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M. Stingl, M. Kočvara and G. Leugering
A New Non-linear Semidefinite Programming Algorithm with an
Application to Multidisciplinary Free Material Optimization . . . . . . . . . 275

D. Wachsmuth and A. Rösch
How to Check Numerically the Sufficient Optimality Conditions
for Infinite-dimensional Optimization Problems . . . . . . . . . . . . . . . . . . . . . . 297

J.-P. Zolésio
Hidden Boundary Shape Derivative for the Solution to
Maxwell Equations and Non Cylindrical Wave Equations . . . . . . . . . . . . 319



Preface

The articles contained in this volume are related to presentations at the interna-
tional “Conference on Optimal Control of Coupled Systems of Partial Differential
Equations”, held at the “Mathematisches Forschungsinstitut Oberwolfach” from
March, 2 to 8, 2008. The contributions by internationally well-known scientists in
the field of Applied Mathematics cover various topics as controllability, feedback-
control, optimality systems, model-reduction techniques, analysis and optimal con-
trol of flow problems and fluid-structure interactions, as well as problems of shape
and topology optimization. The applications considered range from the optimiza-
tion and control of quantum mechanical systems, the optimal design of airfoils,
optimal control of crystal growth, the optimization of shape and topology in engi-
neering to switching or hybrid systems. The applications are thus across all time
and length scales, and range from smooth to non-smooth models.

The field of optimization and control of systems governed by partial dif-
ferential equations and variational inequalities is a very active area of research
in Applied Mathematics and in particular in numerical analysis, scientific com-
puting and optimization with a growing impact on engineering applications. In
return, the field benefits from fascinating and challenging applications in that new
mathematical often multiscale-modeling and new numerical tools as well as novel
optimization results and corresponding iterative strategies are required in order to
handle these problems. In particular, it becomes amply clear that constraints have
to be taken into account, both on the control- and design-variables as well as on
the state variables and the domains of their governing models. Moreover, structure
exploiting discretizations, adaptive and multilevel methods become predominant
in large-scale applications.

The aim of the conference and hence the aim of this book was to bring
together mathematicians and engineers working on challenging problems in order
to mark the state-of-the-art and point to future developments. Consequently, the
book addresses researchers in the area of optimization and control of infinite-
dimensional systems, typically represented by partial differential equations, who
are interested in both theory and numerical simulation of such systems.

The editors express their gratitude to the contributors of this volume, the
Oberwolfach Institute, and the Birkhäuser Verlag for publishing this volume. They
also thank F. Hante for support in the editing procedure.

K. Kunisch, G. Leugering, J. Sprekels and F. Tröltzsch
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Beyond Lack of Compactness and Lack of
Stability of a Coupled Parabolic-hyperbolic
Fluid-structure System

George Avalos, Irena Lasiecka and Roberto Triggiani

Abstract. In this paper we shall derive certain qualitative properties for a par-
tial differential equation (PDE) system which comprises (parabolic) Stokes
fluid flow and a (hyperbolic) elastic structure equation. The appearance of
such coupled PDE models in the literature is well established, inasmuch as
they mathematically govern many physical phenomena; e.g., the immersion of
an elastic structure within a fluid. The coupling between the distinct hyper-
bolic and parabolic dynamics occurs at the boundary interface between the
media. In [A-T.1] semigroup well-posedness on the associated space of finite
energy was established for solution variables {w, wt, u}, say, where, [w, wt] are
the respective displacement and velocity of the structure, and u the velocity of
the fluid (there is also an associated pressure term, p, say). One problem with
this fluid-structure semigroup setup is that, due to the definition of the do-
main D(A) of the generator A, there is no immediate implication of smoothing
in the w-variable (i.e., its resolvent R(λ,A) is not compact on this component
space). Thus, one is presented with the basic question of whether smooth ini-
tial data (I.C.) will give rise to higher regularity of the solutions. Accordingly,
one main result described here states that said mechanical displacement, fluid
velocity, and pressure term do in fact enjoy a greater regularity if, in addition
to the I.C. {w0, w1, u0} ∈ D(A), one also has w0 in (H2(Ωs))

d. A second
problem of the model is the inherent lack of long time stability. In this con-
nection, a second result described here provides for uniform stabilization of
the fluid-structure dynamics, by means of the insertion of a damping term at
the interface between the two media.

Mathematics Subject Classification (2000). Primary 35Q30; Secondary 73C02;
73K12; 76D07; 93.

Keywords. Fluid-structure interaction, higher regularity.

First author: Research partially supported by the National Science Foundation under grant
DMS-0606776. Second and third author: Research partially supported by the National Science
Foundation under Grant DMS-0104305, and by the Army Research Office under Grant DAAD19-
02-1-0179.



2 G. Avalos, I. Lasiecka and R. Triggiani

1. The coupled PDE model and its abstract version. A review
from [A-T.1] of well-posedness and basic regularity theory

Physical model. Throughout, Ω will be an open bounded domain in Rd, d = 2, 3,
with sufficiently smooth boundary ∂Ω. The present paper is focused on a fluid-
structure interaction problem defined on Ω, as it has arisen in the applied science
and mathematical literature. See the 1969 monograph [Li.1, p. 120], which, in turn,
states: “Problems of the type here considered occur in Biology [C-R.1].” Further
literature will be given below. The model consists of a fluid-like equation (the
Navier-Stokes equation in the velocity field and the pressure) defined on a bounded
doughnut-like, exterior sub-domain Ωf of Ω, which is suitably coupled with an
elastic structure equation defined on an interior sub-domain Ωs of Ω. A boundary
interaction occurs between the two distinct dynamics at the common boundary
Γs = ∂Ωs, of Ωs and Ωf . In short we have Ω = Ωs ∪Ωf , and Ωs ∩Ωf = ∂Ωs ≡ Γs.
The exterior boundary of Ωf will be denoted by Γf ; see Figure 1.

Figure 1. The Physical Model

Mathematical PDE model. In this paper, we make two simplifications:

(i) in the structure domain Ωs we consider the pure d-dimensional wave equation
(instead of the more cumbersome and physically more appropriate d-elastic
equation: this is not mathematically crucial);

(ii) in the fluid domain Ωf we take a linear version of the Navier-Stokes problem.

This is done mostly for reasons of clarity. In a subsequent paper, we intend to
cover the technically more demanding elastic wave equation on Ωs, as well as
the full (nonlinear) Navier-Stokes model in Ωf . Hereafter, u = [u1, · , ud] is a d-
dimensional velocity field; the scalar-valued p denotes pressure; w = [w1, · , wd]
is a d-dimensional displacement field. Moreover, ν denotes throughout the unit
normal vector which is outward with respect to Ωf (hence inward with respect to
Ωs on Γs): see Figure 1.
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The fluid-structure interaction problem to be studied in the present paper is
the following linear problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut −Δu+∇p ≡ 0 in (0, T ]× Ωf ≡ Qf
⎧⎪⎪⎪⎨⎪⎪⎪⎩ div u ≡ 0 in Qf

wtt −Δw + w ≡ 0 in (0, T ]× Ωs ≡ Qs

u|Γf
≡ 0 on (0, T ]× Γf ≡ Σf

B.C.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u ≡ wt on (0, T ]× Γs ≡ Σs

∂u

∂ν
− ∂w

∂ν
= pν on Σs

I.C. u(0, · ) = u0, w(0, · ) = w0, wt(0, · ) = w1, on Ω.

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)

(1.1f)

(1.1g)

Abstract model of Problem (1.1). The Navier-Stokes (linear) part (1.1a) con-
tains two unknowns; namely, the velocity field and the pressure. In the present
coupled case of problem (1.1), because of the (non-homogeneous) boundary cou-
pling (1.1e-f), it is not possible to use the classical, standard idea of N-S prob-
lems with no-slip boundary conditions to eliminate the pressure: that is, by ap-
plying the Leray projector on the equation from (L2(Ω))d onto the classical space
{f ∈ (L2(Ω))d; div f ≡ 0 in Ω; f · ν = 0 on ∂Ωf} (see [C-F.1, p. 7]). Instead, the
paper [A-T.1] (as well as paper [A-T.4], where the d-dimensional wave equation
(1.1c) is replaced by the system of dynamic elasticity) eliminated the pressure by a
completely different strategy. Following the idea of [Tr.1], papers [A-T.1], [A-T.4]
identify a “suitable” elliptic problem for the pressure p, to be solved for p in terms
of u and w.

The elimination of p, by its explicit expression in terms of u and w. A key
idea of [A-T.1], [A-T.4] germinates from the observation that the pressure p(t, x)
solves the following elliptic problem on Ωf in x, for each t:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δp ≡ 0 in (0, T ]× Ωf ≡ Qf ;

p =
∂u

∂ν
· ν − ∂w

∂ν
· ν on (0, T ]× Γs ≡ Σs;

∂p

∂ν
= Δu · ν on (0, T ]× Γf ≡ Σf .

(1.2a)

(1.2b)

(1.2c)

In fact, (1.2a) is obtained by taking the divergence div across Eqn. (1.1a), and
using div ut ≡ 0 in Qf by (1.1b), as well as div Δu = Δ div u ≡ 0 in Qf . Next,
the B.C. (1.2b) on Γs is obtained by taking the inner product of Eqn. (1.1f) with ν.
Finally, the B.C. (1.2c) on Γf is obtained by taking the inner product of Eqn. (1.1a)
restricted on Γf , with ν, using u|Γf

≡ 0 by (1.1d), so that on Γf ,∇p ·ν = Δu ·ν|Γf
.

This then results in (1.2c).



4 G. Avalos, I. Lasiecka and R. Triggiani

Explicit solution of problem (1.2) for p. We set

p = p1 + p2 in Qf , (1.2d)

where p1 and p2 solve the following problems:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Δp1 ≡ 0 in Qf ;

p1 ≡
∂u

∂ν
· ν − ∂w

∂ν
· ν on Σs;

∂p1
∂ν

∣∣∣∣
Σf

≡ 0 on Σf ;

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δp2 ≡ 0 in Qf ;

p2 = 0 on Σs;

∂p2
∂ν

∣∣∣∣
Σf

= Δu · ν on Σf .

(1.3a)

(1.3b)

(1.3c)

Accordingly, we define the following “Dirichlet” and “Neumann” maps Ds

and Nf :

h ≡ Dsg ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δh = 0 in Ωf ;

h = g on Γs;

∂h

∂ν
= 0 on Γf ;

ψ ≡ Nfμ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δψ ≡ 0 in Ωf ;

ψ ≡ 0 on Γs;

∂ψ

∂ν
= μ on Γf .

(1.4a)

(1.4b)

(1.4c)

Elliptic theory gives thatDs andNf are well defined and possess the following
regularity:

Ds : continuous Hρ(Γs)→ Hρ+ 1
2 (Ωf ), ρ ∈ R;

Nf : continuous Hρ(Γf )→ Hρ+ 3
2 (Ωf ), ρ ∈ R

(1.5a)

(1.5b)

[L-M.1]. Accordingly, in view of the respective problems (1.4), we write the solu-
tions p1, p2 in (1.3), and subsequently p in (1.2d), as

p1 = Ds

[(
∂u

∂ν
· ν − ∂w

∂ν
· ν
)
Σs

]
; p2 = Nf [(Δu · ν)Σf

] in Qf ; (1.6)

p = p1 + p2 = Π1w +Π2u

= Ds

[(
∂u

∂ν
· ν − ∂w

∂ν
· ν
)
Σs

]
+Nf [(Δu · ν)Σf

] in Qf ;

(1.7a)

(1.7b)

Π1w = −Ds

[(
∂w

∂ν
· ν
)
Σs

]
; Π2u ≡ Ds

[(
∂u

∂ν
· ν
)
Σs

]
+Nf [(Δu · ν)Σf

] in Qf ;

(1.8)
hence via (1.7a–b):

∇p = −G1w −G2u = ∇Π1w +∇Π2u (1.9a)

= ∇
(
Ds

[(
∂u

∂ν
· ν − ∂w

∂ν
· ν
)
Σs

])
+∇(Nf [(Δu · ν)Σf

]) in Qf ; (1.9b)
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G1w = −∇Π1w = ∇
{
Ds

[(
∂w

∂ν
· ν
)
Σs

]}
in Qf ; (1.10)

G2u = −∇Π2u = −∇
{
Ds

[(
∂u

∂ν
· ν
)
Σs

]
+Nf [(Δu · ν)Σf

]

}
in Qf . (1.11)

The linear maps G1 and G2 in (1.9)–(1.11) are introduced mostly for nota-
tional convenience. Eqns. (1.7), (1.9) have managed to eliminate the pressure p,
and, more pertinently, its gradient ∇p, by expressing them in terms of the two key
variables: the velocity field u and the wave solution w. Using (1.9a), we accordingly
rewrite the original model (1.1a–g) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu+G1w +G2u in Qf
⎧⎪⎪⎪⎨⎪⎪⎪⎩div u ≡ 0 in Qf

wtt = Δw − w in Qs

u|Γf
≡ 0 on Σf

B.C.

⎧⎪⎨⎪⎩ u ≡ wt on Σs

I.C. u(0, · ) = u0; w(0, · ) = w0, wt(0, · ) = w1 in Ω,

(1.12a)

(1.12b)

(1.12c)

(1.12d)

(1.12e)

(1.12f)

only in terms of u and w, where the pressure p has been eliminated, as desired.

Abstract model of system (1.12). The abstract model of system (1.12) is given
by

d

dt

⎡⎢⎢⎣
w

wt

u

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 I 0

Δ− I 0 0

G1 0 Δ +G2

⎤⎥⎥⎦
⎡⎢⎢⎣

w

wt

u

⎤⎥⎥⎦

= A

⎡⎢⎢⎣
w

wt

u

⎤⎥⎥⎦ ; (1.13a)

[w(0), wt(0), u(0)] = [w0, w1, u0] ∈ H, (1.13b)

whereH will be the finite energy space, to be specified below, which will associated
with the fluid-structure model (1.12) (see Theorem 1.2 below).
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The operator A. Recalling (1.10), (1.11) prompts the introduction of the
operator

A ≡

⎡⎢⎢⎣
0 I 0

Δ− I 0 0

G1 0 Δ +G2

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
0 I 0

Δ− I 0 0

∇
{
Ds

[(
∂ ·
∂ν
· ν
)
Γs

]}
0 a33

⎤⎥⎥⎥⎥⎥⎦ ;

(1.14a)

(1.14b)

a33 = Δ−∇
{
Ds

[(
∂ ·
∂ν
· ν
)
Γs

]
+Nf [((Δ · ) · ν)Γf

]

}
;

H ⊃ D(A)→ H. (1.14c)

The finite energy space H of well-posedness for problem (1.1a–g), or its abstract
version (1.13)–(1.14) is defined by [A-T.1], [A-T.4]:

H ≡ (H1(Ωs))d × (L2(Ωs))d × H̃f ; (1.15a)

(f1, f2)H1(Ωs) =
∫
Ωs

[∇f1 · ∇f2 + f1 · f2]dΩs; (1.15b)

H̃f = {f ∈ (L2(Ωf ))d : div f ≡ 0 in Ωf ; f · ν ≡ 0 on Γf}, (1.16)

H̃f endowed with the L2(Ωf ) inner product.
The domain D(A) of A will be identified below. To this end, we find it

convenient to introduce a function π, whose indicated regularity was ascertained
in [A-T.1], [A-T.4].

The scalar harmonic function π. Henceforth, with reference to (1.14b), for
[v1, v2, f ] ∈ D(A), we introduce the harmonic function π = π(v1, f):

π ≡ Ds

[(
∂f

∂ν
· ν
)
Γs

]
+Nf [(Δf · ν)Γf

]−Ds

[(
∂v1
∂ν

· ν
)
Γs

]
∈ L2(Ωf ) (1.17)

(compare with (1.7b) for the dynamic problem). According to the definition of the
Dirichlet map Ds and Neumann map Nf given in (1.4a–c), π = π(v1, f) in (1.17)
can be equivalently given as the solution of the following elliptic problem (compare
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with (1.2a-b-c) for the dynamic problem):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δπ ≡ 0 in Ωf ;

π =
∂f

∂ν
· ν − ∂v1

∂ν
· ν ∈ H− 1

2 (Γs) on Γs;

∂π

∂ν
= Δf · ν ∈ H−

3
2 (Γf ) on Γf ;

⎡⎣ v1
v2
f

⎤⎦ ∈ D(A).
(1.18a)

(1.18b)

(1.18c)

It then follows from A in (1.14b) via the function π defined in (1.17) that

A

⎡⎢⎢⎣
v1

v2

f

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v2

Δv1 − v1

Δf −∇π

⎤⎥⎥⎦ ≡
⎡⎢⎢⎣

v∗1

v∗2

f∗

⎤⎥⎥⎦ ∈ H,
⎡⎢⎢⎣

v1

v2

f

⎤⎥⎥⎦ ∈ D(A). (1.19)

The domain D(A). The domain D(A) of A is inferred from Theorem 2.1 of
[A-T.1], which considers the existence and regularity issues of solutions to the cou-
pled problems arising from imposing identity (1.19), along with the corresponding
(coupled) boundary conditions dictated by the dynamics (1.12a–f).

Proposition 1.1. (a) The domain D(A) of the operator H ⊃ D(A)→ H in (1.19) is
characterized as follows: {v1, v2, f} ∈ D(A) if and only if the following properties
hold true:

(a1) v1 ∈ (H1(Ωs))d with Δv1 ∈ (L2(Ωs))d,

so that
∂v1
∂ν

∣∣∣∣
Γs

∈ (H− 1
2 (Γs))d; (1.20)

(a2) v2 ∈ (H1(Ωs))d; (1.21)

(a3) f ∈ (H1(Ωf ))d ∩ H̃f , with Δf −∇π ∈ H̃f ,

where π(v1, f) ∈ L2(Ωf ) is the harmonic
function defined by (1.17) or (1.18a–c); (1.22)

(a4)
∂f

∂ν

∣∣∣∣
Γs

∈ (H− 1
2 (Γs))d and π|Γs ∈ H− 1

2 (Γs); (1.23)

(a5)
∂f

∂ν

∣∣∣∣
Γs

=
[
∂v1
∂ν

+ πν

]
Γs

∈ (H− 1
2 (Γs))d; (1.24)

(a6) f |Γf
= 0; v2|Γs = f |Γs ∈ (H

1
2 (Γs))d; [Δf · ν]Γf

∈ H−
3
2 (Γf ). (1.25)
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We can now, finally, state the basic well-posedness result for model (1.1a–g),
or its abstract version (1.13)–(1.14).

Main well-posedness results on the energy space H. Reference [A-T.1] (as
well as [A-T.4] for the system of dynamic elasticity) establishes the following basic
well-posedness result on the energy space H.

Theorem 1.2. [A-T.1] With reference to model (1.1a–g) or its abstract version
(1.13)–(1.14), the following results hold true.

(1) The map {w0, w1, u0} → {w(t), wt(t), u(t)} defines a strongly continuous con-
traction semigroup eAt on the energy space H defined in (1.15), where the domain
D(A) of the maximal dissipative generator A is identified in Proposition 1.1. The
dissipativity relation of A is, more specifically,

Re

⎛⎜⎜⎝A
⎡⎢⎢⎣

v1

v2

f

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
v1

v2

f

⎤⎥⎥⎦
⎞⎟⎟⎠
H

= −
∫
Ωf

|∇f |2dΩf ≤ 0, [v1, v2, f ] ∈ D(A). (1.26)

Thus, for initial data y0 = {w0, w1, u0} ∈ H as in (1.1g), there is a unique solution
of the abstract Cauchy problem (1.13)–(1.14), which satisfies the regularity

{w( · ; y0), wt( · , y0), u( · ; y0)}

∈ C([0, T ];H = (H1(Ωs))d × (L2(Ωs))d × H̃f ), y0 = {w0, w1, u0} ∈ H; (1.27)

and, moreover, still with y0 = {w0, w1, u0} ∈ H, and 0 ≤ s ≤ t ≤ T , the following
dissipativity identity obtains:∥∥eAty0

∥∥2
H + 2

∫ t

s

‖∇u(τ ; y0)‖2Ωf
dτ =

∥∥eAsy0
∥∥2
H , 0 ≤ s ≤ t. (1.28)

In particular, with y0 = {w0, w1, u0} ∈ H,

u( · , y0) ∈ L2(0, T ; (H1(Ωf ))d) (1.29)

[as it follows from (1.28) by Poincaré inequality via (1.1d)], hence

u( · ; y0)|Γs = wt( · ; y0)|Γs ∈ L2(0, T ; (H
1
2 (Γs))d). (1.30)

(2) Next, let y0 = {w0, w1, u0} ∈ D(A), characterized in Proposition 1.1. This
identifies p ∈ L2(Ωf ) via (1.17) or (1.18). Then

eA· y0 = {w( · ; y0), wt( · ; y0), u( · ; y0)} ∈ C([0, T ];D(A)); (1.31a)

and thus, via Proposition 1.1,

{w,wt, u} ∈ C([0, T ]; (H1(Ωs))d × (H1(Ωs))d × (H1(Ωf ))d); (1.31b)

{p( · ; y0), p( · ; y0)|Γs} ∈ C([0, T ];L2(Ωf )×H−
1
2 (Γs)), (1.32a)

∇p ∈ C([0, T ]; (H−1(Ωf ))d), (1.32b)
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where the harmonic pressure p is given by the following expression (see (1.17) or
equivalently the boundary value problem (1.2)):

p = Ds

{[(
∂u

∂ν
− ∂w

∂ν

)
· ν
]
Γs

}
+Nf

{
[Δu · ν]Γf

}
, (1.33)

and, moreover, with ŷ0 = Ay0 ∈ H:⎡⎢⎢⎣
wt( · ; y0)
wtt( · ; y0)
ut( · ; y0)

⎤⎥⎥⎦ = eAtAy0 =

⎡⎢⎢⎣
w( · ; ŷ0)
wt( · ; ŷ0)
u( · ; ŷ0)

⎤⎥⎥⎦ ∈ C([0, T ];H); (1.34)

∥∥eAtAy0
∥∥2
H + 2

∫ t

s

‖∇ut(τ ; y0)‖2Ωf
dτ =

∥∥eAsAy0
∥∥2
H , 0 ≤ s ≤ t. (1.35)

In particular,

ut( · ; y0) ∈ L2(0, T ; (H1(Ωf ))d). (1.36)

(3) The Hilbert space adjoint A∗ : H ⊃ D(A∗) → H, with D(A∗) = D(A), is
likewise maximal dissipative. Analogous regularity properties hold for the adjoint
problem, where the adjoint operator A∗ is given explicitly in [A-T.1].

Remark 1.3. In view of the characterization of the domain D(A) of A in Proposi-
tion 1.1, the regularity result (1.34) for [wt, wtt, ut] is much stronger than that in
[D-G-H-L.1, Thm. 3.2, p. 647], that requires

y0 = {w0, w1, u0} ∈ (H2(Ωs))d × (H2(Ωs))d × (H2(Ωf ))d. �

Remark 1.4. Here we point out the relevance and the implications of the problem
considered in this paper, whose main result is Theorem 2.1 below. By Proposition
1.1, a point {v1, v2, f} ∈ D(A) carries a smoothing of one unit (as measured in
the scale of Sobolev spaces) of the second and third components: v2 ∈ (H1(Ωs))d

and f ∈ (H1(Ωf ))d, over the basic regularity of the second and third component
spaces (L2(Ωs))d× H̃f of the energy space H in (1.15a). However, for {v1, v2, f} ∈
D(A), the first component carries no additional smoothing over the corresponding
first component space (H1(Ωs))d of H. [The resolvent R(λ,A) of the generator
A is not compact in the first component space [A-T.1].] This raises the following
question: how can one generate smoother solutions, if starting with I.C. in D(A)
is not enough for the first component w, the structure displacement. This issue
is important in the application of energy methods, which involve computations
requiring higher regularity of the solutions over that of the basic finite energy
space H, starting from I.C. which are still dense in H. One such case occurs when
studying the uniform stabilization problem [A-T.2], [A-T.3]. The present paper
addresses this issue: it provides a class of I.C., still dense in H, which guarantees
a higher regularity of the solution {w,wt, u} across the board. �
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2. The main result of higher regularity

Because of Theorem 1.2, we know that fluid-structure solution

[w,wt, u, p] ∈ C([0, T ]; (H1(Ωs))d × (H1(Ωs))d × (H1(Ωf ))d × L2(Ωf ));

u ∈ L2(0, T ; (H1(Ωf ))d), (2.0)

for initial [w0, w1, u0] ∈ D(A), continuously. We will ultimately show that the
mechanical displacement, fluid velocity and pressure term enjoy greater regularity,
if we assume a regularity of one unit more in w0. In fact, the main result of the
first part of this paper is as follows:

Theorem 2.1. Let the initial data {w0, w1, u0} ∈ D(A) in (1.1a–g) further satisfy
w0 ∈ (H2(Ωs))d. Then the solution [w,wt, u, p] of problem (1.1a–g) satisfies the
following extra spatial regularity, with continuous dependence on the data:

(a) w ∈ L∞(0, T ; (H2(Ωs))d); (2.1)

(b) u ∈ L2(0, T ; (H2(Ωf ))d); (2.2)

(c) p ∈ L2(0, T ;H1(Ωf )). (2.3)

For the most part, we shall only sketch the proofs of the main and supporting
results; the full details may be found in [A-L-T.1].

3. High-level initial conditions.
Regularity in the tangential direction

Broadly, the proof of Theorem 2.1 is based on two main steps. Step 1, the most
demanding, consists of obtaining the regularity of the solution {w,wt, u, p} in the
tangential direction; that is, when acted upon by a smooth first-order differential
operator which is tangential on the boundary Γs ∪ Γf . This is done in Theorem
3.1.1 below. Its proof is indicated in the present Section 3. Step 2 – and carried out
in Section 4 – deduces then the regularity of the relevant quantities in the normal
direction, by use of the equations (1.1a–b).

3.1. Slashing the variables u and w by a first-order
operator B on Ω, tangential to the boundary Γf ∪ Γs

We now initiate a space regularity analysis. It consists of two steps: In this section
we analyze regularity in the tangential direction, while an analysis of regularity in
the normal direction will be carried out in the next Section 4. Here we follow the
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pattern of, e.g., [L-L-T.1, p. 162, p. 166]. To this end, for 	 = 1, . . . , d− 1, let

B = B� =
∑d

i=1 b�i(ξ) ∂
∂ξi

= b�(ξ) · ∇ = first-order, scalar differential

operator with smooth coefficients b�( · ) = {b�,i( · )} on Ωf ∪ Ωs,
assumed to be tangential to Γs ∪ Γf ; that is, satisfying

b� · ν =
∑d

i=1 b�,iνi = 0 on Γs ∪ Γf ; ν = [ν1, . . . , νd] being the unit
normal vector on Γf ∪ Γs, outward with respect to Ωf (Fig. 1).

(3.1.1)

(For 	 = 1, . . . , d−1, such an operator B = B�, say on Γs, may be thought of as the
pre-image, under diffeomorphism via partition of unity from Ωs into the half-space
Rd
+ = {(x, y) : x > 0, y ∈ Rd−1} of the tangential derivative Dy�

, 	 = 1, . . . , d− 1,
on the boundary x = 0 of Rd [L-L-T.1, footnote, p. 162].) Of course, when d = 2,
then Dy�

= Dy.
We next convert the scalar operator B into a vector form, as usual, by setting

Bu = B[u1, . . . , ud]tr = [Bu1, . . . ,Bud]tr,

Bw = B[w1, . . . , wd]tr = [Bw1, . . . ,Bwd]tr.

Thus, the vector operator [B1, . . . ,Bd−1] corresponds to the tangential gradient
∇y =

[
∂

∂y1
, . . . , ∂

∂yd−1

]
in Rn. Finally, we apply the (vectorial) operator B across

problem (1.1a–g), and define new variables

ũ ≡ Bu; p̃ ≡ Bp; w̃ ≡ Bw, (3.1.2)

In these new variables, we will then obtain the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũt −Δũ +∇p̃ = Kf (u, p) in Qf
⎧⎪⎪⎪⎨⎪⎪⎪⎩ div ũ = [div,B] · u in Qf

w̃tt −Δw̃ + w̃ = Ks(w) in Qs

ũ ≡ 0 in Σf

B.C.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ũ = w̃t in Σs

∂ũ

∂ν
− ∂w̃

∂ν
= p̃ν + (div ν)(w̃ − ũ) + pν̃ in Σs

I.C. w̃0 = Bw0; w̃1 ≡ Bw1; ũ0 ≡ Bu0 in Ω,

(3.1.3a)

(3.1.3b)

(3.1.3c)

(3.1.3d)

(3.1.3e)

(3.1.3f)

(3.1.3g)

where Kf (u, p), Ks(w), [div,B] are the following commutators
Kf (u, p) ≡ [B,Δ]u− [B,∇]p on Qf ; Ks(w) ≡ [B,Δ]w on Qs; (3.1.4a)

[div,B]·u ≡ [[∂x1 ,B], . . . , [∂xd
,B]]·u ≡ [∂x1 ,B]u1+· · ·+[∂xd

,B]ud on Qf . (3.1.4b)
Justification of (3.1.3) is given in Appendix A. The main result of Section 3 is the
following regularity theorem for the problem (3.1.3a–g) in the slashed variables
{w̃, w̃t, ũ, p̃}.
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Theorem 3.1.1. Let initial data {w0, w1, u0} ∈ D(A) in (1.1a–g) further satisfy
w0 ∈ (H2(Ωs))d. Then, with reference to (3.1.1) we have the following: With
B = B�, 	 = 1, . . . , d − 1, the solution [w̃, w̃t, ũ, p̃] = [Bw,Bwt,Bu,Bp] of problem
(3.1.3a–g) satisfies

‖w̃‖L∞(0,T ;(H1(Ωs))d)
+ ‖w̃t‖L∞(0,T ;(L2(Ωs))d)

+ ‖ũ‖L2(0,T ;(H1(Ωf ))d)
+ ‖p̃‖L2(0,T ;L2(Ωf ))

≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖(H2(Ωs))d

)
. (3.1.5a)

In other words, if ∇y denotes the tangential gradient, then

‖∇yw‖L∞(0,T ;((H1(Ωs)(d−1)×d)) + ‖∇ywt‖L∞((0,T ;((L2(Ωs)(d−1)×d))

+ ‖∇yu‖L2(0,T ;(H1(Ωf )(d−1)×d)) + ‖∇yp‖L2(0,T ;(L2(Ωf )d−1))

≤ CT

(
‖w0, w1, u0]‖D(A) + ‖w0‖(H2(Ωs))d

)
. (3.1.5b)

The following subsections are devoted to showing the main intermediary steps
in the proof of Theorem 3.1.1.

A preliminary identity and estimate of slashed problem (3.1.3a–g). We in-
troduce the following notation for {w̃(t), w̃t(t), ũ(t)} ∈ H in (3.1.2):

Ew̃(t) ≡ ‖[w̃(t), w̃t(t)]‖2(H1(Ωs))d×(L2(Ωs))d

≡
∫
Ωs

[
|w̃(t)|2 + |∇w̃(t)|2 + |w̃t(t)|2

]
dΩs. (3.1.6)

Moreover, notation such as ‖f‖Ω will refer to the L2(Ω)-norm of f . The following
identity on problem (3.1.3a–g) is obtained by standard energy methods.

Proposition 3.1.2. With {w0, w1, u0} ∈ H, let {w̃0, w̃1, ũ0} be as defined in (3.1.2)
(or (3.1.3g)). Then, for all t, 0 < t ≤ T , the following identity holds true for
problem (3.1.3a–f), in the notation of (3.1.6):

Ew̃(t) + ‖ũ(t)‖2Ωf
+ 2

∫ t

0

∫
Ωf

|∇ũ|2dΩfdt

= Ew̃(0) + ‖ũ0‖2Ωf
+ 2

∫ t

0

∫
Ωs

Kf(u, p) · ũ dΩfds

+ 2
∫ t

0

∫
Ωs

Ks(w) · w̃t dΩsdt+ 2
∫ t

0

∫
Ωf

p̃[div,B] · u dΩfds

+ 2
∫ t

0

∫
Γs

(div ν)[w̃ − ũ] · ũ dΓsds+ 2
∫ t

0

pν̃ · ũ dΓsds. (3.1.7)
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Identity (3.1.7) is still not the ultimate form we are seeking. To obtain the
latter, we shall employ the following moment-type boundary inequality [B-S.1,
p. 39], or [Th.1, p. 26]: Let Ω be a general bounded domain in Rd, d ≥ 2, with
sufficiently smooth boundary ∂Ω. Then, there is a constant C∗ > 0 such that

‖h|∂Ω‖∂Ω ≤
√
C∗‖h‖

1
2
Ω ‖h‖

1
2
1,Ω, for any h ∈ H1(Ω), (3.1.8)

with C∗ independent of h, where ‖ · ‖1,Ω denotes the H1( · )-norm. Incorporating
this estimate in a majorization of (3.1.7) we then obtain

Theorem 3.1.3. With {w0, w1, u0} ∈ H, let {w̃0, w̃1, ũ0} be as defined in (3.1.2)
(or (3.1.3g)). Then, for 0 ≤ t ≤ T , the following inequality holds true for problem
(3.1.3a–f), for given ε > 0 arbitrary:

Ew̃(t) + ‖ũ(t)‖2(L2(Ωf ))d
+ (2 − 2ε)

∫ t

0

∫
Ωf

|∇ũ(s)|2dΩfds

≤ Ew̃(0) + ‖ũ0‖2(L2(Ωf ))d
+ 2

∣∣∣∣∣
∫ t

0

∫
Ωf

Kf(u, p) · ũ dΩfds

∣∣∣∣∣
+ 2

∣∣∣∣∫ t

0

∫
Ωs

Ks(w) · w̃t dΩsds

∣∣∣∣
+ 2

∣∣∣∣∣
∫ t

0

∫
Ωf

p̃ [div,B] · u dΩfds

∣∣∣∣∣+ 2
∣∣∣∣∫ t

0

∫
Γs

pν̃ · ũ dΓsds

∣∣∣∣
+ ε

∫ t

0

‖w̃(s)‖2(H1(Ωs))d
ds+

C

ε

∫ t

0

[
‖w̃‖2Ωs

+ ‖ũ‖2Ωf

]
ds. (3.1.9)

Corollary 3.1.4. Let {w0, w1, u0} ∈ D(A) as given in Proposition 1.1. Then recall-
ing B in (3.1.1), (3.1.2), and Ew̃( · ) in (3.1.6), we obtain:

(a)

w̃ ≡ Bw ∈ C([0, T ]; (L2(Ωs))d); w̃t ≡ Bwt ∈ C([0, T ]; (L2(Ωs))d); (3.1.10a)

ũ ≡ Bu ∈ C([0, T ]; (L2(Ωf ))d); (3.1.10b)∫ T

0

[
‖w̃‖2Ωf

+ ‖ũ‖2Ωf

]
ds = O

{
‖[w0, w1, u0]‖2D(A)

}
. (3.1.11)

(b) Assume further that w0 ∈ (H2(Ωs))d. Then:

{w0, w1, u0} ∈ D(A), w0 ∈ (H2(Ωs))d ⇒

w̃0 ∈ (H1(Ωs))d; w̃1 ∈ (L2(Ωs))d; ũ0 ∈ (L2(Ωf ))d; (3.1.12)
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Ew̃(0) + ‖ũ0‖2Ωf

=
∫
Ωs

[
|Bw0|2 + |∇(Bw0)|2 + |Bw1|2

]
dΩs + ‖Bu0‖2Ωf

(3.1.13)

= O
{
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ωs

}
. (3.1.14)

(c) Accordingly, with {w0, w1, u0} ∈ D(A), w0 ∈ (H2(Ωs))d, and with refer-
ence to estimate (3.1.9), for 0 ≤ t ≤ T :

‖w̃(t)‖2(H1(Ωs))d
+‖w̃t(t)‖2(L2(Ωs))d

+‖ũ(t)‖2(L2(Ωf ))d
+(2− 2ε)

∫ t

0

∫
Ωf

|∇ũ(t)|2dΩfds

≤ 2
∣∣∣∣ ∫ t

0

∫
Ωf

Kf (u, p) · ũ dΩfds

∣∣∣∣+ 2
∣∣∣∣ ∫ t

0

∫
Ωs

Ks(w) · w̃t dΩsds

∣∣∣∣
+ 2

∣∣∣∣ ∫ t

0

∫
Ωf

p̃ [div,B] · u dΩfds

∣∣∣∣+ ε

∫ t

0

‖w̃(s)‖2(H1(Ωs))d
ds

+ 2
∣∣∣∣∫ t

0

∫
Γs

pν̃ · ũ dΓsds

∣∣∣∣+ CT,ε

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ωs

)
, 0 ≤ t ≤ T.

(3.1.15)

Orientation. In estimate (3.1.15), there are three more terms we shall esti-
mate in the original Ωf by using the a priori regularity of Theorem 1.2(2) for
[w0, w1, u0] ∈ D(A). These are: (i) the penultimate and ultimate integrals on the
RHS of (3.1.15), one in the interior of Ωf involving the integrand p̃ [div,B] · u and
one on the boundary of Γs involving pν̃ · u; and (ii) the integral involving the
component [B,∇]p of the commutator Kf (u, p) (see (3.1.4a)) in the first integral
on the RHS of (3.1.15).

In our next step, we estimate the penultimate integral on the RHS of (3.1.15)
involving p̃ [div,B] · u.

Proposition 3.1.5. Let {w0, w1, u0} ∈ D(A). Then, with reference to the third
integral on the RHS of (3.1.15), we have

2
∣∣∣∣ ∫ t

0

∫
Ωf

p̃ [div,B] · u dΩfds

∣∣∣∣ ≤ εC

∫ t

0

‖∇ũ‖2Ωf
ds+ Cε,T ‖[w0, w1, u0]‖2D(A).

(3.1.16)

Next, we estimate the two integrals on the RHS of (3.1.15) involving the
terms [B,∇]p and pν̃ · ũ, the former being part of the commutator Kf(u, p) in
(3.1.4a).
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Proposition 3.1.6. Let [w0, w1, u0] ∈ D(A). Then, with reference to the first integral
on the RHS of (3.1.15) involving Kf(u, p) = [B,Δ]u− [B,∇]p on Qf , see (3.1.4a),
we have for all ε > 0:

2
∣∣∣∣ ∫ t

0

∫
Ωf

[B,∇]p · ũ dΩfds

∣∣∣∣+ 2
∣∣∣∣∫ t

0

∫
Γs

pν̃ · ũ dΓsds

∣∣∣∣
≤ εC

∫ t

0

‖∇ũ‖2Ωf
dΩf + Cβ,ε‖[w0, w1, u0]‖2D(A). (3.1.17)

Using now estimate (3.1.16) of Proposition 3.1.5 and estimate (3.1.17) of
Proposition 3.1.6 on the RHS of inequality (3.1.31), with Kf(u, p) = [B,Δ]u −
[B,∇]p, and recalling Ks(w) = [B,Δ]w, we finally obtain:

Theorem 3.1.7. Let [w0, w1, u0] ∈ D(A), w0 ∈ (H2(Ωs))d. Then, with reference to
estimate (3.1.15), we obtain for 0 ≤ t ≤ T :

‖w̃(t)‖2(H1(Ωs))d
+ ‖w̃t(t)‖2(L2(Ωs))d

+ ‖ũ(t)‖2L2(Ωf ))d

+ (2− Cε)
∫ t

0

∫
Ωf

|∇ũ(t)|2dΩfds

≤ 2
∣∣∣∣ ∫ t

0

∫
Ωf

[B,Δ]u · ũ dΩfds

∣∣∣∣+ 2
∣∣∣∣ ∫ t

0

∫
Ωs

[B,Δ]w · w̃tdΩsds

∣∣∣∣
+ ε

∫ t

0

‖w̃‖2(H1(Ωs))d
ds+ CT,ε

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖2(H2(Ωs))d

)
.

(3.1.18)

3.2. Analysis of the commutator terms [B,Δ]u and [B,Δ]w in the half-space

Orientation. The commutator [B,Δ], which appears on the RHS of estimate
(3.1.18) of Theorem 3.1.7, as acting on u or on w, is of order 1+2−1 = 2. When act-
ing as ([B,Δ]u, ũ)Qf

, we can give a gross analysis as follows. A priori, we have u ∈
L2(0, T, (H1(Ωf ))d) via (1.29), for [w0, w1, u0] ∈ H (or u ∈ C([0, T ]; (H1(Ωf ))d)
via (1.31b) for [w0, w1, u0] ∈ D(A)). Thus (∗) : [B,Δ]u ∈ L2(0, T ; (H−1(Ωf ))d) for
the second-order operator [B,Δ]. But this regularity (∗) of [B,Δ]u is not enough
to handle in ([B,Δ]u, ũ)Qf

the regularity of ũ ∈ L2(0, T ; (H1(Ωf ))d), which would
be required to have the term ε

∫ T

0

∫
Ωf
|∇ũ|2dΩfdt – which would arise in esti-

mating the RHS of (3.1.18) – absorbed by the term (2 − Cε)
∫ T

0

∫
Ωf
|∇ũ|2dΩfdt,

which is present on the LHS of (3.1.18). This gross analysis is even more in-
adequate while considering the term (Ks(w), w̃t)Qs ≡ ([B,Δ]w, w̃t)Qs . A priori,
w ∈ C([0, T ]; (H1(Ωs))d), hence [B,Δ]w ∈ C([0, T ]; (H−1(Ωs))d), while the veloc-
ity term w̃t is required to be in C([0, T ]; (L2(Ωs))d), in order to have the term
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ε‖w̃t‖2C([0,T ];(L2(Ωs))d)
which would arise in estimating the RHS of (3.1.18) ab-

sorbed by the term 1‖w̃t‖C([0,T ];(L2(Ωf )) which comes from the LHS of (3.1.18).
Accordingly, a more refined analysis of the commutator terms is needed. This will
be carried out in the half-space, where it will be more transparent and precise. In
particular, this more refined analysis will permit us to see that the counterpart
of the commutator [B,Δ] in the half-space is, yes, a second-order operator, but
only in the tangential direction: this latter feature will then be instrumental in
obtaining the sought-after energy estimate for {w̃, w̃t, ũ} from estimate (3.1.18).

Reduction to Melrose-Sjöstrand coordinates over a collar domain. As Δ =
∂2

∂ξ2
1
+ · · ·+ ∂2

∂ξ2
d
in problem (1.1) or (3.1.3) over the original domain Ω = Ωf ∪Ωs is a

second-order differential operator on Ω with real (principal) symbol −(ζ21+· · ·+ζ2d)
and with non-characteristic boundary, then near any point ξ ∈ Γs, respectively,
ξ ∈ Γf , we may choose [M-S.1, pp. 597–598] local coordinates (x, y), x ∈ R1, y =
[y1, . . . , yd−1] ∈ Rd−1, centered at ξ, such that Ωs is locally given by −1 ≤ x < 0,
|y| ≤ 1, and Ωf is locally given by 0 ≤ x < 1, |y| ≤ 1 in the first case ξ ∈ Γs; while
Ωf is given locally by 0 ≤ x ≤ 1, |y| ≤ 1 in the second case ξ ∈ Γf . Moreover, the
Laplacian Δ is replaced by

Δ̂ = D2
x + ρ(x, y) ·D2

y + (	.o.t. in Dy) = D2
x +

∑
|α|=2

ρα(x, y)Dα
y + 	.o.t., (3.2.1a)

where our notation is as follows:

Dx =
∂

∂x
; ∇y =

[
∂

∂y1
, . . . ,

∂

∂yd−1

]
; Dα

y =
∂α1

∂y1
· · · ∂

αd−1

∂yd−1
, α = (α1, . . . , αd−1),

(3.2.1b)
with ρ(x, y) a vector real and smooth. Also, the term “	.o.t.” denotes here a dif-
ferential operator of at most first order in y.

•
ξ�

��
���

•ξ

Γf

Γs

Ωf

Ωs

M ∂M

��
���

M

�
M-S

coordinates

	M-S

coordinates
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1

−1

1

Ω∗f

We also recall that passage, under the aforementioned diffeomorphism, from
Ω to R+

d preserves the norms and the inner products [L-M.1, p. 35]. Thus, hence-
forth, we may consider problem (3.1.3a–g) as defined in the collar domain

Ω∗ = Ω∗f ∪ Ω∗s; Ω∗s = {(x, y) : −1 < x < 0; |y| < 1},

Ω∗f = {(x, y) : 0 < x < 1; |y| < 1}, (3.2.2)

where Δ is replaced by Δ̂ as given in Ω∗ by (3.2.1a) and the vector ρ(x, y) is
real and smooth on the closure c	(Ω∗) of Ω∗. Such a new problem over Ω∗ may be
viewed as corresponding to the original problem (3.1.3), defined, however, only over
a boundary (collar) subdomain M of Ω and acting on the solution {w, u} having
compact support on ∂M in the case ξ ∈ Γs, and on the internal part ∂M ∩ Ωf of
∂Ω in the case ξ ∈ Γf , after the change of coordinates ξ = (ξ1, . . . , ξd) ∈ M →
(x, y)→ Ω∗.

Consequently, the new problem over Ω∗ with Δ̂ given here by (3.2.1a) may
be considered for solution {w, u} vanishing as follows:

for the case ξ ∈ Γs : w has compact support for x = −1 and for |y| = 1,

u has compact support for x = 1 and for |y| = 1; (3.2.3)

for the case ξ ∈ Γf : u has compact support for x = 1 and for |y| = 1. (3.2.4)

As finitely many subdomains such as M will cover the full collar of Γ =
Γf∪Γs, estimates obtained for the new problem over Ω∗ will provide corresponding
estimates of the original problem, in part by the invocation of a partition of unity.

After applying said partition of unity, it will suffice to consider a boundary
layer of Ω. Indeed, a partition corresponding to the interior of Ω will be mapped
onto a compactly supported set, in which case, both wave and fluid are decoupled
– as the boundary conditions imposed on both wave and fluid are zero (Dirichlet
B.C.). For these, standard regularity theory for both wave and fluid then applies.

The commutator [B,Δ] on the half-space. In both cases, ξ ∈ Γs and ξ ∈ Γf ,
the first-order operator B of (3.1.1), tangential on the boundaries Γs ∪Γf , may be
thought of as the pre-image – under the diffeomorphism via partition of unity from
Ωf , resp.,Ωs, into the half-space Rd

+ = {(x, y) : x ∈ R+, y ∈ Rd−1} (resp., Rd
− =
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{(x, y) : x ∈ R−, y ∈ Rd−1}) – of the tangential derivative Dy�
, 	 = 1, . . . , d− 1,

on the boundary x ≡ 0 on Rd [L-L-T.1, footnote, p. 162]. Thus,

the commutator [B,Δ] on Ω goes into
the commutator [Dy�

, Δ̂] on Ω∗.
(3.2.5)

We can then compute explicitly such commutator: from (3.2.1), with

	 = 1, . . . , d− 1 and Dy�
=

∂

∂y�
,

we obtain

Dy�
Δ̂ = Dy�

[D2
x + ρ(x, y) ·D2

y + 	.o.t.]

= Dy�

[
D2

x +
∑
|α|=2

ρα(x, y)Dα
y + 	.o.t.

]
=

[
D2

x +
∑
|α|=2

ρα(x, y)Dα
y

]
Dy�

+
∑
|α|=2

∂ρα(x, y)
∂y�

Dα
y +Dy�

[	.o.t.]

=
[
D2

x + ρ(x, y) ·D2
y

]
Dy�

+ ρy�
(x, y) ·D2

y +Dy�
[	.o.t.]

= Δ̂Dy�
+

∑
|α|=2

∂ρα(x, y)
∂y�

Dα
y + [Dy�

, 	.o.t.]

= Δ̂Dy�
+ ρy�

(x, y) ·D2
y + 	.o.t.

(3.2.6a)

(3.2.6b)

(3.2.6c)

(3.2.6d)

(3.2.6e)

Thus

[B,Δ] in Ω→ [Dy�
, Δ̂] = ρy(x, y) ·D2

y + 	.o.t. on Ω∗

=
∑
|α|=2

∂ρα(x, y)
∂y�

Dα
y + 	.o.t. on Ω∗,

(3.2.7a)

(3.2.7b)

where 	.o.t. denotes a differential operator of at most first order.
Thus, in Ω∗ the commutator in question is, yes, of second order, but only in

the tangential direction y, a big advantage – as we shall see in the analysis below –
over the gross assessment in the Orientation that [B,Δ] is of order 1+2−1 = 2 in
all variables! Thus, estimate (3.1.18) of Theorem 3.1.7 is rewritten in the half-space
via (3.2.7) as
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Theorem 3.2.1. Let [w0, w1, u0] ∈ D(A), w0 ∈ (H2(Ω∗s))
d. Then, with ũ = Bu =

B�u and w̃ = Bw = B�w as in (3.1.2),

‖w̃(t)‖21,Ω∗s + ‖w̃t(t)‖2Ω∗s + ‖ũ(t)‖
2
Ω∗f

+ (2− Cε)
∫ t

0

∫
Ω∗f

|∇ũ(s)|2dΩfds

≤ 2
∣∣∣∣ ∫ t

0

∫
Ω∗f

(Dy�
ρ) · (D2

yu) · ũ dΩ∗fds
∣∣∣∣+ 2

∣∣∣∣ ∫ t

0

∫
Ω∗s

(Dy�
ρ) · (D2

yw) · w̃t dΩ∗fds
∣∣∣∣

+ ε

∫ t

0

‖w̃(s)‖21,Ω∗sds+ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ω∗s

)
. (3.2.8)

Proceeding with the analysis, we see that on the half-space, we have ũ =
Dy�

u, hence for 	 = 1, . . . , d− 1,

|∇ũ|2 = |Dx(Dy�
u)|2 + |Dy(Dy�

u)|2. (3.2.9)

For the first integral over
∫ t

0

∫
Ω∗f

on the RHS of (3.2.8), we estimate, since ρ
is smooth:

2

∣∣∣∣∣
∫ t

0

∫
Ω∗f

(Dy�
ρ) · (D2

yu) · (Dy�
u)dΩ∗fds

∣∣∣∣∣
≤ ε

∫ t

0

∫
Ω∗f

|D2
yu|2dΩ∗fds+

C

ε

∫ t

0

∫
Ω∗f

|Dy�
u|2dΩ∗fds (3.2.10)

≤ ε

∫ t

0

∫
Ω∗f

|D2
yu|2dΩ∗fds+O

{
‖{w0, w1, u0}‖2D(A)

}
, (3.2.11)

where in going from (3.2.10) to (3.2.11), we have invoked once more the a priori
regularity for u in (1.31). Similarly, as to the second integral this time over

∫ t

0

∫
Ω∗s

on the RHS of (3.2.8), we likewise estimate

2

∣∣∣∣∣
∫ t

0

∫
Ω∗s

(Dyρ) · (D2
yw) · (Dy�

wt)dΩ∗sds

∣∣∣∣∣
≤ ε

∫ t

0

∫
Ω∗s

|D2
yw|2dΩ∗sds+

C

ε

∫ t

0

∫
Ω∗s

|Dy�
wt|2dΩ∗sds (3.2.12)

≤ ε

∫ t

0

∫
Ω∗s

|D2
yw|2dΩ∗sds+O

{
‖{w0, w1, u0}‖2D(A)

}
, (3.2.13)
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recalling, in the last step, the regularity result Dy�
wt ∈ C([0, T ]; (L2(Ω∗s))

d) from
(1.31b). Invoking both (3.2.11) and (3.2.13) on the RHS of (3.2.8) yields via (3.2.9)

‖Dy�
w(t)‖21,Ω∗s + ‖Dy�

wt(t)‖2Ω∗s + ‖Dy�
u(t)‖2Ω∗f

+ (2− Cε)
∫ t

0

∫
Ω∗f

[|Dy(Dy�
u)|2 + |Dx(Dy�

u)|2]dΩ∗fds

≤ ε

∫ t

0

∫
Ω∗

f

|D2
yu|2dΩ∗fds+ ε

∫ t

0

∫
Ω∗s

|D2
yw|2dΩ∗sds+ ε

∫ t

0

‖Dy�
w(s)|21,Ω∗sds

+ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ωs

)
, 	 = 1, . . . , d− 1.

(3.2.14a)
This estimate is valid for all 	 = 1, . . . , d−1. Summing up these d−1 estimates

we thereby obtain for all 0 ≤ t ≤ T ,

‖Dyw(t)‖21,Ω∗s + ‖Dywt(t)‖2Ω∗s + ‖Dyu(t)‖2Ω∗f

+ (2− Cε)
∫ t

0

∫
Ω∗

f

[|D2
yu|2 + |Dx(Dyu)|2]dΩ∗fds

≤ (d− 1)ε
∫ t

0

∫
Ω∗

f

|D2
yu|2dΩ∗fds+ (d− 1)ε

∫ t

0

∫
Ω∗s

|D2
yw|2dΩ∗fds

+ (d− 1)ε
∫ t

0

‖Dyw(s)‖21,Ω∗sds+ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ω∗s

)
.

(3.2.14b)
But the first term (d−1)ε

∫ t

0

∫
Ω∗f
|D2

yu|2dΩ∗fds on the RHS of (3.2.14b) is absorbed
by the corresponding term on the LHS of (3.2.14b) with factor (2−Cε); moreover,
the second term in w on the RHS of (3.2.14b) is absorbed by the stronger third
term. Thus, (3.2.14) yields (after possibly rescaling ε > 0):

‖Dyw(t)‖21,Ω∗s + ‖Dywt(t)‖2Ω∗s + ‖Dyu(t)‖2Ω∗f

+ (2− Cε)
∫ t

0

∫
Ω∗f

[|D2
yu|2 + |Dx(Dyu)|2]dΩ∗fds

≤ 2ε
∫ t

0

‖Dyw‖21,Ω∗sds+ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ω∗s

)
. (3.2.15)

Next, setting

v(t) ≡ ‖Dyw(t)‖21,Ω∗s ; KT = CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ω∗s

)
, (3.2.16)

we obtain from (3.2.15) dropping three positive terms

v(t) ≤ KT + 2ε
∫ t

0

v(s)ds, 0 < t ≤ T. (3.2.17)
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Then, Gronwall’s inequality implies

v(t) ≤ KT e
2εt, or for 0 < t ≤ T,

‖Dyw(t)‖21,Ω∗s ≤ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ω∗s

)
e2εt. (3.2.18)

Using (3.2.18) on the RHS of estimate (3.2.15), then yields for 0 < t ≤ T :

‖Dyw(t)‖21,Ω∗s

+ ‖Dywt(t)‖2Ω∗s + ‖Dyu(t)‖2Ω∗f + (2 − Cε)
∫ t

0

∫
Ω∗f

|∇(Dyu)|2dΩ∗f ds

≤ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ωf

)
. (3.2.19)

The counterpart of estimate (3.2.19), this time on the original domain Ω =
Ωs ∪ Ωf via the diffeomorphism into Rd, in terms of the variables w̃ = Bw, w̃t =
Bwt, ũ = Bu in (3.1.2), where B = B�, 	 = 1, . . . , d− 1, is then, still for 0 < t ≤ T :
For 	 = 1, . . . , d− 1,

‖w̃(t)‖21,Ωs
+ ‖w̃t(t)‖2Ωs

+ ‖ũ(t)‖2Ωf
+ (2− Cε)

∫ t

0

∫
Ωf

|∇ũ|2dΩf ds

≤ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖22,Ωf

)
. (3.2.20)

Then, (3.2.20) proves estimate (3.1.5a–b) of Theorem 3.1.1, save for the pres-
sure term. To handle also p̃ = Bp, see (3.1.2): In part by a classic result in Stokes
theory (e.g., [C-F.1], Prop. 1.7(ii), p. 7) and appropriate usage of the slashed fluid
equation (3.1.3a), we can eventually obtain as in [A-L-T.1], the chain

‖p̃‖L2(0,T ;L2(Ωf ))

≤ C1

[
‖∇p̃‖L2(0,T ;(L2(Ωf ))d)

+ ‖[w0, w1, u0]‖D(A)
]

≤ C2

[
‖∇ũ‖L2(0,T ;(L2(Ωf ))d×d) + ‖[w0, w1, u0]‖D(A)

]
. (3.2.21)

This estimate, combined with that in (3.2.20) will now provide the full statement
of Theorem 3.1.1, upon summing up in the index 	.

4. Sketch of proof of Theorem 2.1

4.1. Boosting the regularity for the structural component w:
Proof of Theorem 2.1(a)

Having established Theorem 3.1, we could then return to the original domain Ωs

and carry out on Ωs the arguments of the present subsection. However, alterna-
tively, it may still be more transparent to continue to work on Ω∗s. The analysis of
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Section 3 has established that for [w0, w1, u0] ∈ D(A), w0 ∈ (H2(Ω∗s))
d, then

∇yw(t, x, y) ∈ L∞
(
0, T ; (H1(Ω∗s))

(d−1)×d
)
, (4.1.1a)

with continuous dependence on the I.C.; that is

‖∇yw‖2L∞(0,T ;(H1(Ω∗s)(d−1)×d) ≤ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖2(H2(Ω∗s))d

)
.

(4.1.1b)
Hence, by trace theory on Γ∗s:

∇yw(t, 0, y) ∈ L∞(0, T ; (H
1
2 (Γ∗s))

d×d), (4.1.2)

that is,
w(t, 0, y) ∈ L∞(0, T ; (H

3
2 (Γ∗s))

d), (4.1.3a)

‖w|Γ∗s‖L∞(0,T ;(H
3
2 (Γ∗s))d)

≤ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖2(H2(Ω∗s ))d

)
. (4.1.3b)

In terms of the original domain Ωs, (4.1.3) says

‖w|Γs‖L∞(0,T ;(H
3
2 (Γs))d)

≤ CT

(
‖[w0, w1, u0]‖2D(A) + ‖w0‖2(H2(Ωs))d

)
, (4.1.4)

a result that could be shown directly on Ωs, using w̃ = Bw, B = B�, 	 = 1, . . . , d−
1, B a tangential operator on Γs. Moreover, the a priori regularity (1.34) gives:
[w0, w1, u0] ∈ D(A)⇒ wtt ∈ C([0, T ]; (L2(Ωs))d). This, combined with (4.1.4) and
a-fortiori (1.27) for w, yields then

‖w|Γs‖L∞(0,T ;(H
3
2 (Γs))d)

+ ‖wtt + w‖C([0,T ];(L2(Ωs))d)

≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
. (4.1.5)

Thus, we have that, pointwise in time, w(t) is the solution of the elliptic
BVP ⎧⎨⎩ Δw = wtt(t) + w(t) ∈ C([0, T ]; (L2(Ωs))d);

w = w(t)|Γs ∈ L∞(0, T ; (H
3
2 (Γs))d),

(4.1.6a)

(4.1.6b)

from which
w ∈ L∞(0, T ; (H2(Ωs))d) (4.1.7)

now follows from classical elliptic theory. Thus, Theorem 2.1(a), Eqn. (2.1) is
established.

4.2. Boosting the regularity for fluid components {u, p}:
Proof of Theorem 2.1(b)–(c)

In this subsection we shall present two approaches; one obtained in Ω∗f and one
obtained in Ωf .

An approach in Ω∗f . Under the diffeomorphism, via partition of unity, from the
original fluid equation mapped into Ω∗f , the original differential operators Δ and
∇ (in the original variables (ξ1, . . . , ξd)), occurring in the original fluid equation
(1.1a), are mapped respectively into the M-S form Δ̂ given by (3.2.1a) and into
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the operator ∇̂ = [Dx, ρ(x, y)∇y ]; see Appendix B of [A-L-T.1]. This way, the
original pressure term ∇p (in the original variables ξ1, . . . , ξd) is mapped into
∇̂p = [Dxp, ρ(x, y)∇yp], where ρ(x, y) is a smooth coefficient of x and y. Thus, in
Q∗f = (0, T )×Ω∗f , the counterpart of Eqn. (1.1a), originally defined in Qf , is now:

ut − Δ̂u+ ∇̂p = 0,

or

ut −D2
xu−

∑
|α|=2

ρα(x, y)Dα
y u+

[
Dxp

ρ(x, y)∇yp

]
+ 	.o.t.(u) = 0. (4.2.1)

Step 1. We shall first obtain the desired estimates for the terms D2
xu2, . . .,

D2
xud, where u = [u1, . . . , ud]. To this end, we put on one side all the quantities

which have already been estimated in (3.2.19) on Ω∗f , ultimately in (3.1.5) of
Theorem 3.1.1 in Qf . We then re-write (4.2.1) as

D2
xu−

[
Dxp

0

]
= ut−

∑
|α|=2

ρα(x, y)Dα
y u+

[
0

ρ(x, y)∇yp

]
+	.o.t.(u) ≡ F. (4.2.2)

Next, for initial conditions [w0, w1, u0] ∈ D(A) with w0 ∈ (H2(Ωs))d, the
regularity of the forcing term F on the RHS of (4.2.2) is F ∈ L2(0, T ; (L2(Ω∗f ))

d),
continuously in the initial conditions:

‖F‖L2(0,T ;(L2(Ω∗f ))
d) ≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
. (4.2.3)

Indeed, to establish (4.2.3), we recall that: ut ∈ L2(0, T ; (H1(Ωf ))d) by (1.36); and
moreover from Theorem 3.1.1 (or estimates (3.2.19) and (3.2.21)),

‖∇yu‖L2(0,T ;(H1(Ω∗f ))
(d−1)×d) + ‖∇yp‖L2(0,T ;(L2(Ω∗f ))

d)

≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
.

These estimates collectively give (4.2.3). We now return to equation (4.2.2), where
D2

xu = [D2
xu1, . . . , D

2
xud]tr. Then, via (4.2.3) on F , we obtain the following regu-

larity results:

(a)
∥∥D2

xu1 −Dxp
∥∥

L2(0,T ;L2(Ω∗f ))

≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
; (4.2.4)

(b)
∥∥D2

xu2
∥∥

L2(0,T ;L2(Ω∗f ))
+ · · ·+

∥∥D2
xud

∥∥
L2(0,T ;L2(Ω∗f ))

≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
. (4.2.5)
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Step 2. Here, to obtain a similar regularity for component D2
xu1, we use the

fact that u is solenoidal in Ωf ; see (1.1b):

div(u) =
∂

∂ξ1
u1 + · · ·+

∂

∂ξd
ud = 0 in Ωf . (4.2.6)

Under the diffeomorphism via partition of unity, the original term div(u) (in the
(ξ1, . . . , ξd) variables) is mapped into the term

d̂iv(u) =
∂

∂x
u1 +

∂

∂y2
u2 + · · ·+

∂

∂yd−1
ud + 	.o.t(u) in Ω∗f ,

where 	.o.t(u) is of zero order; see Appendix B of [A-L-T.1]. Since d̂iv(u) = 0, we
then obtain

∂

∂x
u1 = −

(
∂

∂y1
u2 + · · ·+

∂

∂yd−1
ud

)
+ 	.o.t(u) in Ω∗f . (4.2.7)

Differentiating both sides of (4.2.7) in x thus yields

D2
xu1 = −Dx

(
∂

∂y1
u2 + · · ·+

∂

∂yd−1
ud

)
+Dx[	.o.t(u)] in Ω∗f . (4.2.8)

So, for [w0, w1, u0] ∈ D(A), w0 ∈ (H2(Ωs))d, we have, upon combining (4.2.5)
with the estimates (3.2.19) on Ω∗f (or Theorem 3.1.1 on Ωf ) and (1.29),∥∥D2

xu1
∥∥

L2(0,T ;L2(Ω∗f ))

≤ CT

⎧⎨⎩
d∑

j=2

‖Dyuj‖L2(0,T ;H1(Ω∗f ))
+ ‖∇u‖L2(0,T ;(L2(Ω∗f ))

d×d)

⎫⎬⎭ (4.2.9)

≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
. (4.2.10)

Finally, returning to (4.2.4), and applying (4.2.10) thereto, we arrive at

‖Dxp‖L2(0,T ;L2(Ω∗f ))
≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
. (4.2.11)

Now, (4.2.10) along with (4.2.5) provide the desired result for the term D2
xu:∥∥D2

xu
∥∥

L2(0,T ;(L2(Ω∗f ))
d)
≤ CT

(
‖[w0, w1, u0]‖D(A) + ‖w0‖2,Ωs

)
. (4.2.12)

Then (4.2.12) for the normal regularity and (3.1.5) for the tangential reg-
ularity of component u establish (2.2) of Theorem 2.1 for u. Finally, combining
(4.2.11) for the normal derivative of p, and (3.1.5) for the tangential derivative of
p, establishes (2.3) of Theorem 2.1 for the pressure term of system (1.1). Theorem
2.1 is proved.

An alternative approach of Step 2 above in (a collar of the boundary of Ωf

may be given [A-L-T.1].



Beyond Lack of Compactness and Stability 25

5. Uniform stability of the fluid-structure dynamics

5.1. The fluid-structure PDE model (1.1a)–(1.1g) under
boundary feedback dissipation

Given the seemingly strong dissipation coming from the gradient fluid component
of the PDE system (1.1a)–(1.1g) – viz., see the relation in (1.28) – one might be
tempted to conjecture that solutions of this fluid-structure model surely decay to
the zero state in longtime. However, for any given boundary interface Γs there will
be at least one eigenvalue of A : H → H on the imaginary axis, thereby precluding
the possibility of asymptotic decay. In particular, the point λ = 0 will always be an
eigenvalue, with readily identifiable one-dimensional eigenspace (see [A-T.1], also
[A-T.4], where the spectral analysis is undertaken for the more physically relevant
Stokes-Lamé system). For some structural geometries – e.g., when Ωs is a circle in
R2 or a sphere in R3 – there are actually countably infinite eigenvalues on iR.

In the best possible geometrical situation (from the point of view of stability);
i.e., when λ = 0 is the only eigenvalue of A on iR, a nonstandard argument is
invoked in [A-T.1], which ultimately invokes the spectral criterion of [Ar-Ba] and
[Ly-Ph], so as to infer strong stability for solutions of the fluid-dynamics PDE
(1.1a)–(1.1g), for initial data {w0, w1, u0} ∈ [Null(A)]⊥. (Recall from Proposition
1.1 that the resolvent ofA is not a compact operator; so classic invariance principles
cannot be appealed to in order to quickly infer strong decay of fluid-structure
solutions.)

Here instead, we are concerned with a notion much stronger than that of
asymptotic decay; namely, we are seeking a result of uniform stability on all of H,
for solutions of the fluid-structure dynamics under appropriate dissipative feed-
back. From our remarks above, it is clear that an additional feedback mechanism
will be necessary for such decay on all of the energy space H.

In view of this necessity, we consider the following fluid structure PDE under
additional Neumann boundary dissipation in one of the transmission conditions
on Γs:

PDEs

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut −Δu+∇p = 0 in (0, T )× Ωf

div u = 0 in (0, T )× Ωf

wtt −Δw + w = 0 in (0, T )× Ωs

(5.1.1)

B.C.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂ν
=

∂w

∂ν
+ pν on (0, T )× Γs

u|Γf
= 0 on (0, T )× Γf[

wt −
∂w

∂ν

]
Γs

= u|Γs
on (0, T )× Γs

(5.1.2)

I.C. [w(0), wt(0), u(0)] = [w0, w1, u0] ∈ H (5.1.3)
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In short, the boundary condition wt|Γs
= u|Γs

of (1.1a)–(1.1g) is replaced by[
wt − ∂w

∂ν

]
Γs

= u|Γs
, which is consistent with [S.1]. This latter expression, as we

shall see, induces an additional structural dissipation.
Let now (feedback) operator AF : H → H model the dynamics of (5.1.1)–

(5.1.3). Then from our preceding remarks, we likewise infer that AF generates
a C0-semigroup

{
eAF t

}
t≥0 ⊂ H (as did the original fluid-structure model A; see

[A-T.1], [A-T.2]). Thus, analogous to the regularity result in Theorem 1.2, we have
the following continuous map for solutions of the PDE (5.1.1)–(5.1.3) (see [A-T.2]):

[w0, w1, u0] ∈ H (5.1.4)

⇒
{
[w,wt, u], u,

∂w

∂ν

∣∣∣∣
Γs

}
∈ C([0, T ];H)× L2(0, T ; [H1(Ωf )]d × L2(Γs)).

In particular, to justify the asserted L2-in time regularity in (5.1.4), we can invoke
a simple energy method, as was employed for relation (1.26), so as to have the
dissipative relation for all 0 ≤ s ≤ t <∞,∥∥∥∥∥∥eAF t

⎡⎣ w0
w1
u0

⎤⎦∥∥∥∥∥∥
2

=

∥∥∥∥∥∥eAF s

⎡⎣ w0
w1
u0

⎤⎦∥∥∥∥∥∥
2

−2
∫ t

s

‖∇u‖2Ωf
dτ−2

∫ t

s

∥∥∥∥∂w∂ν
∥∥∥∥2
Γs

dτ (5.1.5)

cf., (1.28). Moreover, as was shown outright in [A-T.2], σ(AF ) ∩ iR = ∅, and
so by an appeal to said spectral criterion in [Ar-Ba], the semigroup

{
eAF

}
t≥0

is strongly stable. Subsequently, we can turn our attention to the question of
whether the Neumann dissipative term in (5.1.5) gives rise to exponential decay
for the semigroup

{
eAF t

}
t≥0, or what is the same, solutions of the boundary

damped fluid-structure PDE model (5.1.1)–(5.1.3). In particular, the property of
exponential decay being satisfied means there exist positive constants C and ρ,
say, such that for all t > 0, ∥∥eAF t

∥∥
L(H) ≤ Ce−ρt. (5.1.6)

Given the dissipative relation (5.1.5), to establish the uniform decay estimate
(5.1.6) for the fluid-structure model, it suffices from a classic argument (see [Bal])
to show the following upper bound for the energy, for some positive constant CT :∥∥∥∥∥∥eAF T

⎡⎣ w0
w1
u0

⎤⎦∥∥∥∥∥∥
2

H

≤ CT

(∫ T

0

‖∇u‖2Ωf
dt+

∫ T

0

∥∥∥∥∂w∂ν
∥∥∥∥2
Γs

dt

)
. (5.1.7)

By means of establishing the a priori inequality (5.1.7) we have the following:

Theorem 5.1.1. (see [A-T.2]) For given initial data [w0, w1, u0] ∈ H, the solution
of the fluid-structure PDE (5.1.1)–(5.1.3) decays exponentially in time. That is
to say, there exist positive constants C and ρ such that the solution [w,wt, u] of
(5.1.1)–(5.1.3) exhibits the decay rate

‖[w(t), wt(t), u(t)]‖H ≤ Ce−ρt ‖[w0, w1, u0]‖H for all 0 ≤ t ≤ T. (5.1.8)
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The proof of this result in [A-T.2] involves, in part, a “multiplier method”
which to some extent is a vector-valued version of that carried out for boundary-
controlled (and scalar-valued) wave equations; see, e.g., [Tr.2], which follows the
Lyapunov method-based papers [Ch],[Lag]. Note that a key feature of Theorem
5.1.1 is the validity of the decay rate (5.1.8) with no geometrical assumptions
being imposed upon the boundary interface Γs. The “big gun” which allows for
this generality is the following microlocal result, which provides for the treatment
of (historically troublesome) boundary integrals involving the tangential derivative
∂w/∂τ , these occurring in the course of establishing (5.1.7), via said multiplier
method:

Lemma 5.1.2. (See [L-T.2]) Let ε > 0 be arbitrarily small. Let z solve an arbitrary
second-order hyperbolic equation with smooth space-dependent coefficients on QT ≡
(0, T ) × Ω, where Ω ⊂ Rn is a smooth bounded domain. Then if Γ∗ is a smooth
connected segment of boundary ∂Ω, we have the estimate∫ T−ε

ε

∫
Γ∗

(
∂z

∂τ

)2
dtd∂Ω (5.1.9)

≤ CT

(∫ T

0

∫
Γ∗

z2t dtd∂Ω+
∫ T

0

∫
∂Ω

(
∂z

∂ν

)2
dtd∂Ω + ‖z‖2

H
1
2+ε0 (QT )

)
,

where parameters ε, ε0 > 0 are arbitrarily small.

Applying this trace result to the vector-valued function ∂w
∂τ

∣∣ at the tail end
of our multiplier method, we eventually arrive at the preliminary estimate

E(T ) ≤ CT

(∫ T

0

‖∇u‖2Ωf
dt+

∫ T

0

∥∥∥∥∂w∂ν
∥∥∥∥2
Γs

dt

)
+ 	.o.t.(w,wt), (5.1.10)

where 	.o.t.(w,wt) denote “lower-order terms,” or measurements of {w,wt} in a
(spatial) topology lower than that of the finite energyH. Subsequently, a compact-
ness-uniqueness argument (by contradiction), which uses the classic Holmgren’s
result for the uniqueness of the continuation, removes these polluting lower-order
terms, so as to establish (5.1.7), and so then the estimate (5.1.8).

5.2. Boundary feedback stabilization of a related Stokes-Lamé
fluid-structure PDE system

We further note here that one has the exact analogue of the exponential sta-
bility result Theorem 5.1.1 for the Stokes-Lamé version of the canonical model
(5.1.1)–(5.1.3). This more physically relevant PDE model appears in the afore-
said monograph [Li.1], and subsequently in [D-G-H-L.1]. See also [A-T.4], where a
well-posedness and strong stability analysis, akin to that of [A-T.1] undertaken for
(1.1a)–(1.1g), is carried out for the Stokes-Lamé system. As for the PDE (5.1.1)–
(5.1.3), the geometry on which the fluid-structure interaction evolves will be the
union Ωf ∪ Ωs, where again Ωf denotes the fluid domain, and Ωs the structure
domain (see Figure 1).



28 G. Avalos, I. Lasiecka and R. Triggiani

In presenting this Stokes-Lamé fluid-structure model, it would behoove us
to first recall the classical tensor operators which are invoked to mathematically
describe the linear (Hookean) system of elasticity on the structural domain Ωs

(see, e.g., [Ke]):
1. For ω = [ω1, . . . , ωn], the strain tensor {εij} is given by

εij(ω) =
1
2

(
∂ωj

∂xi
+

∂ωi

∂xj

)
, 1 ≤ i, j ≤ n. (5.2.1)

2. Subsequently, the stress tensor is described by means of Hooke’s Law:

σij(ω) = λ

(
n∑

k=1

εkk(ω)

)
δij + 2μεij(ω), 1 ≤ i, j ≤ n, (5.2.2)

where λ ≥ 0 and μ > 0 are the so-called Lamé’s coefficients of the system.
Moreover, δij denotes as usual the Kronecker delta; i.e., δij = 1 if i = j and
δij = 0 otherwise.

With the geometry {Ωf ,Ωs} as described above (and again with unit normal
ν exterior to Ωf ), and the stress-strain relations defined in (5.2.1)–(5.2.2), we are
now in a position to describe the fluid-structure interactive PDE which appears
in [D-G-H-L.1] and which, as in the canonical model (5.1.1)–(5.1.3), manifests
a boundary feedback dissipative term in one of the transmission conditions on
Γs. In this case, the variables (fluid) u(t, x) = [u1, u2, . . . , ud] and (structure)
w(t, x) = [w1, w2, . . . , wd] satisfy

PDEs

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut −∇ ·

(
∇u +∇uT

)
+∇p = 0 in (0, T )× Ωf

div u = 0 in (0, T )× Ωf

wtt − div(σ(w)) + w = 0 in (0, T )× Ωs

(5.2.3)

B.C.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
∇u+∇uT

)
· ν = σ(w) · ν + pν on (0, T )× Γs

u|Γf
= 0 on (0, T )× Γf

[wt − σ(w) · ν]Γs
= u|Γs

on (0, T )× Γs

(5.2.4)

I.C. [w(0), wt(0), u(0)] = [w0, w1, u0] ∈ H. (5.2.5)
In particular, the original boundary transmission condition [wt]Γs

= u|Γs
of [A-T.4]

is replaced by [wt − σ(w) · ν]Γs
= u|Γs

. It is shown in [A-T.4] that in the absence
of Neumann feedback damping, a spectral pathology occurs, wholly analogous to
that of the canonical model (1.1a)–(1.1g): namely, λ = 0 is always an eigenvalue of
the associated Stokes-Lamé generator, with the possibility of other (at most count-
ably infinite) eigenvalues on iR. That is to say, the inherent damping emanating
from the symmetric fluid gradient is not enough to insure strong stabilization of
both fluid and structure PDE components. However, the presence of the additional
boundary term [σ(w) · ν]Γs

on Γs removes the possibility of point spectrum on the
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imaginary axis; consequently, as for the canonical model, one can quickly appeal to
[Ar-Ba] so as to infer strong decay. But one should think the more striking result
can be had; just as we showed for the canonical model (5.1.1)–(5.1.3), the corre-
sponding solutions of the Stokes-Lamé PDE, with said extra Neumann dissipative
feedback, should decay exponentially in time. Indeed, we have the following:

Theorem 5.2.1. (see [A-T.3]) For given initial data [w0, w1, u0] ∈ H, the solution
of the fluid-structure PDE (5.2.3)–(5.2.5) decays exponentially in time. That is
to say, there exist positive constants C and ρ such that the solution [w,wt, u] of
(5.2.3)–(5.2.5) exhibits the decay rate

‖[w(t), wt(t), u(t)]‖H ≤ Ce−ρt ‖[w0, w1, u0]‖H for all 0 ≤ t ≤ T. (5.2.6)

Our modus operandi in the paper [A-T.3] is very much as we detailed for the
canonical (5.1.1)–(5.1.3): In [A-T.3] we invoke a multiplier method to establish
the energy inequality needed for exponential stability, and which is wholly analo-
gous to (5.1.7). Namely, if [w,wt, u] solves the aforesaid Stokes-Lamé system with
Neumann boundary dissipation, we must establish the following estimate to infer
exponential decay:

‖[w(T ), wt(T ), u(T )]‖2H ≤ CT

(∫ T

0

∥∥∇u+∇uT
∥∥2
Ωf

dt+
∫ T

0

‖σ(w)ν‖2Γs
dt

)
.

(5.2.7)
In the work [A-T.3], the known energy identities for the Lamé system of elasticity
are put to good use (see, e.g., [Al-Ko],[Be-La],[Ho]). At some point in the course
of this method, there is the need to estimate ‖Dτw‖L2(0,T ;L2(Γs))

, similar to the
situation we outlined above for (5.1.1)–(5.1.3). By way of dealing with this tan-
gential gradient, we invoke the trace estimate in [Ho.2] for solutions of the system
of elasticity, this estimate being the natural descendant of the wave equation es-
timate (5.1.10). Eventually, by the means we have sketched out, we reach a point
in [A-T.3] at which we derive the following estimate:

‖[w(T ), wt(T ), u(T )]‖2H

≤ CT

(∫ T

0

∥∥∇u+∇uT
∥∥2
Ωf

dt+
∫ T

0

‖σ(w)ν‖2Γs
dt

)
+ 	.o.t(w,wt),

where again, 	.o.t(w,wt) denotes polluting lower-order terms. As we did for the
proof of Theorem 5.1.1, we wish to complete the derivation of estimate (5.2.7)
by invoking a compactness-uniqueness argument. To make the uniqueness part of
this argument (by contradiction) work, we invoke the unique continuation result in
[E-I-N-T] for systems of elasticity. (Note that compared to the classic Holmgren’s
theorem, the result in [E-I-N-T] is relatively “state of the art”.)

We close here with a brief announcement concerning nonlinear boundary
stabilization of the Stokes-Lamé system, wherein the Neumann dissipative term is
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subjected to specified nonlinearities. This work is currently in progress. To describe
this problem, we let gi(·), i = 1, . . . , d, be functions on the real line which satisfy
the following criteria:

(H1) Each gi(s) is continuous and monotone increasing;
(H2) gi(s)s > 0 for s �= 0;
(H3) For each i, i = 1, . . . , d, there exist positive constants mi and Mi such

that the following inequality obtains for |s| > 1:

mis
2 ≤ gi(s)s ≤Mis.

With these nonlinearities, we now define the map G([σ(w) · ν]Γs), by

G([σ(w) · ν]Γs) ≡ [g1([σ(w) · ν]1), . . . , gd([σ(w) · ν]d)] , (5.2.8)

where [σ(w) · ν]i is the ith component of the boundary term [σ(w) · ν]Γs .
Subsequently, we consider the following nonlinear PDE

PDEs

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut −∇ ·

(
∇u+∇uT

)
+∇p = 0 in (0, T )× Ωf

div(u) = 0 in (0, T )× Ωf

wtt − div(σ(w)) + w = 0 in (0, T )× Ωs

(5.2.9)

B.C.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
∇u+∇uT

)
· ν = σ(w) · ν + pν on (0, T )× Γs

u|Γf
= 0 on (0, T )× Γf

[wt − G([σ(w) · ν]Γs)]Γs
= u|Γs

on (0, T )× Γs

(5.2.10)

I.C. [w(0), wt(0), u(0)] = [w0, w1, u0] ∈ H. (5.2.11)
In short, the boundary feedback of PDE (5.2.3)–(5.2.5) is now allowed to

vary in a nonlinear fashion. In this connection, our main result is as follows:

Theorem 5.2.2. (see [A-L-T.2]). If the assumptions (H1)–(H3) are in place, then
there exists a T0 such the solution [w,wt, u] of (5.2.9)–(5.2.11) satisfies the follow-
ing rate of decay for time:

‖[w(t), wt(t), u(t)]‖H ≤ S
(

t

T0
− 1

)
for t > T0,

where limt→∞ S (t) = 0. Here, S (t) is the solution of a first-order differential equa-
tion with initial data S (0) = ‖[w(0), wt(0), u(0)]‖H. The (explicitly computable)
coefficients of the ODE will depend upon the nonlinearities gi, i = 1, . . . , d.

The proof of this result in [A-L-T.2] is an adaptation of the well-known
algorithm in [La-Ta], wherein it is shown how one can derive explicit rates of
decay for semilinear wave equations under nonlinear boundary damping. The key
feature here is that for many typical and nonlinearities gi, one can actually compute
outright the solution S (t) of the given ODE, thereby yielding explicit rates of decay
for the nonlinear fluid-structure dynamics (5.2.9)–(5.2.11).
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pled Stokes-Lamé system, as a PDE model of certain fluid-structure inter-
actions, Discr. & Cont. Dynam. Sys., to appear.

[Bal] A.V. Balakrishnan, Applied Functional Analysis and Applications, Second
Edition, Springer-Verlag, New York (1981).

[Be-La] Assia Benabdallah and Irena Lasiecka, Exponential decay rates for a full
von Karman system of dynamic thermoelasticity, J. Diff. Eqns., 160 (2000),
51–93.
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A Continuous Adjoint Approach to Shape
Optimization for Navier Stokes Flow

Christian Brandenburg, Florian Lindemann,
Michael Ulbrich and Stefan Ulbrich

Abstract. In this paper we present an approach to shape optimization which
is based on continuous adjoint computations. If the exact discrete adjoint
equation is used, the resulting formula yields the exact discrete reduced gra-
dient. We first introduce the adjoint-based shape derivative computation in a
Banach space setting. This method is then applied to the instationary Navier-
Stokes equations. Finally, we give some numerical results.
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1. Introduction

In this paper, we consider the optimization of the shape of a body that is exposed
to incompressible instationary Navier-Stokes flow in a channel. The developed
techniques are quite general and can, without conceptual difficulties, be used to
address a wide class of shape optimization problems with Navier-Stokes flow. The
goal is to find the optimal shape of the body B, which is exposed to instationary
incompressible fluid, with respect to some quantity of interest, e.g., drag, under
constraints on the shape of B.

In a general setting, the shape optimization problem can be stated in the
following way: Minimize an objective functional J̄ , depending on a domain Ω and
a state ỹ = ỹ(Ω) ∈ Y (Ω). The domain Ω is contained in a set of admissible domains
Oad. Furthermore, ỹ and Ω are coupled by the state equation Ē(ỹ,Ω) = 0. Thus,

We greatfully acknowledge support of the Schwerpunktprogramm 1253 sponsored by the German
Research Foundation.
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the abstract shape optimization problem reads

min J̄(ỹ,Ω)

s.t. Ē(ỹ,Ω) = 0, Ω ∈ Oad.

The constraint Ē(ỹ,Ω) = 0 is a partial differential equation defined on Ω,
which in our case is given by the instationary incompressible Navier-Stokes equa-
tions.

Shape optimization is an important and active field of research with many
engineering applications, especially in the areas of fluid dynamics and aerodynam-
ics. Detailed accounts of the theory and applications of shape optimization can
be found in, e.g., [1, 2, 3, 9, 15, 18]. We use the approach of transformation to a
reference domain, as originally introduced by Murat and Simon [17], see also [8].
The domain is then fixed and the design is described by a transformation from a
fixed domain to the domain Ω corresponding to the current design. This makes
optimal control techniques readily applicable. Furthermore, as observed by Guil-
laume and Masmoudi [8] in the context of linear elliptic equations, discretization
and optimization can be made commutable. This means that, if certain guidelines
are followed, then the discrete analogue of the continuous adjoint representation
of the derivative of the reduced objective function is the exact derivative of the
discrete reduced objective function. This allows to circumvent the tedious differ-
entiation of finite element code with respect to the position of the vertices of the
mesh. We apply this approach to shape optimization problems governed by the in-
stationary Navier-Stokes equations. On one hand we characterize the appropriate
function space for domain transformation in this framework. On the other hand,
we focus on the practical implementation of shape optimization methods based on
shape derivatives. We show that existing solvers for the state and adjoint equation
on the current computational domain Ωk can be used to compute exact shape
gradients conveniently for the continuous as well as for the discretized problem.
Hence, although shape derivatives are defined through transformation to a ref-
erence domain, standard solvers on the transformed domain can be used for its
computation.

The outline of this paper is as follows: In Section 2, we will present our ap-
proach for the derivative computation in shape optimization in a general setting.
These general results will be applied to the instationary incompressible Navier-
Stokes equations in Section 3. In Section 4 we present the discretization and stabi-
lization techniques we use to solve the Navier-Stokes equations numerically, which
are based on the cG(1)dG(0) variant of the G2-finite-element discretization by
Eriksson, Estep, Hansbo, Johnson and others [4, 5]. Moreover, we explain how
we apply the adjoint calculus to obtain conveniently exact shape gradients on the
discrete level. We will then present numerical results obtained for a model problem
in Section 5, where we also briefly discuss the choice of shape transformations and
parameterizations. Finally, in Section 6, we will give conclusions and an outlook
to future work.
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2. The shape optimization problem

In this section, we present the framework that we will use for shape derivative
computation in a functional analytical setting. We first transform the general shape
optimization problem, which is defined on varying domains, into a problem that
is defined on a fixed reference domain Ωref. Then, after introducing the reduced
optimization problem on a space T of transformations of Ωref, we state optimality
conditions and an adjoint based representation for the reduced gradient of the
objective function.

2.1. Problem formulation on a reference domain

We consider the abstract shape optimization problem given by

min J̄(ỹ,Ω)

s.t. Ē(ỹ,Ω) = 0, Ω ∈ Oad.
Here, Oad denotes the set of admissible domains Ω ⊂ Rd, d = 2, 3, J̄ is a real-
valued objective function defined on a Banach space Y (Ω) of functions defined on
Ω ⊂ Rd,

J̄ : {(ỹ,Ω) : ỹ ∈ Y (Ω), Ω ∈ Oad} → R,

and Ē is an operator between function spaces Y (Ω) and Z(Ω) defined over Ω,

Ē : {(ỹ,Ω) : ỹ ∈ Y (Ω),Ω ∈ Oad} → {z̃ : z̃ ∈ Z(Ω),Ω ∈ Oad}
with Ē(ỹ,Ω) ∈ Z(Ω) for all ỹ ∈ Y (Ω) and all Ω ∈ Oad.

We now transform the shape optimization problem into a more convenient
form. To this end, we consider a reference domain Ωref ∈ Oad and interpret ad-
missible domains Ω ∈ Oad as images of Ωref under suitable transformations. This
is done by introducing a Banach space T (Ωref) ⊂ {τ : Ωref → Rd} of bicontinuous
transformations of Ωref. We select a suitable subset Tad ⊂ T (Ωref) of admissible
transformations. The set Oad of admissible domains is then

Oad = {τ(Ωref) : τ ∈ Tad}.
We assume that

Y (Ωref) = {ỹ ◦ τ : ỹ ∈ Y (τ(Ωref))}
ỹ ∈ Y (τ(Ωref)) �→ y := ỹ ◦ τ ∈ Y (Ωref) is a homeomorphism

}
∀ τ ∈ Tad. (A)

Then, we can define the following equivalent optimization problem, which is en-
tirely defined on the reference domain:

min J(y, τ)

s.t. E(y, τ) = 0, τ ∈ Tad.
(2.1)

Here, the operator E : Y (Ωref) × T (Ωref) → Z(Ωref) is defined such that for
all τ ∈ Tad and ỹ ∈ Y (τ(Ωref)) it holds that

E(y, τ) = 0 ⇐⇒ Ē(ỹ, τ(Ωref)) = 0,

where y = ỹ ◦ τ . The objective function J is defined in the same fashion.



38 C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich

In the following, we will consequently denote by ỹ the functions on the phys-
ical domain τ(Ωref) and by y the corresponding function on the reference domain
Ωref, where

y = ỹ ◦ τ.
Remark 2.1. Let Ω′ ⊃ Ω̄ref be open and bounded with Lipschitz boundary. If,
which is the typical case for elliptic partial differential equations,

Y (Ω) = H1
0 (τ(Ωref)), Z(Ω) = H−1(τ(Ωref))

with τ ∈ Tad, then (A) holds if we choose T (Ωref) =W 1,∞(Ω′)d and if we require
that all τ ∈ Tad ⊂W 1,∞(Ω′)d are such that τ : Ω̄ref → τ(Ω̄ref) is a bi-Lipschitzian
mapping.

For other spaces Y (Ω) and Z(Ω), it can be necessary to impose further re-
quirements on Tad.

If Ē is given in variational form then the operator E can be obtained by using
the transformation rule for integrals. This will be carried out for the instationary
Navier-Stokes equations in section 3.

2.2. Reduced problem and optimality conditions

In the following, we will consider the optimization problem on the reference domain
(2.1), which has the form

min J(y, τ)

s.t. E(y, τ) = 0, τ ∈ Tad.
(2.1)

We denote by Ey and Eτ the partial derivatives of E with respect to y and τ .
In order to derive first-order optimality conditions, we make the following

assumptions:
(A1) Tad ⊂ T (Ωref) is nonempty, closed, convex and assumption (A) holds.
(A2) J : Y (Ωref)× T (Ωref)→ R and E : Y (Ωref)× T (Ωref)→ Z(Ωref) are continu-

ously Fréchet-differentiable.
(A3) There exists an open neighborhood T ′ad ⊂ T (Ωref) of Tad and a unique solution

operator S : T ′ad → Y (Ωref), assigning to each τ ∈ T ′ad a unique y(τ) ∈
Y (Ωref), such that E(y(τ), τ) = 0.

(A4) The derivative Ey(y(τ), τ) ∈ L(Y (Ωref), Z(Ωref)) is continuously invertible
for all τ ∈ T ′ad.
Under these assumptions y(τ) is continuously differentiable on τ ∈ T ′ad ⊃ Tad

by the implicit function theorem. Thus, it is reasonable to define the following
reduced problem on the space of transformations T (Ωref):

min j(τ) := J(y(τ), τ)
s.t. τ ∈ Tad

,

where y(τ) is given as the solution of E(y(τ), τ) = 0.
In the following we will use the abbreviations

Tref := T (Ωref), Yref := Y (Ωref), Zref := Z(Ωref).
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In order to derive optimality conditions and to compute the reduced gradient
j′(τ), we introduce the Lagrangian function L : Yref × Tref × Z∗ref → R,

L(y, τ, λ) := J(y, τ) + 〈λ,E(y, τ)〉Z∗ref ,Zref ,

with Lagrange multiplier λ ∈ Z∗ref.
Under assumptions (A1)–(A4) a local solution (y, τ) ∈ Yref×Tad of (2.1) sat-

isfies with an appropriate adjoint state λ ∈ Z∗ref the following first-order necessary
optimality conditions.

Lλ(y, τ, λ) = E(y, τ) = 0 (state equation)

Ly(y, τ, λ) = Jy(y, τ) +E∗y(y, τ)λ = 0 (adjoint equation)

〈Lτ (y, τ, λ), τ̃ − τ〉T∗ref ,Tref = 〈Jτ (y, τ) +E∗τ (y, τ)λ, τ̃ − τ〉T∗ref ,Tref ≥ 0 ∀τ̃ ∈ Tad.

2.2.1. Adjoint-based shape derivative computation on the reference domain. By
using the adjoint equation the reduced gradient j′(τ) can be determined as follows:
1. For given τ , find y(τ) ∈ Yref by solving the state equation

〈E(y, τ), ϕ〉Zref ,Z∗ref = 0 ∀ϕ ∈ Z∗ref
2. Find the corresponding Lagrange multiplier λ ∈ Z∗ref by solving the adjoint

equation

〈λ,Ey(y, τ)ϕ〉Z∗ref ,Zref = −〈Jy(y, τ), ϕ〉Y ∗ref ,Yref ∀ϕ ∈ Yref (2.2)

3. The reduced gradient with respect to τ is now given by

〈j′(τ), · 〉T∗ref ,Tref = 〈λ,Eτ (y, τ) · 〉Z∗ref ,Zref + 〈Jτ (y, τ), · 〉T∗ref,Tref . (2.3)

2.2.2. Adjoint-based shape derivative computation on the physical domain. For
the application of optimization algorithms it is convenient to solve, for a given
iterate τk ∈ T (Ωref), an equivalent representation of the optimization problem on
the domain Ωk := τk(Ωref). To this end, we introduce operators Ẽ, J̃ and j̃, which
differ from E, J and j only in that the function spaces Y , Z and T are defined on
Ωk instead of Ωref, i.e.,

Ẽ(ỹ, τ̃ ) = 0 ⇐⇒ E(y, τ̃ ◦ τk) = 0, where y = ỹ ◦ (τ̃ ◦ τk).

Then we have the relation

j̃(τ̃ ) = j(τ̃ ◦ τk) = j(τ) and therefore τ̃ ◦ τk = τ, i.e., τ̃ = τ ◦ τ−1k .

We are thus led to the following procedure for computing the reduced gradient:
1. For id : Ωk → Ωk, id(τk(x)) = τk(x), x ∈ Ωref, find ỹk ∈ Y (Ωk) by solving

the state equation

〈Ẽ(ỹk, id), ϕ〉Z(Ωk),Z(Ωk)∗ = 0 ∀ϕ ∈ Z(Ωk)∗,

where ỹk(τk(x)) = yk(x), x ∈ Ωref. This corresponds to solving the standard
state equation in variational form on the domain Ωk, which in the abstract
setting was denoted by Ē(ỹk,Ωk) = 0.
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2. Find the corresponding Lagrange multiplier λ̃k ∈ Z(Ωk)∗ by solving the
adjoint equation

〈λ̃k, Ẽỹ(ỹk, id)ϕ〉Z(Ωk)∗,Z(Ωk) = −〈J̃ỹ(ỹk, id), ϕ〉Y (Ωk)∗,Y (Ωk) ∀ϕ ∈ Y (Ωk),

where λ̃k(τk(x)) = λk(x), x ∈ Ωref. This corresponds to the solution of the
standard adjoint equation on Ωk.

3. The reduced gradient applied to V ∈ T (Ωref) is now given by

〈j′(τk), V 〉T∗ref,Tref = 〈j̃′(id), Ṽ 〉T (Ωk)∗,T (Ωk)

= 〈λ̃k, Ẽτ̃ (ỹk, id)Ṽ 〉Z(Ωk)∗,Z(Ωk)

+ 〈J̃τ̃ (ỹk, id), Ṽ 〉T (Ωk)∗,T (Ωk)

for Ṽ ∈ T (Ωk), Ṽ ◦ τk = V , i.e., Ṽ = V ◦ τ−1k . If we define the linear operator

Bk ∈ L(T (Ωref), T (Ωk)), BkV = V ◦ τ−1k (2.4)

then we have by our previous calculation

j′(τk) = B∗k j̃
′(id) = B∗k(Ẽτ̃ (ỹk, id)∗λ̃k + J̃τ̃ (ỹk, id)).

This procedure yields the exact gradient of the reduced objective function and has
the advantage that we are able to use standard PDE-solvers for the state equation
and adjoint equation on the domain Ωk, since we evaluate at τ̃ = id.

2.3. Derivatives with respect to shape parameters

In practice, the shape of a domain is defined by design parameters u ∈ U with
a finite- or infinite-dimensional design space U . Thus, we have a map τ : U →
T (Ωref), u �→ τ(u) and a reference control u0 ∈ U with τ(u0) = id. Derivatives
of the reduced objective function j(τ(u)) at uk are obtained using the chain rule.
With τk = τ(uk) and Bk in (2.4) we have

〈 d
du

j(τ(uk)), · 〉U∗,U = 〈j′(τ(uk)), τu(uk) · 〉T (Ωref)∗,T (Ωref)

= 〈j̃′(id), (τu(uk) · ) ◦ τ(uk)−1〉T (Ωk)∗,T (Ωk)

= 〈j̃′(id), Bkτu(uk) · 〉T (Ωk)∗,T (Ωk) = 〈τu(uk)∗B∗k j̃
′(id), · 〉U∗,U .

Overall, this approach provides a flexible framework that can be used for arbitrary
types of transformations (e.g., boundary displacements, free form deformation).
The idea of using transformations to describe varying domains can be found, e.g.,
in Murat and Simon [17] and Guillaume and Masmoudi [8].

3. Shape optimization for the Navier-Stokes equations

We now apply this approach to shape optimization problems governed by the insta-
tionary Navier-Stokes equations for a viscous, incompressible fluid on a bounded
domain Ω = τ(Ωref) with Lipschitz boundary. According to our convention, we
will denote all quantities on the physical domain by .̃
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For Ω ⊂ Rd with spatial dimension d = 2 or 3, let ΓD ⊂ ∂Ω be a nonempty
Dirichlet boundary and ΓN = ∂Ω \ ΓD. We consider the problem

ṽt − νΔṽ + (ṽ · ∇)ṽ +∇p̃ = f̃ on Ω× I

div ṽ = 0 on Ω× I

ṽ = ṽD on ΓD × I

p̃ ñ− ν
∂ṽ

∂ñ
= 0 on ΓN × I

ṽ(·, 0) = ṽ0 on Ω

where ṽ : Ω× I → Rd denotes the velocity ṽ(x, t) and p̃ : Ω× I → R the pressure
p̃(x, t) of the fluid at a point x at time t, ñ : ∂Ω → Rd is the outer unit normal.
Here I = (0, T ), T > 0 is the time interval and ν > 0 is the kinematic viscosity;
if the equations are written in dimensionless form, ν can be interpreted as 1/Re
where Re is the Reynolds number.

We introduce the spaces

H1
D(Ω) := {ṽ ∈ H1(Ω)d : ṽ|ΓD = 0}, V := {ṽ ∈ H1

D(Ω)
d : div ṽ = 0},

H := clL2(V ), L20(Ω) := {p̃ ∈ L2(Ω) :
∫
Ω

p̃ = 0},

the corresponding Gelfand triple V ↪→ H ↪→ V ∗, and define

W2,q(I;V ) := {ṽ ∈ L2(I;V ) : ṽt ∈ Lq(I;V ∗)}.
Now let

ṽD ∈ H1(Ω), div ṽD = 0, f̃ ∈ L2(I;V ∗), ṽ0 ∈ H.

Under these assumptions the following results are known.
• If ΓD = ∂Ω, i.e., ΓN = ∅, then for d = 2 there exists a unique weak solution
(ṽ, p̃) with ṽ − ṽD ∈ W2,2(I;V ) and p̃(·, t) ∈ L20(Ω), t ∈ I. For d = 3 there
exists a weak solution (ṽ, p̃) with ṽ − ṽD ∈ W2,4/3(I;V ) ∩ L∞(I;H) and
p̃(·, t) ∈ L20(Ω), t ∈ I, which is not necessarily unique. For the case ṽD = 0
the proofs can be found for example in [19, Ch. III]. These proofs can be
extended to ṽD �= 0 under the above assumptions on ṽD.

• If ΓN �= ∅ and ΓD satisfies some geometric properties (for example, all x ∈ Ω
can be connected in all coordinate directions by a line segment in Ω to a
point in ΓD) and if a sequence of Galerkin approximations exists that does
not exhibit inflow on ΓN then the same can be shown as for the Dirichlet case:
For d = 2 there exists a unique weak solution (ṽ, p̃) with ṽ−vD ∈ W2,2(I;V )
and p̃(·, t) ∈ L20(Ω), t ∈ I. For d = 3 there exists a weak solution (v, p̃) with
ṽ − ṽD ∈ W2,4/3(I;V ) ∩ L∞(I;H) and p̃(·, t) ∈ L20(Ω), t ∈ I, which is not
necessarily unique. In fact, in the case without inflow on ΓN all additional
boundary terms have the correct sign such that the proofs in [19, Ch. III] for
the Dirichlet case can be adapted.

In the case of possible inflow an existence and uniqueness result local in
time and for small data global in time can be found in [10].
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3.1. Weak formulation

In the following we consider the case d = 2 and ΓN = ∅ to have a general global
existence and uniqueness result at hand. Moreover, to avoid technicalities in for-
mulating the equations, we consider homogeneous boundary data ṽD ≡ 0. Then
we have H1

D(Ω) = H1
0 (Ω)

d with the above notations.
The classical weak formulation is now: Find ṽ ∈W2,2(I;V ) such that

〈ṽt(·, t), w̃〉V ∗,V +
∫
Ω

ṽ(x, t)T∇ṽ(x, t)w̃(x) dx +
∫
Ω

ν∇ṽ(x, t) : ∇w̃(x) dx

=
∫
Ω

f̃ (x, t)T w̃(x) dx ∀ w̃ ∈ V for a.a. t ∈ I

ṽ(·, 0) = ṽ0.

(3.1)

As mentioned above, for f̃ ∈ L2(I;V ∗) and ṽ0 ∈ H there exists a unique weak
solution ṽ ∈ W2,2(I;V ). The pressure p̃(·, t) ∈ L20(Ω), t ∈ I, is now uniquely
determined, see [19, Ch. III].

The weak formulation (3.1) is equivalent to the following velocity-pressure
formulation: Find ṽ ∈W2,2(I;H1

0 (Ω)
d) and p̃(·, t) ∈ L20(Ω), t ∈ I, such that

〈ṽt(·, t), w̃〉H−1,H1
0
+
∫
Ω

ṽ(x, t)T∇ṽ(x, t)w̃(x) dx +
∫
Ω

ν∇ṽ(x, t) : ∇w̃(x) dx

−
∫
Ω

p̃(x, t) div w̃(x) dx =
∫
Ω

f̃ (x, t)T w̃(x) dx ∀ w̃ ∈ H1
0 (Ω) for a.a. t ∈ I∫

Ω

q̃(x) div ṽ(x, t) = 0 ∀ q̃ ∈ L20(Ω) for a.a. t ∈ I

ṽ(·, 0) = ṽ0.

To obtain a weak velocity-pressure formulation in space-time, which is convenient
for adjoint calculations, we have to ensure that p̃ ∈ L2(I;L20(Ω)). To this end we
assume that the data f̃ and ṽ0 are sufficiently regular, for example, see [19, Ch.
III, Thm. 3.5],

f̃ , f̃ t ∈ L2(I;V ∗), f̃(·, 0) ∈ H, ṽ0 ∈ V ∩H2(Ω)d. (3.2)

Define the spaces

Y (Ω) :=W (I;H1
0 (Ω)

d)× L2(I;L20(Ω)), (3.3)

Z(Ω) := L2(I;H−1(Ω)d)× L2(I;L20(Ω)).

Then

Z∗(Ω) := L2(I;H1
0 (Ω)

d)× L2(I;L20(Ω))
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and the weak formulation (3.1) is equivalent to: Find (ṽ, p̃) ∈ Y (Ω), where
Ω = τ(Ωref) such that

〈(w̃, q̃), Ē((ṽ, p̃),Ω)〉Z∗(Ω),Z(Ω)

=
∫
Ω

ṽ(x, 0)T w̃(x, 0) dx −
∫
Ω

ṽT
0 w̃(·, 0) dx

+
∫

I

∫
Ω

ṽT
t w̃ dx dt+

∫
I

∫
Ω

ν∇ṽ : ∇w̃ dx dt

+
∫

I

∫
Ω

ṽT∇ṽw̃ dx dt−
∫

I

∫
Ω

p̃ div w̃ dx dt

−
∫

I

∫
Ω

f̃
T
w̃ dx dt+

∫
I

∫
Ω

q̃ div ṽ dx dt = 0 ∀ (w̃, q̃) ∈ Z∗(Ω).

(3.4)

This formulation defines now the state equation operator

Ē : {(ỹ,Ω) : ỹ ∈ Y (Ω),Ω ∈ Oad} → {z̃ : z̃ ∈ Z(Ω),Ω ∈ Oad} .

3.2. Transformation to the reference domain

In the following we assume that

(T) Ωref is a bounded Lipschitz domain and Ω′ ⊃ Ω̄ref is open and bounded with
Lipschitz boundary. Moreover Tad ⊂ W 2,∞(Ω′)d is bounded such that for
all τ ∈ Tad the mappings τ : Ω̄ref → τ(Ω̄ref) are bi-Lipschitzian and satisfy
det(τ ′) ≥ δ > 0, with a constant δ > 0. Here, τ ′(x) = ∇τ(x)T denotes the
Jacobian of τ .
Moreover, the data ṽ0, f̃ are given such that

f̃ ∈ C1(I;V (Ω)), ṽ0 ∈ V (Ω) ∩H2(Ω)d ∀Ω ∈ Oad = {τ(Ωref) : τ ∈ Tad},

i.e., the data ṽ0, f̃0 are used on all Ω ∈ Oad.
Then assumption (T) ensures in particular (3.2) and assumption (A) holds in the
following obvious version for time dependent problems, where the transformation
acts only in space.

Lemma 3.1. Let Tad satisfy assumption (T). Then the state space Y (Ω) defined in
(3.3) satisfies assumption (A), more precisely,

Y (Ωref) = {(ṽ, p̃)(τ(·), ·) : (ṽ, p̃) ∈ Y (τ(Ωref))}
(ṽ, p̃) ∈ Y (τ(Ωref)) �→ (v, p) := (ṽ, p̃)(τ(·), ·) ∈ Y (Ωref) is a homeom.

}
∀ τ ∈ Tad.

A proof of this result is beyond the scope of this paper and will be given
elsewhere.

Given the weak formulation of the Navier-Stokes equations on a domain
τ(Ωref) we can apply the transformation rule for integrals to obtain a variational
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formulation based on the domain Ωref. Using our convention to write ˜ for a func-
tion that is defined on τ(Ωref) we use the identifications

v(x, t) := ṽ(τ(x), t), p(x, t) := p̃(τ(x), t),

etc. and the identity

∇x̃z̃(τ(x)) = τ ′(x)−T∇xz(x), x ∈ Ωref.

Using this formalism we get for example

∫
I

∫
τ(Ωref)

ν∇ṽ : ∇w̃ dx dt =
∫

I

d∑
i=1

∫
Ωref

ν∇vT
i τ
′−1τ ′−T∇wi det τ ′ dx dt.

In this way and by using Lemma 3.1 we arrive at the following equivalent form
of the weak formulation (3.4) on τ(Ωref), which is only based on the domain Ωref:
Find (v, p) ∈ Y (Ωref) such that for all (w, q) ∈ Z∗(Ωref)

〈(w, q), E((v, p), τ)〉Z∗(Ωref),Z(Ωref)

=
∫
Ωref

v(x, 0)T w(x, 0) det τ ′ dx −
∫
Ωref

ṽ0(τ(x))T w(x, 0) det τ ′ dx

+
∫

I

∫
Ωref

vT
t w det τ ′ dx dt+

d∑
i=1

∫
I

∫
Ωref

ν∇vT
i τ
′−1τ ′−T∇wi det τ ′ dx dt

+
∫

I

∫
Ωref

vT τ ′−T∇v w det τ ′ dx dt−
∫

I

∫
Ωref

p tr(τ ′−T∇w) det τ ′ dx dt

−
∫

I

∫
Ωref

f̃(τ(x), t)T w det τ ′ dx dt+
∫

I

∫
Ωref

q tr(τ ′−T∇v) det τ ′ dx dt = 0.

(3.5)

For τ = id we recover directly the weak formulation (3.4) on the domain Ω = Ωref,
for general τ ∈ Tad we obtain an equivalent form of (3.4) on the domain Ω =
τ(Ωref).

3.3. Objective function

We consider an objective functional J̄ defined on the domain τ(Ωref) of the type

J̄((ṽ, p̃), τ(Ωref)) =
∫

I

∫
τ(Ωref)

f1(x, ṽ(x, t),∇ṽ(x, t), p̃(x, t)) dx dt

+
∫

τ(Ωref)

f2(x, ṽ(x, T )) dx
(3.6)
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with f1 :
⋃

τ∈Tad
τ(Ωref)×R2×R2,2×R and f2 :

⋃
τ∈Tad

τ(Ωref)×R2 → R. Again
we transform the objective function to the reference domain Ωref.

J̄((ṽ, p̃), τ(Ωref)) =
∫

I

∫
Ωref

f1(τ(x),v(x, t), τ ′(x)−T∇v(x, t), p(x, t)) det τ ′ dx dt

+
∫
Ωref

f2(τ(x),v(x, T )) det τ ′ dx

=: JD((v, p), τ) + JT (v, τ) = J((v, p), τ).

3.4. Adjoint equation

We apply now the adjoint procedure of Subsection 2.2.1 to compute the shape gra-
dient. To this end, we have to compute the Lagrange multipliers (λ, μ) ∈ Z∗(Ωref)
by solving the adjoint system (2.2), which reads in this case

〈(λ, μ), E(v,p)((v, p), τ)(w, q)〉Z∗(Ωref),Z(Ωref)

= −〈J(v,p)((v, p), τ), (w, q)〉Y ∗(Ωref),Y (Ωref) ∀(w, q) ∈ Y (Ωref)

with the given weak solution (v, p) ∈ Y (Ωref) of the state equation. In detail we
seek (λ, μ) ∈ Z∗(Ωref) with

−
∫

I

∫
Ωref

wT λt det τ ′ dt dx+
∫
Ωref

w(x, T )T λ(x, T ) det τ ′ dx

+
∫

I

d∑
i=1

∫
Ωref

ν∇wT
i τ
′−1τ ′−T∇(λ)i det τ ′ dx dt

+
∫

I

∫
Ωref

(
wT τ ′−T∇v + vT τ ′−T∇w

)
λ det τ ′ dx dt

−
∫

I

∫
Ωref

q tr(τ ′−T∇λ) det τ ′ dx dt+
∫

I

∫
Ωref

μ tr(τ ′−T∇w) det τ ′ dx dt

= −〈J(v,p)((v, p), τ), (w, q)〉Y ∗(Ωref),Y (Ωref) ∀(w, q) ∈ Y (Ωref).

(3.7)

For τ = id this is the weak formulation of the usual adjoint system of the Navier-
Stokes equations on Ωref, which reads in strong form

−λt − νΔλ− (∇λ)T v + (∇v)λ−∇μ = −JD
v ((v, p), id) on Ωref × I

− div λ = −JD
p ((v, p), id) on Ωref × I

λ = 0 on ∂Ωref × I

λ(·, T ) = −JT
v (v, id) on Ωref

For general τ ∈ Tad the adjoint system (3.7) is equivalent to the usual adjoint
system of the Navier-Stokes equations on τ(Ωref). A detailed analysis of the adjoint
equation of the Navier-Stokes equations can be found in [11, 21].
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3.5. Calculation of the shape gradient

The derivative of the reduced objective j(τ) := J((v(τ), p(τ)), τ) is now given by
(2.3), which reads in our case

〈j′(τ), · 〉T∗(Ωref),T (Ωref)

= 〈(λ, μ), Eτ ((v, p), τ) · 〉Z∗(Ωref),Z(Ωref) + 〈Jτ ((v, p), τ), · 〉T∗(Ωref),T (Ωref).
(3.8)

To state this in detail, we have to compute the derivatives of E and J with respect
to τ . Let (v, p) and (λ, μ) be the solution of the Navier-Stokes equations (3.5) and
the corresponding adjoint equation (3.7) for given τ ∈ Tad. Using the formulation
(3.5) of E on the reference domain Ωref the first term can be expressed as

〈(λ, μ), Eτ ((v, p), τ)V 〉Z∗(Ωref),Z(Ωref)

=
∫
Ωref

(v(x, 0)− ṽ0(τ(x)))T λ(x, 0) tr(τ ′−1V ′) det τ ′ dx

−
∫
Ωref

V T∇ṽ0(τ(x))λ(x, 0) det τ ′ dx +
∫

I

∫
Ωref

vT
t λ tr(τ ′−1V ′) det τ ′ dx dt

+
d∑

i=1

∫
I

∫
Ωref

ν∇vT
i τ
′−1( tr(τ ′−1V ′)I − V ′τ ′−1 − τ ′−TV ′T )τ ′−T∇λi det τ ′ dx dt

+
∫

I

∫
Ωref

vT ( tr(τ ′−1V ′)I − τ ′−TV ′T )τ ′−T∇vλ det τ ′ dx dt

+
∫

I

∫
Ωref

p
(
tr(τ ′−TV ′T τ ′−T∇λ)− tr(τ ′−T∇λ) tr(τ ′−1V ′)

)
det τ ′ dx dt

−
∫

I

∫
Ωref

(
f̃ (τ(x), t)T tr(τ ′−1V ′) + V T∇f̃(τ(x), t)

)
λ det τ ′ dx dt

−
∫

I

∫
Ωref

μ
(
tr(τ ′−TV ′T τ ′−T∇v)− tr(τ ′−T∇v) tr(τ ′−1V ′)

)
det τ ′ dx dt.

If ṽ solves the state equation then the first term vanishes.
The part with the objective functional is given by

〈Jτ ((v, p), τ), V 〉T∗(Ωref),T (Ωref)

=
∫

I

∫
Ωref

f1(τ(x),v, τ ′(x)−T∇v(x, t), p) tr(τ ′−1V ′) det τ ′ dx dt

−
∫

I

∫
Ωref

∂

∂(∇ṽ)
f1(τ(x),v, τ ′(x)−T∇v(x, t), p) τ ′−TV ′T τ ′−T∇v det τ ′ dx dt

+
∫

I

∫
Ωref

∂

∂x̃
f1(τ(x),v, τ ′(x)−T∇v(x, t), p)V det τ ′ dx dt

+
∫
Ωref

f2(τ(x),v(x, T )) tr(τ ′−1V ′) det τ ′ dx

+
∫
Ωref

∂

∂x̃
f2(τ(x),v(x, T ))V det τ ′ dx.
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If τ = id, i.e., τ(Ωref) = Ωref we obtain the following formula for the reduced
gradient, where we omit the first term, since v(·, 0) = ṽ0(τ(·)).

〈j′(id), V 〉T∗(Ωref),T (Ωref)

= −
∫
Ωref

V T∇ṽ0(x)λ(x, 0) dx

+
∫

I

∫
Ωref

vT
t λ div V dx dt+

∫
I

∫
Ωref

ν∇v : ∇λ div V dx dt

−
d∑

i=1

∫
I

∫
Ωref

ν∇vT
i (V

′ + V ′T )∇λi dx dt

−
∫

I

∫
Ωref

vTV ′T∇vλ dx dt+
∫

I

∫
Ωref

vT∇vλ div V dx dt

+
∫

I

∫
Ωref

p tr(V ′T∇λ) dx dt−
∫

I

∫
Ωref

p div λ div V dx dt

−
∫

I

∫
Ωref

f̃
T
λ div V dx dt−

∫
I

∫
Ωref

V T∇f̃λ dx dt

−
∫

I

∫
Ωref

μ tr(V ′T∇v) dx dt+
∫

I

∫
Ωref

μ div v div V dx dt

+
∫

I

∫
Ωref

f1(x,v,∇v, p) div V dx dt

−
∫

I

∫
Ωref

∂

∂(∇ṽ)
f1(x,v,∇v, p)V ′T∇v dx dt

+
∫

I

∫
Ωref

∂

∂x̃
f1(x,v,∇v, p)V dx dt

+
∫
Ωref

f2(x,v(x, T )) div V dx

+
∫
Ωref

∂

∂x̃
f2(x,v(x, T ))V dx.

(3.9)

Remark 3.2. As already mentioned in Subsection 2.2.2, for computational pur-
poses it is convenient for a given iterate τk to calculate the reduced gradient
on the domain Ωk. As described in detail in 2.2.2 we have to solve the Navier-
Stokes equations and the adjoint system on Ωk. Using 〈j′(τk), V 〉T∗(Ωref),T (Ωref) =
〈j̃′(id), Ṽ 〉T∗(Ωk),T (Ωk) we can take the formula above replacing Ωref by Ωk and
using the corresponding functions defined on Ωk.

Finally, if we assume more regularity for the state and adjoint, we can in-
tegrate by parts in the above formula and can represent the shape gradient as a
functional on the boundary.

However, we prefer to work with the distributed version (3.8), since it is
also appropriate for FE-Galerkin approximations, while the integration by parts
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to obtain the boundary representation is not justified for FE-discretizations with
H1-elements. In addition, (3.8) can also easily be transferred to a boundary repre-
sentation by using the procedure of Subsection 2.3 with a boundary displacement-
to-domain transformation mapping u �→ τ(u) ∈ Tad. For Galerkin discretization
the continuous adjoint calculus can then easily be applied on the discrete level.

4. Discretization

To discretize the instationary Navier-Stokes equations, we use the cG(1)dG(0)
space-time finite element method, which uses piecewise constant finite elements in
time and piecewise linear finite elements in space. The cG(1)dG(0) method is a
variant of the General Galerkin G2-method developed by Eriksson, Estep, Hansbo,
and Johnson [4, 5].

Let I = {Ij = (tj−1, tj ] : 1 ≤ j ≤ N} be a partition of the time interval (0, T ]
with a sequence of discrete time steps 0 = t0 < t1 < · · · < tN = T and length of
the respective time intervals kj := |Ij | = tj − tj−1.

With each time step tj , we associate a partition Tj of the spatial domain Ω
and the finite element subspaces V j

h , P
j
h of continuous piecewise linear functions

in space.
The cG(1)dG(0) space-time finite element discretization with stabilization

can be written as an implicit Euler scheme: v0h = v0 and for j = 1, . . . , N , find
(vj

h, p
j
h) ∈ V j

h × P j
h such that

(Ej(vh, ph), (wh, qh))

:=

(
vj

h − vj−1
h

kj
,wh

)
+ (ν∇vj

h,∇wh) + (vj
h · ∇vj

h,wh)− (pj
h, div wh)

+ ( div vj
h, qh) + SDδ(v

j
h, p

j
h,wh, qh)− (f,wh) = 0 ∀(wh, qh) ∈ V j

h × P j
h

with stabilization

SDδ(v
j
h, p

j
h,wh, qh) =

(
δ1(v

j
h · ∇vj

h +∇p
j
h − f),vj

h · ∇wh +∇qh

)
+ (δ2 div vj

h, div wh) .

The stabilization parameters

δ1 =

{
1
2 (k

−2
j + |vj

h|2h−2j )−1/2 if ν < |vj
h|hj

κ1h
2
j otherwise

, δ2 =

{
κ2hj if ν < |vj

h|hj

κ2h
2
j otherwise

act as a subgrid model in the convection-dominated case ν < |vj
h|hj , where hj

denotes the local (spatial) mesh size at time j and κ1 and κ2 are constants of unit
size.
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As discrete objective functional, we consider

Jh(vh, ph) =
N∑

j=1

kj

∫
Ω

f1(x,v
j
h,∇vj

h, p
j
h) dx+

∫
Ω

f2(x,vN
h ) dx

=: JD,h(vh, ph) + JT,h(vN
h ).

This is exactly J(vh, ph), since vh, ph are piecewise constant in time.
In order to obtain gradients which are exact on the discrete level, we consider

the discrete Lagrangian functional based on the cG(1)dG(0) finite element method,
which is given by

Lh(vh, ph,λh, μh) = Jh(vh, ph) +
N∑

j=1

kj(Ej(vh, ph), (λ
j
h, μ

j
h)).

Note again that this is exactly L(vh, ph,λh, μh), since vh, ph,λh, μh are piecewise
constant in time.

Now we take the derivatives of the discrete Lagrangian w.r.t. the state vari-
ables to obtain the discrete adjoint equation and w.r.t. the shape variables to
obtain the reduced gradient.

The discrete adjoint system can be cast in the form of an implicit time-
stepping scheme backward in time:

For j = N − 1, . . . , 0, find (λj
h,μ

j
h) ∈ V j

h × P j
h such that

(λj
h,wh)
kj

+ (ν∇λj
h,∇wh) + (μj

h, div wh)− (qh, div λj
h)

+ (vj
h · ∇wh,λ

j
h) + (wh · ∇vj

h,λ
j
h) + SD∗δ (v

j
h, p

j
h,λ

j
h, μ

j
h;wh, qh)

=
(λj+1

h ,wh)
kj

− 1
kj
〈JD,h

vj
h

(vh, ph),wh〉 −
1
kj
〈JD,h

pj
h

(vh, ph), qh〉

for all (wh, qh) ∈ V j
h × P j

h , where the discrete initial adjoint (λ
N
h , μN

h ) solves the
system

λN
h ·wh

kN
+ (ν∇λN

h ,∇wh) + (μN
h , div wh) + (vN

h · ∇wh,λ
N
h )

+ (wh · ∇vN
h ,λN

h )− (qh, div λN
h ) + SD∗δ (v

N
h , pN

h ,λN
h , μN

h ;wh, qh)

= − 1
kN
〈JD,h

vN
h

(vh, ph),wh〉 −
1
kN
〈JT,h

vN
h

(vN
h ),wh〉 −

1
kN
〈JD,h

pN
h

(vh, ph), qh〉

for all (wh, qh) ∈ V N
h × PN

h .
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The adjoint stabilization term SD∗δ is given by

SD∗δ (v
j
h, p

j
h,λ

j
h, μ

j
h;wh, qh)

= δ1(wh · ∇vj
h,v

j
h · ∇λj

h) + δ1(v
j
h · ∇wh,v

j
h · ∇λj

h)

+ δ1(v
j
h · ∇vj

h,wh · ∇λj
h) + δ1(∇qh,∇μj

h) + δ2( div wh, div λj
h)

+ δ1(wh · ∇vj
h,∇μ

j
h) + δ1(v

j
h · ∇wh,∇μj

h)

+ δ1(∇qh,v
j
h · ∇λj

h) + δ1(∇pj
h,wh · ∇λj

h) .

For simplicity, we have neglected the terms containing the right-hand side f and
the dependence of δ1 on vh

j .
To compute shape derivatives on the discrete level we use a transformation

space T h(Ωref) of piecewise linear continuous functions. Then a discrete version of
assumption (A) holds, i.e., the finite element space remains after transformation
the space of continuous piecewise linear functions in space. The same holds for
higher-order finite elements. Therefore, an analogue of (3.9) holds also on the
discrete level if a Galerkin method is used and we obtain easily the exact shape
derivative, if the adjoint state is computed by the exact discrete adjoint equation
stated above. In this way we have obtained the exact shape derivative on the
discrete level by using a continuous adjoint approach without the tedious task of
computing mesh sensitivities.

5. Numerical results

In this section we demonstrate the adjoint shape derivative calculus on a numerical
model problem. In particular, we consider an incompressible instationary flow
around an object B for which the drag shall be minimized.

5.1. Problem description

The model problem is based on the DFG benchmark of a 2D instationary flow
around a cylinder [20], see Figure 1. We prescribe a fixed parabolic inflow profile

Figure 1. DFG-Benchmark flow around a cylinder; sketch of the geometry

on the left boundary Γin with vmax = 1.5m/s, noslip boundary conditions on
the top and bottom boundaries, as well as on the object boundary ΓB, and a
free outflow condition on the right boundary Γout. The flow is modeled by the
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instationary incompressible Navier-Stokes equations, with viscosity ν = 10−4. The
Navier-Stokes equations are discretized with the cG(1)dG(0) finite element method
presented above, with a fixed time step size k = 10−2 and a triangular spatial mesh
with about 4100 vertices and 7900 elements.

The object boundary ΓB is parameterized using a cubic B-Spline curve with
7 control points for the upper half of ΓB, which is reflected at the y = 0.2-axis
to obtain a y-symmetric closed curve. This parameterization allows for apices at
the front and rear of the object, while the remaining boundary is C2. We impose
constraints on the volume of the object B as well as bound constraints on the
control points. Using the coordinates of the control points as design parameters,
we arrive at an optimization problem with 14 design variables, 12 of which are free
(2 design parameters are fixed as we have to ensure that the y-coordinates of the
first and last B-spline curve points equal 0.2 in order for the curve to be closed).

We compute the mean value of the drag on the object boundary ΓB over the
time interval [0, T ] by using the formula

J((ṽ, p̃),Ω) =
1
T

∫ T

0

∫
Ω

(
(ṽt + (ṽ · ∇)ṽ − f̃)T Φ− p̃ div Φ+ ν∇ṽ : ∇Φ

)
dx dt.

(5.1)
Here, Φ is a smooth function such that with a unit vector φ pointing in the mean
flow direction holds

Φ|ΓB ≡ φ, Φ|∂Ω\ΓB
≡ 0 ∀Ω ∈ Oad.

This formula is an alternative formula for the mean value of the drag on ΓB,

cd :=
1
T

∫ T

0

∫
ΓB

n · σ(ṽ, p̃) · φ dS,

with normal vector n and stress tensor σ(ṽ, p̃) = ν 12 (∇ṽ + (∇ṽ)T ) − p̃ I, and
can be obtained through integration by parts. For a detailed derivation, see [12].
Integration by parts in the time derivative shows that (5.1) can also be written as

J((ṽ, p̃),Ω) =
1
T

∫ T

0

∫
Ω

(
((ṽ · ∇)ṽ − f̃)T Φ− p̃ div Φ+ ν∇ṽ : ∇Φ

)
dx dt

+
1
T

∫
Ω

(ṽ(x, T )− ṽ0(x))T Φ(x) dx.
(5.1)

Thus the drag functional (5.1) has the form (3.6). Moreover, using the well-known
embedding Y (Ω) ↪→ C(I;L2(Ω)d) × L20(Ω) it is easy to see that (ṽ, p̃) ∈ Y (Ω) �→
J((ṽ, p̃),Ω) is continuously differentiable if Φ ∈W 1,∞(R2)2.

Computation of the state, adjoint and shape derivative equations is done
using Dolfin [14], which is part of the FEniCS project [7]. The optimization is
carried out using the interior point solver IPOPT [22], with a BFGS-approximation
for the reduced Hessian.
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5.2. Choice of shape parameters and shape deformation techniques

One aspect to consider in the implementation of shape optimization algorithms is
the choice of the shape parameters and the shape deformation technique. Gener-
ally speaking, shape parameterizations and deformations fall into two classes. In
the first case, a parameterization directly defines the whole domain, which can be
accomplished by using, e.g., free form deformation. In the second case, the pa-
rameterization determines the shape of the surface ΓB of the object B. Examples
for this kind of parameterizations can be B-splines, NURBS, but also the set of
boundary points ΓB itself, if considered in an appropriate function space. Changes
in the shape of the boundary ΓB then have to be transferred to changes of the
domain Ωref. This can be done in various ways, see, e.g., [2].

In our model problem, we have chosen a parameterization of the object
boundary ΓB based on closed cubic B-spline curves [16], where the B-spline control
points act as design parameters u. The transformation of boundary displacements
to displacements of the domain is done by solving an elasticity equation, where
we prescribe the displacement of the object boundary as inhomogeneous Dirichlet
boundary data [2]. The computational domains Ωk := Ω(τ(uk)) are obtained as
transformations of a triangulation of the domain shown in Figure 1. As described
at the end of section 4 we use piecewise linear transformations to ensure a dis-
crete analogue of assumption (A). Then by an analogue of (3.9) together with the
discrete adjoint equation we obtained conveniently by a continuous adjoint calcu-
lus the exact shape derivative on the discrete level – which we have also checked
numerically.

5.3. Results

The IPOPT-algorithm needs 15 interior-point iterations for converging to a tol-
erance of 10−3, altogether needing 17 state equation solves and 16 adjoint solves.
The drag value in the optimal shape is reduced by nearly one third in comparison
to the initial shape. In the optimal solution, bound constraints for 8 of the design
parameters are active, while 6 are inactive. The results of the optimization process
are summarized in Table 1.

Figure 2 shows the velocity fields for the initial and optimal shape, with
snapshots taken at end time, while Figure 3 shows the computational mesh both for
the initial and the optimal shape. Both meshes are obtained by a transformation of
the same reference mesh with a circular object, cf. Figure 1, by solving an elasticity
equation with fixed displacement of the object boundary.

6. Conclusions and outlook

In this paper, we have presented a continuous adjoint approach that can easily be
transferred in an exact way to the discrete level, if a Galerkin method in space
is used. We use a domain representation of the shape gradient, since a boundary
representation requires integration by parts, which is usually not justified on the
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iteration objective dual infeasibility linesarch-steps

0 1.2157690e-1 1.69e+0 0

1 1.0209697e-1 1.53e+0 2

2 9.7036722e-2 3.60e-1 1

3 8.7039312e-2 6.44e-1 1

4 8.4563185e-2 5.08e-1 1

5 8.3512670e-2 1.01e-1 1

6 8.2813890e-2 1.22e-1 1

7 8.2516118e-2 8.96e-2 1

8 8.2069666e-2 1.42e-1 1

9 8.2062288e-2 1.39e-1 1

10 8.1995990e-2 1.80e-2 1

11 8.1994727e-2 6.55e-3 1

12 8.1995485e-2 2.76e-3 1

13 8.1995822e-2 2.72e-3 1

14 8.1995966e-2 1.32e-3 1

15 8.1995811e-2 2.66e-5 1

Table 1. Optimization Results

discrete level. Nevertheless, adjoint based gradient representations can easily be
derived from our gradient representation, e.g., for the boundary shape gradient in
function space, but also for shape parameterizations, for example free form defor-
mation or parameterized boundary displacement. The proposed approach allows
the solution of the state equation and adjoint equation on the physical domain.
Therefore existing solvers of the partial differential equation and its adjoint can
be used.

We have applied our approach to the instationary incompressible Navier-
Stokes equations. In the context of the stabilized cG(1)dG(0) method – but also
for other Galerkin schemes and other types of partial differential equations – we
were able to derive conveniently the exact discrete shape derivative, since our
calculus is exact on the discrete level, if some simple rules are followed.

The combination with error estimators and multilevel techniques is subject of
current research. Our results indicate that these techniques can reduce the number
of optimization iterations on the fine grids and the necessary degrees of freedom
significantly. We leave these results to a future paper.
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Figure 2. Comparison of the velocity fields for the initial and optimal shape
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[20] M. Schäfer and S. Turek, Benchmark Computations of Laminar Flow Around a
Cylinder, Preprints SFB 359, No. 96-03, Universität Heidelberg, 1996.

[21] M. Ulbrich, Constrained optimal control of Navier-Stokes flow by semismooth Newton
methods, Systems Control Lett. 48, pp. 297–311, 2003.
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Recent Advances in the Analysis
of State-constrained Elliptic
Optimal Control Problems

Eduardo Casas and Fredi Tröltzsch

Abstract. Pointwise state-constrained control problems associated with semi-
linear elliptic equations are studied. Theoretical results are derived, which
are necessary to carry out the numerical analysis of the control problem. In
particular, sufficient second-order optimality conditions, some new regularity
results on optimal controls and a sufficient condition for the uniqueness of the
Lagrange multiplier associated with the state constraints are presented.

Mathematics Subject Classification (2000). 49J20, 49K20, 35J65.

Keywords. Optimal control, pointwise state constraints, first- and second-
order optimality conditions, Lagrange multipliers, Borel measures.

1. Introduction

In this paper, we consider several aspects of state-constrained optimal control
problems for semilinear elliptic equations, which seem to be important for a re-
lated numerical analysis. For instance, due to the non-convex character of such
problems, a reasonable error analysis should be based on second-order sufficient
optimality conditions at locally optimal controls. It is known that such conditions
are fairly delicate under the presence of state constraints. In [2], second-order suf-
ficient conditions were established, which are, in some sense, closest to associated
necessary ones and admit a form similar to the theory of nonlinear programming
in finite-dimensional spaces. Here, we briefly discuss this result and show its equiv-
alence to an earlier form stated in [5] that was quite difficult to explain.

Another important pre-requisite for the numerical analysis of control prob-
lems is the smoothness that can be expected of optimal controls. We show that

The first author was partially supported by the Spanish Ministry of Education and Science under
projects MTM2005-06817 and “Ingenio Mathematica (i-MATH)” CSD2006-00032 (Consolider
Ingenio 2010).
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the optimal control is Lipschitz, if the state constraints are only active at finitely
many points. We also present a counterexample that this result is not true for in-
finitely many active points. On the other hand, we prove the somehow surprising
result that optimal controls belong to H1(Ω) no matter how large the active set
is. Moreover, we also discuss the uniqueness of the Lagrange multiplier associated
with the state-constraints.

2. The control problem

Let Ω be an open, connected and bounded domain in Rn, n = 2, 3, with a Lipschitz
boundary Γ. In this domain we consider the state equation{

−Δy + a0(y) = u+ e in Ω,
y = 0 on Γ, (1)

where a0 and e are fixed functions specified below. In (1), the function u denotes
the control and we will denote by yu the solution associated with u. We will state
later the conditions leading to the existence and uniqueness of a solution of (1) in
C(Ω̄) ∩H1

0 (Ω).
The optimal control problem is formulated as follows

(P)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min J(u) =
1
2

∫
Ω

(yu(x) − yd(x))2 dx+
N

2

∫
Ω

u(x)2 dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1
0 (Ω))× L∞(Ω),

α ≤ u(x) ≤ β for a.e. x ∈ Ω,
a ≤ yu(x) ≤ b ∀x ∈ K.

We impose the following assumptions on the data of the control problem:
(A1) In the whole paper, fixed functions yd, e ∈ L2(Ω), and real numbers N > 0,
α, β, a, b are given with α ≤ β and a < b. The fixed function a0 : R → R is
monotone non-decreasing and locally of class C2,1.

We introduce the sets of admissible controls Uα,β and the feasible set Uad of
the problem by

Uα,β = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β a.e. in Ω}
Uad = {u ∈ Uα,β : a ≤ yu(x) ≤ b ∀x ∈ K}.

(A2) K is a compact subset of Ω̄. We also assume that either K ∩ Γ = ∅ or
a < 0 < b. Moreover, we define the set

Yab = {z ∈ C(K) : a ≤ z(x) ≤ b ∀x ∈ K}.
By the formal setting a = −∞ (b = +∞) we can include the case, where only

upper (or lower) bounds on the state are given.
We are able to deal with more general problems, for instance with a more

general elliptic differential operator, a nonlinearity a0 of the form a0(x, y), a non-
quadratic objective functional of integral type, bounds depending on x etc. These
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generalizations will be included in a forthcoming paper. Here, to keep the presen-
tation simple, we consider the setting introduced above.

Let us state first the existence and uniqueness of the solution corresponding
to the state equation (1).

Theorem 2.1. Under assumption (A1), the equation (1) has a unique solution
yu ∈ H1

0 (Ω) ∩ C(Ω̄) for every u ∈ L2(Ω). Moreover, yu ∈ H2(Ω) if Ω is convex
and yu ∈ W 2,p(Ω) if Γ is of class C1,1 and u, e ∈ Lp(Ω), with p > n.

It is well known that equation (1) has a unique solution yu ∈ H1
0 (Ω) ∩ C(Ω̄)

for every u ∈ Lp(Ω). A proof of this result can be obtained by the usual cut off
process applied to a0, then applying a Schauder’s fix point theorem combined with
the monotonicity of a0 and L∞ estimates for the state; cf. Stampacchia [11]. The
continuity of yu is proven in [6]. The W 2,p(Ω) and H2(Ω) estimates can be found
in Grisvard [7].

Now the existence of an optimal control can be proved by using standard
arguments.

Theorem 2.2. Assume that the set of controls Uad is not empty. Then the control
problem (P) has at least one solution.

In the rest of the paper, ū denotes a local minimum of (P) in the sense of the
L∞(Ω)-topology and ȳ will be its associated state. At such a local minimizer, we
will assume the linearized Slater condition.
(A3) There exists u0 ∈ Uα,β such that

a < ȳ(x) + z0(x) < b ∀x ∈ K, (2)

where z0 ∈ H1
0 (Ω) ∩ C(Ω̄) is the unique solution of{

−Δz + a′0(ȳ)z = u0 − ū in Ω

z = 0 on Γ.
(3)

Since K is compact and ȳ, z0 ∈ C(K), we deduce that (2) is equivalent to
the existence of real τ1, τ2 ∈ R such that

a < τ1 < ȳ(x) + z0(x) < τ2 < b ∀x ∈ K. (4)

3. First- and second-order optimality conditions

Before deriving the first-order optimality conditions satisfied by the local minimizer
ū, we recall some results about the differentiability of the mappings involved in
the control problem. For the proofs, the reader is referred to Casas and Mateos
[3], where a Neumann boundary condition was considered instead of the Dirichlet
condition posed in this paper. The method of proof is very similar and the necessary
changes are obvious.
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Theorem 3.1. If (A1) holds, then the mapping G : L2(Ω) −→ C(Ω̄) ∩ H1
0 (Ω),

defined by G(u) = yu is of class C2. Moreover, for all u, v ∈ L2(Ω), zv = G′(u)v
is defined as the solution of{

−Δzv + a′0(yu)zv = v in Ω

zv = 0 on Γ.
(1)

Finally, for every v1, v2 ∈ L2(Ω), zv1v2 = G′′(u)v1v2 is the solution of{
−Δzv1v2 + a′0(yu)zv1v2 + a′′0 (yu)zv1zv2 = 0 in Ω

zv1v2 = 0 on Γ,
(2)

where zvi = G′(u)vi, i = 1, 2.

Remark 3.1. Let us remark that the assumption n ≤ 3 is required to apply the
second-order optimality conditions because the differentiability of G from L2(Ω) to
C(Ω̄) is needed for the proof. This result holds true only for n ≤ 3.

Theorem 3.2. Suppose that (A1) holds. Then J : L2(Ω) → R is a functional of
class C2. Moreover, for every u, v, v1, v2 ∈ L2(Ω)

J ′(u)v =
∫
Ω

(ϕ0u +Nu) v dx (3)

and
J ′′(u)v1v2 =

∫
Ω

[zv1zv2 +Nv1v2 − ϕ0u a
′′
0(yu)zv1zv2 ] dx, (4)

where yu = G(u) and ϕ0u ∈ W 1,s
0 (Ω), for all s < n/(n− 1), is the unique solution

of the adjoint problem{
−Δϕ+ a′0(yu)ϕ = yu − yd in Ω

ϕ = 0 on Γ,
(5)

and zvi = G′(u)vi, i = 1, 2.

The previous theorem and the next one follow easily from Theorem 3.1 and
the chain rule.

Theorem 3.3. If (A1) is satisfied, then the mapping F : L2(Ω) → C(K), defined
by F (u) = yu(·)|K , is of class C2. Moreover, for every u, v, v1, v2 ∈ L2(Ω)

F ′(u)v = zv(·) (6)

and
F ′′(u)v1v2 = zv1v2(·), (7)

where zvi = G′(u)vi, i = 1, 2, and zv1v2 = G′′(u)v1v2.

Before stating the first-order optimality conditions, let us fix some notation.
We denote by M(K) the Banach space of all real and regular Borel measures in
K, which is identified with the dual space of C(K). The following result is well
known.
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Theorem 3.4. Let ū be a local solution of (P) and suppose that the assumptions
(A1)–(A2) are satisfied. Then there exist a measure μ̄ ∈ M(K) and a function
ϕ̄ ∈ W 1,s

0 (Ω), for all 1 ≤ s < n/(n− 1), such that{
−Δϕ̄+ a′0(ȳ(x))ϕ̄ = ȳ − yd + μ̄ in Ω,

ϕ̄ = 0 on Γ,
(8)

∫
K

(z(x)− ȳ(x))dμ̄(x) ≤ 0 ∀z ∈ Yab, (9)∫
Ω

(ϕ̄+Nū)(u − ū) dx ≥ 0 ∀u ∈ Uα,β. (10)

Remark 3.2. It is well known that, in view of a ≤ ȳ(x) ≤ b, inequality (9) implies
that the support of μ̄ is in the set K0 = Ka ∪Kb with

Ka = {x ∈ K : ȳ(x) = a} and Kb = {x ∈ K : ȳ(x) = b}.
Moreover the Lebesgue decomposition of μ̄ = μ+ − μ− implies that suppμ+ ⊂ Kb

and suppμ− ⊂ Ka. Because of this property and by assumption (A2) we have that
supp μ̄ ∩ Γ = ∅. Notice that that Ka and Kb are closed subsets.

Remark 3.3. From (10), it follows

ū(x) = Proj[α,β](−
1
N
ϕ̄(x)) = max{α,min{ϕ̄(x), β}} for a.e. x ∈ Ω. (11)

Let us formulate the Lagrangian version of the optimality conditions (8)–
(10). We define the Lagrange function L : L2(Ω) ×M(K) −→ R associated with
the problem (P) by

L(u, μ) = J(u) +
∫

K

yu(x) dμ(x).

Using (3) and (6) we find that

∂L
∂u

(u, μ)v =
∫
Ω

(ϕu(x) +Nu(x)) v(x) dx, (12)

where ϕu with ϕu ∈ W 1,s
0 (Ω), for all 1 ≤ s < n/(n − 1), is the solution of the

Dirichlet problem {
−Δϕ+ a′0(yu)ϕ = yu + μ in Ω

ϕ = 0 on Γ.
(13)

Now the inequality (10) along with (12) lead to

∂L
∂u

(ū, μ̄)(u − ū) ≥ 0 ∀u ∈ Uα,β . (14)
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Before stating the sufficient second-order optimality conditions, we provide
the expression of the second derivative of the Lagrangian with respect to the
control. From (7), we get

∂2L
∂u2

(u, μ)v1v2 = J ′′(u)v1v2 +
∫

K

zv1v2(x) dμ(x).

By (2) and (4), this is equivalent to

∂2L
∂u2

(u, μ)v1v2 =
∫
Ω

[zv1zv2 +Nv1v2 − ϕu a
′′
0 (yu)zv1zv2 ] dx, (15)

where ϕu is the solution of (13).
Associated with ū, we define the cone of critical directions by

Cū = {v ∈ L2(Ω) : v satisfies (16), (17) and (18)},

v(x) =

⎧⎨⎩ ≥ 0 if ū(x) = α,
≤ 0 if ū(x) = β,
= 0 if ϕ̄(x) +Nū(x) �= 0,

(16)

zv(x) =
{
≥ 0 if x ∈ Ka

≤ 0 if x ∈ Kb,
(17)∫

K

zv(x) dμ̄(x) = 0, (18)

where zv ∈ H1
0 (Ω) ∩ C(Ω̄) satisfies{

−Δzv + a′0(ȳ)zv = v in Ω
zv = 0 on Γ.

The relation (17) expresses the natural sign conditions, which must be fulfilled
for feasible directions at active points x ∈ Ka or Kb, respectively. On the other
hand, (18) states that the derivative zv must be zero whenever the corresponding
Lagrange multiplier is non-vanishing. This restriction is needed for second-order
sufficient conditions. Compared with the finite-dimensional case, this is exactly
what we can expect. Therefore the relations (17)–(18) provide a convenient exten-
sion of the usual conditions of the finite-dimensional case.

We should mention that (18) is new in the context of infinite-dimensional
optimization problems. In earlier papers on this subject, other extensions to the
infinite-dimensional case were suggested. For instance, Maurer and Zowe [10] used
first-order sufficient conditions to account for the strict positivity of Lagrange
multipliers. Inspired by their approach, in [5] an application to state-constrained
elliptic boundary control was suggested by the authors. In terms of our problem,
equation (18) was relaxed by∫

K

zv(x) dμ̄(x) ≥ −ε
∫
{x:|ϕ̄(x)+Nū(x)|≤τ}

|v(x)| dx
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for some ε > 0 and τ > 0, cf. [5, (5.15)]. In the next theorem, which was proven
in [2, Theorem 4.3], we will see that this relaxation is not necessary. We obtain a
smaller cone of critical directions that seems to be optimal. However, the reader
is referred to Theorem 3.6 below, where we consider the possibility of relaxing the
conditions defining the cone Cū.

Theorem 3.5. Let us assume that (A1) holds. Let ū be a feasible control of problem
(P), ȳ the associated state and (ϕ̄, μ̄) ∈ W 1,s

0 (Ω)×M(K), for all 1 ≤ s < n/(n−1),
satisfying (8)–(10). Assume further that

∂2L
∂u2

(ū, μ̄)v2 > 0 ∀v ∈ Cū \ {0}. (19)

Then there exist ε > 0 and δ > 0 such that it holds

J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u) if ‖u− ū‖L2(Ω) ≤ ε and u ∈ Uad. (20)

The condition (19) seems to be natural. In fact, under some regularity as-
sumption, we can expect the inequality

∂2L
∂u2

(ū, μ̄)v2 ≥ 0 ∀v ∈ Cū

as a necessary condition for local optimality. At least, this is the case when the
state constraints are of integral type, see [3], or when K is a finite set of points,
see [1]. In the general case, the necessary second-order optimality conditions for
problem (P) remain open for us.

We finish this section by establishing an equivalent condition to (19) that
is more convenient for the numerical analysis of problem (P). Let us introduce a
cone Cτ

ū of critical directions that is bigger than Cū. Given τ > 0, we denote by
Cτ

ū the set of elements v ∈ L2(Ω) satisfying

v(x) =

⎧⎨⎩
≥ 0 if ū(x) = α,
≤ 0 if ū(x) = β,
= 0 if |ϕ̄(x) +Nū(x)| > τ,

(21)

zv(x) =
{
≥ −τ‖v‖L2(Ω) if x ∈ Ka

≤ +τ‖v‖L2(Ω) if x ∈ Kb,
(22)∫

K

zv(x) dμ̄(x) ≥ −τ‖v‖L2(Ω). (23)

Theorem 3.6. Under the assumption (A1), (19) holds if and only if there exist
τ > 0 and ρ > 0 such that

∂2L
∂u2

(ū, μ̄)v2 ≥ ρ‖v‖2L2(Ω) ∀v ∈ Cτ
ū . (24)

Proof. Since Cū ⊂ Cτ
ū , it is clear that (24) implies (19). Let us prove by contra-

diction that (24) follows from (19). Assume that (19) holds but not (24). Then for
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any positive integer k there exists an element vk ∈ C
1/k
ū such that

∂L
∂u

(ū, μ̄)v2k <
1
k
‖vk‖2L2(Ω). (25)

Redefining vk as vk/‖vk‖L2(Ω) and taking, if necessary, a subsequence denoted in
the same way, we can assume that

‖vk‖L2(Ω) = 1, vk ⇀ v weakly in L2(Ω) and
∂L
∂u

(ū, μ̄)v2k <
1
k
, (26)

and from (21)–(23)

vk(x) =

⎧⎨⎩ ≥ 0 if ū(x) = α,
≤ 0 if ū(x) = β,
= 0 if |ϕ̄(x) +Nū(x)| > 1/k,

(27)

zvk
(x) =

{
≥ −1/k if x ∈ Ka

≤ +1/k if x ∈ Kb,
(28)∫

K

zvk
(x) dμ̄(x) ≥ −1/k. (29)

Since zvk
→ zv strongly inH1

0 (Ω)∩C(Ω̄), we can pass to the limit in (26)–(29)
and get that v ∈ Cū and

∂L
∂u

(ū, μ̄)v2 ≤ 0. (30)

This is only possible if v = 0; see (19). Let us note that the only delicate point
to prove that v ∈ Cū is to establish (18). Indeed, (16) and (17) follow easily from
(27) and (28). Passing to the limit in (29) we obtain∫

K

zv(x) dμ̄(x) ≥ 0.

This inequality, along with (17) and the structure of μ̄, implies (18).
Therefore we have that vk ⇀ 0 weakly in L2(Ω) and zvk

→ 0 strongly in
H1
0 (Ω) ∩ C(Ω̄). Hence, using the expression (15) of the second derivative of the

Lagrangian we deduce

N = lim inf
k→∞

N‖vk‖2L2(Ω) ≤ lim inf
k→∞

∂L
∂u

(ū, μ̄)v2k = 0,

which is a contradiction. �

4. Regularity of the optimal control

In this section, the existence of the second derivative a′′0 is not needed. We start
with the following regularity result for the optimal control, which is well known.
We recall that K0 denotes the set of points, where the state constraints are active.

Theorem 4.1. If (ȳ, ū, ϕ̄) ∈ (H1
0 (Ω) ∩ C(Ω̄)) × L∞(Ω) ×W 1,s

0 (Ω) satisfies the op-
timality system (8)–(10), (ȳ, ū) being a feasible pair for problem (P), then ū ∈
W 1,s(Ω) for all s < n/(n− 1) and ū ∈ C(Ω̄ \K0).
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The regularity ū ∈W 1,s(Ω) follows immediately from (11) and the continuity
ū ∈ C(Ω̄ \K0) is deduced in the same way. This regularity result on the control ū
can be improved if there is a finite number of points, where the state constraints
are active. More precisely, assume that K0 = {xj}m

j=1 ⊂ Ω. Then Remark 3.2
implies that

μ̄ =
m∑

j=1

λ̄jδxj , with λ̄j =
{
≥ 0 if y(xj) = b,
≤ 0 if y(xj) = a,

(1)

where δxj denotes the Dirac measure concentrated at xj . If we denote by ϕ̄j ,
1 ≤ j ≤ m, and ϕ̄0 the solutions of{

−Δϕ̄j + a′0(ȳ(x))ϕ̄j = δxj in Ω,

ϕ̄j = 0 on Γ,
(2)

and {
−Δϕ̄0 + a′0(ȳ(x)) ϕ̄0 = ȳ − yd in Ω,

ϕ̄0 = 0 on Γ,
(3)

then the adjoint state associated to ū is given by

ϕ̄ = ϕ̄0 +
m∑

j=1

λ̄j ϕ̄j . (4)

Theorem 4.2. Assume that Γ is of class C1,1, yd, e ∈ Lp(Ω), p > n, and let
(ȳ, ū, ϕ̄) ∈ (H1

0 (Ω) ∩C(Ω̄))× L∞(Ω)×W 1,s
0 (Ω), for all 1 ≤ s < n/(n− 1), satisfy

the optimality system (8)–(10). If the active set consists of finitely many points in
Ω, i.e., K0 = {xj}m

j=1 ⊂ Ω, then ū belongs to C0,1(Ω̄) and ȳ to W 2,p(Ω).

Since p > n, it holds that W 2,p(Ω) ⊂ C1(Ω̄) and therefore ϕ̄0 ∈ C1(Ω̄). On
the other hand, ϕ̄j(x)→ +∞ when x→ xj , hence ϕ̄ has singularities at the points
xj where λ̄j �= 0. Consequently ϕ̄ cannot be Lipschitz.

Surprisingly, this does not lower the regularity of ū: Notice that (11) implies
that ū is identically equal to α or β in a neighborhood of xj , depending on the
sign of λ̄j . This implies the desired result; see Casas [1] for the details.

Now the question arises if this Lipschitz property remains also valid for an
infinite number of points where the pointwise state constraints are active. Unfor-
tunately, the answer is negative. In fact, the optimal control can even fail to be
continuous if K0 is an infinite and numerable set. Let us present an associated

Counterexample. We set

Ω = {x ∈ R2 : ‖x‖ <
√
2}, ȳ(x) =

{
1 if ‖x‖ ≤ 1

1− (‖x‖2 − 1)4 if 1 < ‖x‖ ≤
√
2,

K = {xk}∞k=1 ∪ {x∞}, where xk = (
1
k
, 0) and x∞ = (0, 0), μ̄ =

∞∑
k=1

1
k2

δxk .



66 E. Casas and F. Tröltzsch

Now we define ϕ̄ ∈ W 1,s
0 (Ω) for all 1 ≤ s < n/(n − 1) as the solution of the

equation {
−Δϕ̄ = ȳ + μ̄ in Ω,

ϕ̄ = 0 on Γ.
(5)

The function ϕ̄ can be decomposed in the form

ϕ̄(x) = ψ̄(x) +
∞∑

k=1

1
k2
[ψk(x) + φ(x − xk)],

where φ(x) = −(1/2π) log ‖x‖ is the fundamental solution of −Δ and ψ̄, ψk ∈
C2(Ω̄) satisfy{

−Δψ̄(x) = ȳ(x) in Ω,

ψ̄(x) = 0 on Γ,

{
−Δψk(x) = 0 in Ω,

ψk(x) = −φ(x− xk) on Γ.

Finally, we set

M =

∣∣∣∣∣ψ̄(0) +
∞∑

k=1

1
k2

ψk(0)

∣∣∣∣∣+
∞∑

k=1

1
k2

φ(xk) + 1, ū(x) = Proj[−M,+M ](−ϕ̄(x)) (6)

and e = −(ū(x) + Δȳ(x)) and a0 = 0. Then ū is the unique global solution of the
control problem

(Q)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min J(u) =
1
2

∫
Ω

(y2u(x) + u2(x)) dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1
0 (Ω))× L∞(Ω),

−M ≤ u(x) ≤ +M for a.e. x ∈ Ω,
−1 ≤ yu(x) ≤ +1 ∀x ∈ K,

where yu is the solution of{
−Δy = u+ e in Ω,

y = 0 on Γ. (7)

As a first step to prove that ū is a solution of problem, let us check that M
is a real number. Since {φ(x− xk)}∞k=1 is bounded in C2(Γ), we get that {ψk}∞k=1
is also bounded in C2(Ω̄). Therefore, the convergence of the first series of (6) is
obvious. The convergence of the second series follows immediately from

∞∑
k=1

1
k2

φ(xk) =
1
2π

∞∑
k=1

1
k2

log k <∞.

Problem (Q) is strictly convex and ū is a feasible control with associated state ȳ
satisfying the state constraints. Therefore, there exists a unique solution charac-
terized by the optimality system. More precisely, the first-order optimality con-
ditions are necessary and sufficient for a global minimum. Let us check that
(ȳ, ū, ϕ̄, μ̄) ∈ H1

0 (Ω) ∩ C(Ω̄) × L∞(Ω) ×W 1,s
0 (Ω) ×M(K) satisfies the optimal-
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ity system (8)–(10). First, it is clear that ȳ is the state associated with ū because
of the definition of e. On the other hand, ϕ̄ is the solution of (5), which is the
same as (8) for our example. Relation (10) follows directly from the definition of
ū given in (6). Finally, because of the definition of μ̄ and K, (9) can be written in
the form

∞∑
k=1

1
k2

z(xk) ≤
∞∑

k=1

1
k2

∀z ∈ C(K) such that − 1 ≤ z(x) ≤ +1 ∀x ∈ K,

which obviously is satisfied.
Now we prove that ū is not continuous at x = 0. Notice that ϕ̄(xk) = +∞

for every k ∈ N, because φ(0) = +∞. Therefore, (6) implies that ū(xk) = −M for
every k. Since xk → 0, the continuity of ū at x = 0 requires that u(x) → −M as
x→ 0. However, we have for ξj = (xj + xj+1)/2 that

lim
j→∞

ū(ξj) = ψ̄(0) +
∞∑

k=1

1
k2

ψk(0) +
∞∑

k=1

1
k2

φ(xk) > −M. (8)

Nevertheless, we are able to improve the regularity result of Theorem 4.1.

Theorem 4.3. Suppose that ū is a strict local minimum of (P) in the sense of the
L2(Ω) topology. We also assume that Assumptions (A1)–(A3) hold. Then ū belongs
to H1

0 (Ω).

Let us remark that any global solution of (P) is a local solution of (P) in the
sense of L2(Ω), but we can expect to have more local or global solutions in the
sense of L2(Ω). Theorem 3.5 implies that ū is at least a strict local minimum in the
sense of L2(Ω), if the sufficient second-order optimality conditions are satisfied at
ū. This guarantees that ū is the unique global solution in an L2(Ω)-neighborhood,
but it does not exclude the case that ū is an accumulation point of different local
minima.
Proof of Theorem 4.3. Let εū > 0 be chosen such that ū is a strict global minimum
of (P) in the closed ball B̄εū(ū) ⊂ L2(Ω). This implies that ū is the unique global
solution of the problem

(P0)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min J(u)

subject to (yu, u) ∈ (C(Ω̄) ∩H1
0 (Ω))× L∞(Ω),

α ≤ u(x) ≤ β for a.e. x ∈ Ω, ‖u− ū‖L2(Ω) ≤ εū

a ≤ yu(x) ≤ b ∀x ∈ K,

where yu is the solution of (1).
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Now we take a sequence {xk}∞k=1 that is dense in K and consider the family
of control problems

(Pk)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min J(u)

subject to (yu, u) ∈ (C(Ω̄) ∩H1
0 (Ω))× L∞(Ω),

α ≤ u(x) ≤ β for a.e. x ∈ Ω, ‖u− ū‖L2(Ω) ≤ εū

a ≤ yu(xj) ≤ b, 1 ≤ j ≤ k.

It is obvious that ū is a feasible control for every problem (Pk), hence the
existence of a global minimum uk of (Pk) follows easily by a standard argumenta-
tion. The proof is split into three steps: First, we prove that the sequence {uk}∞k=1
converges to ū strongly in L2(Ω); in a second step we will check that the linearized
Slater condition corresponding to problem (Pk) holds for all sufficiently large k.
Finally, we deduce the boundedness of {uk}∞k=1 in H1

0 (Ω).
Step 1 – Convergence of {uk}∞k=1. By taking a subsequence, if necessary, we

can suppose that uk ⇀ ũ weakly in L2(Ω). This implies that yk = yuk
→ ỹ = yũ

strongly in H1
0 (Ω) ∩ C(Ω̄). In view of the density of {xk}∞k=1 in K and using the

fact that
a≤y(xj) = lim

k→∞
yk(xj) ≤ b ∀ j ≥ 1,

we get a ≤ y(x) ≤ b for every x ∈ K. Clearly, ũ is a feasible control for problem
(P0). Since ū is the solution of (P0), uk is a solution of (Pk) and ū is a feasible
control for every problem (Pk). Therefore, J(uk) ≤ J(ū) and we get

J(ū) ≤ J(ũ) ≤ lim inf
k→∞

J(uk) ≤ lim sup
k→∞

J(uk) ≤ lim inf
k→∞

J(ū) = J(ū),

which implies that ū = ũ and lim J(uk) = J(ū). Hence the strong convergence
uk → ū in L2(Ω) follows from the last equality.

Step 2 – The linearized Slater condition for (Pk) is satisfied at uk. This follows
from a standard idea: With some ε > 0, one takes the control u0,ε = ε(u0− ū)+ ū,
where u0 is taken from the Slater condition (A3). Then it is not difficult to show
that the linearized Slater condition for (Pk) is satisfied for all sufficiently large k.

Step 3 – {uk}∞k=1 is bounded in H1
0 (Ω). The strong convergence uk → ū in

L2(Ω) implies that ‖uk − ū‖L2(Ω) < εū holds for all sufficiently large k. Therefore,
uk is a local minimum of the problem

(Qk)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min J(u)

subject to (yu, u) ∈ (C(Ω̄) ∩H1
0 (Ω))× L∞(Ω),

α ≤ u(x) ≤ β for a.e. x ∈ Ω,
a ≤ yu(xj) ≤ b, 1 ≤ j ≤ k.

Next, we apply Theorem 3.4 and deduce

uk(x) = Proj[α,β]

(
− 1
N
ϕk(x)

)
= min

{
max

{
α,− 1

N
ϕk(x)

}
, β
}
, (9)
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with

ϕk = ϕk,0 +
k∑

j=1

λk,jϕk,j . (10)

Above, {λk,j}k
j=1 are the Lagrange multipliers, more precisely

μk =
k∑

j=1

λk,jδxj , with λk,j =
{
≥ 0 if yk(xj) = b,
≤ 0 if yk(xj) = a.

(11)

Finally, ϕk,0 and {ϕk,j}k
j=1 are given by{

−Δϕk,0 + a′0(yk(x))ϕk,0 = yk − yd in Ω,

ϕk,0 = 0 on Γ,
(12)

{
−Δϕk,j + a′0(yk(x))ϕk,j = δxj in Ω,

ϕk,j = 0 on Γ.
(13)

It is known that the linearized Slater condition implies the boundedness of
the Lagrange multipliers

∃C > 0 such that ‖μk‖M(K) =
k∑

j=1

|λk,j | ≤ C ∀k. (14)

We suppress the associated proof. Now (10), (12) and (13) lead to{
−Δϕk + a′0(yk(x))ϕk = yk − yd + μk in Ω,

ϕk = 0 on Γ.
(15)

Define

Cα,β = |α|+ |β|+ 1 and vk(x) = Proj[−Cα,β,+Cα,β ]

(
− 1
N
ϕk(x)

)
.

From the last relation and (9) it follows that

uk(x) = Proj[α,β](vk(x)).

The goal is to prove that {vk}∞k=1 is bounded inH1
0 (Ω), which implies the bounded-

ness of {uk}∞k=1 in the same space. The last claim is an immediate consequence of

|∇uk(x)| ≤ |∇vk(x)| for a.e. x ∈ Ω.
If {uk}∞k=1 is bounded in H1

0 (Ω), then obviously ū belongs to H1
0 (Ω).

Let us prove the boundedness of {vk}∞k=1 in H1
0 (Ω). Notice that the solution

of the Dirichlet problem for −Δ and a Lipschitz boundary Γ belongs to W 1,r
0 (Ω)

if the right-hand side belongs to W−1,r(Ω) for any n < r < n + εn, with εn > 0
depending on n and n = 2 or 3; see Jerison and Kenig [8] and Mateos [9]. Since
L2(Ω) ⊂W−1,6(Ω) for n ≤ 3, we have that ϕk,0 ∈ W 1,r

0 (Ω) holds for all r ≤ 6 in the
range indicated above. From this, it follows ϕk ∈W 1,s

0 (Ω)∩W 1,r(Ω\Sk), where Sk

is the set of points xj such that λk,j �= 0. Taking into account that vk is constant
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in a neighborhood of every point xj ∈ Sk, we obtain vk ∈ W 1,r
0 (Ω) ⊂ C(Ω̄).

Multiplying equation (15) by −vk and integrating by parts, we get

−
∫
Ω

(∇vk · ∇ϕk + a′0(yk)vkϕk) dx = −
∫
Ω

(yk − yd)vk dx−
k∑

j=1

λk,jvk(xj). (16)

The definition of vk implies for almost all x ∈ Ω

∇vk(x) =

⎧⎨⎩ − 1
N
∇ϕk(x) if −Cα,β ≤ −

1
N
ϕk(x) ≤ +Cα,β

0 otherwise.
(17)

Invoking this property in (16) along with the boundedness of {yk}∞k=1 in C(Ω̄),
the estimate ‖vk‖L∞(Ω) ≤ Cα,β and assumptions (A3), (A2) we deduce

λAN

∫
Ω

|∇vk|2 dx ≤ ‖ψM‖L2(Ω)‖vk‖L2(Ω) + C

k∑
j=1

|λk,j |‖vk‖L∞(Ω) ≤ C′,

which implies that {vk}∞k=1 is bounded in H1
0 (Ω) as required.

5. On the uniqueness of the Lagrange multiplier μ̄

Finally, we provide a sufficient condition for the uniqueness of the Lagrange mul-
tiplier associated to the state constraints. We also analyze some situations under
which the condition is satisfied.

Theorem 5.1. Assume (A1)–(A3) and the existence of some ε > 0 such that

T : L2(Ωε) −→ C(K0), v �→ zv, has a dense range , (1)

where
Ωε = {x ∈ Ω : α+ ε < ū(x) < β − ε},

zv ∈ H1
0 (Ω) ∩ C(Ω̄) satisfies{

−Δzv + a′0(ȳ)zv = v in Ω
zv = 0 on Γ, (2)

and v is extended by zero to the whole domain Ω. Then there exists a unique
Lagrange multiplier μ ∈M(K) such that (8)–(10) holds.

Proof. Assume to the contrary that μ̄i, i = 1, 2, are two Lagrange multipliers
associated with the state constraints corresponding to the optimal control ū. Then
(14) holds for μ̄ = μ̄i, i = 1, 2. Take an arbitrary v ∈ L∞(Ωε) \ {0}. Then we have

α ≤ uρ(x) = ū(x) + ρv(x) ≤ β for a.e. x ∈ Ω, ∀|ρ| < ε

‖v‖L∞(Ωε)
,



Analysis of State-constrained Elliptic Optimal Control Problems 71

where v is extended by zero to the whole domain Ω. Taking u = uρ in (14), with ρ
positive and negative respectively, and remembering that supp μ̄i ⊂ K0 (Remark
3.2), we deduce

J ′(ū)v +
∫

K0

zv(x) dμ̄i(x) =
∂L
∂u

(ū, μ̄i)v = 0, i = 1, 2,

which leads to

〈μ̄1, T v〉 = −J ′(ū)v = 〈μ̄2, T v〉 ∀v ∈ L∞(Ωε).

Since L∞(Ωε) is dense in L2(Ωε) and T (L2(Ωε)) is dense in C(K0), this identity
implies μ̄1 = μ̄2. �

Remark 5.1. For a finite set K = {xj}n
j=1, assumption (1) is equivalent to the

independence of the gradients {G′j(ū)}j∈I0 in L2(Ωε), where the functions Gj :
L2(Ωε) −→ R are defined by Gj(u) = g(xj , yu(xj)) and I0 is the set of indexes
j corresponding to active constraints. It is a regularity assumption on the control
problem at ū. This type of assumption was introduced by the authors in [4] to ana-
lyze control constrained problems with finitely many state constraints. The first au-
thor proved in [1] that, under very general hypotheses, this assumption is equivalent
to the Slater condition in the case of a finite number of pointwise state constraints.

Remark 5.2. We are able to show that (1) holds under some assumptions on ū
and the set of points K0 where the state constraint is active. For instance, assume
in addition to (A1)–(A3) that also

1. the Lebesgue measure of K0 is zero and that
2. there exists ε > 0 such that, for every open connected component A of Ω\K0,

the set A ∩ Ωε has a nonempty interior.

Then the regularity assumption (1) is satisfied, as it will be proven in a forthcoming
paper. We are also able to show that the regularity hypothesis (1) is stronger than
the linearized Slater assumption (A3).

Remark 5.3. We know ū ∈ C(Ω̄ \K0) from Theorem 4.1, hence the assumption 2
of the theorem holds if ū is not identically equal to α or β in any open connected
component A ⊂ Ω \ K0. Indeed, since ū ∈ C(A) and ū �≡ α and ū �≡ β in A,
there exists x0 ∈ A such that α < ū(x0) < β. Then the continuity of ū implies the
existence of ε > 0 such that A ∩ Ωε contains a ball Bρ(x0).
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Fast and Strongly Localized Observation
for a Perturbed Plate Equation

Nicolae Ĉındea and Marius Tucsnak

Abstract. The aim of this work is to study the exact observability of a per-
turbed plate equation. A fast and strongly localized observation result was
proven using a perturbation argument of an Euler-Bernoulli plate equation
and a unique continuation result for bi-Laplacian.
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1. Introduction

Various observability and controllability properties for the system of partial dif-
ferential equations modeling the vibrations of an Euler-Bernoulli plate have been
investigated in the literature. In most of the existing references it assumed that the
observation region satisfies the geometric optics condition of Bardos, Lebeau and
Rauch [1], which is known to be necessary and sufficient for the exact observabil-
ity of the wave equation (see, for instance, Lasiecka and Triggiani [9], Lebeau [10],
Burq and Zworski [2] and references therein). In the case of internal control, the
first result asserting that exact observability for the Schrödinger equation holds
for an arbitrarily small control region has been given by Jaffard [7], who shows, in
particular, that for systems governed by the Schrödinger equation in a rectangle
we have exact internal observability with an arbitrary observation region and in
arbitrarily small time. Jaffard’s method has been adapted by Komornik [8] to an
n-dimensional context. The similar results for boundary observation have been
given in Ramdani, Takahashi, Tenenbaum and Tucsnak [13] and Tenenbaum and
Tucsnak [14]. The aim of this work is to extend some of these results, namely
those in [7], for the case of an Euler-Bernoulli plate perturbed by a zero-order
term. Note that the above-mentioned papers tackling arbitrarily small observation
regions use the explicit knowledge of the eigenvalues and of the eigenvectors of
the Laplace operator in rectangular domains. Such an information is not available
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for the plate equations perturbed by lower-order terms. On the other hand, as far
as we know, the method based on Carleman estimates, which is generally used to
tackle lower-order terms, does not yield exact observability with arbitrarily small
observation region. This is why we consider a different method, in which our prob-
lem is tackled as a perturbation of the case considered in [7] and [8], using recent
results from Hadd [4] and Tucsnak and Weiss [15].

Let us now give the precise statement of the problem and of the main results.
In the remaining part of this work n ∈ N and Ω is a rectangular domain in Rn,
say

Ω = [0, a1]× [0, a2]× · · · × [0, an],

with a1, a2, . . . , an > 0.
We consider the initial and boundary value problem

∂2η

∂t2
+Δ2η + aη = 0, in Ω× (0,∞) (1.1)

η = Δη = 0, on Γ× (0,∞) (1.2)
η(0) = f, η̇(0) = g in Ω, (1.3)

where a ∈ L∞(Ω), f ∈ H2(Ω) ∩ H1
0 (Ω) and g ∈ L2(Ω). For n = 2 the above

equations model the vibrations of an Euler-Bernoulli plate with a hinged boundary.
The output of this system is

y(t) = η̇(·, t)|O, (1.4)

where O is an open subset of Ω. Here, and in the remaining part of this paper we
denote

η̇ =
∂η

∂t
.

Our main result is:

Theorem 1.1. For any subset O ⊂ Ω the system (1.1)–(1.4) is exactly observable
in time any time τ > 0, i.e., there exists a constant kτ > 0 such that∫ τ

0

‖η̇(t)‖2L2(O) dt ≥ k2τ

(
‖f‖2H2(Ω) + ‖g‖2L2(Ω)

)
∀f ∈ H2(Ω) ∩H1

0 (Ω), g ∈ L2(Ω).

The above theorem has two consequences concerning exact controllability
and uniform stabilizability for the plate equations. The first one follows from a
standard duality argument, see for instance, Lions [11].

Corollary 1.2. For any open subset O ⊂ Ω the following problem

∂2η

∂t2
+Δ2η + aη + uχO = 0, in Ω× (0,∞) (1.5)

η = Δη = 0, on Γ× (0,∞) (1.6)
η(0) = f, η̇(0) = g in Ω, (1.7)
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is exactly controllable in any time τ > 0, i.e., for any
[

f1
g1

]
,
[

f2
g2

]
∈ (H2(Ω) ∩

H1
0 (Ω))× L2(Ω) there exists a control u ∈ L2(O) such that[

η(0)
η̇(0)

]
=
[

f1
g1

]
and

[
η(τ)
η̇(τ)

]
=
[

f2
g2

]
,

where by χO(x) we denote the function that is 1 for x ∈ O and 0 otherwise.

Moreover, from Theorem 1.1 and the general result in Haraux [5] it follows
that the system (1.5)–(1.7) can be exponentially stabilized by using a simple feed-
back. More precisely, the following result holds.

Corollary 1.3. Let O be an open subset of Ω and let a, b ∈ L∞(Ω, [0,∞)) with
b(x) ≥ b0 > 0 for almost every x ∈ O. Then the system determined by initial and
boundary value problem (1.5)–(1.7) with u(x, t) = −b(x)η̇(x, t), is exponentially
stable, i.e., there exist M,ω > 0 such that

‖η̇(t)‖L2(Ω) + ‖η(t)‖H2(Ω) ≤Me−ωt
(
‖f‖H2(Ω) + ‖g‖L2(Ω)

)
(t ≥ 0).

The plan of this work is as follows. In Section 2 we fix some notation and
we recall some basic results. Section 3 contains the proofs of the main results. In
section 4 we prove a Carleman estimate for the bi-Laplacian, which has been used
for the proof of the main result.

2. Notation and preliminaries

In the remaining part of the paper we denote H = L2(Ω) and

H1 =
{
ϕ ∈ H4(Ω)|ϕ = Δϕ = 0 on Γ

}
.

Let A0 : H1 → H be the operator defined by A0ϕ = Δ2ϕ, ∀ϕ ∈ H1. Let H 1
2
=

H2(Ω) ∩H1
0 (Ω), X = H 1

2
×H , X1 = H1 ×H 1

2
and

A : X1 → X, A =
[

0 I
−A0 0

]
.

It is well known that A is skew-adjoint so that, according to Stone’s theorem, it
generates a strongly continuous group of isometries T on X . By ‖ · ‖ without any
index we design the standard norm in L2(Ω). We denote Y = L2(O), with O ⊂ Ω
an open set. The operator C ∈ L(X1, Y ) corresponding to the observation (1.4) is

C

[
f
g

]
= g|O

([
f
g

]
∈ X

)
. (2.1)

Let P0 ∈ L (H) be the linear operator defined by P0f = −af for all f ∈ H , and
P ∈ L(X) given by

P =
[
0 0
P0 0

]
, P

[
f
g

]
=
[
0

P0f

]
.

We define AP : D(AP )→ X by

D(AP ) = D(A), AP = A+ P. (2.2)



76 N. Cı̂ndea and M. Tucsnak

We note that

‖P‖L(X) = sup
{∥∥P [

f
g

]∥∥
X

}
= sup
‖f‖≤1

‖af‖ ≤ ‖a‖L∞ .

We know from Pazy [12] (Theorem 1.1 p. 76) that AP is the generator of a
strongly continuous semigroup TP satisfying

‖TP
t ‖ ≤Meαt, t ≥ 0, (2.3)

where α = ω +M‖P‖, and ω and M are such that ‖Tt‖ ≤Meωt for all t ≥ 0.
In this context the problem (1.1)–(1.3) can be written as a first-order equation

ż(t) = AP z(t), t ≥ 0 (2.4)
z(0) = z0, (2.5)

where z(t) =
[ η

η̇(t)

]
and z0 =

[
f
g

]
.

The proof of Theorem 1.1 is based on two abstract results, which are stated
below. The first one concerns the robustness of the exact observability with respect
to bounded small norm perturbations of the generator and it can be proved by a
simple duality argument from Theorem 3.3 in [4].

Proposition 2.1. Suppose that C ∈ L(X1, Y ) is an admissible observation operator
for T. Assume that (A,C) is exactly observable in time τ > 0, i.e., there exists
kτ > 0 such that (∫ τ

0

‖CTtz0‖2 dt
) 1

2

≥ kτ‖z0‖ ∀z0 ∈ D(A).

Let P ∈ L(X) and let TP be the strongly continuous semigroup generated by A+P .
If there exists a constant K > 0 such that

‖P‖ ≤ K, (2.6)

then (A+ P,C) is exactly observable in time τ , i.e., there exists kP
τ > 0 such that(∫ τ

0

‖CTP
t z0‖2 dt

) 1
2

≥ kP
τ ‖z0‖ ∀z0 ∈ D(A).

The second result says, roughly speaking, that for systems with diagonalis-
able generators that in order to prove the exact observability it is is sufficient to
check the exact observability of the high frequency part and the observability of
eigenvectors. More precisely, we have the following result, borrowed from [15].

Proposition 2.2. Assume that there exists an orthonormal basis (φk)k∈N formed of
eigenvectors of A and the corresponding eigenvalues (λk)k∈N satisfy limλk = ∞.
Let C ∈ L(X1, Y ) be an admissible observation operator for T. For some bounded
set J ⊂ C denote

V = span {φk | λk ∈ J}⊥

and let AV be the part of A in V . Let CV be the restriction of C to D(AV ).
Assume that (AV , CV ) is exactly observable in time τ0 > 0 and that Cφ �= 0 for
every eigenvector φ of A. Then (A,C) is exactly observable in any time τ > τ0.
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3. Main results

The proof of Theorem 1.1 follows the same idea like in [15] (Theorem 6.3.2), where
a similar result is proved for the waves equation. Also, we will use an appropriate
decomposition of X as a direct sum of invariant subspaces. To obtain this decom-
position, we need the following characterization of the eigenvalues and eigenvectors
of AP .

Proposition 3.1. With the above notation, φ =
[ ϕ

ψ

]
∈ D(AP ) is an eigenvector of

AP , associated to the eigenvalue iμ, if and only if ϕ is an eigenvector of A0 − P0,
associated to the eigenvalue μ2, and ψ = iμϕ.

Proof. Suppose that μ ∈ C and
[ ϕ

ψ

]
∈ X \ {[ 00 ]}. According to the definition of

AP this is equivalent to {
ψ = iμϕ
(−A0 + P0)ϕ = iμψ.

The above conditions hold iff

(−A0 + P0)ϕ = −μ2ϕ and ψ = iμϕ.

�

Clearly, A0 − P0 is self-adjoint and it has compact resolvent. Then A0 −
P0 is diagonalisable with an orthonormal basis (ϕk)k∈N∗ of eigenvectors and the
corresponding family of real eigenvalues (λk)k∈N∗ satisfies limk→∞ |λk| =∞. Since
A0 − P0 + ‖P0‖I ≥ 0, it follows that all the eigenvalues λ of A0 − P0 satisfy
λ > −‖P0‖. Hence, limk→∞ λk = ∞. Without loss of generality we may assume
that the sequence (λk)k∈N∗ is non-decreasing. We extend the sequence (ϕk) to a
sequence indexed by Z∗ by setting ϕk = −ϕ−k for every k ∈ Z−. We introduce
the real sequence (μk)k∈Z∗ by

μk =
√
|λk| if k > 0 and μk = −μ−k if k < 0.

We denote

W0 = span
{[ 1

isign(k)ϕk

ϕk

]∣∣∣∣ k ∈ Z∗, μk = 0
}
.

If Ker(A0 − P0) = {0} then of course W0 is the zero subspace of X . Let N ∈ N∗

be such that λN > 0. We denote

WN = span
{[ 1

iμk
ϕk

ϕk

]∣∣∣∣ k ∈ Z∗, |k| < N, μk �= 0
}
,

and define YN =W0 +WN . We also introduce the space

VN = clos span
{[ 1

iμk
ϕk

ϕk

]∣∣∣∣ |k| ≥ N

}
. (3.1)

Lemma 3.2. We have X = YN ⊕ VN and YN , VN are invariant under TP .

By X = YN ⊕ VN we mean that X = YN + VN and YN ∩ VN = {0}.
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Proof. Let A1 : D(A0)→ H be defined by

A1f =
∑
λk=0

〈f, ϕk〉ϕk +
∑

λk �=0
|λk|〈f, ϕk〉ϕk, ∀ f ∈ D(A0).

Since the family (ϕk)k∈N∗ is an orthonormal basis in H and each ϕk is an eigen-
vector of A1, it follows that A1 is diagonalisable. Moreover, since the eigenvalues
of A1 are strictly positive, it follows that A1 > 0. Is easy to see that the inner
product on X defined by〈[

f1
g1

]
,

[
f2
g2

]〉
1

= 〈A
1
2
1 f1, A

1
2
1 f2〉+ 〈g1, g2〉, ∀

[
f1
g1

]
,

[
f2
g2

]
∈ X,

is equivalent to the original one (meaning that it induces a norm equivalent to the
original norm). Let A1 be the operator on X defined by

D(A1) = H1 ×H 1
2
, A1 =

[
0 I
−A1 0

]
.

We can verify that A1 is skew-adjoint on X (if endowed with the inner product
〈·, ·〉1). Consequently we obtain that YN = V ⊥N (with respect to this inner product
〈·, ·〉1). It follows that X = YN ⊕ VN .

We still have to show that VN and YN are invariant subspaces under TP .
Since VN is the closed span of a set of eigenvectors of AP , its invariance under the
action of TP is clear. If μk = 0, then

AP

[ 1
isign(k)ϕk

ϕk

]
=
[
ϕk

0

]
=
1
2

([ 1
isign(k)ϕk

ϕk

]
+
[ 1

isign(−k)ϕ−k

ϕ−k

])
∈W0,

so that W0 is invariant under TP . If |k| < N and λk < 0 then

(A0 − P0)ϕk = −μ2kϕk,

so that

AP

[ 1
iμk

ϕk

ϕk

]
=
[

ϕk
μk

i ϕk

]
= iμk

[ 1
iμk

ϕk

−ϕk

]
= iμk

[ 1
iμ−k

ϕ−k

ϕ−k

]
∈WN .

If |k| < N and λk > 0, then

AP

[ 1
iμk

ϕk

ϕk

]
= iμk

[ 1
iμk

ϕk

ϕk

]
∈WN .

Thus WN , and hence also YN =W0 +WN , are invariant for T. �

Lemma 3.3. With the previous notation and (3.1), let N ∈ N∗ be such that λN >
‖a‖L∞. Let us denote by PVN ∈ L(VN , X) the restriction of P to VN . Then

‖PVN ‖ ≤
‖a‖L∞√

λN − ‖a‖L∞
. (3.2)
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Proof. Take a finite linear combination of the vectors ϕk with k ≥ N :

f =
M∑

k=N

αkϕk, (3.3)

so that ‖f‖2 =∑M
k=N |αk|2. Then

‖Δf‖2 + 〈af, f〉 =
∫
Ω

ΔfΔf dx+
∫
Ω

a(x)ff dx

=
∫
Ω

Δ2ff + aff dx =
∫
Ω

(A0 − P0)ff dx

=
M∑

k,l=N

αkαl 〈(A0 − P0)ϕk, ϕl〉 =
M∑

k=N

|αk|2λk ≥ λN‖f‖2.

From here we see that

‖Δf‖2 ≥ (λN − ‖a‖L∞) ‖f‖2.
Now take z to be a finite linear combination of the eigenvectors of AP in VN :

z ∈ span
{[ 1

iμk
ϕk

ϕk

]∣∣∣∣ |k| ≥ N

}
,

so that in particular z ∈ VN and z =
[

f
g

]
, with f as in (3.3). Therefore

‖PVN z‖X = ‖Pz‖X = ‖af‖ ≤ ‖a‖L∞‖f‖

≤ ‖a‖L∞√
λN − ‖a‖∞

‖Δf‖ ≤ ‖a‖L∞√
λN − ‖a‖∞

‖z‖X .

Since all the vectors like our z are dense in VN , it follows that the above estimate
holds for all z ∈ VN , and this implies the estimate in the lemma. �

Lemma 3.4. Let a ∈ L∞(Ω) and let u be a function such that

Δ2u+ au = μ2u in Ω (3.4)
u = Δu = 0 on ∂Ω (3.5)

and
u = 0 in O. (3.6)

Then u = 0 in all Ω.

Proof. The proof of this lemma is an direct consequence of the Theorem 4.3 given
in the next section. Let denote g = (μ2 − a)u ∈ L2(Ω). Now we apply Theorem
4.3 for (3.4)–(3.5) and using (3.6) we obtain

sλ2
∫
Ω

|∇(Δu)|2e2sϕdx+ s4λ6
∫
Ω

|∇u|2e2sϕdx+ s6λ8
∫
Ω

|u|2ϕ2e2sϕdx

≤ C

∫
Ω

|g|2
ϕ

e2sϕdx.
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After some small calculations we can prove the estimate∫
Ω

|g|2
ϕ

e2sϕdx ≤ C1(λ)
∫
Ω

(μ2 + ‖a‖2L∞)|u|2ϕ2e2sϕdx+ C2(λ),

where C1, C2 depend only of λ. Coupling the last two equations and taking s→∞
we obtain that u = 0 in Ω. �

Proof of Theorem 1.1. Let N ∈ N∗ be such that λN > 0 and let AN and CN be the
parts of AP , respectively of C, in VN , where VN has been defined in (3.1). (Thus,
AN = (A + P )|VN and CN = C|VN .) We claim that for N ∈ N∗ large enough the
pair (AN , CN ) (with state space VN ) is exactly observable in time τ0.

For a given constant K > 0, from the estimation (3.2), there exists a N ∈ N∗,
big enough, such that

‖PVN‖ ≤ K.
Because (A,C) is exactly observable in any time τ > 0, using Proposition 2.1 we
obtain that (AN , CN ) is exactly observable in time τ in VN .

On the other hand, if φ =
[ ϕ

ψ

]
∈ D(AP ) is an eigenvector of AP , associated

to the eigenvalue iμ, such that Cφ = 0 then, according to Proposition 3.1, ϕ ∈ H1

is an eigenvector of A0 − P0, associated to the eigenvalue μ2, i.e., ϕ ∈ H1 satisfies

Δ2ϕ+ aϕ = μ2ϕ. (3.7)

Moreover, the condition Cφ = 0 is equivalent to

ϕ = 0 in O.

As shown in Lemma 3.4, the only function ϕ ∈ H1 satisfying above conditions is
ϕ = 0. Now, from Proposition 2.2 we can conclude that (A,C) is exactly observable
in any time τ > 0. �

4. A global Carleman estimate for bi-Laplacian

In this section we will prove a global Carleman estimate for bi-Laplacian, applying
two times a particular case of the global Carleman estimate proved in [6].

Let Ω be a nonempty open set of class C2. Let y ∈ H2(Ω) ∩H1
0 (Ω) be the

solution of the problem

Δy = f, in Ω (4.1)
y = 0, on ∂Ω, (4.2)

where f ∈ L2(Ω). We use the following classic lemma stated in [6], and proved
in [3].
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Lemma 4.1. Let O be an nonempty open set O ⊂ Ω. Then there exists a function
ψ ∈ C2(Ω) such that

ψ = 0, on ∂Ω (4.3)
ψ(x) > 0, ∀x ∈ Ω (4.4)

|∇ψ(x)| > 0, ∀x ∈ Ω \ O. (4.5)

We consider a weight function

ϕ(x) = eλψ(x), (4.6)

where λ ∈ R, λ ≥ 1 will be chosen later. The following theorem is a particular case
of the Carleman estimate proved by Imanuvilov-Puel in [6] for the general elliptic
operators.

Theorem 4.2. Assume that the hypotheses (4.3)–(4.6) are verified and let y ∈
H2(Ω)∩H1

0 (Ω) be the solution of (4.1)–(4.2). Then there exists a constant C > 0
independent of s and λ, and parameters λ̂ > 1 and ŝ > 1 such that for all λ ≥ λ̂
and for all s > ŝ we have∫

Ω

|∇y|2e2sϕdx+ s2λ2
∫
Ω

|y|2ϕ2e2sϕdx

≤ C

(
1
sλ2

∫
Ω

|f |2
ϕ

e2sϕdx+
∫
O

(
|∇y|2 + s2λ2ϕ2|y|2

)
e2sϕdx

)
. (4.7)

Let u ∈ H1 be the solution of the problem

Δ2u = g, in Ω (4.8)
u = Δu = 0, on ∂Ω, (4.9)

where g ∈ L2(Ω).

Theorem 4.3. Let ψ ∈ C2(Ω) be a function such that (4.3)–(4.5) are verified, let
ϕ given by (4.6), and let u ∈ H1 be the solution of (4.8)–(4.9). Then there exist
ŝ > 1, λ > 1 and a constant C > 0 independent of s ≥ ŝ such that

sλ2
∫
Ω

(
|∇(Δu)|2e2sϕ + s3λ4|∇u|2e2sϕ + s5λ6|u|2ϕ2e2sϕ

)
≤ C

(∫
Ω

|g|2
ϕ

e2sϕdx

+sλ2
∫
O
(|∇(Δu)|2 + s2λ2ϕ2|Δu|2 + s3λ4|∇u|2 + s5λ6ϕ2|u|2)e2sϕdx

)
. (4.10)

Proof. We denote y = Δu. Then (4.8) and the last part of (4.9) can be written as

Δy = g, in Ω (4.11)
y = 0, on ∂Ω (4.12)
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Applying the Theorem 4.2 there exist s1 > 1, λ1 > 1 and C1 > 0 independent of
s and λ such that for all s ≥ s1, λ ≥ λ1 the following estimate is satisfied

sλ2
∫
Ω

|∇y|2e2sϕdx+ s3λ4
∫
Ω

|y|2ϕ2e2sϕdx

≤ C1

(∫
Ω

|g|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇y|2 + s3λ4ϕ2|y|2

)
e2sϕdx

)
.

Replacing y with Δu in the previous estimate we obtain

sλ2
∫
Ω

|∇(Δu)|2e2sϕdx+ s3λ4
∫
Ω

|Δu|2ϕ2e2sϕdx

≤ C1

(∫
Ω

|g|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇(Δu)|2 + s3λ4ϕ2|Δu|2

)
e2sϕdx

)
. (4.13)

Now consider the problem

Δu = y, in Ω (4.14)

u = 0, on ∂Ω, (4.15)

and apply the Theorem 4.2. Then there exist C2 > 0, s2 > 1, λ2 > 1 such that for
s ≥ s2 and λ ≥ λ2 we have

sλ2
∫
Ω

|∇u|2e2sϕdx+ s3λ4
∫
Ω

|u|2ϕ2e2sϕdx

≤ C2

(∫
Ω

|Δu|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
≤ C3

(∫
Ω

|Δu|2ϕ2e2sϕdx+
∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
. (4.16)

We denote λ = max{λ1, λ2} and ŝ = max{s1, s2}. For s ≥ ŝ, combining (4.13)
and (4.16) we have

sλ2
∫
Ω

|∇(Δu)|2e2sϕdx+
s3λ4

C3

(
sλ2

∫
Ω

|∇u|2e2sϕdx+ s3λ4
∫
Ω

|u|2ϕ2e2sϕdx
)

− s3λ4
(∫

O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
≤ C1

(∫
Ω

|g|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇(Δu)|2 + s3λ4ϕ2|Δu|2

)
e2sϕdx

)
. (4.17)

How λ is fixed in 4.17, we affirm that exists a constant C > 0 such that (4.10) is
verified. So, the proof of the theorem is completed. �
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en temps, Portugal. Math., 46 (1989), pp. 245–258.

[6] O.Y. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of
elliptic nonhomogeneous Dirichlet problems, Int. Math. Res. Not., (2003), pp. 883–
913.

[7] S. Jaffard, Contrôle interne exact des vibrations d’une plaque rectangulaire., Port.
Math., 47 (1990), pp. 423–429.

[8] V. Komornik, On the exact internal controllability of a Petrowsky system, J. Math.
Pures Appl. (9), 71 (1992), pp. 331–342.

[9] I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Euler-
Bernoulli equations with boundary control only in Δw|Σ, Boll. Un. Mat. Ital. B (7),
5 (1991), pp. 665–702.

[10] G. Lebeau, Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9), 71
(1992), pp. 267–291.
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Representations, Composition, and
Decomposition of C1,1-hypersurfaces

Michel C. Delfour

Abstract. We revisit and expand the intrinsic and parametric representations
of hypersurfaces with application to the theory of thin and asymptotic shells.
A central issue is the minimal smoothness of the midsurface to still make sense
of asymptotic membrane shell and bending equations without ad hoc mechan-
ical or mathematical assumptions. This is possible for a C1,1-midsurface with
or without boundary and without local maps, local bases, and Christoffel
symbols via the purely intrinsic methods developed by Delfour and Zolésio
starting with [14] in 1992. Anicic, Le Dret, and Raoult [1] introduced in 2004
a family of surfaces ω that are the image of a connected bounded open Lips-
chitzian domain in R2 by a bi-Lipschitzian mapping with the assumption that
the normal field is globally Lipschitzian. From this, they construct a tubular
neighborhood of thickness 2h around the surface and show that for sufficiently
small h the associated tubular neighborhood mapping is bi-Lipschitzian. We
prove that such surfaces are C1,1-surfaces with a bounded measurable second
fundamental form. We show that the tubular neighborhood can be completely
described by the algebraic distance function to ω and that it is generally not
a Lipschitzian domain in R3 by providing the example of a plate around a flat
surface ω verifying all their assumptions. Therefore, the G1-join of K-regular
patches in the sense of Le Dret [20] generates a new K-regular patch that is
a C1,1-surface and the join is C1,1. Finally, we generalize everything to hy-
persurfaces generated by a bi-Lipschitzian mapping defined on a domain with
facets (e.g., for sphere, torus). We also give conditions for the decomposition
of a C1,1-hypersurface into C1,1-patches.

Mathematics Subject Classification (2000). 74K25, 74K30, 74K20, 14J70,
26A16, 30F45.

Keywords. Intrinsic representation, parametric representation, hypersurface,
oriented distance function, tubular neighborhood, G1-join, domains with
facets, domain decomposition, shells, smoothness of midsurface.

This research has been supported by a discovery grant of the National Sciences and Engineering
Research Council of Canada.



86 M.C. Delfour

1. Introduction

How to represent hypersurfaces in the Euclidean space RN , N ≥ 1 an integer, and
construct a differential calculus is a central topic of Differential Geometry with a
broad spectrum of applications to partial differential equations, optimization, and
control on hypersurfaces (heat, wave, elasticity, fluids). Among the many funda-
mental issues is the minimum smoothness of the underlying hypersurface (e.g., we
can make sense of asymptotic membrane shell and bending equations in the the-
ory of shells on a C1,1-midsurface), the G1-join of C1,1-hypersurfaces or patches,
and the domain decomposition of C1,1-hypersurfaces into C1,1-patches to generate
meshings for finite element approximation. From the analysis point of view, it is
always preferable to choose an intrinsic representation and avoid local bases and
Christoffel symbols. From a numerical point of view, local bases are unavoidable
and are influenced by the preferred description of the surface often dictated by
image processing considerations.

In this paper we revisit and expand the intrinsic and parametric represen-
tations of hypersurfaces. The first approach goes back to E. De Giorgi [5] to
solve the Plateau [21] problem of minimal surfaces. The hypersurface ω in RN

is viewed as the boundary or a subset of the boundary Γ of an open subset Ω of
RN whose characteristic function is of bounded variation. This was sufficient to
make sense of the surface measure. In the context of the theory of shells, Delfour
and Zolésio developed a purely intrinsic approach without local maps, local bases,
and Christoffel symbols starting in 1992 with [14] and in a number of subsequent
papers [15, 16, 17, 6, 7, 8, 10, 12, 2]. The key ingredient was to use the oriented
distance function bΩ to the underlying set Ω instead of the characteristic function.
This function completely describes the surface ω: its (outward) normal is the gra-
dient ∇bΩ, its first, second, third,. . . , and Nth fundamental forms are ∇bΩ⊗∇bΩ,
its Hessian D2bΩ, (D2bΩ)2,. . . and (D2bΩ)N−1 restricted to the boundary Γ ([13],
[18, Chapter 8, § 5]). In addition, a fairly complete intrinsic theory of Sobolev
spaces on C1,1-surfaces is available in [9].

In the theory of thin shells, the asymptotic model, when it exists, only de-
pends on the choice of the constitutive law, the midsurface, and the space of so-
lutions that properly handles the loading applied to the shell and the boundary
conditions. A central issue is how rough this midsurface can be to still make sense
of asymptotic membrane shell and bending equations without ad hoc mechanical
or mathematical assumptions. This is possible for a general C1,1-midsurface with
or without boundary such as a sphere, a torus, or a closed reservoir. Moreover,
it can be done without local maps, local bases, and Christoffel symbols. A brief
review and sharpened results are given in Section 2.

In the parametric approach (cf. for instance [4]), the surface ω is defined as the
image of a flat smooth bounded connected domain U in R2 via a C2-immersion ϕ :
U → R3. Anicic, Le Dret, and Raoult [1] relaxed the C2 assumption by introducing
in 2004 a family of surfaces ω that are the image of a connected bounded open
Lipschitzian domain U in R2 by a bi-Lipschitzian mapping ϕ with the assumption
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that the normal field defined almost everywhere is globally Lipschitzian. Such
surfaces are called K-regular patches by Le Dret [20]. From this, they construct a
tubular neighborhood Sh(ω) of thickness 2h around the surface and show that for
sufficiently small h the tubular neighborhood mapping is bi-Lipschitzian.

In Section 3, we prove that the surfaces of [1] (or K-regular patches) are
C1,1-surfaces with a bounded measurable second fundamental form. It was already
known that C1,1-surfaces have a globally Lipschitzian normal field, but it was not,
a priori, clear whether midsurfaces generated in the parametrized set-up of [1]
would be strictly rougher than C1,1 or not. Moreover, since a K-regular patch
does not see the singularities of the underlying bi-Lipschitzian parametrization,
the G1-join of K-regular patches along a join developed in [20] generates a new K-
regular patch that is a C1,1-surface and the join is in fact C1,1. We first generalize
everything to hypersurfaces in RN , N ≥ 2, since the proofs are independent of the
dimension. Secondly, we show that such tubular neighborhoods can be completely
specified by the algebraic distance to ω and that they are generally not Lipschitzian
domains in R3 since their tangential smoothness is not effectively controlled by the
assumptions of [1] as illustrated by our example in [11]. Therefore, C1,1 is still the
currently available minimum smoothness to make sense of asymptotic membrane
shell and bending equations.

In Section 4 we extend the results of Section 3 to hypersurfaces defined on
a connected domain with facets. This makes it possible to parametrize surfaces
such as a sphere or a torus. We show that under the same assumptions as in
Section 3 the resulting hypersurface is C1,1 and that the tubular neighborhood
mapping theorem still holds. In Section 5, we generalize the work of [20] on G1-
joins of K-regular patches to the G1-joins of C1,1-patches defined on a domain
with facets. Finally, in Section 6, we introduce natural assumptions to decompose
a C1,1-hypersurface into C1,1-patches by constructing a domain with facets. This
construction is of special interest in finite element methods for thin shells.

1.1. Notation

For an integer N ≥ 1 the inner product and the norm in RN will be written x · y
and |x|. The transpose of a matrix A will be denoted A∗ and its image Im A. The
complement {x ∈ RN : x /∈ Ω} and the boundary Ω ∩ �Ω of a subset Ω of RN

will be respectively denoted by �Ω or RN\Ω and by ∂Ω or Γ. The distance and
the oriented distance function from a point x to a subset Ω of RN are defined as

dΩ(x)
def= inf

y∈Ω
|y − x|, bΩ(x)

def= dΩ(x)− d�Ω(x). (1.1)

In particular dΩ = |bΩ|. The set of projections of a point x onto Ω will be denoted
ΠΩ(x). When ΠΩ(x) is a singleton, the projection will be denoted pΩ(x). The
h-neighborhood of Ω is defined as Uh(Ω)

def=
{
x ∈ RN : dΩ(x) < h

}
.
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2. Intrinsic representation via the oriented distance function

The basic idea goes back to E. De Giorgi [5] in the fifties to solve the celebrated
Plateau [21] problem of minimal surfaces. An (N − 1)-dimensional hypersurface ω
is viewed as a subset of the boundary Γ of a set Ω in the Euclidean space RN for
which the gradient of the set parametrized characteristic function χΩ is a bounded
measure. Such sets are called Caccioppoli [3] sets and the norm of the gradient of
χΩ in the space of bounded measures coincides with the surface measure of Γ.

γ = ∂ω

ω ⊂ Γ

3-D domain Ω
boundary Γ = ∂Ω

Figure 1. Domain ω with boundary γ

In the context of shells we use as set parametrized function the oriented
distance function bΩ whose first and second derivatives are directly related to the
normal and curvatures. More precisely, for a subset Ω ⊂ RN of class C1,1 with a
non-empty boundary Γ def= ∂Ω, Γ is a C1,1-submanifold of codimension one, the
normal coincides with ∇bΩ and the first, second, third,. . . , and Nth fundamental
forms are ∇bΩ⊗∇bΩ, the Hessian D2bΩ, (D2bΩ)2,. . . and (D2bΩ)N−1 restricted to
the boundary Γ ([13], [18, Chapter 8, § 5]). In addition, a fairly complete tangential
differential calculus and an intrinsic theory of Sobolev spaces on C1,1-surfaces is
available in [9]. We quote the following theorem from [9] that is used to work in
curvilinear coordinates in the neighborhood of Γ. It is the intrinsic version of the
tubular neighborhood theorem that we shall see in § 3.

Theorem 2.1. Let Ω ⊂ RN be a set of class C1,1 such that its boundary Γ def= ∂Ω �=
∅ be bounded. Then there exists h > 0 such that bΩ ∈ C1,1(Uh(Γ)),

X, z �→ T (X, z) def= X + z∇bΩ(X) : Γ× ]− h, h[→ Uh(Γ) (2.1)

is a bi-Lipschitzian bijection, and

T−1(x) = (pΓ(x), bΩ(x)). (2.2)
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x

pΓ(x)

bΩ(x)

X

n(X) = ∇bΩ(X)

n(X)

X + z n(X)

ω

γ = ∂ωΓ

pΓ(x) = x− bΩ(x)∇bΩ(x)

Figure 2. Bijective bi-Lipschitzian mapping T

Assume for the moment that the assumptions of Theorem 2.1 are verified
and let h > 0 be such that bΩ ∈ C1,1(Uh(Γ)). Given a relatively open subset ω of
Γ, define the tubular neighborhood of thickness k, 0 < k ≤ h, around ω

Sk(ω)
def= {x ∈ RN : |bΩ(x)| < k and pΓ(x) ∈ ω}. (2.3)

By definition, Sk(Γ) = Uk(Γ). But when ω � Γ, Uk(ω) is larger than or equal to
Sk(ω).

Corollary 2.2. Let Ω ⊂ RN be a set of class C1,1 such that its boundary Γ �= ∅ be
bounded. Let ω be a relatively open subset of Γ. Then there exists h > 0 such that

X, z �→ T (X, z) def= X + z∇bΩ(X) : ω× ]− h, h[→ Sh(ω) (2.4)

is a bi-Lipschitzian bijection and

T−1(x) = (pΓ(x), bΩ(x)). (2.5)

Let γ be the relative boundary of ω in Γ. In view of Corollary 2.2, the
boundary ∂Sk(ω) of Sk(ω) is made up of three parts: the bottom and top boundaries

T (ω,−k) and T (ω, k) (2.6)

and the lateral boundary

Σk(γ)
def= {x ∈ RN : |bΩ(x)| ≤ k and pΓ(x) ∈ γ}. (2.7)

The top and bottom boundaries T (ω, k) and T (ω,−k) are C1,1 surfaces with
respective normal ∇bΩ and −∇bΩ since the sets {x ∈ RN : bΩ(x) < k} and
{x ∈ RN : bΩ(x) < −k} are still sets of class C1,1. Σk(γ) is normal to Γ, T (ω, k),
and T (ω,−k).
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x

pω(x)

bω(x)

X

n(X) = ∇bω(X)

n(X)

X + z n(X)

ω

γ = ∂ωΓ

pω(x) = x− bω(x)∇bω(x)

Figure 3. Mapping T with bΩ ∈ C1,1(Sh(ω))

The global smoothness assumptions on Γ can be relaxed to a local one in a
neighborhood of ω.

Theorem 2.3. Given Ω ⊂ RN with boundary Γ �= ∅ and a bounded (relatively)
open subset ω of Γ, assume that there exists a neighborhood N(ω) of ω such that
bΩ ∈ C1,1(N(ω)). Then there exists h̄ > 0 such that bΩ ∈ C1,1(Uh̄(ω)) and, for all
h, 0 < h < h̄, the mapping

X, z �→ T (X, z) def= X + z∇bΩ(X) : ω× ]− h, h[→ Sh(ω) (2.8)

is a bi-Lipschitzian bijection and its inverse is given by

x �→ T−1(x) = (pΓ(x), bΩ(x)) : Sh(ω)→ ω× ]− h, h[ . (2.9)

Under the hypotheses of Theorem 2.3, it is possible to define the signed
distance function to the hypersurface ω in the region Sh̄(ω)

bω(x)
def=

{
dω(x), if bΩ(x) ≥ 0

−dω(x), if bΩ(x) < 0.
(2.10)

When the projection of a point x onto ω is a singleton, we denote it by pω(x) and
necessarily pω = pΓ on Sh(ω). Note the difference between the oriented distance
function bΩ that is always defined everywhere in RN and the signed distance
function that is defined only in a region where it is possible to distinguish what is
above from what is below ω. Here bω = bΩ ∈ C1,1(Sh(ω)) and T and T−1 can be
rewritten as

(X, z) �→ T (X, z) = X + z∇bω(X) : ω× ]− h, h[→ Sh(ω)

x �→ T−1(x) = (pω(x), bω(x)) : Sh(ω)→ ω× ]− h, h[ .
(2.11)
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It is natural to characterize its smoothness in the tangent plane to Γ by
specifying the smoothness of Σk(γ) near γ.

Definition 2.4 ([9, § 4.5]). Let ω be a bounded relatively open subset of Γ which
satisfies the assumptions of Theorem 2.1.

(i) Given an integer k ≥ 1 and a real 0 ≤ λ ≤ 1, γ is Ck,λ if there exist h > 0
and 0 < h′ ≤ h such that the piece Σh′(γ) of the lateral boundary of Sh(ω)
is Ck,λ.

(ii) γ is Lipschitzian if there exist h′, 0 < h′ ≤ h, such that Σh′(γ) is Lipschitzian.
(iii) ω is connected if there exists h′, 0 < h′ < h, such that Sh′(ω) is connected.

The definitions correspond to the usual ones in RN. For instance condition
(i) is equivalent to say that the oriented distance function bSh(ω) associated with
the set Sh(ω) has the required smoothness in a neighborhood of Σh′(γ).

Under the assumptions of Theorem 2.1, Sh(Γ) is C1,1 since Γ has no bound-
ary; for a bounded relatively open subset ω of Γ with Lipschitzian relative bound-
ary γ, Sh(ω) is Lipschitzian. In both cases, two versions of Korn’s inequality are
given in [9, Thms 5.1 and 5.2] and the theory of linear elasticity over a Lipschitzian
domain is readily available.

3. Parametric hypersurfaces

n(ξ)

ϕ(ξ)

ξ

ϕ
ω = ϕ(U) ⊂ RN

U ⊂ RN−1 = {eN}⊥

Figure 4. Parametric representation in RN .

Let {ei : 1 ≤ i ≤ N} be an orthonormal basis in RN and A an affine subspace
of RN of dimension N − 1. Generalizing [1] from N = 3 to an arbitrary N ≥ 1, let
U be a bounded open domain in an affine subspace A of RN of dimension N − 1



92 M.C. Delfour

and let ϕ : U → RN be a mapping with the following properties: there exist c > 0
and C > 0 such that

Assumption (H1): ∀ξ, ζ ∈ U, c |ζ − ξ| ≤ |ϕ(ζ) − ϕ(ξ)| ≤ C |ζ − ξ|, (3.1)

where c = infζ �=ξ∈U |ϕ(ζ)−ϕ(ξ))/|ζ−ξ|. By using a translation followed by a rota-
tion, it is always possible to redefine the mapping ϕ on a subset of the hyperplane
RN−1 = {eN}⊥ orthogonal to eN .

In view of assumption (H1)1, ω
def= ϕ(U) is a (non self-intersecting) parametric

hypersurface in RN of dimension N − 1. For almost all ξ ∈ U , Dϕ(ξ), Dϕ(ξ)ij
def=

∂jϕi(ξ), exists and

∀V ∈ RN−1, c |V | ≤ |Dϕ(ξ)V | ≤ C |V |. (3.2)

Therefore, Dϕ(ξ) : RN−1 → RN is injective and the (N − 1) column vectors
∂1ϕ(ξ), ∂2ϕ(ξ), . . . , ∂N−1ϕ(ξ) are linearly independent inRN. The surface measure
associated with ω is ∫

ω

dHN−1 =
∫

U

Jϕdξ,

where Jϕ is the square root of the sum of the squares of the (N − 1) × (N − 1)
subdeterminants of Dϕ

(Jϕ)2 =
N∑

i=1

[
∂(ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕN )

∂(ξ1, . . . , ξN−1)

]2
.

Choose a unit vector n(ξ) orthogonal to the vectors {∂iϕ(ξ)},
Dϕ(ξ)∗ n(ξ) = 0 and |n(ξ)| = 1. (3.3)

Then the square matrix [Dϕ(ξ)
...n(ξ)] is invertible and

det[Dϕ(ξ)
...n(ξ)] = b(ξ) · n(ξ) �= 0 where (3.4)

b(ξ)i =M([Dϕ(ξ)
...0])iN , 1 ≤ i ≤ N, (3.5)

and M(A) denotes the matrix of cofactors of a square matrix A. In dimension
N = 3, b(ξ) coincides with the wedge product ∂1ϕ(ξ) ∧ ∂2ϕ(ξ).

We summarize the main properties using the classical definitions of tangent
cone and dual cone. Given Ω ⊂ RN and x ∈ Ω, denote by TxΩ the Bouligand’s
contingent cone to Ω in x,

TxΩ
def=

{
v ∈ RN : ∃ {xn} ⊂ Ω and εn ↘ 0 such that (xn − x)/εn → v

}
, (3.6)

and by (TxΩ)∗ its dual cone (TxΩ)∗
def=

{
y ∈ RN : ∀v ∈ TxΩ, y · v ≥ 0

}
.

1In contrast with the notation in the theory of shells, the Greek lower case letters ω and γ are
used for the hypersurface and its boundary. The associated flat reference domain in RN−1 is
denoted U .
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Theorem 3.1 ([11]). Assume that ϕ : U → RN verifies assumption (H1) and let
Ũ = {ξ ∈ U : ϕ is differentiable at ξ}. Then, at each point ξ ∈ Ũ ,

n(ξ) = ±b(ξ)/|b(ξ)|, det
[
Dϕ(ξ)

...
b(ξ)
|b(ξ)|

]
= |b(ξ| > 0, Jϕ(ξ) = |b(ξ)|, (3.7)

for all V ∈ RN−1 and V N ∈ R

c2|V |2 + |V N |2 ≤
∣∣∣∣[Dϕ(ξ)

...
b(ξ)
|b(ξ)|

] [
V
V N

]∣∣∣∣2 ≤ C2|V |2 + |V N |2, (3.8)

and

Tϕ(ξ)ω = Im Dϕ(ξ) = {n(ξ)}⊥ and (Tϕ(ξ)ω)∗ = Rn(ξ). (3.9)

The normal field to ω in ϕ(ξ) is specified by n(ξ) = ±b(ξ)/|b(ξ)| in each point
of the subset Ũ of U where ϕ is differentiable. We now choose

a(ξ) def= b(ξ)/|b(ξ)|

in order to have the determinant of [Dϕ
...a] positive and equal to Jϕ.

Following [1], it is now assumed that the resulting normal mapping a(ξ) is
uniformly Lipschitz on Ũ :

Assumption (H2): ∃α > 0 such that ∀ξ, ζ ∈ Ũ , |a(ζ)− a(ξ)| ≤ α |ζ − ξ|. (3.10)

Since Ũ = U , a extends to a unique uniformly Lipschitz function, still denoted
a, on U : a verifies assumption (H2) on U . This very strong assumption “orients”
the hypersurface ω that no longer “see” the singularities of its bi-Lipschitzian
representation. It is a generalization of the classical set-up for C2-surfaces used by
[4] for shells.

Theorem 3.2 ([11]). Assume that ϕ and a verify assumptions (H1) and (H2). Then

∀ξ ∈ U, Tϕ(ξ)ω = {a(ξ)}⊥ and (Tϕ(ξ)ω)∗ = R a(ξ). (3.11)

and the parametric hypersurface ω has a unique tangent hyperplane in each point
with Lipschitzian normal a ◦ ϕ−1.

As in [1], consider for an arbitrary k > 0 the Lipschitz continuous mapping

ξ̃
def= (ξ, ξN ) �→ Φ(ξ̃) def= ϕ(ξ) + ξN a(ξ) : U × [−k, k]→ RN (3.12)

and the associated “sandwich” of thickness 2h around ω

Sk(ω)
def= Φ(U× ]− k, k[ ). (3.13)

Under assumptions (H1) and (H2), Φ is Lipschitzian on U × [−k, k],
|Φ(ξ2, ξN

2 )− Φ(ξ1, ξN
1 )| ≤ (C + k α)|ξ2 − ξ1|+ |ξN

2 − ξN
1 | and

Sk(ω) = Φ(U × [−k, k]).
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X

n(X) = ∇bΩ(X)

ωγ

ν

Γ

(a) ω with boundary γ

Sh(ω)

Γ

(b) Sandwich Sh(ω)

Figure 5. Sandwich or tubular neighborhood Sh(ω)

Associate with Φ the intrinsic Lipschitzian mapping

(X, z) �→ Φ̃(X, z) def= Φ(ϕ−1(X), z) = X+z a(ϕ−1(X)) : ω×[−k, k]→ RN . (3.14)

Define the signed distance function to the hypersurface ω in the region Sh(ω)

bω(Φ(ζ, ζN )) def=

{
dω(Φ(ζ, ζN )), if ζN ≥ 0,

−dω(Φ(ζ, ζN )), if ζN < 0.
(3.15)

When the set projections Πω(y) of y onto ω is a singleton, we denote it by pω(y).
We now give a constructive proof of Theorem 3.9 in [1], the expression of the

inverse of Φ in terms of pω and bω. To do that we need the following additional
assumption on the bounded open subset U of RN−1:

(H3)

∣∣∣∣∣U is connected and

∃CU such that ∀ξ, ζ ∈ U, dU (ξ, ζ) ≤ CU |ξ − ζ|, (3.16)

where dU denotes the geodesic distance in U . This is a weaker assumption than
the one used in [1]

(H3L) U is connected and Lipschitzian (3.17)

where they make use of the following lemma:

Lemma 3.3. [1, Proposition A.1] Assume that U is a bounded, open, connected,
and Lipschitzian domain in RN−1. Then U verifies assumption (H3).

We shall see later on that this relaxation will allow us to go from a flat domain
U to a domain with facets and enable us to parametrize all C1,1-hypersurfaces such
as the sphere and the torus in dimension N = 3.

Recalling that Sh(ω) = Φ(U × [−h, h]), we get the following results.
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Theorem 3.4 ([11]). Assume that (H1), (H2), and (H3) are verified and let h,
0 < h < h̄

def= c2/(2C2
UCα). The mapping Φ : U × [−h, h]→ Sh(ω) is bijective and

bi-Lipschitzian, and

y �→ Φ−1(y) = (ϕ−1(pω(y)), bω(y)) : Sh(ω)→ U × [−h, h]. (3.18)

Remark 3.5. Assumption (H2) on the normal field a effectively controls the
smoothness of the hypersurface ω in the normal direction. There is a unique tan-
gent plane and a unique one-dimensional normal field at every point without the
additional assumption (H3). In other words, ω ignores the singularities of the
mapping ϕ in the normal direction. Yet, in the tangential direction, the choice
of a bi-Lipschitzian parametrization ϕ of ω and the assumptions (H3L) that U
be Lipschitzian and connected are not sufficient to make the lateral boundary of
Sh(ω) a Lipschitzian hypersurface even in the case of a plate in R3 as illustrated
for the plate of thickness 2h of the example given in [11]. Results from the theory
of linear elasticity assuming a Lipschitzian elastic body cannot be directly used.
This contradicts the following statement from [1, Remark on page 1290]: “Note
that this result shows that the boundary of the three-dimensional shell is Lipschitz,
hence the three-dimensional linearized elasticity problem is well posed”.

We now complete the characterization of the hypersurface ω and make the
connection between Φ and Φ̃ and the intrinsic mapping T defined by (2.8) in The-
orem 2.3 and between the sets Sh(ω) and Im T . We also show that the parametric
hypersurface is in fact not rougher than C1,1 for which the previous intrinsic theory
already applies. No gain is achieved through this parametrization (cf. Theorem 2.3
with the mapping (2.8) replaced by the mapping (2.11)). As a result the construc-
tions and results of the intrinsic theory of thin and asymptotic shells described in
§ 7 readily applies with Ω replaced by ω. It is not necessary to do it again even in
the parametric case.

Theorem 3.6 ([11]). Assume that assumptions (H1), (H2), and (H3) are verified
and let h, 0 < h < h̄. Denote by Ω the open domain Φ(U× ]− h, 0[ ) and by Γ its
boundary. The hypersurface ω is locally C1,1, that is, for each x ∈ ω, there exists
r(x) > 0 such that bΩ ∈ C1,1(Br(x)(x)) and, hence, ω ∩ Br(x)(x) is of class C1,1

in Br(x)(x). Moreover, its normal and second fundamental form are given by

∇bΩ|ω = a ◦ ϕ−1 = ∇bω|ω ∈ C0,1(ω)N (3.19)

D2bΩ|ω =
{
Da [(Dϕ)∗Dϕ]−1(Dϕ)∗

}
◦ ϕ−1 = D2bω|ω ∈ L∞(ω)N×N . (3.20)

Moreover, Φ̃ = T on ω× ]− h, h[ and Im T = Im Φ̃ = Im Φ = Sh(ω).

4. Hypersurfaces defined from a domain with facets

It is not possible to represent a sphere or a torus by a bi-Lipschitzian mapping ϕ
from some domain U in the hyperplaneRN−1. Yet, we can do so under assumptions
(H1) to (H3) by replacing the “flat” domain U by a domain with facets. Each
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facet will lie in an (N − 1)-dimensional affine subspace A of RN allowing different
angles between facets. The good news is that all the results in § 3 remain true. We
summarize the definitions and main results from [11].

Figure 6. Example of a domain U with facets

Definition 4.1. (i) A facet U in RN is a bounded, open, connected subset of an
(N − 1)-dimensional affine subspace of RN such that its geodesic distance
satisfies the condition

∃CU , ∀ζ, ξ ∈ U, dU (ζ, ξ) ≤ CU |ζ − ξ|,
where dU denotes the geodesic distance in U .

(ii) Given n facets Ui, 1 ≤ i ≤ n, in RN such that
a) ∀i �= j, Ui ∩ Uj = ∅,
b) for all pairs i �= j such that Ui ∩ Uj �= ∅, HN−1(Ui ∩ Uj) = 0, where

HN−1 is the (N − 1)-dimensional Hausdorff measure in RN ,
c) ∪n

i=1Ui = ∪n
i=1Ui,

we say that the set

U
def= rel int ∪n

i=1 Ui (4.1)

is a domain with n facets.

From the above definition

∪n
i=1Ui = U = ∪n

i=1Ui and HN−1

(
∪i,j=1,...,n

i�=j
Ui ∩ Uj

)
= 0. (4.2)

The definition is a little technical since it includes domains with holes of various
shapes: all the facets are not necessarily of the polygonal type.

Let U be a bounded domain inRN with facets and ϕ : U → RN be a mapping
with the following properties: there exist c > 0 and C > 0 such that

Assumption (H1): ∀ξ, ζ ∈ U, c |ζ − ξ| ≤ |ϕ(ζ) − ϕ(ξ)| ≤ C |ζ − ξ|, (4.3)
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where c = infζ �=ξ∈U |ϕ(ζ)− ϕ(ξ))/|ζ − ξ|. Let ϕi be the restriction of ϕ to Ui. For
almost all ξ ∈ Ui, we can construct a normal a and a surface density in U and we
get a generalization of Theorem 3.1.

Theorem 4.2. Let U be a bounded domain in RN with facets. Assume that ϕ : U →
RN verifies assumption (H1) and let Ũ = {ξ ∈ ∪n

i=1Ui : ϕ is differentiable at ξ}.
Then, at each point ξ ∈ Ũ ,

n(ξ) = ±b(ξ)/|b(ξ)|, det
[
Dϕ(ξ)

...
b(ξ)
|b(ξ)|

]
= |b(ξ| > 0, Jϕ(ξ) = |b(ξ)|, (4.4)

for all i, V ∈ {di}⊥, and V N ∈ R

c2|V |2 + |V N |2 ≤
∣∣∣∣[Dϕ(ξ)

...
b(ξ)
|b(ξ)|

] [
V
V N

]∣∣∣∣2 ≤ C2|V |2 + |V N |2, (4.5)

and

Tϕ(ξ)ω = Im Dϕ(ξ) = {n(ξ)}⊥ and (Tϕ(ξ)ω)∗ = Rn(ξ). (4.6)

Now assume that the resulting normal mapping a(ξ) = b(ξ)/|b(ξ)| is uni-
formly Lipschitz on Ũ :

Assumption (H2): ∃α > 0 such that ∀ξ, ζ ∈ Ũ , |a(ζ) − a(ξ)| ≤ α |ζ − ξ|. (4.7)

From assumptions b) and c), Ũ = U and a extends to a (unique) uniformly Lip-
schitz function, still denoted a, on U that verifies assumption (H2) on U .

Theorem 4.3. Let U be a bounded domain in RN with facets. Assume that ϕ and
a verify assumptions (H1) and (H2). Then

∀ξ ∈ U, Tϕ(ξ)ω = {a(ξ)}⊥ and (Tϕ(ξ)ω)∗ = R a(ξ). (4.8)

and the parametric surface ω has a unique tangent hyperplane in each point with
Lipschitzian normal a ◦ ϕ−1.

Now define the Lipschitzian mapping Φ, the intrinsic Lipschitzian mapping
(3.14), and the signed distance function to the hypersurface ω in the region Sh(ω)
as in § 3. Finally, introduce the following assumption on the underlying domain U
with facets:

(H3)

∣∣∣∣∣U is connected and

∃CU such that ∀ξ, ζ ∈ U, dU (ξ, ζ) ≤ CU |ξ − ζ|, (4.9)

where dU denotes the geodesic distance in U . We get the generalization of Theo-
rems 3.4 and 3.6 using essentially the same proofs.

Theorem 4.4. Let U be a bounded domain in RN with facets. Assume that (H1),
(H2), and (H3) are verified and let h, 0 < h < h̄

def= c2/(2C2
UCα). The mapping

Φ : U × [−h, h]→ Sh(ω) is bijective and bi-Lipschitzian, and

y �→ Φ−1(y) = (ϕ−1(pω(y)), bω(y)) : Sh(ω)→ U × [−h, h]. (4.10)
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Theorem 4.5. Let U be a bounded domain in RN with facets. Assume that assump-
tions (H1), (H2), and (H3) are verified and let h, 0 < h < h̄. Denote by Ω the
open domain Φ(U× ]− h, 0[ ) and by Γ its boundary. The hypersurface ω is locally
C1,1, that is, for each x ∈ ω, there exists r(x) > 0 such that bΩ ∈ C1,1(Br(x)(x))
and, hence, ω ∩ Br(x)(x) is of class C1,1 in Br(x)(x). Moreover, its normal and
second fundamental form are given by

∇bΩ|ω = a ◦ ϕ−1 = ∇bω|ω ∈ C0,1(ω)N (4.11)

D2bΩ|ω =
{
Da [(Dϕ)∗Dϕ]−1(Dϕ)∗

}
◦ ϕ−1 = D2bω|ω ∈ L∞(ω)N×N . (4.12)

Moreover, Φ̃ = T on ω× ]− h, h[ and Im T = Im Φ̃ = Im Φ = Sh(ω).

5. G1-joins of K-regular and C1,1-patches

For completeness we first recall and introduce some definitions.

Definition 5.1. Given an open subset U of RN−1 and a mapping ϕ : U → RN , we
say that the set ϕ(U) is not self-intersecting if ϕ is injective.

Following the terminology of [20, Definition 2.4] in dimension three, a K-
regular patch ω is an hypersurface specified by the two mappings ϕ and a from
U ⊂ RN−1 → RN that verify assumptions (H1), (H2), and (H3L) with constants c,
C, and α. From assumption (H1), such surfaces are not self-intersecting and, from
assumptions (H1), (H2), and (H3L), they are C1,1-hypersurfaces by Theorem 3.6.
So, we suggest to use the more descriptive and general terminology C1,1-patch that
emphasizes the purely geometric property which is not only specific of the theory
of shells.

Definition 5.2. A C1,1-patch is a parametric hypersurface specified by the two
mappings ϕ and a from U ⊂ RN−1 → RN that verify assumptions (H1) to (H3)
with constants c, C, and α.

By definition, a K-regular patch is a C1,1-patch since assumption (H3L)
implies assumption (H3).

One important contribution in the paper of Le Dret is an accurate definition
of a G1-join [20, Definition 2.6] and the proof that for two contiguous K-regular
patches ω1 = ϕ1(U1) and ω2 = ϕ2(U2) such that ω1 ∪ ω2 is not self-intersecting
with a G1-join along U1 ∩ U2, rel intω1 ∪ ω2 satisfies assumptions (H1), (H2),
and (H3L) [20, Lemma 3.2], that is it is a C1,1-hypersurface and the G1-join along
U1 ∩ U2 is in fact a C1,1-join.

To complete this section we extend this last result to a finite number of
C1,1-patches in RN defined on a domain with facets.

Theorem 5.3. Let U be a bounded connected domain in RN with facets. Assume
that the facets ωi = ϕi(Ui) specified by (Ui, ϕi, ai) are C1,1-patches such that for
all i �= j such that ωi ∩ ωj �= ∅
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ω2

ω1

ω4

ω3

U2

U3U1
U4

Figure 7. From C1,1-patches {ωi} to a globally C1,1-patch ω

a) there exists Cij such that for all ξ and ζ in U i∪U j, dU i∪Uj
(ξ, ζ) ≤ Cij |ξ−ζ|,

b) ϕi(ξ) = ϕj(ξ), for all ξ ∈ ωi ∩ ωj,
c) ai(ξ) = aj(ξ), for all ξ ∈ ωi ∩ ωj,
d) ωi ∩ ωj ⊂ ϕ(Ui ∩ Uj),
e) given any sequences {ζin} ⊂ Ui and {ζjn} ⊂ Uj that converge to some point

ξ ∈ U i∩U j and a corresponding sequence {ξn} ⊂ U i∩U j such that ξn lie on
the geodesic between ζni and ζnj , the angle between any limit vectors τi and τj

of the sequences (ϕi(ζin)−ϕi(ξn))/|ζin−ξn| and (ϕj(ζjn)−ϕj(ξn))/|ζjn−ξn|
is nonzero.

Then
(i) U satisfies assumption (H3),
(ii) the maps ϕ and a : U → RN ,

ϕ(ζ) = ϕi(ζ), if ζ ∈ Ui, a(ζ) = ai(ζ), if ζ ∈ Ui,

are well defined and Lipschitz continuous on U ,
(iii) ω is not self-intersecting (ϕ is injective),
(iv) ϕ satisfies assumption (H1) and a satisfies assumption (H2).
In particular, ω = ϕ(U) satisfies assumptions (H1), (H2), and (H3), that is ω is
a C1,1-patch.

Remark 5.4. It is readily checked that [20, Lemma 3.2] is a special case of this
Theorem for k = 1.

6. Decomposition of a C1,1-hypersurface into C1,1 -patches over a
domain with facets

Of course, it is also possible to decompose a C1,1-hypersurface ω into C1,1-patches
defined over a domain with facets when the size of each facet is sufficiently small.
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Figure 8. Points on the sphere and associated domain with facets for
N = 3

The construction follows the following scheme.
(A-1) Assumptions of Theorem 2.3 or assumptions (H1) to (H3).

Under assumption (A-1), there exists h > 0 such that the mapping

X, z �→ T (X, z) = X + z∇bω(X) : ω × [−h, h]→ Sh(ω)

is bi-Lipschitzian.
If ω has no boundary, then we proceed as in [19] but the convex polytopes

(triangles in dimension N = 3) have to be chosen sufficiently small in view of the
curvature of the surface.

(A-2) Choose N neighboring points ξ1, ξ2, . . . , ξN on the surface ω
such that the vectors {ξi− ξN ; i = 1, . . . , N − 1} be linearly inde-
pendent and such that the convex polytope Δ = co{ξ1, ξ2, . . . , ξN}
with vertices ξ1, ξ2, . . . , ξN lies in Sh(ω). Denote by ν the normal
to the affine subspace A = {ξ : (ξ − ξN ) · ν = 0} generated by Δ.

This defines the patch ωΔ
def= pω(Δ). Since Δ ⊂ Sh(ω) the mapping

ξ �→ pω(ξ) : Δ→ ωΔ ⊂ R3

Figure 9. Triangle Δ and C1,1-patch pω(Δ) for N = 3
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is Lipschitzian. To make pω bi-Lipschitzian on Δ, we need to further reduce the
size of Δ.

(A-3) Assume that the convex polytope Δ is sufficiently small so
that

m
def= min

ξ∈Δ
|n · ∇bω(ξ)| > 0. (6.1)

Under assumption (A-2), for each ξ ∈ Δ, ξ = pω(ξ) + bω(ξ)∇bω(pω(ξ)) and
under assumption (A-3), for each ξ ∈ Δ,

bω(ξ) = −
n · (pω(ξ)− ξ3)
n · ∇bω(pω(ξ)))

and there exists a constant c′ such that

∀ζ, ξ ∈ Δ, |ξ − ζ| ≤ c′ |pω(ξ)− pω(ζ)|

and pω : Δ→ pω(Δ) is bi-Lipschitzian.
As a result, for a C1,1-surface without boundary, pω(Δ) is a C1,1-patch since

assumption (H1) is verified with U = Δ and ϕ = pΩ|Δ, assumption (H2) is ver-
ified with a = ∇bω ◦ pω, and assumption (H3) is verified for the triangle Δ. We
summarize the above discussion in the following theorem.

Theorem 6.1. Let Ω be a bounded set of class C1,1 in RN and set ω = Γ. Around
each point ξ̂ ∈ ω there exist (N − 1) points {ξi ∈ ω : 1 ≤ i ≤ N − 1} such that
{ξi − ξ̂ : 1 ≤ i ≤ N − 1} be linearly independent and assumptions (A-1) to (A-3)
be verified for the convex polytope

Δ def= co{ξ1, . . . , ξN−1, ξ̂}

with unit normal ν. The mapping

ξ �→ pω(ξ) : Δ→ ωΔ ⊂ R3

is bi-Lipschitzian and

p−1ω (X) = X − ν · (X − ξ̂)
ν · ∇bω(X)

∇bω(X).

When ω has a relative boundary γ, then it is necessary to use the assumptions
of Theorem 2.3 in order to cover the boundary γ with triangles since some of
the vertices may lie outside of ω. In that case the patch pω(Δ) and the triangle
Δ should be replaced by the smaller patch pω(Δ) ∩ ω and the smaller domain
UΔ

def= p−1ω (pω(Δ) ∩ ω) in Δ on which assumption (H3) must now be imposed in
the absence of a specific assumption on the boundary γ.
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7. Intrinsic theory of thin and asymptotic shells

In order to complete the references in [1] on the theory of shells and to provide a
broader perspective to the reader, we briefly recall a few results starting with the
key paper [6] on the use of intrinsic methods in the asymptotic analysis of three
models of thin shells for an arbitrary linear 3D constitutive law. They all converge
to asymptotic shell models that consist of a coupled system of two variational
equations. They only differ in their resulting effective constitutive laws. The first
equation yields the generally accepted classical membrane shell equation and the
Love-Kirchhoff terms. The second is a generalized bending equation. It explains
that convergence results for the 3D models were only established for plates and in
the bending dominated case for shells. From the analysis of the three models, the
richer P (2, 1)-model turns out to be the most pertinent since it converges to the
right asymptotic model with the right effective constitutive law. We also show in [7]
that models of the Naghdi’s type can be obtained directly from the P (2, 1)-model
by a simple elimination of variables without introducing the a priori assumption on
the stress tensor σ33 = 0. Bridges are thrown with classical models using local bases
or representations. Those results are completed in [7] with the characterization of
the space of solution for the P (2, 1) thin shell model and the space of solutions
of the asymptotic membrane shell equation in [8]. This characterization was only
known in the case of the plate and uniformly elliptic shells.

In [10], a new choice of the projection leads to the disappearance of the
coupling term in the second asymptotic equation. After reduction of the number
of variables, this new choice changes the form of the second equation to achieve the
complete decoupling of the membrane and bending equations without the classical
plate or bending dominated assumptions. In the second part of [10] we present a
dynamical thin shell model for small vibrations and investigate the corresponding
dynamical asymptotic model. Those papers complete [6] and make the connection
with most existing results in the literature thus confirming the pertinence and the
interest of the methods we have developed. Extensions of the P (2, 1)-model have
also been developed for piezoelectric shells [12, 2] where a complete decoupling of
the membrane and bending equations is also obtained.

8. Conclusions

To conclude we summarize the main points of the paper.

1) It is sufficient to replace Ω by ω and use the already available theory of thin
and asymptotic shells in both parametric and intrinsic cases.

2) In general the tubular neighborhood is not a Lipschitzian domain and an
assumption has to be made on the lateral boundary to use the available
Linear Elasticity Theory in Lipschitzian domains.

3) The (minimal) smoothness of the midsurface obtained in [1] is in fact C1,1

and the G1-joins of K-regular contiguous patches in [20] are indeed C1,1.
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4) By relaxing the Lipschitzian assumption (H3L) to the natural condition (H3)
on the geodesic distance, it is possible to extend the parametric set up to
capture surfaces such as the sphere and the torus by using domains with
facets.

5) Similarly, the G1-join of C1,1-patches generated from a domain with facets
yields a C1,1-hypersurface. Conversely, we gave a procedure to decompose a
C1,1-hypersurface into C1,1-patches with potential application to the meshing
of surfaces to solve partial differential equations defined on a surface,
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Numer. Math., 139, Birkhäuser Verlag, Basel, 2002.

[13] M.C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions, J.
Funct. Anal. 123 (1994), no. 1, 129–201.

[14] M.C. Delfour and J.-P. Zolésio, On a variational equation for thin shells, Con-
trol and optimal design of distributed parameter systems (Minneapolis, MN, 1992),
(J. Lagnese, D.L. Russell, and L. White, eds.), pp. 25–37, IMA Vol. Math. Appl.,
70, Springer, New York, 1995.

[15] M.C. Delfour and J.-P. Zolésio, A boundary differential equation for thin shells, J.
Differential Equations 119 (1995), 426–449.

[16] M.C. Delfour and J.-P. Zolésio, Tangential differential equations for dynamical
thin/shallow shells, J. Differential Equations 128 (1996), 125–167.

[17] M.C. Delfour and J.-P. Zolésio, Differential equations for linear shells: compari-
son between intrinsic and classical models, in “Advances in mathematical sciences:
CRM’s 25 years” (Montreal, PQ, 1994), (Luc Vinet, ed.), pp. 41–124, CRM Proc.
Lecture Notes, 11, Amer. Math. Soc., Providence, RI, 1997.

[18] M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Analysis, differential calculus,
and optimization, Advances in Design and Control, 4. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2001.

[19] P.J. Frey and P.L. George, Mesh Generation: Application to Finite Element, Second
Edition, ISTE Ltd, London and John Wiley and Sons, Inc, Hokoben (NJ), 2008.

[20] H. Le Dret, Well-posedness for Koiter and Naghdi shells with a G1-midsurface, Anal-
ysis and Applications 2, No. 4 (2004), 365–388.

[21] J.A.F. Plateau, Statique expérimentale et théorique des liquides soumis aux seules
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Montréal (Qc), Canada H3C 3J7
e-mail: delfour@crm.umontreal.ca



International Series of Numerical Mathematics, Vol. 158, 105–122
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On Some Nonlinear Optimal Control Problems
with Vector-valued Affine Control Constraints

Juan Carlos De Los Reyes and Karl Kunisch

Abstract. We investigate a class of nonlinear optimal control problems with
pointwise affine control constraints. Necessary optimality conditions of first
order and sufficient second-order conditions are obtained. For the numerical
solution of the optimal control problems a semismooth Newton method is
proposed. Local superlinear convergence of the infinite-dimensional method
is proved. Finally, the properties of the method are tested numerically by
controlling the Navier-Stokes equations with affine constraints.
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1. Introduction

The presence of pointwise control constraints in optimal control problems is of
importance if limited control action is allowed to take place. When only one con-
trol function is involved, a usual choice consists in imposing pointwise bounds on
the control, the so-called box constraints. When multidimensional control func-
tions are involved, however, the box constrained case is just one of the possible
practical choices that may be considered. If more complicated or different type of
restrictions, such as technological, financial, etc., come into play, then a system of
linear pointwise constraints may arise instead of the usual box constraints.

The investigation of optimal control problems with affine constraints for
vector-valued control has not been thoroughly carried out yet. Although first-order
necessary conditions can be obtained in a straightforward manner, the existence of
appropriate Lagrange multipliers has not being studied in depth. With respect to
second-order sufficient conditions, results previously obtained for general convex
problems can be applied to this case (cf. [1, 7, 12]). However, since the special
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structure of the affine constraints is not exploited in such cases, the results may
be improved.

For the numerical solution of optimal control problems with affine constraints
only few references are available. While box constrained problems are fairly well
understood, relatively little research was directed towards devising and analyz-
ing efficient second-order type methods for more general constraints. In [11] the
authors consider diagonally dominant systems and prove global convergence of
the primal-dual active set strategy applied to this type of problems. Semi-smooth
Newton methods for problems with affine constraints have been considered in [6],
where optimality conditions were derived and the convergence of the method in-
vestigated.

The outline of this paper is as follows. In Section 2 the optimal control prob-
lem and its main hypotheses are stated. In Section 3 existence of Lagrange multi-
pliers is proved and a first-order optimality system derived. Second-order sufficient
conditions are studied in Section 4. The result avoids the so-called two-norm dis-
crepancy by using a contradiction argument. In Section 5 the superlinear conver-
gence of semi-smooth Newton methods applied to this kind of problems is proved
and a semi-smooth Newton algorithm stated. Finally, in Section 6 an optimal con-
trol problem of the stationary Navier-Stokes equations with affine constraints is
numerically solved and the main properties of the method modified.

2. Optimal control problem

Let Ω be a bounded domain of Rn. We consider the following optimal control
problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

min J(y) + α
2 ‖Cu‖

2
L2(Ω̂,Rl) +

α
2 ‖Pu‖

2
U

subject to
e(y, u) = 0
Cu ≤ ψ a.e.,

(2.1)

where α > 0, C ∈ Rl×m, ψ ∈ L2(Ω̂,Rl) and P : Rm → Rm is the orthogonal
projection onto ker(C). The operator e : Y × U → Y ′, with Y, U Hilbert spaces,
is assumed to be of the form:

e(y, u) = e1(y) + e2u, (2.2)

with e2 a compact linear operator from U to Y ′ and e1 : Y → Y ′ satisfying the
conditions in Assumption 2.1 below.

Hereafter we assume that for every u ∈ U, there exists a locally unique
y = y(u) ∈ Y such that e(y, u) = 0. Moreover, we assume that the corresponding
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optimal control problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
min J(y) + α

2 ‖Cu‖
2
L2(Ω̂,Rl) +

α
2 ‖Pu‖

2
U

subject to
e1(y) + e2u = 0
Cu ≤ ψ a.e.,

(2.3)

has a locally unique solution (y∗, u∗) ∈ Y × U .

Assumption 2.1. There exists a neighborhood V (y∗) of the optimal state y∗ such
that:
a) e1 : Y → Y ′ is twice Fréchet differentiable in V (y∗).
b) ey(y) is continuously invertible for each y ∈ V (y∗).
c) eyy is Lipschitz continuous in V (y∗), i.e., there exists a constant L > 0 such

that

‖eyy(ȳ)− eyy(y∗)‖L(Y×Y,Y ′) ≤ L‖ȳ − y∗‖Y , for ȳ ∈ V (y∗). (2.4)

These regularity requirements are needed for the first and second-order op-
timality conditions as well as for the convergence analysis of the semi-smooth
Newton method.

The Hilbert spaces are Rn-valued function spaces over a bounded domain
Ω ⊂ Rn, such as Y = H1(Ω,Rn). Throughout the space of controls is

U = L2(Ω̂,Rm), Ω̂ ⊂ Ω ⊂ Rn.

Further, we choose J as

J(y) =
1
2
(y,Qy)Y + (q, y)Y ,

where Q ∈ L(Y, Y ), Q ≥ 0 and q ∈ Y .

Example 1. Let Ω ⊂ Rm, m ≤ 3, be a bounded domain. Consider the stationary
Navier-Stokes equations

−νΔy + (y · ∇)y +∇p = u in Ω
div y = 0 in Ω

y = 0 on ∂Ω,

with (y · ∇)y =
∑m

i=1 yi∂iy, Y = {H1
0 (Ω,R

m) : div y = 0}, U = L2(Ω,Rm), where
ν stands for the viscosity coefficient of the fluid, y for the velocity vector field,
p for the scalar pressure and u for a distributed body force. The operator e1 is
given by

e1 : Y → Y ′ (2.5)

y �→ ν(∇y,∇·)U − ((y · ∇)y, ·)U , (2.6)

It can be easily verified that the operator e1 is twice Fréchet differentiable with
its first and second derivatives given by

ey(y)w = ν(∇w,∇·)U +((w ·∇)y+(y ·∇)w, ·)U and eyy(y)[w]2 = (2(w ·∇)w, ·)U ,
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respectively. Condition (2.4) follows immediately from the expression for the sec-
ond derivative. To verify the surjectivity of ey(y) let us consider the linearized
equation

ey(y)w = ν(∇w,∇·)U + ((w · ∇)y + (y · ∇)w, ·)U = 〈g, ·〉Y ′,Y , (2.7)

with g ∈ Y ′. We assume that ν is sufficiently large so that

ν >M(y∗) := sup
v∈Y

∣∣(v · ∇y∗), v)L2(Ω)

∣∣
‖v‖2Y

.

It can be argued that there exists a neighborhood V (y∗) ⊂ V of y∗ such that
this inequality remains correct with y∗ replaced by y ∈ V (y∗). Then there ex-
ists a unique solution wg to the linearized equation (2.7) associated with g for
each y ∈ V (y∗). From the bijectivity of ey(y) the continuous invertibility follows.
Summarizing, Assumption 2.1 holds for this problem.

Throughout the paper we will use the following assumption with respect to
the restriction matrix C:

Assumption 2.2. The rows {Ci}i∈A(v,x) are linearly independent in Rm, where
A(v, x) := {i : (Cv)i = ψi(x)}, for any v ∈ Rm satisfying Cv ≤ ψ(x) and for a.e.
x ∈ Ω̂.

Example 2. For U = L2(Ω̂,R2), the constraints u1 ≤ ψ1, u2 ≤ ψ2 result in C =
I, P = 0, which was considered in previous work (see [4, 5]).

Example 3. The case U = L2(Ω,Rm), ui ≤ 0, −1 ≤∑m
i=1 ui results in l = m+ 1,

C =
(

I
−e

)
, where e = (1, . . . , 1) ∈ Rm, I is the m ×m identity matrix, ψ =

(0, . . . , 0, 1) and P = 0. Here Assumption 2.2 is satisfied.

3. First-order necessary conditions

In this section, existence of Lagrange multipliers for (2.1) is verified and a first-
order optimality system is derived. Note that the differentiability of the control to
state mapping in a neighborhood of the optimal solution follows from Assumption
2.1 and the implicit function theorem. From hypothesis b) in Assumption 2.1 the
surjectivity of ey(y) follows.

Let us set

A =
l⋃

i=1

Ai

with
Ai = {x ∈ Ω̂ : Ciu(x) = ψi(x)},

and define the inactive set I := Ω\A.
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Theorem 3.1. Let Assumptions 2.1 and 2.2 hold. If (y∗, u∗) ∈ Y × U is a locally
unique solution to (2.1), then there exist multipliers p ∈ Y and λ ∈ L2(Ω̂,Rl) such
that

e(y∗, u∗) = 0 (3.1)

(ey(y∗))�p = −J ′(y∗) (3.2)

αCTCu∗ + αPu∗ + CTλ+ e�
up = 0 (3.3)

Cu∗ ≤ ψ, λ ≥ 0, λT (Cu∗ − ψ) = 0 a.e. in Ω̂. (3.4)

Proof. The first-order necessary and sufficient optimality condition satisfied by u∗

is given by

(αCTCu∗ + αPu+ e�
up, u− u∗)L2(Ω̂) ≥ 0, for all Cu ≤ ψ, (3.5)

where {
e(y∗, u∗) = 0
(ey(y∗))�p = −J ′(y∗).

(3.6)

We define a partitioning of the active set next. Note that by Assumption 2.2 at
most m constraints can be active simultaneously at a.e. x ∈ Ω̂. Let P be the set
of all subsets of {1, . . . , l} of cardinality ≤ m and set for I ∈ P

ΩI = {x ∈ Ω̂ : Cju
∗(x) = ψj(x), for all j ∈ I}.

Then Ω̂ =
⊎

I⊂P
ΩI � I and we have

Ai = {x ∈ ΩI : Ciu(x) = ψi(x) for some I ∈ P}.
We consider the auxiliary problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

minu∈L2(Ω̂,Rm) J(y) + ‖Cu‖
2
L2(Ω̂,Rl) +

α
2 ‖Pu‖

2
U

subject to:
e(y, u) = 0
Ciu ≤ ψi on ΩI for i ∈ I and all I ∈ P .

(Paux)

Note that the inequality constraints in (Paux) can equivalently be expressed
as Ciu ≤ ψi on Ai, for i = 1, . . . , l. Clearly (Paux) admits a local unique solution
û ∈ U , since, by hypothesis, (2.1) also does. Associated to (Paux) we introduce the
Lagrangian L : Y × U × Y × Z → R, where Z =

⊗
I∈P L2(ΩI ,R

#(I)), with #(I)
the cardinality of I,

L(y, u, p, λ̃) = J(y) + ‖Cu‖2L2(Ω̂,Rl) +
α

2
‖Pu‖2U

+ 〈p, e(y, u)〉Y,Y ′ +
∑
I∈P

∑
i∈I

(λI
i , Ci u− ψi)L2(ΩI ,R).

By Assumptions 2.1 and 2.2 the linearized constraints

(ey(y∗) + e2, {(Ci)i∈I : I ∈ P}) : Y × U → Y ′ × Z
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are surjective. Here we identify U with
⊗

I∈P L
2(ΩI ,R

l)×L2(I,Rl). Hence there
exists (p, {λI}I∈P) ∈ Y × Z which is a Lagrange multiplier for (Paux), i.e.:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e(ŷ, û) = 0
(ey(y∗))�p = −J ′(ŷ)
αCTCû+ αP û+ e�

up+
∑

I∈P
∑

i∈I C
T
i λ

I
iχΩI = 0

Cû ≤ ψ, in Ω̂
λI

i ≥ 0, λi(Ciû− ψi) = 0, i ∈ I, I ∈ P .

(3.7)

Defining λ ∈ L2(Ω̂,Rl) by setting

λi = λI
i for i ∈ I, and λi = 0 for i �∈ I, for any I ∈ P , x ∈ ΩI ;

λi = 0 on I,
(3.7) can equivalently expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩

e(ŷ, û) = 0
(ey(y∗))�p = −J ′(ŷ)
αCTCû+ αP û+ e�

up+ CTλ = 0
λ ≥ 0, Cû ≤ ψ, (λ,Cû − ψ)L2(Ω̂,Rl) = 0.

(3.8)

From (3.8) we obtain for Cu ≤ ψ,

(αCTCû+ αP û+ e�
up, u− û) = (λ,Cû − Cu) = (λ, ψ − Cu) ≥ 0.

Hence û satisfies the first-order condition (3.5) and therefore û = u∗. System
(3.1)–(3.4) follows from (3.8). �

Remark 3.2. Note that from equation (3.3) we have αPu∗ + Pe�
up = 0.

4. Second-order sufficient optimality condition

In this section we derive a second-order sufficient optimality condition for (2.1).
The result makes use of the following cone of critical directions

K(u∗) =

{
v ∈ U : (Cjv)(x)

{
= 0 if λj(x) �= 0
≤ 0 if (Cu∗)j = ψj and λj(x) = 0

}
,

which does not involve strongly active constraints. Moreover, sufficient optimality
is obtained without the use of a two-norm discrepancy argument. Rather a tech-
nique based solely on the second-order optimality condition (SSC) below is used.
The technique was previously applied in [2] to the optimal control of the Navier-
Stokes equations with box constraints and in [3] to semilinear state constrained
optimal control problems.

For some work concerning second-order conditions for control problems with
special kinds of control constraints we refer to [1, 7]. In the cited papers, constraints
of the type u(x) ∈ U , with U independent of x and polygonal, are considered.
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In [12] second-order sufficient conditions for control problems with more general
convex control constraints are studied. The critical cone used in those cases is,
however, not the smallest one. Additionally, the result involves the classical two-
norm discrepancy.

Theorem 4.1. Suppose that Assumptions 2.1–2.2 holds and that C is surjective.
Further let (y∗, u∗, p∗) be a solution of the necessary condition (3.5)–(3.6) and
suppose that

α

∫
Ω̂

|C h|2 + α

∫
Ω̂

|P h|2 + (v,Qv) + (p∗, eyy(y∗)[v]2) > 0 (SSC)

holds for every pair (vh, h) ∈ Y ×K(u∗), (vh, h) �= (0, 0) that solves the linearized
equation

ey(y∗)vh + euh = 0. (4.1)

Then there exist ε > 0 and δ > 0 such that

J(y∗, u∗) +
δ

2
‖u− u∗‖2U ≤ J(y, u),

for every feasible pair (y, u) such that ‖u− u∗‖U ≤ ε.

Proof. Let us suppose that u∗ does not satisfy the quadratic growth condition.
Then there exists a feasible sequence {uk}∞k=1 ⊂ U such that

‖uk − u∗‖U <
1
k2

(4.2)

and

J(y∗, u∗) +
1
k
‖uk − u∗‖2U > J(yk, uk) = L(yk, uk, p

∗) for all k, (4.3)

where yk denotes the unique solution of (3.1) associated with uk. By defining

ρk = ‖uk − u∗‖U and hk =
1
ρk

(uk − u∗).

it follows that ‖hk‖U = 1 and, therefore, we may extract a subsequence, denoted
also by {hk}, such that hk ⇀ h weakly in U . The proof is now given in four steps.

Step 1: (∂L
∂u (y

∗, u∗, p∗)h = 0). From the mean value theorem it follows that

L(yk, uk, p
∗) +

∂L
∂y

(zk, uk, p
∗)(y∗ − yk) = L(y∗, uk, p

∗)

= L(y∗, u∗, p∗) + ρk
∂L
∂u

(y∗, wk, p
∗)hk,

where wk and zk are points between u∗ and uk and y∗ and yk, respectively. By
(4.3) it follows that

∂L
∂u

(y∗, wk, p
∗)hk <

1
k
‖uk − u∗‖U +

1
ρk

∂L
∂y

(zk, uk, p
∗)(y∗ − yk). (4.4)
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Working on the last term we obtain

∂L
∂y

(zk, uk, p
∗) (y∗ − yk) = J ′(zk)(y∗ − yk) + 〈p∗, ey(zk)(y∗ − yk)〉Y,Y ′

= J ′(zk)(y∗ − yk) + 〈p∗, ey(y∗)(y∗ − yk)〉Y,Y ′

+ 〈p∗, eyy(y∗)(zk − y∗)(y∗ − yk)〉Y,Y ′

+ 〈p∗, (eyy(ζk)− eyy(y∗))(zk − y∗)(y∗ − yk)〉Y,Y ′ ,

with ζk = y∗ + ξ(zk − y∗), for some ξ ∈ [0, 1]. From the optimality system and
Assumption 2.1 we get that∣∣∣∣∂L∂y (zk, uk, p

∗) (y∗ − yk)
∣∣∣∣ ≤ ‖J ′(zk)− J ′(y∗)‖Y ′‖y∗ − yk‖Y

+‖p∗‖Y ‖eyy(y∗)‖L(Y×Y,Y ′)‖zk−y∗‖Y ‖y∗−yk‖Y +L‖p∗‖Y ‖zk−y∗‖2Y ‖y∗−yk‖Y .

Due to the quadratic nature of J and since hk ⇀ h weakly in U , wk → u∗ in U
and yk → y∗ in Y , we obtain from (4.4) that

∂L
∂u

(y∗, u∗, p∗)h = lim
k→∞

∂L
∂u

(y∗, wk, p
∗)hk ≤ 0. (4.5)

On the other hand, we know that Cuk(x) ≤ ψ(x) a.e. in Ω, which implies that

∂L
∂u

(y∗, u∗, p∗)hk = ρk
∂L
∂u

(y∗, u∗, p∗)(uk − u∗) ≥ 0, (4.6)

and consequently

∂L
∂u

(y∗, u∗, p∗)h = lim
k→∞

∂L
∂u

(y∗, wk, p
∗)hk ≥ 0.

Altogether we obtain that

∂L
∂u

(y∗, u∗, p∗)h = 0. (4.7)

Step 2: (h ∈ K(u∗)). The set

{v ∈ U : (Cjv)(x) ≤ 0, if (Cju
∗) = ψj , λj(x) = 0, j = 1, . . . , l}

is closed and convex and, therefore, it is weakly sequentially closed. Since each hk

belongs to this set, then h also does. From the optimality condition, it follows that
−λj(x)Cjh(x) ≥ 0 for all j, a.e. in Ω, which implies that

0 = ∂L
∂u (y

∗, u∗, p∗)h = (αC∗Cu∗ + e∗up
∗, h)U

= −
∑l

i=1

∫
Ω λj(x) Cjh(x) dx =

∑l
i=1

∫
Ω |λj(x) Cjh(x)| dx.

Consequently, Cjh(x) = 0 if λj(x) �= 0 and, therefore, h ∈ K(u∗).
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Step 3: (h = 0). From condition (SSC) it suffices to show that

∂2L
∂u2

(y∗, u∗, p∗)h+
∂2L
∂y2

(y∗, u∗, p∗)v

= α

∫
Ω̂

|C h|2 + α

∫
Ω̂

|P h|2 + (v,Qv) + (p∗, eyy(y∗)[v]2) ≤ 0. (4.8)

Using a Taylor expansion of the Lagrangian we get that

L(yk, uk, p
∗) = L(y∗, u∗, p∗) + ρk

∂L
∂u

(y∗, u∗, p∗)hk

+
ρ2k
2
∂2L
∂u2

(y∗, u∗, p∗)h2k +
1
2
∂2L
∂y2

(zk, u
∗, p∗)(yk − y∗)2, (4.9)

with zk an intermediate point between y∗ and yk. We therefore get that

ρk
∂L
∂u

(y∗, u∗, p∗)hk +
ρ2k
2
∂2L
∂u2

(y∗, u∗, p∗)h2k +
ρ2k
2
∂2L
∂y2

(y∗, u∗, p∗)
(
yk − y∗

ρk

)2
= L(yk, uk, p

∗)− L(y∗, u∗, p∗)

+
ρ2k
2

[
∂2L
∂y2

(y∗, u∗, p∗)− ∂2L
∂y2

(zk, u
∗, p∗)

](
yk − y∗

ρk

)2
. (4.10)

Additionally by (4.3),

L(yk, uk, p
∗)− L(y∗, u∗, p∗) ≤ ρ2k

k
. (4.11)

Since uk → u∗ in U and ‖hk‖U = 1, we obtain from (2.4) that∣∣∣∣∣
[
∂2L
∂y2

(y∗, u∗, p∗)− ∂2L
∂y2

(zk, u
∗, p∗)

](
yk − y∗

ρk

)2∣∣∣∣∣
≤ ‖p∗‖Y ‖eyy(y∗)− eyy(yk)‖L(Y 2,Y ′)

∥∥∥∥yk − y∗

ρk

∥∥∥∥2 → 0 when k →∞. (4.12)

For the latter we used the fact that, due to the differentiability of the control to
state mapping,

∥∥∥yk−y∗

ρk

∥∥∥
Y
is bounded.

Consequently by (4.10),

lim
k→∞

inf
∂2L
∂u2

(y∗, u∗, p∗)h2k + lim
k→∞

inf
∂2L
∂y2

(y∗, u∗, p∗)
(
yk − y∗

ρk

)2
≤ 2 lim

k→∞
sup

1
ρ2k
(L(yk, uk, p

∗)− L(y∗, u∗, p∗))− 2 lim
k→∞

inf
1
ρk

∂L
∂u

(y∗, u∗, p∗)hk.

which implies, since ∂2L
∂u2 (y∗, u∗, p∗) is w.l.s.c. and thanks to (4.6), (4.11), that

∂2L
∂u2

(y∗, u∗, p∗)h2 + lim
k→∞

inf
∂2L
∂y2

(y∗, u∗, p∗)
(
yk − y∗

ρk

)2
≤ 2 lim

1
k
= 0.
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Additionally,

∂2L
∂y2

(y∗, u∗, p∗)
(
yk − y∗

ρk

)2
=

∂2L
∂y2

(y∗, u∗, p∗)
(
yk − y∗

ρk
− vhk

)2
+ 2

∂2L
∂y2

(y∗, u∗, p∗)
(
yk − y∗

ρk
− vhk

, vhk

)
+

∂2L
∂y2

(y∗, u∗, p∗) (vhk
)2 ,

where vhk
is the solution to (4.1) associated to hk, which also corresponds to

the derivative of the control-to-state mapping at u∗ in direction hk. Due to the
differentiability of this mapping, the continuity of the bilinear form ∂2L

∂y2 (y∗, u∗, p∗),
and since vhk

→ vh strongly in Y (by the compactness of e2), we obtain that

∂2L
∂u2

(y∗, u∗, p∗)h2 +
∂2L
∂y2

(y∗, u∗, p∗)v2h ≤ 2 lim
1
k
= 0.

Since h ∈ K(u∗), it follows by (SSC) that (vh, h) = (0, 0).
Step 4: (hk → 0 strongly in U .) From the properties of C and the structure of the
cost functional, there exists a constant K̄ > 0 such that

∂2L
∂u2

(y∗, u∗, p∗)w2 ≥ αK̄‖w‖2U , for all w ∈ U.

Since hk ⇀ 0 weakly in U , it follows that vhk
→ 0 strongly in Y and by

(4.10), (4.6), (4.11) and (4.12)

αK̄ lim
k→∞

sup ‖hk‖2U ≤ lim
k→∞

sup
∂2L
∂u2

(y∗, u∗, p∗)h2k ≤ 2 lim
1
k
= 0.

Thus hk converges to 0 strongly. Since ‖hk‖U = 1, a contradiction is obtained. �

5. Semismooth Newton method

In this section we turn to the analysis of semismooth Newton methods applied to
(3.1)–(3.4). We begin by reformulating the complementarity condition (3.4) as the
following operator equation

λ = max(0, λ+ c(Cu− ψ)), (5.1)

for any c > 0, where max is interpreted componentwise and (5.1) must be inter-
preted in the a.e. in Ω̂ sense.

Let us hereafter assume that C is surjective and introduce the Lagrangian

L(y, u, p) = J (y, u) + 〈p, e(y, u)〉Y,Y ′ .

Then CT is injective and (3.3) can equivalently be expressed as{
αCu∗ + λ+D−1CPe�

up = 0
αPu∗ + Pe�

up = 0,
(5.2)

where
D = CCT ∈ Rl×l.
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We therefore obtain that

λ(x) = −
(
αCu∗ +D−1Ce�

up
)
(x).

Choosing c = α in (5.1) results in

−αCu−D−1CPe�
up = max(0,−D−1CPe�

up− αψ). (5.3)

Considering p as a function of u given by equations in (3.1)–(3.2), the optimality
system can equivalently be expressed as

F (u) = 0, (5.4)

where F : L2(Ω̂;Rm)→ L2(Ω̂;Rl)× L2(Ω̂;Rm) is defined by

F (u) =
(
αCu +D−1Ce�

up(u) + max(0,−D−1Ce�
up(u)− αψ)

αPu + Pe∗up(u)

)
. (5.5)

Next, we recall the definition of Newton differentiability and a superlinear
convergence result for semi-smooth Newton methods [9].

Definition 5.1. Let X and Z be Banach spaces and D ⊂ X an open subset. The
mapping F : D → Z is called Newton differentiable on the open subset U ⊂ D if
there exists a generalized derivative G : U → L(X,Z) such that

lim
h→0

1
‖h‖ ‖F (x+ h)− F (x) −G(x+ h)h‖ = 0,

for every x ∈ U.

Proposition 5.1. If x∗ is a solution of F (x) = 0, F is Newton differentiable in an
open neighborhood U containing x∗ and {‖G(y)−1‖ : y ∈ U} is bounded, then the
Newton iterations

xk+1 = xk −G(xk)−1F (xk)
converge superlinearly to x∗, provided that ‖x0 − x∗‖X is sufficiently small.

To apply Proposition 5.1 we consider X = L2(Ω̂,Rm) and Z = L2(Ω̂,Rl) ×
L2(Ω̂, kerC). In order to define a generalized derivative of F in the sense of Defini-
tion 5.1 we first introduce a generalized derivative for max : L2(Ω̂,Rl) �→ L2(Ω̂,Rl)
by setting

(Gmϕ(x))i =

{
1 if ϕ(x)i > 0

0 if ϕ(x)i ≤ 0.
(5.6)

From [9] it is known that max : Lq(Ω̂,Rl) �→ L2(Ω̂,Rl) is Newton differentiable
with generalized derivative given by (5.6) if q > 2.

As generalized derivative of F at u we choose GF ∈ L(L2(Ω̂;Rm), L2(Ω̂;Rl)×
L2(Ω̂;Rm)) with

GF (u)h=
(
αCh+D−1Ce�

up
′(u;h)−Gm(−D−1Ce�

up(u)−αψ)D−1Ce�
up
′(u;h)

αPh+Pe∗up
′(u;h)

)
,

(5.7)
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where p′(u;h) is solution of{
ey(y)y′ + euh = 0
e�

y(y)p′(u;h) = −J ′(y′)− (e�
y)y(p(u), y′).

(5.8)

For the subsequent analysis the following additional hypotheses are used:

u→ e∗up(u) is Fréchet differentiable from
L2(Ω̂; Rm) to Lq(Ω;Rn), for some q > 2.

(H1)

ey(y)� is uniformly continuously invertible in V (y∗). (H2)⎧⎪⎨⎪⎩
any solution (v, h) ∈ Y × U of the linearized equation
ey(y)v + e2h = 0 satisfies, for y ∈ V (y∗), the estimate
|v|Y ≤

√
K|h|U , with K independent of y.

(H3)

Hypothesis (H1) guarantees the Newton differentiability of the operator (5.5).
The following stronger second-order condition is also assumed to hold: there

exists a constant κ > 0 such that

α

∫
Ω̂

|C h|2 + α

∫
Ω̂

|P h|2 + (v,Qv) + (p(u∗), eyy(y∗)[v]2) ≥ κ‖h‖2U (SSC′)

holds for every pair (v, h) ∈ Y × U that solves the linearized equation (4.1).

Theorem 5.2. Let C : Rm → Rl be surjective and let Assumptions 2.1–2.2, (H1),
(H2), (H3) and (SSC′) hold. Then the semi-smooth Newton method applied to
F (u) = 0, with F given in (5.5) and generalized derivative GF (u) as in (5.7)
converges locally superlinearly.

Proof. We need to verify the hypotheses of Proposition 5.1. Newton differentiabil-
ity of F follows from (H1), the Newton differentiability of the max-function from
Lq(Ω̂) to L2(Ω̂) and the chain rule for Newton-differentiable functions, see [10]. It
remains to argue uniform boundedness of the inverse of the generalized derivative.

We define for i = 1, . . . , l

Ãi = {x ∈ Ω̂ : (−D−1Ce�
up(u)− αψ)i(x) > 0} and Ĩi = Ω̂− Ãi.

and the diagonal matrix-valued function χÃ ∈ L2(Ω̂,Rm×n) with

(χÃ)i,i = χÃi for i = 1, . . . , l, and (χÃ)i,j = 0, for i �= j,

and analogously for χĨ . We have to analyze the equation

GF (u)h = (f1, f2),

for (f1, f2) ∈ L2(Ω̂;Rl) × L2(Ω̂; kerC) and h ∈ L2(Ω̂;Rm), which can also be
written as ⎧⎪⎨⎪⎩

αχÃCh = χÃ f1

αχĨ Ch+ χĨD
−1Ce�

up
′(u;h) = χĨ f1

αPh+ Pe�
up
′(h) = f2,

(5.9)
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Let us now consider the following auxiliary problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min Ja(v, h) = 1
2 (v,Qv)Y + α

2 |χĨ(C h− g1)|2L2(Ĩ,Rl)

+α
2 |Ph− g2|2U + 1

2 〈p, eyy(y)[v]2〉Y,Y ′

subject to:
ey(y, u)v + euh = 0
χÃCh = χÃ g1

(5.10)

with (g1, g2) = ( 1αf1,
1
αf2). To verify that (5.9) is the optimality condition for

(5.10), let us introduce the Lagrangian

L = Ja(v, h) + 〈q, ey(y, u)v + euh〉Y,Y ′ + (μ, χÃ(Ch− g1)). (5.11)

Taking the derivative with respect to v yields

e�
y(y)q + e�

yy(y) p v = −Qv. (5.12)

We define E : Y × U → Y ′ ×⊗m
i=1 L

2(Ãi,R) by

E(v, h) =
(
ey(y)v + e2h
χÃ(C h− g1)

)
.

with ker(E ′) = {(v, h) ∈ Y × U : χÃCh = 0, ey(y)v + e2h = 0}.
The Hessian of Ja is given by

J ′′a (δu, δh)2 = (δv,Q δv)Y + α|χĨC δh|2
L2(Ĩ,Rl)

+ α|P δh|2U + 〈p, eyy(y)[δv]2〉Y,Y ′ .

For (δv, δh) ∈ ker(E ′) we therefore obtain that

J ′′a (δv, δh)2 ≥ α

∫
Ω̂

|C δh|2 + α

∫
Ω̂

|P δh|2 + (δv,Qδv) + 〈p, eyy(y)[δv]2〉Y,Y ′ ,

which by (SSC′) and the Lipschitz continuity of eyy implies the existence of a
constant K̄ > 0, independent of u, such that

J ′′a (δv, δh)2 ≥ αK̄|δh|2U for all (δv, δh) ∈ ker (E ′) (5.13)

in a neighborhood of u∗. Additionally, due to (H2) we obtain that

J ′′a (δv, δh)2 ≥
αK̄

2K
|(δv, δh)|2Y×U for all (δv, δh) ∈ ker (E ′). (5.14)

The auxiliary problem is therefore a linear quadratic optimization problem with
convex objective function and, consequently, there exists a unique solution to (5.9).

Moreover, since E ′(y) is surjective, there exist multipliers (q, ϕ) such that the
Lagrangian is stationary at (v, h, q, ϕ), i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩

ey(y)v + euh = 0,
e�

y(y)q = −Qv − e�
yy(y) p v,

χÃ(C h∗ − g1) = 0,
αCTχĨ(C h− g1) + α(Ph∗ − g2) + e�

up
∗ + CTχÃ ϕ = 0

(5.15)
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Projecting the last equation with respect to P and I−P = CT (C CT )−1C, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ey(y, u)v + euh = 0,
e�

y(y, u)q = −Qv − e�
yy(y, u) p v

χÃ(C h∗ − g1) = 0,
αχĨ Ch

∗ + χĨ D
−1Ce�

u q = αχĨ g1
χÃϕ+ χÃD

−1Ce�
uq = 0

αPh+ Pe�
uq = α g2.

(5.16)

For the bounded invertibility analysis we consider the equivalent system:{
J ′′a (v, h) + (E ′)�(q, ϕ) = (0, αCT χĨ g1 + α g2)TY ′×L2(Ω̂,Rm)′

E ′(v, h) = (0, χÃ g1)T .
(5.17)

Since E ′(y)(v, h) is surjective, the following decomposition holds:
(v, h) = (vk, hk) + (vr , hr) ∈ ker(E ′)⊕ range(E ′)�

From the third equation in (5.17) we obtain that χAChr = χAg1, which implies
that |hr|L2 ≤ K2|g1| (since χAC is invertible on range(E ′)�). Also since (vr, hr)
satisfies equation ey(y)vr + e2hr = 0, we obtain from (H3) that |vr|Y ≤ K|hr|U .
Therefore we obtain the bound

|(vr, hr)|Y×U ≤ K1|g1|L2(Ω̂,Rl) (5.18)

From the first equation in (5.17) we obtain, since (E ′(y))� is continuously
invertible on its range, that

(q, ϕ) = (E ′(y))−�[−J ′′a (v, h) + (0, αCTχIg1 + αg2)T ]. (5.19)

Moreover, by assumption (H2) there exists C > 0, independent of y, such that
‖(E ′(y))−�‖ ≤ C, for all y ∈ V (y∗). Therefore,

|(q, ϕ)|Y×L2(A) ≤ C(|(v, αh)|Y ×U + α|(g1, g2)|L2(Ω̂,Rl)×L2(Ω̂,ker (C))).

Using (5.14) and (5.17) we find

αK̄

2K
|(vk, hk)|2Y×U ≤ 〈J ′′a (vk, hk), (vk, hk)〉
= 〈J ′′a (v, h), (v, h)〉 − 2〈J ′′a (vk, hk), (vr , hr)〉 − 〈J ′′a (vr, hr), (vr, hr)〉
= α(χĨ g1, χĨ Ch)L2(Ω̂,Rl) + α(g2, hr)L2(Ω̂,Rl) + α(g2, χĨhk)L2(Ω̂,Rl)

− (ϕ, , χÃ g1)L2(Ã,Rl) − 2〈J ′′a (vk, hk), (vr, hr)〉 − 〈J ′′a (vr, hr), (vr, hr)〉
≤ α(χĨ g1, χĨ Ch)L2(Ω̂,Rl) + α(g2, hr)L2(Ω̂,Rl) + α(g2, χĨhk)L2(Ω̂,Rl)

− (ϕ, χÃg1)L2(Ã,Rm) − 2〈J ′′a (vk, hk), (vr, hr)〉 − 〈e�
yy(y) · p · vr, vr〉Y ′,Y .

From (5.18) and (5.19) we obtain the existence of constants K3 and K4 such that

(μ, , χÃ g1)L2(Ã,Rl) ≤ K3α(|g1|2 + |g2|2 +
1
α2
|g1|2) +

αK̄

8K
|hk|2
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and

2〈J ′′a (vk, hk), (vr, hr)〉 ≤ K4α

(
|g1|2 +

1
α2
|g1|2

)
+

αK̄

8K
|vk|2.

These estimates imply that

αK̄

2K
|(vk, hk)|2Y×U ≤ α‖C‖|g1|(|hk|+ |hr|) + α|g2||hk|+ (vr, Qvr)

+ α|g2||hr|+ α(K3 +K4)
(
|g1|2 + |g2|2 +

1
α2
|g1|2

)
+

αK̄

4K
|vk|2.

From (5.18) and (SSC′) there exists a constant K5 > 0 such that

|(vk, hk)|2Y×U ≤ K5(|g1|2 + |g2|2 +
1
α2
|g1|2),

and consequently

|(v, h)|Y×U ≤ K6

(
|f1|L2(Ω̂,Rl) +

1
α
|f1|L2(Ω̂,Rl) + |f2|L2(Ω̂,kerC)

)
.

This estimate implies the a priori bound on the inverse of GF (u) uniformly. �
A complete semi-smooth Newton step for problem (2.3) is then given by the

following algorithm.

Algorithm 5.3 (Semi-smooth Newton method (SSN)).

1. Initialize, u0, k = 0
2. Solve GF (uk)δuk = −F (uk).
3. Set uk+1 = uk + δuk.
3. Solve e(y, uk+1) = f for yk+1.
4. Solve (ey(yk))�p = −J ′(yk+1) for pk+1 = p(uk+1).
5. Stop or set k = k + 1, goto 2.

Note that the equation in Step 3 may be solved by using Newton’s method.

6. Numerical experiment

In this section we test the efficiency of Algorithm 5.3 for solving an optimal control
problem governed by the stationary Navier-Stokes equations in presence of affine
control constraints. For the numerical experiment a forward facing step channel
of length 1 and height 0.5 was considered. The fluid enters the channel on the
left with Dirichlet boundary condition of parabolic type and leaves the channel
on the right with stress free boundary condition. The domain is discretized using
a homogeneous staggered grid with step h. A first-order upwind finite differences
scheme is used to approximate the flow equations.

The target of the control problem is to drive the fluid to an almost linear
behavior given by the Navier-Stokes flow with Reynolds number equal to 1 and, in
this manner, reduce recirculations before and after the step. The � = 1 flow was
therefore chosen as desired state zd.
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For the solution of the discretized systems appearing in each semi-smooth
Newton step a penalty method was applied (cf. [8, p. 125]). The resulting linear
systems in each SSN iteration were solved using Matlab exact solver. All algo-
rithms were implemented in Matlab 7.6 and run in an Intel Xeon Quart Core
machine with a precision of eps = 2.2204e− 16.

The semi-smooth Newton algorithm stops if the L2-residuum of the dis-
cretized control is lower than a given tolerance, typically set as 10−6. The method
is initialized with the solution of the unconstrained optimal control problem.

To verify the main properties of the method we introduce the quantities

�k = ‖uk − uk−1‖L2
h
, ϑk =

‖uk − uk−1‖L2
h

‖uk−1 − uk−2‖L2
h

,

whose purpose is to evaluate the difference of two consecutive controls and the
convergence rate, respectively. The L2-norms are evaluated by using a rectangle
formula.

For the numerical experiment we consider the optimal control problem (2.1)
with

C =
(
1 0
1 1

)
and ψ =

(
0.8
0.4

)
as constraint matrix and vector respectively. The correspondent projection matrix
is given by P = 0. The remaining parameter values are α = 0.01 and Re = 800. In
further numerical tests which will be reported elsewhere the significance of using
the controls weighted by C as in (2.1) will be demonstrated.

With a mesh step size h = 1/160, the algorithm stops after 4 iterations.
The size of the resulting active sets are 968 and 680 for the first and the second
constraints, respectively. The constraints and the correspondent multipliers for the
optimal solution are depicted in Figure 1. From the graphics the complementarity
condition can be verified by inspection.

In Table 1 the convergence history is documented. From the data, superlin-
ear rate of convergence can be inferred. Also a monotonic behavior of the cost
functional value can be observed.

Iteration | A1k | | A2k | J(y, u) �k ϑk

0 0 0 0.00141942 - -

1 864 592 0.00146985 0.007206 -

2 966 683 0.00146987 1.3343e-5 0.001851

3 968 680 0.00146987 1.5717e-10 1.1779e-5

4 968 680 0.00146987 1.5807e-24 1.005e-14

Table 1. Example 1, � = 800, α = 0.01, h = 1/160.
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Figure 1. Affine constraints (left) and their multipliers (right); h = 1/80
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c© 2009 Birkhäuser Verlag Basel/Switzerland

Weak Solutions to a Model for Crystal Growth
from the Melt in Changing Magnetic Fields

Pierre-Étienne Druet

Abstract. We present a model for crystal growth from the melt that accounts
for the interaction between melt flow, heating process, and additional applied
alternating or travelling magnetic fields. Functional setting and variational
formulation are derived for the quasi-stationary approximation of the model.
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1. Introduction

In the last years, applied mathematics has discovered in industrial crystal growth
a field rich of interesting problems. Due to the high-temperatures and the high
costs of experiments that characterize crystal growth, specific knowledge has often
to be obtained via mathematical modeling and numerical simulations (see [Phi03],
[KPS04], [Voi01]). In the search for means to systematically improve the produc-
tion, the tools developed in the mathematical theory of optimal control have to be
mobilized (see [Mey06], [MPT06], [GM06], [HZ07]). The problems posed in crystal
growth are very challenging, since their mathematical modeling leads to strongly
coupled systems of nonlinear PDEs for which few results have been stated.

In this paper, we want to introduce a model that aims at describing the heat-
transfer mechanisms, the melt flow, and their interaction with applied magnetic
fields, in crystal growth from the melt. In the first section, we briefly describe the
main physical phenomena. We then introduce in the second section the mathemat-
ical model, successively for hydrodynamics, heat-transfer and electromagnetics. In
the last section, we propose a natural mathematical setting and a concept of weak
solution to the system.
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2. Czochralski’s method in crystal growth. The melt instability

Czochralski’s method for the growth of single crystals basically consists in inducing
recrystallization of a melted polycrystalline material around a single crystal seed.
This idea is nowadays realized at very large scales by the semiconductor industry.

Melt

ystal

Coils

Pull rod

Crucible

Coils

Crystal

Figure 1. Schematic cross-sectional representation of a growth ar-
rangement of the Institute of Crystal Growth (IKZ) Berlin.

Figure 1 represents a typical high-temperatures furnace for the growth of
single crystals. The polycrystalline semiconducting material is filled in the crucible.
Once the material has been melted, the pull rod at the top of the furnace is used
to dip a single crystal seed into the melt. The art of crystal growth consists in
adjusting the growth parameters to create a thermodynamical equilibrium near
the seed, so that it is able to support a meniscus of liquid. The seed is then lifted
slowly and recrystallization can occur through cooling at the contact of the colder
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gas phase. The rotation of the pull rod ensures the circular shape of the crystal,
the so-called ingot form.

For the production of reliable electronic devices, crystals of high quality are
required. Determining for this quality are chiefly the thermodynamical parameters
at the crystallization interface, such as for instance the shape of the free phase
boundary. The melt motion in the crucible is also a factor of decisive influence.

The flow in the melt is principally due to thermal convection, originating from
the temperature difference between the surface of the melt and the warmer bottom
of the crucible. A liquid subject to a temperature gradient is thermally unstable,
and this is assumed to be responsible for the formation of inhomogeneities in
the crystal lattice. The large melt dimensions used in industry are also a factor
diminishing the influence of viscous forces, that is of stabilization, on the flow.

Applied magnetic fields are known to provide the possibility to influence
unstable flows in melted metals1. It has been confirmed in numerous examples that
the effect of the magnetic field in such cases amounts to increasing the viscosity
of the fluid. A basic explanation of the damping effect exerted by magnetic fields
on thermally instable fluids is that the resistivity of the fluid acts as a second
viscosity. The Joule effect increases the quantity of heat produced in the fluid2, so
that thermal instability can only set in at higher temperature gradients.

Magnetic fields in crystal growth. The project KristMAG. In the particular area
of crystal growth, detailed investigations of different types of magnetic fields and
their specific effect are at the center of intense research.

The theoretical practicability of the melt stabilization by magnetic fields is
not yet equivalent to technical feasibility, let alone to a rentable use in industry. A
field sufficiently strong to show a positive influence on the melt is to realize only
at the cost of a hight additional electrical input power.

Some of the open questions related have been recently investigated in the
projectKristMAG (see http://www.kristmag.com). In this project, a technological
innovation was proposed to make travelling magnetic fields for Czochralski crystal
growth attractive for the industry (see [Rud07]): the induction coils that usually
surround the furnace are replaced by a resistance heater in the furnace, specifically
designed to at the same time generate a travelling magnetic field (see Figure 1).
In this way of doing, the power used to heat the furnace is cleverly redirected to
give control possibilities on the melt.

1The reference [Cap72], volume III, pages 128–135, describes how a steady state magnetic field
is used to increase the stability region of the convective flow in a Bénard cell. A more detailed
analysis of the same problem can be found in [Cha81], Chapter I–VI, in particular Chapter III.
2[Cap72], or [Cha81], page 160
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3. Describing the melt flow and the global heat transfer
in a crystal growth furnace

In the modeling of crystal growth, one usually distinguishes between global and
local considerations, according to whether the entire furnace is considered (see
for instance [Voi01], [KPS04]), or a part of it, typically the system crystal-melt,
is decoupled and treated separately ([HZ07], [GM06]). A decoupling the system
crystal-melt from the rest of the apparatus is very desirable from the point of
view of numerical analysis, since the domain of computation is then substantially
smaller, but in the present paper, we take the global point of view and focus on
the interaction between heat transfer, melt flow and electromagnetic fields. From
this viewpoint, the free boundaries (interface crystal-melt and melt-gas) do not
play the most important role and can in first approximation be treated as fixed
and flat.

In order to formulate the mathematical problem, we at first need to introduce
a description of the geometry that fits realistic situations such as represented
on Figure 1. Note that in most situations, it is not realistic to assume that the
applied magnetic field is confined to the region of interest for the computation
of temperature, the furnace. The geometry considered through this paper thus
contains the following ingredients:

1. A simply connected, bounded domain Ω̃ ⊂ R3 that represent the region of
extension of the electromagnetic fields. This domain has the representation
Ω̃ =

⋃m
i=0 Ω̃i. where the domains Ω̃i ( i = 0, . . . ,m ) are disjoint, and repre-

sent the different materials filling this region.
2. We denote by Ω ⊆ Ω̃ the bounded domain that represent the region of interest

for the computation of the temperature (furnace). Setting Ωi := Ω̃i ∩ Ω for
i = 0, . . . ,m, we obviously have Ω =

⋃m
i=0 Ωi.

3. One of the material in the furnace Ω, say Ω0, is transparent and fills a con-
nected cavity. The remaining materials are opaque. We set Ωop := Ω \ Ω0.
The transparent cavity is enclosed in Ω, that means, the set R3 \ Ωop is
disconnected.

4. The crucible, containing the melted semiconducting material, is denoted
by Ω1.

5. The set of electrical conductors that are located respectively in Ω̃ and in Ω
are respectively denoted by Ω̃c and Ωc.

6. We denote by Ω̃c0 ⊂ Ω̃c the conductors in which current is applied. They
correspond in Picture 1 to the coils inside of the furnace. Throughout the
paper, we also allow for the usual case that induction coils are located outside
the furnace, but we restrict for simplicity to the practically relevant case that
Ω̃c0 consists of closed current loops.

7. Nonlocal radiation interaction take place at the boundary ∂Ω0 of the trans-
parent cavity. We use the usual notation Σ := ∂Ω0 and Γ := ∂Ω for the
external boundary of the furnace.
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The model for the melt that we propose here essentially follows [Voi01].
Global heat transfer is modeled with an approach similar to [KPS04] for com-
puting the heat sources from the Maxwell equations. The model for heat radiation
is of wide use in crystal growth and is also described in [KPS04], [Voi01], [Tii97]
and other publications. Our main references for modeling the magnetic field is the
book [Bos04].

3.1. The model for the fluid flow

The melt flow is governed by the full Navier-Stokes equations for a viscous, elec-
trically conducting and heat-conducting fluid. However, it is widely accepted that
thermal (natural) convection in liquids can be reasonably described by Boussi-
nesq’s approximation (see [GG76] for a general description). According to the
Boussinesq model, it is possible to assume that the fluid is incompressible in the
mean. The velocity v and the pressure p in the melt are consequently assumed to
satisfy the Navier-Stokes equations in the form

ρ1

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ div(2 η(θ)D v) + F ,

div v = 0 , in ]0, T [×Ω1 . (3.1)

where the reference mass density ρ1 of the fluid is a given constant, the function
η denotes the dynamical viscosity of the fluid, which may depend on temperature,
and Dv is the rate of strain tensor, with the notations

Dv = Di,j (v) :=
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
(i, j = 1, . . . , 3) , (3.2)

D(u, v) := Du : Dv := Di,j (u)Di,j (v) . (3.3)

Here and throughout this paper, we use the convention that repeated indices imply
summation over 1, 2, 3.

F denotes the external force, which is twofold. On the one hand the melt
flow in Czochralski crystal growth is mainly driven by buoyancy. Denoting by ρ
the mass density of the fluid, and using linear expansion, we write for the thermal
expansion of the fluid

ρ = ρ(θ) = ρ1 (1− α (θ − θ1)) , (3.4)

where α is the thermal expansion coefficient of the fluid, θ the absolute temper-
ature, and θ1 the reference temperature. Boussinesq’s model for the force f of
gravity consists in setting

f = f(θ) := ρ(θ)�g , (3.5)

where �g is the fixed vector of gravity.
On the other hand, since the electrically conducting fluid is in presence of a

magnetic field, it is subject to the Lorentz force j×B, where j denotes the vector
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of the current density and B the vector of the magnetic induction. Therefore, the
resulting external force is given by

F = f(θ) + j ×B . (3.6)

3.2. The model for global heat transfer

The main heat transfer phenomena in crystal growth from the melt are
Heat conduction;
Heat convection, in the melt and in the gas that fills the transparent cavity in the
furnace;
Heat radiation in the transparent cavity.
There is a common agreement to consider that heat transport in the gas is dom-
inated by radiation, so that the gas atmosphere can be considered as non partic-
ipating, and the heat convection in the gas can be neglected in the model. This
yields a useful simplification of the model, since otherwise one would need the full
Navier-Stokes system to describe the gas motion.

The global temperature distribution in the furnace is thus governed by the
heat equation

ρ cV

(
∂θ

∂t
+ v · ∇θ

)
= div(κ(θ)∇θ) + f , in ]0, T [×Ω , (3.7)

where θ denotes the absolute temperature, ρ denotes the mass density, cV is the
specific heat at constant volume, and κ is the heat conductivity of the medium
that may depend on temperature. Since we neglect the gas convection, we make
the simplifying assumption that v �= 0 only in the melt.

The heat sources f result, on the one hand, from the Joule effect in the
electrical conductors. On the other hand, heat is produced by viscous friction in
the fluid. Therefore

f =
|j|2
s(θ)

+ 2 η(θ)D(v, v) , (3.8)

where s denotes the temperature dependent electrical conductivity, j the density
of electrical current supported in the conductors, and v the velocity supported in
the melt.
Heat radiation. Heat radiation is emitted at the surfaces of the opaque bodies
that are located in the transparent cavity inside of the furnace. On this surface,
the energy balance takes the form[

−κ(θ) ∂θ
∂�n

]
= R− J , on ]0, T [×Σ , (3.9)

where R is the radiosity (outgoing radiation) and J is the incoming radiation. The
relation (3.9) means that the outgoing conductive heat flux has to balance the en-
ergy brought to the surface by radiation. On the other hand, a simple constitutive
relation is given by

R = ε σ θ4 + (1− ε)J , on ]0, T [×Σ , (3.10)
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which means that the outgoing radiation is the sum of the radiation emitted ac-
cording to the Stefan-Boltzmann law, and of the reflected radiation. In (3.10),
the function ε, that attains value in [0, 1], is the emissivity of the body, and σ
denotes the Stefan-Boltzmann constant. Following most modeling approaches for
global heat transfer [KPS04], [Voi01] in crystal growth, we assume that all materi-
als involved are diffuse grey. Accordingly, the material parameters emissivity and
reflexivity depend neither on the angle of incidence nor on the wavelength. We in
addition assume that all materials are opaque except for the gas in Ω0, and that
no interaction takes place between gas and radiation.

One needs to obtain a second constitutive relation between R and J . For two
arbitrary points z, y on the boundary Σ of the transparent cavity Ω0 that can see
each other, the part of the radiation outgoing at the point y that attains the point
z, that we can denote jy(z), is given by the inverse square law

jy(z) =
�n(z) · (y − z) �n(y) · (z − y)

π |y − z|4 R(y) ,

where �n denotes a unit normal to Σ. We now want to obtain an expression for the
total radiation J(z) incoming at point z. We introduce the so-called view factor,
which for pairs of points (z, y) ∈ Σ× Σ is given by

w(z, y) :=

⎧⎨⎩
�n(z) · (y − z) �n(y) · (z − y)

π|y − z|4 Θ(z, y) if z �= y ,

0 if z = y ,

(3.11)

where the visibility function Θ penalizes the presence of opaque obstacles

Θ(z, y) =

{
1 if ]z, y[⊂ Ω0 ,
0 else.

(3.12)

In (3.12), ]z, y[ is an abbreviation for conv(z, y) \ {z, y}. We obtain the total
incoming radiation at z ∈ Σ by setting

J = K(R) on ]0, T [×Σ . (3.13)

with the linear integral operator K defined by

(K(R))(z) :=
∫
Σ

w(z, y)R(y) dSy for z ∈ Σ . (3.14)

Introducing the linear operator

G := (I −K) (I − (1− ε)K)−1 ε, (3.15)

it can be shown from (3.10) and (3.13) that the boundary condition (3.9) finds an
equivalent formulation in the relation[

−κ(θ) ∂θ
∂�n

]
= G(σ θ4) on ]0, T [×Σ , (3.16)

where only the unknown θ is involved.
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3.3. The model for electromagnetics

In crystal growth without additional applied magnetic fields, a modeling of the
electromagnetic inductive and/or resistive heating system is necessary to compute
the heat sources (see [KPS04], [LKD07] and the references therein). However, it
is often satisfactory to neglect the interaction of the fields generated in this way
with the fluid motion. This is of course not anymore the case if such interaction is
at the core of the investigation.

A fundamental difficulty for the computation of magnetic fields is the wide
range of action. It is seldom realistic to assume that the applied magnetic field is
confined to the region of interest for the computation of temperature, the furnace.
However, since it is clearly neither necessary to consider extension of the electro-
magnetic fields to the entire space, we assume that they extend to some bounded
region which may be larger than the furnace. This assumption is central in most
numerical models (see [Bos04], Ch. 5 or [Mon03], 13.5).

The electric field E and the magnetic induction B satisfy Faraday’s law of
induction

curlE +
∂B

∂t
= 0 , in ]0, T [×Ω̃ . (3.17)

Magnetohydrodynamics, or low-frequency approximation of Maxwell’s equations,
means that Ampère’s law

curlH = j , (3.18)

is assumed to be valid in ]0, T [×Ω̃ for the vector H of the magnetic field strength
and the current density j. In the electrical conductors, Ohm’s law is valid in the
form

j = s(θ) (E + v ×B) , in ]0, T [×Ω̃c (3.19)

where s denotes the electrical conductivity, and where v is supported in the melt.
The magnetic induction B satisfies the so-called Gauss law

divB = 0 , in ]0, T [×Ω̃ , (3.20)

and the vector field D of electric displacement has to satisfy the conservation of
charge in the nonconductors, that means, in the absence of free charges,

divD = 0 , in ]0, T [×(Ω̃ \ Ω̃c) . (3.21)

We need a constitutive relation between B and H , as well as between E and D.
We consider only linear media, that is

B = μH, D = eE , (3.22)

where μ is the magnetic permeability, and e is the electrical permittivity.
At the same time, we have to model the presence of a current source in some

parts of the conductors. We denote by Ω̃c0 the conductors where a current source
is acting. Typically, these are magnetic coils that surround the furnace. In the case



Crystal Growth from the Melt in Magnetic Fields 131

of Figure 1, the coils are placed inside of the furnace. We discuss two possibilities
for modeling the current sources.

First model: In the first model one considers that the current is imposed by
the current source in Ω̃c0 . This model is the natural one if the applied current is a
direct current, but is also widely used to approximate technical applications with
alternating current (see [Bos04], Ch. 5), for example in the case that Ω̃c0 is an
inductor that does not belong to the furnace. We have curlH = jg in Ω̃c0 , where
jg denotes the known density of the given current.

Second model: In the second model, one considers that the induction exerted
by the system on the conductors Ω̃c0 is not negligible. Therefore, it is not possible
to regard the current as being imposed therein.

Observe that from (3.17) and (3.20), it follows that

E = −∂A

∂t
+∇χ , (3.23)

with a vector potentialA, and a scalar potential χ. The choice of these potential can
be fixed with the help of diverse additional conditions called gauge (see [Jac99]).

In the second model, it is assumed that only the part s∇χ of the current,
originating from an applied voltage, can be considered as imposed. Therefore

s∇χ ∼ jg in ]0, T [×Ω̃c0 . (3.24)

where jg denotes the known density of the given current. It follows that (3.18) and
(3.19) have to be written in the form

curlH = s(θ)
(
−∂A

∂t
+ v × B

)
+ jg , (3.25)

with jg supported in Ω̃c0 . The potential A is related to B by the relation
curlA = B.

We make the consistency assumptions that

div jg = 0 in ]0, T ]× Ω̃c0 , jg · �n = 0 on ]0, T [×∂Ω̃c0 , (3.26)

which express the conservation of charge in closed current loops.
In both models, we assume that at each time t, the density of an applied

current jg in the conductor Ω̃c0 is given in the form

jg(t, x) = sin(ω t+Φ) j0(x) in ]0, T [×Ω̃c0 . (3.27)

The parameter ω > 0 and Φ ∈ [0, 2 π] are given (ω = angular frequency of the
imposed alternating current, Φ = phase-shift).

3.4. Initial and boundary conditions

At the boundary of the melt, we assume that the velocity is imposed, that is

v = vg on ]0, T [×∂Ω1 , (3.28)
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and that vg satisfies

vg · �n = 0 on ]0, T ]× ∂Ω1 , (3.29)

since free boundaries are neglected. At time zero, we have

v(0) = v0 in {0} × Ω1 , (3.30)

with the given velocity distribution v0.
The heat radiation that occurs at the surface Σ is modeled by the boundary

condition [
−κ(θ) ∂θ

∂�n

]
= R− J on ]0, T [×Σ ,

which can be written in the equivalent form (3.16) as described in the paragraph
3.2. At the outer boundary ]0, T [×Γ, we consider the condition

θ = θg on ]0, T [×Γ . (3.31)

On interfaces between opaque materials, the continuity of the heat flux is assumed.
At time zero, we have

θ(0) = θ0 in {0} × Ω . (3.32)

We supply the system (3.7) with the boundary conditions (3.9) and (3.31) and the
initial condition (3.32).

The boundary conditions for the electromagnetic fields are the natural inter-
face conditions[

H × �n
]
i,j
= 0 ,

[
B · �n

]
i,j
= 0 ,

[
E × �n

]
i,j
= 0 on ]0, T [×(∂Ω̃i ∩ ∂Ω̃j) ,

(3.33)

where
[
·
]
i,j
denotes the jump of a quantity across the surface ]0, T [×(∂Ω̃i∩∂Ω̃j),

i, j = 0, . . . ,m, i �= j.
We consider that the outer boundary can be modeled as a magnetic shield

and set

B · �n = 0 , E × �n = 0 on ]0, T [×∂Ω̃ . (3.34)

Therefore, we can also assume that the magnetic potential A is such that

A× �n = 0 on ]0, T [×∂Ω̃ . (3.35)

Finally, we have the initial condition

H(0) = 0 in {0} × Ω̃ . (3.36)

3.5. Quasi-stationary approach

Though a Czochralski crystal growth is essentially time-dependent, the long run-
ning times (order of days) are a crux for time-dependent simulations. In this section
we present a set of hypotheses under which the model admits quasi-stationary so-
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lutions that can basically be computed from an elliptic boundary value problem.
For simplicity, we assume that

jg(t, x) = sin(ω t) j0(x) in ]0, T [×Ω̃c0 , (3.37)

that is, we set the phase-shift Φ to zero in (3.37).
1. We assume that the applied alternating current jg has a characteristic fre-

quency ω > 0, which is higher than the typical relaxation times for momen-
tum and heat transfer. At the time-scale of the electromagnetic evolution, for
example the interval ]t, t+2 π/ω[, the quantities v, p and the temperature θ
can be assumed to be stationary.

2. We assume that we are far from the beginning of the evolution, and that
the electromagnetic fields are now independent of the initial conditions. We
in addition assume that the electromagnetic quantities have reached a time-
harmonic regime.

Due to the first hypothesis, we can average the equations (3.1) and (3.7) over the
interval ]t, t+ 2 π/ω[, and obtain that

ρ1 (v · ∇)v = −∇p+ div(2 η(θ)D v) + f(θ) + [j ×B]av , (3.38)
and that

ρ1 cV v · ∇θ = div(κ(θ)∇θ) + 2 η(θ)D(v, v) + [
|j|2
s(θ)

]av , (3.39)

where

[F ]av :=
ω

2 π

∫ t+2 π/ω

t

F (s) ds .

Due to the second hypothesis, we have

j(t, x) = Im(j̃(x) exp(i ω t)), H(t, x) = Im(H̃(x) exp(i ω t)) ,

and so on for the other electromagnetic quantities, where j̃, H̃ are complex valued
vector fields, called the amplitudes of the time-harmonic fields j, H. It follows that

[j ×B]av = 1/2 (Re(j̃)× Re(B̃) + Im(j̃)× Im(B̃)) ,

[
|j|2
s
]av =

|Re(j̃)|2 + | Im(j̃)|2
2 s(θ)

. (3.40)

In the time-harmonic setting, the relation (3.17) yields

curl Ẽ + i ω B̃ = 0 ,

whereas the other Maxwell’s relations (3.18), (3.19), (3.20), (3.21) and (3.22) are
valid for the fields j̃, H̃, Ẽ.

If the boundary data vg and θg are stationary, we can solve these equations in
connection to (3.38), (3.39) and to the boundary conditions (3.28), (3.16), (3.31),
(3.33), (3.34). We denote this well-posed3 elliptic boundary value problem by (P ).

3See for comparison the model in [RT92]
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4. Functional setting. Weak solutions

For the electromagnetic part of the problem, spaces of vector fields with generalized
curl and div are needed. We first introduce

L2curl(Ω̃ ; C3) :=
{
H ∈ [L2(Ω̃ ; C)]3

∣∣∣ curlH ∈ [L2(Ω̃ ; C))]3
}
,

where the differential operator curl is intended in its generalized sense and applied
componentwise to real and imaginary part of a complex-valued vector field. It is
well known that L2curl(Ω̃ ; C3) is a Hilbert space with respect to the product

(H1 , H2)L2
curl(Ω̃;C

3) :=
∫
Ω̃

(
curlH1 · curlH2 +H1 ·H2

)
,

where for a ∈ C, we denote by a the complex number conjugated to a. A natural
context in which to search for the field H is then the space

H(Ω̃) :=
{
H ∈ L2curl(Ω̃ ; C3)

∣∣∣ curlH = 0 in Ω̃ \ Ω̃c

}
. (4.1)

Obviously, this is a closed linear subspace of L2curl(Ω̃ ; C3).
The appropriate setting for the Navier-Stokes equations is widely known. We

need the spaces of real-valued vector fields

D1,2(Ω1) :=
{
u ∈ [W 1,2(Ω1)]3

∣∣∣ div u = 0 in Ω1
}
,

D1,2
0 (Ω1) :=

{
u ∈ [W 1,2

0 (Ω1)]3
∣∣∣ div u = 0 in Ω1

}
. (4.2)

For the mathematical setting of the stationary heat equation with radiation
boundary condition, we need spaces of functions whose traces are integrable to a
higher exponent than the one given by Sobolev’s embedding relations. These are
the spaces

V p,q(Ω) :=
{
θ ∈W 1,p(Ω)

∣∣∣ γ(θ) ∈ Lq(Σ)
}
, 1 ≤ p ≤ ∞ , 4 ≤ q ≤ ∞ , (4.3)

where γ denotes the trace operator. The subscript Γ will indicate the subspace
consisting of all functions whose trace vanishes on the boundary part Γ.

With these preliminaries, we can define

Definition 4.1. A weak solution to the problem (P ) introduced in Section 3.5 is a
triple

{v, H, θ} ∈ D1,2(Ω1)×H(Ω̃)×
⋂

1≤p<3/2

V p,4(Ω) ,
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such that v = vg on ∂Ω1, θ = θg on Γ and the integral relations∫
Ω1

ρ1 (v · ∇)v · φ+
∫
Ω1

η(θ)D(v , φ) =
∫
Ω1

[curlH × μH]av · φ+
∫
Ω1

f(θ) · φ ,

(4.4)

i

∫
Ω̃

μωH · ψ +
∫
Ω̃

r(θ) curlH · curlψ =
∫
Ω1

(
v × μH

)
· curlψ +

∫
Ω̃c0

r jg · curlψ ,

(4.5)∫
Ω1

ρ1 cV v · ∇θ ξ +
∫
Ω

κ(θ)∇θ · ∇ξ +
∫
Σ

G(σ θ4) ξ

=
∫
Ω

(
[r(θ) | curlH |2]av + η(θ)D(v , v)χΩ1

)
ξ , (4.6)

are satisfied for all {φ, ψ, ξ} ∈ D1,2
0 (Ω) × H(Ω̃) × W 1,q

Γ (Ω) with q > 3. Here,
r = s−1 = electrical resistivity.

Existence result. Finally, we present a set of assumptions that allow to prove the
existence of a weak solution in the sense of Definition 4.1. The full proof cannot
be presented here: its essential steps have been carried out in [Dru08] (nonlocal
radiation with integrable right-hand side) and [Dru07] (higher integrability of the
Lorentz force).

Theorem 4.2 (Main Theorem). Assume that there exist positive constants sl, su,
μl, μu, κl, κu, ηl, ηu such that

0 < sl ≤ s ≤ su < +∞ , 0 < μl ≤ μ ≤ μu < +∞ ,

0 < κl ≤ κ ≤ κu < +∞, 0 < ηl ≤ η ≤ ηu < +∞ . (4.7)

Assume that the emissivity on the surface Σ, denoted by ε, is a measurable function
of the position, and that there exists a positive number εl such that

0 < εl ≤ ε < 1 on Σ . (4.8)

The remaining coefficients are assumed to be positive constants. We require that

si, κi, η ∈ C (R) , μi ∈ C
(
Ω̃i

)
for i = 0, . . . ,m , (4.9)

where κi, si, μi denote the restriction of κ, s, μ to Ω̃i.
Assume that the geometry satisfies

∂Ω̃i, ∂Ω̃ ∈ C1 for i = 0, . . . ,m, (4.10)

and that the heterogeneous conducting materials Ω̃k0 ⊆ Ω̃c (k0 ∈ {1, . . . ,m}) are
separated from each other and from the outer boundary ∂Ω̃ by nonconducting ma-
terial or vacuum.

We furthermore require that Σ ∈ C1,δ for some δ > 0.
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Assume that the force term f(θ) in the Navier-Stokes equations is either
globally bounded (truncated), or that the thermal expansion coefficient α of the fluid
is sufficiently small. Assume that the given current jg is given by (3.27), satisfies
(3.26) and that j0 ∈ [L2(Ω̃c0)]3. Finally, assume that vg ∈ D1,2(Ω1) ∩ L∞(Ω1)
satisfies (3.29) and that the number ‖vg‖[L∞(Ω1)]3 is sufficiently small. Assume
that the imposed temperature θg belongs to W 1,2(Ω) ∩ L∞(Ω).

Then, there exists a weak solution to (P ) in the sense of Definition 4.1.
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Lavrentiev Prox-regularization Methods
for Optimal Control Problems
with Pointwise State Constraints

Martin Gugat

Abstract. A Lavrentiev prox-regularization method for optimal control prob-
lems with pointwise state constraints is introduced. The convergence of the
controls generated by the iterative Lavrentiev prox-regularization algorithm
is studied. For a sequence of regularization parameters that converges to zero,
strong convergence of the generated control sequence to the optimal control
is proved. Due to the prox-character of the proposed regularization, the fea-
sibility of the iterates for a given parameter can be improved compared with
the non-prox Lavrentiev regularization.
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1. Introduction

In optimal control problems, pointwise state constraints are important since often
in the applications, certain restrictions on the state occur. In the optimality sys-
tems corresponding to such systems, multipliers appear, which in general can only
be represented as measures. However, for the numerical solution of such problems,
it is desirable to have multipliers that are as regular as possible. In order to obtain
regular multipliers that can be represented by L2-functions, the Lavrentiev regu-
larization is introduced, which is studied for example in [5, 3, 7, 8, 6] and in the
references cited there. We do not claim to give a complete list of references about
this subject here. Due to the regularization, for the auxiliary problems multipliers
with L2-regularity exist, see [9].

In the Lavrentiev regularization the Lavrentiev regularization parameter λ
must converge to 0+ to obtain convergence. However, as λ decreases the problems
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become more and more difficult to solve. For each fixed λ > 0 in general the gen-
erated controls are infeasible for the original problem. In this paper we introduce
a Lavrentiev prox-regularization method where for a given parameter value λ, the
feasibility can be improved (see Section 3.5). In Section 3.4 we show that for a
sequence of regularization parameters converging to zero, the new algorithm gen-
erates a sequence of controls that converges with respect to the L2-norm to the
optimal control.

We start by considering the elliptic optimal control problem with pointwise
state constraints and without pointwise control constraints (Section 2) and the cor-
responding Lavrentiev prox-regularization (Section 3). Then we turn to the elliptic
optimal control problem with pointwise state and control constraints (Section 4)
and the Lavrentiev prox-regularization (Section 5) for this problem.

At the end of the paper we present examples where we compare the conver-
gence of the Lavrentiev prox-regularization method with the non-prox Lavrentiev
regularization.

2. The elliptic problem without pointwise control constraints

In this section we introduce an elliptic optimal control problem with state con-
straints.

Let N ∈ {2, 3} and Ω ⊂ RN be a bounded domain with C0,1 boundary Γ.
Let a desired state yd ∈ L∞(Ω) be given. Let a real number κ > 0 be given. Define
the objective function

J(y, u) =
∫
Ω

(y − yd)2 + κ u2 dx.

Let state bounds ya, yb ∈ C(Ω̄) be given such that ya < yb in Ω̄ that is the Slater
condition holds.

Define the following elliptic optimal control problem with distributed control
and pointwise state constraints

P :

⎧⎪⎪⎨⎪⎪⎩
minimize J(y, u) subject to
∂νy = 0 in Γ
Ay = u in Ω
ya ≤ y ≤ yb in Ω.

(1)

Here ∂ν denotes the normal derivative and A is an elliptic differential operator
as in [1]. The elliptic control Problem P has also been considered in [3], where
a complete list of references can be found. As in [3], the notation G is used for
the control to state map that gives the state as a function of the control, G :
L2(Ω) → H1(Ω) ∩ L∞(Ω). The notation S is used for the control to state map
as an operator L2(Ω) → L2(Ω) which is the composition of G and the suitable
embedding operator.
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3. Lavrentiev prox-regularization

Let the Lavrentiev regularization parameter λ > 0 and v ∈ L∞(Ω) be given. Define
K(u) = J(G(u), u). We consider the regularized problem

Pλ,v :
{

minimize K(u) subject to
ya ≤ λ(u − v) +G(u) ≤ yb in Ω.

(2)

Concerning the regularity of the multipliers corresponding to the inequality con-
straints in Pλ,v, we can apply Theorem 2.1 in [3] that states that we find multipliers
in L2(Ω).

We consider the following Lavrentiev prox-regularization algorithm:

Start: Choose u1 ∈ L∞(Ω) and λ1 > 0.
Step k: Given uk ∈ L∞(Ω) and λk > 0, solve Pλk,uk

.

Define uk+1 as the solution of Pλk,uk
. Choose λk+1 ∈ (0, λk].

Go to Step k + 1.

This is a prox-regularization that has some similarities to the prox-regularization
considered in [2]. Note however, that in our case the regularization term appears
in the constraint and not in the objective function. In our discussion we use the
choice u1 = 0. First we show that the iteration is well defined. For u1 = 0, problem
Pλ1,u1 is of the form studied in the papers about Lavrentiev regularization [7], [5],
[4], hence the corresponding existence results are applicable.

The classical non-prox Lavrentiev regularization corresponds to the definition
uk+1 = 0 for all k.

In step k, the function uk+1 satisfies the state constraint

ya ≤ λk(uk+1 − uk) +G(uk+1) ≤ yb in Ω.

Hence uk+1 ∈ L∞(Ω) and the function

ũk+1 = uk+1 + (λk+1I + S)−1λk(uk+1 − uk)

is feasible for Pλk+1,uk+1 . Therefore the iteration is well defined.

3.1. Properties of Pλ,u∗

Let ω∗ denote the optimal value of P, and ω(λ, v) denote the optimal value of Pλ,v.
Let u∗ be the solution of P. Let F∗ denote the admissible set of P and F (λ, v)
denote the admissible set of Pλ,v. We use the notation ‖ · ‖ = ‖ · ‖L2(Ω).

In the following lemma we given an upper bound for ω(λ, u∗).

Lemma 1. We have
ω(λ, u∗) ≤ ω∗. (3)

Let vλ ∈ F (λ, u∗) be a solution of Pλ,u∗ , that is K(vλ) = ω(λ, u∗). Then

‖vλ‖ ≤
√
ω∗/

√
κ (4)

and vλ − u∗ ∈ L∞(Ω).
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Proof. We have u∗ ∈ F (λ, u∗), thus

ω(λ, u∗) ≤ K(u∗) = ω∗.

Hence (3) follows. Therefore we have

κ‖vλ‖2 ≤ K(vλ) = ω(λ, u∗) ≤ ω∗

which implies (4). The inequality constraint implies

ya −G(vλ)
λ

≤ vλ − u∗ ≤
yb −G(vλ)

λ

almost everywhere on Ω, hence vλ − u∗ ∈ L∞(Ω). �

In the next lemma we show that ω(·, u∗) is continuous at zero.

Lemma 2. Let vλ ∈ F (λ, u∗) be a solution of Pλ,u∗ . Then limλ→0+ ‖vλ−u∗‖ = 0.
In particular, this implies limλ→0+ ω(λ, u∗) = ω∗.

Proof. Lemma 1 implies that the norms ‖vλ‖ are uniformly bounded. Moreover
we have the inequality lim supλ→0+ ω(λ, u∗) ≤ ω∗. Now we consider a sequence
λk → 0+. Let ṽ denote a weak limit point of the sequence vλk

. Then ṽ ∈ F∗ (see
Lemma 3.2 in [3]). Moreover

K(ṽ) ≤ lim inf
k→∞

ω(λk, u∗) ≤ ω∗.

Since ṽ ∈ F∗, this implies that K(ṽ) = ω∗. Thus the uniqueness of the solution
of P implies ṽ = u∗. Hence the sequence (vλk

)k converges weakly to u∗. Hence
limk→∞ ω(λk, u∗) = ω∗. Since the sequence (λk)k was chosen arbitrarily, this im-
plies limλ→0+ ω(λ, u∗) = ω∗. Therefore

lim
λ→0+

κ‖vλ‖2 = lim
λ→0+

K(vλ)− ‖S(vλ)− yd‖2

= K(u∗)− ‖S(u∗)− yd‖2

= κ‖u∗‖2.
The weak convergence of vλ to u∗ and the convergence of the norms imply
limλ→0+ ‖vλ − u∗‖ = 0. �

The following lemma states that (‖λ(λI + S)−1‖)λ>0 is uniformly bounded
(see [3]).

Lemma 3. Let ‖S‖ denote the operator norm of S as a map from L2(Ω) to L2(Ω).
For all λ > 0 we have the inequality

‖(λI + S)−1‖ ≤ 1
λ
. (5)

Let u ∈ L2(Ω) and let λk > 0 with limk→∞ λk = 0. Then

lim
k→∞

λk‖(λkI + S)−1u‖ = 0.
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Proof. As in inequality (3.3) in [3] we see that for all u ∈ L2(Ω) we have ‖λ(λI +
S)−1u‖ ≤ ‖u‖, hence ‖λ(λI+S)−1‖ ≤ 1 and assertion follows. For the convenience
of the reader we repeat the argument here. Assume that u �= 0. Let (vi)∞i=1 denote
the set of eigenvectors of S that forms an orthonormal basis of L2(Ω). Let μi > 0
denote the corresponding eigenvalues of S. Then

λ(λI + S)−1u =
∞∑

i=1

λ

λ+ μi

∫
Ω

uvi dx vi

hence

‖λ(λI + S)−1u‖2 =
∞∑

i=1

λ2

(λ+ μi)2

(∫
Ω

uvi dx

)2
<

∞∑
i=1

(∫
Ω

uvi dx

)2
= ‖u‖2.

This implies

lim
k→∞

∞∑
i=1

λ2k
(λk + μi)2

(∫
Ω

uvi dx

)2
=

∞∑
i=1

lim
k→∞

λ2k
(λk + μi)2

(∫
Ω

uvi dx

)2
= 0, (6)

where we can interchange the summation and the limit since the first series in
(6) represents a function series with continuous functions that is dominated and
therefore converges uniformly. �

In the next lemma we give a Lipschitz condition for ω(·, u∗) for λ > 0.

Lemma 4. Let L > 0, M4 ≥ 1 denote real numbers such that for all z ∈ L2(Ω)
with ‖z‖ ≤

√
ω∗
κ and all δ ∈ L2(Ω) with

‖δ‖ ≤M4

(√
ω∗
κ
+ ‖u∗‖

)
we have the Lipschitz inequality

K(z + δ) ≤ K(z) + L‖δ‖.

Then for all λ1 > 0, λ2 > 0 with λ1/λ2 ≤M4 and λ2/λ1 ≤M4

|ω(λ2, u∗)− ω(λ1, u∗)| ≤ |λ2 − λ1| L max
{
1
λ2

,
1
λ1

}(
‖u∗‖+

√
ω∗√
κ

)
. (7)

Proof. Let v1 denote the solution of Pλ1,u∗ and let v2 denote the solution of Pλ2,u∗ .
Define the function

ṽ1 = v1 + (S + λ2I)−1(λ1 − λ2)(v1 − u∗) ∈ F (λ2, u∗).
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Then due to (5) we have

‖(S + λ2I)−1(λ1 − λ2)(v1 − u∗)‖ ≤ |λ1 − λ2|
λ2

‖v1 − u∗‖

≤ |λ1
λ2
− 1|

(
‖u∗‖+

√
ω∗√
κ

)
≤ M4

(
‖u∗‖+

√
ω∗√
κ

)
and we obtain the inequality

ω(λ2, u∗) ≤ K(ṽ1)
= K(v1 + (S + λ2I)−1(λ1 − λ2)(v1 − u∗))

≤ K(v1) + L |λ1 − λ2|
1
λ2
‖v1 − u∗‖

= ω(λ1, u∗) +
L

λ2
|λ1 − λ2|

(
‖u∗‖+

√
ω∗√
κ

)
and analogously

ω(λ1, u∗) ≤ ω(λ2, u∗) +
L

λ1
|λ1 − λ2|

(
‖u∗‖+

√
ω∗√
κ

)
and the assertion follows. �
3.2. Uniform boundedness of the solutions of Pλ,u

In Section 3.1 we have seen that the solutions of Pλ,u∗ are uniformly bounded, see
(4). In this section we consider the more general problem Pλ,u and give an upper
bound for the L2-norm of its solution.

Lemma 5. Let M5 > 0 be given. Let u ∈ L2(Ω) be given such that ‖u− u∗‖ ≤M6.
Let λ > 0 and up,λ denote the solution of Pλ,u. Then the following inequality holds:

‖up,λ‖ ≤ Ĉ(M6)/κ,

where Ĉ(M6) = supv:‖v−u∗‖≤M6
K(v). Moreover we have

lim
λ→0+

‖up,λ − u∗‖ = 0, lim
λ→0+

ω(λ, u) = ω∗.

Proof. Define the function

ũ∗ = (S + λI)−1(S(u∗) + λu)
= u∗ + λ(S + λI)−1(u − u∗) ∈ F (λ, u).

Then

κ‖up,λ‖2 ≤ K(up,λ)
= ω(λ, u)
≤ K(ũ∗) = K(u∗ + λ(S + λI)−1(u− u∗))
≤ sup

w:‖w−u∗‖≤M6

K(u∗ + λ(S + λI)−1(w − u∗)).
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Due to (5) we have ‖λ(S + λI)−1(w − u∗)‖ ≤ ‖w − u∗‖ ≤ M6, and the uniform
boundedness follows. Since limλ→0+ ‖λ(S + λI)−1(u − u∗)‖ = 0 (see the proof of
Lemma 3.1 in [3]) the above inequality implies lim supλ→0+ ω(λ, u) ≤ K(u∗) = ω∗
and as in the proof of Lemma 2 the last part of the assertion follows. �

3.3. Boundedness of the generated sequence

The iteration of the Lavrentiev prox-regularization method generates a bounded
sequence if the regularization parameters are chosen sufficiently small. This can
be seen as follows:

Lemma 6. Assume that there exists a slater control η̄ ∈ L∞(Ω) and ε̄ > 0 such
that

ya + ε̄ ≤ G(η̄) ≤ yb − ε̄

on Ω̄. Assume that in each step, λk is chosen such that

λk‖η̄ − uk‖L∞(Ω) ≤ ε̄. (8)

Then the sequence (uk)k generated by the Lavrentiev prox-regularization algorithm
is bounded.

Remark 1. Note that condition (8) can easily be satisfied during the iteration by
choosing λk sufficiently small since the functions η and uk are known.

Proof. For all k we have the inequalities

G(η̄) + λk(η̄ − uk) ≤ yb − ε̄+ ε̄ = yb,

G(η̄) + λk(η̄ − uk) ≥ ya + ε̄− ε̄ = ya

hence η̄ ∈ F (λk, uk) which implies

κ‖uk‖2 ≤ K(uk) ≤ K(η̄)

and the assertion follows. �

3.4. Convergence of the generated sequence

We study now the convergence of the solutions (uk)k for k →∞.

Lemma 7. Assume that u∗ ∈ L∞(Ω) and that there exists a slater control η̄ ∈
L∞(Ω) and ε̄ > 0 such that

ya + ε̄ ≤ G(η̄) ≤ yb − ε̄

on Ω̄. Assume that in each step, λk is chosen such that√
λk‖η̄ − uk‖L∞(Ω) ≤ ε̄ (9)√
λk‖u∗ − uk‖L∞(Ω) ≤ ε̄. (10)

If limk→∞ λk = 0, we have

lim
k→∞

‖uk − u∗‖ = 0. (11)



146 M. Gugat

Remark 2. Condition (9) can easily be satisfied during the iteration be choosing
λk sufficiently small since the functions η and uk are known. Condition (10) can
only be satisfied if an a priori bound for ‖u∗‖L∞(Ω) is known. For the problem with
additional pointwise control constraints, this problem does not occur, see Section
4. Lemma 7 states that if the λk decrease sufficiently fast we obtain convergence.

Proof. Let ũ denote a weak limit point of the sequence (uk)k. Then ũ ∈ F∗.
Moreover, we have the inequality

ω∗ ≤ K(ũ) ≤ lim inf
k→∞

ω(λk, uk).

Define τk =
√
λk and the function vk = (1 − τk)u∗ + τkη̄. Then we have

G(vk) + λk(vk − uk) = (1− τk)G(u∗) + τkG(η̄)
+ λk((1− τk)(u∗ − uk) + τk(η̄ − uk))
≤ (1− τk)yb + τk(yb − ε̄)

+ (1− τk)
√
λk ε̄+ τk

√
λk ε̄

= yb −
√
λk ε̄+

√
λk ε̄

= yb.

On the other hand, we have

G(vk) + λk(vk − uk) = (1− τk)G(u∗) + τkG(η̄)
+ λk((1− τk)(u∗ − uk) + τk(η̄ − uk))
≥ (1− τk)ya + τk(ya + ε̄)

− (1− τk)
√
λk ε̄− τk

√
λk ε̄

= ya +
√
λk ε̄−

√
λk ε̄

= ya.

Hence vk ∈ F (λk, uk). Moreover, limk→∞ ‖vk − u∗‖ = 0. Thus we have

lim sup
k→∞

ω(λk, uk) ≤ lim sup
k→∞

K(vk)

= K(u∗) = ω∗.

Hence we have limk→∞ ω(λk, uk) = ω∗. This implies that K(ũ) = ω∗. Since
ũ ∈ F∗, the uniqueness of the solution of P implies ũ = u∗. Hence the sequence
(uk)k converges weakly to u∗. Therefore

lim
k→∞

κ‖uk‖2 = lim
k→∞

K(uk)− ‖S(uk)− yd‖2

= K(u∗)− ‖S(u∗)− yd‖2

= κ‖u∗‖2.
The weak convergence of uk to u∗ and the convergence of the norms imply
limk→∞ ‖uk − u∗‖ = 0. �
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3.5. Constraint violation

For all k we have the inequalities

G(uk+1)− yb ≤ λk(uk − uk+1)
ya −G(uk+1) ≤ λk(uk+1 − uk).

This implies

‖(G(uk+1)− yb)+‖+ ‖(ya −G(uk+1))+‖ ≤ λk‖uk+1 − uk‖. (12)

Hence bk = λk‖uk+1 − uk‖ is a bound for constraint violation. In the non-prox
Lavrentiev regularization we have the corresponding bound tk = λk‖uk+1‖. If
u∗ �= 0 and ‖uk − u∗‖ → 0 we have the inequality

lim
k→∞

tk
λk

= ‖u∗‖ > 0 = lim
k→∞

bk

λk
(13)

which indicates that at least asymptotically, the Lavrentiev prox-regularization
method yields smaller bounds for constraint violation.

3.6. Lipschitz continuity of ω(λ, ·)
In this section we study the properties of the function ω. We show its Lipschitz
continuity for a fixed parameter λ > 0.

Lemma 8. Let λ > 0 and u, v ∈ L2(Ω) be given.
We define the proximal-point mapping as follows: For v ∈ L2(Ω) let prox(v)

denote the solution of problem Pλ,v. Let up = prox(u) and vp = prox(v). Define
the number

C0 = max{‖S‖ (‖S‖ ‖up‖+ ‖yd‖) + κ ‖up‖, ‖S‖ (‖S‖ ‖vp‖+ ‖yd‖) + κ ‖vp‖}.

Then we have the inequality

|ω(λ, u)− ω(λ, v)| ≤ 2 λ C0‖(λI + S)−1‖ ‖u− v‖
+ λ2 (‖S‖2 + κ) ‖(λI + S)−1‖2 ‖u− v‖2.

In particular we have

|ω(λ, u)− ω(λ, v)| = O(‖u− v‖). (14)

Proof. We have ya ≤ λ(up − u) + S(up) ≤ yb and ya ≤ λ(vp − v) + S(vp) ≤ yb.
Define ũp = up + (λI + S)−1λ(v − u). Then ũp is feasible for Pλ,v that is ũp ∈
F (λ, v).
Define ṽp = vp+(λI+S)−1λ(u−v). Then ṽp is feasible forPλ,u that is ṽp ∈ F (λ, u).
Hence we have the inequalities

ω(λ, u) = K(up) ≤ K(ṽp)
ω(λ, v) = K(vp) ≤ K(ũp).



148 M. Gugat

We have

K(ũp)−K(up) =
∫
Ω

κ(ũ2p − u2p) + (S(ũp)− yd)2 − (S(up)− yd)2 dx

=
∫
Ω

κ
{
2λup(λI + S)−1(v − u) +

[
λ(λI + S)−1(v − u)

]2}
+ 2λ(S(up)− yd)S((λI + S)−1(v − u))

+ λ2
[
S((λI + S)−1(v − u))

]2
dx

and

K(ṽp)−K(vp) =
∫
Ω

κ
{
2λvp(λI + S)−1(u− v) +

[
λ(λI + S)−1(u− v)

]2}
+ 2λ(S(vp)− yd)S((λI + S)−1(u− v))

+ λ2
[
S((λI + S)−1(u− v))

]2
dx.

Hence

K(up)−K(vp) ≤ K(ṽp)−K(vp)

≤
[
2κλ‖vp‖ ‖(λI + S)−1‖

+ 2λ‖S‖ (‖S‖ ‖vp‖+ ‖yd‖) ‖(λI + S)−1‖
]
‖u− v‖

+
[
κλ2‖(λI + S)−1‖2 + λ2‖S‖2‖(λI + S)−1‖2

]
‖u− v‖2

= 2(‖S‖ (‖S‖ ‖vp‖+ ‖yd‖) + κ ‖vp‖) λ ‖(λI + S)−1‖ ‖u− v‖
+ (‖S‖2 + κ) λ2 ‖(λI + S)−1‖2 ‖u− v‖2.

Analogously, we obtain the inequality

K(vp)−K(up) ≤ K(ũp)−K(up)

≤ 2(‖S‖ (‖S‖ ‖up‖+ ‖yd‖) + κ ‖up‖) λ ‖(λI + S)−1‖ ‖u− v‖
+ (‖S‖2 + κ) λ2 ‖(λI + S)−1‖2 ‖u− v‖2.

This yields

|K(vp)−K(up)| ≤ max {‖S‖ (‖S‖ ‖up‖+ ‖yd‖) + κ ‖up‖,
‖S‖ (‖S‖ ‖vp‖+ ‖yd‖) + κ ‖vp‖}
λ 2‖(λI + S)−1‖ ‖u− v‖

+ λ2 (‖S‖2 + κ)‖(λI + S)−1‖2 ‖u− v‖2.

and the first part of the assertion follows. Lemma 5 implies the statement (14),
since C0 remains uniformly bounded as a function of λ, u and v. �
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4. The elliptic problem with pointwise control constraints

In this section we introduce an elliptic optimal control problem with state con-
straints. Let κ > 0, N , Ω, yd, ya, yb be as before. In addition, let control bounds
ua, ub ∈ L∞(Ω) be given such that ua ≤ ub on Ω.

Define the following elliptic optimal control problem with distributed control,
pointwise state constraints and pointwise control constraints:

Q :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
minimize J(y, u) subject to
∂νy = 0 in Γ
Ay = u in Ω
ya ≤ y ≤ yb in Ω
ua ≤ u ≤ ub in Ω.

(15)

Note that for a solution u∗ of Q, we have u∗ ∈ L∞(Ω).

5. Lavrentiev prox-regularization

Let the Lavrentiev regularization parameter λ > 0 and v ∈ L∞(Ω) be given. We
consider the regularized problem

Qλ,v :

⎧⎨⎩
minimize K(u) subject to
ya ≤ λ(u − v) +G(u) ≤ yb in Ω
ua ≤ u ≤ ub in Ω.

(16)

Let ν∗ denote the optimal value of Q, and ν(λ, v) denote the optimal value of
Qλ,v. Let F∗ denote the admissible set of Q and F (λ, v) denote the admissible set
of Qλ,v.

We consider the following Lavrentiev prox-regularization algorithm:

Start: Choose u1 ∈ L∞(Ω) and λ1 > 0.
Step k: Given uk ∈ L∞(Ω) and λk > 0, solve Qλk,uk

.

Define uk+1 as the solution of Qλk,uk
. Choose λk+1 ∈ (0, λk].

Go to Step k + 1.

5.1. Uniform boundedness of the feasible sets of Qλ,u

Due to the pointwise control constraints, the feasible points of Qλ,u are uniformly
bounded in L∞(Ω):

Lemma 9. Let v ∈ F (λ, u) be a feasible point of Qλ,u. Then

‖v‖L∞(Ω) ≤ max{‖ua‖L∞(Ω), ‖ub‖L∞(Ω)}.



150 M. Gugat

5.2. Well-definedness and convergence of the generated sequence

We study now the convergence of the solutions (uk)k for k →∞.

Lemma 10. Assume that there exists a slater control η̄ ∈ L∞(Ω) and ε̄ > 0 such
that

ua ≤ η̄ ≤ ub,

ya + ε̄ ≤ G(η̄) ≤ yb − ε̄ almost everywhere on Ω̄.

Define M = max{‖ua‖L∞(Ω), ‖ub‖L∞(Ω)}. Assume that in each step, λk is chosen
such that

√
λk ≤ ε̄/(2M). Then Q has a solution, the Lavrentiev prox-regulariza-

tion algorithm is well defined, and if limk→∞ λk = 0, we have

lim
k→∞

‖uk − u∗‖ = 0. (17)

Moreover, there exists a constant C10 > 0 such that for all k

|ν(λk, uk)− ν∗| ≤ C10
√
λk. (18)

Proof. First we show the existence of a solution of Q. Since η̄ is feasible for Q, we
have ν∗ <∞. Let mk denote of minimizing sequence for Q, that is the points mk

are feasible for Q and limk→∞K(mk) = ν∗. Since the sequence (mk)k is bounded
in L∞(Ω), we can choose a subsequence that converges weakly∗ in L∞(Ω) to a limit
point ū ∈ L∞(Ω). Then this subsequence converges also weakly in L2(Ω) to ū. Since
the subsequence converges weakly in L2(Ω), we have ν∗ = lim infk→∞K(mk) ≥
K(ū). Moreover, the weak∗ convergence implies that ū is feasible for Q. Hence
ū is a solution of Q. Due to the strong convexity of the objective function, this
solution is uniquely determined.

Now we consider the sequence (uk) generated by the algorithm. Define τk =√
λk and the function vk = (1 − τk)u∗ + τkη̄. Then ua ≤ vk ≤ ub and we have

G(vk) + λk(vk − uk) = (1− τk)G(u∗) + τkG(η̄)
+ λk((1− τk)(u∗ − uk) + τk(η̄ − uk))
≤ (1− τk)yb + τk(yb − ε̄)
+ (1− τk)λk2M + τkλk2M

≤ yb −
√
λk ε̄+

√
λk ε̄ = yb.

On the other hand, we have G(vk)+λk(vk−uk) ≥ ya. Hence vk ∈ F (λk, uk). This
implies that the iteration is well defined. Moreover, limk→∞ ‖vk − u∗‖ = 0. Thus
we have

lim sup
k→∞

ν(λk, uk) ≤ lim sup
k→∞

K(vk)

= K(u∗) = ν∗.

Let ũ ∈ L∞(Ω) denote a weak∗ limit point of the sequence (uk)k. Then ũ ∈ F∗
and we have

K(ũ) ≤ lim inf
k→∞

ν(λk, uk) ≤ ν∗.
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Since ũ ∈ F∗, the uniqueness of the solution of Q implies ũ = u∗. Hence the
sequence (uk)k converges weakly∗ to u∗. This implies the equation

lim
k→∞

κ‖uk‖2 = lim
k→∞

K(uk)− ‖S(uk)− yd‖2

= K(u∗)− ‖S(u∗)− yd‖2 = κ‖u∗‖2.

The weak convergence of uk to u∗ and the convergence of the norms imply
limk→∞ ‖uk − u∗‖ = 0.

There exists a Lipschitz constant C > 0 such that for all points v1, v2 ∈
L∞(Ω) with ‖v1‖L∞(Ω) ≤ M and ‖v2‖L∞(Ω) ≤ M , respectively we have K(v1) ≤
K(v2) + C‖v2 − v1‖. Hence

ν(λk, uk) ≤ K(vk) ≤ K(u∗) + C‖vk − u∗‖
≤ K(u∗) + Cτk (‖u∗‖+ ‖η̄‖) ≤ ν∗ +

√
λk

√
μ(Ω) 2MC.

For all k > 1, the point ũk+1 = (1− τk)uk+1 + τk η̄ is in F∗. Hence

ν∗ ≤ K(ũk+1) ≤ K(uk+1) + C‖ũk+1 − uk+1‖
≤ ν(λk, uk) + Cτk(‖uk+1‖+ ‖η̄‖) ≤ ν(λk, uk) + C

√
λk

√
μ(Ω) 2M.

Define C10 = 2MC
√
μ(Ω). Then (18) follows. �

Remark 3. The results about the improvement in constraint violation given in
Section 3.5 also apply to the Lavrentiev prox-regularization algorithm for problem
Q compared with the corresponding non-prox Lavrentiev regularization algorithm
where in step k problem Qλk,0 is solved.

6. Examples

In this section we study two examples that allow to compare the performance of the
Lavrentiev prox-regularization method and the non-prox Lavrentiev regularization
method.

Example 1. Consider a problem P, where for the solution both inequality con-
straints are not active, that is we have ya < G(u∗) < yb. In this case, u∗ is
an unconstrained local minimal point of K and the convexity of K implies that
ω∗ = K(u∗) = minu∈L2(Ω)K(u). Let v ∈ L2(Ω) be given. Since F (λ, v) ⊂ L2(Ω),
for all λ > 0 we have the inequality

ω(λ, v) = min
u∈F (λ, v)

K(u) ≥ min
u∈L2(Ω)

K(u) = K(u∗).

Lemma 1 implies that in this case we have ω(λ,u∗) =ω∗. Thus with the choice
u1=u∗, the Lavrentiev prox-regularization method generates the constant sequence
uk=u∗ for all k and all λk>0, even if the sequence (λk)k does not converge to zero.
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More generally, the Lavrentiev prox-regularization method finds u∗ in step k
if u∗ ∈ F (λk, uk) which is the case if

λk ≤ min
{
ess infΩ(ya −G(u∗))
‖uk − u∗‖L∞(Ω)

,
ess infΩ(G(u∗)− yb)
‖uk − u∗‖L∞(Ω)

}
.

For the non-prox Lavrentiev regularization method, u∗ is the solution with the pa-
rameter λk if u∗ ∈ F (λk, 0) which is the case if

λk ≤ min
{
ess infΩ(ya −G(u∗))

‖u∗‖L∞(Ω)
,
ess infΩ(G(u∗)− yb)

‖u∗‖L∞(Ω)

}
.

If ‖u∗−uk‖L∞(Ω) < ‖u∗‖L∞(Ω), the Lavrentiev prox-regularization method can find
u∗ with larger parameter values λk than the non-prox Lavrentiev regularization.

Example 2. Consider a problem P, where for the solution both inequality con-
straints are active almost everywhere in Ω, that is we have ya = G(u∗) = yb and
the Slater condition is violated. Assume that ya ∈ C2(Ω) satisfies the boundary
conditions ∂νya = 0 in Γ. In this case, we have S(u∗) = ya.

The non-prox Lavrentiev regularization method computes the solution uNP
k+1

of Pλk,0 for which we have the following equation: (λkI + G)uNP
k+1 = ya. Hence

(λkI + S)(uNP
k+1 − u∗) = ya − λku∗ − ya = −λku∗.

This yields
uNP

k+1 − u∗ = −λk(λkI + S)−1u∗,
hence if λk → 0 we have

lim
k→∞

‖uNP
k+1 − u∗‖ = lim

k→∞
‖λk(λkI + S)−1u∗‖ = 0.

The Lavrentiev prox-regularization method computes the solution uk+1 of
Pλk,uk

for which we have the following equation: (λkI +G)uk+1 − λkuk = ya.
Hence (λkI + S)(uk+1 − u∗) = ya + λkuk − λku∗ − ya = λk(uk − u∗).
Thus if uk �= u∗ we have

‖uk+1 − u∗‖ = ‖λk(λkI + S)−1(uk − u∗)‖ < ‖uk − u∗‖
(see the proof of Lemma 3) hence the algorithm generates a bounded sequence with
strictly decreasing distance to u∗ also if (λk)k does not converge to zero.

We have (λkI + S)(uk+1 − u∗)− λkuk = −λku∗, hence if λk → 0 we have

lim
k→∞

‖[uk+1 − λk(λkI + S)−1uk]− u∗‖ = lim
k→∞

‖λk(λkI + S)−1u∗‖ = 0.

7. Conclusion

In this paper we have introduced the Lavrentiev prox-regularization method for
an elliptic optimal control problem. The cost for the solution of the parametric
auxiliary problems in each step of the method is the same as for the well-known
non-prox Lavrentiev regularization method since the auxiliary problems are of
exactly the same form. Hence also the same numerical methods can be used for
the solution, for example primal-dual active set methods, interior point methods
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of semismooth Newton methods, see for examples [3, 4, 6, 8]. Our convergence
results indicate that the Lavrentiev prox-regularization method yields improved
feasibility for a given regularization parameter λk. In other words, we can obtain
approximations of the same quality as for the non-prox Lavrentiev regularization
method with larger regularization parameters λk.

The corresponding Lavrentiev prox-regularizationmethod for optimal control
problems of parabolic type as studied in [7] and for elliptic boundary control
problems with pointwise state-constraints as studied in [8] will be the subject of
future research. Also the case of nonlinear elliptic optimal control problems will
be considered as in [5].
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Nonlinear Feedback Solutions for
a Class of Quantum Control Problems

Kazufumi Ito, Karl Kunisch and Qin Zhang

Abstract. Control of quantum systems described by the linear Schrödinger
equation are considered. Control inputs enter through coupling operators and
result in a bilinear control system. Feedback control laws are developed for
orbit tracking. The asymptotic properties of the feedback laws are analyzed by
the LaSalle-type invariance principle. Numerical integration via time-splitting
is also investigated and used to demonstrate the feasibility of the proposed
feedback laws and to compare their performance.
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Keywords. Nonlinear feedback control, quantum control systems, Schrödinger
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1. Introduction

Consider a quantum system with internal Hamiltonian H0 prepared in the initial
state Ψ0(x), where x denotes the relevant spatial coordinate. The state Ψ(x, t) will
be required to satisfy the time-dependent Schrödinger equation. In the presence of
an external interaction taken as an electric field modeled by a coupling operator
with amplitude ε(t) ∈ R and a time independent dipole moment operator μ the
controlled Hamiltonian results in H = H0 + ε(t)μ and the following dynamical
system is obtained:

i
∂

∂t
Ψ(x, t) = (H0 + ε(t)μ)Ψ(x, t), Ψ(x, 0) = Ψ0(x), (1.1)

Research partially supported by the Army Research Office under DAAD19-02-1-0394, by the
Fonds zur Förderung der wissenschaftlichen Forschung under SFB 32, “Mathematical Optimiza-
tion and Applications in Biomedical Sciences” and the Air Force Office of Scientific Research
under FA 9550-06-01-0241.
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where H0 is a positive, closed, self-adjoint operator in the Hilbert space H , μ ∈
L(H) is self-adjoint, and ε ∈ L2(0,∞) is the control input. Let X be the com-
plexified Hilbert space corresponding to H , so that the inner product on X is
defined by

(Φ,Ψ)X = (Φ1,Ψ1)H + (Φ2,Ψ2)H + i
(
(Φ2,Ψ1)H − (Φ1,Ψ2)H

)
,

where Φ = (Φ1,Φ2),Ψ = (Ψ1,Ψ2). This representation of Ψ with two components
is used to formulate (1.1) as a bilinear control system (2.1)–(2.2) in X . Throughout
we normalize the initial state by |Ψ0|X = 1.

We consider the control problem of driving the state Ψ(t) of (1.1) to an orbit
H(t) of the uncontrolled dynamics

i
d

dt
O(t) = H0O(t), (1.2)

specifically to the one that corresponds to an eigenstate or the manifold spanned
by finite many eigenstates. An element ψ ∈ dom (H0) is an eigenstate of H0 if
H0ψ = λψ for λ > 0. Then, the corresponding orbit is given by

O(t) = e−i(λt−θ)ψ, (1.3)

where θ ∈ [0, 2π) is the phase factor. We have |O(t)|X = 1 if ψ is normalized
as |ψ|H = 1. We consider the discrete spectrum case: i.e., it is assumed that
the spectrum of H0 consists only of eigenvalues {λk}, and that the family of
eigenfunctions {ψk}∞k=1 forms an orthonormal basis of X . The eigenvalues {λk}
are arranged in increasing order.

We employ a variational approach based on the Lyapunov functional

V (t) = V (Ψ(t),O(t)) = 1
2
|Ψ(t)−O(t)|2X . (1.4)

If V (t)→ 0 as t→∞ for a controlled orbit Ψ of (1.1) then Ψ(t) achieves the track-
ing of the target orbit O(t) asymptotically. Variational approaches were previously
discussed in [BCMR, MRT, IK2], for example. The more general case

O(t) =
N∑

k=1

Ake
−i(λkt−θk)ψk, (1.5)

where {(λk, ψk)}N
k=1 are the first N eigenpairs ofH0 and

∑N
k=1 A

2
k = 1 is also of our

interests. The functional V2(t) = 1
2 (1−|(O(t),Ψ(t))X |2). is used for [BCMR, MRT]

for the manifold tracking, i.e., V2 is is motivated by the fact that V2(Ψ,O) = 0 if
and only if Ψ = eiθO where the phase θ ∈ [0, 2π) is arbitrary. We develop a feed-
back synthesis that achieves the orbit tracking based on the functional V defined
by (1.4). We shall see in Section 2 that |Ψ(t)|X = 1 for all t ≥ 0. Together with
|O(t)|X = 1 this implies that the functional V can equivalently be expressed as

V (Ψ(t),O(t)) = 1− Re (O(t),Ψ(t))X . (1.6)
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It will be shown that
d

dt
V (Ψ(t),O(t)) = ε(t) Im (O(t), μΨ(t))X . (1.7)

We propose the feedback law

ε(t) = − 1
α
(u(t) + β sign(u(t))V (t)γ) = F (Ψ(t),O(t)), (1.8)

where
u(t) = Im (O(t), μΨ(t))X , V (t) = V (Ψ(t),O(t)),

for α > 0, β ≥ 0, γ ∈ (0, 1]. From (1.7)

d

dt
V (Ψ(t),O(t)) = − 1

α
(|u(t)|2 + β |u(t)|V (t)γ). (1.9)

Note that u(t) is linear in Ψ(t) and the second term of the control law (1.8) can
switch its sign. The case β = 0 is a negative feedback law based on the Lyapunov
energy equality (1.7) and was analyzed in [IK2]. It will be shown in Section 6 that
the performance of the feedback law (1.8) significantly increases by incorporating
the switching control term with β > 0. We believe this switching mechanism can
be applied to a wide general class of control systems and feedback synthesis based
on the Lyapunov stability.

In this paper we establish well-posedness of the feedback law (1.8) and analyze
its asymptotic tracking properties. Sufficient conditions for the orbit tracking will
be obtained.

In order to obtain an improved tracking capability we shall also analyze
multiple control potentials of the form

μ(t) =
m∑

j=1

εj(t)μj (1.10)

and the corresponding feedback law

εj(t) = −
1
α
(uj(t) + β sign(uj(t))V (t)γ), uj(t) = Im (O(t), μjΨ(t))X .

Section 2 is devoted to well-posedness of the dynamical system in open and
closed loop form. In Section 3 it is shown that the feedback law F is optimal in
the sense that ε(t) = F (Ψ(t),O(t)) minimizes∫ T

0

α

2

(∣∣∣∣ε+ β

α
sign(u(t)

)∣∣∣∣2 + 1
α

(
1
2
|u(t)|2 + β |u(t)|V (t)γ

)
dt+ V (Ψ(T ),O(T ))

where u(t) = Im (O(t), μΨ(t))X .
An operator splitting method for solving (1.1) is discussed in Section 4. Sec-

tion 5 is devoted to analyzing the asymptotic tracking properties of the feedback
control laws. Section 6 contains numerical experiments that demonstrate the fea-
sibility of the proposed feedback laws. The nonlinear feedback law (β > 0) signifi-
cantly improves the tracking performance compared to the linear one (β = 0).
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2. Well-posedness

Associated to the closed, positive, self-adjoint operator H0 densely defined in the
Hilbert space H , we define the closed linear operator A0 in H ×H by

A0 =
(

0 H0

−H0 0

)
with dom (A0) = dom (H0)× dom (H0). Here Ψ = (Ψ1,Ψ2) ∈ H ×H is identified
with Ψ = Ψ1 + iΨ2 ∈ X . We note that

|(Ψ1,Ψ2)|H×H = |Ψ|X , and (Φ,Ψ)H×H = �(Φ,Ψ)X ,

and X is isometrically isomorphic with H ×H by means of

(Φ,Ψ)X = (Φ1,Ψ1)H + (Φ2,Ψ2)H + i((Φ2,Ψ1)H − (Φ1,Ψ2)H),

with Φ = Φ1 + iΦ2, Ψ = Ψ1 + iΨ2. Throughout this paper this identification will
be used. A0 is skew-adjoint, i.e.,

(A0Ψ, Ψ̂)H×H = −(A0Ψ̂,Ψ)H×H for all Ψ, Ψ̂ ∈ dom(A0).

Thus by Stone’s theorem [P], A0 generates C0-group on X and |S(t)Ψ0|X = |Ψ0|X .
Let V = dom (H

1
2
0 ) and X2 = V × V . Then H0 ∈ L(V, V ∗) with V ∗ = dom (H−

1
2

0 )
where V is equipped with

|φ|2V = 〈H0φ, φ〉V ∗×V

as norm. The restriction of S(t) to X2 defines a C0 group.
Associated to the self-adjoint operator μ ∈ L(H) we define the skew-adjoint

operator

B =
(
0 μ
−μ 0

)
.

Then for ε ∈ L2(0, T ) there exists a unique mild solution Ψ(t) ∈ C(0, T ;X) to

Ψ(t) = S(t)Ψ0 +
∫ t

0

S(t− s)ε(s)BΨ(s) ds, t ∈ [0, T ], (2.1)

and
d

dt
Ψ = A0Ψ(t) + ε(t)BΨ(t) in (dom (A0))∗, (2.2)

where
(dom (A0))∗ = dom(H−10 )× dom(H−10 ),

[IK], Chapter2, [P], Chapter 4. Equivalently

d

dt
Ψ(t) = −i (H0Ψ(t) + ε(t)μΨ(t)) in dom(H−10 )

where we identify Ψ ∈ X as Ψ = Ψ1 + iΨ2 by Ψ = (Ψ1,Ψ2) ∈ H ×H . Since O(t)
defined by (1.3) and (1.5) satisfy O(t) ∈ C(0, T ; dom(A0)) ∩ C1(0, T ;X) and

d

dt
O(t) = −iH0O(t) in H. (2.3)
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Thus,

d

dt
Re (O(t),Ψ(t))X = Re

(
(−iH0O(t),Ψ(t))X + (O(t),−i(H0Ψ(t) + ε(t)μΨ(t))X

)
= Re

(
i ε(t) (O(t), μΨ(t))

)
X
= −ε(t) Im (O(t), μΨ(t))X ,

which proves (1.7).
By inserting the feedback law (1.8) of ε in to (2.1), we obtain the closed loop

system of the form

Ψ(t) = S(t)Ψ0 +
∫ t

0

S(t− s)F (Ψ(s),O(s))BΨ(s) ds. (2.4)

We show that (2.4) has a solution. Let sign(u) be the maximal monotone function

sign(u) =

{
[−1, 1] u = 0

u/ |u| |u| > 0,

and signδ(u) be the Yosida approximation of sign(u) for δ > 0:

signδ(u) =

{
u/ δ |u| ≤ δ

u/ |u| |u| ≥ δ.

Define the operators Fδ by

Fδ(Ψ,O) = −
1
α
(u+ β signδ(u)V

γ), u = Im (O(t), μΨ). (2.5)

Then assuming that V ≥ c > 0, Fδ is Lipschitz continuous and |Fδ| ≤ M for all
|Ψ|X = |O|X = 1. Thus, it can be proved [IK], [IK2] that

Ψ(t) = S(t)Ψ0 +
∫ t

0

S(t− s)Fδ(Ψ(s),O(s))BΨ(s) ds

has a unique solution Ψδ ∈ C(0, T ;X). Moreover

Vδ(t) = V (0)−
∫ t

0

1
α

(
|uδ(s)|2 + β signδ(uδ)(s)Vδ(s)γ

)
uδ(s) ds,

where
Vδ(s) = 1− Re (Ψδ(s),O(s)), uδ(s) = Im (O(s), μΨδ(s)).

It follows from [BMS], Theorem 3.6 that there exists a subsequence δ and Ψ ∈
C(0, T ;X) for which Ψδ converges to Ψ in C(0, T ;X). Thus uδ(t) → u(t) =
Im (O(t))(t), μΨ(t)) strongly in L2(0, T ;R). Since signδ(uδ(t)) ∈ L2(0, T ;R), there
exists a subsequence of δ such that signδ(t)→ z(t) weakly in L2(0, T ;R). The sign
operator is maximal monotone and hence z(t) = sign(u(t)). Since Vδ(t)→ V (t) in
C(0,T ;R), εδ(t)→ ε(t) = u(t)+sign(u(t))V (t)γ weakly in L2(0, T ;R). For all φ∈X

(Ψδ(t), φ) = (S(t)Ψ0, φ) +
∫ t

0

εδ(t)(S(t − s)BΨδ(s), φ) ds
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and letting δ → 0+ we have

(Ψ(t), φ) = (S(t)Ψ0, φ) +
∫ t

0

ε(t)(S(t− s)BΨ(s), φ) ds,

which implies that Ψ is the mild solution to (2.1) that corresponds to ε. Moreover,
we have

V (t) = V (0)−
∫ t

0

1
α
(|u(s)|2 + β |u(s)|V (s)γ) ds. (2.6)

3. Optimality

We argue that
V (t,Ψ) = 1− (O(t),Ψ)H×H

satisfies the Hamilton Jacobi equation

∂V

∂t
+min

ε
[VΨ(A0Ψ+ εBΨ)]

+
α

2

∣∣∣∣ε+ β

α
sign(u(t))V γ

∣∣∣∣2 + 1
α

(
1
2
|u(t)|2 + |u(t)|V γ

)
= 0,

(3.1)

where
u(t) = Im (O(t), μΨ) = −(O(t), BΨ)H×H

and
VΨ(Φ) = −(O(t),Φ)H×H .

In fact,

α

2

∣∣∣∣ε+ β

α
sign(u(t))V γ

∣∣∣∣2 + u(t)
(
ε+

β

α
sign(u(t)

)
V γ) +

1
2α
|u(t)|2

=
α

2

∣∣∣∣ε+ 1
α
(u(t) + β sign(u(t))V γ)

∣∣∣∣2 ,
(3.2)

and thus ε∗(t) minimizes

α

2

∣∣∣∣ε+ β

α
sign(u(t))V γ

∣∣∣∣2 + u(t)
(
ε+

β

α
sign(u(t))V γ

)
+

1
2α
|u(t)|2.

This implies that

∂V

∂t
+ VΨ(A0Ψ+ ε∗BΨ)

+
α

2

∣∣∣∣ε∗(t) + β

α
sign(u(t))V γ

∣∣∣∣2 + u(t)
(
β

α
sign(u(t))V γ

∣∣∣∣2 + 1
2α
|u(t)|2
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= −(A0O(t),Ψ)H×H − (O(t), A0Ψ+ ε∗(t)BΨ)H×H

+
α

2

∣∣∣∣ε∗(t) + β

α
sign(u(t))V γ

∣∣∣∣2 + u(t)
(
ε∗(t) +

β

α
sign(u(t))V γ

)
|2

+
1
2α
|u(t)|2

= 0,

as desired.
We next show that ε∗ minimizes

J(ε) =
∫ T

0

(
α

2
|ε(t)+β

α
sign(u(t))V (t)γ |2+ 1

α
(
1
2
|u(t)|2+β |u(t)|) dt+V (Ψ(T ),O(T )),

over ε ∈ L2(0, T ). To this end choose any ε ∈ L2(0, T ) and let Ψ(t) ∈ C(0, T ;X)
be the solution to (2.1)–(2.2). Since O(t) ∈ C1(0, T ;X)∩C(0, T ; dom(A0) we have

d

dt
V (O(t),Ψ(t)) = −(A0O(t),Ψ(t))H×H − (O(t), A0Ψ(t) + ε(t)BΨ(t))H×H .

Integrating this over (0, T ) and using (3.2) we find

V (Ψ(T ),O(T ))

+
∫ T

0

(
α

2

∣∣∣∣ε(t) + β

α
sign(u(t))V (t)γ

∣∣∣∣2 + 1
α

(
1
2
|u(t)|2 + β |u(t)|V (t)γ

)
dt

= V (Ψ(0),O(0)) +
∫ T

0

α

2

∣∣∣∣ε(t) + 1
α
(u(t) + β sign(u(t))V (t)γ

∣∣∣∣2 dt
where u(t) = −(O(t), BΨ(t))H×H . Hence

ε∗(t) = F (Ψ∗(t),O(t)),

where Ψ∗(t) is the trajectory corresponding to ε∗(t), minimizes J(ε) over L2(0, T ).

4. Operator splitting and numerical methods

Since the Hamiltonian is the sum of H0 and ε(t)μ it is very natural to consider
time integration based on the operator splitting method. For the stepsize h > 0
consider the Strang splitting method:

Ψ̂k+1 − Ψ̂k

h
= εk B

Ψ̂k+1 + Ψ̂k

2
, Ψ̂k = S

(
h

2

)
Ψk, Ψk+1 = S

(
h

2

)
Ψ̂k+1,

(4.1)
where

εk =
1
h

∫ (k+1)h

kh

ε(s) ds.
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For time integration of the controlled Hamiltonian we employ the Crank-Nicolson
scheme since it is a norm preserving scheme. In fact, since B is skew adjoint(

Ψk+1 − Ψ̂k

h
,Ψk+1 + Ψ̂k

)
X

= 0,

and thus |Ψk+1|2X = |Ψ̂k|2X . The Strang splitting is of second order as time-
integration. The following theorem addresses the convergence of the scheme (4.1):

Theorem 4.1. If we define Ψh(t) = Ψk on [kh, (k + 1)h), then

|Ψh(t)−Ψ(t)|X → 0 uniformly in t ∈ [0, T ]
where Ψ(t), t ≥ 0, satisfies

Ψ(t) = S(t)Ψ0 +
∫ t

0

S(t− s)ε(s)BΨ(s) ds.

Proof. Define the one step transition operator

Ψk+1 = Th(t)Ψk

by

Th(t) = S

(
h

2

)(
I − εkh

2
B

)−1(
I +

εkh

2
B

)
S

(
h

2

)
Ψ. (4.2)

Then, |Th(t)Ψ|X = |Ψ|X and Th(t) is norm preserving. Define the difference quo-
tion of Th(t) by

Ah(t)Ψ =
Th(t)Ψ −Ψ

h
= S

(
h

2

)
Jh/2(εkB)− I

h/2
S

(
h

2

)
Ψ+

S(h)Ψ−Ψ
h

(4.3)

where

Jh/2(εkB) =
(
I − εkh

2
B

)−1
.

It follows from the Chernoff theorem [IK] that if the consistency

|Ah(t)Ψ − (A0Ψ+ ε(t)B)Ψ)|X → 0 as h→ 0+. (4.4)

holds for Ψ ∈ dom(A), then |Ψh(t) − Ψ(t)|X → 0 uniformly in t ∈ [0, T ]. In fact,
since for Ψ ∈ X

lim
h→0+

Jh/2(εkB)− I

h/2
Ψ = ε(t)BΨ

and for Ψ ∈ dom (A)

lim
h→0+

S(h)Ψ−Ψ
h

= A0Ψ,

it follows from (4.3) that the consistency (4.4) holds for Ψ ∈ dom (A) and ε ∈
C(0, T ).

Note that

Ψk+1 = S(h)Ψk + hS

(
h

2

)
εkJh/2(εkB)S

(
h

2

)
Ψk
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and thus

Ψm = S(mh)Ψ0 +
m∑

k=1

hS((m− k)h)S
(
h

2

)
εkBJh/2(εkB)S

(
h

2

)
Ψk−1.

Thus, letting h→ 0 in this expression, Ψ(t) ∈ C(0, T ;X) satisfies (2.1). �

Suppose that for (4.1) there exists an εk on [kh, (k + 1)h) such that for

Ok+1/2 = S(
h

2
)Ok

εk = F (Ψk+1/2,Ok+1/2) =
1
α
(uk+1/2 + β sign(uk+1/2)V

γ
k ),

uk+1/2 = (Ok+1/2, BΨk+1/2), Ψk+1/2 =
Ψ̂k+1 + Ψ̂k

2
.

(4.5)

Then Ψk satisfies the closed loop system

Ψ̂k+1 − Ψ̂k

h
= εk B

Ψ̂k+1 + Ψ̂k

2
, Ψ̂k = S

(
h

2

)
Ψk,

εk = F (Ψk+1/2,Ok+1/2), Ψk+1 = S

(
h

2

)
Ψ̂k+1.

(4.6)

Since

V

(
S

(
h

2

)
Ψ̂k+1, S

(
h

2

)
Ok+1/2

)
= V (Ψ̂k+1,Ok+1/2),

the discrete analog of (2.6)

V (Ψk+1,Ok+1) = V (Ψk,Ok) +
1
α
(|uk|2 + β |uk|V (Psik,Ok))γ

holds for the closed loop (4.6).
Now, we show that there exists a unique εk that satisfies (4.5). Let

χ(u) = u+ β sign(u).

Then, it is equivalent to finding ε ∈ R that satisfies

χ−1(α ε) = (BΨ̂(ε),Ok+1/2), (4.7)

where Ψ̂(ε) is the solution to

Ψ̂− Ψ̂k

h
= εB

Ψ̂− Ψ̂k

2
.

Note that

Ψ̂− Ψ̂k = hεB

(
I − hε

2
B

)−1
Ψ̂k

and thus

(BΨ̂(ε),Ok+1/2) = (BΨ̂k,Ok+1/2) + hε(B2

(
I − hε

2
B

)−1
Ψ̂k,Ok+1/2).
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Since

B2 =
(
−μ2 0
0 −μ2

)
one can assume that there exists c > 0 such that for all k

(B2Ψ̂k,Ok+1/2) ≤ −c.
Thus, (

B2

(
I − hε

2
B

)−1
Ψ̂k,Ok+1/2

)
≤ − c

2
,

if h > 0 is sufficiently small and hence (4.7) has a unique solution.

5. Asymptotic tracking

The objective of this section is to analyze the asymptotic properties of the con-
trolled system (1.1). Let O be of the form

O(t) = e−i(λk0 t−θ̂)ψk0

for some eigenpair (λk0 , ψk0) of H0 and phase θ̂. We assume that

μk
k0
= (ψk0 , μψk)X �= 0 for all k = 1, 2, . . . , (5.1)

and that
{S(t)Ψ0 : t ≥ 0} be relatively compact in H ×H. (5.2)

Assumption (5.2) holds, for example if dom(H0) is relatively compact in H and
ψ0 ∈ V × V . In case the domain Ω on which H0 is defines is unbounded, we may
assume that W = V ∩Lp(Ω), p > 2, is compactly embedded in H = L2(Ω). Then,
if Ψ0 ∈ W × W and S(t) leaves W × W invariant [IK2], we have (5.2). Since
V (t) ≥ 0, it follows from (2.6) that either V (t)→∞ or

∫∞
0
|u(t)| dt <∞. We also

assume that ∫ ∞

0

|ε(t)| dt <∞. (5.3)

This assumption holds if either we use the regularized feedback law (2.5) for arbi-
trary δ > 0 or β = 0. Thus,

lim
t→∞

∫ t

0

S(t− s)ε(s)BΨ(s) ds exists.

It follows that {
∫ t

0 S(t − s)ε(s)Bψ(s) : t ≥ 0} is compact in H × H . Together
with (5.2) we conclude that {Ψ(t) : t ≥ 0} is relatively compact. We shall proceed
with the asymptotic analysis utilizing assumptions (5.1)–(5.3) and summarize the
results in a theorem at the end.

Since {Ψ(t) : t ≥ 0} and {O(t) : t ≥ 0} are relatively compact in X there
exists a sequence {tn} → ∞ and elements Ψ∞ ∈ X , O∞ ∈ X such that

lim
n→∞Ψ(tn) = Ψ∞ and lim

n→∞O(tn) = O∞, (5.4)
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in particular, Ψ∞,O∞ are in the ω-limit points of the flow defined by (2.2) and
(2.3), respectively. Since ε ∈ L2(0,∞) it follows from (2.1) that Ψ(tn + τ) →
S(τ)Ψ∞ and analogously O(tn + τ) → S(τ)O∞ uniformly with respect to τ ∈
(0,∞). Here S(τ)Ψ∞ and S(τ)O∞ are the mild solutions to

d

dt
Ψ∞(t) = A0Ψ∞(t), Ψ∞(0) = Ψ∞,

d

dt
O∞(t) = A0O∞(t), O∞(0) = O∞.

Moreover

Ψ∞(τ) =
∞∑

k=1

Ake
−i(λkτ−θk)ψk, O∞(τ) = e−i(λk0τ−θ̃ko )ψk0 ,

with 0 ≤ θk, θ̃k0 < π and
∑ |Ak|2 = 1. Since

u(tn + ·) = Im (O(tn + ·), μΨ(tn + ·)→ 0 in L2(0,∞), as tn →∞,

we have
u(τ) = Im (O∞(τ), μΨ∞(τ)) = 0, for τ ≥ 0. (5.5)

It follows now that

u(τ) = Im

( ∞∑
k=1

Ake
i((λk−λk0 )τ−θk+θ̃k0 ))μk

k0

)

=
∞∑

k=1

μk
k0
Ak

(
cos(θk − θ̃k0) sin((λk − λk0)τ) − sin(θk − θ̃k0) cos((λk − λk0)τ)

)
= 0. (5.6)

Suppose that the family

{cos((λk − λk0 )τ), sin((λk − λk0)τ)} is ω-independent in L2(0, T ). (5.7)

Here a family of elements {ϕk}∞k=−∞ in L2(0, T ), T > 0 is called ω-independent,
if
∑∞

k=−∞ ckϕk = 0 implies that ck = 0 for all k. If (5.7) holds, then μk
k0
Ak = 0

for k �= k0 and μk0
k0
Ak0 − sin(θk − θ̃k0) = 0. Thus by (5.1), Ak = 0 for k �= k0.

Moreover, since |Ψ∞| = 1, we have θk0 = θ̃k0 and Ak0 = 1. Here the case Ak0 = −1
can be excluded since it implies that

V (Ψ∞(τ),O∞(τ)) = 1 + Re (e−i(λk0 τ−θk0)ψk0 , e
−i(λk0τ−θk0)ψk0)X = 2,

and

V (Ψ0,O(0)) = 1− Re
(
eiθ̃k0ψk0 ,Ψ0

)
X
= 1−Re

(
eiθ̃k0 (ψk0 ,Ψ0)X

)
< 2,

since θ̃k0 ∈ [0, π). Hence, Ak0 = −1 is impossible due to d
dtV (Ψ(t),O(t)) ≤ 0.

Since the ω-limit pair (Ψ∞,O∞) was arbitrary it follows from (1.4) that
limt→∞ V (Ψ(t),O(t)) = 0, i.e., Ψ(t) asymptotically approaches the orbit O(t). We
summarize the above discussion in the following result.
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Theorem 5.1. Assume that (5.1), (5.2) and (5.7) hold. Then

lim
t→∞V (Ψ(t),O(t)) = 0,

for the feedback law F .

The following lemma addresses condition (5.7).

Lemma 5.1. If there exits a constant δ > 0 such that |λk + λ� − 2λk0 | ≥ δ for
all k, 	 ≥ 1 with 	 �= k0, and |λk − λ�| ≥ δ for all k �= 	, then {ei(λk−λk0 )τ} ∪
{e−i(λk−λk0 )τ}k �=k0 is ω-independent for sufficiently large T > 0.

Proof. Let {μ�}�∈I be a real number sequence defined by

μk = λk − λk0 , k ≥ 1, μ−k = −(λk − λk0 ) k �= k0.

It follows from the assumption that

|μm − μ�| ≥ δ, m �= 	

From Ingham’s theorem [I], if T > 2π
δ , there exists a constant c, depending on T

and δ > 0 such that

c
∑
m∈I

|am|2 ≤
∫ T

0

f(τ)|2 dτ for f(τ) =
∑
m∈I

ameiμmτ . �

Remark 5.1. For the harmonic oscillator case we have

H0ψ = − d2

dx2
ψ + x2ψ, x ∈ R = Ω.

The eigenpairs {(λk, ψk)}∞k=1 are given by

λk = 2k − 1, ψk(x) = ĉ Hk−1(x)e−
x2
2 ,

where Hk is the Hermite polynomial of degree k and ĉ is a normalizing factor. In
this case we have

λk0−� − λk0 = −(λk0+� − λk0), 1 ≤ 	 ≤ k0 − 1,

and the gap condition |λk+λ�−2λk0 | > δ is not satisfied. Thus,
∫ T

0

|u(τ))|2 dτ = 0

implies

Im (Ak0+�e
i(λ�τ−θk0+�+θ̃k0)μk0+�

k0
+Ak0−�e

−i(λ�τ−θk0−�+θ̃k0 )μk0−�
k0

) = 0

for 1 ≤ 	 < k0. That is, Ak0−� and Ak0−� are not necessarily zero and thus Ψ∞(τ)
is distributed over energy levels 1 ≤ 	 ≤ 2k0 − 1.
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5.1. Degenerated case

We now turn to the case when the gap condition |λk + λ� − 2λk0 | > δ is violated.
Then more than one control operator μ is required and we consider (1.10). For
V (Ψ,O) = 1− Re (O,Ψ)X we find

d

dt
V (Ψ(t),O(t)) =

m∑
j=1

εjIm(O(t), μjΨ(t))X ,

which suggests feedback laws of the form

εj(t) = −
1
α
(uj(t) + β sign(uj(t))V (t)γ), uj(t) = Im (O(t), μjΨ(t)). (5.8)

As shown above, we have

V (t)− V (0) = − 1
α

∫ t

0

m∑
j=1

(|uj(s)|2 + β |uj(s)|V (s)γ) ds.

In the following discussion we assume (5.2), i.e., that {S(t)Ψ0 : t ≥ 0} is compact.
Then using the same arguments as above for all ω-limits {Ψ∞(τ) : τ ≥ 0} we have

uj(τ) = Im
(
O∞(τ), μjΨ∞(τ)

)
= 0, for τ ≥ 0, j = 1, . . . ,m.

Thus,

Im

( ∞∑
k=1

Ake
i((λk−λk0 )τ−θk+θ̃k0)(μj)kk0

)
= 0, for j = 1, . . . ,m,

where
(μj)kk0

= (ψk0 , μjψk)X .

We henceforth consider the casem = 2. Suppose that λk̄+λ�̄−2λk0 = 0 for a single
pair (k̄, 	̄), 	̄ �= k0, and that otherwise (5.7) holds. Then λk̄ − λk0 = −(λ�̄ − λk0)
and we have

Im
(
Ak̄e

i((λk̄−λk0 )τ−θk̄+θ̃k0 )(μj)k̄k0
+A�̄e

i(−(λk̄−λk0 )τ−θ�̄+θ̃k0)(μj)�̄k0

)
= 0, (5.9)

for j = 1, 2. If

rank

(
(μ1)k̄k0

(μ1)�̄k0

(μ2)k̄k0
(μ2)�̄k0

)
= 2, (5.10)

then from (5.9), it follows that Ak̄ = A�̄ = 0. If moreover

for each k there exists j ∈ {1, 2} such that (μj)kk0
�= 0, (5.11)

then Ak = 0 for all k �= k0, Ak0 = 1 and θk0 = θ̃k0 . As a consequence we have
limt→∞ V (Ψ(t),O(t)) = 0.

In general let
λki + λ�i − 2λk0 = 0
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for multiple pairs (ki, 	i) with 	i �= k0. If

rank

(
(μ1)ki

k0
(μ1)�i

k0

(μ2)ki

k0
(μ2)�i

k0

)
= 2 (5.12)

for each i, then Aki = A�i = 0, and in particular Ak = 0 for all k. If in addition
(5.11) holds then, again limt→∞ V (Ψ(t),O(t)) = 0.

6. Numerical tests

In this section we demonstrate the feasibility of the proposed feedback laws using
a test example. We set H = L2(0, 1) and

H0ψ =
∞∑

k=1

λk(ψ, ψk)H ψk,

where ψk(x) =
√
2 sin(kπx) and λk = kπ. The control Hamiltonians are given by

(μiΨ)(x) = bi(x)Ψ(x), x ∈ (0, 1),
with i = 1, 2. For computations we truncated the expansion of H0 at N = 99,
so that

SN(h)Ψ0 =
N∑

k=1

e−iλk h(Ψ0, ψk)ψk.

To integrate the control Hamiltonian term the collocation method was used in the
form

(BN
i ψ)(xN

n ) = bi(xN
n )ψ(x

N
n ), i = 1, 2,

where xN
n = n

N , 1 ≤ n ≤ N − 1. Thus, we implemented the feedback law based on
the Strang splitting method in the form

Ψk+1=SN

(
h

2

)
FN

(
I− εk1h

2
BN
1 −

εk2h

2
BN
2

)−1(
I+

εk1h

2
BN
1 +

εk2h

2
BN
2

)
SN

(
h

2

)
εki =Fi(Ψk+1/2,Ok+1/2), i=1, 2,

where FN and F−1N are the discrete Fourier sine transform and its inverse trans-
form, respectively, and BN

i is the diagonal matrix with diagonal

(bi(xN
1 ), . . . , bi(xN

N−1) for each i = 1, 2.

Well-posedness of this implicit method was discussed in Section 4 for given β > 0
and γ ∈ [0, 1]. The numerical tests that we report on are obtained with h = 0.01,
α = 1/500 and

b1(x) = (x − .5) + 1.75(x− .5)2, b2(x) = 2.5(x− .5)3 − 2.5(x− .5)4.

These control potentials satisfy the rank condition of Section 5. They are selected
by minimizing the tracking time by trial and error tests. Figure 1 provides a
comparison for the orbit tracking performance V = 1

2 |Ψ(t) − O(t)|2X between
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different β-values and different powers γ for V . As β increases, the performance V
significantly improves and the 10% performance level is achieved in a much shorter
horizon. By decreasing the power of V , the performance of V improves also, and
more rapidly in the beginning of the time horizon.
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Figure 1. Performance comparison
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Optimal Feedback Synthesis for
Bolza Control Problem Arising in
Linearized Fluid Structure Interaction

Irena Lasiecka and Amjad Tuffaha

Abstract. Bolza boundary control problem defined for linearized fluid struc-
ture interaction model is considered. The aim of this paper is to develop an
optimal feedback control synthesis based on Riccati theory. The main math-
ematical challenge of the problem is caused by unbounded action of control
forces which, in turn, give rise to Riccati equations with unbounded coef-
ficients and singular behavior of the gain operator. This class of problems
has been recently studied via the so-called Singular Estimate Control Sys-
tems (SECS) theory, which is based on the validity of the so-called Singular
Estimate (SE) [4, 27, 32]. It is shown that the fluid structure interaction
does satisfy Singular Estimate (SE) condition. This is accomplished by show-
ing that the maximal abstract parabolic regularity is transported, onto the
wave dynamics, via hidden hyperbolic regularity of the boundary traces on
the interface. The established Singular Estimate allows for the application of
recently developed general theory which, in turn, implies well-posedness of
feedback synthesis and of the associated Riccati Equation. Blow up rates of
optimal control and of the feedback operator at the terminal time are pro-
vided.

Mathematics Subject Classification (2000). 35Bxx, 35B37.

Keywords. Fluid Structure Interaction, Boundary Control, Singular Estimate
Control System, Riccati Equation, Feedback Control, Hyperbolic Trace The-
ory, Maximal Parabolic Regularity.

1. Introduction

The mathematical model consists of linearized Navier-Stokes equation defined on
an open domain Ωf coupled with an elastic equation defined on another domain Ωs,
with boundary conditions matching velocities and normal stresses on the boundary
Γs which separates the two open domains Ωf and Ωs. Various versions of this
model that describes the elastic motion of a solid fully immersed in a viscous
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incompressible fluid, have received an extensive coverage in the literature [26, 19,
37, 24, 16, 15, 34].

We consider a boundary control system of this fluid structure interaction
model, with the objective of developing a feedback optimal control, acting as a
force on the interface between the two media. The construction is based on a
solution to the appropriate Riccati equation.

It is known that Riccati theory is a very powerful tool for designing and
computing feedback control for finite-dimensional systems. In response to nu-
merous technological applications, where correct modeling requires an infinite-
dimensional state space (as in PDE theory), an extension of the Riccati the-
ory becomes available for infinite-dimensional control systems modeled by PDEs
[42, 7, 41, 20, 17, 43, 31] and references therein. Though actual computations of
feedback controller are performed on finite-dimensional structures, the role of
infinite-dimensional Riccati theory needs not be defended. In fact, as documented
by a large body of literature, rigorous infinite-dimensional theory is responsible for
stability and consistency estimates obtained for finite-dimensional approximation
of Riccati equations [25, 18, 35, 36, 39]. The infinite-dimensional Riccati theory
was first developed for control systems generated by strongly continuous semi-
groups with bounded control operators. However, the optimal control theory has
an additional degree of complexity when studying systems with unbounded control
actions, the latter arise in boundary or point control. The mathematical difficulty
in extending the Riccati theory available for bounded controls, has to do with the
fact that the so-called gain (feedback) operator along with the coefficients in the
associated Riccati equation to the system might not be well defined. Therefore,
a standard like treatment of an unbounded control system via a Riccati equation
and their finite-dimensional approximations ought to be justified with a sound
theoretical framework. The framework has indeed been laid out in the case of
systems generated by analytic semigroups [7, 22, 23, 17, 1, 31], where the theory
has acquired a reasonable degree of maturity and completeness. More recently the
analytic approach has been extended to a class of systems referred to as Singular
Estimate Control Systems (SECS) which captures partial or approximate analytic
dynamics [4, 29, 27, 13, 2, 12, 32] combined with hyperbolic structures. Coupled
PDE systems which do not have analytic generators, but rather combine hyper-
bolic and parabolic effects are classical prototypes for the SECS systems. A prime
example of such is structural acoustic interaction for which SECS theory has been
laid out in [4], Since then a rather rich theory pertaining to SECS systems has
been developed over the last decade or so. Of particular interest to this work is
Bolza Riccati SECS theory which involves penalization of the terminal state [32].
It is known that Bolza problems, even in the case of analytic dynamics, do lead to
singular behavior of optimal controls and of Riccati feedback operators.

The general formulation of SECS (Singular Estimate Control Systems) class
is as follows: Consider the dynamics

yt = Ay + Bg ∈ [D(A�)]′ (1)
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with state space H and a control space U while A is a generator of a strongly
continuous semigroup eAt on H, and B is an unbounded control operator such
that B ∈ L(U → [D(A∗)]′). The additional singular estimate (SE) condition is the
following one: with some 0 ≤ γ < 1.

|OeAtBg|Z ≤
C

tγ
|g|U (2)

where O denotes selected observations of the system defined via bounded operators
from the state space H into the observed space Z. The control problem considered
is to minimize any functional of the general form

J(y, g) =
∫ T

0

[|Ry|2Z + |g|2U ]ds+ |Gy(T )|2W (3)

over a set of controls g ∈ L2([0, T ];U) where R ∈ L(H, Z) and G ∈ L(H,W ) are
bounded operators on suitable Hilbert spaces. In the context of control problem
(3) relevant observations operators in (2) are the following: O = R and O = G.

Remark 1.1. Note that singular estimate (2) is automatically satisfied for analytic
semigroups and unbounded control operators B which are relatively bounded with
respect to the generator A [23, 22, 17, 31]. Thus SECS systems provide a proper
generalization of control systems governed by analytic semigroups.

Our aim in this work is to show that the control system under consideration
falls into the class of singular estimate control systems for which a satisfactory
Riccati theory is available. In particular, we will show that the system satisfies
singular estimate condition (2) with γ = 1/4+ ε and the conditions laid out in [32]
allow for an application of the results on existence, regularity of optimal control
and, most importantly, feedback characterization of the control via solutions to a
Riccati equation. The optimal control along with the feedback gain operator, while
well defined and bounded for transient times, become singular at the terminal
time. This singularity is quantified by the algebraic blow up rate of the order
(T − t)−1/4−ε.

2. The control problem

2.1. Formulation

Let Ω ∈ R3 be a bounded domain with an interior region Ωs and an exterior
region Ωf . The boundary Γf is the outer boundary of the domain Ω while Γs is
the boundary of the region Ωs which also borders the exterior region Ωf and where
the interaction of the two systems take place. Let u be a function defined on Ωf

representing the velocity of the fluid while the scalar function p represents the
pressure. Additionally, let w,wt be the displacement and velocity functions of the
solid Ωs. We also denote by ν the unit outward normal vector with respect to the
domain Ωs. The boundary-interface control is represented by g ∈ L2([0, T ];L2(Γs))
and is active on the boundary Γs. We work under the assumption of small but rapid
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oscillations of the solid, hence the interface Γs is assumed static see [26, 37, 15]
for more modeling details.

Given control g ∈ L2([0, T ];L2(Γs)), (u,w,wt, p) satisfy the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut −Δu+ Lu+∇p = 0 Qf ≡ Ωf × [0, T ]
div u = 0 Qf ≡ Ωf × [0, T ]

wtt − div σ(w) = 0 Qs ≡ Ωs × [0, T ]
u(0, .) = u0 Ωf

w(0, .) = w0, wt(0, .) = w1 Ωs

wt = u Σs ≡ Γs × [0, T ]
u = 0 Σf ≡ Γf × [0, T ]

σ(w).ν = ε(u).ν − pν − g Σs ≡ Γs × [0, T ]

(4)

where the elastic stress tensor σ and the strain tensor ε, respectively, are given by

σij(u) = λ

k=3∑
k=1

εkk(u)δij + 2μεij(u), λ, μ > 0, and εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

The term Lu is a linearization of the convective term in Navier Stokes (u.∇)u and
is defined as

Lu = (∇v)u + (v∇)u (5)
where v is a time-independent smooth vector function ∈ [C∞(Ωf )]n with the
property div v = 0.

Notation Throughout the paper H ≡ H ×H1(Ωs)× L2(Ωs) where

H ≡ {u ∈ L2(Ωf ) : div u = 0, u · ν|Γf
= 0}

will denote the energy space for the system. Note that all Sobolev spaces Hs and
L2 spaces pertaining to u and w are in fact (Hs)n, (L2)n, n = 2, 3 and only for
simplicity we omit the exponent n.

In addition we will use the following notation:

V ≡ {v ∈ H1(Ωf ) : div v = 0, u|Γf
= 0}

(u, v) =
∫
Ω

uv dΩ, 〈u, v〉 =
∫
Γs

uv dΓs, Di =
∂

∂xi
.

The space V is topologized with respect to the inner product given by:

(u, v)1,f ≡
∫
Ωf

ε(u)ε(v)dΩf .

We denote the induced norm by |.|1,Ωf
, and that is equivalent to the usual H1(Ωf )

norm via Korn’s inequality and Poincaré’s inequality

|u|1,Ωf
= [

∫
Ωf

|εu|2dΩf ]1/2.

H1(Ωs) is topologized with respect to the inner product given by

(w, z)1,s ≡
∫
Ωs

wz +
∫
Ωs

σ(w)ε(z).
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We denote by |.|1,Ωs the induced norm by inner product above

|w|21,Ωs
=
∫
Ωs

σ(w)ε(w)dΩs + |w|20,Ωs
.

This is equivalent to the usual H1(Ωs) norm by Korn’s inequality.

2.2. Weak solutions

We consider a weak solution to the system (4) defined to be (u,w,wt) ∈ C([0, T ];
H ×H1(Ωs)× L2(Ωs)) = C([0, T ];H) and such that
• (u0, w0, w1) ∈ H ×H1(Ωs)× L2(Ωs)
• u ∈ L2([0, T ];V )
• σ(w).ν ∈ L2([0, T ];H−1/2(Γs)) and wt|Γs = u|Γs ∈ L2([0, T ];H1/2(Γs))
• The following variational equality holds a.e. in t ∈ (0, T ){

(ut, φ)Ωf
+ (ε(u), ε(φ))Ωf

+ (Lu, φ)Ωf
+ 〈σ(w).ν + g, φ〉 = 0

(wtt, ψ)Ωs + (σ(w), ε(ψ))Ωs − 〈σ(w) · ν, ψ〉 = 0 (6)

for all test functions φ ∈ V and ψ ∈ H1(Ωs).
The following well-posedness result has been established in [15]

Theorem 2.1. Let g ∈ L2([0, T ], H−1/2(Γs)) and (u0, w0, w1) ∈ H there exists a
unique weak solution (u,w,wt) ∈ C([0, T ],H) and such that

|u(t)|20,Ωf
+ |w(t)|21,Ωs

+ |wt(t)|20,Ωs
+
∫ t

0

[|u(s)|21,Ωf
+ |σ(w) · ν|2−1/2,Γs

]ds

≤ Ceωt[|u(0)|20,Ωf
+ |w(0)|21,Ωs

+ |wt(0)|20,Ωs
+ |g|2L2([0,T ];H−1/2(Γs)

]. (7)

Remark 2.1. Note that the definition of weak solutions postulates trace regularity
σ(w) · ν ∈ L2([0, T ];H−1/2(Γs)) which does not follow from the interior regularity
of solutions. This is, in fact, “hidden regularity” on the boundary. Thus, the proof
of existence of weak solutions must involve obtaining the information on boundary
regularity of the normal stresses. For this step methods of microlocal analysis were
used (see [15]).

2.3. Control objective

The control problem to be considered is of Bolza type: we wish to minimize the
following functional over all g ∈ L2([0, T ]; Γs).

J(u, g) =
∫ T

0

[|g(t)|2L2(Γs)
+ |Ru(t)|2L2(Ωf )

]ds+ |u(T, .)|2L2(Ωf )
(8)

where R ∈ L(L2(Ωf )).

Remark 2.2. The structure of the functional cost can be generalised. Indeed, it is
not necessary that the terminal (Bolza) observation operator is equal to the iden-
tity. However, it is the identity that epitomizes the main intricacy of the problem.
It would be much simpler to study the problem with compact or “smoothing” ter-
minal observation. In such cases one would not have singularity in the feedback
representation.



176 I. Lasiecka and A. Tuffaha

3. Semigroup formulation

In order to be able to apply available abstract results, we represent the solution
to (4) via semigroup framework as an abstract equation of the form:

yt = ALy + Bg, y0 ∈ H (9)

where

AL =
(

A−L ANσ().ν 0

0 0 I

0 div σ 0

)
, B =

(
AN

0

0

)
. (10)

Here A : V → V ′ is defined by

(Au, φ) = −(ε(u), ε(φ)), ∀φ ∈ V (11)

and the Neumann map N : L2(Γs)→ H defined by

Ng = h⇔ {(ε(h), ε(φ)) = 〈g, φ〉, ∀φ ∈ V }. (12)

It follows immediately from Lax-Milgram Theorem that the map A ∈ L(V → V ′)
and the map N enjoys the following regularity property:

N ∈ L(H−1/2(Γs)→ V ⊂ H1(Ωf )). (13)

This allows to consider the operator A (denoted by the same symbol ) as acting
on H with the domain D(A) ≡ {u ∈ V ; |(ε(u), ε(φ))| ≤ C|φ|H}. A is self adjoint,
negative and generates an analytic semigroup eAt on H . Fractional powers of −A,
denoted by Aα are then well defined, [38]. In particular

|AαeAt|L(H) ≤ Ct−α, 0 < t ≤ 1. (14)

In addition, the perturbation of A− L still generates an analytic semigroup since
L is compact from D(A) to H , see [21]. Let the space X be the trace space
corresponding to V and X ′ its dual (with respect to L2 inner product). Elements
of X are defined as X ≡ {z = φ|Γs , φ ∈ V }. As a consequence, elements of X are
in H1/2(Γs) and they satisfy boundary compatibility relation

∫
Γs

g · ν = 0.
It was shown in [15] that the operator AL given by (10) and defined on

D(AL) ⊂ H → H with

D(AL) = {y ∈ H : u ∈ V, (A− L)u+ANσ(w).ν ∈ H ; z ∈ H1(Ωs),

div σ(w) ∈ L2(Ωs); z|Γs = u|Γs}
generates a strongly continuous semigroup eALt ∈ L(H).
Remark 3.1. There is another approach available in recent literature that leads to
semigroup solutions of fluid structure interaction models. This has been pursued in
[5, 6] (also references therein) where the “generator” is explicitly constructed via
non-local Green maps. The main difference between these two approaches is that
our framework has explicit boundary conditions involving strain stresses on the
boundary, which are defined for weak solutions (see Definition 6). In contrast, the
approach taken in [4, 5] does not exhibit boundary traces at the level of weak solu-
tions. These become apparent only for strong solutions. The analysis in this paper
critically relies on the notion of boundary traces defined for finite energy solutions.
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4. Main results

We first recall an abstract result from [32], which provides Riccati theory pertinent
to SECS control systems.

Theorem 4.1. Let U , Y , Z and W be given Hilbert spaces. Spaces U and Y denote,
respectively, control and state spaces while Z and W are observation spaces. We
consider the dynamics governed by the state equation with a state y(t) ∈ Y and
control g(t) ∈ U :

yt = Ay + Bg; on [D(A�)]
′
; y(s) = ys ∈ Y. (15)

The control problem is to minimize J(g, y, s, ys) subject to the state equation (4)
over all g ∈ L2([s, T ];U)

J(g, y, s, ys) =
∫ T

s

|Ry(t)|2Z + |g(t)|2Udt+ |Gy(T )|2W (16)

under the following assumptions:

(a) A is a generator of a strongly continuous semigroup denoted by eAt on the
Hilbert space Y .

(b) The control operator B is a linear operator from U → [D(A�)]′, satisfying
the condition R(λ,A)B ∈ L(U, Y ), for some λ ∈ ρ(A) where R(λ,A) is the
resolvent of A and ρ(A) is the resolvent set.

(c) Singular Estimate Control condition: There exists γ < 1 and a constant C > 0
such that |�AtBu|Z ≤ C

tγ |u|U and |GeAtBu|W ≤ C
tγ |u|U for all 0 < t ≤ 1.

(d) R ∈ L(Y, Z) and the operator: G ∈ L(Y,W ) is such that the operator GLT :
L2([0, T ];U)→ W is closeable where LT is the control to state map at time T .

Then for any initial state ys ∈ Y there exists a unique optimal control

g0(t, s, ys) ∈ L2([s, T ];U)

and optimal trajectory

y0(t, s, ys) ∈ C([0, T ], D(A∗)′) with Ry0(t, s, ys) ∈ L2([0, T ], Z)

such that

J(g0, y0, s, ys) = min
u∈L2([s,T ],U)

J(g, y(g), s, ys).

Moreover,there exists a selfadjoint positive operator P (t) ∈ L(Y ), t ∈ [0, T ) such
that (P (t)x, x)Y = J(g0, y0, t, x). In addition, the following properties hold:

(i) The optimal control g0(t) is continuous on [s, T ) but has a singularity of order
gamma at the terminal time. More specifically the following estimate holds

|g0(t, s, ys)|U ≤
C

(T − t)γ
|ys|Y , s ≤ t < T. (17)
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(ii) The optimal output y0(t) is continuous on [s, T ] when γ < 1/2 with values in
the observation space Z, but has a singularity of order 2γ− 1 at the terminal
time when γ ≥ 1/2. The following estimate holds:

|Ry0(t, s, ys)|Z ≤
C

(T − t)2γ−1+ε
|ys|Y , s ≤ t < T. (18)

(iii) P (t) is continuous on [0, T ] and P (t) ∈ L(Y, L∞([0, T ];Y )).
(iv) B∗P (t) exhibits the following singularity

|B∗P (t)x|U ≤
C|x|Y
(T − t)γ

, 0 ≤ t < T. (19)

(v) g0(t, s, ys) = −B∗P (t)y0(t, s, ys), s ≤ t < T . (20)

(vi) P (t) satisfies the Riccati Differential equation with t < T, x, y ∈ D(A)
〈Ptx, y〉Y + 〈A�P (t)x, y〉Y + 〈P (t)Ax, y〉Y + 〈Rx,Ry〉Z
= 〈B∗P (t)x,B∗P (t)y〉U

(21)

lim
t→T

P (t)x = G∗Gx ∀x ∈ Y. (22)

(vii) The solution of the Riccati equation above is unique within the class of positive
and self adjoint operators such that (19) holds with γ < 1

2 .

Remark 4.1. Theorem 4.1 generalizes to SECS systems results that are available
in the analytic case [1, 23, 31].

The main result of this paper is the following Theorem pertaining to the
model in (4) with the functional cost given by (8).

Theorem 4.2. In reference to the model in (4) and the control problem in (8), for
every initial condition y0 = [u0, w0, w1] ∈ H, there exists a unique optimal control
g0(t, .) ∈ L2([0, T ]; Γs) and a corresponding optimal state

y0(t, .) = [u0(t, .), w0(t, .), w0t (t, .)] ∈ C([0, T ];H ×H1(Ωs)× L2(Ωs)) (23)

such that J(g0, y0) = ming∈L2([0,T ];Γs) J(g, y). Moreover,

• the optimal control g0 satisfies singular estimate given by (17) with blow up
rate γ = 1/4 + ε, where ε is positive and can be taken arbitrarily small.

• There exists a positive selfadjoint P (t) ∈ L(H) such that

J(g0, y0) = (P (0)y0, y0)H.

• In addition with B given in (10), the feedback-gain operator B∗P (t) ∈ L(H →
L2(Γs)) for all 0 ≤ t < T and at the terminal point t = T blows up with the
rate given by

|B∗P (t)y|L2(Γs) ≤
C|y|H

(T − t)1/4+ε
.

In addition, the optimal feedback synthesis (20) holds.
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• The operator P (t) is a unique solution of Riccati Differential Equation sat-
isfied for t < T with , x = (x1, x2, x3), y = (y1, y2, y3) ∈ D(AL)

〈Ptx, y〉H + 〈A�
LP (t)x, y〉H + 〈P (t)ALx, y〉H + (Rx1,Ry1)Ωf

= 〈B∗P (t)x,B∗P (t)y〉Γs

(24)

with the terminal condition

lim
t→T

(P (t)x)1 = x1 in H ∀x ∈ H (25)

and operators AL,B defined in (10).

The main mathematical difficulty of the problem studied is due to the mis-
match of parabolic and hyperbolic regularity occurring at the interface. The strat-
egy pursued in this work is to transport, via the interface, maximal (abstract)
parabolic regularity [28, 17] resulting from fluid component onto the wave dynam-
ics. The generalization of so-called “hidden” [30] regularity of the waves boundary
traces plays a pivotal role in this transfer.

The remainder of this paper is devoted to the discussion of the proof of
Theorem 4.2. The proof is based on the following two main technical ingredients:
(i) sharp hyperbolic-like regularity theory for interface traces of solutions to fluid
structure interaction, and (ii) abstract maximal parabolic regularity [28, 17] ap-
plied to boundary value problem driven by the fluid component.

5. Sketch of the Proof of Theorem 4.2

We shall provide below main steps in the proof of the theorem, while full account
of technical details is given in [33].

The proof of Theorem 4.2 is based on application of the abstract result given
by Theorem 4.1. To accomplish this we need to verify the assumptions imposed
by that theorem. This, in turn, involves verification of several properties of the
generator of the semigroup operators A and of the control operator B.
Generator AL It was shown in [15], that AL generates a c0 semigroup if L : V →
V ′ is locally Lipschitz and satisfies the condition for any δ > 0:

|(Lu, u)| ≤ δ|u|2V + Cδ|u|2H . (26)

The linear operator Lu = (∇v)u + (v.∇)u is bounded when acting from V → V ′

since v is smooth, and indeed satisfies the condition above. This is sufficient [15]
for the establishment of c0 semigroup solutions for the system,which are generated
by the operator AL whose action is given by (10) and the domain given by:

D(AL) = {y ∈ H : u ∈ V, (A− L)u+ANσ(w).ν ∈ H ; z ∈ H1(Ωs),

div σ(w) ∈ L2(Ωs); z|Γs = u|Γs}.

Remark 5.1. We note that the domain D(AL) is not compact in H. This has been
noticed in [5] in the context of studying strong stability of uncontrolled model [6, 5]
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Control operator B. The operator B, given in (10), is unbounded when acting
from L2(Γs) to H since AN is an unbounded operator from L2(Γs)→ H though
bounded from L2(Γs)→ V ′.

We begin by asserting that the control operator B is relatively bounded with
respect to the generator.

Proposition 5.1. There exists ω > 0 such that R(λ,AL)B ∈ L(H), where λ > ω.

Proof. Writing (AL − λ)Y = f = (f1, f2, f3) leads to:

Au+ANσ(w).ν + Lu− λu = f1

z − λw = f2

div σ(w) − λz = f3

z|Γs = u|Γs , u|Γf
= 0.

Since AL generates a c0 semigroup, there exists ω > 0 such thatAL−λI is injective
for all λ > ω. Setting f = Bg = (ANg, 0, 0) gives:

−(ε(u), ε(φ)f − 〈σ(w).ν, φ〉 − (Lu, φ)f − λ(u, φ)f = −〈g, φ〉, ∀φ ∈ V

−(σ(w), ε(ψ))s + 〈σ(w).ν, ψ〉 − λ(w,ψ)s = 0, ∀ψ ∈ H1(Ωs).
(27)

Taking φ = u, ψ = λw and using the fact u|Γs = z|Γs = λw|Γs we add the two
equations to get

|ε(u)|20,Ωf
+ λ|u|20,Ωf

+ λ(σ(w), ε(w))s + λ2|w|20,Ωs
+ (Lu, u)f = 〈g, u〉. (28)

Using inequality (5) we obtain

|u|2V + |w|21,Ωs
− δ|u|2V + (λ− Cδ)|u|2H ≤ K|g|2H−1/2(Γs)

+ 1/2|u|2V .

Choose δ so that 1/2− δ > 0 and then λ > 0 so that λ− Cδ > 0 and thus:

|u|2V + |w|21,Ωs
≤ C|g|2H−1/2(Γs)

.

Since z = λw we also obtain the estimate

|z|21,Ωs
≤ Cλ2|g|2H−1/2(Γs)

. �

The most critical, and also the most technical property is Singular Estimate
condition satisfied for the pair A,B.

In order to state the result we define a scale of Hilbert spaces parameterized
by the parameter α ≥ 0: H−α ≡ H ×H1−α(Ωs) ×H−α(Ωs). Note that with the
above notation H = H0.

Theorem 5.2. The semigroup eALt and control operator B satisfy the following
Singular Estimate: (SE) for every g ∈ L2(Γs) and t ≤ T0, and α > 0.

|eALtBg|H−α ≤
C

t1/4+ε
|g|L2(Γs).

The sketch of the proof of Theorem 5.2 is given in Section 6.
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Completion of the proof of Theorem 4.2 Assuming validity of Theorem 5.2 the
proof of the Theorem 4.2 is completed as follows.

The conclusion of the Theorem 4.2 follows from Theorem 4.1, Theorem 5.2
and regularity estimate in (7).

Assumptions (a) and (b) of Theorem 4.1 are satisfied on the strength of the
results presented in Section 4, including Proposition 5.1. Assumption (d) follows
from the fact that R(λ,AL)B ∈ L(H) and from the structure of the operator G
(projection). The most critical assumption is singular estimate in part (c). The
aforementioned follows from Theorem 5.2. To see this we first note that Theorem
5.2 implies that with G = (I, 0, 0) we have that

|GeALtBg|W = |GeALtBg|0,Ωf
≤ |eALtBg|H−α ≤

C

t1/4+ε
|g|L2(Γs)

Similarly for all α < 1

|ReALtBg|H ≤ |eALtBg|H−α ≤
C

t1/4+ε
|g|L2(Γs)

Thus, the hypothesis (c) in Theorem 4.1 is satisfied with γ = 1/4 + ε.
Finally, the regularity of the trajectories is stronger than postulated in the-

orem 4.1, but this follows from the estimate in (7). The proof of Theorem 4.2 is
completed.

6. Sketch of the proof of Theorem 5.2

6.1. Supporting Propositions

In order to carry the proof of Theorem 5.2 we need several auxiliary results. These
are given below.

6.1.1. Properties of the Neumann map. In what follows we shall establish addi-
tional properties of the map N defined in (12) and a useful PDE interpretation
of solutions to (6). To this end we define for each (u, p) ∈ V × L2(Ωf ) the fluid
tensor T (u, p) given by

T (u, p) ≡ ε(u)− pI.

Proposition 6.1. Let g ∈ H−1/2(Γs). There exists p ∈ L2(Ωf ) such that h ≡ Ng
satisfies distributionally

div (T (h, p)) = 0 Ωf (29)
div h = 0 Ωf (30)

T (h, p) · ν = g in H−1/2(Γs) (31)
h = 0 Γf . (32)

Proof. The form (ε(h), ε(φ)) is V elliptic and continuous on V × V and hence by
Lax-Milgram given g ∈ H−1/2(Γs) there exists h ∈ V such that: (ε(h), ε(φ)) =
〈g, φ〉Γs for every φ ∈ V . Hence, the map N is well defined as a bounded linear
operator from H−1/2(Γs)→ H1(Ωf ) ∩H = V .
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Let Ng = h, for some g ∈ H−1/2(Γs) then

(ε(h), ε(φ))f = 〈g, φ〉
for all φ ∈ V . Consider all φ ∈ H1

0 (Ωf )
⋂
V thus

(div ε(h), φ)f = 0.

This implies by De Rham’s theorem that there exists p ∈ L2(Ωf ) such that
div T (h, p) = 0 in the sense of distributions. Since T (h, p) ∈ L2(Ωf ), the distribu-
tional derivative div T (h, p) coincides with a function equal to zero. Hence, we also
have div T (h, p) = 0 a.e., which relation reconstructs the equation in Proposition
4. This also shows (by Divergence Theorem) that for all φ ∈ V

〈T (h, p) · ν, φ〉Γs = (ε(h)− pI, ε(φ))f
≤ |φ|V [|h|V + |p|L2(Ωf )]

consequently T (h, p) · ν ∈ X ′. On the other hand, definition of the map N implies
for every φ ∈ V that

〈g, φ〉Γs = (ε(h), ε(φ))f = (ε(h), ε(φ))f − (pI, εφ)f = 〈T (h, p) · ν, φ〉Γs .

Here we used the fact that (pI, εφ)f = (p, div φ)f = 0. Hence

〈g − T (h, p) · ν, φ〉Γs = 0, ∀φ ∈ V

and by the definition of X , 〈g−T (h, p) ·ν, z〉 = 0, ∀z ∈ X , so g−T (h, p) ·ν belongs
to the normal cone in X which can be identified with {λ = kν, k ∈ R}. Redefining
the pressure p by adding suitable constant gives the boundary conditions and the
PDE form of the map N asserted in the proposition. �

Now, we turn to higher regularity of the Neumann map N . The analogous
result is known in the case of Dirichlet boundary conditions [44]. However, in the
case of Neumann boundary conditions, due to the presence of pressure on the
boundary, the issue is more subtle. More specifically, we show that

Proposition 6.2. Let g ∈ H1/2(Γs) then Ng = h ∈ H2(Ωf )
⋂
V and p ∈ H1(Ωf ).

Proof. To accomplish this, we follow the strategy of Agmon-Douglis-Nirenberg
where it suffices to consider the PDE in the neighborhood of the boundary Γs (in-
terior regularity is straightforward) which is accomplished via a partition of unity.
We then differentiate in the tangential direction by introducing the tangential dif-
ferential operator S with respect to the boundary Γs to obtain the local problem
in a collar neighborhood of the boundary Γs. The operator S = Σn

i=1bi(x) ∂
∂xi

is a
first-order operator (time-independent) with bi smooth in Ω, such that S is tan-
gent to Γs. Applying S to the system and denoting by [D,S] the commutator of
S with an operator D. Let Sh = ĥ and Sp = p̂ and applying S to the system

div ε(ĥ)−∇p̂ = [div ε,S]h− [∇,S]p Ωf (33)

ε(ĥ).ν = ĝ + p̂ν + pν̂ + [ε.ν,S]h Γs (34)

div ĥ ∈ L2(Ωf ). (35)
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Integrating against ĥ we obtain

−(εĥ, εĥ)−〈ĝ, ĥ〉−〈pν̂, ĥ〉−〈[ε.ν,S]h, ĥ〉+(p̂, div ĥ) = ([div ε,S]h, ĥ)+([∇,S]p, ĥ).
Now, ĝ ∈ H−1/2(Γs) and p|Γs ∈ H−1/2(Γs) while the commutator [div ε,S] is a
second-order differential operator and both [∇,S], [ε.ν,S] are first-order differential
operators. Hence, we estimate the V norm of ĥ as follows

|εĥ|20,Ωf
≤
[
|ĝ|−1/2,Γs

+ |p|−1/2,Γs
+ |h|−1/2,Γs

]
|ĥ|1/2,Γs

+ |p|0,Ωf
|Sdiv ĥ|0,Ωf

+ |h|−1,Ωf
|ĥ|1,Ωf

+ |p|−1,Ωf
|ĥ|1,Ωf

.
(36)

Since h is divergence free div ĥ = Σi,jDibjDjhi, so Sdiv ĥ = ∇ĥ and

|εĥ|20,Ωf
≤ C

δ

[
|ĝ|2−1/2,Γs

+ |p|2−1/2,Γs
+ |h|2−1/2,Γs

+ |p|20,Ωf
+ |h|2−1,Ωf

+ |p|2−1,Ωf

]
+ δ|ĥ|1,Ωf

.

Finally, choosing δ = 1/2 and using the fact that the H1 norm of h and L2 norm
of p are continuously dependent on the H1/2(Γs) of the trace g by Proposition 6.1

|ĥ|21,Ωf
≤ K|g|21/2,Γs

.

Hence, ĥ ∈ H1(Ωf ). Let v = Dτh ≡ ∇h.τ then v ∈ H1(Ωf ) and Dτv,Dνv ∈
L2(Ωf ). To show h ∈ H2(Ωf ) it remains to show D2

ν,νh ∈ L2(Ωf ). Let z ≡ Dνh,
and notice that div z ∈ L2(Ωf ) which follows from h being divergence free.

Let ν = (n1, n2, n3) the unit normal vector to the boundary Γs while τ
and κ two linearly independent tangential unit vectors to the boundary Γs at a
given point m ∈ Γs. Let q be any point in Ωf such that q has the same x and y
coordinates as m. With ν, τ and κ at q defined to be those at m, we rewrite z at
any such q as

z = (z.ν)ν + (z.τ)τ + (z.κ)κ.
Choosing tangential and normal coordinates, τ = 1√

n2
3+n2

1

(n3, 0,−n1) and κ =
1√

n2
3+n2

1

(−n1n2, n23 + n21,−n3n2).
Since all the tangential derivatives Dτz,Dκz ∈ L2(Ωf ) and τ, κ are C1 func-

tions while div z ∈ L2(Ωf )), one obtains

Dν(z1n1) +Dν(z2n2) +Dν(z3n3) ∈ L2(Ωf ).

With ν ∈ C1 and z ∈ L2(Ωf ) we then have

n1Dνz1 + n2Dνz2 + n3Dνz3 ∈ L2(Ωf ). (37)

On the other hand, since we know the tangential derivative of h is ∈ H1(Ωf ), we
also have Dν(z.τ) = Dνν(h.τ) ∈ L2(Ωf ) and similarly Dν(z.κ) ∈ L2(Ωf ). Thus:

n3√
n23 + n21

Dνz1 −
n1√

n23 + n21
Dνz3 ∈ L2(Ωf ) (38)

−n1n2√
n23 + n21

Dνz1 +
√
n23 + n21Dνz2 −

n3n2√
n23 + n21

Dνz3 ∈ L2(Ωf ). (39)
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These three equations 37, 38 and 39 produce a system MDνz = b ∈ [L2(Ωf )]3

M =

⎛⎜⎜⎝
n1 n2 n3
n3√

n2
3+n2

1

0 − n1√
n2

3+n2
1

− n1n2√
n2

3+n2
1

√
n23 + n21 − n3n2√

n2
3+n2

1

⎞⎟⎟⎠ .

The coefficients of the matrix are continuous and its determinant is 1, which gives
the desired result of Dνz ∈ L2(Ωf ).

Therefore, h ∈ H2(Ωf )
⋂
V . It also follows that p ∈ H1(Ωf ) and ε(h).ν ∈

H1/2(Γs). In addition, the following estimate is implied:

|h|H2(Ωf ) ≤ C[|h|L2(Ωf )+|Dτh|H1(Ωf )+|Dκh|H1(Ωf )+|Dνh|H1(Ωf )] ≤ C|g|H1/2(Γs).

We conclude that N is bounded from H1/2(Γs)→ H2(Ωf ).
By interpolation, N ∈ L(Hs(Γs) ∩X ′ → Hs+3/2(Ωf ) ∩ V ), for −1/2 ≤ s ≤

1/2. The above regularity can be extended to a full range of s, but this will not
be needed in this paper. �

Some further properties of N , relatively straightforward consequences of
Proposition 6.1 and Proposition 6.2, are given below.

Proposition 6.3.

1. The map N∗Au = −u|Γs , u ∈ V where the adjoint is computed with respect
to L2 topology.

2. N ∈ L(L2(Γs)→ D(A3/4−ε)) ∩ L(H−1/2(Γs)→ D(A1/2)) for all ε > 0.

Remark 6.1. We note that the method of the proof of Proposition 6.2 also leads to
higher regularity of the map A−1. Indeed, one obtains A−1 : H → H2(Ωf )∩V (see
[14]). The above regularity, along with interpolation, allow us to identify domains
of fractional powers of A as

D(Aθ) ∼ H2θ(Ωf ), 0 ≤ θ < 3/4

D(Aθ) ⊂ H2θ(Ωf ), θ ∈ [0, 1].
(40)

6.2. Proof of the Singular Estimate

6.2.1. Supporting Lemmas. We begin with the following regularity result estab-
lished for boundary traces of dynamic wave equation [15].

Lemma 6.4. Let w0, w1 ∈ Hα+1(Ωs) × Hα(Ωs) with 0 ≤ α ≤ 1/4 and let f ∈
L2([0, T ];H1/2(Γs)) and w the solution to the wave equation⎧⎨⎩

wtt − div σ(w) = 0 Qs ≡ Ωs × [0, T ]
w(0, .) = w0 , wt(0, .) = w1 Ωs

wt = f Σs ≡ Γs × [0, T ].
(41)

Then w can be decomposed into w1+w2 such that σ(w1).ν ∈ C([0, T ];H−1/2(Γs))
and σ(w2).ν ∈ L2(Σs) = L2([0, T ] × Γs). If further f ∈ Hα(Σs) then σ(w2).ν ∈
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Hα(Σs). Moreover, we have the following estimates

|σ(w1).ν|2C([0,T ];H−1/2(Γs))
≤ K[|w0|21,Ωs

+ |w1|20,Ωs
+ |f |2L2([0,T ];H1/2(Γs))

] (42)

|σ(w2).ν|2Hα(Σs)
≤ K[|w0|21+α,Ωs

+ |w1|2α,Ωs
+ |f |2Hα(Σs)

]. (43)

We next state the improved boundary regularity for the velocity field u.

Lemma 6.5. Consider the uncontrolled system (6) with g = 0. If in addition the
initial condition [u0, w0, w1] ∈ L2(Ωf ) × H1+α(Ωs) × Hα(Ωs) for 0 < α < 1/4,
then u|Γs ∈ Hα(Σs) and the following estimate holds

|u|2Hα(Σs)
≤ CT (|u0|20,Ωf

+ |w0|21+α,Ωs
+ |w1|2α,Ωs

). (44)

The proof relies on the decomposition given by Lemma 6.4, Proposition 6.3
and abstract parabolic maximal regularity methods from [28]. The details are given
in [33].

6.2.2. Proper proof of Theorem 5.2.

Proof. It is equivalent to prove the following estimate for every y0 = [u0, w0, w1] ∈
H ×H1+α(Ωs)×Hα(Ωs) = Hα:

|B�eA
�
Lt

⎛⎝ u0
w0
w1

⎞⎠ |H ≤ C

t1/4+ε
|y0|H×H1+α(Ωs)×Hα(Ωs) =

C

t1/4+ε
|y0|Hα . (45)

This term represents the solution [û, ŵ, ŵt] to the adjoint system of (6), when the
initial condition is u0, w0, w1 ∈ H × H1+α(Ωs) × Hα(Ωs). Here, the semigroup
eA

�
Lt gives the solution to the equation ŷt = A�

Lŷ, ŷ = (û, ŵ, ŵt) expressed below⎧⎨⎩ (ût, φ)f = −(ε(û), ε(φ))f − (L�û, φ)f + 〈σŵ.ν, φ〉
(ŵtt, ψ)s = (div σ(ŵ), ψ)s

ŵt|Γs = −û|Γs

⎫⎬⎭ (46)

for all φ ∈ V, ψ ∈ H1(Ωs). The system above is regularity-wise equivalent to the
system in (6) with g = 0. Moreover, A�

L also generates a c0 semigroup on H using
the same argument as that used to show that AL generates a c0 semigroup since
L� : V → V ′ satisfies the same condition as L, see [15]. Hence, the same regularity
as in (7) holds for the solution ŷ = [û, ŵ, ẑ] to the adjoint system.

|ŷ(t)|2H +
∫ t

0

|û|21,Ωf
+ |σ(ŵ) · ν|2−1/2,Γs

ds ≤ Ceωt|ŷ0|2H. (47)

In addition, results of Lemma 6.4 and of Lemma 6.5 are valid with (u,w) replaced
by (û, ŵ). In order to establish (45) we compute the adjoint B�eA

�
Lt obtaining

B�eA
�
Lt

⎛⎝ u0
w0
w1

⎞⎠ = [N�A, 0, 0]eA
�
Lt

⎛⎝ u0
w0
w1

⎞⎠ = N�Aû|Γs = û|Γs .
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It is sufficient then to estimate the norm of û(t)|Γs in L2(Γs) for solutions of (46).
We denote û(t)|Γs = U1(t) +U2(t) +U3(t) +U4(t) where the terms Ui are defined
as follows:

U1 = N�AeAtu0 (48)

U2 =
∫ t

0

N�AeA(t−s)ANσ(ŵ1)(s, .).νds (49)

U3 =
∫ t

0

N�AeA(t−s)ANσ(ŵ2)(s, .).νds (50)

U4 =
∫ t

0

N�AeA(t−s)L∗û(., s)ds. (51)

Estimate for U1. The term U1 is precisely the source of the singular estimate and
it is estimated on the strength of Proposition 6.3 and (14)

|U1(t)|L2(Γs) = |N�AeAtu0|L2(Γs) ≤ |N�A3/4−εeAtA1/4+εu0|L2(Γs) ≤
C

t1/4+ε
|y0|H.

Estimate for U2. Estimating U2 and U3 involves using properties of A and the
Neumann map N and the estimates from Lemmas (6.5), (6.4):

|U2(t)|L2(Γs) ≤
∫ t

0

C

(t− s)3/4+ε
|A1/2Nσ(ŵ1)(s, .).ν|L2(Ωf )ds

≤ Ct1/4−ε|σ(ŵ1).ν|C([0,T ];H−1/2(Γs)) ≤ CT |y0|H

where we have used Proposition 6.3 and

|N∗AeA(t)A1/2|H→L2(Γs) ≤
C

t3/4+ε
.

Estimating U3. Note that Hα+1,α/2+1/2(Γs× [0, T ]) ⊂ C([0, T ];L2(Γs)) by Sobolev
embedding theorems in one dimension. On the other hand U3 is the restriction on
the boundary Γs of parabolic solutions driven by Neumann data σ(ŵ2). Thus U3
satisfies the following estimate

|U3(t)|L2(Γs) ≤ |U3|Hα+1,α/2+1/2(Σs)×[0,T ])
≤ K|σ(ŵ2).ν|Hα,α/2(Σs) ≤ K|σ(w2).ν|Hα(Σs).

We next apply the estimate (43) from Lemma 6.4 and estimate in Lemma 6.5 to
obtain:

|U3(t)|L2(Γs) ≤ K[|û|Hα(Σs) + |y0|H×H1+α(Ωs)×Hα(Ωs)]

|U3(t)|L2(Γs) ≤ KT |y0|H×H1+α(Ωs)×Hα(Ωs) = KT |y0|Hα

with any 0 < α.
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Estimate for U4. In estimating U4(t) we evoke again Proposition 6.3 and (47)

|U4(t)|L2(Γs) ≤
∫ t

0

|N�AeA(t−s)L�û(s, .)|L2(Γs)ds

≤ K

∫ t

0

|A1/4+εeA(t−s)L�u(s, .)|L2(Ωf )ds

≤ K

∫ t

0

C

(t− s)1/4+ε
|u|V ds ≤ CT |u|L2([0,T ];V ) ≤ C|y0|H.

Collecting the estimates of U1, U2, U3 and U4 leads to

|B�eA
�
Lty0|L2(Γs) = |û(t)|L2(Γs) ≤

C

t1/4+ε
|y0|Hα .

By duality, the above implies |eALtBg|H−α ≤ Ct−1/4−ε|g|L2(Γs). �

7. Conclusions and questions

• We have shown that the control problem defined for fluid structure interac-
tion with the functional cost given by (8) admits optimal feedback synthesis
expressed via Riccati operator. The gain operator is regular up to terminal
point and it blows up with the rate (T − t)1/4+ at the terminal point. The
result obtained depends on the validity of Singular Estimate Theorem 5.2.
This, in turn, relies on parabolic-hyperbolic mixing that involves transfer of
maximal parabolic regularity on one hand, and propagation of hyperbolic
hidden regularity, on the other hand.

• One could generalize the result of this paper by considering more general
functional penalizing also solid components of the structure. This could be
done in a straightforward manner provided that the penalization is controlled
by H−α norms with α > 0. Whether one can take α = 0 remains at present
an open question. One way to address this question is by exploiting a more
microscopic Riccati theory developed in [2]. This theory replaces global sin-
gular estimate condition by a local version of it and adds another regularity
condition. However, the final result obtained is weaker, as it provides po-
tentially unbounded gain operator B∗P (t) (though densely defined). It is
possible (conjectural at this stage) that this theory could be applied to the
model under consideration. The success of this approach depends on feasi-
bility of obtaining additional regularity properties of the system (as it was
accomplished for system of thermoelasticity in [3]).

• We note that the variational formulation of weak solutions to fluid struc-
ture interaction model is amenable to “friendly” numerical implementations.
The test functions considered are “independent”, as they are not required
to satisfy compatibility conditions on the interface . This is in contrast with
other variational approaches which reinforce total matching on the interface
[26, 24, 16]. An advantage of having unconstraint test functions is eminent
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when designing FEM approximations for the control problem [44, 25, 35, 36].
Functions φ and ψ do not need to match on Γs, thus discrete structures are
not required to satisfy any extraneous conditions.

• In the spirit of the comment above, it would be interesting to pursue nu-
merical analysis of the feedback control problem considered in this paper.
There are many techniques available for effective solving of Riccati equa-
tions [35, 8, 9, 18] and references therein. Of particular interest is numerical
verification of the blow-up asymptotics at the terminal point of the process.
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Single-step One-shot Aerodynamic
Shape Optimization

Emre Özkaya and Nicolas R. Gauger

Abstract. In this paper we consider the shape optimization of a transonic air-
foil whose aerodynamic properties are calculated by a structured Euler solver.
The optimization strategy is based on a one-shot technique in which pseudo
time-steps of the primal and the adjoint solver are iterated simultaneously
with design corrections done on the airfoil geometry. The adjoint solver which
calculates the necessary sensitivities is based on discrete adjoints and derived
by using reverse mode of automatic differentiation. A new preconditioner
which is derived by considering an augmented Lagrangian formulation of the
optimization problem is employed in order to achieve bounded retardation of
the overall optimization process. A design example of drag minimization for
an RAE2822 airfoil under transonic flight conditions is included.
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1. Introduction

Computational Fluid Dynamics (CFD) is nowadays an essential part of aero-
dynamic design processes. During the past decades, CFD simulations evolved
from basic inviscid potential solvers to Navier-Stokes solvers with complex tur-
bulence and transition models. Along with the tremendous increase of compu-
tational power, CFD simulations, performed on meshes with several millions of
grid points, are already state of the art. Mathematicians and engineers work on
the goal to integrate efficiently CFD simulations into optimization strategies, even
though derivative free optimization methods are preferred in industry, because of
their simplicity. But derivative free optimization methods need several hundreds of
function evaluations, even in the case of only a few design variables, and therefore
they are inefficient, because in aerodynamics the simulation part is expensive in
terms of computational costs. This is the reason why in detailed design one should
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prefer deterministic gradient-based optimization strategies. In our work, we fo-
cus on a special class of gradient-based methods, the so-called one-shot methods,
where pseudo-time steps of the CFD solver and the design changes are performed
simultaneously.

Let us consider the following optimization problem:

min
u

f(u, y) s.t. c(u, y) = 0 (e.g.,f(y, u) = Cd(y, u)). (1.1)

Here, u ∈ U denotes the vector of design variables defining the shape of the
airfoil, and y ∈ Y denotes the vector of state variables. In our application, the
cost function f(y, u) is the drag coefficient Cd. We assume that Y , U and their
Cartesian product X = Y × U are Hilbert spaces. c(u, y) = 0 is a PDE that
governs the fluid flow around the airfoil, e.g., the compressible Euler equations.
The aim is to decrease the drag force exerted on the airfoil and to satisfy the
primal feasibility, i.e., the flow field satisfies the compressible Euler equations. For
simplicity, we focus on this unconstrained drag reduction case. Lift and pitching
moment constraints are expected to be an extension of our work in the future.

The governing equations and the applied CFD solver will be introduced in
detail in Section 2.

As the compressible Euler equations cannot be easily solved numerically due
to the appearance of high nonlinearities, one usually uses quasi-unsteady formu-
lations which are solved by explicit finite volume schemes stabilized by artificial
dissipation and Runge-Kutta time integration. These pseudo timestepping schemes
are most efficient in combination with geometric multigrid. That is to say, that
our state equation c(y, u) = 0 is solved by a contractive fixed point iteration
yk+1 = G(yk, u), i.e., ‖Gy‖ ≤ ρ < 1.

Consequently, we can rewrite the optimization problem (1.1) as

min
u

f(u, y) s.t. y = G(u, y) (1.2)

and we define the Lagrangian function

L(u, y, y) = f(y, u) + (G(y, u)− y)T y = N(y, y, u)− yT y , (1.3)

while y denotes the adjoint state vector (or co-state vector). Furthermore, we call

N(y, y, u) := f(y, u) +G(y, u)T y (1.4)

the shifted Lagrangian.
If we derive the KKT conditions for the problem (1.2), a KKT point

(y∗, y∗, u∗) has to satisfy the following conditions:

y∗ = G(y∗, u∗)

y∗ = Ny(y∗, y∗, u∗)
T = fy(y∗, u∗)T +Gy(y∗, u∗)T y∗ (1.5)

0 = Nu(y∗, y∗, u∗)
T = fu(y∗, u∗)T +Gu(y∗, u∗)T y∗.

Rather than first fully converging the primal state using

yk+1 = G(yk, u)→ primal feasibility at y∗ (1.6)
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and then fully converging the dual state applying

ȳk+1 = Ny(y, ȳk, u)→ dual feasibility at ȳ∗ (1.7)

before finally performing an “outer” optimization loop

uk+1 = uk −B−1k Nu(y, ȳ, uk)→ optimality at u∗ , (1.8)

we suggest an extended single-step one-shot iteration of the form⎡⎣yk+1

ȳk+1

uk+1

⎤⎦ =

⎡⎣ G(yk, uk)
Ny(yk, ȳk, uk)�

uk −B−1k Nu(yk, ȳk, uk)�

⎤⎦ . (1.9)

For computing the optimization correction uk+1−uk, one has to choose a suitable
preconditioner Bk.

In our present work, we employed a new type of preconditioner based on the
descent of an augmented Lagrangian function, cf. [8].

We will introduce this preconditioner in detail in Section 3.
Throughout this paper we also aim to satisfy a bounded cost deterioration

[14], such that the cost of the coupled iteration (1.9), i.e., the one-shot optimization
process, is proportional to the cost of a single state simulation:

cost of optimization
cost of simulation

= c . (1.10)

From this it follows, that the cost of an optimization is independent of the
number of shape parameters, i.e., the size of the vector u. As far as calculations of
derivative vectors are concerned, we recommend the use of automatic differentia-
tion (AD) tools instead of applying continuous adjoint calculus or finite differences.

In Section 4, we will consider several methods for calculating derivatives as
well as pros and cons of the different methods.

Finally, in Section 5 we present numerical results, that have been achieved
for the drag minimization under transonic 2D Euler flow.

2. The aerodynamic design chain and its flow solver

In this section we state the governing equations of the flow field around the airfoil
and the corresponding CFD solver. We will also briefly cover all the computa-
tional steps between the shape parametrization of the airfoil and the aerodynamic
coefficients and forces.

2.1. Governing equations and boundary conditions

Since we are interested in drag reduction in transonic flow regime, the compressible
Euler equations are an appropriate choice. They are capable of describing the
(inviscid) shocks, which are the main sources of the pressure drag.

Even though the flow is not unsteady, the solution is obtained by integrating
the (quasi-)unsteady Euler equations in time until a steady state is reached. Note
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that these time steps do not physically mean anything, therefore they are called
pseudo-timesteps.

For 2D flow, the compressible Euler equations in cartesian coordinates read:

∂w

∂t
+

∂f

∂x
+

∂g

∂y
= 0 with f =

⎡⎢⎢⎣
ρu
ρu2 + p
ρuv
ρuH

⎤⎥⎥⎦ and g =

⎡⎢⎢⎣
ρv
ρvu
ρv2 + p
ρvH

⎤⎥⎥⎦ , (2.1)

where w is the vector of conserved variables {ρ, ρu, ρv, ρE} (ρ is the density, u
and v are the velocity components and E denotes the energy).

As far as the boundary conditions are concerned, we assume the Euler slip
condition on the wall (�nT�v = 0) and free stream conditions at the farfield. For a
perfect gas holds

p = (γ − 1)ρ
(
E − 1

2
(u2 + v2)

)
(2.2)

and
ρH = ρE + p (2.3)

for the pressure p and the enthalpy H .
The pressure coefficient Cp and the drag coefficient Cd are defined as

Cp :=
2(p− p∞)
γM2∞p∞

, (2.4)

Cd :=
1

Cref

∫
C

Cp(nx cosα+ ny cosα)dl . (2.5)

2.2. Shape parametrization

In aerodynamic shape optimization, there are mainly two ways of doing the shape
updates: Either parameterizing the shape itself or parameterizing shape deforma-
tions. In [10] these possibilities are investigated in detail. In the following, we take
the second approach, such that an initial airfoil shape is deformed by some set
of basis functions that are scaled by certain design parameters. Here, the basic
idea of shape deformation is to evaluate these basis functions scaled with certain
design parameters and to deform the camberline of the airfoil accordingly. Then,
the new shape is simply obtained by using the deformed camberline and the ini-
tial thickness distribution. The result is a surface deformation that maintains the
airfoil thickness.

We have chosen Hicks-Henne functions, which are widely used in airfoil op-
timization. The Hicks-Henne functions are defined as

ha,b : [0, 1]→ [0, 1] : ha,b(x) =
(
sinπx

log 0.5
log a

)b

, (2.6)

where b is fixed as 3.0 and a varies from 3
n+5 to

n+3
n+5 and n being the number of

design parameters. These function have the positive property that they are defined
in the interval [0, 1] with a peak position at a and they are analytically smooth at
zero and one.
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Figure 1. Design chain

The normalized airfoil shape is deformed by using Hicks-Henne functions
multiplied by the design parameters ui:

Δ camber(x) =
∑

uih {a, b} (x) and camber(x)+ = Δcamber(x) . (2.7)

2.3. Design chain

After deforming the airfoil geometry, the next task is to deform the initial mesh.
To do this, we use a modular approach by using several tools. Firstly, the airfoil
geometry xs is deformed by using the tool defgeo. Afterwards, a difference vec-
tor dx = xs − x is calculated by the tool difgeo and finally another tool, called
meshdefo, performs a mesh deformation by using this difference vector. This ap-
proach is also very advantageous in terms of gradient computations, since we have
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to differentiate only the simple structured mesh and shape deformation tools,
instead of complex mesh generators. The design chain between the design param-
eters (Hicks-Henne coefficients ui) and the aerodynamic coefficients is illustrated
in Figure 1.

2.4. CFD solver

The numerical solution of (2.1) is computed by the TAUij code, which is a struc-
tured quasi 2D version of the TAU code, developed at the German Aerospace
Center (DLR). For the spatial discretization the MAPS+ [11] scheme is used. To
achieve second-order accuracy, gradients are used to reconstruct the values of vari-
ables at the cell faces. A slip wall and a farfield boundary condition are applied.
For the pseudo timestepping, a fourth-order Runge-Kutta scheme is applied. To
accelerate the convergence, local time stepping, explicit residual smoothing and a
multigrid method are used. The code TAUij is written in C and comprises approx-
imately 6000 lines of code distributed over several files.

3. The suitable preconditioner Bk

In this section we will briefly introduce a suitable preconditioner in order to achieve
the goal of bounded cost deterioration. The reader might take a look at [7] and [8]
for more details on the derivation. Griewank et al. suggest to look for descent on
the merit function of the augmented Lagrangian

La(y, y, u) =
α

2
‖G(y, u)− y‖2+ β

2

∥∥Ny(y, y, u)T − y
∥∥2+N(y, y, u)− yT y , (3.1)

where the two weighting coefficients α and β are strictly positive reals. The aug-
mented terms represent the primal and the adjoint state residuals.

In [8] it has been proved that La is an exact penalty function if the so-called
correspondence condition

αβΔGT
y ΔGy # I + βNyy, with ΔGy = I −Gy , (3.2)

is fulfilled.
In the same paper it is also demonstrated that the step increment vector s

of the extended iteration (1.9), which is defined as

s(y, y, u) =

⎡⎣ Δy
Δy
Δu

⎤⎦ =

⎡⎣ G(y, u)− y
Ny(y, y, u)T − y
−B−1Nu(y, y, u)T

⎤⎦ , (3.3)

yields descent on La for all large positive preconditionersB if the descent condition

αβΔGy # (I+
β

2
Nyy)(ΔGy)−1(I+

β

2
Nyy), with ΔGy =

1
2
(ΔGy +ΔGT

y ) , (3.4)

is satisfied.
Once the weighting coefficients α and β are chosen such that√

αβ(1− ρ) > 1 +
β

2
‖Nyy‖ , (3.5)
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both inequalities (3.2) and (3.4) are fulfilled and thus La is an exact penalty
function on which the increment vector s yields descent for a sufficiently large
preconditioner B.

Furthermore, in [8] it has been proven that any preconditioner fulfilling

B $ B0 ≡
1
σ
(αGT

uGu + βNT
yuNyu) , (3.6)

while

σ = 1− ρ− (1 + ‖Nyy‖
2 β)2

αβ(1 − ρ)
, (3.7)

yields descent on the augmented Lagrangian La.
A reasonable way to find a suitable B is to solve

min
Δu

La(y +Δy, y +Δy, u+Δu) (3.8)

and then identifying B from the obtained solution of Δu = −B−1NT
u . Further-

more, from (3.8) and by considering a quadratic approximation of La, we obtain
the following optimization problem:

min
Δu

sT∇La(y, y, u) +
1
2
sT∇2La(y, y, u)s , (3.9)

where s is the increment vector (3.3). Then (3.9) leads to the equivalent minimiza-
tion problem

min
Δu

ϕ(Δu) , (3.10)

where ϕ is the quadratic function given as follows:

ϕ(Δu) = ΔuT (∇uL
a +∇uyL

aΔy +∇uyL
aΔy) +

1
2
ΔuT∇uuL

aΔu

≈ ΔuT∇uL
a(y +Δy, y +Δy, u) +

1
2
ΔuT∇uuL

aΔu .

(3.11)

Therefore, whenever ∇uuL
a is positive definite, the solution Δu of the minimiza-

tion problem (3.10) is defined by

Δu = −∇−1uuL
a(y, y, u)∇uL

a(y +Δy, y +Δy, u) . (3.12)

And thus B ≈ ∇uuL
a. Moreover, at feasibility (Δy = 0 and Δy = 0), we obtain

Δu = −B−1Nu(y, y, u)T , where B = αGT
uGu + βNT

yuNyu +Nuu . (3.13)

Note, that for the exact Hessian holds

∇uuL
a = αGT

uGu+βNT
yuNyu+Nuu+α(G− y)TGuu+β(NT

y − y)TNyuu . (3.14)

When primal and dual feasibility are satisfied, then the last two terms are zero,
since G = y and NT

y = y, and we get the expression (3.13) for B.
Since the computation of B derived from (3.13) involves matrix derivatives

that may lead to expensive calculations, we aim to find an approximation by using
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BGFS updates [12] rather than computing it exactly for each iteration. Since
B ≈ ∇uuL

a, we have

BΔu = ∇uuL
a(y, y, u)Δu ≈ ∇uL

a(y, y, u+Δu)−∇uL
a(y, y, u) . (3.15)

Thus, we may employ the above approximation as a secant equation into the
update of H (B−1). Therefore, we may impose

Hk+1Rk = Δuk, where Rk := ∇uL
a(yk, yk, uk+Δuk)−∇uL

a(yk, yk, uk) . (3.16)

The secant equation (3.16) has a solution only if

RT
kΔuk > 0 (3.17)

is satisfied. Therefore, we check this condition in all iterations and make a BFGS
update, whenever it is satisfied. Otherwise, we simply set B = I. As far as the
BFGS update is concerned, there is no need to make an update of B and then
inverse it; we can directly update the inverse of it by using the formula [12]

Hk+1 = (I − rkΔukR
T
k )Hk(I − rkR

T
kΔuk) + rkΔukΔuT

k , (3.18)

where rk = 1
rT

k Δuk
. Now, the only difficulty left is to calculate the term ∇uL

a.
In the next section, we will address the computation of this term by automatic
differentiation (AD).

4. Gradient computation and implementation issues

In this section, firstly, we consider several approaches for computing gradient vec-
tors. Then, we will address implementation issues concerning the coupled iteration
(1.9) and the computation of the preconditioner B.

One of the key points in aerodynamic shape optimization with gradient-based
methods is the computation of the derivatives. Since we are interested in satisfy-
ing the bounded deterioration as stated in Section 1, we will turn our attention to
methods in which the computational cost is independent of the number of design
variables (i.e., dim(u)). Continuous adjoint approaches as well as the use of the
reverse mode of automatic differentiation (reverse AD) yield this important prop-
erty. One of the difficulties with continuous adjoint approaches is their complex
mathematical treatment and in particular their implementation, which is error
prone. Instead, in order to exploit the domain specific experience and expertise
invested in the simulation tools, we propose to equip them in an automated fashion
with adjoints by the use of AD tools.

Therefore, we make use of the AD tool ADOL-C [2]. The freeware package
ADOL-C is a tool in order to differentiate computer programs written in C or C++.
Reverse and forward modes are available as well as the capability to derive first-
and higher-order derivatives. Since ADOL-C is based on operator overloading, it is
necessary to tape all operations that are done on the active variables (the variables
which are to differentiate with respect to the selected independent parameters) on
memory or disk. Usually a buffer size is defined by the user and the tapes which
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are larger than this predefined size are written on the disk instead of the memory.
Reading and writing operations from the disk is time consuming. This is why
memory should be used instead of storage on disk, whenever it is possible. Since
we use a one-shot approach rather than a hierarchical approach, we need to tape
only one pseudo-time step in each iteration instead of the whole time-stepping.
This is of course very advantageous, since the tape sizes would be extremely large,
even for the case of rather coarse meshes, because the tape size of a primal iterate
would be multiplied by the number of pseudo-timesteps. Nevertheless, in [4] it
is demonstrated how to overcome this kind of drawbacks in cases of hierarchical
approaches by the so-called reverse accumulation of adjoints [5].

As previously stated, for the coupled iteration, we need to evaluate several
derivative vectors

∇uL
a = αΔyTGu + βΔyTNyu +Nu , (4.1)

in order to update the design vectors u.
Furthermore, we need to evaluate the terms Ny for the update of the adjoint

states y.
Note, that all expressions in (4.1) are either vectors or matrix vector products.

Several subroutines of ADOL-C allow us to calculate these matrix vector products
easily by using the reverse mode of AD for the first-order terms and reverse on
tangent for the second-order term. These routines are namely

int fos_reverse(tag,m,n,u,z)

for the first-order terms and

int lagra_hess_vec(tag,m,n,x,v,u,h)

for the second-order term βΔyTNyu. In this connection, we have the declarations

short int tag // tape identification
int m // number of dependent variables
int n // number of independent variables
double x[n] // independent vector
double v[n] // tangent vector
double u[m] // range weight vector
double h[n] // resulting second-order derivatives
double z[m] // resulting adjoint vector

while h = uT∇2F (x)v and zT = uTF ′(x). For detailed information about the
ADOL-C subroutines, the reader might refer to [2].

For the differentiation, we simply set the independent vector [X ] = [u; y]
and the dependent vector [Y ] = [N ; y] and correspondingly calculate N inside the
routine that returns the goal functional Cd. It should also be mentioned that, apart
from Ny, the derivatives with respect to the design parameters u are propagated
within the design chain in the reverse order as vector matrix products. In addition
to the flow solver, the other programs of the design chain, namely meshdefo, difgeo,
defgeo, have to be differentiated, too. In [1], this reverse propagation of the adjoint
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vectors is covered in detail, and comparisons of the resulting adjoint sensitivities
versus finite differences are also illustrated.

In order to demonstrate the backward propagation of the derivative vectors,
which depend on u, we consider the last term Nu of the gradient ∇uL

a. By use of
the chain rule, we express this term as

∂N

∂u
=

∂N

∂m

∂m

∂dx

∂dx

∂x

∂x

∂u
. (4.2)

Starting with the first term from the left, the adjoint vector is propagated in reverse
order by vector matrix products. Therefore, we firstly calculate ∂N

∂m
∂m
∂dx and then

proceed in the same way with the other terms.

5. Numerical results

We apply now the single-step one-shot method and the related preconditioner Bk,
which were derived in the previous sections, to the drag reduction of a RAE2822
airfoil under transonic inviscid flow conditions. As design variables we choose 20
Hicks-Henne parameters, as mentioned in Section 2.

For the sake of simplicity, we do not update the values α and β of the aug-
mented Lagrangian in each one-shot iteration, but we keep them constant through
the whole optimization process. If we recall the descent condition (3.4), we see
that the choice of large numbers for the weighting coefficients α and β assures de-
scent in La. However, making these coefficients unnecessarily large, slows down the
coupled iteration. On the other hand, assigning small values to these coefficients
boosts up the speed of convergence. However, the state and adjoint state vectors,
which do not satisfy some certain levels of primal and dual feasibility, cause erro-
neous sensitivity calculations. Hence, the coupled one-shot iteration might diverge
and the whole optimization process may not be stable. Therefore, a compromise
should be made, while selecting the values for α and β.

In order to determine these coefficients, the following method is proposed:
By deriving α and β from the descent condition, we may minimize α as a function
of β, such that

min
β

√
α ≡ 1 + θ

2β

(1− ρ)
√
β
with θ ≡ ‖Nyy‖ , (5.1)

which leads to the following values:

β =
θ

2
and α =

2θ
(1 − ρ)2

. (5.2)

Here, we might assume ‖Nyy‖ = 1. This assumption is tested and justified in [6]
at least for contractive fixed point solvers based on elliptic PDEs.

As a stopping criteria, we choose |Δu| < ε, where ε is a user defined tolerance.
For our particular application we have chosen ε = 0.0001.

As flow conditions, we have an inflow Mach number of M∞ = 0.73 and an
angle of attack of α = 2◦.
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Figure 2. Optimization history

Within the first 30 iterations, in order to smooth out possible oscillatory
effects, caused by the initialization of the flow field, we do only updates of the
state and the adjoint state, without changes of the airfoil geometry. Then, from
the 31st iteration on, we do the single-step one-shot iteration as stated in (1.9).

Figure 2 shows the optimization histories of the augmented Lagrangian, the
cost functional Cd, the primal as well as the adjoint state residual. We observe,
that after approximately 1600 iterations, the coupled iteration converges and the
drag coefficient is reduced drastically.

Figure 3 shows the pressure distributions and geometries of the initial and
optimized airfoils. For the optimized airfoil we observe, that the initial shock could
be completely eliminated. It is well known, that this is only fulfilled for the correct
physical optimum.

Figure 4 shows the convergence history of the flow calculation, just for the
initial RAE2822 airfoil. After approximately 400 iterations, the single iterating
primal state solver reaches the same level of convergence as the primal states in
the coupled iteration, i.e., during the single-step one-shot approach.

Consequently, we just measure a deterioration factor of 4 from the simulation
to the one-shot optimization.



202 E. Özkaya and N.R. Gauger

Figure 3. Pressure distributions and geometries of initial and opti-
mized airfoils

6. Conclusion

We presented the development of a single-step one-shot approach for the efficient
transition from simulation to optimization. This methodology is in principle ap-
plicable to all areas of scientific computing, where large scale governing equations
involving discretized PDEs are treated by custom made fixed point solvers. To
exploit the domain specific experience and expertise invested in these simulation
tools, we proposed to extend them in an automated fashion by the use of AD tools.
A new preconditioner which is derived by considering an augmented Lagrangian
formulation of the optimization problem was employed in order to achieve bounded
retardation of the overall optimization process. In particular, we focused on an ap-
plication in aerodynamics to optimize the RAE2822 airfoil under transonic flow
conditions. It turned out, that with the suggested single-step one-shot approach
an optimization could be performed for this case by the numerical costs of just 4
flow calculations.
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Figure 4. Convergence history of flow calculation for initial RAE2822 airfoil
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Shape Differentiability of Drag Functional
for Compressible Navier-Stokes Equations

P.I. Plotnikov, E.V. Ruban and J. Sokolowski

Abstract. Compressible, stationary Navier-Stokes (N-S) equations are con-
sidered. It is shown, that the model is well posed, i.e., there exist weak so-
lutions in bounded domains, subject to inhomogeneous boundary conditions.
The shape sensitivity analysis is performed in the case of small perturbations
of the so-called approximate solutions. The approximate solutions are deter-
mined from Stokes problem. The differentiability of solutions with respect to
the coefficients of differential operators is obtained, therefore, the shape dif-
ferentiability of the drag functional can be shown. The shape gradient of the
drag functional is derived in the classical and useful for computations form,
an appropriate adjoint state is introduced to this end. The proposed method
of shape sensitivity analysis is general, and can be used to establish the well-
posedness for distributed and boundary control problems as well as for inverse
problems in the case of the state equations in the form of compressible N-S
equations.

Mathematics Subject Classification (2000). Primary: 76N10; 35Q30; Secondary:
35A15; 76N15.

Keywords. Shape optimization, compressible Navier-Stokes equations, drag
minimization, transport equations, necessary optimality conditions.

1. Preliminaries

Shape optimization for compressible N-S equations is considered in the literature
to be important for applications, we refer the reader, e.g., to [9] for a review, and
to [10] for general framework in incompressible case. The results presented in the
paper lead, in particular, to the first-order optimality conditions for a class of
shape optimization problems for compressible N-S equations.

The shape optimization for compressible N-S equations is a field of active
research, e.g., in aerodynamics. The main difficulty in analysis of such optimiza-
tion problems is the mathematical modeling, i.e., the lack of the existence results
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for inhomogeneous boundary value problems in bounded domains [18]. The au-
thors already proved the existence of an optimal shape for drag minimisation in
three spatial dimensions under the Mosco convergence of admissible domains and
assuming that the family of admissible domains is nonempty [17]. This is the gen-
eral result on the compactness of the set of solutions to N-S equations for the
admissible family of obstacles, we refer the reader to [14]–[21] for further details.
The shape differentiability of solutions to N-S equations with respect to boundary
perturbations is shown in [19], and leads to the optimality system for the shape
optimisation problem under considerations.

1.1. Function spaces

In this paragraph we assemble some technical results which are used throughout
of the paper. Function spaces play a central role, and we recall some notations,
fundamental definitions and properties, which are classical. The proofs of some
results given here can be found, e.g., in [19]. For our applications we need the
results in three spatial dimensions, therefore, the space dimension stands d = 3 in
the paragraph on the embedding theorems.

Let Ω be the whole space R3 or a bounded domain in R3 with the bound-
ary ∂Ω of class C1. For an integer l ≥ 0 and for an exponent r ∈ [1,∞),
we denote by H l,r(Ω) the Sobolev space endowed with the norm ‖u‖Hl,r(Ω) =
sup|α|≤l ‖∂αu‖Lr(Ω). For real 0 < s < 1, the fractional Sobolev space Hs,r(Ω)
is obtained by the interpolation between Lr(Ω) and H1,r(Ω), and consists of all
measurable functions with the finite norm

‖u‖Hs,r(Ω) = ‖u‖Lr(Ω) + |u|s,r,Ω,

where

|u|rs,r,Ω =
∫

Ω×Ω
|x− y|−d−rs|u(x)− u(y)|r dxdy. (1)

In the general case, the Sobolev space H l+s,r(Ω) is defined as the space of meas-
urable functions with the finite norm ‖u‖Hl+s,r(Ω) = sup|α|≤l ‖∂αu‖Hs,r(Ω).
For 0 < s < 1, the Sobolev space Hs,r(Ω) is, in fact the interpolation space
[Lr(Ω), H1,r(Ω)]s,r.

Furthermore, the notation H l,r
0 (Ω), with an integer l, stands for the closed

subspace of the space H l,r(Ω) of all functions u ∈ Lr(Ω) which being extended by
zero outside of Ω belong to H l,r(R3).

Denote by H0,r
0 (Ω) and H1,r

0 (Ω) the subspaces of Lr(R3) and H1,r(R3), re-
spectively, of all functions vanishing outside of Ω. Obviously H1,r

0 (Ω) and H1,r
0 (Ω)

are isomorphic topologically and algebraically and we can identify them. However,
we need the interpolation spacesHs,r

0 (Ω) for non-integers, in particular for s = 1/r.

Definition 1.1. For all 0 < s ≤ 1 and 1 < r < ∞, we denote by Hs,r
0 (Ω) the

interpolation space [H0,r
0 (Ω),H1,r

0 (Ω)]s,r endowed with one of two equivalent norms
[19] defined by interpolation method.
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It follows from the definition of interpolation spaces thatHs,r
0 (Ω) ⊂ Hs,r(R3)

and for all u ∈ Hs,r
0 (Ω),

‖u‖Hs,r(R3) ≤ c(r, s)‖u‖Hs,r
0 (Ω), u = 0 outside Ω. (2)

In other words, Hs,r
0 (Ω) consists of all elements u ∈ Hs,r(Ω) such that the ex-

tension u of u by 0 outside of Ω have the finite [H0,r
0 (Ω),H1,r

0 (Ω)]s,r-norm. We
identify u and u for the elements u ∈ Hs,r

0 (Ω). With this identification it follows
that H1,r

0 (Ω) ⊂ Hs,r
0 (Ω) and the space C∞0 (Ω) is dense in Hs,r

0 (Ω). It is worthy to
note that for 0 < s < 1 and for 1 < r < ∞, the function u belongs to the space
Hs,r(R3) if and only if u ∈ Hs,r(Ω) and dist (x, ∂Ω)−su ∈ Lr(Ω). We also point
out that the interpolation space Hs,r

0 (Ω) coincides with the Sobolev space Hs,r
0 (Ω)

for s �= 1/r. Recall that the standard space Hs,r
0 (Ω) is the completion of C∞0 (Ω)

in the Hs,r(Ω)-norm.
Embedding theorems. For sr > d and 0 ≤ α < s− r/d, the embedding Hs,r(Ω) ↪→
Cα(Ω) is continuous and compact. In particular, for sr > d, the Sobolev space
Hs,r(Ω) is a commutative Banach algebra, i.e., for all u, v ∈ Hs,r(Ω),

‖uv‖Hs,r(Ω) ≤ c(r, s)‖u‖Hs,r(Ω)‖v‖Hs,r(Ω). (3)

If sr < d and t−1 = r−1 − d−1s, then the embedding Hs,r(Ω) ↪→ Lt(Ω) is contin-
uous. In particular, for α ≤ s, (s− α)r < d and β−1 = r−1 − d−1(s− α),

‖u‖Hα,β(Ω) ≤ c(r, s, α, β,Ω)‖u‖Hs,r(Ω). (4)

It follows from (2) that all the embedding inequalities remain true for the elements
of the interpolation space Hs,r

0 (Ω).
Duality. We define

〈u, v〉 =
∫
Ω

u v dx (5)

for any functions such that the right-hand side make sense. For r ∈ (1,∞), each
element v ∈ Lr′(Ω), r′ = r/(r − 1), determines the functional Lv of (Hs,r

0 (Ω))′ by
the identity Lv(u)〈u, v〉. We introduce the (−s, r′)-norm of an element v ∈ Lr′(Ω)
to be by definition the norm of the functional Lv, that is

‖v‖H−s,r′(Ω) = sup
u∈Hs,r

0 (Ω)
‖u‖Hs,r

0 (Ω)=1

|〈u, v〉|. (6)

Let H−s,r′(Ω) denote the completion of the space Lr′(Ω) with respect to (−s, r′)-
norm. For an integer s, H−s,r′(Ω) is topologically and algebraically isomorphic to
(Hs,r

0 (Ω))′. The same conclusion holds true for all s ∈ (0, 1). Moreover, we can
identify H−s,r′(Ω) with the interpolation space [Lr′(Ω), H−1,r

′
0 (Ω)]s,r, see, e.g.,

[19]. With this denotations we have the duality principle

‖u‖Hs,r
0 (Ω) sup

v∈C∞0 (Ω)
‖v‖H−s,r′ (Ω)

=1

|
〈
u, v

〉
|. (7)



208 P.I. Plotnikov, E.V. Ruban and J. Sokolowski

With applications to the theory of N-S equations in mind, we introduce the
smaller dual space defined as follows. We identify the function v ∈ Lr′(Ω) with
the functional Lv ∈ (Hs,r(Ω))′ and denote by H−s,r′(Ω) the completion of Lr′(Ω)
in the norm

‖v‖
H−s,r′(Ω) := sup

u∈Hs,r(Ω)
‖u‖Hs,r(Ω)=1

|
〈
u, v

〉
|. (8)

In the sense of this identification the space C∞0 (Ω) is dense in the interpolation
space H−s,r(Ω). It follows immediately from the definition that

H−s,r′(Ω) ⊂ (Hs,r(Ω))′ ⊂ H−s,r′(Ω).

For an arbitrary bounded domain Ω ⊂ R3 with a Lipschitz boundary, we introduce
the Banach spaces

Xs,r = Hs,r(Ω)∩H1,2(Ω), Y s,r = Hs+1,r(Ω)∩H2,2(Ω), Zs,r = Hs−1,r(Ω)∩L2(Ω)

equipped with the norms

‖u‖Xs,r = ‖u‖Hs,r(Ω) + ‖u‖H1,2(Ω), ‖u‖Y s,r‖u‖H1+s,r(Ω) + ‖u‖H2,2(Ω),

‖u‖Zs,r = ‖u‖Hs−1,r(Ω) + ‖u‖L2(Ω).

It can be easily seen that the embeddings Y s,r ↪→ Xs,r ↪→ Zs,r are compact and
for sr > 3, each of the spaces Xs,r and Y s,r is a commutative Banach algebra.

1.2. Stationary Navier-Stokes equations

We restrict ourselves to the inhomogeneous boundary value problems for com-
pressible, stationary N-S equations. Such a modeling is considered in [14]-[19].
In particular, the well-posedness for inhomogeneous boundary value problems of
elliptic-hyperbolic type is shown in [19]. Analysis is performed for small perturba-
tions of the approximate solutions, which are determined from the Stokes prob-
lem. The existence and uniqueness of solutions close to approximate solution are
proved, and in addition, the differentiability of solutions with respect to the coef-
ficients of differential operators is shown in [19]. The results on the well-posedness
of nonlinear problem are interesting on its own, and are used to obtain the shape
differentiability of the drag functional for incompressible N-S equations. The shape
gradient of the drag functional is derived in the classical and useful for compu-
tations form, an appropriate adjoint state is introduced to this end. The shape
derivatives of solutions to the N-S equations are given by smooth functions, how-
ever the shape differentiability is shown in a weak norm. The method of analysis
proposed in [19] is general, and can be used to establish the well-posedness for
distributed and boundary control problems as well as for inverse problems in the
case of the state equations in the form of compressible N-S equations. The differ-
entiability of solutions to the N-S equations with respect to the data leads to the
first-order necessary conditions for a broad class of optimization problems.
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2. Shape optimisation for Navier-Stokes equations

We present an example of shape optimization in aerodynamics. Mathematical anal-
ysis of the drag minimization problem for compressible N-S equations can be found,
e.g., in [17] on the domain continuity of solutions, and in [19] on the shape differ-
entiability of the drag functional.
Mathematical model in the form of N-S equations. We assume that the viscous
gas occupies the double-connected domain Ω = B\S, where B ⊂ R3, is a hold-all
domain with the smooth boundary Σ = ∂B, and S ⊂ B is a compact obstacle.
Furthermore, we assume that the velocity of the gas coincides with a given vector
field U ∈ C∞(R3)3 on the surface Σ. In this framework, the boundary of the
flow domain Ω is divided into the three subsets, inlet Σin, outgoing set Σout In
its turn the compact Γ = Σ0 ∩ Σ splits the surface Σ into three disjoint parts
Σ = Σin ∪Σout ∪ Γ. The problem is to find the velocity field u and the gas density
� satisfying the following equations along with the boundary conditions

Δu+ λ∇div u = R�u · ∇u+
R

ε2
∇p(�) in Ω, div (�u) = 0 in Ω, (9)

u = U on Σ, u = 0 on ∂S, � = �0 on Σin, (10)

where the pressure p = p(�) is a smooth, strictly monotone function of the density,
ε is the Mach number, R is the Reynolds number, λ is the viscosity ratio, and �0
is a positive constant.
Drag minimization. One of the main applications of the theory of compressible
viscous flows is the optimal shape design in aerodynamics. The classical sample
is the problem of the minimization of the drag of airfoil travelling in atmosphere
with uniform speed U∞. Recall that in our framework the hydro-dynamical force
acting on the body S is defined by the formula,

J(S) = −
∫

∂S

(
∇u+ (∇u)∗ + (λ− 1)div uI− R

ε2
pI
)
· ndS .

In a frame attached to the moving body the drag is the component of J parallel
to U∞,

JD(S) = U∞ · J(S), (11)
and the lift is the component of J in the direction orthogonal to U∞. For the
fixed data, the drag can be regarded as a functional depending on the shape of
the obstacle S. The minimization of the drag and the maximization of the lift are
between shape optimization problems of some practical importance.

We present the shape differentiability of the drag functional with respect to
the boundary variations, in the framework of the so-called approximate solutions
of the Navier-Stokes equations. One of the technical difficulties in the analysis is
the lack of uniqueness of solutions for the N-S equations under considerations.

2.1. Shape sensitivity analysis

We start with description of our framework for shape sensitivity analysis, or more
general, for well-posedness of compressible NSE. To this end we choose the vector
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field T ∈ C2(R3)3 vanishing in the vicinity of Σ, and define the mapping

y = x+ εT(x), (12)

which describes the perturbation of the shape of the obstacle. We refer the reader
to [25] for more general framework and results in shape optimization. For small ε,
the mapping x → y takes diffeomorphically the flow region Ω onto Ωε = B \ Sε,
where the perturbed obstacle Sε = y(S). Let (ūε, �̄ε) be solutions to problem (9)
in Ωε. After substituting (ūε, �̄ε) into the formulae for J, the drag becomes the
function of the parameter ε. Our aim is, in fact, to prove that this function is well
defined and differentiable at ε = 0. This leads to the first-order shape sensitivity
analysis for solutions to compressible N-S equations. It is convenient to reduce
such an analysis to the analysis of dependence of solutions with respect to the
coefficients of the governing equations. To this end, we introduce the functions
uε(x) and �ε(x) defined in the unperturbed domain Ω by the formulae

uε(x) = Nūε(x+ εT(x)), �ε(x) = �̄ε(x+ εT(x)),

where
N(x) = [det (I+ εT′(x))(I + εT′(x))]−1. (13)

is the adjugate matrix of the Jacobi matrix I + εT′. Furthermore, we also use
the notation g(x) =

√
det N. It is easily to see that the matrices N(x) depends

analytically upon the small parameter ε and

N = I+ εD(x) + ε2D1(ε, x), (14)

where D = divTI−T′. Calculations show that for uε, �ε, the following boundary
value problem is obtained

Δuε +∇
(
λg−1 div uε −

R

ε2
p(�ε)

)
= A uε +RB(�ε, uε, uε) in Ω, (15a)

div
(
�εuε

)
= 0 in Ω, (15b)

uε = U on Σ, uε = 0 on ∂S, (15c)

�ε = �0 on Σin. (15d)

Here, the linear operator A and the nonlinear mapping B are defined in terms
of N,

A (u) = Δu−N−1 div
(
g−1NN∗∇(N−1u)

)
,

B(�, u,w) = �(N∗)−1
(
u∇

(
N−1w

))
.

(16)

2.2. Transport to the fixed domain by the change of variables

In this section we derive equations (15). We will write u(y) and �(y), y ∈ Ω, and
set

y = x+ εT(x), M(x) = I+ εT′(x), ũ(x) = u(y(x)), �ε(x) = �(y(x).
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Thus we get uε = N ũ. The Jacobi matrix M is connected with the matrix N by
the relations

det M = (det N)1/2 ≡ g, M = gN−1 (17)

For any function φ ∈ C1(Ω) we have ∇yφ = (M∗)−1∇xφ̃, where φ̃(x) = φ(y(x)).
It follows from this that the identities∫
Ω̃

(divyu)(y(x)) φ̃(x) det M dx =
∫
Ω

(divyu)(y)φ(y)det M dy = −
∫
Ω

u · ∇yφdy

= −
∫
Ω̃

ũ · (M∗)−1∇xφ̃(x) det M dx =
∫
Ω̃

divx

(
(det M)M−1ũ

)
φ̃(x) dx

hold true for all φ ∈ C∞0 (Ω). On the other hand, by virtue of (17) we have
(det M)M−1ũ = uε(x). This leads to the equalities

(divyu)(y(x)) = g−1divx

(
N ũ(x)

)
≡ g−1divxuε(x),

divy(�u)(y(x)) = g−1divx(�εuε),
(18)

which imply the modified mass balance equation (15b). From (18) and the identity
(M∗)−1 = g−1N∗ we obtain

∇
(
λdivu− R

ε2
p(�)

)
= g−1N∗∇

(
λg−1 div uε −

R

ε2
p(�ε)

)
. (19)

Combining (18) with the identity Δ = div∇ we obtain

Δu(y) = g−1 div
(
N(M∗)−1∇ũ

)
= g−1 div

(
g−1NN∗∇(N−1uε)

)
= g−1N∗

(
Δuε −A (uε)

) (20)

Next note that the components (u∇u)i of the vector u∇u satisfy the equalities

(u∇u)i = u · ∇yui = ũ ·
(
(M∗)−1∇ũi

)
= g−1Nũ · ∇ũi = g−1uε · ∇

(
N−1uε

)
i

This gives
�u∇u = g−1N∗B(�ε, uε, uε). (21)

Substituting (19)–(21) into mass balance equation (9) and multiplying both sides
of the resulting equality by g(N∗)−1 we obtain modified equation (15a).

The specific structure of the matrix N does not play any particular role in the
further analysis. Therefore, we consider a general problem of the existence, unique-
ness and dependence on coefficients of the solutions to equations (15) under the
assumption that N is a given matrix-valued function which is close, in an appro-
priate norm, to the identity mapping I and coincides with I in the vicinity of Σ.
By abuse of notations, we write simply u and � instead of uε and �ε, when study-
ing the well-posedness and dependence on N. Before formulation of main results
we write the governing equation in more transparent form using the change of
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unknown functions proposed by M. Padula. To do so we introduce the effective
viscous pressure

q =
R

ε2
p(�)− λg−1 div u,

and rewrite equations (15) in the equivalent form

Δu−∇q = A (u) +RB(�, u, u) in Ω, (22a)

div u = aσ0p(�)−
gq

λ
in Ω, (22b)

u · ∇�+ gσ0p(�) � =
gq

λ
� in Ω, (22c)

u = U on Σ, u = 0 on ∂S, (22d)

� = �0 on Σin. (22e)

where σ0 = R/(λε2). In the new variables (u, q, �) the expression for the force J
reads

J = −
∫
Ω

[
g−1

(
N∗∇(Nu) +∇(Nu)∗N− div u

)
− q −R�u⊗ u

]
N∗∇η dx. (23)

where η ∈ C∞(Ω) is an arbitrary function, which is equal to 1 in an open neigh-
borhood of the obstacle S and 0 in a vicinity of Σ. The value of J is independent
of the choice of the function η.

3. Perturbations of the approximate solutions

We assume that λ & 1 and R ' 1, which corresponds to almost incompressible
flow with low Reynolds number. In such a case, the approximate solutions to
problem (22) can be chosen in the form (�0, u0, q0), where �0 is a constant in
boundary condition (22e), and (u0, q0) is a solution to the boundary value problem
for the Stokes equations,

Δu0 −∇q0 = 0, div u0 = 0 in Ω,
u0 = U on Σ, u0 = 0 on ∂S, Πq0 = q0 .

(24)

In our notations Π is the projector,

Πu = u− 1
measΩ

∫
Ω

u dx.

Equations (24) can be obtained as the limit of equations (22) for the passage
λ→∞, R→ 0. It follows from the standard elliptic theory that for the boundary
∂Ω ∈ C∞, we have (u0, q0) ∈ C∞(Ω). We look for solutions to problem (22) in the
form

u = u0 + v, � = �0 + ϕ, q = q0 + λσ0p(�0) + π + λm, (25)
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with the unknowns functions ϑ = (v, π, ϕ) and the unknown constant m. Substi-
tuting (25) into (22) we obtain the following boundary problem for ϑ,

Δv−∇π = A (u) +RB(�, u, u) in Ω,

div v = g
( σ

�0
ϕ−Ψ[ϑ]−m

)
in Ω,

u · ∇ϕ+ σϕΨ1[ϑ] +mg� in Ω,
v = 0 on ∂Ω, ϕ = 0 on Σin, Ππ = π,

(26a)

where

Ψ1[ϑ] = g
(
�Ψ[ϑ]− σ

�0
ϕ2
)
+ σϕ(1 − g), Ψ[ϑ]

q0 + π

λ
− σ

p′(�0)�0
H(ϕ),

σ = σ0p
′(�0)�0, H(ϕ) = p(�0 + ϕ)− p(�0)− p′(�0)ϕ,

the vector field u and the function � are given by (25). Finally, we specify the
constant m. In our framework, in contrast to the case of homogeneous boundary
problem, the solution to such a problem is not trivial. Note that, since div v is
of the null mean value, the right-hand side of equation (26a)3 must satisfy the
compatibility condition

m

∫
Ω

g dx =
∫
Ω

g
( σ
�0

ϕ−Ψ[ϑ]
)
dx,

which formally determines m. This choice of m leads to essential mathematical
difficulties. Tho make this issue clear note that in the simplest case g = 1 we have
m = �−10 σ(I − Π)ϕ + O(|ϑ|2, λ−1), and the principal linear part of the governing
equations (26a) becomes⎛⎝ Δ −∇ 0

div 0 − σ
�0

0 0 u∇+ σ

⎞⎠⎛⎝ v
π
ϕ

⎞⎠+

⎛⎝ 0
m

−m�0

⎞⎠ ∼

⎛⎝ Δv−∇π
div v− σ

�0
Πϕ

u∇ϕ+ σΠϕ

⎞⎠
Hence, the question of solvability of the linearized equations derived for (26) can be
reduced to the question of solvability of the boundary value problem for nonlocal
transport equation

u∇ϕ+ σΠϕ = f ,

which is very difficult because of the loss of maximum principle. In fact, this
question is concerned with the problem of the control of the total gas mass in
compressible flows. Recall that the absence of the mass control is the main ob-
stacle for proving the global solvability of inhomogeneous boundary problems for
compressible N-S equations, we refer to [8] for discussion. In order to cope with
this difficulty we write the compatibility condition in a sophisticated form, which
allows us to control the total mass of the gas. To this end we introduce the auxiliary
function ζ satisfying the equations

− div(uζ) + σζ = σg in Ω, ζ = 0 on Σout, (26b)
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and fix the constant m as follows

m = κ

∫
Ω

(�−10 Ψ1[ϑ]ζ − gΨ[ϑ]) dx, κ =
(∫
Ω

g(1− ζ − �−10 ζϕ) dx
)−1

. (26c)

In this way the auxiliary function ζ becomes an integral part of the solution to
problem (26).

3.1. Existence and uniqueness theory

Denote by E the closed subspace of the Banach space Y s,r(Ω)3 ×Xs,r(Ω)2 in the
following form

E = {ϑ = (v, π, ϕ) : v = 0 on ∂Ω, ϕ = 0 on Σin, Ππ = π }, (27)

and denote by Bτ ⊂ E the closed ball of radius τ centered at 0. Next, note that
for sr > 3, elements of the ball Bτ satisfy the inequality

‖v‖C1(Ω) + ‖π‖C(Ω) + ‖ϕ‖C(Ω) ≤ ce(r, s,Ω)‖ϑ‖E ≤ ceτ, (28)

where the norm in E is defined by

‖ϑ‖E = ‖v‖Y s,r(Ω) + ‖π‖Xs,r(Ω) + ‖ϕ‖Xs,r(Ω) .

Theorem 3.1. Assume that the surface Σ and given vector field U satisfy emergent
field conditions. Furthermore, let σ∗, τ∗ be given constants determined in [19], and
let positive numbers r, s, σ satisfy the inequalities

1/2 < s ≤ 1, 1 < r < 3/(2s− 1), sr > 3, σ > σ∗. (29)

Then there exists τ0 ∈ (0, τ∗], depending only on U,Ω, r, s, σ, such that for all

τ ∈ (0, τ0], λ−1, R ∈ (0, τ2], ‖N− I‖C2(Ω) ≤ τ2, (30)

problem (26), with u0 given by (24), has a unique solution ϑ ∈ Bτ . Moreover, the
auxiliary function ζ and the constants κ,m admit the estimates

‖ζ‖Xs,r + |κ| ≤ c, |m| ≤ cτ < 1, (31)

where the constant c depends only on U,Ω, r, s and σ.

3.2. Material derivatives of solutions

Theorem 3.1 guarantees the existence and uniqueness of solutions to problem (26)
for all N close to the identity matrix I. The totality of such solutions can be re-
garded as the mapping from N to the solution of the N-S equations. The natural
question is the smoothness properties of this mapping, in particular its differen-
tiability. With application to shape optimization problems in mind, we consider
the particular case where the matrices N depend on the small parameter ε and
have representation (14). We assume that C1 norms of the matrix-valued func-
tions D and D1(ε) in (14) have a majorant independent of ε. By virtue of The-
orem 3.1, there are the positive constants ε0 and τ such that for all sufficiently
small R, λ−1 and ε ∈ [0, ε0], problem (26) with N = N(ε) has a unique solution
ϑ(ε) = (v(ε), π(ε), ϕ(ε)), ζ(ε),m(ε), which admits the estimate

‖ϑ(ε)‖E + |m(ε)| ≤ cτ, ‖ζ(ε)‖Xs,r ≤ c, (32)
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where the constant c is independent of ε, and the Banach space E is defined by
(27). Denote the solution for ε = 0 by (ϑ(0),m(0), ζ(0)) by (ϑ,m, ζ), and define
the finite differences with respect to ε

(wε, ωε, ψε)ε−1(ϑ− ϑ(ε)), ξε = ε−1(ζ − ζ(ε)), nε = ε−1(m−m(ε)).

Formal calculations shows that the limit (w, ω, ψ, ξ, n) = lim
ε→0

(wε, ωε, ψε, ξε, nε) is
a solution to linearized equations

Δw−∇ω = RC0(w, ψ) +D0(D) in Ω,

divw = b021 ψ − b022 ω + b023 n+ b030 d in Ω,

u∇ψ + σψ = −w · ∇ϕ+ b011 ψ + b012 ω + b013 n+ b010 d in Ω,

− div(uξ) + σξ = div(ζw) + σd in Ω,
w = 0 on ∂Ω, ψ = 0 on Σin, ξ = 0 on Σout,

ω −Πω = 0, n = κ

∫
Ω

(
b031 ψ + b032 ω + b034 ξ + b030 d

)
dx,

(33)

where d = 1/2Tr D, the variable coefficients b0ij and the operators C0, D0, are
defined by the formulae

b011 = Ψ[ϑ]− �H ′(ϕ) +m− 2σ
�0

ϕ, b012 = λ−1�, b013 = �,

b010 = �Ψ[ϑ]− σ

�0
ϕ2 − σϕ+m�, b021 =

σ

�0
ψ0 +H ′(ϕ),

b022 = −λ−1, b023 = −1, b020σϕ�
−1
0 −Ψ[ϑ]−m,

b031 = �−10 ζ
(
Ψ[ϑ]− �H ′(ϕ)− 2σ

�0
ϕ
)
−H ′(ϕ) +m�−10 ζ,

b032 = (λ�0)−1�ζb012 + λ−1, b034 = �−10 Ψ1[ϑ] +m(1 + �−10 ϕ)

b030 = �−10 ζ(d0 −m�) + Ψ[ϑ]−m(1− ζ − �−10 ζϕ),

(34)

C0(ψ,w) = Rψu∇u+R�w∇u,+R�u∇w, (35)

D0(D) = Ru∇(Du) +RD∗(u∇u)

+ div
(
(D+D∗)∇u− 1

2
Tr D∇u

)
−DΔu−Δ(Du). (36)

The justification of the formal procedure meets the serious problems, since the
smoothness of solutions to problem (26) is not sufficient for the well-posedness of
problem (33) in the standard weak formulation. In order to cope with this difficulty
we define very weak solutions to problem (33). The construction of such solutions
is based on the following lemma [19]. The lemma is given in R3, for our application
d = 3.

Lemma 3.2. Let Ω ⊂ R3 be a bounded domain with the Lipschitz boundary, let
exponents s and r satisfy the inequalities sr > d, 1/2 ≤ s ≤ 1 and ϕ, ς ∈ Hs,r(Ω)∩
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H1,2(Ω), w ∈ H1−s,r′
0 (Ω)∩H1,2

0 (Ω). Then there is a constant c depending only on
s, r and Ω, such that the trilinear form

B(w, ϕ, ς) = −
∫
Ω

ςw · ∇ϕdx

satisfies the inequality

|B(w, ϕ, ς)| ≤ c‖w‖H1−s,r′
0 (Ω)

‖ϕ‖Hs,r(Ω)‖ς‖Hs,r(Ω), (37)

and can be continuously extended to B : H1−s,r′
0 (Ω)3 ×Hs,r(Ω)2 �→ R. In particu-

lar, we have ς∇ϕ ∈ Hs−1,r(Ω) and ‖ς∇ϕ‖H1−s,r(Ω) ≤ c‖ϕ‖Hs,r(Ω)‖ς‖Hs,r(Ω).

Definition 3.3. The vector field w ∈ H1−s,r′
0 (Ω)3, functionals (ω, ψ, ξ) ∈ H−s,r′(Ω)3

and constant n are said to be a weak solution to problem (33), if 〈ω, 1〉 = 0 and
the identities∫

Ω

w
(
H−R�∇u · h+R�∇h∗u

)
dx−B(w, ϕ, ς)−B(w, υ, ζ)

+
〈
ω,G− b012ς − b022g − κb032

〉
+
〈
ψ, F − b011ς − b021g − κb031 −Ru · ∇u · h

〉
+
〈
ξ,M − κb034

〉
+ n

(
1−

〈
1, b013ς

〉)
(38)

=
〈
d, b010ς + b020g + κb030 + συ

〉
+
〈
D0,h

〉
.

hold true for all (H, G, F,M) ∈ (C∞(Ω))6 such that G = ΠG. Here d = 1/2 Tr D,
the test functions h, g, ς, υ are defined by the solutions to adjoint problems

Δh−∇g = H, divh = G, L ∗ς = F, L υ =M in Ω, (39)

h = 0 on ∂Ω, Πg = g, ς = 0 on Σout, υ = 0 on Σin. (40)

We are now in a position to formulate the third main result of this paper.

Theorem 3.4. Under the above assumptions,

wε → w weakly in H1−s,r′
0 (Ω), nε → n in R,

ψε → ψ, ωε → ω, ξε → ξ (∗)-weakly in H−s,r′(Ω) as ε→ 0,
(41)

where the limits, vector field w, functionals ψ, ω, ξ, and the constant n are given
by the weak solution to problem (33).

Note that the matrices N(ε) defined by equalities (13) meet all requirements
of Theorem 3.4, and in the special case we have in representation (14)

D(x) = divT(x) I −T′(x). (42)

Therefore, Theorem 3.4, together with the formulae (11) and (23), imply the ex-
istence of the shape derivative for the drag functional at ε = 0. Straightforward
calculations lead to the following result.
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Theorem 3.5. Under the assumptions of Theorem 3.4, there exists the shape de-
rivative

d

dε
JD(Sε)

∣∣∣
ε=0

= Le(T) + Lu(w, ω, ψ),

where the linear forms Le and Lu are defined by the equalities

Le(T) =
∫
Ω

divT(∇u+∇u∗ − div uI)U∞ dx

−
∫
Ω

[
∇u+∇u∗ − div u− qI−R�u⊗ u

]
D∇η ·U∞ dx

−
∫
Ω

[
D∗∇u+∇u∗D+∇(Du) +∇(Du)∗

]
∇η ·U∞ dx

and

Lu(w, ω, ψ) =
∫
Ω

w
[
ΔηU∞ +R�(u · ∇η)U∞ +R�(u ·U∞)∇η

]
dx

+
〈
ω,∇η ·U∞

〉
+R

〈
ψ, (u · ∇η)(u ·U∞)

〉
.

While Le depends directly on the vector field T, the linear form Lu depends
on the weak solution (w, ψ, ω) to problem (33), thus depends on the direction
T in a very implicit manner, which is inconvenient for applications. In order to
cope with this difficulty, we define the adjoint state Y = (h, g, ς, υ, l)� given as a
solution to the linear equation

LY − UY −VY = Θ, (43)

supplemented with boundary conditions (40). Here the operators L, U, V and the
vector field Θ are defined by

L =

⎛⎜⎜⎜⎜⎝
Δ −∇ 0 0 0
div 0 0 0 0
0 0 L ∗ 0 0
0 0 0 L 0
0 0 −B13 0 1

⎞⎟⎟⎟⎟⎠ , U =

⎛⎜⎜⎜⎜⎝
0 0 −∇ϕ −ζ∇ 0
0 0 Π21 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

V =

⎛⎜⎜⎜⎜⎝
R�(∇u− u∇) 0 0 0 0

0 −λ−1Π 0 0 κΠb032
Ru · ∇u b012 b011 0 κb031

0 0 0 0 κb034
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

Θ = (ΔηU∞ +R�(∇η ⊗U∞ +U∞ ⊗∇η)u, Π(∇η ·U∞), R(u∇η)(uU∞), 0, 0) ,

Π2i(·) = Π(b02i(·)), B13(·) =
〈
1, b013(·)

〉
The following theorem guarantees the existence of the adjoint state and gives the
expression of the shape derivative for the drag functional in terms of the vector
field T.
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Theorem 3.6. Let a given solution ϑ ∈ Bτ , (ζ,m) ∈ Xs,r×R, to problem (26) meets
all requirements of Theorem 3.1. Then there exists positive constant τ1 (depending
only on U, Ω and r, s) such that, if τ ∈ (0, τ1] and Rλ−1 ≤ τ21 , then there exists
a unique solution Y ∈ (Y s,r)3 × (Xs,r)3 × R to problem (43), (40). The form Lu

has the representation

Lu(w, ψ, ω) =
∫
Ω

[
divT

(
b010ς + b020g + συ + κb030l

)
+D0(divT−T′)h

]
dx (44)

where the coefficients b0ij and the operator D0 are defined by the formulae (34), (36).
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Null-controllability for a Coupled
Heat-Finite-dimensional Beam System

Jean-Pierre Raymond and Muthusamy Vanninathan

Abstract. A model representing a coupling between a heat conducting medium
and a finite-dimensional approximation of a beam equation is considered.
We establish a Carleman inequality for this model. Next we deduce a null-
controllability result with an internal control in the conducting medium and
there is no control in the structure equation.
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1. Introduction

Let Ω be a two-dimensional rectangular domain defined by Ω =]0, L[×]0, 1[, with
boundary ∂Ω = Γe∪Γb∪Γp, where the different parts are given by Γe =]0, L[×{0},
Γb =]0, L[×{1} and Γp =

(
{0}∪{L}

)
×]0, 1[. We shall use the notation x = (x1, x2)

for x ∈ Ω. We also introduce Q = Ω×]0, T [, Γ = Γe ∪ Γb, Σ = Γ×]0, T [, Σe =
Γe×]0, T [, Σb = Γb×]0, T [, and Σp = Γp×]0, T [. Let us consider a system coupling
the heat equation in the domain Ω with a beam equation at its boundary Γb:

φ′ −Δφ = f in Q, φ = 0 on Σe, φ = z′ on Σb,

φ(0, x2, t) = φ(L, x2, t)

and ∂nφ(0, x2, t) = −∂nφ(L, x2, t) for (x2, t) ∈]0, 1[×]0, T [,
φ(0) = φ0 in Ω,

z′′ − βzx1x1 + αzx1x1x1x1 = −∂nφ on Σb,

z(0, t) = z(L, t), zx1(0, t) = zx1(L, t), for t ∈]0, T [,
zx1x1(0, t) = zx1x1(L, t), zx1x1x1(0, t) = zx1x1x1(L, t) for t ∈]0, T [,
z(x1, 0) = z0(x1) and z′(x1, 0) = z1(x1) in ]0, L[,

(1.1)
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where zx1 , zx1x1 , zx1x1x1 and zx1x1x1x1 denote the different partial derivatives of z
with respect to x1, while z′ and z′′ denote the different partial derivatives of z with
respect to t. The symbol ∂n denotes the normal derivative at the boundary. Let
us notice that we have taken periodic boundary conditions on Γp both for φ and
z. The coefficient α > 0 and β ≥ 0 are the adimensional rigidity and stretching
coefficients of the beam. For simplicity we shall set α = β = 1. We have here
considered the heat operator as a simplified model of the Stokes operator, this
later providing a more realistic model.

To the authors knowledge, the null-controllability of system (1.1) with a lo-
calized control acting in the heat equation and another one in the beam equation
is an open problem. Here we are interested in a null-controllability result for a sys-
tem in which the beam equation is replaced by a finite-dimensional approximation.
For that let us consider, for a fixed N , a family of smooth functions (ζ1, . . . , ζN ),
orthonormal in L2(Γb), with the periodicity conditions stated above. For example,
we can consider the firstN -functions of an orthonormal basis in L2(Γb) constituted
of eigenfunctions ζ ∈ H4(Γb) satisfying

− ζx1x1 + ζx1x1x1x1 = λζ on Γb,

ζ(0) = ζ(L), ζx1(0) = ζx1(L),

ζx1x1(0) = ζx1x1(L), ζx1x1x1(0) = ζx1x1x1(L).

By setting z(x1, t) =
∑N

i=1 ri(t)ζi(x1), and following a Galerkin approximation
procedure, the system is reduced to

φ′ −Δφ = f in Q, φ = 0 on Σe, φ = r′ · ζ on Σb,

φ(0, x2, t) = φ(L, x2, t)

and ∂nφ(0, x2, t) = −∂nφ(L, x2, t) for (x2, t) ∈]0, 1[×]0, T [,
φ(0) = φ0 in Ω,

r′′ +Ar = −
∫
Γb

∂nφ ζ in ]0, T [,

r(0) = r0 and r′(0) = r1 in RN ,

(1.2)

where ζ = (ζ1, . . . , ζN ) and r = (r1, . . . , rN ). In this model

A =
(∫

Γb

(ζi,x1ζj,x1 + ζi,x1x1ζj,x1x1)dx1

)
1≤i, j≤N

∈ RN×N

is a symmetric positive definite matrix. Denoting by 	m and 	M the lowest and
the highest eigenvalues of A, we have 	mI ≤ A ≤ 	MI.

The main result of the paper is the following theorem which is a null-controll-
ability result for (1.2) with an internal control in the heat conducting medium Ω.
We do not require any control on the beam part of the model.

Theorem 1. Let ω be an arbitrary nonempty open subset, relatively compact in Ω.
For all φ0 ∈ L2(Ω), r0 ∈ RN and r1 ∈ RN there exists a function u ∈ L2(Q) such
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that the solution of (1.2) with f = uχω×(0,T ) obeys

φ(T ) = 0, r(T ) = 0, r′(T ) = 0.

(χω×(0,T ) is the characteristic function of ω × (0, T ).)

We have already studied in [10] a model similar to (1.2) in which Ω is a
smooth domain in R2 (not necessarily a rectangle), and in which the structure
equation is replaced by an oscillator equation

r′′ + r = −
∫
Γi

∂nφn in ]0, T [, (1.3)

modeling the vibration of a tube of boundary Γi, surrounded by Ω, n being the
unit normal to Γi outward Ω. Thus in that model r(t) belongs to R2. In [10] φ
satisfies a Dirichlet homogeneous boundary condition on ∂Ω \ Γi.

The proof of the null-controllability stated in [10] is based on Carleman esti-
mates. The technique used in [10] to establish Carleman estimates is very similar
to the one used in [7]. But as explained in [10] the main difference between the
Carleman estimate proved in [7] and the one we obtain in [10] is that the new term∫ T

0
ρ−2sΓi

|r|2 appears in the RHS of Carleman estimates (ρ−2sΓi
is a weight function

only depending on t). This is due to the term r in equation (1.3). For system
(1.2) the term

∫ T

0
ρ−2sΓb

|r|2 will appear in the Carleman inequality. It is due to the
presence Ar in the structure equation, taking into account the deformation of the
structure. Such terms are not present in models coupling a fluid equation with the
motion of a rigid body as in [1] or [7].

In order to prove Theorem 1, this new term has to be estimated by the LHS
of Carleman estimates. This is done in [10] by proving an appropriate weighted
energy estimate for the structure equation. We shall see in a forthcoming work that
such an estimate is not sufficient to deal with more complicated models like Stokes
equations coupled with a finite-dimensional approximation of a structure equation
[11]. For such models a more general compactness argument has to be used. The
main objective of the present paper is to introduce this compactness argument in
Carleman estimates established for system (1.2). In order to present this compact-
ness argument we first have to prove a preliminary Carleman inequality. Since the
calculations are very similar to the ones in [10], we do not repeat them. We recall
without proof some inequalities obtained in [10], and we give details only when
the calculations are different.

Let us recall that null-controllability of systems coupling a fluid equation with
the motion of a rigid body is studied in [1, 7]. In [7] the solid is a disk, whereas in
[1] some symmetry assumption is assumed on the solid [1, Assumption (1.9)]. The
derivation of Carleman inequalities for parabolic problems can be found in [5] and
[6]. Because of the coupling with a hyperbolic part in the present model, proving
Carleman type inequality poses a technical challenge which we have overcome
in [10].

The plan of the article is as follows: As is known, the proof of Carleman
inequality involves a transformation of system (1.2) via a change of variables.
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The transformed operator is the heat operator conjugated by exponential. Here
due to the boundary conditions coupling the heat equation with the structure
equation we have to make a particular choice for the function appearing in the
exponential. We introduce the test function η appearing in the exponential and the
transformed system in Section 2. As a starting point of our calculations we recall a
first inequality obtained in [10] and we explain how to treat the boundary terms for
our model in Section 3. This treatment of boundary terms is somewhat different
from the one in [10]. New estimates for r are derived in Section 4. These new
estimates are next used in Section 5 to obtain an improved Carleman inequality
thanks to a compactness argument. The corresponding Carleman inequality for
the original system (1.2) is given in Section 6. The proof of Theorem 1 is provided
in Section 7.

Throughout the paper, we use the usual summation convention with respect
to repeated indices. Various constants independent of parameters (s, λ) and the
solution are generically denoted by C, unless stated otherwise.

2. Preliminary result and transformed system

Let V be the space defined by

V =
{
φ ∈ H1(Ω) | φ = 0 on Γe, φ(0, x2) = φ(L, x2) for x2 ∈]0, 1[

}
,

and denote by V ′ the topological dual of V. The space V will be equipped with
the norm

φ �→
(∫

Ω

|∇φ|2dx
)1/2

,

denoted by ‖·‖V (the same kind of notation will be used for other Banach spaces).
Let us remark that this norm is equivalent to the usual H1(Ω)-norm. The norm
in RN will be simply denoted by | · |. The inner product of s ∈ RN and σ ∈ RN is
denoted by s · σ.

Well-posedness of system (1.2) is straightforward and it can be established
using energy estimates, for instance. Indeed, multiplying (1.2) by (φ, r′), we get
the energy identity:

‖φ(t)‖2L2(Ω) + |A1/2r(t)|2 + |r′(t)|2 + 2
∫ t

0

∫
Ω

|∇φ|2

= 2
∫ t

0

∫
Ω

fφ+ ‖φ(0)‖2L2(Ω) + |A1/2r0|2 + |r1|2.

Using this, we can prove the following result.

Theorem 2. Let f ∈ L2(0, T ;L2(Ω)), φ0 ∈ L2(Ω), r0 ∈ RN and r1 ∈ RN . Then
there is a unique solution (φ, r) ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) × C1([0, T ];RN)
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to the system (1.2) satisfying the energy inequality

‖φ‖C([0,T ];L2(Ω)) + ‖φ‖L2(0,T ;V ) + ‖φ′‖L2(0,T ;H−1(Ω)) + ‖r‖C1([0,T ];RN )

≤ C
{
‖f‖L2(0,T ;L2(Ω)) + ‖φ0‖L2(Ω) + |r0|+ |r1|

}
.

Carleman inequality for the system (1.2) is stated in section 6. To prove this
inequality, we have to transform the system (1.2) to a new system via a change of
variables. We begin by listing the properties of the test function η which is used
in defining the change variables. These properties are used at various stages of our
computations below.

Lemma 3. Suppose that ω0 ⊂⊂ ω ⊂⊂ Ω. Then there exist a function η ∈ C4(Ω)
and positive constants CΓe and CΓb

such that

• η(x) > 0 for all x ∈ Ω,
• η(x) = CΓe and ∂nη ≤ 0 for all x ∈ Γe,
• η(x) = CΓb

, ∂nη = −1, and Δη(x) = 0, for all x ∈ Γb,
• η together with its partial derivatives with respect to x1, up to fourth order,

satisfy periodic boundary conditions on Γp,
• |∇η(x)| > 0 for all x ∈ Ω \ ω0.

Proof. The proof of [10, Lemma 3.1] can be adapted to the present geometrical
setting. �

With a large parameter λ ≥ 1, we introduce the function

α(x) = eλK1 − eλη(x) ∀x ∈ Ω, (2.1)

whereK1 > 0 is a constant, withK1 > maxx∈Ω |η(x)| and η is the function obeying
the conditions in Lemma 3. We set

β(x, t) =
α(x)

tk(T − t)k
, ρ(x, t) = eβ(x,t),

where the constant k is chosen such that k ≥ 2. Since η is constant on Γe and on
Γb, the functions β(·, t) and ρ(·, t) are also constants there. In the following, we set

ρΓb
(t) = ρ(·, t)|Γb

.

With another large parameter s ≥ 1, we also define the functions

fs(x, t) = ρ−s(x, t)f(x, t) and ψ(x, t) = ρ−s(x, t)φ(x, t). (2.2)

Notice that (since β →∞ as t→ 0+ or as t→ T−) ψ(·, 0) = ψ(·, T ) = 0 in Ω. An
easy calculation shows that

∇φ = ∇
(
esβψ

)
= esβ

(
∇ψ + sψ∇β

)
,

∂nφ = esβ
(
∂nψ + s ψ ∂nβ

)
= ρs

Γb
∂nψ + s r′ · ζ ∂nβ on Σb.
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Thus the coupled system (1.2) can be rewritten in terms of (ψ, r) as follows:

M1ψ +M2ψ = gs = fs + s(Δβ)ψ, in Q,

ψ = 0 on Σe, ψ = ρ−s
Γb

r′ · ζ on Σb,

ψ(0, x2, t) = ψ(L, x2, t),

and ∂nψ(0, x2, t) = −∂nψ(L, x2, t) for (x2, t) ∈]0, 1[×]0, T [,
ψ(0) = ψ(T ) = 0 in Ω,

r′′ +Ar = −
(
ρs
Γb

∫
Γb

∂nψ ζ + s

∫
Γb

r′ · ζ ∂nβ ζ

)
in (0, T ),

r(0) = r0 and r′(0) = r1,

(2.3)

where

M1ψ = ψ′ − 2s∇β · ∇ψ and M2ψ = sβ′ψ −Δψ − s2|∇β|2ψ. (2.4)

3. Carleman inequality (I)

In this section, we recall the first version of the Carleman inequality for the trans-
formed system (2.3) obtained in [10]. We next give estimates for the boundary
terms appearing in the first Carleman estimate because their treatment is differ-
ent from the calculations made in [10]. Writing the transformed equation satisfied
by ψ in the form M1ψ +M2ψ = gs is a crucial aspect of the proof.

From the first equation of the system (2.3) it follows that

‖M1ψ‖2L2(Q) + ‖M2ψ‖2L2(Q) + 2(M1ψ,M2ψ)L2(Q) = ‖gs‖2L2(Q). (3.1)

As in [10], the cross term 2(M1ψ,M2ψ)L2(Q) can be rewritten as follows

2(M1ψ,M2ψ)L2(Q) = I1 + I2 + I3,

where

I1 = 2
∫

Q

(
sβ′ψ −Δψ − s2|∇β|2ψ

)
ψ′, I2 = 4s

∫
Q

(∇β · ∇ψ)Δψ,

I3 = 4s
∫

Q

(
s2|∇β|2ψ − sβ′ψ

)
(∇β · ∇ψ) .

(3.2)

With calculations similar to those in [10], we can prove the following estimate

‖M1 ψ‖2L2(Q) + ‖M2 ψ‖2L2(Q) + s3λ4
∫

Q

e3λη

t3k(T − t)3k
|ψ|2 + J1 + J2 + J3 + J4

≤ C
{
‖fs‖2L2(Q) + s3λ4

∫
ω×(0,T )

e3λη

t3k(T − t)3k
|ψ|2

+sλ
∫ T

0

eλη
∣∣
Γb

tk(T − t)k
ρ−s
Γb

r′ ·
∫
Γb

∂n ψ ζ
}
,
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where

J1 = sλ

∫
Σb

eλη

tk(T − t)k
|∂nψ|2, J2 = s

∫ T

0

ρ−s
Γb

r′Δβ|Γb
·
∫
Γb

∂nψ ζ,

J3 = −s
∫
Σb

∂n(Δβ)|ψ|2,

J4 = 2
∫ T

0

((
s r′ β′ + s

∫
Γb

(r′ · ζ)∂nβ ζ + Ar

)
ρ−s
Γb
·
∫
Γb

∂nψ ζ
)

+2
∫ T

0

∣∣∣∣∫
Γb

∂nψ ζ

∣∣∣∣2 + 2s3
∫
Σb

(
∂nβ

)3 |ψ|2 − 2s2
∫
Σb

β′ ∂nβ|ψ|2.

Treatment of boundary terms in J4. The effect of the fluid-solid interaction in our
model is felt in the treatment of boundary terms which are different from the ones
in other classical models. We will estimate these boundary terms below. Let us
begin by naming the different terms in J4 as follows:

T1 = 2
∫ T

0

∣∣∣∣∫
Γb

∂nψ ζ

∣∣∣∣2 ,
T2 = 2s3

∫
Σb

(
∂nβ

)3 |ψ|2,
T3 = 2

∫ T

0

((
s r′ β′ + s

∫
Γb

r′ · ζ ∂nβ ζ +Ar

)
ρ−s
Γb
·
∫
Γb

∂nψ ζ
)
,

T4 = −2 s2
∫
Σb

β′ ∂nβ|ψ|2 = 2s2λk
∫
Σb

(T − 2t)
t2k+1(T − t)2k+1

(eλK1 − eλη)eλη|ψ|2 .

First let us consider T2 which can be expressed as (since ψ = ρ−s
Γb
r′ · ζ on Σb)

T2 = 2s3λ3
∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

∫
Γb

|r′ · ζ|2 .

Since (ζ1, . . . , ζN ) is a family of orthonormal functions in L2(Γb), we have

∫
Γb

|r′ · ζ|2 dx =
∫
Γb

∣∣∣∣∣
N∑

i=1

r′i(t)ζi

∣∣∣∣∣
2

dx =
N∑

i=1

|r′i(t)|2 = |r′(t)|2.

This allows us to write:

T2 = 2s3λ3
∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2.
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Next, we can estimate T3 in the following way:

|T3| ≤
1
4

∫ T

0

∣∣∣∣∫
Γb

∂nψ ζ

∣∣∣∣2 + 4
∫ T

0

∣∣∣∣s r′ β′ + s

∫
Γb

r′ · ζ ∂nβ ζ +Ar

∣∣∣∣2 ρ−2sΓb

≤ 1
8
T1 + 12s2e2λK1T 2

∫ T

0

k2

t2k+2(T − t)2k+2
ρ−2sΓb

|r′|2

+ 12s2λ2
∫ T

0

e2λη|Γb

t2k(T − t)2k
ρ−2sΓb

|Γb|2|r′|2 + 12	M
∫ T

0

ρ−2sΓb
|r|2.

By choosing s large enough (depending on λ) and choosing k ≥ 2,

|T3| ≤
1
8
T1 +

1
8
T2 + 12 	M

∫ T

0

ρ−2sΓb
|r|2.

Next, we can estimate J2 as follows :

|J2| = s

∣∣∣∣∣
∫ T

0

ρ−s
Γb

r′Δβ|Γb
·
∫
Γb

∂nψ ζ

∣∣∣∣∣
≤ 1
4

∫ T

0

∣∣∣∣∫
Γb

∂nψ ζ

∣∣∣∣2 + s2
∫ T

0

ρ−2sΓb
|Δβ|Γb

|2|r′|2

≤ 1
8
T1 + Cs2λ4

∫ T

0

e2λη|Γb

t2k(T − t)2k
ρ−2sΓb

|r′|2.

Once again we see that for large s (depending on λ) we have |J2| ≤ 1
8 T1 +

1
8T2 .

To estimate J3, we express it as

J3 = −s
∫
Σb

∂n(Δβ)ρ−2sΓb
|r′ · ζ|2

in which we use the estimate (for λ large)

|∂n(Δβ)| ≤ Cλ3
eλη|Γb

tk(T − t)k
on Σb.

This easily leads to |J3| ≤ 1
8T2 for s large (depending on λ). Analogous arguments

establish that

|T4| ≤ Cs2λeλK1

∫ T

0

eλη|Γb

t2k+1(T − t)2k+1
ρ−2sΓb

∫
Γb

|r′ · ζ|2 ≤ 1
8
T2

for s large (depending on λ). Assembling these estimates together, we obtain

|T3|+ |T4|+ |J2|+ |J3| ≤
1
4
T1 +

1
2
T2 + C

∫ T

0

ρ−2sΓb
|r|2.

Hence

J2 + J3 + J4 ≥
3
4
T1 +

1
2
T2 − C

∫ T

0

ρ−2sΓb
|r|2.
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Our next task is to estimate T1 from below. To this end, we use (2.3) and write∫
Γb

∂nψ ζ = −ρ−s
Γb
(r′′ +Ar) − sρ−s

Γb

∫
Γb

(r′ · n)∂nβ ζ.

Therefore∣∣∣∣∫
Γb

∂nψ ζ

∣∣∣∣2 = ρ−2sΓb

∣∣∣∣r′′ +Ar + sλ
eλη|Γb

tk(T − t)k

∫
Γb

(r′ · ζ) ζ
∣∣∣∣2

≥ 1
2
ρ−2sΓb

|r′′|2 − 2	M ρ−2sΓb
|r|2 − 2s2λ2ρ−2sΓb

e2λη|Γb

t2k(T − t)2k
|Γb|2 |r′|2,

using the elementary inequality |a+b|2 ≥ 1
2 |a|2−|b|2. It follows then, for s, λ large,

that
T1
2
≥ 1
2

∫ T

0

ρ−2sΓb
(|r′′|2 + |r|2)− 1

4
T2 − C

∫ T

0

ρ−2sΓb
|r|2.

As a consequence, we have

3
4
T1 +

1
2
T2 ≥

1
4
T1 +

1
4
T2 +

1
2

∫ T

0

ρ−2sΓb
(|r′′|2 + |r|2)− C

∫ T

0

ρ−2sΓb
|r|2.

Thus the final estimate of the boundary terms is as follows:

J2 + J3 + J4 ≥
1
2

∫ T

0

∣∣∣∣∫
Γb

∂nψ ζ

∣∣∣∣2 + 1
2
s3λ3

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2

+
1
2

∫ T

0

ρ−2sΓb
(|r′′|2 + |r|2)− C

∫ T

0

ρ−2sΓb
|r|2.

Carleman inequality (I). Grouping together various estimates obtained, we can
summarize the main inequality of Section 3

‖M1ψ‖2L2(Q) + ‖M2ψ‖2L2(Q) + s3λ4
∫

Q

e3λη

t3k(T − t)3k
|ψ|2

+
∫ T

0

∣∣∣∣ ∫
Γb

∂nψ ζ

∣∣∣∣2 + sλ

∫
Σb

eλη

tk(T − t)k
|∂nψ|2)

+
∫ T

0

ρ−2sΓb
(|r′′|2 + |r|2) + s3λ3

∫ T

0

e3λη
∣∣
Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2

≤ C

{
‖fs‖2L2(Q) + s3λ4

∫
ω×(0,T )

e3λη

t3k(T − t)3k
|ψ|2 +

∫ T

0

ρ−2sΓb
|r|2

}
.

(3.3)

Let us notice that sλ
∫
Σb

eλη

tk(T − t)k
|∂nψ|2 dominates the term

∫ T

0

∣∣∣∣ ∫
Γb

∂nψ ζ

∣∣∣∣2
which can be dropped out.
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4. Estimate of r

Our goal in the next two sections is to strengthen the above inequality (3.3) by
removing the term

∫ T

0
ρ−2sΓb

|r|2 from the RHS. This signifies that the observability
of the whole system is possible without making any observation on the solid. A
priori this is not obvious for the following reason: even though the same term is
present in the LHS of (3.3) there is no large parameter s or λ multiplying it. We
need to use additional properties of our system. More precisely, we exploit the
fact that the state space of the “solid part” of the model is of finite dimension.
Our goal will be achieved in two steps. As a first step, we prove in this section
an intermediate inequality (4.1) written down below. The final inequality will be
established in the next section (see (5.5)).

Let E be the vector space of solutions to system (2.3) obtained by varying
(fs, r

0, r1). Consider the following subspace of E :

Eb =
{
(ψ, r) ∈ E | r(T/2) = 0

}
.

We see that Eb is of infinite dimension and is of codimension ≤ N. In the following
arguments, we will suppose that Eb is of codimension = N (other cases can be
treated in a similar manner). In such a case, there exist (ψ̂�, r̂�) ∈ E, with 	 ∈
{1, . . . , N}, such that

r̂�(T/2) = �e� where �e� = (δi,�)1≤i≤N .

(δi,� is the so-called Kronecker symbol.) Let E0 be the space spanned by
{
r̂� | 	 ∈

{1, . . . , N}
}
, and Ef be the subspace spanned by

{
(ψ̂�, r̂�) | 	 ∈ {1, . . . , N}

}
so

that we have
E = Eb ⊕ Ef .

Let us denote by πf : E → Ef the mapping defined by

πf (ψ, r) =
N∑

�=1

(
r(T/2) · �e�

)
(ψ̂�, r̂�).

Observe that (ψ, r)− πf (ψ, r) ∈ Eb for all (ψ, r) ∈ E. Further we set π0(ψ, r) = r
for all (ψ, r) ∈ E, and we define π : E → E0 by π = π0 ◦ πf . Then, we have

π(ψ, r) =
N∑

�=1

(
r(T/2) · �e�

)
r̂�.

Lemma 4. If (ψ, r) ∈ Eb, then∫ T

0

ρ−2sΓb
|r|2 ≤ C1(T )

∫ T

0

ρ−2sΓb
|r′|2 ≤ C2(T )

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2 ,

for some C2(T ) ≥ C1(T ) > 0.
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Proof. Since

e3λη|Γb

t3k(T − t)3k
≥ C > 0,

the second inequality is obvious and so we focus on the first one. We have (since
r(T/2) = 0)

r(t) = −
∫ T/2

t

r′(τ) dτ for all 0 ≤ t ≤ T/2 ,

and (since ρ−s
Γb

is increasing on [0, T/2])

ρ−s
Γb
(t)
∣∣ r(t)∣∣ ≤ ρ−s

Γb
(t)

∫ T/2

t

∣∣r′(τ)∣∣ dτ ≤ ∫ T/2

t

ρ−s
Γb
(τ)

∣∣r′(τ)∣∣ dτ
for all 0 ≤ t ≤ T/2. Thus we obtain∫ T/2

0

ρ−2sΓb
(t)

∣∣r(t)∣∣2 dt ≤ T 2

4

∫ T/2

0

ρ−2sΓb
(τ)

∣∣r′(τ)∣∣2 dτ .
Similarly we have (using the fact that ρ−s

Γb
is decreasing on [T/2, T ])∫ T

T/2

ρ−2sΓb
(t)

∣∣r(t)∣∣2 dt ≤ T 2

4

∫ T

T/2

ρ−2sΓb
(τ)

∣∣r′(τ)∣∣2 dτ .
The proof is completed by adding the above two inequalities. �

With these preparations, we can now consider the inequality (3.3) and es-
timate the last term of the right-hand side of the inequality as follows: Writing
r = r − π(ψ, r) + π(ψ, r) and noting that r − π(ψ, r) ∈ Eb, we have by Lemma 4∫ T

0

ρ−2sΓb
|r|2 ≤ 2C2(T )

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2

+ 2C2(T )
∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|(π(ψ, r))′|2

+ 2
∫ T

0

ρ−2sΓb
|π(ψ, r)|2.

Note that the first term can be absorbed in the left-hand side of (3.3) by choosing
λ large. More precisely, we have

CC2(T )
∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2 ≤ 1
2
s3λ3

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2,

for λ large.
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As in [10], from (3.3), we can also derive an estimate for

s−1
∫

Q
ξ−1

(
|ψ′|2 + |Δψ|2

)
.

Thus estimate (3.3) gives Carleman inequality (II):

s−1
∫

Q

ξ−1
(
|ψ′|2 + |Δψ|2

)
+ ‖M1ψ‖2L2(Q) + ‖M2ψ‖2L2(Q)

+ sλ2
∫

Q

eλη

tk(T − t)k
|∇ψ|2

+ s3λ4
∫

Q

e3λη

t3k(T − t)3k
|ψ|2 + sλ

∫
Σb

eλη

tk(T − t)k
|∂nψ|2

+
∫ T

0

ρ−2sΓb

(
|r′′|2 + |r|2

)
+ s3 λ3

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2

≤ C

{∫
Q

|fs|2 + s3λ4
∫

ω×(0,T )

e3λη

t3k(T − t)3k
|ψ|2 +

∫ T

0

ρ−2sΓb
|π(ψ, r)|2

+
∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|(π(ψ, r))′|2
}
,

(4.1)

where ξ(x, t) = eλη

tk(T−t)k .

5. Compactness argument and Carleman inequality (III)

The aim in this section is to show that we can strengthen the inequality (4.1) by
removing the last two terms from RHS of (4.1). To this end, we set

I(ψ, r) = s−1
∫

Q

ξ−1
(
|ψ′|2 + |Δψ|2

)
+
∫

Q

|M1ψ|2 +
∫

Q

|M2ψ|2

+ sλ2
∫

Q

eλη

tk(T − t)k
|∇ψ|2 + s3λ4

∫
Q

e3λη

t3k(T − t)3k
|ψ|2

+ sλ

∫
Σb

eλη

tk(T − t)k
|∂nψ|2

+
∫ T

0

ρ−2sΓb

(
|r′′|2 + |r|2

)
+ s3λ3

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2,

J(ψ, r) = K(ψ, r) +
∫ T

0

ρ−2sΓb
|π(ψ, r)|2 + s3 λ3

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|(π(ψ, r))′|2 ,

and

K(ψ, r) =
∫

Q

|fs|2 + s3 λ4
∫

ω×(0,T )

e3λη

t3k(T − t)3k
|ψ|2 .

In the previous section, we have proved that there exists a constant C > 0 such
that

I(ψ, r) ≤ C J(ψ, r) . (5.1)
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(From now on, we do not vary the parameters (s, λ) and fix them so that the above
inequality holds.) We want to improve this estimate by showing that there exists
a constant C(s, λ) > 0, depending on s and λ, such that

I(ψ, r) ≤ C(s, λ)K(ψ, r) . (5.2)

This is the Carleman inequality (III) that we have for the system (2.3). To prove
the inequality (5.2), we argue by contradiction. We suppose that there exists a
sequence (ψj , rj)j associated with the data (fj , r

0
j , r

1
j ) such that

I(ψj , rj) = 1 and limj→∞K(ψj , rj) = 0 .

We can assume that there exists a pair (ψ, r) ∈ L2loc(Q) × L2loc(0, T ) and that
– after extraction of a subsequence – the sequence (ψj , rj)j enjoys the following
convergence properties in the indicated weighted spaces:

ψ′j ⇀ ψ′ for the weak topology of L2(ξ−1;Q) ,

Δψj ⇀ Δψ for the weak topology of L2(ξ−1;Q) ,

∇ψj ⇀ ∇ψ for the weak topology of L2(eληt−k(T − t)−k;Q) ,

ψj ⇀ ψ for the weak topology of L2(e3ληt−3k(T − t)−3k;Q) ,

∂nψj ⇀ ∂nψ for the weak topology of L2(eλη|Γb
t−k(T − t)−k; Σb) ,

r′′j ⇀ r′′ for the weak topology of L2(ρ−2sΓb
; (0, T )) ,

rj ⇀ r for the weak topology of L2(ρ−2sΓb
; (0, T )) ,

r′j ⇀ r′ for the weak topology of L2(ρ−2sΓb
t−3k(T − t)−3k; (0, T )) .

In the next two subsections, we will deduce that ψ ≡ 0, r ≡ 0, and that∫ T

0

ρ−2sΓb
|π(ψj , rj)|2 + s3λ3

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|(π(ψj , rj))′|2 → 0. (5.3)

It follows then that J(ψj , rj) → 0. From (5.1), we conclude that I(ψj , rj) → 0.
This is in contradiction to I(ψj , rj) = 1 and proves (5.2).

5.1. Passage to the limit in problem (2.3)
To prove that ψ ≡ 0 and r ≡ 0, we first show that we can pass to the limit in
system (2.3). To pass to the limit in the equation

M1ψj +M2ψj = ρ−sfj + s(Δβ)ψj ,

we use the L2-estimate on (M1ψj)j and (M2ψj)j . Hence the subsequences (M1ψj)j
and (M2ψj)j weakly converge in L2(Q). To identify their limits, it is enough to take
test functions in D(Q) and to pass to the limit. Thanks to the above convergence
we get

M1ψj
L2(Q)
⇀ M1ψ, M2ψj

L2(Q)
⇀ M2ψ,

s(Δβ)ψj ⇀ s(Δβ)ψ weakly in L2(e3ληt−3k(T − t)−3k;Q).
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Next we use

K(ψj , rj)→ 0 .

This shows that ρ−sfj → 0 in L2(Q) and ψ = 0 in ω × (0, T ). With this informa-
tion, we see that

M1ψ +M2ψ = s(Δβ)ψ in Q, and ψ = 0 in ω × (0, T ) .

The passage to the limit in the boundary conditions on Σ is easily done be-
cause we have weak convergence of (ψj)j towards ψ in the space L2(e3ληt−3k(T −
t)−3k; 0, T ;H1(Ω)).

To pass to the limit in the equation satisfied by rj , we use the weak convergence
of (∂nψj)j towards ∂nψ in the space L2(eλη|Γb

t−k(T − t)−k; Σb).

This proves that (ψ, r) satisfies the system (2.3) with fs = 0.
To deduce that ψ ≡ 0 and r ≡ 0, we pass from ψ to φ = ρsψ. We see that

(φ, r) satisfies the system (1.2) with f = 0. In addition, we have φ ≡ 0 in ω×(0, T ).
Applying the unique continuation principle for the heat equation [12], we obtain
φ = 0 in Q, and hence ψ = 0 in Q. Going back to the system satisfied by (ψ, r), we
deduce successively that r′ = 0, r′′ = 0 and r = 0. In particular, we have shown
that

rj ⇀ 0 for the weak topology of L2(ρ−2sΓb
; (0, T )) ,

r′j ⇀ 0 for the weak topology of L2(ρ−2sΓb
t−3k(T − t)−3k; (0, T )).

(5.4)

5.2. Proof of (5.3)

We equip the space

H =
{
r ∈ H1

loc(0, T ;R
N) | ‖r‖L2(ρ−2s

Γb
;(0,T )) + ‖r′‖L2(ρ−2s

Γb
t−3k(T−t)−3k;(0,T )) <∞

}
with the norm

‖r‖H = ‖r‖L2(ρ−2s
Γb

;(0,T )) + ‖r′‖L2(ρ−2s
Γb

t−3k(T−t)−3k;(0,T )).

The mapping

r �−→ r(T/2)

is continuous from H into RN since

|r (T/2) | ≤ C(‖r′‖L2(ρ−2s
Γb

t−3k(T−t)−3k;(0,T )) + ‖r‖L2(ρ−2s
Γb

;(0,T ))).

Therefore it is also compact. Due to (5.4), |rj(T/2)| → 0 (or at least a subse-
quence). The proof of (5.3) is complete.

Grouping all the previous results, let us summarize, for the reader’s conve-
nience, the estimate that we have established so far on the system (2.3): For λ
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sufficiently large, there is s0(λ) > 0 such that, for s ≥ s0(λ), we have∫
Q

ξ−1(|ψ′|2 + |Δψ|2) +
∫

Q

|M1ψ|2 +
∫

Q

|M2ψ|2 +
∫

Q

eλη

tk(T − t)k
|∇ψ|2

+
∫
Σb

eλη

tk(T − t)k
|∂nψ|2 +

∫
Q

e3λη

t3k(T − t)3k
|ψ|2

+
∫ T

0

ρ−2sΓb
(|r′′|2 + |r|2) +

∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2

≤ C(s, λ)

{∫
Q

|fs|2 +
∫

ω×(0,T )

e3λη

t3k(T − t)3k
|ψ|2

}
.

(5.5)

Since the constant C(s, λ) is not explicitly known in terms of s and λ, we have
dropped out the constant weights sαλβ in front of each term of the above inequality.

6. Carleman inequality (IV)

The purpose here is to translate the Carleman inequality (5.5) from the trans-
formed system (2.3) to original system (1.2). This procedure is very classical and
we refer for example to [10]. It yields the following estimate on (φ, r), solution of
the original system (1.2).

Theorem 5. Consider the coupled system (1.2). Then there exist positive constants
λ0 and s0(λ) such that the following inequality holds for all λ ≥ λ0, s ≥ s0(λ) and
for all solutions (φ, r) of the system (1.2):∫

Q

ρ−2s ξ−1
(
|φ′|2 + |Δφ|2

)
+
∫

Q

ρ−2s
eλη

t(T − t)
|∇φ|2

+
∫

Q

ρ−2s
e3λη

t3k(T − t)3k
|φ|2

+
∫ T

0

ρ−2sΓb

(
|r′′|2 + |r|2

)
+
∫ T

0

e3λη|Γb

t3k(T − t)3k
ρ−2sΓb

|r′|2

≤ C(s, λ)

{∫
Q

ρ−2s |φ′ −Δφ|2 +
∫

ω×(0,T )
ρ−2s

e3λη

t3k(T − t)3k
|φ|2

}
.

(6.1)

7. Null-controllability result

In this section, we establish null-controllability of our original system (1.2), as a
consequence of the Carleman inequality (6.1), with a forcing term in the form:

f(x, t) = u(x, t)χω×(0,T )(x, t),

where ω ⊂⊂ Ω.
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The null-controllability result for the “Heat-Finite-Dimensional Beam Sys-
tem” follows from an observability inequality for the adjoint system

−y′ −Δy = 0 in Q, y = 0 on Σe, y = −q′ · ζ on Σb,

y(0, x2, t) = y(L, x2, t)

and ∂ny(0, x2, t) = −∂ny(L, x2, t) for (x2, t) ∈]0, 1[×]0, T [,
y(T ) = yT in Ω,

q′′ +Aq = −
∫
Γb

∂ny ζ in (0, T ),

q(T ) = q0T , and q′(T ) = q1T in RN .

It is obvious that (y, q) also obeys the Carleman inequality (6.1).

Thanks to this inequality, the following observability inequality can be estab-
lished (see, e.g., [10, Lemma 13.1])

‖y(0)‖2L2 + |A1/2q(0)|2 + |q′(0)|2 ≤ C

∫
ω×(0,T )

ρ−2s
e3λη

t3k(T − t)3k
|y|2. (7.1)

To derive null-controllability from the above observability inequality we use
a classical penalization method consisting in solving the optimal control problem

(Pε) inf
{
Jε(φ, r, v) | (φ, r, v) obeys (1.2) with f = χω×(0,T )

√
w v

}
where

Jε(φ, r, v) =
1
2ε

∫
Ω

|φ(T )|2 + 1
2ε
|A1/2r(T )|2 + 1

2ε
|r′(T )|2 + 1

2

∫
Q

|v|2,

and the function w is the weight appearing in the Carleman inequality (6.1) and
in the observability inequality (7.1):

w(x, t) = ρ−2s
e3λη

t3k(T − t)3k
.

Notice that if v ∈ L2(Q) then u =
√
w v also belongs to L2(Q).

It is easy to prove that problem (Pε) admits a unique solution (φε, rε, vε),
and that the optimal control vε can be characterized by

vε = −χω×(0,T )
√
w yε,
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where (yε, qε) is the solution to the adjoint system

− y′ε −Δyε = 0 in Q, yε = 0 on Σe, yε = −q′ε · ζ on Σb,

yε(0, x2, t) = yε(L, x2, t),

and ∂nyε(0, x2, t) = −∂nyε(L, x2, t) for (x2, t) ∈]0, 1[×]0, T [,

yε(T ) =
1
ε
φε(T ) in Ω,

q′′ε +Aqε = −
∫
Γb

∂nyε ζ in (0, T ),

qε(T ) = −
1
ε
rε(T ), and q′ε(T ) = −

1
ε
r′ε(T ) in RN .

With integration by parts we can prove that the optimal solution (φε, rε, vε) to
problem (Pε) and the corresponding adjoint state (yε, qε) satisfies

1
ε

∫
Ω

|φε(T )|2 +
1
ε
|A1/2rε(T )|2 +

1
ε
|r′(T )|2 +

∫
ω×(0,T )

w|yε|2

=
∫
Ω

φ0yε(0)−Aqε(0) · r0 − q′ε(0) · r1

≤ C
(
‖φ0‖2L2(Ω) + |A1/2r0|2 + |r1|2

)1/2
×
(
‖yε(0)‖2L2(Ω) + |A1/2qε(0)|2 + |q′ε(0)|2

)1/2
≤ C

(
‖φ0‖2L2(Ω) + |A1/2r0|2 + |r1|2

)1/2 (
‖χω×(0,T )

√
w yε‖2L2(Q)

)1/2
.

Therefore, we have

1
ε

∫
Ω

|φε(T )|2 +
1
ε
|A1/2rε(T )|2 +

1
ε
|r′ε(T )|2 +

∫
ω×(0,T )

w|yε|2

≤ C
(
‖φ0‖2L2(Ω) + |A1/2r0|2 + |r1|2

)
.

(7.2)

and the sequence (vε)ε = (−χω×(0,T )
√
w yε)ε is bounded in L2(Q).

Without loss of generality, we can assume that the sequence (vε)ε converges
to some v ∈ L2(Q) for the weak topology of L2(Q). From that and with Theorem
2, we first deduce that (φε, rε)ε converges, for the weak topology of (L2(0, T ;V )∩
H1(0, T ;H−1(Ω))) × H1(0, T ;RN), to the solution (φ, r) of system (1.2) corre-
sponding to f = χω×(0,T )

√
w v. Moreover, due to (7.2), (φε(T ))ε converges to zero

in L2(Ω), (rε(T ))ε converges to zero in RN , and (r′ε(T ))ε converges to zero in RN .
Thus (φ(T ), r(T ), r′(T )) = 0 and u =

√
w v is a required control providing solution

to our null-controllability problem. �
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Feedback Modal Control of
Partial Differential Equations

Thomas I. Seidman

Abstract. For hybrid systems in which control consists of selection from a
discrete finite set of modes, a somewhat unfamiliar formulation is needed
for analysis of the possibility of closed loop (feedback) control. We are here
concerned to examine the desiderata for such feedback from the viewpoint of
descriptive modeling of implementation in a PDE context. A principal result
is global existence, in an appropriate sense, for the implemented closed loop
control system. A problem of transport on a graph is then presented to show
how the relevant hypotheses might be satisfied in a PDE example.

Mathematics Subject Classification (2000). 93A30, 93B12, 47J40, 70K70.

Keywords. Modeling, multiscale, hybrid systems, switching, modes, disconti-
nuities, differential equations, feedback, Zeno phenomena.

1. Introduction

Consider a collection of partial differential equations which we take, somewhat
arbitrarily, to have the form

ẋ = Ajx+ fj(x) (j ∈ J ) (1.1)

where each Aj is a suitable differential operator. Now imagine a system whose
evolution is governed, over interswitching intervals, by one or another of these;
we call this a hybrid system and take the discrete modal index j = j(t) to be a
component of the system state along with the ‘continuous component’ x. We will
be considering the modal transitions [j(t−) = j] � [j(t+) = j′] as our control
mechanism for the system. In particular, we will be concerned with the possibility
of closed loop operation of such a control system.

Such hybrid systems are already a much-studied area of interest in the lumped
parameter (ordinary differential equation) context, although much of the under-
lying theory remains open. Although one of the early analyses of such systems [7]
was, indeed, motivated by a PDE example (not in a control context), we note that
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very little has been done so far for the analysis of switching control for distributed
parameter problems governed by partial differential equations, despite the fact
that significant applications come easily to mind, involving the use of such famil-
iar on/off control devices as valves and pumps, light switches and thermostats,
traffic signals, etc.

[One might also consider systems with j = j(t, s) pointwise, compare [9] where
this becomes a free boundary problem for the set {(t, s) : j(t, s) = j}. Here we will
restrict our attention to situations where the switching may be viewed as global
with a finite number of modes – as is the case, e.g., for traffic signals if we take each
mode as specifying the configuration of signal states for the entire road network.
As with hybrid ODEs, the index j will be a function of t alone.] Many, but not all,
of the relevant aspects of the analysis are then independent of dimensionality.

In the context of feedback for PDEs, the regularity of the sensor inputs being
considered may be significant even to know that solutions exist. Our formulation
reflects a concern for the modeling of such systems. This will be very much a
question of time scales: we are assuming that the switching itself takes place on
a time scale more rapid than our modeling concerns but that the interswitching
intervals are on the scale of interest.

While other considerations may also be of interest – e.g., controllability or
stabilization to a small region – we here envision three canonical results:

Theorem 1. Under appropriate hypotheses, treating j(·) as data, the system will be
well posed in some suitable sense.

Again treating open-loop control with a suitable cost functional,

Theorem 2. Under appropriate hypotheses there exists an optimal control j, mini-
mizing the cost. For the autonomous infinite horizon problem this can be obtained
by a kind of feedback.

Modifying that notion of feedback to be based on suitable sensors,

Theorem 3. Under appropriate hypotheses the feedback controlled system will be
well posed in some suitable sense.

Much of the paper is devoted to explaining what these should mean.

2. The formulation

We begin by noting an important distinction between descriptive and prescriptive
modes of modeling: the first is what a scientist does in trying to understand the
various patterns arising in the world; the second is what a composer or an engineer
does in designing (artificial) patterns for various purposes. E.g., in viewing leonine
behavior the first is the modality of the naturalist while the second is the approach
of a lion tamer. In this section we provide a formal prescriptive model for lion
tamers, while aware that a naturalist’s comments will later be complementary in
describing how lions can behave.
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The formal elements of the underlying system consist of

(E)

a. a finite index set J and a corresponding set of state spaces Xj .
b. a set of information spaces Yj with sensor maps Yj : Xj → Yj .
c. a nonempty action set Aj(y) ⊂ J for each j ∈ J , y ∈ Yj .
d. a continuous transition map f : [j, x] �→ [j′, x′] with x′ ∈ Xj′

defined when j ∈ J , x ∈ Xj and j′ ∈ Aj (Yj(x)).
e. a set of dynamical systems = modes πj , each satisfying the

causality condition

πj(t, s, ξ) = πj(t, r, πj(r, s, ξ)) for t ≥ r ≥ s, ξ ∈ Xj (2.1)

We assume throughout that each Xj ,Yj is a complete metric space and that each
πj and f is continuous; at this point we impose no continuity requirements on Yj .
[We expect the modes of (E)-e. to be given as in (1.1) so continuity of πj just
means well-posedness. Note, however, that any relevant boundary data is then to
be included in specification of the mode.]

We may anthropomorphize the feedback as a controller who knows the current
mode and sensor values j = j(t) and y = y(t) = Yj(x(t)) and, based on this,
continually selects the mode. Of course the controller’s choices at any moment are
restricted to the available control actions : to remain in the current mode j or to
make a transition j � j′ on the fast scale; the switching rules are just that this
selection always be taken from the action set Aj(y). It will also be convenient to
introduce the sets

Sj := {y ∈ Yj : j ∈ Aj(y)}, Cj�j′ := {y ∈ Yj : j′ ∈ Aj(y)}, (2.2)

noting that the required nonemptiness of each Aj(y) ensures that

Sj ∪ Bj = Yj where Bj =
⋃

j′ �=j

Cj�j′ . (2.3)

We refer to the specification of the sets {Sj , Bj�j′} as the switching diagram for
mode j and to these collectively (j ∈ J ) as the controlling feedback diagram for
the system.

Intuitively, the operation of such a feedback controlled system should pro-
duce finitely many switching times {tν : ν = 1, . . . , N} in any time interval [0, T ]
with a modal transition jν � jν+1 at each tν – thus partitioning [0, T ] into the
interswitching intervals Iν = [tν−1, tν ] with 0 = t0 ≤ t1 ≤ · · · . A solution of such
a feedback system on the time interval [0, T ] would then be a triple of functions
[j(·), x(·), y(·)] such that
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(S)

a. j(·) is piecewise constant with j(t) = jν ∈ J for t in each in-
terswitching interval Iν = [tν−1, tν ]; at each t one will have
x(t) ∈ Xj(t) and y(t) = Yj(t)(x(t)) ∈ Yj(t).

b. the switching times are discrete: finitely many in any [0, T ].
c. switching [jν−1 � jν at tν ] occurs only if jν ∈ Ajν−1(y(tν−))
while for t in the interior of Iν one must have y(t) ∈ Sjν−1 .

d. at each switching time tν
x(tν+) = f(x(tν−); jν−1 � jν). (2.4)

e. on each interswitching interval Iν we have x(t) ∈ Xjν−1 with

x(t) = πjν−1(t− tν−1, x(tν−1+)). (2.5)

Deferring further discussion to the next section, note that (S)-a. will admit the
possibility of degenerate interswitching intervals (tν = tν−1), for which we for-
mally take x(tν−) = x(tν−1+) with no evolution. The occurrence of infinitely
many transitions within a finite period is known as a Zeno phenomenon and this
possibility would be a major technical difficulty for the theory; (S)-b. requires that
this does not occur in the problems we consider.

Remark 2.1. We note a few generalizations which can be included within the
framework of (E), (S).

We have formulated the feedback to depend only on the current sensor values
Yj(t) ∈ Yj , without memory. Note, however, that we can, e.g., treat a Luenberger
observer by introducing it as a state component Ŷ adjoined to each Xj ,Yj with
suitably defined dynamics involving the current sensor values and idŶ adjoined to
each Yj .

One reason to exclude Zeno phenomena is to avoid potential difficulties with
a recursive use of (S)-d.,e. in constructing solutions. In the proof of Theorem 2
below, the positive switching costs c(j � j′) enforce this exclusion automatically
in optimization. Such costs are a well-known practical reality (often corresponding
to the residual effects of rapid scale transients in chattering; compare [8, 2]). It is
therefore a common practice to introduce dead time following (some) transitions
k � k′, temporarily preventing a repetition of the mode k or of that transition. We
can include such dead time in the formulation by introducing a state component
z ∈ Z = RJ , satisfying ˙zk�k′ = 1 for the relevant switching indices (k � k′) ∈
J ′ ⊂ J ×J , and adjoining Z to each Xj ,Yj ; as part of f(·; k � k′) one then resets
zk�k′ to 0. Now one obtains the dead time effect by deleting k from each Aj(y, z)
or deleting k′ from Ak(y, z) until zk�k′ reaches its threshold. Note that being able
to treat this kind of resetting of z to handle dead time is now our principal reason
for retaining a transition map f as part of (E).

There are also problems for which we do expect the possible occurrence of
such behavior. It may then be convenient to view this behavior as a whole, defining
within our framework a chattering mode (or idealized as a sliding mode). �
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Without further hypotheses it is easy to construct examples for which no
global solutions exist at all: for example, the switching rules as given might pro-
duce a sequence of switching times tν ↗ t∗ < T – violating (S)-b. and also with
no way to obtain a continuation after t∗. Also, since Aj(y) need not be a single-
ton, we cannot expect that (S) will determine solution evolution uniquely when
solutions do exist. Typically the sets Cj�j′ will be switching surfaces with the
trajectories transverse to these and y leaving Sj so switching is forced. We must,
however, allow for the alternative possibility that y, continuing from y ∈ Cj�j′ us-
ing mode j, would remain (at least briefly) in Sj and the choice would be genuine.
Such anomalous points are a major technical difficulty for this theory and we will
further discuss their effect later, noting here only that this is an inherent source
of non-uniqueness for solutions since we will be accepting both possible choices as
legitimate. In the next sections we re-examine the formulation above in the light
of possible implementation and impose hypotheses ensuring existence.

3. Modeling and interpretation

Mathematical models are always created, selected, and analyzed with a purpose
and we keep this functionality at the forefront of our present concern: convenience
is one of the major desiderata in the selection of appropriate models. While control
theory is inherently a prescriptive approach to the world in which we may be
inclined to ignore the descriptive aphorism, “Natura non facit saltus” (“Nature
does not make jumps,” attributed to Newton, Leibniz, Linnaeus,. . . ), we recognize
that any control design is useful only as implemented:

A prescriptive model should be a descriptive model of its implementation

so we must have some concern that the nominal behavior of these discontinuous
systems is consistent with their actual behavior. In this section we complement
the prescriptive formulation (E), (S) with some interpretive comments on the con-
struction from this point of view, clarifying our choices of assumptions.

The fundamental principle of such interpretation is that hybrid systems are
a simplified description of multiscale problems in which the transitions j � j′

which we are describing as ‘instantaneous’ are actually taking place on a faster
time scale than we wish to model; see, e.g., [10]. [If Xj′ = Xj , the transition
function f : x(t−) � x(t+) might then simply reflect the result of state evolution
on the rapid scale.] As with any modeling, success means that we have taken into
account those aspects whose effects are inescapable without treating details which
can be ignored. Since our description is then an idealization of the world, we are
inclusive in the consideration of mild solutions, so our version of well-posedness
will require that

The limit of solutions will itself be accepted as a solution,

i.e., the solution set depends upper semicontinuously on the data.
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Note that we are permitting degenerate interswitching intervals Iν with
tν−1 = tν . This might simply correspond to the possibility, which we want to
include here, that distinct effects can occur simultaneously on the modeling scale,
meaning only that we cannot determine priority without resolving aspects of the
rapid behavior which we are content to leave hidden from us; we do insist that the
sequencing, particularly that of the associated modes jν , be preserved since this
priority may be significant in determining the subsequent evolution on our model-
ing scale. In such a situation we cannot predict the outcome definitively with the
information available. On the other hand, by accepting the alternatives as equally
valid solutions we are able to say that,

“What happens must be one of these possibilities.”

(to within the level of approximation corresponding to the usual model uncer-
tainty). An arbitrary selection might provide uniqueness, but lacking a selection
principle justifiable from considerations of the unknown rapid behavior we are
primarily concerned not to exclude any genuine possibility and so reject such an
artificial uniqueness as spurious. This is done in much the same spirit as the accep-
tance of ‘weak’ or ‘mild’ or ‘generalized’ solutions since at worst these are idealized
versions of genuine possibilities and this idealization may not permit us the luxury
of restricting our attention to ‘classical solutions.’ We will refer to the times and
the situations giving this ambiguity as anomalous points. [A related possibility
would be a cascade with several transitions j � j′ · · · � j̄ occurring as a sequence
on the fast scale; it is always possible, but perhaps inconvenient, to replace this
by an equivalent compound single switching event j �� j̄.]

In view of the above, j(·) need not be a ‘function’ on [0, T ] in the usual
sense. However, we can think of it simply as a finite modal sequence of pairs
(j, τ)ν ∈ J × R+ with τν the length of the ν-th interswitching interval Iν so∑

ν τν = T ; one recovers the switching times as tν = τ1+ · · ·+τν and recovers j(t),
when t is not a switching time, by (S)-c. Abusing notation somewhat, we continue
to denote these by j(·). We topologize the setMS[0, T ] of all such modal sequences
on [0, T ] as follows:

Definition 3.1. [ jm → j ] in MS[0, T ] means that each jm
ν ≡ jν for large m and

each τm
ν → τν in R+ subject to the constraint

∑
ν τ

m
ν = T .

Somewhat similarly, a solution x(·) would not be a ‘function’ on [0, T ] even
if there were no change in state spaces: we retain, at any switching time t, both
values x(t−),x(t+) and, even in contexts with degenerate interswitching intervals,
include both when discussing a corresponding trajectory [[x]] = {x(t) : t ∈ [0, T ]}.
We view the switching as occupying time on a more rapid scale – so the transition
map f might represent evolution on that rapid scale – but we make no attempt to
include more of the course of this evolution as a connecting part of the trajectory.
With this treatment we note, from the continuity of each πj , that the trajectory
[[x]] for any solution x(·) on any [0, T ] will be compact in ∪jXj .
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On the other hand, there might be a still slower time scale on which the
switchings we are here describing become a rapidly repetitive chattering mode,
averaging as a sliding mode, switching infinitely often within a finite period. These
situations are certainly important and have been treated extensively (cf., e.g.,
[3, 11, 1, 8]), but they are not our present concern and, as is essential for our
treatment here, we will adopt hypotheses bounding the number of pairs in any
modal sequence as above for any bounded period [0, T ]; compare (S)-b. which
forbids Zeno phenomena for feedback solutions.

We turn now to considering the open loop problem in which a fixed modal
sequence j is specified as data. [We continue to use (E), (S), but note that (E)-b.,c.
are here irrelevant: effectively we are taking each Aj independent of y in defining
‘admissibility’ of j, so Yj is not needed.]

Theorem 1. Let an admissible j(·) be given as data and suppose suitable initial data
ξ given in Xj1 . Then there is a unique solution of the open loop problem specified
by (E), (S) and this depends continuously, in an appropriate sense, on the specified
j and ξ.

Proof. Existence is immediate, recursively constructed uniquely by alternately us-
ing (S)-d.,e. starting with x(0) = ξ and x(t) = πj1(t, 0, ξ) on I1 = [0, t2], etc., so
we need only verify continuous dependence. Our definition of convergence jm → j
means that only the interswitching times τm

ν change with m so, recalling the as-
sumed continuity of the transition maps and dynamical systems involved, the same
recursion also shows that xm(tmν ±) → x(tν±) (even taking ξm → ξ and even if
some interswitching intervals become degenerate in the limit). We similarly get
xm(t) → x(t) for any t in the interior of an interswitching interval for j and as-
sume that any ‘appropriate sense’ for convergence of the solutions will follow from
this, e.g., we exclude the use of an L∞ topology for solutions. �

Remark 3.2. The statement and proof above are ambiguous as to the total interval
but we may think of this as finite [0, T ] and, as usual with T arbitrary, this also
provides the result on [0,∞).

We now set

MSN = {j ∈ MS[0, T ] : there are at most N switches },
KN (ξ) = {[[x]] : x(·) corresponds to j ∈MSN , x(0) = ξ}.

It is easy to see that each of the subsetsMSN [0, T ] will be compact inMS[0, T ].
We have have already noted that each individual trajectory [[x]] is compact and,
from the discussion of continuous dependence in the proof above, we now see that
each KN (ξ) is compact. �

Still in the setting of the open-loop problem, but now in a context of infinite
horizon optimal control, we consider choice of the modal sequence so as to minimize
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a cost functional of the form

Ψ =
∫ ∞

0

e−βtcj(t)(x(t)) dt +
∞∑

ν=2

e−βtν c(jν−1 � jν). (3.1)

We wish to show that the inf defining the value function

Vj(ξ) = inf{Ψ[j, ξ] : j(0) = j, x(0) = ξ} (3.2)

is actually an attained minimum.

Theorem 2. Assume that each running cost cj(·) ≥ 0 of (3.1) is continuous; sup-
pose j1 = j and suitable initial data ξ are given in J , Xj . Let each switching
cost c(j � j′) > 0 and assume there is some j∗ for which Ψ is finite. Then there
is a modal sequence (switching control) j = j∗ for which Ψ = Ψ[j, ξ] attains its
minimum Vj(ξ). This minimum cost depends lower semicontinuously on ξ ∈ Xj.

Proof. The set {j : Ψ < ∞} is nonempty by assumption so we can consider a
minimizing sequence jm: Ψm = Ψ[jm, ξ]→ inf{Ψ} = Vj(ξ). For arbitrary T <∞,
the switching costs then ensure a bound on the number of transitions during [0, T ]
so we may extract a convergent subsequence; further extracting subsequences we
can assume jm → j∗ on every bounded interval. Theorem 1 applies to the problem
on each [0, T ], showing the corresponding solutions converge xm → x∗ there ‘in a
suitable sense.’ From the form of (3.1) we easily see this implies convergence of
the restricted costs:

Ψm
∣∣∣
[0,T ]

→ Ψ∗
∣∣∣
[0,T ]

so Ψ∗
∣∣∣
[0,T ]

≤ Ψm
∣∣∣
[0,T ]

+ ε ≤ Ψm + ε→ Vj(ξ).

Letting T → ∞, this shows that Ψ∗ ≤ Vj(ξ) so Vj(ξ) is a min with minimizer j∗.
If jm is the minimizer for ξm → ξ, then we can extract a convergent subsequence
as above to get jm → j∗ and see

Vj(ξ) ≤ Ψ[j∗, ξ] ≤ lim inf
m

Ψ[jm, ξm] = lim inf
m

Vj(ξm). �

[It is not difficult to see that Vj(·) is actually continuous if each πj is locally
uniformly continuous.]

4. Modeling feedback

Suppose we consider the optimization problem of Theorem 2 for autonomous dy-
namical systems so autonomy of the system makes the value function V indepen-
dent of any starting time and

Vj(ξ) = Ψ∗
∣∣∣
[0,τ ]

+ e−βτ Vj∗(τ) (x∗(τ)) (4.1)

for each τ > 0, where j∗,x∗ are optimal as in the proof of Theorem 2. We would
like to recover the optimal switching control from V , allowing for the possibility
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that this need not be unique. The possibility of a transition j � j′ �= j when
x(t) = ξ just means that j′ is in Aj and[

some optimal j starting at (j, ξ)
immediately switches j � j′ �= j

]
–

c(j � j′) + Vj′ (f(ξ; j � j′)) = Vj(ξ)
(4.2)

where equality just means that the optimal value can be attained with a switch
to j′. On the other hand, comparing with (4.1) and (3.1), we see that[

some optimal j starting at (j, ξ)
continues in mode j

]
–∫ τ

0

eβtcj(πj(t, ξ)) dt + eβτVj(πj(τ, ξ)) = Vj(ξ) (some τ > 0).
(4.3)

Remark 4.1. From this we observe that:
Let J , f , πj be as in Theorem 2; assume each πj is autonomous. Set Yj = Xj ,

Yj = id(Xj), and
Aj(ξ) = {j if (4.3), j′ if (4.2)} (4.4)

for j ∈ J , ξ ∈ Xj to complete the specification (E). Let (j,x), starting with (j1, ξ),
be as in Theorem 1.

Then the pair (j,x) is optimal for the switching control problem of Theorem 2
if and only if it is a feedback solution as in (S).

Proof. Clearly any optimal control satisfies (S) with (4.4). Conversely, by connect-
edness and the continuity of y(·) = x(·), such a solution of (S) satisfies (4.1) on
each nondegenerate interswitching interval Iν (hence) and on [0, T ] by induction
on ν, hence is optimal. �

This is a primary motivation for taking (S) as defining the general structure of
feedback we consider here, while noting, for example, that we cannot always expect
to have full-state feedback as in Remark 4.1 and would necessarily implement only
finitely many sensors. Thus, we consider the evolution of a solution for (S) as
an independent problem, with the elements of (E) somewhat general. Purely for
expository convenience, however, we assume henceforth that Xj ,Yj , Yj are each
independent of j ∈ J and that the dynamical systems πj are autonomous.

Recall that the sensor maps Yj and the resulting sensor output y(·) played
no role in Theorems 1 and 2, but the regularity to be expected of these is now a
significant concern in being able to evaluate y pointwise in t so the conditions of (S)
make sense. This regularity and its interaction with the avoidance of Zeno behavior
– i.e., with (S)-b. – constitute the essential technical difficulties in analyzing this
feedback structure. For Theorem 1, (S)-b. was already an admissibility hypothesis
on the given j and in the proof of Theorem 2 this was a consequence of the
assumed positivity of the switching costs. For a general feedback we will need new
hypotheses; we begin by assuming the feedback diagram and sensor map satisfy
the following set of hypotheses.
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(H1)

a. each Cj�j′ is closed in X and Sj ⊃ [Y \ Bj ].
b. Y is set-valued with Y (ξ) finite and nonempty for each ξ ∈ X .
c. Y is upper-semicontinuous, i.e., if one has yk ∈ Y (xk) with xk →

x̄ in X , then there is a subsequence
(
yk(�)

)
converging to some

ȳ ∈ Y (x̄).
d. cascades of the form j �� j are forbidden: i.e., there exists no

sequence of pairs (j, ξ)ν̄ν=1 with j1 = jν̄ such that
Y (ξν) ∩ Cjν�jν+1 �= ∅, ξν+1 = f(ξν ; jν � jν+1).

It is precisely at this point that our considerations will depend in an essential way
on the particular PDE setting since we have in mind, at least as an idealization,
that our sensors will be point evaluations in the spatial domain of (1.1). For
the operation of a thermostat, where (1.1) becomes a heat equation, one has more
than enough regularity that this causes no difficulty (provided the sensor location is
separated from the furnace/AC). For a transport equation, however, the occurrence
of modal switching can be expected to introduce spatial discontinuities which
propagate to the sensors and cause temporal discontinuities in y(·); it then becomes
a delicate problem (cf. [5]) to provide a space X which allows for this and at the
same time gives both continuity of the dynamics and adequate regularity of y(·).

We now provide an additional hypothesis which, along with (H1), will suffice
to give (S)-b. in showing the existence of solutions for the feedback problem. This
hypothesis (H2) is rather technical, but, as an example, we will later show how to
verify these hypotheses for transport on a graph.

(H2)

There exists τ̄ > 0 such that for each ξ ∈ X , T ≥ τ̄ , and N ′ there
exists N = N(ξ,N ′, T ) such that:
if T − τ̄ < T ′ < T and j

∣∣∣
[0,T−τ̄ ]

is in MSN ′ , then there are no more

than N points of Ξ̄ = {ξ ∈ X : #Y (ξ) �= 1} in the trajectory {x(t) :
t ∈ [0, T ′]}.

[While we have formulated this hypothesis to obtain a context of piecewise contin-
uous y(·), one might expect that a rather similar treatment could be formulated
for, e.g., y(·) of bounded variation.]

Theorem 3. Assume we have (E) satisfying (H1), and (H2). Then, for any given
(j, ξ) ∈ J × X , there is [j(·),x(·),y(·)], a global solution of the feedback problem
starting with (j, ξ).

Proof. It is convenient to restrict our attention to ‘skittish solutions,’ which switch
whenever that is allowable under the switching rules of (S). By Zorn’s Lemma one
has existence of a maximally defined skittish solution [j(·),x(·),y(·)] whose domain
necessarily has one of the forms [0, 0], [0, T∗], [0, T∗), or R+ = [0,∞); we wish to
show this can only be [0,∞).
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From (2.3), we have initially either y(0)∩Bj �= ∅ and proceed with a maximal
finite cascade j �� j̄ or have y(0) = Y (ξ) in Sj \ Bj. Since (H1)-a. gives Sj \
Bj = Y \ Bj open and (H1)-c. ensures a solution can remain for some (small)
interswitching interval in mode j. In the former case, the cascade ends with j′ � j̄
leaving x = ξ̄ with y = η̄ = Y (ξ̄) �∈ Bj̄ (or the cascade could have continued);
by (2.3) we then have η̄ ∈ S j̄ and the solution could be extended. In either case,
then, the domain [0, 0] is inconsistent with maximality. Similarly, a domain [0, T∗]
is also inconsistent with maximality since we could restart the problem at T∗ and
use the same argument.

Next suppose the maximal domain were of the form [0, T∗).

Since [j(·),x(·),y(·)] is a solution on every subinterval, either there is a last
switching . � j∗ at t∗ < T∗ or the sequence of switching times (tν) converges to T∗,
violating (S)-b. on [0, T∗] itself. In the former case, t �→ x(t) = πj∗(t− t∗,x(t∗+) is
continuous on [0, T∗] and either y(T∗) = Y (x(T∗)) ∈ Sj∗ – so the solution continues
through T∗ in mode j∗ by (H1)-a. – or y(T∗) ∩ Bj∗ �= ∅ so one can switch and the
solution can be extended at least to [0, T∗]; either of these possibilities contradicts
the maximality of [0, T∗).

In the latter case, with tν → T∗, the maximally defined j(·) necessarily con-
sists of an infinite sequence of nondegenerate interswitching intervals of length
τμ > 0 (with

∑∞
μ=1 τμ = T∗) separated by maximal cascades jμ−1 �� jμ. Choose

any T ′ ∈ (T∗ − τ̄ , T∗), let N ′ bound the number of switchings in j(·) on [0, T ′],
and set N = N(ξ,N ′, T∗) as in (H2). Now consider any one of the interswitching
intervals I = Iμ = [t′, t′′] (i.e., t′ = tμ−1, t′′ = tμ) with t′ ≥ T ′ on which j ≡ j = jμ.
By (S)-c, this must be initiated with x(t′−) = ξ1 producing a maximal cascade
jμ−1 = j1 � · · · jn = j with Y (ξν) ∈ Cjν

�jν+1
and ξν+1 = f(ξν ; jν � jν+1) for

ν = 1, . . . , n− 1 as in (H1)-d. Assuming no points of Ξ̄ occur in this sequence (or
during I) so Y is simply a continuous single-valued function there, one can show
easily that the set S of points in K which can initiate this particular sequence (as
ξ1) is closed and in KN ′ , so compact in X . Thus, iterating f , the set S′ of points
terminating the sequence (as ξnξ+) is also compact and S′′ = Y (S′) is compact
in Y – with S′′ ∩ Bj = ∅, as the cascade is maximal. Hence there is a minimal
distance from S′′ to Bj. We must have y(t′′) ∈ Bj to end I by initiating another
transition and note that [t → Y (πj(t − t′, ξn+)] is uniformly continuous on I so
there is a minimal time required to make this transit; with only finitely many
possibilities for the cascade, this time τ∗ may be taken as the same for all so the
length τν of such an interswitching interval is bounded below by τ∗ and there can
be at most τ̄/τ∗ such intervals. We have no lower bound on the length of those
interswitching intervals involving points of Ξ̄, but the number of these is bounded
by our technical hypothesis (H2), contradicting the assumption above of an infinite
sequence {Iμ}.

Thus, the maximal domain must be [0,∞); as desired, the maximally defined
skittish solution is global. Of course, this need not be unique and there may also
be additional (non-skittish) global solutions. Note also, from this proof, that if we
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are given, on a bounded domain, any [j(·),x(·),y(·)] satisfying (S) there, then it
can be extended to a global solution. �

Example 4.2. As a first example, consider a thermostat-controlled heating system.
For the simplest case, one would have a single point-evaluation sensor: Y : ξ �→
η = ξ(p) with p given in the spatial region Ω and ξ ∈ X = C(Ω). We take the
effect of the control in the boundary flux so (1.1) becomes the heat equation for
the temperature distribution x(t, ·)

xt = Δx on Ω, xν = αx + vj at ∂Ω (4.5)

defining πj for the two modes j ∈ J = {0, 1} denoting off/on. [Here the flux
difference v1 − v0 gives the effect of the furnace or AC.] We have no jumps in the
state itself when the thermostat switches so f = idX . The well-posedness of (4.5)
is standard and (H1)-c.,d. as well as (H2) are immediate since Y is single-valued
and continuous.

Now let η∗ be our setpoint, the desired temperature, and allow a margin ±δ
with δ > 0. Then switching is determined by

A0(y) =

⎧⎨⎩
{0} if y > η∗ − δ
{0, 1} if y = η∗ − δ
{1} if y < η∗ − δ

A1(y) =

⎧⎨⎩
{0} if y > η∗ + δ
{0, 1} if y = η∗ + δ
{1} if y < η∗ + δ

so
C0�1 = (−∞, η∗ − δ], S0 = [η∗ − δ,∞),
C1�0 = [η∗ + δ,∞), S1 = (−∞, η∗ + δ].

I.e., the furnace turns on when temperature (at the thermostat) falls below η∗− δ
and goes off when it rises above η∗ + δ. [The resulting transducer: y(·) �→ j(·) is
precisely the hysteretic non-ideal relay of [6, section 28.2], well defined except for
the possible ambiguity of anomalous points.] We have (H1)-a.,c.,d. trivially; with
δ > 0, (H1)-b. holds as C0�1 ∩ C1�0 = ∅, and (H1)-e. holds as y(·) is continuous
here with each Sj \ Bj open.

Taking δ > 0 is implicit in the usual design of thermostats and we note that
our hypotheses fail for the idealized thermostat with δ = 0. In that setting one
has a (pointwise) functional map: y �→ j and convexifying when y = η∗ (compare
[4, 3]) one does obtain existence, although with the possibility of Zeno-ness in the
form of sliding modes: on/off oscillation of the furnace on the rapid scale. �
Example 4.3. We conclude with a more demanding example, considering trans-
port on a graph with feedback modal control: descriptively, we imagine reacting
chemical species being transported by a solvent, moving as plug flow along the
pipe segments {Em : m ∈ M} of a network. These single-segment problems are
then coupled at each node Nn of the resulting graph Γ through the allocation of
incoming flux, including exogenous sources, to outgoing segments, including ex-
ternal outputs). Our presentation here largely follows the more detailed treatment
in [5].

The state x(t) in this example will be the densities (concentrations) u(t, ·) of
conserved species of interest, taken in a suitable state space X of vector functions
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on Γ. The map Y : X → Y = RK is given by evaluations yk = ui(k)(·, s̄k) at
specified sensor points s̄k ∈ Γ. We have f = idX here and initially let the feedback
diagram be subject only to (2.3), (H1)-a., and Cj�j′ ∩ · · · ∩ Cj′′�j = ∅, which is
here equivalent to (H1)-b.

For simplicity of exposition we assume an incompressible carrier (solvent)
and uniform cross-sectional area αm in each pipe segment Em and input end 0m

independent of the mode; the transport is produced by the action (specified by j)
of a pump at 0m. The flow velocity vj

m will then be constant on Em and, again for
simplicity we assume vj

m is also constant in t. The evolution πj of the system is
now determined by these flow velocities. First, we have a set of convection/reaction
equations: on each of the individual edges

ut + vj
mus = f(u) on Em (4.6)

and will use the classical method of characteristics to construct solutions:

Let ω(t;ω0) be the solution of the ordinary differential equation

ω′ = f(ω), ω(0) = ω0, (4.7)

Given (t, s), track back along the characteristic σ(τ) = s − [t − τ ]v to an
initialization point (τ0, σ0) – either τ = τ0 ≤ t is a starting time (i.e., 0 or
the most recent switching time) with σ0 = σ(τ0) ∈ Em or else σ0 = 0m with
τ0 ≤ τ ≤ t. Now set u(t, s) = ω(t−τ ;ω∗) where ω∗ is the given data at (τ0, σ0).

The construction of πj is then completed by the nodal coupling, specifying the
input data u∗m(·) to each pipe. For each node Nn we have input edges M+

n and
output edgesM−

n (with ∪nM−
n =M = ∪nM+

n ). Clearly the assigned flow veloc-
ities must satisfy the consistency condition

[flux in]jn =
∑

m∈M−
n

αmvj
m =

∑
m∈M+

n

αmvj
m = [flux out]jn = Φj

n (4.8)

Assuming perfect mixing at the node, the vector of combined input concentrations
at Nn of the chemical species will be

Un(τ) =

∑
{αmvj

m um(τ, 1m) : m ∈M−
n }∑

{αmvj
m : m ∈M−

n }
(4.9)

and the required input data to Em is then given by

u(τ, 0m) = u∗(τ) = Un(τ) for m ∈M+
n (4.10)

[This must be modified in the case of exogenous sources, for which one can permit
some choice in the formulation.]

We take this construction along characteristics as defining our notion of so-
lution for (4.6) and so the definition of πj .

Our major technical difficulty in this example is to specify and topologize
the state space X so as to verify the hypotheses (H1) and (H2) while maintaining
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continuity of this πj . From our solution construction and the continuity of ω(·, ·),
we see that discontinuities will propagate along the characteristics (including across
nodes) and can be created only at nodes at switching times. We expect, then, that
the state x(t) = u(t, ·) will be a piecewise continuous function and will takeX = PC
to be a suitable space of such functions.

As with modal sequences j(·), it is possible to create degenerate ‘intervals of
continuity’ – allowing u(t, ·) to be continuous on an interval [s, s′], take a value
on the degenerate interval [s′, s′′] with s′′ = s′, and then again continuous on
[s′′, s′′′]. This could occur if discontinuities propagating through edges Em and
Em′ incoming to the same node Nn arrive simultaneously; in view of our modeling
considerations we interpret ‘simultaneously’ as meaning ‘indistinguishably close’ –
although possibly distinct on the rapid time scale so we retain both possibilities
with the alternative intermediate values. These degenerate intervals correspond to
a fine spatial scale, comparable to the rapid time scale. In view of this possibility
we must careful with the interpretation of the sensor map Y , taking this to be
set-valued when such a subinterval coincides with one of the sensor points s̄k.

This suggests our characterization of an element of X = PC: for each m one
has a vector-valued piecewise continuous functions on closed subintervals, including
possible finite sequences of degenerate subintervals as with MS and then, much
as with Definition 3.1, we topologize this as follows:

Definition 4.4. [uk → u ] in PC if, for each Em, the number of subintervals is
eventually fixed, the dividing endpoints converge, and the functions on them (nor-
malized to domain [0, 1] with values on degenerate subintervals taken as constants)
converge in the sense of C[0, 1].

One easily sees that the problem is well posed in this setting: πj is continuous
from R+ × PC to PC. As suggested earlier, we use point evaluations to define
Y : PC → Y = RK by

Y (ξ) = [ξi(1)(s̄1), . . . , ξi(K)(s̄K)] (ξ ∈ PC) (4.11)

with the provision that: if a discontinuity of ξ occurs at one of the sensor points
s̄k so ξ(·) has both left- and right-hand values there (perhaps even more values if
this involves a degenerate subinterval), then yk(ξ) becomes the set of all relevant
values; this clearly gives (H1)-b.,c. It is not difficult to construct the feedback
diagram to give (H1)-a.,d. – e.g., taking Sj to contain the open set Y \Bj, perhaps
adjoining (as anomalous points) other points η ∈ Bj for which Y −1(η) contains
ξ from which one might wish to extend the solution in mode j – and we assume
this.

In order to satisfy (H2) we require that the sensor points are separated from
the actuators, i.e., from the input nodes where discontinuities might be created.
Thus, we will assume there is some τ̄ > 0 such that

[s̄k − 0m] / vj
m ≥ τ̄ for all j ∈ J , s̄k ∈ Em, k = 1, . . . ,K. (4.12)

With this assumption, no discontinuity created after time t = T could possibly
be propagated along characteristics to arrive at any sensor before t = T + τ̄ . If
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we have bounded by N ′ the number of switchings in j(·) up to T∗ − τ̄ , then our
dynamics and the graph geometry bound both the number of spatial discontinuities
arriving to any sensor point, creating a point of Ξ, up to T∗ − τ̄ and the number
of discontinuities in x(T∗ − τ̄), viewed now as an ‘initial’ state, and so bounds the
number which can arrive to a sensor point, creating a new point of Ξ, by any time
T ′ < T∗). This total bound is then N(ξ,N ′, T ) and we have verified (H2). �
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Abstract. We discuss shape optimization problems and variational methods
for fundamental mechanical structures like beams, plates, arches, curved rods,
and shells.
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1. Introduction

This work is a survey on recent results concerning thickness and shape optimization
problems associated with linear elasticity models of thin bodies like beams, plates,
arches, curved rods, and shells. We investigate subjects like existence, uniqueness,
optimality conditions, approximation, and numerical experiments. Our approach
is also strongly related to the so-called control variational method. In the case of
Kirchhoff–Love arches, this approach even yields the explicit solution of the model.

The plan of the paper is as follows: in Section 2, simplified beam and plate
models are analyzed, and the control variational method is briefly introduced.
Section 3 is devoted to Kirchhoff–Love arches and their optimization. In Sections
4 and 5, generalized Naghdi models for curved rods and shells, respectively, are
described together with optimization and control variational methods.

Finally, we mention that a general background and complete explanations of
much of the presented material can be found in the recent monograph by Neit-
taanmäki, Sprekels, and Tiba [11]. Further references of interest will be indicated
throughout the text.

The second author acknowledges the support of CNCSIS Romania under grant PCE 1192-09.
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2. Beams and plates

We start with a thickness optimization problem for a simplified model of a simply
supported plate. For a given open set Ω having a sufficiently smooth boundary
∂Ω, we consider the problem:

Min

⎧⎨⎩
∫
Ω

u(x) dx

⎫⎬⎭ , (2.1)

subject to
Δ(u3Δy) = f in Ω , (2.2)

y = Δy = 0 on ∂Ω , (2.3)

0 < m ≤ u(x) ≤ M a.e. in Ω , (2.4)

y ∈ C , (2.5)

where C ⊂ L2(Ω) is nonempty and closed. The dimension of Ω is arbitrary, with
the plate model corresponding to Ω ⊂ R2 (and the beam model to Ω ⊂ R ). Here,
u ∈ L∞(Ω)+ is the thickness, f ∈ L2(Ω) is the load, and y ∈ H2(Ω) ∩ H1

0 (Ω)
(the weak solution of (2.2), (2.3)) represents the deflection.

Clearly, (2.2), (2.3) may be rewritten as

Δz = f in Ω , (2.6)

z = 0 on ∂Ω , (2.7)

Δy = z 	 in Ω , (2.8)

y = 0 on ∂Ω , (2.9)

where z ∈ H2(Ω)∩H1
0 (Ω) is completely determined by f and 	 = u−3 ∈ L∞(Ω)+ .

The system (2.6)–(2.9) looks like the optimality conditions of some optimal
control problem (i.e., state equation plus adjoint equation) from the point of view
of the differential operators.

We formulate such a distributed control problem:

Min

⎧⎨⎩1
2

∫
Ω

	(x)h2(x) dx

⎫⎬⎭ (2.10)

subject to
Δy = 	 z + 	 h in Ω , (2.11)

y = 0 on ∂Ω . (2.12)

The control h belongs to L2(Ω) , and no constraints are imposed; z is defined by
(2.6), (2.7), 	 = u−3 .
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The optimal control problem (2.10)–(2.12) admits the trivial solution h∗ ≡ 0
in Ω (which is unique), and obviously the optimal state y∗ (and z ) satisfy (2.6)–
(2.9) and, consequently, (2.2), (2.3). Moreover, one can see directly that (2.10)–
(2.12) is equivalent to the minimization of the usual energy functional associated
with (2.2), (2.3). By (2.11), h = 	−1Δy − z , and we can rewrite (2.10) as

Min
y∈H2(Ω)∩H1

0 (Ω)

⎧⎨⎩1
2

∫
Ω

1
	(x)

(Δy(x) − 	(x) z(x))2 dx

⎫⎬⎭
= Min

y∈H2(Ω)∩H1
0 (Ω)

⎧⎨⎩1
2

∫
Ω

u3(x) (Δy(x))2 dx−
∫
Ω

y(x) f(x) dx

⎫⎬⎭
+
1
2

∫
Ω

	(x) z(x)2 dx ,

where the last integral does not depend on y .

Remark. This is probably the simplest example that shows that the classical varia-
tional method for differential equations may be reformulated as a control problem.
If state constraints are added in (2.10)–(2.12), we get a variational inequality for
(2.2), (2.3), and the control problem is no longer trivial. In other situations to be
mentioned later, such reformulations have a major impact both at the theoretical
and the numerical levels.

Coming back to the thickness optimization problem (2.1)–(2.5), the above
transformations allow us to reformulate it as follows:

Min

⎧⎨⎩
∫
Ω

	−
1
3 (x) dx

⎫⎬⎭ , (2.13)

Δy = z 	 in Ω , (2.14)
y = 0 on ∂Ω , (2.15)

0 < M−3 ≤ 	(x) ≤ m−3 a.e. in Ω , (2.16)
y ∈ C . (2.17)

The integrand in (2.13) is strictly convex in the interval [M−3,m−3] . We get the
following result.

Theorem 2.1. If C is convex and if the admissible set is nonvoid, then the prob-
lem (2.13)–(2.17) and, consequently, the problem (2.1)–(2.5), has a unique global
optimal pair [y∗, 	∗] , respectively [y∗, u∗] , in H2(Ω)× L∞(Ω) .

Remark. Existence is standard, and uniqueness is a consequence of the strict con-
vexity of (2.13)–(2.17), since the relation y ↔ 	 defined by (2.14), (2.15) is linear.
However, the original problem (2.1)–(2.5) is nonconvex, since the relation y ↔ u
in (2.2), (2.3) is strongly nonlinear. Hence, (2.1)–(2.5) may have infinitely many
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local minimum points (pairs), but the global minimum is unique. Such results may
be extended to clamped plates, i.e., to the case that (2.3) is replaced by

y =
∂y

∂n
= 0 on ∂Ω ,

and to other models of plates and beams.

Remark. If M is “large”, and C = {y ∈ H2(Ω) ; y(x) ≥ −δ a.e. in Ω} , δ > 0
“small”, then the set of admissible pairs is nonvoid. Indeed, for 	 = M−3 the
corresponding solution yM of (2.14) satisfies (for p “large”):

sup
x∈Ω

|yM (x)| ≤ |yM |W 2,p(Ω) ≤ C|z|Lp(Ω)M
−3 → 0 for M →∞ .

Then, Theorem 2.1 may be applied. Existence and uniqueness results are essential
stability conditions for numerical methods.

If the state constraint in (2.17) has the above form, then a usual penalization
approach approximates (2.13)–(2.17) via

Min

⎧⎨⎩
∫
Ω

	
1
3 (x) dx +

1
2ε

∫
Ω

[y(x) + δ]2− dx

⎫⎬⎭ (2.18)

subject to (2.14)–(2.16), with ε > 0 “small”.

Proposition 2.2. The optimality conditions for the problem (2.18) are given by
(2.14), (2.15), the adjoint equation

Δpε = − 1
ε
(yε + δ)− in Ω , (2.19)

pε = 0 on ∂Ω , (2.20)

and the maximum principle

0 ≤
∫
Ω

(
−1
3
(	ε(x))−

4
3 + pε(x) z(x)

)
(	(x) − 	ε(x)) dx (2.21)

for any 	 ∈ L∞ such that M−3 ≤ 	(x) ≤ m−3 a.e. in Ω .

Here, [yε, 	ε] is the unique optimal pair of the penalized control problem
(2.18), (2.14)–(2.16).

Remark. One can prove bang-bang properties for the optimal thickness, [12]. Here,
we just show this in a numerical example computed by gradient methods with
projection. Notice that the gradient is given by − 1

3	
− 4

3 + p z .

Example 2.3. Let Ω ⊂ R2 be an ellipse with semiaxes 0.2 and 1.0 . The initial
“thickness” is 	1 ≡ 0.3 in Ω , and the constraint on 	 is

0.1 ≤ 	 ≤ 19.9 in Ω ,
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while δ = 0.1 . The Figures 2.1, 2.2 a), b) represent an optimal 	 (which is almost
bang-bang in Figure 2.2) together with its section along x2 = 0 for f ≡ −1000 in
Ω , and, respectively, for

f(x1, x2) =
{

200 if x1 ≥ 0 ,
−2500 if x1 < 0 .

Remark. Relevant for this section are the papers Sprekels and Tiba [12], [13], [14],
and Arnăutu, Langmach, Sprekels, and Tiba [1].
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3. Kirchhoff–Love arches

We recall the classical formulation of the model:
1∫
0

[
1
ε
(v′1 − c v2)(u′1 − c u2)(s) + (v′2 + c v1)′(u′2 + c u1)′(s)

]
ds

=

1∫
0

(f1 u1 + f2 u2)(s) ds , ∀ u1 ∈ H1
0 (0, 1) , ∀ u2 ∈ H2

0 (0, 1) . (3.1)
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The arch is given by a two-dimensional Jordan curve parametrized with respect
to the arc length by [ϕ1, ϕ2] , and

√
ε is proportional to the thickness of the arch

(assumed constant), [f1, f2] ∈ L2(0, 1)2 are, respectively, the tangential and the
normal component of the load (assumed to act in the arch plane), while [v1, v2] is
a similar representation of the deformation. The coefficient c = ϕ′′2 ϕ′1 − ϕ′′1 ϕ′2 is
the curvature.

A thorough investigation using Dirichlet’s principle, Korn’s inequality, and
the Lax–Milgram lemma, for the solvability of (3.1), may be found in Ciarlet [3],
p. 432.

We shall analyze shape optimization problems associated with (3.1), while
the thickness is assumed constant. An essential tool is the reformulation of (3.1)
via the control variational method.

Let θ(s) = arctan
(

ϕ′2(s)
ϕ′1(s)

)
(then θ′ = c ) denote the angle between the hori-

zontal coordinate axis and the tangent vector ϕ′(s) = (ϕ′1(s), ϕ
′
2(s)) , and let

W (s) =

(
cos(θ(s)) sin(θ(s))

− sin(θ(s)) cos(θ(s))

)
(3.2)

denote the fundamental matrix of the differential system

q′1(s) = c(s) q2(s) , q′2(s) = −c(s) q1(s) , s ∈ [0, 1] .

The control variational method associates with (3.1), (3.2) the optimal control
problem

Min

⎧⎨⎩L(u, z) =
1
2ε

1∫
0

u2(s) ds +
1
2

1∫
0

z′(s)2 ds

⎫⎬⎭ , (3.3)

subject to u ∈ L2(0, 1) , z ∈ H1
0 (0, 1) , to the state equation[

v1
v2

]
(t) =

t∫
0

W (t)W−1(s)
[
u(s) + g1(s)
z(s) + g2(s)

]
ds , t ∈ [0, 1] , (3.4)

and to the constraint
1∫
0

W−1(s)
[
u(s) + g1(s)
z(s) + g2(s)

]
ds =

[
0
0

]
. (3.5)

The formulation (3.3)–(3.5) is meaningful for θ ∈ L∞(0, 1) , i.e., for ϕ = [ϕ1, ϕ2]
just Lipschitzian. If θ ∈ W 1,1(0, 1) , then (3.4) may be rewritten in differential
form, i.e.,

v′1 − c v2 = u + g1 a.e. in (0, 1) ,

v′2 + c v1 = z + g2 a.e. in (0, 1) . (3.6)
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The affine terms g1, g2 are defined by g1 = ε2 	 , −g′′2 = h , g2(0) = g2(1) = 0 ,
where [

	
h

]
(t) = −

t∫
0

W (t)W−1(s)
[
f1(s)
f2(s)

]
(s) ds . (3.7)

A simple computation, involving (3.6), (3.7), and some partial integration, shows
that the cost functional (3.3) represents exactly the energy of the original system
(3.1). From this point of view, the control variational method (applied to arches
by Sprekels and Tiba [15]) is very similar to the approach of Ciarlet and Ciarlet
[5], [6], Gratie [8], Ciarlet and Gratie [7]. Using optimal control methods in the
minimization of the energy allows the application of powerful tools like the adjoint
equation and Pontryagin’s maximum principle.

Restriction (3.5) expresses that v1(1) = v2(1) = 0 (multiplying by W (1) )
and completes the initial condition v1(0) = v2(0) = 0 , which is a consequence
of (3.4). The constraint (3.5) makes the control problem (3.3)–(3.5) nontrivial, in
contrast to (2.10)–(2.12) (which has the solution h = 0).

As we have already mentioned, the following result reduces the solution to
(3.1) to the variational problem (3.3)–(3.5).

Theorem 3.1. If ϕ ∈ W 3,∞(0, 1)2 , then the unique optimal state [v∗1 , v
∗
2 ] of the

control problem (3.3)–(3.5) is the solution of (3.1).

Remark. The regularity assumption ϕ ∈ W 3,∞(0, 1)2 is standard in the mathe-
matical literature on the subject. We study and solve (3.3)–(3.5) under the much
weaker hypothesis ϕ ∈W 1,∞(0, 1)2 , which is one of the gains of the control vari-
ational method.

Theorem 3.2. Suppose that θ ∈ L∞(0, 1) . The couple {[u∗, z∗], [v∗1 , v∗2 ]} is optimal
for (3.3)–(3.5) if and only if there are λ∗1, λ∗2 ∈ R and p∗, q∗ ∈ L∞(0, 1) such that:[

v∗1
v∗2

]
(t) =

t∫
0

W (t)W−1(s)
[
u∗(s) + g1(s)
z∗(s) + g2(s)

]
ds , for a.e. t ∈ (0, 1) ,

1∫
0

W−1(s)
[
u∗(s) + g1(s)
z∗(s) + g2(s)

]
ds =

[
0
0

]
,

[
p∗

q∗

]
(t) = W (t)

[
λ∗1
λ∗2

]
, for a.e. t ∈ (0, 1) ,

u∗ = ε p∗ , (z∗)′′ = −q∗ , z∗(0) = z∗(1) = 0 .

Remark. Theorem 3.2 gives the characterization of the solution to (3.3)–(3.5)
via the first-order optimality conditions, which are a variant of the Pontryagin
maximum principle. They allow, via further arguments, the explicit solution of
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(3.3)–(3.5). In particular, [λ∗1, λ
∗
2] ∈ R2 is the unique minimizer of the dual problem

Min
[λ1,λ2]∈R2

⎧⎨⎩ 1
2ε

1∫
0

(λ1 ε cos(θ(s)) + λ2 ε sin(θ(s)) + ε 	(s))2 dx

+
1
2

1∫
0

[(λ1 w1 + λ2 w2 + g2)′(s)]
2
ds

⎫⎬⎭ , (3.8)

where w1, w2 ∈ H2(0, 1) ∩H1
0 (0, 1) are some auxiliary mappings defined by

w′′1 (s) = sin(θ(s)) , w′′2 (s) = − cos(θ(s)) . (3.9)

Remark. This is possible since the constraint (3.5) has finite-dimensional range.
The dual problem (3.8) is unconstrained and equivalent to its first-order optimality
system (a (2×2 ) linear algebraic system). This gives the explicit solution for λ∗1, λ∗2
and subsequently, one can compute p∗, q∗ , and u∗, z∗ by the formulas in Theorem
3.2. The state equation (3.4) gives the explicit computation of the deformation
(only some integrals have to be approximated by quadrature formulas).

Some examples of deformation computations using (3.8), (3.9), and Theo-
rem 3.2 are given in Figures 3.1–3.3. Notice that in the case of Gothic arches such
as in Figure 3.1, θ has indeed jumps, that is, the hypothesis θ ∈ L∞(0, 1) is
essential.

Figure 3.1. θ(t) = t , t ∈
[
0, π

3

]
, θ(t) = t+ π

3 , t ∈
[

π
3 ,

2π
3

]
,

f1(t) = 0 , f2(t) = 1
SE , E = 10 , c© SIAM.
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Figure 3.2. θ(t) = t , t ∈ [0, π] , f1(t) = sin(t)
S , f2(t) =

cos(t)
S ,

c© SIAM.

Figure 3.3. θ(t) = t , f1(t) =
sin(t)
SE , f2(t) =

cos(t)
SE , t ∈ [0, 2π] ,

E = 100 , c© SIAM.
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Based on this efficient solution method of (3.1), we consider associated shape
optimization problems. We study the model problem of the minimization of the
normal component of the deflection:

Min
θ∈Uad

⎧⎨⎩1
2

1∫
0

[v2(s)]2 ds

⎫⎬⎭ (3.10)

subject to the optimality system defined in Theorem 3.2.
Notice that this optimality system becomes the state equation for the opti-

mization problem (3.10), and all the unknowns appearing there, v1, v2, u, z, p, q ,
λ1, λ2 , are the new state parameters. The new control unknown is just θ ∈ Uad ⊂
L∞(0, 1) (control constraints), which completely characterizes the geometry of the
arch (its shape).

Remark. The significance of the problem (3.10) is to minimize the normal de-
flection (safety requirement) by choosing an advantageous shape of the structure.
The field of forces [f1, f2] ∈ L2(0, 1)2 is assumed to be given (for instance, the
maximal load to which the arch may be subjected). General cost functionals may
be studied in a similar way.

Theorem 3.3. If Uad is compact in L∞(0, 1) , then the problem (3.10) has at least
one solution θ∗ ∈ Uad .

Figures 3.4–3.6 are related to the problem (3.10) for three examples of pre-
scribed forces and of constraints on θ . The values of the cost functional obtained
in various iterations (corresponding to the two-dimensional curves represented by
different graphical symbols) are written in the legend of each figure.

Remark. Problem (3.10) is a control-by-the-coefficients optimization problem. In
the classical setting, the assumption that c′ = θ′′ (the curvature) is bounded in
Lr(0, 1) , r > 1 , ensures existence. Theorem 3.3 uses a much weaker assumption,
due to the application of the control variational method. It is possible to use gra-
dient methods for the solution of (3.10) under the same assumption θ ∈ L∞(0, 1) .
This is a rather technical subject, and we refer to Ignat, Sprekels, and Tiba [9],
Neittaanmäki, Sprekels, and Tiba [11], Ch. 6.1.2, for a complete treatment. Figures
3.4–3.6 give some examples of optimal shapes computed by the above approach
together with several intermediate iterations. One should notice that Figures 3.4
and 3.5 admit a physical interpretation perfectly matching our numerical experi-
ments. This is a hint that the model and the optimization method are well founded
from the viewpoint of physics and have good stability properties.
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Figure 3.4. θ(t) ∈ [0, π] , f1(t) = 1
S , f2(t) = 0 , θ0(t) = t ,

t ∈ [0, π] , c© SIAM.

Figure 3.5. θ(t) ∈ [0, π] , f1(t) = sin(θ(t))
S , f2(t) =

cos(θ(t))
S , θ0(t) = t ,

t ∈ [0, π] , c© SIAM.
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Figure 3.6. θ(t) ∈ [π3 , 2π3 ] , f1(t) =
cos(θ(t))

S , f2(t) =
sin(θ(t))

S ,
t ∈ [0, π] , θ01(t) = 2t+π

3 , t ∈ [0, π
2 ) , θ01(t) =

2t
3 ,

t ∈ [π2 , π] , θ02(t) = t+π
3 , t ∈ [0, π] , c© SIAM.

4. Curved rods in dimension three

Let θ̄ ∈ W 2,∞(0, 1)3 be the parametrization of a three-dimensional Jordan curve,
and let ω ∈ R2 be some bounded Lipschitzian domain, not necessarily simply
connected. If {t̄, n̄, b̄} denotes some local orthonormal frame associated with the
curve θ̄ , we define the geometric transformation

F : Ω = ω× ]0, 1[→ F (Ω) = Ω̂ ⊂ R3 ,

F (x̄) = F (x1, x2, x3) = θ̄(x3) + x1 n̄(x3) + x2 b̄(x3) ,

∀ (x1, x2) ∈ ω , ∀ x3 ∈ ]0, 1[ . (4.1)

Denote by (hij(x̄))i,j=1,3 = J(x̄)−1 the Jacobian of F , J = ∇F . If diam (Ω)
is “small”, then det J(x̄) ≥ c0 > 0 , ∀x̄ ∈ Ω, and F : Ω → Ω̂ is a one-to-one
transformation, Ciarlet [4], Thm. 3.1-1. A three-dimensional curved rod around
the line θ of centroids is the domain Ω̂ defined by (4.1).

Starting from the linear elasticity system, and using the supplementary as-
sumption that the displacement at x̂ ∈ Ω̂ has the form

ȳ(x̂) = τ̄ (x3) + x1 N̄(x3) + x2 B̄(x3) (4.2)
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with x̄ = (x1, x2, x3) = F−1(x̂) ∈ Ω, we obtain the following model for the curved
rod:

B(ȳ, v̄) = λ̃

∫
Ω

3∑
i,j=1

[
Ni(x3)h1i(x̄) +Bi(x3)h2i(x̄) + (τ ′i(x3) + x1N

′
i(x3)

+ x2B
′
i(x3))h3i(x̄)

]
·
[
Mj(x3)h1j(x̄) +Dj(x3)h2j(x̄)

+(μ′j(x3) + x1M
′
j(x3) + x2D

′
j(x3))h3j(x̄)

]
| detJ(x̄)| dx̄

+ μ̃

∫
Ω

∑
i<j

[
Ni(x3)h1j(x̄) +Bi(x3)h2j(x̄) + (τ ′i(x3) + x1N

′
i(x3)

+ x2B
′
i(x3))h3j(x̄) +Nj(x3)h1i(x̄) +Bj(x3)h2i(x̄)

+(τ ′j(x3) + x1N
′
j(x3) + x2B

′
j(x3))h3i(x̄)

]
·
[
Mi(x3)h1j(x̄) +Di(x3)h2j(x̄) + (μ′i(x3) + x1M

′
i(x3)

+ x2D
′
i(x3))h3j(x̄) +Mj(x3)h1i(x̄) +Dj(x3)h2i(x̄)

+(μ′j(x3) + x1M
′
j(x3) + x2D

′
j(x3))h3i(x̄)

]
| detJ(x̄)|dx̄

+2 μ̃
∫
Ω

3∑
i=1

[
Ni(x3)h1i(x̄) +Bi(x3)h2i(x̄) + (τ ′i(x3) + x1N

′
i(x3)

+x2B′i(x3))h3i(x̄)
]
·
[
Mi(x3)h1i(x̄) +Di(x3)h2i(x̄)

+(μ′i(x3) + x1M
′
i(x3) + x2D

′
i(x3))h3i(x̄)

]
| detJ(x̄)|dx̄

=
3∑

�=1

∫
Ω

f�(x̄)(μ�(x3) + x1M�(x3) + x2D�(x3))| detJ(x̄)| dx̄ , (4.3)

for any test functions μ̄ = (μ1, μ2, μ3) , M = (M1,M2,M3) , D = (D1, D2, D3) ∈
H1
0 (0, L)3 .

We have denoted v̄ = (μ̄,M,D) ∈ H1
0 (0, 1)9 , and ȳ = (τ1, τ2, τ3, N1, N2, N3,

B1, B2, B3) ∈ H1
0 (0, 1)

9 , the vector of the nine unknowns. The bilateral null con-
ditions, given by the choice of the space H1

0 (0, 1) , correspond to clamped curved
rods. The vector f̄ = (f1, f2, f3) ∈ L2(0, 1)3 represents the body forces acting on
the rod, and λ̃ ≥ 0 , μ̃ > 0 are the Lamé coefficients.

The condition (4.2) is very similar to (5.2) in the next section, and the choice
of the test functions is, too. That is why we call the model (4.3) to be of a general-
ized Naghdi type, Ignat, Sprekels, and Tiba [10], by using the name for similar shell
models (see next section). Notice that the regularity assumption θ̄ ∈ W 2,∞(0, 1)3

is one degree less than the usual assumptions in the literature, Trabucho and Viaño
[20]. In the work of Tiba and Vodák [19], an asymptotic model is introduced for
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curved rods under mere Lipschitz hypotheses for the parametrization. Shape opti-
mization problems associated with three-dimensional curved rods are analyzed in
Arnăutu, Sprekels, and Tiba [2], Neittaanmäki, Sprekels, and Tiba [11], Ch. 6.2.3,
including numerical experiments with a fairly complete mathematical justification.

We associate with (4.3) the following optimal control problem:

Min
{
λ̃

∫
Ω

3∑
i,j=1

Uii(x̄)Ujj(x̄) | detJ(x̄)| dx̄

+ μ̃

∫
Ω

∑
i<j

[Uij(x̄) + Uji(x̄)]2 | detJ(x̄)| dx̄

+2 μ̃
∫
Ω

3∑
i=1

U2
ii(x̄)| detJ(x̄)| dx̄ − 2

3∑
i=1

∫
Ω

fi(x̄) [τi(x3) + x1Ni(x3)

+ x2Bi(x3)] | detJ(x̄)| dx̄
}
, (4.4)

subject to the state system

Ni(x3)h1j(x̄) +Bi(x2)h2j(x̄) + [τ ′i (x3) + x1N
′
i(x3) + x2B

′
i(x3)]h3j(x̄)

= Uij(x̄) in Ω , (4.5)

Ni(0) = Bi(0) = τi(0) = 0 , i = 1, 3 , (4.6)
and to the control constraints

U = {Uij}i,j=1,3 ∈ V ⊂ L2(Ω)9 . (4.7)

Here, V �= ∅ is the closed linear subspace in L2(Ω)9 generated by all functions in
L20(0, 1) (with zero mean) used on the “position” of τ

′
i , N

′
i , B

′
i , i = 1, 3 , in (4.5).

Clearly, Ni, Bi can be immediately obtained by simple integration and (4.6), which
gives the form of Uij in the right-hand side of (4.6) and spans V .

Notice that the condition τ ′i , N
′
i , B

′
i ∈ L20(0, 1) , i = 1, 3 , is the same thing

as
τi(1) = Ni(1) = Bi(1) = 0 , i = 1, 3 ,

which could be imposed instead of (4.7). We prefer to impose the control constraint
(4.7) in this form, since it is explicit. In (4.6), (x1, x2) ∈ ω appears as parameter,
and the definition of V ensures that (4.6) has a unique solution for any U =
(Uij)i,j=1,3 ∈ V . If (4.7) is not fulfilled, then (4.6) may have no solution.

Theorem 4.1. The optimal control problem (4.4)–(4.7) has a unique optimal couple
U∗ = {U∗ij} ∈ V , [τ∗i , B

∗
i , N

∗
i ]i=1,3 ∈ H1

0 (0, 1)
9 , and the optimal state is the

unique solution to the system (4.3) that governs the Naghdi generalized model for
curved rods.

This shows that the problem (4.4)–(4.7) is well posed and may be solved
instead of (4.3). The next results underline the simplicity of (4.4)–(4.7).
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Proposition 4.2. If {U∗ij} is known, then [τ∗i , N
∗
i , B

∗
i ]i=1,3 may be computed ex-

plicitly.

This is, of course, valid for any {Uij}i,j=1,3 and any [τi, Ni, Bi]i=1,3 that
satisfy (4.5), (4.6), that is, the state system may be solved explicitly. There are
certain orthogonality relations between the coefficients (hij)i,j=1,3 = J−1 that
may be obtained by their explicit computation, and this yields

B∗i =
3∑

j=1

U∗ij bj , i = 1, 3 , (4.8)

N∗
i =

3∑
j=1

U∗ij nj , i = 1, 3 , (4.9)

(τ∗i )
′ + x1(N∗

i )
′ + x2(B∗i )

′

=
3∑

j=1

U∗ij tj detJ(x̄) +
3∑

j=1

U∗ij nj c x
2 −

3∑
j=1

U∗ij bj c x1 , i = 1, 3 , (4.10)

where c together with a, β are L∞(0, 1) coefficients of curvature and torsion type
that may be computed from the “equations of motion”

t̄′(x3) = a(x3) b̄(x3) + β(x3) n̄(x3) ,

b̄′(x3) = −a(x3) t̄(x3) + c(x3) n̄(x3) ,

n̄′(x3) = −β(x3) t̄(x3) − c(x3) b̄(x3) .

Remark. Let us denote by Λi(Uij) the right-hand side in (4.10). Then, we can
perform the following substitution in (4.4):

3∑
i=1

∫
Ω

fi [τi + x1Ni + x2 Bi] det J dx̄

= −
3∑

i=1

∫
Ω

[τ ′i + x1N
′
i + x2 B

′
i]

x3∫
0

fi(x1, x2, ρ) detJ(x1, x2, ρ) dρ dx̄

= −
3∑

i=1

∫
Ω

Λi(Uij)

x3∫
0

fi(x1, x2, ρ) detJ(x1, x2, ρ) dρ dx̄ .

In this simple way, the optimal control (4.4)–(4.7) is transformed into a mathemat-
ical programming problem defined on V ⊂ L2(Ω)9 , since the state disappears. One
can also compare the approach from this section to the solution of the Kirchhoff–
Love model in Section 3, in dimension 2.
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5. Generalized Naghdi shells

Let ω ⊂ R2 be a bounded Lipschitzian domain, ε > 0 “small”, and Ω=ω×]−ε,ε[ .
We assume that

∂ω = γ0 ∪ γ1 , γ0 ∩ γ1 = ∅,
and we denote

Γ0 = γ0×]− ε, ε[ ,

Γ1 = ∂Ω \ Γ0 ,

V(ω) =
{
v̄ = (v1, v2, v3) ∈ H1(ω)3 ; v̄|γ0 = 0

}
.

Let p : ω → R be piecewise in C2(ω̄) , and let n̄ : ω → R3 , n̄ = (n1, n2, n3) , be
the unit normal vector to the graph of p in R3 . We denote by π̄ = (π1, π2, π3) =
(x1, x2, p(x1, x2)) this graph, which will represent the midsurface of the shell. We
define the transformation F : Ω→ F (Ω) = Ω̂ ⊂ R3 by

F (x̄) = F (x1, x2, x3) = π̄(x1, x2) + x3 n̄(x1, x2) . (5.1)

If ε > 0 is small enough, then (5.1) is a one-to-one transformation (Ciarlet [4],
Thm. 3.1-1), which justifies the definition of the shell’s geometry Ω̂ = F (Ω) .
Denote by J = ∇F the Jacobian of F , and let (hij(x̄))i,j=1,3 = J(x̄)−1 . Starting
from the linear elasticity system, and using the assumption that the displacement
has the form

ŷ(x̂) = ū(x1, x2) + x3 r̄(x1, x2) , ∀ x̂ ∈ Ω̂ , x̄ = F−1(x̂) , (5.2)

the following generalized Naghdi shell model of the deformation was deduced in
Sprekels and Tiba [16]:

B([ū, r̄], [μ̄, ρ̄])

= λ

∫
Ω

{
3∑

i=1

[(
∂ui

∂x1
+ x3

∂ri

∂x1

)
h1i +

(
∂ui

∂x2
+ x3

∂ri

∂x2

)
h2i + ri h3i

]}

·
{

3∑
j=1

[(
∂μj

∂x1
+ x3

∂ρj

∂x1

)
h1j +

(
∂μj

∂x2
+ x3

∂ρj

∂x2

)
h2j + ρj h3j

]}
· | detJ(x̄)| dx̄

+2μ
∫
Ω

3∑
i=1

[(
∂ui

∂x1
+ x3

∂ri

∂x1

)
h1i +

(
∂ui

∂x2
+ x3

∂ri

∂x2

)
h2i + ri h3i

]

·
[(

∂μi

∂x1
+ x3

∂ρi

∂x1

)
h1i +

(
∂μi

∂x2
+ x3

∂ρi

∂x2

)
h2i + ρ1h3i

]
| detJ(x̄)| dx̄
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+μ

∫
Ω

∑
i<j

{[(
∂ui

∂x1
+ x3

∂ri

∂x1

)
h1j +

(
∂ui

∂x2
+ x3

∂ri

∂x2

)
h2j + ri h3j

+
(
∂uj

∂xi
+ x3

∂rj

∂x1

)
h1i +

(
∂uj

∂x2
+ x3

∂rj

∂x2

)
h2i + rj h3i

]

·
[(

∂μi

∂x1
+ x3

∂ρi

∂x1

)
h1j +

(
∂μi

∂x2
+ x3

∂ρi

∂x2

)
h2j + ρi h3j

+
(
∂μj

∂x1
+ x3

∂ρj

∂x1

)
h1i +

(
∂μj

∂x2
+ x3

∂ρj

∂x2

)
h2i + ρj h3i

]
· | detJ(x̄)| dx̄

=
3∑

i=1

⎧⎨⎩
∫
Ω

fi(μi + x3 ρi) dx̄ +
∫
Γ1

hi(μi + x3 ρi) dσ

⎫⎬⎭ ,

∀ μ̄ = (μ1, μ2, μ3) , ∀ ρ̄ = (ρ1, ρ2, ρ3) ∈ V(ω) . (5.3)

In (5.3), f̄ = (f1, f2, f3) represents the body forces, h̄ = (h1, h2, h3) the surface
tractions, λ ≥ 0 , μ > 0 are the Lamé coefficients, and the shell is partially
clamped along Γ0 . The unknown ū ∈ V(ω) may be interpreted as the deformation
of the midsurface of the shell, and r̄ ∈ V(ω) is the deformation of the normal n̄
(which may also modify its length, in this sense generalizing the classical Naghdi
model, Ciarlet [4]).

We show that it is possible to solve directly the generalized Naghdi shell
model (5.3) via a control problem governed by a finite number of independent
Poisson equations. This choice is motivated by its simplicity, and other choices are
also possible (which is a general characteristic of the control variational method):

Min
w∈[L2(ω)]12

{
L(w) =

1
2
B([ū, r̄], [ū, r̄]) + 1

2

3∑
i=1

∫
ω

[
|wi

1|2R2 + |wi
2|2R2

]
dx1 dx2

− 1
2

3∑
i=1

∫
ω

[
|∇ui|2R2 + |∇ri|2R2

]
dx1 dx2

}
, (5.4)

subject to

3∑
i=1

∫
ω

[∇ui · ∇φi +∇ri · ∇ψi] dx1dx2 =
3∑

i=1

∫
ω

[
wi
1 · ∇φi + wi

2 · ∇ψi

]
dx1dx2

+
3∑

i=1

⎧⎨⎩
∫
Ω

fi(φi + x3 ψi) dx̄+
∫
Γ1

hi(φi + x3 ψi) dτ

⎫⎬⎭ , ∀ φ, ψ ∈ V(ω). (5.5)
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This is an unconstrained control problem with w = [w1, w2] as control parameter,
w� = [w1� , w

2
� , w

3
� ] ∈ L2(ω)6 , 	 = 1, 2 .

Theorem 5.1. The optimal control problem (5.4), (5.5) has a unique optimal couple
[u∗, r∗] ∈ V(ω)2 , [w∗1 , w

∗
2 ] ∈ L2(ω)12 , and [u∗, r∗] is the unique solution of the

Naghdi generalized model (5.3).

Remark. One can compute the gradient of the cost (5.4) and use gradient methods
for the solution of (5.4), (5.5) and, implicitly, of (5.3). In each iteration of the
algorithm a finite number of independent Poisson equations (for the state and
the adjoint system) have to be solved. If convex state constraints are added to
(5.4), (5.5), then one obtains a variational inequality for (5.3). Notice that (5.4)
may be interpreted as the energy of the generalized Naghdi model as it is usual
in the control variational method. We also quote the work of Sprekels and Tiba
[18], including full details of the results introduced in Sections 4 and 5. In the
paper Sprekels and Tiba [17], the control variational method is applied to the full
elasticity system.
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A New Non-linear Semidefinite Programming
Algorithm with an Application to
Multidisciplinary Free Material Optimization

M. Stingl, M. Kočvara and G. Leugering

Abstract. A new method and algorithm for the efficient solution of a class of
nonlinear semidefinite programming problems is introduced. The new method
extends a concept proposed recently for the solution of convex semidefinite
programs based on the sequential convex programming (SCP) idea. In the
core of the method, a generally non-convex semidefinite program is replaced
by a sequence of subproblems, in which nonlinear constraint and objective
functions defined in matrix variables are approximated by block separable
convex models. Global convergence is proved under reasonable assumptions.
The article is concluded by numerical experiments with challenging Free Ma-
terial Optimization problems subject to displacement constraints.
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Keywords. Structural optimization, material optimization, semidefinite pro-
gramming, sequential convex programming.

1. Introduction

In the last two decades semidefinite programming problems (SDP) have received
more and more attention. One of the main reasons is the large variety of applica-
tions leading to semidefinite programs; see [3, 15], for example. As a consequence,
various algorithms for solving semidefinite programs have been developed – most of
them specialized in linear SDPs. Famous examples are interior point or dual scaling
methods (see, for example, [15, 31, 33] and the references therein). Only recently,
some of the algorithmic concepts have been generalized to nonlinear semidefinite
programs. Nowadays, there are several approaches: For example, in [9] and [11] the

This work has been partially supported by the EU Commission in the Sixth Framework Program,
Project No. 30717 PLATO-N.
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sequential quadratic programming idea is generalized to semidefinite programs. A
similar approach combining interior point ideas with sequential semidefinite pro-
gramming is presented in [16]. As alternative to this class of generalized interior
point methods, some Lagrangian type methods have been explored, see, [28, 23],
for instance. A related concept based on the modified barrier idea [24] lead to an
efficient implementation in the code Pennon [19, 22].

However the situation is still such that many classes of semidefinite pro-
grams remain unsolved. The main difficulty is the high computational complexity.
On the one hand, for some classes of SDP instances exploitation of sparse data
structures is very well understood. For instance, the techniques described in [14]
are implemented in many linear SDP solvers [8, 18, 32]. In the last five years, effi-
cient algorithms involving Krylov type methods have been adopted to semidefinite
programming and have been successfully applied to relaxations of combinatorial
optimization problems; see [36, 25, 22]. Only very recently the authors in [10] found
that algebraic properties of certain SDP instances can lead to amazing computa-
tional complexity improvements. On the other hand there are still SDP instances,
for which all these techniques and concepts fail to work. One prominent example
is the so-called free material optimization problem.

Free material optimization (FMO) is a branch of structural optimization.
It represents a generalization of so-called topology optimization (see [4]) that,
nowadays, is being routinely used in the industry. FMO has been successfully used
for conceptual design of aircraft components; the most prominent example is the
design of ribs in the leading edge of Airbus A380 [17]. The underlying FMO model
was introduced in [5] and [26] and has been studied in several further articles
such as [2, 39]. The optimization variable is the (positive definite) material tensor
which is allowed to vary from point to point. The method is supported by powerful
optimization and numerical techniques, which are based on dualization of the
original convex problem and lead to large scale semidefinite programming problems
[2]. The dualization approach has however two major disadvantages. First of all, the
computational complexity of the method depends cubically on the number of load
cases [20], which makes the approach impractical for 3D problems with more than
a few (typically 3–5) load cases. This was the main motivation of the authors to
develop the method described in [27]. Moreover, it is almost impossible to apply the
dual approach to extended (multi-disciplinary) FMO problems, as these problems
are typically non-convex. This is a serious drawback, as many design constraints,
such as displacement-based constraints are typical requirements arising in many
real-world applications; compare [17, 21].

In this article we propose an algorithmic concept – a generalization of the
method described in [27] – which is able to cope with the latter class of prob-
lems. Like the original approach, the method is based on a class of sequential
convex programming algorithms, of which the most prominent representatives are
CONLIN [12], the method of moving asymptotes (MMA) [29, 30] and SCPIP
[37, 38]. In contrast to the results described in [27], where the focus was on con-
vex, potentially non-smooth semidefinite programs, our main interest here is in
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non-convex problems. We follow the ideas presented in [30] in order to establish a
global convergence result for our method. Moreover we discuss numerical details
of our algorithm and demonstrate by numerical experiments that the new method
is a viable alternative and supplement to existing methods in the field of material
optimization.

The structure of this article is as follows: In Section 2 we define the basic
problem statement. In the third section, we recall the definition of convex, separa-
ble hyperbolic approximations of functions defined on matrix spaces. In Section 4,
these approximations are used to construct a globally convergent algorithm. Then,
in Section 5, we briefly describe the free material optimization (FMO) model in-
cluding displacement constraints. Finally, in Section 6, we present results of nu-
merical studies with 2D- and 3D-FMO problems, of which the latter ones have not
been solved by any existing method yet.

Throughout this article we use the following notation: We denote by Sd the
space of symmetric d×d-matrices equipped with the standard inner product 〈·, ·〉Sd

defined by 〈A,B〉Sd := Tr(AB) for any pair of matrices A,B ∈ Sd. We denote by
Sd
+ the cone of all positive semidefinite matrices in Sd and use the abbreviation

A �Sd 0 for matrices A ∈ Sd
+. Moreover, for A,B ∈ Sd, we say that A �Sd B if

and only if A−B �Sd 0, and similarly for A �Sd B.

2. Basic problem statement

Our aim is to solve the following generic semidefinite program:

min
Y ∈S

f0(Y ) (P)

subject to

f�(Y ) ≤ 0, 	 = 1, 2, . . . , L,

gk(Y ) ≤ 0, k = 1, 2, . . . ,K,

Yi �Sdi Yi �Sdi Yi, i = 1, 2, . . . ,m

with
S = Sd1 × Sd2 × · · · × Sdm and (d1, d2, . . . , dm) ∈ Nm .

We assume that, in general, m is large (103− 105) and di are small (2− 10). That
is, we have many small-size matrix variables and matrix constraints.

In what follows F denotes the feasible domain of problem (P). Throughout
the paper we make the following assumptions:

(A1) The functions f� : S → R, (	 = 0, 1, . . . , L) are continuously differentiable.
(A2) The functions gk : S → R (k = 1, 2, . . . ,K) are continuously differentiable,

convex and separable with respect to the matrix variable Y .
(A3) Problem (P) admits at least one solution.
(A4) The non-degeneracy constraint qualification (see [15, 7]) holds for P.
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Problems of type (P) arise in various applications. Our main motivation is
to solve the free material optimization problems described in detail in Section 5.
However, other applications can be found, e.g., in spline approximation [1] and
sparse SDP relaxation of polynomial optimization problems [34].

Remark 2.1. Assumption (A1) differs from the assumptions made in [27]. There,
f and all constraint functions are required to be convex. On the other hand, we
have a stronger continuity condition in this article. The non-degeneracy constraint
qualification used in assumption (A4) is a straightforward generalization of the
well-known linear independency constraint qualification.

Remark 2.2. For a short note on moderately successful experiences with ‘standard
SDP solvers’ applied to a sub-class of (P )-type problems as well as a brief motiva-
tion for the choice of the sequential convex programming framework, the interested
reader is referred to [27]. Here we only remark that the concept described through-
out this article can not be seen as a universal cure for large-scale (nonlinear) SDP
problems, but, as we will see in Section 6, it turns out to be efficient when solving
generalized FMO problems.

3. A block-separable convex approximation scheme

In this section we briefly outline the concept of block-separable convex approxi-
mations (see [27]) of continuously differentiable functions

f : S → R, where S = Sd1 × Sd2 × · · · × Sdm and (d1, d2, . . . , dm) ∈ Nm. (3.1)

We introduce the following convenient notation: Let I = {1, 2, . . . ,m}. On S we
define the inner product 〈·, ·〉S :=

∑
i∈I〈·, ·〉Sdi , where 〈·, ·〉Sdi is the standard inner

product in Sdi (i ∈ I). Moreover, we denote by ‖ · ‖S the norm induced by 〈·, ·〉S.
Finally, we denote the directional derivatives of f of first and second order in
directions V,W ∈ S by ∂

∂Y f(Y ;V ) and ∂2

∂Y ∂Y f(Y ;V,W ), respectively.

Definition 3.1. We call an approximation g : S → R of a function f of type (3.1)
a convex first-order approximation at Ȳ = (Ȳ1, . . . , Ȳm) ∈ S , if the following
assumptions are satisfied:
(AP1) g(Ȳ ) = f(Ȳ ),
(AP2) ∂

∂Yi
g(Ȳ ) = ∂

∂Yi
f(Ȳ ) for all i ∈ I,

(AP3) g is convex.

In the following, we recall the local block separable convex first-order ap-
proximation scheme for functions of type f , proposed in [27]. We start with the
following definitions:

Definition 3.2. Let f : S → R be continuously differentiable on a subset B ⊂ S.
For all i ∈ I we define differential operators entry-wise by(

∇if
)
�,j

:=
(
∂f

∂Yi

)
�,j

, 1 ≤ l, j ≤ di
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and denote by ∇i
+f(Ȳ ) and ∇i

−f(Ȳ ) the projections of ∇if(Ȳ ) onto Sdi
+ and Sdi− ,

respectively.

Definition 3.3. Let f : S → R be continuously differentiable on a subset B ⊂ S and
Ȳ = (Ȳ1, Ȳ2, . . . , Ȳm) ∈ B. Moreover let asymptotes L = (L1, L2, . . . , Lm)

�
, U =

(U1, U2, . . . , Um)
� be given such that

Li ≺
S

di
+
Ȳi ≺

S
di
+
Ui for all i ∈ I

and τ := {τ1, τ2, . . . , τm} be a set of non-negative real parameters. Then we define
the hyperbolic approximation fL,U,τ

Ȳ
of f at Ȳ as

fL,U,τ
Ȳ

(Y ) := f(Ȳ )

+
m∑

i=1

〈
∇i
+f(Ȳ ), (Ui − Ȳi)(Ui − Yi)−1(Ui − Ȳi)− (Ui − Ȳi)

〉
Sdi

−
m∑

i=1

〈
∇i
−f(Ȳ ), (Ȳi − Li)(Yi − Li)−1(Ȳi − Li)− (Ȳi − Li)

〉
Sdi

+
m∑

i=1

τi

〈
(Yi − Ȳi)2, (Ui − Yi)−1 + (Yi − Li)−1

〉
Sdi

. (3.2)

The following Theorem ([27]) says that (3.2) is a convex approximation in
the sense of Definition 3.1.

Theorem 3.4.

a) fL,U,τ

Ȳ
satisfies assumptions (AP1) to (AP3).

b) fL,U,τ
Ȳ

is separable w.r.t. the matrix variables Y1, Y2, . . . , Ym.
c) Let B be a compact subset of S, τ ≥ τi ≥ τ > 0 for all i ∈ I, and asymptotes L

and U in the sense of definition 3.3 be given. Then fL,U,τ
Ȳ

is strongly convex
on B. Moreover the second-order derivative of fL,U,τ

Ȳ
is uniformly bounded

for all Ȳ ∈ B.

Remark 3.5. Theorem 3.4 differs from the original theorem in [27] in the choice of
the asymptotes. Here we restrict ourselves to only one (fixed) choice of asymptotes.
The reason for this simplification is twofold. First it helps to unburden the notation.
Second, and more important there is no efficient dynamic choice of asymptotes
known in the semidefinite programming case. This is in sharp contrast to the
standard nonlinear programming situation; see [6, 13, 29, 38].

4. A globally convergent algorithm based
on hyperbolic approximations

In the framework of this section we use the local hyperbolic approximations defined
in Section 3 in order to establish a solution scheme for the generic optimization
problem (P):
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Given an iteration index j and an associated feasible point Y j of problem
(P), we define local hyperbolic approximations of f� (	 = 0, 1, . . . , L) as

f j
� (Y ) := (f�)

τ j

Y j (Y ) := (f�)
L,U,τ j

Y j (Y ),

and local approximations of (P) close to Y j as follows:

min
Y ∈S

f0
j(Y ) (Pj)

subject to

f j
� (Y ) ≤ 0, 	 = 1, 2, . . . , L,

gk(Y ) ≤ 0, k = 1, 2, . . . ,K,

Yi �Sdi Yi �Sdi Yi, i = 1, 2, . . . ,m .

We denote the feasible domain of problem (Pj) by Fj . By construction the
following corollary is an immediate consequence of Theorem 3.4:

Corollary 4.1. For all 	 = 0, 1, . . . , L:
a) f j

� (Y
j) = f�(Y j).

b) The gradients of f j
� and f� coincide at Y j.

c) The functions f � are convex.
d) The functions f � are separable w.r.t. Y1, Y2, . . . Ym.

Remark 4.2. Note that the function F�(Y, Y ′, τ) := (f�)
τ
Y ′(Y ) depends continu-

ously on all its arguments (not only on Y ). This fact will play an important role
in the convergence theory later.

The following proposition states a basic property of (Pj).

Proposition 4.3. Each subproblem (Pj) has a unique solution Ŷ j.

Proof. The existence and the uniqueness of a solution follows from the strong
convexity of the objective function f j

0 on the compact set Fj . Furthermore, as-
sumption (A4) (non-degeneracy constraint qualification) and Corollary 4.1 a & b
imply that we can find a strictly feasible point of problem (Pj) and the assertion
follows. �

Now we are able to present the basic algorithm for the solution of (P):

Algorithm 1. Let asymptotes L and U feasible with Definition 3.3 and a constant
ϑ > 1 be given.
(0) Find Y 1 ∈ F .
(1) Put j = 1.

(2) Choose τ ≥ τ j
1 , τ

j
2 , . . . , τ

j
m ≥ τ > 0.

(3) Solve problem (P j). Denote the solution by Y +.

(4) If f j
� (Y

+) ≥ f�(Y +) for all 	 = 0, 1, . . . , L, GOTO (6).
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(5) Put τ j
i ← ϑτ j

i for all i ∈
{
	 ∈ {0, 1, . . . , L} | f j

� (Y
+) < f�(Y +)

}
and GOTO (3).

(6) Y j+1 = Y +.

(7) If Y j+1 is stationary for problem (P ), STOP; otherwise put j = j + 1
and GOTO (2).

An appropriate update scheme for the parameters τ j
1 , τ

j
2 , . . . , τ

j
m (Step 2) will

be proposed in Section 6, where we will also discuss algorithmic details as, for
instance, a practical stopping criterion in Step 7. There we will further point out,
how we carry out Step 0 above. For a detailed description of the algorithm applied
to the solution of the subproblems arising from Step 3, we refer again to [27] and
the references therein.

Remark 4.4. Algorithm 1 consists of outer iterations (Steps 2–7) and inner itera-
tions (Step 3–5). The inner iterations replace the line search used in the original
algorithm stated in [27]. An interpretation of the inner iterations is as follows:
Whenever the condition in Step 4 fails to hold, we increase the influence of the
strong convexity term. This results in a more conservative model. In a sense this
is related to the trust region idea, which is a popular alternative to line search
methods.

We state now the central convergence result for Algorithm 1:

Theorem 4.5. Suppose that assumptions (A1)–(A3) are satisfied. Then, either Al-
gorithm 1 stops at a stationary point of (P), or the sequence {Y j}j generated by
Algorithm 1 has at least one accumulation point and each accumulation point is a
stationary point of (P).

In order to be able to prove the convergence theorem, we essentially follow
the lines of the convergence proof in [30]. Many arguments carry directly over from
[30]. Nevertheless we present all auxiliary results here in the semidefinite context
for the sake of completeness. We start with the following lemma.

Lemma 4.6. In each outer iteration only a finite number of inner iterations is
required until the condition

f j
� (Y

+) ≥ f�(Y +) for all 	 = 0, 1, . . . , L (4.1)

is satisfied. Moreover the parameters τi (i ∈ I) remain bounded throughout all outer
iterations.

Proof. Using Theorem 3.4 c the assertion of the lemma follows directly from [30,
Lemma 7.2 and Lemma 7.3]. �

As a consequence of this lemma, inner iterations can be neglected in the
remainder of the convergence proof.



282 M. Stingl, M. Kočvara and G. Leugering

Next we define the following auxiliary problem (Pτ
Ŷ
):

min
Y ∈S

f0
τ
Ŷ
(Y ) (Pτ

Ŷ
)

subject to

f�
τ
Ŷ
(Y ) ≤ 0, 	 = 1, 2, . . . , L,

gk(Y ) ≤ 0, k = 1, 2, . . . ,K,

Yi �Sdi Yi �Sdi Yi, i = 1, 2, . . . ,m .

Lemma 4.7. For each τ ∈ Θ := [τ, τ ]m the following equivalence holds true: A
given point Ỹ is stationary for problem (P) if and only if it is stationary for (Pτ

Ỹ
).

Proof. The assertion of Lemma 4.7 follows directly from the first-order approxi-
mation properties of the model functions (f�)

τ
Ŷ stated in Theorem 3.4 a & b. �

An immediate consequence of Lemma 4.7 is the following: If Algorithm 1 has
a fixed point, i.e., Y j+1 = Y j then Y j is stationary for problem (P). Hence we can
assume subsequently without loss of generality that
(A5) Y j+1 �= Y j .

Lemma 4.8. All iterates Y j, j>1 remain feasible. Moreover the sequence {f0(Y j)}j

is strictly decreasing.

Proof. The first assertion is implied by condition (4.1) and Lemma 4.6. The strict
monotonicity of the objective function follows from assumption (A5). �

Taking into consideration that all iterates are in the compact set defined
by the matrix bounds, we conclude from Lemma 4.8 that the sequence {Y j}j

generated by Algorithm 1 has at least one accumulation point. We denote this
point by Y ∗. Now we argue exactly as in [30]: We can find an infinite index set K̃
such that
(C1) Y k → Y ∗ as k ∈ K̃ and k →∞.

By the same reasoning there exists a set K ⊂ K̃ and a point Ŷ such that

(C2) Y k+1 → Ŷ as k ∈ K and k →∞.

Lemma 4.9. The sequence of function values {f0(Y j)}j converges to f0(Y ∗).

Proof. The sequence of function values is monotonically decreasing due to Lemma
4.8. Moreover it is bounded by the global minimum of problem (P) – cf. assumption
(A4). Thus the sequence of function values converges to some f∗. Finally we see
from assertion (C1) that f∗ = f0(Y ∗). �

Using the lemma above and the continuity of f0 we immediately find

f0(Y ∗) = f0(Ŷ ) (4.2)

and conclude:
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Lemma 4.10. Ŷ is the unique solution of (Pτ∗
Y ∗), where τ∗ is an accumulation point

of the bounded sequence {τ}j.

Proof. Without restriction of generality we assume that the sequence {τ}j∈K con-
verges. Y j+1 is as optimal solution a feasible point of problem (Pj). Now, letting
k ∈ K and k →∞ we see that Ŷ is in the feasible domain of (Pτ∗

Y ∗). It remains to
prove that f0τ∗

Y ∗(Ŷ ) ≤ f0
τ∗
Y ∗(Ỹ ) for an arbitrary feasible Ỹ . We argue by contradic-

tion. Assume that there exists a Ỹ feasible for (Pτ∗
Y ∗) such that f0

τ∗
Y ∗(Ỹ ) < f0

τ∗
Y ∗(Ŷ ).

Then by a continuity argument we can find a point Ỹ ′ in the interior of the feasible
domain of (Pτ∗

Y ∗), which satisfies the inequality

f0
τ∗
Y ∗(Ỹ

′) < f0
τ∗
Y ∗(Ŷ ). (4.3)

The fact that Ỹ ′ is strictly feasible guarantees the existence of a k̄ > 0 such that
Ỹ ′ is a feasible point of all (Pk) with k > k̄. Now we conclude from Remark 4.2,
from Y k+1 K→ Ŷ , Y k K→ Y ∗, τk K→ τ∗ and (4.3) that we find an index k′ ≥ k̄ large
enough such that f0τk

Y k(Ỹ ′) < f0
τk

Y k(Y k+1). But this contradicts the optimality of
Y k+1 for (Pk). �

Lemma 4.11. Ŷ = Y ∗.

Proof. By construction Y ∗ is in the feasible domain of (Pτ∗
Y ∗). From f0(Y k+1) ≤

fk
0 (Y

k+1) it follows by letting k ∈ K and k →∞ that

f0(Ŷ ) < f0
τ∗
Y ∗(Ŷ ). (4.4)

By Lemma 4.7 we have f0(Y ∗) = f0
τ∗
Y ∗(Y

∗), but then (4.2) together with (4.4)
shows that f0τ∗

Y ∗(Y ∗) ≤ f0
τ∗
Y ∗(Ŷ ). Now the assertion follows directly from Lemma

4.10. �
Finally the assertion from Theorem 4.5 follows from Lemma 4.7 and Lemma 4.11.

5. Free material optimization

We briefly introduce the free material optimization problem:
Let Ω ⊂ R2 be a two-dimensional bounded domain1 with a Lipschitz bound-

ary. By u(x) = (u1(x), u2(x)) we denote the displacement vector at a point x of
the body under an external load, and by

eij(u(x)) =
1
2

(
∂ui(x)
∂xj

+
∂uj(x)
∂xi

)
for i, j = 1, 2

the associated (small-)strain tensor. We assume that our system is governed by
linear Hooke’s law, i.e., the stress is a linear function of the strain

σij(x) = Eijk�(x)ek�(u(x)) (in tensor notation),

1The entire presentation is given for two-dimensional bodies, to keep the notation simple. Anal-
ogously, all this can be done for three-dimensional solids.



284 M. Stingl, M. Kočvara and G. Leugering

where E is the elastic stiffness tensor. The symmetries of E allow us to write the
2nd order tensors e and σ as vectors

e = (e11, e22,
√
2e12)T ∈ R3, σ = (σ11, σ22,

√
2σ12)T ∈ R3 .

Correspondingly, the 4th order tensor E can be written as a symmetric 3×3 matrix

E =

⎛⎝E1111 E1122
√
2E1112

E2222
√
2E2212

sym. 2E1212

⎞⎠ . (5.1)

In this notation, Hooke’s law reads as σ(x) = E(x)e(u(x)).
Given an external load function f ∈ [L2(Γ)]2, where Γ is a part of ∂Ω that is

not fixed by Dirichlet boundary conditions, we are able to state a basic boundary
value problem of the type:

Find u ∈ [H1(Ω)]2, such that (5.2)

−div(σ) = 0 in Ω
σ · n = f on Γ
u = 0 on Γ0
σ = E · e(u) in Ω .

Here Γ and Γ0 are open disjunctive subsets of ∂Ω. Applying Green’s formula,
we obtain the weak equilibrium equation

Find u ∈ V, such that (5.3)∫
Ω

〈E(x)e(u(x)), e(v(x))〉dx =
∫
Γ

f(x) · v(x)dx, ∀v ∈ V,

where V = {u ∈ [H1(Ω)]2 |u = 0 on Γ0} ⊃ [H1
0 (Ω)]2 reflects the Dirichlet bound-

ary conditions.
In free material optimization (FMO), the design variable is the elastic stiff-

ness tensor E which is a function of the space variable x (see [5, 26]). The only
constraints on E are that it is physically reasonable, i.e., that E is symmetric and
positive semidefinite. This gives rise to the following definition

E0 :=
{
E ∈ L∞(Ω)3×3 | E = E�, E $ ρI a.e. in Ω

}
,

where ρ ∈ R+ is a suitable non-negative number and I denotes the identity matrix.
The choice of L∞ is due to the fact that we allow for maximal-material/minimal-
material situations. A frequently used measure for the stiffness of the material
tensor is its trace. In order to avoid arbitrarily stiff material, we add pointwise
stiffness restrictions of the form Tr(E) ≤ ρ, where ρ is a finite real number. Ac-
cordingly, we define the set of admissible materials as

E :=
{
E ∈ L∞(Ω)3×3 | E = E�, E $ ρI,Tr(E) ≤ ρ a.e. in Ω

}
.
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Now we are able to present the basic FMO problem:

inf
u∈V,
E∈E

∫
Γ

f(x) · u(x)dx (5.4)

subject to

u solves the equilibrium equation (5.3),

v(E) ≤ v̄ .

Here the volume v(E) is defined as
∫
Ω Tr(E)dx and v̄ ∈ R is an upper bound

on overall resources. Moreover, the objective, the so-called compliance functional,
measures how well the structure can carry the load f . More details about the
infinite-dimensional problems are given in [2, 35].

Next we show, how we can incorporate so-called displacement constraints in
the problem formulation: Given a set of functions dk ∈ [L2(Γ)]2 (k = 1, 2, . . . , nd),
we define linear displacement constraints as∫

Γ

dk(x) · u(x)dx ≤ rk, k = 1, 2, . . . , nd,

where r1, r2, . . . , rnd are real numbers. Then we arrive at the following multidisci-
plinary FMO problem:

inf
u∈V,
E∈E

∫
Γ

f(x) · u(x)dx (5.5)

subject to

u solves the equilibrium equation (5.3),∫
Γ

dk(x) · u(x)dx ≤ rk, k = 1, 2, . . . , nd ,

v(E) ≤ v̄ .

Important questions like existence of an optimal solution of this generalized
FMO problem are discussed in a forthcoming paper by the authors. In order to
solve problem (5.5) numerically, we use the finite element scheme described in [27],
which is based on the discretization schemes used in [2, 35]. After discretization,
problem (5.5) becomes

min
E∈Ẽ

f�A−1(E)f (5.6)

subject to

(dk)�A−1(E)f ≤ rk, k = 1, 2, . . . , nd , (5.7)
m∑

i=1

Tr(Ei) ≤ V,

where Ẽ is given as

Ẽ =
{
E ∈ (S3)m

∣∣ Ei $ ρI, Tr(Ei) ≤ ρ, i = 1, . . . ,m
}
, (5.8)
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V is a discrete upper bound on resources and f, dk (k = 1, 2, . . . , nd) are coefficient
vectors in RN associated with a finite element basis ϑ1, ϑ2, . . . , ϑN (note that the
discrete vectors are denoted by the same symbols as their infinite-dimensional
counterparts). Moreover A is the so-called global stiffness matrix associated with
the material E.

Remark 5.1. In [27] the authors have shown that the objective function given in
problem (5.6) is convex, smooth and has a dense Hessian. While the displacement
constraints (5.7) are smooth and lead to dense Hessians as well, they are in general
not convex.

Remark 5.2. Note that it is possible to work with several independently acting
load cases in all FMO problems above. For simplicity and because the multiple
load case is already extensively studied in [27] we restrict ourselves to single load
case scenarios in this article.

6. Numerical experiments

Before we report on results of our numerical experiments with FMO problems
described in the previous section we want to present some algorithmic details:

6.1. Algorithmic details

The choice of the asymptotes. As already mentioned in Section 3 we use fixed
asymptotes. The following choice turned out to be robust:

Li = 0, Ui = 1.1ρId,

where Id is the identity matrix in S3 and S6 for 2D- and 3D-problems, respectively.

The subproblems. During all iterations, we solve the subproblems approximately.
We use the following strategy: we start with a moderate accuracy of ε = 10−3

for the KKT error of the subproblem. During the outer iterations we adjust the
tolerance according to the current KKT error of the master problem.

The choice of τ . The parameters τ j
i (i ∈ I) in the jth outer iteration are initialized

such that the following condition is valid:

−∇if�(Ej) + τ j
i I $ δI (i ∈ I)

for all i ∈ I and all 	 = 0, 1, . . . , L. A typical choice for δ is 10−4. The constant
update factor ϑ used in step 4 of Algorithm 1 is typically chosen from the interval
[2, 10]. For a more sophisticated update scheme we refer to [30].
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A practical stopping criterion. We use two stopping criteria for Algorithm 1. The
first one is based on the relative difference of two successive objective function
values. We consider this stopping criterion as achieved if the relative difference
falls below some given threshold ε1 (typically ε1 = 10−8). The second stopping
criterion is based on the following KKT-related error measures:

err1 =
∥∥∥∇L(Y l, yl, ul, U l, U

l
)
∥∥∥ ,

err2 = max{f�(Y l), gk(Y l) | 	 = 1, 2, . . . , L, k = 1, 2, . . . ,K},
err3 = max

{
|yl

�f�(Y l)|, |ul
kgk(Y l)|, |〈U l

j , Y
l
j −Y j〉|, |〈U

l

j , Y j−Y l
j 〉|

∣∣
	 = 1, . . . , L, k = 1, . . . ,K, j = 1, . . . ,m

}
,

where Y l is the approximate solution at iterate l, L is the Lagrangian associated
with problem (P) and yl, ul, U l and U

l
are the corresponding vectors of Lagrangian

(matrix) multipliers associated with the constraint functions f�, gk and the lower
and upper matrix bound constraints, respectively. Recall that the feasibility of Y l

w.r.t. the matrix bound constraints is maintained throughout all iterations. Now
we define our second stopping criterion as

1
3

3∑
i=1

erri ≤ ε2, (6.1)

where a typical value for ε2 is 5 ·10−5. Note that we only stop when both stopping
criteria are satisfied simultaneously.

How to find a feasible point? In general it is known that finding a feasible point
of a non-convex optimization problem may be as hard as solving the optimization
problem itself. It turns out however that the following strategy inspired by [38]
works well for our purposes: If no feasible point is known, we start by solving the
following auxiliary problem:

min
Y ∈S

f0
j(Y ) +

∑
�=1,...,L

η�f
j
� (Y )

subject to

gk(Y ) ≤ 0, k = 1, 2, . . . ,K,

Yi �Sdi Yi �Sdi Yi, i = 1, 2, . . . ,m .

Here the parameters η�, 	 = 1, 2, . . . , L are penalty parameters, which are increased
until a feasible solution is identified.

The code. We have implemented the new algorithm in the C programming lan-
guage. In what follows we refer to the resulting code as Penscp. All FMO and
finite element computations have been carried out by a prototype version of the
software platform Plato-N.
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Figure 1. Test case 1: no displacement constraint applied; density plot
(left) / deformed density plot (right)
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Figure 2. Test case 1: including displacement constraint; density plot
(left) / deformed density plot (right)

6.2. Numerical studies with displacement constrained FMO problems

2D examples. The first test case we consider consists of a rectangular domain
which is clamped on the corner elements of the right boundary and loaded in the
center of the left boundary edge. The design space is discretized by 14.400 quadri-
lateral elements. We first solved this problem without displacement constraints.
Penscp needed 256 iterations in order to solve the problem. The optimal density
results are depicted in Figure 1.

Next we solve the same problem including a displacement constraint, which
forces the center of the right boundary edge to move to the left. The additionally
constrained problem was solved in 273 iterations. The resulting density distribution
is shown in Figure 2.

The compliance of the modified problem is only larger by approximately 0.5
per cent compared to the original problem. This is because not much additional
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Figure 3. Test case 1: principal strain directions; no displacement con-
straint (left) / with displacement constraint (right)
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Figure 4. Test case 1: additional load & displacement constraint; den-
sity plot (left) / deformed density plot (right)

material is needed to move a point, where originally the material is on the lower
bound. As a consequence the resulting density plots differ only slightly. In Figure 3
we plot the principal strain directions for both problems. here the difference is
already much more significant.

A well-known trick in design of mechanisms which avoids the difficulties de-
scribed above leading to more significant changes in the design is to prescribe
some material in the area which should be moved by the displacement constraint.
Alternatively one can apply a small force. Using the latter idea, we obtain the
results displayed in Figure 4. This time the solution was found in 361 iterations.
The compliance is (of course) much higher now – by about 50 per cent.

In our second test case we load a horizontal bar by vertical forces in the left
and right upper corner of the design domain. At the same time the bar is supported
from below as indicated in Figure 5. The bar is discretized by 18.000 elements.
Solving the problem without displacement constraint (310 iterations) one observes
that the complete bar bends over the support. In particular, the central part of
the upper boundary moves up.

This time the displacement constraint should invert this effect, i.e., the cen-
tral part of the upper boundary should move down. The computed density results



290 M. Stingl, M. Kočvara and G. Leugering
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Figure 5. Test case 2: no displacement constraint; density plot (top) /
deformed density plot (bottom)
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Figure 6. Test case 2: displacement constraint applied; density plot
(top) / deformed density plot (bottom)

(achieved after 327 iterations) can be seen in Figure 6. Figure 7 provides a compar-
ison of the principal strain directions. The increase of the compliance functional
in this example was about 16 per cent.
3D examples. In our third test case we want to design a cube, which is loaded
in the center of its top surface and clamped in the neighborhood of the corners
of the bottom surface. We discretize the cube by approximately 10.000 Hexa ele-
ments. The algorithm stops after 815 iterations yielding the density result shown
in Figure 8.
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Figure 7. Test case 2: principal strain directions; no displacement con-
straint (top) / with displacement constraint (bottom)

Figure 8. Test case 3: no displacement constraint; density plot (left) /
deformed density plot (right)

Similar as in test case 1, we now apply a displacement constraint, which
should move the area around the center of the bottom face upwards. We stopped
the algorithm close to the required precision after 1000 iterations. Figure 9 demon-
strates the effect of the displacement constraint. Note that similar as in our first
experiment, we added a small force to the center node in the bottom. We suppose
that the large number of iterations is related to a poor scaling of the problem.

Our last test case is the 3D counterpart of test case 2. We used a discretization
of approximately 8.000 finite elements in this case. Here the original problem
converges after 463 iteration, while after adding the displacement constraint 527
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Figure 9. Test case 3: displacement constraint applied; density plot
(left) / deformed density plot (right)

Figure 10. Test case 4: no displacement constraint; density plot (top) /
deformed density plot (bottom)

iterations are required. Figures 10 and 11 compare the results obtained in both
cases. In our last example the compliance increased by 8 per cent.

Remark 6.1. We note that in all examples a feasible point was detected after at
most five outer iterations. The associated penalty parameters took values between
1 and 100.
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Figure 11. Test case 4: displacement constraint applied; density plot
(top) / deformed density plot (bottom)

Remark 6.2. We want to remark that as alternative to problem (5.5) one could
minimize the volume functional subject to displacement and compliance con-
straints. We tested this formulation on a few examples. The results were compa-
rable with the only difference that the computation time was significantly higher
due to more iterations required by the sub solver.
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How to Check Numerically the
Sufficient Optimality Conditions for
Infinite-dimensional Optimization Problems

Daniel Wachsmuth and Arnd Rösch

Abstract. We consider general non-convex optimal control problems. Many
results for such problems rely on second-order sufficient optimality conditions.
We propose a method to verify whether the second-order sufficient optimality
conditions hold in a neighborhood of a numerical solution. This method is then
applied to abstract optimal control problems. Finally, we consider an optimal
control problem subject to a semi-linear elliptic equation that appears to have
multiple local minima.
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65N15.

Keywords. Optimal control, sufficient optimality conditions, verification of
optimality conditions, problems with multiple minima.

1. Introduction

Let us consider the following model problem. Let U be a Hilbert space. Denote
by Uad the space of admissible controls, where Uad is a closed, convex and non-
empty subset of U . In addition, let f : U → R be a twice continuously Fréchet-
differentiable function. Then we are considering the problem

min
u∈Uad

f(u). (1.1)

The first-order necessary optimality condition for (1.1) reads as follows. Let ū be
a local solution of (1.1). Then the variational inequality

f ′(ū)(u − ū) ≥ 0 ∀u ∈ Uad (1.2)

is satisfied. An equivalent characterization is given by the inclusion

−f ′(ū) ∈ NUad(ū),
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where NUad(ū) denotes the normal cone of Uad at ū. We will not consider second-
order necessary conditions here, instead we refer to [3, 4].

A strong second-order sufficient optimality condition is satisfied at ū if the
condition (1.2) as well as the coercivity property

f ′′(ū)[v, v] ≥ α‖v‖2U ∀v ∈ U (1.3)

hold for some α > 0. This condition ensures that ū is locally optimal, and moreover,
the quadratic growth condition holds: there are constants r, δ > 0 such that

f(u) ≥ f(ū) + δ‖u− ū‖2U ∀u ∈ Uad : ‖u− ū‖U ≤ r.

Using the well-known concept of strongly active sets, see, e.g., [3, 4, 8], the sub-
space, where f ′′ has to be positive definite, can be confined.

If the second-order sufficient conditions hold at the local minimum ū one can
prove several properties of the original optimization problem. At first, such a local
solution is stable with respect to perturbations. That is, a small perturbation
of the optimization problem leads only to a small perturbation in the solution.
This stability is a major ingredient for convergence results, since one can interpret
approximated problems as perturbations of the original one. This allows to prove
local fast convergence of optimization methods (SQP, semi-smooth Newton) as well
as convergence rates for finite-element discretizations of optimal control problems.

The importance of sufficient optimality conditions makes it desirable to verify
whether these conditions are satisfied for a given problem. However, in condition
(1.3) coercivity is assumed for the unknown solution. For finite-dimensional prob-
lems, one can compute eigenvalues of the Hessian matrix at some approximation
of the solution since it is possible to compute this Hessian exactly. In infinite-
dimensional problems, the computation of the second derivative is also prone to
discretization errors. Hence, it is difficult to check whether the condition is fulfilled.
This was the starting point for our investigations. We will propose a different con-
dition, which is in fact a condition at a given approximation ūh. Since only known
quantities are involved, there is a chance to check this condition. For the details,
we refer to Section 2. We have to admit that we can only deal with problems
without two-norm discrepancy. The two-norm discrepancy occurs, whenever the
the ingredients of the problem are differentiable with respect to a smaller space
(say L∞) and stronger norm, and coercivity of the second derivative only holds
with respect to weaker norms (say L2), see for instance [5].

The numerical solution of optimization problems in function spaces is often
done by discretization. Let Uh be a finite-dimensional subspace of U with basis
φ1h . . . φ

Nh

h . Then an example discrete problem, which hopefully can be solved on
a computer, reads as

min
uh∈Uad∩Uh

f(uh).

Given a discrete solution ūh, one can introduce the discrete Hessian matrix asso-
ciated with the discrete problem by

H = (hij)Nh
i,j=1, hi,j = f ′′(ūh)[φi

h, φ
j
h].
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Then one can compute the eigenvalues of H and check positive definiteness of H .
If H is positive definite at ūh then ūh is a local minimum of the discrete problem.
However, it may happen that ūh is not even close to a local solution of the original
problem. Hence, the information in H is almost worthless in this case. We will
present an example in Section 3, where exactly this situation occurs.

In Section 4, we will extend our approach to optimal control problems with
partial differential equation. Here, we have in mind the following optimization
problem

min g(y) + j(u)

subject to

Ay + d(y) = Bu,

u ∈ Uad.

Here, a large class of semilinear elliptic state equation are covered by the analy-
sis. In particular, steady-state Navier-Stokes equation are included. However, the
differentiability requirements and the coercivity assumption are formulated with
respect to the same spaces and norms. That is, problems with two-norm discrep-
ancy are not covered.

In the article [12], the authors already suggested conditions for the numer-
ical verification of optimality conditions. However, the analysis relied heavily on
H2-regularity of the solutions. We will overcome this restriction using a different
approach for the treatment of the discretization errors.

The plan of the article is as follows. The verifiable condition is developed in
Section 2. In Section 3, we introduce an example that shows that the computation
of eigenvalues of the discrete Hessian cannot be taken as substitute for the con-
dition of Section 2. The analysis concerned with optimal control problems for a
semilinear elliptic equation is done in Section 4. We end the article with a report
about an optimal control problem that admits two local solutions, see Section 5.

2. Coercivity condition for nonlinear programming

Let uh ∈ Uad ∩ Uh be an arbitrary, admissible point. Ideally, uh would be the
solution of a discretized problem or an approximation of it as the outcome of
some iterative method. But we will not rely on this property, which is a major
improvement over [12].

Now, let us present the coercivity condition. At first, we assume that we can
find bounds of certain characteristics of f ′ and f ′′.
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Assumption 2.1. There are constants ε, α,M,R such that the following three in-
equalities hold:

f ′(uh)(u− uh) ≥ −ε‖u− uh‖U ∀u ∈ Uad, (2.1)

f ′′(uh)[v, v] ≥ α‖v‖2U ∀v ∈ U, (2.2)

|(f ′′(u)− f ′′(uh))[v1, v2]| ≤M‖u− uh‖U‖v1‖U‖v2‖U ∀u ∈ Uad, (2.3)

‖u− uh‖U ≤ R,

v1, v2 ∈ U.

Let us comment on the three inequalities involved in the assumption. The first
one (2.1) measures in some sense the residuum in the variational inequality (1.2).
The second inequality is a coercivity assumption on f ′′ at uh. The essential dif-
ference to (1.3) is that the point, where we have to check for coercivity of f ′′, is
known.

Moreover, these conditions are analogous to the pre-requisites of convergence
theorems of Newton’s method: smallness of initial residual, bounded invertibility,
and local Lipschitz estimates. See also the comments below.

Let us now take another admissible point u ∈ Uad. With the help of As-
sumption 2.1, we can estimate the difference between f(u) and f(uh) using Taylor
expansion as

f(u)− f(uh) ≥ f ′(uh)(u− uh) +
1
2
f ′′(uh)(u− uh)2

+
∫ 1

0

∫ s

0

(f ′′(uh + t(u− uh))− f ′′(uh)) (u− uh)2dtds

≥ −ε‖u− uh‖U +
α

2
‖u− uh‖2U −

M

6
‖u− uh‖3U .

(2.4)

In addition to Assumption 2.1, we need a further qualification, which relates
the constants appearing there to each other.

Assumption 2.2. There exists a real number r+ with R > r+ > 0 such that

−εr+ +
α

2
r2+ −

M

6
r3+ > 0, (2.5)

α−Mr+ > 0 (2.6)

is satisfied.

Assumptions 2.1 and 2.2 allow us to prove the main result of this section.

Theorem 2.3. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a local
solution ū of the original problem (1.1) with

‖ū− uh‖U < r+.

Furthermore, the second-order sufficient optimality condition (1.3) is satisfied at ū.
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Proof. Let us consider the optimization problem (1.1) but restricted to the closed
ball centered at uh with radius r+,

min
u∈B̄(uh,r+)∩Uad

f(u).

Due to (2.6), the function f is convex on B̄(uh, r+). Hence, the auxiliary problem
admits a global minimum ū with ‖ū−uh‖U ≤ r+. Moreover, the second derivative
of f is positive definite at ū by (2.2) and (2.6).

By (2.5), ū cannot lie on the boundary of B(uh, r+), since the value of f
is there larger than in uh. That is, ū is also the global minimum of f over the
intersection of Uad with the open ball at uh with radius r+. Hence, ū is a local
solution of the original problem (1.1). �

The consequences of this result are threefold: at first we obtain existence
of a solution of the original problem in the specified neighborhood. Secondly, we
can estimate the distance to the solution. And third, we can prove that this yet
unknown solution fulfills the second-order optimality condition.

The inequality (2.5) is an assumption on the objective functional. We can
replace it by an assumption on the first derivative f ′, and can prove an result
analogous to Theorem 2.3.

Assumption 2.4. There exists a real number r̃+ with R > r̃+ > 0 such that

−ε+ αr̃+ −
M

2
r̃2+ > 0 (2.7)

is satisfied.

Theorem 2.5. Let the assumptions 2.1 and 2.4 be satisfied. Then there exists a
local solution ū of the original problem (1.1) with

‖ū− uh‖U < r̃+.

Furthermore, the second-order sufficient optimality condition (1.3) is satisfied.

Proof. At first, we have to show that Assumption 2.4 implies the convexity of f
is a neighborhood of uh. Let us define a polynomial p by p(r) = −ε+ αr̃ − M

2 r̃
2.

We already know p(0) < 0 and p(r̃+) > 0. Hence, there is a r̃0 ∈ (0, r̃+) such that
p(r̃0) = 0. The root r̃0 is given by r̃0 = α

M

(
1−

√
1− 2Mε

α2

)
. Moreover, it holds

α −Mr̃0 = α
√
1− 2Mε

α2 > 0. Hence, there is a r̃1 ∈ (r̃0, r̃+) such that (2.6) and
(2.7) are satisfied for r̃1. This implies the convexity of f on the ball centered at
uh with radius r̃1.

As in the proof of the previous Theorem 2.3, we obtain then the existence of
a global solution ū of the problem

min
u∈B̄(uh,r̃1)∩Uad

f(u).
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It remains to show that ū is not on the boundary of B̄(uh, r̃1). Let us take an
arbitrary u ∈ Uad with ‖u− uh‖U = r̃1. Using (2.7), we obtain

f ′(u)(uh − u) = f ′(uh)(uh − u) + f ′′(uh)(uh − u, u− uh)

+
∫ 1

0

(f ′′(uh + t(u− uh))− f ′′(uh)) (uh − u, u− uh)dt

≤
(
ε− α‖u− uh‖U +

M

2
‖u− uh‖2U

)
‖u− uh‖U < 0.

Hence, the necessary optimality conditions of (1.2) are not fulfilled for any control
on the boundary of B̄(uh, r̃1). Thus, the solution ū satisfies ‖ū− uh‖U < r̃1 ≤ r̃+.
Furthermore, it is a local solution of the original problem (1.1). �

A close inspection of the proof reveals that we can show an improved error
estimate:

Corollary 2.6. Let the assumptions of the previous theorem be fulfilled. Then it
holds

‖ū− uh‖U ≤
α

M

(
1−

√
1− 2Mε

α2

)
.

Proof. If Assumption 2.4 is satisfied with some r̃+, then it will be satisfied for all

r between α
M

(
1−

√
1− 2Mε

α2

)
, which is the first root of the polynomial in (2.7),

and r̃+. Then Theorem 2.5 yields the claim. �

Theorems 2.3 and 2.5 state that the yet unknown solution ū satisfies the
second-order sufficient optimality condition. This implies that it is possible apply
deeper results, which rely on this conditions. For instance, we can apply results for
the fast local convergence of optimization methods. That is, if the initial guess is
close enough to the solution then the iterates will converge with a high convergence
rate towards the solution ū.

Let us show exemplarily the fast convergence of Newton’s method for gener-
alized equations in the sense of [1, 7] if started at uh. The key idea here is to write
the variational inequality (1.2) as the inclusion

−f ′(ū) ∈ NUad(u).

Then the generalized Newton method solves for uk+1 the problem

− (f ′′(uk)(u− uk) + f ′(uk)) ∈ NUad(u), (2.8)

which is the first-order necessary optimality condition of

min
u∈Uad

1
2
f ′′(uk)(u− uk)2 + f ′(uk)(u − uk).

That is, only the objective function is linearized but not the constraint u ∈ Uad.
It turns out, that the conditions of Theorem 2.5 are sufficient to ensure local
quadratic convergence of the simple iteration (2.8) for the initial choice u0 = uh.
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Theorem 2.7. Let the assumptions of Theorem 2.5 be satisfied. Set u0 := uh. Then
the sequence of iterates generated by the procedure (2.8) converges quadratically
to ū.

Proof. Let us assume first, that the equation (2.8) is solvable for some k. The
iterate uk+1 satisfies the variational inequality

(f ′′(uk)(uk+1 − uk) + f ′(uk), u− uk+1) ≥ 0 ∀u ∈ Uad. (2.9)

Setting k = 0, u0 = u = uh, and using (2.1), we obtain the following estimate of
the initial step

‖u1 − u0‖U ≤
ε

α
.

Let us denote by αk the smallest eigenvalue of f ′′(uk). Then it holds α0 = α and
αk+1 ≥ αk −M‖uk − uk+1‖U . Setting u := uk in (2.9), we find applying (2.9) for
uk

f ′′(uk)(uk − uk+1)2 ≤ f ′(uk)(uk − uk+1)

= (f ′(uk−1) + f ′′(uk−1)(uk − uk−1), uk − uk+1)

+
∫ 1

0

(f ′′(uk−1 + t(uk − uk−1))− f ′′(uk−1)) (uk − uk−1, uk − uk+1)dt.

Setting k − 1 for k in (2.9), we find the optimality relation for uk, which implies
that the first part of the right-hand side is non-positive. Applying Assumption 2.1,
we obtain

f ′′(uk)(uk − uk+1)2 ≤
M

2
‖uk − uk−1‖2U‖uk − uk+1‖U ,

which gives

‖uk − uk+1‖U ≤
M

2αk
‖uk − uk−1‖2U ≤

M

2(αk−1 −M‖uk − uk−1‖U )
‖uk − uk−1‖2U .

Now, we can proceed as in Ortega’s proof of the Newton-Kantorovich theorem
[10], see also [6]. The technique applied there delivers (a) existence of solutions
of (2.9) for all k, and (b) quadratic convergence. Moreover, the convergence re-
gion of Newton’s method given by [10] is the ball at uh with the radius given by
Corollary 2.6. �

The similarities to the convergence proof of Newton-Kantorovich type is ob-
vious. That is, the assumptions above can be interpreted as assumptions in the
context of Newton’s method and vice-versa. This observation allows also to apply
heuristic techniques to estimate the constants appearing in Assumption 2.1 during
the procedure of Newton’s method. For a detailed explanation of these techniques
we refer to the monograph of Deuflhard [6].
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3. On coercivity of f ′′ and positive definiteness
of the discrete Hessian

The computation of the constants appearing in the Assumption 2.1 above is a
difficult task, it is especially hard to find a lower bound for the smallest eigenvalue
α of f ′′. Here, it would be advantageous if one could compute α as an eigenvalue
of the discrete problem, which fulfills

f ′′(ũh)(v, v) ≥ α‖v‖2U ∀v ∈ Uh

for a finite-dimensional subspace Uh ⊂ U . This method is widely employed in nu-
merical experiments to indicate optimality of computed solution. However, despite
being attractive from a computational point of view, this method is not save in
general and may lead to wrong conclusions.

We will now construct an example with numerical solution ũh that has the
following properties:

• f ′(ũh) = 0,
• f ′′(ũh)(vh, vh) ≥ α‖vh‖2U ∀vh ∈ Uh with α > 0,
• ũh is not close to a local minimum of the original problem.

That means in particular, that all eigenvalues of the discrete Hessian matrix are
positive. Hence, ũh is a local minimum of the discretized problem. Unfortunately, it
appears that ũh is not even in the neighborhood of a local minimum of the original
problem. Thus, the positive definiteness of the discrete Hessian is misleading.

Minimizing a fourth-order polynomial

We will consider now a special objective function. Let be given u1 �= u2 from the
Hilbert space U . Then we want to minimize

f(u) =
1
2
‖u− u1‖2U‖u− u2‖2U . (3.1)

Of course, both u1 and u2 are global minima of this problem. Now, let us have a
look on the derivatives of f . The first derivative is given by

f ′(u) = (u− u1)‖u− u2‖2U + (u − u2)‖u− u1‖2U . (3.2)

And it turns out that ũ := 1
2 (u1+u2) is a stationary point. If U is one-dimensional

then ũ is a local maximum of f . For higher-dimensional U , ũ is actually a saddle
point as we will see. Hence, let us assume in the sequel that the dimension of U is
greater than one.

The second derivative of f is given as bilinear form by

f ′′(u)(v1, v2) =
(
‖u− u1‖2U + ‖u− u2‖2U

)
(v1, v2)

+ 2(u− u2, v1)(u − u1, v2) + 2(u− u1, v1)(u− u2, v2). (3.3)

Formally, one can decompose f ′′ into D+2V V T , where D is a positive multiple of
the identity and V V T is a two-rank perturbation. This simplifies the computation
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of eigenvalues of f ′′. Let us set u = ũ and v1 = v2 = v in (3.3). We obtain

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2U‖v‖2U − (v, u1 − u2)2. (3.4)

Let us decompose the space U as the direct sum: span{u1 − u2} ⊕ {u1 − u2}⊥.
Then we can write v = v1 + v2 with (v2, u1 − u2) = 0, which gives

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2U (‖v1‖2U + ‖v2‖2U )− (v1, u1 − u2)2. (3.5)

For v1 ∈ span{u1 − u2} it holds (v1, u1 − u2)2 = ‖u1 − u2‖2U‖v1‖2U , which implies

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2U (‖v2‖2U − ‖v1‖2U ).

Thus, for the direction of negative curvature v = s(u1 − u2) we have

f ′′(ũ)(v, v) = −1
2
‖u1 − u2‖2U‖v‖2U .

With similar arguments, one finds the inequality

f ′′(u)(v, v) ≥ λ1(u)‖v‖2U
with

λ1(u) = ‖u− u1‖2U + ‖u− u2‖2U − 2‖u− u1‖U‖u− u2‖U + 2(u − u1, u− u2).
(3.6)

Let us denote by Uh a finite-dimensional subspace of U . The orthogonal projection
from U onto Uh is denoted by Πh. Let us recall the expression for f ′′(ũ), cf. 3.4,

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2U‖v‖2U − (v, u1 − u2)2.

We will now derive conditions such that f ′′(ũ)[vh, vh] > 0 is fulfilled for all vh �= 0
from the finite-dimensional space Uh. Let us consider for a moment directions vh

with ‖vh‖U = 1. The supremum of (vh, u1 − u2) over all such vh is attained at
vh =

Πh(u1−u2)
‖Πh(u1−u2)‖U

, which implies for ‖vh‖U = 1

f ′′(ũ)(vh, vh) =
1
2
‖u1 − u2‖2U − (vh, u1 − u2)2

≥ 1
2
‖u1 − u2‖2U − ‖Πh(u1 − u2)‖2U .

Using ‖u1 − u2‖2U = ‖(I −Πh)(u1 − u2)‖2U + ‖Πh(u1 − u2)‖2U , we find that f ′′(ũ)
is positive definite on Uh if

‖(I −Πh)(u1 − u2)‖U ≥ ‖Πh(u1 − u2)‖U

holds. That is, if the L2-norm of the projection Πh(u1−u2) captures less than one
half of the L2-norm of u1 − u2, then the bilinear form f ′′(ũ) is positive definite
on Uh despite being indefinite on whole U . Or in other words, if the discretization
is too coarse to approximate the direction of negative curvature ṽ = u1 − u2 the
bilinear form is positive definite on Uh.
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Let us demonstrate that such a situation may occur for a concrete optimiza-
tion problem. Let us define U to be the set of square integrable functions on
I = (0, 1), U := L2(0, 1). Take an integer number N , set h := 1/N . The interval
I is subdivided into N subintervals Ij of equal length h, j = 1 . . .N . The discrete
subspace Uh is chosen as the space of piecewise constant function on the intervals
Ij . Let us denote by Πh the L2-projector onto Uh, Πh : L2(I)→ Uh. The functions
u1, u2 we will choose such that
1. ũ = (u1 + u2)/2 is in Uh for all h,
2. the direction of negative curvature ṽ is ‘hard to approximate’ with functions

from Uh.
Let ε > 0 be a small number. We define

u1(x) = x−1/2+ε, u2(x) = −u1(x).
Then obviously we have u1 + u2 = 0 ∈ Uh. Moreover, it holds u1 ∈ L2(I) and
u1 �∈ H1(I). The latter property is the reason, why u1 can only be approximated
with low convergence rates with respect to h.

Lemma 3.1. For the above choice of Uh and u1 it holds

‖u1 −Πhu1‖U ≥ g(ε)hε

with g(ε) = |2ε−1|√
2ε|2ε+1| .

Proof. Let us only consider the approximation of u1 by a function w that is con-
stant on the first subinterval (0, h) and equal to u on (h, 1),

w(x) =

{
w0 if x ∈ (0, h)
u1(x) if x ∈ [h, 1)

with w0 in R. It is clear that ‖u1−Πhu1‖U ≥ ‖u1−w‖U holds. A short computation
yields that w0 = h−1/2+ε

1/2+ε minimizes ‖u1−w‖2U over all choices of w0, which in turn
gives ∫ h

0

(u1(x)− w0)2dx = h2ε
(ε− 1/2)2

2ε(ε+ 1/2)2
,

and the claim is proven. �

Let us remark, that the previous lemma not only gives an arbitrary small
convergence rate for ε → 0+ but also states that the constant explodes for ε
tending to zero.

In Table 1 we computed the “critical values” of h0. If the mesh size h is larger
than h0, then one gets a wrong indication by the eigenvalues of the discrete Hessian:
The smallest eigenvalue of the Hessian of the discretized problem is positive, but
the computed solution is only a saddle point of the original problem. Consequently,
the usual strategy to look at the smallest eigenvalue of the Hessian fails for this
simple problem. The last line of Table 1 shows that this wrong indication can
occur even for very small discretization parameters.
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ε h0

0.05 1/18 = 0.056
0.04 1/106 = 0.0094
0.03 1/1917 = 5.2 · 10−4
0.02 1/619660 = 1.6 · 10−6

Table 1. Critical mesh sizes

4. Application to an abstract optimal control problem

Let us consider now a more complicated optimization problem. We will introduce
an additional constraint, which will mimic a partial differential equation. We in-
vestigate the minimization of the functional

J(y, u) := g(y) + j(u) (4.1)

subject to

Ay + d(y) = Bu, (4.2)

u ∈ Uad. (4.3)

Here, y denotes the state of the system, u the control. Let Uad be a closed, convex,
non-empty subset of the Hilbert space U .

Assumption 4.1. Let Y be a Banach space. Let A : Y → Y ′ and B : U → Y ′ be
linear operators. Moreover, we assume A to be coercive, i.e., it holds 〈Ay, y〉Y ′,Y ≥
δ‖y‖2Y for some δ > 0 and all y ∈ Y .

The functions d, g, j are twice Fréchet-differentiable as functions from Y to
Y ′, Y to R, and U to R, respectively. Moreover, we assume for simplicity that d
is monotone with d(0) = 0.

Thus, the state equation (4.2) has to hold in Y ′. Under the assumptions
above, this equation is uniquely solvable for each control u. Let us denote the
solution mapping by S, i.e., y = S(u) is the solution of (4.2). Since d is monotone,
the linearized equation

Ay + d′(ỹ)y = Bu

is solvable, where we set ỹ = S(ũ). In addition, there exists an upper bound of the
norm of its solution operator S′(ũ),

‖S′(u)‖L(Y ′,Y ) = ‖(A+ d′(y))−1‖L(Y ′,Y ) ≤ cA ∀u ∈ U, y = S(u).

In view of this estimate, we can directly give a Lipschitz estimate for solutions of
(4.2)

‖S(u1)− S(u2)‖Y ≤ cA‖B‖ · ‖u1 − u2‖U . (4.4)
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Assumption 4.2. Let us take R > 0 and uh ∈ Uad. Then we assume that there
exist positive constants cg′ , cd′ , cd′′ , cg′′ , cj′′ depending on R such that the local
Lipschitz estimates

‖d′(y)− d′(yh)‖L(Y,Y ′) ≤ cd′‖y − yh‖Y

‖g′(y)− g′(yh)‖Y ′ ≤ cg′‖y − yh‖Y

‖d′′(y)− d′′(yh)‖L(Y×Y,Y ′) ≤ cd′′‖y − yh‖Y

‖g′′(y)− g′′(yh)‖(Y×Y )′ ≤ cg′′‖y − yh‖Y

‖j′′(u)− j′′(uh)‖(U×U)′ ≤ cj′′‖u− uh‖Y

hold for all u ∈ Uad with ‖u− uh‖U < R and y = S(u).

The problem class covered by Assumptions 4.1 and 4.2 is wide enough to
cover distributed or boundary control problems for semilinear elliptic equations.
Moreover, the case of the steady-state Navier-Stokes equations fits also in the
assumption. However, we have to admit that optimal control problems with two-
norm discrepancy are not included.

Let us define the reduced cost functional φ : U → R by

φ(u) := g(S(u)) + j(u).

The conditions in Section 2, i.e., Assumptions 2.1, 2.2, and 2.4, have now to be
interpreted as conditions on the reduced cost functional. The reduced functional
of course inherits the structure of the optimal control problem (4.1)–(4.3). So we
will express the conditions on φ in terms of the original problem.

Let (ū, ȳ) be an admissible pair for (4.1)–(4.3). If ū is locally optimal, then
there exists an adjoint state p̄ ∈ Y such that it holds

A∗p̄+ d′(ȳ)∗p̄ = g′(ȳ)

and
(j′(ū) +B∗p̄, u− ū) ≥ 0 ∀u ∈ Uad.

Let now (uh, yh, ph) be some triple consisting of approximations of a locally
optimal control, state, and adjoint. Suppose uh is an admissible control. Let us
assume that we can control the residuals of the optimality system.

Assumption 4.3. There are positive constants εu, εy, εp such that it holds

(j′(uh) +B∗ph, u− uh) ≥ −εu‖u− uh‖U ∀u ∈ Uad, (4.5)

‖Ayh + d(yh)−Buh‖Y ′ ≤ εy, (4.6)

‖A∗ph + d′(yh)∗ph − g′(yh)‖Y ′ ≤ εp. (4.7)

This assumption corresponds to (2.1) in Assumption 2.1 of Section 2. We
will now investigate the error in the variational inequality (2.1), i.e., we want to
estimate ε in

φ′(uh)(u − uh) ≥ −ε‖u− uh‖U ∀u ∈ Uad.
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To characterize the derivative φ′ in terms of the original problem let us introduce
two auxiliary functions yh and ph as the solutions of

Ayh + d(yh) = uh,

A∗ph + d′(yh)∗ph = g′(yh).
(4.8)

We have the following error estimates for these states and adjoints:

Lemma 4.4. Let yh and ph be given by (4.8). Then it holds

‖yh − yh‖Y ≤ cAεy, (4.9)

‖ph − ph‖Y ≤ cA

(
(cg′ + cd′‖ph‖Y )‖yh − yh‖Y + εp

)
. (4.10)

Proof. The difference ph − ph solves the equation

A∗(ph − ph) + d′(yh)∗(ph − ph) = g′(yh)− g′(yh)

− (A∗ph + d′(yh)∗ph − g′(yh)) + (d′(yh)∗ − d′(yh)∗)ph,

which immediately gives (4.10) using the notations of Assumption 4.2. The differ-
ence yh − yh can be treated similarly, and one obtains ‖yh − yh‖Y ≤ cAεy. �

Observe, that yh and ph can be written as yh = S(uh) and ph = S′(uh)∗g′(yh).
Hence, we can rewrite the first derivative φ′ as

φ′(uh)(u − uh) = (j′(uh) +B∗S′(uh)∗g′(yh), u− uh)

= (j′(uh) +B∗ph, u− uh).

Lemma 4.5. The following inequality is satisfied for all admissible controls u ∈ Uad

φ′(uh)(u− uh) ≥ −ε‖u− uh‖U ,

where ε is given by
ε := εu + ‖B‖ · ‖ph − ph‖Y

Proof. The claim follows immediately from

φ′(uh)(u − uh) = (j′(uh) +B∗ph, u− uh)

= (j′(uh) +B∗ph +B∗(ph − ph), u− uh)

≥ −
(
εu + ‖B‖ · ‖ph − ph‖Y

)
‖u− uh‖U . �

Next, we need a coercivity condition on the second derivative of the La-
grangian involving known quantities only.

Assumption 4.6. There is a constant δ > 0 such that

j′′(uh)(v, v) + g′′(yh)(z, z) + d′′(yh)(z, z)ph ≥ δ‖v‖2 (4.11)

holds for all v = u − uh, u ∈ Uad with z being the solution of the linearized
equation.

Az + d′(yh)z = Bv. (4.12)
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This condition is especially fulfilled for convex j and g and under the sign
condition d′′(yh)ph > 0. We will now derive a lower bound for the eigenvalues of
φ′′ analogously to (2.2).

Lemma 4.7. Let v = u− uh, u ∈ Uad be given. Then it holds

φ′′(uh)(v, v) ≥ α‖v‖2U
with α given by

α = δ −
(
cg′′ + ‖ph − ph‖Y (cd′′ + ‖d′′(yh)‖) + cd′′‖ph‖Y

)
‖yh − yh‖Y (cA‖B‖)2

−
(
‖g′′(yh)‖(Y×Y )′ + ‖ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

)
(2cd′‖yh − yh‖Y c

3
A‖B‖2).

Proof. We can write the second derivative of φ as

φ′′(uh)(v, v) = j′′(uh)(v, v) + g′′(yh)(zh, zh) + d′′(yh)(zh, zh)ph, (4.13)

where zh solves
Azh + d′(yh)zh = Bv. (4.14)

Let us denote by z the solution of (4.12). A priori bounds of z and zh can be
calculated as above, and we obtain

‖z‖Y , ‖zh‖Y ≤ cA‖B‖ · ‖v‖U .

The difference zh− z solves A(zh− z)+ d′(yh)(zh− z) = (d′(yh)− d′(yh))z, hence
it holds

‖zh − z‖Y ≤ cAcd′‖yh − yh‖Y cA‖B‖‖v‖U .

Let us introduce the abbreviations sh := g′′(yh) + d′′(yh)(·, ·)ph, sh := g′′(yh) +
d′′(yh)(·, ·)ph; sh, sh : Y × Y → R. Then we write

sh(zh, zh) = sh(z, z) + (sh − sh)(zh, zh) + sh((zh, zh)− (z, z)).

Here, the first addend appears in the coercivity assumption (4.11). The second
addend is estimated as

‖sh − sh‖(Y×Y )′ ≤
(
cg′′ + ‖ph − ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

+
(
‖ph‖Y + ‖ph − ph‖Y

)
cd′′

)
‖yh − yh‖Y .

For the third one we obtain

‖sh((zh, zh)− (z, z))‖(Y×Y )′

≤
(
‖g′′(yh)‖(Y×Y )′ + ‖ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

)
‖zh + z‖Y ‖zh − z‖Y .

Putting everything together we finally find

φ′′(uh)(v, v) ≥ α‖v‖2U
with α equal to

δ −
(
cg′′ + ‖ph − ph‖Y (cd′′ + ‖d′′(yh)‖) + cd′′‖ph‖Y

)
‖yh − yh‖Y (cA‖B‖)2

−
(
‖g′′(yh)‖(Y×Y )′ + ‖ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

)
(2cd′‖yh − yh‖Y c

3
A‖B‖2). �



Numerical Check of Sufficient Optimality Conditions 311

According to Lemma 4.4, that the negative terms in the estimate of α are
of the order of εy, εp. That is, there is hope that α is positive for small residuals
in the optimality system. That will be true in particular, if (uh, yh, ph) solves a
very fine discretized problem and a second-order sufficient optimality condition is
fulfilled for the original problem (4.1)–(4.3).

Corollary 4.8. If Assumption 4.6 holds with the linearized equation (4.14) instead
of (4.12), then the statement of Lemma 4.7 is valid with

α = δ−
(
cg′′ + ‖ph − ph‖Y (cd′′ + ‖d′′(yh)‖) + cd′′‖ph‖Y

)
‖yh−yh‖Y (cA‖B‖)2.

Finally, we have to compute the Lipschitz constant of φ′′ as equivalent to
inequality (2.3) in Section 2.

Lemma 4.9. There is a constant M > 0 such that it holds for all u ∈ Uad with
‖u− uh‖U < R

|(φ′′(u)− φ′′(uh))(v1, v2)| ≤M‖u− uh‖U‖v1‖U‖v2‖U ∀v1, v2 ∈ U.

An upper bound of M is given in the course of the proof.

Proof. Let y and p be the solutions of the state and adjoint equations associated
with u, i.e., they satisfy

Ay + d(y) = u, A∗p+ d′(y)∗p = g′(y).

Then it holds

(φ′′(u)− φ′′(uh))(v1, v2) = (j′′(u)− j′′(uh))(v1, v2) + (g′′(y)− g′′(yh))(z1, z2)

+ (pd′′(y)− phd′′(yh))(z1, z2),

where the zi, i = 1, 2, are the solutions of the linearized equations Azi+d′(yh)zi =
Bvi. Using Lipschitz continuity of the solution mapping, cf. (4.4), we obtain

‖y − yh‖Y ≤ cA‖B‖ · ‖u− uh‖ ≤ cA‖B‖R,
‖y − yh‖Y ≤ cA(‖B‖ · ‖u− uh‖+ εy) ≤ cA(‖B‖R+ εy).

(4.15)

Similarly to (4.10), the difference of the adjoint states is estimated by

‖p− ph‖Y ≤ cA(cg′ + cd′(‖ph − ph‖Y + ‖ph‖Y ))‖y − yh‖Y

≤ cA(cg′ + cd′(‖ph − ph‖Y + ‖ph‖Y ))cA‖B‖R.
(4.16)

Employing the splitting

pd′′(y)− phd′′(yh) = (p− ph)d′′(y) + ph(d′′(p)− d′′(yh))

= (p− ph) (d′′(yh) + d′′(y)− d′′(yh))

+ (ph + ph − ph)(d′′(y)− d′′(yh))

we can estimate

‖d′′(y)(·, ·)p− d′′(yh)(·, ·)ph‖(Y×Y )′ ≤ ‖p− ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

+ cd′′
(
‖p− ph‖Y ‖y − yh‖Y + (‖ph‖Y + ‖ph − ph‖Y )‖y − yh‖Y

)
.
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And the claim of the Lemma holds with

M ≥ cj′′ + (cA‖B‖)2
(
cg′′‖y − yh‖Y + ‖p− ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

+ cd′′
(
‖p− ph‖Y ‖y − yh‖Y + (‖ph‖Y + ‖ph − ph‖Y )‖y − yh‖Y

) )
,

where for ‖y−yh‖Y , ‖y−yh‖Y , ‖p−ph‖Y the corresponding upper bounds (4.15)–
(4.16) has to be used. �

Lemmata 4.5, 4.7, and 4.9 give the possibility to estimate the constants
ε, α,M that are needed to proceed with the results of Section 2.

Theorem 4.10. Let the constants given by Lemmata 4.5, 4.7, and 4.9 fulfill the
Assumption 2.4. Then there exists a local solution ū of the optimal control problem
(4.1)–(4.3), which satisfies

‖ū− uh‖U ≤ α

√
1− 2Mε

α2
.

Moreover, the second-order sufficient condition holds at ū.

5. An optimal control problem with two local minima

Now, let us apply the technique described above to the following optimal control
problem: Minimize

1
2
‖y − yd‖2L2(Ω) +

1
2
‖u− u1‖2L2(Ω)‖u− u2‖2L2(Ω) (5.1)

subject to the semilinear state equation

−Δy(x) + y(x)3 = u(x) in Ω

y(x) = 0 on Γ
(5.2)

and the control constraints

ua(x) ≤ u(x) ≤ ub(x) a.e. on Ω. (5.3)

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with Lipschitz boundary Γ.
Furthermore, functions yd, ua, ub ∈ L2(Ω), ua(x) ≤ ub(x) a.e. on Ω, are given.

At first, let us choose the function spaces. We set Y := H1
0 (Ω) with ‖y‖Y :=

‖∇y‖L2(Ω) and U = L2(Ω), ‖u‖U = ‖u‖L2(Ω). The operator A is given by A = −Δ.
The right-hand side operator B is the embedding operator L2(Ω) → H−1(Ω). Its
norm is bounded as ‖B‖L(U,Y ′) ≤ I2. Using the notation of the previous section,
we define

d(y) := y3,

g(y) :=
1
2
‖y − yd‖2L2(Ω),

j(u) :=
ν

2
‖u− u1‖2L2(Ω)‖u− u2‖2L2(Ω)



Numerical Check of Sufficient Optimality Conditions 313

Due to the embedding H1(Ω)→ L4(Ω), the function d is differentiable from Y =
H1
0 (Ω) to Y ′. Let us denote upper bounds of the embedding constants H1

0 (Ω) →
Lp(Ω) by Ip, p < ∞. They can be computed by eigenvalue estimates for the
Laplacian. Furthermore, formulas for Ip are given in [11].

We computed (uh, yh, ph) as the solution of the discretized optimal control
problem. The discretization was carried out using P2-elements for the state and
P1-elements for the control.

In Section 4, many constants have to be computed. Let us report, how we
computed them for the particular example.

Solution estimates. By monotonicity of the semilinearity d(y) we have,

‖S(u1)− S(u2)‖Y ≤ I2‖u1 − u2‖U .

Since d′(y) is non-negative, it holds,

‖(A+ d′(y))−1‖Y ′,Y ≤ 1 =: cA.

Lipschitz estimates. Let u ∈ U be taken with ‖u − uh‖U ≤ R. Then we have
‖y − yh‖Y := ‖S(u) − S(uh)‖Y ≤ I2R. Some of the Lipschitz constants, will
depend on R. After an easy computation, one finds

‖(d′(y)− d′(yh))z‖Y ′ ≤ I44 (‖yh‖Y + I2R)‖y − yh‖Y ‖z‖Y

=: cd′(R)‖y − yh‖Y ‖z‖Y

‖g′(y)− g′(yh)‖Y ′ ≤ I22‖y − yh‖Y

‖d′′(y)− d′′(yh)‖L(Y×Y,Y ′) ≤ I44‖y − yh‖Y

‖g′′(y)− g′′(yh)‖ = 0.

The function j coincides with the function f analyzed in Section 3, its derivative
was derived in (3.3). Let us now write

(j′′(u)− j′′(uh))(v1, v2)

=
(
‖u− u1‖2U + ‖u− u2‖2U − ‖uh − u1‖2U − ‖uh − u2‖2U

)
(v1, v2)

+ 2(u− u2, v1)(u − u1, v2) + 2(u− u1, v1)(u− u2, v2)

− 2(uh − u2, v1)(uh − u1, v2)− 2(uh − u1, v1)(uh − u2, v2).

Using the identity

‖u− u1‖2U − ‖uh − u1‖2U = (u− uh, 2(uh − u1) + (u− uh)),

we find for ‖u− uh‖U ≤ R∣∣‖u− u1‖2U − ‖uh − u1‖2U
∣∣ ≤ (2‖uh − u1‖U +R)‖u− uh‖U .
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Analogously, we get

(u− u2, vi)(u− u1, vj)− (uh − u2, vi)(uh − u1, vj)

=
(
(u− u2, vi)− (uh − u2, vi)

)
(uh − u1, vj) + (u − u2, vi)(u − uh, vj)

= (u − uh, vi)(uh − u1, vj) + (u − uh + uh − u2, vi)(u − uh, vj),

which implies the estimate

|(u− u2, vi)(u− u1, vj)− (uh − u2, vi)(uh − u1, vj)‖
≤ (‖uh − u1‖U + ‖uh − u2‖U +R)‖u− uh‖U‖vi‖U‖vj‖U .

Hence, we obtain the following value of cj′′ :

cj′′ (R) := 6(‖uh − u1‖U + ‖uh − u2‖U +R).

Residual estimates. Now, let us explain how we obtained bounds for the residuals
in Assumption 4.3. If one could compute a function q such that the inequality

(j′(uh) +B∗ph + q, u− uh) ≥ 0

holds for all admissible controls u ∈ Uad, then the lower bound in (4.5) is realized
by εu = ‖q‖U . The computation of such a function q is described for instance in [9].

There are quite a few possibilities to estimate the residuals in the state and
the adjoint equation. For instance, one can apply standard a posteriori error esti-
mators of residual type. We used another possibility, as described in [11].

Let σ ∈ H(div) be given, i.e., σ ∈ L2(Ω)d with div(σ) ∈ L2(Ω). Then we can
estimate
‖−Δyh + d(yh)−Buh‖H−1 ≤ ‖−Δyh −div(σ)‖H−1 + ‖div(σ) + d(yh)−Buh‖H−1

≤ ‖∇yh − σ‖L2 + I2‖div(σ) + d(yh)−Buh‖L2.

In our computations, we used the Raviart-Thomas elements RT1 to discretize the
space H(div). In a post-processing step, we computed σh as minimizer of

‖∇yh − σ‖2L2 + I22‖ div(σ) + d(yh)−Buh‖2L2 .

A similar technique was applied to compute the adjoint residual (4.7).

Coercivity check. The lower coercivity bound δ as in Assumption 4.6 was com-
puted as δ = λ1(uh), where λ1(u) is defined by (3.6). Since it holds

g′′(yh)(z, z) + d′′(yh)(z, z)ph =
∫
Ω

(g′′(yh(x)) + d′′(yh(x))ph(x))(z(x))2dx,

we checked the sign of g′′(yh) + d′′(yh)ph. If the sign was positive, δ was chosen
as above, and we could use the estimate given by Corollary 4.8. Otherwise, the
computation were repeated on a finer mesh.

Computation of r+. As one can see above, some of the constants depend on the
safety radius R. That implies that the constants ε, α,M depend on R as well.
Let us report, how we computed the value r̃+, cf. Assumption 2.4. By a bisection
method, we computed an interval [r1, r2] that contains the smallest positive root
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of the polynomial

p(r) = −ε(r + ρ) + α(r + ρ)− 1
2
M(r + ρ)r2

with small ρ = 10−5. Then r̃+ was chosen as the right border of the interval,
r̃+ = r2. That is, all the assumptions are fulfilled for r̃+ and R := r̃+ + ρ. If the
bisection method was not able to find r such that p(r) was positive, the whole
computation was restarted on a finer mesh.

Data. The domain Ω was chosen as Ω = (0, 3)2 \ [1, 2]2. Hence, Ω is not convex.
This implies that the solution of the elliptic equation does not belong to H2(Ω)
in general. Thus, the theory as developed in [12] cannot be applied. Furthermore,
we took

yd(x1, x2) = 0.02 · sin(πx1) sin(πx2)
and

u1(x) = 0.1, u2(x) = 0.4,

ua(x) = 0.394, ub(x) = 0.099.

Solution method and results. The mesh was chosen as a uniform triangulation of
the domain with 25.600 triangles, which yields a mesh size of about h = 0.035.
We solved the discretized optimal control problem by the SQP-method with semi-
smooth Newton’s method for the inner problems. As initial guesses we used y0h = 0
and p0h = 0 for state and adjoint. Starting the SQP-method at u0h = 0 yields the
solution depicted in Figure 1.

Figure 1. First solution: control ū1h, state ȳ
1
h, adjoint state p̄

1
h

For a different starting point, we obtained a different solution. Choosing
u0 = 0.5 yields the solution triple shown in Figure 2.

The results of the numerical verification technique are as follows. The radius
r̃1+ = 5.773 · 10−4 satisfies Assumption 2.4 and thus the requirements of Theo-
rem 4.10. Hence, there exists a local solution ū1 of (5.1)–(5.3) in the neighborhood
of u1h with the error estimate

‖ū1 − ū1h‖U ≤ 5.773 · 10−4.
Moreover, the second derivative of the reduced cost functional is positive definite
and it holds

φ′′(ū1)(v, v) ≥ 0.7202‖v‖2U ∀v ∈ U.
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Figure 2. Second solution: control ū2h, state ȳ
2
h, adjoint state p̄

2
h

Similarly, we found the radius r̃2+ = 2.727 · 10−3 for the second discrete solution,
which gives the existence of a locally optimal control ū2 with

‖ū2 − ū2h‖U ≤ 2.727 · 10−3

and
φ′′(ū2)(v, v) ≥ 0.5991‖v‖2U ∀v ∈ U.

Since ‖u1h − u2h‖U is much larger than r̃1+ + r̃2+, the controls ū
1 and ū2 are clearly

separated. Consequently, the optimal control problem (5.1)–(5.3) with the data as
given above has at least to locally optimal controls.

Convergence rates. We computed solutions for different mesh sizes. The coarsest
mesh was obtained by a uniform triangulation with 400 triangles. The meshes were
then refined using a grading strategy [2] to cope with the re-entrant corners.

The convergence behaviour of the SQP-method did not change: depending
on the initial guess the obtained solutions were either near ū1 or ū2. In Table 2 we
listed the error bounds r1+ and r2+.

h r1+ r2+
0.28284 2.7311 · 10−3 1.2382 · 10−2
0.18284 1.2450 · 10−3 5.7057 · 10−3
0.09913 5.8972 · 10−4 2.7202 · 10−3
0.05134 2.8629 · 10−4 1.3268 · 10−3
0.02609 1.4096 · 10−4 6.6074 · 10−4
0.01315 6.9948 · 10−5 3.3381 · 10−4

Table 2. Error bounds for different meshes

As one can see, the error bounds r1+ and r2+ decrease like h. For a uniform
discretization of the non-convex domain Ω one would expect lower convergence
rates. The optimal convergence rate is then recovered using mesh-grading in the
vicinity of the re-entrant corners.
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[9] K. Krumbiegel and A. Rösch. A new stopping criterion for iterative solvers for control
constrained optimal control problems. Archives of Control Sciences, 18(1):17–42,
2008.

[10] J.M. Ortega. The Newton-Kantorovich theorem. Amer. Math. Monthly, 75:658–660,
1968.

[11] M. Plum. Computer-assisted enclosure methods for elliptic differential equations.
Linear Algebra Appl., 324(1-3):147–187, 2001.
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Hidden Boundary Shape Derivative
for the Solution to Maxwell Equations
and Non Cylindrical Wave Equations

Jean-Paul Zolésio

Abstract. This paper deals with the shape derivative of boundary shape func-
tionals governed by electromagnetic 3D time-depending Maxwell equations
solution E, H (or non cylindrical wave equation to begin with) involving
derivatives terms at the boundary whose existence are related to hidden-
like regularity results. Under weak regularity of data we compute the shape
derivative of L2 norms at the boundary of the electrical field E and mag-
netic field H solution to the 3D Maxwell system. This analysis is obtained
via MinMax parameter derivative under saddle point existence, so that no
shape sensitivity analysis of the solution E, H is needed, see [1]. The results
are completely new concerning the non-cylindrical wave equation as well as
for Maxwell equations. Of course this technic is true for all classical shape
derivative of quasi convex functionals governed by classical linear problems
such as elliptic or parabolic problems (including elasticity). For these situa-
tions the result as been developed in many former papers after [12] and later
the book [11]. So that the strong material and shape derivative of the “state”
is still necessary only for non linear problems for which the Langrangian is
definitively not convex-concave, then we use the weak form of the Implicit
function theorem (in order to deal with the minimum regularity), see [14] R.
Dziri and J.P. Zolesio, but there is still hope to extend this analysis to a larger
class of “local saddle points”.
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1. Introduction

We obtain shape derivative results associated with Neumann boundary-like con-
ditions under minimal regularity of the data, extending some older results derived
for the Dirichlet boundary condition for wave equations. In fact we extend here the
results in two directions: the context of the more difficult Neumann conditions and
the full sharp regularity for the Maxwell equation in presence of metallic obstacle,
leading to mixed Dirichlet-Neumann condition at the boundary for the Electrical
vector field E. For example ([7],[4]) this situation includes the very simple example
for the classical wave equation with homogeneous Dirichlet boundary conditions:

ytt − Δy = f in Ω, y = 0 on∂Ω.

With (y(0), yt(0)) ∈ H1
0 (Ω) × L2(Ω), f ∈ L1(I, L2(Ω)), this situation leads to a

solution y which fails to be in L2(I,H2(Ω)), nevertheless, by hidden regularity, the
normal derivative satisfies ∂

∂ny ∈ L2(I × ∂Ω); then we consider shape functionals
in the following form:

J(Ωs) =
∫ τ

0

∫
∂Ωs

(
∂

∂n
ys

)2
dtdΓ

and we show the shape differentiability for any perturbation Ωs in the form Ωs =
Ts(Z)(Ω) where the vector field Z is assumed to be Lipschitz continuous. The
proof makes use of the extractor technique introduced at ICIAM 1995 ([6]) and
several papers ([7]),[4],[3]);

The paper is based on two “main ingredients”, the so-called “extractor iden-
tity” (whose proof will be derived in the next section):

∀φ ∈ H2(Ωs),
∫
Γs

(
−
(

∂

∂ns
φ

)2
+ |∇Γsφ|2

)
dΓs = jΩs(φ),

where

jΩs(φ) =
∫
Ωs

[2〈D2bh
Ωs
.∇φ,∇φ〉 + |∇φ|2Δbh

Ωs
−Δφ∇φ.∇bh

Ωs
]dx (1.1)

and the Min Max differentiability (for convex-concave Lagrangian L(s, ., .) with
saddle points. . . )

J(Ωs) = Minφ∈K(Ω)Maxψ∈K(Ω) L(s, φ, ψ )

where K(Ω) = H1
0 (Ω), for the homogeneous Dirichlet boundary value problem,

K(Ω) = H1(Ω) for the Neumann boundary condition and

L(s, φ, ψ ) = jΩs(φoT
−1
s ) +

∫
Ωs

[∇(φoT−1s ).∇(ψoT−1s ) − FψoT−1s ] dx

which, by the Min Max parameter derivative principle (1987) that we recall in the
next section, insure the existence of the derivative

dJ(Ω, Z) :=
∂

∂s
J(Ωs)|s=0 =

∂

∂s
L(0, y, p)



Hidden Shape Derivative 321

where (y, p) is the saddle point. Here we must assume F := Δy ∈ L2(D), Ωs ⊂
D, 0 ≤ s. By considering the calculus of this derivative by change of variable Ts

or as moving domain derivative we immediately derive the distributed expression
and the shape gradient supported by the boundary (and associated with a new
regularity result), see also ([7]).

To illustrate this technique with a new result, we begin with the scalar wave
equation in a moving domain (or non cylindrical evolution), then we adapt this
technique to the for the time depending Electric field on a metallic obstacle. The
Maxwell case is much more delicate but uses exactly the same steps. The expression
of the two Lagrangian functionals under consideration will be more technical as
we shall be obliged to treat separately the vector wave equation solution E, the
tangential part Eτ then the normal component e.

We consider a domain Ω with boundary Γ on which the boundary condition
EΓ = 0 applies (1). Assuming free divergence initial data Ei ∈ Hi(Ω, RN ), i =
0, 1 and free divergence current J ∈ L2(0, τ, L2(Ω, RN )); we derive that, at the
boundary, the magnetic field verifies H ∈ H1/2(0, τ, L2(Γ, R3)) while curlE ∈
H−1/2(0, τ, L2(Γ, R3)). Associated with hidden regularity associated respectively
with the “tangent electric field” Eτ and the normal one e we introduce a new
singular boundary functional J(Ωs) which, through hidden regularity and a new
convex-concave Lagrangian formulation turns out to be shape differentiable (i.e.,
differentiable with respect to s with a shape derivative dJ(Ω, Z) linear continuous
with respect to the direction field Z). We also investigate the expression of the
shape gradient density on the boundary. The place in this paper does not allow
for complete analysis of this gradient but we give here the complete keys in order
to reach it in finite number of pages. . . This analysis is critical in electromagnetic
as far as the effect of shape singularities (for example discontinuity lines for the
normal to the surface) play a central role. Namely when dealing with harmonic
regimes one usually prefers the integral representation of the solution. This theory
based on the Corton-Kreiss isomorphism assumes the boundary to be of regularity
C2. We first derive that (DE.n)Γ ∈ L2(]0, τ [×Γ, R3), E.n ∈ H1/2(I, L2(Γ)) and
∇ΓE.n ∈ H−1/2(I, L2(Γ)). This last regularity proof follows a pseudo-differential
extractor technique. To derive the differentiability under weak regularity we make
use of the derivative (with respect to a parameter s) of a Min Max formulation
under continuous saddle point. We then introduce the Lagrangian L(s, y, p) and
we recall the basic semi-derivative result we use in several papers since 1987.

2. The derivative of a MinMax with saddle point

For convenience we recall here a result from ([1], 1987). Let E, F be two Banach
spaces and L(s, e, f) be a function defined from [0, 1] ×KE × KF into R, where
KE, KF are convex sets, respectively in E and F . The Lagrangian functional L is
convex l.s.c. with respect to e, concave u.s.c. with respect to f and continuously

1For N = 3 this condition can be written E × n = 0
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differentiable with respect to the parameter s. Assume there exists a non empty
set S(s) of saddle points. Then it always takes the following form:

S(s) = A(s)×B(s), A(s) ⊂ KE , B(s) ⊂ KF ,

such that:

∀a(s) ∈ A(s), ∀b(s) ∈ B(s), ∀α ∈ KA, ∀β ∈ KB,

L(s, a(s), β) ≤ L(s, a(s), b(s)) ≤ L(t, α, b(s)),

so that ∀α′ ∈ KE , ∀β′ ∈ KF we have

−L(0, α′, b(0)) ≤ −L(0, a(0), b(0)) ≤ −L(0, a(0), β′)

by choosing α = a(0), β = b(0), α′ = a(s), β′ = b(s), and adding the two
previous inequalities we get: for any s > 0:

L(s, a(s), b(0))− L(0, a(s), b(0))
s

≤ L(s, a(s), b(s)) − L(0, a(0), b(0))
s

≤ L(s, a(0), b(s))− L(0, a(0), b(s))
s

.

Under reasonable smoothness assumptions on L and Kuratowski continuity of the
sets A(s) and B(s) we get the semi-derivative of

l(s) = Mina∈KE Maxb∈KF L(s, a, b)

l′(0) = Mina∈A(0) Maxb∈B(0)
∂

∂s
L(0, a, b).

(2.1)

In the following section we shall make use of that semi-derivative in the specific
situation in which the set S(0) is reduced to a unique pair, A(0) = {y}, B(0) =
{p}, where Y and p will be the “state” and “adjoint-state” solution associated
with the wave (or Maxwell) equation under consideration. In this situation the
function l is differentiable at s = 0 and the derivative (2.1) takes the following
form:

l′(0) =
∂

∂s
L(0, y, p).

3. Shape derivative for singular boundary term
in non-cylindrical wave equation

In order to illustrate on a simple example (a non-vectorial one) the method, while
giving a very new result, we consider the non-cylindrical wave equation under
homogeneous Dirichlet boundary condition on a moving domain Ωt. We assume
that this moving domains evolves under the action of a smooth vector field V
whose flow vector Tt(V ) is a smooth one to-one mapping from the bounded domain
D ⊂ RN into itself and letting invariant the boundary ∂D which is also assumed
to be smooth.

Ωt = Tt(V )(Ω0) ⊂ D, QV = ∪0<t<τ {t} × Ωt



Hidden Shape Derivative 323

For any F ∈ L2(0, τ, L2(D)) we consider the solution y ∈ H := C1([0, τ ], H1
0 (Ωt))∩

C0([0, τ ], L2(Ωt)) as solution to

ytt − Δy = F in QV , y(0) = y0, yt(0) = y1.

For any given elements y0 ∈ H1
0 (D), y1 ∈ L2(D).

3.1. Perturbation field Z

Consider a smooth vector field Z(s, t, x) where s is the small perturbation param-
eter and consider the perturbed tube Ωs

t = Ts(Z(t))(Ωt) and denote

Qs = ∪0<t<τ{t} × Ωs
t

and consider the element

ys ∈ Hs := C1([0, τ ], H1
0 (Ω

s
t )) ∩ C0([0, τ ], L2(Ωs

t ))

solution to
ys

tt − Δys = F in Qs, ys(0) = y0, y
s
t (0) = y1.

(We assume Z(s, 0, x) = 0, so that Ωs
0 = Ω0.)

3.2. Extractor identity

Let

E(s) =
∫ τ

0

∫
Ωs

t

{− (ytoTs(Z(t))−1)2 + |∇(y oTs(Z(t))−1 )|2 } dx dt

and

e =
∂

∂s
E(s)|s=0.

The calculus by moving domains leads to:

e1 =
∫ τ

0

∫
∂Ωt

{− (yt)
2 + |∇y |2 }〈Z(0, t, x), nt(x)〉 dΓt(x) dt

+ 2
∫ τ

0

∫
Ωt

{ yt(t, x) ∇yt(t, x).Z(0, t, x)

− 〈∇y(t, x), ∇(〈∇y, (Z(0, t, x)〉), 〉 } dx dt.
The calculus by change of variable leads to:

e2 =
∂

∂s

( ∫ τ

0

∫
Ωt

{
− (ytoTs(Z)−1)2oTs(Z)

+ |∇(yoTs(Z)−1 )|2oTs(Z)
}
detDTs(Z)dx dt

)
=

∂

∂s

( ∫ τ

0

∫
Ωt

{− (yt)
2 + |DTs(Z)−∗.∇(y )|2 } detDTs(Z)dx dt

)
.
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That is

e2 =
∫ τ

0

∫
Ωt

{− (yt)
2 + |∇(y )|2 } div(Z(0, t, x)dx dt )

−
∫ τ

0

∫
Ωt

{ 〈∇y, DZ(0, t, x)∗.∇y 〉 dx dt ).

We pay attention to the second term of e1:

2
∫ τ

0

∫
Ωt

{ yt(t, x) ∇yt(t, x).Z(0, t, x) − 〈∇y(t, x), ∇(〈∇y, Z(0, t, x)〉) 〉 } dx dt

=
∫
Ωτ

yt(τ, x) ∇y(τ, x).Z(0, τ, x) dx −
∫
Ω0

yt(0, x) ∇y(0, x).Z(0, 0, x) dx

− 2
∫ τ

0

∫
Ωt

{ ytt(t, x) ∇y(t, x).Z(0, t, x)

− 2
∫ τ

0

∫
Ωt

{ yt(t, x) ∇y(t, x).Zt(0, t, x)

−
∫ τ

0

∫
∂Ωt

yt(t, x) 〈∇y(t, x), Z(0, t, x)〉 v(t, x) dΓt(x) dt

+ 2
∫ τ

0

∫
Ωt

Δy 〈∇y, Z(0, t, x)〉 dxdt

− 2
∫ τ

0

∫
∂Ωt

〈∇y(t, x), nt(x)〉 〈∇y, Z(0, t, x)〉 dΓt(x) dt.

We choose the transverse perturbation vector field Z such that Z(0, τ, x) = 0 so
that the second term cancels with (for example) Z in the s-autonomous form

Z(s, t, x) = (τ − t)W (t, x),

with W = ∇bh
Ωt

we have < ∇y, Z(0, t, x) >= (τ − t) ( ∂
∂nt

y)2 and yt(t, x) +
∂

∂nt
y v(t, x) = 0 on ∂Ωt. We obtain the (non-cylindrical) extractor identity e1 =

e2 which leads to:∫ τ

0

∫
∂Ωt

{ (τ − t) (
∂

∂nt
y)2 (1− v(t)2) dΓt(x) dt

−
∫ τ

0

∫
∂Ωt

yt(t, x) 〈∇y(t, x), Z(0, t, x)〉 v(t, x) dΓt(x) dt

− 2
∫ τ

0

∫
∂Ωt

〈∇y(t, x), nt(x)〉 〈∇y, Z(0, t, x)〉 dΓt(x) dt

= τ

∫
Ω0

y1(x) 〈∇y0,∇bh
Ω0
〉 dx+ 2

∫ τ

0

(τ − t)
∫
Ωt

F (t, x) ∇y(t, x).∇bh
Ωt

+ 2
∫ τ

0

∫
Ωt

{ yt(t, x) ∇y(t, x).∇bh
Ωt
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+
∫ τ

0

(τ − t)
∫
Ωt

{− (yt)
2 + |∇(y )|2 }Δbh

Ωt
(0, t, x)dx dt )

−
∫ τ

0

(τ − t)
∫
Ωt

{ 〈∇y, D2bh
Ωt
(0, t, x).∇y 〉 dx dt )

and we obtain:∫ τ

0

∫
∂Ωt

{ (τ − t) (
∂

∂nt
y)2 dΓt(x) dt (3.1)

= −τ
∫
Ω0

y1(x) 〈∇y0,∇bh
Ω0
〉 dx− 2

∫ τ

0

∫
Ωt

{(τ − t)F + yt }∇y.∇bh
Ωt

+
∫ τ

0

(τ − t)
∫
Ωt

{ 〈D2bh
Ωt
.∇y, ∇y〉+ (y2t − |∇y|2)Δbh

Ωt
}dx dt.

4. Derivatives

Let Z(s, t, x) be any smooth vector field with Z(s, 0, x) = 0 and Ωs
t := Ts(Z)(Ωt).

Let ys ∈ H(Qs) and

ys := ysoTs(Z) ∈ H(Q).

We have φ ∈ H(Q) iff φoTs(Z)−1 ∈ H(Qs), so that we introduce the following
Lagrangian:

L(s, φ, ψ) = −τ
∫
Ω0

y1(x) 〈∇y0,∇bh
Ω0
〉 dx (4.1)

− 2
∫ τ

0

∫
Ωs

t

{(τ − t)F + (φoTs(Z)−1)t }∇(φoTs(Z)−1).∇bh
Ωs

t

+
∫ τ

0

(τ − t)
∫
Ωs

t

{ 〈D2bh
Ωs

t
.∇(φoTs(Z)−1), ∇(φoTs(Z)−1)〉

+ ((φoTs(Z)−1)t)2 − |∇(φoTs(Z)−1)|2)Δbh
Ωs

t
}dx dt

+
∫ τ

0

∫
Ωs

t

( (φoTs(Z)−1)t(ψoTs(Z)−1)t

− 〈∇(φoTs(Z)−1),∇(ψoTs(Z)−1)〉 − Fψ)dxdt+
∫
Ω0

y1ψ(0)dx.

4.1. Adjoint equation

We characterise the second component p = b(0) of the saddle point S(0); this is
done by writing the necessary condition of optimality with respect to φ, at ψ = p.
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We get the following variational problem:

∀φ, − 2
∫ τ

0

∫
Ωt

{ φt 〈∇y,∇bh
Ωt
〉 + yt 〈∇φ,∇bh

Ω0
〉 } dxdt (4.2)

+ 2
∫ τ

0

(τ − t)
∫
Ωt

{ 〈D2bh
Ωt
.∇y, ∇φ〉+ 2 (yt φt − 〈∇y,∇φ〉 )Δbh

Ωt
}dx dt

+
∫ τ

0

∫
Ωt

( φt pt − 〈∇φ,∇p〉 )dxdt = 0.

4.2. The shape functional J

We set:

J(Qs) :=
∫ τ

0

∫
∂Ωs

t

{ (τ − t) (
∂

∂nt
ys)2 dΓt(x) dt (4.3)

= Min{φ∈H(Q), φ(0)=y0} Max{ψ∈H(Q), ψ(τ)=0} L(s, φ, ψ),

such that
∂

∂s
J(Qs)|s=0 =

∂

∂s
L(0, y, p)

where p turns out to be the (unique) backward adjoint state which will be made
more precise.

4.3. s-derivative of the Lagrangian

By obvious change of variable we have:

L(s, φ, ψ) = −τ
∫
Ω0

y1(x) 〈∇y0,∇bh
Ω0
〉 dx− 2

∫ τ

0

∫
Ωt

{
(τ − t)FoTs

+ (φoT−1s )toTs

}
∇(φoT−1s )oTs.(∇bh

Ω0
)oTs J(s)

+
∫ τ

0

(τ − t)
∫
Ωt

{
〈D2bh

Ωs
t
oTs.(∇φoT−1s )oTs, (∇φoT−1s )oTs〉

+ ((φoT−1s )t)oTs)2 − |(∇(φoT−1s )oTs|2)Δbh
Ωs

t
oTs

}
dx dt

+
∫ τ

0

∫
Ωt

( (φoT−1s )toTs(ψoT−1s )t)oTs

− 〈∇(φoT−1s )oTs,∇(ψoT−1s )oTs〉 − FoTsψ)J(s)dxdt −
∫
Ω0

y1ψ(0)dx,

where J(s) = det(DTs. Now we assume that the vector field Z does not depends
on t so that (φoT−1s )toTs = φt Then it simplifies for

L(s, φ, ψ) = −τ
∫
Ω0

y1(x) 〈∇y0,∇bh
Ω0
〉 dx − 2

∫ τ

0

∫
Ωt

{(τ − t)FoTs (4.4)

+ φt 〈DT−∗s .∇φ, (∇bh
Ωt
)oTs 〉 } J(s) dxdt

+
∫ τ

0

(τ − t)
∫
Ωt

{ 〈D2bh
Ωs

t
oTs.DT−∗s .∇φ,DT−∗s .∇φ〉
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+ ( (φt)2 − |(∇(φ)|2) Δbh
Ωs

t
oTs }dx dt

+
∫ τ

0

∫
Ωt

(φtψt − 〈DT−∗s .∇φ, DT−∗s .∇ψ〉 − FoTsψ)J(s)dxdt

−
∫
Ω0

y1ψ(0)dx.

4.3.1. The s derivative. This derivative is now very simple, as the perturbation
parameter s just appears through the geometrical terms, then we get:

∂

∂s
L(s, φ, ψ)|s=0 = −2

∫ τ

0

∫
Ωt

{(τ − t)∇F.Z(0) − φt 〈∇φ,DZ(0).∇bh
Ω0
) 〉 } dxdt

+ φt 〈∇φ,D2bh
Ω0
.Z(0) 〉+ φt 〈∇φ,∇bh

Ω0
〉 divZ(0) 〉

+
∫ τ

0

(τ − t)
∫
Ωt

{ 〈[D3bh
Ωt
.Z(0)−D2bh

Ωt
.DZ∗(0)].∇φ,∇φ〉

−
∫ τ

0

(τ − t)
∫
Ωt

{ 〈D2bh
Ωt
.∇φ,DZ∗(0).∇φ〉

+ ( (φt)2 − |(∇(φ)|2) ∇(Δbh
Ωt
).Z(0) }dx dt

+
∫ τ

0

∫
Ωt

( 〈DZ(0).∇φ,∇ψ〉

+ 〈∇φ, DZ(0).∇ψ〉 − ∇F.Z(0) ψ) dxdt

+
∫ τ

0

∫
Ωt

(φtψt − 〈∇φ, ∇ψ〉 − Fψ) divZ(0) dxdt.

This expression completely proves that the Lagrangian is s-differentiable for any
φ and ψ in H(Q) so that the derivative of the Lagrangian fully applies as soon
as we will show that the adjoint problem has a unique solution p in H(Q) which
turns out to be the solution of the classical so-called “adjoint problem” in optimal
control theory. The previous expression of the derivative is rather heavy and from
the structure theorem (of the derivative) we know that this expression should be
obtained as a boundary one, that is as a measure acting at the lateral boundary
Σ = ∪0<t<τ{t} × ∂Ωt on the normal component term z(t) := 〈Z(0, t, .), nt(.)〉.
To obtain this expression we could make intensive use of the Stoke’s by part
integration in the previous expression of the Lagrangian derivative but we do
prefer to do moving boundary derivative from the expression of the Lagrangian
itself (4.1) and not from (4.4):

dJ(Q;Z) = −2
∫ τ

0

∫
∂Ωt

{(τ − t)F + yt }∇y.∇bh
Ωt

z dΓtdt (4.5)

+
∫ τ

0

(τ − t)
∫

∂Ωt

{ 〈D2bh
Ωt
.∇y, ∇y〉

+ ( (yt)2 − |∇y|2)Δbh
Ωt
} z dΓt(x) dt
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+
∫ τ

0

∫
∂Ωt

( yt pt − 〈∇y,∇p〉 − F p) ) z(t, x) dΓt(x)dt.

4.4. The shape gradient

It is a measure concentrated on Σ given by:

G = {(τ − t)F + yt }∇y.∇bh
Ωt
+ { 〈D2bh

Ωt
.∇y, ∇y〉

+ ( (yt)2 − |∇y|2)Δbh
Ωt
}+ ( yt pt − 〈∇y,∇p〉 − F p) ).

This expression simplifies a lot as D2b∇y = 0 (Dirichlet condition),

yt = −v
∂

∂nt
y, etc. . . .

G =
{
(τ − t)F − v

∂

∂nt
y

}
∂

∂nt
y

+ (τ − t) ( v2 − 1)
(

∂

∂nt
y

)2
Δbh

Ωt
+ ( v2 − 1)

∂

∂nt
y

∂

∂nt
p.

4.4.1. Distribution on the boundary. The shape gradient associated with the cylin-
drical evolution problem would be obtain simply by making v = 0 in this expres-
sion. The existence of the shape derivative dJ(Ω;Z) implies the existence, as an
element in W 1,∞(∂Ω))′ of the non-linear weak term

g = (τ − t)

{
F

∂

∂n
y −

(
∂

∂n
y

)2
Δbh

Ω

}
− ∂

∂n
y
∂

∂n
p.

5. Maxwell equations

5.1. Free divergence solutions to Maxwell and wave equations

As E is the electrical field we deal with vector functions, say

E ∈ C0([0, τ ], H1(Ω, RN ))

where the time interval is I =]0, τ [ while Ω is a bounded smooth domain with
boundary Γ. Throughout this paper we shall be concerned with divergence free
initial conditions E0, E1 and right-hand side F for the classical wave equation
formulated in the cylindrical evolution domain Q = I × Ω. We shall discuss the
boundary conditions on the lateral boundary Σ = I × Γ.

5.2. Wave deriving from Maxwell equation

Assuming perfect media (ε = μ = 1) the Ampère law is

curlH =
∂

∂t
E + J, (5.1)

where J is the electric current density. The Faraday’s law is

curlE = − ∂

∂t
H. (5.2)
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The conservations laws are:

divE = ρ, divH = 0, (5.3)

where ρ is the volume charge density. From (5.1,5.2), as div curl = 0, we obtain

divJ = −div(Et) = −ρt.

We assume ρ = 0, which implies divJ = 0. Under this assumption any E solving
(5.1) is divergence free as soon as the initial condition E0 is. We shall also assume
divE0 = 0 so that (5.5) will be a consequence of (5.1). With F = −Jt, we similarly
get divF = 0 and E solves the usual Maxwell equation:

Ett + curl curlE = F, E(0) = E0, Et(0) = E1. (5.4)

Lemma 5.1. We assume divF = divE0 = divE1 = 0 then any solution E to
Maxwell equation (5.4) verifies the conservation condition (5.3) (with ρ = 0):

divE = 0. (5.5)

We have the classical identity

curl curlE = −ΔE + ∇(divE)
so that E also solves the following wave problem

Ett −ΔE = F, E(0) = E0, Et(0) = E1. (5.6)

5.3. Boundary conditions

The physical boundary condition for metallic boundary is E × n = 0 which can
be written as the homogeneous Dirichlet condition on the tangential component
of the field:

EΓ = 0 on Γ (5.7)
We introduce the following Fourier-like boundary condition involving the mean
curvature ΔbΩ = λ1 + λ2 of the surface Γ.

ΔbΩE.n + 〈DE.n, n〉 = 0 on Γ. (5.8)

In flat pieces of the boundary this condition simplifies to the usual Neumann
condition.

Proposition 5.2. Let E be a smooth element (E ∈ H2, see below) and the 3 free
divergence elements (E0, E1, F ) be given in

H2(Ω, R3)×H1(Ω, R3)× L2(0, τ,H1(Ω, R3)).

Then:
i) Let E be solution to Maxwell-metallic system (5.4), (5.7). Then E solves the

mixed wave problem (5.6), (5.7), (5.8) and, from Lemma 5.1, E solves also
the free divergence condition (5.5).

ii) Let E be solution to the wave equation (5.6) with “metallic” b.c. (5.7), then
E verifies the Fourier-like condition (5.8) if and only if E verifies the free
divergence condition (5.5).
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iii) Let E be a free divergence solution to the “metallic” wave problem (5.6),
(5.5), (5.7), then E solves the Maxwell problem (5.4), (5.7), (5.8).

Proof. We consider e = divE; if E is solution to Maxwell problem (5.4) then e
solves the scalar wave equation with initial conditions ei = divEi = 0, i = 0, 1
and right-hand side f = divF = 0. If E solves (5.8) then we get e = 0 as from the
following result we get e = 0 on the boundary:

Lemma 5.3. Let E ∈ H2(Ω) solving the tangential Dirichlet condition (5.7), then
we have the following expression for the trace of divE:

divE|Γ = ΔbΩ 〈E, n〉 + 〈DE.n, n〉 on Γ. (5.9)

Proof of the lemma. The divergence successively decomposes as follows at the
boundary (see ([12],[11]) as follows:

divE|Γ = divΓ(E) + 〈DE.n, n〉 = divΓ(E.n�n) + divΓ(EΓ) + 〈DE.n, n〉
= 〈∇Γ(E.n), n〉 + E.n divΓ(�n) + divΓ(EΓ) + 〈DE.n, n〉.

Obviously 〈∇Γ(E.n), n〉 = 0, the mean curvature of the surface Γ is ΔbΩ = divΓ(�n)
and if the field E solves the tangential Dirichlet condition (5.7) we get the following
simple expression for the restriction to the boundary of the divergence:

div(E)|Γ = ΔbΩ 〈E, n〉 + 〈DE.n, n〉.
Then if E solves the extra condition “Fourier-like” (5.8) we get e = 0 on Γ so that
e = 0.

5.4. The Wave-Maxwell mixed problem

From the previous considerations it derives that under the free divergence assump-
tion for the 3 data E0, E1, F the 3 following problems are equivalents (in the sense
that any smooth solution of one of them is solution to the two others): Maxwell
problem (5.4, 5.7), Free-Wave pb (5.6, 5.5, 5.7), Mixed-Wave pb (5.6, 5.7, 5.8).
We emphasis that any solution to Maxwell pb solves the free divergence condi-
tion (5.5) and the Fourier-like condition (5.8). Any solution to the Mixed-Wave pb
solves (for free) the free div condition (5.5). Any solution to Free-Wave pb solves
(for free) the Fourier-like condition (5.8). The purpose of this paper is to develop
the proof of the following regularity result:

Proposition 5.4. Let (E0, E1, J) be divergence free vectors fields in

H1(Ω, R3)2 × L2(Ω, R3)×H1(I, L2(Ω, R3)).

with zero tangential components: (E0)Γ=0. Assume also curlE1=0. The Maxwell
problem (5.4, 5.7) has a unique solution

E ∈ C0(Ī , H1(Ω, R3)) ∩ C1(Ī , L2(Ω, R3))

verifying the boundary regularity:

curlE|Γ ∈ H−1/2(I × Γ, R3). (5.10)
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so that the magnetic field H at the boundary verifies

H|Γ ∈ H1/2(I, L2(Γ, R3)). (5.11)

Moreover we have
E|Γ ∈ H1/2(I, L2(Γ, R3)). (5.12)

Moreover, if J |Γ ∈ L2(I, L2(Γ)), from Ampère’s law (5.1) we obtain

curlH|Γ ∈ H−1/2(I, L2(Γ, R3)). (5.13)

5.4.1. Tangential decomposition. For any vector field G ∈ H1(Ω, RN ) we desig-
nate by GΓ the tangential part GΓ = G|Γ−〈G,n〉�n and (see ([11], [9], [5], [10]) we
consider its tangential Jacobian matrix DΓG = D(GopΓ)|Γ and its transposed D∗Γ.
To derive the regularity result we shall be concerned the three following terms at
the boundary:

(DE.n)Γ, ∇Γ(E.n), Et.

Lemma 5.5. ∀E ∈ H2(Ω, RN ), we have by direct calculus:

DE|Γ = DE.n⊗ n + DΓE. (5.14)

Obviously, as E = EΓ + 〈E, n〉n, we have:
DΓE = DΓEΓ + DΓ(E.nn)

such that
when EΓ = 0, DΓE = DΓ(〈E, n〉n ). (5.15)

Now, as DΓ(〈E, n〉n ) = 〈E, n〉DΓ(n)+n⊗∇Γ(〈E, n〉), and as DΓ(n) = D2bΩ, we
get the

Lemma 5.6. Assume EΓ = 0, then we have

DΓE =< E, n > D2bΩ|Γ + n⊗∇Γ(〈E, n〉).
Moreover as

divΓE := divE|Γ − 〈DE.n, n〉.
When divE = 0 we get 〈DE.n, n〉 = −divΓE, and if also EΓ = 0 we have
〈DE.n, n〉 = −divΓ(〈E, n〉n), that is:
Lemma 5.7. We consider the mean curvature H = ΔbΩ, then:

EΓ = 0, divE = 0 (5.16)

imply

i) 〈DE.n, n〉 = −H E.n

ii) DE.n = 〈DE.n, n〉n+ (DE.n)Γ = −H E.nn+ (DE.n)Γ (5.17)

and

iii) |DE.n|2 = H2 |E.n|2 + |(DE.n)Γ|2. (5.18)
DE = −H E.nn⊗ n+ (DE.n)Γ ⊗ n+ E.nD2b+ n⊗∇Γ(E.n)|2 (5.19)

iv) DE..DE = H2 |E.n|2 + |(DE.n)Γ|2 + |E.n|2D2b..D2b+ |∇Γ(E.n)|2. (5.20)
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Proposition 5.8. Let E ∈ H2(Ω, RN), divE = 0, EΓ=0, then:

DE..DE|Γ = (H2 +D2b..D2b) |E.n|2 + |(DE.n)Γ|2 + |∇Γ(E.n)|2

that is

DE..DE|Γ = |DE.n|2 + |E.n|2D2b..D2b+ |∇Γ(E.n)|2. (5.21)

5.5. DE boundary estimate

We have 2ε = DE +D∗E, 2σ = DE − D∗E, so that

DE = ε(E) + σ(E).

And

|| curlE||2L2(Γ,R3) ≤ 4 ||DE||2
L2(Γ),RN2)

. (5.22)

From the decomposition (5.14) we have:

||DE||L2(I,L2(Γ,R3)) ≤ ||DE.n⊗ n|| + ||D2bE.n||.

But

||DE.n⊗ n||2 =
∫ τ

0

∫
Γ

(DE.n⊗ n)..(DE.n⊗ n)dtdΓ.

That is

||DE.n⊗ n||2L2(I,L2(Γ,R3)) ≤
∫ τ

0

∫
Γ

|DE.n|2 dtdΓ

=
∫ τ

0

∫
Γ

{ |(DE.n)Γ|2 + |〈DE.n, n〉|2 } dtdΓ.

But as 〈DE.n, n〉 = −〈E, n〉D2bΩ we get the desired estimate.

5.6. Extractor identity

Let I =]0, τ [ be the time interval and for k ≥ 1 we consider:

Hk = C0(Ī , Hk(Ω, R3)) ∩ C1(Ī , Hk−1(Ω, R3)), (5.23)

Hk = {E ∈ Hk, divE = 0, EΓ = 0 on Γ }. (5.24)

Let F ∈L2(I,L2(Ω,R3)), E0∈H1(Ω,R3), E1∈L2(Ω,R3) with divE0=divE1=0.
We consider E ∈ H1 solution to

A.E := Ett −ΔE = F ∈ L2(I, L2(Ω, R3)), (5.25)

E(0) = E0, Et(0) = E1. (5.26)
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5.7. The extractor e(V )

Let E ∈ H2, and V ∈ C0([0, τ ], C2(D,RN )), 〈V (t, .), n〉 = 0 on ∂D; we consider
its flow mapping Ts = Ts(V ) and the derivative:

e(V ) =
∂

∂s
{E(V, s) }|s=0, (5.27)

where

E(V, s) :=
∫ 1

0

∫
Ωs

( |EtoT
−1
s |2 − D(EoT−1s ..D(EoT−1s ) )dxdt. (5.28)

By change of variable

D(EoT−1s )oTs = DE.DT−1s . (5.29)

We get the second expression

E(V, s) =
∫ 1

0

∫
Ω

( |Et|2 − (DE.DT−1s )..(DE.DT−1s ) )J(t) dxdt. (5.30)

We have two expressions (5.28) and (5.30) for the same term E(V, s). The first one
is an integral on a mobile domain Ωs(V ) while the second one is an integral over
the fixed domain Ω. Therefore, taking the derivative with respect to the parameter
s we shall obtain two different expressions for e that we shall respectively denote
by e1 and e2.

5.7.1. Expression for e1. As the element E is smooth, H2 we can directly apply
the classical results from ([11]) and setting For shortness assume divV = 0 so that
J(t) = 1, in this specific case we get

e =
∂

∂s
E|s=0

we get

e1 = 2
∫ 1

0

∫
Ω

{Et.(−DEt.V ) − DE..D(−DE.V ) }dxdt (5.31)

+
∫ 1

0

∫
Γ

{ |Et|2 − DE..DE } vdΓdt.

5.7.2. Green-Stokes Theorem. The by part integration formula applies as:∫ 1

0

∫
Ω

{DE..D(DE.V ) }dxdt =
∫ 1

0

∫
Ω

〈−ΔE,DE.V 〉dxdt (5.32)

+
∫ 1

0

∫
Γ

〈DE.n,DE.V 〉 dΓ(x)dt.
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5.7.3. By part time integration. Then∫ 1

0

∫
Ω

Et.(DEt.V )dxdt =
∫ 1

0

∫
Ω

(−Ett.(DE.V ) + Et.(DE.W ) dxdt (5.33)

−
∫
Ω

Et(0).(DE(0).W ) dx.

Then assuming the initial condition E0 ∈ H1(Ω, R3), E1 ∈ L2(Ω, R3)),

e1 = 2
∫ 1

0

∫
Ω

{(Ett.(DE.V )− Et.(DE.W ) − 〈ΔE,DE.V 〉 }dxdt (5.34)

+ 2
∫
Ω

E1.(DE0.W ) dx

+
∫ 1

0

∫
Γ

{(|Et|2 −DE..DE)〈V, n〉+ 2〈DE.n,DE.V 〉 }dΓ(x)dt.

The discussion is now on the last boundary integral.

5.7.4. Specific choice for V at the boundary. As the boundary Γ = ∂Ω ∈ C2 we
can apply all intrinsic geometry material introduced in ([5]) and p = pΓ denoting
the projection mapping onto the manifold Γ (which is smoothly defined in a tubular
neighborhood of Γ) we consider the oriented distance function b = bΩ = dΩc − dΩ
where Ωc = Rn \ Ω̄, and its “localized version” defined as follows (see([8]):
Let h > 0 be “a small” positive number and ρh(.) ≥ 0 be a cutting scalar smooth
function such that ρh(z) = 0 when |z| > h, ρ(z) = 1 when |z| < h/2; then we set

bh
Ω = ρhobΩ

and the associate localized projection mapping

ph = Id − bh
Ω∇bh

Ω

smoothly defined in the tubular neighborhoodUh(Γ) = {x ∈ D s.t. |bΩ(x)| < h }.
Let be given any smooth element v ∈ C0(Γ) we consider the vector field V in the
following form

V (t, x) =W (x) (1 − t), W (x) = voph∇bh
Ω. (5.35)

Then the last term (boundary integral) in (5.34) takes the following form:∫ 1

0

∫
Γ

{(|Et|2 −DE..DE) + 2〈DE.n,DE.n〉 } v (1 − t) dΓ(x)dt

we get:

e1 =
∫ 1

0

∫
Γ

( |Et|2 −DE..DE + 2 |DE.n|2 )vdΓdt

+ 2
∫

Q

(Ett.DE.V − 〈ΔE,DE.V 〉dxdt−
∫
Ω

〈Et(0), DE(0).W 〉dx.
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As from (5.21) we have

DE..DE = |DE.n|2 +D2bΩ..D
2bΩ |E.n|2 + |∇ΓE.n)|2

and as
|DE.n|2 = |(DE.n)Γ|2 + (ΔbΩ)2 |E.n|2

we obtain:

Proposition 5.9.

e1 =
∫ 1

0

∫
Γ

(τ − t)
{
|Et|2 + |(DE.n)Γ|2 (5.36)

− |∇Γ(E.n)|2 + |E.n|2(H2 − D2b..D2b)
}
v dΓdt

+ 2
∫

Q

〈A.E,DE.V 〉 dQ− 2
∫
Ω

〈E1, D(E0).W 〉dx

5.7.5. Second expression for e. From (5.30) we obtain the s derivative as a dis-
tributed integral term as follows

e2 =
∫

Q

{ (|Et|2 −DE..DE)divV (0) − 2DE..(−DE.DV ) }dxdt

5.7.6. Extractor identity. As e = e1 = e2 we get∫
Σ

(τ − t){(|Et|2 − |∇Γ(E.n)|2 + |(DE.n)Γ|2 + |E.n|2 (H2 − D2b..D2b) ) }v dΣ

=
∫

Q

{ (|Et|2 −DE..DE)divV − 2DE..(−DE.DV ) }dxdt (5.37)

−
∫

Q

2(Ett −ΔE).DE.V dQ+
∫
Ω

2〈E1, DE0.W 〉dx;

that is ∫
Σ

(τ − t){(|Et|2 − |∇Γ(E.n)|2 + (DE.n)Γ|2)}v dΣ (5.38)

=
∫

Q

{ (|Et|2 −DE..DE)divV − 2DE..(−DE.DV ) }dxdt

− 2
∫

Q

2〈A.E,DE.V 〉 dQ+
∫
Ω

2〈E1, DE0.W 〉dx

+
∫
Σ

(1 − t)|E.n|2(D2b..D2b−H2)v dΣ.

Notice that the curvature terms

D2b..D2b−H2 = λ21 + λ22 − (λ1 + λ2)2 = −2κ.
where κ = λ1λ2 is the Gauss curvature of the boundary Γ.
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6. Regularity at the boundary

We shall apply twice this last identity.

6.1. Tangential field Eτ

In a first step we consider the “tangential vector field” obtained as

Eτ := E − E.∇bh
Ω ∇bh

Ω.

We get

Eτ
tt − ΔEτ = (Ett − ΔE)− (Ett − ΔE).∇bh

Ω ∇bh
Ω + C.E,

that is A.Eτ =(A.E)τ +C.E., where the commutator is C.E∈L2(0,T,L2(Ω,R3))
is given by:

C.E = −E.∇(Δbh
Ω) ∇bh

Ω − 2D2bh
Ω..DE ∇bh

Ω

− E.∇bh
Ω ∇(Δbh

Ω)− 2D2bh
Ω.∇(E.∇bh

Ω).

The conclusion formally derives as follows: as Eτ ∈ L2(I,H1(Ω, R3)) we get the
traces terms

Eτ .n = Eτ
t = 0 ∈ L2(I,H1/2(Γ)),

then as e1 = e2 we conclude by taking the vector field in the form

V (t, x) = (τ − t)∇bh
Ω = (τ − t) ρ′hobΩ∇bΩ.

That is v = 1, and we get:∫ τ

0

(τ − t)
∫
Γ

{|(DEτ .n)Γ|2)}dΓdt

=
∫

Q

(τ − t) { (−DEτ ..DEτ )div(∇bh
Ω) + 2DEτ ..(DEτ .D(∇bh

Ω) }dxdt

− 2
∫

Q

(τ − t)〈A.Eτ , DEτ .(∇bh
Ω)〉 dQ +

∫
Ω

2〈Eτ
1 , DEτ

0 .(∇bh
Ω)〉dx.

6.1.1. Regularity result for Eτ .

Proposition 6.1. Let Ω be a bounded domain in R3 with boundary Γ being a C2

manifold. Let h verifying the condition (6.3). There exists a constant M > 0 such
that for any data (E0, E1, F ) ∈ L2(Ω, R3) × H1(Ω, R3) × L2(Ω, R3), the vector
Eτ ∈ H1(0, 2τ) := C0([0, 2τ ], H1(Ω, R3)) ∩ C1([0, 2τ ], L2(Ω, R3)) verifies

(DEτ .n)Γ ∈ L2(0, τ, L2(Γ, R3)) (6.1)

and ∫ T

0

∫
Γ

{|(DEτ .n)Γ|2}dΓdt (6.2)

≤M ||∇bh
Ω||W 1,∞(Ω,RN ) { ||E||2H1(0,2T ) + |F |L2([0,2T ]×Ω,R3)

+ 1/T |Eτ
0 |2H1(Ω,R3) + 1/T |Eτ

1 |2L2(Ω,R3) }.
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Notice that

∇bh
Ω = ρ′hobΩ∇bΩ

such that

||∇bh
Ω||L∞(RN ,RN ) ≤Max{ 0≤s≤h } |ρ′h(s)|

while

D2bh
Ω = D(ρ′hobΩ∇bΩ)
= ρ′′hobΩ∇bΩ ×∇bΩ + ρ′hobΩD

2bΩ

such that

||D2bh
Ω||L∞(Rn,RN2) ≤ {Max{ 0≤s≤h } |ρ′′h(s)|

+Max{ 0≤s≤h } |ρ′h(s)| ||D2bΩ||L∞(Uh(Γ),RN2) }.

By the choice of ρh in the form ρh(s) = f(2s/h − 1) when h/2 < s < h and
F (x) = 2x3 − 3x2 + 1 we obtain

||ρh||C2([0,h]) ≤
8
h2

.

Thus the previous estimate is in the form

||D2bh
Ω||L∞(Rn,RN2) ≤ C0

1
h2

||D2bΩ||L∞(Uh(Γ),RN2) }.

For the larger h such that the condition holds

D2bΩ ∈ L∞(Uh(Γ), RN2
). (6.3)

6.2. Boundary functional

It can be verified that

D(Eτ ).n = (DE.n )Γ,

such that

J(Ω) : =
∫ τ

0

(τ − t)
∫
Γ

{|(DE.n)Γ|2)}dΓdt

=
∫ τ

0

(τ − t)
∫
Γ

{|(DEτ .n)Γ|2)}dΓdt

=
∫

Q

(τ − t) { (−DEτ ..DEτ )div(∇bh
Ω) + 2DEτ ..(DEτ .D(∇bh

Ω) }dxdt

− 2
∫

Q

(τ − t)〈F τ + C ,DEτ .(∇bh
Ω)〉 dQ +

∫
Ω

2〈Eτ
1 , DEτ

0 .(∇bh
Ω)〉dx.
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6.2.1. The Lagrangian. Let Ωs = Ts(Z)(Ω) and we consider Es the solution of the
previous Maxwell system in the cylinder Qs = ∪0<t<τ{t} × Ωs then

J(Ωs) =
∫ τ

0

(τ − t)
∫
Γs

{|(DEs.ns)Γs |2)}dΓsdt

= Min{(R,φ)∈Kτ
0×K0 } Max{(S,ψ)∈(Kτ)2} L(s; R, φ, S, ψ)

where

Kτ
0 = {R ∈ H(0, τ), R(0) = Eτ

0 }
K0 = {R ∈ H(0, τ), R(0) = E0 }
K1 = {S ∈ H(0, τ), S(τ) = 0 }

L(s, R, φ, S, ψ) (6.4)

=
∫

Qs

(τ − t) { (−D(RoT−1s )..D(RoT−1s ))div(∇bh
Ω)

+ 2D(RoT−1s )..(D(RoT−1s ).D(∇bh
Ω) }dxdt

− 2
∫

Qs

(τ − t)〈F τ + C ,D(RoT−1s ).(∇bh
Ω)〉 dQ +

∫
Ω

2〈Eτ
1 , DEτ

0 .(∇bh
Ω〉dx

+
∫

Qs

( (φoT−1s )t(ψoT−1s )t − 〈∇((φoT−1s )t),∇((ψoT−1s )t)〉 − F (ψoT−1s )t

+
∫

Qs

(τ − t) { (−D(RoT−1s )..D(RoT−1s ))div(∇bh
Ω)

+ 2D(RoT−1s )..(D(RoT−1s ).D(∇bh
Ω) }dxdt

+
∫
Ωs)

(Eτ
1 (SoT

−1
s )t + E1(ψoT

−1
s )t )dx.

where

C.R = −R.∇(Δbh
Ωs
) ∇bh

Ωs
− 2D2bh

Ωs
..DR ∇bh

Ωs

−R.∇bh
Ωs
∇(Δbh

Ωs
)− 2D2bh

Ωs
.∇(R.∇bh

Ωs
).

6.3. s-derivative

By change of variable Ts we obtain the expression of the Lagrangian as an integral
over the non perturbed domain Ω and concerning the element R and S (rather
than RoT−1s and SoT−1s ). Notice that

(C.(RoT−1s ) )oTs = −〈R, DT−∗s .∇( (Δbh
Ωs
)oTs )〉 DT−∗s .∇(bh

Ωs
oTs)

− 2(D2bh
Ωs
)oTs.. (DR)oDT−1s DT−∗s .∇(bh

Ωs
oTs)

− 〈R,DT−∗s .∇(bh
Ωs
oTs 〉 DT−∗s .∇(Δbh

Ωs
oTs)

− 2D2bh
Ωs
oTs. { DT−∗s .∇(〈DT−1s .R, DT−∗s .∇(bh

Ωs
oTs)〉 ) }
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Obviously as soon as E and P are in the space energy H(Q) the functional J(Qs)
is differentiable as soon as all the geometrical terms are differentiable in L∞(D),
which is true for a C3 boundary.

6.4. Gradient calculus

As in the previous wave example, the moving domain derivative of (6.4) is easier.
We get

dJ(Q;Z) (6.5)

=
∫ τ

0

∫
∂Ω

(τ − t) { (−DEτ ..DEτ div(∇bh
Ω)

+
∫ τ

0

∫
∂Ω

2DEτ ..(DEτ .D2bh
Ω ) } z(t, x) dΓ(x)dt

− 2
∫ τ

0

∫
∂Ω

(τ − t) { 〈DEτ .n, [2D2bh
Ω −Δbh

Ω Id].DEτ .n 〉 z(t, x) dΓ(x)dt

− 2
∫ τ

0

∫
∂Ω

(τ − t)〈F τ + {Eτ .∇Δb n− 2 (D2b..DEτ )n

− E.n∇Δb− 2D2b∇Γ(E, n)} , DEτ .n〉 z(t, x) dΓ(x)dt

+ 2
∫ τ

0

∫
∂Ω

(τ − t)〈F τ + C.E ,DEτ .n〉 z(t, x) dΓ(x)dt

+
∫ τ

0

∫
∂Ω

( EtPt − DEτ ..DP − 〈C.E , P 〉 ) z(t, x) dΓ(x)dt

+ 2
∫ τ

0

∫
∂Ω

DEτ .nDP.n z(t, x) dΓ(x)dt +
∫

∂Ω

E1Pt(0) z(t, x) dΓ(x)dt.

7. The normal vector field e

We set
e = E.∇bh

Ω

Lemma 7.1.

ett − Δe = ( Ett − ΔE ).∇bh
Ω + θ.E, (7.1)

where
θ.E = D2bh

Ω..DE + div(D2bh
Ω.E ) (7.2)

∂

∂n
e = 〈DE.n, n〉 = −ΔbΩ e on Γ. (7.3)

Then e solves the wave problem with curvature Fourier-like boundary condi-
tion:

ett −Δe = F.∇bh
Ω + D2bh

Ω..DE + div(D2bh
Ω.E ) = Fn + θ (7.4)

∂

∂n
e + ΔbΩ e = 0, e(0) = E0.∇bh

Ω, et(0) = E1.∇bh
Ω,
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where Fn = F.∇bh
Ω, we shall use the notation

Θ = F.∇bh
Ω + θ

and ΔbΩ is the mean curvature 1
R1

+ 1
R2

of the surface Γ.

7.1. Extension to R

Let
ρ ∈ C2(R), ρ ≥ 0, supp ρ ⊂ [−2τ, +2τ ], ρ = 1 on [−τ, +τ ].

We set
ẽ = ρ(t) e(t), t ≥ 0, = ρ(t)( e0 + t e1), t ≤ 0,

which turns out to be solution on R to the wave problem

ẽtt − Δẽ = H,
∂

∂n
ẽ = g,

where

g = −ΔbΩ ẽ on Γ for t > 0.

g = ρ(t)
(

∂

∂n
e0 + t

∂

∂n
e1

)
on Γ for t < 0,

where H ∈ L2(R,L2(Ω)) verifies

H = ρ(t)Θ + ρ′′ e + 2 ρ′
∂

∂t
e if t > 0

H = ρ′′ (e0 + t e1) + 2 ρ′ e1 − ρ(Δe0 + tΔe1 ) if t < 0

8. Fourier transform

We consider

z(ζ)(x) =
∫ +∞

−∞
exp(−iζt) ẽ(t, x) dt (8.1)

which turns out to be a solution to
∂

∂n
z = F.g on Γ.

We consider the perturbed domain Ωs = Ts(V )(Ω) with boundary Γs = Ts(V )(Γ),
and

E(s, V ) =
∫ +∞

−∞
dζ

∫
Ωs(V )

|ζ| |zoTs(V )−1|2 +
1

1 + |ζ| |∇(zoTs(V )−1)|2 )dx.

Moreover

e =
(

d

ds
E(s, V )

)
s=0

.

We compute this by two different ways:
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8.0.1. By moving domain derivative. Let

e1 =
∫ +∞

−∞
dζ

∫
Ω

|ζ| 2Re{ 〈z, ∇z̄.(−V )〉}+ 1
1 + |ζ| 2Re{〈∇z, ∇(∇z̄(−V ) )〉} )dx

+
∫ +∞

−∞
dζ(

∫
Γ

{ |ζ| |z|2 + 1
1 + |ζ| |∇z|

2 } 〈V, n〉 dΓ(x) ).

By Stokes Theorem we get,∫ +∞

−∞
dζ

∫
Ω

1
1 + |ζ| 2Re{∇(z).∇(∇z̄(−V ) )} )dx

=
∫ +∞

−∞
dζ

∫
Ω

1
1 + |ζ| 2Re{Δ(z), (∇z̄.V )} )dx

−
∫ +∞

−∞

∫
Γ

1
1 + |ζ| 2Re{〈∇z.n, ∇z̄.V 〉 } ).

As V = vn on Γ we get for the last term:

−
∫ +∞

−∞

∫
Γ

1
1 + |ζ| 2Re{〈∇z.n, ∇z̄.n〉 } )v.

But on Γ we have
〈∇z.n, ∇z̄.n〉 = |F.g|2

Finally we get

e1 =
∫ +∞

−∞

∫
Γ

{ |ζ| |z|2 + 1
1 + |ζ| Re{〈∇z,∇z̄〉 } − 2 |F.g|2}v

+
∫ +∞

−∞
dζ

∫
Ω

(|ζ| 2Re{ 〈z, ∇z̄.(−V )〉} + 1
1 + |ζ| 2Re{Δz, (∇z̄.V )} )dx.

Then ∫ +∞

−∞

∫
Γ

{ |ζ| |z|2 + 1
1 + |ζ| |∇Γz|2 } }v

=
∫ +∞

−∞

∫
Γ

1
1 + |ζ| |F.g|

2 dΓdt

−
∫ +∞

−∞
dζ

∫
Ω

1
1 + |ζ| 2Re{|ζ|2z + F.H)(∇z̄.V )} )dx

+
∫ +∞

−∞
dζ

∫
Ω

(|ζ| 2Re{ 〈z, ∇z̄.V 〉} + e2.

From which there exists M > 0 such that∫ +∞

−∞

∫
Γ

{ |ζ| |z|2 + 1
1 + |ζ| |∇Γz|2 } }v ≤ M { ||z||2L2(R,H1(Ω))+ ||z||2L2(R,L2(Γ)) }.
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We have
√
|ζ|z ∈ L2(Rζ , L

2(Γ)) and 1√
|ζ|∇Γz ∈ L2(Rζ , L

2(Γ, RN )), we conclude

that

E.n ∈ H1/2(I, L2(Γ)) ∩ L2(I, H1/2(Γ))

∇Γ(E.n) ∈ H−1/2(I, L2(Γ, RN )).

8.1. Expression by change of variable

We obtain

E(s, V ) =
∫ +∞

−∞
dζ

∫
Ω

( |ζ| |z|2 J(s) + 1
1 + |ζ| |DT−∗s .∇z|2 |2 J(s) )dx

e2 =
∫ +∞

−∞
dζ(

∫
Ω

{|ζ| |z|2 + 1
1 + |ζ| |∇z|

2|}divV (0) − 2
1

1 + |ζ| 〈DV (0).z,∇z〉 )dx

8.1.1. The shape functional.

J(Ω) :=
∫ +∞

−∞

∫
Γ

{ |ζ| |z|2 + 1
1 + |ζ| |∇Γz|2 } dΓdζ

Then, taking V = ∇bh
Ω, v = 〈V (0), n〉 = 1 on ∂Ω, we get

J(Ω) =
∫ +∞

−∞

∫
Γ

1
1 + |ζ| |F.g|

2 dΓdt

−
∫ +∞

−∞
dζ

∫
Ω

1
1 + |ζ| 2Re{|ζ|2z + F.H)(∇z̄.∇bh

Ω )} )dx

+
∫ +∞

−∞
dζ

∫
Ω

(|ζ| 2Re{ 〈z, ∇z̄.∇bh
Ω〉}

+
∫ +∞

−∞
dζ

(∫
Ω

{|ζ| |z|2 + 1
1 + |ζ| |∇z|

2|}divV (0)

− 2
1

1 + |ζ| 〈D∇b
h
Ω.z,∇z〉

)
dx

with
Ωs = Ts(Ω), Ts = Ts(Z).

We get:

J(Ω) = Min{ (φ,Φ)∈K0 } Max{(ψ,Ψ)∈Kτ} L(s, (φ,Φ), (ψ,Ψ)),

where, with the notation

H i
0 = Ci([0, τ ], H1

0 (Ω)) ∩ Ci+1([0, τ ], L2(Ω))

Hi = { Φ ∈ Ci([0, τ ], H1(Ω)) ∩ Ci+1([0, τ ], L2(Ω), ΦΓ = 0)

K0 = {(φ,Φ) ∈ H1 ×H3
0 , φ(0) = E0.n, Φ(0) = E0 }

Kτ = {(φ,Ψ) ∈ H1 ×H3
0 , ψ(τ) = 0, Ψ(τ) = 0 }
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L(s, (φ,Φ), (ψ,Ψ))

=
∫ +∞

−∞

∫
Γs(Z)

1
1 + |ζ| |F.g|

2 dΓsdt

−
∫ +∞

−∞
dζ

∫
Ωs(Z)

1
1 + |ζ| 2Re{|ζ|2zoT−1s + F.H)(∇ ¯zoT−1s .∇bh

Ωs(Z)
)} )dx

+
∫ +∞

−∞
dζ

∫
Ωs(Z)

(|ζ| 2Re{ 〈zoT−1s , ∇ ¯zoT−1s .∇bh
Ωs(Z)

〉}

+
∫ +∞

−∞
dζ(

∫
Ωs(Z)

{|ζ| |zoT−1s |2 + 1
1 + |ζ| |∇zoT

−1
s |2|}divV (0)

− 2
1

1 + |ζ| 〈D
2bh
Ωs(Z)

.zoT−1s ,∇zoT−1s 〉 )dx

+
∫ τ

0

∫
Ωs(Z)

((eoT−1s )t(θ.[ψoT−1s ])t − 〈∇(θ.[eoT−1s ]),∇(θ[ψoT−1s ])〉 dxdt

+
∫ τ

0

∫
∂Ωs(Z)

Δbh
Ωs(Z)

〈ΦoT−1s , ns〉 φoT−1s dΓ(x)dt

+
∫ τ

0

∫
Ωs(Z)

θs.[ΦoT−1s ] ψoT−1s dΓ(x)dt

+
∫ τ

0

∫
Ωs(Z)

((ΦoT−1s )t.(ΨoT−1s )t −D(ΦoT−1s )..D(ΨoT−1s ) − F.ΨoT−1s ) dxdt.

Notice that

θs.[ΦoT−1s ] = D2bh
Ωs
..D(ΦoT−1s ) + div(D2bh

Ωs
.ΦoT−1s )

such that

θs.[ΦoT−1s ]oTs = D2bh
Ωs
oTs..D(Φ).(DTs)−1 + div(D2bh

Ωs
.ΦoT−1s ).

Thus, with (8.1), and the change of variable Ts we get:

J(Ωs)

=
∫ +∞

−∞
dζ

∫
Ω

1
1 + |ζ| 2Re{|ζ|2z + F.H) 〈DT−∗s .∇z̄, DT−1s .∇(bh

ΩsoTs
〉} J(s)dx

+
∫ +∞

−∞
dζ

∫
Ω

(|ζ| 2Re{ z〈DT−1s .∇z̄, DT−1s .∇bh
Ωs
oTs〉}J(s)

+
∫ +∞

−∞
dζ(

∫
Ω

{|ζ| |z|2 + 1
1 + |ζ| |DT−1s ,∇z|2|}divV (0)J(s)

− 2
1

1 + |ζ| 〈D
2bh
Ωs
oTs, DT−1s .∇z〉 )J(s) dx

+
∫ τ

0

∫
Ω

(φt( D2bh
Ωs
oTs..D(Φ).(DTs)−1 + div(D2bh

Ωs
.Φ )t
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− 〈∇(D2bh
Ωs
oTs..D(Φ).(DTs)−1 + div(D2bh

Ωs
.ΦoT−1s )),∇(θ[ψoT−1s ])〉J(s)dxdt

+
∫ τ

0

∫
Ω

(Φt.Ψt − (DT−1s .DΦ)..(DT−1s .DΨ) )J(s)dxdt

+ · · · .
And we would get by similar calculus the expression of

dJ(Ω;Z) =
∂

∂s
J(Ωs)|s=0.

References

[1] M. Cuer, J.-P. Zolésio Control of singular problem via differentiation of a min-max,
Systems & Control Letters, vol. 11, no. 2, pp. 151–158, 1988.

[2] M.C. Delfour, J.-P. Zolésio Pseudodifferential extractor and hidden regularity, in
preparation.

[3] John Cagnol and Jean-Paul Zolésio. Hidden shape derivative in the wave equation.
In Systems modeling and optimization (Detroit, MI, 1997), vol. 396 of Chapman &
Hall/CRC Res. Notes Math., pp. 42–52. Chapman & Hall/CRC, Boca Raton, FL,
1999.

[4] John Cagnol and Jean-Paul Zolésio. Shape control in hyperbolic problems. In Op-
timal control of partial differential equations (Chemnitz, 1998), vol. 133 of Internat.
Ser. Numer. Math., pp. 77–88. Birkhäuser, Basel, 1999.
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