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Ferruccio Colombini





Se vòi d’Amor o d’altro bene stare,
magistra sit tibi vita aliena,
disse Cato in su’ versificare.

Cecco Angiolieri, Rime, CVIII





Preface

The present volume is a collection of papers mainly concerning Phase Space
Analysis, also known as Microlocal Analysis, and its applications to the theory
of Partial Differential Equations (PDEs).

The basic idea behind this theory, at the crossing of harmonic analysis,
functional analysis, quantum mechanics and algebraic analysis, is that many
phenomena depend on both position and frequency (or wave numbers, or
momentum) and therefore must be understood and described in the phase
space. Including time and its dual variable, the energy, leads to the space-
time phase space. From this perspective major progress has been achieved in
the analysis of PDEs over the last forty years, based on the development of
powerful tools of microlocal analysis.

A number of the following papers, all written by leading experts in their
respective fields, are expanded versions of talks given at a meeting held in
October 2007 at the Certosa di Pontignano, a former 1400 cloister sprawling
on the hills surrounding Siena.

The Siena workshop was in honor of Ferruccio Colombini on the occasion
of his 60th birthday and it is our pleasure to dedicate to him this volume,
to which a number of friends and collaborators promptly manifested their
willingness to contribute.

In this sense the present volume can be seen as a scientific portrait of
Ferruccio.

Many people deserve our gratitude. We would like to thank all the con-
tributors as well as the people who took part in the workshop, who made a
lively mathematical attendance.

A number of institutions made possible to hold the Siena workshop
through their financial support. They are the Italian Ministero dell’Istruzione,
dell’Università e della Ricerca, Gruppo Nazionale per l’Analisi Matematica,



x Preface

la Probabilità e le loro Applicazioni, Università di Bologna, Università di Pisa
and the scientific cooperation agreement between the universities of Pisa and
Paris VI. We thank all of them for their generosity.

Bologna, Trieste, Pisa Antonio Bove
August 2008 Daniele Del Santo

M. K. Venkatesha Murthy†

Note added in Proofs – During the preparation of this volume, on November
22, 2008, Prof. M. K. Venkatesha Murthy passed away after a sudden and
brief illness. He was an outstanding mathematician, a friend and an example
for us.
[A. B., D. D. S.]
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Università di Bari
70125 Bari, Italy
jannelli@dm.uniba.it

Kunihiko Kajitani
Emeritus, Institute of Mathematics
University of Tsukuba
Tsukuba, Japan
3111871601@jcom.home.ne.jp



xiv List of Contributors

Alexander Kurganov
Mathematics Department
Tulane University
New Orleans, LA 70118, USA
kurganov@math.tulane.edu

Nicolas Lerner
Institut de Mathématiques de
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Tangent Halfspaces to Sets of Finite Perimeter
in Carnot Groups

Luigi Ambrosio

Scuola Normale Superiore, piazza dei Cavalieri, 7, 56100 Pisa, Italy
l.ambrosio@sns.it

Summary. We consider sets of locally finite perimeter in Carnot groups. We show
that if E is a set of locally finite perimeter in a Carnot group G then, for almost
every x ∈ G with respect to the perimeter measure of E, some tangent of E at x is a
vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra
Cassano in step 2 Carnot groups.

2000 AMS Subject Classification: 53C17, 49Q15.

Key words: Rectifiability, Carnot groups, sets of finite perimeter.

1 Introduction

The content of this paper reflects, with additional comments and extensions,
the talk given in the meeting in Pontignano. I will describe a recent joint work
[5] with B. Kleiner and E. Le Donne devoted to the rectifiability of sets of
finite perimeter in Carnot groups. I will spend some time in the description
of the basic results in this subject, and only in the end I will illustrate our
results, still not conclusive, and the open problems.

It is a pleasure to dedicate this paper to my friend Ferruccio Colombini,
on the occasion of his 60th birthday.

2 Differentiability and rectifiability

Let us start from two classical results:

Theorem 2.1 (Rademacher, Math. Ann., 1919) Any (locally) Lipschitz
function f : R

n → R is differentiable at L n-a.e. point x.

Theorem 2.2 (De Giorgi, Ricerche Mat., 1955, [14]) If E ⊆ R
n is a

set of (locally) finite perimeter, then (E − x)/r converges locally in measure
as r ↓ 0 to a halfspace H with 0 ∈ ∂H for |DχE |-a.e. x.

A. Bove et al. (eds.), Advances in Phase Space Analysis of Partial 1
Differential Equations, DOI 10.1007/978-0-8176-4861-9 1,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



2 Luigi Ambrosio

Postponing to the next section the precise technical meaning of the “sur-
face measure” |DχE |, we just underline the links between the two results: in
both cases, a blow-up procedure produces at a.e. point a simpler object (a
linear function in the former case, a halfspace in the latter). In some sense,
the second result is the geometric counterpart of the first one. The analogy
becomes also more clear if we write differentiability in the form

lim
r↓0

fx,r(y) = ∇f(x)y locally uniformly, with fx,r(y) :=
f(x + ry)− f(x)

r
.

On the other hand, the “exceptional” sets in both statements are related by
the coarea formula:

|∇f |L n =
∫ +∞

−∞
|Dχ{f>t}| dt.

In this sense, the second result is more precise than the first (because a collec-
tion of |Dχ{f>t}|-negligible sets gives rise to an L n-negligible set, at least in
the region where |∇f | > 0). Indeed, in the framework of Carnot groups that
soon we are going to describe, the analog of Rademacher’s theorem is known,
while only partial results are available on the analog of De Giorgi’s theorem.

2.1 Sets of finite perimeter in Euclidean spaces

Here we explain the notation and the terminology used in the statement of
De Giorgi’s theorem.

A Borel set E ⊆ R
n is said to be a set of finite perimeter if the derivative in

the sense DχE of the characteristic function χE is an R
n-valued measure with

finite total variation. Equivalently, there exists signed measure with finite total
variation DiχE , i = 1, . . . , n, such that

∫
E

∂f

∂xi
dx = −

∫
Rn

f DiχE ∀f ∈ C1
c (Rn).

Setting DχE = νE |DχE | with νE : R
n → Sn−1 (this is the so-called

polar representation of vector-valued measures, the existence of νE and its
uniqueness up to |DχE |-negligible sets being ensured by the Radon–Nikodym
theorem), we have a weak formulation of Green’s formula:

∫
E

divg dx = −
∫

Rn

〈g, νE〉 d|DχE | ∀g ∈ C1
c (Rn; Rn).

Sets E whose boundary is sufficiently regular and of finite surface measure
have finite perimeter; in addition |DχE |(B) = H n−1(B ∩ ∂E) for all Borel
sets B ⊂ R

n and νE(x) is the inner normal. See [3, 16] for a comprehensive
treatment of sets of finite perimeter (and BV functions) in Euclidean spaces.
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3 Motivations

The study of the differentiability properties of maps (between manifolds, met-
ric spaces, etc.) is motivated, for instance, by rigidity results. As an example,
the question of nonexistence of Lipschitz onto maps between R

3 and the first
Heisenberg group H

1 can be reduced, via a differentiability result, to the
much simpler question of nonexistence of onto (even homogeneous) homeo-
morphisms between R

3 and H
1. We will precisely define the group H

1 later
on, here it suffices to say that H

1 is a noncommutative group, hence such
homeomorphism can exist.

On the other hand, the asymptotic behavior of the sets (E − x)/r leads
to a representation of the perimeter measure |DχE | as a Hausdorff (n − 1)-
dimensional measure, precisely

|DχE |(B) = H n−1(B ∩ ∂∗E) for all Borel sets B ⊂ R
n.

Here ∂∗E is the essential boundary of E, i.e., the set of points where the
density of E is neither 0 nor 1.

As shown by De Giorgi in [14], this analysis leads also to the rectifiability
of the essential boundary of E (i.e., there exist countably many hypersurfaces
Γi such that H n−1(∂∗E \ ∪iΓi) = 0), and it is one of the most basic tools in
Geometric Measure Theory and in the regularity theory of minimal surfaces.

3.1 Generalized differentiability

Some very recent work by Cheeger and Kleiner shows that the “geometric”
viewpoint, exemplified by De Giorgi’s theorem, can be used as a replacement
of the “analytic” one in some cases when the former fails.

A typical case is the one of L1-valued maps, for which the usual concept of
differentiability fails: for instance the map t → χ(0,t) is nowhere differentiable.

A possible way to circumvent this difficulty is to look at the metric deriva-
tive: [27] this concept works well for Lipschitz maps from Euclidean spaces
R
n into any metric space E, and provides a “metric differential,” i.e., a local

norm χx such that

lim
r↓0

dE(f(x + ry), f(x))− πχx(y)
r

= 0 locally uniformly.

However, here I shall describe also another approach that works well, in-
stead, when f : X → L1: according to [15], the pull-back distance on E given
by df (x, y) := ‖f(x) − f(y)‖1 can be represented as a superposition of the
so-called cut distance:

df (u, v) =
∫

dC(u, v) dΣf (C).

Here the cut distance dC induced by C is defined by dC(u, v) := |χC(u) −
χC(v)|, and Σf is a suitable measure in the space of subsets C of X.
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Using this result, the asymptotic behavior of df on small scales is reduced
to the behavior of the sets C ∈ suppΣf on small scales. Cheeger and Kleiner
went further, proving in [9] that, under quite natural assumption on the met-
ric measure space (X, d, μ), Σf is concentrated on the class of sets of finite
perimeter. Here finiteness of perimeter must be understood in the generalized
sense introduced by M. Miranda in [33].

Using this fact, together with the analog of De Giorgi’s theorem in the
Heisenberg groups H

n endowed with the Carnot–Carathéodory distance dcc

[19] (I am going to state this result and the definition of dcc more precisely
later on), they obtain the following rigidity result:

Theorem 3.1 There exists no bi-Lipschitz embedding of H
1 into L1. More

precisely, if f : H
1 → L1 is Lipschitz, then

lim
r↓0

‖f(x exp(r2T ))− f(x)‖1
r

= 0 for volH1-a.e. x ∈ H
1.

Here, in exponential coordinates (x1, x2, t), T = ∂t and

dcc(x exp(r2T ), x) = dcc(exp(r2T ), 0) = cr.

So, it turns out that, at volH1-a.e. point, f contracts too much the distance
(and hence is not bi-Lipschitz) in the direction T . The geometric counterpart
of this, as we will see, is the fact tangent sets to sets of finite perimeter in H

1

are “vertical halfspaces,” i.e., they are invariant along the T direction.

4 Carnot groups, differentiability of Lipschitz functions
and sets of finite perimeter

Carnot groups are a natural object of study in Subelliptic PDEs, Harmonic
Analysis, Control Theory, Geometry [17, 18, 24, 26, 41, 42]. They arise, for
instance, as “tangent” spaces to Carnot–Carathéodory spaces [6].

A Carnot group G is a connected, simply connected and nilpotent Lie
group whose Lie algebra g of left-invariant vector fields admits a stratification:

g = V1 ⊕ · · · ⊕ Vs.

Here Vi+1 = [Vi, V1] for i ≥ 1, Vs �= {0} and Vs+1 = {0}.
It is convenient to introduce a notation for some relevant parameters de-

pending on g and its stratification:

• s is the step of the group;
• V1 is the space of horizontal vector fields;
• Q :=

∑s
1 idim(Vi) is the homogeneous dimension of G.

Notice that Q > dim(G) = dim(g), unless s = 1.



Tangent Halfspaces to Sets of Finite Perimeter in Carnot Groups 5

4.1 The Heisenberg groups

The Heisenberg group H
1 is the step 2 group whose Lie algebra g is spanned

by X, Y, T satisfying

[X,Y ] = T, [X,T ] = 0, [Y, T ] = 0.

Here n = 3, Q = 4. In exponential coordinates (x, y, t) → exp(xX + yY + tT )
the vector fields are representable by

X = ∂x + 2y∂t, Y = ∂y − 2x∂t, T = −4∂t

and the group law is

(x, y, t)(x′, y′, t′) = (x + x′, y + y′, t + t′ − 2xy′ + 2x′y).

More generally, in exponential coordinates, for any Carnot group the vector
fields of the Lie algebra are divergence-free and have polynomial coefficients
with respect to the canonical basis ∂x1 , . . . , ∂xn

(this is a consequence of the
Baker–Campbell–Hausdorff formula [30], which provides a formula for the
polynomials depending only on the commutator relations in g).

4.2 Dilations and Carnot–Carathéodory distance

We may define dilations δr in g setting δrX = riX for X ∈ Vi, and then
extending δr linearly. Via the exponential map exp : g → G (exp ◦δr =
δr ◦exp), the dilations can be defined on G, and are well-behaved with respect
to the group operations:

δr(xy) = δr(x)δr(y) ∀x, y ∈ G, ∀r ≥ 0.

The Carnot–Carathéodory distance dcc is defined [34] by

d2
cc(x, y) := inf

{∫ 1

0

|γ̇|2(t) dt : γ(0) = x, γ(1) = y

}
,

where the infimum is constrained to horizontal curves, i.e., those such that
γ̇(t) ∈ (V1)γ(t) for L 1-a.e. t.

This distance is compatible with the group law and with the dilations: we
have volG(Br(x)) = c rQ for some c > 0 and

dcc(zx, zy) = dcc(x, y), dcc(δrx, δry) = r dcc(x, y).

4.3 Pansu differentiability theorem

The following result provides the natural extension of Rademacher’s theorem
to the context of Lie groups.
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Theorem 4.1 (Pansu, Ann. Mat. 1989, [38]) Let f : G → M be a Lips-
chitz map. Then, for volG-a.e. x, the limit

dfx(Y ) := lim
t↓0

δ1/t

[
(f(x))−1f(x exp(δtY ))

]
Y ∈ g

exists and ln(dfx(Y )) defines a homogeneous homeomorphism between the Lie
algebras of G and M.

Notice that the formula for the difference quotients is dictated by the
following two requirements: first, intrinsic dilations (both in G and in M)
should be used; second, the property of being differentiable should be left
invariant both with respect to translations in the domain (f(x) replaced by
f(gx), with g ∈ G) and in the target (f(x) replaced by mf(x), with m ∈ M).

If M = R, the formula becomes simpler, and says that the limit

lim
t↓0

f(x exp(δtY ))− f(x)
t

exists. Moreover, the homogeneity implies that dfx(Y ) = 0 for all Y ∈ Vi with
i > 1: indeed

2idfx(Y ) = dfx(2iY ) = dfx(δ2Y ) = δ2dfx(Y ) = 2dfx(Y ).

Notice that, at all points, the Lipschitz continuity guarantees only
|f(x exp(δtY ))− f(x)| ≤ Ct. The underlying reason for this phenomenon can
be explained as follows: assume Y = [X1,X2] with X1, X2 ∈ V1. Then

dcc

(
x̄ exp(t2Y ), x̄ exp(tX1) exp(tX2) exp(−tX1) exp(−tX2)

)
= o(t)

yields

f
(
x̄ exp(δtY )

)− f
(
x̄ exp(tX1) exp(tX2) exp(−tX1) exp(−tX2)

)
= o(t).

But, since the target space is commutative, cancellations at Lebesgue points
x̄ of the horizontal gradient yield

f(x̄ exp(tX1) exp(tX2) exp(−tX1) exp(−tX2))− f(x̄) = o(t).

Combining these two bits of information we get

f
(
x̄ exp(δtY )

)− f(x̄) = o(t).

4.4 X-derivative and sets of finite perimeter

If X is a (smooth) vector field in G, we can define the divergence ÷X by
duality:
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X

X2

–X2

1

_
xexp(t2Y)

x
_

_X1

∫
G

XudvolG = −
∫

G

u divX dvolG ∀u ∈ C1
c (G).

Accordingly, if X is divergence-free, we define X-derivative in the sense of
distributions by

〈Xu, v〉 := −
∫

G

uXv dvolG v ∈ C∞
c (G).

As usual, we will write Xu = f (resp. Xu = μ) whenever this distribution is
representable by integration with respect to fvolG (resp. μ).

Given a Borel set E ⊆ G we define

Reg(E) := {X ∈ g : XχE is a Radon measure in G} .
We say that E has finite perimeter if Reg(E) ⊇ V1.

It will also be useful to consider the subspace of invariant directions:

Inv(E) := {X ∈ Reg(E) : XχE = 0} .
The set Inv(E) is easily seen to be a Lie subalgebra of g, because the

identity [X,Y ]χE = X(Y χE) − Y (XχE) still holds in the sense of distribu-
tions. While the whole theory is (conventionally) left invariant, the property
XχE = 0 ensures right invariance! Indeed

XχE = 0 ⇐⇒ E exp(tX) = E ∀t ∈ R.

4.5 Generalized inner normal to sets of finite perimeter

Keeping in mind the analogy with the Euclidean case, we would like to define
a generalized inner normal. Obviously this is a metric-dependent concept, so
we fix an orthonormal basis X1, . . . , Xm of V1 and we define the R

m-valued
measure

DχE := (X1χE , . . . , XmχE) .

We have, by the Radon–Nikodym theorem,

DχE = νE |DχE |, with νE : G → Sm−1

and we call νE = (νE,1, . . . , νE,m) generalized (horizontal) inner normal.
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5 Rectifiability in Euclidean spaces and in step 2 groups

Let us call vertical halfspace a Borel set E ⊆ G satisfying:

(i) E is invariant along all directions in Vi, i > 1, and along a codimension 1
subspace of V1;

(ii) For some X ∈ V1, XχE is a nonnegative Radon measure, not equal to 0.

In exponential coordinates, these sets correspond to the usual halfpsaces
(up to a left translation){

x ∈ R
n :

m∑
i=1

xiνi ≥ 0

}
ν ∈ Sm−1,

with the only difference that only the first m coordinates of x ∈ R
n are

involved. For this reason we use the adjective “vertical,” because all these
sets are invariant along the directions in Vi with i > 1.

Now, if we define

Tan(E, x) :=
{

lim
i→∞

δ1/ri
(x−1E) : (ri) ↓ 0

}

(the limit being understood with respect to local convergence in measure, i.e.,
L1

loc convergence of characteristic functions), the rectifiability problem can be
stated as follows: show that, for |DχE |-a.e. x ∈ G, Tan(E, x) contains only a
vertical halfspace H with e ∈ ∂H.

5.1 Measure-theoretic properties of |DχE|
Let us define the essential boundary of E as the set of points where the density
is neither 0 nor 1:

∂∗E :=
{
x ∈ G : lim inf

r↓0
min

(volG(Br(x) ∩ E)
volG(Br(x))

,
volG(Br(x) \ E)

volG(Br(x))
)
> 0

}
.

The following result could be considered as a very weak version of De
Giorgi’s theorem (it holds, however, in all doubling metric measure spaces
supporting a Poincaré inequality, see [1]) and provides some information on
the “perimeter” measure |DχE |:
Theorem 5.1 (A., Adv. Math. ’01) Let E ⊆ G be a set with finite perime-
ter. Then, for |DχE |-a.e. x, for r > 0 sufficiently small we have

cGωQ−1r
Q−1 ≤ |DχE |(Br(x)) ≤ CGωQ−1r

Q−1,

with 0 < cG ≤ CG. As a consequence, |DχE | = θS Q−1�∂∗E for some function
θ ∈ [cG, CG].

Here S Q−1 is the spherical Hausdorff measure. The missing piece of in-
formation is the explicit characterization of the function θ (whose existence
is provided by a nonconstructive result, the Radon–Nikodym theorem): this
requires a more precise blow-up analysis, which is one of the motivations of
studying the rectifiability problem.
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5.2 De Giorgi’s rectifiability proof

In essence (and omitting some deep preliminary volume and perimeter esti-
mates), De Giorgi’s proof [14] is based on the following steps:

• (Choice of the blow-up point)
A Lebesgue point x̄ of νE , relative to |DχE |; this means that

∫
Br(x̄)

|νE(y)−
νE(x̄)|2 d|DχE |(y) is an infinitesimal faster than |DχE |(Br(x̄)) as r ↓ 0.

• (Normals of blow-ups are constant)
Since ν(E−x̄)/r(y) equals νE(x̄+ ry), it turns out that all F ∈ Tan(E, x̄) have
constant normal, equal to νE(x̄).

• (Classification of blow-ups)
By the previous step, any tangent set F at x̄ satisfies XχF = 0 if X ⊥ νE(x̄),
and XχF ≥ 0 if X = νE(x̄).

These properties imply, by a classical and elementary smoothing argument,
that F is a halfspace orthogonal to νE(x̄). Here the fact that we are dealing
with constant coefficient operators plays an important role.

5.3 De Giorgi’s argument in Carnot groups

Franchi, Serapioni and Serra Cassano reproduced (first in the Heisenberg
groups [19] and then in all step 2 groups [20]) this argument in Carnot groups:

• (Choice of the blow-up point)
A Lebesgue point x̄ of νE , relative to |DχE |. Here no difference appears with
the Euclidean case: thanks to the density estimates of Theorem 5.1 Lebesgue
points are a set of full |DχE | measure.

• (Normals of blow-ups are constant)
Since νδ1/r(x̄−1E)(y) equals νE(x̄δry), it turns out that all F ∈ Tan(E, x̄) have
constant horizontal normal, equal to νE(x̄). Also here no essential difference
appears, the only one is that we gain constancy of the horizontal normal and
not of the Euclidean normal (which makes no sense, in this setting).

• (Classification of blow-ups)
By the previous step, any tangent set F at x̄ satisfies XχF = 0 if X =

∑
i ξiXi

with ξ ⊥ νE(x̄), and XχF ≥ 0 if X =
∑

i νE,i(x̄)Xi.

Now the question is: do these properties imply that F is a vertical half-
space? Franchi, Serapioni and Serra Cassano proved that the answer is affirma-
tive in step 2 Carnot groups. This leads to a complete proof of the rectifiability
in this class of groups.

The proof, in G = H
1, is based on the following key geometric observation:

if x > x′, it is possible to move from (x, y, t) to (x′, y′, t) using integral lines
of Y = ∂y − 2x∂t, and integral lines of X = ∂x + 2y∂t only in the positive
direction.
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Let us illustrate this with an example: in order to reach P = (1, 1, 1) from
(0, 0, 0), we reach A = (0, 3/4, 0) following Y = (∂y − 2x∂t) for T1 = 3/4,
then we reach B = (1, 3/4, 3/2) following X = (∂x + 2y∂t) for T2 = 1, and
eventually we reach P = (1, 1, 1) following Y for T3 = 1/4.

In general step 2 groups G one uses the fact that, given any two horizontal
directions X and Y , g′ := span(X,Y, [X,Y ]) is a Lie subalgebra of g, so that
H

1 “embeds” into G.
However, as shown in [20], this program fails in groups of step 3, or higher,

because there exist sets with a constant horizontal normal which are not
halfspaces.

Let e be the Carnot group (called Engel group, or group of Engel type)
whose Lie algebra is g = V1 ⊕ V2 ⊕ V3 with V1 = span{X1,X2}, V2 = {RX3}
and V3 = {RX4}, the only nonzero commutation relations being

[X1,X2] = −X3, [X1,X3] = −X4.

In this case n = 4, s = 3, Q = 2 ·1+1 ·2+1 ·3 = 7. In exponential coordinates,
an explicit representation of the vector fields is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X1 = ∂1 + x2
2 ∂3 + (x3

2 − x1x2
12 )∂4,

X2 = ∂2 − x1
2 ∂3 + x2

1
12∂4,

X3 = ∂3 − x1
2 ∂4,

X4 = ∂4.

Now, let P : R
4 → R be the polynomial

P (x) =
1
6
x2(x2

1 + x2
2)−

1
2
x1x3 + x4,

whose gradient is

∇P (x) =
(
x1x3

3
− x3

2
,
x2

2

2
+

x2
1

6
,−x1

2
, 1
)
.
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All level sets {P = c} of P are obviously graphs of smooth functions depending
on (x1, x2, x3). We have

X1P (x) = 0, X2P (x) =
1
2
(x2

1 + x2
2) ∀x ∈ R

4. (5.1)

We define
C := {x ∈ R

4 : P (x) ≤ 0},
whose boundary ∂C is the set {P = 0}. Notice that, due to the (intrinsic)
homogeneity of degree 3 of the polynomial, the set C is a cone, i.e., δrC = C
for all r > 0. Thus, C is a set with constant normal that is not a vertical
halfspace (it is not invariant with respect to the X3 and X4 directions).

This example is reminiscent of the celebrated Simons’ cone
{
x ∈ R

8 : x2
1 + x2

2 + x2
3 + x2

4 < x2
5 + x2

6 + x2
7 + x2

8

}
,

whose minimality has been proved by Bombieri, De Giorgi and Giusti. As
a matter of fact, one can show that all sets with a constant horizontal nor-
mal, and C in particular, are minimal surfaces with respect to the Carnot–
Carathéodory distance: they minimize the intrinsic perimeter |DχE | with
respect to compactly supported variations.

6 Our main results, and open problems

In order to get a halfspace, the Engel cone example suggests to consider iter-
ated tangents: we define Tan(1)(E, x) = Tan(E, x) and

Tan(k+1)(E, x) :=
{

lim
i→∞

δ1/ri
(y−1F ) : F ∈ Tan(k)(E, x), (ri) ↓ 0

}
.

Here we need to iterate the blow-up procedure even at points y �= e: if we do
not do this, any conical tangent set (as the cone we considered before) would
stop the process.

Theorem 6.1 For |DχE |-a.e. x̄ and k ≥ 1+2(n−m), Tan(k)(E, x̄) contains
the vertical halfspace H with e ∈ ∂H and with inner normal νE(x̄).
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The idea of the proof is to provide a mechanism for the growth, in higher
and higher tangents, of regular and invariant directions. I shall describe this
mechanism later on, but first I want to discuss the relation between this
result and the original rectifiability problem. The connection is provided by
this result:

Theorem 6.2 For |DχE |-a.e. x̄ we have
⋃

k Tan(k)(E, x̄) = Tan(E, x̄). As a
consequence, for |DχE |-a.e. x̄ there exists (ri) ↓ 0 satisfying

lim
i→∞

δ1/ri
(x̄−1E) = H,

where H is the vertical halfspace with e ∈ ∂H and inner normal νE(x̄).

This result is not yet a complete solution of the rectifiability problem.
Indeed, we know that (x̄−1E), when seen at some small scales ri, looks like
a vertical halfspace, but we would like to show that this happens on all suf-
ficiently small scales r. What is still missing is some monotonicity/stability
argument that singles out halfspaces among all possible tangent sets.

The principle “iterated tangents are tangent” was discovered by Preiss
[39], in his complete proof (after partial solutions by Besicovitch, Marstrand,
Mattila) of Federer’s conjecture:

∃ Θ(x̄) := lim
r↓0

μ(Br(x̄))
ωkrk

∈ (0,∞) μ-a.e. =⇒ μ H k-rectifiable.

In the proof of Preiss’s theorem, blow-up measures ν at x̄ are uniform:

ν(Br(x)) = Θ(x̄)rk ∀r > 0, x ∈ supp ν.

For instance, H 3 restricted to the cone {x2
4 = x2

1 +x2
2 +x2

3} ⊆ R
4 has this

property. Flat measures are singled out, among all possible blow-ups, by an
asymptotic stability property.

7 Some ideas from the proof

Let F be a tangent set at x̄. We know that the Lie algebra Inv(F ) contains
a codimension 1 subspace of V1, and that F has constant horizontal normal.
We set

X :=
m∑
i=1

νE,i(x̄)Xi ∈ V1.

Our proof is based on the following two principles:
(1) Regular nonhorizontal directions become, for the tangent sets, invariant

(at least at H Q−1-a.e. point);
(2) Reg(F ) � Inv(F ) + {RX}, unless Inv(F ) has codimension 1.
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The first principle is natural, because the group dilations δr shrink more
in the nonhorizontal directions. Roughly speaking, it corresponds to saying
that if f is a BV function, then

lim
r↓0

f(x + riy)− f(x)
r

= 0 in L1
loc(R

n
y )

for L n-a.e. x, provided i > 1.

7.1 Regular directions become invariant

If Y ∈ Vi ∩ Reg(E) for some i > 1 and μ = Y χE , we have indeed
∫
δ1/r(x̄−1E)

Y φ dx = r−Q

∫
x̄−1E

(Y φ) ◦ δ1/r dy = ri−Q

∫
x̄−1E

Y (φ ◦ δ1/r) dy

= −ri−Q

∫
φ(δ1/r(x̄−1y)) dμ(y).

Now, if suppφ ⊆ BR, we have suppφ(δ1/r(x̄−1y)) ⊆ BRr(x̄) and therefore
(for H Q−1-a.e. x̄)

ri−Q

∫
φ(δ1/r(x̄−1y)) dμ(y) = ri−QO

(|μ|(BRr(x̄))
)

= O(ri−1).

Passing to the limit as r ↓ 0 we conclude that Y χF = 0 for all F ∈
Tan(E, x̄).

7.2 New regular directions

Recall that Adk : g → g is defined by Adk(Y ) := dCk(Y ), where Ck : G → G

is the conjugation by k:

Ck(g) := kgk−1, g ∈ G.

The first remark is that Adk maps Reg(F ) into Reg(F ) whenever F is
right k-invariant. This is natural and not difficult to prove: indeed, on the one
hand, the theory is left invariant, so that left multiplication by k preserves
the regularity property; on the other hand, because of the right k-invariance
of F , the potentially dangerous right multiplication by k (a map that is only
Hölder continuous with respect to the Carnot–Carathéodory distance) has no
effect. A simple computation shows that Adk(X)χF is the push-forward of
the measure XχF under the right multiplication with k−1.

The following lemma provides the basic mechanism for the generation
of new regular directions, starting from the monotonicity direction and the
invariant directions.
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Lemma 7.1 {Adk(X) : k ∈ exp(Inv(F ))} is not contained in Inv(F ) +
{RX}, unless Inv(F ) has codimension 1.

A sketchy proof goes as follows: if this does not happen, setting K =
exp(Inv(F )) and denoting by π : G → G/K the projection map, we can
“project” Adk(X) to a smooth 1-dimensional distribution W on G/K. This
would be integrable, and the inverse image π−1(F) of a foliation F of G/K
tangent to W would give a foliation of G tangent to W . This contradicts the
fact that the Lie algebra generated by W is the whole of g.

Denoting for simplicity by g′ the Lie subalgebra Inv(F ), a closer analysis
of the operator Adexp(Y ), written as an exponential of the map Y → [X,Y ],
reveals that

span
({Adk(X) : k ∈ exp(g′)}) = X + [g′,X] + [g′, [g′,X]] + · · · .
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Summary. The goal of this paper is to study the action of the heat operator on
the Heisenberg group H

d, and in particular to characterize Besov spaces of negative
index on H

d in terms of the heat kernel. That characterization can be extended to
positive indexes using Bernstein inequalities. As a corollary we obtain a proof of
refined Sobolev inequalities in Ẇ s,p spaces.
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1 Introduction

This paper is concerned mainly with a characterization of Besov spaces on
the Heisenberg group using the heat kernel. In [1], a Littlewood–Paley de-
composition on the Heisenberg group is constructed, and Besov spaces are
defined using that decomposition. It is classical that in R

d there is an equiv-
alent definition, for negative regularity indexes, in terms of the heat kernel.
This characterization in R

d can be extended to positive regularity indexes
thanks to Bernstein’s inequalities which express that derivatives act almost
as homotheties on distributions, the Fourier transform of which is supported
in a ring of R

d centered at zero.
The aim of this text is to present a similar characterization of Besov spaces

on H
d using the heat flow. One of the main steps of the procedure in R

d con-
sists in studying frequency localized functions and the action of derivatives,
and more generally Fourier multipliers, on such functions (the corresponding
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inequalities for derivatives are known as Bernstein inequalities). In the Heisen-
berg group there is a priori no simple notion of frequency localization, since
the Fourier transform is a family of operators on a Hilbert space; however,
frequencies may be understood by studying the action of the Laplacian on a
Hilbertian basis of that space, which allows one to define a notion of frequency
localization (see Definition 2.10 below). One can then try to investigate the
action of the semigroup of the heat equation on the Heisenberg group on such
frequency localized functions. That is achieved in this paper; we also prove a
similar characterization of Besov spaces in terms of the heat flow, as in the
classical R

d case. This allows us to prove refined Sobolev inequalities, for Ẇ s,p

spaces. Finally we are able by similar techniques to recover the fact that the
heat semigroup is the convolution by a function in the Schwartz class (as in
previous works by Gaveau in [6] and Hulanicki in [8]).

Let us mention that by a different method, Furioli, Melzi and Veneruso
obtained in [5] a characterization of Besov spaces in terms of the heat kernel
for Lie groups of polynomial growth.

1.1 The Heisenberg group H
d

In this introductory section, let us recall some basic facts on the Heisenberg
group H

d. The Heisenberg group H
d is the Lie group with underlying C

d ×R

endowed with the following product law:

∀ ((z, s), (z′, s′)) ∈ H
d ×H

d, (z, s) · (z′, s′) = (z + z′, s + s′ + 2Im(z · z′)),
where z · z′ =

∑d
j=1 zjz

′
j . It follows that H

d is a noncommutative group, the
identity of which is (0, 0); the inverse of the element (z, s) is given by (z, s)−1 =
(−z,−s). The Lie algebra of left invariant vector fields on the Heisenberg
group H

d is spanned by the vector fields

Zj = ∂zj
+ izj∂s, Zj = ∂zj

− izj∂s and S = ∂s =
1
2i

[Zj , Zj ],

with j ∈ {1, . . . , d}. In all that follows, we shall denote by Z the family
of vector fields defined by Zj for j ∈ {1, . . . , d} and Zj = Zj−d for j ∈
{d + 1, . . . , 2d} and for any multi-index α ∈ {1, . . . , 2d}k, we will write

Zα def= Zα1 . . . Zαk
. (1.1)

The space H
d is endowed with a smooth left invariant measure, the Haar

measure, which in the coordinate system (x, y, s) is simply the Lebesgue mea-
sure dxdyds.

Let us point out that on the Heisenberg group H
d, there is a notion of

dilation defined for a > 0 by δa(z, s) = (az, a2s). The homogeneous dimension

of H
d is therefore N

def= 2d + 2, noticing that the Jacobian of the dilation δa
is aN .

The Schwartz space S(Hd) on the Heisenberg group is defined as follows.
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Definition 1.1 The Schwartz space S(Hd) is the set of smooth functions u
on H

d such that, for any k ∈ N, we have

‖u‖k,S def
= sup

|α|≤k

(z,s)∈H
d

∣∣Zα
(
(|z|2 − is))2ku(z, s)

)∣∣ <∞.

Remark 1.2 The Schwartz space on the Heisenberg group S(Hd) coincides
with the classical Schwartz space S(R2d+1). The weight in (z, s) appearing in
the definition above is related to the fact that the Heisenberg distance to the

origin is defined by ρ(z, s)
def
=

(|z|4 + s2
) 1

4 .

Finally, let us present the Laplacian–Kohn operator, which is central in the
study of partial differential equations on H

d, and is defined by

ΔHd
def= 2

d∑
j=1

(ZjZj + ZjZj).

Powers of that operator allow us to construct positive order Sobolev spaces:
for example we define the homogeneous space Ẇ s,p(Hd), for 0 < s < N/p, as
the completion of S(Hd) for the norm

‖f‖Ẇ s,p(Hd)
def=

∥∥(−ΔHd)
s
2 f
∥∥
Lp(Hd)

.

1.2 Statement of the results

In [1] and [3] a dyadic unity partition is built on the Heisenberg group H
d,

similar to the one defined in the classical R
d case. A significant application of

this decomposition is the definition of Besov spaces on the Heisenberg group
in the same way as in the classical case (see [1],[3]). In Section 2, we shall give
a full account of this theory.

The main result of this paper describes the action of the semigroup associ-
ated with the heat equation on the Heisenberg group, on a frequency localized
function. We refer to Definition 2.10 below for the notion of a frequency lo-
calized function, which requires the definition of the Fourier transform on H

d,
and is therefore slightly technical.

Lemma 1.3 Let (r1, r2) be two positive real numbers, and define C(r1,r2) =
C(0, r1, r2) the ring centered at the origin, of small and large radius respec-
tively r1 and r2. Two positive constants c and C exist such that, for any real
number p ∈ [1,∞], any couple (t, β) of positive real numbers and any func-
tion u frequency localized in the ring βC(

√
r1,

√
r2), we have

‖etΔHdu‖Lp(Hd) ≤ Ce−ctβ2‖u‖Lp(Hd). (1.2)
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That lemma is the key argument in the proof of the following theorem
which is well known in R

d and proved by a different method in [5] for Lie
groups of polynomial growth. The definition of Besov spaces is provided in
the next section.

Theorem 1.4 Let s be a positive real number and (p, r) ∈ [1,∞]2. A con-
stant C exists which satisfies the following property. For u ∈ Ḃ−2s

p,r (Hd), we
have

C−1‖u‖Ḃ−2s
p,r (Hd) ≤

∥∥∥‖tsetΔHdu‖Lp(Hd)

∥∥∥
Lr(R+, dt

t )
≤ C‖u‖Ḃ−2s

p,r (Hd). (1.3)

Remark 1.5 Thanks to Bernstein’s inequalities (see Proposition 2.12 below),
we have

‖u‖Ḃσ
p,r(Hd) ≡ sup

|α|=k

∥∥(−ΔHd)
α
2 u

∥∥
Ḃσ−k

p,r (Hd)
.

We deduce that the characterization of Besov spaces on the Heisenberg group
in terms of the heat kernel can be extended to any positive regularity index.

This characterization is useful for instance to prove refined Sobolev inequali-
ties. In this paper we will prove the following result.

Theorem 1.6 Let p ∈ [1,∞] and 0 < s < N/p be given. There exists a
positive constant C such that for any function f in Ẇ s,p(Hd) we have

‖f‖Lq(Hd) ≤ C‖f‖1−
sp
N

Ẇ s,p(Hd)
‖f‖

sp
N

Ḃ
s− N

p
∞,∞

,

with q = pN/(N − ps).

Remark 1.7 This is a refined Sobolev inequality since it is easy to see that

Ẇ s,p(Hd) is continuously embedded in Ḃ
s−N

p∞,∞ , so that Theorem 1.6 is a refined
version of the classical inequality

‖f‖Lq(Hd) ≤ C‖f‖Ẇ s,p(Hd).

The above continuous embedding is simply due to the following estimate, ap-
plied to u = (−ΔHd)

s
2 f :

‖u‖
Ḃ

− N
p

∞,∞
= sup

t>0
t

N
2p ‖etΔHdu‖L∞(Hd) ≤ C‖u‖Lp(Hd).

Note that in the special case when p = 2, such an inequality was proved in [3],
using the method developed in the classical case in [7].

It turns out that the techniques involved in the proof of Lemma 1.3 enable
us to recover the following theorem, which was proved (by different methods)
by Gaveau in [6] and Hulanicki in [8].
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Theorem 1.8 There exists a function h ∈ S(Hd) such that if u denotes the
solution of the free heat equation on the Heisenberg group

{
∂tu−ΔHdu = 0 in R

+ ×H
d,

u|t=0 = u0,
(1.4)

then we have
u(t, ·) = u0 � ht,

where � denotes the convolution on the Heisenberg group defined in Section 2
below, while ht is defined by

ht(x, y, s) =
1

td+1
h

(
x√
t
,
y√
t
,
s

t

)
.

The rest of this paper is devoted to the proof of Theorems 1.4 to 1.8, as
well as Lemma 1.3.

The structure of the paper is the following. First, in Section 2, we present
a short review of the Littlewood–Paley theory on the Heisenberg group, giving
the notation and results that will be used in the proofs, as well as the main
references of the theory. Section 3 is devoted to the proof of Theorem 1.4,
assuming Lemma 1.3, and finally the proof of Lemma 1.3 can be found in
Section 4. In Section 4 we also give the proofs of Theorems 1.6 and 1.8.

2 Elements of Littlewood–Paley theory on the
Heisenberg group

2.1 The Fourier transform on the Heisenberg group

To introduce the Littlewood–Paley theory on the Heisenberg group, we need
to recall the definition of the Fourier transform in that framework. We refer
for instance to [10], [11] or [12] for more details. The Heisenberg group be-
ing noncommutative, the Fourier transform on H

d is defined using irreducible
unitary representations of H

d. As explained for instance in [12, Chapter 2],
all irreducible representations of H

d are unitarily equivalent to one of two
representations: the Bargmann representation or the L2-representation. The
representations on L2(Rd) can be deduced from Bargmann representations
thanks to interlacing operators. The reader can consult J. Faraut and K.
Harzallah [4] for more details. We shall choose here the Bargmann represen-
tations described by (uλ,Hλ), with λ ∈ R \ {0}, where Hλ are the spaces
defined by

Hλ = {F holomorphic on C
d, ‖F‖Hλ

<∞},
while we define
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‖F‖2Hλ

def=
(

2|λ|
π

)d ∫
Cd

e−2|λ||ξ|2 |F (ξ)|2dξ, (2.1)

and uλ is the map from H
d into the group of unitary operators of Hλ defined

by
uλz,sF (ξ) = F (ξ − z)eiλs+2λ(ξ·z−|z|2/2) for λ > 0,
uλz,sF (ξ) = F (ξ − z)eiλs−2λ(ξ·z−|z|2/2) for λ < 0.

Let us notice that Hλ equipped with the norm (2.1) is a Hilbert space and
that the monomials

Fα,λ(ξ) =
(
√

2|λ| ξ)α√
α!

, α ∈ N
d,

constitute an orthonormal basis.
If f belongs to L1(Hd), its Fourier transform is given by

F(f)(λ) def=
∫

Hd

f(z, s)uλz,sdzds.

Note that the function F(f) takes its values in the bounded operators on Hλ.
As in the R

d case, one has a Plancherel theorem and an inversion for-
mula. More precisely, let A denote the Hilbert space of one-parameter fam-
ilies A = {A(λ)}λ∈R\{0} of operators on Hλ which are Hilbert–Schmidt for
almost every λ ∈ R with norm

‖A‖ =
(

2d−1

πd+1

∫ ∞

−∞
‖A(λ)‖2HS(Hλ)|λ|ddλ

) 1
2

<∞,

where ‖A(λ)‖HS(Hλ) denotes the Hilbert–Schmidt norm of the operator A(λ).
Then the Fourier transform can be extended to an isometry from L2(Hd)
onto A and we have the Plancherel formula:

‖f‖2L2(Hd) =
2d−1

πd+1

∑
α∈Nd

∫ ∞

−∞
‖F(f)(λ)Fα,λ‖2Hλ

|λ|ddλ.

On the other hand, if
∑
α∈Nd

∫ ∞

−∞
‖F(f)(λ)Fα,λ‖Hλ

|λ|ddλ <∞, (2.2)

then we have for almost every w,

f(w) =
2d−1

πd+1

∫ ∞

−∞
tr
(
uλw−1F(f)(λ)

) |λ|ddλ, (2.3)

where
tr
(
uλw−1F(f)(λ)

)
=

∑
α∈Nd

(uλw−1F(f)(λ)Fα,λ, Fα,λ)Hλ

denotes the trace of the operator uλw−1F(f)(λ).
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Remark 2.1 The above hypothesis (2.2) is satisfied in S(Hd), where S(Hd)
is defined in Definition 1.1. This follows from Proposition 2.2 which is proved
for the sake of completeness, directly below its statement.

Let us moreover point out that we have the following useful formulas, for
any k ∈ {1, ..., d}.

Denoting by 1k = (0, . . . , 1, . . . ) the vector whose k-component is one and
all the others are zero, one has

F(Zkf)(λ)Fα,λ = −
√

2|λ|√αk + 1F(f)(λ)Fα+1k,λ (2.4)

if λ > 0, and similarly

F(Zkf)(λ)Fα,λ =
√

2|λ|√αkF(f)(λ)Fα−1k,λ (2.5)

if λ < 0. Furthermore,

F(Zkf)(λ)Fα,λ =
√

2|λ|√αkF(f)(λ)Fα−1k,λ (2.6)

if λ > 0, and

F(Zkf)(λ)Fα,λ = −
√

2|λ|√αk + 1F(f)(λ)Fα+1k,λ (2.7)

if λ < 0. Therefore, we have easily, for any ρ ∈ R,

F((−ΔHd)ρf)(λ)Fα,λ = (4|λ|(2|α|+ d))ρ F(f)(λ)Fα,λ (2.8)

and
F (

etΔHd f
)
(λ)Fα,λ = e−t(4|λ|(2|α|+d))F(f)(λ)Fα,λ.

Using those formulas, we can prove the following proposition, which jus-
tifies Remark 2.1 stated above. The proof of this proposition is new to our
knowledge.

Proposition 2.2 For any function f ∈ S(Hd), (2.2) is satisfied. More pre-
cisely, for any ρ > N

2 , there exists a positive constant C such that

∑
α∈Nd

∫ ∞

−∞
‖F(f)(λ)Fα,λ‖Hλ

|λ|d dλ ≤ C
(
‖f‖L1(Hd) + ‖(−ΔHd)ρf‖L1(Hd)

)
.

Let us prove that result. By definition of S(Hd), for any ρ ∈ R, the func-
tion (−ΔHd)ρf belongs to S(Hd). Therefore, we can write, using (2.8),

F(f)(λ)Fα,λ = F((−ΔHd)−ρ(−ΔHd)ρf)(λ)Fα,λ

= (4|λ|(2|α|+ d))−ρF((−ΔHd)ρf)(λ)Fα,λ.

But that implies that
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‖F(f)(λ)Fα,λ‖2Hλ

= (4|λ|(2|α|+ d))−2ρ
(2|λ|

π

)d
∫

Cd

e−2|λ||ξ|2
∣∣∣F((−ΔHd)ρf)(λ)Fα,λ(ξ)

∣∣∣2dξ.
According to the definition of the Fourier transform on the Heisenberg group,
we thus have

‖F(f)(λ)Fα,λ‖2Hλ
= (4|λ|(2|α|+ d))−2ρ

(2|λ|
π

)d
∫

Cd

e−2|λ||ξ|2

×
(∫

Hd

((−ΔHd)ρf(z, s))uλz,sFα,λdzds

∫
Hd

((−ΔHd)ρf(z′, s′))uλz′,s′Fα,λdz′ds′
)
dξ.

Fubini’s theorem allows us to write

‖F(f)(λ)Fα,λ‖2Hλ
= (4|λ|(2|α|+ d))−2ρ

×
∫

Hd

∫
Hd

(−ΔHd)ρf(z, s)(−ΔHd)ρf(z′, s′)(uλz,sFα,λ |uλz′,s′Fα,λ)Hλ
dzdsdz′ds′.

Since the operators uλz,s and uλz′,s′ are unitary on Hλ and the family (Fα,λ) is
a Hilbert basis of Hλ, we deduce that

‖F(f)(λ)Fα,λ‖Hλ
≤ (4|λ|(2|α|+ d))−ρ‖(−ΔHd)ρf‖L1(Hd).

To conclude we decompose the integral on λ into two parts, corresponding
to “high and low” frequencies (the parameter |λ| 12 may be identified as a
frequency, as will be clear in the next section—it is in fact already apparent
in (2.8) above). Thus denoting λm = (2m + d)λ, we write

∑
α∈Nd

∫ ∞

−∞
‖F(f)(λ)Fα,λ‖Hλ

|λ|ddλ

≤
∑
m∈N

(
m + d− 1

m

)(
‖f‖L1(Hd)

∫
|λm|≤1

|λ|ddλ

+ (4(2m + d))−ρ‖(−ΔHd)ρf‖L1(Hd)

∫
|λm|≥1

|λ|−ρ|λ|ddλ
)
.

This gives the announced result for ρ > N/2. The proposition is proved. ��
Finally the convolution product of two functions f and g on H

d is defined
by

f � g(w) =
∫

Hd

f(wv−1)g(v)dv =
∫

Hd

f(v)g(v−1w)dv.

It should be emphasized that the convolution on the Heisenberg group is not
commutative. Moreover, if P is a left invariant vector field on H

d, then one
sees easily that
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P (f � g) = f � Pg, (2.9)
whereas in general P (f�g) �= Pf�g. Nevertheless, the usual Young inequalities
are valid on the Heisenberg group, and one has moreover

F(f � g)(λ) = F(f)(λ) ◦ F(g)(λ). (2.10)

It turns out that for radial functions on the Heisenberg group, the Fourier
transform becomes simplified and puts into light the quantity that will play
the role of the frequency size. Let us first recall the concept of radial functions
on the Heisenberg group.

Definition 2.3 A function f defined on the Heisenberg group H
d is said to

be radial if it is invariant under the action of the unitary group U(d) of C
d,

which means that for any u ∈ U(d), we have

f(z, s) = f(u(z), s), ∀(z, s) ∈ H
d.

A radial function on the Heisenberg group can then be written under the form

f(z, s) = g(|z|, s).
It can be shown (see for instance [10]) that the Fourier transform of radial
functions of L2(Hd) satisfies the following formulas:

F(f)(λ)Fα,λ = R|α|(λ)Fα,λ,

where

Rm(λ) =
(
m + d− 1

m

)−1 ∫
eiλsf(z, s)L(d−1)

m (2|λ||z|2)e−|λ||z|2dzds,

and where L
(p)
m are Laguerre polynomials defined by

L(p)
m (t) =

m∑
k=0

(−1)k
(
m + p
m− k

)
tk

k!
, t ≥ 0, m, p ∈ N.

Note that in that case

‖f‖L2(Hd) = ‖(Rm)‖L2
d(N×R)

def=

(
2d−1

πd+1

∑
m

(
m + d− 1

m

)∫ ∞

−∞
|Qm(λ)|2|λ|ddλ

) 1
2

, (2.11)

which corresponds to the Plancherel formula recalled above, in the radial case.
We also have the following inversion formula: if Rm belongs to L2

d(N × R)
defined in (2.11), then the function

f(z, s) =
2d−1

πd+1

∑
m

∫
e−iλsRm(λ)L(d−1)

m (2|λ||z|2)e−|λ||z|2 |λ|ddλ (2.12)

is a radial function in L2(Hd) and satisfies

F(f)(λ)Fα,λ = R|α|(λ)Fα,λ.
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2.2 Littlewood–Paley theory on the Heisenberg group

Now we are ready to define the Littlewood–Paley decomposition on H
d. We

will not give any proof but refer to the construction in [1] and [3] for all the de-
tails. We simply recall that the key point in the construction of the Littlewood–
Paley decomposition on H

d lies in the following proposition proved in [1]. Note
that Proposition 2.4 enables one to show in particular that functions of −ΔHd

may be seen as convolution operators by Schwartz class functions (a result
proved by Hulanicki [8] in the case of general nilpotent Lie groups).

Proposition 2.4 For any Q ∈ D(R \ {0}), the series

g(z, s) =
2d−1

πd+1

∑
m

∫
e−iλsQ((2m + d)λ)L(d−1)

m (2|λ||z|2)e−|λ||z|2 |λ|ddλ

converges in S(Hd).

The Littlewood–Paley operators are then constructed using the following
proposition (see [1] and [3]).

Proposition 2.5 Define the ring C0 =
{
τ ∈ R, 3

4 ≤ |τ | ≤ 8
3

}
and the ball B0 ={

τ ∈ R, |τ | ≤ 4
3

}
. Then there exist two radial functions R̃∗ and R∗ the values

of which are in the interval [0, 1], belonging respectively to D(B0) and to D(C0)
such that

∀τ ∈ R, R̃∗(τ) +
∑
j≥0

R∗(2−2jτ) = 1 and ∀τ ∈ R
∗,

∑
j∈Z

R∗(2−2jτ) = 1,

and satisfying as well the support properties

|p− q| ≥ 1 ⇒ supp R∗(2−2q·) ∩ supp R∗(2−2p·) = ∅

and q ≥ 1 ⇒ supp R̃∗ ∩ supp R∗(2−2q·) = ∅.
Moreover, there are radial functions of S(Hd), denoted ψ and ϕ, such that

F(ψ)(λ)Fα,λ = R̃∗
|α|(λ)Fα,λ and F(ϕ)(λ)Fα,λ = R∗

|α|(λ)Fα,λ,

where we have noted R̃∗
m(τ) = R̃∗((2m + d)τ) and R∗

m(τ) = R∗((2m + d)τ).

Now as in the R
d case, we define Littlewood–Paley operators in the following

way.

Definition 2.6 The Littlewood–Paley operators Δj and Sj, for j ∈ Z, are
defined by

F(Δjf)(λ)Fα,λ = R∗
|α|(2

−2jλ)F(f)(λ)Fα,λ,

F(Sjf)(λ)Fα,λ = R̃∗
|α|(2

−2jλ)F(f)(λ)Fα,λ.
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Remark 2.7 It is easy to see that

Δju = u � 2Njϕ(δ2j ·) and Sju = u � 2Njψ(δ2j ·),

which implies that those operators map Lp into Lp for all p ∈ [1,∞] with
norms which do not depend on j.

Along the same lines as in the R
d case, we can define homogeneous Besov

spaces on the Heisenberg group (see [1]).

Definition 2.8 Let s ∈ R be given, as well as p and r, two real numbers
in the interval [1,∞]. The Besov space Ḃs

p,r(H
d) is the space of tempered

distributions u such that

• The series
∑m

−mΔqu converges to u in S ′(Hd).

• ‖u‖Ḃs
p,r(Hd)

def
=

∥∥2qs‖Δqu‖Lp(Hd)

∥∥

r(Z)

<∞.

Remark 2.9 Sobolev spaces Ḣs(Hd) have a characterization using Littlewood–
Paley operators, as well as noninteger Hölder spaces (see [1],[3]). More pre-
cisely, one has Ḣs(Hd) = Ḃs

2,2(H
d) for any s ∈ R, and for any ρ ∈

R \ N, Ċρ(Hd) = Ḃρ
∞,∞(Hd).

2.3 Frequency localized functions and Bernstein inequalities on
the Heisenberg group

Let us first define the concept of localization procedure in the frequency space
in the framework of the Heisenberg group. We will only state the definition
in the case of smooth functions—otherwise one proceeds by regularizing by
convolution (see [1] or [3]).

Definition 2.10 Let C(r1,r2) = C(0, r1, r2) be a ring of R centered at the
origin. A function u in S(Hd) is said to be frequency localized in the ring 2j

C(
√
r1,

√
r2), if

F(u)(λ)Fα,λ = 1(2|α|+d)−122jC(√r1,
√

r2)
(λ)F(u)(λ)Fα,λ.

Remark 2.11 Equivalently, a frequency localized function in the sense of
Definition 2.10 satisfies

u = u � φj ,

where φj = 2Njφ(δ2j ·), and φ is a radial function in S(Hd) such that

F(φ)(λ)Fα,λ = R((2|α|+ d)λ)Fα,λ,

with R compactly supported in a ring of R centered at zero.
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In order to estimate the cost of applying powers of the Laplacian on a fre-
quency localized function, we shall need the following proposition, which en-
sures that the action powers of the Laplacian act as homotheties on such
frequency localized functions. The proof of that proposition may be found
in [3].

Proposition 2.12 ([3]) Let p be an element of [1,∞] and let (r1, r2) be two
positive real numbers. Define C(r1,r2) = C(0, r1, r2) the ring centered at the
origin, of small and large radius respectively r1 and r2. Then for any real
number ρ, there is a constant Cρ such that if u is a function defined on H

d,
frequency localized in the ring 2jC(

√
r1,

√
r2), then

C−1
ρ 2−jρ‖(−ΔHd)

ρ
2 u‖Lp(Hd) ≤ ‖u‖Lp(Hd) ≤ Cρ2−jρ‖(−ΔHd)

ρ
2 u‖Lp(Hd).

3 Proof of Theorem 1.4

In this section we shall prove Theorem 1.4, assuming Lemma 1.3. It turns out
that the proof is very similar to the R

d case, and we sketch it here for the
convenience of the reader.

Let us start by estimating ‖tsetΔHdu‖Lp . Using Lemma 1.3 and the fact
that the operator Δj commutes with the operator etΔHd , we can write

‖tsΔje
tΔ

Hdu‖Lp ≤ Cts22jse−ct22j

2−2js‖Δju‖Lp .

Using the definition of the homogeneous Besov (semi) norm, we get

‖tsetΔHdu‖Lp ≤ C‖u‖Ḃ−2s
p,r

∑
j∈Z

ts22jse−ct22j

cr,j ,

where (cr,j)j∈Z denotes, as in all this proof, a generic element of the unit sphere
of �r(Z). In the case when r = ∞, the required inequality comes immediately
from the following easy result: for any positive s, we have

sup
t>0

∑
j∈Z

ts22jse−ct22j

<∞. (3.1)

In the case when r <∞, using the Hölder inequality with the weight 22jse−ct22j

and Inequality (3.1) we obtain
∫ ∞

0

trs‖etΔHdu‖rLp

dt

t

≤ C‖u‖r
Ḃ−2s

p,r

∫ ∞

0

(∑
j∈Z

ts22jse−ct22j

)r−1(∑
j∈Z

ts22jse−ct22j

crr,j

)
dt

t

≤ C‖u‖r
Ḃ−2s

p,r

∫ ∞

0

∑
j∈Z

ts22jse−ct22j

crr,j
dt

t
·
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This gives directly the result by Fubini’s theorem.
In order to prove the other inequality, let us observe that for any s greater

than −1, we have ∫ ∞

0

τse−τdτ
def= Cs.

Using the fact that the Fourier transform on the Heisenberg group is injective,
we deduce the following identity (which may be easily proved by taking the
Fourier transform of both sides):

Δju = C−1
s

∫ ∞

0

ts(−ΔHd)s+1etΔHdΔjudt.

Then Lemma 1.3, the obvious identity etΔHdu = e
t
2ΔHd e

t
2ΔHdu and the fact

that the operator Δj commutes with the operator etΔHd , lead to

‖Δju‖Lp ≤ C

∫ ∞

0

ts22j(s+1)e−ct22j‖etΔHdu‖Lpdt. (3.2)

In the case r = ∞, we simply write

‖Δju‖Lp ≤ C
(
sup
t>0

ts‖etΔHdu‖Lp

)∫ ∞

0

22j(s+1)e−ct22j

dt

≤ C22js
(
sup
t>0

ts‖etΔHdu‖Lp

)
.

In the case r <∞, Hölder’s inequality with the weight e−ct22j

gives(∫ ∞

0

tse−ct22j‖etΔHdu‖Lpdt

)r

≤
(∫ ∞

0

e−ct22j

dt

)r−1 ∫ ∞

0

trse−ct22j‖etΔHdu‖rLpdt

≤ C2−2j(r−1)

∫ ∞

0

trse−ct22j‖etΔHdu‖rLpdt.

Thanks to (3.1) and Fubini’s theorem, we infer from (3.2) that
∑
j

2−2jsr‖Δju‖rLp ≤ C

∫ ∞

0

(∑
j∈Z

t22je−ct22j

)
trs‖etΔHdu‖rLp

dt

t

≤ C

∫ ∞

0

trs‖etΔHdu‖rLp

dt

t
·

The theorem is proved. ��

4 Proofs of Lemma 1.3 and Theorems 1.6 and 1.8

Now we are left with the proof of Lemma 1.3 and Theorems 1.6 and 1.8.
Lemma 1.3 is proved in Section 4.1, while the proofs of Theorems 1.6 and 1.8
can be found in Sections 4.2 and 4.3, respectively.
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4.1 Proof of Lemma 1.3

By density, it suffices to suppose that the function u is an element of S(Hd).
Now the frequency localization of u in the ring βC(

√
r1,

√
r2) allows us to write

F(etΔHdu)(λ)Fα,λ = e−tβ2(4|β−2λ|(2|α|+d))R|α|(β
−2λ)F(u)(λ)Fα,λ, (4.1)

with R|α|(λ) = R((2|α| + d)λ) and R ∈ D(R \ {0}) is equal to 1 near the
ring C(r1,r2). We can then assume in what follows that β = 1.

Since R belongs to D(R \ {0}), Proposition 2.4 ensures the existence of a
radial function gt ∈ S(Hd) such that

F(gt)(λ)Fα,λ = e−t(4|λ|(2|α|+d))R|α|(λ)Fα,λ.

We deduce that
etΔHdu = u � gt.

If we prove that two positive real numbers c and C exist such that, for all
positive t, we have

‖gt‖L1(Hd) ≤ Ce−ct, (4.2)

then the lemma is proved. To prove (4.2), let us first recall that thanks to
Proposition 2.4,

gt(z, s) =
2d−1

πd+1

×
∑
m

∫
e−iλse−t(4|λ|(2m+d))R((2m + d)λ)L(d−1)

m (2|λ||z|2)e−|λ||z|2 |λ|ddλ.

Now, we shall follow the idea of the proof of Proposition 2.4 established in [1]
to obtain Estimate (4.2). Let us denote by Q the subspace of L2

d(N × R)
(defined in (2.11)) generated by the sequences (Qm) of the type

Qm(λ) =
∫

Rn

Q((2m + f(σ))λ)P (λ)dμ(σ), (4.3)

where μ is a bounded measure compactly supported on R
n, f is a bounded

function on the support of μ, P is a polynomial function and Q is a function
of D(R \ {0}) under the form

Q(τ) = e−4t|τ |P(tτ)R(τ), (4.4)

with P a polynomial and R a function of D(R \ {0}).
Now, let us recall the following useful formulas (proved for instance in [1]

and [9]).
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Lemma 4.1 For any radial function f ∈ S(Hd), we have for any m ≥ 1,

F((is− |z|2)f)(m,λ) =
d

dλ
Ff(m,λ)− m

λ

(
Ff(m,λ)−Ff(m− 1, λ)

)

for λ > 0 and

F((is− |z|2)f)(m,λ) =
d

dλ
Ff(m,λ) +

m + d

|λ|
(
Ff(m,λ)−Ff(m + 1, λ)

)

for λ < 0.

Moreover, we have the following classical property on Laguerre polynomials:

|L(p)
m (y)e−y/2| ≤ Cp(m + 1)p, ∀y ≥ 0. (4.5)

Let us start by proving that for any integer k, one has the following formula:

(is− |z|2)kgt(z, s) =
2d−1

πd+1

∑
m

∫
e−iλsQ(k)

m (λ)L(d−1)
m (2|λ||z|2)e−|λ||z|2 |λ|ddλ,

(4.6)
where (Q(k)

m ) is an element of the spaceQ. By induction the problem is reduced
to proving that for (Qm) element of Q, the sequence (Q�

m) defined as follows
is still an element of Q: for all m ≥ 1,

Q�
m(λ) =

d

dλ
Qm(λ)− m

λ
(Qm(λ)−Qm−1(λ)), λ > 0,

Q�
m(λ) =

d

dλ
Qm(λ) +

m + d

|λ| (Qm(λ)−Qm+1(λ)), λ < 0.

Let us for instance compute Q�
m(λ) for λ > 0 and m ≥ 1. Considering (4.3),

the Taylor formula implies that

m

λ
(Qm(λ)−Qm−1(λ)) = 2m

∫
Rn

∫ 1

0

Q′((2m + f(σ)− 2u)λ)P (λ)dudμ(σ).

Therefore,

Q�
m(λ) =

∫
Rn

Q((2m + f(σ))λ)P ′(λ)dμ(σ)

+
∫

Rn

Q′((2m + f(σ))λ)P (λ)f(σ)dμ(σ)

+ 2
∫

Rn

∫ 1

0

∫ 1

0

(2m + f(σ)− 2us)λQ′′((2m + f(σ)− 2us)λ)

× P (λ) u du ds dμ(σ)

− 2
∫

Rn

∫ 1

0

∫ 1

0

Q′′((2m + f(σ)− 2us)λ)λP (λ)ududsf(σ)dμ(σ)

+ 4
∫

Rn

∫ 1

0

∫ 1

0

Q′′((2m + f(σ)− 2us)λ)λP (λ)u2dusdsdμ(σ).
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This proves that the sequence (Q�
m) belongs to the space Q.

Now let us end the proof of Lemma 1.3: defining

f t
m(z, s) =

∫
e−iλsQm(λ)L(d−1)

m (2|λ||z|2)e−|λ||z|2 |λ|ddλ,

with (Qm) element of Q, and in view of (4.6) it is enough to prove that there
exist two constants c and C which do not depend on m, such that

|f t
m(z, s)| ≤ Ce−ct 1

m2
· (4.7)

Due to the condition on the support of the function R appearing in (4.4),
there exist two fixed constants which only depend on R, denoted c1 and c2,
such that

f t
m(z, s)

=
∫

Rn

∫
c1≤|(2m+f(σ))λ|≤c2

e−iλsQ((2m + f(σ))λ)P (λ)

× L(d−1)
m (2|λ||z|2)e−|λ||z|2dμ(σ)|λ|ddλ.

In view of (4.4) and (4.5), we obtain

|f t
m(z, s)| ≤ cd−1

∫
Rn

∫
c1≤|(2m+f(σ))λ|≤c2

e−ctmd−1dμ(σ)|λ|ddλ,

which leads easily to (4.7) and ends the proof of the lemma. ��

4.2 Proof of Theorem 1.6

The proof of Theorem 1.6 presented here relies on the maximal function on
the Heisenberg group; before starting the proof let us collect a few useful
results on this function, starting with the definition of the maximal function
(the interested reader can consult [11] for details and proofs).

Definition 4.2 Let f be in L1
loc(H

d). The maximal function of f is defined
by

Mf(z, s)
def
= sup

R>0

1
m(B((z, s), R))

∫
B((z,s),R)

|f(z′, s′)|dz′ds′,

where m(B((z, s), R)) denotes the measure of the Heisenberg ball B((z, s), R)
of center (z, s) and radius R.

The key propoerties we will use on the maximal function are collected in the
following proposition.

Proposition 4.3 The maximal function satisfies the following properties.
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1. If f is a function in Lp(Hd), with 1 < p ≤ ∞, then Mf belongs to Lp(Hd)
and we have

‖Mf‖Lp(Hd) ≤ Ap‖f‖Lp(Hd),

where Ap is a constant which depends only on p and d.

2. Let ϕ be a function in L1(Hd) and suppose that the function ψ(w)
def
=

sup
ρ(w′)≥ρ(w)

ϕ(w′) belongs to L1(Hd), where ρ denotes the Heisenberg dis-

tance to the origin defined in Remark 1.2. Then for any measurable func-
tion f , we have ∣∣∣(f � ϕ)(w)

∣∣∣ ≤ ‖ψ‖L1(Hd)Mf(w).

Now we are ready to prove Theorem 1.6. By density we can suppose that f
belongs to S(Hd). Let us write

f =
∫ ∞

0

etΔHdΔHdfdt

and decompose the integral in two parts:

f =
∫ A

0

etΔHdΔHdfdt +
∫ ∞

A

etΔHdΔHdfdt,

where A is a constant to be fixed later.
On the one hand, by Theorem 1.4, we have

‖etΔHdΔHdf‖L∞ ≤ C

t1+
1
2 ( N

p −s)
‖f‖

Ḃ
s− N

p
∞,∞ (Hd)

.

Therefore, after integration we get
∫ ∞

A

‖etΔHdΔHdf‖L∞ ≤ A
1
2 (s−N

p )‖f‖
Ḃ

s− N
p

∞,∞ (Hd)
.

On the other hand, denoting by g = (−ΔHd)
s
2 f , we have

etΔHdΔHdf =
1

(−t)1− s
2
etΔHd (−tΔHd)1−

s
2 g.

It is well-known that the heat kernel on the Heisenberg group satisfies the
second assumption of Proposition 4.3 (the reader can consult [2], [5] or [6]),
so we deduce that ∣∣∣etΔHd (−tΔHd)1−

s
2 g(x)

∣∣∣ ≤ CsMg(x),

where Mg(x) denotes the maximal function of the function g. This leads to

∣∣∣
∫ A

0

etΔHdΔHdfdt
∣∣∣ ≤ CA

s
2Mg(x).
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In conclusion, we get

∣∣∣
∫ ∞

0

etΔHdΔHdf(x)dt
∣∣∣ ≤ C

(
A

s
2Mg(x) + A

1
2 (s−N

p )‖f‖
Ḃ

s− N
p

∞,∞ (Hd)

)
,

and the choice of A such that A
N
2pMg(x) = ‖f‖

Ḃ
s− N

p
∞,∞

ensures that

∣∣∣
∫ ∞

0

etΔHdΔHdf(x)dt
∣∣∣ ≤ CMg(x)1−

ps
N ‖f‖

ps
N

Ḃ
s− N

p
∞,∞ (Hd)

.

Finally, taking the Lq norm with q = pN
N−ps ends the proof of Theorem 1.6

thanks to Proposition 4.3. ��

4.3 Proof of Theorem 1.8

The proof of Theorem 1.8 is similar to the proof of Lemma 1.3 and relies on
the following result.

Lemma 4.4 The series

h(z, s) =
2d−1

πd+1

∑
m

∫
e−iλse−4|λ|(2m+d)L(d−1)

m (2|λ||z|2)e−|λ||z|2 |λ|ddλ (4.8)

converges in S(Hd).

Notice that Lemma 4.4 implies directly the theorem, as by a rescaling, it is
easy to see that the heat kernel on the Heisenberg group is given by

ht(x, y, s) =
1

td+1
h(

x√
t
,
y√
t
,
s

t
)·

��
Proof of Lemma 4.4 Due to the subellipticity of −ΔHd (see for instance
[1]), it suffices to prove that for any integers k and �,

∥∥(−ΔHd)
(|z|2 − is)kh
∥∥
L2(Hd)

<∞.

In order to do so, let us introduce the set Q̃ of sequences (Qm) of the type

Qm(λ) =
∫

Rn

Q((2m + θ(σ))λ)P (λ)dμ(σ), (4.9)

where μ is a bounded measure compactly supported on R
n, θ is a bounded

function on the support of μ, P is a polynomial function and Q is a function
of C∞(R \ {0}) under the form

Q(τ) = e−4|τ |P(τ), (4.10)
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where P is a polynomial function. As in the proof of Lemma 1.3 and thanks
to (2.8) and Lemma 4.1, we obtain

Δ

Hd(|z|2 − is)kh(z, s)

=
2d−1

πd+1

∑
m

∫
e−iλsQ
,k

m (λ)L(d−1)
m (2|λ||z|2)e−|λ||z|2 |λ|ddλ,

with (Q
,k
m ) an element of Q̃ which ends the proof of the lemma thanks

to (2.11). ��
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2 Departamento de Matemática, UFSCar - 13.565-905, São Carlos, SP, Brasil
hounie@dm.ufscar.br

Summary. We prove a generalization of the Rudin–Carleson theorem for homoge-
neous solutions of locally solvable real analytic vector fields.
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1 Introduction

It is well known that if a continuous function f on the closure of the unit disk
D = {z ∈ C : |z| < 1} is holomorphic on D and vanishes on a subset E of the
boundary ∂D of positive Lebesgue measure, then f ≡ 0. Conversely, Rudin
[R] and Carleson [C] independently proved that if E ⊂ ∂D is a closed set of
Lebesgue measure zero, and if g is a continuous function on E, then there is
f ∈ C(D), holomorphic on D such that f agrees with g on E. Refinements,
new proofs, and some generalizations of the Rudin–Carleson theorem were
given in the works [B], [D], [G], and [O]. For applications to peak interpolation
manifolds for holomorphic functions on domains in C

n see [Bh], [Na], [R2]
and the references in these works. In a recent paper [BH1], we proved the
following generalization of the Rudin–Carleson theorem for a class of real
analytic complex vector fields:

Theorem A Let D be the unit disk and let L be a nonvanishing real analytic
vector field defined on a neighborhood U of D satisfying the Nirenberg–Treves
condition (P). Assume that L does not have a relatively compact orbit in U .
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A. Bove et al. (eds.), Advances in Phase Space Analysis of Partial 37
Differential Equations, DOI 10.1007/978-0-8176-4861-9 3,
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Let E ⊂ ∂D be a closed set with Lebesgue measure zero and assume that
g ∈ C(∂D) is constant on the intersection γ ∩ ∂D whenever γ is a one-
dimensional orbit of L. Then there is h ∈ C(D) satisfying

Lh = 0 in D,

h(z) = g(z), z ∈ E,

sup
z∈∂D

|h(z)| ≤ sup
z∈E

|g(z)|.

We recall that condition (P) is a geometric condition that characterizes the
class of locally solvable vector fields. This condition and the notion of orbits
will be reviewed in Section 2. Observe that a continuous solution u of Lu = 0
is constant on any one-dimensional orbit of L and this explains why g is
assumed to be constant on the sets γ ∩ ∂D in Theorem A.

In [BH1] we gave examples that showed that in general, if a real ana-
lytic, locally solvable vector field has a compact orbit, it may not have the
Rudin–Carleson property. The main goal of this article is to characterize those
locally solvable, real analytic vector fields L with compact orbits which ex-
hibit the Rudin–Carleson property. This characterization is given in terms of
the conformal type of a one-sided tubular neighborhood of each closed orbit
endowed with the natural holomorphic structure induced by L (see Section 2
and Theorem 2.1 for the precise formulation). Section 3 is devoted to the proof
of this result and Section 4 presents various examples. In Section 5, we show
that for any smooth vector field, local solvability is a necessary and sufficient
condition for the validity of the Rudin–Carleson property in arbitrary small
neighborhoods of a point in an open set. In the final section we briefly dis-
cuss the relationship between the Rudin–Carleson theorem and the F. and M.
Riesz theorem in the spirit of [B].

2 Preliminaries and statement of the main result

Let L = X + iY be a smooth vector field on an open set Ω in C where X
and Y are real vector fields. Assume that L is nonzero at each point of Ω. It
is well known that condition (P) can be expressed in terms of the orbits of
the pair of vector fields {X,Y } in the sense of Sussmann ([S]). Two points
belong to the same orbit of {X,Y } in Ω if they can be joined by a continuous,
piecewise differentiable curve such that each piece is an integral curve of X or
Y . Since X and Y are assumed to have no common zeros, the orbits of L in Ω
are immersed submanifolds of Ω of dimension one or two; moreover, the two-
dimensional orbits are open subsets of Ω. Let O ⊂ Ω be a two-dimensional
orbit of L in Ω and consider X ∧ Y ∈ C∞(Ω;

∧2(T (Ω))). Since
∧2(T (Ω))

has a global nonvanishing section e1 ∧ e2, X ∧ Y is a real multiple of e1 ∧ e2
and this gives a meaning to the requirement that X ∧Y does not change sign
on any two-dimensional orbit O of {X,Y } in Ω. The vector field L satisfies
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condition (P) at p ∈ Ω if there is a disk U ⊂ Ω centered at p such that X ∧Y
does not change sign on any two-dimensional orbit of L in U .

Suppose now L = X + iY is a locally solvable, real analytic vector field in
a neighborhood U of D = {z ∈ C : |z| ≤ 1}. If L is a multiple of a real vector
field, then by Lemma 2.1 in [BH1], it has the Rudin–Carleson property, and
so we will assume throughout that L is not a multiple of a real vector field. If
∂D is an orbit of L, then any solution in D that is continuous on D will be
constant on ∂D and so we will assume that

∂D is not an orbit. (2.1)

By real analyticity and the assumption that it is not a multiple of a real vector
field, L has a finite number of one-dimensional orbits in D. Let C1, . . . , Ck
denote all the closed orbits of L in D. Observe that these orbits are real
analytic, Jordan curves. We divide these closed orbits into two types. A closed
orbit Cj is a type I orbit if it is not enclosed in any other closed orbit. There
may, however, be closed orbits in the precompact component of D\Cj in D,
i.e., closed orbits enclosed by Cj . The remaining closed orbits will be referred
to as type II orbits. Suppose now Ω is a connected open subset of a two-
dimensional orbit of L in D. Since L satisfies condition (P) and is real analytic,
for each p ∈ Ω, there is a neighborhood Up of p, a real analytic function
Z : Up → C such that LZ = 0, dZ �= 0, and Z is a homeomorphism. If
Z ′ : U ′

p :→ C is also another such function on a neighborhood U ′
p of p, then

Z ′ ◦ Z−1 : Z(Up ∩ U ′
p) → C is holomorphic. In other words, L induces a

Riemann surface structure on Ω which we will denote by (Ω,L).
For each type I closed orbit Cj , we fix a one-sided tubular neighborhood

Ωj of Cj that lies in the non-precompact component of D\Cj such that Ωj

does not intersect any one-dimensional orbit of L. We will also assume that
the Ωj are pairwise disjoint. The following theorem provides a necessary and
sufficient condition for L to have the Rudin–Carleson property.

Theorem 2.1 Let D be the unit disk and let L be a nonvanishing real analytic
vector field defined on a neighborhood U of D satisfying the Nirenberg–Treves
condition (P) and (2.1). Let E ⊂ ∂D be a closed set with Lebesgue measure
zero. Then the following are equivalent:

(1) For each type I closed orbit Cj, the Riemann surface (Ωj , L) is conformal
to the punctured disk with the standard structure.

(2) For every g ∈ C(∂D) that is constant on the intersection γ∩∂D whenever
γ is a one-dimensional orbit of L, there is h ∈ C(D) satisfying

Lh = 0 in D,

h(z) = g(z), z ∈ E,

sup
z∈∂D

|h(z)| ≤ sup
z∈E

|g(z)|.
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Remark 2.2 In Section 4 we will give examples of real analytic, locally solv-
able vector fields with compact orbits with and without the Rudin–Carleson
property.

3 Proof of Theorem 2.1

We will consider two cases.

3.1 Case 1

Assume that L has a single type I compact orbit C contained in D. Let γj , j =
1, . . . , n, denote the one-dimensional, noncompact orbits of L in D. Consider
the complement in D of the noncompact one-dimensional orbits, D� = D \⋃n

j=1 γj , and consider the connected components Dk, k = 0, . . . , N , of D�.
We now fix k and study the boundary of Dk. Note that if p ∈ D ∩ ∂Dk, then
p ∈ γj for some j ≥ 1. Therefore, if V is a sufficiently small disk centered at
p, V \γj is a disjoint union of two domains V1 and V2 with V ∩ Dk = V1. It
follows that Dk has a real analytic boundary near p. We suppose from now
on that p ∈ ∂Dk ∩ ∂D. We will consider different possibilities. If the orbit of
L at p is two-dimensional, by the real analyticity of L, we can find a disk B
centered at p such that B ∩D ⊂ Dk. This means that near p, ∂Dk consists of
∂D∩B in this case. Assume next that the orbit at p is one-dimensional. If L is
transversal to ∂D at p, then the orbit γj through p divides a disk W centered
at p into two connected pieces W1 and W2 with W1∩D = W ∩Dk. Thus near
p, Dk has a piecewise real analytic boundary consisting of two curves that
intersect at p. Suppose now that L is tangent to ∂D at p. Let γj continue to
denote the one-dimensional orbit through p. By the real analyticity, in a small
disk V centered at p, if γ�j = γj ∩ V , there are three possibilities:

(a) Assume γ�j ⊂ D ∪ {p}. Then since p ∈ ∂Dk, either γ�j ⊂ ∂Dk or γ�j \ {p}
contains a subarc with an endpoint at {p} that bounds ∂Dk (in the second
case, replace γ�j by this subarc and call it γ�j). Near each q ∈ γ�j , Dk lies
on one side of γ�j . Hence near p, either ∂Dk = γ�j , or ∂Dk consists of γ�j
and a subarc of ∂D with one endpoint at p.

(b) Suppose γ�j ∩ D = {p}. Near p, each side of γ�j is contained in distinct
two-dimensional orbits. It follows that for some neighborhood V ′ of p,
V ′ ∩D ⊂ Dk and so ∂Dk near p equals V ′ ∩ ∂D.

(c) Assume γ�j = γ+ ∪ γ−, where γ− ⊂ D, and γ+ ∩D = ∅. Again each side
of γ�j is contained in a two-dimensional orbit and so near p, ∂Dk consists
of γ− and an arc in ∂D with p as an endpoint.

We thus see that ∂Dk is piecewise real analytic consisting of a finite number of
curves each of which is either an arc of some γj , 1 ≤ j ≤ n, and the endpoints
of this arc belong to the intersection of γj with ∂D, or an arc in ∂D with
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endpoints contained in the intersection of ∂D with a pair of one-dimensional
orbits γj∪γj′ , 1 ≤ j < j′ ≤ n. Note also that, whatever 0 ≤ k ≤ N , ∂Dk∩∂D
contains an open arc. Let D0 be the connected component that contains the
closed orbit C. Notice that D0 \ C has two connected components, a simply
connected one that we may call the interior of C and denote it by Ω0, and an
annular one that we will denote by Ω, so Ω = D0 \Ω0.

Assume (1) in the theorem holds for the Riemann surface (Ω1, L) where Ω1

is the one-sided annular neighborhood of C in Ω. We may assume that Ω1 is
bounded by C and a real analytic, simple closed Jordan curve Σ. Consider the
Riemann surface (Ω,L). Because the fundamental group of Ω is the integers,
by Theorem IV.6.1 in [FK], this Riemann surface is conformal to either the
punctured disk, an annulus of the form {z : a < |z| < b} for some a, b > 0, or
the punctured plane where each one is equipped with the standard structure.
Since ∂Ω intersects ∂D on an arc where the orbit of L is two-dimensional,
there is an open set Ω2 such that Ω2 \ Ω has nonempty interior and Ω2 is
contained in an orbit of L in U of dimension two. This shows that (Ω,L) is
a prolongable Riemann surface (we recall that a Riemann surface S is called
prolongable if there exists a Riemann surface S′ and an injective holomorphic
map f : S −→ S′ with f(S) not dense in S′). In particular, (Ω,L) cannot be
conformal to the punctured plane.

Next, if (Ω,L) is conformal to an annulus of the form {z : a < |z| < b} for
some a, b > 0, let F : (Ω,L) −→ {z : a < |z| < b} be a conformal map. Since
Σ divides Ω into two components, it follows that F (Ω1) equals one of the
components of {z : a < |z| < b} \F (Σ). This contradicts the assumption that
(Ω1, L) is conformal to the punctured disk. It follows that (Ω,L) is conformal
to the punctured disk. Let F : (Ω,L) −→ Δ \ {0} be a conformal map. We
will now use the arguments in [BH1] to show that F extends continuously
to ∂Ω \ C, and this extension is injective and preserves sets of null Lebesgue
measure on the part of ∂Ω \C that is disjoint from the one-dimensional orbits.
We will also show that F has a continuous extension to Ω which is injective
away from the one-dimensional orbits, and that maps distinct one-dimensional
orbits to distinct single points.

Let z0 ∈ ∂Ω. Assume first that z0 ∈ ∂D and that z0 is not contained in a
one-dimensional orbit of L. Suppose zk is a sequence in Ω that converges to
z0. If the sequence F (zk) does not have a limit, then it clusters at least at two
points on ∂Δ \ {0}. Without loss of generality we may assume pk = F (z2k)
converges to v and qk = F (z2k+1) converges to w where v and w are two
points on the boundary of Δ \ {0}. Let T1 and T2 be two continuous arcs
in Δ such that T1 contains the pk and ends at v while T2 contains the qk
and ends at w. We may assume that dist(T1, T2) > c for some c > 0. Let Z
be a first integral which is a homeomorphism from a disk U ′ about z0 to a
neighborhood of the origin and mapping U ′∩Ω onto V . Let G = F ◦Z−1. Let
Sj = F−1(Tj), j = 1, 2. For r > 0 small, let Cr be the intersection of the circle
of radius r centered at 0 with the region V . Observe that if r is small enough,
say r ≤ r0 for some r0 > 0, Z−1(Cr) intersects both S1 and S2 since these sets
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are connected and both accumulate at z0. Let Cr = {reiθ : θ1(r) < θ < θ2(r)}.
Let C ′

r = G(Cr). Observe that C ′
r contains points of both T1 and T2 since

Z−1(Cr) intersects both S1 and S2. Since G is holomorphic, it follows that

c < �(C ′
r) =

∫ θ2(r)

θ1(r)

|G′(reiθ)|r dθ.

Applying the Schwarz inequality we get

c2

r
< 2π

∫ θ2(r)

θ1(r)

|G′(reiθ)|2r dθ,

which in turn leads to the contradiction that

∞ = c2
∫ r0

0

dr

r
dr < 2π

∫ r0

0

∫ θ2(r)

θ1(r)

|G′(reiθ)|2r dθ dr < π.

It follows that F (zk) has a limit and therefore F extends continuously up to
the point z0. If F (z0) = 0, then F will map a neighborhood of z0 in ∂D to 0
which would force F to be constant since by the analyticity of L and (2.1),
except possibly at a finite number of points, ∂D is noncharacteristic for L. It
follows that F (z0) ∈ ∂Δ.

We wish to prove the same property for F−1 away from the finite number
of points which as we will see later are the images of the one-dimensional orbits
under F . This would be equivalent to showing that F is locally one-to-one at
the boundary points z0 as above which we will next show.

We claim that at each hypocomplex point z0 ∈ ∂Ω as above, the function
F extends to be a homeomorphism up to z0. To see this, first assume that L is
transversal to ∂D at z0. In this case, after contracting U about z0, Z(U ∩∂D)
is a real analytic piece of the boundary of V through the origin. The function
G is holomorphic on V , continuous up to the boundary near the origin, and
sends a real analytic boundary piece of V through 0 into the boundary of
the disk Δ. By the Schwarz reflection principle, G extends as a holomorphic
function in a neighborhood of the origin which in turn leads to a real analytic
extension of F past z0. Suppose now z1 ∈ ∂Ω is another hypocomplex point
where L is transversal to ∂D and assume that F (z0) = F (z1) = w. Then since
F extends as a solution past both z0 and z1, and L is hypocomplex at these
points, the extended F is an open map and hence there are neighborhoods
U0, U1,W of z0, z1, and w, respectively, such that F (U0) = F (U1) = W .
Moreover, because F is extended using the reflection principle, we may assume
that F (U0 ∩ Ω) = W ∩Δ = F (U1 ∩ Ω). But this contradicts the injectivity
of F on Ω. Hence F (z0) �= F (z1). Recall that since ∂D is not an orbit of L,
there are only a finite number of points on ∂D where L is not transversal to
∂D. Suppose now z2, z3 are two points in ∂Ω ∩ ∂D where F (z2) = F (z3) and
assume that L is transversal to ∂D at z2 and tangent to ∂D at z3. Assume
that L is hypocomplex at z2 and z3. We have seen that there is a neighborhood
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U2 of z2 in D where F is one-to-one and such that F (U2) is a neighborhood
of F (z2) in Δ. But then, if z ∈ Ω and is sufficiently close to z3, F (z) /∈ F (U2),
contradicting the continuity of F at z3. Therefore, F (z2) �= F (z3). Finally,
suppose z4 and z5 are two points in ∂Ω ∩ ∂D where L is hypocomplex and
assume L is tangent to ∂D at both points and F (z4) = F (z5) = w0. Since
there are only a finite number of such points in ∂D, there is an open arc
I in ∂D containing z4 in its interior and consisting of hypocomplex points
such that z4 is the only point where L is not transversal to ∂D. Since F is
one-to-one on I\{z4}, F (I) is an open arc in ∂Δ containing w0 in its interior.
There is also a similar arc J with z5 in its interior and we may assume that
I and J are disjoint. But then this would contradict the injectivity of F on
I ∪ J\{z4, z5} and so we must have F (z4) �= F (z5). Hence F can be extended
as a homeomorphism up to the part of the boundary of Ω that is disjoint from
the one-dimensional orbits. It is also real analytic past all but a finite number
of the points that do not lie in the one-dimensional orbits.

Assume next that z0 ∈ ∂Ω∩D∩γj for some j ≥ 1 and write, for simplicity
of notation, γj = Γ . Write L = X + iY with X and Y real vector fields.
Replacing L, if necessary, by a convenient nonvanishing multiple of L we may
assume that Γ is a closed integral curve of X joining two points A and B that
belong to ∂D. Since Y vanishes on Γ , it vanishes identically on any integral
curve of X that contains Γ (by analyticity). We may consider an integral
curve Γ1 of X that extends Γ past both endpoints A and B, so that Γ1 is
a one-dimensional orbit of L in a neighborhood U of D with endpoints in
U \ D. In a tubular neighborhood V of Γ1 we may choose coordinates that
rectify the flow of X and in which L has a canonical form. More precisely, we
may choose local coordinates (x, t), so that V is expressed as |x| ≤ 1, |t| ≤ 2,
x(z0) = t(z0) = 0, x(A) = x(B) = 0, t(A) = 1, t(B) = −1 and L has the form

L =
∂

∂t
+ ib(x, t)

∂

∂t
,

with t → b(x, t) ≥ 0 and not identically zero for 0 < x ≤ 1, and b(0, t) ≡ 0,
−2 ≤ t ≤ 2. The intersection of Ω with V is described by

Ω ∩ V = {(x, t) : 0 < x ≤ 1, β(x) < t < α(x)}.

Here, α(x), β(x) are continuous on [0, 1] and analytic on (0, 1], α(0) = 1,
β(0) = −1 and their graphs are contained in ∂D ∩ ∂Ω. By restricting F to
Ω∩V , we obtain an injective map F (x, t) from Ω∩V into Δ. We may assume
that F has already been extended as a homeomorphism from

{(x, t) : 0 < x ≤ 1, β(x) ≤ t ≤ α(x)}

into Δ. Hence, F (x, t) maps the graphs t = α(x), t = β(x), 0 < x < 1, into
some open arcs Â′C ′, B̂′D′ ⊂ ∂Δ. Consider the vertical segment Tε = {ε} ×
[β(ε), α(ε)], 0 < ε < 1, that is mapped by F into a curve F (Tε) contained in
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Δ that joins two boundary points A′
ε
.= F (ε, α(ε)) ∈ Â′C ′, B′

ε
.= F (ε, β(ε)) ∈

B̂′D′. Notice that A′
ε → A′ and B′

ε → B′ as ε→ 0. The length of F (Tε) is

�(F (Tε)) =
∫ α(ε)

β(ε)

|Ft(ε, t)| dt =
∫ α(ε)

β(ε)

(
U2
t (ε, t) + V 2

t (ε, t)
)1/2

dt

with F = !F + i"F = U + iV . Since LF = 0, i.e., Ut = bVx, Vt = −bUx, we
have

�(F (Tε))2 =

(∫ α(ε)

β(ε)

b(ε, t)
(
U2
x(ε, t) + V 2

x (ε, t)
)1/2

dt

)2

≤
∫ α(ε)

β(ε)

b(ε, t) dt
∫ α(ε)

β(ε)

b(ε, t)
(
U2
x(ε, t) + V 2

x (ε, t)
)
dt

≤
∫ 2

−2

b(ε, t) dt I(ε) ≤ Cε I(ε). (3.1)

On the other hand,

∫ 1

0

I(ε) dε =
∫ 1

0

∫ α(ε)

β(ε)

b(ε, t)
(
U2
x(ε, t) + V 2

x (ε, t)
)
dtdε

=
∫ 1

0

∫ α(ε)

β(ε)

det
∂(U, V )
∂(ε, t)

dtdε = area(F (Ω ∩ V )) < π.

Since the integral on the left-hand side is finite, we see that the product εI(ε)
cannot remain bounded below by a positive constant in any neighborhood of
the origin. In other words, there is a sequence εj ↘ 0 such that εjI(εj) ↘ 0
and (3.1) shows that �(F (Tεj

)) → 0. Hence, |A′
εj
−B′

εj
| → 0 and we conclude

that A′ = B′. Notice that the region

F
({(x, t) : 0 < x < εj , β(x) < t < α(x)})

is bounded by the closed curve made of three arcs, to wit, the circular arc
from A′

εj
to A′, the circular arc from B′ = A′ to B′

εj
, and the curve F (Tεj )

that joins B′
εj

to A′
εj

. It is therefore easy to see that the diameter of that
region tends to zero as j →∞, so given r > 0 we may find j0 such that

F
({(x, t) : 0 < x < εj , β(x) < t < α(x)}) ⊂ Δ(A′, r), j ≥ j0.

This shows that if we extend F to {0} × [−1, 1] by setting F (0, t) = A′,
−1 ≤ t ≤ 1, we obtain a continuous extension.

Finally, we need to consider the continuous extendability up to points z0
that are in ∂Ω ∩ ∂D ∩ γj , for some j ≥ 1. Such a point will be in Dr = {z :
|z| < r}, r > 1, so it must belong to Ωr (the analog of Ω). Reasoning as above
we see that a conformal map Fr : Ωr −→ Δ \ {0} extends continuously up
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to z0. This in turn leads to the continuity of F since we could have taken it to
be the restriction of Fr to Ω. Observe next that F (Σ) is a simple closed curve
that disconnects Δ and with 0 in its interior. Since Ω1 is conformal to Δ\{0},
we conclude that as p→ C, F (p) → 0, so F has a unique continuous extension
up to C and F (C) = {0}. Summing up, F can be continuously extended up to
Ω ∪ ∂D0, this extension is injective on the pieces of ∂D0 made up of subarcs
of ∂D and sends each of the pieces made up of one-dimensional orbits γj ,
j ≥ 1, to points Aj ∈ ∂Δ, in particular F (∂D0) ⊂ ∂Δ. Moreover, it takes sets
X ⊂ ∂D0 of Lebesgue measure zero into subsets of ∂Δ of Lebesgue measure
zero.

To consider the Rudin–Carleson problem, we are given a closed set E ⊂ ∂D
with |E| = 0 (| · | denoting the Lebesgue measure in ∂D) and we may assume
without loss of generality that the intersections γj ∩ ∂D ⊂ E, 1 ≤ j ≤ n.
We are also given a continuous function g ∈ C(E) which is constant on each
γj ∩∂D ⊂ E, j = 1, . . . , n. Since F : ∂D0 −→ ∂Δ is continuous and preserves
sets of Lebesgue measure zero, Ẽ

.= F (E ∩ ∂D0) is a closed set in ∂Δ of
measure zero. The fact that F maps the γj to single points implies that there
is g̃ ∈ C(Ẽ) such that g̃ ◦ F = g on the set E ∩ ∂D0. By the Rudin–Carleson
theorem, there is a holomorphic function h̃ on Δ which is continuous on Δ,
agrees with g̃ on Ẽ and

sup
z∈∂Δ

|h̃(z)| ≤ sup
z∈Ẽ

|g̃(z)|.

Set h0 = h̃ ◦ F . Then h0 is continuous on Ω ∪ ∂D0 and Lh0 = 0 in Ω. If γj ,
j ≥ 1, is a one-dimensional orbit of L that is a piece of ∂D0, we know that
F (γj) = Aj , so h0(γj) = h̃(Aj) = g̃(Aj). This shows that h0 agrees with g on
the intersection

D0 ∩ E.

Finally, we may extend h0 continuously to all of D0 by declaring that h0

assumes the value h̃(0) on the closed orbit C as well as in the interior of C.
Thus h0 is continuous on D0 and it is easy to see that Lh0 = 0 on D0. The
construction of h0 also shows that

sup
z∈∂D0

|h0(z)| ≤ sup
z∈E

|g(z)|.

For the components Dj , j ≥ 1, using the method of proof of the main theorem
in [BH1], we may find continuous functions FDj

∈ C(Dj) such that LFDj
= 0

in Dj , FDj
(Dj) = Δ (where Δ is a copy of the unit disk in C), and FDj

is injective on Dj and on the portion of ∂Dj that lies in ∂D and is disjoint
from the one-dimensional orbits. The remaining part of ∂Dj is made up of
subarcs C
 of some γj , 1 ≤ j ≤ n, and each subarc C
 is mapped by FDj

into
a single point A
 ∈ ∂Δ, with A
 �= A
′ for � �= �′. Moreover, we may use these
functions FDj

j ≥ 1, and h0, to obtain a continuous function h ∈ C(D) such
that Lh = 0 in D, and that agrees with g on E. Furthermore,
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sup
D

|h(z)| ≤ sup
E
|g(z)|.

Thus (2) in the theorem is satisfied.
Suppose now (2) is satisfied. Consider the structure (Ω1, L). This structure

cannot be conformal to the punctured plane since it is prolongable. Assume
F : (Ω1, L) −→ {z : a < |z| < b} is conformal for some a, b > 0. The methods
in [BH1] show that F extends as a homeomorphism up to the boundary piece
Σ and we may assume that it maps Σ onto {w : |w| = b}. It then follows that
as z → C, F (z) −→ {w : |w| = a}. Let h ∈ C(D) be a solution of L in D.
There exists h̃ holomorphic on {z : a < |z| < b} such that h = h̃ ◦ F on Ω1.
Since h is continuous up to C and is constant on C, h̃ extends continuously up
to {w : |w| = a} and is constant on this circle. It follows that h is constant
on Ω. But then h would be constant on arcs of ∂D that intersect ∂Ω. This
contradicts the validity of (2). Hence (1) holds.

3.2 Case 2

Assume that L has at least two compact orbits of type I. Let γ1, . . . , γm be
the one-dimensional noncompact orbits in D and write D \∪m

j=1γj as a union⋃N
i=1 Wi of components. Assume that (1) in the theorem holds. As before

for each i, ∂Wi is piecewise real analytic consisting of arcs of the γj or ∂D.
For each i, let Ci1, . . . , Cini

be all the type I compact orbits in Wi. For each
t = 1, . . . , ni, let Di

t be the relatively compact region in D bounded by Cit
and let Ωi

t denote the one-sided tubular neighborhood of Cit that is disjoint
from Di

t. We may assume that the Ωi
t are pairwise disjoint and ∂Ωi

t = Cit ∪Σi
t

for some analytic, closed Jordan curves Σi
t . When (1) in the theorem holds,

for each i and t, there is a conformal map Zi
t : Ωi

t → Δ \ {0}. Moreover, as
we saw in Case 1, we can extend each Zi

t continuously to Di
t by setting it to

be zero there. Fix i and consider the component Wi. Consider the equivalence
relation on Wi such that the equivalence classes [z] are

• single points [z] = {z} if z /∈ ⋃ni

t=2 D
i
t,

• [z] = Di
t if z ∈ D

i

t and 2 ≤ t ≤ ni.

In other words, for t ≥ 2, we collapse Di
t to a single class. For each t ≥ 2,

fix once for all a point zt ∈ Di
t. We denote by Ŵi = Wi/ ∼ the quotient

space with its natural topology and we will define a conformal structure on
Ŵi \Di

1. We need to define an atlas of local holomorphic charts. If [z] = {z},
z /∈ ⋃ni

t=1 D
i
t, is a class of type (1), we may take a local first integral of L

that is a homeomorphism on a neighborhood of z that does not intersect⋃ni

t=1 D
i
t. In the case of the [zt] (2 ≤ t ≤ ni), we choose the neighborhood as

[zt] ∪ [Ωi
t] = [zt] ∪Ωi

t and the holomorphic coordinate will be given by Zi
t on

Ωi
t and maps [zt] to zero. These charts are holomorphically related on their

overlaps and turn Ŵi \Di
1 into a Riemann surface. Observe that Ŵi \Di

1 has
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the integers as its fundamental group and it is conformal to the punctured
disk, due to the assumption that this is so for the structure (Ωi

1, L). Given
g as in (2) in the theorem, we may now reason as in case (1) to solve the
Rudin–Carleson problem in Ŵi which also solves the same problem in Wi

by composition with the quotient map Wi −→ Ŵi. The solutions on the Wi

can then be glued together to lead to a solution on D and hence (2) holds.
Conversely, if (2) in the theorem holds, the arguments used in case (1) show
that (1) has to hold.

4 Some examples

The motivation for Examples 1 and 2 below comes from [BM].

Example 1. Consider a one-form ω expressed in polar coordinates as

ω = eiθ
(
dr + ir(1− 4r2)h(r2)dθ

)

where h(t) is real analytic on R, and h(0) = 1. We can express ω as

ω = A(z, z)dz + B(z, z)dz

where

2A(z, z) = 1 + (1− 4r2)h(r2) and 2B(z, z) = e2iθ
(
1− (1− 4r2)h(r2)

)
.

The condition that h(0) = 1 ensures that ω is a real analytic form in the
plane. Let L be a real analytic, nonvanishing vector field in the plane such
that 〈ω,L〉 = 0. Observe that the only one-dimensional orbit of L is given by

γ =
{

(r, θ) : r =
1
2

}
.

It is easy to see that L is elliptic away from γ and hence L is locally solvable
everywhere in the plane. Let −1

2h( 1
4 )

= a+ ib. By separation of variables, in the

region Ω = {z : 1
2 < |z| < 1}, one gets a solution of L of the form

Z(r, θ) =
(
r − 1

2

)a+ib

eE(r)+iθ,

where E(r) is a real analytic function. If h is chosen so that a > 0, then
the structure induced by L on Ω is conformal to the standard one on a
punctured disk as can be seen by using the injective solution Z(r, θ). By
Theorem 2.1, such an L will have the Rudin–Carleson property. On the other
hand, if h is chosen so that a = 0, then L will not have the Rudin–Carleson
property.
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Example 2. Example 1 can be modified to get a locally solvable, real analytic
vector field with several orbits that are concentric circles (see [BM]). We will
now give an example with two compact orbits which are not contained in each
other.

Set

X = (3− x2)(x2 − 1)
∂

∂x
− 2x(x2 − 2)y

∂

∂y
,

Y = −x(x2 − 2)y
∂

∂x
+ 2x2(1− y2)

∂

∂y
, (x, y) ∈ R

2.

The vector field X has four critical points, (±1, 0), (±√3, 0) on which Y does
not vanish, so the complex vector field L = X + iY has no zeros. We have

X ∧ Y = 2(3− x2)(x2 − 1)x2(1− y2)− 2x2(x2 − 2)2y2∂x ∧ ∂y

= 2x2
(
1− y2 − (2− x2)2

)
∂x ∧ ∂y

which means that X and Y are linearly dependent if and only if

x = 0 or (x2 − 2)2 + y2 = 1.

Thus the analytic set X ∧ Y = 0 has three connected components that are
analytic curves, two Jordan curves C1 and C2 (each one of them is the mirror
image of the other with respect to the y-axis) plus the y-axis. Call Ωj the
interior domain bounded by Cj , j = 1, 2. Notice that X and Y are tangent to
C1 and C2 and since L never vanishes, C1 and C2 are orbits of L. For instance,
to check that X is tangent to Cj observe that the gradient of (x2− 2)2 + y2 is
proportional to Z = (x2 − 2)2x∂x + y∂y while

X · Z = (3− x2)(x2 − 1)(x2 − 2)2x− 2x(x2 − 2)y2

= −2x(x2 − 2)
(− 4x2 + 3 + y2 + x4

)
= −2x(x2 − 2)

(
(x2 − 2)2 + y2 − 1

)

and the last factor of the right-hand side vanishes on Cj , j = 1, 2. Since X
and Y are linearly independent on Ω1 and Ω2, both are 2-orbits. Set Ω3 =
R

2\(Ω1∪Ω2

)
. Then X and Y are linearly independent on Ω+

3
.= Ω3∩{x > 0}

and Ω−
3

.= Ω3 ∩ {x < 0} and since X is transversal to the y-axis it is easy to
see that Ω3 is an orbit. Thus, X ∧ Y vanishes neither on Ω1 nor on Ω2 and
vanishes but does not change sign on Ω3, showing that L satisfies condition
(P).

Example 3. We will now describe a method to produce locally solvable vector
fields L with a large number of closed one-dimensional orbits. Suppose we
are given a locally solvable vector field L0 defined on R

2 with closed one-
dimensional orbits Cj bounding disjoint two-dimensional orbits Ωj , j = 1, . . . k
on which L0 is elliptic. Assume that these orbits are contained in the half
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plane x > 0 and no noncompact one-dimensional orbit intersects x > 0 (what
happens for x < 0 is irrelevant). We will also assume that L0 is elliptic at any
point of the y-axis, that X0 is transversal to the y-axis, and that {x > 0}\⋃k

j=1 Ωj is a two-dimensional orbit of L0 on {x > 0}. We may write L0 =
X0 + iY0 where

X0 = a(x, y) ∂
∂x + b(x, y) ∂

∂y ,

Y0 = c(x, y) ∂
∂x + d(x, y) ∂

∂y

are real vector fields. Mimicking the way one obtains the Mizohata vector field
out of the Cauchy–Riemann vector field, consider the twofold transformation
Φ(x, y) = (x2, y). This leads us to define new vector fields

X1 = a(x2, y) ∂
∂x + 2xb(x2, y) ∂

∂y ,

Y1 = c(x2, y) ∂
∂x + 2xd(x2, y) ∂

∂y .

The restriction of Φ to the half-planes x > 0 and x < 0 is a diffeomorphism
that pulls back

(
X0+iY0

)|{x>0} to a multiple of L1 = X1+iY1. Then each one
of the k 1-orbits of L0 contained in x > 0 is mapped by Φ−1 into a couple of
1-orbits of L1, generating 2k 1-orbits for L1. Furthermore, the restriction of L1

to either x > 0 or x < 0, satisfies (P). By the hypothesis made on L0, X0∧Y0

is, say, positive for x = 0 and this implies—writing X1∧Y1 = β(x, y)∂x∧∂y—
that β(x, y) = xγ(x, y) with γ(0, y) > 0 and since β does not change sign on
the complement of the closure of the bounded 2-orbits, it follows that γ > 0
everywhere on the complement of the closure of the bounded 2-orbits. Hence
β(x, y) will change sign across the y-axis which is contained in a 2-orbit. We
now consider the vector field

L2 = X1 + ixY1
.= X1 + iY2.

Since Y2 is a nonvanishing multiple of Y1 for x �= 0, the 1-orbits of L2 and
L1 are the same, in particular L2 has exactly 2k closed 1-orbits. On the other
hand, X1 ∧Y2 = x2γ(x, y)∂x ∧∂y will not change sign on any 2-orbit, because
γ does not change sign on any 2-orbit.

For instance, by a translation to the right of the vector field X+iY defined
in Example 2, we may obtain an L0 satisfying the required hypothesis with
k = 2 and duplicate the number of closed 1-orbits to 4. This process can be
continued.

Example 4. We will next describe a locally solvable, real analytic vector field
with one compact and one noncompact orbit. Let ρ1(x, y) = x2 + y2 − 1 and
ρ2(x, y) = x− 3. Define the real vector fields X and Y by

X = 4(1− x2)ρ2(x, y)
2 ∂

∂x
− 2yρ2(x, y)(2xρ2(x, y) + ρ1(x, y))

∂

∂y
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and

Y = −2yρ2(x, y)(2xρ2(x, y) + ρ1(x, y))
∂

∂x
+ (2xρ2(x, y) + ρ1(x, y))

2 ∂

∂y
.

Let L = X + iY . If ρ2(a, b) = 0, then Y (a, b) = ρ1(a, b)2
∂
∂y = (8 + b2) ∂

∂y �= 0.
Suppose ρ2(a, b) �= 0. Then if X(a, b) = 0, either |a| = 1 and b = 0 or |a| = 1
and 2aρ2(a, b) + ρ1(a, b) = 0. Suppose first |a| = 1 and b = 0. Then

Y (a, b) = (2aρ2(a, b) + ρ1(a, b))
2 ∂

∂y
= (2− 6a)2

∂

∂y
�= 0.

On the other hand, if |a| = 1 and 2aρ2(a, b) + ρ1(a, b) = 0, then

0 = 2aρ2(a, b) + ρ1(a, b) = 2− 6a + b2

and the latter equals zero when |a| = 1 only if (a, b) = (1,−2) or (a, b) = (1, 2).
Thus we see that the vector field L is nonzero away from these two points. We
have: X(ρ1) = 0 = Y (ρ1) on the set where ρ1 = 0 and X(ρ2) = 0 = Y (ρ2) on
the set where ρ2 = 0. It follows that the circle γ1 = {(x, y) : ρ1(x, y) = 0} and
the line γ2 = {(x, y) : ρ2(x, y) = 0} are one-dimensional orbits of L = X+iY .
Let Ω be a bounded, simply connected region containing {(x, y) : x2 + y2 ≤
1}∪ {(3, y) : −3 ≤ y ≤ 3} and such that Ω ∩ γ2 is connected. We choose Ω so
that the two points (1,−2) and (1, 2) are not in Ω. We have

X ∧ Y = 4ρ2(x, y)
2(2xρ2(x, y) + ρ1(x, y))

2(1− x2 − y2)∂x ∧ ∂y.

Observe that the set σ = {(x, y) : 2xρ2(x, y) + ρ1(x, y) = 0} is a circle which
intersects γ1 at two points and is disjoint from γ2. Since

X(2xρ2 + ρ1) = 24(1− x2)ρ2
2(x− 1)− 4y2ρ2(2xρ2 + ρ1),

we see that X is transversal to σ except at the points (1, 2), (1,−2) which are
not in Ω. It follows that in Ω, the vector field L has two one-dimensional orbits,
namely, γ1 and γ2 ∩Ω, and three two-dimensional orbits: {(x, y) : x2 + y2 <
1}, {(x, y) ∈ Ω : x2 + y2 > 1, x < 3}, and {(x, y) ∈ Ω : x2 + y2 > 1, x > 3}.
Observe also that L is real analytic and locally solvable in Ω.

5 A local version of the Rudin–Carleson property

The next result characterizes those locally integrable, smooth vector fields
which satisfy a local version of the Rudin–Carleson theorem.

Theorem 5.1 Let L be a smooth vector field satisfying condition (P) in an
open set D. For each point p ∈ D there is a neighborhood Up such that if
Q ⊂ Up is a rectangle, E ⊂ ∂Q is a closed set with Lebesgue measure zero,
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and g ∈ C(∂Q) is constant on the fibers of a first integral Z, then there is
h ∈ C(Q) satisfying

Lh = 0 in Q, h(z) = g(z) ∀z ∈ E, and sup |h| ≤ 2 sup |g|.
Conversely, given a locally integrable smooth vector field L on D, if there is
a neighborhood Wp of each point p ∈ D such that for every rectangle Q ⊂
Wp, and every closed set E ⊂ ∂Q of Lebesgue measure zero and g ∈ C(∂Q)
constant on the fibers of a first integral Z, there is h ∈ C(Q) satisfying Lh = 0
in Q, h(z) = g(z) ∀z ∈ E, then L satisfies condition (P) in D.

Proof Suppose L is a smooth vector field satisfying condition (P). Then it
is well known that it is locally integrable (see Theorem 3.2 in [T]). We may
assume that in a rectangle Q = (−A,A) × (0, T ), L = ∂

∂t + a(x, t) ∂
∂x and

Z(x, t) = x + iϕ(x, t) is a first integral of L, with ϕ real-valued. The local
solvability of L implies that for each x ∈ (−A,A),

the function t −→ ϕ(x, t) is monotonic on (0, T ).

Suppose the set E and the function g ∈ C(∂Q) are as in the theorem. Let Ω
be the union of the two-dimensional orbits of L in Q. We can write

Ω =
N⋃
j=1

(aj , bj)× (0, T )

where N ≤ ∞ and the union is a disjoint union. For each j, let Qj =
(aj , bj)×(0, T ). For each j, set Ej = ([aj , bj ]×{0, T}∩E)∪({aj , bj}×{0, T}).
Since L satisfies condition (P), the set Z(Qj) is a simply connected set whose
boundary is a rectifiable, simple closed curve. In particular, by a version of
the Riemann mapping theorem, the classical Rudin–Carleson theorem applies
to Z(Qj). Fix j. We can find points p, q ∈ [aj , bj ] × {0, T} such that the
oscillation of g on the set [aj , bj ]× {0, T},

osc[aj ,bj ]×{0,T}(g) = |g(p)− g(q)|.

Let Gj be continuous on Z(Qj), holomorphic on the interior Z(Qj) such that
Gj(Z(x, t)) = g(x, t)− g(p) for (x, t) ∈ Ej and

supZ(Qj)|Gj | ≤ sup[aj ,bj ]×{0,T}|g − g(p)|.
This is possible by the Rudin–Carleson theorem since g is constant on the

fibers of Z. Observe that

oscZ(Qj)Gj ≤ 2 osc[aj ,bj ]×{0,T}(g).

Define Fj(z) = Gj(z) + g(p). Then Fj is continuous on Z(Qj), holomorphic
on the interior Z(Qj), Fj(Z(x, t)) = g(x, t) for (x, t) ∈ Ej and

oscZ(Qj)Fj ≤ 2 osc[aj ,bj ]×{0,T}(g).
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Define now

h(x, t) =

{
Fk(Z(x, t)), if (x, t) ∈ Qk

g(x, 0), if (x, t) /∈ ∪i[ai, bi]× [0, T ].

Observe that h(x, t) = g(x, t) for (x, t) ∈ E. We will show next that h is
continuous on Q. Clearly h is continuous on Ω. Suppose (x0, t0) ∈ Q and
x0 /∈ ∪i(ai, bi). Let (xk, tk) → (x0, t0). Suppose (xki

, tki
) is any subsequence.

If there is an infinite subset (ym, tm) of this subsequence which is disjoint
from Ω, then h(ym, tm) = g(ym, 0) and so by the continuity of g, h(ym, tm) →
g(x0, 0) = h(x0, t0). If there is no such subsequence, without loss of generality,
we may assume that for each ki, there is k′i such that xki

∈ [ak′
i
, bk′

i
]. Assume

first that x0 /∈ ∪N
j=1{aj , bj}. Then h(xki

, tki
) = Fk′

i
(Z(xki

, tki
)) and

|h(xki
, tki

)− h(ak′
i
, 0)| = |Fk′

i
(Z(xki

, tki
))− Fk′

i
(Z(ak′

i
, 0))|

≤ 2 osc[ak′
i
,bk′

i
]×{0,T}(g).

Observe that |ak′
i
− bk′

i
| → 0 because we are assuming that x0 /∈ ∪N

j=1[aj , bj ].
Since g(ak′

i
, 0) = g(ak′

i
, T ), g(bk′

i
, 0) = g(bk′

i
, T ), and |ak′

i
− bk′

i
| → 0, the

oscillation osc[ak′
i
,bk′

i
]×{0,T}(g) goes to zero as ki →∞, and hence since

h(ak′
i
, 0) = g(ak′

i
, 0) → g(x0, 0),

it follows that h(xki
, tki

) → h(x0, 0) = h(x0, t0). We have shown that
if x0 /∈ ∪N

j=1{aj , bj}, and (xk, tk) → (x0, t0), then every subsequence of
h(xk, tk) has a further subsequence that converges to h(x0, t0). It follows
that h is continuous at (x0, t0) whenever x0 /∈ ∪N

j=1{aj , bj}. Suppose now
x0 ∈ ∪N

j=1{aj , bj}. Without loss of generality, assume x0 = ai for some i. Then
clearly h is continuous from the right (in x) at (x0, t0). If (xj , tj) → (x0, t0)
with each xj < x0, we can consider subsequences of h(xj , tj) as before to
conclude that h(xj , tj) → h(x0, t0). We have thus shown that h is continuous
on Q.

We will next show that Lh = 0 in Q. Let ψ(x, t) ∈ C∞
0 (Q). Fix a two-

dimensional orbit Qj = (aj , bj) × (0, T ). For each sufficiently small ε > 0,
let ψε(x) ∈ C∞

0 (aj , bj) such that ψε(x) ≡ 1 on (aj + ε, bj − ε) and for some
constant C independent of ε, |ψ′

ε(x)| ≤ C ε−1. From the definition of h, it is
clear that Lh = 0 in Qj . We therefore have

0 =
∫
Qj

hLt(ψε(x)ψ(x, t)) dxdt (since ψε(x)ψ(x, t) ∈ C∞
0 (Qj))

=
∫
Qj

h(x, t)ψε(x)Ltψ(x, t) dxdt (5.1)

−
∫
Qj

h(x, t)a(x, t)ψ′
ε(x)ψ(x, t) dxdt.
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Clearly, as ε→ 0,
∫
Qj

h(x, t)ψε(x)Ltψ(x, t) dxdt→
∫
Qj

h(x, t)Ltψ(x, t) dxdt. (5.2)

The function ψ′
ε(x) is supported on a set of measure at most 2ε and on the

support of this function, a(x, t) = O(ε). Since ψ′
ε(x) = O(ε−1), it follows that

when ε→ 0, ∫
Qj

h(x, t)a(x, t)ψ′
ε(x)ψ(x, t) dxdt→ 0. (5.3)

From (5.1)–(5.3), we conclude that
∫
Qj

hLtψ(x, t) dxdt = 0

and hence ∫
Ω

hLtψ(x, t) dxdt = 0 (5.4)

where by definition, Ω was the union of the two-dimensional orbits of L in Q.
Recall that L = ∂

∂t + a(x, t) ∂
∂x . Let

N = {x ∈ (−A,A) : a(x, t) ≡ 0, 0 ≤ t ≤ T}

and set
Ñ = {x ∈ N :

∂a

∂x
(x, t) ≡ 0, 0 ≤ t ≤ T}.

The implicit function theorem implies that the set N\Ñ is a countable set.
Therefore, using this and (5.4), we have

∫
Q

hLtψ(x, t) dxdt =
∫ T

0

∫
N
h(x, t)Ltψ(x, t) dxdt

=
∫ T

0

∫
Ñ
h(x, t)Ltψ(x, t) dxdt

=
∫
Ñ

∫ T

0

h(x, t)Ltψ(x, t) dtdx

= −
∫
Ñ
h(x, 0)

(∫ T

0

∂ψ

∂t
(x, t) dt

)
dx

(since h(x, t) ≡ h(x, 0) for x ∈ N )
= 0.

It follows that Lh = 0 in Q.
Conversely, suppose the locally integrable vector field L satisfies the

Rudin–Carleson property for every smooth subdomain of a neighborhood of
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the origin. Let Z(x, t) = x + iϕ(x, t) be a first integral of L near the origin
such that ∣∣∣∣∂ϕ∂x (x, t)

∣∣∣∣ ≤ 1
2
. (5.5)

Assume L does not satisfy property (P). Then we may assume that for some
A, T > 0, x0 ∈ (−A,A), and 0 < t0 < T ,

ϕ(x0, 0) < ϕ(x0, t0) and ϕ(x0, t0) > ϕ(x0, T ). (5.6)

By changing t0 if necessary, and choosing T close enough to t0, we may also
assume that

ϕ(x0, t) ≤ ϕ(x0, t0) ∀t ∈ [0, T ] and ϕ(x0, 0) < ϕ(x0, T ) < ϕ(x0, t0). (5.7)

Let δ > 0 such that

ϕ(x, 0) < ϕ(x, T ) < ϕ(x, t0) whenever |x− x0| ≤ δ. (5.8)

We will reason in the rectangle Q = [x0 − δ, x0 + δ] × [0, T ]. Let xk ∈ [x0 −
δ, x0 + δ] be a sequence converging to x0. Let E ⊂ ∂Q be a closed set with
measure zero containing the sequence {(xk, T )}. Choose g ∈ C(E) such that

g(xk, T ) = 0 ∀k and g(p) �= 0 for some p ∈ E∩{(x, T ) : |x−x0| < δ}. (5.9)

Suppose now h(x, t) ∈ C(Q), Lh = 0 in the interior of Q, and h = g on
the set E. Estimate (5.5) allows us to use the Baouendi–Treves approximation
theorem ([BT], [BCH, p. 53]) to produce a sequence of entire functions Hk

such that Hk(Z(x, t)) → h(x, t) uniformly on Q. In particular, by (5.8), there
is a connected open neighborhood V of the set {Z(x, T ) : |x − x0| ≤ δ} on
which the sequence Hk(z) will converge to a holomorphic function H. Since
H(Z(xk, T )) = 0 for every k and Z(xk, T ) → Z(x0, T ) ∈ V , we must have
H ≡ 0 on V . But this contradicts the assumption that h(p) = g(p) �= 0.
Therefore, L does not have the Rudin–Carleson property on Q.

6 A link with the F. and M. Riesz theorem

In [B] Bishop proved an abstract theorem which permits a generalization of
the Rudin–Carleson theorem to some situations where a version of the F.
and M. Riesz theorem is valid. Bishop’s theorem has been a key tool in the
study of peak-interpolation sets for A(Ω) where Ω is a bounded domain in
C
n (typically strictly pseudoconvex) and A(Ω) is the algebra of holomorphic

functions on Ω that are continuous up to the boundary (see [Bh], [R2], [Na]
and the references therein). We state here a strengthened version from [G] of
the theorem proved in [B]:
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Theorem 6.1 (Theorem 12.5 in [G]) Let C(X) be the uniformly normed
Banach space of all continuous complex-valued functions on a compact Haus-
dorff space X. Let B be a closed subspace of C(X). Let B⊥ consist of all
(finite, complex-valued, Baire) measures μ on X such that

∫
f dμ = 0 for all

f in B. Let μ̂ be the regular Borel extension of the Baire measure μ. Let S be
a closed subset of X with the property that μ̂(T ) = 0 for every Borel subset
T of S and every μ in B⊥. Let f be a continuous complex-valued function
on S and Δ a positive continuous function on X such that |f(x)| ≤ Δ(x) for
all x in S. Then there exists F in B with |F (x)| ≤ Δ(x) for all x in X and
F (x) = f(x) for all x in S.

If X = T equals the unit circle and B denotes the space of continuous
functions on T which are restrictions of functions holomorphic on the unit disk
D and continuous on the closure D, then a measure μ on T is in B⊥ if and
only if it is the boundary value of a holomorphic function on D. By the F. and
M. Riesz theorem, it follows that any μ ∈ B⊥ is absolutely continuous with
respect to Lebesgue measure and so the preceding theorem implies the Rudin–
Carleson theorem. The classical F. and M. Riesz theorem was generalized for
solutions of locally integrable vector fields in the paper [BH2]. However, unlike
the holomorphic case, there are two reasons why we cannot use the F. and
M. Riesz property of a vector field together with Theorem 6.1 to deduce the
Rudin–Carleson property. Given a vector field L in a neighborhood of D, let
A denote the subspace of C(∂D) which are restrictions of functions u ∈ C(D)
that satisfy Lu = 0 in D. In general, A is not a closed subspace of C(∂D).
Moreover, if μ ∈ A⊥, it may not be the boundary value of a solution of L in
D. For example, if M = ∂

∂y + iy ∂
∂x is the Mizohata vector field and μ is a

measure on T which is of the form μ = δ(0,1) − δ(0,−1) where δp denotes the
Dirac mass at p, then

∫
T
h dμ = 0 for every h ∈ C(D) that satisfies Mh = 0

on D. Such a measure cannot be the boundary value of a solution of M . Thus
for a general vector field, a measure that is orthogonal to the boundary values
of continuous solutions may not be a boundary value of a solution and in fact,
it may not be absolutely continuous with respect to Lebesgue measure. If a
vector field L satisfies the hypotheses of Theorem 2.1, we have the following:

Corollary 6.2 Suppose L is a vector field as in Theorem 2.1 defined on a
neighborhood U of D and satisfying the equivalent conditions (1), (2) in the
theorem. Let A denote the algebra of continuous functions h on D satisfying
the equation Lh = 0 in D. Let μ be a complex Baire measure defined on ∂D
with the property that ∫

∂D

h dμ = 0

for every h ∈ A. If a closed set E ⊆ ∂D has Lebesgue measure zero and it is
disjoint from the one-dimensional orbits of L in U , then μ(E) = 0.

Proof Let F be a closed subset of E. Let P be a positive continuous function
on ∂D such that:
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• P ≡ 1 on F .
• For any y /∈ F , P (y) < 1.

An application of Theorem 6.1 in the proof of Theorem 2.1 shows that there
is h ∈ A that equals 1 on F and satisfies |h(p)| < 1 for p /∈ F . By hypothesis,
for each positive integer n, we have

∫
hn dμ = 0. Letting n → ∞, we are led

to conclude that μ(F ) = 0. By the regularity of the measure μ, it follows that
μ(E) = 0.

Let L = ∂
∂y + ix ∂

∂x . This vector field is locally solvable and the y-axis is a
one-dimensional orbit. Therefore, if u ∈ C(D) satisfies Lu = 0 in D, then it is
constant on the y-axis. It follows that if μ = δ(0,1)−δ(0,−1), then

∫
∂D

u dμ = 0
for all such solutions. Note that L satisfies the hypotheses of Theorem 2.1
since it has no compact orbits. This example shows that in Corollary 6.2, the
set E has to be disjoint from the one-dimensional orbits.
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Summary. We consider evolution equations ∂u/∂t = iaw(x, D)u where a is the
(real valued) Weyl symbol of the operator A = aw. For instance, Schrödinger-like
equations. After recalling what are generalized Fourier integral operators in the
framework of the Weyl-Hörmander calculus, we give conditions on a and on the
dynamics of its hamiltonian flow which imply: 1. The operator aw is essentially
self-adjoint and the propagators eitA are bounded between (conveniently related)
generalized Sobolev spaces. 2. The propagators eitA are generalized Fourier integral
operators.
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Introduction

It is well known that, given a classical selfadjoint pseudodifferential opera-
tor of order 1, one can define the strongly continuous group (Pt) of unitary
operators, such that ut = Ptu0 gives the solution of the hyperbolic equation
∂
∂t + iAu = 0 with Cauchy data u0. Moreover, the operators Pt = e−itA

are classical Fourier integral operators associated to the canonical trans-
formations Ft, where (t, x) → Ft(x) is the flow of the Hamiltonian field
Ha = (∂a/∂ξj ;−∂a/∂xj) and a is the principal symbol of A. In particu-
lar, we have the following two properties:
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• The operators Pt are bounded from the Sobolev space Hs into itself.
• The conjugate P−tBPt of a classical pseudodifferential operator B (with

principal symbol b) is a classical pseudodifferential, whose principal symbol
is b ◦ F−1

t .

It turns out that to extend this theory to a more general evolution equa-
tion such as Schrödinger-type equations, one has just to modify the properties
above. Let us consider for instance the harmonic oscillator A = 1

2

(− d2

dx2 + x2
)
.

The group of unitary operators Pt = e−itA is well known and, in particular, for
t = π/2, Pt is, up to some factor, the Fourier transformation while the canon-
ical transformation (still associated to the Hamiltonian flow of the principal
symbol) becomes Ft(x, ξ) = (ξ,−x). One has the corresponding properties:

• Pt maps the Sobolev spaces Hs into weighted L2 spaces.
• The symbols of B and of its conjugate B̃ = P−tBPt are still related by

b̃ = b◦F−1
t , but if b is a symbol of order m satisfying the standard estimates

∣∣∂α
ξ ∂

β
x b
∣∣ ≤ Cst(1+ |ξ|)m−|α|,

the symbol b̃ satisfies the exotic ones
∣∣∂α

ξ ∂
β
x b̃
∣∣ ≤ Cst(1+ |x|)m−|β|.

Such b̃ can be considered as symbols of (generalized) pseudodifferential
symbols if we use the Weyl–Hörmander calculus.

In this theory, many different pseudodifferential calculi are defined, each
of which is associated to a “good” Riemannian metric g on the phase space
X = R

n× (Rn)∗. Moreover, to any “good” positive function M on X , one can
associate a generalized “Sobolev space” H(M, g). In the example above, the
Pt maps the usual Sobolev spaces into unusual ones (the weighted L2 spaces),
and conjugates of usual pseudodifferential operators are unusual ones.

We will use systematically the Weyl–Hörmander calculus and, in order
to generalize Fourier integral operators and hyperbolic equations, we have to
study two problems.

1. We are given a canonical transformation F (symplectic diffeomorphism)
of X onto itself, an initial calculus (defined by a Riemannian metric g) and
a final calculus (defined by g̃). One can then define (under convenient as-
sumptions) a class FIO(F, g, g̃) of operators whose main property is the fol-
lowing: conjugates of g-pseudodifferential operators are g̃-pseudodifferential
ones. These generalized Fourier integral operators have good properties (com-
position, boundedness in generalized Sobolev spaces) and enjoy a symbolic
calculus. This has been developped in [Bo3] and is recalled in Section 2.

2. We are given an evolution equation ∂
∂t + iAu = 0 and an initial calculus

(defined by a metric g0). Then, one can expect that the propagators Pt exist
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and belong to FIO(Ft, g0, gt). The calculus at time t depends on t and is
actually forced by the Hamiltonian flow. Theorems 3.1 and 3.2 give sufficient
conditions (on the symbol a and its Hamiltonian flow Ft) for getting such
results. Proofs will be sketched in Sections 4 and 5.

Our assumptions are exclusively expressed in terms of differential geome-
try, starting from the symbol a of A. In particular, no selfadjoint extension in
L2 is a priori given and an important part of the task is to deduce from the
dynamic assumption on a that A is essentially selfadjoint. One can see easily
that these assumptions are grosso modo necessary if one wants to fulfill the
program above. However, they are not so easy to check: they require estimates
which may be touchy, not only on a but also on its Hamiltonian flow.

1 Weyl–Hörmander calculus of pseudodifferential
operators

We refer to [Hö, Sections 18.5, 18.6] but we will need some results from [BL],
[BC], [Bo1] and [Bo2].

1.1 Quantization

We will denote by X = (x, ξ) a point of the phase space X = R
n× (Rn)∗. The

symplectic form σ on X is defined by

σ(X,Y ) = 〈ξ, y〉 − 〈η, x〉 ; X = (x, ξ), Y = (y, η).

For a(x, ξ) belonging to the Schwartz space S(X ), the operator aw(x,D),
or aw for short, is defined by

aw(x,D)u(x) =
∫∫

ei(x−y)·ξ a
(
x+y

2 , ξ
)
u(y) dydξ

(2π)n . (1.1)

Such an operator maps S ′(Rn) into S(Rn). If now a belongs to the space
S ′(X ) of tempered distributions on X , the same formula, taken in the weak
sense, defines an operator mapping S(Rn) into S ′(Rn). One says that a is the
Weyl symbol of aw.

The product of composition of two symbols a and b (belonging say to
S(X ), but this will be widely extended) is defined by (a#b)w = aw ◦ bw and
is given by the formula

a#b(X) =
∫∫

e−2iσ(X−S,X−T )a(S)b(T )dS dT
π2n . (1.2)

The following expansion is given here with a remainder of order 3, which
is sufficient for our purpose, but it exists at any order:

a#b = ab + 1
2i {a , b}+ 1

2

(
1
2iσ(∂Y , ∂Z)

)2
a(Y )b(Z)|Y =Z=X + R3(a, b). (1.3)
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Here, {a , b} is the usual Poisson bracket in X . There is an integral formula,
more or less similar to (1.2) and for which we refer to [Bo2], giving the value
of R3(a, b). An important point is that it depends only on the derivatives of
order 3 of a and b.

1.2 Admissible metrics

A Riemannian metric g on the phase space is identified to a family Y →
gY of positive definite quadratic forms on X . For each Y , one can choose
symplectic coordinates (depending on Y but still denoted by (x, ξ)) such that
gY is diagonalized:

gY (dx, dξ) =
n∑
1

dx2
j

a2
j

+
n∑
1

dξ2
j

α2
j

. (1.4)

The aj and αj depend on the choice of the coordinates, but the products ajαj

depend just on Y .
Such a metric g is said to be admissible if the following five properties are

satisfied.
A1. Simplifying assumption. The products ajαj above are equal and their
common value is denoted by λ(Y ). This means that there is a (linear) sym-
plectic transformation mapping the unit ball BY = {X| gY (X−Y ) ≤ 1} onto
the euclidean ball of radius

√
λ(Y ). One has

|σ(S, T )| ≤ λ(Y )gY (S)1/2gY (T )1/2.

A2. Fundamental assumption. ∀Y, λ(Y ) ≥ 1.
This means that localizing in unit balls is not a violation of the uncertainty
principle.
A3. Slowness. There exists C > 0 such that

gY (Y−Z) ≤ C−1 =⇒ (
gY (T )/gZ(T )

)±1 ≤ C

uniformly with respect to Y,Z, T .
A4. Temperance. There exist C and N such that

∀Y,∀Z,∀T, (
gY (T )/gZ(T )

)±1 ≤ C
(
1 + λ(Y )2gY (Y−Z)

)N
.

A5. Geodesic temperance. The geodesic distance D(Y,Z) for the Riemannian
metric λ(Y )2gY (dx, dξ) is equivalent to λ(Y )gY (Y−Z)1/2 in the following
sense:

∃C,∃N,∀Y,∀Z
C−1(1+D(Y,Z))1/N ≤ 1+λ(Y )gY (Y−Z)1/2 ≤ C(1+D(Y,Z))N .
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In view of A4, this property is equivalent to

∃C,∃N,∀Y,∀Z,∀T, (
gY (T )/gZ(T )

)±1 ≤ C
(
1 + D(Y,Z)

)N
.

Remark 1.1 The first assumption A1 makes things simpler, for instance it is
not necessary to introduce the inverse metric gσ which in this case is just λ2g,
but it is not necessary. On the contrary, the geodesic temperance plays an
important rôle: thanks to A5, one has a simple characterization of pseudod-
ifferential operators (see Section 1.4), one can define very easily the Fourier
integral operators and thus prove in a few lines our Theorem 3.2.

It could be possible to define the Fourier integral operators without A5,
using localized twisted commutators (as in [BC, th. 5.5]), but the proofs are
much more complicated. Moreover, there is no known example of a metric
satisfying A4 and not A5.

1.3 Weights and symbols

A positive function M defined on X is a g-weight if it satisfies the following
conditions (slowness and temperance), for convenient constants C ′ andN ′:

gY (Y−Z) ≤ C ′−1 =⇒ (
M(Y )/M(Z)

)±1 ≤ C ′,
(
M(Y )/M(Z)

)±1 ≤ C ′(1 + λ(Y )2gY (Y−Z)
)N ′

.

Modifying the constants if necessary,
(
1 + λ(Y )2gY (Y−Z)

)
can be replaced

above by
(
1 + D(Y,Z)

)
.

The classes of symbols S(M, g) (for admissible metrics and g-weights) are
defined as the set of functions a ∈ C∞(X ) such that

|∂T1 . . . ∂Tk
a(X)| ≤ CkM(X) for gX(Tj) ≤ 1. (1.5)

Here, ∂Ta = 〈T, da〉 denotes the directional derivative along T . The space of
operators aw for a ∈ S(M, g) (the pseudodifferential operators of weight M)
is denoted by Ψ(M, g). The following properties are now well known:

• Ψ(M, g) ⊂ L(S,S) and Ψ(M, g) ⊂ L(S ′,S ′).
• Ψ(1, g) ⊂ L(L2, L2).
• In the expansion (1.3), for a ∈ S(M1, g) and b ∈ S(M2, g), one has

a#b and ab ∈ S(M1M2, g),

{a , b} , (a#b− ab) and (a#b− b#a) ∈ S(M1M2λ
−1, g), (1.6)

R3(a, b) ∈ S(M1M2λ
−3, g). (1.7)

Let us recall some complements which are proved in [Bo2].
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Proposition 1.1 The classes of symbols
∧∧
S (M, g) [resp.

∧∧∧∧
S (M, g),

∧∧∧∧∧∧
S

(M, g)] are defined as the spaces of functions satisfying (1.5) for k ≥ 1 [resp.
k ≥ 2, k ≥ 3].
(a) There exists a weight M ′ depending on M such that

∧∧∧∧∧∧
S (M, g) ⊂ S(M ′, g).

(b) The properties (1.6) are still valid for a ∈ ∧∧
S (M1, g) and b ∈ ∧∧

S (M2, g).
(c) The property (1.7) is still valid for a ∈∧∧∧∧∧∧

S (M1, g) and b ∈∧∧∧∧∧∧
S (M2, g).

The seminorms of the spaces S(M, g),
∧∧
S (M, g), . . . are the best constants

Ck in (1.5). The S(M, g) are Fréchet spaces, the
∧∧
S (M, g), . . . are complete

but not Hausdorff.

1.4 Characterization of pseudodifferential operators

Theorem 1.1 (a) Given b ∈ ∧∧
S (λ, g) and A ∈ Ψ(M, g), one has

ad bw ·A def= bwA−Abw ∈ Ψ(M, g).

When M = 1, this operator is thus bounded on L2.
(b) Conversely, let A be an operator which is bounded on L2 as well as its

iterated commutators

ad bw1 . . . ad bwk ·A for bj ∈ ∧∧
S (λ, g).

Then A belongs to Ψ(1, g).

The first part is an immediate consequence of Proposition 1.1 (b). For the
converse, we refer to [Bo1] where the geodesic temperance plays a decisive
role.
Generalized Sobolev spaces H(M, g). — We refer to [BC] for equivalent
definitions; the following properties will be sufficient:

• For any g-weight M , there exist A ∈ Ψ(M, g) and B ∈ Ψ(M−1, g) such
that AB = BA = I.

• The Sobolev space H(M, g) (sometimes denoted H(M) for short) is the set
of u ∈ S ′(Rn) such that Au ∈ L2 for any A ∈ Ψ(M, g). It is sufficient that
Au ∈ L2 for one invertible A as above, and one can choose ‖u‖H(M) =
‖Au‖L2 .

• For any g-weights M and M1, any A ∈ Ψ(M, g) maps continuously H(M1)
into H(M1/M).

• If A ∈ Ψ(M, g) is bijective from H(M1) onto H(M1/M) for some g-weight
M1, then A−1 belongs to Ψ(M−1, g).
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2 Generalized Fourier integral operators

We recall here some of the definitions and results of [Bo3]. We consider only
Fourier integral operators P of weight 1 (or of order 0, i.e., bounded on L2),
Fourier integral operators of weight M being just products PA of such P with
A ∈ Ψ(M, g).

An admissible triple (F, g, g̃) is made of a diffeomorphism F of X onto
itself, and of two Riemannian metrics g and g̃, such that the four following
conditions are satisfied.
B1. F is a canonical transformation (or symplectomorphism), which means
that F∗σ = σ. For any Y ∈ X , the differential F ′(Y ) belongs to the symplectic
group Sp(n).
B2. F is an isometry of (X , g) onto (X , g̃). This means that g̃ is the direct
image F∗g of g, i.e., the Riemannian metric defined by

g̃
F (Y )

(T ) = g
Y

(F ′(Y )−1 · T ).

B3. g and g̃ are admissible metrics, satisfying conditions A1 to A5.
B4. One has the following estimates on the derivatives of F , for convenient
constants Ck:

g̃
F (X)

(
∂T1 . . . ∂Tk

F (X)
) ≤ Ck for gX(Tj) ≤ 1. (2.1)

Remark 2.1 In most applications, the canonical transformation F and an ad-
missible metric g are given and g̃ is thus determined by B2. The problem is
to know and to prove that g̃ is also admissible. It is easy to see that A1 and
A2 are satisfied and that the slowness A3 is a consequence of B4 for k = 2,
but the temperance is touchy.

It cannot be expressed simply in terms of F and g because it mixes up
the symplectic and Riemannian structures (which are preserved by F ) and the
affine structure (which is not). One has to compare the values of the quadratic
forms g̃Y and g̃Z for the same vector T in two points which can be very far,
and this requires a good knowledge of the behavior of F at infinity.

For g and g̃, the functions defined in Section 1.2 are denoted by λ and λ̃.
The quadratic forms gY and g̃F (Y ) being symplectically equivalent, one has
λ̃(F (Y )) = λ(Y ).

The condition B4 for k = 1 is automatically satisfied (with C1 = 1) for F
and F−1. A simple computation shows that the conditions B4 (for k > 1) are
also valid for F−1 which imply that the triple (F−1, g̃, g) is also admissible.

The condition B4 is actually equivalent to the following properties, which
are of course essential for our purpose.
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Proposition 2.1 If m is a g-weight, then m̃ = m ◦ F−1 is a g̃-weight and
one has

a ◦ F−1 ∈ S(m̃, g̃) ⇐⇒ a ∈ S(m, g),

a ◦ F−1 ∈ ∧∧
S (m̃, g̃) ⇐⇒ a ∈ ∧∧

S (m, g).

There is no analogous result for a ∈ ∧∧∧∧
S (m, g): an estimate of the second

derivatives of a ◦ F−1 requires an estimate of the first derivatives of a.

Definition 2.1 (Fourier integral operators and twisted commutators)
The space FIO(F, g, g̃) of Fourier integral operators associated to the admissi-
ble triple (F, g, g̃) is the set of operators P such that

ãd(b1) . . . ãd(bk) · P ∈ L(L2) for bj ∈ ∧∧
S (λ, g), (2.2)

where ãd(b) · P is a notation for the twisted commutator:

ãd(b) · P = (b ◦ F−1)wP − Pbw. (2.3)

This definition is of course modeled on the characteristic property of pseu-
dodifferential operators given in Theorem 1.1. It implies easily the following
properties:

• FIO(I, g, g) = S(1, g).
• For P ∈ FIO(F, g, g̃), its adjoint P ∗ belongs to FIO(F−1, g̃, g).
• For P ∈ FIO(F, g, g̃) and Q ∈ FIO(G, g̃, g), where (F, g, g̃) and (G, g̃, g) are

two admissible triples, one has QP ∈ FIO(G ◦ F, g, g).

To prove the existence of nontrivial Fourier integral operators, a more
concrete definition is necessary.

2.1 Principal symbol of Fourier integral operators

Let Γ be the graph of F and for each point (Y, F (Y )) ∈ Γ , let χY be the affine
tangent map, defined by χY (X) = Y +F ′(Y ) · (X−Y ). One can define a fiber
bundle Γ̃ → Γ such that its fiber at (Y, F (Y )) is made of the metaplectic
operators V associated to χY , i.e., such that aw V = V (a ◦χY )w for any
symbol a. Such a V is determined by χY up to multiplication by a complex
number ω ∈ U(1) and the fiber is thus a circle.

We refer to [Bo3] for the definition of the horizontal sections Y → VY of
Γ̃ as well as for the construction of a refined partition of unity Y → ψY . The
following result is Theorem 6.6 of [Bo3].

Theorem 2.1 (i) For such VY and ψY and for p ∈ S(1, g), the integral

P1 =
∫

p(Y ) VY ◦ ψw
Y

dY
πn (2.4)
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defines an element of FIO(F, g, g̃).
(ii) Conversely, any P ∈ FIO(F, g, g̃) can be written P = P1 + R, with P1 as
above and R a regularizing Fourier integral operator, i.e., such that

∀N, (λ̃
w
)N ◦ R ◦ (λw)N ∈ FIO(F, g, g̃). (2.5)

(iii) The section (Y, F (Y )) → p(Y )VY of the line bundle Γ̃ ⊗U(1) C is said
to be a principal symbol of P . The principal symbol of P is unique, up to a
symbol (Y, F (Y )) → q(Y )VY with q ∈ S(λ−1, g).

A principal symbol for the adjoint P ∗ is (F (Y ), Y ) → p(Y )V ∗
Y . With

evident notations, for Q ∈ FIO(G, g̃, g), a principal symbol of Q ◦ P is the
section (Y,G ◦F (Y )) → p(Y )q(F (Y ))WF (Y )◦VY . Thanks to part (i) of the
theorem, there exist almost invertible Fourier integral operators.

3 Evolution equations

Let a be a real-valued and C∞ function on X , belonging to a class of symbols
which will be specified later, let g0 be an admissible metric and T > 0. We
make the following assumptions:
C1. The flow Ft of the hamiltonian field of a is global: it is defined for all
t ∈ R par d

dtFt(X) = Ha(Ft(X)) ; F0(X) = X. Set gt = Ft∗g0.
C2. The metrics gt satisfy A1 to A5 for any t ∈ [−T, T ], with uniform con-
stants.
C3. The triples (Ft, g0, gt) satisfy B1 to B4 for any t ∈ [−T, T ], with uniform
constants.

The group law Ft+s = Ft ◦ Fs implies that the triples (Ft, gs, gs+t) are
admissible when s and s+t belong to [−T, T ].

The “function λ” defined in Section 1.2 corresponding to gt will be denoted
by λt. One has λt=λ0 ◦ F−1

t . For any g0-weight μ0, we will denote by μ∗ the
family of gt-weight μt = μ0 ◦ F−1

t ; t ∈ [−T, T ].

Theorem 3.1 Assume that a belongs uniformly to
∧∧∧∧∧∧
S (λ3

t , gt) (i.e., the kth
semi-norm of a in these spaces is bounded by a constant Ck independent of
t). Then
(i) The operator aw with domain S(Rn) is essentially selfadjoint on L2. The
domain of its closure A is

{
u ∈ L2

∣∣ awu ∈ L2
}
, which means that weak and

strong extension coincide.
(ii) A is thus the infinitesimal generator of a one-parameter strongly continu-
ous group Pt = e−itA. For any g0-weight μ0 and for |t| ≤ T , the operator Pt

is bounded from H(μ0, g0) onto H(μt, gt).
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The assumption on a is satisfied when a ∈ ∧∧
S (λ3

0, g0) but it is not sufficient
in general that a ∈∧∧∧∧∧∧

S (λ3
0, g0). For the same reason, it is sufficient to assume

a ∈ ∧∧
S (λ2

0, g0) in the next theorem.

Theorem 3.2 Assume now that a belongs uniformly to
∧∧∧∧∧∧
S (λ2

t , gt). Then Pt

belongs to FIO(F, g0, gt) for |t| ≤ T .

Remark 3.1 The meaning of the condition a ∈∧∧∧∧∧∧
S (λ2

0, g0) depends strongly
on the choice of the initial metric g0. For instance, for the standard metric
dx2 + dξ2

1+|ξ|2 , terms like |ξ|2 log |ξ| or x3 are allowed. If g0 is the euclidean

metric, any polynomial of total degree 3 (in x and ξ) belongs to
∧∧∧∧∧∧
S (1, g0).

It is clear from these examples that the assumption on the class of a cannot
imply the global character of the flow nor the essential selfadjointness of aw.
The dynamic assumption C1 is crucial.

4 Proof of Theorem 3.1

Let us write A = aw. If we think of the equation d
dtut + iAut = ft as

a Schrödinger equation, the associated “Heisenberg equation” is d
dtBt =

i(BtA − ABt). It turns out that our dynamic assumptions give immediately
approximate solutions of this last equation, which will give a priori estimates.

Let b0 be a symbol for the metric g0 whose weight will be specified later,
and bt = b0 ◦ F−1

t . We have ∂
∂tbt = {bt , a} and thus, according to (1.3),

bt#a = abt + 1
2i {bt , a}+ order 2 + R3(bt, a),

a#bt = bta + 1
2i {a , bt}+ order 2 + R3(a, bt).

Terms of order 0 and 2 are symmetric in a and b, and thus

d
dtBt = i(BtA−ABt) + Rt (4.1)

where the symbol of Rt belongs to the same class as R3(a, bt). As a conse-
quence of Proposition 1.1 (c), under the assumptions of Theorem 3.1, and for
b0 ∈ S(μ0, g0) (or b0 ∈ ∧∧

S (μ0, g0)), one has Rt ∈ Ψ(μt, gt).
We have to define the spaces Lp([−T, T ];H(μ∗)) made of (classes of) mea-

surable functions u : t → ut (the weak measurability with values in S ′ is
sufficient) such that

‖u‖Lp(H(μ∗)) =

(∫ T

−T

‖ut‖pH(μt)
dt

)1/p

<∞, (4.2)
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with the usual convention for p = ∞. This definition is meaningful if we define
the norms of the spaces H(μt, gt) in a coherent way. This can be specified
thanks to the following proposition.

Proposition 4.1 Let μ0 be a g0-weight. There exist δ > 0 and for each θ ∈
[−T, T ] a bθ ∈ S(μθ, gθ) such that, for |s| ≤ δ, the operators (bθ ◦ F−1

s )w have
an inverse belonging to S(μθ+s, gθ+s).

Choosing a finite number of points θ, each t can be written θ + s and we can
choose ‖u‖H(μt)

=
∥∥(bθ ◦ F−1

s )wu
∥∥
L2 in (4.2). Changing the points θ and the

bθ would replace the norm in Lp(H(μ∗)) by an equivalent one.
We should verify, in the proof of [BC, th. 6.4], that we can choose bθ ∈

S(μθ, gθ) and cθ ∈ S(μ−1
θ , gθ) whose seminorms are independent of θ such that

bθ#cθ = 1. We are thus reduced to prove the result for θ = 0. With evident
notations for cs and Cs, we get

d
dsBsCs = i(BsCsA−ABsCs) + Rs

where Rs belongs to Ψ(1, gs) (with uniform seminorms). Setting es = (bs#cs)◦
Fs, we get an equation d

dses = r′s with a right-hand side bounded uniformly
in S(1, g0). For s small, the seminorms of (1−es) in S(1, g0) and thus those of
(1−bs#cs) in S(1, gs) are small. As a consequence, BsCs is invertible in L(L2),
its inverse belongs to Ψ(1, gs) (see Section 1.4), and Bs itself is invertible.

The functions of class C∞ are dense in L1(H(μ∗)) and the dual of this
space is L∞(H(μ−1

∗ )). The space C(H(μ∗)) (“continuous” functions with val-
ues in a variable space!) is defined as the closure, in L∞(H(μ∗)), of the set of
continuous functions with value in S.

Proposition 4.2 Let μ0 be a g0-weight.
(a) There exists C such that for any u ∈ C1([−T, T ],S) solution of the equa-
tion

d
dtut + iAut = ft, (4.3)

one has
‖u‖L∞(H(μ∗)) ≤ C

(
‖u0‖H(μ0)

+ ‖f‖L1(H(μ∗))

)
. (4.4)

(b) There exist μ0 > μ0 such that any solution u of (4.3) which belongs to
L∞(H(μ∗)) belongs to C(H(μ∗)) and satisfies the estimate (4.4).

It suffices to prove the result on an interval of size δ centered at 0. Keeping
the notations above, we have

d
dt (Btut) = iBtAut−iABtut+Rtut−iBtAut+Btft

= −iA(Btut)+Rtut+Btft

and thus

d
dt ‖ut‖2H(μt)

= d
dt ‖Btut‖2L2 ≤ C

(
‖ut‖2H(μt)

+ ‖ut‖H(μt)
‖ft‖H(μt)

)
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which proves part (a) of the theorem for δ small.
To prove part (b), we need the following lemma, where μ0 and μ0

will be g0-weights, and where HN is the classical weighted Sobolev space{
u
∣∣xαDβu ∈ L2 ; |α+β| ≤ N

}
for N ≥ 0, and is the dual of H−N for N < 0.

Lemma 4.1

∀μ0, ∃N, ∃C, ∀t ∈ [−T, T ], ‖u‖H(μt)
≤ C ‖u‖HN .

∀N, ∃μ0, ∃C, ∀t ∈ [−T, T ], ‖u‖HN ≤ C ‖u‖H(μt)
.

For a fixed t, the first estimate says that pseudodifferential operators are
bounded from S into L2, while the second one is a consequence of the fact
that any linear form on X belongs to a class of symbols for a convenient
weight. One has just to make uniform these arguments.

Let us go back to part (b) of Proposition 4.2. We know (Proposition 1.1
(a)) that there exists a weight m0 such that a ∈ S(m0, g0). We have also
a ∈ S(mt, gt) because a ◦ F−1

t = a. We can choose μ0 sufficiently large, such
that H(mtμt) ⊃ HN ⊃ H(μt/mt). We know then that du/dt ∈ L∞(HN )
and u is continuous with values in HN . It is then possible to find a sequence
uν ∈ C1(S) such that uν → u in C0(HN ). The estimate (4.4) is valid for uν ,
we have uν(0) → u(0) in H(μ0) while uν → u and Auν → Au in L∞(H(μ∗)),
which ends the proof.

Theorem 4.1 Let μ0 be a g0-weight, let u0 and f belong to H(μ0, g0)
and L1([0, T ];H(μ∗)), respectively. Then there exists a unique solution u ∈
C([0, T ];H(μ∗)) of the Cauchy problem

du(t)
dt

+ iAu(t) = f(t); u(0) = u0.

We use a classical duality argument. Let v ∈ S(Rn+1) vanishing near t = T
and let g = ∂v

∂t + iAv. From (4.4) (with the time going from T to 0), we know
that one has

‖v‖L∞(H(μ−1
∗ )) ≤ C ‖g‖L1(H(μ−1

∗ ))

and thus that v is uniquely determined by g. The linear form g → (u0 | v(0))+∫ T

0
(f(t) | v(t)) dt is defined and continuous on the subspace of L1(H(μ−1

∗ ))
made of such g. From the Hahn–Banach theorem, we get the existence of
u ∈ L∞(H(μ∗)) such that

∀v ∈ S, (u0 | v(0)) +
∫ T

0

(f(t) | v(t)) dt = −
∫ T

0

(
u(t)

∣∣ ∂v
∂t + iAv

)
dt. (4.5)

Using functions v vanishing also near t = 0, this proves that u, in the sense
of distributions, is a solution of ∂u

∂t + iAu = f in ]0, T [×R
n. Let us choose a

weight μ
0
' μ0 such that part (b) of Proposition 4.2 applies to this couple of
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weights. One has u ∈ C(H(μ∗)) and u(0) is now well defined. Integrating by
parts in (4.5) we get that u(0) = u0. The estimate (4.4), with μ replaced by
μ, shows the uniqueness of u.

It remains to prove that u ∈ C([0, T ];H(μ∗)). Let us introduce a weight
μ0 ( μ0 such that part (b) of Proposition 4.2 applies. Let us approximate
u0 and f , in H(μ0, g0) and L1([0, T ];H(μ∗)), respectively, by regular func-
tions uν0 and fν . From the analysis above, one gets solutions uν belonging to
L∞(H(μ∗)) and thus to C([0, T ];H(μ∗)). Using again (4.4), the sequence uν is
a Cauchy sequence in L∞(H(μ∗)), its limit u should belong to C([0, T ];H(μ∗))
which ends the proof of Theorem 4.1.
Proof of Theorem 3.1 (end). Taking μ0 = 1, the last theorem shows that for
any u0 ∈ L2, there exists a unique solution t → ut = Ptu0, continuous from
[−T, T ] into L2, of the equation ∂u

∂t +iawu = 0. The group law and the relation
P ∗
t = P−1

t are valid in the interval in view of the uniqueness. One can thus
extend Pt to R and get a strongly continuous group of unitary operators. Its
infinitesimal generator will be denoted by −iA, where A with domain D(A),
is selfadjoint. Moreover, the Pt, for |t| ≤ T , are continuous from H(μ0) into
H(μt).

We know that 1
t (u0 − Ptu0) converges always toward −iawu0 in the sense

of distributions, and this limit belongs thus to L2 when u0 ∈ D(A). This
proves that

D(A) ⊂ {
u0 ∈ L2

∣∣ awu0 ∈ L2
}
. (4.6)

Conversely, assume that u0 and awu0 belong to L2. For |t| ≤ T , one has

d
dtPtu0 = −iawPtu0 = −iPt(awu0).

The right-hand side is continuous from [−T, T ] into L2, and Ptu0 has a deriva-
tive in L2. This proves that D(A) is exactly the right-hand side of (4.6). It
is well known that aw, with that domain, is the adjoint of the closure of
aw defined on S. The selfadjointness of A shows that the weak and strong
extensions coincide, which ends the proof of Theorem 3.1.

5 Proof of Theorem 3.2

We assume now that a ∈ ∧∧∧∧∧∧
S (λ2

t , gt) and we have to prove that the iterated
twisted commutators of Pt are bounded on L2.

Let b0 ∈ ∧∧
S (λ0, g0), let bt = b0 ◦ F−1

t and, using capital letters for the
corresponding operators, set

Kt = P−t ãd(b)·Pt = P−tBtPt −B0.

One has

d

dt
Kt = P−t {iABt − iBtA + {bt , a}w}Pt = P−tRtPt.
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Proposition 1.1 (c) shows that Rt belongs to Ψ(1, gt) (its seminorms being
controlled) and is thus uniformly bounded on L2. We get

ãd(b) · Pt =
∫ t

0

Pt−sRsPs ds ∈ L(L2).

By induction, it is possible to write the iterated twisted commutators as sums
of terms of the following type:

∫
· · ·

∫

0≤s1≤...≤sN

Pt−sN
RsN

. . . Ps2−s1Rs1Ps1 ds1 . . . dsN ∈ L(L2),

which ends the proof.
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Summary. The paper studies the local solvability and subellipticity for square sys-
tems of principal type. These are the systems for which the principal symbol vanishes
of first order on its kernel. For systems of principal type having constant character-
istics, local solvability is equivalent to condition (Ψ) on the eigenvalues. This is a
condition on the sign changes of the imaginary part along the oriented bicharacteris-
tics of the real part of the eigenvalue. In the generic case when the principal symbol
does not have constant characteristics, condition (Ψ) is not sufficient and in general
not well defined. Instead we study systems which are quasi-symmetrizable, these
systems have natural invariance properties and are of principal type. We prove that
quasi-symmetrizable systems are locally solvable. We also study the subellipticity
of quasi-symmetrizable systems in the case when principal symbol vanishes of finite
order along the bicharacteristics. In order to prove subellipticity, we assume that
the principal symbol has the approximation property, which implies that there are
no transversal bicharacteristics.
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1 Introduction

In this paper we shall study the question of solvability and subellipticity of
square systems of classical pseudodifferential operators of principal type on
a C∞ manifold X. These are the pseudodifferential operators which have an
asymptotic expansion in homogeneous terms, where the highest order term,
the principal symbol, vanishes of first order on the kernel. Local solvability for
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c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



74 Nils Dencker

an N ×N system of pseudodifferential operators P at a compact set K ⊆ X
means that the equations

Pu = v (1.1)

have a local weak solution u ∈ D′(X,CN ) in a neighborhood of K for all v ∈
C∞(X,CN ) in a subset of finite codimension. We can also define microlocal
solvability at any compactly based cone K ⊂ T ∗X, see [5, Definition 26.4.3].
Hans Lewy’s famous counterexample [6] from 1957 showed that not all smooth
linear partial differential operators are solvable.

In the scalar case, Nirenberg and Treves conjectured in [7] that local solv-
ability of scalar classical pseudodifferential operators of principal type is equiv-
alent to condition (Ψ) on the principal symbol p. Condition (Ψ) means that

Im (ap) does not change sign from − to +
along the oriented bicharacteristics of Re (ap) (1.2)

for any 0 �= a ∈ C∞(T ∗X). These oriented bicharacteristics are the positive
flow-outs of the Hamilton vector field

HRe (ap) =
∑
j

∂ξj
Re (ap)∂xj

− ∂xj
Re (ap)∂ξj

on Re (ap) = 0, and are called semibicharacteristics of p. The Nirenberg–
Treves conjecture was recently proved by the author, see [2].

Condition (1.2) is obviously invariant under symplectic changes of coor-
dinates and multiplication with nonvanishing factors. Thus the condition is
invariant under conjugation of P with elliptic Fourier integral operators. We
say that p satisfies condition (Ψ) if p satisfies condition (Ψ), which means
that only sign changes from − to + are allowed in (1.2). We also say that p
satisfies condition (P ) if there are no sign changes on the semibicharacteris-
tics, that is, p satisfies both conditions (Ψ) and (Ψ). For partial differential
operators, condition (Ψ) and (P ) are equivalent, since the principal symbol
is either odd or even in ξ.

For systems there is no corresponding conjecture for solvability. We shall
consider systems of principal type, so that the principal symbol vanishes of
first order on the kernel, see Definition 2.1. By looking at diagonal operators,
one finds that condition (Ψ) for the eigenvalues of the principal symbol is
necessary for solvability. A special case is when we have constant character-
istics, so that the eigenvalue close to the origin has constant multiplicity, see
Definition 2.6. Then, the eigenvalue is a C∞ function and condition (Ψ) is
well-defined. For classical systems of pseudodifferential operators of principal
type having eigenvalues of the principal symbol with constant multiplicity, the
generalization of the Nirenberg–Treves conjecture is that local solvability is
equivalent to condition (Ψ) on the eigenvalues. This has recently been proved
by the author, see Theorem 2.7 in [4].

But when the principal symbol is not diagonalizable, condition (Ψ) is not
sufficient for local solvability, see Example 2.7 below. In fact, it is not even
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known if condition (Ψ) is sufficient in the case when the principal system is
C∞ diagonalizable. Instead, we shall study the quasi-symmetrizable systems
introduced in [3], see Definition 2.8. These are of principal type, are invariant
under taking adjoints and multiplication with invertible systems. A scalar
quasi-symmetrizable symbol is of principal type and satisfies condition (P ).
Our main result is that quasi-symmetrizable systems are locally solvable, see
Theorem 2.17.

We shall also study the subellipticity of square systems. An N ×N system
of pseudodifferential operators P ∈ Ψm

cl (X) is subelliptic with a loss of γ < 1
derivatives if Pu ∈ H(s) implies that u ∈ H(s+m−γ) locally for u ∈ D′(X,CN ).
Here H(s) are the standard L2 Sobolev spaces, thus ellipticity corresponds to
γ = 0 so we may assume γ > 0. For scalar operators, subellipticity is equiv-
alent to condition (Ψ) and the bracket condition on the principal symbol p,
i.e., that some repeated Poisson bracket of Re p and Im p is nonvanishing.
This is not true for systems, and there seems to be no general results on the
subellipticity for systems of pseudodifferential operators. In fact, the real and
imaginary parts do not commute in general, making the bracket condition
meaningless. Even when they do, the bracket condition is not invariant and
not sufficient for subellipticity, see Example 3.2.

Instead we shall study quasi-symmetrizable symbols, for which we intro-
duce invariant conditions on the order of vanishing of the symbol along the
semibicharacteristics of the eigenvalues. Observe that for systems, there could
be several (limit) semibicharacteristics of the eigenvalues going through a char-
acteristic point, see Example 3.10. Therefore we introduce the approximation
property in Definition 3.11 which gives that the all (limit) semibicharacteristics
of the eigenvalues are parallel at the characteristics, see Remark 3.12. We shall
study systems of finite type introduced in [3], these are quasi-symmetrizable
systems satisfying the approximation property, for which the imaginary part
on the kernel vanishes of finite order along the bicharacteristics of the real part
of the eigenvalues. This definition is invariant under multiplication with invert-
ible systems and taking adjoints. For scalar symbols this corresponds to the
case when the operator satisfies condition (P ) and the bracket condition. For
systems of finite type we obtain subellipticity with a loss of 2k/2k+ 1 deriva-
tives as in the scalar case, where 2k is the order of vanishing, see Theorem 3.21.
For the proof, we shall use the estimates developed in [3]. The results in this
paper are formulated for operators acting on the trivial bundle. But since our
results are mainly local, they can be applied to operators on sections of fiber
bundles.

2 Solvability of systems

Recall that a scalar symbol p(x, ξ) ∈ C∞(T ∗X) is of principal type if dp �= 0
when p = 0. We shall generalize this definition to systems P ∈ C∞(T ∗X).
For ν ∈ Tw(T ∗X), w = (x, ξ), we let ∂νP (w) = 〈ν, dP (w)〉. We shall denote
KerP the kernel and RanP the range of the matrix P .
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Definition 2.1 The N × N system P (w) ∈ C∞(T ∗X) is of principal type
at w0 if

KerP (w0) ) u → ∂νP (w0)u ∈ CokerP (w0) = CN/RanP (w0) (2.1)

is bijective for some ν ∈ Tw0(T
∗X). The operator P ∈ Ψm

cl (X) is of principal
type if the homogeneous principal symbol σ(P ) is of principal type.

Observe that if P is homogeneous in ξ, then the direction ν cannot be
radial. In fact, if ν has the radial direction and P is homogeneous, then
∂νP = cP which vanishes on KerP .

Remark 2.2 If P (w) ∈ C∞ is of principal type and A(w), B(w) ∈ C∞ are
invertible, then APB is of principal type. We have that P is of principal type
if and only if the adjoint P ∗ is of principal type.

In fact, by Leibniz’s rule we have

∂(APB) = (∂A)PB + A(∂P )B + AP∂B (2.2)

and Ran(APB) = A(RanP ) and Ker(APB) = B−1(KerP ) when A and B
are invertible, which gives invariance under left and right multiplication. Since
KerP ∗(w0) = RanP (w0)⊥ we find that P satisfies (2.1) if and only if

KerP (w0)×KerP ∗(w0) ) (u, v) → 〈∂νP (w0)u, v〉 (2.3)

is a nondegenerate bilinear form. Since 〈∂νP ∗v, u〉 = 〈∂νPu, v〉 we then obtain
that P ∗ is of principal type.

Observe that if P only has one vanishing eigenvalue λ (with multiplicity
one), then the condition that P is of principal type reduces to the condition
in the scalar case: dλ �= 0 when λ = 0. In fact, by using the spectral projection
one can find invertible systems A and B so that

APB =
(
λ 0
0 E

)
∈ C∞

where E is an invertible (N − 1) × (N − 1) system. Since this system is of
principal type we obtain the result by the invariance.

Example 2.3 Consider the system

P (w) =
(
λ1(w) 1

0 λ2(w)

)

where λj(w) ∈ C∞, j = 1, 2. Then P (w) is not of principal type when λ1(w) =
λ2(w) = 0 since then KerP (w) = RanP (w) = C × { 0 }, which is preserved
by ∂P .

Observe that the property of being of principal type is not stable under C1

perturbation, not even when P = P ∗ is symmetric by the following example.
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Example 2.4 The system

P (w) =
(
w1 − w2 w2

w2 −w1 − w2

)
= P ∗(w) w = (w1, w2)

is of principal type when w1 = w2 = 0, but not of principal type when w2 �= 0
and w1 = 0. In fact,

∂w1P =
(

1 0
0 −1

)

is invertible, and when w2 �= 0 we have that

KerP (0, w2) = Ker ∂w2P (0, w2) = { z(1, 1) : z ∈ C }

which is mapped to RanP (0, w2) = { z(1,−1) : z ∈ C } by ∂w1P . The eigen-
values of P (w) are −w2 ±

√
w2

1 + w2
2 which are equal if and only if w1 =

w2 = 0. When w2 �= 0 the eigenvalue close to zero is w2
1/2w2 +O(w4

1) which
has vanishing differential at w1 = 0.

Recall that the multiplicity of λ as a root of the characteristic equation
|P (w) − λ IdN | = 0 is the algebraic multiplicity of the eigenvalue, and the
dimension of Ker(P (w) − λ IdN ) is the geometric multiplicity. Observe the
geometric multiplicity is lower or equal to the algebraic, and for symmetric
systems they are equal.

Remark 2.5 If the eigenvalue λ(w) has constant algebraic multiplicity, then
it is a C∞ function.

In fact, if k is the multiplicity, then λ = λ(w) solves ∂k−1
λ |P (w)−λ IdN | =

0 so we obtain this from the Implicit Function Theorem. This is not true when

we have constant geometric multiplicity, for example P (t) =
(

0 1
t 0

)
, t ∈ R,

has geometric multiplicity equal to one for the eigenvalues ±√t.

Definition 2.6 The N ×N system P (w) ∈ C∞ has constant characteristics
near w0 if there exists an ε > 0 such that an eigenvalue λ(w) of P (w) with
|λ(w)| < ε has both constant algebraic and constant geometric multiplicity in
a neighborhood of w0.

If P has constant characteristics, then the eigenvalue close to zero has
constant algebraic multiplicity, thus it is a C∞ function close to zero. We
obtain from Proposition 2.10 in [4] that if P (w) ∈ C∞ is an N ×N system
of constant characteristics near w0, then P (w) is of principal type at w0 if
and only if the algebraic and geometric multiplicities of P agree at w0 and
dλ(w0) �= 0 for the C∞ eigenvalues for P at w0 satisfying λ(w0) = 0, thus
there are no nontrivial Jordan boxes in the normal form.

For classical systems of pseudodifferential operators of principal type and
constant characteristics, the eigenvalues are homogeneous C∞ functions when
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the values are close to zero, so the condition (Ψ) given by (1.2) is well-
defined on the eigenvalues. Then, the natural generalization of the Nirenberg–
Treves conjecture is that local solvability is equivalent to condition (Ψ) on
the eigenvalues. This has recently been proved by the author, see Theorem 2.7
in [4].

When the multiplicity of the eigenvalues of the principal symbol is not
constant the situation is much more complicated. The following example shows
that then it is not sufficient to have conditions only on the eigenvalues in order
to obtain solvability, not even in the principal type case.

Example 2.7 Let x ∈ R2, Dx = 1
i ∂x and

P (x,Dx) =
(

Dx1 x1Dx2

x1Dx2 −Dx1

)
= P ∗(x,Dx).

This system is symmetric of principal type and σ(P ) has real eigenvalues

±
√
ξ2
1 + x2

1ξ
2
2 but

1
2

(
1 −i
1 i

)
P

(
1 1
−i i

)
=
(
Dx1 − ix1Dx2 0

0 Dx1 + ix1Dx2

)

which is not solvable at (0, 0) because condition (Ψ) is not satisfied. The eigen-
values of the principal symbol are now ξ1 ± ix1ξ2.

Of course, the problem is that the eigenvalues are not invariant under mul-
tiplication with elliptic systems. We shall instead study quasi-symmetrizable
systems, which generalize the normal forms of the scalar symbol at the bound-
ary of the numerical range of the principal symbol, see Example 2.9.

Definition 2.8 The N×N system P (w) ∈ C∞(T ∗X) is quasi-symmetrizable
with respect to a real C∞ vector field V in Ω ⊆ T ∗X if ∃ N × N system
M(w) ∈ C∞(T ∗X) so that

Re 〈M(V P )u, u〉 ≥ c‖u‖2 − C‖Pu‖2 c > 0 ∀u ∈ CN , (2.4)

Im 〈MPu, u〉 ≥ −C‖Pu‖2 ∀u ∈ CN (2.5)

on Ω, the system M is called a symmetrizer for P . If P ∈ Ψm
cl (X), then it

is quasi-symmetrizable if the homogeneous principal symbol σ(P ) is quasi-
symmetrizable when |ξ| = 1, one can then choose a homogeneous sym-
metrizer M .

The definition is clearly independent of the choice of coordinates in T ∗X
and choice of basis in CN . When P is elliptic, we find that P is quasi-
symmetrizable with respect to any vector field since ‖Pu‖ ∼= ‖u‖. Observe
that the set of symmetrizers M satisfying (2.4)–(2.5) is a convex cone, a
sum of two multipliers is also a multiplier. Thus for a given vector field V
it suffices to make a local choice of symmetrizer and then use a partition of
unity to get a global one.
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Example 2.9 A scalar function p ∈ C∞ is quasi-symmetrizable if and only

p(w) = e(w)(w1 + if(w′)) w = (w1, w
′) (2.6)

for some choice of coordinates, where f ≥ 0. Then 0 is at the boundary of the
numerical range of p.

In fact, it is obvious that p in (2.6) is quasi-symmetrizable. On the other
hand, if p is quasi-symmetrizable, then there exists m ∈ C∞ such that mp =
p1 + ip2 where pj are real satisfying ∂νp1 > 0 and p2 ≥ 0. Thus 0 is at
the boundary of the numerical range of p. By using Malgrange preparation
theorem and changing coordinates as in the proof of Lemma 4.1 in [1], we
obtain the normal form (2.6) with ±f ≥ 0.

Taylor has studied symmetrizable systems of the type Dt Id +iK, for which
there exists R > 0 making RK symmetric (see Definition 4.3.2 in [8]). These
systems are quasi-symmetrizable with respect to ∂τ with symmetrizer R. We
shall denote ReA = 1

2 (A + A∗) and iImA = 1
2 (A − A∗) the symmetric and

antisymmetric parts of the matrix A. Next, we recall the following result from
Proposition 4.7 in [3].

Remark 2.10 If the N×N system P (w) ∈ C∞ is quasi-symmetrizable, then
it is of principal type. Also, the symmetrizer M is invertible if ImMP ≥ cP ∗P
for some c > 0.

Observe that by adding i P ∗ to M we may assume that Q = MP satisfies

ImQ ≥ ( − C)P ∗P ≥ P ∗P ≥ cQ∗Q c > 0 (2.7)

for  ≥ C + 1, and then the symmetrizer is invertible by Remark 2.10.

Remark 2.11 The system P ∈ C∞ is quasi-symmetrizable with respect to V
if and only if there exists an invertible symmetrizer M such that Q = MP
satisfies

Re 〈(V Q)u, u〉 ≥ c‖u‖2 − C‖Qu‖2 c > 0, (2.8)
Im 〈Qu, u〉 ≥ 0 (2.9)

for any u ∈ CN .

In fact, by the Cauchy–Schwarz inequality we find

|〈(VM)Pu, u〉| ≤ ε‖u‖2 + Cε‖Pu‖2 ∀ ε > 0 ∀u ∈ CN .

Since M is invertible, we also have that ‖Pu‖ ∼= ‖Qu‖.
Definition 2.12 If Q ∈ C∞(T ∗X) satisfies (2.8)–(2.9), then Q is quasi-
symmetric with respect to the real C∞ vector field V .
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The invariance properties of quasi-symmetrizable systems are partly due to
the following properties of semibounded matrices. Let U+V = {u + v : u ∈ U
∧ v ∈ V } for linear subspaces U and V of CN .

Lemma 2.13 Assume that Q is an N × N matrix such that Im zQ ≥ 0 for
some 0 �= z ∈ C. Then we find

KerQ = KerQ∗ = Ker(ReQ)
⋂

Ker(ImQ) (2.10)

and RanQ = Ran(ReQ) + Ran(ImQ)⊥KerQ.

Proof By multiplying with z we may assume that ImQ ≥ 0, clearly the conclu-
sions are invariant under multiplication with complex numbers. If u ∈ KerQ,
then we have 〈ImQu, u〉 = Im 〈Qu, u〉 = 0. By using the Cauchy–Schwarz
inequality on ImQ ≥ 0 we find that 〈ImQu, v〉 = 0 for any v. Thus
u ∈ Ker(ImQ) so KerQ ⊆ KerQ∗. We get equality and (2.10) by the rank
theorem, since KerQ∗ = RanQ⊥.

For the last statement we observe that RanQ ⊆ Ran(ReQ)+Ran(ImQ) =
(KerQ)⊥ by (2.10) where we also get equality by the rank theorem.

Proposition 2.14 If Q ∈ C∞(T ∗X) is quasi-symmetric and E ∈ C∞(T ∗X)
is invertible, then E∗QE and −Q∗ are quasi-symmetric.

Proof First we note that (2.8) holds if and only if

Re 〈(V Q)u, u〉 ≥ c‖u‖2 ∀u ∈ KerQ (2.11)

for some c > 0. In fact, Q∗Q has a positive lower bound on the orthogonal
complement KerQ⊥ so that

‖u‖ ≤ C‖Qu‖ for u ∈ KerQ⊥.

Thus, if u = u′+u′′ with u′ ∈ KerQ and u′′ ∈ KerQ⊥, we find that Qu = Qu′′,

Re 〈(V Q)u′, u′′〉 ≥ −ε‖u′‖2 − Cε‖u′′‖2 ≥ −ε‖u′‖2 − C ′
ε‖Qu‖2 ∀ ε > 0

and Re 〈(V Q)u′′, u′′〉 ≥ −C‖u′′‖2 ≥ −C ′‖Qu‖2. By choosing ε small enough
we obtain (2.8) by using (2.11) on u′.

Next, we note that ImQ∗ = −ImQ and ReQ∗ = ReQ, so −Q∗ satisfies
(2.9) and (2.11) with V replaced by −V , and thus it is quasi-symmetric. Fi-
nally, we shall show that QE = E∗QE is quasi-symmetric when E is invertible.
We obtain from (2.9) that

Im 〈QEu, u〉 = Im 〈QEu,Eu〉 ≥ 0 ∀ u ∈ CN .

Next, we shall show that QE satisfies (2.11) on KerQE = E−1 KerQ,
which will give (2.8). We find from Leibniz’s rule that V QE = (V E∗)QE +
E∗(V Q)E + E∗Q(V E) where (2.11) gives
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Re 〈E∗(V Q)Eu, u〉 ≥ c‖Eu‖2 ≥ c′‖u‖2 u ∈ KerQE c′ > 0

since then Eu ∈ KerQ. Similarly we obtain that 〈(V E∗)QEu, u〉 = 0 when
u ∈ KerQE . Now since ImQE ≥ 0 we find from Lemma 2.13 that

KerQ∗
E = KerQE (2.12)

which gives 〈E∗Q(V E)u, u〉 = 〈E−1(V E)u,Q∗
Eu〉 = 0 when u ∈ KerQE =

KerQ∗
E . Thus QE satisfies (2.11) so it is quasi-symmetric, which finishes the

proof.

Proposition 2.15 Let P (w) ∈ C∞(T ∗X) be a quasi-symmetrizable N × N
system, then P ∗ is quasi-symmetrizable. If A(w) and B(w) ∈ C∞(T ∗X) are
invertible N ×N systems, then BPA is quasi-symmetrizable.

Proof Clearly (2.8)–(2.9) are invariant under left multiplication of P with
invertible systems E, just replace M with ME−1. Since we may write
BPA = B(A∗)−1A∗PA it suffices to show that E∗PE is quasi-symmetrizable
if E is invertible. By Remark 2.11 there exists a symmetrizer M so that
Q = MP is quasi-symmetric, i.e., satisfies (2.8)–(2.9). It then follows from
Proposition 2.14 that

QE = E∗QE = E∗M(E∗)−1E∗PE

is quasi-symmetric, thus E∗PE is quasi-symmetrizable.
Finally, we shall prove that P ∗ is quasi-symmetrizable if P is. Since Q =

MP is quasi-symmetric, we find from Proposition 2.14 that Q∗ = P ∗M∗ is
quasi-symmetric. By multiplying with (M∗)−1 from the right, we find from
the first part of the proof that P ∗ is quasi-symmetrizable.

For scalar symbols of principal type, we find from the normal form in
Example 2.9 that 0 is on the boundary of the local numerical range of the
principal symbol. This need not be the case for systems by the following
example.

Example 2.16 Let

P (w) =
(
w2 + iw3 w1

w1 w2 − iw3

)

which is quasi-symmetrizable with respect to ∂w1 with symmetrizer M =(
0 1
1 0

)
. In fact, ∂w1MP = Id2 and

MP (w) =
(

w1 w2 − iw3

w2 + iw3 w1

)
= (MP (w))∗

so ImMP ≡ 0. Since eigenvalues of P (w) are w2 ±
√
w2

1 − w2
3 we find that 0

is not a boundary point of the local numerical range of the eigenvalues.
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For quasi-symmetrizable systems we have the following semiglobal solv-
ability result.

Theorem 2.17 Assume that P ∈ Ψm
cl (X) is an N × N system and that

there exists a real-valued function T (w) ∈ C∞(T ∗X) such that P is quasi-
symmetrizable with respect to the Hamilton vector field HT (w) in a neighbor-
hood of a compactly based cone K ⊂ T ∗X. Then P is locally solvable at K.

The cone K ⊂ T ∗X is compactly based if K
⋂ { (x, ξ) : |ξ| = 1 } is com-

pact. We also get the following local result:

Corollary 2.18 Let P ∈ Ψm
cl (X) be an N×N system that is quasi-symmetrizable

at w0 ∈ T ∗X. Then P is locally solvable at w0.

This follows since we can always choose a function T such that V = HT

at w0. Recall that a semibicharacteristic of λ ∈ C∞ is a bicharacteristic of
Re (aλ) for some 0 �= a ∈ C∞.

Remark 2.19 If Q is quasi-symmetric with respect to HT , then the limit set
at the characteristics of the nontrivial semibicharacteristics of the eigenvalues
close to zero of Q is a union of curves on which T is strictly monotone, thus
they cannot form closed orbits.

In fact, we have that an eigenvalue λ(w) is C∞ almost everywhere. The
Hamilton vector field HRe zλ then gives the semibicharacteristics of λ, and
that is determined by 〈dQu, u〉 with 0 �= u ∈ Ker(P −λ IdN ) by the invariance
property given by (2.2). Now Re 〈(HTQ)u, u〉 > 0 and Im d〈Qu, u〉 = 0 for
u ∈ KerP by (2.8)–(2.9). Thus by picking subsequences when λ→ 0 we find
that the limits of nontrivial semibicharacteristics of the eigenvalues close to
zero give curves on which T is strictly monotone, since HTλ �= 0.

Example 2.20 Let

P (t, x; τ , ξ) = τM(t, x, ξ) + iF (t, x, ξ) ∈ S1
cl

where M ≥ c0 > 0 and F ≥ 0. Then P is quasi-symmetrizable with respect to
∂τ with symmetrizer IdN , so Theorem 2.17 gives that P (t, x,Dt,Dx) is locally
solvable.

Proof (Proof of Theorem 2.17) We shall modify the proof of Theorem 4.15
in [3], and derive estimates for the L2 adjoint P ∗ which will give solvability.
By Proposition 2.15 we find that P ∗ is quasi-symmetrizable in K. By the
invariance of the conditions, we may multiply with an elliptic scalar operator
to obtain that P ∗ ∈ Ψ1

cl. By the assumptions, Definition 2.8 and (2.7), we
find that there exists a real valued function T (w) ∈ C∞ and a symmetrizer
M(w) ∈ C∞ so that Q = MP ∗ satisfies

ReHTQ ≥ c− C0Q
∗Q ≥ c− C1ImQ, (2.13)

ImQ ≥ cQ∗Q ≥ 0 (2.14)



The Solvability and Subellipticity of Systems 83

when |ξ| = 1 near K for some c > 0, and we find that M is invertible by
Remark 2.10. Extending by homogeneity, we may assume that M and T are
homogeneous of degree 0 in ξ, then T ∈ S0

1,0 and Q ∈ S1
1,0. Let

M(x,D)P ∗(x,D) = Q(x,D) ∈ Ψ1
cl (2.15)

which has principal symbol Q(x, ξ). Leibniz’s rule gives that exp(±γT ) ∈ S0
1,0

for any γ > 0, so we can define

Qγ(x,D) = exp(−γT )(x,D)Q(x,D) exp(γT )(x,D) ∈ Ψ1
cl.

Since T is a scalar function, we obtain that the symbol of

ImQγ = Q1 + γQ0 modulo S−1 near K (2.16)

where 0 ≤ Q1 = ImQ ∈ S1 and Q0 ∈ S0 satisfies

Q0 = ReHTQ ≥ c− C|ξ|−1Q1 near K (2.17)

by (2.13), (2.14) and homogeneity.
Now take 0 ≤ ϕ ∈ S0

1,0 such that ϕ = 1 near K and ϕ is supported
where (2.13) and (2.14) hold. If χ = ϕ2, then we obtain from (2.17) and the
sharp G̊arding inequality [5, Theorem 18.6.14] that

Q0(x,D) ≥ c0χ(x,D)− C〈D〉−1Q1(x,D) + R(x,D) + S(x,D)

where c0 > 0, R ∈ S−1 and S ∈ S0 with suppS
⋂
K = ∅. Thus we obtain

ImQγ(x,D) ≥ c0γχ(x,D) + (1 +  γ)Q1(x,D) +Rγ(x,D) + Sγ(x,D) (2.18)

where Rγ ∈ S−1,  γ = −γC〈D〉−1 ∈ Ψ−1 and Sγ ∈ S0 with suppSγ

⋂
K = ∅.

The calculus gives that χ(x,D) ∼= ϕ(x,D)ϕ(x,D) modulo Ψ−1 and

(1 +  γ)Q1(x,D) = (1 +  γ/2)Q1(x,D)(1 +  γ/2) modulo Ψ−1

By using the sharp G̊arding inequality we obtain that Q1(x,D) ≥ R0(x,D)
for some R0 ∈ S0

1,0. Thus we find

(1 +  γ)Q1(x,D) ≥ (1 +  γ/2)R0(x,D)(1 +  γ/2) = R0(x,D) ≥ −C0

modulo terms in Ψ−1 (depending on γ). Combining this with (2.18) and using
that supp(1− ϕ)

⋂
K = ∅, we find for large enough γ that

c1γ‖ϕ(x,D)u‖2

≤ Im 〈Qγ(x,D)u, u〉+ 〈Aγ(x,D)u, u〉+ 〈Bγ(x,D)u, u〉 u ∈ C∞
0

(2.19)

where c1 > 0, Aγ ∈ S−1 and Bγ ∈ S0 with suppBγ

⋂
K = ∅. Next, we fix γ

and apply this to exp (−γT ) (x,D)u. We find by the calculus that
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‖ϕ(x,D)u‖ ≤ C(‖ϕ(x,D) exp (−γT ) (x,D)u‖+ ‖u‖(−1)) u ∈ C∞
0 .

We also obtain from the calculus that

exp(γT )(x,D) exp(−γT )(x,D) = 1 + r(x,D)

with r ∈ S−1, which gives

Qγ(x,D) exp (−γT ) (x,D) = exp (−γT ) (x,D)(1 + r(x,D))Q(x,D)
+ exp (−γT ) (x,D)[Q(x,D), r(x,D)]

where [Q(x,D), r(x,D)] ∈ Ψ−1. Since Q(x,D) = M(x,D)P ∗(x,D) we find

|〈exp (−γT ) (x,D)(1 + r(x,D))Q(x,D)v, exp(−γT )(x,D)u〉|
≤ C‖P ∗(x,D)u‖‖u‖.

Since ‖u‖ ≤ ‖ϕ(x,D)u‖+‖(1−ϕ(x,D))u‖ and ϕ = 1 near K we obtain that

‖u‖ ≤ C
(‖P ∗(x,D)u‖+ ‖Q(x,D)u‖+ ‖u‖(−1)

)
u ∈ C∞

0

where Q ∈ S0 with suppQ
⋂
K = ∅. We then obtain the local solvability by

standard arguments.

3 Subellipticity of systems

We shall consider the question when a quasi-symmetrizable system is subellip-
tic. Recall that an N×N system of operators P ∈ Ψm

cl (X) is (micro)subelliptic
with a loss of γ < 1 derivatives at w0 if

Pu ∈ H(s) at w0 =⇒ u ∈ H(s+m−γ) at w0

for u ∈ D′(X,CN ). Here H(s) is the standard Sobolev space of distributions u
such that 〈D〉su ∈ L2. We say that u ∈ H(s) microlocally at w0 if there exists
a ∈ S0

1,0 such that a �= 0 in a conical neighborhood of w0 and a(x,D)u ∈ H(s).
Of course, ellipticity corresponds to γ = 0 so we shall assume γ > 0.

Example 3.1 Consider the scalar operator

Dt + if(t, x,Dx)

with 0 ≤ f ∈ C∞(R, S1
cl), (t, x) ∈ R × Rn, then we obtain from Propo-

sition 27.3.1 in [5] that this operator is subelliptic with a loss of k/k + 1
derivatives microlocally near { τ = 0 } if and only if

∑
j≤k

|∂j
t f(t, x, ξ)| �= 0 ∀x ξ (3.1)

where we can choose k even.
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The following example shows that condition (3.1) is not sufficient for sys-
tems.

Example 3.2 Let P = Dt Id2 +iF (t)|Dx| where

F (t) =
(
t2 t3

t3 t4

)
≥ 0.

Then we have F (3)(0) =
(

0 6
6 0

)
which gives that

⋂
j≤3

KerF (j)(0) = { 0 } . (3.2)

But

F (t) =
(

1 t
−t 1

)(
t2 0
0 0

)(
1 −t
t 1

)

so we find

P = (1 + t2)−1

(
1 t
−t 1

)(
Dt + i(t2 + t4)|Dx| 0

0 Dt

)(
1 −t
t 1

)
modulo Ψ0

which is not subelliptic near { τ = 0 }, since Dt is not by Example 3.1.

Example 3.3 Let P = hDt Id2 +iF (t)|Dx| where

F (t) =
(
t2 + t8 t3 − t7

t3 − t7 t4 + t6

)
=
(

1 t
−t 1

)(
t2 0
0 t6

)(
1 −t
t 1

)
.

Then we have

P = (1 + t2)−1

(
1 t
−t 1

)(
Dt + i(t2 + t4)|Dx| 0

0 Dt + i(t6 + t8)|Dx|
)(

1 −t
t 1

)

modulo Ψ0, which is subelliptic near { τ = 0 } with a loss of 6/7 derivatives by
Example 3.1. This operator is, element for element, a higher order perturbation
of the operator of Example 3.2.

The problem is that condition (3.2) in not invariant in the systems case.
Instead, we shall consider the following invariant generalization of (3.1).

Definition 3.4 Let 0 ≤ F (t) ∈ L∞
loc(R) be an N ×N system, then we define

Ωδ(F ) =
{
t : min

‖u‖=1
〈F (t)u, u〉 ≤ δ

}
δ > 0 (3.3)

which is well-defined almost everywhere and contains |F |−1(0).

Observe that one may also use this definition in the scalar case, then
Ωδ(f) = f−1([0, δ]) for nonnegative functions f .
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Remark 3.5 Observe that if F ≥ 0 and E is invertible, then we find that

Ωδ(E∗FE) ⊆ ΩCδ(F ) (3.4)

where C = ‖E−1‖2.

Example 3.6 For the matrix F (t) in Example 3.3 we find that |Ωδ(F )| ≤
Cδ1/6 for 0 < δ ≤ 1, and for the matrix in Example 3.2 we find that |Ωδ(F )| =
∞, ∀ δ.

We also have examples when the semidefinite imaginary part vanishes of
infinite order.

Example 3.7 Let 0 ≤ f(t, x) ≤ Ce−1/|t|σ , σ > 0, then we obtain that

|Ωδ(fx)| ≤ C0| log δ|−1/σ ∀ δ > 0 ∀x
where fx(t) = f(t, x). (We owe this example to Y. Morimoto.)

We shall study systems where the imaginary part F vanishes of finite
order, so that |Ωδ(F )| ≤ Cδμ for μ > 0. In general, the largest exponent
could be any μ > 0, for example when F (t) = |t|1/μ IdN . But for C∞ systems
the best exponent is μ = 1/k for an even k, by the following result, which is
Proposition A.2 in [3].

Remark 3.8 Assume that 0 ≤ F (t) ∈ C∞(R) is an N ×N system such that
F (t) ≥ c > 0 when |t| ( 1. Then we find that

|Ωδ(F )| ≤ Cδμ 0 < δ ≤ 1

if and only if μ ≤ 1/k for an even k ≥ 0 so that
∑
j≤k

|∂j
t 〈F (t)u(t), u(t)〉|/‖u(t)‖2 > 0 ∀ t (3.5)

for any 0 �= u(t) ∈ C∞(R).

Example 3.9 For the scalar symbols τ + if(t, x, ξ) in Example 3.1 we find
from Remark 3.8 that (3.1) is equivalent to

| { t : f(t, x, ξ) ≤ δ } | = |Ωδ(fx,ξ)| ≤ Cδ1/k 0 < δ ≤ 1 |ξ| = 1

where fx,ξ(t) = f(t, x, ξ).

The following example shows that for subelliptic type of estimates it is
not sufficient to have conditions only on the vanishing of the symbol, we also
need conditions on the semibicharacteristics of the eigenvalues.
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Example 3.10 Let

P = Dt Id2 +α

(
Dx 0
0 −Dx

)
+ i(t− βx)2|Dx| Id2 (t, x) ∈ R2

with α, β ∈ R, then we see from the scalar case in Example 3.1 that P
is subelliptic near { τ = 0 } with a loss of 2/3 derivatives if and only either
α = 0 or α �= 0 and β �= ±1/α.

Definition 3.11 Let Q ∈ C∞(T ∗X) be an N ×N system and let w0 ∈ Σ ⊂
T ∗X, then Q satisfies the approximation property on Σ near w0 if there
exists a Q invariant C∞ subbundle V of CN over T ∗X such that V(w0) =
KerQN (w0) and

Re 〈Q(w)v, v〉 = 0 v ∈ V(w) w ∈ Σ (3.6)

near w0. That V is Q invariant means that Q(w)v ∈ V(w) for v ∈ V(w).

Here KerQN (w0) is the space of the generalized eigenvectors corresponding
to the zero eigenvalue. The symbol of the system in Example 3.10 satisfies the
approximation property on Σ = { τ = 0 } if and only if α = 0.

Let Q̃ = Q
∣∣
V then Im iQ̃ = Re Q̃ = 0 so Lemma 2.13 gives that

Ran Q̃⊥Ker Q̃ on Σ. Thus Ker Q̃N = Ker Q̃ on Σ, and since Ker Q̃N (w0) =
V(w0) we find that KerQN (w0) = V(w0) = KerQ(w0).

Remark 3.12 Assume that Q satisfies the approximation property on the
C∞ hypersurface Σ and is quasi-symmetric with respect to V /∈ TΣ. Then
the limits of the nontrivial semibicharacteristics of the eigenvalues of Q close
to zero coincide with the bicharacteristics of Σ.

In fact, the approximation property in Definition 3.11 gives that 〈ReQu, u〉
= 0 for u ∈ KerQ when τ = 0. Since ImQ ≥ 0 we find that

〈dQu, u〉 = 0 ∀u ∈ KerQ on TΣ. (3.7)

By Remark 2.19 the limits of the nontrivial semibicharacteristics of the eigen-
values close to zero of Q are curves with tangetnts determined by 〈dQu, u〉
for u ∈ KerQ. Since V ReQ �= 0 on KerQ we find from (3.7) that the limit
curves coincide with the bicharacteristics of Σ, which are the flow-outs of the
Hamilton vector field.

Example 3.13 Observe that Definition 3.11 is empty if Dim KerQN (w0) =
0. If Dim KerQN (w0) > 0, then there exists ε > 0 and a neighborhood ω to
w0 so that

Π(w) =
1

2πi

∫
|z|=ε

(z IdN −Q(w))−1 dz ∈ C∞(ω) (3.8)
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is the spectral projection on the (generalized) eigenvectors with eigenvalues
having absolute value less than ε. Then RanΠ is a Q invariant bundle over ω
so that RanΠ(w0) = KerQN (w0). Condition (3.6) with V = RanΠ means
that Π∗ReQΠ ≡ 0 in ω. When ImQ(w0) ≥ 0 we find that Π∗QΠ(w0) = 0,
then Q satisfies the approximation property on Σ near w0 with V = RanΠ
if and only if

d(Π∗(ReQ)Π)
∣∣
TΣ

≡ 0 near w0.

Example 3.14 If Q satisfies the approximation property on Σ, then by choos-
ing an orthonormal basis for V and extending it to an orthonormal basis for
CN we obtain the system on the form

Q =
(
Q11 Q12

0 Q22

)

where Q11 is a K ×K system such that QN
11(w0) = 0, ReQ11 = 0 on Σ and

|Q22| �= 0. By multiplying from the left with
(

IdK −Q12Q
−1
22

0 IdN−K

)

we obtain that Q12 ≡ 0 without changing Q11 or Q22.

In fact, the eigenvalues of Q are then eigenvalues of either Q11 or Q22.
Since V(w0) are the (generalized) eigenvectors corresponding to the zero
eigenvalue of Q(w0) we find that all eigenvalues of Q22(w0) are nonvanishing,
thus Q22 is invertible near w0.

Remark 3.15 If Q satisfies the approximation property on Σ near w0, then
it satisfies the approximation property on Σ near w1, for w1 sufficiently close
to w0.

In fact, let Q11 be the restriction of Q to V as in Example 3.14, then since
ReQ11 = Im iQ11 = 0 on Σ we find from Lemma 2.13 that RanQ11⊥KerQ11

and KerQ11 = KerQN
11 on Σ. Since Q22 is invertible in (3.14), we find

that KerQ ⊆ V. Thus, by using the spectral projection (3.8) of Q11 near
w1 ∈ Σ for small enough ε we obtain a Q invariant subbundle Ṽ ⊆ V so that
Ṽ(w1) = KerQ11(w1) = KerQN (w1).

If Q ∈ C∞ satisfies the approximation property and QE = E∗QE with
invertible E ∈ C∞, then it follows from the proof of Proposition 3.20 below
that there exist invertible A,B ∈ C∞ so that AQE and Q∗B satisfy the
approximation property.

Definition 3.16 Let P (w) ∈ C∞(T ∗X) be an N × N system and μ ∈ R+.
Then P is of finite type μ at w0 ∈ T ∗X if there exists a neighborhood ω
of w0, a C∞ hypersurface Σ ) w0, a real C∞ vector field V /∈ TΣ and an
invertible symmetrizer M ∈ C∞ so that Q = MP is quasi-symmetric with
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respect to V in ω and satisfies the approximation property on Σ
⋂
ω. Also,

for every bicharacteristic γ of Σ the arc length∣∣γ ∩Ωδ(ImQ) ∩ ω
∣∣ ≤ Cδμ 0 < δ ≤ 1. (3.9)

The operator P ∈ Ψm
cl is of finite type μ at w0 if the principal symbol σ(P )

is of finite type when |ξ| = 1.

Recall that the bicharacteristics of a hypersurface in T ∗X are the flow-outs
of the Hamilton vector field of Σ. Of course, if P is elliptic, then it is trivially
of finite type 0, just choose M = iP−1 to obtain Q = i IdN . If P is of finite
type, then it is quasi-symmetrizable by definition and thus of principal type.

Remark 3.17 Observe that since 0 ≤ ImQ ∈ C∞ we obtain from Remark 3.8
that the largest exponent in (3.9) is μ = 1/k for an even k ≥ 0. Also, we
may assume that

Im 〈Qu, u〉 ≥ c‖Qu‖2 ∀u ∈ CN . (3.10)

In fact, by adding i P ∗ to M we obtain (3.10) for large enough  by (2.7),
and this does not change ReQ.

Example 3.18 Assume that Q is quasi-symmetric with respect to the real
vector field V , satisfying (3.9) and the approximation property on Σ. Then
by choosing an orthonormal basis and changing the symmetrizer as in Exam-
ple 3.14 we obtain the system on the form

Q =
(
Q11 0
0 Q22

)

where Q11 is a K ×K system such that QN
11(w0) = 0, ReQ11 = 0 on Σ and

|Q22| �= 0. Since Q is quasi-symmetric with respect to V we also obtain that
Q11(w0) = 0, ReV Q11 > 0, ImQ ≥ 0 and Q satisfies (3.9). In fact, then we
find from Lemma 2.13 that ImQ⊥KerQ which gives KerQN = KerQ. Note
that Ωδ(ImQ11) ⊆ Ωδ(ImQ), so Q11 satisfies (3.9).

Example 3.19 In the scalar case, we find from Example 2.9 that p ∈
C∞(T ∗X) is quasi-symmetrizable with respect to Ht = ∂τ if and only if

p(t, x; τ , ξ) = q(t, x; τ , ξ)(τ + if(t, x, ξ)) (3.11)

with f ≥ 0 and q �= 0. If f(t, x, ξ) ≥ c > 0 when |(t, x, ξ)| ( 1 we find by
taking q−1 as symmetrizer that p is of finite type μ if and only if μ = 1/k for
an even k such that ∑

j≤k

|∂k
t f(t, x, ξ)| > 0 ∀x ξ

by Remark 3.8. In fact, the approximation property on Σ = { τ = 0 } is trivial
since f is real.
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Proposition 3.20 If P (w) ∈ C∞(T ∗X) is of finite type μ at w, then P ∗ is
of finite type μ at w. If A(w) and B(w) ∈ C∞(T ∗X) are invertible, then APB
is of finite type μ at w.

Proof Let M be the symmetrizer in Definition 3.16 so that Q = MP is quasi-
symmetric with respect to V . By choosing a suitable basis and changing the
symmetrizer as in Example 3.18, we may write

Q =
(
Q11 0
0 Q22

)
(3.12)

where Q11 is a K×K system such that Q11(w0) = 0, V ReQ11 > 0, ReQ11 = 0
on Σ and Q22 is invertible. We also have ImQ ≥ 0 and Q satisfies (3.9). Let
V1 =

{
u ∈ CN : uj = 0 for j > K

}
and V2 =

{
u ∈ CN : uj = 0 for j ≤ K

}
,

these are Q invariant bundles such that V1 ⊕ V2 = CN .
First we are going to show that P̃ = APB is of finite type. By taking

M̃ = B−1MA−1 we find that

M̃P̃ = Q̃ = B−1QB (3.13)

and it is clear that B−1Vj are Q̃ invariant bundles, j = 1, 2. By choosing
bases in B−1Vj for j = 1, 2, we obtain a basis for CN in which Q̃ has a block
form:

Q̃ =

(
Q̃11 0
0 Q̃22

)
(3.14)

Here Q̃jj : B−1Vj → B−1Vj is given by Q̃jj = B−1
j QjjBj with

Bj : B−1Vj ) u → Bu ∈ Vj j = 1, 2.

By multiplying Q̃ from the left with

B =
(
B∗

1B1 0
0 B∗

2B2

)

we obtain that

Q = BQ̃ = BM̃P̃ =
(
B∗

1Q11B1 0
0 B∗

2Q22B2

)
=
(
Q11 0
0 Q22

)
.

It is clear that ImQ ≥ 0, Q11(w0) = 0, ReQ11 = 0 on Σ, |Q22| �= 0 and
V ReQ11 > 0 by Proposition 2.14. Finally, we obtain from Remark 3.5 that

Ωδ(ImQ) ⊆ ΩCδ(ImQ) (3.15)

for some C > 0, which proves that P̃ = APB is of finite type. Observe that
Q = AQB , where QB = B∗QB and A = BB−1(B∗)−1.
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To show that P ∗ also is of finite type, we may assume as before that
Q = MP is on the form (3.12) with Q11(w0) = 0, V ReQ11 > 0, ReQ11 = 0
on Σ, Q22 is invertible, ImQ ≥ 0 and Q satisfies (3.9). Then we find that

−P ∗M∗ = −Q∗ =
(−Q∗

11 0
0 −Q∗

22

)

satisfies the same conditions with respect to −V , so it is of finite type with
multiplier IdN . By the first part of the proof we obtain that P ∗ is of finite
type, which finishes the proof.

Theorem 3.21 Assume that P ∈ Ψm
cl (X) is an N ×N system of finite type

μ > 0 near w0 ∈ T ∗X \ 0, then P is subelliptic at w0 with a loss of 1/μ + 1
derivatives:

Pu ∈ H(s) at w0 =⇒ u ∈ H(s+m−1/μ+1) at w0 (3.16)

for u ∈ D′(X,CN ).

Observe that the largest exponent is μ = 1/k for an even k by Re-
mark 3.17, and then 1/μ + 1 = k/k + 1. Thus Theorem 3.21 generalizes
Proposition 27.3.1 in [5] by Example 3.19.

Example 3.22 Let

P (t, x; τ , ξ) = τM(t, x, ξ) + iF (t, x, ξ) ∈ S1
cl

where M ≥ c0 > 0 and F ≥ 0 satisfies
∣∣∣∣
{
t : inf

|u|=1
〈F (t, x, ξ)u, u〉 ≤ δ

}∣∣∣∣ ≤ Cδμ |ξ| = 1 (3.17)

for some μ > 0. Then P is quasi-symmetrizable with respect to ∂τ with
symmetrizer IdN . When τ = 0 we obtain that ReP = 0, so by taking
V = RanΠ for the spectral projection Π given by (3.8) for F , we find that
P satisfies the approximation property with respect to Σ = { τ = 0 }. Since
Ωδ(ImP ) = Ωδ(F ) we find from (3.17) that P is of finite type μ. Observe
that if F (t, x, ξ) ≥ c > 0 when |(t, x, ξ)| ( 1, we find from Remark 3.8 that
(3.17) is satisfied if and only if μ ≤ 1/k for an even k ≥ 0 so that

∑
j≤k

|∂j
t 〈F (t, x, ξ)u(t), u(t)〉| > 0 ∀ t, x, ξ

for any 0 �= u(t) ∈ C∞(R). Theorem 3.21 gives that P (t, x,Dt,Dx) is subel-
liptic near { τ = 0 } with a loss of k/k + 1 derivatives.

Proof (Proof of Theorem 3.21) First, we may reduce to the case m = s = 0
by replacing u and P by 〈D〉s+mu and 〈D〉sP 〈D〉−s−m ∈ Ψ0

cl. Now u ∈ H(−K)
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for some K near w0, and it is no restriction to assume K = 1. In fact,
if K > 1, then by using that Pu ∈ H(1−K) near w0, we obtain that u ∈
H(−K+μ/μ+1) near w0 and we may iterate this argument until u ∈ H(−1)

near w0. By cutting off with ϕ ∈ S0
1,0 we may assume that v = ϕ(x,D)u ∈

H(−1) and Pv = [P,ϕ(x,D)]u + ϕ(x,D)Pu ∈ H(0) since [P,ϕ(x,D)] ∈ Ψ−1.
If ϕ �= 0 in a conical neighborhood of w0, it suffices to prove that v ∈
H(−1/μ+1).

By Definition 3.16 and Remark 3.17 there exist a C∞ hypersurface Σ, a
real C∞ vector field V /∈ TΣ, an invertible symmetrizer M ∈ C∞ so that
Q = MP satisfies (3.9), the approximation property on Σ, and

V ReQ ≥ c− CImQ c > 0, (3.18)
ImQ ≥ cQ∗Q (3.19)

in a neighborhood ω of w0. By extending by homogeneity, we can assume that
V , M and Q are homogeneous of degree 0.

Since (3.18) is stable under small perturbations in V we can replace V
with Ht for some real t ∈ C∞. By solving the initial value problem Htτ ≡ −1,
τ
∣∣
Σ

= 0, and completing to a symplectic C∞ coordinate system (t, τ , x, ξ),
we obtain that Σ = { τ = 0 } in a neighborhood of w0 = (0, 0, x0, ξ0), ξ0 �= 0.
We obtain from Definition 3.11 that

Re 〈Qu, u〉 = 0 when u ∈ V and τ = 0 (3.20)

near w0. Here V is a Q invariant C∞ subbundle of CN such that V(w0) =
KerQN (w0) = KerQ(w0) by Lemma 2.13. By condition (3.9) we have that

∣∣Ωδ(ImQx,ξ) ∩ { |t| < c } ∣∣ ≤ Cδμ (3.21)

when |(x, ξ)− (x0, ξ0)| < c, here Qx,ξ(t) = Q(t, 0, x, ξ).
Next, we shall localize the estimate. Choose

{
ϕj

}
j
∈ S0

1,0 and
{
ψj

}
j
∈

S0
1,0 with values in �2, such that ϕj ≥ 0, ψj ≥ 0,

∑
j ϕ

2
j = 1, ψjϕj ≡ ϕj and

ψj is supported where |(τ , ξ)| ∼= 2j . Since these are Fourier multipliers we find
that

∑
j ϕj(Dt,x)2 = 1 and

‖u‖2(s) ∼=
∑
j

22sj‖ϕj(Dt,x)u‖2 u ∈ S.

Let Qj = ψjQ be the localized symbol, and let hj = 2−j ≤ 1. Since Qj ∈ S0
1,0

is supported where |(τ , ξ)| ∼= 2j , we find that Qj(t, x, τ , ξ) = Q̃j(t, x, hjτ , hjξ)
where Q̃j ∈ C∞

0 (T ∗Rn) uniformly. We shall obtain Theorem 3.21 from the
following result, which is Proposition 6.1 in [3].

Proposition 3.23 Assume that Q ∈ C∞
b (T ∗Rn) is an N ×N system satis-

fying (3.18)–(3.21) in a neighborhood of w0 = (0, 0, x0, ξ0) with V = ∂τ and
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μ > 0. Then there exists h0 > 0 and R ∈ C∞
b (T ∗Rn) so that w0 /∈ suppR

and

h1/μ+1‖u‖ ≤ C(‖Q(t, x, hDt,x)u‖+‖Rw(t, x, hDt,x)u‖+h‖u‖) 0 < h ≤ h0

(3.22)
for any u ∈ C∞

0 (Rn,CN ).

Here C∞
b are C∞ functions with L∞ bounds on any derivative, and the

result is uniform in the usual sense. Observe that this estimate can be extended
to a semiglobal estimate. In fact, let ω be a neighborhood of w0 such that
suppR

⋂
ω = ∅, where R is given by Proposition 3.23. Take ϕ ∈ C∞

0 (ω)
such that 0 ≤ ϕ ≤ 1 and ϕ = 1 in a neighborhood of w0. By substituting
ϕ(t, x, hDt,x)u in (3.22) we obtain from the calculus

h1/μ+1‖ϕ(t, x, hDt,x)u‖
≤ CN (‖ϕ(t, x, hDt,x)Q(t, x, hDt,x)u‖+ h‖u‖) ∀u ∈ C∞

0

(3.23)

for small enough h since Rϕ ≡ 0 and ‖[Q(t, x, hDt,x), ϕ(t, x, hDt,x)]u‖ ≤
Ch‖u‖. Thus, if Q satisfies conditions (3.18)–(3.21) near any w ∈ K �
T ∗Rn, then by using Bolzano–Weierstrass we obtain the estimate (3.22) with
suppR

⋂
K = ∅.

Now, by using that Q̃j satisfies (3.18)–(3.21) in a neighborhood of suppϕj ,
we obtain the estimate (3.22) for Q̃j(t, x, hDt,x) with h = hj = 2−j ' 1 and
R = Rj ∈ S0

1,0 such that suppϕj

⋂
suppRj = ∅. Substituting ϕj(Dt,x)u we

obtain for j ( 1 that

2−j/μ+1‖ϕj(Dt,x)u‖
≤ CN (‖Qj(t, x,Dt,x)ϕj(Dt,x)u‖+ ‖R̃ju‖+ 2−j‖ϕj(Dt,x)u‖) ∀u ∈ S ′

where R̃j = Rj(t, x,Dt,x)ϕj(Dt,x) ∈ Ψ−N with values in �2. Now since Qj

and Q are uniformly bounded in S0
1,0 the calculus gives that

Qj(t, x,Dt,x)ϕj(Dt,x) = ϕj(Dt,x)Q(t, x,Dt,x) +  j(t, x,Dt,x)

where
{
 j
}
j
∈ Ψ−1 with values in �2. Thus, by squaring and summing up,

we obtain by continuity that

‖u‖2(−1/μ+1) ≤ C(‖Q(t, x,Dt,x)u‖2 + ‖u‖2(−1)) u ∈ H(−1). (3.24)

Since Q(t, x,Dt,x) = M(t, x,Dt,x)P (t, x,Dt,x) modulo Ψ−1 where M ∈ Ψ0,
the calculus gives

‖Q(t, x,Dt,x)u‖ ≤ C(‖M(t, x,Dt,x)P (t, x,Dt,x)u‖+ ‖u‖(−1))
≤ C ′(‖P (t, x,Dt,x)u‖+ ‖u‖(−1)) u ∈ H(−1) (3.25)

which together with (3.24) proves Theorem 3.21.
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1 Introduction

Let X and Y be Hilbert spaces endowed with the norms ‖·‖X and ‖·‖Y ,
respectively. Let A : D(A) ⊂ X → X be a skew-adjoint operator with compact
resolvent and B ∈ L(X,Y ).

We consider the system described by

ż = Az + εA2z −B∗Bz, t ≥ 0, z(0) = z0 ∈ X. (1.1)

Here and henceforth, a dot (˙) denotes differentiation with respect to time t.
The element z0 ∈ X is the initial state, and z(t) is the state of the system.
Most of the linear equations modeling the damped viscous vibrations of elastic
structures (strings, beams, plates,...) can be written in the form (1.1) or some
variants that we shall also discuss, in which the viscosity term has a more
general form, namely,

ż = Az + εVεz −B∗Bz, t ≥ 0, z(0) = z0 ∈ X, (1.2)

for a suitable viscosity operator Vε, which might depend on ε.
We define the energy of the solutions of system (1.1) by

E(t) =
1
2
‖z(t)‖2X , t ≥ 0, (1.3)

which satisfies
dE

dt
(t) = −‖Bz(t)‖2Y − ε||Az||2X , t ≥ 0. (1.4)

In this paper, we assume that system (1.1) is exponentially stable when
ε = 0. For the sake of completeness and clarity we distinguish the case in
which the viscosity parameter vanishes:

ż = Az −B∗Bz, t ≥ 0, z(0) = z0 ∈ X. (1.5)

This model corresponds to a conservative system in which a bounded damping
term has been added. The damped wave and Schrödinger equations enter in
this class, for instance.

Thus, we assume that there exist positive constants μ and ν such that any
solution of (1.5) satisfies

E(t) ≤ μ E(0) exp(−νt), t ≥ 0. (1.6)

Our goal is to prove that the exponential decay property (1.6) for (1.5)
implies the uniform exponential decay of solutions of (1.1) with respect to the
viscosity parameter ε > 0.

This result might seem immediate a priori since the viscous term that (1.1)
adds to (1.5) should in principle increase the decay rate of the solutions of
the latter. But, this is far from being trivial because of the possible presence
of overdamping phenomena. Indeed, in the context of the damped wave equa-
tion, for instance, it is well known that the decay rate does not necessarily
behave monotonically with respect to the size of the damping operator (see,
for instance, [6, 7, 15]). In our case, however, the viscous damping operator
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is such that the decay rate is kept uniformly on ε. This is so because it adds
dissipativity to the high-frequency components, while it does not deterio-
rate the low-frequency damping that the bounded feedback operator −B∗B
introduces.

The main result of this paper is that system (1.1) enjoys a uniform stabi-
lization property. It reads as follows:

Theorem 1.1 Assume that system (1.5) is exponentially stable and satisfies
(1.6) for some positive constants μ and ν, and that B ∈ L(X,Y ).

Then there exist two positive constants μ0 and ν0 depending only on
‖B‖L(X,Y ), ν and μ such that any solution of (1.1) satisfies (1.6) with con-
stants μ0 and ν0 uniformly with respect to the viscosity parameter ε > 0.

Our strategy is based on the fact that the uniform exponential decay prop-
erties of the energy for systems (1.5) and (1.1), respectively, are equivalent to
observability properties for the conservative system

ẏ = Ay, t ∈ lR, y(0) = y0 ∈ X, (1.7)

and its viscous counterpart

u̇ = Au + εA2u, t ∈ lR, u(0) = u0 ∈ X. (1.8)

For (1.7) the observability property consists in the existence of a time
T ∗ > 0 and a positive constant k∗ > 0 such that

k∗ ‖y0‖2X ≤
∫ T∗

0

‖By(t)‖2Y dt, (1.9)

for every solution of (1.7) (see [11]).
A similar argument can be applied to the viscous system (1.8). In this

case the relevant inequality is the following: There exist a time T > 0 and a
positive constant kT > 0 such that any solution of (1.8) satisfies

kT ‖u0‖2X ≤
∫ T

0

‖Bu(t)‖2Y dt + ε

∫ T

0

‖Au(t)‖2X dt. (1.10)

Note, however, that, for the uniform exponential decay property of the so-
lutions of (1.1) to be independent of ε, we also need the time T and the
observability constant kT in (1.10) to be uniform. Actually we will prove the
observability property (1.10) for the time T = T ∗ given in (1.9).

The observability inequality (1.10) cannot be obtained directly from (1.9)
by a perturbation argument since the viscosity operator εA2 is an unbounded
perturbation of the dynamics associated to the conservative system (1.7).
Therefore, we decompose the solution u of (1.8) into its low- and high-
frequency parts, which we handle separately. We first use the observability
of (1.7) to prove (1.10), uniformly on ε, for the low-frequency components.
Second, we use the dissipativity of (1.8) to obtain a similar estimate for the
high-frequency components.
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In this way, we derive observability properties of the low- and high-
frequency components separately, which, together, yield the needed observ-
ability property (1.10) leading to the uniform exponential decay result.

Our arguments do not apply when the damping operator B is not bounded,
as it happens when the damping acts on the boundary for the wave equation,
see for instance [7]. Dealing with unbounded damping operators B needs fur-
ther work.

As we mentioned above, the results in this paper are related with the lit-
erature on the uniform stabilization of numerical approximation schemes for
damped equations of the form (1.5) and in particular with [21, 20, 18, 19, 9].
Similar techniques have also been employed to obtain uniform dispersive esti-
mates for numerical approximation schemes to Schrödinger equations in [12].

The recent work [8] is also worth mentioning. There, observability issues
were discussed for time and fully discrete approximation schemes of (1.7) and
served as one of the sources of motivation for this work.

The outline of this paper is as follows. In Section 2, we recall the results
of [8] and prove Theorem 1.1. In Section 3, we present a generalization of
Theorem 1.1 to other viscosity operators. We also specify an application of
our technique for viscous second order in time evolution equations which fit
(1.2). In Section 4, we present some applications to viscous approximations
of damped Schrödinger and wave equations. Finally, some further comments
and open problems are collected in Section 5.

2 Proof of Theorem 1.1

We first need to introduce some notations.
Since A is a skew-adjoint operator with compact resolvent, its spectrum

is discrete and σ(A) = {iμj : j ∈ lN}, where (μj)j∈lN is a sequence of real
numbers such that |μj | → ∞ when j →∞. Set (Φj)j∈lN an orthonormal basis
of eigenvectors of A associated to the eigenvalues (iμj)j∈lN, that is,

AΦj = iμjΦj . (2.1)

Moreover, define

Cs = span {Φj : the corresponding iμj satisfies |μj | ≤ s}. (2.2)

In the sequel, we assume that system (1.5) is exponentially stable and that
B ∈ L(X,Y ), i.e., there exists a constant KB such that

‖Bz‖Y ≤ KB ‖z‖X , ∀z ∈ X. (2.3)

The proof of Theorem 1.1 is divided into several steps.

First, we write carefully the energy identity for z solution of (1.1).



Uniform Exponential Decay for Viscous Damped Systems 99

Consider z a solution of (1.1). Its norm ‖z(t)‖2X satisfies

‖z(T )‖2X + 2
∫ T

0

‖Bz(t)‖2Y dt + 2
∫ T

0

ε ‖Az(t)‖2Y dt = ‖z(0)‖2X . (2.4)

Therefore our goal is to prove that, with T ∗ as in (1.9), there exists a constant
c > 0 such that any solution of (1.1) satisfies

c ‖z(0)‖2X ≤
∫ T∗

0

‖Bz(t)‖2Y dt + ε

∫ T∗

0

‖Az(t)‖2X dt. (2.5)

It is indeed easy to see that, combining (2.4) and (2.5), the semigroup Sε

generated by (1.1) satisfies

‖Sε(T ∗)‖ ≤ γ = 1− c, (2.6)

for a constant 0 < γ < 1 independent of ε > 0. This, by the semigroup
property, yields the uniform exponential decay result.

We also claim that, for (2.5) to hold for the solutions of (1.1), it is sufficient
to show (1.10) for solutions of (1.8). To do that, it is sufficient to follow the
argument in [11] developed in the context of system (1.5).

We decompose z as z = u + w where u is the solution of the system (1.8)
with initial data u(0) = z0 and w satisfies

ẇ = Aw + εA2w −B∗Bz, t ≥ 0, w(0) = 0. (2.7)

Indeed, multiplying (2.7) by w and integrating in time, we get

‖w(t)‖2X + 2ε
∫ t

0

‖Aw(s)‖2X ds + 2
∫ t

0

< Bz(s), Bw(s) >Y ds = 0.

Using that B is bounded, this gives

‖w(t)‖2X + 2ε
∫ t

0

‖Aw(s)‖2X ds ≤
∫ t

0

‖Bz(s)‖2Y +K2
B

∫ t

0

‖w(s)‖2X ds. (2.8)

Grönwall’s inequality then gives a constant G, which depends only on KB and
T ∗, such that

sup
t∈[0,T∗]

{
‖w(t)‖2X

}
+ ε

∫ T∗

0

‖Aw(s)‖2X ds ≤ G

∫ T∗

0

‖Bz(s)‖2Y ds. (2.9)

Therefore in the sequel we deal with solutions u of (1.8), for which we
prove (1.10) for T = T ∗.

As stated in the introduction, we decompose the solution u of (1.8) into
its low- and high-frequency parts. To be more precise, we consider

ul = π1/
√
εu, uh = (I − π1/

√
ε)u, (2.10)
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where π1/
√
ε is the orthogonal projection on C1/

√
ε defined in (2.2). Here the

notation ul and uh stands for the low- and high-frequency components, re-
spectively.

Note that both ul and uh are solutions of (1.8) since the projection π1/
√
ε

and the viscosity operator A2 commute.
Besides, uh lies in the space C⊥

1/
√
ε
, in which the following property holds:

√
ε ‖Ay‖X ≥ ‖y‖X , ∀y ∈ C⊥1/√ε. (2.11)

In a first step, we compare ul with yl solution of (1.7) with initial data
yl(0) = ul(0). Now, set wl = ul − yl. From (1.9), which is valid for solutions
of (1.7), we get

k∗ ‖ul(0)‖2X = k∗ ‖yl(0)‖2X ≤ 2
∫ T∗

0

‖Bul(t)‖2Y dt + 2
∫ T∗

0

‖Bwl(t)‖2Y dt.

(2.12)
In the sequel, to simplify the notation, c > 0 will denote a positive constant
that may change from line to line, but which does not depend on ε.

Let us therefore estimate the last term on the right-hand side of (2.12).
To this end, we write the equation satisfied by wl, which can be deduced from
(1.7) and (1.8):

ẇl = Awl + εA2ul, t ≥ 0, wl(0) = 0.

Note that wl ∈ C1/
√
ε, since ul and yl both belong to C1/

√
ε. Therefore, the

energy estimate for wl leads, for t ≥ 0, to

‖wl(t)‖2X = −2ε
∫ t

0

< Aul(s), Awl(s) >X ds

≤ ε

∫ t

0

‖Aul(s)‖2X ds +
∫ t

0

‖wl(s)‖2X ds.

Grönwall’s Lemma applies and allows us to deduce from (2.12) and the fact
that the operator B is bounded, the existence of a positive c independent of
ε, such that

c ‖ul(0)‖2X ≤
∫ T∗

0

‖Bul(t)‖2Y dt + ε

∫ T∗

0

‖Aul(s)‖2X ds.

Besides,

∫ T∗

0

‖Bul(t)‖2Y dt ≤ 2
∫ T∗

0

‖Bu(t)‖2Y dt + 2
∫ T∗

0

‖Buh(t)‖2Y dt

and, since uh(t) ∈ C⊥
1/

√
ε

for all t,
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∫ T∗

0

‖Buh(t)‖2Y dt ≤ K2
B

∫ T∗

0

‖uh(t)‖2X dt ≤ K2
Bε

∫ T∗

0

‖Auh(t)‖2X dt.

It follows that there exists c > 0 independent of ε such that

c ‖ul(0)‖2X ≤
∫ T∗

0

‖Bu(t)‖2Y dt + ε

∫ T∗

0

‖Au(t)‖2X dt. (2.13)

Let us now consider the high-frequency component uh. Since uh(t) is a
solution of (1.8) and belongs to C⊥

1/
√
ε

for all time t ≥ 0, the energy dissipation
law for uh solution of (1.8) reads

‖uh(t)‖2X + 2ε
∫ t

0

‖Auh(s)‖2X ds = ‖uh(0)‖2X , t ≥ 0, (2.14)

and
‖uh(t)‖2X ≤ exp(−2t) ‖uh(0)‖2X , ∀t ≥ 0.

In particular, these last two inequalities imply the existence of a constant
c > 0 independent of ε such that any solution uh of (1.8) with initial data
uh(0) ∈ C⊥

1/
√
ε

satisfies

c ‖uh(0)‖2X ≤ ε

∫ T∗

0

‖Auh(s)‖2X ds. (2.15)

Combining (2.13) and (2.15) leads to the observability inequality (1.10).
This, combined with the arguments of [11] and (2.9), allows us to prove that
any solution z of (1.1) satisfies (2.5), and proves (2.6), from which Theorem 1.1
follows.

3 Variants of Theorem 1.1

3.1 General viscosity operators

Other viscosity operators could have been chosen. In our approach, we used
the viscosity operator εA2, which is unbounded, but we could have considered
the viscosity operator

εVε =
εA2

I − εA2
, (3.1)

which is well defined, since A2 is a definite negative operator, and commutes
with A. This choice presents the advantage that the viscosity operator now
is bounded, keeping the properties of being small at frequencies of order less
than 1/

√
ε and of order 1 on frequencies of order 1/

√
ε and more. Again, the

same proof as the one presented above works.
The following result constitutes a generalization of Theorem 1.1, which

applies to a wide range of viscosity operators, and, in particular, to (3.1).
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Theorem 3.1 Assume that system (1.5) is exponentially stable and satisfies
(1.6), and that B ∈ L(X,Y ).

Consider a viscosity operator Vε such that

1. Vε defines a self-adjoint definite negative operator.
2. The projection π1/

√
ε and the viscosity operator Vε commute.

3. There exist positive constants c and C such that for all ε > 0,
⎧⎨
⎩
√
ε
∥∥∥
(√

−Vε
)
z
∥∥∥
X
≤ C ‖z‖X , ∀z ∈ C1/

√
ε,

√
ε
∥∥∥
(√

−Vε
)
z
∥∥∥
X
≥ c ‖z‖X , ∀z ∈ C⊥1/√ε.

Then the solutions of (1.2) are exponentially decaying in the sense of (1.6),
uniformly with respect to the viscosity parameter ε ≥ 0.

The proof of Theorem 3.1 can be easily deduced from that of Theorem 1.1
and is left to the reader.

Especially, note that the second item implies that both spaces C1/
√
ε and

C⊥
1/

√
ε

are left globally invariant by the viscosity operator Vε. Therefore, if
ul ∈ C1/

√
ε and uh ∈ C⊥1/√ε

, we have

< Vε(ul + uh), (ul + uh) >X=< Vεul, ul >X + < Vεuh, uh >X .

Also remark that the second item is always satisfied when the operators Vε
and A commute.

3.2 Wave-type systems

In this subsection we investigate the exponential decay properties for viscous
approximations of second order in time evolution equation.

Let H be a Hilbert space endowed with the norm ‖·‖H . Let A0 : D(A0) →
H be a self-adjoint positive definite operator with compact resolvent and
C ∈ L(H,Y ).

We then consider the initial value problem
⎧⎨
⎩

v̈ + A0v + εA0v̇ + C∗Cv̇ = 0, t ≥ 0,

v(0) = v0 ∈ D(A1/2
0 ), v̇(0) = v1 ∈ H.

(3.2)

System (3.2) can be seen as a particular instance of (1.2) modeling wave and
beam equations.

The energy of solutions of (3.2) is given by

E(t) =
1
2
‖v̇(t)‖2H +

1
2

∥∥∥A1/2
0 v(t)

∥∥∥2

H
, (3.3)
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and satisfies

dE

dt
(t) = −‖Cv̇(t)‖2Y − ε

∥∥∥A1/2
0 v̇(t)

∥∥∥2

H
. (3.4)

As before, we assume that, for ε = 0, the system

v̈ + A0v + C∗Cv̇ = 0, t ≥ 0, v(0) = v0 ∈ D(A1/2
0 ), v̇(0) = v1 ∈ H

(3.5)
is exponentially stable, i.e., (1.6) holds.

We are indeed in the setting of (1.2), since (3.2) can be written as

Ż = AZ + εVεZ −B∗BZ, (3.6)

with

Z =

(
v

v̇

)
, A =

(
0 I

−A0 0

)
, Vε =

(
0 0

0 −A0

)
, B =

(
0 C

)
. (3.7)

Note that the viscosity operator Vε introduced in (3.7) does not satisfy Con-
dition 1 in Theorem 3.1. However, we can prove the following theorem:

Theorem 3.2 Assume that system (3.5) is exponentially stable and satisfies
(1.6) for some positive constants μ and ν, and that C ∈ L(H,Y ). Set K <∞.

Then there exist two positive constants μK and νK depending only on
‖C‖L(H,Y ), K, ν and μ such that any solution of (3.2) satisfies (1.6) with
constants μ0 and ν0 uniformly with respect to the viscosity parameter ε ∈
[0,K].

Before going into the proof, we introduce the spectrum of A0. Since A0 is
self-adjoint positive definite with compact resolvent, its spectrum is discrete
and σ(A0) = {λ2

j : j ∈ lN}, where λj is an increasing sequence of real positive
numbers such that λj → ∞ when j → ∞. Set (Ψj)j∈lN an orthonormal basis
of eigenvectors of A0 associated to the eigenvalues (λ2

j )j∈lN.
These notations are consistent with the ones introduced in Section 2, by

setting A as in (3.7), and

μ±j = ±λj , Φj =

⎛
⎜⎝

1
iμj

Ψj

Ψj

⎞
⎟⎠ .

For convenience, similarly as in (2.2), we define

Cs = span {Ψj : the corresponding λj satisfies |λj | ≤ s}, (3.8)

which satisfies Cs = (Cs)2.
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Proof (Sketch of the proof) The proof of Theorem 3.2 closely follows that of
Theorem 1.1.

As before, we read the exponential stability of (3.5) into the following
observability inequality: There exist a time T ∗ and a positive constant k∗
such that any solution of

ÿ + A0y = 0, t ≥ 0, y(0) = y0 ∈ D(A1/2
0 ), ẏ(0) = y1 ∈ H (3.9)

satisfies

k∗
(
‖y1‖2H +

∥∥∥A1/2
0 y0

∥∥∥2

H

)
≤
∫ T∗

0

‖Cẏ(t)‖2Y dt. (3.10)

Due to (3.4), as in (2.5), the exponential decay of the energy for solutions
of (3.2) is equivalent to the following observability inequality: There exist a
time T̃ and a positive constant c such that for any ε ∈ [0,K],

c
(
‖v1‖2H +

∥∥∥A1/2
0 v0

∥∥∥2

H

)
≤
∫ T̃

0

‖Cv̇(t)‖2Y dt + ε

∫ T̃

0

∥∥∥A1/2
0 v̇(t)

∥∥∥2

H
dt (3.11)

holds for any solution v of (3.2).
Using the same perturbative arguments as in [11] or (2.7)–(2.9), the ob-

servability inequality (3.11) holds if and only if there exist a time T and
a positive constant kT > 0 such that, for any ε ∈ [0,K], the observability
inequality

kT

(
‖u1‖2H+

∥∥∥A1/2
0 u0

∥∥∥2

H

)
≤
∫ T

0

‖Cu̇(t)‖2Y dt+ε

∫ T

0

∥∥∥A1/2
0 u̇(t)

∥∥∥2

H
dt (3.12)

holds for any solution u of

ü + A0u + εA0u̇ = 0, t ≥ 0, u(0) = u0 ∈ D(A1/2
0 ), u̇(0) = u1 ∈ H.

(3.13)

As before, we then focus on the observability inequality (3.12) for solutions
of (3.13). As in the proof of Theorem 1.1, we now decompose the solution of
(3.13) into its low- and high-frequency parts, which we handle separately. To
be more precise, we consider

ul = P1/
√
ε u, uh = (I − P1/

√
ε)u.,

where P1/
√
ε is the orthogonal projection in H on C1/

√
ε as defined in (3.8).

Again, both ul and uh are solutions of (3.13) since P1/
√
ε commutes with A0.

Arguing as before, the low-frequency component ul can be compared to
yl solution of (3.9) with initial data (y0, y1) = (P1/

√
εu0, P1/

√
εu1), and using

(3.10) for solutions of (3.9), we obtain the existence of a positive constant c1
such that
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c1

(∥∥P1/
√
εu1

∥∥2

H
+
∥∥∥A1/2

0 P1/
√
εu0

∥∥∥2

H

)

≤
∫ T∗

0

‖Cu̇(t)‖2Y dt + ε

∫ T∗

0

∥∥∥A1/2
0 u̇(t)

∥∥∥2

H
dt. (3.14)

For the high-frequency component uh, the situation is slightly more intri-
cate than in Theorem 1.1. The energy of the solution uh satisfies the dissipa-
tion law

1
2
d

dt

(
‖u̇h(t)‖2H +

∥∥∥A1/2
0 uh(t)

∥∥∥2

H

)
= −ε

∥∥∥A1/2
0 u̇h

∥∥∥2

H
≤ −‖u̇h‖2H , (3.15)

where the last inequality comes from u̇h ∈ C⊥
1/

√
ε
.

Setting

Eh(t) =
1
2
‖u̇h(t)‖2H +

1
2

∥∥∥A1/2
0 uh(t)

∥∥∥2

H
,

we thus obtain that

Eh(t) +
∫ t

0

‖u̇h(s)‖2H ds ≤ Eh(0). (3.16)

We now prove the so-called equirepartition of the energy for the solutions
u of (3.13). Multiplying (3.13) by u and integrating by parts between 0 and
t, we obtain

< u̇(t), u(t) >H − < u̇(0), u(0) >H −
∫ t

0

‖u̇(s)‖2H ds+
∫ t

0

∥∥∥A1/2
0 u(s)

∥∥∥2

H
ds

+ ε

∫ t

0

< A
1/2
0 u̇(s), A1/2

0 u(s) >H ds = 0.

In particular,
∫ t

0

‖u̇(s)‖2H ds =
∫ t

0

∥∥∥A1/2
0 u(s)

∥∥∥2

H
ds +

ε

2

(∥∥∥A1/2
0 u(t)

∥∥∥2

H
−
∥∥∥A1/2

0 u0

∥∥∥2

H

)

+ < u̇(t), u(t) >H − < u̇(0), u(0) >H . (3.17)

Now, for uh, which is a solution of (3.13), for all t ≥ 0, uh(t) ∈ C⊥
1/

√
ε
. In

particular, for all t ≥ 0, we have

∣∣∣ < u̇h(t), uh(t) >H

∣∣∣ ≤
√
ε

2
‖u̇h‖2H +

1
2
√
ε
‖uh(t)‖2H ≤ √

εEh(t), (3.18)

where we used that for ϕ ∈ C⊥
1/

√
ε
,

‖ϕ‖2H ≤ ε
∥∥∥A1/2

0 ϕ
∥∥∥2

H
.
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Combining (3.18) with identity (3.17) for uh, we obtain
∫ t

0

‖u̇h(s)‖2H ds ≥
∫ t

0

∥∥∥A1/2
0 uh(s)

∥∥∥2

H
ds−

(√
ε+ ε

)
(Eh(t)+Eh(0)). (3.19)

This yields
∫ t

0

‖u̇h(s)‖2H ds ≥
∫ t

0

Eh(s) ds− 1
2

(√
ε + ε

)
(Eh(t) + Eh(0)). (3.20)

Combined with (3.16), we obtain

(
1− 1

2
(
√
ε + ε)

)
Eh(t) +

∫ t

0

Eh(s) ds ≤ Eh(0)
(
1 +

1
2
(
√
ε + ε)

)
. (3.21)

Assuming, without loss of generality, that K ≥ 1, for ε ∈ [0,K], we thus have

(1−K)Eh(t) +
∫ t

0

Eh(s) ds ≤ (1 + K)Eh(0).

The decay of Eh(t), guaranteed by the dissipation law (3.15), then proves that

(t + 1−K)Eh(t) ≤ (1 + K)Eh(0).

For t = 1 + 3K, we thus have Eh(1 + 3K) ≤ Eh(0)/2. We then deduce from
the dissipation law (3.15) the existence of a positive constant cK such that

cKEh(0) ≤ ε

∫ 1+3K

0

∥∥∥A1/2
0 u̇h(s)

∥∥∥2

H
ds. (3.22)

We finally conclude Theorem 3.2 by combining (3.14) and (3.22) as before.

Remark 3.3 One cannot expect the results of Theorem 3.2 to hold uniformly
with respect to ε ∈ [0,∞). Indeed, an overdamping phenomenon appears when
ε → ∞. This can indeed be deduced from the existence of the following solu-
tions of (3.13):

uj(t) = exp(tτεj)Ψj , t ≥ 0, where τεj =
ελ2

j

2

(√
1− 4

(ελj)2
−1

)
∼

ελj→∞
−1
ε
.

Plugging these solutions in (3.12), one can check that the observability in-
equality (3.12) cannot hold uniformly with respect to ε ∈ [0,∞). Finally, us-
ing the equivalence between the observability inequality (3.12) for solutions
of (3.13) and the observability inequality (3.11) for solutions of (3.2), this
proves that the results of Theorem 3.2 do not hold uniformly with respect to
ε ∈ [0,∞).
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Remark 3.4 To avoid the overdamping phenomenon when ε → ∞, one can
for instance add a dispersive term in (3.2), and consider the initial value
problem ⎧⎨

⎩
v̈ + A0v + εA0v̇ + εA0v + C∗Cv̇ = 0, t ≥ 0,

v(0) = v0 ∈ D(A1/2
0 ), v̇(0) = v1 ∈ H.

(3.23)

The energy of solutions of (3.23) is now given by

Eε(t) =
1
2
‖v̇(t)‖2H +

(1 + ε

2

)∥∥∥A1/2
0 v(t)

∥∥∥2

H
. (3.24)

One can then prove that if system (3.5) is exponentially stable, then the energy
Eε of solutions of systems (3.23) is exponentially stable, uniformly with respect
to the viscosity parameter ε ∈ [0,∞). The proof can be done similarly as that of
Theorem 3.2 and is left to the reader. The main difference that the dispersive
term introduces is that the high-frequency solutions uh of

üh + A0uh + εA0u̇h + εA0uh = 0, t ≥ 0, (3.25)

with initial data (uh(0), u̇h(0)) ∈ (C⊥
1/

√
ε
)2 ∩ (D(A1/2

0 ) × H) now satisfy, in-
stead of (3.19), which deteriorates when ε → ∞, the following property of
equirepartition of the energy:
∣∣∣∣∣
∫ t

0

‖u̇h‖2H ds− (1 + ε)
∫ t

0

∥∥∥A1/2
0 u(s)

∥∥∥2

H
ds

∣∣∣∣∣ ≤ 2Eh,ε(t) + 2Eh,ε(0), (3.26)

where Eh,ε is the energy of the solutions uh of (3.25).

4 Applications

This section is devoted to present some precise examples.

4.1 The viscous Schrödinger equation

Let Ω be a smooth bounded domain of lRN .
Let us now consider the following damped Schrödinger equation:

⎧⎪⎨
⎪⎩

iż + Δxz + ia(x) z = 0, in Ω × (0,∞),

z = 0, on ∂Ω × (0,∞),

z(0) = z0, in Ω,

(4.1)

where a = a(x) is a nonnegative damping function in L∞(Ω), which we assume
to be positive in some open subdomain ω of Ω, that is, there exists a0 > 0
such that
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a(x) ≥ a0, ∀x ∈ ω. (4.2)

The energy of solutions of (4.1), given by

E(t) =
1
2
‖z(t)‖2L2(Ω) , (4.3)

satisfies
dE

dt
(t) = −

∫
Ω

a(x)|z(t, x)|2 dx. (4.4)

The stabilization problem for (4.1) has been studied in recent years. Let
us briefly present some known results. Some of them concern the problem of
exact controllability but, as explained for instance in [16], it is equivalent to
the observability and the stabilization ones addressed in this article in the
case where the damping operator B is bounded.

For instance, in [14], it is proved that the Geometric Control Condi-
tion (GCC) is sufficient to guarantee the stabilization property (1.6) for the
damped Schrödinger equation (4.1). The GCC can be, roughly, formulated as
follows (see [2] for the precise setting): The subdomain ω of Ω is said to satisfy
the GCC if there exists a time T > 0 such that all rays of Geometric Optics
that propagate inside the domain Ω at velocity one reach the set ω in time
less than T . This condition is necessary and sufficient for the stabilization
property to hold for the wave equation.

But, in fact, the Schrödinger equation behaves slightly better than a wave
equation from the stabilization point of view because of the infinite velocity of
propagation and, in this case, the GCC is sufficient but not always necessary.
For instance, in [13], it has been proved that when the domain Ω is a square,
for any nonempty bounded open subset ω, the stabilization property (1.6)
holds for system (4.1). Other geometries have also been dealt with: We refer
to the articles [4, 1].

Now, we assume that ω satisfies the GCC and, consequently, that we are
in a situation where the stabilization property (1.6) for (4.1) holds, and we
consider the viscous approximations

⎧⎪⎨
⎪⎩

iż + Δxz + ia(x) z − i
√
εΔxz = 0, in Ω × (0,∞),

z = 0, on ∂Ω × (0,∞),

z(0) = z0, in Ω,

(4.5)

where ε ≥ 0.
System (4.1) can be seen as a Ginzburg–Landau-type approximation. More

precisely, system (4.1) is the inviscid limit of (4.5). We refer to the works [17, 3]
where inviscid limits were analyzed in a nonlinear context.

For the stabilization problem, Theorem 3.1 applies and provides the fol-
lowing result:



Uniform Exponential Decay for Viscous Damped Systems 109

Theorem 4.1 Assume that system (4.1) is exponentially stable, i.e., it sat-
isfies (1.6).

Then the solutions of (4.5) are exponentially decaying in the sense of (1.6),
uniformly with respect to the viscosity parameter ε ≥ 0.

Proof Let us check the hypotheses of Theorem 3.1.
This example enters in the abstract setting given in the introduction:

The operator A = iΔx with the Dirichlet boundary conditions is indeed
skew-adjoint in L2(Ω) with compact resolvent and domain D(A) = H2 ∩
H1

0 (Ω) ⊂ L2(Ω). Since a is a nonnegative function, the damping term in
(4.1) takes the form B∗Bz where B is defined as the multiplication by

√
a(x),

which is obviously bounded from L2(Ω) to L2(Ω).
The viscosity operator is

εVε =
√
εΔx = −i√εA = −√ε|A|.

Obviously, this viscosity operator Vε satisfies the assumptions 1, 2 and 3, and
therefore Theorem 3.1 applies.

4.2 The viscous damped wave equation

Again, let Ω be a smooth bounded domain of lRN .
We now consider the damped wave equation

⎧⎪⎨
⎪⎩

v̈ −Δxv + a(x) v̇ = 0, in Ω × (0,∞),

v = 0, on ∂Ω × (0,∞),

v(0) = v0, v̇(0) = v1, in Ω,

(4.6)

where a is a nonnegative function as before, and satisfies (4.2) for some non-
empty open subset ω of Ω.

The energy of solutions of (4.6), given by

E(t) =
1
2
‖v̇‖2L2(Ω) +

1
2
‖�v‖2L2(Ω) , (4.7)

satisfies the dissipation law

dE

dt
(t) = −

∫
Ω

a(x)|v̇|2 dx. (4.8)

We assume that system (4.6) is exponentially stable. From the works [2, 5],
this is the case if and only if ω satisfies the Geometric Control Condition given
above.

We now consider viscous approximations of (4.6) given, for ε > 0, by
⎧⎪⎨
⎪⎩

v̈ −Δxv + a(x)v̇ − εΔxv̇ = 0, in Ω × (0,∞),

v = 0, on ∂Ω × (0,∞),

v(0) = v0 ∈ H1
0 (Ω), v̇(0) = v1 ∈ L2(Ω).

(4.9)
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Setting A0 = −Δx with Dirichlet boundary conditions and C =
√
a(x),

Theorem 3.2 applies:

Theorem 4.2 Assume that ω satisfies the Geometric Control Condition.
Then the solutions of (4.9) decay exponentially, i.e., satisfy (1.6) uni-

formly with respect to the viscosity parameter ε ∈ [0, 1]. To be more precise,
there exist positive constants μ0 and ν0 such that for all ε ∈ [0, 1], for any
initial data in H1

0 (Ω)× L2(Ω), the solution of (4.9) satisfies

E(t) ≤ μ0 E(0) exp(−ν0t), t ≥ 0. (4.10)

5 Further comments

1. In this article, we have identified a class of damped systems, with
added viscosity term, in which overdamping does not occur. This is to be
compared with the existing literature on the overdamping phenomenon for
the damped wave equation ([6, 7]).

2. As we mentioned in the introduction, our methods and results require
the assumption that the damping operator B is bounded. This is due to
the method we employ, which is based on the equivalence between the expo-
nential decay of the energy and the observability properties of the conserva-
tive system, that requires the damping operator to be bounded. However, in
several relevant applications, as for instance when dealing with the problem
of boundary stabilization of the wave equation (see [16]), the feedback law
is unbounded, and our method does not apply. This issue requires further
work.

3. The same methods allow obtaining numerical approximation schemes
with uniform decay properties.

The discrete analogue of the viscosity term added above for the stabiliza-
tion of the wave equation has already been discussed in the works [21, 20, 18, 9]
for space semidiscrete approximation schemes of damped wave equations. In
those articles, though, the viscosity term is needed due to the presence of
high-frequency spurious solutions that do not propagate and therefore are not
efficiently damped by the damping operator B∗B when it is localized in space
as in the examples considered above.

Following the same ideas as in [21, 20, 18, 9], if observability properties
such as (1.9) hold for fully discrete approximation schemes of the conservative
linear system (1.7) in a filtered space (see [8]), then adding a suitable viscos-
ity term to the corresponding fully discrete version of the dissipative system
(1.5) suffices to obtain uniform (with respect to space time discretization pa-
rameters) stabilization properties. This issue is currently investigated by the
authors and will be published in [10].
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Dérivées Partielles, 1993–1994, École Polytech., 1994.
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Summary. The hyperbolic symmetrizer is a matrix which symmetrizes in a stan-
dard way any Sylvester hyperbolic matrix. This paper deals with the theory of the
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1 Introduction

Let us consider the system

Ut =
n∑

h=1

Ah(t)Uxh
in R

n
x × Rt . (1.1)

Let V be the Fourier transform with respect to x of U , so that

V ′(t, ξ) = i|ξ|A(t, ξ)V (t, ξ) (1.2)

with A(t, ξ) =
∑

hAh(t)ξh/|ξ| 0–homogeneous in ξ. Hyperbolicity means that
A(t, ξ) has real eigenvalues ∀t, ξ ∈ Rt × R

n
ξ .

There are two favorable cases for the symbol A: A is hermitian, or A is
uniformly and regularly diagonalizable. In the first case, if we set E = 〈V, V 〉,
we get
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E′ = 2Re 〈V ′, V 〉 = 2Re 〈i|ξ|A(t, ξ)V, V 〉 = 0, (1.3)

i.e., E (which may be called energy of the system) is an invariant; in the
second case, there exists N(t, ξ), regular with respect to t, bounded together
with its inverse, and such that NA = DN , D being the diagonal matrix
bearing the eigenvalues (real by hypothesis) of A. Setting Q = N∗N , Q is
regular and positive defined, and QA = A∗Q. We will call Q a symmetrizer
for the symbol A.

In this case we define the energy of the system as E = 〈QV, V 〉. We get

E′ = 〈Q′V, V 〉+ 2Re 〈QV ′, V 〉
= 〈Q′V, V 〉+ 2Re 〈i|ξ|(QA)V, V 〉 = 〈Q′V, V 〉 ≤ CE,

(1.4)

from which we deduce the so–called energy estimate E(t, ξ) ≤ C(t)E(0, ξ).
The energy estimate, together with the Fourier transform, allow us to solve
the hyperbolic system, and to determine the functional spaces in which the
Cauchy problem for the system is well–posed.

Therefore, it is clear that the core of the problem consists in symmetrizing,
uniformly and regularly, the symbol A(t, ξ), if it is not already hermitian. It
is easy to see that we may find a good symmetrizer in a standard way if the
system is strictly hyperbolic, i.e., A is regular in t and it has real and distinct
eigenvalues. In this case, the matrix N is made up by eigenvectors of A, and
the symmetrizer is Q = N∗N .

The problem is much more delicate when only weak hyperbolicity (i.e., the
symbol A has real but possibly coincident eigenvalues) is assumed. Through-
out this paper, we will be concerned with scalar equations of order N , which
may be regarded as a particular (and more favorable) case among first-order
systems.

Let us consider the N–order homogeneous Kovalevskian operator

L = ∂N
t −

∑
1≤j≤N
|ν|=j

aν,j(t) ∂ν
x ∂

N−j
t . (1.5)

Let u be any solution to Lu = 0. Fourier transform with respect to the
x variable plus standard transformation into a first–order system leads to
consider a problem like (1.2), where A is the Sylvester matrix

A(t, ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . .

0 1 0 . . .

. . .

0 1
hN . . . . . . . . . h1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.6)
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and any hj is a (fixed) polynomial expression in the coefficients aν,h of the
symbol of L, i.e.,

P (τ , ξ; t) = τN −
∑

1≤j≤N
|ν|=j

aν,j(t) ξν τN−j := τN −
N∑
j=1

hj(t, ξ) |ξ|jτN−j (1.7)

whose roots τ1(ξ), . . . , τN (ξ) coincide with the eigenvalues of A multiplied by
|ξ|. Let us remark that A(t, ξ) is 0–homogeneous with respect to ξ.

Hyperbolicity of L means that A is a real–valued Sylvester matrix with
only real eigenvalues, i.e., what we call a hyperbolic Sylvester matrix .

Then the following theorem holds:

Theorem 1 (see [6]) Let A be an N × N hyperbolic Sylvester matrix. Then
there exists a hermitian N ×N matrix Q such that:

i) the entries of Q are polynomials in the N–tuple h1 . . . hN whose coef-
ficients depend only on N ;

ii) Q is strictly (resp. weakly) positive defined iff L is strictly (resp.
weakly) hyperbolic;

iii) QA = A∗Q.

From now on we will refer to Q as the standard symmetrizer , or simply
the symmetrizer.

In particular, Theorem 1-i) states that it is always possible to regularly
symmetrize a symbol under Sylvester form. This is important because, if only
weak hyperbolicity is assumed, the characteristic roots τ i(t, ξ) of the principal
symbol P may be much less regular – with respect to t – than the coefficients
aν,h(t), while Theorem 1, essentially, states that the symmetrizer Q inherits
the t–regularity of L.

Unfortunately, the symmetrizer Q is only weakly positive defined under
the assumption of weak hyperbolicity; hence, it is not possible to estimate
the energy defined by means of Q. Moreover, an estimate on the energy E =
〈QV, V 〉 does not automatically imply an estimate on the solution V ; therefore,
a perturbation argument is needed.

This leads us to the concept of quasi–symmetrizer. The construction
of a quasi–symmetrizer Qε is the object of the following theorem, due to
P. D’Ancona and S. Spagnolo:

Theorem 2 (see [5]) Let A(t, ξ) be an N × N Sylvester hyperbolic matrix,
where t ∈ [0, T ]. Let A be continuous in t, ξ, 0–homogeneous in ξ. Then, for
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any ε > 0 there exists a quasi–symmetrizer Qε(t, ξ), such that (C denotes a
positive constant):

i) the entries of Qε are polynomials in the entries of A whose coefficients
depend only on N and ε;

ii)
1
C
ε2(N−1)I ≤ Qε = Q∗

ε ≤ CI;

iii) QεA−A∗Qε ≤ CεQε.

As a consequence of Theorem 2, D’Ancona and Spagnolo obtain in their
cited work the following result:

Theorem 3 (see [5]) Let us consider the following semilinear system of
order N :

∂tu + A(t,D)u = f(t, x, u)

where A(t, ξ) is a weakly hyperbolic symbol belonging to CN class in t, and let
u be a solution which is uniformly Gevrey of order s, with

1 ≤ s < N/(N − 1) . (1.8)

Let us suppose that f is CN in t, real analytic in x and entire holomorphic
in u.

Then, if u is analytic at t = 0, it remains analytic for all the time in which
solution exists.

As regards Theorem 3, let us only remark that A is not, in general, a
Sylvester symbol, but the proof is based on quasi–symmetrizers for Sylvester
symbols and on a transformation of the system, by means of the cofactor
matrix of τI +A(t, ξ), into a system whose symbol is N–block Sylvester type.

Another interesting result, based on quasi–symmetrizer technique, has
been recently obtained by T. Kinoshita and S. Spagnolo (see [9]). Namely,
they consider a homogeneous weakly hyperbolic equation of order N with
time-dependent coefficients, of the form

⎧⎨
⎩

∂N
t u =

[
a1(t)∂x∂N−1

t + a2(t)∂2
x∂

N−2
t + · · ·+ aN (t)∂N

x

]
u,

∂h
t u |t=0 = uh(x), h = 0, . . . , N − 1.

(1.9)

Here weak hyperbolicity means that

zm −
N∑
j=1

aj(t)zN−j =
N∏
j=1

(z − λj(t)) with λ1(t) ≤ · · · ≤ λN (t) .
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Kinoshita and Spagnolo, moreover, assume a condition on characteristic roots,
i.e., they suppose that

λ2
i (t) + λ2

j (t) ≤M(λi(t)− λj(t))2, 1 ≤ i < j ≤ N, t ∈ [0, T ]. (1.10)

Then they are able to prove the following:

Theorem 4 (see [9]) Let us consider the weakly hyperbolic Cauchy problem
(1.9) and let us suppose that (1.10) holds. If aj ∈ Ck([0, T ]) for some k ≥ 2,
then (1.9) is well-posed in Gevrey spaces of order s for

1 ≤ s < 1 +
k

2(N − 1)
. (1.11)

When the aj’s are real analytic, (1.9) is C∞ well-posed.

In the present work a systematic theory of hyperbolic standard sym-
metrizer and quasi–symmetrizer is developed. In particular we will show that:

1) The symmetrizer Q is nothing but the Bezout matrix associated to the
couple of polynomials (P, ∂P∂τ ); this allows us to get an explicit formula for
Q in terms of the coefficients aν,h. Moreover, we provide analogous explicit
formula for the quasi–symmetrizer Qε.

2) A refinement of Theorem 2 is possible. In particular, in Section 3 below
we will prove the following:

Theorem 5 Let A(t, ξ) be an N ×N Sylvester hyperbolic matrix, where t ∈
[0, T ]. Let A be continuous in t, ξ, 0–homogeneous in ξ, and let m be the
maximum multiplicity of the eigenvalues of A. Then, for any ε > 0 there exists
a quasi–symmetrizer Qε(t, ξ), such that (C denotes a positive constant):

i) the entries of Qε are polynomials in the entries of A whose coefficients
depend only on N and ε;

ii)
1
C
ε2(m−1)I ≤ Qε = Q∗

ε ≤ CI;

iii) QεA−A∗Qε ≤ CεQε.

Theorem 5, in turn, allows a refinement of Theorems 3 and 4 as follows:

Theorem 3 holds verbatim but the assumption (1.8), which is replaced, de-
noting by m the maximum of the variable multiplicity of the characteristic
roots of symbol A(t, ξ), by the weaker assumption

1 ≤ s < m/(m− 1).
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Theorem 4 holds verbatim but the result (1.11), which is replaced, denoting
by m the maximum of the variable multiplicity of the characteristic roots λi,
by the stronger result

1 ≤ s < 1 +
k

2(m− 1)

(for further improvements of Theorem 4, see Section 4 below).

3) The standard symmetrizer may be used to get well-posedness results
for linear weakly hyperbolic equation without assuming any hypotheses about
characteristic roots: the hypotheses concern only coefficients and symmetrizer,
which in turn (see above) may be explicitly written in terms of the coeffi-
cients. As an example, in Section 4 a result (joint with G. Taglialatela) of
C∞ well–posedness for linear homogeneous weakly hyperbolic equations with
time-dependent coefficients is announced (for the proof see [7]).

The present paper is organized as follows: Section 2 is devoted to the
standard symmetrizer: definition, properties, examples, relationship with the
Bezout matrix. In Section 3 we study the D’Ancona and Spagnolo quasi–
symmetrizer, giving a sketch proof of Theorem 2 and a detailed proof of
Theorem 5; moreover, a general formula to get an explicit expression for the
quasi–symmetrizer is given. In Section 4 we show the main ideas and tech-
niques which make the symmetrizer useful in getting energy estimates for
weakly hyperbolic equations; starting from this, a result of C∞ well–posedness
is announced (see Theorem 6) and conclusions are drawn.

2 The standard symmetrizer

2.1 Definition and elementary properties

Let ϕ(x) =
r∑

h=0

ahx
r−h be a monic real hyperbolic polynomial with (eventually

coincident) roots x1, . . . xr. If 1 ≤ h ≤ r is the number of the distinct roots
of ϕ(x), we will denote (after eventual renaming) by x1, . . . , xh the distinct
roots, with multiplicity m1, . . . ,mh resp., so that

ϕ(x) = a0

r∏
j=1

(x− xj) = a0

h∏
j=1

(x− xj)mj , m1 + · · ·+ mh = r. (2.1)

If we set
coeff(ϕ) = (ar, ar−1, . . . , a1, a0),

V 0
p [x] = (1, x, x2, . . . , xp−2, xp−1),

V h
p [x] = Dh

xV
0
p [x],

(2.2)
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then we obviously get

ϕ(x) = coeff(ϕ) · V 0
r+1[x]; Dh

xϕ(x) = coeff(ϕ) · V h
r+1[x] . (2.3)

For the sake of commodity, from now on we will identify D0
x with the identity

operator, so that we will indifferently write ϕ(x) or D0
xϕ(x). Moreover, with

the same symbol V q
p [x] we will denote the row vector or the column vector

defined by (2.2). Now let us define

ϕ(i)(x) =
ϕ(x)

(x− xi)
1 ≤ i ≤ r . (2.4)

Then a straightforward verification shows that

coeff(ϕ(i)) =
(r−1∑
j=0

ajx
r−1−j
i ,

r−2∑
j=0

ajx
r−2−j
i , · · ·

1∑
j=0

ajx
1−j
i , a0

)
. (2.5)

Throughout this paper we will reserve the symbol W (ϕ) to the r × r matrix

W (ϕ) =

⎛
⎝ coeff(ϕ(1))
. . .
coeff(ϕ(r))

⎞
⎠ . (2.6)

The following proposition points out some useful properties of the matrices
W (ϕ):

Proposition 1 Let ϕ(x) as in (2.1), and let W (ϕ) be defined by (2.6). Then:

a) detW (ϕ) = ar0 det

⎛
⎝xr−1

1 . . . x1 1
. . . . . . . . .
xr−1
r . . . xr 1

⎞
⎠ = ar0

∏
1≤i<j≤r

(xi − xj) ;

b) If h < r, where h is the number of distinct roots of ϕ(x), and Σ is the set
of multiple roots of ϕ, then the n− h vectors

V i
r [xj ] xj ∈ Σ, 0 ≤ i ≤ mj − 2, (2.7)

constitute a basis for KerW (ϕ).

Proof a) If wj denotes the jth column of W (ϕ) and vj denotes the jth

column of the Vandermonde matrix

⎛
⎜⎝
xr−1

1 . . . x1 1
. . . . . . . . .

xr−1
r . . . xr 1

⎞
⎟⎠, then by (2.5) we

have
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wj =
r−j∑
k=0

akv
k+j , (2.8)

hence claim a) follows.

b) From a) we know that W (ϕ) has trivial kernel iff ϕ is strictly hyperbolic,
i.e., h = r. Now let us suppose that multiple roots occur, so that h < r. By
means of (2.8) we see that the first h rows of W (ϕ) are independent, as the
determinant of the uppermost rightmost h × h minor of W (ϕ) is equal to
ah0

∏
1≤i<j≤h

(xi − xj); therefore rankW (ϕ) ≥ h.

Let us consider the r × r matrix B whose columns are

B =
(
V 0
r [x1] . . . V m1−1

r [x1] . . . V 0
r [xj ] . . . V mj−1

r [xj ] . . . V 0
r [xh] . . . V mh−1

r [xh]
)
.

The matrix B is a generalized Vandermonde matrix (it would be a classical
Vandermonde iff m1 = · · · = mh = 1, i.e., in the strict hyperbolic case). It
is known (see for instance [8], Theorem 20) that the determinant of such a
generalization of the classical Vandermonde matrix is given by

detB =
( h∏

i=1

mi−1∏
j=1

j!
) ∏

1≤i<j≤h

(xj − xi)mimj . (2.9)

In particular, the columns of B are independent, and the vectors in (2.7) are
some of these columns. Moreover, being (see (2.3))

W (ϕ) · V j
r [x] =

⎛
⎜⎝
Dj

xϕ
(1)(x)

. . .

Dj
xϕ

(r)(x)

⎞
⎟⎠ j = 0, 1, . . . ,

we get that

W (ϕ) · V i
r [xj ] =

→
0 ∀xj ∈ Σ, 0 ≤ i ≤ mj − 2 ;

hence, remembering that rankW (ϕ) ≥ h, claim b) follows (and rankW (ϕ) =
h as a matter of fact). ��

Now let us come to A(t, ξ) and its related symbol P . Being A(t, ξ) 0–
homogeneous with respect to ξ, most of the theory will be developed for
ξ ∈ SN .

So, let |ξ| = 1 and let P be as in (1.7). Let us define h0 ≡ −1, so that

P (τ) = −
N∑
j=0

hjτ
N−j . (2.10)
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A direct verification immediately shows that the ith row of W = W (P ) is a

left eigenvector of A with eigenvalue τ i. Hence, if D =

⎛
⎜⎝
τ1

. . .
τN

⎞
⎟⎠, we get

WA = DW . Denoting by W ∗ the transposed of W , we obviously have that
both W ∗W and W ∗WA = W ∗DW are symmetric.

Definition 1 The matrix Q = W ∗W is said to be the standard symmetrizer
of the Sylvester matrix A.

Of course, there is a one–to–one correspondence between symbols P and
Sylvester matrices A; therefore, we can refer to Q as the symmetrizer related
to A or the symmetrizer related to P as well, and we may denote Q also by
Q(A) or Q(P ) depending on what relationship we want to emphasize.

We remark that, by construction, the entries of Q are certain (fixed) sym-
metric polynomials in τ1 . . . τN ; hence, by the fundamental theorem of sym-
metric functions, they are polynomials in h1 . . . hN .

Moreover, by Proposition 1 we get

detQ = (detW (P ))2 =
∏

1≤i<j≤N

(τ j − τ i)2, (2.11)

hence Q is strictly (resp. weakly) positive defined iff L is strictly (resp. weakly)
hyperbolic.

2.2 The standard symmetrizer and the Bezout matrix

Up to now we have reobtained Theorem 1 (see [6]); now let us show the link
between the standard symmetrizer and the concept of Bezout matrix.

Let us define the elementary symmetric functions of k variables τ1, . . . , τk
as

e
k,0

(τ) = 1, e
k,r

(τ) =
∑

i1<i2···<ir

τ i1τ i2 . . . τ ir

i1, . . . , ir = 1, . . . , k, r = 1, . . . , k ;
if τ1, . . . , τN are the roots of the symbol P defined by (2.1), then hr =
(−1)(r+1)eN,r(τ), r = 0, . . . , N . Moreover, let e

(i1...ir)

N,p
(τ) be the pth elemen-

tary symmetric function formed from (τ1, . . . , τN ) omitting τ i1 , . . . , τ ir . Then
a direct verification shows that

Wij = (−1)N−ie
(j)

N,N−i
(τ)

and therefore

Qij = (−1)i+j
N∑

k=1

e
(k)

N,N−i
(τ)e(k)

N,N−j
(τ). (2.12)
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Now, in [1] it is proved (see formula (33)) that
N∑

k=1

e
(k)

N,N−i
(τ)e(k)

N,N−j
(τ)

= i e
N,N−i

(τ)e
N,N−j

(τ)−
N−j∑
r=1

(j − i + 2r)e
N,N−i+r

(τ)e
N,N−j−r

(τ),

hence

Qij = i hN−ihN−j −
N−j∑
r=1

(j − i + 2r)hN−i+rhN−j−r. (2.13)

As is well–known, if

f(z) =
N∑
i=0

uiz
N−i, g(z) =

N∑
i=0

viz
N−i

are two polynomials of degree at most N , then the Bezout matrix Bez(f, g) of
order N associated to f and g is a symmetric N×N matrix implicitly defined
by means of the quadratic form

B(f, g;x, y) =
f(x)g(y)− f(y)g(x)

(x− y)
=

N∑
i,j=1

{Bez(f, g)}ij xi−1yj−1.

It turns out that if mij = min(N − i, j + 1), then

{Bez(f, g)}ij =
mij∑
k=1

uN−1−j−kvN−i−k − uN−i+kvN−1−j−k. (2.14)

By comparing (2.13) and (2.14) we get that

Q = Bez(P,
∂P

∂τ
) (2.15)

and we reobtain (2.11) from (2.15), on account of the following facts:

• the determinant of Bez(f, g) is the resultant of f and g;

• the resultant of f, f ′ is the discriminant of f .

Moreover, there is another way to write (2.13), which will be useful in the
next section. Let us define, for any n, a transformation Φ from the space of
n×n real symmetric matrices to the space of (n−1)× (n−1) real symmetric
matrices: if X is any n× n real symmetric matrix, then

Φ(X)i,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

iXi+1,j+1 −
min(i,n−j−1)∑

k=1

(j − i + 2k)Xi+1−k, j+1+k j ≥ i ;

jXj+1,i+1 −
min(j,n−i−1)∑

k=1

(i− j + 2k)Xj+1−k, i+1+k j < i .

(2.16)
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Φ(X), by construction, is an (n− 1)× (n− 1) real symmetric matrix.
Now, if P is defined by (2.10), and if we consider the (N + 1) × (N + 1)

real symmetric matrix

Π =

⎛
⎜⎜⎝

hmhm hmhm−1 . . . hmh1 hmh0

hm−1hm hm−1hm−1 . . . hm−1h1 hm−1h0

. . . . . . . . . . . . . . .
h0hm h0hm−1 . . . h0h1 h0h0

⎞
⎟⎟⎠ ,

then
Q = Φ(Π). (2.17)

2.3 How symmetrizer checks hyperbolicity

Let P be a real monic polynomial of degree N . Then it is well-known (see
for instance [11]) that it is possible to count the real roots of P by means
of a suitable sequence of principal minors of Bez(P, P ′), i.e., by means of its
standard symmetrizer Q.

Namely, for j = 1 . . . N − 1 let

Qj =

⎛
⎜⎜⎝

Qj,j . . . Qj,N

...
...

...

QN,j . . . QN,N

⎞
⎟⎟⎠ (2.18)

be the principal (N − j + 1)× (N − j + 1) minor of Q obtained by removing
the first j − 1 rows and the first j − 1 columns of Q. We remark that Q1 = Q
and QN = {N}. Let

Δ1 = detQ, Δ2 = detQ2, . . . Δj = detQj , . . . ΔN = detQN = N (2.19)

(observe that Δ1 = detQ is the discriminant of P ). Then:

P is strictly hyperbolic ⇐⇒ Δ1 > 0,Δ2 > 0, . . . ,ΔN > 0;
P is weakly hyperbolic ⇐⇒

∃h : Δ1 = · · · = ΔN−h = 0,ΔN−h+1 > 0, . . . ,ΔN > 0;
in this case P has exactly h distinct roots.

Let us remark that weak hyperbolicity of a real polynomial P is not only
a matter of weak positivity of the sequence Δ1 . . . ΔN ; the (eventual) zeros
must all be confined at the leftmost part of the sequence.
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2.4 A few examples

Let N = 2, so that

L = ∂2
t −

∑
1≤j≤2

|ν|=j

aν,j(t) ∂ν
x ∂

2−j
t ;

P (τ , ξ; t) = τ2 −
∑

1≤j≤2

|ν|=j

aν,j(t) ξν τ2−j = τ2 − h1(t, ξ)|ξ|τ − h2(t, ξ)|ξ|2

= (τ − τ1(t, ξ)|ξ|)(τ − τ2(t, ξ)|ξ|) ;

A =

(
0 1
h2 h1

)
, W =

(
−τ1 1
−τ2 1

)
.

Hence ⎧⎪⎨
⎪⎩

h0 = −1
h1 = τ1 + τ2

h2 = −τ1τ2

; Π =

⎛
⎜⎝
h2h2 h2h1 h2h0

h1h2 h1h1 h1h0

h0h2 h0h1 h0h0

⎞
⎟⎠ .

Then

Q = Φ(Π) =

(
2h2 + h2

1 −h1

−h1 2

)
=

(
τ2

1 + τ2
2 −τ1 − τ2

−τ1 − τ2 2

)
= W ∗W.

Let N = 3, so that

L = ∂3
t −

∑
1≤j≤3
|ν|=j

aν,j(t) ∂ν
x ∂

3−j
t ;

P (τ , ξ; t) = τ3 −
∑

1≤j≤3
|ν|=j

aν,j(t) ξν τ3−j

= τ3 − h1(t, ξ)|ξ|τ − h2(t, ξ)|ξ|2 − h3(t, ξ)|ξ|3

= (τ − τ1(t, ξ)|ξ|)(τ − τ2(t, ξ)|ξ|)(τ − τ3(t, ξ)|ξ|) ;

A =

⎛
⎜⎝

0 1 0
0 0 1

h3 h2 h1

⎞
⎟⎠ , W =

⎛
⎜⎝
τ1τ2 −(τ1 + τ2) 1

τ1τ3 −(τ1 + τ3) 1

τ2τ3 −(τ2 + τ3) 1

⎞
⎟⎠.
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Hence⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h0 = −1
h1 = τ1 + τ2 + τ3

h2 = −τ1τ2 − τ1τ3 − τ2τ3

h3 = τ1τ2τ3

; Π =

⎛
⎜⎜⎜⎜⎝

h3h3 h3h2 h3h1 h3h0

h2h3 h2h2 h2h1 h2h0

h1h3 h1h2 h1h1 h1h0

h0h3 h0h2 h0h1 h0h0

⎞
⎟⎟⎟⎟⎠ .

Then

Q = Φ(Π) =

⎛
⎜⎝
h2

2 − 2h1h3 h1h2 + 3h3 −h2

h1h2 + 3h3 2h2
1 + 2h2 −2h1

−h2 −2h1 3

⎞
⎟⎠

=
∑

1≤i<j≤3

⎛
⎜⎝

τ2
i τ

2
j −τ2

i τ j − τ iτ
2
j τ iτ j

−τ2
i τ j − τ iτ

2
j (τ i + τ j)2 −2τ i

τ iτ j −2τ i 3

⎞
⎟⎠ = W ∗W.

(2.20)

3 The quasi–symmetrizer

3.1 Sketch proof of Theorem 2

Let T be the N ×N lower triangular matrix defined as

Tij =

{
(−1)i+je

i−1,i−j
(τ) if j ≤ i,

0 if j > i,
(3.1)

i.e.,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . . 0

−τ1 1 0 0 0 . . . 0

τ1τ2 −(τ1 + τ2) 1 0 0 . . . 0

−τ1τ2τ3 τ1τ2 + τ2τ3 + τ3τ1 −(τ1 + τ2 + τ3) 1 0 . . . 0

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then we see, by direct inspection, that T triangulates A, in the sense that

TAT−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1 1
τ2 1 0

. . . . . .
0 τN−1 1

τN

⎞
⎟⎟⎟⎟⎟⎟⎠

= D + K (3.2)
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with obvious meaning of the symbols. Now, defining

Hε =

⎛
⎜⎜⎜⎜⎜⎝

εN−1 0
εN−2

. . .

0 1

⎞
⎟⎟⎟⎟⎟⎠

and Sε = T ∗H2
εT (3.3)

we see that Sε is a (nonsmooth, when unfreezing coefficients) quasi–symmet-
rizer for A, which satisfies ii) and iii) (in place of Qε). It satisfies ii) by its
very definition; as regards iii), we have

HεK = εKHε (3.4)

and

SεA−A∗Sε = T ∗H2
εTA− (T ∗H2

εTA)∗

= T ∗H2
ε (D + K)T − (T ∗H2

ε (D + K)T )∗

= T ∗(H2
εK −K∗H2

ε )T = εT ∗(HεKHε −HεK
∗Hε)T ;

(3.5)

hence, on account of

|〈Kz, z〉| ≤ |z|2 ∀z (3.6)

we deduce

|〈(SεA−A∗Sε)z, z〉| = 2ε|Im〈(KHεT )z,HεTz〉
≤ 2ε|HεTz|2 = 2ε〈Sεz, z〉 .

(3.7)

Now we must manage to fulfill i), in order to get a smooth quasi–
symmetrizer, whose entries are polynomials in the entries of A. To this aim, if
σ is any permutation on τ1 . . . τN and Sεσ

is the matrix obtained by Sε under
the action of σ, let us define

Qε =
∑
σ

Sεσ
=

N−1∑
k=0

ε2kQ(k) (3.8)

where the sum runs over all possible permutations σ. Then again Qε fulfills ii)
and iii), but now any of its entries is a symmetric polynomial in the N–tuple
τ1 . . . τN , hence it is a polynomial in the entries of A. Standard continuity
and compactness arguments allow us to manage variable coefficients, so that
thesis easily follows. ��
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3.2 Going deep into quasi–symmetrizer

Let us go back to the definition of Sε in (3.3). The matrix Sε is a polynomial
expression in ε with N ×N matrices as coefficients, i.e.,

Sε =
N−1∑
h=0

ε2hM (h)

where M
(N−h)
ij = ThiThj ; hence, by (3.1),

M
(N−h)
ij =

{
(−1)i+je

h−1,h−i
(τ)e

h−1,h−j
(τ) if 1 ≤ i, j ≤ h

0 otherwise
h = 1, . . . , N.

(3.9)
By (3.9) we immediately learn the following facts about the M (h):

• The last h rows and h columns of M (h) are identically zero;
• M (N−h) depends only on τ1, . . . , τh−1, h = 2 . . . N , while M (N−1) is con-
stant;

• M
(N−h)
hh = 1, h = 1, . . . , N .

To get a smooth quasi–symmetrizer, in the proof of Theorem 2, following
[5], a sum is performed over all possible permutations σ. This is redundant;
for instance, M (N−1) is constant, so that it does not need any sum. Let us be
more precise about any M (h).

The matrix M (0) depends on τ1, . . . , τN−1, so for M (0) we may restrict
the sum to the subgroup of permutations σ ∈ Σ1 which choose any subset of
N − 1 roots τ j keeping indexes j in increasing order. We have #(Σ1) = N
(here # stands for cardinality).

Analogously, for h = 1 . . . N −2, the matrix M (h) depends only on τ1, . . . ,
τN−h−1, so we may restrict the sum to the subgroup of permutations σ ∈ Σh+1

which choose any subset of N −h− 1 roots τ j keeping indexes j in increasing
order. We have #(Σh+1) =

(
N

N−h−1

)
.

Let us define

Q(h) =
∑

σ∈Σh+1

M (h)
σ , h = 0, . . . , N − 2; Q(N−1) = M (N−1) (3.10)

where obviously M
(h)
σ denotes M (h) under the action of σ. Then the matrices

Q(j) defined in (3.8) coincide with the Q(j) defined in (3.10) apart from mul-
tiplicative constants due to the redundance of useless permutations of roots;
from now on we will neglect these constants and adopt (3.10) for the Q(j).
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Let us remark that, just as for the M (j), the last j rows and last j columns
of the matrices Q(j) are identically zero. As we need to study the properties of
the nonzero part of matrices Q(j), we introduce the symbol Q̃(j) which stands
for the (N − j)× (N − j) matrix obtained taking the first N − j rows and first
N − j columns of Q(j).

From (3.10), (3.9) and (2.12) we immediately get

Q
(0)
ij = (−1)i+j

N∑
k=1

e
k

N,N−i
(τ)ek

N,N−j
(τ) = Qij ,

i.e., the quasi–symmetrizer is a perturbation of the standard symmetrizer;
Qe and Q coincide when ε = 0.

The following Proposition 2 will establish the relevant properties of the
matrices Q̃(h), with h ≥ 1. Let us introduce the notation

P (i1...ir)(τ) =
P (τ)

(τ − τ i1) . . . (τ − τ ir )
, 1 ≤ i1 < · · · < ir ≤ N.

Proposition 2

a) The following relations hold:

Q̃(h) =
1

h + 1

∑
1≤i1<···<ih≤N

Q(P (i1...ih)) h = 1, . . . , N − 2 ;

Q̃
(h)
N−h,N−h =

(
N

N − h− 1

)
.

(3.11)

b) Let us fix τ and ξ : |ξ| = 1. Let m1 be the maximum multiplicity of the
roots τ j of P = (τ − τ1)m1 . . . (τ − τh)mh . Then

Q̃(j) is strictly positive ⇐⇒ j ≥ m1 − 1. (3.12)

Proof a) Let us carry out the proof for h = 1, the general case being quite
analogous. From (3.9) we have

M
(1)
ij = (−1)i+je

N−2,N−1−i
(τ)e

N−2,N−1−j
(τ)

= (−1)i+je
(N−1,N)

N,N−1−i
(τ)e(N−1,N)

N,N−1−j
(τ),

hence, by (3.10),
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Q̃
(1)
ij =

∑
σ∈Σ2

M
(1)
ij σ

=
1
2
(−1)(i+j)

N∑
k=1

∑
r �=k

e
(k,r)

N,N−1−i
(τ)e(k,r)

N,N−1−j
(τ) =

1
2

N∑
k=1

Q(P (k))ij

(the factor 1
2 above depends on the definition of subgroup of permutations

Σ2, which was chosen as small as possible, keeping indexes of the roots in
increasing order; of course, from the viewpoint of ε estimates about the quasi–
symmetrizer, any multiplicative constant is negligible).

Analogously

Q̃
(h)
ij

=
∑

σ∈Σh+1

M
(h)
ij σ

= · · · = 1
h + 1

∑
1≤i1<···<ih≤N

Q(P (i1...ih)), h = 1, . . . , N−2,

and, being M
(h)
N−h,N−h = 1, from the above formula we get

Q̃
(h)
N−h,N−h = #(Σh+1) =

(
N

N − h− 1

)
.

b) From a) and from the definition of standard symmetrizer, we know that

〈Q̃(h)y, y〉 =
1

h + 1

∑
1≤i1<···<ih≤N

∣∣∣W (P (i1...ih)) · y
∣∣∣2 , y ∈ R

N−h. (3.13)

Therefore the quadratic form 〈Q̃(h)y, y〉 is not strictly positive defined,
but only weakly positive, if and only if the intersection of the kernels of
W (P (i1...ih)), when i1, . . . , ih vary, is nontrivial.

But Proposition 1–b) gives a basis of KerW (ϕ) for any real hyperbolic
polynomial ϕ, and it is quite easy to see that if {ϕα}α is a family of r–degree
monic hyperbolic polynomials, then

⋂
α

KerW (ϕα) �= ∅ ⇐⇒ ∃x : x is a multiple root for any ϕα. (3.14)

Being P = (τ − τ1)m1 . . . (τ − τh)mh , we have that

τ j is a multiple root for any P (i1...ir) ⇐⇒ r ≤ mj − 2 (3.15)

and the highest value of r for which (3.15) may occur is r = m1−2; therefore,
(3.12) follows from (3.13)–(3.15).
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3.3 The proof of Theorem 5

Let

Qε =
m−1∑
k=0

ε2kQ(k) . (3.16)

On account of Theorem 2, all we have to prove is the existence of δ > 0
such that

Qε ≥ δε2(m−1)I . (3.17)

We have

〈Qεy, y〉 =
m−1∑
k=0

ε2k〈Q(k)y, y〉 y ∈ R
N (3.18)

and any term of the sum is not negative. We claim that

∀ y : |y| = 1 ∃ j, 0 ≤ j ≤ m− 1 : 〈Q(j)y, y〉 > 0 (3.19)

from which (3.17) follows. Indeed, by absurd, if this is not the case, then there
exists y = (y1 . . . yN ) : |y| = 1 and

〈Qεy, y〉 = 0 =⇒ 〈Q(h)y, y〉 = 0, h = 0 . . . m− 1 . (3.20)

Now, by Proposition 2 we know that Q̃(m−1) > 0, hence

y1 = · · · = yN−m+1 = 0 ; (3.21)

therefore, remembering that Q
(j)
N−j,N−j > 0 (see (3.11)) and that the last j

rows and last j columns of Q(j) are identically zero, we obtain

0 = 〈Q(m−2)y, y〉 = Q
(m−2)
N−m+2,N−m+2y

2
N−m+2

=⇒ yN−m+2 = 0 ;
(3.22)

backward induction brings us to the conclusion y =
→
0 , an absurd. ��

At the end of this section, we want to point out that, analogously to what
happens for the standard symmetrizer, there is a closed formula to write down
the quasi–symmetrizer. Namely, if Φ is defined by (2.16), then it may be proved
that

Q̃(1) =
1
2
Φ(Q), Q̃(2) =

1
3
Φ(Q̃(1)) . . . Q̃(j+1) =

1
j + 2

Φ(Q̃(j)) · · · ·
(3.23)
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3.4 An example

Let N = 3. Then (see (2.20))

Q =

⎛
⎜⎝
h2

2 − 2h1h3 h1h2 + 3h3 −h2

h1h2 + 3h3 2h2
1 + 2h2 −2h1

−h2 −2h1 3

⎞
⎟⎠ ,

Q̃(1) =
1
2
Φ(Q) =

(
2h2 + h2

1 −h1

−h1 3

)
, Q̃(2) =

1
3
Φ(Q̃(1)) = (1),

hence

Qε =
⎛
⎜⎝
h2

2 − 2h1h3 h1h2 + 3h3 −h2

h1h2 + 3h3 2h2
1 + 2h2 −2h1

−h2 −2h1 3

⎞
⎟⎠ + ε2

⎛
⎝

2h2 + h2
1 −h1 0

−h1 3 0
0 0 0

⎞
⎠ + ε4

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠.

4 Hyperbolic symmetrizer and weakly hyperbolic
equations

In this section we want to show that the hyperbolic symmetrizer is a useful tool
for getting energy estimates and proving well–posedness of weakly hyperbolic
Cauchy problems. Moreover, the symmetrizer allows us to get well–posedness
results assuming hypotheses on the coefficients of a scalar hyperbolic operator,
instead of considering the characteristic roots, as most of the literature about
the subject does. This is meaningful for high-order scalar hyperbolic operators,
in which an explicit expression for characteristic roots is often not available.
For instance, let L as in (1.5), and let us suppose that the coefficients aν,j
are analytic in [0, T ]. We want to state a result of C∞ well–posedness for the
equation L[u] = 0 in the strip R

n
x × [0, T ]. We know from [2] that if a(t) is

a nonnegative analytic function, then the Cauchy problem at t = 0 for the
model equation

utt = a(t)uxx , (x, t) ∈ Rx × [0, T ] (4.1)

is C∞ well–posed, and indeed [2] is essentially concerned with weakly hyper-
bolic wave–type homogeneous equations with regular coefficients.
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On the other hand, both the equations

utt − ux = 0,

utt − 2tutx + t2uxx = 0
(4.2)

are C∞ ill–posed. The first equation in (4.2) is not homogeneous, and its
lower order term does not fulfill the Levi condition, which is necessary for C∞

well–posedness; but the second equation is homogeneous, and nevertheless it
is C∞ ill–posed, as it may be transformed into the first equation by means of a
change of variables. Therefore, any extension of [2] results must assume some
algebraic hypotheses about the operator L. Here we show how it is possible
to formulate these hypotheses by means of the symmetrizer.

In order to better understand the assumptions we are going to make about
Q = Q(L), let us go back to our model equation (4.1).

4.1 Sketch proof of C∞ well–posedness of (4.1)

If f(x) is a nonnegative real analytic function on an interval [a, b] with isolated
zeros, say a ≤ x1 < · · · < xk ≤ b, we will denote by zf (x) the function

zf (x) =
k∏

i=1

|x− xi|. (4.3)

Obviously
∃C : |zf (x)f ′(x)| ≤ Cf(x) ∀x ∈ [a, b]. (4.4)

Now, coming to equation (4.1), if a(t) ≡ 0, or if a(t) > 0∀t ∈ [0, T ], there is
nothing to prove. Otherwise, being a(t) analytic, its zeros, say 0 ≤ t1 < · · · <
tl ≤ T , are isolated and have finite order.

Let v(t, ξ) be the Fourier transform of u(t, x) with respect to x, so that

v′′ + ξ2a(t)v = 0 . (4.5)

Following [9], we introduce two kinds of energy for (4.5): a Kovalevskian en-
ergy, which we are going to use near the tj , and a hyperbolic energy, adopted
in the rest of the interval [0, T ]. Namely, let us fix for the moment ε > 0
sufficiently small and let us define

Ẽ(t, ξ) = ξ2|v|2 + |v′|2 (Kovalevskian energy),

E(t, ξ) = (a(t))ξ2|v|2 + |v′|2 (hyperbolic energy).
(4.6)

Being (here and in the following C denotes any suitable positive constant)

Ẽ′ = 2ξ2Re (v, v′) + 2Re (v′, v′′) ≤ C|ξ|Ẽ
we get

Ẽ(t, ξ) ≤ eCε|ξ|Ẽ(0, ξ) ∀ t ∈ [0, ε],

Ẽ(t, ξ) ≤ eCε|ξ|Ẽ(t1 − ε, ξ) ∀ t ∈ [t1 − ε, t1],
(4.7)
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while, on account of (4.4),

E′ = a′(t)ξ2|v|2+2(a(t))ξ2Re (vv′)+2Re (v′v′′) = a′(t)ξ2|v|2 ≤ C

za(t)
E (4.8)

from which we have

E(t, ξ) ≤ E(ε, ξ)eC(log (1/ε)) ∀ t ∈ [ε, t1 − ε]. (4.9)

Moreover, having a(t) only zeros of finite order, say at most ν,

|ξv(t, ξ)|2 + |v′(t, ξ)|2 ≤ C

εν
E(t, ξ) ∀ t ∈ [ε, t1 − ε]. (4.10)

By (4.7), (4.9) and (4.10) we easily get

|ξv(t, ξ)|2 + |v′(t, ξ)|2

≤ CeC(log(1/ε)+ε|ξ|)(|ξv(0, ξ)|2 + |v′(0, ξ)|2) ∀ t ∈ [0, t1].
(4.11)

By iterating this process on the whole interval [0, T ] we have

|ξv(t, ξ)|2 + |v′(t, ξ)|2

≤ CeC(log(1/ε)+ε|ξ|)(|ξv(0, ξ)|2 + |v′(0, ξ)|2) ∀ t ∈ [0, T ]
(4.12)

and finally, by choosing ε = 1/|ξ| for |ξ| sufficiently large, we deduce from
(4.12) that there exists a suitable integer k such that

|ξv(t, ξ)|2 + |v′(t, ξ)|2

≤ C(1 + |ξ|k)(|ξv(0, ξ)|2 + |v′(0, ξ)|2) ∀ t ∈ [0, T ]
(4.13)

now C∞ well–posedness of (4.1) follows from the Paley–Wiener theorem. ��

4.2 Toward more general homogeneous equations

It is quite clear that the crucial point in the above proof is the estimate

|za(t)a′(t)| ≤ Ca(t) ∀ t ∈ [0, T ].

Now, suppose that we want to adapt our previous argument to a general
weakly hyperbolic equation with real analytic coefficients, by means of the
symmetrizer. For the sake of simplicity, for the time being let us confine our-
selves to one space variable. Moreover, let us suppose that the discriminant
Δ1(t) of the principal symbol is not identically zero.
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Then, as explained in Section 1, after Fourier transform in space and re-
duction to first-order system, we come to a problem like (1.2) where A is a
hyperbolic Sylvester matrix like (1.6), i.e.,

V ′(t, ξ) = iξA(t)V (t, ξ) (4.14)

(note that A does not depend on ξ as we are in one space dimension).
If we want to retrace the previous proof for model equation (4.1), we can

consider again two types of energy, namely,

Ẽ(t, ξ) = |V (t, ξ)|2 (Kovalevskian energy),

E(t, ξ) = 〈Q(t)V (t, ξ), V (t, ξ)〉 (hyperbolic energy),
(4.15)

where Q(t) is the standard symmetrizer of L. Now it is clear that, instead of
a′(t)
a(t)

, we must manage an expression like

〈Q′(t)V, V 〉
〈Q(t)V, V 〉 . (4.16)

Here the main difficulty pops up: it does not exist, in general, a constant C
such that

zΔ1(t)|〈Q′(t)W,W 〉| ≤ C〈Q(t)W,W 〉 ∀W ∈ SN . (4.17)

Example Let us consider the equation

utt − 2tutx + (t2 − t4)uxx on Rx × [0, 1]. (4.18)

Let v(t, ξ) be the Fourier transform of u(t, x) with respect to x, so that

v′′ − 2iξtv′ − ξ2(t2 − t4)v = 0. (4.19)

Let us reduce (4.19) to a first–order system: if

V (t, ξ) =

(
iξv(t, ξ)
v′(t, ξ)

)
,

then

V ′ = iξ

(
0 1

t4 − t2 2t

)
V. (4.20)

The symmetrizer is

Q(t) =

(
2t2 + 2t4 −2t
−2t 2

)
(4.21)

and Δ1(t) = detQ(t) = 4t4 so that zΔ1(t) = t in [0, 1]. So, if W = (w1, w2),
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zΔ1(t)
〈Q′(t)W,W 〉
〈Q(t)W,W 〉 =

(2t2 + 4t4)w2
1 − 2w1w2

(tw1 − w2)2 + t4w2
1

:= f(t, w1, w2). (4.22)

Straightforward calculation shows that

f(ε + ε2,
√

1− ε2, ε) =
2ε3 + o(ε3)
2ε4 + o(ε4)

,

hence the ratio

zΔ1(t)
〈Q′(t)W,W 〉
〈Q(t)W,W 〉

is unbounded.

Of course, (4.17) would hold if Q = Q(L) would be a diagonal matrix, but
this happens iff L = ∂2

t −
∑

aij(t)∂2
xixj

, i.e., for wave–type equations, which
in fact do not need a symmetrizer. Moreover, from a heuristic viewpoint, it
is clear the reason why Kinoshita and Spagnolo in [9] introduce the concept
of nearly diagonal family of matrices, which they can apply, due to hypoth-
esis (1.10), to the quasi–symmetrizer Qε, regarded as a family of matrices
indexed by ε.

From the preceding discussion it is clear that we must look for algebraic
hypotheses on the operator L, hence on Q, to ensure that (4.17) holds.

To this aim, let us remark that:

• If B1(t), B2(t) are two real symmetric N×N matrices, B2(t) is nonnegative
and detB2(t) has only isolated zeros, then

|〈B1(t)W,W 〉|
〈B2(t)W,W 〉 ≤ C

iff the roots of the Hamilton–Cayley polynomial

det(λB2(t)−B1(t)) =
N∑

h=0

ch(t)λN−h.

are bounded functions of t;

• The hyperbolic polynomial
N∑

h=0

ch(t)λN−h has bounded roots λ1(t), . . . ,

λN (t) iff the ratios c1(t)/c0(t), c2(t)/c0(t) are bounded, as

N∑
i=1

λ2
i (t) =

c21(t)
c20(t)

− 2
c2(t)
c0(t)

;
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• If γ(t) is any scalar function and
N∑

h=0

ch(t)λN−h is the Hamilton–Cayley

polynomial of B1(t), B2(t), then the Hamilton–Cayley polynomial of γ(t)B1(t),
B2(t) is

N∑
h=0

γh(t)ch(t)λN−h.

Now, let

R(λ, t) = det(λQ(t)−Q′(t)) =
n∑

h=0

dh(t)λN−h

= Δ1(t)λN −Δ′
1(t)λ

N−1 +
n∑

h=2

dh(t)λN−h ;
(4.23)

then we get (4.17) iff

∃C : |zΔ1(t)Δ
′
1(t)| ≤ CΔ1(t), |z2

Δ1
(t)d2(t)| ≤ CΔ1(t) ∀ t ∈ [0, T ].

(4.24)
But the first inequality in (4.24) is automatically verified, while the second

is false in general, unless it is assumed as a hypothesis. This leads us to the
following:

Definition 2 Let B(t) be an N×N real symmetric C1 matrix. The coefficient
of λN−2 in the polynomial det(λB(t)−B′(t)) is termed the check function of
the matrix B(t).

Throughout the rest of the paper, we will denote by ψ
B

(t) the check function
of B(t).

By (4.24) we see that (4.17) holds provided that, at any point t at which
Δ1(t) has a zero of order h, ψQ(t) has a zero of order not less than h−2. This
motivates the following:

Definition 3 Let f, g be two real analytic functions on an interval I ⊂ R, let
g ≥ 0. We say that f is −k dominated by g, and we denote this by

f
(k)≺ g

if, at any point t ∈ I at which g(t) has a zero of order h, the function f(t)
has a zero of order greater than or equal to h− k.

Now we may state a C∞ well–posedness result.

Proposition 3 Let us consider the equation

L[u] = ∂N
t u−

N∑
j=1

aj(t) ∂j
x∂

N−j
t u = 0 on Rx × [0, T ] (4.25)
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where L is a weakly hyperbolic operator with real analytic coefficients aj(t).
Let Q = Q(L) the symmetrizer of L and Δ1(t) its determinant. Let us suppose
that:

i) Δ1(t) �≡ 0,

ii) ψQ(t)
(2)≺ Δ1(t),

then the Cauchy problem at t = 0 for (4.25) is C∞ well–posed.

Proof The proof of C∞ well–posedness of (4.1) we sketched above holds ver-
batim in this case, provided that (4.25) is tranformed into a system like (4.14)
and the definition (4.6) of the energies is replaced by (4.15); therefore, we will
not write down this proof again. We want only to remark that now (4.8) is
replaced by

E′ = 〈Q′(t)V (t, ξ), V (t, ξ)〉 ≤ C

zΔ1(t)
E

due to the fact that Q is the symmetrizer, which means that QA is symmetric
(see also (1.4)), and (4.17) holds, thanks to hypothesis ii). ��

Proposition 3 may be regarded as a provisional result, as we assumed to
be in the simpler frame of one space variable and Δ1(t) �= 0, but it clarifies
the role of the check function of a matrix in our theory.

Of course, it may happen that Δ1(t) ≡ 0. If we assume hypothesis ii)
of Proposition 3 (and indeed we must assume it), then ψ

Q
(t) ≡ 0, hence

R(λ, t) ≡ 0, where R(λ, t) is defined in (4.23). So, if Δ1(t) ≡ 0, the Hamilton–
Cayley polynomial of Q′, Q vanishes at all. This is the situation, for instance,
for the operators

L1 = ∂4
t , L2 = ∂2

t (∂
2
t − 2t∂t∂x + t2∂2

x)

and obviously L1 is C∞ well–posed while L2 is C∞ ill–posed (being a trivial
variation of the second equation in (4.2)).

When Δ1(t) ≡ ψQ ≡ 0, it turns out that the behavior of the ratio

〈Q′(t)W,W 〉
〈Q(t)W,W 〉

is completely described by the minors Qj defined in (2.18) and their check
functions ψQj

. Starting from this fact, we may state the general result (for
the proof see [7]):

Theorem 6 Let L as in (1.5) be a weakly hyperbolic homogeneous operator
with real analytic coefficients in [0, T ]. Let A(t, ξ) as in (1.6) be its Sylvester
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matrix, and Q(t, ξ) = Q(A)(t, ξ) its standard symmetrizer. Let Qj be as
in (2.18).

For any fixed ξ ∈ SN , let r = r(ξ) be the minimum integer such that
Δr(t, ξ) �≡ 0 in [0, T ]. Let us suppose that:

if r > 1, then ψ
Qr−1

(t, ξ) ≡ 0 in [0, T ];

if r < N (r < N − 1 when N ≥ 3), then ψQr
(t, ξ)

(2)≺ Δr(t, ξ) in [0, T ].

Then, the Cauchy problem for L at t = 0 is C∞ well–posed.

Remark In the frame of C∞ well–posedness for homogeneous weakly hy-
perbolic operators with time-dependent analytic coefficients, Theorem 6 is
more general than [9]. Moreover, in this context, operators which satisfy hy-
potheses of [3] (see also [4]) satisfy also hypotheses of Theorem 6. It is likely
that, as a matter of facts, there is an equivalence between our Theorem 6 and
its counterpart in [3]. The novelty consists in assuming hypotheses only about
the coefficients of the operator, instead of the characteristic roots.

In conclusion, the underlying reason for adopting the hyperbolic sym-
metrizer as a standard tool in the theory of hyperbolic equations is that any
hypothesis about characteristic roots must be invariant under permutation of
the roots, and so it may (and definitely it should) be expressed in terms of
the coefficients of the operator.
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1 Introduction

In [3] we showed the existence of time global solutions to the Cauchy problem
and the scattering for one-dimensional perturbed Kirchhoff equations. In this
paper we shall get the time global solutions to the Cauchy problem for one- and
multidimensional Kirchhoff equations. We consider the following equation:

{
utt(t, x) = (1− ε(Au(t), u(t))L2)Au(t, x), t ∈ R, x ∈ R

n,
u(0, x) = f(x), ut(0, x) = g(x), x ∈ R

n,
(1.1)

where A =
∑n

j,k=1
∂

∂xj
ajk(x) ∂

∂xk
. We assume that the coefficients ajk(x) ∈

C∞(Rn) are real valued, have bounded derivatives in Rn and satisfy that
ajk(x) = akj(x) and

a(x, ξ) =
n∑

j,k=1

ajk(x)ξjξk ≥ 0, (1.2)

for x, ξ ∈ R
n.

Let μ ∈ R and 1 ≤ p ≤ ∞ and Lp = Lp(Rn) the set of integrable functions
over R

n with pth power. We denote by W l,p
μ the set of functions u(x) defined
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Differential Equations, DOI 10.1007/978-0-8176-4861-9 8,
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in R
n such that (1 + |x|)μ∂α

xu(x) is contained in Lp for |α| ≤ l. For brevity
we denote Lp

μ = W 0,p
μ ,W l,p = W l,p

0 , H l
k = W l,2

k and H l = W l,2. Denote H =√−A, D(H) the definition domain of H and H0 =
√−Δ, Δ =

∑n
j=1(

∂
∂xj

)2.

We assume that the initial data (f, g) belongs to D(H
3
2 ) × D(H

1
2 ) and

satisfies

||(f, g)||Y (H)

=
∫ ∞

−∞
{|(eitHH3f, f)|+ |(eitHH2f, g)|+ |(eitHHg, g)|}dt <∞,

(1.3)

where (·, ·) stands for an inner product of L2(Rn). The first result we mention

is the following theorem.

Theorem 1.1 Assume that (1.2) is valid and moreover assume that (f, g) ∈
D(H

3
2 ) × D(H

1
2 ) satisfies (1.3). Then there is ε0 > 0 such that for any ε ∈

(0, ε0] there exists the unique solution u of the Cauchy problem (1.1) which be-

longs to ∩2
j=0C

j(R;D(H
3
2−j
0 )) and satisfies sups∈R

||(u(s), us(s)||Y (H) < ∞.

We remark that Greenberg and Hu [2], D’Ancona and Spagnolo [1], and
Yamazaki [4], [5], [6] proved the existence of time global solution to the Cauchy
problem for Kirchhoff equations under the decay conditions in space variables
on the initial data. In [3], Kajitani investigates one-dimensional perturbed
Kirchhoff equations.

Next we consider the Kirchhoff equation associated to Δ, that is, the case
of A = Δ, {

vtt(t, x) = (1 + ε||∇v(t)||2L2)Δv(t, x), t ∈ R, x ∈ R
n,

v(0, x) = f0(x), vt(0, x) = g0(x), x ∈ R
n.

(1.4)

Applying Theorem 1.1 we can get the following theorem.

Theorem 1.2 Assume that the initial data (f0, g0) belongs to D(H
3
2 )∩W l,1×

D(H
1
2 )∩W l−1,1, l > n+ 2. Then there is ε0 > 0 such that for any ε ∈ (0, ε0]

we have the unique solution v of the Cauchy problem (1.4) which belongs to

∩2
j=0C

j(R;D(H
3
2−j
0 )).

We remark that the above theorem is proved essentially by Yamazaki [5], [6]
in the case of n ≥ 3.

2 Proof of Theorem 1.1

First we transform our original equation into a two-by-two system of first-order
equations following Greenberg and Hu [2]. We let A1(t, x) = ut + ic(t)Hu and
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B1(t, x) = ut−ic(t)Hu, where c(t)2 = 1+ε||a(·)Hu(t)||2L2 . We write c′ = dc(t)
dt .

Then equation (1.1) yields

A1
t−ic(t)HA1 =

c′(t)
2c(t)

(A1−B1), B1
t +ic(t)HB1

x = − c′(t)
2c(t)

(A1−B1). (2.1)

The initial conditions for A1 and B1 are computable in terms of Hf and g.
They are

A1(0, x) = A0(x);= g + ic0Hf, B1(0, x) = B0(x);= g − ic0Hf, (2.2)

where c0 = c(0) = (1 + ε||Hf ||2L2)
1
2 . The defining relation for c(t) becomes

c(t)2 = 1 +
ε

4c(t)2
||A1(t, ·)−B1(t, ·)||2L2 . (2.3)

We now introduce the change of variable τ =
∫ t

0
c(s)ds. Clearly, τ is a strictly

increasing function of t. We denote its inverse function by t = T (τ) and regard
A1, B1, c as functions of τ , that is, we write A2(τ , x) = A1(T (τ), x), B2(τ , x) =
B1(T (τ), x), γ(τ) = c(T (τ)). Then by applying the change of variable to equa-
tions (2.1), we get

A2
τ − iHA2 =

γ′

2γ
(A2 −B2), B2

τ + iHB2 = − γ′

2γ
(A2 −B2), (2.4)

and the initial condition is given by (2.2).

We put

A(τ , x) =
1
γ

1
2
e−iτHA2(τ , x), B(τ , x) =

1
γ

1
2
eiτHB2(τ , x)

and

q(τ) = qγ(τ) =
γ′(τ)
2γ(τ)

.

Then (A,B, γ) satisfies from (2.4) and (2.3)

Aτ = −q(τ)e2iτB(τ , x), Bτ = −q(τ)e−2iτA(τ , x) (2.5)

and
γ(τ)2 = 1 +

ε

4γ(τ)2
||eiτHA(τ , ·)− e−iτHB(τ , ·)||2L2 , (2.6)

and the initial condition is given by (2.2). We note that if (f, g) ∈ D(H
3
2 ) ×

D(H
1
2 ) satisfies (1.3), then (A0, B0) = (g + ic0Hf, g − ic0Hf) belongs to

D(H
1
2 )×D(H

1
2 ) and satisfies
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∫ ∞

−∞
{|(e2iτHHA0, A0)|+ |(e2iτHHA0, B0)|+ |(e2iτHHB0, B0)|}dτ <∞.

(2.7)
We introduce a functional space as follows:

Xδ,M = {γ(τ) ∈ C1(R1); 1 ≤ γ(τ) ≤M,

∫ ∞

−∞
|γ′(τ)|dτ < δ}

with a norm |γ|X = sup |γ(τ)|+∫ |γ′(τ)|dτ . Let γ be in Xδ,M and consider the
linear Cauchy problem (2.5) and (2.2). We denote its solution by (Aγ , Bγ).
We define for γ ∈ Xδ,M

Φ(γ)2(τ) = 1 +
ε

4γ(τ)2
||eiτHAγ(τ , ·)− e−iτHBγ(τ , ·)||2L2 . (2.8)

Then we can prove the following theorem.

Theorem 2.1 Assume that (A0, B0) ∈ D(H)×D(H) satisfies (2.7) and 0 <
δ < 1

2 . Then there is ε0 > 0 such that Φ is a contraction mapping in Xδ,M ,
that is,

|Φ(γ1)− Φ(γ2)|X ≤ Cε|γ1 − γ2|X , (2.9)

for any γ1, γ2 ∈ Xδ,M and 0 < ε ≤ ε0.

Define
G(A,B : τ , s) = (e2iτHHA(s, ·), B(s, ·))L2(Rn)

and
Y (A,B, τ) = sup

s∈R

|G(A,B : τ , s)|.

For the proof of the above theorem the following lemma is convenient.

Lemma 2.2 Let γk ∈ Xδ,M , k = 1, 2 and (Ak, Bk), k = 1, 2 be a solution of
(2.2) and (2.5) for γk and 0 < δ < 1

2 . Then if (A0, B0) ∈ D(H) × D(H)
satisfies (2.7), then Y (Aj , Bk : τ), Y (Aj , Ak : τ) and Y (Bj , Bk : τ) belong to
L1(R) and satisfy

∫ ∞

−∞
{supj,k=1,2 Y (Aj , Ak : τ) + supj,k=1,2 Y (Aj , Bk : τ)

+ supj,k=1,2 Y (Bj , Bk : τ)}dτ

≤ 1
1− 2δ

∫ ∞

−∞
{|(e2τHHA0, B0)|+ |(e2τHHA0, A0)|

+ |(e2τHHB0, B0)|}dτ .

(2.10)
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Moreover we have
∫∞
−∞{supk=1,2 Y (A1 −A2, Ak : τ) + supk=1,2 Y (A1 −A2, Bk : τ)

+ supk=1,2 Y (B1 −B2, Bk : τ) + supk=1,2 Y (B1 −B2, Ak : τ)}dτ
≤ C|γ1 − γ2|X . (2.11)

Proof. Differentiating G(Aj , Bk : τ , s) with respect to s, we get from (2.5)

∂
∂sG(Aj , Bk : τ , s) = ∂

∂s (e
2iτHHAj(s, ·), Bk(s, ·))

= −qj(s)(e2i(τ+s)HHBj(s, ·), Bk(s, ·))− qk(e2i(τ+s)HHAj(s, ·), Ak(s, ·))}
= −qj(s)G(Bj , Bk : τ + s, s)− qk(s)G(Aj , Ak : τ + s, s),

where we denote qj = qγj
= γ′

j

2γj
. Similarly

∂

∂s
G(Aj , Ak : τ , s) = −qj(s)G(Bj , Ak : τ + s, s)− qk(s)G(Aj , Bk : τ − s, s)

and

∂

∂s
G(Bj , Bk : τ , s) = −qj(s)G(Aj , Bk : τ − s, s)− qk(s)G(Bj , Ak : τ + s, s).

Integrating the above relations from 0 to s and noting that

G(Aj , Bk : τ , 0) = (e2iτHHA0, B0), G(Aj , Ak : τ , 0) = (e2iτHHA0, A0)

and
G(Bj , Bk : τ , 0) = (e2iτHHB0, B0)

we get

G(Aj , Bk : τ , s) =

(e2iτHHA0, B0)−
∫ s

0

qj(t)G(Bj , Bk : τ + t, t) + qk(t)G(Aj , Ak : τ + t, t)dt,

(2.12)
G(Aj , Ak : τ , s) =

(e2iτHHA0, A0)−
∫ s

0

qj(t)G(Bj , Ak : τ + t, t) + qk(t)G(Aj , Bk : τ − t, t)dt

(2.13)
and

G(Bj , Bk : τ , s) =

(e2iτHHB0, B0)−
∫ s

0

qj(t)G(Aj , Bk : τ − t, t) + qk(t)G(Bj , Ak : τ + t, t)dt.

(2.14)



146 Kunihiko Kajitani

From (2.12) we can estimate

Y (Aj , Bk, τ) ≤

|(e2iτHHA0, B0)|+
∫ ∞

−∞
{|qj(t)|Y (Bj , Bk : τ + t) + |qk(t)|Y (Aj , Ak : τ + t)}dt.

(2.15)
Analogously from (2.13)

Y (Aj , Ak, τ) ≤

|(e2iτHHA0, A0)|+
∫ ∞

−∞
|qj(t)|Y (Bj , Ak : τ + t) + |qk(t)|Y (Aγ , Bγ : τ − t)dt,

and from (2.14)

Y (Bj , Bk, τ) ≤

|(e2iτHHB0, B0)|+
∫ ∞

−∞
|qj(t)|Y (Aj , Bk : τ − t) + |qk(t)|Y (Bj , Ak : τ + t)}dt.

Since
∫ |qk(t)|dt ≤ δ, integrating (2.15) with respect to τ we obtain

∫ ∞

−∞
Y (Aj , Bk, τ)dτ ≤
∫ ∞

−∞
|(e2iτHHA0, B0)|dτ + δ

∫ ∞

−∞
{Y (Aj , Ak : τ) + Y (Bj , Bk : τ)}dτ .

Analogously∫ ∞

−∞
Y (Aj , Ak, τ)dτ ≤
∫ ∞

−∞
|(e2iτHHA0, A0)|dτ + δ

∫ ∞

−∞
{Y (Bj , Ak : τ) + Y (Aj , Bk : τ)}dτ

and∫ ∞

−∞
Y (Bj , Bk, τ)dτ ≤
∫ ∞

−∞
|(e2iτHHB0, B0)|dτ + δ

∫ ∞

∞
{Y (Aj , Bk : τ) + Y (Bj , Ak : τ)}dτ .

Therefore the above estimates imply (2.10), if we take 0 < δ < 1
2 . Next we

shall show (2.11) similarly. Differentiating G(A1 − A2, Bk : τ , s) with respect
to s, we have

∂
∂sG(A1 −A2, Bk : τ , s)=(e2iτH ∂

∂s (A1 −A2), Bk) + (e2iτH(A1 −A2), ∂
∂sBk)

= −(q1 − q2)(s)G(B1, Bk : τ + s, s)− q2(s)G(B1 −B2, Bk : τ + s, s)

−qk(s)G(A1 −A2, Ak : τ + s, s).
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Hence noting that G(A1 −A2, Ak : τ , 0) = 0, analogously we get

Y (A1 −A2, Bk : τ) ≤
∫ ∞

−∞
|(q1 − q2)(t)|G(B1, Bk : τ − t)dt

+
∫ ∞

−∞
|q2(t)|Y (B1 −B2, Ak : τ − t) + |qk(t)|Y (A1 −A2, Ak : τ − t)dt.

Hence we get
∫ ∞

−∞
Y (A1 −A2, Bk : τ)dτ ≤

∫ ∞

−∞
|(q1 − q2)(t)dt

∫ ∞

−∞
Y (B1, Bk : τ)dτ

+δ

∫ ∞

−∞
Y (B1 −B2, Ak : τ) + Y (A1 −A2, Ak : τ)dτ .

Analogously
∫ ∞

−∞
Y (A1 −A2, Ak : τ)dτ ≤

∫ ∞

−∞
|(q1 − q2)(t)|dt

∫ ∞

−∞
Y (B1, Ak : τ)dτ

+δ

∫ ∞

−∞
Y (B1 −B2, Ak : τ) + Y (A1 −A2, Bk : τ)dτ ,

∫ ∞

−∞
Y (B1 −B2, Ak : τ)dτ ≤

∫ ∞

−∞
|(q1 − q2)(t)|dt

∫ ∞

−∞
Y (A1, Ak : τ)dτ

+δ

∫ ∞

−∞
Y (B1 −B2, Bk : τ) + Y (A1 −A2, Ak : τ)dτ

and∫ ∞

−∞
Y (B1 −B2, Bk : τ)dτ ≤

∫ ∞

−∞
|(q1 − q2)(t)|dt

∫ ∞

−∞
Y (A1, Bk : τ)dτ

+δ

∫ ∞

−∞
Y (B1 −B2, Ak : τ) + Y (A1 −A2, Ak : τ)dτ .

Therefore noting that
∫ |q1 − q2|dt ≤ C|γ1 − γ2|X and using (2.10) we get

∫ ∞

−∞
Y (A1 −A2, Bk : τ) + Y (A1 −A2, Ak : τ)

+Y (B1 −B2, Ak : τ) + Y (B1 −B2, Bk : τ)dτ

≤ C(1− 2δ)−1|γ1 − γ2|X
∫ ∞

−∞
{|(e2τHA0, A0)|+ |(e2τHA0, B0)|

+|(e2τHB0, B0)|}dτ
which implies (2.11). Q.E.D.
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Proof of Theorem 2.1. It follows from (2.5) that

||Aγ(τ)||+ ||Bγ(τ)|| ≤ eδ(||A0||+ ||B0||),
for γ ∈ Xδ,M . Hence we can see that 1 ≤ Φ(γ)(τ) ≤ M holds if we take
M > O suitably for any γ ∈ Xδ,M . Next we show∫ ∞

−∞
|Φ(γ)′(τ)|dτ ≤ δ. (2.16)

Differentiating (2.8) and using (2.5) we have

2Φ(γ)Φ(γ)′(τ)

= − εγ′(τ)
4γ(τ)2

||eiτHAγ(τ , ·)− e−iτHBγ(τ , ·)||2

+
ε

4γ(τ)
{2R(A′

γ(τ), Aγ(τ)) + 2R(B′
γ(τ), Bγ(τ))

−2R(2iHe2iτHAγ(τ , ·), Bγ(τ , ·))

−2R(e2iτHA′
γ(τ , ·), Bγ(τ , ·))− 2R(e2iτHAγ(τ , ·), B′

γ(τ , ·))}

=
ε

γ(τ)
R{(ie2iτHHAγ(τ), Bγ(τ))} = − ε

γ(τ)
"G(Aγ , Bγ : 2τ , τ).

(2.17)

Hence we get by use of (2.10)∫ ∞

−∞
|Φ(γ)′(τ)|dτ ≤ ε

∫ ∞

−∞
Y (Aγ , Bγ , 2τ)dτ ≤ δ,

which implies (2.16), if we take ε > 0 sufficiently small. Thus we proved that
Φ(γ)(τ) belongs to Xδ,M for γ ∈ Xδ,M . Now we shall prove

|Φ(γ1)(τ)− Φ(γ2)(τ)| ≤ Cε|γ1 − γ2|X , τ ∈ R (2.18)

for any γk ∈ Xδ,M , k = 1, 2. In fact, it follows from (2.8) and (2.5) we have

|Φ(γ1)(τ)2 − Φ(γ2)(τ)2|

≤ ε

4
(| 1
γ1(τ)

− 1
γ1(τ)

)|||eiτHAγ1
(τ , ·)− e−iτHBγ2

(τ , ·)||

+
ε

4γ2(τ)
|||eiτHAγ1

(τ , ·)−e−iτHBγ1
(τ , ·)||2−||eiτHAγ2

(τ , ·)−e−iτHBγ2
(τ , ·)||2)|

≤ ε(M |γ1 − γ2|X + C(||Aγ2
(τ)−Aγ2

(τ)||+ ||Bγ1
(τ)−Bγ2

(τ)||)

≤ εC|γ1 − γ2|X ,
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which proves (2.18). Here we used the inequality

||Aγ2
(τ)−Aγ2

(τ)||+ ||Bγ1
(τ)−Bγ2

(τ)|| ≤ C|γ1 − γ2|X (2.19)

which follows from (2.5). In fact, it follows from (2.5)

(Aγ1
−Aγ2

)(τ) = −
∫ τ

0

(q1 − q2)(s)e2isHBγ1
(s) + q2(s)e2isH(Bγ1

−Bγ2
)(s)ds

and

(B1 −B2)(τ) = −
∫ τ

0

(q1 − q2)(s)e2isHA1(s) + q2(s)e2isH(Aγ1
−Aγ2

)(s)ds

which imply
||Aγ2

(τ)−Aγ2
(τ)||+ ||Bγ1

(τ)−Bγ2
(τ)||

≤
∫ τ

0

{|(q1 − q2)(s)|(||Aγ1
(s)||+ ||Bγ1

(s)||)

+|q2(s)|(||Aγ2
(s)−Aγ2

(s)||+ ||Bγ1
(s)−Bγ2

(s)||)}ds.
Hence we get (2.19) applying Gronwall’s inequality.

Finally we shall show∫
|Φ(γ1)

′(τ)− Φ(γ2)
′(τ)|dτ ≤ εC|γ1 − γ2|X (2.20)

for any γk ∈ Xδ,M , k = 1, 2. In fact, (2.17) implies

2|Φ(γ1)(τ)Φ(γ1)
′(τ)− Φ(γ2)(τ)Φ(γ2)

′(τ)|

= | ε

2γ1(τ)
R{(ie−2iτHHAγ1

(τ), Bγ1
(τ))}

− ε

2γ2(τ)
R{(ie−2iτHHAγ2

(τ), Bγ2
(τ))}|

≤ | ε

2γ1(τ)
− ε

2γ2(τ)
||R{(ie−2iτHHAγ1

(τ), Bγ1
(τ))}|

+
ε

2γ2(τ)
|G(A1, B1 : −2τ , τ)−G(A2, B2 : −2τ , τ)|.

On the other hand,

|G(Aγ1
, Bγ2

1 : −2τ , τ)−G(Aγ2
, Bγ2

: −2τ , τ)|

≤ |G(Aγ1
−Aγ2

, Bγ1
: −2τ , τ)|+ |G(Aγ2

, Bγ1
−Bγ2

: −2τ , τ)|

≤ Y (Aγ1
, Bγ2

: −2τ) + Y (Aγ2
, Bγ1

−Bγ1
: −2τ).
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Therefore integrating the above inequalities with respect to τ , we obtain (2.20)
by use of (2.10) and (2.11). Thus we have completed the proof of Theorem 2.1.
Q.E.D.

Proof of Theorem 1.1. It follows from Theorem 2.1 that we have the
fixed point γ ∈ Xδ,M of Φ, if we choose ε > 0 small. Let (A,B)(τ , x) be a
solution of (2.5) with q = γ′

2γ satisfying the initial condition (2.2) and put
T (τ) =

∫ τ

0
γ(s)−1ds. Let S(t) be the inverse function of T (τ) = t. Put

c(t) = γ(S(t))

and
(A1, B1)(t, x) = c(t)

1
2 (eS(t)HA(S(t), x), e−S(t)HB(S(t), x))

which satisfy (2.3) and (2.1), (2.2), respectively. Define

u(t, x) = f(x) +
∫ t

0

A1(s, x) + B1(s, x)
2

ds.

Then it follows from (2.1), (2.2) and (2.3) that we can see that u(t, x) solves
(1.1). Thus we complete the proof of Theorem 1.1.

3 Proof of Theorem 1.2

In order to prove Theorem 1.2 we need the following lemma and proposition.

Lemma 3.1 Let k be a nonnegative number and l > k + 1. Then

|
∫ ∞

0

eitρρk(ρ + 1)−ldρ| ≤ C(1 + |t|)−k−1, t ∈ R. (3.1)

Proof. Let t > 0 and χ ∈ C∞ such that χ(ρ) = 0 for ρ ≤ 1 and χ(ρ) = 1 for
ρ ≥ 2 . We have
∫ ∞

0

eitρρk(ρ + 1)−ldρ

=
∫ ∞

0

eitρρk(ρ + 1)−lχ(tρ)dρ +
∫ ∞

0

eitρρk(ρ + 1)−l(1− χ(tρ))dρ =: I1 + I2.

It is trivial that I2 satisfies (3.1). We shall show I1 satisfies (3.1). The trans-
form of variable implies

I1 = tk+1

∫ ∞

1

eiρρk(
ρ

t
+ 1)−lχ(ρ)dρ.
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On the other hand,
∫ ∞

0

eiρρk(
ρ

t
+ 1)−lχ(ρ)dρ =

∫ ∞

0

eiρ(
∂

∂ρ
)N{ρk(ρ

t
+ 1)−lχ(ρ)}dρ,

for any nonnegative integer N . Since
∣∣∣∣∣(

∂

∂ρ
)N

{
ρk(

ρ

t
+ 1)−lχ(ρ)

}∣∣∣∣∣ ≤ CNρk−N , ρ > 1,

where CN is independent of t. Hence if we take N > k + 1, we can see easily
that I1 satisfies (3.1). Q.E.D.

Besides we need

Proposition 3.2 Let H0 =
√−Δ and k be a nonnegative number. Then there

is C > 0 such that we have

|eitH0Hk
0 f(x)|

≤ C

∫
Rn

{(1 + |t|)−n−k + (1 + |t|)−n−1
2 ((1 + ||x− y|+ t|)−n+1

2 −k

+(1 + ||x− y| − t|)−n+1
2 −k)}|(1−Δy)

l
2 f(y)|dy,

(3.2)

for f ∈W l,1 and for l > k + n.

Proof. Assume that k is a nonnegative integer. Let l > n + k. We have

eitH0f(x) =
∫

Rn

K(x− y, t)〈Dy〉lf(y)dy, (3.3)

where

K(z, t) =
∫

eizξ+it|ξ||ξ|k〈ξ〉−ldξ (3.4)

and we use the notation 〈D〉 = (1−Δ)
1
2 and 〈ξ〉 = (1 + |ξ|2) 1

2 . Let |z| ≤ |t|
2 .

Denote w = ξ
|ξ| . Then |zw + t| ≥ |t|

2 . Hence by use of (3.1)

|K(z, t)| =
∣∣∣∣∣
∫
|w|=1

∫ ∞

0

ei(zw+t)ρρn−1+k〈ρ〉−ldρdw

∣∣∣∣∣
≤ C

∫
|zw + t|−n−kdw ≤ C|t|−n−k, (3.5)

for |z| ≤ |t|
2 . For |z| ≥ |t|

2 and for |z|ρ ≤ 1 we can see easily
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∣∣∣∣∣
∫

0≤ρ≤|z|−1

∫
|w|=1

ei(zw+t)ρρn−1+k〈ρ〉−ldwdρ

∣∣∣∣∣ ≤ C|z|−n−k ≤ C|t|−n−k. (3.6)

On the other hand, when |z|ρ ≥ 1, by use of the stationary phase method we
can get

∫
|w|=1

eizwρdw

= (|z|ρ)−n−1
2

{
N−1∑
k=0

(ei|z|ρq+j + e−i|z|ρq−j)(|z|ρ)−j + qN (|z|ρ)
}
,

(3.7)

where q±j are constants and |qN (|z|ρ)| ≤ CN (|z|ρ)−N for any positive integer
N . Hence applying again (3.1) we get from (3.7)

∣∣∣∣∣
∫
|z|ρ≥1

{∫
|w|=1

ei(zw+t)ρρn−1+k〈ρ〉−ldwdρ

∣∣∣∣∣

=

∣∣∣∣∣
∫

(|z|ρ)−n−1
2

{
N−1∑
j=0

(ei(t+|z|)ρq+j + ei(t−|z|)ρq−j)(|z|ρ)−j

+ qN (|z|ρ)}ρn−1+k〈ρ〉−ldρ

∣∣∣∣∣

≤
N−1∑
j=0

|z|−n−1
2 −j

∣∣∣∣
∫

(ei(t+|z|)ρq+j + ei(t−|z|)ρq−j)ρ
n−1

2 +k−j〈ρ〉−ldρ

∣∣∣∣

+ C|z|−n−1
2 −N

≤
N−1∑
j=0

|z|−n−1
2 −j{(1 + |t− |z||)−n+1

2 −k+j + (1 + |t + |z||)−n+1
2 −k+j

}

+ C|z|−n−1
2 −N

≤ C|t|−n−1
2

{
(1 + |t− |z||)−n+1

2 −k + (1 + |t + |z||)−n+1
2 −k

}
+ C|t|−n−k,

for |z| ≥ |t|
2 , which gives (3.2), if N > n−1

2 + k + 1. Q.E.D.

Proof of Theorem 1.2. Now we can prove Theorem 1.2, applying Proposi-
tion 3.2. It suffices to show that (f0, g0) ∈ H

3
2 ∩W l,1×H

1
2 ∩W l−1,1, l > n+ 3

2
satisfies (1.3) with H = H0, that is,



Time Global Solutions for Kirchhoff Equations 153

||(f0, g0)||Y (H0)

=
∫ ∞

−∞

{∣∣∣∣∣(eitH0H3
0f0, f0)

∣∣∣∣∣ +

∣∣∣∣∣(eitH0Hg0, g0)

∣∣∣∣∣ +

∣∣∣∣∣(eitH0H2
0f0, g0)

∣∣∣∣∣
}
dt

≤
∫ ∞

−∞

∫
Rn

{
|eitH0H

3
2
0 f0(x)||H 3

2
0 f0(x)|+ |eitH0H

1
2
0 g0(x)||H 1

2
0 g0(x)|

+|eitH0H
3
2
0 f0(x)|H 1

2
0 g0(x)|

}
dxdt <∞.

In fact, for example we show the second term of the right side is finite if
l > n + 1

2 ,
∫ ∞

−∞

∫
Rn

∣∣∣∣∣eitH0H
1
2
0 g0(x)

∣∣∣∣∣
∣∣∣∣∣H

1
2
0 g0(x)

∣∣∣∣∣dxdt ≤
∫ ∞

−∞

∫
Rn

∫
Rn

{(1 + |t|)−n− 1
2

+(1 + |t|)−n−1
2 ((1 + ||x− y|+ t|)−n+1

2 − 1
2

+(1 + ||x− y| − t|)−n+1
2 − 1

2 )}|(1−Δy)
l
2 g0(y)|dy|H

1
2
0 g0(x)|dxdt

≤ C

∫
Rn

∫
Rn

|(1−Δy)
l
2H

1
2
0 g0(y)||H

1
2
0 g0(x)|dydx

≤ C||(1−Δ)
l
2H

1
2
0 g0||L1 ||H 1

2
0 g0||L1 .

We can estimate the other terms in the same way. Thus we completed the

proof of Theorem 1.2.
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1 Upper bound on the error

Denote by W r,p
per the Banach space of periodic functions on R whose distribu-

tion derivatives up to order r belong to Lp
per(R). The norm is equal to the sum

of the Lp norms of these derivatives over one period. Without loss of general-
ity we take the period equal to 2π. Introduce a partition of the interval [0, 2π]
into N equal subintervals of size Δx := 2π/N .

Because of the periodicity, the trapezoidal rule is

2π∫

0

f(x) dx ≈ TN (f) := Δx

N−1∑
j=0

f(xj), xj := jΔx, j = 0, 1, . . . , N − 1.

(1.1)
The error is equal to

EN (f) := TN (f)−
2π∫

0

f(x) dx.

Write f as the sum of its Fourier series,

f(x) =
∑
n∈Z

cne
inx, cn :=

1
2π

2π∫

0

f(x)e−inx dx.

Denote by P(m) the set of all trigonometric polynomials of degree at most
m, that is, functions of the form

m∑
n=−m

ane
inx, an ∈ C.

Summing finite geometric series shows that TN (einx) = 0 for 0 < |n| < N
and it follows that TN exactly integrates trigonometric polynomials of degree
N − 1. Therefore, for any P ∈ P(N − 1),

EN (f) = EN (f − P ) = TN (f − P )−
2π∫

0

(f(x)− P (x)) dx.

This yields the bound in terms of best trigonometric approximation

|EN (f)| ≤ 4π inf
P∈P(N−1)

‖f − P‖L∞ . (1.2)

Spectral accuracy then follows for infinitely smooth f thanks to the rapid
decay of the Fourier coefficients.
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Our estimate proceeds differently. For any integer k the functions einx and
ei(n+kN)x agree at the nodes for TN . Therefore, TN (einx) = TN (ei(n+kN)x)
and thus, TN (einx) = 0 for all n �= kN and TN (einx) = 2π for all n = kN .
This can also be checked by summing the corresponding finite geometric series.
It follows that

EN (f) = 2π
∑

0 �=k∈Z

ckN = 2π
∑

0 �=k∈Z

(
(ikN)rckN

) 1
(ikN)r

. (1.3)

This involves only a small fraction of the Fourier coefficients cn with |n| ≥ N .

Theorem 1.1 If f ∈ W r,1
per and 1 < r ∈ N, then the error of the trapezoidal

quadrature rule (1.1) satisfies

|EN (f)| ≤
Cr

∥∥f (r)
∥∥
L1([0,2π])

Nr
, f (r) :=

drf

dxr
, Cr := 2

∞∑
k=1

1
kr

. (1.4)

Remark 1.2 The result is interesting only for r > 2, since for 1 ≤ r ≤ 2 the
N−r convergence rate can be established using standard arguments even in the
case of nonperiodic f .

Remark 1.3 Analogous estimates are true for noninteger r. For r ≥ 2 they
can be obtained by interpolation between integer values.

Proof Introduce

QN (x) :=
1
N

N−1∑
j=0

δ(x− xj), gN (x) :=
∑

0 �=k∈Z

1
(ikN)r

eikNx,

where δ is the Dirac delta-function. The nth Fourier coefficient of QN is equal
to TN (e−inx)/(2π)2 so

QN (x) =
1
2π

∑
k∈Z

eikNx.

This together with f (r)(x) =
∑
n∈Z

(in)r cn einx yields

∑
0 �=k∈Z

(ikN)rckN eikNx = QN ∗ f (r)(x),

where ∗ denotes convolution of periodic functions. Equation (1.3) then implies

EN (f) =

2π∫

0

QN ∗ f (r)(x) gN (−x) dx . (1.5)
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Since QN is a measure with total variation per period equal to 1, one has∥∥∥∥∥∥
∑

0 �=k∈Z

(ikN)rckNeikNx

∥∥∥∥∥∥
L1([0,2π])

=
∥∥∥QN ∗ f (r)

∥∥∥
L1([0,2π])

≤
∥∥∥f (r)

∥∥∥
L1([0,2π])

.

(1.6)
On the other hand,

‖gN‖L∞ ≤
∑

0 �=k∈Z

1
|kN |r =

2
Nr

∞∑
k=1

1
kr

, (1.7)

and the sum is finite for r > 1. Combining (1.5), (1.6) and (1.7) yields (1.4).

Remark 1.4 The order of accuracy established in Theorem 1.1 for the trape-
zoidal rule is also true for other quadratures based on piecewise polynomial
interpolations. This is so since such quadratures applied to periodic functions
can be rewritten as a convex combination of trapezoidal rules with shifted nodes
(see [2]).

2 A lower bound and comparison with best
trigonometric approximation

For integer r > 1, W r,p
per consists of Cr−1 functions so that f (r−1) is absolutely

continuous with derivative in Lp
per. For p > 1, f (r−1) belongs to the Hölder

class Cr−1,α with α = 1−1/p. The right-hand side of (1.2) is the error in best
polynomial approximation. That error has a precise estimate in terms of the
modulus of continuity of f (r−1) (see [1, 3]). The rate of best approximation
is different for the different spaces W r,p

per with r > 1 fixed and 1 ≤ p ≤ ∞.
In contrast, the order of convergence of the trapezoidal rule is essentially
independent of p as the following example shows.

Example 2.1 Define f by the lacunary Fourier series:

f(x) :=
∞∑
n=1

1
(2n)r

ei2
nx.

Then
∫ 2π

0
f(x) dx = 0. In addition, f ∈ W r−ε,∞

per for all ε > 0 and the error
in the trapezoidal approximation T2N (f) is exactly equal to

E2N (f) = 2π
∑

2n is a multiple of 2N

1
(2n)r

= 2π
∞∑
k=0

1
(2N+k)r

=
1

(2N )r
2r+1π

2r − 1
.

As this is O((2N )−r), the rate of convergence for W r,∞
per cannot be better, in

the sense of a higher power of 1/N , than that for W r,1
per.
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3 Conclusion

The trapezoidal rule and other quadrature formulae based on piecewise poly-
nomial interpolations have error O((Δx)r) for functions in W r,p

per. The rate is
independent of p and is optimal in the sense that no higher power of Δx is
possible. The error is that which is predicted by approximation theory for
functions in W r,∞

per and it is interesting that it remains true for the elements of
W r,1

per, for which the best approximation by trigonometric polynomials of de-
gree N−1 is not as small as O((Δx)r−1+ε). For W r,1

per, the rate of convergence
is essentially a full order more rapid than that given by best approximation
as in (1.2).
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1 Introduction

The (Marcel) Riesz operators (Rj)1≤j≤n are the following Fourier multipliers
(we use the notation û for the Fourier transform of u: our normalization is
given in formula (3.1) of our appendix)

(R̂ju)(ξ) = ξj |ξ|−1û(ξ), Rj = Dj/|D| = (−Δ)−1/2 ∂

i∂xj
. (1.1)

The Rj are selfadjoint bounded operators on L2(Rn) with norm 1. The
Riesz operators are the natural multidimensional generalization of the Hilbert
transform, given by the convolution with pv i

πx which is the one-dimensional
Fourier multiplier by sign ξ. These operators are the paradigmatic singular
integrals, introduced by Calderón and Zygmund, and are bounded on Lp(Rn)
for 1 < p < ∞ and send L1 into L1

w. However, they are not continuous on
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the Schwartz class, because of the singularity at the origin. The Leray–Hopf
projector1 is the following matrix valued Fourier multiplier:

P(ξ) = Id−ξ ⊗ ξ

|ξ|2 =
(
δjk − |ξ|−2ξjξk

)
1≤j,k≤n

, P = P(D) = Id−R⊗R.

(1.2)
We can also consider the n × n matrix of operators given by Q = R ⊗ R =
(RjRk)1≤j,k≤n sending the vector space of L2(Rn) vector fields into itself.
The operator Q is selfadjoint and is a projection since

∑
l R

2
l = Id so that

Q2 = (
∑

l RjRlRlRk)j,k = Q. As a result the operator

P = Id−R⊗R = Id−|D|−2(D ⊗D) = Id−Δ−1(∇⊗∇) (1.3)

is also an orthogonal projection, the Leray–Hopf projector (a.k.a. the Helmholtz–
Weyl projector); the operator P is in fact the orthogonal projection onto the
closed subspace of L2 vector fields with null divergence. We have for a vector
field u =

∑
j uj∂j , the identity grad div u = ∇(∇ · u), and thus

grad div =∇⊗∇ = Δ R⊗R, so that (1.4)

Q =R⊗R = Δ−1 grad div, divR⊗R = div, (1.5)

which implies div Pu = div u − div(R ⊗ R)u = 0, and if div u = 0, we have
Qu = 0 and u = Qu + Pu = Pu. This operator plays an important role in
fluid mechanics since the Navier–Stokes system ([7], [3], [6]) for incompressible
fluids can be written as

⎧⎪⎨
⎪⎩
∂tv + P((v · ∇)v)− ν-v = 0,
Pv = v,

v|t=0 = v0.

(1.6)

As already stated for the Riesz operators, P is not a classical pseudodifferential
operator, because of the singularity at the origin: however, it is indeed a
Fourier multiplier with the same continuity properties as those of R, and in
particular is bounded on Lp for p ∈ (1,+∞). In three dimensions the curl
operator is given by the matrix

curl =

⎛
⎝ 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

⎞
⎠ = curl∗ (1.7)

so that curl2 = −Δ Id + grad div and (the Biot–Savard law)

Id = (−Δ)−1 curl2 +Δ−1 grad div = (−Δ)−1 curl2 + Id−P, (1.8)

which gives
1That projector is also called the Helmholtz–Weyl projector by some authors.
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curl2 = −ΔP, (1.9)

so that [P, curl] = 0 and

Pcurl = curlP = curl(−Δ)−1 curl2 = curl
(
Id−Δ−1 grad div

)
= curl

(1.10)

since curl grad = 0 (note also that the transposition of the latter gives
div curl = 0). The solutions of (1.6) are satisfying

v(t) = etνΔv0 −
∫ t

0

e(t−s)νΔP∇(v(s)⊗ v(s)
)
ds.

2 The action of the Leray projector on Gaussian
functions

We want now to compute the action of P on Gaussian functions.

Lemma 2.1 Let n ≥ 1 be an integer, 1 ≤ j, k ≤ n and a > 0. Then, with
ua(x) = an/2e−πa|x|2 , we have

for j �= k, (RjRkua)(x) = −xjxk|x|−n−2γ(1 +
n

2
, aπ|x|2)π−n/2, (2.1)

(R2
jua)(x) = −x2

j |x|−n−2γ(1 +
n

2
, aπ|x|2)π−n/2 +

1
2
|x|−nγ(

n

2
, aπ|x|2)π−n/2,

(2.2)

where γ is the incomplete gamma function (see below a reminder).

A reminder. We recall the definition of the (lower) incomplete Gamma func-
tion (see e.g. [2], [1]),

γ(a, x) =
∫ x

0

ta−1e−tdt

= a−1xae−x
1F1(1; 1 + a;x) = a−1xa1F1(a; 1 + a;−x), (2.3)

where 1F1 is the confluent hypergeometric function of the first kind. Also for
n positive integer, we have

γ(n, x) = (n− 1)!
(
1− e−x

∑
0≤k≤n−1

xk

k!
)

= Γ (n)
(
1− e−x

∑
0≤k<n

xk

k!
)
.

The confluent hypergeometric function has a hypergeometric series given by

1F1(a; b; z) = 1 +
a

b
z +

a(a + 1)
b(b + 1)

z2

2!
+ · · · =

∑
k≥0

(a)k
(b)k

zk

k!
,
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where (x)n stands for the Pochhammer symbol:

(x)n =
Γ (x + n)
Γ (x)

= x(x + 1) . . . (x + n− 1).

We note also the following identity:

∀a ∈ C\Z∗
−, 1F1(1; 1 + a; z) =

∑
k≥0

zk

(a + 1) . . . (a + k)
(2.4)

which is an entire function of the variable z for these values of a; as a result,
we can write for Re a > 0, x ≥ 0,

γ(a, x) = a−1xae−x
∑
k≥0

xk

(a + 1) . . . (a + k)
, (2.5)

and this implies that

∀a > 0,∀x ≥ 0, a−1xae−x ≤ γ(a, x) ≤ min
(
Γ (a), a−1xa

)
. (2.6)

We have also
γ(1 + a, x) = aγ(a, x)− xae−x. (2.7)

Remark 2.2 The above lemma can be generalized easily to the case where A
is a complex-valued symmetric matrix with a positive definite real part, with
uA(x) = (detA)1/2e−π〈Ax,x〉, with (detA)1/2 = e

1
2 trace LogA (see the appendix

for the choice of the determination of LogA).

Proof (Proof of the lemma) We consider for t > 0 the smooth function

Fj,k(t, x) =
∫

Rn

e2iπxξe−t4π2|ξ|2ξjξk|ξ|−2dξ, (2.8)

and we note that

∂Fjk

∂t
(t, x) = −4π2

∫
e2iπxξe−t4π2|ξ|2ξjξkdξ

= −4π2 1

(2iπ)2
∂xj ∂xk

∫
e2iπxξe−t4π2|ξ|2dξ = ∂xj ∂xk(e−

|x|2
4t )(4πt)−n/2,

(2.9)

so that

for j �= k,
∂Fjk

∂t
(t, x) = (4πt)−n/2e−

|x|2
4t (

xjxk
4t2

), (2.10)

for j = k,
∂Fjj

∂t
(t, x) = (4πt)−n/2e−

|x|2
4t (

x2
j

4t2
− 1

2t
). (2.11)
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Since we have also Fj,k(+∞, x) = 0, we obtain for j �= k, x �= 0,

Fjk(
1
4π

, x) =
∫ 1/4π

+∞
(4πt)−n/2e−

|x|2
4t

xjxk
4t2

dt

= −xjxk
∫ π|x|2

0

sn/2|x|−ne−s4s2|x|−4|x|2s−2dsπ−n/2

= −xjxk|x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2, (2.12)

i.e., for j �= k,

∫
Rn

e2iπxξe−π|ξ|2ξjξk|ξ|−2dξ = −xjxk|x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2.

(2.13)
For j = k, we have

Fjj(
1
4π

, x) =
∫ 1/4π

+∞
(4πt)−n/2e−

|x|2
4t (

x2
j

4t2
− 1

2t
)dt

= −x2
j |x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2 (2.14)

+
1
2
|x|−n

∫ π|x|2

0

s
n
2 −1e−sdsπ−n/2,

so that
∫

Rn

e2iπxξe−π|ξ|2ξ2
j |ξ|−2dξ

= −x2
j |x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2 +
1
2
|x|−n

∫ π|x|2

0

s
n
2 −1e−sdsπ−n/2.

(2.15)

As a consequence, for t > 0, j �= k, we have

Fjk(t, x) = −γ(1 +
n

2
,
|x|2
4t

)π−n/2 xjxk
|x|2+n

, (2.16)

and

Fjj(t, x) = −γ(1 +
n

2
,
|x|2
4t

)π−n/2
x2
j

|x|2+n
+

1
2
γ(

n

2
,
|x|2
4t

)π−n/2 1
|x|n . (2.17)

As a result, we have indeed, with a > 0, j �= k,

(RjRkua)(x) =
∫

Rn

e2iπxξe−πa−1|ξ|2ξjξk|ξ|−2dξ (2.18)
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= an/2
∫

Rn

e2iπa
1/2xξe−π|ξ|2ξjξk|ξ|−2dξ (2.19)

= an/2Fjk(
1
4π

, a1/2x) (2.20)

= −xjxk|x|−n−2γ(1 +
n

2
, aπ|x|2)π−n/2, (2.21)

and for j = k,

(R2
jua)(x) =

∫
Rn

e2iπxξe−πa−1|ξ|2ξ2
j |ξ|−2dξ (2.22)

= an/2
∫

Rn

e2iπa
1/2xξe−π|ξ|2ξ2

j |ξ|−2dξ (2.23)

= an/2Fjj(
1
4π

, a1/2x) (2.24)

= −x2
j |x|−n−2γ(1 +

n

2
, aπ|x|2)π−n/2 +

1
2
|x|−nγ(

n

2
, aπ|x|2)π−n/2.

(2.25)

��

Theorem 2.3 Let n ≥ 1 be an integer and Δ =
∑

1≤j≤n ∂
2
xj

be the standard
Laplace operator on R

n. For t ≥ 0, we define the Oseen matrix operator

Ω(t) = Δ−1(∇⊗∇)etΔ = (I −P)etΔ = Δ−1(∂xj
⊗ ∂xk

)1≤j,k≤ne
tΔ. (2.26)

The operator Ω(t) is the Fourier multiplier by the matrix Ω(t, ξ) = |ξ|−2(ξ ⊗
ξ)e−4πt|ξ|2 and is given by the convolution (w.r.t. the variable x) with the
matrix

(
Fjk(t, x)

)
1≤j,k≤n

where

for j �= k, Fjk(t, x) = −xjxk|x|−n−2γ(1 +
n

2
,
|x|2
4t

)π−n/2, (2.27)

Fjj(t, x) = −x2
j |x|−n−2γ(1 +

n

2
,
|x|2
4t

)π−n/2 +
1
2
|x|−nγ(

n

2
,
|x|2
4t

)π−n/2, (2.28)

Fjj(t, x) = γ(
n

2
,
|x|2
4t

)π−n/2 1
2
|x|−n−2

(|x|2 − nx2
j

)
+ x2

j |x|−2(4πt)−n/2e−
|x|2
4t .

(2.29)

On t > 0, the functions Fjk are real analytic functions of the variable t−1/2x
multiplied by t−n/2. We have also

Fjk(t, x) = (4πt)−n/2Fjk

( 1
4π

, x(4πt)−1/2
)
, (2.30)

and with |Sn−1| = 2πn/2

Γ (n/2) ,

|Fjk(t, x)| ≤ |x|−n n + 1
|Sn−1| , |Fjk(t, x)| ≤ ( |x|2

2(n + 2)t
+

1
n

)
(4πt)−n/2. (2.31)
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Moreover we have

for j �= k, Fjk(t, x) = − 2
n + 2

xjxk
4t

(4πt)−n/2e−
|x|2
4t 1F1(1; 2 +

n

2
;
|x|2
4t

)

(2.32)

and

Fjj(t, x) = − 2
n + 2

x2
j

4t
(4πt)−n/2e−

|x|2
4t 1F1(1; 2 +

n

2
;
|x|2
4t

)

+
1
n

(4πt)−
n
2 e−

|x|2
4t 1F1(1; 1 +

n

2
;
|x|2
4t

). (2.33)

Proof (The proof is an immediate consequence of (2.16), (2.17), (2.6).)

Remark 2.4 This theorem provides a direct proof, using special functions,
of the estimates established in a more general context in [4] as well as those
stated on page 27 of [6].

Remark 2.5 We get easily from the first part of the previous theorem that the
kernel of the operator I −P, which is the matrix Fourier multiplier |ξ|−2(ξ ⊗
ξ), is the singular integral given by the (principal-value) convolution with the
matrix (fjk(x)) where

for j �= k, fjk(x) = −xjxk|x|−n−2Γ (1 +
n

2
)π−n/2 = −xjxk|x|−n−2 n

|Sn−1| ,
(2.34)

fjj(x) = |x|−n−2(|x|2 − nx2
j )|Sn−1|−1 + n−1δ0(x). (2.35)

We note also that the functions gjk = fjk − n−1δj,kδ0 are homogeneous of
degree −n on R

n\{0} with integral 0 on S
n−1 so that the principal value

〈Tjk, ϕ〉 = lim
ε→0+

∫
|x|≥ε

gjk(x)ϕ(x)dx

actually defines a homogeneous distribution Tjk of degree −n on R
n ([5]).

3 Appendix

The Fourier transformation

The Fourier transform of a function u in the Schwartz class S (Rn) is defined
by the formula

û(ξ) =
∫

e−2iπxξu(x)dx, (3.1)

and it is an isomorphism of S (Rn) so that u(x) =
∫
e2iπxξû(ξ)dξ. That iso-

morphism extends to an isomorphism of the temperate distributions S ′(Rn)
via the duality formula 〈T̂ , ϕ〉S ′,S = 〈T, ϕ̂〉S ′,S . The Fourier transform is
also a unitary transformation of L2(Rn).
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The logarithm of a nonsingular symmetric matrix

The set C\R− is star-shaped with respect to 1, so that we can define the
principal determination of the logarithm for z ∈ C\R− by the formula

Log z =
∮

[1,z]

dζ

ζ
. (3.2)

The function Log is holomorphic on C\R− and we have Log z = ln z for
z ∈ R

∗
+ and by analytic continuation eLog z = z for z ∈ C\R−. We get also by

analytic continuation that Log ez = z for | Im z| < π.
Let Υ+ be the set of symmetric nonsingular n× n matrices with complex

entries and nonnegative real part. The set Υ+ is star-shaped with respect to
the Id: for A ∈ Υ+, the segment [1, A] =

(
(1 − t) Id +tA

)
t∈[0,1]

is obviously
made with symmetric matrices with nonnegative real part which are invertible,
since for 0 ≤ t < 1, Re

(
(1− t) Id +tA

) ≥ (1 − t) Id > 0 and for t = 1, A is
assumed to be invertible. We can now define for A ∈ Υ+

LogA =
∫ 1

0

(A− I)
(
I + t(A− I)

)−1
dt. (3.3)

We note that A commutes with (I + sA) (and thus with LogA), so that, for
θ > 0,

d

dθ
Log(A + θI) =

∫ 1

0

(
I + t(A + θI − I)

)−1
dt

−
∫ 1

0

(
A + θI − I

)
t
(
I + t(A + θI − I)

)−2
dt,

and since d
dt

{(
I + t(A+ θI − I)

)−1
}

= −(I + t(A+ θI − I)
)−2(A+ θI − I),

we obtain by integration by parts d
dθ Log(A + θI) = (A + θI)−1. As a result,

we find that for θ > 0, A ∈ Υ+, since all the matrices involved are commuting,

d

dθ

(
(A + θI)−1eLog(A+θI)

)
= 0,

so that, using the limit θ → +∞, we get that ∀A ∈ Υ+,∀θ > 0, eLog(A+θI) =
(A + θI), and by continuity

∀A ∈ Υ+, eLogA = A, which implies detA = etrace LogA. (3.4)

Using (3.4), we can define for A ∈ Υ+, using (3.3),

(detA)−1/2 = e−
1
2 trace LogA = |detA|−1/2e−

i
2 Im(trace LogA). (3.5)

• When A is a positive definite matrix, LogA is real-valued and (detA)−1/2

= |detA|−1/2.
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• When A = −iB where B is a real nonsingular symmetric matrix, we note
that B = PDtP with P ∈ O(n) and D diagonal. We see directly on the
formulas (3.3),(3.2) that

LogA = Log(−iB) = P (Log(−iD))tP, trace LogA = trace Log(−iD)

and thus, with (μj) the (real) eigenvalues of B, we have Im (trace LogA) =
Im

∑
1≤j≤n Log(−iμj), where the last Log is given by (3.2). Finally we get

Im (trace LogA) = −π

2

∑
1≤j≤n

signμj = −π

2
signB

where signB is the signature of B. As a result, we have when A = −iB,
B real symmetric nonsingular matrix,

(detA)−1/2 = |detA|−1/2ei
π
4 sign(iA) = |detB|−1/2ei

π
4 signB . (3.6)

Proposition 3.1 Let A be a symmetric nonsingular n× n matrix with com-
plex entries such that ReA ≥ 0. We define the Gaussian function vA on R

n

by vA(x) = e−π〈Ax,x〉. The Fourier transform of vA is

v̂A(ξ) = (detA)−1/2e−π〈A−1ξ,ξ〉, (3.7)

where (detA)−1/2 is defined according to formula (3.5). In particular, when
A = −iB with a symmetric real nonsingular matrix B, we get

Fourier(eiπ〈Bx,x〉)(ξ) = v̂−iB(ξ) = |detB|−1/2ei
π
4 signBe−iπ〈B−1ξ,ξ〉.

Proof. Let us define Υ ∗
+ as the set of symmetric n× n complex matrices with

a positive definite real part (naturally these matrices are nonsingular since
Ax = 0 for x ∈ C

n implies 0 = Re〈Ax, x̄〉 = 〈(ReA)x, x̄〉, so that Υ ∗
+ ⊂ Υ+).

Let us assume first that A ∈ Υ ∗
+; then the function vA is in the Schwartz

class (and so is its Fourier transform). The set Υ ∗
+ is an open convex subset

of C
n(n+1)/2 and the function Υ ∗

+ ) A → v̂A(ξ) is holomorphic and given
on Υ ∗

+ ∩ R
n(n+1)/2 by (3.7). On the other hand, the function Υ ∗

+ ) A →
e−

1
2 trace LogAe−π〈A−1ξ,ξ〉 is also holomorphic and coincides with previous one

on R
n(n+1)/2. By analytic continuation this proves (3.7) for A ∈ Υ ∗

+.
If A ∈ Υ+ and ϕ ∈ S (Rn), we have 〈v̂A, ϕ〉S ′,S =

∫
vA(x)ϕ̂(x)dx so that

Υ+ ) A → 〈v̂A, ϕ〉 is continuous and thus (note that the mapping A → A−1

is a homeomorphism of Υ+), using the previous result on Υ ∗
+,

〈v̂A, ϕ〉= lim
ε→0+

〈v̂A+εI , ϕ〉= lim
ε→0+

∫
e−

1
2 trace Log(A+εI)e−π〈(A+εI)−1ξ,ξ〉ϕ(ξ)dξ

(by continuity of Log on Υ+ and domin. cv.)

=
∫

e−
1
2 trace LogAe−π〈A−1ξ,ξ〉ϕ(ξ)dξ,

which is the sought result.
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Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(x) = 1 for x > 0,
H(x) = 0 for x ≤ 0. With the notation of this section, we have, with δ0 the
Dirac mass at 0, Ȟ(x) = H(−x),

Ĥ + ̂̌H = 1̂ = δ0, Ĥ − ̂̌H = ŝign,
1
iπ

=
1

2iπ
2δ̂0(ξ) = D̂ sign(ξ) = ξŝignξ

so that ξ
(
ŝignξ− 1

iπpv(1/ξ)
)

= 0 and ŝignξ− 1
iπpv(1/ξ) = cδ0 with c = 0 since

the lhs is odd. We get

ŝign(ξ) =
1
iπ

pv
1
ξ
,

̂

pv(
1
πx

) = −i sign ξ, Ĥ =
δ0

2
+

1
2iπ

pv(
1
ξ
). (3.8)
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Summary. Solutions to weakly hyperbolic Cauchy problems contain as one of the
most important properties the so-called loss of regularity. Recently authors have
begun to understand how to show that the loss really appears. In this note we
describe several models and explain different ways how to attack the question that
a ν loss of regularity really appears.
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1 Introduction

It is well-known that solutions to degenerate hyperbolic Cauchy problems
show in many cases the effect of loss of regularity or loss of derivatives. In
the pioneering paper [5] the authors discussed among other things strictly
hyperbolic Cauchy problems with low regularity in coefficients. Let us explain
the results by the model case

utt − a(t)uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x), a(t) ≥ C > 0.

1. If
∫ T−τ

0
|a(t + τ) − a(t)|dt ≤ Aτ, τ ∈ [0, T/2], then the Cauchy problem

is Hs (C∞) well-posed without any loss of derivatives.

2. If
∫ T−τ

0
|a(t+τ)−a(t)|dt ≤ Aτ(| log τ |+1), τ ∈ (0, T/2], then the Cauchy

problem is H∞ (C∞) well-posed with an at most finite loss of derivatives.

There are other examples which describe a deteriorating behavior of oscillating
coefficients (here near t = 0).
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1. [7] The Cauchy problem

utt −
(
2 + cos

(
log

1
t

)α)
uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

is C∞ well-posed if and only if α ≤ 2.
2. [15] The Cauchy problem

utt − e−2t−α
(
2 + cos

(1
t

))
uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

is C∞ well-posed if and only if α ≥ 1/2.

All these cited results have common features.

1. A threshold is explained between finite loss or infinite loss of derivatives.
2. Sufficient conditions explain that at most a finite loss of derivatives ap-

pears.
3. Counterexamples show that the infinite loss of derivatives really appears.

At the moment we have only some model cases for which it is shown that a
precise “finite” loss of regularity really appears. In [16] the authors studied
systematically the finite degenerate case, and explained loss of regularity and
difference of regularities of data. By application of the theory of confluent
hypergeometric functions they arrive at the following conclusion:

Proposition 1.1 Let us consider the weakly hyperbolic Cauchy problem

utt − t2luxx − atl−1ux = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

under the assumption u0 ∈ Hs, u1 ∈ Hs− 1
l+1 , respectively. Then there exists

a unique solution
{
u ∈ C([0, T ],Hs) ∩ C1([0, T ],Hs−1− |a|−l

2(l+1) ) if |a| ≤ l,

u ∈ C([0, T ],Hs− |a|−l
2(l+1) ) ∩ C1([0, T ],Hs−1− |a|−l

2(l+1) ) if |a| ≥ l.

Remark 1.2 This proposition explains that a loss of regularity for the solu-
tion itself appears only for |a| > l. The loss is 〈Dx〉

|a|−l
2(l+1) and the difference

of regularities of data is 〈Dx〉 1
l+1 . Moreover, the statement generalizes a well-

known result for the classical wave equation (l = a = 0).

Let us recall a regularity result from [1]. For this reason we introduce the
Cauchy problem with infinite or flat degeneracy

utt−
( 1
t2
e−

1
t

)2

uxx−a
1
t4
e−

1
t ux = 0, u(0, x) = u0(x), ut(0, x) = u1(x) (1.1)

with a real coefficient a. Then the results from [1] yield the following statement:
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Proposition 1.3 Let us suppose u0 ∈ (log〈Dx〉)−1Hs and u1 ∈ Hs for the
Cauchy problem (1.1). Then there exists a unique solution

⎧⎨
⎩

u ∈ C([0, T ],Hs) ∩ C1([0, T ],Hs− |a|+1
2 ) if |a| < 1,

u ∈ C([0, T ],Hs− |a|−1
2 ) ∩ C1([0, T ],Hs− |a|+1

2 ) if |a| ≥ 1.

In the following proposition we give a more precise statement.

Theorem 1.4 Consider the Cauchy problem (1.1) under the assumptions
u0 ∈ Hs, u1 ∈ log〈Dx〉Hs, then there is a unique solution
⎧⎨
⎩

u ∈ C([0, T ],Hs) ∩ C1([0, T ], (log〈Dx〉)Hs− |a|+1
2 ) if |a| < 1,

u ∈ C([0, T ], (log〈Dx〉)Hs− |a|−1
2 ) ∩ C1([0, T ], (log〈Dx〉)Hs− |a|+1

2 ) if |a| ≥ 1.

Remark 1.5 Let us compare the statements of Proposition 1.3 and Theorem
1.4.

In Proposition 1.3 the following properties of solutions to the Cauchy prob-
lem (1.1) are shown:

• The difference of regularity of data is log〈Dx〉.
• The threshold for a higher loss of regularity for the solution is |a| = 1.
• For all real a there appears at least the loss of regularity log〈Dx〉.

In Theorem 1.4 the following properties of solutions to the Cauchy problem
(1.1) are shown:

• The difference of regularity of data is log〈Dx〉.
• The threshold for the loss of regularity is |a| = 1.
• For all real |a| < 1 there is no loss of regularity for the solution itself.

The statements of Proposition 1.1, Theorem 1.4 and the example from [15]
can be concluded from the following general result which is proved in [10].

Proposition 1.6 Let us consider with a real constant a the Cauchy problem

utt − λ2(t)b2(t)uxx − a
λ2(t)
Λ(t)

ux = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

under the following assumptions to the function λ = λ(t) ∈ C[0, T ]∩C2(0, T ]
describing the degeneracy of the coefficient at t = 0:

⎧⎪⎪⎨
⎪⎪⎩

λ(0) = 0, λ′(t) > 0, t ∈ (0, T ],

d0
λ(t)
Λ(t) ≤ λ′(t)

λ(t) ≤ d1
λ(t)
Λ(t) , d0, d1 > 0, Λ(t) =

∫ t

0
λ(s)ds,

|λ′′(t)| ≤ d2λ(t)( λ(t)
Λ(t) )

2.
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We introduce a positive and monotonously decreasing continuous function ν =
ν(t), t ∈ (0, T ], which measures the oscillating behavior of the coefficient.
Finally, we suppose the following conditions to the function b = b(t) ∈ C2(0, T ]
describing the oscillating behavior of the coefficient at t = 0:

⎧⎨
⎩

c0 := inf
t∈(0,T ]

b(t) ≤ b(t) ≤ c1 := sup
t∈(0,T ]

b(t), t ∈ (0, T ], c0, c1 > 0,

|b(k)(t)| ≤ Ck(
λ(t)
Λ(t)ν(t))k, k = 1, 2.

Under these assumptions, if u0 ∈ Hs, u1 ∈ (Λ−1( N
〈Dx〉 ))

−1Hs, N is a fixed
large positive constant, then there is a unique solution u belonging to the fol-
lowing function spaces:

1. when 0 < limt→0
Λ(t)

|a|
c0

λ(t) ≤ +∞, then

u ∈ C
(
[0, T ], exp

(
Cαν

((Λ
ν

)−1( N2

〈Dx〉
)))

Hs
)

⋂
C1

(
[0, T ],

λ
1
2
(
(Λν )−1( N2

〈Dx〉 )
)

Λ
|a|
2c0

(
(Λν )−1( N2

〈Dx〉 )
) exp

(
Cαν

((Λ
ν

)−1( N2

〈Dx〉
)))

Hs−1
)

with nonnegative constants Cα and N2,

2. when limt→0
Λ(t)

|a|
c0

λ(t) = 0, then

u ∈ C
(
[0, T ],

λ
1
2
(
(Λν )−1( N2

〈Dx〉 )
)

Λ
|a|
2c0

(
(Λν )−1( N2

〈Dx〉 )
) exp

(
Cαν

((Λ
ν

)−1( N2

〈Dx〉
)))

Hs
)

⋂
C1

(
[0, T ],

λ
1
2
(
(Λν )−1( N2

〈Dx〉 )
)

Λ
|a|
2c0

(
(Λν )−1( N2

〈Dx〉 )
) exp

(
Cαν

((Λ
ν

)−1( N2

〈Dx〉
)))

Hs−1
)

with nonnegative constants Cα and N2.

Remark 1.7 We restrict ourselves to the term of smaller order aλ2(t)
Λ(t) ux. In

this way we assume sharp Levi conditions which are connected with the term
λ2(t) in the principal part describing the degeneracy at t = 0. This is rea-
sonable. The paper [9] shows that it is very difficult to determine precise Levi
conditions which are connected with the oscillating term b2(t) in the principal
part.

Proposition 1.6 yields sufficient conditions under which no loss of derivatives
appears for solutions to weakly hyperbolic Cauchy problems (ν ≡ const). More-
over, it gives some more precise (to the usual ones) explanations.
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1. A threshold is explained between no loss and loss.
2. Sufficient conditions explain that at most an arbitrary small loss or finite

loss of derivatives appears.

In the present paper we are interested in the following question:

Are we able to show by constructing examples that the arbitrary small loss
or finite loss or infinite loss of derivatives really appears?

A first method is to use the theory of special functions. This will be done
in Section 2 to prove Theorem 1.4, that is, the more precise statement in
comparison with the statement from [1] for (1.1). In this way we get in addition
that the small loss or finite loss really appears.

In Section 3 we will discuss the optimality of our results concerning the
infinite loss of regularity by the application of Floquet theory. We will prove the
infinite loss for a family of coefficients in (1.1) with a = 0 having an oscillating
behavior arbitrarily close to the critical case. The family is produced by an
arbitrary given periodic function b = b(t). We denote as critical case the case
which yields H∞ well-posedness with a finite loss of derivatives.

The question for the optimality of our results in the case of finite loss or
arbitrary small loss of regularity is considered in detail in Section 4. Here
we choose families of Cauchy problems satisfying uniform assumptions from
Proposition 1.6 for the critical or for cases better than the critical one and
show that the loss of regularity really appears.

Some concluding remarks in Section 5 complete the paper.

2 Proof of Theorem 1.4

Let us recall the Cauchy problem with infinite or flat degeneracy

utt−
( 1
t2
e−

1
t

)2

uxx−a
1
t4
e−

1
t ux = 0, u(0, x) = u0(x), ut(0, x) = u1(x) (2.1)

with a real constant a.

Proof. We follow the approach of [1]. After partial Fourier transformation we
have

ûtt +
( 1
t2
e−

1
t

)2

ξ2û− ia
1
t4
e−

1
t ξû = 0.

The transformations
τ = ξΛ(t), û(t, ξ) = tv(τ)

imply

vττ +
1
τ
vτ + (1− ia

τ
)v = 0.
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Finally, we apply the transformations

τ =
z

2i
, w(z) = e

z
2 v(τ)

which give

zwzz(z) + (1− z)wz(z)− 1 + a

2
w(z) = 0.

This is Kummer’s equation (logarithmic case), that is,

zwzz(z) + (γ − z)wz(z)− αw(z) = 0 with γ = 1 and α =
1 + a

2
.

Lemma 2.1 (see [2]) The functions

v1(t, ξ) = te−iΛ(t)ξΨ(α, 1; 2iΛ(t)ξ), v2(t, ξ) = teiΛ(t)ξΨ(1− α, 1;−2iΛ(t)ξ)

form a fundamental system of solutions for t ≥ 0. Here α = 1+a
2 .

Any solution û(t, ξ) can be written as follows:

û(t, ξ) = p0(t, ξ)û(0, ξ) + p1(t, ξ)ût(0, ξ),

where
⎧⎪⎨
⎪⎩

p0(t, ξ) = W (0, ξ)−1
(
v2,t(0, ξ)v1(t, ξ)− v1,t(0, ξ)v2(t, ξ)

)
,

p1(t, ξ) = W (0, ξ)−1
(− v2(0, ξ)v1(t, ξ) + v1(0, ξ)v2(t, ξ)

)
,

W (0, ξ) = v1(0, ξ)v2,t(0, ξ)− v1,t(0, ξ)v2(0, ξ),

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v1,t(t, ξ) = e−iΛ(t)ξ(1− t−1iξΛ(t))Ψ(α, 1; 2iΛ(t)ξ)

+2iξt−1Λ(t)e−iΛ(t)ξΨz(α, 1; 2iΛ(t)ξ),

v2,t(t, ξ) = eiΛ(t)ξ(1 + t−1iξΛ(t))Ψ(1− α, 1;−2iΛ(t)ξ)

−2iξt−1Λ(t)eiΛ(t)ξΨz(1− α, 1;−2iΛ(t)ξ).

Let us introduce some basic properties for the functions Ψ = Ψ(α, γ, z)
(see [2]).

Taking into account the asymptotic expansion

Ψ(α, 1; z) = − 1
Γ (α)

(
log z + ψ(α)− 2γ

)
+ o(|z log z|) for z → 0,

where the constant γ is Euler’s constant (a positive number belonging to the
interval (0, 1)) and where the function ψ = ψ(z) is the logarithmic derivative
dz logΓ (z) of the Gamma function Γ = Γ (z). Applying the formula

Ψ (n)
z (α, 1; z) = (−1)n(α)nΨ(α + n, 1 + n; z)
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for n = 1, where

(α)0 = 1, (α)n = α(α + 1) · · · (α + n− 1) =
Γ (α + n)
Γ (α)

,

and

Ψ(α, γ; z) = z1−γ Γ (γ − 1)
Γ (α)

+ O(| log z|) when Re γ ≥ 1 for small z,

we obtain⎧⎪⎪⎨
⎪⎪⎩

v1,t(0, ξ) = − 1
Γ (α)

(
log |2ξ|+ i(signξ)π2 + ψ(α)− 2

)
,

v2,t(0, ξ) = − 1
Γ (1−α)

(
log |2ξ| − i(signξ)π2 + ψ(1− α)− 2

)
,

v1(0, ξ) = 1
Γ (α) , v2(0, ξ) = 1

Γ (1−α) .

Therefore, we have

p0(t, ξ) =
Γ (α)Γ (1− α)

ψ(α)− ψ(1− α) + i(signξ)π

×
(
− 1

Γ (1− α)
(
log |2ξ| − i(signξ)

π

2
+ ψ(1− α)− 2

)

× te−iΛ(t)ξΨ(α, 1; 2iΛ(t)ξ) +
1

Γ (α)
(
log |2ξ|+ i(signξ)

π

2
+ ψ(α)− 2

)

× teiΛ(t)ξΨ(1− α, 1;−2iΛ(t)ξ)
)
;

p1(t, ξ) =
Γ (α)Γ (1− α)

ψ(α)− ψ(1− α) + i(signξ)π

( 1
Γ (α)

teiΛ(t)ξΨ(1− α, 1;−2iΛ(t)ξ)

− 1
Γ (1− α)

te−iΛ(t)ξΨ(α, 1; 2iΛ(t)ξ)
)
.

Now we divide the extended phase space into two zones. First let us derive an
estimate in the pseudo-differential zone Zpd(N,M) = {(t, ξ) ∈ [0, T ]× {|ξ| ≥
M} : Λ(t)|ξ| ≤ N}.
Lemma 2.2 In the pseudo-differential zone we have the following estimate:

|û(t, ξ)| ≤ C(N,M)
(
|û(0, ξ)|+ 1

log〈ξ〉 |ût(0, ξ)|
)
.

Proof. First, from the definition of the pseudo-differential zone, we have

t ≤ 1
log |ξ|−logN implies t log |ξ| ≤ C(N,M).
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We apply the following properties of Ψ -functions and of Φ-functions:

Φ(α, γ; z) = exp(z)Φ(γ − α, γ;−z),

Ψ(α, n + 1; z) =
(−1)n−1

n!Γ (α− n)

(
Φ(α, n + 1; z) log z

+
∞∑
r=0

(α)r
(n + 1)r

(ψ(α + r)− ψ(1 + r)− ψ(1 + n + r))
zr

r!

)

+
(n− 1)!
Γ (α)

n−1∑
r=0

(α− n)r
(1− n)r

zr−n

r!

for n = 0, 1, 2, . . ., and the last sum has to be omitted if n = 0.

Straightforward calculations bring the following asymptotic behavior of
p0(t, ξ) and p1(t, ξ) in the pseudo-differential zone:

p0(t, ξ) ∼ Φ(1− α, 1;−2iΛ(t)ξ)
ψ(α)− ψ(1− α) + i(signξ)π

× eiΛ(t)ξ
(
t log(2Λ(t)|ξ|)(−i(signξ)π + ψ(1− α)− ψ(α))

+ it(signξ)
π

2
(2 log |2ξ|+ ψ(1− α) + ψ(α)− 4)

)

+ eiΛ(t)ξ t(ψ(α)− 2ψ(1))(log |2ξ| − i(signξ)π2 + ψ(1− α)− 2)
ψ(α)− ψ(1− α) + i(signξ)π

− eiΛ(t)ξ t(ψ(1− α)− 2ψ(1))(log |2ξ|+ i(signξ)π2 + ψ(α)− 2)
ψ(α)− ψ(1− α) + i(signξ)π

.

For the representation of p1 we get

p1(t, ξ) =
Γ (α)Γ (1− α)

ψ(α)− ψ(1− α) + i(signξ)π

( 1
Γ (α)

1
Γ (1− α)

te−iΛ(t)ξ

×
(
e2iΛ(t)ξΦ(1− α, 1;−2iΛ(t)ξ) log(2iΛ(t)ξ)

+
∞∑
r=0

(α)r
(1)r

(ψ(α + r)− 2ψ(1))
(2iΛ(t)ξ)r

r!

)

+
1

Γ (α)
−1

Γ (1− α)
teiΛ(t)ξ

(
Φ(1− α, 1;−2i Λ(t)ξ) log(−2iΛ(t)ξ)
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+
∞∑
r=0

(1− α)r
(1)r

(ψ(1− α + r)− 2ψ(1))
(−2iΛ(t)ξ)r

r!

))

∼ e−iΛ(t)ξ
( it(signξ)πΦ(1− α, 1;−2iΛ(t)ξ)

ψ(α)− ψ(1− α) + i(signξ)π
+

tψ(α)− tψ(1− α)
ψ(α)− ψ(1− α) + i(signξ)π

)
,

where in the representation for p0 and p1 the sign ∼ means modulo terms be-
having like (log〈ξ〉)−1. From the definition of the zone and the special structure
of Λ(t), here 1

t plays a significant role, we know that t log(2Λ(t)|ξ|) remains
bounded in a right-sided neighborhood of Λ(t)ξ = 0. Furthermore, Φ(α, γ, z)
is analytic with respect to z. Keeping in mind these observations we deduce
immediately that

|p0(t, ξ)| ≤ C(N,M), |p1(t, ξ)| ≤ C(N,M)
log〈ξ〉 .

This implies the desired statement.

Now let us consider the hyperbolic zone which is defined by

Zhyp(N,M) = {(t, ξ) ∈ [0, T ]× {|ξ| ≥M} : Λ(t)|ξ| ≥ N}.

Lemma 2.3 In the hyperbolic zone we have the following estimates:

|û(t, ξ)| ≤
⎧⎨
⎩

C(N,M)
(
|û(0, ξ)|+ 1

log〈ξ〉 |ût(0, ξ)|
)

for |a| < 1,

C(N,M)〈ξ〉 |a|−1
2

(
log〈ξ〉|û(0, ξ)|+ |ût(0, ξ)|

)
for |a| ≥ 1.

Proof. In this zone we will apply the asymptotic behavior of the Ψ -functions
for large |z| with 0 < argz < π:

1. |Ψ(α, 1; z)| ≤ C(α, 1)|z|Re(−α),

2. |Ψ(1− α, 1;−z)| ≤ C(α, 1)|z|Re(α−1).

First, we consider the term t log |ξ|. From

t ≥ tξ =
1

log |ξ| − logN

we conclude

log |ξ| − logN ≥ 1
t
, log |ξ| ≥ 1

t

(
1 + t logN

)
≥ 1

t

( 1
1− t

)
,

where N is large and T is small enough. A small T is sufficient for our con-
siderations. Hence,
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t log |ξ| − t2 log |ξ| ≥ 1, t2 log |ξ| ≤ t log |ξ| − 1 (for all t ≥ tξ),

t log |ξ| ≤ log |ξ| − 1
t

= logΛ(t)|ξ|,
respectively. Now let us use the representations for p0(t, ξ) and p1(t, ξ). Then
we can estimate as follows:

|p0(t, ξ)| =
∣∣∣ Γ (α)Γ (1− α)
ψ(α)− ψ(1− α) + i(signξ)π

×
(
− 1

Γ (1− α)
(log |2ξ| − i(signξ)

π

2
+ ψ(1− α)− 2γ)

× te−iΛ(t)ξΨ(α, 1; 2iΛ(t)ξ)

+
1

Γ (α)
(log |2ξ|+ i(signξ)

π

2
+ ψ(α)− 2γ)

× teiΛ(t)ξΨ(1− α, 1;−2iΛ(t)ξ)
)∣∣∣

≤ C(α)t log |ξ|
(
|Ψ(1− α, 1;−2iΛ(t)ξ)|+ |Ψ(α, 1; 2iΛ(t)ξ)|

)

≤ C(α)t log |ξ|(Λ(t)|ξ|) |a|−1
2 ;

|p1(t, ξ)| =
∣∣∣ Γ (α)Γ (1− α)
ψ(α)− ψ(1− α) + i(signξ)π

( 1
Γ (α)

teiΛ(t)ξΨ(1− α, 1;−2iΛ(t)ξ)

− 1
Γ (1− α)

te−iΛ(t)ξΨ(α, 1; 2iΛ(t)ξ)
)∣∣∣

≤ C(α)t
(
|Ψ(1− α, 1;−2iΛ(t)ξ)|+ |Ψ(α, 1; 2iΛ(t)ξ)|

)

≤ C(α)t(Λ(t)|ξ|) |a|−1
2 .

Taking account of t log |ξ| ≤ log(Λ(t)|ξ|) the statement of this lemma follows
immediately.

Summarizing the statements from Lemmas 2.2 and 2.3 we have

|û(t, ξ)| ≤
⎧⎨
⎩

C
(
|û(0, ξ)|+ 1

log〈ξ〉 |ût(0, ξ)|
)

for |a| < 1,

C〈ξ〉 |a|−1
2 log〈ξ〉

(
|û(0, ξ)|+ 1

log〈ξ〉 |ût(0, ξ)|
)

for |a| ≥ 1.

Similarly, using the above-introduced approach we obtain the following
estimate for Dtû:

|Dtû(t, ξ)| ≤ C〈ξ〉 |a|+1
2 log〈ξ〉

(
|û(0, ξ)|+ 1

log〈ξ〉 |ût(0, ξ)|
)

for |a| ≥ 0.

Thus all statements of Theorem 1.4 are proved.
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3 Optimality of conditions for infinite loss of regularity

To study the optimality of results concerning the influence of oscillations we
restrict ourselves to the weakly hyperbolic Cauchy problem

utt − λ2(t)b2(t)uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

To prove the optimality of conditions for the infinite loss of regularity we
treat the weakly hyperbolic Cauchy problem with a special structure of the
coefficients ⎧⎨

⎩
utt − λ2(t)b2

((
log 1

Λ(t)

)2

log[n] 1
Λ(t)

)
uxx = 0,

u(0, x) = u0(x), ut(0, x) = u1(x),
(3.1)

where n ≥ 1 and b = b(s) is a positive, 1-periodic, nonconstant function
belonging to C2. If n = 0, then the assumptions of Proposition 1.6 are satisfied
with ν(t) = log 1

Λ(t) , consequently, we have at most a finite loss of regularity.
If n ≥ 1, then we arrive with increasing n arbitrary close at the critical case
n = 0, thus we expect an infinite loss of regularity. That it is really so we will
prove by application of Floquet theory.

Theorem 3.1 Let us consider under the above assumptions the Cauchy prob-
lem (3.1). If n ≥ 1, then the Cauchy problem is not H∞ (C∞) well-posed, that
is, there exists an infinite loss of regularity.

Proof. Philosophy of the proof

Let us suppose that the Cauchy problem (3.1) is C∞ well-posed. Then due
to the cone of dependence property it is sufficient to study H∞ well-posedness.
Taking into account that (3.1) becomes strictly hyperbolic for t > 0 with
a smooth coefficient we expect even uniform H∞ well-posedness on [0, T ].
Then according to [12] the property of uniform H∞ well-posedness means the
existence of two nonnegative constants r and C such that for any solution u,
for any t(1), t(2) ∈ [0, T ] and for any ξ ∈ R, the partial Fourier transform û
satisfies the following estimate:

|û(t(2), ξ)|+
∣∣∣ d
dt
û(t(2), ξ)

∣∣∣ ≤ C(1 + |ξ|)r
(
|û(t(1), ξ)|+

∣∣∣ d
dt
û(t(1), ξ)

∣∣∣
)
.

At the end of this proof we will show that there exist solutions {ûm(t, ξ)}m
to the partial Fourier transformed equation from (3.1), that is, to

ûtt + λ2(t)b2
((

log
1

Λ(t)

)2

log[n] 1
Λ(t)

)
ξ2û = 0

accompanied by a sequence of frequencies {ξm}m and a sequence of time-pairs
{(t(1)m , t

(2)
m )}m (0 < t

(1)
m < t

(2)
m < T ), with limm→∞ ξm = ∞, limm→∞ t

(1)
m =

limm→∞ t
(2)
m = 0, and



182 Xiaojun Lu and Michael Reissig

|ûm(t(2)m , ξm)|+
∣∣∣ d
dt
ûm(t(2)m , ξm)

∣∣∣

≥ C0 exp(C1 log ξm(log[n] ξm)
1
2 )
(
|ûm(t(1)m , ξm)|+

∣∣∣ d
dt
ûm(t(1)m , ξm)

∣∣∣
)
.

This gives the contradiction to the H∞ well-posedness.

We will only prove the statement for n ≥ 2; some minor modifications in
the approach give the result in the case n = 1.

Step 1: Derivation of an auxiliary differential equation

Setting s = log[n] 1
Λ(t) (log 1

Λ(t) )
2 let us define w(s, ξ) := τ

1
2 (s)û(t(s), ξ),

where τ(s) := −ds
dt (t(s)). Then we obtain the auxiliary differential equation

wss(s, ξ) + b2(s)λ(s, ξ)w(s, ξ) = 0, (s, ξ) ∈ [s(T ),∞)× R,

where

λ(s, ξ) = λ1(s, ξ) + λ2(s), λ1(s, ξ) =
λ2(t(s))|ξ|2

τ2(s)
,

λ2(s) =
θ(s)

b2(s)τ2(s)
, θ =

(τ ′)2 − 2τ ′′τ
4

.

Straightforward calculations yield

τ ′(s)2 − 2τ ′′(s)τ(s)
τ2(s)

=
1

τ4(s)

(
3
(d2s

dt2

)2

− 2
d3s

dt3
ds

dt

)

∼
(
2
λ(t)
Λ(t)

log
1

Λ(t)
log[n] 1

Λ(t)

)−4(
12
( λ(t)
Λ(t)

)4(
log[n] 1

Λ(t)

)2

+ 12
(λ′(t)Λ(t)− λ2(t)

Λ2(t)
log

1
Λ(t)

log[n] 1
Λ(t)

)2

− 8
λ(t)
Λ(t)

λ′′(t)Λ(t)− λ′(t)λ(t)
Λ2(t)

(
log

1
Λ(t)

log[n] 1
Λ(t)

)2

+ 16
( λ(t)
Λ(t)

)2λ′(t)Λ(t)− λ2(t)
Λ2(t)

(
log

1
Λ(t)

log[n] 1
Λ(t)

)2)
.

From here we know that lims→∞ λ2(s) = 0.

For the further calculations we need

s = log[n] 1
Λ(t)

(
log

1
Λ(t)

)2

implies
(

log
1

Λ(t)

)2

∼ s

log[n−1] s
1
2
.



Instability Behavior and Loss of Regularity 183

Step 2: Asymptotics

Actually we define a function sξ = s(ξ) implicitly by

λ(s, ξ) ∼ 1
4

1

s log[n−1] s
1
2 exp

(
2
(

s

log[n−1] s
1
2

) 1
2
) |ξ|2 + λ2(s) = λ0,

where λ0 will be chosen later. This definition implies sξ → ∞ if ξ → ∞.
For this reason the asymptotical behavior of λ1 and λ2 around large sξ is of
interest.

Lemma 3.2 For 0 ≤ δ ≤ log |ξ|(log[n] |ξ|) 1
2 , and sξ large enough we have

|λ1(sξ − δ, ξ)− λ1(sξ, ξ)| ≤ Cλ1(sξ, ξ)(log[n] |ξ|)− 1
2 ,

|λ2(sξ − δ)− λ2(sξ)| ≤ Cλ2(sξ)((log |ξ| log[n] |ξ|) 1
2 )−1.

Summarizing we have

|λ(sξ − δ, ξ)− λ(sξ)| ≤ Cλ(sξ, ξ)(log[n] |ξ|)− 1
2 .

Proof. From the representation of λ0 we get

1
4
(log |ξ|)2 ≤ sξ

log[n−1] s
1
2
ξ

≤ (log |ξ|)2.

Consequently, we have

C1(log |ξ|)2 log[n] |ξ| ≤ sξ ≤ C2(log |ξ|)2 log[n] |ξ|.
Thus, for large ξ and 0 ≤ δ ≤ log |ξ|(log[n] |ξ|) 1

2 we have
∣∣∣ δ
sξ

∣∣∣ ≤ C
1

log |ξ|(log[n] |ξ|) 1
2
,

and, consequently,

|λ1(sξ − δ, ξ)− λ1(sξ, ξ)|

=
∣∣∣ |ξ|2

(sξ − δ) log[n−1](sξ − δ)
1
2 exp

(
2
(

sξ−δ

log[n−1](sξ−δ)
1
2

) 1
2
) − λ1(sξ, ξ)

∣∣∣

∼
∣∣∣ |ξ|2

(sξ − δ) log[n−1] s
1
2
ξ exp

(
2
(

sξ−δ

log[n−1](sξ−δ)
1
2

) 1
2
) − λ1(sξ, ξ)

∣∣∣

∼ λ1(sξ, ξ)
∣∣∣
(
1− δ

sξ

)−1

exp
(
− 2

( sξ

log[n−1] s
1
2
ξ

) 1
2
((

1− δ

sξ

) 1
2 − 1

))
− 1

∣∣∣

≤ Cλ1(sξ, ξ)(log[n] |ξ|)− 1
2 .
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Since λ2(s) ∼ 1

s log[n−1] s
1
2

we may conclude

|λ2(sξ − δ)− λ2(sξ)|

∼
∣∣∣ 1

(sξ − δ) log[n−1](sξ − δ)
1
2
− λ2(sξ)

∣∣∣ ≤
∣∣∣ 1

(sξ − δ) log[n−1](sξ)
1
2
− λ2(sξ)

∣∣∣

∼ λ2(sξ)
∣∣∣
(
1− δ

sξ

)−1

− 1
∣∣∣ ≤ Cλ2(sξ)

1

log |ξ|(log[n] |ξ|) 1
2
.

Remark 3.3 Taking into consideration λ2(s) → 0 for s→∞ we see from the
last estimate that λ2(s) plays a negligible role, so in the following steps it is
sufficient to restrict ourselves to λ1(s, ξ). Namely, we treat λ(s, ξ) = λ1(s, ξ).

Step 3: Application of Floquet’s theory

We are interested in the fundamental solution X = X(s, s0) as the solution
to the Cauchy problem

d

ds
X =

(
0 −λ0b

2(s)
1 0

)
X =: A(s)X, X(s0, s0) =

(
1 0
0 1

)
.

It is clear that X(s0 − 1, s0) is independent of s0 ∈ N.

Lemma 3.4 (Floquet’s theory, see [11]) Let b = b(s) ∈ C2 be a nonconstant
and positive function on R which is 1-periodic, then there exists a positive real
number λ0 > 0 such that λ0 belongs to an interval of instability for wss +
λ0b

2(s)w = 0, that is, X(s0 − 1, s0) has eigenvalues μ0 and μ−1
0 satisfying

|μ0| > 1.

Set

X(sξ − 1, sξ) =
(
x11 x12

x21 x22

)
.

The lemma implies that the eigenvalues of this matrix are μ0 and μ−1
0 . Hence,

x11 + x22 = μ0 + μ−1
0 .

Thus
|x11 − μ0|+ |x22 − μ0| ≥ |μ0 − μ−1

0 |,
from which follows

max{|x11 − μ0|, |x22 − μ0|} ≥
1
2
|μ0 − μ−1

0 |.

We assume that
|x11 − μ0| ≥

1
2
|μ0 − μ−1

0 |.
The other case can be treated similarly. And we also have
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|x22 − μ−1
0 | ≥ 1

2
|μ0 − μ−1

0 |.

Now we consider the following equation for an integer m ≥ 0:

wss

+
1
4

1

(sξ −m + s) log[n−1](sξ −m + s)
1
2 exp

(
2
(

sξ−m+s

log[n−1](sξ−m+s)
1
2

) 1
2
)

× |ξ|2b2(sξ + s)w = 0.

Let Xm(s, s1) be the solution of the associated first-order system

d

ds
Xm(s, s1) =

⎛
⎜⎝

0 − 1
4

1

(sξ−m+s) log[n−1](sξ−m+s)
1
2 exp

(
2

(
sξ−m+s

log[n−1](sξ−m+s)
1
2

) 1
2
) |ξ|2b2(sξ + s)

1 0

⎞
⎟⎠

× Xm(s, s1), Xm(s1, s1) =
(

1 0
0 1

)
.

Lemma 3.5 It holds

max
s,s1∈[−1,0]

‖Xm(s, s1)‖ ≤ exp(Cλ0) for 0 ≤ m ≤ log |ξ|(log[n] |ξ|) 1
2 .

Proof. Using (Am denotes the coefficient matrix from the above system)

Xm(s, s1) = I +
∞∑
j=1

∫ s

s1

Am(r1, ξ)
∫ r1

s1

Am(r2, ξ) · · ·
∫ rj−1

s1

Am(rj , ξ)drj · · · dr1

according to Lemma 3.2 we have

max
s,s1∈[−1,0]

‖Xm(s, s1)‖ ≤ exp(1 + b21|λ(sξ −m, ξ)− λ(sξ, ξ) + λ0|)

≤ exp(1 + b21(1 + ε)λ0) ≤ exp(Cλ0),

where b1 = maxt{b(t)} and 0 ≤ m ≤ log |ξ|(log[n] |ξ|) 1
2 .

Lemma 3.6 It holds

‖Xm(−1, 0)−X(sξ − 1, sξ)‖ ≤ C(log[n] |ξ|)− 1
2

for 0 ≤ m ≤ log |ξ|(log[n] |ξ|) 1
2 .
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Proof. First, note that X(sξ + s, sξ) = X(s, 0), since sξ ∈ N and b(s) is
1-periodic. Observe that

d

ds
Xm(s, 0) =

(
0 −λ(sξ, ξ)b2(s)

1 0

)
Xm(s, 0)

+

(
0

(
λ(sξ, ξ)− λ(sξ −m + s, ξ)

)
b2(s)

0 0

)
Xm(s, 0)

with Xm(0, 0) = I. Thus

d
ds

(
Xm(s, 0)−X(s, 0)

)
=

(
0 −λ(sξ, ξ)b2(s)

1 0

)(
Xm(s, 0)−X(s, 0)

)

+

(
0
(
λ(sξ, ξ)− λ(sξ −m + s, ξ)

)
b2(s)

0 0

)
Xm(s, 0)

with initial data Xm(0, 0)−X(0, 0) = 0. By Lemma 3.2 it follows

|λ(sξ, ξ)− λ(sξ −m + s, ξ)| ≤ Cλ0(log[n] |ξ|)− 1
2

for 0 ≤ m ≤ log |ξ|(log[n] |ξ|) 1
2 . Hence,

‖Xm(s, 0)−X(s, 0)‖

≤
∫ s

0

Cλ0‖Xm(r, 0)−X(r, 0)‖dr +
∫ s

0

Cλ0(log[n] |ξ|)− 1
2 ‖Xm(r, 0)‖dr.

So by Lemma 3.5, Gronwall’s inequality and the hypothesis on m we may
conclude

‖Xm(−1, 0)−X(−1, 0)‖ ≤ Cλ0(log[n] |ξ|)− 1
2 .

This completes the proof of the lemma.

Lemma 3.7 It holds

‖Xm(−1, 0)−Xm−1(−1, 0)‖ ≤ C(log |ξ| log[n] |ξ|)−1

for 0 < m ≤ log |ξ|(log[n] |ξ|) 1
2 .

Proof. First,

d

ds

(
Xm(s, 0)−Xm−1(s, 0)

)

=

(
0 −λ(sξ −m + s, ξ)b2(s)

1 0

)(
Xm(s, 0)−Xm−1(s, 0)

)

+

(
0

(
λ(sξ − (m− 1) + s, ξ)− λ(sξ −m + s, ξ)

)
b2(s)

0 0

)
Xm−1(s, 0)
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with initial data Xm(0, 0) − Xm−1(0, 0) = 0. Applying the same techniques
as in the proof to Lemma 3.2 we have for 0 < m ≤ log |ξ|(log[n] |ξ|) 1

2 the
estimates

|λ(sξ −m + r, ξ)− λ(sξ − (m− 1) + r, ξ)|

∼ λ(sξ − (m− 1) + r, ξ)
∣∣∣
(
1− 1

sξ − (m− 1) + r

)−1

× exp
(
− 2

( sξ − (m− 1) + r

log[n−1](sξ − (m− 1) + r)
1
2

) 1
2

×
((

1− 1
sξ − (m− 1) + r

) 1
2 − 1

))
− 1

∣∣∣

≤ Cλ0

sξ − (m− 1) + r

( sξ − (m− 1) + r

log[n−1](sξ − (m− 1) + r)
1
2

) 1
2

≤ Cλ0(log |ξ| log[n] |ξ|)−1.

By a similar argument as that used in the proof to Lemma 3.6 we get

‖Xm(−1, 0)−Xm−1(−1, 0)‖ ≤ Cλ0(log |ξ| log[n] |ξ|)−1

for 0 < m ≤ log |ξ|(log[n] |ξ|) 1
2 , as required.

Using

det(Iμ0 −X(sξ − 1, sξ)) = 0, det(Iμm −Xm(−1, 0)) = 0

by Lemma 3.6 we have

‖Xm(−1, 0)−X(sξ − 1, sξ)‖ ≤ C(log[n] |ξ|)− 1
2 .

Therefore the matrix Xm(−1, 0) with the property detXm(−1, 0) = 1 has
eigenvalues μm and μ−1

m which satisfy

|μm − μ0| ≤ C(log[n] |ξ|)− 1
2 ≤ ε

for any given positive ε and for sufficiently large sξ. Choosing ε ≤ |μ0|−1
2 we

have
|μm| ≥

1
2
(|μ0|+ 1) ≥ 1 + ε.

So the eigenvalues μm and μ−1
m are uniformly distinct for every m. Let us

denote

Xm(−1, 0) =

(
x11(m) x12(m)

x21(m) x22(m)

)
.
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Obviously, we have

|x11(m)− μm| ≥ |x11 − μ0| − (|x11(m)− x11|+ |μ0 − μm|) ≥
1
4
|μ0 − μ−1

0 |.

Analogously, we have

|x22(m)− μ−1
m | ≥ 1

4
|μ0 − μ−1

0 |.

According to Lemma 3.7 we have

|xij(m)− xij(m− 1)| ≤ C(log |ξ| log[n] |ξ|)−1.

Immediately we conclude

|μm − μm−1| ≤ C(log |ξ| log[n] |ξ|)−1.

Step 4: Energy estimate for a model problem

Lemma 3.8 Let m0 be the largest integer satisfying 0≤m≤ log |ξ|(log[n] |ξ|) 1
2 .

Then for the solution w = w(s, ξ) of

wss(s, ξ) + b2(s)λ(s, ξ)w(s, ξ) = 0, (s, ξ) ∈ [s(1),∞)× R ,

with the initial data

d

ds
w(sξ, ξ) =

x12(0)
μ0 − x11(0)

, w(sξ, ξ) = 1,

we have∣∣∣ d
ds

w(sξ −m0 − 1, ξ)
∣∣∣ + |w(sξ −m0 − 1, ξ)| ≥ C exp(C1 log |ξ|(log[n] |ξ|) 1

2 ).

Proof. The function w = w(sξ −m0 + s, ξ) satisfies

d2

ds2
w + λ(sξ −m + s, ξ)b(sξ + s)w = 0

with m = m0. Thus
(

d
dsw(sξ −m0 − 1, ξ)

w(sξ −m0 − 1, ξ)

)

= Xm0(−1, 0)Xm0−1(−1, 0) · · ·X0(−1, 0)

(
d
dsw(sξ, ξ)

w(sξ, ξ)

)
.
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The matrix

Bm =

⎛
⎝

x12(m)
μm−x11(m) 1

1 x21(m)

μ−1
m −x22(m)

⎞
⎠

is a diagonalizer for Xm(−1, 0), that is,

Xm(−1, 0)Bm = Bm

(
μm 0
0 μ−1

m

)
.

Since detXm(−1, 0) = 1 and the trace of Xm(−1, 0) is μm + μ−1
m we get

detBm =
μm − μ−1

m

μ−1
m − x22(m)

.

Lemma 3.5 indicates that

|μ−1
m − x22(m)| ≤ C, |xij(m)| ≤ C,

and since |μm| ≥ 1 + ε, so

|detBm| ≥ C > 0, ‖Bm‖ ≤ C, ‖B−1
m ‖ ≤ C

for 0 ≤ m ≤ log |ξ|(log[n] |ξ|) 1
2 . Then from

|xij(m)− xij(m− 1)| ≤ C(log |ξ| log[n] |ξ|)−1

we get

‖B−1
m−1Bm − I‖ = ‖B−1

m−1(Bm −Bm−1)‖ ≤ C(log |ξ| log[n] |ξ|)−1.

If we denote Gm := B−1
m−1Bm − I, then

Xm0(−1, 0)Xm0−1(−1, 0) · · ·X0(−1, 0)

=Bm0

(
μm0

0
0 μ−1

m0

)
(I + Gm0) · · · (I + G1)

(
μ0 0

0 μ−1
0

)
B−1

0 .

We shall show that the (1, 1) element y11 of the matrix
(
μm0

0
0 μ−1

m0

)
(I + Gm0) · · · (I + G1)

(
μ0 0
0 μ−1

0

)

can be estimated to below by C0 exp(C1 log |ξ|(log[n] |ξ|) 1
2 ). First we recall

‖B−1
m−1Bm − I‖ = ‖B−1

m−1(Bm −Bm−1)‖ ≤ C(log |ξ| log[n] |ξ|)−1.



190 Xiaojun Lu and Michael Reissig

It holds

(
y11 y12

y21 y22

)
=

⎛
⎜⎜⎝

m0∏
k=1

μk 0

0
m0∏
k=1

μ−1
k

⎞
⎟⎟⎠ + M1 + · · ·+ Mm0 ,

where Ml is the matrix of the sum of terms containing exactly l of the matrices
Gk, k = 1, . . . ,m0. We have the estimate

‖Ml‖ ≤
(

m0∏
k=1

|μl|
)⎛
⎝ ∑

1≤i1<···<il≤m0

l∏
j=1

‖Gij‖
⎞
⎠ .

Using
‖Gl‖ ≤ C(log |ξ| log[n] |ξ|)−1, l = 1, . . . ,m0,

gives

‖Ml‖ ≤
(

m0∏
k=1

|μl|
)(

m0

l

)
C(log |ξ| log[n] |ξ|)−l.

Consequently,

|y11| ≥
(

m0∏
k=1

|μk|
)⎛
⎜⎝2−

(
1 +

C

log |ξ| log[n] |ξ|

)log |ξ|(log[n] |ξ|)1/2
⎞
⎟⎠≥ 1

2

m0∏
k=1

|μk|.

On the other hand, |ymp| ≤ c
m0∏
k=1

|μk|, c > 0, is sufficiently small, for (m, p) �=
(1, 1). Thus, the statement of the lemma follows directly from

m0∏
k=1

|μk| ≥ C(1 + ε)m0 ≥ C(1 + ε)log |ξ|(log[n] |ξ|) 1
2 .

Step 5: Conclusion

Now we take a sequence {ξm}m of positive frequencies satisfying ξm →∞
as m → ∞. For large ξm let wm(s, ξ) be the solution from Lemma 3.8 with
ξ = ξm and let us set

t(1)m = t(sξm
), t(2)m = t(sξm

−m0(ξm)−1), ûm(t, ξm) = τ−
1
2 (s(t))wm(s(t), ξm).

Then
Λ−1

( c1
|ξm|

)
≤ t(1)m < t(2)m ≤ Λ−1

( c2
|ξm|

)
,

thus both sequences {t(1)m }m, {t(2)m }m are zero sequences. For 0 < t ≤ T we
conclude∣∣∣ d

ds
wm(s(t), ξ)

∣∣∣ ≤ 1
2
τ s(s(t))τ−

1
2 (s(t))|ûm(t, ξ)|+ τ−

1
2 (s(t))

∣∣∣ d
dt
ûm(t, ξ)

∣∣∣.
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Hence,

|wm(s(t), ξ)|+
∣∣∣ d
ds

wm(s(t), ξ)
∣∣∣

≤ τ
1
2 (s(t))

(
1 +

τs(s(t))
2τ(s(t))

)
|ûm(t, ξ)|+ τ−

1
2 (s(t))

∣∣∣ d
dt
ûm(t, ξ)

∣∣∣

≤ 2τ
1
2 (s(t))|ûm(t, ξ)|+ τ−

1
2 (s(t))

∣∣∣ d
dt
ûm(t, ξ)

∣∣∣

≤ Cτ
1
2 (s(t))

(
|ûm(t, ξ)|+

∣∣∣ d
dt
ûm(t, ξ)

∣∣∣
)
,

|ûm(t, ξ)|+
∣∣∣ d
dt
ûm(t, ξ)

∣∣∣ ≤ Cτ
1
2 (s(t))

(
|wm(s(t), ξ)|+

∣∣∣ d
ds

wm(s(t), ξ)
∣∣∣
)
.

Now we will apply the first inequality for t = t
(2)
m , the second inequality for

t = t
(1)
m and Lemma 3.8. Summarizing gives

|ûm(t(2)m , ξm)|+
∣∣∣ d
dt
ûm(t(2)m , ξm)

∣∣∣

≥ Cτ−
1
2 (s(t(2)m ))

(
|wm(s(t(2)m ), ξm)|+

∣∣∣ d
ds

wm(s(t(2)m ), ξm)
∣∣∣
)

≥ Cτ−
1
2 (s(t(2)m )) exp(C1 log |ξm|(log[n] |ξm|)

1
2 )

≥ Cτ−
1
2 (s(t(2)m ))τ−

1
2 (s(t(1)m )) exp(C1 log |ξm|(log[n] |ξm|)

1
2 )

×
(
|ûm(t(1)m , ξm)|+

∣∣∣ d
dt
ûm(t(1)m , ξm)

∣∣∣
)

≥ C exp(C2 log |ξm|(log[n] |ξm|)
1
2 )
(
|ûm(t(1)m , ξm)|+

∣∣∣ d
dt
ûm(t(1)m , ξm)

∣∣∣
)
,

where C and C2 are used as universal positive constants. In fact, for the
infinite degenerate case we calculate

s(t) =
1
t2

log[n−1] 1
t
, t ∼

√
log[n−1] s

1
2

s
,

τ(s) = 2
1
t3

log[n−1] 1
t

∣∣∣
t=t(s)

∼ 2s
√

s

log[n−1] s
1
2
,

sξ, sξ −m0 − 1 ∼ (log |ξ|)2 log[n] |ξ|,

τ(sξ), τ(sξ −m0 − 1) ∼ s
3
2
ξ

(log[n−1] s
1
2
ξ )

1
2

∼ (log |ξ|)3(log[n] |ξ|) 3
2(

log[n−1]
(
(log |ξ|)(log[n] |ξ|) 1

2

)) 1
2
.
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So the conclusion holds. Furthermore, for the finite degenerate case we calcu-
late

s(t) =
(

log
l + 1
tl+1

)2

log[n] l + 1
tl+1

,

t ∼ (l + 1)
1

l+1 exp
(
− 1

l + 1

( s

log[n−1] s
1
2

) 1
2
)
,

τ(s) = 2
l + 1
t

log
l + 1
tl+1

log[n] l + 1
tl+1

∣∣∣
t=t(s)

∼ 2(l + 1)
( 1
l + 1

) 1
l+1

s
exp

(
1

l+1

(
s

log[n−1] s
1
2

) 1
2
)

(
s

log[n−1] s
1
2

) 1
2

,

sξ, sξ −m0 − 1 ∼ (log |ξ|)2 log[n] |ξ|,
τ(sξ), τ(sξ −m0 − 1)

∼ log |ξ|(log[n] |ξ|) 1
2

(
log[n−1]

(
log |ξ|(log[n] |ξ|) 1

2

)) 1
2

× exp
( 1
l + 1

log |ξ|(log[n] |ξ|) 1
2

(log[n−1](log |ξ|(log[n] |ξ|) 1
2 ))

1
2

)
.

Since ξm →∞ as m→∞ the conclusion still holds. The proof of our theorem
is complete.

Remark 3.9 We are able to construct in (3.1) coefficients for which the cor-
responding Cauchy problem is not C∞ (H∞) well-posed. It seems to be a
challenge to apply Floquet theory to check optimality of conditions for finite
loss or arbitrary small loss. The question for the finite loss will be discussed
in the next section.

Remark 3.10 If we choose λ(t) = exp(−t−α), α > 0, then due to Theorem
3.1 the Cauchy problems

utt − e−2t−α
(
2 + cos

( 1
t2α

log[n−1] 1
tα

))
uxx = 0,

u(0, x) = u0(x), ut(0, x) = u1(x), n ≥ 1,

are not C∞ (H∞) well-posed. This improves the result from [15] which is cited
in the Introduction.

If we choose λ(t) = tl, l > 0, then due to Theorem 3.1 the Cauchy problems

utt − t2l
(
2 + sin

((
log

1
t

)2(
log[n] 1

t

)))
uxx = 0,

u(0, x) = u0(x), ut(0, x) = u1(x), n ≥ 1,

are not C∞ (H∞) well-posed.
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4 Optimality of conditions for finite loss of regularity

Let us treat the weakly hyperbolic Cauchy problem (b(t) ≡ 1 in Proposition
1.6)

utt − λ2(t)uxx − a
λ2(t)
Λ(t)

ux = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Comparing Proposition 1.6 with the statements from Proposition 1.1 and
Theorem 1.4 shows that we are able to describe for some examples of functions
λ = λ(t) in an optimal way the influence of degeneracies in coefficients at
t = 0 on the loss of regularity. For these examples we understand under which
assumptions to a the finite loss really appears.

In this section we are interested in the influence of the oscillating parts,
thus we restrict ourselves to (3.1). If we set n = 0 in (3.1), then the assump-
tions of Proposition 1.6 are satisfied with ν(t) = log 1

Λ(t) , consequently, we
have at most a finite loss of regularity. In this section we want to explain that
we also have at least a finite loss of regularity; this means that the finite loss
of regularity really appears.

We follow a strategy that was proposed in [6]. There the model under
consideration has been with k ∈ N:

utt −
n∑

i,j=1

aij(kt)uxixj
= 0, u(0, x) = u0(x), ut(0, x) = u1(x),

under the following assumptions:

1. The coefficients aij = aij(t) are nonconstant, 1-periodic and belong to
L1
loc(R+),

2.
n∑

i,j=1

aij(t)ξiξj ≥ 0 (weak hyperbolicity assumption).

The authors proved that for any δ > 0 there exist two analytic initial data u0

and u1 such that the sequence {uk(t, ·)} is unbounded in D′(Rn) for any t > δ.
This result shows that if a positive integer parameter k (homogenization in t)
produces a family of faster and faster oscillating coefficients, the solutions may
show a uniformly unstable behavior in a certain sense, although for every fixed
k the Cauchy problem is well-posed in the analytic frame with respect to the
spatial variables.

Probably inspired by this result the authors used in [3] an instability ar-
gument to show for a strictly hyperbolic Cauchy problem with low regular
time-dependent coefficients (λ ≡ 1 in (3.1) or (4.1)) that the finite loss really
appears. There the family of coefficients {bk} is constructed by choosing a
fixed periodic coefficient b = b(t) from [5] and by including into this coefficient
the idea of homogenization.
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In the following we generalize the ideas to construct counterexamples from
[3] to the present weakly hyperbolic situation by including a pure Floquet effect.
A pure Floquet effect means that on the one hand we want to construct a
family of coefficients for an arbitrary given 1-periodic, positive, nonconstant
and smooth function b = b(t) and on the other hand the proof bases on the
following lemma which we obtain by repeating the approach of Section 2 from
[14].

Lemma 4.1 Let b = b(t) be a 1-periodic function which is positive, non-
constant, smooth, but constant in a small neighborhood of 0. Let us consider
the Cauchy problem

utt − b2(t)uxx = 0, u(0, x) = exp(ixξ), ut(0, x) = 0,

where the positive real ξ2 belongs to an interval of instability for the coefficient
b2(t). Then there exists a unique solution u = u(t, x) = exp(ixξ)w(t), where
w satisfies the asymptotic relation |w(M)| ∼ |μ0|M for all sufficiently large
M ∈ N.

Let us consider the family of weakly hyperbolic Cauchy problems

utt − λ2(t)b2k(t)uxx = 0, u(tk, x) = u0,k(x), ut(tk, x) = u1,k(x), tk ∈ [0, T ].
(4.1)

It is clear that Proposition 1.6 yields the following corollary:

Corollary 4.2 Let us consider the family of Cauchy problems (4.1) under
the assumption that the coefficients λ(t) and bk(t) satisfy the conditions of
Proposition 1.6 with constants which are independent of k, tk, and with ν(t) =
log 1

Λ(t) . If u0,k ∈ Hs, u1,k ∈ (Λ−1( N
〈Dx〉 ))

−1Hs, N is a fixed large positive
constant, then there are unique solutions uk belonging to

C([0, T ], 〈Dx〉CαHs) ∩ C1([0, T ], 〈Dx〉CαHs−1),

where the positive constant Cα is independent of k and tk.

In the following theorem we will prove that we have at least a finite loss
of regularity, too. We will prove the statement only for the infinite degenerate
case, for the finite degenerate case see Remark 4.5.

Theorem 4.3 Under the assumptions of Proposition 1.6 and the additional
assumption Λ(t)

λ(t) = o(t) there exists to an arbitrary given 1-periodic, pos-
itive, nonconstant and smooth function b = b(t) a family of coefficients
{bk = bk(t)}k satisfying the conditions of Proposition 1.6 with constants which
are independent of k, there exists a family of data {u0,k = u0,k(x), u1,k =
u1,k(x)}k belonging to Hs(R)× (Λ−1( N

|Dx| ))
−1Hs(R) and which are prescribed

on t = t
(1)
k , and, finally, there exist two zero sequences {t(1)k }k, {t(2)k }k such

that the following estimates hold for the sequence of solutions {uk}k:
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‖uk(t(2)k , ·)‖Hs−p0 (R) ≥ Ck‖uk(t(1)k , ·)‖Hs(R),

where the positive constant p0 is independent of k and where supk Ck = ∞.

Proof. Step 1: Auxiliary sequences

For the approach we need several sequences of parameters:

• (A1) sequences {tk}k, {ρk}k, and {δk}k tending to 0,
• (A2) a sequence {hk}k tending to ∞.

We introduce two other sequences {t′k}k and {t′′k}k which are defined by t′k =
tk + ρk and t′′k = tk − ρk. Finally, we define three sequences of intervals
{Ik}k, {I ′k}k and {I ′′k }k by

Ik =
[
tk − ρk

2
, tk +

ρk
2

]
, I ′k =

[
t′k −

ρk
2
, t′k +

ρk
2

]
, I ′′k =

[
t′′k −

ρk
2
, t′′k +

ρk
2

]
.

To guarantee that Ik, I ′k, I
′′
k are contained in (0, T ] we assume

• (A3) ρk = o(tk) for k →∞.

Step 2: Construction of a family of coefficients

Therefore we need an increasing function μ ∈ C∞(R) which is defined by

μ(x) =
{

0, x ∈ (−∞,− 1
3 ],

1, x ∈ [ 13 ,+∞).

Now we are at the position to introduce the family of coefficients {ak = ak(t)}k
which is defined by

ak(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2(t), t ∈ [0, T ] \ (I ′k ∪ Ik ∪ I ′′k );

δkb
2(hk(t− tk)), t ∈ Ik;

δkb(0)2(1− μ( t−t′k
ρk

)) + λ2(t)μ( t−t′k
ρk

), t ∈ I ′k;

δkb(0)2μ( t−t′′k
ρk

) + λ2(t)(1− μ( t−t′′k
ρk

)), t ∈ I ′′k .

Taking into account the definition of b the parameters hk and ρk should satisfy
the assumption

• (A4)
hkρk

2
∈ N.

To have a connection to the structure of the coefficient from Proposition 1.6
we introduce the family {bk = bk(t)}k of oscillating parts of {ak}k by
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b2k(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, t ∈ [0, T ] \ (I ′k ∪ Ik ∪ I ′′k );

1
λ2(t)

δkb
2(hk(t− tk)), t ∈ Ik;

1
λ2(t)

δkb(0)2(1− μ( t−t′k
ρk

)) + μ( t−t′k
ρk

), t ∈ I ′k;

1
λ2(t)

δkb(0)2μ( t−t′′k
ρk

) + (1− μ( t−t′′k
ρk

)), t ∈ I ′′k .

Step 3: Concrete choice of parameters

We choose the sequences of parameters as

tk = Λ−1(exp(−k)), ρk =
[(Λ(tk)

λ(tk)

)−1]−1

,

δk = [λ(tk)−1]−2, hk = 2
[ λ(tk)
Λ(tk)

][
log

1
Λ(tk)

]
,

where [a] denotes the integer part of a. It is clear that these sequences satisfy
the assumptions (A1), (A2), (A4) and together with the assumption of the
theorem the condition (A3). Moreover, we suppose

• (A5) d0 ≤ infk
λ(tk)

λ(tk+
ρk
2 )

≤ supk
λ(tk)

λ(tk+
ρk
2 )

≤ d1

with positive constants d0 and d1.

Example 4.4 We give some functions λ satisfying (A5). If

λ(t) =
d

dt
exp

(
− exp[n] 1

t

)
=

1
t2

exp
(
− exp[n] 1

t

)
exp[n] 1

t
· · · exp

1
t
,

then Λ(t) = exp
(
−exp[n] 1

t

)
, and Λ−1(s) = 1

log[n+1] 1
s

. According to our choice

tk = Λ−1
(

exp(− exp[n] k)
)

=
1
k

with k ∈ N
+,

ρk ∼
1
2
Λ(tk)
λ(tk)

=
1
2

t2k
exp[n] 1

tk
· · · exp 1

tk

=
1

2k2 exp[n] k · · · exp k
.

Consequently, limk→∞
λ(tk)

λ(tk± 1
2ρk)

= 1. Note that when n = 0, it is Aleksan-
drian’s example.

Step 4: Properties of bk

Now we will check that the coefficients bk satisfy all the assumptions from
Proposition 1.6. The assumption (A5) implies that



Instability Behavior and Loss of Regularity 197

0 < b0 ≤ inf
t∈[0,T ]

bk(t) ≤ sup
t∈[0,T ]

bk(t) ≤ b1 <∞,

where the constants b0 and b1 are independent of k.

Straightforward calculations yield in the intervals Ik, I ′k and I ′′k represen-
tations for bk, b′k and b′′k .

Taking account of the assumptions (A1) to (A5) for λ, in particular from
(A5) we conclude Λ(t) ∼ Λ(tk) on Ik, and by the choice of parameters from
step 3 we are able to conclude on Ik ∪ I ′k ∪ I ′′k that

|b′k(t)| ≤ C
λ(t)
Λ(t)

log
1

Λ(t)
; |b′′k(t)| ≤ C

( λ(t)
Λ(t)

log
1

Λ(t)

)2

,

where the constant C is independent of k.

Step 5: Concrete choice of data

Let χ = χ(r) ∈ [0, 1] be a cut-off function from C∞
0 (R), where χ ≡ 1 for

|r| ≤ 1 and χ ≡ 0 for |r| ≥ 2. Then we choose for large k the following data:

u0,k(x) = exp
(
i
hk√
δk

xξ
)
χ
( x

(log 1
Λ(tk) )

2Pk

)
, u1,k(x) = 0 for all x ∈ R ,

where

Pk = 2π
√
δk

hkξ
∼ Λ(tk)

(
log

1
Λ(tk)

)−1

.

Then for s ≥ 0 the norm ‖u0,k‖Hs(R) can be estimated in the following way:

‖u0,k‖Hs(R) ≤ C
(( hk√

δk

)s

+
1

(Λ(tk) log 1
Λ(tk) )

s
+ 1

)(
log

1
Λ(tk)

)√
Pk. (4.2)

Step 6: Auxiliary Cauchy problems on Ik

Now let us study the family of Cauchy problems

utt − δkb
2(hk(t− tk))uxx = 0, u(tk, x) = u0,k(x), ut(tk, x) = 0, t ∈ Ik.

Later we are interested in the unique solution uk = uk(tk + ρk

2 , x) on the set
{|x| ≤ Pk}. Let us determine the domain of dependence of the solutions uk on
t = tk + ρk

2 over the set {|x| ≤ Pk} with respect to the datum given on t = tk.
If x is taken on t = tk± ρk

2 from {|x| ≤ Pk}, then the solution u(tk+ ρk

2 , x) will

be influenced by the datum on the set {|x| ≤ Pk +O(ρk

√
δk

2 )}. Using ρk
√
δk =

O(Λ(tk)) and Pk = Λ(tk)(log 1
Λ(tk) )

−1 we have to take into consideration the
datum on the set {|x| ≤ O(log( 1

Λ(tk) )Pk)}. Using the structure of u0,k we have

u0,k(x) = exp
(
i hk√

δk
xξ
)

on this set.
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We apply the transformation s = hk(t− tk), v(s, x) := u(t, x), thus

vss− δk
h2
k

b2(s)vxx = 0, v(0, x) = u0,k(x), vs(0, x) = 0, s ∈
[
−hkρk

2
,
hkρk

2

]
.

Using Lemma 4.1 we have a unique solution in the form uk(s, x) = u0,k(x)w(s),
where w = w(s) satisfies

w′′(s) + ξ2b2(s)w(s) = 0, w(0) = 1, w′(0) = 0, s ∈
[
− hkρk

2
,
hkρk

2

]
,

and where ξ is chosen as in Lemma 4.1. By Lemma 4.1 and after transforming
back we arrive at

uk

(
tk +

ρk
2
, x
)

= exp
(
i
hk√
δk

xξ
)
w
(ρkhk

2

)
, uk(tk, x) = exp

(
i
hk√
δk

xξ
)
w(0),

where
∣∣∣w
(ρkhk

2

)∣∣∣ ∼ |μ0|
ρkhk

2 .

Step 7: At least a finite loss

Let us determine the norm ‖uk(tk + ρk

2 , ·)‖Hs−p0 ({|x|≤Pk}). It holds

‖uk(tk +
ρk
2
, ·)‖Hs−p0 ({|x|≤Pk}) ∼

(( hk√
δk

)s−p0

+ 1
)√

Pk|μ0|
ρkhk

2 . (4.3)

From
hkρk ∼ log

1
Λ(tk)

∼ log
hk√
δk

∼ log〈Dx〉,

(4.2) and (4.3) we get with a sufficiently small p0 depending on log |μ0| the
estimate

‖uk(t(2)k , ·)‖Hs−p0 (R) ≥ ‖uk(t(2)k , ·)‖Hs−p0 ({|x|≤Pk}) ≥ Ck‖uk(t(1)k , ·)‖Hs(R),

where supk Ck = ∞. From here, we know that the finite loss of regularity
really appears.

Remark 4.5 The finite degenerate case (without necessity of the condition
Λ(t)
λ(t) = o(t)) can be discussed in the same way. We choose the sequences
{ρk}k = {2−(k+3)}k, {tk}k = {2−k}k, {δk}k = {λ2(tk) = 2−2k
}k, {hk =
32k2k}k.

5 Concluding remarks

There exist several open problems which we want to describe in this section.
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Remark 5.1 Let us consider

utt − λ2(t)b2(t)uxx − a
λ2(t)
Λ(t)

ux = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

As far as the authors know the following problems seem to be open:

1. Let us set a = 0. Find examples for the coefficient λ(t)b(t) (with an os-
cillating part) yielding as precise loss a finite loss of regularity for the
corresponding Cauchy problem.

2. Prove by using the Floquet effect and instability argument that an arbitrary
small loss really appears. In particular it is interesting to observe that for
a suitable family {bk}k we have with a = 0 that an arbitrary small loss
appears, but if we choose a �= 0, then a finite loss may appear.

3. If b ≡ 1, then one should understand under which assumptions to the
constant a the finite loss really appears.

Remark 5.2 In a forthcoming note we will apply our approach to understand
the optimality of assumptions to describe a blow-up of energy at ∞ with a
certain blow-up rate in wave models, a recent research topic, was initiated in
the papers [4], [8] and [13].
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Summary. In this article we consider variable coefficient, time-dependent wave
equations in exterior domains R × (Rn \ Ω), n ≥ 3. We prove localized energy
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convex.
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1 Introduction

Our goal, in this article, is to prove analogs of the well-known Strichartz
estimates and localized energy estimates for variable coefficient wave equations
in exterior domains. We consider long-range perturbations of the flat metric,
and we take the obstacle to be star-shaped. The localized energy estimates
are obtained under a smallness assumption for the long-range perturbation.
Global-in-time Strichartz estimates are then proved assuming the local-in-time
Strichartz estimates, which are known to hold for strictly convex obstacles.

For the constant coefficient wave equation � = ∂2
t −Δ in R× R

n, n ≥ 2,
we have that solutions to the Cauchy problem

�u = f, u(0) = u0, ∂tu(0) = u1, (1.1)
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satisfy the Strichartz estimates1

‖|Dx|−ρ1∇u‖Lp1Lq1 � ‖∇u(0)‖L2 + ‖|Dx|ρ2�u‖
Lp′

2Lq′2 ,

for Strichartz admissible exponents (ρ1, p1, q1) and (ρ2, p2, q2). Here, expo-
nents (ρ, p, q) are called Strichartz admissible if 2 ≤ p, q ≤ ∞,

ρ =
n

2
− n

q
− 1

p
,

2
p
≤ n− 1

2

(
1− 2

q

)
,

and (ρ, p, q) �= (1, 2,∞) when n = 3.
The Strichartz estimates follow via a TT ∗ argument and the Hardy–

Littlewood–Sobolev inequality from the dispersive estimates,

‖|Dx|−
n+1

2 (1− 2
q )∇u(t)‖Lq � t−

n−1
2 (1− 2

q )‖u1‖Lq′ , 2 ≤ q <∞
for solutions to (1.1) with u0 = 0, f = 0. This in turn is obtained by inter-
polating between an L2 → L2 energy estimate and an L1 → L∞ dispersive
bound which provides O(t−(n−1)/2) type decay. Estimates of this form origi-
nated in the work [25], and as stated are the culmination of several subsequent
works. The endpoint estimate (p, q) =

(
2, 2(n−1)

n−3

)
was most recently obtained

in [8], and we refer the interested reader to the references therein for a more
complete history.

The second estimate which shall be explored is the localized energy esti-
mate, a version of which states

sup
j
‖〈x〉−1/2∇u‖L2(R×{|x|∈[2j−1,2j ]})

� ‖∇u(0)‖L2 +
∑
k

‖〈x〉1/2�u‖L2(R×{|x|∈[2k−1,2k]})
(1.2)

in the constant coefficient case. These estimates can be proved using a positive
commutator argument with a multiplier which is roughly of the form f(r)∂r
when n ≥ 3 and are quite akin to the bounds found in, e.g., [16], [24], [9], [20],
[7], and [23]. See also [1], [12], [13] for certain estimates for small perturbations
of the d’Alembertian.

Variants of these estimates for constant coefficient wave equations are also
known in exterior domains. Here, u is replaced by a solution to

�u = F, u|∂Ω = 0, u(0) = u0, ∂tu(0) = u1, (t, x) ∈ R× R
n\Ω

where Ω is a bounded set with smooth boundary. The localized energy es-
timates have played a key role in proving a number of long time existence
results for nonlinear wave equations in exterior domains. See, e.g., [7] and

1Here and throughout, we shall use ∇ to denote a space-time gradient unless
otherwise specified with subscripts.
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[11, 12] for their proof and application. Here, it is convenient to assume that
the obstacle Ω is star-shaped, though certain estimates are known (see e.g.
[11], [3]) in more general settings. Exterior to star-shaped obstacles, the esti-
mates for small perturbations of � continue to hold (see [11]). This, however,
only works for n ≥ 3, and the bound which results is not strong enough in
order to prove the Strichartz estimates which we desire. As such, we shall,
in the sequel, couple this bound with certain frequency localized versions of
the estimate in order to prove the Strichartz estimates. For time-independent
perturbations, one may permit more general geometries. See, e.g., [3].

Certain global-in-time Strichartz estimates are also known in exterior do-
mains, but, except for certain very special cases (see [4], [2], which are closely
based on [21]), require that the obstacle be strictly convex. Local-in-time es-
timates were shown in [19] for convex obstacles, and using these estimates,
global estimates were constructed in [20] for n odd and [3] and [14] for general
n. See also [6].

In the present article, we explore variable coefficient cases of these esti-
mates. Here, � is replaced by the second order hyperbolic operator

P (t, x,D) = Dia
ij(t, x)Dj + bi(t, x)Di + c(t, x),

where D0 = Dt is understood. We assume that (aij) has signature (n, 1) and
that a00 < 0, i.e., that time slices are space-like. We shall then consider the
initial value boundary value problem

Pu = f, u|∂Ω = 0, u(0) = u0, ∂tu(0) = u1, (t, x) ∈ R× R
n\Ω. (1.3)

When Ω = ∅ and bi ≡ c ≡ 0, the problem of proving Strichatz estimates
is understood locally, and of course, localized energy estimates are trivial
locally-in-time. For smooth coefficients, Strichartz estimates were first proved
in [15] using Fourier integral operators. Using a wave packet decomposition,
Strichartz estimates were obtained in [17] for C1,1 coefficients in spatial di-
mensions n = 2, 3. Using instead an approach based on the FBI transform,
these estimates were extended to all dimensions in [27, 28, 29]. For rougher
coefficients, the Strichartz estimates as stated above are lost (see [18], [22])
and only certain estimates with losses are available [28, 29]. When the bound-
ary is nonempty, far less is known, and we can only refer to the results of
[19] for smooth time independent coefficients, bi ≡ c ≡ 0, and Ω strictly
geodesically convex. The proof of these estimates is quite involved and uses a
Melrose–Taylor parametrix to approximate the reflected solution.

For the boundaryless problem, global-in-time localized energy estimates
and Strichartz estimates were recently shown in [13] for small, C2, long-range
perturbations. The former follow from a positive commutator argument with
a multiplier which is akin to what we present in the sequel. For the latter, an
outgoing parametrix is constructed using a time-dependent FBI transform in a
fashion which is reminiscent to that of the preceding work [26] on Schrödinger
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equations. Upon conjugating the half-wave equation by the FBI transform,
one obtains a degenerate parabolic equation due to a nontrivial second-order
term in the asymptotic expansion. Here, the bounds from [26], which are
based on the maximum principle, may be cited. The errors in this parametrix
construction are small in the localized energy spaces, which again are similar
to those below, and it is shown that the global Strichartz estimates follow
from the localized energy estimates.

The aim of the present article is to combine the approach of [13] with
analogs of those from [20], [3], and [14] to show that global-in-time Strichartz
estimates in exterior domains follow from the localized energy estimates and
local-in-time Strichartz estimates for the boundary value problem. As we shall
show the localized energy estimates for small perturbations outside of star-
shaped obstacles, the global Strichartz estimates shall then follow for convex
obstacles from the estimates of [19].

Let us now more precisely describe our assumptions. We shall look at
certain long-range perturbations of Minkowski space. To state this, we set

D0 = {|x| ≤ 2}, Dj = {2j ≤ |x| ≤ 2j+1}, j = 1, 2, . . .

and
Aj = R×Dj , A<j = R× {|x| ≤ 2j}.

We shall then assume that
∑
j∈N

sup
Aj∩(R×Rn\Ω)

〈x〉2|∇2a(t, x)|+ 〈x〉|∇a(t, x)|+ |a(t, x)− In| ≤ ε (1.4)

and, for the lower order terms,

∑
j∈N

sup
Aj∩(R×Rn\Ω)

〈x〉2|∇b(t, x)|+ 〈x〉|b(t, x)| ≤ ε, (1.5)

∑
j∈N

sup
Aj∩(R×Rn\Ω)

〈x〉2|c(t, x)| ≤ ε. (1.6)

If ε is small enough, then (1.4) precludes the existence of trapped rays, while
for arbitrary ε it restricts the trapped rays to finitely many dyadic regions.

We now define the localized energy spaces that we shall use. We begin
with an initial choice which is convenient for the local energy estimates but
not so much for the Strichartz estimates. Precisely, we define the localized
energy space LE0 as

‖ϕ‖LE0 = sup
j≥0

(
2−j/2‖∇ϕ‖L2(Aj∩(R×Rn\Ω)) + 2−3j/2‖ϕ‖L2(Aj∩(R×Rn\Ω))

)
,

while for the forcing term we set
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‖f‖LE∗
0

=
∑
k≥0

2k/2‖f‖L2(Ak∩(R×Rn\Ω)).

The local energy bounds in these spaces shall follow from the arguments
in [12].

On the other hand, for the Strichartz estimates, we shall introduce fre-
quency localized spaces as in [13], as well as the earlier work [26]. We use a
Littlewood–Paley decomposition in frequency,

1 =
∞∑

k=−∞
Sk(D), supp sk(ξ) ⊂ {2k−1 < |ξ| < 2k+1}

and for each k ∈ Z, we use

‖ϕ‖Xk
= 2−k−/2‖ϕ‖L2(A<k− ) + sup

j≥k−
‖|x|−1/2ϕ‖L2(Aj)

to measure functions of frequency 2k. Here k− = |k|−k
2 . We then define the

global norm

‖ϕ‖2X =
∞∑

k=−∞
‖Skϕ‖2Xk

.

Then for the local energy norm we use

‖ϕ‖2LE∞ = ‖∇ϕ‖2X .

For the inhomogeneous term we introduce the dual space Y = X ′ with norm
defined by

‖f‖2Y =
∞∑

k=−∞
‖Skf‖2X′

k
.

To relate these spaces to the LE0 respectively LE∗
0 we use Hardy-type

inequalities which are summarized in the following proposition:

Proposition 1.1 We have

sup
j
‖|x|−1/2u‖L2(Aj) � ‖u‖X (1.7)

and ‖u‖Y �
∑
j

‖|x|1/2u‖L2(Aj). (1.8)

In addition,

‖|x|−3/2ϕ‖L2 � ‖∇xϕ‖X , n ≥ 4. (1.9)
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The first bound (1.7) is a variant of a Hardy inequality, see [13, (16), Lemma
1], and also [26]. The second (1.8) is its dual. The bound (1.9), proved in [13,
Lemma 1], fails in dimension three.

Now we turn our attention to the obstacle problem. For R fixed so that
Ω ⊂ {|x| < R}, we select a smooth cutoff χ with χ ≡ 1 for |x| < 2R and
supp χ ⊂ {|x| < 4R}. We shall use χ to partition the analysis into a portion
near the obstacle and a portion away from the obstacle. In particular, we
define the localized energy space LE ⊂ LE0 as

‖ϕ‖2LE = ‖ϕ‖2LE0
+ ‖(1− χ)ϕ‖2LE∞ .

For the forcing term, we will respectively construct LE∗ ⊃ LE∗
0 by

‖f‖2LE∗ = ‖χf‖2LE∗
0

+ ‖(1− χ)f‖2Y , n ≥ 4.

This choice is no longer appropriate in dimension n = 3, as otherwise the local
L2 control of the solution is lost. Instead we simply set

‖f‖2LE∗ = ‖f‖2LE∗
0
, n = 3.

Using these space, we now define what it means for a solution to satisfy
our stronger localized energy estimates.

Definition 1.1 We say that the operator P satisfies the localized energy es-
timates if for each initial data (u0, u1) ∈ Ḣ1 × L2 and each inhomogeneous
term f ∈ LE∗, there exists a unique solution u to (1.3) with u ∈ LE which
satisfies the bound

‖u‖LE +
∥∥∥∂u
∂ν

∥∥∥
L2(∂Ω)

� ‖∇u(0)‖L2 + ‖f‖LE∗ . (1.10)

We prove that the localized energy estimates hold under the assumption
that P is a small perturbation of the d’Alembertian:

Theorem 1.1 Let Ω be a star-shaped domain. Assume that the coefficients
aij, bi, and c satisfy (1.4), (1.5), and (1.6) with an ε which is sufficiently
small. Then the operator P satisfies the localized energy estimates globally-in-
time for n ≥ 3.

These results correspond to the s = 0 results of [13]. Some more general
results are also available by permitting s �= 0, but for simplicity we shall not
provide these details.

Once we have the local energy estimates, the next step is to prove
the Strichartz estimates. To do so, we shall assume that the corresponding
Strichartz estimate holds locally-in-time.



Decay Estimates for Variable Coefficient Wave Equations 207

Definition 1.2 For a given operator P and domain Ω, we say that the local
Strichartz estimate holds if

‖∇u‖|Dx|ρ1Lp1Lq1 ([0,1]×Rn\Ω) � ‖∇u(0)‖L2 + ‖f‖|Dx|−ρ2Lp′
2Lq′2 ([0,1]×Rn\Ω)

(1.11)
for any solution u to (1.3).

As mentioned previously, (1.11) is only known under some fairly restrictive
hypotheses. We show a conditional result which says that the global-in-time
Strichartz estimates follow from the local-in-time estimates as well as the
localized energy estimates.

Theorem 1.2 Let Ω be a domain such that P satisfies both the localized
energy estimates and the local Strichartz estimate. Let aij , bi, c satisfy (1.4),
(1.5), and (1.6). Let (ρ1, p1, q1) and (ρ2, p2, q2) be two Strichartz pairs. Then
the solution u to (1.3) satisfies

‖∇u‖|Dx|ρ1Lp1Lq1 � ‖∇u(0)‖L2 + ‖f‖|Dx|−ρ2Lp′
2Lq′2 . (1.12)

Notice that this conditional result does not require the ε in (1.4), (1.5), and
(1.6) to be small. We do, however, require this for our proof of the localized
energy estimates which are assumed in Theorem 1.2.

As an example of an immediate corollary of the localized energy estimates
of Theorem 1.1 and the local Strichartz estimates of [19], we have:

Corollary 1.1 Let n ≥ 3, and let Ω be a strictly convex domain. Assume
that the coefficients aij, bi, and c are time-independent in a neighborhood of
Ω and satisfy (1.4), (1.5), and (1.6) with an ε which is sufficiently small. Let
(ρ1, p1, q1) and (ρ2, p2, q2) be two Strichartz pairs which satisfy

1
p1

=
(n− 1

2

)(1
2
− 1

q1

)
,

1
p′2

=
(n− 1

2

)(1
2
− 1

q′2

)
.

Then the solution u to (1.3) satisfies

‖∇u‖|Dx|ρ1Lp1Lq1 � ‖∇u(0)‖L2 + ‖f‖|Dx|−ρ2Lp′
2Lq′2 . (1.13)

This paper is organized as follows. In the next section, we prove the local-
ized energy estimates for small perturbations of the d’Alembertian exterior
to a star-shaped obstacle. In the last section, we prove Theorem 1.2 which
says that global-in-time Strichartz estimates follow from the localized energy
estimates as well as the local Strichartz estimates.
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2 The localized energy estimates

In this section, we shall prove Theorem 1.1.
By combining the inclusions LE ⊂ LE0, LE∗

0 ⊂ LE∗ and the bounds
(1.9), (1.5), and (1.6), one can easily prove the following which permits us to
treat the lower order terms perturbatively. See also [13, Lemma 3].

Proposition 2.1 Let bi, c be as in (1.5) and (1.6), respectively. Then,

‖b∇u‖LE∗ � ε‖u‖LE , (2.1)

‖cu‖LE∗ � ε‖u‖LE . (2.2)

We now look at the proof of the localized energy estimates. Due to Propo-
sition 2.1 we can assume that b = 0, c = 0. To prove the theorems, we use
positive commutator arguments. We first do the analysis separately in the two
regions.

2.1 Analysis near Ω and classical Morawetz-type estimates

Here we sketch the proof from [12] which gives an estimate which is similar to
(1.2) for small perturbations of the d’Alembertian. This estimate shall allow
us to gain control of the solution near the boundary. It also permits local L2

control of the solution, not just the gradient in three dimensions. The latter
is necessary as the required Hardy inequality which can be utilized in higher
dimensions corresponds to a false endpoint estimate in three dimensions.

The main estimate is the following:

Proposition 2.2 Let Ω be a star-shaped domain. Assume that the coefficients
aij, bi, and c satisfy (1.4), (1.5), and (1.6), respectively, with an ε which is
sufficiently small. Suppose that ϕ satisfies Pϕ = F , ϕ|∂Ω = 0. Then

‖ϕ‖LE0 + ‖∇ϕ‖L∞L2 + ‖∂νϕ‖L2(∂Ω) � ‖∇ϕ(0)‖2 + ‖F‖LE∗
0
. (2.3)

Proof We provide only a terse proof. The interested reader can refer to [12]
for a more detailed proof. For f = r

r+ρ , where ρ is a fixed positive constant,
we use a multiplier of the form

∂tϕ + f(r)∂rϕ +
n− 1

2
f(r)
r

ϕ.

By multiplying Pϕ and integrating by parts, one obtains
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∫ T

0

∫
Rn\Ω

1
2
f ′(r)(∂rϕ)2 +

(f(r)
r

− 1
2
f ′(r)

)
|�∇ϕ|2

+
1
2
f ′(r)(∂tϕ)2 − n− 1

4
Δ
(f(r)

r

)
ϕ2 dxdt

− 1
2

∫ T

0

∫
∂Ω

f(r)
r

(∂νϕ)2〈x, ν〉(aijνiνj) dσdt + (1 + O(ε))‖∇ϕ(T )‖22

� ‖∇ϕ(0)‖22 +
∫ T

0

∫
Rn\Ω

|F |
(
|∂tϕ|+ |f(r)∂rϕ|+

∣∣∣f(r)
r

ϕ
∣∣∣
)
dx dt

+
∫ T

0

∫
Rn\Ω

O
( |a− I|

r
+ |∇a|

)
|∇ϕ|

(
|∇ϕ|+

∣∣∣ϕ
r

∣∣∣
)
dx dt

� ‖∇ϕ(0)‖22 + ‖F‖LE∗
0 (0,T )‖ϕ‖LE0(0,T ) + ε‖ϕ‖2LE0(0,T ).

(2.4)

Here, we have used the Hardy inequality ‖|x|−1ϕ‖2 � ‖∇ϕ‖2, n ≥ 3, as well
as (1.4).

All terms on the left are nonnegative. By direct computation, the first
term controls

ρ−1‖∇ϕ‖2L2([0,T ]×{|x|≈ρ}) + ρ−3‖ϕ‖2L2([0,T ]×{|x|≈ρ}).

Taking a supremum over dyadic ρ provides a bound for the ‖ϕ‖LE0(0,T ). In
the second term we have −〈x, ν〉 � 1, which follows from the assumption that
Ω is star-shaped, and also aijνiνj � 1 which follows from (1.4). By simply
taking ρ = 1, one can bound the third term on the left of (2.3) by the right
side of (2.4). Thus we obtain

‖ϕ‖LE0(0,T ) + ‖∇ϕ(T )‖L∞L2 + ‖∂νϕ‖L2(∂Ω)

� ‖∇ϕ(0)‖22 + ‖F‖LE∗
0 (0,T )‖ϕ‖LE0(0,T ) + ε‖ϕ‖2LE0(0,T ).

The LE0 terms on the right can be bootstrapped for ε small which yields (2.3).

2.2 Analysis near ∞ and frequency localized estimates

In this section, we briefly sketch the proof from [13] for some frequency local-
ized versions of the localized energy estimates for the boundaryless equation.
The main estimate here, which is from [13], is the following.

Proposition 2.3 Suppose that aij are as in Theorem 1.1 and b = 0, c = 0.
Then for each initial data (u0, u1) ∈ Ḣ1 × L2 and each inhomogeneous term
f ∈ Y ∩ L1L2, there exists a unique solution u to the boundaryless equation
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Pu = f, u(0) = u0, ∂tu(0) = u1

satisfying

‖∇u‖L∞L2∩X � ‖∇u(0)‖L2 + ‖f‖L1L2+Y . (2.5)

The proof here uses a multiplier of the form

Dt + δ0Q + iδ1B.

Here the parameters are chosen so that

ε' δ1 ' δ ' δ0 ' 1.

The multiplier Q is given by

Q =
∑
k

SkQkSk

where Qk are differential operators of the form

Qk = (Dxxϕk(|x|) + ϕk(|x|)xDx).

The ϕk are functions of the form

ϕk(x) = 2−k−
ψk(2

−k−
δx)

where for each k the functions ψk have the following properties:

(i) ψk(s) ≈ (1 + s)−1 for s > 0 and |∂jψk(s)| � (1 + s)−j−1 for j ≤ 4,
(ii) ψk(s) + sψ′

k(s) ≈ (1 + s)−1αk(s) for s > 0,
(iii) ψk(|x|) is localized at frequency ' 1.

The αk are slowly varying functions that are related to the bounds of the
individual summands in (1.4). This construction is reminiscent of those in
[26], [10], and [13].

For the Lagrangian term B, we fix a function b satisfying

b(s) ≈ α(s)
1 + s

, |b′(s)| ' b(s).

Then, we set B =
∑

k Sk2−k−
b(2−k−

x)Sk.

The computations, which are carried out in detail in [13], are akin to those
outlined in the previous section.
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2.3 Proof of Theorem 1.1

Consider first the three-dimensional case. For f ∈ LE∗ = LE∗
0 we can use

Proposition 2.2 to obtain

‖u‖LE0 + ‖∇u‖L∞L2 + ‖∂νu‖L2(∂Ω) � ‖∇u(0)‖2 + ‖f‖LE∗
0
.

It remains to estimate ‖(1− χ)u‖LE∞ with χ as in the definition of LE. By
(2.5) we have

‖(1− χ)u‖LE∞ � ‖∇(1− χ)u(0)‖L2 + ‖P [(1− χ)u]‖Y

� ‖∇u(0)‖L2 + ‖P [(1− χ)u]‖LE∗
0
.

Finally, to bound the last term we write

P [(1− χ)u] = −[P, χ]u + (1− χ)f.

The commutator has compact spatial support; therefore

‖P [(1− χ)u]‖LE∗
0

� ‖u‖LE0 + ‖f‖LE∗
0

and the proof is concluded.

Consider now higher dimensions n ≥ 4. For fixed f ∈ LE∗, we first solve
the boundaryless problem

Pu∞ = (1− χ)f ∈ Y, u∞(0) = 0, ∂tu∞(0) = 0

using Proposition 2.3. We consider χ∞ which is identically 1 in a neighborhood
of infinity and vanishes on supp χ. For the function χ∞u∞ we use the Hardy
inequalities in Proposition 1.1 to write

‖χ∞u∞‖LE ≈ ‖∇(χ∞u∞)‖X � ‖∇u∞‖X � ‖(1− χ∞)f‖Y .

The remaining part ψ = u− ψ∞u∞ solves

Pψ = χ∞f + [P, χ∞]u∞;

therefore

‖Pψ‖LE∗
0

� ‖f‖LE∗ + ‖u∞‖LE0 � ‖f‖LE∗ + ‖∇u∞‖X � ‖f‖LE∗ .

Then we estimate ψ as in the three dimensional case. The proof is concluded.
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3 The Strichartz estimates

In this final section, we prove Theorem 1.2, the global Strichartz estimates.
We use fairly standard arguments to accomplish this. In a compact region
about the obstacle, we prove the global estimates using the local Strichartz
estimates and the localized energy estimates. Near infinity, we use [13]. The
two regions can then be glued together using the localized energy estimates.

We shall utilize the following two propositions. The first gives the result
when the forcing term is in the dual localized energy space.

Proposition 3.1 Let (ρ, p, q) be a Strichartz pair. Let Ω be a domain such
that P satisfies both the localized energy estimates and the homogeneous local
Strichartz estimate with exponents (ρ, p, q). Then for each ϕ ∈ LE with Pϕ ∈
LE∗, we have

‖|Dx|−ρ∇ϕ‖2LpLq � ‖∇ϕ(0)‖2L2 + ‖ϕ‖2LE + ‖Pϕ‖2LE∗ . (3.1)

The second proposition allows us to gain control when the forcing term is
in a dual Strichartz space.

Proposition 3.2 Let (ρ1, p1, q1) and (ρ2, p2, q2) be Strichartz pairs. Let Ω
be a domain such that P satisfies both the localized energy estimates and the
local Strichartz estimate with exponents (ρ1, p1, q1), (ρ2, p2, q2). Then there is
a parametrix K for P with

‖∇Kf‖2L∞L2 + ‖Kf‖2LE + ‖|Dx|−ρ1∇Kf‖2Lp1Lq1 � ‖|Dx|ρ2f‖2
Lp′

2Lq′2
(3.2)

and
‖PKf − f‖LE∗ � ‖|Dx|ρ2f‖

Lp′
2Lq′2 . (3.3)

We briefly delay the proofs and first apply the propositions to prove The-
orem 1.2.

Proof (Proof of Theorem 1.2) For

Pu = f + g, f ∈ |Dx|−ρ2Lp′
2Lq′2 , g ∈ LE∗,

we write
u = Kf + v.

The bound for ∇Kf follows immediately from (3.2).
To bound v, we note that

Pv = (1− PK)f + g.

Applying (3.1) and the localized energy estimate, we have

‖|Dx|−ρ1∇v‖Lp1Lq1 � ‖∇u(0)‖L2 +‖∇Kf‖L∞L2 +‖(1−PK)f‖LE∗ +‖g‖LE∗ .

The Strichartz estimates (1.12) then follow from (3.2) and (3.3).
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Proof (Proof of Proposition 3.1) We assume Pϕ ∈ Y , and we write

ϕ = χϕ + (1− χ)ϕ

with χ as in the definition of the LE norm. Since, using (1.8), the fundamental
theorem of calculus, and (1.7), we have

‖[P, χ]ϕ‖LE∗ � ‖ϕ‖LE ,

it suffices to show the estimate for ϕ1 = χϕ, ϕ2 = (1− χ)ϕ separately.
To show (3.1) for ϕ1, we need only assume that ϕ1 and Pϕ1 are compactly

supported, and we write

ϕ1 =
∑
j∈Z

β(t− j)ϕ1

for an appropriately chosen, smooth, compactly supported function β. By
commuting P and β(t− j), we easily obtain

∑
j∈N

‖β(t− j)ϕ1‖2LE + ‖P (β(t− j)ϕ1)‖2L1L2 � ‖ϕ1‖2LE + ‖Pϕ1‖2LE∗ .

Here, as above, we have also used (1.8), the fundamental theorem of calcu-
lus, and (1.7). Applying the homogeneous local Strichartz estimate to each
piece β(t− j)ϕ1 and using Duhamel’s formula, the bound (3.1) for ϕ1 follows
immediately from the square summability above.

On the other hand, ϕ2 solves a boundaryless equation, and the estimate
(3.1) is just a restatement of [13, Theorem 7] with s = 0. This follows directly
when n ≥ 4 and easily from (1.8) when n = 3.

Proof (Proof of Proposition 3.2) We split f in a fashion similar to the above:

f = χf + (1− χ)f = f1 + f2.

For f1, we write
f1 =

∑
j

β(t− j)f1

where β is supported in [−1, 1]. Let ψj be the solution to

Pψj = β(t− j)f1.

By the local Strichartz estimate, we have

‖|Dx|−ρ1∇ψj‖Lp1Lq1 (Ej) + ‖∇ψj‖L∞L2(Ej) � ‖β(t− j)|Dx|ρ2f1‖Lp′
2Lq′2

where Ej = [j − 2, j + 2]× ({|x| < 2} ∩R
n\Ω). Letting β̃(t− j, r) be a cutoff

which is supported in Ej and is identically one on the support of β(t − j)χ,
set ϕj = β̃(t− j, r)ψj . Then,
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‖|Dx|−ρ1∇ϕj‖Lp1Lq1 + ‖∇ϕj‖L∞L2 � ‖β(t− j)|Dx|ρ2f1‖Lp′
2Lq′2 . (3.4)

Moreover,
Pϕj − β(t− j)f1 = [P, β̃(t− j, r)]ψj ,

and thus,

‖Pϕj − β(t− j)f1‖L2 � ‖β(t− j)|Dx|−ρ2f1‖Lp′
2Lq′2 . (3.5)

Setting
Kf1 =

∑
j

ϕj

and summing the bounds (3.4) and (3.5) yields the desired result for f1.
For f2, we solve the boundaryless equation

Pψ = f2.

For a second cutoff χ̃ which is 1 on the support of 1 − χ and vanishes for
{r < R}, we set

Kf2 = χ̃ψ.

The following lemma, which is in essence from [13, Theorem 6], applied to ψ
then easily yields the desired bounds.

Lemma 3.1 Let f ∈ |Dx|−ρ2Lp′
2Lq′2 . Then the forward solution ψ to the

boundaryless equation Pψ = f satisfies the bound

‖∇ψ‖2L∞L2 + ‖ψ‖2LE + ‖|Dx|−ρ1∇ψ‖2Lp1Lq1 � ‖|Dx|ρ2f‖2
Lp′

2Lq′2
. (3.6)

It remains to prove the lemma. From [13, Theorem 6], we have that

‖∇ψ‖2X + ‖|Dx|−ρ1∇ψ‖2Lp1Lq1 � ‖|Dx|ρ2f‖2
Lp′

2Lq′2
. (3.7)

By (1.7) we have
sup
j≥0

2−j/2‖∇ψ‖L2(Aj) � ‖∇ψ‖x.

It remains only to show the uniform bound

2−
3j
2 ‖ψ‖L2(Aj) � ‖|Dx|ρ2f‖

Lp′
2Lq′2 (3.8)

when n = 3. Let H(t, s) be the forward fundamental solution to P. Then

ψ(t) =
∫ t

−∞
H(t, s)f(s)ds.

Therefore (3.8) can be rewritten as



Decay Estimates for Variable Coefficient Wave Equations 215

2−
3j
2

∥∥∥∥
∫ t

−∞
H(t, s)f(s)ds

∥∥∥∥
L2(Aj)

� ‖|Dx|ρ2f‖
Lp′

2Lq′2 .

Since p′2 < 2 for Strichartz pairs in n = 3, by the Christ-Kiselev lemma [5] (see
also [20]) it suffices to show that

2−
3j
2

∥∥∥∥
∫ ∞

−∞
H(t, s)f(s)ds

∥∥∥∥
L2(Aj)

� ‖|Dx|ρ2f‖
Lp′

2Lq′2 . (3.9)

The function
ψ1(t) =

∫ ∞

−∞
H(t, s)f(s)ds

solves Pψ1 = 0, and from (3.7) we have

‖∇ψ1‖L∞L2 � ‖|Dx|ρ2f‖
Lp′

2Lq′2 .

On the other hand, from (2.3) with Pψ1 = 0 and Ω = ∅, we obtain

2−
3j
2 ‖ψ1‖L2(Aj) � ‖∇ψ1(0)‖22.

Hence (3.9) follows, and the proof is concluded.
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Summary. We give an example of second-order hyperbolic operator for which the
Cauchy problem is not Gevrey 6 well-posed for any lower order term. This phe-
nomenon is caused by the existence of a null bicharacteristic landing on the double
characteristic manifold. We also give an example of second-order hyperbolic opera-
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but not Gevrey s well-posed for s > 4 with some lower order term.
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1 Introduction

Let us consider

p(x,D) = −D2
0 + 2x1D0D2 + D2

1 + x3
1D

2
2 (1.1)

in R
3. The double characteristic manifold is given by

Σ = {ξ0 = 0, x1 = 0, ξ1 = 0}, ξ2 �= 0.

A null bicharacteristic is an integral curve of the Hamilton system
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c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



218 Tatsuo Nishitani

⎧⎪⎪⎨
⎪⎪⎩

ẋ =
∂p

∂ξ
(x, ξ),

ξ̇ = −∂p

∂x
(x, ξ)

on which p(x, ξ) vanishes. Let ρ ∈ Σ and consider the linearization of the
Hamilton system at ρ

Ẋ = Fp(ρ)X, X = (x, ξ)

where

Fp(ρ) =

⎛
⎜⎜⎝

∂2p

∂x∂ξ
(ρ)

∂2p

∂ξ∂ξ
(ρ)

− ∂2p

∂x∂x
(ρ) − ∂2p

∂ξ∂x
(ρ)

⎞
⎟⎟⎠ .

We note that p(x,D) is a model operator of noneffectively hyperbolic operator,
that is, Sp(Fp(ρ)) ⊂ iR, ρ ∈ Σ such that

KerF 2
p (ρ) ∩ ImF 2

p (ρ) �= {0}, ρ ∈ Σ (1.2)

where Sp(Fp) denotes the spectrum of Fp. A main feature of this operator is
the existence of a null bicharacteristic

x1 = −x2
0

4
, x2 =

x5
0

80
, ξ0 = 0, ξ1 =

x3
0

8
, ξ2 = constant �= 0

(parametrized by x0 ) tangent to Σ when x0 → 0. Then we have

Theorem 1.1 The Cauchy problem for P (x,D) = p(x,D) +
∑2

j=0 bjDj is
not locally solvable at the origin in Gevrey class of order s > 6 for any b0, b1,
b2 ∈ C.

To prove this result we recall

Proposition 1.2 ([1]) The Cauchy problem for P (x,D)=p(x,D)+
∑1

j=0 bjDj

is not locally solvable in Gevrey class of order s > 5 for any b0, b1 ∈ C.

Thus in order to prove Theorem 1.1 we may assume that b2 �= 0. Moreover,
making a change of coordinates; x2 → −x2 if necessary, we may assume that
b2 ∈ C\R

+. In Section 2, following [2], [4] we construct an asymptotic solution
Uλ to PUλ = 0 which contradicts the a priori estimate, derived in Section 4,
when λ→∞ and hence finally proves Theorem 1.1.

The same reasoning can be applied to the operator

p(x,D) = −D2
0 + 2x1D0D2 + D2

1 (1.3)

to get
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Proposition 1.3 Assume that b2 �= 0. Then the Cauchy problem for p(x,D)+∑2
j=0 bjDj is not locally solvable at the origin in Gevrey class of order s > 4.

Changing x1D2 by D1 in (1.3) we turn to consider

p(x,D) = −D2
0 + 2D0D1 + x2

1D
2
2 (1.4)

where the double characteristic manifold is again Σ and Fp(ρ) verifies (1.2)
while there is no null bicharacteristic landing on Σ. We study the Cauchy
problem for

P (x,D) = p(x,D) + SD2, S ∈ C.

Then we have

Proposition 1.4 ([3]) For any S ∈ C the Cauchy problem is Gevrey s well-
posed for any 1 ≤ s < 4.

Note that this result was examined in [3] using the explicit formulas of the fun-
damental solution of the Cauchy problem for P . Our proof given in Section 6 is
based on energy estimates and is available for proving Gevrey 4 well-posedness
for noneffectively hyperbolic operators generalizing P . Remark that it was
also examined in [3] that if S �= 0, then the Cauchy problem is not Gevrey s
well-posed for s > 4.

2 Asymptotic solution

Let us consider

P = −D2
0 + 2x1D0D2 + D2

1 + x3
1D

2
2 +

2∑
j=0

bjDj , bj ∈ C.

Make a change of variables;

x0 = λ−1y0, x1 = λ−2y1, x2 = λ−4y2

so that we have

Pλ = −λ−2D2
0 +2λ−1y1D0D2 +D2

1 +λ−2y3
1D

2
2 + b2D2 +λ−2b1D1 +λ−3b0D0.

We switch the notation to x and set b2 = b so that we study

Pλ = −λ−2D2
0 + 2λ−1x1D0D2 +D2

1 +λ−2x3
1D

2
2 + bD2 +λ−2b1D1 +λ−3b0D0.

Let us denote
Eλ = exp (iλ2x2 + iλϕ(x))
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and compute λ−1E−1
λ PλEλ which yields

λ−1E−1
λ PλEλ = λ

{
2x1ϕx0

+ ϕ2
x1

+ x3
1 + b

}
+
{
2x1D0 + 2ϕx1

D1 + 2x1ϕx0
ϕx2

+ bϕx2
+ 2x3

1ϕx1
− iϕx1x1

}
+λ−1h(1)(x,D) + λ−2h(2)(x,D) + λ−3h(3)(x,D)

where h(i)(x,D) are differential operators of order 2. We first assume that

Imb �= 0.

Take y1 small so that

Im
b

2y1
> 0

and work near the point (x0, x1, x2) = (t, y1, 0) = x∗. We solve the equation

2x1ϕx0
+ ϕ2

x1
+ x3

1 + b = 0 (2.1)

imposing the condition

ϕ = (x1 − y1) + i(x1 − y1)2 + ix2
2 on x0 = t.

Noticing ϕ = (x1−y1)+ i(x1−y1)2 + ix2
2 +ϕx0

(t, x1, x2)(x0− t)+O((x0− t)2)
we conclude

Imϕ = (x1 − y1)2 + x2
2 +

{
Imϕx0

(t, y1, 0) + R(x)
}
(x0 − t)

where R(x) = O(|x− x∗|). Note that

ϕx0
(x∗) =

−1− b

2y1
− y2

1

2

and hence Imϕx0
(x∗) < 0. Writing α = Imϕx0

(x∗) we have

Imϕ = (x1 − y1)2 + x2
2 + α(x0 − t) +

1
2
(ε−1(x0 − t)

+ εR(x))2 − ε−2

2
(x0 − t)2 − ε2

2
R(x)2

= (x1 − y1)2 + x2
2 + (x0 − t)2 − ε2

2
R(x)2

+
{
α− (

ε−2

2
+ 1)(x0 − t)

}
(x0 − t) +

1
2
(ε−1(x0 − t) + εR(x))2

= |x− x∗|2 − ε2

2
R(x)2 +

1
2
(ε−1(x0 − t) + εR(x))2

+
{
α− (

ε−2

2
+ 1)(x0 − t)

}
(x0 − t).

Thus −Imϕ attains its strict maximum at x∗ in the set {x; |x−x∗| < δ, x0 ≤ t}
if δ > 0 is small enough. Let L be a compact set in R

3. For t ∈ R let us denote
Lt
− = {x ∈ L | x0 ≤ t} and L+

t = {x ∈ L | x0 ≥ t}. Then we have
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Lemma 2.1 Let K be a small compact neighborhood of x∗. Then we have

sup
x∈Kt+τ

−

{−Imϕ(x)} ≤ 2|α|τ

for any small τ > 0. Let δ > 0 be small. Then there exist c(δ) > 0 and
τ(δ) > 0 such that

sup
x∈Kt+τ

− ∩{|x−x∗|≥δ}
{−Imϕ(x)} ≤ −c(δ)

for any τ ≤ τ(δ).

Let us denote

λ−1PλEλ = EλQλ, Qλ = Q0(x,D) + Q1(x, λ,D)

where
{
Q0(x,D) = 2x1D0 + 2ϕx1

D1 + 2x1ϕx0
ϕx2

+ bϕx2
+ 2x3

1ϕx1
− iϕx1x1

,

Q1(x, λ,D) = λ−1h(1)(y,D) + λ−2h(2)(x,D) + λ−3h(3)(x,D).

Let us set Vλ =
∑N

n=0 v
(n)
λ and determine v(n)

λ by solving the Cauchy problem

⎧⎪⎪⎨
⎪⎪⎩

Q0(x,D)v(n)
λ = −g(n)

λ = −Q1v
(n−1)
λ ,

v
(0)
λ (t, x1, x2) = 1,

v
(n)
λ (t, x1, x2) = 0, n ≥ 1

where v
(−1)
λ = 0 so that QλVλ = Q1(x, λ,D)v(N)

λ . Hence

λ−1PλEλVλ = EλQ1(x, λ,D)v(N)
λ . (2.2)

We turn to the case
b ∈ R, b < 0.

We write b = −γ2, γ > 0. We solve the equation (2.1) under the condition

ϕ = −i(x0 − t) + ix2
2 on x1 = 0.

That is, one solves the equation ϕx1
=
√
γ2 − x3

1 − 2x1ϕx0
. It is clear that

ϕx1
=
(
γ + i

x1

γ

)
+ O(x2

1).

One can write
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ϕ = −i(x0 − t) + ix2
2 +

(
γ + i

x1

γ

)
x1 + R(x)

where R(x) = O(x3
1). Note that

Imϕ = −(x0 − t) + x2
2 + γ−1x2

1 + R(x)

= (x0 − t)2 + γ−1x2
1 + x2

2 + R(x) +
{−1− (x0 − t)

}
(x0 − t)

and hence the same assertion as Lemma 2.1 holds. Noting that ϕx1
is different

from zero in an open neighborhood of x∗ = (t, 0, 0) we can solve the transport
equation in the x1 direction. The rest of the proof is just a repetition.

3 Lemmas

To estimate EλVλ constructed in the previous section we apply the methods
of majorant following [4]. Consider Qv =

∑
|α|≤1 bαD

α where we assume that
the coefficient of D0 is different from zero near x = x∗.

Lemma 3.1 Let Qv = g and let

Φ(τ , η; v) =
∑
α

τα0η|α
′|

α!
|Dαv(x∗)|.

Then we have
∂

∂τ
Φ(τ , η; v) ' C(τ , η)

∂

∂η
Φ(τ , η; v) + C(τ , η)Φ(τ , η; g)

with some holomorphic C(τ , η) at (0, 0) with C(τ , η) ( 0 which depends only
on Q.

Proof. Note that

∂

∂τ
Φ(τ , η; v) =

∑
β

τβ0η|β
′|

β!
|Dβ(D0v)(x∗)| = Φ(τ , η;D0v).

On the other hand, from Qv = g one sees D0v =
∑n

j=1 cjDjv + c0v. Since
Φ(τ , η; fg) ' Φ(τ , η; f)Φ(τ , η; g) and hence

∂

∂τ
Φ(τ , η; v) ' C(τ , η)

( n∑
j=1

Φ(τ , η;Djv) + Φ(τ , η; g)
)
.

To conclude the assertion it is enough to note

∂Φ

∂η
(

∑
αj≥1

|α′|τα0η|α
′|−1

α!
|Dα̃(Djv)(x∗)|,

|α′|τα0η|α
′|−1

α!
=
|α′|τ α̃0η|α̃

′|

αjα̃!
≥ τ α̃0η|α̃

′|

α̃!
.
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Lemma 3.2 Assume Qv = g and
⎧⎨
⎩

∂

∂τ
Φ∗(τ , η) ( C(τ , η)

∂

∂η
Φ∗(τ , η) + C(τ , η)Φ(τ , η; g),

Φ∗(0, η) ( Φ(0, η; v).

Then we have
Φ(τ , η; v) ' Φ∗(τ , η).

Proof. Let Φ̃ be a solution to the Cauchy problem
⎧⎨
⎩

∂

∂τ
Φ̃(τ , η) = C(τ , η)

∂

∂η
Φ̃(τ , η) + C(τ , η)Φ(τ , η; g),

Φ̃(0, η) = Φ∗(0, η).

Then it is clear that Φ(τ , η; v) ' Φ̃(τ , η) ' Φ∗(τ , η).

Lemma 3.3 Assume 0 < a ≤ ka1 and 0 < b ≤ kb1 with some 0 < k < 1.
Then we have

(i)
(
1− η

b
− τ

a

)−1
(
1− η

b1
− τ

a1

)−1 ' (1− k)−1
(
1− η

b
− τ

a

)−1,

(ii)
(
1− η

b

)−1
(
1− τ

a

)−1 '
(
1− η

b
− τ

a

)−1.

Proof. The assertion (i) follows from
{∑(η

b
+

τ

a

)n}{∑( η
b1

+
τ

a1

)n}

=
∑
n,m

(η
b

+
τ

a

)n( η
b1

+
τ

a1

)m '
∑
n,m

km
(η
b

+
τ

a

)n+m

'
∑
m

km
∑
n

(η
b

+
τ

a

)n
.

Here we recall that if ϕ(τ , η) is holomorphic in a neighborhood of {(τ , η) |
|η| ≤ b, |τ | ≤ a}, then we have

ϕ(τ , η) ' (1− τ

a
)−1(1− η

b
)−1 sup

|τ |=a,|η|=b

|ϕ(τ , η)|

from the Cauchy’s integral formula. Assume that

C(τ , η) ' (1− τ

a1
)−1(1− η

b1
)−1B ' (

1− τ

a1
− η

b1

)−1
B.
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Lemma 3.4 Assume that Qv = g and

Φ(0, η; v) ' ω−1
(
1− η

b

)−n
, Φ(τ , η; g) ' L

(
1− τ

a
− η

b

)−n
eMτω.

We also assume that Ba/b ≤ (1− k) and B ≤ (1− k)M . Then we have

Φ(τ , η; v) ' Lω−1
(
1− τ

a
− η

b

)−n
eMτω.

Proof. Let us denote (L ≥ 1)

Φ∗ = Lω−1
(
1− τ

a
− η

b

)−n

eMτω.

It is easy to see by Lemma 3.3 that

∂Φ∗

∂τ
( C(τ , η)

∂Φ∗

∂η
+ C(τ , η)Φ(τ , η; g).

Then the assertion follows from Lemma 3.2.

Let us denote
Φn
λ = Φ(τ , η; v(n)

λ )

and hence Φn
λ(0, η) = 0 for n ≥ 1 and Φ0

λ(0, η) = 1. We assume that

Φn
λ(τ , η) ' An+1λ−n

2n∑
k=0

ωn−kk!
(
1− τ

a
− η

b

)−k−1

eMτω. (3.1)

For n = 0 this holds clearly. Suppose that (3.1) holds for ≤ n− 1. Let

g =

⎛
⎝ 3∑

j=1

λ−jh(j)(x,D)

⎞
⎠ v

(n−1)
λ = Q1(x, λ,D)v(n−1)

λ

and we first show that

Φ(τ , η; g) ' An+1λ−n
2n∑
k=0

ωn−kk!
(
1− τ

a
− η

b

)−k−1
eMτω.

As for terms c(x)Dαu with |α| ≤ 2 we have

Φ(τ , η; cDαu) ' C
(
1− τ

a1
− η

b1

)−1
Φ(τ , η;Dαu)

' C
(
1− τ

a1
− η

b1

)−1
[ ∂2

∂τ2
+

∂2

∂τ∂η
+

∂2

∂η2

]
Φ(τ , η;u).
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We now estimate

[ ∂2

∂τ2
+

∂2

∂τ∂η
+

∂2

∂η2

] 2(n−1)∑
k=0

ωn−1−kk!
(
1− τ

a
− η

b

)−k−1
eMτω

which is bounded by

2(n−1)∑
k=0

(
M2ωn+1−kk!

(
1− τ

a
− η

b

)−k−1

+2Mωn−k(k + 1)!a−1
(
1− τ

a
− η

b

)−k−2

+ωn−1−k(k + 2)!a−2
(
1− τ

a
− η

b

)−k−3

+Mωn−k(k + 1)!b−1
(
1− τ

a
− η

b

)−k−2

+ωn−1−k(k + 2)!a−1b−1
(
1− τ

a
− η

b

)−k−3

+ωn−1−k(k + 2)!b−2
(
1− τ

a
− η

b

)−k−3)
' ω

{
M2 + 2Ma−1 + a−2 + Mb−1 + a−1b−1 + b−2

}

·
2n∑
k=0

ωn−kk!
(
1− τ

a
− η

b

)−k−1

up to the factor Anλ−n+1eMτω. Taking A so that

A ≥ {
M2 + 2Ma−1 + a−2 + Mb−1 + a−1b−1 + b−2

}
we conclude that

Φ(τ , η; g) ' An+1λ−nω

2n∑
k=0

ωn−kk!
(
1− τ

a
− η

b

)−k−1
eMτω.

Recalling that Φn
λ(0, η) = 0 ' ω−1

(
1 − η

b

)−1, n ≥ 1 for any ω and applying
Lemma 3.4 we see

Lemma 3.5 We have

Φn
λ(τ , η) ' An+1λ−n

2n∑
k=0

ωn−kk!
(
1− τ

a
− η

b

)−k−1
eMτω

for any ω ≥ 1.

Lemma 3.6 There are h > 0 and δ > 0 such that

∑
α

h|α|

α!
sup

|x−x∗|≤δ

|Dαv
(n)
λ (x)| ≤ Bn+1λ−n

2n∑
k=0

ωn−kk!eM1ω.
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Proof. Note that

∑
α

η|α|

α!
|Dαv

(n)
λ (x∗)| ≤ An+1λ−n

2n∑
k=0

ωn−kk!
(
1− η

a
− η

b

)−k−1
eMηω

and hence for 0 < η ≤ η0 we have

∑
α

η|α|

α!
|Dαv

(n)
λ (x∗)| ≤ Bn+1λ−n

2n∑
k=0

ωn−kk!eMη0ω.

This shows that

|v(n)
λ (x)| ≤

∑
α

|Dαv
(n)
λ (x∗)|
α!

|(x− x∗)α| ≤ Bn+1λ−n
2n∑
k=0

ωn−kk!eM1ω

for |x− x∗| ≤ η0. From the Cauchy’s inequality it follows that

sup
|x−x∗|≤η0/2

|Dαv
(n)
λ (x)| ≤ (η0/2)−|α|α!Bn+1λ−n

2n∑
k=0

ωn−kk!eM1ω

and hence we have

∑
α

h|α|

α!
sup

|x−x∗|≤δ

|Dαv
(n)
λ (x)| ≤ Bn+1λ−n

2n∑
k=0

ωn−kk!eM1ω

for 2h < η0 and 2δ < η0 with a possibly different B.

Let us define

Vλ(x) =
N∑

n=0

v
(n)
λ (x)

where N and ω are chosen so that

ω = 4N, λ = ωBeL

where L will be determined later. Then we have for n ≤ N

2n∑
k=0

ωn−kk!eM1ω ≤ ωneM1ω
2n∑
k=0

( k
ω

)k

≤ ωneM1ω
2n∑
k=0

(1
2

)k

and hence

∑
α

h|α|

α!
sup

|x−x∗|≤δ

|Dαv
(n)
λ (x)| ≤ Bn+1λ−nωneM1ω

≤ Bn+1(B−1e−L)neM1ω = Be−Ln+M1ω.
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In particular one has

∑
α

h|α|

α!
sup

|x−x∗|≤δ

|Dαv
(N)
λ (x)| ≤ Be−LN+4M1N = Be−e−L(L−4M1)λ/4B .

On the other hand, we see

∑
α

h|α|

α!
sup

|x−x∗|≤δ

|DαVλ(x)| ≤
N∑

n=0

Bn+1λ−nωneM1ω

= eM1ωB

N∑
n=0

(Bω

λ

)n

≤ eM1ωB = Be4M1N = Bee
−LM1λ/B.

4 A priori estimate

In this section assuming that the Cauchy problem for P (x,D) is Gevrey s
well-posed we derive a priori estimate following [6], [4]. Let L be a compact
set in R

3. Then let us denote by γ
(s)
0 (L) the set of all f(x) ∈ C∞

0 (L) such
that

|∂α
x f(x)| ≤ CA|α|(α!)s, α ∈ N

3 (4.1)

with some C > 0, A > 0. Let h > 0 be given. We denote by γ
(s),h
0 (L) the set

of all f(x) ∈ γ
(s)
0 (L) verifying (4.1) with A = h−1 and some C > 0. Note that

γ
(s),h
0 (L) is a Banach space equipped with the norm

sup
x,α

h|α||∂α
x f(x)|

(α!)s
.

Consider
Pλ = P (λ−σx, λσξ)

where λ−σx = (λ−σ0x0, λ
−σ1x1, λ

−σ2x2) and σj ≥ 0. Then we have:

Lemma 4.1 Assume that the Cauchy problem for P is Gevrey s well-posed
near the origin. Let W be a compact neighborhood of the origin. Then there
are c > 0, C > 0 such that

|u|C0(W t
−) ≤ C exp (c(λσ0/τ)1/(s−κ)) exp (λσ̄/s′)

∑
α

sup
x0≤t+τ

h|α||∂α
xPλu|

(α!)(s−s′)

for any u ∈ γ
(s),h
0 (W+

0 ), any t > 0, τ > 0, any 1 < s′ < s, any 1 < κ < s
where σ̄ = maxj{σj}.
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Proof. Assume that the Cauchy problem for P is Gevrey s well-posed. Let
h > 0 and K be a compact neighborhood of the origin. From the standard
arguments it follows that there is a neighborhood of the origin D such that
for any f(x) ∈ γ

(s),h
0 (K+

0 ) there is a u ∈ C2(D) satisfying Pu = f in D and
u = 0 in x0 ≤ 0 such that

|u|C0(L) ≤ C
∑
α

sup
h|α||∂α

x f(x)|
(α!)s

where L ⊂ D is a fixed compact set. We may assume that K ⊂ D (see for
example [7]). Thus we have

|u|C0(L) ≤ C
∑
α

sup
h|α||∂α

xPu|
(α!)s

, ∀u(x) ∈ γ
(s),h
0 (K+

0 ).

Let χ(r) ∈ γ(κ)(R), κ < s, such that χ(r) = 1 for r ≤ 0, χ(r) = 0 for r ≥ 1
and set χ1(x0) = χ((x0 − t)/τ) so that

{
χ1(x0) = 1 x0 ≤ t,

χ1(x0) = 0 x0 ≥ t + τ .

Let u ∈ γ
(s),h
0 (K+

0 ) and consider χ1Pu. Let v ∈ C2(D) be a solution to
Pv = χ1Pu with v = 0 for x0 ≤ 0. Since Pv = Pu for x0 ≤ t and hence

|u|C0(Lt
−) = |v|C0(Lt

−) ≤ C
∑
α

sup
h|α||∂α

x (χ1Pu)|
(α!)s

.

Recall that |∂β
xχ1(x)| ≤ C|β|+1(β!)κτ−|β| and hence

∑
α

sup
h|α||∂α

x (χ1Pu)|
(α!)s

≤
∑

sup
α!

α1!α2!
h|α||∂α1

x χ1||∂α2
x Pu|

(α!)s

≤
∑

sup
1

α1!α2!
h|α||∂α1

x χ1||∂α2
x Pu|

(α1!)s−1(α2!)s−1

≤
∑
α1

sup
h|α1||∂α1

x χ1|
(α1!)s

∑
α2

sup
x0≤t+τ

h|α2||∂α2
x Pu|

(α2!)s
.

Since

∑
α1

sup
h|α1||∂α1

x χ1|
(α1!)s

≤
∑
α1

C|α1|+1τ−|α1|h|α1|

(α1!)s−κ

≤ C exp
(
c
(1
τ

)1/(s−κ)
)∑

α1

(Ch)|α1|

≤ Ch exp
(
c
(1
τ

)1/(s−κ)
)
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we have

|u|C0(Lt
−) ≤ Ch exp

(
c
(1
τ

)1/(s−κ)
)∑

α

sup
x0≤t+τ

h|α||∂α
xPu|

(α!)s
. (4.2)

Let u ∈ γ
(s),h
0 (W+

0 ). Then it is clear that u(λσx) ∈ γ
(s),h
0 (K+

0 ) for large λ.
For v(x) = u(λσx) we apply the inequality (4.2) with t = λ−σ0 t̂, τ = λ−σ0 τ̂
to get

|v|C0(Lt
−) ≤ Ch exp

(
c
(λσ0

τ̂

)1/(s−κ)
)∑

α

sup
x0≤t+τ

h|α||∂α
xPv|

(α!)s

where Pv = Pu(λσx) = (Pλu)(λσx) and hence

∂α
[
(Pλu)(λσu)

]
= λ〈σ,α〉(∂α

xPλu)(λσx).

Thus we have

|u|C0(W t̂
−) ≤ Che

c
(

λσ0
τ̂

)1/(s−κ) ∑
α

sup
x0≤t̂+τ̂

h|α|λσ̄|α||∂α
x (Pλu)(x)|

(α!)s

= Che
c
(

λσ0
τ̂

)1/(s−κ) ∑
α

sup
x0≤t̂+τ̂

h|α|λσ̄|α||∂α
x (Pλu)(x)|

(α!)s′(α!)s−s′

≤ Che
c
(

λσ0
τ̂

)1/(s−κ)

ecλ
σ̄/s′ ∑

α

sup
x0≤t̂+τ̂

h|α||∂α
x (Pλu)(x)|

(α!)s−s′ .

This proves the assertion.

5 Proof of Theorem 1.1

Take χ(x) ∈ γ
(κ)
0 (W+

0 ) such that χ(x) = 1 in a neighborhood of x∗ supported
in {|x − x∗| ≤ δ} and 1 < κ < s. Let us set Uλ = EλVλχ ∈ γ

(s),h
0 (W+

0 ) and
note |Uλ(x∗)| = 1. Then we have from (2.2)

PλUλ = (PλEλVλ)χ +
∑

|α|≤1,1≤|β|≤2

cα,β(x, λ)∂α
x (EλVλ)∂β

xχ

= EλQ1v
(N)
λ χ +

∑
|α|≤1,1≤|β|≤2

cα,β(x, λ)∂α
x (EλVλ)∂β

xχ.

To estimate the right-hand side we note

Lemma 5.1 Let a = supx∈K{−Imϕ(x)}. Then we have

∑
α

sup
K

h|α||∂α
xEλ|

(α!)s
≤ Ch exp (λ2/s + aλ).
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Proof. Recall that Eλ = exp (iλ2x2 + iλϕ(x)). Since ϕ(x) is real analytic in
a neighborhood K of x∗, it is not difficult to check that

|∂α
x e

iλϕ(x)| ≤ C|α|+1(λ + |α|)|α|e−λImϕ(x), x ∈ K

and hence we have

∑
α

sup
K

h|α||∂α
x e

iλϕ(x)|
(α!)s

≤ Che
cλ1/s+aλ.

This proves the assertion.

Recall that −Imϕ(x) ≤ −δ if x ∈ supp[∂β
xχ] ∩ {x0 ≤ t + τ}, 0 < τ ≤ τ0.

Then it follows that

∑
γ

sup
x0≤t+τ

h|γ||∂γ
x(∂α

x (EλVλ)∂β
xχ)|

(γ!)s
≤ Ch exp (cλ2/s − δλ + e−LM1B

−1λ).

Assuming s > 2 and take L large so that e−LM1B
−1 < δ we see that the

left-hand side is bounded by e−δ′λ. We turn to EλQ1v
(N)
λ χ. Recalling that

−Imϕ(x) ≤ 2aτ if x ∈ supp[χ] ∩ {x0 ≤ t + τ} we see

∑
α

sup
x0≤t+τ

h|α||∂α
x (EλQ1v

(N)
λ χ)|

(α!)s

≤ Ch exp (cλ2/s + 2aτλ− e−L(L− 4M1)(4B)−1λ).

Take L > 4M1 and choose τ > 0 so that

2aτ − e−L(L− 4M1)(4B)−1 < 0,

then the right-hand side is bounded by e−δ′′λ. Let

s > 6.

Then we can choose s′ > 4 such that s− s′ > 2 and hence

∑
α

sup
x0≤t+τ

h|α||∂α
x (PλUλ)|

(α!)s−s′ ≤ Che
−δ1λ

with some δ1 > 0. Since σ̄ = 4 and σ0 = 1, taking 1 < κ small we have
σ̄/s′ < 1 and σ0/(s− κ) < 1 and hence we conclude that

|Uλ|C0(W t
−) ≤ Che

−cλ+o(λ)

as λ→∞. This gives a contradiction because

|Uλ(x∗)| = 1.
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6 Proof of Propositions 1.3 and 1.4

We first give a sketch of the proof of Proposition 1.3. Let us make a change
of variables:

x0 = y0, x1 = λ−1y1, x2 = λ−2y2.

Then we see that

Pλ = −λ−2D2
0 + 2λ−1x1D0D2 + D2

1 + b2D2 + λ−1b1D1 + λ−2b0D0

and hence with Eλ = exp (iλ2x2 + iλϕ(x)) we have

λ−1E−1
λ PλEλ = λ{2x1ϕx0

+ ϕ2
x1

+ b2}
+ {2x1D0 + 2ϕx1

D1 + 2x1ϕx0
ϕx2

+ b2ϕx2
− iϕx1x1

}

+ λ−1h(1)(x,D) + λ−2h(2)(x,D) + λ−3h(3)(x,D).

One can construct an asymptotic solution Vλ in exactly the same way as we
did proving Theorem 1.1 and set Uλ = EλVλχ. Recall Lemma 4.1

|Uλ|C0(W t
−) ≤ Cecτ

−1/(s−κ)
eλ

σ̄/s′ ∑
α

sup
x0≤t+τ

h|α||∂α
xPλUλ|

(α!)s−s′

where we now take σ̄ = 2. Let
s > 4.

We can choose s′ > 2 so that s− s′ > 2 and hence we conclude that

|Uλ|C0(W t
−) ≤ Che

−cλ+o(λ)

as λ→∞. This is a contradiction.

We next give a sketch of deriving a priori estimates for P in (1.4). After
Fourier transform with respect to x2 it is enough to study

P = −D2
0 + 2D0D1 + x2

1λ
2 + Sλ;

here we have set ξ2 = λ for simplicity of notations. We may assume that
λ > 0. Let us set

ϕ =
√
x2

1 + λ−1 − x1, w(x1, λ) =
√
x2

1 + λ−1.

Note that | logϕ| ≤ 1
2 log λ for large λ when |x1| is bounded. We consider the

operator
P̃ = e−γλ1/4(logϕ+x0)Peγλ

1/4(logϕ+x0).
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Note that

e−γλ1/4 logϕD1e
γλ1/4 logϕ = D1 − iγλ1/4 ∂x1ϕ

ϕ
= D1 + iγλ1/4w−1,

e−γλ1/4x0D0e
γλ1/4x0 = D0 − iγλ1/4.

Then it is easy to see that

P̃ = −(D0 − iγλ1/4)2 + 2(D1 + iγλ1/4w−1)(D0 − iγλ1/4) + x2
1λ

2 + Sλ

= −Λ2 + 2BΛ + Q + (S − 1)λ

where

Λ = D0 − iγλ1/4, B = D1 + iγλ1/4w−1, Q = x2
1λ

2 + λ.

Denoting by (·, ·) and ‖ · ‖ the inner product and the norm in L2(Rx1), re-
spectively, we apply the energy identity (see for example [1])

Im(P̃ u, Λu) =
d

dx0

(‖Λu‖2 + (ReQu, u)
)

+ 2((ImB)Λu,Λu)

+ 2γλ1/4(Λu,Λu) + 2γλ1/4((ReQ)u, u) + Im((S − 1)λu,Λu)

≥ d

dx0

(‖Λu‖2 + (Qu, u)
)

+ 2γλ1/4(w−1Λu,Λu) + 2γλ1/4‖Λu‖2

+ 2γλ1/4(Qu, u) + λIm((S − 1)u,Λu).

It is enough to estimate the last term on the right-hand side. Note that

2λ|Im((S − 1)u,Λu)| ≤ 2λ|S − 1||(u,Λu)|
≤ γ−1|S − 1|2|(λ7/4wu, u)|+ γ|(λ1/4w−1Λu,Λu)|.

On the other hand, noting λ2w(x1, λ)2 = Q, we see

|(λ7/4wu, u)| =
∣∣∣(λ

1/4λ2w2

λ1/2w
u, u)

∣∣∣ ≤ (λ1/4Qu, u)

because λ1/2w ≥ 1 and hence

Im(P̃ u, Λu) ≥ d

dx0

(‖Λu‖2 + (Qu, u)
)

+ γ
(
λ1/4‖w−1/2Λu‖2 + 2λ1/4‖Λu‖2 + λ1/4(Qu, u)

)

for γ ≥ |S − 1|. Since 2|Im(P̃ u, Λu)| ≤ γ−1λ−1/4‖P̃ u‖2 + γλ1/4‖Λu‖2 we get

γ−1

∫ t

−∞
λ−1/4‖P̃ u‖2dx0 ≥ ‖Λu(t)‖2 + (Qu(t), u(t))

+ γ

∫ t

−∞

{
λ1/4‖w−1/2Λu‖2

+ λ1/4‖Λu‖2 + λ1/4(Qu, u)
}
dx0.

Replacing eγλ
1/4(logϕ+x0)u by v we have
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Proposition 6.1 We have

γ−1

∫ t

−∞
λ−1/4‖e−γλ1/4(logϕ+x0)Pv‖2dx0

≥ ‖e−γλ1/4(logϕ+t)D0v(t)‖2 + (e−2γλ1/4(logϕ+t)Qv(t), v(t))

+γ

∫ t

−∞
λ1/4

{‖e−γλ1/4(logϕ+x0)D0v‖2 + (e−2γλ1/4(logϕ+x0)Qv, v)
}
dx0

for any smooth v(x0, x1, λ) vanishing for large |x1|.
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Summary. An obstacle K ⊂ R
n, n ≥ 3, n odd, is called trapping if there ex-

ists at least one generalized bicharacteristic γ(t) of the wave equation staying in
a neighborhood of K for all t ≥ 0. We examine the singularities of the scatter-
ing kernel s(t, θ, ω) defined as the Fourier transform of the scattering amplitude
a(λ, θ, ω) related to the Dirichlet problem for the wave equation in Ω = R

n \ K.
We prove that if K is trapping and γ(t) is nondegenerate, then there exist reflect-
ing (ωm, θm)-rays δm, m ∈ N, with sojourn times Tm → +∞ as m → ∞, so that
−Tm ∈ sing supp s(t, θm, ωm), ∀m ∈ N. We apply this property to study the behav-
ior of the scattering amplitude in C.

2000 AMS Subject Classification: Primary: 35P25, Secondary: 47A40,
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Key words: Scattering amplitude, reflecting rays, trapping trajectories, so-
journ time.

1 Introduction

Let K ⊂ {x ∈ R
n, |x| ≤ ρ}, n ≥ 3, n odd, be a bounded domain with C∞

boundary ∂K and connected complement Ω = Rn \K. Such K is called an
obstacle in R

n. In this paper we consider the Dirichlet problem for the wave
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equation, however in a similar way one can deal with other boundary value
problems. Given two directions (θ, ω) ∈ S

n−1 × S
n−1, consider the outgoing

solution vs(x, λ) of the problem
{(

Δ + λ2
)
vs = 0 in

◦
Ω,

vs + e−iλ〈x,ω〉 = 0 on ∂K,

satisfying the so-called (iλ) - outgoing Sommerfeld radiation condition:

vs(rθ, λ) =
e−iλr

r(n−1)/2

(
a(λ, θ, ω) +O

(1
r

))
, x = rθ, as |x| = r −→∞ .

The leading term a(λ, θ, ω) is called the scattering amplitude and we have the
following representation:

a(λ, θ, ω) =
(iλ)(n−3)/2

2(2π)(n−1)/2

∫
∂K

(
iλ〈ν(x), θ〉eiλ〈x,θ−ω〉 − eiλ〈x,θ〉

∂vs
∂ν

(x, λ)
)
dSx ,

(1.1)
where 〈•, •〉 denotes the inner product in R

n and ν(x) is the unit normal to
x ∈ ∂K pointing into Ω (see [9], [13]).

Throughout this note we assume that θ �= ω. The scattering kernel s(t, θ, ω)
is defined as the Fourier transform of the scattering amplitude

s(t, θ, ω) = Fλ→t

(( iλ
2π

)(n−1)/2

a(λ, θ, ω)
)
,

where
(
Fλ→tϕ

)
(t) = (2π)−1

∫
eitλϕ(λ)dλ for functions ϕ ∈ S(R). Let

V (t, x;ω) be the solution of the problem
⎧⎪⎨
⎪⎩

(
∂2
t −Δ

)
V = 0 in R×

◦
Ω,

V = 0 on R× ∂K,

V |t<−ρ = δ(t− 〈x, ω〉).
Then we have

s(σ, θ, ω) = (−1)(n+1)/22−nπ1−n

∫
∂K

∂n−2
t ∂νV (〈x, θ〉 − σ, x;ω)dSx ,

where the integral is interpreted in the sense of distributions.

The singularities of s(t, θ, ω) with respect to t can be observed since at
these times we have some nonnegligible picks of the scattering amplitude. For
example, if K is strictly convex, for fixed θ �= ω we have only one singularity
at t = −Tγ related to the sojourn time of the unique (ω, θ)-reflecting ray
γ (see [8]). For general nonconvex obstacles the geometric situation is much



Singularities of the Scattering Kernel 237

more complicated since we have different type of rays incoming with direction
ω and outgoing in direction θ for which an asymptotic solution related to the
rays is impossible to construct. In many problems, such as those concerning
local decay of energy, behavior of the cut-off resolvent of the Laplacian, the
existence of resonances, etc., the difference between nontrapping and trap-
ping obstacles is quite significant. In recent years many authors have studied
mainly trapping obstacles with some very special geometry and the case of
several strictly convex disjoint obstacles has been investigated both from a
mathematical and a numerical analysis point of view.

In this work our purpose is the study of the obstacles having at least one
(ω, θ)-trapping ray γ which in general could be nonreflecting (see Section 2
for the definition of an (ω, θ)-ray). No assumptions are made on the geometry
of the obstacle outside some small neighborhood of γ and no information
is required about other possible (ω, θ)-rays. Our aim is to examine if the
existence of γ may create an infinite number of delta-type singularities
Tm →∞ of s(−t, θm, ωm), in contrast to the nontrapping case where s(t, θ, ω)
is C∞ smooth for |t| ≥ T0 > 0 and all (θ, ω) ∈ S

n−1 × S
n−1. On the other

hand, it is important to stress that the scattering amplitude and the scattering
kernel are global objects and their behavior depends on all (ω, θ)-rays so any
type of cancellation of singularities may occur. The existence of a trapping ray
influences the singularities of s(t, θ, ω) if we assume that γ is nondegenerate
which is a local condition (see Section 3). Thus our result says that from the
scattering data related to the singularities of s(t, θ, ω) we can “hear” whether
K is trapping or not.

The proof of our main result is based on several previous works [13], [14],
[15], [16], [19], and our purpose here is to show how the results of these works
imply the existence of an infinite number of singularities. The reader may
consult [18] for a survey on the results mentioned above.

2 Scattering kernel

We start with the definition of the so-called reflecting (ω, θ)-rays. Given
two directions (ω, θ) ∈ S

n−1 × S
n−1, consider a curve γ ∈ Ω having the

form
γ = ∪m

i=0li, m ≥ 1,

where li = [xi, xi+1] are finite segments for i = 1, ...,m − 1, xi ∈ ∂K, and
l0 (resp. lm) is the infinite segment starting at x1 (resp. at xm) and hav-
ing direction −ω (resp. θ). The curve γ is called a reflecting (ω, θ)-ray in Ω
if for i = 0, 1, ...,m − 1 the segments li and li+1 satisfy the law of reflec-
tion at xi+1 with respect to ∂K. The points x1, ..., xm are called reflection
points of γ and this ray is called ordinary reflecting if γ has no segments
tangent to ∂K.



238 Vesselin Petkov and Luchezar Stoyanov

Next, we define two notions related to (ω, θ)-rays. Fix an arbitrary open
ball U0 with radius a > 0 containing K and for ξ ∈ S

n−1 introduce the
hyperplane Zξ orthogonal to ξ, tangent to U0 and such that ξ is pointing into
the interior of the open half space Hξ with boundary Zξ containing U0. Let
πξ : R

n −→ Zξ be the orthogonal projection. For a reflecting (ω, θ)-ray γ
in Ω with successive reflecting points x1, ..., xm the sojourn time Tγ of γ is
defined by

Tγ = ‖πω(x1)− x1‖+
m−1∑
i=1

‖xi − xi+1‖+ ‖xm − π−θ(xm)‖ − 2a .

Obviously, Tγ + 2a coincides with the length of the part of γ that lies in
Hω ∩H−θ. The sojourn time Tγ does not depend on the choice of the ball U0

and

Tγ = 〈x1, ω〉+
m−1∑
i=1

‖xi − xi+1‖ − 〈xm, θ〉 .

Fig. 1.

Given an ordinary reflecting (ω, θ)-ray γ set uγ = πω(x1). Then there
exists a small neighborhood Wγ of uγ in Zω such that for every u ∈Wγ there
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is a unique direction θ(u) ∈ S
n−1 and points x1(u), ..., xm(u) which are the

successive reflection points of a reflecting (u, θ(u))-ray in Ω with πω(x1(u)) =
u (see Figure 1). We obtain a smooth map

Jγ : Wγ ) u −→ θ(u) ∈ S
n−1

and dJγ(uγ) is called a differential cross section related to γ. We say that γ
is nondegenerate if

det dJγ(uγ) �= 0 .

The notion of sojourn time as well as that of differential cross section are well
known in the physical literature and the definitions given above are due to
Guillemin [5].

For nonconvex obstacles there exist (ω, θ)-rays with some tangent and/or
gliding segments. To give a precise definition one has to involve the gener-
alized bicharacteristics of the operator � = ∂2

t − Δx defined as the trajec-
tories of the generalized Hamilton flow Ft in Ω generated by the symbol∑n

i=1 ξ
2
i − τ2 of � (see [11] for a precise definition). In general, Ft is not

smooth and in some cases there may exist two different integral curves issued
from the same point in the phase space (see [23] for an example). To avoid this
situation in the following we assume that the following generic condition is
satisfied.

(G) If for (x, ξ) ∈ T ∗(∂K) the normal curvature of ∂K vanishes of
infinite order in direction ξ, then ∂K is convex at x in direction ξ.

Given σ = (x, ξ) ∈ T ∗(Ω)\{0} = Ṫ ∗(Ω), there exists a unique generalized
bicharacteristic (x(t), ξ(t)) ∈ Ṫ ∗(Ω) such that x(0) = x, ξ(0) = ξ and we
define Ft(x, ξ) = (x(t), ξ(t)) for all t ∈ R (see [11]). We obtain a flow Ft :
Ṫ ∗(Ω) −→ Ṫ ∗(Ω) which is called the generalized geodesic flow on Ṫ ∗(Ω). It
is clear that this flow leaves the cosphere bundle S∗(Ω) invariant. The flow Ft

is discontinuous at points of transversal reflection at Ṫ ∗
∂K(Ω) and to make it

continuous, consider the quotient space Ṫ ∗(Ω)/ ∼ of Ṫ ∗(Ω) with respect to the
following equivalence relation: ρ ∼ σ if and only if ρ = σ or ρ, σ ∈ T ∗

∂K(Ω) and
either limt↗0 Ft(ρ) = σ or limt↘0 Ft(ρ) = σ. Let Σb be the image of S∗(Ω)
in Ṫ ∗(Ω)/ ∼. The set Σb is called the compressed characteristic set. Melrose
and Sjöstrand ([11]) proved that the natural projection of Ft on Ṫ ∗(Ω)/ ∼ is
continuous.

Now a curve γ = {x(t) ∈ Ω : t ∈ R} is called an (ω, θ)-ray if there exist
real numbers t1 < t2 so that

γ̂(t) = (x(t), ξ(t)) ∈ S∗(Ω)

is a generalized bicharacteristic of � and

ξ(t) = ω for t ≤ t1, ξ(t) = θ for t ≥ t2,
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provided that the time t increases when we move along γ̂. Denote by L(ω,θ)(Ω)
the set of all (ω, θ)-rays in Ω. The sojourn time Tδ of δ ∈ L(ω,θ)(Ω) is defined
as the length of the part of δ lying in Hω ∩H−θ.

It was proved in [12], [3] (cf. also Chapter 8 in [14] and [10]) that for ω �= θ
we have

sing suppt s(t, θ, ω) ⊂ {−Tγ : γ ∈ L(ω,θ)(Ω)}. (2.1)

This relation was established for convex obstacles by Majda [9] and for some
Riemann surfaces by Guillemin [5]. The proof in [12], [3] deals with general
obstacles and is based on the results in [11] concerning propagation of singu-
larities.

In analogy with the well-known Poisson relation for the Laplacian on Rie-
mannian manifolds, (2.1) is called the Poisson relation for the scattering ker-
nel, while the set of all Tγ , where γ ∈ L(ω,θ)(Ω), (ω, θ) ∈ S

n−1 × S
n−1, is

called the scattering length spectrum of K.

To examine the behavior of s(t, θ, ω) near singularities, assume that γ is a
fixed nondegenerate ordinary reflecting (ω, θ)-ray such that

Tγ �= Tδ for every δ ∈ L(ω,θ)(Ω) \ {γ}. (2.2)

By using the continuity of the generalized Hamiltonian flow, it is easy to show
that

(−Tγ − ε,−Tγ + ε) ∩ sing suppt s(t, θ, ω) = {−Tγ} (2.3)

for ε > 0 sufficiently small. For strictly convex obstacles and ω �= θ every
(ω, θ)-ray is nondegenerate and (2.3) is obviously satisfied. For general non-
convex obstacles one needs to establish some global properties of (ω, θ)-rays
and choose (ω, θ) so that (2.3) holds. The singularity of s(t, θ, ω) at t = −Tγ

can be investigated by using a global construction of an asymptotic solution
as a Fourier integral operator (see [6], [12] and Chapter 9 in [14]), and we have
the following:

Theorem 2.1 ([12]) Let γ be a nondegenerate ordinary reflecting (ω, θ)-ray
and let ω �= θ. Then under the assumption (2.3) we have

− Tγ ∈ sing suppt s(t, θ, ω) (2.4)

and for t close to −Tγ the scattering kernel has the form

s(t, θ, ω) =
( 1

2πi

)(n−1)/2

(−1)mγ−1 exp
(
i
π

2
βγ

)
(2.5)

×
∣∣∣det dJγ(uγ)〈ν(q1), ω〉

〈ν(qm), θ〉
∣∣∣−1/2

δ(n−1)/2(t + Tγ) + lower order singularities.

Here mγ is the number of reflections of γ, q1 (resp. qm) is the first (resp. the
last) reflection point of γ and βγ ∈ Z.



Singularities of the Scattering Kernel 241

For strictly convex obstacles we have

mγ+
= 1, βγ+

= −n− 1
2

, q1 = qm,

θ − ω is parallel to ν(q1) and

|det dJγ+
(uγ+

)| = 4|θ − ω|n−3K(x+),

where γ+ is the unique (ω, θ)-reflecting ray at x+, uγ+
is the correspond-

ing point on Zω and K(x+) is the Gauss curvature at x+. Thus we ob-
tain the result of Majda [8] (see also [9]) describing the leading singularity
at −Tγ+

.

To obtain an equality in the Poisson relation (2.1), one needs to know
that every (ω, θ)-ray produces a singularity. To achieve this, a natural way
to proceed would be to ensure that the properties (2.2), (2.3) hold. It is
clear that these properties depend on the global behavior of the (ω, θ)-rays
in the exterior of the obstacle, and in this regard the existence of (ω, θ)-rays
with tangent or gliding segments leads to considerable difficulties. Moreover,
different ordinary reflecting rays could produce singularities which mutually
cancel. By using the properties of (ω, θ)-rays established in [15], [16], as well
as the fact that for almost all directions (ω, θ), the (ω, θ)-rays are ordinary
reflecting (see [19]), the following was derived in [19]:

Theorem 2.2 ([19]) There exists a subset R of full Lebesgue measure in
S
n−1 × S

n−1 such that for each (ω, θ) ∈ R the only (ω, θ)-rays in Ω are
ordinary reflecting (ω, θ)-rays and

sing suppt s(t, θ, ω) = {−Tγ : γ ∈ Lω,θ(Ω)} .

This result is the basis for several interesting inverse scattering results (see
[20], [21]).

3 Trapping obstacles

Given a generalized bicharacteristic γ in S∗(Ω), its projection γ̃ =∼ (γ) in
Σb is called a compressed generalized bicharacteristic. Let U0 be an open ball
containing K and let C be its boundary sphere. For an arbitrary point z =
(x, ξ) ∈ Σb, consider the compressed generalized bicharacteristic

γz(t) = (x(t), ξ(t)) ∈ Σb

parametrized by the time t and passing through z for t = 0. Denote by
T (z) ∈ R

+ ∪∞ the maximal T > 0 such that x(t) ∈ U0 for 0 ≤ t ≤ T (z). The
so-called trapping set is defined by
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Σ∞ = {(x, ξ) ∈ Σb : x ∈ C, T (z) = ∞} .
It follows from the continuity of the compressed generalized Hamiltonian flow
that the trapping set Σ∞ is closed in Σb. For simplicity, in the following
the compressed generalized bicharacteristics will be called simply generalized
ones. The obstacle K is called trapping if Σ∞ �= ∅, i.e., when there exists at
least one point (x̂, ξ̂) ∈ C×S

n−1 such that the (generalized) trajectory issued
from (x̂, ξ̂) stays in U0 for all t ≥ 0. This provides some information about the
behavior of the rays issued from the points (y, η) sufficiently close to (x̂, ξ̂);
however, in general it does not yield any information about the geometry of
(ω, θ)-rays.

Now for every trapping obstacle we have the following:

Theorem 3.1 ([15], [18]) Let the obstacle K be trapping and satisfy the con-
dition (G). Then there exists a sequence of ordinary reflecting (ωm, θm)-rays
γm with sojourn times Tγm

−→∞.

To prove this we use the following:

Proposition 3.2 ([7], [19]) The set of points (x, ξ) ∈ S∗
C(Ω) = {(x, ξ) ∈

T ∗(Ω) : x ∈ C, |ξ| = 1} such that the trajectory {Ft(x, ξ) : t ≥ 0} issued from
(x, ξ) is bounded has Lebesgue measure zero in S∗

C(Ω).

Proof Assume K is trapping and satisfies the condition (G). We will establish
the existence of (ω, θm)-rays with sojourn times Tm →∞ for some ω ∈ S

n−1

suitably fixed. It is easy to see that Σb \ Σ∞ �= ∅. Since K is trapping, we
have Σ∞ �= ∅, so the boundary ∂Σ∞ of Σ∞ in Σb is not empty. Fix an
arbitrary ẑ ∈ ∂Σ∞ and take an arbitrary sequence zm = (0, xm, 1, ξm) ∈ Σb,
so that zm /∈ Σ∞ for every m ∈ N and zm −→ ẑ. Consider the compressed
generalized bicharacteristics δm = (t, xm(t), 1, ξm(t)) passing through zm for
t = 0 with sojourn times Tzm

<∞. If the sequence {Tzm
} is bounded, one gets

a contradiction with the fact that ẑ ∈ Σ∞. Thus, {Tzm
} is unbounded, and

replacing the sequence {zm} by an appropriate subsequence we may assume
that Tzm

−→ +∞. Setting

ym = xm(T (zm)) ∈ C, ωm = ξm(T (zm)) ∈ S
n−1

and passing again to a subsequence if necessary, we may assume that ym →
z0 ∈ C, ωm → ω0 ∈ S

n−1. Then for the generalized bicharacteristic
δμ(t) = (t, x(t), 1, ξ(t)) issued from μ = (0, z0, 1, ω0) we have T (δμ) = ∞.
Next, consider the hyperplane Zω0 passing through z and orthogonal to ω0

and the set of points Z∞ such that the generalized bicharacteristic γu issued
from u ∈ Z∞ with direction ω0 satisfies the condition T (γu) = ∞. The set
Z∞ ∩Zω0 is closed in Zω0 and Zω0 \Z∞ �= ∅. Repeating the above argument,
we obtain rays γm with sojourn times Tγm

−→ +∞. Using Proposition 3.2,
we may assume that each ray γm is unbounded in both directions, i.e., γm
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is an (ω0, θm)-ray for some θm ∈ S
n−1. Moreover, according to results in [11]

and [15], these rays can be approximated by ordinary reflecting ones, so we
may assume that each γm is an ordinary reflecting (ωm, θm)-ray for some
ωm, θm ∈ S

n−1. This completes the proof.

To show that the rays γm constructed in Theorem 3.1 produce singulari-
ties, we need to check the condition (2.3). In general the ordinary reflecting
ray γm could be degenerate and we have to replace γm by another ordinary
reflecting nondegenerate (θ′m, ω′

m)-ray γ′
m with sojourn time T ′

m sufficiently
close to Tγm

. Our argument concerns the rays issued from a small neighbor-
hood W ⊂ C × S

n−1 of the point (z0, ω0) ∈ C × S
n−1 introduced in the proof

of Theorem 3.1.
Let O(W ) be the set of all pairs of directions (ω, θ) ∈ S

n−1 × S
n−1 such

that there exists an ordinary reflecting (ω, θ)-ray issued from (x, ω) ∈ W
with outgoing direction θ ∈ S

n−1. To obtain convenient approximations with
(ω, θ)-rays issued from W , it is desirable to know that O(W ) has a positive
measure in S

n−1 × S
n−1 for all sufficiently small neighborhoods W ⊂ C ×

S
n−1 of (z0, ω0). Roughly speaking this means that the trapping generalized

bicharacteristic δμ(t) introduced above is nondegenerate in some sense. More
precisely, we introduce the following:

Definition 3.3 The generalized bicharacteristic γ issued from (y, η) ∈ C ×
S
n−1 is called weakly nondegenerate if for every neighborhood W ⊂ C × S

n−1

of (y, η) the set O(W ) has a positive measure in S
n−1 × S

n−1.

The above definition generalizes that of a nondegenerate ordinary reflect-
ing ray γ given in Section 2. Indeed, let γ be an ordinary reflecting non-
degenerate (ω0, θ0)-ray issued from (x0, ω0) ∈ C × S

n−1. Let Z = Zω0 and
consider the C∞ map

D = X × Γ ) (x, ω) −→ f(x, ω) ∈ S
n−1,

where X ⊂ Z is a small neighborhood of x0, Γ ⊂ S
n−1 is a small neighborhood

of ω0, and f(x, ω) is the outgoing direction of the ray issued from x in direction
ω. We have det f ′

x(x0, ω0) �= 0 and we may assume that D is chosen small
enough so that det f ′

x(x, ω) �= 0 for (x, ω) ∈ D̄. Set

max
(x,ω)∈D̄

‖(f ′
x(x, ω))−1‖ =

1
α
.

Then for small ε > 0 we have ‖f ′
x(x, ω)−f ′

x(x0, ω0)‖ ≤ α
4 , provided ‖x−x0‖ <

ε, ‖ω − ω0‖ < ε and

Xε = {x ∈ Z : ‖x− x0‖ < ε} ⊂ X, Γε = {ω ∈ S
n−1 : ‖ω − ω0‖ < ε} ⊂ Γ.
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Next consider the set

Ξε =
{
θ ∈ S

n−1 : ‖θ − θ0‖ < εα

4

}
.

Then taking ε′ ∈ (0, ε) so that ‖f(x0, ω) − θ0‖ < εα
4 for ω ∈ Γε′ , and ap-

plying the inverse mapping theorem (see Section 5 in [15]), we conclude that
for every fixed ω ∈ Γε′ and every fixed θ ∈ Ξε′ we can find x(ω,θ) ∈ Xε

with f(x(ω,θ), ω) = θ. Consequently, the corresponding set of directions
Γε′ ×Ξε′ ⊂ O(W ) has positive measure in S

n−1×S
n−1. This argument works

for every neighborhood of (x0, ω0), so γ is weakly nondegenerate according to
Definition 3.3.

Remark 3.4 In general a weakly nondegenerate ordinary reflecting ray does
not need to be nondegenerate. To see this, first notice that the set of those
(y, η) ∈ C × S

n−1 that generate weakly nondegenerate bicharacteristics is
closed in C × S

n−1. Now consider the special case when K is convex with
vanishing Gauss curvature at some point x0 ∈ ∂K and strictly positive Gauss
curvature at any other point of ∂K. Consider a reflecting ray γ in R

n with a
single reflection point at x0. Then, as is well-known, γ is degenerate, that is,
the differential cross section vanishes. However, arbitrarily close to γ we can
choose an ordinary reflecting ray δm with a single reflection point xm �= x0.
Then δm is nondegenerate and hence it is weakly nondegenerate. Thus, γ can
be approximated arbitrarily well with weakly nondegenerate rays, and therefore
γ itself is weakly nondegenerate.

Now we have a stronger version of Theorem 3.1.

Theorem 3.5 Let the obstacle K have at least one trapping weakly non-
degenerate bicharacteristic δ issued from (y, η) ∈ C × S

n−1 and let K sat-
isfy (G). Then there exists a sequence of ordinary reflecting nondegenerate
(ωm, θm)-rays γm with sojourn times Tγm

−→∞.

Proof Let Wm ⊂ C × S
n−1 be a neighborhood of (y, η) such that for every

z ∈Wm the generalized bicharacteristic γz issued from z satisfies the condition
T (γz) > m. The continuity of the compressed generalized flow guarantees the
existence of Wm for all m ∈ N. Moreover, we have Wm+1 ⊂Wm. Consider the
open subset Fm of C × S

n−1 × C × S
n−1 consisting of those (x, ω, z, θ) such

that (x, ω) ∈Wm and there exists an ordinary reflecting (ω, θ)-ray issued from
(x, ω) ∈Wm and passing through z with direction θ.

The projection Fm ) (x, ω, z, θ) −→ (ω, θ) is smooth and Sard’s theo-
rem implies the existence of a set Dm ⊂ S

n−1 × S
n−1 with measure zero so

that if (ω, θ) /∈ Dm the corresponding (ω, θ)-ray issued from (x, ω) ∈ Wm

is non-degenerate. Then the set O(Wm) \ Dm has a positive measure and
taking (ωm, θm) ∈ O(Wm) \ Dm we obtain an ordinary reflecting nondegen-
erate (ωm, θm)-ray δm with sojourn time Tm issued from zm ∈Wm. Next we
choose
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q(m) > max{m + 1, Tm}, q(m) ∈ N

and repeat the same argument for Wq(m) and Fq(m). This completes the proof.

Remark 3.6 In general, a generalized trapping ray δ can be weakly degenerate
if its reflection points lie on flat regions of the boundary. In the case when K
is a finite disjoint union of several convex domains sufficient conditions for a
trapping ray to be weakly nondegenerate are given in [16]. On the other hand,
we expect that the sojourn time Tγ of an ordinary reflecting ray γ may produce
a singularity of the scattering kernel if the condition (2.3) is replaced by some
weaker one. For this purpose one needs a generalization of Theorem 2.1 based
on the asymptotics of oscillatory integrals with degenerate critical points.

Now assume that γ is an ordinary reflecting nondegenerate (ω, θ)-ray with
sojourn time Tγ issued from (x, ξ) ∈ C × S

n−1. For such a ray the condition
(2.3) is not necessarily fulfilled. Since γ is nondegenerate, there are no (ω, θ)-
rays δ with sojourn time Tγ issued from points in a small neighborhood of
(x, ξ). This is not sufficient for (2.3) and we must take into account all (ω, θ)-
rays. The result in [19] says that for almost all directions (ω, θ) ∈ S

n−1×S
n−1

all (ω, θ)-rays are reflecting ones and the result in [15] implies the property
(2.2) for the sojourn times of ordinary reflecting rays (ω, θ)-ray, provided that
(ω, θ) is outside some set of measure zero. Thus we can approximate (ω, θ)
by directions (ω′, θ′) for which the above two properties hold. Next, the fact
that γ is nondegenerate combined with the inverse mapping theorem make
it possible to find an ordinary reflecting nondegenerate (ω′, θ′)-ray γ′ with
sojourn time T ′

γ sufficiently close to Tγ so that (2.2) and (2.3) hold for γ′. We
refer to Section 5 in [15] for details concerning the application of the inverse
mapping theorem. Finally, we obtain the following:

Theorem 3.7 Under the assumptions of Theorem 3.5 there exists a sequence
(ωm, θm) ∈ S

n−1× S
n−1 and ordinary reflecting nondegenerate (ωm, θm)-rays

γm with sojourn times Tm −→∞ so that

− Tm ∈ sing supp s(t, ωm, θm), ∀m ∈ N. (3.1)

The relation (3.1) was called property (S) in [15] and it was conjectured
that every trapping obstacle has the property (S). The above result says that
this is true if the generalized Hamiltonian flow is continuous and if there is
at least one weakly nondegenerate trapping ray δ. The assumption that δ is
weakly nondegenerate has been omitted in Theorem 8 in [18].

4 Trapping rays and estimates of the scattering
amplitude

The scattering resonances are related to the behavior of the modified resolvent
of the Laplacian. For "λ < 0 consider the outgoing resolvent R(λ) = (−Δ−
λ2)−1 of the Laplacian in Ω with Dirichlet boundary conditions on ∂K. The
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outgoing condition means that for f ∈ C∞
0 (Ω) there exists g(x) ∈ C∞

0 (Rn) so
that we have

R(λ)f(x) = R0(λ)g(x), |x| → ∞,

where
R0(λ) = (−Δ− λ2)−1 : L2

comp(Rn) −→ H2
loc(R

n)

is the outgoing resolvent of the free Laplacian in R
n. The operator

R(λ) : L2
comp(Ω) ) f −→ R(λ)f ∈ H2

loc(Ω)

has a meromorphic continuation in C with poles λj , "λj > 0, called reso-
nances ([7]). Let χ ∈ C∞

0 (Rn) be a cut-off function such that χ(x) = 1 on a
neighborhood of K. It is easy to see that the modified resolvent

Rχ(λ) = χR(λ)χ

has a meromorphic continuation in C and the poles of Rχ(λ) are independent
of the choice of χ. These poles coincide with their multiplicities with those
of the resonances. On the other hand, the scattering amplitude a(λ, θ, ω) also
admits a meromorphic continuation in C and the poles of this continuation
and their multiplicities are the same as those of the resonances (see [7]). From
the general results on propagation of singularities given in [11], it follows that
if K is nontrapping, there exist ε > 0 and d > 0 so that Rχ(λ) has no poles
in the domain

Uε,d = {λ ∈ C : 0 ≤ "λ ≤ ε log(1 + |λ|)− d}.

Moreover, for nontrapping obstacles we have the estimate (see [24])

‖Rχ(λ)‖L2(Ω)−→L2(Ω) ≤ C

|λ|e
C|�λ|, ∀λ ∈ Uε,d.

We conjecture that the existence of singularities tm −→ −∞ of the scat-
tering kernel s(t, θm, ωm) implies that for every ε > 0 and d > 0 we have
resonances in Uε,d.

Here we prove a weaker result assuming an estimate of the scattering am-
plitude.

Theorem 4.1 Suppose that there exist m ∈ N, α ≥ 0, ε > 0, d > 0 and C > 0
so that a(λ, θ, ω) is analytic in Uε,d and

|a(λ, θ, ω)| ≤ C(1 + |λ|)meα|�λ|, ∀(ω, θ) ∈ S
n−1 × S

n−1, ∀λ ∈ Uε,d. (4.1)

Then if K satisfies (G), there are no trapping weakly nondegenerate rays in
Ω.
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The proof of this result follows directly from the statement in Theorem 2.3
in [15]. In fact, if there exists a weakly nondegenerate trapping ray, we can
apply Theorem 3.7, and for the sequence of sojourn times {−Tm}, Tm →∞,
related to a weakly nondegenerate ray δ, an application of Theorem 2.1 yields
a sequence of delta type isolated singularities of the scattering kernel. The
existence of these singularities combined with the estimate (4.1) leads to a
contradiction since we may apply the following:

Lemma 4.2 ([15]) Let u ∈ S ′(R) be a distribution. Assume that the Fourier
transform û(ξ), ξ ∈ R, admits an analytic continuation in

Wε,d = {ξ ∈ C : d− ε log(1 + |ξ|) ≤ "ξ ≤ 0}, ε > 0, d > 0

such that for all ξ ∈Wε,d we have

|û(ξ)| ≤ C(1 + |ξ|)Neγ|�ξ|, γ ≥ 0.

Then for each q ∈ N there exists tq < τ and vq ∈ Cq(R) such that u = vq for
t ≤ tq.

Here the Fourier transform û(ξ) =
∫
e−itξu(t)dt for u ∈ C∞

0 (R) and for λ ∈ R

we have

ŝ(λ, θ, ω) =
( iλ

2π

)(n−1)/2

a(λ, θ, ω) =
( iλ

2π

)(n−1)/2

a(−λ, θ, ω).

Thus ŝ(λ, θ, ω) admits an analytic continuation in Wε,d and the estimate (4.1)
implies an estimate for ŝ(λ, θ, ω) in Wε,d.

It is easy to see that the analyticity of Rχ(λ) in Uε,d and the estimate

‖Rχ(λ)‖L2(Ω)−→L2(Ω) ≤ C ′(1 + |λ|)m′
eα

′|�λ|, ∀λ ∈ Uε,d (4.2)

with m′ ∈ N, α′ ≥ 0, imply (4.1) with suitable m and α. This follows from
the representation of the scattering amplitude involving the cut-off resolvent
Rψ(λ) (see [15], [17]) with ψ ∈ C∞

0 (Rn) having support in {x ∈ R
n : 0 <

a′ ≤ |x| ≤ b′}. Moreover, we can take a′ < b′ arbitrary large. More precisely,
let ϕa ∈ C∞

0 (Rn) be a cut-off function such that ϕa(x) = 1 for |x| ≤ ρ. Set

Fa(λ, ω) = [Δϕa + 2iλ〈∇ϕa, ω〉]eiλ〈x,ω〉.

Let ϕb(x) ∈ C∞
0 (Rn) be such that ϕb(x) = 1 on a neighborhood of K and

ϕa(x) = 1 on supp ϕb. The scattering amplitude a(λ, θ, ω) has the represen-
tation

a(λ, θ, ω) = cnλ
(n−3)/2

∫
Ω

e−iλ〈x,θ〉
[
(Δϕb)R(λ)Fa(λ, ω)

+2〈∇xϕb,∇x(R(λ)Fa(λ, ω))〉
]
dx
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with a constant cn depending on n and this representation is independent of
the choice of ϕa and ϕb. In particular, if the estimate (4.2) holds, then the
obstacle K has no trapping weakly nondegenerate rays.

Consider the cut-off resolvent Rψ(λ) with supp ψ ⊂ {x ∈ R
n : 0 < a′ <

|x| < b′}. For λ ∈ R and sufficiently large a′ and b′, Burq [2] (see also Cardoso
and Vodev [4]) established the estimate

‖Rψ(λ)‖L2(Ω)−→L2(Ω) ≤ C2

1 + |λ| , λ ∈ R (4.3)

without any geometrical restriction of K. On the other hand, if we have res-
onances converging sufficiently fast to the real axis, the norm

‖Rχ(λ)‖L2(Ω)→L2(Ω)

with χ = 1 on K increases like O(eC|λ|) for λ ∈ R, |λ| → ∞. Thus the existence
of trapping rays influences the estimates of Rχ(λ) with χ(x) equal to 1 on a
neighborhood of the obstacle and the behaviors of the scattering amplitude
a(λ, θ, ω) and the cut-off resolvent Rχ(λ) for λ ∈ R are rather different if we
have trapping rays.

It is interesting to examine the link between the estimates for a(λ, θ, ω)
and the cut-off resolvent Rχ(λ) for λ ∈ Uε,d. In this direction we have the
following:

Theorem 4.3 Under the assumptions of Theorem 4.1 for a(λ, θ, ω) the cut-
off resolvent Rχ(λ) with arbitrary χ ∈ C∞

0 (Rn) satisfies the estimate (4.2) in
Uε,d with suitable C ′ > 0, m′ ∈ N and α′ ≥ 0.

Proof The poles of a(λ, θ, ω) in {z ∈ C : "λ > 0} coincide with the poles of
the scattering operator

S(λ) = I + K(λ) : L2(Sn−1) −→ L2(Sn−1),

where K(λ) has kernel a(λ, θ, ω). Thus the estimate (4.1) of a(λ, θ, ω) leads to
an estimate of the same type for the norm of the scattering operator S(λ) for
λ ∈ Uε,d. Notice that S−1(λ) = S∗(λ̄) for every λ ∈ C for which the operator
S(λ) is invertible. Moreover, the resonances λj are symmetric with respect to
the imaginary axe iR.

Consider the energy space H = HD(Ω)⊕L2(Ω), the unitary group U(t) =
eitG in H related to the Dirichlet problem for the wave equation in Ω and
the semigroup Zb(t) = P b

+U(t)P b
−, t ≥ 0, introduced by Lax and Phillips

([7]). Here P b
± are the orthogonal projections on the orthogonal complements

of the Lax–Phillips spaces Db
±, b > ρ (see [7] for the notation). Let Bb be

the generator of Zb(t). The eigenvalues zj of Bb are independent of b, the
poles of the scattering operator S(λ) are {−izj ∈ C, zj ∈ spec Bb} and the
multiplicities of zj and −izj coincide. Given a fixed function χ ∈ C∞

0 (Rn),
equal to 1 on K, we can choose b > 0 so that P b

±χ = χP b
± = χ. We fix b > 0
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with this property and will write below B, P± instead of Bb, P b
±. Changing the

outgoing representation of H, we may introduce another scattering operator
S1(λ) (see Chapter III in [7]) which is an operator-valued inner function in
{λ ∈ C : "λ ≤ 0} and

‖S1(λ)‖L2(Sn−1)→L2(Sn−1) ≤ 1, "λ ≤ 0. (4.4)

The estimate (4.4) is not true for the scattering operator S(λ) = I + K(λ)
related to the scattering amplitude. On the other hand, the link between the
outgoing representations of H introduced in Chapters III and V in [7] implies
the equality

S1(λ) = e−iβλS(λ), β > 0. (4.5)

The following estimate established in Theorem 3.2 in [7] plays a crucial role:

‖(iλ−B)−1‖H→H ≤ 3
2|"λ| ‖S

−1
1 (λ̄)‖L2(Sn−1)→L2(Sn−1), ∀λ ∈ Uε,d \ R.

Since S−1(λ) = S∗(λ̄) for all λ ∈ C for which S(λ) is invertible, the
estimates (4.1) and (4.5) imply

‖(iλ−B)−1‖H→H ≤ 3eβ|�λ|

2|"λ| ‖S(λ)‖L2(Sn−1)→L2(Sn−1)

≤ C1(1 + |λ|)m′ eα
′|�λ|

|"λ| , ∀λ ∈ Uε,d \ R.

For Reλ > 0 we have

χ(λ−B)−1χ =
∫ ∞

0

e−λtχP+U(t)P−χdt = −iχ(−iλ−G)−1χ

and by an analytic continuation we obtain this equality for λ ∈ iUε,d. By using
the relation between Rχ(λ) and χ(λ−G)−1χ, we deduce the estimate

‖Rχ(λ)‖L2(Ω)→L2(Ω) ≤ C2(1 + |λ|)m′ eα
′|�λ|

|"λ|
for "λ = ε log(1+|λ|)−d, |Reλ| ≥ c0. On the other hand, ‖Rχ(λ)‖L2(Ω)→L2(Ω)

is bounded for "λ = −c1 < 0 and have the estimate (see for example [22])

‖Rχ(λ)‖L2(Ω)→L2(Ω) ≤ CeC|λ|n , "λ ≤ ε log(1 + |λ)− d.

Then an application of the Phragmen–Lindelöf theorem yields the result.

It is an interesting open problem to show that the analyticity of a(λ, θ, ω)
in Uε,d implies the estimate (4.1) with suitable m, α and C without any
information for the geometry of the obstacle. The same problem arises for the
strip Vδ = {λ ∈ C : 0 ≤ "λ ≤ δ} and we have the following:
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Conjecture. Assume that the scattering amplitude a(λ, θ, ω) is analytic
in Vδ. Then there exist constants C1 > 0, C ≥ 0 such that

|a(λ, θ, ω)| ≤ C1e
C|λ|2 , ∀(ω, θ) ∈ S

n−1 × S
n−1, ∀λ ∈ Vδ.

For n = 3 this conjecture is true since we may obtain an exponential estimate
O(eC|λ|2) for the cut-off resolvent Rχ(λ), λ ∈ Vδ (see for more details [1]).
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Analytic Hypoellipticity for a Sum of Squares
of Vector Fields in R

3 Whose Poisson
Stratification Consists of a Single Symplectic
Stratum of Codimension Four
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Summary. We prove analytic hypoellipticity for a sum of squares of vector fields
in R

3 all of whose Poisson strata are equal and symplectic of codimension four,
extending in a model setting the recent general result of Cordaro and Hanges in
codimension two [2]. The easy model we study first and then its easy generalizations
possess a divisibility property reminiscent of earlier work of the author and Derridj
in [3] and Grigis–Sjöstrand in [4].

2000 AMS Subject Classification: 35H10, 35H12.
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1 Introduction and statement of theorems

In R
3, we consider sums of squares of four vector fields whose characteristic va-

riety and all subsequent Poisson–Treves strata are symplectic of codimension
four (in fact all the same):

P = D2
x + (Dy + x2Dt)2 + (x3Dt)2 + (y3Dt)2 =

4∑
1

X2
j .

Hörmander’s condition being satisfied at rank 3, P is subelliptic with ε = 1/4
and hence Gevrey hypoelliptic in Gs for all s ≥ 4, but we will show that in
fact P is analytic hypoelliptic.

The conjecture of Treves [11] states that the operator should be analytic
hypoelliptic if (and only if) the characteristic variety and all the iterated
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Poisson strata are symplectic. Here we conclude analytic hypoellipticity for a
restricted class, extending recent (unpublished) work by Cordaro and Hanges
when the codimension was equal to two.

This model can be generalized as long as a divisibility property reminiscent
of earlier work of the author in [3] and Grigis–Sjöstrand in [4] is maintained.

Theorem 1 Let

P = D2
x +

(
Dy + x2Dt

)2
+
(
x3Dt

)2
+
(
y3Dt

)2
=

4∑
1

X2
j .

Then P is analytic hypoelliptic.

Theorem 2 Let �, p > 0 be arbitrary. And let

Pg = D2
x + (Dy + g(x)Dt)2 + (x
Dt)2 + (ypDt)2 =

4∑
1

X2
j,g.

Then Pg is analytic hypoelliptic whenever there exists k0 > 0 such that the
real analytic function g satisfies g(k)(0) = 0, k < k0 but g(k0)(0) �= 0.

Remark 1. The last two vector fields ensure that the characteristic variety and
all the deeper Poisson–Treves strata, all equal to {x = y = ξ = η = 0}, are
symplectic.

Remark 2. In the analogue of the strictly pseudoconvex case, here the model
would have just x in place of x2, we know that the condition of divisibility
would always be satisfied.

Remark 3. The presence of the last two vector fields, in addition to ensuring
that the layers are symplectic, means that for (x, y) �= (0, 0), the operator
is elliptic, microlocally near (x, y, t; ξ, η, τ) = (0, 0, 0; 0, 0, 1) and hence the
result is known. Thus only (x, y) = (0, 0) is in doubt, which means that any
localization ϕ(x, y, t) = ϕ1(x, y)ϕ2(t) may be done only in the variable t, since
any derivative falling on ϕ1 will be nonzero only for (x, y) away from (0, 0).

Remark 4. Each of the four vector fields may be multiplied by nonzero real
analytic functions with no change in the statement of the theorems.

2 The proof in the case of Theorem 1

By subellipticity, we know that distribution solutions are smooth. To prove the
theorem, then, it will suffice to show that, locally uniformly near the origin,
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|Dpu| ≤ Cp+1p!

since for x2 + y2 �= 0 our operator is elliptic, any localization may be taken in
the variable t alone. And since the only points in the cotangent space which
might be in the analytic wave front set of the solution are those where the
operator is characteristic, namely, (0, 0, 0; 0, 0, τ ) with τ �= 0, it suffices to
estimate high derivatives in the t variable, and it will suffice to do so (locally)
in L2 norm. The a priori estimate for P is merely the maximal estimate, with
the subelliptic portion used only as a starting point to control the initial norm:

4∑
j=1

‖Xjv‖20 + ‖v‖21
4

� |(Pv, v)|+ ‖v‖20, v ∈ C∞
0 .

Now merely introducing v = ϕ(t)Dp
t u into the estimate will lead to deriva-

tives on ϕ which cannot be immediately controlled:

[X2, ϕD
p
t ]u � x2ϕ′Dp

t u

since while we may have started with the maximally controlled vector field
X2 we now lack such a vector field on the right with which to use the estimate
again to maximal advantage.

Thus we introduce a variant of the effective localization of high powers of
Dt which we have used before. And to avoid introducing too much notation at
once, we write out, analogous to the näıve first localization ϕDp

t above, a third-
order version and take its bracket with X2. Noting that [X2,

x
2X1] = −x2Dt,

we have, with (
D1

t

)′
ϕ
≡ ϕ(t)Dt + ϕ′

(x
2
X1

)
,

[
X2,

(
D1

t

)
ϕ
Dp−1

t

]

=
(
x2ϕ′Dt − x2ϕ′Dt + x2ϕ′′

(x
2
X1

))
Dp−1

t = x2ϕ′′
(x

2
X1

)
Dp−1

t

and, with

(
D2

t

)′
ϕ
≡ ϕ(t)D2

t + ϕ′
(x

2
X1

)
Dt + ϕ′′

(x
2
X1

)2

/2!,

[
X2,

(
D2

t

)
ϕ
Dp−2

t

]

=
{
x2ϕ′D2

t − x2ϕ′D2
t

}
Dp−2

t +
{
x2ϕ′′

(x
2
X1

)
Dt

+
[
X2, ϕ

′′
(x

2
X1

)2

/2!
]}

Dp−2
t

=
{
x2ϕ′′

(x
2
X1

)
Dt − x2ϕ′′

(x
2
X1

)
Dt

}
Dp−2

t



256 David S. Tartakoff

+
{
ϕ′′

[x
2
X1,

[
X2,

x

2
X1

]]
/2! + x2ϕ′′′

(x
2
X1

)2

/2!
}
Dp−2

t

=
{
ϕ′′

[x
2
X1,−x2Dt

]
/2! + x2ϕ′′′

(x
2
X1

)2

/2!
}
Dp−2

t

= −ϕ′′x2Dp−1
t /2! + x2ϕ′′′

(x
2
X1

)2

Dp−2
t /2!.

In other words, even though we expect the last term (a term where we
have managed to eliminate all Dt at least to the level where we have corrected
ϕDp

t , and which can be corrected all the way until p = 0, in similar fashion),
there is the additional term −ϕ′′x2Dt/2! which will require a new cascade of
correcting terms. It arose from a double commutator [x2X1, [X2,

x
2X1]] which

never occurred in the nondegenerate, or strictly pseudo-convex, case, where
the first brackets one encountered had constant coefficients.

That being said, we propose to use not just
(
D2

t

)′
ϕ

= ϕ(t)D2
t + ϕ′x

2
X1Dt + ϕ′′

(x
2
X1

)2

/2!

as the second-order modification of ϕ(t)D2
t but rather

(T 2)ϕ ≡ ϕ(t)D2
t + ϕ′ (

x
2X1)1

1!
Dt + ϕ′′

{
(x2X1)2

2!
− 1

2
(x2X1)1

1!

}

=
2∑
0

ϕ(j)Aj
j′

(x2X1)j
′

j′!

(with A0
0 = 1, A1

1 = 1, A1
0 = 0, A2

2 = 1, A2
1 = − 1

2 , A
2
0 = 0) so that

[X2, (T 2)ϕ] is free of Dt,

and we are far more confident that we can handle terms entirely free of Dt.
We note in passing that the brackets of (T 2)ϕ with X3 or X4 will contain
factors of x3 or y3 which are extremely powerful as they can ‘convert’ Dt into
a good vector field (X3 or X4 again), while brackets with X1 are good as
well—we will see that bracketing with X1 leaves a free X1 on the left modulo
manageable terms, and this X1 will allow us to use the maximal estimate
effectively.

The general form of the modification of ϕDp
t requires then a sum of p

terms, each with some ϕ(j) followed by suitable polynomials in

M =
x

2
X1

of degree j, which we write (for j ≥ 1, N0 being equal to 1) as

Nj =
j∑

j′=0

Aj
j′
M j′

j′!
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with the coefficients Aj
j′ carefully chosen, all Aj

j = 1. The relation [M,X2] =
x2Dt might more suggestively be written using the notation X2 = X ′

2 + X ′′
2

with X ′
2 = Dy and X ′′

2 = x2Dt. Then

[M,X2] = [M,X ′′
2 ] = X ′′

2 = x2Dt

and so

[M, [M, . . . [M,X2]] . . .] = [M, [M, . . . [M,X ′′
2 ]] . . .] = X ′′

2 = x2Dt

and hence

[M b,X2] = [M b,X ′′
2 ] =

b∑
b′=1

(
b

b′

)
adb

′
M (X ′′

2 )M b−b′ = x2
b∑

b′=1

(
b

b′

)
M b−b′Dt.

Thus with factorials,

[
M b

b!
,X2

]
= x2

b∑
b′=1

1
b′!

M b−b′

(b− b′)!
Dt

or together with the coefficients Aj
j′ ,

[Nj ,X2] = x2

j∑
j′=1

Aj
j′

j′∑
j′′=1

1
j′′!

M j′−j′′

(j′ − j′′)!
Dt.

We proceed to define, quite generally,

(T p)ϕ ≡
p∑

j=0

ϕ(j)NjD
p−j
t

with ϕ(t) = ϕp0
(t) ≡ 1 on one neighborhood of t = 0 and supported in a

larger one where Pu is known to be analytic for x2 + y2 small and satisfying,
for N given, the Ehrenpreis-type bounds on derivatives:

|Dkϕp0
| ≤ Ck+1pk0 , k ≤ p0,

with the constant C independent of p0. To construct such ϕp0
one merely

convolves p0 copies of a standard bump function whose support has width
proportional to 1/p0 with the characteristic function of a small interval about
0 in t.

What will be crucial in the bracket [X2, (T p)ϕ] is that it contain no resid-
ual Dt, since any residual Dt is coupled with an unacceptable number of
derivatives on the localizing function.

We have, since [X2, N0] = [X2, 1] = 0,
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[X2, (T p)ϕ] =

⎡
⎣X2,

p∑
j=0

ϕ(j)NjD
p−j
t

⎤
⎦

=
p∑

j=0

[
X2, ϕ

(j)
]
NjD

p−j
t +

p∑
j=1

ϕ(j)[X2, Nj ]D
p−j
t

=
p∑

j=0

x2ϕ(j+1)NjD
p−j
t

−
p∑

j=1

x2ϕ(j)

j∑
j′=1

Aj
j′

j′∑
j′′=1

1
j′′!

M j′−j′′

(j′ − j′′)!
D

p−(j−1)
t

=
p∑

j=1

x2ϕ(j)Nj−1D
p−(j−1)
t

−
p∑

j=1

x2ϕ(j)

j∑
j′=1

Aj
j′

j′∑
j′′=1

1
j′′!

M j′−j′′

(j′ − j′′)!
D

p−(j−1)
t

by the above expression for [Nj ,X2].
To make this expression exactly zero (except for terms which contain no

Dt) we must match derivatives on ϕ, powers of Dt and powers of M in the two
terms. This may be seen clearly with a shift of index (after factoring out x2):

Nj−1 =
j−1∑
j′=0

Aj−1
j′

M j′

j′!
=

j∑
j′=1

Aj
j′

j′∑
j′′=1

1
j′′!

M j′−j′′

(j′ − j′′)!

or, equating powers of M, after writing j̃ = j′− j′′ on the right and j̃ = j′ on
the left,

j−1∑
j̃=0

Aj−1

j̃

M j̃

j̃!
=

j−1∑
j̃=0

j−j̃∑
j′′=1

Aj

j̃+j′′
1
j′′!

M j̃

j̃!
,

which forces, for all j̃ ≤ j − 1,

Aj−1

j̃
=

j−j̃∑
j′′=1

Aj

j̃+j′′
1
j′′!

together with the conditions Ar
r = 1 for all r and some freedom, for example

assigning the values of Aj
0, j > 0, or the values of Ap

k, k > 0. In practical terms,
the former amounts to adding localizations of lower powers of Dt to that of
the highest power.

However, as shown in [3] and Hirzebruch’s book [5] Lemma 1.7.1, the
unique solution with Aq

q = 1 for all q and Aq
0 = (−1)q for all q is given by
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Ar
s =

((
t

et − 1

)r+1
)(r−s)

(0)/(r − s)!

= the coefficient of tr−s in
(

t

et − 1

)r+1

,

and these coefficients satisfy the desired estimates: there exists a constant C
such that for s ≤ r,

|Ar
s| ≤ Cr.

In addition, one may ‘raise and lower’ indices nicely:

Proposition 2.1 For any p, q, and c, we may shift lower indices:

Ap
q =

p−q∑
j=0

Sc+j
j A

p−(c+j)
q−c .

Lemma 2.1 There exists a constant C such that for s ≤ r we have

|Sr
s | ≤ Cr.

An easy calculation shows that

[X1, Nj ] = −
j∑

j′=0

Aj
j′

j′∑
j′′=1

adj
′′

M (X1)
j′′!

M j′−j′′

(j′ − j′′)!

= −X1 ◦
j∑

j′=0

Aj
j′

j′∑
j′′=1

(− 1
2

)j′′
j′′!

M j′−j′′

(j′ − j′′)!

=
∑

1≤j′′+
≤j

(− 1
2

)j′′
j′′!

Sj′′+




{−X1 ◦Nj−(j′′+
)

}
.

Similarly when we take the bracket with X3 = x3Dt we obtain

[X3, Nj ] = −X3 ◦
∑

1≤j′′≤j′≤j

Aj
j′

(
3
2

)j′′
j′′!

M j′−j′′

(j′ − j′′)!

=
∑

1≤j′′+
≤j

(
3
2

)j′′
j′′!

Sj′′+


 {−X3 ◦Nj−(j′′+
)}.

Lastly, the bracket with X4 is zero.
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Thus in all,

[X1, (T p)ϕ] = X1 ◦
∑

1≤p′′≤p′≤p

Rp′
p′′(T p−p′

)ϕp′′ ,

[X2, (T p)ϕ] = Cp ϕ(p+1)Xp/p!,

[X3, (T p)ϕ] = X3 ◦
∑

1≤p′′≤p′≤p

R̃p′
p′′(T p−p′

)ϕp′′

and
[X4, (T p)ϕ] = 0,

where ϕp′′ denotes a derivative of ϕ of order at most p′′ and

|Rp′
p′′ |+ |R̃p′

p′′ | ≤ Cp′
.

Thus we insert v = (T p)ϕu in the a priori estimate

4∑
j=1

‖Xj(T p)ϕu‖0 + ‖(T p)ϕu‖ 1
4

� |(P (T p)ϕu, (T p)ϕu)|+ ‖(T p)ϕu‖20

and, with Pu = α analytic, write

(P (T p)ϕu, (T p)ϕu) = ((T p)ϕα, (T p)ϕu) + E,

where the error E is expressed in terms of the above commutators in ways
which by now are more or less obvious. In view of the beautiful bracket rela-
tions, we may iterate the use of the maximal estimate until we have pure X
derivatives, then continue to use it until once again we have pure Dt deriva-
tives. Removing that localizing function from the norm and introducing a new
one as in [7], [8], as many as log2 p0 times we arrive at an overall bound of

Cp0+1pp0
0 or Cp0+1p0!

for derivatives of the solution of order p0, locally, which proves analyticity.

3 The proof in the case of Theorem 2

For Theorem 2, the bracket of X2 with ϕDt is

[X2, ϕDt] = g(x)Dt

so that if we define
M =

g

g′
∂

∂x
,

we will have

[M,X2] = gDt, [M, [M,X2]] = gDt, etc.



Analyticity in Codimension Four 261

just as before, except that g
g′ takes the place of x

2 = x2

2x .

This time brackets with X1 behave as follows:

[X1, Nj ] =
j∑

j′=0

Aj
j′

j′∑
j′′=1

adj
′′

M (X1)
j′′!

M j′−j′′

(j′ − j′′)!

=
j∑

j′=0

j′∑
j′′=1

M j′′
(

g
g′

)

j′′!
◦X1 ◦Aj

j′
M j′−j′′

(j′ − j′′)!

=
∑

1≤j′′+
≤j

M j′′
(

g
g′

)

j′′!
Sj′′+


 {X1 ◦Nj−(j′′+
)},

brackets with X3 similarly as above, and brackets with X4 are again zero.
With coefficients, the analysis is not fundamentally changed, and details

have been worked out in the related case of pseudo-convex domains in C
n or

pseudo-convex C-R manifolds in [3].
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Multidimensional Soliton Integrodifferential
Systems
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Summary. The article presents preliminary results on applications of the theory
of noncommutative KdV equation ut = ∂3u − 3 (u∂u + (∂u) u) (recently developed
in [Treves, 2007]) to algebras of matrices, first of finite rank and then of infinite
rank. The resulting differential equations in these algebras can only make sense in a
noncommutative setup, as the basic “space derivation” is commutation with another
(fixed) matrix. The infinite rank situation is reinterpreted, via Hermite expansion,
in the algebra of bounded linear operators on Schwartz space S (Rn). Special choices
of the “space derivation” as commutation with partial differential operators can be
identified to evolution equations whose linear part is partial differential (in R

2n+1)
and the nonlinear part is integrodifferential: a partial differential operator (in R

2n)
acting on the square of the unknown u in the sense of Volterra composition. The
choice of the harmonic oscillator D2

x + x2 (when n = 1) is particularly amenable
to Hermite expansion approach. Existence and uniqueness of global solutions in the
Cauchy problem can be proved for special initial data (in R

2+1)

2000 AMS Subject Classification: Primary: 37J35, Secondary: 35Q53

Key words: Noncommutative differential algebras, Bäcklund transforma-
tions, Korteweg–de Vries hierarchy.

1 Basic facts of noncommutative KdV theory

We are going to use some of the main properties of the following noncommu-
tative version of the classical KdV equation:

ut = ∂3u− 3 (u∂u + (∂u)u) . (1.1)
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The unknown u in (1.1) is a smooth function of time t valued in some non-
commutative (but associative) differential algebra (A, ∂). In standard (i.e.,
commutative) KdV theory A is usually an algebra of smooth functions of the
real variable x ∈ R, either periodic or rapidly decaying at infinity, or a suit-
able algebra of Laurent series in a “complex variable” x; and ∂ = ∂

∂x . In the
noncommutative theory a much more varied choice of (A, ∂) is possible. In the
present article our focus shall be mainly on algebras of n× n matrices (with
complex entries and, possibly, with n = +∞) and on derivations ∂ = ∂X
of the type Y −→ [X,Y ], X,Y ∈ A, an object that makes no sense in the
commutative setup.

1.1 Noncommutative setup

In order to state the fundamental properties of Eq. (1.1) we introduce the
universal monogenic differential algebra P: this is the algebra of polynomials
in the noncommuting indeterminates ξ0, ξ1, ..., ξν , ..., equipped with the chain
rule derivation d: dξi = ξi+1 (for details on this and on what follows see
[Treves, 2007]). We denote by P◦ the maximal ideal in P, consisting of the
polynomials that “vanish at the origin”, i.e., without a constant term. The
restriction of d to P◦ is injective. Note that dP ⊂ P◦. We denote by [P,P] the
linear span over C of the commutators [P,Q]; we have [P,P] ⊂ P◦. Given any
derivation D in the algebra P the Leibniz formula implies D [P,P] ⊂ [P,P].
In certain circumstances it is convenient to reason in the “completion” P̂ of
P, the algebra of formal power series in the indeterminates ξ0, ξ1, ..., ξν , ....
The extension of d to P̂ is self-evident.

In the applications to a specific differential algebra (A, ∂) one selects an
element a ∈ A and replaces ξj by ∂ja, j ∈ Z+. If P = P (ξ0, ξ1, ..., ξν) ∈ P,
we write P [a] = P (a, ∂a, ..., ∂νa). The term chain rule derivation is due to
the self-evident formula

∂ (P [a]) = (dP ) [a] . (1.2)

We must introduce two types of derivatives special to the noncommutative
setup: replacement derivatives and twisted derivatives.

Definition 1.1 Let k ∈ Z+ and F ∈ P. We denote by
(
F ∂

∂ξj

)�
the deriva-

tion D of P such that Dξj = F and Dξk = 0 if k �= j.

With this notation we can write

d =
∞∑
j=0

(
ξj+1

∂

∂ξj

)�
. (1.3)

Definition 1.2 We shall denote by ∂tw

∂ξk
the linear endomorphism of P defined

as follows: If I = (i1, ..., iν) is any nonvoid multi-index and ξI = ξi1 · · · ξiν ,
then
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∂tw

∂ξk
ξI =

ν∑
α=1

ε (iα, k) ξiα+1
· · · ξiν ξi1 · · · ξiα−1

with ε (iα, k) = 1 if iα = k and ε (iα, k) = 0 if iα �= k; ∂tw

∂ξk
1 = 0. We shall

refer to ∂tw

∂ξk
as the twisted partial derivative with respect to ξk.

The linear endomorphism ∂tw

∂ξk
is not a derivation of P: it does not satisfy

the Leibniz formula. We have

∀P,Q ∈ P, ∀k ∈ Z+,
∂tw

∂ξk
[P,Q] = 0. (1.4)

The next definition is crucial to the “Hamiltonian” theory of Eq. (1.1):

Definition 1.3 By the twisted variational derivative we shall mean the
linear operator in P,

P −→ δtwP

δξ
=

∞∑
j=0

(−1)j dj
(
∂twP

∂ξj

)
.

The twisted variational derivative δtw

δξ plays in the noncommutative setup
the role played in the commutative setup by the variational derivative δ

δξ of
Gelfand–Dickey ([G-D, 1975], [G-D, 1976], [G-D, 1977]). The next statement
is easy to prove.

Proposition 1.1 The null-space of δtw

δξ in P◦ is exactly equal to the vector
sum [P,P] + dP.

A polynomial R ∈ P is said to be Hamiltonian if there is Q ∈ P such that
R = d δtwQ

δξ ; often the polynomial δtwQ
δξ itself is called a hamiltonian.

Let P ∈ P. In the commutative setup a polynomial Q is said to be con-
served for the evolution equation ut = P [u] (or for P ) if P δQ

δξ ∈ dP. This
concept is much too restrictive; it must be replaced by that of trace-conserved
polynomials.

Definition 1.4 A polynomial Q ∈ P is said to be trace-conserved for P ∈
P if P δtwQ

δξ ∈ [P,P] + dP.

It follows directly from Proposition 1.1 that every polynomial belonging
to [P,P] + dP is trace-conserved for any polynomial P ∈ P. In view of this
fact it is convenient to mod out the linear subspace [P,P] + dP. Actually
the quotient map P −→ P/ ([P,P] + dP) can be factored as the composition
of two (commuting) quotient maps: the projection P −→ P/dP, customarily
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denoted by P −→ ∫
P ; and the quotient maps Tr : P −→ P/ [P,P]. To say

that a polynomial Q is trace-conserved for P ∈ P is the same as saying that∫
TrQ = 0.

If (A, ∂) is a differential algebra generated by a single element a and if we
replace ξj by ∂ja for every j ∈ Z+ the map Tr corresponds to the quotient
map TrA : A −→ A/ [A,A]. If A is an algebra of N ×N matrices, the kernel
of TrA consists of matrices whose trace vanishes. But there might be matrices
a ∈ A whose trace (in the ordinary sense: tr a) is zero and yet TrA a �= 0.
Indeed, tr a = 0 ⇐⇒ a ∈ [MN (C) ,MN (C)], which might not be equivalent
to a ∈ [A,A].

Let now u (t) be a C∞ function of t valued in A which is a solution of the
evolution equation ut = P [u], P ∈ P. We point out that

(
∂ku

)
t
=

(
dkP

)
[u]

for all k ∈ Z+. Given any polynomial Q ∈ P the chain rule shows directly
that

∂tQ [u (t)] =
∞∑
k=0

((
dkP

∂

∂ξk

)√

Q

)
[u (t)] (1.5)

(cf. Definition 1.1). It is easily seen that

∞∑
k=0

(
dkP

∂

∂ξk

)√

Q− P
δtwQ

δξ
∈ [P,P] + dP.

If Q is trace-conserved for P , we conclude that

∫
Tr

∞∑
k=0

(
dkP

∂

∂ξk

)√

Q = 0. (1.6)

In view of (1.5) we rewrite this as d
dt

∫
TrA Q [u (t)] = 0, which we interpret as

saying that
∫

TrA Q [u (t)] is a constant of motion. In the present context this
is an abstract object, since

∫
TrA Q [u (t)] is an element of A/ ([A,A] + ∂A).

But in applications it can be given a concrete meaning, as the following two
examples show.

Example 1. Let A be a differential subalgebra of the algebra of n×n matrices
Mn (B) (n ≥ 2) with entries in a commutative differential algebra (B, ∂) (with
scalar field C). If necessary we adjoin to A the n×n identity matrix In as the
unit element. The derivation in A is ∂ acting entrywise (with ∂In = 0). We
avail ourselves of the fact that the trace of any matrix a ∈ Mn (B), tr a ∈ B,
vanishes if a ∈ [A,A]. Let Q ∈ P be a trace-conserved polynomial of P ∈ P;
(1.6) entails that d

dt trQ [u (t)] = ∂Φ [u (t)] for some “flux” Φ ∈ P and all
solutions u ∈ C∞ (R; A) of the evolution equation ut = P [u].

More concretely, take B to be either C∞ (
S

1
)

or the Schwartz space S (R),
and ∂ = d

dx . In both these choices, for a function ϕ to belong to ∂B it is
necessary and sufficient that

∫
X
ϕ (x) dx = 0 (X = S

1 or R). We can state that
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if u (t, x) is a C∞ function of t ∈ R valued in Mn (B) satisfying the evolution
equation ut = P [u] and if Q ∈ P is a trace-conserved polynomial of P , then
the complex function t −→ ∫

X
trQ [u (t, x)] dx is constant.

Example 2. Select a matrix X ∈ Mn (C) and let A be a subalgebra of
Mn (C) (n ≥ 2) stable under the map AdX. As derivation ∂ we take
∂XY = AdX (Y ) = [X,Y ]. If Q ∈ P is a trace-conserved polynomial of
P and u (t) ∈ C∞ (R; A) is a solution of the evolution equation ut = P [u],
then the n×n matrix ∂tQ [u (t)] belongs to [A,A]+∂XA ⊂ [Mn (C) ,Mn (C)]
and therefore its (ordinary) trace vanishes. We conclude that the complex
function t −→ trQ [u (t)] is constant.

We also note that if P = d δtwQ
δξ , then Q is trace-conserved for P . Indeed,

P
δtwQ

δξ
− d

(
1
2

(
δtwQ

δξ

)2
)
∈ [P,P] .

1.2 Fundamental properties of the noncommutative KdV equation

To find the trace-conserved polynomials of the KdV equation we follow the
approach of Gelfand–Dickey ([G-D, 1977]; see also [Dickey, 2003]). We intro-
duce the symbolic calculus of classical pseudodifferential operators in a single
varible, but with coefficients in a differential algebra (A, ∂). The symbols are
Laurent series

σ (z) =
N∑

n=−∞
cnz

n (1.7)

with coefficients cn ∈ A and N ∈ Z; N may vary with σ; assuming that
cN �= 0 we refer to N as the order of the series (1.7). There are two commuting
derivations in A [z]⊕A

[[
z−1

]]
, d
dz and ∂, with ∂ acting coefficientwise. Below

we use the standard decomposition of symbols (1.7):

σ+ =
N∑

n=0

cnz
n, σ− =

∞∑
n=1

c−nz
−n. (1.8)

We shall refer to the leading coefficient in σ (z), c−1, as the residue of σ and
denote it by Resσ. The symbol composition is the standard one:

σ1#σ2 =
∞∑
n=0

1
n!

(
dnσ1

dzn

)
∂nσ2. (1.9)

The right-hand side in (1.9) is supposed to be rewritten in the form (1.7): if
σ1 = azm (m ∈ Z), then
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1
n!

(
dnσ1

dzn

)
∂nσ2 =

m (m− 1) · · · (m− n + 1)
n!

a (∂nσ2) zm−n.

We write
[σ1, σ2]# = σ1#σ2 − σ2#σ1. (1.10)

The composition law (1.9) is associative but not commutative (even if A is
commutative). We denote by Symb (A) the set A [z] ⊕ A

[[
z−1

]]
equipped

with ordinary addition and with the multiplication (1.9). The elements of
Symb (A) will be referred to as symbols valued in A.

We shall always assume that A has a unit element, 1; we denote by 1 the
symbol “identically equal” to 1. For every σ ∈ Symb (A),

σ#1 = 1#σ = σ. (1.11)

Thus Symb (A) is a noncommutative ring with a unit element.
In connection with residues the following proposition expresses an impor-

tant property of commutators:

Proposition 1.2 If σ1, σ2 ∈ Symb (A), then Res [σ1, σ2]# ∈ [A,A] + ∂A.

This said, we focus on Symb (P), more specifically on the symbol z2−ξ0 of
the Sturm–Liouville differential operator d2−ξ0. It is readily seen that the half-
integral powers of z2 − ξ0 are well-defined symbols belonging to Symb (P).
We use the following notation, for each m ∈ Z+,

Sm (ξ) = −22m+1 Res
(
z2 − ξ0

)#(m+ 1
2 ) , Rm (ξ) = dSm (ξ) . (1.12)

To give an idea of the expressions of the polynomials Sm here is a short list
of those of small degree:

S0 = ξ0 (1.13)

S1 = ξ2 − 3ξ2
0;

S2 = ξ4 − 5 (ξ0ξ2 + ξ2ξ0)− 5ξ2
1 + 10ξ3

0;

S3 = ξ6 − 7 (ξ4ξ0 + ξ0ξ4)− 14 (ξ3ξ1 + ξ1ξ3)

− 21ξ2
2 + 21ξ2ξ

2
0 + 28ξ0ξ2ξ0 + 21ξ2

0ξ2

+ 28ξ2
1ξ0 + 28ξ0ξ

2
1 + 14ξ1ξ0ξ1 − 35ξ4

0.

We have R0 = ξ1; R1 = ξ3 − 3 (ξ0ξ1 + ξ1ξ0) is the (noncommutative) KdV
polynomial. The sequence {Rm}m=0,1,2,... makes up the KdV hierarchy.

Theorem 1 For every pair of integers m,n, Sm is a trace-conserved polyno-
mial of Rn.
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The next statement embodies the “Hamiltonian nature” of the KdV hier-
archy.

Theorem 2 For each m ∈ Z+,

Sm = − 1
2 (2m + 3)

δtwSm+1

δξ
. (1.14)

In particular, the polynomial Sm is a hamiltonian. It also follows that

Rm−1 = (−1)m d
δtwQm

δξ
(1.15)

with Qm ∈ P any polynomial congruent to (−1)m

2(2m+1)Sm mod ([P,P] + dP). It
is convenient to have compact expressions of such polynomials:

Q1 =
1
2
ξ2
0, (1.16)

Q2 =
1
2
ξ2
1 + ξ3

0,

Q3 =
1
2
ξ2
2 + 5ξ0ξ

2
1 +

5
2
ξ4
0,

Q4 =
1
2
ξ2
3 + 7ξ0ξ

2
2 +

35
3
ξ2
0ξ

2
1 +

70
3

(ξ0ξ1)
2 + 7ξ5

0.

Furthermore there is an ascending recurrence relation between the Sm

mimicking the Lenard relation in the commutative setup (see [Lax, 1977],
[Lax, 1978]). Define the operator

LP = d3P − 2 ((dP ) ξ0 + ξ0dP )− (Pξ1 + ξ1P ) +
[
ξ0, d

−1 [ξ0, P ]
]

(1.17)

acting on polynomials P ∈ P◦ such that [ξ0, P ] ∈ dP. For each m ∈ Z+ it
can be shown that [ξ0, Sm] ∈ dP and that

Rm+1 = dSm+1 = LSm. (1.18)

It can also be shown that the Sturm–Liouville operator d2−ξ0 and the differen-

tial operator Pm (ξ, d) with symbol Pm (ξ, z) = −4mΛ
#(m+ 1

2 )
+ (ξ, z) form a Lax

pair defining the noncommutative mth KdV polynomial Rm ([Lax, 1977]):

Rm (ξ) = − [
Pm (ξ, d) , d2 − ξ0

]
. (1.19)

For proofs of the statements in this section see [Treves, 2007].
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1.3 Traveling wave solutions in the abstract noncommutative setup

It is convenient to take as framework the completion P̂ of the ring P; P̂ is
the ring of formal power series

f (ξ) =
∑
I

cIξI , (1.20)

where now the sum is allowed to range over infinite sets of multi-indices. The
completions P̂, P̂◦ are Fréchet spaces for the topology of convergence of the
individual coefficients; P̂◦ is the maximal ideal of P̂ (still defined by the
vanishing of c∅).

In this setup the concept of translation makes sense:

Definition 1.5 The translate of a series f ∈ P̂ by a number τ ∈ C will be
the series exp (−τd) f .

If (A, ∂) is a differential algebra and a ∈ A, the operation exp(−τ∂) a does
not make sense, unless special properties are hypothesized, about the algebra
A or the element a. If h is an entire holomorphic function on C and ∂ = ∂

∂z ,
then exp (−τ∂)h (z) = h (z − τ). Likewise, if h is a real-analytic function on
R and if τ ∈ R, then exp (−τ∂)h (x) = h (z − x).

Let u◦ ∈ A have the property that exp(−τ∂)u◦ is a well-defined element
of A for all real numbers τ ∈ (−T, T ) (with 0 < T ≤ +∞); we can ask whether
the A-valued function u (t) = exp (−vt∂)u◦ (v > 0, 0 < t < T/v) is a solution
of the KdV equation (1.1), i.e.,

u′ (t) = ∂
(
∂2u (t)− 3u2 (t)

)
. (1.21)

This means that
∂
(
∂2u◦ − 3u2

◦ + vu◦
)

= 0. (1.22)

Equation (1.22) is satisfied if the following eigenvalue equation is satisfied:

∂2u◦ − 3u2
◦ = −vu◦. (1.23)

It is not unreasonable to refer to exp (−vt∂)u◦ as a traveling wave solution.

2 Finite-dimensional systems

2.1 Matrix systems

In this subsection we take a closer look at the KdV equation in the ring
Mn (C) of n × n matrices with complex entries (2 ≤ n ∈ Z). We suppose
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given a matrix X ∈ Mn (C) and write ∂XY = XY − Y X, Y ∈ Mn (C); the
corresponding KdV equation reads

dU

dt
= ∂X

(
∂2
XU − 3U2

)
, (2.1)

where U = U (t) = (ujk (t))1≤j,k≤n is a smooth function of t valued in Mn (C).
Equation (2.1) is a system of n2 ODEs in the n2 unknowns ujk (t). The fun-
damental theorem of ODE theory states that solutions U (t) exist, defined
and analytic in some interval |t| < T with T > 0 depending on X and on
the initial value U (0). Since the right-hand side in (2.1) is a commutator of
matrices the (ordinary) trace of both sides in (2.1) vanishes identically and
trU is a constant of motion.

For the sake of simplicity we are going to suppose X diagonalizable; let
Γ ∈ GL (n,C) be such that Λ = ΓXΓ−1 is diagonal, and let λi, i = 1, ..., n,
denote the diagonal entries of Λ. We have

Γ (∂XU)Γ−1 = ∂Λ
(
ΓUΓ−1

)

and therefore, if we define V = ΓUΓ−1 = (vjk)1≤j,k≤n, (2.1) is transformed
into

dV

dt
= ∂Λ

(
∂2
ΛV − 3V 2

)
. (2.2)

We have ∂ΛV = ((λj − λk) vj,k)1≤j,k≤n and

dvj,k
dt

= (λj − λk)

(
(λj − λk)

2
vj,k − 3

n∑

=1

vj,
v
,k

)
; (2.3)

(2.3) implies dvi,i

dt = 0 for every i = 1, ..., n:

Proposition 2.1 Each diagonal entry vi,i (i = 1, ..., n) is time-independent.

We can rewrite (2.3) as follows:

dvj,k
dt

= (λj − λk)

((
(λj − λk)

2 − 3 (vj,j + vk,k)
)
vj,k − 3

n∑

=1

vj,
v
,k

)
. (2.4)

2.2 Constants of motion and absence of isospectrality

Throughout this subsection U (t) will be an arbitrary solution of (2.1) defined
and analytic in some interval |t| < T (with T > 0 depending on U); V (t) =
ΓU (t)Γ−1 is a solution of (2.2). By a constant of motion we mean a functional
Mn (C) ) A −→ Φ [A] (valued in some set) having the following property:
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(CofM) If U ∈ Cω ([−T, T ] ;Mn (C)) is any solution of (2.1), then
Φ [U (t)] = Φ [U (0)] for all t ∈ [−T, T ].

Often, but not always, Φ [U (t)] will be a polynomial function of U and its
“derivatives” ∂k

XU (k = 1, 2, ...). But it could also be an eigenvalue or even the
entire spectrum of U (t). We shall apply the same terminology to a solution
V ∈ Cω ([−T, T ] ;Mn (C)) of (2.2), with ∂X replaced by ∂Λ.

At this stage we know that the diagonal entries vi,i, i = 1, ..., n, are con-
stants of motion.

If Q (ξ0, ξ1, ..., ξν) ∈ P and if we write Q [U ] = Q (U, ∂XU, ..., ∂ν
XU) and

Q [V ] = Q (V, ∂ΛV, ..., ∂ν
ΛV ), then Q [V ] = ΓQ [U ]Γ−1 and trQ [V ] = trQ [U ].

These quantities, trQ [V ] = trQ [U ], will be constants of motion whenever Q
is a trace-conserved polynomial for the noncommutative KdV equation. We
know that (1.1) has infinitely many trace-conserved polynomials (Theorem 1).
The question arises as to how many of the resulting constants of motion
are truly independent when acting on solutions of (2.1) or, equivalently, on
solutions of (2.2).

Proposition 2.2 If n = 2, the spectrum of a solution U (t) of (2.1) is a
constant of motion.

Proof. We know that ξ0 and 1
2ξ

2
0 are trace-conserved polynomials of (1.1)

[cf. (1.16)], implying that trU and 1
2 trU2 are constants of motion, whence

the statement since the eigenvalues of U are the roots of the equation

z2 − (trU) z +
1
2

(
(trU)2 − trU2

)
= 0.

Proposition 2.3 If n ≥ 3, the spectrum of a solution U (t) of (2.1) is not a
constant of motion.

Proof. We focus on (2.2) or, equivalently, on the system of equations (2.4). It
suffices to prove the claim for n = 3 since M3 (C) is naturally embedded in
M3+k (C) (k = 1, 2, ...); it is evident by uniqueness in the initial value problem
or directly by inspection of (2.4) that vj,k (0) = 0 for max (j, k) > 3 implies
vj,k (t) = 0 for those same j, k and all t.

We begin by showing that the products vi,jvj,i (1 ≤ i < j ≤ 3) are not
constants of motion. It suffices to consider the case i = 1, j = 2; we have

v2,1v
′
1,2 = (λ1 − λ2)

3
v2,1v1,2 − 3 (λ1 − λ2) ((v1,1 + v2,2) v2,1v1,2 + v1,3v3,2v2,1)

v1,2v
′
2,1 = − (λ1 − λ2)

3
v1,2v2,1 + 3 (λ1 − λ2)

((v1,1 + v2,2) v1,2v2,1 + v1,2v2,3v3,1)
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whence
(v1,2v2,1)

′ = 3 (λ1 − λ2) (v1,2v2,3v3,1 − v1,3v3,2v2,1) . (2.5)

We can select V (0) in such a way that v1,2v2,3v3,1 − v1,3v3,2v2,1 �= 0 at t = 0.

From the list (1.16) we know that tr
(

1
2 [Λ, V ]2 + V 3

)
is a constant of motion.

If the spectrum of V were a constant of motion, the same would be true of
trV 3 and therefore of

− tr
1
2

[Λ, V ]2 = (λ1 − λ2)
2
v1,2v2,1 + (λ2 − λ3)

2
v2,3v3,2 + (λ3 − λ1)

2
v1,3v3,1.

But (2.5) entails

−1
2
d

dt
tr [Λ, V ]2 = 9 (λ1 − λ2) (λ2 − λ3) (λ3 − λ1) (v1,2v2,3v3,1 − v1,3v3,2v2,1) .

Remark 1. Proposition 2.3 shows that the conjectured Theorem 4.1 in the
paper [Treves, 2007] is false.

We note that transposition transforms (2.2) into

dV �

dt
= −∂Λ

(
∂2
ΛV

� − 3V �2
)
.

We see that V � (−t) is also a solution of (2.2). Suppose the initial value V (0)
is symmetric; uniqueness in the initial value problem implies V (t) = V � (−t)
for all t ∈ (−T, T ).

3 Noncommmutative KdV hierarchy based on Schwartz
space

3.1 Schwartz space and its bounded linear operators

We denote by x = (x1, ..., xn), y = (y1, ..., yn), etc., the variable point
and coordinates in R

n; the variable point in R
2n will often be denoted by

(x, y), or by (ξ, η) on the Fourier transform side. We use standard multi-
index notation: α = (α1, ..., αn) ∈ Z

n
+; |α| = α1 + · · · + αn, α! = α1! · · ·αn!;

xα = xα1
1 · · ·xαn

n , etc. We write Dx = (Dx1 , ...,Dxn
) with Dxj

= 1√−1
∂

∂xj
and

Dα
x = Dα1

x1
· · ·Dαn

xn
. Unless specified otherwise, functions are complex-valued.

The Schwartz space of complex-valued C∞ functions in R
n rapidly de-

caying at infinity, as well as all their derivatives, is denoted by S (Rn);
its dual is the space S ′ (Rn) of tempered distributions in R

n. According
to the Schwartz kernels theorem the vector space of bounded linear oper-
ators S (Rn) −→ S (Rn) can be identified to the tensor product comple-
tion S (Rn

x) ⊗̂S ′ (
R
n
y

)
(cf. [Schwartz, 1966], p. 243, also [Treves, 1967& 2006],
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Ch. 43): a (unique) bounded linear operator OpK : S (Rn) −→ S (Rn) cor-
responds to the kernel distribution K (x, y) ∈ S (Rn

x) ⊗̂ S ′ (
R
n
y

)
through the

Volterra pairing

S (Rn
y

) ) ϕ (y) −→
∫

K (x, y)ϕ (y) dy, (3.1)

where the integral sign stands for the duality bracket between Schwartz func-
tions and tempered distributions. The kernel representing the compose of two
operators OpKi : S (Rn) −→ S (Rn) (i = 1, 2) is the Volterra product of the
kernels Ki:

(K1 ◦K2) (x, y) =
∫

K (x, z)K (z, y) dz. (3.2)

3.2 Differential subalgebras and KdV equation

Let OM (Rn
x) denote the algebra of complex-valued C∞ functions χ in R

n
x

whose partial derivatives of all orders grow temperedly at infinity; multipli-
cation f −→ χf is a bounded linear operator on S (Rn

x) ([Schwartz, 1966],
p. 243 et sq.). Below we deal with a differential operator

L (x,Dx) =
∑
α∈Z

n
+

cα (x)Dα
x (3.3)

whose coefficients cα belong to OM (Rn); there is an integer m such that
|α| > m =⇒ cα (x) ≡ 0 (the smallest such integer m being the order of
L). The fact that OM (Rn

x) is an algebra for ordinary multiplication implies
immediately

Proposition 3.1 If the coefficients of L (x,Dx) belong to OM (Rn
x), then

K (x, y) −→ L (x,Dx)K (x, y) and K (x, y) −→ L (y,Dy)K (x, y) are linear
maps of S (Rn

x) ⊗̂ S ′ (
R
n
y

)
into itself.

We shall denote by L� (x,Dx) the transpose of L (x,Dx); often we
write L for L (x,Dx). We also write (AdL)OpK = [L,OpK] if K ∈
S (Rn

x) ⊗̂ S ′ (
R
n
y

)
; and

∂LK (x, y) = L (x,Dx)K (x, y)− L� (y,Dy)K (x, y) . (3.4)

We have
(AdL)OpK = Op∂LK. (3.5)

Proposition 3.2 If the coefficients of L (x,Dx) belong to OM (Rn), ∂L is a
derivation of the Volterra algebra S (Rn

x) ⊗̂ S ′ (
R
n
y

)
.
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Evident.
The definition of the trace of a “finite” tensor K (x, y) =

∑N
j=1 ϕj (x)uj (y)

∈ S (Rn
x)⊗ S ′ (

R
n
y

)
is obvious:

trK =
N∑
j=1

∫
ϕj (x)uj (x) dx (3.6)

where the integral stands for the duality bracket between S (Rn) and S ′ (Rn).

Proposition 3.3 Given any K ∈ S (Rn
x) ⊗̂ S ′ (

R
n
y

)
the derivative ∂LK be-

longs to the closure of the vector subspace of S (Rn
x) ⊗ S ′ (

R
n
y

)
consisting of

the 2-tensors whose trace vanishes.

Proof. If Kν (x, y) =
∑Nν

j=1 ϕν,j (x)uν,j (y) ∈ S (Rn
x) ⊗ S ′ (

R
n
y

)
converges to

K (x, y), then ∂LKν converge to ∂LK. By (3.4) and (3.6) we get

tr ∂LKν (x, y) =
Nν∑
j=1

∫ (
Lϕν,j (x)uν,j (x)− ϕν,j (x)L�uν,j (x)

)
dx = 0.

As in (3.4) L = L (x,D) is a differential operator with coefficients in
OM (Rn). Let A be a subalgebra of S (Rn

x)⊗S ′ (
R
n
y

)
stable under the deriva-

tion ∂L. The KdV equation, and the KdV hierarchy, make sense in the differ-
ential algebra (A, ∂L):

∂tK = ∂3
LK − 3∂L (K ◦K) . (3.7)

Some choices of A may not contain the Dirac distribution δ (x− y) (the iden-
tity for Volterra composition); in those cases we shall replace A by the direct
sum A⊕Cδ (x− y) and K (t, x, y) ∈ A by λ (t) δ (x− y)+K (t, x, y), in which
case (3.7) reads

λ′ (t) δ (x− y) + ∂tK = ∂3
LK − 3∂L (K ◦K + 2λ (t)K) . (3.8)

This demands that λ′ vanish identically, i.e., λ is a complex constant and (3.8)
reduces to

∂tK = ∂3
LK − 6λ∂LK − 3∂L (K ◦K) . (3.9)

In subalgebras A stable under the operator exp (−6λ∂L) we can replace
K by K̃ = exp (6λt∂L)K. As a consequence of the Leibniz formula
exp (6λt∂L) (K ◦K) = K̃ ◦ K̃ the original KdV equation (3.7) will be sat-
isfied by K̃. In the sequel we shall focus on (3.9).

Example 3. Suppose we take K (t, x, y) = E (t, x) δ (x− y): OpK is multipli-
cation by E ∈ C∞ (−T, T ;OM (Rn)); Op (K ◦K) is multiplication by E2 and
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Op∂LK is the differential operator ϕ −→ L (Eϕ) − ELϕ. Suppose L is a
vector field: L =

∑n
j=1 aj (x) ∂

∂xj
. In this case

∂LK (x, y) = (LE) (t, x) δ (x− y)

and (3.9) is
∂tE = L3E − 6λLE − 3L

(
E2

)
,

i.e., the “scalar pseudo-” KdV equation along the integral curves of the vector
field L.

4 The constant coefficients case

4.1 Existence of solutions

If L (x,Dx) = L (Dx) has constant coefficients, then L� (y,Dy) = L (−Dy)
and (3.9) reads

∂tf = (L (Dx)− L (−Dy))
3
f (x, y) (4.1)

− 6 (L (Dx)− L (−Dy))
(
λf (x, y) +

1
2

∫
Rn

f (x, z, t) f (z, y, t) dz
)

.

It is natural to carry out Fourier transformations with respect to (x, y); we
have

f̂ (ξ, η, t) =
∫

R2n

e−ixξ−iyηf (x, y) dxdy,

f (x, y, t) =
∫

R2n

eixξ+iyη f̂ (ξ, η, t)
dξdη

(2π)2n
,

and ∫
R2n

f (x, z, t) f (z, y, t) dz =
∫

Rn

f̂ (ξ, ζ, t) f̂ (−ζ, η, t) dζ

(2π)n
.

The Fourier transform of (4.1) is

∂tf̂ (ξ, η, t) =
(
(L (ξ)− L (−η))3 − 3λ (L (ξ)− L (−η))

)
f̂ (ξ, η, t) (4.2)

− 3 (L (ξ)− L (−η))
∫

Rn

f̂ (ξ, ζ, t) f̂ (−ζ, η, t) dζ

(2π)n
.

Theorem 3 To each real number ρ > 0 there is T > 0 such that the following
holds. Given an arbitrary function f̂◦ ∈ C (R2n

)
whose support is contained

in the biball
{
(ξ, η) ∈ R

2n; |ξ| ≤ ρ, |η| ≤ ρ
}

there is a unique real-analytic
function f̂ (ξ, η, t) of t, |t| < T , valued in C (R2n

)
, satisfying (4.2) in (−T, T )×

R
2n and such that f̂

∣∣∣
t=0

= f̂◦ in R
2n. Then supp f̂ (·, ·, t) ⊂ supp f̂◦ for all

t ∈ (−T, T ).
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Proof. The property of the support and consequently the uniqueness of the
solution f̂ (ξ, η, t) of (4.2) are evident since f̂ (ξ, η, 0) = 0 =⇒ ∂k

t f̂ (ξ, η, 0) = 0
for all k ∈ Z

n
+. We prove the existence of the solution f̂ (ξ, η, t). We use the

constants

C (ρ) = 3 max
|ξ|≤ρ,|η|≤ρ

|L (ξ)− L (−η)| ,

M (ρ) = max
|ξ|≤ρ,|η|≤ρ

∣∣∣(L (ξ)− L (−η))3 − 3λ (L (ξ)− L (−η))
∣∣∣

and
Φk =

1
k!

max
(ξ,η)∈R2n

∣∣∣∂k
t f̂ (ξ, η, 0)

∣∣∣ .
We derive from (4.2):

(k + 1)Φk+1 ≤M (ρ)Φk + C (ρ)
( ρ

2π

)2n k∑

=0

Φk−
Φ
. (4.3)

Suppose we have proved there are positive constants A, B such that Φ
 ≤ AB


for all � = 0, ..., k and all (ξ, η) ∈ R
2n. We derive from (4.3):

Φk+1 ≤
(

1
k + 1

M (ρ) + C (ρ)
( ρ

2π

)2n

A

)
ABk.

Requiring

M (ρ) + C (ρ)
( ρ

2π

)2n

A ≤ B

ensures that Φk+1 ≤ ABk+1 and, as a consequence, that the solution f̂ (ξ, η, t)
exists and extends as a holomorphic function of t ∈ C in the disk |t| < T =
B−1.

If f̂ (ξ, η, t) has the properties in Theorem 3, its inverse Fourier transform
extends as an entire analytic function of exponential type f (z, w, t) of (z, w) ∈
C

2n, more precisely an entire function such that

|f (z, w, t)| ≤ C◦ exp (C1ρ (|Im z|+ |Imw|)) (4.4)

for all (z, w) ∈ C
2n and all t, |t| < T .

4.2 Traveling wave solutions

When L = L (Dx) has constant coefficients, (4.1) might have traveling wave
solutions of the form F (x− tv, y − tw) with F (x, y) ∈ S (Rn

x) ⊗̂ S ′ (
R
n
y

)
,

exhibiting something like a wave front. The kernel distribution F must satisfy
the equation
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(L (Dx)− L (−Dy))
3
F (x, y)− 3λ (L (Dx)− L (−Dy))F (x, y) (4.5)

= 3 (L (Dx)− L (−Dy))
∫

F (x, z)F (z, y) dz + (v · ∂xF + w · ∂yF ) (x, y) .

A very simple example obtains when w = v and L (Dx) = v · ∂x. Let us
use the notation

ϑv = v · (∂x + ∂y) = L (Dx)− L (−Dy) .

In this case (4.5) reduces to

ϑ3
vF (x, y)− (3λ + 1)ϑvF (x, y) = 3ϑv

∫
F (x, z)F (z, y) dz.

A solution is given by F (x, y) = 1
3E (v · x) δ (x− y) provided E ∈ Cω (R)

satisfies
E′′′ (x)− (3λ + ν)E′ (x)− 2E (x)E′ (x) = 0. (4.6)

Equation (4.6) is essentially the equation that determines the (single) soliton
solutions of the standard KdV equation. First an integration yields

E′′ (x)− (3λ + ν)E (x)−E2 (x) = C1; (4.7)

then multiplying by 2E′ (x) and one more integration yields

E′2 (x) =
2
3
E3 (x) + (3λ + ν)E2 (x) + 2C1E (x) + C2. (4.8)

The elliptic functions solutions of (4.8) are the soliton solutions, standard in
the one-dimensional setup. Here we get the traveling wave solutions

F (x, y) =
1
3
E
(
v · x− t |v|2

)
δ (x− y) ; (4.9)

the waves travel along the main diagonal x = y in the direction v. Essen-
tially this is a one-dimension phenomenon. Off the diagonal the solutions are
identically equal to zero. Note that

(OpF )ϕ (x) =
1
3
E
(
v · x− t |v|2

)
ϕ (x) .

Remark 2. Actually, the same result holds for any first-order linear differential
operators of the type L (x,Dx) = v · ∂x + a (x) with a ∈ OM (Rn). Indeed, if
F is given by (4.9),

(L (x,Dx)− L (y,−Dy))F = v · (∂x + ∂y)F .
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Remark 3. What we are really doing in the present subsection is to reason
within the commutative subalgebra of S (Rn

x) ⊗̂ S ′ (
R
n
y

)
made up of the kernel

distributions f (x) δ (x− y) with f ∈ OM (Rn); the corresponding subalgebra
of bounded linear operators on S (Rn

x) is made up of the multiplication opera-
tors ϕ −→ fϕ. But instead of the standard KdV equation in R we are looking
at the KdV equation for the vector field v · (∂x + ∂y) in R

2n. In this case the
soliton solutions are supported by the diagonal of R

n
x × R

n
y .

5 KdV equation based on the harmonic oscillator

In the remainder of this article we focus on the case n = 1.

5.1 KdV equation with L = D2
x + x2

We return to (3.9) where we take L = D2
x + x2:

∂tK =
(
D2

x −D2
y + x2 − y2

)3
K (5.1)

− 6λ
(
D2

x −D2
y + x2 − y2

)
K − 3

(
D2

x −D2
y + x2 − y2

)
(K ◦K) .

We shall reason within a subalgebraA of the Volterra algebra S (Rn
x) ⊗̂ S ′ (Ry)

defined by properties of the Hermite function expansions of its elements (cf.
Appendix). We write

K (t, x, y) =
∞∑

α=0

∞∑
β=α

cα,β (t)Hα (x)Hβ (y) , (5.2)

with cα,β (t) ∈ C∞ (−T, T ). We have

(K ◦K) (t, x, y) =
∞∑

α=0

∞∑
β=0

( ∞∑
γ=0

cα,γ (t) cγ,β (t)

)
Hα (x)Hβ (y) ,

and according to (6.4),

∂k
LK (t, x, y) = 2k

∞∑
α=0

∞∑
β=0

(α− β)k cα,β (t)Hα (x)Hβ (y) , k ∈ Z+. (5.3)

Thus (3.9) is equivalent to an infinite system of ODEs in which the unknowns
are the coefficients cα,β (t):

c′α,β (t) = 4 (α− β)
(
2 (α− β)2 − 3λ

)
cα,β (t) (5.4)

−6 (α− β)
∑
γ∈Z+

cα,γ (t) cγ,β (t) ,

(α, β) ∈ Z
2
+. We can state:



280 François Treves

Proposition 5.1 Let A be a subalgebra of S(Rx) ⊗̂ S′ (Ry) stable under ∂L.
If K (t, x, y) ∈ C∞ (I;A) is a solution of the KdV equation (3.9), then every
diagonal coefficient cα,α of K is constant.

5.2 Global Cauchy problem in an algebra of upper-triangular
matrices

In this subsection we write s rather than s1 and s′ rather than s′1 (see Ap-
pendix). We view the double sequences (cα,β)α,β∈Z+

∈ s⊗̂s′ as (∞×∞) ma-
trices.We shall say that a matrix (cα,β)α,β∈Z+

∈ s⊗̂s′ is upper-triangular if
0 ≤ β < α =⇒ cα,β = 0.

Definition 5.1 Given a number ρ > 1 we denote by A
+
ρ the vector space of

upper-triangular matrices c = (cα,α+k)α,k∈Z+
such that

Nρ (c) =
∞∑

α=0

∞∑
k=0

ρk |cα,α+k| < +∞. (5.5)

We denote by A
+ the union of the vector spaces A

+
ρ , ρ > 1.

If 1 < ρ′ < ρ, then A
+
ρ ⊂ A

+
ρ′ ⊂ L1

(
Z

2
) ⊂ s⊗̂s′. If (cα,α+k)α,k∈Z+

∈ A
+,

then for each α ∈ Z+ the (row) sequence {cα,α+k}k=0,1,... decays exponentially.
For each ρ > 1, A

+
ρ is a Banach space for the norm Nρ (·).

Proposition 5.2 The set A
+
ρ is a subalgebra of s⊗̂s′; it is a Banach algebra

for the norm Nρ (·).

Proof. The set of upper-triangular matrices forms a subalgebra of s⊗̂s′. Let
c(i) =

(
c
(i)
α,α+k

)
α,k∈Z+

, i = 1, 2, belong to A
+
ρ . We have

Nρ

(
c(1)c(2)

)
=

∞∑
α=0

∞∑
k=0

ρk

∣∣∣∣∣
k∑


=0

c
(1)
α,α+
c

(2)
α+
,α+k

∣∣∣∣∣
≤

∞∑
α=0

∞∑

=0

ρ

∣∣∣c(1)α,α+


∣∣∣
∞∑
k=


ρk−

∣∣∣c(2)α+
,α+k

∣∣∣

≤ Nρ

(
c(2)

) ∞∑
α=0

∞∑

=0

ρ

∣∣∣c(1)α,α+


∣∣∣ = Nρ

(
c(1)

)
Nρ

(
c(2)

)
.

We call A+
ρ the subalgebra of S (Rx) ⊗̂ S ′ (Ry) consisting of the kernel

distributions K (x, y) whose Hermite coefficients are the entries of a matrix
c ∈ A

+
ρ ; we define Nρ (K) = Nρ (c). We define A+ =

⋃
ρ>1

A+
ρ . It is evident that
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A+ is a subalgebra of trace-class of S (Rx) ⊗̂ S ′ (Ry) (cf. end of Appendix).
If both K1,K2 ∈ A+, then

Tr (K1K2) = (TrK1) TrK2 (5.6)

(see Definition 6.1).

Theorem 4 Let the matrix U◦ =
(
u◦
α,α+k

)
α,k∈Z+

∈ A
+
ρ◦ . If Re

(
λ + u◦

α,α

)
≤ −R for some R > 0 and every α ∈ Z+ and if Nρ◦ (U◦) ≤ R+ 4, then there
is a unique solution U (t) = (uα,α+k (t))α,k∈Z+

∈ C∞ ([0,+∞); A+) of the
system of equations (5.4) such that U (0) = U◦; U (t) extends as a holomorphic
function of t valued in A

+ in a complex neighborhood of (0,+∞).

Proof. We let t vary in a sector of the complex plane,

Σε = {t ∈ C; |Im t| ≤ εRe t}
with ε > 0 suitably chosen.

I. Existence of solution We have uα,α (t) = u◦
α,α for all t. According to

(5.4) the coefficient uα,α+k (t) (k ≥ 1) must be a solution of the equation

u′
α,α+k (t) + 2kMα,kuα,α+k (t) = 6k

∑
α<γ<α+k

uα,γ (t)uγ,α+k (t) , (5.7)

where
Mα,k = 4k2 − 6λ− 3

(
u◦
α,α + u◦

α+k,α+k

)
.

We note right away that our hypothesis on the diagonal entries of U◦

entails
ReMα,k ≥ 4k2 + 6R; (5.8)

we also have
|ImMα,k| ≤ κ = 3 |Im (2λ− TrU◦)| . (5.9)

To determine the functions uα,α+k (t) we reason by induction on k. If
k = 1, (5.7) reads

u′
α,α+1 (t) + 2Mα,α+1uα,α+1 (t) = 0

whose solution is

uα,α+1 (t) = u◦
α,α+1 exp (−2Mα,α+1t) .

In this case (5.8) and (5.9) entail

|uα,α+1 (t)| ≤ ∣∣u◦
α,α+1

∣∣ exp (−4Re t + 2κ |Im t|)
whence
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|uα,α+1 (t)| ≤ ∣∣u◦
α,α+1

∣∣ (5.10)

provided t ∈ Σ2/κ.
In the remainder of the proof we suppose k ≥ 2. We require that the

positive number ε < 2κ−1 be so small that

∀t ∈ Σε, Re (Mα,kt) ≥ 3
(
k2 + R

) |t| . (5.11)

We shall reason by induction, starting from the hypothesis that all uα,α+j (t)
have been determined for 1 ≤ j ≤ k − 1, and that the following inequality
holds for all t ∈ Σε:

∞∑
α=0

j∑

=1

ρ
◦ |uα,α+j (t)| ≤
∞∑

α=0

j∑

=1

ρ
◦
∣∣u◦

α,α+


∣∣ . (5.12)

We derive from (5.7):

uα,α+k (t)

= u◦
α,α+ke

−2kMα,kt + 6k
k−1∑
j=1

∫ t

0

e−2kMα,k(t−s)uα,α+j (s)uα+j,α+k (s) ds,

with the integration carried out on the straight-line segment joining the origin
to t ∈ Σε. We get

|uα,α+k (t)| ≤ ∣∣u◦
α,α+k

∣∣ (5.13)

+
3 |t|

Re (Mα,kt)
sup

0<θ<1

k−1∑
j=1

|uα,α+j (θt)| |uα+j,α+k (θt)|

≤ ∣∣u◦
α,α+k

∣∣ +
(
k2 + R

)−1
sup

0<θ<1

k−1∑
j=1

|uα,α+j (θt)| |uα+j,α+k (θt)|

by applying (5.11). We derive from (5.13):

ρk◦
∞∑

α=0

|uα,α+k (t)| ≤ ρk◦
∞∑

α=0

∣∣u◦
α,α+k

∣∣

+
(
k2 + R

)−1
sup

0<θ<1

k−1∑
j=1

∞∑
α=0

ρj◦ |uα,α+j (θt)| ρk−j
◦1 |uα+j,α+k (θt)|

≤ ρk◦
∞∑

α=0

∣∣u◦
α,α+k

∣∣

+
(
k2 + R

)−1

⎛
⎝ ∞∑

α=0

k−1∑
j=1

ρj◦
∣∣u◦

α,α+j

∣∣
⎞
⎠

2
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≤ ρk◦
∞∑

α=0

∣∣u◦
α,α+k

∣∣

+
(
k2 + R

)−1
Nρ◦ (U◦)

∞∑
α=0

k−1∑
j=1

ρj◦
∣∣u◦

α,α+j

∣∣ .

Since Nρ◦ (U◦) ≤ (
k2 + R

)−1 we conclude that (5.12) holds also for j = k,
implying, for all k ∈ Z+,

ρk◦
∞∑

α=0

|uα,α+k (t)| ≤ Nρ◦ (U◦) ,

and therefore, if 1 < ρ < ρ◦,

∞∑
k=0

ρk
∞∑

α=0

|uα,α+k (t)| ≤
∞∑
k=0

(ρ/ρ◦)
k
ρk◦

∞∑
α=0

|uα,α+k (t)| ≤ ρ◦
ρ◦ − ρ

Nρ◦ (U◦) .

This proves that U (t) is a continuous function of t ∈ Σε valued in A
+
ρ , holo-

morphic in the interior of Σε. It is directly seen that U (t) ∈ C ([0,+∞); A+
ρ

)
.

Regarding the derivatives of U (t) we deduce from (5.7):

∂p+1
t uα,α+k + 2kMα,k∂

p
t uα,α+k = 6k

∑
α<γ<α+k

p∑
q=0

(
p

q

)(
∂p−q
t uα,γ

)
∂q
t uγ,α+k.

Induction with respect to p ∈ Z+ shows readily that U (t) ∈ C∞ ([0,+∞); A+).
II. Uniqueness of solution By subtraction we are reduced to prov-

ing that if U (t) ∈ C∞ ([0,+∞); A+) is a solution of the system of equations
(5.7) such that U (0) = 0, then U (t) = 0 for all t ≥ 0. This is equiva-
lent to showing that if (5.7) holds and if u◦

α,α+k = 0 for all (α, k) ∈ Z
2
+,

then uα,α+k (t) = 0 for all t ≥ 0 and all (α, k) ∈ Z
2
+. This follows directly

from (5.12).

Remark 4. If U (0) is an N ×N matrix (N < +∞), the solution U (t) is also
an N ×N matrix. This follows directly from the uniqueness of the solution.

5.3 Traveling wave solutions

In this subsection we look at traveling wave solutions in the sense of Subsection
1.3, i.e., of the form exp (−vt∂L)u◦, here with u◦ ∈ A

+. Our KdV equation
is (5.1), i.e.,

∂tK = ∂L
(
∂2
LK − 6λK − 3K ◦K)

.
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We go directly to (1.23) whose version here is the eigenvalue equation

(
D2

x −D2
y + x2 − y2

)2
u◦ (x, y)−3

∫
R

u◦ (x, z)u◦ (z, y) dz = (6λ− v)u◦ (x, y) .

(5.14)
We shall look at possible solutions in the algebra A+, i.e., of the kind

u◦ (x, y) =
∞∑

α=0

∞∑
k=0

cα,α+kHα (x)Hα+k (y) , (5.15)

with {cα,α+k}α,k∈Z+
∈ A

+. According to (6.4), (5.14) translates into

4k2cα,α+k − 3
α+k∑
γ=α

cα,γcγ,α+k = (6λ− v) cα,α+k. (5.16)

Proposition 5.3 Let c = {cα,α+k}α,k∈Z+
∈ A

+ be the solution of the system
of equations (5.16). For each α ∈ Z+ the following properties hold:

1. Either cα,a = 0 or cα,α = 1
3v − 2λ .

2. If λ ≥ 1
6v and if cα,α �= 0, then cα,α+k = 0 for all k ≥ 1.

Proof. Putting k = 0 in (5.16) yields right away
(
cα,α + 2λ− 1

3
v

)
cα,α = 0, α ∈ Z+. (5.17)

which proves Property #1. For k ≥ 1 we rewrite (5.16) as

(
4k2 − 3cα,α − 3cα+k,α+k − 6λ + v

)
cα,α+k = 3

α+k−1∑
γ=α+1

cα,γcγ,α+k. (5.18)

If cα,α �= 0, then cα,α = 1
3v − 2λ ≤ 0. Equation (5.18) becomes

(
4k2 − 3cα+k,α+k

)
cα,α+k = 3

α+k−1∑
γ=α+1

cα,γcγ,α+k. (5.19)

Since cα+k,α+k ≤ 0 the vanishing of the right-hand side in (5.19) implies
cα,α+k = 0. If k = 1, the right-hand side is always equal to zero. If k ≥ 2,
induction entails cα,γ = 0 for all γ, α < γ < α + k.

Putting k = 1 into (5.18) yields

(4− 3cα,α − 3cα+1,α+1 − 6λ + v) cα,α+1 = 0. (5.20)

We look next at the case in which cα,α = 0 for all α ∈ Z+.
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Proposition 5.4 Let the sequence {cα,α+1}α=0,1,... ∈ s′ be arbitrary. If λ =
2
3 + 1

6v, there is a distribution

u◦ (x, y) =
∞∑

α=0

∞∑
k=1

cα,α+kHα (x)Hα+k (y) (5.21)

which is a solution of (5.14).

Proof. Equation (5.20) is satisfied since 4 − 3cα,α − 3cα+1,α+1 − 6λ + v = 0.
If k > 1, we solve (5.19) using induction and taking

cα,α+k =
3

4k2

k−1∑

=1

cα,α+
cα+
,α+k. (5.22)

Remark 5. Suppose λ = 2
3 + 1

6v. If we combine Propositions 5.3 and 5.4 we
see that to each partition Z+ = A∪B (A∩B = ∅) there correspond solutions
of (5.14) of the following kind: given an arbitrary sequence {cβ,β+1}β∈B ∈ s′,
then

u◦ (x, y) =
4
3

∑
α∈A

Hα (x)Hα (y) +
∑
β∈B

∞∑
k=1

cβ,β+kHβ (x)Hβ+k (y)

is a solution of (5.14).

Proposition 5.5 Let the sequence {cα,α+1}α=0,1,... be such that

∞∑
α=0

|cα,α+1| ≤ ρ−1
◦ (5.23)

for some number ρ◦ > 1. Then, whatever the positive number ρ < ρ◦, the
solution u◦ of (5.14) given by (5.21) belongs to A+

ρ .

Proof. We derive from (5.22):

ρk◦ |cα,α+k| ≤ 3
4k2

k−1∑

=1

ρ
◦ |cα,α+
| ρk−

◦ |cα+
,α+k| . (5.24)

We claim that, for every k = 1, 2, ...,

ρk◦
∞∑

α=0

|cα,α+k| ≤ 1; (5.25)

(5.25) is the same as (5.23) when k = 1. Induction on k yields



286 François Treves

ρk◦
∞∑

α=0

|cα,α+k| ≤ 3
4k2

k−1∑

=1

∞∑
α=0

ρ
◦ |cα,α+
| ρα+k−
 |cα+
,α+k|

≤ 3
4k2

(
k−1∑

=1

∞∑
α=0

ρ
◦ |cα,α+
|
)2

≤ 3
4

whence (5.25). From (5.25) we conclude, for any ρ, 0 < ρ < ρ◦,

∞∑
α=0

∞∑
k=1

ρk |cα,α+k| ≤ 3
4

ρ◦
ρ◦ − ρ

.

As before L = D2
x + x2. Let u◦ be the solution of (5.14) given by (5.21)

and let ζ = ξ + iη ∈ C be a complex number. We have [cf. (5.3)]

exp (−ζ∂L)u◦ =
∞∑

α=0

∞∑
k=1

cα,α+k exp (−2kζ)Hα (x)Hα+k (y) .

If (5.25) holds, then

∞∑
α=0

∞∑
k=1

|cα,α+k| exp (−2kξ) < +∞

provided ξ ≥ − 1
2k log ρ; and as a consequence, exp (−ζ∂L)u◦ is a holomorphic

function of ζ in the open half-plane Re ζ ≥ − 1
2k log ρ, valued in the space

L2
(
R

2
)
.

6 Appendix: Hermite functions expansion

The definition of the Hermite functions used in this article is

Hm (x) =
1

π
1
4
√

2mm!
e

1
2x

2 dm

dxm

(
e−x2

)
=

1
π

1
4
√

2mm!

(
d

dx
− x

)m (
e−

1
2x

2
)
.

(6.1)
We recall that

dHm

dx
− xHm =

√
2 (m + 1)Hm+1, (6.2)

dHm

dx
+ xHm = −

√
2mHm−1, (6.3)

D2
xHm + x2Hm = 2 (m + 1)Hm, (6.4)

and that ∫ +∞

−∞
Hp (x)Hq (x) dx =

{
0 if p �= q,
1 if p = q. (6.5)
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Let sn denote the vector space of complex sequences (cα)α∈Z
n
+

rapidly

decaying as |α| −→ +∞: ∀k ∈ Z
n
+,

∑
α∈Z

n
+

(1 + |α|)k |cα| < +∞. We
assume that sn is equipped with the topology defined by the seminorms
(cα)α∈Z

n
+
−→ ∑k

α∈Z
n
+

(1 + |α|)k |cα|. The dual of sn is the vector space s′n
of complex sequences (cα)α∈Z

n
+

that are tempered: there is k ∈ Z
n
+ such that∑

α∈Z
n
+

(1 + |α|)−k |cα| < +∞; s′n will be equipped with its strong dual topol-
ogy. We recall the following result (see [Schwartz, 1966], p. 262):

Theorem 5 The Hermite functions expansion

(cα)α∈Z
n
+
−→

∑
α∈Z

n
+

cαHα1 (x1) · · ·Hαn
(xn)

defines a topological vector space isomorphism of sn (resp. s′n) onto the
Schwartz space S (Rn) [resp. S ′ (Rn)].

There is a similar representation for the kernel distributions K (x, y) ∈
S (Rn

x) ⊗̂ S ′ (
R
n
y

)
. We introduce the completed tensor product sn⊗̂s′n, i.e.,

the set of complex multisequences (cα,k)α,k∈Z
n
+

that satisfy the following
condition:

• To every k ∈ Z+ there is � ∈ Z+ such that
∑

α,k∈Z
n
+

(1 + |α|)k (1 + |k|)−
 |cα,k| < +∞.

The set sn⊗̂s′n is an algebra for the natural matrix multiplication of its
elements: if Γ (i) =

(
c
(i)
α,k

)
α,k∈Z+

, i = 1, 2, then

Γ (1)Γ (2) =

⎛
⎝ ∑

γ∈Z
n
+

c(1)α,γc
(2)
γ,k

⎞
⎠

α,k∈Z
n
+

.

Theorem 6 The map which assigns to the complex multisequence

(cα,k)α,k∈Z
n
+
∈ sn⊗̂s′n

the Hermite series

K (x, y) =
∑

α,k∈Z
n
+

cα,kHα1 (x1) · · ·Hαn (xn)Hk1 (y1) · · ·Hkn
(yn) (6.6)

is an algebra isomorphism of sn⊗̂ s′n onto S (Rn
x) ⊗̂ S ′ (

R
n
y

)
.
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The proof of Theorem 6 is an easy application of Theorem 5 and of the
definition of the tensor product completion S (Rn

x) ⊗̂ S ′ (
R
n
y

)
.

The identity operator is associated to the Dirac (kernel) distribution

δ (x− y) =
∑
α∈Z

n
+

Hα1 (x1) · · ·Hαn
(xn)Hα1 (y1) · · ·Hαn

(yn) . (6.7)

It is clear that the coefficients of this series satisfy (•): in (6.7) cα,k is the
Kronecker index and we can take � = k + n + 1 in (•).

Let

K(i) (x, y) =
∑

α,k∈Z
n
+

c
(i)
α,kHα1 (x1) · · ·Hαn (xn)Hk1 (y1) · · ·Hkn

(yn) , i = 1, 2,

(6.8)
be two elements of S (Rn

x) ⊗̂ S ′ (
R
n
y

)
. The Hermite coefficients of the Volterra

product
(
K(1) ◦K(2)

)
(z, y) =

∫
K(1) (x, z)K(2) (z, y) dz are the complex

numbers
Cα,k =

∑
γ∈Z

n
+

c(1)α,γc
(2)
γ,k, α, k ∈ Z

n
+. (6.9)

Definition 6.1 We say that a multisequence (cα,k)α,k∈Z
n
+
∈ sn⊗̂s′n is of

trace-class if
∑

α∈Z
n
+
|cα,α| < +∞. If this is so, we say also that the ker-

nel distribution K (x, y) ∈ S (Rn
x) ⊗̂ S ′ (

R
n
y

)
given by (6.6) and OpK are of

trace-class. The complex number
∑

α∈Z
n
+
cα,α is called the trace of K or of

OpK and denoted by TrK or TrOpK.

The set of kernel distributions of trace-class is a linear subspace, but not a
subalgebra, of the Volterra algebra S (Rn

x) ⊗̂ S ′ (
R
n
y

)
. The Dirac distribution

δ (x− y) and the identity operator are not of trace-class.

Remark 6. If the kernel distribution K ∈ S (Rn
x) ⊗̂ S ′ (

R
n
y

)
in (6.6) is of

trace-class, the series
∑

α∈Z
n
+
cα,αHα1 (x1) · · ·Hαn

(xn)Hα1 (y1) · · ·Hαn
(yn)

converges in L2
(
R
n
x × R

n
y

)
. But this does not mean that the restriction of

K (x, y) to the diagonal diag
(
R
n
x × R

n
y

)
is well-defined and that

TrK =
∑
α∈Z

n
+

cα,α =
∫

Rn

K (x, x) dx. (6.10)

Proposition 6.1 Every finite tensor

K (x, y) =
N∑
j=1

ϕj (x)uj (y) ∈ S (Rn
x)⊗ S ′ (

R
n
y

)

is of trace-class.
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Proof. It suffices to prove the claim for a single product ϕ (x)u (y), in which
case it is an immediate consequence of Theorem 5.
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1 Decomposition in plane waves: analytic wave front set

Our discussion follows the guidelines of Hörmander [6] and Sato–Kashiwara–
Kawai [8]. Let x be the coordinates in Rn and (x, ξ) the canonically associated
symplectic coordinates in T ∗Rn. Then

ω := ξ · dx, dω := dξ ∧ dx,

are the canonical 1- and 2-forms, respectively. We refer to x as the posi-
tion and to ξ as the frequency. The spectral decomposition—in the space of
frequencies—of the singularity of a function u = u(x), is obtained from the
representation of u in plane waves. For an integrable function u, we denote
by û(ξ) =

∫
Rn e−ix·ξu(x) dx its Fourier transform; if û is also integrable, we

have (inversion formula)

u(x) = (2π)−n

∫
Rn

eix·ξû(ξ) dξ. (1.1)

Formula (1.1) provides a “decomposition” of u(x) in the functions eix·ξ (with
“coefficients” û(ξ)). Note that these exponential functions do not really de-
pend on x but rather on x · ξ, that is, they are constant on the planes
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Differential Equations, DOI 10.1007/978-0-8176-4861-9 17,
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x · ξ = cost. They are so-called plane waves. We define a set WFA(u) in
Ṫ ∗Rn := T ∗Rn \ (Rn × {0}), closed and conic, that is, invariant under mul-
tiplication in the fibers by t ∈ Ṙ+.

Definition 1.1 (Hörmander: analytic wave front set) Let (xo, ξo) ∈
Ṫ ∗Rn; we say that (xo, ξo) does not belong to the analytic wave front set
WFA(u) of u when, for some ε and M and for any ν,

|ûν(ξ)| ≤ cν+1ν!|ξ|−ν for any |ξ| ≥M,
∣∣ ξ
|ξ| −

ξo
|ξo|

∣∣ < ε where uν = χνu

for a sequence χν ∈ C∞
c with χν ≡ 1 in a neighborhood of xo. (1.2)

In this definition, the regularity with respect to ξo is related to the rapid decay
at ∞ of the Fourier transform in a conical neighborhood of ξo; in particular,
the low frequencies are disregarded. For a multiindex α = (α1, ..., αn) ∈ N

n,
we write |α| = ∑

j αj , ∂α
x = ∂α1

x1
· ... ·∂αn

xn
and ξα = ξα1

1 · ... ·ξαn
n . By the identity

∂̂α
xu = (−i)|α|ξαû, α ∈ N

n, one readily sees that

πWFA(u) = sing supp(u)

where π : Ṫ ∗Rn → Rn is the canonical projection. For a cone K ⊂ Ṙn, which
is closed and proper, that is, contained in an open half-space, we define the
polar cone by

Ko = {y : y · ξ ≥ 0 for any ξ ∈ K}
and set Γ = int(Ko); this is an open convex nonempty cone. Let us consider
a decomposition:

Ṙn = ∪
j=1,...,N

Kj ,

where the Kj ’s are a family of closed proper cones with disjoint interiors. This
yields a corresponding decomposition in the integration (1.1):

u(x) = (2π)−n

∫
Rn

eix·ξû(ξ) dξ

=
N∑
j=1

(2π)−n

∫
Kj

eix·ξû(ξ) =:
N∑
j=1

uj(x).
(1.3)

We then have

• In each uj we can replace x by z = x+ iy provided that y ∈ Γj := int(Ko
j )

since there is then exponential decay in the term under integration:

|ei(x+iy)·ξ| = e−y·ξ with y · ξ > 0;

in particular, uj ∈ hol(Rn + iΓj).
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• There are many possible decompositions u =
∑

j uj . Let us point out our
attention to a complex neighborhood B of xo: a term which is holomorphic
in (Rn+i(Γi+Γj))∩B can be given either of the indices i or j. In particular,
this is the case of a term which is holomorphic in a neighborhood of xo
in Cn which can be given any index j. One can consult [2] for a greater
account on this subject.

• Let U be a real neighborhood of xo. If u is represented by a single holo-
morphic function in the wedge U + iΓε truncated by the condition |y| < ε,
then

WFA(u) ⊂ U ×K where K = Γ̇ o. (1.4)

And conversely, if WFA(u) ⊂ U ×K, then u extends holomorphically to
z ∈ U + iΓ ′

ε for any Γ ′ ⊂⊂ Γ = int(Ko) and for a suitable ε. Clearly, K
is only an estimate for the singularity of u in the same way as Γ is for its
holomorphic extension.

• Fix a frequency ξo, assume ξo /∈ WFA(u)xo
and take a neighborhood Kjo

of ξo such that Kjo
∩WFA(u)xo

= ∅. Define ujo
:=

∫
Kjo

·; from

WFA(ujo
)xo

⊂ WFA(u)xo
∩Kjo

= ∅,

we get that ujo
extends holomorphically at xo. On the other hand, the

other terms uj = (2π)−n
∫
Kj
· for j �= jo extend holomorphically to Γj

with Γ o
j �) ξo and satisfy (xo, ξo) /∈ WFA(uj) as well.

In conclusion, we have proved the following characterization:

(xo, ξo) /∈ WFA(u) if and only if u|U =
N∑
j=1

uj |U

with uj ∈ hol(U + i(Γj)ε) for Γj satisfying Γ o
j �) ξo.

We say that a term ujo
in the decomposition of u is missing or can be absorbed

by the others when there is uj for j �= jo which extends holomorphically to
U + iΓε where Γ is the convex hull of Γjo

∪ Γj . In this terminology:

(xo, ξo) /∈ WFA(u) iff ujo
is missing for a neighborhood Kjo

of ξo.

Remark 1.1 One could define the C∞ WFA by replacing in (1.2) cν+1ν!
by a more general cν and by taking a single cut-off function χ instead of a
sequence χν ; all the above discussion would hold unchanged (except from the
second half part of the third itemized sentence).
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2 Operators/symbols: symplectic transformations

We deal with linear differential operators P = P (x,D) of the type
∑

|α|≤m

aα(x)∂α
x

with real analytic coefficients aα(x) defined in Rn or in an open subset of
Rn. We associate to P (x,D) its symbol σ(P ) = P (x, ξ), its principal symbol
σp(P ) = Pm(x, ξ) which is the homogeneous term of order m of σ(P ) and
finally its characteristic variety char(P ) that we also denote by V and which
is defined by V = {(x, ξ) ∈ Ṫ ∗Rn : Pm(x, ξ) = 0}. The set of complex zeros
of Pm, that is, V C = {(z, ζ) ∈ Ṫ ∗Cn : Pm(z, ζ) = 0}, is in general larger
than the complexification of V . (We do not specify that x is taken in an
open set of Rn and z in a complex neighborhood to which the coefficients
of P have holomorphic extension.) An elementary example occurs for the
partially elliptic operator P =

∑
j≤n−1

∂2
xj

. This geometric discussion, sheds

light into deeper properties of the operator. Suppose that there is no microlocal
coincidence of V C with the complexification of V in a neighborhood of a non-
zero characteristic point (as for the above operator). Then this circumstance
was pointed out by Hörmander in [5] as responsible of the nonexistence of
global real analytic solutions in Rn of the equation Pu = f with constant
coefficients.

The microlocal analysis describes the properties of the differential op-
erators by means of the microdifferential operators whose symbols are no
more polynomials in ξ but more general analytic functions. For instance,
the operator P−1(x,D) associated to the symbol P−1(x, ξ) at points where
Pm(x, ξ) �= 0. But these are the tool of the analysis, not the object. The pro-
gram is, in the beginning, to find suitable transformations in a neighborhood
of a point (xo, ξo) ∈ Ṫ ∗Rn so that, in some significant cases, the symbol is
reduced into a canonical form. The aim is to interchange:

σ(P ) →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 P noncharacteristic, i.e., Pm(xo, ξo) �= 0,
ξ1 Pm real simply-characteristic, i.e., Pm real,

Pm(xo, ξo) = 0, ∂ξPm(xo, ξo) �= 0,∑m
j=1 ξ

2
j P transversally elliptic.

(2.1)

Once the local geometric transformation in T ∗Rn is found, one is called to
quantize it, that is, to find its differential counterpart acting on differential
operators:

P (x,D) →

⎧⎪⎨
⎪⎩

id,
∂x1 ,∑m

j=1 ∂
2
xj
.

(2.2)
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What is the kind of the suitable transformations? They are required to pre-
serve moments in the sense of quantum mechanics, that is, commutators of
the operators. But the commutator [·, ·] is related to the Poisson bracket {·, ·}
by the following relation. Let order([P,Q]) = orderP + order(Q)− 1; then

σp([P,Q]) = {σp(P ), σp(Q)}
= dξ ∧ dx(Hσp(P ),Hσp(Q)),

where dξ∧dx is the canonical 2-form and Hσp(P ), Hσp(Q) are the Hamiltonian
vector fields. Therefore, the admissible transformations are those which are
symplectic, that is, which preserve dξ ∧ dx. And they also need to respect the
homogeneity, that is, the 1-form ξdx itself. Naturally, so far, the normalization
(2.1) only carries a geometric meaning. The further task consists in finding
the associated differential normalization satisfying (2.2).

3 The theorem of elliptic regularity

We perform here the microlocal reduction P (x, ξ) → 1 and P (x,D) → id
in a neighborhood of the points (xo, ξo) such that Pm(xo, ξo) �= 0. By
the microlocal coincidence P (x,D) = id at (xo, ξo) we mean the property
(xo, ξo) /∈ WFA(P (x,D)u − u) for any u. In general, by the expression “mi-
crolocal vanishing at (xo, ξo)” we mean the property “(xo, ξo) /∈ WFA”.

Theorem 3.1 (Sato: elliptic regularity) We have

WFA(u) ⊂ WFA(P (x,D)u) ∪ char(P ). (3.1)

In particular, if P is elliptic, that is, char(P ) = ∅, and if P (x,D)u ∈ Cω,
then also u ∈ Cω.

Proof. In this proof we follow Bony–Schapira [2]. Let Pm(xo, ξo) �= 0 and
(xo, ξo) /∈ WFA(Pu); we wish to prove that (xo, ξo) /∈ WFA(u). Let us choose
a neighborhood Kjo

of ξo and supplement it to a full covering Ṙn = Kjo
∪( ⋃

j �=jo

Kj

)
. We have Pu =

∑
j �=jo

fj , that is, fjo
is “missing” according to the

terminology introduced before Remark 1.1. The question is whether

u =
∑
j �=jo

uj ,

that is, whether ujo
is also “missing”. Write

Pujo
=

∑
j �=jo

(−Puj + fj)

=
∑
j �=jo

f̃j for f̃j ∈ hol(U + i(Γj + Γjo
)ε).
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Recall the notation V = char(P ). For suitably small Kjo
, we have Vx∩Kjo

= ∅
for any x close to xo which yields

(Γj + Γjo
)o ∩ Vx = ∅. (3.2)

Because of (3.2), we can solve by the method of the noncharacteristic defor-
mation of [2] the equation

P ũj = f̃j in U + i(Γj + Γjo
)ε.

In particular, (xo, ξo) /∈ WFA(ũj). Again by (3.2), we have (cf. [2])

P

⎛
⎝ujo

−
∑
j �=jo

ũj

⎞
⎠ = 0 implies

⎛
⎝ujo

−
∑
j �=jo

ũj

⎞
⎠ ∈ Cω

xo
.

Let us denote by v the Cω-function on the right side of the above implication.
What we have got is

ujo
=

∑
j �=jo

ũj + v with (xo, ξo) /∈ WFA(ũj) and v ∈ Cω,

which yields the conclusion of the theorem.

Corollary 3.1 (Holmgren’s uniqueness theorem) Suppose
⎧⎪⎨
⎪⎩
Pu = 0,
∂j
x1
u|x1=0 = 0 for any j = 0, ...,m− 1,

Pm(xo, θ) �= 0 for θ = (1, ..., 0).

Then, u ≡ 0 in a neighborhood of xo = 0.

We give the sketch of the proof which is based on the involutivity of WFA.
Denote by ext(u) the extension by 0 of u to x1 ≤ 0; we have P (ext(u)) = 0.
Application of Theorem 3.1 yields (xo, θ) /∈ WFA(u). But if the support of a
distribution is contained in x1 ≤ 0, then (0, θ) belongs to its WFA (Theorem
8.5.6 of [6]), unless the distribution is 0.

When the plane x1 = 0 has its conormal θ which satisfies Pm(xo, θ) �=
0, then it is said to be noncharacteristic. There is a microlocal version of
Holmgren’s uniqueness theorem. For this, a geometric preliminary is required.

Definition 3.1 Let WC be a regular involutive manifold passing though (xo, ξo)
and contained in the plane defined by ζ1 = 0. We say that the plane x1 = 0
is non-microcharacteristic for P at (xo, ξo) ∈ V ∩W along W , when ∂ζ1 does
not belong to C(xo,ξo)(V C,WC), the Whitney normal cone at (xo, ξo).

In this situation, the following theorem holds:
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Theorem 3.2 (Bony: microlocal Holmgren) Let x1 = 0 be non-micro-
characteristic at (xo, ξo) and u be a solution of Pu = 0. Then, microlocally at
(xo, ξo):

u|x1>0 = 0 implies u = 0 , (3.3)
that is, (xo, ξo) /∈ WFA(u)|x1>0 implies (xo, ξo) /∈ WFA(u).

(See [1] for the proof.) In other words, the microlocal 0 propagates through a
non-microcharacteristic plane. The statement can be extended to microlocal
solutions u: these satisfy (xo, ξo) /∈ WFA(Pu) instead of Pu = 0.

4 Propagation in the interior: real simply-characteristic
operators

We consider here operators whose principal part Pm is real and satisfies
Pm(xo, ξo) = 0 but ∂ξ(xo, ξo) �= 0. We want to motivate the microlocal reduc-
tion P (x, ξ) → ξ1 and P (x,D) → ∂x1 . We have the analytic factorization

Pm(x, ξ) = h(x, ξ)·(∂ξPm(xo, ξo)δξ+∂xPm(xo, ξo)δx) for h(xo, ξo) �= 0, (4.1)

where δξ = ξ − ξo, δx = x − xo. Now, h is invertible, as a symbol and also,
according to the conclusions of Section 3, as a differential operator. It is also
clear that there is a change of symplectic coordinates χ : (x, ξ) → (x̃, ξ̃) from
a neighborhood of (xo, ξo) to a neighborhood of (0; (1, 0...)) in T ∗Rn which
interchanges the linear expression in (4.1) into ξ̃1. We wish to explain in what
sense this yields a reduction P (x,D) → ∂x̃1 . For this we define the tangent
vectors {

v := (∂xPm, ∂ξPm) ∈ T(xo,ξo)T
∗Rn,

w := (∂ξPm,−∂xPm) ∈ T(xo,ξo)T
∗Rn,

whose second is the Hamiltonian vector field HPm
. Assuming that

|dPm(xo, ξo)|2 = 1,

they are related by dω(v, w) = 1. If we perform the transformation χ and
remember that Pm → ξ1, we get the following description for the transformed
vectors ṽ = χ′v, w̃ = χ′w:{

ṽ = (∂x̃ξ̃1∂ξ̃ ξ̃1) = (0, (1, ..., 0)),
w̃ = Hξ̃1

= ((1, ..., 0), 0).

These are still linked by the relation dω(ṽ, w̃) = 〈dξ̃1,Hξ̃1
〉 = 1. Now, the

solutions of ∂x̃1 are independent of x̃1, that is, their zeros propagate along the
straight lines parallel to w̃ = Hξ̃1

. But if we want to put into a symplectically
invariant fashion the statement:
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“the support of the solutions of ∂x̃1 is invariant under the direction w̃”

it turns into:

“the WFA of the solutions of P is invariant for w = HP ”

Naturally, this is just a geometric discussion. But this happens to have a “dif-
ferential” counterpart which is contained in the following theorem for whose
proof we refer to [4].

Theorem 4.1 (Hörmander: real simply-characteristic propagation)
Let Pm be real with simple characteristics and let u be a solution of Pu = 0.
Then the analytic wave front set WFA(u) is invariant under the flow of the
Hamiltonian vector field HPm

.

The theorem applies in particular to the wave operator � = ∂2
xn
−∑n−1

j=1 ∂2
xj

.
If ξo is a characteristic, that is, a nonnull zero of �(ξ) = 0, we define the
corresponding bicharacteristic line (for a point xo) as the line parallel to the
vector ∂ξ�(ξo) in the x-space and whose ξ-value is constantly ξo; we denote
it by bξo

. Therefore, this is the integral curve of H� issued from (xo, ξo). The
theorem of propagation says that the WFA of a wave is a union of bicharac-
teristics. That is, the singularity in the frequency ξo propagates along the line
bξo

. Hence, in the free space, the singularity of a wave propagates along rays.
What happens if the wave is no more free?

5 Propagation at the boundary: reflection and
diffraction of the light

Suppose that a light ray hits an obstacle. Along which way does the prop-
agation of the analytic singularity take place? We discuss either case of a
transversal and a tangential ray. We fix our notations: xn is chosen as the time
coordinate so that our operator is � = ∂2

xn
−∑

j≤n−1 ∂
2
xj

, and the obstacle
or boundary is given by x1 = 0. The boundary in the (x1, ..., xn−1)-space is
necessarily noncharacteristic, that is, its conormal θ, in our case θ = (1, 0, ...),
does not annihilate Pm (in which case the high frequencies remain high even
after restriction to ξ1 = 0. Our wave stays in x1 > 0. Now the situation
has become richer: together with the bicharacteristics of the operator, which
move in the space of the time xn and the position (x1, ..., xn−1), there are
now also those of the boundary which move in the space of the frequencies
ξ. Symplectically, they do not differ. Let ρ : T ∗Rn|x1=0 → T ∗Rn−1 be the
projection ξ → (ξ2, ..., ξn) with poles ±(1, 0, ...); we write ξ′ for (ξ2, ..., ξn).
The bicharacteristics of the plane x1 = 0, that is the integral curves of Hx1 ,
are the fibers of ρ. We denote by ξ±o the two characteristics with the same
projection ξ′o and by βξ±o

the components of bξ±o which enter in x1 > 0. We
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denote by bx′
o

the bicharacteristic of the boundary which connects bξ+
o

with
bξ−o above the point x′

o. The spectral frequency ξ+
o propagates in the free space

along βξ+
o
. When the wave encounters the obstacle x1 = 0 in x′

o it turns from
ξ+
o along bx′

o
until it reaches ξ−o . From this point it leaves the boundary and

propagates in the free space into x1 > 0 along βξ−o
. We wish to show that

the WFA of a wave is a union of βξ±o
. The two bicharacteristics βξ±o

form the
same angle with the plane x1 = 0, that is, they reflect above that plane. In
particular, this holds for the light rays, their projections over xn = const.

Remark 5.1 The velocity of propagation of the light along the bicharacter-

stics β±
ξo

, that is the ratio
√∑

j=1,...,n−1 ẋ2
j

|ẋn| , is finite. Instead, along the bichar-
acteristics of the boundary, that is, the integral curves of Hx1 , x is constant
and in particular the time xn is. Thus the reflection, that is, the “switch”
from ξ+ to ξ−, takes no time.

For a wave u in x1 > 0, we define γ(u) = (u|x1=0, ∂x1u|x1=0) and call γ(u)
the traces of u on x1 = 0. We have the following result for whose proof we
refer to [12], [9] (cf. also [11]).

Theorem 5.1 (Schapira, Sjöstrand: reflection of singularities) The
wave front set WFA(γ(u)) can be split into two closed sets S+∪S− ⊂ Ṫ ∗Rn−1

such that
WFA(u) =

⋃
ξ′∈S±

βξ± , (5.1)

where ξ± are the two characteristics such that ρ(ξ±) = ξ′. In particular, for
any (x′

o, ξ
′
o) ∈ Ṫ ∗Rn−1, if each of the two bicharacteristics βξ±o

contains x±

such that (x±, ξ±o ) /∈ WFA(u), it follows that (x′
o, ξ

′
o) /∈ WFA(γ(u)).

A similar statement holds for the solutions in x1 > 0 of any equation Pu = 0
with Pm real with simple characteristics provided that the bicharacteristics
are transversal to the boundary.

Remark 5.2 (diffractive rays) What happens when bξo
is no more transver-

sal to the boundary x1 = 0, that is, when (ξo)1 = 0? In order to make the
geometric setting not too hard, we suppose that the ray is “glancing”, in the
sense that it is tangent to the boundary at order 2. In this case, there is no
more reflection but still the propagation of the singularity takes place along
the bicharacteristic; if u is regular in two points of bξo

from the two sides of
its contact point xo with the boundary, then the traces of u are regular in
the frequency ξo at xo. The result is due to Kataoka [7] and Sjöstrand [12]
(cf. also Schapira [10] for another proof).
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6 Propagation at the boundary: transversal ellipticity
and non-microcharacteristicity

We start by rephrasing the conclusions of the theorem of reflection, and pre-
cisely, by restating its last statement as a boundary microlocal Holmgren the-
orem. To see this, we suppose from now on that Pm((xo, ξo) + τθ) has all its
zeros in τ which are real. (We could indeed reason in full generality if we would
be ready to pay the price of introducing the microsupport at the boundary
WFA{x1>0}.) If u is a solution of Pu = 0 in x1 > 0, denote by ext(u) its
extension by 0. Note that, for ξ′o ∈ Ṙn−1, “WFA(γ(u)) ∩ {(xo, ξ′o)} = ∅” is
equivalent to “WFA(ext(u)) ∩ ρ−1(x′

o, ξ
′
o) = ∅”. The last conclusion of Theo-

rem 5.1 is equivalent to the following statement

Theorem 6.1 (boundary microlocal Holmgren’s I) Let Pm be real sim-
ply-characteristic in ρ−1(x′

o, ξ
′
o) and suppose that its bicharacteristics are

transversal to x1 = 0. For the solutions of P (x,D)u = 0 in x1 > 0 we have,
in a neighborhood of ρ−1(x′

o, ξ
′
o), the microlocal implication

u|x1>0 = 0 implies ext(u) = 0. (6.1)

There are two relevant classes of operators to which the same conclusion
applies. First are the transversally elliptic operators, that is, those whose
principal symbol can be reduced by a symplectic transformation to the mi-
crolocal model

∑
j=1,...,m ξ2

j . Then the characteristic variety can be reduced
to V = {ξj = 0, j = 1, ...,m} in a neighborhood of ξo = (0, ξom+1, ...). Ac-
cording to Bony–Schapira [3], the propagation in the absence of boundary
is ruled by the bicharacteristic foliation, the collection of the m-dimensional
integral leaves of the symplectic orthogonal bundle TV ⊥σ; in the canonical
model these are the planes Σ = {(x, ξ) : (xm+1, ..., xn) = const, ξ = ξo}. In
the presence of the boundary condition x1 = 0, we have:

Theorem 6.2 (boundary microlocal Holmgren’s II) Let P be transver-
sally elliptic in ρ−1(xo, ξ′o)∩V and suppose that the bicharacteristic (Hamilto-
nian) leaves are transversal to x1 = 0. Then, in a neighborhood of ρ−1(xo, ξ′o),
the solutions u of Pu = 0 over x1 > 0 satisfy microlocally the implication
(6.1).

We refer to Schapira–Zampieri [11] and Uchida–Zampieri [13] for the proof.
The last case is the merely non-microcharacteristic one, treated by Zampieri
in [14]. This contains the preceding: in fact in the special case of transversally
elliptic operators, the non-microcharacteristic boundaries are characterized as
those which are transversal to the bicharacteristic foliations.

Theorem 6.3 (boundary microlocal Holmgren’s III) Let x1 = 0 be
non-microcharacteristic for P in any point of V ∩ ρ−1(xo, ξ′o). Then, in a
neighborhood of ρ−1(xo, ξ′o), we have microlocally the implication (6.1).
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