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Preface

This book focuses on two-time-scale Markov chains in discrete time. Our
motivation stems from existing and emerging applications in optimization
and control of complex systems in manufacturing, wireless communication,
and financial engineering. Much of our effort in this book is devoted to
designing system models arising from various applications, analyzing them
via analytic and probabilistic techniques, and developing feasible computa-
tional schemes. Our main concern is to reduce the inherent system complex-
ity. Although each of the applications has its own distinct characteristics,
all of them are closely related through the modeling of uncertainty due to
jump or switching random processes.

One of the salient features of this book is the use of multi-time scales in
Markov processes and their applications. Intuitively, not all parts or compo-
nents of a large-scale system evolve at the same rate. Some of them change
rapidly and others vary slowly. The different rates of variations allow us
to reduce complexity via decomposition and aggregation. It would be ideal
if we could divide a large system into its smallest irreducible subsystems
completely separable from one another and treat each subsystem indepen-
dently. However, this is often infeasible in reality due to various physical
constraints and other considerations. Thus, we have to deal with situations
in which the systems are only nearly decomposable in the sense that there
are weak links among the irreducible subsystems, which dictate the occa-
sional regime changes of the system. An effective way to treat such near
decomposability is time-scale separation. That is, we set up the systems as
if there were two time scales, fast vs. slow.



xii Preface

Following the time-scale separation, we use singular perturbation method-
ology to treat the underlying systems. Here singular perturbation is inter-
preted in a broad sense, including both deterministic singular perturbation
methods and stochastic averaging. As a consequence, our results may also
be divided into analytic and probabilistic. Although the original systems
are in discrete time, they are closely related to certain continuous-time
systems. To bring them into the framework of continuous-time dynamic
systems enables us to use many techniques from the available toolboxes.

This book provides a systematic approach to two-time-scale Markovian
systems. We show that the idea of decomposition and aggregation can be
made rigorous by deriving asymptotic results of suitably scaled processes.
Using the aggregated processes, we can then proceed to study, for example,
control and optimization problems such as Markov decision processes, linear
quadratic regulator modulated by a Markov chain, and many other hybrid
dynamic systems. By deriving a limit problem associated with that of the
original system and using the optimal or near-optimal control of the limit
system, we then construct controls of the original systems and show such
controls are nearly optimal.

Most of the book are an outgrowth of our recent research. Several chap-
ters are concerned with various applications involving two-time scales. The
common focus of these chapters is on the reduction of dimensionality of
the underlying dynamic systems.

This book is written for applied mathematicians, operations researchers,
applied probabilists, control scientists, and financial engineers. It presents
results that relate stochastic models, systems theory, and applications in
manufacturing, reliability, queueing systems, and stochastic financial mar-
kets. Selected materials from this book can also be used in a graduate level
course on stochastic processes and applications.

We are very grateful to those people who have helped to make the pub-
lication of this book possible. We express our deep gratitude to Wendell
Fleming and Harold Kushner, to whom we owe a great intellectual debt. As
our mentors, they introduced the stochastic world to us and they have en-
couraged us throughout each step of our careers. It has been our privilege to
work with Rafail Khasminskii on a number of research projects, from whom
we have learned much about singular perturbations and Markov processes.
We express our special appreciation to Grazyna Badowski, Subhra Dey,
Cristina Ion, Vikram Krishnamurthy, Ruihua Liu, Yuanjin Liu, Hongchuan
Yang, Jiongmin Yong, Kewen Yin, Hanqin Zhang, and Xunyu Zhou, who
have worked with us on various projects related to Markovian systems.
The presentation and exposition have much benefited from the comments
by Ruihua Liu and Yuanjin Liu, and by three anonymous reviewers, who
read early versions of the drafts and offered many insightful comments.
Our thanks go to the series editor Boris Rozovsky for his encouragement,
time, and consideration. Our thanks also go to Springer senior editor Achi
Dosanjh for her assistance and help. We thank the production manager
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MaryAnn Brickner and the Springer professionals for their work in finaliz-
ing the book. During the years of our study, the research was supported in
part by the National Science Foundation, the Office of Naval Research, and
the Defense Advanced Research Projects Agency. Their continuing support
is greatly appreciated.

Detroit, Michigan George Yin
Athens, Georgia Qing Zhang



Conventions

We clarify the numbering system and cross-reference conventions to be used
in the book. Equations are numbered consecutively within a chapter. For
example, (3.10) indicates the tenth equation in Chapter 3. Corollaries, def-
initions, examples, lemmas, propositions, remarks, and theorems are num-
bered sequentially throughout each chapter. For example, Definition 4.1,
Theorem 4.2, Corollary 4.3, etc. Assumptions are marked consecutively
within a chapter, e.g., (A6.1) is the first listed assumption in Chapter 6.
For cross reference either within the chapter or to another chapter, an equa-
tion is identified by the chapter number and the equation number; similar
conventions are used for theorems, remarks, assumptions, etc.

Throughout the book, we assume that all deterministic processes are
Borel measurable and all stochastic processes are measurable with respect
to a given filtration. The ith component of a vector z ∈ R

r is denoted by
zi. Occasionally, we also use the notion of partitioned vector and write,
for example, v = (v1, . . . , vl), where each vi is a subvector of appropri-
ate dimension. A subscript generally denotes either a finite or an infinite
sequence. However, the ε-dependence of a sequence is designated in the
superscript. To assist the reader, we provide a glossary of symbols to be
used in the subsequent chapters.



Glossary of Symbols

A′ transpose of a matrix (or a vector) A
Bc complement of a set B
Cov(ξ) covariance of a random variable ξ
C space of complex numbers
C([0, T ];S) space of S-valued continuous functions on [0, T ]
C2

L space of functions with bounded derivatives up to
the second order and Lipschitz second derivatives

D([0, T ];S) space of S-valued functions
being right continuous and having left-hand limits

Eξ expectation of a random variable ξ
F σ-algebra
{Ft} filtration {Ft, t ≥ 0}
I identity matrix of suitable dimension
IA indicator function of a set A
K generic positive constant with

convention K + K = K and KK = K
M state space of a Markov chain
Mi sub-state space of the ith ergodic class
M∗ sub-state space of the transient class
N(x) neighborhood of x
O(y) function of y such that supy |O(y)|/|y| < ∞
O1(y) function of y such that supy |O1(y)|/|y| ≤ 1
P (ξ ∈ ·) probability distribution of a random variable ξ

P or Pk transition matrix with entries pij or pij
k

Q or Q(t) generator of a Markov chain



xviii Glossary of Symbols

Q = diag(ν1, . . . , νl0)Q1̃l
Q∗ = diag(ν1, . . . , νl0)(Q111̃l + Q12A∗)
Qf(·)(i) =

∑
j �=i qij(f(j) − f(i)) where Q = (qij)

R
r r-dimensional real Euclidean space

S(r) or Sr ball centered at the origin with radius r

a+ = max{a, 0} for a real number a
a− = max{−a, 0} for a real number a
a.s. almost surely
〈a, b〉 inner product of vectors a and b
a1 ∧ · · · ∧ al = min{a1, . . . , al} for ai ∈ R, i = 1, . . . , l
a1 ∨ · · · ∨ al = max{a1, . . . , al} for ai ∈ R, i = 1, . . . , l
(a1, . . . , al) > 0 a1 > 0,. . . , al > 0
(a1, . . . , al) ≥ 0 a1 ≥ 0, . . . , al ≥ 0
diag(A1, . . . , Al) diagonal matrix of blocks A1, . . . , Al

exp(Q) eQ for argument Q
fx or ∇xf gradient of a function f w.r.t. x
i pure imaginary number with i2 = −1
i.i.d. independent and identically distributed
k, k1, k2 etc. discrete time
l0 total number of recurrent classes in

a partitioned Markov chain
m0 total number of states of a Markov chain
log x natural logarithm of x
o(y) a function of y such that limy→0 o(y)/|y| = 0
pε

k (P (αε
k = 1), . . . , P (αε

k = m0)) ∈ R
1×m0

pε(t) (P (αε(t) = 1), . . . , P (αε(t) = m0)) ∈ R
1×m0

{si1, . . . , simi} = Mi

{s∗1, . . . , s∗m∗} = M∗
tr(A) trace of matrix A
w.p.1 with probability one

x� integer part of x
|y|T = max

i,j
sup

0≤t≤T
|yij(t)|, where y = (yij) ∈ R

r1×r2

(Ω,F , P ) probability space
αk or αε

k discrete-time Markov chain
α(t) or αε(t) continuous-time Markov chain

or interpolation of αk or αε
k

δij = 1 if i = j; = 0 otherwise
ε positive small parameter
ν(t) quasi-stationary distribution
ϕn(εk) and ψn(k) sequences of R

1×m0-valued functions
ϕij

n (εk) and ψij
n (k) ijth entries of ϕn(εk) and ψn(k)



Glossary of Symbols xix

σ{ξ(s) : s≤ t} σ-algebra generated by the process ξ(·) up to t
ξn ⇒ ξ ξn converges to ξ weakly

1ll = (1, . . . , 1)′ ∈ R
l×1

1̃l = diag(1lm1 , . . . , 1lml0
)

:= or def= defined to be equal to
� end of a proof
| · | norm of an Euclidean space or a function space



Part I

Prologue and Preliminaries



1
Introduction, Overview, and Examples

1.1 Introduction

This book is concerned with discrete-time dynamic systems under uncer-
tainty. It studies systems driven by random processes having memoryless
properties, namely, Markov processes. The book focuses largely on Markov
processes taking values in a finite set, known as finite-state Markov chains.

Markov chains have been used in modeling physical, biological, social,
and engineering systems such as population dynamics, queueing networks,
and manufacturing systems. The advances in technology have opened up
new domains and provided greater opportunities for their further explo-
ration. Applications of Markovian models have emerged from wireless com-
munications, internet traffic modeling, and financial engineering in recent
years. One of the main advantages of using Markovian models is that it is
general enough to capture the dominant factors of system uncertainty and,
in the meantime, it is mathematically trackable.

Most dynamic systems in the real world are inevitably large and com-
plex, mainly due to their interactions with the numerous subsystems. Rapid
progress in technology has also made modeling more challenging. An exam-
ple is the design of a manufacturing system, in which the rate of production
depends on current inventory, the future demand, as well as marketing ex-
penditure etc. The new technology enables a flexible machine to produce a
wide variety of products with virtually no setup costs. The various scenarios
resulting from this renders the system model more complex.

Since exact or closed-form solutions to such large systems are difficult
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to obtain, one often has to be contented with approximate solutions. Take
optimal control of a dynamic system as an example. Because the precise
mathematical models are difficult to establish, near-optimal controls often
become a viable, and sometimes the only, alternative. Such near optimality
requires much less computational effort and often results in more robust
policy to attenuate unwanted disturbances.

One of the central themes of the book is to find approximate solutions
for Markovian systems. The key stems from modeling using multiple-time
scales. Clearly, different elements in a large system evolve at different rates.
Some of them vary rapidly and others change slowly. The dynamic system
evolves as if different components used different clocks or time scales. To
describe it quantitatively, it is crucial to decide the order of magnitude of
rates for different elements through comparisons. We should keep in minds
that “fast” vs. “slow” and “long time” vs. “short time” are all relative
terms.

In fact, time-scale separation is often inherent in the underlying prob-
lems. For instance, equity investors in a stock market can be classified into
two categories, long-term investors and short-term investors. The former
consider a relatively longtime horizon and make decisions based on weekly
or monthly performance of the stock, whereas the latter focus on returns in
short-term, daily or an even shorter period. Their time scales are in sharp
contrast, an example of inherently different time scales.

Another source of two-time-scale formulation comes from large-scale op-
timization tasks. Consider an optimization problem of a system that in-
volves random regime changes, which are modeled by a Markov chain. To
incorporate all the important factors into the models often results in a large
state space of the underlying Markov chain. To reduce the complexity, a
hierarchical approach is suggested, which leads to a two-time-scale formu-
lation. The hierarchical approach relies on decomposing the states of the
Markov chains into several recurrent classes or possibly several recurrent
classes plus a group of transient states. The essence is that within each
recurrent class the interactions are strong and among different recurrent
classes the interactions are weak.

An effective way to describe the distinct rates of changes is to introduce
a small parameter ε > 0 into the system. Note that ε is only used to
separate different time scales, so that we can provide asymptotic analysis
for small ε. In this book, we consider the case when the small parameter
ε enters the transition probability matrix, resulting in an additional small
perturbation by a generator. (Henceforth, the terms transition probability
matrix, transition matrix, and one-step transition probability matrix are
used interchangeably throughout the book.)

To see the rationale of introducing ε in the systems, it is important to
remember that ε is merely a parameter that separates different scales of the
transition probabilities. For a system, we usually have certain knowledge
about the behavior of the physical model, e.g., from historical or exper-
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imental data or through empirical frequency counts. Such information is
useful to manifest the rates of different time scales of the transition proba-
bilities. We can also numerically decompose a transition matrix. Although
the original problem may not involve an ε, we may deliberately introduce
a small parameter ε to separate the different scales. For example, consider
a transition matrix given by⎛⎜⎝

0.38 0.6 0.01 0.01
0.21 0.78 0.01 0
0 0.01 0.29 0.7

0.01 0.02 0.5 0.47

⎞⎟⎠ .

Alternatively, we may rewrite it as⎛⎜⎝
0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.3 0.7
0 0 0.5 0.5

⎞⎟⎠ + 0.01

⎛⎜⎝
−2 0 1 1
1 −2 1 0
0 1 −1 0
1 2 0 −3

⎞⎟⎠ .

Choose ε = 0.01. Then the transition matrix has the form

P ε = P + εQ. (1.1)

The one-step transition matrix P ε given in (1.1) is the basic form to be
used in this book. In (1.1), P = (pij) itself is a transition probability ma-
trix and Q = (qij) is a generator of a continuous-time Markov chain (i.e.,
qij ≥ 0, for j = i,

∑
j qij = 0 for each i). Much of the subsequent study can

be extended to certain time-inhomogeneous Markov chains, where both P
and Q vary with respect to the time parameter. Nevertheless, to keep the
notation simple, we will mainly tackle the time-homogeneous case through-
out the book.

In subsequent chapters, we examine asymptotic properties of such sys-
tems as ε → 0. We derive properties associated with the probability dis-
tribution vectors and transition probability matrices. We then further our
understanding of suitably scaled occupation measures. To integrate ana-
lytic and probabilistic methods allows us to have a comprehensive under-
standing of the structures of the Markovian models, leading to a systematic
treatment for systems involving time-scale separation.

To demonstrate, consider the following schematic illustration. Suppose
that the state space of the underlying Markov chain has many states clus-
tered into several groups or classes as depicted in Figure 1.1 (a). Naturally,
we will try to lump all the states in each cluster into a “super” state. Figure
1.1 (b) shows the aggregated super-states represented by circles.

To solve many problems arising from applications, a clear understanding
of the properties of the Markov chains is of crucial importance. The subject
matter we study in this book is at the intersection of singular perturba-
tion theory and stochastic processes. Because of their prevalence, this work
focuses on stochastic systems in discrete time involving multi-time scales.
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(a) Original states (b) Aggregated states

FIGURE 1.1. Demonstration of aggregation for Markov chains with many states

Why should we use discrete-time models? In practice, it is convenient to
model the underlying system in discrete time mainly because measurements
are only available at discrete instants. In addition, simulation and digiti-
zation often lead to discrete-time systems. Moreover, owing to the rapid
progress in computer control technology, the study of sampled-data systems
has become more and more popular. As a result, the planning decisions,
strategic policies, and control actions of the underlying systems are often
made at discrete times as well. All these make the study of discrete-time
systems necessary. Furthermore, many continuous-time models can only be
treated via an approximation of discrete-time systems. For example, using
a dynamic programming (DP) approach to solve a continuous-time stochas-
tic control problem with Markovian driving noise yields the so-called HJB
(Hamilton-Jacobi-Bellman) equation; see Fleming and Rishel [57]. The HJB
equations frequently need to be solved numerically via discretization; see
Yin and Zhang [158, Chapter 10] and the references therein. In addition,
discrete-time systems have distinct features that are very different from
their continuous-time counterparts. Because of the aforementioned reasons,
this book focuses on discrete-time Markov models.

1.2 Brief Literature Review

For a Markov chain with a finite but large state space, a decomposition
approach is often attractive. Ideally, we would like to divide the underlying
problem into subproblems that can be solved completely independently; we
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can then paste together the solutions of the subproblems to obtain the so-
lution to the entire problem. Consider a homogeneous Markov chain. If, for
example, the transition matrix is decomposable into several sub-transition
matrices (in a diagonal block form), the problem can be solved easily by
the aforementioned decomposition methods. Unfortunately, the real world
is not ideal. Rather than complete decomposability, one frequently encoun-
ters nearly completely decomposable cases. One of the main focuses of this
book is to treat such models via the formulation of discrete-time Markovian
systems with a two-time-scale approach. Ando and Fisher proposed the so-
called nearly completely decomposable matrix models; see Simon and Ando
[138]. Such a notion has subsequently been applied in queueing networks
for organizing resources in a hierarchical fashion, in computer systems for
aggregating memory levels, and in economics for reduction of complexity
of large-scale systems; see Courtois [41].

Recent advances in the study of large-scale systems, for example, in pro-
duction planning, have posed new challenges and provided opportunities
for an in-depth understanding of two-time-scale or singularly perturbed
Markov chains; see Delebecque and Quadrat [44], Pan and Başar [119],
Pervozvanskii and Gaitsgory [123], Phillips and Kokotovic [125], Sethi and
Zhang [136], and Yin and Zhang [158], among others. As alluded to pre-
viously, for real-world problems, one often faces large-scale systems with
uncertainty. Using the idea of hierarchical decomposition and aggregation
to deal with a Markovian system enables us to treat a much simpler system
with less complexity; see Sethi and Zhang [136] for flexible manufacturing
systems, and see also Avramovic, Chow, Kokotovic, Peponides, and Winkel-
man [8] and Chow, Winkelman, Pai and Sauer [36] for applications to power
systems. From a modeling point of view, this amounts to setting up the
problems involving different time scales that results in a singularly pertur-
bation formulation. Subsequently, singular perturbation methodology can
be used to solve the problem. Here, singular perturbation is interpreted in
a broader sense, including both deterministic perturbation methods and
stochastic averaging. For general references on singular perturbation meth-
ods, we refer the reader to Bogoliubov and Mitropolskii [24], Kevorkian
and Cole [80], O’Malley [118], Vasil’eava and Butuzov [145], Wasow [148],
and the references therein.

To gain a basic understanding of such systems, it is important to learn the
structural properties of the Markov chains. While continuous-time Marko-
vian models were treated in Khasminskii, Yin, and Zhang [85, 86], Pan
and Başar [119], Phillips and Kokotovic [125], Sethi and Zhang [136], Yin
and Zhang [158], two-time-scale approaches for discrete-time systems were
used in various applications in telecommunications, Markov decision pro-
cesses, control and optimization problems; see Abbad, Filar, and Bielecki
[2], Avrachenkov, Filar, and Haviv [7], Blankenship [21], Hoppensteadt and
Miranker, [69], Naidu [117], Tse, Gallager and Tsitsiklis [144]. Under a
somewhat different setup, averaging of switching and diffusion approxima-
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tions were analyzed in Anisimov [6].
Two-time-scale stochastic systems have been studied by a host of re-

searchers throughout the years. Khasminskii [81] established a stochastic
version of the averaging principle, and brought forward the notion of fast
and slow processes in [82]; see also related references in Skorohod [140].
Kushner [96, 97] treated two-time-scale systems in the form of a pair of
diffusions and studied control, optimization, and filtering problems, and
introduced the notion of near optimality. Recently, Kabanov and Perga-
menshchikov [76] considered asymptotic analysis and control of two-time-
scale systems. Using analytic methods to tackle probabilistic problems was
considered by Papanicolaou [121]. Friedlin and Wentzel [59] examined large
deviations of stochastic systems from a random perturbation perspective.

1.3 Motivational Examples

To motivate the subsequent study further, we provide several examples
in what follows. They include a manufacturing system, a Markov decision
process, a problem arising from discrete optimization, an internet package
transmission model, and a parameter identification problem with appli-
cations to wireless communication in CDMA/DS (code-division multiple-
access/implemented with direct-sequence) signals. We show how a vari-
ety of applied problems can be cast into the framework of two-time-scale
Markovian systems.

Example 1.1. Consider a manufacturing system in discrete time. Suppose
that the system is given by

xk+1 = xk + ε(uk − zk), k = 0, 1, 2, . . . , x0 is given, (1.2)

where xk represents the surplus, uk is the rate of production, and zk is the
rate of demand at time k. Note that the step size ε in (1.2) is replaceable
by a quantity O(ε) (a quantity that is of the same order as ε). There is
a production capacity constraint 0 ≤ uk ≤ αε

k where αε
k, a discrete-time

Markov chain (depending on ε) with state space M = {1, . . . , m0}, repre-
sents the capacity of the machine. Our objective is to choose the control
subject to both (1.2) and the capacity constraint so that the cost function

Jε(x, α, u) = E

T/ε∑
k=0

εg(xk, uk, αε
k)

is minimized, where x = x0, α = α0, and u = {uk}. With the aid of a
continuous-time-flow approximation, continuous-time counterparts of such
models have been studied extensively in Sethi and Zhang [136] among oth-
ers. Since in daily operation, the production decision is often made at dis-
crete time, it is also important to examine a model under a discrete-time
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formulation as given above. What is the rationale for the use of the small
parameter ε > 0 in αε

k? Suppose that we have a production system con-
sisting of two machines that are subject to breakdown and repair. Assume
each of the machines has two states, up (denoted by 1) and down (denoted
by 0). Then the system has four states {(1, 1), (0, 1), (1, 0), (0, 0)}. Suppose
that the transition probability matrix is

P̂ =

⎛⎜⎝
9/20 1/2 1/20 0
1/2 9/20 0 1/20
1/20 0 9/20 1/2

0 1/20 1/2 9/20

⎞⎟⎠ .

To distinguish the different levels of reliability, we introduce a small pa-
rameter ε. Using ε = 1/10 yields

P̂ = P ε =

⎛⎜⎝
1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

⎞⎟⎠ + ε

⎛⎜⎝
−1/2 0 1/2 0

0 −1/2 0 1/2
1/2 0 −1/2 0
0 1/2 0 −1/2

⎞⎟⎠ .

The transition matrix above is a nearly completely decomposable model.
The near-complete decomposability means that the transition matrix above
is a sum of decomposable transition matrix with an added perturbation of
the order O(ε).

Example 1.2. Many applications in resource allocation, queueing net-
works, machine replacement, etc. can be formulated as Markov decision pro-
cesses (MDPs). Classical treatments of discrete-time-MDP models may be
found in Derman [45] and White [149], among others. Consider a discrete-
time Markov chain αk with finite state space M = {1, . . . , m0}. The tran-
sition probability of αk is action or control dependent, which is denoted
by αk ∼ P (u), where u is a control variable. Let Γ denote the control
space. We use feedback control uk = u(αk), such that uk ∈ Γ, k ≥ 0.
In practical models, the state space M is large, for example, it is typical
for a communication network to have a large number of nodes. A classical
approach for solving the MDP problem uses dynamic programming. Nev-
ertheless, such an approach is computationally feasible only if the size of
the problem is small or moderate. For large-scale systems, one has to resort
to near-optimal schemes.

Consider the Markov chain αk = αε
k generated by P ε(u), where

P ε(u) = (pε,ij(u)) = P (u) + εQ(u)

is the transition probability matrix, where for each u ∈ Γ, P (u) = (pij(u))
is itself an m0 × m0-dimensional probability transition matrix, and Q(u) =
(qij(u)) is an m0 × m0-dimensional generator. Our objective is to find an
admissible control u to minimize a cost functional

Jε(α, u) = Eε

∞∑
k=0

(1 − βε)kg(αε
k, u(αε

k)), (1.3)
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Subsystem 1 Subsystem 2

FIGURE 1.2. Two subsystems in tandem

where α = αε
0 is the initial state of the chain, g(α, u) is the cost-to-go

function, and β > 0 is a discount factor. In (1.3), the multiplier ε in Jε

acts as a normalizer to ensure the sum to be finite.
To solve the optimal decision making problem requires intensive compu-

tation if m0 is large. To alleviate the computational effort, we search for a
near-optimal policy instead. Using asymptotic expansions (to be presented
in Chapter 3), we will be able to show that as ε → 0, the original prob-
lem is approximated by a limit problem. The main idea is to lump all the
states in each recurrent class into a single state. Thus in the reduced or
the limit problem, the underlying process has only l0 states, where l0 is the
total number of recurrent classes and m0 � l0. Since the computational
effort in solving the DP equations depends largely on the total number of
the equations to be solved, the required effort in solving the limit problem
can be significantly reduced. Then the optimal policy of the limit problem
can be used to construct policy for the original problem, which yields a
near-optimal policy.

For instance, consider a manufacturing system consisting of two subsys-
tems in tandem; see Figure 1.2. Suppose that each subsystem has ten states
denoted by 1, 2, . . . , 10. The entire system has 100 states listed as

M = {s1,1, . . . , s1,10, . . . , s10,1, . . . , s10,10},

where si,j = (i, j), for i, j = 1, 2, . . . , 10. We can take the control variable
u to be a vector representing the rates of preventive maintenance and al-
located repair resources. The objective is to choose u to keep the average
machine capacity at a reasonable level and to avoid excessive preventive
maintenance and repair costs. Let P 1(u) and P 2(u) denote the transition
probability matrices of the first and second subsystems, respectively. Con-
sider the situation such that the state of the first system is changing more
rapidly than that of the second one. Then the corresponding transition
probability matrix can be written as

P ε(u) =

⎛⎜⎝P 2(u)
. . .

P 2(u)

⎞⎟⎠ + ε

⎛⎜⎝ q1,1(u)I · · · q1,10(u)I
...

q10,1(u)I · · · q10,10(u)I

⎞⎟⎠ ,
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where Q(u) = (qi,j(u)) = P 1(u) − I. In this case, the number of the DP
equations of the original problem is m0 = 100, while the number for the
limit problem (to be specified in Chapter 8) is only l0 = 10.

Example 1.3. Let {η1
m} be a Markov chain with state space {1, 2} and

transition matrix P 0 = (p0,ij). Let {η2
k} be another Markov chain with

state space {s1, s2} whose transition matrix depends on the value of η1
m.

In fact, for i = 1, 2, corresponding to η1
m = i, the transition matrix of η2

k

is given by P i. Here η1
m is a slow process with m ∈ {n, 2n, 3n, . . .} for a

positive integer n and η2
k is a fast process with k ∈ {1, 2, 3, . . .}. Define a

joint process ηl = (η1
m, η2

k) if mn ≤ l < (m + 1)n, for m = 0, 1, 2, . . . Then
the state space of {ηl} is M = {(1, s1), (1, s2), (2, s1), (2, s2)}. Note that
{ηl} is not a Markov chain. However, for a fixed n, the “n-step process”
{ηmn : m = 0, 1, 2, . . .} is a Markov chain with transition matrix

P̃ =

⎛⎝ p0,11I p0,12I

p0,21I p0,22I

⎞⎠⎛⎝ (P 1)n

(P 2)n

⎞⎠ ,

where P 0 = (p0,ij) and I is the 2 × 2 identity matrix. Assume that P 1 and
P 2 are irreducible and aperiodic. Then there exist stationary distributions
ν1 and ν2 corresponding to P 1 and P 2, respectively. Let P

i
= (νi, νi)′, for

i = 1, 2. For n large enough, we have

P̃ ∼
⎛⎝ p0,11I p0,12I

p0,21I p0,22I

⎞⎠⎛⎝ P
1

P
2

⎞⎠ .

In addition, assume that P 0 = exp(Q), where

Q =

⎛⎝ −q1 q1

q2 −q2

⎞⎠ ,

for some q1 > 0 and q2 > 0. Let αε,1
k and αε,2

k be Markov chains such that
αε,1

k is slowly varying and αε,2
k is fast changing. Consider αε

k = (αε,1
k , αε,2

k )
with state space M and transition matrix

P ε =

⎛⎝ P 1

P 2

⎞⎠ + ε

⎛⎝ −q1I q1I

q2I −q2I

⎞⎠ .

Using Proposition 6.2 and P 0 = exp(Q), we can show that

(P ε)n ∼
⎛⎝ p0,11I p0,12I

p0,21I p0,22I

⎞⎠⎛⎝ P
1

P
2

⎞⎠ ,
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when ε = 1/n. Thus, with fixed n, αε
mn has a transition matrix which

is close to P . Consequently, αε,1
k can be regarded as an approximation to

η1
m and αε,2

k an approximation to η2
k. The original two-level structure is

recaptured by using the two-time-scale model in a natural way. The ad-
vantage of the two-time-scale formulation is that it enables us to simplify
the computation via a hierarchical approach. There are many applications
involving the two-level formulation. These include, but are not limited to,
the multiarmed bandit problem, admission control with buffer manage-
ment, asset allocation, and employee staffing. We refer the reader to the
paper by Chang, Fard, Marcus, and Shayman [33] for further details.

Example 1.4. Consider a discrete optimization problem. Given an objec-
tive function f : M → R, the problem is to find

ι∗ = arg min
ι∈M

f(ι),

where M = {1, . . . , m0} is the search space and each element of M is called
a design. In the problem of interest, there is no analytic expression of f(ι)
available or the formula is too complicated and/or too difficult to evaluate.
Thus we have to solve the problem by using observed values of the objective
function. Let h(ι) be an estimate of f(ι). We need to use a form of Monte
Carlo algorithm to resolve the issue. Let αk denote the estimate of ι∗ at the
end of the kth iteration of the algorithm and suppose that αk = ιk ∈ M.
At the (k+1)th iteration, another candidate α̃k+1 is randomly chosen from
M − {ιk}. We assume that there is some η > 0 such that

P (α̃k+1 = �k|αk = ιk) ≥ η (1.4)

for all k and all �k ∈ M−{ιk}. For instance, α̃k+1 may be randomly chosen
as uniformly distributed in M − {ιk}. Next, we generate Mk independent
and identically distributed (i.i.d.) samples for both h(ιk) and h(�k). Let
ζk = h(ιk) − h(�k), and let hl(·) be the lth sample of h(·). Then we have
the i.i.d. samples ζl

k = hl(ιk)−hl(�k), l = 1, . . . , Mk. To update the estimate
of ι∗, use the testing hypotheses

H0 : g(ιk) − g(�k) < 0,

H1 : g(ιk) − g(�k) > 0

based on ζl
k, l = 1, . . . , Mk, and set αk+1 = α̃k+1 if H1 is accepted; αk+1 =

αk, otherwise. Testing is accomplished by defining a function tk : RMk → R
and a test statistic Tk = tk(ζ1

k , . . . , ζMk

k ), and by using the decision rule:

αk+1 = ιk if Tk < τk;

= �k otherwise.
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The threshold τk could be different for different k’s. The iterations pro-
ceed until a stopping criterion is met. The values of the threshold sequence
{τk} and the sample-size sequence {Mk}, together with the forms of the
test statistics {Tk} and the distributions of the samples determine the con-
vergence properties of the algorithm. It is clear that we would like the
probability of detection (i.e., the probability that αk+1 = �k when H1 is
true) to be large and the probability of false alarm (i.e., the probability that
αk+1 = �k when H0 is true) to be small. However, these are conflicting goals
and must be balanced in order to have a convergent algorithm.

The algorithm so constructed was shown to be convergent in the sense
of w.p.1 (with probability one) in Gong, Kelly, and Zhai [64] by noting
that αk is a Markov chain. Using the two-time-scale approach, the rate of
convergence issues can be studied with the help of the asymptotic results
presented in this book. It is an interesting application of the singularly per-
turbed Markov chains under weak irreducibility (to be defined in Chapter
2).

To begin, we partition the state space M as

M = {1, 2, . . . , m0 − 1} ∪ {m0} = M∗ ∪ Ma,

where M∗ contains all of the transient states and Ma includes the ab-
sorbing state m0 = ι∗. If the Markov chain initially belongs to M∗, it will
eventually be absorbed into Ma. Nevertheless, the current situation differs
from the classical notion of the absorbing state in Markov chains in that
the last row of the transition matrix is not of the form (0, 0, . . . , 1), but only
“close” to it. That is, the state {m0} is not absorbing in the classical sense
but is only “approximately absorbing.” To accommodate this scenario, we
introduce a small perturbation in the transition matrix so that none of
the last row of the transition matrix will be 0 and the last element (corre-
sponding to the absorbing state) is close to 1. In addition, it is possible for
the transition matrix to be time dependent. Generally, studying the rate of
convergence of the underlying algorithm is difficult, which can be resolved
by using the techniques of time-scale separation of Markov chains.

Introducing a small parameter ε > 0, we let the transition matrix of the
Markov chain αk = αε

k, k = 0, 1, . . . , T̃ /ε for some T̃ > 0, be

P ε = P + εQ, (1.5)

where P is a transition matrix of the form

P =

⎛⎜⎝
p11 . . . p1,m0−1 p1m0

. . . . . . . . . . . .
pm0−1,1 . . . pm0−1,m0−1 pm0−1,m0

0 0 0 1

⎞⎟⎠ (1.6)

and Q is a generator of a continuous-time Markov chain. Under such a
formulation, the rate of convergence can be obtained. In fact, we have

pε
k = ν + O(ε + λk), for some 0 < λ < 1, (1.7)
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where ν = (0, . . . , 0, 1) and pε
k denotes the probability distribution vector

at time k. The meaning of the small parameter ε > 0 is the ratio of the
probability of detection to that of false alarm.

Example 1.5. Wireless technology has provided great opportunities to
modern communication applications. In the meantime, owing to their spe-
cial features of mobility, wireless links usually incur more errors than that
do wired channels, which is partially due to such characteristics as path
loss, interference, and fading, among others. For mobile radio channels,
Rayleigh fading is one of the most commonly used models. A Markov model
is used to describe the fading channels; see Wang and Chang [146]. Using
the packet as a unit, which consists of a number of bits, signals are trans-
mitted through the channel. Note that a packet sent is correct if all the
bits transmitted are correct.

The wireless channel is modeled as a discrete-time Markov chain with
two states. That is, the state space of the Markov chain is M = {1, 2},
where 1 denotes a “good” state and 2 denotes a “bad” state. No matter
which state the channel is in, assume that the sequence of bits transmitted
is a sequence of i.i.d. Bernoulli random variables taking values a=correct
and b=incorrect. Thus the BER (bit error rate) of the wireless channel can
be determined by the channel states. If the channel is in a “good” state,
the BER is low, whereas if the channel is in a “bad” state, the BER is
high. Assume that the Markov chain is time-inhomogeneous. That is, the
transition probability matrix is time varying. Suppose that the transition
probability matrix is given by

P ε
k = I + εQk, (1.8)

where I is a 2 × 2 identity matrix and Qk is a sequence of generators.
Then we can proceed to analyze the packet transmission error model. The
form (1.8) indicates that the transition matrix at any time k is close to
an identity. For example, if the channel is currently in a good state, the
probability that it will jump to a bad state in the next move is small.
However, the term Qk indicates that such a move is not entirely impossible.

In view of the formulation given in (1.8), the model again involves two
time scales. This book presents methods that can be used in analyzing such
two-time-scale Markovian models.

Example 1.6. This example is motivated by emerging applications in
wireless communications, in particular CDMA signals (see Krishnamurthy
and Yin [89] and the references therein). The inherent nature of the under-
lying system is that it includes a time-varying parameter where the param-
eter jump changes are not too frequent. Our objective is to track the time-
varying signals. Let {yn} be a sequence of real-valued signals representing
the observations obtained at time n, and let {θn} be the time-varying true
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parameter, an R
r-valued random process. Suppose that

yn = ϕ′
nθn + en, (1.9)

where ϕn ∈ R
r is the regression vector and {en} (with en ∈ R) is a sequence

of zero mean estimation errors.
Suppose that there is a small parameter ε > 0 and that θn is a discrete-

time homogeneous Markov chain, whose state space is

M =
{
θ
1
, . . . , θ

m0}
,

and whose transition probability matrix is given by

P ε = I + εQ, (1.10)

where I is an R
m0×m0 identity matrix and Q = (qij) is an R

m0×m0 di-
mensional generator of a continuous-time Markov chain. The rationale is
that the true parameter θn given in (1.9) is time varying, but the variation
is small. It hovers about a constant value with occasional jumps to other
possible locations.

To track the parameter {θn}, we use the LMS-type (least mean squares)
adaptive filtering procedure and construct a sequence of estimates {θ̂n}
according to

θ̂n+1 = θ̂n + µϕn(yn − ϕ′
nθ̂n), (1.11)

where µ > 0 is a small constant step size.
An important problem is to figure out the bounds on the deviation θ̃n =

θ̂n − θn. Under suitable conditions and using asymptotic results of the
two-time-scale Markov chains to be presented in this book, we can derive
mean squares error bounds for the tracking error sequence θ̃n. The mean
squares bounds will assist us further to obtain a weak convergence result of
a suitably scaled sequence. In addition, we will be able to find probabilistic
bounds on P (|θ̂n − θn| > η) for η > 0.

Example 1.7. This example is concerned with a numerical scheme for
the approximation of regime-switching diffusions. Let α(t) be a finite-state
Markov chain in continuous time with state space M = {1, . . . , m0} and
generator Q. Let f(·, ·) : R

r × M �→ R
r, and g(·, ·) : R

r × M �→ R
r×r be

appropriate functions. Consider the system of regime-switching diffusions

dx(t) = f(x(t), α(t))dt + g(x(t), α(t))dw(t),

x(0) = x ∈ R
r, α(0) = α ∈ M,

(1.12)

where w(·) is an r-dimensional standard Brownian motion, and f(·) and
g(·) satisfy certain regularity conditions. Assume that the Markov chain
α(·) and the Brownian motion w(·) are independent. Assume also that the
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stochastic differential equation with regime switching (1.12) has a unique
solution in distribution for each initial condition.

Frequently, systems of the form (1.12) can only be solved numerically,
which makes appropriate discretization and numerical algorithms neces-
sary. One of the discretization techniques used is the Euler-Maruyama ap-
proximate solutions; see Kloeden and Platen [88]. Since the Markov chain
α(t) has a constant generator Q, it is time homogeneous and its transition
probability matrix P (t) = (pij(t)) satisfies the forward equation

Ṗ (t) = P (t)Q, with P (0) = I. (1.13)

Corresponding to the continuous-time Markov chain α(t) generated by Q,
choose any positive real number ε. Define αn = α(εn), n ≥ 0. That is,
{αn} is an ε-skeleton of the continuous-time Markov chain α(t); see Chung
[38, p.132]. It can be shown that αn is a discrete-time Markov chain with
one-step transition probability matrix

P = (pij)m0×m0 = exp(εQ). (1.14)

Now, we can proceed to develop a constant-step size Euler-Maruyama
approximation for the SDE with regime switching (1.12) by⎧⎨⎩ xn+1 = xn + f(xn, αn)ε + g(xn, αn)∆wn,

x0 = y, α0 = α,
(1.15)

where ∆wn = w(ε(n + 1)) − w(εn). Note that since w(·) is a standard r-
dimensional Brownian motion, it has independent increments. Thus, {∆wn}
is a sequence of i.i.d. Gaussian random variables such that E∆wn = 0 and
the covariance is given by εI.

To simplify the calculation further, we take advantage of the appearance
of the small parameter ε, and exploit the ε-dependence in the transition
matrix. Taking Taylor expansions of the transition matrix in (1.14), we
obtain

exp(εQ) =
∞∑

i=0

(εQ)i

i!
= I + εQ + O(ε2).

Thus the first approximation of the transition matrix is given by

P ε = I + εQ, (1.16)

which falls in the two-time-scale Markov chain model we are considering in
this book. In view of the Taylor expansions above, in lieu of exp(εQ), if we
use the transition matrix (1.16), the problem can be much simplified.

The above examples present a multitude of applications involving two-
time-scale Markov chains. Another rich source, which is not discussed ex-
tensively in this book, comes from queueing systems and networks. Al-
though queues with infinite capacity are frequently treated, there are many
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important classes of finite-capacity queues; see for example Sharma [137]
and the references therein. The two-time-scale formulation can be naturally
imbedded in these queueing applications. In addition, for computational
purpose, one often has to use finite-capacity queues to approximate queues
with infinitely many waiting rooms. Thus, the problem reduces to that of
a finite-state Markov chain with a large state space.

1.4 Discrete-Time vs. Continuous-Time Models

There is a close connection between continuous-time, singularly perturbed
Markov chains and their discrete-time counterparts. The discussion below,
inspired by the ideas exploited in Kumar and Varaiya [91] and motivated
by our work in Yin and Zhang [158], reveals the natural connection.

Consider a continuous-time Markov chain αε(t) whose state space and
generator are given by M = {1, . . . , m0} and Q̃/ε + Q̂, respectively, where
Q̃ and Q̂ are generators of some Markov chains with stationary transition
probabilities. Then

pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m0)),

the probability vector, satisfies the forward equation

ṗε(t) = pε(t)
(

1
ε
Q̃ + Q̂

)
, p(0) = p0.

Introduce a new variable γ = t/ε. The probability vector p(γ) = pε(t)
satisfies the rescaled forward equation

ṗ(γ) =
dp(γ)
dγ

= p(γ)(Q̃ + εQ̂).

Denote Qε = Q̃ + εQ̂, where Q̃ = (q̃ij) and let

q0 = max
i

(|q̃ii|) = max
i

∑
j �=i

q̃ij ,

and fix q > q0. Define

P̃ ε =
(

I +
1
q
Q̃

)
+ ε

(
1
q
Q̂

)
.

Then all entries of P̃ ε are nonnegative and P̃ ε1lm0 = 1lm0 , for ε small
enough. Therefore, P̃ ε is a transition probability matrix, and

ṗ(γ) = p(γ)[q(P̃ ε − I)].
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The formal solution of the above forward equation is

p(γ) = p0 exp(γq(P̃ ε − I))

= p0 exp(−γq)
∞∑

j=0

(γq)j

j!
(P̃ ε)j .

(1.17)

Consider a discrete-time Markov chain α̃ε
k having transition matrix P̃ ε.

Then the corresponding probability vector

p̃(k) = (P (α̃ε
k = 1), . . . , P (α̃ε

k = m0))

with p̃(0) = p0 satisfies p̃(k) = p0(P̃ ε)k. This, together with p(γ), the
solution of the forward equation (1.17), yields

p(γ) =
∞∑

j=0

exp(−γq)
(qγ)j

j!
p̃(j).

Let ξ(γ) be a Poisson process with rate q, which is independent of the
chain α̃ε

k. Then

P (ξ(γ) = k) = exp(−γq)
(qγ)k

k!
, k = 0, 1, 2, . . .

Let α̂ε(γ) be a continuous-time process obtained from ξ(γ) and α̃ε
k by

α̂ε(γ) = α̃ε
ξ(γ). Then

P (α̂ε(γ) = i) =
∞∑

k=0

P (α̃ε
k = i)P (ξ(γ) = k).

This implies

P (α̂ε(γ) = i) = p(γ) = P (αε(εγ) = i).

Concerning the time-scale separation, we note: In a continuous-time set-
ting, we work in a finite time horizon t ∈ [0, T ], whereas in a discrete-time
formulation, the time horizon is of the order O(1/ε), so we work with
0 ≤ k ≤ 
T/ε�, where 
T/ε� denotes the integer part of T/ε. We also
note that the time-space separation method considered in the determin-
istic discrete-time singular perturbation problems by Naidu [117], which
mainly dealt with boundary value problems, cannot be carried over to our
formulation. Nevertheless, the idea of time-scale separation can still be
used and asymptotic expansions can still be constructed for discrete-time
Markov chains owing to the work of Hoppensteadt and Miranker [69].
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1.5 Organization

This book consists of three parts with a total of fourteen chapters. The
first part provides an overview of the book together with mathematical
background materials. Part II comprises the development of asymptotic
properties of two-time-scale Markov chains, including asymptotic expan-
sions of the probability distribution vectors and probability matrices, struc-
tural properties of the Markov chains, and exponential-type large deviation
bounds. The development is carried out by examining associated occupa-
tion measures. Part III presents several applications in stability, control,
optimization, and related fields. In what follows, we give a chapter-by-
chapter account of the topics to be covered.

Part I, consisting of Chapters 1 and 2, serves as a prologue. Chapter 1
contains the motivation for the study and a brief review of the literature,
together with several illustrative examples. These examples involve multi-
time-scale structure and exhibit the scope of the diversity of applications.
Some of them will be revisited in the subsequent chapters in more detail.

Mathematical preliminaries are provided in Chapter 2, including the defi-
nition of Markov chains, basic notions such as Chapman–Kolmogorov equa-
tions, irreducibility, quasi-stationary distributions, Markov chains, martin-
gales, and diffusions. It also collects certain properties of Markov chains,
martingales, Gaussian processes, diffusions, and switching diffusions. This
chapter can be used as a quick reference. Related readings are suggested
at the end of the chapter for further study.

Part II, including Chapters 3–6, is devoted to asymptotic properties of
two-time-scale or singularly perturbed Markov chains. It aims to provide an
understanding of the intrinsic structural properties of such Markov chains.

In Chapter 3, we study the probability distribution of Markov chains
with transition probability P ε = P + εQ, where ε > 0 is a small param-
eter, P is a transition matrix of a Markov chain, and Q is a generator of
a continuous-time Markov chain. To analyze the asymptotics, we develop
asymptotic expansions of probability vectors and transition matrices. In-
cluding outer expansions and initial layer corrections, the asymptotic ex-
pansions are matched through appropriate choices of the initial conditions.
After the formal expansions are obtained, we justify the validity of the
asymptotic series and obtain the approximation error bounds.

Chapter 4 is concerned with the asymptotic distribution of scaled occu-
pation measures. The results in Chapter 3 are mainly based on analytic
techniques, whereas Chapter 4 explores the sample path aspects through
the examination of occupation measure. Using the asymptotic expansions,
we first obtain mean squares type error bounds on the occupation measures.
Assuming the dominating part of the transition matrix can be divided into
a number of ergodic classes, we aggregate the states in each recurrent class
into a single state. By means of martingale problem formulation, we show
that an interpolated sequence of aggregated process converges weakly to
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a continuous-time Markov chain, whose generator can be explicitly com-
puted. Subsequently, we take a suitable scaling of the occupation measures
to obtain limit distribution results. A salient feature of the limit distri-
bution is that it is a mixture of the Gaussian distribution with a Markov
chain. That is, the limit turns out to be a switching diffusion process. Differ-
ent from the usual central limit theorems, the covariance, in fact, involves
a function of the limit of the aggregated Markov chain. In addition, the
covariance of the limit switching diffusion depends on the asymptotic ex-
pansion (more specifically on the initial layer corrections of the transition
probability matrices) in an essential way.

The derivations of the results of Chapter 4 such as the switching diffu-
sion limits use essentially a weak convergence analysis. To accommodate
the functional invariance theorem and to obtain estimates of rare event
probabilities, built on the asymptotic properties, Chapter 5 presents expo-
nential upper bounds for sequences of scaled occupation measures. They are
large deviations bounds. These bounds can be conveniently applied to in-
finite horizon control and optimization problems involving Markov chains,
such as controlled dynamic systems whose coefficients are modulated by a
Markov chain.

Chapter 6 is an interlude. It summarizes certain results obtained in Chap-
ters 3–5 to be used frequently in the subsequent chapters; a reader may
bypass these chapters, if his or her main interests are in control, stability,
and other applications covered in the latter parts of the book.

Part III deals with several applications, including stability, Markov de-
cision processes, linear quadratic regulator modulated by a Markov chain,
hybrid filtering, the mean variance control problem in financial engineer-
ing, production planning, and stochastic approximation. It is divided into
seven chapters.

Concerning dynamic systems modulated by Markov chains, many prob-
lems in engineering applications require the understanding of the systems’
long-term behavior. We present stability analysis of such systems governed
by difference equations with regime switching modulated by a two-time-
scale Markov chain in Chapter 7. To reduce complexity, one attempts to
effectively “replace” the actual systems by a limit system with a simpler
structure. To ensure the validity of such a replacement in a longtime hori-
zon, it is crucial that the original system is stable. The fast regime changes
and the large state space of the Markov chain make the stability analysis
difficult. Under suitable conditions, using the limit dynamic systems and
the perturbed Liapunov function methods, we show that if the limit sys-
tems are stable, so are the original systems. This justifies the replacement
of a complicated original system by its limit from a longtime behavior point
of view.

Chapter 8 is concerned with hybrid filtering problems in discrete time.
Since numerous problems arising from target tracking, speech recognition,
telecommunication, and manufacturing require solutions of filters for a hid-
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den Markov chain, in addition to the random system disturbances and
observation noise, we assume that the system under consideration is in-
fluenced by a Markov chain with finite state space. We show that a limit
filtering problem can be derived in which the underlying Markov chain is
replaced by an averaged chain and the system coefficients are averaged out
with respect to the stationary measures of each ergodic class. The reduc-
tion of complexity is particularly pronounced when the transition matrix
of the Markov chain consists of only one ergodic class.

Motivated by applications in resource allocation, queueing networks, ma-
chine replacement, and command control, we analyze Markov decision pro-
cesses whose dynamics are governed by the control-dependent transition
matrices P ε(u) in Chapter 9. A common practice is to use the method
of dynamic programming. However, such an approach breaks down when
the dimension of the underlying system is too large. Therefore, for large-
scale systems, approximate-optimal schemes are necessary. By assuming
the transition matrices of the form P ε(u) = P (u) + εQ(u), we use hier-
archical decomposition and aggregation to treat large-dimensional systems
by examining a limit system that is much simpler with less complexity. One
of the interesting aspects is that the limit problem derived is a continuous-
time Markov decision problem, although the original one is in discrete time.
Using the limit system, we construct controls of the original systems, lead-
ing to asymptotic optimality. Both discounted cost and long-run average
cost criteria are considered.

Chapter 10 deals with linear quadratic regulator problems that involve
regime or configuration switching. We focus on a hybrid linear model con-
sisting of a large number of configurations modulated by a finite-state
Markov chain. At any given instance, the system takes one of the pos-
sible system configurations, in which the coefficients depend on the state of
the underlying Markov chain. Clearly, this model has a greater capability
to account for various types of random disturbances in reality. Using hierar-
chical decomposition and aggregation methodology, we develop asymptotic
optimal controls of such systems. Compared with the usual LQ formula-
tion, in lieu of a single Riccati equation, we have to solve a system of
Ricatti equations with the total number of equations equal to the number
of Markovian states. In this case, the computational effort depends mainly
on the number of Riccati equations to be solved. The solution methods
presented are a viable alternative for reducing the computational effort.
Suppose that corresponding to the original problem we need to solve m0
Riccati equations (m0 is equal to the number of states of the Markov chain).
In the limit system, we only need to solve l0 Riccati equations (l0 is the
total number of recurrent classes). If l0 � m0, a substantial reduction of
computational effort is achieved.

In Chapter 11, we examine a discrete-time version of Markowitz’s mean-
variance portfolio selection problem where the market parameters depend
on the market mode that jumps among a finite number of states. The
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FIGURE 1.3. Relationship and dependence among chapters

random regime switching is delineated by a finite-state Markov chain, based
on which a discrete-time Markov modulated portfolio selection model is
formulated. Under broad conditions, we derive the limit problem that turns
out to be a Markov modulated mean-variance control problem in continuous
time, which is a LQG problem with regime switching, and in which the
control weight is indefinite. We then proceed to obtain its near-optimal
control based on the limit problem.

In Chapter 12, we consider a class of near-optimal production planning
problems for discrete-time planning of manufacturing systems. By studying
a manufacturing system consisting of a number of machines that produce a
number of parts, and assuming that the machines are subject to breakdown
and repair, we model the capacity of the machines as a finite-state Markov
chain. The goal is to choose the production rates over time so as to minimize
an expected cost function. We carry out asymptotic analysis, show that the
original problem can be approximated by a limit problem, and construct a
near optimal control based on the limit problem.

Chapter 13 is about hybrid stochastic approximation, the study of which
is motivated by problems arising from discrete stochastic optimization and
tracking time-varying parameters, where the dynamics of the parameters
evolve according to a Markov chain. Such problems also arise from emerg-
ing applications in wireless communications, for example, adaptive coding
in CDMA communication networks. We focus on a class of adaptive algo-
rithms to track the invariant distribution of a conditional Markov chain
(conditioned on another Markov chain whose transition probability matrix
is “near” identity). That is, the underlying parameter is a Markov chain
with infrequent varying dynamics. Our objective is to evaluate the tracking
capability of the adaptive stochastic approximation algorithm in terms of
mean squares tracking error and asymptotic covariance of the associated
limit process.
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Finally Chapter 14, providing an appendix, contains a handful of brief
discussions, basic notions, and a number of technical results used in the
book. The topics include weak convergence, Markov chains, optimal control
and HJB equations, and a number of miscellaneous results on convexity,
the Arzelá–Ascoli theorem, and the Fredholm alternative etc.

Throughout the rest of the book, each chapter begins with an introduc-
tion and an outline, and ends with notes of further remarks, additional
literature reviews, and other related matters. To give a “road map” and
to show the logical dependence, relationship, and connection among the
chapters, we provide a flow chart in Figure 1.3.



2
Mathematical Preliminaries

2.1 Introduction

This chapter provides basic background materials needed in the subsequent
chapters of the book. It briefly reviews and summarizes related results
of random processes, including Markov chains in both discrete time and
continuous time, martingales, Gaussian processes, diffusions, and switching
diffusions.

Throughout the book, we work with a probability space (Ω,F , P ). A
collection of σ-algebras {Ft}, for t ≥ 0 or t = 1, 2, . . ., or simply Ft, is called
a filtration if Fs ⊂ Ft for s ≤ t. The Ft is complete in the sense that it
contains all null sets. A probability space (Ω,F , P ) together with a filtration
{Ft} is termed a filtered probability space, denoted by (Ω,F , {Ft}, P ).

2.2 Discrete-Time Markov Chains

Working with discrete time k ∈ {0, 1, . . .}, consider a sequence {xk} of
R

r vectors. If for each k, xk is a random vector (or an R
r-valued random

variable), we call {xk} a stochastic process and write it as xk, k = 0, 1, 2, . . .,
or simply xk if there is no confusion. A stochastic process is wide-sense (or
covariance) stationary, if it has finite second moments, a constant mean,
and a covariance that depends only on the time difference. The ergodicity
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of a stationary sequence {xk} refers to the convergence of the sequence

x1 + x2 + · · · + xn

n

to its expectation in the almost sure or some weak sense; see Karlin and
Taylor [78, Theorem 5.6, p. 487] for a strong ergodic theorem of a stationary
process. A stochastic process xk is adapted to a filtration {Fk}, if for each
k, xk is an Fk-measurable random vector.

Suppose that αk is a stochastic process taking values in M, which is
at most countable (i.e., it is either finite M = {1, 2, . . . , m0} or countable
M = {1, 2, . . .}). We say that αk is a Markov chain if

pij
k,k+1 = P (αk+1 = j|αk = i)

= P (αk+1 = j|α0 = i0, . . . , αk−1 = ik−1, αk = i),

for any i0, . . . , ik−1, i, j ∈ M.
Given i, j, if pij

k,k+1 is independent of time k, i.e., pij
k,k+1 = pij , we say

that αk has stationary transition probabilities. The corresponding Markov
chains are said to be stationary or time-homogeneous or temporally ho-
mogeneous or simply homogeneous. In this case, let P = (pij) denote the
transition matrix. Denote the n-step transition matrix by P (n) = (pij,(n)),
with

pij,(n) = P (xn = j|x0 = i).

Then P (n) = (P )n. That is, the n-step transition matrix is simply the
matrix P to the nth power. Note that

(a) pij ≥ 0,
∑

j pij = 1, and

(b) (P )k1+k2 = (P )k1(P )k2 , for k1, k2 = 1, 2, . . .

The last identity is commonly referred to as the Chapman–Kolmogorov
equation. In this book, we work with Markov chains with finite state spaces.
Thus we confine our discussion to such cases. Certain algebraic properties
of Markov chains will be used in the book, some of which are listed next.

Suppose that A is an r × r square matrix. Denote the collection of eigen-
values of A by Λ. Then the spectral radius of A, denoted by ρ(A), is defined
by ρ(A) = maxλ∈Λ |λ|. Recall that a matrix with real entries is said to be
a positive matrix if it has at least one positive entry and no negative en-
tries. If every entry of A is positive, we call the matrix strictly positive.
Similarly, for a vector x = (x1, . . . , xr), by x ≥ 0, we mean that xi ≥ 0 for
i = 1, . . . , r; by x > 0, we mean that all entries xi > 0.

Let P = (pij) ∈ R
m0×m0 be a transition matrix. Clearly, it is a positive

matrix. Then ρ(P ) = 1; see Karlin and Taylor [79, p. 3]. This implies that
all eigenvalues of P are on or inside the unit circle.
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For a Markov chain αk, state j is said to be accessible from state i if
pij,(k) = P (αk = j|α0 = i) > 0 for some k > 0. Two states i and j,
accessible from each other, are said to communicate. A Markov chain is
irreducible if all states communicate with each other. For i ∈ M, let d(i)
denote the period of state i, i.e., the greatest common divisor of all k ≥ 1
such that P (αk+n = i|αn = i) > 0 (define d(i) = 0 if P (αk+n = i|αn = i) =
0 for all k). A Markov chain is called aperiodic if each state has period one.
According to Kolmogorov’s classification of states, a state i is recurrent if,
starting from state i, the probability of returning to state i after some finite
time is 1. A state is transient if it is not recurrent. Criteria on recurrence
can be found in most standard textbooks of stochastic processes or Markov
chains.

Note that (see Karlin and Taylor [79, p. 4]) if P is a transition matrix
for a finite-state Markov chain, the multiplicity of the eigenvalue 1 is equal
to the number of recurrent classes associated with P . A row vector π =
(π1, . . . , πm0) with each πi ≥ 0 is called a stationary distribution of αk if
it is the unique solution to the system of equations

πP = π,∑
i

πi = 1.

As demonstrated in [79, p. 85], for i in an aperiodic recurrent class, if
πi > 0, which is the limit of the probability of starting from state i and
then entering state i at the nth transition as n → ∞, then for all j in this
class of i, πj > 0, and the class is termed positive recurrent or strongly
ergodic. The following theorem, concerning the spectral gaps, will be used
in the asymptotic expansions.

Theorem 2.1. Let P = (pij) be the transition matrix of an irreducible
aperiodic finite-state Markov chain. Then there exist constants 0 < λ < 1
and c0 > 0 such that

|(P )k − P | ≤ c0λ
k for k = 1, 2, . . . ,

where P = 1lm0π, 1lm0 = (1, . . . , 1)′ ∈ R
m0×1, and π = (π1, . . . , πm0) is the

stationary distribution of αk. This implies, in particular,

lim
k→∞

P k = 1lm0π.

Suppose that αk is a Markov chain with transition probability matrix P .
One of the ergodicity conditions of Markov chains is the Doeblin’s condition
(see Doob [49, Hypothesis D, p. 192]; see also Meyn and Tweedie [115, p.
391]). Suppose that there is a probability measure µ with the property
that for some positive integer n, 0 < δ < 1, and ∆ > 0, µ(A) ≤ δ implies
that Pn(x, A) ≤ 1 − ∆ for all x ∈ A. In the above, Pn(x, A) denotes the
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transition probability starting from x reaches the set A in n steps. Note
that if αk is a finite-state Markov chain that is irreducible and aperiodic,
then the Doeblin’s condition is satisfied.

In the subsequent chapters, we often need to treat nonhomogeneous sys-
tems of linear equations. Given an m0 × m0 irreducible transition matrix
P and a vector G, consider

F (P − I) = G, (2.1)

where F is an unknown vector. Note that zero is an eigenvalue of the matrix
P −I and the null space of P −I is spanned by 1lm0 . Then by the Fredholm
alternative (see Lemma 14.36), (2.1) has a solution iff G1lm0 = 0, where
1lm0 = (1, . . . , 1)′ ∈ R

m0×1.

Define Qc = (P − I
...1lm0) ∈ R

m0×(m0+1). Consider (2.1) together with
the condition F1lm0 =

∑m0
i=1 Fi = F̂ , which may be written as FQc = Gc

where Gc = (G
...F̂ ). Since for each t, (2.12) has a unique solution, it follows

that Qc(t)Q′
c(t) is a matrix with full rank; therefore, the equation

F [QcQ
′
c] = GcQ

′
c (2.2)

has a unique solution, which is given by GcQ
′
c[QcQ

′
c]

−1. This observation
will be used later in this book.

2.3 Discrete-Time Martingales

Many applications involving stochastic processes depend on the concept of
martingale. The definition and properties of discrete-time martingales can
be found in Breiman [27, Chapter 5], Chung [38, Chapter 9], and Hall and
Heyde [67] among others. This section provides a brief review.

Definition 2.2. Suppose that {Fn} is a filtration, and {xn} is a sequence
of random variables. The pair {xn,Fn} is a martingale if for each n,

(a) xn is Fn-measurable;

(b) E|xn| < ∞;

(c) E(xn+1|Fn) = xn w.p.1.

It is a supermartingale (resp. submartingale) if (a) and (b) in the above
hold, and

E(xn+1|Fn) ≤ xn (resp. E(xn+1|Fn) ≥ xn) w.p.1.

In what follows if the sequence of σ-algebras is clear, we simply say that
{xn} is a martingale.
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Perhaps the simplest example of a discrete-time martingale is the sum
xn =

∑n
j=1 yj of a sequence of i.i.d. random variables {yn} with zero mean.

It is readily seen that

E[xn+1|y1, . . . , yn] = E[xn + yn+1|y1, . . . , yn]

= xn + Eyn+1 = xn w.p.1.

The above equation illustrates the defining relation of a martingale.
If {xn} is a martingale, we can define yn = xn −xn−1, which is known as

a martingale difference sequence. Suppose that {xn,Fn} is a martingale.
Then the following properties hold.

(a) Suppose ϕ(·) is an increasing and convex function defined on R, if
for each positive integer n, E|ϕ(xn)| < ∞, then {ϕ(xn),Fn} is a
submartingale.

(b) Let τ be a stopping time with respect to Fn (i.e., an integer-valued
random variable such that {τ ≤ n} is Fn-measurable for each n).
Then {xτ∧n,Fτ∧n} is also a martingale.

(c) The martingale inequality (see Kushner [96, p. 3]) states that for each
λ > 0,

P

(
max

1≤j≤n
|xj | ≥ λ

)
≤ 1

λ
E|xn|,

E max
1≤j≤n

|xj |2 ≤ 4E|xn|2, if E|xn|2 < ∞ for each n.
(2.3)

(d) The Doob’s inequality (see Hall and Heyde [67, p.15]) states that for
each p > 1,

E1/p|xn|p ≤ E1/p

(
max

1≤j≤n
|xj |

)p

≤ qE1/p|xn|p,

where p−1 + q−1 = 1;

(e) The Burkholder’s inequality (see Hall and Heyde [67, p.23]) is: For
1 < p < ∞, there exist constants K1 and K2 such that

K1E

∣∣∣∣ n∑
j=1

y2
j

∣∣∣∣p/2

≤ E|xn|p ≤ K2E

∣∣∣∣ n∑
i=j

y2
j

∣∣∣∣p/2

,

where yn = xn − xn−1.

Consider a discrete-time Markov chain {αn} with state space M (either
finite or countable) and one-step transition probability matrix P = (pij).
Recall that a sequence {f(i) : i ∈ M} is P -harmonic or right-regular
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(Karlin and Taylor [79, p. 48]), if (a) f(·) is a real-valued function such
that f(i) ≥ 0 for each i ∈ M, and (b)

f(i) =
∑
j∈M

pijf(j) for each i ∈ M. (2.4)

If the equality in (2.4) is replaced by ≥ (resp. ≤), {f(i) : i ∈ M} is said to
be P -superharmonic or right superregular (resp. P -subharmonic or right
subregular). Considering f = (f(i) : i ∈ M) as a column vector, (2.4) can
be written as f = Pf . Similarly, we can write f ≥ Pf for P -superharmonic
(resp. g ≤ Pf for P -subharmonic). Likewise, {f(i) : i ∈ M} is said to be
P left regular, if (b) above is replaced by

f(j) =
∑
i∈M

f(i)pij for each j ∈ M. (2.5)

Similarly, left superregular and subregular functions can be defined.
The following paragraph reveals the natural connection between a mar-

tingale and a discrete-time Markov chain. Following the idea presented in
Karlin and Taylor [78, p. 241], let {f(i) : i ∈ M} be a bounded P -harmonic
sequence. Define xn = f(αn). Then E|xn| < ∞. Moreover, owing to the
Markov property,

E(xn+1|Fn) = E(f(αn+1)|αn))

=
∑
j∈M

pαn,jf(j)

= f(αn) = xn w.p.1.

Therefore, {xn,Fn} is a martingale. Note that if M is finite, the bounded-
ness of {f(i) : i ∈ M} is not needed.

As pointed out in Karlin and Taylor [78], one of the widely used ways of
constructing martingales is through the utilization of eigenvalues and eigen-
vectors of a transition matrix. Again, let {αn} be a discrete-time Markov
chain with transition matrix P . Recall that a column vector f is a right
eigenvector of P associated with an eigenvalue λ ∈ C, if Pf = λf . Let f
be a right eigenvector of P satisfying E|f(αn)| < ∞ for each n. For λ = 0,
define xn = λ−nf(αn). Then {xn} is a martingale.

2.4 Continuous-Time Martingales and Markov
Chains

Denote the space of R
r-valued continuous functions defined on [0, T ] by

C([0, T ]; Rr), and the space of functions that are right continuous with
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left-hand limits endowed with the Skorohod topology by D([0, T ]; Rr); see
Definition 14.2. Consider x(·) = {x(t) ∈ R

r : t ≥ 0}. If for each t ≥ 0, x(t)
is an R

r random vector, we call x(·) a continuous-time stochastic process
and write it as x(t), t ≥ 0, or simply x(t) if there is no confusion.

A process x(·) is adapted to a filtration {Ft}, if for each t ≥ 0, x(t) is an
Ft-measurable random variable; x(·) is progressively measurable if for each
t ≥ 0, the process restricted to [0, t] is measurable with respect to the σ-
algebra B[0, t]×Ft in [0, t]×Ω, where B[0, t] denotes the Borel sets of [0, t].
A progressively measurable process is measurable and adapted, whereas
the converse is not generally true. However, any measurable and adapted
process with right-continuous sample paths is progressively measurable.

For many applications, we often need to work with a stopping time.
A stopping time τ on (Ω,F , P ) with a filtration {Ft} is a nonnegative
random variable such that {τ ≤ t} ∈ Ft, for all t ≥ 0. A stochastic process
{x(t) : t ≥ 0} (real or vector valued) is said to be a martingale on (Ω,F , P )
with respect to {Ft} if:

(a) For each t ≥ 0, x(t) is Ft-measurable,

(b) E|x(t)| < ∞, and

(c) E[x(t)|Fs] = x(s) w.p.1 for all t ≥ s.

If we only say that x(·) is a martingale without specifying the filtration
Ft, Ft is taken to be the natural filtration σ{x(s) : s ≤ t}. If there exists
a sequence of stopping times {τn} such that 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤
τn+1 ≤ · · ·, τn → ∞ w.p.1 as n → ∞, and the process x(n)(t) := x(t ∧ τn)
is a martingale, then x(·) is a local martingale.

A jump process is a right-continuous stochastic process with piecewise-
constant sample paths. Let α(·) = {α(t) : t ≥ 0} be a jump process defined
on (Ω,F , P ) taking values in M. Then {α(t) : t ≥ 0} is a Markov chain
with state space M, if

P (α(t) = i|α(r) : r ≤ s) = P (α(t) = i|α(s)),

for all 0 ≤ s ≤ t and i ∈ M, with M being either finite or countable.
For any i, j ∈ M and t ≥ s ≥ 0, let pij(t, s) denote the transition

probability P (α(t) = j|α(s) = i), and P (t, s) the matrix (pij(t, s)). We
name P (t, s) the transition matrix of the Markov chain α(·), and postulate
that

lim
t→s+

pij(t, s) = δij ,
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where δij = 1 if i = j and 0 otherwise. It follows that for 0 ≤ s ≤ ς ≤ t,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pij(t, s) ≥ 0, i, j ∈ M,∑
j∈M

pij(t, s) = 1, i ∈ M,

pij(t, s) =
∑

k∈M
pik(ς, s)pkj(t, ς), i, j ∈ M.

The last identity is usually referred to as the Chapman–Kolmogorov equa-
tion. If the transition probability P (α(t) = j|α(s) = i) depends only on
(t − s), then α(·) is said to be stationary or it is said to have station-
ary transition probabilities. In this case, we define pij(h) := pij(s + h, s)
for any h ≥ 0. Otherwise, the process is nonstationary. Suppose that α(t)
is a continuous-time Markov chain with stationary transition probability
P (t) = (pij(t)). It then naturally induces a discrete-time Markov chain. In
fact, for each h > 0, the transition matrix (pij(h)) is the transition matrix
of the discrete-time Markov chain αk = α(kh), which is called an h-skeleton
of the corresponding continuous-time Markov chain in Chung [38, p. 132].

Definition 2.3 (q-Property). A matrix-valued function Q(t) = (qij(t)),
for t ≥ 0, satisfies the q-Property, if

(a) qij(t) is Borel measurable for all i, j ∈ M and t ≥ 0;

(b) qij(t) is uniformly bounded. That is, there exists a constant K such
that |qij(t)| ≤ K, for all i, j ∈ M and t ≥ 0;

(c) qij(t) ≥ 0 for j = i and qii(t) = −∑
j �=i qij(t), t ≥ 0.

For any real-valued function f on M and i ∈ M, write

Q(t)f(·)(i) =
∑
j∈M

qij(t)f(j) =
∑
j �=i

qij(t)(f(j) − f(i)).

Let us now recall the definition of the generator of a Markov chain.

Definition 2.4 (Generator). A matrix Q(t), t ≥ 0, is an infinitesimal gen-
erator (or in short a generator) of α(·) if it satisfies the q-Property, and for
any bounded real-valued function f defined on M

f(α(t)) −
∫ t

0
Q(ς)f(·)(α(ς))dς (2.6)

is a martingale.
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Remark 2.5. Motivated by the applications we are interested in, a gen-
erator is defined for a matrix satisfying the q-Property above, where an
additional condition on the boundedness of the entries of the matrix is
posed. Different definitions, including other classes of matrices, may be de-
vised as in Chung [38]. To proceed, we give an equivalent condition for a
finite-state Markov chain generated by Q(·).
Lemma 2.6. Let M = {1, . . . , m0}. Then α(t) ∈ M, t ≥ 0, is a Markov
chain generated by Q(t) iff

(
I{α(t)=1}, . . . , I{α(t)=m0}

) −
∫ t

0

(
I{α(ς)=1}, . . . , I{α(ς)=m0}

)
Q(ς)dς (2.7)

is a martingale.

Proof: See Yin and Zhang [158, Lemma 2.4]. �

For any given Q(t) satisfying the q-Property, there exists a Markov chain
α(·) generated by Q(t). If Q(t) = Q, a constant matrix, the idea of Ethier
and Kurtz [55] can be utilized for the construction. For time-varying gen-
erator Q(t), we need to use the piecewise-deterministic process approach,
described in Davis [42], to define the Markov chain α(·).

Let 0 = τ0 < τ1 < · · · < τl < · · · be a sequence of jump times of α(·) such
that the random variables τ1, τ2 − τ1, . . ., τk+1 − τk, . . . are independent.
Let α(0) = i ∈ M. Then α(t) = i on the interval [τ0, τ1). The first jump
time τ1 has the probability distribution

P (τ1 ∈ B) =
∫

B

exp
{∫ t

0
qii(s)ds

}(−qii(t)
)
dt,

where B ⊂ [0,∞) is a Borel set. The post-jump location of α(t) = j, j = i,
is given by

P (α(τ1) = j|τ1) =
qij(τ1)

−qii(τ1)
.

If qii(τ1) is 0, define P (α(τ1) = j|τ1) = 0, j = i. Then P (qii(τ1) = 0) = 0.
In fact, if Bi = {t : qii(t) = 0}, then

P (qii(τ1) = 0) = P (τ1 ∈ Bi)

=
∫

Bi

exp
{∫ t

0
qii(s)ds

}(−qii(t)
)
dt = 0.

In general, α(t) = α(τl) on the interval [τl, τl+1). The jump time τl+1 has
the conditional probability distribution

P (τl+1 − τl ∈ Bl|τ1, . . . , τl, α(τ1), . . . , α(τl))

=
∫

Bl

exp
{∫ t+τl

τl

qα(τl)α(τl)(s)ds

}(
−qα(τl)α(τl)(t + τl)

)
dt.
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The post-jump location of α(t) = j, j = α(τl) is given by

P (α(τl+1) = j|τ1, . . . , τl, τl+1, α(τ1), . . . , α(τl)) =
qα(τl)j(τl+1)

−qα(τl)α(τl)(τl+1)
.

Theorem 2.7. Suppose that the matrix Q(t) satisfies the q-Property for
t ≥ 0. Then the following statements hold.

(a) The process α(·) constructed above is a Markov chain.

(b) The process

f(α(t)) −
∫ t

0
Q(ς)f(·)(α(ς))dς (2.8)

is a martingale for any uniformly bounded function f(·) on M. Thus
Q(t) is indeed the generator of α(·).

(c) The transition matrix P (t, s) satisfies the forward differential equa-
tion

dP (t, s)
dt

= P (t, s)Q(t), t ≥ s,

P (s, s) = I,

(2.9)

where I is the identity matrix.

(d) Assume further that Q(t) is continuous in t. Then P (t, s) also satisfies
the backward differential equation

dP (t, s)
ds

= Q(s)P (t, s), t ≥ s,

P (s, s) = I.

(2.10)

Proof. See Yin and Zhang [158, Theorem 2.5]. �

Suppose that α(t), t ≥ 0, is a Markov chain generated by an m0 × m0
matrix Q(t). The notions of irreducibility and quasi-stationary distribution
are given next.

Definition 2.8 (Irreducibility).

(a) A generator Q(t) is said to be weakly irreducible if, for each fixed
t ≥ 0, the system of equations

ν(t)Q(t) = 0,
m0∑
i=1

νi(t) = 1
(2.11)

has a unique solution ν(t) = (ν1(t), . . . , νm0(t)) and ν(t) ≥ 0.
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(b) A generator Q(t) is said to be irreducible, if for each fixed t ≥ 0 the
systems of equations (2.11) has a unique solution ν(t) and ν(t) > 0.

By ν(t) ≥ 0, we mean that for each i ∈ M, νi(t) ≥ 0. Similar inter-
pretation holds for ν(t) > 0. It follows from the definitions above that
irreducibility implies weak irreducibility. However, the converse is not true.
For example, the generator

Q =
(−1 1

0 0

)
is weakly irreducible, but it is not irreducible because it contains an ab-
sorbing state corresponding to the second row in Q. A moment of reflection
reveals that for a two-state Markov chain with generator

Q =
(−λ(t) λ(t)

µ(t) −µ(t)

)
the weak irreducibility requires only λ(t) + µ(t) > 0, whereas the irre-
ducibility requires that both λ(t) and µ(t) be positive. Such a definition
is convenient for many applications (e.g., the manufacturing systems men-
tioned in Khasminskii, Yin, and Zhang [85, p. 292]).

Definition 2.9 (Quasi-Stationary Distribution). For t ≥ 0, ν(t) is termed
a quasi-stationary distribution if it is the unique solution of (2.11) satisfying
ν(t) ≥ 0.

Remark 2.10. While studying homogeneous Markov chains, the station-
ary distributions play an important role. In the context of nonstation-
ary (non-homogeneous) Markov chains, they are replaced by the quasi-
stationary distributions, as defined above.

If ν(t) = ν > 0, it is termed a stationary distribution. In view of Def-
initions 2.8 and 2.9, if Q(t) is weakly irreducible, then there is a quasi-
stationary distribution. Note that the rank of a weakly irreducible m0 ×m0
matrix Q(t) is m0 − 1, for each t ≥ 0. The definition above emphasizes the
probabilistic interpretation. An equivalent definition pinpointing the alge-
braic properties of Q(t) is provided next. One can verify their equivalence
using the Fredholm alternative; see Lemma 14.36.

Definition 2.11. A generator Q(t) is said to be weakly irreducible if, for
each fixed t ≥ 0, the system of equations

f(t)Q(t) = 0,
m0∑
i=1

f i(t) = 0
(2.12)

has only the trivial (zero) solution.
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2.5 Gaussian, Diffusion, and Switching Diffusion
Processes

A Gaussian random vector x = (x1, x2, . . . , xr) is one whose characteristic
function has the form

φ(y) = exp
(
i〈y, µ〉 − 1

2
〈Σy, y〉

)
,

where µ ∈ R
r is a constant vector, 〈y, µ〉 is the usual inner product, i de-

notes the pure imaginary number satisfying i2 = −1, and Σ is a symmetric
nonnegative definite r × r matrix. In the above, µ and Σ are the mean
vector and covariance matrix of x, respectively.

Let x(t), t ≥ 0, be a stochastic process. It is a Gaussian process if for
any 0 ≤ t1 < t2 < · · · < tk and k = 1, 2, . . ., (x(t1), x(t2), . . . , x(tk)) is a
Gaussian vector. A random process x(·) has independent increments if for
any 0 ≤ t1 < t2 < · · · < tk and k = 1, 2, . . .,

(x(t1) − x(0)), (x(t2) − x(t1)), . . . , (x(tk) − x(tk−1))

are independent. A sufficient condition for a process to be Gaussian is given
next, whose proof can be found in Skorohod [139, p. 7].

Lemma 2.12. Suppose that the process x(·) has independent increments
and continuous sample paths with probability one. Then x(·) is a Gaussian
process.

An R
r-valued random process for t ≥ 0 is a Brownian motion, if

(a) B(0) = 0 w.p.1;

(b) B(·) is a process with independent increments;

(c) B(·) has continuous sample paths with probability one;

(d) the increments B(t)−B(s) have Gaussian distribution with E(B(t)−
B(s)) = 0 and Cov(B(t), B(s)) = Σ|t − s| for some nonnegative
definite r×r matrix Σ, where Cov(B(t), B(s)) denotes the covariance.

A process B(·) is said to be a standard Brownian motion if Σ = I.
By virtue of Lemma 2.12, a Brownian motion is necessarily a Gaussian
process. For an R

r-valued Brownian motion B(t), let Ft = σ{B(s) : s ≤
t}. Let h(·) be an Ft-measurable process taking values in R

r×r such that∫ t

0 E|h(s)|2ds < ∞ for all t ≥ 0. Using B(·) and h(·), one can define a
stochastic integral

∫ t

0 h(s)dB(s) such that it is a martingale with mean 0
and

E
∣∣∣ ∫ t

0
h(s)dB(s)

∣∣∣2 =
∫ t

0
E
[
tr(h(s)h′(s))ds

]
.
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Suppose that b(·) and σ(·) are non-random Borel measurable functions.
A process x(·) defined as

x(t) = x(0) +
∫ t

0
b(s, x(s))ds +

∫ t

0
σ(s, x(s))dB(s) (2.13)

is called a diffusion. Then x(·) defined in (2.13) is a Markov process in the
sense that the Markov property

P (x(t) ∈ A|Fs) = P (x(t) ∈ A|x(s))

holds for all 0 ≤ s ≤ t and for any Borel set A. A slightly more general
definition allows b(·) and σ(·) to be Ft-measurable processes. However, the
current definition is sufficient for our purpose.

Associated with the diffusion process, there is an operator L, known as
the generator of the diffusion x(·), defined as follows. Let C1,2 be the class
of real-valued functions on (a subset of) R

r×[0,∞) whose first-order partial
derivative with respect to t and the second-order mixed partial derivatives
with respect to x are continuous. Define an operator L on C1,2 by

Lf(t, x) =
∂f(t, x)

∂t
+

r∑
i=1

bi(t, x)
∂f(t, x)

∂xi
+

1
2

r∑
i,j=1

aij(t, x)
∂2f(t, x)
∂xi∂xj

, (2.14)

where A(t, x) = (aij(t, x)) = σ(t, x)σ′(t, x). The well-known Ito’s lemma
(see Gihman and Skorohod [62], Kunita and Watanabe [92], and Liptser
and Shiryayev [105]) states that

df(t, x(t)) = Lf(t, x(t)) + f ′
x(t, x(t))σ(t, x(t))dB(t),

or in its integral form

f(t, x(t)) − f(0, x(0)) =
∫ t

0
Lf(s, x(s))ds

+
∫ t

0
f ′

x(s, x(s))σ(s, x(s))dB(s).

One of the consequences of the Ito’s lemma is that

Mf (t) = f(t, x(t)) − f(0, x(0)) −
∫ t

0
Lf(s, x(s))ds

is a square integrable Ft-martingale. Conversely, let x(·) be right contin-
uous. Using the notation of martingale problems given by Stroock and
Varadhan [143], x(·) is said to be a solution of the martingale problem
with operator L if Mf (·) is a martingale for each f(·, ·) ∈ C1,2

0 (the class of
C1,2 functions with compact support).
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Suppose that α(·) is a continuous-time Markov chain with finite-state
space M = {1, . . . , m0} and generator Q(t) and that α(·) is independent of
the standard r-dimensional Brownian motion B(·). Then the process x(·)

x(t) = x(0) +
∫ t

0
b(s, x(s), α(s))ds +

∫ t

0
σ(s, x(s), α(s))dB(s)

is called a switching diffusion or system of diffusions with regime switching.
The corresponding operator is defined as follows. For each ι ∈ M and each
f(·, ·, ι) ∈ C1,2,

Lf(t, x, ι) =
∂f(t, x, ι)

∂t
+

r∑
i=1

bi(t, x, ι)
∂f(t, x, ι)

∂xi

+
1
2

r∑
i,j=1

aij(t, x, ι)
∂2f(t, x, ι)

∂xi∂xj
+ Q(t)f(t, x, ·)(ι),

(2.15)

where A(t, x, ι) = (aij(t, x, ι)) = σ(t, x, ι)σ′(t, x, ι). Similar to the case of
diffusions, with the L defined in (2.15), for each i ∈ M and f(·, ·, i) ∈ C1,2,
a result known as generalized Ito’s lemma (see [19]) reads

df(t, x(t), α(t)) = Lf(t, x(t), α(t))

+f ′
x(t, x(t), α(t))σ(t, x(t), α(t))dB(t),

or in its integral form

f(t, x(t), α(t)) − f(0, x(0), α(0))

=
∫ t

0
Lf(s, x(s), α(s))ds +

∫ t

0
f ′

x(s, x(s), α(s))σ(s, x(s), α(s))dB(s).

In addition,

Mf (t) = f(t, x(t), α(t)) − f(0, x(0), α(0)) −
∫ t

0
Lf(s, x(s), α(s))ds

is a martingale. Similar to the case of diffusion processes, we can define the
corresponding notion of solution of martingale problem accordingly.

2.6 Notes

A nonmeasure theoretic introduction to stochastic processes can be found
in Ross [130]. The two volumes by Karlin and Taylor [78, 79] provide an
introduction to discrete-time and continuous-time Markov chains. More ad-
vanced treatments can be found in Chung [38] and Revuz [127]. A book that
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deals exclusively with finite-state Markov chain is Iosifescu [73]. The book
of Meyn and Tweedie [115] examines Markov chains and their stability.
The connection between generators of Markov processes and martingales is
explained in Ethier and Kurtz [55]. An account of piecewise-deterministic
processes is in Davis [42]. Results on basic probability theory may be found
in Chow and Teicher [37]; theory of stochastic processes can be found in
Gihman and Skorohod [62]. More detailed discussions regarding martin-
gales and diffusions can be found in Elliott [54]; in-depth study of stochas-
tic differential equations and diffusion processes can be found in Kunita
and Watanabe [92].
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3
Asymptotic Expansions

3.1 Introduction

This chapter constructs asymptotic expansions of probability distribution
vectors and transition matrices for discrete-time Markov chains having two
time scales. As alluded to in Chapter 1, many applications require finding
optimal or near-optimal controls, carrying out optimization tasks, and/or
analyzing stability for dynamic systems modulated by discrete-time Markov
chains. In these problems, Markov chains play a crucial role. To be able
to find solutions to such problems, the foremost requirement is to have a
thorough understanding of the probability structure of the Markov chains.
As a first step, it is imperative to learn the properties of the probability dis-
tributions of the Markov chains. By scrutinizing the difference equations
representing the associated probabilities, we focus on obtaining approxi-
mate solutions of the underlying equations.

Using k to denote the discrete time, we work with the time horizon
k = 0, 1, . . . , 
T/ε� for some T > 0, where 
z� denotes the integer part of
a real number z. For notational simplicity, we will often suppress the floor
function symbol 
·� and write T/ε in lieu of 
T/ε�. In view of the discussion
of Chapter 1, we consider the following model. For a small parameter ε > 0,
let αε

k be a discrete-time Markov chain depending on ε and having finite
state space M = {1, . . . , m0} and transition matrix

P ε
k = Pk + εQk, (3.1)

where for each k, Pk is a transition probability matrix and Qk = (qij
k ) is
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a generator of a continuous-time Markov chain (i.e., qij
k ≥ 0, for j = i,∑

j qij
k = 0 for each k, i). We are interested in the behavior of the Markov

chain αε
k for k ≤ 
T/ε� = O(1/ε). Let pε

k denote the probability vector

pε
k = (P (αε

k = 1), . . . , P (αε
k = m0)) ∈ R

1×m0 .

Assuming that the initial probability pε
0 is independent of ε, i.e., pε

0 =
p0 = (p1

0, . . . , p
m0
0 ) such that pi

0 ≥ 0 for i = 1, . . . , m0 and p01lm0 =∑m0
i=1 pi

0 = 1. It is well known that pε
k is a solution of the vector-valued

difference equation

pε
k+1 = pε

kP ε
k , k = 0, 1, . . . , 
T/ε�,

pε
0 = p0.

(3.2)

With such a structure, we wish to answer the question: What is the
limit probability distribution as ε → 0 for pε

k given by (3.2) with 0 ≤
k ≤ 
T/ε�? We are equally interested in finding limit properties of the
associated equations for k-step transition probability matrices

P̃ ε
k+1 = P̃ ε

k P ε
k , k = 0, 1, . . . , 
T/ε�,

P̃ ε
0 = I ∈ R

m0×m0 .
(3.3)

Note that when P ε
k is independent of k, P̃ ε

k = (P ε)k, the kth power of
matrix P ε.

Equations (3.2) and (3.3) are the discrete-time analog of the forward
equations for continuous-time Markov chains. In studying continuous-time
systems, our focus was on the generators of the corresponding Markov
chains in Yin and Zhang [158]. For discrete-time Markov chains, the basic
element taking a similar role to a generator in a continuous-time Markov
chain is the transition matrix, also known as one-step transition matrix,
which is what our study will be focused on. Concentrating on the transi-
tion probabilities, this chapter is devoted to obtaining matched asymptotic
expansions; see, for instance, Hoppensteadt and Miranker [69], Kevorkian
and Cole [80], Pan and Başar [119], Pervozvanskii and Gaitsgory [123], Yin
and Zhang [158] among others.

3.1.1 Why Do We Need Asymptotic Expansions?
Before proceeding further, we take a pause and answer the question, why
are asymptotic expansions needed? The examples given in Chapter 1 all
involve discrete-time Markov chains with two time scales. The solutions
of these problems depend on the asymptotic properties of the probability
distributions. Iterating on (3.2) yields the desired probability vectors,

pε
k+1 = p0P

ε
0 P ε

1 · · ·P ε
k . (3.4)
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However, the matrix product involved in (3.4) is merely a representation;
its evaluation is by no means simple. Even if the matrices Pk and Qk are
independent of k, evaluating the power (P +εQ)k could still be a nontrivial
task when the dimensions of the transition matrix and the generator are
large. On the other hand, for many problems arising from a wide variety of
applications, the exact solutions may not be easily computable due to their
complexity, whereas an approximate solution is often as valuable as the
exact solution from a practical point of view. Based on such observations,
our study begins with the construction of the asymptotic expansions of the
probability vectors and transition matrices.

Consider (3.2). A naive thought might be that since ε → 0, we can
simply drop the εQk term. This, however, is incorrect. The reader may
wish to convince himself or herself by considering P ε

k = P ε = P + εQ with

P =
(

P 1 0
0 P 1

)
, P 1 =

(
0.7 0.3
0.2 0.8

)
,

and Q being a 4×4 generator. In this case, we cannot drop εQ when ε → 0,
k → ∞, but εk remains bounded away from zero.

One of our primary motivations of studying two-time-scale Markov chains
is the reduction of complexity for control and optimization of large-scale
systems. The main ideas are based on the replacement of the actual system
by a reduced-order or limit system in which the coefficients of the original
system are averaged out with respect to the invariant measures. To obtain
optimal or nearly optimal controls, one often needs to use asymptotic prop-
erties of a sequence of occupation measures to figure out the limit systems,
which depend mainly on the asymptotic expansions.

In Chapter 4, we shall study asymptotic distributions of scaled occupa-
tion measures. To obtain such results, the asymptotic expansions play a
vital role. To illustrate, consider a singularly perturbed Markov chain with
P given by (3.1). Suppose that for simplicity, Pk = P is irreducible and
aperiodic and Qk = Q. Denote the stationary distribution corresponding
to P by ν = (ν1, . . . , νm0) ∈ R

1×m0 . It will be shown that

√
ε

k∑
i=0

[I{αε
k=i} − νi], for k = O(1/ε),

has a limit normal distribution. Moreover, the limit variance depends on
the initial layer expansion terms. Thus without the asymptotic expansions,
such a central limit result will be virtually impossible to obtain.

Asymptotic expansions are also needed for state aggregations. Consider
a Markov chain αε

k with a finite state space M consisting of a number
of recurrent classes. Suppose that there are l0 recurrent classes Mi for
i ≤ l0. We can aggregate all of the states in each class Mi as one state
to get an aggregated process. That is, define αε

k by αε
k = i if αε

k ∈ Mi =
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{si1, . . . , simi
}. Define a sequence of scaled occupation measures by nε

k =
(nε,ij

k ) with

nε,ij
k =

√
ε

k∑
k1=0

[I{αε
k1

=sij} − νijI{αε
k1

=i}], for k ≤ 
T/ε�,

and the continuous-time interpolation nε(t) by

nε(t) = nε
k, for t ∈ [εk, ε(k + 1)),

where νij denotes the jth component of the stationary measure νi. Under
suitable conditions, we will derive limit process nε(·), show it converges
weakly to a switching diffusion process, and derive exponential-type upper
bounds of the form

E exp
(

KT

(T + 1)3
|nε(t)|

)
≤ K,

for some K, KT > 0. In carrying out these tasks, the asymptotic expansions
are indispensable. More of these will be said in Chapters 4 and 5.

3.1.2 Outline of the Chapter
For ease of presentation, in the technical development throughout the book,
we will mainly concentrate on time-homogeneous Markov chains, in which
Pk = P and Qk = Q given in (3.1) are constant matrices not depend-
ing on k. A large portion of the results can be extended to certain time-
inhomogeneous Markov chains.

The rest of the chapter is arranged as follows. Section 3.2 presents the
formulation and the conditions needed. Section 3.3 proceeds with the study
of constructing asymptotic expansions when the transition matrix is irre-
ducible for motivational purposes and for introducing the basic techniques
to be used. For this simple and easy to understand case, the matching
of initial layer corrections with the outer expansions is relatively straight-
forward. It allows us to present the main steps involved in obtaining the
formal asymptotic expansions. Section 3.4 takes up the issue of construct-
ing asymptotic expansions when multiple irreducible classes are involved.
The problem becomes more involved; care must be taken for the matching.
The formal expansions are obtained in Section 3.4, whereas error bounds
are derived in Section 3.5. In Section 3.6, we present several examples to
demonstrate how the asymptotic expansions can be constructed. Finally,
we place the proofs of several technical results in Section 3.7, and close the
chapter with some further remarks in Section 3.8.
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3.2 Formulation and Conditions

Being a dominating force in P ε, the structure of P is important. In a finite-
state Markov chain, there is at least one recurrent state (i.e., not all states
are transient). In fact, (see, for example, Iosifescu [73, p. 94]) any transition
probability matrix of a finite-state Markov chain with stationary transition
probabilities can be put into the form of either

P = diag(P 1, . . . , P l0) =

⎛⎜⎜⎝
P 1

P 2

. . .
P l0

⎞⎟⎟⎠ , (3.5)

or

P =

⎛⎜⎜⎜⎜⎝
P 1

P 2

. . .
P l0

P ∗,1 P ∗,2 · · · P ∗,l0 P ∗

⎞⎟⎟⎟⎟⎠ , (3.6)

where each P i is a transition matrix within the ith recurrent class Mi for
i ≤ l0, and the last row (P ∗,1, · · ·P ∗,l0 , P ∗) in (3.6) is a result from the
transient states. Here and henceforth, diag(A1, . . . , Aj) denotes a block-
diagonal matrix with matrix entries A1, . . . , Aj having appropriate dimen-
sions.

If the Markov chain has no transient states, by appropriately rearranging
the states, the transition matrix can always be written as (3.5), and the
chain is referred to as recurrent. The matrix P alone does not allow any
transitions from recurrent class i to recurrent class j for i = j. The term
εQ, however, facilitates the transitions among different recurrent classes.
Nevertheless, compared with the transitions dictated by P , the transitions
attributed to εQ represent “weak” interactions. If there are transient states,
by rearrangement, P will be of the form (3.6). Note that P ∗,i, i = 1, . . . , l0,
are the transition probabilities from the transient states to the recurrent
states, and P ∗ is the transition probabilities within the transient states. To
proceed, we need the following condition.

(A3.1) Consider P ε = P + εQ, where ε > 0 is a small parameter, P is
a transition matrix (i.e., P = (pij) with pij ≥ 0 and

∑
j pij = 1

for each i) given by (3.5) or (3.6), and Q is a generator (i.e.,
Q = (qij) with qij ≥ 0 if i = j and

∑
j qij = 0 for each i) of

a continuous-time Markov chain. For P given by (3.5) or (3.6),
and for each i ≤ l0, P i is transition probability matrix that is
irreducible and aperiodic. In addition, for P given by (3.6), P ∗

is a matrix having all of its eigenvalues inside the unit circle.
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For the case of inclusion of transient states, the assumption above im-
plies that P ∗, corresponding to transition probabilities within the class of
transient states, after an extended time will be negligible.

3.2.1 Decomposition and Subspaces
For P given in (3.5), the state space of the Markov chain M admits a
decomposition of the form

M = M1 ∪ · · · ∪ Ml0

= {s11, . . . , s1m1} ∪ · · · ∪ {sl01, . . . , sl0ml0
},

(3.7)

whereas for P given in (3.6), the state space M is decomposable into the
following form

M = M1 ∪ · · · ∪ Ml0 ∪ M∗

= {s11, . . . , s1m1} ∪ · · · ∪ {sl1, . . . , slml0
} ∪ {s∗1, . . . , s∗m∗},

(3.8)

with m0 = m1 + m2 + · · · + ml0 + m∗. The subspaces Mi for i = 1, . . . , l0
consist of recurrent states belonging to l0 different ergodic classes, and the
subspace M∗ consists of transient states.

3.2.2 Asymptotic Expansions
For future use, for an appropriate function f : R

1×m0 �→ R
1×m0 , define an

operator Lε as
Lεf(k) = f(k + 1) − f(k)P ε

k . (3.9)

We construct matched asymptotic expansions of the form

pε
k = Uε

n0
(εk) + V ε

n0
(k) + eε

n0
(k), (3.10)

where eε
n0

(k) represents the approximation error, and

Uε
n0

(εk) =
n0∑

j=0

εjϕj(εk), V ε
n0

(k) =
n0∑

j=0

εjψj(k). (3.11)

The term Uε(εk) is the outer expansion and V ε(k) the initial-layer cor-
rection. After these terms are found, we then prove the formal asymptotic
series has the desired approximation error bounds.

3.3 Asymptotic Expansions: Irreducible Case

In this section, we consider a simple case with an irreducible Markov chain.
We present asymptotic expansions of the probability vectors and transition
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matrices under the condition of irreducibility. This section is mainly for
motivational purpose; it also outlines the main steps in constructing the
asymptotic series without much of the undue technical complication. It is
informative and instructive to work out this less complicated situation first.
We begin with the difference equation in (3.2), assume that the transition
matrix P ε is given by (3.1) and that P is irreducible and aperiodic. We will
show in what follows that pε

k given in (3.2) converges to ν = (ν1, . . . , νm0),
the stationary distribution. Note that the convergence takes place as ε → 0,
k → ∞, but εk remains to be bounded. For future reference, we state the
desired asymptotic expansions in the following remark.

Remark 3.1. Suppose that P ε = P +εQ and that P is irreducible. For an
integer n0 > 0, for some T > 0, and for any 0 ≤ k ≤ 
T/ε�, as ε → 0 and
k → ∞, pε

k → ν, where ν is the stationary distribution corresponding to P .
Moreover, there exist two sequences {ϕi(t)}n0

i=0, 0 ≤ t ≤ T , and {ψi(k)}n0
i=0

such that |ψi(k)| ≤ Kλk
0 for some 0 < λ0 < 1, that ϕi(·) for i = 0, . . . , n0

are sufficiently smooth, and that

sup
0≤k≤	T/ε


∣∣∣∣pε
k −

n0∑
i=0

εiϕi(εk) −
n0∑
i=0

εiψi(k)
∣∣∣∣ = O(εn0+1).

Since P and Q are constant matrices, the k-step transition matrix asso-
ciated with P ε depends only on the time difference k and can be denoted
by (P ε)k. Then

(P ε)k = P + Ψ0(k) + εΦ1(εk) + εΨ1(k) + O(ε2), (3.12)

such that P = 1lν, a matrix having identical rows, with each row being the
stationary distribution associated with the transition matrix P . Moreover,
|Ψi(k)| ≤ Kλk

0 for some K > 0 and i = 0, 1. In the above and hereafter,
K > 0 represents a generic positive constant; its values may change for
different uses. It is understood that the convention K +K = K and KK =
K is used.

The λ0 given above is related to the absolute value of the “largest”
non-unity eigenvalues of P . Note that any transition matrix always has
an eigenvalue 1. The aperiodicity implies that no eigenvalues other than
1 are on the unit circle. It can be shown that both ϕ1(t) and Φ1(t) are
independent of the initial conditions and Φ1(t) has identical rows.

To obtain the asymptotic series, the first step is to construct the formal
expansions, the second step derives the decay properties of the initial layer
corrections, and the third step validates the asymptotic expansions by pro-
viding error estimates. In this section, we only concern ourselves with the
formal asymptotic expansions. Validations of the asymptotic expansions
for general cases are given in Section 3.7.
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Note that in (3.10), there are two time scales, fast time scale k ≤ 
T/ε�
and slow time scale εk. Define a new variable t = εk. Our task is to con-
struct an approximation to the solution of (3.2). Using a Taylor expansion
of ϕi(t + ε) about t, we obtain

ϕi(t + ε) − ϕi(t) =
n0+1−i∑

j=1

εj

j!
djϕi(t)

dtj
+ O(εn0+2−i), 0 ≤ i ≤ n0,

ϕn0+1(t + ε) − ϕn0+1(t) = ε
dϕn0+1(t)

dt
+ O(ε2).

(3.13)
In view of (3.10) and (3.11), substituting Uε

n0+1(t) + V ε
n0+1(k) into

Lε[Uε
n0+1(t) + V ε

n0+1(k)] = 0,

for the outer expansion terms, we obtain

ϕ0(t)(P − I) = 0,

ϕi(t)(P − I) = ξ̃i−1(t), for 1 ≤ i ≤ n0 + 1,
(3.14)

where

ξ̃i−1
def=

i∑
j=1

1
j!

djϕi−j(t)
dtj

− ϕi−1(t)Q, 1 ≤ i ≤ n0 + 1.

Define an augmented matrix Qc = ((P − I)
...1lm0). The system of homo-

geneous equations {
ϕ0(t)(P − I) = 0,
ϕ0(t)1lm0 = 1

can be rewritten as

ϕ0(t)Qc = (0′
m0

...1), (3.15)

where 0m0 ∈ R
m0×1 with all entries being 0. Note that QcQ

′
c is an m0 ×m0

matrix. The irreducibility implies that QcQ
′
c has full rank, i.e., rank[QcQ

′
c] =

m0. The unique solution of (3.15) is given by

ϕ0(t) = (0′
m0

...1)Q′
c[QcQ

′
c]

−1. (3.16)

Using exactly the same technique, we obtain the solutions of the rest of
systems of nonhomogeneous equations as

ϕi(t) = ξ̃i−1(t)Q′
c[QcQ

′
c]

−1, for 1 ≤ i ≤ n0 + 1. (3.17)

Note that these ϕi(t)’s are obtained in a consecutive manner. Thus, when
we solve the equation for ϕi(t), ϕj(t) for j ≤ i − 1 have been found and
ξ̃i−1(t) is a known function.
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The outer expansions provide a good approximation for t to be away from
0. However, it does not satisfy the initial condition. To compensate, we need
to use the initial layer corrections. To do so, in view of (3.10) and (3.11),
considering the expansion terms ψi(k) in Lε[Uε

n0+1(t)+V ε
n0+1(k)] = 0 leads

to
ψ0(k + 1) = ψ0(k)P,

ψi(k + 1) = ψi(k)P + ψi−1(k)Q, 0 < i ≤ n0 + 1.
(3.18)

To ensure the match of the outer expansions and the initial layer correc-
tions, we choose the initial conditions to be

ϕ0(0) + ψ0(0) = p0,

ϕi(0) + ψi(0) = 0, 1 ≤ i ≤ n0 + 1.

Then it is easily seen that

ψ0(k + 1) = (p0 − ϕ0(0))(P )k+1,

ψi(k + 1) = −ϕi(0)(P )k+1 +
k∑

j=0

ψi−1(j)Q(P )k−j , 0 < i ≤ n0 + 1.

(3.19)
Since P is irreducible and aperiodic, all of its non-unity eigenvalues are
inside the unit circle. Noting the orthogonality [p0 − ϕ0(0)]P = 0, it can
be seen that

|ψ0(k)| = |(p0 − ϕ0(0))((P )k − P )| ≤ Kλk
0 ,

for some K > 0 and some 0 < λ0 < 1. Similarly, noting ϕi(0)1lm0 = 0,
ψi(k)1lm0 = 0, and (3.19), we have

|ψi(k + 1)| =
∣∣∣∣ − ϕi(0)(P )k+1 +

k∑
j=0

ψi−1(j)Q(P )k−j

∣∣∣∣
≤ |ϕi(0)[(P )k+1 − 1lm0ν]| +

∣∣∣∣ k∑
j=0

ψi−1(j)Q[(P )k−j − 1lm0ν]
∣∣∣∣

≤ Kλk+1
0 + K

k∑
j=0

λj
0λ

k−j
0

≤ Kλk+1
0 + K

√
k(

√
λ0)k ≤ Kλk

1 ,

where 0 < λ0 ≤ λ1 =
√

λ0 < 1, in which, we have used k
√

λk
0 ≤ K, it

then follows that |ψ1(k)| ≤ Kλk
0 . Thus all the outer expansions and initial

layer correction terms have been found and the initial layer terms decay
geometrically (or exponentially) fast.
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As for the derivation of the corresponding result for transition matrices,
we seek expansions of the form

Φ0(t) + εΦ1(t) + Ψ0(k) + εΨ1(k) + ẽε
1(k),

with t = εk, and ẽε
1(k) represents the error. To illustrate, consider Φ0(t)

and Ψ0(k). Then it is easily seen that Φ0(t)(P −I) = 0. Use Φi
0(t) to denote

the ith row in Φ0(t). Then

Φi
0(t)(P − I) = 0 and Φi

0(t)1lm0 = 1.

The system above has a unique solution Φi
0(t) = ν, since P is irreducible

and aperiodic. Thus Φi
0(t) = ν is independent of t for each i ∈ M. Similarly,

we can obtain Φ1(t). Thus

P = 1lm0ν =

⎛⎝ ν1 . . . νm0

. . . . . . . . .
ν1 . . . νm0

⎞⎠ ,

Φ1(t) = 1lm0ϕ1(t) =

⎛⎝ϕ1
1(t) . . . ϕm0

1 (t)
. . . . . . . . .

ϕ1
1(t) . . . ϕm0

1 (t)

⎞⎠ .

(3.20)

As for the initial layer corrections, we have

Ψ0(k) = Ψ0(k − 1)P,

Ψ0(0) = I − P .
(3.21)

Ψ1(k) = Ψ1(k − 1)P + Ψ0(k − 1)Q,

Ψ0(0) = −Φ0(0).
(3.22)

We proceed to verify the geometric decay property. Similar to the asymp-
totic expansions of pε

k, in view of (3.21), since (I − P )P = 0,

|Ψ0(k)| = |(I − P )(P )k| = |(I − P )((P )k − P )|
≤ |I − P ||(P )k − P | ≤ Kλk,

for some K > 0 and some 0 < λ < 1. Similar calculations and estimates can
be used for higher-order expansions to obtain full asymptotic expansions
of the k-step transition matrix.

3.4 Asymptotic Expansions: General Case

This section is devoted to the asymptotic expansion of the solution of the
difference equation (3.2) with the matrix P given by (3.5) or (3.6). In what
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follows, the detailed development and the verbatim proofs are given for the
more complex case–inclusion of transient states. When P is given by (3.5),
the argument is even simpler. Our effort to follow lies in the construction
of Uε

n0
(εk) and V ε

n0
(k) and the proof of eε

n0
(k) = O(εn0+1) uniformly in

0 ≤ k ≤ 
T/ε�. The quantity n0 is the order of the asymptotic expansion.
For time-varying transition probability matrices, the n0 is related to the
smoothness of the transition functions for time-varying Markov chains. For
time-homogeneous transition matrices, (3.10) holds for any positive inte-
ger n0. That is, effectively, we can have an asymptotic series in lieu of a
polynomial in terms of ε. Our study is inspired and motivated by the work
of Hoppensteadt and Miranker [69]. Non-separable two-time methods are
used in that paper, whereas our asymptotic expansion uses a separable
form. As demonstrated for the continuous-time models, the separable form
of the asymptotic expansion is advantageous in many applications and is
useful for the study of occupation measures and related limit problems.
Note that in Hoppensteadt and Miranker [69], linear systems are treated;
it is required the matrices P and Q commute, and P be invertible. These
assumptions appear to be restrictive and are not suitable for transition
probability matrices; they are not needed in our approach. Furthermore,
our results can also be extended to time-inhomogeneous (time-dependent)
matrices Pk and Qk. In what follows, the formal expansion is obtained in
this section, and the justification of the expansion is provided in the next
section.

Again, we emphasize that in (3.10), there are two time scales, the fast
scale k ≤ 
T/ε� for some T > 0 and the slow time scale εk. For convenience,
define a new time variable t = εk. In view of the slow-time variable t,
we may write the Taylor expansion of ϕj(t + ε) as in (3.13). Substituting
Uε

n0+1(t)+V ε
n0+1(k) defined in (3.11) into (3.2), using (3.13), and comparing

the coefficients of like powers of εi result in

ϕ0(t)(P − I) = 0,

ϕ1(t)(P − I) =
dϕ0(t)

dt
− ϕ0(t)Q,

· · ·

ϕn0+1(t)(P − I) =
n0+1∑
j=1

1
j!

djϕn0+1−j(t)
dtj

− ϕn0(t)Q,

(3.23)

and

ψ0(k + 1) = ψ0(k)P,

ψ1(k + 1) = ψ1(k)P + ψ0(k)Q,

· · ·
ψn0+1(k + 1) = ψn0+1(k)P + ψn0(k)Q.

(3.24)
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We proceed to find ϕi(t) and ψi(k). As is usual with singular perturbation
method, for i ≤ n0, ϕi(t) does not satisfy the initial conditions in general.
To obtain the matched asymptotic expansions, care must be taken to match
the outer expansions with the initial layer corrections. Compared with the
case of irreducible matrix P , the problem is more delicate to handle now.
We illustrate the features in what follows.

3.4.1 Constructing ϕ0(εk) and ψ0(k)
Henceforth, for a vector v, we use a partitioned form

v = (v11, . . . , v1m1 , . . . , vl01, . . . , vl0ml0 , v∗1, . . . , v∗m∗)

= (v1, . . . , vl0 , v∗),

where vi ∈ R
1×mi for each i = 1, . . . , l0, ∗. Using this notation and the par-

titioned form of the matrix P , for the leading term in the outer expansion,
we obtain

ϕi
0(t)(P

i − I) + ϕ∗
0(t)P

∗,i = 0, 1 ≤ i ≤ l0,

ϕ∗
0(t)(P

∗ − I) = 0.
(3.25)

Here and hereafter, I always denotes the identity matrix of appropriate
dimensions. For instance, in P i − I, I is an mi ×mi identity matrix, and in
P ∗ − I, I is an m∗ × m∗ identity matrix. We suppress the mi dependence
when there is no confusion from the context.

Since P ∗ is a nonnegative matrix having all of its eigenvalues inside the
unit circle, P ∗ − I is invertible. As a result, the last equation in (3.25)
has only the trivial solution ϕ∗

0(t) = 0. Since ϕ0(t) represents the limit
probability vector, the limit probability of the transient states disappears,
which is expected. Substituting this into the rest of the l0 equations in
(3.25) yields that

ϕi
0(t)(P

i − I) = 0, 1 ≤ i ≤ l0.

Since for each i = 1, . . . , l0, P i is irreducible,

ϕi
0(t)(P

i − I) = 0, ϕi
0(t)1lmi = θi

0(t), (3.26)

is uniquely solvable, where θi
0(t) satisfying θi

0(t) ≥ 0 and
∑l0

i=1 θi
0(t) = 1 is

to be determined. Write the leading term as

ϕ0(t) = (θ1
0(t), . . . , θ

l0
0 (t), 0′

m∗)diag(ν1, . . . , νl0 , 0m∗×m∗),

where 0m∗ ∈ R
m∗×1 is a zero vector, 0m∗×m∗ is an m∗ × m∗ zero matrix,

and for i = 1, . . . , l0, νi is the stationary distribution corresponding to the
transition matrix P i. Our task now is to find θ0(t).
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To proceed, define 1̃l and 1̃l∗ as

1̃l = diag(1lm1 , . . . , 1lml0
) =

⎛⎜⎝ 1lm1

. . .
1lml0

⎞⎟⎠ and

1̃l∗ =
(

1̃l
A∗ 0m∗×m∗

)
=

⎛⎜⎜⎜⎝
1lm1

. . .
1lml0

a1 . . . al0 0m∗×m∗

⎞⎟⎟⎟⎠ ,

(3.27)

where A∗ = (a1, . . . , al0) ∈ R
m∗×(m1+···+ml0 ) with

ai = −(P ∗ − I)−1P ∗,i1lmi , i = 1, . . . , l0. (3.28)

Note that ai ≥ 0 for i = 1, . . . , l0 (i.e., all of their components are nonneg-
ative; see Chapter 2 for the notation). Moreover, using

P ∗1lm∗ +
l0∑

i=1

P ∗,i1lmi = 1lm∗ ,

it is easily verified that
l0∑

i=1

ai = 1lm∗ . (3.29)

Therefore, ai represents the probability of transition from the transient
states to the ith recurrent class Mi.

It is clear that (P − I)1̃l∗ = 0. This orthogonality condition will be used
in the subsequent development. Multiplying the second equation in (3.23)
by 1̃l∗ results in

ϕ0(t)Q1̃l∗ − dϕ0(t)
dt

1̃l∗ = 0. (3.30)

Partition Q as Q =
(

Q11 Q12

Q21 Q22

)
, where Q11 ∈ R

(m0−m∗)×(m0−m∗), Q12 ∈
R

(m0−m∗)×m∗ , Q21 ∈ R
m∗×(m0−m∗), Q22 ∈ R

m∗×m∗ , and

Q∗ = diag(ν1, . . . , νl0)(Q111̃l + Q12(a1, . . . , al0)). (3.31)

Using θ0(t) = (θ1
0(t), . . . , θ

l0
0 (t)) ∈ R

1×l0 and (3.26), (3.30) becomes

d

dt
θ0(t) = θ0(t)Q∗. (3.32)

Noting that p0 is independent of ε, p0 = (p1
0, . . . , p

l0
0 , p∗

0) (where pi
0 ∈

R
1×mi) and examining p01̃l∗, we choose the initial condition θi

0(0) for each
i = 1, . . . , l0 as

θi
0(0) = pi

01lmi
+ p∗

0a
i, or equivalently θ0(0) = p01̃l∗.
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It follows from (3.29) that

θ1
0(0) + · · · + θl0

0 (0) = 1.

Thus (3.32) is uniquely solvable, so ϕ0(t) is completely determined.
Next, examining (3.24), the solution of ψ0(k) is given by

ψ0(k) = ψ0(0)(P )k.

To ensure the match of the outer expansion and the initial layer correction,
we choose the initial conditions so that

ϕ0(0) + ψ0(0) = p0. (3.33)

Remark 3.2. To proceed, we deduce an ergodicity result. The essence is
an estimate derivable from Perron and Frobenius’s work on nonnegative
matrices (see Iosifescu [73, p. 51]). For each i ≤ l0, the stationary distri-
bution νi is a left eigenvector of P i and 1lmi is a right eigenvector of P i.
By virtue of Billingsley [18, p. 167 and p. 168] (or Iosifescu [73, p. 123]),
as k → ∞, (P i)k → 1lmiν

i and |(P i)k − 1lmiν
i| ≤ Kλk for some 0 < λ < 1.

Note that similar to (3.20), 1lmiν
i has identical rows containing the sta-

tionary distribution νi. Define

ν̃∗ = 1̃l∗diag(ν1, . . . , νl0 , 0m∗×m∗) ∈ R
m0×m0 . (3.34)

The following lemma demonstrates that (P )k converges to ν̃∗ geometrically
fast, proof of which is deferred until Section 3.6 in order not to disrupt the
flow of presentation.

Lemma 3.3. For some 0 < λ < 1 and for k ≥ 0, |P k − ν̃∗| ≤ Kλk.

By virtue of Lemma 3.3, we proceed to establish the geometric decay
property of ψ0(k). Note that (3.33) implies ψ0(0)1̃l∗ = 0. It follows that
(p0 − ϕ0(0))ν̃∗ = 0. Thus,

ψ0(k) = (p0 − ϕ0(0))P k = (p0 − ϕ0(0))(P k − ν̃∗).

Lemma 3.3 then implies that for some 0 < λ < 1 and for k ≥ 0,

|ψ0(k)| ≤ Kλk.

The leading terms ϕ0(εk) and ψ0(k) in the asymptotic expansion have been
constructed together with the verification of the decay property of ψ0(k).

Remark 3.4 Note that ϕ0(t) is the limit of the probability vector pε
k. It

has the form (θ1
0(t)ν

1, . . . , θl0
0 (t)νl0 , 0′

m∗), where 0′
m∗ is an m∗-dimensional

zero row vector. In view of (3.8), for the transient part, P (αε
k = s∗j) → 0.

As for the recurrent part, for each i = 1, . . . , l0, the limit distribution is
of the form θi

0(t)ν
i, which has the meaning of total probability and is the

limit of
P (αε

k ∈ Mi)P (αε
k = sij |αε

k ∈ Mi).
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3.4.2 Constructing ϕn(t) and ψn(k) for n ≥ 1
The construction relies on the solutions of (3.23) and (3.24). It is done
inductively. Suppose that ϕj(t) and ψj(k), for j = 0, 1, . . . , n − 1, have
been constructed such that ϕj(t) are sufficiently smooth and ψj(k) decay
exponentially fast. We proceed to obtain the nth terms. For the outer
expansion, consider

ϕn(t)(P − I) =
n∑

j=1

1
j!

djϕn−j(t)
dtj

− ϕn−1(t)Q
def= ξn−1(t). (3.35)

Again, we use the partitioned vector

ϕn(t) = (ϕ1
n(t), ϕ2

n(t), . . . , ϕl0
n (t), ϕ∗

n(t)).

Then equation (3.35) can be rewritten as

ϕi
n(t)(P i − I) + ϕ∗

n(t)P ∗,i = ξi
n−1(t), i = 1, . . . , l0,

ϕ∗
n(t)(P ∗ − I) = ξ∗

n−1(t).
(3.36)

The solution of the last equation above is

ϕ∗
n(t) = ξ∗

n−1(t)(P
∗ − I)−1. (3.37)

This leads to

ϕi
n(t)(P i − I) = ξi

n−1(t) − ξ∗
n−1(t)(P

∗ − I)−1P ∗,i. (3.38)

Owing to the Fredholm alternative (see Lemma 14.36), this equation has
a solution if and only if the right-hand side is orthogonal to 1lmi , which is
easily verified by a direct computation. Consequently, the solution can be
written as

ϕi
n(t) = θi

n(t)νi + ϕ̃i
n(t), (3.39)

where ϕ̃i
n(t) denotes a particular solution of (3.38). Substituting ϕi

n(t) given
in (3.39) into (3.35) yields the differential equation

d

dt
θn(t) = θn(t)Q∗ + ξ̂n(t), (3.40)

where
θn(t) = (θ1

n(t), . . . , θl0
n (t)),

and ξ̂n(t) is the vector consists of the first l0 components of

− d

dt
ϕ̃n(t)1̃l∗ + ϕ̃n(t)Q1̃l∗ −

n+1∑
j=2

1
j!

dj

dtj
ϕn+1−j(t)1̃l∗.
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Using the defining equation of ψn(k), we obtain

ψn(k + 1) = ψn(0)P k+1 +
k∑

j=0

ψn−1(j)QP k−j . (3.41)

Next we determine the initial conditions θi
n(0) through the matching of

ϕn(εk) with ψn(k). Choose the initial values such that

ψn(0) = −ϕn(0). (3.42)

Examining (3.41), we demand that ψn(k) → 0 as k → ∞. This implies that

ψn(0)ν̃∗ = −
∞∑

j=0

ψn−1(j)Qν̃∗
def= −sn−1ν̃∗. (3.43)

Remark 3.5. Since ϕj(t) and ψj(k) for j ≤ n − 1 have been found, sn−1
is a known vector. By virtue of the definition of ν̃∗ in (3.34), (3.43) leads
to

(ψ1
n(0)1lm1ν

1 + ψ∗
n(0)a1ν1, . . . , ψl0

n 1lml0
νl0 + ψ∗

n(0)al0νl0 , 0m∗)

= (s1
n−11lm1ν

1 + s∗
n−1a

1ν1, . . . , sl0
n−11lml0

νl0 + s∗
n−1a

l0νl0 , 0m∗).

Since ϕ∗
n(t) can be obtained from (3.36), ψ∗

n(0) can be obtained from (3.42).
Note that 1lmi

νi has identical rows (νi1, . . . , νimi). Although (3.43) contains
m0 equations, there are only l0 unknowns, namely, ψi

n(0)1lmi . To determine
the initial conditions, we first solve for these l0 unknowns. Then we obtain
θi

n(0) = −ψi
n(0)1lmi

. Once we obtain θi
n(0), ϕn(t) is completely specified,

so ϕn(0) is found. Finally, we choose ψn(0) by using (3.42), and complete
the construction of the formal expansions.

We detail the steps outlined in the above remark as follows. First,

ψi
n(0)1lmi + ψ∗

n(0)ai = −[si
n−11lmi + s∗

n−1a
i].

Owing to (3.37), and ϕ∗
n(0) = −ψ∗

n(0),

ψi
n(0)1lmi

= −[si
n−11lmi

+ s∗
nai] + ξ∗

n−1(0)(P ∗ − I)−1ai.

We choose θi
n(0) = −ψi

n(0)1lmi for i = 1, . . . , l0. Using θi
n(0) to determine

ϕn(0) as in (3.39) and then determine ψn(0) by means of (3.42). Thus
the initial conditions are uniquely determined and the construction of the
asymptotic expansion is completed. We summarize the development so far
into the following theorem.

Theorem 3.6. Suppose that Condition (A3.1) holds for P given by (3.6).
Then the asymptotic expansions can be constructed via (3.23) and (3.24)
together with the specification of the initial data (3.42) and (3.43) such that
for n = 0, . . . , n0, ϕn(t) are sufficiently smooth and |ψn(k)| ≤ Kλk

0 for
some 0 < λ0 < 1.
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Remark 3.7. In what follows, for notational simplicity, we will not distin-
guish different λ’s. We will simply write λ as a generic constant satisfying
0 < λ < 1.

3.5 Error Bounds

Up to now, we have constructed the asymptotic expansions formally. To
validate the expansions, we must derive the desired error bounds. Recall
the operator Lε defined in (3.9) and the nth-order approximation error
eε

n(k) given by

eε
n(k) =

n∑
j=0

εjϕj(εk) +
n∑

j=0

εjψj(k) − pε
k, for n = 0, . . . , n0 + 1,

where pε
k is the solution of (3.2). Our plan is as follows. We first obtain

a lemma that establishes a bound on Lεeε
n(k). The second step presents

an auxiliary lemma based on a non-homogeneous equation. Combining the
two steps yields the desired error estimates.

3.5.1 Estimates on Lεeε
n(k)

Note that in view of the definition of Lε and by virtue of Theorem 3.6, for
each n = 0, . . . , n0 + 1,

Lεeε
n(k) = Lε

( n∑
j=0

εjϕj(εk) +
n∑

j=0

εjψj(k)
)
.

Owing to (3.23) and (3.24), we have

Lε
( n∑

j=0

εjϕj(εk) +
n∑

j=0

εjψj(k)
)

=
n∑

j=0

εj [ϕj(ε(k + 1)) − ϕj(εk)(P + εQ)]

+
n∑

j=0

εj [ψj(k + 1) − ψj(k)(P + εQ)].

(3.44)

Using (3.24), it is easily checked that

n∑
j=0

εj [ψj(k + 1) − ψj(k)(P + εQ)] = −εn+1ψn(k)Q.
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By virtue of the defining relation (3.23), detailed estimates yield
n∑

j=0

εj [ϕj(ε(k + 1)) − ϕj(εk)(P + εQ)]

=
n∑

j=0

εj [ϕj(ε(k + 1)) − ϕj(εk)] −
n∑

j=0

εjϕj(εk)((P − I) + εQ)

=
n∑

j=0

εj

n+1−j∑
i=1

[
εi

i!
diϕj(εk)

dti
+ O(εn+2−i)

]
−

n∑
j=0

εjϕj(εk)((P − I) + εQ)

= O(εn+1).
(3.45)

Thus the following lemma is obtained.

Lemma 3.8. Under the conditions of Theorem 3.6, we have Lεeε
n(k) =

O(εn+1), for each n = 0, . . . , n0 + 1.

3.5.2 An Estimate of eε
n(k)

The main result here is recorded in the following lemma.

Lemma 3.9. Suppose that, for some n > 0,

Lεe(k) = O(εn+1), e(0) = 0.

Then the solution of the above initial value problem satisfies

sup
0≤k≤	T/ε


|e(k)| = O(εn).

Proof. Since e(k) is the solution of the difference equation

e(k) = e(k − 1)P ε + O(εn+1),

with initial data e(0) = 0, the solution can be written as

e(k) =
k−1∑
j=0

O(εn+1)(P ε)j , for k = 0, . . . , 
T/ε�, (3.46)

and as a result

sup
0≤k≤	T/ε


|e(k)| ≤ O(εn+1)
T/ε� = O(εn)

as desired. �

With the preparation of Lemmas 3.8 and 3.9, we are ready to derive the
desired error estimates. The result is stated in the next theorem, and the
proof is postponed until the next section.
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Theorem 3.10. Under the conditions of Theorem 3.6,

sup
0≤k≤	T/ε


|eε
n0

(k)| = O(εn0+1).

Note that Theorems 3.6 and 3.10 also hold for P given by (3.5), and the
analysis is simpler.

3.5.3 Expansions of k-step Transition Matrices
Parallel to the asymptotic development of the probability vector pε

k, we may
also obtain asymptotic expansions of k-step transition matrices. Recall the
defining equation (3.3). As stated earlier that when Pk = P and Qk = Q,
the k-step transition matrix P̃ ε

k = (P ε)k, owing to the homogeneity of the
transition matrices. Note that (3.3) can be considered as a special case of
(3.2) since the ith row of the matrix is a solution of (3.2) with a specific
initial condition (the ith unit vector).

We seek asymptotic expansions of the form

Ũε
j (εk) =

j∑
i=0

εiΦi(εk), Ṽ ε
j (k) =

j∑
i=0

εiΨi(k), j = 1, . . . , n0. (3.47)

Proceeding exactly as we did in the previous cases, substituting the above
expansion into the equation (P ε)k+1 = (P ε)kP ε and comparing coefficients
of like powers of ε, we obtain

Φ0(t)(P − I) = 0,

Φi+1(t)(P − I) =
i+1∑
j=1

1
j!

djΦi+1−j(t)
dtj

− Φi(t)Q, i = 0, . . . , n0,
(3.48)

and

Ψ0(k + 1) = Ψ0(k)P,

Ψi+1(k + 1) = Ψi+1(k)P + Ψi(k)Q, i = 0, . . . , n0,
(3.49)

with the initial data

Φ0(0) + Ψ0(0) = I,

Φi(0) = −Ψi(0), i = 1, . . . , n0 + 1.
(3.50)

To find these Φn(t)’s, we consider, for example,

Φ0(t) = (Φ1
0(t), . . . ,Φ

l0
0 (t), Φ∗

0(t))
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where Φi
0(t) ∈ R

m0×mi for i = 1, . . . , l0, ∗. Then we obtain

Φi
0(t)(P

i − I) + Φ∗
0P

∗,i = 0, i = 1, . . . , l0,

Φ∗
0(t)(P

∗ − I) = 0.

Similar to the asymptotic expansions for pε
k, Φ∗

0(t) = 0, so we can proceed
to solve Φi

0(t)(P
i − I) = 0 for i = 1, . . . , l0. Denote

Θ∗(t) = diag(Θ(t), Im∗×m∗) ∈ R
(l0+m∗)×(l0+m∗),

where Θ(t) = (θij(t)) ∈ R
l0×l0 satisfies

dΘ(t)
dt

= Θ(t)Q, Θ(0) = I. (3.51)

Or equivalently, Θ∗(t) satisfies

dΘ∗(t)
dt

= Θ∗(t)Q∗, Θ(0) = I.

Detailed argument leads to

Φ0(t) = 1̃l∗Θ∗(t)ν̃∗ =
(

1̃lΘ(t)ν 0(m0−m∗)×(m0−m∗)
A∗Θ(t)ν 0m∗×m∗

)
, (3.52)

where A∗ is defined in (3.27). For the initial layer correction term, using the
initial condition Ψ0(0) = I − Φ0(0), similar to Theorem 3.6, we can show
that there is a 0 < λ < 1 such that |P k − ν̃∗| ≤ Kλk and, consequently,

|Ψ0(k)| = |(I − Φ0(0))(P k − ν̃∗)| ≤ Kλk.

Working our way to higher-order terms, the same methods of proof as in
Theorems 3.6 and 3.10 yield the following theorem.

Theorem 3.11. Under (A3.1), asymptotic expansions Ũε
j (εk) and Ṽ ε

j (k)
for j = 1, . . . , n0 can be constructed such that Φi(t) are sufficiently smooth
and Ψ(k) decay exponentially fast. Moreover,

sup
0≤k≤	T/ε


∣∣(P ε)k − Ũε
n0

(εk) − Ṽ ε
n0

(k)
∣∣ = O(εn0+1). (3.53)

Remark 3.12. The theorem above is concerned with time-homogeneous
discrete-time Markov chains exclusively. When the transition matrices are
time dependent (i.e., in (3.1), Pk or Qk or both are k-dependent), the
situation is more complex and care needs to be exercised in obtaining the
approximation of the k-step transition matrices; see Yin and Zhang [158,
pp. 82–84] for a continuous-time analog.
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3.6 Examples

This section presents several examples. In these examples, the discrete-
time Markov chains all involve two time scales. We demonstrate how to
construct the asymptotic expansions of their probability vectors and tran-
sition matrices.

Example 3.13. In Chapter 1, Examples 1.5 and 1.6, we have encountered
such Markov chains αε

k whose transition matrix is given by P ε = I + εQ.
Note that the identity matrix may be written as I = diag(1, . . . , 1), so
P = I can be regarded as a transition matrix consisting of m0 ergodic
classes, each of which is an absorbing state. Using the results in Theorems
3.6 and 3.10, we obtain that

pε
k = ϕ0(εk) + O(ε), 0 ≤ k ≤ T/ε,

where ϕ0(t) satisfies the ordinary differential equation

dϕ0(t)
dt

= ϕ0(t)Q, ϕ0(0) = p0.

Thus the 0th-order initial layer term ψ0(k) = 0 for 0 ≤ k ≤ T/ε due to the
fact ψ0(0) = 0. It is interesting to note that a naive thought may suggest
dropping the εQ in the limit, but such a conclusion in fact is not correct.
The absence of the 0th-order initial layer term is a distinct characteristic
tied up with the absorbing states. For a continuous-time analog, we refer
the reader to Yin and Zhang [158, Section 6.3].

Example 3.14. Suppose that αε
k is a discrete-time Markov chain with

state space M given in (3.7) and transition matrix P ε = P + εQ. Define
Nk to be the counting process that counts the number of transitions of the
Markov chain αε

k up to k. Denote

f(k + 1) = E(Nk+1 − Nk) with f(0) = 0,

which is referred to as the frequency of the transition and is the mean
number of transitions in the (k + 1) step. Then it is easily seen that

f(k + 1) =
l0∑

i=i

mi∑
j=1

P (αε
k = sij)(1 − pε,ij,ij),

where
pε,ij,ij = P (αε

k+1 = sij |αε
k = sij)

denotes the transition probability that the Markov chain will remain in
state sij during the (k + 1)st transition. Now consider the case that the
transition probability matrix P ε of the Markov chain αε

k has the form P ε =
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P +εQ with P given by (3.5). Now all the functions of interests are indexed
by ε. Consequently, using the asymptotic expansions in Theorem 3.10, we
obtain

fε(k + 1) =
l0∑

i=1

mi∑
j=1

θi
0(εk)νij(1 − pij,ij) + O(ε), k = O(1/ε),

where pij,ij is defined as that of pε,ij,ij but corresponding to the transition
matrix P not P ε, and νij denotes the jth component of νi the stationary
distribution of P i. Furthermore, we can approximate the mean number of
transitions from Mi1 = {si11, . . . , si1mi1

} to Mi2 = {si21, . . . , si2mi2
} for

i1 = i2 as

fMi1Mi2
(k + 1) =

mi1∑
j1=1

mi2∑
j2=1

θi1
0 (εk)νi1j1pi1j1,i2j2 + O(ε), k = O(1/ε).

Example 3.15. Suppose that αε
k is a discrete-time Markov chain whose

transition probability matrix is given by (3.1) with P given by (3.5). Sup-
pose that (A3.1) holds. Then by virtue of Theorems 3.6 and 3.10, we can
construct asymptotic expansions of pε

k, the solution of (3.2), and

pε
k = diag(ν1, . . . , νl0)θ(t) + O(ε + λk),

for some 0 < λ < 1, where θ(t) ∈ R
1×l0 satisfies the differential equation

dθ(t)
dt

= θ(t)Q, θ(0) = p01̃l.

Suppose that in addition that P ε
k is irreducible. Consider

Jε = lim sup
N→∞

1
N

E

N−1∑
k=0

g(αε
k),

for a suitable Borel measurable function g(·). Then it is well known that a
Borel function hε(·) satisfies the so-called Poisson equation

hε(i) + Jε = g(i) +
m0∑
j=1

pε,ijhε(j),

or equivalently,

Jε = g(i) +
m0∑
j=1

(pε,ij − δij)hε(j), i = 1, . . . , m0, (3.54)

where δij = 1 if i = j and is 0 otherwise. It will be shown in Chapter 8
that associated with (3.54), there is a limit problem

J0 = lim sup
T→∞

E

∫ T

0
g(α(t))dt,
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where α(t) is a continuous-time Markov chain with state space M =
{1, . . . , l0} and generator Q. In fact, much more complicated Markov deci-
sion processes involving control variables will be considered there. Note that
Poisson equations have been used extensively in the context of stochastic
dynamic programming (see Ross [131]) and stochastic approximation (see
Metivier and Priouret [114]), among others.

Example 3.16. Let αε
k be a discrete-time Markov chain whose transition

probability matrix is given by (3.1) with P given by (3.6) and Q being a
generator of a continuous-time Markov chain. Assume that (A3.1) holds.
Then using Theorems 3.6 and 3.10, we can approximate the expectation
Ef(αε

k) for an arbitrary measurable function f(·). Note that

Ef(αε
k) =

l0∑
i=1

mi∑
j=1

f(sij)P (αε
k = sij).

The first approximation is to replace the probability P (αε
k = sij) by the

leading term in the asymptotic expansion. A moment of reflection reveals
that we can, in fact, find the asymptotic expansions of the expectation with
desired order of accuracy. In fact, we have

Ef(αε
k) =

l0∑
i=1

mi∑
j=1

n∑
	=0

ε	f(sij)[ϕ
ij
	 (t) + ψij

	 (k)] + O(εn+1),

and the error bounds hold uniformly for 0 ≤ k ≤ T/ε, where t = εk, ϕij
	 (t)

and ψij
	 (k) denote the jth components in the ith blocks ϕi

	(t) and ψi
	(k),

respectively.

3.7 Proofs of Results

This section contains the proofs of a number of technical results in the
construction of the asymptotic expansions and the asymptotic validation.

Proof of Lemma 3.3. Consider the following difference equation

w(k + 1) = w(k)P, w(0) = w0.

Rewriting w(k) in terms of the partitioned vectors, we arrive at

wi(k + 1) = wi(k)P i + w∗(k)P ∗,i, i = 1, . . . , l0,

w∗(k + 1) = w∗(k)P ∗.
(3.55)
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The solution of the last equation in (3.55) is w∗(k + 1) = w∗
0 [(P ∗)k+1].

Substituting this into the rest of the equations in (3.55) leads to

wi(k + 1) = wi
0(P

i)k+1 + w∗
0

k∑
j=0

(P ∗)jP ∗,i(P i)k−j .

A simple calculation shows that
∞∑

j=0

(P ∗)j = (I − P ∗)−1 = −(P ∗ − I)−1

since P ∗ has all of its eigenvalues inside the unit circle. By (A3.1) and
Remark 3.2, for each i = 1, . . . , l0, (P i)k → 1lmiν

i as k → ∞,∣∣∣ k∑
j=0

(P ∗)jP ∗,i(P i)k−j
∣∣∣ ≤

∞∑
j=0

|(P ∗)jP ∗,i1lmi
νi|

+
k∑

j=0

|(P ∗)jP ∗,i[(P i)k−j − 1lmiν
i]|

≤ K

∞∑
j=0

|(P ∗)jP ∗,i1lmiν
i| + K < ∞.

Note that

wi
01lmiν

i + w∗
0

∞∑
j=0

(P ∗)jP ∗,i1lmi
νi = (w1

0, . . . , w
l0
0 , w∗

0)ν̃∗,

where ν̃∗ is defined in (3.34). To obtain the desired estimate, we work with
each partitioned vector. For each i = 1, . . . , l0,

wi(k + 1) −
(
wi

01lmiν
i + w∗

0

∞∑
j=0

(P ∗)jP ∗,i1lmiν
i
)

= wi
0[(P

i)k − 1lmiν
i] + w∗

0

k∑
j=0

(P ∗)jP ∗,i[(P i)k−j − 1lmiν
i]

−w∗
0

∞∑
j=k+1

(P ∗)jP ∗,i1lmi
νi.

The condition on P ∗ implies∣∣∣∣w∗
0

∞∑
j=k+1

(P ∗)jP ∗,i1lmiν
i

∣∣∣∣ ≤ K|w∗
0 |λk+1

∗ .

Since for each i = 1, . . . , l0, P i is irreducible and aperiodic, by virtue
of Remark 3.2, |(P i)k − 1lmiν

i| ≤ Kλk
i , for some λi > 0. Choose λ =

max(λ1, . . . , λl0 , λ∗). The desired estimate follows. �
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Proof of Theorem 3.6. The smoothness of the outer-expansion terms
ϕn(·) can be verified by examining the solutions directly. As for the geo-
metric decay property of ψn(k), in view of (3.41), we have

ψn(k + 1) = ψn(0)(P k+1 − ν̃∗) +
k∑

j=0

ψi−1(j)Q(P k−j − ν̃∗)

−
∞∑

j=k+1

ψn−1(j)Qν̃∗.
(3.56)

Upon using k(
√

λ)k ≤ K, for each k = 0, . . . , 
T/ε�, and by virtue of
Lemma 3.3,

|ψn(k + 1)| ≤ Kλk+1 + K

k∑
j=0

λjλk−j + Kλk+1

≤ (K + k)λk ≤ K(
√

λ)k ≤ Kλk
0 ,

where 0 < λ <
√

λ = λ0 < 1. �

Proof of Theorem 3.10. By virtue of Lemma 3.8,

Lεeε
n0+1(k) = O(εn0+2).

Applying Lemma 3.9 to eε
n0+1(k) leads to

sup
0≤k≤	T/ε


|eε
n0+1(k)| = O(εn0+1).

Since
eε

n0+1(k) = eε
n0

(k) + εn0+1ϕn0+1(εk) + εn0+1ψn0+1(k),

the boundedness of ϕn0+1(εk) and ψn0+1(k) then implies

eε
n0+1(k) = eε

n0
(k) + O(εn0+1),

and hence
eε

n0
(k) = eε

n0+1(k) + O(εn0+1)

= O(εn0+1) + O(εn0+1)

= O(εn0+1).

The proof of the theorem is thus concluded. �

3.8 Notes

The subject matter discussed in this chapter is at the intersection of singu-
lar perturbation and Markov processes, both of which are covered widely in
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the literature. Singular perturbation theory (see, for example, Bender and
Orszag [12] or O’Malley [118] for a general introduction) may be traced
back to the study of Prandtl at the beginning of the 20th century, whose
work established the foundation of boundary layer theory. The methods
have been extensively used in, for example, various branches of physics,
including statistical mechanics, solid state physics, chemical physics, and
molecular biophysics. For related applications in control theory and opti-
mization, we refer the reader to Phillips and Kokotovic [125], Pan and Başar
[119], Pervozvanskii and Gaitsgori [123], and Yin and Zhang [158]. Discrete-
time singularly perturbed Markov chains have been considered by Abbad,
Filar, and Bielecki [2], Blankenship [21], and Delebecque and Quadrat [44],
among others. The idea of two-time-scale expansions has also been found
in emerging applications in communication theory (see Tse, Gallager, and
Tsitsiklis [144], among others), which opens up new avenues for diverse
applications.

Parallel to the advances in the deterministic theory, there is a stochas-
tic version of the averaging methods. It began with a seminal paper by
Khasminskii [81], continued with the large deviations approach of Friedlin
and Wentzell [59], and extended to the martingale averaging methods of
Kushner [97].

Much of our initial study was geared toward applications of manufac-
turing systems, in which the systems under consideration are of a hybrid
type and jump processes are used in the models. The recent book of Sethi
and Zhang contains a wide range of applications of production planning
and optimal control problems. Our systematic study began with the work
of Khasminskii, Yin, and Zhang [85, 86]; our subsequent effort has been
devoted to singularly perturbed systems involving Markov chains and re-
lated control problems; see Zhang, Liu, and Yin [177], Yin and Zhang
[158, 159, 160], Yin, Zhang, and Badowski [162, 163, 164], Yin, Zhang,
and Liu [166], Yin, Zhang, Yang, and Yin [168], Zhang [172, 173], Zhang
and Yin [179, 180, 181], and the references therein. Related work in sin-
gularly perturbed diffusions and singularly perturbed switching diffusions
can be found in Il’in, Khasminskii, and Yin [71, 72], Khasminskii and Yin
[84], and Yin [154].



4
Occupation Measures

4.1 Introduction

The asymptotic expansions obtained in Chapter 3 rely purely on analytic
techniques and the procedure is deterministic in nature. This demonstrates
how the probability distributions can be approximated by the correspond-
ing equilibrium distributions. To further understand asymptotic properties
of the two-time-scale Markov chains, in this chapter, we examine sequences
of occupation measures of the model considered in Chapter 3. Suppose that
T > 0 and ε > 0 is a small parameter, and that for 0 ≤ k ≤ 
T/ε�, αε

k

is a discrete-time Markov chain with state space M = {1, . . . , m0} and
transition matrix

P ε = P + εQ, (4.1)

where P is a transition matrix of a discrete-time Markov chain and Q is a
generator of a continuous-time Markov chain.

To motivate our study, let us begin with a relatively simple case, in which
P given in (4.1) is irreducible and aperiodic. Using the indicator function
IA of a set A, the expression

ε

k−1∑
l=0

I{αε
l =i} for each i ∈ M (4.2)

represents the duration that the Markov chain spends in state i before time
k − 1 and hence is termed an occupation measure. Clearly, it is a random
process. Note that the above summation is scaled by ε, which is needed



70 4. Occupation Measures

to make the sum well defined (finite) in the limit as ε → 0. By virtue of
Billingsley [18, Example 2, p. 167], αε

k is φ-mixing and hence is strongly
ergodic. Consequently, as ε → 0, we have that

ε

T/ε−1∑
l=0

I{αε
l =i} = T

[
1

(T/ε)

T/ε−1∑
l=0

I{αε
l =i}

]
→ Tνi w.p.1,

(4.3)

where νi is the ith component of the stationary distribution ν correspond-
ing to P . The above assertion is nothing but a strong law of large numbers.
In the above and henceforth, we use the convention that T/ε represents its
integer part. Define sequences of centered occupation measures by

πε,i
k = ε

k−1∑
l=0

[I{αε
l =i} − νi] for i ∈ M, 0 ≤ k ≤ T/ε. (4.4)

Both the asymptotic expansions developed in Chapter 3 for the proba-
bility distribution of αε

k and the strong law of large numbers (4.3) for the
occupation measures indicate that somehow αε

k can be approximated by its
stationary distribution ν in a suitable sense and πε,i

T/ε → 0 w.p.1 as ε → 0.

How close is such an approximation? How fast does πε,i
T/ε → 0? Is there any

central-limit-theorem type result? Answers to these questions along with
mean squares estimates and structural properties of the underlying Markov
chains are the central theme of this chapter. The question of assessing the
quality of approximation of αε

k by ν from a stochastic point of view can be
addressed by considering suitably scaled sequences. Note that if k in (4.4)
is independent of ε, the result is trivial. Thus we are mainly interested in
the case that k = O(1/ε). For this reason, k may be written as kε since it
is ε dependent. Roughly, the discussion above tells us that the occupation
measures (4.2) can be approximated by a deterministic quantity. Such an
approximation crucially depends on the fact that αε

k is φ-mixing.
If the Markov chain has transition matrix of the form (4.1) with P given

by

P = diag(P 1, . . . , P l0) =

⎛⎝P 1

. . .
P l0

⎞⎠ , (4.5)

where P i ∈ R
mi×mi are transition matrices and

∑l0
i=1 mi = m0, or

P =

⎛⎜⎜⎜⎜⎝
P 1

P 2

. . .
P l0

P ∗,1 P ∗,2 · · · P ∗,l0 P ∗

⎞⎟⎟⎟⎟⎠ , (4.6)
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where P i are transition matrices for each i ≤ l0 and (P ∗,1, . . . , P ∗,l0 , P ∗) in
(4.6) corresponds to the transient states. Note that the mixing condition
will no longer hold if P is given by (4.5) or (4.6). This can be seen by exam-
ining the asymptotic expansions for the probability vectors and transition
matrices. One of the consequences is that (4.2) cannot be approximated by
a deterministic function. That is, in treating a centered occupation measure
similar to that of (4.4), the centering term must be a random process. This
makes matters substantially more difficult and leads to a more involved
limit process.

We arrange the rest of the chapter as follows. Section 4.2 gives a moti-
vational example and illustrates how to obtain the desired limit results via
an examination of a simpler case under irreducible P . Section 4.3 addresses
the issues when the transition matrix P is given by either (4.5) or (4.6).
We will derive functional limit theorems which yield a limit switching dif-
fusion process. Section 4.4 includes the full proof of the result for the case
that P is given in (4.5). With the detailed proofs for P given by (4.5) and
definitions of related quantities for P given by (4.6), the reader can carry
out the extensions to include the transient state cases. Finally, Section 4.5
provides notes and further references.

4.2 Irreducible Chains

This section provides motivation for the subsequent technical development.
To make the discussion simple and easily accessible, we use a relatively
simpler model, namely, P being irreducible and aperiodic.

4.2.1 A Motivational Example
Let αε

k be a Markov chain with state space M = {1, 2} and transition
probability matrix (4.1) such that P and Q are given by

P =
(

0.55 0.45
0.4 0.6

)
and Q =

(−0.6 0.6
0.5 −0.5

)
.

It is easily seen that P is irreducible and ν = (0.4706, 0.5294) is the
corresponding stationary distribution. For demonstration purposes, let us
plot the sample path of αε

k with ε = 0.01 and αε
0 = 1 in Figure 4.1.

Strictly speaking, it should have been a scatter plot on lattice points only,
however. For a better visualization, we delineated the paths as if they were
continuous in time.

Examining (4.4), we would expect the scaled sequence nε,i
k = πε,i

k /
√

ε
for i = 1, 2 to behave like a normal distribution. To study the distribution
of nε,i

k , we first fix the time k at k = 1, 000 and calculate πε,i
k /

√
ε using

1000 replicates. The different random seeds yield a frequency distribution–a
histogram that is a function of the underlying sample point ω.
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FIGURE 4.1. Sample path of Markov chain with ε = 0.01
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FIGURE 4.3. Sample paths of scaled occupation measures

Figure 4.2 presents the frequency distribution of the Markov chain given
in Figure 4.1. The histogram on the left-hand side is for the first component,
whereas that of the second component is given on the right. Next, we focus
on one realization (keeping ω fixed) and trace out the sample paths of nε,i

k

for a fixed sample point ω. The sample paths are shown in Figure 4.3, where
the left-hand side graph displays the sample path of nε,1

k and the right-hand
side graph shows that of nε,2

k , respectively. Numerical experiments using
various P ε and with different initial conditions have shown similar results.

4.2.2 Discussion
The above numerical experiments confirm our intuition that the scaled
occupation measures are approximately normally distributed. To proceed,
we demonstrate how such a result can be obtained for the simpler case when
P is irreducible and aperiodic. The discussion is by no means detailed since
we will provide a verbatim proof for the more general cases later. This part
only serves the purpose of illustrating the main ideas.

We first obtain a mean-squares estimate. Note that using the asymptotic
expansions, we have

P (αε
k = i) = νi + O(ε + λk), k ≥ 0,

P (αε
k2

= i|αε
k1

) = νi + O(ε + λk2−k1) for k2 ≥ k1 ≥ 0.

Let ξk1k2 = P (αε
k1

= i, αε
k2

= i) − νiP (αε
k1

= i) − νiP (αε
k2

= i) + (νi)2.



74 4. Occupation Measures

Then we have

E(πε,i
k )2 = ε2

k−1∑
k1=0

k−1∑
k2=0

E
(
I{αε

k1
=i} − νi

)(
I{αε

k2
=i} − νi

)
= ε2

k−1∑
k1=0

k−1∑
k2=0

ξk1k2 .

Using ξk1k2 , we need only consider the partial sum with k2 ≥ k1. Therefore,

ε2
k−1∑
k1=0

k−1∑
k2=0

ξk1k2 ≤ Kε2
k−1∑
k1=0

k−1∑
k2≥k1

[
P (αε

k1
= i)P (αε

k2
= i|αε

k1
= i)

−νiP (αε
k1

= i) − νiP (αε
k2

= i) + (νi)2
]

≤ Kε2
k−1∑
k1=0

k−1∑
k2≥k1

[
(νi + O(ε + λk1))(νi + O(ε + λk2−k1))

−(νi)2 + O(ε + λk1 + λk2)
]
.

(4.7)
Noting that

k−1∑
l=0

λl =
1 − λk

1 − λ
≤ 1

1 − λ
= O(1)

and k ≤ T/ε, we obtain

sup
0≤k≤T/ε

E(πε,i
k )2 = O(ε).

To proceed, define a sequence of the scaled occupation measures as

nε,i
k =

√
ε

k−1∑
l=0

[I{αε
l =i} − νi], i ∈ M,

nε
k = (nε,1

k , . . . , nε,m0
k ) ∈ R

1×m0 .

(4.8)

Define a sequence of piecewise constant functions by

nε(t) = nε
k for t ∈ [εk, εk + ε).

Note that nε(t) = (πε,1(t)/
√

ε, . . . , πε,m0(t)/
√

ε), where

πε,i(t) = πε,i
k for t ∈ [εk, εk + ε).

We next characterize the limit of nε(·). To do so, we divide the work into
several steps.
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Step 1: Calculate the limit mean of nε(·). In view of the asymptotic
expansions, we have

Enε,i(t) =
√

ε

t/ε−1∑
l=0

O(λl) +
t/ε−1∑
l=0

O(ε3/2)

= O(
√

ε), for each i ∈ M.

Thus, Enε(t) → 0 as ε → 0.
Step 2: Compute the covariance of the limit process n(·). We begin with

the examination of E
(
nε,i(t)nε,j(t)

)
for i, j ∈ M. Using the asymptotic

expansions, detailed calculation reveals that

E
(
nε,i(t)nε,j(t)

)
= ε

t/ε−1∑
k2=0

k2∑
k1=0

P (αε
k1

= i)[P (αε
k2

= j|αε
k1

= i) − νj ]

+ε

t/ε−1∑
k1=0

k1−1∑
k2=0

P (αε
k2

= j)[P (αε
k1

= i|αε
k2

= j) − νi] + o(1),

(4.9)

where o(1) → 0 as ε → 0 uniformly in t ∈ [0, T ]. Again, by virtue of the
asymptotic expansions with substitution l = k2 − k1, interchanging the
orders of summations, and using the Dirichlet summation formula,

ε

t/ε−1∑
k2=0

k2∑
k1=0

P (αε
k1

= i)[P (αε
k2

= j|αε
k1

= i) − νj ]

= ενi

t/ε−1∑
l=0

(t/ε − l)ψij
0 (l) + o(1),

(4.10)

and

ε

t/ε−1∑
k1=0

k1−1∑
k2=0

P (αε
k2

= j)[P (αε
k1

= i|αε
k2

= j) − νi]

= ενj

t/ε−1∑
l=1

(t/ε − l)ψji
0 (l) + o(1),

(4.11)

where Ψ0(l) = (ψij
0 (l)) is the zeroth-order initial layer correction term in

the asymptotic expansions (3.47), and o(1) → 0 as ε → 0 uniformly in
t ∈ [0, T ]. Thus we need only find the limits on the last lines of (4.10) and
(4.11).
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By means of the asymptotic expansions, we have

ε

t/ε−1∑
k1=0

∑
k2≥k1

ψij
0 (k2 − k1) = O(1),

t/ε−1∑
k1=0

∑
k2≥k1

ψi
0(k1)ψ

ij
1 (k2 − k1) = O(1),

ε

t/ε−1∑
k1=0

∑
k2≥k1

ψi
0(k1) = O(1),

and the bounds hold uniform in t ∈ [0, T ]. Noting

1/ε−1∑
l=0

ψij
0 (l) = ε

t/ε−1∑
l=0

t

ε
ψij

0 (l) → t

∞∑
l=0

ψij
0 (l) as ε → 0,

and using the geometric decay property of Ψ0(l) and the error estimates

ε

∣∣∣∣ t/ε−1∑
l=0

lψij
0 (l)

∣∣∣∣ ≤ ε

t/ε−1∑
l=0

lλl = λε

t/ε−1∑
l=1

lλl−1

≤ λε
d

dλ

∞∑
l=0

λl → 0 as ε → 0,

we can show that

ε

t/ε−1∑
l=0

(t/ε − l)ψij
0 (l) → t

∞∑
l=0

ψij
0 (l),

ε

t/ε−1∑
l=0

(t/ε − l)ψji
0 (l) → t

∞∑
l=0

ψji
0 (l).

(4.12)

Therefore, the limit covariance is given by At, with A = (aij) satisfying

A =
∞∑

l=0

[diag(ν1, . . . , νm0)Ψ(l) + Ψ′(l)diag(ν1, . . . , νm0)].

Step 3: Verify the tightness of {nε(·)} in D([0, T ]; Rm0), the space of
R

m0-valued functions that are right continuous and have left-hand limits,
endowed with the Skorohod topology (see Definition 14.2). It can be shown
that nε(·) is φ-mixing with an exponential mixing rate, and

E|nε(t + s) − nε(t)|2k = O(sk), for k = 1, 2.

Step 4: As a consequence of Step 3, the limit n(·) has continuous paths
w.p.1. Using characteristic functions, we can show n(·) has independent
increments. Then Theorem 2.12 implies that n(·) is necessarily a Gaussian
process with desired mean and covariance as calculated in Steps 1 and 2.
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4.3 Recurrent States

4.3.1 Formulation and Preliminary
For definiteness, in what follows, we assume that P in (4.1) takes the form
(4.5). Then the state space M can be written as

M = {s11, . . . , s1m1} ∪ {s21, . . . , s2m2} ∪ . . . ∪ {sl01, . . . , sl0ml0
}

= M1 ∪ M2 ∪ · · · ∪ Ml0 ,
(4.13)

with m0 = m1 + m2 + · · · + ml0 . The subspace Mi, for each i = 1, . . . , l0,
consists of recurrent states belonging to the ith ergodic class. To proceed,
we state the conditions needed first.

(A4.1) P ε, P , and P i for i ≤ l0 are one-step transition probability ma-
trices such that for each i ≤ l0, P i is irreducible and aperiodic.

In Chapter 3, we obtained asymptotic expansions of the probability vec-
tor and the associated transition probabilities. We recapture these expan-
sions up to the second order in the next theorem.

Theorem 4.1. Under (A4.1), the following assertions hold:

(a) For the probability distribution vector pε
k = (P (αε

k = sij)) ∈ R
1×m0 ,

we have
pε

k = θ(εk)diag(ν1, . . . , νl0) + O(ε + λk) (4.14)

for some λ with 0 < λ < 1, where νi is the stationary distribution cor-
responding to the transition matrix Pi, and θ(t) = (θ1(t), . . . , θl0(t)) ∈
R

1×l0 satisfies
dθ(t)
dt

= θ(t)Q, θ(0) = p01̃l,

where
Q = diag(ν1, . . . , νl0)Q1̃l,

1̃l = diag(1lm1 , . . . , 1lml0
).

(4.15)

(b) For k ≤ T/ε, the k-step transition probability matrix (P ε)k satisfies

(P ε)k = Φ(t) + εΦ̂(t) + Ψ(k) + εΨ̂(k) + O
(
ε2) , (4.16)

where
Φ(t) = 1̃lΘ(t)diag(ν1, . . . , νl0),
dΘ(t)

dt
= Θ(t)Q, Θ(0) = I.

(4.17)

Moreover, Φ(t) and Φ̂(t) are uniformly bounded in [0, T ] and Ψ(k)
and Ψ̂(k) decay exponentially, i.e., |Ψ(k)| + |Ψ̂(k)| ≤ λk for some
0 < λ < 1.



78 4. Occupation Measures

Remark 4.2. We reiterate the following items, which are to be used in
subsequent discussions.

(a) In view of the asymptotic expansion, we have

(P ε)k = Φ(εk) + O(ε + λk).

(b) Recall that Φ(t) + εΦ̂(t) need not satisfy the initial condition. To
compensate, the initial layer correction terms Ψ(k) and Ψ̂(k) are so
selected that Φ(0) + Ψ(0) = I and Φ̂(0) + Ψ̂(0) = 0.

(c) For the initial layer term,

Ψ(k) = Ψ(0)P k.

In view of (4.16) and (4.17), since Θ(0) = I,

Ψ(k) = (I − 1̃ldiag(ν1, . . . , νl0))P k

= diag((Im1 − 1lm1ν
1)(P 1)k, . . . , (Iml0

− 1lml0
νl0)(P l0)k),

(4.18)
where Imi is an mi ×mi identity matrix. Thus Ψ(k) is again of block-
diagonal form.

4.3.2 Aggregation
In view of the decomposability of M, we define an aggregated process αε

k

of αε
k by

αε
k = i if αε

k ∈ Mi for i = 1, . . . , l0. (4.19)

In order to achieve the complexity reduction, by means of aggregation in
(4.19), we reduced the total number of states of the random process from
m0 to l0. If l0 � m0, there will be significant savings in computational
effort for applications arising in control and optimization. Note that the
aggregated process is generally non-Markov.

To proceed, define continuous-time interpolations by

αε(t) = αε
k, and αε(t) = αε

k for t ∈ [εk, ε(k + 1)), (4.20)

and denote by D([0, T ];M) the space of functions that are defined on
[0, T ] taking values in M and that are right continuous and have left limits
endowed with the Skorohod topology. We shall show that αε(·), the inter-
polation of αε

k, has a weak limit that is a continuous-time Markov chain.
The result is stated below. Its proof is postponed until Section 4.5.

Theorem 4.3. Assume (A4.1). Then as ε → 0, αε(·) converges weakly to
α(·), a Markov chain generated by Q given by (4.15).



4.3 Recurrent States 79

As was illustrated in the introduction, if P in (4.1) is reducible, one
cannot approximate the occupation measures by a deterministic function.
What can one do regarding the approximation now? An appropriate choice
comes from suitable centering by a random process and an aggregated
process similar to (4.4). For k = 0, . . . , T/ε, i = 1, . . . , l0, and j = 1, . . . , mi,
define sequences of occupation measures by

πε,ij
k = ε

k−1∑
l=0

(
I{αε

l =sij} − νijI{αε
l =i}

)
,

πε
k = (πε,ij

k ) ∈ R
1×m0 .

(4.21)

We can write πε
k recursively as a difference equation

πε
k+1 = πε

k + εW (αε
k), (4.22)

where
W (α) = (wij(α)) ∈ R

1×m0 , with

wij(α) = I{α=sij} − νijI{α∈Mi}.
(4.23)

Define continuous-time interpolations

πε,ij(t) = πε,ij
k for t ∈ [kε, (k + 1)ε),

πε(t) = (πij(t)) ∈ R
1×m0 .

(4.24)

Remark 4.4. For the case when P is irreducible, we have demonstrated
that the sequence of scaled occupation measures verify a mixing condition.
This mixing property no longer holds for the multi-ergodic class cases. One
of the reasons is that unlike the case of irreducible P given by (4.5), neither
Φ(t) nor Φ̂(t) has identical rows. Nevertheless, the following mean squares
estimates still hold.

Theorem 4.5. Assume (A4.1). Then for i = 1, . . . , l0, j = 1, . . . , mi,

sup
0≤k≤T/ε

E|πε,ij
k |2 = O(ε) and sup

t∈[0,T ]
E|πε,ij(t)|2 = O(ε).

4.3.3 Asymptotic Distribution
This section obtains the switching diffusion limit for a sequence of suitably
scaled occupation measures. For each i = 1, . . . , l0, j = 1, . . . , mi, and each
0 < k ≤ T/ε, define sequences of normalized occupation measures

nε,ij
k =

√
ε

k−1∑
l=0

wij(αε
l ) =

1√
ε
πε,ij

k ,

nε
k = (nε,ij

k ) ∈ R
1×m0 .

(4.25)
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Then, we have the following difference equation

nε
k+1 = nε

k +
√

εW (αε
k). (4.26)

Define a continuous-time interpolation

nε(t) = nε
k for t ∈ [εk, εk + ε). (4.27)

Our objective is to show that nε(·) so defined converges weakly to a switch-
ing diffusion process. In fact, it is necessary to treat the pair of processes
(nε(·), αε(·)) together. Following the weak convergence analysis approach,
we first show that this sequence is tight in D([0, T ]; Rm0 × M), the space
of functions that are defined on [0, T ] taking values in R

m0 × M and that
are right continuous have left limits endowed with the Skorohod topology.
Then we characterize its limit by identifying it as a solution of a martin-
gale problem with appropriate operator L. The procedure is carried out by
proving a series of lemmas. First, we present Lemma 4.6 as a preparation,
whose proof is contained in Section 4.5. Then Lemma 4.7 establishes the
tightness of the sequence. The proofs are moved to Section 4.5 for ease of
presentation.

Lemma 4.6. Assume (A4.1). Let Fε
t = σ{αε(s) : s ≤ t}. Then

(a) sup
0≤t≤t+s≤T

E[(nε(t + s) − nε(t))|Fε
t ] = O(

√
ε);

(b) For each i = 1, . . . , l0 and j = 1, . . . , mi, and for any 0 < s ≤ δ,

E[(nε,ij(t + s) − nε,ij(t))2|Fε
t ] = O(δ).

With the help of Lemma 4.6, we have the following result.

Lemma 4.7. Under the conditions of Lemma 4.6, {nε(·), αε(·)} is tight
in D([0, T ]; Rm0 × M).

Since {nε(·), αε(·)} is tight, by Prohorov’s theorem, we can extract a
weakly convergent subsequence. Choose such a subsequence with limit
(n(·), α(·)), and still denote the subsequence by (nε(·), αε(·)) for notational
simplicity. To obtain the desired result, we need only show that the limit
(n(·), α(·)) solves a martingale problem with operator L given by

Lf(x, i) =
1
2

mi∑
j1=1

mi∑
j2=1

aj1j2(i)
∂2f(x, i)
∂xij1∂xij2

+ Qf(x, ·)(i), (4.28)

for i = 1, . . . , l0, where A(i) = (aj1j2(i)) is symmetric and nonnegative
definite to be specified later. The symmetry and the nonnegative definite-
ness of (aj1j2(i)) can be verified. Moreover, the values of these aj1j2(i)’s
are determined as follows. (In the following, Lemma 4.8 identifies the limit
covariance, and Lemma 4.9 presents the uniqueness of the associated mar-
tingale problem.)
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Lemma 4.8. For each i = 1, . . . , l0, the covariance of the limit process is
S(i) = Σ(i)Σ′(i), where

Σ(i) = diag(0m1×m1 , . . . , 0mi−1×mi−1 , σ(i), 0mi+1×mi+1 , . . . , 0ml0×ml0
),

(4.29)
σ(i) ∈ R

mi×mi satisfying σ(i)σ′(i) = A(i) = (aj1j2(i)), and

A(i) = νi,diag
∞∑

k=0

Ψ(k, i) +
∞∑

k=0

Ψ′(k, i)νi,diag, (4.30)

with νi,diag = diag(νi1, . . . , νimi) ∈ R
mi×mi ,

Ψ(k + 1, i) = Ψ(k, i)P i,

Ψ(0, i) = I − 1lmiν
i.

Lemma 4.9. A martingale problem associated with operator L defined in
(4.28) has a unique solution.

We next state the main result. Its proof will be obtained by proving a
series of lemmas and is relegated to Section 4.5 as well.

Theorem 4.10. Assume (A4.1). Then (nε(·), αε(·)) converges weakly to
(n(·), α(·)) such that the limit is the solution of the martingale problem with
operator L given by (4.28).

Remark 4.11. Note that α(·) is a Markov chain generated by Q. Define
a stochastic process

n0(t) =
∫ t

0
(Σ(α(s))dw(s))′

, (4.31)

where w(·) is a standard Brownian motion and Σ(α) is given in Lemma 4.8.
Then for each i = 1, . . . , l0, and for any f(·, i) that is a real-valued func-
tion with bounded derivatives up to the second order and with Lipschitz
continuous second derivative,

f(n0(t), α(t)) −
∫ t

0
Lf(n0(s), α(s))ds is a martingale.

Therefore, (n0(·), α(·)) is a solution of the martingale problem with opera-
tor L. By virtue of Lemma 4.9, the uniqueness of the martingale problem
with operator L then implies that (n0(·), α(·)) has the same distribution as
that of (n(·), α(·)). The process given in (4.31) has both diffusive behavior
as well as a switching property, hence it is a switching diffusion.

As far as the proof is concerned, for the recurrent case, we will use a
perturbed test function approach. In fact, it is possible to prove the desired
result via direct averaging. Such an approach will be used in Chapter 10.
The reason that we use the current setup is to give the reader a broad
range of methods for related problems.
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4.4 Inclusion of Transient States

In this section, we consider the occupation measure when the underlying
Markov chain has transient states. We only state the corresponding results.
Their proofs can be obtained in a manner similar to that used for recurrent
case.

Let αε
k be a Markov chain whose transition probability matrix is given

by (4.1) with P having the form (4.6). Replace (A4.1) by (A4.2).

(A4.2) P ε, P , and P i for i ≤ l0 are one-step transition probability ma-
trices such that for each i ≤ l0, P i is irreducible and aperiodic.
All the eigenvalues of P ∗ are inside the unit circle.

Partition the matrix Q as

Q =
(

Q11 Q12

Q21 Q22

)
, (4.32)

where
Q11 ∈ R

(m0−m∗)×(m0−m∗), Q12 ∈ R
(m0−m∗)×m∗ ,

Q21 ∈ R
m∗×(m0−m∗), and Q22 ∈ R

m∗×m∗ .

Write
Q∗ = diag(ν1, . . . , νl0)(Q111̃l + Q12A∗), (4.33)

where
A∗ = (a1, . . . , al0) ∈ R

m∗×l0 , with

ai = −(P ∗ − I)−1P ∗,i1lmi , for i = 1, . . . , l0.
(4.34)

Remark 4.12. Note that ai = (ai,1, . . . , ai,m∗)′ ∈ R
m∗×1 and that ai,j is

the probability of entering the ith recurrent class starting from transient
state s∗j . Thus, ai,j ≥ 0 and

∑l0
i=1 ai,j = 1 (i.e., starting from transient

state s∗j , the probabilities of transitions from transient states to recurrent
classes add up to 1).

Define

1̃l∗ =
(

1̃l 0(m0−m∗)×m∗
A∗ 0m∗×m∗

)
,

ν∗ = diag(ν1, . . . , νl0 , 0m∗×m∗);

define sequences of centered occupation measures by

πε,ij
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε

k−1∑
l=0

(I{αε
l =sij} − νijI{αε

l =i}), for i = 1, . . . , l0,

ε

k−1∑
l=0

I{αε
l =s∗j}, for i = ∗;

(4.35)
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define the vector πε
k, and its continuous-time interpolation πε(t). Consider

an aggregated process

αε
k =

{
i, if αε

k ∈ Mi,
Uj , if αε

k = s∗j ,
(4.36)

where Uj is given by

Uj = I{0≤U≤a1,j} + 2I{a1,j<U≤a1,j+a2,j} + · · · + l0I{a1,j+···+al0−1,j<U≤1},

and U is a random variable uniformly distributed on [0, 1], independent of
the Markov chain αε

k.

Remark 4.13. We have aggregated the states in each recurrent class into
one state. This is similar to the treatment of the recurrent case. If the chain
is in a transient state, then it will eventually enter one of the recurrent
classes. Starting from each of the transient states, the process may jump to
one of the l0 possible locations. This is similar to the generation of discrete
random variables with l0 possible values, which leads to definition (4.36).

Theorem 4.14. Under (A4.2), the following assertions hold:

(a) The probability vector pε
k = θ(εk)diag(ν1, . . . , νl0 , 0m∗) + O(ε + λk),

where 0m∗ ∈ R
1×m∗ and θ(t) = (θ1(t), . . . , θl0(t)) ∈ R

1×l0 satisfies

dθ(t)
dt

= θ(t)Q∗, θi(0) = pi(0)1lmi
− p∗(0)ai.

The transition matrix satisfies

P ε(εk0, εk) = Φ(t0, t) + Ψ(k0, k) + εΦ̂(t0, t) + εΨ̂(k0, k) + O(ε2),

for some λ with 0 < λ < 1, where

Φ(t0, t) = 1̃l∗Θ∗(t0, t)ν∗ (4.37)

with
Θ∗(t0, t) = diag(Θ(t0, t), Im∗×m∗)

where Θ(t0, t) = (θij(t0, t)) satisfies the differential equation

∂Θ(t0, t)
∂t

= Θ(t0, t)Q∗(t), Θ(t0, t0) = I.

(b) For each j = 1, . . . , mi,

sup
t∈[0,T ]

E|πε,ij(t)|2 =
{

O(ε), for i = 1, . . . , l0,
O(ε2), for i = ∗;

(c) αε(·) converges weakly to α(·), a Markov chain generated by Q∗;
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(d) Lemma 4.6 continues to hold;

(e) Theorem 4.10 continues to hold and for each i ∈ M, the limit operator
is given by

Lf(x, i) =
1
2

mi∑
j1=1

mi∑
j2=1

aj1j2(i)
∂2f(x, i)
∂xij1∂xij2

+ Q∗f(x, ·)(i).

4.5 Proofs of Results

In this section, we provide proofs of Lemmas 4.3, 4.6, 4.7, 4.8, and 4.9, and
Theorems 4.5, 4.10, and 4.14.

Proof of Lemma 4.3. First we prove that αε(·) is tight. Recall that Fε
t

and Fk are the σ-algebras generated by {αε(u), u ≤ t} and {αε
l , l ≤ k},

respectively, and use νij to denote the jth component of the stationary
distribution νi. In view of the interpolation (4.20) and the Markov property
of the discrete-time Markov chain,

E[(αε(t + s) − αε(s))2|Fε
s ] = E[(αε(t + s) − αε(s))2|αε(r), r ≤ s]

= E[(αε
(t+s)/ε − αε

s/ε)
2|αε

1, . . . , α
ε
s/ε]

= E[(αε
(t+s)/ε − αε

s/ε)
2|αε

s/ε].

Note that

{αε
k = i} =

mi⋃
j=1

{αε
k = sij}.

It then follows that

E[(αε(t + s) − αε(s))2|αε
s/ε = sij ]

=
l0∑

p=1

(p − i)2P (αε
(t+s)/ε = p|αε

s/ε = sij)

≤ l20
∑
p�=i

P (αε
(t+s)/ε = p|αε

s/ε = sij)

= l20
∑
p�=i

mp∑
p1=1

P (αε
(t+s)/ε = spp1 |αε

s/ε = sij)

= l20
∑
p�=i

mp∑
p1=1

νpp1θip(t) + O(ε + λt/ε)

= l20
∑
p�=i

θip(t) + O(ε + λt/ε).



4.5 Proofs of Results 85

Note that the next to the last line above follows from Theorem 4.1. Since
limt→0 θip(t) = 0 for i = p, there is a γε(t) ≥ 0 that is Fε

s -measurable such
that

|E[(αε(t + s) − αε(s))2|Fε
s ]| ≤ γε(t), and lim

t→0
lim sup

ε→0
Eγε(t) = 0.

Thus αε(·) is tight by the tightness criterion in Theorem 14.12.
To proceed, it suffices to prove the convergence of the finite dimensional

distributions of αε(·) to α(·). For any 0 ≤ t1 < t2 < . . . < tι ≤ T , and
i1, . . . , iι ∈ M = {1, . . . , l0},

P (αε(tι) = iι, . . . , α
ε(t1) = i1)

= P
(
αε

tι/ε = iι, . . . , α
ε
t1/ε = i1

)
= P

(
αε

tι/ε ∈ Miι , . . . , α
ε
t1/ε ∈ Mi1

)
=

mi1∑
j1=1

· · ·
miι∑
jι=1

P
(
αε

tι/ε = siιjι , . . . , α
ε
t1/ε = si1j1

)
=

mi1∑
j1=1

· · ·
miι∑
jι=1

P (αε
t1/ε = si1j1)

ι∏
κ=2

P (αε
tκ/ε = siκjκ

|αε
tκ−1/ε = siκ−1jκ−1)

−→
mi1∑
j1=1

· · ·
miι∑
jι=1

νi1j1θi1(t1)
ι∏

κ=2

νiκjκθiκ−1iκ(tκ − tκ−1) as ε → 0

= θi1(t1)
ι∏

κ=2

θiκ−1iκ(tκ − tκ−1)

= P (α(tι) = iι, . . . , α(t1) = i1) .

In the above, going from the fourth line to the fifth line, we used the Markov
property; the sixth line is a consequence of the asymptotic expansions; the
seventh line follows from

∑mi

j=1 νij = 1. Thus, αε(·) → α(·) in distribution,
and the proof is completed. �

Proof of Theorem 4.5. We verify the second inequality; the proof of the
first inequality can be obtained similarly. For any t ∈ [0, T ], in view of the
interpolation, πε,ij(t) = πε,ij

t/ε . Thus

E|πε,ij(t)|2 = E

(
ε

t/ε−1∑
l=0

[I{αε
l =sij} − νijI{αε

l =i}]

)2

= ε2E

t/ε−1∑
l=0

t/ε−1∑
p=0

ζlp,

(4.38)



86 4. Occupation Measures

where

ζlp = I{αε
l =sij ,αε

p=sij} − νijI{αε
l =i,αε

p=sij}

−νijI{αε
l =sij ,αε

p=i} + νijνijI{αε
l =i,αε

p=i}.
(4.39)

Note that ζlp depends on ε and sij , but for simplicity, we suppress the
dependence of ε and sij . It follows that

E|πε,ij
t/ε |2 = ε2

(∑
p<l

Eζlp +
∑
l<p

Eζlp +
∑
l=p

Eζlp

)
.

There are three cases to consider.
Case (i) p < l:

P (αε
l = sij , α

ε
p = sij) = P (αε

l = sij |αε
p = sij)P (αε

p = sij),

P (αε
l = i, αε

p = sij) = P (αε
l = i|αε

p = sij)P (αε
p = sij),

P (αε
l = sij , α

ε
p = i) =

mi∑
j2=1

P (αε
l = sij |αε

p = sij2)P (αε
p = sij2),

P (αε
l = i, αε

p = i) =
mi∑

j2=1

P (αε
l = i|αε

p = sij2)P (αε
p = sij2).

By Theorem 4.1, we have

P (αε
l = sij |αε

p = sij) = νijθii(ε(l − p)) + O(ε + λl−p),

P (αε
l = i|αε

p = sij) =
mi∑

j1=1

P (αε
l = sij1 |αε

p = sij)

=
mi∑

j1=1

νij1θii(ε(l − p)) + O(ε + λl−p)

= θii(ε(l − p)) + O(ε + λl−p).

Note that

P (αε
l = sij |αε

p = sik2) = νijθii(ε(l − p)) + O(ε + λl−p).
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It follows that

P (αε
l = sij , α

ε
p = i) = νijθii(ε(l − p))

mi∑
j2=1

P (αε
p = sij2) + O(ε + λl−p),

P (αε
l = i, αε

p = i) =
mi∑

j1=1

mi∑
j2=1

P (αε
l = sij1 |αε

p = sij2)P (αε
p = sij2)

=
mi∑

j1=1

mi∑
j2=1

νij1θii(ε(l − p))P (αε
p = sij2) + O(ε + λl−p)

= θii(ε(l − p))
mi∑

j2=1

P (αε
p = sij2) + O(ε + λl−p).

Collecting the above estimates, we arrive at

Eζlp = O(ε + λl−p) for p < l.

Case (ii) p < l: By symmetry and the calculation in Case (i),

Eζlp = O(ε + λp−l) for l < p.

Case (iii) p = l: In this case, since Eζll is bounded,

ε2
t/ε−1∑
l=0

Eζll = O(ε).

Moreover, note that

t/ε−1∑
p=0

p−1∑
l=0

λp−l =
λ

1 − λ

[
t

ε
− 1 − λt/ε−1

1 − λ

]
= O(1/ε),

and similarly
t/ε−1∑
l=0

l−1∑
p=0

λl−p = O(1/ε).

Therefore, we have

E|πε,ij(t)|2 = ε2
[ t/ε−1∑

p=0

p−1∑
l=0

O(ε + λp−l) +
t/ε−1∑
l=0

l−1∑
p=0

O(ε + λl−p)
]

+ O(ε)

= ε2 (t/ε)2 O(ε) + ε2O(1/ε) + O(ε) = O(ε).

Furthermore, the bound holds uniformly in t ∈ [0, T ]. �
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Proof of Lemma 4.6. Note that for any fixed i, j, s ≥ 0, and t ≥ 0,

E[(nε,ij(t + s) − nε,ij(t))|Fε
t ]

= E[(nε,ij(t + s) − nε,ij(t))|αε(u), u ≤ t]

= E[(nε,ij
(t+s)/ε − nε,ij

t/ε )|αε
l , l ≤ t/ε]

= E[(nε,ij
(t+s)/ε − nε,ij

t/ε )|αε
t/ε]

=
√

ε

(t+s)/ε−1∑
l=t/ε

E[I{αε
l =sij} − νijI{αε

l =i}|αε
t/ε]

=
√

ε

(t+s)/ε−1∑
l=t/ε

[P (αε
l = sij |αε

t/ε) − νijP (αε
l = i|αε

t/ε)].

Owing to the asymptotic expansions given in Theorem 4.1,

P (αε
l = sij |αε

t/ε) − νijP (αε
l = i|αε

t/ε)

=
l0∑

i0=1

mi0∑
j0=1

(
P (αε

l = sij |αε
t/ε = si0j0) − νijP (αε

l = i|αε
t/ε = si0j0)

)
×I{αε

t/ε
=si0j0}

= O(ε + λl−(t/ε)).

Thus, we have

E[(nε,ij(t + s) − nε,ij(t))|Fε
t ]

=
√

ε

(t+s)/ε−1∑
l=t/ε

O(ε + λl−(t/ε)) = O(
√

ε).

Moreover, the above estimates hold uniformly in 0 ≤ t ≤ t + s ≤ T . This
implies (a).

To prove (b), note that by the Markov property,

E[(nε,ij(t + s) − nε,ij(t))2|Fε
t ]

= E

[(
nε,ij

(t+s)/ε − nε,ij
t/ε

)2 ∣∣∣αε
t/ε

]
= εE

[ (t+s)/ε−1∑
l=t/ε

(
I{αε

l =sij} − νijI{αε
l =i}

)2 ∣∣∣αε
t/ε

]

= ε

(t+s)/ε−1∑
l=t/ε

(t+s)/ε−1∑
p=t/ε

E

[
I{αε

l =sij ,αε
p=sij} − νijI{αε

l =i,αε
p=sij}

−νijI{αε
l =sij ,αε

p=i} + νijνijI{αε
l =i,αε

p=i})|αε
t/ε

]
.
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Using ζlp defined in (4.39),

E

[(
nε,ij

(t+s)/ε − nε,ij
t/ε

)2 ∣∣∣αε
t/ε

]
= ε

(t+s)/ε−1∑
l=t/ε

(t+s)/ε−1∑
p=t/ε

E

[
ζlp

∣∣∣αε
t/ε

]
,

and

E

[
ζlp

∣∣∣αε
t/ε

]
=

l0∑
i0=1

mi0∑
j0=1

E

[
ζlp

∣∣∣αε
s/ε = si0j0

]
I{αε

t/ε
=si0j0}.

As in the proof of Theorem 4.1, we can show that

E

[
ζlp

∣∣∣αε
t/ε = si0j0

]
=

⎧⎨⎩O(ε + λl−p) for t/ε ≤ p < l ≤ (t + s)/ε − 1,
O(ε + λp−l) for t/ε ≤ l < p ≤ (t + s)/ε − 1,
O(1), for t/ε ≤ l = p ≤ (t + s)/ε − 1.

Therefore,

E

[(
nε,ij

(t+s)/ε − nε,ij
t/ε

)2 ∣∣∣αε
t/ε

]
= ε

(t+s)/ε−1∑
l=t/ε

l−1∑
p=t/ε

O(ε + λl−p) + ε

(t+s)/ε−1∑
p=t/ε

p−1∑
l=t/ε

O(ε + λp−l)

+ε

(t+s)/ε−1∑
l=t/ε

O(1)

= εO(s/ε) = O(s).

This completes the proof. �

Proof of Lemma 4.7. In view of the weak convergence of the process αε(·)
(Theorem 4.3), it suffices to prove the tightness of {nε(·)}. By Lemma 4.6
(b),

lim
δ→0

lim sup
ε→0

E

(
E|nε(t + s) − nε(t)|2

∣∣∣∣Fε
t

)
= lim

δ→0
O(δ) = 0.

The assertion then follows from the tightness criterion Lemma 14.12. �

Sketch of Proof of Lemma 4.8. The proof is similar to that of Yin
and Zhang [158, pp. 200–203]. A short outline is provided below. Let us
begin with the calculation in a single block i (i = 1, . . . , l0). Correspond-
ing to this block, W (α) in the definition of occupation measures becomes
I{α=sij}−νij (since α ∈ Mi, I{α∈Mi} = 1). Consider a singularly perturbed
discrete-time Markov chain with transition matrix P ε = P i + εQ̌i, where
P i is irreducible and aperiodic and Q̌i is a generator of a continuous-time
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Markov chain. Note that similar to the continuous-time counter part, to cal-
culate the covariance, the actual form of εQ̌i is asymptotically unimportant
(see Yin and Zhang [158, p. 203]). Let nε,i

k and nε,i(t) be the scaled occu-
pation measure and its continuous-time interpolation, respectively. Since
the underlying Markov chain has a finite state space, it is ϕ-mixing. Using
Theorem 4.1 and Theorem 4.5, detailed estimates yield (4.30).

Now consider P having the form (4.5). It can be rewritten as

P = diag(P 1, 0m2×m2 , . . . , 0ml0×ml0
)

+ · · · + diag(0m1×m1 , . . . , 0ml0−1×ml0−1 , P
l0).

The argument in the preceding paragraph indicates that if α ∈ Mi, Σ(i)
is given by (4.29) as desired. �

Proof of Lemma 4.9. The argument is similar to that of Yin and Zhang
[158, p. 199 and p. 200] (see also related problems in Lemma 14.20). By
virtue of Lemma 14.8, it suffices to verify the uniqueness in distribution of
(n(t), ᾱ(t)) for each t ∈ [0, T ]. Consider the function

φ̃(x, l) = exp(i(xθ + θ0l)),

for each positive integer l, x ∈ R
1×m0 , θ ∈ R

m0×1, θ0 ∈ R, and i2 = −1.
Note that xθ above is just the usual inner product. Define

φij(t) = E[I{α(t)=i}φ̃(n(t), j)] for i, j = 1, . . . , l0.

Taking partials with respect to the variables xj1 and xj2 and using the
coupling due to the presence of generator Q, we obtain

φij(t) − φij(0) −
∫ t

0

{ mi∑
j1,j2=1

aj1j2(i)(−θij1θij2)φij(s)

+
l0∑

j0=1

qj0i(s)φj0j(s)
}

ds = 0,

(4.40)

where φij(0) = EI{α(0)=i}φ̃(0, j). Let

φ(t) = (φij(t), i, j = 1, . . . , l0).

Then (4.40) becomes

φ(t) = φ(0) +
∫ t

0
φ(s)G(s)ds,

where φ(0) = (φij(0)) and G(t) is a matrix-valued function defined by the
integrand of (4.40). The equation for φ(t) is a linear ordinary differential
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equation, thus it has a unique solution. Hence, φ(t) is uniquely determined.
As a result,

E exp (i{n(t)θ + θ0α(t)})

=
l0∑

j=1

E
(
I{α(t)=j} exp (i{n(t)θ + jθ0})

)
is uniquely determined for all θ ∈ R

m0×1 and θ0 ∈ R. Therefore, the distri-
bution of (n(t), ᾱ(t)) is uniquely determined by the well-known uniqueness
and inversion formula for characteristic functions (see Theorem 14.40). �

Proof of Theorem 4.10. To proceed, we prove the weak convergence of
(nε(·), αε(·)) by using Theorem 14.19. The essence is to apply the perturbed
test function methods. For an appropriate function g(·), define the operator
Lε by

Lεg(nε
k, αε

k) =
1
ε
Ek[g(nε

k+1, α
ε
k+1) − g(nε

k, αε
k)], (4.41)

where Ek denotes the conditional expectation with respect to Fk, the σ-
algebra generated by {αε

l , l ≤ k}. We will construct a perturbed test func-
tion fε and show that all conditions in Theorem 14.19 are satisfied. We
also obtain the representation of the limit operator and the limit covari-
ance matrix. Hence the weak convergence result follows.

For each i = 1, . . . , l0, let f(·, i) be any real-valued function with bounded
derivatives up to the second order such that the second derivatives are
Lipschitz continuous. Define

f(x, α) =
l0∑

i=1

f(x, i)I{α∈Mi} =

⎧⎪⎨⎪⎩
f(x, 1), if α ∈ M1,

...
f(x, l0), if α ∈ Ml0 .

(4.42)

Definition (4.42) allows us to replace f(nε
k, αε

k) by f(nε
k, αε

k). Denote

χε
k = (I{αε

k=sij}) ∈ R
1×m0 ,

χε
k = (I{αε

k=1}, . . . , I{αε
k=l0}) ∈ R

1×l0 ,

ν̂ = diag(ν1, . . . , νl0) ∈ R
l0×m0 ,

F (x) =

⎛⎜⎜⎝
f(x, 1)1lm1

f(x, 2)1lm2

...
f(x, l0)1lml0

⎞⎟⎟⎠ ∈ R
m0×1, and F (x) =

⎛⎜⎝ f(x, 1)
...

f(x, l0)

⎞⎟⎠ ∈ R
l0×1.

(4.43)
In view of the block-diagonal structure of the transition matrix P , it is

easy to see that (P − I)f(x, ·)(α) = 0. That is, f(x, α) is orthogonal to
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P − I, so (P − I)F (x) = 0 by virtue of (4.43). Moreover, we obtain

εLεf(nε
k, αε

k) = Ek[f(nε
k+1, α

ε
k+1) − f(nε

k, αε
k)]

= Ek[f(nε
k+1, α

ε
k+1) − f(nε

k+1, α
ε
k)]

+Ek[f(nε
k+1, α

ε
k) − f(nε

k, αε
k)].

Using Taylor expansions, the last term in the above equation can be written
as

Ek[f(nε
k+1, α

ε
k) − f(nε

k, αε
k)]

=
√

εW (αε
k)fx(nε

k, αε
k) +

ε

2
W (αε

k)fxx(nε
k, αε

k)W ′(αε
k) + eε,1

k ,

(4.44)
where E|eε,1

k | = o(ε) uniformly in k ≤ T/ε, and fx(x, α) ∈ R
m0×1 denotes

the gradient w.r.t. the variable x. Note that W (α)fx(x, α) in (4.44) is the
usual inner product of two vectors. To estimate the first term in (4.44), we
have

Ek[f(nε
k+1, α

ε
k+1) − f(nε

k+1, α
ε
k)]

=
l0∑

i1=1

mi1∑
j1=1

Ek

[ l0∑
i=1

mi∑
j=1

f(nε
k+1, sij)P (αε

k+1 = sij |αε
k = si1j1)

−f(nε
k+1, si1j1)

]
I{αε

k=si1j1}

= χε
k(P ε − I)EkF (nε

k+1)

= χε
k(P − I + εQ)EkF (nε

k+1)

= εχε
kQEkF (nε

k+1)

= εχε
kQF (nε

k) + eε,2
k

= εQf(nε
k, ·)(αε

k) + eε,2
k ,

(4.45)

where sup0<k≤T/ε E|eε,2
k | = o(ε). Thus

εLεf(nε
k, αε

k) = εQf(nε
k, ·)(αε

k) +
ε

2
W (αε

k)fxx(nε
k, αε

k)W ′(αε
k)

+
√

εW (αε
k)fx(nε

k, αε
k) + eε,1

k + eε,2
k .

(4.46)

For the purpose of averaging, we introduce several perturbations. The ra-
tionale is that these perturbations should be small in magnitude and should
result in the desired cancellation. On the interval t ∈ [kε, kε + ε), define
the first perturbed test function by

fε
1 (x, t) =

√
ε
( T/ε∑

l=k

EkW (αε
l )
)
fx(x, αε

k). (4.47)
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We claim that E|fε
1 (nε

k, εk)| = o(1), as ε → 0. Noting that fx(nε
k, αε

k) is
bounded and Fk-measurable, definition (4.47), the Markov property, and
the Cauchy–Schwarz inequality yield

E|fε
1 (nε

k, εk)| =
√

εE

∣∣∣∣( T/ε∑
l=k

EkW (αε
l )
)
fx(nε

k, αε
k)
∣∣∣∣

≤ √
εE1/2

∣∣∣∣ T/ε∑
l=k

E
(
χε

l − χε
l ν̂

∣∣∣∣αε
k

)∣∣∣∣2E1/2|fx(nε
k, αε

k)|2

≤ K
√

εE1/2
∣∣∣∣ T/ε∑

l=k

E
(
χε

l − χε
l ν̂

∣∣∣∣αε
k

)∣∣∣∣2.
A closer look at the summand in the above leads to

l0∑
i1=1

mi1∑
j1=1

(
P (αε

l = sij

∣∣∣∣αε
k = si1j1) − νij

mi∑
j2=1

P (αε
l = sij2

∣∣∣∣αε
k = si1j1)

)

=
l0∑

i1=1

mi1∑
j1=1

(
νijθi1i − νij

( mi∑
j2=1

νij2

)
θi1i

)
+ O(ε + λl−k)

= O(ε + λl−k).

Note that
√

ε

T/ε∑
l=k

O
(
ε + λl−k

)
= O(

√
ε) → 0 as ε → 0.

It follows that
E|fε

1 (nε
k, εk)| = o(1) as ε → 0.

Write

fε
1 (nε

k, εk) =
√

εW (αε
k)fx(nε

k, αε
k) +

√
ε

( T/ε∑
l=k+1

EkW (αε
l )
)

fx(nε
k, αε

k).

Then we have

Ekfε
1 (nε

k+1, ε(k + 1)) − fε
1 (nε

k, εk)

= −√
εW (αε

k)fx(nε
k, αε

k)

+
√

ε

T/ε∑
l=k+1

EkW (αε
l )[fx(nε

k+1, α
ε
k+1) − fx(nε

k+1, α
ε
k)]

+
√

ε

T/ε∑
l=k+1

EkW (αε
l )fx(nε

k+1, α
ε
k) − √

ε

T/ε∑
l=k+1

EkW (αε
l )fx(nε

k, αε
k).

(4.48)
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By virtue of (4.45), the third line of (4.48) contributes a negligible term.
It follows that

εLεfε
1 (nε

k, εk)

= Ekfε
1 (nε

k+1, ε(k + 1)) − fε
1 (nε

k, εk)

= −√
εW (αε

k)fx(nε
k, αε

k) + eε,3
k

+ε

( T/ε∑
l=k+1

EkW (αε
l )fxx(nε

k, αε
l )
)

W ′(αε
k),

(4.49)

where sup0≤k≤T/ε E|eε,3
k | = o(ε).

To proceed, define (for εk = t),

fε
2 (x, t)

=
ε

2

T/ε∑
l=k

[EkW (αε
l )fxx(x, αε

k)W ′(αε
k) − EW (αε

l )fxx(x, αε
k)W ′(αε

k)],

fε
3 (x, t)

= ε

T/ε∑
p=k

T/ε∑
l=p+1

[EpW (αε
l )fxx(x, αε

p)W
′(αε

p) − EW (αε
l )fxx(x, αε

p)W
′(αε

p)],

fε
4 (x, t) = ε

T/ε∑
l=k

Ek (χε
l − χε

l ν̂) Q1̃lF (x),

(4.50)
where χε

l , χε
l , and ν̂ are defined in (4.43). Note that Q1̃lF (x) = QF (x).

Similar to the previous estimates for fε
1 (nk, εk), by virtue of Theorem 4.5,

it can be verified that

sup
0≤k≤T/ε

E|fε
i1(n

ε
k, εk)| → 0, as ε → 0 for i1 = 2, 3, 4. (4.51)

Moreover, detailed computation reveals that

εLfε
2 (nε

k, εk) = −ε

2

[
W (αε

k)fxx(nε
k, αε

k)W ′(αε
k)

−EW (αε
k)fxx(nε

k, αε
k)W ′(αε

k)
]

+ eε,4
k ,

εLfε
3 (nε

k, εk) = −ε

T/ε∑
l=k+1

[
EkW (αε

l )fxx(nε
k, αε

k)W ′(αε
k)

−EW (αε
l )fxx(nε

k, αε
k)W ′(αε

k)
]

+ eε,5
k ,

εLεfε
4 (nε

k, εk) = −ε(χε
k − χε

kν̂)QF (nε
k) + eε,6

k ,

(4.52)
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and that

sup
0≤k≤T/ε

E|eε,ι
k | = o(ε) as ε → 0, for ι = 4, 5, 6.

Define

fε(x, εk) = f(x, αε
k) +

4∑
ι=1

fε
ι (x, εk), (4.53)

where fε
ι (·), ι = 1, 2, 3, 4 are as specified in (4.47) and (4.50). The preceding

estimates of E|fε
ι (x, εk)| lead to

E|fε(nε
k, εk)−f(nε

k, αε
k)| = E|fε(nε

k, εk)−f(nε
k, αε

k)| → 0 as ε → 0. (4.54)

In addition, we obtain

Lεfε(nε
k, εk) = Qf(nε

k, ·)(αε
k) +

1
2
EW (αε

k)fxx(nε
k, αε

k)W ′(αε
k)

+
1
2

T/ε∑
l=k+1

EW (αε
l )fxx(nε

k, αε
k)W ′(αε

k)

+
1
2

T/ε∑
l=k+1

EW (αε
k)fxx(nε

k, αε
k)W ′(αε

l ) + eε
k,

(4.55)

where

eε
k =

6∑
ι=1

eε,ι
k and sup

0≤k≤T/ε

E|eε
k| = o(ε) as ε → 0.

To proceed, we need to evaluate the limit of the next to the last term in
(4.55) (the term of the second line of (4.55) can be treated similarly). Note
that

T/ε∑
l=k+1

EW (αε
k)fxx(nε

k, αε
k)W ′(αε

l )

=
T/ε∑

l=k+1

Etr
(
W ′(αε

l )W (αε
k)fxx(nε

k, αε
k)
)
,

(4.56)

where tr(A) =
∑

i aii denotes the trace of a square matrix A as usual.
To get the desired limit, using x = nε(t) = nε

k, it suffices to examine the
preceding expression with fxx(nε

k, αε
k) replaced by fxx(x, αε

k) for each fixed
x. To this end, for l > k,

tr
(
W ′(αε

l )W (αε
k)fxx(x, αε

k)
)

= tr

(
W ′(αε

l )W (αε
k)

l0∑
ι=1

fxx(x, ι)I{αε
k∈Mι}

)

=
l0∑

i1=1

mi1∑
j1=1

l0∑
i2=1

mi2∑
j2=1

wi1j1(αε
l )w

i2j2(αε
k)

∂2f(x, i2)
∂xi2j2∂xi1j1

.

(4.57)
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Similar to (4.38) and (4.39), we obtain four terms as

Ewi1j1(αε
l )w

i2j2(αε
k)

∂2f(x, i2)
∂xi2j2∂xi1j1

= ρ1 + ρ2 + ρ3 + ρ4, (4.58)

where

ρ1 = P (αε
l = si1j1 , α

ε
k = si2j2)

∂2f(x, i2)
∂xi2j2∂xi1j1

,

ρ2 = −νi1j1P (αε
l ∈ Mi1 , α

ε
k = si2j2)

∂2f(x, i2)
∂xi2j2∂xi1j1

,

ρ3 = −νi2j2P (αε
l = si1j1 , α

ε
k ∈ Mi2)

∂2f(x, i2)
∂xi2j2∂xi1j1

,

ρ4 = νi1j1νi2j2P (αε
l ∈ Mi1 , α

ε
k ∈ Mi2)

∂2f(x, i2)
∂xi2j2∂xi1j1

.

We claim that under (A4.1),

sup
ε,k

T/ε∑
l=k+1

∣∣∣∣Etr
(
W ′(αε

l )W (αε
k)fxx(nε

k, αε
k)
) ∣∣∣∣ < ∞. (4.59)

To prove (4.59), working with (4.58) and using Theorem 4.1, straightfor-
ward although detailed estimates reveal that

ρ1 =

[
P (αε

k = si2j2)[ν
i1j1θi2i1(ε(l − k)) + ψi2j2,i1j1(l − k)

+εϕ̂i2j2,i1j1(ε(l − k)) + εψ̂i2j2,i1j1(l − k)] + O(ε2)

]
∂2f(x, i2)

∂xi2j2∂xi1j1
,

ρ2 = −
[
νi1j1P (αε

k = si2j2)
mi1∑
j3=1

[νi1j3θi2i1(ε(l − k)) + ψi2j2,i1j3(l − k)

+εϕ̂i2j2,i1j3(ε(l − k)) + εψ̂i2j2,i1j3(l − k)] + O(ε2)

]
∂2f(x, i2)

∂xi2j2∂xi1j1
,

ρ3 = −
[
νi2j2

mi2∑
j4=1

P (αε
k = si2j4)[ν

i1j1θi2i1(ε(l − k)) + ψi2j4,i1j1(l − k)

+εϕ̂i2j4,i1j1(ε(l − k)) + εψ̂i2j4,i1j1(l − k)] + O(ε2)

]
∂2f(x, i2)

∂xi2j2∂xi1j1
,
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ρ4 =

[
νi1j1νi2j2

mi1∑
j3=1

mi2∑
j4=1

P (αε
k = si2j4)[ν

i1j3θi2i1(ε(l − k))

+ψi2j4,i1j3(l − k) + εϕ̂i2j4,i1j3(ε(l − k)) + εψ̂i2j4,i1j3(l − k)]

+O(ε2)

]
∂2f(x, i2)

∂xi2j2∂xi1j1
.

Using the asymptotic expansions, similar to the proof of Theorem 4.5, it
is easily seen that the sum of the leading terms in

∑
ι ρι (the first terms

on the right-hand side of ρι, ι = 1, . . . , 4) is 0. Since Ψ(·) and Ψ̂(·) decay
geometrically, for each i, j, p, q,

T/ε∑
l=k+1

∑
i,j.p,q

ψij,pq(l − k) < ∞,

T/ε∑
l=k+1

∑
i,j.p,q

ψ̂ij,pq(l − k) < ∞.

In addition, by using the asymptotic expansions, it follows that

ε

T/ε∑
l=k+1

|ϕ̂(ε(l − k))| ≤ Kε(T/ε) = KT < ∞.

As a result, we have

T/ε∑
l=k+1

∑
i1,j2,i2,j2

4∑
ι=1

|ρι| < ∞.

Thus (4.59) is proved.
Equation (4.59) together with (4.48) and (4.52) yields that

sup
ε,k

|Lεfε(nε
k, εk)| < ∞.

Moreover,

lim
ε→0

T/ε∑
l=k+1

E
[
tr
(
W ′(αε

l )W (αε
k)fxx(nε

k, αε
k)
) ]

exists. (4.60)

Using (4.59) and the estimates obtained thus far,

lim
ε→0

E

∣∣∣∣Ekfε(kε + ε) − fε(kε)
ε

− Lf(nε(kε), αε(kε))
∣∣∣∣ = 0, (4.61)

where the limit operator is given by (4.28). Up to now, all the conditions in
Theorem 14.19 have been verified. Thus, by using that theorem, the proof
of Theorem 4.10 is concluded.
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Remark 4.15. If the transition matrix P given in (4.5) is irreducible (i.e.,
the associated Markov chain has only one single ergodic class), (4.60) fol-
lows from the mixing properties, because the correlations between W (αε

l )
and W (αε

k) decay exponentially fast. This can also be seen from the discus-
sion in the previous section concerning the mixing condition. If P consists
of multi-ergodic blocks, (4.60) indicates that for fixed k, although the cor-
relations between W (αε

l ) and W (αε
k) may not decay as fast as the single

ergodic class case, they are summable.

Proof of Theorem 4.14. The proof of Part (a) is similar to what was
before, with the modification of including the transient states. The proof of
Part (e) uses Parts (a)–(d) and detailed estimates similar to the previous
section. Thus we will only prove Parts (b)–(d).

To prove Part (b), we note that for i = 1, . . . , l0, the proof is the same
as before. As for i = ∗ (for the transient states),

E|πε,∗j(t)|2 = E|πε,∗j
t/ε |2 = E

(
ε

t/ε−1∑
l=0

I{αε
l =s∗j}

)2

= ε2
t/ε−1∑
l=0

t/ε−1∑
p=0

P (αε
l = s∗j , α

ε
p = s∗j).

When p < l, we have

t/ε−1∑
l=0

l−1∑
p=0

P (αε
l = s∗j , α

ε
p = s∗j)

=
t/ε−1∑
l=0

l−1∑
p=0

P (αε
l = s∗j |αε

p = s∗j)P (αε
p = s∗j)

=
t/ε−1∑
l=0

l−1∑
p=0

O(λl−p)O(λp)

≤ K

t/ε−1∑
l=0

(lλl/2)(λ1/2)l = O(1).

By symmetry, for l < p, we have

t/ε−1∑
p=0

p−1∑
l=0

P (αε
l = s∗j , α

ε
p = s∗j) = O(1).

As for p = l, it follows from the asymptotic expansion

t/ε−1∑
l=0

P (αε
l = s∗j) = O(1).
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Thus the desired result follows.
To prove Part (c), define

χε(αε(t)) = (I{αε(t)=1}, . . . , I{αε(t)=l0}).

We show that {χε(·)} is tight. To do so, we first prove that

lim sup
ε→0

E[χε(αε(t + s)) − χε(αε(t))|Fε
t ] ≤ γ(s), (4.62)

for some function γ(·) such that Eγ(s) → 0 as s → 0. By the Markov
property, and the definition of αε(·),

E[χε(αε(t + s)) − χε(αε(t))|Fε
t ] = E[χε(αε

(t+s)/ε) − χε(αε
t/ε)|αε

t/ε]

Moreover, when αε
t/ε = sij and i = ∗,

E[I{αε
t/ε

=p}|αε
t/ε = sij ] = δip =

{
1 if i = p,
0 if i = p.

Therefore,

E[I{αε
(t+s)/ε

=p} − I{αε
t/ε

=p}|αε
t/ε = sij ]

= P (αε
(t+s)/ε = p|αε

t/ε = sij) − δip

= P (αε
(t+s)/ε ∈ Mp|αε

t/ε = sij)

+
m∗∑

j1=1

P (αε
(t+s)/ε = s∗j1 |αε

t/ε = sij)P (Uj1 = p) − δip

= θip(s) + O(ε + λs/ε) − δip.

Since Θ(t) = (θij(t)) → I as t → 0,

lim sup
ε→0

E[I{αε
(t+s)/ε

=p} −I{αε
t/ε

=p}|αε
t/ε = sij ] = θip(s)−δip ≤ γ̃(s), (4.63)

and γ̃(s) → 0 as s → 0. Thus in this case, (4.62) is verified.
When αε

t/ε = s∗j , since Uj is independent of αε(·),

E[I{αε
(t+s)/ε

=p} − I{αε
t/ε

=p}|αε
t/ε = s∗j ]

= P (αε
(t+s)/ε = p|αε

t/ε = s∗j) − P (αε
t/ε = p|αε

t/ε = s∗j)

= P (αε
(t+s)/ε ∈ Mp|αε

t/ε = s∗j)

+
m∗∑

j1=1

P (αε
(t+s)/ε = s∗j1 |αε

t/ε = s∗j)P (Uj1 = p) − P (Uj = p)

= O(s) + O(ε + λs/ε) = O(s + ε + λs/ε).
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We obtain

lim sup
ε→0

E[χε(αε(t + s)) − χε(αε(t))|Fε
s ] = O(s).

Thus (4.62) is again verified.
To proceed, we use (4.62) to prove the desired tightness. Since I2

A = IA

for any indicator function of the set A, we have

E[|χε(αε(t + s)) − χε(αε(t))|2|Fε
t ]

= E[χε(αε(t + s))χε,′(αε(t + s)) − χε(αε(t + s))χε,′(αε(t))

−χε(αε(t))χε,′(αε(t + s)) + χε(αε(t))χε,′(αε(t))|Fε
t ]

=
l0∑

p=1

E[I{αε(t+s)=p} − 2I{αε(t+s)=p}I{αε(t)=p} + I{αε(t)=p}|Fε
t ].

(4.64)
Since

∑l0
p=1 I{αε(t+s)=p} = 1 and

∑l0
p=1 I{αε(t)=p} = 1,

l0∑
p=1

E[I{αε(t+s)=p} − 2I{αε(t+s)=p}I{αε(t)=p} + I{αε(t)=p}|Fε
t ]

= 2
[
1 −

l0∑
p=1

E[I{αε(t+s)=p}I{αε(t)=p}|Fε
t ]
]

= 2
[
1 −

l0∑
p=1

E[I{αε(t+s)=p} − I{αε(t)=p}|Fε
t ]I{αε(t)=p} −

l0∑
p=1

I{αε(t)=p}

]

= 2
l0∑

p=1

E[I{αε(t+s)=p} − I{αε(t)=p}|Fε
t ]I{αε(t)=p}.

By using (4.62), the above estimates, and (4.64),

lim sup
ε→0

E[|χε(αε(t + s)) − χε(αε(t))|2|Fε
t ] ≤ γ(s)

such that γ(s) → 0 as s → 0. Thus

lim
s→0

lim sup
ε→0

E
(
E[|χε(αε(t + s)) − χε(αε(t))|2|Fε

t ]
)

= 0,

and {χε(·)} is tight. Noting that αε(t) =
∑l0

i=1 iI{αε(t)=i}, the tightness of
{αε(·)} thus follows. The convergence of the finite-dimensional distributions
is proved in a similar way as was done in Theorem 4.10.

Let

wij(α) =
{

I{α=sij} − νijI{α∈Mi}, for i = 1, . . . , l0,
I{α=s∗j}, for i = ∗, (4.65)
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and consider the normalized occupation measure

nε,ij
k =

√
ε

k−1∑
l=0

wij(αε
l ).

Define nε
k and the continuous-time interpolations as in the previous case.

To prove Part (d), for fixed i, j, and i = 1, . . . , l0 by using the martingale
property,

E[(nε,ij(t + s) − nε,ij(t)|Fε
t ] = E[nε,ij

(t+s)/ε − nε,ij
t/ε |αε

t/ε]

=
√

ε

(t+s)/ε−1∑
l=t/ε

E[wij(αε
l )|αε

t/ε].

If α ∈ M∗, a similar argument as in the previous case leads to

E[wij(αε
l )|αε

t/ε] = O(ε + λl−(t/ε)).

If α = s∗j , then we have for i = ∗,

E[wij(αε
l )|αε

t/ε = s∗j ]

= P (αε
l = sij |αε

t/ε = s∗j) − νij(αε
l ∈ Mi|αε

t/ε = s∗j)

= O(ε + λl−(t/ε)).

and for i = ∗,

E[wij(αε
l )|αε

t/ε] = P (αε
l = s∗j |αε

t/ε) = O(ε + λl−(t/ε)).

Thus E[wij(αε
l )|αε

t/ε] = O(ε + λl−(t/ε)) and Part (a) is proved.
To prove Part (b), using ζlp defined in (4.39), consider

ζlp,ij =
{

ζlp, for i = 1, . . . , l0,
I{αε

l =s∗j}I{αε
p=s∗j}, for i = ∗.

Again by the Markov property

E[(nε,ij(t + s) − nε,ij(t))2|Fε
t ] = E[(nε,ij

(t+s)/ε − nε,ij
t/ε )2|αε

t/ε]

= ε

(t+s)/ε−1∑
l=t/ε

(t+s)/ε−1∑
p=t/ε

E[ζlp,ij |αε
t/ε].

(4.66)
As before, we obtain

E[ζlp,ij |αε
t/ε] =

⎧⎨⎩O(ε + λl−p), for t/ε ≤ p < l ≤ (t + s)/ε − 1,
O(ε + λp−l), for t/ε ≤ l < p ≤ (t + s)/ε − 1,
O(1), for t/ε ≤ l = p ≤ (t + s)/ε − 1.
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By virtue of (4.66),

ε

(t+s)/ε−1∑
l=t/ε

(t+s)/ε−1∑
p=t/ε

E[ζrp,ij |αε
t/ε] = O(s).

Thus Part (d) is proved. �

4.6 Notes

Classical central limit theorems concerning Markov chains may be found
in Dobrushin [48], for instance. Diffusion approximation arising from the
context of differential equations first appeared in Khasminskii [81]. Diffu-
sion approximations for wideband noise were treated in Kushner [96, 97].
Functional central limit theorems and structural properties of continuous-
time Markov chains with two-time scales were considered in Yin and Zhang
[158], Yin, Zhang, and Badowski [162], and Zhang and Yin [179, 180]. Un-
der discrete-time setup, the case with irreducible matrices was dealt with
in Yin, Zhang, Yang, and Yin [168]. One of the main difficulties we run
into is that for the more general setup with P given in (4.5) or (4.6), the
transition matrix is not irreducible, and as a result, the usual mixing con-
ditions cannot be verified. The main part of the results of this chapter is
based on Yin, Zhang, and Badowski [165]. That paper also contains more
general cases for non-homogeneous Markov chains.



5
Exponential Bounds

5.1 Introduction

This chapter is concerned with exponential upper bounds for scaled se-
quences of occupation measures. In Chapters 3 and 4, we examined asymp-
totic properties of singularly perturbed Markov chains in discrete time,
including asymptotic expansions of the probability vectors and transition
matrices, aggregations of the underlying processes, and the switching diffu-
sion limit of a sequence of scaled occupation measures. In applications, it is
also useful to provide estimates of rare event probabilities. In this chapter,
we focus on the exponential type bounds for singularly perturbed systems.
Such a study is important to further understand system stability and to fa-
cilitate the calculation of probabilities beyond the normal deviation range.

The rest of the chapter is arranged as follows. Section 5.2 begins with
the formulation of the problem. Section 5.3 presents the main results. First
we deal with the case in which the fast changing part of the transition
probability matrix is irreducible, a necessary step for investigating proper-
ties of Markov chains with more complex structures. Then we consider the
case in which the fast-changing transition matrix is decomposable into l0
sub-transition matrices corresponding to decomposing the state space into
l0 irreducible classes. Finally, we treat the case when transient states are
included. Section 5.4 gives examples of applications of these error bounds.
Extensions that incorporate time dependence and that include transient
states are given in Section 5.5. Detailed proofs are contained in Section
5.6. The chapter closes with some further remarks.
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5.2 Formulation

Suppose T is a positive real number, ε > 0 is a small parameter, and αε
k,

for 0 ≤ k ≤ 
T/ε�, is a discrete-time Markov chain with finite state space
M = {1, . . . , m0}, where 
z� denotes the integer part of a real number z.
For notational simplicity, as was done in the previous chapters, we often
simply write T/ε in lieu of 
T/ε� in what follows. Consider a discrete-time
Markov chain αε

k with stationary transition probability matrix P ε given by

P ε = P + εQ, (5.1)

where P = (pij) is a transition probability matrix, and Q = (qij) is a
generator.

We are interested in cases when a transition probability matrix of a
finite-state Markov chain can be put into the form

P = diag(P 1, . . . , P l0), (5.2)

where for each i ≤ l0, P i is a transition matrix within the ith recurrent
class. A Markov chain with transition matrix given by (5.2) consists of l0
recurrent classes. Let Mi = {si1, . . . , simi} denote the states corresponding
to the ith block P i. Then the state space of αε

k can be put into the form
M = M1 ∪ · · · ∪ Ml0 . In addition to the recurrent chains given above, we
will also examine the case when transient states are included.

5.3 Main Results

We present the results in several steps. In what follows, we first derive a
result when P is an irreducible matrix. Using the bounds for such irre-
ducible chains, we then work on Markov chain αε

k with transition matrix
P consisting of l0 recurrent classes given by (5.2). Finally, we extend the
results to include transient states.

5.3.1 Irreducible Chains
Here, we suppose that the Markov chain has a transition matrix given by
(5.1) with P being irreducible and aperiodic. We aim to obtain exponential
error bounds, which are needed for studying problems with a more general
transition matrix P . It is also interesting in its own right.

Let M = {1, . . . , m0} be the state space, and βk = diag(β1
k, . . . , βm0

k ),
where {βi

k} are bounded sequences of real numbers. For each i = 1, . . . , m0,
define

nε,i
k =

√
ε

k−1∑
l=0

(I{αε
l =i} − νi)βi

l , (5.3)
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and
nε

k = (nε,1
k , . . . , nε,m0

k )

=
√

ε

k−1∑
l=0

(I{αε
l =1} − ν1, . . . , I{αε

l =m0} − νm0)βl.

In view of Theorem 4.1, (P ε)k → P = 1lm0ν, as ε → 0 and k = O(1/ε),
where 1lm0 = (1, . . . , 1)′ ∈ R

m0×1 and ν = (ν1, . . . , νm0) is the stationary
distribution of P . Moreover, for 0 ≤ k ≤ T/ε for some finite T > 0, the
k-step transition matrix (P ε)k satisfies (P ε)k − P = O(ε + λk) for some
0 < λ < 1. Denote the least upper bound of

(P ε)k − P

ε + λk

by KT for 0 ≤ k ≤ T/ε. For convenience, introduce the notation O1(·) as
a “normalized” order symbol in that O1(y) is a function of y such that
|O1(y)|/|y| ≤ 1. We then have

(P ε)k − P = (P + εQ)k − P

= KT O1
(
ε + λk

)
, for 0 ≤ k ≤ T/ε.

(5.4)

For a vector v = (vi), we use | · | to denote the max norm

|v| = max
i

|vi|,

and given a matrix A = (aij), we use the norm

|A| = max
i,j

|aij |.

Similarly, for a vector-valued sequence zk ∈ R
1×m0 and a matrix-valued

sequence Ak ∈ R
m×m, we use

|z|T = sup
0≤k≤T/ε

|zk|, |A|T = sup
0≤k≤T/ε

|Ak|, (5.5)

respectively.

Theorem 5.1. Assume that P is irreducible and aperiodic. Let cT be a
constant such that

0 ≤ cT ≤ 1 − λ

KT (|β|T + 1)
. (5.6)

Then there exist an ε0 > 0 and a constant K such that for all 0 ≤ ε ≤ ε0,
the following error bound holds: for 1 ≤ k ≤ T/ε,

E exp
(

cT

(T + 1)
3
2
|nε

k|
)

≤ K, (5.7)
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where K is a constant independent of ε and T and λ is as given in Theo-
rem 4.1. Moreover, for any 0 < θ < 1, we have

E sup
1≤k≤T/ε

exp
(

θcT

(T + 1)
3
2
|nε

k|
)

≤ K. (5.8)

5.3.2 Recurrent Chains
This section is devoted to the exponential bounds for singularly perturbed
Markov chains, in which the fast-changing part of the transition probability
matrix includes l0 recurrent classes. That is, all states are recurrent. In this
case, the state space is decomposed to

M = M1 ∪ M2 ∪ · · · ∪ Ml0

= {s11, . . . , s1m1} ∪ {s21, . . . , s2m2} ∪ · · · ∪ {sl01, . . . , sl0ml0
}.

(5.9)

Let {βk} be a sequence of diagonal matrices with real entries such that

βk = diag
(
β11

k , . . . , β1m1
k , . . . , βl01

k , . . . , β
l0ml0
k

)
.

Define

nε
k =

√
ε

k−1∑
l=0

(
I{αε

l =s11} − ν11I{αε
l =1}, . . . , I{αε

l =s1m1} − ν1m1I{αε
l =1},

. . . , I{αε
l =sl1} − νl01I{αε

l =l0}, . . . , I{αε
l =sl0ml0

} − νl0ml0 I{αε
l =l0}

)
βl.

Let cT be a constant such that

0 ≤ cT ≤ 1 − λ

KT (|β|T + 1)
,

where

KT = sup
ε,k

(P ε)k − Φ(εk)
ε + λk

.

The exponential bounds for the recurrent chains are given as follows.

Theorem 5.2. Assume that P ε, P , and P i for i ≤ l0 are transition prob-
ability matrices such that for each i ≤ l, P i is irreducible and aperiodic.
Then there exist an ε0 > 0 and a constant K such that for all 0 ≤ ε ≤ ε0,
the following error bound holds: For 1 ≤ k ≤ T/ε,

E exp
(

cT

(T + 1)
3
2
|nε

k|
)

≤ K. (5.10)
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Moreover, given 0 < θ < 1, there exist an ε0 > 0 and a constant K such
that, for all 0 ≤ ε ≤ ε0, we have

E sup
1≤k≤T/ε

exp
(

θcT

(T + 1)
3
2
|nε

k|
)

≤ K. (5.11)

In obtaining a limit theorem for asymptotic distribution of nε
k, an impor-

tant step involves proving the scaled sequence of being bounded in prob-
ability. With the exponential bounds obtained, such a probability bound
can be readily obtained. In addition, moment bounds can also be obtained.
They are stated in the next two corollaries with proofs in Section 5.5.

Corollary 5.3. Suppose that the conditions of Theorem 5.2 are fulfilled.
Then for any δ > 0, there exists a Kδ > 0 such that for all 0 ≤ k ≤ T/ε,

P

(
sup

k≤T/ε

|nε
k| > Kδ

)
< δ. (5.12)

Corollary 5.4. Under the conditions of Theorem 5.2, for any 0 < l < ∞,

E sup
k≤T/ε

|nε
k|l ≤ K(T + 1)

3l
2 l!

(cT )l
, (5.13)

where K is given in Theorem 5.2.

5.3.3 Markov Chains with Transient States
Let P ε = P + εQ and P given by (4.6). Define a diagonal matrix

βk = diag
(
β11

k , . . . , β1m1
k , . . . , βl01

k , . . . , β
l0ml0
k , β∗1

k , . . . , β∗m∗
k

)
.

Also define

nε
k =

√
ε

k−1∑
l=0

(
I{αε

l =s11} − ν11I{αε
l =1}, . . . , I{αε

l =s1m1} − ν1m1I{αε
l =1},

. . . , I{αε
l =sl1} − νl01I{αε

l =l0}, . . . , I{αε
l =sl0ml0

} − νl0ml0 I{αε
l =l0},

I{αε
k=s∗1}, . . . , I{αε

k=s∗m∗ }
)
βl.

We present the exponential bounds of the scaled occupation measures when
the transient states are included.

Theorem 5.5 Assume P ε, P , and P i for i = 1, . . . , l0 are transition prob-
ability matrices such that each P i is irreducible and aperiodic. Moreover,
suppose that all the eigenvalues of P ∗ are inside the unit circle. Then the
conclusion of Theorem 5.2 continues to hold.
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5.4 Applications

This section presents two applications of the exponential bound results. It
includes tightness, moment bounds, and asymptotic normality.

Example 5.6. Assume that the conditions of Theorem 5.1 hold. As an
application of the exponential bounds, we can re-derive a central limit
result. For simplicity, consider a fixed i ∈ M, and set

Nε =
√

ε√
T

T/ε−1∑
k=0

(I{αε
k=i} − νi),

where we have suppressed the i-dependence in Nε.
Under the conditions of Theorem 5.1, Nε converges in distribution to a

normal random vector with mean 0 and covariance matrix σ2I, where

σ2 = νiψii(0) + 2νi
∞∑

k=1

ψii(k),

with the ψij(k) being the initial layer correction term as given in Theo-
rem 4.1. In view of Theorem 5.1, the characteristic function

Gε(z) = E exp(iNεz)

exists for all z ∈ R, where i is the imaginary number satisfying i2 =
−1. Since P is irreducible, αε

k is a φ-mixing process with an exponential
mixing rate. Using the mixing inequality, we can then verify Gε(z) →
exp(−σ2z2/2) as ε → 0, and hence conclude that Nε has a normal limit
distribution. Note that the above example is a simple illustration only. In
Chapter 4, by defining nε(t) = nε

k for t ∈ [εk, εk + ε), we showed that nε(·)
converges weakly to a diffusion process or a switching diffusion process
depending on whether P given in (5.1) is irreducible or has the form (5.2).

Example 5.7. In production planning with long-run average cost prob-
lems, a finite-state Markov chain is often used to characterize the under-
lying machine capacity and demand rate processes. Suppose that {αε

k} is
a function of the machine state process representing the production ca-
pacity, and let τ be the first time when the sum

∑n
k=0(α

ε
k − z) = µ0 for

given z and µ0, where z is a constant demand rate and µ0 is a measure
of the accumulative difference of the demand and the capacity. It is useful
to provide estimates on the first and second moments of τ in terms of µ0.
The exponential bound obtained in Theorem 5.2 is crucial in deriving such
finite moments; see Sethi et al. [134] for details.
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5.5 Proofs of Results

Proof of Theorem 5.1. For notational convenience, let

n̂ε
k = nε

k − √
ε(χε

0 − ν) +
√

ε(χε
k − ν). (5.14)

Note that the χi is bounded, so are
√

ε(χε
0 − ν) = O(

√
ε) and

√
ε(χε

k − ν) = O(
√

ε).

It suffices to show Theorem 5.1 with nε
k replaced by n̂ε

k. The rest of the
proof is divided into seven steps.

Step 1: (Verifying martingale property of a suitable sequence). Define

χε
k = (I{αε

k=1}, . . . , I{αε
k=m0}) ∈ R

1×m0

wε
k = χε

k − χε
0 −

k−1∑
l=0

χε
l (P + εQ − I).

(5.15)

Denote ∆wε
k = wε

k+1 − wε
k. It is easily shown that

|∆wε
k| ≤ 1.

A simple calculation reveals that

χε
k+1 = χε

k + χε
k(P + εQ − I) + ∆wε

k. (5.16)

It can be verified that

wkP = χε
kP − χε

0P −
k−1∑
l=0

χε
l (P + εQ − I)P = 0. (5.17)

Thus wk is orthogonal to P . Denote by Fk the σ-algebra generated by
{αε

l : l ≤ k}. We next show that ∆wε
k is a martingale difference sequence

with respect to Fk. In fact, for each fixed j ∈ M, by the Markov property,

E(I{αε
k+1=j}|Fk) = E(I{αε

k+1=j}|αε
k)

=
m0∑
i=1

I{αε
k=i}E(I{αε

k+1=j}|αε
k = i)

=
m0∑
i=1

I{αε
k=i}pε,ij ,

so

E(χε
k+1|Fk) =

( m0∑
i=1

I{αε
k=i}pε,i1, . . . ,

m0∑
i=1

I{αε
k=i}pε,im0

)
= χε

k(P + εQ).
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As a result, it follows that

E(∆wk|Fk) = E(χε
k+1|Fk) − χε

k(P + εQ) = 0. (5.18)

That is, the martingale difference property is verified.
Step 2: (Preliminary estimates). By virtue of (5.16),

χε
k+1 = χε

0(P + εQ)k+1 +
k∑

l=0

∆wε
l (P + εQ)k−l. (5.19)

Noting that χε
0P = ν and the orthogonality of wk and P given by (5.17),

we arrive at

χε
k+1 − ν = χε

0[(P + εQ)k+1 − P ] +
k∑

l=0

∆wε
l {[(P + εQ)k−l − P ] + P ]}

= χε
0ρk+1 +

k∑
l=0

∆wε
l ρk−l,

(5.20)
where

ρi = [(P + εQ)i − P ]. (5.21)

Let 1 ≤ κε ≤ T/ε. It follows from (5.20),

κε∑
k=1

[χε
k − ν]βk =

κε−1∑
k=0

[χε
k+1 − ν]βk+1

=
κε−1∑
k=0

χε
0ρk+1βk+1 +

κε−1∑
k=0

( k∑
l=0

∆wε
l ρk−l

)
βk+1.

(5.22)

Considering the last term in (5.22) and interchanging the order of sum-
mations, we obtain

κε−1∑
k=0

( k∑
l=0

∆wε
l ρk−l

)
βk+1 =

κε−1∑
l=0

∆wε
l ρ̃l,

where

ρ̃l =
κε−1−l∑

l1=0

ρl1βl1+l+1.

Equation (5.4) implies that

|ρ̃l| ≤ KT

(
T +

1
1 − λ

)
|β|T , for all l ≤ T/ε.
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It follows from (5.22) that

|n̂ε
κε

| =
√

ε

∣∣∣∣ κε−1∑
k=0

(χε
k+1 − ν)βk+1

∣∣∣∣
≤ √

ε

κε−1∑
k=0

|χε
0ρk+1βk+1| +

√
ε

∣∣∣∣ κε−1∑
l=0

∆wε
l ρ̃l

∣∣∣∣.
In view of (5.4), we have

κε−1∑
k=0

|χε
0ρk+1βk+1| ≤ |β|T KT

κε−1∑
k=0

(ε + λk+1)

≤ |β|T KT

(
T +

λ

1 − λ

)
.

(5.23)

Thus,

exp

(
cT

√
ε

(T + 1)
3
2

κε−1∑
k=0

|χε
0ρk+1βk+1|

)
≤ exp

(
cT

√
ε

(T + 1)
3
2
|β|T KT

(
T +

λ

1 − λ

))
≤ e,

for ε small enough.
Step 3: (Exponential estimates). Let dk = (d1

k, . . . , dm0
k ) with

di
k =

k−1∑
l=0

(
cT

T + 1

)
∆wε,i

l ρ̃l, i ∈ M,

where ∆wε,i
l denotes the ith component of ∆wε

l . To complete the proof of
inequality (5.4), it suffices to show

E exp
( √

ε√
T + 1

|dκε |
)

≤ K. (5.24)

Note that

Eeξ ≤ e + (e − 1)
∞∑

l=1

elP (ξ ≥ l), (5.25)

for any nonnegative random variable ξ. Moreover, for each a > 0, using the
maximum norm, we have

P (|dκε
| ≥ a) = P

(
m0⋃
i=1

|di
κε

| ≥ a

)
≤

m0∑
i=1

P (|di
κε

| ≥ a). (5.26)

In view of these inequalities, (taking ξ = (
√

ε/
√

T + 1)|dκε
| in (5.25) and

a = l
√

T + 1/
√

ε in (5.26)), it suffices to show
∞∑

l=1

elP

(
|di

κε
| ≥ l

√
T + 1√

ε

)
< ∞, for each i ∈ {1, . . . , m0}. (5.27)
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In fact, for 0 ≤ k ≤ T/ε,

|∆di
k| = |di

k+1 − di
k| =

∣∣∣∣ ( cT

T + 1

)
∆wε,i

k ρ̃k

∣∣∣∣ ≤ 1.

Given i ∈ {1, . . . , m0} and ζ > 0, define

qk = 1 + ζ

k−1∑
l=0

ql∆di
l, q0 = 1.

Note that ζ is a parameter to be chosen later to fit our needs. Then, {qk}
is a martingale and Eqk = 1. Moreover,

qk+1 − qk = ζqk∆di
k.

It follows that

qk =
k−1∏
l=0

(1 + ζ∆di
l).

Using the condition |∆di
l| ≤ 1, it is easy to show that

1 + (∆di
l)ζ ≥ exp

(
(∆di

l)ζ − κζ2) ,

for some κ > 0. This implies that

qk ≥
k−1∏
l=0

exp
(
(∆di

l)ζ − κζ2) = exp
(
di

kζ − κkζ2) , for k ≤ T/ε.

Note that

P

(
|di

κε
| ≥ l

√
T + 1√

ε

)
= P

(
di

κε
≥ l

√
T + 1√

ε

)
+ P

(
−di

κε
≥ l

√
T + 1√

ε

)
.

We need only consider the first term because the second one can be treated
similarly. We have

P

(
di

κε
≥ l

√
T + 1√

ε

)
≤ P

(
qκε ≥ exp

(
l
√

T + 1√
ε

ζ − κκεζ
2
))

≤ exp
(

− l
√

T + 1√
ε

ζ + κκεζ
2
)

.

Now choose ζ = 2
√

ε/
√

T + 1. It follows that

−
(

l
√

T + 1√
ε

)
ζ + κκεζ

2 ≤ 4κ − 2l.
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Therefore,
∞∑

l=1

ele4κ−2l = e4κ
∞∑

l=1

e−l =
e4κ

e − 1
< ∞,

which implies (5.27). Hence, (5.24) follows, so does (5.7). We next prove
(5.8).

Step 4: (Near martingale property). We claim that for ε small enough,

|E[n̂ε,i
t/ε|Fs/ε] − n̂ε,i

s/ε| ≤ O(
√

ε), for all ω ∈ Ω and 0 ≤ s ≤ t ≤ T. (5.28)

Here O(
√

ε) is deterministic. To see this, note that for all i0 ∈ M,

E

[ t/ε∑
l=s/ε+1

(I{αε
l =i} − νi)βl

∣∣∣αε
s/ε = i0

]

=
t/ε∑

l=s/ε+1

(E[I{αε
l =i}|αε

s/ε = i0] − νi)βl

=
t/ε∑

l=s/ε+1

(P (αε
l = i|αε

s/ε = i0) − νi)βl

=
t/ε∑

l=s/ε+1

O(ε + λl−s/ε) = O(1).

So, (5.28) follows.
Step 5: (Near submartingale property). We show that, for each a > 0,

E[exp(a|n̂ε,i
t/ε|)|Fs/ε] ≥ exp(a|n̂ε,i

s/ε|)(1 + O(
√

ε)), (5.29)

for 0 ≤ s ≤ t ≤ T .
First of all, note that φ(x) = |x| is a convex function. Noting that

O(
√

ε) = −O(
√

ε), we have

E[|n̂ε,i
t/ε| |Fs/ε] ≥ |n̂ε,i

s/ε| + φ+(n̂ε,i
s/ε)E[n̂ε,i

t/ε − n̂ε,i
s/ε|Fs/ε]

≥ |n̂ε,i
s/ε| − |φ+(n̂ε,i

s/ε)|E[|n̂ε,i
t/ε − n̂ε,i

s/ε|
∣∣Fs/ε]

= |n̂ε,i
s/ε| − O(

√
ε)

= |n̂ε,i
s/ε| + O(

√
ε),

where φ+(x) is the right-hand derivative of φ(x) and is bounded by 1.
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Moreover, note that eax is also convex. It follows that

E[exp(a|n̂ε,i
t/ε|)|Fs/ε]

≥ exp(a|n̂ε,i
s/ε|) + a exp(a|n̂ε,i

s/ε|)E[|n̂ε,i
t/ε| − |n̂ε,i

s/ε| |Fs/ε]

≥ exp(a|n̂ε,i
s/ε|) − a exp(a|n̂ε,i

s/ε|)E[|n̂ε,i
t/ε − n̂ε,i

s/ε| |Fs/ε]

= exp(a|n̂ε,i
s/ε|)(1 − O(

√
ε))

= exp(a|n̂ε,i
s/ε|)(1 + O(

√
ε)).

Step 6: (Optional sampling). Let

xε
k = exp(a|n̂ε,i

k |) for a > 0. (5.30)

Then, for any Fk stopping time τ ≤ T/ε,

E[xε
T/ε|Fτ ] ≥ xε

τ (1 + O(
√

ε)). (5.31)

Note that τ ∈ {0, 1, 2, . . . , T/ε}. Taking t = T and s = εk in (5.29), we
have

E[xε
T/ε|Fk] ≥ xε

k(1 + O(
√

ε)).

For all A ∈ Fτ , we have A ∩ {τ = k} ∈ Fk. Therefore,∫
A∩{τ=k}

xε
T/εdP ≥

(∫
A∩{τ=k}

xε
τdP

)
(1 + O(

√
ε)).

Thus ∫
A

xε
T/εdP ≥

(∫
A

xε
τdP

)
(1 + O(

√
ε)),

and (5.31) follows.
Step 7: (Submartingale inequality). Take a = cT /(T + 1)

3
2 in Step 6.

Then for ε small enough, there exists K such that

P

(
sup

k≤T/ε

xε
k ≥ x

)
≤ K

x
, (5.32)

for all x > 0.
In fact, let τ = min{k : xε

k ≥ x, k ≤ T/ε}. We adopt the convention
and take τ = ∞ if {k : xε

k ≥ x} = ∅. Then we have

Exε
T/ε ≥ (Exε

(T/ε)∧τ )(1 + O(
√

ε)),

and we can write

Exε
(T/ε)∧τ = Exε

τI{τ≤T/ε} + Exε
T/εI{τ>T/ε} ≥ Exε

τI{τ≤T/ε}.



5.5 Proofs of Results 115

Moreover, in view of the definition of τ , we have

Exε
τI{τ≤T/ε} ≥ xP (τ ≤ T/ε) = xP

(
sup

k≤T/ε

xε
k ≥ x

)
.

It follows that

P

(
sup

k≤T/ε

xε
k ≥ x

)
≤

Exε
T/ε

(1 + O(
√

ε))x
≤ K

x
.

Thus, (5.32) follows.
To complete the proof of (5.8), note that for 0 < θ < 1,

E exp

(
θcT

(T + 1)
3
2

sup
k≤T/ε

|n̂ε,i
t/ε|

)
= E sup

k≤T/ε

(xε
k)θ.

It follows that

E sup
k≤T/ε

(xε
k)θ =

∫ ∞

0
P
(

sup
k≤T/ε

(xε
k)θ ≥ x

)
dx

≤ 1 +
∫ ∞

1
P
(

sup
k≤T/ε

(xε
k)θ ≥ x

)
dx

≤ 1 +
∫ ∞

1
P
(

sup
k≤T/ε

xε
k ≥ x1/θ

)
dx

≤ 1 +
∫ ∞

1
Kx−1/θdx < ∞.

The desired exponential bound is obtained. �

The following result is a direct consequence of Steps 1–3. It will be used
in the proof of Theorem 5.2.

Lemma 5.8. If, for any sequence {ρk} satisfying |ρk| ≤ KT O1(ε + λk),
then for

0 ≤ cT ≤ 1 − λ

KT (|β|T + 1)
,

and 1 ≤ κε ≤ T/ε, we have

E exp

(
cT

√
ε

(T + 1)
3
2

∣∣∣∣ κε−1∑
k=0

( k∑
l=0

∆wε
l ρk−l

)
βk+1

∣∣∣∣
)

≤ K.

Proof of Theorem 5.2. We only verify (5.10). The proof of (5.11) is
similar to that of (5.8).

Define

χε
k = (I{αε

k=s11}, . . . , I{αε
k=s1m1}, . . . , I{αε

k=sl01}, . . . , I{αε
k=sl0ml0

}),

χ̃ε
k = χε

k1̃l, 1̃l = diag(1lm1 , . . . , 1lml0
),

χε
k = χ̃ε

kν̂, ν̂ = diag(ν1, . . . , νl0),
(5.33)
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and define ∆wε
k and wε

k as in (5.15) and (5.16).
Using the definitions given in (5.33), we have

χε
k+1 = χε

0(P + εQ)k+1 +
k∑

l=0

∆wε
l (P + εQ)k−l. (5.34)

Let
ηε

k+1 = χε
0[(P + εQ)k+1 − Φ(ε(k + 1))]

+
k∑

l=0

∆wε
l [(P + εQ)k−l − Φ(ε(k − l))].

Then,

χε
k+1 = χε

0Φ(ε(k + 1)) +
k∑

l=0

∆wε
l Φ(ε(k − l)) + ηε

k+1. (5.35)

On the other hand, multiplying from the right on both sides of (5.35) by
1̃l, using χ̃ε

k = χε
k1̃l, Φ(εk)1̃l = 1̃lΘ(εk) (see Theorem 4.1), and noting that

ν̂1̃l equals to the l0 × l0 identity matrix, we have

χ̃ε
k+1 = χε

0Φ(ε(k + 1))1̃l +
k∑

l=0

∆wε
l Φ(ε(k − l))1̃l + ηε

k+11̃l

= χε
01̃lΘ(ε(k + 1)) +

k∑
l=0

∆wε
l 1̃lΘ(ε(k − l)) + ηε

k+11̃l.

Thus, we arrive at

χε
k+1 = χε

0Φ(ε(k + 1)) +
k∑

l=0

∆wε
l Φ(ε(k − l)) + ηε

k+11̃lν̂. (5.36)

Combining (5.35) and (5.36), we obtain

χε
k+1 − χε

k+1 = ηε
k+1(I − 1̃lν̂). (5.37)

In view of Theorem 4.1, we have∣∣(P + εQ)k − Φ(εk)
∣∣ ≤ KT O1(ε + λk), for 0 ≤ k ≤ T/ε.

Let
ρk = ((P + εQ)k − Φ(εk))(I − 1̃lν̂).

Then
|ρk| ≤ KT O1(ε + λk).
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We have∣∣∣∣ κε∑
k=1

[χε
k − χε

k]βk

∣∣∣∣ ≤
∣∣∣∣ κε−1∑

k=0

χε
0ρk+1βk+1

∣∣∣∣ +
∣∣∣∣ κε−1∑

k=0

( k∑
l=0

∆wε
l ρk−l

)
βk+1

∣∣∣∣.
Following Lemma 5.8 and (5.23), we obtain

exp

( √
εcT

(T + 1)
3
2

∣∣∣∣ κε∑
k=1

[χε
k − χε

k]βk

∣∣∣∣
)

≤ K.

The desired result then follows. �

Proof of Corollary 5.3. By virtue of the Markov inequality and Theo-
rem 5.2,

P

(
sup

k≤T/ε

|nε
k|>Kδ

)
≤P

(
sup

k≤T/ε

exp
(

cT

(T + 1)
3
2
|nε

k|
)

>exp
(

cT Kδ

(T + 1)
3
2

))
≤exp

(
− cT Kδ

(T + 1)
3
2

)
E sup

k≤T/ε

exp
(

cT

(T + 1)
3
2
|nε

k|
)

.

Since

E sup
k≤T/ε

exp
(

cT

(T + 1)
3
2
|nε

k|
)

≤ K,

we obtain that

P

(
sup

k≤T/ε

|nε
k| > Kδ

)
≤ K exp

(
− cT Kδ

(T + 1)
3
2

)
. (5.38)

To make the right-hand side of (5.38) be less than δ, it suffices to have

Kδ > (T + 1)
3
2 log(K/δ)/cT ,

which yields (5.12). �

Proof of Corollary 5.4. To verify this assertion, note that for any z ∈ R,
we have exp(|z|) ≥ |z|l/l!. Thus

sup
k≤T/ε

|nε
k|l ≤ l! sup

k≤T/ε

exp
(

cT

(T + 1)
3
2
|nε

k|
)

(T + 1)
3l
2

cl
T

.

Taking expectation and using Theorem 5.2, we obtain (5.13). �

Proof of Theorem 5.5. In view of the developments in Chapter 3 and
Chapter 4 for the case of inclusion of transient states, Theorem 4.14 is in
force. That is, we also obtain the desired asymptotic expansions, the mean
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squares estimates of the occupation measures, and the weak convergence
of the aggregated process. Define

1̃l∗ =
(

1̃l 0(m−m∗)×m∗
A∗ 0m∗×m∗

)
,

ν∗ = diag(ν1, . . . , νl0 , 0m∗×m∗),
(5.39)

χε
k = (I{αε

k=s11}, . . . , I{αε
k=s1m1}, . . . , I{αε

k=sl01}, . . . , I{αε
k=sl0ml0

},

I{αε
k=s∗1}, . . . , I{αε

k=s∗m∗ }),

χ̃ε
k = χε

k1̃l∗, χε
k = χ̃ε

kν∗,
(5.40)

and define ∆wε
k and wε

k as in the recurrent case.
To obtain the desired exponential upper bounds, recall the definitions

(5.39) and (5.40). Using v = (v1, v2, . . . , vl0 , v∗), the notation of a parti-
tioned vector, with vi ∈ R

1×mi , we can readily see that

χε
k = (Iε

k1lm1 + Iε,∗
k a1, . . . , Iε,l0

k 1lml0
+ Iε,∗

k al0 , 0m∗),

χε
k = ((Iε

k1lm1 + Iε,∗
k a1)ν1, . . . , (Iε,l0

k 1lml0
+ Iε,∗

k al0)νl0 , 0m∗),

where 0m∗ is an R
1×m∗ zero vector. As in (5.37), we can derive

χε
k+1 − χε

k+1 = ηε
k+1(I − 1̃l∗ν∗), (5.41)

where

ηε
k+1 = χε

0[(P
ε)k+1 − Φ(ε(k + 1))] +

k∑
l=0

∆wε
l [(P

ε)k−l − Φ(ε(k − l))].

The rest of the development follows from the same line of argument as that
of Theorem 5.2. �

5.6 Notes

This chapter is concerned with exponential-type bounds for sequences of
scaled and centered occupation measures. The results are useful for the
development of infinite horizon stochastic control problems and for the fur-
ther study of hybrid systems involving singularly perturbed Markov chains.
This chapter is based on our recent work in Zhang and Yin [183]. In deal-
ing with continuous-time, two-time-scale Markov chains, exponential error
bounds were obtained in Zhang and Yin [179]. Such bounds were used in
developing asymptotic normality for the fast-varying irreducible genera-
tors. Related results on continuous-time problems can be found in Yin and
Zhang [158, Chapter 7] and Yin, Zhang, and Liu [166].



6
Interim Summary and Extensions

6.1 Introduction

In the previous chapters, we have developed asymptotic expansions of prob-
ability vectors and transition matrices, obtained asymptotic distributions
of scaled sequences of occupation measures, and their exponential error
bounds. The remaining chapters will cover control, stability, filtering, and
stochastic approximation problems arising from numerous applications. To
be more specific, we will study stability of Markov-modulated dynamic
systems, Markov decision processes, linear quadratic regulators, hybrid fil-
tering, mean variance control, production planning, and stochastic approx-
imations. We will make use of the results obtained thus far. This chapter
serves as a link between the theory covered in the previous chapters and
applications to be presented in the following chapters. It is an interlude and
provides a self-contained summary and extensions to models with nonsta-
tionary Markov chains. A reader who is mainly interested in applications
may skip Chapters 3–5 and utilize this chapter as a user’s guide.

The rest of the chapter is arranged as follows. In the next section, we
recapture the basic models and conditions. Section 6.3 deals with chains
with recurrent states. Section 6.4 takes care of the case when transient
states are also included in addition to the recurrent classes of states. Sec-
tion 6.5 discusses the case where the transition matrices are time depen-
dent. Throughout the chapter, the conditions needed along with the results
(in the format of propositions) will be presented; the proofs, having been
presented essentially in Chapters 3–5, will not be repeated, however.
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6.2 The Model

Suppose T is a positive number, ε > 0 is small parameter, and αε
k, for

k = 0, 1, . . . , 
T/ε�, is a discrete-time Markov chain with finite state space
M = {1, . . . , m0}, where 
z� denotes the integer part of a real number z.
For notational simplicity, we often simply write T/ε in lieu of 
T/ε�.

Suppose the transition probability matrix P ε of αε
k is given by

P ε = P + εQ, (6.1)

where P itself is a transition matrix and Q = (qij) is a generator of a
continuous-time Markov chain, i.e., for each i = j, qij ≥ 0 and for each i,∑

j qij = 0 or Q1lm0 = 0. Recall that 1ll ∈ R
l×1 denotes a column vector

with all components being 1.
In (6.1), P is the dominating force for ε sufficiently small. In accordance

with the well-known Kolmogorov classification of states, in a finite-state
Markov chain, there is at least one recurrent state, and either all states
are recurrent or there is also a collection of transient states in addition to
the recurrent states. Furthermore, any transition probability matrix of a
finite-state Markov chain can be put into the form of (see, for example,
Iosifescu [73, p. 94]) either

P = diag(P 1, . . . , P l0) =

⎛⎜⎜⎝
P 1

P 2

. . .
P l0

⎞⎟⎟⎠ , (6.2)

or

P =

⎛⎜⎜⎜⎜⎝
P 1

P 2

. . .
P l0

P ∗,1 P ∗,2 · · · P ∗,l0 P ∗

⎞⎟⎟⎟⎟⎠ , (6.3)

where for each i = 1, . . . , l0, P i is a transition matrix within the ith recur-
rent class Mi = {si1, . . . , simi}; and the last row (P ∗,1, . . . , P ∗,l0 , P ∗) in
(6.3) corresponds to the transient states M∗ = {s∗1, . . . , s∗m∗}. A Markov
chain with transition matrix given by (6.2) consists of l0 recurrent classes,
whereas a Markov chain with transition matrix (6.3) has l0 recurrent classes
plus m∗ transient states. In the next section, we concentrate on the tran-
sition matrix P ε with P specified by (6.2). Then in Section 6.4, we treat
certain models with P given by (6.3); in Section 6.5, we consider time-
inhomogeneous chains having transition matrices P ε(εk) = P (εk)+εQ(εk)
with P (εk) having the partitioned form (6.3).

Remark 6.1. To use the two-time-scale approach in practice, one often
needs to convert a given transition probability matrix P into the form of



6.3 Recurrent Chains 121

(6.1). In this connection, an example was given in Section 1.1; see also the
algorithm of conversion to canonical form for continuous-time generators in
Yin and Zhang [158, Section 3.6]. The reduction to canonical form may also
be derived from the decomposition outlined by Avramovic; see Phillips and
Kokotovic [125] for more details. Such a decomposition of P may be non-
unique. Nevertheless, this will not affect the applicability of the approach
because the non-uniqueness only leads to more than one near-optimal so-
lution in the context of control and optimization and any near-optimal
control will be good enough for practical purposes.

6.3 Recurrent Chains

Suppose that αε
k has transition probabilities (6.1) with P having a block

diagonal form (6.2). For each k = 0, 1, . . . , T/ε, the probability vector

pε
k = (P (αε

k = 1), . . . , P (αε
k = m0)) ∈ R

1×m0

satisfies the vector-valued difference equation

pε
k+1 = pε

kP ε, pε
0 = p0, (6.4)

where p0 is the initial probability distribution, i.e., pi
0 ≥ 0 and p01lm0 =∑m0

i=1 pi
0 = 1, which is assumed to be independent of ε. To proceed, we

make the following assumption.

(HR) P ε and P are transition probability matrices. Moreover, for i =
1, . . . , l0, P i are irreducible and aperiodic transition probability
matrices.

Here, HR stands for “homogeneous and recurrent.” Let νi be the sta-
tionary distribution associated with P i. That is, νi = (νi1, . . . , νimi) is the
only positive solution to

νi = νiP i and νi1lmi = 1, for i = 1, . . . , l0.

We next define an aggregated process. Given k ≤ T/ε and i = 1, . . . , l0,
define αε

k = i if αε
k ∈ Mi. Moreover, for k ≤ T/ε, i = 1, . . . , l0, and

j = 1, . . . , mi, define a sequence of occupation measures

πε,ij
k = ε

k−1∑
l=0

(
I{αε

l =sij} − νijI{αε
l =i}

)
,

πε
k =

(
πε,11

k , . . . , πε,1m1
k , . . . , πε,l01

k , . . . , π
ε,l0ml0
k

)
.

(6.5)

Furthermore, define αε(t) to be the continuous-time interpolation of αε
k.

That is,
αε(t) = αε

k for t ∈ [εk, εk + ε).
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Let
Q = diag(ν1, . . . , νl0)Q1̃l, (6.6)

where 1̃l = diag(1lm1 , . . . , 1lml0
).

Proposition 6.2. Assume condition (HR). Then the following assertions
hold:

(a) For the probability distribution vector pε
k, we have

pε
k = θ(εk)diag(ν1, . . . , νl0) + O(ε + λk) (6.7)

for some λ with 0 < λ < 1, where θ(t) = (θ1(t), . . . , θl0(t)) ∈ R
1×l0

satisfies
dθ(t)
dt

= θ(t)Q, θi(0) = pi
01lmi .

(b) For k ≤ T/ε, the k-step transition probability matrix (P ε)k satisfies

(P ε)k = Φ(εk) + εΦ̂(εk) + Ψ(k) + εΨ̂(k) + O
(
ε2) , (6.8)

where

Φ(t) = 1̃lΘ(t)diag(ν1, . . . , νl0),
dΘ(t)

dt
= Θ(t)Q, Θ(0) = I.

(6.9)

Moreover, Φ(t) and Φ̂(t) are uniformly bounded in [0, T ] and Ψ(k)
and Ψ̂(k) decay exponentially fast, i.e., |Ψ(k)| + |Ψ̂(k)| = O(λk) for
some 0 < λ < 1.

(c) For i = 1, . . . , l0, j = 1, . . . , mi,

sup
0≤k≤T/ε

E|πε,ij
k |2 = O(ε).

(d) αε(·) converges weakly to α(·), which is a continuous-time Markov
chain with generator Q.

Parts (a) and (b) were proved in Theorems 3.10 and 3.11 and Parts (c)
and (d) were obtained in Theorems 4.5 and 4.3, respectively.

Remark 6.3. Using the exponential error bound estimate in (6.12), one
can obtain a stronger version of Part (c) as follows:

E sup
0≤k≤T/ε

|πε,ij
k |2 = O(ε).
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We next consider the scaled occupation measures and their asymptotic
distribution and exponential bounds. Let

nε
k = (nε,11

k , . . . , nε,1m1
k , . . . , nε,l01

k , . . . , n
ε,l0ml0
k )

denote a sequence of the scaled occupation measures with

nε,ij
k =

1√
ε
πε,ij

k .

Define a sequence of piecewise constant functions by

nε(t) = nε
k for t ∈ [εk, εk + ε) and πε(t) = πε

k for t ∈ [εk, εk + ε).

Note that nε(t) = πε(t)/
√

ε.
For each i = 1, . . . , l0, let

A(i) = νi,diag
∞∑

k=0

Ψ(k, i) +
∞∑

k=0

Ψ′(k, i)νi,diag, (6.10)

where νi,diag = diag(ν11, . . . , νimi) ∈ R
mi×mi and

Ψ(k + 1, i) = Ψ(k, i)P i,

Ψ(0, i) = I − 1lmiν
i.

Then, A(i) = (aj1j2(i)) is symmetric and nonnegative definite.

Proposition 6.4. Assume condition (HR). Then the following assertions
hold.

(a) (nε(·), αε(·)) converges weakly to (n(·), α(·)) such that the limit is the
unique solution of the martingale problem with operator

Lf(x, i) =
1
2

mi∑
j1=1

mi∑
j2=1

aj1j2(i)
∂2f(x, i)
∂xij1∂xij2

+ Qf(x, ·)(i),

for i = 1, . . . , l0.

(b) Let cT be a constant such that

0 ≤ cT ≤ 1 − λ

2KT
,

where

KT = sup
ε,k

(P ε)k − Φ(εk)
ε + λk

.
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Then there exist an ε0 > 0 and a constant K such that for all 0 ≤
ε ≤ ε0 and for 1 ≤ k ≤ T/ε,

E exp
(

cT

(T + 1)
3
2
|nε

k|
)

≤ K. (6.11)

Moreover, for any 0 < θ < 1, there exist an ε0 > 0 and a constant K
such that for all 0 ≤ ε ≤ ε0, we have

E sup
1≤k≤T/ε

exp
(

θcT

(T + 1)
3
2
|nε

k|
)

≤ K. (6.12)

Furthermore, let βk = (β11
k , . . . , β1m1

k , . . . , βl01
k , . . . , β

l0ml0
k ). Then both

(6.11) and (6.12) hold with nε,ij
k replaced by nε,ij

k βij
k for cT satisfying

0 ≤ cT ≤ 1 − λ

KT (|β|T + 1)
.

Part (a) was derived in Chapter 4 and Part (b) was proved in Chapter
5.

6.4 Inclusion of Transient States

In this section, we treat the model with transient states in addition to the
l0 ergodic classes. We consider the Markov chain with transition matrix
P ε with P given by (6.3). This together with the result of the last section
takes care of most of the practical concerns of finite-state Markov chains.
To proceed, we modify condition (HR) slightly.

(HT) P ε, P , and P i for i = 1, . . . , l0 are transition probability matrices
such that each P i is irreducible and aperiodic. Moreover, all the
eigenvalues of P ∗ are inside the unit circle.

Under condition (HT), the matrix P ∗ − I is invertible. Let

ai = −(P ∗ − I)−1P ∗,i1lmi
, for i = 1, . . . , l0, (6.13)

and A∗ = (a1, . . . , al0). Define

1̃l∗ =
(

1̃l 0(m−m∗)×m∗
A∗ 0m∗×m∗

)
,

ν∗ = diag(ν1, . . . , νl0 , 0m∗×m∗).
(6.14)

Partition the matrix Q as

Q =
(

Q11 Q12

Q21 Q22

)
, (6.15)
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where
Q11 ∈ R

(m−m∗)×(m−m∗), Q12 ∈ R
(m−m∗)×m∗ ,

Q21 ∈ R
m∗×(m−m∗), and Q22 ∈ R

m∗×m∗ .

Write
Q∗ = diag(ν1, . . . , νl0)(Q111̃l + Q12A∗),

G = ν∗Q1̃l∗ = diag(Q∗, 0m∗×m∗).
(6.16)

Define sequences of scaled occupation measures by

πε,ij
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε

k−1∑
l=0

(I{αε
l =sij} − νijI{αε

l =i}), for i = 1, . . . , l0,

and j = 1, . . . , mi,

ε

k−1∑
l=0

I{αε
l =s∗j}, for i = ∗,

and j = 1, . . . , m∗.

(6.17)

Consider an aggregated process given by

αε
k =

{
i, if αε

k ∈ Mi,
Uj , if αε

k = s∗j ,
(6.18)

where Uj is given by

Uj = I{0≤U≤a1,j} + 2I{a1,j<U≤a1,j+a2,j} + . . . + l0I{a1,j+···+al0−1,j<U≤1},

and U is a random variable uniformly distributed on [0, 1], independent of
αε

k. Define αε(t) = αε
k for t ∈ [εk, εk + ε).

Proposition 6.5. Under (HT), the following assertions hold:

(a) pε
k = (θ(εk)diag(ν1, . . . , νl0), 0′

m∗) + O(ε + λk), where 0′
m∗ ∈ R

1×m∗

and θ(t) = (θ1(t), . . . , θl0(t)) ∈ R
1×l0 satisfies

dθ(t)
dt

= θ(t)Q∗, θi(0) = pi(0)1lmi + p∗(0)ai.

(b) The k-step transition matrix satisfies

(P ε)k = Φ(εk) + Ψ(k) + εΦ̂(εk) + εΨ̂(k) + O(ε2), for k ≤ T/ε,

for some λ with 0 < λ < 1, where

Φ(t) = 1̃l∗Θ∗(t)ν∗ with Θ∗(t) = diag(Θ(t), Im∗×m∗), (6.19)

and Θ(t) = (θij(t)) satisfies the differential equation

dΘ(t)
dt

= Θ(t)Q∗, Θ(0) = I.
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(c) For each j = 1, . . . , mi,

sup
0≤k∈T/ε

E|πε,ij
k |2 =

{
O(ε), for i = 1, . . . , l0,
O(ε2), for i = ∗.

(d) αε(·) converges weakly to α(·), which is a continuous-time Markov
chain with state space {1, . . . , l0} and generator Q∗.

Note that the error bound O(ε + λk) depends on T . Such dependence
can be relaxed by allowing k to be unbounded. The following lemma is an
extension of this kind, which will be used in Chapter 9.

Proposition 6.6. Assume condition (HT). Then there exist positive con-
stants K and 0 < λ < 1 (both independent of ε and k) such that for
j = 1, . . . , mi, i = 1, . . . , l0,∣∣P (αε

k = sij) − νijθi(εk)
∣∣ ≤ K(kε2 + ε + λk), (6.20)

and for j = 1, . . . , m∗,

P (αε
k = s∗j) ≤ K(kε2 + ε + λk), (6.21)

where θi(εk), i = 1, . . . , l0, can be obtained from the solution θi(t) of the
following system of differential equations⎧⎨⎩

d

dt

(
θ1(t), . . . , θl0(t)

)
=

(
θ1(t), . . . , θl0(t)

)
Q∗,

θi(0) = pi
01lmi + p∗

0a
i.

(6.22)

Let βk =
(
β11

k , . . . , β1m1
k , . . . , βl01

k , . . . , β
l0ml0
k , β∗1

k , . . . , β∗m∗
k

)
. Define

nε,ij
k =

1√
ε
πε,ij

k βij
k .

We obtain the exponential bounds of the scaled occupation measures when
transient states are included.

Proposition 6.7. Assume condition (HT). Let cT be a constant such that

0 ≤ cT ≤ 1 − λ

KT (|β|T + 1)
,

where

KT = sup
ε,k

(P ε)k − Φ(εk)
ε + λk

.

Then there exists an ε0 > 0 and a constant K such that for all 0 ≤ ε ≤ ε0
and for 1 ≤ k ≤ T/ε,

E exp
(

cT

(T + 1)
3
2
|nε

k|
)

≤ K. (6.23)
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Moreover, for any 0 < θ < 1, there exists an ε0 > 0 and a constant K such
that for all 0 ≤ ε ≤ ε0, we have

E sup
1≤k≤T/ε

exp
(

θcT

(T + 1)
3
2
|nε

k|
)

≤ K. (6.24)

6.5 Nonstationary Markov Chains

Let αε
k be a nonstationary Markov chain with a time-dependent transition

matrix P ε, i.e.,
pε

k+1 = pε
kP ε(k).

Given P (t) and Q(t) for 0 ≤ t ≤ T , assume P ε(k) is of the form

P ε(k) = P (εk) + εQ(εk), (6.25)

with

P (εk) =

⎛⎜⎜⎜⎜⎝
P 1(εk)

P 2(εk)
. . .

P l0(εk)
P ∗,1(εk) P ∗,2(εk) · · · P ∗,l0(εk) P ∗(εk)

⎞⎟⎟⎟⎟⎠ .

We assume the following conditions.

(NH1) For each t ∈ [0, T ], P ε(t), P (t), and P i(t) for i = 1, . . . , l0 are
transition probability matrices such that each P i(t) is irreducible
and aperiodic. There exists an m∗ ×m∗ nonsingular matrix B(t)
and constant matrices P ∗ and P ∗,i satisfying

P ∗(t) − I = B(t)(P ∗ − I) and P ∗,i(t) = B(t)P ∗,i,

for i = 1, . . . , l0. All the eigenvalues of P ∗(t) are inside the unit
circle.

(NH2) On [0, T ], the matrix-valued function P (t) is twice continuously
differentiable and Q(t) is Lipschitz continuous.

It follows from condition (NH1) and (NH2), that the following quantities

ai(t) = −(P ∗(t) − I)−1P ∗,i(t)1lmi

= −(P ∗ − I)P ∗,i1lmi
= ai, for i = 1, . . . , l0,
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are independent of time with ai(t) = ai. Define A∗ = (a1, . . . , al0) ∈
R

m∗×l0 . As in (6.15), partition the matrix Q(t) so that

Q(t) =
(

Q11(t) Q12(t)
Q21(t) Q22(t)

)
. (6.26)

Write

Q∗(t) = diag(ν1(t), . . . , νl0(t))(Q11(t)1̃l + Q12(t)A∗),

G(t) = ν∗(t)Q(t)1̃l∗ = diag(Q∗(t), 0m∗×m∗),
(6.27)

where ν∗(t) = diag(ν1(t), . . . , νl0(t), 0m∗×m∗). Define sequences of centered
occupation measures by

πε,ij
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε

k−1∑
l=0

(I{αε
l =sij} − νij(εl)I{αε

l =i}), for i = 1, . . . , l0,

and j = 1, . . . , mi,

ε

k−1∑
l=0

I{αε
l =s∗j}, for i = ∗.

and j = 1, . . . , m∗.

(6.28)

Define the corresponding aggregated process αε
k as in (6.18). Note that the

k-step transition probability matrix P ε(k, j) for 0 ≤ j ≤ k takes the form

P ε(k, j) = P (εj)P (ε(j + 1)) · · ·P (εk),

P ε(k + 1, k) = I.

The following results can be derived as in Chapters 3 and 4; see also Yin,
Zhang, and Badowski [165].

Proposition 6.8. Under (NH1) and (NH2), the following assertions hold:

(a) pε
k = (θ(εk)diag(ν1(εk), . . . , νl0(εk)), 0′

m∗) + O(ε + λk), where 0′
m∗ ∈

R
1×m∗ and θ(t) = (θ1(t), . . . , θl0(t)) ∈ R

1×l0 satisfies

dθ(t)
dt

= θ(t)Q∗(t), θi(0) = pi(0)1lmi
− p∗(0)ai.

(b) For k ≤ T/ε, the transition matrix satisfies

P ε(k, k0) = Φ(εk, εk0) + Ψ(k, k0) + εΦ̂(εk, εk0) + εΨ̂(k, k0) + O(ε2),

for some λ with 0 < λ < 1, where

Φ(t, t0) = 1̃l∗Θ∗(t, t0)ν∗(t) with Θ∗(t, t0) = diag(Θ(t, t0), Im∗×m∗),
(6.29)

where Θ(t, t0) = (θij(t, t0)) satisfies the differential equation

∂Θ(t, t0)
∂t

= Θ(t, t0)Q∗(t), Θ(t0, t0) = I.
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(c) For each j = 1, . . . , mi,

sup
0≤k∈T/ε

E|πε,ij
k |2 =

{
O(ε), for i = 1, . . . , l0,
O(ε2), for i = ∗.

(d) αε(·) converges weakly to α(·), which is a continuous-time Markov
chain having generator Q∗(t).

(e) Proposition 6.7 holds with

KT = sup
ε,k,k0

P ε(k, k0) − Φ(εk, εk0)
ε + λk−k0

.

6.6 Notes

Structures of transition probability matrices of the forms (6.2) and (6.3)
for finite-state Markov chains are in Iosifescu [73], among others. For re-
sults concerning two-time-scale Markov chains with nonstationary transi-
tion probabilities, see Yin, Zhang, and Badowski [165]. The continuous-time
counterparts can be found in Yin and Zhang [158].



Part III

Applications



7
Stability of Dynamic Systems

7.1 Introduction

This chapter focuses on stability of dynamic systems with regime switch-
ing in discrete time. Suppose that the underlying systems are modeled by
difference equations and/or difference equations subject to an additional
exogenous random noise input source. Different from the traditional setup,
the dynamics of the systems are subject to regime changes that are modu-
lated by discrete-time Markov chains. We aim to investigate the long-term
behavior of the system characterized by Liapunov functions.

Due to modeling requirements and/or the complex structure of the un-
derlying systems, frequently, the Markov chain is either inherent of two
time scales or has a large state space naturally divisible into subspaces
leading to a time-scale separation. To tackle such systems (e.g., to find
their optimal controls), computation of solutions is often deemed infeasi-
ble. To overcome such difficulties, by noting the high contrast of rates of
transitions and introducing a small parameter ε > 0, we can formulate the
problems as systems subject to singularly perturbed Markov chains.

In the previous chapters, we have focused on the structural properties of
the underlying Markov chains. Using those results, we can reduce system
complexity through decomposition and aggregation, which is accomplished
by showing that the underlying system yields a limit system whose coeffi-
cients are averaged out with respect to the invariant measure of the Markov
chain. Such an approach is also useful for finding optimal controls of dy-
namic systems, which will be dealt with in later chapters of the book. The
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essence of these approaches is to note the connection of the original system
with a limit system. The technique of comparing original and limit systems
will also be adopted in this chapter.

Up to now, we have focused on the study of asymptotic properties for
ε → 0 and k → ∞, while εk remains bounded. In this chapter, we examine
systems from a stability point of view. Using a two-time-scale Markov chain
formulation, our main effort is directed to the long-term behavior of the
systems as ε → 0, k → ∞, with εk being unbounded. We demonstrate
that if the limit system (or the reduced system) is stable, then the original
system is also stable for sufficiently small ε > 0. Suppose that one deals
with a discrete-time system (e.g., xk+1 = ρ(xk) for an appropriate function
ρ(·)) directly. Even without the presence of random disturbances and the
singularly perturbed Markov chain, using the Liapunov stability argument,
one has to calculate V (xk+1) − V (xk) as in LaSalle [101, p. 5], which is
more complex than differentiation along the solution (d/dt)V (x) used in a
continuous-time system. In lieu of a direct approach, we use a Liapunov
function of the limit system to carry out the analysis needed. An effort
to reduce complexity from a different angle, this indirect approach is much
simpler and more feasible. The original dynamic systems are compared with
the limit systems and then perturbed Liapunov function methods are used
to obtain the desired results.

The rest of the chapter is arranged as follows. Section 7.2 presents the
precise formulation of the problems. Section 7.3 provides several auxiliary
results that are needed in the subsequent study. The first of which is a
mean squares estimate; the second concerns the weak limits of interpo-
lated processes arising from discrete-time dynamic systems modulated by
singularly perturbed Markov chains. For demonstration purposes, we also
provide a couple of simple examples to illustrate the trajectory behavior of
the systems. Section 7.4 gives the stability results. For ease of presentation,
we first establish the results for such systems whose dominating parts have
only recurrent states. Section 7.5 studies recurrence and path excursion es-
timates. Both mean recurrence time and probability bounds are obtained.
To preserve the flow of presentation, as in most chapters, the verbatim
proofs and technical details are relegated to Section 7.6. Section 7.7 gives
extensions when transient states are included.

7.2 Formulation

As alluded to in the introduction, to highlight the contrasts of different
transition rates, we introduce a small parameter ε > 0. Consider a discrete-
time Markov chain αε

k with finite state space M = {1, . . . , m0} and tran-
sition matrix

P ε = P + εQ, (7.1)
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where P is a transition probability matrix of a time-homogeneous Markov
chain, and Q = (qij) is a generator of another continuous-time Markov
chain, i.e., for each i = j, qij ≥ 0 and for each i,

∑
j qij = 0 or Q1lm0 = 0.

Recall that 1lι ∈ R
ι×1 denotes a column vector with all components being 1.

We are now in a position to present the stability problems. The first one is
concerned with a difference equation modulated by a singularly perturbed
Markov chain, and the second one focuses on a system with an additional
exogenous noise term. We are interested in whether the stability of the limit
systems in the sense of Liapunov allows us to make any inference about
the original systems. We answer the question affirmatively. Our result is:
If the limit system is (asymptotically) stable (implied by certain bounds
via a Liapunov function), then the original system also preserves stability
with a Liapunov type estimate subject to O(ε) perturbations.

7.2.1 Problem Setup

Difference Equations under a Markovian Regime. Let xε
k ∈ R

n be
the state of a system at time k ≥ 0, and f(·) : R

n × M �→ R
n. Suppose

that
xε

k+1 = xε
k + εf(xε

k, αε
k),

xε
0 = x0, αε

0 = α0.
(7.2)

We are interested in the Liapunov stability of (7.2). Instead of treating
the system directly, we will examine its stability by use of the fact that
as ε → 0, the dynamic system is close to an averaged system or a limit
system in an appropriate sense. Using the stability of the limit system, we
try to figure out the large-time behavior of the dynamic system given by
(7.2) as k → ∞ and ε → 0. Note that, effectively, rather than dealing with
one vector equation, we are dealing with a system of equations in which
the total number of equations is precisely |M| = m0, the cardinality of the
state space M.

Difference Equations under External Disturbances. Let f(·) : R
n ×

M �→ R
n and σ(·) : R

n × M �→ R
n×n be appropriate functions satisfying

suitable conditions (the precise conditions will be stated later), and {wk}
be a sequence of external random noise independent of αε

k. Let xε
k be the

state at time k ≥ 0. Consider the following system:

xε
k+1 = xε

k + εf(xε
k, αε

k) +
√

εσ(xε
k, αε

k)wk,

xε
0 = x0, αε

0 = α0.
(7.3)

As ε → 0, the dynamic system is close to an averaged system of switch-
ing diffusions. Again, using the stability of the limit system, we make an
inference about that of the dynamic system governed by (7.3).
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7.2.2 Demonstrative Examples
In this section, we provide two simple examples to illustrate and reveal the
stability of the systems under consideration.

Example 7.1. Consider a Markov-modulated linear system of the form

xε
k+1 = xε

k + εA(αε
k)xε

k +
√

εσ(αε
k)wk,

where {wk} is a sequence of Gaussian random variables with mean 0 and
variance 1. The transition probability matrix of αε

k is given by

P ε =
(

0.9 0.1
0.15 0.85

)
+ ε

(−0.3 0.3
0.5 −0.5

)
. (7.4)

Taking A(1) = −0.3 and A(2) = −0.5, we first plot the trajectory of the
stochastic difference equation with ε = 0.05, σ(1) = 0.05, and σ(2) = 0.03.
Next, keep ε = 0.05 and use σ(1) = 0.5 and σ(2) = 0.3. We plot the
corresponding trajectories in Figure 7.1.

Example 7.2. This example is concerned with a two-dimensional nonlin-
ear system. Again, let P ε be given by (7.4). The system is given by

xε
k+1 = xε

k + εf(xε
k, αε

k) +
√

εσ(xε
k, αε

k)wk,

where
f(x, 1) = (−2xε

k,1,−3xε
k,2)

′,

f(x, 2) = (−(xε
k,1 + xε

k,2)
2,−(xε

k,2 + xε
k,1x

ε
k,2)),

σ(x, 1) = diag(1, 1),

σ(x, 2) = diag(0.6, 0.6).

Using ε = 0.01, we plot the trajectories of the two components in Figure
7.2.

A moment of reflection shows that the systems in both examples are
stable. Of course, in examining the plots, caution must be taken since the
stability refers to long-term behavior, whereas any plot can only describe
finite time evolution. Nevertheless, a certain tendency can be seen from the
graphs. It is clear that the dynamics of the systems depend on the size of
ε; they also depend on the intensity of the noise (variance of the diffusion)
in a nontrivial way.

7.3 Preliminary Results

Owing to the presence of the small parameter ε > 0, the matrix P has
crucial influence. In the next two sections, we will study the stability of the
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FIGURE 7.1. Trajectory of xε
k for one-dimensional problem: Two-state Markov

chain, ε = 0.05
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FIGURE 7.2. Trajectory of xε
k for two-dimensional problem: Two-state Markov

chain, ε = 0.01, σ(x, 1) = diag(1, 1), σ(x, 2) = diag(0.6, 0.6).
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underlying systems when the transition matrix P has l0 recurrent classes
given by

P = diag(P 1, . . . , P l0), (7.5)

where for each i ≤ l0, P i is a transition matrix within the ith recurrent
class. Then in Section 7.5, we remark on the extensions to inclusion of
transient states.

Definition 7.3. In what follows, for an appropriate function h(·) (either
h(·) : R

n × M �→ R
n or h(·) : R

n × M �→ R
n×n), we say h(·) satisfies

property (GL) (i.e., growth condition and Lipschitz continuity) if for some
K > 0 and for each α ∈ M and x, y ∈ R

n, |h(x, α) − h(y, α)| ≤ K|x − y|,
and |hx(x, α)x| ≤ K(|x| + 1); f(0, α) = 0 for all α ∈ M.

To proceed, we make the following assumptions.

(A7.1) Condition (HR) of Chapter 6 holds.

(A7.2) f(·) satisfies property (GL) given by Definition 7.3.

(A7.3) σ(·) satisfies property (GL).

(A7.4) {wk} is a sequence of independent and identically distributed
random variables with zero mean and Ewkw′

k = I, the identity
matrix. Moreover, {wk} is independent of {αε

k}.

Remark 7.4. Note that (A7.1) and (A7.2) are needed in studying (7.2),
whereas (A7.1)–(A7.4) are needed in studying (7.3). Conditions (A7.2) and
(A7.3) imply that f(x, α) and σ(x, α) grow at most linearly. A typical
example of the noise {wk} is a sequence of Gaussian random variables.
In fact, in our study, we only need a central limit theorem to hold for a
scaled sequence of the random noise. Thus the independence condition can
be relaxed considerably by allowing mixing-type noise satisfying certain
moment conditions. Nevertheless, the independence assumption is imposed
because it does make the presentation much simpler.

Lemma 7.5. Assume (A7.1). For each i = 1, . . . , l0 and j = 1, . . . , mi,
define

∆ij = ε

∞∑
k=0

e−kε[I{αε
k=sij} − νijI{αε

k∈Mi}]. (7.6)

Under the conditions of Proposition 6.2, E(∆ij)2 = O(ε), for i = 1, . . . , l0
and j = 1, . . . , mi.

We defer the proofs of this lemma and the following results until Section
7.6. This lemma should be compared with the mean squares estimates in
Chapter 4 (also cf. Proposition 6.2). It is a mean squares estimate with∑T/ε

k=0 replaced by
∑∞

k=0 and with an added “discount factor” exp(−kε).
By taking continuous-time interpolations of the difference equations given

in (7.2) and (7.3), we proceed to obtain associated limit systems. That is,
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suitably scaled sequences of functions converge to solutions of hybrid or-
dinary differential equations and hybrid stochastic differential equations,
respectively. For the state xε

k and the modulating Markov chain αε
k given

in (7.2) and (7.3), define continuous-time interpolations with interpolation
interval of length ε as

xε(t) = xε
k, αε(t) = αε

k, for t ∈ [εk, εk + ε). (7.7)

Lemma 7.6. The following assertions hold:

(a) Under (A7.1) and (A7.2), the sequence xε(·) given in (7.2) converges
weakly to x(·), which satisfies

d

dt
x(t) = f(x(t), α(t)),

x(0) = x0, α(0) = α0,
(7.8)

where

f(x, i) =
mi∑
j=1

νijf(x, sij), for i = 1, 2, . . . , l0. (7.9)

(b) Assume (A7.1)–(A7.4). Then the sequence (xε(·), αε(·)) converges to
(x(·), α(·)) weakly such that x(·) is the solution of

dx(t) = f(x(t), α(t))dt + σ(x(t), α(t))dw, (7.10)

where for each i ∈ M, f(x, i) is defined in (7.9), and σ(x, i) is defined
by

σ(x, i)σ′(x, i) def= Ξ(x, i) =
mi∑
j=1

νijΞ(x, sij), (7.11)

with Ξ(x, sij) = σ(x, sij)σ′(x, sij).

7.4 Stability

For any g(·, ·) on R
n × M that is twice continuously differentiable with

respect to the first variable, define

εLεg(xε
k, αε

k) = Ek[g(xε
k+1, α

ε
k+1) − g(xε

k, αε
k)], (7.12)

where Ek denotes the conditional expectation with respect to Gk, the σ-
algebra generated by {x0, α

ε
j : j < k} for (7.2) and the σ-algebra generated

by {x0, α
ε
j , wj : j < k} for (7.3), respectively. For future use, define

χε
k = (I{αε

k=sij}, i = 1, . . . , l0, j = 1, . . . , mi) ∈ R
1×m0 . (7.13)
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We are now ready to present the stability results. The first theorem deals
with the system governed by (7.2), whereas the second one is concerned
with that governed by (7.3). For both systems, the results indicate that
if the limit system is stable in the sense LV (x, i) ≤ −λV (x, i) with an
appropriate operator L, then the singularly perturbed systems are also
exponentially stable with an added error term depending on ε. We state
the theorems in what follows. The proofs are in Section 7.6.

(A7.5) For each i = 1, . . . , l0 and for some positive integer d0, there is
a Liapunov function V (·, i) that is d0-times continuously differ-
entiable with respect to x, |∂ιV (x, i)||x|ι ≤ K(V (x, j) + 1) for
1 ≤ ι ≤ d0 − 1, j = 1, . . . , l0, and |∂d0V (x, i)| = O(1) (where
for 1 ≤ ι ≤ d0, ∂ιV (x, i) denotes the ιth derivative of V (x, i)),
V (x, i) → ∞ as |x| → ∞, K1(|x|d0+1) ≤ V (x, i) ≤ K2(|x|d0+1).

Theorem 7.7. Consider (7.2). Assume that (A7.1), (A7.2), and (A7.5)
hold, that

LV (x, i) ≤ −γV (x, i) for some γ > 0, (7.14)

with the operator defined by

LV (x, i) = V ′
x(x, i)f(x, i) + QV (x, ·)(i), i ∈ M = {1, . . . , l0}, (7.15)

and that EV (x0, α0) < ∞. Then

EV (xε
k+1, α

ε
k+1) ≤ exp(−εγk)EV (x0, α0) + O(ε). (7.16)

Example 7.8. As an illustration, let αε
k be a two-state Markov chain with

transition matrix given by (7.1) such that P is irreducible and aperiodic.
For ι ∈ M = {1, 2}, consider the linear system

xε
k+1 = xε

k + εA(αε
k)xε

k, where A(ι) = diag(a(ι), b(ι)), xε
k ∈ R

2.

The limit system according to (a) in Lemma 7.6 is given by

ẋ = Ax, where A = ν1A(1) + ν2A(2).

Suppose that A < 0. Define V (x) = x′x, which is a Liapunov function.
Differentiation along the trajectory gives us (d/dt)V (x) ≤ −λV (x) for some
λ > 0. Thus, by Theorem 7.7 the asymptotic stability of the continuous-
time system implies that of the discrete-time system.

Next, we consider the dynamic system with exogenous disturbances. The
result is stated in the following theorem.

Theorem 7.9. Consider (7.3). Assume that (A7.1)–(A7.5) hold, that d0 ≥
3 and E|wk|d1 < ∞ for some integer d1 ≥ d0, that

LV (x, i) ≤ −γV (x, i) for some γ > 0, (7.17)
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with the operator defined by

LV (x, i) = V ′
x(x, i)f(x, i) +

1
2
tr[Vxx(x, i)Ξ(x, i)] + QV (x, ·)(i), i ∈ M,

(7.18)
and that EV (x0, α0) < ∞. Then

EV (xε
k+1, α

ε
k+1) ≤ exp(−εγk)EV (x0, α0) + O(ε). (7.19)

Example 7.10. Suppose that x ∈ R
n, αε

k is a discrete-time Markov chain
with state space M = {1, . . . , m0} and transition probability matrix (7.1),
such that P is irreducible and aperiodic. The system modulated by the
Markov chain is

xε
k+1 = xε

k + εA(αε
k)xε

k +
√

εB(αε
k)xε

kwk, (7.20)

where for each ι ∈ M, A(ι) and B(ι) are n × n matrices such that A(ι) is
Hurwitz and x′B(ι)B′(ι)x+x′A(ι)x < 0 for x = 0, and {wk} is a sequence
of scalar-valued random variables satisfying (A7.4). In this case, the limit
system is given by

dx = Axdt + Ξ
1/2

xdw, (7.21)

where w(·) is a real-valued standard Brownian motion,

A =
m0∑
ι=1

A(ι)νι, Ξ =
m0∑
ι=1

νιB(ι)B′(ι),

and ν = (ν1, . . . , νm0) is the stationary distribution corresponding to the
transition matrix P . Let V (x) = x′x/2. Then it is not hard to see that
LV (x) ≤ −λV (x) for some λ > 0. Thus, (7.19) also holds by virtue of
Theorem 7.9.

Remark 7.11. In Theorem 7.7, V (x, i) is a Liapunov function for the limit
hybrid ordinary differential equation, whereas V (x, i) in Theorem 7.9 is a
Liapunov function for the limit hybrid stochastic differential equation. The
growth and smooth conditions will be satisfied if V (x, i) is a polynomial of
order d0 or has polynomial growth of order d0. It follows from this condition
that

|∂ιV (x, i)||f(x, i)|ι ≤ K(V (x, i) + 1)

and
|∂ιV (x, i)||σ(x, i)|ι ≤ K(V (x, i) + 1).

Note that the notion ∂ιV (x, i) can be viewed as follows: If ι = 1, ∂V (x, i) is
the gradient; if ι = 2, ∂2V (x, i) is the Hessian; if ι > 2, ∂ιV (x, i) is the usual
multi-index notation of mixed partial derivatives. References on matrix
calculus and Kronecker products can be found, for instance, in Graham
[65] among others.
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As observed in Remark 7.4, if {wk} is a sequence of Gaussian random
variables, then the moment condition E|wk|d1 holds for any positive integer
d1 < ∞. Moreover, we can treat correlated random variables of mixing type.
For notational simplicity, we confine ourselves to the current setup.

7.5 Recurrence and Path Excursion

We have established bounds on EV (xε
k, αε

k) for large k and small ε. In this
section, we examine the recurrence and path excursion properties of the
dynamic systems associated with the singularly perturbed discrete-time
Markov chains. We will use the following assumptions.

(A7.6) For each i = 1, . . . , l0, there is a twice continuously differentiable
Liapunov function V (x, i) such that

|V ′
x(x, i)||x| ≤ K(V (x, j) + 1), for each j, (7.22)

that minx V (x, i) = 0, that V ′
x(x, i)f(x, i) ≤ −c0 for some c0 >

0, and that V (x, i) → ∞ as |x| → ∞.

For some λ0 > 0 and λ1 > λ0, define

B0 = {x : V (x, i) ≤ λ0, i = 1, . . . , l0},

B1 = {x : V (x, i) ≤ λ1, i = 1, . . . , l0}.

Let τ0 be the first exit time from B0 of the process xε
k, and τ1 be the first

return time of the process after τ0. That is,

τ0 = min{k : xε
k ∈ B0}, τ1 = min{k ≥ τ0 : xε

k ∈ B0}.

The random time τ1 −τ0 is known as the recurrence time. It is the duration
of the process from the first exit of B0 to the next return to B0.

Theorem 7.12. Consider the system (7.2) (resp. (7.3)). Assume (A7.1),
(A7.2) (resp. (A7.1)–(A7.4)), and (A7.6) are satisfied. Then for some 0 <
c1 < c0,

Eτ0(τ1 − τ0) ≤ Eτ0V (xε
τ0

, αε
τ0

)(1 + O(ε)) + O(ε)
c1

, (7.23)

where Eτ0 denotes the conditional expectation with respect to the σ-algebra
Gτ0 .

Remark 7.13. The above theorem indicates that for sufficiently small
ε > 0, xε

k is recurrent in the sense that if xε
τ0

∈ B1−B0, then the conditional
mean recurrence time of τ1−τ0 has an upper bound [λ1(1+O(ε))+O(ε)]/c1.
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In the proof of the result, we adopt the approach of Kushner [96] for the
Markov chain setup. In addition to the conditional moment bound, we may
also obtain the probability bound of the form

P

(
sup

τ0≤k<τ1

V (xε
k, αε

k) ≥ κ
∣∣Gτ0

)
≤ Eτ0V (xε

τ0
, αε

τ0
)(1 + O(ε)) + O(ε)

κ
.

In fact, it is possible to replace the first exit time τ0 by any exit time τ̃
from the set B0 and to replace τ1 by the first return time after τ̃ .

Compared with the conditions used in Theorems 7.7 and 7.9, the growth
conditions are much more relaxed. Because we do not need the moment
estimates as in Theorems 7.7 and 7.9, we can work with truncated Liapunov
function.

7.6 Proofs of Results

Proof of Lemma 7.5. Expanding the summations in (7.6) leads to

E[∆ij ]2 = ε2
∞∑

k=0

∞∑
	=0

e−kεe−	εE[I{αε
k=sij} − νijI{αε

k∈Mi}]

×[I{αε
�=sij} − νijI{αε

�∈Mi}]

≤ 2ε2
∞∑

k=0

k∑
	=0

e−kεe−	εE[I{αε
k=sij} − νijI{αε

k∈Mi}]

×[I{αε
�=sij} − νijI{αε

�∈Mi}].

As in Chapter 4 (see also Yin, Zhang, and Badowski [165]), it can be shown
that for k ≥ �,

E[I{αε
k=sij} − νijI{αε

k∈Mi}][I{αε
�=sij} − νijI{αε

�∈Mi}]

= O
(
ε + kε2 + k2ε3 + λ	 + λk−	

)
.

It follows that

E(∆ij)2 ≤ Kε2
∞∑

k=0

e−kε(1 + kε + k2ε2 + k3ε3)

= O(ε).

The desired result thus follows. �

Ideas of Proof of Part (b) in Lemma 7.6. Since our main efforts in
this chapter focus on stability analysis, details of the weak convergence
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argument are omitted; related materials on the martingale problem formu-
lation and weak convergence can be found in Chapters 4, 8, 11, and 13.
We provide only a sketch of proof for Part (b) in Lemma 7.6; the proof for
Part (a) in Lemma 7.6 is even simpler.

Consider the pair {xε(·), αε(·)}. As in the usual weak convergence anal-
ysis, first we verify the tightness of the sequence. Then we characterize the
limit process.

Since it is not known a priori that {xε(·)} is bounded, we use a truncation
device (see Definition 14.15). For any 0 < N < ∞, define qN (·) to be a
smooth function satisfying

qN (x) =
{

1 for x ∈ SN = {x : |x| ≤ N},
0 for x ∈ R

n − SN+1.

Corresponding to (7.3), define the truncated difference equation as

xε,N
k+1 = xε,N

k +εf(xε,N
k , αε

k)qN (xε,N
k )

+
√

εσ(xε,N
k , αε

k)wkqN (xε,N
k ),

and define its interpolation by

xε,N (t) = xε,N
k , for t ∈ [εk, εk + ε).

Then xε,N (·) is an N -truncation of xε(·); see Definition 14.15 (also Kushner
and Yin [100, p. 284]). Using this truncation, the smoothness of f(·, ι) and
σ(·, ι) for each ι, and the independence of wk with Gk, we can readily see
that for sufficiently small δ > 0 and 0 < s ≤ δ,

Eε
t

∣∣xε,N (t + s) − xε,N (t)
∣∣2 ≤ Ks ≤ Kδ.

Thus, we have

lim
δ→0

lim sup
ε→0

EEε
t

∣∣xε,N (t + s) − xε,N (t)
∣∣2 = 0.

By the tightness criterion in Lemma 14.12, {xε,N (·)} is tight. This and the
weak convergence of αε(·) then implies that {xε,N (·), αε(·)} is tight. By
Prohorov’s theorem (see Theorem 14.4), we can extract a weakly convergent
subsequence. Select such a subsequence, and for simplicity, still denote it
by (xε,N (·), αε(·)) with the limit denoted by (xN (·), α(·)).

To characterize the limit, using t/ε and (t + s)/ε as integer parts in our
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convention, we have

xε,N (t + s) − xε,N (t)

= ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

f(xε,N
k , sij)νijI{αε

k=i}

+
√

ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

σ(xε,N
k , sij)wkνijI{αε

k=i}

+ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

f(xε,N
k , sij)[I{αε

k=sij} − νijI{αε
k=i}]

+
√

ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

σ(xε,N
k , sij)wk[I{αε

k=sij} − νijI{αε
k=i}].

(7.24)

Using the mean squares estimates in Theorem 4.5 (see also Proposition 6.2),
it can be shown that the last two terms in (7.24) go to 0 in probability
uniformly in t. Thus, we need only consider the terms on the second and
the third lines of (7.24).

Define

wε(t) =
√

ε

t/ε−1∑
k=0

wk.

Then a version of the Donsker’s invariance theorem (see Billingsley [18])
yields that wε(·) converges weakly to w(·) a standard Brownian motion.
Choose a sequence of positive integers {κε} satisfying κε → ∞ as ε → 0,
but δε = εκε → 0. By virtue of the conditions of f(·), we can write

ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

f(xε,N
k , sij)νijI{αε

k=i}

=
l0∑

i=1

mi∑
j=1

(t+s)−ε∑
	δε=t

δε 1
κε

	κε+κε−1∑
k=	κε

f(xε,N
k , sij)νijI{αε

k=i}

=
l0∑

i=1

mi∑
j=1

(t+s)−ε∑
	δε=t

δε 1
κε

	κε+κε−1∑
k=	κε

f(xε,N
	κε , sij)νijI{αε

k=i} + o(1),

where o(1) → 0 in probability as ε → 0. Using the weak convergence of
(xε,N (·), αε(·)), the Skorohod representation (without changing notation),
and the structure of the limit generator of α(·), it can be shown that for
any positive integer k0, any bounded and continuous functions hı(·), with
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ı ≤ k0, and any tı satisfying 0 < tı ≤ t ≤ t + s,

E

k0∏
ı=1

hı(xε,N (tı), αε(tı))

×
[ l0∑

i=1

mi∑
j=1

(t+s)−ε∑
	δε=t

δε 1
κε

	κε+κε−1∑
k=	κε

f(xε,N
	κε , sij)νijI{αε

k=i}

]

→ E

k0∏
ı=1

hı(xN (tı), α(tı))
[ ∫ t+s

t

f(xN (u), α(u))du

]
as ε → 0.

As for the external noise term, we find that

E

k0∏
ı=1

hı(xε,N (tı), αε(tı))
[√

ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

σ(xε,N
k , sij)wkνijI{αε

k=i}

]
= 0,

and that

E

k0∏
ı=1

hı(xε,N (tı), αε(tı))
[√

ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

σ(xε,N
k , sij)wkνijI{αε

k=i}

]

×
[√

ε

(t+s)/ε−1∑
k=t/ε

l0∑
i=1

mi∑
j=1

σ(xε,N
k , sij)wkνijI{αε

k=i}

]′]

→ E

k0∏
ı=1

hı(xN (tı), α(tı))
∫ t+s

t

Ξ(xN (u), α(u))du, as ε → 0.

Collecting the estimates obtained, we can show that (xε,N (·), αε(·)) con-
verges to (xN (·), α(·)) weakly. Next, using an argument similar to that of
Kushner and Yin [100, Step 4, p. 285], we can show that the untruncated
process is also convergent. That is, we also have (xε(·), αε(·)) converging
weakly to (x(·), α(·)), which is a solution of the martingale problem with
the desired generator. Moreover, the solution of the martingale problem is
unique, which can be proved as in Lemma 4.9.

Proof of Theorem 7.7. The proof is divided into several steps.
Step 1: (Estimate for V (x, i)). Define

F̂ (x) =

⎛⎜⎝ V (x, 1)1lm1

...
V (x, l0)1lml0

⎞⎟⎠ ∈ R
m0×1, F̃ (x) =

⎛⎜⎝ V (x, 1)
...

V (x, l0)

⎞⎟⎠ ∈ R
l0×1,

V̂ (x, α) =
l0∑

i=1

V (x, i)I{α∈Mi} = V (x, i) if α ∈ Mi, for i = 1, . . . , l0.

(7.25)
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The function V̂ (x, α) is a device allowing us to use αε
k in lieu of αε

k. In what
follows, we often write V̂ (xε

k, αε
k) and V (xε

k, αε
k) interchangeably. Then we

have

Ek[V̂ (xε
k+1, α

ε
k+1) − V̂ (xε

k, αε
k)]

= Ek[V̂ (xε
k+1, α

ε
k+1) − V̂ (xε

k+1, α
ε
k)] + Ek[V̂ (xε

k+1, α
ε
k) − V̂ (xε

k, αε
k)],

(7.26)
where Ek denotes the conditional expectation with respect to Gk = σ{x0, α

ε
j :

j < k}. Note that by use of a truncated Taylor expansion,

Ek[V̂ (xε
k+1, α

ε
k) − V̂ (xε

k, αε
k)] = εEkV̂ ′

x(xε
k, αε

k)f(xε
k, αε

k) + ηε
k+1, (7.27)

where

ηε
k+1 = O

(
Ek

d0−1∑
ı=2

|∂ıV̂ (xε
k, αε

k)||xε
k+1 − xε

k|ı
)

+O

(
Ek|xε

k+1 − xε
k|d0

∫ 1

0

∣∣∂d0 V̂ (xε
k + s(xε

k+1 − xε
k))

∣∣ds

)
.

In view of the linear growth of f(x, α) implied by (A7.2), and the bounds
on ∂ıV̂ (x, α), for 2 ≤ ı ≤ d0, we have

ηε
k+1 = O(ε2)(EkV̂ (xε

k, αε
k) + 1). (7.28)

Since P − I is orthogonal to F̂ (xε
k+1), we obtain that

Ek[V̂ (xε
k+1, α

ε
k+1) − V̂ (xε

k+1, α
ε
k)]

=
l0∑

i1=1

mi∑
j1=1

Ek

l0∑
i=1

mi∑
j=1

[
V̂ (xε

k+1, sij)P (αε
k+1 = sij

∣∣αε
k = si1j1)

−V̂ (xε
k+1, si1j1)

]
I{αε

k=si1j1}

= χε
k(P ε − I)EkF̂ (xε

k+1)

= εχε
kEkQF̂ (xε

k) + O(ε2)(EkV̂ (xε
k, αε

k) + 1)

= εEkQV̂ (xε
k, ·)(αε

k) + O(ε2)(EkV̂ (xε
k, αε

k) + 1).

(7.29)

Thus, we have

Ek[V̂ (xε
k+1, α

ε
k+1) − V̂ (xε

k, αε
k)]

= εEkV̂ ′
x(xε

k, αε
k)f(xε

k, αε
k) + εEkQV̂ (xε

k, ·)(αε
k)

+O(ε2)(EkV̂ (xε
k, αε

k) + 1).

(7.30)
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Step 2: (Perturbed Liapunov function). Define a perturbation of the Li-
apunov function by

V ε
1 (x, k) = ε

∞∑
k1=k

Ekeε(k−k1)V̂ ′
x(x, αε

k)[f(x, αε
k1

) − f(x, αε
k1

)]. (7.31)

Observe that for each k,

f(x, αε
k) − f(x, αε

k) =
l0∑

i=1

mi∑
j=1

f(x, sij)[I{αε
k=sij} − νijI{αε

k∈Mi}].

Thus,

V ε
1 (x, k) = ε

l0∑
i=1

mi∑
j=1

∞∑
k1=k

eε(k−k1)EkV̂ ′
x(x, αε

k)

×f(x, sij)[I{αε
k1

=sij} − νijI{αε
k1

∈Mi}].

Consequently, by virtue of Lemma 7.5,

E|V ε
1 (x, k)| = E

∣∣∣∣ε l0∑
i=1

mi∑
j=1

EkV̂ ′
x(x, αε

k)f(x, sij)

×
∞∑

k1=k

eε(k−k1)[I{αε
k1

=sij} − νijI{αε
k1

∈Mi}]
∣∣∣∣

≤
l0∑

i=1

mi∑
j=1

E
1
2 [EkV̂ ′

x(x, sij)f(x, sij)]2

×E
1
2

∣∣∣∣ε ∞∑
k1=k

Ekeε(k−k1)[I{αε
k1

=sij} − νijI{αε
k1

∈Mi}]
∣∣∣∣2

< ∞ uniformly in k ≥ 0.

As a result, sup0≤k E|V ε
1 (x, k)| < ∞.

In view of (A7.2), we have for each i = 1, . . . , l0 and j = 1, . . . , mi,

|EkV̂ ′
x(x, αε

k)f(x, sij)| ≤ |EkV̂x(x, αε
k)||f(x, sij)| ≤ K(EkV̂ (x, αε

k) + 1),

for some K > 0, since it can be shown that for k1 ≥ k,

Ek[I{αε
k1

=sij} − νijI{αε
k1

∈Mi}]

=
l0∑

i0=1

mi0∑
j0=1

[P (αε
k1

= sij

∣∣αε
k = si0j0)

−νij

mi0∑
j2=1

P (αε
k1

= sij2

∣∣αε
k = si0j0)]I{αε

k=si0j0}

= O(ε + λk1−k), for some 0 < λ < 1.
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It is easily seen that
∞∑

k1=k

eε(k−k1)O(ε + λk1−k) = O(1).

Thus,
|V ε

1 (x, k)| ≤ εK(EkV̂ (x, αε
k) + 1). (7.32)

Furthermore, we obtain that

Ek[V ε
1 (xε

k+1, k + 1) − V ε
1 (xε

k+1, k)]

= εEk

∞∑
k1=k+1

eε(k+1−k1)[V̂ ′
x(xε

k+1, α
ε
k+1) − V̂ ′

x(xε
k+1, α

ε
k)]

×[f(xε
k+1, α

ε
k1

) − f(xε
k+1, α

ε
k1

)]

+εEk

∞∑
k1=k+1

eε(k+1−k1)V̂ ′
x(xε

k+1, α
ε
k)[f(xε

k+1, α
ε
k1

) − f(xε
k+1, α

ε
k1

)]

−εEk

∞∑
k1=k

eε(k−k1)V̂ ′
x(xε

k+1, α
ε
k)[f(xε

k+1, α
ε
k1

) − f(xε
k+1, α

ε
k1

)].

Noting that all terms but one are cancelled in the last two sums above and
carrying out an estimate similar to (7.29) to the term

εEk

∞∑
k1=k+1

eε(k+1−k1)[V̂ ′
x(xε

k+1, α
ε
k+1) − V̂ ′

x(xε
k+1, α

ε
k)]

×[f(xε
k+1, α

ε
k1

) − f(xε
k+1, α

ε
k1

)],

we arrive at

Ek[V ε
1 (xε

k+1, k + 1) − V ε
1 (xε

k+1, k)]

= −εEkV̂ ′
x(xε

k, αε
k)[f(xε

k, αε
k) − f(xε

k, αε
k)] + O(ε2)(EkV̂ (xε

k, αε
k) + 1),

and

Ek[V ε
1 (xε

k+1, k) − V ε
1 (xε

k, k)]

= εEk

∞∑
k1=k

eε(k−k1)[V̂ ′
x(xε

k+1, α
ε
k) − V̂ ′

x(xε
k, αε

k)]

×[f(xε
k+1, α

ε
k1

) − f(xε
k+1, α

ε
k1

)]

+ε

∞∑
k1=k

eε(k−k1)EkV̂ ′
x(xε

k, αε
k)[(f(xε

k+1, α
ε
k1

) − f(xε
k, αε

k1
))

−(f(xε
k+1, α

ε
k1

) − f(xε
k, αε

k1
))]

= O(ε2)(EkV̂ (xε
k, αε

k) + 1).
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It follows that

Ek[V ε
1 (xε

k+1, k + 1) − V ε
1 (xε

k, k)]

= −εEkV̂ ′
x(xε

k, αε
k)f(xε

k, αε
k) + εEkV̂ ′

x(xε
k, αε

k)f(xε
k, αε

k)

+O(ε2)(EkV̂ (xε
k, αε

k) + 1).

(7.33)

To proceed, define

V ε(x, k) = V̂ (x, αε
k) + V ε

1 (x, k). (7.34)

Then, using the estimates for V ε
1 (x, k),

Ek[V ε(xε
k, k) − V̂ (xε

k, αε
k)] = O(ε)(EkV̂ (xε

k, αε
k) + 1),

and upon cancellation, we have

Ek[V ε(xε
k+1, k + 1) − V ε(xε

k, k)]

= εEkV ′
x(xε

k, αε
k)f(xε

k, αε
k) + εEkQV̂ (xε

k, ·)(αε
k)

+O(ε2)(EkV̂ (xε
k, αε

k) + 1).

(7.35)

Step 3: (Final estimates and iteration). With the γ > 0 given in the
theorem, we have

E

[
eεγkV ε(xε

k, k) − eεγ(k−1)V ε(xε
k−1, k − 1)

]
= eεγ(k−1)[eεγ − 1]EV ε(xε

k, k)

+eεγ(k−1)E[Ek−1V
ε(xε

k, k) − V ε(xε
k−1, k − 1)].

(7.36)

Iterating on the above recursion yields

EeεγkV ε(xε
k, k) = EV ε(x0, 0) + E

k−1∑
k1=0

eεγk1 [eεγ − 1]Ek1V
ε(xε

k1
, k1)

+E

k−1∑
k1=0

eεγk1 [Ek1V
ε(xε

k1+1, k1 + 1) − V ε(xε
k1

, k1)].

(7.37)
Note that

E

k−1∑
k1=0

eεγk1 [eεγ − 1]V ε(xε
k1

, k1)

≤ Kγε

k−1∑
k1=0

eεγk1EV ε(xε
k1

, k1),

(7.38)
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and

E

k−1∑
k1=0

eεγk1Ek1 [V
ε(xε

k1+1, k1 + 1) − V ε(xε
k1

, k1)]

= εE

[
Ek1

k−1∑
k1=0

eεγk1V ′
x(xε

k1
, αε

k1
)f(xε

k1
, αε

k1
)

+
k−1∑
k1=0

eεγk1Ek1QV (xε
k1

, ·)(αε
k1

)

+
k−1∑
k1=0

eεγk1O(ε)(Ek1 V̂ (xε
k1

, αε
k1

) + 1)

+
k−1∑
k1=0

eεγk1Ek1

[ l0∑
i=1

mi∑
j=1

QV̂ (xε
k1

, ·)(sij)(I{αε
k1

=sij} − νijI{αε
k1

∈Mi})
]]

.

(7.39)
In the last term of (7.39), replacing the term in the squared brackets by

QV ε(xε
k1

, k1)
def= QV̂ (xε

k1
, ·)(αε

k1
)

+ε

∞∑
k2=k1

Ek1e
ε(k1−k2)V̂ ′

x(xε
k1

, ·)(αε
k1

)[f(xε
k1

, αε
k2

) − f(xε
k1

, αε
k2

)]

yields another term of the order O(ε)(Ek1 V̂ (xε
k1

, αε
k1

) + 1), which is added
to the next to the last term of (7.39). Using (7.14),

V ′
x(xε

k1
, αε

k1
)f(xε

k1
, αε

k1
) + QV (xε

k1
, ·)(αε

k1
) ≤ −γV (xε

k1
, αε

k1
),

and in addition, for sufficiently small ε > 0,

−γV (xε
k1

, αε
k1

) + O(ε)V (xε
k1

, αε
k1

) ≤ −γ1V (xε
k1

, αε
k1

)

for some 0 < γ1 < γ. As a result,

Eε

k−1∑
k1=0

eεγk1Ek1

[
V ′

x(xε
k1

, αε
k1

)f(xε
k1

, αε
k1

) + QV (xε
k1

, ·)(αε
k1

)

+O(ε)V̂ (xε
k1

, αε
k1

)
]

≤ 0.

(7.40)

Using (7.38)–(7.40) in (7.37) and dividing both sides by eεγk, we obtain

E

k∑
k1=0

eεγ(k1−k)[eεγ − 1]V ε(xε
k1

, k1)

≤ Kγε

k∑
k1=0

eεγ(k1−k)EV ε(xε
k1

, k1)

+ε

k∑
k1=0

eεγ(k1−k)EQV ε(xε
k1

, k1) + ε

k∑
k1=0

eεγ(k1−k)O(ε).
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It follows that

EV ε(xε
k+1, k + 1) ≤ e−εγkEV ε(x0, 0)

+Kγε
k∑

k1=0

eεγ(k1−k)EV ε(xε
k1

, k1)+ O(ε).

An application of Gronwall’s inequality yields

EV ε(xε
k+1, k + 1) ≤

[
e−εγkEV ε(x0, 0) + O(ε)

]
exp

[
Kγε

k∑
k1=0

eεγ(k1−k)
]

≤ Ke−εγkEV ε(x0, 0) + O(ε).
(7.41)

Using (7.32) with V ε(xε
k, k) replaced by V (xε

k, αε
k) in (7.41), we obtain

EV (xε
k+1, α

ε
k+1) ≤ Ke−εγkEV (x0, α0) + O(ε).

The proof of the theorem is concluded. �

Proof of Theorem 7.9. Define F̂ (x), F̃ (x), and V̂ (x, ι) as in the proof of
Theorem 7.7. Use Ek and Eα

k to denote the conditional expectations with
respect to the σ-algebras

Gk = {x0, α
ε
j , wj : j < k} and Gα

k = {x0, α
ε
k, αε

j , wj : j < k},

respectively. Since V̂x(xε
k, αε

k) and σ(xε
k, αε

k) are Gα
k -measurable and {wk}

is independent of Gα
k ,

EkV̂ ′
x(xε

k, αε
k)σ(xε

k, αε
k)wk = EkEα

k V̂ ′
x(xε

k, αε
k)σ(xε

k, αε
k)wk

= EkV̂ ′
x(xε

k, αε
k)σ(xε

k, αε
k)Eα

k wk = 0.

Consequently, we have

Ek[V̂ (xε
k+1, α

ε
k+1) − V̂ (xε

k, αε
k)]

= εEkV̂ ′
x(xε

k, αε
k)f(xε

k, αε
k) + εEkQV̂ (xε

k, ·)(αε
k)

+
1
2
Ektr[V̂xx(xε

k, αε
k)(xε

k+1 − xε
k)(xε

k+1 − xε
k)′]

+η̃ε
k+1 + O(ε2)(EkV̂ (xε

k, αε
k) + 1),

(7.42)

where

η̃ε
k+1 = O

(
Ek

d0−1∑
ı=3

|∂ıV̂ (xε
k, αε

k)||xε
k+1 − xε

k|ı
)

+O

(
Ek|xε

k+1 − xε
k|d0

∫ 1

0

∣∣∂d0 V̂ (xε
k + s(xε

k+1 − xε
k))

∣∣ds

)
.
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By virtue of the independence of wk with Gα
k and the measurability of

V̂xx(xε
k, αε

k), f(xε
k, αε

k), and σ(xε
k, αε

k) with respect to Gα
k , using (A7.4), we

have
Ektr[V̂xx(xε

k, αε
k)σ(xε

k, αε
k)wkw′

kσ′(xε
k, αε

k)]

= Ektr[V̂xx(xε
k, αε

k)σ(xε
k, αε

k)Eα
k [wkw′

k]σ′(xε
k, αε

k)]

= Ektr[V̂xx(xε
k, αε

k)σ(xε
k, αε

k)σ′(xε
k, αε

k)],

and similarly

Ektr[V̂xx(xε
k, αε

k)σ(xε
k, αε

k)wkf ′(xε
k, αε

k)] = 0,

ε2Ektr[V̂xx(xε
k, αε

k)f(xε
k, αε

k)f ′(xε
k, αε

k)]

= O(ε2)(EkV̂ (xε
k, αε

k) + 1).

(7.43)

Thus,

Ektr[V̂xx(xε
k, αε

k)(xε
k+1 − xε

k)(xε
k+1 − xε

k)′]

= εtr[EkV̂xx(xε
k, αε

k)Ξ(xε
k, αε

k)] + O(ε2)(EkV̂ (xε
k, αε

k) + 1).
(7.44)

As for the next to the last term in (7.42), similar to the estimates of (7.28)
with the use of independence of {wk} of {αε

k}, we obtain

η̃ε
k+1 = O(ε2)(EkV̂ (xε

k, αε
k) + 1).

Therefore, we have

Ek[V̂ (xε
k+1, α

ε
k+1) − V̂ (xε

k, αε
k)]

= εEkV̂ ′
x(xε

k, αε
k)f(xε

k, αε
k) + εEkQV̂ (xε

k, ·)(αε
k)

+
ε

2
tr[EkV̂xx(xk, αε

k)Ξ(xε
k, αε

k)] + O(ε2)(EkV̂ (xε
k, αε

k) + 1).

(7.45)

Define V ε
1 (x, k) as in (7.31), and define

V ε
2 (x, k) =

ε

2

∞∑
k1=k

Ekeε(k−k1)tr[V̂xx(x, αε
k)[Ξ(x, αε

k1
) − Ξ(x, αε

k1
)]]. (7.46)

Since the arguments are similar to that of Theorem 7.7, we only outline
the main steps and point out the differences here. As we did in the proof
of Theorem 7.7,

sup
0≤k

E|V ε
	 (xε

k, k)| < ∞, for � = 1, 2,

|V̂ ε
	 (xk, k)| = O(ε)(EkV̂ (xε

k, αε
k) + 1), for � = 1, 2.
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Note that

Ek[V ε
2 (xε

k+1, k + 1) − V ε
2 (xε

k, k + 1)]

= ε

∞∑
k1=k+1

eε(k+1−k1)Ektr{V̂xx(xε
k+1, α

ε
k+1)[Ξ(xε

k+1, α
ε
k1

) − Ξ(xε
k+1, α

ε
k1

)]

−V̂xx(xε
k, αε

k+1)[Ξ(xε
k, αε

k1
) − Ξ(xε

k, αε
k1

)]}
= O(ε2)(EkV̂ (xε

k, αε
k) + 1),

and that

Ek[V ε
2 (xε

k, k + 1) − V ε
2 (xε

k, k)]

= −ε

2
tr{EkV̂xx(xε

k, αε
k)Ξ(xε

k, αε
k)}

+
ε

2
tr{EkV̂xx(xε

k, αε
k)Ξ(xε

k, αε
k)} + O(ε2)(EkV̂ (xε

k, αε
k) + 1).

Next define

V ε(x, k) = V̂ (x, αε
k) + V ε

1 (x, k) + V ε
2 (x, k).

It follows that

Ek[V ε(xε
k+1, k + 1) − V ε(xε

k, k)]

= εEkV ′
x(xε

k, αε
k)f(xε

k, αε
k) + εEkQV (xε

k, ·)(αε
k)

+
ε

2
tr{EkVxx(xε

k, αε
k)Ξ(xε

k, αε
k)}

+εEk[QV̂ (xε
k, ·)(αε

k) − QV (xε
k, ·)(αε

k)]

+O(ε2)(EkV (xε
k, αε

k) + 1).

If we proceed as we did in the proof of Theorem 7.7, the desired stability
follows. A few details are omitted. �

Proof of Theorem 7.12. The proofs for the systems (7.2) and (7.3) are
similar, so we shall concern ourselves with (7.2) only. Define V ε

1 (x, k) as in
the proof of Theorem 7.7, and define

V ε(k) = V (xε
k, αε

k) + V ε
1 (xε

k, k).

It is easily seen that by virtue of (7.22), for each x,

|V ε
1 (x, k)| ≤ O(ε)(1 + EkV (x, αε

k)). (7.47)

For any M > 0, define a truncated and perturbed Liapunov function as
V ε

M (k) = V ε(k)qM (x), where qM (x) is a smooth function that is equal to
1 for x ∈ SM = {x : |x| ≤ M} and equal to 0 for x ∈ R

n − SM+1. For any
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N > 0, if |xε
k| < N , but xε

k ∈ B0, then for all M > N , qM (xε
k) = 1 in SN .

Thus V ε
M (k) = V ε(k) and by using the estimates similar to the proof of

Theorem 7.7, we obtain for such M ,

Ek[V ε
M (k + 1) − V ε

M (k)] ≤ −c0 + eε
k,

where eε
k = o(ε) as ε → 0. Thus, for sufficiently small ε > 0, we can make

−c0 + eε
k ≤ −c1 for some c1 > 0 with c1 < c0.

Define
τ̃N = inf{k ≥ τ0 : |xε

k| ≥ N}.

Using the recursion via telescoping,

Eτ0 [V
ε(τ1 ∧ (τ0 + k) ∧ τ̃N ) − V ε(τ0)]

= Eτ0

τ1∧(τ0+k)∧τ̃N −1∑
k=τ0

Ek[V ε
M (k + 1) − V ε

M (k)]

≤ −c1Eτ0 [τ1 ∧ (τ0 + k) ∧ τ̃N − τ0],

(7.48)

where a∧ b = min(a, b). Replacing V ε
1 (x, k) in (7.47) by V ε(k)−V (xε

k, αε
k),

we obtain
V ε(k) ≥ (1 − O(ε))EkV (x, αε

k) − O(ε).

We claim that limN τ̃N > τ1. If not, then

Eτ0V
ε(τ1 ∧ (τ0 + k) ∧ τ̃N ) ≥ Eτ0V (xε

k, αε
k) − O(ε)

→ ∞ as N → ∞,

which is a contradiction.
Since Eτ0V

ε(τ1 ∧ (τ0 + k) ∧ τ̃N ) ≥ 0, by (7.48), we have

c1Eτ0 [τ1 ∧ (τ0 + k) ∧ τ̃N − τ0] ≤ Eτ0V
ε(τ0). (7.49)

Using (7.47), we upper bound the right-hand side of (7.49) by

Eτ0V
ε(τ0) ≤ Eτ0V (xε

τ0
, αε

τ0
)(1 + O(ε)) + O(ε). (7.50)

Dividing both sides of (7.49) by c1 and using the bound in (7.50), we obtain

Eτ0 [τ1 ∧ (τ0 + k) ∧ τ̃N − τ0] ≤ Eτ0V (xε
τ0

, αε
τ0

)(1 + O(ε)) + O(ε)
c1

. (7.51)

Letting N → ∞ and k → ∞ in (7.51), we obtain (7.23). �
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7.7 Remarks

7.7.1 Extensions
The results obtained can be extended to the case that the transition matrix
P in (7.1) consists of not only recurrent states, but also transient states.
That is, the stability study can be extended to allow the transition matrix
P to be given by

P =

⎛⎜⎜⎜⎜⎝
P 1

P 2

. . .
P l0

P ∗,1 P ∗,2 · · · P ∗,l0 P ∗

⎞⎟⎟⎟⎟⎠ . (7.52)

A Markov chain with transition matrix (7.52) has l0 recurrent classes and a
number of transient states. What we will need are the following conditions:
Assume that P i for i = 1, . . . , l0 satisfy (A7.1), that all the eigenvalues of
P ∗ are inside the unit circle, and that P and P ε are transition matrices.
For ease of reference, we put this into the following condition.

(A7.1’) Condition (HT) of Chapter 6 is satisfied.

To carry out the desired study, we can partition the matrix Q as Q =(
Q11 Q12

Q21 Q22

)
, where Q11 ∈ R

(m−m∗)×(m−m∗), Q12 ∈ R
(m−m∗)×m∗ , Q21 ∈

R
m∗×(m−m∗), and Q22 ∈ R

m∗×m∗ . Write

Q∗ = diag(ν1, . . . , νl0)(Q111̃l + Q12A∗), (7.53)

where
A∗ = (a1, . . . , al0) ∈ R

m∗×l0 , with

ai = −(P ∗ − I)−1P ∗,i1lmi , for i = 1, . . . , l0.
(7.54)

Now the aggregated process αε
k is modified as follows:

αε
k =

{
i, if αε

k ∈ Mi,
Uj , if αε

k = s∗j ,
(7.55)

with Uj being given by

Uj = I{0≤U≤a1,j} + 2I{a1,j<U≤a1,j+a2,j} + . . . + l0I{a1,j+...+al0−1,j<U≤1},

and U is a random variable uniformly distributed on [0, 1], independent
of αε

k. Define piecewise constant interpolation αε(·) of αε
k as αε(t) = αk

for t ∈ [εk, εk + ε). Then we can show αε(·) converges weakly to α(·),
which is a Markov chain generated by Q∗. The discussion of the asymptotic
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expansions of the inclusion of the transient states and non-homogeneous
Markov chains can be found in Chapters 3 and 4, respectively.

With the preparation above, we can carry out the stability analysis.
The proofs and techniques are similar. The main idea is that the transient
states do not contribute anything to the limit systems. Note that we only
aggregate states in each recurrent class. The limit systems are still averages
with respect to the stationary measures of the recurrent states. The results
are stated as follows.

Theorem 7.14 Assume the conditions of Theorem 7.7 (respectively, con-
ditions of Theorem 7.9) with the replacement of (A7.1) by (A7.1’). Then the
conclusions of Theorem 7.7 (respectively, Theorem 7.9) continue to hold.

7.7.2 Further Investigation
We have studied stability problems arising from discrete-time dynamic sys-
tems. The main results indicate that under appropriate conditions, stability
of the limit continuous-time dynamic systems implies that of the original
problems. A number of interesting problems remain. For example, one may
wish to consider the invariant sets and invariance principles associated the
dynamic systems, which will be modifications of the results in LaSalle [101].
For example, associated with (7.8), we may consider

xε
k+1 = xε

k + εA(αε
k)f(xε

k)xε
k,

where

f(xε
k) =

( −γ1 1 − xε,1
k

1 − xε,2
k −γ2

)
, xε

k = (xε,1
k , xε,2

k )′.

This model (without the Markov chain) has been used as an epidemic model
and/or predator-prey model (see LaSalle [101]). The xε,	

k is the fraction of
the population � infected and (1 − xε,	

k ) is the fraction of the population
susceptible; γ	 > 0 and a(ι)γ	 and b(ι)γ	 are recovery coefficients. In con-
junction with this formulation, asymptotic stability relative to the positive
invariant set G, the closure of G = {x : 0 < x	 < 1, � = 1, 2}, may be
studied. This and more general invariance principles deserve to be further
studied.

7.8 Notes

The results of this Chapter are based on the paper of Yin and Zhang
[161]. Classical theory of stochastic stability can be found in the work of
Khasminskii [83] and Kushner [95]. The main techniques used are based
on the Liapunov stability. The use of perturbed Liapunov functions can be
traced back to the work of Papanicolaou, Stroock, and Varadhan [122], in
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which they used such methods to obtain diffusion approximation results.
Analysis of the stability of systems under random perturbation can be
found in the work of Blankenship and Papanicolaou [22].

This chapter is concerned with systems with jumps in discrete time. The
stability of systems involving jump parameters has also been studied by
Badowski and Yin [9], Ji and Chizeck [74], Mao [109], and Mariton [111],
among others.

Recent studies of systems with regime switching have indicated that such
a formulation is more suitable for many applications; see, for example, the
feedback linear system in Blair and Sworder [20], the robust control for-
mulation of Mariton [111], Markov decision problems in Liu, Zhang, and
Yin [103], and portfolio selections and near-optimal controls in Zhang and
Yin [182]. For some of the recent developments on two-time-scale Marko-
vian systems, refer to Abbad, Filar, and Bielecki [2] and Pervozvanskii
and Gaitsgory [123], among others. For some recent progress in stability of
hybrid systems, refer to Ji and Chizeck [74], Mao [108, 109], among others.



8
Filtering

8.1 Introduction

This chapter is concerned with hybrid filtering in discrete time. In the tradi-
tional setting of filtering problems, the coefficients of the systems are fixed
parameters and are deterministic. This, however, prevents one from treat-
ing situations in which the actual systems differ from the nominal model.
Therefore, efforts have been made to design more “robust” filters. Because
the coefficients may be subject to random perturbations, it is particularly
useful to develop filters under regime switching. In our formulation, in ad-
dition to the system and observation noises, disturbances from the random
environment on the system coefficients are also considered. In particular,
we incorporate random coefficients and model regime (or configuration)
changes. It is natural to adopt a Markov chain model to serve as the modu-
lating random process. In addition to the dynamics (state and observation)
in the traditional setting, there is a Markovian jump process responsible for
the regime changes of the underlying systems. The basic premise is as fol-
lows. Because of the regime changes caused by the random environment, in
any given instance, the system chooses its configuration in accordance with
the current value of the Markov chain. Corresponding to this configuration,
the evolution of the systems (both state and observation) follows dynamic
systems given by a pair of difference equations for a random duration until
the Markov chain jumps to a new state. Then the configuration is changed,
and the dynamic systems for both the state and the observation follow an-
other pair of difference equations, and so on. Since many problems arising
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from applications such as target tracking, speech recognition, telecommuni-
cation, and manufacturing require solutions of filtering problems involving
a regime switching, obtaining the state estimates of such systems is vital
in these applications.

Note that in the filtering problem, although the state space of the Markov
chain is finite, it may contain a large number of states. We introduce a small
parameter ε > 0 into the transition probability matrix as in the previous
chapters of the book. The small parameter is used to reflect the high con-
trast of the transition rates of the Markov chain. To carry out asymptotic
analysis, it is necessary to let ε → 0, which can serve as a guideline for
applications, approximations, and heuristics. In real applications, however,
ε might be a fixed constant and only the relative order of magnitude of
this parameter matters. Following the framework used in this book, we
study the asymptotic properties of the filtering problem by means of weak
convergence methods.

Let αε
k be a discrete-time Markov chain with state space M. Its transition

matrix is of the form
P ε = P + εQ, (8.1)

where P ε and P are m0 ×m0 transition matrices and Q is a generator of a
continuous-time Markov chain. As in Chapter 6, we consider the structure
of P given by

P =

⎛⎜⎜⎜⎜⎝
P 1

P 2

. . .
P l0

P ∗,1 P ∗,2 · · · P ∗,l0 P ∗

⎞⎟⎟⎟⎟⎠ , (8.2)

where for each i ≤ l0, P i is a transition matrix within the ith recurrent
class, and the last row (P ∗,1, . . . , P ∗,l0 , P ∗) in (8.2) corresponds to the tran-
sient states. Each of the transition matrix P i dictates the faster transitions
within the ith-ergodic class, whereas the generator Q governs the slow
transitions from one ergodic class to another. Our goal is again to reduce
complexity.

Based on the developments in previous chapters, we establish the natu-
ral connection between the discrete-time problem and its continuous-time
limit. Under simple conditions, we show that suitably interpolated pro-
cesses converge weakly to their limits, leading to continuous-time dynamic
systems with regime switching. Thus, in lieu of examining the more com-
plex original problem, we need only treat a much simplified limit system.
Using the limit problem as a guide, we construct near-optimal filters. Note
that the original optimal filter is infinite dimensional. The main advantage
of our approach is the reduction of complexity, which makes it possible to
obtain finite-dimensional near-optimal filters.
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This chapter is arranged as follows. Section 8.2 presents the main results
of the hybrid filtering problem. In order not to interrupt the flow of pre-
sentation, proofs and technical details are arranged in Section 8.3. Section
8.4 presents a discrete-time approximation of Wonham’s filter, which is an-
other application of the two-time-scale Markov chain and which yields an
efficient numerical algorithm. Section 8.5 collects some notes and further
remarks.

8.2 Main Results

Aiming at reducing the complexity of filtering problems involving large-
scale hidden Markov chains, we show that a limit system can be derived
in which the underlying Markov chain is replaced by an averaged chain
and the system coefficients are averaged out with respect to the stationary
measures of ergodic classes. Such a limit system can be used to construct
approximate filtering schemes that are nearly optimal. The reduction of
complexity is particularly pronounced when the transition matrix of the
Markov chain consists of only one ergodic class. In this case, the limit
problem becomes a standard Kalman filter free of Markovian switching
processes.

8.2.1 Formulation
Following the two-time-scale formulation, let ε > 0 be a small parameter
and {αε

k} be a time-homogeneous Markov chain with a finite state space M
having m0 elements and a transition matrix (8.1). Suppose that for some
T > 0 and 0 ≤ k ≤ 
T/ε� (where 
z� denotes the integer part of z, the
largest integer that is less than or equal to z). For ease of presentation, in
what follows, we suppress the floor-function notation 
·� and write 
T/ε�
as T/ε whenever there is no confusion.

Let xε
k ∈ R

r be the state to be estimated, yε
k be the corresponding

observation, and A(ι), C(ι), σw(ι), and σv(ι) be finite for each ι ∈ M. The
hybrid filtering problem is concerned with the following linear system of
equations:

xε
k+1 = xε

k + εA(αε
k)xε

k +
√

εσw(αε
k)wk, xε

0 = x,

yε
k+1 = yε

k + εC(αε
k)xε

k +
√

εσv(αε
k)vk, yε

0 = 0,
(8.3)

where {wk} and {vk} are the system disturbance and the observation noise,
respectively. The use of the

√
ε in the noise terms stems from the central

limit scaling. In what follows, we show that as ε → 0, the above filtering
problem has a limit. The limit filtering problem is still modulated by a
Markov chain. However, the total number of states of the limit Markov
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chain is equal to l0, the total number of ergodic classes. As mentioned
before, typically l0 � m0, and by considering this limit filtering problem,
substantial computational savings can be achieved. Although (8.3) is a
discrete-time filtering problem, the limit under appropriate scaling is a
continuous-time hybrid system.

In view of (8.1), the transition probabilities of αε
k are dominated by P ,

so its structure is important. Suppose that the matrix P is given by (8.2).
It is clear that for sufficiently small ε > 0, P ε is close to P , so P ε is a so-
called “nearly completely decomposable transition matrix” (see Courtois
[41]). The corresponding state space of the Markov chain is

M = M1 ∪ M2 ∪ · · · ∪ Ml0 ∪ M∗

= {s11, . . . , s1m1} ∪ · · · ∪ {sl01, . . . , sl0ml0
} ∪ {s∗1, . . . , s∗m∗}.

(8.4)

For each i = 1, . . . , l0, Mi = {si1, . . . , simi} is the state space corresponding
to the transition matrix P i. The subspace M∗ = {s∗1, . . . , s∗m∗} collects
the transient states. To proceed, we make the following assumptions about
the Markov chain and the filtering system under consideration.

(A8.1) Assume Conditions (HT) in Chapter 6, i.e., P i is irreducible
and aperiodic for each i = 1, . . . , l0 and all eigenvalues of P ∗ are
inside the unit disk.

(A8.2) For each ι ∈ M, A(ι), C(ι), σw(ι), and σv(ι) are finite; σw(ι)σ′
w(ι)

and σv(ι)σ′
v(ι) are positive definite matrices.

(A8.3) The sequences {wk}, {vk}, and {αε
k} are mutually indepen-

dent. The {wk} and {vk} are stationary martingale difference
sequences such that

Ewkw′
k = I, Evkv′

k = I,

E|wk|2+∆ < ∞, E|vk|2+∆ < ∞ for some ∆ > 0.

Owing to the assumption on the noise sequences {wk} and {vk} together
with the appropriate scaling via the use of the small parameter ε, we obtain
the functional central limit theorem or Donsker’s invariance theorem. Its
proof can be found in many references, see, for example, Ethier and Kurtz
[55, Theorem 3.1, p. 351]. The following lemma is about a central-limit-
theorem type approximation and it is a preparation for the limit hybrid
filtering system.

Lemma 8.1. Define

wε(t) =
√

ε

t/ε−1∑
k=0

wk and vε(t) =
√

ε

t/ε−1∑
k=0

vk. (8.5)
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Under (A8.3), wε(·) and vε(·) converge weakly to standard r-dimensional
Brownian motions w(·) and v(·), respectively.

Remark 8.2. For simplicity and ease of presentation, we assume that the
noises are stationary martingale difference sequences, and that the covari-
ance of wk and vk are the identity matrix. In fact, ϕ-mixing sequences
can be treated and the corresponding functional central limit result can be
obtained, but the notation will be more complex for the subsequent devel-
opment. It is more informative to deal with a notationally simpler form to
gain a basic understanding of the filtering problems.

Define the aggregated process αε
k as in Section 6.4, and define its inter-

polation by

αε
k =

{
i, if αε

k ∈ Mi,
Uj , if αε

k = s∗j ,

αε(t) = αε
k for t ∈ [εk, εk + ε),

(8.6)

where Uj is given by

Uj = I{0≤U≤a1,j} + 2I{a1,j<U≤a1,j+a2,j} + · · · + l0I{a1,j+···+al0−1,j<U≤1},

and U is a random variable uniformly distributed on [0, 1], independent of
αε

k. As shown in Proposition 6.5, αε(·) converges weakly to α(·), and the
limit is a Markov chain with state space M.

8.2.2 Near-Optimal Filtering
In this subsection, we consider the partially observed system (8.3) with P ε

satisfying (8.1) and (8.2). In addition, we assume that αε
l is observable.

In view of the convergence results in Chapter 7, the corresponding limit
system of (8.3) should have the form

dx = A(α(t))xdt + σw(α(t))dw,

dy = C(α(t))xdt + σv(α(t))dv,

with x(0) = x and y(0) = 0, where w(·) and v(·) are independent r-
dimensional, standard Brownian motions given by Lemma 8.1,

A(i) =
mi∑
j=1

νijA(sij), C(i) =
mi∑
j=1

νijC(sij), for each i ∈ M, (8.7)

and for each i ∈ M, σw(i) and σv(i) satisfy

Σw(i) = σw(i)σ′
w(i) =

mi∑
j=1

νijσw(sij)σ′
w(sij),

Σv(i) = σv(i)σ′
v(i) =

mi∑
j=1

νijσv(sij)σ′
v(sij).

(8.8)
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If both y(t) and α(t) are observable, then the corresponding Kalman filter
is given as follows

dx̂ = A(α(t))x̂dt + R(t)C
′
(α(t))Σ−1

v (α(t))(dy − C(α(t))x̂dt),

Ṙ = A(α(t))R(t) + R(t)A
′
(α(t))

−R(t)C(α(t))Σ−1
v (α(t))C(α(t))R(t) + Σw(α(t)),

(8.9)

with x̂(0) = x and R(0) = 0. Here x̂(t) is the best mean squares estimate of
x(t) given σ{y(s), α(s) : s ≤ t}; see Fleming and Rishel [57]. Note that y(t)
and α(t) are the weak limits of interpolations of {yε

k} and {αε
k}, respectively.

Neither of the formers are directly observable. In order to design a feasible
filtering scheme, we need to replace {y(t)} by {yε

k} and {α(t)} by {αε
k},

respectively. Intuitively, any filtering scheme driven by (yε
k, αε

k) having a
limit as in (8.9) should do. Here we adopt the following filtering scheme:

x̂ε
k+1 = x̂ε

k + εA(αε
k)x̂ε

k + (I + εA(αε
k))Rε

kC
′
(αε

k)

×[εC(αε
k)Rε

kC
′
(αε

k) + Σv(αε
k)]−1

×(yε
k+1 − yε

k − εC(αε
k)x̂ε

k),

(8.10)

and the Riccati equation

Rε
k+1 = εΣw(αε

k) + (I + εA(αε
k))Rε

k(I + εA
′
(αε

k))

−ε(I + εA(αε
k))Rε

kC
′
(αε

k)[εC(αε
k)Rε

kC
′
(αε

k) + Σv(αε
k)]−1

×C(αε
k)Rε

k(I + εA
′
(αε

k)),
(8.11)

with x̂ε
0 = x and Rε

0 = 0.

Remark 8.3. In hybrid filtering, when {αε
k} jumps rapidly within a group

of states, it is difficult to estimate its value over time. On the other hand,
in this case, any estimated value is not useful because αε

k will jump to
another state in a fairly short duration. Note that the aggregated process
{αε

k} jumps much less rapidly. Therefore it is relatively easy to estimate its
value. It is reasonable to impose the observability condition in this context.
To proceed, we obtain a bound on Rε

k. Note that Rε
k = Rε

k(ω). Here we use
ω to denote a sample point in the sample space Ω.

Lemma 8.4. Given T < ∞, there exist ε0 > 0 and constant K such that

sup
ω∈Ω

sup
0≤k≤T/ε

|Rε
k| ≤ K,

for 0 < ε < ε0.
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Next we consider the corresponding limit filtering problem. To obtain
the desired limit, we concern ourselves with suitably scaled continuous-time
interpolations of piecewise constant processes. Asymptotic results regarding
the hybrid filtering are provided.

To begin, for 0 ≤ k ≤ T/ε, define the interpolations xε(·), yε(·), x̂ε(·),
Rε(·), as

xε(t) = xε
k, yε(t) = yε

k, x̂ε(t) = x̂ε
k, Rε(t) = Rε

k, t ∈ [εk, εk + ε), (8.12)

where xε
k and yε

k are given in (8.3) and x̂ε
k and Rε

k given in (8.10) and (8.11),
respectively. We will show that the interpolated processes converge weakly
to x(·), y(·), x̂(·), and R(·). Using the martingale averaging approach (see
Chapter 14 and the references therein), we show that the sequences of in-
terests are tight, and then we characterize the limit processes by identifying
the operator of the limit martingale problems. To proceed, let us first ob-
tain the a priori bounds on {xε

k}, {yε
k}, and {x̂ε

k}. The bounds are given
below and their derivations are in Section 8.3.

Lemma 8.5. Assume (A8.1)–(A8.3). For {xε
k} and {yε

k} defined in (8.3),
and {x̂ε

k} and {Rε
k} given in (8.10), the following bounds hold:

sup
0≤k≤T/ε

E|xε
k|4 < ∞,

sup
0≤k≤T/ε

E|yε
k|4 < ∞,

sup
0≤k≤T/ε

E|x̂ε
k|4 < ∞.

(8.13)

Tightness. Let Fk and Fε
t be the σ-algebras generated by {αε

k1
, wk1 , vk1 :

k1 ≤ k} and {αε(s), wε(s), vε(s) : s ≤ t}, and Ek and Eε
t be the corre-

sponding conditional expectations with respect to Fk and Fε
t , respectively.

We are in a position to derive the tightness of {(xε(·), yε(·), x̂ε(·), Rε(·))}.
The tightness is really a compactness result; see Chapter 14 for further
reading and references.

Recall that D([0, T ]; S) is the space of S-valued functions that are right
continuous, have left-hand limits, endowed with the Skorohod topology. To
prove the desired assertion, we verify a tightness criterion.

Lemma 8.6. Under (A8.1)–(A8.3), {xε(·), yε(·), x̂ε(·), Rε(·), αε(·)} is tight
in D([0, T ]; Rr × R

r × R
r × R

r×r × M).

Weak Convergence. We proceed to obtain the weak convergence of
(xε(·), yε(·), x̂ε(·), Rε(·)) using a martingale problem formulation. Since the
sequence is tight, by using Prohorov’s theorem, we can extract a con-
vergent subsequence. For notational simplicity and without loss of gen-
erality, still denote the subsequence by (xε(·), yε(·), x̂ε(·), Rε(·)) with limit
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(x(·), y(·), x̂(·), R(·)). Thus, our task is reduced to finding the limit by char-
acterizing the operator of the limit martingale problem. The technique used
is essentially an averaging approach. Different from the diffusion approxi-
mation for wideband noise systems (cf. Kushner [96]), where the drift and
diffusion coefficients are deterministic functions, the Markov chain α(·) is
in both the limit drift and diffusion coefficients.

Theorem 8.7. Assume Conditions (A8.1)–(A8.3) hold. Then

(xε(·), yε(·), x̂ε(·), Rε(·), αε(·)) converges to (x(·), y(·), x̂(·), R(·), α(·))
weakly such that α(·) is a Markov chain generated by Q∗ defined in (6.16)
and (x(·), y(·), x̂(·), R(·)) is the limit satisfies the system of equations

dx = A(α(t))xdt + σw(α(t))dw,

dy = C(α(t))xdt + σv(α(t))dv,

dx̂ = A(α(t))x̂dt + R(t)C
′
(α(t))Σ−1

v (α(t))(dy − C(α(t))x̂dt),

Ṙ = A(α(t))R(t) + R(t)A
′
(α(t))

−R(t)C(α(t))Σ−1
v (α(t))C(α(t))R(t) + Σw(α(t)),

(8.14)

with x(0) = x, y(0) = 0, x̂(0) = x, and R(0) = 0, where w(·) and
v(·) are independent r-dimensional, standard Brownian motions given by
Lemma 8.1, A(i) and C(i) are given in (8.7), and σw(i) and σv(i) in (8.8),
respectively.

Remark 8.8. Note that x(·) being a solution of the first equation in (8.14)
is equivalent to (x(·), α(·)) being a solution of the martingale problem with
operator

Lf(x, i) = f ′
x(x, i)A(i)x +

1
2
tr[fxx(x, i)σw(i)σ′

w(i)] + Q∗f(x, ·)(i), i ∈ M,

(8.15)
where tr(A) is the trace of the matrix A,

Q∗f(x, ·)(i) =
∑
j∈M

qijf(x, j) =
∑

j∈M, j �=i

qij(f(x, j) − f(x, i)),

for each i ∈ M, and f(·, i) ∈ C2
0 (the class of twice continuously differen-

tiable function with compact support), and that the martingale problem
has a unique solution. Such a representation will be used in the proof of
results in Section 8.3. A similar comment holds for y(·), x̂(·), and R(·).

Recall that x̂(t) is the best mean squares estimate of x(t) given Ft =
σ{y(s), α(s) : s ≤ t}. That is, for each given t,

E|x(t) − x̂(t)|2 = min
∀z adapted to Ft

E|x(t) − z|2.
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Therefore, E
∫ T

0 |x(t) − x̂(t)|2dt is a minimizer of E
∫ T

0 |x(t) − z(t)|dt over
all Ft-adapted z(t).

Theorem 8.9. Assume (A8.1)–(A8.3). The following hold:
(a) {x̂ε

k} is nearly optimal in the sense that

E

T/ε∑
k=0

ε|xε
k − x̂ε

k|2 → E

∫ T

0
|x(t) − x̂(t)|2dt = min . (8.16)

(b) Assume, in addition, that σv(i) = δI and that C(i)C
′
(i) is positive

definite. Then,

lim
δ→0

lim
ε→0

E

T/ε∑
k=0

ε|xε
k − x̂ε

k|2 = 0.

Remark 8.10. The condition σv(i) = δI in (b) corresponds to a partially
observed system with small observation noise. Related literature in filtering
with small observation noise can be found in Fleming and Zhang [58] and
the references therein.

Remark 8.11. In this chapter, we assume that the aggregated process αε
k

is observable. When it is not directly observable, one may estimate the
values of αε

k over time. To carry out such an estimation procedure, either
a quadratic variation test or a maximum likelihood approach can be used
to estimate the value of αε

k; we refer the reader to Haussmann and Zhang
[68], and Zhang [174] for details along this direction.

Example 8.12. In this example, we consider a one-block transition matrix
case. That is, the transition matrix P in (8.1) is irreducible and aperiodic.

Let ν = (ν1, . . . , νm0) denote the stationary distribution of P and let

A
0

=
m0∑
j=1

A(j)νj , and Σ0
w = σ0

w(σ0
w)′ =

m0∑
j=1

νjσw(j)σ′
w(j),

C
0

=
m0∑
j=1

C(j)νj , and Σ0
v = σ0

v(σ0
v)′ =

m0∑
j=1

νjσv(j)σ′
v(j).

Then the filtering equations in (8.10) and (8.11) become

x̂ε
k+1 = x̂ε

k + εA
0
x̂ε

k + (I + εA
0
)Rε

k(C
0
)′

×[εC
0
Rε

k(C
0
)′ + Σ0

v]−1(yε
k+1 − yε

k − εC
0
x̂ε

k),

and

Rε
k+1 = εΣ0

w + (I + εA
0
)Rε

k(I + ε(A
0
)′)

−ε(I + εA
0
)Rε

k(C
0
)′[εC

0
Rε

k(C
0
)′ + Σ0

v]−1 × C
0
Rε

k(I + ε(A
0
)′,
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with x̂ε
0 = x and Rε

0 = 0.
Moreover, the limit of (xε

k, yε
k, x̂ε

k, Rε
k) satisfies

dx = A
0
xdt + σ0

wdw,

dy = C
0
xdt + σ0

vdv,

dx̂ = A
0
x̂dt + R(t)(C

0
)′(Σ0

v)−1(dy − C
0
x̂dt),

Ṙ = A
0
R(t) + R(t)(A

0
)′ − R(t)C

0
(Σ0

v)−1C
0
R(t) + Σ0

w,

with x(0) = x, y(0) = 0, x̂(0) = x, and R(0) = 0. Then Theorem 8.9
implies that as ε → 0,

E

T/ε∑
k=0

ε|xε
k − x̂ε

k|2 → E

∫ T

0
|x(t) − x̂(t)|2dt = min,

and if σv
0 = δI and C

0
(C

0
)′ is positive definite, then,

lim
δ→0

lim
ε→0

E

T/ε∑
k=0

ε|xε
k − x̂ε

k|2 = 0.

As was emphasized, our main purpose is to reduce the complexity of
the underlying filtering problem. The foregoing shows that the reduction of
complexity is particularly pronounced if the transition matrix (8.2) consists
of only one aperiodic ergodic class.

Remark 8.13. In this chapter, we considered discrete-time filters. For the
continuous-time counterpart, one may consider the following system

dxε(t) = A(αε(t))xε(t)dt + σw(αε(t))dw, xε(0) = x

dyε(t) = C(αε(t))xε(t)dt + σv(αε(t))dv, yε(0) = 0,
(8.17)

where w(·) and v(·) are independent standard Brownian motions, and αε(·)
is a continuous-time singularly perturbed Markov chain with finite state
space M and generator

Qε(t) =
Q̃(t)

ε
+ Q̂(t).

Assuming that α(t) is observable, one may design the corresponding near-
optimal filter. We refer the reader to Wang, Zhang, and Yin [147] for details.

8.3 Proofs of Results

Proof of Lemma 8.4. First, it is easy to see that Rε
k is symmetric and non-

negative definite because it can be represented as the conditional covariance
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matrix of xε
k − x̂ε

k given Yε
k−1, where Yε

k = σ{(yε
l , α

ε
l ) : l ≤ k}. It remains

to show its boundedness. Here we use the matrix norm |A| =
√

tr(AA′).
It follows that tr(AB) ≤ |A| · |B| for any square matrices A and B of the
same dimension. Under this norm, for any symmetric nonnegative definite
matrix R, we have

|R| = (tr(R2))
1
2

= (λ2
1 + · · · + λ2

n)
1
2

≤ (λ1 + · · · + λn) = tr(R),

where λ1 ≥ 0, . . . , λn ≥ 0 are the eigenvalues of R. Therefore, it suffices
to show that tr(Rε

k) is bounded. Take trace on both sides of the Riccati
equation in (8.11) to obtain

tr(Rε
k+1) ≤ K0ε + tr[(I + εA(αε

k))Rε
k(I + εA

′
(αε

k))],

for some K0 > 0. Note also that

tr[(I + εA(αε
k))Rε

k(I + εA
′
(αε

k))]

= tr[Rε
k + ε(Rε

kA
′
(αε

k) + A(αε
k)Rε

k) + ε2A(αε
k)Rε

kA
′
(αε

k)]

= tr(Rε
k) + εtr(Rε

kA
′
(αε

k) + A(αε
k)Rε

k)) + ε2tr(A(αε
k)Rε

kA
′
(αε

k))

≤ tr(Rε
k) + 2ε|A(αε

k)| · |Rε
k| + ε2|A(αε

k)|2 · |Rε
k|

≤ tr(Rε
k)(1 + 2ε|A(αε

k)| + ε2|A(αε
k|2)

≤ tr(Rε
k)(1 + εK1 + ε2K2),

for some constants K1 and K2. Moreover, the above bounds hold uniformly
in both ω and 0 ≤ k ≤ T/ε. Let φk = tr(Rε

k). Then

φk+1 ≤ K0ε + (1 + εK1 + ε2K2)φk, φ0 = 0.

This implies

φk+1 ≤ K0ε

(
1 + (1 + εK1 + ε2K2) + · · · + (1 + εK1 + ε2K2)k

)
= K0ε

(
(1 + εK1 + ε2K2)k − 1

εK1 + ε2K2

)
≤ K0

K1 + εK2
[(1 + εK1 + ε2K2)

T
ε − 1] ≤ K,

for some K < ∞ uniformly in ω ∈ Ω and 0 ≤ k ≤ T/ε. �

Proof of Lemma 8.5. Let us first work with xε
k. For 0 ≤ k ≤ T/ε,

iterating on the first equation in (8.3) gives us

xε
k+1 = xε

0 + ε

k∑
k1=0

A(αε
k1

)xε
k1

+
√

ε

k∑
k1=0

σw(αε
k1

)wk1 . (8.18)
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For any z ∈ R
r, we use |z|2 = tr(zz′). Recall that K is a generic positive

constant. Thus

E|xε
k+1|2 ≤ K

[
E|xε

0|2 + ε2E

∣∣∣∣ k∑
k1=0

A(αε
k1

)xε
k1

∣∣∣∣2 + εE

∣∣∣∣ k∑
k1=0

σw(αε
k1

)wk1

∣∣∣∣2]

≤ KE|xε
0|2 + Kε

k∑
k1=0

E|xε
k1

|2

+εK

k∑
k1=0

k∑
k2=0

E[tr(σw(αε
k1

)wk1w
′
k2

σ′
w(αε

k2
))].

(8.19)
By the independence of {αε

k} and {wk}, the boundedness of σw(ι) for each
ι ∈ M, noting

Ewk1w
′
k = 0 if k1 = k,

we have

ε
k∑

k1=0

k∑
k2=0

tr
(
Eσw(αε

k1
)wk1w

′
k2

σ′
w(αε

k2
)
)

≤ εK

∣∣∣∣ k∑
k1=0

k∑
k2=0

E{σw(αε
k1

)[Ewk1w
′
k2

]σ′
w(αε

k2
)}
∣∣∣∣

≤ εK

k∑
k1=0

|Ewk1w
′
k1

|

≤ εK
T

ε
= KT < ∞.

(8.20)

Using (8.20) in (8.19), and applying Gronwall’s inequality (Lemma 14.41),
we have

E|xε
k+1|2 ≤ K + Kε

k∑
k1=0

E|xε
k1

|2

≤ K exp(Kεk)

≤ K < ∞,

since k ≤ T/ε. Moreover, the bound holds uniformly in k for 0 ≤ k ≤ T/ε.
As for yε

k, using the bounds on sup0≤k≤T/ε E|xε
k|2, we have

sup
0≤k≤T/ε

E|yε
k+1|2

≤ K sup
0≤k≤T/ε

[
E|yε

0|2 + ε2E

∣∣∣∣ k∑
k1=0

C(αε
k1

)xε
k1

∣∣∣∣2 + εE

∣∣∣∣ k∑
k1=0

σv(αε
k1

)vk1

∣∣∣∣2]

≤ KE|yε
0|2 + Kε sup

0≤k≤T/ε

k∑
k1=0

E|xε
k1

|2
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+εK sup
0≤k≤T/ε

k∑
k1=0

k∑
k2=0

E
[
tr(σv(αε

k1
)vk1v

′
k2

σ′
v(αε

k2
))
]

≤ K < ∞.

The uniform bound for yε
k is obtained for 0 ≤ k ≤ T/ε.

Continuing along this line, to obtain the bounds for the fourth moments,
by repeated applications of the familiar inequality |a+ b|l ≤ 2l−1[|a|l + |b|l]
(for a, b ∈ R and l a positive integer) in (8.18),

E|xε
k+1|4 ≤ KE

[
|xε

0|4 + ε4
∣∣∣ k∑

k1=0

A(αε
k1

)xε
k1

∣∣∣4 + ε2
∣∣∣ k∑

k1=0

σw(αε
k1

)wk1

∣∣∣4].
Just as in the derivation of E|xε

k|2, we obtain

E|xε
k+1|4 ≤ K + Kε

k∑
k1=0

E|xε
k1

|4.

Gronwall’s inequality leads to the desired estimate. Similarly, it can be
shown that E|yε

k+1|4 < ∞ uniformly in 0 ≤ k ≤ T/ε.
Since {Rε

k} is uniformly bounded, E|Rε
k|4 < ∞. To obtain the bound for

E|x̂ε
k|4, define

Hε
k = (I + εA(αε

k))Rε
kC

′
(αε

k)[εC(αε
k)Rε

kC
′
(αε

k) + Σv(αε
k)]−1. (8.21)

Note that {Hε
k} is bounded uniformly in 0 ≤ k ≤ T/ε and ω ∈ Ω.

Expanding (8.10) gives us

x̂ε
k+1 = x̂ε

k +εA(αε
k)x̂ε

k − εHε
kC(αε

k)x̂ε
k

+εHε
kC(αε

k)xε
k +

√
εHε

kσv(αε
k)vk.

(8.22)

Iterating on (8.22) yields

x̂ε
k+1 = xε

0 +ε

k∑
k1=0

A(αk1)x̂
ε
k1

− ε

k∑
k1=0

Hε
k1

C(αε
k)x̂ε

k1

+ε

k∑
k1=0

Hε
k1

C(αε
k1

)xε
k1

+
√

ε

k∑
k1=0

Hε
k1

σv(αε
k1

)vk1 .

Using the already derived moment bounds for E|xε
k|4 and the independence

of {vk} with αε
k, we obtain

E|x̂ε
k+1|4 ≤ K + Kε

k∑
k1=0

E|x̂ε
k1

|4.
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The desired bounds then follow from Gronwall’s inequality. �

Proof of Lemma 8.6. Since {αε(·)} is tight, we need only show the
tightness of {xε(·)}, {yε(·)}, {Rε(·)}, and {x̂ε(·)} separately. Again, we
first consider the sequence {xε(·)}. For any δ > 0, t > 0, and s > 0 with
s ≤ δ, consider

Eε
t |xε(t + s) − xε(t)|2

= Eε
t

∣∣∣∣ε (t+s)/ε−1∑
k=t/ε

A(αε
k)xε

k +
√

ε

(t+s)/ε−1∑
k=t/ε

σw(αε
k)wk

∣∣∣∣2
def= eε

1(t, s) + eε
2(t, s) + eε

3(t, s),

(8.23)

where

eε
1(t, s) = ε2

(t+s)/ε−1∑
k1=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t

[
tr[A(αε

k1
)xε

k1
xε

k
′A′(αε

k)]
]
,

eε
2(t, s) = 2

√
ε3

(t+s)/ε−1∑
k1=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t

[
tr[A(αε

k1
)xε

k1
w′

kσ′
w(αε

k)]
]
,

eε
3(t, s) = ε

(t+s)/ε−1∑
k1=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t

[
tr[σw(αε

k1
)wk1w

′
kσ′

w(αε
k)]

]
.

Consider each of the terms on the right-hand side of the equations above
separately. First, by the finiteness of A(ι) for each ι ∈ M,

eε
1(t, s) ≤ Kε2

(t+s)/ε−1∑
k1=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t |xε

k1
||xε

k|.

By virtue of Lemma 8.5, an application of the Cauchy–Schwarz inequality
leads to

Eeε
1(t, s) ≤ Kε2

(t+s)/ε−1∑
k1=t/ε

(t+s)/ε−1∑
k=t/ε

E1/2|xε
k1

|2E1/2|xε
k|2

≤ Kε2
(

t + s

ε
− t

ε

)2

≤ Ks2 = O(δ2).

Thus
lim
δ→0

lim sup
ε→0

Eeε
1(t, s) = lim

δ→0
O(δ2) = 0. (8.24)

As for eε
2(t, s), note that xε

k1
and A(αε

k1
) are Fk1-measurable. Since for

k1 < k, Ek1wk = 0, the independence of {αε
k} and {wk} in (A8.3), and
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the finiteness of A(ι) and σw(ι) for each ι ∈ M and the Cauchy–Schwarz
inequality yield

eε
2(t, s) ≤ K

√
ε3

(t+s)/ε−1∑
k1=t/ε

∑
k≥k1

∣∣∣∣tr[Eε
t A(αε

k1
)xε

k1
(Ek1w

′
k)(Ek1σ

′
w(αε

k))
]∣∣∣∣

≤ K
√

ε3
(t+s)/ε−1∑

k=t/ε

√
Eε

t |xε
k|2

√
Eε

t |wk|2.

Therefore,

lim
δ→0

lim sup
ε→0

Eeε
2(t, s) = lim

δ→0
lim sup

ε→0
O(

√
ε) = 0. (8.25)

Next, we consider the last term of (8.23). Using the martingale difference
property, the independence of {αε

k} and {wk}, and Ek1wk = 0 for k1 < k
and Ekwk1 = 0 for k < k1, we obtain

eε
3(t, s) = ε

(t+s)/ε−1∑
k=t/ε

∣∣∣∣tr[Eε
t σw(αε

k)wkw′
kσ′

w(αε
k)]

∣∣∣∣.
Noting s ≤ δ,

Eeε
3(t, s) ≤ Kε

(
t + s

ε
− t

ε

)
= O(δ),

and hence
lim
δ→0

lim sup
ε→0

Eeε
3(t, s) = lim

δ→0
O(δ) = 0. (8.26)

Combining (8.24), (8.25), and (8.26), we obtain

lim
δ→0

lim sup
ε→0

E|xε(t + s) − xε(t)|2 = 0.

The tightness criterion in Lemma 14.12 then yields that {xε(·)} is tight in
D([0, T ]; Rr).

As for the estimates of yε(·), we merely note that

Eε
t |yε(t + s) − yε(t)|2

= Eε
t

∣∣∣∣ε (t+s)/ε−1∑
k=t/ε

C(αε
k)xε

k +
√

ε

(t+s)/ε−1∑
k=t/ε

σv(αε
k)vk

∣∣∣∣2

≤ KEε
t

∣∣∣∣ε (t+s)/ε−1∑
k=t/ε

C(αε
k)xε

k

∣∣∣∣2 + KEε
t

∣∣∣∣√ε

(t+s)/ε−1∑
k=t/ε

σv(αε
k)vk

∣∣∣∣2.
The rest of the estimates are similar to that of xε(·). Thus we also have
that {yε(·)} is tight in D([0, T ]; Rr).
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Rewrite (8.11) as

Rε
k+1 = Rε

k +εRε
kA

′
(αε

k) + εA(αε
k)Rε

k

−εRε
kC

′
(αε

k)(Mε
k)−1C(αε

k)Rε
k + εΣw(αε

k) + ε2Nε
k ,

(8.27)

where

Mε
k = εC(αε

k)Rε
kC(αε

k) + Σv(αε
k),

Nε
k = A(αε

k)Rε
kA

′
(αε

k) − Rε
kC

′
(αε

k)(Mε
k)−1C(αε

k)Rε
kA

′
(αε

k)

−A(αε
k)Rε

kC
′
(αε

k)(Mε
k)−1C(αε

k)Rε
k

−εA(αε
k)Rε

kC
′
(αk)(Mε

k)−1C(αε
k)Rε

kA
′
(αε

k).

Owing to the boundedness of Rε
k, it is readily seen that Nε

k is bounded
uniformly in ω and 0 ≤ k ≤ T/ε. Calculation similar to that for xε(·) and
yε(·) implies that for any t, s ∈ [0, T ] with t + s ≤ T and s ≤ δ,

lim
δ→0

lim sup
ε→0

E|Rε(t + s) − Rε(t)|2 = 0.

The tightness of {Rε(·)} then holds. Finally, using (8.22) together with the
already established estimates thus far, we also have

lim
δ→0

lim sup
ε→0

E|x̂ε(t + s) − x̂ε(t)|2 = 0.

The lemma is proved. �

Proof of Theorem 8.7. Consider {xε(·)} first. In fact, we work with the
pair (xε(·), αε(·)). Owing to the tightness of {xε(·)} and the weak conver-
gence of {αε(·)}, {(xε(·), αε(·))} is tight. By virtue of Prohorov’s theorem
(see Theorem 14.4), we can extract a weakly convergent subsequence. Se-
lect such a subsequence and denote it by {(xε(·), αε(·))} for simplicity.
Denote the limit of the sequence by (x(·), α(·)). By the Skorohod represen-
tation (see Theorem 14.5), we may assume without loss of generality that
(xε(·), αε(·)) converges to (x(·), α(·)) w.p.1. In addition, the convergence
is uniform on each bounded time interval. We proceed to use martingale
averaging techniques to figure out the limit.

To obtain the desired limit, it suffices to show that the limit (x(·), α(·))
is the unique solution of a martingale problem with operator L given by
(8.15). Noting the system equation being linear in the state variable and
using an argument similar to that used in the proof of Lemma 4.9, it can be
shown that the corresponding martingale problem with operator L given
in (8.15) has a unique solution.

To obtain the desired results, it suffices to show (see Theorem 14.7) that
for each i ∈ M and any f(·, i) ∈ C2

0 (the class of C2 functions with compact
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support),

f(x(t), α(t)) − f(x(0), α(0)) −
∫ t

0
Lf(x(u), ᾱ(u))du is a martingale.

To verify this martingale property, we need only show that for any positive
integer k0, any bounded and continuous function hk2(·) with k2 ≤ k0, any
t, s > 0, and tk2 ≤ t ≤ t + s, the following equation holds:

E

k0∏
k2=1

hk2(x(tk2), α(tk2))
(

f(x(t + s), α(t + s)) − f(x(t), α(t))

−
∫ t+s

t

Lf(x(u), α(u))du
)

= 0.

(8.28)

To obtain (8.28), we begin with the pair (xε(·), αε(·)). For each x and
α ∈ M, we define f̂(x, α) by

f̂(x, α) =
l0∑

i=1

f(x, i)I{α∈Mi} for each α ∈ M. (8.29)

Note that for each α = sij ∈ Mi, f̂(x, α) takes a constant value f(x, i).
Note also that at any time instant t, αε(t) = αε

t/ε takes on one of the m0

possible values from M. Moreover, f̂(xε
k, αε

k) = f(xε
k, αε

k) for each k. Then

f̂(xε(t + s), αε(t + s)) − f̂(xε(t), αε(t)) −
∫ t

0
Lf̂(xε(u), αε(u))du

is a martingale.
Choose a sequence of positive integers {κε} such that κε → ∞ but δε =

εκε → 0 as ε → 0. The piecewise constant interpolation implies that

f̂(xε(t + s), αε(t + s)) − f̂(xε(t), αε(t))

=
(t+s)/ε−1∑
lκε=t/ε

[f̂(xε
lκε+κε

, αε
lκε+κε

) − f̂(xε
lκε+κε

, αε
lκε

)]

+
(t+s)/ε−1∑
lκε=t/ε

[f̂(xε
lκε+κε

, αε
lκε

) − f̂(xε
lκε

, αε
lκε

)],

(8.30)

and hence

lim
ε→0

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))[f̂(xε(t + s), αε(t + s)) − f̂(xε(t), αε(t))]

def= lim
ε→0

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))[g
ε
1 + gε

2],

(8.31)
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where

gε
1 =

(t+s)/ε−1∑
lκε=t/ε

[f̂(xε
lκε+κε

, αε
lκε+κε

) − f̂(xε
lκε+κε

, αε
lκε

)],

gε
2 =

(t+s)/ε−1∑
lκε=t/ε

[f̂(xε
lκε+κε

, αε
lκε

) − f̂(xε
lκε

, αε
lκε

)].

We proceed to obtain the desired limit by examining gε
i for i = 1, 2 given

above.
By using a Taylor expansion, rewrite gε

2 as

gε
2 =

(t+s)/ε−1∑
lκε=t/ε

f̂ ′
x(xε

lκε
, αε

lκε
)[xε

lκε+κε
− xε

lκε
]

+
1
2

(t+s)/ε−1∑
lκε=t/ε

[xε
lκε+κε

− xε
lκε

]′f̂xx(x+
lκε

, αε
lκε

)[xε
lκε+κε

− xε
lκε

]

def= [gε
2,1 +

1
2
gε
2,2],

(8.32)

where

gε
2,1 =

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

f̂ ′
x(xε

lκε
, αε

lκε
)[εA(αε

k)xε
k +

√
εσw(αε

k)wk],

gε
2,2 =

1
2

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

[εA(αε
k)xε

k +
√

εσw(αε
k)wk]′f̂xx(x+

lκε
, αε

lκε
)

×
lκε+κε−1∑

k1=lκε

[εA(αε
k1

)xε
k1

+
√

εσw(αε
k1

)wk1 ],

for some x+
lκε

being on the line segment joining xε
lκε

and xε
lκε+κε

.
It follows that

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))
[√

ε

(t+s)/ε−1∑
lκε=t/ε

f̂ ′
x(xε

lκε
, αε

lκε
)
lκε+κε−1∑

k=lκε

σw(αε
k)wk

]
= E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))

×
[√

ε

(t+s)/ε−1∑
lκε=t/ε

f̂ ′
x(xε

lκε
, αε

lκε
)

lκε+κε−1∑
k=lκε

Elκεσw(αε
k)Elκεwk

]
.

The above estimate is obtained by noting the independence of {αε
k} and

{wk} and the measurability of xε
lκε

and αε
lκε

w.r.t. Flκε
Since tk2 ≤ t,
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k2=1 hk2(x

ε(tk2), α
ε(tk2)) is Fε

lδε
-measurable. By the finiteness of σw(αε

k),
we obtain

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))

×
[√

ε

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

f̂ ′
x(xε

lκε
, αε

lκε
)Elκεσw(αε

k)Elκεwk

]
→ 0 as ε → 0.

(8.33)

Let us consider the term involving A(αε
k)xε

k in gε
2,1. Note that

ε

(t+s)/ε−1∑
lκε=t/ε

f̂ ′
x(xε

lκε
, αε

lκε
)

lκε+κε−1∑
k=lκε

A(αε
k)xε

k

= ε

l0∑
i=1

mi∑
j=1

(t+s)/ε−1∑
lκε=t/ε

f̂ ′
x(xε

lκε
, αε

lκε
)

lκε+κε−1∑
k=lκε

A(sij)xε
kνijI{αε

k∈Mi}

+ε

l0∑
i=1

mi∑
j=1

(t+s)/ε−1∑
lκε=t/ε

f̂ ′
x(xε

lκε
, αε

lκε
)

lκε+κε−1∑
k=lκε

A(sij)xε
k

×[I{αε
k=sij} − νijI{αε

k∈Mi}].
(8.34)

Thus we need only examine the terms with fixed indices i and j.
For lκε ≤ k ≤ lκε + κε − 1,

γk = f̂ ′(xε
lκε

, αε
lκε

)A(sij)[I{αε
k=sij} − νijI{αε

k∈Mi}].

By a partial summation together with (8.3), the last term in (8.34) with
fixed i and j and without

∑l0
i=1

∑mi

j=1 becomes

ε

(t+s)/ε−1∑
k=t/ε

γkxε
k =

[
ε

(t+s)/ε−1∑
k=0

γk

]
xε

(t+s)/ε−1 −
[
ε

t/ε−1∑
k=0

γk

]
xε

t/ε−1

+ε

(t+s)/ε−2∑
k=t/ε

[ k∑
k1=0

γk1

]
(xε

k+1 − xε
k)

=
[
ε

(t+s)/ε−1∑
k=0

γk

]
xε

(t+s)/ε−1 −
[
ε

t/ε−1∑
k=0

γk

]
xε

t/ε−1

+ε2
(t+s)/ε−2∑

k=t/ε

[ k∑
k1=0

γk1

]
A(αε

k)xε
k

+ε
3
2

(t+s)/ε−2∑
k=t/ε

[ k∑
k1=0

γk1

]
A(αε

k)σw(αε
k)wk.
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Similar to (8.33), it can be shown that

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))
[
ε

3
2

(t+s)/ε−2∑
k=t/ε

[ k∑
k1=0

γk1

]
EkA(αε

k)σw(αε
k)Ekwk

]
→ 0 as ε → 0.

(8.35)
We claim that

sup
0≤n≤T/ε

E

∣∣∣∣ε n∑
k=0

γk

∣∣∣∣2 → 0 as ε → 0, (8.36)

which, in fact, is a version of Part (c) in Proposition 6.2 (see also Yin and
Zhang [158, Lemma 7.14, p. 189] for a continuous-time counter part).

Note that sup0≤k≤T/ε E|xε
k|2 < ∞ by virtue of Lemma 8.5. This together

with (8.36) and the Cauchy–Schwarz inequality yields

E

∣∣∣∣[ε (t+s)/ε−1∑
k=0

γk

]
xε

(t+s)/ε−1

∣∣∣∣
≤ E1/2

∣∣∣∣ε (t+s)/ε−1∑
k=0

γkxε
(t+s)/ε−1

∣∣∣∣2E1/2|xε
lκε+κε−1|2

→ 0 as ε → 0.

(8.37)

Similarly,

E

∣∣∣∣[ε t/ε−1∑
k=0

γk

]
xε

t/ε−1

∣∣∣∣ → 0 as ε → 0.

Next, note that

E

∣∣∣∣ε2
(t+s)/ε−2∑

k=t/ε

[ k∑
k1=0

γk1

]
A(αε

k)xε
k

∣∣∣∣
≤ ε

(t+s)/ε−2∑
k=t/ε

E

∣∣∣∣ε k∑
k1=0

γk1

∣∣∣∣|A(αε
k)xε

k|

≤ Kε

(t+s)/ε−2∑
k=t/ε

E1/2
∣∣∣∣ε k∑

k1=0

γk1

∣∣∣∣2E1/2|xε
k|2

→ 0 as ε → 0.

(8.38)

Using estimates (8.33)–(8.38) and the continuity of f̂x(·, α) for each α ∈
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M,

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))
[
ε

(t+s)/ε−1∑
lκε=t/ε

f̂ ′
x(xε

lκε
, αε

lκε
)

lκε+κε−1∑
k=lκε

A(αε
k)xε

k

]

= E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))

[ (t+s)/ε−1∑
lκε=t/ε

mi∑
j=1

νij f̂ ′
x(xε

lκε
, αε

lκε
)

× δε

κε

lκε+κε−1∑
k=lκε

A(sij)xε
lκε

νijI{αε
k∈Mi}

]
+ o(1),

(8.39)
where o(1) → 0 as ε → 0. Then as ε → 0, letting εlκε → u, and using the
techniques of weak convergence, (8.39) together with (8.33) leads to

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))g
ε
2,1

→ E

k0∏
k2=1

hk2(x(tk2), α(tk2))
(∫ t+s

t

f ′
x(x(u), α(u))A(α(u))x(u)du

)
(8.40)

as ε → 0. As for gε
2,2, we have by the continuity of fxx(·, α) for each α ∈ M,

x+
lκε

− xε
lκε

→ 0 in probability as ε → 0. Consequently,

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))g
ε
2,2

def= E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))g̃
ε
2,2 + o(1),

where o(1) → 0 as ε → 0 uniformly in t, and

g̃ε
2,2 =

[ (t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

[εA(αε
k)xε

k +
√

εσw(αε
k)wk]′f̂xx(xε

lκε
, αε

lκε
)

×
lκε+κε−1∑

k1=lκε

[εA(αε
k1

)xε
k1

+
√

εσw(αε
k1

)wk1 ]

]
.
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It then follows that

g̃ε
2,2 =

[
ε2

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

(A(αε
k)xε

k)′f̂xx(xε
lκε

, αε
lκε

)
lκε+κε−1∑

k1=lκε

A(αε
k1

)xε
k1

+
√

ε3
(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

(A(αε
k)xε

k)′f̂xx(xε
lκε

, αε
lκε

)
lκε+κε−1∑

k1=lκε

σw(αε
k1

)wk1

+
√

ε3
(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

(σw(αε
k)wk)′f̂xx(xε

lκε
, αε

lκε
)

lκε+κε−1∑
k1=lκε

A(αε
k1

)xε
k1

+ε

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

(σw(αε
k)wk)′f̂xx(xε

lκε
, αε

lκε
)

lκε+κε−1∑
k1=lκε

σw(αε
k1

)wk1

]

= ε

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

(σw(αε
k)wk)′f̂xx(xε

lκε
, αε

lκε
)σw(αε

k)wk+ o(1),

where o(1) → 0 in probability as ε → 0. Furthermore, using the idea of
the estimates leading to (8.39) and the mean squares estimates in Part (c)
Proposition 6.2, it can be shown that

ε

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

(σw(αε
k)wk)′f̂xx(xε

lκε
, αε

lκε
)σw(αε

k)wk

=
(t+s)/ε−1∑
lκε=t/ε

mi∑
j=1

δε

κε

lκε+κε−1∑
k=lκε

tr[f̂xx(xε
lκε

, αε
lκε

)σw(sij)wkw′
kσ′

w(sij)]

×I{αε
k=sij} + o(1)

=
(t+s)/ε−1∑
lκε=t/ε

mi∑
j=1

δε

κε

lκε+κε−1∑
k=lκε

tr[f̂xx(xε
lκε

, αε
lκε

)σw(sij)wkw′
kσ′

w(sij)]

×νijI{αε
k∈Mi} + o(1),

where o(1) → 0 in probability as ε → 0 uniformly in t. It then follows that

lim
ε→0

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))

×
[
ε

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

(σw(αε
k)wk)′f̂xx(xε

lκε
, αε

lκε
)σw(αε

k)wk

]

= E

k0∏
k2=1

hk2(x(tk2), α(tk2))

×
[ ∫ t+s

t

tr[fxx(x(u), α(u))σw(α(u))σ′
w(α(u))]du

]
.

(8.41)
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Next, we consider the term gε
1. Using the continuity of f̂(·, α) for each

α ∈ M, the Markov property of αε
k, the mean squares estimate of the

occupation measures in Part (c) Proposition 6.2, (8.1), and Proposition 6.2,
we have gε

1 = g̃ε
1 + g̃ε

1,1 such that E
∏k0

k2=1 hk2(x
ε(tk2), α

ε(tk2))g̃
ε
1,1 → 0, and

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))g̃
ε
1

= E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))
[(t+s)/ε−1∑

lκε=t/ε

[f̂(xε
lκε

, αε
lκε+κε

) − f̂(xε
lκε

, αε
lκε

)]
]

= E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))

×
[ (t+s)/ε−1∑

lκε=t/ε

lκε+κε−1∑
k=lκε

l0∑
i1=1

mi1∑
j1=1

[ l0∑
i=1

mi∑
j=1

f̂(xε
lκε

, sij)

×P (αε
k+1 = sij |αε

k = si1j1) − f̂(xε
lκε

, si1j1)
]
I{αε

k=si1j1}

]
= E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))

×
[
ε

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

((P − I) + εQ)f̂(xε
lκε

, ·)(αε
k)
]

= E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))
[
ε

(t+s)/ε−1∑
lκε=t/ε

lκε+κε−1∑
k=lκε

Qf̂(xε
lκε

, ·)(αε
k)
]
.

Thus,

lim
ε→0

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))g
ε
1

= E

k0∏
k2=1

hk2(x(tk2), α(tk2))
[ ∫ t+s

t

Qf(x(u), α(u))du

]
.

(8.42)

Combining (8.40), (8.41), and (8.42),

lim
ε→0

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))
[
f̂(xε(t + s), αε(t + s)) − f̂(xε(t), αε(t))

]

= E

k0∏
k2=1

hk2(x(tk2), α(tk2))
[ ∫ t+s

t

Lf(x(u), α(u))du

]
(8.43)
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as desired. On the other hand, by the weak convergence of (xε(·), αε(·)) to
(x(·), α(·)), the Skorohod representation (without changing notation), and
the definition of f̂(·), we have

lim
ε→0

E

k0∏
k2=1

hk2(x
ε(tk2), α

ε(tk2))[f̂(xε(t + s), αε(t + s)) − f̂(xε(t), αε(t))]

= E

k0∏
k2=1

hk2(x(tk2), α(tk2))[f(x(t + s), α(t + s)) − f(x(t), α(t))].

(8.44)
By (8.43) and (8.44), (8.28) holds. Thus the limit of xε(·) (the first equation
in (8.14)) is obtained.

In exactly the same way, we prove that (y(·), α(·)), the weak limit of
(yε(·), αε(·)), is the unique solution of the martingale problem with operator

L1f(y, i) = f ′
y(y, i)C(i)y +

1
2
tr[fyy(y, i)σv(i)σ′

v(i)] + Q∗f(y, ·)(i), i ∈ M.

The limit equation for y(·) in (8.14) is established.
Next, we consider (Rε(·), αε(·)). Using (8.27) and the boundedness of

Rε
k, we obtain that (R(·), α(·)) is the solution of the degenerate martingale

problem with operator

L2f̃(R, i) = f̃ ′
R(R, i)[A(i)R + RA

′
(i)

−RC(i)Σ−1
v (i)C(i)R + Σw(i)] + Q∗f̃(R, ·)(i), i ∈ M,

where f̃(·, i) : R
r×r �→ R is twice continuously differentiable with compact

support. Thus the equation for R(·) in (8.14) is obtained.
To complete the proof, we examine the limit of x̂ε(·). By virtue of

the weak convergence and the Skorohod representation (without chang-
ing notation), we may assume that (xε(·), yε(·), Rε(·), αε(·)) converges to
(x(·), y(·), R(·), α(·)) w.p.1 and the convergence is uniform on any bounded
subinterval of [0, T ]. In view of (8.22),

x̂ε(t + s) − x̂ε(t) = ε

(t+s)/ε−1∑
k=t/ε

A(αε
k)x̂ε

k − ε

(t+s)/ε−1∑
k=t/ε

Hε
kC(αε

k)x̂ε
k

+ε

(t+s)/ε−1∑
k=t/ε

Hε
kC(αε

k)xε
k +

√
ε

(t+s)/ε−1∑
k=t/ε

Hε
kσv(αε

k)vk.

(8.45)
Using the same idea for evaluating the limits of xε(·) and yε(·), it can be
shown that

ε

(t+s)/ε−1∑
k=t/ε

A(αε
k)x̂ε

k →
∫ t+s

t

A(α(u))x̂(u)du.
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Note that by virtue of (8.21), Hε
k = H(Rε

k, αε
k) and H(·, i) is a continuous

function for each i ∈ M. Owing to the linearity in x̂ε
k and the continuity

of H(·, i), the limit of ε
∑(t+s)/ε−1

k=t/ε Hε
kC(αε

k)x̂ε
k is the same as that of

ε

(t+s)/ε−1∑
lκε=t/ε

δε
1
κε

lκε+κε−1∑
k=lκe

H(Rε
lκε

, αε
k)C(αε

k)x̂ε
lκε

=
(t+s)/ε−1∑
lκε=t/ε

δε
1
κε

lκε+κε−1∑
k=lκe

H(Rε(εlκε), αε
k)C(αε

k)x̂ε(εlκε)

=
l0∑

i=1

(t+s)/ε−1∑
lκε=t/ε

δε
1
κε

lκε+κε−1∑
k=lκe

H(Rε(εlκε), i)C(i)x̂ε(εlκε)I{αε(εk)=i}.

(8.46)
Sending εlκε → u, we have for any k satisfying lκε ≤ k ≤ lκε + κε, εk → u
as well. Thus using the defining relation (8.21), the weak limit in (8.46) is

l0∑
i=1

∫ t+s

t

R(u)C
′
(i)Σ−1

v (i)C(i)x̂(u)I{α(u)=i}du

=
∫ t+s

t

R(u)C
′
(α(u))Σ−1

v (α(u))C(α(u))x̂(u)du.

Likewise, detailed arguments lead to the weak convergence of

ε

(t+s)/ε−1∑
k=t/ε

Hε
kC(αε

k)xε
k +

√
ε

(t+s)/ε−1∑
k=t/ε

Hε
kσv(αε

k)vk

→
∫ t+s

t

[R(u)C
′
(α(u))Σ−1

v (α(u))[dy(u) − C(α(u))x̂(u)du].

The limit equation for x̂(·) in (8.14) is obtained. Therefore, the proof of
the theorem is completed. �

Proof of Theorem 8.9. First of all, in view of the definition of xε(·) and
x̂ε(·) and their convergence in Theorem 8.7, we have, as ε → 0,

T/ε∑
k=0

ε|xε
k − x̂ε

k|2 =
∫ T

0
|xε(t) − x̂ε(t)|2dt →

∫ T

0
|x(t) − x̂(t)|2dt,

in distribution. In order to show

E

T/ε∑
k=0

ε|xε
k − x̂ε

k|2 → E

∫ T

0
|x(t) − x̂(t)|2dt,

it suffices that { T/ε∑
k=0

ε|xε
k − x̂ε

k|2
}

is uniformly integrable.
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A sufficient condition is

E

(
T/ε∑
k=0

ε|xε
k − x̂ε

k|2
)2

≤ K < ∞.

In fact,

E

(
T/ε∑
k=0

ε|xε
k − x̂ε

k|2
)2

≤ TE

T/ε∑
k=0

ε|xε
k − x̂ε

k|4

≤ 8T

T/ε∑
k=0

ε
(
E|xε

k|4 + E|x̂ε
k|4) ≤ K.

We now show Part (b). In view of Lemma 14.39, we have

E

∫ T

0
|x(t) − x̂(t)|2dt = O(δ).

Therefore,

lim
δ→0

lim
ε→0

E

T/ε∑
k=0

ε|xε
k − x̂ε

k|2 = lim
δ→0

E

∫ T

0
|x(t) − x̂(t)|2dt = 0.

The proof is thus concluded. �

8.4 Discrete-Time Approximation of Wonham
Filter

In hybrid filtering, it is useful to provide conditional probabilities of the
underlying switching process. This can be accomplished by introducing an
additional observation equation for the Markov chain. Such a model gives
rise to the Wonham filter; see Wonham [150]. In this section, we consider a
discrete-time approximation of the Wonham filter. This is another applica-
tion of the two-time-scale Markov chain. The algorithms developed provide
a simple method for needed calculation.

Working with a finite time horizon t ∈ [0, T ] for some T > 0, suppose
that α(t) is a finite-state Markov chain with state space M = {z1, . . . , zm0}
and generator Q = (qij) ∈ R

m0×m0 , w(·) is a standard one-dimensional
Brownian motion that is independent of α(t), and σ(·) : R �→ R with
σ(t) ≥ c > 0 is an appropriate function satisfying suitable conditions.
Consider the following observation process

dy(t) = α(t)dt + σ(t)dw(t), y(0) = 0. (8.47)
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Note that due to the jump processes α(t), the distribution of y(t) is non-
Gaussian, but a Gaussian mixture. Let p(t) = (p1(t), . . . , pm0(t)) ∈ R

1×m0 ,
with pi(t) = P (α(t) = zi|y(s), 0 ≤ s ≤ t), for i = 1, . . . , m0, pi(0) = pi

0.
It was proved in Wonham [150] that this conditional density satisfies the
following system of stochastic differential equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dpi(t) =
[
qiipi(t) +

∑
j �=i

qjipj(t) − σ−2(t)(zi − α̂(t))α̂(t)pi(t)
]
dt

+σ−2(t)(zi − α̂(t))pi(t)dy(t), for i = 1, . . . , m0,

pi(0) = pi
0.

(8.48)
Although the filter provides precise results on the posterior probabilities,
the system often has to be solved numerically because it is nonlinear and
because observations are frequently collected in discrete moments.

To construct approximation algorithms, one may wish to discretize the
stochastic differential equations (8.48) directly. Nevertheless, numerical ex-
periments and simulations show that such a procedure is numerically unsta-
ble due to the white noise perturbations. It may produce a non-probability
vector (e.g., some components might be less than 0 or the sum of the com-
ponents might not be 1). To overcome the difficulty, we first transform the
stochastic differential equations and then design a numerical procedure for
the transformed system.

Define vi(t) to be the natural logarithm of pi(t), i.e.,

vi(t) = log pi(t), for t ≥ 0 and i = 1, . . . , m0.

It follows that pi(t) = exp(vi(t)). A straightforward application of the Ito’s
rule leads to the following. For each i = 1, . . . , m0,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dvi(t) =
[
qii +

∑
j �=i

qji p
j(t)

pi(t)
− σ−2(t)(zi − α̂(t))α̂(t)

−1
2
σ−2(t)(zi − α̂(t))2

]
dt + σ−2(t)(zi − α̂(t))dy(t)

vi(0) = log pi
0.

(8.49)
Let ε > 0 be the step size, and let the (actual physical) observation be

given by

yk+1 = yk + εαε
k +

√
εσkξk,

y0 = 0 w.p.1,
(8.50)

where {ξk} is a sequence of i.i.d. zero mean random variables, {αε
k} is a

Markov chain with state space M, and the one-step transition matrix is
given by

P ε = I + εQ, (8.51)
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where I is the m0-dimensional identity matrix.
In what follows, we show that under suitable scaling and interpolation,

the recursive algorithm given above leads to the limit process, which is the
posterior probability vector satisfying (8.48). Note that in the above, to
reinforce that {pi

k} verifying 0 ≤ pi
k ≤ 1, we may use

pi
k+1 =

exp(vi
k+1)

m0∑
j=1

exp(vj
k+1)

(8.52)

in (8.53). Our numerical experiments show that even without using this
renormalization, the approximation to probability vector is rather robust,
however. Also in the above, we have assumed implicitly that {pi

k} is bounded
below from zero. We will comment on the relaxation of this condition at
the end of this section.

Remark 8.14. Note that (8.50) mimics the dynamics given in (8.47). If
one discretized the observed signal y(t) in (8.47) by using a constant step
ε with

αε
k = α(εk), σk = σ(εk), ∆wk = w(ε(k + 1)) − w(εk),

and (8.50) with
ξk = [w(ε(k + 1)) − w(εk)]/

√
ε,

then one would obtain an Euler–Maruyama type approximation of (8.47)
(see Kloeden and Platen [88]).

Note that in such a case, αε
k is a discrete-time Markov chain with a one-

step transition matrix given by exp(εQ). That is, αε
k is an ε-skeleton of the

continuous-time Markov chain α(t); see Chung [38, p.132]. Our approxima-
tion (8.50) uses another approximation by replacing the one-step transition
probability matrix exp(εQ) with the first few terms in the Taylor expan-
sions, namely, I + εQ. For simplicity, we assume that {ξk} is a sequence
of independent and identically distributed random variables with mean 0
and unit variance. More general correlated noise may be considered. What
is essential is that the limit of a suitably scaled sequence is a “white noise”
in continuous time.

Discretizing the transformed system (8.49) and using the notation ∆yk =
yk+1 − yk yield the following algorithm⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vi
k+1 = vi

k + εr̃i
k +

√
εσ−2

k (zi − α̂ε
k)∆yk, vi

0 = log pi
0,

r̃i
k = qii +

∑
j �=i

qji p
j
k

pi
k

− σ−2
k (zi − α̂ε

k)α̂ε
k − 1

2
σ−2

k (zi − α̂ε
k)2,

pi
k+1 = exp(vi

k+1), pi
0 = pi(0).
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Equivalently, we can write the above equations in terms of the white noise
ξk as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi
k+1 = vi

k + εri
k +

√
εσ−1

k (zi − α̂ε
k)ξk, vi

0 = log pi
0,

ri
k = qii +

∑
j �=i

qji p
j
k

pi
k

− σ−2
k (zi − α̂ε

k)α̂ε
k + σ−2

k (zi − α̂ε
k)αε

k

−1
2
σ−2

k (zi − α̂ε
k)2,

pi
k+1 = exp(vi

k+1), pi
0 = pi(0).

(8.53)

This expression is convenient for convergence verifications. To proceed, let
us first present the conditions needed.

(A8.4) The following conditions hold:

(1) αε
k is a discrete-time Markov chain with a one-step transition

probability matrix (8.51).
(2) {σk} is a sequence of real numbers such that σk = σ(εk),

where σ(·) is as given in (8.48), a bounded and continuously
differentiable function satisfying σ(t) ≥ c > 0 for some con-
stant c.

(3) {ξk} in (8.50) is a sequence of independent and identically
distributed random variables satisfying Eξk = 0, Eξ2

k = 1,
and E|ξk|2+γ̂ < ∞ for some γ̂ > 0.

(4) The sequences {αε
k} and {ξk} are independent.

To obtain the desired result, we take continuous-time interpolations. De-
fine

αε(t) = αε
k, σε(t) = σk, yε(t) = yk, pε,i(t) = pi

k,

α̂ε(t) =
m0∑
j=1

zjpj
k, vε,i(t) = vi

k, i = 1, . . . , m0,

⎫⎪⎪⎬⎪⎪⎭ for t ∈ [kε, kε+ε).

(8.54)
Then for some T > 0, αε(·) ∈ D([0, T ] : M), the space of functions that
are defined on [0, T ], that take values in M, and that are right continuous
and have left-hand limits endowed with the Skorohod topology.

Theorem 8.15. Assume (A8.4). Then (vε,i(·), αε(·)) converges weakly to
(vi(·), α(·)). As a result, (pε,i(·), αε(·)) converges weakly to (pi(·), α(·)) such
that {pi(·)} satisfies the system of Wonham filter equations (8.48).

We omit the proof of this theorem but provide the remark below. The
proof consists of several steps. As a preliminary, we first show that un-
der (A8.4), (yε(·), αε(·)) converges weakly to (y(·), α(·)) such that y(·) is
a solution of (8.47) and α(·) is a continuous-time Markov chain whose
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generator is given by Q. In the second step, we prove the tightness of
the sequences {vε,i(·), αε(·)}. Using Prohorov’s theorem, we then extract
weakly convergent subsequences of (vε,i(·), αε(·)) with the limit denoted
by (vi(·), α(·)). By the continuous mapping theorem (see Theorem 14.21),
pε,i(·) converges weakly to pi(·) and by virtue of the Skorohod represen-
tation (without changing notation), we may assume that the convergence
is w.p.1 and it takes place uniformly on any bounded interval. Then we
characterize the limit process by showing that the limit (vi(·), α(·)) is the
solution of the martingale problem with operator Li defined as follows. For
each z	 ∈ M,

Lif(t, y, z	) =
1
2
[fyy(t, y, z	)σ−2(zi − α̂)2]

+[qii +
∑
j �=i

qji p
j

pi
− σ−2(zi − α̂)α̂

+σ−2(zi − α̂)z	]fy(t, y, z	) + Qf(t, y, ·)(z	),

(8.55)

for a smooth function f(·, ·, zi) (i = 1, . . . , m0), and fy and fyy denote the
first and the second derivatives of f w.r.t. the variable y. In the last step,
using Ito’s rule, pi(t) is a solution of the Wonham filter (8.48).

As a demonstration of the numerical algorithm, we provide an example
below. Suppose that the generator of the Markov chain is

Q =

⎛⎜⎝
−1.5 0.3 0.7 0.5
0.5 −1.5 1.0 0
3.0 4.0 −8.0 1.0
1.0 2.0 3.0 −6.0

⎞⎟⎠ ,

and the initial probability distribution is given by p0 = (0.4, 0.3, 0.2, 0.1). In
what follows, to display the sample paths of the approximation sequences,
we take a single simulation run (a single sample path), and present the
evolution of the sample paths as functions of elapsed time. For the finite-
time horizon [0, T ], we delineate the sample paths of the approximation
sequence for the iteration number k range from 0 ≤ k ≤ T/ε. The corre-
sponding graphs are given in Figure 8.1.

To obtain the related frequency distributions, we fix the time T at T =
10, compute pε,i

T/ε with ε = 0.001, and repeat the simulation N = 1, 000
times. The corresponding frequency distributions of the four components
are displayed in Figure 8.2.

Remark 8.16. For simplicity, only scalar problems were considered. Ex-
tensions to vector-valued problems are straightforward. For example, we
may consider the observation of the form

dy(t) = g(α(t))dt + σ(t)dw(t), y(0) = 0,

where y(t) ∈ R
d, g(·) : M �→ R

d, σ(·) : R
d×d �→ R

d, w(·) is standard d-
dimensional Brownian motion and α(t) is a continuous-time Markov chain
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FIGURE 8.1. Trajectories of pε
k for a four-state Markov chain, ε = 0.001; t is

the real time elapsed with 0 ≤ t ≤ T = 10; k is the iteration number given by
k = t/ε; CPU time is 7.86 seconds.
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FIGURE 8.2. Frequency distribution (histogram) of pε,i
T/ε, for i = 1, 2, 3, 4 with

T = 10, ε = 0.001, and N = 1, 000 simulation runs. Horizontal axis: Values of
pε,i

T/ε. Vertical axis: Frequency count.
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taking values in M. Then we can proceed with the corresponding Wonham
filter, the approximation when the state values are observed with noise,
and the discrete-time approximation. The results carry over.

As was mentioned earlier, we have concentrated on the case pi
k being

bounded away from 0. A modification can be made to take into consid-
eration the case of pi

k = 0. This is done as follows. In lieu of (8.53), let
N > 0 be a fixed but otherwise arbitrarily large real number. Construct
the approximation according to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi
k+1 = vi

k + εri
k +

√
εσ−1

k (zi − α̂ε
k)ξk, vi

0 = 0,

ri
k =

[
qii +

∑
j �=i

qji p
j
k

pi
k

− σ−2
k (zi − α̂ε

k)α̂ε
k + σ−2

k (zi − α̂ε
k)αε

k

]
×I{pi

k≥e−N } − NI{pi
k<e−N },

pi
k+1 = exp(vi

k+1), pi
0 = pi(0).

(8.56)
For such fixed N , we can derive the tightness and weak convergence just
as in the previous cases. Then we let N → ∞ to complete the proof. The
steps are essentially the same as in the previous case only modifications are
needed as outlined above.

8.5 Notes

The first rigorous development of nonlinear filters for diffusion-type pro-
cesses was given by Kushner [94]. The first finite-dimensional filter for a
jump Markovian system was developed by Wonham in [150], which is re-
ferred to as Wonham filter nowadays.

The main motivation of our study is to reduce complexity. Considering
(8.3) for the time horizon 0 ≤ k ≤ 
T/ε�, as pointed out in Runggaldier and
Visentin [132], if we treat the discrete-time case directly, it can be reduced
to an (m0)	T/ε
-dimensional recursive system of equations. In our case, m0
is a fairly large number, which renders the computation needed intensive.
Virtually, one cannot complete the computation in polynomial time. Using
weak convergence methods, we have obtained a reduced system of filtering
equations, which provides us with a way to find nearly optimal filters with
less complexity. In particular, if the transition matrix P given in (8.1) is
irreducible, the limit becomes a Kalman filter.

As recognized in Björk [19], Dufour and Bertrand [52], Miller and Rung-
galdier [116], continuous-time Kalman filter problems with Markovian switch-
ing are generally of infinite dimension, just like the nonlinear filter cases in
Liptser and Shiryayev [105]. Nevertheless, Björk [19] proved that a finite-
dimensional filter exists for a linear hybrid system only if the observation
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is independent of the Markov chain, which corresponds to

xε
k+1 = xε

k + εA(αε
k)xε

k +
√

εσw(αε
k)wk, xε(0) = x,

yε
k+1 = yε

k + εC(αε
k) +

√
εσvwk, yε(0) = 0,

(8.57)

in our problem. Similar to the derivation of Theorem 8.7, we obtain the
limit filtering equations

dx = A(α(t))xdt + σw(α(t))dw, x(0) = x,

dy = C(α(t))dt + σvdw, y(0) = 0.
(8.58)

The calculation of (8.57) leads to recursive filters of dimension (m0)	T/ε
,
whereas (8.58) yields the solution to a finite-dimensional filtering problem.

Related results on hybrid filtering in discrete time can be found in Bar-
Shalom and Li [11], Costa [40], Doucet, Gordon and Krishnamurthy [50],
Yang, Bar-Shalom, Lin [152] and others. Marcus and Westwood [110] con-
sidered a discrete-time problem involving a Markov chain with transition
probability matrix exp(εQ), with Q being a generator. Recently, Dey de-
rived reduced-complexity filtering results for hidden Markov models, in
which the underlying Markov chains are nearly completely decomposable
[46]. The work of Zhang [175] dealt with hybrid filters in continuous time
and treated problems involving non-Gaussian noise. The paper by Yin and
Dey [155] contains some numerical experiments and simulation data that
demonstrate the relationship between the original system and a reduced
system.

For solution of continuous-time hybrid filtering problems involving jump
Markov processes, see Björk [19], Dufour and P. Bertrand [52], Dufour and
Elliott [53], and Miller and Runggaldier [116].

Related to the problem treated in Section 8.4, in a recent paper [107],
Malcome, Elliott, and van der Hoek used Clark’s transformation and then
discretized the resulting equations, which may be viewed as a robustness
treatment. In [23], Blom reported a scheme using logarithm transformation
of nonlinear filtering for continuous-time systems. One of the main features
behind our approach is that we do not discretize the stochastic differential
equation (8.48) directly, but rather work with a discrete system. Using a
simple transformation via Ito lemma, we show that another computable
scheme can be obtained, which yields good computational results. Further
numerical results, including sample means and variances, assessment of
approximation errors, can be found in Yin, Zhang, and Liu [167].

Finally, we emphasize that the results presented in this chapter are all
based on the assumption that the Markov chain is time-homogeneous,
which is extendible to nonstationary cases. The work of Yin and Dey [155]
demonstrates that in lieu of the transition probability matrix (8.1), we may
consider filtering problems with a time-dependent transition matrix of the
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form
P ε(εk) = P (εk) + εQ(εk).

Results similar to those presented in this chapter can be obtained.



9
Markov Decision Processes

9.1 Introduction

This chapter presents a two-time-scale approach for discrete-time Markov
decision processes (MDP) with finite state spaces. The primary motivation
for our study stems from many applications in resource allocation, queueing
networks, machine replacement, and command control. Markov decision
processes are convenient in modeling these systems, since no difference or
differential equations are needed.

A common practice in dealing with MDPs is the method of dynamic
programming (DP). Using such an approach to find the optimal solutions
requires solving a set of associated DP equations. Since the total number
of equations to be solved is exactly the same as the total number of states
of the Markov chain, the DP approach is computationally feasible only if
the dimension of the underlying system is not too large. For large-scale
systems, one has to resort to approximately optimal schemes.

Due to the complex nature of the real-world problems, we often face large-
dimensional systems with uncertainty. Using Markov chains to model the
uncertain events, the states of the Markov chain often evolve at different
rates. Some of them vary fast, whereas others change slowly. To reduce
complexity, one of the possible solutions is to utilize the idea of a two-time-
scale approach so that in lieu of a large-dimensional system, one deals with
a much simpler system with less complexity. Such an approach provides a
powerful and efficient tool in treating large and complex systems to find
approximately optimal solutions.



196 9. Markov Decision Processes

In this chapter, we illustrate how to deal with the aforementioned prob-
lems for MDPs in discrete time by using their weak and strong interactions.
Both discounted costs and long-run average costs are considered. The ba-
sic idea of our approach is to aggregate the states in each recurrent class
into a single state and to derive a limit problem with lower dimensions.
Using the optimal solution of the limit problem, we then construct a so-
lution of the original problem, which will be shown to be asymptotically
optimal. One of the interesting aspects is that the limit problem derived is
a continuous-time Markov decision process, although the original one is in
discrete time. Thus this chapter explores the interface between continuous-
time and discrete-time problems. For MDPs with long-run average cost,
we show that the generator of the limit problem is irreducible, derive the
limit value function, and obtain error bounds on the constructed control
via the limit problem. As one of the results, we establish the asymptotic
optimality.

The rest of the chapter is arranged as follows. Section 9.2 presents the
formulation and results of an MDP under discounted cost. The transition
probability matrix of the underlying MDP consists of a rapid-changing part
and a slow-varying part. The rapid-changing part either consists of several
classes of recurrent states or includes transient states as well. Section 9.3 is
devoted to long-run average cost problems. Section 9.4 presents an example
for illustration. Given in Section 9.5, the proofs in this chapter are made
for cases that transient states are included; those cases that include only
recurrent states can be handled similarly. Finally, some notes are given in
Section 9.6.

9.2 Discounted Cost

We consider a discrete-time Markov chain αε
k, k = 0, 1, . . ., with finite

state space M = {1, . . . , m0}, where ε > 0 is a small parameter. Let the
control space Γ be a compact subset of an Euclidean space. We consider
feedback control uk = u(αε

k) such that uk ∈ Γ, k = 0, 1, . . . Let P ε(u) =
(pε,ij(u))m0×m0 denote the transition probability matrix of αε

k given by

P ε(u) = P (u) + εQ(u) for u ∈ Γ, (9.1)

where P (u) = (pij(u))m0×m0 is a transition probability matrix, i.e., 0 ≤
pij(u) ≤ 1,

∑
j pij(u) = 1, and Q(u) = (qij(u))m0×m0 is a generator of a

continuous-time Markov chain, i.e., qij(u) ≥ 0 for j = i and
∑

j qij(u) = 0
for each i. In view of (9.1), it is clear that the dominating factor is given
by the transition matrix P (u). Note that both P (u) and Q(u) are control
dependent.
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Suppose that the Markov chain has transition matrix P (u) of the form

P (u) =

⎛⎜⎜⎜⎜⎜⎜⎝
P 1(u)

. . .

P l0(u)

P ∗,1(u) . . . P ∗,l0(u) P ∗(u)

⎞⎟⎟⎟⎟⎟⎟⎠ . (9.2)

Then the Markov chain corresponding to the transition matrix P (u) con-
sists of a number of recurrent classes and some transient states. In this
case, denote the subspace of recurrent states by Mi = {si1, . . . , simi

}, i =
1, . . . , l0, and the collection of transient states by M∗ = {s∗1, . . . , s∗m∗}.
Then the state space can be written as

M = M1 ∪ · · · ∪ Ml0 ∪ M∗

= {s11, . . . , s1m1} ∪ · · · ∪ {sl01, . . . , sl0ml0
} ∪ {s∗1, . . . , s∗m∗},

with m1 + · · · + ml0 + m∗ = m0.

Definition 9.1. Let u(·) = {u(α) : α ∈ M} be a function such that
u(α) ∈ Γ for all α ∈ M. Then u(·) is called an admissible control and the
collection of all such functions is denoted by Aε.

Consider the following cost function Jε(α, u(·)) defined on M × Aε:

Jε(α, u(·)) = E

(
ε

∞∑
k=0

(1 − βε)kg(αε
k, u(αε

k))

)
, (9.3)

where α = αε
0 is the initial state of the chain, g(α, u) is the cost-to-go

function, and β > 0 is a given constant. Note that (1 − βε) is the discount
factor. Its use is based on the rationale of giving more weight on the current
state values and putting relatively less emphasis on the future.

Our objective is to find a function u(·) ∈ Aε that minimizes Jε(α, u(·)).
The original MDP problem, termed Pε, takes the form

Pε :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
minimize: Jε(α, u(·)) = E

(
ε

∞∑
k=0

(1 − βε)kg(αε
k, u(αε

k))

)
,

subject to: αε
k ∼ P ε(u(αε

k)), k = 0, 1, . . . , αε
0 = α, u(·) ∈ Aε,

value function: vε(α) = inf
u(·)∈Aε

Jε(α, u(·)),

where by αε
k ∼ P ε(u(αε

k)) we mean that αε
k is a discrete-time Markov chain

whose transition probability matrix is P ε(u(αε
k)).
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We can use the DP approach to solve the problem Pε. For each α ∈ M,
the associated discrete-time DP equation is

vε(α) = min
u∈Γ

{
εg(α, u) + (1 − βε)

∑
�

pε,α�(u)vε(�)
}

. (9.4)

Subtracting (1 − βε)vε(α) from both sides leads to

βεvε(α) = min
u∈Γ

{
εg(α, u) + (1 − βε)

∑
�

(pε,α�(u) − δα�)vε(�)
}

, (9.5)

where

δα� =
{

1, if � = α,
0, if � = α.

Dividing both sides of (9.5) by ε yields

βvε(α) = min
u∈Γ

{
g(α, u) + (1 − βε)

∑
�

bε,α�(u)vε(�)
}

, (9.6)

where
(bε,α�(u))m0×m0 =

1
ε
(P (u) − I) + Q(u) (9.7)

and I denotes the corresponding identity matrix.
It can be shown that vε(α) is the unique solution to the DP equation

(9.6). Moreover, for each α ∈ M, let uε,o(α) denote the minimizer of

g(α, u) + (1 − βε)
∑
�

bε,α�(u)vε(�).

Then uε,o(·) = {uε,o(αε
k)} is optimal. That is, Jε(α, uε,o(·)) = vε(α).

It is clear that in order to get the optimal solution of Pε, one has to solve
m0 DP equations of the form (9.6). If m0 is very large, this approach is not
computationally feasible. To resolve this problem, we use a two-time-scale
approach to reduce the dimensionality of the problem under consideration.
We will show that as ε → 0, the original problem can be approximated by a
limit problem. This section is devoted to the derivation of the corresponding
limit control problem. Let pi,jj1(u) denote the jj1th component of P i(u)
i.e., P i(u) = (pi,jj1(u))mi×mi

. Similarly, define p∗,jj1(u) and p∗i,jj1(u) such
that P ∗(u) = (p∗,jj1(u))m∗×m∗ and P ∗,i(u) = (p∗i,jj1(u))m∗×mi , respec-
tively. Next, we define the control sets for the limit problem. For each
i = 1, . . . , l0, ∗, define

Γi = {U i := (ui1, . . . , uimi) : uij ∈ Γ, j = 1, . . . , mi},

Γ = Γ1 × · · · × Γl0 = {U = (U1, . . . , U l0) : U i ∈ Γi, i = 1, . . . , l0},

Γ̃ = Γ × Γ∗ = {Ũ = (U, U∗) : U = (U1, . . . , U l0) ∈ Γ, U∗ ∈ Γ∗}.
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For each Ũ = (U, U∗) = (U1, . . . , U l0 , U∗) ∈ Γ̃, let

P i(U i) = (pi,jj1(uij))mi×mi
, for i = 1, . . . , l0,

P ∗(U∗) = (p∗,jj1(u∗j))m∗×m∗ ,

P ∗,i(U∗) = (p∗i,jj1(u∗j))m∗×mi
, for i = 1, . . . , l0,

and Q(Ũ) = (qij(Ũ))m0×m0 , where

qij(Ũ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qij(u1i), if 1 ≤ i ≤ m1,

qij(u2(i−m1)), if m1 < i ≤ m1 + m2,

· · · · · ·
qij(ul0(i−m0+ml0+m∗)), if m0 − ml0 − m∗ < i ≤ m0 − m∗,

qij(u∗(i−m0+m∗)), if m0 − m∗ < i ≤ m0.

Define
P

ε
(Ũ) = P (Ũ) + εQ(Ũ), (9.8)

where

P (Ũ) =

⎛⎜⎜⎜⎜⎜⎜⎝
P 1(U1)

. . .

P l0(U l0)

P ∗,1(U∗) · · · P ∗,l0(U∗) P ∗(U∗)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here P (u) and P (Ũ) are defined differently depending on context. (Note
the difference between u and Ũ used above.) If we denote Ũ ∈ Γ̃ as an
m0-vector Ũ = (u1, . . . , um0), then all these newly defined matrices above
are obtained from P ε(u) by replacing the control variable u in the ith row
with ui. Such a definition reveals the dependence of the matrices on the
controls.

For each u(·) ∈ Aε, if we define

Ũ = (u11, . . . , u1m1 , . . . , ul01, . . . , ul0ml0 , u∗1, . . . , u∗m∗), with uij = u(sij),

then the Markov chain determined by P ε(u(αε
k)) and the one determined by

P
ε
(Ũ) have the same probability distribution. The following assumptions

are made on the transition matrix P ε(u) and the cost-to-go function g(α, u).

(A9.1) For each α ∈ M, g(α, ·) is a continuous function on Γ.

(A9.2) For each ε > 0, P ε(u) is a continuous function of u. Moreover, for
each U i ∈ Γi, i = 1, . . . , l0, P i(U i) is irreducible and aperiodic.
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For each U i ∈ Γi, i = 1, . . . , l0, let νi(U i) = (νi1(U i), . . . , νimi(U i)) be
the stationary distribution of P i(U i). That is, νi(U i) is the unique solution
of the following system of equations

νi(U i)P i(U i) = νi(U i),
mi∑
j=1

νij(U i) = 1.

To proceed, we impose the following additional conditions on the matrices
P ∗(U∗) and P ∗,i(U∗) for i = 1, . . . , l0.

(A9.3) For each U∗ ∈ Γ∗, P ∗(U∗) has all of its eigenvalues inside the
unit circle. Moreover, for i = 1, . . . , l0, P ∗,i(U∗) = B(U∗)Bi

0,
and P ∗(U∗) − I = B(U∗)B0, where B(U∗) ∈ R

m∗×m∗ is a Lips-
chitz continuous function, Bi

0 ∈ R
m∗×mi and B0 ∈ R

m∗×m∗ are
constant matrices.

Note that the last condition in (A9.3) stipulates that the states corre-
sponding to P ∗(U∗) are transient for all U∗. For each U∗ ∈ Γ∗, by (A9.3)
(P ∗(U∗) − I) is invertible. Define

ai(U∗) = −(P ∗(U∗) − I)−1P ∗,i(U∗)1lmi , for i = 1, . . . , l0, (9.9)

where ai = (ai,1, . . . , ai,m∗)′ ∈ R
m∗×1 and 1lmi = (1, . . . , 1)′ ∈ R

mi×1.

Remark 9.2. Under (A9.3), it is readily seen that B(U∗) is nonsingular
for each U∗ ∈ Γ∗. Then, ai(U∗) = ai (i.e., they are independent of the
control U∗). Moreover, it can be shown that ai,j ≥ 0 and

∑l0
i=1 ai,j = 1 for

each j = 1, . . . , m∗. That is, (a1,j , . . . , al0,j) can be viewed as a probability
row vector.

Remark 9.3. One of the main focuses of this chapter is the limit behavior
of the system as ε → 0. Intuitively, as ε gets smaller and smaller, from
any transient state s∗j , the Markov chain will jump to the set of recurrent
states with a small probability of return. The role of control in the set of
transient states is not as important as that of the recurrent states.

Given Ũ(U, U∗), partition Q(Ũ) as

Q(Ũ) =

⎛⎝ Q11(U) Q12(U)

Q21(U∗) Q22(U∗)

⎞⎠ ,

where
Q11(U) ∈ R

(m0−m∗)×(m0−m∗),

Q12(U) ∈ R
(m0−m∗)×m∗ ,

Q21(U∗) ∈ R
m∗×(m0−m∗), and

Q22(U∗) ∈ R
m∗×m∗ .
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For U = (U1, . . . , U l0) ∈ Γ, let

Q∗(U) = diag(ν1(U1), . . . , νl0(U l0))
(
Q11(U)1̃l + Q12(U)(a1, . . . , al0)

)
,

(9.10)
where

1̃l = diag(1lm1 , . . . , 1lml0
) ∈ R

(m0−m∗)×l0 .

It is easy to check that Q∗(U) is a generator. Let x̃(·) = {x̃(t) : t ≥ 0}
be the continuous-time Markov chain generated by Q∗(U). The state space
of x̃(·) is denoted by M = {1, . . . , l0}. Note that for i = 1, . . . , l0, the
ith row of Q∗(U) depends only on U i. That is, Q∗(U) = (qjj1(U i))l0×l0 .
For a function f(·) defined on M, with a slight abuse of notation, write
Q∗(U i)f(·)(i1) instead of Q∗(U)f(·)(i1), where

Q∗(U
i)f(·)(i1) =

∑
i2 �=i1

qi1i2(U i)(f(i2) − f(i1)).

Thus, the process x̃(·) generated by Q∗(U) can be viewed as a Markov chain
generated by Q∗(U(x̃(t))), t ≥ 0, with the understanding that U(x̃(t)) =
U i if x̃(t) = i.

We aim to show that as ε → 0, there is a limit problem in an appropriate
sense. Our task is to characterize the limit and to prove the convergence.
To proceed, define

g(i, U i) =
mi∑
j=1

νij(U i)g(sij , u
ij), i = 1, . . . , l0. (9.11)

Let A0 denote a class of functions U(·) = {U(i) : i ∈ M} such that
U(i) ∈ Γi for i = 1, . . . , l0. For convenience, call U = (U(1), . . . , U(l0)) ∈
A0 an admissible control for the limit problem, termed P0. We use x̃(t) ∼
Q∗(U(x̃(t))) to denote that x̃(t) is a Markov chain generated by Q∗(U(x̃(t))).

Now we have an auxiliary Markov decision problem:

P0 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
minimize: J0(i, U) = E

∫ ∞

0
e−βtg(x̃(t), U(x̃(t)))dt,

subject to: x̃(t) ∼ Q∗(U(x̃(t))), t ≥ 0, x̃0 = i, U ∈ A0,

value function: v(i) = inf
U∈A0

J0(i, U).

The system of dynamic programming equations for the limit problem P0

is given by

βv(i) = min
Ui∈Γi

{
g(i, U i) + Q∗(U

i)v(·)(i)
}

, for i = 1, . . . , l0. (9.12)

Let Uo = (U1,o, . . . , U l0,o) ∈ Γ denote a minimizer of the right-hand side
of (9.12). Then Uo ∈ A0 is optimal for P0.



202 9. Markov Decision Processes

Remark 9.4. Note that the limit problem is a continuous-time Markov
decision process, although the original problem Pε is a discrete-time MDP.
Effectively, we are using solutions of a continuous-time MDP to approxi-
mate that of the corresponding discrete-time MDP.

We next show that P0 is indeed the limit problem by proving the con-
vergence of vε(·) to v(·). We then derive a strategy based on the optimal
control of the limit problem P0 and prove the asymptotic optimality of
constructed control for Pε.

Lemma 9.5. If there exists a subsequence of ε → 0 (still denoted by ε for
simplicity) such that vε(α) → v0(α) for α ∈ M, the following assertions
hold:

(a) For α ∈ Mi, the limit function v0(α) depends only on i, i.e., v0(α) =
v(i) for some function v(i).

(b) For j = 1, . . . , m∗, denote the limit of vε(s∗j) by v(∗j) = v0(s∗j) and
write v(∗) = (v(∗1), . . . , v(∗m∗))′. Then

v(∗) = a1v(1) + · · · + al0v(l0), (9.13)

where v(i) is given in Part (a).

Remark 9.6. This lemma indicates that if there is a convergent sub-
sequence of the value functions of the original problem, the limit value
function depends only on i, the index of Mi if it is in one of the recurrent
classes, and the limit is an average (with respect to the probabilities ai,j)
of v(α), if it is in one of the transient states.

Theorem 9.7. Assume (A9.1)–(A9.3). For each α ∈ Mi, i = 1, . . . , l0,

lim
ε→0

vε(α) = v(i), (9.14)

where v(i) is the value function of the limit problem P0; for each α = s∗j ∈
M∗, j = 1, . . . , m∗,

lim
ε→0

vε(s∗j) = v(∗j), (9.15)

where v(∗j) is determined by (9.13).

Next we construct an asymptotic optimal control policy for the original
problem Pε from the optimal decision of the limit problem P0. Let Uo =
(U1,o, . . . , U l0,o) ∈ A0 be an optimal control for the limit problem P0,
which is obtained by minimizing the right-hand side of (9.12). Pick out any
vector U∗ = (u∗1, . . . , u∗m∗) ∈ Γ∗. For this Ũo = (Uo, U∗) ∈ Γ̃, define a
control uε(·) = {uε(α) : α ∈ M} for the original problem Pε:

uε(α) =
l0∑

i=1

mi∑
j=1

I{α=sij}uij,o +
m∗∑
j=1

I{α=s∗j}u∗j . (9.16)
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It is clear that uε(·) ∈ Aε. In what follows, we will show that the con-
structed control uε(·) is asymptotically optimal.

Remark 9.8. Note that in the above construction, the control correspond-
ing to the transient state α ∈ M∗ can be taken to be any value. This
indicates that for the purpose of establishing nearly optimal policies, the
control on the transition probabilities of transient states has little impact
on the overall system performance.

Theorem 9.9. The control uε(·) = {uε(α)} constructed in (9.16) is asymp-
totically optimal in that

lim
ε→0

∣∣Jε(α, uε(·)) − vε(α)
∣∣ = 0, for α ∈ M.

It is interesting from a computational point of view to estimate the con-
vergence rate of vε(·) to v(·) and to obtain the error bound of the control
uε(·) constructed in (9.16). The following theorem demonstrates that such
a convergence rate and error bound are of the order ε.

Theorem 9.10. Assume that (A9.1)–(A9.3) hold and that the control set
Γ contains finitely many elements. Then,

vε(α) − v(i) = O(ε), for α ∈ Mi, i = 1, . . . , l0,

vε(s∗j) − v(∗j) = O(ε), for α = s∗j ∈ M∗, j = 1, . . . , m∗.

Moreover,
Jε(α, uε(·)) − vε(α) = O(ε), for α ∈ M.

Remark 9.11. Let us comment on the choice of the discount factor (1 −
βε). To study a discounted-cost MDP, perhaps the first choice coming to
mind would be

J = E

( ∞∑
k=0

ρkg(αε
k, u(αε

k))

)
, (9.17)

for a constant ρ > 0 that is independent of ε. This turns out to be a
completely different problem than ours, which is not as interesting as (9.3).
Mainly, the formulation will not lead to the reduction of complexity in any
way. To see this, let vε denote the corresponding value function. Then the
DP equation becomes

vε(α) = min
u∈Γ

{
g(α, u) + ρ

∑
j

pε,ij(u)vε(j)
}

. (9.18)

For simplicity, let us consider only the case of one irreducible class, i.e.,
l0 = 1. Noting that pε,ij(u) = pij(u)+εqij(u), and sending ε → 0, the term
Q will vanish in (9.18). The system reduces to an MDP with the Markov
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chain αε
k = αk, independent of ε and governed by the transition matrix P .

Since the matrix Q plays no role in the limit system, we will not be able to
take advantage of the weak and strong interactions, and will not be able to
get averages w.r.t. the stationary distribution. As a result, the formulation
of such a regular perturbation does not reduce the dimensionality. In lieu
of such an obvious choice, we should choose a discount factor that does not
discount too much of the future and that should be ε-dependent. Therefore,
ρ = 1 − βε appears to be a suitable choice. This leads to cancellation of ε
in the associated DP equations and is necessary for the development of the
results in this chapter.

9.3 Long-Run Average Cost

Up to now, we have discussed discrete-time MDPs with discounted cost
criteria. In this section we deal with MDPs with a long-run average cost.
In what follows, we need to revise the assumptions (A9.1) and (A9.2), and
we require a stronger version of irreducibility.

(A9.1’) Γ contains finitely many elements.
(A9.2’) For each U i ∈ Γi, i = 1, . . . , l0, P i(U i) is irreducible and ape-

riodic. Moreover, for sufficiently small ε > 0, P
ε
(Ũ) defined by

(9.8) is irreducible and aperiodic.

Consider the following problem:

Pε
av :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
minimize: Jε(u(·)) = lim sup

N→∞
1
N

E
N∑

k=0

g(αε
k, u(αε

k)),

subject to: αε
k ∼ P ε(u(αε

k)), k = 0, 1, . . . , αε
0 = α ∈ M, u(·) ∈ Aε,

value function: λε = inf
u(·)∈Aε

Jε(u(·)).

Note that for any given Ũ ∈ Γ̃, P
ε
(Ũ) is irreducible and aperiodic. Thus the

associated Markov chain αε
k has a stationary distribution. Consequently, the

average cost function Jε(u(·)) does not depend on the initial state αε
0 = α,

nor does the value function λε.
Using dynamic programming approach, one can write the associated DP

equation of Pε
av as follows:

λε + hε(α) = min
u∈Γ

{
g(α, u) +

∑
�

pε,α�(u)hε(�)
}

, (9.19)

where hε(α) is a function to be determined later. Subtracting hε(α) from
both sides of (9.19) leads to

λε = min
u∈Γ

{
g(α, u) +

∑
�

(pε,α�(u) − δα�)hε(�)
}

. (9.20)
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Note that the irreducibility of P
ε
(Ũ) implies that P

ε
(Ũ)−I is an irreducible

generator for a continuous-time Markov chain. Using standard techniques
in Ross [131], one obtains the following theorem that reveals the optimality
of problem Pε

av.

Theorem 9.12. Under (A9.1’) and (A9.2’), the following assertions hold:

(a) For each fixed ε > 0, there exists a pair (λε, hε(·)) that satisfies the
DP equation (9.20).

(b) The DP equation (9.20) has a unique solution up to an additive con-
stant. That is, if (λ̃ε, h̃ε(·)) is another solution to (9.20), then λ̃ε = λε

and for some constant K0, h̃ε(α) = hε(α) + K0, for α ∈ M.

(c) Let uε,o(·) = {uε,o(α) ∈ Γ, α ∈ M} denote a minimizer of the right-
hand side of (9.20). Then uε,o(·) ∈ Aε is optimal and Jε(uε,o(·)) = λε.

Analogous to the discounted cost case, the limit problem with the long-
run average cost is given as follows. Again we obtain a continuous-time
MDP limit problem:

P0
av :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
minimize: J0(U) = lim sup

T→∞
1
T

E

∫ T

0
g(x̃(t), U(x̃(t)))dt,

subject to: x̃(t) ∼ Q∗(U(x̃(t))), t ≥ 0, x̃0 = i, U ∈ A0,

value function: λ0 = inf
U∈A0

J0(U).

Remark 9.13. To relate the two-time-scale problem and the limit prob-
lem, it is essential that there exists a stationary distribution of x̃(·). A suffi-
cient condition that guarantees the existence of this stationary distribution
is the irreducibility of the generator Q∗(U). Nevertheless, the irreducibility
of P

ε
(U) does not imply that of Q∗(U). To illustrate, consider the Markov

chain with transition matrix given by

P
ε

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
1
2 0 0 1

2 0

0 1
2 0 0 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1 0

0 −1 0 0 1

0 1 −1 0 0

1 1 1 −4 1

1 1 1 1 −4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ε < 1/8. In this example, we have

P 1 = P 2 = P 3 = 1, P ∗ =

⎛⎝ 1
2 0

0 1
2

⎞⎠ .
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It follows that

ν1 = ν2 = ν3 = 1, a1 = (1, 0)′, a2 = (0, 1)′, a3 = (0, 0)′.

Thus, by (9.10) one can find that

Q∗ = diag(ν1, ν2, ν3)
(
Q111̃l + Q12(a1, a2, a3)

)
=

⎛⎜⎜⎜⎝
0 0 0

0 0 0

0 1 −1

⎞⎟⎟⎟⎠ ,

which is not irreducible since the rank of Q∗ is only 1. On the other hand,
it is easy to see that P

ε
is irreducible for sufficiently small ε > 0. In fact,

the unique ε-dependent stationary distribution is given by(
2(5ε + 1)
5(10ε + 1)

,
20ε + 3

5(10ε + 1)
,

10ε

5(10ε + 1)
,

4ε

5(10ε + 1)
,

6ε

5(10ε + 1)

)
.

To guarantee the desired irreducibility, we need a condition on the vectors
ai for i = 1, . . . , l0. Based on the condition, we establish the irreducibility
of the generator Q∗(U).

(A9.4) for i = 1, . . . , l0, j = 1, . . . , m∗, 0 < ai,j < 1.

Lemma 9.14. Assume (A9.1’), (A9.2’), (A9.3), and (A9.4). The generator
Q∗(U) is irreducible for each U ∈ Γ.

Next, let us consider the DP equation for the limit problem P0
av,

λ0 = min
Ui∈Γi

{
g(i, U i) + Q∗(U

i)h0(·)(i)
}

, (9.21)

for some function h0(·). The verification theorem on the limit problem is
given below; its proof is standard (see Ross [131]).

Theorem 9.15. Assume (A9.1’), (A9.2’), (A9.3), and (A9.4). Then the
following assertions hold:

(a) There exists a pair (λ0, h0(·)) that satisfies the DP equation (9.21).

(b) The DP equation (9.21) has a unique solution up to an additive con-
stant. That is, if (λ̃0, h̃0(·)) is another solution to (9.21), then λ̃0 = λ0

and for some constant K0, h̃0(i) = h0(i) + K0, for i = 1, . . . , l0.

(c) Let Uo = (U1,o, . . . , U l0,o) ∈ Γ denote a minimizer of the right-hand
side of (9.21). Then Uo ∈ A0 is optimal and J0(Uo) = λ0.

The following lemma establishes that the stationary probability distribu-
tion associated with P

ε
(Ũ) can be approximated by the quasi-stationary

distribution of a continuous-time MDP corresponding to Q∗(U) and the
stationary probability distributions of P i(U i), i = 1, . . . , l0.
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Lemma 9.16. For any Ũ = (U, U∗) = (U1, . . . , U l0 , U∗) ∈ Γ̃, let νε(Ũ)
denote the stationary distribution of P

ε
(Ũ). Then

νε(Ũ) = ν0(U) + O(ε),

where
ν0(U) = (ν1(U)ν1(U1), . . . , νl0(U)νl0(U l0), 01×m∗),

νi(U i) is the stationary distribution of P i(U i) for i = 1, . . . , l0, and more-
over (ν1(U), . . . , νl0(U)) is the quasi-stationary distribution of a continuous-
time MDP corresponding to Q∗(U).

This lemma can be proved using the irreducibility condition on P
ε
. Next,

we present the main theorem of this section.

Theorem 9.17. Let Uo ∈ A0 be an optimal control for P0
av and construct

uε(·) as in (9.16). Then uε(·) is asymptotically optimal with an error bound
of the order ε, i.e.,

Jε(uε(·)) − λε = O(ε).

9.4 An Example

This section presents a numerical example of a four-state MDP problem.
Consider a manufacturing system consisting of two machines that are sub-
ject to breakdown and repair. Each machine has two states, up and down,
denoted by 1 and 0, respectively. Let αε

k = (αε,1
k , αε,2

k ) denote the machine
states and let M = {s11, s12, s21, s22} be the state space of αε

k, where

s11 = (1, 1), s12 = (0, 1), s21 = (1, 0), s22 = (0, 0).

We assume that αε
k is an MDP whose control variable u represents a

service rate such as rate of preventive maintenance and repair. The problem
is to choose u to keep the average machine capacity at a reasonable level
and to avoid an excessive service rate, i.e., to choose u over time to minimize

Jε(α, u(·)) = Eε

∞∑
k=0

(1 − βε)kg(αε
k, uk).

In this example, we choose u ∈ Γ = {1, 2}, with 1 and 2 representing a low
service rate and high service rate, respectively, and

g(α, u) = c1|α1 − γ1| + |α2 − γ2| + c2u,

where γi is the expected machine capacity level and ci, i = 1, 2 are the
rates of service cost.
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Suppose that the state of the first machine changes more rapidly than
that of the second one. Then the transition matrix of αε

k can be given as
follows:

P ε(u) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 − p1(u) p1(u) 0 0

p2(u) 1 − p2(u) 0 0

0 0 1 − p1(u) p1(u)

0 0 p2(u) 1 − p2(u)

⎞⎟⎟⎟⎟⎟⎟⎠

+ε

⎛⎜⎜⎜⎜⎜⎜⎝
−p3(u) 0 p3(u) 0

0 −p3(u) 0 p3(u)

p4(u) 0 −p4(u) 0

0 p4(u) 0 −p4(u)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where p1(u) and p2(u) are the breakdown and repair probabilities, respec-
tively, and εp3(u) and εp4(u) are those for the second machine.

In this example, M1 = {s11, s12} corresponds to the states when second
machine is up, and M2 = {s21, s22} corresponds to these states when the
second machine is down. The corresponding DP equations are given by

vε(α) = min
u∈Γ

{
εg(α, u) + (1 − βε)

∑
�

pε,α�(u)vε(�)
}

.

Let
Γ1 =

{
U1 := (u11, u12) such that u11, u12 ∈ Γ

}
,

Γ2 =
{

U2 := (u21, u22) such that u21, u22 ∈ Γ
}

.

The control set is

Γ̃ = Γ = Γ1 × Γ2

=
{

U = (U1, U2) = (u11, u12, u21, u22)
}

.

For Ũ ∈ Γ̃, let

P
ε
(U) = P (U) + εQ(U) =

⎛⎝ P 1(U1)

P 2(U2)

⎞⎠ + εQ(U),

where

P 1(U1) =

⎛⎝ 1 − p1(u11) p1(u11)

p2(u12) 1 − p2(u12),

⎞⎠ ,

P 2(U2) =

⎛⎝ 1 − p1(u21) p1(u21)

p2(u22) 1 − p2(u22)

⎞⎠ ,



9.4 An Example 209

and

Q(U) =

⎛⎜⎜⎜⎜⎜⎜⎝
−p3(u11) 0 p3(u11) 0

0 −p3(u12) 0 p3(u12)

p4(u21) 0 −p4(u21) 0

0 p4(u22) 0 −p4(u22)

⎞⎟⎟⎟⎟⎟⎟⎠ .

The corresponding stationary distributions are given by

ν1(U1) =
(

p2(u12)
p1(u11) + p2(u12)

,
p1(u11)

p1(u11) + p2(u12)

)
and

ν2(U2) =
(

p2(u22)
p1(u21) + p2(u22)

,
p1(u21)

p1(u21) + p2(u22)

)
.

The limit generator is

Q∗(U) = diag(ν1(U1), ν2(U2))Q(U)diag(1lm1 , 1lm2)

=

⎛⎝ −η1(U) η1(U)

η2(U) −η2(U)

⎞⎠ ,

with

η1(U) =
p2(u12)p3(u11) + p1(u11)p3(u12)

p1(u11) + p2(u12)

and

η2(U) =
p2(u22)p4(u21) + p1(u21)p4(u22)

p1(u21) + p2(u22)
.

Let α(·) ∈ {1, 2} be a MDP generated by Q∗(U). Define

g(1, U1) = ν11(U1)g(s11, u
11) + ν12(U1)g(s12, u

12),

g(2, U2) = ν21(U2)g(s21, u
21) + ν22(U2)g(s22, u

22).

Note that the number of the DP equations for Pε is equal to 4, while the
number of that for P0 is only 2.

In our numerical experiments, we take

β = 0.9, γ1 = γ2 = 1, c1 = 2, c2 = 0.7.

In addition, we take

p1(1) = 0.5, p1(2) = 0.4, p2(1) = 0.2, p2(2) = 0.5,

p3(1) = 0.5, p3(2) = 0.4, p4(1) = 0.2, p4(2) = 0.5.
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We plot the value functions vε for 0 < ε < 1 in Figure 9.1 and λε in
Figure 9.2, where the horizontal axes give values of ε. The convergence
of vε and λε can be seen clearly from the first column in these figures
as ε → 0. In the second columns of these pictures, we plot the difference
between the cost under constructed control uε and value functions. In this
example, uε = U0 for smaller ε under the discounted cost, while in the
average cost case, uε is identical to U0 for all ε. Therefore, the resulting
difference between Jε and λε is zero for all ε. This is mainly because in the
average cost case, the error Jε −λε depends on νε −ν0, which is very small
in this example.

The optimal controls for the limit problems with both the discounted
and long-run average costs are identical in this case and are given by

Uo = (u11,o, u12,o, u21,o, u22,o) = (1, 2, 1, 2).

This policy indicates that a higher service rate is only needed whenever the
first machine is down.

9.5 Proofs of Results

This section presents the proofs of the results. Technical details and com-
plements of this chapter are provided in sequential order.

Proof of Lemma 9.5. Let

vε = (vε(sij), i = 1, . . . , l0, ∗, j = 1, . . . , mi)′ ∈ R
m0×1

= (vε,i(sij), i = 1, . . . , l0, ∗, j = 1, . . . , mi),

where
vε,i = (vε(si1), . . . , vε(simi))

′, for i = 1, . . . , l0,

and
vε,∗ = (vε(s∗1), . . . , vε(s∗m∗))′.

Define

g = (g(sij , u), i = 1, . . . , l0, ∗, j = 1, . . . , mi)′ ∈ R
m0×1.

Similarly, define their corresponding limits v0, v0,i, v0,∗. Given Ũ , the DP
equation (9.6) implies

βvε ≤ g + (1 − βε)
(

1
ε

(
P (Ũ) − I

)
+ Q(Ũ)

)
vε. (9.22)

Using the hypothesis vε(α) → v0(α), multiplying both sides of (9.22) by ε,
and sending ε → 0 lead to

(P (Ũ) − I)v0 ≥ 0.
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FIGURE 9.1. Convergence of vε and near optimality of uε. Horizontal axes give
values of ε. The dashed lines represent v0.
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FIGURE 9.2. Convergence of λε and near optimality of uε. Horizontal axes give
values of ε. The dashed line represents λ0.

Therefore,
P i(U i)v0,i ≥ v0,i, for i = 1, . . . , l0.

Now, the irreducibility of P i(U i) and Lemma 14.37 imply that

v(i) := v0,i(si1) = v0,i(si2) = · · · = v0,i(simi
).

This proves Part (a).
Next we establish Part (b). Let Ũε,o ∈ Γ̃ denote an optimal control. Then

the equality in (9.22) holds under Ũε,o. Since Γ̃ is a bounded set, there
exists a further subsequence of ε → 0 (still indexed by ε for notational
simplicity) such that Ũε,o → Ũo = (Uo, U∗) ∈ Γ̃. Multiplying both sides of
the resulting equation by ε and sending ε → 0 lead to

P ∗,1(U∗)v0,1 + · · · + P ∗,l0(U∗)v0,l0 + (P ∗(U∗) − I)v0,∗ = 0,

which yields

v0,∗ = −(P ∗(U∗) − I)−1(P ∗,1(U∗)v0,1 + · · · + P ∗,l0(U∗)v0,l0).

In view of the definition of ai by (9.9), Part (a), i.e., v0,i = 1lmiv(i), and
(A9.3), we obtain

v0,∗ = (v0(s∗1), . . . , v0(s∗m∗))′

= (v(∗1), . . . , v(∗m∗))′

=
l0∑

i=1

−(P ∗(U∗) − I)−1P ∗,i(U∗)v(i)

=
l0∑

i=1

aiv(i).

This proves Part (b). �
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Proof of Theorem 9.7. Note that |g| ≤ K for some constant K > 0.
This implies that

|vε(α)| ≤ Kε

∞∑
k=0

(1 − βε)k =
K

β
< ∞.

That is, vε(α) is uniformly bounded. Thus, for each subsequence of ε → 0,
there exists a further subsequence (for notational simplicity, still index
both subsequences by ε) and a v0(α), such that vε(α) → v0(α). In view of
Lemma 9.5, if α ∈ Mi then v0(α) = v(i), and v(∗j) can be determined by
v(i) for i = 1, . . . , l0, through the relation (9.13). In what follows, we will
show that such a limit v(i), i = 1, . . . , l0 is a solution to the DP equation
(9.12). Since this DP equation has a unique solution, we conclude that
(9.14) holds, which leads to (9.15). As in (9.22), the inequality holds for
any control Ũ . Multiplying both sides of (9.22) by

diag(ν1(U1), . . . , νl0(U l0), 0m∗×m∗),

and letting ε → 0, we have, in view of the definition of Q∗(U) in (9.10) and
Lemma 9.5,

βv(i) ≤ g(k, U i) + Q∗(U
i)v(·)(i).

Since this inequality holds for every U i ∈ Γi, we have

βv(i) ≤ min
Ui∈Γi

{
g(i, U i) + Q∗(U

i)v(·)(i)
}

.

To derive the reverse inequality, let

Ũε,o = (Uε,1,o, . . . , Uε,l0,o, Uε,∗) ∈ Γ

be a minimizer of the right-hand side of (9.6) corresponding to the recurrent
states. Then,

βvε = g + (1 − βε)
(

1
ε
(P (Ũε,o) − I) + Q(Ũε,o)

)
vε. (9.23)

Recall that Γ̃ is a bounded set. There exists a further subsequence of ε → 0
(still indexed by ε) such that Ũε,o → Ũo ∈ Γ̃. Multiplying both sides of
(9.23) by

diag(ν1(Uε,1,o), . . . , νl0(Uε,l0,o), 0m∗×m∗),

and letting ε → 0 lead to

βv(i) = g(i, U i,o) + Q∗(U
i,o)v(·)(i)

≥ min
Ui∈Γi

{
g(i, U i) + Q∗(U

i)v(·)(i)
}

.

This completes the proof. �

We give a lemma which will be used in proof of Theorem 9.9. The lemma
can be derived similarly as in Proposition 6.6.



214 9. Markov Decision Processes

Lemma 9.18. Given Ũ = (U, U∗) ∈ Γ̃, let αε(·) denote the discrete-time
Markov chain with transition probability matrix P

ε
(Ũ) = P (Ũ) + εQ(Ũ).

defined by (9.8). Then there exist positive constants K and 0 < λ < 1 (both
being independent of ε and k) such that for j = 1, . . . , mi, i = 1, . . . , l0,∣∣∣P (αε

k = sij) − νij(U i)θi(εk)
∣∣∣ ≤ K(kε2 + ε + λk), (9.24)

and for j = 1, . . . , m∗,

P (αε
k = s∗j) ≤ K(kε2 + ε + λk), (9.25)

where θi(εk), i = 1, . . . , l0, can be obtained from the solution θi(t) of the
following differential equation

⎧⎨⎩
d

dt

(
θ1(t), . . . , θl0(t)

)
=

(
θ1(t), . . . , θl0(t)

)
Q∗(U),

θi(0) = pε,i
0 1lmi + pε,∗

0 ai,
(9.26)

where

pε
0 = (pε,1

0 , . . . , pε,l0
0 , pε,∗

0 ) = (P (αε
0 = 1), . . . , P (αε

0 = m0))

with pε,i
0 ∈ R

1×mi and pε,∗
0 ∈ R

1×m∗ . Moreover, let x̃(·) denote the Markov
chain generated by Q∗(U). Then

θi(t) = P (x̃(t) = i). (9.27)

Proof of Theorem 9.9. In view of the convergence of vε(α), it suffices to
show that for αε

0 = α ∈ Mi, i = 1, . . . , l0,

lim
ε→0

Jε(α, uε(·)) = v(i), (9.28)

and for αε
0 = s∗j ∈ M∗, j = 1, . . . , m∗,

lim
ε→0

Jε(s∗j , u
ε(·)) = v(∗j). (9.29)

Let αε
k be the Markov chain with transition matrix P ε(uε(αε

k)), k =
0, 1, . . ., with uε(α) given in (9.16). Then P ε(uε(αε

k)) and P
ε
(Ũo), defined

in (9.8), determine chains with identical probability distribution.
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Using the definition of uε(α), we have that for any α ∈ M,

Jε(α, uε(·)) = E

(
ε

∞∑
k=0

(1 − βε)kg(αε
k, u(αε

k))

)

= E

(
l0∑

i=1

mi∑
j=1

∞∑
k=0

ε(1 − βε)kg(sij , u
ij,o)I{αε

k=sij}

)

+E

(
m∗∑
j=1

∞∑
k=0

ε(1 − βε)kg(s∗j , u
∗j)I{αε

k=s∗j}

)

=
l0∑

i=1

mi∑
j=1

g(sij , u
ij,o)

( ∞∑
k=0

ε(1 − βε)kP (αε
k = sij)

)

+
m∗∑
j=1

g(s∗j , u
∗j)

( ∞∑
k=0

ε(1 − βε)kP (αε
k = s∗j)

)
.

Now, we consider the limit cost function J0(i, Uo). For i = 1, . . . , l0, in view
of the definition of g(i, U i) by (9.11), we have

J0(i, Uo) = E

∫ ∞

0
e−βtg(x̃(t), Uo(x̃(t)))dt

= E

l0∑
i1=1

∫ ∞

0
e−βtg(i1, U i1,o)I{x̃(t)=i1}dt

=
l0∑

i1=1

∫ ∞

0
e−βtg(i1, U i1,o)P (x̃(t) = i1)dt

=
l0∑

i1=1

mi1∑
j=1

g(si1j , u
i1j,o)

∫ ∞

0
e−βtνi1,j(U i1,o)P (x̃(t) = i1)dt.

Then we have for α ∈ Mi,∣∣∣Jε(α, uε(·)) − v(i)
∣∣∣ =

∣∣∣Jε(α, uε(·)) − J0(i, Uo)
∣∣∣

≤
l0∑

i=1

mi∑
j=1

|g(sij , u
ij,o)|

∣∣∣∣∣
∞∑

k=0

ε(1 − βε)kP (αε
k = sij)

−
∫ ∞

0
e−βtνij(U i,o)P (x̃(t) = i)dt

∣∣∣∣∣
+

m∗∑
j=1

|g(s∗j , u
∗j)|

∞∑
k=0

ε(1 − βε)kP (αε
k = s∗j).

(9.30)

Recall the uniform boundedness of g. For the term on the last line of (9.30),
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in view of (6.21), we obtain

m∗∑
j=1

|g(s∗j , u
∗j)|

∞∑
k=0

ε(1 − βε)kP (αε
k = s∗j)

≤
m∗∑
j=1

K

∞∑
k=0

ε(1 − βε)kK(kε2 + ε + λk) ≤ Kε.

(9.31)

To estimate the terms in the first summation in (9.30), note that

∣∣∣∣ ∞∑
k=0

ε(1 − βε)kP (αε
k = sij) −

∫ ∞

0
e−βtνij(U i,o)P (x̃(t) = i)dt

∣∣∣∣
≤

∞∑
k=0

ε(1 − βε)k

∣∣∣∣P (αε
k = sij) − νij(U i,o)P (x̃(εk) = i)

∣∣∣∣
+νij(U i,o)

∣∣∣∣∣
∞∑

k=0

ε(1 − βε)kP (x̃(εk) = i) −
∞∑

k=0

εe−βεkP (x̃(εk) = i)

∣∣∣∣∣
+νij(U i,o)

∣∣∣∣∣
∞∑

k=0

εe−βεkP (x̃(εk) = i) −
∫ ∞

0
e−βtP (x̃(t) = i)dt

∣∣∣∣∣.
(9.32)

In view of Lemma 9.18, we have

∞∑
k=0

ε(1 − βε)k
∣∣∣P (αε

k = sij) − νij(U i,o)P (x̃(εk) = i)
∣∣∣

≤
∞∑

k=0

ε(1 − βε)kK(kε2 + ε + λk) ≤ Kε.

(9.33)

Note that e−βε ≥ 1 − βε and both
∑∞

k=0 ε(1 − βε)k and
∑∞

k=0 εe−βεk are
uniformly bounded. Using these facts and P (x̃(εk) = i) ≤ 1, it is easy to
show that∣∣∣∣ ∞∑

k=0

ε(1 − βε)kP (x̃(εk) = i) −
∞∑

k=0

εe−βεkP (x̃(εk) = i)
∣∣∣∣

≤
∞∑

k=0

ε(e−βεk − (1 − βε)k) ≤ Kε.

(9.34)

It remains to show that the last line of (9.32) goes to 0 as ε → 0. Moreover,
we have ∣∣∣P (x̃(εk) = i) − P (x̃(t) = i)

∣∣∣ ≤ Kε for εk ≤ t ≤ ε(k + 1),
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which implies that the convergence is of the order ε. To this end,∣∣∣∣ ∞∑
k=0

εe−βεkP (x̃(εk) = i) −
∫ ∞

0
e−βtP (x̃(t) = i)dt

∣∣∣∣
≤

∞∑
k=0

∫ ε(k+1)

εk

∣∣∣e−βεkP (x̃(εk) = i) − e−βtP (x̃(t) = i)
∣∣∣dt

≤
∞∑

k=0

(∫ ε(k+1)

εk

∣∣∣e−βεk − e−βt
∣∣∣P (x̃(εk) = i)dt

+
∫ ε(k+1)

εk

e−βt

∣∣∣∣P (x̃(εk) = i) − P (x̃(t) = i)
∣∣∣∣dt

)

≤
∞∑

k=0

(∫ ε(k+1)

εk

(e−βεk − e−βt)dt +
∫ ε(k+1)

εk

e−βtKεdt

)
=

(
ε

1 − e−βε
− 1

β

)
+

Kε

β
= O(ε).

(9.35)

Combining (9.30)–(9.35), we have∣∣∣Jε(α, uε(·)) − v(i)
∣∣∣ = O(ε), for α ∈ Mi, i = 1, . . . , l0. (9.36)

For s∗j ∈ M∗, in view of Remark 9.2, (9.13), and (9.36), we have

Jε(s∗j0 , u
ε(·))

=
l0∑

i=0

mi∑
j=1

g(sij , u
ij,o)

∞∑
k=0

l0∑
i1=1

ai1,j0θi1i(εk)νij(U i,o) + O(ε)

=
l0∑

i1=1

ai1,j0v(i1) + O(ε)

= v(∗j0) + O(ε). �

(9.37)

Proof of Theorem 9.10. In view of (9.36), (9.37), and the triangle in-
equalities, we have∣∣∣Jε(α, uε(·)) − vε(α)

∣∣∣ ≤
∣∣∣Jε(α, uε(·)) − v(i)

∣∣∣ +
∣∣∣vε(α) − v(i)

∣∣∣, α ∈ Mi,∣∣∣Jε(s∗j , u
ε(·)) − vε(s∗j)

∣∣∣ ≤
∣∣∣Jε(s∗j , u

ε(·)) − v(∗j)
∣∣∣ +

∣∣∣vε(s∗j) − v(∗j)
∣∣∣,

for j = 1, . . . , m∗. Recall Lemma 9.5 Part (b). It suffices to show that
vε(α) − v(i) = O(ε), for α ∈ Mi. Note that the inequalities (9.36) and
(9.37) imply that

vε(α) − v(i) ≤ Jε(α, uε(·)) − v(i) ≤ O(ε), for α ∈ Mi.
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To derive the reverse inequalities, let uε,o(·) = {uε,o(α) : α ∈ M} be an
optimal control for Pε and let

Ũε,o = (Uε,o, Uε,∗,o) = (Uε,1,o, . . . , Uε,l0,o, Uε,∗,o) ∈ Γ̃,

where

Uε,i,o = (uε,i1,o, . . . , uε,imi,o) := (uε,o(si1), . . . , uε,o(simi
)), i = 1, . . . , l0, ∗.

The same arguments as in the proof of (9.36) yield∣∣∣Jε(α, uε,o(·)) − J0(i, Uε,o)
∣∣∣ ≤ O(ε), for α ∈ M, i = 1, . . . , l0. (9.38)

The control set Γ contains finitely many elements by the hypothesis, so
does Γ, the control set for the limit problem P0. Suppose Γ = {γ1, . . . , γl1}
for some positive integer l1. Define

Ej =
{

ε : ε ∈ (0, 1), Ũε,o = (γj , U
ε,∗,o) for an Uε,∗,o ∈ Γ∗

}
, j = 1, . . . , l1.

Then {Ej} consists of a finite number of sets such that (0, 1) = E1∪ . . .∪El1 .
For fixed j and any ε ∈ Ej , consider αε

k with transition matrix P
ε
(Ũε,o).

Then in view of (9.38), the optimality of uε,o(·), and (9.13), we have, for
ε ∈ Ej ,

vε(α) = Jε(α, uε,o(·)) = J0(i, γj) + O(ε) ≥ v(i) + O(ε),

for α ∈ Mi, i = 1, . . . , l0. Thus, for 0 < ε < 1 and for α ∈ Mi, vε(α) −
v(i) ≥ O(ε). �

Proof of Lemma 9.14. The following proof is along the lines of a Gaussian
elimination procedure in which elementary row operations do not alter the
rank of a matrix. It proceeds in two steps. The first step derives the weak
irreducibility of Q∗(Ũ), and the second step shows that it is also irreducible.
For notational simplicity, the control variable Ũ will be suppressed in the
proof whenever no confusion arises.

Step 1: We first show the weak irreducibility. In view of Lemma 14.38,
it suffices to show rank(Q∗) = l0 − 1. To this end, write Q11 = (Q11,ij)
as the blocks of sub-matrices such that Q11,ij has dimension mi × mj ,
i, j = 1, . . . , l0; Q12 = (Q12,i∗) such that Q12,i∗ has dimension mi × m∗,
i = 1, . . . , l0. Then in view of the definition of Q∗, we have Q∗ = (qij)l0×l0

with qij = νi
(
Q11,ij1lmj + Q12,i∗aj

)
. Since νi > 0, 1lmj > 0, and aj > 0, it

follows that for j = i, if qij = 0, then

Q11,ij = 0 and Q12,i∗ = 0. (9.39)

Note that every entry of Q11,ij (resp. Q12,i∗) is nonnegative for j = i.
Next we show that the irreducibility of P

ε
(Ũ) implies qii < 0, for i =

1, . . . , l0. In fact, if qii = 0 for some 1 ≤ i ≤ l0, then since Q∗ is a generator,
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we must have qij = 0 for j = i. In view of (9.39), Q11,ij = 0 for j = i,
and Q12,i∗ = 0. But this implies that P

ε
(Ũ) cannot be irreducible since a

state outside Mi is not accessible from a state in Mi. Therefore, qii < 0
for i = 1, . . . , l0.

We now apply the Gaussian elimination procedure on Q∗ = (qij). Mul-
tiply the first row of Q∗ by −qi1/q11 and add to the ith row, i = 2, . . . , l0
such that the first component of that row equals zero. Denote the resulting
matrix by Q

(1),∗
= (q(1),ij). Then we have

q(1),1j = q1j , j = 1, . . . , l0,

q(1),i1 = 0, i = 2, . . . , l0,

q(1),ij = qij − q1j qi1

q11 , i, j = 2, . . . , l0,

with q(1),ii ≤ 0, q(1),ij ≥ 0, for j = i, and
∑l0

j=2 q(1),ij = 0.
We claim that q(1),ii < 0 for i = 2, . . . , l0. For i = 2, if q(1),22 = 0, then

q(1),2j = 0, j = 3, . . . , l0, or, equivalently,

(q23, . . . , q2l0) +
(

−q21

q11

)
(q13, . . . , q1l0) = 0. (9.40)

Recall that q22 < 0. We must have q21 > 0, since q21 = 0 implies that
q22 = q(1),22 = 0, which contradicts the fact that qii < 0 for i = 1, . . . , l0.
Therefore, −q21/q11 > 0. It follows that both vectors in (9.40) equal zero.
That is, (q23, . . . , q2l0) = 0 and (q13, . . . , q1l0) = 0. As a result, one has

Q11,1j = 0, Q11,2j = 0, for j = 3, . . . , l0, and Q12,1∗ = 0, Q12,2∗ = 0.

This again implies that P
ε
(Ũ) cannot be irreducible since a state outside

M1∪M2 cannot be reached from a state in M1∪M2. By this contradiction
we obtain that q(1),22 < 0. Similarly, we can show that q(1),ii < 0 for i > 2.

Repeat this procedure. Multiply the second row of Q
(1),∗

by −q(1),i2/q(1),22

and add to the ith row, for i = 3, . . . , l0. Let Q
(2),∗

= (q(2),ij) denote the
resulting matrix. Then

q(2),ij = q(1),ij , i = 1, 2, j = 1, . . . , l0,

q(2),ij = 0, i = 3, . . . , l0, j = 1, 2,

q(2),ij = q(1),ij − q(1),2j q(1),i2

q(1),22 , i, j = 3, . . . , l0,

with q(2),ii ≤ 0, q(2),ij ≥ 0, for j = i, and
∑l0

j=3 q(2),ij = 0. Similarly, we
can prove that q(2),ii < 0 for i ≥ 3.
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Continue this transformation process. We obtain a sequence of matrices

Q∗ → Q
(1),∗ → · · · → Q

(l0−1),∗

with the last one Q
(l0−1),∗

= (q(l0−1),ij) such that

q(l0−1),ij = 0, i > j

q(l0−1),ii < 0, i = 1, . . . , l0 − 1,
l0∑

j=1

q(l0−1),ij = 0, i = 1, . . . , l0, and q(l0−1),l0l0 = 0.

Since these transformations do not change the rank of the original matrix,

rank
(
Q∗

)
= rank

(
Q

(1),∗)
= · · · = rank

(
Q

(l0−1),∗)
= l0 − 1.

In view of Lemma 14.38, Q∗ is weakly irreducible.
Step 2: Show that Q∗ is irreducible. That is, let (ν1, . . . , νl0) be the

quasi-stationary distribution corresponding to Q∗, then (ν1, . . . , νl0) > 0.
Suppose that this is not true. Without loss of generality, we may assume for
some 1 ≤ i0 < l0, ν1 > 0, . . . , νi0 > 0, and νi0+1 = 0, . . . , νl0 = 0. Then the
fact that (ν1, . . . , νl0)Q∗ = 0 would imply that qij = 0 for i = 1, . . . , i0 and
j = i0 + 1, . . . , l0, which in turn implies that Q11

ij = 0 for i = 1, . . . , i0, j =

i0 +1, . . . , l0, and Q
12
i∗ = 0 for i = 1, . . . , i0. Again, P

ε
(Ũ) is not irreducible

since the chain αε(·) cannot jump from a state in M1 ∪ M2 ∪ · · · ∪ Mi0 to
a state in Mi0+1 ∪ Mi0+2 ∪ · · · ∪ Ml0 . Therefore, Q∗ is irreducible. �

Proof of Theorem 9.17. Let αε
k denote the Markov chain with transition

probability matrix P
ε
(Ũo) and x̃(t) denote the continuous-time Markov

chain generated by Q∗(Uo). In view of the irreducibility of P
ε
(Ũo) and

Q∗(Uo), we have

lim
k→∞

P (αε
k = sij) = νε,ij(Ũo), j = 1, . . . , mi, i = 1, . . . , l0, ∗,

lim
t→∞ P (x̃(t) = i) = νi(Uo), i = 1, . . . , l0,

where νε,ij(Ũo) denotes the jth component of νε,i(Ũo) for each i = 1, . . . , l0, ∗,
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and νε,i(Ũo) = (νε,i1(Ũo), . . ., νε,il0(Ũo), νε,i∗(Ũo)). Therefore, we have

Jε(uε(·)) = lim sup
N→∞

1
N

E
N∑

k=0

g(αε
k, u(αε

k))

= lim sup
N→∞

1
N

N∑
k=0

[
l0∑

i=1

mi∑
j=1

g(sij , u
ij,o)P (αε

k = sij)

+
m∗∑
j=1

g(s∗j , u
∗j)P (αε

k = s∗j)

]

=
l0∑

i=1

mi∑
j=1

g(sij , u
ij,o)νε,ij(Ũo) +

m∗∑
j=1

g(s∗j , u
∗j)νε,∗j(Ũo),

(9.41)
and

λ0 = J0(Uo) = lim sup
T→∞

1
T

E

∫ T

0
g(x̃(t), Uo(x̃(t)))dt

= lim sup
T→∞

1
T

∫ T

0

l0∑
i=1

g(i, U i,o)P (x̃(t) = i)dt

=
l0∑

i=1

g(i, U i,o)νi(Uo)

=
l0∑

i=1

mi∑
j=1

g(sij , u
ij,o)νij(U i,o)νi(Uo).

(9.42)

By virtue of Lemma 9.16, we have∣∣∣νε,ij(Ũo) − νij(U i,o)νk(Uo)
∣∣∣ = O(ε), j = 1, . . . , mi, i = 1, . . . , l0, and

νε,∗j(Ũo) = O(ε), j = 1, . . . , m∗.

It follows that
Jε(uε(·)) − λ0 = O(ε). (9.43)

As a result,
λε ≤ Jε(uε(·)) ≤ λ0 + O(ε). (9.44)

Next, let uε,o(·) = {uε,o(α) : α ∈ M} ∈ Aε denote an optimal control for
Pε

av and let

Ũε,o = (Uε,o, Uε,∗,o) = (Uε,1,o, . . . , Uε,l0,o, Uε,∗,o) ∈ Γ̃,

where

Uε,i,o = (uε,i1,o, . . . , uε,imi,o) := (uε,o(si1), . . . , uε,o(simi)) , i = 1, . . . , l0, ∗.
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Using the same arguments as in the proof of (9.43), we obtain

Jε(uε,o(·)) − J0(Uε,o) = O(ε). (9.45)

The control set Γ contains finitely many elements, so does Γ̃, the control
set for the limit problem P0

av. As in the proof of Theorem 9.10, suppose
Γ̃ = {γ1, . . . , γl1} for some positive integer l1. For j = 1, . . . , l1, define

Ej = {ε : ε ∈ (0, 1), Ũε,o = (γj , U
ε,∗,o) for an Uε,∗,o ∈ Γ∗}.

Then {Ej} consists of finitely many sets such that (0, 1) = E1 ∪ . . . ∪ El1 .
For fixed j and any ε ∈ Ej , in view of the optimality of uε,o(·) and (9.45),
we have

λε = Jε(uε,o(·)) = J0(Uε,o) + O(ε) ≥ λ0 + O(ε). (9.46)

Thus for 0 < ε < 1,
λε ≥ λ0 + O(ε). (9.47)

Combining (9.44) and (9.47), we obtain

λε = λ0 + O(ε). (9.48)

Finally, in view of (9.43) and (9.48),

Jε(uε(·)) − λε = (Jε(uε(·)) − λ0) + (λ0 − λε) = O(ε). �

9.6 Notes

This chapter is concerned with two-time-scale Markov decision processes
involving weak and strong interactions. We have developed asymptotically
optimal strategies for two-time-scale Markov decision processes. The hier-
archical control approach developed in this chapter is useful to reduce di-
mensionality for a wide variety of stochastic systems of practical concerns.
For solving DP equations, where the number of equations is the dominant
factor that affects the computational effort, our results can substantially
reduce complexity and consequently, the computational requirement. This
chapter is based on the work of Liu, Zhang and Yin [103]. Classical treat-
ments of discrete-time-MDP models can be found in Derman [45], Ross
[131], and White [149] among others.

Singularly perturbed MDPs have been studied by many researchers in
the past decades. In Delebecque and Quadrat [44], a class of DP equations
arising from continuous-time discounted MDPs was considered. The under-
lying Markov chain is assumed to have weak and strong interactions. Under
such a probabilistic structure, asymptotic expansions of solutions to these
DP equations were derived. The results in [44] were extended in Delebecque
[43] and Quadrat [126] to incorporate Markov chains with multiple-time
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scales. The corresponding probabilistic interpretation of the reduction of
perturbed Markov chains was discussed in depth in [43]. The main focus of
these papers is on asymptotic expansions of DP equations rather than the
construction of near-optimal policies via limit control problems.

In Abbad, Filar, and Bielecki [1] and Bielecki and Filar [15], a discrete-
time singularly perturbed MDP with average cost was considered. The
basic idea is to let the time go to infinity and then study the dependence
of the system on the small parameter ε. By sending ε → 0, a limit prob-
lem is obtained. Using this limit problem, a δ-optimal control policy was
derived for any given δ > 0. In [1], it was shown that there exists a de-
terministic control policy that is uniformly optimal for ε sufficiently small,
while the emphasis of [15] was on the relaxed control policies. These re-
sults were further extended to general state spaces in Bielecki and Stettner
[17]. Additional results along this line can be found in Abbad, Filar, and
Bielecki [2], which contains several algorithms for solving the correspond-
ing limit problems. For a more detailed discussion on singularly perturbed
Markov systems and a review of the literature, we refer the reader to the
book of Pervozvanskii and Gaitsgory [123]; see also the recent survey in
Avrachenkov, Filar, and Haviv [7], and the references therein.

The long-run average results in this section are similar in spirit to those
of Bielecki and Filar [15] and Bielecki and Stettner [17]. The main differ-
ences are that we consider classical feedback control policies and obtain
asymptotic optimality of these policies as ε → 0, while in [15] and [17]
relaxed controls are considered and only δ-optimal policies are obtained for
any given δ > 0.

In studying MDP problems, it is interesting to examine system sensitivity
in terms of ε, i.e., how the corresponding control and the value function
depend on ε. We refer the reader to a series of papers by Cao [30, 31, 32],
in the context of long-run average-cost MDP and connections to potential
functions and perturbation analysis.



10
LQ Controls

10.1 Introduction

This chapter is concerned with near-optimal controls of a class of hybrid
discrete-time linear quadratic (LQ) regulator problems. The LQ models
are advantageous since the resulting control laws are linear with respect to
the state variable and are therefore easy to compute. However, the control
policies based on traditional LQ models are often unable to capture the
system structural changes because the classical design is based on a plant
with fixed-deterministic parameters. To address this issue, much effort has
been directed to designing the so-called “robust” controls that can adapt to
varying system environment. One of the approaches uses the so-called hy-
brid systems. This approach is applicable to process control, speech and/or
pattern recognition, signal processing, telecommunications, and manufac-
turing, among others. Hybrid LQ systems belong to the class of hybrid
systems, in which dynamics are governed by a number of linear subsystems
coupled by a jump process (often assumed to be a Markov chain) that
dictates structural changes.

In this chapter, we focus on a hybrid linear system consisting of a large
number of configurations modulated by a finite-state Markov chain. In any
given instance, the system takes one of the possible configurations, in which
the coefficients depend on the state of the underlying Markov chain. Such
a hybrid model is frequently referred to as a system with regime switching.
Clearly, this model has a greater capability to account for disturbances
in a realistic random environment. The inclusion of additional variables
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and the consideration of multiple factors make the system larger and more
complex, however. We use a Markov chain to model the factor process
responsible for the regime switching. Using the dynamic programming (DP)
approach to the underlying hybrid system results in a system of Riccati
equations leading to optimal control laws. Hybrid optimal control problems,
where the modulating Markov chain has a large state space, resulting in
a large number of Riccati equations to be solved, are our main concern
here. To overcome computational difficulties, using time-scale separation,
we introduce a small parameter in the underlying Markov chains to reflect
the different rates of change among different states, yielding a two-time-
scale (a fast time scale and a slowly varying one) formulation. This leads to
singularly perturbed Markovian models with weak and strong interactions.

In this chapter, we first decompose the state space of the underlying
Markov chain into a number of recurrent classes and a group of transient
states according to the different jump rates. We aggregate the states in
each recurrent class and replace the original system with its “average.”
Subsequently, under suitable scaling, we obtain a limit control system that
requires solving fewer Riccati equations. One interesting aspect is that the
corresponding limit problem is a continuous-time one. Using the optimal
control law of the limit system, we construct controls for the original sys-
tem, which leads to a feasible approximation scheme. We demonstrate that
controls so constructed are asymptotically optimal. Since the LQ prob-
lem is completely determined by the solutions of Riccati equations, the
decomposition and aggregation can substantially reduce complexity of the
problem.

The rest of the chapter is arranged as follows. The formulation of the
optimal control problem is presented in Section 10.2; the optimal control
law and the associated Riccati equations are obtained by using the DP
method. In Section 10.3, we analyze the convergence of the original sys-
tem as the small parameter goes to 0, derive the limit control system, and
construct controls of the actual system based on the optimal control law
of the limit system. We also derive the asymptotic optimality of control
policies so constructed. Section 10.4 presents a couple of numerical exam-
ples to demonstrate the effectiveness of our approximation scheme; proofs
of results are provided in Section 10.5.

10.2 Problem Formulation

Let {αε
k : k ≥ 0} be a finite-state Markov chain with state space M =

{1, 2, . . . , m0} and transition matrix P ε = (pε,ij)m0×m0 , where ε is a small
parameter. For a given 0 < T < ∞, the discrete-time control system is
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governed by ⎧⎨⎩ xk+1 = xk + ε[A(αε
k)xk + B(αε

k)uk] +
√

εξk,

x0 = x, αε
0 = α, 0 ≤ k ≤ 
T/ε�,

(10.1)

where xk ∈ R
n1 represents the state, ξk ∈ R

n1 denotes the system distur-
bance, uk ∈ R

n2 is the control, A(α) ∈ R
n1×n1 , B(α) ∈ R

n1×n2 , and for
any z ∈ R, 
z� denotes the integer part of z. Let u = {u0, u1, . . ., u	T/ε
−1}
denote the control sequence. We consider the quadratic cost function

Jε(x, α, u)

= E

[
ε

	T/ε
−1∑
k=0

[x′
kM(αε

k)xk + u′
kN(αε

k)uk] + x′
�T/ε�Dx�T/ε�

]
,

(10.2)

where for each α ∈ M, M(α) ∈ R
n1×n1 , N(α) ∈ R

n2×n2 , and D ∈ R
n1×n1 .

Remark 10.1. The control problem (10.1) and (10.2) may be obtained
from a continuous-time problem via discretization. To see this, consider a
continuous-time hybrid control problem:

Minimize Jε = E

[∫ T

0

(
x′(t)M(αε(t))x(t)

+u′(t)N(αε(t))u(t)
)

dt + x′(T )Dx(T )
]

subject to dx(t) = (A(αε(t))x(t) + B(αε(t))u(t))dt + σdw(t),
(10.3)

where w(·) is an R
n1-valued standard Brownian motion and αε(t) is a

continuous-time Markov chain generated by Q̃/ε + Q̂, such that both Q̃

and Q̂ are generators and Q̃ has block-diagonal form (see Yin and Zhang
[158, Chapter 9] for more detail). In (10.3), making a time change τ = t/ε
and then discretizing the resulting system using a step size ε lead to a
control problem of the form given by (10.1) and (10.2). It should also be
mentioned that discrete-time control problems also come from applications
directly because in many cases measurements of state variables can only
be obtained in discrete time.

We make the following assumptions for the system (10.1).

(A10.1) (a) For each α ∈ M, M(α) is symmetric and nonnegative defi-
nite, and N(α) and D are symmetric positive definite.

(b) {ξk} is a sequence of independent and identically distributed
(i.i.d.) Gaussian random variables with mean 0 and variance
Σ.

(c) {αε
k} and {ξk} are independent.
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Suppose that the transition probability matrix, P ε, of the Markov chain
αε

k has the form
P ε = P + εQ, (10.4)

where ε is a small parameter, P = (pij)m0×m0 is a probability transition
matrix (i.e., pij ≥ 0 and, for each i,

∑
j pij = 1), and Q = (qij)m0×m0 is a

generator of a continuous-time Markov chain (i.e., qij ≥ 0 for i = j and, for
each i ∈ M,

∑
j qij = 0). Clearly, P is the dominating part. Its structure

is of crucial importance to the system’s behavior. As in Chapter 6, suppose
that P has a partitioned block form

P =

⎛⎜⎜⎜⎜⎜⎜⎝
P 1

. . .

P l0

P ∗,1 · · · P ∗,l0 P ∗

⎞⎟⎟⎟⎟⎟⎟⎠ , (10.5)

where the matrices are such that P i ∈ R
mi×mi , P ∗,i ∈ R

m∗×mi , for i =
1, . . . , l0, P ∗ ∈ R

m∗×m∗ . For the transition probability matrices, we assume
that the following conditions hold:

(A10.2) (a) P i is a transition probability matrix and is irreducible and
aperiodic, for each i = 1, . . . , l0;

(b) P ∗ has all of its eigenvalues inside the unit circle.

Under Assumption (A10.2), there exists a stationary distribution of the
Markov chain corresponding to P i for each i = 1, . . . , l0. Denote the sta-
tionary distribution by νi = (νi1, . . . , νimi). Then, νi is the unique solution
of the following system of equations

νiP i = νi,

mi∑
j=1

νij = 1. (10.6)

For each fixed ε > 0, the problem of interest is to choose u(·) to minimize
Jε. We use the DP approach to solve the problem. Let

λε
k(xk, αk) =

min
uk,...,u�T/ε�−1

E

[
ε

	T/ε
−1∑
k1=k

[x′
k1

M(αε
k1

)xk1 + u′
k1

N(αε
k1

)uk1 ] + x′
�T/ε�Dx�T/ε�

]

with αε
k = αk ∈ M. In particular, for k = 0,

λε
0(x0, α0) = min

u
Jε(x, α, u) with x0 = x, α0 = α, (10.7)
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where u = {uk1 : k1 ≤ k ≤ 
T/ε� − 1}. The associated DP equations (see
Bertsekas [13]) are given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λε

	T/ε
(x�T/ε� , α�T/ε�) = x′
�T/ε�Dx�T/ε� ,

λε
k(xk, αk) = min

uk

E

[
ε[x′

kM(αk)xk + u′
kN(αk)uk]

+λε
k+1(xk+1, αk+1)

]
, 0 ≤ k < 
T/ε�.

(10.8)

Thus, in view of the independence of {αε
k} and {ξk}, for any given xk and

αk = α ∈ M, we have

λε
k(xk, α) = min

uk

E

{
ε[x′

kM(α)xk +u′
kN(α)uk]

+
∑
j∈M

pε
αjλ

ε
k+1(xk+1, j)

}
.

(10.9)

To solve (10.9), we suppose that λε
k(x, α) has the following quadratic form

λε
k(x, α) = x′Rε

k(α)x + qε
k(α), (10.10)

where Rε
k(α) ∈ R

n1×n1 and qε
k(α) ∈ R

1 are functions to be determined. We
will show in what follows that both Rε

k(α) and qε
k(α) exist uniquely and

λε
k(x, α) is indeed a solution to (10.9). Then using the verification theorem

given in Fleming and Rishel [57], it is easy to show that λε
k(x, α) is the only

solution to (10.9) and the corresponding minimizer u∗
k of the right-hand side

of (10.9) is an optimal control.
To proceed, we use (10.1) and (10.9) to obtain

λε
k(xk, α) = min

uk

{
ε[x′

kM(α)xk + u′
kN(α)uk]

+
∑
j∈M

pε,αj

[
x′

k(I + εA(α))′Rε
k+1(j)(I + εA(α))xk

+ε2u′
kB′(α)Rε

k+1(j)B(α)uk + εtr
(
Rε

k+1(j)Σ
)

+2εx′
k(I + εA(α))′Rε

k+1(j)B(α)uk + qε
k+1(j)

]}
.

(10.11)

For any given function f(·) and for α ∈ M, define

f̂(α) =
∑
j∈M

pε,αjf(j).
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Using this notation, we write (10.11) as follows:

λε
k(xk, α) = min

uk

{
εx′

kM(α)xk + εu′
kN(α)uk

+x′
k(I + εA(α))′R̂ε

k+1(α)(I + εA(α))xk

+ε2u′
kB′(α)R̂ε

k+1(α)B(α)uk + εtr
(
R̂ε

k+1(α)Σ
)

+2εx′
k(I + εA(α))′R̂ε

k+1(α)B(α)uk + q̂ε
k+1(α)

}
.

(10.12)
Differentiating the right-hand side of (10.12) w.r.t. uk and setting the
derivative to 0, we obtain the corresponding minimizer

uε,o
k (xk, α) = −

(
N(α)+εB′(α)R̂ε

k+1(α)B(α)
)−1

×B′(α)R̂ε
k+1(α)(I + εA(α))xk

def= −Φk(α)xk.

(10.13)

Using (10.10)–(10.13) with α ∈ M, we obtain a system of Riccati equations
for Rε

k(α),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rε
k(α) = εM(α) + (I + εA(α))′R̂ε

k+1(α)(I + εA(α))

−ε(I + εA(α))′R̂ε
k+1(α)B(α)

×
(
N(α) + εB′(α)R̂ε

k+1(α)B(α)
)−1

×B′(α)R̂ε
k+1(α)(I + εA(α)),

Rε
�T/ε�(α) = D, α ∈ M,

(10.14)

and a system of equations for qε
k(·),⎧⎨⎩ qε

k(α) = εtr
(
R̂ε

k+1(α)Σ
)

+ q̂ε
k+1(α),

qε
�T/ε�(α) = 0, α ∈ M.

(10.15)

Lemma 10.2. Under Assumption (A10.1), the following assertions hold:

(a) For small ε, Rε
k(α) are positive definite for each k ≤ 
T/ε�.

(b) There exists a constant KT depending only on T such that for each
k ≤ 
T/ε� and α ∈ M,

|Rε
k(α)| ≤ KT and |qε

k(α)| ≤ KT .

The proof of Lemma 10.2 is postponed until Section 10.6. Note that
(10.14) and (10.15) both consist of m0 equations coupled by P ε. To find
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the optimal control {uo
k}, we have to solve these equations. The difficulty

typically arises when the state space of αε
k is large. One has to resort to

approximation schemes. In the next section, we present an approach based
on the aggregation of the underlying Markov chain.

10.3 Main Results

In this section, we show that there exists a limit problem as ε → 0, which
is a continuous-time LQ control problem. The limit problem is simpler to
solve than that of the original one. We then use the optimal controls of the
limit problem to construct controls for the original problem and to show
that the controls so constructed are asymptotically optimal.

To proceed, for each k ∈ M, define the piecewise constant interpolations
Rε(·, α) and qε(·, α) as follows:

Rε(t, α) = Rε
k(α), qε(t, α) = qε

k(α), for t ∈ [kε, kε + ε). (10.16)

It follows from Lemma 10.2 that Rε(t, α) are positive definite for each
t ∈ [0, T ], |Rε(t, α)| ≤ KT , and |qε(t, α)| ≤ KT .

We next demonstrate the convergence of Rε(·, α) and qε(·, α) as ε → 0.
Let

Qε =
1
ε
Q̃ + Q̂, (10.17)

where Q̃ = P − I and Q̂ = Q. In view of (10.5), we write

Q̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
Q̃1

. . .

Q̃l0

Q̃∗,1 · · · Q̃∗,l0 Q̃∗

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
P 1 − I

. . .

P l0 − I

P ∗,1 · · · P ∗,l0 P ∗ − I

⎞⎟⎟⎟⎟⎟⎟⎠ .

For each α = sij ∈ M with i = 1, . . . , l0 and j = 1, . . . , mi, and a given
function H(·, α) (real valued, or vector valued, or matrix valued), define

H(t, i) =
mi∑
j=1

νijH(t, sij), i = 1, . . . , l0.

Theorem 10.3. Under Assumptions (A10.1) and (A10.2). As ε → 0, we
have

Rε(t, sij) → R(t, i)

and
qε(t, sij) → q(t, i),
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for i = 1, . . . , l0 and j = 1, . . . , mi;

Rε(t, s∗j) → R(t, ∗j)

and
qε(t, s∗j) → q(t, ∗j)

for j = 1, . . . , m∗, uniformly on [0, T ] where

R(t, ∗j) = a1,jR(t, 1) + · · · + al0,jR(t, l0),

q(t, ∗j) = a1,jq(t, 1) + · · · + al0,jq(t, l0),
(10.18)

ai = (ai,1, . . . , ai,m∗) are defined in (6.13). Moreover, for i = 1, . . . , l0,
R(t, i) and q(t, i) are the unique solutions to the following differential equa-
tions⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ṙ(t, i) = −R(t, i)A(i) − A′(i)R(t, i) − M(i)

+R(t, i)BN−1B′(i)R(t, i) − Q∗R(t, ·)(i),
R(T, i) = D,

(10.19)

with Q∗ defined in (6.16), and{
q̇(t, i) = −tr

(
R(t, i)Σ

) − Q∗q(t, ·)(i),
q(T, i) = 0,

(10.20)

respectively.

To proceed, define the piecewise constant interpolation vε(·, x, α) as

vε(t, x, α) = λε
k(x, α) for t ∈ [kε, kε + ε). (10.21)

Corollary 10.4. As ε → 0, vε(t, x, sij) → v(t, x, i) for i = 1, . . . , l0, j =
1, . . . , mi, and vε(t, x, s∗j) → v(t, x, ∗j) for j = 1, . . . , m∗, where

v(t, x, i) = x′R(t, i)x + q(t, i), for i = 1, . . . , l0,

v(t, x, ∗j) = a1,jv(t, x, 1) + · · · + al0,jv(t, x, l0), for j = 1, . . . , m∗.
(10.22)

Next, we introduce a limit control problem in which the value functions
v(t, x, i) are the limits of vε(t, x, sij) as in Corollary 10.4 for i = 1, . . . , l0.
First, let U denote the control set for the limit control system

U =
{
U = (U1, . . . , U l0) : U i = (ui1, . . . , uimi), uij ∈ R

n2
}

. (10.23)
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Define

f(i, x, U) = A(i)x +
mi∑
j=1

νijB(sij)uij ,

Ñ(i, U) =
mi∑
j=1

νij
(
uij,′N(sij)uij

)
,

for i = 1, . . . , l0. Given the limit equations in (10.19) and (10.20), the HJB
equations for v(t, x, i) with i = 1, . . . , l0 are

0 =
∂v(t, x, i)

∂t
+ min

U∈U

{
f(i, x, U)

∂v(t, x, i)
∂x

+ x′M(i)x

+Ñ(i, U) +
1
2
tr
(

∂2v(t, x, i)
∂x2 Σ

)
+ Q∗v(t, x, ·)(i)

} (10.24)

with v(T, x, i) = x′Dx. Corresponding to the value functions v(t, x, i) for
i = 1, . . . , l0, there is an associate control problem. We can it the limit
control problem, which is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize: J(s, x, i, U(·)) =

E

{∫ T

s

[
x′(t)M(α(t))x(t) + Ñ(α(t), U(t))

]
dt + x′(T )Dx(T )

}
,

subject to: dx(t) = f(α(t), x(t), U(t))dt + σdw(t), x(s) = x,

value function: v(s, x, i) = min
U(·)

J(s, x, i, U(·)),

where σσ′ = Σ and w(t) is a standard Brownian motion. Note that the
limit problem is a continuous-time quadratic regulator problem. Denote
the optimal control for this limit control problem by

Uo(t, x) =
(
U1,o(t, x), . . . , U l0,o(t, x)

)
, (10.25)

where for i = 1, . . . , l0, U i,o(t, x) =
(
ui1,o(t, x), . . . , uimi,o(t, x)

)
and

uij,o(t, x) = −N−1(sij)B′(sij)R(t, i)x, j = 1, . . . , mi.

Now we construct a control for the original discrete-time control system as

uε
k = uε

k(xk, α) = uε(kε, xk, α), (10.26)

where

uε(t, x, α) =
l0∑

i=1

mi∑
j=1

I{α=sij}uij,o(t, x) +
m∗∑
j=1

I{α=s∗j}u∗j,o(t, x),

and uij,o(t, x) is given above and

u∗j,o(t, x) = −N−1(s∗j)B′(s∗j)R(t, ∗j)x, (10.27)
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where R(t, ∗j) is defined in (10.18). Equivalently,

uε
k(xk, α) =

⎧⎨⎩ −N−1(sij)B′(sij)R(kε, i)xk, if α = sij ∈ Mi,

−N−1(s∗j)B′(s∗j)R(kε, ∗j)xk, if α = s∗j ∈ M∗.
(10.28)

The next theorem gives the asymptotic optimality resulting from this ap-
proximation scheme.

Theorem 10.5. Under Assumptions (A10.1) and (A10.2), the control uε(·)
defined in (10.28) is asymptotically optimal for the original control system
(10.1) and (10.2) in the sense that

lim
ε→0

∣∣Jε(x, α, uε(·)) − λε
0(x, α)

∣∣ = 0, (10.29)

where λε
0(x, α) is the value function defined in (10.7).

Remark 10.6. It would be interesting to come up with an error bound for
Jε(x, α, uε(·)) − λε

0(x, α) in terms of ε. However, such a bound is usually
difficult to obtain since the near optimality proof is based on weak conver-
gence ideas yielding no error estimates. Nevertheless, in certain cases, error
bounds can be obtained, for example, in Chapter 9 in connection with a
Markov decision problem. In addition, the numerical example in the next
section suggests that the error bound is of the order

√
ε.

10.4 Numerical Example

This section provides two numerical examples. The first example is a scalar
dynamic system modulated by a discrete-time Markov chain. By construct-
ing the sample paths of the Markov chain, the original dynamic system,
the limit system, and the corresponding Riccati equations, we demonstrate
that the limit systems closely approximate the original one. Different val-
ues of ε are used for demonstration purposes. The second example is taken
from Yang, Yin, Yin, and Zhang [153], in which a vector-valued dynamic
system is treated.

10.4.1 A Scalar LQ System
Consider a Markov chain αε

k ∈ M = {1, 2, 3} with transition matrix

P ε =

⎛⎜⎜⎜⎝
0.8 0.2 0

0.1 0.9 0

0.3 0.2 0.5

⎞⎟⎟⎟⎠ + ε

⎛⎜⎜⎜⎝
−0.5 0.3 0.2

0.2 −0.5 0.3

0.3 0.2 −0.5

⎞⎟⎟⎟⎠ .
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ε |Rε − R| |xε − xε| |λε − v| |Jε − λε|
0.1 7.54ε 0.42ε 18.78ε 4.99

√
ε

0.01 11.63ε 0.10ε 23.85ε 7.52
√

ε

0.001 12.20ε 0.069ε 24.58ε 15.30
√

ε

0.0001 12.26ε 0.11ε 26.59ε 26.07
√

ε

TABLE 10.1. Error bounds for various values of ε

Note that the state space M consists of a pair of recurrent states {1, 2}
and a transient state {3}.

Consider the following one-dimensional discrete-time dynamic system
model

xk+1 = xk + ε[A(αε
k)xk + B(αε

k)uk] +
√

εξk,

and the objective function (10.2) with the following specifications:

A(1) = 0.5, A(2) = −0.3, A(3) = 0.2, B(1) = 1, B(2) = 2, B(3) = 1.5,

M(1) = M(2) = M(3) = N(1) = N(2) = N(3) = D = 1.

To obtain the optimal control law, one needs to solve a system of three
Riccati equations in (10.14). Nevertheless, one need only solve a single
scalar equation (10.19) for the limit problem to get the nearly optimal con-
trol policy. This leads to considerable reduction of the needed computation.

Take T = 10, x0 = x = 0, αε
0 = α = 1. Let λε = λε

0(0, 1), v = v(0, 0, 1),
and Jε = Jε(0, 1, uε(·)).

Define the norms

|Rε − R| =
1


T/ε�
	T/ε
−1∑

k=0

(|Rε
k(1) − R(kε)| + |Rε

k(2) − R(kε)|

+|Rε
k(3) − R(kε)|),

|xε − xε| =
1


T/ε�
	T/ε
−1∑

k=0

|xk − x(εk)|,

where Rε
k(i), i = 1, 2, 3 are the solutions of (10.14), R(t) denotes the solu-

tion of the limit Riccati equation (10.19), xk is the optimal trajectory under
the optimal control law (10.13), and x(εk) is the near optimal trajectory
under the asymptotic control (10.28). Table 10.1 gives error bounds for
various ε values, which are based on computations using 100 sample paths.

Sample paths of various trajectories of αε
k, xk, x(εk), and |xk −x(εk)| are

plotted in the left column in Figure 10.1 for ε = 0.01. The corresponding
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FIGURE 10.1. Various sample paths with ε = 0.01

Rε
k(1), Rε

k(2), Rε
k(3), and R(kε) are given in the right column. Note that

with the total iterations fixed at 10,000 (ε = 0.001), the average CPU
time for solving the original Riccati equations is 42.1 seconds, whereas
the average CPU time for solving the limit Riccati equation is only 15.7
seconds. Thus, compared with the solution of the original system, only a
little more than one third of the computational effort is used to find the
near-optimal control policy. The numerical bounds provided in Table 10.1.
It is clear that the approximation scheme performs quite well.

10.4.2 A Vector-Valued LQ System
In this section, we consider a multidimensional problem. Let αε

k be a four-
state Markov chain with state space M = {1, 2, 3, 4}, and transition prob-
ability matrix

P ε = P + εQ,



10.4 Numerical Example 237

where

P =

⎛⎜⎝
0.50 0.50 0 0
0.55 0.45 0 0
0 0 0.4 0.6
0 0 0.5 0.5

⎞⎟⎠ ,

Q =

⎛⎜⎝
−0.6 0 0.3 0.3

0 −0.3 0.1 0.2
0.2 0.3 −0.5 0
0.1 0.3 0 −0.4

⎞⎟⎠ .

For a two-dimensional dynamic system (10.1) and the cost function (10.2),
let

x0 =
(

0
1

)
, Σ =

(
1.5 0.5
0.5 2.0

)
, D =

(
2 1
1 2

)
,

A(1) =
(−1 0

0 2

)
, A(2) =

(−2 −1
−1 1

)
,

A(3) =
(−3 −2

−2 0

)
, A(4) =

(−4 −3
−3 −1

)
,

B(1) =
(

1 2
2 4

)
, B(2) =

(
2 3
3 5

)
,

B(3) =
(

3 4
4 6

)
, B(4) =

(
4 5
5 7

)
,

M(1) =
(

5 3
3 7

)
, M(2) =

(
4 3/2

3/2 5

)
,

M(3) =
(

11/3 1
1 13/3

)
, M(4) =

(
7/2 3/4
3/4 4

)
,

N(1) =
(

8 3
3 10

)
, N(2) =

(
10 6
6 14

)
,

N(3) =
(

12 9
9 18

)
, N(4) =

(
14 12
12 22

)
.

The time horizon for this discrete-time model is 0 ≤ k ≤ 
T/ε� with T = 5.
We use step size h = 0.01 to discretize the limit system of Riccati equations.

Take αε
0 = 1. The trajectories of xk vs. x(t), Rε

k(i) vs. R(t, ·), and vε
k(x, i)

vs. v(·) are given in Figure 10.2 for ε = 0.01. The simulation results show
that the discrete-time linear quadratic regulator problem is closely approx-
imated by the corresponding continuous-time hybrid LQG problem, which
allows us further to construct nearly optimal controls for the original sys-
tem.

10.4.3 Remarks
This chapter focuses on approximation schemes for a class of discrete-time
hybrid systems. It provides a systematic approach to reduce the complexity
of the underlying systems. To find the approximate control, one need only
solve l0 Riccati equations. The computation load is reduced considerably
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FIGURE 10.2. Discrete-Time LQG (Vector-Valued)

compared with the optimal solution to the original problem that requires
solving m0 Riccati equations. For example, if m0 = 120, l0 = 10, m1 =
m2 = · · · = m10 = 10, and m∗ = 20, then instead of solving 120 Riccati
equations jointly, one only has to deal with 10 Riccati equations. This is
the most attractive feature of our approach. Furthermore, the asymptotic
optimality ensures that such an approximation is almost as good as the
optimal one for sufficiently small ε.

Note that in order to implement this procedure in application, the value
of ε need not be too small. For example, if all the coefficients are of order
1, then ε = 0.1 should yield a decent approximation.

10.5 Proofs of Results

Proof of Lemma 10.2. First of all, (a) follows directly from the system
of equations in (10.14) for small ε and the positive definiteness of D. To
verify (b), note that by setting uk = 0 in (10.1), we can show that

E|xk|2 ≤ KT (|x0|2 + 1), (10.30)

for some KT . It follows that for all x,

λk(x, α) ≤ Jε(x, α, 0) ≤ K0,T (|x|2 + 1),
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for some K0,T . This implies in view of the quadratic representation of λk,

x′Rε
k(α)x ≤ 2K0,T

for any x with |x| = 1. The uniform boundedness of Rε
k(α) follows. �

Proof of Theorem 10.3. For any t, s ∈ [0, T ] satisfying t+ s ≤ T , we use
(t+s)/ε and t/ε in lieu of 
(t+s)/ε� and 
t/ε� for simplicity. We first show
that Rε(·, α) is equicontinuous in the extended sense (see Definition 14.34).
Note that vε(t + s, x, α) and vε(t, x, α) are the minimal costs defined in
(10.21). Using (10.13), (10.30), and the boundedness of M(·), N(·) and
Rε

n(·), we have

|vε(t + s, x, α) − vε(t, x, α)| =
∣∣λ(t+s)/ε(x, α) − λt/ε(x, α)

∣∣
≤ Ks(1 + |x|2) + O(ε).

Given x, for any η > 0, there is a δ > 0 such that

lim sup
ε→0

sup
0≤s≤δ

0≤t+s≤T

|vε(t + s, x, α) − vε(t, x, α)| ≤ η.

Thus, for each (x, α), vε(·, x, α) is equicontinuous in the extended sense;
see Definition 14.34. Note that

vε(t, x, α) = x′Rε(t, α)x + qε(t, α), (10.31)

taking x = 0 in the above yields the equicontinuity of qε(·, x, α) in the ex-
tended sense. Since x′Rε(t, α)x = vε(t, x, α) − qε(t, α), the quadratic form
is equicontinuous in the extended sense. By repeatedly choosing the appro-
priate vector x, we can show that all the entries of Rε(t, α) are equicontin-
uous in the extended sense. This implies that, for each α ∈ M, {Rε(·, α)}
is uniformly bounded. In view of Theorem 14.35, there is a subsequence
that converges uniformly on [0, T ] to a continuous limit R0(·, α). We next
characterize the limit. First rewrite (10.14) as follows:

Rε
k(α) = R̂ε

k+1(α) + εA′(α)R̂ε
k+1(α) + εR̂ε

k+1(α)A(α) + εM(α)

−εR̂ε
k+1(α)B(α)

(
N(α) + εB′(α)R̂ε

k+1(α)B(α)
)−1

×B′(α)R̂ε
k+1(α) + O(ε2).

(10.32)
Moreover, using Qε = (qε,ij) given in (10.17) instead of pε,ij , we have

R̂ε
k+1(α) = Rε

k+1(α) + ε
∑
j∈M

qε,αjRε
k+1(j), (10.33)

Using (10.33), we write

εA′(α)R̂ε
k+1(α) = εA′(α)Rε

k+1(α) + gε
k,
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where
gε

k = ε2A′(α)
∑
j∈M

qε,αjRε
k+1(j).

Similarly, we can treat the other terms involving Rε
k+1(α). We write (10.32)

as

Rε
k+1(α) = Rε

k(α) − εA′(α)Rε
k+1(α) − εRε

k+1(α)A(α) − εM(α)

+εRε
k+1(α)B(α) (N(α) + O(ε))−1

B′(α)Rε
k+1(α)

−εQεRε
k+1(·)(α) + gε

k + O(ε2),

where gε
k denotes a collection of the terms involves gε

k. Summing both sides
from 
t/ε� to 
T/ε� − 1 gives

Rε(t, α) = D + ε

	T/ε
−1∑
k=	t/ε


[
A′(α)Rε

k+1(α) + Rε
k+1(α)A(α) + M(α)

]
−ε

	T/ε
−1∑
k=	t/ε


Rε
k+1(α)B(α)(N(α) + O(ε))−1B′(α)Rε

k+1(α)

+ε

	T/ε
−1∑
k=	t/ε


QεRε
k+1(·)(α) + Gε(t) + O(ε),

(10.34)
where

Gε(t) =
	T/ε
−1∑
k=	t/ε


gε
k.

Multiplying both sides of (10.34) by ε and send ε → 0, we have

ε2
	T/ε
−1∑
k=	t/ε


QεRε
k+1(·)(α) → 0.

This implies
Gε(t) → 0 for all t ∈ [0, T ].

Moreover, we have

ε

	T/ε
−1∑
k=	t/ε


Q̃Rε
k+1(·)(α) → 0.

Recall that R0(t, α) is the limit of Rε(t, α). It follows that for all t,∫ T

t

Q̃R0(s, ·)(α)ds = 0.
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Thus, in view of the continuity of R0(t, α), we obtain that for all t ∈ [0, T ],

Q̃R0(t, ·)(α) = 0. (10.35)

Following the irreducibility of Q̃i, we have R0(t, sij) = R0(t, sij1) for any
j1 = 1, . . . , mi. That is, the limit is independent of j. With a slight abuse
of notation, we denote R0(t, sij) = R0(t, i) for i = 1, . . . , l0. Using this
notation, it follows that the last m∗ rows in (10.35) are equivalent to

R0(t, s∗j) = a1,jR0(t, 1) + · · · + al0,jR0(t, l0). (10.36)

It remains to show that Rε(t, sij) → R0(t, i) = R(t, i). For each i =
1, . . . , l0 and j = 1, . . . , mi, multiplying both sides of the equation corre-
sponding to α = sij in (10.34) by νij and then taking summation over the
index j, we have

mi∑
j=1

νijRε(t, sij)

= D + ε

	T/ε
−1∑
t/ε

[ mi∑
j=1

νijA′(sij)Rε
k+1(sij)

+
mi∑
j=1

νijRε
k+1(sij)A(sij) +

mi∑
j=1

νijM(sij)
]

−ε

	T/ε
−1∑
t/ε

mi∑
j=1

νijRε
k+1(sij)B(sij)(N(sij))−1B′(sij)Rε

k+1(sij)

+ε

	T/ε
−1∑
t/ε

mi∑
j=1

νijQεRε
k+1(·)(sij) + oε(1),

where oε(1) → 0 as ε → 0. Note that

diag(ν1, . . . , νl0 , 0m∗×m∗)Q̃ = 0.

This together with (10.36) implies that

diag(ν1, . . . , νl0 , 0m∗×m∗)Qε1̃l∗ = diag(Q∗, 0m∗×m∗).

Noting the uniform convergence of Rε(t, sij) → R0(t, i) and
∑mi

j=1 νij = 1,
we obtain (10.19). Thus, the uniqueness of the Riccati equation implies
that R0(t, i) = R(t, i). As a result, Rε(t, sij) → R(t, i). �

Proof of Corollary 10.4. Following from (10.16), (10.21), and (10.31),
the convergence of Rε(·, α) and qε(·, α), we obtain the convergence of the
interpolated sequence of value functions vε(·, x, α). �
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Proof of Theorem 10.5. First, we need to derive some convergence re-
sults. Let

F (t, α) =

⎧⎨⎩ A(sij) − B(sij)N−1(sij)B′(sij)R(t, i), if α = sij ,

A(s∗j) − B(s∗j)N−1(s∗j)B′(s∗j)R(t, ∗j), if α = s∗j .

(10.37)
Then under the optimal control Uo(t, x) in (10.25), the limit control system
can be written as

dx(t) =
l0∑

i=1

mi∑
j=1

νijI{α(t)=i}F (t, sij)x(t)dt + σdw(t), x(0) = x. (10.38)

Let

F̃ (t, i) =
mi∑
j=1

νijF (t, sij), for i = 1, . . . , l0.

We rewrite (10.38) as

dx(t) = F̃ (t, α(t))x(t)dt + σdw(t). (10.39)

Under feedback control (10.28), the system equation of the original discrete-
time problem (10.1) becomes

xk+1 = xk + εF (kε, αε
k)xk +

√
εξk, x0 = x. (10.40)

Equivalently, by separating the recurrent and transient terms, we have

xk+1 = xk +
l0∑

i=1

mi∑
j=1

I{αε
k=sij}F (kε, sij)xk

+
m∗∑
j=1

I{αε
k=s∗j}F (kε, s∗j)xk +

√
εξk.

(10.41)

Define the aggregated process αε
k as in (6.18). Define also the piecewise

constant interpolated processes αε(·), αε(·), and xε(·) as

αε(t) = αε
k, αε(t) = αε

k, and xε(t) = xk, for t ∈ [kε, kε + ε). (10.42)

To proceed, we introduce an intermediate auxiliary system defined by

dxε(t) =
l0∑

i=1

mi∑
j=1

νijI{αε(t)∈Mi}F (t, sij)xε(t)dt + σdw(t), xε(0) = x,

(10.43)
or,

dxε(t) = F̃ (t, αε(t))xε(t)dt + σdw(t), xε(0) = x. (10.44)
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By a direct calculation, it can be shown that

sup
0≤t≤T

E|xε(t)|4 < ∞,

sup
0≤t≤T

E|xε(t)|4 < ∞,

sup
0≤t≤T

E|x(t)|4 < ∞.

(10.45)

Next, let us establish an estimate of E|xε(t) − xε(t)|. For 0 ≤ t ≤ T , in
view of (10.41) and (10.42), we have

xε(t) = x +
l0∑

i=1

mi∑
j=1

∫ t

0
I{αε(s)=sij}F (s, sij)xε(s)ds

−
l0∑

i=1

mi∑
j=1

∫ t

	t/ε
ε

I{αε(s)=sij}F (s, sij)xε(s)ds

+
l0∑

i=1

mi∑
j=1

	t/ε
−1∑
k=0

∫ (k+1)ε

kε

I{αε
k=sij}

[
F (kε, sij) − F (s, sij)

]
xkds

+
m∗∑
j=1

ε

( 	t/ε
−1∑
k=0

I{αε
k=s∗j}F (kε, s∗j)xk

)

+
√

ε

	t/ε
−1∑
k=0

ξk.

On the other hand, we rewrite (10.43) in terms of the corresponding inte-
grals

xε(t) = x +
l0∑

i=1

mi∑
j=1

∫ t

0
νijI{αε(s)∈Mi}F (s, sij)xε(s)ds

+σ

∫ t

0
dw(s).

It is easy to see from definition (10.37) and Lemma 10.2 that |F (t, α)| ≤ K.
In view of the Skorohod representation (see Theorem 14.5), we can choose
a probability space such that

(√
ε

	t/ε
−1∑
k=0

ξk, αε(·)
)

→
(

σ

∫ t

0
dw(s), α(·)

)
w.p.1. (10.46)
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We have

E|xε(t) − xε(t)| ≤
K

∫ t

0
E|xε(s) − xε(s)|ds

+K

l0∑
i=1

mi∑
j=1

E

∣∣∣∣ ∫ t

0

(
I{αε(s)=sij} − νijI{αε(s)∈Mi}

)
xε(s)ds

∣∣∣∣
+K

∫ t

	t/ε
ε

E|xε(s)|ds

+K

l0∑
i=1

mi∑
j=1

	t/ε
−1∑
k=0

∫ (k+1)ε

kε

|F (kε, sij) − F (s, sij)|E|xk|ds

+K

m∗∑
j=1

ε

(	t/ε
−1∑
k=0

E|I{αε
k=s∗j}xk|

)

+E

∣∣∣∣√ε

	t/ε
−1∑
k=0

ξk − σ

∫ t

0
dw(s)

∣∣∣∣.

(10.47)

Integrating the term in the second line above by parts yields

E

∣∣∣∣ ∫ t

0

(
I{αε(s)=sij} − νijI{αε(s)∈Mi}

)
xε(s)ds

∣∣∣∣
≤ E

∣∣∣∣xε(t)
∫ t

0

(
I{αε(s)=sij} − νijI{αε(s)∈Mi}

)
ds

∣∣∣∣
+E

∣∣∣∣ ∫ t

0

(∫ s

0

(
I{αε(τ)=sij} − νijI{αε(τ)∈Mi}

)
dτ

)
dxε(s)

∣∣∣∣.
By virtue of the Cauchy–Schwarz inequality, (10.45), and Proposition 6.5,
we have that as ε → 0,

E

∣∣∣∣xε(t)
∫ t

0

(
I{αε(s)=sij} − νijI{αε(s)∈Mi}

)
ds

∣∣∣∣
≤ (

E|xε(t)|2) 1
2

(
E

(∫ t

0

(
I{αε(s)=sij} − νijI{αε(s)∈Mi}

)
ds

)2) 1
2

→ 0.

Similarly, in view of (10.43), as ε → 0,

E

∣∣∣∣ ∫ t

0

(∫ s

0

(
I{αε(τ)=sij} − νijI{αε(τ)∈Mi}

)
dτ

)
dxε(s)

∣∣∣∣
≤ K

∫ t

0
E

∣∣∣∣ (∫ s

0

(
I{αε(τ)=sij} − νijI{αε(τ)∈Mi}

)
dτ

)
xε(s)

∣∣∣∣ds

+K

(∫ t

0
E

(∫ s

0

(
I{αε(τ)=sij} − νijI{αε(τ)∈Mi}

)
dτ

)2

ds

) 1
2

→ 0.
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Thus, we obtain

E

∣∣∣∣ ∫ t

0

(
I{αε(s)=sij} − νijI{αε(s)∈Mi}

)
xε(s)ds

∣∣∣∣ → 0 as ε → 0. (10.48)

We claim that the rest terms in (10.47) all go to zero as ε → 0. In fact, for
the third line, in view of (10.45),∫ t

	t/ε
ε

E|xε(s)|ds ≤ Kε(t/ε − 
t/ε�) ≤ Kε → 0.

For the fourth line, in view of (10.19) and (10.37), it is readily seen that
F (t, i) is Lipschitz in t, i.e., |F (t, sij) − F (s, sij)| ≤ K|t − s|. Then

	t/ε
−1∑
k=0

∫ (k+1)ε

kε

|F (kε, sij) − F (s, sij)|E|xk|ds

≤ K

	t/ε
−1∑
k=0

∫ (k+1)ε

kε

(s − kε)ds ≤ K

	t/ε
−1∑
k=0

ε2 ≤ K
t/ε�ε2 → 0.

For the fifth line of (10.47), by virtue of Proposition 6.5, we have

P (αε
k = s∗j) ≤ K(ε + λk), (10.49)

for some constants K and 0 < λ < 1 that are independent of ε and k.
Then, using Cauchy–Schwarz inequality, we have

ε

	t/ε
−1∑
k=0

E|I{αε
k=s∗j}xk| ≤ ε

	t/ε
−1∑
k=0

(P (αε
k = s∗j))

1
2
(
E|xk|2) 1

2

≤ Kε

	T/ε
−1∑
k=0

(√
ε + (

√
λ)k

)
≤ K

(√
εT +

ε

1 − √
λ

)
→ 0.

The last line of (10.47) goes to zero due to the convergence in (10.46). Now,
applying Gronwall’s inequality to (10.47), and using the estimates above,
we obtain

E|xε(t) − xε(t)|2 → 0 as ε → 0. (10.50)

In view of (10.41) and (10.42), {xε(·)} is tight. Then (10.50) implies that
{xε(·)} is also tight. By virtue of this tightness and the weak convergence of
αε(·) to α(·), we can show that (xε(·), αε(·)) converges weakly to (x(·), α(·)).
Furthermore, Skorohod representation (without changing notation) can be
used.

To complete the proof of the theorem, recall that

λε
0(x, α) = vε(0, x, α) = vε(s, x, α)|s=0.
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For any α ∈ Mi, we have

|Jε(x, α, uε(·)) − λε
0(x, α)| ≤ |Jε(x, α, uε(·)) − v(0, x, i)|

+|vε(0, x, α) − v(0, x, α)|;

for any α ∈ M∗ for some j ∈ {s∗1, . . . , s∗m∗}, and we have

|Jε(x, s∗j , u
ε(·)) − λε

0(x, s∗j)| ≤ |Jε(x, s∗j , u
ε(·)) − v(0, x, ∗j)|

+|vε(0, x, s∗j) − v(0, x, ∗j)|.

In view of the Corollary 10.4, as ε → 0,

|vε(0, x, α) − v(0, x, i)| → 0 for α ∈ Mi, i = 1, . . . , l0,

|vε(0, x, s∗j) − v(0, x, ∗j)| → 0 for j = 1, . . . , m∗.

Thus, to prove (10.29), it suffices to show

|Jε(x, α, uε(·)) − v(0, x, i)| → 0 for α ∈ Mi, i = 1, . . . , l0, and

|Jε(x, s∗j , u
ε(·)) − v(0, x, ∗j)| → 0, for j = 1, . . . , m∗.

Let

S(t, α) =

⎧⎨⎩M(sij) + R(t, i)B(sij)N−1(sij)B′(sij)R(t, i), if α = sij ,

M(s∗j) + R(t, ∗j)B(s∗j)N−1(s∗j)B′(s∗j)R(t, ∗j), if α = s∗j .

(10.51)
Then under the constructed control uε

k(xk, α) given in (10.28), we have that
for any α ∈ M,

Jε(x, α, uε(·))

=
l0∑

i=1

mi∑
j=1

E

(	T/ε
−1∑
k=0

∫ (k+1)ε

kε

I{αε(t)=sij}xε,′(t)S(t, sij)xε(t)dt

)

+
l0∑

i=1

mi∑
j=1

E

[	T/ε
−1∑
k=0

∫ (k+1)ε

kε

I{αε
k=sij}x′

k

[
S(kε, sij) − S(t, sij)

]
xkdt

]

+
m∗∑
j=1

E

(
ε

	T/ε
−1∑
k=0

I{αε
k=s∗j}x′

kS(kε, s∗j)xk

)
+ Ex′

�T/ε�Dx�T/ε� .
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Recall that Uo(·) is the optimal control of the limit system; we have

v(0, x, i)

= J(0, x, i, Uo(·))
= E

[ ∫ T

0

[
x′(t)M(α(t))x(t) + Ñ(α(t), Uo(t))

]
dt + x′(T )Dx(T )

]
=

l0∑
i=1

mi∑
j=1

E

∫ T

0
νijI{α(t)=i}x′(t)S(t, sij)x(t)dt + E (x′(T )Dx(T )) .

Define vε(0, x, i) by replacing (x(·), α(·)) by (xε(·), αε(·)) in v(0, x, i), i.e.,

vε(0, x, i)

=
l0∑

i=1

mi∑
j=1

E

∫ T

0
νijI{αε(t)=i}xε,′(t)S(t, sij)xε(t)dt + E (xε,′(T )Dxε(T )) .

Using the weak convergence of (xε(·), αε(·)) → (x(·), α(·)), we can show
that

vε(0, x, i) → v(0, x, i),

as ε → 0. It remains to show that |Jε(x, α, uε(·)) − vε(0, x, i)| → 0. Note
that for α ∈ Mi,

|Jε(x, α, uε(·)) − vε(0, x, i)|
≤

∣∣∣∣E (
x′

�T/ε�Dx�T/ε� − xε,′(T )Dxε(T )
) ∣∣∣∣

+
m∗∑
j=1

ε

	T/ε
−1∑
k=0

∣∣∣∣E (
I{αε

k=s∗j}x′
kS(kε, s∗j)xk

) ∣∣∣∣
+

l0∑
i=1

mi∑
j=1

	T/ε
−1∑
k=0

∫ (k+1)ε

kε

E

∣∣∣∣I{αε
k=sij}x′

k

[
S(kε, sij) − S(t, sij)

]
xk

∣∣∣∣dt

+
l0∑

i=1

mi∑
j=1

∣∣∣∣E(∫ 	T/ε
ε

0
I{αε(t)=sij}xε,′(t)S(t, sij)xε(t)dt

−
∫ T

0
νijI{αε(t)=i}xε,′(t)S(t, sij)xε(t)dt

)∣∣∣∣.
(10.52)

Note that for i ∈ M,

|S(t, i)| ≤ K,

|S(t, i) − S(s, i)| ≤ K|t − s|.
In view of (10.45) and (10.49), it is easy to show that as ε → 0,∣∣∣∣E (

x′
�T/ε�Dx�T/ε� − xε,′(T )Dxε(T )

)∣∣∣∣ → 0,
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and

ε

	T/ε
−1∑
k=0

∣∣E (
I{αε

k=s∗j}x′
kS(kε, s∗j)xk

) ∣∣
≤ Kε

	T/ε
−1∑
k=0

(√
ε + (

√
λ)k

)
→ 0.

In addition,

	T/ε
−1∑
k=0

∫ (k+1)ε

kε

E
∣∣I{αε

k=sij}x′
k

[
S(kε, sij) − S(t, sij)

]
xk

∣∣dt

≤
	T/ε
−1∑

k=0

∫ (k+1)ε

kε

(t − kε)dt

=
	T/ε
−1∑

k=0

O(ε2) → 0.

For the last line of (10.52), using the triangular inequality, we obtain∣∣∣∣E(∫ 	T/ε
ε

0
I{αε(t)=sij}xε,′(t)S(t, sij)xε(t)dt

−
∫ T

0
νijI{αε(t)=i}xε,′(t)S(t, sij)xε(t)dt

)∣∣∣∣
≤

∣∣∣∣E ∫ 	T/ε
ε

0
I{αε(t)=sij} [xε,′(t)S(t, sij)xε(t) − xε,′(t)S(t, sij)xε(t)] dt

∣∣∣∣
+
∣∣∣∣E ∫ 	T/ε
ε

0

[
I{αε(t)=sij} − νijI{αε(t)=i}

]
xε,′(t)S(t, sij)xε(t)dt

∣∣∣∣
+
∣∣∣∣E ∫ T

	T/ε
ε

νijI{αε(t)=i}xε,′(t)S(t, sij)xε(t)dt

∣∣∣∣.
(10.53)

In view of (10.45) and (10.46), we can show that the second and the fourth
to the sixth lines go to zero as ε → 0. It can be proved (via integration by
parts) as in the proof of (10.48) that the third line also converges to zero.
As a result,∣∣Jε(x, α, uε(·)) − vε(0, x, i)

∣∣ → 0 for any α ∈ Mi, i = 1, . . . , l0. (10.54)

For α = s∗j ∈ M∗, we write

Jε(x, s∗j , u
ε(·)) = εE[g0|αε

0 = s∗j ]

+E

[
ε

	T/ε
−1∑
k=1

gk + x′
�T/ε�Dx�T/ε�

∣∣∣αε
0 = s∗j

]
:= O(ε) + E[G|αε

0 = s∗j ],
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where gk = x′
kM(αε

k)xk +u′
kN(αε

k)uk and G is the corresponding sum plus
the terminal cost. By conditioning on αε

1, we have

E[G|αε
0 = s∗j ] =

∑
α∈M

E[G|αε
1 = α]P (αε

1 = α|αε
0 = s∗j ].

It can be shown that

E[G|αε
1 = sij ] = v(0, x, i) + O(ε),

E[G|αε
1 = s∗j1 ] = Jε(x, s∗j1 , u

ε(·)) + O(ε).

Let
Jε(∗) =

(
Jε(x, s∗1, u

ε(·)), . . . , Jε(x, s∗m∗ , uε(·))
)′

.

It follows that

Jε(∗) = (P ∗,1, . . . , P ∗,l0 , P ∗)

⎛⎜⎜⎜⎜⎜⎜⎝
v(0, x, 1)1lm1

...

v(0, x, l0)1lml0

Jε(∗)

⎞⎟⎟⎟⎟⎟⎟⎠ + O(ε).

Using the definition of ai,j , we have

Jε(x, s∗j , u
ε(·)) =

l0∑
i=1

ai,jv(0, x, i) + O(ε),

and therefore,
|Jε(x, s∗j , u

ε(·)) − v(0, x, ∗j)| → 0.

This completes the proof. �

10.6 Notes

This chapter is based on the work of Liu, Zhang, and Yin [104]. In Yang
et al. [153], weak convergence methods were used to establish the desired
limit system for the numerical approximation. For classical design of linear
feedback controls, see Fleming and Rishel [57] and Bertsekas [13], among
others. For results on optimal control and related issues such as system
stability, we refer the reader to Blair and Sworder [20], Caines and Chen
[29], Mariton and Bertrand [111], Rishel [128], Ji and Chizeck [74, 75], and
Yin and Zhang [158]; see also the related work of Altman and Gaitsgory
[4] and the references therein. For results on singularly perturbed Marko-
vian models with weak and strong interactions, see, for example, Abbad,
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Filar, and Bielecki [2], Pan and Basar [120], and Pervozvanskii and Gaits-
gory [123], among others. A continuous-time hybrid LQG problem with
singularly perturbed Markov chain was considered in Zhang and Yin [181]
in which a limit control problem is obtained and nearly optimal control
policy is constructed using the solution of the limit problem. Additional
applications to control and filtering can be found in Zhang [175].

Note that the limit Riccati equation in (10.19) is identical to the limit
Riccati equation corresponding to the continuous-time LQG problem; see
Zhang and Yin [181]. The LQ formulation can be extended in several di-
rections. The diffusion coefficients σ can be replaced by σ(x, α) (i.e., state
and Markov dependent). The system (10.1) can be replaced by⎧⎨⎩ xk+1 = xk + ε[A(αε

k)xk + B(αε
k)uk] +

√
εσ(xk, αε

k)ξk,

x0 = x, αε
0 = α, 0 ≤ k ≤ 
T/ε�,

The main steps remain the same, whereas the state and Markov dependent
diffusion can be dealt with using weak convergence methods; some of these
ideas can be found in the treatments discussed in Chapter 11.

Another direction is to consider the indefinite control problems. It enables
us to relax the conditions on the nonnegative definiteness and positive
definiteness assumptions on (A10.1) (a). This line of work uses ideas from
the work of Chen, Li, and Zhou [35].



11
Mean-Variance Controls

11.1 Introduction

This chapter is concerned with hybrid mean-variance control problems aris-
ing from portfolio selections in financial engineering. It belongs to the class
of hybrid LQ control problems with indefinite control weights. The hybrid
feature is represented by a Markov chain leading to a regime-switching
model.

Markowitz’s single period mean-variance portfolio selection model (see
Markowitz [112, 113]) laid the foundation for modern finance theory. It aims
to maximize terminal wealth, in the mean time to minimize risk, using vari-
ance as a criterion. It enables investors to seek the highest return upon spec-
ifying their acceptable risk levels. Markowitz’s Nobel-prize-winning work
has inspired numerous extensions. The original single-stage model has been
extended to continuous-time formulations, in which stochastic differential
equations and geometric Brownian motion models are used. Despite their
extensive use, the geometric Brownian motion models have certain lim-
itations, since the parameters, including the interest rates of bonds and
the appreciation and volatility rates of stocks, are all deterministic. As
a result, they are insensitive to drastic changes in the market. Financial
markets tend to have trends; the simplest categorization includes up’s and
down’s. These trends can be regarded as market “modes.” In addition to
trends, there are certain factor processes that reflect economic factors and
that dictate the configuration or mode (regime) changes of the market.
Corresponding to different regimes, the coefficients (the appreciation and
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volatility rates) are markedly different. The mode of the market may re-
flect the state of the underlying economy, the general mood of the investors,
business cycles, and other economic factors. For example, a coarse division
of the market modes leads to the characterization of “bullish” and “bear-
ish;” a refinement adds more intermediate states between these two states.
To take the factor process into consideration, we model the appreciation
and volatility rates of the market as functions of the modes. This leads to
a switching model formulated as a system of stochastic difference or differ-
ential equations whose coefficients are modulated by a discrete-time or a
continuous-time Markov chain.

Motivated by these developments, we consider a class of discrete-time
mean-variance portfolio selection models and consider portfolio selection
policy that minimizes the overall risk with a given expected return. In
addition, we explore their relationship to the continuous-time counterparts.
One of the main features is that all the market coefficients are modulated
by a discrete-time Markov chain that has a finite state space. Taking into
account various economic factors, the state space of the Markov chain,
which represents the market modes, is often large. To reduce complexity,
we make use of the hierarchy of the market by lumping many states at the
same hierarchical level together to form an aggregated “state.” Such an
aggregation substantially reduces the size of the problem to be solved. To
highlight the different rates of changes, by introducing a small parameter
ε > 0 into the transition matrix, we formulate it as a control problem with
two time scales.

The rest of the chapter is arranged as follows. We begin with the for-
mulation of the discrete-time mean-variance portfolio selection problem in
Section 11.2. Section 11.3 presents the main results. We derive a priori
bounds of certain processes, obtain the limit system using weak conver-
gence method, and establish natural connections between the discrete-time
models and continuous-time systems. To reduce complexity of the under-
lying systems, based on the limit system, we construct policies leading to
near optimality. Section 11.4 collects the proofs of results. Additional notes
and remarks are provided in Section 11.5.

11.2 Formulation

Suppose that T > 0 and that ε > 0 is a small parameter. Working with
discrete time k, we consider 0 ≤ k ≤ 
T/ε�, where for a real number z,

z� denotes the integer part of z. Let αε

k, for 0 ≤ k ≤ 
T/ε�, be a discrete-
time Markov chain, which is parameterized by ε, with a finite state space
M = {1, 2, . . . , m0}. Consider a wealth model as follows. Suppose that
there are d + 1 assets in the underlying market. One of them is a bond (or
risk-free asset) and the rest of them are stocks (risky assets). Let Sε,0

k be
the price of the bond, and Sε,ı

k , ı = 1, . . . , d, be the prices of the stocks at
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time k, respectively. Suppose that r(·, ·), bı(·, ·), σıj(·, ·) : R × M �→ R, for
ı, j = 1, . . . , d, are some appropriate functions such that corresponding to a
market mode α ∈ M, r(·, α) represents the interest rate of the bond, and
bı(·, α) and σıj(·, α) are the appreciation and volatility rates of the stocks,
respectively. For (t, α) ∈ R × M, define

cı(t, α) = bı(t, α) − 1
2

d∑
j=1

(σıj(t, α))2, ı = 1, . . . , d. (11.1)

Then Sε,ı
k satisfies the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sε,0
k+1 = Sε,0

k + εr(εk, αε
k)Sε,0

k

Sε,0
0 = S0

0 > 0,

Sε,ı
k+1 = Sε,ı

k exp
(

εcı(εk, αε
k) +

√
ε

d∑
j=1

σıj(εk, αε
k)ξj

k

)
, ı = 1, . . . , d,

Sε,ı
0 = Sı

0 > 0,

(11.2)
where {ξı

k}, ı = 1, . . . , d, are sequences of independent and identically dis-
tributed random variables. We use the multiplicative model, which is an
analogous to the geometric Brownian motion model in continuous time to
ensure the nonnegativity of the stock prices.

Suppose that at time k, an investor with an initial endowment xε
0 = x0

holds N ı(εk) shares of the ıth asset for ı = 0, . . . , d, during the time interval
k to k + 1. Then his or her wealth at time k is xε

k given by the equation

xε
k+1 − xε

k =
d∑

ı=0

N ı(εk)(Sε,ı
k+1 − Sε,ı

k ). (11.3)

Equation (11.3) is based on the premise of self-financing. For a self-
financed portfolio (no infusion or withdrawal of funds during the indicated
time interval), the difference in total wealth between two consecutive times
is purely due to the change in the prices of the stocks (see, e.g., Karatzas
and Shreve [77, equation (2.2) in p. 6]). Therefore, we have

xε
k =

d∑
ı=0

uε,ı
k where uε,ı

k = N ı(εk)Sε,ı
k for ı = 0, . . . , d. (11.4)

Note that the amount allocated to the bond is completely determined by
the selection strategies for the stocks

uε,0
k = xε

k −
d∑

ı=1

uε,ı
k .
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Thus, the control variables are those associated with the stocks, i.e., uε,ı
k ,

for ı = 1, . . . , d. Given a mean terminal wealth Exε
T/ε, our objective is to

minimize the variance of the terminal wealth,

E(xε
T/ε − Exε

T/ε)
2 = E(xε

T/ε)
2 − (Exε

T/ε)
2.

Denote by Fε
k , the σ-algebra generated by {αε

k1
, ξk1 : 0 ≤ k1 < k}, where

ξk = (ξ1
k, . . . , ξd

k)′. A portfolio

uε
· = {uε

k = (uε,1
k , uε,2

k , . . . , uε,d
k ) : k = 0, 1, . . . , T/ε}

is admissible if uε
k is Fε

k -measurable for each 0 ≤ k ≤ T/ε and (11.4) has a
unique solution

xε
· = {xε

k : k = 0, 1, . . . , T/ε}
corresponding to uε

· We also call (xε
· , u

ε
· ) an admissible wealth-portfolio

pair. Denote the class of admissible wealth-portfolio pairs by Aε.
The objective of the discrete-time mean-variance portfolio selection prob-

lem is to find an admissible portfolio (xε
· , u

ε
· ) ∈ Aε, for an initial wealth

xε
0 = x0 and an initial market mode αε

0 = �0, such that the terminal wealth
is Exε

T/ε = z for a given z ∈ R, and the risk in terms of the variance of the
terminal wealth, E[xε

T/ε − z]2, is minimized. The problem to be solved is⎧⎪⎪⎪⎨⎪⎪⎪⎩
Minimize Jε(x0, �0, u

ε
· ) = E[xε

T/ε − z]2

subject to: xε
0 = x0, αε

0 = �0, Exε
T/ε = z and

(xε
· , u

ε
· ) ∈ Aε.

(11.5)

We assume the following conditions.

(A11.1) Condition (HR) of Chapter 6 holds.

(A11.2) For each α ∈ M, ı, j = 1, . . . , d, r(·, α), bı(·, α), σıj(·, α) are
real-valued continuous functions defined on [0, T ].

(A11.3) For each ı = 1, . . . , d, {ξı
k} is a sequence of independent and

identically distributed (i.i.d.) random variables that are inde-
pendent of αε

k and that have mean 0 and variance 1. Moreover,
for ı = j, {ξı

k} and {ξj
k} are independent.

Remark 11.1. The sequences {ξı
k} are commonly referred to as white

noise. Under (A11.3), the Donsker’s invariance principle implies that

√
ε

t/ε−1∑
k=0

ξı
k converges weakly to a standard Brownian motion as ε → 0.

In fact, correlated noise may be dealt with. What is essential is that a
functional central limit theorem holds for the scaled sequence. Sufficient
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conditions guaranteeing the convergence include, for example, φ-mixing
processes with appropriate mixing rates. However, as in the hybrid filtering
problem, assumption (A11.3) allows us to simplify much of the subsequent
discussion.

When the state space M is large, the cardinality of M is a large number.
To reduce complexity in solving the portfolio selection problem, we aggre-
gate the states in each recurrent class Mi into one state, resulting in an
aggregated process. Then the aggregated process has only l0 states instead
of m0 states. If l0 � m0, the possible number of regimes is substantially
smaller for the aggregated process. The intuitive notion of aggregation, in
fact, is used in practice, where we typically merge all the states with sim-
ilar properties (such as transition rates) into one “super” state; see the
schematic illustration given in Figure 1.1. For example, we often put all
the states together where the market is up (respectively, down) to form a
“bullish” (respectively, “bearish”) mode of the market.

Our effort is to show that suitably interpolated processes of the prices
converge to limit processes that are switching diffusions. The limit problem
is a continuous-time mean-variance portfolio selection problem with regime
switching, whose optimal controls have been found in Zhou and Yin [186].
This will, in turn, enable us to construct an asymptotically optimal strategy
for our original problem (11.5) based on the optimal strategy of the limit
problem. In the remainder of this section, we will establish the connection
of the discrete-time and continuous-time portfolio selection problems.

11.2.1 Limit Results
Using aggregation techniques, define an aggregated discrete-time process
αε

k by
αε

k = i if αε
k ∈ Mi, i = 1, 2, . . . , l0.

Define the interpolated processes

Sε,ı(t) = Sε,ı
k , ı = 0, . . . , d, αε(t) = αε

k for t ∈ [εk, εk + ε). (11.6)

They are piecewise-constant interpolations on the interval of length ε. Sim-
ilarly, for any admissible wealth-portfolio pair (uε

· , x
ε
· ), we define the cor-

responding interpolated processes

uε(t) = uε
k, xε(t) = xε

k, for t ∈ [εk, εk + ε). (11.7)

Due to its multiplicative nature, the Sε,ı(·) is not easy to work with in
deriving the weak convergence result for (Sε,ı(·), αε(·)). To overcome these
difficulties, we define auxiliary processes yε,ı

k for ı = 1, . . . , d as

yε,ı
k+1 = yε,ı

k + εcı(εk, αε
k) +

√
ε

d∑
j=1

σıj(εk, αε
k)ξj

k, yε,ı
0 = 0, (11.8)
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where cı(·, ·) is given by (11.1).
Using {yε,ı

k }, the price for the ıth stock can be written as

Sε,ı
k = Sı

0 exp(yε,ı
k ), Sε,ı

0 = Sı
0 > 0. (11.9)

As with the interpolation Sε,ı(·), define the interpolated processes

yε,ı(t) = yε,ı
k for t ∈ [εk, εk + ε), ı = 1, . . . , d. (11.10)

It follows that

Sε,ı(t) = Sı
0 exp(yε,ı(t)).

That is, Sε,ı(·) is related to the interpolation of yε,ı
k through the exponential

mapping.
To proceed, by utilizing the auxiliary process yε,ı(·), we first show that

(yε,ı(·), αε(·)) converges weakly to certain limit processes, in which the ap-
preciation and volatility rates are averaged out with respect to the station-
ary measures of the Markov chain. Then by using the continuous mapping
theorem (see Theorem 14.21 in the appendix), we obtain the desired result.

11.2.2 Weak Convergence
We shall derive the weak convergence of interpolated processes (11.6) by
first verifying the tightness of the underlying sequences and then character-
izing the limits as solutions of certain martingale problems having appro-
priate generators. For each ı = 0, 1, . . . , d, we work with a pair of processes
(yε,ı(·), αε(·)). Let D([0, T ]; R × M) denote the space of functions defined
on [0, T ], taking values in R × M that are right continuous, have left-hand
limits, endowed with the Skorohod topology (see Section 14.2). The first
result is concerned with tightness.

Theorem 11.2 Under (A11.1)–(A11.3), the pair {yε,ı(·), αε(·)} is tight on
D([0, T ]; R × M) for each ı = 1, . . . , d, so is {Sε,0(·), αε(·)}.

Since for each ı = 0, 1, . . . , d, {Sε,0(·), αε(·)} and {yε,ı(·), αε(·)} are tight
by Theorem 11.2, Prohorov’s theorem (see Theorem 14.4) enables us to
extract weakly convergent subsequences as ε → 0. Select such convergent
subsequences with limits (S0(·), α(·)) and (yı(·), α(·)), respectively. For no-
tational simplicity, still use ε as the index of the subsequence. We proceed to
characterize the limit processes. By virtue of the Skorohod representation
(with a slight abuse of notation), we may assume without loss of general-
ity that (Sε,0(·), αε(·)) → (S0(·), α(·)) and yε,ı(·) → yı(·) with probability
one (w.p.1), and the convergence is uniform on any compact time interval.
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Denote the d × d matrix (σıj(t, α)) by Σ(t, α). Define

r(t, i) =
mi∑
j=1

νijr(t, sij),

b
ı
(t, i) =

mi∑
j=1

νijbı(t, sij),

cı(t, i) =
mi∑
j=1

νijcı(t, sij),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for i ∈ M = {1, . . . , l0}, (11.11)

where νij denotes the jth component of the stationary distribution νi cor-
responding to P i. Let Σ(t, α) = (σıj(t, α)) be such that

Σ(t, i)Σ
′
(t, i) =

mi∑
j=1

νijΣ(t, sij)Σ′(t, sij). (11.12)

We aim to show that the limit processes are solutions of

dS0(t)
dt

= r(t, α(t))S0(t),

S0(0) = S0
0 ,

dyı(t) = cı(t, α(t))dt +
d∑

j=1

σıj(t, α(t))dwj(t),

yı(0) = 0, ı = 1, . . . , d,

(11.13)

respectively, where wı(·) for ı = 1, . . . , d are independent, scalar, stan-
dard Brownian motions. Equivalently, it suffices to show that for each
ı = 0, . . . , d, (yı(·), α(·)) is a solution of the martingale problem with oper-
ator (∂/∂t) + Lı, where

L0f(t, y, i) = fy(t, y, i)r(t, i)y,

Lıf(t, y, i) = fy(t, y, i)cı(t, i) +
1
2
fyy(t, y, i)[Σ(t, i)Σ

′
(t, i)]ıı

+Qf(t, y, ·)(i), 1 ≤ ı ≤ d,

(11.14)

where f(·, ·, i) is a suitable function defined on R × R, fy and fyy denote
the first and the second derivatives of f ,

Q = (qij) = diag(ν1, . . . , νl0)Q1̃l,

[Σ(t, i)Σ
′
(t, i)]ıı =

mi∑
j=1

νij
d∑

j=1

(σıj(t, sij))2,
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and

Qf(t, y, ·)(i) =
l0∑

j=1

qijf(t, y, j) =
l0∑

j �=i

qij(f(t, y, j) − f(t, y, i)). (11.15)

Theorem 11.3 Assume (A11.1)–(A11.3). Then for each ı = 1, . . . , d, the
weak limits of (yε,ı(·), αε(·)) and (Sε,0(·), αε(·)) are the unique solutions of
the martingale problems with the operators (∂/∂t)+Lı for ı = 1, . . . , d and
ı = 0, respectively.

Since Sε,ı(t) = Sı
0 exp(yε,ı(t)), and exp(·) is a continuous function, by

the continuous mapping theorem (see Theorem 14.21), Sε,ı(·) converges
to Sı(·) such that Sı(t) = Sı

0 exp(yı(t)), where yı(·) is the limit of yε,ı(·).
Applying Itô’s formula and noticing the relations (11.1) and (11.11), we
obtain the desired result.

Corollary 11.4. Under the conditions of Theorem 11.3, (Sε,ı(·), αε(·))
converges weakly to (Sı(·), α(·)) such that they are solutions of

dS0(t)
dt

= r(t, α(t))S0(t),

S0(0) = S0
0 ,

dSı(t) = b
ı
(t, α(t))Sı(t)dt +

d∑
j=1

σıj(t, α(t))Sı(t)dwj(t),

Sı(0) = Sı
0, ı = 1, . . . , d,

(11.16)

respectively, where wı(·) for ı = 1, . . . , d are independent, real-valued, stan-
dard Brownian motions.

Denote by Ft the σ-algebra generated by {α(s), w(s) : 0 ≤ s ≤ t}, where
w(s) = (w1(s), . . . , wd(s))′. A control u(·) = (u1(·), . . . , ud(·)) is admissible
for the limit problem if u(·) is Ft-adapted and

dx(t) =
[
r(t, α(t))x(t) +

d∑
ı=1

[b
ı
(t, α(t)) − r(t, α(t))uı(t)]

]
dt

+
d∑

j=1

d∑
ı=1

σıj(t, α(t))uı(t)dwj(t)
(11.17)

has a unique solution x(·) corresponding to u(·). The (x(·), u(·)) is termed
an admissible wealth-portfolio pair (for the limit problem). Denote the class
of admissible wealth-portfolio pairs by A. The limit mean-variance portfolio
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selection problem is⎧⎪⎪⎪⎨⎪⎪⎪⎩
Minimize J(x0, i0, u(·)) = E[x(T ) − z]2,

subject to: x(0) = x0, ᾱ(0) = i0,

Ex(T ) = z and (x(·), u(·)) ∈ A,

(11.18)

where i0 is such that �0 ∈ Mi0 (recall that �0 is the initial condition of the
Markov chain αε

0 in the original discrete-time problem (11.5)).
For any (xε

· , u
ε
· ) ∈ Aε, there are the corresponding interpolated processes

(xε(·), uε(·)) determined by (11.7). With a slight abuse of notation, we do
not distinguish between (xε

· , u
ε
· ) and (xε(·), uε(·)), but write (xε(·), uε(·)) ∈

Aε in what follows.

Corollary 11.5. Under the conditions of Theorem 11.3, any sequence of
admissible wealth-portfolio pairs (xε(·), uε(·)) ∈ Aε converges weakly to
(x(·), u(·)) that belongs to A. Moreover,

Exε(T ) → Ex(T ) and E[xε(T )−z]2 → E[x(T )−z]2 as ε → 0. (11.19)

11.3 Near-Efficient Portfolio

Having established that associated with the original mean-variance control
problem, there is a limit problem, we can construct near-efficient portfolios
for (11.5) based on the optimal portfolio for (11.18).

Recall that (11.18) is feasible (for fixed x0 and i0) if there is at least one
portfolio satisfying all the constraints. It is finite if it is feasible and the
infimum of the cost is finite. An optimal portfolio for a given z, if it exists,
is called an efficient portfolio, and the corresponding (variance, expected
return) pair (Var x(T ), z) is called an efficient point. The set of all efficient
points as z varies is termed efficient frontier. As can be seen, in terms of
the standard control terminology, an efficient portfolio is an optimal control
policy (corresponding to a particular z).

For a continuous-time mean-variance portfolio selection problem (11.18),
a necessary and sufficient condition for the feasibility of the limit problem
(11.18) was derived. In addition, it was proved that if it is feasible, then
indeed the efficient portfolio corresponding to z exists, which can be ex-
pressed in a feedback form, i.e., a function of the time t, the wealth level
x, and the market mode i. Using an efficient portfolio of the limit problem,
we construct a near-efficient portfolio (i.e., a near-optimal control strategy)
for the original problem. In what follows, we simply refer to the optimal
portfolio selection strategy of the limit as uo(·), without specifying its ex-
plicit form. For further details and explicit representation of the optimal
solution, we refer the reader to Zhou and Yin [186].
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Using the optimal control of the limit problem uo(t, x, i), we construct
portfolios for the original problem as

ũε(t, x, α) =
l0∑

i=1

uo(t, x, i)I{α∈Mi}. (11.20)

That is, ũε(t, x, α) = uo(t, x, i) if α ∈ Mi, for i = 1, 2, . . . , l0. Let xε
k be the

wealth trajectory of the original problem (11.5) under the feedback control
ũ(εk, x, α). Recall that xε(t) is the continuous-time interpolation of xε

k and
denote the continuous-time interpolation of ũ(εk, xε

k, αε
k) by ũε(t). Using

such a control leads to near-optimality of (11.5). Write

vε(x0, �0) = inf
(xε· ,uε· )∈A

Jε(x0, �0, u
ε
· ),

v(x0, i0) = inf
(x(·),u(·))∈A

J(x0, i0, u(·)).

Theorem 11.6 Suppose that the conditions of Theorem 11.3 are satisfied.
Then

lim
ε→0

|Jε(x0, �0, ũ
ε(·)) − vε(x0, i0)| = 0. (11.21)

Thus, the constructed controls based on the optimal solution of the limit
problem is asymptotically optimal. That is, based on the optimal portfolio
selection rules of the limit problem, we devise a portfolio selection strategy
for the original problem and such strategies are asymptotically optimal in
the sense of (11.21).

11.4 Inclusion of Transient States

As for the hybrid filtering problem, we can also consider mean-variance
control problems modulated by a Markov chain, in which the Markov chain
includes transient states in addition to the l0 ergodic classes. In this case
we need to replace (A11.1) by conditions (HT) in Chapter 6.

Theorem 11.7. Under the conditions of Theorem 11.3 with (A11.1) re-
placed by (HT) of Chapter 6, the conclusions of Theorem 11.3 and Corol-
lary 11.5 continue to hold with Q replaced by Q∗ defined in (6.16).

11.5 Continuous-Time Problems

Assuming that the trading of shares takes place continuously, we can then
formulate a continuous-time version of the mean-variance control problem
under Markovian switching regime. Again, suppose that there are d + 1
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assets in the underlying market. One of which is the bond and the rest of
them are the stock holdings. Let Sε,0(·) be the price of the bond, and Sε,ı(·),
ı = 1, . . . , d, be the prices of the stocks at time t, respectively. Replace the
discrete-time price model (11.2) by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSε,0(t) = r(t, αε(t))Sε,0(t)dt,

Sε,0(0) = S0 > 0,

dSε,ı(t) = bı(t, αε(t))Sε,ı(t)dt +
d∑

j=1

σıj(t, αε(t))dwj(t), ı = 1, . . . , d,

Sε,ı(0) = Sı > 0,

(11.22)
where wı(·) are independent standard Brownian motions, r(t, α) is the in-
terest rate of the bond, and bı(t, α) and σıj(t, α) represent the rates of stock
appreciation and volatility of the ıth stock, corresponding to a market mode
αε(t) = α.

Our main concern is still the reduction of complexity. The techniques
to be used are the averaging methods, e.g., in Yin, Zhang, and Badowski
[162, 163]. Similar to the continuous-time hybrid filtering problem, we can
deal with nonsmooth generators and carry out the averaging procedure
analogues to the discrete-time case. Suppose the generator is given by

Qε(t) =
Q̃(t)

ε
+ Q̂(t), (11.23)

with Q̃(t) given by

Q̃(t) = diag(Q̃1(t), . . . , Q̃l0(t)). (11.24)

Define the wealth process

xε(t) =
d∑

ı=0

N ı(t)Sε,ı(t).

We seek to solve the mean-variance problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Minimize Jε(x0, �0, u

ε
· ) = E[xε(T ) − z]2,

subject to: xε(0) = x0, αε(0) = �0, Exε(T ) = z,

(xε(·), uε(·)) is admissible.

(11.25)

Suppose that Q̃(t) and Q̂(t) are bounded Borel measurable, that Q̃i(t)
for i = 1, . . . , l0 are weakly irreducible, that (A11.2) holds, and that wj(·)
are standard Brownian motions independent of αε(·). Then the conclusions
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of Theorem 11.3 and Corollary 11.5 continue to hold with νi replaced by
the time-varying quasi-stationary distribution νi(t) for i = 1 . . . , l0 and
Q replaced by Q(t). Moreover, this result can also be extended to treat
the continuous-time problem when in addition to the l0 weakly irreducible
classes, transient states are included. In this case, we obtain the continuous-
time analogue of Theorem 11.7 with ν, Q, and Q∗ replaced by ν(t), Q(t),
and Q∗(t) respectively. We omit the details.

11.6 Proofs of Results

Proof of Theorem 11.2. Proposition 6.2-(c) implies that {αε(·)} is tight.
To prove the tightness of {yε,ı(·), αε(·)}, it suffices to show that {yε,ı(·)} is
tight.

Denote by Eε
t the conditional expectation with respect to Fε

t , the σ-
algebra generated by {αε

k1
, ξı

k1
: k1 < t/ε, ı = 0, . . . , d}. Since {ξk} and

{αε
k} are independent, and since Eε

t [ξı
kξı

k1
] = 0 for k1 = k and t/ε ≤

k1, k ≤ (t + s)/ε, owing to the boundedness of cı(·),

ε2Eε
t

∣∣∣∣ (t+s)/ε−1∑
k=t/ε

(t+s)/ε−1∑
k1=t/ε

cı(εk, αε
k)cı(εk1, α

ε
k1

)
∣∣∣∣

≤ Kε2
(

t + s

ε
− t

ε

)2

≤ Ks2.

Similarly, using the boundedness of σıj(·),

εEε
t

(t+s)/ε−1∑
k=t/ε

(
d∑

j=1

σıj(εk, αε
k)ξj

k

)2

≤ Ks.

Consequently, for any η > 0, t ≥ 0 and 0 ≤ s ≤ η, and for each ı = 1, . . . , d,

Eε
t [yε,ı(t + s) − yε,ı(t)]2

≤ KEε
t

∣∣∣∣ε (t+s)/ε−1∑
k=t/ε

cı(εk, αε
k)
∣∣∣∣2 + KEε

t

∣∣∣∣√ε

(t+s)/ε−1∑
k=t/ε

d∑
j=1

σıj(εkαε
k)ξj

k

∣∣∣∣2
≤ Ks ≤ Kη.

(11.26)
Recall that we use K to represent a generic positive real number; its val-
ues may be different for different uses. Note that t/ε and (t + s)/ε in the
summation limits of (11.26) are understood to be the integer parts. Con-
sequently,

lim
η→0

lim sup
ε→0

E
(
Eε

t [yε,ı(t + s) − yε,ı(t)]2
)

= 0.
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The desired result follows from the tightness criterion (Lemma 14.12). Like-
wise,

lim
η→0

lim sup
ε→0

E
(
Eε

t [Sε,0(t + s) − Sε,0(t)]2
)

= 0.

Thus {Sε,0(·)} is also tight. �

Proof of Theorem 11.3. We will mainly work with the stock price pro-
cesses (yε,ı(·), αε(·)) for ı = 1, . . . , d. To proceed, fix ı ∈ {1, . . . , d}. The
uniqueness of the solution of the martingale problem can be verified; see
Lemma 14.20.

To characterize the limit, it suffices that for each i ∈ M and f(·, ·, i) ∈
C1,2

0 (the collection of functions that have compact support and that are
continuously differentiable with respect to the first variable, and twice con-
tinuously differentiable with respect to the second variable),

f(t, yı(t), α(t)) − f(0, yı(0), α(0)) −
∫ t

0

(
∂

∂τ
+ Lı

)
f(τ, yı(τ), α(τ))dτ

(11.27)
is a martingale. To this end, it suffices that for any positive integer κ,
bounded and continuous functions hj1(·) with j1 ≤ κ, and any t, s, tj1 ≥ 0
satisfying tj1 ≤ t < t + s ≤ T ,

E
κ∏

j1=1

hj1(y
ı(tj1), α(tj1))

[
f(t + s, yı(t + s), α(t + s)) − f(t, yı(t), α(t))

−
∫ t+s

t

(
∂

∂τ
+ Lı

)
f(τ, yı(τ), α(τ))dτ

]
= 0.

(11.28)
To verify (11.28), we begin with the pre-limit processes indexed by ε. The
weak convergence of (yε,ı(·), αε(·)) to (yı(·), α(·)), the Skorohod represen-
tation (without changing notation), the continuity of f(·, ·, α), and the
dominated convergence theorem lead to

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))

×[f(t + s, yε,ı(t + s), αε(t + s)) − f(t, yε,ı(t), αε(t))]

→E

κ∏
j1=1

hj1(y
ı(tj1), α(tj1))[f(t + s, yı(t + s), α(t + s)) − f(t, yı(t), α(t))],

(11.29)
as ε → 0.

Define

f(t, y, α) =
l∑

i=1

f(t, y, i)I{α∈Mi} for each α ∈ M. (11.30)
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Then f(·, ·, α) ∈ C1,2
0 . Pick {nε}, a sequence of positive integers satisfying

nε → ∞ as ε → 0 and εnε = δε → 0 as ε → 0. Noting that

f(t, yε,ı
k , αε

k) = f(t, yε,ı
k , αε

k),

we have

f(t + s, yε,ı(t + s), αε(t + s)) − f(t, yε,ı(t), αε(t))

=
∫ t+s

t

∂

∂τ
f(τ, yε,ı(τ), αε(τ))dτ

+
t+s∑

lδε=t

[f(lδε, y
ε,ı
lnε

, αε
lnε+nε

) − f(lδε, y
ε,ı
lnε

, αε
lnε

)]

+
t+s∑

lδε=t

[f(lδε, y
ε,ı
lnε+nε

, αε
lnε+nε

) − f(lδε, y
ε,ı
lnε

, αε
lnε+nε

)] + o(1),

(11.31)
where o(1) → 0 in probability as ε → 0 uniformly in t ∈ [0, T ].

By virtue of the weak convergence, the Skorohod representation (with-
out changing notation), and the continuity and hence the boundedness of
(∂/∂τ)f(·, ·, α), as ε → 0,

E
κ∏

j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
(∫ t+s

t

∂

∂τ
f(τ, yε,ı(τ), αε(τ))dτ

)
→ E

κ∏
j1=1

hj1(y
ı(tj1), α(tj1))

(∫ t+s

t

∂

∂τ
f(τ, yı(τ), α(τ))dτ

)
.

(11.32)

Define
Î(α) = (I{α=ζij}, 1 ≤ i ≤ l0, 1 ≤ j ≤ mi),

and

F (t, y) =

⎛⎜⎝ f(t, y, 1)1lm1

...
f(t, y, l)1lml

⎞⎟⎠ .

For the next to the last line of (11.31), yε,ı
lnε

is Fε
lnε

-measurable. Assumption
(A11.1) and the orthogonality (P − I)F (t, x) = 0, yield

Eε
t

t+s∑
lδε=t

[f(lδε, y
ε,ı
lnε

, αε
lnε+nε

) − f(lδε, y
ε,ı
lnε

, αε
lnε

)]

= εEε
t

t+s∑
lδε=t

lnε+nε−1∑
k=lnε

Î(αε
k)QF (lδε, y

ε,ı
lnε

)

= εEε
t

t+s∑
lδε=t

lnε+nε−1∑
k=lnε

Qf(lδε, y
ε,ı
lnε

, ·)(αε
k)
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= εEε
t

t+s∑
lδε=t

l0∑
i=1

mi∑
j=1

Qf(lδε, y
ε,ı
lnε

, ·)(ζij)δε
1
nε

lnε+nε−1∑
k=lnε

νijI{αε
k∈Mi}

+εEε
t

t+s∑
lδε=t

l0∑
i=1

mi∑
j=1

Qf(lδε, y
ε,ı
lnε

, ·)(ζij)

× δε

nε

lnε+nε−1∑
k=lnε

[I{αε
k=ζij} − νijI{αk=i}].

Lemma 6.2 implies that as ε → 0,

εEε
t

t+s∑
lδε=t

l0∑
i=1

mi∑
j=1

Qf(lδε, y
ε,ı
lnε

, ·)(ζij)
δε

nε

lnε+nε−1∑
k=lnε

[I{αε
k=ζij} − νijI{αk=i}]

→ 0 in probability uniformly in t ∈ [0, T ].

In view of (6.6),

E

∣∣∣∣ t+s∑
lδε=t

δε
1
nε

lnε+nε−1∑
k=lnε

[Qf(lδε, y
ε,ı
lnε

, ·)(αε
k) − Qf(lδε, y

ε,ı
lnε

, ·)(αε
k)]

∣∣∣∣
→ 0 as ε → 0 uniformly in t.

Putting the above estimates together, as ε → 0,

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
[ t+s∑

lδε=t

δε
1
nε

lnε+nε−1∑
k=lnε

Qf(lδε, y
ε,ı
lnε

, ·)(αε
k)
]

→ E

κ∏
j1=1

hj1(y
ı(tj1), α(tj1))

[ ∫ t+s

t

Qf(τ, yı(τ), ·)(α(τ))dτ

]
.

(11.33)
Using a truncated Taylor expansion and denoting

fy = (∂/∂y)f and fyy = (∂2/∂y2)f,

we have
t+s∑

lδε=t

[f(lδε, y
ε,ı
lnε+nε

, αε
lnε+nε

) − f(lδε, y
ε,ı
lnε

, αε
lnε+nε

)]

=
t+s∑

lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)[yε,ı
lnε+nε

− yε,ı
lnε

]

+
1
2

t+s∑
lδε=t

fyy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)[yε,ı
lnε+nε

− yε,ı
lnε

]2

+
1
2

t+s∑
lδε=t

[fyy(lδε, y
ε,ı,+
lnε

, αε
lnε+nε

)

−fyy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)][yε,ı
lnε+nε

− yε,ı
lnε

]2,

(11.34)
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where yε,ı,+
lnε

is on the line segment joining yε,ı
lnε

and yε,ı
lnε+nε

. Substituting
(11.8) in (11.34), we can write

t+s∑
lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)[yε,ı
lnε+nε

− yε,ı
lnε

]

=
t+s∑

lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)
lnε+nε−1∑

k=lnε

εcı(εk, αε
k)

+
t+s∑

lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)
lnε+nε−1∑

k=lnε

√
ε

d∑
j=1

σıj(εk, αε
k)ξj

k.

(11.35)

To proceed, we first replace αε
lnε+nε

in the argument of fy(·) above by
αε

lnε
, which adds a term with 0 limit. Letting lδε → τ as ε → 0, and using

Lemma 6.2-(c), for all lnε ≤ k ≤ lnε + nε − 1, εk → τ ,

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
t+s∑

lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε

)
δε

nε

lnε+nε−1∑
k=lnε

cı(εk, αε
k)

= E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
t+s∑

lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε

)

× δε

nε

lnε+nε−1∑
k=lnε

l0∑
i=1

mi∑
j=1

cı(εk, sij)νijI{αε
k∈Mi}

+E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
t+s∑

lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε

)

×δε
1
nε

lnε+nε−1∑
k=lnε

l0∑
i=1

mi∑
j=1

cı(εk, sij)[I{αε
k=sij} − νijI{αε

k∈Mi}]

→ E

κ∏
j1=1

hj1(y
ı(tj1), α(tj1))

∫ t+s

t

fy(τ, yı(τ), α(τ))cı(τ, α(τ))dτ.

By virtue of the independence of {ξı
k}, inserting Eε

t and then Ek, and using
Ekξj

k = 0, we have

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))

(
t+s∑

lδε=t

fy(lδε, y
ε,ı
lnε

, αε
lnε

)
lnε+nε−1∑

k=lnε

√
εσıj(εk, αε

k)ξj
k

)
= 0.
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Likewise, detailed estimates reveal that as ε → 0,

E
κ∏

j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))

(
t+s∑

lδε=t

fyy(lδε, y
ε,ı
lnε

, αε
lnε

)(yε,ı
lnε+nε

− yε,ı
lnε

)2
)

= E
κ∏

j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))

(
t+s∑

lδε=t

δεfyy(lδε, y
ε,ı
lnε

, αε
lnε

)

× 1
nε

lnε+nε−1∑
k=lnε

l0∑
i=1

mi∑
j=1

Ek

[ d∑
j=1

σıj(εk, sij)ξ
j
k

]2
νijI{αε

k∈Mi}

)
+ o(1)

→ E

κ∏
j1=1

hj1(y
ı(tj1), α(tj1))

(∫ t+s

t

fyy(τ, yı(τ), α(τ))

×[Σ(τ, α(τ))Σ
′
(τ, α(τ))]ııdτ

)
,

(11.36)
where Σ(t, α) and [Σ(t, α)Σ

′
(t, α)]ıı are given by (11.12) and (11.15), re-

spectively. In addition, similar to the estimates for the term on the third
line of (11.31),

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
t+s∑

lδε=t

[fy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)

−fy(lδε, y
ε,ı
lnε

, αε
lnε

)]
lnε+nε−1∑

k=lnε

εcı(εk, αε
k) → 0,

(11.37)
as ε → 0 and

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
t+s∑

lδε=t

[fyy(lδε, y
ε,ı,+
lnε

, αε
lnε+nε

)

−fyy(lδε, y
ε,ı
lnε

, αε
lnε

)][yε,ı
lnε+nε

− yε,ı
lnε

]2 → 0.

(11.38)
Similar to (11.37) and (11.38), as ε → 0,

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))
[ t+s∑

lδε=t

[fy(lδε, y
ε,ı
lnε

, αε
lnε+nε

)

−fy(lδε, y
ε,ı
lnε

, αε
lnε

)]
lnε+nε−1∑

k=lnε

√
εσıj(εk, αε

k)ξj
k

]
→ 0.

(11.39)
Combining the estimates obtained thus far and using (11.34) in conjunc-
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tion with (11.31), we arrive at

E

κ∏
j1=1

hj1(y
ε,ı(tj1), α

ε(tj1))α
ε(t + s)) − f(t, yε,ı(t), αε(t))]

→ E

κ∏
j1=1

hj1(y
ı(tj1), α(tj1))

×
∫ t+s

t

(( ∂

∂τ
+ Lı

)
f(τ, yı(τ), α(τ)) + Qf(τ, yı(τ), ·)(α(τ))

)
dτ.

(11.40)
Equation (11.40) together with (11.29) then yields the desired assertion.

The same method works for the proof of (Sε,0(·), αε(·)) to (S0(·), α(·)).
The argument is even simpler since no diffusion is involved. �

Proof of Corollary 11.5. Set

S̃ε(·) = (Sε,0(·), Sε,1(·), . . . , Sε,d(·))′.

Theorems 11.2 and 11.3 imply that

(S̃ε(·), αε(·)) converges weakly to (S̃(·), α(·)) = (S0(t), . . . , Sd(t), α(·))
that satisfies

dS̃(t) =
(

r(t, α(t)) 0
0 diag(b

1
(t, α(t)), . . . , b

d
(t, α(t))

)
S̃(t)dt

+
(

0 0
0 Σ(t, α(t))diag(dw1(t), . . . , dwd(t))

)
S̃(t).

(11.41)
Recall that uε(t) = uε

k = (N1(εk)Sε,1(t), . . . , Nd(εk)Sε,d(t)) for t ∈
[εk, εk + ε). The weak convergence of (Sε,1(·), . . . , Sε,d(·)) yields that uε(·)
converges weakly to u(·) with u(t) = (N1(t)S1(t), . . . , Nd(t)Sd(t)). As a
consequence, xε(·) converges weakly to x(·), which satisfies (11.17). This
also implies (x(·), u(·)) ∈ Ā. Finally, the interpolation of xε

k, the weak con-
vergence of xε(·) to x(·), the Skorohod representation (without changing
notation), and the dominated convergence theorem lead to (11.19). There-
fore, associated with a discrete-time problem (11.5) there is a continuous-
time counterpart (11.18) that serves as a limit problem in the sense of
Corollary 11.5. �

Proof of Theorem 11.6. In view of the construction of ũε(·) in (11.20),
the weak convergence argument as in the proof of Theorem 11.3 yields that
ũε(·) converges weakly to uo(·), and (xε(·), ũε(·), αε(·)) converges weakly
to (x(·), uo(·), α(·)). Then Jε(x0, �0, ũ

ε(·)) → J(x0, i0, u
o(·)) = v(x0, i0) as

ε → 0. Therefore, Jε(x0, �0, ũ
ε(·)) = v(x0, i0) + ∆1(ε), where ∆1(ε) → 0 as

ε → 0. Select an admissible control ûε(·) ∈ Aε such that

Jε(x0, �0, û
ε(·)) ≤ vε(x0, �0) + ε.
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Define

u(t, x, α) =
l0∑

i=1

ûε(t, x, i)I{α∈Mi},

set xε
k as in (11.4) but with αε

k replaced by αε
k, and let xε(·) and uε(·) be

the piecewise constant interpolations of xε
k and u(εk, xε

k, αε
k), respectively.

Then Jε(x0, �0, u
ε(·)) = E[xε(T ) − z]2. Similar to the argument used in

Chapter 10, using the mean squares estimate for the occupation measure
(see Chapter 6), the wealth equation (11.4), the definition of xε

k, and Gron-
wall’s inequality, we can show that E|xε(t) − xε(t)|2 → 0 as ε → 0 for
t ∈ [0, T ]. This implies that

Jε(x0, �0, u
ε(·)) ≤ Jε(x0, �0, û

ε(·)) + ∆2(ε)

≤ vε(x0, �0) + ε + ∆2(ε),
(11.42)

where ∆2(ε) → 0 as ε → 0. The tightness of (xε(·), uε(·), αε(·)) implies that
we can extract a convergent subsequence, still denoted by (xε(·), uε(·), αε(·))
for simplicity, such that Jε(x0, �0, u

ε(·)) → J(x0, i0, u(·)). It follows that

v(x0, i0) ≤ J(x0, i0, u(·)) = Jε(x0, �0, u
ε(·)) + ∆3(ε), (11.43)

where ∆3(ε) → 0 as ε → 0. Combining (11.42) and (11.43),

vε(x0, �0) ≤ Jε(x0, �0, ũ
ε(·))

= v(x0, i0) + ∆1(ε)

≤ J(x0, i0, u(·)) + ∆1(ε)

= Jε(x0, �0, u
ε(·)) + ∆1(ε) + ∆3(ε)

≤ vε(x0, �0) + ε + ∆1(ε) + ∆2(ε) + ∆3(ε).

(11.44)

Subtracting vε(x0, �0) from (11.44) and taking the limit as ε → 0, we arrive
at (11.21). �

11.7 Notes

Concerning the hybrid mean-variance control problem, there have been con-
tinuing efforts in extending portfolio selection from the single-period model
to multi-period or continuous-time models. Much of the research work on
dynamic portfolio selections focused on maximizing expected utility func-
tions of the terminal wealth, which is in spirit different from the origi-
nal Markowitz’s model. For the continuous-time cases, the mean-variance
hedging problem was studied by Duffie and Richardson [51] and Schweizer
[133], where optimal dynamic strategies were sought to hedge contingent
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claims in an imperfect market based on the so-called projection theorem.
More recently, using the stochastic linear-quadratic (LQ) theory developed
in Chen, Li, and Zhou [35] and Yong and Zhou [170], Zhou and Li [185]
introduced a stochastic LQ control framework to study the continuous-
time version of Markowitz’s problem. Within this framework, they derived
closed-form efficient policies (in the Markowitz sense) along with an explicit
expression of the efficient frontier. For some of the recent development on
multi-period, discrete-time Markowitz’s portfolio selection problems, see Li
and Ng [102], in which efficient strategies were derived together with the
efficient frontier.

The switching mean-variance models have been mainly used in the lit-
erature in dealing with options; see Barone-Adesi and Whaley [10], and Di
Masi, Kabanov, and Runggaldier [47]. An investment-consumption model
with regime switching was studied in Zariphopoulou [171]. More recently,
in Zhou and Yin [186], the continuous-time version of Markowitz’s mean-
variance portfolio selection with regime switching was treated where effi-
cient portfolios and the efficient frontier were derived explicitly. The results
presented here are based on Yin and Zhou [169]. The main techniques used
are the weak convergence methods and martingale averaging; see Ethier
and Kurtz [55] and Kushner [96]. There has been a growing interest in
solving problems in financial engineering using Markov-modulated models.
The recent work of Zhang [176] treated an optimal stock selling rule for a
Markov-modulated Black-Scholes model; it showed that an optimal liqui-
dation rule can be obtained via optimal threshold levels by solving a set
of two-point boundary value problems. The subsequent work of Yin, Liu,
and Zhang [157] provided an enticing alternative using stochastic approxi-
mation methods.



12
Production Planning

12.1 Introduction

This chapter is concerned with near-optimal production planning for a
class of discrete-time manufacturing problems. Specifically, we consider a
manufacturing system consisting of a number of machines that produce a
number of parts. Assuming that the machines are subject to breakdown
and repair and that the capacity of the machines is a finite-state Markov
chain, our objective is to choose the production rates over time to minimize
a cost function. A commonly used machinery in solving control problems
is the dynamic programming (DP) approach, which leads to a system of
DP equations corresponding to the Markovian states. Optimal control can
be obtained by solving the systems of equations. Since the state spaces of
the Markov chains in these manufacturing systems are often very large, a
large number of DP equations have to be solved, which is often computa-
tionally infeasible. To resolve this problem, using time-scale separation, we
introduce a small parameter in the underlying Markov chain to reflect the
different rates of changes of different states, resulting in a two-time-scale
formulation.

In this chapter, we first decompose the state space of the underlying
Markov chain into a number of recurrent classes and a group of transient
states according to their different jump rates. We then aggregate the states
and replace the original system with its “average.” Under suitable scaling,
we obtain a limit control system that has fewer DP equations to be solved.
As in Chapter 10, although the original problem is in discrete time, its limit
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problem is a continuous time one. By using optimal controls of the limit
system, we construct controls and show their near optimality.

The rest of the chapter is organized as follows. In the next section, we set
up the problem, derive basic properties of the value functions, and present
the corresponding limit problem. Using these results, we demonstrate that
the value function of the original problem converges to that of the limit
problem, construct a near-optimal control policy using the solution of the
limit problem, and verify its near optimality. A simple example is provided
in Section 12.3 for illustration. Proofs of results are given in Section 12.4.
The chapter concludes with some discussions in Section 12.5.

12.2 Main Results

Consider a manufacturing system consisting of a number of machines and
producing several types of products. The machines are failure-prone. That
is, they are subject to breakdown and repair. For simplicity, we impose no
conditions on internal buffers.

Let xn ∈ R
n1 be the surplus (inventory/shortage) and un ∈ Γ ⊂ R

n2

the rate of production. Let {αε
n : n ≥ 0} be a finite-state Markov chain

with state space M and transition matrix P ε = (pε,ij) ∈ R
m0×m0 , where

P ε = P + εQ with P given in (6.3) and the corresponding M = M1 ∪
M2 ∪ · · · ∪ Ml0 ∪ M∗.

The discrete-time control system is governed by

xn+1 = xn + ε(A(αε
n)un + B(αε

n)), x0 = x, n = 0, 1, . . . , (12.1)

where A(α) ∈ R
n1×n2 and B(α) ∈ R

n1×1, for each α ∈ M.
Let u. = {u0, u1, . . .} be the control sequence, and

Jε(x, α, u.) = E

[ ∞∑
n=0

(1 − ρε)nεG(xn, αε
n, un)

∣∣∣x0 = x, αε
0 = α

]
(12.2)

be the cost function, where ρ > 0 is a constant and G(x, α, u) is the running
cost function.

Our objective is to choose u. to minimize Jε. We use the dynamic pro-
gramming approach to resolve the problem. Let vε(x, α) be the value func-
tion, i.e., v(x, α) = infu. J

ε(x, α, u.). The associated system of DP equations
is given by

vε(x, α) = min
u∈Γ

{
εG(x, α, u) + (1 − ρε)

×
∑

β∈M
pε,αβvε(x + ε(A(α)u + B(α)), β)

}
.

(12.3)
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For each x, let u∗(x, α) denote the minimizer of the right-hand side of
(12.3). Then u∗(x, α) is optimal; see Bertsekas [13].

For typical manufacturing systems, the number of elements in M is large,
so is the number of equations in (12.3). It is therefore computationally
intensive to solve these equations. In the rest of the chapter, we study an
approximate optimal scheme that requires solving simpler problems and
yields near optimal controls. Let us give two examples as special cases to
the general model.

Example 12.1 (Single-machine System). Consider a production system
with one machine producing one part type. Let cε

n ∈ {0, 1} denote the
machine state where 1 means the machine is up with maximum capacity
1 and 0 means that the machine is down. Use zε

n ∈ {z1, z2} to denote the
part demand rate. The system is given by

xn+1 = xn + ε(cε
nun − zn), x0 = x. (12.4)

In this case, n1 = n2 = 1, A(c, z) = c, B(c, z) = −z, Γ = [0, 1], and

M = {(1, z1), (1, z2), (0, z1), (0, z2)}.

Example 12.2 (Two-machine Flowshop). Let xn = (x1
n, x2

n)′ be the sur-
plus of the first machine and second machine and let cε,1 ∈ {0, 1} and
cε,2 ∈ {0, 1} be the capacity processes. Then αε

n = (cε,1
n , cε,2

n ) ∈ M with

M = {(0, 0), (0, 1), (1, 0), (1, 1)}.

The system is given by

xn+1 = xn + ε(A(cε,1
n , cε,2

n )un + B(cε,1
n , cε,2

n )),

with un = (u1
n, u2

n) ∈ Γ = [0, 1] × [0, 1] and

A(c1, c2) =

⎛⎝ c1 c2

c2 0

⎞⎠ and B(c1, c2) =

⎛⎝ 0

−z

⎞⎠ , for all (c1, c2) ∈ M.

Next, let us make the following assumptions, which indicates G(x, α, u)
verifies a Lipschitz-like condition in the x variable, and G(x, α, u) has at
most polynomial growth rate in x. This condition will be used throughout
the chapter.

(A12.1) For each α ∈ M, G(x, α, u) is jointly convex in (x, u) and in
addition,

|G(x, α, u) − G(y, α, u)| ≤ K(1 + |x|κ + |y|κ)|x − y|,
for some positive constants K and κ. Moreover,

0 ≤ G(x, α, u) ≤ K(1 + |x|κ).
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Lemma 12.3. There exists a constant K, independent of ε and α such
that for all x and y,

|vε(x, α) − vε(y, α)| ≤ K(1 + |x|κ + |y|κ)|x − y|.

Properties of Value Functions. Next, we derive basic properties of the
value functions. These results are needed for convergence of value functions.

Lemma 12.4. If there exists a subsequence of ε → 0 (still denoted by ε
for simplicity) such that vε(x, α) → v0(x, α) for α ∈ M, the following
assertions hold:

(a) For α ∈ Mk, the limit function v0(x, α) depends only on k, i.e.,
v0(x, α) = v(x, k) for some function v(x, k).

(b) For j = 1, . . . , m∗, denote the limit of vε(x, s∗j) (i.e., v0(x, s∗j)) by
v(x, ∗j) and write v(x, ∗) = (v(x, ∗1), . . . , v(x, ∗m∗))′. Then

v(x, ∗) = a1v(x, 1) + · · · + al0v(x, l0), (12.5)

where v(x, i), for i = 1, . . . , l0, is given in Part (a).

Limit Problem. Now we show that there exists a limit problem as ε → 0,
which is a continuous-time control problem. The limit problem is simple to
solve. From the optimal controls of the limit problem, we can construct con-
trols for the original problem. We will show that such constructed controls
are nearly optimal.

Let Γ0 denote the control points consisting of U = (U1, . . . , U l0) with
Uk = (uk1, . . . , ukmk) and ukj ∈ Γ. Define the running cost function for
the limit problem as

G(x, k, Uk) =
mk∑
j=1

νkjG(x, skj , u
kj).

Moreover, define

F (x, k, U) =
mk∑
j=1

νkj(A(skj)ukj + B(skj)).

Note that F (x, k, U) depends only on Uk, i.e., F (x, k, U) = F (x, k, Uk).
The DP equation for the limit problem has the following form:

ρv(x, k) = min
Uk

{
G(x, k, Uk) +

(
∂v(x, k)

∂x

)
· F (x, k, Uk) + Q∗v(x, ·)(k)

}
.

(12.6)
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Let α(t) ∈ M = {1, 2, . . . , l0} be the Markov chain generated by Q∗ given
in (6.16). Consider a class of controls A0,

A0 :=
{

U(t) = (U1(t), · · · , U l0(t)) ∈ Γ0 :

U(t) is progressively measurable w.r.t. σ{α(s) : s ≤ t}
}

.

The corresponding limit control problem is

P0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: J(x, k, U(·)) = E

∫ ∞

0
e−ρtG(x(t), α(t), U(t))dt,

subject to:
dx(t)

dt
= F (x(t), α(t), U(t)), t ≥ 0,

x0 = i, α(0) = k, U(·) ∈ A0,

value function: v(x, k) = inf
U(·)∈A0

J(x, k, U(·)).

Theorem 12.5. For each α ∈ Mk and k = 1, . . . , l0,

lim
ε→0

vε(x, α) = v(x, k), (12.7)

and for α = s∗j,

lim
ε→0

vε(x, ∗) = a1v(x, 1) + · · · + al0v(x, l0),

where vε(x, ∗) = (vε(x, s1∗), . . . , vε(x, sm∗∗)).

Asymptotic Optimality. We consider the asymptotic optimality of our
approximation scheme. Let

Uo(x) = (Uo,1(x), . . . , Uo,l0(x)) with

Uo,k(x) = (uo,k1(x), . . . , uo,kmk(x))
(12.8)

be an optimal control for the limit problem P0.

(A12.2) The cost function G(x, α, u) is twice differentiable with respect
to u such that

∂2G(x, α, u)
∂u2 ≥ c0I > 0,

for some constant c0, where (∂2/∂u2)G(x, α, u) denotes the Hes-
sian matrix of G(·) with respect to u. There exists a constant K
such that∣∣∣∣G(x + y, α, u) − G(x, α, u) −

〈
∂

∂x
G(x, α, u), y

〉∣∣∣∣
≤ K(1 + |x|κ)|y|2.
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Under (A12.1) and (A12.2), as in Yin and Zhang [158, Lemma 9.10], we
can show that

(a) v(x, k) is convex and continuously differentiable.

(b) Uo(x) satisfies

|Uo(x) − Uo(y)| ≤ K(1 + |x|κ + |y|κ)|x − y|, (12.9)

for some K > 0.

(c) Uo(x) is an optimal feedback control, i.e., U(t) = Uo(x(t)) ∈ A0 and
J(x, k, U(·)) = v(x, k).

Pick u∗ ∈ Γ. Construct a control for the original discrete-time control
problem

uε
n =

l0∑
i=1

mk∑
j=1

I{αε
n=sij}uo,ij(xn) +

m∗∑
j=1

I{αε
n=s∗j}u∗, (12.10)

where uo,ij(xn) is the optimal control of the limit problem defined in (12.8).
Let Jε(x, α) be the cost under this control, i.e.,

Jε(x, α) = Jε(x, α, uε).

Let S(r) be a ball with radius r and centered at the origin, i.e., S(r) =
{x ∈ R

n1 : |x|2 =
∑n1

j=1(x
j)2 ≤ r2}.

Lemma 12.6. Assume (A12.2). Then Jε(x, α) is locally uniformly contin-
uous, i.e., for each r > 0, given η > 0, there exists δ > 0 such that for
x, y ∈ S(r) and |x − y| < δ, we have

|Jε(x, α) − Jε(y, α)| < η,

for all ε > 0.

Theorem 12.7. The control uε is asymptotically optimal for the original
control system (12.1) and (12.2) in the sense that

lim
ε→0

|Jε(x, α, uε) − vε(x, α)| = 0, for all α ∈ M. (12.11)

12.3 Examples

We continue our study of Example 12.1. Our objective is to choose a control
u to minimize the surplus costs

Jε(x, α, u) = E

∞∑
n=0

(1 − ρε)nε
(
c+x+

n + c−x−
n

)
,
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where c+ and c− are positive constants, x+ = max{0, x}, and x− =
max{0,−x}.

Consider the case in which the demand fluctuates more rapidly than the
capacity process. In this case, zε

n is the fast-changing process, and cε
n = cn

is the slowly varying capacity process being independent of ε. The idea is
to derive a limit problem in which the fast-fluctuating demand is replaced
by its average. Thus one may ignore the detailed changes in the demand
when making an average production planning decision.

Let

M = {s11, s12, s21, s22} = {(1, z1), (1, z2), (0, z1), (0, z2)}.

Consider the transition matrix P ε given by

P ε =

⎛⎜⎜⎜⎜⎜⎜⎝
1 − λz λz 0 0

µz 1 − µz 0 0

0 0 1 − λz λz

0 0 µz 1 − µz

⎞⎟⎟⎟⎟⎟⎟⎠+ε

⎛⎜⎜⎜⎜⎜⎜⎝
−λc 0 λc 0

0 −λc 0 λc

µc 0 −µc 0

0 µc 0 −µc

⎞⎟⎟⎟⎟⎟⎟⎠,

where 0 < λz < 1 is the jump rate of the demand from z1 to z2 and
0 < µz < 1 is the rate from z2 to z1; λc and µc are the breakdown and
repair rates, respectively.

In this example,

Q∗ =

⎛⎝ −λc λc

µc −µc

⎞⎠ .

Moreover, the control set for the limit problem

{(u11, u12, 0, 0) : 0 ≤ u11, u12 ≤ 1},

since when cn = 0 the system is independent of the values of u21 and u22.
Furthermore, since G is independent of u, we have G = G. Therefore, the
system of equations in the limit problem P0 is given by

dx(t)
dt

= c(t)u(t) − z, x(0) = x,

where α(t) = c(t) is a Markov chain generated by Q∗, and z = ν11z1+ν12z2
with

(ν11, ν12) =
(

µz

λz + µz
,

λz

λz + µz

)
.

Theorem 12.5 implies that vε(x, α) → v0(x, k), for α ∈ Mk, k = 1, 2.
Let

A1 =

⎛⎜⎝ −γ + µc

z

µc

z

− λc

1 − z

γ + λc

1 − z

⎞⎟⎠ .
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It is easy to see that A1 has two real eigenvalues, one greater than 0 and
the other less than 0. Let a− < 0 denote the negative eigenvalue of the
matrix A1 and define

x̃ = max
(

0,
1

a−
log

[
c+

c+ + c−

(
1 +

γz

λcz − (γ + µc + za−)(1 − z)

)])
.

The optimal control for P0 is given by

If c(t) = 0, uo(x) = 0, and

if c(t) = 1, uo(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x > x̃,

z, if x = x̃,

1, if x < x̃.

Let
Uo(x) = (uo,11(x), uo,12(x), uo,21(x), uo,22(x))

be the optimal control for P0. Note that (uo,11(x), uo,12(x)) corresponds
to c(t) = 1 and (uo,21(x), uo,22(x)) corresponds to c(t) = 0. Naturally,
(uo,21(x), uo,22(x)) = 0, since, when c(t) = 0, there should be no produc-
tion. When c(t) = 1, let ν11uo,11(x) + ν12uo,12(x) = uo(x). It should be
pointed out that in this case the solution (uo,11(x), uo,12(x)) is not unique.

Using uo,11(x) and uo,12(x), we construct a control for P0 as

uε
n = uε(xn, αε

n) = uε(xn, cε
n, zε

n),

where

uε(x, c, z) = I{c=1}
(
I{z=z1}uo,11(x) + I{z=z2}uo,12(x)

)
+I{c=0}

(
I{z=z1}uo,21(x) + I{z=z2}uo,22(x)

)
= I{c=1}

(
I{z=z1}uo,11(x) + I{z=z2}uo,12(x)

)
.

Note that in this example, the optimal control Uo(x) is not Lipschitz.
Therefore the conditions in Theorem 12.7 are not satisfied. However, noting
that

|xn − yn| = O(
√

nε + |x − y|),
where xn and yn satisfy (12.4). The foregoing implies

|Jε(x, α) − Jε(y, α)| = O(ε
1
4 + |x − y|).

As in Theorem 12.7, using Lemma 14.33, we can still show that the con-
structed control uε

n in (12.10) is asymptotically optimal.
One may also consider the case in which the capacity process changes

rapidly, whereas the random demand is relatively slowly varying. As in
the previous case, assume cε

n is the capacity process and zε
n = zn is the

demand. Using exactly the same approach, we may resolve this problem.
The discussion is analogous to the previous case; the details are omitted.
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12.4 Proofs of Results

Proof of Lemma 12.3. It suffices to show that

|vε(x, α) − vε(y, α)| ≤ K(1 + |x|κ + |y|κ)|x − y|, for all x, y ∈ R
n1 .

Given un, let xn and yn be the corresponding states with x0 = x and
y0 = y, respectively, i.e.,

xn+1 = xn + ε(A(αn)un + B(αn)), x0 = x,

yn+1 = yn + ε(A(αn)un + B(αn)), y0 = y.

Then, we have

xn+1 − yn+1 = xn − yn, n = 0, 1, . . .

Hence, xn − yn = x − y, for all n. Moreover, recall that un is bounded,
which implies there exists some K such that

|xn| ≤ |x| + Knε, |yn| ≤ |y| + Knε,

for all ε > 0 and n = 0, 1, . . . It reveals that

|Jε(x, α, u.) − Jε(y, α, u.)|

≤ E

∞∑
n=0

(1 − ρε)nε|G(xn, αn, un) − G(yn, αn, un)|

≤
∞∑

n=0

(1 − ρε)nεK|x − y|(1 + |xn|κ + |yn|κ)

= |x − y|E
∞∑

n=0

(1 − ρε)nεK(1 + |xn|κ + |yn|κ).

To complete the proof, it suffices to show

E

∞∑
n=0

(1 − ρε)nεK(1 + |xn|κ + |yn|κ)

is bounded. Note that
(|x| + |y|)κ

1 + |x|κ + |y|κ
is bounded. Therefore,

1 + |xn|κ + |yn|κ ≤ 1 + (|x| + Knε)κ + (|y| + Knε)κ

≤ K0(1 + |x|κ + |y|κ + K(nε)κ),
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for some K0. It remains to show that
∞∑

n=0

(1 − ρε)nε(nε)κ < ∞.

In fact, note that (1 − ρε) ≤ e−ρε. Let N be a number large enough such
that xκe−ρx ≤ e−ρx/2, for x ≥ N . Then we have

∞∑
n=0

(1 − ρε)nε(nε)κ ≤
	N/ε
−1∑

n=0

εK +
∞∑

n=	N/ε

ε−ρnε/2 ≤ K. �

Proof of Lemma 12.4. Given u ∈ Γ, we have, for α ∈ M,

ρεvε(x, α) ≤ εG(x, α, u)

+(1 − ρε)
(
vε(x + ε(A(α)u + B(α)), α) − vε(x, α)

)
+(1 − ρε)

∑
β∈M

(pε,αβ − δαβ)vε(x + ε(A(α)u + B(α)), β),

(12.12)
where δαβ = 1 if α = β and 0 otherwise. Using the hypothesis vε(x, α) →
v0(x, α) and sending ε → 0 in∑

β∈M
(pε,αβ − δαβ)v0(x, β) ≥ 0,

we obtain
P kvk(x) ≥ vk(x), for k = 1, . . . , l0,

where P k is the kth block transition matrix defined in (6.3), and vk(x) =
(v0(x, sk1), . . . , v0(x, skmk

))′. Now, the irreducibility of P k and Lemma 14.37
(in Appendix) imply that

v(x, k) := v0(x, sk1) = v0(x, sk2) = · · · = v0(x, skmk
).

This proves Part (a).
Next we establish Part (b). Let uε ∈ Γ be an optimal control. Then the

equality in (12.12) holds under uε. Sending ε → 0 in the last m∗ equations
leads to

P ∗,1v0,1 + · · · + P ∗,l0v0,l0 + (P ∗ − I)v(x, ∗) = 0,

where v0,k(x) = 1lmk
v(x, k). This yields

v(x, ∗) = −(P ∗ − I)−1(P ∗,1v0,1(x) + · · · + P ∗,l0v0,l0(x)).

In view of the definition of ai, we obtain

v(x, ∗) =
l0∑

i=1

−(P ∗ − I)−1P ∗,i1lmiv(x, i)

=
l0∑

i=1

aiv(x, i),
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which proves Part (b). �

Proof of Theorem 12.5. It suffices to show (12.7). By Lemma 12.3, for
each sequence of {ε → 0}, there exists a further subsequence (still indexed
by ε for notational simplicity) such that vε(x, α) converges. Denote the
limit by v0(x, α). Then by Lemma 12.4, v0(x, α) = v(x, k). That is, the
exact value of α is unimportant and only which subspace Mk it belongs to
matters.

Fix k = 1, . . . , l0. For any α = skj ∈ Mk, let v(x, k) be a limit of
vε(x, skj) for some subsequence of ε. Given x0, let a function φ(x, k) ∈
C1(Rn) such that v(x, k) − φ(x, k) has a strictly local maximum at x0 in a
neighborhood N(x0). Choose xε,kj ∈ N(x0) such that for each α = skj ∈
Mk,

vε(xε,kj , skj) − φ(xε,kj , k) = max
x∈N(x0)

{vε(x, skj) − φ(x, k)}.

Then it follows that xε,kj → x0 as ε → 0. Given ukj ∈ Γ, let

Xε,kj = xε,kj + ε(A(skj)ukj + B(skj)).

Then Xε,kj ∈ N(x0) for ε small enough. We have

ρvε(xε,kj , skj) ≤ G(xε,kj , skj , u) +
(

1 − ρε

ε

)(
v(Xε,kj , skj) − vε(xε

kj , skj)
)

×
(

1 − ρε

ε

) ∑
β∈M

(pε,skjβ − δskjβ)vε(Xε,kj , β).

(12.13)
Noting the definition of xε,kj , we have

vε(Xε,kj , skj) − φ(Xε,kj , k) ≤ vε(xε,kj , skj) − φ(xε,kj , k).

Recall, in addition, that vε → v and xε,kj → x0. It follows that as ε → 0,(
1 − ρε

ε

) mk∑
j=1

νkj
(
vε(Xε,kj , skj) − vε(xε,kj , skj)

)
≤

(
1 − ρε

ε

) mk∑
j=1

νkj
(
φ(Xε,kj , k) − φ(xε,kj , k)

)
→ ∂φ(x0, k)

∂x
·

mk∑
j=1

νkj(A(skj)ukj + B(skj)).

Note also that

vε(Xε,kj , skj1) − φ(Xε,kj , k) ≤ vε(xε,kj1 , skj1) − φ(xε,kj1 , k).
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We have

mk∑
j=1

νkj
mk∑

j1=1

(pk,skjskj1 − δskjskj1 )vε(Xε,kj , skj1)

=
mk∑
j=1

νkj

(
mk∑

j1=1

pk,skjskj1 vε(Xε,kj , skj1) − vε(Xε,kj , skj)

)

≤
mk∑
j=1

νkj
mk∑

j1=1

pk,skjskj1

(
(vε(xε,kj1 , skj1) − φ(xε,kj1 , k))

−(vε(Xε,kj , skj) − φ(Xε,kj , k))
)

= 0.

We have used the notation P k = (pk,skj ,skj1 ) to denote the kth transition
matrix in (6.3). Write (12.13) in vector form, multiply both sides by

ν =

⎛⎜⎜⎜⎜⎜⎜⎝
ν1

. . .

νl0

0m∗×m1 · · · 0m∗×ml
0m∗×m∗

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and use Lemma 12.4 to obtain that v(x, k) is a viscosity subsolution to
(12.6).

Similarly, v is also a viscosity supersolution to (12.6). Moreover, the
uniqueness of solution of (12.6) (see Theorem 14.27) implies that v(x, k) is
the value function for P0. Thus, for any subsequence of ε (indexed also by
ε), vε(x, α) → v0(x, k). The desired result thus follows. �

Proof of Lemma 12.6. Given x and y in R
n1 , let xn and yn be the

corresponding states

xn+1 = xn + ε

{
A(αn)

( l0∑
i=1

mk∑
j=1

I{αε
n=sij}uo,ij(xn)

+
m∗∑
j=1

I{αε
n=s∗j}u∗

)
+ B(αn)

}
,

and

yn+1 = yn + ε

{
A(αn)

( l0∑
i=1

mk∑
j=1

I{αε
n=sij}uo,ij(yn)

+
m∗∑
j=1

I{αε
n=s∗j}u∗

)
+ B(αn)

}
,
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with x0 = x and y0 = y. It follows that

xn+1 − yn+1 = xn − yn

+εA(αn)

(
l0∑

i=1

mk∑
j=1

I{αε
n=sij}(uo,ij(xn) − uo,ij(yn))

)
.

Let φn(x) = |xn − yn|. Then, for given T > 0 and n ≤ T/ε, we have, for
(x, y) ∈ S(r),

φn+1 ≤ φn + Kε(1 + |x|κ + |y|κ + Tκ)φn

≤ φn + Kε(1 + 2rκ + Tκ)φn,

with φ0 = |x − y|. This implies that

φn ≤ (1 + Kε)n|x − y|,

where T may depend on r and T . Moreover, recall that

G(xn, αn, un) ≤ K(1 + |xn|κ + (nε)κ),

G(yn, αn, un) ≤ K(1 + |yn|κ + (nε)κ).

We have

|Jε(x, α) − Jε(y, α)|

≤ E

	T/ε
−1∑
n=0

(1 − ρε)nε(1 + Kε)n|x − y|

+
∞∑

n=	T/ε

(1 − ρε)nεK(1 + |x|κ + |y|κ + (nε)κ)

= |x − y|O(e(K−ρ)T ) + O(e−ρT/2).

For any η > 0, choose T large enough such that O(e−ρT/2) < η/2 and
δ = ηO(e(K−ρ)T )/2. Then whenever |x − y| < δ, we have

|Jε(x, α) − Jε(y, α)| < η. �

Proof of Theorem 12.7. As in (12.3), we can show (see Bertsekas [13])
that Jε(x, α) satisfies

Jε(x, sij) = εG(x, sij , u
o,ij(x)) + (1 − ρε)

×
∑

β∈M
pε,sijβJε(x + ε(A(sij)uo,ij(x) + B(sij)), β).
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Jε(x, s∗j) = εG(x, s∗j , u
∗) + (1 − ρε)

×
∑

β∈M
pε,s∗jβJε(x + ε(A(s∗j)u∗ + B(s∗j)), β).

As in Lemma 12.4, we can show that if vε(x, α) → v0(x, α) for some se-
quence of ε, then the limit depends only on k for α ∈ Mk. It can be shown
similarly as in the proof of Theorem 12.5, together with Lemma 12.6, that
Jε(x, α) convergence to v0(x, k), for α ∈ Mk. Therefore,

|Jε(x, α) − vε(x, α)|
≤ |Jε(x, α) − v0(x, k)| + |v0(x, k) − vε(x, α)| → 0,

and the theorem is proved. �

12.5 Notes

This chapter focuses on approximation schemes for a class of discrete-time
production planning systems. It provides a systematic approach in reduc-
ing complexity of the underlying systems. The computation load is reduced
considerably than finding the optimal controls of the original problem di-
rectly. This is the most attractive feature of our approach. Furthermore,
the asymptotic optimality ensures that such an approximation is almost as
good as the optimal one for sufficiently small ε.

This chapter is based on the work of Zhang and Yin [184]. General ref-
erences on manufacturing systems can be found in the books by Gershwin
[61], Buzacott and Shanthikumar [28], Sethi and Zhang [136], and Sethi,
Zhang, and Zhang [135]. For structural properties of production policies,
see Akella and Kumar [3], Bielecki and Kumar [16], and Zhang and Yin
[178], among others. For manufacturing systems involving preventive main-
tenance, see Boukas [25] and Boukas and Haurie [26].



13
Stochastic Approximation

13.1 Introduction

This chapter is concerned with a class of stochastic approximation (SA)
problems with regime switching. Originating from discrete stochastic opti-
mization and time-varying parameter tracking, our study focuses on analyz-
ing the performance of the algorithm in which the time-varying parameter
process is a Markov chain.

One of the motivations of our study stems from the following discrete
stochastic optimization problem. Let S be a finite set. For convenience, let
S = {e1, e2, . . . , eS}, where ei, i = 1, 2, . . . , S, are the standard unit vectors
in R

S . Consider
min
y∈S

EJ(y), (13.1)

where the objective function J(·) is defined on S. One of the difficulties
in solving the minimization problem is that the notion of gradient of J
is not applicable since S consists of isolated points only. As a result, we
cannot use the gradient information to identify a descent search direction.
Let K ⊂ S denote the set of global minimizers for (13.1). If the expected
value in (13.1) could be calculated in closed form, one would use stochastic
integer programming methods to solve the problem. Nevertheless, EJ(y)
cannot be evaluated analytically and only {Jn(y)}, a sequence of indepen-
dent and identically distributed (i.i.d.) random variables (with finite second
moments), can be measured or simulated. To solve this discrete stochastic
optimization problem, Pflug [124, Chapter 5.3] designed a procedure based
on an exhaustive enumeration. It proceeds as follows: For each possible
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candidate y ∈ S, compute the sample average

Ĵn(y) =
1
n

n∑
l=1

Jl(y),

via simulation for large n, and pick y∗ = arg miny∈S Ĵn(y). By virtue of the
well-known strong law of large numbers, Ĵn(y) → EJ1(y) = EJ(y) w.p.1,
as n → ∞. This and the finiteness of S imply that as n → ∞,

arg min Ĵn(y) → arg min EJ(y) w.p.1. (13.2)

However, this procedure is inefficient since many unnecessary calculations
are wasted at those irrelevant (non-optimal) points. Recently, Andradottir
considered a combination of discrete stochastic optimization and random
search procedure in [5]. It begins with an assumption of stochastic ordering:
For each x, y ∈ S, there exists some random variable Y x,y that is used as
a measure to compare two points x and y (If Y x,y > 0, it is deemed that
y is better than x). Using Y x,y to decide the point to choose in the next
move generates a sequence of estimates recursively, which is essentially a
variation of the construction of the empirical measures. Effectively, the
algorithm generates a homogeneous Markov chain taking values in S that
spends more time at the global optimum than at any other points of S.

The essence is to design an algorithm that is both consistent (i.e., the
algorithm converges to the true parameter) and attractive to the minimum
(i.e., the iterates move toward the minimizer in each step). The one to be
examined in this chapter is a regime-switching stochastic approximation
algorithm. We analyze the performance of the algorithm, which is an op-
timization problem with the underlying parameter (minimum) being time
varying. Such algorithms are also useful in wireless communications and
blind multiuser detection. The algorithm uses a constant-step size, and up-
dates a sequence of occupation measures; we focus on tracking invariant
measures of Markovian parameters. Due to the limitation of tracking capa-
bility, in the traditional setup of tracking analysis of time-varying parame-
ters, it is often assumed that the magnitude of the parameter variations is
small (so the parameter is regarded as slowly varying). In the Markovian
setup, this small variation assumption may be violated. Here, we allow the
parameter to have discontinuity with large and infrequent jumps. Consider
a class of adaptive algorithms for tracking the invariant distribution of
a conditional Markov chain (conditioned on another Markov chain whose
transition probability matrix is “near” identity). We evaluate the track-
ing capability of the stochastic approximation algorithm in terms of mean
squares tracking error, mean system of switching ordinary differential equa-
tions (ODEs), and limit switching diffusions of associated scaled tracking
errors.

Contemporary theory of stochastic approximation relies heavily on the
so-called limit mean ODE, while the analysis of rates of convergence de-
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pends on a limit diffusion process. Such results are not applicable to the
tracking problems or discrete stochastic optimization. Due to the time-
varying nature and random jumps, one cannot use the classical SA tech-
niques to analyze the algorithms. Nevertheless, by a combined use of SA
methods and two-time-scale Markov chains, asymptotic properties of the
algorithm are obtainable.

First, using the perturbed Liapunov function methods of Kushner and
Yin [100], we derive mean squares type error bounds for the tracking error
based on stability analysis. With the mean squares estimates available, a
natural question would be whether an associated limit ODE can be derived
via the ODE methods as in the traditional analysis of stochastic approxima-
tion and stochastic optimization type algorithms. It turns out that standard
ODE method cannot be carried over due to the jump and the time-varying
nature of the current system. Nevertheless, a limit system can still be ob-
tained. Distinct from the traditional stochastic approximation results, the
limit system is no longer a single ODE but a system of ODEs modulated
by a continuous-time Markov chain. Such systems are referred to as ODEs
with regime switching. Based on the switching ODEs obtained, we further
examine a sequence of suitably normalized errors. Again, in contrast to the
classical stochastic approximation method, the limit is not a diffusion but
rather a system of diffusions with regime switching. In the system, the dif-
fusion coefficient depends on the modulating Markov chain, which reveals
the distinctive time-varying nature of the underlying systems and provides
insight into the Markov-modulated stochastic approximation problems.

The rest of the chapter is arranged as follows. Section 13.2 gives the
formulation of the problem. Section 13.3 presents the algorithm. Section
13.4 is concerned with a number of asymptotic properties of the algorithm.
We first obtain mean squares tracking error bounds, then proceed with
a weak convergence analysis for an interpolated sequence of the iterates;
further we examine a suitably scaled tracking error sequence of the iterates
and derive a switching diffusion limit. The detailed proofs and technical
development are in Section 13.5. Additional notes and remarks are included
in Section 13.6.

13.2 Problem Formulation

Let {αε
n} be a discrete-time Markov chain with finite state space

M = {z1, . . . , zm0}. (13.3)

We use the following conditions throughout the chapter. Condition (A13.1)
characterizes the time-varying parameter as a Markov chain with infrequent
transitions, while condition (A13.2) describes the observed signal.
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(A13.1) The transition probability matrix of αε
n is given by

P ε = I + εQ, (13.4)

where ε > 0 is a small parameter, I is an R
m0×m0 identity

matrix, and Q = (qij) ∈ R
m0×m0 is an irreducible generator

of a continuous-time Markov chain. For simplicity, the initial
distribution P (αε

0 = zi) = p0,i is independent of ε for each
i = 1, . . . , m0, where p0,i ≥ 0 and

∑m0
i=1 p0,i = 1.

(A13.2) Let {Xn} be an S-state conditional Markov chain (conditioned
on the parameter process). The state space of {Xn} is

S = {e1, . . . , eS}.

For each α ∈ M, A(α) = (aij(α)) ∈ R
S×S , the transition prob-

ability matrix of Xn, is defined by

aij(α) = P (Xn+1 = ej |Xn = ei, α
ε
n = α)

= P (X1 = ej |X0 = ei, α
ε
0 = α),

where i, j ∈ {1, . . . , S}. For each α ∈ M, the matrix A(α) is
irreducible and aperiodic.

Remark 13.1. The parameter ε in (13.4) is sufficiently small so that
the entries of the transition probability matrix are nonnegative. The main
idea is that although the true parameter is time varying, it is piecewise
constant. Moreover, due to the dominating identity matrix in (13.4), {αε

n}
varies infrequently in time. The time-varying parameter takes a constant
value zi for a random duration and jumps to another state zj with j = i
at random time. Note that µ′(α) (the transpose of the vector µ(α)) may
be written as ν(α) as elsewhere in this book. However, in the stochastic
approximation literature, one usually works with column vectors. Thus we
use the notation µ(α) throughout this chapter and also call it a stationary
distribution with a slight abuse of notation.

The assumptions on irreducibility and aperiodicity of A(α) imply that
for each α ∈ M, there exists a unique stationary distribution µ′(α) ∈ R

1×S

satisfying

µ′(α) = µ′(α)A(α), and µ′(α)1lS = 1,

where 1l	 ∈ R
	×1, with all entries being equal to 1. Our aim is to use a

stochastic approximation algorithm to track the time-varying distribution
µ′(αε

n) that depends on the underlying Markov chain αε
n.
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13.3 Algorithm

The adaptive algorithm is of LMS (least mean squares) type with constant
step size. We construct a sequence of estimates {µ̂n} for tracking the time-
varying distribution µ(αε

n)

µ̂n+1 = µ̂n + ∆(Xn+1 − µ̂n), (13.5)

where ∆ denotes the step size. The dynamics of the underlying parameter
αε

n, termed a hypermodel by Benveniste, Metivier, and Priouret [14], are
used in the analysis, but they do not explicitly enter the implementation
of algorithm (13.5).

In what follows, we first derive a mean squares error bound. Then we
proceed with the examination of an interpolated sequence of the iterates.
Next, we derive a limit result for a scaled sequence. These three steps are
realized in the following section.

13.4 Asymptotic Properties

This section presents several results regarding asymptotic properties of the
SA algorithm under consideration. It is divided into three parts. The first
part establishes a mean squares estimate for E|µ̂n − µ(αε

n)|2. The second
part derives a limit system of the corresponding switching ODEs. The third
part obtains a system of switching diffusions for a suitably scaled sequence
of tracking errors. Main results are presented here, whereas the proofs are
given in the next section. Throughout the rest of the chapter, we often need
to use the notion of fixed-α processes. Given T , by a fixed-α process Xj(α)
for n ≤ j ≤ T/ε, we mean a process in which αε

j = α is fixed for all j with
n ≤ j ≤ T/ε.

13.4.1 Mean Squares Error
Analyzing SA algorithms often requires using Liapunov type functions to
prove stability; see Chen [34], and Kushner and Yin [100]. In what follows,
we obtain the desired estimate via a stability argument using the perturbed
Liapunov function method [100]. Use En to denote the conditional expec-
tation with respect to

Hn, the σ-algebra generated by {Xk, αε
k : k ≤ n}. (13.6)

Theorem 13.2. Assume (A13.1) and (A13.2). In addition, suppose that
ε2 � ∆ (i.e., ε2/∆ → 0 as ∆ → 0). Then for sufficiently large n,

E|µ̂n − Eµ(αε
n)|2 = O(∆ + ε + ε2/∆). (13.7)
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Remark 13.3 By “for sufficiently large n, (13.7) holds” we mean that
there is an n0 such that for all n ≥ n0, the bound (13.7) holds. Note that
µ̂n are column vectors taking values in R

S×1.
In view of Theorem 13.2, to enable the adaptive algorithm to track the

time-varying parameter, the ratio ε/∆ cannot be too large. Given the order
of magnitude estimate O(∆ + ε + ε2/∆), to balance the two terms ∆ and
ε2/∆, we need to choose ε = O(∆). Therefore, we obtain the following
result.

Corollary 13.4. Under the conditions of Theorem 13.2, if ε = O(∆), then
for sufficiently large n, E|µ̂n − Eµ(αε

n)|2 = O(∆).

13.4.2 Limit Switching ODEs
Our objective in this section is to derive a limit system for an interpo-
lated sequence of the iterates. In the literature, a usual assumption used
for the step size of a tracking algorithm is that ε = o(∆), which means
that the true optimum (time-varying parameter) evolves at a much slower
rate than the adaptation speed of the stochastic recursive algorithm. How-
ever, applications such as those arising from CDMA (code division multiple
access) systems require taking into consideration of algorithms with step
size ε = O(∆). As can be expected, the analysis for the case of ε = O(∆)
is much more difficult. In the rest of this chapter, we consider the case
ε = O(∆). For ease of presentation, we choose ε = ∆ for simplicity hence-
forth. To proceed, we first examine the asymptotics of the Markov chain,
which is essentially an application of the results in Chapter 6. Then we
study interpolated sequence of the iterates. The proofs of the results are
postponed until Section 13.4.

Limit of the Modulating Markov Chain

Consider the Markov chain αε
n. Regarding the probability vector and the

n-step transition probability matrix, we have the following approximation
results.

Proposition 13.5. Assume (A13.1). Choose ε = ∆ and consider the
Markov chain α∆

n . Then the following assertions hold:

(a) Denote p∆
n = (P (α∆

n = z1), . . . , P (α∆
n = zm0)). Then

p∆
n = z̃(t) + O(∆ + e−k0t/∆), z̃(t) ∈ R

1×m0 ,

dz̃(t)
dt

= z̃(t)Q, z̃(0) = p0,

(P∆)n = Z̃(t) + O(∆ + e−k0t/∆),
dZ̃(t)

dt
= Z̃(t)Q, Z̃(0) = I.

(13.8)
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(b) Define the continuous-time interpolation of α∆
n by α∆(t) = α∆

n if
t ∈ [n∆, n∆ + ∆). Then α∆(·) converges weakly to α(·), which is a
continuous-time Markov chain generated by Q.

Tightness of Interpolated Iterates

For 0 < T < ∞, we construct a sequence of piecewise constant interpolation
of the iterates µ̂n as

x∆(t) = µ̂n, t ∈ [∆n, ∆n + ∆). (13.9)

The process x∆(·) so defined is in D([0, T ]; RS), which is the space of func-
tions defined on [0, T ] taking values in R

S that are right continuous, have
left limits, and are endowed with the Skorohod topology. We use weak con-
vergence methods to carry out the analysis. First a tightness result is given
in the following lemma.

Lemma 13.6 Under conditions (A13.1) and (A13.2), {x∆(·)} is tight in
D([0, T ]; RS).

Characterization of the Limit

Consider the pair of processes (x∆(·), α∆(·)). This sequence is tight in
D([0, T ]; RS ×M) for T > 0, by virtue of Lemma 13.6 and Proposition 13.5.
It follows from Prohorov’s theorem that we can extract a convergent sub-
sequence, and still index the subsequence by ∆ for notational simplicity.
Denote the limit of the subsequence by x(·). By virtue of the Skorohod
representation (with a slight abuse of notation), we may assume that x∆(·)
converges to x(·) w.p.1 and the convergence is uniform on any compact set.
We proceed to characterize the limit x(·). The result is stated in the follow-
ing theorem. Unlike the usual SA approach, the limit is not a deterministic
ODE but rather a system of ODEs modulated by a continuous-time Markov
chain.

Theorem 13.7. Under conditions (A13.1) and (A13.2), (x∆(·), α∆(·))
converges weakly to (x(·), α(·)), which is a solution of the following sys-
tem of switching ODEs

d

dt
x(t) = µ(α(t)) − x(t), x(0) = µ̂0. (13.10)

Remark 13.8. The system (13.10) is different from the existing literature
on stochastic approximation methods. For SA algorithms, the ODE meth-
ods (see Ljung [106] and Kushner and Clark [98]) are now standard and
widely used in various applications. The rationale is that the discrete iter-
ations are compared with the continuous dynamics given by a limit ODE.
The ODE is then used to analyze the asymptotic properties of the recursive
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algorithms. Dealing with tracking algorithms for time-varying systems, one
may sometimes obtain a non-autonomous differential equation, but the sys-
tems are still purely deterministic. Unlike those mentioned above, the limit
dynamic system in Theorem 13.7 is only piecewise deterministic due to the
underlying Markov chain. In lieu of one ODE, we have a number of ODEs
modulated by a continuous-time Markov chain. In any given instance, the
Markov chain dictates which regime the system belongs to, and the corre-
sponding system then follows one of the ODEs until the modulating Markov
chain jumps into a new location, which explains the time-varying nature of
the systems under consideration.

13.4.3 Switching Diffusion Limit
Define {vn}, a suitably scaled sequence of tracking errors, and its continuous-
time interpolation v∆(·) by

vn =
µ̂n − Eµ(α∆

n )√
∆

, for n ≥ n0,

v∆(t) = vn for t ∈ [n∆, n∆ + ∆),
(13.11)

respectively, where n0 is given in Theorem 13.2 (see Remark 13.3). It follows
immediately from Theorem 13.2, {vn} is tight.

By virtue of Proposition 13.5,

Eµ(α∆
n ) = µ(∆n) + O(∆ + e−k0n), (13.12)

where

µ(∆n) def=
m0∑
i=1

z̃i(∆n)µ(zi),

and z̃i(t) is the ith component of z̃(t) given in Proposition 13.5. By (A13.1),
{α∆

n } is a Markov chain with stationary (time-invariant) transition proba-
bilities. In view of (13.5),

vn+1 = vn −∆vn +
√

∆(Xn+1 −Eµ(α∆
n ))+

E[µ(α∆
n ) − µ(α∆

n+1)]√
∆

. (13.13)

Our task in what follows is to figure out the asymptotic properties of v∆(·).
We aim to show that it leads to a switching diffusion limit via martingale
problem formulation.

Truncation and Tightness

According to the definition (13.11), {vn} is not a priori bounded. A con-
venient way to circumvent this difficulty is to use a truncation device. Let
N > 0 be a fixed but otherwise arbitrary real number, BN (z) = {z ∈ R

S :



13.4 Asymptotic Properties 293

|z| ≤ N} be the spheres with radius N , and τN (z) be a smooth function
satisfying

τN (z) =
{

1, if |z| ≤ N ,
0, if |z| ≥ N + 1.

Note that τN (z) is “smoothly” connected between the sphere BN and
BN+1. Now define

vN
n+1 = vN

n − ∆vN
n τN (vN

n ) +
√

∆(Xn+1 − Eµ(α∆
n ))

+
E[µ(α∆

n ) − µ(α∆
n+1)]√

∆
,

(13.14)

and define v∆,N (·) to be the continuous-time interpolation of vN
n . It then

follows that

lim
k0→∞

lim sup
∆→0

P ( sup
0≤t≤T

|v∆,N (t)| ≥ k0) = 0 for each T < ∞

and that v∆,N (·) is a process that is equal to v∆(·) up until the first exit
from BN , and hence an N -truncation process of v∆(·) (see Definition 14.15).
To proceed, we work with {v∆,N (·)} and derive its tightness and weak
convergence first. Then, we let N → ∞ to conclude the proof.

Lemma 13.9. Under Conditions (A13.1) and (A13.2), {v∆,N (·)} is tight
in D([0, T ]; RS) and the pair {v∆,N (·), α∆(·)} is tight in D([0, T ]; RS ×M).

Representation of Covariance

The results to follow, Lemma 13.10 and Corollary 13.12 for the switch-
ing diffusion limit, require representation of the covariance of the condi-
tional Markov chain {Xk}. This is worked out via the use of a fixed-α
process Xk(α) (see also Section 13.4, in particular (13.59)). That is, for
any integer m ≥ 0 satisfying m ≤ k ≤ O(1/∆), with αε

k fixed at α,
Xk+1(α) is a “fixed-α” process (a finite-state Markov chain with 1-step ir-
reducible transition matrix A(α) and stationary distribution µ′(α)). Thus
Example 14.11 implies that {Xk+1(α)−EXk+1(α)} is a φ-mixing sequence
with zero mean and exponential mixing rate, and hence it is strongly er-
godic. As will be seen in Section 13.4, specifically, (13.59), Xk+1 − EXk+1
can be approximated by a fixed-α process Xk+1(α) − EXk+1(α). Taking
n = n∆ ≤ O(1/∆), as ∆ → 0, n → ∞, and for m = 1, 2, . . ., the strong
ergodicity implies

1
n

n+m−1∑
k1=m

n+m−1∑
k=m

(Xk+1(α) − EXk+1(α))(Xk1+1(α) − EXk1+1(α))′

→ Σ(α) w.p.1,
(13.15)
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where Σ(α) is an S×S deterministic matrix and the corresponding expected
value

E

(
1
n

n+m−1∑
k1=m

n+m−1∑
k=m

(Xk+1(α) − EXk+1(α))(Xk1+1(α) − EXk1+1(α))′
)

→ Σ(α).
(13.16)

Note that (13.15) is a consequence of φ-mixing and strong ergodicity, and
(13.16) follows from (13.15) by means of dominated convergence theorem.
Clearly, Σ(α) is symmetric and nonnegative definite.

Weak Limit via Martingale Problem Solution

To obtain the desired weak convergence result, we first work with the trun-
cated processes (v∆,N (·), α∆(·)). By virtue of the tightness and Prohorov’s
theorem, we can extract a weakly convergent subsequence (still denoted by
(v∆,N (·), α∆(·)) for simplicity) with limit (vN (·), α(·)). We will show that
the limit is a switching diffusion.

To proceed with the diffusion approximation, similar to the proof of The-
orem 13.7, we will use the martingale problem formulation to derive the
desired result. For v ∈ R

S , α ∈ M, and any twice continuously differ-
entiable function f(·, α) with compact support, consider the operator L
defined by

Lf(v, α) = −f ′
v(v, α)v +

1
2
tr[fvv(v, α)Σ(α)] + Qf(v, ·)(α), (13.17)

where Σ(α) is given by (13.16), and fvv(v, α) denotes (∂2/∂vi∂vj)f(v, α),
the mixed second-order partial derivatives.

Lemma 13.10. Assume that the conditions of Lemma 13.9 are satisfied.
In addition, assume that (v∆,N (0), α∆(0)) converges to (vN (0), α(0)). Then
(v∆,N (·), α∆(·)) converges weakly to (vN (·), α(·)), which is a solution of the
martingale problem with operator LN given by

LNf(v, α) = −f ′
v(vN , α)vNτN (vN ) +

1
2
tr[fvv(vN , α)Σ(α)] + Qf(vN , ·)(α),

(13.18)
or equivalently vN (·) satisfies

dvN (t) = −vN (t)τN (vN (t))dt + Σ1/2(α(t))dw, (13.19)

where w(·) is a standard S-dimensional Brownian motion, and Σ(α) is
given by (13.16).

Remark 13.11. Note that (v∆,N (0), α∆) = (vn0 , α
∆
n0

). Theorem 13.2 im-
plies that vn0 is tight. In addition, α∆(·) converges weakly to α(·). In the
above, we simply assume the weak limit is (vN (0), α(0)).
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Corollary 13.12. Under the conditions of Lemma 13.10, the untruncated
process (v∆(·), α∆(·)) converges weakly to (v(·), α(·)), satisfying the switch-
ing diffusion equation

dv(t) = −v(t)dt + Σ1/2(α(t))dw. (13.20)

Combining Lemmas 13.9 and 13.10 and Corollary 13.12, we obtain the
following result.

Theorem 13.13. Assume that conditions (A13.1) and (A13.2) are satis-
fied. Then (v∆(·), α∆(·)) converges weakly to (v(·), α(·)), which is the solu-
tion of the martingale problem with operator defined by (13.17) or equiva-
lently, it is the solution of the system of diffusions with regime switching
(13.20).

Occupation Measures for Hidden Markov Model

So far, we have focused on recursive estimations of the occupation measure
µ(α∆

n ) given the conditional Markov sequence {Xn}. The results obtained
can be extended to the hidden Markov models (HMMs), where the process
{Xn} cannot be observed and only noise-corrupted observation {Yn} is
available with

Yn = Xn + ζn. (13.21)

Assume that {ζn} satisfies the standard noise assumptions of a hidden
Markov model (see for example, Krishnamurthy and Yin [90]), i.e., it is an
i.i.d. noise process independent of Xn and α∆

n . Then given {Yn}, to estimate
µ(α∆

n ) recursively, a modified version of the LMS algorithm (13.5) can be
used, which requires the replacement of Xn+1 in algorithm (13.5) by Yn+1.
The mean squares error analysis and switching ODE and switching diffusion
results of the previous sections carry over. As a result, the following theorem
holds.

Theorem 13.14. Consider algorithm (13.5), where Xn+1 is replaced by
the HMM observation Yn+1 defined in (13.21). Assume that (A13.1) and
(A13.2) hold, that {ζn} is a sequence of i.i.d. random variables with zero
mean and E|ζ1|2 < ∞, and that {ζn} is independent of {Xn} and {α∆

n }.
Then the conclusions of Theorems 13.2, 13.7, and 13.13 continue to hold.

13.4.4 Probability Error Bounds
To estimate probabilities of tracking errors, we may use the asymptotic
results to obtain bounds on

P (|µ(α∆
n ) − µ̂n| ≥ K0), (13.22)

for sufficiently large n and some K0 > 0. In view of (13.20), the leading
negative term −v(t) will ensure the stability of the system. Since for large
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n, the process vn is a Gaussian mixture and the limiting process v(t) is
a switching diffusion, it is difficult to compute the desired probabilities.
Nevertheless, certain approximation can be carried out. We exploit this
idea below.

By virtue of an argument from Kushner and Yin [100, p. 323], the co-
variance of the switching diffusion is given by

Ev(t)v′(0) = E

(∫ t

−∞
e−(t−s)Σ(α(s))dw(s)

∫ 0

−∞
e−sΣ(α(s))dw(s)

)′
.

However, since it is a Gaussian mixture, the covariance is not easy to
compute, although some Monte Carlo techniques can be used to assist the
computation due to the Markov chain. Thanks to the asymptotic distribu-
tion, for n large enough, vn can be approximated by a normal distribution
with mean 0 and appropriate stationary covariance.

To exploit this further, we proceed to obtain the bounds by use of or-
dering of the covariance matrices. Without loss of generality, we may order
the states zi ∈ M so that the covariances Σ(α) for α ∈ M are in ascending
order

Σ(z1) ≤ Σ(z2) ≤ · · · ≤ Σ(zm0), (13.23)

where Σ(zi) ≤ Σ(zj) is in the sense of the order of symmetric definite
matrices. That is, Σ(zj) − Σ(zi) is nonnegative definite. To approximate
the switching diffusion or the Gaussian mixture, we consider the Gaussian
diffusion processes v(·) and v(·) given by

dv = −vdt + Σ1/2(z1)dw(t), v(0) = v0,

dv = −vdt + Σ1/2(zm0)dw(t), v(0) = v0.

To proceed, first consider a diffusion process

dξ(t) = −ξ(t)dt + Σ̃1/2dw(t), Σ̃ > 0.

Owing to its stability, the stationary covariance is given by∫ ∞

0
e−2tΣ̃dt =

Σ̃
2

.

The foregoing implies that the stationary covariance of v(·) and v(·) are
given by Σ(z1)/2 and Σ(zm0)/2, respectively. Note that for any t > 0,

Σ(z1) ≤ Σ(α(t)) ≤ Σ(zm0). (13.24)

The above lower and upper bounds of the covariance matrix can then be
used to find the desired probability bounds.
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13.5 Proofs of Results

Proof of Theorem 13.2. The proof is divided into two steps. The first
step is a preparation and the second step uses perturbed Liapunov function
method.

Step 1: This is a preparation step. Recall the definitions of σ-algebra Hn

in (13.6) and En the conditional expectation with respect to Hn. In what
follows, we often need to estimate certain quantities such as En[µ(αε

n) −
µ(αε

n+1)] etc. We show how such an estimate can be obtained. In view of
the Markovian assumption and the structure of the transition probability
matrix given by (13.4), we have

En[µ(αε
n) − µ(αε

n+1)]

= E(µ(αε
n) − µ(αε

n+1)|αε
n)

=
m0∑
i=1

E[µ(zi) − µ(αε
n+1)|αε

n = zi]I{αε
n=zi}

=
m0∑
i=1

[µ(zi) −
m0∑
j=1

µ(zj)pε,ij ]I{αε
n=zi}

= −ε

m0∑
i=1

m0∑
j=1

µ(zj)qijI{αε
n=zi}

= O(ε).

(13.25)

Likewise similar estimates yield

En|µ(αε
n) − µ(αε

n+1)| =
m0∑
i=1

m0∑
j=1

|µ(zi) − µ(zj)|pε,ijI{αε
n=zi} = O(ε), and

En|µ(αε
n) − µ(αε

n+1)|2 = O(ε).
(13.26)

Such estimates and the calculation will be used in what follows.
Step 2: Define

µ̃n = µ̂n − Eµ(αε
n).

Then (13.5) can be rewritten as

µ̃n+1 = µ̃n − ∆µ̃n + ∆(Xn+1 − Eµ(αε
n)) + E(µ(αε

n) − µ(αε
n+1)). (13.27)

Define V (x) = (x′x)/2. Direct calculations lead to

EnV (µ̃n+1) − V (µ̃n)

= Enµ̃′
n[−∆µ̃n + ∆(Xn+1 − Eµ(αε

n)) + E(µ(αε
n) − µ(αε

n+1))]

+En| − ∆µ̃n + ∆(Xn+1 − Eµ(αε
n)) + E(µ(αε

n) − µ(αε
n+1))|2.

(13.28)
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Recall that µ̃′
n denotes the transpose of µ̃n.

Because of (13.4), the transition probability is independent of time n.
Thus, the k-step transition probability depends only on the time lags and
can be denoted by (P ε)k. By an elementary inequality, we have

|µ̃n| = |µ̃n| · 1 ≤ (|µ̃n|2 + 1)/2.

Therefore,
O(ε)|µ̃n| ≤ O(ε)(V (µ̃n) + 1).

Since the sequence of signals {Xn} is bounded, the boundedness of {µ̂n}
and (13.25) yield

En| − ∆µ̃n + ∆(Xn+1 − Eµ(αε
n)) + E(µ(αε

n) − µ(αε
n+1))|2

≤ KEn

[
∆2|µ̃n|2 + ∆2|Xn+1 − Eµ(αε

n)|2 + |E(µ(αε
n) − µ(αε

n+1)|2
]

= O(∆2 + ε2)(V (µ̃n) + 1),
(13.29)

and

Enµ̃′
n[−∆µ̃n] = −2∆V (µ̃n). (13.30)

Using (13.29) and (13.30) in (13.28), we obtain

EnV (µ̃n+1) − V (µ̃n)

= −2∆V (µ̃n) + ∆Enµ̃′
n(Xn+1 − Eµ(αε

n))

+µ̃nE[µ(αε
n) − µ(αε

n+1)]

+O(∆2 + ε2)(V (µ̃n) + 1).

(13.31)

To obtain the desired estimate, we need to “average out” the second and
the third terms on the right side of the equality sign of (13.31). To do so,
we define the following perturbation

V ε
1 (µ̃, n) = ∆

∞∑
j=n

µ̃′En(Xj+1 − Eµ(αε
j)). (13.32)

For V ε
1 (µ̃, n) defined in (13.32),∣∣∣∣ ∞∑

j=n

En(Xj+1 − Eµ(αε
j))

∣∣∣∣ ≤
∣∣∣∣ ∞∑

j=n

En[Xj+1 − EXj+1]
∣∣∣∣

+
∣∣∣∣ ∞∑

j=n

[EXj+1 − Eµ(αε
j)]

∣∣∣∣. (13.33)
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By using the well-known result of mixing processes (see Example 14.11),
the Markov property of {Xk} implies that it is φ-mixing with an exponen-
tial mixing rate. Thus, the familiar mixing inequality leads to∣∣∣∣ ∞∑

j=n

En[Xj+1 − EXj+1]
∣∣∣∣ < ∞.

By virtue of Condition (A13.2), for each α, A(α) is irreducible and aperi-
odic. As a result, we have

EXj+1 =
m0∑
i=1

E
[
E[Xj+1|Xn, αε

n = zi]I{αε
n=zi}

]
=

m0∑
i=1

S∑
i1=1

ei1 [A(zi)]j+1−nP (αε
n = zi).

For each zi, the ergodicity implies that [A(zi)]j+1−n → µ(zi)1lS as (j−n) →
∞, and the convergence takes place exponentially. Moreover,

Eµ(αε
n) =

m0∑
i=1

µ(zi)P (αε
n = zi).

Thus, the foregoing yields∣∣∣∣ ∞∑
j=n

[EXj+1 − Eµ(αε
j)]

∣∣∣∣ < ∞.

Therefore, for each µ̃,

|V ε
1 (µ̃, n)| ≤ O(∆)(V (µ̃) + 1). (13.34)

Next, define

V ε
2 (µ̃, n) =

∞∑
j=n

µ̃′E(µ(αε
j) − µ(αε

j+1)). (13.35)

Recall the irreducibility of (I+εQ). There is an Nε such that for all n ≥ Nε,
|(I + εQ)n − 1lm0νε| ≤ Kε, where νε denotes the stationary distribution
associated with the transition matrix I + εQ. By telescoping and using the
above estimates, we have that for all N̂ ≥ n ≥ Nε,∣∣∣∣ ̂N∑

j=n

µ̃′E[µ(αε
j) − µ(αε

j+1)]
∣∣∣∣ =

∣∣∣∣µ̃′E[µ(αε
n) − µ(αε

̂N
)]
∣∣∣∣

≤ |µ̃|O(ε).

Thus,
|V ε

2 (µ̃, n)| ≤ O(ε)(V (µ̃) + 1). (13.36)
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We next show that these perturbations defined in (13.32) result in the
desired cancellations in the error estimates. Note that

EnV ε
1 (µ̃n+1, n + 1) − V ε

1 (µ̃n, n)

= En[V ε
1 (µ̃n+1, n + 1) − V ε

1 (µ̃n, n + 1)]

+EnV ε
1 (µ̃n, n + 1) − V ε

1 (µ̃n, n),

(13.37)

and that

EnV ε
1 (µ̃n, n + 1) − V ε

1 (µ̃n, n) = −∆Enµ̃′
n(Xn+1 − Eµ(αε

n)). (13.38)

In addition,

EnV ε
1 (µ̃n+1, n + 1) − EnV ε

1 (µ̃n, n + 1)

= ∆
∞∑

j=n+1

En(µ̃n+1 − µ̃n)′En+1(Xj+1 − Eµ(αε
j))

= ∆
∞∑

j=n+1

En[−∆µ̃n + ∆(Xn+1 − Eµ(αε
n)) + E(µ(αε

n) − µ(αε
n+1)]

′

×En+1[Xj+1 − Eµ(αε
j)]

= O(∆2 + ε2)(V (µ̃n) + 1).
(13.39)

To arrive at (13.39), we have used (13.27) and (13.28) to obtain

|En[µ̃n+1 − µ̃n]| ≤ ∆|µ̃n| + ∆En|Xn+1 − Eµ(αε
n)|

+|E[µ(αε
n) − µ(αε

n+1)]

= O(∆ + ε)(V (µ̃n) + 1).

(13.40)

We also used O(ε∆) = O(ε2 + ∆2) via the elementary inequality 2ab ≤
(a2 + b2) for a, b > 0.

In view of the above estimates,

EnV ε
1 (µ̃n+1, n + 1) − V ε

1 (µ̃n, n)

= −∆Enµ̃′
n(Xn+1 − Eµ(αε

n)) + O(∆2 + ε2)(V (µ̃n) + 1).
(13.41)

Analogously, we have

EnV ε
2 (µ̃n+1, n + 1) − EnV ε

2 (µ̃n, n + 1)

=
∞∑

j=n+1

En(µ̃n+1 − µ̃n)′E(µ(αε
j) − µ(αε

j+1))

= O(ε2 + ∆2)(V (µ̃n) + 1),

(13.42)
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and

EnV ε
2 (µ̃n, n + 1) − V ε

2 (µ̃n, n) = −µ̃′
nE(µ(αε

n) − µ(αε
n+1)). (13.43)

Define the perturbed Liapunov function W (·) by

W (µ̃, n) = V (µ̃) + V ε
1 (µ̃, n) + V ε

2 (µ̃, n).

Using the estimates obtained thus far, we deduce

EnW (µ̃n+1, n + 1) − W (µ̃n, n)

= EnV (µ̃n+1) − V (µ̃n) + En[V ε
1 (µ̃n+1, n + 1) − V ε

1 (µ̃n, n)]

+En[V ε
2 (µ̃n+1, n + 1) − V ε

2 (µ̃n, n)]

= −2∆V (µ̃n) + O(∆2 + ε2)(V (µ̃n) + 1).

(13.44)

The above inequality together with (13.34) and (13.36) yields

EnW (µ̃n+1, n + 1) − W (µ̃n, n)

≤ −2∆W (µ̃n, n) + O(∆2 + ε2)(W (µ̃n, n) + 1).
(13.45)

Choose ∆ and ε small enough so that there is a λ0 > 0 satisfying

−2∆ + O(ε2) + O(∆2) ≤ −λ0∆.

Thus, we obtain

EnW (µ̃n+1, n + 1) ≤ (1 − λ0∆)W (µ̃n, n) + O(∆2 + ε2). (13.46)

By taking the expectation and iterating on the resulting inequality, we have

EW (µ̃n+1, n + 1) ≤ (1 − λ0∆)n−NεEW (µ̃Nε
, Nε)

+
n∑

j=Nε

(1 − λ0∆)j−NεO(∆2 + ε2).
(13.47)

For n large enough, we can make (1 − λ0∆)n−Nε = O(∆). Then

EW (µ̃n+1, n + 1) ≤ O(∆ + ε2/∆). (13.48)

By applying (13.34) and (13.36) again, replacing W (µ̃, n) by V (µ̃) adds
another O(ε) term. Thus we obtain

EV (µ̃n+1) ≤ O(∆ + ε + ε2/∆). (13.49)

This concludes the proof. �
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Proof of Proposition 13.5. Note that the identity matrix in (13.4) can
be written as I = diag(1, . . . , 1) ∈ R

m0×m0 . Each of the 1’s can be thought
of as a 1 × 1 “transition matrix.” Observe that under the conditions for
the Markov chain αε

n, the diag(ν1, . . . , νl) defined in (6.6) becomes I ∈
R

m0×m0 , and diag(1lm1 , . . . , 1lml
) in (6.6) is also I. Moreover, the Q defined

in (6.6) is now simply Q. Straightforward applications of Proposition 6.2
then yield the desired results. �

Proof of Lemma 13.6. By using the tightness criteria (Lemma 14.12), it
suffices to verify that for any δ > 0, t ∈ [0, T ], 0 < s ≤ δ, and t + δ ≤ T ,

lim
δ→0

lim sup
∆→0

E|x∆(t + s) − x∆(t)|2 = 0. (13.50)

To begin, note that

x∆(t + s) − x∆(t) = µ̂(t+s)/∆ − µ̂t/∆

= ∆
(t+s)/∆−1∑

k=t/∆

(Xk+1 − µ̂k).
(13.51)

Note also that both the iterates and the observations are bounded uni-
formly. Then the boundedness of {Xk} and {µ̂k} implies that

E|x∆(t + s) − x∆(t)|2

= E

[
∆

(t+s)/∆−1∑
k=t/∆

(Xk+1 − µ̂k)′
][

∆
(t+s)/∆−1∑

k=t/∆

(Xk+1 − µ̂k)
]

= ∆2
(t+s)/∆−1∑

k=t/∆

(t+s)/∆−1∑
j=t/∆

E(Xk+1 − µ̂k)′(Xj+1 − µ̂j)

≤ K∆2
(

t + s

∆
− t

∆

)2

= K((t + s) − t)2 = O(s2).

(13.52)

First taking lim sup∆→0 and then limδ→0 in (13.52), (13.50) is obtained, so
the desired tightness follows. �

Proof of Theorem 13.7. To obtain the desired result, we show that the
limit (x(·), α(·)) is the solution of the martingale problem with operator L1
given by

L1f(x, zi) = f ′
x(x, zi)(µ(zi)−x)+Qf(x, ·)(zi), for each zi ∈ M, (13.53)

where for each zi ∈ M,

Qf(x, ·)(zi) =
∑
j∈M

qijf(x, zj)

=
∑
j �=i

qij [f(x, zj) − f(x, zi)],
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and f(·, zi) is twice continuously differentiable with compact support. In
the above, fx(x, zi) denotes the gradient of f(x, zi) with respect to x. Using
Lemma 14.20, it can be shown that the martingale problem associated with
the operator L1 has a unique solution. Thus, it remains to show that the
limit (x(·), α(·)) is the solution of the martingale problem. To this end, we
need only show that for any positive integer �0, any t > 0, s > 0, and
0 < tj ≤ t, and any bounded and continuous function hj(·, zi) for each
zi ∈ M with j ≤ �0,

E

	0∏
j=1

hj(x(tj), α(tj))

×
[
f(x(t + s), α(t + s)) − f(x(t), α(t)) −

∫ t+s

t

L1f(x(u), α(u))du
]

= 0.

(13.54)
To verify (13.54), we work with the processes indexed by ∆ and show that
the above equation holds as ∆ → 0.

Since
(x∆(·), α∆(·)) converges to (x(·), α(·)) weakly,

using the Skorohod representation (without changing notation) leads to

lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

× [
f(x∆(t + s), α∆(t + s)) − f(x∆(t), α∆(t))

]
= E

	0∏
j=1

hj(x(tj), α(tj)) [f(x(t + s), α(t + s)) − f(x(t), α(t))] .

(13.55)
On the other hand, choose a sequence n∆ such that n∆ → ∞, as ∆ → 0,
but ∆n∆ → 0. Divide [t, t + s] into intervals of width δ∆ = ∆n∆. Direct
calculation shows that

lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[
f(x∆(t + s), α∆(t + s)) − f(x∆(t), α∆(t))

]
= lim

∆→0
E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

[f(µ̂ln∆+n∆ , α∆
ln∆+n∆

) − f(µ̂ln∆+n∆ , α∆
ln∆

)]
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+
(t+s)/∆−1∑
ln∆=t/∆

[f(µ̂ln∆+n∆ , α∆
ln∆

) − f(µ̂ln∆ , α∆
ln∆

)]
]
.

By virtue of the smoothness and boundedness of f(·, α) for each α, it can
be seen that

lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

[f(µ̂ln∆+n∆ , α∆
ln∆+n∆

) − f(µ̂ln∆+n∆ , α∆
ln∆

)]
]

= lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

[f(µ̂ln∆ , α∆
ln∆+n∆

) − f(µ̂ln∆ , α∆
ln∆

)]
]
.

(13.56)

Thus we need only work with the latter term. Letting ∆ → 0 and ∆ln∆ →
u, we denote

T1 = lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

[f(µ̂ln∆ , α∆
ln∆+n∆

) − f(µ̂ln∆ , α∆
ln∆

)]
]
.

(13.57)

We proceed to figure out the value of T1. Using the Markov chain αε
n and

its transition probabilities, we obtain

T1 = lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

ln∆+n∆−1∑
k=ln∆

Ek[f(µ̂ln∆ , α∆
k+1) − f(µ̂ln∆ , α∆

k )]
]

= lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

m0∑
j1=1

m0∑
i=1

ln∆+n∆−1∑
k=ln∆

[f(µ̂ln∆ , zi)P (α∆
k+1 = zi

∣∣α∆
k = zj1)

−f(µ̂ln∆ , zj1)]I{α∆
k =zj1 )}

]
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= E

	0∏
j=1

hj(x(tj), α(tj))
[ ∫ t+s

t

Qf(x(u), α(u))du

]
.

Since µ̂∆
ln∆

and α∆
ln∆

are Hln∆ -measurable, by virtue of the continuity
and boundedness of fx(·, α),

E

	0∏
j=1

hj(x∆(tj), α∆(tj))
(t+s)/∆−1∑
ln∆=t/∆

[f(µ̂ln∆+n∆ , α∆
ln∆

) − f(µ̂ln∆ , α∆
ln∆

)]

= E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
(t+s)/∆−1∑
ln∆=t/∆

[
∆f ′

x(µ̂ln∆ , α∆
ln∆

)
ln∆+n∆−1∑

k=ln∆

Eln∆(Xk+1 − µ̂k)
]

+ o(1),

where o(1) → 0 as ∆ → 0. Consider the term

lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

δ∆f ′
x(µ̂ln∆ , α∆

ln∆
)
[

1
n∆

ln∆+n∆−1∑
k=ln∆

Eln∆Xk+1

]]
,

(13.58)

where δ∆ = ∆n∆ → 0. Again, let us use a fixed-α process Xk(α), which is
a process with α∆

k fixed at α∆
ln∆

= α for k ≤ O(1/∆). A close scrutiny of
the inner summation in (13.58) shows that

1
n∆

ln∆+n∆−1∑
k=ln∆

Eln∆Xk+1 (13.59)

can be approximated by

1
n∆

ln∆+n∆−1∑
k=ln∆

Eln∆Xk+1(α)

such that the approximation error goes to 0 in probability, since

Eln∆ [Xk+1 − Xk+1(α)] = O(ε) = O(∆)
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by use of the transition matrix (13.4). Thus we have

1
n∆

ln∆+n∆−1∑
k=ln∆

Eln∆Xk+1

=
m0∑

j1=1

1
n∆

ln∆+n∆−1∑
k=ln∆

E(Xk+1(zj1)I{α∆
ln∆

=zj1}
∣∣α∆

ln∆
= zj1) + o(1)

=
m0∑

j1=1

1
n∆

ln∆+n∆−1∑
k=ln∆

S∑
j2=1

(e′
j2 [A(zj1)]k+1−ln∆)′I{α∆

ln∆
=zj1} + o(1),

where ej2 is the standard unit vector and o(1) → 0 in probability as ∆ → 0.
Note that for each j1 = 1, . . . , m0, as n∆ → ∞,

1
n∆

ln∆+n∆−1∑
k=ln∆

[A(zj1)]k+1−ln∆ → 1lSµ′(zj1).

Note also that I{α∆
ln∆

=zj1} can be written as I{α∆(lδ∆)=zj1}. As ∆ → 0,

and lδ∆ → u, by the weak convergence of α∆(·) to α(·), I{α∆(∆ln∆)=zj1}
converges in distribution to I{α(u)=zj1}. Using the Skorohod representation
(with a slight abuse of notation), we may assume that the convergence is
w.p.1. Since 1lSµ′(zj1) has identical rows,

1
n∆

ln∆+n∆−1∑
k=ln∆

Eln∆Xk+1 →
m0∑
j=1

µ(zj1)I{α(u)=zj1}

= µ(α(u)).

(13.60)

This reveals that the limit does not depend on the value of the initial state,
a salient feature of Markov chains. As a result,

lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

δ∆f ′
x(µ̂ln∆ , α∆

ln∆
)

1
n∆

ln∆+n∆−1∑
k=ln∆

Eln∆Xk+1

]

= E

	0∏
j=1

hj(x(tj), α(tj))
[ m0∑

j1=1

∫ t+s

t

f ′
x(x(u), zj1)µ(zj1)I{α(u)=zj1}

]

= E

	0∏
j=1

hj(x(tj), α(tj))
[ ∫ t+s

t

f ′
x(x(u), α(u))µ(α(u))du

]
.

(13.61)
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Likewise, it can be shown that as ∆ → 0,

lim
∆→0

E

	0∏
j=1

hj(x∆(tj), α∆(tj))
[ (t+s)/∆−1∑

ln∆=t/∆

f ′
x(µ̂ln∆ , α∆

ln∆
)
δ∆

n∆

ln∆+n∆−1∑
k=ln∆

µ̂k

]

= E

	0∏
j=1

hj(x(tj), α(tj))
[ ∫ t+s

t

f ′
x(x(u), α(u))x(u)du

]
.

(13.62)
Combining (13.55), (13.57), (13.61), and (13.62), the desired result follows.
The proof is thus completed. �

Proof of Lemma 13.9. We only verify the first assertion. In view of
(13.14), for any δ > 0, and t, s ≥ 0 with s ≤ δ and t + δ ≤ T ,

v∆,N (t + s) − v∆,N (t) = −∆
(t+s)/∆−1∑

k=t/∆

vN
k τN (vN

k )

+
√

∆
(t+s)/∆−1∑

k=t/∆

(Xk+1 − Eµ(α∆
k ))

+
1√
∆

(t+s)/∆−1∑
k=t/∆

E(µ(α∆
k ) − µ(α∆

k+1)).

(13.63)

Owing to the N -truncation,∣∣∣∣∆ (t+s)/∆−1∑
k=t/∆

vN
k τN (vN

k )
∣∣∣∣ ≤ Ks,

so

lim
δ→0

lim sup
∆→0

E

∣∣∣∣∆ (t+s)/∆−1∑
k=t/∆

vN
k τN (vN

k )
∣∣∣∣2 = 0. (13.64)

Next, by virtue of (A13.1), the irreducibility of the conditional Markov
chain {Xn} implies that it is φ-mixing with an exponential mixing rate;
see Example 14.11. Moreover, Eµ(α∆

k ) − EXk+1 → 0 exponentially fast.
Consequently,

E

∣∣∣∣∆ (t+s)/∆−1∑
k=t/∆

(Xk+1 − Eµ(α∆
k ))

∣∣∣∣2

= E

∣∣∣∣∆ (t+s)/∆−1∑
k=t/∆

[(Xk+1 − EXk+1) − (Eµ(α∆
k ) − EXk+1)]

∣∣∣∣2 = O(s).

Thus,

lim
δ→0

lim sup
∆→0

E

∣∣∣∣∆ (t+s)/∆−1∑
k=t/∆

(Xk+1 − Eµ(α∆
k ))

∣∣∣∣2 = 0. (13.65)
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In addition, similar to (13.25),

1√
∆

E

(t+s)/∆−1∑
k=t/∆

[µ(α∆
k ) − µ(α∆

k+1)]

=
1√
∆

[Eµ(α∆
t/∆) − Eµ(α∆

(t+s)/∆]

= O(
√

∆).

(13.66)

Combining (13.64)–(13.66), we have

lim
δ→0

lim sup
∆→0

E|v∆,N (t + s) − v∆,N (t)|2 = 0,

and hence the tightness criterion (see Lemma 14.12), implies that {v∆,N (·)}
is tight. �

Proof of Lemma 13.10. Again, we use martingale problem formulation.
For any positive integer �0, any t > 0, s > 0, any 0 < tj ≤ t with j ≤ �0,
and any bounded and continuous function hj(·, α) for each α ∈ M, we aim
to derive an equation like (13.54) with the operator L1 replaced by L. As
in the proof of Theorem 13.7, we work with the sequence indexed by ∆.
Choose n∆ such that n∆ → ∞ but δ∆ = ∆n∆ → 0. Using the tightness of
{v∆,N (·), α∆(·)} and the Skorohod representation (without changing nota-
tion), we have that (13.55)–(13.56) hold with µ̂∆(·) and µ̂(·) replaced by
v∆,N (·) and vN (·), respectively.

In view of (13.66), the term

1√
∆

(t+s)/∆−1∑
k=t/∆

[Eµ(α∆
k ) − Eµ(α∆

k+1)]

contributes nothing to the limit process. Moreover,

√
∆

(t+s)/∆−1∑
k=t/∆

[Xk+1 − Eµ(α∆
k )]

=
√

∆
(t+s)/∆−1∑

k=t/∆

(Xk+1 − EXk+1)

+
√

∆
(t+s)/∆−1∑

k=t/∆

(EXk+1 − Eµ(α∆
k )).

Since
EXk+1 − Eµ(α∆

k ) → 0 exponentially fast,

owing to the elementary properties of Markov chain,

√
∆

(t+s)/∆−1∑
k=t/∆

(EXk+1 − Eµ(α∆
k ))
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only produces an additional term of order O(
√

∆). Thus,

v∆,N (t + s) − v∆,N (t)

= −∆
(t+s)/∆−1∑

k=t/∆

vN
k τN (vN

k )

+
√

∆
(t+s)/∆−1∑

k=t/∆

(Xk+1 − EXk+1) + O(
√

∆).

Like the argument in the proof of Theorem 13.7,

lim
∆→0

E

	0∏
j=1

hj(v∆,N (tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

[f(vN
ln∆

, α∆
ln∆+n∆

) − f(vN
ln∆

, α∆
ln∆

)]
]

= E

	0∏
j=1

hj(vN (tj), α(tj))
[ ∫ t+s

t

Qf(vN (u), α(u))du

]
(13.67)

In addition, with a quantity o(1) → 0 uniform in t as ∆ → 0,

E

	0∏
j=1

hj(v∆,N (tj), α∆(tj))

×
[

−
(t+s)/∆−1∑
ln∆=t/∆

δ∆
1

n∆

ln∆+n∆−1∑
k=ln∆

f ′
v(vN

ln∆
, α∆

ln∆
)vN

k τN (vN
k )

]

= E

	0∏
j=1

hj(v∆,N (tj), α∆(tj))

×
[

−
(t+s)/∆−1∑
ln∆=t/∆

δ∆f ′
v(vN

ln∆
, α∆

ln∆
)vN

ln∆
τN (vN

ln∆
)
]

+ o(1)

→ E

	0∏
j=1

hj(vN (tj), α(tj))

×
[

−
∫ t+s

t

f ′
v(vN (u), α(u))vN (u)τN (vN (u))du

]
.

(13.68)

Denote

ρ̂∆ =
∣∣∣∣E 	0∏

j=1

hj(v∆,N (tj), α∆(tj))

×
[√

∆
(t+s)/∆−1∑
ln∆=t/∆

f ′
v(vN

ln∆
, α∆

ln∆
)

ln∆+n∆−1∑
k=ln∆

[Xk+1 − EXk+1]
]∣∣∣∣.
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Then, owing to the boundedness of h(·), vN
ln∆

, and fv(·),

ρ̂∆ =
∣∣∣∣E 	0∏

j=1

hj(v∆,N (tj), α∆(tj))

×
[√

∆
(t+s)/∆−1∑
ln∆=t/∆

f ′
v(vN

ln∆
, α∆

ln∆
)

ln∆+n∆−1∑
k=ln∆

Et/∆[Xk+1 − EXk+1]
]∣∣∣∣

≤ K
√

∆
(t+s)/∆−1∑

k=t/∆

E|Et/∆Xk+1 − EXk+1|

≤ K
√

∆ → 0 as ∆ → 0.

To arrive at the last line above, we have used the mixing inequality given
in Lemma 14.10.

Finally, define

gln∆g′
ln∆

=
1

n∆

ln∆+n∆−1∑
k=ln∆

ln∆+n∆−1∑
k1=ln∆

Eln∆ [Xk+1 − EXk+1][Xk1+1 − EXk1+1]′.

It follows that

E

	0∏
j=1

hj(v∆,N (tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

tr
[
fvv(vN

ln∆
, α∆

ln∆
)(vN

ln∆+n∆
− vN

ln∆
)(vN

ln∆+n∆
− vN

ln∆
)′
]]

= E

	0∏
j=1

hj(v∆,N (tj), α∆(tj))
[ m0∑

j1=1

(t+s)/∆−1∑
ln∆=t/∆

I{α∆
ln∆

=zj1}

×tr
[
fvv(vN

ln∆
, α∆

ln∆
)(vN

ln∆+n∆
− vN

ln∆
)(vN

ln∆+n∆
− vN

ln∆
)′
]]

= E

	0∏
j=1

hj(v∆,N (tj), α∆(tj))

×
[ m0∑

j1=1

(t+s)/∆−1∑
ln∆=t/∆

δ∆tr
[
fvv(vN

ln∆
, α∆

ln∆
)Eln∆gln∆g′

ln∆

]
I{α∆

ln∆
=zj1}

]
.

Since conditioned on α∆
ln∆

= zj , Xk+1 − EXk+1 can be approximated by
the fixed-zj1 process

Xk+1(zj1) − EXk+1(zj1),



13.5 Proofs of Results 311

and since Xk+1(zj1) is a finite-state Markov chain with irreducible transi-
tion matrix A(zj1),

Xk+1(zj1) − EXk+1(zj1)

is φ-mixing. Since α∆(·) converges weakly to α(·), sending ∆ → 0 and lδ∆ =
l∆n∆ → u leads to α∆(∆ln∆) converges in distribution to α(u). Moreover,
by Skorohod representation (without changing notation), we may assume
the above convergence and the convergence of I{α∆(lδ∆)=zj1} to I{α(u)=zj1}
are w.p.1. Therefore, the argument in (13.16) implies that for each zj1 ∈ M
with j1 = 1, . . . , m0,

Eln∆ [gln∆g′
ln∆

] → Σ(zj)I{α(u)=zj1} as ∆ → 0, (13.69)

where Σ(zj1) is defined in (13.16). It follows that

E

	0∏
j=1

hj(v∆,N (tj), α∆(tj))

×
[ (t+s)/∆−1∑

ln∆=t/∆

tr
[
fvv(vN

ln∆
, α∆

ln∆
)(vN

ln∆+n∆
− vN

ln∆
)(vN

ln∆+n∆
− vN

ln∆
)′
]]

→ E

	0∏
j=1

hj(vN (tj), α(tj))

×
[ ∫ t+s

t

m0∑
j1=1

tr
[
fvv(vN (u), zj1)Σ(zj1)

]
I{α(u)=zj1}du

]

= E

	0∏
j=1

hj(vN (tj), α(tj))
[ ∫ t+s

t

tr
[
fvv(vN (u), α(u))Σ(α(u))

]
du

]
.

(13.70)
In view of (13.67)–(13.70), the proof is completed. �

Proof of Corollary 13.12. The uniqueness of the solution of the as-
sociated martingale problem can be proved in a manner similar to that of
Lemma 4.9 (see also Lemma 14.20, and Yin and Zhang [158, Lemma 7.18]).
The rest of the proof follows from an argument like that in Kushner [96,
p. 46] (see also Kushner and Yin [100, Step 4, p. 285]). Let P v(0)(·) and
PN (·) be the measures induced by v(·) and vN (·) on the Borel subsets of
D([0, T ] : R

S). The measure P v(0)(·) is unique by the uniqueness of the
martingale problem to (v(·), α(·)), which indicates that P v(0)(·) coincides
with PN (·) on all Borel subsets of the set of paths in D([0, T ] : R

S) with
values in BN . As N → ∞, P v(0)(supv(t)≤T |v(t)| ≤ N) → 1. The foregoing
together with the weak convergence of (v∆,N (·), α∆(·)) to (vN (·), α(·)) im-
plies that (v∆(·), α∆(·)) converges weakly to (v(·), α(·)). Some details are
omitted. �
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13.6 Notes

Stochastic approximation methods were initiated in the work of Robbins
and Monro [129] in the early 1950s. The original motivation stemmed from
searching for roots of a continuous function F (·), where either the precise
form of the function is unknown, or it is too complicated to compute; only
“noisy” measurements at desired design points are available. A classical
example is to find an appropriate dosage level of a drug, provided that
only {F (x) + noise} is available, where x is the level of dosage and F (x)
is the probability of success (leading to the recovery of the patient) at
the dosage level x. The classical Kiefer–Wolfowitz (KW) algorithm intro-
duced by Kiefer and Wolfowitz [87] concerns the minimization of a real-
valued function using only noisy functional measurements. The main issues
in the analysis of iteratively defined stochastic processes and applications
focus on the basic paradigm of stochastic difference equations. Much of
the development has been accompanied by a wide range of applications in
optimization, control theory, economic systems, signal processing, commu-
nication theory, learning, pattern classification, neural network, and other
related fields. In addition, emerging applications have also been found in,
for example, wireless communication and financial engineering. The orig-
inal stochastic approximation algorithms can be considered to be static.
That is, they mainly deal with root finding or optimization of a function
with a fixed parameter. This has been substantially generalized to treat
dynamic systems with varying parameters. For an up-to-date account of
stochastic approximation, the reader is referred to Kushner and Yin [100].

The algorithms studied in this chapter are also useful in performance
analysis of adaptive discrete stochastic optimization problems, for exam-
ple, adaptive coding in wireless CDMA communication systems. Recently,
in [89], Krishnamurthy, Wang, and Yin treated spreading code optimiza-
tion of the CDMA system at the transmitter, formulated it as a discrete
stochastic optimization problem (since the spreading codes are finite-length
and finite-state sequences), and used random search based discrete stochas-
tic optimization algorithm to compute the optimal spreading code. In ad-
dition to the random-search-type algorithms, they also designed adaptive
step-size stochastic approximation algorithms with both fixed and adaptive
step sizes to track slowly time-varying optimal spreading codes originating
from fading characteristics of the wireless channel. The numerical results
reported in the aforementioned paper have shown remarkable improvement
as compared with several heuristic algorithms.

While there are several papers that analyze tracking properties of stochas-
tic approximation algorithms when the underlying parameter varies accord-
ing to a slow random walk (see Benveniste, Metivier, and Priouret [14], and
Solo and Kong [141]), there are few papers examining cases where parame-
ter variations follow a Markov chain with infrequent jumps. Such Markovian
models do arise from real applications, however.
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Discrete stochastic optimization problems were formulated in Yan and
Mukai [151], and subsequently considered in Andradottir [5], and Gong,
Ho, and Zhai [63], among others. These discrete stochastic optimization al-
gorithms include selection and multiple comparison methods, multi-armed
bandits, a stochastic ruler in [151], nested partition methods and discrete
stochastic optimization algorithms based on simulated annealing in An-
dradottir [5], and Gelfand and Mitter [60].

This chapter presents the results based on the work of Yin, Krishna-
murthy, and Ion [156], where error bounds for the adaptive discrete stochas-
tic optimization algorithm were derived by using asymptotic results. To
select the step size in the actual computation is an important issue; one
enticing alternative is to design a tracking algorithm with step-size adap-
tation. That is, replace the fixed step size ∆ by a time-varying step-size
sequence {∆n} and adaptively adjust ∆n as the dynamics evolve. An in-
terested reader may consult Kushner and Yin [100, Section 3.2].



14
Appendix

14.1 Introduction

To make the book reasonably self-contained and to provide the reader with
a quick reference and further reading materials, we collect a number of
topics here, which are either not in Chapter 2 or more advanced than those
covered in Chapter 2. This chapter includes short reviews on systems with
regime switching, weak convergence, optimal control and HJB equations,
and other related topics.

14.2 Sample Paths of Markov Chains

A central topic discussed in this book is a dynamic system with regime
switching, where the switching is modeled by a Markov chain. Perhaps the
simplest of such system is a Markov chain itself. This section illustrates
how to construct sample paths of Markov chains in both discrete and con-
tinuous times. The material presented here is classical and standard in
stochastic processes. It is useful for numerical experiments and simulations
of stochastic systems.

Discrete-Time Chains

To construct a Markov chain αk in discrete time requires first prescribing
its transition probability matrix P = (pij), then building its sample path.
Suppose that αk ∈ M = {1, . . . , m0}, for k ≥ 0. The sample paths are
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constructed via comparison determined by the transition probability matrix
P . At any time k ≥ 0, given αk = i, the chain’s next move is specified by

αk+1 =

⎧⎪⎪⎨⎪⎪⎩
1, if U ≤ pi1,
2, if pi1 < U ≤ pi1 + pi2 ,
...

...
m0, if pi1 + · · · + pi,m0−1 < U ≤ 1,

(14.1)

where U is a random variable following a uniform distribution in (0, 1) (i.e.,
U ∼ U(0, 1)).

Continuous-Time Chains

Suppose that α(t) is a continuous-time Markov chain with state space
M = {1, . . . , m0} and generator Q = (qij). To construct the sample paths
of α(t) amounts to determining its sojourn time at each state and its
subsequent moves. The chain sojourns in any given state i for a random
length of time, Si, which has an exponential distribution with parameter
(−qii). Subsequently, the process will enter another state. Each state j
(j = 1, . . . , m0, j = i) has a probability qij/(−qii) of being the chain’s
next residence. The post-jump location is determined by a discrete ran-
dom variable Xi taking values in {1, 2, . . . , i− 1, i+1, . . . , m0}. Its value is
specified by

Xi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if U ≤ qi1/(−qii),
2, if qi1/(−qii) < U ≤ (qi1 + qi2)/(−qii),
...

...
m0, if

∑
j �=i,j<m0

qij/(−qii) ≤ U .

(14.2)

where U is a random variable uniformly distributed in (0, 1). Thus, the sam-
ple path of α(t) is constructed by sampling from exponential and U(0, 1)
random variables alternately. This section only concerns with stationary
Markov chains. Construction for general Markov chain with time-dependent
generator Q = Q(t) can be proceeded as in Section 2.4.

14.3 Weak Convergence

The notion of weak convergence is a generalization of convergence in dis-
tribution from elementary probability theory. In what follows, we present
definitions and results, including tightness, tightness criteria, the martin-
gale problem, Skorohod representation, and Prohorov’s theorem, etc.

Definition 14.1 (Weak Convergence). Let P and Pk, k = 1, 2, . . ., be
probability measures defined on a metric space S. The sequence {Pk} con-
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verges weakly to P if ∫
fdPk →

∫
fdP

for every bounded and continuous function f(·) on S. Suppose that {xk}
and x are random variables associated with Pk and P , respectively. The
sequence xk converges to x weakly if for any bounded and continuous func-
tion f(·) on S, Ef(xk) → Ef(x) as k → ∞.

Let D([0,∞); Rr) be the space of R
r-valued functions defined on [0,∞)

that are right-continuous and have left-hand limits; let L be a set of strictly
increasing Lipschitz continuous functions ζ(·) : [0,∞) �→ [0,∞) such that
the mapping is surjective with ζ(0) = 0, limt→∞ ζ(t) = ∞, and

γ(ζ) := sup
0≤t<s

∣∣∣∣log
(

ζ(s) − ζ(t)
s − t

)∣∣∣∣ < ∞.

Similar to D([0,∞); Rr), we also use the notation D([0, T ]; F) to denote
the D-space of functions that take values in F.

Definition 14.2 (Skorohod Topology). For ξ, η ∈ D([0,∞); Rr), the Sko-
rohod topology d(·, ·) on D([0,∞); Rr) is defined as

d(ξ, η)= inf
ζ∈L

{
γ(ζ) ∨

∫ ∞

0
e−s sup

t≥0

(
1 ∧ |ξ(t ∧ s) − η(ζ(t) ∧ s)|)ds

}
.

Analogous definitions and results are available for D([0, T ]; F); see Ethier
and Kurtz [55] and Billingsley [18] for related references. Although we often
work with D([0, T ]; Rr) in this book, the results to follow are often stated
with respect to the space D([0,∞); Rr). This enables us to apply them to
t ∈ [0, T ] for any T > 0.

Definition 14.3 (Tightness). A family of probability measures P defined
on a metric space S is tight if for each δ > 0, there exists a compact set
Kδ ⊂ S such that

inf
P∈P

P (Kδ) ≥ 1 − δ.

The notion of tightness is closely related to compactness. The following the-
orem, known as Prohorov’s theorem, gives such an implication. A complete
proof can be found in Ethier and Kurtz [55].

Theorem 14.4 (Prohorov’s Theorem). If P is tight, then P is relatively
compact. That is, every sequence of elements in P contains a weakly conver-
gent subsequence. If the underlying metric space is complete and separable,
the tightness is equivalent to relative compactness.

Although weak convergence techniques usually allow one to use weaker
conditions and lead to a more general setup, it is often more convenient to
work with probability one convergence for purely analytic reasons, however.
The Skorohod representation, provides us with such opportunities.
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Theorem 14.5 (The Skorohod Representation (Ethier and Kurtz [55])).
Let xk and x be random elements belonging to D([0,∞); Rr) such that xk

converges weakly to x. Then there exists a probability space (Ω̃, F̃ , P̃ ) on
which are defined random elements x̃k, k = 1, 2, . . . , and x̃ in D([0,∞); Rr)
such that for any Borel set B and all k < ∞,

P̃ (x̃k ∈ B) = P (xk ∈ B), and P̃ (x̃ ∈ B) = P (x ∈ B)

satisfying
lim

k→∞
x̃k = x̃ w.p.1.

Elsewhere in the book, when we use the Skorohod representation, with a
slight abuse of notation, we often omit the tilde notation for convenience
and notational simplicity.

Let C([0,∞); Rr) be the space of R
r-valued continuous functions equipped

with the sup-norm topology, and C0 be the set of real-valued continuous
functions on R

r with compact support. Let Cl
0 be the subset of C0 functions

that have continuous partial derivatives up to the order l.

Definition 14.6. Let S be a metric space and A be a linear operator on
B(S) (the set of all Borel measurable functions defined on S). Let x(·) =
{x(t) : t ≥ 0} be a right-continuous process with values in S such that for
each f(·) in the domain of A,

f(x(t)) −
∫ t

0
Af(x(s))ds

is a martingale with respect to the filtration σ{x(s) : s ≤ t}. Then x(·) is
called a solution of the martingale problem with operator A.

Theorem 14.7 (Ethier and Kurtz [55, p. 174]). A right-continuous process
x(t), t ≥ 0, is a solution of the martingale problem for the operator A if
and only if

E

(
i∏

j=1

hj(x(tj))
(
f(x(ti+1))−f(x(ti))−

∫ ti+1

ti

Af(x(s))ds

))
= 0

whenever 0 ≤ t1 < t2 < · · · < ti+1, f(·) in the domain of A, and h1, . . . , hi ∈
B(S), the Borel field of S.

Theorem 14.8 (Uniqueness of Martingale Problems, Ethier and Kurtz
[55, p. 184]). Let x(·) and y(·) be two stochastic processes whose paths are
in D([0, T ]; Rr). Denote an infinitesimal generator by A. If for any function
f ∈ A (the domain of A),

f(x(t)) − f(x(0)) −
∫ t

0
Af(x(s))ds, t ≥ 0,
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and

f(y(t)) − f(y(0)) −
∫ t

0
Af(y(s))ds, t ≥ 0

are martingales and x(t) and y(t) have the same distribution for each t ≥ 0,
x(·) and y(·) have the same distribution on D([0,∞); Rr).

Theorem 14.9. Let xε(·) be a solution of the differential equation

dxε(t)
dt

= F ε(t),

and for each T < ∞, {F ε(t) : 0 ≤ t ≤ T} be uniformly integrable. If the
set of initial values {xε(0)} is tight, then {xε(·)} is tight in C([0,∞); Rr).

Proof: The proof is essentially in Billingsley [18, Theorem 8.2] (see also
Kushner [96, p. 51, Lemma 7]). �

Define the notion of “p-lim” and an operator Aε as in Ethier and Kurtz
[55]. Suppose that zε(·) are defined on the same probability space. Let Fε

t

be the minimal σ-algebra over which {zε(s), ξε(s) : s ≤ t} is measurable
and let Eε

t denote the conditional expectation given Fε
t . Denote

M
ε

=
{
f : f is real valued with bounded support and is

progressively measurable w.r.t. {Fε
t }, sup

t
E|f(t)| < ∞}

.

Let g(·), f(·), fδ(·) ∈ M
ε
. For each δ > 0 and t ≤ T < ∞, f = p − limδ fδ

if
sup
t,δ

E|fδ(t)| < ∞,

then
lim
δ→0

E|f(t) − fδ(t)| = 0 for each t.

The function f(·) is said to be in the domain of Aε, that is, f(·) ∈ D(Aε),
and Aεf = g, if

p − lim
δ→0

(
Eε

t f(t + δ) − f(t)
δ

− g(t)
)

= 0.

If f(·) ∈ D(Aε), then Ethier and Kurtz [55] or Kushner [96, p. 39] implies
that

f(t) −
∫ t

0
Aεf(u)du is a martingale,

and

Eε
t f(t + s) − f(t) =

∫ t+s

t

Eε
t Aεf(u)du w.p.1.

In applications, φ-mixing processes frequently arise; see [55] and [96].
The assertion below presents a couple of inequalities for uniform mixing
processes. Further results on various mixing processes are in [55].
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Lemma 14.10 (Kushner [96, Lemma 4.4]). Let ξ(·) be a φ-mixing process
with mixing rate φ(·) and let h(·) be F∞

t -measurable and |h| ≤ 1. Then∣∣∣E(h(ξ(t + s))|F t
0) − Eh(ξ(t + s))

∣∣∣ ≤ 2φ(s).

If t < u < v, and Eh(ξ(s)) = 0 for all s, then∣∣∣E(h(ξ(u))h(ξ(v))|F t
0) − Eh(ξ(u))h(ξ(v))

∣∣∣ ≤ 4
(
φ(v − u)φ(u − t)

) 1
2
,

where F t
τ = σ{ξ(s) : τ ≤ s ≤ t}.

Example 14.11. A useful example of mixing process is a function of a
stationary Markov chain with finite state space. Let αk be such a Markov
chain with state space M = {1, . . . , m0}. Let ξk = g(αk), where g(·) is a
real-valued function defined on M. Suppose the Markov chain or equiva-
lently, its transition probability matrix is irreducible and aperiodic. Then
as proved in Billingsley [18, pp. 167–169], ξk is a mixing process with the
mixing measure decaying to 0 exponentially fast.

A crucial step in obtaining many limit problems depends on the verifica-
tion of tightness of the sequences of interest. A sufficient condition known
as Kurtz’s criterion appears to be rather handy to use.

Lemma 14.12 (Kushner [96, Theorem 3, p. 47]). Suppose that {yε(·)} is
a process with paths in D([0,∞); Rr), and suppose that

lim
K1→∞

{
lim sup

ε→0
P

(
sup

0≤t≤T
|yε(t)| ≥ K1

)}
= 0 for each T < ∞, (14.3)

and for all 0 ≤ s ≤ δ, t ≤ T ,

Eε
t min

(
1, |yε(t + s) − yε(t)|2) ≤ Eε

t γε(δ),

lim
δ→0

lim sup
ε→0

Eγε(δ) = 0.
(14.4)

Then {yε(·)} is tight in D([0,∞); Rr).

Remark 14.13. In lieu of (14.3), one may verify the following condition
(see Kurtz [93, Theorem 2.7, p. 10]): Suppose that for each η > 0 and
rational t ≥ 0 there is a compact set Γt,η ⊂ R

r such that

inf
ε

P (yε(t) ∈ Γt,η) > 1 − η. (14.5)

To deal with singularly perturbed stochastic systems, the perturbed test
function method is useful. The next lemma, due to Kushner, gives a crite-
rion for tightness of singularly perturbed systems via perturbed test func-
tion methods. Note that in the lemma, the perturbed test functions fε(·)
are so constructed that they are close to f(zε(·)), and that they result in
desired cancellation in the averaging.
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Lemma 14.14 (Kushner [96, Theorem 3.4]). Let zε(·) ∈ D([0,∞); Rr) for
an appropriate r, zε(0) = z0, and

lim
κ1→∞

{
lim sup

ε→0
P

(
sup
t≤T1

|zε(t)| ≥ κ1

)}
= 0 (14.6)

for each T1 < ∞. For each f(·) ∈ C2
0 and T1 < ∞, let there be a sequence

{fε(·)} such that fε(·) ∈ D(Aε) and that {Aεfε(t) : ε > 0, t < T1} is
uniformly integrable and

lim
ε→0

P

(
sup
t≤T1

|fε(t) − f(zε(t))| ≥ κ2

)
= 0

holds for each T1 < ∞ and each κ2 > 0. Then {zε(·)} is tight in the space
D([0,∞); Rr).

To apply Lemma 14.14 for proving tightness, one needs to verify (14.6).
Such verifications are usually nontrivial and involve complicated calcula-
tions. To overcome the difficulty, one uses the so-called N -truncation device,
which is defined as follows.

Definition 14.15 (N -truncation, see Kushner and Yin [100, p. 284]). For
each N > 0, let BN = {z : |z| ≤ N} be the sphere with radius N , let
zε,N (0) = zε(0), zε,N (t) = zε(t) up until the first exit from BN , and

lim
κ1→∞ lim sup

ε→0
P

(
sup
t≤T1

|zε,N (t)| ≥ κ1

)
= 0 (14.7)

for each T1 < ∞. Then zε,N (t) is said to be the N -truncation of zε(·).
Using the perturbed test function techniques, the lemma to follow pro-

vides sufficient conditions for weak convergence. Its proof is in Kushner
[96].

Lemma 14.16. Suppose that {zε(·)} is defined on [0,∞). Let {zε(·)} be
tight on D([0,∞); Rr). Suppose that for each f(·) ∈ C2

0 , and each T1 < ∞,
there exist fε(·) ∈ D(Aε) such that

p − lim
ε→0

(fε(·) − f(zε(·))) = 0 (14.8)

and
p − lim

ε→0
(Aεfε(·) − Af(zε(·))) = 0. (14.9)

Then zε(·) ⇒ z(·).
The theorem to follow is useful in characterizing certain limit processes

(in weak convergence analysis). Its proof is in Kushner and Yin [100, The-
orem 4.1.1].
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Theorem 14.17. Let m(t) be a continuous-time martingale whose paths
are Lipschitz continuous with probability one on each bounded time interval.
Then m(t) is a constant with probability one.

The well-known result due to Cramér and Wold states that problems
involving finite-dimensional random vectors can be reduced to problems
involving scalar random variables (see Billingsley [18, p. 48]). We present
the result in the following lemma.

Lemma 14.18. Let xk = (x1
k, . . . , xr

k)′ ∈ R
r and x = (x1, . . . , xr)′ ∈ R

r.
Suppose

r∑
j=1

tjxj
k converges in distribution to

r∑
j=1

tjxj as k → ∞,

for each t = (t1, . . . , tr)′ ∈ R
r. Then xk converges in distribution to x.

Next, we state a weak convergence result due to Kushner and Huang.
For a proof, see Kushner and Huang [99, Theorem 1] and Kushner [96,
Theorem 3.2, p. 44].

Theorem 14.19. Let xε
k be a stochastic process in discrete time and xε(·)

be its piecewise constant interpolation on the interval [εk, εk + ε). Suppose
that {xε(·)} is tight in D([0, T ]; Rr) and xε(0) ⇒ x0, that the martingale
problem with operator L has a unique solution x(·) in D([0, T ]; Rr) for
each initial condition, and that for each g(·) ∈ C2

0 , there exists a sequence
{gε(·)} such that gε(·) is a constant on each interval [εk, εk + ε), which is
measurable (at kε) with respect to the σ-algebra induced by {xε

j : j ≤ k}.
Moreover, suppose that

sup
0≤k≤T/ε,ε

E|gε(kε)| + sup
0≤k≤T/ε,ε

1
ε
|Ekgε(kε + ε) − gε(kε)| < ∞, (14.10)

and as ε → 0 with kε → t,

E|gε(kε) − g(xε(kε))| → 0, (14.11)

and

E

∣∣∣∣Ekgε(kε + ε) − gε(kε)
ε

− Lg(xε(kε))
∣∣∣∣ → 0. (14.12)

Then xε(·) converges weakly to x(·), the unique solution to the martingale
problem with initial condition x0.

In this book, we focus on hybrid systems or systems with Markov regime
switching. Let α(t) be a continuous-time Markov chain with state space
M = {1, . . . , m0} and let w(·) be an R

r-valued standard Brownian motion
that is independent of α(·). Often, we need to examine the following (or
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its discrete-time counterpart) system of stochastic differential equations
modulated by a Markov chain,

dx(t) = f(t, α(t), x(t))dt + g(t, α(t), x(t))dŵ(t), (14.13)

where t ∈ [0, T ] for some T > 0, t ∈ [0, T ], f(·, ·, ·) : [0, T ] × M × R
r �→ R

r,
and g(·, ·, ·) : [0, T ] × M × R

r �→ R
r. It is readily seen that the pair of pro-

cesses y(·) = (x(·), α(·)) is a Markov process. Corresponding to this process
y(·), we define an operator L as follows. For each i ∈ M = {1, . . . , m0} and
each ψ(·, i, ·) ∈ C1,2

0 (C1,2
0 represents the class of functions that have com-

pact support and that are continuously differentiable with respect to t and
twice continuously differentiable with respect to x), let

Lψ(t, i, x) = ψ′
x(t, i, x)f(t, i, x) +

1
2
tr (ψxx(t, i, x)Ξ(t, i, x))

+Qψ(t, ·, x)(i),
(14.14)

where Ξ(t, i, x) = g(t, i, x)g′(t, i, x). Associated with (14.13), there is a mar-
tingale problem with operator (∂/∂t) + L. The next lemma establishes the
uniqueness of such martingale problem.

Lemma 14.20. Assume that the following conditions hold: The initial
condition x0 satisfies E|x0|2 < ∞. The functions f(·) and g(·) satisfy the
conditions that for each α ∈ M, f(·, α, ·) and g(·, α, ·) are defined and Borel
measurable on [0, T ] × R

r; in addition, for each (t, α, x) ∈ [0, T ] × M × R
r,

|f(t, α, x)| ≤ K(1 + |x|) and |g(t, α, x)| ≤ K(1 + |x|);

for each x1, x2 ∈ R
r,

|f(t, α, x1) − f(t, α, x2)| ≤ K|x1 − x2|,

and
|g(t, α, x1) − g(t, α, x2)| ≤ K|x1 − x2|.

In addition, the Markov chain α(·) and the Brownian motion w(·) are
independent. Then the solution of the martingale problem with operator
(∂/∂t) + L for L given by (14.14) is unique.

Proof. The proof follows the same line of argument presented in Yin and
Zhang [158, Lemma 7.18] via the use of characteristic functions. �

A useful device known as the continuous mapping theorem indicates that
the weak convergence is preserved under nonlinear (continuous) transfor-
mation. This enables us to obtain the weak convergence of a desired se-
quence through the techniques of transformations. We state the following
result. The proof can be found in Billingsley [18, p. 31].
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Theorem 14.21. Suppose that xk is a sequence of random variables (real-
valued, or vector-valued, or living in a more general function space), and
that xk converges weakly to x an element in the same space as that of xk.
Then

(a) for every real and continuous function h(·), h(xk) converges weakly
to h(x);

(b) for every real, measurable function h(·) whose set of discontinuous
points has probability measure 0, h(xk) converges weakly to h(x).

14.4 Optimal Controls and HJB Equations

To solve optimal control problems involving deterministic or stochastic sys-
tems, a commonly used technique is the dynamic programming method; see
Fleming and Rishel [57]. Such an approach yields to a partial differential
equation (known as the Hamilton–Jacobi–Bellman (HJB) equation) satis-
fied by the value function. When the dynamic system involves a Markovian
switching process, the basic technique still carries over, but a coupling
term will be added; see Yin and Zhang [158, Appendix]. In what follows,
we present some properties of the value functions and optimal feedback
controls arising in dynamic systems with regime switching. Simple but rep-
resentative examples are treated; models having more complex structures
can be dealt with similarly.

Let (Ω, F , P ) be a probability space. Let α(t) ∈ M = {1, . . . , m0}, for
t ≥ 0, denote a Markov chain with generator Q. Assume that b(x, u, α)
satisfies the following conditions: There exist bounded functions b1(x, α) ∈
R

n and b2(x, α) ∈ R
n×n1 on R

n × M such that

b(x, u, α) = b1(x, α) + b2(x, α)u,

where u ∈ Γ, a convex and compact subset of R
n1 . Moreover, for i = 1, 2,

bi(x, α) are Lipschitz in that

|bi(x, α) − bi(y, α)| ≤ K|x − y|, for all α ∈ M,

for a constant K.
The system of states and the control constraints are

dx(t)
dt

= b(x(t), u(t), α(t)),

x(0) = x, α(0) = α, and u(t) ∈ Γ,

where Γ is a convex and compact subset of R
n1 .
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The problem of interest is to choose an admissible control u(·) so as to
minimize an expected cost function

J(x, u(·), α) = E

∫ ∞

0
e−ρtG(x(t), u(t), α(t))dt,

where x and α are the initial values of x(t) and α(t), respectively, and
G(x, u, α) is a running cost function.

Definition 14.22. A control u(·) = {u(t) ∈ R
n1 : t ≥ 0} is called admissi-

ble with respect to the initial α if

(a) u(·) is progressively measurable with respect to the filtration {Ft},
where Ft = σ{α(s) : 0 ≤ s ≤ t} and

(b) u(t) ∈ Γ for all t ≥ 0.

Let A denote the set of all admissible controls.

Definition 14.23. A function u(x, α) is called an admissible feedback con-
trol, or simply feedback control, if

(a) for any given initial data x, the equation

dx(t)
dt

= b(x(t), u(x(t), α(t)), α(t)), x(0) = x

has a unique solution;

(b) u(·) = {u(t) = u(x(t), α(t)), t ≥ 0} ∈ A.

Let v(x, α) denote the value function of the problem

v(x, α) = inf
u(·)∈A

J(x, u(·), α).

As elsewhere in the book, K is a generic positive constant, whose values
may be different for different uses.

Lemma 14.24. The following assertions hold:

(a) If G(x, u, α) is locally Lipschitz in that

|G(x1, u, α) − G(x2, u, α)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|
for some constants K and κ, then v(x, α) is also locally Lipschitz in
that

|v(x1, α) − v(x2, α)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|.

(b) If G(x, u, α) is jointly convex and b(x, u, α) is independent of x, then
v(x, α) is convex in x for each α ∈ M.
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The next lemma presents the dynamic programming principle. A proof
of the result can be found in Yin and Zhang [158, Appendix].

Lemma 14.25. Let τ be an {Ft}-stopping time. Then

v(x, α) = inf
u(·)∈A

E

{∫ τ

0
e−ρtG(x(t), u(t), α(t))dt + e−ρτv(x(τ), α(τ))

}
.

To characterize further the value functions, let us first recall the notion
of viscosity solutions. Let v(·) : R

n ×M → R
1 be a given function and H(·)

be a real-valued function on

ΩH := R
n × M × R

m0 × R
n.

Consider the following equation

v(x, α) − H

(
x, α, v(x, ·), ∂v(x, α)

∂x

)
= 0. (14.15)

Definition 14.26 (Viscosity Solution). v(x, α) is a viscosity solution of
Equation (14.15) if the following hold:

(a) v(x, α) is continuous in x and |v(x, α)| ≤ K(1+ |x|κ) for some κ ≥ 0;

(b) for any α0 ∈ M,

v(x0, α0) − H

(
x0, α0, v(x0, ·), ∂φ(x0)

∂x

)
≤ 0,

whenever φ(x) ∈ C1 (i.e., continuously differentiable) and v(x, α0) −
φ(x) has a local maximum at x = x0; and

(c) for any α0 ∈ M,

v(x0, α0) − H

(
x0, α0, v(x0, ·), ∂ψ(x0)

∂x

)
≥ 0,

whenever ψ(x) ∈ C1 and v(x, α0) − ψ(x) has a local minimum at
x = x0.

If (a) and (b) (resp. (a) and (c)) hold, we say that v is a viscosity subsolution
(resp. viscosity supersolution).

In this book, when we consider certain optimal control problems, we
obtain a system of HJB equations of the form

ρv(x, α) = min
u∈Γ

{
b(x, u, α)

∂v(x, α)
∂x

+ G(x, u, α) + Qv(x, ·)(α)
}

, (14.16)

where b(∂/∂x)v is understood to be the inner product of b and (∂/∂x)v.
For proofs and references of the next a few results, we refer the reader to
Yin and Zhang [158, A.5 in Appendix].
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Theorem 14.27 (Uniqueness Theorem). Assume that for some positive
constants K and κ,

|G(x, u, α)| ≤ K(1 + |x|κ),

and

|G(x1, u, α) − G(x2, u, α)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|,

for all α ∈ M, x, x1, and x2 ∈ R
n, and u in a compact and convex set Γ.

Let Q be the generator of a Markov chain with state space M. Then the
HJB equation (14.16) has a unique viscosity solution.

Theorem 14.28. The value function v(x, α) is the unique viscosity solu-
tion to the HJB equation

ρv(x, α) = min
u∈Γ

{
b(x, u, α)

∂v(x, α)
∂x

+ G(x, u, α)
}

+ Qv(x, ·)(α). (14.17)

Theorem 14.29 (Verification Theorem). Let w(x, α) ∈ C1 such that

|w(x, α)| ≤ K(1 + |x|κ)

and

ρw(x, α) = min
u∈Γ

{
b(x, u, α)

∂w(x, α)
∂x

+ G(x, u, α) + Qw(x, ·)(α)
}

.

Then the following assertions hold:

(a) w(x, α) ≤ J(x, u(·), α) for any u(t) ∈ Γ.

(b) Suppose that there are uo(t) and xo(t) satisfying

dxo(t)
dt

= b(xo(t), uo(t), α(t))

with xo(0) = x, ro(t) = (∂/∂x)v(xo(t), α(t)), and

min
u∈Γ

{
b(x, u, α)ro(t) + G(xo(t), u, α) + Qw(xo(t), ·)(α(t))

}
= b(xo(t), uo(t), α(t))ro(t) + G(xo(t), uo(t), α(t))

+Qw(xo(t), ·)(α(t))

almost everywhere in t with probability one. Then

w(x, α) = v(x, α) = J(x, uo(·), α).
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Lemma 14.30. Let c(u) be twice differentiable such that (∂2/∂u2)c(u) >
0, V (x) be locally Lipschitz, i.e.,

|V (x1) − V (x2)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|,
and uo(x) be the minimum of F (x, u) := uV (x)+c(u). Then uo(x) is locally
Lipschitz in that

|uo(x1) − uo(x2)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|.

14.5 Miscellany

This section consists of a number of miscellaneous results used in this book.
They include the notion of convex functions, equiconitinuity in the extended
sense and the corresponding Arzelá-Ascoli theorem, and the Fredholm al-
ternative, among others.

Definition 14.31 (Convex sets and convex functions). A set S ⊂ R
r is

convex if for any x and y ∈ S, γx + (1 − γ)y ∈ S for any 0 ≤ γ ≤ 1. A
real-valued function f(·) on S is convex if for any x1, x2 ∈ S and γ ∈ [0, 1],

f(γx1 + (1 − γ)x2) ≤ γf(x1) + (1 − γ)f(x2).

If the above inequality holds in the strict sense whenever x1 = x2 and
0 < γ < 1, then f(·) is strictly convex.

The definition above can be found in, for example, the work of Fleming
[56]. The next lemma establishes the connection of convex functions with
Lipschitz continuity and differentiability.

Lemma 14.32 (Clarke [39, Theorem 2.5.1]). Let f(·) be a convex function
on R

r. Then

(a) f(·) is locally Lipschitz and therefore continuous, and

(b) f(·) is differentiable a.e.

We present a variation of the Arzelà–Ascoli theorem. Its ingredient is that
the family of functions is almost Lipschitz with an extra factor tending to
0 as k → ∞. Note that the sequence 1/k in (14.18) can be replaced by a
sequence of positive real numbers ak satisfying ak → 0.

Lemma 14.33. Let {fk(x)} be a sequence of functions on a compact subset
of R

n1 . Assume that {fk(x)} is uniformly bounded and that there exists a
constant K such that

|fk(x) − fk(y)| ≤ K

(
1
k

+ |x − y|
)

, for all x, y. (14.18)

Then there exists a uniformly convergent subsequence.
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Proof. The proof is a slight variation of that given in Strichartz [142,
p. 312] with the equicontinuous condition replaced by the near Lipschitz
condition. �

The following definition of equicontinuity in the extended sense is in
Kushner and Yin [100, p. 102]. Theorem 14.35 presents another variation
of the Arzelà–Ascoli theorem, namely, Arzelà–Ascoli theorem in the ex-
tended sense, which is handy to use for treating interpolated processes
from discrete iterations.

Definition 14.34. Let {fk(t)} be a sequence of R
r-valued measurable func-

tion defined on R
1, with {fk(0)} bounded. If for each T0 and η > 0, there

is a δ > 0 such that

lim sup
n

sup
0≤t−s≤δ,|t|≤T0

|fk(t) − fk(s)| ≤ η,

then we say that {fk(·)} is equicontinuous in the extended sense.

Theorem 14.35. Let {fk(·)} be defined on R and be equicontinuous in
the extended sense. Then there exists a subsequence converging to some
continuous limit uniformly on each bounded interval.

The following Fredholm alternative, which provides a powerful method
for establishing existence and uniqueness of solutions for various systems
of equations, can be found in, for example, Hutson and Pym [70, p. 184].

Lemma 14.36 (Fredholm Alternative). Let B be a Banach space and A
a linear compact operator defined on it. Let I : B → B be the identity
operator. Assume γ = 0. Then one of the two alternatives holds:

(a) The homogeneous equation (γI − A)f = 0 has only the zero solution,
in which case γ ∈ ρ(A)-the resolvent set of A, (γI −A)−1 is bounded,
and the inhomogeneous equation (γI −A)f = g has also one solution
f = (γI − A)−1g, for each g ∈ B.

(b) The homogeneous equation (γI − A)f = 0 has a nonzero solution, in
which case the inhomogeneous equation (γI − A)f = g has a solution
iff 〈g, f∗〉 = 0 for every solution f∗ of the adjoint equation γf∗ =
A∗f∗.

Note that in (b) above, 〈g, f∗〉 is a pairing defined on B × B
∗ (with B

∗

denoting the dual of B). This is also known as an “outer product” (see [70,
p. 149]), whose purpose is similar to the inner product in a Hilbert space. If
we work with a Hilbert space, this “outer product” is identical to the usual
inner product. When one considers linear systems of algebraic equations,
the lemma above can be rewritten in a simpler form.

Let B denote an m0 × m0 matrix. For any γ = 0, define an operator
A : R

m0×m0 → R
m0×m0 as

Ay = y(γI − B).
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Note that in this case, I is just the m0 × m0 identity matrix I. Then the
adjoint operator A∗ : R

m0×m0 → R
m0×m0 is

A∗x = (γI − B)x.

Suppose that b and y ∈ R
1×m0 . Consider the system yB = b. If the adjoint

system Bx = 0 where x ∈ R
m0×1 has only the zero solution, then yB = b

has a unique solution given by y = bB−1. If Bx = 0 has a nonzero solution
x, then yB = b has a solution iff 〈b, x〉 = 0.

Lemma 14.37. If a transition probability matrix P = (pij)m0×m0 is ir-

reducible and aperiodic, and f(i) ≤
m0∑
j=1

pijf(j) for a function f(i), i =

1, . . . , m0, then f(1) = f(2) = · · · = f(m0).

Proof. Note that (P − I) is a generator and is irreducible. A direct appli-
cation of Lemma A.39 in Yin and Zhang [158] yields this result. �

The following lemma reveals the connection between the weak irreducibil-
ity of a generator Q and the rank of the matrix Q. Its proof is in Yin and
Zhang [158, Lemma A.5].

Lemma 14.38. Let Q be an m0×m0 generator. If rank(Q) = m0−1, then
Q is weakly irreducible.

The next lemma is needed in treating filtering problems.

Lemma 14.39. Let w(·) and v(·) be independent r-dimensional standard
Brownian motions and α(·) be a continuous-time Markov chain with a finite
state space M = {1, . . . , l0}, which is independent of w(·) and v(·). For each
i ∈ M, A(i), C(i) σw(i), and σv(i) are r × r matrices such that Σ(i) =
σw(i)σ′

w(i) and C(i)C ′(i) are positive definite. For each t ∈ [0, T ], x(t) and
y(t) are R

r-valued processes such that x(t) is the state and (y(t), α(t)) are
the observations. That is, (y(s), α(s)) is observable for s ≤ t. They satisfy
the equations

dx = A(α(t))xdt + σw(α(t))dw, x(0) = x,

dy = C(α(t))xdt + δdv, y(0) = 0,

respectively. In the above, δ > 0 is a small parameter representing the
magnitude of observation noise. Then the corresponding Kalman filter is
given as follows:

dx̂ = A(α(t))x̂dt +
1
δ2 R(t)C ′(α(t))(dy − C(α(t))x̂dt),

Ṙ = A(α(t))R(t) + R(t)A′(α(t))

− 1
δ2 R(t)C(α(t))C(α(t))R(t) + Σ−1

w (α(t)),

x̂(0) = x, and R(0) = 0,
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where x̂(t) ∈ R
r and R(t) ∈ R

r×r. Moreover,

E

∫ T

0
|x(t) − x̂(t)|2dt = O(δ).

Proof. The proof is given in Zhang [174]. �

It is well known that any random variable X on a probability space
(Ω, F , P ) has an associated characteristic function defined by

φ(t) = E exp(itX).

There is a one-to-one correspondence between the random variable and its
characteristic function. A result, known as inversion formula (see Chow and
Teicher [37, p. 287]), is stated next.

Theorem 14.40. Suppose that X is a random variable with characteristic
function φ(t). Then for −∞ < a < b < ∞,

lim
M→∞

1
2π

∫ M

−M

e−ita − e−itb

it
φ(t)dt

= P (a < X < b) +
P (X = a) + P (X = b)

2
.

In studying differential equations, a device known as Gronwall’s inequal-
ity is quite handy; see Hale [66, Corollary 6.5, p. 36]. The following lemma
is a discrete-time counterpart and is useful for establishing bounds in dif-
ference equations.

Lemma 14.41. Let {φk} be a nonnegative sequence satisfying

φk+1 ≤ C0 + εC1

k∑
j=0

φj , k = 0, 1, 2, . . . , T/ε, (14.19)

for some positive constants C0 and C1, and a parameter ε > 0. Then, for
k = 0, 1, 2, . . . , T/ε,

φk ≤ C0(1 + εC1)T/ε.

Moreover,
φk ≤ C0 exp(C1T ). (14.20)

Proof: Let ξk = C0 + εC1
∑k−1

j=0 φj . Then φk ≤ ξk, ξ0 = C0, and

ξk+1 = ξk + εC1φk ≤ ξk + εC1ξk, k ≥ 1.

Solving the above inequality yields

φk ≤ ξk ≤ C0(1 + εC1)k ≤ C0(1 + εC1)T/ε.

In addition, noting that (1 + εC1) ≤ exp(εC1), (14.20) follows. �
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Remark 14.42. As mentioned elsewhere in the book, T/ε above is meant
to be the integer part 
T/ε�. Taking ε = 1, in (14.19), we obtain the
conventional Gronwall’s inequality. In fact, Lemma 14.41 can be stated as

sup
0≤k≤T/ε

φk ≤ C0 exp(C1T ).

It is interesting to note that the right-hand side above does not depend on
ε. Thus, it also holds uniformly in ε.

There is also a version of the inequality corresponding to the general-
ized Gronwall’s inequality in Hale [66, Lemma 6.2, p. 36], which is stated
as follows. Suppose that {φk} is a nonnegative sequence of real numbers
satisfying

φk+1 ≤ ψk+1 + ε

k∑
j=0

Cjφj , k = 0, 1, 2, . . . , T/ε

for some ψk ≥ 0 and Ck ≥ 0 and a parameter ε > 0. Then

φk ≤ ψk + ε

k−1∑
j=0

k−1∏
i=j+1

(1 + εCi)Cjψj , k = 0, 1, 2, . . . , T/ε.

The proof is a modification of Lemma 14.41.

14.6 Notes

This chapter reviews a number of technical results. Further reading and
details in stochastic processes can be found in Billingsley [18], Ethier and
Kurtz [55], and Kushner [96]. Related topics in control theory and singu-
larly perturbed Markov chains can be found in Fleming and Rishel [57],
Yin and Zhang [158], and the references therein.
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