∣∣log ζQ

(
s+

3
4
, ω

)
− log ζMk

(
s+

3
4
, ω

)∣∣∣∣2 dμ,

uniformly in s for |s| ≤ κr, where D is the subregion of the unit cube in
RN given by the inequalities (1.23) with N = �Mk, and dμ is the Lebesgue
measure. By the definition of ζM (s, ω) it follows that for Mk ⊂ Q

ζQ(s, ω) = ζMk
(s, ω)ζQ\Mk

(s, ω),

and thus ∫
D

∣∣∣∣log ζQ

(
s+

3
4
, ω

)
− log ζMk

(
s+

3
4
, ω

)∣∣∣∣2 dμ

	 measD ·
∫

[0,1]N

∣∣∣∣log ζQ\Mk

(
s+

3
4
, ω

)∣∣∣∣2 dμ.
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The latter integral is bounded above by y2κr−(1/2)
k provided that Mk contains

all primes ≤ yk. It follows that:
1
T

∫
BT

∫∫
|s|≤κr

∣∣log ζQ
(
s+ 3

4 + iτ,0
)
− log ζMk

(
s+ 3

4 + iτ,0
)∣∣2 dσ dtdτ

	 y
2κr−(1/2)
k measD.

Applying once more Lemma 1.8(i) yields

lim
T→∞

1
T

measBT = measD,

which implies, for sufficiently large yk,

meas
{
τ ∈ BT :

∫∫
|s|≤κr

∣∣∣∣log ζQ

(
s+

3
4

+ iτ,0
)

− log ζMk

(
s+

3
4

+ iτ,0
)∣∣∣∣2 dσ dt < y

κr−(1/4)
k

}
>

measD
2

T.

This gives via Lemma 1.8(ii)

1
T

meas
{
τ ∈ BT : max

|s|≤κr

∣∣∣∣log ζQ

(
s+

3
4

+ iτ,0
)

− log ζMk

(
s+

3
4

+ iτ,0
)∣∣∣∣ < y

(κr−1/4)/5
k

}
>

measD
2

. (1.26)

If we now take 0 < ε2 <
1
2 measD, then (1.20) implies

1
T

measAT ∩ BT ≥ 1
2

measD − ε2 > 0.

Thus, in view of (1.18) and (1.22) we may approximate f(s) by
log ζMk

(
s+ 3

4 , ω0

)
(independent on τ), with (1.24) and (1.26) the lat-

ter function by log ζQ
(
s+ 3

4 + iτ,0
)
, and finally with regard to (1.21) by

log ζ
(
s+ 3

4 + iτ
)

on a set of τ with positive measure. Replacing T by 1
2T , we

thus find, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣log ζ
(
s+

3
4

+ iτ
)
− f(s)

∣∣∣∣ < ε

}
> 0.

Now it is obvious how to deduce Voronin’s theorem by taking the exponential.
Voronin called his universality theorem Teorema o kru�oqkah, the the-

orem about little disks. Reich [305] and Bagchi [9] improved Voronin’s result
significantly in replacing the disk by an arbitrary compact set in the right half
of the critical strip with connected complement, and by giving a lucid proof in
the language of probability theory. The strongest version of Voronin’s theorem
has the form:
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Theorem 1.9. Suppose that K is a compact subset of the strip 1
2 < σ < 1 with

connected complement, and let g(s) be a non-vanishing continuous function
on K which is analytic in the interior of K. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ) − g(s)| < ε

}
> 0.

The topological restriction on K is necessary. This follows from basic facts
in approximation theory (see the remark to Theorem 5.15). Also the restriction
on g(s) to be non-vanishing cannot be removed as we shall show in Sect. 8.1.
The domain in which the uniform approximation of admissible target functions
takes place is called the strip of universality. In the case of the zeta-function
this strip of universality is the open right half of the critical strip; later we
will meet examples where the strip of universality is more restricted.

It should be noticed that Voronin’s theorem implies that ζ(s)−1 is universal
(independent of the truth of the Riemann hypothesis). To see this we observe
that given a non-vanishing analytic function g(s) on some admissible set K
also its reciprocal is analytic and non-vanishing. Hence we can approximate
the function g(s)−1 uniformly by shifts ζ(s+ iτ). Since the set of such τ has
positive lower density and, by the density Theorem 1.2, the set of non-trivial
zeros of ζ(s) is negligible, it follows that we can find τ for which

ζ(s+ iτ)−1 ≈ g(s) for s ∈ K.

Another consequence of the universality for the zeta-function is that its deriv-
atives and also the logarithmic derivative are universal; this was first proved
by Bagchi [10] and Laurinčikas [182] by a slight modification of the proof of
universality for ζ(s).

We may interpret the absolute value of an analytic function as an analytic
landscape over the complex plane. Then the universality theorem states that
any finite analytic landscape can be found (up to an arbitrarily small error)
in the analytic landscape of the Riemann zeta-function (see Fig. 1.4 on the
next page). On the contrary, Steuding [338] showed that one cannot go to
infinity along a rectifiable path inside the critical strip avoiding large values,
roughly speaking, one cannot stay in valleys in the analytic landscape all the
time (the proof relies on a Phragmén–Lindelöf type theorem for regions with
rectifiable boundary and Ahlfors’ distortion theorem). Taking into account
explicit estimates for extreme values, so-called Ω-results, as for example (9.2)
due to Montgomery [260], this can be formulated precisely.

1.4 Dirichlet L-Functions and Joint Universality

A special role in number theory is played by multiplicative arithmetical func-
tions and their associated generating functions. Multiplicative functions res-
pect the multiplicative structure of N: an arithmetic function f is called
multiplicative if f(1) �= 0 and
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Fig. 1.4. Some dunes at the baltic sea shore or the analytic landscape of ζ(s) for
σ ∈ [ 1

2
, 1], t ∈ [115, 122]

f(m · n) = f(m) · f(n)

for all coprime integers m,n; if the latter identity holds for all integers, f is
said to be completely multiplicative.

Let q be a positive integer. A Dirichlet character χ mod q is a non-
vanishing group homomorphism from the group (Z/qZ)∗ of prime residue
classes modulo q to C. The character, which is identically one, is called prin-
cipal, and is denoted by χ0. By setting χ(a) = 0 on the non-prime residue
classes such a character extends via χ(n) = χ(a) for n ≡ a mod q to a com-
pletely multiplicative arithmetic function. For σ > 1, the Dirichlet L-function
L(s, χ) attached to a character χ mod q is given by

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∏
p

(
1 − χ(p)

ps

)−1

.

The zeta-function ζ(s) may be regarded as the Dirichlet L-function to the
principal character χ0 mod 1. It is possible that for values of n coprime
with q the character χ(n) may have a period less than q. If so, we say
that χ is imprimitive, and otherwise primitive; the principal character is not
regarded as a primitive character. Every non-principal imprimitive character
is induced by a primitive character. Two characters are non-equivalent if they
are not induced by the same character. The characters to a common modulus
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are pairwise non-equivalent. If χ mod q is induced by a primitive character
χ∗ mod q∗, then

L(s, χ) = L(s, χ∗)
∏
p|q

(
1 − χ∗(p)

ps

)
. (1.27)

Being twists of the Riemann zeta-function with multiplicative characters,
Dirichlet L-functions share many properties with the zeta-function. For ins-
tance, there is an analytic continuation to the complex plane, only with the
difference that L(s, χ) is regular at s = 1 if and only if χ is non-principal. Fur-
thermore, L-functions to primitive characters satisfy a functional equation of
the Riemann-type; namely,(

q

π

)(s+δ)/2

Γ
(

s + δ

2

)
L(s, χ) =

τ(χ)

iδ
√

q

(
q

π

)(1+δ−s)/2

Γ
(

1 + δ − s

2

)
L(1 − s, χ),

where δ := 1
2 (1 − χ(−1)) and

τ(χ) :=
∑

a mod q

χ(a) exp
(

2πia
q

)
is the Gauss sum attached to χ. One finds similar zero-free regions (with
the exception of possible Siegel zeros on the real line), density theorems, and
also for Dirichlet L-functions it is expected that the analogue of the Riemann
hypothesis holds; the so-called Generalized Riemann hypothesis states that
neither ζ(s) nor any L(s, χ) has a zero in the half-plane Re s > 1

2 .
Dirichlet L-functions were constructed by Dirichlet [69] to tackle the prob-

lem of the distribution of primes in arithmetic progressions. The main ingre-
dient in his approach are the orthogonality relations for characters linking
prime residue classes with character sums:

1
ϕ(q)

∑
a mod q

χ(a) =
{

1 if χ = χ0,
0 otherwise, (1.28)

and its dual variant
1

ϕ(q)

∑
χ mod q

χ(a) =
{

1 if a ≡ 1 mod q,
0 otherwise,

valid for a coprime with q, where ϕ(q) is Euler’s ϕ-function which counts
the number of prime residue classes mod q. By the latter relation a suitable
linear combination of characters can be used as indicator function of prime
residue classes modulo q. Using similar techniques as for ζ(s), one can prove a
prime number theorem for arithmetic progressions. Let π(x; a mod q) denote
the number of primes p ≤ x in the residue class a mod q, then, for a coprime
with q,

π(x; a mod q) ∼ 1
ϕ(q)

π(x). (1.29)
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This shows that the primes are uniformly distributed in the prime residue
classes. Of course, one can prove also an asymptotic formula with error term
(the theorem of Page–Siegel–Walfisz gives even an asymptotic formula which
is uniform in a small region of values q). Under assumption of the Generalized
Riemann hypothesis one has

π(x; a mod q) =
1

ϕ(q)
li (x) + O

(
x1/2 log(qx)

)
for x ≥ 2, q ≥ 1, and a coprime with q, the implicit constant being absolute.
There are plenty of results which hold if Riemann’s hypothesis is true. Often
one can replace this assumption by the celebrated theorem of Bombieri–
Vinogradov due to Bombieri [37] and Vinogradov [360] (independently, with
a slightly weaker range for Q) which states that, for any A ≥ 1,

∑
q≤Q

max
a mod q
(a,q)=1

max
y≤x

∣∣∣∣π(y; a mod q)− 1
ϕ(q)

li(y)
∣∣∣∣	 x

(log x)A
+Qx1/2(logQx)6.

This shows that the error term in the prime number theorem (1.29) is, on
average over q ≤ x1/2(log x)−A−7, of comparable size as predicted by the
Riemann hypothesis.

We return to the theme of universality. Voronin [364] proved that a col-
lection of Dirichlet L-functions to non-equivalent characters can uniformly
approximate simultaneously non-vanishing analytic functions; in slightly dif-
ferent form this was also established by Gonek [104] and Bagchi [9] (indepen-
dently; all these sources are unpublished doctoral theses). Again we state the
strongest version of this so-called joint universality:

Theorem 1.10. Let χ1 mod q1, . . . , χ	 mod q	 be pairwise non-equivalent
Dirichlet characters, K1, . . . ,K	 be compact subsets of the strip 1

2 < σ < 1
with connected complements. Further, for each 1 ≤ k ≤ �, let gk(s) be a con-
tinuous non-vanishing function on Kk which is analytic in the interior of Kk.
Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤k≤	
max
s∈Kk

|L(s+ iτ, χk)− gk(s)| < ε

}
> 0.

The proof of this joint universality theorem (in a slightly weaker form) can
be found in the monograph of Karatsuba and Voronin [166]. The proof uses the
orthogonality relation (1.28). This independence is essential for joint univer-
sality. Consider a character χ mod q induced by another character χ∗ mod q∗.
It follows immediately from (1.27) that both L(s, χ∗) and L(s, χ) cannot
approximate uniformly a given function jointly.

Another type of universality was discovered by Bagchi. In [9], he proved
universality for Dirichlet L-functions with respect to the characters; more
precisely, if K is a compact subset of 1

2 < σ < 1 with connected complement
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and g(s) is a non-vanishing continuous function on K, which is analytic in the
interior, then, for any sufficiently large prime number p and any ε > 0, there
exist a Dirichlet character χ mod p such that

max
s∈K

∣∣∣∣L(s+
3
4
, χ

)
− g(s)

∣∣∣∣ < ε; (1.30)

moreover, the latter inequality holds for more than cp characters χ mod p,
where c is a positive constant (recall that there are ϕ(p) = p − 1 characters
χ mod p). Eminyan [75] showed that if K = {s : |s| ≤ r} with 0 < r < 1

4 , and
g(s) is a non-vanishing continuous function for s ∈ K, which is analytic in the
interior, then, for each prime number p and any ε > 0, there exist a positive
integer n and a Dirichlet character χ mod pn such that (1.30) holds.

We conclude with another interesting type of universality. Any integer
d �= 0 with d ≡ 0, 1 mod 4 is called a discriminant; if d = 1 or d is the
discriminant of a quadratic number field, d is said to be fundamental. To any
fundamental discriminant d we attach a real primitive character χd mod |d|
defined by the Kronecker symbol (d

· ). Recently, Mishou and Nagoshi [251]
investigated the functional distribution of the associated Dirichlet L-functions
L(s, χd) on 1

2 < σ < 1 as d varies and proved a universality theorem for
L(s, χd) in the d-aspect: let Ω be a simply connected region in the open strip
D := {s : 1

2 < σ < 1} which is symmetric with respect to the real axis and
let g(s) be a non-vanishing analytic function on Ω which takes positive real
values on D ∩ R; then for any compact subset K of Ω and any positive ε,

lim inf
X→∞

�{1 ≤ d ≤ X : maxs∈K |L(s, χd) − g(s)| < ε}
�{1 ≤ d ≤ X} > 0. (1.31)

The condition on the target functions g(s) is natural with respect to the val-
ues taken by L(s, χd) on Ω ∩ R. Mishou and Nagoshi [252] also obtained a
similar result for prime discriminants. Besides, they also studied the distribu-
tion of values L(1, χd). Denote by D+ the set of positive square-free integers
d > 1 with d ≡ 1 mod 8, and by D− the set of negative square-free inte-
gers d ≡ 1 mod 8. In [251], they obtained the remarkable result that the sets
{L(1, χd) : d ∈ Dδ} with δ ∈ {+,−} are dense in R+. They further deduced
from Dirichlet’s class number formula that also{

h(d) log ε(d)√
d

: d ∈ D+

}
and

{
h(d)√
d

: d ∈ D−
}

are dense in R+, where h(d) is the class number of the associated quadratic
number field Q(

√
d) with d ∈ Dδ, and ε(d) is the fundamental unit of Q(

√
d)

with d ∈ D+.
Nagoshi [275] extended this concept of universality to families of auto-

morphic L-functions, more precisely, to L-functions attached to newforms for
congruence subgroups of SL2(Z) (which we will introduce in the following
section).
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1.5 L-Functions Associated with Newforms

First we recall some facts from the theory of modular forms; see Iwaniec’s
book [144] on modular forms and associated L-functions for details.

Denote by H the upper half-plane {z := x+ iy ∈ C : y > 0}, and let k and
N be positive integers, k being even. The subgroup

Γ0(N) :=
{(

a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
of the full modular group SL2(Z) is called Hecke subgroup of level N or con-
gruence subgroup modN . A holomorphic function f(z) on H is said to be a
cusp form of weight k and level N , if

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all z ∈ H and all matrices (
a b

c d

)
∈ Γ0(N),

and if f vanishes at all cusps. The vanishing of f at the cusps is equivalent
with

z := x+ iy �→ yk|f(z)|2

is bounded on H. Then f has for z ∈ H a Fourier expansion

f(z) =
∞∑

n=1

c(n) exp(2πinz). (1.32)

The cusp forms on Γ0(N) of weight k form a finite dimensional complex vector
space, denoted by Sk(Γ0(N)), with the Petersson inner product, defined by

〈f, g〉 =
∫

H/Γ0(N)

f(z)g(z)yk dxdy
y2

for f, g ∈ Sk(Γ0(N). Suppose that M |N . If f ∈ Sk(Γ0(M)) and dM |N , then
z �→ f(dz) is a cusp form on Γ0(N) of weight k too. The forms which may
be obtained in this way from divisors M of the level N with M �= N span a
subspace Sold

k (Γ0(N)), called the space of oldforms. Its orthogonal complement
with respect to the Petersson inner product is denoted Snew

k (Γ0(N)). For n ∈ N
we define the Hecke operator T (n) by

T (n)f =
1
n

∑
ad=n

ak
∑

0≤b<d

f

(
az + b

d

)
for f ∈ Sk(Γ0(N)). The operators T (n) are multiplicative, i.e., T (mn) =
T (m)T (n) for coprime m,n, and they encode plenty of arithmetic information
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about modular forms. The theory of Hecke operators implies the existence of
an orthogonal basis of Snew

k (Γ0(N)) made of eigenfunctions of the operators
T (n) for n coprime with N . By the multiplicity-one principle of Atkin and
Lehner [6], the elements f of this basis are in fact eigenfunctions of all T (n),
i.e., there exist complex numbers λf (n) for which T (n)f = λf (n)f and c(n) =
λf (n)c(1) for all n ∈ N. Furthermore, it follows that the first Fourier coefficient
c(1) of such an f is non-zero. Such a simultaneous eigenfunction is said to be
an eigenform. A newform is defined to be an eigenform that does not come
from a space of lower level and is normalized to have c(1) = 1. The newforms
form a finite set which is an orthogonal basis of the space Snew

k (Γ0(N)). For
instance, Ramanujan’s cusp form

∞∑
n=1

τ(n) exp(2πinz) := exp(2πiz)
∞∏

n=1

(1 − exp(2πinz))24 (1.33)

is a normalized eigenform of weight 12 to the full modular group, and hence
a newform of level 1. Ramanujan [300] conjectured that the coefficients τ(n)
are multiplicative and satisfy the estimate |τ(p)| ≤ 2p11/2 for every prime
number p. The multiplicativity was proved by Mordell [261], in particular by
the beautiful formula

τ(m)τ(n) =
∑

d|(m,n)

d11τ
(mn
d2

)
.

The estimate was shown by Deligne. More precisely, Deligne [67] proved for
the coefficients of any newform f of weight k the estimate

|c(n)| ≤ n(k−1)/2d(n), (1.34)

where d(n) :=
∑

d|n 1 is the divisor function.
In the 1930s, Hecke [126] started investigations on modular forms and

Dirichlet series with a Riemann-type functional equation; his studies were
completed by Atkin and Lehner [6] (for newforms). Here we shall focus on
newforms. Given a newform f with Fourier expansion (1.32), we define the
associated L-function by

L(s, f) =
∞∑

n=1

c(n)
ns

. (1.35)

In view of the classic bound d(n) 	 nε it follows from (1.34) that the series
(1.35) converges absolutely for σ > k+1

2 . By the theory of Hecke operators, it
turns out that the Fourier coefficients of newforms are multiplicative. Hence,
in the half-plane of absolute convergence, there is an Euler product represen-
tation and it is given by

L(s, f) =
∏
p|N

(
1 − c(p)

ps

)−1∏
p�N

(
1 − c(p)

ps
+

1
p2s+1−k

)−1

. (1.36)
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Hecke [126], respectively, Atkin and Lehner [6], proved that L(s, f) has an
analytic continuation to an entire function and satisfies the functional equation

Ns/2(2π)−sΓ (s)L(s, f) = ω(−1)k/2N (k−s)/2(2π)s−kΓ (k − s)L(k − s, f),

where ω = ±1 is the eigenvalue of the Atkin–Lehner involution (0 −N
1 0 ) on

Sk(Γ0(N)). Hecke proved a converse theorem which gives a characterization
of these L-functions by their functional equation; this beautiful result general-
izes Hamburger’s theorem for the Riemann zeta-function [115] (see also [353,
Sect. 2.13]).

Laurinčikas and Matsumoto [201] obtained a universality theorem for
L-functions attached to normalized eigenforms of the full modular group.
Laurinčikas, Matsumoto and Steuding [204, 205] extended this result to
newforms:

Theorem 1.11. Suppose that f is a newform of weight k and level N . Let
K be a compact subset of the strip k

2 < σ < k+1
2 with connected complement,

and let g(s) be a continuous non-vanishing function on K which is analytic in
the interior of K. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ, f) − g(s)| < ε

}
> 0.

All known proofs of universality theorems rely on deep knowledge of the
coefficients of the underlying Dirichlet series. Rankin’s celebrated asymptotic
formula [304] for the Fourier coefficients c(n) of newforms f to the full modular
group states ∑

p≤x

c(p)2p1−k ∼ x

log x
. (1.37)

The main new ingredient in the proof of Theorem 1.11 is the use of an exten-
sion of Rankin’s formula to newforms to congruence subgroups Γ0(N). The
proof is inspired by Rankin’s approach; the non-vanishing of the associated
Rankin–Selberg L-functions (see Sect. 1.6) on the boundary of the critical
strip is essentially due to Moreno [262]. (See also Theorem 6.14.)

The universality of the logarithmic derivative and the first derivative of
L-functions to normalized eigenforms for the full modular group were stud-
ied by Laurinčikas [197]. Recently, Nagoshi [273, 274] proved universality
for L-functions to Maass forms (that are non-holomorphic eigenforms of the
Laplace–Beltrami operator on the upper half-plane). Deligne’s estimate (1.34)
played an essential part in the proofs of universality for L-functions attached
to holomorphic eigen- and newforms, respectively, but its analogue, the so-
called Ramanujan hypothesis, is not known for Maass forms in general. In
[273], Nagoshi used bounds of Kim and Sarnak for the local root numbers of
the Euler factors and obtained universality in a restricted range of the right
half of the critical strip; in [274], he proved unrestricted universality by use
of an asymptotic formula for the fourth moment of these local roots due to
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Murty. Remarkably, his argument also yields a proof for Theorem 1.11 with-
out using (1.34). Moreover, Nagoshi [275] proved universality for L-functions
to certain newforms and their derivatives in the level aspect.

We return to L-functions associated with holomorphic modular forms.
Laurinčikas and Matsumoto [202] obtained a joint universality theorem for L-
functions associated with newforms twisted by characters. Let f ∈ Sk(Γ0(N))
be a newform with Fourier expansion (1.32) and let χ be a Dirichlet character
mod q where q is coprime with N . The twisted L-function is defined by

Lχ(s, f) =
∞∑

n=1

c(n)
ns

χ(n).

As in the non-twisted case (1.35), this Dirichlet series has an Euler product
and extends to an entire function.

Theorem 1.12. Let q1, . . . , qn be positive integers coprime with N and let
χ1 mod q1, . . . , χn mod qn be pairwise non-equivalent character. Further, for
1 ≤ j ≤ n, let gj be a continuous function on Kj which is non-vanishing in
the interior, where Kj is a compact subset of the strip {s ∈ C : k

2 < σ < k+1
2 }

with connected complement. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤j≤n
max
s∈Kj

|Lχj
(s+ iτ, f) − gj(s)| < ε

}
> 0.

The proof relies on a joint limit theorem due to Laurinčikas [191] and some
kind of prime number theorem for the coefficients of cusp forms with respect
to arithmetic progressions, namely∑

p≤x
p≡a mod q

c(p)2p1−k ∼ 1
ϕ(q)

x

log x
, (1.38)

where a is coprime with q. The key for the proof of the latter result is again
the extension of Rankin’s asymptotic formula (1.37) to congruence subgroups
Γ0(N); the transition to arithmetic progressions relies on analytic properties
of the twisted Rankin–Selberg L-function.

By Wiles’ celebrated proof of the Shimura–Taniyama conjecture for semi-
stable modular forms [371] (which was sufficient to prove Fermat’s last the-
orem), and the proof by Breuil, Conrad, Diamond and Taylor of the general
case [44], every L-function attached to an elliptic curve over the rationals is
the L-function to some newform of weight 2 for some congruence subgroup.
Consequently, Theorem 1.11 proves the universality of L-functions associated
with elliptic curves. Laurinčikas and Steuding [209] used Theorem 1.12 to give
an example of jointly universal L-functions associated with elliptic curves.
Here one may choose any finite family of elliptic curves of the form

Em : Y 2 = X3 −m2X with squarefree m ∈ N;
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these curves were first studied by Tunnell [356] with respect to the congruent
number problem. For this family one can avoid Wiles’ proof of the Shimura–
Taniyama–Weil conjecture but show more or less directly that the L-function
associated with E1 corresponds to a newform f ∈ S2(Γ0(32)) and that the
L-function to Em is a twist of E1 with the Kronecker symbol

(
m
.

)
(see also

[171]).

1.6 The Linnik–Ibragimov Conjecture

It is known that there exists a rich zoo of Dirichlet series having some univer-
sality property. We list now some more significant examples.

The Dedekind zeta-function of a number field K over Q is given by

ζK(s) =
∑

a

1
N(a)s

=
∏
p

(
1 − 1

N(p)s

)−1

,

where the sum is taken over all non-zero integral ideals, the product is taken
over all prime ideals of the ring of integers of K, and N(a) is the norm of the
ideal a. The Riemann zeta-function may be regarded as the Dedekind zeta-
function for Q. Universality for the Dedekind zeta-function was first obtained
by Voronin [364], Gonek [104], and, in full generality, by Reich [305, 306];
here the strip of universality is restricted to the strip max{1

2 , 1− 1
d} < σ < 1,

where d is the degree of K over Q (we will later see the reason behind).
Reich’s universality theorem [306] is discrete, i.e., under the same conditions
as in Theorem 1.9, for any real Δ �= 0 and any ε > 0, the relation

max
s∈K

|ζK(s+ iΔn) − g(s)| < ε (1.39)

holds for a set of positive integers n with positive lower density. (We shall
consider discrete universality more detailed in Sect. 5.7 and Dedekind zeta-
functions in Sect. 13.1.) Furthermore, in [305], Reich obtained universality for
Euler products formed with Beurling primes under the assumption of certain
extra conditions.

Dirichlet series attached to multiplicative functions appear naturally in
many aspects of number theory. They were intensively studied by Laurinčikas
and Šleževicienė. Laurinčikas [181] succeeded to prove universality for
Dirichlet series associated with a multiplicative function f , formally given by

∞∑
n=1

f(n)
ns

=
∏
p

(
1 +

∞∑
k=1

f(pk)
pks

)
,
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subject to certain conditions on f as, for example, the existence of the mean
value

M(f) = lim
x→∞

1
x

∑
n≤x

f(n),

the boundedness of f , and a technical condition on the local Euler factors.
In [207], Laurinčikas and Šleževičienė introduced another class of Dirichlet
series attached to multiplicative functions and proved also universality for its
elements, and Šleževičienė [332] obtained joint universality for certain twists
by Dirichlet characters.

In [239] Matsumoto introduced the now called Matsumoto zeta-functions
and studied their value distribution; he obtained far-reaching generalizations
of the classical results of Bohr and his collaborators. For each positive integer
m let g(m) and f(j,m) with 1 ≤ j ≤ g(m) be positive integers, and let a(j)

m

with 1 ≤ j ≤ g(m) be given complex numbers. Further, define the polynomial

Am(X) =
g(m)∏
j=1

(1 − a(j)
m Xf(j,m)).

Denoting the mth prime number by pm, the associated Matsumoto zeta-
function is defined by

ϕ(s) =
∞∏

m=1

Am(p−s
m )−1.

Under the conditions g(m) 	 pα
m and |a(j)

m | ≤ pβ
m the product defining ϕ(s)

converges for σ > 1+α+β and defines an analytic function in this region. The
Matsumoto zeta-function is an interesting generalization of many well-known
zeta-functions (e.g., Dedekind zeta-functions). Suppose now that ϕ(s) has an
analytic continuation to some half-plane σ > δ+α+β with 1

2 ≤ δ < 1 (except
for at most finitely many poles) with ϕ(s) 	 |t|c1 as |t| → ∞, where c1 is
some positive constant and bounded mean-square. Assuming∣∣∣∣∣∣∣

g(m)∑
j=1

f(j,m)=1

a(j)
m

∣∣∣∣∣∣∣ p−α−β
m ≥ c2 > 0, (1.40)

and, additionally, some technical condition, Laurinčikas [190] obtained so-
called universality with weight, that is the relation

lim inf
T→∞

1
U

∫ T

T0

ω(τ)1
(
τ ;
{
τ : max

s∈K
|ϕ(s+ iτ) − f(s)| < ε

})
dτ > 0

where T0 is a sufficiently large constant, ω is a positive function of bounded
variation, 1(τ ;A) is the indicator function of the set A,

U := U(T, ω) :=
∫ T

T0

ω(τ) dτ,



30 1 Introduction

and K is a compact subset of the strip δ + α + β < σ < 1 + α + β with
connected complement.

A useful tool in the theory of modular forms are Rankin–Selberg L-
functions, introduced by Rankin [302, 303], and Selberg [320] (independently).
Given two cusp forms f and g of the full modular group with Fourier
series coefficients a(n) and b(n), respectively, the associated Rankin–Selberg
L-function is defined by

L(s, f ⊗ g) = ζ(2s)
∞∑

n=1

a(n)b(n)
ns

.

For normalized eigenforms f to the full modular group, Matsumoto [241]
proved universality for L(s, f ⊗ f). The universality for such L-functions in
the level aspect was studied by Mishou and Nagoshi [254].

To mention only some more important examples of universal L-functions
(some of them we shall see in Chap. 13 again) this list can be continued with

• Hecke L-functions to grössencharacters (Mishou [249, 250], and addition-
ally in the character aspect by Mishou and Koyama [174]);

• Artin L-functions [16];
• zeta-functions associated with finite abelian groups (Laurinčikas [194,

196]).

There are other interesting examples which even have a stronger univer-
sality property: they can approximate functions with zeros on a set of posi-
tive lower density. The first one is, of course, the logarithm of the Riemann
zeta-function (or the derivative). This follows immediately from the proof of
Voronin’s universality Theorem 1.7. Note that log ζ(s) has a Dirichlet series
representation for σ > 1 (see (1.14)). The same argument applies to all uni-
versal Euler products.

Now we present a completely different example. For 0 < α ≤ 1, λ ∈ R, the
Lerch zeta-function is given by

L(λ, α, s) =
∞∑

n=0

exp(2πiλn)
(n+ α)s

. (1.41)

This series converges absolutely for σ > 1. The analytic properties of L(λ, α, s)
are quite different, if λ ∈ Z or not. If λ �∈ Z, the series converges for σ > 0
and L(λ, α, s) can be continued analytically to the whole complex plane. For
λ ∈ Z the Lerch zeta-function becomes the Hurwitz zeta-function

ζ(s, α) =
∞∑

m=0

1
(m+ α)s

; (1.42)

this function has an analytic continuation to C except for a simple pole at
s = 1 with residue 1. Denote by {λ} the fractional part of a real number λ.
Setting
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λ+ = 1 − {λ} and λ− =

{
1 if λ ∈ Z,

{λ} otherwise,
(1.43)

one can prove the functional equation

L(λ, α, 1 − s) =
Γ (s)
(2π)s

(
exp
(
2πi
(s

4
− αλ−

))
L(−α, λ−, s)

+ exp
(
2πi
(
−s

4
+ αλ+

))
L(α, λ+, s)

)
. (1.44)

Twists with additive characters destroy the point symmetry of Riemann-type
functional equations. The function ζ(s, α) was introduced by Hurwitz [137],
and L(λ, α, s) by Lipschitz [222] and Lerch [215] (independently). Hurwitz
and Lerch also gave the first proofs of the corresponding functional equations.
For more details on the Lerch zeta-function we refer to the monograph of
Garunkštis and Laurinčikas [89].

Gonek [104] and Bagchi [9] (independently) obtained strong universal-
ity for the Hurwitz zeta-function ζ(s, α) if α is transcendental or rational
�= 1

2 , 1 (we will explain this restriction below and in Sects. 11.4). Laurinčikas
[189] extended this result by proving that the Lerch zeta-function L(λ, α, s)
is strongly universal if λ is not an integer and α is transcendental. The joint
universality of Lerch zeta-functions L(λj , αj , s) was treated by Laurinčikas
and Matsumoto [200, 203] and Nakamura [276]; here the parameters αj have
to be algebraically independent over Q. This and the case of joint univer-
sality of Hurwitz zeta-functions with rational parameters will be studied
in Sect. 11.4.

The list of known zeta-function having the strong universality property
can be extended by, for example,

• Estermann’s zeta-function, defined by

E

(
s;
k

�
, α

)
=

∞∑
n=1

σα(n)
ns

exp
(

2πin
k

�

)
,

where σα(n) is the generalized divisor function given by σα(n) =
∑

d|n d
α

for any complex α (Garunkštis et al. [90]).
• General Dirichlet series, given by

∞∑
n=1

an exp(−sλn),

satisfying certain conditions on the coefficients an and the exponents
λn (Laurinčikas, Schwarz and Steuding [206], respectively, Genys and
Laurinčikas [98]). Unfortunately, these conditions are quite restrictive.
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For example, it is not known whether Selberg zeta-functions are universal
or not.

All examples of strongly universal Dirichlet series do not have an Euler
product and have many zeros in their region of universality; indeed, we shall
see (in Chaps. 8, 10 and 11) that the property of approximating analytic
functions with zeros is intimately related to the distribution of zeros of the
Dirichlet series in question. In particular, Euler products for which the ana-
logue of Riemann’s hypothesis is expected to hold should not be capable of
approximating functions with zeros.

Roughly speaking, there are two methods to prove universality. First, one
can try to mimic Voronin’s proof or Bagchi’s probabilistic approach (here we
do not distinguish between these two since they have a lot in common). This
sounds more simple than it actually is, because one has to assure many ana-
lytic and arithmetic properties of the function in question. The second way is
to find a representation as a linear combination or a product representation
of jointly universal functions (we will use this argument in Chaps. 10–13). All
known proofs of universality of the first type depend on a certain kind of
independence. For instance, the logarithms of the prime numbers are linearly
independent over Q (we used this property in the proof of Voronin’s univer-
sality Theorem 1.7 when we applied Weyl’s refinement of Kronecker’s approx-
imation theorem, Lemma 1.8). Another example are the numbers log(n+ α)
with non-negative integral n which are linearly independent over Q if α is
transcendental. In order to prove universality for the Hurwitz zeta-function
(1.42), the first type of proof yields the result aimed at for transcendental α.
If α is rational �= 1

2 , 1, one can find a representation of ζ(s, α) as a linear com-
bination of non-equivalent Dirichlet L-functions for which we have the joint
universality Theorem 1.10; in the cases α = 1

2 and α = 1 the Hurwitz zeta-
function has an Euler product representation and is equal to the Riemann
zeta-function for α = 1, resp., for α = 1

2 ,

ζ

(
s,

1
2

)
= 2sL(s, χ),

where χ is the unique character mod2. In both cases the Hurwitz zeta-
function is universal but does not have the strong universality property. It
is an interesting open problem whether ζ(s, α) is universal or even strongly
universal if α is algebraic irrational. In this case neither of the two methods
seem to applicable directly. Laurinčikas and Steuding [210, 211] obtained first
limit theorems for Hurwitz zeta-functions with algebraic parameters, which
could be a first step towards universality.

It was conjectured by Linnik and Ibragimov (cf. [207]) that all func-
tions given by Dirichlet series and analytically continuable to the left of the
half-plane of absolute convergence are universal. However, this has to be
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understood as a program and not as a conjecture. For example, put a(n) = 1
if n = 2k with k ∈ N0 := N ∪ {0}, and a(n) = 0 otherwise. Then

∞∑
n=1

a(n)
ns

=
∞∑

k=0

1
2ks

= (1 − 2−s)−1,

and obviously, this function is far away from being universal. So we have to
ask for natural conditions needed to prove universality. Dirichlet series having
an infinite Euler product seem to be good candidates.



2

Dirichlet Series and Polynomial Euler Products

What is man in nature? Nothing in relation to the infinite, all in
relation to nothing, a mean between nothing and everything.

Blaise Pascal

In this chapter, we introduce a class of Dirichlet series satisfying several
quite natural analytic axioms in addition with two arithmetic conditions,
namely, a polynomial Euler product representation and some kind of prime
number theorem. The elements of this class will be the main actors in the
sequel; however, for some of the later results we do not need to assume all of
these axioms. Further, we shall prove mean-value estimates for the Dirichlet
series coefficients of these L-functions as well as asymptotic mean-square
formulae on vertical lines in the critical strip. These estimates will turn out
to be rather useful in later chapters.

2.1 General Theory of Dirichlet Series

We start with a brief introduction to the general theory of ordinary Dirichlet
series. For more details and proofs we refer to Titchmarsh [352, Chap. IX].

An ordinary Dirichlet series is a series of the form

A(s) =
∞∑

n=1

an

ns
, (2.1)

where the coefficients an are complex numbers and s = σ + it is a complex
variable. If such a Dirichlet series is convergent for s = s0, then it is uniformly
convergent throughout the angular region given by

| arg(s− s0)| ≤
π

2
− δ,

where δ is any real number satisfying 0 < δ < π
2 . Consequently, if a Dirichlet

series converges, it converges in some half-plane σ > σc. Obviously, every
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term of the Dirichlet series (2.1) is analytic and any point s with σ > σc

is contained in a domain of uniform convergence. A well-known theorem of
Weierstrass states that the limit of a uniformly convergent sequence of analytic
functions is analytic. Hence, A(s) is an analytic function in its half-plane of
convergence σ > σc. The abscissa of convergence is given by

σc = lim sup
N→∞

log
∣∣∣∑N

n=1 an

∣∣∣
logN

or σc = lim sup
N→∞

log
∣∣∑∞

n=N+1 an

∣∣
logN

according to whether
∑∞

n=1 an diverges or converges. Also the region of abso-
lute convergence of a Dirichlet series is a half-plane. The abscissa σa of absolute
convergence is given by

σa = lim sup
N→∞

log
(∑N

n=1 |an|
)

logN
or σa = lim sup

N→∞

log
(∑∞

n=N+1 |an|
)

logN

according to whether
∑∞

n=1 |an| is divergent or not. It is easily seen that
σa − σc ≤ 1 (with equality, for example, for Dirichlet L-functions). If all
coefficients an are non-negative real numbers, then the real point s = σc is
a singularity of A(s) (e.g., the zeta-function). A function has at most one
Dirichlet series representation, i.e., given two Dirichlet series

A(s) =
∞∑

n=1

an

ns
and B(s) =

∞∑
n=1

bn
ns
,

both absolutely convergent for σ > σa, if A(s) = B(s) for each s in an infinite
sequence {sk} such that Re sk → ∞ as k → ∞, then an = bn for all n ∈ N.
This uniqueness implies the existence of some zero-free half-plane σ > σ0 with
σ0 ≥ σa.

Assume that A(s) is analytic in some strip σ1 ≤ σ ≤ σ2 except for at most
a finite number of poles. Then A(s) is said to be of finite order in this strip if
there exists a positive constant c such that the estimate

A(s) 	 |t|c as |t| → ∞ (2.2)

holds uniformly for σ1 ≤ σ ≤ σ2; similarly, one defines the notion of finite
order for half-planes σ ≥ σ1. Clearly, a function given by a Dirichlet series is
of finite order in its half-plane of convergence. Given σ, define μ(σ) to be the
lower bound of all c for which (2.2) holds; this quantity is called the order of
A(s). One can show that the function μ(σ) is convex downwards (in particular,
it is continuous). Moreover, μ(σ) = 0 for σ > σa and, conversely, the Dirichlet
series (2.1) is convergent in the half-plane where A(s) is regular and μ(σ) = 0.
If σε denotes the abscissa limiting the half-plane where A(s) is analytic with
μ(σ) = 0, then σc ≤ σε ≤ σa.
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Now we shall consider the mean-square of A(s) on vertical lines. In the
half-plane of absolute convergence for (2.1) it is easily shown that

1
2T

∫ T

−T

|A(σ + it)|2 dt ∼
∞∑

n=1

|a(n)|2
n2σ

. (2.3)

The convergence of the series on the right-hand side is a matter of course.
Carlson [50] proved that the mean-square of A(s) on vertical lines exists if
the left-hand side is bounded as T →∞.

Theorem 2.1. Let A(s) be given by (2.1). Assume that A(s) is analytic except
for at most a finite number of poles, of finite order for σ ≥ σ1, and

lim sup
T→∞

1
2T

∫ T

−T

|A(σ + it)|2 dt <∞.

Then,

lim
T→∞

1
2T

∫ T

−T

|A(σ + it)|2 dt =
∞∑

n=1

|an|2
n2σ

for σ > σ1, and uniformly in any strip σ1 + ε ≤ σ ≤ σ2.

Carlson’s theorem may be regarded as an analogue of Parseval’s theorem
for Fourier series. We omit the proof but refer to Carlson [50] and
Titchmarsh [352].

In view of Carlson’s theorem it makes sense to define a so-called mean-
square half-plane by defining its abscissa σm as the infimum over all σ1 such
that (2.3) holds for all fixed σ > σ1. One can show that

σm ≥ max
{
σa −

1
2
, σc

}
(2.4)

and that μ(σ) ≤ 1
2 for any σ > σm. In our applications we will normalize the

Dirichlet series to be absolutely convergent for σ > σa = 1. Inequality (2.4)
implies that (at least with present day methods) the strip of universality is
at most 1

2 < σ < 1; it seems reasonable that we cannot approximate analytic
functions uniformly on sets having a non-empty intersection with the half-
plane σ ≤ 1

2 .

2.2 A Class of Dirichlet Series: The Main Actors

Now we introduce several axioms for Dirichlet series; some of them might look
a bit technical on first sight but they have been proved to be rather useful in
the analytic theory of Dirichlet series.

In the sequel we assume that a function L(s) has a representation as a
Dirichlet series in some half-plane:

L(s) =
∞∑

n=1

a(n)
ns

. (2.5)
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First of all, we pose a hypothesis on the size of the Dirichlet series coefficients.

(i) Ramanujan hypothesis. a(n) 	 nε for any ε > 0, where the implicit con-
stant may depend on ε.

The Ramanujan hypothesis implies the absolute convergence of the Dirichlet
series (2.5) in the half-plane σ > 1, and uniform convergence in every compact
subset. Thus, L(s) is analytic for σ > 1 and it makes sense to ask for analytic
continuation.

(ii) Analytic continuation. There exists a real number σL such that L(s) has
an analytic continuation to the half-plane σ > σL with σL < 1 except for
at most a pole at s = 1.

Actually, we could allow a finite number of poles on the line σ = 1, however,
we do not loose too much by the restriction above.

The next axiom excludes functions which have an extraordinary large order
of growth; Dirichlet series satisfying a functional equation are known to grow
moderately slowly (by the Phragmén–Lindelöf principle; see Sect. 6.5).

(iii) Finite order. There exists a constant μL ≥ 0 such that, for any fixed
σ > σL and any ε > 0,

L(σ + it) 	 |t|μL+ε as |t| → ∞;

again the implicit constant may depend on ε.

The final two axioms are of purely arithmetical nature. Both are rather
restrictive; however, they fit well to what we think an L-function should look
like. All known examples of L-functions of number theoretical interest are
automorphic or at least conjecturally automorphic L-functions, and for all of
them it turns out that the local Euler factors for prime p are the inverse of a
polynomial.

(iv) Polynomial Euler product. There exists a positive integer m and for every
prime p, there are complex numbers αj(p), 1 ≤ j ≤ m, such that

L(s) =
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

.

The αj(p) are called local roots at p. This axiom implies that the Dirichlet
series coefficients a(n) are multiplicative (this will be proved in Lemma 2.2).
The Ramanujan hypothesis (i), in addition with the polynomial Euler product,
implies that the numbers αj(p) have absolute value less than or equal to one
(see Lemma 2.2).

The last axiom may be regarded as some kind of prime number theorem
for the coefficients of the Euler product:

(v) Prime mean-square. There exists a positive constant κ such that

lim
x→∞

1
π(x)

∑
p≤x

|a(p)|2 = κ.
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This asymptotic formula is intimately related to the deep Selberg conjectures
for L-functions in the Selberg class (see Chap. 6) and it is known to be satisfied
in many cases. This last axiom implies that there are infinitely many primes
p for which not all numbers αj(p) vanish. Consequently, the Euler product is
infinite (and it makes sense to ask for universality).

In the sequel we shall not always use all of these axioms; however, we
denote the class of Dirichlet series (2.5) satisfying all axioms (i)–(v) by S̃.
In Lemma 2.2 we will show that (iv) ⇒ (i) and thus the assumption of the
Ramanujan hypothesis is superfluous for the definition of the class S̃; however,
besides S̃ we shall also consider other classes of Dirichlet series where we
assume (i) but not (iv). The class S̃ is not empty. Obviously, Riemann’s zeta-
function ζ(s) is an element of S̃. Further examples are Dirichlet L-functions,
Dedekind zeta-functions, and many more. As a matter of fact, S̃ is a subset of
the large class of Matsumoto zeta-functions, introduced by Matsumoto [239].
The restrictions going beyond (in particular, axioms (ii) and (v)) will turn out
to be rather important in the sequel. As already noted, they are motivated by
naturally appearing L-functions in number theory.

We give a simple example of an element in S̃. Assume that f is a newform
of weight k to some congruence subgroup Γ0(N) with Fourier expansion (1.32).
Writing

a(n) = c(n)n
1−k
2

we find via (1.36) the Euler product representation

L

(
s+

k − 1
2

, f

)
=
∏
p

(
1 − a(p)

ps
+
χ(p)
p2s

)−1

,

where χ(p) = 0 if p | N , and χ(p) = 1 otherwise. In the latter case, i.e., p | N ,
then the corresponding Euler factor can be rewritten as(

1 − a(p)
ps

+
1
p2s

)−1

=
(

1 − α1(p)
ps

)−1(
1 − α2(p)

ps

)−1

,

where α1(p), α2(p) are complex numbers satisfying

α1(p) + α2(p) = a(p) and α1(p)α2(p) = 1.

Deligne’s estimate (1.34) translates into

|α1(p)| = |α2(p)| = 1, i.e., α1(p) = α2(p).

The transformation s �→ s + k−1
2 maps the critical strip to 0 ≤ σ ≤ 1

(independent of the weight). In the sequel we shall assume that L-functions
to modular forms are normalized in this way, and we denote them again by
L(s, f). Note that the asymptotic formula (1.37) yields the prime number
theorem for the coefficients of L(s, f). It follows that L-functions to newforms
are in our class S̃.
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2.3 Estimates for the Dirichlet Series Coefficients

Mean-value estimates are very useful tools in analytic number theory. They
give information on the size of arithmetical objects. Now we shall prove some
elementary estimates for the coefficients a(n) in the Dirichlet series expansion
(2.5). First of all, we study the relation between the Ramanujan hypothesis
and the size of the local roots of a polynomial Euler product.

Lemma 2.2. Suppose that L(s) is given by (2.5) and satisfies axiom (iv).
Then a(n) is multiplicative and

a(n) =
∏
p|n

∑
k1,...,km≥0

k1+...+km=ν(n;p)

m∏
j=1

αj(p)kj , (2.6)

where ν(n; p) is the exponent of the prime p in the prime factorization of the
integer n. Moreover, if |αj(p)| ≤ 1 for 1 ≤ j ≤ m and all primes p, then
a(n) 	 nε for any ε > 0, and vice versa.

Thus, a polynomial Euler product of the form (iv) with fixed degree m
together with the Ramanujan hypothesis (i) is equivalent to |αj(p)| ≤ 1 for
1 ≤ j ≤ m and all primes p.

Proof. Taking into account the shape of the Euler product (iv) we have the
identity

∞∑
n=1

a(n)
ns

=
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

=
∏
p

m∏
j=1

(
1 +

∞∑
k=1

αj(p)k

pks

)
,

valid for sufficiently large σ. This implies (2.6) and that a(n) is multiplicative.
Now we show that the estimate for the local roots implies the Ramanujan

hypothesis. If |αj(p)| ≤ 1, then we get

|a(n)| ≤
∏
p|n

∑
k1,...,km≥0

k1+...+km=ν(n;p)

1 = dm(n), (2.7)

say. The generalized divisor function dm(n) appears as Dirichlet coefficients
in the representation

ζ(s)m =
∏
p

(
1 − 1

ps

)−m

=
∞∑

n=1

dm(n)
ns

,

and is therefore multiplicative (by the same reasoning as for a(n)). For p prime
and ν ∈ N, we have

dm(pν) = �{(k1, . . . , km) ∈ Nm
0 : k1 + . . .+ km = ν}

=
(
m+ ν − 1

ν

)
, (2.8)
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and thus
dm(n) =

∏
p

(
m+ ν(n; p) − 1

ν(n; p)

)
.

The function dm(n) is the m-fold Dirichlet convolution of the function con-
stant 1: writing

(f ∗ g)(n) =
∑
b|n

f(b)g(n/b),

we have dk = dk−1 ∗ 1. Thus,

dm(n) =
∑
b|n

dm−1(b) ≤
∑
b|n

dm−1(n) ≤ dm−1(n)d(n),

where, d(n) = d2(n) =
∑

d|n 1; here the first inequality follows from (2.8).
Hence, for m ≥ 2,

dm(n) ≤ d(n)m−1. (2.9)

It remains to estimate the divisor function d(n). We start with

d(n) ≤
∏
p

(1 + ν(n; p)) ≤
∏
p≤x

(1 + ν(n; p))
∏
p>x

2ν(n;p)

≤
(

1 +
log n
log 2

)x
(∏

p

pν(n;p)

)log 2/ log n

.

Let n ≥ e3. Taking x = logn(log log n)−3, we obtain

d(n) ≤ exp
(

log 2
log n

log log n

(
1 + O

(
log log logn

log log n

)))
. (2.10)

Hence, we obtain

|a(n)| < exp
(

(1 + ε)(m− 1) log 2
log n

log log n

)
(2.11)

for any ε > 0 and sufficiently large n. This proves that the Ramanujan
hypothesis (i) holds provided |αj(p)| ≤ 1.

Now assume that the Ramanujan hypothesis (i) is true. Consider the iden-
tity between the Dirichlet series and the Euler product representation, respec-
tively, the power series expansion

∞∑
k=1

a(pk)Xk =
m∏

j=1

(1 − αj(p)X)−1;

by the Ramanujan hypothesis, the series is analytic for |X| < 1, hence so is
the right-hand side which gives the desired bound. This concludes the proof
of the lemma. ��
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Estimate (2.10) is best possible. To see this note that

lim sup
n→∞

d(n) log log n
log n

= log 2

(a proof can be found in [120, Sect. 18.1]). Estimate (2.11) is near to be best
possible since, if d(n) is replaced by dm(n), then the latter formula holds with
the right-hand side replaced by logm (for a proof, see [255]).

For our studies on the value-distribution of functions in S̃ we need to prove
several mean-square formulae. It follows immediately from the Ramanujan
hypothesis (i) that ∑

n≤x

|a(n)|2 	 x1+ε. (2.12)

This rough bound is sufficient for many applications. However, we can do a bit
better by a standard argument. Recall that m is the degree of the polynomial
in p−s in the local Euler factor of L, independent of p.

Lemma 2.3. Suppose L(s) satisfies axioms (i) and (iv). Then, as x→∞,∑
n≤x

|a(n)|2 	 x(log x)m2−1.

Proof. In view of (2.7) it suffices to find a mean-square estimate for dm(n).
By the multiplicativity of dm(n),

dm(n)2 =
∑
d|n

g(d)

with some multiplicative function g. By (2.8), we find

g(1) = dm(1)2 = 1, g(p) = dm(p)2 − dm(1)2 = m2 − 1,

and by induction

g(pν) = dm(pν)2 − dm(pν−1)2 ∼ m2ν

ν!
,

as ν →∞. Hence, we obtain

∑
n≤x

dm(n)2 =
∑
d≤x

∑
n≤x

n≡0 mod d

g(d) ≤ x
∑
d≤x

g(d)
d

≤ x
∏
p≤x

(
1 +

∞∑
ν=1

g(pν)
pν

)
.

In view of the above estimates the right-hand side above equals asymptotically

x
∏
p≤x

(
1 +

m2 − 1
p

+
∞∑

ν=2

m2ν

ν!pν

)
= x
∏
p≤x

(
1 +

m2 − 1
p

)
+ O(x).
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A classic estimate due to Mertens,∏
p≤x

(
1 +

1
p

)
	
∏
p≤x

(
1 − 1

p

)−1

	 log x

(see [120, Sect. 22.8]), in combination with

1 +
m2 − 1
p

≤
(

1 +
1
p

)m2−1

,

gives the estimate of the lemma. ��

2.4 The Mean-Square on Vertical Lines

Our next aim is to derive an asymptotic mean-square formulae for L(s) on
some vertical lines to the left of the abscissa of absolute convergence σ = 1.

Theorem 2.4. Let L(s) satisfy the axioms (i)–(iii). Then, for any σ satisfy-
ing

σ > max
{

1
2
, 1 − 1 − σL

1 + 2μL

}
, (2.13)

we have

lim
T→∞

1
2T

∫ T

−T

|L(σ + it)|2 dt =
∞∑

n=1

|a(n)|2
n2σ

.

In particular, the mean-square half-plane of L(s) has a non-empty intersection
with the strip 1

2 < σ < 1.

This result is essentially due to Carlson [50, 51]; we follow closely
Titchmarsh’s proof of the special case of the Riemann zeta-function in [353,
Sect. 7.9].

Proof. With regard to Carlson’s Theorem 2.1 it suffices to show that∫ T

−T

|L(σ + it)|2 dt	 T (2.14)

for σ satisfying (2.13). For this aim we consider for δ > 0 the Dirichlet series
∞∑

n=1

a(n)
ns

exp(−nδ).

Since a(n) 	 nε by (i), this series converges absolutely in the whole complex
plane and uniformly in any compact subset. Let σ > 1 and c > σ be a constant.
By Mellin’s inversion formula,

exp(−α) =
1

2πi

∫ β+i∞

β−i∞
Γ (z)α−z dz, (2.15)
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valid for positive real numbers α and β, we get
∞∑

n=1

a(n)
ns

exp(−nδ) =
∞∑

n=1

a(n)
ns

1
2πi

∫ c−σ+i∞

c−σ−i∞
Γ (z)(nδ)−z dz.

Hence,
∞∑

n=1

a(n)
ns

exp(−nδ) =
1

2πi

∫ c+i∞

c−i∞
Γ (z − s)L(z)δs−z dz. (2.16)

Here, interchanging summation and integration is allowed in view of the abso-
lute convergence of the Dirichlet series defining L(s) and Stirling’s formula,

logΓ (s) =
(
s− 1

2

)
log s− s+

1
2

log 2π + O
(

1
|s|

)
, (2.17)

valid for | arg s| ≤ π − ε and |s| ≥ 1, uniformly in σ, as |s| → ∞. By (iii),

L(c+ iτ) 	 |τ |μL+ε (2.18)

for σ > σL as |τ | → ∞. This and Stirling’s formula imply∫ c+i∞

c−i∞
Γ (z − s)L(z)δs−z dz

	 δσ−c

∫ +∞

−∞
(1 + |τ |μL+ε+c−σ− 1

2 ) exp
(
−π|τ |

2

)
dτ.

Hence, the function on the right-hand side of (2.16) is an analytic function of
s in the half-plane σ > σL for any c > σL. Therefore, let σ > max{ 1

2 , σL} and
choose σ1 := Re z such that max{σ − 1, σL} < σ1 < 1. We move the path of
integration in (2.16) to the line Re z = σ1. We pass the simple pole of Γ (z−s)
at z = s with residue L(z). Moreover, by (ii), L(z) has at most a pole at z = 1
of order j, say. The residue coming from the hypothetical pole of L(z) is a
finite sum of terms of the form

cΓ (u)(s− 1)δs−1(log δ)v,

where c is a certain constant and u and v are non-negative integers with
u+ v = j; by Stirling’s formula (2.17), these terms are

	 δσ+ε−1 exp(−BT ),

where B is a positive absolute constant. Now let δ > |T |−B . Then, for δ >
|t|−B we deduce from (2.16) by the calculus of residues

L(s) =
∞∑

n=1

a(n)
ns

exp(−nδ) − 1
2πi

∫ σ1+i∞

σ1−i∞
Γ (z − s)L(z)δs−z dz

+ O(exp(−B|t|)). (2.19)



2.4 The Mean-Square on Vertical Lines 45

Now we integrate the square of this expression with respect to t = Im s in the
range 1

2T ≤ t ≤ T . Note that

|L(σ + it)|2 	
∣∣∣∣∣
∞∑

n=1

a(n)
ns

exp(−nδ)
∣∣∣∣∣
2

+

∣∣∣∣∣
∫ σ1+i∞

σ1−i∞
Γ (z − s)L(z)δs−z dz

∣∣∣∣∣
2

+ O(exp(−2B|t|)).

We find∫ T

1
2 T

∣∣∣∣∣
∞∑

n=1

a(n)
ns

exp(−nδ)
∣∣∣∣∣
2

dt

	 T
∞∑

n=1

|a(n)|2
n2σ

exp(−2nδ) +
∞∑

m=1

∞∑
n=1
n �=m

a(m)a(n) exp(−(m+ n)δ)
(mn)σ| log m

n |
.

By the Ramanujan hypothesis (i), the first series on the right-hand side is
convergent independent of δ > 0. The double series is bounded by

∞∑
n=1

∑
m<n

a(m)a(n) exp(−(m+ n)δ)
(mn)σ log n

m

.

We split the summation and apply the Ramanujan hypothesis (i) with a suit-
ably small ε > 0 to obtain the upper bound

∞∑
n=1

⎧⎨⎩∑
m< n

2

+
∑

n
2 ≤m<n

⎫⎬⎭ exp(−(m+ n)δ)
(mn)σ−ε log n

m

.

In the first sum, we have log n
m > log 2, and so it is bounded by( ∞∑

n=1

exp(−nδ)
nσ−ε

)2

	
(∫ ∞

0

uε−σ exp(−uδ) du
)2

	 δ2σ−2−ε;

recall that ε denotes an arbitrary small positive quantity, not necessarily the
same at each appearance. In the second sum we write m = n − r with 1 ≤
r ≤ n

2 . Then log n
m = − log(1 − r

n ) > r
n , and we get in a similar manner the

upper bound

∞∑
n=1

n1+2(ε−σ) exp(−nδ)
∑
r≤n

2

1
r
	 δ2σ−2−ε log

1
δ
.

Hence,
∞∑

n=1

∑
m<n

a(m)a(n) exp(−(m+ n)δ)
(mn)σ log n

m

	 δ2σ−2−ε.
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Thus, ∫ T

1
2 T

∣∣∣∣∣
∞∑

n=1

a(n)
ns

exp(−nδ)
∣∣∣∣∣
2

dt	 T + δ2σ−2−ε. (2.20)

Let z = σ1 + iτ . Then∫ σ1+i∞

σ1−i∞
Γ (z − s)L(z)δs−z dz 	 δσ−σ1

∫ ∞

−∞
|Γ (z − s)L(z)|dτ.

By the Cauchy–Schwarz inequality this is bounded by

δσ−σ1

(∫ ∞

−∞
|Γ (z − s)|dτ ·

∫ ∞

−∞
|Γ (z − s)L(z)2|dτ

)1/2

.

By Stirling’s formula (2.17) the first integral is bounded. For the second one
we additionally apply (2.18) and obtain, for |t| ≤ T ,{∫ −2T

−∞
+
∫ ∞

2T

}
|Γ (z − s)L(z)2|dτ

	
{∫ −2T

−∞
+
∫ ∞

2T

}
|τ |2μL+ε+σ1−σ−(1/2) exp

(
−π|τ |

4

)
dτ 	 exp(−BT )

with some absolute positive constant B (since |t− τ | ≥ 1
2 |τ |). Consequently,∫ T

1
2 T

∣∣∣∣∣
∫ σ1+i∞

σ1−i∞
Γ (z − s)L(z)δs−z dz

∣∣∣∣∣
2

dt

	 δ2σ−2σ1

∫ 2T

−2T

(∫ T

1
2 T

|Γ (z − s)|dt
)
|L(σ1 + iτ)|2 dτ + δ2σ−2σ1

	 δ2σ−2σ1

∫ 2T

−2T

|L(σ1 + iτ)|2 dτ.

By the trivial estimate∫ 2T

−2T

|L(σ1 + iτ)|2 dτ 	 T 1+2μL+ε,

we get ∫ T

1
2 T

∣∣∣∣∣
∫ σ1+i∞

σ1−i∞
Γ (z − s)L(z)δs−z dz

∣∣∣∣∣
2

dt	 δ2σ−2σ1T 1+2μL+ε.

This, (2.19), and (2.20) give∫ T

1
2 T

|L(σ + it)|2 dt	 T + δ2σ−2−ε + δ2σ−2σ1T 1+2μL+ε. (2.21)
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Using this with 21−nT instead of T and summing up over all n ∈ N, we find
that the same bound holds for the integral with limits 1 and T . The same
reasoning applies to the line segment [−T,−1]. Thus, putting

δ = T
− 1+2μL+ε

2(1−σ1) ,

we find, after a short computation, that all terms of the right-hand side of
(2.21) are 	 T if

σ > max
{

1
2
, σL, 1 −

1 − σ1

1 + 2μL + ε

}
.

Sending ε → 0 and since σ1 > max{ 1
2 , σL} can be chosen arbitrarily, we find

that estimate (2.14) holds for the range (2.13). This proves the theorem. ��

We give an example. Using (1.3) with N = t, we find for the zeta-function
μζ = 1

2 for σζ = 1
2 which leads to the existence of the mean-square for σ > 3

4 .
This is far from being optimal. As a matter of fact, the mean-square exists for
σ > 1

2 but we may not forget that here we did not use any deeper property
of the zeta-function (only the rough estimate via (1.3)). In Sect. 6.5, we will
significantly improve the range (2.13) of Theorem 2.4 for L-functions satisfying
a Riemann-type functional equation.
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Interlude: Results from Probability Theory

Primes play a game of chance.
M. Kac

In this chapter, we briefly present facts from probability theory which will
be used later. These results can be found in the monographs of Billingsley
[21, 22], Buldygin [45], Cramér and Leadbetter [64], Heyer [133], Laurinčikas
[186], and Loève [226]. However, there are two exceptions in this crash course
in probability theory. In Sect. 3.3 we present Denjoy’s heuristic probabilistic
argument for the truth of Riemann’s hypothesis. Finally, in Sect. 3.7, we
introduce the universe for our later studies on universality, the space of ana-
lytic functions, and state some of its properties, following Conway [62] and
Laurinčikas [186].

3.1 Weak Convergence of Probability Measures

The notion of weak convergence of probability measures is a useful tool in
investigations on the value-distribution of Dirichlet series. This powerful
theory was initiated by Kolmogorov, Erdös and Kac and further developed
by Doob, Prokhorov, Skorokhod and others. To present the main properties
of weakly convergent probability measures we have to introduce the concept
of σ-field and the axiomatic setting of probability measures.

Let Ω be a non-empty set. By P(Ω) we denote the set of all subsets of Ω.
A subset F of P(Ω) is called a field (or algebra) if it satisfies the following
axioms:

• ∅, Ω ∈ F ;
• Ac ∈ F for A ∈ F , where Ac denotes the complement of A;
• F is closed under finite unions and finite intersections, i.e., if A1, . . . , An ∈

F , then
n⋃

j=1

Aj ∈ F and
n⋂

j=1

Aj ∈ F .
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F is called a σ-field (or σ-algebra) if it satisfies the first two axioms above in
addition with

• F is closed under countable unions and countable intersections, i.e., if {Aj}
is a countable sequence of events in F , then

∞⋃
j=1

Aj ∈ F and
∞⋂

j=1

Aj ∈ F .

For C ⊂ P(Ω) we denote by σ(C) the smallest σ-field containing C. This σ-field
is said to be generated by C.

A non-negative function P defined on a σ-field F with the properties:

• P(∅) = 0 and P(Ω) = 1;
• For every countable sequence {Aj} of pairwise disjoint elements of F ,

P

⎛⎝ ∞⋃
j=1

Aj

⎞⎠ =
∞∑

j=1

P(Aj),

is called a probability measure. The triple (Ω,F ,P) is said to be a probability
space. This setting of probability dates back to Kolmogorov who introduced
it in the early 1930s.

Let S be a topological space and let B(S) denote the class of Borel sets
of S, i.e., the σ-field generated by the system of all open subsets of the space
S. Then each measure on B(S) is called Borel measure. Usually, we consider
probability measures defined on the Borel sets B(S) of some metric space S.
A class A of sets of S is said to be a determining class (also separating class)
in case the measures P and Q on (S,B(S)) coincide on the whole of S when
P(A) = Q(A) for all A ∈ A.

Given two probability measures P1 and P2 on (S1,B(S1)) and (S2,B(S2)),
respectively, there exists a unique measure P1 ×P2 such that

(P1 ×P2)(A1 ×A2) = P1(A1)P2(A2)

for Aj ∈ B(Sj). This measure is a probability measure on (S,B(S)), where
S = S1×S2 and B(S) = B(S1)×B(S2), and is said to be the product measure
of the measures P1 and P2.

In the sequel let Pn and P be probability measures on (S,B(S)). We say
that Pn converges weakly to P as n tends to infinity, and write Pn ⇒ P, if
for all bounded continuous functions f : S → R

lim
n→∞

∫
S

f dPn =
∫

S

f dP.

Since the integrals on the right-hand side completely determine P (which is
a consequence of Lebesgue’s dominated convergence theorem), the sequence
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{Pn} cannot converge weakly to two different limits at the same time. Further,
note that weak convergence depends only on the topology of the underlying
space S, not on the metric that generates it.

A set A in S whose boundary ∂A satisfies P(∂A) = 0 is called a continuity
set of P. The Portmanteau theorem provides useful conditions equivalent to
weak convergence.

Theorem 3.1. Let Pn and P be probability measures on (S,B(S)). Then the
following assertions are equivalent:

• Pn ⇒ P;
• For all open sets G,

lim inf
n→∞ Pn(G) ≥ P(G);

• For all continuity sets A of P,

lim
n→∞Pn(A) = P(A).

This theorem is part of Theorem 2.1 in Billingsley [21]. Next we state a useful
criterion for weak convergence.

Lemma 3.2. We have Pn ⇒ P if and only if every subsequence {Pnk
}

contains a subsequence {Pnkj
} such that Pnkj

⇒ P.

This is Theorem 2.3 from Billingsley [21].
Now we consider continuous mappings between metric spaces S1 and S2.

A function h : S1 → S2 is said to be measurable if

h−1(B(S2)) ⊂ B(S1).

Let h : S1 → S2 be a measurable function. Then every probability measure P
on (S1,B(S1)) induces a probability measure Ph−1 on (S2,B(S2)) defined by

(Ph−1)(A) = P ◦ h−1(A) = P(h−1(A)),

where A ∈ B(S2). This measure is uniquely determined. A function h : S1 →
S2 is continuous if for every open set G2 ⊂ S2 the set h−1(G2) is open in S1.
Continuous mappings transport the property of weak convergence.

Theorem 3.3. Let h : S1 → S2 be a continuous function. If Pn ⇒ P, then
also Pnh

−1 ⇒ Ph−1.

This theorem is a particular case of Theorem 5.1 from Billingsley [21].
A family {Pn} of probability measures on (S,B(S)) is said to be relatively

compact if every sequence of elements of {Pn} contains a weakly convergent
subsequence. A family {Pn} is called tight if for arbitrary ε > 0 there exists
a compact set K such that P(K) > 1 − ε for all P from {Pn}. Prokhorov’s
theorem is a powerful tool in the theory of weak convergence of probability
measures; it is given below as Theorem 3.4, the direct half, and as Theorem 3.5,
the converse half. These theorems connect relative compactness with the tight-
ness of a family of probability measures.



52 3 Interlude: Results from Probability Theory

Theorem 3.4. If a family of probability measures is tight, then it is relatively
compact.

Theorem 3.5. Let S be separable (i.e., S contains a countable dense subset)
and complete. If a family of probability measures on (S,B(S)) is relatively
compact, then it is tight.

These are Theorems 6.1 and 6.2 from Billingsley [21]. Note that a topological
space is said to be separable if it contains a countable dense subset.

In the theory of Dirichlet series we investigate the weak convergence of
probability measures PT ⇒ P, where T is a continuous parameter which
tends to infinity. As it is noted in [21], we have PT ⇒ P, as T → ∞, if and
only if PTn

⇒ P, as n→ ∞, for every sequence {Tn} with limn→∞ Tn = ∞.
All theorems on weak convergence analoguous to those stated above remain
valid in the case of continuous parameters.

3.2 Random Elements

The theory of weak convergence of probability measures can be paraphrased
as the theory of convergence of random elements in distribution.

Let (Ω,F ,P) be a probability space, (S,B(S)) be a metric space with its
class of Borel sets B(S), and X : Ω → S a mapping. If

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} ∈ F

for every A ∈ B(S), then X is called an S-valued random element defined on
Ω; if S = R we say that X is a random variable. The distribution of an S-
valued random element X is the probability measure PX on (S,B(S)), given
by

PX(A) = P(X−1(A)) = P{ω ∈ Ω : X(ω) ∈ A}
for arbitrary A ∈ B(S) (in the sequel we will often write P in place of PX).
We say that a sequence {Xn} of random elements converges in distribution
to a random element X if the distributions Pn of the elements Xn converge
weakly to the distribution of the element X, and in this case we write

Xn
D−→

n→∞ X;

if Pn ⇒ PX , then we also write Xn
D−→

n→∞ PX .
Let S be a metric space with metric 	, and let Xn, Yn be S-valued random

elements defined on (Ω,F ,P). If Xn and Yn have a common domain, it makes
sense to speak of the distance 	(Xn(ω), Yn(ω)) for ω ∈ Ω. If S is separable,
then 	(Xn, Yn) is a random variable. In this case, convergence in distribution
of two sequences of random elements Xn and Yn is related to the distribution
of 	(Xn, Yn) (convergence in probability).
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Theorem 3.6. Let S be separable and, for n ∈ N, let Yn, X1n, X2n, . . . be
S-valued random elements, all defined on (Ω,F ,P). Suppose that

Xkn
D−→

n→∞ Xk for each k, and Xk
D−→

k→∞ X.

If for any ε > 0
lim

k→∞
lim sup

n→∞
P{	(Xkn, Yn) ≥ ε} = 0,

then Yn
D−→

n→∞ X.

This is Theorem 4.2 of Billingsley [21].
The mean (expectation value) EX of a random element X is defined by

EX =
∫

Ω

X(ω) dP

if the integral exists in the sense of Lebesgue. A simple but fundamental
result on the deviation of a random variable from its expectation value is
Chebyshev’s (respectively, Markov’s) inequality:

Lemma 3.7. Let X be a real-valued random variable, h : R → [0,∞) be a
non-negative function, and a > 0. Then

P{ω ∈ Ω : h(X) ≥ a} ≤ 1
a

Eh(X).

A proof can be found, for example, in Billingsley [22]. Taking h(x) = x2, we
deduce the classical Chebyshev’s inequality:

P{|X| ≥ a} ≤ 1
a2

EX2.

We say that some property is valid almost surely if there exists a set A ∈ F
with P(A) = 0 such that this property is valid for every ω ∈ Ω \ A. Random
variables X and Y are said to be orthogonal if EXY = 0. An important
result on almost sure convergence of series of orthogonal random variables is
the following

Theorem 3.8. Assume that the random variables X1, X2, . . . are orthogonal
and that ∞∑

n=1

E|Xn|2(log n)2 <∞.

Then the series
∑∞

n=1Xn converges almost surely.

Further, we need a similar result for independent random variables.
Random variables X and Y are said to be independent if for all A,B ∈ B(S)

P{ω ∈ Ω : X ∈ A, Y ∈ B} = P{ω ∈ Ω : X ∈ A} ·P{ω ∈ Ω : Y ∈ B}.
Usually, independence of random variables is defined via the σ-fields generated
by the related events; however, for the sake of simplicity, we introduced this
notion by the equivalent condition above.
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Theorem 3.9. Assume that the random variables X1, X2, . . . are indepen-
dent. If the series

∞∑
n=1

EXn and
∞∑

n=1

E(Xn −EXn)2

converge, then the series
∑∞

n=1Xn converges almost surely.

Proofs of the last two theorems can be found in Loève [226].
Now we present a criterion on almost sure convergence of series of inde-

pendent random variables for Hilbert spaces. Let H be a separable Hilbert
space with norm ‖·‖ and define for an H-valued random element X and a real
number c the truncated function

X(c) =
{
X if ‖X‖ ≤ c,
0 if ‖X‖ > c.

Then

Theorem 3.10. Let X1, X2, . . . be independent H-valued random elements. If
there is a constant c > 0 so that the series

∞∑
n=1

E‖X(c)
n −EX(c)

n ‖2,

∞∑
n=1

EX(c)
n , and

∞∑
n=1

P{‖Xn‖ > c}

converge, then the series
∑∞

n=1Xn converges in H almost surely.

A proof can be found in Buldygin [45].

3.3 Denjoy’s Probabilistic Argument
for Riemann’s Hypothesis

At this point our survey of probability theory will be cut in order to give a
heuristic probabilistic argument for the truth of Riemann’s hypothesis. The
Möbius μ-function is defined by μ(1) = 1, μ(n) = 0 if n has a quadratic divisor
�= 1, and μ(n) = (−1)r if n is the product of r distinct primes. It is easily seen
that μ(n) is multiplicative and appears as coefficients of the Dirichlet series
representation of the reciprocal of the zeta-function:

ζ(s)−1 =
∏
p

(
1 − 1

ps

)
=

∞∑
n=1

μ(n)
ns

,

valid for σ > 1. Riemann’s hypothesis is equivalent to the estimate

M(x) :=
∑
n≤x

μ(n) 	 x(1/2)+ε.
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This is related to (1.11); for a proof see, for example, Titchmarsh [353,
Sect. 14.25].

Denjoy [68] argued as follows. Assume that {Xn} is a sequence of random
variables with distribution

P(Xn = +1) = P(Xn = −1) =
1
2
.

Define

S0 = 0 and Sn =
n∑

j=1

Xj ,

then {Sn} is a symmetrical random walk in Z2 with starting point at 0. A
simple application of Chebyshev’s inequality yields, for any positive c,

P{|Sn| ≥ cn
1
2 } ≤ 1

2c2
,

which shows that large values for Sn are rare events. By the theorem of
Moivre–Laplace ([22, Theorem 27.1]) this can be made more precise. It follows
that:

lim
n→∞P

{
|Sn| < cn

1
2

}
=

1√
2π

∫ c

−c

exp
(
−x

2

2

)
dx.

Since the right-hand side above tends to 1 as c→∞, we obtain

lim
n→∞P

{
|Sn| 	 n

1
2+ε
}

= 1

for every ε > 0. We observe that this might be regarded as a model for the
value-distribution of Möbius μ-function. To say it with the words of Edwards:
“Thus these probabilistic assumptions about the values of μ(n) lead to the
conclusion, ludicrous as it seems, that M(x) = O(x1/2+ε) with probability
one and hence that the Riemann hypothesis is true with probability one!”
(cf. [74]). The law of the iterated logarithm [22, Theorem 9.5] would even
gives the stronger estimate

lim
n→∞P

{
|Sn| 	 (n log log n)1/2

}
= 1,

which suggests for M(x) the upper bound (x log log x)1/2. This estimate is
pretty close to the so-called weak Mertens hypothesis which states∫ X

1

(
M(x)
x

)2

dx	 logX.

Note that this bound implies the Riemann hypothesis and the essential sim-
plicity hypothesis. On the contrary, Odlyzko and te Riele [284] disproved the
original Mertens hypothesis [248],

|M(x)| < x
1
2 ,
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by showing that

lim inf
x→∞

M(x)
x1/2

< −1.009 and lim sup
x→∞

M(x)
x1/2

> 1.06; (3.1)

for more details see also the notes to Sect. 14 in Titchmarsh [353].

3.4 Characteristic Functions and Fourier Transforms

There is an intimate relationship between weak convergence and characteristic
functions which makes characteristic functions very useful in studying limit
distributions.

The characteristic function ϕ(τ) of a probability measure P on (Rr,B(Rr))
is defined by

ϕ(τ) =
∫

Rr
exp(i〈τ, x〉)P( dx),

where 〈τ, x〉 stands for the inner product of τ and x ∈ Rr. Notice that the
characteristic function uniquely determines the measure it comes from. Let
{Pn} be a sequence of probability measures on (Rr,B(Rr)) and let {ϕn(τ)}
be the sequence of the corresponding characteristic functions. Suppose that

lim
n→∞ϕn(τ) = ϕ(τ)

for all τ , and that ϕ(τ) is continuous at the point 0 = (0, . . . , 0). Then
Lévy’s famous continuity theorem (see [22, Sect. 26]) yields the existence of
a probability measure P on (Rr,B(Rr)) such that Pn ⇒ P, and ϕ(τ) is
the characteristic function of P. However, later we shall deal with Fourier
transforms instead of characteristic functions; their theory is quite similar to
the theory of characteristic functions (for details we refer to the first chapter
from [186]).

Let γ = {s ∈ C : |s| = 1} and denote by γm the cartesian product of m
copies of γ. Further, let P be a probability measure on (γm,B(γm)), then the
Fourier transform g(k1, . . . , km) of the measure P is defined by

g(k1, . . . , km) =
∫

γm

xk1
1 . . . xkm

m dP,

where kj ∈ Z and xj ∈ γ for 1 ≤ j ≤ m. Similarly to the characteristic
function, the measure P is uniquely determined by its Fourier transform.
The role of Lévy’s continuity theorem in the theory of Fourier transforms is
played by

Theorem 3.11. Let {Pn} be a sequence of probability measures on
(γm,B(γm)) and let {gn(k1, . . . , km)} be the sequence of the corresponding
Fourier transforms. Suppose that for every vector (k1, . . . , km) ∈ Zm the limit

g(k1, . . . , km) = lim
n→∞ gn(k1, . . . , km)
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exists. Then there is a probability measure P on (γm,B(γm)) such that Pn ⇒
P, and g(k1, . . . , km) is the Fourier transform of P.

Theorem 3.11 is a special case of a more general continuity theorem for
probability measures on compact abelian groups. A proof of this result can
be found in Heyer [133, Theorem 1.4.2].

3.5 Haar Measure and Characters

Let G be a set equipped with the structures of a group and of a topological
space. If the function h : G×G → G, defined by h(x, y) = xy−1, is continuous,
then G is called a topological group. A topological group is said to be compact
if its topology is compact. In what follows, G is assumed to be compact.

A Borel measure P on a compact topological group G is said to be invariant
if

P(A) = P(xA) = P(Ax)

for all A ∈ B(G) and all x ∈ G, where xA and Ax denote the sets {xy : y ∈ A}
and {yx : y ∈ A}, respectively. An invariant Borel measure on a compact
topological group is called Haar measure.

Theorem 3.12. On every compact topological group there exists a unique
probability Haar measure.

The uniqueness follows from m(G) = 1. For the proof see Hewitt and Ross
[132, Chap. IV] or Theorem 5.14 in Rudin [313].

In the sequel, we denote the Haar measure associated with a compact topo-
logical group G simply by m; there will be no confusion about the underlying
group.

Now assume further that G is a commutative group. A continuous homo-
morphism χ : G → C is called a character of G. The character of G which
is identically 1 is called trivial or principal, and we denote it by χ0; other
characters are said to be non-trivial or non-principal. The characters build up
a group Ĝ, the character group. The Fourier transform of a function f defined
on G is given by

f̂(χ) =
∫

G

χ(g)f(g)m( dg),

where χ is a character of G. Then f̂ is a continuous map defined on Ĝ. The
orthogonality relation for characters states∫

G

χ(g)m( dg) =
{

1 if χ = χ0,
0 if χ �= χ0.

(3.2)

This generalizes the concept of Dirichlet characters.
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3.6 Random Processes and Ergodic Theory

To be able to identify later the explicit form of the limit measure in limit
theorems, we recall some facts from ergodic theory.

Let (Ω,F ,P) be a probability space and let T denote a parameter set. A
finite real function X(τ, ω) with τ ∈ T and ω ∈ Ω is said to be a random (or
stochastic) process if ω �→ X(τ, ω) is a random variable for each fixed τ ∈ T .
For fixed ω ∈ Ω, the function τ �→ X(τ, ω) is called a sample path of the ran-
dom process. Let τ1, . . . , τn be an arbitrary set of values of T . Then the family
of all common distributions of random variables X(τ1, ω), . . . , X(τn, ω), i.e.,

P{X(τ1, ω) < x1, . . . , X(τn, ω) < xn}
for all n ∈ N and all possible values of τj with 1 ≤ j ≤ n, is called a
family of finite-dimensional distributions of the process X(τ, ω). Part of the
structure of the random process is specified by its finite-dimensional distri-
butions. However, they do not determine the character of the sample paths
(see [22, Sect. 23], for a nice example). Kolmogorov’s existence theorem (see
Theorem 36.1 in [22]) states that if a family of finite dimensional distributions
satisfies certain consistency conditions, then there exists on some probability
space a random process having exactly the same finite-dimensional distribu-
tions. For instance, a special application of Kolmogorov’s existence theorem
yields a model for Brownian motion with continuous paths.

Let Y be the space of all finite real-valued functions y(τ) with τ ∈ R.
In this case it is known that the family of finite-dimensional distributions of
each random process determines a probability measure P on (Y,B(Y )). Then,
on the probability space (Y,B(Y ),P), we define for real u the translation gu

which maps each function y(τ) ∈ Y to y(τ + u). It is easily seen that the
translations gu form a group. A random process X(τ, ω) is said to be strongly
stationary if all its finite-dimensional distributions are invariant under the
translations by u. It is known that if a process X(τ, ω) is strongly stationary,
then the translation gu is measure preserving, i.e., for any set A ∈ B(Y ) and
all u ∈ R the equality

P(A) = P(Au), where Au := gu(A)

holds. A set A ∈ B(Y ) is called an invariant set of the process X(τ, ω) if for
each u the sets A and Au differ from each other by a set of zero P-measure.
In other words, P(AΔAu) = 0, where Δ denotes the symmetric difference of
two sets A and B:

AΔB := (A \B) ∪ (B \A).

It is easy to see that all invariant sets of Y form a σ-field which is a sub-σ-field
of B(Y ). We say that a strongly stationary process X(τ, ω) is ergodic if its
σ-field of invariant sets consists only of sets having P-measure equal to 0 or 1.
For ergodic processes the Birkhoff–Khintchine theorem gives an expression
for the expectation of X(0, ω) in terms of an integral taken over the sample
paths.
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Theorem 3.13. Let X(τ, ω) be an ergodic process with E|X(τ, ω)| < ∞ and
almost surely Riemann-integrable sample paths over every finite interval. Then

lim
T→∞

1
T

∫ T

0

X(τ, ω) dτ = EX(0, ω)

almost surely.

A proof of this theorem can be found in Cramér and Leadbetter [64].

3.7 The Space of Analytic Functions

Let G be a simply connected region in the complex plane. We denote by H(G)
the space of analytic functions f defined on G equipped with the topology of
uniform convergence on compacta.

In order to introduce an appropriate metric on H(G) we note

Lemma 3.14. For any open set G in the complex plane there exists a sequence
of compact subsets Kj of G with the properties:

• Kj ⊂ Kj+1 for any j ∈ N;
• If K is compact and K ⊂ G, then K ⊂ Kj for some j ∈ N;

such that

G =
∞⋃

j=1

Kj

The proof is straightforward and can be found in Conway’s book [62,
Sect. VII.1].

Now, for f, g ∈ H(G) let

	j(f, g) = max
s∈Kj

|f(s) − g(s)|

and put

	(f, g) =
∞∑

j=1

2−j 	j(f, g)
1 + 	j(f, g)

.

This defines a metric on H(G) which induces the desired topology; of course,
the metric 	 depends on the family {Kj}. Note that the series above is dom-
inated by

∑
j 2−j and therefore convergent.

Theorem 3.15. Let G be a simply connected region in the complex plane.
Then H(G) is a complete separable metric space.

In Conway [62, Sect. VII.1], it is shown that H(G) is a complete metric space;
the separability, i.e., the existence of a countable dense subset, follows from
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Runge’s approximation theorem (see [312, Sect. 13]) which states that the set
of polynomials is dense in H(G).

In our later studies, we deal with the supports of H(G)-valued random
elements. Let S be a separable metric space and let P be a probability
measure on (S,B(S)). The minimal closed set SP ⊆ S with P(SP) = 1 is
called the support of P. Note that SP consists of all x ∈ S such that for
every neighbourhood U of x the inequality P(U) > 0 is satisfied. Let X be a
S-valued random element defined on the probability space (Ω,F ,P). Then
the support of the distribution P(X ∈ A) for A ∈ B(S) is called the support
of the random element X. We denote the support of X by SX .

Theorem 3.16. Let {Xn} be a sequence of independent H(G)-valued random
elements, and suppose that the series

∑∞
n=1Xn converges almost everywhere.

Then the support of the sum of this series is the closure of the set of all
f ∈ H(G) which may be written as a convergent series

f =
∞∑

n=1

fn, where fn ∈ SXn
.

This is Theorem 1.7.10 of Laurinčikas [186]. The proof follows the lines of an
analogous statement for independent real variables due to Lukacs [231]. We
only sketch the main ideas. Suppose that the random elements Xn are defined
on a probability space (Ω,F ,P∗). Put

X :=
∞∑

n=1

Xn = LN +RN ,

where

LN :=
N∑

n=1

Xn and RN :=
∞∑

n=N+1

Xn.

Since the series
∑∞

n=1Xn converges almost surely, we have

lim
N→∞

P∗{ω ∈ Ω : 	(RN , 0) ≥ ε} = 0.

Let
PN (A) = P∗{LN ∈ A} and P(A) = P∗{X ∈ A}

for A ∈ B(H(G)). It follows that Pn ⇒ P, which implies

SP ⊂ limSPN
, (3.3)

where limSPN
denotes the set of all f ∈ H(G) such that any neighbourhood

of f contains at least one g which belongs to SPn
for almost all n ∈ N.

To show the converse inclusion, put

QN (A) = P∗{RN ∈ A}
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for A ∈ B(H(G). The distribution of X = LN +RN is given by the convolution
PN ∗QN , defined by

(PN ∗QN )(A) =
∫
H(G)

PN (A− g)QN ( dg).

The support of X = LN +RN is the closure of the set

{f ∈ H(G) : f = f1 + f2, where f1 ∈ SLN
, f2 ∈ SRN

}. (3.4)

For g ∈ limSPN
let

Aε := {f ∈ H(G) : 	(f, g) < ε}.

It follows that PN (Aε) = P∗(LN ∈ Aε) > 0 and QN (Aε) > 0 for N large
enough. This leads to

P(A2ε) ≥ PN (Aε)QN (Aε) > 0.

This implies
SX = SP ⊃ limSPN

.

By (3.3) it follows that the latter inclusion is an equality. In view of (3.4) the
support of LN is the set of all g ∈ H(G) which have a representation

g =
N∑

n=1

fn,

where fn ∈ SXn
. From the definition of limSPN

we deduce that for any
f ∈ SX there exists a sequence of gN ∈ SLN

which converges to f . This yields
the assertion of the theorem.
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Limit Theorems

Measure what is measurable, and make measurable what is not so.
Galileo Galilei

In this chapter, we prove a limit theorem dealing with weakly convergent
probability measures for L-functions from the class S̃ in the space of analytic
functions. Throughout this chapter, we assume that L ∈ S̃. We remark that we
will not make use of axiom (v), so the results hold in a more general context;
however, with respect to later applications, there is no need to introduce a
further class. We follow the presentation of Laurinčikas [187, 188] (functions
in S̃ form a subclass of Matsumoto zeta-functions considered herein). Besides,
we refer the interested reader to Laurinčikas’ survey [185] and his monograph
[186].

4.1 Associated Random Elements and the Main Limit
Theorem

Assume that L ∈ S̃and denote by D the intersection of the corresponding
mean-square half-plane σ > σm with the critical strip (see Sect. 2.1):

D := {s ∈ C : σm < σ < 1}. (4.1)

In view of Theorem 2.4 we know that D is not empty. Together with (2.4) we
have

1
2
≤ σm ≤ max

{
1
2
, 1 − 1 − σL

1 + 2μL

}
< 1, (4.2)

where σL and μL are defined by axioms (ii) and (iii). In particular, as T → ∞,

1
T

∫ T

0

|L(σ + it)|2 dt	 1 for σ ∈ (σm, 1). (4.3)
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Now we attach to L(s) the probability measure PT by setting

PT (A) =
1
T

meas {τ ∈ [0, T ] : L(s+ iτ) ∈ A} (4.4)

for A ∈ B(H(D)), where H(D) denotes the space of analytic functions on the
strip D (as introduced in Sect. 3.7). We shall show that this measure converges
weakly to some probability measure as T tends to infinity. For later purposes
it is also important to identify the limit measure.

Denote by γ the compact unit circle {s ∈ C : |s| = 1} and put

Ω =
∏
p

γp,

where γp = γ for each prime p. With product topology and pointwise
multiplication this infinite-dimensional torus Ω is a compact topological
abelian group; the compactness of Ω follows from Tikhonov’s theorem (see
[169, Theorem 5.13]). Thus, by Theorem 3.12, the normalized Haar measure
m on (Ω,B(Ω)) exists. This gives a probability space (Ω,B(Ω),m). Let ω(p)
stand for the projection of ω ∈ Ω to the coordinate space γp. The Haar
measure m on Ω is the product of the Haar measures mp on the coordinate
spaces γp, i.e.,

m{ω : ω ∈ A} =
∏
p

mp{ω : ω(p) ∈ Ap},

where Ap is the projection of A ∈ B(Ω) onto γp. Thus {ω(p) : p prime}
is a sequence of independent complex-valued random variables defined on
the probability space (Ω,B(Ω),m). Denote by G the set of all completely
multiplicative functions g : N → γ. Further, let ω(1) = 1 and

ω(n) =
∏
p

ω(p)ν(n;p), (4.5)

where ν(n; p) is the exponent of the prime p in the prime factorization of n.
This extends the function ω to the set of positive integers as a unimodular,
completely multiplicative function. On the other hand, the restriction of any
function g ∈ G to the set of primes is an element of Ω. Consequently, we may
identify the elements of Ω with the functions from G.

Next we are going to attach to

L(s) =
∞∑

n=1

a(n)
ns

a random element. For s ∈ D and ω ∈ Ω, we define

L(s, ω) =
∞∑

n=1

a(n)ω(n)
ns

. (4.6)

This is equal to L(s) for σ > 1 and ω(n) ≡ 1.
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Lemma 4.1. The function L(s, ω) is an H(D)-valued random element on the
probability space (Ω,B(Ω),m).

Proof. Fix a real number σ1 > σm. Define for n ∈ N

ξn = ξn(ω) =
a(n)ω(n)
nσ1

,

then {ξn} is a sequence of complex-valued random variables on (Ω,B(Ω),m).
It is easy to compute that

Eξmξn =
a(m)a(n)
(mn)σ1

∫
Ω

ω(m)ω(n) dm =

{ |a(n)|2
n2σ1

if m = n,

0 otherwise.

This shows that the sequence {ξn} is pairwise orthogonal. Since σm ≥ 1
2 by

(2.4), it follows that 2σ1 > 1. This and the Ramanujan hypothesis (i) imply
that the series

∞∑
n=1

E|ξn|2(log n)2 =
∞∑

n=1

|a(n)|2
n2σ1

(log n)2

is convergent. It follows from Theorem 3.8 that the series
∑∞

n=1 ξn converges
almost surely, respectively

∞∑
n=1

a(n)ω(n)
nσ1

converges for almost all ω ∈ Ω with respect to m. Since Dirichlet series
converge in half-planes, and uniformly in compact subsets of their half-plane
of convergence (see Sect. 2.1), it follows that, for almost all ω ∈ Ω, the series
(4.6) converges uniformly on compact subsets of the half-plane σ > σ1. For
k ∈ N let Ak be the subset of ω ∈ Ω for which the series (4.6) converges
uniformly on compact subsets of the half-plane σ ≥ σm + 1

k . Then m(Ak) = 1
for all k ∈ N. Setting

A =
∞⋂

k=1

Ak,

we get m(A) = 1, and for ω ∈ A the series (4.6) converges uniformly on
compact subsets of D. Since each term of the series in question is an H(D)-
valued function, the assertion of the lemma follows. ��

Taking into account the multiplicativity of the coefficients a(n), (2.6), and
the decomposition (4.5) of ω, we may rewrite the series (4.6) (formally) as

L(s, ω) =
∏
p

m∏
j=1

(
1 − αj(p)ω(p))

ps

)−1

=
∏
p

(
1 +

∞∑
k=1

a(pk)ω(p)k

pks

)
(4.7)

In the half-plane σ > 1 both the series (4.6) and the product (4.7) converge
absolutely.
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Lemma 4.2. For almost all ω ∈ Ω the product (4.7) converges uniformly on
compact subsets of D.

Proof. Define for each prime p the function

xp = xp(s, ω) =
∞∑

k=1

a(pk)ω(p)k

pks
. (4.8)

Then
L(s, ω) =

∏
p

(1 + xp(s, ω)).

By the uniform convergence of the xp-defining series on D the function xp(s, ω)
is an H(D)-valued random element for any p. Using the Ramanujan hypothesis
(i) we obtain, in a similar way as in the proof of Lemma4.1, that∑

p

|xp(s, ω)|2

converges uniformly on compact subsets of D. To prove the almost sure con-
vergence of the product (4.7), it remains to show that the series∑

p

xp(s, ω)

converges almost surely. For this, we isolate the leading term in the series
expansion of xp. Put

yp(s) = yp(s, ω) =
a(p)ω(p)

ps
,

then, by the Ramanujan hypothesis (i),

|xp(s, ω) − yp(s, ω)| ≤
∞∑

k=2

|a(pk)|
pkσ

	
∞∑

k=2

pε−kσ 	 pε−2σ.

Thus, for sufficiently small ε, the series∑
p

|xp(s, ω) − yp(s, ω)|

converges uniformly on compact subsets of D for all ω ∈ Ω. Therefore, we
can focus on the series

∑
p yp(s, ω). Clearly, the yp(s, ω) define a sequence

of independent H(D)-valued random elements. It follows from the definition
of the projections ω(p) that Eyp(s) = 0. Furthermore, by the Ramanujan
hypothesis (i),

E|yp(s)|2 =
|a(p)|2
p2σ

	 1
p2σ−ε

.
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This implies the convergence of∑
p

E|yp(s)|2(log p)2

for all s ∈ D. Thus, by Theorem 3.9 the series
∑

p yp(s, ω) converges almost
surely for each fixed s ∈ D. It follows that also

∑
p xp(s, ω) converges almost

surely for fixed s ∈ D. In view of convergence properties of Dirichlet series
the convergence is uniform on compact subsets of D for almost all ω ∈ Ω.
It is clear that the same assertion holds for the product too. This proves the
lemma. ��

By analytic continuation the identity between the series (4.6) and the
product (4.7) holds whenever one of these representations converges uniformly.
Now let P denote the distribution of the random element L(s, ω), i.e.,

P(A) = m{ω ∈ Ω : L(s, ω) ∈ A} (4.9)

for A ∈ B(H(D)). The main result of this chapter is the limit theorem

Theorem 4.3. Let L ∈ S̃. The probability measure PT , defined by (4.4),
converges weakly to P as T →∞.

The first limit theorem of this type is due to Bagchi [9]. In the case of the
Riemann zeta-function this result might be regarded as an analogue of
the limit Theorem 1.4 of Bohr and Jessen on function spaces. To see this, note
that Laurinčikas [183] translated their statement into a modern language by
defining a probability measure via

PT (A) =
1
T

meas {t ∈ [0, T ] : ζ(σ + it) ∈ A} A ∈ B(C),

and proving that, for any fixed σ > 1
2 , PT converges to a certain probability

measure as T → ∞. Meanwhile, functional limit theorems became a useful
tool in the value-distribution theory of Dirichlet series, not only with respect
to universality.

4.2 Limit Theorems for Dirichlet Polynomials

The first step in the proof of Theorem 4.3 is to establish an analogous result
for Dirichlet polynomials. For N ∈ N let

fN (s) =
N∑

n=1

α(n)
ns

,

where α(n) ∈ C for 1 ≤ n ≤ N . Further, put

fN (s, g) =
N∑

n=1

α(n)g(n)
ns

,
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where g ∈ G is a unimodular, completely multiplicative arithmetic function;
in particular, fN (s, 1) = fN (s), where 1 : N → C is the arithmetic func-
tion constant 1 (i.e., the principal character χ0 mod 1). Later, we will put
α(n) = a(n), where a(n) is the nth Dirichlet coefficient of L ∈ S̃. We define a
probability measure Pg

T,N (A), corresponding to PT , by setting

Pg
T,N (A) =

1
T

meas {τ ∈ [0, T ] : fN (s+ iτ, g) ∈ A} (4.10)

for A ∈ B(H(D)). First, we show that the measure Pg
T,N converges weakly to

some measure as T tends to infinity.

Lemma 4.4. Let g ∈ G. Then there exists a probability measure Pg
N on

(H(D),B(H(D))) such that Pg
T,N converges weakly to Pg

N as T →∞.

Proof. Let p1, . . . , pr be the distinct prime divisors of the product

N∏
n=1

α(n)�=0

n. (4.11)

Moreover, set

Ωr =
r∏

j=1

γpj
.

Finally, define the function hg : Ωr → H(D) by

hg(x1, . . . , xr) =
N∑

n=1

α(n)g(n)
ns

r∏
j=1

x
−ν(n;pj)
j .

Obviously, hg is continuous on Ωr. Since ν(n; p) is the exponent in the prime
factorization of n,

n =
r∏

j=1

p
ν(n;pj)
j ,

hg satisfies the identity

fN (s+ iτ, g) =
N∑

n=1

α(n)g(n)
ns

r∏
j=1

p−iτν(n;pj) = hg(piτ
1 , . . . , p

iτ
r ). (4.12)

Now we define a probability measure HT on (Ωr,B(Ωr)) by

HT (A) =
1
T

meas {τ ∈ [0, T ] : (piτ
1 , . . . , p

iτ
r ) ∈ A}

for A ∈ B(Ωr). For n1, . . . , nr ∈ N, the Fourier transform hT of HT is given by

hT (n1, . . . , nr) =
∫

Ωr

xn1
1 · . . . · xnr

r dHT =
1
T

∫ T

0

r∏
j=1

p
iτnj

j dτ.
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Hence, hT (0, . . . , 0) = 1, and

hT (n1, . . . , nr) =
exp
(
iT
∑r

j=1 nj log pj

)
− 1

iT
∑r

j=1 nj log pj

if at least one nj �= 0. Since the logarithm of the prime numbers are linearly
independent, we find in the latter case

lim
T→∞

hT (n1, . . . , nr) = 0.

Thus

lim
T→∞

hT (n1, . . . , nr) =
{

1 if (n1, . . . , nr) = (0, . . . , 0),
0 otherwise. (4.13)

By Theorem 3.11 the measure HT converges weakly to a probability measure
on (Ωr,B(Ωr)) as T tends to infinity; since this measure is uniquely deter-
mined by its Fourier transform (4.13), it has to be the Haar measure m on
(Ωr,B(Ωr)). In view of the continuity of the function hg, formula (4.12), and
Theorem 3.3, we deduce that the probability measure Pg

T,N converges weakly
to

m ◦ h−1
g = mh−1

g

as T tends to infinity. This proves the lemma. ��

Now we shall show that the limiting measure Pg
N = mh−1

g is independent
of g.

Lemma 4.5. Let g be a unimodular completely multiplicative function. Then
both probability measures Pg

T,N and P1
T,N converge weakly to the same measure

as T → ∞.

Proof. Let p1, . . . , pr be, as in the last proof, the prime divisors of (4.11). We
define the function h∗ : Ωr → Ωr by

h∗(x1, . . . , xr) = (x1 exp(−iθ1), . . . , xr exp(−iθr)),

where θj := arg g(pj) for 1 ≤ j ≤ r. It follows from Lemma 4.1 that the
probability measures Pg

T,N and P1
T,N converge weakly to the measures mh−1

g

and mh−1
1 , respectively. A simple computation shows

h1(x1, . . . , xr) =
N∑

n=1

α(n)
ns

r∏
j=1

exp(iν(n; pj)θj)x
−ν(n;pj)
j

=
N∑

n=1

α(n)g(n)
ns

r∏
j=1

x−ν(n;pj)

= hg(h∗(x1, . . . , xr)).
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It follows that:
mh−1

1 = m(hg(h∗))−1 = m(h∗)−1h−1
g .

Since the Haar measure m is invariant with respect to translation of points in
Ω, we deduce m(h∗)−1 = m. In addition with the last but one identity we get
mh−1

1 = mh−1
g . The lemma is proved. ��

4.3 An Ergodic Process

A one-parameter family {φτ} of transformations on a compact topological
abelian group G is called a one-parameter group of transformations if

φτ1+τ2(g) = φτ1(φτ2(g)) and φ−τ (g) = φ−1
τ (g)

for all real numbers τ, τ1 and τ2 and all g ∈ G. We consider one-parameter
groups of measurable transformations on Ω. Define

aτ : R → Ω, τ �→ aτ = {p−iτ : p prime}.

This map is continuous, and the image of every neighbourhood of the neutral
element of R is a neighbourhood of the neutral element in Ω. Clearly, the
family {aτ : τ ∈ R} is a one-parameter group. Moreover, we define the one-
parameter family {φτ : τ ∈ R} of transformations on Ω by setting

φτ (ω) = aτω (4.14)

for ω ∈ Ω. Then {φτ : τ ∈ R} defines a one-parameter group of measurable
and measure preserving transformations on Ω.

Now we transport the notions from ergodic theory of random processes to
one-parameter groups. Let {ϕτ : τ ∈ R} be an arbitrary one-parameter group
of measurable transformations on G. A set A ∈ B(G) is invariant with respect
to the group {ϕτ : τ ∈ R} if for each τ the sets A and Aτ := ϕτ (A) differ one
from another by a set of zero m-measure, i.e.,

m(AΔAτ ) = 0,

where m is the Haar measure on G. All invariant sets form a sub-σ-field of
B(G). A one-parameter group is said to be ergodic if its σ-field of invariant
sets consists only of sets having Haar measure equal to 0 or 1.

Lemma 4.6. The one-parameter group {φτ : τ ∈ R} is ergodic.

Proof. For a positive rational number α = a
b with a, b coprime and ω ∈ Ω we

put

ω(α) =
ω(a)
ω(b)

.
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This extends the function ω from N to the set of positive rational numbers.
Now define χα : Ω → γ by χα(ω) = ω(α). Then, for any fixed positive rational
number α, χα is a character of Ω. On the other side, since the dual group of
Ω has a representation as a direct sum⊕

p

Zp, where Zp = Z for any prime p

(see [132, Chap. 6]), for any character χ of Ω there exists a positive rational
α such that χ = χα.

Now suppose that A ∈ B(Ω) satisfies m(AΔAτ ) = 0 for any real τ . We
have to show that either m(A) = 0 or m(A) = 1. Denote by 1(ω;A) the
indicator function of A, i.e.,

1(ω;A) =
{

1 if ω ∈ A,
0 otherwise.

Since the set A is invariant, it follows that for arbitrary τ ∈ R we have

1(aτω;A) = 1(ω;A) for almost all ω ∈ Ω (4.15)

with respect to the Haar measure m.
First, assume that χ is non-trivial. By the same reasoning as above, there

exists a positive rational number α such that χ = χα. Consequently,

χ(aτ ) = α−iτ ,

and so we can find a τ0 for which χ(aτ0) �= 1. In view of (4.15) this implies
for the Fourier transform of the indicator function

1̂(χ;A) =
∫

Ω

χ(ω)1(ω;A)m( dω) = χ(aτ0)
∫

Ω

χ(ω)1(ω;A)m( dω)

= χ(aτ0)1̂(χ;A).

Since we have chosen τ0 such that χ(aτ0) �= 1, it follows that 1̂(χ;A) = 0.
Obviously, this argument holds for any non-trivial character of Ω.

Now suppose that χ0 is the trivial character of Ω, and let us assume that
1̂(χ0;A) = u. By the orthogonality relation for characters (3.2) we find

û(χ) = u

∫
Ω

χ(ω)m( dω) =
{
u if χ = χ0,
0 otherwise.

Since 1̂(χ;A) = 0 for χ �= χ0, we obtain, for any character χ,

1̂(χ;A) = û(χ).

The function 1(ω;A) is uniquely determined by its Fourier transform. Hence,
it follows that 1(ω;A) = u for almost all ω ∈ Ω. Since 1(ω;A) is the indicator
function of A, we get u = 0 or u = 1, i.e., either 1(ω;A) = 0 for almost all ω,
or 1(ω;A) = 1 for almost all ω ∈ Ω. This implies that m(A) = 0 or m(A) = 1,
which proves the Lemma. ��



72 4 Limit Theorems

Lemma 4.7. Let σ ∈ (σm, 1). Then, for almost all ω ∈ Ω,∫ T

0

|L(σ + it, ω)|2 dt	 T.

Recall that σm is the abscissa of the mean-square half-plane for L.

Proof. We start as in the proof of Lemma 4.1. For n ∈ N let

ξn(σ, ω) =
a(n)ω(n)

nσ
.

The ξn(σ, ω) define a sequence of pairwise orthogonal random variables with
second moment

E|ξn(σ, ω)|2 =
|a(n)|2
n2σ

.

Thus the random variable

ξ(σ, ω) :=

∣∣∣∣∣
∞∑

n=1

ξn(σ, ω)

∣∣∣∣∣
2

= |L(σ, ω)|2

has the finite expectation

Eξ(σ, ω) =
∞∑

n=1

E|ξn(σ, ω)|2 =
∞∑

n=1

|a(n)|2
n2σ

; (4.16)

the convergence follows from the Ramanujan hypothesis (i) (since σm ≥ 1
2

and so 2σ > 1). It is obvious that

ξ(σ, φτ (ω)) = |L(σ, aτω)|2 = |L(σ + it, ω)|2 (4.17)

for any transformation (4.14). Since the Haar measure m is invariant, the
equality m(φτ (A)) = m(A) is valid for every A ∈ B(Ω) and every τ ∈ R.
Hence, |L(σ + iτ, ω)|2 is a strongly stationary process. We shall show that it
is even ergodic.

Let Q be the probability measure on (Ω,B(Ω)) which is determined by
the random process |L(σ+iτ, ω)|2. Further, let A be an invariant set of |L(σ+
iτ, ω)|2, i.e.,

Q(AΔAu) = 0,

where Au = φu(A) with transformations φu defined by (4.14). Now put

A′ = {ω ∈ Ω : |L(σ + iτ, ω)|2 ∈ A}

and
A′

u = {ω ∈ Ω : |L(σ + iτ, ω)|2 ∈ Au}.
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It follows that:
A′ = {ω ∈ Ω : |L(σ, aτω)|2 ∈ A}

and

A′
u = {ω ∈ Ω : |L(σ + iτ + iu, ω)|2 ∈ A}

= {ω ∈ Ω : |L(σ + iτ, auω)|2 ∈ A}.

Hence A′
u = φu(A′). Since (AΔAu)′ = A′ΔA′

u,

m(A′ΔA′
u) = m((AΔAu)′) = Q(AΔAu) = 0,

which shows that A′ is an invariant set with respect to {φτ : τ ∈ R}. However,
by Lemma 4.6 the group {φτ : τ ∈ R} is ergodic. Therefore, m(A′) = 0 or
m(A′) = 1. Hence it follows that Q(A) = 0 or Q(A) = 1, i.e., the process
|L(σ + iτ, ω)|2 is ergodic.

Clearly, ξ(σ, φτ (ω)) ≥ 0. Hence, from (4.16), (4.17) and the Birkhoff–
Khintchine Theorem 3.13, we get

lim
T→∞

1
T

∫ T

0

|L(σ + iτ, ω)|2 dτ = lim
T→∞

1
T

∫ T

0

ξ(σ, φτ (ω)) dτ

= Eξ(σ, ω) <∞

for almost all ω ∈ Ω. This gives the assertion of the lemma. ��

4.4 Approximation in the Mean

Let σ1 > σm, and define for N ∈ N and −σ1 ≤ σ ≤ σ1

�N (s) =
s

σ1
Γ

(
s

σ1

)
Ns.

Further, for σ > σm, put

LN (s) =
1

2πi

∫ σ1+i∞

σ1−i∞
L(s+ z)�N (z)

dz
z
. (4.18)

Taking into account Stirling’s formula (2.17) and axiom (iii), the existence of
the integral follows. Now we shall show that LN (s) approximates L(s) in an
appropriate mean.

Lemma 4.8. Let K be a compact subset of D. Then

lim
N→∞

lim sup
T→∞

1
T

∫ T

0

max
s∈K

|L(s+ iτ) − LN (s+ iτ)|dτ = 0.
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This result should be compared with formula (1.19) in the proof of Voronin’s
universality Theorem 1.7.

Proof. Let Re z = σ1. Since σ + σ1 > 1 for s ∈ K, the function L(s+ z) has
a representation as an absolutely convergent Dirichlet series:

L(s+ z) =
∞∑

n=1

a(n)
ns+z

.

Next we twist L(s) by an arithmetic function bN . For n,N ∈ N let

bN (n) =
1

2πi

∫ σ1+i∞

σ1−i∞

�N (z)
nz

dz
z
.

By Stirling’s formula (2.17),

bN (n) 	 1
nσ1

∫ ∞

−∞
|�N (σ1 + it)|dt	 1

nσ1
.

Consequently, the series
∞∑

n=1

a(n)bN (n)
ns

,

converges absolutely for σ > 1 − σ1. Hence,

1
2πi

∫ σ1+i∞

σ1−i∞
L(s+ z)�N (z)

dz
z

=
∞∑

n=1

a(n)
ns

1
2πi

∫ σ1+i∞

σ1−i∞

�N (z)
nz

dz
z

=
∞∑

n=1

a(n)bN (n)
ns

;

interchanging integration and summation is allowed by absolute convergence.
Thus (4.18) yields

LN (s) =
∞∑

n=1

a(n)bN (n)
ns

.

Using Mellin’s inversion formula (2.15), we obtain

bN (n) =
1

2πiσ1

∫ σ1+i∞

σ1−i∞
Γ

(
z

σ1

)(
N

n

)z

dz = exp
(
−
( n
N

)σ1
)

Thus we get

LN (s) =
∞∑

n=1

a(n)
ns

exp
(
−
( n
N

)σ1
)
, (4.19)

where the series converges absolutely for σ > σm. Now we move the path of
integration in (4.18) to the left. The integrand has a simple pole at z = 0, and
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a pole of order f at z = 1 − s if L(s) has a pole at s = 1 of the same order.
Since K is compact in D, we may choose ε > 0 such that σ ∈ [σm + ε, 1 − ε]
for any s ∈ K. Putting σ2 = σm + ε

2 , we get by the calculus of residues

LN (s) =
1

2πi

∫ σ2−σ+i∞

σ2−σ−i∞
L(s+ z)�N (z)

dz
z

(4.20)

+ {Resz=0 + Resz=1−s}
(
L(s+ z)

�N (z)
z

)
.

On behalf of the functional equation for Γ , for the residue at z = 0 we find

Resz=0

(
L(s+ z)

�N (z)
z

)
= lim

z→0
L(s+ z)�N (z) = L(s).

If L(s) has a pole of order f at s = 1, then

Resz=1−s

(
L(s+ z)

�N (z)
z

)
= Resw=1

(
L(w)

�N (w − s)
w − s

)
=

1
(f − 1)!

(
d

dw

)f−1

(w − 1)fL(w)
�N (w − s)
w − s

∣∣∣
w=1

= λ(s),

say.
Let C be a Jordan curve (i.e., a simple closed contour) in D of length |C|,

enclosing the set K, and denote by δ the distance from C to K. By Cauchy’s
formula,

max
s∈K

|L(s+ iτ) − LN (s+ iτ)| ≤ 1
2πδ

∫
C
|L(z + iτ) − LN (z + iτ)| |dz|.

Thus, for sufficiently large T ,

1
T

∫ T

0

max
s∈K

|L(s+ iτ) − LN (s+ iτ)|dτ

	 1
δT

∫
C

∫ T+Im z

Im z

|L(Re z + iτ) − LN (Re z + iτ)|dτ |dz|

	 |C|
δT

max
σ; s∈C

∫ 2T

0

|L(σ + it) − LN (σ + it)|dt. (4.21)

We may choose the contour C such that for s ∈ C the inequalities σ ≥ σm + 3ε
4

and δ ≥ ε
4 hold. In view of (4.20)

L(σ + it) − LN (σ + it) 	
∫ ∞

−∞
|L(σ2 + it+ iτ)||�N (σ2 − σ + iτ)|dτ

+ |λ(1 − σ − it)|.
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Thus, for the same σ, we find

1
T

∫ 2T

0

|L(σ + it) − LN (σ + it)|dt

	 1
T

∫ ∞

−∞
|�N (σ2 − σ + iτ)|

∫ |τ |+2T

−|τ |
|L(σ2 + it)|dtdτ

+
1
T

∫ 2T

0

|λ(1 − σ − it)|dt.

By the Cauchy–Schwarz inequality and the existence of the mean-square for
σ > σm,

∫ T

0

|L(σ + it)|dt	 T 1/2

(∫ T

0

|L(σ + it)|2 dt

)1/2

	 T.

This leads in the last but one estimate to

1
T

∫ 2T

0

|L(σ + it) − LN (σ + it)|dt

	 max
σ;s∈C

∫ ∞

−∞
|�N (σ2 − σ + iτ)|

(
1 +

|τ |
T

)
dτ (4.22)

+
1
T

max
σ;s∈K

∫ 2T

0

|λ(1 − σ − it)|dt.

Let I = [σm − 1 + 3ε
2 ,− ε

4 ]. Then, by Stirling’s formula (2.17), the latter
expression is bounded by

max
σ∈I

∫ ∞

−∞
|�N (σ + iτ)|(1 + |τ |) dτ + o(1),

as T →∞. By the definition of �N (s), we obtain

lim
N→∞

max
σ∈I

∫ ∞

−∞
|�N (σ + iτ)|(1 + |τ |) dτ = 0.

This in addition with (4.21) and (4.22) proves the lemma. ��

4.5 A Limit Theorem for Absolutely Convergent Series

We define for ω ∈ Ω, s ∈ D and N ∈ N

LN (s, ω) =
∞∑

n=1

a(n)ω(n)
ns

exp
(
−
( n
N

)σ1
)
.



4.5 A Limit Theorem for Absolutely Convergent Series 77

Due to the absolute convergence of the series LN (s), given by (4.19), LN (s, ω)
also converges absolutely for σ > σm. Further, we define the probability
measures PT,N and QT,N by setting

PT,N (A) =
1
T

meas {τ ∈ [0, T ] : LN (s+ iτ) ∈ A}

and
QT,N (A) =

1
T

meas {τ ∈ [0, T ] : LN (s+ iτ, ω) ∈ A}

for A ∈ B(H(D)). Now we prove that both measures converge to the same
limit as T tends to infinity.

Lemma 4.9. There exists a probability measure P′
N on (H(D),B(H(D)))

such that the measures PT,N and QT,N both converge weakly to P′
N as T → ∞.

Proof. For ω ∈ Ω, s ∈ D and M,N ∈ N let

LN,M (s) =
M∑

n=1

a(n)
ns

exp
(
−
( n
N

)σ1
)

and

LN,M (s, ω) =
M∑

n=1

a(n)ω(n)
ns

exp
(
−
( n
N

)σ1
)
.

Define the probability measures PT,N,M and QT,N,M by putting

PT,N,M (A) =
1
T

meas {τ ∈ [0, T ] : LN,M (s+ iτ) ∈ A}

and
QT,N,M (A) =

1
T

meas {τ ∈ [0, T ] : LN,M (s+ iτ, ω) ∈ A}

for A ∈ B(H(D)). By Lemma 4.5 both measures converge weakly to the same
probability measure, say PN,M , as T tends to infinity.

First, we show that the family {PN,M} is tight for fixed N . Let θ be a
random variable uniformly distributed on [0, 1], defined on some probability
space (R,B(R),P∗). Let

XT,N,M (s) = LN,M (s+ iθT ). (4.23)

Then, by Lemma 4.4,

XT,N,M
D−→

T→∞ XN,M , (4.24)

where XN,M = XN,M (s) is an H(D)-valued random element with distribu-
tion PN,M . Let {Kj} be a sequence of compact subsets of D satisfying the
conditions of Lemma 3.14 with G = D, i.e.,

• Kj ⊂ Kj+1 for any j ∈ N;
• If K is compact and K ⊂ D, then K ⊂ Kj for some j ∈ N;
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and

D =
∞⋃

j=1

Kj .

Further, for j ∈ N let Mj be a positive parameter, which will be defined later.
By Chebyshev’s inequality, Lemma 3.7,

P∗
(

max
s∈Kj

|XT,N,M (s)| > Mj

)
≤ 1
MjT

∫ T

0

max
s∈Kj

|LN,M (s+ iτ)|dτ <∞.

Hence,

lim sup
T→∞

P∗
(

max
s∈Kj

|XT,N,M (s)| > Mj

)
≤ 1
Mj

lim sup
T→∞

1
T

∫ T

0

max
s∈Kj

|LN,M (s+ iτ)|dτ.

Since the series for LN (s) converges absolutely in D,

sup
N∈N

lim sup
T→∞

1
T

∫ T

0

max
s∈Kj

|LN,M (s+ iτ)|dτ < Rj

with some positive constant Rj depending on Kj . Setting

Mj =
2jRj

ε
, (4.25)

we obtain

lim sup
T→∞

P∗
(

max
s∈Kj

|XT,N,M (s)| > Mj

)
<

ε

2j
. (4.26)

By Theorem 3.3 and (4.24) it follows that

max
s∈Kj

|XT,N,M (s)| D−→
T→∞ max

s∈Kj

|XN,M (s)|.

Thus, we obtain from (4.26)

P∗
(

max
s∈Kj

|XN,M (s)| > Mj

)
≤ ε

2j
. (4.27)

Now, for j ∈ N, define a function kj : H(D) → R by

kj(f) = max
s∈Kj

|f(s)|.

The function kj is continuous. Furthermore, let

Hε = {f ∈ H(D) : kj(f) ≤Mj for j ∈ N} .
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A family of analytic functions is said to be compact on a region G if every
sequence of this family contains a subsequence which converges uniformly on
every compact subset of G. The theorem of Montel (see [62, Sect. VII.2] or
[313]) asserts that if a family of analytic functions on G is uniformly bounded
on every compact subset of G, then it is compact. Clearly, the family of func-
tions Hε is uniformly bounded on every compact subset K ⊂ D, and thus it
follows that Hε is compact. Using (4.27), we obtain

P∗(XN,M (s) ∈ Hε) ≥ 1 −
∞∑

j=1

P∗
(

max
s∈Kj

|XN,M (s)| > Mj

)

≥ 1 − ε

∞∑
j=1

1
2j

= 1 − ε.

Since PN,M is the distribution of XN,M , the inequality

PN,M (Hε) ≥ 1 − ε

holds for all M,N ∈ N. Therefore the family of probability measures {PN,M}
is tight with respect to M , and by Prokhorov’s Theorem 3.4 it follows that it
is relatively compact.

It is clear that, for σ > σm,

lim
M→∞

LN,M (s) = LN (s),

and since the series defining LN (s) converges absolutely, the convergence is
uniform in any half-plane σ ≥ σm + ε. Thus, for every ε > 0,

lim
M→∞

lim sup
T→∞

1
T

meas {τ ∈ [0, T ] : 	(LN,M (s+ iτ),LN (s+ iτ)) ≥ ε}

≤ lim
M→∞

lim sup
T→∞

1
εT

∫ T

0

	(LN,M (s+ iτ),LN (s+ iτ)) dτ = 0;

the definition of the metric 	 in the space of analytic function was given in
Sect. 3.7. Now let, similarly to (4.23),

YT,N (s) = LN (s+ iθT ).

Then the latter inequality can be rewritten as

lim
M→∞

lim sup
T→∞

P∗(	(XT,N,M (s), YT,N (s)) ≥ ε) = 0.

Let {PN,Mk
} be a subsequence {PN,M} which converges weakly to some mea-

sure P′
N . Then,

XN,Mk

D−→
Mk→∞ P′

N .
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Since H(D) is separable (see Theorem 3.15), the conditions of Theorem 3.6
are fulfilled. Thus, we get by (4.24)

YT,N
D−→

T→∞ P′
N .

Hence, there exists a measure P′
N such that PT,N converges weakly to P′

N as
T tends to infinity, and this limit is independent of the subsequence {PN,Mk

}.
Since the family {PN,M} is relatively compact, by Theorem 3.2, we obtain
that PN,M converges weakly to P′

N as M tends to infinity:

XN,M
D−→

M→∞ P′
N .

With the same argument applied to the random elements LN,M (s + iθT, ω)
and LN (s+ iθT, ω) we find that QT,N converges weakly to P′

N as T tends to
infinity. The assertion of the lemma follows. ��

Let Ω′ be a subset of Ω such that for ω ∈ Ω′ the series (4.6) for L(s, ω)
converges uniformly on compact subsets of D, and that for σ > σm the esti-
mate ∫ T

0

|L(σ + it, ω)|2 dt	 T.

holds. It follows from Lemmas 4.1 and 4.7 that m(Ω′) = 1. By the same
argument as in the proof for Lemma 4.8 one can show

Lemma 4.10. Let K be a compact subset of D. Then, for ω ∈ Ω′,

lim
N→∞

lim sup
T→∞

1
T

∫ T

0

max
s∈K

|L(s+ iτ, ω) − LN (s+ iτ, ω)|dτ = 0.

4.6 Proof of the Main Limit Theorem

Define a probability measure QT by setting

QT (A) =
1
T

meas {τ ∈ [0, T ] : L(s+ iτ, ω) ∈ A}

for A ∈ B(H(D)).

Lemma 4.11. There exists a probability measure P′ on (H(D),B(H(D)))
such that the measures PT (given by (4.4)) and QT both converge weakly
to P′ as T → ∞.

Proof. Lemma 4.9 asserts that the measures PT,N and QT,N both converge
weakly with T → ∞ to the same measure P′

N .
First, we prove that the family {P′

N} is tight. We follow the argument
given in the proof of Lemma 4.9 and use the notations introduced there.
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Again, let θ be a random variable uniformly distributed on [0, 1], defined on
some probability space (R,B(R),P∗). Define

XT,N (s) = LN (s+ iθT ).

Then, by Lemma 4.4,
XT,N

D−→
T→∞ XN ,

where XN is an H(D)-valued random element with distribution P′
N . Now

let {Kj} be a sequence of compact subsets of D satisfying the conditions of
Lemma 3.14 with G = D. Since the series for LN (s) converges absolutely for
σ > σm,

sup
N∈N

lim sup
T→∞

1
T

∫ T

0

max
s∈Kj

|LN (s+ iτ)|dτ ≤ Rj <∞.

By Chebyshev’s inequality, Lemma 3.7,

P∗
(

max
s∈Kj

|XT,N (s)| > Mj

)
≤ 1
MjT

∫ T

0

max
s∈Kj

|LN (s+ iτ)|dτ.

Thus,

lim sup
T→∞

P∗
(

max
s∈Kj

|XT,N (s)| > Mj

)
<

ε

2j
,

where Mj and Rj are related by (4.25). We deduce

P∗(XN (s) ∈ Hε) ≥ 1 − ε,

respectively,
P′

N (Hε) ≥ 1 − ε

for all N ∈ N. Since the set Hε is compact, the family of probability measures
{P′

N} is tight, and by Theorem 3.4 it follows that it is relatively compact.
Applying the Chebyshev inequality once more, by Lemma 4.8, we obtain,

for every ε > 0,

lim
N→∞

lim sup
T→∞

1
T

meas {τ ∈ [0, T ] : 	(L(s+ iτ),LN (s+ iτ)) ≥ ε}

≤ lim
N→∞

lim sup
T→∞

1
εT

∫ T

0

	(L(s+ iτ),LN (s+ iτ)) dτ = 0.

Now let
YT (s) = L(s+ iθT ).

Then the latter inequality can be rewritten as

lim
N→∞

lim sup
T→∞

P∗(	(XT,N (s), YT (s)) ≥ ε) = 0.
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Let {P′
Nj
} be a subsequence {P′

N} which converges weakly to some measure
P′. Then

XNj

D−→
j→∞ P′.

This result and Theorem 3.6 imply

YT
D−→

T→∞ P′,

which is equivalent to the weak convergence of PT to P′. Taking into account
that the family {PN} is relatively compact, by Lemma 3.2 we get

XN
D−→

N→∞ P′.

Repeating this argument for the random elements LN (s+ iθT, ω) and L(s+
iθT, ω), Lemma 4.10 shows that QT converges weakly to P′ as T tends to
infinity. The lemma is proved. ��

It remains to identify the limit of the probability measure PT as T → ∞.
This will finish the

Proof. By Lemma 4.11 the measures, PT and QT both converge weakly to
the same limit P′ as T tends to infinity. It remains to show that P′ = P,
where P is defined by (4.9).

Let A ∈ B(H(D)) be a continuity set of P′. By Theorem 3.1 and
Lemma 4.11 it follows that:

lim
T→∞

1
T

meas {τ ∈ [0, T ] : L(s+ iτ, ω) ∈ A} = P′(A). (4.28)

Fixing the set A, we define the random variable θ on (Ω,B(Ω),m) by

θ(ω) =
{

1 if L(s, ω) ∈ A,
0 otherwise.

Then

Eθ =
∫

Ω

θ dm = m{ω : L(s, ω) ∈ A} = P(A) <∞. (4.29)

By Lemma 4.6, and with the same argument as in the proof of Lemma 4.7,
we see that θ(φτ (ω)) is an ergodic process. Thus, in view of Theorem 3.13,

lim
T→∞

1
T

∫ T

0

θ(φτ (ω)) dτ = Eθ (4.30)

for almost all ω ∈ Ω. From the definition of θ and of the one-parameter group
{φτ : τ ∈ R} it follows that:

1
T

∫ T

0

θ(φτ (ω)) dτ =
1
T

meas {τ ∈ [0, T ] : L(s+ iτ, ω) ∈ A}.
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This result, (4.29) and (4.30) imply

lim
T→∞

1
T

meas {τ ∈ [0, T ] : L(s+ iτ, ω) ∈ A} = P(A)

for almost all ω ∈ Ω. In view of (4.28) we deduce

P′(A) = P(A)

for any continuity set A of the measure P′. Since the continuity sets form a
determining class, we see that the latter equality holds for all A ∈ B(H(D)).
This proves the assertion of the theorem. ��

4.7 Generalizations

The proof of limit Theorem 4.3 allows generalizations in various directions.
We conclude with the situation of Dirichlet series which do not necessarily
have multiplicative coefficients.

Theorem 4.12. Assume that A(s) is a meromorphic function in the half-
plane σ > σ0, all poles of A(s) in this region are included in a compact set,
that A(s) satisfies the estimate

A(σ + it) 	 |t|δ

for σ ≥ σ0 with some δ > 0, and that∫ T

0

|A(σ + it+ iτ)|2dτ 	 T

for all σ > σ0. Further, suppose that A(s) has a representation as a Dirichlet
series ∞∑

n=1

an

ns
,

the series being absolutely convergent for σ > σ0 + 1
2 , and

∑
n≤x |an|2 	 x2σ0 .

Then the probability measure, defined by

1
T

meas {τ ∈ [0, T ] : A(s+ iτ) ∈ A}

for A ∈ B(H(D0)), where D0 := {s ∈ C : σ > σ0}, converges weakly to the
distribution of the random element

Ω � ω �→
∞∑

n=1

anω(n)
ns

for s ∈ D0, as T →∞.
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This limit theorem is due to Laurinčikas [187, 192].
There are several further generalizations and extensions, most of them

belong to Laurinčikas and his school. For instance, Laurinčikas [188, 190]
proved a limit theorem for Matsumoto zeta-functions in the space of mero-
morphic functions. Other limit theorems for Dirichlet series (e.g., [185]) deal
with the distribution of values in the complex plane and may be regarded
as probabilistic analogues of Bohr’s early results (see Sect. 1.2) and Selberg’s
normal distribution result on the critical line. For a first overview on the
various results we refer to [185]) and Matsumoto [244]; the best introduction
to limit theorems for Dirichlet series is Laurinčikas’ monograph [186].

In the following section, we present another type of limit theorem.

4.8 A Discrete Limit Theorem

Whereas the preceding limit theorems were all of continuous character,
we shall now briefly discuss the case of discrete limit theorems. Here the
attribute ‘discrete’ refers to the value-distribution on arithmetic progressions.
We discuss this topic with respect to Matsumoto zeta-functions for which
Kačinskaite [153, 154] obtained several discrete limit theorems.

We recall the definition of the Matsumoto zeta-function from Sect. 1.6. For
any positive integer m, we are given positive integers g(m) and further f(j,m)
as well as complex numbers a(j)

m for 1 ≤ j ≤ g(m). Denoting the mth prime
number by pm, the associated Matsumoto zeta-function is given by

ϕ(s) =
∞∏

m=1

g(m)∏
j=1

(
1 − a(j)

m p−sf(j,m)
m

)−1

.

Under the conditions g(m) 	 pα
m and |a(j)

m | ≤ pβ
m the product converges for

σ > 1 + α+ β. Suppose that ϕ(s) has an analytic continuation to some half-
plane σ > δ + α+ β with 1

2 ≤ δ < 1 (except for at most finitely many poles)
with ϕ(s) 	 |t|c1 as |t| → ∞, where c1 is some positive constant and bounded
mean-square. We shall consider the value-distribution of ϕ(s) on arithmetic
progressions σ + inΔ with n ∈ N in the strip

δ + α+ β < σ < 1 + α+ β,

where Δ is a positive real number. For this aim we consider the probability
measure given by

PN (A) =
1
N
�{1 ≤ n ≤ N : ϕ(s+ inΔ) ∈ A}

for any Borel set A of the appropriate function space. Similarly as we did for
our L-functions, we consider the random variable
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ϕ(s, ω) =
∞∏

m=1

g(m)∏
j=1

(1 − a(j)
m ω(pm)f(j,m)p−sf(j,m)

m )−1.

We denote by Pϕ the distribution of the random element ϕ(s, ω). Kačinskaitė
[153, 154] proved

Theorem 4.13. Assume that Δ is a real number such that

exp
(

2πk
Δ

)
(4.31)

is irrational for all k ∈ N. Then, for σ > α + β + 1
2 , the probability measure

PN converges weakly to Pϕ as N → ∞.

We omit the proof of this theorem but briefly indicate where the assump-
tion on Δ is needed. To obtain (4.13) in the proof of Lemma 4.4 the irrational-
ity of (4.31) for all k ∈ N was used. To overcome this unfortunate restriction,
Kačinskaitė and Laurinčikas [155] recently investigated the case when there
exists a positive integer k for which exp

(
2πk
Δ

)
is rational. By considering a

certain subgroup of the infinite torus Ω, they succeeded in proving a discrete
limit theorem in the complex plane also for this case; their argument carries
over to spaces of analytic functions too.

The general idea and structure of proofs of discrete limit theorems are
rather similar to the continuous case, however, some arguments differ in detail.



5

Universality

Wer die Zetafunktion kennt, kennt die Welt!

Now we shall apply the limit theorem from Chap. 4 to derive information
on the value-distribution of L-functions. Our approach follows Bagchi [9],
respectively, the refinements of Laurinčikas [186]. Using the so-called positive
density method, introduced by Laurinčikas and Matsumoto [200], we prove a
universality theorem for functions L ∈ S̃. Here, we shall make use of axiom (v).
This result is essentially due to Steuding [345] (under slightly more restrictive
conditions).

5.1 Dense Sets in Hilbert Spaces

In this section, we prove some preliminary results from the theory of Hilbert
spaces. For more details of the proofs below and the theory of Hilbert spaces
in general we refer to Bagchi’s thesis [10] and the monographs of Laurinčikas
[186], Dunford and Schwartz [72], Duren [73] and Rudin [312].

Our first aim is

Lemma 5.1. Let x1, . . . , xn be linearly dependent vectors in a complex vector
space, and let a1, . . . , an be complex numbers with |aj | ≤ 1 for 1 ≤ j ≤ n.
Then there exist complex numbers b1, . . . , bn with |bj | ≤ 1 for 1 ≤ j ≤ n,
where at least one |bj | = 1, such that

n∑
j=1

ajxj =
n∑

j=1

bjxj .

Proof. By assumption there are complex numbers c1, . . . , cn, not all equal
zero, such that

n∑
j=1

cjxj = 0. (5.1)
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Let
K = {(α1, . . . , αn) ∈ Cn : |αj | ≤ 1 for 1 ≤ j ≤ n}

and
I = {t ∈ R : a + tc ∈ K},

where a = (a1, . . . , an) and c = (c1, . . . , cn). Since a ∈ K it follows that 0 ∈ I,
and so I is not empty. K is convex and thus I is convex, too. Hence, I is an
interval. Since K is compact and c is not the null vector, I is bounded. Denote
by t0 one of the endpoints of I. Let

b = (b1, . . . , bn) = a + t0c.

Then b belongs to the boundary of K, that is |bj | ≤ 1 for 1 ≤ j ≤ n and
|bj | = 1 for at least one of the j’s. By (5.1),

n∑
j=1

bjxj =
n∑

j=1

ajxj + t0

n∑
j=1

cjxj =
n∑

j=1

ajxj ,

which proves the lemma. ��

In what follows let H be a complex Hilbert space, and denote, as usual,
its inner product by 〈x, y〉 and its norm by ‖x‖ =

√
〈x, x〉. Now we apply the

Lemma 5.1 to prove

Lemma 5.2. Let x1, . . . , xn be points in a complex Hilbert space H and let
a1, . . . , an be complex numbers with |aj | ≤ 1 for 1 ≤ j ≤ n. Then there
exist complex numbers b1, . . . , bn with |bj | = 1 for 1 ≤ j ≤ n, satisfying the
inequality ∥∥∥∥∥∥

n∑
j=1

ajxj −
n∑

j=1

bjxj

∥∥∥∥∥∥
2

≤ 4
n∑

j=1

‖xj‖2.

Proof. The proof is achieved by induction on n. The case n = 1 is trivial:

‖a1x1 − b1x1‖2 ≤ ‖2x1‖2 = 4‖x1‖2.

Now assume that the assertion is true for n. Let x1, . . . , xn+1 be points in H,
and let a1, . . . , an+1 be complex numbers with |aj | ≤ 1 for 1 ≤ j ≤ n + 1.
Denote by yn+1 the orthogonal projection of xn+1 into the span of x1, . . . , xn.
Then x1, . . . , xn, yn+1 are linearly dependent. Thus, by Lemma 5.1, there exist
complex numbers c1, . . . , cn+1 with |cj | ≤ 1 for 1 ≤ j ≤ n + 1, and |ck| = 1
for some 1 ≤ k ≤ n+ 1, such that

n∑
j=1

ajxj + an+1yn+1 =
n∑

j=1

cjxj + cn+1yn+1.
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First, suppose that k = n + 1. By the induction hypothesis there exist
complex numbers b1, . . . , bn with |bj | = 1 for 1 ≤ j ≤ n such that∥∥∥∥∥∥

n∑
j=1

cjxj −
n∑

j=1

bjxj

∥∥∥∥∥∥
2

≤ 4
n∑

j=1

‖xj‖2.

Putting bn+1 = cn+1 we get

n+1∑
j=1

ajxj −
n+1∑
j=1

bjxj =

⎛⎝ n∑
j=1

cjxj −
n∑

j=1

bjxj

⎞⎠+ (an+1 − cn+1)zn+1,

where zn+1 := xn+1 − yn+1 is orthogonal to x1, . . . , xn (since yn+1 is the
orthogonal projection of xn+1 into the span of x1, . . . , xn). It follows that:∥∥∥∥∥∥

n+1∑
j=1

ajxj −
n+1∑
j=1

bjxj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

j=1

cjxj −
n∑

j=1

bjxj

∥∥∥∥∥∥
2

+ |an+1 − cn+1|2‖zn+1‖2

≤ 4
n∑

j=1

‖xj‖2 + 4‖zn+1‖2.

Since ‖zn+1‖2 = ‖xn+1‖2 − ‖yn+1‖2 ≤ ‖xn+1‖2 we are done in this case.
Next, suppose that 1 ≤ k ≤ n. Without loss of generality we may

assume that k = 1. By the induction hypothesis there are complex numbers
b2, . . . , bn+1 with |bj | = 1 for 2 ≤ j ≤ n+ 1 such that∥∥∥∥∥∥

n∑
j=2

cjxj + cn+1yn+1 −
n∑

j=2

bjxj − bn+1yn+1

∥∥∥∥∥∥
2

≤ 4
n∑

j=2

‖xj‖2 + 4‖yn+1‖2.

Putting b1 = c1 we obtain
n+1∑
j=1

ajxj −
n+1∑
j=1

bjxj =
n∑

j=2

cjxj + cn+1yn+1 −
n∑

j=2

bjxj − bn+1yn+1

+ (an+1 − bn+1)zn+1.

In view of the choice of yn+1 this leads to∥∥∥∥∥∥
n+1∑
j=1

ajxj −
n+1∑
j=1

bjxj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

j=2

cjxj + cn+1yn+1 −
n∑

j=2

bjxj − bn+1yn+1

∥∥∥∥∥∥
2

+ |an+1 − bn+1|2 · ‖zn+1‖2

≤ 4
n∑

j=2

‖xj‖2 + 4‖yn+1‖2 + 4‖zn+1‖2.

This gives the desired estimate for the second case and thus Lemma 5.2 is
proved. ��



90 5 Universality

We have to recall a result from the theory of Hilbert spaces which can be
found, for example, in Trenogin [354]. A subset L of a complex Hilbert space
H is called a linear manifold (or subspace) if for all x, y ∈ L and all complex
numbers α, β the linear combination αx+ βy is also an element of L. Denote
by L⊥ the orthogonal complement of L. If L is a linear manifold of H, every
element x ∈ H has a representation x = y + z, where y ∈ L and z ∈ L⊥.

Lemma 5.3. A linear manifold L of a complex Hilbert space H is dense in H
if and only if L⊥ = {0}.

Now we are in the position to state the main result of this section.

Theorem 5.4. Let {xn} be a sequence in H satisfying

• ∑∞
n=1 ‖xn‖2 <∞,

• For 0 �= x ∈ H, the series
∑∞

n=1 |〈xn, x〉| diverges to infinity.

Then the set of all convergent series

∞∑
n=1

anxn with |an| = 1

is dense in H.

This is essentially Pechersky’s rearrangement theorem [288].

Proof. First, we prove that there exists a sequence {ε̃n : n ∈ N} with ε̃n = ±1
such that

∞∑
n=1

ε̃nxn <∞. (5.2)

For this purpose, let {εn : n ∈ N} be a sequence of independent random
variables defined on some probability space (R,B(R),P) such that

P(εn = −1) = P(εn = +1) =
1
2
.

Then Xn := εnxn is an H-valued random element with expectation EXn = 0.
By the first assumption of the theorem, the sequence {Xn} is uniformly
bounded in norm. Moreover,

∞∑
n=1

E‖Xn‖2 =
∞∑

n=1

‖xn‖2 <∞.

By the second assumption it follows that any non-zero element x ∈ H is not
orthogonal to all xn, and, in view of Lemma 5.3, the span of {xn} lies dense
in H. Consequently H is separable. Define a set of linear combinations of the
{xn} by
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S =

{
m∑

n=1

rnxn : m ∈ N, rn ∈ Q(i)

}
,

where ‘i’ denotes the imaginary unit. Next we show that S lies dense in H.
We observe that S is countable. Now let x0 be an arbitrary element of H.

By the above density result, for any positive ε, there exists an element from
the span of {xn}

y :=
M∑

n=1

cnxn

with cn ∈ C such that ‖x0 − y‖ < ε. On the other side we can find an element

z :=
M∑

n=1

rnxn

of S with coefficients rn ∈ Q(i) for which ‖y−z‖ < ε. This implies ‖x0−z‖ <
2ε, so S is dense in H with respect to the norm of H.

Application of Theorem 3.10 implies that the series
∑∞

n=1Xn converges
almost surely. Consequently, the desired sequence exists, and we denote it by
{ε̃n}.

Next we have to show that for any x0 ∈ H and any positive ε there exists
a sequence {an : |an| = 1} such that the series

∑∞
n=1 anxn converges and∥∥∥∥∥x0 −

∞∑
n=1

anxn

∥∥∥∥∥ < ε.

By the first assumption of the theorem we can find a positive integer N
satisfying

∞∑
n=N

‖xn‖2 <
ε2

36
, (5.3)

and, in view of (5.2), ∥∥∥∥∥
∞∑

n=M

ε̃nxn

∥∥∥∥∥ < ε

3
(5.4)

for any M ≥ N . Define

K =

{
M+N∑
n=N

bnxn : |bn| ≤ 1,M ∈ N

}
.

We show that K is dense in H.
Suppose that the contrary is true. Then there exists an element 0 �= x0 ∈

H \ K. As in the proof of Lemma 5.1, K is convex, and so is K too. Thus,
{x0} and K are disjoint closed convex subsets of H. The one-point set {x0}
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is compact. By the separation theorem for linear operators (see [72, Sect. V])
there exists a continuous linear functional f on H such that

Re f(x) > Re f(x0)

for any x ∈ K. Clearly, f does not vanish identically. By the Riesz represen-
tation theorem (see [312, Theorem 6.19]) there exists an element 0 �= z0 ∈ H
for which f(x) = 〈x, z0〉. Putting c = −Re f(x0) we get

Re 〈x, z0〉 = Re f(x) > −c (5.5)

for any x ∈ K. Now choose bn so that |bn| = 1 and bn〈xn, z0〉 = −|〈xn, z0〉|.
The element

yM =
M+N∑
n=N

bnxn,

is in K. It follows from (5.5) that

Re 〈yM , z0〉 = −
M+N∑
n=N

|〈xn, z0〉| > −c

for any M ∈ N. Consequently, the series
∑∞

n=N |〈xn, z0〉| is convergent. Since
z0 �= 0, this contradicts the second assumption of the theorem. So K is dense
in H.

By the density of K there exists a sequence {bn} with |bn| ≤ 1 such that∥∥∥∥∥x0 −
N−1∑
n=1

xn −
M+N∑
n=N

bnxn

∥∥∥∥∥ < ε

3
. (5.6)

Lemma 5.2 in combination with (5.3) yields the existence of an element

u :=
M+N∑
n=N

anxn with |an| = 1

in H such that∥∥∥∥∥
M+N∑
n=N

bnxn −
M+N∑
n=N

anxn

∥∥∥∥∥
2

≤ 4
M+N∑
n=N

‖xn‖2 <
ε2

9
.

Thus, ∥∥∥∥∥u−
M+N∑
n=N

bnxn

∥∥∥∥∥ < ε

3
. (5.7)

Now define

v =
∞∑

n=M+N+1

ε̃nxn.
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In view of (5.4) we have

‖v‖ < ε

3
. (5.8)

Further, let

w =
N−1∑
n=1

xn + u+ v =
∞∑

n=1

anxn,

where an = 1 for 1 ≤ n ≤ N − 1 and an = ε̃n for n > M + N . Then (5.6),
(5.7), and (5.8) imply

‖x0 − w‖ ≤
∥∥∥∥∥x0 −

N−1∑
n=1

anxn −
M+N∑
n=N

bnxn

∥∥∥∥∥+

∥∥∥∥∥
M+N∑
n=N

bnxn −
M+N∑
n=N

anxn

∥∥∥∥∥
+

∥∥∥∥∥
∞∑

n=M+N+1

anxn

∥∥∥∥∥
< ε,

which proves the theorem. ��
For our later purpose, we prove now a lemma which is not really related to

the topic of this section, however, its proof is very similar to a certain aspect
in the proof of the previous theorem.

Lemma 5.5. Let {zn} be a sequence of complex numbers such that the series∑∞
n=1 |zn|2 converges. If {εn} is a sequence of independent random variables

on some probability space (R,B(R),P) such that

P(εn = −1) = P(εn = +1) =
1
2

for any n ∈ N, then the series
∑∞

n=1 εnzn converges almost surely. In partic-
ular, there exists a sequence {ε̃n} with ε̃n ∈ {±1} such that

∞∑
n=1

ε̃nzn

converges.

Proof. Let Xn = εnzn, then {Xn} is a sequence of independent complex
random variables with expectation EXn = 0. By the assumption of the lemma

∞∑
n=1

E(ReXn −E(ReXn))2 =
∞∑

n=1

E(ReXn)2 ≤
∞∑

n=1

|zn|2 <∞.

In view of Theorem 3.9 the series
∑∞

n=1 ReXn converges almost surely,
respectively, the series

∑∞
n=1 εnRe zn converges for almost all sequences

{εn = ±1}. By the same reasoning for the imaginary part of Xn, it follows
that
∑∞

n=1 εnIm zn converges for almost all sequences {εn} with εn ∈ {±1} as
well. This yields the assertion of the lemma. ��
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5.2 Application to the Space of Analytic Functions

Next we shall apply Theorem 5.4 to an appropriate function space. We already
dealt with Hardy spaces in the proof of Voronin’s universality theorem in
Sect. 1.3. However, the general situation is a bit more complicated; for details
we refer to Duren [73], Laurinčikas [186, Sects. 6.2 and 6.3] and Rudin [312,
Chap. 17].

Let D be a simply connected domain in the complex plane with at least
two boundary points. The associated Hardy space H2(D) consists of those
functions f(s) which are analytic in D such that the subharmonic function
|f(s)|2 has a harmonic majorant in D. If F (s) is the smallest harmonic
majorant for |f(s)|2 and s0 is a fixed point in D, then the norm of f ∈ H2(D)
is defined by

‖f‖ = (F (s0))
1
2 .

With this norm H2(D) becomes a complex Hilbert space.

Theorem 5.6. For any given f ∈ H2(D) there exists a Borel measure μf

with support concentrated in ∂D such that if g ∈ H2(D) has a continuous
extension to ∂D, then the inner product of H2(D) can be expressed by

〈f, g〉 =
∫

∂D

g dμf .

Now we are in the position to apply Theorem 5.4 to the Hardy space
H2(D) in order to derive a denseness result for the larger space of analytic
function H(D). Recall that γ denotes the unit circle in the complex plane.

Theorem 5.7. Let D be a simply connected domain in the complex plane.
Suppose that the sequence {fn} in H(D) satisfies the following assumptions:

• If μ is a complex Borel measure on (C,B(C)) with compact support con-
tained in D such that ∞∑

n=1

∣∣∣∣∫
C
fn dμ

∣∣∣∣ <∞,

then ∫
C
sr dμ(s) = 0 for any r ∈ N0.

• The series
∑∞

n=1 fn converges in H(D).
• For every compact K ⊂ D,

∞∑
n=1

max
s∈K

|fn(s)|2 <∞.

Then the set of all convergent series
∞∑

n=1

b(n)fn with b(n) ∈ γ

is dense in H(D).
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This is Theorem 6.3.10 of Laurinčikas [186], respectively, Lemma 5.29 of
Bagchi [9].

Proof. Let K be a given compact subset of D. We may choose a simply con-
nected domain G for which K ⊂ G, the closure G of G is a compact subset of
D, and the boundary of G is a regular Jordan curve. In view of Theorem 5.6,
for any fn ∈ H2(D) there exists a complex Borel measure μfn

on the Hilbert
space H2(G) such that the norm of fn is given by

‖fn‖2 = 〈fn, fn〉 =
∫

∂G
fn dμfn

.

Consequently,

‖fn‖2 ≤ max
s∈G

|fn(s)|
∫

∂G
|dμfn

| 	 max
s∈G

|fn(s)|2.

Hence, by the third assumption,
∞∑

n=1

‖fn‖2 <∞. (5.9)

Now assume that g ∈ H2(G) satisfies
∞∑

n=1

|〈fn, g〉| <∞.

With the Borel measure μg assigned to g (according Theorem 5.6) it follows
that: ∞∑

n=1

∣∣∣∣∫
∂G
fn dμg

∣∣∣∣ <∞.

By the first assumption of the theorem we get, for every r ∈ N0,

〈g(s), sr〉 =
∫

∂G
sr dμg(s) = 0.

It follows that g is orthogonal to all polynomials. One can show that the set
of polynomials is dense in H2(G) (see [73]), and thus, by Lemma 5.3, g(s) is
identically zero. Hence, for any g(s) �≡ 0,

∞∑
n=1

|〈fn, g〉| = ∞.

This and (5.9) show in view of Theorem 5.4 that the set of all convergent
series ∞∑

n=1

βnfn with |βn| = 1

is dense in H2(G). It remains to extend this result to the larger space H(D).
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Now let f ∈ H(D) and ε > 0. By Theorem 5.4 there exists a sequence
{βn : |βn| = 1} such that the series

∞∑
n=1

βnfn(s)

converges on D (in the topology of H2(D)). This convergence is uniform on
every compact subset K of D and we may assume that

max
s∈K

∣∣∣∣∣
∞∑

n=1

βnfn(s) − f(s)

∣∣∣∣∣ < ε

4
.

Hence, we can find a number M for which

max
s∈K

∣∣∣∣∣∣
∑

n≤M

βnfn(s) − f(s)

∣∣∣∣∣∣ < ε

2
,

and with regard to the second assumption of the theorem

max
s∈K

∣∣∣∣∣∑
n>M

fn(s)

∣∣∣∣∣ < ε

2
.

Now let
b(n) =

{
βn if n ≤M,
1 otherwise.

Then the series
∑∞

n=1 b(n)fn(s) converges in H(D) and by the above inequal-
ities

max
s∈K

∣∣∣∣∣
∞∑

n=1

b(n)fn(s) − f(s)

∣∣∣∣∣
≤ max

s∈K

∣∣∣∣∣∣
∑

n≤M

β(n)fn(s) − f(s)

∣∣∣∣∣∣+ max
s∈K

∣∣∣∣∣∑
n>M

fn(s)

∣∣∣∣∣ < ε.

This proves the theorem. ��

5.3 Entire Functions of Exponential Type

Now we state some basic facts from the theory of entire functions.
A function f(s) which is analytic in the closed angular region | arg s| ≤ θ0

with 0 < θ0 ≤ π is said to be of exponential type if

lim sup
r→∞

log |f(r exp(iθ))|
r

<∞

for |θ| ≤ θ0, uniformly in θ.
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Lemma 5.8. Let μ be a complex Borel measure on (C,B(C)) with compact
support contained in the half-plane σ > σ0. Moreover, for s ∈ C, define the
function

f(s) =
∫

C
exp(sz) dμ(z).

Then f is an entire function of exponential type. If f(s) does not vanish
identically, then

lim sup
r→∞

log |f(r)|
r

> σ0.

This is Lemma 6.4.10 of Laurinčikas [186]. It is easily seen that the function
f(s), defined in the lemma, is indeed an entire function of exponential type.
The proof of the lemma relies on the Borel transform f̃ of f which, for complex
s that are not contained in the support of μ, is given by

f̃(s) =
∫

C

dμ(z)
s− z

.

The Borel transform is analytic everywhere with the exception of a neigh-
bourhood of s = 0. This shows that the closed convex hull of the set of
singularities of the Borel transform, the so-called conjugate indicator diagram
of f , is contained in the convex hull of the support of μ. By the assumption
of the lemma, this is a subset of the half-plane σ > σ0. This leads via the
so-called Phragmén–Lindelöf indicator function and a theorem of Boas to the
desired inequality; for the details we refer to Chap. 5 in Boas’ monograph [26]
and Sect. 6.4 in Laurinčikas [186].

Pólya investigated the rate of growth of functions of exponential type on
arithmetic progressions. This was extended by Bernstein [19] to more general
divergent sequences. We state a variant of Bernstein’s theorem.

Theorem 5.9. Let f(s) be an entire function of exponential type, and let {ξm}
be a sequence of complex numbers. Moreover, assume that there are positive
real constants λ, η and ω such that

• lim supy→∞
log |f(±iy)|

y ≤ λ,

• |ξm − ξn| ≥ ω|m− n|,
• limm→∞

ξm
m = η,

• λη < π.

Then
lim sup
m→∞

log |f(ξm)|
|ξm| = lim sup

r→∞
log |f(r)|

r
.

The case η = 1 follows directly from Bernstein’s theorem [19]. The general
case can be deduced by applying the case η = 1 to the function F (s) = f(ηs)
and an appropriate scaling of the other appearing quantities. A proof can be
found in Laurinčikas’ book [186, Sect. 6.4], or in Boas [26, Chap. 10]; notice
that the proof in [26] contains an error as was pointed out by Bagchi [10].
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5.4 The Positive-Density Method

It follows from the prime number Theorem 1.1 that there exist constants c1
and c2 > 0 such that∑

p≤x

1
p

= log log x+ c1 + O
(
exp
(
−c2
√

log x
))

. (5.10)

This asymptotic formula plays an essential role in Bagchi’s probabilistic proof
of Voronin’s universality theorem (as a substitute of Voronin’s use of the prime
number theorem in his approach). However, for many L-functions, given by a
Dirichlet series ∞∑

n=1

a(n)
ns

,

an analogous formula for ∑
p≤x

|a(p)|
p

,

is not known! Laurinčikas and Matsumoto [200] overcame this difficulty by
using sets of prime numbers of positive density within the set of all primes in
combination with (5.10). This is manifested in a mean-square formula for the
coefficients a(p) (which are easier obtainable). This is the essential idea of the
so-called positive-density method which we shall use now. For more details
about the origin of this nice argument see Matsumoto [242].

In what follows, we assume that L ∈ S̃. Recall that D denotes the inter-
section of the mean-square half-plane σ > σm for L(s) with the critical strip
(see (4.1)); we have already noticed that the strip D is not empty (see (4.2)).
For s ∈ D, b(p) ∈ γ = {z ∈ C : |z| = 1}, and any prime p, we define the
function

gp(s, b(p)) = log
m∏

j=1

(
1 − αj(p)b(p)

ps

)−1

(5.11)

= −
m∑

j=1

log
(

1 − αj(p)b(p)
ps

)
.

We observe the similarities between exp(gp(s, b(p))) and the corresponding
Euler factor in the Euler product representations of L(s) and of the associated
random element (4.6). Next we shall prove

Theorem 5.10. Let L ∈ S̃. The set of all convergent series∑
p

gp(s, b(p)) with b(p) ∈ γ

is dense in H(D), where γ is the unit circle in C.
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This denseness theorem plays a crucial role in the proof of the universality
theorem for S̃. We observe that the statement of the theorem is not true if D
is replaced, for example, by the half-plane of absolute convergence (since the
terms gp(s, b(p)) tend to zero as σ → ∞).

Proof. Define

g̃p(s) = gp(s, 1) = −
m∑

j=1

log
(

1 − αj(p)
ps

)
.

For a parameter N ∈ N which will be chosen later, define

ĝp(s) =
{
g̃p(s) if p > N,

0 if p ≤ N.

We claim that there exists a sequence {b̂(p) : b̂(p) ∈ γ} such that the series∑
p

b̂(p)ĝp(s) (5.12)

converges in H(D).
In order to prove this claim we consider the identity between the Dirichlet

series and the Euler product representation of L ∈ S̃,

g̃p(s) =
m∑

j=1

∞∑
k=1

αj(p)k

kpks
=
a(p)
ps

+ rp(s), (5.13)

say, where

rp(s) =
∞∑

k=2

m∑
j=1

aj(p)k

kpks
	

∞∑
k=2

1
kpkσ

(since all αj(p) are of modulus ≤ 1 by Lemma 2.2). Hence∑
p

rp(s) 	
∑

p

1
p2σ

< ζ(2σ) (5.14)

and so the series
∑

p rp(s) converges uniformly on compact subsets of D. Now
let {σj} be a strictly decreasing sequence of real numbers which tends to σm

as j →∞. Taking into account Lemma 5.5, for each j, there exists a sequence
{εp = ±1} of independent random variables such that the series∑

p

a(p)εp
pσj

converges almost surely. Thus, we can find a sequence {b̂(p) : b̂(p) ∈ γ} for
which ∑

p

a(p)b̂(p)
pσj
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converges for any j. Since Dirichlet series converge uniformly on compact
subsets in the half-plane of their convergence, it follows that the series∑

p

a(p)b̂(p)
ps

(5.15)

converges on any compact subset of D. Together with the convergence of∑
p rp(s), this proves our claim that the series (5.12) converges in H(D).
Now we shall show that the set of all convergent series∑

p

b̃(p)ĝp(s) with b̃(p) ∈ γ (5.16)

is dense in H(D). Obviously, it is sufficient to show that the set of all conver-
gent series ∑

p

b̃(p)fp(s) with b̃(p) ∈ γ (5.17)

is dense in H(D), where fp(s) := b̂(p)ĝp(s). To prove this we apply
Theorem 5.7. Taking into account (5.12) we have already verified the second
assumption, namely that the series

∑
p fp(s) converges in H(D). The third

assumption is easily shown by the estimate∑
p

|fp(s)|2 	
∑

p

1
p2σ

,

since the series on the right converges on any compact subset of D (in a similar
manner as in (5.14).

In order to verify the first assumption of Theorem 5.7, let μ be a complex
Borel measure on (C,B(C)) with compact support contained in D such that∑

p

∣∣∣∣∫
C
fp(s) dμ(s)

∣∣∣∣ <∞. (5.18)

Define

hp(s) =
a(p)b̂(p)
ps

.

Then, by (5.13),∑
p

|fp(s)− hp(s)| =
∑
p≤N

|a(p)|
pσ

+
∑
p>N

|rp(s)| 	 1

uniformly on compact subsets of D. Hence, (5.18) implies∑
p

∣∣∣∣∫
C
hp(s) dμ(s)

∣∣∣∣ <∞. (5.19)
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In view of the polynomial Euler product representation axiom (iv), respec-
tively, Lemma 2.2, for any prime p we have |a(p)| ≤ m (where m is the degree
of the polynomial defining the local Euler factors). Hence we may define angles
φp ∈ [0, π

2 ] by setting

|a(p)| =

∣∣∣∣∣∣
m∑

j=1

αj(p)

∣∣∣∣∣∣ = m cosφp. (5.20)

Notice that cosφp is non-negative. We rewrite (5.19) as∑
p

|	(log p)| cosφp <∞, (5.21)

where
	(z) :=

∫
C

exp(−sz) dμ(s).

We shall show that 	(z) vanishes identically; however, for this purpose it is of
advantage to consider an appropriate subseries of (5.21).

Fix a number φ with

0 < φ < min
{

1,
√
κ

m

}
;

here κ is the quantity appearing in axiom (v) on the prime mean-square for
L ∈ S̃. Define

Pφ = {p : p prime and cosφp > φ} .
Then (5.21) yields ∑

p∈Pφ

|	(log p)| <∞. (5.22)

To deduce the vanishing of 	(z) we apply Theorem 5.9. We choose a sufficiently
large positive constant M such that the support of μ is contained in the region
{s ∈ C : σm < σ < 1, |t| < M}. Then, by the definition of 	(z),

|	(±iy)| ≤ exp(My)
∫

C
|dμ(s)|

for y > 0. Therefore,

lim sup
y→∞

log |	(±iy)|
y

≤M,

and the first condition of Theorem 5.9 is valid with λ = M . Now fix a number
η with 0 < η < π

M , and define

A =
{
n ∈ N : ∃ r ∈

((
n− 1

4

)
η,

(
n+

1
4

)
η

]
with |	(r)| ≤ exp(−r)

}
.
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We want to show that A has natural density 1 (i.e., 	(z) is small).
For n ∈ N, let

α = α(n) := exp
((

n− 1
4

)
η

)
and β = β(n) := exp

((
n+

1
4

)
η

)
(notice that α and β depend on n). We observe that for n �∈ A we have

|	(log p)| > 1
p

for all primes p ∈ (α, β]. Thus, it follows that:∑
p∈Pφ

α<p≤β

|	(log p)| ≥
∑
n
∈A

∑
p∈Pφ

α<p≤β

|	(log p)| ≥
∑
n
∈A

∑
p∈Pφ

α<p≤β

1
p
.

Hence, in view of (5.22), ∑
n
∈A

∑
p∈Pφ

α<p≤β

1
p
<∞. (5.23)

Let
πφ(x) = �{p ≤ x : p ∈ Pφ}.

Then, for α < u ≤ β, we obtain∑
α<p≤u

(cosφp)2 ≤
∑

p∈Pφ

α<p≤u

1 + φ2
∑

p�∈Pφ

α<p≤u

1 (5.24)

= (1− φ2)(πφ(u) − πφ(α)) + φ2(π(u) − π(α)).

By axiom (v) on the mean-square of the coefficients,∑
p≤x

(cosφp)2 =
1
m2

∑
p≤x

|a(p)|2 ∼ κ

m2
π(x). (5.25)

Let δ be a small positive constant. Substituting (5.25) in (5.24), gives

πφ(u)− πφ(α) ≥
( κ

m2 − φ2

1 − φ2
+ O(1)

)
(π(u)− π(α))

for u ≥ α(1 + δ), as n→∞. Thus, we get by partial summation∑
p∈Pφ

α<p≤β

1
p

=
∫ β

α

dπφ(u)
u

≥
( κ

m2 − φ2

1 − φ2
+ O(1)

)∫ β

α

dπ(u)
u

≥
( κ

m2 − φ2

1 − φ2
+ O(1)

) ∑
α(1+δ)<p≤β

1
p
, (5.26)
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as n→∞. From (5.10) we deduce∑
α(1+δ)<p≤β

1
p

= log
log β

log(α(1 + δ))
+ O
(
exp(−c2

√
n)
)

=
(

1
2
− log(1 + δ)

η

)
1
n

+ O
(

1
n2

)
.

This gives in formula (5.26)

∑
p∈Pφ

α<p≤β

1
p
≥

κ
m2 − φ2

1 − φ2

(
1
2
− log(1 + δ)

η

)
1
n

+ O
(

1
n2

)
,

as n→∞. Hence, it follows from (5.23) that∑
n
∈A

1
n
<∞ (5.27)

and so A has natural density 1.
Let A = {ak : k ∈ N} with a1 < a2 < . . .. Then (5.27) implies

lim
k→∞

ak

k
= 1. (5.28)

By the definition of the set A, there exists a sequence {ξk} such that(
ak −

1
4

)
η < ξk ≤

(
ak +

1
4

)
η and |	(ξk)| ≤ exp(−ξk).

Hence, from (5.28) it follows that:

lim
k→∞

ξk
k

= η and lim sup
k→∞

log |	(ξk)|
ξk

≤ −1.

Applying Theorem 5.9, we obtain

lim sup
r→∞

log |	(r)|
r

≤ −1. (5.29)

However, by Lemma 5.8, if 	(z) does not vanish identically, then

lim sup
r→∞

log |	(r)|
r

> 0,

contradicting (5.29). Therefore 	(z) ≡ 0. Differentiating this identity r-times
with respect to z, we obtain

0 = (−1)r

∫
C
sr exp(−sz) dμ(s).
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Putting z = 0 we get ∫
C
sr dμ(s) = 0

for r ∈ N0. Thus the first assumption of Theorem 5.7 is also satisfied and we
obtain the denseness of all convergent series (5.16). It remains to show that
this does not change when we add terms

∑
p≤N g̃p(s).

Let f ∈ H(D), K be a compact subset of D, and ε > 0. Further, choose
the parameter N such that

max
s∈K

⎛⎝∑
p>N

∞∑
ν=2

1
νpνσ

⎞⎠ <
ε

4m
, (5.30)

where m is still the degree of the local Euler factors of L(s). By the denseness
of all convergent series (5.16) in H(D) we see that there exists a sequence
{b̃(p) : b̃(p) ∈ γ} such that

max
s∈K

∣∣∣∣∣∣f(s) −
∑
p≤N

g̃p(s) −
∑
p>N

b̃(p)g̃p(s)

∣∣∣∣∣∣ < ε

2
. (5.31)

Setting

b(p) =
{

1 if p ≤ N,

b̃(p) otherwise,

then (5.30) and (5.31) imply

max
s∈K

∣∣∣∣∣f(s) −
∑

p

gp(s, b(p))

∣∣∣∣∣ = max
s∈K

∣∣∣∣∣∣f(s) −
∑
p≤N

g̃p(s) −
∑
p>N

gp(s, b(p))

∣∣∣∣∣∣

≤ max
s∈K

∣∣∣∣∣∣f(s) −
∑
p≤N

g̃p(s)−
∑
p>N

b̃(p)g̃p(s)

∣∣∣∣∣∣
+ max

s∈K

∣∣∣∣∣∣
∑
p>N

b̃(p)g̃p(s) −
∑
p>N

gp(s, b(p))

∣∣∣∣∣∣
<
ε

2
+ 2mmax

s∈K

⎛⎝∑
p>N

∞∑
ν=2

1
νpνσ

⎞⎠ < ε;

for the last but one inequality we have used that |a(p)| ≤ m by Lemma 2.2.
Since f(s),K and ε were arbitrary, the theorem is proved. ��
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5.5 The Support of the Limit Measure

Now we are going to apply limit Theorem 4.3. We restrict our studies to the
space of functions analytic on bounded open rectangles. For this purpose, we
define, for an arbitrary fixed real number M > 0,

DM = {s = σ + it ∈ C : σm < σ < 1, |t| < M}. (5.32)

Obviously, DM ⊂ D by (4.1). Therefore, we obtain by the induced topology
that for s ∈ DM the function L(s, ω), defined by (4.6), is an H(DM )-valued
random element on the probability space (Ω,B(Ω),m). Now denote by Q the
distribution of L(s, ω) on (H(DM ),B(H(DM ))). Further, define a probability
measure QT by setting

QT (A) = lim
T→∞

1
T

meas {τ ∈ [0, T ] : L(s+ iτ) ∈ A} (5.33)

for A ∈ B(H(DM )). Then we deduce from Theorem 4.3

Corollary 5.11. Let L ∈ S̃. Then QT converges weakly to Q as T → ∞.

Next we examine the support of the measure QT :

Lemma 5.12. The support of the measure QT is the set

SM := {ϕ ∈ H(DM ) : ϕ(s) �= 0 for s ∈ DM , or ϕ(s) ≡ 0}.

In order to prove this lemma we make use of Hurwitz’s classical theorem
on uniformly convergent sequences of functions and their zeros.

Theorem 5.13. Let G be a region and {fn} be a sequence of functions analytic
on G which converges uniformly on G to some function f . Suppose that f(s) �≡
0, then an interior point s0 of G is a zero of f(s) if and only if there exists
a sequence {sn} in G which tends to s0 as n → ∞, and fn(sn) = 0 for all
sufficiently large n.

The proof of Hurwitz’s theorem relies in the main part on Rouché’s the-
orem (see Theorem 8.1) and can be found in the monographs of Titchmarsh
[352, Sect. 3.4.5] or Conway [62, Sect. VII.2].

Now we can give the

Proof of Lemma 5.12. Recall the definition (5.11) of the functions gp(s, ω(p)).
Since {ω(p)} is a sequence of independent random variables on the probability
space (Ω,B(Ω),m), it follows that {gp(s, ω(p))} is a sequence of independent
H(DM )-valued random elements. The support of each ω(p) is the unit circle
γ, and therefore the support of the random elements gp(s, ω(p)) is the set

{ϕ ∈ H(DM ) : ϕ(s) = gp(s, b) with b ∈ γ}.
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Consequently, by Theorem 3.16, the support of the H(DM )-valued random
element

logL(s, ω) =
∑

p

gp(s, ω(p))

is the closure of the set of all convergent series
∑

p gp(s, b(p)). By Theorem 5.10
the set of these series is dense in H(DM ). The map

exp : H(DM ) → H(DM ), f �→ exp(f),

is a continuous function sending logL(s, ω) to L(s, ω) and H(DM ) to SM \{0}.
Therefore, the support SL of L(s, ω) contains SM \ {0}. On the other hand,
the support of L(s, ω) is closed. By Hurwitz’s Theorem 5.13 it follows that

SM \ {0} = SM .

Thus, SM ⊂ SL. In view of Lemma 2.2 the functions

exp(gp(s, ω(p))) =
m∏

j=1

(
1 − αj(p)ω(p)

ps

)

are non-zero for s ∈ DM and ω ∈ Ω. Hence, L(s, ω) is an almost surely con-
vergent product of non-vanishing factors. If we apply Hurwitz’s Theorem 5.13
again, we conclude that L(s, ω) ∈ SM almost surely. Therefore SL ⊂ SM . The
proof is finished. ��

5.6 The Universality Theorem

Now we are in the position to prove the main result of this chapter, a gener-
alization of Voronin’s universality theorem to the class S̃.

Theorem 5.14. Let L ∈ S̃, K be a compact subset of the strip D = {s ∈ C :
σm < σ < 1} with connected complement, and let g(s) be a non-vanishing
continuous function on K which is analytic in the interior of K. Then, for
any ε > 0

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ) − g(s)| < ε

}
> 0.

So L-functions in S̃ are universal and their strip of universality is at least the
intersection of their mean-square half-plane σ > σm with the open right half
of the critical strip. Recall that, by (4.2), this strip of universality D contains
at least

max
{

1
2
, 1 − 1 − σL

1 + 2μL

}
< σ < 1,

where σL and μL are defined by axioms (ii) and (iii).
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Proof. Since K is a compact subset of D, there exists a number M such that
K ⊂ DM , where DM is defined by (5.32).

First, we suppose that g(s) has a non-vanishing analytic continuation to
DM . By Lemma 5.12 the function g(s) is contained in the support SL of the
random element L(s, ω). Denote by Φ the set of functions ϕ ∈ H(DM ) such
that

max
s∈K

|ϕ(s) − g(s)| < ε.

Since by Corollary 5.11 the measure QT converges weakly to Q, as T → ∞,
and the set Φ is open, it follows from Theorem 3.1 and from properties of the
support that

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ) − g(s)| < ε

}

= lim inf
T→∞

QT (Φ) ≥ Q(Φ) > 0. (5.34)

This proves the theorem in the case of functions g(s) which have a non-
vanishing analytic continuation to DM . We remark that analytic functions on
D can be approximated uniformly on compact sets; here the restriction on K
to have connected complement is not necessary.

Now let g(s) be as in the statement of the theorem. In this case we have to
apply a complex analogue of Weierstrass’ approximation theorem, the theorem
of Mergelyan on the approximation of analytic functions by polynomials.

Theorem 5.15. Let K be a compact subset of C with connected complement.
Then any continuous function g(s) on K which is analytic in the interior of
K is uniformly approximable on K by polynomials in s.

This generalizes a classic result of Runge and gives the final solution of the
problem of uniform approximation by polynomials on compacta. The inge-
nious proof relies on Green’s formula and Riemann’s mapping theorem and
can be found, for example, in Mergelyan’s article [246], Rudin [312] or Walsh’s
monograph [367, Sect. A.1]. The restriction to compact sets with connected
complement is natural. A necessary and sufficient condition that every func-
tion analytic on a closed bounded point set C can be uniformly approximated
on C by polynomials is that C should not separate the plane, or equivalently,
C should be the complement of an infinite region. For instance, the function
g(s) = 1

s−α cannot be approximated uniformly on C by polynomials if C is
an annulus enclosing α.

We continue with the proof of Theorem 5.14. By Mergelyan’s approxi-
mation Theorem 5.15 there exists a sequence of polynomials Gn(s) which
converges uniformly on K to g(s) as n → ∞. Since g(s) is non-vanishing on
K, we have Gm(s) �= 0 on K for a sufficiently large m, and

max
s∈K

|g(s) −Gm(s)| < ε

4
. (5.35)
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Since the polynomial Gm(s) has only finitely many zeros, there exists a region
G whose complement is connected such that K ⊂ G andGm(s) �= 0 on G. Hence
there exists a continuous branch logGm(s) on G, and logGm(s) is analytic in
the interior of G. Thus, by Mergelyan’s Theorem 5.15, there exists a sequence
of polynomials Fn(s) which converges uniformly on K to logGm(s) as n→ ∞.
Hence, for sufficiently large k,

max
s∈K

|Gm(s) − exp(Fk(s))| < ε

4
.

From this and from (5.35) we obtain

max
s∈K

|g(s) − exp(Fk(s))| < ε

2
. (5.36)

From (5.34) we deduce

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ) − exp(Fk(s))| < ε

2

}
> 0.

In combination with (5.36) this proves Theorem 5.14. ��

A close look on the proof of Theorem 5.14 shows that omitting a finite
number of Euler factors in the Euler product does not influence the univer-
sality property. It is an interesting question to which extent infinitely many
Euler factors can be omitted. A first approach to answer this problem was
given by Schwarz, Steuding and Steuding [319] by using the notion of related
arithmetical functions.

We shall compare the universality Theorem 5.14 with the result of
Laurinčikas [190] for Matsumoto zeta-functions (see also Sect. 1.6). Both
theorems apply to polynomial Euler products; however, the form of the Euler
product (iv) is more restrictive than the one of Matsumoto zeta-functions.
Furthermore, Theorem 5.14 relies on axiom (v) while Laurinčikas’ assumes
(1.40); in our case his condition can be translated as follows: for all primes p,
|a(p)| is bounded from below by some positive constant. This is in general
a rather strong assumption. For example, Lehmer [212] conjectured that
Ramanujan’s τ -function τ(n), given implicitly as the Fourier coefficients of the
modular discriminant (1.33), is non-zero for any n ∈ N. This is still unproved
(also in the form τ(p) �= 0 for prime p). Laurinčikas [190] also claims that
(1.40) can be replaced by the condition that, for ε > 0,

1
π(x)

∑
p≤x

|a(p)|<ε

1 	 x−δ,

where δ ≥ 1
2 (again in our notation). Also this condition is rather

restrictive. For example, in the case of the L-function associated with the
modular discriminant one would need a quantitative version of the Sato–Tate
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conjecture (see (6.22)) in order to verify this assumption. Nevertheless, we
cannot exclude the possibility of a number-theoretical relevant Matsumoto
zeta-function which is not a polynomial Euler product of fixed degree.

Reviewing our lengthy proof of Theorem 5.14 we may understand univer-
sality as a kind of ergodicity on function spaces. On the other side, all proofs
of universality results, known so far, depend on some arithmetical conditions;
but is universality really an arithmetic phenomenon or not? This question
was raised by Matsumoto [242]. It seems reasonable that the universality
of Dirichlet series is a common phenomenon in analysis (see the appendix),
that it is related to Julia rays in value-distribution theory and to ergodical
dynamical systems as well, but no link is known so far.

5.7 Discrete Universality

Now we consider the phenomenon of discrete universality, that means that the
shifts τ are restricted to arithmetic progressions. This concept of universality
was introduced by Reich [306] (see (1.39)). It is remarkable that this still leads
to universality results with positive lower density for the shifts τ . The precise
statement of Reich’s discrete universality theorem for Dedekind zeta-functions
is

Theorem 5.16. Let K be an algebraic number field of degree d over Q, let
K be a compact subset of the strip max{ 1

2 , 1 − 1
d} < σ < 1 with connected

complement, and assume that g(s) is a non-vanishing continuous function on
K which is analytic in its interior. Then, for any real Δ �= 0 and any ε > 0,

lim inf
N→∞

1
N
�

{
n ≤ N : max

s∈K
|ζK(s+ iΔn) − g(s)| < ε

}
> 0.

In Sect. 4.8 we presented a discrete limit theorem for Matsumoto zeta-
functions due to Kačinskaitė, where Δ was assumed to satisfy a certain arith-
metical property. We also mentioned the work of Kačinskaitė and Laurinčikas
[155] which removes this restriction. Interestingly, this problem was solved by
Reich in a different way. (For more details about Dedekind zeta-functions see
Sect. 13.1.)

Bagchi [9, 10] combined Reich’s result with ideas from Gonek [104] in order
to obtain joint discrete universality for Dirichlet L-functions.

Theorem 5.17. Let χ1 mod q1, . . . , χ	 mod q	 be pairwise non-equivalent
Dirichlet characters, K1, . . . ,K	 be compact subsets of 1

2 < σ < 1 with con-
nected complements. Further, for each 1 ≤ j ≤ � let gj(s) be a continuous
non-vanishing function on Kj which is analytic in the interior of Kj. Then,
for any Δ �= 0 and any ε > 0,

lim inf
N→∞

1
N
�

{
n ≤ N : max

1≤j≤	
max
s∈Kj

|L(s+ iΔn, χj) − gj(s)| < ε

}
> 0.
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Bagchi considered only characters to a fixed modulus q (in which case the
characters χ mod q are trivially non-equivalent) and he assumed the compact
sets Kj to be simply connected and locally path connected; however, without
big effort his result (Theorem 5.3.4 in [9]) can easily be extended to the form
given above.

It should be remarked that these results do not contain the continuous
analogues (as, for example, Theorem 5.14 in the latter case) nor that they
can be deduced from Theorem 5.14 (to our present knowledge). Nevertheless,
the methods of proof are rather similar. In fact, they depend on an appropriate
limit theorem as Theorem 4.13; the remaining arguments are essentially the
same.

Matsumoto [243] asked for discrete universality for L-functions asso-
ciated with cusp forms and Matsumoto zeta-functions. Garbaliauskienė and
Laurinčikas [84] proved a discrete version of Theorem 1.11 for L-functions to
elliptic curves; Laurinčikas, Matsumoto and Steuding [205] obtained discrete
universality for the more general case of L-functions to newforms.



6

The Selberg Class

What is a zeta-function (or an L-function)? We know one when we
see one. M.N. Huxley

In 1989, Selberg defined a rather general class S of Dirichlet series having
an Euler product, analytic continuation and a functional equation of Riemann-
type, and formulated some fundamental conjectures concerning them. His aim
was to study the value-distribution of linear combinations of L-functions. In
the meantime, this so-called Selberg class became an important object of
research, but still it is not understood very well. In this chapter, we shall
investigate universality for functions in the Selberg class. Therefore, we only
present results on this class which are related to our studies; for detailed
surveys on the Selberg class, we refer to Kaczorowski and Perelli [160],
Perelli [290], and M.R. Murty and V.K. Murty [270].

6.1 Definition and First Properties

Many authors, for example, Lekkerkerker [214], Perelli [289], and
Matsumoto [239] have introduced classes of Dirichlet series to find common
patterns in their value-distribution. However, the most successful class seems
to be the class introduced by Selberg [323]. The Selberg class S consists of
Dirichlet series

L(s) =
∞∑

n=1

a(n)
ns

satisfying the following hypotheses:

(1) Ramanujan hypothesis. a(n) 	 nε for any ε > 0, where the implicit con-
stant may depend on ε.

(2) Analytic continuation. There exists a non-negative integer k such that
(s− 1)kL(s) is an entire function of finite order.
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(3) Functional equation. L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) := L(s)Qs

f∏
j=1

Γ (λjs+ μj)

with positive real numbers Q,λj , and complex numbers μj , ω with
Reμj ≥ 0 and |ω| = 1.

(4) Euler product. L(s) has a product representation

L(s) =
∏
p

Lp(s),

where

Lp(s) = exp

( ∞∑
k=1

b(pk)
pks

)
with suitable coefficients b(pk) satisfying b(pk) 	 pkθ for some θ < 1

2 .

The Euler product hypothesis implies that the coefficients a(n) are multi-
plicative, and that each Euler factor has the Dirichlet series representation

Lp(s) =
∞∑

k=0

a(pk)
pks

, (6.1)

absolutely convergent for σ > 0. Differentiation of the identity between the
two representations for the local Euler factors leads to the relation

log p
∞∑

k=1

ka(pk)
pks

= −L′
p(s) = −Lp(s)

( ∞∑
	=1

b(p	)
p	s

)′

= log p
∞∑

m=1

1
pms

∑
m=k+	

a(pk)b(p	)�.

Comparing the coefficients, we obtain a(p) = b(p) and

b(p	) = a(p	)− 1
�

	−1∑
k=1

ka(p	−k)b(pk).

Moreover, it turns out that each Euler factor is absolutely convergent in the
half-plane σ > 0 and non-vanishing for σ > θ.

Axioms (1) and (2) imply that any element L(s) of the Selberg class is
analytic in the whole complex plane except for a possible pole at s = 1 (by
the same reasoning as for S̃ in Sect. 2.2).
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The structure of the Selberg class is of special interest. The degree of L ∈ S
is defined by

dL = 2
f∑

j=1

λj . (6.2)

Although the data of the functional equation are not unique, the degree
is well-defined. If NL(T ) counts the number of zeros of L ∈ S in the
rectangle 0 ≤ σ ≤ 1, |t| ≤ T (according to multiplicities), by standard contour
integration one can show

NL(T ) ∼ dL
π
T log T, (6.3)

in analogy to the Riemann–von Mangoldt formula (1.5) for Riemann’s zeta-
function; we shall give a more precise asymptotic formula in Theorem 7.7. It
is conjectured that all L ∈ S have integral degree. Slightly stronger is the

Strong λ-conjecture. Let L ∈ S. All λj appearing in the Gamma-factors
of the functional equation can be chosen to be equal to 1

2 .

The constant function 1 is the only element of S of degree zero. Recently,
Kaczorowski and Perelli [162] showed that all functions L ∈ S with degree
0 < dL < 5

3 have degree equal to one. For our purpose the following slightly
weaker result is sufficient.

Theorem 6.1. If L ∈ S and 0 ≤ dL < 1, then L(s) ≡ 1.

For 0 < dL < 1, the statement is implicitly contained in the work of
Richert [308], Bochner [27] and Vignéras [358]. We give a sketch of a simple
proof following Conrey and Ghosh [59] and Molteni [256].

Proof. Let B be a constant such that a(n) 	 nB . By Perron’s formula,

∑
n≤x

a(n) =
1

2πi

∫ c+i∞

c−i∞
L(s)

xs

s
ds+ O

(
xc+B

T

)
,

where c > 1 is a constant. Shifting the path of integration to the left, yields,
by the Phragmén–Lindelöf principle (see Sect. 6.5), the asymptotic formula

∑
n≤x

a(n) = xP (log x) + O
(
x

(1+B)
dL−1
dL+1 +ε

)
,

where P (x) is a computable polynomial according to the principal part of the
Laurent expansion of L(s) at s = 1. By subtraction, this implies

a(n) 	 n
(1+B)

dL−1
dL+1 +ε

, (6.4)
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where the implicit constant depends on B. For dL < 1 the exponent is
negative, and we may choose B arbitrarily large. Then L(s) is uniformly
bounded in every right half-plane. This is a contradiction for L ∈ S with
positive degree since the functional equation implies a certain order of growth.
This shows that S is free of elements having degree 0 < d < 1.

It remains to consider the case that dL = 0. Then the functional equation
takes the form:

QsL(s) = ωQ1−sL(1 − s)

(there are no Gamma-factors). By (6.4) the a(n) are so small that the Dirichlet
series for L(s) converges in the whole complex plane. Thus, we may rewrite
the functional equation as

∞∑
n=1

a(n)
(
Q2

n

)s

= ω
∞∑

n=1

a(n)
n

ns. (6.5)

We may regard this as an identity between absolutely convergent Dirichlet
series. Thus, if a(n) �= 0, then Q2/n is an integer. In particular, q := Q2 ∈ N.
Moreover, since q has only finitely many divisors, it follows that L(s) is a
Dirichlet polynomial. If q = 1, then L(s) ≡ 1 and we are done with the case
dL = 0. Hence, we may assume that q > 1.

Since the Dirichlet coefficients a(n) are multiplicative, we have a(1) = 1
and via (6.5)

a(1)Q2s = ωQ−1a(Q2)Q2s;

thus, |a(q)| = Q. In particular, there exists a prime p such that the exponent
ν of p in the prime factorization of q is positive and, by the multiplicativity
of the a(n)’s,

|a(pν)| ≥ pν/2.

Now consider the logarithm of the corresponding Euler factor:

log

(
1 +

ν∑
m=1

a(pm)
pms

)
=

∞∑
k=1

b(pk)
pks

.

Viewing this as a power series in X = p−s, we write

logP (X) =
∞∑

k=1

BkX
k with Bk = b(pk).

Since a(1) = 1, we find

P (X) = 1 +
ν∑

m=1

a(pm)Xm =
ν∏

j=1

(1 − CjX) with Bk = −1
k

ν∑
j=1

Ck
j .

Now
ν∏

j=1

|Cj | = |a(pν)| ≥ pν/2,
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and thus the maximum of the values |Cj | is greater than or equal to p1/2. We
have

lim
k→∞

|b(pk)|1/k = lim
k→∞

∣∣∣∣∣∣1k
ν∑

j=1

Ck
j

∣∣∣∣∣∣
1/k

= max
1≤j≤ν

|Cj |;

by our foregoing observations the right-hand side is greater than or equal to
p1/2. This is a contradiction to the condition b(pk) 	 pkθ with some θ < 1

2 in
the axiom on the Euler product. Hence, q = 1 and L(s) ≡ 1. This proves the
theorem. ��

By the work of Kaczorowski and Perelli [161], it is known that the functions
of degree one in the Selberg class are the Riemann zeta-function and shifts
L(s + iθ, χ) of Dirichlet L-functions attached to primitive characters χ with
θ ∈ R; parts of this classification are already contained in Bochner’s extension
of Hamburger’s theorem [27] and in subsequent work of Gérardin and Li [99]
and Piatetski-Shapiro and Rhagunathan [294] on converse theorems. How-
ever, for higher degree there is no complete classification so far. Examples
of degree two are L-functions associated with holomorphic newforms f ; here
the notion normalized means that a(n) = c(n)n(1−k)/2 where the c(n) are
the Fourier coefficients of f (as already indicated in Sect. 2.2). Normalized
L-functions attached to non-holomorphic newforms are expected to lie in
S but the Ramanujan hypothesis is not yet verified. The Rankin–Selberg
L-function of any normalized eigenform is an element of the Selberg class of
degree 4. Other examples are Dedekind zeta-functions to number fields K;
their degree is equal to the degree of the field extension K/Q.

In view of the Euler product representation, it is clear that any element
L(s) of the Selberg class does not vanish in the half-plane of absolute con-
vergence σ > 1. This gives rise to the notions of critical strip and critical
line. The zeros of L(s) located at the poles of gamma-factors appearing in the
functional equation are called trivial. They all lie in σ ≤ 0, and it is easily
seen that they are located at

s = −k + μj

λj
with k ∈ N0 and 1 ≤ j ≤ f. (6.6)

All other zeros are said to be non-trivial. In general, we cannot exclude the
possibility that L(s) has a trivial zero and a non-trivial one at the same point.
It is expected that for every function in the Selberg class the analogue of the
Riemann hypothesis holds.

Grand Riemann Hypothesis. If L ∈ S, then L(s) �= 0 for σ > 1
2 .

The zero-distribution is essential for the Selberg class. This is also manifested
in the defining axioms. Following Conrey and Ghosh [59] and Kaczorowski
and Perelli [160], we motivate the axioms defining S. We have already seen
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that the Ramanujan hypothesis implies the regularity of L(s) in σ > 1.
Further, we note:

• The assumption that there be at most one pole, and that this one is located
at s = 1, is natural in the theory of L-functions. It seems that the point
s = 1 is the only possible pole for an automorphic L-function and that such
a pole is always related to the simple pole of the Riemann zeta-function in
the sense that the quotient with an appropriate power of ζ(s) is another
L-function which is entire (examples for this scenario are Dedekind zeta-
functions).

• The restriction Reμj ≥ 0 in the functional equation comes from the
theory of Maass waveforms. If we assume the existence of an arithmetic
subgroup of SL2(R) together with a Maass cusp form that corresponds
to an exceptional eigenvalue, and if we further suppose that all local
roots are sufficiently small (more precisely, that the Ramanujan–Petersson
conjecture holds), then the L-function associated with the Maass cusp
form has a functional equation where the μj satisfy Reμj < 0, but this
L-function violates Riemann’s hypothesis.

• Finally, consider the axiom concerning the Euler product. It is well-known
that the existence of an Euler product is a necessary (but not sufficient)
condition for Riemann’s hypothesis. On first sight, the condition θ < 1

2
seems to be a little bit unnatural. However, for θ = 1

2 , there are examples
violating the Riemann hypothesis: the function

(1 − 21−s)ζ(s) =
∞∑

n=1

(−1)n−1

ns
(6.7)

has zeros off the critical line. Moreover, as we have seen in the proof of
Theorem 6.1, the bound for θ rules out non-trivial Dirichlet polynomials
from S as for example

(1 − 2a−s)(1 − 2b−s) with a+ b = 1.

Some words of warning: It might turn out that the axioms of the Selberg class
are too restrictive; e.g., the form of the functional equation with the condition
on the μj ’s to have positive real part might exclude relevant L-functions.

6.2 Primitive Functions and the Selberg Conjectures

The Selberg class is multiplicatively closed. A function L ∈ S is called prim-
itive if it cannot be factored as a product of two elements non-trivially, i.e.,
the equation

L = L1L2 with L1,L2 ∈ S,
implies L = L1 or L = L2. The notion of a primitive function is fruitful for
studying the structure of S. Conrey and Ghosh [59] proved
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Theorem 6.2. Every function in the Selberg class has a factorization into
primitive functions.

Proof. Suppose that L is not primitive, then there exist functions L1 and L2

in S \ {1} such that L = L1L2. Taking into account (6.3), from

NL(T ) = NL1(T ) +NL2(T )

we find dL = dL1 + dL2 . In view of Theorem 6.1, both L1 and L2 have degree
at least 1. Thus, each of dL1 and dL2 is strictly less than dL. A continuation
of this process terminates since the number of factors is ≤ dL, which proves
the claim. ��

In connection with Theorem 6.1 it follows that Riemann’s zeta-function
and Dirichlet L-functions are primitive. A more advanced example of primitive
elements are L-functions associated with newforms is due to M.R. Murty [269].
On the contrary, Dedekind zeta-functions to cyclotomic fields �= Q are not
primitive.

Denote by aL(n) the coefficients of the Dirichlet series representation of
L ∈ S. The central claim concerning primitive functions is part of

Selberg’s Conjectures.

(A) For all 1 �= L ∈ S there exists a positive integer nL such that∑
p≤x

|aL(p)|2
p

= nL log log x+ O(1).

(B) For any primitive functions L1 and L2 ∈ S,∑
p≤x

aL1(p)aL2(p)
p

=
{

log log x+ O(1) if L1 = L2,
O(1) otherwise.

In some sense, primitive functions are expected to form an orthonormal
system.

In view of the factorization into primitive functions, it is easily seen that
Conjecture B implies Conjecture A. In some particular cases, it is not too
difficult to verify Selberg’s Conjecture A. For instance, ζ(s) satisfies Selberg’s
Conjecture A, which is basically due to Euler [76] who already wrote

1
2

+
1
3

+
1
5

+ · · · = log log∞

(the first complete proof was given by Mertens [247]). A stronger asymptotic
formula is (5.10) which plays an essential role in Bagchi’s proof of Voronin’s
universality theorem. By the prime number theorem for arithmetic progres-
sions (1.29), we get the same asymptotics for Dirichlet L-functions. Taking
into account the orthogonality relations for characters, one can also verify
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Conjecture B for pairs of Dirichlet L-functions. The Rankin–Selberg convo-
lution method shows that L-functions associated with holomorphic modular
forms satisfy some kind of orthogonality (in terms of regularity at s = 1)
which is related to Selberg’s conjectures. Recently, Liu, Wang and Ye [225]
proved Conjecture B for automorphic L-functions L(s, π) and L(s, π′), where
π and π′ are automorphic irreducible cuspidal representations of GLm(Q) and
GLm′(Q), respectively; their result holds unconditionally for m,m′ ≤ 4 and in
other cases under the assumption of the convergence of∑

p

|aπ(pk)|2
pk

(log p)2

for k ≥ 2, where the aπ(n) denote the Dirichlet series coefficients of L(s, π).
The latter hypothesis is an immediate consequence of the Ramanujan hypoth-
esis. (We shall return to these L-functions in Chap. 13.9.)

Selberg [323] wrote about his conjectures that “these conjectures, which,
by the way, are not unrelated to several other conjectures like the Sato–Tate
conjecture, Langlands conjectures, etc., have been verified in a number of cases
for Dirichlet series with functional equation and Euler product that occur
in number theory, by assuming that the factorizations we can give are ac-
tually that a function is really primitive and cannot be factorized further.”
For example, M.R. Murty [267] proved that Selberg’s Conjecture B implies
Artin’s conjecture (we return to this topic in Chap. 13.7). Another important
consequence is due to Conrey and Ghosh [59].

Theorem 6.3. Selberg’s conjecture B implies that every L ∈ S has a unique
factorization into primitive functions.

Proof. Suppose that L has two factorizations into primitive functions:

L =
m∏

j=1

Lj =
n∏

k=1

L̃k,

and assume that no L̃k is equal to L1. Then it follows from
m∑

j=1

aLj
(p) =

n∑
k=1

aL̃k
(p)

that
m∑

j=1

∑
p≤x

aLj
(p)aL1(p)
p

=
n∑

k=1

∑
p≤x

aL̃k
(p)aL1(p)
p

.

By Selberg’s conjecture B, the left-hand side tends to infinity for x → ∞,
whereas the right-hand side is bounded, giving the desired contradiction. ��

The same argument gives a characterization of primitive functions in terms
of the quantity nL from Selberg’s conjecture A:
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Theorem 6.4. If the Selberg conjecture B is true, L ∈ S is primitive if and
only if nL = 1.

Selberg also considered twists with characters. If χ is a primitive Dirichlet
character, and L ∈ S is automorphic, then

Lχ(s) =
∞∑

n=1

a(n)
ns

χ(n)

satisfies the axioms of S too. It can be shown that then L and Lχ are either
both primitive or both not primitive (since they have the same nL). Selberg’s
twisting conjecture states that if L is not primitive, L and Lχ will factor in the
same way into primitive factors, in the sense that one gets the factorization
of Lχ by twisting all factors of L by χ.

6.3 Non-Vanishing and Prime Number Theorems

Furthermore, Selberg studied moments and distribution functions for L ∈ S
in order to prove an analogue of (1.16). For this aim, he had to assume some
unproved hypothesis on the distribution of zeros which hold, or are at least
expected to hold, for all known examples of elements in S. Let NL(σ, T ) count
the number of zeros 	 = β + iγ of L(s) with β > σ and |γ| < T (counting
multiplicities). Kaczorowski and Perelli [163] proved

Theorem 6.5. For every L ∈ S,

NL(σ, T ) 	 T 4( dL+3)(1−σ)+ε,

uniformly for 1
2 ≤ σ ≤ 1.

Unfortunately, this estimate is only useful for σ close to 1. For smaller σ we
note the

Grand Density Hypothesis. For L ∈ S there is some positive constant c
such that for σ > 1

2

NL(σ, T ) 	 T 1−c(σ−1/2)+ε.

Selberg proved that if L ∈ S satisfies the Grand density hypothesis and Con-
jecture A, then the values of

logL
(

1
2 + it

)
√
πnL log log t

are distributed in the complex plane according to the normal distribution.
Furthermore, he investigated the value-distribution of linear combinations of
independent elements of S. Selberg’s argument was streamlined and extended
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by Bombieri and Hejhal [39] to independent collections of L-functions having
polynomial Euler products with the emphasis just on probabilistic conver-
gence and the goal of applications to the zero-distribution. For this aim they
introduced a strong version of Selberg’s conjecture B.

Strong Selberg’s Conjecture B. For any primitive functions L1 and L2

in S there exist constants CL1 , CL1,L2 such that

∑
p≤x

aL1(p)aL2(p)
p

=
{

log log x+ CL1 + R(x) if L1 = L2,
CL1,L2 + R(x) otherwise,

where R(x) 	 1
log x .

Their theorem shows the statistical independence of any collection of indepen-
dent L-functions in any family of elements of S. Furthermore, Bombieri and
Hejhal applied their result to the zero-distribution of linear combinations of
independent L-functions. Assuming in addition the Grand Riemann hypoth-
esis and a weak conjecture on the well-spacing of the zeros, they proved that
almost all zeros of these linear combinations are simple and lie on the critical
line. Bombieri and Perelli [40] considered for the same class of functions the
distribution of distinct zeros. They proved that, for two different functions
L1,L2 of the same degree,∑

0≤γ≤T

max{mL1(	) −mL2(	), 0} � T log T, (6.8)

where the sum is taken over the non-trivial zeros 	 = β + iγ of L1L2(s) and
mLj

(	) denotes the multiplicity of the zero 	 of Lj(s).
The Selberg conjectures refer to the analytic behaviour at the edge of the

critical strip. Conrey and Ghosh [59] proved the non-vanishing on the line
σ = 1 subject to the truth of Selberg’s conjecture B:

Theorem 6.6. Let L ∈ S. If Selberg’s conjecture B is true, then

L(s) �= 0 for σ ≥ 1.

It is conjectured that the Selberg class consists only of automorphic L-
functions, and for those Jacquet and Shalika [148] obtained an unconditional
non-vanishing theorem.

Proof of Theorem 6.6. In view of the Euler product representation, in the
half-plane σ ≥ 1 zeros can only occur on the line σ = 1. By Theorem 6.2 it
suffices to consider primitive functions L ∈ S. In case of ζ(s), it is known that
there are no zeros on σ = 1. It is easily seen that if Selberg’s Conjecture B is
true and if L ∈ S has a pole at s = 1 of order m, then the quotient L(s)/ζ(s)m

is an entire function (this can be shown by the argument from the proof of
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Theorem 6.3). Hence, we may assume that L(s) is entire. Then, for any real
α, the function L(s + iα) is a primitive element of S. Selberg’s conjecture B
applied to L(s+ iα) and ζ(s) yields∑

p≤x

aL(p)
p1+iα

	 1. (6.9)

Now suppose that L(1 + iα) = 0. Then

L(s) ∼ c(s− (1 + iα))k

as s = σ + iα → 1 + iα for some complex c �= 0 and some positive integer k.
It follows that:

logL(σ + iα) ∼ k log(σ − 1) (6.10)

as σ → 1+. Since

logL(s) =
∑

p

aL(p)
ps

+ O(1)

for σ > 1, we get by partial summation

logL(σ + iα) ∼
∑

p

aL(p)
pσ+iα

= (σ − 1)
∫ ∞

1

∑
p≤x

aL(p)
p1+iα

dx
xσ
.

By (6.9) the right-hand side is bounded as σ → 1+, which contradicts (6.10).
The theorem is proved. ��

Recently, Kaczorowski and Perelli [163] investigated the analogue of the prime
number theorem for the Selberg class. It is well known that the non-vanishing
of ζ(s) on the edge of the critical strip is equivalent to the (standard) prime
number theorem (without remainder term). For an arbitrary element L ∈ S,
the corresponding prime number theorem is given in form of the asymptotic
formula

ψL(x) :=
∑
n≤x

ΛL(n) = kLx+ O(x); (6.11)

here kL = 0 if L(s) is regular at s = 1, otherwise kL is the order of the pole
of L(s) at s = 1, and ΛL(n) is the von Mangoldt-function, defined by

−L′

L (s) =
∞∑

n=1

ΛL(n)
ns

,

generalizing (1.7), the case of the Riemann zeta-function. Indeed, for poly-
nomial Euler products in the Selberg class one can prove this equivalence by
standard arguments involving an appropriate Tauberian theorem. In this case,
by Theorem 6.6, Selberg’s conjecture B implies (6.11). However, this is not
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satisfying with respect to S. Kaczorowski and Perelli [163] introduced a weak
form of Selberg’s conjecture A:

Normality Conjecture. For all 1 �= L ∈ S there exists a non-negative
integer kL such that∑

p≤x

|aL(p)|2
p

= kL log log x+ O(log log x).

Assuming this hypothesis, they proved the claim of Theorem 6.6, namely
the non-vanishing of any L(s) on the line σ = 1 and that this statement is
equivalent to the prime number theorem (6.11). It should be noted that their
proof of L(1 + iR) �= 0 for a given L involves the assumption of the normality
conjecture for several elements in S.

6.4 Pair Correlation

Assuming the truth of the Riemann hypothesis, Montgomery [259] studied the
distribution of consecutive zeros 1

2 + iγ, 1
2 + iγ′ of the Riemann zeta-function.

Montgomery’s famous pair correlation conjecture states that, for fixed α, β
satisfying 0 < α < β,

lim
T→∞

1
N(T )

�

{
0 < γ, γ′ < T : α ≤ (γ − γ′) log T

2π
≤ β

}
=
∫ β

α

(
1 −
(

sinπu
πu

)2
)

du. (6.12)

Montgomery claims that (6.12) would follow from a sufficiently good estimate
for ∑

n≤x

Λ(n)Λ(n+ h) − c(h)x

in a certain range of h, where c(h) is some quantity depending on h; however,
the Hardy–Littlewood twin prime conjecture [117] is too strong of an input
into this problem. Heath-Brown [123] obtained for the difficult related problem
of the distribution of differences pn+1−pn of consecutive prime numbers under
assumption of the pair correlation conjecture the estimate∑

pn≤x

(pn+1 − pn)2 	 x(log x)2.

The pair correlation conjecture has many other important consequences. For
instance, (6.12) implies that almost all zeros of the zeta-function are simple
(actually, this is related to the asymptotic formula (1.12)).

Dyson remarked that the function on the right of (6.12) is the pair cor-
relation function of the eigenvalues of large random Hermitian matrices, or
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more specifically of the Gaussian Unitary Ensemble. This supports an old idea
of Hilbert and Pólya. Their approach towards Riemann’s hypothesis was to
look for a self-adjoint linear operator of an appropriate Hilbert space whose
eigenvalues include the zeros of

ξ(t) =
1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

with s = 1
2 + it. Since ξ(t) is an entire function which vanishes exactly at the

non-trivial zeros 	 of ζ(s), the property of self-adjointness would imply that
all zeros 	 lie on the line σ = 1

2 . In the last years, remarkable progress in
this direction was made. By the work of Odlyzko [283], it turned out that the
pair correlation and the nearest neighbour spacing for the zeros of ζ(s) were
amazingly close to those for the Gaussian Unitary Ensemble. There is even
more evidence for the pair correlation conjecture than numerical data. In the
meantime many results from random matrix theory were found fitting per-
fectly to certain results on the value-distribution of the Riemann zeta-function
(and even other L-functions; see Conrey’s survey article [58]). For example,
Keating and Snaith [168] showed that certain random matrix ensembles have
in some sense the same value-distribution as the zeta-function on the criti-
cal line predicted by Selberg’s limit law (1.16). Further evidence for the pair
correlation conjecture was discovered by Rudnick and Sarnak. Normalize the
ordered non-trivial zeros 	n = 1

2 + iγn by setting

γ̃n =
γn

2π
log |γn|,

then it follows from the Riemann–von Mangoldt formula (1.5) that the num-
bers γ̃n have unit mean spacing. The pair correlation conjecture (6.12) can be
rewritten as follows: for any nice function f on (0,∞)

lim
N→∞

∑
n≤N

f(γ̃n+1 − γ̃n) =
∫ ∞

0

f(x)P (x) dx,

where P is the distribution of consecutive spacings of the eigenvalues of a large
random Hermitean matrix. Rudnick and Sarnak [314] succeeded in showing
that them-dimensional analogue of the latter formula, them-level correlation,
holds for a large class of test functions. Finally, note that Katz and Sarnak
[167] proved a function field analogue of Montgomery’s pair correlation con-
jecture without assuming any unproved hypothesis.

Recently, Murty and Perelli [271] extended Montgomery’s argument to
the Selberg class. For this purpose, they considered two primitive functions
L1 and L2 from S. To compare the zeros 1

2 + iγL1 of L1 against the zeros
1
2 + iγL2 of L2 define

F(α;L1,L2) =
π

dL1T log T

∑
−T≤γL1 ,γL2≤T

T iα dL1 (γL1−γL2 )w(γL1 − γL2),
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where w is a suitable weight function. The pair correlation conjecture for the
Selberg class takes then the form:

Pair Correlation Conjecture. Let L1 and L2 be primitive functions in S.
Under the assumption of the Grand Riemann hypothesis, uniformly in α, as
T → ∞,

F(α;L1,L2) ∼
{
δL1,L2 |α| + dL1T

−2|α| dL1 log T (1 + O(1)) if |α| < 1 ,
δL1,L2 |α| otherwise.

Here
δL1,L2 :=

{
1 if L1 = L2,
0 otherwise,

is the Kronecker-symbol. This conjecture includes Montgomery’s pair corre-
lation conjecture. It has plenty of important applications as M.R. Murty and
Perelli [271] worked out. For instance, the Artin conjecture follows from the
pair correlation conjecture. Further, the pair correlation conjecture implies
that almost all zeros of two different primitive functions L1 and L2 are sim-
ple and distinct. Moreover, if the pair correlation formula holds for at least
one value of α, then S has unique factorization into primitive functions. This
shows what a powerful tool pair correlation is. Further, M.R. Murty and Perelli
proved that the Grand Riemann hypothesis and the pair correlation conjec-
ture imply the Selberg conjectures. The pair correlation conjecture plays a
complementary role to the Riemann hypothesis: vertical vs. horizontal distri-
bution of the non-trivial zeros of ζ(s). Both together seem to be the key to
several unsolved problems in number theory!

In the sequel, we investigate universality for L-functions in the Selberg
class. We shall show how our general universality theorem for S̃ extends to a
certain class of polynomial Euler products in S. We expect that it holds for
all functions L ∈ S \ {1}. Moreover, we can extend the strip of universality
significantly on behalf of the functional equation.

6.5 The Phragmén–Lindelöf Principle

The order of growth of a meromorphic function is of special interest. Recall
our observations on the order of growth of Dirichlet series from Sect. 2.1. If
the Dirichlet series under investigation satisfies a functional equation, we can
obtain more information about the mean-square half-plane. For L ∈ S we
define

μL(σ) = lim sup
t→±∞

log |L(σ + it)|
log |t| .

One can show that μL(σ) is a convex function of σ. Taking into account the
absolute convergence of the defining Dirichlet series we obtain immediately
μL(σ) = 0 for σ > 1. The order of growth in the half-plane to the left of the
critical strip is ruled by the functional equation which we may rewrite as

L(s) = ΔL(s)L(1 − s), (6.13)



6.5 The Phragmén–Lindelöf Principle 125

where

ΔL(s) := ωQ1−2s

f∏
j=1

Γ (λj(1 − s) + μj)
Γ (λjs+ μj)

.

Applying Stirling’s formula (2.17), we get after a short computation

Lemma 6.7. Let L ∈ S. For t ≥ 1, uniformly in σ,

ΔL(σ + it) =
(
λQ2t dL

)1/2−σ−it
exp
(

itdL +
iπ(μ− dL)

4

)(
ω + O

(
1
t

))
,

where

μ := 2
f∑

j=1

(1− 2μj) and λ :=
f∏

j=1

λ
2λj

j .

Using the so-called Phragmén–Lindelöf principle, we can obtain upper
bounds for the order of growth inside the critical strip.

Theorem 6.8. Let L ∈ S. Uniformly in σ, as |t| → ∞,

L(σ + it) ! |t|(1/2−σ) dL |L(1 − σ + it)|.

In particular,

μL(σ) ≤

⎧⎨⎩
0 if σ > 1,

1
2 dL(1 − σ) if 0 ≤ σ ≤ 1,
( 1
2 − σ) dL if σ < 0.

Proof. The first assertion follows immediately from the functional equation
and Lemma 6.7. This together with the trivial estimate μL(σ) = 0 for σ > 1
implies for σ < 0

μL(σ) =
(

1
2
− σ

)
dL.

The calculation of μL(σ) for 0 ≤ σ ≤ 1 is more difficult. We have to apply a
kind of maximum principle for unbounded regions, the theorem of Phragmén–
Lindelöf.

Lemma 6.9. Let f(s) be analytic in the strip σ1 ≤ σ ≤ σ2 with f(s) 	
exp(ε|t|). If

f(σ1 + it) 	 |t|c1 and f(σ2 + it) 	 |t|c2 ,

then f(s) 	 |t|c(σ) uniformly in σ1 ≤ σ ≤ σ2, where c(σ) is linear with
c(σ1) = c1 and c(σ2) = c2.

A proof can be found in the paper of Phragmén and Lindelöf [221] or, for
example, in Titchmarsh [352]. Note that there are counterexamples if the
growth condition f(s) 	 exp(ε|t|) is not fulfilled.

We continue with the proof. In view of the axiom concerning the analytic
continuation L(s) is a function of finite order. Thus, Lemma 6.9 shows that
μL(σ) is non-increasing and convex downwards. By the estimates of μL(σ) for
σ outside of the critical strip the second assertion of the theorem follows. ��
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It should be noticed that we did not use the condition that the μj appearing
in the gamma factors of the functional equation have positive real part. Thus,
if it will turn out that this condition is too restrictive, it does not influence
the statement of Theorem 6.8 or what we will deduce from it.

In view of the functional equation, respectively, the convexity of μL(σ),
the value for σ = 1

2 is essential. In particular, we obtain μL( 1
2 ) ≤ 1

4 dL, or
equivalently,

L
(

1
2

+ it
)
	 |t|(dL/4)+ε (6.14)

for |t| ≥ 1; this bound is known as the convexity bound. The best known
upper bound for the Riemann zeta-function is μζ( 1

2 ) ≤ 32
205 , due to Huxley

[138].
Next, we shall apply the following refinement of Carlson’s classic theorem

on the mean-square of Dirichlet series due to Potter [296].

Theorem 6.10. Suppose that the functions

A(s) =
∞∑

n=1

an

ns
and B(s) =

∞∑
n=1

bn
ns

have a half-plane of convergence, are of finite order, and that all singularities
lie in a subset of the complex plane of finite area. Further, assume that∑

n≤x

|an|2 	 xb+ε and
∑
n≤x

|bn|2 	 xb+ε,

as x→ ∞, and that A(s) and B(s) satisfy

A(s) = h(s)B(1− s),

where h(s) ! |t|c(a/2−σ) uniformly in σ for σ from a finite interval, as |t| → ∞,
and a, b, c are some non-negative constants. Then

lim
T→∞

1
2T

∫ T

−T

|A(σ + it)|2 dt =
∞∑

n=1

|an|2
n2σ

for σ > max{a
2 ,

1
2 (b+ 1) − 1

c}.

Taking into account (2.12) and Theorem 6.8, we may take a = b = 1 and
c = dL. We obtain

Corollary 6.11. Let L ∈ S. For σ > max
{

1
2 , 1 − 1

dL

}
,

lim
T→∞

1
2T

∫ T

−T

|L(σ + it)|2 dt =
∞∑

n=1

|a(n)|2
n2σ

.
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Note that the series on the right-hand side converges on behalf of the
Ramanujan hypothesis (1). Further, we remark that the statement of the
corollary holds also for L-functions which do not fulfill axiom (4) from the
definition of S, since we have used (2.12) and not Lemma 2.3. Corollary 6.11
should be compared with the mean-square estimates of Perelli [289] for his
class of L-functions; his argument is different.

Corollary 6.11 improves the range for the existence of the mean-square
given by Theorem 2.4, provided L(s) satisfies a Riemann-type functional equa-
tion: the mean-square half-plane of L then contains the region

σ > max
{

1
2
, 1 − 1

dL

}
.

It would be desirable to extend this region further to the half-plane σ > 1
2

in general. However, this is hard. The difficulties arise for large degrees dL.
For instance, Chandrasekharan and Narasimhan [52] obtained for Dedekind
zeta-functions the estimate∫ T

0

|ζK(σ + it)|2 dt	 T d(1−σ)(log T ) d

for 1
2 ≤ σ ≤ 1− 1

d , where d is the degree of ζK(s). Potter’s theorem only yields
an asymptotic formula throughout σ > 1

2 if d ≤ 2. The difficulties become
more obvious by noting that any result on the mean-square of an L-function
from the Selberg class of degree d is comparable to the corresponding result
for the 2dth moment of the Riemann zeta-function. The fourth moment of
ζ(s) on the critical line is quite well understood (by the work of Hardy and
Littlewood [118], Ingham [139], Motohashi [263] and others), however, higher
moments are still unsettled; there are only estimates known. Similar problems
appear to the right of the critical line. For example, Ivić showed [141] proved
for 5

8 < σ < 1 ∫ T

1

|ζ(σ + it)|8 dt	 T (11−8σ)/6+ε. (6.15)

Recently some new insight was obtained by the analogies to random matrix
theory. Extending a conjecture of Conrey and Gonek [61], Keating and Snaith
[168] conjectured

1
T

∫ T

0

∣∣∣∣ζ (1
2

+ it
)∣∣∣∣2k

dt ∼ c(k)(log T )k2
,

where

c(k) :=
G2(k + 1)
G(2k + 1)

∏
p

(
1 − 1

p2

)k2 ∞∑
m=0

(
Γ (m+ k)
m!Γ (k)

)2

p−m
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with the Barnes double Gamma-function G(z), defined by

G(z+1) = (2π)z/2 exp
(
−1

2
(z(z + 1) + γz2)

) ∞∏
n=1

(
1 +

z

n

)n

exp
(
−z +

z2

n

)
,

and γ is the Euler–Mascheroni constant. For more details on mean-value
results and random matrix theory we refer to Ivić’s monograph [141],
Matsumoto’s survey [240], and Conrey’s paper [58].

6.6 Universality in the Selberg Class

Now we are going to apply the universality Theorem 5.14 to L-functions in
the Selberg class. First of all we compare the classes S̃ and S. The axioms (i)
and (1) are identical. Concerning analytic continuation we note that axiom (2)
implies (ii) with any σL < 1. Moreover, any L(s) satisfying (2) is a function
of finite order and together with the functional equation (3) we obtain (iii)
with μL = μL(σ) (by Theorem 6.8). Only the arithmetic axioms (iv) and (v)
cannot be deduced from the axioms of the Selberg class; however, they are
expected to hold. As already mentioned, the elements in the Selberg class
are automorphic or at least conjecturally automorphic L-functions, and it is
conjectured that S consists of all automorphic L-functions. For all known
examples, the Euler product has the form of axiom (iv) in the definition of
S̃: there exists a positive integer m and for each prime p, there are complex
numbers αj(p) such that

L(s) =
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

.

The remaining axiom of S̃ is (v) which states that

lim
x→∞

1
π(x)

∑
p≤x

|a(p)|2 = κ

for some positive constant κ. This axiom is closely related to Selberg’s conjec-
tures. In fact, it implies a weak version of Selberg’s conjecture A. By partial
summation, ∑

p≤x

|a(p)|2
p

=
1
x

∑
p≤x

|a(p)|2 +
∫ x

2

∑
p≤u

|a(p)|2 du
u2

∼ κ

∫ x

2

du
log u

∼ κ log log x;

this is the normality conjecture of Kaczorowski and Perelli [163] for the single
function L(s) (provided κ ∈ N which we do not require); indeed, the full
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normality conjecture is equivalent to the validity of axiom (v) for the whole
of S.1 Conversely, the strong Selberg Conjecture B with a remainder term

R(x) = O
(

1
log x

)
implies axiom (v) on the prime mean square with κ = nL. Moreover, from
this strong version it would follow that S ∩ S̃ is multiplicatively closed.

Now we can formulate a rather general universality theorem for L-functions
in the Selberg class.

Theorem 6.12. Let L ∈ S ∩ S̃ (i.e., L(s) satisfies the axioms (2), (3), (iv),
and (v)), let K be a compact subset of the strip σm < σ < 1 (where σm ≤
max{ 1

2 , 1 − 1
dL
} < 1) with connected complement, and let g(s) be a non-

vanishing continuous function on K which is analytic in the interior of K.
Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ) − g(s)| < ε

}
> 0.

Obvious examples for elements in S∩S̃ are the Riemann zeta-function and
Dirichlet L-functions L(s, χ) to primitive characters χ. Further examples of
elements are normalized L-functions associated with holomorphic newforms,
Dedekind zeta-functions, Rankin–Selberg L-functions. This can be shown by
using analogues of the prime number theorem (e.g., the prime ideal theorem).
If one is willing to accept some widely believed conjectures, then many L-
functions belong to this class. However, later we shall prove universality for
Dirichlet L-functions to imprimitive characters which are not elements of the
Selberg class (by lack of having the appropriate functional equation) and
further L-functions which are conjectured to lie in S. This marks an important
advantage of dealing with the class S̃ rather than the Selberg class.

We shall briefly discuss some refinements of the universality Theorem 6.12
with respect to the strip of universality. In some particular cases of functions
L ∈ S̃ with degree dL > 2 the existence of the mean-square

lim
T→∞

1
T

∫ T

1

|L(σ + it)|2 dt

is known for some σ ≤ 1− 1
dL

. For instance, let L(s, χ) be an arbitrary Dirichlet
L-function to a primitive character χ. Then ζ(s)2L(s, χ) is an element of S̃
of degree 3, so Theorem 6.12 gives universality for 2

3 < σ < 1. Montgomery
[258] proved that∑

χ mod q
primitive

∫ T

−T

∣∣∣∣L(1
2

+ it, χ
)∣∣∣∣4 dt	 ϕ(q)T (log(qT ))4.

1 This remark is due to Giuseppe Molteni; see MathReviews MR1981179
(2004c:11165). Selberg’s conjecture A for a single L-function seems to be insuffi-
cient for a proof of universality (by lack of a sufficiently good error term).
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It is easily seen that the same bound holds for the fourth moment on vertical
lines to the right as well. In combination with Ivić’s eigth-moment estimate
(6.15), the Cauchy–Schwarz inequality yields∫ T

1

|ζ(σ + it)2L(σ + it, χ)|2 dt

	
(∫ T

1

|ζ(σ + it)|8 dt
∫ T

1

|L(σ + it, χ)|4 dt

)1/2

	 T (11−8σ)/12+εT 1/2+ε 	 T

for any σ > 5
8 with sufficiently small ε. Thus ζ(s)2L(s, χ) is universal in the

strip 5
8 < σ < 1. In this example, we can even do better by applying the joint

universality Theorem 1.10 which improves the range to 1
2 < σ < 1.

In Sect. 6.7, we show that the strip of universality for L ∈ S ∩ S̃ can be
extended subject to a growth condition for L(s) on the critical line.

6.7 Lindelöf’s Hypothesis

For many applications in number theory, it is useful to assume Riemann’s
hypothesis but quite often it suffices to work with weaker conjectures.

Lindelöf [220] conjectured that the order of growth of the zeta-function
is much smaller than the one the Phragmén–Lindelöf principle gives. More
precisely, he expressed his belief that ζ(s) is bounded if σ ≥ 1

2 + ε for any
fixed positive ε. In terms of the μ-function from Sect. 6.5 this would imply
μζ( 1

2 ) = 0 or equivalently

ζ

(
1
2

+ it
)
	 tε

as t→ ∞. The last statement is now known as Lindelöf’s hypothesis and it is
yet unproved. However, the boundedness conjecture is false as one can easily
deduce, for example, from Voronin’s universality theorem. It was proved by
Littlewood [223] that the Lindelöf hypothesis follows from the truth of the
Riemann hypothesis. On the contrary, Backlund [8] proved that the Lindelöf
hypothesis is equivalent to the much less drastic but yet unproved hypothesis
that for every σ > 1

2

N(σ, T + 1)−N(σ, T ) = O(log T ). (6.16)

Furthermore, the Lindelöf hypothesis implies the classic density hypothesis
which claims

N(σ, T ) 	 T 2(1−σ)+ε. (6.17)

This should be compared with the density Theorems 1.2 and 6.5.
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In the case of the Lerch zeta-function (1.41) the analogue of the density
hypothesis is not true in general. For instance, the function given by (6.7) can
be rewritten as L

(
1
2 , 1, s

)
, and obviously it has infinitely many zeros off the

critical line σ = 1
2 , at least the zeros s = 1− 2πi

log 2k with k ∈ Z\{0}, coming from
the factor 1−21−s. This violates the analogue of the Riemann hypothesis and,
moreover, it violates the analogue of (6.17) as well. On the other side L(1

2 , 1, s)
satisfies the analogue of the Lindelöf hypothesis provided ζ(s) satisfies the
Lindelöf hypothesis. This example does not seem to be special. It is known
that a generic Lerch zeta-function has many zeros off the critical line. Denote
by 	 = β + iγ the non-trivial zeros of L(λ, α, s) (where the notion non-trivial
is defined quite similarly as for ζ(s)). Garunkštis and Steuding [91] (see also
[89]) proved, for 0 < λ,α ≤ 1,∑

|γ|≤T

(
β − 1

2

)
=

T

2π
log

α√
λ+λ−

+ O(log T )

(for the definition of the quantities λ+ and λ− see (1.43)). Consequently, any
L(λ, α, s) with α2 > λ+λ− has � T many zeros in the region σ > 1

2 , 0 < t ≤
T . The proportion of the parameters λ, α ∈ (0, 1] which satisfy α2 > λ+λ− is
equal to

1 −
∫ 1

0

√
λ(1 − λ) dλ = 1 − π

8
.

Since most of these zeros off the critical line could lie arbitrarily close to σ = 1
2 ,

this alone does not violate the analogue of the density hypothesis for the Lerch
zeta-function. However, Garunkštis [85] proved that for transcendental α the
number of zeros 	 = β + iγ of L(λ, α, s) with β > σ, |γ| ≤ T is � T for
any fixed σ ∈ ( 1

2 , 1]; the proof relies on the strong universality property of
L(λ, α, s) (see also Garunkštis and Laurinčikas [89]). This indicates that if
L(λ, α, s) has no Euler product representation, the density hypothesis does
not follow from the Lindelöf hypothesis. On the other hand, Garunkštis and
Steuding [92] showed that the analogue of the Lindelöf hypothesis for Lerch
zeta-functions seems reasonable.

In [60] Conrey and Ghosh generalized the Lindelöf hypothesis to the
Selberg class. They proved that if L ∈ S is an entire function which satis-
fies the Riemann hypothesis, the Euler product is of the form (iv), and that
all λj appearing in the functional equation are equal to 1

2 , then there exists a
constant C, depending only on ε > 0 and the degree dL, such that∣∣∣∣L(1

2
+ it
)∣∣∣∣ ≤ C

⎛⎝Q(1 + |t|) dL/2

f∏
j=1

(1 + |μj |)

⎞⎠ε

.

The proof follows the lines of Littlewood’s proof that the Riemann hypo-
thesis implies the Lindelöf hypothesis (in fact, it relies on a combination
of the Phragmén–Lindelöf principle, the Borel–Carathéodory theorem and
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Hadamard’s three circle theorem). In view of the Phragmén–Lindelöf princi-
ple one can prove unconditionally∣∣∣∣L(1

2
+ it
)∣∣∣∣	 (cQ2(1 + |t|) dL)(1/4)+ε

for some positive constant c = c(λ, μ) depending only on the data of the
functional equation. We already obtained with (6.14) a similar bound in the
t-aspect. The so-called subconvexity problem is to find a δ > 0 such that
the exponent on the right-hand can be replaced by 1

4 − δ. For certain L-
functions subconvexity bounds are known but in general, this seems to be a
difficult problem. However, solutions of the subconvexity problem (in the Q-
aspect) lead to several important applications in number theory, e.g., Hilbert’s
eleventh problem on the representation of integers by a given quadratic form;
we refer for details and further examples to the survey of Iwaniec and Sarnak
[145]. Here, we are only interested in the t-aspect.

Grand Lindelöf Hypothesis. For L ∈ S̃ and any ε > 0,

L
(

1
2

+ it
)
	 |t|ε for |t| ≥ 1. (6.18)

The implicit constant may depend on ε and L. This hypothetical estimate
coincides with Perelli’s Lindelöf hypothesis for his class of L-functions [289].
Among other interesting results, Perelli showed for his L-functions that
Riemann’s hypothesis implies the Lindelöf hypothesis, and that Backlund’s
reformulation (6.16) of the Lindelöf hypothesis in terms of their zero-
distribution off the critical line holds. We observe that the Lindelöf hypothesis
(6.18) for L(s) is equivalent to

μL(σ) = dL max
{

0,
1
2
− σ

}
.

There are several further interesting reformulations of the Lindelöf hypoth-
esis in the particular case of the Riemann zeta-function. One, given in terms
of moments on the critical line, was found by Hardy and Littlewood [119].
They proved that the Lindelöf hypothesis is true if and only if for any k ∈ N

1
T

∫ T

1

∣∣∣∣ζ (1
2

+ it
)∣∣∣∣2k

dt	 T ε. (6.19)

Another equivalent form is due to Laurinčikas [195]. He proved that the
Lindelöf hypothesis is equivalent to the asymptotic formula

1
T

meas
{
t ∈ [0, T ] :

∣∣∣∣ζ (1
2

+ it
)∣∣∣∣ < xT ε

}
= 1− O

(
δ(T )

1 + xA

)
with positive ε, A and sufficiently large x, where δ(T ) is an arbitrary positive
function which tends to zero as T → ∞.
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Now we consider the mean-square on vertical lines to the right of the
critical line subject to the Lindelöf hypothesis. For this purpose we return
to Sect. 2.4. Assuming the Lindelöf hypothesis, we may take σL = 1

2 and
μL = μL( 1

2 ) = 0 in Theorem 2.4. Thus, for L ∈ S ∩S̃, the Lindelöf hypothesis
implies

lim
T→∞

1
T

∫ T

1

|L(σ + it)|2 dt =
∞∑

n=1

|a(n)|2
n2σ

for any σ > 1
2 . In fact, there are no big difficulties to consider also higher

moments, and also to derive an equivalent statement for Lindelöf’s hypothesis
analogous to (6.19).

If the Lindelöf hypothesis is true, then the strip of universality can be
extended to the open right half of the critical strip.

Corollary 6.13. Assume that the Lindelöf hypothesis is true for L ∈ S ∩ S̃.
Let K be a compact subset of the strip 1

2 < σ < 1 with connected complement,
and let g(s) be a non-vanishing continuous function on K which is analytic in
the interior of K. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ) − g(s)| < ε

}
> 0.

In view of results on the frequency of the values taken in neighbourhood
of the critical line (see Theorem 7.6) it seems to be impossible to have univer-
sality (in the sense of Voronin’s theorem) in any region covering the critical
line.

6.8 Symmetric Power L-Functions

We conclude this chapter with an example. Symmetric power L-functions
became important by Serre’s reformulation of the Sato–Tate conjecture. For
the sake of simplicity, here we shall only consider the case where f is a
normalized eigenform of weight k to the full modular group. According to
the normalization from Sect. 2.2, we suppose that its Fourier expansion is
given by

f(z) =
∞∑

n=1

a(n)n(k−1)/2 exp(2πinz)

and the attached L-function has an Euler product representation of the form

L(s, f) =
∏
p

(
1 − a(p)

ps
+

1
p2s

)−1

.

In view of Deligne’s estimate (1.34), for each prime p, we may define an angle
θp ∈ [0, π] by setting

a(p) = 2 cos θp; (6.20)
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this should be compared with the angles defined in equation (5.20). Then, for
any non-negative integer m the symmetric mth power L-function attached to
f is for σ > 1 given by

Lm(s, f) =
∏
p

m∏
j=0

(
1 − exp(iθp(m− 2j))

ps

)−1

. (6.21)

Then
L0(s, f) = ζ(s), L1(s, f) = L(s, f),

and
L2(s, f) =

ζ(2s)
ζ(s)

L(s, f ⊗ f),

where L(s, f ⊗ f) is the Rankin–Selberg L-function (introduced in Sect. 1.6).
Shimura [328] obtained the analytic continuation and a functional equation of
Riemann-type for the case m = 2. By the powerful methods of the Langlands
program, Shahidi [326] obtained the analytic continuation of Lm(s, f) to σ ≥ 1
for m ≤ 4. In particular cases more is known; for example, Kim and Shahidi
[170] showed that certain third symmetric power L-function attached to non-
monomial cusp forms of GL2 over any number field are entire, and Shahidi [327]
proved that the third and the fourth symmetric power L-function are cuspidal
unless the underlying cusp form is either of dihedral or tetrahedral type (in the
terminology of Klein’s classification of finite subgroups of PGL2(C)). However,
the case of m > 4 is open. Serre [324] conjectured that if f does not have
complex multiplication, the angles θp are uniformly distributed with respect
to the Sato–Tate measure

2
π

(sin θ)2 dθ, (6.22)

if p ranges over the set of prime numbers (in analogy to a similar conjecture
for elliptic curves E due to Sato and Tate which was recently solved by
Taylor [351] assuming a mild condition on E). Furthermore, Serre proved
that the non-vanishing of Lm(s, f) on the abscissa of convergence σ = 1 for
all m ∈ N implies the Sato–Tate conjecture for newforms, namely

lim
x→∞

1
π(x)

�{p ≤ x : α < θp < β} =
2
π

∫ β

α

(sin θ)2 dθ. (6.23)

Ogg [285] has shown that if for each m ≤ 2M , the function Lm(s, f) has an
analytic continuation to a half-plane σ > 1

2 − ε, then Lm(s, f) does not vanish
on the line σ = 1. V.K. Murty [272] proved that it suffices to have an analytic
continuation of any Lm(s, f) to σ ≥ 1 for proving the Sato–Tate conjecture.
In this context, M.R. Murty [265] (see also [270]) proved asymptotic formulae
for the 2mth power moments of cos θp.
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Theorem 6.14. Let f be a normalized newform. If Lm(s, f) has an analytic
continuation up to σ ≥ 1

2 for all m ≤ 2(M + 1), then, for m ≤M + 1,

lim
x→∞

1
π(x)

∑
p≤x

(2 cos θp)2m =
1

m+ 1

(
2m
m

)
,

and, for m ≤M ,

lim
x→∞

1
π(x)

∑
p≤x

(2 cos θp)2m+1 = 0.

In view of Shimura’s results, the asymptotic formulae of the theorem hold
unconditionally for M ≤ 1. This includes Rankin’s asymptotic formula (1.37).
If we expand the Euler product (6.21) into a Dirichlet series, the pth coefficient
is given by

ap :=
m∑

j=0

exp(iθp(m− 2j)) =
sin((m+ 1)θp)

sin θp
= Um(cos θp),

where Um(x) is the Chebyshev polynomial of the second kind, defined by
U0(x) = 1, U1(x) = x and Um(x) = xUm−1(x) − Um−2(x) for m ≥ 2. In view
of Theorem 6.14 it follows that:∑

p≤x

|ap|2 =
∑
p≤x

Um(cos θp)2 ∼ κπ(x)

as x→ ∞, where κ is a positive constant. Taking into account the functional
equation for Lm(s, f) (see [219], resp. Cogdell and Michel [56]), it follows that
Lm(s, f) is an element of degree m+1 in the Selberg class S, unconditionally
for m ≤ 4, and conditionally for m > 4 (depending on the analytic continua-
tion which actually is a consequence of the Langlands conjectures). It is not
difficult to see that we also have Lm(s, f) ∈ S̃ under the same conditions.
Thus Theorem 5.14 yields

Corollary 6.15. Let f be a normalized newform, let K be a compact subset of
the strip max{ 1

2 , 1 − 1
m+1} < σ < 1 with connected complement, and let g(s)

be a non-vanishing continuous function on K which is analytic in the interior
of K. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|Lm(s+ iτ, f) − g(s)| < ε

}
> 0,

unconditionally if m ≤ 4, and for m ≥ 5 under the assumption of the holo-
morphy of Lm(s, f) throughout C and the existence of a functional equation.

With slightly more effort, one can show that if f is a holomorphic newform
of some level N ≥ 1 and integer weight k ≥ 1 which is not of complex
multiplication type, then for m = 2, 3, 4 the mth symmetric power L-function
Lm(s, f) is universal. Corollary 6.15 was independently obtained by Li and
Wu [219].
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Value-Distribution in the Complex Plane

Une fonction entière, qui ne devient jamais ni à a ni à b est nécessaire-
ment une constante. Emile Picard

Many beautiful results on the value-distribution of L-functions follow from
the general theory of Dirichlet series like the Big Picard theorem (see Boas [26]
and Mandelbrojt [234]), but more advanced statements can only be proved
by exploiting the characterizing properties (the functional equation and the
Euler product). In this chapter, we study the distribution of values of Dirichlet
series satisfying a Riemann-type functional equation. These results are due to
Steuding [346, 347] and their proofs follow in the main part the methods of
Levinson [217], Levinson and Montgomery [218], and Nevanlinna theory.

7.1 Sums Over c-Values

Let c be any complex number. Levinson [217] proved that all but
	 N(T )(log log T )−1 of the roots of ζ(s) = c in T < t < 2T lie in∣∣∣∣σ − 1

2

∣∣∣∣ < (log log T )2

log T
.

Thus, the c-values of the zeta-function are clustered around the critical line.
In particular, we see that the density estimate (1.13) alone does not indicate
the truth of the Riemann hypothesis. As we shall show in this chapter, this
distribution of c-values is typical for Dirichlet series satisfying a Riemann-type
functional equation.

Throughout this chapter, we shall assume that

L(s) =
∞∑

n=1

a(n)
ns
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satisfies the axioms (1)–(3) from the definition of the Selberg class S, and so
we may define the degree dL of L by (6.2); we shall not make use of axiom (4)
(neither do we use the condition on the real parts of the complex numbers μj

in the Gamma-factors of the functional equation), however, for simplicity we
suppose that a(1) = 1. In some places we shall assume the Lindelöf hypothesis
for L(s); by that we mean the estimate (6.18).

We give an example of a function satisfying these axioms which does not
have an Euler product. The Davenport–Heilbronn zeta-function is given by

L(s) =
1 − iκ

2
L(s, χ) +

1 + iκ
2

L(s, χ), (7.1)

where

κ :=

√
10 − 2

√
5 − 2√

5 − 1

and χ is the character mod 5 with χ(2) = i. It is easily seen that the
Davenport–Heilbronn zeta-function satisfies the functional equation(

5
π

)s/2

Γ

(
s+ 1

2

)
L(s) =

(
5
π

)(1−s)/2

Γ
(
1 − s

2

)
L(1 − s).

Davenport and Heilbronn [65] introduced this function as an example for a
Dirichlet series having zeros in the half-plane σ > 1 although L(s) satisfies a
Riemann-type functional equation; see Balanzario [14] for more examples of
a similar type.

The c-values of L(s) are the roots of the equation

L(s) = c, (7.2)

which we denote by 	c = βc +iγc. Our first aim is to prove estimates for sums
taken over c-values, weighted with respect to their real parts.

Theorem 7.1. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1
and let c �= 1. Then, for any b > max{ 1

2 , 1 − 1
dL
},

∑
βc>b

T <γc≤2T

(βc − b) 	 T.

Assuming the truth of Lindelöf ’s hypothesis for L(s),

∑
βc> 1

2
T <γc≤2T

(
βc −

1
2

)
= O(T log T ).
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The case c = 1 is exceptional since 1 = a(1) is the limit of L(s) as σ →∞:

L(s) = 1 + O(2−σ). (7.3)

We will briefly discuss this case at the end of Sect. 7.2.

Proof. In view of (7.3) there exists a positive real number A depending on c
such that all real parts βc of c-values satisfy βc < A. Put

�(s) =
L(s) − c

1 − c
.

Obviously, the zeros of �(s) correspond exactly to the c-values of L(s). Next we
will apply Littlewood’s lemma which relates the zeros of an analytic function
f(s) with a contour integral over log f(s).

Lemma 7.2 (Littlewood). Let b < a and let f(s) be analytic on R := {s ∈
C : b ≤ σ ≤ a, |t| ≤ T}. Suppose that f(s) does not vanish on the right edge
σ = a of R. Let R′ be R minus the union of the horizontal cuts from the zeros
of f in R to the left edge of R, and choose a single-valued branch of log f(s)
in the interior of R′. Denote by ν(σ, T ) the number of zeros 	 = β + iγ of
f(s) inside the rectangle with β > σ including zeros with γ = T but not those
with γ = −T . Then∫

∂R
log f(s) ds = −2πi

∫ a

b

ν(σ, T ) dσ.

This is an integrated version of the principle of the argument. We give a
sketch of the simple proof. Cauchy’s theorem implies

∫
∂R′ log f(s) ds = 0, and

so the left-hand side of the formula of the lemma,
∫

∂R, is minus the sum of
the integrals around the paths hugging the cuts. Since the function log f(s)
jumps by 2πi across each cut (assuming for simplicity that the zeros of f in
R are simple and have different height; the general case is no harder),

∫
∂R is

−2πi times the total length of the cuts, which is the right-hand side of the
formula in the lemma. For more details we refer to Titchmarsh [353, Sect. 9.9],
or Littlewood’s original paper [224].

Let ν(σ, T ) denote the number of zeros 	c of �(s) with βc > σ and T < γc ≤
2T (counting multiplicities). Now let a be a parameter with a > max{A +
1, b}. Then Littlewood’s Lemma 7.2, applied to the rectangle R with vertices
a+ iT, a+ 2iT, b+ iT, b+ 2iT , gives∫

R
log �(s) ds = −2πi

∫ a

b

ν(σ, T ) dσ.

Since ∫ a

b

ν(σ, T ) dσ =
∑
βc>b

T <γ≤2T

∫ βc

b

dσ =
∑
βc>b

T <γc≤2T

(βc − b) (7.4)



140 7 Value-Distribution in the Complex Plane

and this quantity is real-valued, we get

2π
∑
βc>b

T <γc≤2T

(βc − b) =
∫ 2T

T

log |�(b+ it)|dt−
∫ 2T

T

log |�(a+ it)|dt+

−
∫ a

b

arg �(σ + iT ) dσ +
∫ a

b

arg �(σ + 2iT ) dσ

=
4∑

j=1

Ij , (7.5)

say. To define log �(s) and logL(s) we may choose the principal branch of the
logarithm on the real axis, as σ → ∞; for other points s the value of the
logarithm is obtained by continuous variation along line segments (this is in
agreement with Lemma 7.2).

We start with the vertical integrals. Obviously,

I1(T, b) := I1 =
∫ 2T

T

log |L(b+ it) − c|dt− T log |1 − c|. (7.6)

By Jensen’s inequality the integral is

≤ T

2
log

(
1
T

∫ 2T

T

|L(b+ it)|2 dt

)
+ O(T ).

By Corollary 6.11 (which also applies to L-functions satisfying just axioms
(1)–(3) as already remarked) this is 	 T for b > max{1

2 , 1 − 1
dL
}. Thus we

get I1(T, b) 	 T unconditionally. An immediate consequence of Lindelöf’s
hypothesis is ∫ 2T

T

∣∣∣∣L(1
2

+ it
)∣∣∣∣2 dt	 T 1+ε

for any positive ε. Thus, assuming the truth of Lindelöf’s hypothesis we get

I1

(
T,

1
2

)
	 εT log T.

Next we consider I2. Since a > 1 we have

�(a+ it) = 1 +
1

1 − c

∞∑
n=2

a(n)
na+it

, (7.7)

and in view of (7.3) the absolute value of the series is less than 1 for sufficiently
large a. Therefore, we find by the Taylor expansion of the logarithm

log |�(a+ it)| = Re
∞∑

k=1

(−1)k

k(1 − c)k

∞∑
n1=2

· · ·
∞∑

nk=2

a(n1) · · · a(nk)
(n1 · · ·nk)a+it

.
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This leads to the estimate

I2 = Re
∞∑

k=1

(−1)k

k(1 − c)k

∞∑
n1=2

· · ·
∞∑

nk=2

a(n1) · · · a(nk)
(n1 · · ·nk)a

∫ 2T

T

dt
(n1 · · ·nk)it

	
∞∑

k=1

1
k

( ∞∑
n=2

1
na−ε

)k

	 1 (7.8)

for sufficiently large a. It remains to estimate the horizontal integrals I3, I4.
Suppose that Re �(σ + iT ) has N zeros for b ≤ σ ≤ a. Divide the interval

[b, a] into at most N+1 subintervals in each of which Re �(σ+iT ) is of constant
sign. Then

| arg �(σ + iT )| ≤ (N + 1)π. (7.9)

To estimate N let

g(z) =
1
2

(
�(z + iT ) + �(z + iT )

)
.

Then we have g(σ) = Re �(σ + iT ). Let R = a− b and choose T so large that
T > 2R. Now, Im (z + iT ) > 0 for |z − a| < T . Thus �(z + iT ), and hence
g(z) is analytic for |z − a| < T . Let n(r) denote the number of zeros of g(z)
in |z − a| ≤ r. Obviously, we have∫ 2R

0

n(r)
r

dr ≥ n(R)
∫ 2R

R

dr
r

= n(R) log 2.

With Jensen’s formula (see for example, Titchmarsh [353, Sect. 3.61]),∫ 2R

0

n(r)
r

dr =
1
2π

∫ 2π

0

log
∣∣g (a+ 2Reiθ

)∣∣ dθ − log |g(a)|, (7.10)

we deduce

n(R) ≤ 1
2π log 2

∫ 2π

0

log
∣∣g (a+ 2Reiθ

)∣∣ dθ − log |g(a)|
log 2

.

By (7.7) it follows that: log |g(a)| is bounded. By Theorem 6.8, in any vertical
strip of bounded width,

L(s) 	 |t|B

as |t| → ∞ with a certain positive constant B. Obviously, the same estimate
holds for g(z). Thus, the integral above is 	 log T , and n(R) 	 log T . Since
the interval (b, a) is contained in the disc |z − a| ≤ R, the number N is less
than or equal to n(R). Therefore, with (7.9), we get

|I4| ≤
∫ a

b

| arg �(σ + iT )|dσ 	 log T.

Obviously, I3 can be bounded in the same way.
Collecting all estimates, the assertions of the theorem follow. ��
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Now we want to include most of the c-values into our observations. In view
of Lemma 6.7 and Theorem 6.8 there exist positive constants C ′, T ′ such that
there are no c-values in the region σ < −C ′, t ≥ T ′. Therefore, assume that
b < −C ′ − 1 and T ≥ T ′ + 1. By the functional equation in the form (6.13),

log |L(s) − c| = log |ΔL(s)| + log |L(1 − s)| + O

(
1

|ΔL(s)L(1 − s)|

)
.

In view of Lemma 6.7

log |ΔL(s)| =
(

1
2
− σ

)
( dL log t+ log(λQ2)) +O

(
1
t

)
.

Thus ∫ 2T

T

log |L(b+ it)− c|dt

=
(

1
2
− b

)∫ 2T

T

( dL log t+ log(λQ2)) dt

+
∫ 2T

T

log |L(1 − b− it)|dt+ O(log T ).

Now suppose that c �= 1. The first integral on the right-hand side is easily
calculated by elementary methods. The second integral is small if −b is chosen
sufficiently large (see (7.8)). Together with (7.6) we get

I1 =
(

1
2
− b

)(
dLT log

4T
e

+ T log(λQ2)
)
− T log |1 − c| + O(log T ).

By (7.5) and with the estimates for the Ij ’s from the proof of Theorem 7.1,
we obtain

Theorem 7.3. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1
and let c �= 1. Then, for sufficiently large negative b,

2π
∑

T<γc≤2T

(βc − b) =
(

1
2
− b

)(
dLT log

4T
e

+ T log(λQ2)
)

− T log |1 − c| + O(log T ).

7.2 Riemann–von Mangoldt-Type Formulae

We can rewrite the sum over c-values from Sect. 7.1 as follows:∑
βc

(βc − b) =
(

1
2
− b

)∑
βc

1 +
∑
βc

(
βc −

1
2

)
.
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The first sum on the right counts the number of c-values and the second sum
measures the distances of the c-values from the critical line. Let N c(T ) count
the number of c-values of L(s) with T < γc ≤ 2T . Then, subtracting the
formula of Theorem 7.3 with b + 1 instead of b from the formula with b, we
obtain

Corollary 7.4. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1.
Then, for c �= 1,

N c(T ) =
dL
2π

T log
4T
e

+
T

2π
log(λQ2) + O(log T ).

Furthermore,

Corollary 7.5. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1.
Then, for c �= 1,∑

T<γc≤2T

(
βc −

1
2

)
= − T

2π
log |1 − c|+ O(log T ).

Thus, for c �= 1 satisfying |1 − c| �= 1, the c-values, weighted with respect to
their distance to the critical line, lie asymmetrically distributed. Nevertheless,
our next aim is to show that most of the c-values lie close to the critical line.
Unfortunately, for this purpose we have to assume the Lindelöf hypothesis.
Define the counting functions (according multiplicities)

N c
+(σ, T ) = �{	c : T < γc ≤ 2T, βc > σ},

and
N c

−(σ, T ) = �{	c : T < γc ≤ 2T, βc < σ}.
Then

Theorem 7.6. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1
and let c �= 1. Then, for any σ > max{ 1

2 , 1 − 1
dL
},

N c
+(σ, T ) 	 T, (7.11)

and assuming the truth of the Lindelöf hypothesis, for any δ > 0,

N c
−

(
1
2
− δ, T

)
+ N c

+

(
1
2

+ δ, T

)
	 δT log T.

Proof. First of all, let σ > max{ 1
2 , 1− 1

dL
} and fix σ1 ∈ (max{ 1

2 , 1− 1
dL
}, σ).

Then
N c

+(σ, T ) ≤ 1
σ − σ1

∑
βc>σ

T <γc≤2T

(βc − σ1).

The sum on the right hand-side is less than or equal to∑
βc>σ1

T <γc≤2T

(βc − σ1) 	
∫ 2T

T

log |�(σ1 + it)|dt+ O(log T ),
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where we used Littlewood’s Lemma 7.2 and the techniques from Sect. 7.1 for
the latter inequality. In view of the unconditional estimate for (7.6) in the
proof of Theorem 7.1 we obtain (7.11). Assuming the truth of the Lindelöf
hypothesis, we get analogously

N c
+

(
1
2

+ δ, T

)
	 ε

δ
T log T (7.12)

for any positive ε.
Next we consider N c

−. Let b be a sufficiently large constant. We have

∑
βc≥ 1

2−δ

T <γc≤2T

(βc − b) ≤
(

1
2
− b

) ∑
βc≥ 1

2−δ

T <γc≤2T

1 +
∑

βc≥ 1
2

T <γc≤2T

(
βc −

1
2

)
.

Hence ∑
T<γc≤2T

(βc − b) =
∑

βc< 1
2−δ

T <γc≤2T

(
1
2
− b+ βc −

1
2

)
+
∑

βc≥ 1
2−δ

T <γc≤2T

(βc − b)

≤
(

1
2
− b

)
N c(T ) +

∑
βc< 1

2−δ

T <γc≤2T

(
βc −

1
2

)

+
∑

βc> 1
2

T <γc≤2T

(
βc −

1
2

)
.

By Theorem 7.1, the second sum on the right is bounded by εT log T . Since
any term in the first sum on the right is < −δ, we obtain

−δN c
−

(
1
2
− δ, T

)
≥
∑

T<γc≤2T

(βc − b)−
(

1
2
− b

)
N c(T ) + O(εT log T ).

In view of Theorem 7.3 and Corollary 7.4 we get

N c
−

(
1
2
− δ, T

)
	 ε

δ
T log T.

This is the same bound as for N c
+ in (7.12). Putting ε = δ2 we obtain the

assertion of the theorem. ��

Thus, subject to the truth of the Lindelöf hypothesis, we get by comparing
Corollary 7.4 and Theorem 7.6, for any positive ε,

N c
−

(
1
2
− ε, T

)
+ N c

+

(
1
2

+ ε, T

)
	 εN c(T ),
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so the c-values are clustered around the critical line for any c. This extra-
ordinary value distribution shows that if the Lindelöf hypothesis for L(s)
is true, the critical line is a so-called Julia line from the classical theory of
functions. Julia [151] improved the Big Picard theorem by showing: if the
analytic function f has an essential singularity at a, then there exist a real
θ0 and at most one complex number z such that for every sufficiently small
ε > 0

C \ {z} ⊂ f({a+ r exp(iθ) : |θ − θ0| < ε, 0 < r < ε});
the ray {a + r exp(iθ0) : r > 0} is called a Julia line. For more details on
Julia’s theorem we refer to Burckel [48, Sect. XII.4].

The distribution of the c-values close to the real axis is quite regular. It can
be shown that there is always a c-value in some neighbourhood of any trivial
zero of L(s) with sufficiently large negative real part, and with finitely many
exceptions there are no other in the left half-plane. The main ingredients for
the proof are Rouché’s theorem (Theorem 8.1) and Stirling’s formula (2.17).
With regard to (6.6), thus the number of these c-values having real part in
[−R, 0] is asymptotically 1

2 dLR. On the other side, by (7.3) the behaviour
nearby the positive real axis is very regular. Note that all results from above
hold as well with respect to c-values from the lower half-plane.

Now let N c
L(σ, T ) count the number of c-values 	c = βc + iγc of L(s)

satisfying βc > σ, |γc| ≤ T . Using Corollary 7.4 with 2−nT for n ∈ N instead
of T and adding up, we get, for fixed σ ≤ 0,

N c
L(σ, T ) = 2

∞∑
n=1

N c(σ, 2−nT )

=
(

dL
π
T log

T

e
+
T

π
log(λQ2)

) ∞∑
n=1

1
2n

+
dL
π
T

∞∑
n=1

log 4 − n log 2
2n

+ O(log T ).

The appearing infinite series are equal to 1 and 0, respectively. Hence, this
summation removes the factor 4 in the logarithmic term, and we have proved

Theorem 7.7. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1.
For any fixed σ ≤ 0 and any complex c �= 1,

N c
L(σ, T ) =

dL
π
T log

T

e
+
T

π
log(λQ2) + O(log T ).

The case c = σ = 0 (the non-trivial zeros of L(s)) is a precise Riemann–von
Mangoldt formula (1.5). Similar results were obtained by Perelli [289] and
Lekkerkerker [214] for other classes of Dirichlet series. It should be noticed
that Tsang [355] investigated the number of c-values of ζ(s) with respect to
short intervals for the imaginary parts. Let σ < 1

2 , T (1/2)+ε ≤ H ≤ T , and
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c be a complex number satisfying ε ≤ |1 − c| ≤ 1
ε with sufficiently small ε.

Assuming the truth of the Riemann hypothesis, Tsang proved

N c
ζ (σ, T +H) −N c

ζ (σ, T ) ∼ H

π
log

T

2π
with an explicit error term depending on ε,H and T ; his result holds uncon-
ditionally provided σ ≤ 0.

An immediate consequence of Theorem 7.7 is that the multiplicity of non-
trivial zeros 	 of L(s) is bounded by 1 + log |γ|. More advanced results on
the multiplicities of the zeros were obtained by Ivić [142] in the case of the
Riemann zeta-function.

We conclude with another result from Selberg [323] for L-functions from S.
Assuming the truth of the Riemann hypothesis and of conjecture A, he
obtained for c �= 1 the asymptotic formula∑

βc> 1
2

0<γc<T

(
βc −

1
2

)
=

√
nL

4π3/2
T
√

log log T +
T

4π
log

|c|
1 − |c|2 +

+ O
(
T

(log log log T )3√
log log T

)
.

Furthermore, for

σ(T ) :=
1
2
− ν

√
log log T
log T

and ξ :=
dLν

2
√
πnL

with positive ν, he proved∑
βc>σ(T )
0<γc<T

(βc − σ(T ))

=
1
2

√
nL
π

(
exp(−πξ2)

2π
+ ξ − ξ

∫ ∞

ξ

exp(−πx2) dx
)
T
√

log log T

+
(

log |c|
∫ ∞

ξ

exp(−πx2) dx− log |1 − c|
)
T

2π

+ O
(
T

(log log log T )3√
log log T

)
.

From these results Selberg deduced that about half of the c-values lie to the
left of the critical line, statistically well distributed at distances of order

√
log log T
log T

off σ = 1
2 , and that

N c
L(σ(T ), T ) ∼ N c

L(T )
∫ ∞

−ξ

exp(−πx2) dx.



7.3 Nevanlinna Theory 147

Most of the remaining c-values lie rather close to the critical line at distances
of order not exceeding

(log log log T )3

log T
√

log log T
.

This improves some previous results of Selberg (unpublished) and Joyner [150]
and gives a much more detailed description of the clustering of the c-values
around the critical line.

In the exceptional case c = 1 one has to consider the function

�(s) =
qs

a(q)
(L(s) − 1),

where q ≥ 1 is the least integer such that a(q) �= 0. Then, by a similar
reasoning as in the proof of Theorem 7.7, one gets analogous results. For the
special case of the zeta-function this is carried out in Steuding [348, 349] where
Levinson’s method is applied to Epstein zeta-functions. These methods also
allow to drop the condition a(1) = 1.

7.3 Nevanlinna Theory

Nevanlinna theory was created by Nevanlinna [281] in the 1920’s to tackle
the value-distribution of meromorphic functions in general. We recall some
basic facts which, for example, can be found in Nevanlinna’s monograph [281,
Chaps. VI and IX].

Let f be a meromorphic function and denote the number of poles of f(s)
in |s| ≤ r by n(f,∞, r) (counting multiplicities). The number of c-values of f
is given by

n(f, c, r) = n
(

1
f − c

,∞, r

)
.

The integrated counting function is

N(f, c, r) =
∫ r

0

(n(f, c, 	) − n(f, c, 0))
d	
	

+ n(f, c, 0) log r.

The proximity function is defined by

m(f, r) =
1
2π

∫ 2π

0

log+ |f(r exp(iθ))|dθ,

and, for c ∈ C, by

m(f, c, r) = m
(

1
f − c

, r

)
,

where log+ x := max{0, log x}. The function m(f, c, r) indicates how close
f(s) is to the value c on the circle |s| = r. The characteristic function of f is
defined by

T(f, r) = N(f,∞, r) + m(f, r).
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Furthermore, let
T(f, c, r) = N(f, c, r) + m(f, c, r)

for c ∈ C. The first main theorem in Nevanlinna theory states states that
T(f, c, r) differs from the characteristic function by a bounded quantity:

Theorem 7.8. Let f be a meromorphic function and let c be any complex
number. Then

T(f, c, r) = T(f, r) + O(1),

where the error term depends on f and c.

The proof relies on Jensen’s formula (7.10).
Thus, T(f, c, r) for different values of c is invariant up to additive terms

that are bounded. The invariant, the characteristic function T(f, r), encodes
information about the analytic behaviour of f .

The quantity

δ(f, c) := 1− lim sup
r→∞

N(f, c, r)
T(f, r)

is called the deficiency of the value c of f . This deficiency is positive only
if there are relatively few c-values. The second main theorem in Nevanlinna
theory implies the so-called deficiency relation which states that∑

c∈C∪{∞}
δ(f, c) ≤ 2 ;

note that only for countably many values of c the deficiency can differ from
zero. Another consequence is the Big Picard theorem.

Only recently Ye [372] computed the Nevanlinna functions for the Riemann
zeta-function. Without big effort we can extend his results to the class of
Dirichlet series under investigation. The Nevanlinna functions for those L(s)
are determined by the Gamma-factors in the functional equation.

First, let σ0 > 1 be fixed. We write s = r exp(iθ), so σ = r cos θ. It is easily
seen that

1
2π

∫
{θ:r cos θ>σ0}

log+ |L(r exp(iθ))|dθ 	 1.

Further, in view of Theorem 6.8,

1
2π

∫
{θ:1−σ0≤r cos θ≤σ0}

log+ |L(r exp(iθ))|dθ 	 log r;

note that the Lebesgue measure of the set

{θ ∈ [0, 2π] : σ = r cos θ ∈ [1 − σ0, σ0]}

is bounded by 1
r . Finally, for σ ≤ 1−σ0 we deduce from the functional equation

in the form (6.13) that
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log+ |L(r exp(iθ))| ≤
f∑

j=1

{
log+ |Γ (λj(1 − r exp(iθ)) + μj)|

+ log+ |Γ (λjr exp(iθ) + μj)|
}

+ O(r).

Now we shall use Ye’s decomposition of the Gamma-function. For any z =
r exp(iθ), there is an integer n0 with n0 < r ≤ n0 + 1 such that

1
Γ (z)

= F1(z)F2(z) with F1(z) := z

(
γz −

2n0∑
n=1

z

n

)
,

where γ is the Euler–Mascheroni constant, and F2(z) is an entire function with
m(F2, r) 	 r. The order of growth of Γ (z) is ruled by the order of growth of
F1(z). Ye computed

log |F1(z)| = −r log r cos θ + O(r).

If λ is a positive real number and μ an arbitrary complex number, Ye’s
estimate leads to

1
2π

∫
{θ:r cos θ<1−σ0}

log+ |Γ (λ(1 − r exp(iθ)) + μ)|dθ

≤ λ

2π

∫ π/2

−π/2

r log r cos θ dθ + O(r) =
λ

π
r log r + O(r),

and, similarly,

1
2π

∫
{θ:r cos θ<1−σ0}

log+ |Γ (λr exp(iθ)) + μ)|dθ ≤ λ

π
r log r + O(r).

Thus, we get

1
2π

∫
{θ:r cos θ<1−σ0}

log+ |L(r exp(iθ))|dθ ≤ dL
π
r log r + O(r).

Adding the estimates for the other cases, we obtain for the proximity function
of L(s)

m(L, r) ≤ dL
π
r log r + O(r).

Since L(s) is regular except for at most a pole at s = 1,

N(L,∞, r) 	
∫ r

1

d	
	

= log r. (7.13)

Thus, we get

T(L, r) ≤ dL
π
r log r + O(r). (7.14)
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It follows from Theorem 7.7 that:

N(L, 0, r) =
dL
π
r log r + O(r). (7.15)

The first main Theorem 7.8 implies

N(L, 0, r) ≤ T(L, 0, r) = T(L, r) + O(1).

In view of (7.14) and (7.15) we get an asymptotic formula for the characteristic
function:

Theorem 7.9. For L satisfying axioms (1)–(3) with a(1) = 1,

T(L, r) =
dL
π
r log r + O(r).

We deduce from this and (7.13) for the deficiency value of infinity:

δ(L,∞) = 1− lim sup
r→∞

N(L,∞, r)
T(L, r) = 1.

In view of Theorem 7.7 the deficiency values for c �= 1,∞ are equal to zero.
In combination with Theorem 7.7 the asymptotic formula of the theorem

shows that the counting function N(L, c, r) dominates the proximity function
m(L, c, r), at least for any complex value c �= 1. In the exceptional case c = 1,
by the first main Theorem 7.8, we may deduce from Theorem 7.9 that

N1
L(T ) ≤ dL

π
T log T + O(T ).

A more sophisticated analysis would show that this is actually an equality.
However, we do not go into the details. In Sect. 9.7 we return to the distribu-
tion of c-values in the half-plane of absolute convergence.

We conclude with a description of the analytic behaviour of the Dirichlet
series L under investigation in terms of the notion of finite order. A positive
function t(r) is said to be of finite order λ if

lim sup
r→∞

log t(r)
log r

= λ;

t(r) is of maximum, mean or minimum type of order λ if the upper limit

lim sup
r→∞

t(r)
rλ

is infinite, finite and positive, or zero. A meromorphic function is defined to
be of the same order and the same type as its characteristic function T(r, f).
Thus, by Theorem 7.9, we get

Corollary 7.10. Every L satisfying the axioms (1)–(3) with a(1) = 1 is of
order one and of maximum type.
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7.4 Uniqueness Theorems

We say that two meromorphic functions f and g share a value c ∈ C∪{∞} if
the sets of pre-images of the value c under f and under g are equal, for short

f−1(c) := {s ∈ C : f(s) = c} = g−1(c). (7.16)

We say that f and g share the value c counting multiplicities (CM) if (7.16)
holds and if the roots of the equations

f(s) = c and g(s) = c

have the same multiplicities; if there is no restriction on the multiplici-
ties, f and g are said to share the value c ignoring multiplicities (IM).
Nevanlinna [280] proved two fundamental results on shared values. His
remarkable five-point theorem states that any two non-constant meromorphic
functions which share five distinct values are equal. Since f(s) = exp(s) and
g(s) = exp(−s) share the four values 0,±1,∞, the number 5 in Nevanlinna’s
statement is best possible. If multiplicities are taken into account, Nevanlinna
proved that if two meromorphic functions f and g share four distinct values
c1, . . . , c4 CM, then either f ≡ g or there exists a linear fractional transfor-
mation M such that g ≡M ◦ f and

M(c1) = c1, M(c2) = c2, M(c3) = c4, and M(c4) = c3;

in the latter case f and g do not assume the values c3 and c4. Also the number
4 for the upper bound of shared values CM is best possible. The result can be
sharpened if two of the four values are allowed to be shared IM (see [111]).
In [347], Steuding, investigated how many values L-functions can share. In
this special case better estimates are possible than those which Nevanlinna’s
theorems provide. It is expected that independent L-functions cannot share
any complex value which is actually taken.

First of all, we trivially note that two L-functions from the Selberg class
share the value ∞ CM if and only if both are entire or if they both have a pole
at s = 1 of the same order (other poles cannot occur), e.g., the Riemann zeta-
function ζ(s) and a Dedekind zeta-function to a quadratic number field. If
the orders of the poles differ, they share the value ∞ IM. Further, we observe
that two different L-functions in the Selberg class cannot share the value zero
CM. This follows immediately from a theorem of M.R. Murty and V.K. Murty
[268]. To see that denote the non-trivial zeros of L ∈ S by 	 and let mL(	)
be the multiplicity of 	. Further, define for L1,L2 ∈ S the function

DL1,L2(T ) =
∑

�

|mL1(	) −mL2(	)|,

where the summation is taken over all non-trivial zeros 	 of L1 and L2

(counting multiplicities). Then M.R. Murty and V.K. Murty proved that
L1,L2 ∈ S are either equal or

lim inf
T→∞

1
T
DL1,L2(T ) > 0
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(see also the related result of Bombieri and Perelli (6.8)). However, the trivial
example ζ(s) and ζ(s)2 shows that different elements of S can share the value
zero IM.

Concerning CM-shared values we shall prove that two different Dirichlet
series satisfying our axioms do not share any complex value CM. For sharing
values IM we shall only obtain an improvement of the five-point theorem under
an additional assumption on the number of distinct c-values. For this purpose
let Ñ c

L(T ) count the number of distinct roots 	c of the equation L(s) = c lying
in the rectangle 0 ≤ σ ≤ 1, |t| ≤ T .

Theorem 7.11. Assume that L1,L2 satisfy the axioms (1)–(3) with a(1) = 1.

(i) If L1,L2 share a value c �= ∞ CM, then L1 ≡ L2.
(ii) If L1,L2 satisfy the same functional equation and share two distinct values

c1, c2 �= ∞ IM such that

lim inf
T→∞

Ñ c1
Lj

(T ) + Ñ c2
Lj

(T )

N c1
Lj

(T ) +N c2
Lj

(T )
>

1
2

+ ε (7.17)

for some positive ε with either j = 1 or 2, then L1 ≡ L2.

We briefly discuss the second assertion of the theorem. Condition (7.17)
reflects that more than 50% of the c1- and c2-values of Lj(s) are supposed to
be distinct. It should be noted that such conditions are very difficult to verify.
For instance, Farmer [78] proved that more than 63% of the zeros of ζ(s) are
distinct; however, any extension to L-functions of larger degree seems to be
hard to realize.

Proof. We start with the first assertion. In view of Theorem 7.7 two L-
functions satisfying the axioms (1)–(3) can only share a value c �= ∞ CM
if they have the same degree, d say. First of all assume that L1,L2 are both
entire functions and share the value c �= ∞ CM. Define the function

�(s) =
L1(s) − c

L2(s) − c
.

Since L1(s) assumes the value c if and only if L2(s) = c and since for any
such root the multiplicities coincide, �(s) is a non-vanishing entire function.
In view of the first main Theorem 7.8 and Theorem 7.9

T(L2, c, r) = T(L2, r) + O(1) =
d
π
r log r + O(r)

= T(L1 − c, r) + O(r).

For a meromorphic function f denote its order by λ(f). Then it follows that:

λ

(
1

L1 − c

)
= λ(L2 − c) = λ(L2) = 1.
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It is easily seen that the order of a finite product of functions of finite order is
less than or equal to the maximum of the order of the factors. Thus λ(�) ≤ 1.
By Hadamard’s factorization theorem (see [281, Sect. VIII.2]) this implies that
�(s) is of the form

�(s) = exp(P (s)),

where P is a polynomial of degree at most λ(�) ≤ 1. Since Lj(s) tends to one
as s→ ∞ for j = 1, 2, we have

lim
s→∞ �(s) =

1 − c

1 − c
= 1.

This implies that the polynomial P is vanishing identically, which implies
L1 ≡ L2.

If L1(s) or L2(s) has a pole at s = 1 of order k, we may replace Lj(s)
by (s − 1)kLj(s) and repeat the argument from above. This proves the first
assertion.

Now we shall prove the second statement. If L1 and L2 satisfy the same
functional equation, they both have the same degree, d say. Now consider the
function

�(s) := L1(s) − L2(s).

Obviously, also �(s) satisfies the common functional equation for the Lj ’s.
Then the number N	(T ) of zeros of �(s) in the rectangle 0 ≤ σ ≤ 1, |t| ≤ T
(counting multiplicities) is asymptotically given by

N	(T ) ∼ d
π
T log T. (7.18)

Now suppose that L1 and L2 share two distinct complex values c1, c2 IM.
Then �(s) vanishes also for the pre-images of the ck’s. Hence, we obtain a
lower bound for the number of zeros of �(s) in terms of the c1- and c2-value
counting functions, namely

N	(T ) ≥ Ñ c1
Lj

(T ) + Ñ c2
Lj

(T ), (7.19)

where we can take j = 1 or j = 2. Taking into account Theorem 7.7 and
(7.18) we can replace N	(T ) by

1
2

(
N c1

Lj
(T ) +N c2

Lj
(T )
)

+ O(T ).

Thus we can rewrite (7.19) as

Ñ c1
Lj

(T ) + Ñ c2
Lj

(T )

N c1
Lj

(T ) +N c2
Lj

(T )
≤ 1

2
+ o(1).

This contradicts (7.17). Hence L1 and L2 can share at most one value c ∈ C.
Theorem 7.11 is proved. ��
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The functions L(s) and L(s)2 share the value zero IM. This is a special
example for two reasons. First, these functions are not independent in the sense
that they have the same primitive functions in their factorizations. Second,
they share the zeros. Bombieri and Hejhal [40] proved, assuming some widely
believed but yet unproved hypotheses, that almost all zeros of pairwise inde-
pendent L-functions are distinct. Of course, we expect the same to hold for
other c-values too. With respect to condition (7.17) this leads us to conjecture
that zero is the only possible shared value and that this happens only in cases
of dependent L-functions.

We conclude with a few words about the significance of such studies.
Some problems in arithmetic (see Chap. 13.7) could be solved if one could
show that, given distinct primitive L-functions L1(s), . . . ,Lm(s) (in the sense
of the Selberg class), then Lj(	k) = 0 holds only for j = k, where the 	k

denote the non-trivial zeros of Lk(s). Clearly, this would also imply the unique
factorization into primitive elements.
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The Riemann Hypothesis

...und es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon
wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die
Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen
vorläufig bei Seite gelassen... Bernhard Riemann

There is an interesting link between universality and the zero-distribution.
As we will show in this chapter, the question whether the zeta-function can
approximate itself in the right half of the critical strip turns out to be equiv-
alent to the Riemann hypothesis. This reformulation dates back to Bohr [30]
who proved its analogue for Dirichlet L-functions to non-principal characters.
Bagchi [9] extended this result to the Riemann zeta-function. We shall also
consider further generalizations.

8.1 Uniform Approximation and Zeros

In view of the phenomenon of universality a natural question arises: is the
condition on the non-vanishing of g(s) in the universality Theorem 5.14 nec-
essary or is it possible to approximate uniformly functions having zeros by a
universal L-function? The answer is negative. For the sake of simplicity we
consider only the case of the Riemann zeta-function. Assume that there is
an analytic function g(s) defined on an admissible set K with a zero in the
interior and

lim
j→∞

ζ(s+ iτj) = g(s)

on K for some infinite sequence τj which tends to infinity as j → ∞. Then,
by Hurwitz’s Theorem 5.13, the zero of g(s) is limit point of zeros of the
shifts ζ(s + iτj) and, in particular, there would exist nontrivial zeros off the
critical line – a violation of the Riemann hypothesis. However, the Riemann
hypothesis is still unproved and we shall sketch an unconditional argument
which can be fixed with a bit more effort by the techniques of Sect. 8.2.
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In order to see that ζ(s) cannot approximate uniformly a function with a
zero, recall Rouché’s theorem:

Theorem 8.1. Let f(s) and g(s) be analytic for |s| ≤ r. If

|f(s) − g(s)| < |g(s)|

on |s| = r, then f(s) and g(s) have the same number of zeros in |s| < r.

This classical result follows from a simple application of the argument princi-
ple; for details see Burckel [48, Sect. VIII.3] or Titchmarsh [352, Sect. 3.42].

Now assume that g(s) is an analytic function on |s| ≤ r, where 0 < r < 1
4 ,

which has a zero ξ with |ξ| < r, but which is non-vanishing on the boundary.
An application of Rouché’s theorem shows that whenever the inequality

max
|s|=r

∣∣∣∣ζ (s+
3
4

+ iτ
)
− g(s)

∣∣∣∣ < min
|s|=r

|g(s)| (8.1)

holds, ζ
(
s+ 3

4 + iτ
)

has to have a zero inside |s| < r. The zeros of an analytic
function lie either discretely distributed or the function vanishes identically,
and thus the inequality (8.1) holds if the left-hand side is sufficiently small. If
now for any ε > 0

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ (s+
3
4

+ iτ
)
− g(s)

∣∣∣∣ < ε

}
> 0,

then we expect � T many τ in the interval [0, T ] each of which corresponds
via (8.1) to a complex zeros of ζ(s) in the strip 3

4 − r < σ < 3
4 + r up to T (for

a rigorous proof one has to consider the densities of values τ satisfying (8.1);
this can be done along the lines of the proof of Theorem 8.3). This contradicts
the density Theorem 1.2, which gives

N

(
3
4
− r, T

)
= O(T ).

Thus, a given function having zeros cannot be approximated uniformly by
the zeta-function (in the sense of Voronin’s theorem)! ζ(s) is not strongly
universal.

The above reasoning shows that the location of the complex zeros of Rie-
mann’s zeta-function is closely connected with the universality property.

8.2 Bagchi’s Theorem

Bohr introduced the fruitful notion of almost periodicity to analysis. An ana-
lytic function f(s), defined on some vertical strip a < σ < b, is called almost
periodic if, for any positive ε, and any α, β with a < α < β < b, there exists a
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Fig. 8.1. ζ( 1
2

+ it) for t ∈ [0, 40]. In this range, there are six non-trivial zeros lying
on the critical line

length � = �(f, α, β, ε) > 0 such that every interval (t1, t2) of length � contains
an almost period of f relatively to ε in the closed strip α ≤ σ ≤ β, i.e., there
exists a number τ ∈ (t1, t2) such that

|f(σ + it+ iτ) − f(σ + it)| < ε for any α ≤ σ ≤ β, t ∈ R. (8.2)

Bohr [30] proved.

Theorem 8.2. Every Dirichlet series is almost-periodic in its half-plane of
absolute convergence.

The most important open problem in the theory of the Riemann zeta-
function is the Riemann hypothesis on the location of the nontrivial zeros (see
Fig. 8.1 for the values taken by the zeta-function on the critical line). Bohr
discovered an interesting relation between the Riemann hypothesis and almost
periodicity; indeed, his aim in introducing the concept of almost periodicity
might have been Riemann’s hypothesis. Bohr showed that if χ is a non-
principal character, then the Riemann hypothesis for the Dirichlet L-function
L(s, χ) is equivalent to the almost periodicity of L(s, χ) in the half-plane
σ > 1

2 . The condition on the character looks artificial but it is necessary
for Bohr’s reasoning. His argument relies in the main part on diophantine
approximation applied to the coefficients of the Dirichlet series representation.
The Dirichlet series for L(s, χ) with a non-principal character χ converges
throughout the critical strip, but the Dirichlet series for the zeta-function
does not.

More than half a century later Bagchi [9] proved that the Riemann
hypothesis is true if and only if for any compact subset K of the strip 1

2 < σ < 1
with connected complement and for any ε > 0
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lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ) − ζ(s)| < ε

}
> 0.

In [10], Bagchi generalized this result in various directions; in particular for
Dirichlet L-functions to arbitrary characters. One implication of his proof in
[10] relies essentially on Voronin’s universality theorem which, of course, was
unknown to Bohr. Later, Bagchi [11] gave another proof in the language of
topological dynamics, independent of universality, and therefore this property,
equivalent to Riemann’s hypothesis, is called strong recurrence.

We extend Bagchi’s result slightly to

Theorem 8.3. Let θ ≥ 1
2 . Then ζ(s) is non-vanishing in the half-plane σ > θ

if and only if, for any ε > 0, any z with θ < Re z < 1, and for any 0 < r <
min{Re z − θ, 1 − Re z},

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s−z|≤r
|ζ(s+ iτ) − ζ(s)| < ε

}
> 0.

Proof. If Riemann’s hypothesis is true we can apply Voronin’s universality
Theorem 1.7 with g(s) = ζ(s), which implies the strong recurrence. More
generally, the non-vanishing of ζ(s) for σ > θ would allow to approximate ζ(s)
by shifts ζ(s + iτ) uniformly on appropriate subsets of the strip θ < σ < 1.
The idea for the proof of the other implication is that if there is at least one
zero to the right of the line σ = θ, then the strong recurrence property implies
the existence of many zeros, in fact too many with regard to the classic density
Theorem 1.2.

Suppose that there exists a zero ξ of ζ(s) with Re ξ > θ. Without loss of
generality we may assume that Im ξ > 0. We have to show that there exists a
disk with center z and radius r, satisfying the conditions of the theorem, and
a positive ε such that

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s−z|≤r
|ζ(s+ iτ) − ζ(s)| < ε

}
= 0. (8.3)

Locally, the zeta-function has the expansion

ζ(s) = c(s− ξ)m + O
(
|s− ξ|m+1|

)
(8.4)

with some non-zero c ∈ C and m ∈ N. Now assume that for a neighbourhood
Kδ := {s ∈ C : |s− ξ| ≤ δ} of ξ the relation

max
s∈Kδ

|ζ(s+ iτ) − ζ(s)| < ε ≤ min
|s|=δ

|ζ(s)| (8.5)

holds; the second inequality is fulfilled for sufficiently small ε (by an argu-
ment already discussed in Sect. 8.1). Then Rouché’s Theorem 8.1 implies the
existence of a zero 	 of ζ(s) in

Kδ + iτ := {s ∈ C : |s− iτ − ξ| ≤ δ}.
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We say that the zero 	 of ζ(s) is generated by the zero ξ. With regard to (8.4)
and (8.5) the zeros ξ and 	 = β + iγ are intimately related; more precisely,

ε > |ζ(	) − ζ(	− iτ)| = |ζ(	− iτ)| ≥ |c| · |	− iτ − ξ|m + O(δm+1).

Hence,

|	− iτ − ξ| ≤
(
ε

|c|

)1/m

+ O
(
δ1+(1/m)

)
.

In particular,
1
2
< Re ξ − 2

(
ε

|c|

)1/m

< β < 1,

and

|γ − (τ + Im ξ)| < 2
(
ε

|c|

)1/m

,

for sufficiently small ε and δ = O(εm+1). Next we have to count the generated
zeros in terms of τ . Two different shifts τ1 and τ2 can lead to the same zero
	, but their distance is bounded by

|τ1 − τ2| < 4
(
ε

|c|

)1/m

.

If we now write

I(T ) :=
⋃
j

Ij(T ) :=
{
τ ∈ [0, T ] : max

s∈Kδ

|ζ(s+ iτ) − ζ(s)| < ε

}
,

where the Ij(T ) are disjoint intervals, it follows that there are

≥
[

1
4

( |c|
ε

)1/m

meas Ij(T )

]
+ 1 >

1
4

( |c|
ε

)1/m

meas Ij(T )

many distinct zeros according to τ ∈ Ij(T ), generated by ξ. The number of
generated zeros is a lower bound for the number of all zeros. For the number
of all zeros having real part > Re ξ − 2( ε

|c| )
1/m up to level T it follows that

�

{
	 = β + iγ : β > Re ξ − 2

(
ε

|c|

)1/m

, 0 < γ < T + Im ξ + 2
(
ε

|c|

)1/m
}

≥ 1/4
( |c|
ε

)1/m

meas I(T ).

This and the density Theorem 1.2 lead to

meas I(T ) = O(T ),

which implies (8.3). The theorem is proved. ��
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Using the same reasoning, Reich’s discrete version of Voronin’s universality
theorem, Theorem 5.16, yields a discrete version of Theorem 8.3: Riemann’s
hypothesis is true if and only if for any ε > 0, any real number Δ �= 0, any z
with θ < Re z < 1, and any 0 < r < min{Re z − θ, 1 − Re z},

lim inf
N→∞

1
N
�

{
1 ≤ n ≤ N : max

|s−z|≤r
|ζ(s+ iΔn) − ζ(s)| < ε

}
> 0.

The expected strong recurrence of ζ(s) may be regarded as a kind of
self-similarity. Assuming the truth of Riemann’s hypothesis, this has a nice
interpretation. Consider the amplitude of light which is a physical bound for
the size of objects which human eyes can see, or the Planck length lP ≈ 1.616×
10−35 meter which is the smallest size of objects in quantum mechanics. If we
assume that ε is less than one of these quantities, then we cannot physically
distinguish between ζ(s) and ζ(s + iτ) for s from a compact subset K of the
right half of the critical strip, whenever

max
s∈K

|ζ(s+ iτ) − ζ(s)| < ε.

This shows that we cannot decide where in the analytic landscape of ζ(s) we
actually are without moving to the boundary. The zeta-function is an amazing
maze!

8.3 A Generalization

It is obvious how Bagchi’s Theorem 8.3 can be generalized to other universal L-
functions, e.g., Dirichlet L-functions, for which appropriate density estimates
are known. Assume that L(s) is strongly recurrent in the strip σm < σ < 1
in the sense of Theorem 8.3. In view of the positive lower density for the
set of shifts τ with which the target L(s) can be uniformly approximated by
L(s+iτ) we need that the number of zeros with real part greater than σm up
to level T is bounded by o(T ) as T →∞ to deduce the non-vanishing of L(s)
in the strip σm < σ < 1. Thus, strong recurrence allows the conclusion that
if there are not too many zeros, then there are none!

For the set of L-functions in S ∩S̃ we can replace the density Theorem 1.2
by Theorem 6.5 from Kaczorowski and Perelli [163]. We observe for the number
of zeros in question that

NL(σ, T ) 	 T 4( dL+3)(1−σ)+ε = o(T )

if
σ > σ∗ = σ∗(L) := 1− 1

4( dL + 3)
,

which is larger than the left abscissa of the strip of universality in Theo-
rem 6.12. This yields the non-vanishing of L(s) in some strip inside the critical
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strip provided L(s) is strongly recurrent. For the line σ = 1, we notice that
axiom (v) on the mean-square for the Dirichlet series coefficients of L ∈ S̃
on the primes implies the normality conjecture (as remarked in Sect. 6.6)
and Kaczorowski and Perelli [163] proved that the latter conjecture implies
L(1 + iR) �= 0 (see Sect. 6.2). Hence,

Theorem 8.4. Let L ∈ S ∩ S̃. Then L(s) is non-vanishing in the half-plane
σ > σ∗ if and only if, for any ε > 0, any z with σ∗ < Re z < 1 and any
0 < r < min{Re z − σ∗, 1 − Re z},

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s−z|≤r
|L(s+ iτ) − L(s)| < ε

}
> 0.

Of course, assuming the validity of the density hypothesis or the Lindelöf
hypothesis, one can also prove a conditional result valid in the strip 1

2 < σ < 1.
In many cases one may obtain better results with a general density estimate

from Perelli [289]. For this purpose we introduce Perelli’s class of L-functions
[289] which has many similarities with the Selberg class.

Perelli’s class P of L-functions consists of Dirichlet series

L(s) :=
∞∑

n=1

a(n)
ns

,

which satisfy the following axioms.

• Analytic continuation. L(s) can be analytically continued to a meromor-
phic function with at most one simple pole at s = 1.

• Polynomial Euler product. There exists a positive integer m such that
for any prime p there exists an m × m matrix Ap with complex entries
and eigenvalues αj(p) with |αj(p)| = 1 for all but finitely many p, and
|αj(p)| < 1 otherwise, such that

L(s) =
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

.

• Finite order. There exist positive constants c and δ for which

L(s) 	 exp(exp(c|t|))

uniformly in −δ ≤ σ ≤ 1 + δ.
• Functional equation. There is a sequence of matrices A∗

p, all satisfying
the axiom on the polynomial Euler product, such that for L∗(s), defined
according to the axiom on the polynomial Euler product and satisfying all
previous axioms,

ΛL(s) = ωΛL∗(1 − s),
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where

ΛL(s) := L(s)Qs

f∏
j=1

Γ (λjs+ μj),

and where Q,λj are real numbers and μj and ω with |ω| = 1 are complex
numbers.

For L ∈ P define the quantities dL and μ, as for the elements of the Selberg
class S, by

dL = 2
f∑

j=1

λj and μ = 2
f∑

j=1

(1 − 2μj).

Perelli’s class of L-functions is rather similar to S̃ but it does not contain S̃
since, for example, ζ(s)2 �∈ P by the axiom on the analytic continuation (there
is only a simple pole at s = 1 allowed). All axioms for P, apart from the one
on the analytic continuation, are covered by the related axioms for S̃. This
follows more or less directly from the axioms in addition with the Phragmén–
Lindelöf principle. The growth restriction in P follows via Theorem 6.8 from
the estimate

L(s) 	 tμL(σ)+ε 	 t dL( 1
2+δ)+ε,

which is valid for −δ ≤ σ ≤ 1 + δ with any positive δ. We do not know any
example of an element of P which does not lie in S̃.

Besides other interesting results (which we partially mentioned in
Sect. 6.7), Perelli proved zero-free regions subject to a natural condition on the
matrices Ap, a mean-square estimate, and an approximate functional equa-
tion. Moreover, using Montgomery’s zero detection method [258], he obtained
a density theorem comparable with Theorem 1.2, respectively, (6.5). In many
instances this yields, for any σ > max{ 1

2 , 1 − 1
dL
},

NL(σ, T ) = O(T ).

Actually, Perelli proved stronger estimates for the whole right half of the
critical strip which are even uniform in Q, but this is not of interest for our
investigations.

8.4 An Approach Towards Riemann’s Hypothesis?

Bagchi’s theorem offers an interesting but up to now insufficient approach
toward the Riemann hypothesis.

In view of Voronin’s proof we may have the naive idea to start with a
truncated Euler product

ζM (s) =
∏

p≤M

(
1 − 1

ps

)−1

,
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which converges throughout the half-plane σ > 0 (clearly, we are not allowed
to work with the logarithm of the zeta-function since we are interested in its
zeros). Obviously,

|ζ(s+ iτ) − ζ(s)| ≤ |ζ(s+ iτ) − ζM (s)| + |ζM (s) − ζ(s)|.

Since ζM (s) is a non-vanishing analytic function in the half-plane σ > 0, by
Voronin’s universality theorem, the first quantity on the right-hand side can
be made as small as we please for all s in some disk |s− z| ≤ r for a set T of
values τ with positive lower density. For a proof of Riemann’s hypothesis it
would be sufficient to show that also the second quantity on the right-hand side
can be made arbitrarily small on a subset of T with positive lower density.
The second term is independent of τ but unfortunately, we cannot simply
approximate ζ(s) by the truncated Euler product ζM (s). It is not difficult to
show that

lim
M→∞

lim
T→∞

1
T

∫ T

0

|ζM (σ + it)− ζ(σ + it)|2 dt = 0

for any σ > 1
2 (see [353, Sect. 7.11]; see also Lemma 4.8). This implies that

ζM (s) approximates ζ(s) almost everywhere: given ε > 0, there exist M0, T0

such that for any M ≥M0, T ≥ T0 we have

1
T

∫ T

0

|ζM (σ + it)− ζ(σ + it)|2 dt < ε.

Hence the set
{t ∈ [0, T ] : |ζM (σ + it)− ζ(σ + it)| ≥ ε}

has Lebesgue measure oε(T ) and so ζM (σ+it)− ζ(σ+it) is small on average.
However, this is not sufficient for |ζM (s) − ζ(s)| being small in general.

8.5 Further Equivalents of the Riemann Hypothesis

Mishou and Nagoshi [253] obtained necessary and sufficient conditions for
the truth of the Riemann hypothesis in terms of the functional distribution
of quadratic L-functions L(s, χd) in the right half of the critical strip; here
L(s, χd) denotes the Dirichlet L-functions to the character χd mod |d| given
by the Kronecker symbol (d ) to a fundamental discriminant d (see Sect. 1.4).
They proved that the Riemann hypothesis for ζ(s) is true if and only if, for
any compact subset K of the open strip 1

2 < σ < 1 and any positive ε,

lim inf
X→∞

�{1 ≤ d ≤ X : maxs∈K |L(s, χd) + ζ(s)| < ε}
�{1 ≤ d ≤ X} > 0;
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an analogous result is stated and proved with respect to prime discrimi-
nants d. Their proof makes use of the universality theorems from Mishou and
Nagoshi’s paper [251, 252] (see (1.31)) and a zero density estimate for Dirichlet
L-functions of Jutila in combination with Rouché’s theorem.

Another equivalent condition for the Riemann hypothesis was given by
Šleževičienė–Steuding [334]. Remarkably, the Riemann zeta-function does not
appear in its formulation. In order to state this equivalent we first recall
Beurling’s generalized Euler products. In 1937, Beurling [20] investigated
prime number theorems for generalized multiplicative structures. For this aim
he introduced the so-called Beurling primes. We assume that we are given a
set P of positive real numbers pn which can be arranged as

p1 < p2 < · · · < pn < pn+1 < · · ·

and satisfy limn→∞ pn = ∞. Then the set G consisting of all possible products
of powers of elements pn including the positive integer 1 (the empty product)
forms a semigroup. The attached Euler product is defined by

ζP(s) =
∏

pn∈P

(
1 − 1

ps
n

)−1

.

Assuming a certain distribution of the elements of G, Beurling [20] proved
that

πP(x) :=
∑

P�pn≤x

1 ∼ x

log x
;

later Nyman improved this result by giving an error term. It follows from
Reich’s universality theorem [305] that Beurling zeta-functions ζP(s) are uni-
versal. In [110], Grosswald and Schnitzer suggested an interesting approach
toward the Riemann hypothesis. They considered a prime system Q = {qn}
formed with arbitrary but fixed real numbers qn satisfying

pn ≤ qn ≤ pn+1,

where pn denotes the nth rational prime number. Then the associated Beurling
zeta-function ζQ(s) has an analytic continuation to the half-plane σ > 0 (but
in general the line σ = 0 is a border over which we cannot expect analytic
continuation) except for a simple pole at s = 1 and, most remarkably, for σ > 0
it has the same zeros with the same multiplicity as the Riemann zeta-function
ζ(s). Müller [264] showed that the same statement holds if the condition of
Grosswald and Schnitzer is replaced by the weaker assumption

πQ(x) = π(x) + O(xε)

for any ε > 0. Combining Reich’s universality theorem, the zero-distribution of
the latter Beurling zeta-functions, and the ideas behind Bagchi’s Theorem 8.3,
Šleževičienė–Steuding [334] showed that the Riemann hypothesis for ζ(s) is
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true if and only if ζQ(s) can approximate itself uniformly, i.e., for certain disks
K and any ε > 0,

lim inf
T→∞

1
T

meas {τ ∈ [0, T ] : max
s∈K

|ζQ(s+ iτ) − ζQ(s)| < ε} > 0;

here ζQ(s) is assumed to satisfy certain natural side-conditions. Furthermore,
in [334] with

qn = pn exp
(

1
pn

)
,

an example of such a Beurling zeta-function ζQ(s) was given.
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Effective Results

Kronecker’s theorem is one of those mathematical theorems which
assert, roughly, that what is not impossible will happen sometimes
however improbable it may be. G.F. Hardy and E.M. Wright

In this chapter, we shall use ideas from the previous chapter in order to
obtain certain effective results on the value-distribution of L-functions. The
first sections deal with the density of the approximating τ in universality
theorems. The derived upper bounds are due to Steuding [342, 350]. In the
following sections explicit estimates for c-values in the half-plane of absolute
convergence are obtained. These results are due to Girondo and Steuding [100]
and rely on a theorem of Rieger [310], resp. a quantified version of Steuding
[344], on effective inhomogeneous diophantine approximation.

9.1 The Problem of Effectivity

The known proofs of universality theorems are ineffective, giving neither an
estimate for the first approximating shift τ nor bounds for the positive lower
density with the exception of some attempts by Good, Laurinčikas, and
Garunkštis which we shall now discuss shortly.

If the Riemann hypothesis is true, then

log
∣∣∣∣ζ (1

2
+ it
)∣∣∣∣ = O

(
log t

log log t

)
(9.1)

as t → ∞ (see [353]). This is a significant improvement of the bound for
ζ(s) on the critical line predicted by the Lindelöf hypothesis, but we may ask
whether it is the correct order? On the contrary, Montgomery [260] proved,
for fixed 1

2 < σ < 1 and any real θ,

Re {exp(iθ) log ζ(σ + it)} = Ω

(
(log t)1−σ

(log log t)σ

)
, (9.2)



168 9 Effective Results

and the same estimate is valid for σ = 1
2 under assumption of the truth

of the Riemann hypothesis. By a different method, Balasubramanian and
Ramachandra [15] obtained the same estimate for σ = 1

2 unconditionally.
These Ω-results were only slight improvements of earlier results and some
probabilistic heuristics suggest these estimates to be best possible, i.e., the
quantity in (9.2) describes the exact order of growth of ζ(s). However, the
random matrix model predicts significantly larger values: in analogy to large
deviations for characteristic polynomials one may expect that the estimate in
(9.1) gives the true order (see Hughes [136] for details). Steuding [338] showed
that Montgomery’s estimate holds on any rectifiable curve inside the right half
of the critical strip as well. In particular, assuming the truth of Riemann’s
hypothesis, for any rectifiable curve t �→ η(t) + it, t ∈ R, in the right half of
the critical strip,

ζ(η(t) + it) = Ω

(
exp
(

1
20

(log t)1−η(t)

(log log t)η(t)

))
.

Thus, the analytic landscape of the Riemann zeta-function over the critical
strip does not contain long valleys.

The proofs of Voronin’s theorem do not give any information about the
question how soon a given target function is approximated by ζ(s+iτ) within
a given range of accuracy, and Montgomery’s approach does not give us
any idea of the shape of the set of values of ζ(s) on vertical lines. Good
[105] combined Voronin’s universality theorem with the work of Montgomery
on extreme values of the zeta-function. This enabled him to complement
Voronin’s qualitative picture with Montgomery’s quantitative estimates. For
sufficiently large T and ν with ν ≤ log T and r sufficiently small (but not
too small), he showed the existence of a certain constant c and more than
T exp(− cν

log ν ) positive numbers tn ≤ T with tn+1 > tn + 2r for n = 1, 2, . . .,
such that the annulus{

z ∈ C : exp
(
−cν

1−σ+r

log ν

)
≤ |z| ≤ exp

(
cν1−σ+r

log ν

)}
is contained in ζ(σ + itn + Br), where Br := {z : |z| ≤ r}. This extends
Bohr’s classic result on the denseness of the values ζ(s) taken on vertical
lines (see Sect. 1.2). The other results of Good are too complicated and too
lengthy to be given here. He proved some kind of quantitative version of
Voronin’s universality Theorem 1.7 but his dissection of the target function
leads to certain function spaces which are not very well described yet. Recently,
Garunkštis [86] proved another, more satisfying effective universality theorem
along the lines of Voronin’s proof in addition with some of Good’s ideas. In
particular, his remarkable result shows that if f(s) is analytic in |s| ≤ 0.05
with max|s|≤0.05 |f(s)| ≤ 1, then for any 0 < ε < 1

2 there exists a

0 ≤ τ ≤ exp
(
exp
(
10ε−13

))
(9.3)
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such that
max

|s|≤0.0001

∣∣∣∣log ζ
(
s+

3
4

+ iτ
)
− f(s)

∣∣∣∣ < ε,

and further

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤0.0001

∣∣∣∣log ζ
(
s+

3
4

+ iτ
)
− f(s)

∣∣∣∣ < ε

}
≥ exp

(
−ε−13

)
. (9.4)

The original theorem is too complicated to be given here. Laurinčikas [193]
(see also [89]) found another approach which gives conditional effective results
subject to certain assumptions on the speed of convergence of the related limit
distribution. However, the rate of convergence of weakly convergent probabil-
ity measures related to the space of analytic functions is not understood very
well.

All these attempts to quantify universality are remarkable but the given
quantitative universality results obtained so far have led to more open prob-
lems than they actually solved.

9.2 Upper Bounds for the Density of Universality

We shall prove effective upper bounds for the upper density of universality.
Denote by Br the closed disc of radius r > 0 with center in the origin.

For a meromorphic function L(s), an analytic function f : Br → C with fixed
r ∈
(
0, 1

4

)
, and a positive ε, we define the densities

d(ε, f, L) = lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣L(s+
3
4

+ iτ
)
− f(s)

∣∣∣∣ < ε

}
,

and

d(ε, f, L) = lim sup
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣L(s+
3
4

+ iτ
)
− f(s)

∣∣∣∣ < ε

}
.

For continuity sets we do not have to distinguish between the lower and the
upper density of universality, since in this case, by the Portmanteau Theo-
rem 3.1, the limit exists.

For sufficiently large classes of functions L(s) and of functions f(s) we
shall prove effective upper bounds for the upper density d(ε, f, L) which tend
to zero as ε→ 0. For this purpose we consider analytic isomorphisms f : Br →
B1, i.e., the inverse f−1 exists and is analytic. Obviously, such a function f
has exactly one simple zero ξ in the interior of Br. By the Schwarz lemma
(from the classical theory of functions, see [352, Sect. 5.2]) it turns out that
such a function f has the representation
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f(s) = r exp(iφ)
ξ − s

r2 − ξs
with φ ∈ R and |ξ| < r. (9.5)

Denote by Ar the class of analytic isomorphisms from the closed disk Br (with
fixed 0 < r < 1

4 ) to the unit disk. Further, let NL(σ1, σ2, T ) count the number
of zeros of L(s) in 1

2 < σ1 < σ < σ2 < 1, 0 ≤ t < T (counting multiplicities).
The main result of this section is

Theorem 9.1. Let f ∈ Ar. Assume that L(s) is analytic in σ ≥ 3
4 − r except

for at most O(T ) many singularities inside σ ≥ 3
4 − r, 0 ≤ t ≤ T , as T → ∞,

and that d(ε, f, L) > 0 for all ε > 0. Then, for any ε ∈
(
0, 1

2r

(
1
4 + Re |ξ|

))
,

d(ε, f, L) ≤ 8r3ε
r2 − |ξ|2 (9.6)

× lim sup
T→∞

1
T
NL

(
3
4

+ Re ξ − 2rε,
3
4

+ Re ξ + 2rε, T
)
.

This theorem relates the density of universality to the value-distribution of L.
Note that one can obtain similar estimates for other c-values instead of c = 0
whenever c lies in the interior of Br. Since too many well distributed zeros of
L(s) in 1

2 < σ < 1 violate the universality property, very likely the limit in
(9.6) exists in general.

Proof. The idea of proof is that the zero ξ of f is related to some zeros of L(s)
in 1

2 < σ < 1. Since f maps the boundary of Br onto the unit circle, Rouché’s
Theorem 8.1 implies the existence of one simple zero λ of L(z) in

Kτ :=
{
z = s+

3
4

+ iτ : s ∈ Br

}
whenever

max
s∈Br

∣∣∣∣L(s+
3
4

+ iτ
)
− f(s)

∣∣∣∣ < ε < 1 = min
|s|=r

|f(s)|. (9.7)

Recall that, in the language of Sect. 8.2, the zero λ of L(s) is generated by the
zero ξ of f(s).

Universality is a phenomenon that happens in intervals. We prove an upper
bound for the distance of different shifts generating the same zero λ of L(s):

Lemma 9.2. Suppose that a zero λ of L(s), generated by ξ, lies in two
different sets Kτ1 and Kτ2 . Then

|τ1 − τ2| <
8r3ε

r2 − |ξ|2 .
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Proof. Suppose that there exist complex numbers

sj = Reλ− 3
4

+ itj ∈ Br,

and τj ∈ R for which

L

(
sj +

3
4

+ iτj

)
= 0 for j = 1, 2,

such that
λ = s1 +

3
4

+ iτ1 = s2 +
3
4

+ iτ2.

In view of (9.5),

|f(s2)− f(s1)| = r
r2 − |ξ|2

|r2 − ξs1||r2 − ξs2|
|s2 − s1|.

We deduce from (9.7) that |f(sj)| < ε for j = 1, 2, and therefore

|τ1 − τ2| = |t2 − t1| ≤
4r3

r2 − |ξ|2 |f(s2)− f(s1)| <
8r3ε

r2 − |ξ|2 ,

which proves the lemma. ��

We continue with the proof of the theorem. Denote by Ij(T ) the disjoint
intervals in [0, T ] such that (9.7) is valid exactly for

τ ∈
⋃
j

Ij(T ) =: I(T ).

Using Lemma 9.2, in every interval Ij(T ), there lie at least

1 +
[
r2 − |ξ|2

8r3ε
meas Ij(T )

]
≥ r2 − |ξ|2

8r3ε
meas Ij(T )

zeros λ of L(s) in the strip 1
2 < σ < 1. Therefore, the number N (T ) of such

zeros λ satisfies the estimate

8r3ε
r2 − |ξ|2N (T ) ≥ meas I(T ). (9.8)

The next step is to replace N (T ) by the zero counting function appearing in
the theorem.

The value distribution of L(z) in Kτ is ruled by that of f(s) in Br. This
gives a restriction on the real parts of the zeros λ.

Lemma 9.3. Let λ be a zero of L(s) generated by ξ. Then∣∣∣∣Reλ− 3
4
− Re ξ

∣∣∣∣ < 2rε.
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Proof. Let s ∈ Br. First of all, we consider the case |f(s)| ≥ ε. Then, in view
of (9.7), ∣∣∣∣L(s+

3
4

+ iτ
)∣∣∣∣ ≥ |f(s)| −

∣∣∣∣f(s) − L

(
s+

3
4

+ iτ
)∣∣∣∣ > 0.

Since (9.5) implies

|f(s)| ≥ |ξ − s|
2r

, (9.9)

we obtain for s = λ− 3
4 − iτ by (9.7) that∣∣∣∣ξ − (λ− 3

4
− iτ
)∣∣∣∣ ≤ 2r

∣∣∣∣f (λ− 3
4
− iτ
)∣∣∣∣

≤ 2r|L(λ)| + max
s∈Br

∣∣∣∣f(s) − L

(
s+

3
4

+ iτ
)∣∣∣∣

< 2rε,

which yields the estimate of the lemma by taking the real parts.
If |f(s)| < ε, then we may deduce the desired estimate directly from (9.9).

The lemma is proved. ��

Now we are in the position to finish the proof of the theorem. In view of
Lemma 9.3 we find

N (T ) ≤ NL

(
3
4

+ Re ξ − 2rε,
3
4

+ Re ξ + 2rε, T
)
, (9.10)

where NL is the zero-counting function of L. On the other side, since
d(ε, f, L) > 0, for any δ > 0, there exists an increasing sequence {Tk} with
limk→∞ Tk = ∞ such that

meas (I(Tk)) ≥ ( d(ε, f, L) − δ)Tk.

Consequently, this together with (9.10) leads in (9.8) to

8r3ε
r2 − |ξ|2NL

(
3
4

+ Re ξ − 2rε,
3
4

+ Re ξ + 2rε, Tk

)
≥ ( d(ε, f, L) − δ)Tk.

Sending δ → 0 yields the estimate (9.6) of the theorem. Since the set of
singularities of L(s) in σ ≥ 3

4 − r has zero density but d(ε, f, L) > 0, the
singularities do not affect the above reasoning. The theorem is proved. ��

In the case of the Riemann zeta-function we can get a slightly stronger
result. For this purpose we apply Theorem 9.1 to L(s) = log ζ(s). In view of
the density Theorem 1.2 the set of singularities of log ζ(s) has density zero.
As shown by Bohr and Jessen [32] (Hilfssatz 6 to Theorem 1.5), the limit
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lim
T→∞

1
T
Nlog ζ

(
3
4

+ Re ξ − 2rε,
3
4

+ Re ξ + 2rε, T
)

(9.11)

exists and tends to zero as ε → 0. Now we proceed as above and obtain, for
f ∈ Ar,

d(ε, exp f, ζ(s)) = O(ε).

Steuding [350] extended the above argument in order to obtain upper bounds
for the density of universality with respect to approximation of a rather general
class of functions g(s) = exp f(s); however, the implicit constants cannot be
given explicitly. Here we sketch the new idea in the case of the zeta-function.

Assume that g(s) is a non-constant, non-vanishing analytic function
defined on Br. Then there exists a complex number c in the interior of g(Br)
(which is not empty since g(s) is not constant) such that

g(s) = c+ γ(s− λc) + O
(
|s− λc|2

)
(9.12)

for some λc of modulus less than r and some γ �= 0; this means that λc is
a c-value of g(s) of multiplicity one. To see this suppose that for all c in the
interior of g(Br) the local expansion is different than (9.12), i.e., g′(s) vanishes
identically in the interior. Then g is a constant function, a contradiction to
the assumption of the theorem.

Now suppose that

max
|s|=r

∣∣∣∣{ζ (s+
3
4

+ iτ
)
− c

}
− {g(s) − c}

∣∣∣∣ < min
|s|=r

|g(s) − c|.

Then, by Rouché’s theorem, ζ(z) has at least one c-value 	c in {z = s+ 3
4 +iτ :

|s| < r}. We rewrite the latter inequality as

max
|s|≤r

∣∣∣∣ζ (s+
3
4

+ iτ
)
− g(s)

∣∣∣∣ < ε ≤ min
|s|=r

|g(s) − c|. (9.13)

Since the zeta-function is universal, the first inequality holds for a set of τ
with positive lower density. The second one follows for sufficiently small ε from
the fact that c = g(λc) has positive distance to the boundary of g(Br). Thus,
a c-value of g(s) generates many c-values of ζ(z).

Assume that 	c = sj + 3
4 + iτj with |sj | < r for j = 1, 2. It follows from

(9.13) that
|g(λc)− g(sj)| = |c− g(sj)| < ε. (9.14)

Since g′(λc) = γ �= 0, there exists a neighborhood of c where the inverse
function g−1 exists and is a one-valued continuous function. By continuity,
(9.14) implies

|sj − λc| < ε = ε(ε), (9.15)

where ε(ε) tends with ε to zero; since g(s) behaves locally as a linear function
by (9.12), we have ε(ε) ! ε. Now (9.15) implies
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|τ2 − τ1| = |s1 − s2| ≤ |s1 − λc| + |s2 − λc| < 2ε. (9.16)

Now we can proceed as in the proof of Theorem 9.1 in addition with (9.11).
This yields:

Theorem 9.4. Suppose that g(s) is a non-constant, non-vanishing analytic
function defined on |s| ≤ r, where r ∈ (0, 1

4 ). Then, for any sufficiently small
ε > 0,

d(ε, r, g, ζ) = O(ε).

Thus, the decay of d(ε, g, ζ) with ε → 0 is more than linear in ε for any
non-constant, non-vanishing analytic function g.

9.3 Value-Distribution on Arithmetic Progressions

Now we consider the special case of discrete universality. The argument in
the proof of Theorem 9.4 which gave us a factor ε for the upper bound does
not apply if we consider discrete shifts and so, in general, we do not get an
upper bound which tends with ε to zero (as in Lemma 9.2 or (9.16)). Anyway,
for the zeta-function we obtain via Reich’s discrete universality Theorem 5.16
and (9.11)

lim sup
N→∞

1
N
�

{
1 ≤ n ≤ N : max

|s|≤r

∣∣∣∣ζ (s+
3
4

+ inΔ
)
− g(s)

∣∣∣∣ < ε

}
= O(1)

(9.17)
for any real Δ �= 0, as ε→ 0. This is of interest with respect to an estimate of
Reich concerning small values of Dirichlet series on arithmetic progressions.
Let F (s) be a Dirichlet series, not identically zero, which has a half-plane of
absolute convergence σ > σa, an analytic continuation to σ > σm (σm < σa)
except for at most a finite number of poles on the line σ = σa, such that
its mean square exists and F (s) is of finite order of growth in any closed
strip in σm < σ < σa. In [307], Reich proved under these assumptions (which
are rather similar to our axioms (ii) and (iii)) for any σ > σm, σ �= σa, any
sufficiently small ε > 0, and any real Δ, neither being equal to zero nor of the
form 2π� cos( q

r ) with positive integers �, q, r and q �= r, that the relation

lim sup
N→∞

1
N
� {1 ≤ n ≤ N : |F (σ + inΔ)| < ε} < 1

holds. In particular, it follows that F (σ + iΔn) cannot converge to zero as
n → ∞, and hence sn = σ + iΔn cannot be a sequence of zeros of F (s). It
should be noticed that Reich’s theorem also includes estimates for c-values on
arithmetic progressions (since with F (s) also F (s)−c satisfies the conditions).

In the special case of the Riemann zeta-function we note the following
improvement of Reich’s theorem:
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Theorem 9.5. Let c be any constant and σ ∈ (1
2 , 1), and Δ �= 0 be real. Then

lim
ε→0

lim sup
N→∞

1
N
� {1 ≤ n ≤ N : |ζ(σ + inΔ) − c| < ε} = 0.

In particular, there does not exist an arithmetic progression sn = σ+ iΔn
(with σ and Δ as in the theorem) on which ζ(s) converges to any complex
number c.

We sketch the easy proof. Let g(s) be a non-constant, non-vanishing,
analytic function defined on a small disk centered at σ ∈ (1

2 , 1) such that
its closure lies inside the strip of universality for the zeta-function. Further
assume that

|g(s) − c| < ε;

this choice for g(s) is certainly possible for any given complex number c. By
the triangle inequality,

|ζ(σ + inΔ) − c| ≤ |ζ(σ + inΔ) − g(s)| + |g(s) − c|

for any s. Hence, applying (9.17) yields

lim sup
N→∞

1
N
� {1 ≤ n ≤ N : |ζ(σ + inΔ) − c| < 2ε} 	 ε.

This is the assertion of the theorem.
An alternative proof can be given by using the deep Hauptsatz I of Bohr

and Jessen [32]; this approach does not depend on the universality property
of ζ(s). As a matter of fact, this theorem may also be used to obtain the
estimate d(ε, r, g, ζ) 	 ε2 for constant functions g �≡ 0.

There are remarkable results for a related problem. Putnam [297, 298]
showed that ζ(s) does not have an infinite vertical arithmetic progressions
of zeros (or even approximate zeros). Lapidus and van Frankenhuijsen [179,
Chap. 9] gave a different proof of Putnam’s theorem. Watkins (cf. [80]) was the
first to give upper bounds for the length of such arithmetic progressions (valid
for any Dirichlet L-functions). Recently, van Frankenhuijsen [80] improved
these bounds by showing that

ζ(σ + inΔ) = 0 for 0 < |n| < N

with σ,Δ > 0 and N ≥ 2 cannot hold for

N ≥ 60
(
Δ

2π

)(1/σ)−1

logΔ

(his method also applies to Dirichlet L-functions). It is conjectured that there
are no arithmetic progressions at all; there are even no zeros known of the
form 1

2 + iγ and 1
2 + i2γ. It is conjectured that the ordinates of the nontrivial

zeros of ζ(s) are linearly independent over Q. Ingham [140] showed that this
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conjecture implies large values for the sum of the values of the Möbius μ-
function:

lim inf
x→∞

M(x)
x1/2

= −∞ and lim sup
x→∞

M(x)
x1/2

= +∞,

which would improve the unconditional bounds (3.1). The methods of
Putnam, Lapidus and van Frankenhuijsen do not apply to c-values.

9.4 Making Universality Visible

We return to the problem of effectivity in the universality theorem for ζ(s).
Comparing the lower bound (9.4) of Garunkštis [86] from Sect. 9.1 with the
upper bounds of Steuding [342, 350] from Theorem 9.4, it makes sense to ask
which estimate is more close to the truth. If a given function g(s) is sufficiently
nice, i.e., if its logarithm f(s) satisfies the condition of Garunkštis’ theorem,
then

exp
(
−ε−13

)
	 d(ε, g, ζ) ≤ d(ε, g, ζ) = O(ε).

Given a positive ε and a sufficiently small disk K located in the right half of
the critical strip, in principle, the estimate (9.3) allows to find algorithmically
an approximating τ such that

max
s∈K

|L(s+ iτ) − g(s)| < ε;

however, we cannot expect a reasonable running time for such an algorithm
when ε is small. This idea was indeed considered in a project by Garunkštis,
Šleževičienė–Steuding and Steuding. For certain smooth functions g(s) and
rather large values for ε approximating shifts τ were computed. Quite many
of these τ were found. However, it is impossible to deduce any information
about the density of universality as long as the running time of the underlying
algorithm cannot be significantly improved. Nevertheless, we shall illustrate
this attempt toward effective universality by some data.

Our first example (Fig. 9.1) is the exponential function on a small disk
centered at the origin. For example, we have

max
|s|≤0.006

∣∣∣∣ζ (s+
3
4

+ 12 963 i
)
− exp(s)

∣∣∣∣ < 0.05.

The shift τ is a positive integer since the discrete variant of universality was
used in order to simplify the algorithm.

In view of the assumptions on the set K in the universality Theorem 1.9,
we may choose K to be a line segment in the right half of the critical strip; in
this case the interior of K is empty and thus the target function needs only
to be continuous. Here is an example for such a function (Fig. 9.2):

g(s) =
1
2

+
∣∣∣∣s− 3

4

∣∣∣∣ for s ∈ I =
[
3
4
− 1

10
,
3
4

+
1
10

]
.

It was computed that
max
s∈I

|ζ(s+ 411 744i) − g(s)| < 0.05.
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Fig. 9.1. ζ(s+ 3
4
+12 963 i) ≈ exp(s) for s = 0.006 exp(iφ) with 0 ≤ φ ≤ 2π. On the

left the real parts, on the right the imaginary parts are plotted; the zeta-function is
given in black, exp in grey

0.65 0.75 0.8 0.85
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Fig. 9.2. ζ(s + 3
4

+ i 411 744) ≈ g(s) := 1
2

+ |s− 3
4
|; the zeta-function in black, g(s)

in grey
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9.5 Almost Periodicity in the Half-Plane
of Absolute Convergence

Recall the notion of almost periodicity from Sect. 8.2. Bohr proved that every
Dirichlet series f(s), having a finite abscissa of absolute convergence σa, is
almost periodic in the half-plane σ > σa (Theorem 8.2); i.e., for any given
pair of positive numbers ε and δ, there exists a length � = �(f, δ, ε) such that
every interval of length � contains a number τ for which

|f(σ + it+ iτ) − f(σ + it)| < ε

holds for any σ ≥ σa + δ and all t. In general, it is a problem to find explicitly
an admissible length �(f, δ, ε). Here we are interested in giving effective bounds
for these lengths in the case of polynomial Euler products; i.e., we consider
functions of the form

L(s) =
∞∑

n=1

a(n)
ns

=
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

, (9.18)

where the αj(p) are complex numbers with |αj(p)| ≤ 1; this is axiom (iv) in
addition with a bound for the local roots which is equivalent to the Ramanujan
hypothesis (i) by Lemma 2.2. Clearly, the Dirichlet series coefficients a(n) are
multiplicative and satisfy

a(n) =
∏
p|n

∑
k1,...,km≥0

k1+···+km=νp(n)

αj(p)kj 	 nε

for any ε > 0. Any such Euler product L(s) is regular and zero-free for σ > 1
and we may define its logarithm logL(s) (by fixing any of the single-valued
branches of the logarithm). This logarithm has also a Dirichlet series expan-
sion, for σ > 1 given by

logL(s) =
∑

p

m∑
j=1

∞∑
k=1

αj(pk)
kpks

. (9.19)

The determination of an admissible length �(logL, δ, ε) is closely related to
simultaneous diophantine approximation. First of all, we shall prove the fol-
lowing transfer theorem:

Theorem 9.6. Let M(x, ε) be a positive function, defined for 0 < ε ≤ 1
2 and

x ≥ 2, such that every interval (t1, t2) ⊂ R of length M(x, ε) contains a
number τ for which ∥∥∥∥τ log p

2π

∥∥∥∥ < ε for all p ≤ x, (9.20)
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where ‖z‖ denotes the minimal distance of a real number z to the nearest
integer and p is prime. Suppose that L is given by (9.18) and let δ > 0. Then,
for sufficiently small ε,

�(logL, δ, ε) = M

((
δε√
5πm

)−1/δ

,
δ√

5πm
(ε+ O(1))

)
,

�(L, δ, ε) = �

(
logL, δ,

(
δ

1 + δ

)m

ε

)
= M

((
1 + δ

δ

)m/δ(
δε√
5πm

)−1/δ

,

(
δ

1 + δ

)m
δ√

5πm
(ε+ O(1))

)
.

This holds uniformly in δ ≥ δ0 > 0.

We argue quite similar as Bohr [30] in his proof for almost periodicity of
Dirichlet series in their half-plane of absolute convergence.

Proof. It follows from (9.19) that

logL(s) − logL(s+ iτ) =
∑

p

m∑
j=1

∞∑
k=1

αj(p)k

kpks

(
1 − 1

pikτ

)
.

Since the αj(p) all have absolute value less than or equal to one, we obtain

| logL(s) − logL(s+ iτ)| (9.21)

≤ m

⎧⎨⎩∑
p≤x

∑
k≤y

+
∑
p≤x

∑
k>y

+
∑
p>x

∞∑
k=1

⎫⎬⎭ 1
kpkσ

∣∣∣∣1 − 1
pikτ

∣∣∣∣ ,
where x and y are parameters ≥ 2, which will be chosen later. First of all, we
shall bound the first sum on the right-hand side for some values of τ .

In order to find real numbers τ such that p−ikτ lies for p ≤ x and k ≤ y
sufficiently close to 1 we apply (9.20). It follows that, for any ε ∈ (0, 1

2 ] and any
real number t1, there exist integers xp and a real number τ ∈ (t1, t1 +M(x, ε))
such that

|τ log p− 2πxp| < 2πε for all p ≤ x.

In particular,

cos(kτ log p) > cos(2πkε) ≥ 1 − (2πkε)2

2
,

and
sin(kτ log p) < sin(2πkε) ≤ 2πkε

for all primes p ≤ x, provided that k ≤ y < 1
4ε . Then we obtain

|1 − p−ikτ |2 = (1 − cos(kτ log p))2 + sin2(kτ log p) <
5
4
(2πkε)2 (9.22)
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for p ≤ x and k ≤ y. This yields∑
p≤x

∑
k≤y

1
kpkσ

∣∣∣∣1 − 1
piτ

∣∣∣∣ < √
5πε
∑
p≤x

∑
k≤y

1
pkσ

. (9.23)

In order to estimate the double sum on the right, note that by the uniqueness
of the prime factorization of the integers∑

p≤x

∑
k≤y

1
pkσ

≤
∑

n≤xy

1
nσ
.

Since
z∑

n=2

1
nσ

<

z∑
n=2

∫ n

n−1

du
uσ

=
∫ z

1

du
uσ

<
1

σ − 1
,

we may replace (9.23) by∑
p≤x

∑
k≤y

1
kpkσ

∣∣∣∣1 − 1
piτ

∣∣∣∣ <
√

5πε
σ − 1

. (9.24)

Next we have to estimate the second and the third term on the right-hand
side of (9.21). For the sake of simplicity we shall not give the optimal and
rather complicated bounds. Later, it will turn out that these rough estimates
do not effect our result.

First of all,

∑
p≤x

∑
k>y

1
kpkσ

∣∣∣∣1 − 1
pikτ

∣∣∣∣ ≤ 2
y

∑
p≤x

∑
k>y

1
pkσ

≤ 2
y

∑
p≤x

∑
k>y

(
1
2σ

)k

.

It is easily seen that the sum over k is less than∑
k>y

2−k ≤ 2−y
∞∑

	=0

2−	 = 21−y.

Thus, we have ∑
p≤x

∑
k>y

1
kpkσ

∣∣∣∣1 − 1
pikτ

∣∣∣∣ < 4π(x)
y2y

. (9.25)

It remains to bound∑
p>x

∞∑
k=1

1
kpkσ

∣∣∣∣1 − 1
pikτ

∣∣∣∣ ≤ 2

{∑
p>x

1
pσ

+
∑
p>x

∞∑
k=2

1
kpkσ

}
. (9.26)

We start with the second term on the right-hand side. Obviously,

∑
p>x

∞∑
k=2

1
kpkσ

<
1
2

∑
p>x

∞∑
k=2

(
1
pσ

)k

=
1
2

∑
p>x

1
pσ − 1

.
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Since
1

pσ − 1
=

1
pσ

pσ

pσ − 1
<

1
pσ

xσ

xσ − 1
<

1
pσ

x

x− 1
≤ 2
pσ

for p > x, it follows that

∑
p>x

∞∑
k=2

1
kpkσ

<
∑
p>x

1
pσ
.

This gives in (9.26)

∑
p>x

∞∑
k=1

1
kpkσ

∣∣∣∣1 − 1
pikτ

∣∣∣∣ < 4
∑
p>x

1
pσ
. (9.27)

To estimate the sum on the right we make use of the prime number Theo-
rem 1.1. By partial integration we obtain

∑
p>x

1
pσ

=
∫ ∞

x

u−σ dπ(u) = (1 + O(1))
∫ ∞

x

u−σ

(
u

log u

)′
du.

The integral is equal to∫ ∞

x

u−σ log u− 1
(log u)2

du <
1

log x

∫ ∞

x

u−σ du =
x1−σ

(σ − 1) log x
.

Substituting this estimate in (9.27) yields

∑
p≤x

∑
k=1

1
kpkσ

∣∣∣∣1 − 1
pikτ

∣∣∣∣ < (4 + O(1))x1−σ

(σ − 1) log x
. (9.28)

In view of (9.24), (9.25), and (9.28) we obtain in (9.21)

| logL(s) − logL(s+ iτ)|

< m

{√
5πε

σ − 1
+

4π(x)
y2y

+
(4 + O(1))x1−σ

(σ − 1) log x

}

as x tends to infinity. Taking the maximum over σ ≥ 1 + δ and incorporating
(1.1) we find

max
σ≥1+δ

| logL(s) − logL(s+ iτ)|

< m

{√
5πε
δ

+
(4 + O(1))x
y2y log x

+
(4 + O(1))
δxδ log x

}
(9.29)

for any τ which satisfies (9.20). For a suitable choice of our parameters x, y
we can make the right-hand side of (9.29) as small as we please. Let
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x = ε−1/δ and y = −
(

1 +
1
δ

)
log ε; (9.30)

then the condition 4εy < 1 for (9.22) is fulfilled for sufficiently small ε. It
follows that:

max
σ≥1+δ

| logL(s) − logL(s+ iτ)| < m

√
5π
δ

(ε+ O(1)) =: ε.

This proves the assertion of the theorem for logL.
Since |αj(p)| ≤ 1, we have for σ > 1

|L(s)| ≤
m∏

j=1

∏
p

(
1 − |αj |

pσ

)−1

≤
∏
p

(
1 − 1

pσ

)−m

= ζ(σ)m.

Hence
max

σ≥1+δ
|L(s)| ≤ ζ(1 + δ)m.

Furthermore,

ζ(1 + δ) = 1 +
∞∑

n=2

1
n1+δ

< 1 +
∫ ∞

1

u−(1+δ) du =
1 + δ

δ
.

Obviously,

L(s) − L(s+ iτ) = L(s)(1 − exp{logL(s+ iτ) − logL(s)}).

It thus follows that

�(L, δ, ε) = �

(
logL, δ,

(
δ

1 + δ

)m

ε

)
.

This implies the assertion of the theorem for L. ��

We are interested in giving effective estimates. Application of Weyl’s
approximation theorem, Lemma 1.8, would lead to an explicit lower bound
for the density of shifts L(s+iτ) approximating L(s). However, this approach
does not give an upper bound for the first approximating τ . We can solve
this problem by applying effective results from the theory of inhomogeneous
diophantine approximation which we derive in the following section.

9.6 Effective Inhomogeneous Diophantine
Approximation

Bohr and Landau [33, 36] (see also [353, Sect. 8.8]) proved for given N the
existence of a real number τ with 0 ≤ τ ≤ exp(N6) such that



9.6 Effective Inhomogeneous Diophantine Approximation 183

cos(τ log pν) < −1 +
1
N

for 1 ≤ ν ≤ N,

where pν denotes the νth prime number. This can be regarded as a first
effective version of Kronecker’s approximation theorem, with a bound for τ
similar to the bound in Dirichlet’s approximation theorem. Using the idea of
Bohr and Landau in connection with Baker’s estimate for linear forms, Rieger
[309] proved the following remarkable discrete approximation theorem:

Theorem 9.7. Let v,N ∈ N, b ∈ Z, 1 ≤ ω,U ∈ R. Let p1 < . . . < pN be
prime numbers (not necessarily consecutive) and

uν ∈ Z, 0 < |uν | ≤ U, βν ∈ R for 1 ≤ ν ≤ N.

Then there exist hν ∈ Z, 0 ≤ ν ≤ N, and an effectively computable number
C = C(N, pN ) > 0, depending on N and pN only, so that∣∣∣h0

uν

v
log pν − βν − hν

∣∣∣ < 1
ω

for 1 ≤ ν ≤ N, (9.31)

and b ≤ h0 ≤ b+ (2Uvω)C .

However, we are interested in an explicit bound for C. Therefore, we repeat
Rieger’s proof and add in the crucial step a result on an explicit lower bound
for linear forms in logarithms due to Waldschmidt.

Let K be a number field of degree d over Q and denote by LK the set of
logarithms of the elements of K \ {0}, more precisely,

LK = {� ∈ C : exp(�) ∈ K}.

If α is an algebraic number with minimal polynomial P (X) over Z, then define
the absolute logarithmic height of α by

h(α) =
1
d

∫ 1

0

log |P (exp(2πiφ))|dφ;

note that h(α) = log |α| for every integer α �= 0, and h(0) = 0. Waldschmidt
[365] proved

Theorem 9.8. Let �ν ∈ LK and βν ∈ Q for 1 ≤ ν ≤ N , not all equal zero.
Define aν = exp(�ν) for 1 ≤ ν ≤ N , and

Λ = β0 + β1 log a1 + · · · + βN log aN .

Let E,W and Vν , 1 ≤ ν ≤ N, be positive real numbers, satisfying

W ≥ max
1≤ν≤N

{h(βν)}, 1
d
≤ V1 ≤ . . . ≤ VN ,
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Vν ≥ max
{
h(aν),

| log aν |
d

}
for 1 ≤ ν ≤ N,

and
1 < E ≤ min

{
exp(V1), min

1≤ν≤N

{
4 dVν

| log aν |

}}
.

Finally, define V +
ν = max{Vν , 1} for ν = N and ν = N − 1, with V +

1 = 1 in
the case N = 1. If Λ �= 0, then

|Λ| > exp

(
−c(N) dN+2(W + log(E dV +

N )) log(E dV +
N−1)(logE)−N−1

N∏
ν=1

Vν

)
,

where c(N) ≤ 28N+51N2N .

In conjunction with Rieger’s Theorem 9.7 this leads to

Theorem 9.9. With the notation and the assumptions of Theorem 9.7 there
exists an integer h0 such that (9.31) holds and

b ≤ h0 ≤ b+ 2 + exp

(
28N+51N2N (1 + 2 log pN )(1 + log pN−1)

N∏
ν=2

log pν

)
×((3ωU(N + 2) log pN )4 + 2)N+2;

in the special case that the primes p1 < p2 < . . . < pN are the first N succes-
sive prime numbers, we obtain the stronger inequality

b ≤ h0 ≤ b+ (ωU)(4+ε)N exp
(
N (2+ε)N

)
for any ε > 0 and sufficiently large N .

Proof. For t ∈ R define

f(t) = 1 + exp(2πit) +
N∑

ν=1

exp
(
2πi
(
t
uν

v
log pν − βν

))
.

With γ−1 := 0, β−1 := 0, γ0 := 1, β0 := 0 and γν := uν

v log pν , 1 ≤ ν ≤ N, we
have

f(t) =
N∑

ν=−1

exp(2πi(tγν − βν)).

By the multinomial theorem,

f(t)k =
∑
jν≥0

j−1+···+jN =k

k!
j−1! · · · jN !

exp

(
2πi

N∑
ν=−1

jν(tγν − βν)

)
.
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Hence, for 0 < B ∈ R and k ∈ N,

J :=
∫ b+B

b

|f(t)|2k dt

=
∑
jν≥0

j−1+...+jN =k

k!
j−1! · · · jN !

∑
jν′≥0

j′−1
+···+j′

N
=k

k!
j′−1! · · · j′N !

∫ b+B

b

exp

(
2πi

(
N∑

ν=−1

(jν − j′ν)γνt−
N∑

ν=−1

(jν − j′ν)βν

))
dt.

Since the logarithms of prime numbers are linearly independent, the sum

N∑
ν=−1

(jν − j′ν)γν

vanishes if and only if jν = j′ν for −1 ≤ ν ≤ N . Thus, integration gives∫ b+B

b

exp

(
2πi

(
N∑

ν=−1

(jν − j′ν)γνt−
N∑

ν=−1

(jν − j′ν)βν

))
dt = B

if jν = j′ν for −1 ≤ ν ≤ N , and∣∣∣∣∣
∫ b+B

b

exp

(
2πi

(
N∑

ν=−1

(jν − j′ν)γνt−
N∑

ν=−1

(jν − j′ν)βν

))
dt

∣∣∣∣∣
≤ 1
π

∣∣∣∣∣
N∑

ν=−1

(jν − j′ν)γν

∣∣∣∣∣
−1

if jν �= j′ν for some ν ∈ {−1, 0, . . . , N}. In the latter case, by Baker’s esti-
mate [13] for linear forms, there exists an effectively computable constant A
such that ∣∣∣∣∣

N∑
ν=−1

(jν − j′ν)γν

∣∣∣∣∣
−1

< A.

Setting β0 = j0 − j′0, βν = uν

v (jν − j′ν), and aν = pν for 1 ≤ ν ≤ N , we find,
with the notation of Theorem 9.8,

Λ =
N∑

ν=−1

(jν − j′ν)γν .

We may take E = 1,W = log pN , V1 = 1 and Vν = log pν for 2 ≤ ν ≤ N . If
N ≥ 2, Theorem 9.8 gives
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|Λ| > exp

(
−28N+51N2N (1 + 2 log pN )(1 + log pN−1)

N∏
ν=2

log pν

)
.

Thus we may take

A = exp

(
28N+51N2N (1 + 2 log pN )(1 + log pN−1)

N∏
ν=2

log pν

)
. (9.32)

Hence we obtain

J ≥ B
∑
jν≥0

j−1+···+jN =k

(
k!

j−1! · · · jN !

)2

−A
π

∑
jν≥0

j−1+...+jN =k

k!
j−1! · · · jN !

∑
jν′≥0

j′−1
+···+j′

N
=k

k!
j′−1! · · · j′N !

. (9.33)

Since ∑
jν≥0

j−1+···+jN =k

1 ≤ (k + 1)N+2,

an application of the Cauchy Schwarz-inequality to the first multiple sum and
of the multinomial theorem to the second multiple sum on the right-hand side
of (9.33) yields

J ≥
(

B

(k + 1)N+2
− A

π

)⎛⎜⎝ ∑
jν≥0

j−1+···+jN =k

k!
j−1! · · · jN !

⎞⎟⎠
2

≥
(

B

(k + 1)N+2
− A

π

)
(N + 2)2k.

Setting B = A(k + 1)N+2 and with τ ∈ [b, b+B] given by

|f(τ)| = max
t∈[b,b+B]

|f(t)|,

we obtain
B(N + 2)2k

2(k + 1)N+2
≤ J ≤ B|f(τ)|2k.

This gives

|f(τ)| > N + 2− 2μ, where μ :=
(N + 2)2 log k

3k
; (9.34)

note that μ < 1 for k ≥ 11. By definition
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f(t) = 1 + exp(2πi(tγν − βν)) +
N∑

m=0
m �=ν

exp(2πi(tγm − βm)).

Therefore, using the triangle inequality,

|f(t)| ≤ N + |1 + exp(2πi(τγν − βν))| for 0 ≤ ν ≤ N

and arbitrary t ∈ R. Thus in view of (9.34)

|1 + exp(2πi(τγν − βν))| > 2 − 2μ for 0 ≤ ν ≤ N.

If hν denotes the nearest integer to τγν − βν , then

|τγν − βν − hν | <
√
μ

2
for 0 ≤ ν ≤ N.

For ν = 0 this implies |τ − h0| <
√
μ. Thus, replacing τ by h0 yields

|h0γν − βν − hν | <
√
μ

(
1 + max

1≤ν≤N
|γν |
)

for 1 ≤ ν ≤ N.

Putting k = [(3wU(N + 2) log pN )4] + 1, we get

b− 1 ≤ h0 ≤ b+ 1 +B = b+ 1 +A([(3ωU(N + 2) log pN )4] + 2)N+2.

Substituting (9.32) and replacing b−1 by b, the first assertion of Theorem 9.7
follows with the estimate of Theorem 9.9; the second estimate can be proved
by standard estimates involving the prime number Theorem 1.1. ��

Now we are in the position to present our effective result on the almost
periodicity for the polynomial Euler products under consideration. For this
purpose we shall apply Theorem 9.9 with x = pN . Recall that m was the
degree of each Euler factor in the polynomial Euler product for L. For the
sake of simplicity we use the rough estimate N = π(x) ≤ x which gives

M(x, ε) = ε−4x exp
(
x2x
)
.

Hence, by Theorem 9.6,

Corollary 9.10. Let L(s) be given by (9.18) and δ > 0. For sufficiently small
ε > 0,

�(L, δ, ε) = (Cδm+1ε)−Cδ−(m + 1)/δε−1/δ

exp
((
Cδ(m+1)/δε1/δ

)−Cδ−(m+1)/δε−1/δ)
,

where C is an absolute positive constant, depending only on m.
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9.7 c-Values Revisited

We return now to a topic already touched in Chap. 7. Almost periodicity
has a strong impact on the value distribution. In fact, if a value is taken by
a polynomial Euler product in the half-plane of absolute convergence, then
it is taken infinitely often, with a certain regularity which reflects almost
periodicity.

Theorem 9.11. Assume that L is given by (9.18). Let N(T ; a, b, c) count the
number of c-values of L(s) (i.e., the roots of the equation L(s) = c) in the
rectangle a < σ < b, 0 < t < T (counting multiplicities) and assume a ≥ 1. If
N(T ; a, b, c) ≥ 1, then, for sufficiently small positive ε and δ,

lim inf
T→∞

1
T
N(T ; a, b, c) ≥ 1

�(L, δ, ε) > 0.

Since the Euler products under observation have no zeros in their half-plane of
convergence, we have N(T ; 1,∞, 0) = 0; however, we expect N(T ; 1,∞, c) ≥ 1
for any c �= 0 (as in the case of the zeta-function).

Again we shall use Rouché’s theorem in order to localize c-values.

Proof. Suppose that N(T ; a, b, c) ≥ 1. Then there exists a complex number
λc with a < Reλc < b and 0 < Imλc < T such that L(λc) = c. Locally, we
have

L(s) − c = α(s− λc)k +O
(
|s− λc|k+1

)
, (9.35)

where α is a non-zero complex number and k ∈ N. Now define

Kδ = {s ∈ C : |s− λc| ≤ δ}.

For sufficiently small δ > 0 the disk Kδ is contained in the rectangle a < σ <
b, 0 < t < T . Now assume that there is some real number τ for which

max
|s−λc|=δ

|L(s) − c− {L(s+ iτ) − c}| < ε < min
|s−λc|=δ

|L(s) − c|; (9.36)

the second inequality holds for sufficiently small ε and δ. By the maximum
principle the left-hand side equals

max
s∈Kδ

|L(s) − L(s+ iτ)|.

By almost periodicity, the latter quantity can be made arbitrarily small for a
set of τ with positive lower density. Now, for any τ satisfying (9.36), Rouché’s
Theorem 8.1 implies the existence of a zero 	c of L(s) − c in

Kδ + iτ := {s ∈ C : |s− iτ − λc| ≤ δ}.
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In view of (9.35) the numbers λc and 	c are intimately related. In fact,

ε > max
s∈Kδ

|L(s) − L(s+ iτ)|

≥ |L(	c − iτ) − L(	c)| = |L(	c − iτ) − c|
= |α| · |	c − iτ − λc|k + O(δk+1).

Hence,

|	c − iτ − λc| <
(
ε

|α|

)1/k

+ O
(
δ1+(1/k)

)
.

In particular,

Reλc − 2
(
ε

|α|

)1/k

< Re 	c < Reλc + 2
(
ε

|α|

)1/k

,

and

|Im 	c − (τ + Imλc)| < 2
(
ε

|α|

)1/k

for small δ = O(ε1/(k+1)). Hence, for sufficiently small ε and δ, the root 	c of
the equation L(s) = c is contained in the open rectangle a < σ < b, 0 < t < T .
By the almost periodicity of L(s), we can find a real number τ satisfying (9.36)
in any interval of length �(L, δ, ε). This implies the estimate of the theorem.

��

Taking into account Bohr’s results on the value-distribution of the zeta-
function in the half-plane of absolute convergence (see Theorem 1.3), the
condition of Theorem 9.11 is fulfilled for any non-zero complex number c, i.e.,
N(T ; 1,∞, c) ≥ 1. Hence, for fixed c �= 0 and sufficiently small ε, δ > 0, we
find for the number of c-values of ζ(s) in the half-plane σ > 1 the estimate

lim inf
T→∞

1
T
� {	c : Re 	c > 1, 0 < Im 	c < T,L(	c) = c} ≥ 1

�(ζ, δ, ε)
,

where

�(ζ, δ, ε) = (Cδ2ε)−Cδ−2/δε−1/δ

exp
((

Cδ2/δε1/δ
)−Cδ−2/δε−1/δ)

(9.37)

by Corollary 9.10.
We apply Theorem 9.6 and (9.37) to prove the existence of large values of

the zeta-function in some distance of the pole at s = 1. Recall that

ζ(s) =
1

s− 1
+ O(1)

for s → 1. Let c be a large positive real number; then there exists a real
number λc with

1 < λc ∼ 1 +
1
c

for which c = ζ(λc).
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Put � := �(ζ, δ, δ). By Theorem 9.6, for sufficiently small δ, we can find a real
number τ ∈ (�, 2�) such that

|ζ(σ + iτ)| ∼ |ζ(λc)| = c =:
1
δ

for some σ > 1. In view of (9.37) we obtain after a short computation

1
δ
! log log log τ

log log log log τ
.

This leads to the estimate

inf
σ>1,t>	

|ζ(σ + it)|
log log log t

> 0.

It should be noted that this estimate for large values of the zeta-function
in the half-plane of absolute convergence is quite far from the best possible
estimate due to Bohr and Landau [34]; they proved the existence of infinitely
many s = σ + it with σ → 1+ and t→ +∞ for which

|ζ(s)| � log log t.

By a standard argument based on the Phragmén–Lindelöf principle it follows
that

ζ(1 + it) = Ω(log log t) and
1

ζ(1 + it)
= Ω(log log t). (9.38)

Under assumption of Riemann’s hypothesis these estimates give the true order
of growth (see [353, Sect. 14.8]).

20 40 60 80 100

0.5

1

1.5

2

2.5

3

Fig. 9.3. |ζ(1 + it)| for t ∈ (0, 100]. The limit superior of the peaks grows with t to
infinity, the limit inferior of the valleys tends to zero
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Theorem 9.9 is due to Steuding [344] and was used to prove Ω-results for
Dirichlet L-functions in the half-plane of absolute convergence. It was shown
that for any real θ there are infinitely many values of s = σ+ it with σ → 1+
and t→ +∞ such that

Re {exp(iθ) logL(s, χ)} ≥ log
log log log t

log log log log t
+ O(1)

and
Re {exp(iθ) logL(1 + it, χ)} = Ω(log log log log t).

It seems that also these estimates for L(s, χ) are one iterated logarithm off
the true order. However, in contrast to Ω-results, these large values are taken
frequently.
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Consequences of Universality

Betrachten wir beispielsweise die Klasse derjenigen Funktionen, die
sich durch gewöhnliche oder partielle Differentialgleichungen charak-
terisieren lassen. In dieser Klasse von Funktionen kommen, wie wir
sofort bemerken, gerade solche Funktionen nicht vor, die aus der
Zahlentheorie stammen und deren Erforschung für uns von höchster
Wichtigkeit ist. Beispielsweise genügt die schon früher erwähnte Funk-
tion ζ(s) keiner algebraischen Differentialgleichung, . . .”

David Hilbert

The phenomenon of universality has many interesting consequences. There
are the classic results due to Bohr, mentioned in the introduction, as well as
extensions of Ostrowski’s theorem on the non-existence of algebraic differential
equations for Dirichlet series (which actually was part of the 18th Hilbert
problem). In this chapter, we prove generalizations for universal L-functions,
we discuss a disproof of a conjecture on certain mean-square estimates due to
Ramachandra by Andersson [1], and, finally, we study the value-distribution
of linear combinations of shifts of universal Dirichlet series.

10.1 Dense Sets in the Complex Plane

Let L ∈ S̃ and let c be a complex number. A standard argument yields that
the number of c-values up to level T is � T provided c �= 0. To see this, let
N c

L(σ1, σ2, T ) count the number of c-values of L(s) in the region σ1 < σ < σ2

and |t| ≤ T , i.e., N c
L(σ1, σ2, T ) = N c

L(σ1, T ) − N c
L(σ2, T ) in the notation of

Sect. 7.2. We apply Theorem 5.14 to the function g(s) = c �= 0 with a small
disk K inside the strip σ1 < σ < σ2, where max{ 1

2 , 1 − 1
dL
} < σ1 < σ2 < 1.

For any ε > 0, we find

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ) − c| < ε

}
> 0.
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By Rouché’s Theorem 8.1, it follows that N c
L(σ1, σ2, T ) is bounded below

by a positive constant times T . In combination with the estimate (7.11) of
Theorem 7.6 we obtain

Theorem 10.1. Let L ∈ S̃ and let c be a complex number �= 0, 1. Then, for
any σ1, σ2 satisfying max{ 1

2 , 1 − 1
dL
} < σ1 < σ2 < 1,

N c
L(σ1, σ2, T ) ! T.

This result should be compared with Bohr’s limit Theorem 1.5.
In Sect. 8.1, we have seen that ζ(s) cannot approximate functions having

zeros. However, the same argument as above can be used to count zeros of
the real part of ζ(s). Garaev [83] used Voronin’s universality theorem in order
to detect zeros of Re ζ(s). He showed that, for fixed σ ∈ (1

2 , 1), the function
Re ζ(σ+ it) has more than � T zeros t ∈ (0, T ); this follows directly from an
application of the universality theorem to the function g(s) = exp(Cs), where
C is a sufficiently large constant. Moreover, the function Re ζ(σ + it) has at
least cT sign changes in the interval (0, T ), where c is some positive constant.
Besides, Garaev proved also the upper bound T log T (the same statements
also hold for Im ζ(σ + it)).

Next we consider the multidimensional analogue and extend Voronin’s
Theorem 1.6 to

Theorem 10.2. Let L ∈ S̃ and suppose that σ ∈ (max{1
2 , 1− 1

dL
}, 1) is fixed.

Then the set
{(L(s),L′(s), . . . ,L(n−1)(s)) : t ∈ R}

lies everywhere dense in Cn.

Proof. First, for any vector (a0, a1, . . . , am) ∈ Cm+1 with a0 �= 0, we prove by
induction on m, that there exists another vector (b0, b1, . . . , bm) ∈ Cm+1 for
which

exp

(
m∑

k=0

bks
k

)
≡

m∑
k=0

ak

k!
sk mod sm+1.

For m = 0 one only has to choose b0 = log a0. By the induction assumption
we may assume that with some α

exp

(
m∑

k=0

bks
k

)
≡

m∑
k=0

ak

k!
sk + αsm+1 mod sm+2.

For any β,
exp(βsm+1) ≡ 1 + βsm+1 mod s2m+2.

Thus,

exp

(
m∑

k=0

bks
k + βsm+1

)
≡ (1 + βsm+1)

(
m∑

k=0

ak

k!
sk + αsm+1

)
mod sm+2.
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Let bm+1 = β be the solution of the equation

βa0 + α =
am+1

(m+ 1)!
,

which exists since a0 �= 0. This shows

exp

(
m+1∑
k=0

bks
k

)
≡

m+1∑
k=0

ak

k!
sk mod sm+2,

proving the claim.
Now let

g(s) = exp

(
n−1∑
k=0

bks
k

)
≡

n−1∑
k=0

ak

k!
sk mod sn.

Obviously, g(k)(0) = ak for 0 ≤ k ≤ n− 1. Put

σ0 =
1
2

(
max
{

1
2
, 1 − 1

dL

}
+ 1
)
.

By the universality Theorem 5.14, for any ε > 0, there exists a τ such that

max
|s|≤r

|L(s+ σ0 + iτ) − g(s)| < 2π
εrk

k!

for sufficiently small r. Applying Cauchy’s formula,

f (k)(0) =
k!
2πi

∮
|s|=r

f(s)
sk+1

ds

to the function
f(s) = L(s+ σ0 + iτ) − g(s)

with sufficiently small r, we obtain

|L(k)(σ0 + iτ) − ak| = |L(k)(σ0 + iτ) − g(k)(0)| < ε

for 0 ≤ k ≤ n− 1. This proves the theorem. ��

10.2 Functional Independence

Hölder [135] proved in 1887 that the Gamma-function is hypertranscendental,
i.e., Γ (s) does not satisfy any algebraic differential equation: there exists no
polynomial P in n variables, not identically zero, such that

P
(
z, Γ (z), Γ ′(z), . . . , Γ (n−1)

)
= 0
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for all z ∈ C. In Hilbert’s famous list of 23 challenging problems for the
twentieth century [134], originated from his lecture given at the International
Congress for Mathematicians in Paris 1900, he asked in problem 18 for a des-
cription of classes of function definable by differential equations. In this con-
text Hilbert stated that the Riemann zeta-function is hypertranscendental;
the first published proof for ζ(s) was written down by Stadigh in his disser-
tation (cf. [286]). Hilbert also asked for a proof of the hypertranscendence for
the more general series

ζ(s, x) :=
∞∑

n=1

xn

ns

and proposed to use the functional equation

x
∂

∂x
ζ(s, x) = ζ(s− 1, x).

This problem was solved by Ostrowski [286] as a particular case of a more
general theorem; his argument relies on a comparison of the differential
independence with the linear independence of its frequencies. By a similar
reasoning Reich [307] proved that the Dedekind zeta-function does not satisfy
any difference-differential equation. Popken [295] introduced a measure for
the differential-transcendence of ζ(s) and other hypertranscendental Dirichlet
series (similar to transcendence measures in the theory of transcendental
numbers).

Following Voronin [362] we shall show now that universality implies the
more general concept of functional independence. We say that the functions
f1(s), . . . , fm(s) are functionally independent if for any continuous functions
F0, F1, . . . , FN : Cm → C, not all identically vanishing, the function

N∑
k=0

skFk(f1(s), . . . , fm(s))

is non-zero for some values of s.

Theorem 10.3. Let L ∈ S̃, z = (z0, z1, . . . , zn−1) ∈ Cn and suppose that
F0(z), F1(z), . . . , FN (z) are given continuous functions, not all identically
zero. Then

N∑
k=0

skFk

(
L(s),L(s)′, . . . ,L(s)(n−1)

)
�= 0

for some s ∈ C.

In particular, L ∈ S̃ does not satisfy any algebraic differential equation.

Proof. First, we show that if F (z) is a continuous function and if

F
(
L(s),L(s)′, . . . ,L(s)(n−1)

)
= 0

identically in s ∈ C, then F vanishes identically.



10.2 Functional Independence 197

Suppose the contrary, i.e., F (z) �≡ 0. Then there exists a ∈ Cn for which
F (a) �= 0. Since F is continuous we can find a neighbourhood U of a and a
positive ε such that

|F (z)| > ε for z ∈ U.
Choosing an arbitrary σ with max{ 1

2 , 1 − 1
dL
} < σ < 1, an application of

Theorem 10.2 yields the existence of some t for which(
L(σ + it),L(σ + it)′, . . . ,L(σ + it)(n−1)

)
∈ U,

which contradicts our assumption. This proves our claim which is the assertion
of the theorem with N = 0.

Without loss of generality we may assume that F0(z) is not identically
zero. As above there exist an open bounded set U and a positive ε such that

|F0(z)| > ε for z ∈ U.

Denote by M the maximum of all indices m for which

sup
z∈U

|Fm(z)| �= 0.

If M = 0, then the assertion of the theorem follows from the result proved
above. Otherwise, we may take a subset V ⊂ U such that:

inf
z∈V

|FM (z)| > ε

for some positive ε. By Theorem 10.2, there exists a sequence tj , tending with
j to infinity, such that(

L(σ + itj),L(σ + itj)′, . . . ,L(σ + itj)(n−1)
)
∈ V.

This implies

lim
j→∞

∣∣∣∣∣
M∑

k=0

(σ + itj)kFk(L(σ + itj),L(σ + itj)′, . . . ,L(σ + itj)(n−1))

∣∣∣∣∣ = ∞,

which proves the theorem. ��
The zeta-function does not satisfy any algebraic differential equation; how-

ever, another approximation property for zeta is related to a non-algebraic
differential equation. Gauthier and Tarkhanov [95] proved that any mero-
morphic function on a compact subset K of C having at most simple poles
can be approximated by linear combinations of certain translates of the
Riemann zeta-function (not necessarily from the critical strip); if derivatives
of ζ(s) are allowed, then arbitrary meromorphic functions can be approxi-
mated. The proof of this result does not rely on the universality property of
the zeta-function but the fact that ζ(s) satisfies a certain (non-algebraic) inho-
mogeneous linear differential equation of order one for the Riemann–Cauchy
operator.
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10.3 Joint Functional Independence

Now we extend the previous results by restricting on some kind of minimal
definition what universality might be. Assume that F1(s), . . . , Fm(s) are mero-
morphic functions for σ > σm with σm < 1 satisfying the following property:
given arbitrary linearly independent continuous functions f1(s), . . . , fm(s) on
a compact subset K of σm < σ < 1 with connected complement, which are
analytic in the interior, for any ε > 0 and all but finitely many points s0 ∈ K,
there exists a neighbourhood K̃ of s0 with K̃ ⊂ K and a real number τ such
that

max
1≤j≤m

max
s∈K̃

|Fj(s+ iτ) − fj(s)| < ε. (10.1)

We then say that the family F1, . . . , Fm is weakly jointly universal. This notion
was introduced by Sander and Steuding [315] in order to prove that families of
Hurwitz zeta-functions with rational parameters satisfying certain side condi-
tions are weakly jointly universal and functional independent.

Theorem 10.4. Suppose that F1(s), . . . , Fm(s) are weakly jointly universal.
Then for almost all s0 with Re s0 ∈ (σm, 1) (i.e., all but from a discrete set)
the image of the curve

Ξ(t) :=
(
F1(s0 + it), . . . , Fm(s0 + it), . . . , F (	−1)

1 (s0 + it), . . . , F (	−1)
m (s0 + it)

)
lies dense in Cm	.

We only give a sketch of the proof since the argument is in principal the
same as in the proof of Theorem 10.2. For j = 1, . . . ,m and 0 ≤ k < �, to
any given set of complex numbers akj with a0j �= 0, there exists a polynomial
gj(s) such that

akj = (exp(gj(s)))
(k)
∣∣∣
s=s0

. (10.2)

Let K be the closed disk with center s0 and radius r > 0 such that K lies
inside the strip σm < σ < 1. Now we make use of our assumption that the
functions Fj(s) are weakly jointly universal. We may assume that the functions
fj(s) := exp(gj(s)) are linearly independent (if not, then we may replace the
gj(s) by gj(s)+γj(s) with suitable functions γj(s) such that (10.2) still holds).
Further, we may assume that the Fj(s) are jointly universal with respect to
the functions fj(s) for a small neighbourhood K̃ of s0, a disk with center s0
of radius 	, say. In particular, for any ε > 0, there exists a real number τ
such that (10.1) holds. Now define ηj(s) = Fj(s+ iτ)− gj(s). Using Cauchy’s
integration formula,

η
(k)
j (s0) =

k!
2πi

∮
|s−s0|=�

ηj(s)
(s− s0)k+1

ds,
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we obtain the estimate ∣∣∣η(k)
j (s0)

∣∣∣ ≤ k!
	k

max
s∈K̃

|ηj(s)|.

This leads to

max
1≤j≤m

∣∣∣F (k)
j (s0 + iτ) − akj

∣∣∣ < ε
k!
	k

for k = 0, 1, . . . , �− 1. Taking ε sufficiently small the assertion follows.
Now we may use the previous theorem to prove the functional indepen-

dence for jointly universal families and their derivatives:

Theorem 10.5. Suppose that F1(s), . . . , Fm(s) are weakly jointly universal.
Let f0, . . . , fn be continuous functions on Cm	. If

n∑
k=0

skfk

(
F1(s), . . . , Fm(s), . . . , F (	−1)

1 (s), . . . , F (	−1)
1 (s)

)
= 0

identically in σm < σ < 1, then fk(s) ≡ 0 for k = 0, 1, . . . , n.

Again we give only a sketch of the proof. First, we show that if f is a continuous
function on Cm	 and

f
(
F1(s), . . . , Fm(s), . . . , F (	−1)

1 (s), . . . , F (	−1)
m (s)

)
= 0

in σm < σ < 1, then f vanishes identically.
Suppose the contrary, i.e., f(z0) �= 0 for some z0 ∈ Cm	. Since f is con-

tinuous, there exists a neighbourhood U of z0 and some positive ε such that

|f(z)| > ε for z ∈ U . (10.3)

By Theorem 10.4, for some fixed s0 with Re s0 ∈ (σm, 1), there exists a
sequence (tj) tending to +∞ for which(
F1(s0 + itj), . . ., Fm(s0 + itj), . . ., F

(	−1)
1 (s0 + itj), . . ., F (	−1)

m (s0 + itj)
)
∈U .

This gives the desired contradiction. So we have proved the assertion of the
theorem in the case of n = 0.

To prove the full assertion we may now assume that f0 is not identically
zero. By the same reasoning as above, there exists an open bounded set U
and a positive ε such that (10.3) holds with f0 in place of f . Now denote by κ
the maximum of all indices 1 ≤ k ≤ m such that the supremum of all values
|fk(z)| for z ∈ U is positive. For sufficiently small ε > 0, we may find a subset
V ⊂ U for which

inf
z∈V

|fκ(z)| > ε.
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By Theorem 10.4, for fixed s0, there exists a sequence (tj) tending to +∞
such that(
F1(s0 + itj), . . . , Fm(s0 + itj), . . . , F

(	−1)
1 (s0 + itj), . . . , F (	−1)

m (s0 + itj)
)
∈V.

This implies the divergence of

κ∑
k=0

skfk

(
F1(s), . . . , Fm(s), . . . , F (	−1)

1 (s), . . . , F (	−1)
m (s)

) ∣∣∣
s=s0+itj

,

as j →∞, giving the contradiction. Theorem 10.5 is proved.
We conclude with an interesting result of Kaczorowski and Perelli. If P is

an arbitrary entire function of minimum type of order one on Cn ×D, where
D is a region in C which contains the set{

s ∈ C : σ ≥ 1
2
, |t| ≥ T

}
∪ {s ∈ C : σ > 1, |t| ≤ T}

for some positive T , and if the functions L1, . . . ,Ln ∈ S are linearly indepen-
dent over Q, then Kaczorowski and Perelli [159] showed that the function

P (logL1(s), . . . , logLn(s), s)

has infinitely many singularities in the half-plane σ ≥ 1
2 .

10.4 Andersson’s Disproof of a Mean-Square Conjecture

There are further applications of universality. First, we briefly discuss a dis-
proof of a conjecture concerning the mean-square of Dirichlet polynomials.
The theorem of Montgomery–Vaughan states that, for arbitrary complex num-
bers a1, . . . , aN ,

∫ T

0

∣∣∣∣∣
N∑

n=1

ann
it

∣∣∣∣∣
2

dt	
N∑

n=1

|an|2(T + n).

In the other direction, Ramachandra [299] conjectured that for any N ≥ 0
and any complex numbers a1, . . . , aN , there exists a positive constant C such
that ∫ T

0

∣∣∣∣∣
N∑

n=1

ann
it

∣∣∣∣∣
2

dt ≥ C
∑

n≤CT

|an|2.

Andersson [1] gave a disproof of this and two related conjectures on moments
of Dirichlet polynomials due to Ramachandra. Actually, Andersson proved the
following statement: for any H, ε > 0 and 0 < δ < 1

2 there exists an N ≥ 2
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and complex numbers a2, . . . , aN , satisfying the estimate |an| ≤ nδ−1/2, such
that

max
0≤t≤H

∣∣∣∣∣1 +
N∑

n=2

ann
it

∣∣∣∣∣ < ε. (10.4)

The proof relies on an approximation of ζ(s) by a Dirichlet polynomial and
Voronin’s universality theorem. It follows from (1.3) that, for any δ ∈ (0, 1

2 )
and for sufficiently large T ,∣∣∣∣∣ζ(1 − δ + it) −

∑
n<2T

nδ−1−it

∣∣∣∣∣ < ε

3
(10.5)

when T ≤ t ≤ T +H. Voronin’s universality Theorem 1.9, applied to g(s) = ε
3

and K = [1 − δ, 1 − δ + iH], yields

max
t∈K

∣∣∣ζ(1− δ + it+ iT ) − ε

3

∣∣∣ < ε

3

for some T > 0. Thus, if we replace t by t− T , then

|ζ(1 − δ + it)| < 2ε
3

for T ≤ t ≤ T +H. By (10.5), this implies the inequality∣∣∣∣∣ ∑
n<2T

nδ−1−it

∣∣∣∣∣ < ε,

valid for T ≤ t ≤ T +H, which leads to Andersson’s claim (10.4).
It follows from (10.4) that, for each T ≥ 0 and any ε > 0, there exist

complex numbers a1, . . . , aN , for which

∫ T

0

∣∣∣∣∣1 +
N∑

n=2

ann
it

∣∣∣∣∣
2

dt ≤ ε.

This disproves Ramachandra’s conjecture. Andersson also gave a simpler
argument based on the Szasz–Müntz theorem.

10.5 Voronin’s Theorems and Physics

We should mention applications of Voronin’s results on the value distrib-
ution of the zeta-function to physics. Gutzwiller [112] discovered an inter-
esting link between quantum theory, hyperbolic geometry and the Riemann
zeta-function. On a closed surface of constant negative curvature the Selberg
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trace formula expresses the relation between classical and quantum states.
Gutzwiller constructed a solution of Schrödinger’s equation on the punctured
torus which may be regarded as the quotient of the upper half-plane by a free
subgroup of index six in SL2(Z). This solution represents the scattering and
reflection of a particle which enters the torus through the hole. The scattering
phase shift is essentially the argument of ζ(s) on the line σ = 1. The univer-
sality theorem reflects the chaotic behaviour of the zeta-function inside the
critical strip, and in particular the zero-distribution is expected to be closely
related to the quantum chaos in this model.

Bitar, Khuri and Ren [24] found an interesting application of Voronin’s
Theorems 1.6 and 1.7 to Feynman’s path integral in quantum physics. They
obtained a formula for the partition function as a discrete sum over paths
with each path labeled by an integer and given by a zeta-function evaluated
at a fixed set of points in the critical strip. These points are the image of the
space–time lattice resulting from a linear mapping.

10.6 Shifts of Universal Dirichlet Series

Recently, Kaczorowski, Laurinčikas and Steuding [157] studied shifts of uni-
versal Dirichlet series with respect to universality and their value-distribution.
Assume that F(s) is analytic in some open strip, D = {s ∈ C : σ1 < σ < σ2}
say, and that K1, . . . ,Kn are disjoint compact subsets of D with connected
complements. Let g(s) be any (non-vanishing) continuous function, defined
on
⋃n

j=1 Kj , which is analytic in the interior; here g(s) is allowed to have
zeros if and only if F(s) is strongly universal. If now for any ε > 0, there
exists a real number τ such that

max
s∈∪n

j=1Kj

|F(s+ iτ) − g(s)| < ε,

then also
max

1≤j≤n
max
s∈Kj

|F(s+ iτ) − gj(s)| < ε,

where the gj(s) are defined as restriction of g(s) on Kj ; of course, equivalently,
one can consider all gj(s) being defined on some compact subset K of D with
connected complement and study shifts of F(s).

Let λ1, . . . , λn be complex numbers and put

λ := min
1≤j≤n

Reλj and Λ := max
1≤j≤n

Reλj . (10.6)

Further, let K be a compact set, and define Kj := {s+ λj : s ∈ K}. Then the
shifts

Fλj
(s) := F(s+ λj)
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of F(s) are said to be jointly universal with respect to λ1, . . . , λn if, for every
compact K with connected complement and for which the sets Kj are dis-
joint subsets of D, every family of (non-vanishing) continuous functions gj(s)
defined on K which are analytic in the interior, and for any ε > 0, we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤j≤n
max
s∈K

: Fλj
(s+ iτ) − gj(s)| < ε

}
> 0.

Clearly, the assumption on the Kj to be disjoint is necessary. Moreover, to
have all shifts well defined on a non-empty subset of the complex plane we
need the following necessary condition:

Λ− λ < σ2 − σ1 (10.7)

with λ and Λ defined in (10.6) and σ1, σ2 being the abscissae bounding D.
The condition Kk ∩ K	 = ∅ for k �= � implies

λk �= λ	 for k �= �. (10.8)

According to the foregoing remarks one can formulate the following general

Shifts Universality Principle 1. Every (strongly) universal function in D
is jointly (strongly) universal with respect to every finite sequence of shifts
λ1, . . . , λn satisfying (10.7) and (10.8).

For instance, ζ(s) and ζ(s+ iλ) are jointly universal for any real λ �= 0.
Now suppose that F(s) is universal in D. By the same argument as in

Sect. 10.1 it follows that then for every complex numbers λ1, . . . , λn satisfying
(10.7) and (10.8), for every s0 ∈ D(λ1, . . . , λn) := {s ∈ C : σ1 − λ < σ <
σ2 − Λ}, the image of the curve(

Fλ1(s0 + it), . . . ,Fλn
(s0 + it), . . . ,F (	−1)

λ1
(s0 + it), . . . ,F (	−1)

λn
(s0 + it)

)
lies dense in Cn	. It should be noticed that in the case of the zeta-function
this implies and generalizes both statements of Voronin’s Theorem 1.6. More-
over, as in Sect. 10.2, this statement can be used to deduce the functional
independence for these shifts, i.e., if f0, . . . , fm are continuous functions on
Cn	, and if

m∑
k=0

skfk

(
Fλ1(s), . . . ,Fλn

(s), . . . ,F (	−1)
λ1

(s), . . . ,F (	−1)
λn

(s)
)

= 0

identically for all s ∈ D(λ1, . . . , λn), then fk ≡ 0 for k = 0, 1, . . . ,m.
Further, Kaczorowski, Laurinčikas and Steuding [157] considered linear

combinations of jointly universal shifts Fλj
(s). Let n ≥ 2 and a1, . . . , an be

arbitrary, non-zero complex numbers and let

Z(s) :=
n∑

j=1

ajFλj
(s).

This linear combination is strongly universal:
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Theorem 10.6. Suppose that n ≥ 2 and λ1, . . . , λn are complex numbers
satisfying (10.7), (10.8), and let K be a non-empty compact subset with the
connected complement such that the sets Kj = {s + λj : s ∈ K} are disjoint
subsets of D. Moreover, let F(s) be universal in D and let g(s) be a continuous
function on K which is analytic in the interior of K. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|Z(s+ iτ) − g(s)| < ε

}
> 0.

We sketch the proof. Define the functions

g1(s) =
1
a1

(g(s) + �+ 1) and g2(s) = − 1
a2

(�+ 1),

where � := maxs∈K |g(s)|. Then g1(s) does not vanish for s ∈ K. Further, for
j = 3, . . . , n, define gj(s) ≡ ε with some arbitrary positive ε. Then, for any τ ,

Z(s+ iτ) − g(s)
= a1 {Fλ1(s+ iτ) − g1(s)} + a2 {Fλ2(s+ iτ) − g2(s)}

+
n∑

j=3

aj

{
Fλj

(s+ iτ) − gj(s)
}

+
n∑

j=3

ajε.

Now an application of the Shift Universality Principle yields the existence of a
set of positive real numbers τ having positive lower density for each of which

max
s∈K

|Z(s+ iτ) − g(s)|

≤
n∑

j=1

|aj |
{

max
1≤j≤n

max
s∈K

|Fλj
(s+ iτ) − gj(s)| + ε

}
< 2ε

n∑
j=1

|aj |.

The right-hand side can be made as small as we please.
This theorem has interesting consequences on the zero-distribution. Under

the conditions of the previous theorem, the function Z(s) can uniformly
approximate functions g(s) having zeros, so Z(s) is strongly universal.
However, for a single shift Fλj

(s) this is not true in general (e.g., the Riemann
zeta-function is not strongly universal as shown in Sect. 8.1).

In the sequel we assume that F(s) is not vanishing identically, has a rep-
resentation as an ordinary Dirichlet series, more precisely,

F(s) =
∞∑

n=1

f(n)
ns

for σ > σ2, and is regular and of finite order in the strip σ1 < σ < σ2 with
bounded second moment:

lim sup
T→∞

1
T

∫ T

0

|F(σ + it)|2 dt <∞; (10.9)
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notice that these assumptions hold for the Riemann zeta-function, Dirichlet L-
functions, Lerch zeta-functions, and many other naturally appearing Dirichlet
series with σ1 = 1

2 and σ2 = 1.
To obtain some information on the zero-distribution of Z(s) we denote by

NZ(σ, T ) the number of zeros 	 = β + iγ of Z(s) satisfying β > σ, 0 < γ < T .
Then

Theorem 10.7. Let λ1, . . . , λn be in pairs different and satisfy (10.7). Then
for fixed σ ∈ (σ1 − λ, σ2 − Λ), there exist positive constants c1, c2, depending
only on σ and Z(s), such that

c1 ≤ lim inf
T→∞

1
T
NZ(σ, T ) ≤ lim sup

T→∞
1
T
NZ(σ, T ) ≤ c2;

the constants c1 and c2 are explicitly given by (10.12) and (10.15) if condition
(10.13) holds.

The method of proof relies on Theorem 10.6 and techniques from Sects. 7.1
and 8.2 (respectively, Sect. 9.2).

Proof. We start with the lower bound. For � and r > 0 we shall consider the
function g(s) := s − � defined on the disk of radius r and center �, that is
K := {� + s : |s| ≤ r}. We suppose that the disks Kj := {λj + s : s ∈ K} are
disjoint and that σ1−λ+ r < � < σ2−Λ− r. An application of Theorem 10.6
yields the existence of some positive real numbers τ such that

max
s∈K

|Z(s+ iτ) − g(s)| < ε. (10.10)

This implies

max
|s|=r

|Z(�+ s+ iτ) − g(�+ s)| < ε ≤ r = min
|s|=r

|g(�+ s)| (10.11)

for sufficiently small ε. The function g(� + s) = s has a zero inside the disk
|s| ≤ r and so, by Rouché’s Theorem 8.1, there exists a zero of Z(s) inside any
of the sets {�+s+iτ : |s| ≤ r} provided inequality (10.10) holds. The number
of these zeros will give a lower bound for the zero-counting function NZ in
the formulation of the theorem. As in the proof of Theorem 8.3 (respectively,
Theorem 9.1), we get

NZ(σ, T ) ≥ 1
2r

meas I(T ),

where σ := �− r > σ1 − λ, and I(T ) is the set of τ ∈ [0, T ] such that (10.10)
is valid. In view of (10.11) we can take r = ε. By Theorem 10.6,

d(ε) := lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|Z(s+ iτ) − g(s)| < ε

}
> 0
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for any positive ε for which the sets Kj = {λj + s : |s| ≤ ε} lie disjoint. This
yields the lower estimate of the theorem with the constant

c1 =
1
2ε

d(ε)

=
1
2ε

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|≤ε
|Z(σ + ε+ s+ iτ) − s| < ε

}
(10.12)

For the upper bound we suppose that

f(1) = 1 and a :=
n∑

j=1

aj �= 0. (10.13)

The general case can be treated analogously. We define the function

Z(s) :=
1
a
Z(s).

Obviously, the zeros of Z(s) correspond one-to-one to the zeros of Z(s), and
Z(s) tends to 1 as σ →∞. It follows that Z(s) has no zeros in some half-plane
σ ≥ σ3. Littlewood’s Lemma 7.2 yields∫ κ2

κ1

NZ(σ, T ) dσ =
1

2πi

∫
R

logZ(s) ds+ O(1), (10.14)

where R is the rectangular contour with vertices κ1, κ2, κ1 + iT, κ2 + iT with
σ1−λ < κ1 < σ2−Λ < σ3 < κ2, and where the error term arises from possible
poles at s = 1 − λj . The right-hand side of (10.14) is equal to

1
2π

∫ T

0

log |Z(κ1 + it)|dt+ O(log T );

the error term estimate comes from a standard use of Jensen’s formula (as in
the proof of Theorem 7.1). By Jensen’s inequality, the appearing integral is

≤ T

4π
log

(
1
T

∫ T

0

|Z(κ1 + it)|2 dt

)
.

Since F(s) is regular and of finite order with bounded second moment (10.9),
it follows from Carlson’s Theorem 2.4 that, for σ > σ1,

lim
T→∞

1
T

∫ T

0

|F(σ + it)|2 dt =
∞∑

n=1

|f(n)|2
n2σ

=: F (2σ).
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This leads to

lim
T→∞

1
T

∫ T

0

|Z(κ1 + it)|2 dt ≤ n

|a|2
n∑

j=1

|aj |2 lim
T→∞

1
T

∫ T

0

|Fλj
(κ1 + it)|2 dt

=
n

|a|2
n∑

j=1

|aj |2F (2(κ1 + Reλj)).

Thus, we may replace (10.14) by

∑
Re �>κ1

0<Im �≤T

(Re 	− κ1) ≤
T

4π

⎛⎝log

⎛⎝ n

|a|2
n∑

j=1

|aj |2F (2(κ1 + Reλj))

⎞⎠+ O(1)

⎞⎠ ;

here the sum on the left-hand side is taken over all zeros 	 of Z(s) satisfying
the condition of summation. Since, for σ1 − λ < κ1 < σ,

NZ(σ, T ) ≤ 1
σ − κ1

∑
Re �>κ1

0<Im �≤T

(Re 	− κ1),

we obtain

NZ(σ, T ) ≤ T

4π(σ − κ1)

⎛⎝log

⎛⎝ n

|a|2
n∑

j=1

|aj |2F (2(κ1 + Reλj))

⎞⎠+ O(1)

⎞⎠ .
Thus, taking κ1 = 1

2 (σ1−λ+σ) the upper estimate of the theorem holds with
the constant

c2 =
1

2π(σ + λ− σ1)
log

⎛⎝ n

|a|2
n∑

j=1

|aj |2F (σ1 + σ + 2Reλj − λ)

⎞⎠ . (10.15)

The theorem is proved. ��

We conclude with a few words concerning the zero-distribution of Dirichlet
series. It seems that universal Dirichlet series have in their region of univer-
sality either none or ! T many zeros with real part greater than σ for any
fixed σ ∈ [ 12 , 1) up to level T . Selberg [323] investigated linear combinations
of linearly independent elements of the Selberg class and conjectured that
� T

√
log log T many of its zeros up to level T lie to the right of the critical

line, but that almost all zeros lie on the critical line. The latter conjecture
was proved by Bombieri and Hejhal [38] in the case of Epstein zeta-functions
attached to a rational quadratic form under the assumption of a well-spacing
of the zeros. Gritsenko [106] showed that linear combinations of primitive
degree 2-elements of the Selberg class have at least T (log log T )η many zeros
on the critical line up to level T , where η is some constant. It is expected that
a positive proportion of these zeros is located on the critical line.
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Dirichlet Series with Periodic Coefficients

In Anschluß daran beweise ich u.a. eine Funktionalgleichung, der jede
Dirichletsche Reihe mit periodischen Koeffizienten genügt; diese ist
ganz überraschend einfach und scheint mir, wenn man sie auf die in
der Zahlentheorie eine so große Rolle spielende Charakterreihen (L-
Reihen) anwendet, die Quelle zu sein, von der aus die Funktionalgle-
ichungen recht verständlich werden. W. Schnee

In this chapter, we consider Dirichlet series associated with periodic arith-
metical functions f , sometimes also called periodic zeta-functions. This class
of Dirichlet series includes Dirichlet L-functions, but in general these func-
tions do not have an Euler product; anyway, we shall denote them by L(s, f).
Such Dirichlet series are rather simple objects which have the advantage that
many computations can be done explicitly. We prove universality for Dirichlet
series attached to non-multiplicative periodic functions subject to some side
restrictions. This leads to an interesting zero-distribution which is rather dif-
ferent to the one of Dirichlet L-functions. The results of this chapter are due
to Steuding [340, 342, 343].

11.1 Zero-Distribution

Let q be a positive integer and let f : Z → C be a q-periodic arithmetical
function, i.e.,

f(n+ q) = f(n) for all n ∈ Z.

We define the associated Dirichlet series by

L(s, f) =
∞∑

n=1

f(n)
ns

.

Since the coefficients are bounded, this series converges for σ > 1. In the
sequel, we assume that f does not vanish identically zero. However, we do
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not require that q is the minimal period; consequently, certain quantities
appearing in asymptotic formulae below remain invariant if q is replaced by
an integer multiple.

By the periodicity of f we find

L(s, f) =
1
qs

q∑
a=1

f(a) ζ
(
s,
a

q

)
. (11.1)

The analytic continuation of the Hurwitz zeta-function (1.42) leads immedi-
ately to an analytic continuation for L(s, f). Thus, L(s, f) is analytic through-
out the whole complex plane except for at most one simple pole at s = 1;
actually, L(s, f) is regular at s = 1 if and only if

∑q
a=1 f(a) = 0 (respectively,

f+(q) = 0 in the notation (11.2)). By the identity

ζ(1 − s, α) =
Γ (s)
(2π)s

{
exp
(
πis
2

) ∞∑
n=1

exp(−2πiαn)
ns

+ exp
(
−πis

2

) ∞∑
n=1

exp(2πiαn)
ns

}
,

valid for σ > 1 (this is a special case of the functional equation (1.44)), we
get from (11.1)

L(1 − s, f) =
( q

2π

)s Γ (s)√
q

{
exp
(
πis
2

) ∞∑
n=1

f−(n)
ns

+ exp
(
−πis

2

) ∞∑
n=1

f+(n)
ns

}

for σ > 1, where

f±(n) :=
1√
q

q∑
a=1

f(a) exp
(
±2πi

an

q

)
. (11.2)

The functions f± may be interpreted as the discrete Fourier transforms of the
functions f± : Z → C, n �→ f(±n). Obviously, f+ = f , and f− is q-periodic
as well. By analytic continuation we obtain the functional equation

L(1 − s, f±) =
( q

2π

)s Γ (s)√
q

{
exp
(
πis
2

)
L(s, f∓)

+ exp
(
−πis

2

)
L(s, f±)

}
, (11.3)

valid for all s, which was first proved by Schnee [316].
Denote the zeros of L(s, f) by 	 = β + iγ. As in the case of Dirichlet

L-functions we have to distinguish between trivial and non-trivial zeros of
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L(s, f). Before we give a rigorous definition of trivial and non-trivial zeros we
establish a zero-free region on the right. Let

Cf = max{|f(a)| : 1 ≤ a ≤ q}

and
mf = min{a : 1 ≤ a ≤ q, f(a) �= 0}.

Then, for σ > 1, we obtain

L(s, f) =
∑

n=mf

f(n)
ns

= λ(s, f) +
∞∑

n=mf+1

f(n)
ns

,

where
λ(s, f) :=

f(mf )
ms

f

.

This leads to the estimate

|L(s, f) − λ(s, f)| ≤ Cf

∞∑
n=mf +1

1
nσ

≤ Cf

∫ ∞

mf

dx
xσ

≤
Cfm

1−σ
f

σ − 1
.

Hence, as σ → ∞,

L(s, f) = λ(s, f) + O

(
1

σmσ
f

)
.

This implies
L(s, f) �= 0 for σ > 1 +A(f),

where
A(f) :=

Cf

|λ(1, f)| .

By the functional equation (11.3) and the non-vanishing of the Gamma-
function, L(1 − s, f) vanishes if and only if

exp
(
πis
2

)
L(s, f−) = − exp

(
−πis

2

)
L(s, f+).

Define B(f) = max{A(f±)}. It follows that for σ < −B(f) the function
L(s, f) can only have zeros close to the negative real axis if mf+ = mf− , and
close to the straight line, given by

σ = 1 +
πt

log
mf−
mf+

,

if mf+ �= mf− . We call zeros 	 = β+iγ of L(s, f) with β < −B(f) trivial. One
can locate those zeros with the techniques of Spira [335] and Garunkštis [88].
It is easily seen that the number of trivial zeros 	 with |	| ≤ R is ∼cR, where
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c is some positive, computable constant depending on f . We call other zeros
of L(s, f) non-trivial. The non-trivial zeros lie in the vertical strip

−B(f) ≤ σ ≤ 1 +A(f). (11.4)

If f is a Dirichlet character χ mod q, this definition of trivial and non-trivial
zeros does not correspond with the traditional one in the theory of Dirichlet L-
functions, where, for example, L(s, χ) has a trivial zero at s = −1 if χ(−1) =
−1. But note that there are only finitely many trivial zeros 	 of L(s, f) in any
vertical strip of bounded width (independent on this or any other reasonable
definition of trivial).

We start, similarly as in Chap. 7.1, with an asymptotic formula for a sum
taken over the zeros.

Theorem 11.1. Let f be a q-periodic arithmetic function and let b be a con-
stant satisfying −b ≥ 3 + max{A(f), B(f)}. Then,

∑
β>b

|γ|≤T

(β − b) =
(

1
2
− b

)
T

π
log

qT

2πemf
√
mf−mf+

+
T

2π
log

∣∣∣∣∣λ
(

1
2 , f

−)λ ( 12 , f+
)

λ
(

1
2 , f
)2

∣∣∣∣∣+ O(log T ).

Proof. Define

Z(s, f) =
L(s, f)
λ(s, f)

.

Of course, the zeros of Z(s, f) are exactly the zeros of L(s, f). Let a = 2 +
max{A(f), B(f)}. Then, by the condition on b, all non-trivial zeros of L(s, f)
and L(s, f±) have real parts in the interval (b, a).

First, suppose that L(s, f) is regular at s = 1. Then Littlewood’s
Lemma 7.2, applied to Z(s, f) and the rectangle R with vertices a± iT, b± iT ,
yields

2π
∑
β>b

|γ|≤T

(β − b) =
∫ T

−T

log |Z(b+ it, f)|dt−
∫ T

−T

log |Z(a+ it, f)|dt+

−
∫ a

b

argZ(σ − iT, f) dσ +
∫ a

b

argZ(σ + iT, f) dσ

=
4∑

j=1

Ij , (11.5)

say. To define logZ(s, f) we choose the principal branch of the logarithm
on the real axis, as σ → ∞; for other points s the value of the logarithm
is obtained by analytic continuation in a standard manner. If L(s, f) is not
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regular at s = 1, we have to replace Z(s, f) by (s− 1)Z(s, f) at the expense
of an error O(1). To see this one applies Littlewood’s lemma to (s− 1)Z(s, f)
and the function s− 1 separately and subtracts the resulting formulas. Since

i
∫

∂R
log(s− 1) ds = 2π(b+ 1) 	 1,

we obtain (11.5) with an additional error term O(1).
To evaluate I1 note that

log |Z(b+ it, f)| = − log |λ(b, f)| + log |L(b+ it, f)|.

By the functional equation (11.3) we get

log |L(b+ it, f)| = log
∣∣∣∣( q2π)1−b−it Γ (1 − b− it)√

q

∣∣∣∣ (11.6)

+ log
∣∣∣∣exp
(
πi(1 − b) + πt

2

)
L(1 − b− it, f−)

+ exp
(
−πi(1 − b) + πt

2

)
L(1 − b− it, f+)

∣∣∣∣ .
For |t| > 1, Stirling’s formula (2.17) implies

log
∣∣∣∣( q2π)1−b−it Γ (1 − b− it)√

q

∣∣∣∣ = (1
2
− b

)
log

q|t|
2π

− π|t|
2

+ O(|t|−1).

For t > 1, the second term on the right-hand side of (11.6) equals

log
∣∣∣∣exp
(
πi(1 − b) + πt

2

)
L(1 − b− it, f−)

×
(

1 + exp(−πi(1 − b) − πt)
L(1 − b− it, f+)
L(1 − b− it, f−)

)∣∣∣∣
=
πt

2
+ log |λ(1 − b, f−)| + log

∣∣∣∣L(1 − b− it, f−)
λ(1 − b− it, f−)

∣∣∣∣+ O(exp(−π|t|)),

and, for t < −1,

−πt
2

+ log |λ(1 − b, f+)| + log
∣∣∣∣L(1 − b− it, f+)
λ(1− b− it, f+)

∣∣∣∣+ O(exp(−π|t|)).

Collecting, we obtain

I1 = 2
(

1
2
− b

)
T log

qT

2πe
+ T
(
log |λ(1 − b, f−)λ(1 − b, f+)|

− 2 log |λ(b, f)|) +
∫ −1

−T

log
∣∣∣∣L(1 − b− it, f+)
λ(1 − b− it, f+)

∣∣∣∣ dt
+
∫ T

1

log
∣∣∣∣L(1 − b− it, f−)
λ(1− b− it, f−)

∣∣∣∣ dt+ O(1).
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The appearing integrals look similar to I2. We estimate them all as follows.
For σ > 1,

Z(s, f) = 1 +
∞∑

n=mf+1

f(n)
f(mf )

(mf

n

)s

= 1 + O
((

mf

mf + 1

)σ)
.

This yields I2 	 1 by the same argument as in the proof of the estimate (7.8).
Hence, we get

I1 + I2 = 2
(

1
2
− b

)
T log

T

2πemf
√
mf−mf+

+T log

∣∣∣∣∣λ
(

1
2 , f

−)λ ( 12 , f+
)

λ
(

1
2 , f
)2

∣∣∣∣∣+ O(1).

The horizontal integrals I3, I4 can be estimated as in the proof of Theorem 7.1.
Thus the theorem is proved. ��

Denote byN(T, f) the number of non-trivial zeros 	 of L(s, f) with |γ| ≤ T
(according multiplicities). The formula of Theorem 11.1 implies

Corollary 11.2. Let f be a q-periodic arithmetic function. Then

N(T, f) =
T

π
log

qT

2πemf
√
mf−mf+

+ O(log T ),

and ∑
� non-trivial

|γ|≤T

(
β − 1

2

)
=

T

2π
log

∣∣∣∣∣λ
(

1
2 , f

−)λ ( 12 , f+
)

λ
(

1
2 , f
)2

∣∣∣∣∣+ O(log T ).

The latter sum is O(N(T, f)). So most of the non-trivial zeros are either
approximately symmetrically distributed or lie close to the critical line. Indeed,
setting

N+(σ, T, f) = �{	 : β > σ, |γ| ≤ T}
and

N−(σ, T, f) = �{	 : β < σ, |γ| ≤ T},
one can prove by the techniques which we used for the proof of Theorem 7.6:

Theorem 11.3. Let f be a q-periodic arithmetic function. Then, uniformly
in δ > 0,

N+

(
1
2

+ δ, T, f

)
+N−

(
1
2
− δ, T, f

)
	 1

δ
T log log T

	 log log T
δ log T

N(T, f).

Moreover, for every fixed σ > 1
2 ,

N+(σ, T, f) 	 T.
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Thus, the non-trivial zeros of any L(s, f) are clustered around the critical line.
It seems that the clustering is a common pattern for Dirichlet series with a
Riemann-type functional equation.

Now define
Σ(f) = lim

T→∞
2π
T

∑
� non-trivial

|γ|≤T

(
β − 1

2

)
.

It follows from Corollary 11.2 that L(s, f) has infinitely many zeros off the
critical line if

Σ(f) = log

∣∣∣∣∣λ
(

1
2 , f

−)λ ( 12 , f+
)

λ
(

1
2 , f
)2

∣∣∣∣∣ �= 0.

Hence, a non-zero value of Σ(f) indicates an asymmetrical distribution of the
non-trivial zeros of L(s, f) (with respect to the critical line), and in this case
the number of non-trivial zeros of L(s, f) with β �= 1

2 and |γ| ≤ T is

≥ |Σ(f)|
1 + 2max{A(f), B(f)}

T

π
.

For example, the Ramanujan sum

cq(n) :=
∑

a mod q
(a,q)=1

exp
(

2πi
an

q

)

is q-periodic (in the n-aspect). Since cq(1) = μ(q) and cq(1)± =
√
q, where

μ is the Möbius μ-function, we have Σ(cq) = log q by Corollary 11.2 if q is
squarefree. It turns out that there are more than

log q
1 + 2ϕ(q)

T

π

many zeros off the critical line up to level T . However, in this special example
we have Ramanujan’s identity [301]

L(s, cq) = ζ(s)
∑
d|q

μ(q/d)d1−s, (11.7)

which gives precise information on the asymmetrically distributed zeros off
the critical line.

We conclude this section by a look on the zero distributions of L(s, f±)
and L(s, f±) with respect to each other. Note that with f± also the Fourier
transforms f± are q-periodic. By the inversion formula for Fourier transforms,

(f+)± = f∓ and (f−)± = f±,

we deduce from (11.3) the functional equation

L(1 − s, f±) =
( q

2π

)s Γ (s)√
q

{
exp
(
πis
2

)
L(s, f∓) + exp

(
−πis

2

)
L(s, f±)

}
.

Now we deduce from Corollary 11.2.



216 11 Dirichlet Series with Periodic Coefficients
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Fig. 11.1. The reciprocal of the absolute value of L(s,11,5) for σ ∈ [−1, 2], t ∈ [0, 25]
as a contour plot. In each white island there is a zero of ζ(s, 1/5)

Corollary 11.4. For every q-periodic function f ,

Σ(f+f−f+f−) = Σ(f+) +Σ(f−) +Σ(f+) +Σ(f−) = 0.

For example, define for positive integers a, q with 1 ≤ a ≤ q

1a,q(n) =
{

1 if n ≡ a mod q,
0 otherwise.

Obviously, 1a,q is q-periodic. One easily calculate

Σ((1a,q)+) +Σ((1a,q)−) +Σ((1a,q)+) +Σ((1a,q)−)

= log
a

q
+ log

q − a

q
+ log

q√
(q − a)a

+ log
q√

a(q − a)
= 0.

Note that

L(s,1a,q) =
1
qs
ζ

(
s,
a

q

)
. (11.8)

Hence, the zeros of L(s,1a,q) are exactly the zeros of ζ(s, a
q ) (see Fig. 11.1 for

an example). This special case should be compared with analogous results of
Garunkštis and Steuding [91] for the Lerch zeta-function.

11.2 A Link to the Selberg Class

In this section, we are interested in the class S� consisting of all Dirichlet
series
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L(s) :=
∞∑

n=1

a(n)
ns

,

not identically zero, satisfying the axioms:

(ii’) Analytic continuation. There exists a non-negative integer k such that
(s− 1)kL(s) is an entire function of finite order.

(iii’) Functional equation. L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) := L(s)Qs

f∏
j=1

Γ (λjs+ μj)

with positive real numbers Q,λj , and complex numbers μj , ω with
Reμj ≥ 0 and |ω| = 1.

These axioms are the analytic hypotheses of the Selberg class S. Therefore,
S ⊂ S�. We refer to S� as the extended Selberg class. We define the degree of
elements of S� in the same way as for S (see (6.2)) and denote by S�

d the set
of L ∈ S� of degree d.

Kaczorowski and Perelli [160] proved

Theorem 11.5. If L ∈ S�
0, then L(s) is a Dirichlet polynomial and

L(s) =
∑
n|Q2

a(n)
ns

with a(n) = ω
n

Q
a(Q2/n).

This follows more or less directly from the functional equation for L(s) which
might be viewed as an identity between absolutely convergent Dirichlet series
(see the proof of Theorem 6.1).

Our aim is to give a different classification for the degree zero-elements in
the Selberg class, namely as entire quotients of Dirichlet series with periodic
coefficients and the Riemann zeta-function ζ(s). One example we have already
met in (11.7). The general result is

Theorem 11.6. A function L lies in S�
0 if and only if there exists a periodic

arithmetical function f : N → C which satisfies

f+ = ωf with ω ∈ C, |ω| = 1, (11.9)

and the quotient L(s) = L(s, f)/ζ(s) defines an entire function. In this case,
L(s, f) ∈ S�

1.

This result should be compared with a related theorem of Kaczorowski and
Perelli [161] on a characterization of S�

1-functions as S�
0-linear combinations

of Dirichlet L-functions and with the construction of Dirichlet series with
periodic coefficients having zeros off the critical line by Balanzario [14].

Before we give the proof of the theorem we note
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Lemma 11.7. Let f be a q-periodic arithmetic function. If L(s, f)/ζ(s) is an
entire function, then

L(1 − s, f) =
2√
q

( q
2π

)s

Γ (s) cos
(πs

2

)
L(s, f+). (11.10)

Proof. To compensate the trivial zeros of ζ(s) in s = −2m with m ∈ N, the
function L(s, f) has to vanish there too. From the functional Equation (11.3)
we deduce

L(2m+ 1, f+) = L(2m+ 1, f−)

and ∞∑
n=1

f+(n) − f−(n)
n2m+1

= 0 for all m ∈ N.

Since any convergent Dirichlet series, which does not vanish identically, has a
zero-free half-plane (see Sect. 2.1), it follows that f+ = f−, and, since f = f+,
we can replace (11.3) by (11.10). The lemma is proved. ��

Now we are in the position to give the

Proof of Theorem 11.6. First, assume that L(s) = L(s, f)/ζ(s) is an entire
function. By Lemma 11.7 we see that L(s, f) satisfies the functional equation
(11.10). If f satisfies additionally (11.9), then we can rewrite (11.10) as

L(1 − s, f) =
2ω√
q

( q
2π

)s

Γ (s) cos
(πs

2

)
L(s, f), (11.11)

or, using well-known identities for the Gamma-function,( q
π

)(1−s)/2

Γ

(
1 − s

2

)
L(1 − s, f) = ω

( q
π

)s/2

Γ
(s

2

)
L(s, f).

We note that L(s, f) ∈ S�
1. Using (11.11) also with f constant equal to 1 (the

functional equation for ζ(s)), we obtain

qs/2L(s) = ωq(1−s)/2L(1 − s).

Therefore, L(s), being the entire quotient of two Dirichlet series in S�
1, lies in

S�
0. This proves the sufficiency.

Now assume that L ∈ S�
0. By Theorem 11.5 there exist a positive integer

Q2 and complex numbers a(n) such that the coefficients a(n) in the Dirichlet
series expansion of L(s) vanish if n does not divide Q2. Now define f(n) =∑

d|n a(d), then

f(n+Q2) =
∑

d|(n+Q2)
(d|Q2)

a(d) =
∑
d|n

(d|Q2)

a(d) = f(n),
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and thus f is a Q2-periodic function. Further, L(s, f) = ζ(s)L(s), and it
remains to show (11.9). Using the functional equation for ζ(s), we see that
L(s, f) satisfies the functional equation (11.11), after replacing q by Q2. More-
over, since L(s, f)/ζ(s) is entire, Lemma 11.7 implies that further (11.10)
holds with Q2 instead of q. Comparing both functional equations, we find
L(s, f+) = ωL(s, f). In view of the uniqueness of Dirichlet series expansions
we obtain (11.9). Theorem 11.6 is proved. ��

It is interesting to investigate the difference between the Selberg class and the
extended Selberg class, or which functions lie in S� \ S? The descriptions of
these classes are complete for degree less than or equal to one. For degree two
Kaczorowski et al. [158] gave examples with Dirichlet series associated with
cusp forms of certain Hecke groups. Note that for a positive real number λ,
the Hecke group G(λ) is defined as the subgroup of PSL2(R) given by

G(λ) :=
〈(

1
0

λ

1

)
,

(
0
−1

1
0

)〉
.

Kaczorowski et al. showed that the associated Dirichlet series are elements
of S� or a related class of Dirichlet series where the axiom on the functional
equation is appropriately adjusted. Moreover, they showed that the Dirichlet
series associated to newforms for G(λ) have an Euler product representation if
and only if G(λ) can be arithmetically defined, i.e., if λ ∈ {1,

√
2,
√

3, 2}. Their
result is based on Hecke’s famous theorem on the correspondence of Dirichlet
series with functional equation and modular forms, and a result of Wolfart
on the arithmetic nature of the Fourier coefficients of the associated modular
forms. For λ ≤ 2, Molteni and Steuding [257] proved that all these Dirichlet
series are almost primitive (i.e., primitive up to factors of degree zero) and
primitive if λ �∈ {

√
2,
√

3, 2}; if the latter condition is not fulfilled, there are
examples of non-primitive functions.

11.3 Strong Universality

As a more or less immediate consequence of the joint universality of Dirichlet
L-functions we obtain a strong universality result for L(s, f):

Theorem 11.8. Suppose that q > 2 and f is a q-periodic arithmetical func-
tion, not a multiple of a character modq, satisfying f(n) = 0 for n with
(n, q) > 1. Let K be a compact subset of the strip 1

2 < σ < 1 with connected
complement and let g(s) be a continuous function on K which is analytic in
the interior. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ, f) − g(s)| < ε

}
> 0.



220 11 Dirichlet Series with Periodic Coefficients

For example, the Davenport–Heilbronn zeta-function (7.1) satisfies the condi-
tions and is therefore strongly universal.

The assumptions on f from Theorem 11.8 imply that f is not multiplica-
tive; this follows from a characterization of q-periodic multiplicative functions
due to Leitmann and Wolke [213]. In particular, the associated Dirichlet series
L(s, f) has no Euler product representation.

Proof. For the ϕ(q) pairwise non-equivalent characters χj mod q define the
matrix

Ξ = (χj(n)) 1≤n≤q,(n,q)=1
1≤j≤ϕ(q)

.

By the properties of characters the matrix Ξ is invertible (since pairwise
non-equivalent characters are linearly independent over C, and detΞ is a
van der Monde-determinant). Hence there exist uniquely determined complex
numbers c1, . . . , cϕ(q) such that

f(n) =
ϕ(q)∑
j=1

cjχj(n) for 1 ≤ n ≤ q, (n, q) = 1,

where at least two distinct coefficients cj are non-vanishing (since f is not a
multiple of a character mod q and ϕ(q) ≥ 2). In view of f(n) = 0 for integers
n which are not coprime with q, we obtain the representation

L(s, f) =
ϕ(q)∑
j=1

cjL(s, χj). (11.12)

Put �g = 1 + maxs∈K |g(s)|. Then g(s) + �g �= 0 for any s ∈ K. Without loss
of generality, we may assume that c1, c2 �= 0. Now define

gχ1(s) =
g(s) + �g

c1
, gχ2 = −�g

c2
,

and
gχj

(s) = η for 3 ≤ j ≤ ϕ(q),

where η is a small positive parameter, chosen later. Using the joint universality
Theorem 1.10 for Dirichlet L-functions, we obtain, for any δ > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤j≤ϕ(q)
max
s∈K

|L(s+ iτ, χj) − gχj
(s)| < δ

}
> 0.

Note that
g(s) = c1gχ1(s) + c2gχ2(s).
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Consequently, (11.12) implies

max
s∈K

|L(s+ iτ, f) − g(s)|

≤
ϕ(q)∑
j=1

|cj |max
s∈K

|L(s+ iτ, χj) − gχj
(s)| + η

ϕ(q)∑
j=3

|cj |

≤ ϕ(q)(δ max
1≤j≤ϕ(q)

|cj | + η).

With sufficiently small δ and η the assertion of the theorem follows. ��
Theorem 11.8 is due to Bagchi [9]; however, his argument differs slightly from
ours. Generalizations were given by Sander and Steuding [315], which include
universality for arbitrary Dirichlet series with periodic coefficients and ele-
ments of degree 1 of the extended Selberg class in particular. The latter case
was independently proved by Kaczorowski and Kulas [156] in a stronger form.

Next we shall give explicit upper bounds for the density of universality.
With regard to Theorem 9.1 we get, using the same notation as in Sect. 9.2,

Theorem 11.9. Suppose that q > 2 and f is a q-periodic arithmetical
function, not a multiple of a character mod q, satisfying f(1) = 1 and
f(n) = 0 for n with (n, q) > 1. Further, assume that g ∈ Ar. Then, for
any ε ∈

(
0, 1

2r

(
1
4 + Re |ξ|

))
(where ξ is the zero of g(s) in |s| ≤ r) and any

σ1 ∈
(

1
2 ,

3
4 + Re ξ − 2rε

)
,

d(ε, g, L(s, f)) ≤ 2r3ε
π(r2 − |ξ|2)

(
3
4 + Re ξ − 2rε− σ1

)
× log

(
1
q2σ1

q∑
a=1

|f(a)|2ζ
(

2σ1,
a

q

))
.

The proof is quite similar to some parts of the proof for Theorem 10.7.

Proof. Denote by N(σ, T, f) the number of zeros 	 = β + iγ of L(s, f) with
β > σ and 0 < γ ≤ T . Then Littlewood’s Lemma 7.2 yields∫ σ2

σ1

N(σ, T, f) dσ =
1

2πi

∫
R

logL(s, f) ds+ O(1), (11.13)

where R is a rectangular contour with vertices σ1, σ2, σ1 + iT, σ2 + iT , where
1
2 < σ1 < 1 < σ2. Here the error term arises from the possible pole of L(s, f)
at s = 1 and logL(s, f) is defined in a standard manner (as in the proof of
Theorem 11.1). Since

L(s, f) = 1 + O(1)

as σ → ∞, we choose σ2 so large that L(s, f) has no zeros in the half-plane
σ ≥ σ2. A standard application of Jensen’s formula (as in the proof of
Theorem 7.1) shows that the right-hand side of (11.13) is equal to
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1
2π

∫ T

0

log |L(σ1 + it, f)|dt+ O(log T )

≤ T

4π
log

(
1
T

∫ T

0

|L(σ1 + it, f)|2 dt

)
+ O(log T ).

Therefore, using the mean-square formula of Kačėnas and Laurinčikas [152],

1
T

∫ T

0

|L(σ + it, f)|2 dt ∼ 1
q2σ

q∑
a=1

|f(a)|2ζ
(

2σ,
a

q

)
,

valid for σ > 1
2 , and the identity (7.4), we may replace (11.13) by

∑
β>σ1

0<γ≤T

(β − σ1) ≤
T

4π
log

(
1
q2σ1

q∑
a=1

|f(a)|2ζ
(

2σ1,
a

q

))
(11.14)

+O(log T ).

Now let σ3 > σ1. Since

N(σ3, T, f) ≤ 1
σ3 − σ1

∑
β>σ1

0<γ≤T

(β − σ1),

we obtain the estimate

N

(
3
4

+ Re ξ − 2rε, T, f
)

≤ T

4π
(

3
4 + Re ξ − 2rε− σ1

) log

(
1
q2σ1

q∑
a=1

|f(a)|2ζ
(

2σ1,
a

q

))
+O(log T ).

In view of (9.6) this implies the estimate in the theorem. ��

We give an example. For an odd prime q, consider the function L(s,11,q),
given by (11.8). By Theorem 11.8, L(s,11,q) has the universality property, and,
using Theorem 11.9, we obtain after some lengthy calculations, for sufficiently
small ε > 0,

d(ε, g, L(s,11,q)) ≤
2ζ
(

9
8 + |ξ|

2

)
r3ε

q9/8+|ξ|/2π(r2 − |ξ|2) .

Since the right-hand side tends to zero as q →∞, the problem to approximate
an analytic isomorphism g(s) by a function L(s,11,q) becomes, in some sense,
more and more difficult with increasing q.



11.4 Hurwitz Zeta-Functions 223

Following the reasoning of Chap. 10, universality for Dirichlet series with
periodic coefficients leads to results on the denseness of the set of values
taken on vertical lines, and functional independence. Here we only consider
the particular case of the distribution of zeros. Strong universality leads to
the existence of many zeros off the critical line. Via Rouché’s Theorem 8.1
the universality property implies the existence of �T zeros in each strip 1

2 <
σ1 < σ < σ2 < 1 up to level T . This reasoning is very similar to the proof
of Theorem 10.1. In particular, it follows that the real parts of the zeros lie
dense in [12 , 1]. In conjunction with the estimates of Theorem 11.3 we get the
exact order of size for the zero-counting function N(σ, T, f), introduced in the
proof of Theorem 11.9.

Corollary 11.10. Suppose that L(s, f) satisfies the conditions of Theo-
rem 11.8. Then, for 1

2 < σ < 1,

N(σ, T, f) ! T.

There is another interesting result in this context. Kaczorowski and
Kulas [156] proved that any element L of degree 1 of the extended Selberg
class has o(T ) many zeros in the same range as in Theorem 11.9 if and only
if L(S) has a factorization

L(s) = P (s)L(s, χ),

where P (s) is a Dirichlet polynomial from S�
0 and χ is a primitive Dirichlet

character. Their reasoning is based on the structure theorem for S�
1 from

Kaczorowski and Perelli [161] and a variation of the joint universality the-
orem for Dirichlet L-functions 1.10. The result of Kaczorowski and Kulas
gives a partial answer to the question whether any Dirichlet series satisfying
Riemann’s hypothesis or, at least, a density estimate has necessarily an Euler
product.

11.4 Hurwitz Zeta-Functions

We consider Hurwitz zeta-functions with rational parameters (for their defin-
ition see (1.42)). In view of (11.8) and Theorem 11.8 we see that the function

1
qs
ζ

(
s,
a

q

)
= L(s,1a,q). (11.15)

is strongly universal for q > 2. For α ∈ {1
2 , 1}, we have

ζ

(
s,

1
2

)
= 2sL(s, χ) and ζ(s, 1) = ζ(s), (11.16)

where χ is the unique character mod 2. Thus, it follows from Voronin’s results,
respectively, the refinements due to Bagchi and Gonek, Theorem 1.9, 1.10, and
their discrete variant Theorem 5.17) that the functions
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1
2s
ζ

(
s,

1
2

)
and ζ(s, 1)

are universal but not strongly universal (by the results from Chap. 8). The
appearance of the factor 2−s in the case α = 1

2 is a bit unpleasant here but it
can be removed as we shall explain now.

The first argument is by an application of a universality theorem for
Dirichlet L-functions due to Gonek [104]. Incorporating some ideas from
Good [105], Gonek proved

Theorem 11.11. Let q be a positive integer and let K be a simply connected
compact set in 1

2 < σ < 1. Suppose that for each prime p|q we have 0 ≤ θp < 1
and that for each character χ mod q, the function gχ(s) is continuous on K
and analytic in the interior. Then, for every ε > 0, there is a real number τ
such that

min
z∈Z

|τ log p− 2π(z + θp)| < ε for all p|q, (11.17)

and
max

χ mod q
max
s∈K

|L(s+ iτ, χ) − gχ(s)| < ε.

Gonek’s theorem does not show that the set of these τ has positive lower
density as in Voronin’s universality theorem for the zeta-function and also
the set K on which these approximations are realized is more restricted than
usually in universality theorems (however, it seems to be possible to extend
Gonek’s approach in order to obtain these stronger concepts of universality).
But this result has the option that the diophantine condition (11.17) can be
used to remove the factor 2−s in (11.16) as well as the factor q−s in (11.15).
Bagchi [9] gave a different argument based on statistical independence. A third
possibility is to use the joint discrete universality Theorem 5.17 for Dirichlet
L-functions due to Bagchi [9].

Sander and Steuding [315] used the latter argument to obtain a joint uni-
versality theorem for Hurwitz zeta-functions with rational parameters. We
sketch the simple argument which mimics the proof of Theorem 11.8. Define
vectors

Z :=
( 1
qs
ζ

(
s,
a

q

))t

1≤a≤q;gcd(a,q)=1
and L :=

(
L(s, χj)

)t

1≤j≤ϕ(q)
.

Then we deduce from

1
qs
ζ

(
s,
a

q

)
=

1
ϕ(q)

∑
χ mod q

χ(a)L(s, χ)

(this is the inverse of (11.1) for f = χ) that

Z = ML with M :=
(χj(a)
ϕ(q)

)
1≤j≤ϕ(q)

1≤a≤q;gcd(a,q)=1

,
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where the χj denote the ϕ(q) pairwise non-equivalent characters modulo q.
Clearly, M is a square matrix. Imagine we want to approximate a family of
nice target functions fa : K → C with 1 ≤ a ≤ q and a coprime with q. The
idea is to find appropriate functions gj : K → C, 1 ≤ j ≤ ϕ(q) such that gj(s)
is approximated by L(s, χj) and

f = Mg , where f :=
( 1
qs
fa(s)
)t

1≤a≤q;gcd(a,q)=1
, g :=

(
gj(s)
)t

1≤j≤ϕ(q)
.

The functions gj(s) are uniquely determined since M is invertible. We have
g = M−1f. To approximate the functions gj(s) by Dirichlet L-functions, we
need to assume that the gj(s) are non-vanishing continuous functions on K
which are analytic in the interior. Then, given ε > 0, for any real Δ �= 0,
by Theorem 5.17 we can find a set of positive integers n with positive lower
density such that

max
1≤j≤ϕ(q)

max
s∈K

|L(s+ iΔn,χj)− gj(s)| < ε.

Hence, we may deduce from the identity Z − f = M(L − g) that

max
1≤a≤q

gcd(a,q)=1

max
s∈K

∣∣∣∣ 1
qiΔn

ζ

(
s+ iΔn,

a

q

)
− fa(s)

∣∣∣∣ < ε.

Now, choosing Δ appropriately, we may get rid of the factor q−iΔn and arrive
at the following weak joint universality theorem:

Theorem 11.12. Let K be a compact subset of 1
2 < σ < 1 with connected

complement, let q be a positive integer, and for each 1 ≤ a ≤ q with gcd(a, q) =
1 let fa(s) be a continuous functions on K which is analytic in the interior. If
all components of M−1f are non-vanishing on K (in the notation from above),
then, for any ε > 0,

lim inf
N→∞

1
N
�

{
n ≤ N : max

1≤a≤q
gcd(a,q)=1

max
s∈K

∣∣∣∣ζ (s+ iΔn,
a

q

)
− fa(s)

∣∣∣∣ < ε

}
> 0,

where Δ = 2πk
log q with any k ∈ N if q ≥ 2, and 0 �= Δ ∈ R otherwise.

Notice that q is allowed to be equal to 1 or 2; however, in these cases we
do not obtain strong universality since then ϕ(q) = 1 and a = 1 and so the
condition on the non-vanishing of the components of M−1f is nothing but the
restriction for f1(s) to be free of zeros in K. This corresponds to our remarks
concerning (11.16).

How strong is Theorem 9.5? By (11.1) with f = χ,

L(s, χ) =
1
qs

q∑
a=1

χ(a)ζ
(
s,
a

q

)
,
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it follows that joint universality for Dirichlet L-functions is equivalent to joint
universality for Hurwitz zeta-functions to rational parameters. If the non-
vanishing condition for the components of M−1f would be dropped, it would
follow that Dirichlet L-functions could approximate functions with zeros which
is impossible.

Sander and Steuding [315] also investigated to which extent the condition
on the parameters of the Hurwitz zeta-functions to be reduced fractions with
a common denominator can be skipped. However, this is not always possible.
Assume that we are given a set A of integers 1 ≤ a ≤ q. By relations as for
example

ζ(s) =
1
qs

∑
1≤a≤q

ζ

(
s,
a

q

)
it is easily seen that there exist dependence relations among the Hurwitz
zeta-functions ζ(s, a

q ) with a ∈ A if �A > ϕ(q). However, if �A ≤ ϕ(q),
then there exists restricted joint universality whenever the target functions are
linearly independent; here the conditions are rather technical. Nevertheless,
using the notion of weak joint universality from Sect. 10.3, it follows that
many families of Hurwitz zeta-functions with rational parameters are jointly
functional independent.

There is an interesting related, recent result due to Nakamura [276] who
proved that generalizations of Lerch zeta-functions are not jointly universal.
This is a rather surprising result. For λ, α, β ∈ (0, 1] and Re γ ∈ [0, 1

2 ) the
generalized Lerch zeta-function L(λ, α, β, γ, s) is for σ > 1 defined by

L(λ, α, β, γ, s) =
∞∑

n=0

exp(2πiλn)
(n+ α)s−γ(n+ β)γ

and by analytic continuation for σ > 0 except for at most a simple pole at
s = 1. We note that for α = β or γ = 0 this function is indeed a Lerch
zeta-function:

L(λ, α, α, γ, s) = L(λ, α, s) and L(λ, α, β, 0, s) = L(λ, α, s).

In fact, Nakamura [276] showed joint universality for any finite family
L(λj , αj , βj , γ, s) provided the αj are algebraically independent transcenden-
tal numbers; however, he also proved that any family L(λj , α, βj , γ, s) with
transcendental α is not jointly universal in the sense of Voronin if at least two
of the λj are equal. The latter statement follows from the fact that the set

(L(λ, α, βj , γ, s+ iτ),L(λ, α, βk, γ, s+ iτ))

is not dense for any admissible pair βj , βk in the according function space as τ
varies in R. However, this does not exclude the possibility of joint universality
for a large class of functions.
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We conclude with another open problem in universality theory. In [243],
Matsumoto asked whether multiple zeta-functions are universal; for example,
the Barnes multiple zeta-function defined by

ζ	(s;α, ω1, . . . , ω	) =
∞∑

m�=0

. . .
∞∑
m�

1
(α+m1ω1 + . . .+m	ω	)s

,

or the double Hurwitz–Lerch zeta-function given by

ζ2(s1, s2;α, β, ω) =
∞∑

m1=0

1
(α+m1)s1

∞∑
m2=0

exp(2πim2β)
(α+m1 +m2ω)s2

.
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Joint Universality

What we know is not much. What we do not know is immense.
P.S. Laplace

In this chapter, we shall prove a conditional joint universality theorem
for functions in S̃. Joint universality means that we are concerned with
simultaneous uniform approximation, a topic invented by Voronin [362, 364].
Of course, such a result cannot hold for an arbitrary family of L-functions:
e.g., ζ(s) and ζ(s)2 cannot be jointly universal. The L-functions need to
be sufficiently independent to possess this joint universality property. We
formulate sufficient conditions for a family of L-functions in order to be
jointly universal and give examples when these conditions are fulfilled; for
instance, Dirichlet L-functions to pairwise non-equivalent characters (this is
an old result of Voronin) or twists of L-functions in the Selberg class subject
to some condition on uniform distribution.

12.1 A Joint Limit Theorem

Our first aim is to prove a joint limit theorem for L-functions from S̃; this
generalizes the limit Theorem 4.3 to a multi-dimensional limit theorem for a
family of elements Lk ∈ S̃, 1 ≤ k ≤ �, which we consider as given by the
vector

L(s) := (L1(s), . . . ,L	(s)).

As far as possible we shall use the same notation as in the previous chapters.
As for the proof of the one-dimensional limit theorem we will not make use
of axiom (v). Recall that σm(L) is the abscissa of the mean-square half-plane
for L ∈ S̃. We denote by D the intersection of all mean-square half-planes
σ > σm(Lk) for Lk, 1 ≤ k ≤ �, and the critical strip:

D =
{
s ∈ C : max

1≤k≤	
σm(Lk) < σ < 1

}
. (12.1)
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In principal, we could also deal with different strips for the different Lk(s),
however, to simplify the presentation we may restrict on one for all. By The-
orem 2.4 (respectively, (4.2)), the set D is not empty. We write H(D)	 for
the �-dimensional cartesian product of the spaces of analytic functions H(D).
Further, we define a probability measure PL

T by setting

PL
T (A) =

1
T

meas {τ ∈ [0, T ] : L(s+ iτ) ∈ A}

for A ∈ B(H(D)	). For s ∈ D and ω ∈ Ω, we put

L(s, ω) = (L1(s, ω), . . . ,L	(s, ω)),

where Lk(s, ω) is given by (4.6). By Lemma 4.1, any component Lk(s, ω) of
the vector L(s, ω) is an H(D)-valued random element. Hence, L(s, ω) is an
H(D)	-valued random element on the probability space (Ω,B(Ω),m) with Ω
as in Sect. 4.1. Let PL denote the distribution of L(s, ω). We shall prove

Theorem 12.1. Let L1, . . . ,L	 ∈ S̃. The probability measure PL
T converges

weakly to PL, as T →∞.

The proof relies in the main part on the one-dimensional limit Theorem 4.3
which applies individually to any component Lk(s) of the vector L(s).

We start with

Lemma 12.2. The family of probability measures {PL
T : T > 0} is relatively

compact.

Proof. To any Lk(s) we attach a probability measure PLk

T by putting

PLk

T (A) =
1
T

meas {τ ∈ [0, T ] : Lk(s+ iτ) ∈ A}

for A ∈ B(H(D)). By Theorem 4.3, restricted to D, the probability measure
PLk

T converges weakly to the distribution of the corresponding random element
Lk(s, ω), i.e, as T →∞,

PLk

T ⇒ PLk ,

say. Hence, the family of probability measures {PLk

T : T > 0} is relatively
compact for any 1 ≤ k ≤ �. Since H(D) is a complete separable space, we
obtain by Prokhorov’s Theorem 3.5 that this family is also tight, i.e., for
every T > 0 and every ε > 0, there exists a compact set Kk ⊂ H(D) such that

PLk

T (H(D) \Kk) <
ε

�
. (12.2)

Now let θT be a random variable defined on some probability space (Ω̃,F ,Q)
with the probability measure
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Q(θT ∈ A) =
1
T

∫ T

0

1(t;A) dt,

for A ∈ B(R), where 1(t;A) is the indicator function of the set A. Consider
the H(D)	-valued random element

LθT (s) = (L1(s+ iθT ), . . . ,L	(s+ iθT )).

Then, by (12.2),
Q(Lk(s+ iθT ) ∈ H(D) \Kk) <

ε

�

for 1 ≤ k ≤ �. Hence, for K := K1 × · · · ×K	,

PL
T (H(D)	 \K) = Q(LθT (s) ∈ H(D)	 \K)

= Q
( 	⋃

k=1

(Lk(s+ iθT ) ∈ H(D) \Kk)
)

≤
	∑

k=1

Q(Lk(s+ iθT ) ∈ H(D) \Kk) < ε

for all T > 0. Consequently, the family {PL
T } is tight and so, by Prokhorov’s

Theorem 3.4, it is relatively compact. The lemma is proved. ��

Let s1, . . . , sr be arbitrary points in D. We put

σ0 = min
1≤m≤r

Re sm and σ1 =
1
2
− σ0.

Clearly, σ0 > 1
2 and σ1 < 0. Now let D1 = {s ∈ C : σ > σ1}. For given

complex numbers ukm for 1 ≤ k ≤ � and 1 ≤ m ≤ r, define a function
h : H(D)	 → H(D1) for s ∈ D1 by

h(f1(s), . . . , f	(s)) =
	∑

k=1

r∑
m=1

ukmfk(sm + s). (12.3)

Lemma 12.3. Let
W (s) = h(L(s)).

Then W (s + iθT ) converges to h(L(s, ω)) in distribution, where θT is the
random variable, defined in the proof of Lemma 12.2.

Proof. We denote the nth Dirichlet coefficient of Lk ∈ S̃ by aLk
(n). We have

W (s) =
	∑

k=1

r∑
m=1

ukmLk(sm + s) =
	∑

k=1

r∑
m=1

ukm

∞∑
n=1

aLk
(n)

ns+sm

=
∞∑

n=1

an

ns
with an =

	∑
k=1

r∑
m=1

ukmaLk
(n)

nsm
.
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Since an 	 1 by (i), the Dirichlet series
∑

n
an

ns converges for σ > 1. Moreover,∑
n≤x

|an|2 	 x.

In view of this estimate, we may apply Theorem 4.12 (with any σ0 >
1
2 ) and

obtain the weak convergence of the probability measure given by

1
T

meas {τ ∈ [0, T ] : W (s+ iτ) ∈ A}

for A ∈ B(H(D1)) to the distribution of the associated random element

∞∑
n=1

anω(n)
ns

for ω ∈ Ω and s ∈ D1, as T → ∞. Since

∞∑
n=1

anω(n)
ns

=
	∑

k=1

r∑
m=1

ukm

∞∑
n=1

aLj
(n)ω(n)
ns+sm

=
	∑

k=1

r∑
m=1

ukmLk(s, ω) = h(L(s, ω)),

the assertion of the lemma follows. ��

Proof of Theorem 12.1. By Lemma 12.2, there exists a sequence T1 → ∞ such
that PL

T1
converges weakly to some probability measure P. Suppose that P is

the distribution of an H(D)	-valued random element

L̃(s) := (L̃1(s), . . . , L̃	(s)).

Then, obviously,

L(s+ iθT1)
D−→

T1→∞ L̃(s). (12.4)

By the continuity of the function h, defined by (12.3), we deduce

h(LθT1 (s)) D−→
T1→∞ h(L̃(s)). (12.5)

By Lemma 12.3,
h(LθT1 (s)) D−→

T1→∞ h(L(s, ω)).

This and (12.5) yield

h(L̃(s)) D= h(L(s, ω)). (12.6)



12.1 A Joint Limit Theorem 233

For f ∈ H(D1), define h1 : H(D1) → C by h1(f) = f(0). Then it follows from
(12.6) that:

h1(h(L̃(s))) D= h1(h(L(s, ω))),

and in particular
h(L̃(0)) D= h(L(0, ω)).

Taking into account the definition of h this yields
	∑

k=1

r∑
m=1

ukmLk(sm, ω) D=
	∑

k=1

r∑
m=1

ukmL̃k(sm). (12.7)

The hyperplanes in the space R2	r form a determining class and therefore,
the same is true for the hyperplanes in C	r. Taking into account (12.7), we
obtain that, for 1 ≤ k ≤ � and 1 ≤ m ≤ r, the random elements Lk(sm, ω)
and L̃k(sm) have the same distribution.

Now let K be a compact subset of D, and let f1, . . . , f	 ∈ H(D). For an
arbitrary ε > 0 we set

U =
{

(g1, . . . , g	) ∈ H(D)	 : max
1≤k≤	

max
s∈K

|gk(s) − fk(s)| ≤ ε

}
.

Now choose a sequence {sm}, which is dense in K and define, for r ∈ N,

Ur =
{

(g1, . . . , g	) ∈ H(D)	 : max
1≤k≤	

max
1≤m≤r

|gk(sm)− fk(sm)| ≤ ε

}
.

From the properties of the random elements Lk(sm, ω) and L̃k(sm) it follows
that:

m{ω ∈ Ω : L(s, ω) ∈ Ur} = PL(L̃(s) ∈ Ur). (12.8)

Since the sequence {sm} was chosen to be dense in K, we have U1 ⊃ U2 ⊃ . . . ,
and Ur → U , as r → ∞. Thus, letting r →∞ in (12.8), we find

m{ω ∈ Ω : L(s, ω) ∈ U} = PL(L̃(s) ∈ U).

Since the class of all sets U form a determining class, we obtain

L(s, ω) D= L̃(s).

This and (12.4) gives

L(s+ iθT1)
D−→

T1→∞ L(s, ω).

This means that the probability measure PL
T1

converges weakly to the dis-
tribution of the random element L(s, ω) as T1 → ∞. By Lemma 12.2, the
family {PL

T } is relatively compact. Since the random element L(s, ω) does
not depend on the choice of the sequence T1, the assertion of the theorem
follows. ��
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Let σ̃m denote the abscissa limiting the intersection of all mean-square half-
planes for the Lk(s). Then, for M > 0, define

DM = {s ∈ C : σ̃m < σ < 1, |t| < M}. (12.9)

Since DM ⊂ D (see (12.1)), we obtain, by the induced topology, that L(s, ω)
is an H(DM )	-valued random element on the probability space (Ω,B(Ω),m).
Now denote by QL the distribution of L(s, ω) on (H(DM )	,B(H(DM )	)).
Further, define the probability measure QL

T by

QL
T (A) =

1
T

meas {τ ∈ [0, T ] : L(s+ iτ) ∈ A} (12.10)

for A ∈ B(H(DM )	)). Then, by Theorem 12.1, we deduce

Corollary 12.4. Let L1, . . . ,L	 ∈ S̃. The probability measure QL
T converges

weakly to QL, as T →∞.

This is the multi-dimensional analogue of Corollary 5.11.

12.2 A Transfer Theorem

Now, we shall prove a conditional joint universality theorem for elements
Lk ∈ S̃. Here, we shall make use of axiom (v). We cannot prove that any
two L-functions L1(s),L2(s) can approximate uniformly a nice function g(s)
simultaneously, since L1(s) and L2(s) need not be independent (see the remark
after Theorem 1.10 in Sect. 1.4). Therefore, we have to assume a certain inde-
pendence.

Given L1, . . . ,L	 ∈ S̃, we write their Euler product in the sequel

Lk(s) =
∏
p

m∏
j=1

(
1 − αjk(p)

ps

)−1

for 1 ≤ k ≤ �. In principle, the functions L1(s), . . . ,L	(s) may have polynomial
Euler products of different degree; however, without loss of generality we may
assume that they all have degree equal to m by adding factors (1− αjk(p)

ps )−1

with local roots αjk = 0 if necessary. Recall that D denotes the intersection of
all mean-square half-planes of Lk(s) for 1 ≤ k ≤ � with the critical strip (see
(12.1)). In view of Theorem 2.4 (respectively, (4.2)), the strip of universality
D contains at least the strip

max
1≤k≤	

max
{

1
2
, 1 − 1 − σLk

1 + 2μLk

}
< σ < 1,

where σLk
and μLk

are defined by axioms (ii) and (iii).
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Further, we define

gpk(s, b(p)) = −
m∑

j=1

log
(

1 − αjk(p)b(p)
ps

)
(12.11)

for 1 ≤ k ≤ �, where b(p) ∈ γ := {s ∈ C : |s| = 1}. Finally, we write

g
p
(s, b(p)) = (gp1(s, b(p)), . . . , gp	(s, b(p))). (12.12)

Then our transfer theorem takes the form:

Theorem 12.5. Let L1(s), . . . ,L	(s) be elements of S̃, let K1, . . . ,K	 be com-
pact subsets of D with connected complements (where D is defined by (12.1)),
and, for each 1 ≤ k ≤ �, let gk(s) be a continuous non-vanishing function
on Kk which is analytic in the interior of Kk. Suppose that the set of all
convergent series ∑

p

g
p
(s, b(p)) with b(p) ∈ γ (12.13)

is dense in H(D)	 (where g
p

is defined by (12.11) and (12.12)). Then, for any
ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤k≤	
max
s∈Kk

|Lk(s+ iτ) − gk(s)| < ε

}
> 0.

Condition (12.13) is the multi-dimensional analogue of the assertion of
Theorem 5.10. This condition turns out to be essential; however, it would
be nice to replace it by a more lucid statement as, for example, statistical
independence.

Proof. Since all Kk are compact subsets of D, there exists a number M such
that Kk ⊂ DM for 1 ≤ k ≤ �, where the rectangle DM is defined by (12.9).

Our first aim is to determine the support of the measure QL
T , defined by

(12.10). This will be done in a similar way as in the one-dimensional case,
Lemma 5.12. Recall that the minimal closed set S

Q
L
T

⊂ H(DM )	 with

QL
T (S

Q
L
T

) = 1

is called the support of QL
T ; it consists of all f := (f1, . . . , f	) ∈ H(DM )	 such

that for every neighbourhood G of f the inequality QL
T (G) > 0 holds.

Lemma 12.6. The support of the measure QL
T is the set

S	
M := {ϕ ∈ H(DM )	 : ϕ(s) �= 0 for s ∈ DM , or ϕ(s) ≡ 0}.
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For the proof we make use of

Lemma 12.7. Let {Xn} be a sequence of independent H(G)	-valued random
elements, where G is a region in C, and suppose that the series

∑∞
n=1Xn

converges almost everywhere. Then the support of the sum of this series is the
closure of the set of all f ∈ H(G)	 which may be written as a convergent series

f =
∞∑

n=1

f
n

with f
n
∈ SXn

,

where SXn
is the support of the (distribution of the) random element Xn.

This is a multi-dimensional version of Theorem 3.16; for its proof, we refer
to Laurinčikas [186] (Theorem 1.7.10).

Proof of Lemma 12.6. Recall that ω(p) is the projection of ω ∈ Ω on the
coordinate space γp = γ. The sequence {ω(p)} is a sequence of independent
random variables on the probability space (Ω,B(Ω),m). Thus

g
p
(s, ω(p)) := {(gp1(s, ω(p)), . . . , gp	(s, ω(p)))}

is a sequence of independent H(DM )	-valued random elements. The support
of each ω(p) is the unit circle γ, and therefore the support of the random
elements g

p
(s, ω(p)) is the set

{f ∈ H(DM )	 : f(s) = (gp1(s, b), . . . , gp	(s, b))},

where

gpk(s, b) = −
m∑

j=1

log
(

1 − αjk(p)b
ps

)
with b ∈ γ.

Consequently, by Lemma 3.16, the support of the H(DM )	-valued random
element

logL(s, ω) =
∑

p

g
p
(s, ω(p))

is the closure of the set of all convergent series
∑

p fp
(s). By condition (12.13),

the set of these series is dense in H(DM )	. The mapping h : H(DM )	 →
H(DM )	, defined by

f = (f1, . . . , f	) �→ exp(f) = (exp(f1), . . . , exp(f	)),

is a continuous function sending logL(s, ω) to L(s, ω) and H(DM )	 to S	
M\{0}.

Therefore, the support SL of L(s, ω) contains S	
M \ {0}. On the other hand,

the support of L(s, ω) is closed. By Hurwitz’s Theorem 5.13, it follows that
S	

M \ {0} = S	
M . Thus, S	

M ⊂ SL. By axiom (iv) on the polynomial Euler
product for elements in S̃, the functions
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exp(gpk(s, ω(p))) =
m∏

j=1

(
1 − αjk(p)ω(p)

ps

)
are non-zero for s ∈ DM and ω ∈ Ω. Hence, the functions Lk(s, ω), 1 ≤ k ≤ �,
are almost surely convergent products of non-vanishing factors. If we apply
the Hurwitz theorem again, we conclude that L(s, ω) ∈ S	

M almost surely.
Therefore, SL ⊂ S	

M . The lemma is proved. ��

Now we have finished all preliminaries and can start with the main part
of the proof of Theorem 12.5.

First, we suppose that the functions g1(s), . . . , g	(s) all have a non-
vanishing analytic continuation to DM . By Lemma 12.6, the gk’s are con-
tained in the support SL of the random element L(s, ω). Denote by Φ the set
of functions ϕ = (ϕ1, . . . , ϕ	) ∈ H(DM )	 such that

max
1≤k≤	

max
s∈Kk

|ϕk(s) − gk(s)| < ε.

Since by Corollary 12.4 the measure QL
T converges weakly to QL, as T → ∞,

and since the set Φ is open, it follows from Theorem 3.1 and properties of the
support that:

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤k≤	
max
s∈Kk

|Lk(s+ iτ) − gk(s)| < ε

}

= lim inf
T→∞

PL
T (Φ) ≥ QL(Φ) > 0. (12.14)

This proves the theorem in the case of functions gk(s) which have a non-
vanishing analytic continuation to DM .

Now assume that the functions gk(s) are as in the statement of the the-
orem. By Mergelyan’s approximation Theorem 5.15, for 1 ≤ k ≤ �, there
exists a sequence of polynomials Gkn(s) which converges uniformly on Kk to
gk(s) as n→ ∞. Since the gk(s) are non-vanishing on Kk, it follows that, for
sufficiently large m, the functions Gkm(s) do not vanish on Kk and

max
1≤k≤	

max
s∈Kk

|gk(s) −Gkm(s)| < ε

4
. (12.15)

Since any of the polynomials Gkm(s) has only finitely many zeros, there exists
a region G whose complement is connected such that Kk ⊂ G for 1 ≤ k ≤ �
and Gkm(s) �= 0 on G. Hence, there exist continuous branches logGkm(s)
on G, and the logarithms logGkm(s) are analytic in the interior of G. Thus,
by Mergelyan’s Theorem 5.15, for 1 ≤ k ≤ �, there exists a sequence of
polynomials Fkn(s) which converges uniformly on Kk to logGkm(s) as n→ ∞.
Thus, for all 1 ≤ k ≤ � and all sufficiently large n,
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max
s∈Kk

|Gkm(s) − exp(Fkn(s))| < ε

4
.

This and (12.15) imply

max
1≤k≤	

max
s∈Kk

|gk(s) − exp(Fkn(s))| < ε

2
. (12.16)

From (12.14) we deduce

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤k≤	
max
s∈Kk

|Lk(s+ iτ) − exp(Fkn(s))| < ε

2

}
> 0.

In combination with (12.16) this proves Theorem 12.5. ��

12.3 Twisted L-Functions

Next, we want to give an example for a family of L-functions which satisfies
Condition (12.13) of Theorem 12.5 and thus is jointly universal.

For L ∈ S̃ and a Dirichlet character χ mod q define

Lχ(s) =
∞∑

n=1

a(n)
ns

χ(n). (12.17)

It is obvious that such a twist satisfies the Ramanujan hypothesis (i) (since
|χ(n)| ≤ 1). By the complete multiplicativity of Dirichlet characters, we obtain
the identity

Lχ(s) =
∞∑

n=1

a(n)
ns

χ(n) =
∏
p

m∏
j=1

(
1 − αj(p)

ps
χ(p)
)−1

;

hence, also the axiom on the polynomial Euler product (iv) holds for Lχ(s).
Next we observe that∑

p≤x

|a(p)χ(p)|2 =
∑
p≤x
p�q

|a(p)|2 =
∑
p≤x

|a(p)|2 + O(1), (12.18)

since there are only finitely many primes dividing q. Hence, Lχ(s) satisfies
the axiom on the mean-square with the same constant κ > 0 as for L(s).
However, we cannot show that the analytic axioms (ii) and (iii) hold in this
general frame – analytic continuation is a difficult problem in analytic number
theory. Besides the assumption of axioms (ii) and (iii), we shall need one more
condition on the distribution of the values of the Dirichlet coefficients a(p) for
prime p in arithmetic progressions.
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Theorem 12.8. Let L ∈ S̃. Let q1, . . . , q	 be positive integers, let χ1 mod
q1, . . . , χ	 mod q	 be pairwise non-equivalent characters. Further, for 1 ≤
k ≤ �, let gk be a continuous non-vanishing function on Kk which is analytic
in the interior, where Kk is a compact subset of the strip D with connected
complement (where D is defined by (12.1)). For 1 ≤ k ≤ �, assume that Lχk

(s)
satisfies the axioms (ii) and (iii), and that

lim
x→∞

1
π(x)

∑
p≤x

p≡h mod q

|a(p)|2 =
κ

ϕ(q)
(12.19)

holds for any prime residue class h mod q, where q is the least common mul-
tiple of q1, . . . , qk, and κ is the quantity from axiom (v). Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤k≤	
max
s∈Kk

|Lχk
(s+ iτ) − gk(s)| < ε

}
> 0.

Notice that the additional condition (12.19) implies axiom (v).

Proof. Because of Theorem 12.5 it suffices to prove that the set of all conver-
gent series ∑

p

g
p
(s, b(p)) with b(p) ∈ γ

is dense in H(D)	, where, according to (12.11),

gpk(s, b(p)) = −
m∑

j=1

log
(

1 − αjχk(p)b(p)
ps

)
, (12.20)

and g
p
(s, b(p)) = (gp1(s, b(p)), . . . , gp	(s, b(p))). We follow the proof of The-

orem 5.10. Almost all arguments can be easily extended to our multi-
dimensional case; however, in one instance the linear independence of our
characters plays a crucial role. The main tool for the proof will be a multi-
dimensional analogue of Theorem 5.7:

Theorem 12.9. Let D be a simply connected domain in the complex plain.
Suppose that the sequence of functions {f

n
= (fn1, . . . , fn	)} be a sequence in

H(D)	 satisfies:

• If μ1, . . . , μ	 are complex Borel measures on (C,B(C)) with compact sup-
ports contained in D such that

∞∑
n=1

∣∣∣∣∣
	∑

k=1

∫
C
fnk dμk

∣∣∣∣∣ <∞,

then ∫
C
sr dμk(s) = 0 for r ∈ N ∪ {0}, k = 1, . . . , �.
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• The series
∑∞

n=1 fn
converges on H(D)	.

• For every compact K ⊂ D

∞∑
n=1

max
s∈K

|f
n
(s)|2 <∞.

Then the set of all convergent series
∑∞

n=1 b(n)f
n

with b(n) ∈ γ is dense in
H(D)	.

A proof can be found in Bagchi [10]; it follows along the lines of Theorem 5.7.
We continue with the proof of Theorem 12.8. For 1 ≤ k ≤ �, define

g̃pk(s) = gpk(s, 1) = −
m∑

j=1

log
(

1 − αj(p)χk(p)
ps

)
,

and g̃
p
(s) = (g̃p1(s), . . . , g̃p	(s)). Moreover, for 1 ≤ k ≤ � and a parameter

N ∈ N which will be chosen later, define

ĝpk(s) =
{
g̃pk(s) if p > N,

0 if p ≤ N,

and let ĝ
p
(s) = (ĝp1(s), . . . , ĝp	(s)). In the proof of Theorem 5.10, we have

shown that there exists a sequence {b̂(p) : b̂(p) ∈ γ} such that the series∑
p

b̂(p)ĝpk(s)

converges in H(D) (see (5.12). Similarly as in the one-dimensional case, one
can show the existence of a sequence {b̂(p) : b̂(p) ∈ γ} such that the series∑

p

b̂(p)ĝ
p
(s) (12.21)

converges in H(D). Next, we prove that the set of all convergent series∑
p

b̃(p)ĝ
p
(s) with b̃(p) ∈ γ (12.22)

is dense in H(D)	. It suffices to show that the set of all convergent series∑
p

b̃(p)f
p
(s) with b̃(p) ∈ γ (12.23)

is dense, where fpk(s) := b̂(p)ĝpk(s) and f
p
(s) := (fp1(s), . . . , fp	(s)). For this

purpose we apply Theorem 12.9. In view of the convergence of (12.21), it
follows that the series

∑
p fp

(s) converges in H(D)	; this implies the second
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assumption of Theorem 12.9. The third assumption follows immediately from
the fact that for any component∑

p

|fpk(s)|2 	
∑

p

1
p2σ

,

as in the one-dimensional case.
To verify the first assumption, let μ1, . . . , μ	 be complex Borel measures

on (C,B(C)) with compact support contained in D such that

∑
p

∣∣∣∣∣
	∑

k=1

∫
C
fpk(s) dμk(s)

∣∣∣∣∣ <∞. (12.24)

On account of the Euler product representation, we find

g̃pk(s) =
m∑

j=1

∞∑
ν=1

αj(p)χk(p)
νpνs

=
a(p)χk(p)

ps
+ rpk(s)

for 1 ≤ k ≤ �, where rpk(s) 	 p−2σ. Then,

∑
p

∣∣∣∣∣fpk(s) − a(p)χk(p)b̂(p)
ps

∣∣∣∣∣ = ∑
p≤N
p�qk

|a(p)|
pσ

+
∑
p>N

|rp(s)| 	 1

uniformly on compact subsets of D. Hence, (12.24) implies

∑
p

∣∣∣∣∣a(p)
	∑

k=1

∫
C
χk(p)p−s dμk(s)

∣∣∣∣∣ <∞. (12.25)

Recall that q denotes the least common multiple of the moduli q1, . . . , q	 and,
for 1 ≤ k ≤ �, denote by χ̃k the character mod q induced by χk mod qk. Now
let h be an integer satisfying 1 ≤ h ≤ q and coprime with q. If p ≡ h mod q,
then

χk(p) = χ̃k(p) = χ̃k(h).

Hence, we may rewrite (12.25) as

∑
p≡h mod q

∣∣∣∣∣a(p)
	∑

k=1

χ̃k(h)
∫

C
p−s dμk(s)

∣∣∣∣∣ <∞

or, equivalently, ∑
p≡h mod q

|a(p)|	h(log p)| <∞, (12.26)
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where

	h(z) :=
∫

C
exp(−sz) dνh(s) and νh(s) :=

	∑
k=1

χ̃k(h)μk(s) (12.27)

for 1 ≤ h ≤ q coprime with q. Recall our argument in the one-dimensional
case. For any prime p we have defined angles φp ∈ [0, π

2 ] by

|a(p)| =

∣∣∣∣∣∣
m∑

j=1

αj(p)

∣∣∣∣∣∣ = m cosφp.

Hence, we can replace (12.26) by∑
p≡h mod q

cosφp|	h(log p)| <∞, (12.28)

Our next aim is to show that 	h(z) vanishes identically. We apply Theo-
rem 5.9. Now, we choose a sufficiently large positive constant M such that the
support of all μk is contained in the region {s ∈ C : σm < σ < 1, |t| < M}.
Then, by the definition of 	h(s),

|	h(±iy)| ≤ exp(My)
	∑

k=1

∫
C
|dμk(s)|

for y > 0. Therefore,

lim sup
y→∞

log |	h(±iy)|
y

≤M,

and the first condition of Theorem 5.9 is valid with λ = M . Fix a number φ
with 0 < φ < min

{
1,

√
κ

m

}
, where m is the degree of the polynomial defining

the local Euler factors, and κ is the quantity appearing in the axiom on the
mean-square for L ∈ S̃. Next, denote by P(h) the set of all prime numbers
p ≡ h mod q and define

Pφ(h) = {p : p ≡ h mod q prime and cosφp > φ} .

Then (12.28) yields ∑
p∈Pφ(h)

|	h(log p)| <∞ (12.29)

for any h with 1 ≤ h ≤ q, coprime with q. Further, fix a number η with
0 < η < π

M , and define

A =
{
n ∈ N : ∃ r ∈

((
n− 1

4

)
η,

(
n+

1
4

)
η

]
with |	h(r)| ≤ exp(−r)

}
.
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Now let

α := α(n) := exp
((

n− 1
4

)
η

)
and β := β(n) := exp

((
n+

1
4

)
η

)
.

Then ∑
p∈Pφ(h)

|	h(log p)| ≥
∑
n
∈A

∑
p∈Pφ

(h)
α<p≤β

|	h(log p)| ≥
∑
n
∈A

∑
p∈Pφ

(h)
α<p≤β

1
p

and, in view of (12.29), ∑
n
∈A

∑
p∈Pφ(h)
α<p≤β

1
p
<∞. (12.30)

Let
πφ(x;h mod q) = �{p ≤ x : p ∈ Pφ(h)}.

Then we obtain, for α < u ≤ β,∑
p∈P(h)
α<p≤u

(cosφp)2 ≤
∑

p∈Pφ
(h)

α<p≤u

1 + φ2
∑

p∈P(h)\Pφ
(h)

α<p≤u

1

= (1− φ2)(πφ(u;h mod q)− πφ(α;h mod q))
+φ2(π(u;h mod q) − π(α;h mod q). (12.31)

By condition (12.19),∑
p≤x

p≡h mod q

(cosφp)2 =
1
m2

∑
p≤x

p≡h mod q

|a(p)|2 ∼ κ

m2
π(x;h mod q).

Let δ be a small positive constant. Substituting the latter formula in (12.31)
gives

πφ(u;h mod q) − πφ(α;h mod q)

≥
( κ

m2 − φ2

1 − φ2
+ O(1)

)
(π(u;h mod q)− π(α;h mod q))

for u ≥ α(1 + δ), as n→∞. Thus, we get by partial summation

∑
p∈Pφ

(h)
α<p≤β

1
p

=
∫ β

α

dπφ(u;h mod q)
u

≥
( κ

m2 − φ2

1 − φ2
+ O(1)

)∫ β

α

dπ(u;h mod q)
u

≥
( κ

m2 − φ2

1 − φ2
+ O(1)

) ∑
p∈P(h)

α(1+δ)<p≤β

1
p
, (12.32)
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as n → ∞. By the prime number theorem for arithmetic progressions (that
is (1.29) with a suitable remainder term), we find for the prime residue class
h mod q ∑

p≤x
p≡h mod q

1
p

=
1

ϕ(q)
log log x+ Ch + O((log x)−2)

with some constant Ch, depending only on h mod q. Thus∑
p∈P(h)

α(1+δ)<p≤β

1
p

=
1

ϕ(q)

(
1
2
− log(1 + δ)

η

)
1
n

+ O
(

1
n2

)
.

This gives in (12.32)

∑
p∈Pφ(h)
α<p≤β

1
p
≥ 1
ϕ(q)

κ
m2 − φ2

1 − φ2

(
1
2
− log(1 + δ)

η

)
1
n

+ O
(

1
n

)
,

as n→∞. Hence, it follows from (12.30) that:∑
n
∈A

1
n
<∞.

Let A = {aj : j ∈ N} with a1 < a2 < · · · . This implies

lim
j→∞

aj

j
= 1. (12.33)

By the definition of the set A, there exists a sequence {ξj} such that(
aj −

1
4

)
η < ξj ≤

(
aj +

1
4

)
η and |	h(ξj)| ≤ exp(−ξj).

Hence, from (12.33) it follows that:

lim
j→∞

ξj
j

= η and lim sup
j→∞

log |	h(ξj)|
ξj

≤ −1.

Applying Theorem 5.9, we obtain

lim sup
r→∞

log |	h(r)|
r

≤ −1. (12.34)

However, by Lemma 5.8, if 	h(z) does not vanish identically, then

lim sup
r→∞

log |	h(r)|
r

> 0,
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contradicting (12.34). Therefore, 	h(z) vanishes identically. By (12.27),
differentiation yields ∫

C
sr dνh(s) ≡ 0,

respectively
	∑

k=1

χ̃k(h)
∫

C
srμk(s) ≡ 0,

for r = 0, 1, 2, . . .. The latter identity holds for any h coprime with q. Multi-
plying with χ̃i(h) for some arbitrary i with 1 ≤ i ≤ � and summing up over
all prime residue classes h mod q, we get

0 ≡
	∑

k=1

∫
C
sr dμk(s)

∑
1≤h≤q
(h,q)=1

χ̃i(h)χ̃k(h)

By the orthogonality relation for characters (1.28), this gives

0 ≡
∫

C
srμi(s),

and so μi(s) ≡ 0. Since i was arbitrary, all μ1(s), . . . , μ	(s) vanish identically.
Thus, the first assumption of Theorem 12.9 is also satisfied and we deduce
the denseness of all convergent series (12.22). It remains to show that this
does not change when we add terms of the form

∑
p≤N g̃

p
(s). However, this

can be done in a similar way as in the one-dimensional case. The theorem is
proved. ��

12.4 First Applications

As a first application of Theorem 12.8 we extend Voronin’s joint universality
Theorem 1.10 for Dirichlet L-functions to pairwise non-equivalent characters.
Dirichlet L-functions to primitive characters χ lie in the Selberg class (see
Sect. 6.1) and so they are universal by Theorem 6.12; however, this is not
true for imprimitive characters since the axiom on the functional equation
is violated. What about Dirichlet L-functions to imprimitive characters with
respect to universality? Assume that χ is an imprimitive character mod q,
induced by a primitive character χ∗ mod q∗. Then, by (1.27),

L(s, χ) = L(s, χ∗)fχ(s), where fχ(s) :=
∏
p|q

(
1 − χ∗(p)

ps

)
.

Obviously, fχ(s) is analytic in the whole complex plane, all its zeros are located
on the line σ = 0, and it satisfies |fχ(σ+it)| ≤ 1 for σ ≥ 0. Thus, L(s, χ) is an
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entire function. This yields axiom (ii) and axiom (iii). In case of a primitive
character, the mean-square half-plane of L(s, χ∗) is σ > 1

2 by Corollary 6.11.
For Dirichlet L-functions to imprimitive characters, we can do better than
applying Theorem 2.4. Taking into account the properties of the function
fχ(s) outlined above, we find∫ T

1

|L(σ + it, χ)|2 dt ≤
∫ T

1

|L(σ + it, χ∗)|2 dt

for σ ≥ 0. Thus, by Corollary 6.11 and Carlson’s Theorem 2.1, the asymp-
totic mean-square of L(s, χ) exists in the same region as the mean-square of
L(s, χ∗). It remains to verify condition (12.19) which we may rewrite as

lim
x→∞

1
π(x)

∑
p≤x

p≡h mod q

1 =
κ

ϕ(q)
,

where h is coprime with q. This is the prime number theorem in arithmetic
progressions (1.29). The same reasoning holds for principal characters. Thus,
we have proved Theorem 1.10: Dirichlet L-functions to pairwise non-equivalent
characters are jointly universal.

Another example for an application of Theorem 12.8 is provided by L-
functions associated with newforms (see Sect. 1.5). The joint universality for
twists of these L-functions, Theorem 1.12, was obtained by Laurinčikas and
Matsumoto [202]. Here, condition (12.19) is satisfied because of the asymptotic
formula (1.38).

12.5 A Conjecture

We conclude this chapter with a conjecture. So far, all known explicit fam-
ilies of jointly universal Dirichlet series were constructed in a very special
way, namely as twists of a single universal Dirichlet series twisted by pairwise
non-equivalent characters. Examples are Dirichlet L-functions (see Theorem
1.10 for the continuous and Theorem 5.17 for discrete joint universality) and
L-functions to newforms twisted by Dirichlet characters (Theorem 1.12); The-
orem 12.8 may be considered as a conditional attempt to generalize this type
of joint universality. The knowledge of these jointly universal L-functions can
be used to prove joint universality for other Dirichlet series as, for example,
Dirichlet series with periodic coefficients (see Theorem 11.8) or Hurwitz zeta-
functions with rational parameters (Theorem 11.12), Dedekind zeta-functions
(see Sect. 13.1) or further L-functions to number fields (Sect. 13.8). In all these
examples, the result is obtained by suitable representations of the functions in
question as linear combinations or products of jointly universal L-functions.
Here, the necessary independence for these joint universality theorems is
deduced from the linear independence of Dirichlet characters (or ray class
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group characters in Sect. 13.8) over C. We should mention that there exist
also analogous results for additive characters: Matsumoto and Laurinčikas
[200, 203] obtained joint universality for certain classes of Lerch zeta-functions,
which may be regarded as twists of strongly universal Hurwitz zeta-functions
by additive characters exp(2πia

q ) with rational a
q (in addition with some

algebraic side restrictions).
To replace the orthogonality relation of (multiplicative or additive) char-

acters by a more general statement, Laurinčikas [191], Laurinčikas and
Matsumoto [199], respectively, introduced an interesting matrix condition. To
explain this matrix condition in a few words, given a collection of Matsumoto
zeta-functions, it is assumed that there are finitely many distinct subclasses
Pj of the set of prime numbers each of which of positive density such that
the Dirichlet coefficients ak(p) for prime p multiplied with some weight are
constant Bkj on the Pj . If the rank of the matrix built from the values (Bkj)
is as large as possible, the coefficients ak(p) are linearly independent which
allows to deduce the joint universality of the Matsumoto zeta-functions. Since
the subsets Pj are not necessarily related to the multiplicative structure of
prime residue classes, this approach allows generalizations of joint universal-
ity theorems for Dirichlet series twisted by multiplicative characters.

We may ask whether this is all? The methods sketched above fail to
prove, for example, joint universality for ζ(s) and an L-function to some new-
form. More generally, we ask for a necessary and sufficient condition that a
given finite family of L-functions is jointly universal? In the context of the
Selberg class, we expect that Selberg’s Conjecture B (or a suitable quantita-
tive extension) could be used to answer this question. By Selberg’s Conjecture
B, primitive functions are expected to form an orthonormal system. Recall
that Bombieri and Hejhal [39] proved, assuming a stronger version of Selberg’s
conjecture B, the statistical independence of any collection of independent L-
functions in any family of independent elements of S. With regard to this
statistical independence, predicted by Selberg’s Conjecture B, it seems rea-
sonable to conjecture that any finite collection of distinct primitive functions
in the Selberg class is jointly universal. Moreover, we expect that any two
functions L1(s),L2(s) ∈ S are jointly universal, if and only if

∑
p≤x

a1(p)a2(p)
p

= O(1), (12.35)

where the Dirichlet series coefficients of Lj(s) are denoted by aj(n) and the
summation is over the prime numbers. We shall briefly illustrate how this fits
to some special cases of pairs of jointly universal functions.

Assume that we are given functions Lj(s) which are twists of an element of
S by distinct primitive Dirichlet characters χj mod q, i.e., aj(n) = a(n)χj(n)
for j = 1, 2. Then
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∑
p≤x

a1(p)a2(p)
p

=
∑
p≤x

|a(p)|2
p

χ1(p)χ2(p)

=
∑

h mod q

χ1(h)χ2(h)
∑
p≤x

p≡h mod q

|a(p)|2
p

.

Now suppose a certain equidistribution: for any prime residue class h mod q,
the inner sum on the right is asymptotically equal to c log log x+O(1), where
c is some positive constant, independent on h mod q. By the orthogonality
relation for characters, it follows that:

∑
p≤x

a1(p)a2(p)
p

= c
∑

h mod q

χ1(h)χ2(h) log log x+ O(1) = O(1),

which is (12.35). On the other hand, with regard to Theorem 12.8 we expect
L1(s) and L(s) to be universal (which is known in particular cases).

Finally, let us consider an example where we do not have joint universality,
ζ(s) and ζ(s)2, say. Here, since the Dirichlet coefficients of ζ(s)2 are given by
the divisor function d(n), the left-hand side of (12.35) is obviously unbounded.
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L-Functions of Number Fields

The zeta-function of a field is like the atom of physics.
H.M. Stark

In this chapter, we shall obtain universality for many classical L-functions,
including Dedekind zeta-functions as well as Hecke and Artin L-functions.
Further, we shall briefly discuss the arithmetic axioms in the definition of S̃
with respect to the Langlands program. We give only a sketch of the analytic
theory of all these L-functions and refer to Bump et al. [47] for further details.
For details from algebraic number theory we refer to Heilbronn’s survey [129],
the monographs of Murty and Murty [270], of Neukirch [279], and, last but
not least, Stark’s article [337].

13.1 Dedekind Zeta-Functions

Let K be an algebraic number field (i.e., a finite extension of Q). The associ-
ated Dedekind zeta-function is for σ > 1 defined by

ζK(s) =
∑

a

1
N(a)s

=
∏
p

(
1 − 1

N(p)s

)−1

;

here the sum is taken over all non-zero integral ideals, the product is taken
over all prime ideals of the ring of integers of K and N(a) denotes the norm of
the ideal a. This generalization of the Riemann zeta-function was introduced
by Dedekind [66] in order to obtain information about the multiplicative struc-
ture of number fields. The identity between series and product is an analytic
version of the unique factorization of integral ideals into prime ideals. In an
algebraic number field K over Q of degree d any rational prime number p has
a unique factorization into a product of prime ideals

(p) =
r∏

j=1

p
ej

j with N(pj) = pfj and
r∑

j=1

ejfj = d; (13.1)
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of course, the non-negative integers ej , fj , and r depend on p (which is not
indicated here for simplicity). Hence we can write

ζK(s) =
∏
p

(
1 − 1

N(p)s

)−1

=
∏
p

r∏
j=1

pj |(p)

(
1 − 1

psfj

)−1

. (13.2)

Assume that K = Q(α) with an algebraic integer α and F (X) is the minimal
polynomial of α. Then for all but finitely many primes p, the factorization of
F (X) modulo p determines the arithmetic of the local Euler factor: if

F (X) ≡
r∏

j=1

Fj(X) mod p (13.3)

is the factorization into irreducible factors, then fj = degFj in (13.2). Of
course, we have r ≤ [K : Q] = d. Thus, the Dedekind zeta-function has a
representation as a polynomial Euler product. Since the norm of an integral
ideal is a positive rational integer, the series can be rewritten as an ordinary
Dirichlet series ∑

a

1
N(a)s

=
∞∑

n=1

fK(n)
ns

,

where fK(n) counts the number of integral ideals a with norm N(a) = n.
We see that the Riemann zeta-function is the Dedekind zeta-function of Q
and, as a matter of fact, Dedekind zeta-functions share many properties with
Riemann’s zeta-function. The Dirichlet series defining the Dedekind zeta-
function ζK(s) converges for σ > 1, independent of the field K. To see this
note that, for σ > 1,

|ζK(s)| ≤
∏
p

∣∣∣∣1 − 1
N(p)s

∣∣∣∣−1

≤
∏
p

(
1 − 1

pσ

)−d

= ζ(σ)d,

since there are at most d = [K : Q] many primes p lying above each rational
prime p and N(p) is smallest if (p) splits completely.

Landau [176] proved the analogue of the prime number theorem for number
fields, that is the prime ideal theorem

πK(x) := �{p ⊂ OK prime : N(p) ≤ x} ∼ x

log x
. (13.4)

Hecke [124] obtained the first deeper results concerning the analytic behaviour
of Dedekind zeta-functions. He showed that ζK(s) has an analytic continuation
to C except for a simple pole at s = 1 and satisfies a Riemann-type functional
equation. Especially the residue of the simple pole contains important infor-
mation about the underlying number field. Hecke proved that

lim
s→1+

(s− 1)ζK(s) =
2r1(2π)r2hR

ω
√
|dK|

, (13.5)



13.1 Dedekind Zeta-Functions 251

where r1 is the number of real conjugate fields, 2r2 is the number of complex
conjugate fields, h is the class number, R is the regulator, ω is the number of
roots of unity in the group of units, and dK is the discriminant of K. The class
number is the number of equivalence classes of fractional ideals of K modulo
principal ideals, and so it measures the deviation of OK from having unique
prime factorization. Gauss conjectured that the class numbers h = h(d) of
imaginary quadratic number fields K = Q(

√
D) with discriminant d < 0

tend with −d to infinity; note that d = D if D ≡ 1 mod 4, and d = 4D if
D ≡ 2, 3 mod 4. This was first proved by Heilbronn [128] and in refined form
by Siegel [330]. The problem of finding an effective algorithm to determine
all imaginary quadratic fields with a given class number h is known as the
Gauss class number h problem. This problem is of interest with respect to the
non-existence of exceptional real zeros of Dirichlet L-functions off the critical
line. The general Gauss class number problem was solved by Goldfeld, Gross
& Zagier [102, 107]. A complete determination of the imaginary quadratic
fields with class number one was first given by Heegner [127] (but his solution
was not completely accepted due to a number of gaps), Baker [12], and Stark
[336] (independently):

h = 1 ⇐⇒ d ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}.

Note that class number one is equivalent to unique prime factorization in the
corresponding ring of algebraic integers.

Voronin [362] proved functional independence for any finite collection of

• Dedekind zeta-functions to distinct quadratic number fields and
• Dedekind zeta-functions to distinct cyclotomic number fields Q(ζr), where

ζr is a primitive rth root of unity and r is assumed to be odd and square-
free.1

Gonek [104] showed that a single Dedekind zeta-function to an abelian number
field is universal in the strip 1/2 < σ < 1 and Reich [305, 306] succeeded in
proving discrete universality for Dedekind zeta-functions to arbitrary number
fields (Theorem 5.16); however, here the strip of universality is restricted to
1 − [K : Q]−1 < σ < 1. We shall explain the reason for this difference.

If we are dealing with a Dedekind zeta-function ζK(s) to a non-abelian field,
we may apply our universality Theorem 6.12 (this is easily deduced from the
properties listed above). Since ζK(s) is an element of degree d = [K : Q] in the

1 Voronin’s paper is published in the same year, 1975, as his universality theorem
for ζ(s) and his reasoning is based on the very same ideas as in his approach
to universality, however, while writing [362], the step to approximating func-
tions rather than numbers was not done (actually, the rearrangement theorem for
series in Hilbert spaces was then not available; cf. [198]). Later Voronin included
the joint universality for Dedekind zeta-functions for such number fields in his
thesis [364] (and also the monograph [166] of Karatsuba & Voronin contains these
results).
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Selberg class, this yields universality in the same strip as obtained by Reich.
Now assume that we are given an abelian number field K (i.e., a finite Galois
extension with abelian Galois group). Then

ζK(s) =
	∏

k=1

L(s, χ∗
k), (13.6)

where χ∗
k denotes the primitive character which induces χk, resp. the principal

character χ mod 1 which induces the trivial character of the Galois group,
and � is the number of primitive characters. The simplest example provide
quadratic number fields K = Q(

√
D) with

ζK(s) = ζ(s)L(s, χd),

where χd is the Jacobi symbol and d is the discriminant. (For these facts we
refer to Washington [368].)

Now it is clear how to apply the joint universality for Dirichlet L-functions
in order to obtain universality for ζK(s). The product (13.6) consists of
Dirichlet L-functions to pairwise non-equivalent characters and we may apply
the joint universality Theorem 1.10. For all but one of the factors L(s, χ∗

k) we
define the target function to be gk(s) ≡ 1, whereas the last one may be chosen
freely, g(s) say. Then

g(s) =
	∏

k=1

gk(s).

If g(s) is assumed to be non-vanishing and continuous on some compact subset
K of 1

2 < σ < 1 with connected complement, and analytic in the interior, then
Theorem 1.10 implies

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤k≤	
max
s∈K

|L(s+ iτ, χk)− gk(s)| < ε

}
> 0.

Hence, we find for the product (13.6)

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζK(s+ iτ) − g(s)| < ε

}
> 0.

However, we can do slightly more. In the sequel we shall sketch how to gen-
eralize this idea in order to obtain joint universality.

Dependence relations between Dedekind zeta-functions are of special
interest with respect to so-called class number relations (see Brauer [43]).
Besides functional independence we shall consider the concept of multiplica-
tive independence. The functions f1(s), . . . , fm(s) are said to be multiplica-
tively independent if the identity

m∏
j=1

fj(s)aj = 1 with aj ∈ Z

holds only trivially, i.e., a1 = · · · = am = 0.
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Recently, Marszałek [238] showed that the multiplicative independence
of Dedekind zeta-functions to abelian fields is equivalent to their functional
independence; he also gave a sufficient condition for their independence as
well as all possible multiplicative dependence relations. His argument relies
essentially on the representation of Dedekind zeta-functions as products of
Dirichlet L-functions.

Assume that we are given abelian number fields K1, . . . ,Km. Then, by
the theorem of Kronecker–Weber, their compositum K is a subfield of some
cyclotomic field Q(ζr), where ζr is an rth root of unity. We denote by
Ĝ = {χ1, . . . , χ	} the group of Dirichlet characters associated with K and
by Ĝ1, . . . , Ĝ	 the subgroups of Ĝ corresponding to K1, . . . ,Km, respectively.
We put

δjk =
{

1 if χk ∈ Ĝj ,
0 otherwise.

(13.7)

Then, for 1 ≤ j ≤ m, by class field theory we have the multiplicative repre-
sentation

ζKj
(s) =

	∏
k=1

L(s, χ∗
k)δjk , (13.8)

where χ∗
k denotes the primitive character which induces χk. (For these facts

we once more refer to Washington [368].)
Sander and Steuding [315] showed that both concepts of independence,

functional independence and multiplicative independence, are equivalent to
the discrete joint universality for the Dedekind zeta-functions in question.

Theorem 13.1. Suppose that K1, . . . ,Km are abelian number fields. Then the
following statements are equivalent:

(i) The associated Dedekind zeta-functions are jointly universal: Let K be a
compact subset of 1

2 < σ < 1 with connected complement, let q be a positive
integer, and for each 1 ≤ j ≤ m let fj(s) be a continuous non-vanishing
function on K which is analytic in the interior. Then, for any real Δ �= 0
and any ε > 0,

lim inf
N→∞

1
N
�

{
n ≤ N : max

1≤j≤m
max
s∈K

|ζKj
(s+ iΔn) − fj(s)| < ε

}
> 0.

(ii) The matrix M := (δjk) 1≤j≤m
1≤k≤�

with δjk given by (13.7) has rank m ≤ �.
(iii) The associated Dedekind zeta-functions are multiplicatively independent.
(iv) The associated Dedekind zeta-functions are functionally independent.

The proof is quite simple. The equivalence of (ii)–(iv) is from Marszałek [238].
We sketch the argument. Suppose that the matrix M has rank m ≤ � and that

m∏
j=1

ζKj
(s)aj = 1
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for some integers aj . In view of (13.8) this implies

1 =
m∏

j=1

	∏
k=1

L(s, χ∗
k)ajδjk =

	∏
k=1

L(s, χ∗
k)
∑m

j=1
ajδjk ,

resp.
m∑

j=1

ajδjk = 0 for k = 1, . . . , �

by the functional independence of Dirichlet L-functions. However, since the
rank of M is equal to m, the latter system of linear equations has a unique
solution: a1 = · · · = am = 0. Conversely, if we would have m > � or the rank
would be less than m, the system would have non-trivial solutions. Hence,
(ii) is equivalent to the multiplicative independence (iii). Clearly, functional
independence implies multiplicative independence. Next we show that the
converse is also true.

Assume that the Dedekind zeta-functions are multiplicatively independent
and that, for continuous functions F0, F1, . . . , FN : Cm → C, not all identi-
cally vanishing, and any s,

N∑
k=0

skFk(ζK1
(s), . . . , ζKm

(s)) = 0. (13.9)

For each k define Gk = Fk(P (s)), where P := (P1, . . . , Pm) : C	 → Cm is
given by

Pj(s1, . . . , s	) =
	∏

k=1

s
δjk

k .

Now it follows from (13.9) that

N∑
k=0

skGk(L(s, χ∗
1), . . . , L(s, χ∗

	 )) = 0.

The functional independence of Dirichlet L-functions implies that the Gk are
vanishing identically and it is easy to deduce the same for the Fk. This shows
that multiplicative and functional independence are equivalent. In particular,
we have shown (ii) ⇐⇒ (iv).

In Sect. 10.3, we have shown that joint universality implies functional
independence: (i)⇒ (iv). It remains to prove that (ii) implies (i). Given the
condition on the rank of the matrix M, the system of linear equations

F = MG , where F :=
(
Fj(s)

)t

1≤j≤m
, G :=

(
Gk(s)

)t

1≤k≤	

with Fj(s) := log fj(s) is solvable in G; note that the logarithms Fj(s) =
log fj(s) for s ∈ K exist by the condition of the theorem. Now we switch from
the identities
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Fj(s) =
	∑

k=1

δjkGk(s)

by exponentiation to

fj(s) =
	∏

k=1

gk(s)δjk ,

where gk(s) := exp(Gk(s)); here the functions gk(s) are continuous non-
vanishing functions on K which are analytic in the interior. By Theorem 5.17
we may approximate any gk(s) by certain shifts L(s+ iΔn,χ∗

k), i.e.,

max
1≤k≤	

max
s∈K

|L(s+ iΔn,χ∗
k) − gk(s)| < ε. (13.10)

In view of (13.8) we have

ζKj
(s+ iΔn) =

	∏
k=1

L(s+ iΔn,χ∗
k)δjk

=
	∏

k=1

(gk(s) +O(ε))δjk = fj(s) +O(ε)

for any s ∈ K and any j. Since (13.10) holds for a set of positive integers n
with positive lower density, the assertion follows.
Of course, in view of Theorem 1.10 we can also replace statement (i) about
discrete universality by joint continuous universality: for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤j≤m
max
s∈K

|ζKj (s+ iτ) − fj(s)| < ε

}
> 0.

Theorem 13.1 is best possible. We cannot have joint universality for
any family of Dedekind zeta-functions to different number fields. If m > �,
then there exist restrictive dependencies for the Dedekind zeta-functions. For
instance,

ζQ(
√−3)ζQ(21/3) = ζQζQ(21/3,exp(2πi/3)) (13.11)

(see Sect. 13.6). Indeed, if the Galois group has more normal subgroups
than conjugacy classes, then such algebraic relations for the corresponding
Dedekind zeta-functions exist and they cannot be jointly universal. Recently,
Bauer [16] proved that if there is no algebraic relation for a collection of
Dedekind zeta-function to finite normal extensions of the rationals, then they
are functionally independent; his proof relies on the joint universality for
Artin L-functions to non-equivalent characters of the Galois group of a Galois
extension K/Q (see Sect. 13.8).

It is an interesting question to which extent the Dedekind zeta-function
determines the field. One can show that the Dedekind zeta-function ζK(s)
determines the minimal normal extension L of Q containing K and thus we
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have to ask whether there exist non-conjugate subgroups of Gal(L/Q) giving
the same induced trivial character. This is indeed possible! Two number fields
K1 and K2 are said to be arithmetically equivalent if their Dedekind zeta-
functions are the same. The first non-trivial example was given by Gassmann
[93]. Perlis [291] proved that arithmetically equivalent non-isomorphic fields
have at least degree 7 and that this bound cannot be improved. An explicit
example of degree 8 is for instance Q((−3)1/8) and Q((−48)1/8) which is due
to Perlis and Schinzel [292]. By the rank condition from Marszałek [238] it
follows that two distinct abelian fields K1 and K2 cannot be arithmetically
equivalent since otherwise their Dedekind zeta-functions have the same factor-
ization into Dirichlet L-functions and K1 = K2 if and only if their character
groups are equal: Ĝ1 = Ĝ2 (see Washington [368]). A stronger statement was
shown by Nicolae [282] who proved that Dedekind zeta-functions to distinct
finite Galois extensions are linearly independent over C. This also shows that
linear independence of Dedekind zeta-functions does not imply their joint
universality.

13.2 Grössencharacters

In 1920, Hecke [125] introduced a new class of L-functions which generalize
the concepts of Dedekind zeta-functions and Dirichlet L-functions. However,
first of all we have to introduce Hecke grössencharacters which represent the
most general extension of Dirichlet characters to number fields.

Given a number field K of degree n over Q, there are exactly n embeddings
K(j) of K into C, for 1 ≤ j ≤ n given by

K � α �→ α(j) ∈ K(j),

where the α(j) denote the conjugates of α; we assume that among these there
are r1 real and 2r2 complex embeddings (that makes n = r1 +2r2). We denote
the real embeddings by

K(1), . . . ,K(r1)

and the complex embeddings which are pairwise complex conjugate by

K(r1+1), . . . ,K(r1+r2+1) = K(r1+1), . . . ,K(n) = K(r1+r2).

Let f be a non-zero integral ideal of K. The unit group modulo f is defined
to be the set of all units ε ≡ 1 mod f which are totally positive (i.e., all its
real conjugates are positive) and we denote it by U(f). It is easily seen that
U(f) is indeed a group. By Dirichlet’s unit theorem there exist r = r1 + r2 − 1
units η1, . . . , ηr and a root of unity ζ in K such that any ε ∈ U(f) has a unique
representation

ε = ζmηn1
1 · · · ηnr

r
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with integers m,nk. The units η1, . . . , ηr are said to be fundamental units of
U(f) although they are not uniquely determined. Define the matrix

(ej log |η(j)
k |)1≤j,k≤r, where ej :=

{
1 if 1 ≤ j ≤ r1,
2 if r1 < j ≤ r1 + r2.

Then the regulator R(f) is defined to be the absolute value of the determinant
of this matrix:

R(f) = |det(ej log |η(j)
k |)|;

it should be noted that the regulator does not depend on the choice of the
fundamental units ηk.

We further denote by I(f) the multiplicative group generated by all ideals
coprime with f. The principal ray class P(f) is the subgroup of I(f) consisting
of all principal ideals of the form (α/β) satisfying

• 0 �= α, β ∈ OK (the ring of integers);
• α ≡ β mod f;
• α/β is totally positive.

The factor group
G(f) := I(f)/P(f)

is called the ray class group mod f, and its elements, the ray classes, might be
regarded as the analogues of the residue classes in the rational number field
case. One can show that G(f) is a finite abelian group and we denote its order
by h(f).

We shall give a brief example. For the sake of simplicity we shall consider
the number field Q(

√
−5) and choose f = (1) in which case G = G((1)) is the

class group. (In general, the narrow divisor class group G((1)) is not equal to
G, however, in complex quadratic fields there are no sign conditions.) There is
no unique prime factorization, and so the class number h is greater than one.
One can deduce from Minkowski’s theorem on linear forms that every class of
G contains an integral ideal a with norm

N(a) ≤
√
|dK|,

where dK is the discriminant of the number field, that is in our case dK = −20.
Obviously, this observation proves the finiteness of the class number. However,
we can also use it to get information about the structure of the class group.
For this purpose we observe that the only prime ideals p with N(p) ≤ 4 can
be among the prime ideal divisors of (2) and (3). By the splitting of primes
in quadratic number fields, we find

(2) = p2
1 with p1 = (2, 1 +

√
−5) = (2, 1 −

√
−5),

(3) = p2p
′
2 with p2 = (3, 1 +

√
−5) �= p′2 = (3, 1 −

√
−5).

Hence, the ideals with norms less than or equal to 4 are p1, p2, p
′
2, and (2) = p2

1.
It is easy to see that p1 is not principal and represents a class of order two.
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Furthermore, it turns out that all other ideals lie in this class or are principal.
Hence the class number of Q(

√
−5) equals two and we have a description of

the associated class group.
Now we are in the position to define Hecke characters. Suppose we are

given numbers aj and νk satisfying

• aj ∈ {0, 1} for 1 ≤ j ≤ r1 and aj ∈ Z for r1 < j ≤ r1 + r2;
• νk ∈ R for 1 ≤ k ≤ r1 + r2 such that ν1 + · · · + νr1+r2 = 0.

Then we define a function χ∞ : K∗ → C∗ by

χ∞(α) =
r1+r2∏
k=1

|α(k)|iνk

r1+r2∏
j=1

(
α(j)

|α(j)|

)aj

.

Obviously, χ∞ is unimodular. Since the sum of the νks vanishes, it follows
that χ∞ is trivial on Q∗. We suppose that the kernel of χ∞ contains the unit
group modulo f, i.e., χ∞(ε) = 1 for any ε ∈ U(f). Then χ∞ induces a character
on P(f).

If a non-trivial homomorphism χ : I(f) → C∗ is identified with χ∞ on
P(f), that is

χ(a) = χ∞(α) for a = (α) ∈ P(f),

then χ is said to be a grössencharacter modulo f (resp. Hecke character in
some literature). If all numbers aj , νk are equal to zero, then χ is said to be a
ray class character, and if additionally f = (1), then χ is an ideal class group
character (that is one of the finitely many characters of the class group of K).
However, there are infinitely many grössencharacters since, for example, the
function

a = (α) �→ χm(a) =
(
α

|α|

)4m

= exp(4im arg(α)) (13.12)

for a �= 0 and any integer m is a primitive grössencharacter. If there exists an
ideal f∗ ⊂ f and a grössencharacter χ∗ mod f∗ such that χ = χ∗ on I(f), then
χ is said to be induced by χ∗; otherwise χ is called primitive and f is said to
be the conductor of χ.

13.3 Hecke L-Functions

Let K be a number field, f be an ideal of K, and let χ modulo f be a grössen-
character. We extend χ to the group I of all fractional ideals of K by setting
χ(a) = 0 if a is not coprime with f. Then the Hecke L-function associated to
χ is (formally) given by

L(s, χ) =
∑

a

χ(a)
N(a)s

=
∏
p

(
1 − χ(p)

N(p)s

)−1

, (13.13)
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where the sum is taken over all non-zero integral ideals a of K, the product is
taken over all prime ideals p, and N(a) denotes the norm of the ideal a (as in
the case of the Dedekind zeta-function).

Hecke L-functions to grössencharacters are the analogues of Dirichlet L-
functions: if K = Q, f = (q) with q ∈ Z, and χ∞ ≡ 1, then the construction
above leads without the totally positive condition to

G(f) = (Z/qZ)∗/{±1}.

If χ is the trivial (principal) character, then the Hecke L-function for a number
field K is nothing else but the Dedekind zeta-function. Note that what we
call Hecke L-functions are in some literature called (generalized) Dirichlet
L-functions.

Both the series and the product (13.13) defining L(s, χ) are absolutely
convergent for σ > 1 and uniformly convergent in any compact subset. To
see this we proceed as we did for Dedekind zeta-functions via the splitting of
primes (13.1). Indeed, we can rewrite (13.13) as an ordinary Euler product

L(s, χ) =
∏
p

(
1 − χ(p)

N(p)s

)−1

=
∏
p

r∏
j=1

pj |(p)

(
1 − χ(pj)

psfj

)−1

.

Thus, L(s, χ) has a representation as a polynomial Euler product. Hence we
may also rewrite this as an ordinary Dirichlet series:

L(s, χ) =
∞∑

n=1

a(n)
ns

,

where

a(n) =
∏
p|n

∑
k1,...,kr≥0

k1f1+···+krfr=ν(n;p)

r∏
j=1

χ(pj)kj .

Since the degree of the local Euler factors is bounded by the degree of the field
extension K/Q, it follows (as in the case of the Dedekind zeta-function) that
the Dirichlet series and so the Euler product converge for σ > 1 absolutely
and that the Ramanujan hypothesis holds.

Hecke [125] proved that L(s, χ) extends to an entire function and satisfies
a functional equation of Riemann-type provided χ is primitive. Let dK denote
the discriminant of K. We define

γ(χ) =
r1+r2∏

k=r1+1

2iνk/2, A(f) =
( |dK|N(f)

πn

)1/2

2−r2 ,

and

Γ (s, χ) =
r1∏

j=1

Γ

(
s+ aj − iνj

2

) r1+r2∏
j=r1+1

Γ

(
s+

|aj | − iνj

2

)
.
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Then
Λ(1− s, χ) = ω(χ)Λ(s, χ),

where ω(χ) is a complex number with |ω(χ)| = 1, depending only on χ, and

Λ(s, χ) := γ(χ)A(f)sΓ (s, χ)L(s, χ).

In view of all the properties mentioned, it follows that Hecke L-functions
L(s, χ) to primitive grössencharacters are elements of the Selberg class of
degree n = [K : Q]. The Hecke L-function to the trivial character is, as
already mentioned, identical with the Dedekind zeta-function and so it is an
element of the Selberg class too.

We sketch some arithmetic consequences of the analytic properties of Hecke
L-functions. First of all, we note that L(s, χ) does not vanish on the edge of
the critical strip; the proof follows the proof for Dirichlet L-functions (see
Heilbronn [129]). We have already mentioned that L(s, χ) is entire and so it
is regular at s = 1 unless χ is trivial. If χ is not trivial, then∑

N(p)≤x

χ(p) = o

(
x

log x

)

as x→∞; for trivial χ we obtain the prime ideal theorem (13.4).

13.4 Universality for Hecke L-Functions

Universality for Hecke L-functions was first proved by Mishou. In [249], he
obtained universality for Hecke L-functions to ray class characters. The proof
proceeds along the lines of Voronin’s original proof; besides, arithmetical prop-
erties of those rational primes which split completely play a central role.
In Mishou [250], Bagchi’s approach and, in particular, the positive density
method are applied to tackle the general case of grössencharacters.

Theorem 13.2. Let K be a finite extension of Q of degree n and χ be a
grössencharacter modulo f̃. Let K be a compact subset of the strip 1− 1

n < σ < 1
with connected complement and g(s) be a non-vanishing and continuous on K
which is analytic in the interior of K. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ, χ) − g(s)| < ε

}
> 0.

The main part of the proof relies on a discussion of the various ways how
rational primes can split. This is used to show that there exist infinitely many
rational primes p for which the character sum

a(p) =
∑
p|(p)

χ(p),
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where the sum is taken over all prime ideals of degree one which divide p, is
bounded away from zero. In the case of ray class characters one can deduce
this quite easily by applying class field theory; in fact, the set of all rational
primes which split completely in the class field for the ideal class group has
infinitely many elements. The general case is more delicate (for the details see
[249, 250]).

For the special type of grössencharacters χm of the form (13.12) for Q(i),
Koyama and Mishou [174] succeeded to prove a mixed version of universality
for Hecke L-functions L(s+ iτ, χm) in the τ - and in the χ-aspect:

Theorem 13.3. Let K be a compact set in the open right half of the critical
strip. For any function g(s) which is non-vanishing and continuous on K and
which is analytic in the interior of K, and for any ε > 0,

lim inf
T→∞

1
T 2

˜meas
{

(τ,m) ∈ T̃ : max
s∈K

|L(s+ iτ, χm)− g(s)| < ε

}
> 0,

where T̃ := [0, T ] × {0, . . . , T} and the measure ˜meas is defined by

˜meas (X) =
T∑

m=0

meas {τ ∈ [0, T ] : (τ,m) ∈ X}

for X ⊂ T̃ .

As Koyama and Mishou mention, it is unfortunate that the range of τ and
m has to be the same. They remark that a conjecture of Duke [71] on mean-
values for certain Dirichlet series over Z(i) would imply the universality in the
character aspect alone.

13.5 Artin’s Reciprocity Law

Now we want to study a further class of L-functions which play a central
role in algebraic number theory ever since Artin introduced them in order to
find higher reciprocity laws. However, first of all, we briefly motivate their
definition.

In algebraic number theory, a fundamental problem is to describe how a
rational prime factors into primes in the ring of integers OK of a given number
field K. Now assume that K is a Galois extension over Q with Galois group
G := Gal(K/Q) (i.e., Q is fixed with respect to automorphisms from G). Then
K is the splitting field of some monic polynomial with rational coefficients, and
G is the group of field automorphisms of K fixing Q pointwise. The splitting
type of a prime p in OK is completely determined by the size of the subgroup
of G which fixes any pj above p. For simplicity, assume that the rational
prime p is unramified in K, i.e., the primes pj in (13.1) are all distinct, then
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these subgroups are all cyclic. Information about the factorization of such p
is encoded in the so-called Frobenius automorphism σpj

of G, the canonical
generator of the subgroup of G which maps any pj into itself. The Frobenius is
determined only up to conjugacy in G; nevertheless, the resulting conjugacy
class, which we denote by σp, completely determines the splitting type of
(13.1).

If, for example, K = Q(i) = {a + bi : a, b ∈ Q}, then OK = Z[i], the set
of Gaussian integers m + ni with m,n ∈ Z. In this case, σp is the identity
if −1 is a quadratic residue mod p, and the complex conjugation otherwise.
Hence, we may identify G with the subgroup {±1} of C∗ := C \ {0} via the
homomorphism 	 : G → {±1}:

	(σp) =
(−1
p

)
.

By a part of the quadratic reciprocity law, the Legendre symbol can be
expressed in terms of a congruence condition on p which states for unram-
ified (odd) primes p(−1

p

)
= (−1)

p−1
4 =

{
+1 if p ≡ 1 mod 4,
−1 otherwise.

Thus, the factorization of p in Z[i] depends only on its residue mod 4.
One goal of class field theory is to find a similar description of σp for

arbitrary Galois extensions K. In general, one cannot expect that there exists
a modulus q such that σp is the identity if and only if p lies in some arithmetic
progression mod q. However, if K is abelian, i.e., G = Gal(K/Q) is abelian,
and 	 : G → C∗ is a homomorphism, then it is known that there exists a
Dirichlet character ψ mod q such that

ψ : (Z/qZ)∗ → C∗ with 	(σp) = ψ(p) (13.14)

for all primes p, unramified in K. This is the theorem of Kronecker–Weber.
It follows that the splitting properties of p in K depend only on its residue
modulo some fixed number q depending on K. In particular, this implies the
general quadratic reciprocity law of Gauss. As a matter of fact, the factoriza-
tion of Dedekind zeta-functions

ζK(s) = ζ(s)L(s, χ), where K = Q(
√
χ(−1)q),

for all quadratic fields K is equivalent with quadratic reciprocity.
What can be said for non-abelian Galois extensions? Recognizing the util-

ity of studying groups in terms of their matrix representations, Artin focused
attention on homomorphisms

	 : G = Gal(K/Q) → GLm(C),
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i.e., m-dimensional representations of the Galois group G; note that one-
dimensional representations are simply characters. Artin transferred the prob-
lem of analysing conjugacy classes in G to the analogous problem in GLm(C),
where the corresponding classes are completely determined by their charac-
teristic polynomials

det
(

1 − 	(σp)
ps

)
,

where 1 denotes the unitary matrix. Introducing the so-called Artin L-function

L(s, 	) =
∏
p

det
(

1 − 	(σp)
ps

)−1

(we give a precise definition in Sect. 13.6), Artin was able to reduce the prob-
lem to one involving these analytic objects: is it possible to define L(s, 	) in
terms of the arithmetic of Q alone? It was in this context that Artin proved
his reciprocity law. Indeed, for abelian fields K and one-dimensional 	, Artin
showed that L(s, 	) is identical to a Dirichlet L-function L(s, ψ) with an
appropriate character ψ mod q. Since an identity between two Euler prod-
ucts implies an identity between the local Euler factors, this implies Artin’s
reciprocity law (13.14). Actually, Artin proved a stronger result for abelian
extensions L/K (see Theorems 13.4 and (13.16)).

13.6 Artin L-Functions

Let L/K be a Galois extension of number fields with Galois group G. Further,
let 	 : G → GLm(V ) be a representation (group homomorphism) of G on a
finite dimensional complex vector space V . In order to give the definition of
the Artin L-function attached to these data, we recall some facts on prime
ideals in number fields and their ramification in Galois extensions.

For each prime p of K, and a prime P of L with P|p, we define the
decomposition group by

DP = {	 ∈ G : P� = P} = Gal(LP/Kp),

where LP and Kp are the completions of L at P and K at p, respectively.
Denote by kP/kp the residue field extension. By Hensel’s lemma, we have a
surjective map from DP to Gal(kP/kp); its kernel IP is the inertia group at
P, defined by

IP = {	 ∈ G : 	(α) ≡ α mod P for all α ∈ OL}.

We thus have an exact sequence

1 → IP → DP → Gal(kP/kp) → 1.
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Hence, there is an isomorphism

DP/IP " Gal(kP/kp).

Now kP/kp is a Galois extension of finite fields, and hence the group
Gal(kP/kp) is cyclic, generated by the map α �→ αN(p), where N(p), the
absolute norm of p, is the cardinality of kp. We can choose an element σP ∈ DP

whose image in Gal(kP/kp) is this generator; this σP is called Frobenius ele-
ment at P, i.e.,

σP(α) ≡ αN(p) mod P

for all α ∈ OL. Note that the Frobenius element is only defined mod IP. The
Frobenius describes how prime ideals split when lifted from a smaller ring
of integers to a larger ring of integers. For unramified p (and in particular,
these are all but finitely many p), the Frobenius is well defined since IP =
{1}. The action of the Galois group on the set of primes in L above p is
transitive, and thus for any pair of primes P1 and P2 lying above p, there
exists an automorphism in G which simultaneously conjugates DP1 into DP2 ,
IP1 into IP2 , and σP1 into σP2 . This implies an identity for the characteristic
polynomials of σPj

on the subspace VPj
of V on which IPj

acts trivially:

det
(

1 − 	(σP1)
N(p)s

∣∣∣VP1

)
= det

(
1 − 	(σP2)

N(p)s

∣∣∣VP2

)
.

Thus, these characteristic polynomials are independent of the choice of σP.
Denote by σp the conjugacy class of Frobenius elements at primes P above
p; in case of unramified p the inertia group is trivial, and σp is called Artin
symbol.

Following Artin [4], we define the Artin L-function attached to 	 by

L(s, 	,L/K) =
∏
p

det
(

1 − 	(σp)
N(p)s

∣∣∣VP

)−1

, (13.15)

where p runs through the prime ideals of the ring of integers in K; this Euler
product converges for σ > 1 by the same reasoning as for previous L-functions
of number fields.

We shall illustrate this by an example (see also Heilbronn [129] and Stark
[337]). Assume that L/Q is normal with Galois group equal to the symmetric
group S3 on three letters:

G := {1, (αβγ), (αγβ), (αβ), (αγ), (βγ)}

say. For instance, one may consider the cubic field K = Q(21/3) and its normal
closure L = Q(α, e2πi/3) = Q(α, β, γ), where

α = 21/3, β = e2πi/321/3, γ = e4πi/321/3.
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Since automorphisms of L are determined by their action on α, β and γ, we
find G = Gal(L/Q) for the Galois group of L. The splitting of primes from
Q to K, and likewise from K to L, is ruled by the Frobenius automorphisms.
Suppose that P is an unramified prime of L which lies above p of K which in
turn lies above the rational prime p of Q. Then the Frobenius automorphism
of P relative to Q is given by one of the following conjugacy classes:

• σP = 1. Since the Frobenius has order one, by (13.1), there are six primes
in L above p. Obviously, σP ∈ Gal(L/K) = {1, (βγ)}. In this case p splits
in K into three different primes pj (1 ≤ j ≤ 3) each of which splits into
two prime ideals Pk (1 ≤ k ≤ 6) of L.

• σP is in the conjugacy class {(αβ), (αγ), (βγ)} of elements of order two.
We may choose P such that σP = (βγ) ∈ Gal(L/K). Then f = 2 in (13.1)
and so there are three second degree primes Pk (1 ≤ k ≤ 3) above p; we
may assume that P = P1. We observe that the Frobenius automorphism
of P relative to K is equal to σP. Hence, we find N(P) = N(p)2 and
N(p) = p for some prime p = p1 of K. For the other two primes P2 and P3

the Frobenius σP is equal to (αβ) and (αγ), respectively. In these cases
we find σ2

P = 1 ∈ Gal(L/K) and N(P) = N(p) and N(p) = p2 for some
prime p = p2 of K. Thus, the primes P2 and P3 have relative degree one
over a single prime p2 of K (which is of degree two).

• σP is in the conjugacy class {(αβγ), (αγβ)} of elements of order three. In
this case we have f = 3 in (13.1) and there are two third degree primes
P1 and P2 of L above p, for one of them σP = (αβγ) and for the other
σP = (αγβ). In both cases neither σP nor σ2

P lie in Gal(L/K) = {1, (βγ)}
and so both P1 and P2 lie above a single prime p of K (which must be of
degree three).

Before we continue we remark that the splitting of primes can be computed
by use of the following statement (analogous to (13.3)): suppose that F (X) is
the minimal polynomial of α ∈ K over Q and that it splits factors mod p into
irreducible pieces as

F (X) ≡ F1(X)e1 · . . . · Fr(X)er mod p.

If the power of p in the polynomial discriminant of F (X) is the same as the
power of p in the relative discriminant DL/K of L/K, then p splits in L as

p = Pe1
1 · . . . ·Per

r ,

where Pj = (p, Fj(α)) is of relative degree degFj . This together with
Eisenstein’s irreducibility criterion gives the basic tools to do arithmetic com-
putations in number fields.

We may represent the Galois group G by matrices as follows. For g ∈ G
we write
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γ

⎞⎠ g = M(g)

⎛⎝αβ
γ

⎞⎠ ,
where M(g) is the permutation matrix corresponding to g. Thus, in our
example, we can represent the six elements of G by

1 �→

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ , (αβγ) �→

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ , (αγβ) �→

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ ,
(αβ) �→

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ , (αγ) �→

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ , (βγ) �→

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ .
The map 	 : g �→ M(g) defines a homomorphism: M(gh) = M(g)M(h); it is
an example of a three-dimensional permutation representation of the group
G. The conjugacy classes of the symmetric group on α, β, γ are precisely the
conjugacy classes of Frobenius automorphisms arising from prime numbers
which split in the indicated form; that are

C1 : {1}, C2 : {(αβγ), (αγβ)}, C3 : {(αβ), (αγ), (βγ)}.

For each of them we observe that the associated Euler factors are of the form
as predicted by (13.15). To see this we have a look on every individual Euler
factor. Since the field extension K/Q has degree 3, there are the following
possibilities to consider.

• The prime p splits completely into three different prime divisors; e.g.,
(31) = p1p2p3 with

p1 = (31, α− 4), p2 = (31, α− 7), p3 = (31, α− 20).

In this case the local Euler factor at p is of the form

(
1 − 1

ps

)−3

= det

⎛⎝1 −

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ 1
ps

⎞⎠−1

.

Obviously, the appearing matrix has the eigenvalue +1 with multiplicity
three. This Euler factor corresponds to the class C1.

• The prime p can be factored into a product of two factors, one of first
degree and one of second degree; for example, (5) = p1p2 with

p1 = (5, α− 3), p2 = (5, α2 + 3α+ 9).

Here we have(
1 − 1

ps

)−1(
1 − 1

p2s

)−1

= det
(

1 − M
1
ps

)−1

,
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for any of the matrices

M =

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ ,
⎛⎝ 0 0 1

0 1 0
1 0 0

⎞⎠ , and

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ ,
corresponding to C3. The eigenvalues of the (similar) matrices are −1 and
+1 with multiplicities one and two, respectively.

• The prime p is a prime ideal of third degree; e.g., (7) = p. In this case we
have (

1 − 1
p3s

)−1

= det
(

1 − M
1
ps

)−1

for the matrices associated with C2:

M =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ and

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ .
Here the eigenvalues of the (similar) matrices are the third roots of unity.

Now we introduce a more convenient notation of Artin L-functions. To
any representation 	 of G, we attach a character χ of G by setting

χ(g) = trace(	(g))

for g ∈ G. The degree of a character is defined by degχ = χ(1). If h is another
element of G, then

	(h−1gh) = 	(h)−1	(g)	(h),

so that 	(h−1gh) and 	(g) are similar matrices and thus have the same trace.
This shows that characters χ of G are constant on the conjugacy classes. Two
representations are said to be equivalent if they have the same character. If
	1 and 	2 are representations of G with characters χ1 and χ2, then

	(g) =
(
	1(g) 0

0 	2(g)

)
also defines a representation of G with character χ1 + χ2, and in this case
	 is said to be reducible; any representation which is not reducible is called
irreducible. We shall use the same attributes for the associated character.

It turns out that any conjugacy class of G corresponds to an irreducible
representation and one can show that there are not more; of course, distinct
irreducible representations are non-equivalent (these observations are analo-
gous to the case of Dirichlet characters and the group of residue classes of Z).
In our example we find for the three conjugacy classes of G:

C1 C2 C3

χ1 +1 +1 +1
χ2 +1 +1 −1
χ3 +2 −1 0
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Hence, for G = S3, there are three irreducible characters (in some literature
“simple characters”).

It is easily seen that our characters satisfy the orthogonality relations, that
are

1
�G

∑
χ∈Ĝ

χ(C)χ(D) =
{

1/�C if C = D,
0 otherwise,

where C and D are conjugacy classes. Since the Euler factors in (13.15) depend
only on the conjugacy class σp, in the sequel we will talk sometimes in terms
of characters and denote the Artin L-function (13.15) by L(s, χ,L/K) (and
sometimes we shall even write L(s, χ) for short).

For further illustration we continue with our example. We can construct
more characters from the irreducible characters listed above, for example,
a third degree character χ related to the permutation representation (αβ).
Taking the character relations into account we find χ = χ1 + χ3. For the
related Artin L-functions we note that

L(s, χ,L/K) = L(s, χ1 + χ3,L/K) = L(s, χ1,L/K)L(s, χ3,L/K).

This additivity property holds in general.
For the field L = Q(α, β, γ) there are four subfields up to conjugacy:

firstly, the field Q itself, fixed by all of G, secondly, Q(
√
−3) fixed by G2 :=

{1, (αβγ), (αγβ)} (corresponding to the conjugacy class C2), thirdly, K =
Q(21/3) fixed by G3 := {1, (βγ)} (corresponding to the conjugacy class C3),
and finally L fixed just by {1}.

L {1}

K = Q(21/3)

�����������
G3

(βγ)
������������

Q(
√
−3)

�����������������

G2

(αβγ),(αγβ)

������������������

Q

χ3

����������������� χ2

���������
Gal(L/Q) = S3

������������������

�����������

We obtain the following factorizations of the associated Dedekind zeta-
functions into products of Artin L-functions to L/Q:

ζ(s) = ζQ(s) = L(s, χ1),
ζQ(

√−3)(s) = L(s, χ1)L(s, χ2),
ζQ(21/3)(s) = L(s, χ1)L(s, χ3),

ζL(s) = L(s, χ1)L(s, χ2)L(s, χ3).
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We observe that any of the Dedekind zeta-functions on the left-hand side
is divisible by the Riemann zeta-function. It follows from these factoriza-
tions and the analytic behaviour of Dedekind zeta-functions that each of the
involved Artin L-functions with χ �= χ0 possesses a meromorphic continua-
tion to the whole complex plane; the only possible poles can occur at zeros
of other Artin L-functions. Furthermore, one can deduce functional equations
of the Riemann-type. This is a remarkable way to deduce analytic properties
for L-functions!

13.7 The Artin Conjecture

One of the most fundamental conjectures in algebraic number theory is
Artin’s Conjecture. Let L/K be a finite Galois extension with Galois group
G. For any irreducible character χ �= 1 of G the Artin L-function L(s, χ,L/K)
extends to an entire function.
We discuss briefly one of its important consequences. Dedekind’s conjecture
claims that the quotient ζL(s)/ζK(s) is entire provided L/K is an extension of
number fields, not necessarily Galois. Here one may recall the factorizations of
the Dedekind zeta-functions in our example from Sect.13.6. If L/K is a Galois
extension, then the so-called Artin–Takagi factorization gives a factorization
of the Dedekind zeta-function of a number field relative to a subfield (see
Heilbronn’s survey article [129]); more precisely,

L(s, 1,L/K) = ζK(s) and L(s,RG,L/K) = ζL(s),

where RG is the regular character of G (the character defined by
∑

χ χ(1)χ),
and

ζL(s) =
∏
χ∈G̃

L(s, χ,L/K)χ(1),

where G̃ denotes the set of irreducible characters of G. In the case of Galois
extensions L/K, a theorem of Aramata [2] yields the truth of Dedekind’s
conjecture; its proof relies mainly on the Artin–Takagi factorization (an easier
proof was given by Brauer [42] by his induction theorem; see also Heilbronn
[129] or Murty and Murty [270], Sect. 2.3). In the general case, if L/K is a
finite (not necessarily Galois) extension, then Dedekind’s conjecture follows
from Artin’s conjecture by studying the normal closure of L/K.

As indicated in a previous section, Artin [5] proved his conjecture if χ
is one-dimensional and L/K is abelian. In this case, the related Artin L-
function coincides with a Hecke L-function attached to some ray class group.
The Frobenius σp induces a map from the fractional ideals of K coprime with
f to the Galois group:

Φ(f) : I(f) → Gal(L/K).

By class field theory it is surjective and if the finite primes dividing f are
sufficiently large, then its kernel is a congruence subgroup for f. This is Artin’s
reciprocity law:
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Theorem 13.4. Let L/K be abelian and let χ be a one-dimensional character
of G = Gal(L/K). Then there exists a modulus f = f(L/K) divisible by all
ramified primes (finite and infinite) such that

I(f)/ker(Φ(f)) " G.

Using the isomorphism Φ(f), we define a character ψ of the class group by
setting ψ(p) = χ(σp) for p coprime with f. Then

L(s, χ,L/K) = L(s, ψ). (13.16)

Artin proved this theorem by means of class field theory and, in particular,
using Chebotarev’s density theorem. We shall briefly explain the latter result.
Let L/K be a finite Galois extension with Galois group G and let C be a
subset of G, closed under conjugation. Further, denote by πC(x) the number
of prime ideals p of K, unramified in L, for which σp ⊂ C and which have
norm N(p) ≤ x in K. Then, Chebotarev’s density theorem [53] states

πC(x) ∼ �C

�G
π(x). (13.17)

This rather deep theorem can be seen as a higher analogue of the prime
number theorem in arithmetic progressions. A modern proof can be found,
for example, in Narkiewicz [277]. The Chebotarev density theorem can be
used to determine the Galois group of a given irreducible polynomial P (X)
of degree n by counting the number of unramified primes up to a certain
bound for which P factors in a certain way and comparing the results with
the fractions of elements of each of the transitive subgroups of the symmetric
group Sn with the same cyclic structure.

We illustrate this by returning to our example from Sect.13.6. By means
of class field theory one can show that K = Q(21/3) is the class field for a
ray class group G(f) over Gal(L/K) which is cyclic of order three. Besides
the trivial character, there are two cubic characters χ2 and χ3 each of which
is the square of the other one. Their common conductor is f = (6) and, by
Chebotarev’s density theorem it follows that:

• 1/6 of the rational primes split completely in K (and they have a repre-
sentation as p = x2 + 27y2 with x, y ∈ Z),

• 1/2 of the rational primes split as the product of first and second degree
prime factors (namely p ≡ 2 mod 3), and

• 1/3 of the rational primes generate third degree primes of K.

Brauer [42] obtained a significant extension of Artin’s result. Let H be a
subgroup of G. Then any character χ on H induces a character IndG

H(χ) on G
and

L(s, χ,L/LH) = L(s, IndG
H(χ),L/K), (13.18)

where LH is the corresponding fixed field. Brauer [42] proved that any char-
acter of a finite group G can be written as a linear combination



13.7 The Artin Conjecture 271

χ =
∑

j

nj IndG
Hj

(χj),

where the Hj are nilpotent subgroups of G, the χj are one-dimensional, and
the njs are integers. Hence, it follows that

L(s, χ,L/K) =
∏
j

L(s, IndG
Hj

(χj),L/K)nj .

However, by (13.18),

L(s, χ,L/K) =
∏
j

L(s, χj ,L/L
Hj )nj .

Now applying Artin’s reciprocity law to the one-dimensional characters χj ,
we obtain

L(s, χ,L/K) =
∏
j

L(s, ψj)nj (13.19)

for certain ray class characters ψj related to χj . Using the analytic proper-
ties of Hecke L-functions, Brauer [42] deduced a functional equation of the
Riemann-type for Artin L-functions which gives a meromorphic continuation
throughout the complex plane (see also Neukirch [279]), Sect. VII.12).

Brauer’s theorem implies the Artin conjecture if G is nilpotent or super-
solvable since then every character of G is monomial (see Serre [325]). Murty
[267] observed that

Theorem 13.5. Selberg’s Conjecture B implies Artin’s conjecture.

Murty and Perelli [271] replaced Selberg’s conjecture by the pair correlation
conjecture (as already mentioned above).

The proof uses some easy properties of Artin L-functions which we did not
prove or even did not mention above. The reader may have a look into the
literature, e.g., Heilbronn [129], and may consult the examples from Sect.13.6.

Proof. Let L̃ be the normal closure of L over Q. Then, L̃/K and L̃/Q are
Galois. Thus, χ can be considered as a character χ̃ of Gal(L̃/K), and by the
properties of Artin L-functions it turns out that

L(s, χ̃, L̃/K) = L(s, χ,L/K).

By the invariance induction of χ̃ from Gal(L̃/K) to Gal(L̃/Q), it follows that

L(s, χ,L/K) =
∏
ψ

L(s, ψ, L̃/Q)m(ψ),

where the product is taken over all irreducible characters ψ of Gal(L̃/Q) and
m(ψ) are non-negative integers. To prove Artin’s conjecture, it suffices to
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show that all appearing L(s, ψ, L̃/Q) are entire. By Brauer’s induction theo-
rem (13.18) and Artin’s reciprocity law, Theorem 13.4, respectively, formula
(13.19), we have

L(s, ψ, L̃/Q) =
L(s, χ1)
L(s, χ2)

,

where χ1, χ2 are characters of Gal(L̃/Q) and L(s, χ1), L(s, χ2) are products
of Hecke L-functions (13.13). Since Hecke L-functions belong to the Selberg
class S, and S is multiplicatively closed, the functions L(s, χ1) and L(s, χ2)
belong to S too. Now, by Theorem 6.2, there exist primitive functions Lj ∈ S
such that

L(s, ψ, L̃/Q) =
f∏

j=1

Lj(s)ej , (13.20)

where ej ∈ Z. By comparing the pth coefficient in the Dirichlet series expan-
sions of both sides, we get

ψ(p) =
f∑

j=1

ejaLj
(p).

Thus,

∑
p≤x

|ψ(p)|2
p

=
∑
p≤x

1
p

∣∣∣∣∣∣
f∑

j=1

ejaLj
(p)

∣∣∣∣∣∣
2

. (13.21)

Selberg’s Conjecture B yields the asymptotic formula

∑
p≤x

1
p

∣∣∣∣∣∣
f∑

j=1

ejaLj
(p)

∣∣∣∣∣∣
2

=

⎛⎝ f∑
j=1

e2j

⎞⎠ log log x+O(1). (13.22)

Next, we decompose the sum on the left-hand side of (13.21) according to
the conjugacy classes C of G := Gal(L̃/Q) to which the Frobenius element σp

belongs. If gC denotes any element of C, this leads to∑
p≤x

|ψ(p)|2
p

=
∑
C

|ψ(gC)|2
∑
p≤x

σp⊂C

1
p
.

By partial summation, we deduce from Chebotarev’s density theorem (13.17)∑
p≤x

σp⊂C

1
p

=
�C

�G
log log x+O(1).
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This gives ∑
p≤x

|ψ(p)|2
p

=
∑
C

|ψ(gC)|2 �C
�G

log log x+O(1).

Since ψ is irreducible, we have∑
C

|ψ(gC)|2 �C
�G

=
1
�G

∑
C

�C = 1,

which implies via (13.22) and (13.21)

f∑
j=1

e2j = 1.

Thus, f = 1 and e1 = ±1. The case e1 = −1 implies

L(s, ψ, L̃/Q) =
1

L1(s)
,

which is impossible since L(s, ψ, L̃/Q) has trivial zeros (their existence fol-
lows from the functional equation). Hence, e1 = +1, and we conclude that
L(s, ψ, L̃/Q) = L1(s) is entire. ��

The proof shows that if χ is an irreducible non-trivial character of Gal(K/Q),
then the Artin L-function L(s, χ,K/Q) is a primitive element in the Selberg
class S if Selberg’s Conjecture B is true; the case of Artin L-functions to
reducible characters follows from the fact that S is multiplicatively closed.
Furthermore, the splitting of primes implies axiom (iv) on the polynomial
Euler product from the definition of S̃. Decomposing as in Murty’s proof, we
find

1
π(x)

∑
p≤x

|χ(p)|2 =
1

π(x)

∑
C

|χ(gC)|2
∑
p≤x

σp⊂C

1.

By Chebotarev’s density theorem (13.17), this is asymptotically equal to

1
�G

∑
C

�C = 1,

which implies axiom (v) on the prime mean-square. So, L(s, χ,K/Q) ∈ S̃ pro-
vided that Artin’s conjecture is true; note that in the case of one-dimensional
characters this is unconditional since these L-functions are known to be entire.
Thus, on behalf of Theorem 5.14 we obtain universality for Artin L-functions
L(s, χ,K/Q) to Galois extensions K/Q subject to Selberg’s Conjecture B.
However, following the lines of Voronin’s proof, Bauer [16] proved universality
for any Artin L-function without assumption of any unproved hypothesis. In
Sect.13.8 we shall prove and extend this result by use of Bagchi’s method.
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13.8 Joint Universality for Artin L-Functions

We shall use joint universality for Artin L-functions to one-dimensional rep-
resentations in combination with Brauer’s induction theorem (13.19) in order
to deduce joint universality for arbitrary Artin L-functions of K/Q.

Theorem 13.6. Let K be a finite Galois extension of Q and let χ1, . . . , χ	 be
C-linearly independent characters of Gal(K/Q). Let K be a compact subset of
max{ 1

2 , 1− [K : Q]−1} < σ < 1 with connected complement. Further, for each
1 ≤ k ≤ � let gk(s) be a continuous non-vanishing function on K which is
analytic in the interior of K. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

1≤k≤	
max
s∈K

|L(s+ iτ, χk,K/Q) − gk(s)| < ε

}
> 0.

Proof. Without loss of generality we may assume that the characters
χ1, . . . , χ	 form a basis of the set of class functions on Gal(K/Q). In view
of Brauer’s induction theorem (13.19) any of the Artin L-functions has a rep-
resentation

L(s, χk,K/Q) =
∏
j

L(s, ψjk)njk , (13.23)

where the L(s, ψjk) are Hecke L-functions to number fields Kjk contained in
K, the ψjk are ray class characters of Kjk, and the numbers njk are non-zero
integers.

It suffices to prove that the family of Artin L-functions to all pairwise non-
equivalent one-dimensional characters ψk to subgroups of Gal(K/Q) is jointly
universal. Then the assertion of the theorem follows from (13.23) in just the
same way as in the final step of the proof of Theorem 13.1.

Now let {L(s, ψk)} be such a family of distinct Artin L-functions to pair-
wise non-equivalent one-dimensional characters ψk to subgroups of Gal(K/Q).
We want to prove their joint universality. In view of Artin’s reciprocity law,
Theorem 13.4, each L(s, ψk) is a Hecke L-function to a ray class group char-
acter for some subfield of K; in particular, they belong to S̃ (as we have seen
in Sect. 13.7). According to (13.1),

p =
rp∏

j=1

p
ej

j with N(pj) = pfj ,

rp∑
j=1

ejfj = [K : Q],

we write

L(s, ψk) =
∏
p

det
(

1 − 	k(σp)
ps

)−1

=
∏
p

(
1 − ψk(p)

ps

)−1

=
∏
p

rp∏
j=1

(
1 − ψk(pj)

pfjs

)−1

=
∞∑

n=1

ak(n)
ns
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with

ak(p) =
rp∑

j=1
fj=1

ψk(pj).

Clearly, m := max rp ≤ [K : Q]; this defines the local roots αjk. In order to
prove joint universality for {L(s, ψk)} we shall apply Theorem 12.5, i.e., we
have to show that the set of all convergent series∑

p

g
p
(s, b(p)) with b(p) ∈ γ

is dense in H(D)	, where the g
p

are defined by (12.11) and (12.12), that are

gpk(s, b(p)) = −
m∑

j=1

log
(

1 − αjk(p)b(p)
ps

)
,

g
p
(s, b(p)) = (gp1(s, b(p)), . . . , gp	(s, b(p))),

and � is the cardinality of {L(s, ψk)}. Most of the reasoning is similar as in
the proof of Theorem 12.8; however, the verification of the first assumption
of Theorem 12.9 is slightly different. We sketch the main idea.

Let μ1, . . . , μ	 be complex Borel measures on (C,B(C)) with compact sup-
port contained in D such that

∑
p

∣∣∣∣∣
	∑

k=1

∫
C
b̂(p)ĝpk(s) dμk(s)

∣∣∣∣∣ <∞;

here, as in Sect.13.7,

ĝpk(s) =
{
g̃pk(s) if p > N,

0 if p ≤ N,

ĝ
p
(s) = (ĝp1(s), . . . , ĝp	(s)),

and the b̂(p) form a sequence such that
∑

p b̂(p)ĝpk(s) converges in H(D).
Following the proof of Theorem 12.8, we find

g̃pk(s) =
ak(p)
ps

+ rpk(s)

with a sufficiently small remainder rpk(s). It is easily seen that we can replace
(12.25) by ∑

p

∣∣∣∣∣
	∑

k=1

∫
C
ak(p)p−s dμk(s)

∣∣∣∣∣ <∞. (13.24)

Denote by C1, . . . ,CJ the different conjugacy classes of G = Gal(K/Q). Then J
is the dimension of the vector space of class functions on G, and so J is greater
than or equal to the number of C-linear independent characters. Define
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Pj = {p ∈ P : σp ∈ Cj} for 1 ≤ j ≤ J ;

recall that the Frobenius σp completely determines the splitting of the primes.
Clearly, P = ∪1≤j≤JPj , and

ak(p) = trace(	k(σp)) = trace(	k(Cj)) for p ∈ Pj .

Hence, we can replace (13.24) by∑
p∈Pj

|ηj(log p)| <∞,

where

ηj(z) :=
∫

C
exp(−sz) dνj(s) and νj(s) :=

	∑
k=1

trace(	k(Cj))μk(s).

Next we need Chebotarev’s prime number theorem (13.17) with remainder
term due to Artin [4]

π(x;Cj) :=
∑
p≤x

p∈Pj

1 =
�Cj

�G
li(x) +O(x exp(−c(log x)1/2)

(see also [129]). This implies∑
p≤x

p∈Pj

1
p

= π(x;Cj)
1
x

+
∫ x

2

π(u;Cj)
du
u2

=
�Cj

�G
log log x+ cj +O((log x)−2),

where the cj certain constants depending only on Cj . Now we can proceed
as in the proof of Theorem 12.8 and obtain that ηj(z) vanishes identically,
respectively, ∫

C
sr dνj(s) ≡ 0 for r = 0, 1, 2, . . .

That means
	∑

k=1

trace(	k(Cj))
∫

C
srμk(s) ≡ 0

for r = 0, 1, 2, . . . and all 1 ≤ j ≤ J . Hence

	∑
k=1

ψk(gj)
∫

C
srνk(s) ≡ 0
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for any gj in the conjugacy class Cj . Since the characters ψk are linear inde-
pendent over C, it follows that all

ϕ(q)
∫

C
srμk(s) ≡ 0.

Thus, any μk(s) vanishes identically and so we are done. Now we continue in
the standard way. This yields the assertion of the theorem. ��

We conclude our studies on Artin L-functions by some interesting con-
sequences of Theorem 13.6 due to Bauer [16]. First of all, any single Artin
L-function to an arbitrary normal extension K/L is universal.

Corollary 13.7. Let L/K be a normal extension and χ an arbitrary character
of Gal(L/K). Further, let K be a compact subset of max{1

2 , 1 − 1
d} < σ < 1

with connected complement, where d is the degree of a normal extension of Q
containing L, and let g(s) be a continuous non-vanishing function on K which
is analytic in the interior. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L(s+ iτ, χ,L/K) − g(s)| < ε

}
> 0.

The proof follows from Theorem 13.6 by observing that a normal extension
L̃ of Q containing L is also a normal extension of K and that L(s, χ,L/K) =
L(s, χ, L̃/K) by well-known properties of Artin L-functions. Moreover,
Gal(L̃/K) is a subgroup of Gal(L/K) and so L(s, χ, L̃/K) = L(s, χ∗, L̃/Q)
for the induced character χ∗. Application of Theorem 13.6 to L(s, χ∗, L̃/Q)
yields the assertion.

As a second application we note that there is no non-trivial continuous
relation between Artin L-functions to irreducible characters of any fixed Galois
extension K/Q. This remarkable result follows in a similar way as the theorem
on the functional independence; for a precise formulation and the details we
refer to Bauer [16]. Similarly, it follows that there is no non-trivial continuous
relation between Dedekind zeta-functions to finite normal extensions Kj of Q
satisfying Ki ∩ Kj = Q for i �= j. The latter condition cannot be removed
as the example (13.11) shows. Bauer also showed that the only non-trivial
relations are monomial algebraic.

Davenport and Heilbronn [65] proved that the zeta-function of an ideal
class of an imaginary quadratic field has an infinity of zeros in the half-plane
of convergence σ > 1 provided that the class number is greater than one.
Voronin [364] extended this result to the right half of the critical strip and gave
lower bounds for the number of these zeros. Following Voronin’s reasoning in
addition with some basics from class field theory, Bauer [16] deduced from the
joint universality of Artin L-functions that any partial zeta-function ζ(s,A)
associated with an arbitrary class A of the ray class of any algebraic number
field has more than cT many zeros in 1

2 < σ < 1, |t| < T for T sufficiently large,
where c is a positive constant, provided the ray class group has cardinality
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greater than one (in particular for class groups of number fields with class
number greater than one).

Finally, we shall remark that Hecke L-functions and Artin L-functions
form overlapping classes of Euler products, however, neither is contained in
the other. For example, a Hecke L-functions associated with a grössenchar-
acter which is not a ray class group character is certainly not an Artin L-
function. Conversely, if L/K is a non-abelian Galois extension of Q and 	 is
an irreducible representation of Gal(L/K), then the attached Artin L-function
is a Hecke L-function if and only if 	 is one-dimensional. Weil [369] gave gen-
eralizations of both Hecke and Artin L-functions which can be unified in a
single theory; the corresponding objects are so-called Artin–Weil L-functions.
Their universality is still open.

13.9 L-Functions to Automorphic Representations

The Langlands program has emerged in the late 1960s of the last century in
a series of far-reaching conjectures tying together seemingly unrelated objects
in number theory, algebraic geometry, and the theory of automorphic forms.
These disciplines are linked by Langlands’ L-functions associated with auto-
morphic representations, and by the relations between the analytic properties
and the underlying algebraic structures. There are two kinds of L-functions:
motivic L-functions which generalize Artin L-functions and are defined purely
arithmetically, and automorphic L-functions, defined by transcendental data.
In its comprehensive form, an identity between a motivic L-function and an
automorphic L-function is called a reciprocity law. Langlands’ reciprocity
conjecture claims, roughly, that every L-function, motivic or automorphic,
is equal to a product of L-functions attached to automorphic representations.
For an introduction to the Langlands program we refer to the excellent surveys
of Gelbart [97], Murty [266] and Langlands’ lecture [178] at the International
Congress in Helsinki. We shall see that the axioms defining S̃, resp. S are
intimately related to fundamental conjectures concerning general L-functions;
the paper [145] by Iwaniec and Sarnak is a nice survey on these conjectures
and the progress made in the last years. Besides, we give some applications
of our universality Theorem 5.14.

At the heart of Langlands’s program is the notion of an automorphic rep-
resentation π and its L-function L(s, π). These objects, both defined via group
theory and the theory of harmonic analysis on adèle groups, will be briefly
explained below, omitting the technical details; for a more detailed description
we refer to the monographs of Bump [46], Gelbart [96], Langlands [177], and
the paper [41] of Borel.

Let K be a number field (one loses not too much by restricting to Q).
For each absolute value ν on K, there is a completion Kν of K which is R,
C, or a p-adic field, where p is a prime ideal in K. Denote by Oν the ring
of integers in Kν . In discussing local–global problems it is often necessary to
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consider several places simultaneously. At first sight it seems natural to form
the product of all the Kν which is a topological ring, but it does not have
satisfactory compactness properties. Since any α ∈ K is a p-adic integer for
almost all p, we restrict to elements

α =
∏
ν

αν ,

where αν lies in Oν for all but finitely many places ν; such elements are called
adèles. The adèles form a set-theoretic (restricted) product. This product is
a topological ring, the adèle ring AK of K. One can think of K as embedded
in AK via the map α �→ (α, α, . . .).

For m ≥ 1 let GLm(AK) be the group of m ×m matrices over AK whose
determinant is a unit in AK. By the product topology of the adèle ring,
GLm(AK) becomes a locally compact group in which GLm(K), embedded di-
agonally, is a discrete subgroup of GLm(AK). A character ψ of K∗ \ GL1(AK)
is called grössencharacter, where K∗ := K \ {0}. For a fixed grössencharacter
ψ we consider the Hilbert space

L2 := L2(GLm(K) \ GLm(AK), ψ)

of measurable functions f on GLm(K) \ GLm(AK) satisfying the conditions

• f(zg) = ψ(z)f(g) for any z ∈ Z, g ∈ GLm(K) \ GLm(AK);
• the integral ∫

ZGLm(K)\GLm(AK)

|f(g)|2 dg

is bounded.

Elements f ∈ L2 generalize the concept of twisted modular forms to discrete
subgroups of the full modular group. In order to introduce a subspace of cusp
forms we have to consider appropriate subgroups. Any parabolic subgroup P
of GLm(R), where R is a commutative ring with identity, has a decomposition,
called the Levi decomposition, of the form P = MN , where N is the unipotent
radical of P ; M is called the Levi component of P . We denote the unipotent
radical of P in the Levi decomposition of a parabolic subgroup P in GLm(R)
by NP (R).

The subspace of cusp forms

L2
0 := L2(GLm(K) \ GLm(AK), ψ)

of L2 is defined by the additional vanishing condition

• for all parabolic subgroups P of GLm(AK) and every g ∈ GLm(AK),∫
NP (K)\NP (AK)

f(ng) dn = 0.
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The right regular representation R of GLm(K) on L2 is given by

(R(g)f)(α) = f(αg)

for each f ∈ L2 and any α, g ∈ GLm(AK). An automorphic representation is
a subquotient of the right regular representation of GLm(AK) on L2, and a
cuspidal automorphic representation is a subrepresentation of the right regular
representation of GLm(AK) on L2

0.
A representation of GLm(AK) is called admissible if its restriction to the

maximal subgroup

K :=
∏

ν complex

Um(C) ×
∏

ν real

Om(R) ×
∏

ν finite

GLm(Oν)

contains each irreducible representation of K with finite multiplicity; here
Um and Om denote the groups of unitary and orthogonal m × m matrices,
respectively.

Now let π be an irreducible, admissible, cuspidal automorphic representa-
tion of GLm(K). Then π can be factored into a direct product

π = ⊗νπν ,

where ν ranges over all (finite and infinite) places of K, and each πν is an
irreducible representation of GLm(Kν); see Flath [79]. For all but a finite num-
ber of places ν the representation πν is unramified (that means the quotient
obtained by inducing a quasi-character from the Borel subgroup of GLm(Kν)
to GLm(Kν) is unique).

In order to define the L-function attached to an automorphic representa-
tion π we define the local Euler factors for non-archimedean (finite) unramified
places ν by

Lν(s, π) = det
(

1 − Aν

N(p)s

)−1

,

where Aν is the semi-simple conjugacy class corresponding to πν and p is
the prime ideal of K belonging to the place ν. We do not explain here the
rather technical definition of the Euler factors Lν(s, π) for ramified places ν.
However, any Euler factor Lν(s, π) for a non-archimedean place ν associated
with the prime ideal p, unramified or not, can be rewritten as

Lν(s, π) =
m∏

j=1

(
1 − αj(p)

N(p)s

)−1

, (13.25)

where the numbers αj(p) for 1 ≤ j ≤ m are so-called Satake, resp. Langlands
parameters, determined from the local representations πν . At the archimedean
(infinite) places ν we put for certain numbers αj(ν)

Lν(s, π) =
m∏

j=1

Γν(s− αj(ν))
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with

Γν(s) :=
{
π− s

2Γ (s/2) if Kν " R,
(2π)−sΓ (s) if Kν " C,

(13.26)

where, again, the appearing numbers αj(ν) for 1 ≤ j ≤ m are determined
from the local representations πν . Then the global L-function associated with
π is given by

L(s, π) =
∏

ν non-archimedean

Lν(s, π),

and the completed L-function is defined by

Λ(s, π) = L(s, π)
∏

ν archimedean

Lν(s, π).

By the work of Hecke [126], Jacquet and Langlands [147], and Godement and
Jacquet [101] we have

Theorem 13.8. Let K be a number field and π be an irreducible, admissible,
cuspidal automorphic representation of GLm(AK). Then Λ(s, π) has a mero-
morphic continuation throughout the complex plane and satisfies the functional
equation

Λ(s, π) = επN
s−1/2
π Λ(1− s, π̃),

where π̃ is the contragradient representation of π, Nπ ∈ N is the conductor
of π and επ is the root number (these quantities are completely determined by
the local representations). Λ(s, π) is entire unless m = 1 and π is trivial, in
which case it has a pole at s = 1.

For m = 1 one simply obtains the Riemann zeta-function, Dirichlet L-
functions and Hecke L-functions attached to grössencharacters, whereas for
m = 2 one gets L-functions associated with newforms; see Jacquet’s paper
[146] for the details. The similarities between these general L-functions and
those of the Selberg class are obvious. On one hand we have the Selberg
class defined by axioms which are known to be the most common pattern of
many L-functions in number theory, on the other hand we have Langlands’
construction of general L-functions out of group representations.

Langlands visionary program can be regarded as a continuation of the
famous Artin conjecture. One of his central conjectures claims that all zeta-
functions arising in number theory are special realizations of L-functions to
automorphic representations constructed above.
Langlands’ Reciprocity Conjecture. Suppose L is a finite Galois exten-
sion of a number field K with Galois group G, and 	 : G → V is an irreducible
representation of G, where V is an m-dimensional vector space. Then there
exists an automorphic cuspidal representation π of GLm(AK) such that

L(s, 	,L/K) = L(s, π).
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This means that there are identities between certain L-functions, which are a
priori of different type! Since Hecke grössencharacters are automorphic repre-
sentations of GL1(A), Artin’s conjecture is a special case of the Langlands reci-
procity conjecture. By Artin’s work, if m= 1 and L/K is abelian, Langlands’
reciprocity law is settled by means of class field theory. In the case of function
fields, the Langlands conjecture has been proved by Drinfeld [70] in dimension
2, and recently by Lafforgue [175] for arbitrary dimension (for which both of
them were awarded with a Fields medal).

Now we consider the local Euler factors of L-functions attached to auto-
morphic representations. Petersson [293] extended Ramanujan’s conjecture
on the values of the τ -function to modular forms. Deligne’s estimate (1.34)
proved the desired bound for newforms but it is expected that an analogue
should hold for all L-functions of arithmetical nature.

Ramanujan–Petersson Conjecture. Let π be a cuspidal automorphic
representation of GLm(AK) which is unramified at a place ν. If ν is non-
archimedean, then

|αj(p)| = 1 for 1 ≤ j ≤ m,

where p is the prime ideal associated with the place ν. If ν is archimedean,
then Re αj(ν) = 0 for 1 ≤ j ≤ m.

Note that, for K = Q and Qν = R, this conjecture includes Selberg’s eigen-
value conjecture [322] on the smallest eigenvalue of the Laplacian as a special
case. The Ramanujan–Petersson conjecture might look very restrictive on the
first view, but it is nothing else than the local analogue of the Grand Riemann
hypothesis. We refer to Iwaniec and Sarnak [145] for details and the current
knowledge concerning this conjecture.

We shall speculate a little bit about all these widely believed conjectures
and the axioms defining the Selberg class and the class S̃, in particular. It is
expected that all functions in the Selberg class are automorphic L-functions. If
L ∈ S is primitive and automorphic, then it is also attached to an irreducible
automorphic representation. Conversely, every irreducible automorphic repre-
sentation should give a primitive function in S. This is not known in general,
but it has been proved by Murty [267, 269] for GL1 and GL2. The axioms
on the analytic continuation and on the functional equation follow immedi-
ately from Theorem 13.8. The polynomial Euler product in the definition of
S̃ fits (by the splitting of primes in K) perfectly to the Euler product of Lang-
lands’ L-functions attached to automorphic representations (13.25) and the
Ramanujan–Petersson conjecture. The axiom on the mean-square was already
discussed in the context of the Selberg conjectures. Finally, let us note that
the Euler factor at the infinite places (13.26) is of the form, predicted by
the strong λ-conjecture (from Sect. 6.1). Of course, all these axioms and the
hypotheses too, are guessed from known examples of L-functions in number
theory, and so they have to share certain patterns. Anyway, we are led to see
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a close connection between Langlands’ general L-functions and the elements
of the Selberg class.

Assuming Selberg’s Conjecture B, Murty [267] proved that

• if π is an irreducible cuspidal automorphic representation of GLm(AQ)
which satisfies the Ramanujan–Petersson conjecture, then L(s, π) is a
primitive function in S,

• if K is a Galois extension of Q with solvable Galois group G, and if χ is
an irreducible character of G of degree m, then there exists an irreducible
cuspidal automorphic representation π of GLm(AQ) such that

L(s, χ) = L(s, π).

The first assertion identifies certain L-functions to automorphic represen-
tations as primitive functions in the Selberg class subject to the truth
of Selberg’s Conjecture B and the Ramanujan–Petersson conjecture; if we
assume additionally axiom (v) on the mean-square, L(s, π) is an element of
S̃ too.

The second assertion is Langland’s reciprocity conjecture if K/Q is solv-
able. The constraint of solvability arises from a theorem of Arthur and Clozel
[3], who showed that the maps of base change and automorphic inductions for
automorphic representations exist if the extension is cyclic of prime degree.
We do not explain here what that means, but these maps are conjectured to
exist in general, which would yield Langlands’ reciprocity conjecture in its full
generality. However, Murty’s proof shows that if the Dedekind zeta-function
of K is the L-function of an automorphic representation over Q, then Selberg’s
Conjecture B implies Langlands’ reciprocity conjecture.

Concerning universality, Theorem 5.14, in addition to the work of Liu,
Wang, and Ye [225], implies that if n is a positive integer, π a cuspidal auto-
morphic representation of GLn(Q) satisfying the Ramanujan–Petersson con-
jecture (including the infinite place), then the Godement–Jacquet L-function
L(s, π) is universal.
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Appendix: A Short History of Universality

Thus it appears that universality is a generic phenomenon in analysis.
K.-G. Grosse-Erdmann

We conclude with a brief historical overview on the phenomenon of universal-
ity. We refer to Grosse-Erdmann [109] for a detailed and interesting survey on
more or less all known types of universalities and an approach to unify them
all.

The first universal object appearing in the mathematical literature was dis-
covered by Fekete in 1914/15 (see [287]); he proved that there exists a real
power series

∑∞
n=1 anx

n with the property that for any continuous function
f(x) on the interval [−1, 1] satisfying f(0) = 0 there is a sequence of positive
integers mk such that

mk∑
n=1

anx
n −→

k→∞ f(x) uniformly on [−1, 1].

The proof relies essentially on Weierstrass’ approximation theorem which
states that every continuous function on a compact interval is the limit of
a uniformly convergent sequence of polynomials (see [367]).

We illustrate Fekete’s theorem and its proof by a p-adic version. The p-adic
numbers were introduced by Hensel [131] in 1897. Given a prime number p,
we define the p-adic absolute value | . |p on Z by

|α|p =
{
p−ν(α;p) if α �= 0,

0 otherwise;

here ν(α; p) is the exponent of p in the prime factorization of α ∈ Z. It is an
easy task to extend | · |p from Z to Q. The p-adic absolute values satisfies the
strong triangle inequality: for any α, β ∈ Q,

|α+ β|p ≤ max{|α|p, |β|p}
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in contrast to the standard absolute value. The p-adic absolute value is non-
archimedean (i.e., sup{|n|p : n ∈ N} is bounded). The integers that are
p-adically close to zero are precisely the ones that are highly divisible by p.
The set of p-adic numbers is the completion of Q with respect to the p-adic
absolute value, and is denoted by Qp. The p-adic absolute value extends to a
non-archimedean absolute value on Qp, and Qp becomes a complete, locally
compact, totally disconnected Hausdorff space. Similarly to the completion R
of Q with respect to the standard (archimedean) absolute value, Qp is a field,
and its elements have a p-adically convergent series representation: for any
α ∈ Qp, there exist integers ν and ak such that

α =
∑

k≥ν(α;p)

akp
k with 0 ≤ ak < p.

The set of p-adic numbers α with |α|p ≤ 1 forms a ring, the ring Zp of p-adic
integers. Another construction of p-adic numbers uses the representation of
Zp as a projective limit of the ring of residue classes mod pk. It is customary
to write | · |∞ for the standard absolute value on Q, Q∞ for R, and then
call R the completion of Q at the infinite prime p = ∞. Two absolute values
are called equivalent if they induce the same topology. Ostrowski (see [279,
Sect. II.3]) showed that every non-trivial absolute value on Q is equivalent to
one of the absolute values | · |p, where p is a prime number or p = ∞. Thus,
completion of Q with respect to its non-equivalent absolute values yields a
family of complete, locally compact topological fields Qp which contain Q,
one for each place p ≤ ∞:

Q ↪→ Q2, Q3, Q5, . . . , and Q∞ = R.

p-adic analysis is quite different from real analysis. A non-archimedean
absolute value induces a curious (ultrametric) topology. In p-adic analysis,
the role of the intervals in R are played by the balls

a+ pνZp := {α ∈ Qp : |α− a|p ≤ p−ν},

where a ∈ Qp and ν ∈ Z. These balls are clopen sets, i.e., they are closed and
open. It follows that each point inside a ball is center of the ball, and that any
two balls are either disjoint or contained one in another.

The algebraic closure Qp of Qp has infinite degree over Qp, but is not
complete, and so it is not the right field for doing analysis. However, the
completion Cp of Qp is algebraically closed. If

n = α0 + α1p+ α2p
2 + · · · and k = β0 + β1p+ β2p

2 + · · ·

are the p-adic expansions of the integers n and k, then one can show that(n
k

)
≡
(
α0

β0

)(
α1

β1

)
· · · mod p.
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In view of the binomic inversion formula this leads for any continuous functions
f : Zp → Cp to the representation

f(n) =
n∑

k=0

ak(f)
(n
k

)
,

where n ∈ N and

ak(f) :=
k∑

j=0

(−1)k−j

(
k

j

)
f(j).

It is remarkable that this yields a series representation, the so-called Mahler
series of f . For k ∈ N0, we define the finite difference operator # by

#kf(x) =
k∑

j=0

(−1)k−j

(
k

j

)
f(x+ j).

Then ak = #kf(0) for k ∈ N. Mahler [233] proved

Theorem A.1. Let f : Zp → Cp be a continuous function. Then ak → 0 as
k →∞, and

n∑
k=0

ak

(x
k

)
−→

n→∞ f(x) uniformly on Zp.

A proof can be found in Robert [311, Sect. 4.2.4]. Notice that this theorem
does not hold over R.

In particular, Mahler’s Theorem A.1 implies a p-adic version of
Weierstrass’ approximation theorem: for any continuous function f : Zp → Cp,
there exists a sequence of polynomials fn with coefficients in Cp that converges
uniformly to f . Further applications of Mahler’s theorem are the construc-
tion of p-adic analogues of classical functions like the exponential function,
the logarithm or the Gamma-function; for details we refer again to Robert’s
monograph [311].

Now, it is not too surprising that an analogue of Fekete’s universality
theorem holds in the p-adic case too. Steuding [341] obtained

Theorem A.2. There exists a p-adic power series
∑∞

n=1 anx
n with the prop-

erty that for any ball a+pνZp, where a, ν ∈ Z, 0 < a < p, and any continuous
function f , defined on a+pνZp and satisfying f(a) = 0, there exists a sequence
of positive integers mk such that

mk∑
n=1

anx
n −→

k→∞ f(x) uniformly on a+ pνZp.

We follow Luh [227] in his proof of a version of Fekete’s theorem.
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Proof. Let {Qn} be a sequence of all polynomials with integral coefficients.
We construct a sequence of polynomials {Pn} as follows: let P0 = Q0 and
assume that P0, . . . , Pn−1 are known. Denote by dn the degree of Pn−1. Now
let φn be a continuous function on Zp such that

φn(x) =

(
Qn(x) −

n−1∑
k=0

Pk(x)

)
x−dn−1

for x ∈ a+p−nZp. In view of Mahler’s Theorem A.1 there exists a polynomial
fn so that

max
x∈a+p−nZp

|fn(x) − φn(x)|p ≤ p−dn .

Setting Pn(x) = fn(x)xdn+1, the sequence {Pn} is constructed. We note

max
x∈a+p−nZp

∣∣∣∣∣
n∑

k=0

Pk(x) −Qn(x)

∣∣∣∣∣
p

= max
x∈a+p−nZp

|(fn(x) − φn(x))xdn+1|p

≤ p−dn .

By construction, distinct Pn have no powers in common. Thus we can
rearrange formally the polynomial series into a power series:

∞∑
n=1

anx
n :=

∞∑
n=0

Pn(x).

Again by Mahler’s Theorem A.1, for any continuous function f on a + pνZp

there exists a sequence of positive integers nk, tending to infinity with k, such
that

max
x∈a+p−nk Zp

|f(x) −Qnk
(x)|p ≤ p−nk .

For sufficiently large k the ball a+ pνZp is contained in a+ p−nkZp. In view
of the above estimates we obtain

max
x∈a+p−nk Zp

∣∣∣∣∣∣f(x) −
dnk

+1∑
n=1

anx
n

∣∣∣∣∣∣
p

= max
x∈a+p−nk Zp

∣∣∣∣∣f(x)−
nk∑

n=0

Pn(x)

∣∣∣∣∣
p

≤ max
x∈a+p−nk Zp

⎧⎨⎩|f(x) −Qnk
(x)|p,

∣∣∣∣∣Qnk
(x) −

nk∑
n=0

Pn(x)

∣∣∣∣∣
p

⎫⎬⎭
≤ max{p−nk , p−dnk },

which tends to zero as k → ∞. Thus, putting mk = dnk
+ 1, the assertion of

the theorem follows. ��
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In the years after Fekete’s discovery many universal objects were found.
For instance, Birkhoff [23] proved in 1929 the existence of an entire function
f(z) with the property that to any given entire function g(z) there exists a
sequence of complex numbers an such that

f(z + an) −→
n→∞ g(z) uniformly on compacta in C.

The proof relies in the main part on Runge’s approximation theorem. This
type of universality is very similar to the one of the Riemann zeta-function
and other Dirichlet series. Birkhoff’s theorem states the existence of an entire
function with wild behaviour near infinity. Luh [228] constructed holomorphic
monsters, that are holomorphic functions with an extraordinary wild bound-
ary behaviour in arbitrary simply connected open sets. More precisely: let G
be a proper open subset of C with simply connected components. Then there
exists a function f holomorphic on G such that for every boundary point z of
G, every compact subset K with connected complement and every continuous
function g on K which is holomorphic in the interior of K, there exist linear
transformations τn(z) = anz + bn with τn(K) ⊂ G and dist(τn(K), z) → 0 as
n→∞ for which

f(τn(z)) −→
n→∞ g(z) uniformly on K;

in addition, each derivative of f and each antiderivative of f of arbitrary order
has the boundary behaviour described above. We shall explain the notion
antiderivative of a holomorphic function f defined on a simply connected open
subset of C; in fact, this notion is not unique. Here, for a negative integer j,
the jth antiderivative f (j) of f with order |j| is defined by

d|j|

d|j|z
f (j)(z) = f(z).

Any other antiderivative of f with the same order |j| differs from f (j) on each
component of G by some polynomial of degree less than |j|. Moreover, in [230],
Luh proved the existence of multiply universal functions, that are holomorphic
functions that satisfy, along with their derivatives and antiderivatives, six
universal properties at the same time.

Marcinkiewicz [237] was in 1935 the first to use the notion universal-
ity when he proved the existence of a continuous function whose difference
quotients approximate any measurable function in the sense of convergence
almost everywhere. This should be compared with the result of Blair and
Rubel [25] who proved that there exists an entire function f such that the
set {f (n) : n ∈ N0} of all derivatives of f is dense in the space of all entire
functions in the topology of uniform convergence on compact subsets of the
complex plane. Other universal objects are, for example, conformal mappings
composed with universal functions, discovered by Luh [229]. However, for a
long time no explicit example of a universal object was found until Voronin
discovered in 1975 that the Riemann zeta-function is universal!
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In all these examples of universality there are two characteristic aspects
of universality, namely the existence of a single object which

• is maximal divergent
• (via a countable process) allows to approximate a maximal class of objects.

This observation led to understand universality as a phenomenon which occurs
quite naturally in certain limiting processes. Meanwhile it turned out that the
phenomenon of universality is anything but a rare event in analysis! Many
analytical processes which diverge or behave irregularly in some cases produce
universal objects.

Grosse-Erdmann gave a rather general description of universality as fol-
lows. There is a topological space X of objects, a topological space Y of ele-
ments to be approximated, and a family of continuous mappings Tj : X → Y
for j ∈ J . Then an object x ∈ X is called universal if every element y ∈ Y can
be approximated by certain Tj(x), i.e., the set {Tj(x) : j ∈ J} lies dense in Y.
In the special case when the mappings Tj form a group of homeomorphisms,
the concept of universality is well-known in topological dynamics under the
name of topological transitivity (this reminds us of Bagchi’s reformulation
of Riemann’s hypothesis in Sect. 8.2). In operator theory, where iterates T j

of an operator T are studied, universal elements are said to be hypercyclic.
The general setting of Grosse-Erdmann covers quite many universality results.
In [108, 109] he proved the following universality criterion.

Theorem A.3. Suppose that X is a Baire space and Y is of the second cate-
gory. Then the following assertions are equivalent:

• The set U of universal elements is residual in X .
• The set U of universal elements is dense in X .
• To every pair of non-empty sets V ⊂ X and W ⊂ Y there exists some

j ∈ J with
Tj(V ) ∩W �= ∅.

If one of these conditions holds, then U is a dense Gδ-subset of X .

We briefly explain the topological notions before we discuss a special case
of this theorem; for details we refer to Grosse-Erdmann [108], Kelley’s mono-
graph [169] and Rudin’s monograph [312]. In 1899, Baire introduced the notion
of category to measure the size of subsets of topological spaces. A subset E
of a topological space X is called nowhere dense if its closure E contains no
non-empty open subset of X . Any countable union of nowhere dense sets is
called a set of the first category (meager); all other subsets of X are said to
be of the second category (non-meager). The complement of a set of the first
category is called residual (co-meager). A topological space X is said to be
a Baire space if the intersection of any countable family of open and dense
subsets of X is dense in X . Countable intersections of open sets are called Gδ-
sets. The theorem of Baire states that any complete metric space is a Baire
space.
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In many applications of Theorem A.3, both X and Y are metric spaces.
Then the first two assumptions of the theorem are fulfilled if X is complete and
Y is separable. Furthermore, the third assertion can be rewritten as follows:

• For every x ∈ X and y ∈ Y there exist sequences {xn} in X and {jn} in
J such that Tjn

(xn) tends to y as xn → x.

For a verification of this statement one needs a suitable approximation
theorem; for example, Weierstrass’ approximation theorem for Fekete’s uni-
versality theorem, respectively, Runge’s approximation theorem for Birk-
hoff’s universality result. With regard to universality for Dirichlet series,
this fits to the denseness Theorem 5.10 for the space of analytic functions
(which is a complete separable metric space by Theorem 3.15) and the use of
Mergelyan’s approximation Theorem 5.15, in the proof of the general univer-
sality Theorem 5.14, for S̃. There is another remarkable aspect of Theorem
A.3: if we observe the phenomenon of universality in some space X , then
the set of universal elements is dense. This observation supports the Linnik–
Ibragimov conjecture (see Sect. 1.6)! This can be stated in a more explicit way:
Nestoridis and Papadimitropoulos [278] proved the existence of a Dirichlet se-
ries
∑∞

n=1
an

ns , absolutely convergent for any σ > 0, with the property that for
every admissible set K ⊂ {s ∈ C : σ ≤ 0} and every entire function g, there
exists a sequence of positive integers {�j}j such that for any � = 0, 1, 2, . . .⎛⎝ 	j∑

n=1

an

ns

⎞⎠(	)

→ g(s)(	) uniformly on K,

as j → ∞. Furthermore, the set of such Dirichlet series is dense and Gδ (in the
Baire sense) in the space of absolutely convergent Dirichlet series in the right
half-plane. Here a set K is called admissible if K is compact with connected
complement, and K is the finite union of sets Kr each of which contained in
a vertical strip of width less than 1

2 . Their approach does not produce any
explicit example of a universal Dirichlet series.

Universality is far away from being completely understood. In particular,
the discovery of explicit examples of universal objects (zeta- and L-functions)
has led to many new and interesting questions. It seems that universality of
general Dirichlet series is not an arithmetic phenomenon at all, but it is much
easier to find universal Dirichlet series explicitly among those associated with
arithmetic objects.



References

1. J. Andersson, Disproof of some conjectures of K. Ramachandra,
Hardy–Ramanujan J. 22 (1999), 2–7

2. H. Aramata, Über die Teilbarkeit der Dedekindschen Zetafunktionen, Proc.
Imp. Acad. Jpn. 9 (1933), 31–34

3. J. Arthur, L. Clozel, Simple Algebras, Base Change and the Advanced Theory
of the Trace Formula, Ann. Math. Stud., vol. 120, Princeton University Press
(1990)

4. E. Artin, Über eine neue Art von L-Reihen, Abh. Math. Sem. Univ. Hamburg
3 (1923), 89–108

5. E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ.
Hamburg 5 (1927), 353–363

6. A.O.L. Atkin, J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970),
134–160

7. R. Ayoub, Euler and the zeta-function, Am. Math. Mon. 81 (1974), 1067–1086
8. R. Backlund, Über die Beziehung zwischen Anwachsen und Nullstellen der

Zetafunktion, Öfversigt Finska Vetensk. Soc. 61(9) (1918–1919)
9. B. Bagchi, The statistical Behaviour and Universality Properties of the

Riemann Zeta-Function and Other Allied Dirichlet Series, Ph.D. Thesis,
Calcutta, Indian Statistical Institute, (1981)

10. B. Bagchi, A joint universality theorem for Dirichlet L-functions, Math. Z. 181
(1982), 319–334

11. B. Bagchi, Recurrence in topological dynamics and the Riemann hypothesis,
Acta Math. Hung. 50 (1987), 227–240

12. A. Baker, Linear Forms in the Logarithms of Algebraic Numbers. I, Mathe-
matika 13 (1966), 204–216

13. A. Baker, Transcendental Number Theory, Cambridge University Press (1975)
14. E.P. Balanzario, Remark on Dirichlet series satisfying functional equations,

Divulg. Mat. 8 (2000), 169–175
15. R. Balasubramanian, K. Ramachandra, On the frequency of Titchmarsh’s phe-

nomenon for ζ(s). III. Proc. Indian Acad. Sci. 86 (1977), 341–351
16. H. Bauer, The value distribution of Artin L-series and zeros of zeta-functions,

J. Number Theory 98 (2003), 254–279
17. P. Bauer, Über den Anteil der Nullstellen der Riemannschen Zeta-Funktion auf

der Kritischen Geraden, Diploma Thesis, Frankfurt University (1992), available
at www.math.uni-frankfurt.de/∼pbauer/diplom.ps



294 References

18. P. Bauer, Zeros of Dirichlet L-series on the critical line, Acta Arith. 93 (2000),
37–52

19. S.N. Bernstein, The extension of properties of trigonometric polynomials
to entire functions of finite degree, Izvestiya Akad. Nauk SSSR 12 (1948),
421–444 (Russian)

20. A. Beurling, Analyse de la loi asymptotique de la distribution des nombres
premiers généralisés, I, Acta. Math. 68 (1937), 255–291

21. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968)
22. P. Billingsley, Probability and Measure 3rd Edition, Wiley, New York (1995)
23. G.D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions

entières, C. R. Acad. Sci. Paris 189 (1929), 473–475
24. K.M. Bitar, N.N. Khuri, H.C. Ren, Path integrals and Voronin’s theorem on

the universality of the Riemann zeta-function, Ann. Phys. 211 (1991), 172–196
25. C. Blair, L.A. Rubel, A universal entire function, Am. Math. Mon. 90 (1983),

331–332
26. R.P. Boas, Entire Functions, Academic, New York (1954)
27. S. Bochner, On Riemann’s functional equation with multiple gamma factors,

Ann. Math. 67 (1958), 29–41
28. H. Bohr, Über das Verhalten von ζ(s) in der Halbebene σ > 1, Nachr. Akad.

Wiss. Göttingen II Math. Phys. Kl. (1911), 409–428
29. H. Bohr, Zur Theorie der Riemannschen Zetafunktion im kritischen Streifen,

Acta Math. 40 (1915), 67–100
30. H. Bohr, Über eine quasi-periodische Eigenschaft Dirichletscher Reihen mit

Anwendung auf die Dirichletschen L-Funktionen, Math. Ann. 85 (1922),
115–122

31. H. Bohr, B. Jessen, Über die Werteverteilung der Riemannschen Zetafunktion,
erste Mitteilung, Acta Math. 54 (1930), 1–35

32. H. Bohr, B. Jessen, Über die Werteverteilung der Riemannschen Zetafunktion,
zweite Mitteilung, Acta Math. 58 (1932), 1–55

33. H. Bohr, E. Landau, Über das Verhalten von ζ(s) und ζ(k)(s) in der Nähe der
Geraden σ = 1, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1910), 303–330

34. H. Bohr, E. Landau, Ein Satz über Dirichletsche Reihen mit Anwendung auf
die ζ-Funktion und die L-Funktionen, Rend. di Palermo 37 (1914), 269–272

35. H. Bohr, E. Landau, Sur les zéros de la fonction ζ(s) de Riemann, Comptes
Rendus Acad. Sci. Paris 158 (1914), 106–110

36. H. Bohr, E. Landau, Nachtrag zu unseren Abhandlungen aus den Jahren 1910
und Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1924), 168–172

37. E. Bombieri, On the large sieve, Mathematika 12 (1965), 201–225
38. E. Bombieri, D.A. Hejhal, Sur les zéros des fonctions zêta d’Epstein, Comptes

Rendus Acad. Sci. Paris 304 (1987), 213–217
39. E. Bombieri, D.A. Hejhal, On the distribution of zeros of linear combinations

of Euler products, Duke Math. J. 80 (1995), 821–862
40. E. Bombieri, A. Perelli, Distinct zeros of L-functions, Acta Arith. 83 (1998),

271–281
41. A. Borel, Automorphic L-functions, in: Automorphic Forms, Representations

and L-Functions, Proceedings of the Symposium in Pure Mathematics, vol. 33,
part 2, 27–61, Am. Math. Soc., Providence (1979)

42. R. Brauer, On Artin’s L-series with general group characters, Ann. Math. 48
(1947), 502–514



References 295

43. R. Brauer, Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoiss-
chen Körpers, Math. Nachr. 4 (1951), 158–174

44. C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic
curves over Q: Wild 3-adic exercises, J. Am. Math. Soc. 14 (2001), 843–939

45. V.V. Buldygin, Convergence of Random Series in Topological Spaces, Naukova
Dumka, Kiev (1985) (in Russian)

46. D. Bump, Automorphic Forms and Representations, Cambridge University
Press (1997)

47. D. Bump, J.W. Cogdell, D. Gaitsgory, E. de Shallit, S.S. Kudla, An Introduc-
tion to the Langlands Program, J. Bernstein, S. Gelbart (Eds.), Birkhäuser,
Boston (2003)

48. R.B. Burckel, Introduction to Classical Complex Analysis, vol. I, Birkhäuser,
Boston (1979)

49. F. Carlson, Über die Nullstellen der Dirichletschen Reihen und der
Riemannschen ζ-Funktion, Arkiv för Mat. Astr. och Fysik 15(20) (1920)

50. F. Carlson, Contributions a la theorie des series de Dirichlet. I, Arkiv för Mat.
Astr. och Fysik 16(18) (1922)

51. F. Carlson, Contributions a la theorie des series de Dirichlet. II, Arkiv för Mat.
Astr. och Fysik 19(26) (1926)

52. K. Chandrasekharan, R. Narasimhan, The approximate functional equation for
a class of zeta-functions, Math. Ann. 152 (1963), 30–64

53. N. Chebotarev, Determination of the density of the set of prime numbers,
belonging to a given substitution class, Izv. Ross. Akad. Nauk 17 (1924),
205–250 (in Russian)

54. P.L. Chebyshev, Sur la fonction qui détermine la totalité des nombres premiers
inférieurs à une limite donnée, Mémoires des savants étrangers de l’Acad. Sci.
St. Pétersbourg 5 (1848), 1–19

55. P.L. Chebyshev, Mémoire sur nombres premiers, Mémoires des savants
étrangers de l’Acad. Sci. St. Pétersbourg 7 (1850), 17–33

56. J. Cogdell, P. Michel, On the complex moments of symmetric power L-functions
at s = 1, Int. Math. Res. Not. 31 (2004), 1561–1617

57. J.B. Conrey, More than two fifths of the zeros of the Riemann zeta-function
are on the critical line, J. Reine Angew. Math. 399 (1989), 1–26

58. J.B. Conrey, The Riemann hypothesis, Notices Am. Math. Soc. 50 (2003),
341–353

59. J.B. Conrey, A. Ghosh, On the Selberg class of Dirichlet series: Small degrees,
Duke Math. J. 72 (1993), 673–693

60. J.B. Conrey, A. Ghosh, Remarks on the generalized Lindelöf hypothesis,
preprint, available at www.math.okstate.edu/∼conrey/papers.html

61. J.B. Conrey, S.M. Gonek, High moments of the Riemann zeta-function, Duke
Math. J. 107 (2001), 577–604

62. J.B. Conway, Functions of One Complex Variable I 2nd Edition, Springer,
Berlin Heidelberg New York (1978)

63. H. Cramér, Ein Mittelwertsatz in der Primzahltheorie, Math. Z. 12 (1922),
147–153

64. H. Cramér, M. Leadbetter, Stationary and Related Stochastic Processes, Wiley,
New York (1967)

65. H. Davenport, H. Heilbronn, On the zeros of certain Dirichlet series I, II, J.
Lond. Math. Soc. 11 (1936), 181–185; 307–312



296 References

66. R. Dedekind, Über die Anzahl der Ideal-Klassen in den verschiedenen Ord-
nungen eines endlichen Körpers, in: Festschrift der Technischen Hochschule in
Braunschweig zur Säkularfeier des Geburtstages von C.F. Gauß, Braunschweig
(1877), 1–55; Gesammelte Werke, vol. 1, Vieweg, Braunschweig (1930), 104–158

67. P. Deligne, La Conjecture de Weil I, II, Publ. I.H.E.S. 43 (1974), 273–307; 52
(1981), 313–428

68. A. Denjoy, L’Hypothèse de Riemann sur la distribution des zéros de ζ(s), reliée
à la théorie des probabilités, Comptes Rendus Acad. Sci. Paris 192 (1931),
656–658

69. P.G.L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische
Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemein-
schaftlichen Factor sind, unendlich viele Primzahlen enthält, Abhdl. Königl.
Preuss. Akad. Wiss. (1837), 45–81

70. V.G. Drinfeld, Langlands Conjecture for GL(2) Over Function Fields, Proceed-
ings of the International Congress of Mathematicians, Helsinki 1978, 565–574,
Acad. Sci. Fennica, Helsinki (1980)

71. W. Duke, Some problems in multidimensional analytic number theory, Acta
Arith. 52 (1989), 203–228

72. N. Dunford, J.T. Schwartz, Linear Operators, vol. 1, Interscience, New York
(1958)

73. P.L. Duren, Theory of Hp-Spaces, Academic, New York (1970)
74. H.M. Edwards, Riemann’s Zeta-Function, Academic, New York (1974)
75. K.M. Eminyan, χ-universality of the Dirichlet L-function, Mat. Zametki 47

(1990), 132–137 (Russian); Math. Notes 47 (1990), 618–622
76. L. Euler, Variae observationes circa series infinitas, Comment. Acad. Sci.

Petropol 9 (1737), 160–188
77. D.W. Farmer, Long mollifiers of the Riemann zeta-function, Matematika 40

(1993), 71–87
78. D.W. Farmer, Counting distinct zeros of the Riemann zeta-function, Electron.

J. Combin. 2 (1995), 5 (electronic)
79. D. Flath, Decomposition of representations into tensor products, in: Auto-

morphic Forms, Representations and L-Functions, vol. 33, Am. Math. Soc.,
Providence (1979), 179–184

80. M. van Frankenhuijsen, Arithmetic progressions of zeros of the Riemann zeta-
function, J. Number Theor. 115 (2005), 360–370

81. M.Z. Garaev, On a series with simple zeros of ζ(s), Math. Notes 73 (2003),
585–587

82. M.Z. Garaev, One inequality involving simple zeros of ζ(s), Hardy–Ramanujan
J. 26 (2003), 18–22

83. M.Z. Garaev, On vertical zeros of Rζ(s) and Iζ(s), Acta Arith. 108 (2003),
245–251
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Notations

We indicate here some of the notations and conventions used in these notes;
most of them are standard. However, this list is not complete; we omit notions
which only appear in one chapter (where they are defined in situ) or which
are covered by the index or which are standard.

As usual, we denote by N = {1, 2, 3, . . .} the set of positive integers. The
sets of integers, rational numbers, real numbers, and complex numbers are
denoted by Z,Q,R, and C, respectively. Following an old tradition in the
theory of the zeta-function, the complex variable is given by a mixture of
greek and latin letters: we write s = σ + it, where σ, t ∈ R, and ‘i’ is the
imaginary unit

√
−1 in the upper half-plane.

The letter p, with and without a subscript, denotes a prime number. We
write d | n (respectively, d � n) if the integer d divides (respectively, does not
divide) the integer n. The symbol ≡ stands either for some congruence or it
denotes that a function is constant. The number of elements of a finite set
A is denoted by �A. The function π(x) counts the number of primes p ≤ x.
Besides, we use many other arithmetical functions; in our notation we follow
the classic [120].

The logarithm is, as usual in number theory, always taken to the basis e =
exp(1). The integer part and fractional part of a real number x are indicated
by [x] and {x}, respectively. Very convenient is the use of the Landau- and
Vinogradov-symbols. Given two functions f(x) and g(x), both defined for
x ∈ X, where g(x) is positive for all x ∈ X, we write:

• f(x) = O(g(x)) and f(x) 	 g(x), respectively, if there exists a constant
C ≥ 0 such that

|f(x)| ≤ Cg(x) for all x ∈ X;

• f(x) ! g(x) if f(x) 	 g(x) 	 |f(x)|;

here X is specified either explicitly or implicitly. Usually, the set X is an
interval [ξ,∞) for some real number ξ; in this case we also write:
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• f(x) ∼ g(x) if the limit

lim
x→∞

|f(x)|
g(x)

exists and is equal to 1.
• f(x) = o(g(x)) if the latter limit exists and is equal to zero.
• f(x) = Ω(g(x)) if

lim inf
x→∞

|f(x)|
g(x)

> 0

(this is the negation of f(x) = O(g(x))).

Sometimes the limit x → ∞ is replaced by another limit x → x0, where
x0 is some complex number; in this case the limit x0 is explicitly stated. In
estimates, ε always denotes a small positive number, not necessarily the same
at each appearance.

The letters P and Q always denote probability measures, often with a
subscript. meas (A) is the Lebesgue measure and m(A) stands for the Haar
measure of a measurable set A. By NL( · ) and N c

L( . ) we denote the numbers
of zeros and of c-values of the function L(s) in some region, often specified by
some data in the brackets or by subscripts.

Finally, we list all axioms which were used in these notes:

(i), (1) Ramanujan hypothesis. a(n) 	 nε for any ε > 0, where the implicit
constant may depend on ε.

(ii) Analytic continuation. there exists a real number σL such that L(s)
has an analytic continuation to the half-plane σ > σL with σL < 1
except for at most a pole at s = 1.

(2) Analytic continuation. There exists a non-negative integer k such that
(s− 1)kL(s) is an entire function of finite order.

(iii) Finite order. There exists a constant μL ≥ 0 such that, for any fixed
σ > σL and any ε > 0,

L(σ + it) 	 |t|μL+ε as |t| → ∞;

the implicit constant may depend on ε.
(3) Functional equation. L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) := L(s)Qs

f∏
j=1

Γ (λjs+ μj)

with positive real numbers Q,λj , and complex numbers μj , ω with
Reμj ≥ 0 and |ω| = 1.
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(iv) Polynomial Euler product. There exists a positive integer m and for
every prime p, there are complex numbers αj(p), 1 ≤ j ≤ m, such that

L(s) =
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

.

(4) Euler product. L(s) satisfies

L(s) =
∏
p

Lp(s), where Lp(s) = exp

( ∞∑
k=1

b(pk)
pks

)

with suitable coefficients b(pk) satisfying b(pk) 	 pkθ for some θ < 1
2 .

(v) Prime mean-square. There exists a positive constant κ such that

lim
x→∞

1
π(x)

∑
p≤x

|a(p)|2 = κ.

We denote by S̃ the class of Dirichlet series satisfying the axioms (i)–(v) and
by S� the so-called extended Selberg class of Dirichlet series satisfying (2) and
(3); the subclass of the latter class of all elements satisfying additionally the
axioms (1) and (4) is the Selberg class S.
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cusp form 24
c-values 138, 188, 193
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Deligne’s estimate 25, 282
Denjoy’s heuristics 54
denseness 90, 98, 193, 235
density hypothesis 119, 131

theorem 7, 119, 160
Dirichlet character 20
Dirichlet L-function 21, 245
Dirichlet polynomial 67, 217
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with periodic coefficients 209
discrete limit theorem 84
discrete universality 28, 109
distribution 52

effectivity 168
elliptic curves 27
entire function of exponential type 96
ergodic 58, 70
Estermann zeta-function 31
Euler product 1, 21, 25, 38, 112
extended Selberg class 216

Fekete’s universality theorem 285
finite order 38, 150
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functional equation 2, 21, 26, 112
functional independence 196, 253, 277
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generated zero 159, 171, 188
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Jensen’s formula 141
joint limit theorem 230
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Laurinčikas’ general limit theorem 83
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