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Dirichlet Problems for Generalized n-Poisson Equations . . . . . . . . . . . . . . . . 129

A. Mohammed
Schwarz, Riemann, Riemann–Hilbert Problems and Their
Connections in Polydomains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
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Preface

The International Workshop on Pseudo-Differential Operators: Complex Analysis
and Partial Differential Equations was held at York University on August 4–8,
2008. The first phase of the workshop on August 4–5 consisted of a mini-course
on pseudo-differential operators and boundary value problems given by Professor
Bert-Wolfgang Schulze of Universität Potsdam for graduate students and post-
docs. This was followed on August 6–8 by a conference emphasizing boundary
value problems; explicit formulas in complex analysis and partial differential equa-
tions; pseudo-differential operators and calculi; analysis on the Heisenberg group
and sub-Riemannian geometry; and Fourier analysis with applications in time-
frequency analysis and imaging.

The role of complex analysis in the development of pseudo-differential oper-
ators can best be seen in the context of the well-known Cauchy kernel and the
related Poisson kernel in, respectively, the Cauchy integral formula and the Pois-
son integral formula in the complex plane C. These formulas are instrumental
in solving boundary value problems for the Cauchy-Riemann operator ∂ and the
Laplacian Δ on specific domains with the unit disk and its biholomorphic compan-
ion, i.e., the upper half-plane, as paradigm models. The corresponding problems
in several complex variables can be formulated in the context of the unit disk
in Cn, which may be the unit polydisk or the unit ball in Cn. Analogues of the
Cauchy kernel and the Poisson kernel and their ramifications to express solutions
of boundary value problems in several complex variables can be looked upon as
singular integral operators, which are de facto equivalent manifestations of pseudo-
differential operators. It is the vision that bringing together experts in explicit
formulas for boundary value problems in complex analysis working with kernels
and specialists in pseudo-differential operators working with symbols should build
synergy between the two groups. The functional analysis and real-life applications
of pseudo-differential operators are always among top priorities in our agenda and
these are well represented in the workshop and in this volume.



Operator Theory:
Advances and Applications, Vol. 205, 1–50
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Boundary Value Problems with the
Transmission Property

B.-W. Schulze

Abstract. We give a survey on the calculus of (pseudo-differential) boundary
value problems with the transmision property at the boundary, and ellipticity
in the Shapiro–Lopatinskij sense. Apart from the original results of the work
of Boutet de Monvel we present an approach based on the ideas of the edge
calculus. In a final section we introduce symbols with the anti-transmission
property.

Mathematics Subject Classification (2000). 35J40, 58J32, 58J40.

Keywords. Pseudo-differential boundary value problems, transmission and
anti-transmission property, boundary symbolic calculus, Shapiro–Lopatinskij
ellipticity, parametrices.

1. Introduction

Boundary value problems (BVPs) for elliptic (pseudo-) differential operators have
attracted mathematicians and physicists during all periods of modern analysis.
While the definition of ellipticity of an operator on an open (smooth) manifold is
very simple, such a notion in connection with a (smooth or non-smooth) bound-
ary is much less evident. During the past few years the interest in BVPs increased
again considerably, motivated by new applications and also by unsolved prob-
lems in the frame of the structural understanding of ellipticity in new situations.
Several classical periods of the development created deep and beautiful ideas, for
instance, in connection with function theory, potential theory, with boundary op-
erators satisfying the complementing condition, cf. Agmon, Douglas, Nirenberg
[1], or pseudo-differential theories from Vishik and Eskin [29], Eskin [7], Boutet
de Monvel [4]. Other branches of the development concern ellipticity with global
projection conditions (analogues of Atiyah, Patodi, Singer conditions, cf. [3]), or
elliptic theories on manifolds with geometric singularities, cf. the author’s papers
[18] or [19].
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After all that it is not easy to imagine how many basic and interesting prob-
lems remained open. A part of the new developments is connected with the analysis
on configurations with singularities that includes boundary value problems. In that
context it seems to be desirable to see the pseudo-differential machinery of Boutet
de Monvel and also of Vishik and Eskin from an alternative viewpoint, using the
achievements of the cone and edge pseudo-differential calculus as is pointed out in
[16], [21], and in the author’s joint paper with Seiler [25], see also the monographs
[22], or those jointly with Egorov [6], Kapanadze [12], Harutyunyan [10].

Our exposition just intends to emphasize such an approach, here mainly
focused on operators with the transmission property at the boundary from the
work of Boutet de Monvel. We also introduce symbols with the anti-transmission
property at the boundary. Together with those with the transmission property
they span the space of all (classical) symbols that are smooth up to the boundary.
A pseudo-differential calculus for such general symbols needs more tools from the
edge algebra than developed here.

The present paper is the elaborated version of introductory lectures, given
during the International Workshop on Pseudo-Differential Operators, Complex
Analysis and Partial Differential Equations at York University on August 4–8,
2008, in Toronto.

2. Interior and Boundary Symbols for Differential Operators

Let X be a C∞ manifold with boundary Y = ∂X . Moreover, let 2X be the double,
defined by gluing together two copiesX± ofX to a C∞ manifold along the common
boundary Y . Let us fix a Riemannian metric on 2X and consider Y in the induced
metric. There is then a tubular neighbourhood of Y in 2X that can be identified
with Y × [−1, 1], with a splitting of variables x = (y, t), where t is the variable
normal to the boundary and y ∈ Y . We assume that (y, t) belongs to X =: X+

for 0 ≤ t ≤ 1 and to X− for −1 ≤ t ≤ 0 .
If M is a C∞ manifold (with or without boundary), by Diffμ(M) we de-

note the set of all differential operators of order μ on M with smooth coefficients
(smooth up to the boundary when ∂M �= ∅).

Local descriptions near Y will refer to charts

χ : U → Ω× R

for open U ⊆ 2X , U ∩ Y �= ∅, and open Ω ⊆ Rn−1, and induced charts

χ : U ∩ Y → Ω

on Y and
χ± : U± := U ∩X± → Ω× R±

on X± near the boundary. Concerning the transition maps Ω×R → Ω̃×R, (y, t) →
(ỹ, t̃), for simplicity we assume that the normal variable remains unchanged near
the boundary, i.e., t = t̃ for |t| sufficiently small. The map y → ỹ corresponds to a
diffeomorphism Ω → Ω̃.
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Let A ∈ Diffμ(X), Bj ∈ Diffμj (V+), V+ := V ∩ X , j = 1, . . . , N , for some
N ∈ N, and set

Tu := (Bju|Y )j=1,...,N .

Then the equations
Au = f in intX, Tu = g on Y (2.1)

represent a boundary value problem for A. Consider for the moment functions in
C∞(X); then (2.1) can be regarded as a continuous operator

A =
(
A

T

)
: C∞(X) →

C∞(X)
⊕

C∞(Y,CN )
. (2.2)

If X is compact, we have the standard Sobolev spaces Hs(2X) on 2X and

Hs(intX) := Hs(2X)|intX ,

s ∈ R. Then (2.2) extends to continuous operators

A : Hs(intX) →
Hs−μ(intX)

⊕
⊕N

j=1H
s−μj− 1

2 (Y )
(2.3)

for all s > max{μj + 1
2 : j = 1, . . . , N}.

We will give a survey on elliptic boundary value problems (BVPs), starting
from (2.2), and we ask to what extent we may expect a pseudo-differential calculus
(an algebra) that contains the operators (2.2) together with the parametrices of
elliptic elements. First we have to explain what we understand by ellipticity of a
boundary value problem.

In contrast to the notion of ellipticity of a differential operator (or a, say,
classical pseudo-differential operator) A on an open C∞ manifold M , in the case
of a manifold with boundary we have from the very beginning a variety of choices.

For an open C∞ manifold M denote by Lμ
cl(M) the space of all classical

pseudo-differential operators of order μ ∈ R on M . An operator A ∈ Lμ
cl(M)

is called elliptic if its homogeneous principal symbol σψ(A)(x, ξ) of order μ never
vanishes on T ∗M \0 (the cotangent bundle ofM minus the zero section). The union
of spaces Lμ

cl(M) over μ ∈ R is closed under the construction of parametrices of
elliptic elements, to be more precise, every elliptic A ∈ Lμ

cl(M) has a (properly
supported) parametrix P ∈ L−μ

cl (M) such that 1− PA, 1− AP ∈ L−∞(M) (here
and in future by 1 we often denote identity operators). The space L−∞(M) can
be identified with C∞(M ×M) via a fixed Riemannian metric on M .

Let us recall the well-known fact that when M is compact and closed, the
ellipticity of A ∈ Lμ

cl(M) is equivalent to the property that

A : Hs(M) → Hs−μ(M) (2.4)

is a Fredholm operator for some s = s0 ∈ R. Moreover, from the Fredholm property
of (2.4) for s = s0 it follows that (2.4) is Fredholm for all s ∈ R. In addition it is
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known that Lμ
cl(M) for every μ ∈ R contains so-called order reducing operators,

i.e., elliptic operators Rμ that induce isomorphisms,

Rμ : Hs(M) → Hs−μ(M) (2.5)

for all s ∈ R; then (Rμ)−1 ∈ L−μ
cl (M) is again order reducing (of opposite order).

Below we shall establish more tools on pseudo-differential operators.
Let us now return to BVPs of the form (2.3), where X is a compact manifold

with smooth boundary Y .
Writing our differential operator A in local coordinates x ∈ Ω×R+ near the

boundary as

A =
∑
|α|≤μ

aα(x)Dα
x ,

aα ∈ C∞(Ω× R+), we define

σψ(A)(x, ξ) =
∑
|α|=μ

aα(x)ξα, (2.6)

(x, ξ) ∈ T ∗(Ω× R+) \ 0, and observe the homogeneity

σψ(A)(x, λξ) = λμσψ(A)(x, ξ), λ ∈ R+.

Let x = (y, t), ξ = (η, τ), and set

σ∂(A)(y, η) =
∑
|α|=μ

aα(y, 0)(η,Dt)α, (2.7)

where (η,Dt)α = ηα′
Dα

t
′′ for α = (α′, α′′) ∈ Nn, (y, η) ∈ T ∗Ω \ 0, or, equiva-

lently, σ∂(A)(y, η) = σψ(A)(y, 0, η,Dt). The expression (2.7) represents a family
of continuous operators

σ∂(A) : Hs(R+) → Hs−μ(R+), s ∈ R, (2.8)

called the (homogeneous principal) boundary symbol of A.
Let Hs(R+) be endowed with the strongly continuous group κ = {κλ}λ∈R+

of isomorphisms

κλ : Hs(R+) → Hs(R+), (κλu)(t) = λ1/2u(λt), λ ∈ R+.

Then we obtain the following kind of homogeneity of the boundary symbol,

σ∂(A)(y, λη) = λμκλσ∂(A)(y, η)κ−1
λ , λ ∈ R+. (2.9)

Homogeneity in that sense will also referred to as twisted homogeneity (of
order μ).

It makes sense also to define the (homogeneous principal) boundary symbol
of the trace operator T = t(T1, . . . , TN), by

σ∂(Tj)(y, η)u := σψ(Bj)(y, 0, η,Dt)u|t=0, (2.10)
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u ∈ Hs(R+), s > max{μj + 1
2 : j = 1, . . . , N} where σψ(Bj)(x, ξ) is the homoge-

neous principal symbol of the operator Bj , and (2.10) is interpreted as a family of
operators

σ∂(Tj)(y, η) : Hs(R+) → C,

(y, η) ∈ T ∗Ω \ 0. The boundary symbol (2.10) is homogeneous in the following
sense:

σ∂(Tj)(y, λη) = λμj+ 1
2 σ∂(Tj)(y, η)κ−1

λ , λ ∈ R+. (2.11)

It is often convenient to compose (2.2) from the left by an operator

diag(1, R1, . . . , RN ) (2.12)

where Rj ∈ L
μ−(μj+

1
2 )

cl (Y ) is an order reducing operator on the boundary in the
above-mentioned sense and to pass to a modified operator(

A
t(R1T1, . . . , RNTN)

)
: Hs(intX) →

Hs−μ(intX)
⊕

Hs−μ(Y,CN )
,

related to the former one by a trivial pseudo-differential reduction of orders on the
boundary. This is formally a little easier (later on we admit such trace operators
anyway). Instead of (2.11) we then obtain

σ∂(RjTj)(y, λη) = λμσ∂(RjTj)(y, η)κ−1
λ , λ ∈ R+, (2.13)

where
σ∂(RjTj)(y, η) = σψ(Rj)(y, η)σ∂(Tj)(y, η)

with σ∂(Rj)(y, η) being the homogeneous principal symbol of Rj of order μ −
(μj + 1

2 ) as a classical pseudo-differential operator on the boundary.
Let us now explain the role of the trace operators in connection with the

ellipticity of a boundary value problem. We call the pair

σ(A) = (σψ(A), σ∂(A))

the principal symbol of A, consisting of the (principal) interior symbol σψ(A) :=
σψ(A) and the (principal) boundary symbol σ∂(A) := t(σ∂(A), σ∂(T1), . . . , σ∂(TN ))
of A,

σ∂(A) : Hs(R+) →
Hs−μ(R+)

⊕
CN

.

Ellipticity of A requires the bijectivity of both components on T ∗X\0 and T ∗Y \0,
respectively, the latter as an operator function for s−μ > − 1

2 . Since the operators
σ∂(Tj)(y, η) are of finite rank, σ∂(A)(y, η) has to be a family of Fredholm operators.
The following lemma shows that this is an automatic consequence of the ellipticity
of A with respect to σψ .
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Lemma 2.1. Let A be an elliptic differential operator; then

σ∂(A)(y, η) : Hs(R+) → Hs−μ(R+)

is a surjective family of Fredholm operators for every real s > μ − 1
2 , and the

kernel kerσ∂(A)(y, η) is a finite-dimensional subspace of S(R+) = S(R)|
R+

which
is independent of s. Moreover, dim kerσ∂(A)(y, η) = dim kerσ∂(A)(y, η/|η|) for
all (y, η) ∈ T ∗Y \ 0.

Proof. Set for the moment a(τ) := σψ(A)(y, 0, η, τ) with frozen variables (y, η),
η �= 0. Then σ∂(A) = a(Dt) can be written as op+(a) := r+opt(a)e+ for the
operator of extension e+ of functions by 0 to t < 0 and r+ the restriction to t > 0,
and opt(·) is the pseudo-differential operator on R with the symbol a(τ), i.e.,
opt(a)u(t) =

∫∫
ei(t−t′)τa(τ)u(t′)dt′d̄τ , d̄τ = (2π)−1dτ . Then op+(a−1) is a right

inverse of op+(a), since op+(a)op+(a−1) = op+(aa−1) + r+op(a)e−op+(a−1) = 1,
because of r+op(a)e− = 0. This shows the surjectivity of op+(a). The fact that
solutions u of the homogeneous equation a(Dt)u = 0 form a finite-dimensional
subspace of S(R+) is standard. However, we will show those things below once
again independently, cf. Theorem 3.29 below. The last assertion follows from the
homogeneity (2.9). �

Example. Let A = Δ be the Laplacian, Δ =
∑n

j=1
∂2

∂x2
j

in local variables. Then

σ∂(Δ) = −|ξ|2, and

σ∂(Δ)(η) = −|η|2 +D2
t : Hs(R+) → Hs−2(R+).

We have
kerσ∂(Δ)(η) = {ce−|η|t : c ∈ C},

i.e., dim kerσ∂(Δ)(η) = 1 for all η �= 0 and all s > 3/2.

Remark 2.2. The operators Tk : Hs(X) → Hs−k−1/2(Y ), locally near Y defined
by

Tku := Dk
t u|t=0, k ∈ N,

have the boundary symbols

σ∂(Tk)u = Dk
t u|t=0, σ∂(Tk)(η) : Hs(R+) → C

and are (although they are independent of η) of homogeneity k + 1
2 , i.e.,

σ∂(Tk)(λη)u = λk+ 1
2σ∂(Tk)(η)κ−1

λ u, λ ∈ R+.

Moreover, as we see from Lemma 2.1 together with Lemma 2.3 below, the
column matrix (

σ∂(Δ)(η)
σ∂(Tk)(η)

)
: Hs(R+) →

Hs−2(R+)
⊕
C

(2.14)

is an isomorphism for every η �= 0, s > max{ 3
2 , k+ 1

2}; this is true for every k ∈ N.
Observe that T0 represents Dirichlet and T1 Neumann conditions.
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In other words, the boundary symbol σ∂(Tk) fills up the Fredholm operators
σ∂(Δ)(η) : Hs(R+) → Hs−2(R+), s > 3/2, to a family of isomorphisms (2.14). In
this way we have examples of so-called elliptic BVPs, namely,

Ak :=
(

Δ
Tk

)
: Hs(X) →

Hs−2(X)
⊕

Hs−k− 1
2 (Y )

(2.15)

for every k ∈ N. In connection with such constructions it is useful to recall the
following simple algebraic result.

Lemma 2.3. Let H, H̃, L̃ be Hilbert spaces and a : H → H̃, b : H → L̃ linear

continuous operators. Then the column matrix operator a :=
(
a
b

)
: H →

H̃
⊕
L̃

is an

isomorphism if and only if a : H → H̃ is surjective, and b : H → L̃ restricts to an
isomorphism b|ker a : ker a→ L̃.

Proof. Let a : H → H̃ be surjective, and b0 := b|ker a : ker a→ L̃ an isomorphism.
Then a is obviously surjective. Moreover, au = 0 implies u ∈ ker a and b0u = 0;
then, since b0 is an isomorphism it follows that u = 0. Thus a is injective and hence
an isomorphism. Conversely, assume that a is an isomorphism. The surjectivity
of a implies that a : H → H̃ , b : H → L̃ are both surjective. In particular, if
H1 denotes the orthogonal complement of ker a1 in H , we obtain an isomorphism
a1 := a|H1 : H1 → H̃ , and a can be written as a block matrix

a =
(
a1 0
b1 b0

)
:
H1

⊕
ker a

→
H̃
⊕
L̃

for b1 := b|H1 . It remains to show that b0 : ker a → L̃ is an isomorphism. The

operator
(

a−1
1 0

−b1a−1
1 1

)
:
H̃
⊕
L̃

→
H1

⊕
L̃

is an isomorphism, and we have

(
a−1
1 0

−b1a−1
1 1

)(
a1 0
b1 b0

)
=
(

1 0
0 b0

)
:
H1

⊕
kera

→
H1

⊕
L̃

.

Therefore, since both factors on the left-hand side are isomorphisms, it follows
that also b0 : ker a→ ker a is an isomorphism. �

This shows us the meaning of the above-mentioned N , the number of trace
operators which turns the boundary symbol

σ∂(A)(y, η) : Hs(R+) →
Hs−μ(R+)

⊕
CN

(2.16)
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to a family of isomorphisms. According to Lemmas 2.1 and 2.3, for an elliptic
differential operator A we have N = dimkerσ∂(A)(y, η); this number is required
to be independent of y and η �= 0. As is well-known, if A is of order 2m and
admits boundary operators {B1, . . . , Bm} satisfying the so-called complementing
condition with respect to A, then (for m = N) that property holds (cf. Agmon,
Douglis, Nirenberg [1], Lions, Magenes [13]).

Definition 2.4. The block matrix operator A = t(A T ) is said to be a (Shapiro–
Lopatinskij) elliptic boundary value problem for the elliptic differential operator
A if the boundary symbol (2.16) is a family of isomorphisms for any sufficiently
large s, for all (y, η) ∈ T ∗Y \ 0. We also talk about Shapiro–Lopatinskij trace (or
boundary) conditions for the operator A.

Remark 2.5. Observe that not every elliptic differential operatorA admits Shapiro–
Lopatinskij elliptic trace conditions. The simplest example is the Cauchy-Riemann
operator ∂ in the complex plane. More general examples are Dirac operators in
even dimensions, and other important geometric operators. We will return later on
to this discussion in the context of the Atiyah–Bott obstruction for the existence
of Shapiro–Lopatinskij elliptic conditions.

If we ask for an algebra of BVPs a first essential formal problem is that column
matrices cannot be composed with each other in a reasonable manner. However, we
extend the notion “algebra” and talk about block matrix operators where the al-
gebraic operations are carried out only under natural conditions, namely, addition
when the matrices have the same number of rows and columns and multiplication
when the number of rows and columns in the middle fit together. For instance, if
we consider the Dirichlet problem A0 for the Laplacian, cf. the formula (2.15) for
k = 0, we have invertibility of

A0 : C∞(X) →
C∞(X)
⊕

C∞(Y )
.

Denoting by P := (P0 K0) the inverse of A0 (which belongs to the pseudo-
differential operator calculus to be discussed here), then we have two kinds of
compositions, namely, for A = Δ,

A0P0 =
(
A

T0

)
(P0 K0) =

(
AP0 AK0

T0P0 T0K0

)
=
(

1 0
0 1

)
, (2.17)

and

(P0 K0)
(
A

T0

)
= P0A+K0T0 = 1. (2.18)

It also makes sense to consider

AkP0 =
(

1 0
TkP0 TkK0

)
(2.19)

for every k ∈ N. The lower right corner of the latter matrix has the meaning of
the reduction of the boundary condition Tk to the boundary (by means of the
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Dirichlet problem). It turns out that TkK0 is a classical elliptic pseudo-differential
operator of order k on the boundary. Its symbol will be computed in the following
section, cf. the formula (3.28).

3. Inverses of Boundary Symbols

Let us first recall that the construction of a parametrix of an elliptic operator A ∈
Lμ

cl(M) on an open C∞ manifold M can be started by inverting the homogeneous
principal symbol and forming a B ∈ L−μ

cl (M) such that σψ(B) = σ−1
ψ (A) (B is

obtained via an operator convention). In a second step we form

1−BA = C ∈ L−1
cl (M)

(everything in the frame of properly supported pseudo-differential operators), then
we pass to a D ∈ L−1

cl (M) such that (1 + D)(1 − C) = 1 mod L−∞(M). Such a
D can be found as an asymptotic sum

∑∞
j=1 C

j , and P = (1 + D)B is then a
left parametrix of A. (For future references we call the latter procedure a formal
Neumann series argument.) In an analogous manner we find a right parametrix,
and then a simple algebraic consideration shows that P is a two-sided parametrix.

These arguments are based on the following properties of (classical) pseudo-
differential operators:

1. every pseudo-differential operator has a properly supported representative
modulo a smoothing operator;

2. any sequence of operators of order μ − j, j ∈ N, has an asymptotic sum,
uniquely determined modulo a smoothing operator;

3. there is a symbolic map that assigns the unique principal symbol of an opera-
tor; the algebraic operations between operators are compatible with those for
associated principal symbols (in particular, the principal symbol of a compo-
sition is equal to the composition (product) of the principal symbols);

4. every smooth homogeneous function of order μ on T ∗M \ 0 is the principal
symbol of an associated pseudo-differential operator of order μ (i.e., there is
an operator convention that is right inverse of the principal symbolic map of
3.);

5. an operator of order μ with vanishing principal symbol is of order μ− 1.
It turns out that boundary value problems as in Section 2 can be completed to

a graded algebra of 2× 2 block matrix operators with a two-component principal
symbolic hierarchy σ = (σψ , σ∂), where analogues of the properties 1.–5. hold.
Such an algebra has been introduced by Boutet de Monvel [4], and we discuss here
(among other things) some elements of that calculus.

The first essential point is to analyse the nature of inverses of bijective bound-
ary symbols. Since such inverses are computed (y, η)-wise for (y, η) ∈ T ∗Y \ 0 we
first freeze those variables and look at operators on R+. Let us consider a classical
symbol a(τ) ∈ Sμ

cl(R), μ ∈ R. Examples of such symbols are

lμ±(τ) := (1± iτ)μ. (3.1)
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Let us set
op+(a)u(t) = r+op(a)(e+u)(t), (3.2)

for every u ∈ Hs(R+) (= Hs(R)|R+), s > − 1
2 , where e+u ∈ S′(R) is the distribu-

tion obtained by extending u by zero to R−, i.e.,

e+u(t) = u(t) for t > 0, e+u(t) = 0 for t < 0.

Moreover r+ is the operator of restriction from R to R+, and

op(a)v(t) =
∫∫

ei(t−t′)τa(τ)u(t′)dt′d̄τ,

d̄τ = (2π)−1dτ . In an analogous manner we define the extension e− by zero from
R− to R and the restriction r− from R to R−. The operator (3.2) defines a linear
map

op+(a) : Hs(R+) → S′(R+)
for every s > − 1

2 , S′(R+) := S′(R)|R+ . As is well known (cf. [7]), in some cases
op+(·) induces a continuous operator

op+(a) : Hs(R+) → Hs−μ(R+) (3.3)

for every s > −1/2, namely, when a(τ) is a so-called minus-symbol.
Let A(U), U ⊆ C open, denote the space of all holomorphic functions in

U , and set C± := {z = τ + iβ : β ≷ 0}. Then a(τ) ∈ Sμ
cl(R) is said to be a

minus-symbol if a(τ) has an extension to a function in A(C+) ∩ C∞(C+) such
that

|a(z)| ≤ c(1 + |z|2)μ/2 (3.4)
for all z ∈ C+, for some constant c > 0. By a plus-symbol of order μ we understand
an element a(τ) ∈ Sμ

cl(R) that extends to a function in A(C−)∩C∞(C−) such that
the estimates (3.4) hold for all z ∈ C−. For s ∈ R we have a relation similar to (3.3)
when we replace e+ by a continuous extension operator e+

s : Hs(R+) → Hs(R)
with e+

s u|R+ = u; then in the minus-case the latter map is independent of the
choice of e+

s .
If a(τ) is a plus-symbol of order μ and Hs

0 (R+) := {u ∈ Hs(R) : u = 0 on
R−}, then

op+(a) : Hs
0(R+) → Hs−μ

0 (R+) (3.5)
is continuous for every s ∈ R. Concerning a proof of the continuity of (3.3) and
(3.5), see [7, Lemma 4.6 and Theorem 4.4], (cf. also [10, Section 4.1.2]). Moreover,
for an arbitrary p(τ) ∈ Sν

cl(R), ν ∈ R, we have

op+(ap) = op+(a)op+(p) (3.6)

when a(τ) ∈ Sμ
cl(R) is a minus-symbol (since r+op(a)e− = 0) and

op+(pa) = op+(p)op+(a) (3.7)

when a(τ) ∈ Sμ
cl(R) is a plus-symbol (since r−op(a)e+ = 0).

Example. A polynomial in τ is both a minus- and a plus-symbol.
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Remark 3.1. The function lμ−(τ) = (1 − iτ)μ is a minus-symbol of order μ ∈ R,
and

op+(lμ−) : Hs(R+) → Hs−μ(R+)
is an isomorphism for every s ∈ R, s > max{− 1

2 , μ − 1
2}, where (op+(lμ−))−1 =

op+(l−μ
− ). Moreover, lμ+(τ) = (1 + iτ)μ is a plus-symbol of order μ ∈ R, and

op+(lμ+) : Hs
0(R+) → Hs−μ

0 (R+)

is an isomorphism for every s ∈ R where (op+(lμ+))−1 = op+(l−μ
+ ).

A classical symbol a(τ) ∈ Sμ
cl(R) has an asymptotic expansion

a(τ) ∼
∞∑

j=0

a±j (iτ)μ−j for τ → ±∞ (3.8)

for unique coefficients a±j ∈ C (the imaginary unit i =
√−1 is taken for conve-

nience; powers are defined as (iτ)ν = eν log(iτ) with the principal branch of the
logarithm).

If χ(τ) ∈ C∞(R) is an excision function in τ (i.e., χ(τ) = 0 for |τ | < c0,
χ(τ) = 1 for |τ | > c1, for some 0 < c0 < c1), then we have

a(τ) ∼
∞∑

j=0

χ(τ)a(μ−j)(τ) (3.9)

for
a(μ−j)(τ) = {a+

j θ
+(τ) + a−j θ

−(τ)}(iτ)μ−j , (3.10)

with θ+ being the characteristic function of the ± half-axis in τ , where (3.9) has
the meaning of an asymptotic expansion of symbols, χ(τ)a(μ−j)(τ) ∈ Sμ−j

cl (R).

Definition 3.2. A symbol a(τ) ∈ Sμ
cl(R) for μ ∈ Z has the transmission property if

a+
j = a−j for all j ∈ N. (3.11)

Let Sμ
tr(R) denote the space of all symbols in Sμ

cl(R) with the transmission property.

Remark 3.3. A symbol a(τ) ∈ Sμ
cl(R) has the transmission property exactly when

a(μ−j)(τ) = (−1)μ−ja(μ−j)(−τ) (3.12)

for all τ ∈ R \ {0} and all j ∈ N.

In fact, the transmission property means that a(μ−j)(τ) = cj(iτ)μ−j for cj :=
a+

j = a−j for all j ∈ N, and this shows the relation (3.12). Conversely from (3.12)
we deduce

{a+
j θ

+(τ) + a−j θ
−(τ)}(iτ)μ−j = (−1)μ−j{a+

j θ
+(−τ) + a−j θ

−(−τ)}(−iτ)μ−j

= {a+
j θ

+(−τ) + a−j θ
−(−τ)}(iτ)μ−j

for all τ �= 0, which implies a+
j (θ+(τ)−θ+(−τ)) = a−j (θ−(−τ)−θ−(τ)). For τ > 0

we have θ+(−τ) = θ−(τ) = 0 and θ+(τ) = θ−(−τ) = 1 which yields a+
j = a−j .
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Remark 3.4. The space Sμ
cl(R) is a nuclear Fréchet space in a natural way, and

Sμ
tr(R) is a closed subspace in the induced topology.

Example. 1. Every polynomial in τ has the transmission property;
2. the τ -wise product of two symbols with the transmission property has again

the transmission property;
3. If a ∈ Sμ

tr(R) and a+
0 = a−0 �= 0, then it follows that χ(τ)a−1(τ) ∈ S−μ

tr (R) for
a suitable excision function χ(τ). If in addition a(τ) �= 0 for all τ ∈ R, then
a−1(τ) ∈ S−μ

tr (R).

In particular, the symbols (3.1) for μ ∈ Z have the transmission property.

Remark 3.5. The multiplication of symbols by l−μ
+ (τ) (or l−μ

− (τ)) induces an iso-
morphism

Sμ
tr(R) → S0

tr(R).

Remark 3.6. Let a(τ) ∈ S0
cl(R), and form the bounded set L(a) := {a(τ) ∈ C :

τ ∈ R} which is a smooth curve (with admitted self-intersections) and end points
a±0 = a(±∞). Then we have a(τ) ∈ S0

tr(R) if and only if L(a) is a closed curve
which is smooth including a+

0 = a−0 .

Remark 3.7. Every symbol a(τ) ∈ Sμ
tr(R) can be written in the form

a(τ) = p(τ) + b(τ)

where p(τ) is a polynomial in τ of order μ (only relevant for μ ≥ 0) and b(τ) ∈
S−1

tr (R).

In fact, this is an evident consequence of Definition 3.2.

Proposition 3.8. Let a(τ) ∈ Sμ
tr(R); then for every N ∈ N there is a minus-symbol

mN (τ) ∈ Sμ
cl(R) and a plus-symbol pN (τ) ∈ Sμ

cl(R) such that a(τ) − mN(τ) ∈
S
−(N+1)
cl (R) and a(τ)− pN(τ) ∈ S

−(N+1)
cl (R).

Proof. Since a polynomial in τ is a plus- and a minus-symbol it suffices to assume
μ = −1. By definition there are constants aj such that for any fixed excision
function χ(τ)

a(τ) = χ(τ)
N∑

j=1

aj(iτ)−j + rN (τ) (3.13)

where rN (τ) ∈ S
−(N+1)
cl (R). The relation 1

iτ = − 1
1−iτ + 1

iτ
1

1−iτ can be iterated, and
we obtain 1

iτ = − 1
1−iτ + {− 1

1−iτ + 1
iτ

1
1−iτ } 1

1−iτ = − 1
1−iτ − 1

(1−iτ)2 + 1
iτ

1
(1−iτ)2 =

. . . = −∑N
k=1

1
(1−iτ)k + 1

iτ
1

(1−iτ)N . This yields (iτ)−j =
(−∑N

k=1(1 − iτ)−k
)j +

rj,N (τ) for every j ∈ N \ {0} where χ(τ)rj,N (τ) ∈ S
−(N+1)
cl (R) for every excision

function χ(τ). Thus, setting mj,N (τ) := aj

(
−∑N

k=1(1− iτ)−k
)j

we obtain

χ(τ)aj(iτ)−j = mj,N (τ) + χ(τ)ajrj,N (τ) (3.14)
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modulo a symbol in S−∞(R), where mj,N (τ) is a minus-symbol, cf. Remark 3.1.
Then from (3.13) we obtain the first assertion, for mN(τ) =

∑N
j=1 mj,N (τ). More-

over, writing 1
iτ = 1

1+iτ + 1
iτ

1
1+iτ =

∑N
k=1

1
(1+iτ)k + 1

iτ
1

(1+iτ)N we obtain a plus-

symbol pN (τ) :=
∑N

j=1 pj,N (τ), pj,N (τ) := aj

(∑N
k=1(1 + iτ)−k

)j with the desired
property. �

Corollary 3.9. Let a(τ) ∈ Sμ
tr(R); then op+(a) induces a continuous operator

op+(a) : Hs(R+) → Hs−μ(R+)

for every real s > − 1
2 .

Proof. Let us write op(a) = op(mN ) + op(cN ) where, according to Proposition
3.8, mN is a minus-symbol of order μ, and cN ∈ S

−(N+1)
cl (R). Then we have

op+(a) = op+(mN ) + op+(cN ). (3.15)

We observed before that op+(mN ) has the desired mapping property. Let us
now assume s ∈ (− 1

2 , 0]. We employ the known fact that for those s we have
e+Hs(R+) = Hs

0(R+). As noted before we have an isomorphism

op(ls+) : Hs
0(R+) → L2(R+) = H0

0 (R+)

with the inverse op+(l−s
+ ). Moreover, using the relation (3.7) we have

op+(cN ) = op+(cN l−s
+ )op+(ls+)

where (cN l−s
+ )(τ) ∈ S

−(N+1)−s
cl (R). Thus it remains to verify that op+(cN l−s

+ ) :
L2(R+) → Hs−μ(R+) is continuous. However, when N is large enough, we have
the continuity

op+(cN l−s
+ ) : L2(R+) → HN+1+s(R+).

Thus for N so large that N + 1 ≥ −μ we obviously obtain the desired continuity.
Finally for s ≥ 0 it suffices to employ the continuous embedding e+Hs(R+) ↪→
L2(R), i.e., we can argue similarly as before and obtain the continuity op+(cN ) :
L2(R+) → Hs−μ(R+) for N + 1 > s− μ. �

Proposition 3.10. Every symbol a(τ) ∈ S−1
tr (R) can be written in the form

a(τ) = a+(τ) + a−(τ) (3.16)

for uniquely determined

a+(τ) ∈ Ft→τ

(
e+S(R+)

)
, a−(τ) ∈ Ft→τ

(
e−S(R−)

)
which are plus/minus symbols in S−1

tr (R).

Concerning a proof of Proposition 3.10, see [15, Section 2.1.1.1].

Corollary 3.11. Let a(τ) ∈ Sμ
tr(R); then op+(a) induces a continuous operator

op+(a) : S(R+) → S(R+).
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Proof. For μ ∈ N the symbol a(τ) is equal to a polynomial in τ of order μ, modulo
a symbol in S−1

tr (R). Thus without loss of generality we assume μ = −1. The
Fourier transform F = Ft→τ induces a continuous operator

F : e+S(R+) → S−1
tr (R). (3.17)

Moreover, the multiplication between symbols with the transmission property
is bilinear continuous. In particular, the composition of (3.17) with the multipli-
cation by the symbol (3.16) gives us a continuous operator

a(τ)F : e+S(R+) → S−1
tr (R).

Finally F−1 : S−1
tr (R) → e+S(R+) + e−S(R−) is a topological isomorphism (the

sum on the right-hand side is direct) and

r+ : e+S(R+) + e−S(R−) → S(R+)

is obviously continuous. Thus op+(a) = r+F−1a(τ)F e+ is a composition of con-
tinuous operators. �

Proposition 3.12. Let a(τ) ∈ S0
tr(R); then the adjoint of

op+(a) : L2(R+) → L2(R+)

with respect to the L2(R+)-scalar product has the form op+(a) for the complex
conjugate a(τ) ∈ S0

tr(R).

Proof. The computation is completely elementary. �

Proposition 3.13. Let a(τ) ∈ S0
cl(R) be a symbol with the transmission property,

let ε : R± → R∓ be defined by ε(t) = −t, and ε∗ : L2(R±) → L2(R∓) the
corresponding function pull back. Then

r+op(a)e−ε∗, ε∗r−op(a)e+ : L2(R+) → L2(R+) (3.18)

induce continuous operators L2(R+) → S(R+).

Proof. If a(τ) is a constant, both operators are zero. Therefore, it suffices to assume
a(τ) ∈ S−1

cl (R). By virtue of the identity,

r+op(a) = op+((lN− )(l−N
− ))r+op(a) = op+(lN− )r+op(l−N

− a)

for any N ∈ Z (cf. the relation (3.6) taking into account that l±N
− (τ) are minus-

symbols); we may even consider the symbol l−N
− (τ)a(τ) ∈ S

−(N+1)
cl (R) rather than

a(τ), for any N > 1, since op+(lN− ) : S(R+) → S(R+) is continuous, cf. Corollary
3.11. In other words, let a(τ) ∈ S−2

cl (R); then

r+op(a)e−ε∗v(t) = r+
∫

R

∫ ∞

0

ei(t+t′)τa(τ)v(−t′)dt′d̄τ

= r+
∫ ∞

0

{∫
ei(t+t′)τa(τ)d̄τ

}
v(−t′)dt′.
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By virtue of Proposition 3.10 we have∫
eirτa(τ)d̄τ ∈ e+S(R+) + e−S(R−)

with r ∈ R being the variable on the right-hand side. Since r has the meaning of
t+ t′ for t > 0, t′ > 0, we obtain

r+op(a)e−ε∗v(t) = r+
∫ ∞

0

f(t+ t′)v(−t′)dt′ (3.19)

for some f(r) ∈ e+S(R+). It remains to observe that the right-hand side of (3.19)
represents a continuous operator L2(R+) → S(R+). The second operator in (3.18)
can be treated in an analogous manner. �

Corollary 3.14. Let g denote one of the operators in (3.18), and let g∗ be its adjoint
in L2(R+). Then g and g∗ induce continuous operators

g, g∗ : L2(R+) → S(R+). (3.20)

Proof. The assertion for g is contained in Proposition 3.13. Moreover, because of
(r+op(a)e−ε∗)∗ = ε∗r−op(a)e+ by Proposition 3.13 we also obtain the result for
g∗. �

Remark 3.15. It can be proved that an operator g ∈ L(L2(R+)) that defines
continuous operators (3.20) can be represented in the form

gu(t) =
∫ ∞

0

c(t, t′)u(t′)dt′

for some c(t, t′) ∈ S(R+ × R+) (= S(R × R)
∣∣
R+×R+

), see [10, Theorem 2.4.87].

Definition 3.16. 1. An operator g ∈ L(L2(R+)) which induces continuous op-
erators (3.20) is called a Green operator of type 0. Let Γ0(R+) denote the
space of those operators.

2. An operator of the form
∑d

j=0 gj∂
j
t for gj ∈ Γ0(R+), d ∈ N, is called a Green

operator of type d. Let Γd(R+) denote the space of those operators.

Remark 3.17. Any g ∈ Γd(R+) induces a compact operator

g : Hs(R+) → Hs(R+)

for every s ∈ R, s > d− 1
2 . Moreover g induces a continuous operator

g : Hs(R+) → S(R+) (3.21)

for those s.

In fact, ∂j
t : Hs(R+) → Hs−j(R+) is continuous for every j ∈ N as well as

g0 : Hs−j(R+) → S(R+) when s− j > − 1
2 , g0 ∈ Γ0(R+).

Lemma 3.18. Let g ∈ Γ0(R+), and let 1 + g : L2(R+) → L2(R+) be an invertible
operator. Then there is an h ∈ Γ0(R+) such that (1 + g)−1 = 1 + h.
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Proof. Let b := (1 + g)−1 which belongs to L(L2(R+)). Writing b = 1 + h for
h := b−1 we obtain (1+g)(1+h) = 1, i.e., h+g+gh = 0. This yields h = −g(1+h),
and hence h : L2(R+) → S(R+) is continuous, cf. Definition 3.16 (i). Moreover
(1 + g∗)(1 + h∗) = 1 yields g∗ + h∗ + g∗h∗ = 0, i.e. h∗ = −g∗(1 + h∗) which shows
again the continuity h∗: L2(R+) → S(R+). In other words, h ∈ Γ0(R+). �

Corollary 3.19. Let a(τ) ∈ Sμ
tr(R), b(τ) ∈ Sν

tr(R); then

op+(a)op+(b) = op+(ab) + g (3.22)

for some g ∈ Γ0(R+).

Proof. For μ = ν = 0 we have

op+(a)op+(b) = r+op(a)e+r+op(b)e+ = r+op(a)op(b)e+ + r+op(a)ϑ−op(b)e+

for the characteristic function ϑ− of R−. Since

r+op(a)ϑ−op(b)e+ = (r+op(a)e−ε∗)(ε∗r−op(b)e+) =: g

and the factors in the middle are Green operators of type zero, cf. Proposition
3.13, we obtain g ∈ Γ0(R+), since Γ0(R+) is closed under compositions.

It remains to consider μ ∈ N or ν ∈ N. In this case we write

a(τ) = a0(τ) + p(τ), b(τ) = b0(τ) + q(τ)

for a0, b0 ∈ S−1
tr (R) and polynomials p and q of degree μ and ν, respectively. Since

polynomials are minus- and plus-symbols at the same time we have

op+(p)op+(b0) = op+(pb0), op+(a0)op+(q) = op+(a0q),

i.e., when we define g by op+(a0)op+(b0) = op+(a0b0) + g (according to the first
part of the proof) we obtain

op+(a)op+(b) = (op+(a0)+op+(p))(op+(b0)+op+(q)) = op+((a0 +p)(b0 +q))+g.
�

More generally we have the following composition property.

Theorem 3.20. Let a(τ) ∈ Sμ
tr(R), b(τ) ∈ Sν

tr(R), and g ∈ Γd(R+), h ∈ Γe(R+).
Then

(op+(a) + g)(op+(b) + h) = op+(ab) + k

for a certain k ∈ Γmax{ν+d,e}(R+).

Proof. By virtue of Corollary 3.19 it remains to discuss the compositions

op+(a)h, gop+(b), and gh.

It is evident that op+(a)h ∈ Γe(R+) and gh ∈ Γe(R+). For the operator in the
middle we write

gop+(b) = g(op+(b0) + op+(p))
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where b0 ∈ S−1
tr (R) and p is a polynomial in τ of order ν (which vanishes for

ν ≤ −1). It is clear that gop+(p) ∈ Γν+d(R+). What concerns gop+(b0) it suffices
to assume g = g0D

j
t for any 0 ≤ j ≤ d. Since τ j is a minus-symbol we have

gop+(b0) = g0op+(bj) for bj(τ) = τ jb0(τ) ∈ Sj−1
tr (R).

Thus, writing bj(τ) = cj(τ)+ qj−1(τ) for a polynomial qj−1(τ) in τ of degree j−1
(when j − 1 ≥ 0) and some cj ∈ S−1

tr (R) it follows that

gop+(b0) = g0op+(cj) + g0op+(qj−1).

The second summand on the right obviously belongs to Γj−1(R+) for j ≥ 1
while the first one belongs to Γ0(R+) which follows from the continuity op+(cj) :
L2(R+) → L2(R+) and g0 : L2(R+) → S(R+) and an analogous conclusion for the
adjoints. �
Remark 3.21. As a special case of Theorem 3.20 for a(τ) ∈ Sμ

tr(R), g ∈ Γd(R+),
we obtain that (op+(a) + g)op+(l−N

− ) = op+(al−N
− ) + k for k ∈ Γ0(R+) when

−N + d ≤ 0.

Let us now turn to 2× 2 block matrices of operators with upper left corners
of the form (

op+(a) + g11 g12
g21 g22

)
:
Hs(R+)

⊕
C

→
Hs−μ(R+)

⊕
C

(3.23)

for arbitrary a(τ) ∈ Sμ
tr(R), μ ∈ Z, g11 ∈ Γd(R+), d ∈ N, s > d− 1

2 , g22 ∈ C,

g21u(t) =
d∑

l=0

g21,l∂
l
tu(t)u ∈ Hs(R+) (3.24)

for g21,lv(t) :=
∫∞
0

f21,l(t)v(t)dt, f21,l ∈ S(R+), l = 0, . . . , d, and

g12c := cf(t), c ∈ C, (3.25)

for some f ∈ S(R+). An operator of the form (3.24) is called a trace operator
of type d, and (3.25) a potential operator (for the boundary symbolic calculus of
operators with the transmission property at the boundary).

In a similar manner we define analogues of (3.23) where C on the left is
replaced by Cj− and on the right by Cj+ for certain j−, j+ ∈ N (if one of the
dimensions is zero, then we have row or column matrices which are admitted as
well). Let Bμ,d(R+; j−, j+) denote the space of such block matrices. Moreover, let
Bd

G(R+; j−, j+) be the subspace of operators (3.23) defined by a ≡ 0.
Thus Bd

G(R+; 0, 0) = Γd(R+); in future we also write Bd
G(R+) rather than

Γd(R+).

Remark 3.22. More generally we have Bμ,d(R+; v) for v = (k, l; j−, j+), defined
to be the space of 2 × 2 block matrices where the upper left corner itself is an
l× k matrix of operators as in the upper left corner of (3.23), while g12 is a j−× k
matrix of potential operators, etc. For every fixed μ ∈ Z, d ∈ N, the space of such
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matrices is a (nuclear) Fréchet space in a natural way. The future homogeneous
boundary symbols of BVPs are symbols in (y, η) with values in such spaces.

Remark 3.23. It can easily be proved, cf. [22, Proposition 4.1.46], that every g ∈
Γd(R+) for d > 0 has a unique representation

g = g0 +
d−1∑
j=0

kj ◦ r′Dj
t

for g0 ∈ Γ0(R+), potential operators kj , and r′u := u(0). Similarly, a trace operator
b of type d > 0 can uniquely be written as

b = b0 +
d−1∑
j=0

cj ◦ r′Dj
t

for a trace operator b0 of type 0 and constants cj .

Example. The operator(
op+(−|η|2 − τ2)

r′Dk
t

)
: Hs(R+) →

Hs−2(R+)
⊕
C

, (3.26)

r′v = v|t=0, belongs to B2,k+1(R+; 0, 1), k ∈ N, and (3.26) is an isomorphism for
every η ∈ Rn−1 \ {0}, s > max{ 3

2 , k + 1
2}. The operator family (3.26) for k = 0 is

just the boundary symbol of the Dirichlet problem for the Laplace equation and
for k = 1 of the Neumann problem.

The inverse of (3.26) for k = 0 is explicitly computed in [12, Section 3.3.4].
Setting a(η, τ) := −|η|2 − |τ |2 the result is(

op+(a)(η)
r′

)−1

= (−op+(l−1
+ )(η)op+(l−1

− )(η) d(η))

for l±(η) := |η| ± iτ and a potential operator d(η) defined by d(η) : c → ce−|η|t,
c ∈ C. By virtue of Corollary 3.19 we have

−op+(l−1
+ )(η)op+(l−1

− )(η) = op+(a−1)(η) + g(η)

for a Green operator family g(η) of type 0. Note that g(η) is just the homogeneous
boundary symbol of the well-known Green’s function of the Dirichlet problem for
the Laplacian (twisted homogeneous of order −2).

It is now easy also to compute the inverses of (3.26) for arbitrary k ∈ N,
especially, of the boundary symbol of the Neumann problem. In fact, similarly as
(2.19), now on the level of boundary symbols, we have(

op+(a)(η)
r′Dk

t

)
(p(η) d(η)) =

(
1 0

b(η) qk(η)

)
(3.27)
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for p(η) := op+(a−1)(η) + g(η), b(η) := r′Dk
t (op+(a−1)(η) + g(η)), gk(η) :=

r′Dk
t d(η). We have

r′Dk
t d(η) = Dk

t e
−|η|t∣∣

t=0
= (i|η|)k (3.28)

which is just the homogeneous principal symbol of the elliptic operator TkK0 ∈
Lk

cl(Y ) occurring in the lower right corner of the operator (3.27). Thus(
op+(a)(η)

r′Dk
t

)−1

= (p(η) d(η))
(

1 0
b(η) qk(η)

)−1

= (p(η)− d(η)q−1
k (η)b(η) d(η)q−1(η)).

General compositions of boundary symbols are studied in Theorem 3.26 be-
low.

Remark 3.24. It is interesting to consider elliptic boundary value problems for
the elliptic operator TkK0 on a smooth submanifold of Y with boundary Z. This
makes sense, for instance, when we reduce the Zaremba problem for Δ (defined by
jumping conditions from Dirichlet to Neumann along Z) to Y . Then a basic diffi-
culty is that TkK0 fails to have the transmission property at Z, cf. Definition 4.11
below, unless k is even. Mixed problems (i.e., with jumping boundary conditions)
belong to the motivation to study BVPs for operators without the transmission
property. Another (possibly even stronger) motivation is the similarity between
mixed and (specific) edge problems.

Theorem 3.25. We have

a ∈ Bμ,d(R+; j0, j+), b ∈ Bν,e(R+; j−, j0) ⇒ ab ∈ Bμ+ν,max{ν+d,e}(R+; j−, j+),

and (a, b) → ab defines a bilinear continuous map

Bμ,d(R+; j0, j+)× Bν,e(R+; j−, j0) → Bμ+ν,max{ν+d,e}(R+; j−, j+)

between the respective Fréchet spaces.

Proof. The result for the composition of upper left corners is contained in Theorem
3.20. The proof for the remaining entries is straightforward and left to the reader.

�

Theorem 3.26. Let a ∈ B0,0(R+; j−, j+), and define the adjoint a∗ by

(au, v)L2(R+)⊕C
j+ = (u,a∗v)L2(R+)⊕C

j−

for all u ∈ L2(R+)⊕Cj− , v ∈ L2(R+)⊕Cj+ . Then we have a∗ ∈ B0,0(R+; j+, j−),
and a → a∗ defines an (antilinear), continuous map

B0,0(R+; j−, j+) → B0,0(R+; j+, j−).

Proof. The result for the upper left corner follows from Proposition 3.12, together
with Corollary 3.14. The proof for the remaining entries is straightforward and left
to the reader. �
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Definition 3.27. A symbol a(τ) ∈ Sμ
tr(R) is called elliptic (of order μ) if a(τ) �= 0

for all τ ∈ R, and if a0(= a−0 = a+
0 ) does not vanish (cf. the notation in (3.8)).

Moreover, we call an a ∈ Bμ,d(R+; j−, j+) elliptic if the symbol a(τ) ∈ Sμ
tr(R) in

the upper left corner of (3.23) is elliptic.

Theorem 3.28. Let a(τ) ∈ Sμ
tr(R) be elliptic, and g ∈ Γd(R+); then

a := op+(a) + g : Hs(R+) → Hs−μ(R+) (3.29)

is a Fredholm operator for every s > max{μ, d} − 1
2 , and p := op+(a−1) is a

parametrix of a.

Proof. Because of the assumption on s the operator

op+(a−1) : Hs−μ(R+) → Hs(R+)

is continuous. From Corollary 3.19 and Theorem 3.20 we have

op+(a−1){op+(a) + g} = op+(aa−1) + k = 1 + k (3.30)

where k = h+op+(a−1)g for an h ∈ Γ0(R+) and op+(a−1)g ∈ Γd(R+). Thus since

k : Hs(R+) → Hs(R+)

is compact for s > d − 1
2 , cf. Remark 3.17, the operator op+(a−1) is a left

parametrix. In a similar manner we obtain that op+(a−1) is a right parametrix.
In fact, we have to compute

{op+(a) + g}op+(a−1) = op+(aa−1) + k = 1 + k

where k = h+ gop+(a−1), for a h ∈ Γ0(R+), and gop+(a−1) ∈ Γmax{−μ+d,0}(R+).
This can be applied to functions in Hs−μ(R+) when s satisfies the conditions

s− μ > − 1
2 and s− μ > max{−μ+ d, 0}− 1

2 . In the case max{−μ+ d, 0} = 0 the
latter is the same as the first condition while for max{−μ + d, 0} = −μ + d ≥ 0
the condition is s − μ > −μ + d − 1

2 , i.e., s > d − 1
2 . For s it follows altogether

s > max{μ, d} − 1
2 , and we can apply again Remark 3.17. �

Theorem 3.29. Let a(τ) ∈ Sμ
tr(R) be elliptic, and g ∈ Γd(R+). Then V :=

ker(op+(a) + g) is a finite-dimensional subspace of S(R+), and there is a finite-
dimensional subspace W ⊂ S(R+) such that

im(op+(a) + g) +W = Hs−μ(R+). (3.31)

This is true for all real s > max{μ, d} − 1
2 with the same spaces V and W. It

follows that ind(op+(a) + g) is independent of s.

Proof. Let us set a := op+(a) + g and assume u ∈ Hs(R+), au = 0. Then from
the relation (3.30) it follows that (1 + k)u = 0, i.e., u = −ku, which implies
u ∈ S(R+), cf. the formula (3.21). In other words, V = kera ⊆ ker(1 + k) is a
finite-dimensional subspace of S(R+), independent of s = max{μ, d} − 1

2 . In the
case d = 0, μ ≤ 0 we can do the same for the formal adjoint a∗, and we may set
W = kera∗ which is a finite-dimensional subspace of S(R+) independent of s.
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To find W in general we set a := op+(a) + g which we check as an operator
a : Hs(R+) → Hs−μ(R+) for s > max{μ, d}− 1

2 . Let us set lN− := op+(lN− ) for any
N ∈ Z. In particular, for N := max{μ, d} we have

a = alN− = a0l
N
− : Hs(R+) → Hs−μ(R+) (3.32)

where a0 = op+(al−N
− ) + k for some k ∈ Γ0(R+), i.e., a0 ∈ Bν,0(R+) for ν =

μ−N ≤ 0. Then a can be regarded as a chain of operators

a : Hs(R+) → Hs−N(R+) → Hs−N−ν(R+) = Hs−μ(R+)

where the first one, namely, lN− is an isomorphism where s − N ≥ − 1
2 , and the

second one a0 is elliptic of order ν. For the latter we apply the first part of the proof,
i.e., we find a finite-dimensional W ⊂ S(R+) such that ima0 + W = Hs−μ(R+).
This entails im a +W = Hs−μ(R+), since a = a0l

N
− . �

Proposition 3.30. Let a = op+(a) + g ∈ Bμ,d(R+) where a(τ) ∈ Sμ
tr(R) is elliptic

of order μ. Moreover, let W ⊂ S(R+) be a finite-dimensional subspace, and k :
Cj →W a linear map. Then(

u

c

)
∈
Hs(R+)

⊕
Cj

, au+ kc = 0 (3.33)

for any s > max{μ, d} − 1
2 implies u ∈ S(R+), and the space of all solutions of

(3.33) is a finite-dimensional subspace of Hs(R+)⊕ Cj, independent of s.

Proof. First observe that (a k) is a Fredholm operator

(a k) :
Hs(R+)

⊕
Cj

→ Hs−μ(R+). (3.34)

Then, analogously as in the proof of Theorem 3.29 we pass to the operator(
p

0

)
(a k) =

(
pa pk
0 0

)
:
Hs(R+)

⊕
Cj

→
Hs(R+)

⊕
Cj

for p := op+(a−1). The composition l := pk is a potential operator, and we have
pa = 1 + h for an operator h ∈ Γd(R+). The kernel of (3.34) is contained in
the kernel of (1 + h l). The kernel of (1 + h l) consists of all t(u c) such that
(1 + h)u+ lc = 0, i.e., u = −hu+ lc ∈ S(R+). �

Proposition 3.31. Let op+(a) + g ∈ Bμ,d(R+) be elliptic of order μ. Then there
exists a 2× 2 block matrix operator

a =
(

op+(a) + g k
b q

)
:
Hs(R+)

⊕
Cj−

→
Hs−μ(R+)

⊕
Cj+

(3.35)
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for a trace operator b, a potential operator k and a j+ × j− matrix q, such that
(3.35) is an isomorphism for all s > max{μ, d} − 1

2 , and we have

ind(op+(a) + g) = ind op+(a) = j+ − j−. (3.36)

The operator (3.35) is an isomorphism if and only if

a :
S(R+)
⊕

Cj−
→
S(R+)
⊕

Cj+

(3.37)

is an isomorphism.

Proof. Applying Theorem 3.29 we find a finite-dimensional subspace W ⊂ S(R+)
such that (3.31) holds for all s > max{μ, d}− 1

2 . Choose any j− ∈ N, j− ≥ dimW,

and a linear surjective map k : Cj →W . Then

(op+(a) + g k) :
Hs(R+)

⊕
Cj−

→ Hs−μ(R+)

is obvisously surjective for all s. By virtue of Proposition 3.30 its kernel V is a
subspace of t(S(R+)⊕ Cj−) of finite dimension j+. Choosing an isomorphism

(b q) : V → Cj+

it suffices to extend b to a trace operator b : Hs(R+) → Cj+ (for simplicity denoted
by the same letter). Then, according to Lemma 2.3 we obtain an isomorphism
(3.35). �

Theorem 3.32. Let a ∈ Bμ,d(R+; j−, j+) be given as in (3.35), let the upper left
corner be elliptic in the sense of Definition 3.27, and assume that a defines an
isomorphism (3.37). Then we have a−1 ∈ B−μ,(d−μ)+(R+; j+, j−) where ν+ :=
max{ν, 0}.
Proof. By virtue of Theorem 3.28 the operator (3.29) is Fredholm where op+(a−1)
is a parametrix. According to Proposition 3.31 there is a 2 × 2 block matrix iso-
morphism of the form

p :=
(

op+(a−1) h
c r

)
:
S(R+)
⊕

Cg+

→
S(R+)
⊕

Cg−

for a suitable trace operator c of type 0 and a potential operator h. Since op+(a−1)
is a parametrix of op+(a), cf. Theorem 3.28, we have ind op+(a−1) = −ind op+(a)
= j− − j+ and from (3.36)

ind op+(a−1) = g− − g+ = j− − j+.

In the case N := g− − j− ∈ N which implies g+ − j+ = N we pass from a to
a ⊕ idCN which is again an isomorphism with (j−, j+) replaced by (g−, g+). On
the other hand, when N := j− − g− ∈ N where j+ − g+ = N , from p we pass to
p⊕ idCN which is an isomorphism with (g−, g+) replaced by (j−, j+). In any case,
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to find a−1 it suffices to assume that j− = g−, j+ = g+. Now the composition ap
is of the form

ap =
(

1 + g11 g12
g21 g22

)
:
S(R+)
⊕

Cj+

→
S(R+)
⊕

Cj+

for a g = (gij)i,j=1,2 ∈ B(d−μ)+

G (R+; j+, j+). By virtue of Lemma 3.33 below we
have ((

1 0
0 0

)
+ g

)−1

=
(

1 0
0 0

)
+ l (3.38)

for an l ∈ B(d−μ)+

G (R+; j+, j+). Then Theorem 3.25 gives us

a−1 = p

((
1 0
0 0

)
+ l

)
∈ B−μ,(d−μ)+(R+; j+, j−). �

Lemma 3.33. Let g ∈ Bd
G(R+; j, j), and assume that(

1 0
0 0

)
+ g :

Hs(R+)
⊕
Cj

→
Hs(R+)

⊕
Cj

(3.39)

is invertible for any s > d− 1
2 . Then the inverse of (3.39) has the form

(
1 0
0 0

)
+ l

for some l ∈ Bd
G(R+; j, j).

Proof. For convenience we set g =
(
G K
T Q

)
. Then, in particular, Q is a j × j

matrix. Since isomorphisms in a Hilbert space form an open set, a small pertur-

bation of Q allows us to pass to an invertible operator
(

1 +G K
T R

)
where R is

an invertible j× j matrix. Assume that we have computed
(

1 +G K
T R

)−1

. Then

we have
(

1 +G K
T R

)−1 (1 +G K
T Q

)
=
(

1 0
D J

)
which is again invertible; this

entails the invertibility of J . We obtain(
1 +G K
T Q

)−1

=
(

1 0
−J−1D J−1

)(
1 +G K
T R

)−1

. (3.40)

Thus it remains to characterise the second factor on the right of (3.40). The
identity (

1 −KR−1

0 1

)(
1 +G K
T R

)(
1 0

−R−1T R−1

)
=
(

1 + C 0
0 1

)
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for C := G −KR−1T shows that the operator 1 + C is invertible, and it follows
that (

1 +G K
T R

)−1

=
(

1 0
−R−1T R−1

)(
(1 + C)−1 0

0 1

)(
1 −KR−1

0 1

)
.

This reduces the task to the computation of (1 + C)−1.
The operator C ∈ Bd

G(R+) can be written in the form C = C0 +
∑d−1

j=0 KjTj

for a C0 ∈ B0
G(R+), potential operators Kj and trace operators Tj := r′Dj

t , cf.
Remark 3.23. Since C0 is compact in Sobolev spaces, we have ind(1 + C0) = 0.
Because of the nature of V := ker(1+C0) and W = coker(1+C0) (which are of the
same dimension l) there is a trace operator B of type 0 and a potential operator
D which induces isomorphisms

B = t(B1, . . . , Bl) : V → Cl, D = (D1, . . . , Dl) : Cl →W

such that
1 + C0 +DB : Hs(R+) → Hs(R+)

is an isomorphism. Note that C1 := C0 +DB ∈ B0
G(R+). We obtain

1 + C = 1 + C1 −
d+l∑
k=1

DkBk (3.41)

for Dl+j+1 = −Kj, Bl+j+1 = Tj for j = 0, . . . , d − 1. Now we employ the fact
that there is a C2 ∈ B0

G(R+) such that 1 + C2 = (1 + C1)−1, say, as an operator
L2(R+) → L2(R+), cf. Lemma 3.18. In order to characterise (1 + C)−1 we form

(1 + C2)(1 + C) = 1 + (1 + C2)
d+l∑
k=1

DkBk = 1 +
d+l∑
k=1

MkBk = 1 +MB

for Mk = (1 + C2)Dk, M := (M1, . . . ,Md+l), B := t(B1, . . . , Bd+l). This reduces
the task to invert the operator 1 + C to the inversion of

1 +MB : Hs(R+) → Hs(R+).

With the operators M and B we can also associate the operator

1 + BM : Cl+d → Cl+d, 1 := idCl+d .

Now we verify that 1 + MB is invertible if and only if 1 + BM is invertible. In
fact, setting

M :=
(

1 M
0 1

)
,B :=

(
1 0
−B 1

)
,F :=

(
1 −M
B 1

)
,

it follows that

MFB =
(

1 +MB 0
0 1

)
,BFM =

(
1 0
0 1 + BM

)
which gives us the desired equivalence. At the same time we see that

(1 +MB)−1 = 1−M(1 + BM)−1B



Boundary Value Problems with the Transmission Property 25

which is of the form 1 +G1 for a G1 ∈ Bd
G(R+). Thus

(1 + C)−1 = (1 + C1)(1 +G1) = 1 + C1 +G1 + C1G1

where C1 +G1 + C1G1 ∈ Bd
G(R+). �

Remark 3.34. Theorem 3.32 easily extends to Bμ,d(R+; (k, k; j−, j+)) for arbitrary
k, j−, j+ ∈ N (cf. Remark 3.22). The technique for the proof which mainly employs
compositions of some operators also shows that the inverse continuously depends
on the given operator a.

4. Pseudo-Differential Boundary Value Problems

We develop basics on pseudo-differential BVPs with the transmission property at
the boundary. Other material may be found in the author’s joint monographs with
Rempel [15], with Kapanadze [12], or with Harutyunyan [10], and in the monograph
of Grubb [8]. The ideas here are related to the calculus on manifolds with edges.
Let us first consider operators in local coordinates x = (y, t) ∈ Rn−1 × R+. The
operator convention refers to the embedding of R

n

+ into the ambient space Rn.
Therefore, we first look at operators

Opx(p)u(x) =
∫∫

ei(x−x′)ξp(x, ξ)u(x′)dx′d̄ξ. (4.1)

Here p belongs to Hörmander’s symbol classes. Let Sμ(U × Rn) for μ ∈ R and
U ⊆ Rm open denote the set of all p ∈ C∞(U × Rn) such that

|Dα
xD

β
ξ p(x, ξ)| ≤ c〈ξ〉μ−|β|

for all (x, ξ) ∈ K × Rn, K � U , and all α ∈ Nm, β ∈ Nn, for constants
c = c(α, β,K) > 0. We will freeley employ various standard properties such as
asymptotic expansions, etc., developed in textbooks on pseudo-differential oper-
ators. The subspace Sμ

cl(U × Rn) of classical symbols is defined by asymptotic
expansions

p(x, ξ) ∼
∞∑

j=0

χ(ξ)p(μ−j)(x, ξ)

where p(μ−j)(x, ξ) ∈ C∞(U × (Rn \ {0})), p(μ−j)(x, λξ) = λμ−jp(μ−j)(x, ξ) for
all λ ∈ R+, and χ is any excision function. If some assertion is valid for the
classical and the general case we also write Sμ

(cl)(U × Rn). Recall that the spaces
Sμ

(cl)(U × Rn) are Fréchet in a natural way. It is then obvious that Sμ
(cl)(R

n) (the
space of x-independent elements) is closed in Sμ

(cl)(U × Rn), and that

Sμ
(cl)(U × Rn) = C∞(U, Sμ

(cl)(R
n)). (4.2)

In order to illustrate some consequences of the presence of a boundary, here
t = 0, we rephrase (4.1) in anisotropic form, by carrying out the action first in
t and then in y. It will be not essential that y varies in Rn−1; we often assume
y ∈ Ω for an open set Ω ⊆ Rn−1. Moreover, for simplicity, we first consider a
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t-independent symbol, i.e., p(y, η, τ) ∈ Sμ(Ω×Rn−1
η ×Rτ ). We form Opt(p)(y, η) :

Hs(R) → Hs−μ(R) as an operator family parametrised by (y, η) ∈ Ω× Rn−1 and
then

Opx(p) = Opy(Opt(p))

where Opt(p)(y, η) is regarded as an operator-valued symbol in the variables and
covariables (y, η).

In order to formulate the latter aspect in a more precise manner we fix a group
{κλ}λ∈R+ of isomorphisms κλ : Hs(R) → Hs(R) by setting (κλu)(t) = λ1/2u(λt),
λ ∈ R+. Then a simple computation shows the identity

κ−1
〈η〉Opt(p)(y, η)κ〈η〉 = Opt(pη)(y, η) (4.3)

for
pη(y, η, τ) = p(y, η〈τ〉, τ). (4.4)

Using the symbolic estimates for p, especially, |p(y, η, τ)| ≤ c〈η, τ〉μ for all
(y, η, τ) ∈ K × Rn, K � Ω, and constants c(K) > 0, it follows that

|p(y, η〈τ〉, τ)| ≤ c〈η〉μ〈τ〉μ, (4.5)

taking into account the relation 〈η〈τ〉, τ〉 = 〈η〉〈τ〉.
Lemma 4.1. Under the above assumptions we have

‖κ−1
〈η〉{Dα

yD
β
η Opt(p)(y, η)}κ〈η〉‖L(Hs(R),Hs−μ+|β|(R)) ≤ c〈η〉μ−|β| (4.6)

for all (y, η) ∈ K × Rn−1, K � Ω, and all α, β ∈ Nn−1, and every s ∈ R, for
constants c = c(α, β,K, s) > 0.

Proof. Let first α = β = 0, and set a(y, η) := Opt(p)(y, η). Then the relation (4.3)
together with the estimate (4.5) yields

‖κ−1
〈η〉a(y, η)κ〈η〉u‖2

Hs−μ(R) =
∫
〈τ〉2(s−μ)|p(y, η〈τ〉, τ)û(τ)|2dτ

≤ sup
τ∈R,y∈K

〈τ〉−2μ|p(y, η〈τ〉, τ)|2
∫
〈τ〉2s|û(τ)|2dτ ≤ c〈η〉2μ‖u‖2

Hs(R).

This implies (4.6) for α = β = 0. The assertion for arbitrary α, β follows in
an analogous manner, using Dα

yD
β
η p(y, η, τ) ∈ Sμ−|β|(U × Rn). �

Remark 4.2. Lemma 4.1 remains true in analogous form under the assumption
p(y, t, η, τ) ∈ Sμ(Ω × R × Rn

η,τ ) when p is independent of t for |t| > const for a
constant > 0 (and also under certain weaker assumptions with respect to |t| → ∞).

Definition 4.3. 1. By a group action on a Hilbert space H we understand a
strongly continuous group κ = {κλ}λ∈R+ of isomorphisms κλ : H → H ,
such that κλλ′ = κλκλ′ for all λ, λ′ ∈ R+ (strongly continuous means that
κλh ∈ C(R+, H) for every h ∈ H).
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2. Let H and H̃ be Hilbert spaces with group actions κ and κ̃, respectively.
Then Sμ(Ω × Rq;H, H̃) for Ω ⊆ Rp open, μ ∈ R, is defined to be the set of
all a(y, η) ∈ C∞(Ω× Rq,L(H, H̃)) such that

‖κ̃−1
〈η〉{Dα

yD
β
ηa(y, η)}κ〈η〉‖L(H,H̃) ≤ c〈η〉μ−|β|

for all (y, η) ∈ K × Rq, K � Ω, and all α ∈ Np, β ∈ Nq, for constants
c = c(α, β,K) > 0.

3. The space Sμ
cl(Ω × Rq;H, H̃) of classical elements is the set of all a(y, η) ∈

Sμ(Ω×Rq;H, H̃) such that there are functions a(μ−j)(y, η) ∈ C∞(Ω× (Rq \
{0}), L(H, H̃)), j ∈ N, with a(μ−j)(y, λη) = λμ−j κ̃λa(μ−j)(y, η)κ

−1
λ for all

λ ∈ R+, (y, η) ∈ Ω× (Rq \ {0}), with

a(y, η)−
N∑

j=0

χ(η)a(μ−j)(y, η) ∈ Sμ−(N+1)(Ω× Rq;H, H̃)

for every N ∈ N and any excision function χ(η).

Example. 1. For p(y, η, τ) ∈ Sμ(Ω × Rn) and a(y, η) = Opt(p)(y, η) we have
a(y, η) ∈ Sμ

cl(Ω× Rn−1;Hs(R), Hs−μ(R)) for every s ∈ R.
2. For p(y, t, η, τ) ∈ Sμ(Ω × R × Rn) under the assumption of Remark 4.2 we

have a(y, η) ∈ Sμ(Ω× Rn−1;Hs(R), Hs−μ(R)) for every s ∈ R.

Remark 4.4. Observe that in the latter Example we did not exhaust the full
information of (4.6) with respect to s. In fact, differentiation in η gives us better
smoothness in the image spaces. For our purposes it suffices to fix the Hilbert
spaces H and H̃ ; in applications it will be clear anyway to what extent we can say
more when those spaces run over scales of spaces, parametrised by s.

Parallel to the spaces of operator-valued symbols we have vector-valued ana-
logues of Sobolev spaces.

Definition 4.5. Let H be a Hilbert space with group action κ = {κλ}λ∈R+ . Then
Ws(Rq, H) for s ∈ R is defined to be the completion of S(Rq, H) with respect to
the norm ‖〈η〉sκ−1

〈η〉û(η)‖L2(Rq,H).

The space Ws(Rq, H) is contained in S′(Rq, H) = L(S(Rq), H). For every
open Ω ⊆ Rq we define Ws

comp(Ω, H) to be the set of all u ∈ Ws(Rq, H) with com-
pact support and Ws

loc(Ω, H) ⊂ D′(Ω, H) = L(C∞0 (Ω), H) by ϕu ∈ Ws
comp(Ω, H)

for every ϕ ∈ C∞0 (Ω).

Example. 1. Let H := Hs(Rm), (κλu)(x) := λm/2u(λx) for λ ∈ R+. Then for
every s ∈ R we have

Ws(Rq, Hs(Rm)) = Hs(Rq × Rm).

2. Let H := Hs(R+), (κλu)(t) = λ1/2u(λt), λ ∈ R+. Then for every s ∈ R we
have

Ws(Rq, Hs(R+)) = Hs(Rq × R+).
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Remark 4.6. The notion of group actions also makes sense for Fréchet spaces that
are written as projective limits of Hilbert spaces. An example is the Schwartz space

S(Rm) = lim←−
j∈N

〈x〉−jHj(Rm)

with κλ being defined as in the above example. Then there are natural extensions
of Definitions 4.3 and 4.5 as well as comp/loc spaces to the case of Fréchet spaces
with group action (for more details cf. also [20], [22]).

Theorem 4.7. Let H and H̃ be Hilbert (Fréchet) spaces with group action and
a(y, η) ∈ Sμ(Ω × Rq;H, H̃). Then Opy(a) : C∞0 (Ω, H) → C∞(Ω, H̃) extends to a
continuous operator

Opy(a) : Ws
comp(Ω, H) →Ws−μ

loc (Ω, H̃) (4.7)

for every s ∈ R. If a(y, η) ∈ Sμ(Rq × Rq;H, H̃) is independent of y for |y| ≥
const > 0, then we obtain a continuous operator

Opy(a) : Ws(Rq, H) →Ws−μ(Rq, H̃) (4.8)

for every s ∈ R.

Remark 4.8. The continuity of (4.8) can be proved under much more general
assumptions on a(y, η) than in Theorem 4.7, see, for instance, [20] or [28].

Let us now turn to what we did at the beginning of this section.
For p(y, t, η, τ) ∈ Sμ(Rn−1 × R× Rn) we have

Opt(p)(y, η) ∈ Sμ(Rn−1 × Rn−1;Hs(R), Hs−μ(R))

when p satisfies the assumption of Remark 4.2. For our purposes it suffices to
assume that p is a classical symbol of order μ ∈ Z, and independent of (y, t) for
|y, t| ≥ const for some constant > 0.

In a theory of elliptic boundary value problems that relies on standard
Sobolev spaces Hs(Rn

+) = Hs(Rn)|Rn
+

we should possess the continuity of

Op+(p) = r+Op(p)e+ : Hs(Rn
+) → Hs−μ(Rn

+) (4.9)

for s > −1/2, similarly as in Corollary 3.9; here e+ is the operator of extension
by zero from Rn

+ to Rn, and r+ the restriction to Rn
+ (analogously we have the

extension and restriction operators e− and r−, respectively). It turns out that the
continuity of (4.9) requires certain very restrictive assumptions on the symbol p.
For instance, for p(x, ξ) = χ(ξ)|ξ| where χ is some excision function, the operator
(4.9) will not be continuous for all s > − 1

2 .
According to Theorem 4.7 for the continuity in Sobolev spaces it suffices to

know that

op+(p)(y, η) ∈ Sμ(Rn−1 × Rn−1;Hs(R+), Hs−μ(R+)) (4.10)

for s > − 1
2 , i.e.,

‖κ−1
〈η〉{Dα

yD
β
η op+(p)(y, η)}κ〈η〉‖L(Hs(R+),Hs−μ(R+)) ≤ c〈η〉μ−|β| (4.11)
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for all (y, η) ∈ Rn−1 × Rn−1, and all α, β, for c = c(α, β,K, s) > 0.
Moreover, it is desirable to have

op+(p)(y, η) ∈ Sμ(Rn−1 × Rn−1;S(R+),S(R+)). (4.12)

In order to illustrate the effect for the moment we consider the case that p is
independent of y and t. To obtain (4.11) we assume

p̃(η, τ) := p(η〈τ〉, τ) ∈ Sμ(Rq, Sμ
tr(R)). (4.13)

The notation Sμ(Rq, E) for a Fréchet space E with the semi-norm system
(πk)k∈N means the set of all a(η) ∈ C∞(Rq, E) such that

πk(Dβ
ηa(η)) ≤ c〈η〉μ−|β|

for all η ∈ Rq, β ∈ Nq, k ∈ N, for constants c = c(β, k) > 0.

Lemma 4.9. Let E and F be Fréchet spaces with the semi-norm systems (πj)j∈N

and (σj)j∈N, respectively, and let B : E → F be a continuous operator. Then

TB : C∞(Rq, E) → C∞(Rq, F ) (4.14)

defined by the composition a : Rq → E and B : E → F induces a continuous
operator

TB : Sμ(Rq, E) → Sμ(Rq, F ) (4.15)

for every μ ∈ R.

Proof. Without loss of generality we assume σj+1(·) ≥ σj(·) and πj+1(·) ≥ πj(·)
for all j. Then continuity of B means that for every k ∈ N there is a j ∈ N such
that σk(Bu) ≤ cπj(u) for all u ∈ E, for some c > 0. Analogously, the continuity
of (4.15) means that for every k ∈ N, β ∈ Nq, there are j,N ∈ N such that

sup
η∈Rq

〈η〉μ+|β|σk(Dβ
ηTBa(η)) ≤ c sup

η∈R
q

|α|≤N

〈η〉−μ+|α|πj(Dα
η a(η)) (4.16)

for some c>0. Since TBa(η)=(Ba)(η) with pointwise composition and Dα
η (Ba)(η)

= B(Dα
η a)(η) it follows that

sup
η∈Rq

〈η〉−μ+|β|σk(Dβ
ηTBa(η)) ≤ c sup

η∈Rq

〈η〉−μ+|β|πj(Dα
η a(η))

which implies (4.16). �

Lemma 4.10. Let p(y, η, τ) ∈ C∞(Rn−1, Sμ
cl(R

n)) and

p̃(y, η, τ) ∈ C∞(Rn−1, Sμ(Rn−1, Sμ
tr(R))).

Then we have the relations (4.10) for s > − 1
2 , and (4.12).

Proof. For (4.10) we have to verify the estimates (4.11). Let first α = β = 0. For
simplicity let p be independent of y. An analogue of the relations (4.4) gives us

κ−1
〈η〉op+(p)(η)κ〈η〉 = op+(p̃)(η). (4.17)
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The operation op+(·) induces a continuous operator

op+(·) : Sμ
tr(R) → L(Hs(R+), Hs−μ(R+))

for every s > − 1
2 . That means, for every s there is a semi-norm πj from the Fréchet

topology of Sμ
tr(R) such that

‖op+(a)‖L(Hs(R+),Hs−μ(R+)) ≤ cπj(a)

for every a ∈ Sμ
tr(R). Thus, for E = Sμ

tr(R), F̃ = L(Hs(R+), Hs−μ(R+)), from
Lemma 4.9 it follows that

sup〈η〉−μ‖op+(p̃)(η)‖L(Hs(R+),Hs−μ(R+)) ≤ c sup〈η〉−μπj(p̃(η, ·)) <∞,

i.e., using (4.17), that

‖κ−1
〈η〉op+(p)(η)κ〈η〉‖L(Hs(R+),Hs−μ(R+)) ≤ c〈η〉μ.

In a similar manner we can proceed with the derivatives Dβ
η p(η, τ) for every β ∈

Nn−1.
The proof (4.12) is straightforward as well and left to the reader. �

Definition 4.11. A symbol p(y, t, η, τ) ∈ Sμ
cl(Ωy × R × Rn

η,τ ) for μ ∈ Z is said to
have the transmission property at t = 0 if the homogeneous components p(μ−j) of
p satisfy the conditions

Dα
y,tD

β
η,τ{p(μ−j)(y, t, η, τ)− (−1)μ−jp(μ−j)(y, t,−η,−τ)} = 0 (4.18)

on the set {(y, t, η, τ) ∈ Ω × R × Rn : y ∈ Ω, t = 0, η = 0, τ ∈ R \ {0}} of
non-vanishing conormal vectors over the boundary, for all α, β ∈ Nn, j ∈ N. Let
Sμ

tr(Ω× R× Rn) denote the space of all symbols of that kind. Moreover, set

Sμ
tr(Ω× R± × Rn) := {p|Ω×R±×Rn : p ∈ Sμ

tr(Ω× R× Rn)}.
Since the transmission property is a local condition near t = 0 it can eas-

ily be extended to symbols in an arbitrary open set U ⊆ Rn intersecting {t =
0}. (It is clear that it suffices to ask (4.18) only for all α = (0, . . . , αn), β =
(β1, . . . , βn−1, 0)).

Operators with symbols with the transmission property in connection with
boundary value problems (and also transmission problems) have been studied by
many outhors, first of all Boutet de Monvel [5], [4], Eskin [7], and later on Myshkis
[14], Rempel and Schulze [15], Grubb [8], [9], and many others. One of the main mo-
tivations was to find a framework to express parametrices of elliptic boundary value
problems for differential operators and to prove an analogue of the Atiyah–Singer
index theorem. In this connection it appeared not too perturbing that generically
symbols (that are smooth up to the boundary) have not the transmission property
at the boundary. We will return to more general symbols below.

The first important aspect is that a pseudo-differential theory of boundary
value problems concerns continuous operators (4.9) (and analogously on manifolds
with smooth boundary). Another essential point is to understand the behaviour
of such operators under compositions.
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Proposition 4.12. For every p(y, t, η, τ) ∈ Sμ
tr(Ω× R+ × Rn) we have

p̃(y, t, η, τ) := p(y, t, η〈τ〉, τ) ∈ C∞(Ω× R+, S
μ(Rn−1, Sμ

tr(R))).

The simple proof is left to the reader.
In the local analysis of BVPs it suffices to assume that the involved symbols

are independent of t for large t.

Proposition 4.13. For every p(y, t, η, τ) ∈ Sμ
tr(Ω× R+ ×Rn) which is independent

of t for large t we have

op+(p)(y, η) ∈ Sμ(Ω× Rq;Hs(R+), Hs−μ(R+)) (4.19)

for every s > − 1
2 , and

op+(p)(y, η) ∈ Sμ(Ω× Rq;S(R+),S(R+)). (4.20)

The t-independent case is contained in Lemma 4.10. After that the proof in
general is straightforward.

Theorem 4.7 together with (4.19) entails the continuity of

Op+(p) = Opy(op+(p)) : Hs
[comp)(Ω× R+) → Hs−μ

[loc)(Ω× R+); (4.21)

here Hs
[comp)/[loc)(Ω×R+) = Ws

comp/loc(Ω, H
s(R+)), cf. also Example 4 (ii). Let us

now give a motivation of the conditions (4.18) in Definition 4.11. First it is evident
that when p is a polynomial in ξ, the homogeneous components p(μ−j) of order
μ− j, j = 0, . . . , μ, satisfy the relations (4.18). For instance, we have in this case

p(μ)(y, t, λη, λτ) = λμp(μ)(y, t, η, τ) (4.22)

for every λ ∈ R, not only for λ ∈ R+, and hence,

p(μ)(y, t, η, τ) = (−1)μp(μ)(y, t,−η,−τ),
even for all (y, t, η, τ).

If p(x, ξ) is elliptic of order μ, then the Leibniz inverse which belongs to
S−μ

cl (Ω× R× Rn
ξ ) satisfies those conditions as well with respect to the order −μ.

The behaviour of operators under compositions locally near the boundary
can be reduced to the composition of operators with operator-valued symbols,

modulo smoothing operators. In general, if H, H̃ , and ˜̃
H are Hilbert spaces with

group actions κ = {κλ}λ∈R+ , κ̃ = {κ̃λ}λ∈R+ , and ˜̃κ = {˜̃κλ}λ∈R+ , respectively, and

a(y, η) ∈ Sμ(Ω× Rq, H̃,
˜̃
H), ã(y, η) ∈ Sμ̃(Ω× Rq;H, H̃),

for simplicity, with compact support with respect to y, then we can form

Opy(a)Opy(ã) = Op(a#ã)

with the Leibniz product a#ã(y, η) ∈ Sμ+μ̃(Ω× Rq;H, ˜̃H) that can be computed
by an operator-valued analogue of the respective oscillatory integral expression in
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Kumano-go’s formalism.This entails an asymptotic expansion

a#ã(y, η) ∼
∑

α∈Nq

1
α!

(∂α
η a(y, η))D

α
y ã(y, η),

∂α
η := ∂α1/∂yα1

1 . . . ∂αq/∂y
αq
q .

If we apply this to the case

a(y, η) = op+(p)(y, η), ã(y, η) = op+(p̃)(y, η)

for symbols p(x, ξ) ∈ Sμ
tr(Ω × R× Rn), p̃(x, ξ) ∈ Sμ̃

tr(Ω × R× Rn) (say, under the
simplifying condition of compact support in (y, t)), then we have to understand
the compositions

(∂α
η op+(p)(y, η))Dα

y op+(p̃)(y, η) = op+(∂α
η p)(y, η)op+(Dα

y p̃)(y, η).

Since μ, μ̃ ∈ Z are arbitrary, and ∂α
η p ∈ S

μ−|α|
tr , Dα

y p̃ ∈ Sμ̃
tr, we may consider, for

instance, the case α = 0. From the information of Section 3 we know that

op+(p)(y, η)op+(p̃)(y, η) = op+(p#tp̃)(y, η) + g(y, η)

where p#tp̃ is the Leibniz product between p and p̃ with respect to the t-variable,
and g(y, η) is a family of operators in Γ0(R+).

More precisely, the operator families g(y, η) are Green symbols in the follow-
ing sense.

Definition 4.14. 1. An operator-valued symbol g(y, η) belongs toRμ,0
G (Ω×Rn−1)

if
g(y, η), g∗(y, η) ∈ Sμ

cl(Ω× Rn−1;L2(R+),S(R+)).

Here g∗(y, η) is the (y, η)-wise L2(R+)-adjoint. Elements of Rμ,0
G (Ω× Rn−1)

are called Green symbols of type 0.
2. An operator family g(y, η) belongs to Rμ,d

G (Ω × Rn−1), then called a Green
symbol of type d ∈ N, if

g(y, η) =
d∑

j=0

gj(y, η)∂
j
t

for gj(y, η) ∈ Rμ−j,0
G (Ω× Rn−1), j = 0, . . . , d.

Similarly as (3.23) we also define 2× 2 block matrices

a(y, η) :=
(

op+(p)(y, η) + g11(y, η) g12(y, η)
g21(y, η) g22(y, η)

)
:
Hs(R+)

⊕
Cj−

→
Hs−μ(R+)

⊕
Cj+

(4.23)

for arbitrary p(y, t, η, τ) ∈ Sμ
tr(Ω×R×Rn

η,τ ) (independent of t for |t| > const), and
g11(y, η) ∈ Rμ,d

G (Ω× Rq), s > d− 1
2 , while (say, for the case j− = j+ = 1)

g12(y, η) ∈ Sμ
cl(Ω× Rn−1; C,S(R+))
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(with C being endowed with the trivial group action),

g21(y, η)u(t) =
d∑

l=0

g21,l(y, η)∂l
tu(t)

for g∗21,l(y, η) ∈ Sμ−l
cl (Ω × Rn−1; C,S(R+)) with the (y, η)-wise adjoint in the fol-

lowing sense:
(g21,l(y, η)v, c)C = (v, g∗21,l(y, η)c)L2(R+),

for arbitrary v ∈ L2(R+), c ∈ C, and g22(y, η) ∈ Sμ
cl(Ω× Rn−1).

The definition for arbitrary j± is analogous. We call g21(y, η) a trace symbol
of order d ∈ N and g12(y, η) a potential symbol.

From the definition it follows altogether that

a(y, η) ∈ Sμ(Ω× Rn−1;Hs(R+)⊕ Cj− , Hs−μ(R+)⊕ Cj+) (4.24)

for all s > d− 1
2 . For g(y, η) := (gij(y, η))i,j=1,2 we have

g(y, η) ∈ Sμ
cl(Ω× Rn−1;Hs(R+)⊕ Cj− ,S(R+)⊕ Cj+) (4.25)

for s > d − 1
2 . Let Rμ,d

G (Ω × Rn−1; j−, j+) denote the set of all such g(y, η).
Moreover, let Rμ,d(Ω × Rn−1; j−, j+) denote the set of all symbols a(y, η) of the
form (4.23).

Now let X be a C∞ manifold with boundary Y . Define B−∞,d(X ; j−, j+) to
be the space of smoothing operators of type d. For simplicity let again j− = j+ = 1
(the general case is analogous).

Based on the Riemannian metrics on X and Y = ∂X we identify the spaces
C∞(X × X), C∞(X × Y ), etc., with corresponding integral operators with such
kernels, for instance, u → ∫

X c(x, x′)u(x′)dx′ and v → ∫
Y k(x, y′)v(y′)dy′ for

c(x, x′) ∈ C∞(X×X) and k(x, y′) ∈ C∞(X×Y ), respectively. Let B−∞,0(X ; 1, 1)
denote the space of all operators

C = (Cij)i,j=1,2 :
C∞0 (X)
⊕

C∞0 (Y )
→

C∞(X)
⊕

C∞(Y )

such that C11 has a kernel in C∞(X×X), C12 a kernel in C∞(X×Y ), C21 a kernel
in C∞(Y ×X) and C22 a kernel in C∞(Y × Y ). Moreover, by B−∞,d(X ; 1, 1) for
d ∈ N we denote the space of all 2 × 2 block matrix operators C where C12 and
C22 are as before but

C11 =
d∑

l=0

C11,lD
l, C21 =

d∑
l=0

C21,lD
l

for C11,l and C21,l as in the case d = 0 and a first-order differential operator D
on X that is close to Y equal to ∂t, the differentiation in normal direction. In an
analogous manner we define B−∞,d(X ; j−, j+) for arbitrary j± ∈ N.

Let us fix a collar neighbourhood V of Y in X , let (Uι)ι∈I be a locally finite
open covering of V , and let χι : Uι → R

n

+ be charts, ι ∈ I. Those induce charts
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χ′ι : Uι∩Y → Rn−1 on Y . For every aι(y, η) ∈ Rμ,d(Rn−1×Rn−1; j−, j+) we have
an operator Opy(aι), and we form the pull-back diag(χ−1

∗ , χ′−1
∗ )Opy(aι) which is

a 2×2 block matrix operator over Uι. Let us fix a system of functions ϕι ∈ C∞0 (Uι)
such that

∑
ι∈I ϕι ≡ 1 near Y , set ϕι := ϕι|Y , moreover, choose ψι ∈ C∞0 (Uι) that

are equal to 1 on suppϕι, set ψ′ι = ψι|Y , and form

Aι := diag(ϕι, ϕ
′
ι)diag(χ−1

∗ , χ′−1
∗ )Opy(aι)diag(ψι, ψ

′
ι). (4.26)

Moreover, choose functions σ, σ̃, ˜̃σ ∈ C∞0 (V ), that are equal to 1 close to Y , such
that σ̃ = 1 on suppσ, and σ ≡ 1 on supp ˜̃σ.

Definition 4.15. Let Bμ,d(X ; j−, j+) for μ ∈ Z, d ∈ N ; denote by A the space of
all operators

A = (Aij)i,j=1,2 :
C∞0 (X)
⊕

C∞(Y,Cj−)
→

C∞(X)
⊕

C∞(Y,Cj+)
of the form

A = diag(σ, 1)
∑
ι∈I

Aιdiag(σ̃, 1) + diag((1− σ)A(1 − ˜̃σ), 0) + C (4.27)

for arbitrary operators Aι as in (4.26), A ∈ Lμ
cl(intX), and C ∈ B−∞,d(X ; j−, j+).

The definition applies in particular to X = R
n

+ with the variables x = (y, t).
In this case the shape of the operators is easier, since the sum on the right-hand
side of (4.27) can be replaced by

diag(σ, 1)Op(a)diag(σ̃, 1) (4.28)

for an a(y, η) ∈ Rμ,d(Rn−1 × Rn−1; j−, j+).
Let us define the principal symbolic structure

σ(A) = (σψ(A), σ∂(A))

consisting of the interior and the boundary symbol σψ(A) and σ∂(A), respectively.
The upper left corner A11 of an operator A ∈ Bμ,d(X ; j−, j+) belongs to

Lμ
cl(intX), and we simply define σψ(A) for (x, ξ) ∈ T ∗X \ 0 as the homogeneous

principal symbol of A of order μ in the standard sense (here we take into account
that the symbols are smooth up to the boundary). What concerns the boundary
symbol we first look at the situation of the half-space, cf. (4.28). In this case we
define

σ∂(A)(y, η) := σ∂(a)(y, η)
for (y, η) ∈ T ∗Rn−1 \ 0 by

σ∂(a)(y, η) := diag(op+(p(μ)|t=0)(y, η), 0) + σ∂(g)(y, η) (4.29)

where p(μ)(y, t, η, τ) is the homogeneous principal symbol of p(y, t, η, τ), and
σ∂(g)(y, η) is the homogeneous principal symbol of (4.25) as a classical operator-
valued symbol. Together with

op+(p(μ)|t=0)(y, λη) = κλop+(p(μ)|t=0)(y, η)κ−1
λ
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for λ ∈ R+ we obtain

σ∂(A)(y, λη) = λμdiag(κλ, 1)σ∂(A)(y, η)diag(κ−1
λ , 1)

for all λ ∈ R+.
The construction of the operator spaces Bμ,d(X ; j−, j+) in terms of local

representations and subsequent pull-backs to the manifold is possible because of
natural invariance properties under coordinate changes. The same is true of the
principal symbols, and then we obtain, in particular, also an invariantly defined
principal boundary symbol on a manifold with boundary, using the local descrip-
tions (4.29). In other words, we have

σψ(A) ∈ C∞(T ∗X \0), σ∂(A) ∈ C∞(T ∗Y \0,L(Hs(R+)⊕Cj− , Hs−μ(R+)⊕Cj+)).
(4.30)

In many contexts it is adequate to admit operators between sections of
smooth complex vector bundles E,F on X and J−, J+ on Y , respectively,

A :
C∞0 (X,E)

⊕
C∞0 (Y, J−)

→
C∞(X,F )

⊕
C∞(Y, J−)

. (4.31)

The generalisation of the scalar case in the upper left corner to systems and then
to the case of bundles, and E,F of the other entries from trivial to general vector
bundles J−, J+, is straightforward and left to the reader.

If M is a C∞ manifold, by Vect(M) we denote the set of all smooth complex
vector bundles over M . If M is C∞ with boundary, then we assume that every
E ∈ Vect(M) is the restriction of some Ẽ ∈ Vect(2M) to M . Then there is a
standard definition of Sobolev spaces of distributional sections in E ∈ Vect(M) in
comp/loc-version denoted by

Hs
comp/loc(M,E), s ∈ R,

when M is an open manifold. If M is compact, then we simply write Hs(M,E).
Moreover, if M is C∞ with boundary, we define

Hs
[comp/[loc)(intM,E) := Hs

comp/loc(2M, Ẽ)
∣∣
intM

.

For the vector bundles E,F ∈ Vect(X), J−, J+ ∈ Vect(Y ), in (4.31) we write
v := (E,F ; J−, J+) and denote by Bμ,d(X ; v) the set of all operators (4.31).

From the vector-valued analogue of (4.24) together with Theorem 4.7 and
corresponding invariance properties we obtain that every A ∈ Bμ,d(X ; ,v) induces
continuous operators

A :
Hs

[comp)(intX,E)
⊕

Hs
comp(Y, J−)

→
Hs−μ

[loc)(intX,F )
⊕

Hs−μ
loc (Y, J+)
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for all real s > d− 1
2 . In particular, if X is compact, we have

A :
Hs(int(X,E)

⊕
Hs(Y, J−)

→
Hs−μ(intX,F )

⊕
Hs−μ(Y, J+)

. (4.32)

The pair of principal symbols σ = (σψ , σ∂) in this case means

σψ(A)(x, ξ) : π∗XE → π∗XF

with the pull-back π∗X of bundles under the canonical projection πX : T ∗X\0 → X ,
and

σ∂(A)(y, η) : π∗Y

⎛⎝Hs(R+)⊗ E′

⊕
J−

⎞⎠→ π∗Y

⎛⎝Hs−μ(R+)⊗ F ′

⊕
J+

⎞⎠
for E′ := E|Y , F ′ := F |Y and the canonical projection πY : T ∗Y \ 0 → Y , for
s > d− 1

2 . Alternatively we may consider

σ∂(A)(y, η) : π∗Y

⎛⎝S(R+)⊗ E′

⊕
J−

⎞⎠→ π∗Y

⎛⎝S(R+)⊗ F ′

⊕
J+

⎞⎠ .

In the following we often discuss operators in the set-up of Bμ,d(X ; v), though
the reader who is mainly interested in the analytical details may consider the case
Bμ,d(X ; j−, j+) which corresponds to the trivial bundles E = X × C, F = X × C

and J± = Y × Cj± , respectively.

Remark 4.16. Let X be compact. Then σ(A) = 0 implies that (4.32) is a compact
operator for every s > d− 1

2 .

5. Ellipticity of Boundary Value Problems

We now turn to the ellipticity of BVPs, more precisely, to the Shapiro–Lepatinskij
ellipticity. For elliptic operators there is also another kind of ellipticity of bound-
ary conditions, known in special cases, as conditions of Atiyah–Patodi–Singer
type (“APS-conditions”), and in general as global projection conditions. While
not every elliptic operator on a C∞ manifold X with boundary admits Shapiro–
Lopatinskij elliptic boundary conditions, there are always global projection con-
ditions (when X is compact), see [24] where both concepts are unified to an op-
erator algebra, containing also Boutet de Monvel’s calculus. Let Lμ

tr(X ;E,F ) for
E,F ∈ Vect(X) denote the set of all operators A = r+Ãe+, Ã ∈ Lμ

tr(2X ; Ẽ, F̃ ),
with Lμ

tr(2X ; Ẽ, F̃ ) being the space of classical pseudo-differential operators on the
double 2X , referring to Ẽ, F̃ ∈ Vect(2X) with E = Ẽ|X , F = F̃ |X , and with the
transmission property at Y = ∂X .

For convenience we assume that Y is compact. The nature of elliptic bound-
ary conditions for an elliptic operator A + G ∈ Bμ,d(X ;E,F ) (i.e., for elliptic
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A ∈ Lμ
tr(X ;E,F ), μ ∈ Z, and a Green operator G on X of order μ and type d)

depends on the principal boundary symbol of A,

σ∂(A)(y, η) : π∗Y H
s(R+)⊗ E′ → π∗Y H

s−μ(R+)⊗ F ′ (5.1)

for any fixed s > max{μ, d− 1
2}, but not so much on

σ∂(G)(y, η) : π∗Y H
s(R+)⊗ E′ → π∗Y H

s−μ(R+)⊗ F ′. (5.2)

(5.2) is a family of compact operators that cannot affect the possibility to pose
Shapiro–Lopatinskij elliptic conditions for the operator A.

Definition 5.1. An operator A ∈ Bμ,d(X ; v) for v = (E,F ; J−, J+) is called elliptic
if both the principal interior symbol

σψ(A) : π∗XE → π∗XF, (5.3)

πX : T ∗X \ 0 → X , and the principal boundary symbol

σ∂(A) : π∗Y

⎛⎝Hs(R+)⊗ E′

⊕
J−

⎞⎠→ π∗Y

⎛⎝Hs−μ(R+)⊗ F ′

⊕
J+

⎞⎠ , (5.4)

πY : T ∗Y \ 0 → Y , define isomorphisms.

The second condition is just what we call Shapiro–Lopatinskij ellipticity. The
smoothness s > max{μ, d}− 1

2 is fixed, but the choice is unessential. The bijectivity
of σ∂(A) holds if and only if its restriction to Schwartz functions in the upper left
corner induces an isomorphism

σ∂(A) : π∗Y

⎛⎝S(R+)⊗ E′

⊕
J−

⎞⎠→ π∗Y

⎛⎝S(R+)⊗ F ′

⊕
J+

⎞⎠ .

If A ∈ Bμ,d(X ; v), v = (E,F ; J−, J+), is elliptic in the sense of Definition 5.1,
then for the pair of inverses σ−1

ψ (A) and σ−1
∂ (A) we find an operator A(−1) ∈

B−μ,(d−μ)+(X ; v−1), v−1 = (F,E; J+, J−), (d − μ)+ = max{d − μ, 0}, such that
σψ(A(−1)) = σ−1

ψ (A), σ∂(A(−1)) = σ−1
∂ (A). This is a consequence of a more

general operator convention to find operators for a prescribed pair of principal
symbols (those can be described independently of the operator level, similarly as
in the case of classical pseudo-differential operators on an open manifold).

In that case we have compact remainders

G := 1−A(−1)A ∈ B−1,max{μ,d}(X ; (E,E; J−, J−)), (5.5)

D := 1−AA(−1) ∈ B−1,(d−μ)+(X ; (F, F ; J+, J+)) (5.6)

in the respective Sobolev spaces, since σ(G) = 0, σ(D) = 0, (with σ referring to
order 0). This shows the first part of the following theorem.
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Theorem 5.2. Let A ∈ Bμ,d(X ; v) be elliptic; then

A :
Hs(intX,E)

⊕
Hs(Y, J−)

→
Hs−μ(intX,F )

⊕
Hs−μ(Y, J+)

(5.7)

is a Fredholm operator for every s > max{μ, d} − 1
2 . Conversely, if (5.7) is Fred-

holm for some s = s0 > max{μ, d}− 1
2 , then A is elliptic which entails the Fredholm

property for all s > max{μ, d} − 1
2 .

The second part of the latter theorem requires arguments that are omitted
here; details may be found in [15].

Remark 5.3. 1. If A ∈ Bμ,d(X,v) is elliptic, then there is a parametrix A(−1) ∈
B−μ,(d−μ)+(X ; v−1) which means that the above-mentioned remainders G
and D belong to B−∞,max{μ,d} and B−∞,(d−μ)+ , respectively.

2. Let A ∈ Bμ,d(X ; v) be an operator such that (5.7) is an isomorphism for
some s = s0 > max{μ, d} − 1

2 . Then (5.7) is an isomorphism for all s >

max{μ, d} − 1
2 , and for the inverse (which is a special parametrix of A) we

have A−1 ∈ B−μ,(d−μ)+(X ; v−1).

In fact, 1. can be obtained by improving A(−1) of (5.5), (5.6) by applying a
formal Neumann series argument. The property 2. is a consequence of the second
assertion of Theorem 5.2 (more details may be found in [17]).

Example. Let A = Δ, the Laplacian on X (with respect to a Riemannian met-
ric), moreover, let T0u := u|Y . Then, for every order-reducing isomorphism R ∈
L

3/2
cl (Y ) on the boundary we have(

Δ
T

)
:=

(
1 0
0 R

)(
Δ
T0

)
∈ B2,0(X ; 1, 1; 0, 1)

where 1 on the right-hand side stands for trivial bundles of fibre dimension 1 over
X and Y , respectively, and we have(

Δ
T

)−1

∈ B−2,0(X ; 1, 1; 1, 0).

Let us now discuss the nature of Shapiro–Lopatinskij ellipticity in more de-
tail. A closer look at (5.1) reveals some interesting structures that are useful also
to understand the difference to ellipticity with global projection conditions, men-
tioned at the beginning of this section.

Consider an operator A ∈ Bμ,0(X ;E,F ) (i.e., A is of the type of an upper
left corner in the 2 × 2 block matrix set-up) satisfying the ellipticity condition
(5.3). Then (5.1) is a family of Fredholm operators, where dim kerσ∂(A)(y, η) and
dim cokerσ∂(A)(y, η) are independent of s > max{μ, d} − 1

2 . The same is true of

σ∂(A)(y, η)1,1 = σ∂(A)(y, η) + σ∂(G)(y, η). (5.8)
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If (5.4) is a family of isomorphisms then the role of the additional entries
(σ∂(A)(y, η))i,j for i+j > 2 is to fill up (5.8) to a family of isomorphisms. However,
many operators A ∈ Bμ,0(X ;E,F ) that are elliptic with respect to σψ(·) do not
admit such families of block matrix isomorphisms.

As noted before, an example is the Cauchy–Riemann operator in a smooth
bounded domain in C which is elliptic of order 1. Other examples are Dirac oper-
ators in even dimensions.

In order to illustrate the phenomenon in general we recall a few notions from
K-theory which are connected with the index of families of Fredholm operators
parametrised by a compact topological space. In the present case we consider (5.8)
for (y, η) ∈ S∗Y , the unit cosphere bundle induced, by T ∗Y \ 0. Observe that by
virtue of the homogeneity

(σ∂(A)(y, λη))1,1 = λμκλ(σ∂(A)(y, η)1,1)κ−1
λ ,

the values of σ∂(A)(y, η)1,1 for all (y, η) ∈ T ∗Y \ 0 are determined by those for
(y, η) ∈ S∗Y . The compact topological spaces that we have in mind here are S∗Y
and Y , respectively (we discuss the case that X is a smooth manifold with compact
boundary Y ).

First, on a compact topological space M (connected, to simplify matters) we
have the set Vect(M) of (locally trivial) continuous complex vector bundles on M .
In the case of a C∞ manifold M we may (and will) take smooth complex vec-
tor bundles. Roughly speaking, continuous vector bundles over M are topological
spaces which are disjoint unions E =

⋃
x∈M Ex of fibres Ex that are vector spaces

isomorphic to Ck for some k ∈ N , and every point x0 ∈M has a neighbourhood U
such that E|U =

⋃
x∈U Ex is homeomorphic to U×Ck where this homorphism is fi-

brewise an isomorphism and commutes with the canonical projections p : E →M ,
ex → x for ex ∈ Ex, and q : U × Ck → U , (x, v) → x for v ∈ Ck. An example is
E = M × Ck which is a so-called trivial vector bundle. Thus a part of the gen-
eral definition requires E|U to be isomorphic to a trivial bundle which is just the
meaning of “locally trivial”. We do not repeat here everything on vector bundles
such as what is a vector bundle isomorphism ∼=, but the notion directly comes
from vector space isomorphisms, now parametrised by x ∈M . More generally, we
have vector bundle morphisms which are fibrewise vector space homomorphisms.
Moreover, we have a natural notion of a direct sum E ⊕ F for E,F ∈ Vect(M),
fibrewise defined by Ex ⊕ Fx, x ∈M .

Similarly we can form tensor products E ⊗ F by taking fibrewise tensor
products Ex ⊗ Fx, x ∈M .

The K-group K(M) over M is defined as the set of equivalence classes of
pairs (E,F ) ∈ Vect(M)×Vect(M) where

(E,F ) ∼ (Ẽ, F̃ )

means that there is a G ∈ Vect(M) such that E ⊕ F̃ ⊕ G ∼= F ⊕ Ẽ ⊕ G. The
equivalence class represented by (E,F ) is denoted by [E] − [F ]. The structure of
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K(M) of a commutative group comes from the direct sum, namely,

([E1]− [F1]) + ([E2]− [F2]) := [E1 ⊕ E2]− [F1 ⊕ F2].

Note that the tensor product between bundles turns K(M) even to a commutative
ring.

Moreover, recall that when f : M → N is a continuous map, we have the
bundle pull back E → f∗E for E ∈ Vect(N) and a resulting f∗E ∈ Vect(M). This
gives rise to a homomorphism

f∗ : K(N) → K(M)

defined by f∗([E]− [F ]) = [f∗E]− [f∗F ].
An example is M := S∗Y , N = Y , with the canonical projection,

π1 : S∗Y → Y, π1(y, η) = y. (5.9)

(Non-trivial) vector bundles may appear in connection with elliptic boundary value
problems, or, more generally, with families of Fredholm operators. The latter ones
give rise to an equivalent definition of K(M). The construction is closely related
to the task to find entries σ∂(A)(y, η)i,j for i, j = 1, 2, i + j > 2, for a given
σ∂(A)(y, η)1,1 that complete the latter Fredholm family to a family of isomor-
phisms, cf. (5.4). The general construction is as follows.

By F(H, H̃) for Hilbert spaces H, H̃ we denote the set of all Fredholm op-
erators H → H̃ . Recall that F(H, H̃) is open in L(H, H̃), the space of all linear
continuous operators in the operator norm topology.

Lemma 5.4. Let a ∈ C(M,F(H, H̃)), and assume that a(x) : H → H̃ is surjective
for every x ∈M . Then the family of kernels

kerM a := {kera(x) : x ∈M}
has the structure of a (continuous) vector bundle over M .

Proof. Let π : H → ker a(x1) be the orthogonal projection to ker a(x1) for any
fixed x1 ∈M . Then the family of continuous operators(

a(x)
π(x1)

)
: H →

H̃
⊕

ker a(x1)
(5.10)

is an isomorphism at x = x1 and hence for all x in an open neighbourhood U of
x1. Therefore, by virtue of Lemma 2.3 the operator π(x1) induces isomorphisms
π(x1) : ker a(x) → ker a(x1) for all x ∈ U . This gives us a continuous family of
maps

{ker a(x) : x ∈ U} → U × ker a(x1)

which is just the desired trivialisation when we identify ker a(x1) with Ck for
k = dim kera(x1). �
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Lemma 5.5. For every a ∈ C(M,F(H, H̃)) there exists a j− ∈ N and a linear
operator ker : Cj− → H̃ such that

(a(x) k) :
H
⊕

Cj−
→ H̃ (5.11)

is surjective for every x ∈M .

Proof. For every x1 ∈ M there exists a finite-dimensional subspace W1 ⊂ H̃ and
an isomorphism k1 : Cj1 →W1 for j1 = dimW1 such that

(a(x) k1) :
H
⊕

Cj1

→ H̃ (5.12)

is surjective for x = x1. Then (5.12) is surjective for all x ∈ U1 for some open neigh-
bourhood U1 of x1. Those neighbourhoods, parametrised by x1 ∈M , form an open
covering of M . Since M is compact, there are finitely many points x1, . . . , xN ∈M

such that M =
⋃N

l=1 Ul for the respective Ul. Choosing operators kl analogously
as in (5.12) for every 1 ≤ l ≤ 1, with dimensions jl rather than j1, we obtain the
assertion for k := (k1, . . . , kN ), and j− :=

∑N
l=1. �

Proposition 5.6. For every a ∈ C(M,F(H, H̃)) there exist vector bundles J−, J+ ∈
Vect(M) and a continuous family of isomorphisms

a :=
(
a(x) k(x)
t(x) q(x)

)
:
H
⊕
J−,x

→
H̃
⊕
J+,x

, x ∈M. (5.13)

Proof. Choose k = k(x) as in Lemma 5.5 for the trivial bundle J− = M × Cj− .
Then applying Lemma 5.4 to the Fredholm family (5.11) we obtain that

kerM (a(x) k)

is a finite-dimensional subbundle of t(H ⊕ Cj−), isomorphic to J+ for some J+ ∈
Vect(M). Choosing a bundle isomorphism

b0 : kerM (a(x) k) → J+

and setting b := b0 ◦ π(x) for the family of orthogonal projections π(x) : t(H ⊕
Cj−) → ker(a(x) k) we obtain our result when we set

t(x) := b(x)|M , q(x) := b(x)|
C

j− . �

Definition 5.7. For a ∈ C(M,F(H, H̃)) and any choice of (5.13) we set

indMa := [J+]− [J−], (5.14)

called the K-theoretic index of the Fredholm family a.
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It can be proved, cf. [10], that indMa only depends on a but not on the
specific choice of the family of isomorphisms (5.13).

In particular, we obtain the same indMa when we replace (5.13) by isomor-
phisms of the kind (

a(x) h(x)
b(x) d(x)

)
:
H ⊕ J−,x

⊕
L−,x

→
H̃ ⊕ J+,x

⊕
L+,x

for some L−, L+ ∈ Vect(M). Moreover, if c ∈ C(M,L(H, H̃)) is a family of com-
pact operators, then

indM (a+ c) = indMa.

The map indM : C(M,F(H, H̃)) → K(M) is surjective and induces a map only
depending on the homotopy classes of Fredholm families. This gives rise to an
equivalent definition of K(M), cf. Jänich [11].

Let X be compact, E,F ∈ Vect(X), and let A ∈ Bμ,d(X ; (E,F ; 0, 0)) be
elliptic with respect to σψ (cf. the first condition of Definition 5.1). Then the
restriction of σ∂(A)(y, η) to S∗Y (denoted briefly again by σ∂(A)(y, η)) gives us a
family of Fredholm operators

σ∂(A)(y, η) : Hs(R+)⊗ E′ → Hs−μ(R+)⊗ F ′, (5.15)

s > max{μ, d} − 1
2 , parametrised by (y, η) ∈ S∗Y . Therefore, we obtain an index

element
indS∗Y σ∂(A) ∈ K(S∗Y )

(which is independent of s). The following theorem was first formulated in the
case of differential operators in the paper [2] by Atiyah and Bott, and then for
pseudo-differential operators with the transmission property at the boundary in [4]
by Boutet de Monvel, cf. also [24]. An analogue for edge operators may be found
in [20], cf. also the author’s joint papers [26], [27], with Seiler, and the references
there.

Theorem 5.8. A σψ-elliptic operator A ∈ Bμ,d(X ; (E,F ; 0, 0)) can be completed by
additional entries to a (σψ , σ∂)-elliptic 2× 2 block matrix operator

A ∈ Bμ,d(X ; (E,F ; J−, J+))

for suitable J−, J+ ∈ Vect(Y ) with A in the upper left corner if and only if

indS∗Y σ∂(A) ∈ π∗1K(Y ) (5.16)

(cf. the notation (5.9)).

Proof. The condition (5.16) is necessary, since the Shapiro–Lopatinskij ellipticity
means that (5.4) is a family of isomorphisms and hence, by virtue of (5.14),

indS∗Y σ∂(A) = [π∗1J+]− [π∗1J−].

Conversely, the condition (5.16) allows us to construct a block matrix family of
isomorphisms of the kind (5.13) with σ∂(A) in the upper left corner and vector
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bundles over S∗Y that are pull backs of vector bundles over Y . The construction for
every (y, η) ∈ S∗Y is practically the same at that in the proof of Proposition 5.6.
In addition we guarantee that the resulting block matrix operators locally belong
to Bμ,d(R+; k, k; j−, j+) and smoothly depend on (y, η), for k = dimEy = dimFy ,
j± = dimJ±,y. The corresponding operator functions k(y, η), t(y, η) and q(y, η)
can be extended from S∗Y to T ∗Y \ 0 by κλ-homogeneity of order μ. This can be
done in terms of principal parts of symbols belonging to (4.25). Then applying an
operator convention which assigns to such principal symbols associated operators
gives us the additional entries. �

Remark 5.9. The proof of Theorem 5.8 shows how we can find (in principle
all) Shapiro–Lopatinskij elliptic boundary value problems A ∈ Bμ,d(X ; v), v =
(E,F ; J−, J+), for any given σψ-elliptic operator A ∈ Bμ,d(X ; (E,F ; 0, 0)) pro-
vided that the topological condition (5.16) is satisfied. It turns out that, from the
point of view of the associated Fredholm indices, for every two such A1,A2 with
the same upper left corner we can construct an elliptic operator R on the boundary
such that

indA1 − indA2 = indR.

The latter relation is known as the Agranovich–Dynin formula (see also [4] and
[15]). The proof is close to what we did in (2.19) modified for general 2×2 matrices
rather than column matrices, cf. [15, Section 3.2.1.3.].

It may happen that σ∂(A)(y, η) is a family of isomorphisms (5.15), i.e., that
for the ellipticity of A with respect to σψ and σ∂ no additional entries are necessary.
For instance, consider the symbol

rμ
−(η, τ) :=

(
ϕ(

τ

C〈η〉 )〈η〉 − iτ
)μ

for some fixed ϕ(t) ∈ S(R) such that ϕ(0) = 1 and suppF−1ϕ ⊂ R−, for instance,
ϕ(τ) := c−1

∫ 0

−∞ e−itτψ(t)dt for some ψ ∈ C∞0 (R−) where c :=
∫ 0

−∞ ψ(t)dt �= 0.
Then, if C > 0 is a sufficiently large constant, we have rμ

−(η, τ) ∈ Sμ
tr(Rn), and

rμ
−(η, τ) is elliptic of order μ. This symbol can be smoothly connected with 〈η, τ〉μ

far from t = 0 by forming r
μω(t)
− (η, τ)〈η, τ〉μ(1−ω(t)) for a real-valued ω ∈ C∞0 (R)

such that ω ≡ 1 in a neighbourhood of t = 0. Then, if we interpret t ∈ R+ as the
inner normal of a collar neighbourhood of Y in X there is obviously a σψ-elliptic
operator Rμ

− on X with such amplitude functions near the boundary, and σ∂(Rμ
−)

has the desired property, indeed. A similar construction is possible in the vector
bundle set-up, which gives us such an operator Rμ

−,E ∈ Bμ,d(X ; (E,E; 0, 0)),

Rμ
−,E : Hs(intX,E) → Hs−μ(intX,E). (5.17)

In addition the operator convention can be chosen in such a way that (5.17) is an
isomorphism for every s > max{μ, d}− 1

2 . More details on such constructions may
be found in the paper [9] of Grubb, see also the author’s joint monograph with
Harutyuyan [10, Section 4.1].
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Using the fact that there are also order-reducing operators of any order on
the boundary (which is a compact C∞ manifold, cf. the formulas (2.5), (2.12)) we
can compose any (σψ , σ∂)-elliptic operator A ∈ Bμ,d(X ; (E,F ; J−, J+)) by diago-
nal matrices of order reductions to a (σψ , σ∂)-elliptic operator A0 ∈ B0,0(X ; (E,F ;
J−, J+)). For many purposes it is convenient to deal with operators of order and
type zero, and we will assume that for a while, in order to illustrate other inter-
esting aspects of elliptic pseudo-differential boundary value problems.

Let us set
Ξ∗ := S∗X |Y ∪N∗ (5.18)

with S∗X |Y denoting the restriction of the unit cosphere bundle to the boundary,
and

N∗ = {(y, 0, 0, τ) ∈ T ∗X |Y : −1 ≤ τ ≤ 1}
which refers to the splitting of variables x = (y, t) near the boundary. The interval
bundle N∗ is trivial and its fibres N∗y = {(y, 0, 0, τ) : −1 ≤ τ ≤ 1} connect the
south poles (τ = −1) with the north poles (τ = +1) of S∗X |y, y ∈ Y . In other
words, Ξ∗ is a kind of cage with bars N∗y , called the conormal cage. Let

πc : Ξ∗ → Y

denote the canonical projection.

Remark 5.10. Let A ∈ B0,0(X ; (E,F ; 0, 0)) be σψ-elliptic; then σψ(A)X |Y extends
to an isomorphism

σ′ψ(A) : π∗cE
′ → π∗cF

′. (5.19)

In fact, σψ(A)(y, 0, η, τ) : Ey → Fy is a family of isomorphisms for all
(y, 0, η, τ) ∈ S∗X |Y . By virtue of the transmission property we have

σψ(A)(y, 0, 0− 1) = σψ(A)(y, 0, 0,+1). (5.20)

The principal symbol σψ(A)(x, ξ) is altogether (positively) homogeneous of
order zero in ξ �= 0; in particular, we have

σψ(A)(y, 0, 0, τ) = σψ(A)(y, 0, 0,−1) for all τ < 0,

σψ(A)(y, 0, 0, τ) = σψ(A)(y, 0, 0,+1) for all τ > 0.

Now the relation (5.20) shows that σψ(A)(y, 0, 0, τ) does not depend on τ �= 0,
and hence it extends to N∗y when we define

σ′′ψ(A)(y) := σψ(A)(y, 0, 0, 0) := σψ(A)(y, 0, 0, 1).

We obtain an isomorphism
σ′′ψ(A) : E′ → F ′. (5.21)

Let us now return to operators on the half-axis

op+(σψ(A)|t=0)(y, η) : L2(R+)⊗ E′y → L2(R+)⊗ F ′y
parametrised by (y, η) ∈ S∗Y . By virtue of (5.21) we may replace F ′ by E′. As
usual we interpret

⋃
y∈Y L2(R+) ⊗ E′y as L2(R+) ⊗ E′ which is a Hilbert space
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bundle over Y (by Kuiper’s theorem it is trivial). Set a(y, η, τ) := σψ(A)(y, 0, η, τ)
which is a family of isomorphisms

a(y, η, τ) : E′y → E′y,

(y, η, τ) ∈ S∗X |Y . By virtue of the homogeneity we have a(y, λη, λτ) = a(y, η, τ)
for all λ ∈ R+, in particular,

a(y,
η

|τ | ,
τ

|τ | ) = a(y, η, τ)

for all τ �= 0. Thus (5.20) gives us

lim
τ→−∞ a(y, η, τ) = a(y, 0,−1) = a(y, 0,+1) = lim

τ→+∞a(y, η, τ).

This fits to the picture of symbols with the transmission property in τ described
in Section 3. In other words, we have

a(y, η, τ) ∈ S0
tr(R)⊗ Iso(Ey, Ey)

for every fixed (y, η) ∈ S∗Y (here Iso(·, ·) means the space of isomorphisms between
the vector spaces in parenthesis). The operators

op+(a)(y, η) : L2(R+)⊗ Ey → L2(R+)⊗ Ey

are Fredholm and their pointwise index is equal to the winding number of the
curve

L(a) := {deta(y, η, τ) : τ ∈ R} ⊂ C.

This is a useful information for the construction of extra trace and potential
conditions in an elliptic BVP. It would be optimal to know the dimensions of kernel
and cokernel; of course, those are not necessarily constant in y.

6. The Anti-Transmission Property

In this section we return to scalar symbols (for simplicity). Recall that the trans-
mission property of a symbol a(τ) ∈ Sμ

cl(R) means the condition (3.11). In general,
the curve

L(a) = {a(τ) ∈ C : τ ∈ R} (6.1)

is not closed. Let a(y, t, η, τ) ∈ S0
cl(Ω × R+ × Rn

η,τ ) be an elliptic symbol, a(0) its
homogeneous principal part, and a(τ) := a(0)(y, 0, η, τ) for fixed (y, η) ∈ T ∗Ω \ 0.
Then, similarly as in elliptic BVPs with the transmission property, a task is to
find a bijective 2× 2 block matrix

a =
(

op+(a) k
b q

)
:
L2(R+)
⊕

Cj−
→

L2(R+)
⊕

Cj+

for suitable j± ∈ N. This is possible if and only if

op+(a) : L2(R+) → L2(R+) (6.2)
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is a Fredholm operator. Set

M(a) := {z ∈ C : z = (1 − λ)a+
0 + λa−0 , 0 ≤ λ ≤ 1}. (6.3)

The following result is well-known.

Theorem 6.1. The operator (6.2) is Fredholm if and only if

L(a) ∪M(a) ⊂ C \ {0}. (6.4)

A proof of the Fredholm property of (6.2) under the condition (6.4) is given
in Eskin’s book [7]; it is also noted there that (6.1) is necessary. Details of that
part of the proof may be found in [16].

Corollary 6.2. Let a(τ) ∈ S0
cl(R) be elliptic in the sense L(a) ⊂ C\{0}. Then (6.2)

is a Fredholm operator if and only if

0 �∈M(a). (6.5)

The union
C(a) := L(a) ∪M(a)

is a continuous and piecewise smooth curve which can be represented as the image
under a continuous map γ : [0, 1] → C. If (6.4) holds, we have a winding number
wind C(a), and there is the well-known relation

ind op+(a) = wind C(a).

Observe that
a−0 = −a+

0 ⇒ 0 ∈M(a),
i.e., the operator (6.2) cannot be Fredholm in this case.

Definition 6.3. A symbol a(τ) ∈ Sμ
cl(R) for μ ∈ Z is said to have the anti-

transmission property if the coefficients a±j in the asymptotic expansion (3.8)
satisfy the condition

a+
j = −a−j for all j ∈ N. (6.6)

Let Sμ
−tr(R) denote the space of all symbols with the anti-transmission property.

Note that (6.6) is just the opposite of (3.11).

Proposition 6.4. Every a(τ) ∈ Sμ
cl(R) can be written in the form

a(τ) =
1
2
(atr(τ) + a−tr(τ)) + c(τ) (6.7)

for suitable atr(τ) ∈ Sμ
tr(R), a−tr(τ) ∈ Sμ

−tr(R), c(τ) ∈ S(R).

Proof. Similarly as (3.7), (3.8) we form a symbol

b(τ) ∼
∞∑

j=0

χ(τ)(a−j θ
+(τ) + a+

j θ
−(τ))(iτ)μ−j

belonging to Sμ
cl(R), where χ(τ) is some excision function. Then we obviously have

atr(τ) := a(τ) + b(τ) ∈ Sμ
tr(R), a−tr(τ) := a(τ) − b(τ) ∈ Sμ

−tr(R), and we obtain
the relation (6.7). �
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Remark 6.5. A symbol a(τ) ∈ Sμ
cl(R) has the anti-transmission property exactly

when
a(μ−j)(τ) = (−1)μ−j+1a(μ−j)(−τ) (6.8)

for all τ ∈ R \ {0} and all j ∈ N.

In fact, the anti-transmission property means that

a(μ−j)(τ) = (cjθ+(τ)− cjθ
−(τ))(iτ)μ−j

for constants cj := a+
j ∈ C. This yields the relation

a(μ−j)(−τ) = (cjθ+(−τ)− cjθ
−(−τ))(−iτ)μ−j

= (−1)μ−j(cjθ−(τ)− cjθ
+(τ)) = (−1)μ−j+1a(μ−j)(τ),

using θ+(−τ) = θ−(τ), θ−(−τ) = θ+(τ).
Conversely, from (6.8) we obtain

{a+
j θ

+(τ) + a−j θ
−(τ)}(iτ)μ−j = (−1)μ−j+1{a+

j θ
+(−τ) + a−j θ

−(−τ)}(−iτ)μ−j

= {θ−a+
j θ
−(τ) + a−j θ

+(τ)}(iτ)μ−j .

This gives us a+
j = −a−j which are the conditions of Definition 6.3.

Observe that there is also a higher-dimensional analogue of Definition 4.11
for symbols p(y, t, η, τ) ∈ Sμ

cl(Ω× R+ × Ry,τ) where instead of (4.18) we ask

Dα
y,tD

β
η,τ{p(μ−j)(y, t, η, τ)− (−1)μ−j+1p(μ−j)(y, t,−η,−τ)} = 0

on {(y, t, η, τ) : y ∈ Ω, t = 0, η = 0, τ ∈ R \ {0}} for all α, β, j. This gives us the
symbol class Sμ

−tr(Ω × R+ × Rn). There is then a higher-dimensional analogue of
Proposition 6.4.

In fact, let a(y, t, η, τ) ∈ Sμ
cl(Ω × R+ × Rn) be arbitrary, and define the

homogeneous components

atr,(μ−j)(y, t, η, τ) := a(μ−j)(y, t, η, τ) + (−1)μ−ja(μ−j)(y, t,−η,−τ)
and

a−tr,(μ−j)(y, t, η, τ) := a(μ−j)(y, t, η, τ)− (−1)μ−ja(μ−j)(y, t,−η,−τ)
for all j and (y, t, η, τ) ∈ Ω× R+ × Rn \ {0}. Then we have

atr,(μ−j)(y, t, η, τ)− (−1)μ−jatr,(μ−j)(y, t,−η,−τ)
= a(μ−j)(y, t, η, τ) + (−1)μ−ja(μ−j)(y, t,−η,−τ)

− (−1)μ−j{a(μ−j)(y, t,−η − τ) + (−1)μ−ja(μ−j)(y, t, η, τ)} = 0,

and

a−tr,(μ−j)(y, t, η, τ) + (−1)μ−ja−tr,(μ−j)(y, t,−η,−τ)
= a(μ−j)(y, t, η, τ)− (−1)μ−ja(μ−j)(y, t,−η,−τ)

+ (−1)μ−j{a(μ−j)(y, t,−η,−τ)− (−1)μ−ja(μ−j)(y, t, η, τ)} = 0
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for all j and (y, t, η, τ) ∈ Ω× R+ × (Rn \ {0}). In other words, if we define

atr(y, t, η, τ) ∼
∞∑

j=0

χ(η, τ)atr,(μ−j)(y, t, η, τ),

a−tr(y, t, η, τ) ∼
∞∑

j=0

χ(η, τ)a−tr,(μ−j)(y, t, η, τ),

then atr has the transmission property, a−tr the anti-transmission property; here
χ(η, τ) is any excision function. Thus we have proved the following result.

Proposition 6.6. Every symbol a(y, t, η, τ) ∈ Sμ
cl(Ω × R+ × Rn) can be written in

the form

a(y, t, η, τ) =
1
2
{atr(y, t, η, τ) + a−tr(y, t, η, τ)} + c(y, t, η, τ)

for symbols atr(y, t, η, τ) ∈ Sμ
tr(Ω×R+×Rn), a−tr(y, t, η, τ) ∈ Sμ

−tr(Ω×R+ ×Rn)
(uniquely determined modS−∞(Ω×R+×Rn)), c(y, t, η, τ) ∈ S−∞(Ω×R+×Rn).

The role of those considerations here is not to really carry out a calculus
of BVPs having the anti-transmission property. As noted at the beginning such
a calculus is possible indeed, however, based on tools from the cone and edge
calculus that go beyond the scope of this exposition. Let us only mention that
for such a program we need to reorganise both the symbolic structure and the
operator conventions of our operators as well as the spaces that substitute the
standard Sobolev spaces. Details on the new boundary symbolic calculus for zero
order operators on the half-axis may be found in [7], and in [21]. Concerning the
cone and edge calculus in general, cf. [20], [22], [23].
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Abstract. We prove the spectral invariance of SG pseudo-differential oper-
ators on Lp(Rn), 1 < p < ∞, by using the equivalence of ellipticity and
Fredholmness of SG pseudo-differential operators on Lp(Rn), 1 < p < ∞. A
key ingredient in the proof is the spectral invariance of SG pseudo-differential
operators on L2(Rn).
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1. SG Pseudo-Differential Operators

Let us first recall that for m1,m2 ∈ (−∞,∞), Sm1,m2 is the set of all functions
σ in C∞(Rn × Rn) such that for all multi-indices α and β, there exists a positive
constant Cα,β for which

|(Dα
xD

β
ξ σ)(x, ξ)| ≤ Cα,β(1 + |x|)m2−|α|(1 + |ξ|)m1−|β|, x, ξ ∈ Rn.

We call any function σ in Sm1,m2 a SG symbol of order m1,m2. It is clear that if
σ ∈ Sm1,m2 and m2 ≤ 0, then σ ∈ Sm1 , where Sm1 is the class of classical symbols
studied extensively in the book [7] by Wong.

Let σ ∈ Sm1,m2 . Then we define the SG pseudo-differential operator Tσ with
symbol σ by

(Tσϕ)(x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)ϕ̂(ξ) dξ, x ∈ Rn,

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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for all functions ϕ in S, where

ϕ̂(ξ) = (2π)−n/2

∫
Rn

e−ix·ξϕ(x) dx, ξ ∈ Rn.

As a note on terminology, SG pseudo-differential operators are pseudo-differential
operators with symbols of global type and they are also called by Schulze [6]
pseudo-differential operators with conical exit at infinity. It can be proved easily
that Tσ : S → S is a continuous linear mapping.

The domain of a SG pseudo-differential operator can be extended from the
Schwartz space S to the space S′ of all tempered distributions by means of the
formal adjoint. It can then be checked easily that Tσ : S′ → S′ is a continuous
linear mapping. In fact, we have the following theorem.

Theorem 1.1. Let σ ∈ S0,0. Then Tσ : Lp(Rn) → Lp(Rn) is a bounded linear
operator for 1 < p <∞.

Theorem 1.1 is an easy consequence of the Lp-boundedness of pseudo-differ-
ential operators with symbols in S0 as given in Theorem 10.7 of the book [7].

Let σ ∈ Sm1,m2 , −∞ < m1,m2 < ∞. Then σ is said to be elliptic if there
exist positive constants C and R such that

|σ(x, ξ)| ≥ C(1 + |x|)m2(1 + |ξ|)m1 , |x|2 + |ξ|2 ≥ R.

The following theorem is contained in Theorem 1.4.36 of the book [6] by
Schulze.

Theorem 1.2. Let σ ∈ Sm1,m2 , −∞ < m1,m2 < ∞, be elliptic. Then there exists
a symbol τ in S−m1,−m2 such that

TτTσ = I +R

and
TσTτ = I + S,

where R and S are infinitely smoothing in the sense that they are SG pseudo-
differential operators with symbols in ∩k1,k2∈RS

k1,k2 .

The SG pseudo-differential operator Tτ is known as a parametrix of Tσ.
For s1, s2 ∈ (−∞,∞), we let Js1,s2 be the Bessel potential of order s1, s2

defined by
Js1,s2 = Tσs1,s2

,

where
σs1,s2(x, ξ) = (1 + |x|2)−s2(1 + |ξ|2)−s1 , x, ξ ∈ Rn.

For 1 < p < ∞ and −∞ < s1, s2 < ∞, we define the Lp-Sobolev space
Hs1,s2,p of order s1, s2 by

Hs1,s2,p = {u ∈ S′ : J−s1,−s2u ∈ Lp(Rn)}.
Then Hs1,s2,p is a Banach space in which the norm ‖ ‖s1,s2,p is given by

‖u‖s1,s2,p = ‖J−s1,−s2u‖Lp(Rn), u ∈ Hs1,s2,p,
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where ‖ ‖Lp(Rn) is the norm in Lp(Rn).
We have the following Sobolev embedding theorem, which is proved in [3].

Theorem 1.3. Let s1, s2, t1, t2 ∈ (−∞,∞) be such that s1 ≤ t1 and s2 ≤ t2. Then
Ht1,t2,p ⊆ Hs1,s2,p and the inclusion i : Ht1,t2,p ↪→ Hs1,s2,p is a bounded linear
operator. Moreover, if s1 < t1 and s2 < t2, then the inclusion i : Ht1,t2,p ↪→
Hs1,s2,p is a compact operator.

Theorem 1.1 can now be put in the following more general setting.

Theorem 1.4. Let σ ∈ Sm1,m2 , −∞ < m1,m2 < ∞. Then for 1 < p < ∞ and
−∞ < s1, s2 <∞, Tσ : Hs1,s2,p → Hs1−m1,s2−m2,p is a bounded linear operator.

Let σ ∈ Sm1,m2 , m1,m2 > 0. Then Tσ is a linear operator from Lp(Rn)
into Lp(Rn) with dense domain S. We can then introduce the minimal operator
Tσ,0 as its smallest closed extension and the maximal operator Tσ,1 as the largest
closed extension in the sense that if B is any closed extension of Tσ such that S is
contained in the domain of the true adjoint Bt of B, then Tσ,1 is an extension of
B. In fact, if σ is elliptic, then

Tσ,0 = Tσ,1

and
D(Tσ,0) = Hm1,m2,p.

Applying the compact Sobolev embedding to the infinitely smoothing remainders
R and S in Theorem 1.2, we have the following result in [3].

Theorem 1.5. Let σ ∈ Sm1,m2 , m1,m2 > 0, be elliptic. Then for 1 < p <∞, Tσ,0

is a Fredholm operator on Lp(Rn) with domain Hm1,m2,p. Furthermore, if σ ∈ S0,0

is elliptic, then the bounded linear operator Tσ : Lp(Rn) → Lp(Rn) is Fredholm.

The following result due to Dasgupta [2] tells us that the converse is also
true.

Theorem 1.6. Let σ ∈ Sm1,m2 , −∞ < m1,m2 < ∞, be such that Tσ : Hs1,s2,p →
Hs1−m1,s2−m2,p is a Fredholm operator, where 1 < p <∞. Then σ is elliptic.

All the results hitherto described are contained in the Ph.D. dissertation [2]
of Dasgupta.

The aim of this paper is to use the equivalence of ellipticity and Fredhom-
ness of SG pseudo-differential operators to prove the spectral invariance of these
operators on Lp(Rn), 1 < p < ∞, to the effect that if σ ∈ S0,0 is such that
Tσ : Lp(Rn) → Lp(Rn) is invertible, then T−1

σ : Lp(Rn) → Lp(Rn) is also a
pseudo-differential operator with symbol in S0,0. A proof given in this paper is
based on the L2 spectral invariance of these results first proved by Grieme [4], and
is recalled in Section 2 for the sake of making the paper self-contained and the
proof more widely disseminated. The Lp spectral invariance is proved in Section 3
by a descent of the problem to that of the L2 invariance.
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2. L2 Spectral Invariance

Theorem 2.1. Let σ ∈ S0,0 be such that the pseudo-differential operator Tσ :
L2(Rn) → L2(Rn) is invertible. Then T−1

σ : L2(Rn) → L2(Rn) is also a pseudo-
differential operator with symbol in S0,0.

Proof. Since Tσ : L2(Rn) → L2(Rn) is invertible, it follows that Tσ : L2(Rn) →
L2(Rn) is Fredholm with zero index. So, by Theorem 1.6, σ is an elliptic symbol
in S0,0. Thus, by Theorem 1.2, there exists a symbol τ in S0,0 such that

TτTσ = I +R

and
TσTτ = I + S,

where R and S are infinitely smoothing in the sense that they are pseudo-differen-
tial operators with symbols in ∩k1,k2∈RS

k1,k2 , and by Theorems 1.3 and 1.4, R and
S are compact operators on L2(Rn). Now, Tτ is Fredholm and hence by Theorem
1.6, Tτ is elliptic. Also,

i(Tτ ) + i(Tσ) = i(TτTσ) = i(I +R) = 0 ⇒ i(Tτ ) = 0.

To see that the null space NL2(Tτ ) of Tτ : L2(Rn) → L2(Rn) is a subspace of S,
let u ∈ NL2(Tτ ). Then

Tτu = 0 ⇒ TσTτu = 0 ⇒ (I + S)u = 0 ⇒ u = −Su.
Since ∩s1,s2∈RH

s1,s2,2 = S, it follows that

u = −Su ∈ S.
Similarly, the null space NL2(T t

τ ) of the true adjoint T t
τ : L2(Rn) → L2(Rn) of

Tτ : L2(Rn) → L2(Rn) is also a subspace of S. Now, we write

L2(Rn) = NL2(Tτ )⊕NL2(Tτ )⊥

and
L2(Rn) = NL2(T t

τ )⊕RL2(Tτ ),
where RL2(Tτ ) is the range of Tτ : L2(Rn) → L2(Rn). Let P = iFπ, where π
is the projection of L2(Rn) onto NL2(Tτ ), F is an isomorphism of NL2(Tτ ) onto
NL2(T t

τ ) and i is the inclusion of NL2(T t
τ ) into L2(Rn). To wit, the figure

L2(Rn)

↓ π
NL2(Tτ )⊕NL2(Tτ )⊥

� F
NL2(T t

τ )⊕RL2(Tτ )

↓ i
L2(Rn)
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best illustrates the situation. Then Tτ + P : L2(Rn) → L2(Rn) is a bijective
parametrix of Tσ. Therefore, without loss of generality, we may assume that the
parametrix Tτ : L2(Rn) → L2(Rn) is bijective. So, I +R is bijective. In fact,

(I +R)−1 = I +K,

where K is infinitely smoothing. Indeed, there exists a bounded linear operator
K : L2(Rn) → L2(Rn) such that

(I +R)(I +K) = I.

So,
K = −R−RK : L2(Rn) → S.

Also,
K∗ = −R∗ −R∗K∗ : L2(Rn) → S.

So, by Theorem 2.4.80 in [5], the kernel of K : L2(Rn) → L2(Rn) is a Schwartz
function on Rn × Rn. Thus,

T−1
σ T−1

τ = I +K

or equivalently
T−1

σ = (I +K)Tτ

and this completes the proof. �

3. Lp Spectral Invariance

Theorem 3.1. Let σ ∈ S0,0 be such that the pseudo-differential operator Tσ :
Lp(Rn) → Lp(Rn) is invertible, where 1 < p <∞. Then T−1

σ : Lp(Rn) → Lp(Rn)
is also a pseudo-differential operator with symbol in S0,0.

Proof. Since Tσ : Lp(Rn) → Lp(Rn) is invertible, it follows that Tσ : Lp(Rn) →
Lp(Rn) is Fredholm with zero index. So, by Theorem 1.6, σ is an elliptic symbol in
S0,0. Thus, by Theorem 1.5, Tσ : L2(Rn) → L2(Rn) is Fredholm. So, there exists
a symbol τ in S0,0 such that

TτTσ = I +R

and
TσTτ = I + S,

where R and S are infinitely smoothing. We first show that Tσ : L2(Rn) → L2(Rn)
is injective. To this end, let u ∈ L2(Rn) be such that Tσu = 0. Then

TτTσu = 0 ⇒ (I +R)u = 0 ⇒ u = −Ru ∈ S. (3.1)

So, u is also in the null space of Tσ : Lp(Rn) → Lp(Rn), which is injective. Thus,
u = 0, i.e., Tσ : L2(Rn) → L2(Rn) is injective. So,

NL2(Tσ) = {0},
where NL2(Tσ) is the null space of Tσ : L2(Rn) → L2(Rn). Next, we want to show
that Tσ : L2(Rn) → L2(Rn) is surjective. To do this, let u be a function in the
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null space NL2(T t
σ) of the true adjoint T t

σ : L2(Rn) → L2(Rn) of Tσ : L2(Rn) →
L2(Rn). Then

T t
σu = 0 ⇒ Tσ∗u = 0,

where σ∗ is in S0,0 and is the symbol of the formal adjoint of Tσ. Since σ∗ is
elliptic, we can use a left parametrix of Tσ∗ as in (3.1) to conclude that u = 0.
This proves that Tσ : L2(Rn) → L2(Rn) is surjective and hence bijective. So, by
the L2 spectral invariance, the inverse T−1

σ : L2(Rn) → L2(Rn) is the same as the
pseudo-differential operator Tω : L2(Rn) → L2(Rn), where ω ∈ S0,0. So,

T−1
σ ϕ = Tωϕ, ϕ ∈ S.

Since S is dense in Lp(Rn), it follows that T−1
σ = Tω on Lp(Rn) and the theorem

is proved. �

4. Conclusions

Ellipticity is a condition on the operators at infinity in which the lower-order terms
cannot be neglected. Fredholmness measures the almost invertibility of the opera-
tors and depends very much on the space on which the operators live. For a good
theory of pseudo-differential operators on a given function space, an important
ingredient is the equivalence of ellipticity and Fredholmness, which can then be
used to establish the spectral invariance.

Acknowledgment. The authors are indebted to Professor Bert-Wolfgang Schulze
of Universität Potsdam for his detailed and patient explanation of the nuts and
bolts of the proof of the L2 spectral invariance of pseudo-differential operators.

References

[1] A. Dasgupta, Ellipticity of Fredholm pseudo-differential operators on Lp(Rn), in
New Developments in Pseudo-Differential Operators, Editors: L. Rodino and M. W.
Wong, Operator Theory: Advances and Applications 189, Birkhäuser, 2008, 107–116.
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Abstract. We establish a parameter-dependent pseudo-differential calculus on
an infinite cylinder, regarded as a manifold with conical exits to infinity. The
parameters are involved in edge-degenerate form, and we formulate the oper-
ators in terms of operator-valued amplitude functions.
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1. Introduction

The analysis of (pseudo-) differential operators on a manifold (stratified space)
with higher polyhedral singularities employs to a large extent parameter-dependent
families of operators on a (in general singular) base X of a cone, where the param-
eters (ρ, η) have the meaning of covariables in cone axis and edge direction, respec-
tively. These covariables appear in edge-degenerate form, i.e., in the combination
(rρ, rη) where r ∈ R+ is the axial variable of the cone XΔ = (R+×X)/({0}×X)
with base X . For operators on a wedge XΔ×Ω � (·, y) it is essential to understand
the structure of what we call edge symbols, together with associated weighted dis-
tributions on the cone. It is natural to split up the investigation into a part for
r → 0, i.e., close to the tip of the cone and a part for r → ∞, the conical exit
to infinity. For higher corner theories it is desirable to do that in an axiomatic
manner, i.e., to point out those structures which make the calculus iterative. For
the case r → 0 the authors developed in [1] such an axiomatic approach. What
concerns r → ∞ it seems to be advisable first to concentrate on the case when
the base X is smooth and compact. It turns out that the edge-degeneration of
symbols in a calculus on R up to infinity causes a highly non-standard behaviour
with respect to symbolic rules for operator-valued symbols (to be invented in the
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right manner). This has to be analysed first, where the approach should rely on
the principles and key properties that are essential for the iteration. The goal of
our paper is just to develop some crucial steps in that sense.

To be more precise, we show (here for a smooth compact manifold as the
base of a cone) how very simple and general phenomena on the norm-growth of
parameter-dependent pseudo-differential operators in the sense of Theorem 2.1 are
sufficient to induce the essential properties of a calculus on the manifold X
 ∼=
R×X with conical exits r → ±∞. In other words, knowing a suitable variant of
Theorem 2.1 for a singular (compact) manifold, we can expect essentially the same
things on the respective singular cylinder. Details in that case go beyond the scope
of the present paper; let us only note that the article [1] just contains an analogue of
Theorem 2.1 for a base manifold with edge. We introduce here a pseudo-differential
calculus in spaces Hs,g

cone(X
) in a self-contained manner, including those spaces
themselves. In the smooth case there is, of course, also a completely independent
approach, usually organised without parameter η, well-known under the key-words
operators on manifolds with conical exit to infinity, here realised on such a manifold
X
 modelled on an infinite cylinder. Concerning the generalities we refer to Shubin
[14], Parenti [9], Cordes [5], or to the corresponding sections in [11]. There are also
several papers for singular X , cf., for instance, [12], or [3], [4], but those are based
on more direct information from corner-degenerate symbols. We think that the
present idea admits to manage the iterative process for higher singularities in a
more transparent way. Let us finally note that motivations and examples may be
found already in Rempel and Schulze [10]; since then many authors contributed to
the general concepts of pseudo-differential calculi for conical points or edges, see,
in particular, the references in [6].

2. A New Class of Operator-Valued Symbols

2.1. Edge-Degenerate Families on a Smooth Compact Manifold

Edge-degenerate families of pseudo-differential operators occur in connection with
the edge symbols of operators of the form

A = r−μ
∑

j+|α|≤μ

ajα(r, y) (−r∂r)
j (rDy)α (2.1)

with coefficients ajα ∈ C∞
(
R+ × Ω,Diffμ−(j+|α|)(X)

)
for an open set Ω ⊆ Rq

y;
here X is a smooth compact manifold, and Diffν(X) is the space of all differ-
ential operators of order ν on X with smooth coefficients. The analysis of such
edge-degenerate operators is crucial for understanding the solvability of elliptic
equations on spaces with polyhedral singularities, (cf. [13], [2], or [8]). Apart from
the standard homogeneous principal symbol of (2.1) which is a C∞ function on
T ∗(R+ ×X × Ω) \ 0, we have the so-called principal edge symbol

σ∧(A) := r−μ
∑

j+|α|≤μ

ajα(0, y) (−r∂r)
j (rη)α (2.2)
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parametrised by (y, η) ∈ T ∗Ω \ 0 and with values in Fuchs type differential op-
erators on the open infinite stretched cone X∧ := R+ ×X with base X . For the
construction of parametrices of A (in the elliptic case) we need to understand, in
particular, the nature of parameter-dependent parametrices of operator families

r−μ
∑

j+|α|≤μ

ajα(0, y)(−irρ)j(rη)α (2.3)

on R+ × X for r → ∞. We often set ρ̃ = rρ, η̃ = rη. If A is edge-degenerate
elliptic (cf. [11], [6]) it turns out that

∑
j+|α|≤μ ajα(0, y)(−iρ̃)j(η̃)α is parameter-

dependent elliptic on X with parameters (ρ̃, η̃) ∈ R1+q, for every fixed y ∈ Ω. Let
Lμ

cl(X ; Rl) denote the set of all parameter-dependent classical pseudo-differential
operators of order μ ∈ R on the manifold X , with parameters λ ∈ Rl, l ∈ N.
That means, the amplitude functions a(x, ξ, λ) in local coordinates x ∈ Rn on X
are classical symbols of order μ in (ξ, λ). The space L−∞(X ; Rl) of parameter-
dependent smoothing operators is defined via kernels in S(Rl, C∞(X × X)

)
(a

fixed Riemannian metric on X admits to identify C∞(X×X) with corresponding
integral operators).

For future references we state and prove a standard property of parameter-
dependent operators.

Theorem 2.1. Let M be a closed compact C∞ manifold and A(λ) ∈ Lμ
cl(M ; Rl) a

parameter-dependent family of order μ, and let ν ≥ μ. Then there is a constant
c = c(s, μ, ν) > 0 such that

‖A(λ)‖L(Hs(M),Hs−ν(M)) ≤ c〈λ〉max{μ,μ−ν}. (2.4)

In particular, for μ ≤ 0, ν = 0 we have

‖A‖L(Hs(M),Hs(M)) ≤ c〈λ〉μ. (2.5)

Moreover, for every s′, s′′ ∈ R and every N ∈ N there exists a μ(N) ∈ R such that
for every μ ≤ μ(N), k := μ(N)− μ, and A(λ) ∈ Lμ

cl(M ; Rl) we have

‖A‖L(Hs′ (M),Hs′′ (M)) ≤ c〈λ〉−N−k (2.6)

for all λ ∈ Rl, and a constant c = c(s′, s′′, μ,N, k) > 0.

Proof. In this proof we write ‖ · ‖s′,s′′ = ‖ · ‖L(Hs′(M),Hs′′ (M)). The estimates (2.4)
and (2.5) are standard. Concerning (2.6) we first observe that we have to choose
μ so small that A(λ) : Hs′

(M) → Hs′′
(M) is continuous. This is the case when

s′′ ≤ s′ − μ, i.e., μ ≤ s′ − s′′. Let Rs′′−s′
(λ) ∈ Ls′′−s′

cl (M,Rl) be an order-reducing
family with the inverse Rs′−s′′

(λ) ∈ Ls′−s′′
cl (M,Rl). Then we have

Rs′′−s′
(λ) : Hs′′

(M) → Hs′
(M),

i.e., Rs′′−s′
(λ)A(λ) : Hs′

(M) → Hs′
(M). The estimate (2.5) gives us

‖Rs′′−s′
(λ)A(λ)‖s′,s′ ≤ c〈λ〉μ+(s′′−s′)
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for μ ≤ s′ − s′′. Moreover, (2.4) yields ‖Rs′−s′′
(λ)‖s′,s′′ ≤ c〈λ〉s′−s′′

. Thus

‖A(λ)‖s′,s′′ = ‖Rs′−s′′
(λ)Rs′′−s′

(λ)A(λ)‖s′ ,s′′

≤ ‖Rs′−s′′
(λ)‖s′,s′′‖Rs′′−s′

(λ)A(λ)‖s′,s′ ≤ c〈λ〉(s′−s′′)+μ+(s′′−s′) = c〈λ〉μ.
In other words, when we choose μ(N) in such a way that μ ≤ s′ − s′′, and μ(N) ≤
−N , then (2.6) is satisfied. In addition, if we take μ = μ(N) − k for some k ≥ 0
then (2.6) follows in general. �
Corollary 2.2. Let A(λ) ∈ Lμ

cl(M ; Rl), and assume that the estimate

‖A(λ)‖s′,s′′ ≤ c〈λ〉−N

is true for given s′, s′′ ∈ N and some N . Then we have

‖Dα
λA(λ)‖s′,s′′ ≤ c〈λ〉−N−α

for every α ∈ Nl.

Since we are interested in families for r →∞ it will be convenient to ignore
the specific edge-degenerate behaviour for r → 0 and to consider the cylinder R×X
rather than R+ × X . Far from r = ±∞ our calculus will be as usual; therefore,
for convenience, we fix a strictly positive function r → [r] in C∞(R) such that
[r] = |r| for |r| > R for some R > 0. The operator-valued amplitude functions in
our calculus on R×X are operator families of the form

a(r, ρ, η) = ã(r, [r]ρ, [r]η)

where ã(r, ρ̃, η̃) ∈ C∞
(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
. In addition it will be important to specify

the dependence of the latter function for large |r|. In other words, the crucial
definition is as follows.

Definition 2.3. (i) Let E be a Fréchet space with the (countable) system of semi-
norms (πj)j∈N; then Sν(R, E), ν ∈ R, is defined to be the set of all a(r) ∈
C∞(R, E) such that

πj

(
Dk

ra(r)
) ≤ c[r]ν−k

for all r ∈ R, k ∈ N, with constants c = c(k, j) > 0,
(ii) Sμ,ν for μ, ν ∈ R denotes be the set of all operator families

a(r, ρ, η) = ã(r, [r]ρ, [r]η)

for ã(r, ρ̃, η̃) ∈ Sν
(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
(topologised by the natural nuclear

Fréchet topology of the space Lμ
cl(X ; R1+q

ρ̃,η̃ )).

We first establish some properties of Sμ,ν that play a role in our calculus.

Proposition 2.4. (i) ϕ(r) ∈ Sσ(R), a(r, ρ, η) ∈ Sμ,ν implies ϕ(r)a(r, ρ, η) ∈
Sμ,σ+ν .

(ii) For every k, l ∈ N we have

a ∈ Sμ,ν ⇒ ∂l
ra ∈ Sμ,ν−l, ∂k

ρa ∈ Sμ−k,ν+k, ∂k
ηa ∈ Sμ−k,ν+k.
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(iii) a(r, ρ, η) ∈ Sμ,ν , b(r, ρ, η) ∈ Sμ̃,ν̃ implies a(r, ρ, η)b(r, ρ, η) ∈ Sμ+μ̃,ν+ν̃ .

Proof. (i) is evident. (ii) For simplicity we assume q = 1 and compute

∂rã(r, [r]ρ, [r]η) =
(
(∂r + [r]′ρ∂ρ̃ + [r]′η∂η̃)ã

)
(r, [r]ρ, [r]η)

where [r]′ := ∂r[r]. Since ρ̃ã(r, ρ̃, η̃), η̃ã(r, ρ̃, η̃) ∈ Sν(R, Lμ+1
cl (X ; R1+q

ρ̃,η̃ )), and
∂ρ̃ã, ∂η̃ ã ∈ Sν(R, Lμ−1

cl (X ; R1+q)), we obtain

∂rã(r, [r]ρ, [r]η) =
(
(∂r + ([r]′/[r])[r]ρ∂ρ̃ +([r]′/[r])[r]η∂η̃)ã

)
(r, [r]ρ, [r]η) ∈ Sμ,ν−1.

It follows that ∂l
ra ∈ Sμ,ν−l for all l ∈ N. Moreover, we have

∂ρã(r, [r]ρ, [r]η) = [r](∂ρ̃ã)(r, [r]ρ, [r]η)

which gives us ∂ρa ∈ Sμ−1,ν+1, and, by iteration, ∂k
ρa ∈ Sμ−k,ν+k. In a similar

manner we can argue for the η-derivatives.
(iii) By definition we have

a(r, ρ, η) = ã(r, [r]ρ, [r]η), b(r, ρ, η) = b̃(r, [r]ρ, [r]η)

for ã(r, ρ̃, η̃) ∈ Sν
(
R, Lμ

cl(X,R
1+q
ρ̃,η̃ )

)
, b̃(r, ρ̃, η̃) ∈ S ν̃

(
R, Lμ̃

cl(X,R
1+q
ρ̃,η̃ )

)
. Then the

assertion is a consequence of the relation

(ãb̃)(r, ρ̃, η̃) ∈ Sν+ν̃
(
R, Lμ+μ̃

cl (X,R1+q
ρ̃,η̃ )

)
. �

Corollary 2.5. For a(r, ρ, η) ∈ Sμ,ν , b(r, ρ, η) ∈ Sμ̃,ν̃ for every k ∈ N we have

∂k
ρa(r, ρ, η)D

k
r b(r, ρ, η) ∈ Sμ+μ̃−k,ν+ν̃ .

Remark 2.6. (i) Let ϕ1, ϕ2 ∈ C∞(R) be strictly positive functions such that
ϕj(r) = |r| for |r| ≥ cj for some cj > 0, j = 1, 2. Then we have

Sμ,ν =
{
a(r, ϕ1(r)ρ, ϕ2(r)η) : a(r, ρ̃, η̃) ∈ Sν

(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)}
;

(ii) a(r, ρ, η) ∈ Sμ,ν implies a(λr, ρ, η) ∈ Sμ,ν for every λ ∈ R+.

Proof. (i) We can write

a(r, ϕ1(r)ρ, ϕ2(r)η) = a(r, ψ1(r)[r]ρ, ψ2(r)[r]η)

for ψj(r) ∈ C∞(R), ψj(r) = 1 for |r| > c for some c > 0, j = 1, 2. Then it suffices
to verify that

a(r, ψ1(r)ρ̃, ψ2(r)η̃) ∈ Sν
(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
;

however, this is straightforward.
(ii) It is evident that ã(r, ρ̃, η̃) ∈ Sν

(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
implies ã(λr, ρ̃, η̃) ∈

Sν
(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
. Therefore, it suffices to show ã(r, [λr]ρ, [λr]η) ∈ Sμ,ν . Let us

write
ã(r, [λr]ρ, [λr]η) = ã(r, ϕλ(r)[r]ρ, ϕλ(r)[r]η)
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for ϕλ(r) := [λr]/[r]. We have ϕλ(r) = λ for |r| > c for a constant c > 0, i.e.,
ϕλ(r) − λ ∈ C∞0 (R). Thus there is an r-excision function χ(r) (i.e., χ ∈ C∞(R),
χ(r) = 0 for |r| ≤ c0, χ(r) = 1 for |r| ≥ c1 for certain 0 < c0 < c1) such that

χ(r)ã(r, [λr]ρ, [λr]η) = χ(r)ã(r, [r]λρ, [r]λη),

which belongs to Sμ,ν . It remains to characterise
(
1−χ(r)

)
ã(r, ϕλ(r)[r]ρ, ϕλ(r)[r]η)

which vanishes for |r| ≥ c1, and a simple calculation shows(
1− χ(r)

)
ã(r, ϕλ(r)ρ̃, ϕλ(r)η̃) ∈ C∞0

(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
,

which is contained in Sμ;−∞. �
Proposition 2.7. Let ãj(r, ρ̃, η̃) ∈ Sν(R, Lμ−j

cl (X ; R1+q)), j ∈ N, be an arbitrary
sequence, μ, ν ∈ R fixed. Then there is an ã(r, ρ̃, η̃) ∈ Sν(R, Lμ

cl(X ; R1+q)) such
that

a−
N∑

j=0

aj ∈ Sν(R, Lμ−(N+1)
cl (X ; R1+q))

for every N ∈ N, and a is unique modulo Sν
(
R, L−∞cl (X ; R1+q)

)
.

Proof. The proof is similar to the standard one on asymptotic summation of sym-
bols. We can find an asymptotic sum as a convergent series

ã(r, ρ̃, η̃) =
∞∑

j=0

χ ((ρ̃, η̃)/cj) ãj(r, ρ̃, η̃)

for some excision function χ in R1+q, with a sequence cj > 0, cj → ∞ as j → ∞
so fast, that

∑∞
j=N+1 χ ((ρ̃, η̃)/cj) ã(r, ρ̃, η̃) converges in Sν(R, Lμ−(N+1)

cl ) for every
N . �
2.2. Continuity in Schwartz Spaces

Theorem 2.8. Let p(r, ρ, η) = p̃(r, [r]ρ, [r]η), p̃(r, ρ̃, η̃) ∈ Sν
(
R, Lμ

cl(X ; R
1+q
ρ̃,η̃ )

)
, i.e.,

p(r, ρ, η) ∈ Sμ,ν . Then Opr(p)(η) induces a family of continuous operators

Opr(p)(η) : S(R, C∞(X)
)→ S(R, C∞(X)

)
for every η �= 0.

Proof. We have

Opr(p)(η)u(r) =
∫
eirρp(r, ρ, η)û(ρ)d̄ρ,

first for u ∈ C∞0
(
R, C∞(X)

)
. In the space S(R, C∞(X)

)
we have the semi-norm

system
πm,s(u) = max

α+β≤m
sup
r∈R

‖[r]α∂β
r u(r)‖Hs(X)

for m ∈ N, s ∈ Z, which defines the Fréchet topology of S(R, C∞(X)
)
.

If necessary we indicate the variable r, i.e., write πm,s;r rather than πm,s.
The Fourier transform Fr→ρ induces an isomorphism

F : S(Rr, H
s(X)

)→ S(Rρ, H
s(X)

)
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for every s. For every m ∈ N there exists a C > 0 such that

πm,s;ρ(Fu) ≤ Cπm+2,s;r(u) (2.7)

for all u ∈ S(R, Hs(X)) (see [7, Chapter 1] for scalar functions; the case of func-
tions with values in a Hilbert space is completely analogous). We have to show
that for every m̃ ∈ N, s̃ ∈ Z there exist m ∈ N, s ∈ Z, such that

πm̃,s̃

(
(Op(p)u)(r)

) ≤ cπm,s(u) (2.8)

for all u ∈ S(R, C∞(X)
)
, for some c = c(m̃, s̃) > 0. According to Proposition 2.10

below we write the operator Op(p)(η) in the form

Opr(p)(η)◦〈r〉−M ◦〈r〉M = 〈r〉−MOpr(bMN )(η)◦〈r〉M +Opr(dMN )(η)◦〈r〉M (2.9)

for a symbol bMN (r, ρ, η) ∈ Sμ,ν and a remainder dMN (r, ρ, η) satisfying estimates
analogously as (2.17).

We have

‖Opr(p)(η)u(r)‖Hs̃(X) = ‖
∫
eirρp(r, ρ, η)û(ρ)d̄ρ‖Hs̃(X)

≤ ‖
∫
eirρ〈r〉−M bMN (r, ρ, η)

(〈r〉Mu
)∧(ρ)d̄ρ‖Hs̃(X)

+ ‖Opr(dMN )(η)(〈r〉Mu(r))‖Hs̃(X). (2.10)

For the first term on the right of (2.10) we obtain for s := s̃ + μ and arbitrary
M̃ ∈ N

‖
∫
eirρ〈ρ〉−M̃ 〈r〉−M bMN (r, ρ, η)〈ρ〉M̃ (〈r〉Mu

)∧(ρ)d̄ρ‖Hs̃(X)

≤
∫
‖〈ρ〉−M̃ 〈r〉−M bMN (r, ρ, η)〈ρ〉M̃ (〈r〉Mu

)∧(ρ)‖Hs̃(X)d̄ρ

≤ c sup
(r,ρ)∈R2

〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),Hs̃(X))

×
∫
〈ρ〉M̃‖(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ.

Moreover, we have∫
〈ρ〉M̃‖(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ ≤ sup
ρ∈R

〈ρ〉M̃+2‖(〈r〉Mu
)∧(ρ)‖Hs(X)

∫
〈ρ〉−2d̄ρ

≤ cπ
M̃+2,s;ρ

((〈r〉Mu
)∧(ρ)

) ≤ π
M̃+4,s;r

(〈r〉Mu)) ≤ cπ
M+M̃+4,s;r

(u).

Here we employed the estimate (2.7). Thus (2.10) yields

π0,s̃(Op(p)(η)u) ≤ c sup
(r,ρ)∈R2

〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),Hs̃(X))

× πM+M̃+4,s;r(u) + π0,s̃(Opr(dMN )(η)(〈r〉Mu)). (2.11)
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The factor c sup(r,ρ)∈R2〈ρ〉−M̃ 〈r〉−M‖bMN(r, ρ, η)‖L(Hs(X),Hs̃(X)) is finite when we
choose M so large that ν −M ≤ 0 and M̃ so large that

sup
ρ∈R

〈ρ〉−M̃‖bMN (r, ρ, η)‖L(Hs(X),Hs̃(X)) <∞.

Next we consider the second term on the right-hand side of (2.11). We have

‖Opr(dMN )(η)〈r〉Mu(r)‖Hs̃(X)

=
∥∥∥∥∫ eirρ〈ρ〉−MdMN (r, ρ, η)〈ρ〉M (〈r〉Mu)∧(ρ)d̄ρ

∥∥∥∥
Hs̃(X)

≤
∫
‖〈ρ〉−MdMN (r, ρ, η)〈ρ〉M (〈r〉Mu

)∧(ρ)‖Hs̃(X)d̄ρ

≤
∫

sup
(r,ρ)∈R2

‖〈ρ〉−MdMN (r, ρ, η)‖L(Hs̃(X),Hs(X))‖〈ρ〉M
(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ.

From the analogue of the estimate (2.17) for dMN (r, ρ, η) we see that for N
sufficiently large it follows that the right-hand side of the latter expression can be
estimated by

c

∫
‖〈ρ〉M(〈r〉Mu

)∧(ρ)‖Hs(X)d̄ρ ≤ sup
ρ∈R

〈ρ〉M+2‖(〈r〉Mu
)∧(ρ)‖Hs(X)

∫
〈ρ〉−2d̄ρ

≤ cπ2M+2,s;ρ(û(ρ)) ≤ cπ2M+4,s;r(u).

In other words we proved that

π0,s̃(Op(p)(η)u) ≤ c{π
M+M̃+4,s

(u) + π2M+4,s(u)} ≤ cπL,s(u) (2.12)

for s = s̃+ μ, L := max{M + M̃ + 4, 2M + 4}. Now we write

∂rOp(p)(η)u(r) =
∫
eirρ∂rp(r, ρ, η)û(ρ)d̄ρ,+

∫
eirρp(r, ρ, η)(∂ru)∧(ρ)d̄ρ

rOp(p)(η)u(r) =
∫
eirρ(i∂ρp(r, ρ, η))û(ρ)d̄ρ+

∫
eirρip(r, ρ, η)∂ρû(ρ)d̄ρ.

From Proposition 2.4 we have

∂rp(r, ρ, η) ∈ Sμ,ν−1, i∂ρp(r, ρ, η) ∈ Sμ−1,ν+1.

Since the estimate (2.12) is true for elements in the respective symbol classes of
arbitrary order, it follows altogether the estimate (2.8) for every m̃ ∈ N, s̃ ∈ Z and
suitable m, s. �

2.3. Leibniz Products and Remainder Estimates

Let ã(r, ρ̃, η̃) ∈ Sν(R, Lμ
cl), b̃(r, ρ̃, η̃) ∈ Sν̃(R, Lμ̃

cl) where Lμ
cl = Lμ

cl(X ; R1+q
ρ̃,η̃ ). The

operator functions

a(r, ρ, η) := ã(r, [r]ρ, [r]η), b(r, ρ, η) := b̃(r, [r]ρ, [r]η)
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will be interpreted as amplitude functions of a pseudo-differential calculus on R

containing η as a parameter (below we assume η �= 0). We intend to apply an
analogue of Kumano-go’s technique [7] and form the oscillatory integral

a#b(r, ρ, η) =
∫∫

e−itτa(r, ρ+ τ, η)b(r + t, ρ, η)dtd̄τ (2.13)

which has the meaning of a Leibniz product, associated with the composition of
operators. The rule

Opr(a)(η)Opr(b)(η) = Opr(a#b)(η) (2.14)

for η �= 0 will be justified afterwards. Similarly as in [7], applying Taylor’s formula,
the function a#b can be decomposed in the form

a#b(r, ρ, η) =
N∑

k=0

1
k!
∂k

ρa(r, ρ, η)D
k
r b(r, ρ, η) + rN (r, ρ, η) (2.15)

for

rN (r, ρ, η) =
1
N !

∫∫
e−itτ{

∫ 1

0

(1 − θ)N (∂N+1
ρ a)(r, ρ+ θτ, η)dθ} (2.16)

× (DN+1
r b)(r + t, ρ, η)dtd̄τ.

By virtue of Corollary 2.5 we have 1
k!∂

k
ρa(r, ρ, η)D

k
r b(r, ρ, η) =: ck(r, ρ, η) for

ck(r, ρ, η) = c̃k(r, [r]ρ, [r]η), c̃k(r, ρ̃, η̃) ∈ Sν+ν̃(R, Lμ+μ̃−k
cl ). Let us now characterise

the remainder.

Lemma 2.9. For every s′, s′′ ∈ R, l,m, k ∈ N, there is an N ∈ N such that

‖Di
rD

j
ρrN (r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m (2.17)

for all (r, ρ) ∈ R2, |η| ≥ ε > 0, i, j ∈ N, for some constant c = c(s′, s′′, k, l,m,N, ε)
> 0, here ‖ · ‖s′,s′′ = ‖ · ‖L(Hs′ (X),Hs′′ (X)).

Proof. Let us write Sμ,ν := {ã(r, [r]ρ, [r]η) : ã(r, ρ̃, η̃) ∈ Sν(R, Lμ
cl)}. By virtue of

Proposition 2.4 we have

∂k
ρ ã(r, [r]ρ, [r]η) ∈ Sμ−k,ν+k, ∂k

r b̃(r, [r]ρ, [r]η) ∈ Sμ̃,ν̃−k

for every k. Let us set

ãN+1(r, [r]ρ + [r]θτ, [r]η) := (∂N+1
ρ a)(r, ρ+ θτ, η),

b̃N+1(r + t, [r + t]ρ, [r + t]η) := (DN+1
r b)(r + t, ρ, η).

By virtue of Theorem 2.1 for every s0, s
′′ ∈ R and every M there exists a

μ(M) such that for every p(ρ̃, η̃) ∈ Lμ
cl(X ; R1+q

ρ̃,η̃ ), μ ≤ μ(M), we have

‖p(ρ̃, η̃)‖s0,s′′ ≤ c〈ρ̃, η̃〉−M (2.18)

for all (ρ̃, η̃) ∈ R1+q, c = c(s0, s′′, μ,M) > 0. Moreover, for every s′, s0 ∈ R

there exists a B ∈ R such that ‖p(ρ̃, η̃)‖s′,s0 ≤ c〈ρ̃, η̃〉B for all (ρ̃, η̃) ∈ R1+q,
c = c(s′, s0, μ) > 0. We apply this for ãN+1(r, ρ̃, η̃) and b̃N+1(r, ρ̃, η̃), combined
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with the dependence on r ∈ R as a symbol in this variable. In other words, we
have the estimates

‖ãN+1(r, ρ̃, η̃)‖s0,s′′ ≤ c 〈r〉ν+(N+1)〈ρ̃, η̃〉−M , (2.19)

‖b̃N+1(r, ρ̃, η̃)‖s′,s0 ≤ c〈r〉ν̃−(N+1)〈ρ̃, η̃〉B; (2.20)

here we applied the above-mentioned result to ãN+1 for the pair (s0, s′′) for N
sufficiently large, and for b̃N+1 the second estimate for (s′, s0) with some exponent
B. Let us take s0 := s′− μ̃; then we can set B = max{μ̃, 0}. The remainder (2.16)
is regularised as an oscillatory integral in (t, τ), i.e., we may write

rN (r, ρ, η) =
1
N !

∫∫
e−itτ 〈t〉−2L(1− ∂2

τ )L〈τ〉−2K(1− ∂2
t )K (2.21)

×
{∫ 1

0

(1− θ)N ãN+1(r, [r]ρ + [r]θτ, [r]η)dθ
}
b̃N+1(r + t, [r + t]ρ, [r + t]η)dtd̄τ

for sufficiently large L,K. For simplicity from now on we assume q = 1; the
considerations for the general case are completely analogous. Then we have for
every l ≤ L

∂2l
τ ãN+1(r, [r]ρ + [r]θτ, [r]η) =

(
∂2l

ρ̃ ãN+1

)
(r, [r]ρ + [r]θτ, [r]η)([r]θ)2l ,

and for every k ≤ K

∂2k
t b̃N+1(r + t, [r + t]ρ, [r + t]η) =

(
∂2k

t b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)

+
(
∂2k

ρ̃ b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)(ρ∂t[r + t])2k

+
(
∂2k

η̃ b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)(η∂t[r + t])2k +R,

where R denotes several mixed derivatives. From (2.19) we have

‖∂2l
τ ãN+1(r, [r]�+ r[θ]τ, [r]η)‖s0 ,s′′ ≤ c〈r〉ν+(N+1)〈[r]� + [r]θτ, [r]η〉−M−2l([r]θ)2l,

(2.22)
see Corollary 2.2, and (2.20) gives us

‖(∂2k
t b̃N+1)(r+ t, [r+ t]�, [r+ t]η)‖s′,s0 ≤ c〈r+ t〉ν̃−(N+1)〈[r+ t]�, [r+ t]η〉B (2.23)

(where we take N so large that ν̃ − (N + 1) ≤ 0), and

‖(∂2k
�̃ b̃N+1

)
(r + t, [r + t]�, [r + t]η)(�∂t[r + t])2k‖s′,s0 (2.24)

≤ c〈r + t〉ν̃−(N+1)〈[r + t]�, [r + t]η〉B−2k|�∂t[r + t]|2k,

‖(∂2k
η̃ b̃N+1

)
(r + t, [r + t]�, [r + t]η)(η∂t[r + t])2k‖s′,s0 (2.25)

≤ c〈r + t〉ν̃−(N+1)〈[r + t]�, [r + t]η〉B−2k|η∂t[r + t]|2k.

The above-mentioned mixed derivatives admit similar estimates (in fact, better
ones; so we concentrate on those contributed by (2.22), (2.23), (2.24), (2.25)).
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We now derive an estimate for ‖rN (r, �, η)‖s′,s′′ . Using the relation (2.21) we
have

‖rN (r, �, η)‖s′,s′′ ≤
∫∫ ∫ 1

0

‖〈t〉−2L(1− ∂2
τ )L〈τ〉−2K (1− ∂2

t )K

× (1 − θ)N ãN+1(r, [r]� + [r]θτ, [r]η)b̃N+1(r + t, [r + t]�, [r + t]η)‖s′,s′′dθdtd̄τ.

The operator norm under the integral can be estimated by expressions of the kind

I := c〈r〉ν+(N+1)〈r + t〉ν̃−(N+1)〈t〉−2L〈τ〉−2K〈[r]ρ + [r]θτ, [r]η〉−M−2l([r]θ)2l

× 〈[r + t]ρ, [r + t]η〉B{1 + 〈[r + t]ρ, [r + t]η〉−2k(|ρ|2k + |η|2k)|(∂t[r + t])2k|},
l ≤ L, k ≤ K, plus terms from R of a similar character. We have, using Peetre’s
inequality,

〈r〉ν+(N+1)〈r + t〉ν̃−(N+1) ≤ 〈r〉ν+ν̃ 〈t〉|ν̃−(N+1)|.

Moreover, we have 〈[r]ρ+[r]θτ, [r]η〉−2l([r]θ)2l ≤ c〈[r]η〉−2l[r]2l ≤ c for |η| ≥ ε > 0
(as always, c denotes different constants), and

〈[r + t]ρ, [r + t]η〉−2k(|ρ|2k + |η|2k)|(∂t[r + t])2k|
≤ c

{〈[r + t]ρ〉−2k([r + t]|ρ|)2k + 〈[r + t]η〉−2k([r + t]|η|)2k
}
[r + t]−2k ≤ c,

using |(∂t[r + t])2k| ≤ c, [r + t]−2k ≤ c for all r, t ∈ R and |ζ| ≤ c〈ζ〉 for every ζ in
Rd. This yields

I ≤ c〈r〉ν+ν̃ 〈t〉|ν̃−(N+1)|〈t〉−2L〈τ〉−2K 〈[r]ρ+ [r]θτ, [r]η〉−M 〈[r + t]ρ, [r + t]η〉B .
Writing M = M ′ +M ′′ for suitable M ′,M ′′ ≥ 0 to be fixed later on, we have

〈[r]ρ+ [r]θτ, [r]η〉−M = 〈[r]ρ + [r]θτ, [r]η〉−M ′ 〈[r]ρ + [r]θτ, [r]η〉−M ′′

≤ c〈[r]η〉−M ′ 〈[r]ρ, [r]η〉−M ′′ 〈[r]θτ〉M ′′ ≤ c〈[r]η〉−M ′ 〈[r]ρ〉−M ′′ 〈[r]θτ〉M ′′
.

We applied once again Peetre’s inequality which gives us also

〈[r + t]ρ, [r + t]η〉B ≤ c〈[r + t]ρ〉B〈[r + t]η〉B

since B ≥ 0. Thus

I ≤ c〈r〉ν+ν̃ 〈t〉|ν̃−(N+1)|−2L〈τ〉−2K 〈[r]θτ〉M ′′

× 〈[r + t]ρ〉B〈[r]ρ〉−M ′′ 〈[r + t]η〉B〈[r]η〉−M ′
.

Let us show
〈t〉−B〈[r + t]ρ〉B〈[r]ρ〉−B ≤ c.

In fact, this is evident in the regions |r| ≤ C, |t| ≤ C or |r| ≥ C, |t| ≤ C for
some C > 0. For |r| ≤ C, |t| ≥ C the estimate essentially follows from 1 + t2ρ2 ≤
(1 + t2)(1 + ρ2). For |r| ≥ C, |t| ≥ C, [r + t] ≤ C the estimate is evident as well.
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It remains the case |r| ≥ C, |t| ≥ C, [r + t] ≥ C, where the estimate follows (for
C ≥ 1 so large that [r + t] = |r + t|, [r] = |r|) from

〈t〉−2〈[r + t]ρ〉2〈[r]ρ〉−2 =
1 + |r + t|2|ρ|2

(1 + |t|2)(1 + |rρ|2) ≤
1 + |rρ|2 + 2|rtρ|2|tρ|2
1 + |t|2 + |rρ|2 + |rtρ|2

≤ c
1 + |rρ|2 + |tρ|2 + 2|rtρ|2

1 + |rρ|2 + |tρ|2 ≤ c
(
1 +

2|rtρ|2
1 + |rρ|2 + |tρ|2

)
≤ const.

Here we employed |rtρ|2 ≥ |tρ|2 for |r| ≥ C ≥ 1 and

|rtρ|2
1 + |rρ|2 + |tρ|2 ≤

r2t2

r2 + t2
=

r2

r2 + t2
t2

r2 + t2
≤ const.

Analogously we have 〈t〉−B〈[r + t]η〉B〈[r]η〉−B ≤ c. This gives us the estimate

I ≤ c〈r〉ν+ν̃ 〈t〉|ν̃−(N+1)|−2L+2B〈τ〉−2K 〈[r]θτ〉M ′′ 〈[r]ρ〉B−M ′′ 〈[r]η〉B−M ′
.

Finally, using 〈τ〉−M ′′ 〈r〉−M ′′ 〈[r]θτ〉M ′′ ≤ c for all 0 ≤ θ ≤ 1 and all r, τ , we obtain

I ≤ c〈r〉ν+ν̃+M ′′〈t〉|ν̃−(N+1)|−2L+2B〈τ〉−2K+M ′′ 〈[r]ρ〉B−M ′′ 〈[r]η〉B−M ′

for all r, t ∈ R, ρ, τ ∈ R, 0 ≤ θ ≤ 1. Choosing K and L so large that

−2K +M ′′ < −1, |ν̃ − (N + 1)|+ 2B − 2L < −1,

it follows that ‖rN (r, ρ, η)‖s′,s′′ ≤ c〈r〉ν+ν̃+M ′′〈[r]η〉B−M ′ 〈ρ〉B−M ′′
for η �= 0 using

that 〈[r]ρ〉B−M ′′ ≤ c〈ρ〉B−M ′′
for B−M ′′ ≤ 0. Let us now show that for B−M ′ ≤

0,
〈[r]η〉B−M ′ ≤ c[r]B−M ′ 〈η〉B−M ′

(2.26)
for all |η| ≥ ε > 0 and some c = c(ε) > 0. In fact, we have

[r]2〈η〉2
1 + |[r]η|2 =

[r]2

1 + |[r]η|2
〈η〉2

1 + |[r]η|2 ≤ c
1

[r]−2 + |η|2
1

|η|−2 + [r]−2
≤ c,

i.e., (1 + |[r]η|2)−1 ≤ c[r]−2〈η〉−2 which entails the estimate (2.26). It follows that

‖rN (r, ρ, η)‖s′,s′ ≤ c〈r〉ν+ν̃+M ′′+B−M ′〈ρ〉B−M ′′ 〈η〉B−M ′
.

Now B is fixed, and M,M ′′ can be chosen independently so large that

B −M ′′ ≤ −k, B −M ′ ≤ −m, ν + ν̃ +M ′′ +B −M ′ ≤ −l.
Therefore, we proved that for every s′, s′′ ∈ R and k, l,m ∈ N there is an N ∈ N

such that
‖rN (r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m (2.27)

for all (r, ρ) ∈ R2, |η| ≥ ε > 0. In an analogous manner we can show the estimates
(2.17) for all i, j. �

Proposition 2.10. For every a(r, ρ, η) ∈ Sμ,ν and ϕ(r) = [r]ν̃ (which belongs to
S0,ν̃) for every η �= 0 we have (as operators Opr(ã(r, [r]ρ, [r]η)) : C∞0 (R, C∞(X))
→ C∞(R, C∞(X)))

Opr(a)(η) ◦ ϕ = ϕ ◦Opr(b)(η) + d(η) (2.28)



Edge-Degenerate Families of Pseudo-Differential Operators 71

for some b(r, ρ, η) ∈ Sμ,ν and a remainder d(η) = Opr(rN )(η) which is an operator
function rN (r, ρ, η) ∈ C∞

(
R×R×Rq

η, L
(
Hs′

(X), Hs′′
(X)

))
for every given s′, s′′

and sufficiently large N = N(s′, s′′) ∈ N, satisfying the estimates (2.17) for all
(r, ρ) ∈ R2 and all |η| ≥ ε > 0.

Proof. We apply the relation (2.15) to the case b(r, ρ, η) = ϕ(r) and obtain

Op(a) ◦ ϕ = Op(a#ϕ) =
N∑

k=0

Op
( 1
k!
∂k

ρa(r, ρ, η)D
k
rϕ(r)

)
+ Op(rN ).

According to Corollary 2.5 we can form the product
(
∂k

ρaD
k
rϕ

)
(r, [r]ρ, [r]η) with(

∂k
ρaDrϕ

)
(r, ρ̃, η̃) ∈ Sν+ν̃(R, Lμ−k

cl (X ; R1+q)). There is then an element c̃N (r, ρ̃, η̃)

∈ Sν+ν̃(R, Lμ−(N+1)
cl (X ; R1+q)) which is the asymptotic sum of the symbols

1
k!
(
∂k

ρaD
k
rϕ

)
(r, ρ̃, η̃), k ≥ N + 1.

Writing cN(r, ρ, η) = c̃N (r, [r]ρ, [r]η) we obtain

a#b(r, ρ, η) = pN (r, ρ, η) + dN (r, ρ, η)

for pN (r, ρ, η) = p̃N (r, [r]ρ, [r]η),

pN(r, ρ, η) =
N∑

k=0

1
k!
∂k

ρa(r, ρ, η)D
k
rϕ(r) + cN (r, ρ, η) ∈ Sμ,ν+ν̃ ,

and dN (r, ρ, η) = rN (r, ρ, η)− cN (r, ρ, η). Now rN (r, ρ, η) satisfies the desired esti-
mates. Similarly as in connection with (2.18) for every s′, s′′ ∈ R and M ∈ N we
find an N ∈ N sufficiently large such that

‖cN(r, ρ̃, η̃)‖s′,s′′ ≤ c〈r〉ν+ν̃〈ρ̃, η̃〉−4M .

This entails
‖cN(r, [r]ρ, [r]η)‖s′ ,s′′ ≤ c〈r〉ν+ν̃ 〈[r]ρ, [r]η〉−4M

for all r, ρ, η. Now

〈[r]ρ, [r]η〉−4 = [r]−4

(
1

1+[r]2ρ2+[r]2η2

[r]2

)2

= [r]−4 1
[r]−2 + ρ2 + η2

1
[r]−2 + ρ2 + η2

≤ c[r]−4〈ρ〉−2〈η〉−2

for |η| ≥ ε > 0, for a constant c = c(ε) > 0. We thus obtain

‖cN (r, [r]ρ, [r]η)‖s′ ,s′′ ≤ c〈r〉ν+ν̃−4M 〈ρ〉−2M 〈η〉−2M .

This completes the proof since M is arbitrary. �
Let us now return to the interpretation of (2.13) as the left symbol of a

composition of operators. From Theorem 2.8 we know that

Opr(a)(η),Opr(b)(η) : S(R, C∞(X)
)→ S(R, C∞(X)

)
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are continuous operators. Thus also Opr(a)(η)Opr(b)(η) is continuous between the
Schwartz spaces. This shows, in particular, that the oscillatory integral techniques
of [7] also apply for our (here operator-valued) amplitude functions, and we obtain
the relation (2.14).

Let A(η) = Opr(a)(η) for

a(r, ρ, η) := ã(r, [r]ρ, [r]η), ã(r, ρ̃, η̃) ∈ Sν
(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
.

Then we form the formal adjoint A∗(η) with respect to the L2(R × X)-scalar
product, according to(

A(η)u, v
)

L2(R×X)
=
(
u,A∗(η)v

)
L2(R×X)

for all u, v ∈ S(R, C∞(X)
)
. As usual we obtain

A∗(η)v(r′) = Opr′(a∗)(η)v(r′)

for the right symbol a∗(r′, ρ, η) = ā(r′, ρ, η) = ˜̄a(r′, [r′]ρ, [r′]η). Similarly as before
we can prove that

Opr′(a∗)(η) : S(R, C∞(X)
)→ S(R, C∞(X)

)
is continuous for every η �= 0. Thus by duality it follows that

Opr(a)(η) : S′(R, E ′(X)
)→ S ′(R, E ′(X)

)
(2.29)

is continuous for every η �= 0. Note here that f ∈ E ′(X) ⇔ f ∈ Hs(X) for some real
s ∈ R; then S′(R, E ′(X)

)
means the inductive limit of the spaces L(S(R), Hs(X)

)
over s ∈ R.

Lemma 2.11. For every s′, s′′ ∈ R and l,m, k ∈ N there exists a real μ(s′, s′′, k, l,m)
such that for every a(r, ρ, η) ∈ Sμ,ν , ν ∈ R we have

‖a(r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m

(r, ρ) ∈ R2, whenever μ ≤ μ(s′, s′′, k, l,m), |η| ≥ ε > 0.

Proof. The proof is straightforward, using Theorem 2.1, more precisely, writing
a(r, ρ, η) = ã(r, [r]ρ, [r]η), we have the estimate

‖ã(r, ρ̃, η̃)‖s′,s′′ ≤ c〈r〉ν〈ρ̃, η̃〉−N

for every fixed N ∈ N when μ is chosen sufficiently negative (depending on N),
uniformly in r ∈ R. Then, similarly as in the proof of Lemma 2.9, we obtain for
suitable N and given k, l,m that 〈[r]ρ, [r]η〉−N ≤ c〈ρ〉−k〈r〉−l−ν 〈η〉−m for |η| ≥
ε > 0. �

Corollary 2.12. Let a(r, ρ, η) ∈ S−∞,ν
(
:=

⋂
μ∈R

Sμ,ν
)
. Then for every s′, s′′ ∈ R,

l,m, k ∈ N we have

‖Di
rD

j
ρa(r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m

for all (r, ρ) ∈ R2, |η| ≥ ε > 0, i, j ∈ N, for some constants c = c(s′, s′′, k, l,m, ε) >
0.
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Proposition 2.13. The kernels c(r, r′, η) of operators Opr(a)(η) for a ∈ S−∞,ν ,
ν ∈ R, belong to

C∞
(
Rq \ {0},S(R× R,L(Hs′

(X), Hs′′
(X)

))
(2.30)

and are strongly decreasing in η for |η| ≥ ε > 0 together with all η-derivatives;
more precisely, we have

sup ‖〈η〉αDβ
η 〈r, r′〉σDτ

r,r′c(r, r′, η)‖s′,s′′ <∞ (2.31)

for every α, β ∈ Nq, σ, τ ∈ R2 with sup being taken over all |η| ≥ ε > 0, (r, r′) ∈ R.

Proof. If we show the result for ν = 0 from Proposition 2.4 it follows immediately
for all ν. Write a(r, ρ, η) = ã(r, [r]ρ, [r]η) for ã(r, ρ̃, η̃) ∈ S0

(
R, L−∞(X ; R1+q

ρ̃,η̃ )
)
.

Then we have
‖Dγ

ρ̃,η̃ã(r, ρ̃, η̃)‖s′,s′′ ≤ c〈ρ̃, η̃〉−N

for every s′, s′′ ∈ R, γ ∈ N1+q, N ∈ N. This gives us easily

‖Di
rD

j
ρD

α
η a(r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m

for every k, l,m ∈ N for a sufficiently large N , |η| ≥ ε > 0. Now the kernel of
Opr(a)(η) has the form∫

ei(r−r′)ρa(r, ρ, η)d̄ρ =
∫
ei(r−r′)ρ(1+ |r− r′|2)−M (1−Δρ)Ma(r, ρ, η)d̄ρ (2.32)

for every sufficiently large M . This implies∥∥∥∥∫ ei(r−r′)ρa(r, ρ, η)d̄ρ
∥∥∥∥

s′,s′′
≤
∫
‖(1 + |r − r′|2)−M (1 −Δρ)Ma(r, ρ, η)‖s′,s′′ d̄ρ

≤ c
(
1 + |r − r′|2)−M 〈r〉−l〈η〉−m

∫
〈ρ〉−kd̄ρ

≤ c
(
1 + |r − r′|2)−M 〈r〉−l〈η〉−m

for k ≥ 2. In a similar manner we can treat the (r, r′)-derivatives of the kernel and
which completes the proof. �

Definition 2.14. (i) Let L−∞,−∞(X
; Rq \{0}) denote the space of all operators
with kernels c(r, r′, η) as in Peoposition 2.13. Moreover, for purposes below,
let L−∞,−∞(X
) denote the space of all operators with kernels

c(r, r′) ∈
⋂

s′,s′′∈R

S(R× R,L(Hs′
(X), Hs′′

(X)
))
.

(ii) Let Lμ,ν(X
; Rq \ {0}) denote the space of all operators of the form

A(η) = Opr(a)(η) + C(η)

depending on the parameter η ∈ Rq \ {0}, for arbitrary a(r, ρ, η) ∈ Sμ,ν and
operators C(η) with kernels c(r, r′, η) as in Proposition 2.13.
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Theorem 2.15. For every p̃(r, ρ̃, η̃) ∈ S0
(
R, Ls

cl(X ; R1+q
ρ̃,η̃ )

)
, s ≤ 0, and p(r, ρ, η) =

p̃(r, [r]ρ, [r]η), the operator

Opr(p)(η) : L2(R×X) → L2(R×X) (2.33)

is continuous for every η ∈ Rq \ {0}, and we have

‖Opr(p)(η)‖L(L2(R×X)) ≤ c〈η〉s (2.34)

for all |η| ≥ ε, ε > 0 and a constant c = c(ε) > 0.

Proof. For the continuity (2.33) and the estimate (2.34) we apply a version of
the Calderón–Vaillancourt theorem which states that if H is a Hilbert space and
a(r, ρ) ∈ C∞

(
R× R,L(H)

)
a symbol satisfying the estimate

π(a) := sup
k,l=0,1
(r,ρ)∈R

2

‖Dl
rD

k
ρa(r, ρ)‖L(H) <∞ (2.35)

the operator
Opr(a) : L2(R, H) → L2(R, H)

is continuous, where
‖Opr(a)‖L(L2(R,H)) ≤ cπ(a)

for a constant c > 0. In the present case we have

a(r, ρ) = p(r, [r]ρ, [r]η) (2.36)

where η �= 0 appears as an extra parameter. It is evident that the right-hand side
of (2.36) belongs to C∞

(
R×R×Rq,L(L2(X))

)
. From the assumption on p̃(r, ρ̃, η̃)

we have
sup
r∈R

‖p̃(r, ρ̃, η̃)‖L(L2(X)) ≤ c〈ρ̃, η̃〉s (2.37)

for all (ρ̃, η̃) ∈ R1+q and some c > 0. In fact, when p̃ is independent of r the latter
estimate corresponds to (2.4) for s = ν = 0 and μ = s ≤ 0. In the r-dependent
case the operator norms that play a role in Theorem 2.1 are uniformly bounded
in r ∈ R, since p̃(r, ρ̃, η̃) is a symbol of order 0 in r with values in Ls

cl(X ; R1+q
ρ̃,η̃ ).

For (2.35) we first check the case l = k = 0. We have

sup
(r,ρ)∈R2

〈[r]ρ, [r]η〉s ≤ c〈η〉s (2.38)

for all |η| ≥ ε > 0 and some c = c(ε) > 0. Thus (2.37) gives us

sup
(r,ρ)∈R2

‖p̃(r, [r]ρ, [r]η)‖L(L2(X)) ≤ c〈η〉s

for such a c(ε) > 0. Assume now for simplicity q = 1 (The general case is analo-
gous). For the first-order derivatives of p̃(r, [r]ρ, [r]η) in r we have

∂rp̃(r, [r]ρ, [r]η) = (∂rp̃)(r, [r]ρ, [r]η) + [r]′(ρ∂ρ̃ + η∂η̃)p̃(r, [r]ρ, [r]η) (2.39)
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for [r]′ = d
dr [r]. For the derivatives of p̃ with respect to ρ̃, η̃ we employ that

∂ρ̃p̃(r, ρ̃, η̃), ∂η̃p̃(r, ρ̃, η̃) ∈ S0
(
R, Ls−1(X ; R1+q

ρ̃,η̃ )
)
. Thus, similarly as before we ob-

tain
‖∂α

ρ̃,η̃p̃(r, ρ̃, η̃)‖L(L2(X)) ≤ c〈ρ̃, η̃〉s−1

for any α ∈ N2, |α| = 1. This gives us for the summand on the right of (2.39) that

sup
(r,ρ)∈R2

‖[r]−1[r]′([r]ρ∂ρ̃ + [r]η∂η̃)p(r, [r]ρ, [r]η)‖L(L2(X))

≤ sup[r]−1|[r]ρ+ [r]η|〈rρ, rη〉s−1

≤ c〈η〉s sup[r]−1|[r]ρ, [r]η|〈rρ, rη〉−1 ≤ c〈η〉s.
Here we employed (2.38). For the derivative of p(r, [r]ρ, [r]η) in ρ we have

sup ‖∂ρp̃(r, [r]ρ, [r]η)‖L(L2(X)) = sup ‖[r](∂ρ̃p̃)(r, [r]ρ, [r]η)‖L(L2(X))

≤ c sup[r]〈[r]ρ, [r]η〉s−1 ≤ c〈η〉s

for all |η| ≥ ε > 0. This gives altogether the estimate (2.34). �

Theorem 2.16. Let a ∈ Sμ,ν , b ∈ Sμ̃,ν̃ ; then we have

Opr(a)(η)Opr(b)(η) ∈ Lμ+μ̃,ν+ν̃(X
; Rq \ {0}).
Proof. According to (2.14) the composition can be expressed by a#b, given by the
formula (2.13). By virtue of Corollary 2.5 we have

1
k!
∂k

ρa(r, ρ, η)D
k
r b(r, ρ, η) ∈ Sμ+μ̃−k,ν+ν̃ ,

i.e., this symbol has the form ck(r, ρ, η) = c̃k(r, [r]ρ, [r]η) for some

c̃k(r, ρ̃, η̃) ∈ Sν+ν̃
(
R, Lμ+μ̃−k

cl (X ; R1+q
ρ̃,η̃ )

)
.

Applying Propositon 2.7 we form the asymptotic sum
∞∑

k=0

c̃k(r, ρ̃, η̃) ∼ c̃(r, ρ̃, η̃) ∈ Sν+ν̃
(
R, Lμ+μ̃

cl (X ; R1+q
ρ̃,η̃ )

)
.

Setting c(r, ρ, η) = c̃(r, [r]ρ, [r]η) from (2.15) we obtain

Opr(a#b)(η) = Opr(c)(η) + Opr

(
N∑

k=0

ck − c

)
(η) + Opr(rN )(η)

mod L−∞,−∞(X
; Rq \ {0}), where
(∑N

k=0 ck − c
)

(r, ρ, η) ∈ Sμ+μ̃−(N+1),ν . Since
this is true for every N ∈ N, Lemma 2.11 gives us the right remainder estimate
also for ‖Opr

(∑N
k=0 ck − c

)
‖s′,s′′ , and it follows altogether that the kernel of

Opr(a#b)(η)−Opr(c)(η) has finite semi-norms (2.31) as indicated in Proposition
2.13 for arbitrary α, β ∈ Nq, σ, τ ∈ R2, s′, s′′ ∈ R, |η| ≥ ε > 0. �
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Theorem 2.17. Let p̃(ρ̃, η̃) ∈ Ls
cl(X ; R1+q) be parameter-dependent elliptic of order

s ∈ R, and set p(r, ρ, η) = p̃([r]ρ, [r]η). Then there exists a C > 0 such that for
every |η| ≥ C the operator

[r]−sOpr(p)(η) : S(R, C∞(X)
)→ S(R, C∞(X)

)
(2.40)

extends to an injective operator

[r]−sOpr(p)(η) : L2(R×X) → S ′(R, E ′(X)
)
. (2.41)

More precisely, if we consider [r]−sOpr(p)(η) as an operator

[r]−sOpr(p)(η) : L2(R×X) → L(〈r〉−gH l(R), Ht(X)
)

(2.42)

which is continuous for some t ∈ R and all g, l ∈ R, then it is injective.

Proof. First, according to (2.29) there is a t such that (2.42) is continuous for all
g, l ∈ R. For the injectivity we show that the operator hast a left inverse. This will
be approximated by Opr(a) for

a(r, ρ, η) := [r]sp̃(−1)([r]ρ, [r]η) (2.43)

where p̃(−1)(ρ̃, η̃) ∈ L−s
cl (X ; R1+q) is a parameter-dependent parametrix of p̃(ρ̃, η̃).

Setting
b(r, ρ, η) := [r]−sp̃([r]ρ, [r]η) (2.44)

we can write the composition of the associated pseudo-differential operators in r
for every N ∈ N in the form

Opr(a)(η)Opr(b)(η) = Opr(a#b)(η) = Opr(1 + cN (r, ρ, η) + rN (r, ρ, η)) (2.45)

for cN (r, ρ, η) =
∑N

k=1
1
k!∂

k
ρa(r, ρ, η)D

k
r b(r, ρ, η) which has the form cN (r, ρ, η) =

c̃N (r, [r]ρ, [r]η) for some c̃N (r, ρ̃, η̃) ∈ S0
(
R, L−1

cl (X ; R1+q)
)
. Moreover, the remain-

der rN is as in (2.16). From Theorem 2.15 for s = −1 we know that

‖Opr(cN )(η)‖L(L2(R×X)) ≤ c〈η〉−1

for |η| > ε. Moreover, Lemma 2.9, applied to s′ = s′′ = 0 together with an
operator-valued version of the Calderón–Vaillancourt theorem, gives us

‖Opr(rN )(η)‖L(L2(R×X)) ≤ c〈η〉−1

for sufficiently large N . Thus for every |η| sufficiently large the operator on the
right of (2.45) is invertible in L2(R ×X), i.e., Opr(b)(η) has a left inverse which
implies the injectivity. �

Corollary 2.18. Let a(r, ρ, η) ∈ Sμ,ν , i.e., a(r, ρ, η) = ã(r, [r]ρ, [r]η) for ã(r, ρ̃, η̃) ∈
Sν

(
R, Lμ

cl(X ; R1+q
ρ̃,η̃ )

)
, and let η �= 0. Then

Opr(a)(η) : S(R×X) → S(R×X)

extends to a continuous operator

Opr(a)(η) : 〈r〉mHs(R, Ht(X)) → 〈r〉m̃H s̃(R, H t̃(X))
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for every m̃, s̃, t̃ ∈ R and suitable m, s, t ∈ R. If ã(r, ρ̃, η̃) is parameter-dependent
elliptic for every r ∈ R then there is a C > 0 such that

Opr(a)(η) : 〈r〉mHs(R, Ht(X)) → S ′(R, E ′(X))

is injective for every m, s, t ∈ R and |η| ≥ C.

Theorem 2.19. A ∈ Lμ,ν(X
; Rq \ {0}), B ∈ Lμ̃,ν̃(X
; Rq \ {0}) implies AB ∈
Lμ+μ̃,ν+ν̃(X
; Rq \ {0}).
Proof. Let us write

A(η) = Opr(a)(η) + C1(η), B(η) = Opr(b)(η) + C2(η)

for a ∈ Sμ,ν , b ∈ Sμ̃,ν̃ , and C1(η), C2(η) ∈ L−∞,−∞(X
; Rq \ {0}). Then we have

AB = Opr(a)(η)Opr(b)(η) + C1(η)Opr(b)(η) + Opr(a)(η)C2(η) + C1(η)C2(η).

Theorem 2.16 yields that Opr(a)(η)Opr(b)(η) ∈ Lμ+μ̃,ν+ν̃(X
; Rq \ {0}). More-
over, the composition of smoothing families is again smoothing. It remains to show
that C1(η)Opr(b)(η),Opr(a)(η)C2(η) ∈ Lμ+μ̃,ν+ν̃(X
; Rq \ {0}). However, this is
a simple consequence of Corollary 2.18. �

3. Parameter-Dependent Operators on an Infinite Cylinder

3.1. Weighted Cylindrical Spaces

Definition 3.1. Let p̃(ρ̃, η̃) ∈ Ls
cl(X ; R1+q

ρ̃,η̃ ) be as in Theorem 2.17. Then Hs,g
cone(X


)
for s, g ∈ R is defined to be the completion of S(R×X) with respect to the norm

‖[r]−s+gOpr(p)(η
1)u‖L(L2(R×X))

for any fixed η1 ∈ Rq, |η1| ≥ C for some C > 0 sufficiently large.

Setting ps,g(r, ρ, η) := [r]−s+g p̃([r]ρ, [r]η), from Definition 3.1 it follows that

Op(ps,g)(η1) : S(R×X) → S(R×X)

extends to a continuous operator

Op(ps,g)(η1) : Hs,g
cone(X


) → L2(R×X). (3.1)

Theorem 3.2. The operator (3.1) is an isomorphism for every fixed s, g ∈ R and
|η1| sufficiently large.

Proof. We show the invertibility by verifying that there is a right and a left inverse.
By notation we have ps,g(r, ρ, η) = [r]−s+g p̃([r]ρ, [r]η) ∈ Ss,−s+g. The operator
family p̃(ρ̃, η̃) ∈ Ls

cl(X ; R1+q
ρ̃,η̃ ) is invertible for large |ρ̃, η̃| ≥ C for some C > 0.

There exists a parameter-dependent parametrix p̃(−1)(ρ̃, η̃) ∈ L−s
cl (X ; R1+q

ρ̃,η̃ ) such
that p̃(−1)(ρ̃, η̃) = p̃−1(ρ̃, η̃) for |ρ̃, η̃| ≥ C. Let us set

p−s,−g(r, ρ, η) := [r]s−g p̃(−1)([r]ρ, [r]η) ∈ S−s,s−g,



78 J. Abed and B.-W. Schulze

and P s,g(η) := Op(ps,g)(η), P−s,−g(η) := Op(p−s,−g)(η). Then we have

P s,g(η)P−s,−g(η) = 1 + Op(cN )(η) +RN (η) (3.2)

for some cN (r, ρ, η) ∈ S−1,0 and a remainder RN (η) = Op(rN )(η) where rN is
as in Lemma 2.9. We have Op(cN )(η) → 0 and RN (η) → 0 in L(L2(R × X)) as
|η| → ∞; the first property is a consequence of Theorem 2.15, the second one
of the estimate (2.17). Thus (3.2) shows that P s,g(η) has a right inverse for |η|
sufficiently large. Such considerations remain true when we interchange the role of
s, g and −s,−g. In other words, we also have

P−s,−g(η)P s,g(η) = 1 + Op(c̃N )(η) + R̃N (η)

where Op(c̃N )(η) and R̃N (η) are of analogous behaviour as before. This shows
that P s,g(η) has a left inverse for large |η|, and we obtain altogether that (3.1) is
an isomorphism for η = η1, |η1| sufficiently large. �

3.2. Elements of the Calculus

The results of Section 2.3 show the behaviour of compositions of parameter-
dependent families Op(a)(η) for a(r, ρ, η) ∈ Sμ,ν and η �= 0, first on S(R×X). In
particular, it can be proved that, when we concentrate, for instance, on the case
s′ = s′′ = 0, invertible operators of the form 1 +K : L2(R×X) → L2(R×X), for
K ∈ L−∞,−∞(X
; Rq \ {0}), can be written in the form 1 + L where L is again
an operator of such a smoothing behaviour. Moreover, there are other (more or
less standard) constructions that are immediate by the results of Section 2. For
instance, if we look at c(r, ρ, η) ∈ S−1,0 in the relation (3.2), by a formal Neumann
series argument we find a d(r, ρ, η) ∈ S−1,0 such that(

1 + Op(c)
)(

1 + Op(d)
)

= 1 + Op(rN )

for every N ∈ N with a remainder rN which is again as in Lemma 2.9.

Theorem 3.3. Let a(r, ρ, η) ∈ Sμ,ν and |η| �= 0. Then

Op(a)(η) : S(R ×X) → S(R ×X)

extends to a continuous operator

Op(a)(η) : Hs,g
cone(X


) → Hs−μ,g−ν
cone (X
) (3.3)

for every s, g ∈ R.

Proof. Let u ∈ S(R×X), and set ‖ · ‖s,g := ‖ · ‖Hs,g
cone(X�), in particular, ‖ · ‖0,0 =

‖ · ‖L2(R×X). By definition we have ‖u‖s,g = ‖Op(ps,g)(η1)‖0,0. Thus

‖Op(a)(η)u‖s−μ,g−ν = ‖Op(ps−μ,g−ν)(η1)Op(a)(η)u‖0,0

= ‖Op(ps−μ,g−ν)(η1)Op(a)(η)Op(ps,g)−1(η1)Op(ps,g)(η1)u‖0,0 ≤ c‖u‖s,g,
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c := ‖Op(ps−μ,g−ν)(η1)Op(a)(η)Op(ps,g)−1(η1)‖L(L2(R×X)). It remains to prove
that c is a finite constant. This is completely straightforward when we replace
Op(ps,g)−1(η1) by Op(p−s,−g)(η1); in that case we have

Op(ps−μ,g−ν)(η1)Op(a)(η)Op(p−s,−g)(η1)=Op
(
ps−μ,g−ν(·, η1)a(·, η)p−s,−g(·, η1)

)
(where · stands for r, ρ) modulo a remainder of the form Op(c)+RN and Op(c) is
bounded in L2(R×X) for similar reasons as in Theorem 2.15 and the boundedness
of RN in L2(R × X) is clear anyway. In general, Op(ps,g)−1(η1) has the form
Op(p−s,−g)(η1) + CN (η1) + RN (η1) for CN (η1) = Op(cN (·, η1)) and a remainder
RN (η1) ∈ L−∞,−∞ while cN (·, η) belongs to S−s−1,−g. Then, compared with the
first step of the proof, we obtain extra terms, namely,

Op(ps−μ,g−ν)(η1)Op(a)(η)Op(cN )(η1), (3.4)

Op(ps−μ,g−ν)(η1)Op(a)(η)RN (η1) (3.5)
which have to be bounded in L2(R×X). The arguments for (3.4) are of the same
structure as those at the beginning of the proof (the order of cN is even better
than before), while for the composition (3.5) we apply another remark from the
preceding section, namely, that smoothing operators composed by other operators
of the calculus give rise to smoothing operators again. �
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Global Regularity and Stability in S-Spaces for
Classes of Degenerate Shubin Operators

Todor Gramchev, Stevan Pilipović and Luigi Rodino

Abstract. We study the uniform regularity and the decay at infinity for an-
isotropic tensor products of Shubin-type differential operators as well as for
degenerate harmonic oscillators. As applications of our general results we ob-
tain new theorems for global hypoellipticity for classes of degenerate operators
in inductive and projective Gelfand–Shilov spaces.

Mathematics Subject Classification (2000). Primary 47F30; Secondary 46F05,
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Keywords. S-spaces, Shubin-type pseudo-differential operators, Gelfand–Shi-
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1. Introduction

The main goal of this paper is to derive reductions to normal forms of (tensor
products of) degenerate harmonic oscillators in R2 of the type

−Δ +
τ2

4
(x2

1 + x2
2) + τ(x2Dx1 − x1Dx2), x = (x1, x2) ∈ R2, τ ∈ R \ {0}

and their extensions to products of powers of harmonic oscillators by means of
symplectic transformations. Secondly, we study anisotropic tensor products of har-
monic oscillators in suitable S-type spaces defined by Fourier expansions using the
Hermite functions. Finally, as an application, we derive new global regularity and
solvability results for products of degnerate harmonics oscillators with lower-order
perturbations.

We recall (cf. M. Shubin [13]) that the globally elliptic Shubin operators
generalize the Schrödinger harmonic oscillator operator

H = −Δ + |x|2, (1.1)

appearing in quantum mechanics. The spectrum of H in L2(Rn) is discrete with
eigenvalues λ = λk =

∑n
j=1(2kj + 1), k = (k1, . . . , kn) ∈ Zn

+ while eigenfunctions



82 T. Gramchev, S. Pilipović and L. Rodino

are the Hermite functions

u(x) = Hk(x) =
n∏

j=1

1√
2πkj !

Pkj (xj) exp(−|x|2/2), (1.2)

where Pr(t) stands for the r-th Hermite polynomial.
We recall that f ∈ Sμ

ν (Rn), μ > 0, ν > 0, μ + ν ≥ 1, iff f ∈ C∞(Rn) and
there exist C > 0, ε > 0 such that∣∣∂β

xf(x)
∣∣ ≤ C|β|+1(β!)μe−ε|x|1/ν

(1.3)

for all x ∈ Rn, β ∈ Zn
+ or, equivalently, one can find C > 0 such that

sup
x∈Rn

|xβ∂α
x f(x)| ≤ C|α|+|β|+1(α!)μ(β!)ν , α, β ∈ Zn

+. (1.4)

This definition gives the smallest Gelfand–Shilov-type space S1/2
1/2(Rn). Beur-

ling-type spaces of ultradifferentiable functions denoted by Σσ
μ, σ > 0, μ > 0, σ +

μ > 1, called here as projective-type Gelfand–Shilov spaces, are defined similarly.
Especially if σ = μ = 1/2, then Σ1/2

1/2 = {0}. Note that S1/2
1/2 ⊂ Σσ

σ ⊂ Sσ
σ , σ > 1/2.

Recently, M. Cappiello, T. Gramchev and L. Rodino [2] have proved the
Sμ

ν -regularity of eigenfunctions to Shubin-type partial differential operators in Rn,

P =
∑

|α|+|β|≤m

cαβx
βDα

x , (1.5)

where m is a positive integer, provided P is globally elliptic, namely, there exist
C > 0 and R > 0 such that∣∣∣∣∣∣

∑
|α|+|β|≤m

cαβx
βξα

∣∣∣∣∣∣ ≥ C(1 + |x|2 + |ξ|2)m/2, |x|+ |ξ| ≥ R. (1.6)

Global ellipticity in the previous sense implies both local regularity and asymptotic
decay of the solutions, namely we have the following basic result (see for example
M. Shubin [13]): Pu = f ∈ S(Rn) for u ∈ S′(Rn) implies actually u ∈ S(Rn). The
main theorem in [2] states that P is also globally hypoelliptic in the Gelfand–Shilov
spaces Sμ

ν (Rn), μ ≥ 1/2, ν ≥ 1/2.
We will consider the symmetric Gelfand–Shilov spaces Sμ

μ , (R
n), μ ≥ 1/2 and

Σμ
μ(Rn), μ > 1/2.

Our aim is to weaken the global ellipticity condition (1.6) for linear operators
with polynomial coefficients.

Let τ ∈ R \ 0. We consider the degenerate operators considered by Wong [14]
in R2 (for τ = 1)

W τ = D2
x1

+D2
x2

+ τ2 1
4
(x2

1 + x2
2) + τx2Dx1 − τx1Dx2

= (Dx1 + τ
x2

2
)2 + (Dx2 − τ

x1

2
)2, Dxk

= i−1∂xk
. (1.7)
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In particular, M.W. Wong [14] has shown that W = W 1 is globally hypoelliptic,
namely

u ∈ S′(R2), Wu ∈ S(R2) ⇒ u ∈ S(R2). (1.8)
Later on, A. Dasgupta and M.W. Wong [3] established global hypoellipticity for
Wτ in the critical inductive Gelfand–Shilov class S1/2

1/2(R2).
Given f ∈ S(Rn) or f ∈ S′(Rn) we write

f =
∑

k∈Zn
+

fkHk(x), fk = 〈f,Hk〉. (1.9)

If n ≥ 2, using the standard lexicographical order we can rewrite Hk(x),
k ∈ Zn

+ as H̃j(x), j = 0, 1, . . . , and (1.9) becomes

f =
∞∑

j=0

f̃jH̃j(x), f̃j = 〈f, H̃j〉. (1.10)

We define the following spaces of sequences (see A. Avantaggiati [1], H.
Holden, B. Øksendal, J. Ubøe and T. Zhang [6], M. Langenbruch [8], Z. Lozanov
Crvenković, D. Perisić and M. Tasković [10], B.S. Mitjagin [9], S. Pilipovi ć [11],
[12] and the references therein).

�S(Zn
+) = {{vk}k∈Zn

+
: sup

k∈Zn
+

(|k|N |vk|) < +∞, for all N > 0}, (1.11)

�Sμ
μ
(Zn

+) = {{vk}k∈Zn
+

: sup
k∈Zn

+

(exp(δ|k|1/(2μ)|vk|) < +∞, for some δ > 0}, (1.12)

μ ≥ 1/2, and

�Σμ
μ
(Zn

+) = {{vk}k∈Zn
+

: sup
k∈Zn

+

(exp(δ|k|1/(2μ)|vk|) < +∞, for all δ > 0}, (1.13)

μ > 1/2.
The next assertion is a particular case of more general theorems contained in

the aforementioned papers.

Theorem 1.1. The Hermite expansion is an isomorphism between sequence spaces
quoted above and the corresponding Schwartz and Gelfand–Shilov-type spaces (writ-
ten in the indices).

2. FIO Reduction of W τ

In [5] we established a connection between W τ and the one-dimensional harmonic
oscillator through Hermite expansions. Here we propose an alternative approach,
in terms of Fourier integral operators. As before, assume, τ ∈ R \ {0}. We observe
that in fact the operator W τ is globally reducible via a symplectic transformation
to the one-dimensional harmonic oscillator, namely:
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We define an explicit symplectic transformation

κ : R2
y × R2

η → R2
x × R2

ξ (2.1)

defined by the generating function

ϕτ (x, η) = |τ |(η1η2 +
x1x2

2
+ x2η1 + x1η2) (2.2)

via

yj = ∂ηjϕτ (x, η), j = 1, 2 (2.3)

ξj = ∂xjϕτ (x, η), j = 1, 2, (2.4)

which leads to explicit formulas for κ

y1 = |τ |x2 + |τ |η2, (2.5)

y2 = |τ |x1 + |τ |η1 (2.6)

η1 = ξ2/|τ | − x1

2
, (2.7)

η2 = ξ1/|τ | − x2

2
. (2.8)

Then we have:

Theorem 2.1.

κ∗W τ (y, η) =
{

τ2η2
1 + y2

1 if τ > 0,
τ2η2

2 + y2
2 if τ < 0. (2.9)

Moreover one can write (2.9) as an Egorov conjugation-type theorem via a globally
defined FIO:

J−1 ◦W τ ◦ J =
{

τ2D2
y1

+ y2
1 if τ > 0,

τ2D2
y2

+ y2
2 if τ < 0. (2.10)

where J is the FIO with a phase function defined in a canonical way by κ

Jv(x) =
∫

R2
exp(iϕτ (x, η))v̂(η) dη

=
∫

R2

∫
R2

exp(iΦτ (x, y, η))v(y)dy dη (2.11)

with
Φτ (x, y, η) = ϕτ (x, η) − yη. (2.12)

Moreover, J is an automorphism of

S(R2), Sμ
μ(R2), μ ≥ 1/2, and Σ1/2

1/2(R
2), μ > 1/2. (2.13)

Proof of Theorem 2.1. The first part of the statement can be seen as consequence
of the general results of L. Hörmander [7] concerning FIOs corresponding to linear
symplectic transformations. We have in particular that J is an automorphism of
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S(R2). To be definite, we provide here a direct computation for (2.10). In fact,
after an integration by parts in sense of oscillatory integrals, we have for τ > 0

(Dx1 + τ
x2

2
)Jv(x) =

∫
R2

(Dx1 + τ
x2

2
)(exp(iϕτ (x, η)))v̂(η) dη

=
∫

R2
exp(iϕτ (x, η))(τη2 + τx2))v̂(η) dη

=
∫

R2
Dη1(exp(iϕτ (x, η))))v̂(η) dη

= −
∫

R2
exp(iϕτ (x, η))Dη1 v̂(η) dη

=
∫

R2

∫
R2

exp(iΦτ (x, y, η))y1v(y)dy dη

= J(y1v(y)) (2.14)

which yields
J−1 ◦ (Dx1 + τ

x2

2
)2 ◦ Jv(y) = y2

1v(y) (2.15)

We get immediately that

(Dx2 − τ
x1

2
)Jv(x) =

∫
R2

(Dx2 − τ
x1

2
)(exp(iϕτ (x, η)))v̂(η) dη

=
∫

R2
exp(iϕτ (x, η))η1v̂(η) dη

= J(τDy1v(y)) (2.16)

which yields
J−1 ◦ (Dx2 − τ

x1

2
)2 ◦ Jv(x) = τ2D2

y1
v(y). (2.17)

Combining (2.15) and (2.17) we get the first part of (2.10) for τ > 0. Similarly
we argue in the case τ < 0.

Next, we deal with the automorphism property of J . First we note that

J = eix1x2/2H,

where

Hv(x) = (2π)−n

∫
R2
eiη1η2+x1η2+x2η1 v̂(η1, η2)dη1dη2.

Note that
Sμ

μ � v �→ eix1x2/2v and Σμ
μ � v �→ eix1x2/2v

are automorphisms on Sμ
μ , μ ≥ 1/2 and Σμ

μ, μ > 1/2. So it is enough to prove that
H is an automorphism on quoted spaces.

Denote by G the mapping v̂(η1, η2) �→ v̂(η1, η2)eiη1η2 . As above one can
simply conclude that this is an automorphism on Sμ

μ , μ ≥ 1/2 and Σμ
μ, μ > 1/2,

respectively. Now we see that

Hv(x1, x2) = (2π)−nF−1(G(Fv(η2, η1)))(x1, x2),
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and since the Fourier transformation is an automorphism, it follows that H is an
automorphism on Sμ

μ , μ ≥ 1/2 and Σμ
μ, μ > 1/2, respectively and the assertion for

J is proved. �

Remark 2.2. By the last part of Theorem 2.1 we reduce the problem of the global
hypoellipticity and the global solvability in the Schwartz class and the Gelfand–
Shilov spaces for an operator M to the operator J−1 ◦M ◦ J , in particular for
W τ to τ2D2

y1
+ y2

1 for τ > 0. We used this idea in [5], where J was expressed in
terms of Hermite expansions, to recapture the results of A. Dasgupta and M.W.
Wong [3] and M.W. Wong [14] for the global hypoellipticity of W τ . In the present
paper we shall go further, applying the same argument to higher order degenerate
Shubin operators, see Section 3.

3. Perturbations of Tensor Products of Harmonic Oscillators

We considered in [5] the operator

P = Pm1
1 ⊗ Pm2

2 , (3.1)

where

Pi = x2
i −

∂2

∂x2
i

, i = 1, 2 (3.2)

This operator is not hypo-elliptic in the sense of [13], Definition 25.1.
We consider operators Q with polynomial coefficients of the type

Q(x,D) =
∑

α+β≤2m0

qαβx
αDβ

x , (3.3)

where
m0 = min{m1,m2}. (3.4)

We investigate the perturbation

Pδ(x,D)u = P (x,D)u + δQ(x,D)u = f, (3.5)

where δ ∈ R is a parameter.

Theorem 3.1. There exists δ0 > 0 such that the equation (3.5) is globally solvable
and globally hypoelliptic in S(R2), Sμ

μ(R2) (respectively, Σμ
μ(R2)) with μ ≥ 1/2

(respectively, μ > 1/2) provided |δ| < δ0.

Proof. Recall, for t ∈ R and n ∈ Z+,

d

dt
Hn(t) =

√
n

2
Hn−1(t)−

√
n+ 1

2
Hn+1(t), (3.6)

tHn(x) =
√
n

2
Hn−1(t) +

√
n+ 1

2
Hn+1(t). (3.7)
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(Hi = 0 if i < 0.) We develop u and f into Hermite series

u =
∑

(i1,i2)∈Z2
+

ũ(i1,i2)Hi1(x1)Hi2(x2), f =
∑

i1,i2∈Z2
+

f̃(i1,i2)Hi1(x1)Hi2(x2).

Performing

xα1
1 xα2

2 ∂β1
x1
∂β2

x2
Hi1(x1)Hi2 (x2) =: H(α1,α2);(β1,β2)

(i1,i2) (x1, x2)

we obtain that the term above can be written as
α1+β1∑

p=−α1−β1

α2+β2∑
q=−α2−β2

ci1,i2
p,q ui1+p,i2+qHi1+p(x1)Hi2+q(x2), (3.8)

for some ci1,i2
p,q ∈ R, p = −α1 − β1, . . . , α1 + β1, q = −α2 − β2, . . . , α2 + β2. Then,

by the change i1 + p→ i1, i2 + q → i2 it follows that
α1+β1∑

p=−α1−β1

α2+β2∑
q=−α2−β2

ci1−p,i2−q
p,q ũi1,i2Hi1(x1)Hi2(x2), (3.9)

where ci1−p,i2−q
p,q = 0 if some of the indices i1 − p or i2 − q is negative. We denote

by d(i1,i2) the sum in front of ũi1,i2 on the left-hand side of (3.9) and obtain

∑
(i1,i2)∈Z2

+

d(i1,i2)ũ(i1,i2)Hi1 (x1)Hi2(x2) =
∑

(i1,i2)∈Z2
+

f̃(i1,i2)Hi1(x1)Hi2(x2). (3.10)

We will estimate d(i1,i2). By the use of (3.6), (3.7) it follows that

d(i1,i2) = O(|i1 + i2|α1+β1+α2+β2), (i1, i2) ∈ Z2
+.

Thus, coming back to equation (3.5), we have∑
(i1,i2)∈Z2

+

d(i1,i2)ũ(i1,i2)Hi1 (x1)Hi2(x2) =
∑

(i1,i2)∈Z2
+

f̃(i1,i2)Hi1(x1)Hi2(x2). (3.11)

This implies that for some sufficiently small δ > 0 and ε > 0,

(2i1 + 1)m1(2i2 + 1)m2 + δ
∑

|i1+i2|≤2m0

O(|i1 + i2|m0) (3.12)

= (2i1 + 1)m1(2i2 + 1)m2(1 − ε), (i1, i2) ∈ Z2
+.

Thus by (3.12), we can solve (3.10) so that

ũ(i1,i2) = f̃(i1,i2)/d(i1,i2), (i1, i2) ∈ Z2
+,

and again by the use of (3.12), we prove both assertions of the theorem. Actually,
by Theorem 1.1,

|u(i1,i2)| exp(δ|i1 + i2|1/(2μ))=exp(δ|i1 + i2|1/(2μ))|f̃(i1,i2)/d(i1,i2)|<C, (i1, i2) ∈ Z2
+

for some δ, respectively, for all δ, which implies that u belongs to Sμ
μ , μ ≥ 1/2,

respectively Σμ
μ, μ > 1/2. �
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4. Applications

Consider the operator W τ in (1.7) for τ = ±1; to be definite

W = W 1 = D2
x1

+D2
x2

+
1
4
(x2

1 + x2
2) + x2Dx1 − x1Dx2 (4.1)

W̃ = W−1 = D2
x1

+D2
x2

+
1
4
(x2

1 + x2
2)− x2Dx1 + x1Dx2 (4.2)

Set
M = Wm1W̃m2 + δ

∑
α+β≤m0

cαβW
αW̃ β , (4.3)

where m0 satisfies (3.4), cαβ ∈ C and δ ∈ C is a parameter.

Theorem 4.1. There exists δ0 > 0 such that the equation

Mu(x) = f(x), x ∈ R2

is globally solvable and globally hypoelliptic in S(R2), Sμ
μ(R2) (respectively, Σμ

μ(R2))
with μ ≥ 1/2 (respectively, μ > 1/2) provided |δ| < δ0.

Proof. We apply first Remark 2.2, so that we are reduced to the study the global
hypoellipticity and the global solvability for J ◦M ◦J−1, where J is fixe now with
|τ | = 1 in (2.2). We then have from (2.10)

J−1 ◦W ◦ J = D2
y1

+ y2
1 , (4.4)

J−1 ◦ W̃ ◦ J = D2
y2

+ y2
2 . (4.5)

On the other hand,

J−1 ◦M ◦ J = (J−1 ◦W ◦ J)m1 ◦ (J−1 ◦ W̃ ◦ J)m2

+ δ
∑

α+β≤m0

cαβ(J−1 ◦W ◦ J)α(J−1 ◦ W̃ ◦ J)β . (4.6)

Plugging (4.5) and (4.5) into (4.6) we obtain

J−1 ◦M ◦ J = P + δQ, (4.7)

where, returning to the write x = (x1, x2) for the variables, P is given by (3.1)
and Q = Q(x,D) by (3.3) for suitable constants qαβ . From Theorem 2.1 we get
the conclusion. �
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Weyl’s Lemma and Converse Mean Value for
Dunkl Operators

M. Maslouhi and R. Daher

Abstract. We give a version of Weyl’s lemma for the Dunkl Laplacian and ap-
ply this result to characterize Dunkl harmonic functions in a class of tempered
distribution by invariance under Dunkl convolution with suitable kernels.

Mathematics Subject Classification (2000). Primary 46F12.

Keywords. Dunkl Laplacian, Dunkl harmonic functions, Weyl’s lemma, con-
verse mean values.

1. Introduction

Let 〈, 〉 be the euclidean scalar product on Rd and ‖ ‖ the associated norm. The
form 〈, 〉 is extended in a natural way to a bilinear form in Cd again denoted by
〈, 〉.

We recall that for α ∈ Rd the reflection σα with respect to the hyperplane
Hα, orthogonal to α is given for x ∈ Rd by

σα(x) = x− 2〈α, x〉
‖α‖2 α.

We fix a root system R in Rd \ {0}. This is a finite subset of Rd that satisfies
R ∩ Rα = {±α} and σαR = R for all α ∈ R. Let G be the reflection subgroup of
the orthogonal group O(n) generated by the reflections σα, α ∈ R. The action of
G on functions f : Rd → C is given for g ∈ G by R(g)f(x) = f(gx), x ∈ Rd. We fix
a positive root system R+ = {α ∈ R : 〈α, β〉 > 0} for some β ∈ R. A G-invariant
function k : R→ C is called a multiplicity function. If ξ ∈ Rd, the Dunkl operator
Tξ associated to the group G and multiplicity function k is given for f ∈ C1(Rd)
by

Tξf(x) = ∂ξf(x) +
∑

α∈R+

k(α)〈α, ξ〉f(x) − f(σα(x))
〈α, x〉 , (1.1)

where ∂ξ is the directional derivative in the direction ξ.
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The properties of these operators can be found in [2].
The Dunkl Laplacian Δk on Rd is given by Δk :=

∑d
j=1 T

2
ej
,where (e1, . . . , ed)

is the standard canonical basis of Rd.
A twice differentiable function f on a G-invariant open set Ω of Rd is said to

be Dunkl harmonic (D-harmonic) if it is annihilated by Δk.
In this paper we assume that k ≥ 0. We consider the weight function

ωk(x) =
∏

α∈R+

|〈α, x〉|2k(α) ;

ωk is G-invariant and homogeneous of degree 2γ where

γ :=
∑

α∈R+

k(α).

We let η be the normalized surface measure on the unit sphere S in Rd and
set

dηk(y) := ωk(x)dη(y).
Then ηk is a G-invariant measure on S, we let dk := ηk(S). We will also set

dωk(z) := ωk(z)dz

where dz is the Lebesgue measure in Rd.
Throughout the paper rB is the euclidean ball in Rd centered at 0 with radius

r > 0, and we write B when r = 1.
Finally, we use the classic notations D(Rd) and S(Rd) to denote the space

of smooth compactly supported functions and the space of Schwartz functions
respetively.

The Dunkl intertwining operator Vk is defined in [2] on polynomials f by

TξVkf = Vk∂ξf and Vk1 = 1.

It was shown [11] to extend as topological isomorphism to the space C∞(Rd) of
smooth functions on Rd onto itself. Moreover, there is a unique family (μx) of
probability measures [7], with support in the convex hull of the set {gx : g ∈ G},
satisfying

Vk(f)(x) =
∫

Rd

f(z)dμx(z), x ∈ Rd (1.2)

We set

Ek(x, y) := Vk

(
e〈·,y〉

)
(x) =

∫
Rd

e〈z,y〉dμx(z), x ∈ Rd, y ∈ Cd.

For all y ∈ Rd, the function f : x �→ Ek(x, y) is the unique solution of the
system

f(0) = 1, Tξf(x) = 〈ξ, y〉 f(x)
for all ξ ∈ Rd. Ek is called the generalized exponential or the Dunkl kernel.

A thorough study of this kernel can be found in [1], we give here some of its
basic properties needed for the sequel.
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Proposition 1.1. Let g ∈ G, z, w ∈ Cd and λ ∈ C. Then
1. Ek(z, 0) = 1.
2. Ek(z, ω) = Ek(ω, z).
3. Ek(g z, g ω) = Ek(z, ω) and Ek(λ z, ω) = Ek(z, λω).
4. For all ν ∈ Nd, x ∈ Rd, z ∈ Cd, we have

|Dν
zEk(x, z)| ≤ ‖x‖|ν| exp(‖x‖ ‖Re(z)‖)

where

Dν
z =

∂|ν|

∂zν1
1 . . . ∂zνn

n
, |ν| = ν1 + · · ·+ νn.

In particular
|Ek(i x, y)| ≤ 1

for all x, y ∈ Rd.

The Dunkl transform is defined by

Fk(f)(ξ) = c−1
k

∫
Rd

f(x)Ek(−iξ, x)dωk(x), f ∈ L1(Rd, dωk) (1.3)

where the constant ck is given by

ck =
∫

Rd

e−‖z‖
2/2dωk(z).

The Dunkl transform shares several properties with its conterpart in the clas-
sical case (that is k=0), in particular it has been shown [1] that Fk is a topological
isomorphism from S(Rd) into itself. The inverse transform is given by

F−1
k (f)(x) = c−1

k

∫
Rd

f(ξ)Ek(iξ, x)dωk(ξ) (1.4)

and
Fk

(
Tejf

)
(ξ) = iξjFk(f)(ξ), j = 1, . . . , d. (1.5)

A usefull value of this transform is obtained for the function

ψt(x) = e−t‖x‖2 , t > 0, x ∈ Rd,

namely, we have

Fk(ψt)(ξ) =
1

(2t)d/2+γ
e−‖ξ‖

2/4t, ξ ∈ Rd. (1.6)

We let V −1
k denote the inverse of Vk. The Dunkl translation operator τx is

defined by

τx(f)(y) =
∫

Rd

∫
Rd

(V −1
k f)(t+ u)dμx(t)dμy(u), y ∈ Rd.

where the measure μx is defined by (1.2). Note that if k = 0, then τx reduces to
the classical translation operator. The following properties are proven in [9].

Proposition 1.2. For all x, y ∈ Rd and f ∈ C∞(Rd) we have:
1. τxf(y) = τyf(x).
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2. τxf(0) = f(x).
3. If f ∈ D(Rd) with supp(f) ⊂ rB, then τxf ∈ D(Rd) and

supp(τxf) ⊂ (r + ‖x‖)B.
4. For all j = 1, . . . , d,

T y
ej

(τxf)(y) = τx(Tjf)(y) = T x
ej

(τyf)(x).

5. If f ∈ S(Rd), then τxf ∈ S(Rd). Moreover we have

τxf(y) = c−1
k

∫
Rd

Fk(f)(z)Ek(iy, z)Ek(ix, z)ωk(z)dz.

6. If f, g ∈ S(Rd), then∫
Rd

(τxf)(z)g(z)ωk(z)dz =
∫

Rd

f(z)(τ−xg)(z)ωk(z)dz.

Note that in particular if f ∈ S(Rd) is even, we have

τ−xf(y) = τxf(−y) = τ−yf(x).

The generalized convolution for Dunkl operators is defined by means of the
Dunkl translation and given by

f ∗k g(x) =
∫

Rd

f(y)τx(g)(−y)ωk(y)dy. (1.7)

As in the classical case, we have

Fk(f ∗k g) = ckFk(f)Fk(g) (1.8)

whenever f, g ∈ S(Rd).
Appealing [4] (see also [5]), D-harmonic functions u in Rd are characterized

by the mean value property

u(x) =
1
dk

∫
S

(τxu)(ρy)dηk(y), x ∈ Rd, ρ ≥ 0.

Let σ ∈ L1(Rd, dωk) be radial with σ(x) = F (‖x‖), x ∈ Rd, and consider a
D-harmonic function u in Rd such that σ ∗k u is defined. Then

σ ∗k u(x) =
∫

Rd

σ(z)τx(u)(z)dωk(z)

=
∫ +∞

0

rd+2γ−1F (r)
(∫

S

τx(u)(ry)dηk(y)
)
dr

= dku(x)
∫ +∞

0

rd+2γ−1F (r)dr

= u(x)
∫

Rd

σ(z)dωk(z).
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Thus if we choose σ such that
∫

Rd σ(z)dωk(z) = 1, that is ckFk(σ)(0) = 1, then u
solves the equation

σ ∗k u = u. (1.9)

The aim of this paper is to characterize D-harmonic functions as solutions of
(1.9) in suitable spaces and for suitable kernels σ.

We point out that a version of (1.9) in the classical case has been studied in
different contexts and by different approaches, see [3] and the references therein.

2. Weyl’s Lemma for the Dunkl Laplacian

In the classical case, Weyl’s lemma asserts that if u is a function satisfying

Δu = 0 in D′(Rd),

then u ∈ C∞(Rd) and Δu = 0 in Rd. In this section we state a version of Weyl’s
lemma for the Dunkl Laplacian which is a fundamental ingredient for the next
section.

Following [10], if u ∈ D′(Rd) we define for j = 1, . . . , d,

〈Tju, ϕ〉 = −〈u, Tjϕ〉 , ϕ ∈ D(Rd)

where Tj = Tej is defined by (1.1).

Theorem 2.1. Let u : Rd → C be locally bounded such that

Δk(ωku) = 0 in D′(Rd).

Then there exists v D-harmonic in Rd such that u = v a.e. in Rd.

Proof. Fix ϕ ∈ D(Rd) radial non-negative such that

supp(ϕ) ⊂ B and
∫

Rd

ϕ(z)dωk(z) = 1.

For ε > 0 set

ϕε(x) =
1

ε2γ+d
ϕ
(x
ε

)
, x ∈ Rd

and

uε(x) =
∫

Rd

u(z)τ−x(ϕε)(z)dωk(z). (2.1)

From [9] we have

suppτ−xϕε ⊂ (1 + ‖x‖)B for 0 < ε < 1
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which, together with Proposition 1.2, easily lead to uε ∈ C∞(Rd) for all ε > 0 and

(Δx
kuε)(x) =

∫
Rd

u(z)Δx
k(τ−zϕε)(x)dωk(z)

=
∫

Rd

u(z)τ−x(Δkϕε)(z)dωk(z)

=
∫

Rd

u(z)Δz
k(τ−xϕε)(z)dωk(z)

= 〈Δk(ωku), τ−xϕε〉
= 0

for τxϕε ∈ D(Rd) and Δk(ωku) = 0 in D′(Rd). Alternatively, for f ∈ D(Rd) such
that supp(f) ⊂ rB we have∫

Rd

uε(x)f(x)dωk(x) =
∫

Rd

f(x)
(∫

Rd

u(z)τ−x(ϕε)(z)dωk(z)
)
dωk(x)

=
∫

rB

f(x)

(∫
(1+r)B

u(z)τ−x(ϕε)(z)dωk(z)

)
dωk(x)

=
∫

(1+r)B

u(z)
(∫

rB

f(x)τ−z(ϕε)(x)dωk(x)
)
dωk(z).

Set

hε(z) =
∫

Br

f(x)τ−z(ϕε)(x)dωk(x).

From [6, Theorem 5.1] we have τ−z(ϕε) ≥ 0 for all z ∈ Rd and ε > 0, hence by [8,
Theorem 3.4] we get

|hε(z)| ≤ ‖f‖∞
∫

Rd

τ−z(ϕε)(x)dωk(x)

= ‖f‖∞
∫

Rd

ϕε(x)dωk(x)

= ‖f‖∞
for all ε > 0. On the other hand, we have∫

rB

f(x)τ−z(ϕε)(x)dωk(x) =
∫

Rd

f(x)τ−z(ϕε)(x)dωk(x)

=
∫

Rd

τz(f)(x)ϕε(x)dωk(x)

=
∫

Rd

τz(f)(εx)ϕ(x)dωk(x).

Since
|τz(f)(εx)| ≤ ‖Fk(f)‖L1(Rd,dωk)
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for all ε > 0 and all x ∈ Rd, the dominated convergence theorem leads now to

lim
ε→0

∫
Rd

uε(x)f(x)dωk(x) =
∫

(1+r)B

u(z)f(z)dωk(z) =
∫

Rd

u(z)f(z)dωk(z)

which shows that ωkuε converges to ωku in D′(Rd) as ε tends to 0.
Now we will show that the sequence (uε) is uniformly bounded in each com-

pact subset of Rd which will terminates the proof by use of [4, Theorem B].
Fix r > 0 and let C(r) > 0 such that

|u(z)| ≤ C(r) for all z ∈ (1 + r)B.

Arguing as before, we have for all x ∈ rB and all ε > 0

|uε(x)| ≤
∫

(1+r)B

|u(z)| τ−x(ϕε)(z)dωk(z)

≤ C(r)
∫

(1+r)B

τ−x(ϕε)(z)dωk(x)

= C(r)
∫

Rd

τ−z(ϕε)(x)dωk(x)

= C(r)
∫

Rd

ϕε(x)dωk(x)

= C(r).

This shows that the sequence (uε) is uniformly bounded in each compact subset
of Rd. Hence from [4, Theorem B], and up to a subsequence, the sequence uε

converges uniformly in each compact subset of Rd to a function v D-harmonic in
Rd, we conclude then that

u = v in Rd \ (∪α∈R+Hα

)
where Hα is the hyperplane orthogonal to α, whence our proclaim. �

3. Application: Converse Mean Value

We have seen in Section 1 that the mean value property of D-harmonic functions
leads to an invariance of Dunkl convolution with suitable kernels. In this section
we will use the results of Section 2 to establish a converse of this fact for a class
of tempered distribution.

To simplify matters, let us denote by S the space of Schwartz functions on
Rd, that is, S = S(Rd).

Lemma 3.1. Let σ ∈ L1(Rd, dωk) and define the operator Kσ : f �→ σ ∗k f . Then
we have

(I −Kσ)S = ΔkS (3.1)
if and only if

1− ckFk(σ)(ξ) = ‖ξ‖2
θ(ξ), ξ ∈ Rd (3.2)
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where θ is a function satisfying

θS ⊂ S and
1
θ
S ⊂ S. (3.3)

Proof. Let θ be given by (3.2) and (3.3) and consider v ∈ S. Define ϕ by

ϕ := θFk(v),

then ϕ ∈ S and
Fk((I −Kσ)v) = ‖ξ‖2 ϕ = Fk(Δkψ)

where ψ = −F−1
k (ϕ). Hence (I −Kσ)S ⊂ ΔkS.

Now consider ϕ ∈ S, we are looking for v ∈ S such that (I −Kσ)v = Δkϕ.
Since Fk is a homeomorphism from S into itself, the latter equation equivalents
to find v ∈ S such that

(1 − ckFk(σ)) × v = ‖ξ‖2 Fk(ϕ);

using (3.2) this reduces to

v =
1
θ
Fk(ϕ).

Thus the whole task is to show that
1
θ
Fk(ϕ) ∈ S

which is guaranteed by (3.3).
For the converse, set

θ(ξ) =
1− ckFk(σ)(ξ)

‖ξ‖2 , ξ ∈ Rd \ {0} .

It suffices to show that θ and 1
θ extend to a smooth functions in Rd, which is

possible view of (3.1) and since there exists ϕ ∈ S such that (Fk(ϕ))|rB
≡ 1 for a

given r > 0. �

We point out that the sufficient part of Lemma 3.1 is established for a special
value of σ in [3] with the setting k = 0.

Proposition 3.3 will give concrete example of such a kernel σ.
For σ ∈ S(Rd) and a tempered distribution u the tempered distribution σ∗ku

is defined by
〈σ ∗k u, ψ〉 := 〈u, σ ∗k ψ〉 , ψ ∈ S(Rd).

Note that if u ∈ L1
k(Rd), then σ ∗k u is a function.

Theorem 3.2. Fix σ ∈ S(Rd) satisfying (3.2) and (3.3) and let u : Rd → C be
locally bounded such that

σ ∗k (ωku) = ωku in S′(Rd).

Then there exists v D-harmonic in Rd such that u = v a.e in Rd.
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Proof. Let ϕ ∈ D(Rd). From Lemma 3.1 there exists ψ ∈ S(Rd) such that

〈Δk(ωku), ϕ〉 = 〈ωku,Δkϕ〉
= 〈ωku, ψ〉 − 〈ωku, σ ∗k ψ〉
= 〈ωku, ψ〉 − 〈σ ∗k (ωku), ψ〉
= 0;

hence Δk(ωku) = 0 in D′(Rd) and Theorem 2.1 completes the proof. �

Proposition 3.3. Let u : Rd → C be locally bounded such that

e−
‖x‖2

2 ∗k (ωku) = ωku in S′(Rd).

Then there exists v D-harmonic in Rd such that u = v a.e in Rd.

Proof. Let f be the function defined by

f(x) = e
−‖x‖2

2 , x ∈ Rd. (3.4)

From (1.6) we have

Fk(f)(ξ) = e−
‖ξ‖2

2 , ξ ∈ Rd.

By Theorem 3.2, all what we have to do is to show that f satisfies (3.2) and
(3.3). For this purpose, set

θ(ξ) =
1− e−

‖ξ‖2

2

‖ξ‖2 , ξ ∈ Rd.

It is clear that θ is well defined and of class C∞ on Rd. Moreover, we have

θ(ξ) =
1
2

∫ 1

0

e−t‖ξ‖2

2 dt (3.5)

for all ξ ∈ Rd, hence Dνθ is of polynomial growth for all ν ∈ Nd
0, where

Dν =
∂ν1

∂ξν1
1

. . .
∂νd

∂ξνd

d

, ν = (ν1, . . . , νd)

whence θS ⊂ S. On the other hand, we have θ(ξ) > 0 for all ξ ∈ Rd and it is not
hard to see that Dν

(
1
θ

)
is a linear combinaison of expressions of the form

Dμ1θ(ξ)× · · · ×Dμmθ(ξ)
θm+1(ξ)

, m = 0, 1, 2, . . . ,

and μ1, μ2, . . . are some multi-indices in Nd. Thus since the derivatives of θ are of
polynomial growth, to show that 1

θS ⊂ S it suffices to show that 1
θ is of polynomial

growth.
By continuity argument, there exists C1 > 0 such that

1
|θ(ξ)| =

‖ξ‖2

1− e−
‖ξ‖2

2

≤ C1 for all ξ ∈ B.
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Next, since the map t �→ 1
1−e−t is non-increasing in (0,+∞), we see that we may

write
1

|θ(ξ)| ≤ C2 ‖ξ‖2 for ‖ξ‖ ≥ 1

for some positive constant C2 and we are done. �
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Dirichlet Problems for Inhomogeneous
Complex Mixed-Partial Differential Equations
of Higher Order in the Unit Disc: New View

H. Begehr, Zhihua Du and Ning Wang

Abstract. In this paper, we discuss some Dirichlet problems for inhomoge-
neous complex mixed-partial differential equations of higher order in the unit
disc. Using higher-order Pompeiu operators Tm,n, we give some special solu-
tions for the inhomogeneous equations. The solutions of homogeneous equa-
tions are given on the basis of decompositions of polyanalytic and polyhar-
monic functions. Combining the solutions of the homogeneous equations and
special solutions, we obtain all solutions of the inhomogeneous equations.
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Keywords. Dirichlet problems, higher order Pompeiu operators, higher-order
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1. Introduction

Recently, a large number of investigations on various boundary value problems
(simply, BVPs) for polyanalytic functions, metaanalytic functions have widely
been published, refer to papers [10,15,16,18,29,30] and references there. However,
the investigations on Dirichlet problems for polyharmonic functions (simply, PHD
problems) in the case of the unit disc just appeared in recent two years [7, 8, 11].
All of these works are based on two kinds of methods: one is called iterating
method by making use of so-called poly-Cauchy operator [10, 15], the other is
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was carried out when the second named author was visiting the Freie Universität Berlin from
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second named author dearly expresses his gratitude to the first named author Professor Dr. H.

Begehr for his help in many things and also appreciates the hospitality from the Institute of
Mathematics, Freie Universität Berlin.
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called reflection method in terms of Schwarz symmetric extension principle and
decompositions for polyanalytic and polyharmonic functions due to Begehr, Du
and Wang [8, 15]. In [15], Du and Wang established a beautiful decomposition
theorem for polyanalytic functions such that BVPs for polyanalytic functions can
be easily transformed to BVPs for analytic functions while the theory of the latter
is completely developed [20,23,24]. Further, in [8], Begehr, Du and Wang also ob-
tained a decomposition theorem for polyharmonic functions by the decomposition
theorem for polyanalytic functions. In fact, these decomposition theorems have
appeared in the book [2] of Balk in some implicit forms. Just using the decom-
position theorem, in [8], Begehr, Du and Wang studied the Dirichlet problem for
polyharmonic functions in the unit disc by reflection method. They found that the
problem is uniquely solvable and the solution is closely connected with a sequence
of kernel functions with some elegant properties. However, explicit expressions for
all kernel functions are not yet attained although the kernel functions exist and
satisfy certain inductive relations.

In [17], Du, Guo and Wang established a new decomposition theorem for the
polyharmonic functions in a simply connected (bounded or unbounded) domain of
the complex plane which is a natural extension of Goursat decomposition theorem
for biharmonic functions [21]. Using the decomposition theorem in the case of
the unit disc, they gave a unified expression for the kernel functions appearing
in [8] which are expressed in terms of some vertical sums with nice structure.
Then the PHD problems in the unit disc are completely solved. Furthermore, they
have considered some Dirichlet problems for homogeneous complex mixed-partial
differential equations of higher order and obtained the complete solutions in terms
of the decompositions of polyanalytic and polyharmonic functions.

For inhomogeneous equations, the corresponding problems have been little
investigated [12, 22], and it is the purpose of the present paper to obtain some
results in this direction. In [12], since the explicit expressions of kernel functions
are unknown, in fact, Begehr and Wang only solved a Dirichlet problem for inho-
mogeneous triharmonic equations in the unit disc although the general solution
for the polyharmonic case is indicated by a final remark. In [22], Kumar and
Prakash consider the same equations appearing in the present paper with different
boundary conditions using another method. In the present paper, we first apply
the differentiability of higher-order Pompeiu operators introduced by Begehr and
Hile [10] to get special solutions for the inhomogeneous equations. Further, we use
the known results of homogeneous equations [8,17] due to the explicit expressions
of kernel functions [17] which are obtained by the decompositions of polyanalytic
and polyharmonic functions, and the continuity of the higher-order Pompeiu op-
erators. Combining the special solutions and homogeneous solutions, we obtain
the solutions of Dirichlet problems for the inhomogeneous equations under some
suitable conditions of solvability. It is a new view to solve Dirichlet problems for
inhomogeneous equations which is different from the usual method depending on
the higher-order Green functions [6] whose explicit expressions are unknown except
for some lower orders up to now. It is more interesting that the view appearing
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here to solve a Dirichlet problem for inhomogeneous higher-order complex partial
differential equations is similar to the one usually used in linear algebra to solve
an inhomogeneous system of linear equations. In many aspects, the present paper
is related to [17].

As in [17], in what follows, we always use polyharmonic operators (∂z∂z)n

(n ≥ 1) to define polyharmonic functions, where ∂z = 1
2 ( ∂

∂x + i ∂
∂y ) is the Cauchy-

Riemann operator and ∂z = 1
2 ( ∂

∂x− i ∂
∂y ) is its adjoint operator. In particular, ∂z∂z

is the harmonic operator and (∂z∂z)2 is the biharmonic operator. In addition, the
functions are complex except for some special statements about real functions.

2. Decompositions of Functions

As in [17], in what follows, we always suppose that Ω is a simply connected
(bounded or unbounded) domain in the complex plane with smooth boundary ∂Ω.
If a real valued function f ∈ C2n(Ω) satisfies polyharmonic equation (∂z∂z)nf = 0
in Ω, then f is called an n-harmonic function in Ω, concisely, a polyharmonic
function. As usual, if f ∈ Cn(Ω) satisfies the polyanalytic equation ∂n

z f = 0 in Ω,
then f is called an n-analytic function in Ω, concisely, a polyanalytic function [2].
The set of polyanalytic (polyharmonic) functions of order n in Ω is simply denoted
by Hn(Ω) (Harn(Ω)). Especially, H1(Ω) (Har1(Ω)) is the set of all analytic (har-
monic) functions in Ω. Sometimes we need to consider HarC

n(Ω) = {f + ig : f, g ∈
Harn(Ω)} consisting of all complex polyharmonic functions of order n in Ω.

In addition, we introduce the function spaces Hj
1,z0

(Ω) = {ϕ ∈ H1(Ω) :
ϕ(k)(z0) = 0, z0 ∈ Ω, 0 ≤ k < j } and Πj

1,z0
(Ω) = { ic(z−z0)j : c ∈ R, z, z0 ∈ Ω },

where R denotes the set of all real numbers and j = 0, 1, 2, . . . . Obviously, for j > 1,
Hj

1,z0
(Ω) is the set of all analytic functions which have a zero of order at least j

at z0 ∈ Ω whereas H0
1,z0

(Ω) = H1(Ω). Of course, Πj
1,z0

(Ω) ⊂ Hj
1,z0

(Ω) ⊂ H1(Ω). If
ϕ, ϕ̃ ∈ Hj

1,z0
(Ω) and ϕ − ϕ̃ ∈ Πj

1,z0
(Ω), then we say that ϕ and ϕ̃ are equivalent

and write that ϕ ∼j ϕ̃. Moreover, define ∼= ∪j ∼j , that is, f ∼ g if f ∼j g for
some j ∈ N. Especially, for example, 0 ∼j ic(z − z0)j for any nonzero c ∈ R.

With these preliminaries, the following decomposition fact for polyharmonic
functions holds.

Theorem 2.1 (see [17]). Let Ω be a simply connected (bounded or unbounded) do-
main in the complex plane with smooth boundary ∂Ω. If f ∈ Harn(Ω), then for
any z0 ∈ Ω, there exist functions fj ∈ Hj

1,z0
(Ω), j = 0, 1, . . . , n− 1 such that

f(z) = 2�
{ n−1∑

j=0

(z − z0)jfj(z)
}
, z ∈ Ω, (2.1)

where � denotes the real part. The above decomposition expression of f is unique in
the sense of the equivalence relation ∼, more precisely, ∼j for fj. That is, if (2.1)
also holds for f̂j ∈ Hj

1,z0
(Ω), j = 0, 1, . . . , n− 1, then f̂j ∼j fj, j = 0, 1, . . . , n− 1.
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Remark 2.1. As n = 2, Theorem 2.1 is the well-known result for real biharmonic
funcions due to Goursat in [21] (also see [28]). So (2.1) is called Goursat decom-
position form and the function fj in (2.1) is called the analytic jth decomposition
component of f (see [17]).

By Theorem 2.1, we also have

Corollary 2.1 (see [17]). Let the sequence of functions {fn} defined in Ω satisfy
1. f1 is a harmonic function in Ω, i.e., f1 ∈ Har1(Ω);
2. (∂z∂z)fn = fn−1 in Ω for n > 1.

Then fn ∈ Harn(Ω) for n > 1, and

∂zfn,j = j−1fn−1,j−1, 1 ≤ j ≤ n− 1, (2.2)

where fn,j is the analytic jth decomposition component of the n-harmonic function
fn. (2.2) holds in the sense of the equivalence relation ∼. More precisely, ∼j for
fn,j and ∼j−1 for fn−1,j−1, j = 1, 2, . . . , n− 1.

For polyanalytic functions, we have the following decomposition theorem.

Theorem 2.2 (see [15]). Let f ∈ Hn(Ω), then for any z0 ∈ Ω,

f(z) =
n−1∑
j=0

(z − z0)jfj(z), z ∈ Ω, (2.3)

where fj ∈ H1(Ω), j = 0, 1, . . . , n − 1. The decomposition (2.3) is unique. fj is
called the analytic jth decomposition component of f .

As in [8], Hn(Ω) denotes the set of all functions satisfying ∂n
z f = 0. Since

∂zf = ∂zf , similarly or directly following from Theorem 2.2, we also get

Theorem 2.3 (see [17]). Let f ∈ Hn(Ω), then for any z0 ∈ Ω,

f(z) =
n−1∑
j=0

(z − z0)jfj(z), z ∈ Ω, (2.4)

where fj ∈ H1(Ω), j = 0, 1, . . . , n − 1. The decomposition (2.4) is unique. fj is
called the analytic jth decomposition component of f .

Let Πn denote the set of all complex polynomials of degree at most n, we
define another equivalence relation �n as follows:

If f − g ∈ Πn for f, g ∈ H1(Ω), then f �n g.

In addition, we set �= ∪n �n, that is, f � g if f �n g for some n ∈ N.
Let Mm,n(Ω) = { f ∈ Cm+n(Ω) : (∂m

z ∂n
z )f(z) = 0, z ∈ Ω }, especially,

M0,n(Ω) = Hn(Ω) and Mn,0(Ω) = Hn(Ω) as well as Mn,n(Ω) = HarC
n(Ω).

By the above theorems, we have (see [17]):

Theorem 2.4 (Harmonic Decomposition). If f ∈ Mm,n(Ω), where m,n > 1 and
m �= n, then for any z0 ∈ Ω,
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1. as m > n,

f(z) =2�
{ n−1∑

k=0

(z − z0)kϕk(z)
}

+ 2i�
{ n−1∑

k=0

(z − z0)kϕ̂k(z)
}

+ (z − z0)n
m−n−1∑

l=0

l!
(n+ l)!

(z − z0)lϕ̃l(z), z ∈ Ω, (2.5)

where ϕk, ϕ̂k ∈ Hk
1,z0

(Ω) and ϕ̃l ∈ H1(Ω);
2. as m < n,

f(z) =2�
{m−1∑

s=0

(z − z0)sψs(z)
}

+ 2i�
{m−1∑

s=0

(z − z0)sψ̂s(z)
}

+ (z − z0)m
n−m−1∑

t=0

t!
(m+ t)!

(z − z0)tψ̃t(z), z ∈ Ω, (2.6)

where ψs, ψ̂s ∈ Hs
1,z0

(Ω) and ψ̃t ∈ H1(Ω).

(2.5) and (2.6) are unique in the sense of equivalence relations ∼ and �, more
precisely, ∼k for ϕk, ϕ̂k and ∼s for ψs, ψ̂s whereas �n−1 for all ϕ̃l and �m−1 for
all ψ̃t.

Theorem 2.5 (Canonical Decomposition). If f ∈ Mm,n(Ω), where m,n > 1 and
m �= n, then for any z0 ∈ Ω,

f(z) =
n−1∑
p=0

(z − z0)pμp(z) +
m−1∑
q=0

(z − z0)qνq(z) (2.7)

where μp, νq ∈ H1(Ω). (2.7) is unique in the sense of equivalence relation �
for μp and νq. More precisely, �m−1(�n−1) for μp while νq(μp) is unique, p =
0, 1, . . . , n− 1, q = 0, 1, . . . ,m− 1.

Remark 2.2. As in [17], all above theorems can be simplified as follows:

Harn(Ω) = 2�
{ n−1∑

j=0

⊕ (z − z0)j (H/Π)j
1,z0

(Ω)
}
, (2.8)

where (H/Π)j
1,z0

(Ω) denotes the set of all equivalence classes about ∼j, j =
0, 1, . . . , n−1 and

∑n−1
j=0 ⊕ aj := a0⊕a1⊕· · ·⊕an−1 which denotes the direct sum

of a0, a1, . . . , an−1.

Hn(Ω) =
n−1∑
j=0

⊕ (z − z0)j H1(Ω). (2.9)

Hn(Ω) =
n−1∑
j=0

⊕ (z − z0)j H1(Ω). (2.10)
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Mm,n(Ω) = HarC

n(Ω)⊕ (z − z0)nHm−n(Ω) (m > n). (2.11)

Mm,n(Ω) = HarC

m(Ω)⊕ (z − z0)mHn−m(Ω) (m < n). (2.12)

Mm,n(Ω) = Hn(Ω)⊕Hm(Ω). (2.13)

All the decompositions (2.8)–(2.13) are understood in the sense of the equivalence
relations ∼ and �.

3. Higher-Order Pompeiu Operators

In [27], Vekua systematically studied the so-called Pompeiu operators. They are
defined as

TDw(z) = − 1
π

∫ ∫
D

w(ζ)
ζ − z

dξdη, (3.1)

TDw(z) = − 1
π

∫ ∫
D

w(ζ)
ζ − z

dξdη, (3.2)

and the so-called Π and Π operators defined as the Cauchy principle value integrals

ΠDw(z) = − 1
π

∫ ∫
D

w(ζ)
(ζ − z)2

dξdη, (3.3)

ΠDw(z) = − 1
π

∫ ∫
D

w(ζ)
(ζ − z)2

dξdη, (3.4)

where D is a domain in the complex plane, w is a suitable complex valued function
defined in D.

Now it is well known that the operators T and Π play an important role to
solve various linear or nonlinear boundary value problems for first and second-
order complex partial differential equations. So it happens that the operators T
and Π have elegant properties such as continuity, differentiability, even unitarity
in L2 when w is in some certain function spaces. For example, one of the famous
properties of T is its differentiability in the Sobolev sense as follows:

∂zTDw(z) = w(z), ∂zTDw(z) = ΠDw(z). (3.5)

In [10], Begehr and Hile introduced kernel functions

Km,n(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−m)!(−1)m

(n−1)!π zm−1zn−1, m ≤ 0;

(−n)!(−1)n

(m−1)!π zm−1zn−1, n ≤ 0;

1
(m−1)!(n−1)!πz

m−1zn−1
[
log |z|2 −∑m−1

k=1
1
k −

∑n−1
l=1

1
l

]
, m, n ≥ 1,

(3.6)
where m,n are integers with m+ n ≥ 0 but (m,n) �= (0, 0).

Using the above kernel functions, they defined a hierarchy of integral opera-
tors, more precisely,

Tm,n,Dw(z) =
∫ ∫

D
Km,n(z − ζ)w(ζ) dξdη. (3.7)
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Obviously,
T0,1,D = TD, T1,0,D = TD, (3.8)

and
T−1,1,D = ΠD, T1,−1,D = ΠD. (3.9)

Operators Tm,n,D are seen as the higher-order analogues of the operator TD,
by comparing their properties such as Lebesgue integrability, continuity and dif-
ferentiability and so on. They are called higher-order Pompeiu operators. The
following properties of Tm,n,D are needed in the sequel. They are partial results
from [10].

Theorem 3.1 (see [10]). Let D be a bounded domain, suppose m + n ≥ 1 and
w ∈ Lp(D), p > 2, then Tm,n,Dw(z) exists as a Lebesgue integral for all z in C,
Tm,n,D is continuous in C. Especially, Tm,n,D is locally Hölder continuous in C,
more precisely, for |z1|, |z2| ≤ R with any R > 0,

|Tm,n,Dw(z1)− Tm,n,Dw(z2)| ≤
{
M1|z1 − z2|, m+ n ≥ 2,
M2|z1 − z2|(p−2)/p, m+ n = 1,

(3.10)

where the constants M1,M2 depend only on m,n, p,D, R. Moreover, in C, there
are the Sobolev derivatives

∂zTm,n,Dw(z) = Tm−1,n,Dw(z), ∂zTm,n,Dw(z) = Tm,n−1,Dw(z) (3.11)

and
∂zT1,0,Dw(z) = ∂zT0,1,Dw(z) = w(z). (3.12)

4. Higher-Order Poisson Kernels and Homogeneous Equations

In the present section, we discussed three kinds of Dirichlet boundary value prob-
lems for homogeneous complex mixed-partial differential equations of higher order
in the unit disc. In the next section, we discuss some corresponding problems for
inhomogeneous equations. All results are sketched here. Their detailed proofs can
be found in [17].

We begin with the PHD problems in the unit disc. Let Ω = D which is the
unit disc in the complex plane, ∂D is its boundary, i.e., the unit circle in the
complex plane.

PHD problem in the unit disc: find a function w ∈ HarC
n(D) satisfying the Dirichlet-

type boundary conditions

[(∂z∂z)jw]+(t) = γj(t), t ∈ ∂D, 0 ≤ j < n, (4.1)

where γj ∈ C(∂D) which denotes the set of all complex continuous functions on
∂D for 0 ≤ j < n.
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The solution of the PHD problem (4.1) is connected with a sequence { gn(z, τ) }∞n=1

of real-valued functions of two variables defined on D×∂D which are called higher-
order Poisson kernel functions since they are polyharmonic analogues of the clas-
sical Poisson kernel. They have the following properties:

1. gn(z, τ) ∈ C2n(D) as a function of z with fixed τ ∈ ∂D and gn(z, τ), ∂zgn(z, τ),
∂zgn(z, τ) ∈ C(D× ∂D), n = 1, 2, . . . ;

2. (∂z∂z)g1(z, τ) = 0 and (∂z∂z)gn(z, τ) = gn−1(z, τ) for n > 1;
3. limz→t, |t|=1, |z|<1

1
2πi

∫
∂D

γ(τ)g1(z, τ)dτ
τ = γ(t) for any γ ∈ C(∂D);

4. limz→t, |t|=1, |z|<1
1

2πi

∫
∂D

γ(τ)g2(z, τ)dτ
τ = 0 for any γ ∈ C(∂D);

5. limz→t, |t|=1, |z|<1 gn(z, τ) = 0 for n > 2.
In what follows, we will give explicit expressions for all higher-order Poisson ker-
nels. To do so, we need:

Lemma 4.1. Let Ω1 be a domain and Ω2 be a compact set in the complex plane,
Ω1∩Ω2 = ∅, g(z, ξ) be a continuous function defined in Ω1×Ω2 such that g(z, ξ) ∈
H1(Ω1) as a function of z with fixed ξ ∈ Ω2. For any fixed z0 ∈ Ω1, take Dz0,R =
{z : 0 < |z − z0| < R} ⊂ Ω1 and define

Fz(z0, ξ) =
g(z, ξ)− g(z0, ξ)

z − z0
, ξ ∈ Ω2 (4.2)

and

Gz(z0, ξ) =
g(z, ξ)− g(z0, ξ)

z − z0
, ξ ∈ Ω2 (4.3)

with fixed z ∈ Dz0,R/2. Then Fz(z0, ·), Gz(z0, ·) ∈ L(Ω2).

Proof. Since g(z, ξ) ∈ H1(Ω1) with respect to z for fixed ξ ∈ Ω2, by the Cauchy
integral formula, for fixed ξ ∈ Ω2,

g(z0, ξ) =
1

2πi

∫
|ζ−z0|=R

g(ζ, ξ)
ζ − z0

dζ

and

g(z, ξ) =
1

2πi

∫
|ζ−z0|=R

g(ζ, ξ)
ζ − z

dζ.

Thus

Fz(z0, ξ) =
1

2πi

∫
|ζ−z0|=R

g(ζ, ξ)
(ζ − z)(ζ − z0)

dζ.

So ∫
Ω2

|Fz(z0, ξ)|dν(ξ) =
∫

Ω2

∣∣∣ 1
2πi

∫
|ζ−z0|=R

g(ζ, ξ)
(ζ − z)(ζ − z0)

dζ
∣∣∣dν(ξ)

≤ 1
2πi

∫
|ζ−z0|=R

|g̃(ζ)|
|(ζ − z)|

dζ
ζ − z0

≤ 2 sup |g̃(ζ)|
R

,
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where ν is the Lebesgue measure on Ω2, g̃(ζ) =
∫
Ω2
|g(ζ, ξ)|dν(ξ) is bounded on

{ζ : |ζ − z0| = R} since g(z, ξ) ∈ C(Ω1 × Ω2) and Ω2 is compact. That is to say
Fz(z0, ·) ∈ L(Ω2). Note that

Gz(z0, ξ) =
z − z0
z − z0

Fz(z0, ξ),

therefore Gz(z0, ·) ∈ L(Ω2). �

By Theorem 2.1, Corollary 2.1, Lemma 4.1 and the above properties of higher-
order Poisson kernels, we have

Theorem 4.1 (see [17]). If { gn(z, τ) }∞n=1 is a sequence of kernel functions defined
on D× ∂D , i.e., { gn(z, τ) }∞n=1 fulfills the above properties 1–5, then, for n > 1,
there exist functions gn,0(z, τ), gn,1(z, τ), . . . , gn,n−1(z, τ) defined on D× ∂D such
that

gn(z, τ) = 2�
{ n−1∑

j=0

zjgn,j(z, τ)
}
, z ∈ D, τ ∈ ∂D (4.4)

with
∂zgn,j(z, τ) = j−1gn−1,j−1(z, τ) (4.5)

for 1 ≤ j ≤ n− 1 and
∂k

z gn,j(0, τ) = 0 (4.6)

for 0 ≤ k ≤ j − 1 with respect to τ ∈ ∂D as well as

gn,0(z, τ) = −
n−1∑
j=1

z−jgn,j(z, τ). (4.7)

However,

g1(z, τ) =
1

1− zτ
+

1
1− zτ

− 1 (4.8)

is the Poisson kernel. Such a sequence { gn(z, τ) }∞n=1 is unique. Moreover, the
decomposition components gn,j(z, τ) ∈ C(D × ∂D) satisfy gn,j(·, τ) ∈ Hj

1,0(D) for
fixed τ ∈ ∂D and ∂zgn,j(z, τ) ∈ C(D× ∂D), n = 1, 2, . . . , j = 0, 1, . . . , n− 1.

By Theorem 4.1, we can get the explicit unified expressions of gn(z, τ) (see
[17]). To do so, we introduce a vertical sum

∑
⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1

a2

...
an

=: a1 + a2 + · · ·+ an; (4.9)

then, in general, we have



110 H. Begehr, Zhihua Du and Ning Wang

Theorem 4.2. For 1 ≤ j ≤ n− 5, let Wn,j(z, τ) be a vertical sum of the form

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

kn−j(k+1)···(k+j−1)
+ 1

j!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

kn−j−1(k+1)2···(k+j−1)
+ 1

j!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

kn−j−1(k+1)2···(k+j−1)
+ 1

j!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+ 1

j!·3!

]

− 1
2!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

kn−j−1(k+1)2···(k+j−1)
+ 1

j!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)3···(k+j−1)
+ 1

j!·2!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+ 1

j!·3!

]
− 1

4!

[∑∞
k=2

dk−1(z,τ)

kn−j−3(k+1)2(k+2)2(k+3)2···(k+j−1)
+ 1

j!·4!

]
...

(−1)n−j−4

(n−j−3)!

[∑∞
k=2

dk−1(z,τ)

k4(k+1)2···(k+j−1)2(k+j)···(k+n−j−4)
+ 1

j!·(n−j−3)!

]
(−1)n−j−3

(n−j−2)!

[∑∞
k=2

dk−1(z,τ)

k3(k+1)2···(k+j−1)2(k+j)···(k+n−j−3)
+ 1

j!·(n−j−2)!

]

− 1
2!

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

kn−j−1(k+1)2···(k+j−1)
+ 1

j!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)3···(k+j−1)
+ 1

j!·2!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)3···(k+j−1)
+ 1

j!·2!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+ 1

j!·2!·3!

]

− 1
2!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)3···(k+j−1)
+ 1

j!·2!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

kn−j−3(k+1)4···(k+j−1)
+ 1

j!·2!·2!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+ 1

j!·2!·3!

]
− 1

4!

[∑∞
k=2

dk−1(z,τ)

kn−j−3(k+1)2(k+2)2(k+3)2···(k+j−1)
+ 1

j!·2!·4!

]
...

(−1)n−j−4

(n−j−3)!

[∑∞
k=2

dk−1(z,τ)

k4(k+1)2···(k+j−1)2(k+j)···(k+n−j−4)
+ 1

j!·2!·(n−j−3)!

]
...
...
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∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

...

(−1)n−j−6

(n−j−5)!

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

k6(k+1)2···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k5(k+1)3···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k5(k+1)3···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

k4(k+1)3(k+2)3···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!·3!

]

− 1
2!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

k5(k+1)3···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k4(k+1)4···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!·2!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

k4(k+1)3(k+2)3···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!·3!

]
− 1

4!

[∑∞
k=2

dk−1(z,τ)

k3(k+1)3(k+2)3(k+3)3···(k+j−1)2(k+j)···(k+n−j−6)
+ 1

j!·(n−j−5)!·4!

]

(−1)n−j−5

(n−j−4)!

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

k5(k+1)2···(k+j−1)2(k+j)···(k+n−j−5)
+ 1

j!·(n−j−4)!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k4(k+1)3···(k+j−1)2(k+j)···(k+n−j−5)
+ 1

j!·(n−j−4)!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k4(k+1)3···(k+j−1)2(k+j)···(k+n−j−5)
+ 1

j!·(n−j−4)!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

k3(k+1)3(k+2)3···(k+j−1)2(k+j)···(k+n−j−5)
+ 1

j!·(n−j−4)!·3!

]

(−1)n−j−4

(n−j−3)!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

k4(k+1)2···(k+j−1)2(k+j)···(k+n−j−4)
+ 1

j!·(n−j−3)!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k3(k+1)3···(k+j−1)2(k+j)···(k+n−j−4)
+ 1

j!·(n−j−3)!·2!

]
(−1)n−j−3

(n−j−2)!

[∑∞
k=2

dk−1(z,τ)

k3(k+1)2···(k+j−1)2(k+j)···(k+n−j−3)
+ 1

j!·(n−j−2)!

]
(−1)n−j−2

(n−j−1)!

[∑∞
k=2

dk−1(z,τ)

k2(k+1)2···(k+j−1)2(k+j)···(k+n−j−2)
+ 1

j!·(n−j−1)!

]
(4.10)

with dk−1(z, τ) = (zτ)k−1 + (zτ)k−1, and let

Wn,n−4(z, τ ) =
∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)

k4(k+1)(k+2)···(k+n−5)
+ 1

(n−4)!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k3(k+1)2(k+2)···(k+n−5)
+ 1

(n−4)!·2!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)

k3(k+1)2(k+2)···(k+n−5)
+ 1

(n−4)!·2!

]
1
3!

[∑∞
k=2

dk−1(z,τ)

k2(k+1)2(k+2)2···(k+n−5)
+ 1

(n−4)!·3!

]
, (4.11)
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Wn,n−3(z, τ) =
∑⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

dk−1(z,τ)
k3(k+1)(k+2)···(k+n−4) + 1

(n−3)!

]
− 1

2!

[∑∞
k=2

dk−1(z,τ)
k2(k+1)2(k+2)···(k+n−4) + 1

(n−3)!·2!
] , (4.12)

Wn,n−2(z, τ) =
∞∑

k=2

dk−1(z, τ)
k2(k + 1)(k + 2) · · · (k + n− 3)

+
1

(n− 2)!
, (4.13)

Wn,n−1(z, τ) =
∞∑

k=2

dk−1(z, τ)
k(k + 1)(k + 2) · · · (k + n− 2)

+
1

(n− 1)!
. (4.14)

If { gn(z, τ) }∞n=1 is a sequence of higher-order Poisson kernels defined on D× ∂D,
then

gn(z, τ) = D1(z, τ) +D2(z, τ) + · · ·+Dn−1(z, τ), (4.15)

where Dj(z, τ) = (−1)n−j 1−|z|2j

j! Wn,j(z, τ), j = 1, 2, . . . , n − 1. In all above for-
mulae, by convention,

∏j
�=ı(k + �) = 1 as ı > j.

Remark 4.1. Carefully observing all above vertical sums Wn,j(z, τ), j = 1, 2, . . .,
n−1, one may find that the vertical sums take on some structural orderlines. More
precisely, there is a distinct circulatory structure of the vertical sum

(−1)p−1

p!

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)q−1

q! α
∑

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε

− 1
2!ζ

− 1
2!ζ
1
3! ς

(−1)q

(q+1)!β
∑{

�
− 1

2!ω
(−1)q+1

(q+2)! μγ

(−1)q+2

(q+3)! νδ

, (4.16)

where α, β, μ, ν are 1 or 0, all of which are nonzero or only one of which is nonzero,
the latter only happens when j = n − 4, n − 3, n − 2, n − 1, 1 ≤ p ≤ n − 4 and
0 ≤ q ≤ n− 4. However, ε, ζ, ς,�, ω, γ, δ are sums of the form

∞∑
k=2

dk−1(z, τ)
km1(k + 1)m2(k + 2)m3 · · · (k + n− 2)mn−1

+
1
ϑ
, (4.17)

where m1,m2, . . . ,mn−1 are nonnegative integers satisfying

m1 ≥ m2 ≥ · · · ≥ mn−1 ≥ 0 and m1 +m2 + · · ·+mn−1 = n− 1, (4.18)

whereas ϑ is a product of some factorials which takes on some evident regularity,
i.e., ϑ is the product of j! and all denominators of the coefficients appearing before
the vertical sum symbols and the sum which it belongs to. Moreover, when α =
β = γ = δ = 1, the multiplicities have the following sequential properties:
(1) From ε to ζ and � to ω, m1 decreases by 1 whereas m2 simultaneously

increase by 1.
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(2) From ζ to ς, m1 decreases by 1 whereas m3 simultaneously increase by 1.
(3) From ε to �, � to γ and γ to δ, m1 decreases by 1 for each step whereas

mq+1, mq+2 and mq+3 sequentially increases by 1.

It must be noted that the new multiplicities also satisfy (4.18) all the same. In
addition, for Wn,j(z, τ), there are n− j − 1 vertical sums as its summands in the
outmost vertical sum. From the top down, these vertical sums respectively have
2n−j−3, 2n−j−4, . . ., 2, 1, 1 summands of the form as (4.17). The above property
(3) holds for the variance of the multiplicites about the first summand of the form
as (4.17) between two adjacent vertical sums and the coefficients appearing before
the sum symbols are in turn 1, − 1

2! , . . .,
(−1)n−j−3

(n−j−2)! , (−1)n−j−2

(n−j−1)! . Interestingly, any
one of these vertical sums has similar structure and properties as the outmost
vertical sum.

Just because of the above sequential properties of the multiplicities and the
nice circulatory structure, we can sequentially define Wn,j(z, τ) as the vertical sum
(4.10) only from the first summand

∑∞
k=2

dk−1(z,τ)
kn−j(k+1)···(k+j−1) + 1

j! . A nice example
is g5(z, τ) of vertical form which can be found in [17].

With the higher-order Poisson kernels, the PHD problem is uniquely solvable.
To do so, we need the following lemmas, one of which is about another property
of the higher-order Poisson kernels.

Lemma 4.2 (Differentiability of Integral). Let { gn(z, τ) }∞n=1 be the sequence of
higher-order Poisson kernels, then for any γ ∈ C(∂D),

(∂z∂z)
[ 1
2πi

∫
∂D

γ(τ)gn(z, τ)
dτ
τ

]
=

1
2πi

∫
∂D

γ(τ)gn−1(z, τ)
dτ
τ
, n = 2, 3, . . . .

(4.19)

Proof. For any fixed z ∈ D, choose an arbitrary sequence {zl} such that zl �= z for
any l and zl → z as l →∞. Define

Zl(z, τ) =
gn(zl, τ)− gn(z, τ)

zl − z
(4.20)

for fixed l. Obviously, Zl(z, τ) ∈ C(∂D) ⊂ L(D) with respect to τ and

lim
l→∞

Zl(z, τ) = ∂zgn(z, τ). (4.21)

In addition, by the decomposition (4.4) of gn(z, τ) and Lemma 4.1 with Ω1 = D

and Ω2 = ∂D, it is easy to see that Zl(z, ·) ∈ L(∂D). Note the continuity of
∂zgn(z, τ), by the dominated convergence theorem,
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lim
l→∞

1
zl − z

[ 1
2πi

∫
∂D

γ(τ)gn(zl, τ)
dτ
τ
− 1

2πi

∫
∂D

γ(τ)gn(z, τ)
dτ
τ

]
= lim

l→∞
1

2πi

∫
∂D

γ(τ)
gn(zl, τ)− gn(z, τ)

zl − z

dτ
τ

= lim
l→∞

1
2πi

∫
∂D

γ(τ)Zl(z, τ)
dτ
τ

=
1

2πi

∫
∂D

γ(τ)∂zgn(z, τ)
dτ
τ
.

Because of the arbitrariness of {zl}, therefore in view of the Heine principle,

∂z

[ 1
2πi

∫
∂D

γ(τ)gn(z, τ)
dτ
τ

]
=

1
2πi

∫
∂D

γ(τ)∂zgn(z, τ)
dτ
τ
. (4.22)

Further, similarly define

Hl(z, τ) =
∂zgn(zl, τ) − ∂zgn(z, τ)

zl − z
, (4.23)

again by (4.4), Lemma 4.1, the dominated convergence theorem and the Heine
principle,

∂z

[ 1
2πi

∫
∂D

γ(τ)∂zgn(z, τ)
dτ
τ

]
=

1
2πi

∫
∂D

γ(τ)∂z [∂zgn(z, τ)]
dτ
τ
. (4.24)

So (4.19) follows from the last two equalities and the induction property of the
higher-order Poisson kernels. �

Lemma 4.3. If ϕ ∈ H1(D) and ∂ϕ
∂z ∈ C(D), then ϕ ∈ C(D).

Proof. It immediately follows from

ϕ(z) =
∫ z

0

∂ϕ

∂z
(ζ)dζ − ϕ(0), z ∈ D. �

Theorem 4.3. The PHD problem (4.1) is solvable and its unique solution is

w(z) =
n∑

k=1

1
2πi

∫
∂D

γk−1(τ)gk(z, τ)
dτ
τ
, z ∈ D, (4.25)

where gk(z, τ) (1 ≤ k ≤ n) is the kth Poisson kernel given by (4.15).

Proof. At first, we show that (4.25) is a solution. By Lemma 4.2 and the induction
property of the higher-order Poisson kernels, using the operators (∂z∂z)j , j =
1, 2, . . . , n− 1 to act on two sides of (4.25), we get

(∂z∂z)jw(z) =
n∑

k=j+1

1
2πi

∫
∂D

γk−1(τ)gk−j(z, τ)
dτ
τ
. (4.26)

Thus
[∂z∂z)jw]+(t) = γj(t), t ∈ D, 0 ≤ j < n (4.27)
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follows from (4.26) and the other properties of the higher-order Poisson kernels,
i.e., (4.25) is a solution.

Next, we turn to the uniqueness of (4.25). To do so, we must show that (4.1)
only has zero as its solution when all γj = 0 on ∂D. It is enough to consider
w ∈ Harn(D) for this case. Since w ∈ Harn(D), by Theorem 2.1, there exist some
functions wj ∈ Hj

1,0(D), j = 0, 1, . . . , n− 1 such that

w(z) = 2�
{ n−1∑

j=0

zjwj(z)
}
, z ∈ D. (4.28)

Applying the operators (∂z∂z)j , j = 1, 2, . . . , n−1 to both sides of (4.28), we have

(∂z∂z)jw(z) = 2�
{ n−1∑

k=j

k!
(k − j)!

zk−j∂j
zwk(z)

}
, z ∈ D. (4.29)

By (4.29), Lemma 4.3 and the boundary value conditions of (4.1) with γj = 0,

�[∂j
zwj(t)] = 0, t ∈ ∂D, 0 ≤ j ≤ n− 1. (4.30)

So it is easy to get wj ∈ Πj
1,0(D) from the last equality and then w = 0. �

Remark 4.2. In [8], Begehr, Du and Wang only considered the PHD problem (4.1)
with Hölder continuous but not continuous boundary conditions. So it happens
since they solve the problem by reflection method which transfers the problem to
the classical Riemann jump problems for analytic functions. However, the Hölder
continuity is necessary for the latter considering the singular integrals on the unit
circle. In [12], to solve the same problem when n = 3, Begehr and Wang used a
new approach which transfers the problem to the classical Schwarz problem for
analytic functions in the unit disc. So the Hölder continuity is weakened to the
condition of continuity. In fact, with continuous boundary conditions discussed in
the last theorem, the unique solvability of PHD problem (4.1) obviously follows
from the properties of the higher-order Poisson kernels gn(z, τ) by induction.

Next we consider two kinds of Dirichlet type boundary value problems for
functions in Mm,n(D), one of which is of the form: find a function L(z) ∈Mm,n(D)
(m > n) satisfying the boundary conditions

[(∂z∂z)jL]+(t) = γj(t), 0 ≤ j < n and [∂n+k
z ∂n

z L]+(t) = σk(t), 0 ≤ k < m− n,
(4.31)

where t ∈ ∂D, γj , σk ∈ C(∂D) for 0 ≤ j < n, 0 ≤ k < m− n.
The other is to find a function N(z) ∈ Mm,n(D) which fulfills the boundary

conditions

[(∂m
z ∂j

z)N ]+(t) = χj(t), 0 ≤ j < n and [∂k
z ∂

n
z N ]+(t) = λk(t), 0 ≤ k < m,

(4.32)
where t ∈ ∂D, χj , λk ∈ C(∂D) for 0 ≤ j < n, 0 ≤ k < m.

For these problems, by Theorems 2.4–2.5, Theorem 4.3 and the classical
Dirichlet problem for analytic functions [3], we have (see [17]):
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Theorem 4.4. Set

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎝
n! (n+ 1)!t · · · (m−2)!

(m−n−2)! t
m−n−2 (m−1)!

(m−n−1)! t
m−n−1

0 (n+ 1)! · · · (m−2)!
(m−n−3)! t

m−n−3 (m−1)!
(m−n−2)! t

m−n−2

...
...

. . .
...

...
0 0 · · · (m− 2)! (m− 1)!t
0 0 · · · 0 (m− 1)!

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.33)

a(t) =

⎛⎜⎜⎜⎜⎜⎝
σ0(t)
σ1(t)

...
σm−n−2(t)
σm−n−1(t)

⎞⎟⎟⎟⎟⎟⎠ , (4.34)

Ξl(z) =
1

n!(n+ 1)! · · · (m− 1)!
1

2πi

∫
∂D

det(Al(τ))
τ − z

dτ, (4.35)

and

ϕ̃l(z) =
∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Ξl(ζ)dζdζ1 · · · dζn−1 + πl(z), (4.36)

where t ∈ ∂D, πl ∈ Πn−1, the matrix Al(t) is given by replacing the lth column of
A(t) by a(t), 0 ≤ l ≤ m− n− 1. Then

L(z) =
n∑

k=1

1
2πi

∫
∂D

gk(z, τ)
[
γk−1(τ) −

m−n−1∑
l=0

(n+l)!
(n+l−k+1)! τ

n+l−k+1∂k−1
z ϕ̃l(τ)

]dτ
τ

+ zn
m−n−1∑

l=0

zlϕ̃l(z) (4.37)

are all solutions of the problem (4.31) if and only if

1
2πi

∫
∂D

z detAl(τ)
τ − z

dτ
τ

= 0, z ∈ D, (4.38)

where gk(z, τ) (1 ≤ k ≤ n) are the former n higher-order Poisson kernels.

Theorem 4.5. Set

B(t) =

⎛⎜⎜⎜⎜⎜⎝
1 t t

2 · · · t
n−1

0 1 2t · · · (n− 1)tn−2

...
...

. . .
...

...
0 0 · · · (n− 2)! (n− 1)!t
0 0 · · · 0 (n− 1)!

⎞⎟⎟⎟⎟⎟⎠ , (4.39)
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C(t) =

⎛⎜⎜⎜⎜⎜⎝
1 t t2 · · · tm−1

0 1 2t · · · (m− 1)tm−2

...
...

. . .
...

...
0 0 · · · (m− 2)! (m− 1)!t
0 0 · · · 0 (m− 1)!

⎞⎟⎟⎟⎟⎟⎠ , (4.40)

b(t) =

⎛⎜⎜⎜⎝
χ0(t)
χ1(t)

...
χn−1(t)

⎞⎟⎟⎟⎠ , c(t) =

⎛⎜⎜⎜⎝
λ0(t)
λ1(t)

...
λm−1(t)

⎞⎟⎟⎟⎠ (4.41)

and

Θp(z) =
1

1!2! · · · (n− 1)!
1

2πi

∫
∂D

detBp(τ)
τ − z

dτ, (4.42)

Λq(z) =
1

1!2! · · · (m− 1)!
1

2πi

∫
∂D

detCq(τ)
τ − z

dτ, (4.43)

as well as

μp(z) =
∫ z

0

∫ ζm−1

0

· · ·
∫ ζ1

0

Θp(ζ)dζdζ1 · · · dζm−1 + κp(z), (4.44)

νq(z) =
∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Λq(ζ)dζdζ1 · · · dζn−1 + ξq(z), (4.45)

where t ∈ ∂D, κp ∈ Πm−1, ξq ∈ Πn−1, the matrices Bp(t), Cq(t) are respectively
given by replacing the pth, qth column by b(t), c(t), 0 ≤ p ≤ n− 1, 0 ≤ q ≤ m− 1.
Then

N(z) =
n−1∑
p=0

zpμp(z) +
m−1∑
q=0

zqνq(z) (4.46)

are all solutions of the problem (4.32) if and only if

1
2πi

∫
∂D

zdetBp(τ)
τ − z

dτ
τ

= 0,
1

2πi

∫
∂D

z detCq(τ)
τ − z

dτ
τ

= 0, (4.47)

in which z ∈ D.

Remark 4.3. It must be noted that the solutions of Dirichlet problems (4.31) and
(4.32) are not unique even if the conditions (4.38) and (4.47) are fulfilled. That is,
the polynomials in (4.36), (4.44) and (4.45) can be arbitrarily chosen. It follows
from an easy fact that the difference of two analytic functions in the unit disc D

is a polynomial of order at most n− 1 if their derivatives of order n have the same
continuous boundary values on the unit circle ∂D. Respectively, using the harmonic
decomposition (2.5) and canonical decomposition (2.7) to solve Dirichlet problems
(4.31) and (4.32), we will encounter this easy fact so that the polynomials πl, κp



118 H. Begehr, Zhihua Du and Ning Wang

and ξq naturally appear in (4.36), (4.44) and (4.45); then the solutions are not
unique. Similarly, we can also consider another Dirichlet type problem as follows,

[(∂z∂z)jR]+(t)=ρj(t), 0 ≤ j < m and [∂m
z ∂m+k

z R]+(t)=�k(t), 0 ≤ k < n−m,
(4.48)

where t ∈ ∂D, ρj, �k ∈ C(∂D) for 0 ≤ j < m, 0 ≤ k < n − m and the object
functionR(z) ∈Mm,n(D) (m < n). In the exactly same way for the problem (4.31),
by Theorem 2.4, Theorem 4.3 and the classical Dirichlet problem for analytic
functions, it is easy to get all solutions of the problem (4.48) under some suitable
conditions.

5. Inhomogeneous Equations

In the present section, we consider the corresponding Dirichlet problems discussed
in the last section for inhomogeneous equations. According to the results of the
last section for homogeneous equations, the key is to find some special solutions for
the inhomogeneous equations. By Theorem 3.1, this is no problem under suitably
assumable conditions. As mentioned in the introduction of [10], we will find that
higher-order Pompeiu operators Tm,n are useful in the study of boundary value
problems for higher-order complex partial differential equations.

Let f ∈ Lp(D), p > 2, by Theorem 3.1, we get

∂k
z ∂

l
zTm,n,Df(z) = Tm−k,n−l,Df(z), 0 ≤ k + l ≤ m+ n (5.1)

in the Sobolev sense. Moreover,

Tm−k,n−l,Df(z) ∈ Hloc(C) ⊂ C(C), as 1 ≤ k + l < m+ n, (5.2)

where Hloc(C) denotes the set of all locally Hölder continuous functions in C.
Noting (5.1), we know that w(z) = Tm,n,Df(z) is a weak solution of the

inhomogeneous equations

(∂m
z ∂n

z )w(z) = f(z), z ∈ D, f ∈ Lp(D), p > 2. (5.3)

First, we consider the so-called Dirichlet problem for the inhomogeneous poly-
harmonic equations [12]:{

(∂z∂z)nw(z) = f(z), z ∈ D, f ∈ Lp(D), p > 2,
(∂z∂z)kw(τ) = γk(τ), τ ∈ ∂D, γk ∈ C(∂D), 0 ≤ k ≤ n− 1.

(5.4)

By Theorem 4.3, (5.1) and (5.2), we have

Theorem 5.1. The problem (5.4) is solvable and its unique solution is

w(z) = Tn,n,Df(z)+
n∑

k=1

1
2πi

∫
∂D

[γk−1(τ)−Tn+1−k,n+1−k,Df(τ)]gk(z, τ)
dτ
τ
, (5.5)

where z ∈ D, Tl,l,D (1 ≤ l ≤ n) are the higher-order Pompeiu operators, gk(z, τ)
(1 ≤ k ≤ n) are the former n higher-order Poisson kernel functions.
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Proof. Note that by (5.1) and (5.2), the problem (5.4) is equivalent to the PHD
problem of simplified form{

w − Tn,n,Df ∈ HarC
n(D), f ∈ Lp(D), p > 2,

(∂z∂z)k[w − Tn,n,Df ] = γk − Tn−k,n−k,Df, γk ∈ C(∂D), 0 ≤ k ≤ n− 1.
(5.6)

So it is obvious that Theorem 5.1 follows from Theorem 4.3. �

Noting (3.6) and (3.7), by Theorem 4.2, we can give the explicit expressions
of the double integrals in (5.5). To do so, we need some lemmas as follows.

Lemma 5.1.
1

2πi

∫
∂D

τk dτ
τ

= δk0, k ∈ Z, (5.7)

where δk0 is the Kronecker sign and Z is the set of all integers.

Proof. It is obvious since τ = eiθ, θ ∈ [0, 2π). �

Lemma 5.2.

|τ − ζ|2n =
n∑

p,q=0

(
n
p

)(
n
q

)
ζpζ

q
τpτq , τ ∈ ∂D, ζ ∈ D, n ∈ Z+, (5.8)

where Z+ is the set of all positive integers.

Proof. (5.8) follows from the fact that |τ − ζ|2 = |1− τζ|2 = (1− τζ)(1− τζ), τ ∈
∂D. �

Lemma 5.3.

log |τ − ζ|2 = −
∞∑

s=1

s−1[(τζ)s + (τζ)s], τ ∈ ∂D, ζ ∈ D. (5.9)

Proof. Since τ ∈ ∂D, ζ ∈ D, therefore

log |τ − ζ|2 = log |1− τζ|2
= log(1− τζ)(1 − τζ)

= log(1− τζ) + log(1− τζ)

= −
∞∑

s=1

s−1[(τζ)s + (τζ)s]. (5.10)

The last equality follows from the fact that log(1− x) = −∑∞
s=1

xs

s , |x| < 1. �

Theorem 5.2. Suppose that m,n ∈ Z+, for 1 ≤ j ≤ n − 5, let Nm,n,j(z, ζ) be a
vertical sum of the following form:
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∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j(k+1)···(k+j−1)
+

Δm,0(z,ζ)

j!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−1(k+1)2···(k+j−1)
+

Δm,0(z,ζ)

j!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−1(k+1)2···(k+j−1)
+

Δm,0(z,ζ)

j!·2!

]
1
3!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+

Δm,0(z,ζ)

j!·3!

]

− 1
2!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−1(k+1)2···(k+j−1)
+

Δm,0(z,ζ)

j!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)3···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·2!

]
1
3!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+

Δm,0(z,ζ)

j!·3!

]
− 1

4!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−3(k+1)2(k+2)2(k+3)2···(k+j−1)
+

Δm,0(z,ζ)

j!·4!

]
...

(−1)n−j−4

(n−j−3)!

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)2···(k+j−1)2(k+j)···(k+n−j−4)
+

Δm,0(z,ζ)

j!·(n−j−3)!

]
(−1)n−j−3

(n−j−2)!

[∑∞
k=2

Δm,k−1(z,ζ)

k3(k+1)2···(k+j−1)2(k+j)···(k+n−j−3)
+

Δm,0(z,ζ)

j!·(n−j−2)!

]

− 1
2!

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−1(k+1)2···(k+j−1)
+

Δm,0(z,ζ)

j!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)3···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)3···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·2!

]
1
3!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·3!

]

− 1
2!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)3···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−3(k+1)4···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·2!·2!

]
1
3!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−2(k+1)2(k+2)2···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·3!

]
− 1

4!

[∑∞
k=2

Δm,k−1(z,ζ)

kn−j−3(k+1)2(k+2)2(k+3)2···(k+j−1)
+

Δm,0(z,ζ)

j!·2!·4!

]
...

(−1)n−j−4

(n−j−3)!

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)2···(k+j−1)2(k+j)···(k+n−j−4)
+

Δm,0(z,ζ)

j!·2!·(n−j−3)!

]
...
...



Dirichlet Problems 121

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

...

(−1)n−j−6

(n−j−5)!

∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

k6(k+1)2···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

k5(k+1)3···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

k5(k+1)3···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!·2!

]
1
3!

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)3(k+2)3···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!·3!

]

− 1
2!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

k5(k+1)3···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)4···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!·2!·2!

]
1
3!

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)3(k+2)3···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!·3!

]
− 1

4!

[∑∞
k=2

Δm,k−1(z,ζ)

k3(k+1)3(k+2)3(k+3)3···(k+j−1)2(k+j)···(k+n−j−6)
+

Δm,0(z,ζ)

j!·(n−j−5)!·4!

]

(−1)n−j−5

(n−j−4)!

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

k5(k+1)2···(k+j−1)2(k+j)···(k+n−j−5)
+

Δm,0(z,ζ)

j!·(n−j−4)!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)3···(k+j−1)2(k+j)···(k+n−j−5)
+

Δm,0(z,ζ)

j!·(n−j−4)!·2!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)3···(k+j−1)2(k+j)···(k+n−j−5)
+

Δm,0(z,ζ)

j!·(n−j−4)!·2!

]
1
3!

[∑∞
k=2

Δm,k−1(z,ζ)

k3(k+1)3(k+2)3···(k+j−1)2(k+j)···(k+n−j−5)
+

Δm,0(z,ζ)

j!·(n−j−4)!·3!

]

(−1)n−j−4

(n−j−3)!

∑
⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)

k4(k+1)2···(k+j−1)2(k+j)···(k+n−j−4)
+

Δm,0(z,ζ)

j!·(n−j−3)!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)

k3(k+1)3···(k+j−1)2(k+j)···(k+n−j−4)
+

Δm,0(z,ζ)

j!·(n−j−3)!·2!

]
(−1)n−j−3

(n−j−2)!

[∑∞
k=2

Δm,k−1(z,ζ)

k3(k+1)2···(k+j−1)2(k+j)···(k+n−j−3)
+

Δm,0(z,ζ)

j!·(n−j−2)!

]
(−1)n−j−2

(n−j−1)!

[∑∞
k=2

Δm,k−1(z,ζ)

k2(k+1)2···(k+j−1)2(k+j)···(k+n−j−2)
+

Δm,0(z,ζ)

j!·(n−j−1)!

]
(5.11)
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and let

Nm,n,n−4(z, ζ) =
∑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)
k4(k+1)(k+2)···(k+n−5) + Δm,0(z,ζ)

(n−4)!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)
k3(k+1)2(k+2)···(k+n−5) + Δm,0(z,ζ)

(n−4)!·2!
]

− 1
2!

[∑∞
k=2

Δm,k−1(z,ζ)
k3(k+1)2(k+2)···(k+n−5) + Δm,0(z,ζ)

(n−4)!·2!
]

1
3!

[∑∞
k=2

Δm,k−1(z,ζ)
k2(k+1)2(k+2)2···(k+n−5) + Δm,0(z,ζ)

(n−4)!·3!
]
, (5.12)

Nm,n,n−3(z, ζ) =
∑⎧⎪⎪⎨⎪⎪⎩

[∑∞
k=2

Δm,k−1(z,ζ)
k3(k+1)(k+2)···(k+n−4) + Δm,0(z,ζ)

(n−3)!

]
− 1

2!

[∑∞
k=2

Δm,k−1(z,ζ)
k2(k+1)2(k+2)···(k+n−4) + Δm,0(z,ζ)

(n−3)!·2!
] , (5.13)

Nm,n,n−2(z, ζ) =
∞∑

k=2

Δm,k−1(z, ζ)
k2(k + 1)(k + 2) · · · (k + n− 3)

+
Δm,0(z, ζ)
(n− 2)!

, (5.14)

Nm,n,n−1(z, ζ) =
∞∑

k=2

Δm,k−1(z, ζ)
k(k + 1)(k + 2) · · · (k + n− 2)

+
Δm,0(z, ζ)
(n− 1)!

, (5.15)

where

Δm,�(z, ζ) =− 1
[(m− 1)!]2π

{ ∑
1≤s<∞

0≤p,q≤m−1
p=q+s+�

(
m− 1
p

)(
m− 1
q

)
s−1

· [ζp
ζq+sz� + ζpζ

q+s
z�]

+
∑

1≤l≤m−1
0≤p,q≤m−1

p=q+�

(
m− 1
p

)(
m− 1
q

)
l−1

· 2[ζ
p
ζqz� + ζpζ

q
z�]

}
, (5.16)

� = 0, 1, 2, . . .. Moreover, Gm,n(z, ζ) = 1
2πi

∫
∂D

Km,m(τ − ζ)gn(z, τ) dτ
τ , gn(z, τ) is

the nth higher-order Poisson kernel, then

Gm,n(z, ζ) = Dm,1(z, ζ) +Dm,2(z, ζ) + · · ·+Dm,n−1(z, ζ), (5.17)

where Dm,j(z, ζ) = (−1)n−j 1−|z|2j

j! Nm,n,j(z, ζ), j = 1, 2, . . . , n − 1. In all above
formulae, by convention,

∏j
�=ı(k + �) = 1 as ı > j.

Proof. By (3.6),

Km,m(τ − ζ) =
1

[(m− 1)!]2π
|τ − ζ|2(m−1)

[
log |τ − ζ|2 − 2

m−1∑
l=1

1
l

]
. (5.18)
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Noting (4.10)-(4.14), in order to get Gm,n(z, ζ), the key is to obtain

Δm,k−1(z, ζ) =
1

2πi

∫
∂D

Km,m(τ − ζ)dk−1(z, τ)
dτ
τ
, k ≥ 2 (5.19)

in which dk−1(z, τ) = (zτ )k−1 + (zτ)k−1 and

Δm,0(z, ζ) =
1

2πi

∫
∂D

Km,m(τ − ζ)
dτ
τ
. (5.20)

By Lemmas 5.2–5.3,

|τ − ζ|2(m−1) log |τ − ζ|2 = −
∑

1≤s<∞
0≤p,q≤m−1

(
m− 1
p

)(
m− 1
q

)
s−1

· [ζp+sζ
q
τp+sτq + ζpζ

q+s
τpτq+s], (5.21)

|τ − ζ|2(m−1)dk−1(z, τ) =
∑

0≤p,q≤m−1

(
m− 1
p

)(
m− 1
q

)
· [ζpζ

q
zk−1τp+k−1τq + ζpζ

q
zk−1τpτq+k−1] (5.22)

and

|τ − ζ|2(m−1) log |τ − ζ|2dk−1(z, τ) =−
∑

1≤s<∞
0≤p,q≤m−1

(
m− 1
p

)(
m− 1
q

)
s−1

· [ζp+sζ
q
zk−1τp+s+k−1τq

+ ζpζ
q+s

zk−1τpτq+s+k−1]. (5.23)

Applying (5.18), (5.22)–(5.23), by Lemma 5.1, we have

Δm,k−1(z, ζ) =− 1
[(m− 1)!]2π

{ ∑
1≤s<∞

0≤p,q≤m−1
p=q+s+k−1

(
m− 1
p

)(
m− 1
q

)
s−1

· [ζp
ζq+szk−1 + ζpζ

q+s
zk−1]

+
∑

1≤l≤m−1
0≤p,q≤m−1

p=q+k−1

(
m− 1
p

)(
m− 1
q

)
l−1

· 2[ζ
p
ζqzk−1 + ζpζ

q
zk−1]

}
. (5.24)

Applying (5.8), (5.18) and (5.21), by Lemma 5.1, we get
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Δm,0(z, ζ) =− 1
[(m− 1)!]2π

{ ∑
1≤s<∞

0≤p,q≤m−1
p=q+s

(
m− 1
p

)(
m− 1
q

)
s−1

· [ζp
ζq+s + ζpζ

q+s
]

+
∑

1≤l≤m−1
0≤p≤m−1

4
[(

m− 1
p

)]2
l−1|ζ|2p

}
. (5.25)

Thus we complete the proof of this theorem. �

Remark 5.1. By Theorem 5.2, applying Gm,n(z, ζ), we can rewrite the unique
solution of the problem (5.4) as

w(z) =
n∑

k=1

1
2πi

∫
∂D

γk−1(τ)gk(z, τ)
dτ
τ

+
∫

D

f(ζ)
{
Kn,n(z − ζ) +

n∑
k=1

Gn+1−k,k(z, ζ)
}
dξdη. (5.26)

Similarly, the double integrals appearing in what follows can easily be given in
terms of Gm,n(z, ζ). To avoid technical difficulty, we will not repeat them again in
the sequel.

Next, we consider two kinds of Dirichlet problems for the higher-order inho-
mogeneous complex mixed-partial differential equations of simplified form:⎧⎪⎨⎪⎩

(∂m
z ∂n

z )w = f, f ∈ Lp(D), p > 2,m > n,

(∂z∂z)jw = γj , γj ∈ C(∂D), 0 ≤ j < n,

(∂n+k
z ∂n

z )w = σk, σk ∈ C(∂D), 0 ≤ k < m− n

(5.27)

and ⎧⎪⎨⎪⎩
(∂m

z ∂n
z )w = f, f ∈ Lp(D), p > 2,

(∂m
z ∂j

z)w = χj, χj ∈ C(∂D), 0 ≤ j < n,

(∂k
z ∂

n
z )w = λk, λk ∈ C(∂D), 0 ≤ k < m.

(5.28)

By Theorems 4.4–4.5, (5.1) and (5.2), we have:

Theorem 5.3. Set

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎝
n! (n+ 1)!t · · · (m−2)!

(m−n−2)! t
m−n−2 (m−1)!

(m−n−1)! t
m−n−1

0 (n+ 1)! · · · (m−2)!
(m−n−3)! t

m−n−3 (m−1)!
(m−n−2)! t

m−n−2

...
...

. . .
...

...
0 0 · · · (m− 2)! (m− 1)!t
0 0 · · · 0 (m− 1)!

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.29)
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a∗(t) =

⎛⎜⎜⎜⎜⎜⎝
σ0(t)− Tm−n,0,Df(t)
σ1(t)− Tm−n−1,0,Df(t)

...
σm−n−2(t)− T2,0,Df(t)
σm−n−1(t)− T1,0,Df(t)

⎞⎟⎟⎟⎟⎟⎠ , (5.30)

Ξ∗l (z) =
1

n!(n+ 1)! · · · (m− 1)!
1

2πi

∫
∂D

det(A∗l (τ))
τ − z

dτ, (5.31)

and

ϕ̃∗l (z) =
∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Ξ∗l (ζ)dζdζ1 · · · dζn−1 + π∗l (z), (5.32)

where t ∈ ∂D, π∗l ∈ Πn−1, the matrix A∗l (t) is given by replacing the lth column of
A(t) by a∗(t), 0 ≤ l ≤ m− n− 1. Then

w(z) =
n∑

k=1

1
2πi

∫
∂D

gk(z, τ)
[
γ∗k−1(τ) −

m−n−1∑
l=0

(n+l)!
(n+l−k+1)!τ

n+l−k+1∂k−1
z ϕ̃∗l (τ)

]dτ
τ

+ zn
m−n−1∑

l=0

zlϕ̃∗l (z) + Tm,n,Df(z) (5.33)

are all solutions of the problem (5.27) if and only if

1
2πi

∫
∂D

z detA∗l (τ)
τ − z

dτ
τ

= 0, z ∈ D, (5.34)

where γ∗k−1(τ) = γk−1(τ) − Tm+1−k,n+1−k,Df(τ), gk(z, τ) (1 ≤ k ≤ n) are the
former n higher-order Poisson kernels.

Theorem 5.4. Set

B(t) =

⎛⎜⎜⎜⎜⎜⎝
1 t t

2 · · · t
n−1

0 1 2t · · · (n− 1)tn−2

...
...

. . .
...

...
0 0 · · · (n− 2)! (n− 1)!t
0 0 · · · 0 (n− 1)!

⎞⎟⎟⎟⎟⎟⎠ , (5.35)

C(t) =

⎛⎜⎜⎜⎜⎜⎝
1 t t2 · · · tm−1

0 1 2t · · · (m− 1)tm−2

...
...

. . .
...

...
0 0 · · · (m− 2)! (m− 1)!t
0 0 · · · 0 (m− 1)!

⎞⎟⎟⎟⎟⎟⎠ , (5.36)

b∗(t) =

⎛⎜⎜⎜⎝
χ0(t)− T0,n,Df(t)
χ1(t)− T0,n−1,Df(t)

...
χn−1(t)− T0,1,Df(t)

⎞⎟⎟⎟⎠ , c∗(t) =

⎛⎜⎜⎜⎝
λ0(t)− Tm,0,Df(t)
λ1(t)− Tm−1,0,Df(t)

...
λm−1(t)− T1,0,Df(t)

⎞⎟⎟⎟⎠ (5.37)
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and

Θ∗p(z) =
1

1!2! · · · (n− 1)!
1

2πi

∫
∂D

detB∗p(τ)
τ − z

dτ, (5.38)

Λ∗q(z) =
1

1!2! · · · (m− 1)!
1

2πi

∫
∂D

detC∗q (τ)
τ − z

dτ, (5.39)

as well as

μ∗p(z) =
∫ z

0

∫ ζm−1

0

· · ·
∫ ζ1

0

Θ∗p(ζ)dζdζ1 · · · dζm−1 + κ∗p(z), (5.40)

ν∗q (z) =
∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Λ∗q(ζ)dζdζ1 · · ·dζn−1 + ξ∗q (z), (5.41)

where t ∈ ∂D, κ∗p ∈ Πm−1, ξ
∗
q ∈ Πn−1, matrices B∗p(t), C∗q (t) are respectively given

by replacing the pth, qth column of B(t), C(t) by b∗(t), c∗(t), 0 ≤ p ≤ n − 1,
0 ≤ q ≤ m− 1. Then

w(z) = Tm,n,Df(z) +
n−1∑
p=0

zpμp(z) +
m−1∑
q=0

zqνq(z) (5.42)

are all solutions of the problem (5.28) if and only if

1
2πi

∫
∂D

zdetB∗p(τ)
τ − z

dτ
τ

= 0,
1

2πi

∫
∂D

z detC∗q (τ)
τ − z

dτ
τ

= 0, (5.43)

in which z ∈ D.

Proofs of Theorems 5.3–5.4. From (5.1) and (5.2), the problems (5.27) and (5.28)
are respectively equivalent to the following ones:⎧⎪⎨⎪⎩

w − Tm,n,Df ∈Mm,n(D), f ∈ Lp(D), p > 2,m > n,

(∂z∂z)j [w − Tm,n,Df ] = γj − Tm−j,n−j,Df, γj ∈ C(∂D), 0 ≤ j < n,

(∂n+k
z ∂n

z )[w − Tm,n,Df ] = σk − Tm−n−k,0,Df, σk ∈ C(∂D), 0 ≤ k < m− n

(5.44)
and⎧⎪⎨⎪⎩

w − Tm,n,Df ∈Mm,n(D), f ∈ Lp(D), p > 2,
(∂m

z ∂j
z)[w − Tm,n,Df ] = χj − T0,n−j,Df, χj ∈ C(∂D), 0 ≤ j < n,

(∂k
z ∂

n
z )[w − Tm,n,Df ] = λk − Tm−k,0,Df, λk ∈ C(∂D), 0 ≤ k < m.

(5.45)

So, by Theorems 4.4–4.5, we complete the proofs of Theorems 5.3–5.4. �
Remark 5.2. All and the same, we can consider the following Dirichlet problem
for inhomogeneous complex mixed-partial differential equations:⎧⎪⎨⎪⎩

(∂m
z ∂n

z )w = f, f ∈ Lp(D), p > 2,m < n,

(∂z∂z)jw = ρj , ρj ∈ C(∂D), 0 ≤ j < m,

(∂m
z ∂m+k

z )w = �k, �k ∈ C(∂D), 0 ≤ k < n−m.

(5.46)

Noting Remark 4.3, similar as Theorem 5.3, it is easy to solve the problem (5.46).
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Dirichlet Problems for the Generalized
n-Poisson Equation

Ü. Aksoy and A.O. Çelebi

Abstract. Polyharmonic hybrid Green functions, obtained by convoluting po-
lyharmonic Green and Almansi Green functions, are taken as kernels to define
a hierarchy of integral operators. They are used to investigate the solvability
of some types of Dirichlet problems for linear complex partial differential
equations with leading term as the polyharmonic operator.

Mathematics Subject Classification (2000). Primary 31A30; Secondary 31A10.

Keywords. Dirichlet problem, higher-order Poisson equation.

1. Introduction

The Dirichlet problem is one of the basic boundary value problems in complex anal-
ysis. This type of problems are investigated in many articles for homogeneous and
inhomogeneous Cauchy–Riemann equations, for higher-order Poisson equations in
the unit disc of the complex plane [9, 10, 3, 13, 12, 8, 6, 11], in the half plane [7]
and in the circular rings [4, 15]. In this work, some types of Dirichlet problems are
considered for the inhomogeneous linear complex partial differential equations in
which leading terms are the polyharmonic operators; we call them as the general-
ized n-Poisson equations. In Section 2 and 3, we review the harmonic, biharmonic
and polyharmonic Green and hybrid Green functions with their properties and
corresponding Dirichlet problems for complex model equations. In Section 4, we
introduce a new class of singular integral operators and derive their properties.
These properties are employed in Section 5 to obtain the corresponding singular
integral equations for the hybrid Dirichlet problems of the generalized n-Poisson
equation. Afterwards we discuss the solvability of the problems using Fredholm
alternative.
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2. Preliminaries

In this section, we review the harmonic and biharmonic Green functions with their
properties and the related Dirichlet problems for Poisson and bi-Poisson equation.

In the unit disc D of the complex plane, the harmonic Green function is
defined as

G1(z, ζ) = log
∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2 .

The properties [10, 11] of the harmonic Green function are given by
• G1(z, ζ) is harmonic in D\{ζ} for any ζ ∈ D,
• G1(z, ζ) + log |ζ − z|2 is harmonic in z ∈ D for any ζ ∈ D,
• G1(z, ζ) = 0 on ∂D for any ζ ∈ D.

It is a symmetric function, i.e., G1(z, ζ) = G1(ζ, z) holds, [9]. G1(z, ζ) is related
to the following Dirichlet problem for Poisson equation [10].

Theorem 2.1. The Dirichlet problem

wzz̄ = f in D, w = γ on ∂D, f ∈ L1(D) ∩ C(D), γ ∈ C(∂D)

is uniquely solvable. The solution is

w(z) = − 1
4πi

∫
D

∂νζ
G1(z, ζ)γ(ζ)

dζ

ζ
− 1
π

∫∫
D

G1(z, ζ)f(ζ)dξdη.

A biharmonic Green function is obtained explicitly by convoluting the har-
monic Green functions, [9, 10].

G2(z, ζ) = − 1
π

∫∫
D

G1(z, ζ̃)G1(ζ̃ , ζ)dξ̃dη̃,

= |ζ − z|2 log
∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2+ (1 − |z|2)(1 − |ζ|2)
[
log(1− zζ̄)

zζ̄
+

log(1− zζ̄)
z̄ζ

]
.

It satisfies

∂z∂z̄G2(z, ζ) = G1(z, ζ) in D, G2 = 0 , ∂z∂z̄G2(z, ζ) = 0 on ∂D for ζ ∈ D.

It is related to the following problem for the bi-Poisson equation [11].

Theorem 2.2. The Dirichlet problem

(∂z∂z̄)2w = f in D, w = γ0, wzz̄ = γ2 on ∂D

is uniquely solvable for f ∈ L1(D) ∩ C(D), γ0, γ1 ∈ C(∂D) by

w(z) =
1

2πi

∫
∂D

[g1(z, ζ)γ0(ζ) + ĝ2(z, ζ)γ2(ζ)]
dζ

ζ
− 1
π

∫∫
D

G2(z, ζ)f(ζ)dξdη

where

g1(z, ζ) =
1

1− zζ̄
+

1
1− z̄ζ

− 1 =
1− |z|2|ζ|2
|1− zζ̄|2
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is the Poisson kernel for D and

ĝ2(z, ζ) = − 1
π

∫
D

G1(z, ζ̃)g1(ζ̃, ζ)dξ̃dη̃ = (1−|z|2)[ log(1 − zζ̄)
zζ̄

+
log(1− z̄ζ)

z̄ζ
+ 1].

Another bi-harmonic Green function [1] for D is

G̃2(z, ζ) = |ζ − z|2 log
∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2 − (1− |z|2)(1− |ζ|2) (2.1)

satisfying [10]
• ∂z∂z̄G̃2(z, ζ) = G1(z, ζ)− g1(z, ζ)(1− |ζ|2) in D for ζ ∈ D,
• G̃2(z, ζ) = 0, ∂νzG2(z, ζ) = 0 on ∂D for ζ ∈ D.

G̃2 is related to the following type of Dirichlet problem for the bi-Poisson equation
[9].

Theorem 2.3. The Dirichlet problem

(∂z∂z̄)2w = f in D, w = γ0, ∂νw = γ1 on D

is uniquely solvable for f ∈ L1(D) ∩ C(D), γ0 ∈ C2(∂D), γ1 ∈ C1(∂D) by

w(z) =
1

4πi

∫
∂D

[
g1(z, ζ)(1 + |z|2) + g2(z, ζ)(1− |z|2)

]
γ0(ζ)

dζ

ζ

− 1
2πi

∫
∂D

g1(z, ζ)(1− |z|2)γ1(ζ)
dζ

ζ

− 1
π

∫∫
D

G̃2(z, ζ)f(ζ)dξdη

where
g2(z, ζ) =

1
(1− zζ̄)2

+
1

(1− z̄ζ)2
− 1 .

3. Review of Polyharmonic Green Functions and Dirichlet
Problems for the n-Poisson Equation

In this section we will review the generalizations of the properties given in the
above section. A polyharmonic Green function Gn is given iteratively by

Gn(z, ζ) = − 1
π

∫∫
D

G1(z, ζ̃)Gn−1(ζ̃ , ζ)dξ̃dη̃

for n ≥ 2. It has the properties [3]
• Gn(z, ζ) is polyharmonic of order n in D\{ζ} for any ζ ∈ D,

• Gn(z, ζ) +
|ζ − z|2(n−1)

(n− 1)!2
log |ζ − z|2 is polyharmonic of order n for z ∈ D for

any ζ ∈ D,
• (∂z∂z̄)μGn(z, ζ) = 0 for 0 ≤ μ ≤ n− 1 on ∂D for any ζ ∈ D,
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• Gn(z, ζ) = Gn(ζ, z), for any z, ζ ∈ D.

These functions are related to the following n-Dirichlet problem for the higher-
order Poisson equation [3].

Theorem 3.1. The Dirichlet problem

(∂z∂z̄)nw = f in D, (∂z∂z̄)μw = γμ, 0 ≤ μ ≤ n− 1 on ∂D

with f ∈ L1(D) ∩ C(D), γμ ∈ C(∂D), 0 ≤ μ ≤ n − 1 is uniquely solvable. The
solution is

w(z) = −
n∑

μ=1

1
4πi

∫
∂D

∂νζ
Gμ(z, ζ)γμ−1(ζ)

dζ

ζ
− 1
π

∫∫
D

Gn(z, ζ)f(ζ)dξdη.

The generalization of (2.1) is the Green–Almansi function G̃n given by

G̃n(z, ζ) =
|ζ − z|2(n−1)

(n− 1)!2
log

∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2
−

n−1∑
μ=1

1
μ(n− 1)!2

|ζ − z|2(n−1−μ)(1 − |z|2)μ(1− |ζ|2)μ (3.1)

with the properties [3]

• G̃n(z, ζ) is polyharmonic of order n in D\{ζ} for any ζ ∈ D,

• G̃n(z, ζ) − |ζ − z|2(n−1)

(n− 1)!2
log |ζ − z|2 is polyharmonic of order n for z ∈ D for

any ζ ∈ D,

• (∂z∂z̄)μG̃n(z, ζ) = 0 for 0 ≤ 2μ ≤ n− 1 on ∂D for any ζ ∈ D,

• ∂νz (∂z∂z̄)μG̃n(z, ζ) = 0 for 0 ≤ 2μ ≤ n− 2 on ∂D for any ζ ∈ D,

• G̃n(z, ζ) = G̃n(ζ, z) for any z, ζ ∈ D,

• G̃1(z, ζ) = G1(z, ζ).

G̃n(z, ζ) is used to solve the following n-Dirichlet problem for the n-Poisson equa-
tion [3].

Theorem 3.2. The Dirichlet problem

(∂z∂z̄)nw = f in D,

subject to conditions

(∂z∂z̄)μw = γμ, 0 ≤ 2μ ≤ n− 1 ∂νz (∂z∂z̄)μw = γ̂μ, 0 ≤ 2μ ≤ n− 2 on ∂D
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for f ∈ L1(D) ∩ C(D), γμ ∈ Cn−2μ(∂D), 0 ≤ 2μ ≤ n − 1, γ̂μ ∈ Cn−1−2μ(∂D),
0 ≤ 2μ ≤ n− 2 is uniquely solvable. The solution is

w(z) = −
[ n
2 ]−1∑
μ=0

1
4πi

∫
∂D

∂νζ
(∂ζ∂ζ̄)

n−μ−1G̃n(z, ζ)γμ(ζ)
dζ

ζ

+
[ n−1

2 ]∑
μ=0

1
4πi

∫
∂D

(∂ζ∂ζ̄)
n−μ−1G̃n(z, ζ)γ̂μ(ζ)

dζ

ζ

− 1
π

∫∫
D

G̃n(z, ζ)f(ζ)dξdη.

The Green-m-Green Almansi-n function Gm,n(z, ζ) for m ∈ N0, n ∈ N (which
is also called a polyharmonic hybrid Green function) is defined by the convolution
of Gm and G̃n as

Gm,n(z, ζ) = − 1
π

∫∫
D

Gm(z, ζ̃)G̃n(ζ̃ , ζ)dξ̃dη̃ .

Note that, Gm,1(z, ζ) = Gm+1(z, ζ) for m ∈ N and we take G0,n(z, ζ) = G̃n(z, ζ)
for n ∈ N. Thus, G0,1(z, ζ) = G1(z, ζ). Gm,n(z, ζ) has the following properties:

• Gm,n(z, ζ) is polyharmonic of order m+ n in D\{ζ} for any ζ ∈ D,

• Gm,n(z, ζ)− |ζ − z|2(m+n−1)

(m+ n− 1)!2
log |ζ − z|2 is polyharmonic of order m+ n for

z ∈ D for any ζ ∈ D,
• (∂z∂z̄)tGm,n(z, ζ) = Gm−t,n(z, ζ) in D if t ≤ m,

• (∂z∂z̄)μGm,n(z, ζ) = 0 for 0 ≤ μ ≤ m− 1 on ∂D,
(∂z∂z̄)μ+mGm,n(z, ζ) = 0 for 0 ≤ μ ≤ [n−1

2 ] on ∂D,
∂νz (∂z∂z̄)μ+mGm,n(z, ζ) = 0 for 0 ≤ μ ≤ [n

2 ]− 1 on ∂D for any ζ ∈ D,

• (∂ζ∂ζ̄)nGm,n(z, ζ) = Gm(z, ζ) for any z ∈ D,

• (∂ζ∂ζ̄)μGm,n(z, ζ) = 0 for 0 ≤ μ ≤ [n−1
2 ] on ∂D,

∂νζ
(∂ζ∂ζ̄)μGm,n(z, ζ) = 0 for 0 ≤ μ ≤ [n

2 ]− 1 on ∂D,
(∂ζ∂ζ̄)μ+nGm,n(z, ζ) = 0 for 0 ≤ μ ≤ m− 1 on ∂D for any z ∈ D.

It can be easily seen that Gm,n(z, ζ) is not symmetric in its variables and is em-
ployed in the following (m,n)-type Dirichlet problem.

Theorem 3.3. The (m,n)-Dirichlet problem

(∂z∂z̄)nw = f in D,

(∂z∂z̄)μw = 0, 0 ≤ μ ≤ m− 1 on ∂D,

(∂z∂z̄)μ+mw = 0, 0 ≤ 2μ ≤ n−m− 1 on ∂D,

∂νz (∂z∂z̄)μ+mw = 0, 0 ≤ 2μ ≤ n−m− 2 on ∂D
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for f ∈ L1(D) ∩ C(D), is uniquely solvable. The solution is

w(z) = − 1
π

∫∫
D

Gm,n−m(z, ζ)f(ζ)dξdη.

Note. This type of a theorem may also be given in the case of nonzero boundary
conditions but computations take very large space.

4. A Class of Integral Operators Related to Dirichlet Problems

In this section, using Gm,n(z, ζ) and its derivatives with respect to z and z̄ as
the kernels, we define a class of integral operators related to (m,n)-type Dirichlet
problems.

Definition 4.1. For m, k, l ∈ N0, n ∈ N with (k, l) �= (m + n,m + n) and k + l ≤
2(m+ n), we define

Gk,l
m,nf(z) = − 1

π

∫∫
D

∂k
z ∂

l
z̄Gm,n(z, ζ)f(ζ)dξdη

for a suitable complex-valued function f given in D.

It is easy to observe that the operators Gk,l
m,n are weakly singular for k + l <

2(m + n) and strongly singular for k + l = 2(m + n). Using the above definition
we can obtain the following operators by some particular choices of m,n, k and l:

G0,0
0,1f(z) = − 1

π

∫∫
D

G1(z, ζ)f(ζ)dξdη = − 1
π

∫∫
D

log
∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2f(ζ)dξdη ,

G1,0
0,1f(z) = − 1

π

∫∫
D

∂zG1(z, ζ)f(ζ)dξdη

= − 1
π

∫∫
D

(
1

(ζ − z)
− ζ̄

(1− zζ̄)

)
f(ζ)dξdη ,

G2,0
0,1f(z) = − 1

π

∫∫
D

∂2
zG1(z, ζ)f(ζ)dξdη

= − 1
π

∫∫
D

(
1

(ζ − z)2
− ζ̄2

(1− zζ̄)2

)
f(ζ)dξdη .

Thus, G0,0
0,1, G

1,0
0,1 and G2,0

0,1 are the operators Π0, Π1 and Π2 which are investigated
by Vekua [16]. It can be shown that these operators satisfy

∂zG
0,0
0,1f = G1,0

0,1f and ∂2
zG

0,0
0,1f = G2,0

0,1f (4.1)

for f ∈ Lp(D), p > 2, in Sobolev’s sense.
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4.1. Properties of the Operators Gk,l
m,nf

The following lemmas and corollary will be proved by the use of the techniques
given in [2] and the properties of the operators having the harmonic Green func-
tions discussed in [16]. For the sake of completeness, we will sketch the proofs.
First, we will give some properties of the operators G0,0

0,1, G
1,0
0,1 and G2,0

0,1.
The following lemma is proved in [16, p. 337–340].

Lemma 4.2. For f ∈ Lp(D) where p > 2,∣∣∣Gk,0
0,1f(z)

∣∣∣ ≤ C(k, p)‖f‖Lp(D) (4.2)

for k = 0, 1,∣∣∣Gk,0
0,1f(z1)−Gk,l

0,1f(z2)
∣∣∣ ≤ C(k, p)‖f‖Lp(D)

{ |z1 − z2|(p−2)/p if k = 1,
|z1 − z2| if k = 0,

(4.3)

for z1, z2 ∈ D and
‖G2,0

0,1f‖Lp(D) ≤ C(p)‖f‖Lp(D) (4.4)

for p > 1. Moreover
‖G2,0

0,1f‖L2(D) ≤ ‖f‖L2(D) (4.5)

holds.

Now we give a property of Gk,l
m,n to simplify the discussions.

Lemma 4.3. For f ∈ Lp(D),

Gk,l
m,nf(z) =

{
Gk−l,0

m−l,nf(z), k ≥ l,

G0,l−k
m,n−kf(z), k < l,

for a suitable p. Moreover

Gk,l
m,nf(z) = Gl,k

m,nf(z) =: Gk,l
m,nf(z) . (4.6)

Proof. For k ≥ l, the polyharmonic hybrid Green function Gm,n(z, ζ) satisfies

∂k
z ∂

l
z̄Gm,n(z, ζ) = ∂k−l

z ∂l
z̄∂

l
zGm,n(z, ζ)

= ∂k−l
z Gm−l,n(z, ζ).

Therefore, using (4.1) we have Gk,l
m,nf(z) = Gk−l,0

m−l,nf(z).
For k < l, the similar arguments apply. The relation

∂k
z ∂

l
z̄Gm,n(z, ζ) = ∂l

z∂
k
z̄Gm,n(z, ζ)

proves (4.6). �

From now on, we will give the properties of Gk,l
m,n for l = 0, 0 ≤ k ≤ 2(m+n)

without loss of generality. Using Lemma 4.3, similar properties can be obtained
for the operators Gk,l

m,n with l �= 0.
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Lemma 4.4. For f ∈ Lp(D), p > 2

G0,0
m,nf(z) = G0,0

0,1(G
0,0
m−1,n)f(z) , (4.7)

G1,0
m,nf(z) = ∂zG

0,0
m,nf(z) = G1,0

0,1(G
0,0
m−1,n)f(z) , (4.8)

G2,0
m,nf(z) = ∂2

zG
0,0
m,nf(z) = G2,0

0,1(G
0,0
m−1,n)f(z) (4.9)

hold.

Proof. The operator G0,0
m,n is given by

G0,0
m,nf(z) = − 1

π

∫∫
D

Gm,n(z, ζ)f(ζ)dξdη

= − 1
π

∫∫
D

⎛⎝− 1
π

∫∫
D

G0,1(z, ζ̃)Gm−1,n(ζ̃ , ζ)dξ̃dη̃

⎞⎠ f(ζ)dξdη

= G0,0
0,1(G

0,0
m−1,n)f(z).

Thus inductively we get (4.7). To prove (4.8) and (4.9) we use the fact that G0,0
0,1f

has generalized derivatives given by (4.1). �

Lemma 4.5. For k ∈ N, if f ∈ W k,p(D), then

∂k−1
z G2,0

0,1f(z) = G1,0
0,1((D −D∗)kf(z)) (4.10)

and ∂k−1
z G2,0

0,1 is in Lp(D) where Df(z) = ∂zf(z), D∗f(z) = ∂z̄(z̄2f(z)).

Proof. We can rewrite G2,0
0,1f as

G2,0
0,1f(z) = − 1

π

∫∫
D

(
1

(ζ − z)2
− ζ̄2

(1− zζ̄)2

)
f(ζ)dξdη

= − 1
π

∫∫
D

[
− ∂

∂ζ

((
1

ζ − z
− ζ̄

1− zζ̄

)
f(ζ)

)

+
∂

∂ζ̄

((
1

ζ − z
− ζ̄

1− zζ̄

)
ζ̄2f(ζ)

)
+
(

1
ζ − z

− ζ̄

1− zζ̄

)
∂f

∂ζ

−
(

1
ζ − z

− ζ̄

1− zζ̄

)
∂

∂ζ̄
(ζ̄2f(ζ))

]
dξdη

It follows from Green’s theorem and −ζ̄dζ = ζdζ̄ that

G2,0
0,1f(z) = − 1

π

∫∫
D

(
1

ζ − z
− ζ̄

1− zζ̄

)
∂f

∂ζ
dξdη

+
1
π

∫∫
D

(
1

ζ − z
− ζ̄

1− zζ̄

)
∂(ζ̄2f)
∂ζ̄

dξdη
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or
G2,0

0,1f(z) = G1,0
0,1((D −D∗)f(z)) (4.11)

that corresponds to the case k = 1. Using (4.11) we have

∂zG
2,0
0,1f(z) = ∂zG

1,0
0,1((D −D∗)f(z))

= G1,0
0,1((D −D∗)2f(z))

and differentiating iteratively, we get (4.10). �

Corollary 4.6. If

f ∈
{

Lp(D), 1 ≤ k ≤ 2m− 1,
W k+1−2m,p(D), k ≥ 2m,

then
Gk,0

m,nf(z) = G1,0
0,1((D −D∗)k−1G0,0

m−1,nf(z)) (4.12)

and Gk,0
m,nf ∈ Lp(D) hold.

Proof. By Lemma 4.4 we have

Gk,0
m,nf(z) = ∂k

zG
0,0
m,nf(z) = ∂k

zG
0,0
0,1(G

0,0
m−1,n)f(z) .

Then by Lemma 4.5

Gk,0
m,nf(z) = ∂k−2

z (∂2
zG

0,0
0,1(G

0,0
m−1,n)f(z)

= ∂k−2
z G2,0

0,1(G
0,0
m−1,n)f(z)

= G1,0
0,1((D −D∗)k−1G0,0

m−1,nf(z))

is obtained since G1,0
m−1,nf(z) ∈ W k−1,p(D) holds with 1 ≤ k ≤ 2m − 1 for

f ∈ Lp(D). In the case of k ≥ 2m, G1,0
m−1,nf(z) ∈ W k−1,p(D) holds if f ∈

W k+1−2m,p(D). �

The following theorems give the boundedness, uniform continuity and Lp

boundedness of the operators Gk,l
m,n, respectively.

Theorem 4.7. Let f ∈ Lp(D), p > 2 and k + l < 2(m+ n). Then,∣∣Gk,l
m,nf(z)

∣∣ ≤ C‖f‖Lp(D) (4.13)

for z ∈ D .

Proof. We prove this property for the operators Gk,0
m,n for k ≤ 2(m+ n)− 1. The

case m = 0, n = 1 is proved in Lemma 4.2. For n > 1 and k = 0,

|G0,0
m,nf(z)| = |G0,0

0,1(G
0,0
m−1,nf)| ≤ C‖f‖Lp(D)

is obtained by Lemma 4.2. If 1 ≤ k ≤ 2(m+ n)− 1, we have

|Gk,0
m,nf(z)| = |G1,0

0,1((D −D∗)k−1G1,0
m−1,nf(z))| ≤ C‖f‖Lp(D)

by iterative use of Lemma 4.5 and Corollary 4.6. �
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Theorem 4.8. Let f ∈ Lp(D), p > 2 and k + l < 2(m+ n). Then for z1, z2 ∈ D,∣∣Gk,l
m,nf(z1)−Gk,l

m,nf(z2)
∣∣ ≤ C‖f‖Lp(D)

{ |z1 − z2|(p−2)/p if k + l = 2(m+ n)− 1
|z1 − z2| otherwise.

(4.14)

Proof. For n > 1 and 0 ≤ k + l ≤ 2(m+ n)− 2,

∂zG
k,l
m,nf(z) = Gk+1,l

m,n f(z)

and
∂z̄G

k,l
m,nf(z) = Gk,l+1

m,n f(z)
are bounded in D by Theorem 4.7. Then using the mean value theorem, the result
is achieved. For the case k + l = 2(m+ n)− 1, using Corollary 4.6, we write

Gm+n−1,0
m,n f(z) = G1,0

0,1((D −D∗)m+n−2G1,0
m−1,nf(z)) ,

and the result follows from Lemma 4.2 and (4.10). �

Theorem 4.9. If k + l = 2(m+ n), then Gk,l
m,nf ∈ Lp(D) and

‖Gk,l
m,nf‖Lp(D) ≤ Cp‖f‖Lp(D) (4.15)

for f ∈ Lp(D) with p > 1. Particularly,

‖Gm+2,m
m,1 f‖L2(D) = ‖Gm,m+2

m,1 f‖L2(D) ≤ ‖f‖L2(D) . (4.16)

Proof. (4.16) can be obtained by use of Lemma 4.2 and Lemma 4.3 iteratively. We
need to prove (4.15) for the operator Gm+n,0

m,n for n > 1. In this case, by Corollary
4.6, we have

Gm+n,0
m,n f(z) = ∂zG

1,0
0,1((D −D∗)m+n−2G1,0

m−1,nf(z))

= G2,0
0,1((D −D∗)m+n−2G1,0

m−1,nf(z)) . (4.17)

To get the result, we use (4.17) with the Lp boundedness of G1,0
0,1 and G2,0

0,1. �

5. Dirichlet Problem for the Generalized Higher-Order Poisson
Equation

In this section, using the hierarchy of integral operators defined in the previous
section we transform the (m,n)-Dirichlet problems for the generalized n-Poisson
equation into singular integral equations. Solvability of the problems are investi-
gated through these singular integral equations by use of Fredholm theory.

We will consider the generalized higher-order Poisson equation

(∂z∂z̄)nw +
∑

k+l=2n
(k,l)�=(n,n)

(q(1)kl (z)∂k
z ∂

l
z̄w + q

(2)
kl (z)∂l

z∂
k
z̄w)

+
∑

0≤k+l<2n

(akl(z)∂k
z ∂

l
z̄w + bkl(z)∂l

z∂
k
z̄w) = f(z) in D (5.1)



Generalized n-Poisson Equation 139

where

akl, bkl, f ∈ Lp(D), (5.2)

and q
(1)
kl and q

(2)
kl , are measurable bounded functions subject to∑

k+l=2r
(k,l)�=(r,r)

(|q(1)kl (z)|+ |q(2)kl (z)|) ≤ q0 < 1 . (5.3)

Now, the following problem is posed.

Dirichlet-(m,n) Problem. Find w ∈ W 2n,p(D) as a solution to equation (5.1)
satisfying the Dirichlet condition

(∂z∂z̄)μw = 0, 0 ≤ μ ≤ m− 1 on ∂D, (5.4)

(∂z∂z̄)μ+mw = 0, 0 ≤ 2μ ≤ n−m− 1 on ∂D, (5.5)

∂νz(∂z∂z̄)μ+mw = 0, 0 ≤ 2μ ≤ n−m− 2 on ∂D . (5.6)

Solvability of the problem is given depending on the values of p. First we take
the case of p > 2.

Theorem 5.1. The equation (5.1) with the conditions (5.4), (5.5) and (5.6) is
solvable if

q0 max
k+l=2n

‖Gk,l
m,n−m‖Lp(D) ≤ 1 (5.7)

and a solution is of the form w(z) = G0,0
m,n−mg(z) where g ∈ Lp(D), p > 2, is a

solution of the singular integral equation

(I +D +K)g = f (5.8)

where

Dg =
∑

k+l=2n
(k,l)�=(n,n)

(q(1)kl (z)Gk,l
m,n−mg + q

(2)
kl (z)Gk,l

m,n−mg) ,

Kg =
∑

0≤k+l<2n

(akl(z)G
k,l
m,n−mg + bkl(z)G

k,l
m,n−mg) .

Proof. The operator I+D is an invertible operator if the condition (5.7) is satisfied,
and Theorems 4.7, 4.8 and the Arzela–Ascoli theorem imply that K is a compact
operator in Lp(D). Thus the Fredholm alternative applies to the singular integral
equation (5.8). �
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Now we will take the case 0 < p−2 < ε. We decompose the strongly singular
integral operator D as

Dg =
∑

k+l=2n
(k,l)�=(n,n)

(q(1)kl (z)Gk,l
m,n−mg + q

(2)
kl (z)Gk,l

m,n−mg)

=
∑

k+l=2(m+1)
k=morl=m

(q(1)kl G
k,l
m,1g + q

(2)
kl G

k,l
m,1g) +

∑
k+l=2(m+1)
k �=m, l �=m

(q(1)kl G
k,l
m,1g + q

(2)
kl G

k,l
m,1g)

+
∑

k+l=2n
n>m+1

(q(1)kl G
k,l
m,n−mg + q

(2)
kl G

k,l
m,n−mg)

:= D1g +D2g + D3g.

By Theorem 4.9, D1 is an operator in L2 and its norm is less than or equal to 1
and thus I +D1 is an invertible operator for 2 < p < 2 + ε. The operator D2 +D3

is bounded, thus using bounded index stability theorem [14] the following result
can be stated.

Theorem 5.2. The equation (5.1) with the conditions (5.4), (5.5) and (5.6) is
solvable if

q0 max
k+l=2n

‖Gk,l
m,n−m‖Lp(D)‖(I +D1)−1 −K1‖Lp(D) < 1 (5.9)

holds for some K1 which is a compact operator in Lp(D), 0 < p − 2 < ε and a
solution is of the form w(z) = G0,0

m,n−mg(z) where g ∈ Lp(D), 0 < p − 2 < ε, is a
solution of the singular integral equation

(I +D1 +D2 +D3 +K)g = f. (5.10)
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A.O. Çelebi
Department of Mathematics
Yeditepe University
Istanbul
Turkey
e-mail: acelebi@yeditepe.edu.tr



Operator Theory:
Advances and Applications, Vol. 205, 143–166
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Schwarz, Riemann, Riemann–Hilbert
Problems and Their Connections in
Polydomains

Alip Mohammed

Abstract. This paper presents results on some boundary value problems for
holomorphic functions of several complex variables in polydomains. The
Cauchy kernel is one of the significant tools for solving the Riemann and
the Riemann–Hilbert boundary value problems for holomorphic functions as
well as for establishment of the connection between them. For polydomains,
the Cauchy kernel is modified in such a way that it corresponds to a certain
symmetry of the boundary values of holomorphic functions in polydomains.
This symmetry is lost if the classical counterpart of the one-dimensional form
of the Cauchy kernel is applied. The general integral representation formulas
for the functions, holomorphic in polydomains, the solvability conditions and
the solutions of the corresponding Schwarz problems are given explicitly. A
necessary and sufficient condition for the boundary values of a holomorphic
function for arbitrary polydomains is given and an exact, yet compact way
of notation for holomorphic functions in arbitrary polydomains is introduced
and applied. The Riemann jump problem and the Riemann–Hilbert problem
are solved for holomorphic functions of several complex variables with the
unit torus as the jump manifold. The higher-dimensional Plemelj–Sokhotzki
formula for holomorphic functions in polydomains is established. The canon-
ical functions of the Riemann problem for polydomains are represented and
applied in order to construct solutions for both of the homogeneous and in-
homogeneous problems. For all three boundary value problems, well-posed
formulations are given which does not demand more solvability conditions
than in the one variable case. The connection between the Riemann and the
Riemann–Hilbert problem for polydomains is proven. Thus contrary to earlier
research the results are similar to the respective ones for just one variable.
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1. Introduction

The motivation behind the study of the Riemann and Riemann–Hilbert problems
in higher-dimensional polydomains comes from both the theoretical significance
and the numerous applications of their one-dimensional analogue from crack prob-
lems in engineering [18, 20] to analysis of Markov processes with a two-dimensional
state space in queueing system theory [8].

The Riemann and Riemann–Hilbert problems are of interest not only for
theoretical reasons but also with respect to applications. On this topic a great deal
of research has been done and rich results are achieved in the plane case [11, 27,
5, 19]. They lead to the development of new promising techniques for the analysis
of a large class of problems [8, 18, 20]. The Riemann–Hilbert problem has been
the solution provider for a vast array of problems in mathematics, mathematical
physics and applied mathematics [10]. Moreover the results of the Riemann and
the Riemann–Hilbert problems in truly higher-dimensional polydomains can be
directly applied to the analysis of Markov processes with a higher-dimensional
state space (higher than two) due to independence of the variables of polydomains.

It is well known that the polydisc and the ball in the higher-dimensional space
are typical different natural extensions of the disc in the complex plane. Problems
of the ball are well studied, but problems of polydomains are almost untouched
due to geometrical complexity and some special properties of the polydomain in
the higher-dimensional space [3]. We know that holomorphic functions are very
important for boundary value problems and that a holomorphic function in a
polydomain can be fully determined by the values not on the whole boundary
but by the values just on the characteristic boundary [15]. As the boundary of
a ball – the sphere divides the space Cn(n > 1) into two parts just like in the
one variable case, the characteristic boundary of polydomains – the torus, the
essential boundary or the Shilov boundary – divides the space Cn(n > 1) into 2n

parts and contrary to the fact that the variables of the ball are dependent, the
variables of polydomains are independent. Thus problems for polydomains turn
out to be more interesting and applicable. However in order to solve the Riemann
and the Riemann–Hilbert problems, we have to solve the Schwarz problem for
holomorphic functions of polydomains. So first we address some issues on the
Schwarz problem [6, 24].

In the one variable case there are several equivalent definitions of holomorphic
functions. The most important ones are via power series and via the Cauchy in-
tegral. In higher-dimensional spaces, at least for polydomains, most studies about
holomorphic functions start from defining a holomorphic function by a Cauchy
integral, simply applying the original form of one-dimensional Cauchy kernel [7]
and [17]. These considerations may be proper for many cases. However, some arti-
ficial assumptions on the form of the holomorphic functions have to be made when
the connection between the Riemann–Hilbert problem and the Riemann problem
is considered even for the simplest cases. The reason is that the symmetry of the
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boundary values of holomorphic functions of respective pairs of polydomains is lost
if the original one-dimensional form of the Cauchy kernel is applied. Taking this
fact into account another approach is applied. Power series are taken as the starting
point and proper Cauchy kernels are derived through a careful factorization of
the boundary values of holomorphic functions on the essential boundary. For this
purpose the Wiener algebra is introduced and temporarily it is assumed that the
functions on the essential boundary belong to the Wiener algebra. Having the
Cauchy kernel established, the Wiener algebra is not needed for the solution of
the Schwarz problem. Another issue for holomorphic functions of polydomains was
to find a precise and yet a compact way of notation.

The Schwarz problem in the unit polydiscs was considered by [3]. However,
about the holomorphic functions of the other polydomains of Cn(n > 1) nothing
was known in the literature until [6, 24]. Its study provides vital information for
discussions of all kinds of boundary value problems of polydomains.

Resolving the issues about the Schwarz problem, the Riemann and the Riemann–
Hilbert problems can be addressed. About the Riemann problem for polydisc and
polydomains there are some known results [14, 2, 17, 7, 28] and recent ones [9, 22].

In the higher-dimensional space, in general, the zero sets of holomorphic func-
tions of several complex variables can be connected and thus the index method
which was vital in the one variable case is questionable to apply. There was also
not any convincible higher-dimensional analogue of the Plemelj–Sokhotzki for-
mula for holomorphic functions in polydomains which is fundamental for find-
ing solutions of the one-dimensional problem. To develop the higher-dimensional
Plemelj–Sokhotzki formula for holomorphic functions in polydomains, the exist-
ing one-dimensional theorem is far from being satisfactory. More deeper inside
knowledge is needed. Because of these difficulties, although there were some pa-
pers about the Shilov boundary related special inhomogeneous Riemann problem
in Cn(n > 1) [13], [17], [7], no one had given a solution which is constructed by the
canonical function for true higher-dimensional torus domains, except [12] and [14]
for bi-disc domains. However, the latter results have been found incorrect or in-
adequate [2]. Only in [22], the higher-dimensional Plemelj–Sokhotzki formula for
polydomains is established and a solution which is constructed by the canonical
function is provided. Among the previous studies there was no one which could
work for solving the corresponding homogeneous problem. The reason is that every
attempt was based on the ready form of the one-dimensional Cauchy kernel, the
one-dimensional Plemelj–Sokhotzki formula and the one-dimensional Noether con-
dition. They were repeatedly applied for the problem variable by variable. These
techniques work well for one inner and its outer domain in the plane. To apply
these techniques for polydomains the problem was considered variable by variable
so that one inner and its outer domain are always available. Thus because of the
Noether condition for holomorphic functions of the outer domain in the plane,
holomorphic functions of some polydomains get more strict restrictions [13] than
necessary and adequate [24, 6].
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The problem in the one variable case essentially is about one pair of holomor-
phic functions, i.e., about one pair of domains. In the case of a torus there are pairs
of domains which could be identified neither as definitive inner nor outer domains,
every pair has nothing to do with the others [24]–[25]. In this sense previous stud-
ies have treated an holomorphic function of a polydomain also in other irrelevant
polydomains. Additionally in order to obtain values of a holomorphic function of a
polydomain, its values on the whole boundary of the domain were needed [17], [7]
which is contradictory to the statement that a holomorphic function in a poly-
domain can be fully determined by the boundary values of this function on the
essential boundary [15]. The viewpoint of the previous studies is always one of the
n variables rather than one pair of the 2n polydomains in Cn, except [22].

About the Riemann–Hilbert problem for polydomains there was nothing
known, except for the polydisc Dn [3, 1]. But the latter studies are just for one pair
of all polydomains, for the rest the Riemann–Hilbert problem remained open [23].
Only in a recent relevant paper [9] some kind of special Rieman and Riemann–
Hilbert problems for holomorphic functions were treated from a new perspective.
Necessary and sufficient conditions for the existence of finitely linearly independent
solutions and finitely many solvability conditions were derived, solutions however
were not provided. They for the Rieman problem and the Riemann–Hilbert prob-
lem can be seen as a special subject for the considerations of [22, 23].

For formulation of both the Rieman problem and the Riemann–Hilbert prob-
lem, there are essentially two different ways. We show that only one of the problems
is essential in each set and we solve only the essential ones.

One remarkable fact which deserves significant attention is the natural con-
nection between the Riemann problem and the Riemann–Hilbert problem. This
connection had never been established and proven anywhere for higher-dimensional
space, although in the one variable case it is well established and proven [5, 11].
To fulfill the gap, applying Fourier method and analyzing structures of boundary
values of holomorphic functions, some complementary concepts about the Noether
condition [13], for higher-dimensional polydomains have been clarified and so the
Cauchy kernel is modified [24, 6], which forced previous discussions [14, 2] to make
some compromises on the properties of holomorphic functions in general and so
lead to some artificial assumptions. The rearranged form of boundary values of
holomorphic functions in polydomains by the modified Cauchy kernel [24, 6] and
the well-posed formulation of the Riemann and the Riemann–Hilbert problems
turn out to be the key factors for the establishment of the connection between
the two problems for polydomains. Thus another main contribution of [23] is to
establish and prove the connection for polydomains.

The described one-dimensional problems are well studied and there are nu-
merous results. The following are the most important ones among the known
results [11, 27, 5, 19]. For different boundary value problems for holomorphic func-
tions in the unit disc see [26].
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2. The Schwarz Problem

About the Schwarz problem for holomorphic functions in polydiscs and polydo-
mains some full scale studies are conducted by [3, 4] and [6, 24] which provided
not only solvability conditions but also explicit solutions. Its study provides vital
information for discussions of all kinds of boundary value problems of polydomains.

2.1. The Formulation of the Problem for C2

In the case of unit circle in C, there is one boundary, only one inside and only one
outside domain. As it is still the case for the unit ball Bn in Cn, for the unit polydisc
the situation is quite different. The torus has more domains than simply pure inner
and pure outer domains, i.e., the torus has some domains which is neither a pure
inner nor a pure outer domain [25] . For C2 we have four different domains divided
by the torus and we can find four holomorphic functions in the respective domains
for the given value on torus. For a given value, a holomorphic function that can be
defined in a respective torus domain has nothing in common with the holomorphic
functions defined in the other respective polydomains, except with the holomorphic
function defined in the totally opposed polydomain, see [24, 6].

For the reason of decomposition we need to define a set of complex-valued
functions:

W (∂D,C) =
{
f

∣∣∣∣f(ζ) =
+∞∑
−∞

akζ
k, ζ ∈ ∂D, ‖ f ‖W :=

+∞∑
−∞

|ak| <∞
}

which is called the one-dimensional Wiener algebra [21] and is simply denoted by
W 1 . By the Weierstrass theorem the Fourier series of functions from the Wiener
algebra are also uniformly convergent. Because of the independence of the variables
of polydomains on the torus ∂0Dn(n > 1), we have the Wiener algebra for torus
as

Wn =
{
f
∣∣∣f(z) =

+∞∑
−∞

aκζ
κ, ζ ∈ ∂0Dn, ‖ f ‖W n :=

+∞∑
−∞

|aκ| <∞
}
.

For the sake of simplicity the Wiener algebra is applied as the function space in
some cases to highlight the essence of the higher-dimensional problem without
being lost in technical detail.

The discussions on the Riemann and on the Riemann–Hilbert problems and
on their connection [22, 23] moreover are not restricted to the Wiener algebra
as it was done to the Riemann problem by[28], but only to the Hölder function
space Cα(∂0Dn,C) with 0 < α < 1. However according to the Bernstein theorem
Cα(∂0Dn,C) turns out to be the Wiener algebra for α > 1/2 [16].

Let γ ∈ W (∂0D2; R) . Then

γ(ζ1, ζ2) =
+∞∑

k1=−∞

+∞∑
k2=−∞

ak1,k2ζ
k1
1 ζk2

2 ,
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ak1,k2 =
1

(2πi)2

∫
∂0D2

γ(ζ1, ζ2)ζ−k1
1 ζ−k2

2

dζ1
ζ1

dζ2
ζ2

,

a−k1,−k2 = ak1,k2 , k1, k2 ∈ Z , (ζ1, ζ2) ∈ ∂0D2. (2.1)

Then for (ζ1, ζ2) ∈ ∂0D2 we have

γ(ζ1, ζ2) =
+∞∑
k1=0

k1+k2>0

+∞∑
k2=0

ak1,k2ζ
k1
1 ζk2

2 +
+∞∑
k1=0

k1+k2>0

+∞∑
k2=0

ak1,k2ζ
k1
1 ζk2

2 + a0,0

+
+∞∑
k1=1

+∞∑
k2=1

ak1,−k2ζ
k1
1 ζ−k2

2 +
+∞∑
k1=1

+∞∑
k2=1

ak1,−k2ζ
k1
1 ζ−k2

2

= 2Re
{ +∞∑
k1=0

k1+k2>0

+∞∑
k2=0

ak1,k2ζ
k1
1 ζk2

2

}
+ a0,0 + 2Re

{ +∞∑
k1=1

+∞∑
k2=1

ak1,−k2ζ
k1
1 ζ−k2

2

}
.

Obviously, γ(ζ) can be decomposed as the boundary values of two harmonic
functions – one in D2 = D+×D+ ( D−2 = D−×D− ) and one in D+− = D+×D− =
{(z1, z2) : |z1| < 1, |z2| > 1} (D−+ = D− × D+ = {(z1, z2) : |z1| > 1, |z2| < 1})
respectively.

As we have seen, a given real function γ(ζ) on ∂0D2 is not always the
real part of boundary values of a harmonic function in D2 , as it was in the
one-dimensional case. It is if and only if

Re
{ +∞∑

k1=1

+∞∑
k2=1

ak1,−k2ζ
k1
1 ζ−k2

2

}
= 0 , (ζ1, ζ2) ∈ ∂0D2.

This is the reason why solvability conditions occur for the Schwarz problem for
holomorphic functions in polydomains.

From the decomposed boundary values which are uniformly and absolutely
convergent, we have the respective holomorphic functions

+∞∑
k1=0

+∞∑
k2=0

ak1,k2z
k1
1 zk2

2 =
1

(2πi)2

∫
∂0D2

γ(ζ)
ζ

ζ − z

dζ

ζ
=: φ++(z),

+∞∑
k1=0

k1+k2>0

+∞∑
k2=0

a−k1,−k2z
−k1
1 z−k2

2 =
1

(2πi)2

∫
∂0D2

γ(ζ)
[ z

z − ζ
− 1

]dζ
ζ

=: φ−−(z),

+∞∑
k1=1

+∞∑
k2=1

ak1,−k2z
k1
1 z−k2

2 =
−1

(2πi)2

∫
∂0D2

γ(ζ)
z1

ζ1 − z1

ζ2
ζ2 − z2

dζ

ζ
=: φ+−(z),
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+∞∑
k1=1

+∞∑
k2=1

a−k1,k2z
−k1
1 zk2

2 =
−1

(2πi)2

∫
∂0D2

γ(ζ)
ζ1

ζ1 − z1

z2
ζ2 − z2

dζ

ζ
=: φ−+(z),

for z in, respectively, D2, D−2, D+− and D−+. It is evident that the driven kernel
above is different than the original form of the one-dimensional Cauchy kernel.
However the boundary values of holomorphic functions driven by this new kernel
posses certain symmetry.

Let us denote the space of boundary values of functions, holomorphic in
Dχ1,χ2 , by ∂Hχ1,χ2 and harmonic in Dχ1,χ2 by BHχ1,χ2 where χ1, χ2 ∈ {+,−}.
Clearly BHχ1,χ2 = ∂Hχ1,χ2 ⊕ ∂H−χ1,−χ2 and BHχ1,χ2 = BH−χ1,−χ2 . Throughout
the paper we need the values of functions on ∂0D2 to be at least Hölder contin-
uous, so the corresponding holomorphic function in Dχ1,χ2 has the same Hölder
continuity in the closure of Dχ1,χ2 , due to the independence of the variables of
torus, details can be seen in [5] for the case of one dimension.

2.2. The Problem Formulations for Cn

Although one can describe holomorphic functions in the two-dimensional case very
easily, it would not be very convenient to do the same in a higher-dimensional
space. One has to find a better way of description. For this reason an exact and
yet compact notation is introduced in [6, 24].

Definition 2.1. Let χ = (χ1, . . . , χn) be a multi-sign, satisfying

χ1, . . . , χn ∈ {+,−}, 0 ≤ ν ≤ n , 1 ≤ σ1 < · · · < σν ≤ n ,

1 ≤ σν+1 < · · · < σn ≤ n , {σ1, . . . , σn} = {1, . . . , n} , χσ1 = − , . . . , χσν = − ,

χσν+1 = + , . . . , χσn = + , χ(ν) = χσ1···σν (ν) ,
where ν gives the number of minus (−) signs and the indices σ1, . . . , σν show the
position of these minus sign components.

χ(ν) obviously has (n−ν) plus (+) sign components at the positions σν+1, . . . , σn.
In addition χ(ν) = χσ1···σν (ν) = −χρ1···ρn−ν (n − ν) = −χ(n − ν), for 0 ≤ ν ≤ n
and {ρ1, . . . , ρn−ν} = {1, . . . , n}\{σ1 · · ·σν} = {σν+1 · · ·σn}, when treating χ(ν)
as a vector.

For convenience we denote D−σ1
×· · ·×D−σν

×D+
σν+1

×· · ·×D+
σn

as Dχσ1···σν (ν)

and D+
σ1
× · · · × D+

σν
× D−σν+1

× · · · × D−σn
as D−χσ1···σν (ν).

Actually χσ1···σν (ν) , 0 ≤ ν ≤ n, can be understood as signs of vertices of the
n-dimensional cube

[−1,+1
]n. In the case n = 2 the signs (+,+), (+,−), (−,+), (−,−)

correspond to the signs of the vertices (1, 1), (1,−1), (−1, 1), (−1,−1) of the unit
square. Therefore we denote χ∗ as the vertices of the

[ − 1,+1
]n cube, while χ

represents the respective multi-sign.

Let ϕ ∈W (∂0Dn,R). Then ϕ can be represented as

ϕ(η) =
∑

κ∈Zn

ακη
κ , ακ =

1
(2πi)n

∫
∂0Dn

ϕ(ζ)ζ−κ dζ

ζ
, ακ = α−κ, κ ∈ Zn,

(2.2)
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where Z is the set of all integers. This Fourier series is absolutely and uniformly
convergent to ϕ(η) , η ∈ ∂0Dn, because of ϕ ∈ W (∂0Dn,R) and it can be decom-
posed into 2n parts:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ n∏
t=1

( +∞∑
kt=1

ζ−kt
t + 1

)
− 1

]
α−k1,...,−kn =

∑
|κ|>0 , κ∈Zn

+

α−κζ
−κ =: (−1)nφχ(n)(ζ),

n∏
t=1

( +∞∑
kt=1

(ζχ∗
t

t )kt + δχ
t

)
αχ∗

1k1,...,χ∗
nkn =: (−1)νφχ(ν)(ζ), 0 ≤ ν < n,

(2.3)
for all ζ ∈ ∂0Dn, where

δχt

t =
|χ∗t + χ∗t∗+1|

2
, 1 ≤ t ≤ n , t∗ = t mod(n) .

Remark 2.2. If the δk is treated as numbers, then there is an interesting fact

1 =
|χ∗t+1 + 1|

2
+
|χ∗t+1 − 1|

2
=: δ+t + δ−t , 1 ≤ t ≤ n− 1 ,

1 =
|χ∗1 + 1|

2
+
|χ∗1 − 1|

2
=: δ+n + δ−n

However throughout our paper we interpret δh (1 ≤ h ≤ n) as components of
an n-dimensional tuple. Any element of the tuple is composed of exactly just n
components, including some δk or at (k + t = n, 0 ≤ k, t ≤ n ). The dimension
of this kind of tuples n must satisfy n ≥ 2 . Any of δk alone does not make any
sense, unless it comes with the other n− 1 components together of an element of
the set of tuples.

Clearly φχ(ν)(ζ) in (2.3) can be seen as the boundary value of a holomorphic
function φχ(ν)(z) in Dχ(ν) .

Uniqueness of the decomposition of (2.2) as (2.3) can be proven by the fol-
lowing lemma from [6, 24].

Lemma 2.3.

n∏
t=1

(
at + at + 1

)
+ 1 =

n∏
t=1

[(
at + δ+t

)
+
(
at + δ−t

)]

=
n∑

ν=0

∑
1≤σ1<···<σν≤n

1≤σν+1<···<σn≤n

ν∏
t=1

(
aσt + δ−σt

) n∏
t=ν+1

(
aσt + δ+σt

)

for at ∈ C, 1 ≤ t ≤ n, where cd{σ1, . . . , σν , σν+1, . . . , σn} = n ,

χ∗σ1
= · · · = χ∗σν

= −1 , χ∗σν+1
= · · · = χ∗σn

= +1 .
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By the decomposition (2.3) of boundary values, an arbitrary holomorphic
function φχ(ν)(z) in Dχ(ν) with boundary values in Wn and continuous on
∂0Dn , without loss of generality, can be expressed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∏
t=1

( +∞∑
kt=1

(zkt
t )χ∗

t + δχt

t

)
αχ∗

1k1,...,χ∗
nkn =: (−1)νφχ(ν)(z), 0 ≤ ν < n, z ∈ Dχ(ν),[ n∏

t=1

( +∞∑
kt=1

z−kt
t + 1

)
− 1

]
α−k1,...,−kn =: (−1)nφχ(n)(z) , z ∈ D−n ,

(2.4)
and they converge absolutely and uniformly even on ∂0Dn [6, 24]. From this
expression the corresponding Cauchy kernel can be established and the Wiener
algebra from now on is not any more needed.

Thus for ϕ ∈ Cα(∂0Dn,C) with 0 < α < 1, instead of ϕ ∈ W (∂0Dn,C), the
Cauchy integral can be defined as

φχ(ν)(z) =
1

(2πi)n

∫
∂0Dn

ϕ(ζ)C(z, ζ)
dζ

ζ
(2.5)

where

C(z, ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)ν
n∏

k=1

[
(zkζ

−1
k )χ∗

k

1− (zkζ
−1
k )χ∗

k

+ δχk

k

]
, 0 ≤ ν ≤ n− 1, z ∈ Dχ(ν),

(−1)n

[
z

z − ζ
− 1

]
, ν = n, z ∈ D−n,

ζ

ζ − z
, z ∈ ∂0Dn.

Obviously by the decomposition (2.3) of boundary values, all the corresponding
holomorphic functions can be represented as (2.5). We call (2.5) the Cauchy integral
for polydomains.

The holomorphic functions defined by (2.4) can be obtained from (2.5) in the
corresponding polydomains and their boundary values (2.3) can also be given by
φχ(ν)(ζ) := lim

z→ζ∈∂0D
n

z∈D
χ(ν)

φ(z).

Interestingly

n∏
t=1

(
aχt

t + δχ
t

)
=

n∏
t=1

(
a−χt

t + δχ
t

)
.
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If ϕ(η) is real and ϕ(0) = 0, then

(−1)νφχ(ν)(ζ) :=
n∏

t=1

( +∞∑
kt=1

(ζkt
t )χ∗

t + δχ
t ,

)
αχ∗

1k1,...,χ∗
nkn

=
n∏

t=1

( +∞∑
kt=1

(ζkt
t )−χ∗

t + δχ
t

)
α−χ∗

1k1,...,−χ∗
nkn = (−1)νφ−χ(ν)(ζ),

ζ ∈ ∂0Dn, holds for 0 ≤ ν ≤ n, and φχ(ν)(ζ) can be seen as the reflection of
φ−χ(ν)(ζ) with respect to ∂0Dn . This property of boundary values turns out
to be very useful for solving the Riemann problem [22] as well as for proving the
connection between the Riemann and the Riemann–Hilbert problems [23] without
imposing artificial restrictions on holomorphic functions of polydomains.

The function φχ(ν)(z) defined by (2.5) has the following property.
Let k be a fixed integer in {1, . . . , n} , χ(ν) be a fixed sign and z ∈ Dχ(ν) .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φχ(ν)(z)

∣∣∣∣
zk∗=∞

= 0 , for k∗ ∈ {σ1, . . . , σν} and k∗ + 1 ∈ {σν+1, . . . , σn},

φχ(ν)(z)
∣∣∣∣
zk∗=0

= 0 , for k∗ ∈ {σν+1, . . . , σn} and k∗ + 1 ∈ {σ1, . . . , σν}.
(2.6)

It is known that if φ+ , φ− are boundary values of a holomorphic function
in D+ , D− respectively and are continuous on ∂D , then

(a)
1

(2πi)n

∫
∂D

φ+(ζ)
ζ/z

1 − ζ/z

dζ

ζ
= 0 , z ∈ D− ,

(b)
1

(2πi)n

∫
∂D

φ−(ζ)
z/ζ

1 − z/ζ

dζ

ζ
= 0 , z ∈ D+ .

Repeatedly applying these two formulas leads to the following result which will be
useful in the sequel.

Lemma 2.4. Let φχ(ν)(ζ) be boundary values of a function, holomorphic in Dχ(ν)

and continuous on Dχ(ν) ∪ ∂0Dn . Then

1
(2πi)n

∫
∂0Dn

φχ(ν)(ζ)C(z, ζ)
dζ

ζ
= 0, z ∈ Dχ0(μ), χ(ν) �= χ0(μ), 0 ≤ ν, μ ≤ n,

(2.7)
where C(ζ, z) and φχ(ν)(ζ) are defined as in (2.5).

The sense of Lemma 2.4 is that by decomposing the boundary values as in
(2.3) and defining the kernel as in (2.5), the kernel of the domain Dχ(ν) produces
a nontrivial result only for the domain Dχ(ν) with the boundary values of a
function, holomorphic in Dχ(ν).
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2.3. The Schwarz Problem for Polydomains

By the Cauchy integral (2.5) it is trivial to get the following lemma.

Lemma 2.5. Let φχ(ν) be holomorphic in Dχ(ν) and continuous on Dχ(ν)∪∂0Dn .
Then

φχ(0)(z) =
1

(2πi)n

∫
∂0Dn

(
Reφχ(0)(ζ)

)[
2

1
1− z/ζ

− 1
]
dζ

ζ
+ iImφχ(0)(0) , z ∈ Dn,

(2.8)

Reφχ(0)(z) =
1

(2πi)n

∫
∂0Dn

(
Reφχ(0)(ζ)

) n∏
k=1

Re
ζk + zk

ζk − zk

dζ

ζ
, z ∈ Dn, (2.9)

φχ(n)(z) =
1

(2πi)n

∫
∂0Dn

(
2Reφχ(n)(ζ)

)[
1

1− ζ/z
− 1

]
dζ

ζ
, z ∈ (D−)n, (2.10)

Reφχ(n)(z) =
1

(2πi)n

∫
∂0Dn

(
Reφχ(n)(ζ)

)[ n∏
k=1

Re
zk + ζk
zk − ζk

− 1
]
dζ

ζ
, z ∈ (D−)n,

(2.11)

φχ(ν)(z) =
1

(2πi)n

∫
∂0Dn

(
2Reφχ(ν)(ζ)

)
n∏

k=1

[
(zkζ

−1
k )χ∗

k

1− (zkζ
−1
k )χ∗

k

+ δχk

k

]
dζ

ζ
,

0 < ν < n , z ∈ Dχ(ν), (2.12)

Reφχ(ν)(z) =
1

(2πi)n

∫
∂0Dn

(
Reφχ(ν)(ζ)

) n∏
k=1

[
2Re

(zkζ
−1
k )χ∗

k

1− (zkζ
−1
k )χ∗

k

+ δχk

k

]
dζ

ζ
,

0 < ν < n , z ∈ Dχ(ν). (2.13)

Applying Lemma 2.4 and Lemma 2.5 it is easy to obtain the following theo-
rem.

Theorem 2.6. Let ν (0 ≤ ν ≤ n) and σ1, . . . , σν(1 ≤ σ1 < · · · < σν ≤ n) be fixed,
γ ∈ Cα(∂0Dn; R) with 0 < α < 1 and satisfying

γ(ζ) = PBHχ(ν) [γ(ζ)], (2.14)

where PBHχ(ν) [γ(ζ)] is the projection of γ(ζ) on BHχ(ν). Then for the fixed ν and
σ1, . . . , σν we have

φχ(0)(z) =
1

(2πi)n

∫
∂0Dn

γ(ζ)

[
2

1
1− z/ζ

− 1

]
dζ

ζ
+ iC1 , z ∈ Dn , (2.15)

φχ(n)(z) =
1

(2πi)n

∫
∂0Dn

2γ(ζ)

[
1

1− ζ/z
− 1

]
dζ

ζ
, z ∈ (D−)n , (2.16)

φχσ1···σν (ν)(z) =
1

(2πi)n

∫
∂0Dn

2γ(ζ)
n∏

k=1

(
(zkζ

−1
k )χ∗

k

1− (zkζ
−1
k )χ∗

k

+ δχk

k

)
dζ

ζ
,

z ∈ Dχσ1···σν (ν) , 0 < ν < n (2.17)
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are holomorphic functions in respective domains with arbitrary real C1 and satisfy

Reφ±χσ1···σν (ν)(ζ) = γ(ζ), ζ ∈ ∂0Dn. (2.18)

The condition (2.14) is not only sufficient but also necessary.

2.4. Well-Posed Formulation of the Schwarz Problem

2.4.1. Plane Case. In the case of the unit disc the given real value on the unit circle
is enough to determine the real part of one holomorphic function in the unit disc
or in the outer domain of the unit disc. In another word, alone with the given real
values on the circle, one can determine one holomorphic function in the unit disc
and one other holomorphic function outside the disc. To determine a holomorphic
function in or outside the unit disc it is necessary and sufficient to have its real
part on the unit circle.

2.4.2. Higher-Dimensional Space. From two dimensions on we have two possible
interpretation of the unit disc on the plane: unit ball and unit polydisc. The
boundary of the unit ball, the sphere divides the whole space only in two parts. In
this sense the unit ball is not very different from the unit disc. But for the polydisc
the situation is very different. The boundary of the unit polydisc can be defined
in two different ways: the whole boundary or the characteristic boundary–torus.
This makes the essential difference. Since holomorphic functions in polydiscs can
be described completely by their values just on the essential boundary ∂0Dn, it is
enough to restrict the boundary to the essential boundary–torus [15].

It is well known that all the problems polydomains are accompanied always
with some solvability conditions due to the fact that the given values on the torus
have more components than necessary components for the problem under con-
sideration. This phenomenon appears because the torus has more domains then
simply pure inner and pure outer domains, i.e., the torus has some domains which
are neither pure inner nor pure outer domains. In this sense investigating the
holomorphic functions in other polydomains has major impact on all kinds of
polydomain-related problem solving. By having the properly defined form of holo-
morphic functions for every polydomain it is obvious that concerning only one
special domain of the torus is always accompanied with some solvability condi-
tions. These solvability conditions are seen as natural phenomena for the torus.
However this can be understood also as ill-posed formulation of the original prob-
lem – we have usually more information than we need and less equations than
necessary. Taking into account that the original problem was established for half
of the space by the given values on the circle (the other half can be obtained by the
given value too), if we formulate the problem exactly for half of the polydomains
(for half space) by the given values on the torus, then no solvability conditions
could appear. Now it is clear that if we want to get a holomorphic function for a
very tiny part of the space, one polydomain, by the given values on the torus, the
other non-relevant part of the given values has to vanish and so we have solvability
conditions. If we consider more domains of a torus we would have less solvability
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conditions. If we consider half or more of the torus domains, then we have no solv-
ability conditions. Thus we can have a well-posed analogue of the Schwarz problem
for the polydomains which is originally well defined for the circle in the plane.

Before we give the well-posed or modified definition of the Schwarz problem,
we define some sets. Let

I∗ = {χ∗ | χ∗ = (χ∗1, . . . , χ
∗
n)} be the set of vertices of the [−1,+1]n cube.

For every element χ∗1 ∈ I∗ there is one and only one element χ∗2 ∈ I∗ so that
χ∗1 = −χ∗2. Denote I∗+ = {χ∗ | χ∗ = (+1, χ∗2, . . . , χ

∗
n) ∈ I∗}. Clearly I∗+ contains

exactly half of the elements of I∗ and has no any reflected element.
Respectively we denote I = {χ | χ = (χ1, . . . , χn) sign of the vertices χ∗ ∈

I∗} and I+ = {χ | χ = (+, χ2, . . . , χn) ∈ I}.
Now we give our modified well-posed definition of the Schwarz problem for

the torus.

The Modified Problem Let γ ∈ Cα(∂0Dn; R) with 0 < α < 1 . Find a holomorphic
function φχσ1···σν (ν)(ζ) in Dχσ1···σν (ν) for χσ1···σν ∈ I+ so that[

n
2

]∑
ν=0

∑
2≤σ1<···<σν≤n

1≤σν+1<···<σn≤n

Re φχσ1···σν (ν)(ζ) = γ(ζ), ζ ∈ ∂0Dn. (2.19)

On the basis of Theorem 2.6 one can easily obtain the following conclusion.

2.5. The Schwarz Problem Without Solvability Conditions

Theorem 2.7. Let γ ∈ Cα(∂0Dn; R) with 0 < α < 1. Then

φχ(0)(z) =
1

(2πi)n

∫
∂0Dn

γ(ζ)

[
2

1
1− z/ζ

− 1

]
dζ

ζ
+ iC1 , z ∈ Dn ,

φχ(n)(z) =
1

(2πi)n

∫
∂0Dn

2γ(ζ)

[
1

1− ζ/z
− 1

]
dζ

ζ
, z ∈ (D−)n , (2.20)

φχσ1···σν (ν)(z) =
1

(2πi)n

∫
∂0Dn

2γ(ζ)
n∏

k=1

(
(zkζ

−1
k )χ∗

k

1− (zkζ
−1
k )χ∗

k

+ δχk

k

)
dζ

ζ
,

z ∈ Dχσ1···σν (ν) , 0 < ν < n, (2.21)

are holomorphic functions in respective domains with arbitrary real C1 and satis-
fying (2.19).

Evidently condition (2.19) is always satisfied and therefore it is not a solv-
ability condition.
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2.6. A Necessary and Sufficient Condition for the Boundary Values of
Holomorphic Functions on the Torus Domains

Sometimes some simple checking methods of the boundary values of holomorphic
functions are needed. Having the structures of holomorphic functions in arbitrary
torus domain is fixed, we may be interested to solve problems in this domain. Then
surely we are confronted with the boundary values of the holomorphic functions
in these polydomains.

In order to know whether φ−(ζ) ∈ ∂H(D−) it is enough to know if φ−(ζ) ∈
∂H(D) and φ−(∞) = 0. This idea can be applied to check boundary values of
holomorphic functions in arbitrary polydomains. However we need to introduce a
slightly modified version of complex conjugate.

Let ϕ ∈ Cα(∂0Dn; C) with 0 < α < 1 and φχ(ν) be a holomorphic function
in Dχ(ν) which has the boundary values defined as in (2.3) for the given function
ϕ .

We define the boundary partial conjugate of φχ(ν) as follows.

Cζ

[
φχ(n)(ζ)

]
:=

[
φχ(n)(ζ)

]
ζ

:=
[ n∏

t=1

(
1 +

+∞∑
kt=1

ζ−kt
t

)
α−k1,...,−kn − α0,...,0

]

=
[ n∏

t=1

(
1 +

+∞∑
kt=1

ζkt
t

)
α−k1,...,−kn − α0,...,0

]
, ζ ∈ ∂0Dn; (2.22)

Cζσ1 ··· ζσν

[
φχ(ν)(ζ)

]
=:

[
φχ(ν)(ζ)

]
ζσ1 ··· ζσν

:=
[ ν∏

t=1

(
δ−σt +

+∞∑
kσt=1

ζ
−kσt
σt

) k∏
t=ν+1

(
δ+σt

+
+∞∑

kσt=1

ζ
kσt
σt

)
αχ∗

1k1,...,χ∗
nkn

]

=
[ n∏

t=1

(
δχt

t +
+∞∑
kt=1

ζkt
t

)
αχ∗

1k1,...,χ∗
nkn

]
, 0 < ν < n , ζ ∈ ∂0Dn. (2.23)

We call Cζσ1 ··· ζσν

[
φχ(ν)(ζ)

]
the boundary partial conjugate of φχ(ν). Obviously

φχ(ν)(ζ) ∈ ∂H(Dχ(ν)) (0 < ν ≤ n) is equivalent to Cζσ1 ··· ζσν

[
φχ(ν)(ζ)

]
∈ ∂H(Dn)

(0 < ν ≤ n) if the function φχ(ν)(ζ) satisfies condition (2.6). Thus we have

Theorem 2.8. Let φχ(ν) ∈ Cα(∂0Dn,C) with 0 < α < 1 and continuous in
Dχ(ν). Suppose φχ(ν) satisfies condition (2.6) and φχ(n)(∞) = 0 for ν = n.

Then Cζσ1 ··· ζσν

[
φχ(ν)(ζ)

]
∈ ∂H(Dn) is the necessary and sufficient condition

for φχ(ν)(ζ) ∈ ∂H(Dχ(ν)) .
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So by Theorem 2.8 we can check boundary values of holomorphic functions
in any polydomains.

3. The Riemann Problem

For the Riemann problem of polydomains the Plemelj–Sokhotkzi formula is the
number one challenging obstacle to overcome and at the same time it is also
decisive for the solution of the problem. The difficulty lies on the deceptive form
of the one-dimensional Plemelj–Sokhotkzi formula. From the two dimension on
the original formula fails, one has to find another equivalent form of the one-
dimensional formula which is extendable to higher-dimensional one.

3.1. The Plemelj–Sokhotkzi Formula

We define⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ n∏
t=1

( +∞∑
kt=1

ζ−kt
t − 1

)
− (−1)n

]
α−k1,...,−kn =: φχ(n)

∗ (ζ) , ζ ∈ ∂0Dn,

ν∏
t=1

( +∞∑
kσt=1

ζ
−kσt
σt − δ−σt

) n∏
t=ν+1

( +∞∑
kσt=1

ζ
kσt
σt + δ+σt

)
αχ∗

1k1,...,χ∗
nkn =: φχ(ν)

∗ (ζ) ,

(3.1)
0 ≤ ν < n , ζ ∈ ∂0Dn,

as boundary integral conjugates of (2.3) . Evidently for η ∈ ∂0Dn

1
(πi)n

∫
∂0Dn

φχ(ν)(ζ)
dζ

ζ − η
= φ

χ(ν)
∗ (η) ,

1
(πi)n

∫
∂0Dn

φ
χ(ν)
∗ (ζ)

dζ

ζ − η
= φχ(ν)(η).

(3.2)
From (3.1) and (2.3) it clear that

φχ(n)(ζ) �= φ
χ(n)
∗ (ζ) for n ≥ 2. (3.3)

However this is the remarkable reason why it is not possible to get Plemelj-
Sokhotkzi formula in the one-dimensional original form. Surprisingly

φ+(ζ) = φ+
∗ (ζ), φ−(ζ) = φ−∗ (ζ).

Now from this relation we see that second part of the Plemelj-Sokhotkzi formula is
indeed about boundary integral conjugates. The first part of the formula is obvious
if the given function ϕ on the torus and the boundary values of holomorphic
functions φ+, φ− defined by (2.5) are represented as series.

Paying attention to (2.2) and (2.3), applying Lemma 2.3, (3.1), (2.5) and
taking (3.1) into account the next result is evident.

Theorem 3.1 (Plemelj–Sokhotzki Formula for Torus Domains). Under the condi-
tion ϕ ∈ Cα(∂0Dn,C) with 0 < α < 1 , the boundary values of the function φχ(ν)

which is holomorphic in Dχ(ν) and defined as in (2.5) satisfy

(−1)νφχ(ν)(ζ) + (−1)n−νφ−χ(ν)(ζ) = ϕχ(ν)(ζ) + ϕ−χ(ν)(ζ) , ζ ∈ ∂0Dn , (3.4)
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2nφ(ζ) =
∑
χ(ν)

φ
χ(ν)
∗ (ζ) , ζ ∈ ∂0Dn , (3.5)

where ϕχ(ν)(ζ) ∈ ∂Hχ(ν) , can be given by Fourier series for ϕ(ζ) on ∂0Dn , i.e.,

ϕχ(ν)(ζ) + ϕ−χ(ν)(ζ) = ϕ(ζ)
∣∣∣∣
∂Hχ(ν)⊕∂H−χ(ν)

, ζ ∈ ∂0Dn .

Further φ
χ(ν)
∗ (ζ) is the boundary integral conjugate of φχ(ν)(ζ) defined in (3.1).

The summation over χ(ν) actually runs over all σ
′
s, see Lemma 2.3.

3.2. The Formulation of the Riemann Problem

We introduce here only two different formulations of the Riemann problem with
projection coefficient and its main result, details can be found in [22]. It is well
known that there is a connection between the Riemann–Hilbert problem and
the Riemann problem. For the Riemann problem there are two kind of formula-
tions [22]. Thus also for the Riemann–Hilbert problem, two different formulations
can be given.

The Riemann Problem RI(p) (with projection coefficient). Let G, g∈Cα(∂0Dn,C),
0 < α < 1. Find holomorphic functions φχ(ν)(ζ) in Dχ(ν), 0 ≤ ν ≤ n, such that∑

χ(ν)

Gχ(ν)(ζ)φχ(ν)(ζ) = g(ζ) , ζ ∈ ∂0Dn, (3.6)

where Gχ(ν)(ζ) = P BHχ(ν) [G(ζ)] with Gχ(ν)(ζ) �= 0 , ζ ∈ ∂0Dn.

The Riemann Problem RII(p) (with projection coefficient). LetG, g∈Cα(∂0Dn,C),
0 < α < 1. For a fixed 0 ≤ ν ≤ n find functions φχ(ν), φ−χ(ν) holomorphic in Dχ(ν),
D−χ(ν) respectively, such that

φχ(ν)(ζ) + φ−χ(ν)(ζ)Gχ(ν)(ζ) = gχ(ν)(ζ) , ζ ∈ ∂0Dn, (3.7)

where Gχ(ν)(ζ) = P BHχ(ν) [G(ζ)] with Gχ(ν)(ζ) �= 0 , ζ ∈ ∂0Dn and gχ(ν)(ζ) =
PBHχ(ν) [g(ζ)].

Now every function in equation (3.7) belongs to the same space BHχ(ν) just
like in the one variable case. Thus for solving equation (3.7) we do not need any
restrictions.

The starting point or subject of this formulation is the single space of bound-
ary values of harmonic functions on a pair of polydomains but not a single vari-
able as it was the case for considerations about the Riemann problem for polydo-
mains [12, 13, 14, 17, 2], only exceptions are [22, 1] and [3]. In [3, 1] the Riemann–
Hilbert problem was considered for a single torus domain Dn. Results for D−n can
be achieved similarly.
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3.3. The Homogeneous Riemann Problem

Lemma 3.2. The homogeneous problem (3.7) with gχ(ν) = 0 is nontrivially solvable
if and only if

sign[K(χ(ν))] = χ(ν) (3.8)

holds for K(χ(ν)) = (−Kσ1 , . . . ,−Kσν ,Kσν+1 , . . . ,Kσn) with Kστ ≥ 0 for 1 ≤
τ ≤ n, i.e., the sign of the domain is the same as the sign of the index K(χ(ν)) ,
where

Kσi :=
∣∣∣∣ 1
(2πi)

∫
∂Dσi

d log
(−Gχ(ν)(ζ)

)∣∣∣∣ ∈ N ∪ {0}.

For K(χ(ν)), which satisfies (4.14), the homogeneous problem (3.7) with gχ(ν) = 0
has |K(χ(ν))| + 1 linearly independent solutions{

φχ(ν)(z) = z
−kσ1
σ1 · · · z−kσν

σν z
kσν+1
σν+1 · · · zkσn

σn eγχ(ν)(z),

φ−χ(ν)(z) = z
Kσ1−kσ1
σ1 · · · zKσν−kσν

σν z
kσν+1−Kσν+1
σν+1 · · · zkσn−Kσn

σn eγ−χ(ν)(z),
(3.9)

for z in, respectively, Dχ(ν) and D−χ(ν), where 0 ≤ kστ ≤ Kστ , 1 ≤ τ ≤ n, and

γ±χ(ν)(z) :=
1

(2πi)n

∫
∂0Dn

log
{
ζ−K(χ(ν))

(−Gχ(ν)(ζ)
)}
C(ζ, z)

dζ

ζ
, z ∈ D±χ(ν) .

The simple canonical function of the Riemann problem is{
X

χ(ν)
0 (z) = eγχ(ν)(z), z ∈ Dχ(ν),

X
−χ(ν)
0 (z) = eγ−χ(ν)(z), z ∈ D−χ(ν),

(3.10)

and the general solution to the homogeneous problem is⎧⎨⎩ φχ(ν)(z) = P
χ(ν)
K+(χ(ν))(z)X

χ(ν)
0 (z), z ∈ Dχ(ν),

φ−χ(ν)(z) = P
−χ(ν)
K+(χ(ν))(z)X

−χ(ν)
0 (z), z ∈ D−χ(ν),

(3.11)

where Pχ(ν)
K+(χ(ν))(z) is a polynomial of z ∈ Dχ(ν) with degree up to K+(χ(ν)) with

arbitrary coefficients and K+(χ(ν)) = (Kσ1 , . . . ,Kσν ,Kσν+1 , . . . ,Kσn).

Remark 3.3. There is an equivalent, more classical but less straightforward for-
mulation of (3.10–3.11) as follows.

The canonical function is{
Xχ(ν)(z) = eγχ(ν)(z), z ∈ Dχ(ν),

X−χ(ν)(z) = z−K(χ(ν))eγ−χ(ν)(z), z ∈ D−χ(ν).
(3.12)

The general solution to the homogeneous problem is{
φχ(ν)(z) = PK(χ(ν))(z)Xχ(ν)(z), z ∈ Dχ(ν),

φ−χ(ν)(z) = PK(χ(ν))(z)X−χ(ν)(z), z ∈ D−χ(ν),
(3.13)
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where PK(χ(ν))(z) is a polynomial of z ∈ Dχ(ν) = D−σ1
×· · ·×D−σν

×D+
σν+1

×· · ·×D+
σn

with degree up to Kχ(ν) with arbitrary coefficients.

3.4. The Inhomogeneous Riemann Problem

Lemma 3.4. If the sign of the index [K(χ(ν))] of Gχ(ν)(ζ) in (3.7) is exactly the
same as χ(ν), the solution to the problem can be given by

φ±χ(ν)(z) = X±χ(ν)(z)
[
ψ±χ(ν)(z) + P

±χ(ν)

K+(χ(ν))(z)
]
, z ∈ D±χ(ν) . (3.14)

If the sign [K(χ(ν))] has τ +μ (0 ≤ τ ≤ ν, 0 ≤ μ ≤ n−ν, 0 < μ+ τ ≤ n) opposite
components compared with χ(ν) (i.e., Kσi < 0 (1 ≤ i ≤ τ ≤ ν), Kσν+j < 0
(1 ≤ j ≤ μ ≤ n − ν) and the remaining K ′σi

s are nonnegative), the solvability
condition

1
(2πi)n

∫
∂0Dn

gχ(ν)(ζ)
Xχ(ν)(ζ)

τ∏
α=1

ζ
kσα

σα

ν∏
β=τ+1

ζ
kσβ
σβ

ν+μ∏
j=ν+1

ζ
kσj
σj

n∏
θ=ν+μ+1

ζ
kσθ
σθ

dζ

ζ
= 0 (3.15)

with

0 ≤ kσα ≤ −Kσα (1 ≤ α ≤ τ), 0 ≤ kσj ≤ −Kσj (ν + 1 ≤ j ≤ ν + μ) ,

0 ≤
τ∑

α=1

kσα +
ν+μ∑

j=ν+1

kσj ≤ −
τ∑

α=1

Kσα −
ν+μ∑

j=ν+1

Kσj − 1 , kσβ
, kσθ

∈ Z+

must be satisfied. Then the solution is

φ±χ(ν)(z) = X±χ(ν)(z)ψ±χ(ν)(z) , z ∈ D±χ(ν), (3.16)

where

ψ±χ(ν)(z) =
1

(2πi)n

∫
∂0Dn

[
gχ(ν)(ζ)

/
Xχ(ν)(ζ)

]
C(ζ, z)

dζ

ζ
, z ∈ D±χ(ν) . (3.17)

Remark 3.5. Condition (3.15) can be represented as[
gχ(ν)(ζ)

/
Xχ(ν)(ζ)

]
∈ ζ

Kσ1
σ1 · · · ζKστ

στ ζ
−Kσν+1
σν+1 · · · ζ−Kσν+μ

σν+μ BHχσ1···σν (ν). (3.18)

4. The Riemann–Hilbert Problem

Applying the results of the previous sections the Riemann–Hilbert problem for
polydomains can be solved and its connection to the Riemann problem can be
established. For this reason the problem itself has to be well formulated and some
additional known facts have to be applied.

For the proof of the Riemann- Hilbert problem, some equivalent forms of a
property of holomorphic functions of the unit disc are needed.
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Lemma 4.1. Let

f(ζχ∗
) =

∞∑
k=1

fχ∗kζ
χ∗k + δχf0 ∈ Hχ, ζ ∈ ∂D.

Assume K ∈ Z and K < 0. Then

f(zχ∗
) =

1
2πi

∫
∂D

f(ζχ∗
)
[

(zζ−1)χ∗

1− (zζ−1)χ∗ + δχ

]
dζ

ζ
, z ∈ Dχ

and for δχ ∈ {0, 1} the following are equivalent:

• ζχ∗Kf(ζχ∗
) = F (ζχ∗

) ∈ Hχ,

• fχ∗k = 0 for 1− δχ ≤ k ≤ −K − δχ,

• f(zχ∗
) =

1
2πi

∫
∂D

f(ζχ∗
)(zζ−1)−χ∗K

[
(zζ−1)χ∗

1− (zζ−1)χ∗ + δχ

]
dζ

ζ
, z ∈ Dχ.

4.1. The Well-Posed Formulation of the Riemann–Hilbert Problem
for Polydomains

Prior to [23], the Riemann–Hilbert problem for a polydisc Dn was studied by [3, 1]
and a solution is provided.

The Riemann–Hilbert Problem (for a polydisc Dn) is to find a holomorphic
function φ in Dn such that

Re
{
λ(ζ)φ(ζ)

}
= ϕ(ζ) , ζ ∈ ∂0Dn, (4.1)

for ϕ ∈ C(∂0Dn,R), λ ∈ C(∂0Dn,C), |λ(ζ)| = 1, ζ ∈ ∂0Dn.

Lemma 4.2. Let λ ∈ C(∂0Dn; C), |λ(ζ)| = 1 for ζ ∈ ∂0Dn, κ = ind λ, and
ϕ ∈ C(∂0Dn; R) satisfying

arg{ζ−κλ(ζ)} ∈ BHn (4.2)

and
eIm γ(ζ)ϕ(ζ) ∈ BHn. (4.3)

Moreover, if κ = (κ1, . . . , κn), κλσ < 0 ≤ κλρ for σ ∈ {1, . . . , μ}, ρ ∈ {μ+1, . . . , n}
where μ, 1 ≤ μ ≤ n, is fixed and {λ1, . . . , λn} = {1, . . . , n} satisfying λ1 < λ2 <
· · · < λμ, λμ+1 < λμ+2 < · · · < λn,

eIm γ(ζ)ϕ(ζ) = ζ
−κλ1
λ1

· · · ζ−κλμ

λμ
ψ, ψ ∈ BHn (4.4)

with

γ(z) :=
1

(2πi)n

∫
∂0Dn

arg{ζ−κλ(ζ)}
( 2ζ
ζ − z

− 1
)dζ
ζ
. (4.5)

For μ = 0, condition (4.5) coincides with condition (4.2). Then problem (4.1) is
solvable. The solution is given by

w(z) = eiγ(z)
[ zκ

(2πi)n

∫
∂0Dn

eIm γ(ζ)ϕ(ζ)
( 2ζ
ζ − z

− 1
)dζ
ζ

+
2κ∑

ν=0

aνz
ν
]

(4.6)
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with arbitrary complex constants aν , 0 ≤ ν ≤ 2κ, satisfying

aν + a2κ−ν = 0 for 0 ≤ ν ≤ κ ,

if μ = 0. For 1 ≤ μ ≤ n the solution is

w(z) =
eiγ(z)

(2πi)n
z

κλμ+1
λμ+1

· · · zκλn

λn

∫
∂0Dn

2eIm γ(ζ)ϕ(ζ)ζκλ1
λ1

· · · ζκλμ

λμ

n∏
σ=1

1
1− zσζσ

dζσ
ζσ

.

(4.7)

In the case 1 ≤ μ ≤ n the homogeneous problem ϕ = 0 is only trivially
solvable.

The Riemann–Hilbert Problem RH(Ip). Let λ ∈ Cα(∂0Dn,C), ϕ ∈ Cα(∂0Dn,R)
with 0 < α < 1. Find a function φχσ1···σν (ν)(ζ), holomorphic in Dχσ1···σν (ν) , for
0 ≤ ν ≤ [

n
2

]
, 1 ≤ σ1 ≤ · · · ≤ σν ≤ n, such that∑

χ(ν)

Re
{
λ

χσ1···σν (ν)
s (ζ)φχσ1···σν (ν)(ζ)

}
= ϕ(ζ) , ζ ∈ ∂0Dn, (4.8)

where λχσ1···σν (ν)
s (ζ) := PBHχσ1···σν (ν)

[
λ(ζ)

]
and |λχσ1···σν (ν)

s (ζ)| = 1 on ζ ∈ ∂0Dn.
Now every function in equation (4.8) belongs to the same space BHχσ1···σν (ν)

which is actually the necessary condition for solvability of (4.8). This condition is
automatically satisfied in the one variable case. Now for solving equation (4.8) we
do not need any restrictions and this means we got a well-posed formulation of
the Riemann–Hilbert problem for the higher-dimensional torus.

By projecting equation (4.8) with respective function spaces BHχσ1···σν (ν) we
can reduce the problem to

The Riemann–Hilbert Problem RH(IIp). Let λ ∈ Cα(∂0Dn,C), ϕ ∈ Cα(∂0Dn,R)
with 0 < α < 1. Find a function φχσ1···σν (ν)(ζ), holomorphic in Dχσ1···σν (ν) for the
given ν and σ1 · · ·σν such that

Re
{
λ

χσ1···σν (ν)
p (ζ)φχσ1···σν (ν)(ζ)

}
= ϕ

χσ1···σν (ν)
s (ζ) , ζ ∈ ∂0Dn (4.9)

where ϕχσ1···σν (ν)
p (ζ) = PBHχσ1···σν (ν)

[
ϕ(ζ)

]
, λ

χσ1···σν (ν)
p (ζ) := PBHχσ1···σν (ν)

[
λ(ζ)

]
and |λχσ1 ···σν (ν)

p (ζ)| = 1 on ζ ∈ ∂0Dn.

What remained is to solve equation (4.9), since all the other forms can be
reduced to this equation.

4.2. Solution of the Problem

Lemma 4.3. The general solution to the special Riemann–Hilbert problem for func-
tions, holomorphic in Dχσ1···σν (ν) of the form

Re
{
ζ

K(χσ1···σν (ν))
ϕχσ1···σν (ν)(ζ)

}
= 0 , ζ ∈ ∂0Dn (4.10)
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for the multi-index K(χσ1···σν (ν)) = (−Kσ1 , . . . ,−Kσν ,Kσν+1, . . . ,Kσn), 0 ≤ Kσν ,
0 ≤ ν ≤ n, is

ϕχσ1···σν (ν)(z) =
2Kσ1∑
μσ1=0

· · ·
2Kσν∑
μσν =0

2Kσν+1∑
μσν+1=0

· · ·
2Kσn∑
μσn=0

αμz
−μσ1
σ1 · · · z−μσν

σν z
μσν+1
σν+1 · · · zμσn

σn

=: Pχσ1···σν (ν)

2K+(χσ1···σν (ν))(z) with αμ + α[2K+(χσ1···σν (ν))−μ] = 0 (4.11)

for 0 ≤ μ ≤ 2K+(χσ1···σν (ν)), where

K+(χσ1···σν (ν)) = (Kσ1 , . . . ,Kσν ,Kσν+1 , . . . ,Kσn).

Lemma 4.3 becomes actually Lemma 5.16 in [3] for ν = 0. The proof for
ν �= 0 is trivial, so is omitted.

Theorem 4.4. Let the assumptions of RH(IIp) hold and let K(χσ1···σν (ν)) =
ind λ

χσ1···σν (ν)
s satisfy

arg{ζ−K(χσ1···σν (ν))λ
χσ1 ···σν (ν)
s (ζ)} ∈ BHχσ1···σν (ν) (4.12)

and
eIm γχσ1···σν (ν)(ζ)ϕ

χσ1···σν (ν)
s (ζ) ∈ BHχσ1···σν (ν). (4.13)

We suppose that for the case the sign of the index is not the same as the sign of
the domain, i.e.,

sign[K(χσ1···σν (ν))] �= χσ1···σν (ν) for fixed ν (4.14)

where index

K(χσ1···σν (ν))

= (−Kσ1 , . . . ,−Kσμ , −Kσμ+1 , . . . ,−Kσν ,Kσν+1 , . . . ,Kσν+λ
,Kσν+λ+1, . . . ,Kσn)

with
Kσ1 ≤ 0, . . . ,Kσμ ≤ 0, Kσμ+1 ≥ 0, . . . ,Kσν ≥ 0 , 0 ≤ μ ≤ ν,

Kσν+1 ≤ 0, . . . ,Kσν+λ
≤ 0, Kσν+λ+1 ≥ 0, . . . ,Kσn ≥ 0 , 0 ≤ λ ≤ n− ν,

solvability condition

eIm γχσ1···σν (ν)(ζ)ϕ
χσ1···σν (ν)
s (ζ) ∈ ζ

Kσ1
σ1 · · · ζKσμ

σμ ζ
−Kσν+1
σν+1 · · · ζ−Kσν+λ

σν+λ BHχσ1···σν (ν)

(4.15)
is satisfied with

γχσ1···σν (ν)(z) :=
2

(2πi)n

∫
∂0Dn

arg{ζ−K(χσ1···σν (ν))λ
χσ1···σν (ν)
s (ζ)}C(ζ, z)

dζ

ζ
(4.16)

where

Kστ :=
1

2πi

∫
∂Dστ

d log
(
λ

χσ1···σν (ν)
s (ζ)

) ∈ Z , 1 ≤ τ ≤ n .
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Then RH(IIp) is solvable. For the case μ = λ = 0, i.e., the sign of the index is the
same as the sign of the domain, condition (4.15) becomes (4.13) and the solution
is given by

φχσ1···σν (ν)(z) = eiγχσ1···σν (ν)(z)
[
zK(χσ1···σν (ν))ψχσ1···σν (ν)(z)+Pχσ1···σν (ν)

2K+(χσ1···σν (ν))(z)
]

(4.17)
with arbitrary complex constants ακ, 0 ≤ κ ≤ 2K+(χσ1···σν (ν)) and coefficients of
polynomial Pχσ1···σν (ν)

2K+(χσ1···σν (ν))(z) satisfying

ακ + α[2K+(χσ1···σν (ν))−κ] = 0 for 0 ≤ κ ≤ K+(χσ1···σν (ν)),

where

ψχσ1···σν (ν)(z) =
2

(2πi)n

∫
∂0Dn

eIm γχσ1···σν (ν)(ζ)ϕ
χσ1···σν (ν)
s (ζ)C(ζ, z)

dζ

ζ
. (4.18)

For 1 ≤ μ+ λ ≤ n, the solution is

φχσ1 ···σν (ν)(z) = eiγχσ1···σν (ν)(z)
ν∏

ρ=μ+1

z
−Kσρ
σρ

n∏
τ=μ+λ+1

z
Kστ
στ

× 2
(2πi)n

∫
∂0Dn

eIm γχσ1···σν (ν)(ζ)ϕ
χσ1···σν (ν)
s (ζ)

μ∏
ρ=1

ζ
−Kσρ
σρ

ν+λ∏
τ=ν+1

ζ
Kσρ
σρ C(ζ, z)

dζ

ζ
.

(4.19)

In the case 1 ≤ μ+λ ≤ n the homogeneous problem ϕ = 0 is only trivially solvable.

The theorem can be proven applying (4.3), (4.4) and Lemmas 3.2–3.4 and
4.1.

The corresponding homogeneous problem is only trivially solvable.

5. The Connection

We have mentioned that for holomorphic functions defined by the modified Cauchy
kernel (2.5) the relationship

(−1)νφχ(ν)(ζ) = (−1)νφ−χ(ν)(ζ) , ζ ∈ ∂0Dn, 0 ≤ ν ≤ n,

holds for ϕ(η) real on ∂0Dn and ϕ(0) = 0 (without ϕ(0) = 0 we have one
free parameter to fix) . Therefore with the transformation from (3.7) to (4.9) we
do not need to impose any restriction on the form of holomorphic functions, i.e.,
we don’t have to narrow types of holomorphic functions to get the transformation
as all known studies have to do if they try to establish the connection.

Theorem 5.1. The solution (3.14), (3.16) to the Riemann problem (3.7) with

−Gχ(ν)(ζ) =
λχ(ν)(ζ)

λχ(ν)(ζ)
, gχ(ν)(ζ) =

2ϕχ(ν)(ζ)

λχ(ν)(ζ)
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is a solution (4.17), (4.19) to the Riemann–Hilbert problem (4.9), if some free
complex parameters are chosen properly.

The connection is proven in two cases separately: sign[K(χ(ν))] = sign[χ(ν)]
and sign[K(χ(ν))] �= sign[χ(ν)].
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1. Introduction

For functions f and g in L2(Rn), a well-known distribution of f and g is the
Wigner transform W (f, g) given by

W (f, g)(x, ξ) = (2π)−n/2

∫
Rn

e−iξ·yf
(
x+

y

2

)
g
(
x− y

2

)
dy (1.1)

for all x and ξ in Rn. It is easy to check that W (f, g) is a function in the Schwartz
space S(R2n) if f and g are functions in the Schwartz space S(Rn). Closely related
to the Wigner transform is the Weyl transform, which is also known as the pseudo-
differential operator of the Weyl type. To wit, let σ be a tempered distribution on
R2n. Then the Weyl transform Wσ corresponding to the symbol σ is the mapping
from S(Rn) into the space S′(Rn) of all tempered distributions on Rn given by

(Wσf)(g) = (2π)−n/2σ(W (f, g)), f, g ∈ S(Rn).

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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The notation that we use in this paper is that for a tempered distribution u on
Rn that is also a tempered function,

u(ϕ) =
∫

Rn

u(x)ϕ(x) dx, ϕ ∈ S(Rn).

If σ is a symbol in S(R2n), then for all functions f in S(Rn), Wσf is also a function
in S(Rn) and is given by

(Wσf, g)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)W (f, g)(x, ξ) dx dξ (1.2)

for all functions g in S(Rn), where ( , )L2(Rn) is the inner product in L2(Rn).
(In this paper, we denote by (F,G)L2(RN ) the integral

∫
RN F (x)G(x) dx for all

measurable functions F and G in RN such that the integral exists, and we denote
by ‖ ‖Lp(RN ) the norm in Lp(RN ), 1 ≤ p ≤ ∞.) Moreover, it is shown on page 44
of [17] that

(Wσf)(x) = (2π)−n

∫
Rn

∫
Rn

σ̂(w, v)(ρ(w, v)f)(x) dw dv, x ∈ Rn, (1.3)

where
(ρ(w, v)f)(x) = eiw·x+ 1

2 iw·vf(x+ v), x ∈ Rn, (1.4)
and the Fourier transform ∧ is taken to be the one given by

F̂ (ξ) = (2π)−N/2

∫
RN

e−ix·ξF (x) dx, ξ ∈ RN ,

for all functions F in L1(RN ). The boundedness of Weyl transforms Wσ on Lp(Rn)
when σ ∈ Lq(R2n) has been studied in [17, 19], where 1 ≤ p, q ≤ ∞.

While it is well known that Weyl transforms are based on Wigner transforms,
it is relatively recent that the genesis of pseudo-differential operators, first studied
systematically in [12], is explored in the context of time-frequency analysis using
the Rihaczek transforms [2, 3, 4, 6, 7, 8, 9, 13, 14].

Let us recall that for functions f and g in L2(Rn), the Rihaczek transform
R(f, g) of f and g is defined by

R(f, g)(x, ξ) = eix·ξf̂(ξ)g(x), x, ξ ∈ Rn.

In order to see how pseudo-differential operators are related to the Rihaczek
transforms, we first recall that for m in (−∞,∞), Sm is the set of all C∞ functions
σ on R2n such that for all multi-indices α and β, there exists a positive constant
Cα,β for which

|(∂α
x ∂

β
ξ σ)(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|, x, ξ ∈ Rn.

Let σ ∈ Sm. Then the pseudo-differential operator Tσ corresponding to the symbol
σ is defined by

(Tσf)(x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)f̂ (ξ) dξ, x ∈ Rn, (1.5)



Lp-Boundedness of Multilinear Pseudo-Differential Operators 169

for all functions f in S(Rn). It can be proved that Tσ maps S(Rn) continuously
into S(Rn). See, for instance, the books [10] and [18] for expositions of pseudo-
differential operators.

Let σ ∈ S(R2n). Then for all functions f and g in S(Rn),

(Tσf, g)L2(Rn) =
∫

Rn

(Tσf)(x)g(x) dx

= (2π)−n/2

∫
Rn

∫
Rn

eix·ξσ(x, ξ)f̂ (ξ)g(x) dx dξ

= (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)eix·ξ f̂(ξ)g(x) dx dξ

= (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)R(f, g)(x, ξ) dx dξ.

Thus, in view of (1.2), the Rihaczek transform plays the role of the Wigner
transform in the genesis of pseudo-differential operators and it allows us to de-
fine pseudo-differential operators corresponding to symbols in S′(R2n). Indeed,
let σ ∈ S′(R2n). Then the pseudo-differential operator Tσ corresponding to the
symbol σ is defined by

(Tσf)(g) = (2π)−n/2σ(R(f, g)), f, g ∈ S(Rn).

The aim of this paper is to study the Lp-boundedness of multilinear pseudo-
differential operators using multilinear Rihaczek transforms, multilinear Wigner
transforms and multilinear Weyl transforms. To fix the notation and terminology
in this paper, we say that for 1 ≤ p1, p2, . . . , pm, q ≤ ∞, a multilinear mapping
T :

∏m
j=1 L

pj (Rn) → Lq(Rn) is said to be a bounded multilinear operator if there
exists a positive constant C such that

‖Tf‖Lq(Rn) ≤ C

m∏
j=1

‖fj‖Lpj (Rn) (1.6)

for all f = (f1, f2, . . . , fm) in
∏m

j=1 L
pj (Rn). The infimum of all the constants C

for which the inequality (1.6) is valid is denoted by ‖T ‖B(
∏

m
j=1 Lpj (Rn),Lq(Rn)).

In Section 2, multilinear Rihaczek transforms and the corresponding multilin-
ear pseudo-differential operators are given. In Section 3, we give the Moyal identity
for the multilinear Rihaczek transform and use it to establish the L2-boundedness
of multilinear pseudo-differential operators with L2-symbols. The Lp-boundedness
of multilinear pseudo-differential operators with Lp-symbols, 1 ≤ p ≤ 2, is proved
in Section 4 using some elementary estimates for the multilinear Rihaczek trans-
form and the Hausdorff–Young inequality for the Fourier transform. In Section 5,
we give a self-contained account of multilinear Wigner transforms and multilinear
Weyl transforms based on the notation and contents of the book [17]. We give only
results that are needed for a more in-depth study of the Lp-boundedness of mul-
tilinear pseudo-differential operators in this paper. The basic connection between
pseudo-differential operators and Weyl transforms is extended to the multilinear
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case in Section 6. In Section 7, we introduce a family of spaces Lp
μ(R(m+1)n), 1 ≤

p ≤ ∞, that incorporate the basic connection into the spaces Lp
∗(R(m+1)n) first

studied in Chapter 14 of [17]. The Lp-boundedness of pseudo-differential operators
with symbols in L1

μ(R(m+1)n), 1 ≤ p <∞, is given.
Related works on multilinear pseudo-differential operators on modulation

spaces can be found in [2, 3, 4]. Results on multilinear localization operators can
be found in [9].

We end this section with some notation that is convenient for the mul-
tilinear Fourier analysis throughout this paper. Points in Rnm are denoted by
x = (x1, x2, . . . , xm), where x1, x2, . . . , xm are points in Rn. For all points x =
(x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) in Rnm, the inner product x · y of x and
y is given by

x · y =
m∑

j=1

xj · yj ,

where xj · yj is the ordinary Euclidean inner product of xj and yj in Rn. The sum
|x| of x is given by

|x| =
m∑

j=1

xj .

We also denote by dx the Lebesgue measure dx1 dx2 · · · dxm.

2. Multilinear Rihaczek Transforms and Multilinear
Pseudo-Differential Operators

The multilinear Rihaczek transform R(f, g) of f = (f1, f2, . . . , fm) in S(Rn)m and
g in S(Rn) is defined by

R(f, g)(x, ξ) = eix·|ξ|
m∏

j=1

f̂j(ξj)g(x)

for all x in Rn and ξ in Rnm. It is clear that R(f, g) is a Schwartz function on
R(m+1)n.

To simplify the notation, we recall that the tensor product ⊗m
j=1fj of the

measurable functions f1, f2, . . . , fm on Rn is the function on Rnm defined by(⊗m
j=1fj

)
(x) = f1(x1)f2(x2) · · · fm(xm)

for all x = (x1, x2, . . . , xm) in Rnm.
Now, the Rihaczek transform R(f, g) of f in L2(Rn)m and g in L2(Rn) is the

function on R(m+1)n given by

R(f, g)(x, ξ) = eix·|ξ|
(
⊗m

j=1f̂j

)
(ξ)g(x)

for all x in Rn and ξ in Rnm.
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Let σ ∈ S(R(m+1)n). Then for all f = (f1, f2, . . . , fm) in S(Rn)m, we define
Tσf to be the function on Rn by

(Tσf)(x) = (2π)−mn/2

∫
Rnm

eix·|ξ|σ(x, ξ)
(
⊗m

j=1f̂j

)
(ξ) dξ, x ∈ Rn.

So, for all g in S(Rn), we get

(Tσf, g)L2(Rn) =
∫

Rn

(Tσf)(x)g(x)dx

= (2π)−mn/2

∫
Rn

∫
Rnm

eix·|ξ|σ(x, ξ)
(
⊗m

j=1f̂j

)
(ξ)g(x)dξ dx

= (2π)−mn/2

∫
Rnm

∫
Rn

σ(x, ξ)eix·|ξ|
(
⊗m

j=1f̂j

)
(ξ)g(x)dx dξ

= (2π)−mn/2

∫
Rnm

∫
Rn

σ(x, ξ)R(f, g)(x, ξ) dx dξ. (2.1)

Now, let σ be a tempered distribution on R(m+1)n, i.e., σ ∈ S′(R(m+1)n).
Then the pseudo-differential operator Tσ corresponding to the symbol σ is defined
on S(Rn)m by

(Tσf)(g) = (2π)−mn/2σ(R(f, g))

for all f in S(Rn)m and g in S(Rn). It can be proved easily that Tσf is a tempered
distribution on Rn.

3. The Moyal Identity and L2-Boundedness

The following theorem gives the Moyal identity for the Rihaczek transform. The
Moyal identity, which dates back to Moyal [11] for linear Wigner transforms, is in
fact a Plancherel formula.

Theorem 3.1. For all f = (f1, f2, . . . , fm) and h = (h1, h2, . . . , hm) in L2(Rn)m,
and all g1 and g2 in L2(Rn),

(R(f, g1), R(h, g2))L2(R(m+1)n) =
m∏

j=1

(fj , hj)L2(Rn)(g1, g2)L2(Rn).

Proof. By the definition of the Rihaczek transform, the Plancherel formula for the
Fourier transform and Fubini’s theorem, we obtain

(R(f, g1), R(h, g2))L2(R(m+1)n)

=
∫

Rnm

∫
Rn

eix·|ξ|
(
⊗m

j=1f̂j

)
(ξ)g1(x)e−ix·|ξ|

(
⊗m

j=1ĥj

)
(ξ)g2(x) dx dξ

=
∫

Rnm

m∏
j=1

f̂j(ξj)ĥj(ξj) dξ
∫

Rn

g1(x)g2(x) dx
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=
m∏

j=1

(f̂j , ĥj)L2(Rn)(g1, g2)L2(Rn)

=
m∏

j=1

(fj , hj)L2(Rn)(g1, g2)L2(Rn). �

An immediate corollary of Theorem 3.1 is the L2-boundedness of multilin-
ear pseudo-differential operators with L2-symbols. More precisely, we have the
following theorem.

Theorem 3.2. Let σ ∈ L2(R(m+1)n). Then Tσ : L2(Rn)m → L2(Rn) is a bounded
multilinear operator and

‖Tσ‖B(L2(Rn)m,L2(Rn)) ≤ (2π)−mn/2‖σ‖L2(R(m+1)n).

Proof. Let f = (f1, f2, . . . , fm) ∈ S(Rn)m and let g ∈ S(Rn). Then by (2.1),
Schwarz’ inequality and the Moyal identity for the Rihaczek transform,

|(Tσf, g)L2(Rn)| ≤ (2π)−mn/2

∫
Rnm

∫
Rn

|σ(x, ξ)| |R(f, g)(x, ξ)| dx dξ

≤ (2π)−mn/2‖σ‖L2(R(m+1)n)‖R(f, g)‖L2(R(m+1)n)

= (2π)−mn/2‖σ‖L2(R(m+1)n)

m∏
j=1

‖fj‖L2(Rn)‖g‖L2(Rn).

The proof is then complete by a density argument. �

4. Lp-Boundedness, 1 ≤ p ≤ 2

We give in this section a result on the Lp-boundedness of multilinear pseudo-
differential operators with Lp-symbols. For this, we need the Hausdorff–Young
inequality, which states that for 1 ≤ p ≤ 2, there exists a positive constant Cp

such that
‖ϕ̂‖Lp′(Rn) ≤ Cp‖ϕ‖Lp(Rn), ϕ ∈ S(Rn),

where p′ is the conjugate index of p and Cp is the norm of the bounded linear
operator ∧ : Lp(Rn) → Lp′

(Rn). The classical estimate for Cp is obtained by
means of the boundedness of ∧ from L1(Rn) to L∞(Rn), the unitarity of ∧ on
L2(Rn) and an interpolation, and is given by

Cp ≤ (2π)n( 1
2− 1

p ).

See, for instance, Chapter IV of [16]. A significant improvement obtained in [1] is
that

Cp =

⎧⎪⎨⎪⎩
(

p
2π

)1/p(
p′
2π

)1/p′

⎫⎪⎬⎪⎭
n/2

.
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Theorem 4.1. Let σ ∈ Lp(R(m+1)n), 1 ≤ p ≤ 2. Then Tσ : Lp(Rn)m → Lp(Rn) is
a bounded multilinear operator and

‖Tσ‖B(Lp(Rn)m,Lp(Rn)) ≤ (2π)−mn/2Cm
p ‖σ‖Lp(R(m+1)n).

Proof. Let f = (f1, f2, . . . , fm) ∈ S(Rn)m and let g ∈ Lp′
(Rn). Then, by (2.1),

Hölder’s inequality, Fubini’s theorem and the Hausdorff–Young inequality,

|(Tσf, g)L2(Rn)|

≤ (2π)−mn/2‖σ‖Lp(R(m+1)n)

⎛⎝∫
Rnm

∫
Rn

m∏
j=1

|f̂j(ξj)|p′ |g(x)|p′
dx dξ

⎞⎠1/p′

= (2π)−mn/2‖σ‖Lp(R(m+1)n)

m∏
j=1

‖f̂j‖Lp′(Rn)‖g‖Lp′(Rn)

≤ (2π)−mn/2‖σ‖Lp(R(m+1)n)C
m
p

m∏
j=1

‖f‖Lp(Rn)‖g‖Lp′(Rn).

Since the dual space of Lp(Rn) is Lp′
(Rn), the theorem is proved. �

5. Multilinear Wigner Transforms and Multilinear Weyl
Transforms

Let f = (f1, f2, . . . , fm) ∈ S(Rn)m, v = (v1, v2, . . . , vm) ∈ Rnm and w ∈ Rn. Then
we define the function ρ(w, v)f on Rn by

(ρ(w, v)f)(x) = eiw·x+ 1
2m iw·|v|

m∏
j=1

fj(x+ vj), x ∈ Rn.

Now, let f = (f1, f2, . . . , fm) ∈ S(Rn)m and g ∈ S(Rn). Then we define the
multilinear Fourier–Wigner transform V (f, g) of f and g to be the function on
R(m+1)n by

V (f, g)(w, v) = (2π)−mn/2(ρ(w, v)f, g)L2(Rn)

for all w in Rn and all v = (v1, v2, . . . , vm) in Rnm. It is easy to see that the
mapping V : S(Rn)m+1 → S(R(m+1)n) is multilinear with respect to the “first”
variable f and antilinear with respect to the “second” variable g.

The following result is an analog of Proposition 2.1 in [17] for multilinear
Fourier–Wigner transforms.

Proposition 5.1. For 1 ≤ p1, p2, . . . , pm ≤ ∞ with
m∑

j=1

1
pj
≤ 1,
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let p0 be given by
1
p0

=
m∑

j=1

1
pj
.

Then for all points v = (v1, v2, . . . , vm) in Rnm and all points w in Rn, ρ(w, v) :∏m
j=1 L

pj (Rn) → Lp0(Rn) is a surjective and bounded multilinear operator and

‖ρ(w, v)‖B(∏m
j=1 Lpj (Rn),Lp0(Rn)) ≤ 1. (5.1)

Proof. Let f = (f1, f2, . . . , fm) ∈ ∏m
j=1 L

pj (Rn) and let g ∈ Lp′
0(Rn), where p′0 is

the conjugate index of p0. Then by Hölder’s inequality and the generalized Hölder’s
inequality,

|(ρ(w, v)f, g)L2(Rn)| ≤
∫

Rn

m∏
j=1

|fj(x+ vj)| |g(x)| dx

≤
∥∥∥∥∥∥

m∏
j=1

fj(· − vj)

∥∥∥∥∥∥
p0

‖g‖p′
0

≤
m∏

j=1

‖fj‖Lpj (Rn) ‖g‖Lp′
0(Rn)

.

This proves that ρ(w, v) :
∏m

j=1 L
pj (Rn) → Lp0(Rn) is a bounded multilinear

operator and the inequality (5.1) is satisfied. Now, let g ∈ Lp0(Rn). For j =
1, 2, . . . ,m, let fj be the function on Rn defined by

fj(x) = e−iw· x
m+ 1

2m iw·vj (g(x− vj))p0/pj , x ∈ Rn.

Then it is obvious that fj ∈ Lpj (Rn) for j = 1, 2, . . . ,m. By the definition of
ρ(w, v), we get for f = (f1, f2, . . . , fm),

(ρ(w, v)f)(x) = eiw·x+ 1
2m iw·|v|

m∏
j=1

e−i w
m ·(x+vj)+

1
2m iw·vj (g(x))p0/pj = g(x)

for all x in Rn. Therefore ρ(w, v) :
∏m

j=1 L
pj (Rn) → Lp0(Rn) is surjective. �

Theorem 5.2. Let f = (f1, f2, . . . , fm) ∈ S(Rn)m and let g ∈ S(Rn). Then

V (f, g)(w, v) = (2π)−mn/2

∫
Rn

eiy·w
m∏

j=1

fj

(
y + vj − 1

2m
|v|
)
g

(
y − 1

2m
|v|
)
dy

for all w in Rn and all v = (v1, v2, . . . , vm) in Rnm.

Proof. By the definition of the multilinear Fourier–Wigner transform, we get

V (f, g)(w, v) = (2π)−mn/2(ρ(w, v)f, g)L2(Rn)

= (2π)−mn/2

∫
Rn

eiw·x+ 1
2m iw·|v|

m∏
j=1

fj(x + vj)g(x) dx
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for all w in Rn and v in Rnm. The theorem is proved if we let

x = y − 1
2m

|v|. �

We can now introduce the Wigner transform W (f, g) of f = (f1, f2, . . . , fm)
in S(Rn)m and g in S(Rn) defined by

W (f, g) = V (f, g)∧.

The following theorem gives another explicit formula for W (f, g).

Theorem 5.3. Let f = (f1, f2, . . . , fm) ∈ S(Rn)m and let g ∈ S(Rn). Then

W (f, g)(x, ξ) = (2π)−mn/2

∫
Rnm

e−iv·ξ
m∏

j=1

fj

(
x+ vj − 1

2m
|v|
)
g

(
x− 1

2m
|v|
)
dv

for all x in Rn and ξ in Rnm.

Proof. For every positive number ε, we define the function Iε : R(m+1)n → C by

Iε(x, ξ) =
∫

Rnm

∫
Rn

e−ix·w−iv·ξe−ε2|w|2/2V (f, g)(w, v) dw dv

for all x in Rn and ξ = (ξ1, ξ2, . . . , ξm) in Rnm. Using Fubini’s theorem and the
fact that

(e−|·|
2/2)∧(w) = e−|w|

2/2, w ∈ Rn,

we get

Iε(x, ξ)

=
∫

R(m+1)n
e−ix·w−iv·ξ−ε2|w|2/2

[
(2π)−mn/2

∫
Rn

eiy·wF (y, v)G(y, v)dy
]
dw dv

= (2π)−mn/2

∫
R(m+1)n

e−iv·ξ
[∫

Rn

e−i(x−y)·w−ε2|w|2/2dw

]
F (y, v)G(y, v)dy dv

= (2π)−(m−1)n/2

∫
Rnm

e−iv·ξ
[∫

Rn

ε−ne−|x−y|2/(2ε2)F (y, v)G(y, v) dy
]
dv,

where

F (y, v) =
m∏

j=1

fj

(
y + vj − 1

2m
|v|
)

and

G(y, v) = g

(
y − 1

2m
|v|
)

for all y in Rn and v in Rnm.

Now, letting ε → 0, we get by Lebesgue’s dominated convergence theorem
the asserted formula. �
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Let σ ∈ S(R(m+1)n). Then for all f = (f1, f2, . . . , fm) in S(Rn)m and all g in
S(Rn), we define the multilinear Weyl transform Wσf of f corresponding to the
symbol σ on Rn by

(Wσf, g)L2(Rn) = (2π)−mn/2

∫
Rnm

∫
Rn

σ(x, ξ)W (f, g)(x, ξ) dx dξ

for all g ∈ S(Rn). Thus, for every tempered distribution σ on R(m+1)n, we define
the Weyl transform Wσf of f = (f1, f2, . . . , fm) in S(Rn)m by

(Wσf)(g) = (2π)−mn/2σ(W (f, g))

for all g in S(Rn).
The following alternative formulas for the multilinear Weyl transform are

useful to us.

Proposition 5.4. Let σ ∈ S ′(R(m+1)n). Then for all f = (f1, f2, . . . , fm) in S(Rn)m

and all g in S(Rn),

(Wσf)(g) = (2π)−mn/2σ̂(V (f, g)).

As a consequence of Proposition 5.4 and the definition of the Fourier–Wigner
transform, we get the following multilinear analog of the formula (1.3).

Corollary 5.5. Let σ ∈ S(R(m+1)n). Then for all f = (f1, f2, . . . , fm) in S(Rn)m,

(Wσf)(x) = (2π)−mn

∫
Rnm

∫
Rn

σ̂(w, v)(ρ(w, v)f)(x) dw dv

for all x in Rn.

6. A Basic Connection

The connection between the multilinear pseudo-differential operators and multi-
linear Weyl transforms is provided by the following formula.

Theorem 6.1. Let σ ∈ S′(R(m+1)n). Then

Tσ = Wτ ,

where
τ̂(w, v) = (2π)(m−1)n/2e−

1
2m iw·|v|σ̂(w, v)

for all w in Rn and v = (v1, v2, . . . , vm) in Rnm.

Proof. We first suppose that σ ∈ S(R(m+1)n). Then using the definition of the
multilinear pseudo-differential operator Tσ, Fubini’s theorem and the Fourier in-
version formula, we get for all x in Rn,
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(Tσf)(x) = (2π)−mn/2

∫
Rnm

eix·|ξ|σ(x, ξ)
(
⊗m

j=1f̂j

)
(ξj) dξ

= (2π)−mn

∫
Rnm

∫
Rnm

ei
∑m

j=1(x−yj)·ξjσ(x, ξ)
m∏

j=1

fj(yj) dy dξ

= (2π)−mn

∫
Rnm

∫
Rnm

e−iv·ξσ(x, ξ)
m∏

j=1

fj(x+ vj) dv dξ

= (2π)−mn/2

∫
Rnm

(F2σ)(x, v)
m∏

j=1

fj(x+ vj) dv

= (2π)−(m+1)n/2

∫
Rnm

∫
Rn

eiw·x(F1F2σ)(w, v)
m∏

j=1

fj(x+ vj) dw dv

= (2π)−(m+1)n/2

∫
Rnm

∫
Rn

eiw·xσ̂(w, v)
m∏

j=1

fj(x+ vj) dw dv,

where F1 and F2 denote, respectively, the Fourier transforms with respect to the
“first” and “second” variables. Thus, for all f = (f1, f2, . . . , fm) in S(Rn)m, we
get by the definition of ρ(w, v),

(Tσf)(x)

= (2π)−(m+1)n/2

∫
Rnm

∫
Rn

e−
1

2m iw·|v|σ̂(w, v)eiw·x+ 1
2m iw·|v|

m∏
j=1

fj(x + vj) dw dv

= (2π)−(m+1n)/2

∫
Rnm

∫
Rn

e−
1

2m iw·|v|σ̂(w, v)(ρ(w, v)f)(x) dw dv

for all x in Rn. So, by Corollary 5.5, we get

Tσ = Wτ ,

and we can then complete the proof by a limiting argument. �

7. Lp-Boundedness, 1 ≤ p < ∞
Let us begin with a recall of the space Lp

∗(R(m+1)n), 1 ≤ p ≤ ∞, introduced in
Chapter 14 of the book [17] and defined by

Lp
∗(R

(m+1)n) = {σ ∈ Lp(R(m+1)n) : σ̂ ∈ Lp′
(R(m+1)n)}.

It follows from the Hausdorff–Young inequality that for 1 ≤ p ≤ 2,

Lp
∗(R

(m+1)n) = Lp(R(m+1)n).

Now, for 1 ≤ p ≤ ∞, we let Lp
μ(R(m+1)n) be the subspace of Lp(R(m+1)n)

defined by

Lp
μ(R(m+1)n) = {σ ∈ Lp(R(m+1)n) : F−1μFσ ∈ Lp

∗(R
(m+1)n)},
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where F , F−1 and μ are, respectively, the Fourier transform, the inverse Fourier
transform and the multiplication operator by the function

μ(w, v) = (2π)(m−1)n/2e−i 1
2m w·|v|

for all w in Rn and all v = (v1, v2, . . . , vm) in Rnm. Then we have the following
result on the Lp-boundedness of multilinear pseudo-differential operators.

Theorem 7.1. Let σ ∈ L1
μ(R(m+1)n). Then for 1 ≤ p < ∞, Tσ : Lp(Rn)m →

Lp(Rn) is a bounded multilinear operator and

‖Tσ‖B(Lp(Rn)m,Lp(Rn)) ≤ (2π)−mnΩm,n,p‖σ‖L1
μ(R(m+1)n),

where

‖σ‖L1
μ(R(m+1)n) = ‖F−1μFσ‖L1(R(m+1)n)

and

Ωm,n,p = (2m)mn(2m− 1)mn/p.

Proof. Using the basic connection in the preceding section, we get

Tσ = Wτ ,

where τ = F−1μFσ. So, for all f = (f1, f2, . . . , fm) in S(Rn)m and all g in Lp′
(Rn),

we get

(Tσf, g)L2(Rn) = (Wτ f, g)L2(Rn)

= (2π)−mn/2

∫
Rnm

∫
Rn

τ(x, ξ)W (f, g)(x, ξ) dx dξ.

Using Theorem 5.3 for the Wigner transform and Hölder’s inequality, we get

‖W (f, g)‖L∞(R(m+1)n) ≤ (2π)−mn/2Ωm,n,p

m∏
j=1

‖fj‖Lp(Rn)‖g‖Lp′(Rn).

So,

|(Tσf, g)L2(Rn)|
≤ (2π)−mn/2‖τ‖L1(R(m+1)n)‖W (f, g)‖L∞(R(m+1)n)

≤ (2π)−mn/2(2π)−mn/2Ωm,n,p‖τ‖L1(R(m+1)n)

m∏
j=1

‖fj‖Lp(Rn)‖g‖Lp′(Rn).

= (2π)−mnΩm,n,p‖σ‖L1
μ(R(m+1)n)

m∏
j=1

‖fj‖Lp(Rn)‖g‖Lp′(Rn).

Since Lp′
(Rn) is the dual of Lp(Rn), we complete the proof. �
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060041, Bucharest
Romania
e-mail: catana viorel@yahoo.co.uk

Shahla Molahajloo and M.W. Wong
Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto, Ontario M3J 1P3
Canada
e-mail: smollaha@mathstat.yorku.ca

mwwong@mathstat.yorku.ca



Operator Theory:
Advances and Applications, Vol. 205, 181–193
c© 2009 Birkhäuser Verlag Basel/Switzerland

A Trace Formula for Nuclear Operators on Lp

Julio Delgado

Abstract. We establish a trace for nuclear operators on Lp, this trace gen-
eralize a formula already known in the L2 case. To prove this we first show
a characterization of nuclear operators in the Lp setting. As a corollary a
formula for the trace of pseudo-differential operators on Lp is obtained.

Mathematics Subject Classification (2000). Primary 47B38; Secondary 47B10,
47G30.
Keywords. Hilbert–Schmidt operators, nuclear operators, traces, pseudo-dif-
ferential operators.

1. Introduction
Let T be a compact operator on a complex Hilbert space H. It is well known that
we can diagonalize the positive operator T ∗T by an orthonormal sequence (ψn)n

of eigenvectors with the corresponding eigenvalues μn > 0. Define λn =
√
μn and

φn = λ−1
n Tψn. Since ker(T ∗T ) = ker(T ), we obtain

cl span(ψn)n = ker(T ∗T )⊥ = ker(T ).

Now we can represent the operator T as

Tx =
∞∑

n=1

λn 〈x, ψn〉φn

where 〈·, ·〉 denotes the scalar product in H. The numbers λn are the eigenvalues
of |T | and are called the singular values of T . T is called a trace class operator if
the singular values are summable. If the singular values are square-summable, T is
called a Hilbert-Schmidt operator. Every trace class operator is a Hilbert-Schmidt
operator. We are interested in integral operators. In the L2(Ω, μ) case, T is a
Hilbert-Schmidt operator if and only if T can be represented by a kernel in k(x, y)
in L2(Ω × Ω, μ ⊗ μ). In the setting of Banach spaces the concept of trace class

This work has been partially supported by Universidad del Valle, Vicerrectoria Inv. Grant#7756.
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operators may be generalized as follows. Let E and F be two Banach spaces. A
linear operator T from E to F is called nuclear if there exists sequences (x′n) in E′

and (yn) in F so that

Ax =
∑

n

〈x, x′n〉 yn and
∑

n

‖x′n‖E′‖yn‖F <∞.

This definition coincides with the concept of trace class operators in the
setting of Hilbert spaces (E = F = H). We recall that in the general context of
Banach spaces the trace of a nuclear operator T : E −→ E is defined by

tr T =
∞∑

n=1

x′n(yn),

where T =
∞∑

n=1

x′n⊗yn is a representation of T . It can be shown that this definition

is independent of the representation. For a treatment on traces, see [5], [6] or [8].
Our goal consists in obtaining a generalization for Lp spaces of a trace proved
by Chris Brislawn (cf. [1]) in the L2 case. As a consequence a trace for pseudo-
differential operators on Lp is established.

We begin by studying nuclear operators in the context of Lp spaces.

2. A Characterization of Nuclear Operators on Lp(μ), 1 ≤ p < ∞
It is convenient to begin considering finite measures. The following lemma gives
a kernel for nuclear operators in this setting and its fundamental properties.
Throughout this paper we consider 1 ≤ p1, p2 <∞ and q1, q2 such that 1

pi
+ 1

qi
=

1 (i = 1, 2).

Lemma 2.1. Let (Ω1,M1, μ1) and (Ω2,M2, μ2) be two finite measure spaces. Let
f ∈ Lp1(μ1), and (gn)n, (hn)n be two sequences in Lp2(μ2) and Lq1(μ1), respec-

tively, so that
∞∑

n=1
‖gn‖Lp2‖hn‖Lq1 <∞. Then

(a) lim
n

n∑
j=1

gj(x)hj(y) is finite for almost every (x, y), and
∞∑

j=1

gj(x)hj(y) is ab-

solutely convergent for almost every (x, y).

(b) k ∈ L1(μ2 ⊗ μ1), where k(x, y) =
∞∑

j=1

gj(x)hj(y).

(c) If kn(x, y) =
n∑

j=1

gj(x)hj(y) then ‖kn − k‖L1 → 0.

(d) lim
n

∫ ⎛⎝ n∑
j=1

gj(x)hj(y)

⎞⎠ f(y)dμ1(y) =
∫ ( ∞∑

n=1

gn(x)hn(y)

)
f(y)dμ1(y),

for a.e x.



A Trace Formula for Nuclear Operators on Lp 183

Proof. In order to simplify some notation we write

Lp1 = Lp1(μ1), Lp2 = Lp2(μ2), Lq1 = Lq1(μ1), Lq2 = Lq2(μ2).

Let kn(x, y) =
n∑

j=1

gj(x)hj(y)f(y). Applying the Hölder inequality we have that

∫ ∫
|kn(x, y)|dμ2(x)dμ1(y) ≤

∫ ∫ n∑
j=1

|gj(x)hj(y)f(y)|dμ2(x)dμ1(y)

≤
n∑

j=1

∫
|gj(x)|dμ2(x)

∫
|hj(y)||f(y)|dμ1(y)

≤ (μ2(Ω2))
1

q2 ‖f‖Lp1

n∑
j=1

‖gj‖Lp2‖hj‖Lq1

≤M <∞ for all n.

Thus ‖kn‖L1 ≤M for all n. On the other hand, the sequence (sn) with sn(x, y) =
n∑

j=1

|gj(x)hj(y)f(y)|, is increasing in L1(μ2 ⊗ μ1) and verifies

sup
n

∫ ∫
|sn(x, y)|dμ(x)dμ(y) < M.

Using Levi’s monotone convergence theorem the limit s(x, y) = lim
n
sn(x, y) exists

and it is finite for almost every (x, y). Moreover s ∈ L1(μ2 ⊗ μ1); choosing f = 1
and from the fact that |k(x, y)| ≤ s(x, y) we deduce (a) and (b). Part (c) can be
deduced using Lebesgue’s dominated convergence theorem applied to the sequence
(kn) dominated by s(x, y). For the part (d) we observe that letting kn(x, y) =
n∑

j=1

gj(x)hj(y)f(y), we have |kn(x, y)| ≤ s(x, y) for all n and every (x, y). From

the fact that s ∈ L1(μ2 ⊗ μ1) we obtain that s(x, ·) ∈ L1(μ2) for a.e x. Then by
Lebesgue’s dominated convergence theorem we get (d). �

Theorem 2.2 (Characterization of Nuclear Operators on the Lp Spaces for Finite
Measures). Let (Ωi,Mi, μi) (i = 1, 2) be two measure spaces with finite measures
μ1 and μ2, respectively. Then, T is a nuclear operator from Lp1(μ1) to Lp2(μ2) if
and only if there is a sequence (gn) in Lp2(μ2), and a sequence (hn) in Lq1(μ1)

such that
∞∑

n=1
‖gn‖Lp2(μ2)‖hn‖Lq1(μ1) <∞, and for all f ∈ Lp1(μ1)

Tf(x) =
∫ ( ∞∑

n=1

gn(x)hn(y)

)
f(y)dμ1(y), for a.e. x.
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Proof. Let be T a nuclear operator from Lp1 to Lp2 . Then there are sequences (gn)

in Lp2(μ2), (hn) in Lq1(μ1) so that
∞∑

n=1
‖gn‖Lp2‖hn‖Lq1 <∞ and

Tf =
∑

n

〈f, hn〉 gn.

Now

Tf =
∑

n

〈f, hn〉 gn =
∑

n

(∫
hn(y)f(y)dμ1(y)

)
gn ,

where the sums converges in the Lp2(μ2) norm. There exists two subsequences (g̃n)
and (h̃n) of (gn) and (hn), respectively, so that

(Tf)(x) =
∑

n

〈
f, h̃n

〉
g̃n(x) =

∑
n

(∫
h̃n(y)f(y)dμ1(y)

)
g̃n(x), for a.e. x.

Since the pair
(
(g̃n), (h̃n)

)
satisfies

∞∑
n=1

‖g̃n‖Lp2‖h̃n‖Lq1 <∞ ,

applying Lemma 2.1 (d), it follows that∑
n

(∫
h̃n(y)f(y)dμ1(y)

)
g̃n(x) = lim

n

n∑
j=1

(∫
h̃j(y)f(y)dμ1(y)

)
g̃j(x)

= lim
n

∫ ⎛⎝ n∑
j=1

g̃j(x)h̃j(y)f(y)

⎞⎠ dμ1(y)

=
∫ ( ∞∑

n=1

g̃n(x)h̃n(y)

)
f(y)dμ1(y) , for a.e. x.

Conversely, assume that there exists sequences (gn)n in Lp2(μ2), and (hn)n in

Lq1(μ1) so that
∞∑

n=1
‖gn‖Lp2‖hn‖Lq1 <∞, and for all f ∈ Lp1

Tf(x) =
∫ ( ∞∑

n=1

gn(x)hn(y)

)
f(y)dμ1(y) , for a.e. x.

By Lemma 2.1 (d) we have∫ ( ∞∑
n=1

gn(x)hn(y)

)
f(y)dμ1(y) = lim

n

∫ ⎛⎝ n∑
j=1

gj(x)hj(y)f(y)

⎞⎠ dμ1(y)

= lim
n

n∑
j=1

(∫
hj(y)f(y)dμ1(y)

)
gj(x)
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=
∑

n

(∫
hn(y)f(y)dμ1(y)

)
gn(x)

=
∑

n

〈f, hn〉 gn(x) = (Tf)(x), for a.e. x.

To establish that Tf =
∑
n
〈f, hn〉 gn in Lp2(μ2) we let sn =

n∑
j=1

< f, hj > gj, then

(sn)n is a sequence in Lp2(μ2) and

|sn(x)| ≤ ‖f‖Lp1

n∑
j=1

‖hj‖Lq1 |gj(x)|

≤ ‖f‖Lp1

∞∑
j=1

‖hj‖Lq1 |gj(x)| = γ(x), for all n.

Furthermore, γ is well defined and γ ∈ Lp2(μ2) since it is the increasing limit of

the sequence (γn)n = (‖f‖Lp1

n∑
j=1

‖hj‖Lq1 |gj(x)|)n of Lp2 functions and

‖γn‖Lp2 ≤ ‖f‖Lp1

∞∑
j=1

‖hj‖Lq1‖gj‖Lp2 < M.

By the monotone convergence theorem of B. Levi we see that γ ∈ Lp2(μ2). Finally,
applying the Lebesgue dominated convergence theorem we deduce that sn → Tf
in Lp2(μ2). �

We give now a generalization for σ−finite measures of the characterization
2.2. We begin by generalize the parts (a) and (d) of lemma 2.1 which are essentials
for the proof of theorem 2.2.

Lemma 2.3. Let (Ω1,M1, μ1) and (Ω2,M2, μ2) be two measure spaces with σ-
finite measures μ1 and μ2, respectively; f ∈ Lp1(μ1), and (gn)n, (hn)n sequences

in Lp2(μ2) and Lq1(μ1), respectively, such that
∞∑

n=1
‖gn‖Lp2‖hn‖Lq1 < ∞. Then

the parts (a) and (d) in Lemma 2.1 hold.

Proof. (a) Since μ1, μ2 are σ-finite measures, there exists two sequences (Ωk
1)k and

(Ωl
2)l of subsets of Ω1 and Ω2, respectively, such that μ1(Ωk

1) < ∞, μ2(Ωl
2) < ∞

and
⋃

k Ωk
1 = Ω1,

⋃
l Ω

l
2 = Ω2. Consider the finite measure spaces (Ωk

1 ,Mk
1 , μ

k
1)

and (Ωl
2,Ml

2, μ
l
2) that we obtain restricting Ω1 to Ωk

1 , and Ω2 to Ωl
2 for every k,

and restricting the functions gn to Ωl
2, and hn to Ωk

1 . Then, for all k, l

∞∑
n=1

‖gn‖Lp(μl
2)‖hn‖Lq(μk

1) <∞.
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By Lemma 2.1 (a) we have that the series
∞∑

j=1

gj(x)hj(y) converges absolutely for

a.e. (x, y) ∈ Ωl
2 × Ωk

1 . Hence
∞∑

j=1

gj(x)hj(y) converges absolutely for almost every

(x, y) ∈ Ω× Ω. This proves part (a).

From part (a) we know that the series
∞∑

j=1

gj(x)hj(y)f(y) converges absolutely

for a.e. (x, y), part (d) follows from Lebesgue’s dominated convergence theorem
applied as in the reciprocal part of the proof of Theorem 2.2 (see the use of γn,
and γ). �

Notice that we cannot conclude that k(x, y) ∈ L1(μ2 ⊗ μ1) as in the case of
finite measures. Take for example Ω1 = Ω2 = Rn, and μ1, μ2 = λ, the Lebesgue
measure, then using the fact that q2 > 1, we define k(x, y) = g(x)h(y), with
g ∈ Lp2(λ) \ {0}, h ∈ Lq1(λ) \ L1(λ). Then∫

Rn

∫
Rn

|k(x, y)|dλ(x)dλ(y) =
∫
Rn

|g(x)|dλ
∫

Rn

|h(y)|dλ = ∞.

We are now ready to formulate the characterization of nuclear operators on
Lp(μ) for σ-finite measures as a consequence of the above lemma and the proof is
similar to that of Theorem 2.2.

Theorem 2.4 (Characterization of Nuclear Operators on Lp for σ-Finite Measures).
Let (Ωi,Mi, μi) (i = 1, 2) be measure spaces with σ-finite measures μ1 and μ2,
respectively. Then, T is a nuclear operator from Lp1(μ1) to Lp2 = Lp2(μ2) if
and only if there exists sequences (gn)n in Lp2(μ2), (hn)n in Lq1(μ1) such that
∞∑

n=1
‖gn‖Lp2‖hn‖Lq1 <∞, and for all f ∈ Lp1

Tf(x) =
∫ ( ∞∑

n=1

gn(x)hn(y)

)
f(y)dμ1(y), for a.e. x.

Proof. The proof follows the same lines of the proof of Theorem 2.2, just substitute
the references to part (d) of Lemma 2.1 with Lemma 2.3. �

3. Calculus of the Trace on Lp(μ)

We will apply the characterization 2.4 to the calculus of the trace of a nuclear
operator from Lp(μ) to Lp(μ). We begin by showing a simple trace formula on
Lp(μ) for σ-finite measures that will be useful to establish our main formula.

Lemma 3.1. Let (Ω,M, μ) be a σ-finite measure space. If T is a nuclear operator
from Lp(μ) to Lp(μ), then the kernel given by Theorem 2.4 is integrable on the
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diagonal, i.e., k(x, x) =
∞∑

j=1

gj(x)hj(x) is finite for a.e. x, k(x, x) ∈ L1(μ), and we

have
tr T =

∫
Ω

k(x, x)dμ(x).

Proof. If T is a nuclear operator, we can write for f in Lp(μ)

Tf(x) =
∫ ( ∞∑

n=1

gn(x)hn(y)

)
f(y)dμ(y), for a.e. x;

with gn, hn as in Theorem 2.4, and f ∈ Lp(μ). The kernel

k(x, y) =
∞∑

n=1

gn(x)hn(y)

satisfies k(x, x) ∈ L1(μ). In fact, letting kn(x, x) =
n∑

j=1

gj(x)hj(x), we have for all

n that ∫
Ω

|kn(x, x)|dμ(x) ≤
n∑

j=1

∫
|gj(x)||hj(x)|dμ(x)

≤
n∑

j=1

‖gn‖Lp‖hn‖Lq

≤
∞∑

j=1

‖gn‖Lp‖hn‖Lq

<∞.

Therefore, k(x, x) =
∞∑

j=1

gj(x)hj(x) exists, it is finite for a.e. x, and k(x, x) ∈ L1.

Now we may compute the trace of T . Using similar arguments already em-
ployed in this work, it is now clear that

∞∑
n=1

∫
gn(x)hn(x)dμ(x) =

∫ ∞∑
n=1

gn(x)hn(x)dμ(x).

Then

tr T =
∞∑

n=1

∫
gn(x)hn(x)dμ(x)

=
∫ ∞∑

n=1

gn(x)hn(x)dμ(x)

=
∫
Ω

k(x, x)dμ(x) .
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This completes the proof of Lemma 3.1. �

Remark 3.2. Note that if μ is a σ-finite measure on Borel sets and α(x, y) is a
continuous kernel of a nuclear operator T from Lp(μ) to Lp(μ), and k(x, y) is the
kernel given by Theorem 2.4, then α(x, y) = k(x, y) for a.e. (x, y), but the trace
formula in Lemma 3.1 for α is not deducible from the corresponding formula for
k(x, y). Suitable tools of harmonic analysis will permit to overcome this problem
and lead to our main result (Theorem 3.8).

In order to obtain our main theorem which consists in a trace formula known
in the L2 case and proved by Brislawn (cf. [1]), we will need some basic tools of
harmonic analysis which are essentials to establish some Lp bounds and proper-
ties of convergence. Standard references on these results are [9] and [10]. We will
consider the particular case of the euclidean space Rn endowed with the Lebesgue
measure denoted by | · |. The L2 case was proved for more general measures by
Brislawn in [2], we also hope to study this problem on Lp in a next work.

Let Cr be the n-dimensional cube of radius r centered at the origin in Rn,
and let Cr(x) be the translate cube centered at x ∈ Rn :

Cr = [−r, r]n, Cr(x) = x+ Cr.

In order to study some properties of convergence for certain operators we consider
an averaging process. Let Ar be the linear operator that averages a function f ∈
L1

loc(R
n) over cubes of radius r:

Arf(x) =
1

|Cr(x)|
∫

Cr(x)

f(t)dt =
1
|Cr|

∫
Cr

f(x+ t)dt. (3.1)

For r > 0 fixed, Arf(x) is a continuous function of x, and for each x ∈ Rn, Arf(x) is
a continuous function of r ∈ (0,∞). We recall that the Hardy–Littlewood maximal
function of f is defined by

Mf(x) = sup
r>0

1
|Cr |

∫
Cr

|f(x+ t)|dt. (3.2)

Mf(x) is well defined for all x ∈ Rn. The Hardy–Littlewood maximal theorem
states that if f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then Mf is finite almost everywhere, and
if 1 < p ≤ ∞, then

‖Mf‖p ≤ Cp‖f‖p, (3.3)
where Cp is a constant depending only on p and the dimension n. By the Lebesgue
differentiation Theorem , if f ∈ L1

loc(R
n), then

lim
r→0

Arf(x) = f(x), for a.e. x, (3.4)

For r > 0, we have
|Arf(x)| ≤Mf(x) (3.5)

for all x ∈ Rn, so if 1 < p ≤ ∞, the Hardy–Littlewood maximal theorem implies
that Ar is a bounded linear operator on Lp(Rn). At every point x at which the
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limit (3.4) holds, we may extend Arf(x) to a continuous function of r ∈ [0,∞) by
defining A0f(x) = f(x), and the bound (3.5) then holds when r = 0. We can now
define

f̃(x) = lim
r→0

Arf(x); (3.6)

then, f̃ exists almost everywhere and f̃(x) = f(x) for a.e. x, and f̃ agrees with f
at each point of continuity.

The operator Ar possesses also the following properties of convergence:

Lemma 3.3. Let r > 0, 1 ≤ p ≤ ∞; if fn → f in Lp(Rn), then Arfn → Arf
uniformly.

Remark 3.4. The lemma above is valid on Lp(Ω) for a measurable subset Ω, iden-
tifying a function f in Lp(Ω) with a function equals to zero on Rn − Ω.

Corollary 3.5. If
∑

fn converges to f in Lp-norm, then
∑

Arfn converges uni-
formly to Arf .

We will use superscripts on the operators Ar or M to indicate the dimension
in which averages are being taken. For instance, Definition (3.1) for averages of
functions f ∈ L1

loc(R
2n) becomes

A(2n)
r f(x, y) =

1
|Cr|2

∫
Cr

∫
Cr

f(x+ s, y + t)dsdt. (3.7)

The operator Ar satisfies the following fundamental property of multiplicativity
on the tensorial product Lp ⊗ Lq with 1

p + 1
q = 1:

Lemma 3.6. Let g ∈ Lp(Rn) and h ∈ Lq(Rn) with 1
p + 1

q = 1. Then

A(2n)
r (g ⊗ h)(x, y) = A(n)

r g(x)A(n)
r h(y),

where (g ⊗ h)(x, y) = g(x)h(y).

As a consequence we have:

Lemma 3.7. Let g ∈ Lp(Rn) and h ∈ Lq(Rn) with 1
p + 1

q = 1. Then

M (2n)(g ⊗ h)(x, y) ≤M (n)g(x)M (n)h(y).

We dispose also of the subadditivity as a direct consequence of the definition
of the Hardy–Littlewood maximal function

M(g + h)(x) ≤Mg(x) +M h(x); g, h ∈ Lp. (3.8)

Let K(x, y) ∈ L1
loc(R

2n), then K̃(x, y) is defined as in (3.6) by

K̃(x, y) = lim
r→0

A(2n)
r K(x, y).

The function K(x, y) is defined for almost every (x, y).
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We now consider a nuclear operator T from Lp to Lp and a representation

k(x, y) =
∞∑

j=1

gj(x)hj(y),

as in Theorem 2.4 with gj ∈ Lp , hj ∈ Lq (j = 1, 2, . . . ), 1
p + 1

q = 1 and∑ ‖gj‖p‖hj‖q <∞.

We recall that from Lemma 2.1 we are authorized to say that k(x, y) is locally
integrable on R2n. To see this, it is sufficient to consider the restriction of T to a
space of Lp functions defined on a finite measure set Ω.

Let (βj) be a sequence of functions in Lp(Rn), we will say that x is a regular
point of the sequence (βj) if for all j ∈ N

lim
r→0

Arβj(x) = βj(x).

Since almost every point is regular for (gj) and almost every point is regular for
(hj), then almost every x ∈ Rn is regular for the sequence (βj) where βj(x) =
gj(x)hj(x).

From Lemma 3.3, Remark 3.4 and Corollary 3.5 we obtain using the fact that
k(x, y) ∈ L1

loc(R
2n),

A(2n)
r k(x, y) =

∞∑
j=1

A(n)
r gj(x)A(n)

r hj(y) (3.9)

for all (x, y). Indeed the convergence is uniform on compact sets.

We are now in a position to establish a trace formula for nuclear operators
on Lp, the L2 case corresponding to Theorem 3.1 proved in [1]. Here is our main
result.

Theorem 3.8 (Main Theorem). Let T : Lp −→ Lp (1 < p < ∞) be a nuclear
operator with a kernel k(x, y) as in Theorem 2.4. Then M (2n)k(x, x) ∈ L1(Rn),
k̃(x, x) = k(x, x) for almost every x and consequently

tr T =
∫

Rn

k̃(x, x)dx. (3.10)

Proof. We show first that M (2n)k(x, x) ∈ L1(Rn). Applying the subadditivity ,
the submultiplicativity and the boundedness of the Hardy–Littlewood maximal
function on Lp and Lq, and the Hölder inequality we obtain∫

Rn

M (2n)k(x, x)dx =
∫

Rn

⎛⎝ ∞∑
j=1

M (n)gj(x)M (n)hj(x)

⎞⎠ dx

=
∞∑

j=1

⎛⎝∫
Rn

M (n)gj(x)M (n)hj(x)dx

⎞⎠
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≤ C

∞∑
j=1

‖gj‖Lp‖hj‖Lq

<∞ .

This proves the first assertion and the fact that the sum
∞∑

j=1

M (n)gj(x)M (n)hj(x)

is finite for almost every x. From Lemma 3.1, k(x, x) is finite for almost every x.
Now we consider the sums

∞∑
j=1

gj(x)hj(x),
∞∑

j=1

M (n)gj(x)M (n)hj(x).

We choose a conull set of regular points Γ ⊂ Rn so that for all x ∈ Γ both of
the above series are finite. The A(n)

r gj(x), A(n)
r hj(x) are continuous functions of

r ∈ [0,∞] for every x ∈ Γ and all j. Using the fact that,

|A(n)
r gj(x)||A(n)

r hj(x)| ≤ |M (n)gj(x)||M (n)hj(x)|
for x ∈ Γ, r ∈ [0,∞] and for all j, the series

∞∑
j=1

|A(n)
r gj(x)||A(n)

r hj(x)|

converges absolutely and uniformly with respect to r ∈ [0,∞]. Now, by (3.9) we
have for every r > 0 that

A(2n)
r k(x, x) =

∞∑
j=1

A(n)
r gj(x)A(n)

r hj(x).

Hence, letting r → 0 we obtain for each x ∈ Γ that

k̃(x, x) = lim
r→0

A(2n)
r (

∞∑
j=1

gj(x)hj(x))

=
∞∑

j=1

lim
r→0

A(2n)
r (gj(x)hj(x))

=
∞∑

j=1

lim
r→0

A(n)
r gj(x)A(n)

r hj(x)

=
∞∑

j=1

g̃j(x)h̃j(x)

=
∞∑

j=1

gj(x)hj(x) = k(x, x).
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Applying Lemma 3.1 we have

tr T =
∫

Rn

k̃(x, x)dx. �

Remark 3.9. Theorem 3.8 is also true for a σ-finite borel measure μ on a second
countable topological space X . In order to obtain this generalization, the classical
maximal function is replaced by the martingale maximal function and the essential
properties that we need to generalize the theorem up to the Lp(μ) case are also
true. The L2(μ) case was considered by Brislawn in [2], and for the properties of
the martingale maximal function see [3].

Corollary 3.10. Let T be a nuclear operator on Lp(Rn). Let k be as in Theorem
2.4 and suppose that α(x, y) is a measurable function defined almost everywhere
on Rn × Rn so that α(x, y) = k(x, y) for a.e. (x, y). Then α is integrable on the
diagonal and

tr T =
∫
Rn

α̃(x, x)dx.

Consequently, if α is a continuous, then

tr T =
∫
Rn

α(x, x)dx.

Proof. The first formula is valid because one has equality almost everywhere on
Rn×Rn for α and k implies k̃(x, x) = α̃(x, x) for all x. Then α̃ is integrable on the
diagonal and the formula follows. The second formula is obtained immediately. �

As an application of the above corollary we obtain the following formula for
pseudo-differential operators. This result was established in the L2 case by Du and
Wong for Weyl transforms under a similar hypotheses (cf. [4]). In the following
corollary the symbol is considered as a smooth symbol.

Corollary 3.11. Let σ(x, ξ) a symbol of a nuclear pseudo-differential operator T on
Lp(Rn). Suppose that there exists a function g in L1(Rn) with |σ(x, ·)| ≤ g(·) for
every x. Then

tr T = (2π)−n

∫
Rn

∫
Rn

σ(x, ξ)dξdx.

Proof. Using the fact that σ(x, ·) ∈ L1(Rn) for every x, we obtain the well-known
kernel for functions in the Schwartz class S given by

α(x, y) = (2π)−n

∫
Rn

ei(x−y)ξσ(x, ξ)dξ.

Moreover, α is continuous and the density of S in Lp(Rn) implies that α(x, y)
agrees with k(x, y) almost everywhere, where k is the kernel as in Theorem 2.4.
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By Corollary 3.10 α is integrable on the diagonal and

tr T = (2π)−n

∫
Rn

∫
Rn

σ(x, ξ)dξdx. �
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Products of Two-Wavelet Multipliers
and Their Traces

Viorel Catană

Abstract. Following Wong’s point of view in his book [12] (see Chapter 21) we
give in this paper two formulas for the product of two two-wavelet multipliers
ψTσϕ : L2 (Rn) → L2 (Rn) and ψTτϕ : L2 (Rn) → L2 (Rn), where σ and τ
are functions in L2 (Rn) and ϕ and ψ are any functions in L2 (Rn)∩L∞ (Rn)
such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. We also give a trace formula and

an upper bound estimate on the trace class norm for such a product. More-
over we find sharp estimates on the norm in the trace class of two-wavelet
multipliers Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn) in terms of the symbols σ and the
admissible wavelets ϕ and ψ and also we give an inequality about products of
positive trace class one-wavelet multipliers. Finally, we give an example of a
two-wavelet multiplier which extends Wong’s result concerning the Landau-
Pollak-Slepian operator from the one-wavelet case to the two-wavelet case (see
Chapter 20 in the book [12] by Wong).

Mathematics Subject Classification (2000). Primary 42B15; Secondary 47G10.

Keywords. Admissible wavelet, two-wavelet multiplier, trace class operator.

1. Introduction

Let π : Rn → B
(
L2 (Rn)

)
be the unitary representation of the additive group Rn

on L2 (Rn) defined by

(π (ξ)u) (x) = eixξu (x) , x, ξ ∈ Rn,

for all functions u in L2 (Rn). The following two results can be found in the paper
[11] by Wong and Zhang.

Theorem 1.1. Let σ ∈ L∞ (Rn), and let ϕ and ψ be any functions in L2 (Rn) ∩
L∞ (Rn) such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. If for all functions u in S, we
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define Pσ,ϕ,ψu by

(Pσ,ϕ,ψu, v) = (2π)−n
∫

Rn

σ (ξ) (u, π (ξ)ϕ) (π (ξ)ψ, v) dξ (1.1)

for all functions v in S, then

(Pσ,ϕ,ψu, v) = ((ψTσϕ)u, v) , u, v ∈ S. (1.2)

Theorem 1.2. Let σ ∈ L1 (Rn), and let ϕ and ψ be any functions in L2 (Rn) ∩
L∞ (Rn) such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. If for any function u ∈ L2 (Rn)
we define Pσ,ϕ,ψu by (1.1) for all functions v in L2 (Rn), then Pσ,ϕ,ψ : L2 (Rn) →
L2 (Rn) is a bounded linear operator and

‖Pσ,ϕ,ψ‖∗ ≤ (2π)−n ‖σ‖L1(Rn) (1.3)

where ‖Pσ,ϕ,ψ‖∗ is the operator norm of Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn).

To define the linear operator Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn), where σ ∈ Lp (Rn),
1 < p < ∞, and ϕ and ψ are any functions in L2 (Rn) ∩ L∞ (Rn) such that
‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1, we need the following theorem.

Theorem 1.3. Let σ ∈ Lp (Rn), 1 < p < ∞ and let ϕ and ψ be any functions
in L2 (Rn) ∩ L∞ (Rn) such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. Then, there exists a
unique bounded linear operator Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn) such that

‖Pσ,ϕ,ψ‖∗ ≤ (2π)−n/p ‖ϕ‖1/p
′

L∞(Rn) ‖ψ‖1/p
′

L∞(Rn) ‖σ‖Lp(Rn) (1.4)

and for all functions u and v in L2 (Rn) , (Pσ,ϕ,ψu, v) is given by (1.1), for all sim-
ple functions σ on Rn for which the Lebesgue measure of the set {ξ ∈ Rn;σ (ξ) �= 0}
is finite.

Proof. Using Plancherel’s theorem and the fact that

(π (ξ)ϕ)∧ = T−ξϕ̂, ξ ∈ Rn,

where
(T−ξf) (x) = f (x− ξ) , x ∈ Rn,

for all measurable functions f on Rn, we get

(u, π (ξ)ϕ) =
(
û ∗ ϕ̂

)
(ξ) (1.5)

and

(π (ξ)ψ, v) = (v̂ ∗ ψ̂) (ξ) , (1.6)

for all ξ in Rn, where(
f̂ ∗ ϕ̂

)
(ξ) =

∫
Rn

f̂ (ξ − η) ϕ̂ (η) dη, ξ ∈ Rn



Products of Two-Wavelet Multipliers and Their Traces 197

and (
f̂ ∗ ψ̂

)
(ξ) =

∫
Rn

f̂ (ξ − η) ψ̂ (η) dη, ξ ∈ Rn,

for all functions f in S (Rn). Let σ ∈ L∞ (Rn). Then by (1.1), (1.5), (1.6), the
definition of π and the fact that

(fχ)̂ = (2π)−n/2
(
f̂ ∗ χ̂

)
, f ∈ S (Rn) , χ ∈ L2 (Rn) (1.7)

we get

|(Pσ,ϕ,ψu, v)| ≤ (2π)−n ‖σ‖L∞(Rn)

∥∥∥û ∗ ϕ̂∥∥∥
L2(Rn)

∥∥∥v̂ ∗ ψ̂∥∥∥
L2(Rn)

(1.8)

for all functions u and v in L2 (Rn). Using (1.7)–(1.8) and Plancherel’s theorem,
we get

|(Pσ,ϕ,ψu, v)| ≤ ‖σ‖L∞(Rn) ‖uϕ‖L2(Rn) ‖vψ‖L2(Rn)

≤ ‖σ‖L∞(Rn) ‖ϕ‖L∞(Rn)
‖ψ‖

L∞(Rn)
‖u‖

L2(Rn)
‖v‖

L2(Rn)

(1.9)

for all functions u and v in L2 (Rn). So, by (1.9)

‖Pσ,ϕ,ψ‖∗ ≤ ‖ϕ‖
L∞(Rn)

‖ψ‖
L∞(Rn)

‖σ‖
L∞(Rn)

, σ ∈ L∞ (Rn) . (1.10)

Thus by Theorem 1.2, (1.10) and the Riesz-Thorin interpolation theorem (see
e.g. Theorem 12.4 in the book [12] by Wong), the proof is complete. �
Remark 1.1. We call the bounded linear operator Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn) in
Theorem 1.3 a two-wavelet multiplier corresponding to the symbol σ ∈ Lp (Rn),
1 < p <∞ and the two admissible wavelets ϕ and ψ. Thus we can define the linear
operator ψTσϕ : L2 (Rn) → L2 (Rn), where σ ∈ Lp (Rn), 1 < p <∞ and ϕ and ψ
are any functions in L2 (Rn) ∩ L∞ (Rn) such that ‖ϕ‖

L2(Rn)
= ‖ψ‖

L2(Rn)
= 1, by

(Pσ,ϕ,ψu, v) = ((ψTσϕ) u, v) , u, v ∈ L2 (Rn)

(for more details see the paper [11] by Wong and Zhang).

2. The Main Results

Let the point z = q+ ip in Cn, which we identify with Rn×Rn, and we define the
symplectic form on Cn by [z, w] = 2 Im (z · w), z, w ∈ Cn, where

z = (z1, . . . , zn) , w = (w1, . . . , wn)

and

z · w =
n∑

j=1

zj · wj .

For two measurable functions f and g on Cn and for any fixed real λ, we define
the twisted convolution f ∗λ g by

(f ∗λ g) (z) =
∫

Cn

f (z − w) g (w) eiλ[z,w]dw, z ∈ Cn (2.1)
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(for more details see the paper [5] by Grossmann, Loupias and Stein, the book [12]
by Wong and the paper [9] by Toft).

The following result, will be useful to us and can be found in the paper [5]
by Grossmann, Loupias and Stein.

Theorem 2.1. Let σ and τ be any functions in L2 (Cn). Then the product of the
Weyl transforms Wσ : L2 (Rn) → L2 (Rn) and Wτ : L2 (Rn) → L2 (Rn) is the
same as the Weyl transform Wω : L2 (Rn) → L2 (Rn), where ω is the function in
L2 (Cn) given by

ω̂ = (2π)−n (σ̂ ∗1/4 τ̂
)
. (2.2)

Let σ ∈ L1
(
R2n

) ∪ L2
(
R2n

)
. Then the Weyl transform associated to the

symbol σ is the bounded linear operator Wσ : L2 (Rn) → L2 (Rn) given by

(Wσf, g) = (2π)−n/2
∫

Rn

∫
Rn

σ (x, ξ)W (f, g) (x, ξ) dxdξ,

for all f and g in L2 (Rn), where (, ) is the inner product in L2 (Rn) and W (f, g)
is the Wigner transform of f and g defined by

W (f, g) (x, ξ) = (2π)−n/2
∫

Rn

e−iξpf
(
x+

p

2

)
g
(
x− p

2

)
dp,

for all x and ξ in Rn.
The function V (f, g) on Rn × Rn defined by V (f, g)̂ (x, ξ) = W (f, g) (x, ξ),

x, ξ ∈ Rn is called the Fourier–Wigner transforms of f and g. This transform will
be used in the proof of Theorem 2.4. To give a first formula for the product of
two, two-wavelet multipliers we need the following result.

Theorem 2.2. Let σ ∈ L2 (Rn) and let ϕ and ψ be any functions in L2 (Rn) ∩
L∞ (Rn) such that ‖ϕ‖

L2(Rn)
= ‖ψ‖

L2(Rn)
= 1. Then the two-wavelet multiplier

ψTσϕ : L2 (Rn) → L2 (Rn) is the same as the Weyl transform Wσϕ,ψ
: L2 (Rn) →

L2 (Rn) where

σϕ,ψ (x, ξ) = (2π)−n/2
∫

Rn

W (ψ, ϕ) (x, ξ − η)σ (η) dη. (2.3)

Proof. We begin with the observation that for all functions f in L1 (Rn)∩L2 (Rn)
(in particular f ∈ S (Rn)),

((ψTσϕ) f) (x) = (2π)−n/2
ψ (x)

(∨
σ ∗ ϕf

)
(x)

= (2π)−n/2
ψ (x)

∫
Rn

∨
σ (x− y)ϕ (y) f (y) dy

=
∫
Rn

h (x, y) f (y) dy, (2.4)
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for all x ∈ Rn, where

h (x, y) = (2π)−n/2 ψ (x)
∨
σ (x− y)ϕ (y) , x, y ∈ Rn. (2.5)

Here the symbol ∨ denotes the inverse Fourier transform.
Now, by (2.5), Fubini’s theorem and Planchrel’s theorem,∫

Rn

∫
Rn

|h (x, y)|2 dxdy

= (2π)−n
∫

Rn

∫
Rn

|ψ (x)|2 |∨σ (x− y) |2 |ϕ (y)|2 dxdy

= (2π)−n
∫

Rn

|ϕ (y)|2
⎛⎝∫

Rn

|ψ (x)|2
∣∣∣∨σ (x− y)

∣∣∣2 dx
⎞⎠ dy

≤ (2π)−n ‖ψ‖2L∞(Rn)

⎛⎝∫
Rn

|ϕ (y)|2 dy
⎞⎠ · ||∨σ||2L2(Rn)

= (2π)−n ‖ψ‖2L∞(Rn) · ‖ϕ‖2
L2(Rn) ‖σ‖2

L2(Rn) <∞. (2.6)

So, by (2.4)–(2.6), ψTσϕ : L2 (Rn) → L2 (Rn) is a Hilbert–Schmidt operator with
kernel h. To complete the proof of Theorem 2.2. it is necessary to use the following
result obtained by Pool in [8] (see also Chapter 6 in the book [10] by Wong).

Proposition 2.3. Let h be a function L2 (Rn × Rn). Then the Hilbert–Schmidt op-
erator corresponding to the kernel h is necessarily of the form Wσ : L2 (Rn) →
L2 (Rn), for some σ in L2

(
R2n

)
. More precisely,

σ = (2π)n/2 F2Th, (2.7)

where F2 is the Fourier transform on L2 (Rn × Rn) with the respect to the second
variable and T : L2 (Rn × Rn) → L2 (Rn × Rn) is the linear operator defined by

(Tf) (x, y) = f
(
x+

y

2
, x− y

2

)
, x, y ∈ Rn, (2.8)

for all functions f in L2 (Rn × Rn).

Thus, by Proposition 2.3, the operator ψTσϕ : L2 (Rn) → L2 (Rn) is the same
as the Weyl transform Wσϕ,ψ

: L2 (Rn) → L2 (Rn) where

σϕ,ψ (x, ξ) = (2π)n/2 (F2Th) (x, ξ) , x, ξ ∈ Rn. (2.9)

But, by (2.8) and (2.5)

(Th) (x, y) = h
(
x+

y

2
, x− y

2

)
= (2π)−n/2

ψ
(
x+

y

2

) ∨
σ (y)ϕ

(
x− y

2

)
,
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x, y ∈ Rn and hence by (1.7) and the definition of the Fourier–Wigner transform,
we get

(F2Th) (x, ξ) = (2π)−n
∫

Rn

e−iyξψ
(
x+

y

2

) ∨
σ (y)ϕ

(
x− y

2

)
dy

= (2π)−n/2
{[
ψ
(
x+

·
2

)
ϕ
(
x− ·

2

)] ∨
σ
}̂

(ξ)

= (2π)−n (W (ψ, ϕ) (x, ·) ∗ σ) (ξ) (2.10)

for all x and ξ in Rn. Hence by (2.9) and (2.10), the proof is complete. �

The following theorem give us a first formula for the product of two two-
wavelet multipliers.

Theorem 2.4. Let σ and τ be functions in L2 (Rn) and let ϕ and ψ be any functions
in L2 (Rn) ∩ L∞ (Rn) such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. Then the product of
two-wavelet multipliers ψTσϕ : L2 (Rn) → L2 (Rn) and ψTτϕ : L2 (Rn) → L2 (Rn)
is the same as the Weyl transform Wλ : L2 (Rn) → L2 (Rn), and λ is the function
in L2 (Rn × Rn) given by

λ̂ = (2π)−n (σ̂ϕ,ψ ∗1/4 τ̂ϕ,ψ

)
, (2.11)

where σϕ,ψ and τϕ,ψ are defined by (2.3).

Theorem 2.4 is an immediate consequence of Theorem 2.1. and Theorem 2.2.
We can now give a second formula for the product of two two-wavelet multi-

pliers.

Theorem 2.5. Let σ and τ be functions in L2 (Rn) and let ϕ and ψ be any functions
in L2 (Rn) ∩ L∞ (Rn) such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. Then the product of
the two-wavelet multipliers ψTσϕ : L2 (Rn) → L2 (Rn) and ψTτϕ : L2 (Rn) →
L2 (Rn) is the same as the linear operator ψWλϕ : L2 (Rn) → L2 (Rn) where
Wλ : L2 (Rn) → L2 (Rn) is the Weyl transform associated to λ and

λ (x, ξ) = (2π)−n/2
∫

Rn

W (σ, τ ) (ξ, y − x)ψ (y)ϕ (y)dy (2.12)

for all x and ξ in Rn.

The proof of Theorem 2.5 is similar as the proof of Theorem 21.2 in the book
[12] by Wong, so we omit that.

Remark 2.1. If ϕ = ψ, then we recover from Theorems 2.2., 2.4. and 2.5. respec-
tively, the Theorems 21.5, 21.6 and 21.2 in the book [12] by Wong.

Theorem 2.6. Let σ and τ be functions in L2 (Rn) and let ϕ and ψ be any functions
in L2 (Rn) ∩ L∞ (Rn) such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. Then the bounded
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linear operator Pσ,ϕ,ψPτ,ϕ,ψ : L2 (Rn) → L2 (Rn) is a trace class operator, and the
trace of this is equal to

tr (Pσ,ϕ,ψPτ,ϕ,ψ) = (2π)−n
∫

Rn

∫
Rn

σϕ,ψ (x, ξ) τϕ,ψ (x, ξ) dxdξ.

Moreover,

‖Pσ,ϕ,ψPτ,ϕ,ψ‖S1

≤ (2π)−n ‖σϕ,ψ‖L2(R2n) ‖τϕ,ψ‖L2(R2n)

≤ (2π)−n
{

min
(
‖ϕ‖L∞(Rn) , ‖ψ‖L∞(Rn)

)}2

‖σ‖L2(Rn) ‖τ‖L2(Rn).

Proof. By Theorem 2.4 we know that the product of the two-wavelet multipliers
Pσ,ϕ,ψ = ψTσϕ : L2 (Rn) → L2 (Rn) and Pτ,ϕ,ψ = ψTτϕ : L2 (Rn) → L2 (Rn) is
the same as the Weyl transform Wλ : L2 (Rn) → L2 (Rn), where λ is the function
in L2 (Rn × Rn) given by (2.11).

Consequently, by Theorem 6.1 and Theorem 7.1 in the paper [14] by Wong
we get respectively that Wλ is in the trace class S1,

‖Wλ‖S1
≤ (2π)−n ‖a‖L2(R2n) ‖b‖L2(R2n)

and
tr (Wλ) = (2π)−n

∫
Rn

∫
Rn

a (x, ξ) b (x, ξ) dxdξ

if λ̂ = (2π)−n
(
â ∗1/4 b̂

)
, where a and b are in L2

(
R2n

)
.

By Proposition 2.3, (2.5), (2.9), Fubini’s theorem and Plancherel’s theorem,

‖σϕ,ψ‖2
L2(R2n) = (2π)n

∫
Rn

∫
Rn

|(F2Th) (x, ξ)|2 dxdξ

= (2π)n
∫

Rn

∫
Rn

|Th (x, y)|2 dxdy

=
∫
Rn

∫
Rn

∣∣∣ψ (
x+

y

2

)∣∣∣2 ∣∣∣∨σ (y)
∣∣∣2 ∣∣∣ϕ(x− y

2

)∣∣∣2 dxdy
≤ ‖ψ‖2L∞(Rn) ‖σ‖2

L2(Rn) ‖ϕ‖2L2(Rn)

and analogously

‖σϕ,ψ‖2
L2(R2n) ≤ ‖ϕ‖2

L∞(Rn) ‖σ‖2
L2(Rn) ‖ψ‖2L2(Rn) .

By the preceding estimates, we get

‖σϕ,ψ‖L2(R2n) ≤ min
(
‖ϕ‖L∞(Rn) , ‖ψ‖L∞(Rn)

)
‖σ‖L2(Rn) .

In the same manner we write

‖τϕ,ψ‖L2(R2n) ≤ min
(
‖ϕ‖L∞(Rn) , ‖ψ‖L∞(Rn)

)
‖τ‖L2(Rn) .
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Thus, Theorem 2.6 is an immediate consequence of the above statements and
estimates. �

Theorem 2.6 admits the following generalization.

Theorem 2.7. Let σ1, . . . , σm,m ≥ 2 be m functions in L2 (Rn) and let ϕ and
ψ be any functions in L2 (Rn) ∩ L∞ (Rn) such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1.
Then the product of the two-wavelet multipliers Pσ1,ϕ,ψ, . . . , Pσm,ϕ,ψ is a trace class
operator, which trace is given by

tr (Pσ1,ϕ,ψ · · · · · Pσm,ϕ,ψ) = (2π)−n(m−1)
∫

Rn

∫
Rn

σ1,ϕ,ψ (x, ξ)

× (
σ̂2,ϕ,ψ ∗1/4 · · ·

(
σ̂m−1,ϕ,ψ ∗1/4 σ̂m,ϕ,ψ

) · · · )∨ (x, ξ) dxdξ,

where (· · · )∨ denotes the inverse Fourier transform of (· · · ). Moreover,

‖Pσ1,ϕ,ψ · · · · · Pσm,ϕ,ψ‖S1
≤ (2π)−nm/2 ‖σ1,ϕ,ψ‖L2(R2n) . . . ‖σm,ϕ,ψ‖L2(R2n)

≤ (2π)−nm/2
{

min
(
‖ϕ‖L∞(Rn) , ‖ψ‖L∞(Rn)

)}m

‖σ1‖L2(Rn) . . . ‖σm‖L2(Rn) .

The proof of Theorem 2.7. follows immediately by induction on m, Theorem
4.3 in the paper [14] by Wong and Theorem 11.2 in the book [4] by Gohberg,
Goldberg and Krupnik.

3. Trace Class Norm Inequalities for Two-Wavelet Multipliers

In this paragraph we give sharp estimates on the norms in the trace class of two-
wavelet multipliers Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn) in terms of the symbol σ and the
admissible wavelets ϕ and ψ.

To this end let us define the function σ̃ : Rn → C by

σ̃ (ξ) = (Pσ,ϕ,ψπ (ξ)ϕ, π (ξ)ψ) , ξ ∈ Rn. (3.1)

We first recall the following result (see Theorem 1.1 in the paper [11] by
Wong and Zhang) which we need in the sequel.

Theorem 3.1. Let ϕ ∈ L2 (Rn)∩L∞ (Rn) be such that ‖ϕ‖L2(Rn) = 1. Then for all
functions u and v in the Schwartz space S,

(2π)−n
∫
Rn

(u, π (ξ)ϕ)(π (ξ)ϕ, v) dξ = (ϕu, ϕv) , (3.2)

where (, ) is the inner product in L2 (Rn).

Proposition 3.2. Let σ ∈ L1 (Rn) and let ϕ, ψ ∈ L2 (Rn) ∩ L4 (Rn) ∩ L∞ (Rn) be
such that ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. Then σ̃ ∈ L1 (Rn) and

‖σ̃‖L1(Rn) ≤
‖ϕ‖4L4(Rn) + ‖ψ‖4

L4(Rn)

2
‖σ‖L1(Rn) . (3.3)
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Proof. By the definition of π : Rn → B
(
L2 (Rn)

)
, (1.1), (3.1), Fubini’s theorem,

Schwartz’ inequality and (3.2), we get∫
Rn

|σ̃ (ξ)| dξ (3.4)

≤ (2π)−n
∫

Rn

⎛⎝∫
Rn

|σ (η)| |(π (ξ)ϕ, π (η)ϕ)| |(π (η)ψ, π (ξ)ψ)| dη
⎞⎠ dξ

= (2π)−n
∫

Rn

|σ (η)|
⎛⎝∫

Rn

|(π (ξ)ϕ, π (η)ϕ)| |(π (η)ψ, π (ξ)ψ)| dξ
⎞⎠ dη

≤ (2π)−n · 2−1

∫
Rn

|σ (η)|
⎛⎝∫

Rn

(|(π (ξ)ϕ, π (η)ϕ)|2 + |(π (η)ψ, π (ξ)ψ)|2)dξ
⎞⎠ dη

= (2π)−n · 2−1

∫
Rn

|σ (η)|
(
‖ϕπ (η)ϕ‖2L2(Rn) + ‖ψπ (η)ψ‖2L2(Rn)

)
dη. (3.5)

Using the definition of π : Rn → B
(
L2 (Rn)

)
, we get

‖ϕπ (η)ϕ‖2
L2(Rn) =

∫
Rn

|ϕ (x)|4 dx = ‖ϕ‖4
L4(Rn) (3.6)

and
‖ψπ (η)ψ‖2

L2(Rn) =
∫

Rn

|ψ (x)|4 dx = ‖ψ‖4L4(Rn) . (3.7)

Thus, by (3.4)–(3.7), inequality (3.3) follows. �
Proposition 3.3. Let σ ∈ L1 (Rn), and let ϕ, ψ ∈ L2 (Rn) ∩ L4 (Rn) be such that
‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. Then∫

Rn

σ̃ (ξ) dξ =
(
|ψ|2 , |ϕ|2

)∫
Rn

σ (η) dη. (3.8)

Proof. By (3.1), Fubini’s theorem and Plancharel’s theorem, we get∫
Rn

σ̃ (ξ) dξ = (2π)−n
∫

Rn

⎛⎝∫
Rn

σ (η) (π (ξ)ϕ, π (η)ϕ) (π (η)ψ, π (ξ)ψ) dη

⎞⎠ dξ

= (2π)−n
∫

Rn

σ (η)

⎛⎝∫
Rn

(π (ξ)ϕ, π (η)ϕ) (π (η)ψ, π (ξ)ψ) dξ

⎞⎠ dη

= (2π)−n
∫

Rn

σ (η)

⎛⎝∫
Rn

(π (ξ)ϕ, ϕ) (ψ, π (ξ)ψ) dξ

⎞⎠ dη
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=
∫

Rn

σ (η)

⎛⎝∫
Rn

|̂ψ|2 (ξ) |̂ϕ|2 (ξ) dξ

⎞⎠ dη

=

⎛⎝∫
Rn

σ (η) dη

⎞⎠(
|ψ|2 , |ϕ|2

)
. (3.9)

We have used for the last but one inequality the following relations:

(π (ξ)ϕ, ϕ) = (ϕ, π (ξ)ϕ) =
(
ϕ̂ ∗ ϕ̂

)
(ξ) = (2π)n/2

ϕ̂ϕ (ξ) = (2π)n/2 |̂ϕ|2 (ξ) ,

(ψ, π (ξ)ψ) =
(
ψ̂ ∗ ψ̂

)
(ξ) = (2π)n/2

ψ̂ψ (ξ) = (2π)n/2 |̂ψ|2 (ξ) . �

Remark 3.1. If ϕ = ψ, then from Proposition 3.2 and Proposition 3.3. we find
Proposition 2.1. and Proposition 2.2 respectively in the paper [13] by Wong and
Zhang.

Theorem 3.4. Let σ ∈ L1 (Rn) and let ϕ, ψ ∈ L2 (Rn) ∩ L∞ (Rn) be such that
‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1. Then

(2π)−n · 2
(
‖ϕ‖2

L∞(Rn) + ‖ψ‖2L∞(Rn)

)−1

‖σ̃‖L1(Rn)

≤ ‖Pσ,ϕ,ψ‖S1
≤ (2π)−n ‖σ‖L1(Rn) (3.10)

Proof. By Theorem 3.1 in the paper [11] by Wong and Zhang the two-wavelet
multiplier Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn) is in the trace class S1. We write

Pσ,ϕ,ψ = V |Pσ,ϕ,ψ|
for the polar form of the bounded linear operator Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn) on

the complex Hilbert space L2 (Rn), where |Pσ,ϕ,ψ| =
(
P ∗σ,ϕ,ψPσ,ϕ,ψ

)1/2

,

V : L2 (Rn) → L2 (Rn),

‖V f‖L2(Rn) = ‖f‖L2(Rn) , f ∈ N (Pσ,ϕ,ψ)⊥

and
V (f) = 0, f ∈ N (Pσ,ϕ,ψ) ,

where N (Pσ,ϕ,ψ) is the kernel of Pσ,ϕ,ψ and N (Pσ,ϕ,ψ)⊥ is the orthogonal com-
plement of N (Pσ,ϕ,ψ). Let {ϕk : k = 1, 2, . . .} be an orthonormal basis for L2 (Rn)
consisting of eigenvectors of |Pσ,ϕ,ψ| and let sk (Pσ,ϕ,ψ) be the eigenvalues of
|Pσ,ϕ,ψ| corresponding to ϕk, k = 1, 2, . . . . For k = 1, 2, . . . let

ψk = V ϕk.

We choose the orthonormal basis {ϕk : k = 1, 2, . . .} such that {ψk : k = 1, 2, . . .}
is an orthonormal set in L2 (Rn) and to have

Pσ,ϕ,ψf =
∞∑

k=1

sk (Pσ,ϕ,ψ) (f, ϕk)ψk, f ∈ L2 (Rn) , (3.11)
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where the convergence of the series is understood to be in L2 (Rn) (see Theorem
2.2 in the book [12] by Wong).

By (3.11)

∞∑
j=1

(Pσ,ϕ,ψϕj , ψj) =
∞∑

j=1

sj (Pσ,ϕ,ψ) . (3.12)

So, by (3.12) we get

‖Pσ,ϕ,ψ‖S1
=

∞∑
j=1

(Pσ,ϕ,ψϕj , ψj) . (3.13)

Thus, by (3.13), Fubini’s theorem, the Parseval’s identity, the Bessel inequality,
the Schwartz’ inequality and ‖ϕ‖L2(Rn) = ‖ψ‖L2(Rn) = 1, we get

‖Pσ,ϕ,ψ‖S1
(3.14)

=
∞∑

k=1

(Pσ,ϕ,ψϕk, ψk)

=
∞∑

k=1

(2π)−n

∣∣∣∣∣∣
∫

Rn

σ (ξ) (ϕk, π (ξ)ϕ) (π (ξ)ψ, ψk) dξ

∣∣∣∣∣∣
≤

∞∑
k=1

(2π)−n
∫

Rn

|σ (ξ)| |(ϕk, π (ξ)ϕ)| |(π (ξ)ψ, ψk)| dξ

= (2π)−n
∫

Rn

|σ (ξ)|
∞∑

k=1

|(ϕk, π (ξ)ϕ)| |(π (ξ)ψ, ψk)| dξ

≤ (2π)−n
∫

Rn

|σ (ξ)|
( ∞∑

k=1

|(ϕk, π (ξ)ϕ)|2
)1/2 ( ∞∑

k=1

|(π (ξ)ψ, ψk)|2
)1/2

dξ

≤ (2π)−n
∫

Rn

|σ (ξ)| ‖π (ξ)ϕ‖L2(Rn) ‖π (ξ)ψ‖L2(Rn) dξ

= (2π)−n
∫

Rn

|σ (ξ)| dξ

= (2π)−n ‖σ‖L1(Rn) . (3.15)

Using (3.1), (3.11) and the Schwartz inequality, we get
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|σ̃ (ξ)| = |(Pσ,ϕ,ψπ (ξ)ϕ, π (ξ)ψ)|

=

∣∣∣∣∣
∞∑

k=1

sk (Pσ,ϕ,ψ) (π (ξ)ϕ, ϕk) (ψk, π (ξ)ψ)

∣∣∣∣∣
≤ 1

2

∞∑
k=1

sk (Pσ,ϕ,ψ)
(
|π (ξ)ϕ, ϕk)|2 + |(ψk, π (ξ)ψ)|2

)
, (3.16)

for all ξ in Rn. Thus, by (3.16), Theorem 3.1, Fubini’s theorem and ‖ϕk‖L2(Rn) =
‖ψk‖L2(Rn) = 1, k = 1, 2, . . . , we get∫

Rn

|σ̃ (ξ)| dξ

≤ 1
2

∞∑
k=1

sk (Pσ,ϕ,ψ)

⎛⎝∫
Rn

|(π (ξ)ϕ, ϕk)|2 dξ +
∫

Rn

|(ψk, π (ξ)ψ)|2 dξ
⎞⎠

=
1
2

∞∑
k=1

sk (Pσ,ϕ,ψ) (2π)n
(
‖ϕϕk‖2L2(Rn) + ‖ψψk‖2L2(Rn)

)
. (3.17)

For k = 1, 2, . . .

‖ϕϕk‖L2(Rn) ≤ ‖ϕ‖L∞(Rn) · ‖ϕk‖L2(Rn) = ‖ϕ‖L∞(Rn) , (3.18)

‖ψψk‖L2(Rn) ≤ ‖ψ‖L∞(Rn) · ‖ψk‖L2(Rn) = ‖ψ‖L∞(Rn) . (3.19)

By (3.17)–(3.19), we get∫
Rn

|σ̃ (ξ)| dξ ≤ (2π)n ‖Pσ,ϕ,ψ‖S1

1
2

(
‖ϕ‖2L∞(Rn) + ‖ψ‖2

L∞(Rn)

)
and hence

(2π)−n · 2
(
‖ϕ‖2

L∞(Rn) + ‖ψ‖2
L∞(Rn)

)−1

‖σ̃‖L1(Rn) ≤ ‖Pσ,ϕ,ψ‖S1
. (3.20)

So, by (3.15) and (3.20) the proof is complete. �

Remark 3.2. If ϕ = ψ and ϕ is a function in L2 (Rn)∩L4 (Rn)∩L∞ (Rn) such that
‖ϕ‖L2(Rn) = ‖ϕ‖L4(Rn) = ‖ϕ‖L∞(Rn) = 1, and σ is a real-valued and non-negative
function in L1 (Rn), then Pσ,ϕ,ψ : L2 (Rn) → L2 (Rn) is a positive operator, and
by Remark 2.4 in the paper [13] by Wong and Zhang, we get

(2π)−n ‖σ̃‖L1(Rn) = ‖Pσ,ϕ,ψ‖S1
= (2π)−n ‖σ‖

L1(Rn)
.

Thus the estimates in Theorem 3.4 are sharp.

Remark 3.3. If ϕ = ψ, we have from Theorem 3.4, Theorem 2.3 in the paper [13]
by Wong and Zhang.

Now we state a result concerning the trace of products of one-wavelet multi-
pliers.
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Theorem 3.5. Let σ and τ be any real-valued and non-negative functions in L1 (Rn)
and let ϕ be a function in L2 (Rn) ∩ L4 (Rn) ∩ L∞ (Rn) such that ‖ϕ‖L2(Rn) =
‖ϕ‖L4(Rn) = ‖ϕ‖L∞(Rn) = 1. Then the one-wavelet multipliers Pσ,ϕ = ϕTσϕ,
Pτ,ϕ = ϕTτϕ are positive trace class operators and∥∥∥(Pσ,ϕPτ,ϕ)k

∥∥∥
S1

= tr (Pσ,ϕPτ,ϕ)k ≤ (trPσ,ϕ)k (trPτ,ϕ)k = ‖Pσ,ϕ‖k
S1
‖Pτ,ϕ‖k

S1

= (2π)−2nk ‖σ‖k
L1(Rn) ‖τ‖k

L1(Rn) ,

for all natural numbers k.

Proof. By Theorem 1 in the paper [7] by Liu we know that if A,B are in the trace
class S1 and are positive operators, then

tr (AB)k ≤ (trA)k (trB)k
,

for all natural numbers k.
So, if we take A = Pσ,ϕ, B = Pτ,ϕ and we invoke the Remark 3.2, the proof

is complete. �
Remark 3.4. If we take k = 1 in Theorem 3.5, we get

‖Pσ,ϕPτ,ϕ‖S1
= tr (Pσ,ϕPτ,ϕ) ≤ tr (Pσ,ϕ) tr (Pτ,ϕ) = (2π)−2n ‖σ‖L1(Rn) ‖τ‖L1(Rn) .

In addition, if we suppose that σ, τ ∈ L1 (Rn) ∩ L2 (Rn), then we get∫
Rn

∫
Rn

σϕ (x, ξ) τϕ (x, ξ) dxdξ ≤ (2π)−n ‖σ‖L1(Rn) ‖τ‖L1(Rn) .

(See Theorems 21.5 and 21.6 in the book [12] by Wong and Theorem 7.1 in the
paper [14] by Wong.)

4. The Generalized Landau–Pollak–Slepian Operator

Wong showed in Chapter 20 of his book [12] that the Landau–Pollak–Slepian
operator arising in signal analysis is an one-wavelet multiplier. Following Wong’s
point of view we define a bounded linear operator from L2 (Rn) into itself. We show
that this operator is a two-wavelet operator and is the analogue in the two-wavelet
case of the Landau–Pollak–Slepian operator from the one-wavelet case. From this
reason we call it the generalized Landau–Pollak–Slepian operator.

Let Ω1,Ω2, T be positive numbers. Then we define the linear operators PΩ1 :
L2 (Rn) → L2 (Rn) , PΩ2 : L2 (Rn) → L2 (Rn) , QT : L2 (Rn) → L2 (Rn), by

(PΩ1f)∧ (ξ) =

⎧⎨⎩ f̂ (ξ) , |ξ| ≤ Ω1

0, |ξ| > Ω1,

(4.1)

(PΩ2f)∧ (ξ) =

⎧⎨⎩ f̂ (ξ) , |ξ| ≤ Ω2

0, |ξ| > Ω2,

(4.2)
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(QT f) (x) =

⎧⎨⎩
f (x) , |x| ≤ T

0, |x| > T.
(4.3)

Proposition 4.1. PΩ1 : L2 (Rn) → L2 (Rn) , PΩ2 : L2 (Rn) → L2 (Rn) , QT :
L2 (Rn) → L2 (Rn) are self-adjoint projections.

The proof of Proposition 4.1 is similar as the proof of Proposition 20.1 in the
book [12] by Wong, so we omit that.

Using the fact that PΩ1 : L2 (Rn) → L2 (Rn) , PΩ2 : L2 (Rn) → L2 (Rn) , QT :
L2 (Rn) → L2 (Rn) are self-adjoint and that the last operator is a projection, we
get

sup

{
(QTPΩ1f, QTPΩ2f)L2(Rn)

‖f‖2L2(Rn)

: f ∈ L2 (Rn) , f �= 0

}

= sup

{
(PΩ2QTPΩ1f, f)L2(Rn)

‖f‖2L2(Rn)

: f ∈ L2 (Rn) , f �= 0

}
(4.4)

= sup
{

(PΩ2QTPΩ1f, f)L2(Rn) : f ∈ L2 (Rn) , ‖f‖L2(Rn) = 1
}

= ‖PΩ2QTPΩ1‖B(L2(Rn)) .

In the last equality we use the fact that PΩ2QTPΩ1 : L2 (Rn) → L2 (Rn) is
self-adjoint.

The bounded linear operator PΩ2QTPΩ1 : L2 (Rn) → L2 (Rn), that it has ap-
peared in the context of time and band-limited signals can be called the generalized
Landau–Pollak–Slepian operator.

We can show that the generalized Landau–Pollak–Slepian operator is in fact
a two-wavelet multiplier. To this end let us denote by BΩ the ball in Rn with
center at the origin and radius Ω.

Theorem 4.2. Let ϕ and ψ be the functions on Rn defined by

ϕ (x) =

⎧⎨⎩
1√

μ (BΩ1)
, |x| ≤ Ω1

0 |x| > Ω1,
(4.5)

ψ (x) =

⎧⎨⎩
1√

μ (BΩ2)
, |x| ≤ Ω2

0 |x| > Ω1,
(4.6)

where μ (BΩ1) , μ (BΩ2) are the volume of BΩ1 , BΩ2 respectively and let σ be the
characteristic function on BT , i.e.,

σ (ξ) =
{

1, |ξ| ≤ T
0, |ξ| > T.

(4.7)

Then the generalized Landau–Pollak–Slepian operator PΩ2QTPΩ1 : L2 (Rn) →
L2 (Rn) is unitary equivalent to a scalar multiple of the two-wavelet multiplier
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ψTσϕ : L2 (Rn) → L2 (Rn). In fact

PΩ2QTPΩ1 =
√
μ (BΩ1)μ (BΩ2)F−1 (ψTσϕ)F . (4.8)

Proof. First, let us observe that ϕ and ψ are functions in L2 (Rn)∩L∞ (Rn) such
that

‖ϕ‖L2(Rn) =
∫

Rn

|ϕ (x)|2 dx =
1

μ (BΩ1)

∫
BΩ1

dx = 1,

‖ψ‖L2(Rn) =
∫

Rn

|ψ (x)|2 dx =
1

μ (BΩ2)

∫
BΩ2

dx = 1.

(4.9)

So,

((ψTσϕ) u, v)L2(Rn) = (2π)−n
∫

Rn

σ (ξ) (u, π (ξ)ϕ)L2(Rn) (π (ξ)ψ, v)L2(Rn) dξ,

(4.10)
for all functions u and v in S. Next we can write

(u, π (ξ)ϕ) =
∫
Rn

e−ixξϕ (x)u (x) dx

=
1√

μ (BΩ1)

∫
BΩ1

e−ixξu (x) dx, u ∈ S. (4.11)

By (4.1) (
PΩ1

∨
u
)∧

(x) =
{

u (x) , |x| ≤ Ω1

0 |x| > Ω1,
(4.12)

for all functions u in S, where
∨
u is the inverse Fourier transform of u. So, by (4.12)

and Fourier inversion formula, we get

(u, π (ξ)ϕ) =
1√

μ (BΩ1)

∫
Rn

e−ixξ
(
PΩ1

∨
u
)∧

(x) dx

=
(2π)n/2√
μ (BΩ1)

(2π)−n/2
∫

Rn

e+ix(−ξ)
(
PΩ1

∨
u
)∧

(x) dx (4.13)

=
(2π)n/2√
μ (BΩ1)

(
PΩ1

∨
u
)

(−ξ) , ξ ∈ Rn,

for all functions u in S. Similarly, we get

(π (ξ)ψ, v) = (v, π (ξ)ψ)

=
(2π)n/2√
μ (BΩ2)

(
PΩ2

∨
v
)

(−ξ) . (4.14)
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So, by (4.3), (4.7), (4.10), (4.13), (4.14), Plancherel’s theorem and the fact
that PΩ2 : L2 (Rn) → L2 (Rn) is self-adjoint,

((ψTσϕ)u, v)L2(Rn) =
1√

μ (BΩ1)μ (BΩ2)

∫
Rn

σ (ξ)
(
PΩ1

∨
u
)

(ξ)
(
PΩ2

∨
v
)

(ξ)dξ

(4.15)

=
1√

μ (BΩ1)μ (BΩ2)

∫
BT

(
PΩ1

∨
u
)

(ξ)
(
PΩ2

∨
v
)

(ξ)dξ (4.16)

=
1√

μ (BΩ1)μ (BΩ2)

∫
Rn

(
QTPΩ1

∨
u
)

(ξ)
(
PΩ2

∨
v
)

(ξ)dξ (4.17)

=
1√

μ (BΩ1)μ (BΩ2)

(
QTPΩ1

∨
u, PΩ2

∨
v
)

L2(Rn)
(4.18)

=
1√

μ (BΩ1)μ (BΩ2)

(
PΩ2QTPΩ1

∨
u,
∨
v
)

L2(Rn)
(4.19)

=
1√

μ (BΩ1)μ (BΩ2)

(FPΩ2QTPΩ1F−1u, v
)
L2(Rn)

(4.20)

for all functions u and v in S and hence the proof is complete. �
The next theorem gives a formula for the trace of the generalized Landau–

Pollak–Slepian operator PΩ2QTPΩ1 : L2 (Rn) → L2 (Rn).

Theorem 4.3. tr (PΩ2QTPΩ1) =
{n

2
Γ
(n

2

)}−2
{
T min (Ω1,Ω2)

2

}n

.

Theorem 4.3 is an immediate consequence of (4.5)–(4.7), the fact that

tr (ψTσϕ) = (2π)−n (ψ, ϕ)L2(Rn)

∫
Rn

σ (ξ) dξ, (4.21)

(see Theorem 3.2 in the paper [11] by Wong and Zhang), Theorem 4.2 and the

statement that the volume of the ball in Rn with radius r is equal to
πn/2rn/2

n
2 Γ

(
n
2

) .

Remark 4.1. If Ω1 = Ω2, then by Theorems 4.2 and 4.3, we deduce Theorems 20.2
and 20.3, respectively of the Chapter 20 in the book [12] by Wong.
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Pseudo-Differential Operators on Z
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Abstract. A necessary and sufficient condition is imposed on the symbols σ :
Z×S1 → C to guarantee that the corresponding pseudo-differential operators
Tσ : L2(Z) → L2(Z) are Hilbert–Schmidt. A special sufficient condition on the
symbols σ : Z × S1 → C for the corresponding pseudo-differential operators
Tσ : L2(Z) → L2(Z) to be bounded is given. Sufficient conditions are given
on the symbols σ : Z × S1 → C to ensure the boundedness and compactness
of the corresponding pseudo-differential operators Tσ : Lp(Z) → Lp(Z) for
1 ≤ p < ∞. Norm estimates for the pseudo-differential operators Tσ are
given in terms of the symbols σ. The almost diagonalization of the pseudo-
differential operators is then shown to follow from the sufficient condition for
the Lp-boundedness.

Mathematics Subject Classification (2000). Primary 47G30; Secondary 65R10,
65T50.

Keywords. Pseudo-differential operators, Hilbert–Schmidt operators, L2-
boundedness, Lp-boundedness, Lp-compactness, almost diagonalization.

1. Introduction

Let a ∈ L2(Z). Then the Fourier transform FZa of a is the function on the unit
circle S1 centered at the origin defined by

(FZa)(θ) =
∑
n∈Z

a(n)e−inθ, θ ∈ [−π, π].

It is well known that FZa ∈ L2(S1) and the Plancherel formula for Fourier series
gives ∑

n∈Z

|a(n)|2 =
1
2π

∫ π

−π

|(FZa)(θ)|2dθ.

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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The Fourier inversion formula for Fourier series gives

a(n) =
1
2π

∫ π

−π

einθ(FZa)(θ) dθ, n ∈ Z.

Let σ : Z × S1 → C be a measurable function. Then for every sequence a in
L2(Z), we define the sequence Tσa by

(Tσa)(n) =
1
2π

∫ π

−π

einθσ(n, θ)(FZa)(θ) dθ, n ∈ Z.

Tσ is called the pseudo-differential operator on Z corresponding to the symbol σ
whenever the integral exists for all n in Z. It is the natural analog on Z of the
standard pseudo-differential operators on Rn explained in, e.g., [8]. The closely
related papers [1, 2, 3, 5, 6] contain results about pseudo-differential operators on
S1.

In this paper we give conditions on the symbols σ to ensure the boundedness
and compactness of the corresponding pseudo-differential operators Tσ : Lp(Z) →
Lp(Z), 1 ≤ p < ∞. Norm estimates and the almost diagonalization for these
pseudo-differential operators are given.

In Section 2 we give a necessary and sufficient condition on σ for Tσ : L2(Z) →
L2(Z) to be a Hilbert–Schmidt operator. In Section 3, an elegantly simple sufficient
condition for L2-boundedness is first given. This is then followed by a sufficient
condition on σ for Tσ : Lp(Z) → Lp(Z) to be a bounded linear operator for
1 ≤ p < ∞. A result on Lp-compactness is also given. In Section 4 we give
the matrix Aσ of the pseudo-differential operator Tσ and show that it is almost
diagonal in a sense to be made precise.

2. Hilbert–Schmidt Operators

Let A be a bounded linear operator on a complex and separable Hilbert space
X in which the norm is denoted by ‖ ‖. Then A : X → X is a Hilbert–Schmidt
operator if and only if there exists an orthonormal basis {ϕk}∞k=1 for X such that

∞∑
k=1

‖Aϕk‖2
X <∞.

If A : X → X is a Hilbert–Schmidt operator, then the Hilbert–Schmidt norm
‖A‖HS of A is given by

‖A‖2
HS =

∞∑
k=1

‖Aϕk‖2
X ,

where {ϕk}∞k=1 is any orthonormal basis for X .

Theorem 2.1. The pseudo-differential operator Tσ : L2(Z) → L2(Z) is a Hilbert–
Schmidt operator ⇔ σ ∈ L2(Z × S1). Moreover, if Tσ : L2(Z) → L2(Z) is a
Hilbert–Schmidt operator, then

‖Tσ‖HS = (2π)−1/2‖σ‖L2(Z×S1).
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Proof. The starting point is the standard orthonormal basis {εk}k∈Z for L2(Z)
given by

εk(n) =

⎧⎨⎩ 1, n = k,

0, n �= k.

For k ∈ Z, we get

(FZεk)(θ) =
∑
n∈Z

εk(n)e−inθ = e−ikθ, θ ∈ [−π, π],

and hence

(Tσεk)(n) =
1
2π

∫ π

−π

einθσ(n, θ)(FZεk)(θ) dθ

=
1
2π

∫ π

−π

e−i(k−n)θσ(n, θ) dθ

= (FS1σ)(n, k − n)

for all n ∈ Z, where (FS1σ)(n, ·) is the Fourier transform of the function σ(n, ·) on
S1 given by

(FS1σ)(n,m) =
1
2π

∫ π

−π

e−imθσ(n, θ) dθ, m, n ∈ Z.

So, using Fubini’s theorem and the Plancherel formula for Fourier series, we get

‖Tσ‖2
HS =

∑
k∈Z

‖Tσεk‖2
L2(Z)

=
∑
k∈Z

∑
n∈Z

|(FS1σ)(n, k − n)|2

=
∑
n∈Z

∑
k∈Z

|(FS1σ)(n, k − n)|2

=
∑
n∈Z

∑
k∈Z

|(FS1σ)(n, k)|2

=
1
2π

∑
n∈Z

∫ π

−π

|σ(n, θ)|2dθ

=
1
2π
‖σ‖2

L2(Z×S1)

and this completes the proof. �

3. Lp-Boundedness and Lp-Compactness, 1 ≤ p < ∞
We begin with a simple and elegant result on the L2-boundedness of pseudo-
differential operators on Z.
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Theorem 3.1. Let σ be a measurable function on Z × S1 such that there exists a
function w ∈ L2(Z) for which

|σ(n, θ)| ≤ |w(n)|

for all n ∈ Z and almost all θ in [−π, π]. Then Tσ : L2(Z) → L2(Z) is a bounded
linear operator. Furthermore,

‖Tσ‖B(L2(Z)) ≤ ‖w‖L2(Z),

where ‖Tσ‖B(L2(Z)) is the norm of the bounded linear operator Tσ : L2(Z) → L2(Z).

Proof. Let a ∈ L1(Z). Then by the Schwarz inequality and the Plancherel formula,

‖Tσa‖2
L2(Z) =

1
4π2

∑
n∈Z

∣∣∣∣∫ π

−π

einθσ(n, θ)(FZa)(θ) dθ
∣∣∣∣2

≤ 1
2π

∑
n∈Z

∫ π

−π

|σ(n, θ)|2|(FZa)(θ)|2dθ

≤ 1
2π

∑
n∈Z

|w(n)|2
∫ π

−π

|(FZa)(θ)|2dθ

= ‖w‖2
L2(Z)‖a‖2

L2(Z),

and a density argument to the effect that L1(Z) is dense in L2(Z) completes the
proof. �

The next theorem gives a single sufficient condition on the symbols σ for the
corresponding pseudo-differential operators Tσ : Lp(Z) → Lp(Z) to be bounded
for 1 ≤ p <∞.

Theorem 3.2. Let σ be a measurable function on Z × S1 such that we can find a
positive constant C and a function w in L1(Z) for which

|(FS1σ)(n,m)| ≤ C|w(m)|, m, n ∈ Z.

Then the pseudo-differential operator Tσ : Lp(Z) → Lp(Z) is a bounded linear
operator for 1 ≤ p <∞. Furthermore,

‖Tσ‖B(Lp(Z)) ≤ C‖w‖L1(Z),

where ‖Tσ‖B(Lp(Z)) is the norm of the bounded linear operator Tσ : Lp(Z) → Lp(Z).
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Proof. Let a ∈ L1(Z). Then for all n ∈ Z, we get

(Tσa)(n) =
1
2π

∫ π

−π

einθσ(n, θ)(FZa)(θ) dθ

=
1
2π

∫ π

−π

einθσ(n, θ)

(∑
m∈Z

a(m)e−imθ

)
dθ

=
1
2π

∑
m∈Z

a(m)
∫ π

−π

e−i(m−n)θσ(n, θ) dθ

=
∑
m∈Z

(FS1σ)∼(n, n−m)a(m)

= ((FS1σ)∼(n, ·) ∗ a)(n), (3.1)

where
(FS1σ)∼(n,m) = (FS1σ)(n,−m), m, n ∈ Z.

So,

‖Tσa‖p
Lp(Z) =

∑
n∈Z

|((FS1σ)∼(n, ·) ∗ a)(n)|p

≤
∑
n∈Z

(|(FS1σ)∼(n, ·)| ∗ |a|)(n))p

≤ Cp
∑
n∈Z

|(|w| ∗ |a|)(n)|p. (3.2)

Thus, by Young’s inequality,

‖Tσa‖p
Lp(Z) ≤ Cp‖w‖p

L1(Z)‖a‖p
Lp(Z),

which is equivalent to
‖Tσ‖B(Lp(Z)) ≤ C‖w‖L1(Z).

The proof can then be completed using the density of L1(Z) in Lp(Z) for 1 ≤ p <
∞. �

The hypothesis in Theorem 3.1 can be thought of as a Lipschitz condition
Λα, α > 1

2 , of the symbol σ on the unit circle S1 and, furthermore, the Lip-
schitz condition is uniform with respect to n in Z. See Bernstein’s theorem and
other conditions in this connection in Section 3 in Chapter VI of the book [10] by
Zygmund. The very mild condition on the Lp-boundedness of pseudo-differential
operators on Z is dramatically different from the condition for Lp-boundedness
of pseudo-differential operators on Rn in which derivatives with respect to the
configuration variables and the dual variables are essential. See Chapter 10 of [8]
for boundedness of pseudo-differential operators on Lp(Rn), 1 < p <∞.

The following theorem is a result on Lp-compactness.
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Theorem 3.3. Let σ be a measurable function on Z × S1 such that we can find a
positive function C on Z and a function w in L1(Z) for which

|(FS1σ)(n,m)| ≤ C(n)|w(m)|, m, n ∈ Z,

and
lim
|n|→∞

C(n) = 0.

Then the pseudo-differential operator Tσ : Lp(Z) → Lp(Z) is a compact operator
for 1 ≤ p <∞.

Proof. For every positive integer N , we define the symbol σN on Z× S1 by

σN (n, θ) =

⎧⎨⎩ σ(n, θ), |n| ≤ N,

0, |n| > N.

Now, by (3.1), we get for all a ∈ Lp(Z),

(TσN a)(n) =

⎧⎨⎩ ((FS1σ)∼(n, ·) ∗ a)(n), |n| ≤ N,

0, |n| > N.

Therefore the range of TσN : Lp(Z) → Lp(Z) is finite-dimensional, i.e., TσN :
Lp(Z) → Lp(Z) is a finite-rank operator. Let ε be a positive number. Then there
exists a positive integer N0 such that

|C(n)| < ε

whenever |n| > N0. So, as in the derivation of (3.2), we get for N > N0,

‖(Tσ − TσN )a‖p
Lp(Z) =

∑
n∈Z

|((FS1(σ − σN ))∼(n, ·) ∗ a)(n)|p

=
∑
|n|>N

|((FS1σ)∼(n, ·) ∗ a)(n)|p

≤
∑
|n|>N

(|(FS1σ)∼(n, ·)| ∗ |a|)(n)|p

≤
∑
|n|>N

C(n)p|(|w| ∗ |a|)(n)|p

≤ εp
∑
|n|>N

|(|w| ∗ |a|)(n)|p.

By Young’s inequality, we get for N > N0,

‖(Tσ − TσN )a‖p
Lp(Z) ≤ εp‖w‖p

L1(Z)‖a‖p
Lp(Z).

Hence for N > N0,
‖Tσ − TσN ‖B(Lp(Z)) ≤ ε‖w‖L1(Z).

So, Tσ : Lp(Z) → Lp(Z) is the limit in norm of a sequence of compact operators
on Lp(Z) and hence must be compact. �
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4. Almost Diagonalization

Theorem 4.1. Let σ be a symbol satisfying the hypotheses of Theorem 3.2. Then for
1 ≤ p <∞, the matrix Aσ of the pseudo-differential operator Tσ : Lp(Z) → Lp(Z)
is given by

Aσ = [σnk]n,k∈Z,

where

σnk = (FS1σ)(n, k − n).

Furthermore, the matrix Aσ is almost diagonal in the sense that

|σnk| ≤ C|w(k − n)|, n, k ∈ Z.

Remark 4.2. Since w ∈ L1(Z), it follows that, roughly speaking,

w(m) = O(|m|−(1+α))

as |m| → ∞, where α is a positive number. So, the entry σnk in the nth row and
the kth column of the matrix Aσ decays in such a way that

|σnk| = O(|k − n|−(1+α))

as |k − n| → ∞. In other words, the off-diagonal entries in Aσ are small and the
matrix Aσ can be seen as almost diagonal. This fact is very useful for the numerical
analysis of pseudo-differential operators on Z. See [7] for the numerical analysis of
pseudo-differential operators and related topics.

Proof of Theorem 4.1. By (3.1), we get for all n ∈ Z,

(Tσa)(n) = (FS1σ)∼(n, ·) ∗ a)(n) =
∑
k∈Z

(FS1σ)∼(n, n− k)a(k).

So, Tσa is the same as the product Aσa of the matrices Aσ and a. �

We give a numerical example to illustrate the almost diagonalization.

Example 4.3. Let

σ(n, θ) =
(
n+

1
2

)−2 ∑
k∈Z

eikθ

(
k +

1
2

)−2

, n ∈ Z, θ ∈ S1.

Then

σnk =
(
n+

1
2

)−2 (
k − n+

1
2

)−2

, k, n ∈ Z.
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Computing the 7×7 matrix Aσ = [σnk]−3≤k,n≤3 numerically, we get the following
matrix in which the entries are generated by MATLAB.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6400 0.0711 0.0256 0.0131 0.0079 0.0053 0.0038

1.7778 1.7778 0.1975 0.0711 0.0363 0.0219 0.0147

1.7778 16.000 16.000 1.7778 0.6400 0.3265 0.1975

0.6400 1.7778 16.000 16.000 1.7778 0.6400 0.3265

0.0363 0.0711 0.1975 1.7778 1.7778 0.1975 0.0711

0.0079 0.0131 0.0256 0.0711 0.6400 0.6400 0.0711

0.0027 0.0040 0.0067 0.0131 0.0363 0.3265 0.3265

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Example 4.4. As another example with a closed formula for the symbol, we let

σ(n, θ) = e−n2
θ2/2, n ∈ Z, θ ∈ S1.

Then

(FS1σ)(n,m) =

⎧⎨⎩ (−1)me−n2
/m2, m �= 0,

π2e−n2
/6, m = 0,

and hence

σnk =

⎧⎨⎩ (−1)k−ne−n2
/(k − n)2, k �= n,

π2e−n2
/6, k = n.

The 7× 7 matrix Aσ = [σnk]−3≤k,n≤3 is given numerically by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0002 −0.0001 0.0000 −0.0000 0.0000 −0.0000 0.0000

−0.0183 0.0301 −0.0183 0.0046 −0.0020 0.0011 −0.0007

0.0920 −0.3679 0.6051 −0.3679 0.0920 −0.0409 0.0230

−0.1111 0.2500 −1.0000 1.6449 −1.0000 0.2500 −0.1111

0.0230 −0.0409 0.0920 −0.3679 0.6051 −0.3679 0.0920

−0.0007 0.0011 −0.0020 0.0046 −0.0183 0.0301 −0.0183

0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0001 0.0002

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 4.5. Almost diagonalization of wavelet multipliers using Weyl–Heisenberg
frames can be found in [9], and almost diagonalization of Fourier integral operators
using Gabor frames can be found in [4].
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[10] A. Zygmund, Trigonometric Series, Third Edition, Volumes I & II Combined, Cam-
bridge University Press, 2002.

Shahla Molahajloo
Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto, Ontario M3J 1P3
Canada
e-mail: smollaha@mathstat.yorku.ca



Operator Theory:
Advances and Applications, Vol. 205, 223–234
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Pseudo-Differential Operators with Symbols
in Modulation Spaces

Joachim Toft

Abstract. We establish continuity results for pseudo-differential operators
with symbols in modulation spaces. Especially it follows from our general
result that if a ∈ W∞,1(R2d), then the pseudo-differential operator a(x,D) is

continuous from M∞,1(Rd) to W∞,1(Rd). If instead a ∈ W 1,∞(R2d), then it
folllows that a(x,D) is continuous from M1,∞(Rd) to W 1,∞(Rd).

Mathematics Subject Classification (2000). Primary 35S05, 42B35, 44A35.

Keywords. Modulation spaces, Wiener amalgam spaces, pseudo-differential
operators.

1. Introduction

In this paper we continue the discussions from [34–37] concerning continuity prop-
erties for pseudo-differential operators in background of modulation space theory.
More precisely, we establish continuity properties of pseudo-differential operators
with symbols in modulation spaces, when acting on (other) modulation spaces.
These investigations are based on an important result by Cordero and Okoudjou
in [1] concerning mapping properties of short-time Fourier transforms on modula-
tion spaces.

The (classical) modulation spaces Mp,q, p, q ∈ [1,∞], as introduced by Feich-
tinger in [4], consist of all tempered distributions whose short-time Fourier trans-
forms (STFT) have finite mixed Lp,q norm. (Cf. [7] and the references therein for
an updated describtion of modulation spaces.) It follows that the parameters p and
q to some extent quantify the degrees of asymptotic decay and singularity of the
distributions in Mp,q. The theory of modulation spaces was developed further and
generalized in [5,6,8–10,13], where Feichtinger and Gröchenig established the the-
ory of coorbit spaces. In particular, the modulation spaces Mp,q

(ω) and W p,q
(ω), where

ω denotes a weight function on phase (or time-frequency shift) space, appears as
the set of tempered (ultra-) distributions whose STFT belong to the weighted and
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mixed Lebesgue space Lp,q
1,(ω) and Lp,q

2,(ω) respectively. (See Section 2 for strict def-
initions.) By choosing the weight ω in appropriate ways, the space W p,q

(ω) becomes
a Wiener amalgam space, introduced in [2] by Feichtinger.

A major idea behind the design of these spaces was to find useful Banach
spaces, which are defined in a way similar to Besov and Triebel–Lizorkin spaces,
in the sense of replacing the dyadic decomposition on the Fourier transform side,
characteristic to Besov and Triebel–Lizorkin spaces, with a uniform decomposi-
tion. From the construction of these spaces, it turns out that modulation spaces of
the form Mp,q

(ω) and Besov spaces in some sense are rather similar, and sharp em-
beddings between these spaces can be found in [34,36], which are improvements of
certain embeddings in [12]. (See also [28] for verification of the sharpness.) In the
same way it follows that modulation spaces of the form W p,q

(ω) and Triebel–Lizorkin
spaces are rather similar.

During the last 15 years many results have been proved which confirm the
usefulness of the modulation spaces and their Fourier transforms in time-frequency
analysis, where they occur naturally. For example, in [10, 14, 19], it is shown that
all such spaces admit reconstructible sequence space representations using Gabor
frames.

Parallel to this development, modulation spaces have been incorporated into
the calculus of pseudo-differential operators. In fact, in [27], Sjöstrand introduced
the modulation space M∞,1, which contains non-smooth functions, as a symbol
class and proved that M∞,1 corresponds to an algebra of operators which are
bounded on L2.

Gröchenig and Heil thereafter proved in [14,16] that each operator with sym-
bol in M∞,1 is continuous on all modulation spaces Mp,q, p, q ∈ [1,∞]. This
extends Sjöstrand’s result since M2,2 = L2. Some generalizations to operators
with symbols in general unweighted modulation spaces were obtained in [17, 34],
and in [35, 37] some further extensions involving weighted modulation spaces are
presented.

Here Theorem 4.2 in [37] seems to be one of the most general results. It asserts
the following. Assume that p, q, pj , qj ∈ [1,∞], t ∈ R, and ω, ωj are appropriate
and satisfy

1
p1
− 1
p2

=
1
q1
− 1
q2

= 1− 1
p
− 1
q
, q ≤ p2, q2 ≤ p

and
ω2(x − ty, ξ + (1− t)η)
ω1(x + (1− t)y, ξ − tη)

≤ Cω(x, ξ, η, y)

for some constant C which is independent of x, y, ξ, η ∈ Rd. Then Theorem 4.2
in [37] asserts that each symbol a in the modulation space Mp,q

(ω)(R
2d) gives rise to a

continuous pseudo-differential operator at(x,D) from Mp1,q1
(ω1)

(Rd) to Mp2,q2
(ω2)

(Rd).
Modulation spaces in pseudo-differential calculus is currently an active field

of research (see, e. g., [15, 17, 18, 20, 21, 23–25,28–30,33, 34, 37]).
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In Section 3 we prove a related result, where some of the Mp,q
(ω) spaces here

above are replaced by W q,p
(ω) spaces. More precisely, for trivial weights, Theorem 3.1

asserts that if a ∈ W q,p(R2d), then a(x,D) from S (Rd) to S ′(Rd) is uniquely
extendable to a continuous mapping from Mp′,q′

(Rd) to W q,p(Rd). Note here
that by the continuity property here above for pseudo-differential operators with
symbols in M∞,1, it follows that

a ∈M∞,1(R2d) =⇒ a(x,D) :M∞,1(Rd) →M∞,1(Rd) (1.1)

is continuous, while it follows from Theorem 3.1 that

a ∈ W∞,1(R2d) =⇒ a(x,D) :M∞,1(Rd)→W∞,1(Rd). (1.2)

Here we remark that M∞,1 is contained in W∞,1. Therefore, when passing
from (1.1) to (1.2), the symbol classes and the images are increased from M∞,1,
while the domain for the operators are the same.

We also remark that for each choice of p, q ∈ [1,∞], we are able to establish
“narrow” continuity results for pseudo-differential operators with symbols in W q,p,
while symbols of the form Mp,q with the additional condition q ≤ p are considered
in [14, 16, 34, 35, 37].

2. Preliminaries

In this section we recall some notations and basic results. The proofs are in general
omitted.

We start by discussing appropriate conditions for the involved weight func-
tions. Assume that ω and v are positive and measureable functions on Rd. Then
ω is called v-moderate if

ω(x+ y) ≤ Cω(x)v(y) (2.1)

for some constant C which is independent of x, y ∈ Rd. If v in (2.1) can be chosen
as a polynomial, then ω is called polynomially moderated. We let P(Rd) be the
set of all polynomially moderated functions on Rd. If ω(x, ξ) ∈ P(R2d) is constant
with respect to the x-variable (ξ-variable), then we sometimes write ω(ξ) (ω(x))
instead of ω(x, ξ). In this case we consider ω as an element in P(R2d) or in P(Rd)
depending on the situation.

The Fourier transform F is the linear and continuous mapping on S ′(Rd)
which takes the form

(Ff)(ξ) = f̂(ξ) ≡ (2π)−d/2

∫
Rd

f(x)e−i〈x,ξ〉 dx

when f ∈ L1(Rd). We recall that F is a homeomorphism on S ′(Rd) which
restricts to a homeomorphism on S (Rd) and to a unitary operator on L2(Rd).

Let ϕ ∈ S ′(Rd) be fixed, and let f ∈ S ′(Rd). Then the short-time Fourier
transform Vϕf(x, ξ) of f with respect to the window function ϕ is the tempered
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distribution on R2d which is defined by

Vϕf(x, ξ) ≡ F (f ϕ( · − x)(ξ).

If f, ϕ ∈ S (Rd), then it follows that

Vϕf(x, ξ) = (2π)−d/2

∫
f(y)ϕ(y − x)e−i〈y,ξ〉 dy.

Next we recall some properties on modulation spaces and their Fourier trans-
forms. Assume that ω ∈ P(R2d) and that p, q ∈ [1,∞]. Then the mixed Lebesgue
space Lp,q

1,(ω)(R
2d) consists of all F ∈ L1

loc(R
2d) such that ‖F‖Lp,q

1,(ω)
< ∞, and

Lp,q
2,(ω)(R

2d) consists of all F ∈ L1
loc(R

2d) such that ‖F‖Lp,q
2,(ω)

<∞. Here

‖F‖Lp,q
1,(ω)

=
( ∫ ( ∫

|F (x, ξ)ω(x, ξ)|p dx
)q/p

dξ
)1/q

,

and

‖F‖Lp,q
2,(ω)

=
( ∫ ( ∫

|F (x, ξ)ω(x, ξ)|q dξ
)p/q

dx
)1/p

,

with obvious modifications when p = ∞ or q = ∞.
Assume that p, q ∈ [1,∞], ω ∈ P(R2d) and ϕ ∈ S (Rd)\0 are fixed. Then the

modulation space Mp,q
(ω)(R

d) is the Banach space which consists of all f ∈ S ′(Rd)
such that

‖f‖Mp,q
(ω)

≡ ‖Vϕf‖Lp,q
1,(ω)

<∞. (2.2)

The modulation space W p,q
(ω)(R

d) is the Banach space which consists of all f ∈
S ′(Rd) such that

‖f‖W p,q
(ω)

≡ ‖Vϕf‖Lp,q
2,(ω)

<∞. (2.3)

The definitions of Mp,q
(ω)(R

d) and W p,q
(ω)(R

d) are independent of the choice of ϕ and
different ϕ gives rise to equivalent norms. (See Proposition 2.1 below.) From the
fact that

Vϕ̂f̂(ξ,−x) = ei〈x,ξ〉Vϕ̌f(x, ξ), ϕ̌(x) = ϕ(−x),

it follows that

f ∈W q,p
(ω)(R

d) ⇐⇒ f̂ ∈Mp,q
(ω0)

(Rd), ω0(ξ,−x) = ω(x, ξ).

For conveniency we set Mp
(ω) = Mp,p

(ω), which coincides with W p
(ω) = W p,p

(ω) .
Furthermore we set Mp,q = Mp,q

(ω) and W p,q = W p,q
(ω) if ω ≡ 1. If ω is given by

ω(x, ξ) = ω1(x)ω2(ξ), for some ω1, ω2 ∈ P(Rd), then W p,q
(ω) is a Wiener amalgam

space, introduced by Feichtinger in [2].
The proof of the following proposition is omitted, since the results can be

found in [3, 4, 8–10, 14, 34–37]. Here and in what follows, p′ ∈ [1,∞] denotes the
conjugate exponent of p ∈ [1,∞], i. e., 1/p+ 1/p′ = 1 should be fulfilled.
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Proposition 2.1. Assume that p, q, pj , qj ∈ [1,∞] for j = 1, 2, and ω, ω1, ω2, v ∈
P(R2d) are such that ω is v-moderate and ω2 ≤ Cω1 for some constant C > 0.
Then the following are true:

(1) if ϕ ∈ M1
(v)(R

d) \ 0, then f ∈ Mp,q
(ω)(R

d) if and only if (2.2) holds, i. e.,
Mp,q

(ω)(R
d) is independent of the choice of ϕ. Moreover, Mp,q

(ω) is a Banach
space under the norm in (2.2) and different choices of ϕ give rise to equivalent
norms;

(2) if p1 ≤ p2 and q1 ≤ q2, then

S (Rd) ↪→Mp1,q1
(ω1)

(Rn) ↪→Mp2,q2
(ω2)

(Rd) ↪→ S ′(Rd);

(3) the L2 product ( · , · ) on S extends to a continuous map from Mp,q
(ω)(R

n) ×
Mp′,q′

(1/ω)(R
d) to C. On the other hand, if f ∈Mp,q

(ω)(R
d) and ‖f‖ = sup |(f, g)|,

where the supremum is taken over all g ∈ S (Rd) such that ‖g‖
Mp′,q′

(1/ω)
≤ 1,

then ‖ · ‖ and ‖ · ‖Mp,q
(ω)

are equivalent norms;

(4) if p, q <∞, then S (Rd) is dense in Mp,q
(ω)(R

d) and the dual space of Mp,q
(ω)(R

d)

can be identified with Mp′,q′

(1/ω)(R
d), through the form ( · , · )L2 . Moreover,

S (Rd) is weakly dense in M∞
(ω)(R

d).

Similar facts hold if the Mp,q
(ω) spaces are replaced by W p,q

(ω) spaces.

Proposition 2.1 (1) allows us be rather vague concerning the choice of ϕ ∈
M1

(v) \ 0 in (2.2) and (2.3). For example, if C > 0 is a constant and A is a subset
of S ′, then ‖f‖W p,q

(ω)
≤ C for every f ∈ A , means that the inequality holds for

some choice of ϕ ∈ M1
(v) \ 0 and every f ∈ A . Evidently, a similar inequality is

true for any other choice of ϕ ∈ M1
(v) \ 0, with a suitable constant, larger than C

if necessary.
In the following remark we list some other properties for modulation spaces.

Here and in what follows we let 〈x〉 = (1 + |x|2)1/2, when x ∈ Rd.

Remark 2.2. Assume that p, p1, p2, q, q1, q2 ∈ [1,∞] are such that

q1 ≤ min(p, p′), q2 ≥ max(p, p′), p1 ≤ min(q, q′), p2 ≥ max(q, q′),

and that ω, v ∈ P(R2d) are such that ω is v-moderate. Then the following is true:

(1) if p ≤ q, then W p,q
(ω)(R

d) ⊆ Mp,q
(ω)(R

d), and if p ≥ q, then Mp,q
(ω)(R

d) ⊆
W p,q

(ω)(R
d). Furthermore, if ω(x, ξ) = ω(x), then

Mp,q1
(ω) (Rd) ⊆W p,q1

(ω) (Rd) ⊆ Lp
(ω)(R

d) ⊆W p,q2
(ω) (Rd) ⊆Mp,q2

(ω) (Rd).

In particular, M2
(ω) = W 2

(ω) = L2
(ω). If instead ω(x, ξ) = ω(ξ), then

W p1,q
(ω) (Rd) ⊆Mp1,q

(ω) (Rd) ⊆ FLq
(ω)(R

d) ⊆Mp2,q
(ω) (Rd) ⊆W p2,q

(ω) (Rd).
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Here FLq
(ω0)

(Rd) consists of all f ∈ S ′(Rd) such that

‖f̂ ω0‖Lq <∞;

(2) if ω(x, ξ) = ω(x), then the following conditions are equivalent:
• Mp,q

(ω)(R
d) ⊆ C(Rd);

• W p,q
(ω)(R

d) ⊆ C(Rd);

• q = 1.
(3) M1,∞(Rd) and W 1,∞(Rd) are convolution algebras. If C′B(Rd) is the set of

all measures on Rd with bounded mass, then

C′B(Rd) ⊆W 1,∞(Rd) ⊆M1,∞(Rd);

(4) if x0 ∈ Rd is fixed and ω0(ξ) = ω(x0, ξ), then

Mp,q
(ω) ∩ E ′ = W p,q

(ω) ∩ E ′ = FLq
(ω0)

∩ E ′;

(5) if ω(x, ξ) = ω0(ξ,−x), then the Fourier transform on S ′(Rd) restricts to a
homeomorphism from Mp

(ω)(R
d) to Mp

(ω0)
(Rd). In particular, if ω = ω0, then

Mp
(ω) is invariant under the Fourier transform. Similar facts hold for partial

Fourier transforms;
(6) for each x, ξ ∈ Rd we have

‖ei〈 · ,ξ〉f( · − x)‖Mp,q
(ω)

≤ Cv(x, ξ)‖f‖Mp,q
(ω)
,

and

‖ei〈 · ,ξ〉f( · − x)‖W p,q
(ω)

≤ Cv(x, ξ)‖f‖W p,q
(ω)

for some constant C which is independent of f ∈ S ′(Rd);

(7) if ω̃(x, ξ) = ω(x,−ξ), then f ∈Mp,q
(ω) if and only if f ∈Mp,q

(ω̃);

(8) if s ∈ R and ω(x, ξ) = 〈ξ〉s, then M2
(ω) = W 2

(ω) agrees with H2
s , the Sobolev

space of distributions with s derivatives in L2. That is, H2
s consists of all

f ∈ S ′ such that F−1(〈 · 〉sf̂) ∈ L2.
(See, e. g., [3, 4, 8–10,14, 26, 34–37].)

Next we recall some facts in Chapter XVIII in [22] concerning pseudo-dif-
ferential operators. Assume that a ∈ S (R2d), and that t ∈ R is fixed. Then the
pseudo-differential operator at(x,D) in

(at(x,D)f)(x) = (Opt(a)f)(x)

= (2π)−d

∫∫
a((1 − t)x+ ty, ξ)f(y)ei〈x−y,ξ〉 dydξ.

(2.4)

is a linear and continuous operator on S (Rd). For general a ∈ S ′(R2d), the
pseudo-differential operator at(x,D) is defined as the continuous operator from
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S (Rd) to S ′(Rd) with distribution kernel

Kt,a(x, y) = (2π)−d/2(F−1
2 a)((1− t)x+ ty, y − x), (2.5)

where F2F is the partial Fourier transform of F (x, y) ∈ S ′(R2d) with respect to
the y-variable. This definition makes sense, since the mappings F2 and F (x, y) �→
F ((1− t)x+ ty, y−x) are homeomorphisms on S ′(R2d). Moreover, it agrees with
the operator in (2.4) when a ∈ S (R2d). If t = 0, then at(x,D) agrees with the
Kohn–Nirenberg representation a(x,D). If instead t = 1/2, then at(x,D) is the
Weyl operator aw(x,D) of a.

We also need some facts in Section 2 in [37] on narrow convergence. For any
f ∈ S ′(Rd), ω ∈ P(R2d), ϕ ∈ S (Rd) and p ∈ [1,∞], we set

Hf,ω,p(ξ) =
(∫

Rd

|Vϕf(x, ξ)ω(x, ξ)|p dx
)1/p

.

Definition 2.3. Assume that f, fj ∈ Mp,q
(ω)(R

d), j = 1, 2, . . .. Then fj is said to
converge narrowly to f (with respect to p, q ∈ [1,∞], ϕ ∈ S (Rd) \ 0 and ω ∈
P(R2d)), if the following conditions are satisfied:

1. fj → f in S ′(Rd) as j turns to ∞;
2. Hfj ,ω,p(ξ) → Hf,ω,p(ξ) in Lq(Rd) as j turns to ∞.

Remark 2.4. Assume that f, f1, f2, . . . ∈ S ′(Rd) satisfy (1) in Definition 2.3, and
assume that ξ ∈ Rd. Then it follows from Fatou’s lemma that

lim inf
j→∞

Hfj ,ω,p(ξ) ≥ Hf,ω,p(ξ) and lim inf
j→∞

‖fj‖Mp,q
(ω)

≥ ‖f‖Mp,q
(ω)
.

The following proposition is important to us later on. We omit the proof since
the result is a restatement of Proposition 2.3 in [37].

Proposition 2.5. Assume that p, q ∈ [1,∞] with q < ∞ and that ω ∈ P(R2d).
Then C∞0 (Rd) is dense in Mp,q

(ω)(R
d) with respect to the narrow convergence.

3. Pseudo-Differential Operators with Symbols in Modulation
Spaces

In this section we discuss continuity of pseudo-differential operators with symbols
in modulation spaces of the form W p,q

(ω), when acting between modulation spaces.
The main result is the following theorem. Here the involved weight functions

should fulfill
ω2(x, ξ + η)
ω1(x + y, ξ)

≤ Cω(x, ξ, η, y). (3.1)

Theorem 3.1. Assume that p, q ∈ [1,∞], ω1, ω2 ∈ P(R2d) and ω ∈ P(R4d) are
such that (3.1) holds for some constant C which is independent of x, y, ξ, η ∈ Rd.
Also assume that a ∈ W q,p

(ω)(R
2d). Then the definition of a(x,D) from S (Rd) to
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S ′(Rd) extends uniquely to a continuous mapping from Mp′,q′

(ω1)
(Rd) to W q,p

(ω2)
(Rd).

Furthermore, it holds that

‖a(x,D)f‖W q,p
(ω2)

≤ C‖a‖W q,p
(ω)
‖f‖

Mp′,q′
(ω1)

for some constant C which is independent of f ∈Mp′,q′

(ω1)
(Rd) and a ∈W q,p

(ω)(R
2d).

The proof is based on duality, using the fact that if a ∈ S ′(R2d), f, g ∈
S (Rd) and T is the operator, defined by

(Tψ)(x, ξ) = ψ(ξ,−x) (3.2)

when ψ ∈ S ′(R2d), then

(a(x,D)f, g)L2(Rd) = (2π)−d/2(T (Fa), Vfg)L2(R2d), (3.3)

by Fourier’s inversion formula.
For the proof of Theorem 3.1 we shall combine (3.3) with the following

weighted version of Proposition 3.3 in [1].

Proposition 3.2. Assume that f1, f2 ∈ S ′(Rd), p, q ∈ [1,∞], ω0 ∈ P(R4d) and
ω1, ω2 ∈ P(R2d). Also assume that ϕ1, ϕ2 ∈ S (Rd), and let Ψ = Vϕ1ϕ2. Then
the following is true:

1. if
ω0(x, ξ, η, y) ≤ Cω1(−x− y, η)ω2(−y, ξ + η) (3.4)

for some constant C, then

‖VΨ(Vf1f2)‖Lp,q
1,(ω0)

≤ C‖Vϕ1f1‖Lp,q
1,(ω1)

‖Vϕ2f2‖Lq,p
2,(ω2)

;

2. if
ω1(−x− y, η)ω2(−y, ξ + η) ≤ Cω0(x, ξ, η, y) (3.5)

for some constant C, then

‖Vϕ1f1‖Lp,q
1,(ω1)

‖Vϕ2f2‖Lq,p
2,(ω2)

≤ C‖VΨ(Vf1f2)‖Lp,q
1,(ω0)

;

3. if (3.4) and (3.5) hold for some constant C, then f1 ∈ Mp,q
(ω1)

(Rd) and f2 ∈
W q,p

(ω2)
(Rd), if and only if Vf1f2 ∈Mp,q

(ω0)
(R2d), and

C−1‖Vf1f2‖Mp,q
(ω0)

≤ ‖f1‖Mp,q
(ω1)

‖f2‖W q,p
(ω2)

≤ C‖Vf1f2‖Mp,q
(ω0)

,

for some constant C which is independent of f1 and f2.

Proof. It suffices to prove (1) and (2), and then we prove only (1), since (2) follows
by similar arguments. We shall mainly follow the proof of Proposition 3.3 in [1],
and then we only prove the result in the case p < ∞ and q < ∞. The small
modifications when p = ∞ or q = ∞ are left for the reader.

By Fourier’s inversion formula we have

|Vϕf1(−x− y, η)Vϕf2(−y, ξ + η)| = |VΨ(Vf1f2)(x, ξ, η, y)|
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(cf., e. g., [1, 11, 14, 31, 32]). Hence, if

F1(x, ξ) = Vϕ1f1(x, ξ)ω1(x, ξ) and F2(x, ξ) = Vϕ2f2(x, ξ)ω2(x, ξ),

then we get

‖VΨ(Vf1f2)‖q
Lp,q

1,(ω0)

=
∫∫

R2d

(∫∫
R2d

|VΨ(Vf1f2)(x, ξ, η, y)ω0(x, ξ, η, y)|p dxdξ
)q/p

dydη

≤ Cq

∫∫
R2d

(∫∫
R2d

|F1(−x− y, η)F2(−y, ξ + η))|p dxdξ
)q/p

dydη.

By taking −y, ξ + η, −x− y and η as new variables of integration, we obtain

‖VΨ(Vf1f2)‖q
Lp,q

1,(ω0)

≤ Cq
(∫

Rd

( ∫
Rd

|F1(x, η)|p dx
)q/p

dη
)( ∫

Rd

(∫
Rd

|F2(y, ξ)|p dξ
)q/p

dy
)

= Cq‖Vϕ1f1‖q
Lp,q

1,(ω1)
‖Vϕ2f2‖q

Lq,p
2,(ω2)

.

This proves the assertion. �

Proof of Theorem 3.1. We may assume that (3.1) holds for C = 1 and with equal-
ity. We start to prove the result when 1 < p and 1 < q. Let

ω0(x, ξ, η, y) = ω(−y, η, ξ,−x)−1,

and assume that a ∈ W q,p
(ω)(R

2d) and f, g ∈ S (Rd). Then a(x,D)f makes sense
as an element in S ′(Rd).

By Proposition 3.2 we get

‖Vfg‖Mp′,q′
(ω0)

≤ C‖f‖
Mp′,q′

(ω1)
‖g‖

W q′,p′
(ω−1

2 )

. (3.6)

Furthermore, if T is the same as in (3.2), then it follows by Fourier’s inversion
formula that

(Vϕ(T â))(x, ξ, η, y) = e−i(〈x,η〉+〈y,ξ〉)(VTϕ̂a)(−y, η, ξ,−x).

This gives

|(Vϕ(T â))(x, ξ, η, y)ω0(x, ξ, η, y)−1| = |(Vϕ1a)(−y, η, ξ,−x)ω(−y, η, ξ,−x)|,
when ϕ1 = T ϕ̂. Hence, by applying the Lp,q

1 norm we obtain ‖T â‖Mp,q

(ω−1
0 )

=

‖a‖W q,p
(ω)

.
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It now follows from (12) and (3.6) that

|(a(x,D)f, g)| = (2π)−d/2|(T â, Vgf)| ≤ C1‖T â‖Mp,q

(ω−1
0 )
‖Vfg‖Mp′,q′

(ω0)

≤ C2‖a‖W q,p
(ω)
‖f‖

Mp′,q′
(ω1)

‖g‖
W q′,p′

(ω−1
2 )

. (3.7)

The result now follows by the facts that S (Rd) is dense in Mp′,q′

(ω1)
(Rd), and that

the dual of W q′,p′

(ω−1
2 )

is W q,p
(ω2)

when p, q > 1.
If instead p = 1 and q < ∞, or q = 1 and p < ∞, then we assume that

f ∈Mp′,q′

(ω1)
and a ∈ S (R2d). Then a(x,D)f makes sense as an element in S (Rd),

and from the first part of the proof it follows that (3.7) still holds. The result now
follows by duality and the fact that S (R2d) is dense in W q,p

(ω)(R
2d) for such choices

of p and q.
It remains to consider the cases p = q′ = 1 and p = q′ = ∞. In this case, the

result follows by using the fact that S is dense in M∞,1
(ω) respect to the narrow

convergence, and that S is dense in W 1,∞
(ω) on the Fourier transform side with

respect to the narrow convergence. The proof is complete. �
By interchanging the roles of p and q and choosing

t = 0, p1 = p′, q1 = q′, p2 = q and q2 = p

we note that Theorem 4.2 in [37] looks rather similar to Theorem 3.1. In fact, for
these choices of parameters, Theorem 4.2 in [37] takes the following form.

Theorem 3.3. Assume that p, q ∈ [1,∞], ω1, ω2 ∈ P(R2d) and ω ∈ P(R4d)
are such that q ≤ p and (3.1) holds for some constant C which is indepen-
dent of x, y, ξ, η ∈ Rd. Also assume that a ∈ M q,p

(ω)(R
2d). Then the definition of

a(x,D) from S (Rd) to S ′(Rd) extends uniquely to a continuous mapping from
Mp′,q′

(ω1)
(Rd) to M q,p

(ω2)
(Rd). Furthermore, it holds that

‖a(x,D)f‖Mq,p
(ω2)

≤ C‖a‖Mq,p
(ω)
‖f‖

Mp′,q′
(ω1)

for some constant C which is independent of f ∈Mp′,q′

(ω1)
(Rd) and a ∈M q,p

(ω)(R
2d).

Here we note that the hypothesis in Theorem 3.3 also contains the assumption
q ≤ p, which is absent in the hypothesis in Theorem 3.1. (Cf. the introduction.)
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Birkhäuser, 2007, 173–206.

Joachim Toft
Department of Mathematics and Systems Engineering
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Phase-Space Differential Equations for Modes

Leon Cohen

Abstract. We discuss how to transform linear partial differential equations
into phase space equations. We give a number of examples and argue that
phase space equations are more revealing than the original equations. Re-
cently, phase space methods have been applied to the standard mode solution
of differential equations and using this method new approximations have been
derived that are better than the stationary phase approximation. The approx-
imation methods apply to dispersion relations that exhibit propagation and
attenuation. In this paper we derive the phase space differential equations that
the approximations satisfy and also derive an exact phase space differential
equation for a mode. By comparing the two we show that the approximations
neglect higher-order derivatives in the phase space distribution.

Mathematics Subject Classification (2000). Primary 35A22, 35A27.

Keywords. Phase space, Wigner distributions, Schrödinger free particle equa-
tion, differential equation with drift, modified diffusion equation, linearized
KdV equation.

1. Introduction

It has been recognized for over seventy years that transforming functions into the
phase space of two non-commuting variables offers considerable insight into the
nature of the function, and also has many practical applications [6, 1, 2]. If the
function is governed by a differential equation, then the common procedure is
solving the differential equation and then calculating the phase space distribution
function for the solution. Our aim here is to show that considerable advantages
are gained if one transforms the original differential equation into a phase space
differential equation. The advantages are manyfold, both from gaining insight into
the nature of differential equations and also in devising practical methods of so-
lution. In this introduction we heuristically motivate some of the ideas and also
present some of the fundamental issues.

This research was supported by the Office of Naval Research (N00014-09-1-0162).
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1.1. What is Phase Space?

Historically, phase space arose in mechanics when it was realized that considerable
simplifications occur when one combines the individual description of position and
velocity into a joint position-velocity space. Many of the fundamental equations
of physics are phase space equations, among the most famous being the Liouville,
Boltzmann, and Focker–Planck equations. However, since the introduction of the
Wigner distribution, the concept has been extended to variables which are non-
commuting [13]. The two most common pair variables are time/frequency and
position/wave-number. The reason we say that they are non commuting is that
when the quantities are represented by operators the operators do not commute
[2].

In this paper we deal mostly with position/wave-number phase space. Con-
sider a function of position and time u(x, t) which may be the solution of a partial
differential equation. We define the Fourier transform, S(k, t), for the position
variable by1

S(k, t) =
1√
2π

∫
u(x, t) e−ikx dx, (1)

u(x, t) =
1√
2π

∫
S(k, t) eikx dk. (2)

The variable k is called wave-number or spatial-frequency. In these equa-
tions t is a passive parameter. From a physical point of view we note that the
interpretation of |u(x, t) |2 and |S(k, t) |2 are:

|u(x, t) |2 = intensity/energy per unit x at time t,

|S(k, t) |2 = spectral intensity/energy per unit k at time t.

The fundamental idea is to find a joint distribution or representation that involves
both variables, x and k, in a combined way, and that in some sense correlates the
two quantities. There have been many such joint representations proposed. In this
paper we use the Wigner distribution defined by

Wu(x, k, t) =
1
2π

∫
u∗(x− 1

2τ, t)u(x+ 1
2τ, t) e

−iτkdτ (3)

which in terms of the spectrum is given by

Wu(x, k, t) =
1
2π

∫
S∗(k + 1

2θ, t)S(k − 1
2θ, t) e

−iθxdθ. (4)

The fundamental requirement of a joint distribution is that it satisfies∫
Wu(x, k, t) dk = |u(x, t) |2, (5)∫
Wu(x, k, t) dx = |S(k, t) |2, (6)

1All integrals go from -∞ to ∞ unless otherwise noted.
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and indeed the Wigner distribution satisfies these “marginal conditions”. The rea-
son these are called marginal conditions is because they would be the marginal
conditions if the Wigner distribution is considered to be a joint probability distri-
bution of x and k, and where the individual probability distributions are |u(x, t) |2
and |S(k, t) |2 respectively. Therefore one can think of the Wigner distribution as
a description that combines position and wave number, although it can not be
interpreted as a probability distribution in the strict sense, since the Wigner dis-
tribution is not manifestly positive. In a similar fashion one can fix x in the function
u(x, t) and consider the Wigner distribution of time and frequency

W (t, ω, x)=
1
2π

∫
u∗(x, t− 1

2τ)u(x, t + 1
2τ) e

−iτω dτ (7)

where now x acts as the passive variable. In this paper we will deal mostly with
Eq. (3) but the results are easily transcribed for Eq. (7).

1.2. Differential Equations and Phase-Space Distributions

To motivate our approach consider the following two differential equations

∂ψ

∂t
= ia

∂2ψ

∂x2
;

∂u

∂t
= D

∂2u

∂x2
(8)

where both a and D are real. The first is the Schrödinger free particle equation
(with: a = �/2m) and the second is the classic diffusion equation, where D is the
diffusion coefficient. These equations look similar with the only difference being
the i in front of a, yet they have dramatically different type of solutions. Often one
tries to understand the differences by attempting to set D = ia. We argue that an
effective way to understand the equations and the differences is to transform the
equations into phase space [3, 4, 5]. As we will show, the phase space equations
for the Wigner distribution are

∂Wψ

∂t
= −2ka

∂Wψ

∂x
corresponds to:

∂ψ

∂t
= ia

∂2ψ

∂x2
, (9)

∂Wu

∂t
=
D

2
∂2Wu

∂x2
− 2Dk2Wu corresponds to:

∂u

∂t
= D

∂2u

∂x2
. (10)

Now we see that in phase space there is a dramatic difference between the two and
hence one would certainly not expect similar solutions. Furthermore, each term
can be interpreted and gets reflected in a direct way in the solution of both the
original equation and the Wigner distribution equation. In addition to showing
that transforming equations into phase space has interesting mathematical issues
and exposes the nature of the equation in a simple way, we will also show that
they lead to new methods of solution and approximation.

1.3. Wave Equations, Modes, Group Velocity, the Stationary Phase
Approximation and the Phase-Space Approximation

Of particular interest are partial differential equations that exhibit wave-like be-
havior. This has led to many concepts such as modes, dispersion relation, group
velocity, among others [9, 11, 12]. These ideas will be reviewed in Section 3. One of
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the major results due to Kelvin is the stationary phase approximation. Loughlin
and Cohen have recently shown that by considering the problem in phase space
new approximation methods can be obtained that are more accurate [7, 8]. It is
one of the aims of this paper to understand the connection between these approx-
imation methods and the partial differential equation method discussed above.

2. Transforming Differential Equations into Phase Space

While our main emphasis is partial differential equations, it is advantageous to
first formulate the ordinary differential equation case. Consider the differential
equation

an
dn x(t)
dtn

+ . . .+ a1
dx(t)
dt

+ a0 x(t) = f(t) (11)

where f(t) is called the driving term. To obtain the differential equation satisfied
by the Wigner distribution one rewrites Eq. (11) as

P (D)x(t) = f(t) (12)

where

P (D) = anD
n + . . .+ a1D + a0 (13)

and D = d
dt . If we take the time-frequency distribution to be the Wigner spectrum,

Eq. (7), then the differential equation governing Wx(t, ω) is [3, 4, 5]

P ∗
(

1
2
∂

∂t
− iω

)
P

(
1
2
∂

∂t
+ iω

)
Wx(t, ω) = Wf (t, ω) (14)

where Wf (t, ω) is the Wigner distribution of the driving force. The notation P ∗

indicates complex conjugation of the polynomial coefficients a0, a1, . . . an only,
and not of the arguments.

For the sake of completenes, we briefly outline the derivation of Eq. (14). It is
convenient to define the cross Wigner distribution of two functions x(t) and y(t),

Wx,y(t, ω) =
1
2π

∫
x∗(t− 1

2τ) y(t+ 1
2τ) e

−iτω dτ (15)

and we note that

W ∗
x,y(t, ω) = Wy,x(t, ω). (16)

The cross Wigner distribution of the functions x(t), y(t), is linear in either
one as long as the two functions are not the same. Now consider the cross Wigner
distribution of f(t) and Pn(D)x(t),

Wf,Pn(D)x =
n∑

i=0

aiWf,x(i) (17)
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where x(i)(t) is the n-th derivative of x(t). By direct calculation one can establish
in general

Wx,ẏ =
(

1
2
∂

∂t
+ iω

)
Wx,y, (18)

Wẋ,y =
(

1
2
∂

∂t
− iω

)
Wx,y, (19)

and hence

Wf,Pn(D)x =
n∑

i=0

ai

(
1
2
∂

∂t
+ iω

)n

Wf,x = Pn

(
1
2
∂

∂t
+ iω

)
Wf,x. (20)

Now take the cross Wigner distribution of f with respect to both sides of Eq. (12)
to obtain

Pn

(
1
2
∂

∂t
+ iω

)
Wf,x = Wf,f . (21)

Taking the complex conjugate of both sides and using Eq. (16) we have,

P ∗n

(
1
2
∂

∂t
− iω

)
Wx,f = Wf,f . (22)

The same approach also leads to

Wx,Pn(D)x = Wx,f (23)

and

Pn

(
1
2
∂

∂t
+ iω

)
Wx,x = Wx,f . (24)

Now operate on both sides of Eq. (24) with P ∗n
(

1
2

∂
∂t − iω

)
,

P ∗n

(
1
2
∂

∂t
− iω

)
Pn

(
1
2
∂

∂t
+ iω

)
Wx,x = P ∗n

(
1
2
∂

∂t
− iω

)
Wx,f = Wf,f (25)

which is Eq. (14).
We now address partial differential equations of the form2

M∑
l=0

bl(x, t)
∂l

∂tl
u(x, t) +

N∑
n=0

an(x, t)
∂n

∂xn
u(x, t) = 0 (26)

In general it is not possible to find a differential equation for the Wigner distribu-
tion corresponding to Eq. (26); however, often one can do so, as will be discussed.
However, one can always find the differential equation for the four dimensional
Wigner distribution defined by

Zu(x, k, t, ω) =
1

(2π)2

∫
u∗(x− 1

2τx, t− 1
2τ)u(x + 1

2τx, t+ 1
2τ)e

−iτω−iτxkdτdτx,

(27)

2We do not consider a driving term because it does not enter in our discussions in this paper,
however that has been done [3, 4, 5].
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and from Z one can get the standard Wigner distribution because

Wu(x, k, t) =
∫
Zu(x, k, t, ω)dω, (28)

Wu(t, ω, x) =
∫
Zu(x, k, t, ω)dk. (29)

We note that Wu and Zu are manifestly real. The differential equation satisfied
by Zu(x, k, t, ω) corresponding to u(x, t) governed by Eq. (26) is [3, 4, 5]

N∑
n=0

[
an(Fx,Ft)

(
1
2
∂

∂x
+ ik

)n]
Z =

M∑
l=0

[
bl(Fx,Ft)

(
1
2
∂

∂t
+ iω

)l
]
Zu (30)

where

Fx = x− 1
2i

∂

∂k
; Ft = t− 1

2i
∂

∂ ω
. (31)

There are many special cases of importance where considerable simplification oc-
curs; we now give some that are relevant to our subsequent considerations.

Constant coefficients. If we take the coefficients to be constant, then

N∑
n=0

[
an

(
1
2
∂

∂x
+ ik

)n]
Zu =

M∑
l=0

[
bl

(
1
2
∂

∂t
+ iω

)l
]
Zu. (32)

It is often helpful to take the complex conjugate of this equation and subtract and
add it from Eq. (32). Keeping in mind that Z is real one obtains

N∑
n=0

[
an

(
1
2
∂

∂x
+ ik

)n

± a∗n

(
1
2
∂

∂x
− ik

)n]
Zu

=
M∑
l=0

[
bl

(
1
2
∂

∂t
+ iω

)l

± b∗l

(
1
2
∂

∂t
− iω

)l
]
Zu. (33)

Real coefficients. If the coefficients are real, then

N∑
n=0

an

[(
1
2
∂

∂x
+ ik

)n

±
(

1
2
∂

∂x
− ik

)n]
Zu

=
M∑
l=0

bl

[(
1
2
∂

∂t
+ iω

)l

±
(

1
2
∂

∂t
− iω

)l
]
Zu. (34)
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In manipulating the above equations the following relations are useful:(
1
2
∂

∂x
+ ik

)
+
(

1
2
∂

∂x
− ik

)
=

∂

∂x
, (35)(

1
2
∂

∂x
+ ik

)
−
(

1
2
∂

∂x
− ik

)
= 2ik, (36)(

1
2
∂

∂x
+ ik

)2

+
(

1
2
∂

∂x
− ik

)2

=
1
2
∂2

∂x2
− 2k2, (37)(

1
2
∂

∂x
+ ik

)2

−
(

1
2
∂

∂x
− ik

)2

= 2ik
∂

∂x
, (38)(

1
2
∂

∂x
+ ik

)3

+
(

1
2
∂

∂x
− ik

)3

=
1
4
∂3

∂x3
− 3k2 ∂

∂x
, (39)(

1
2
∂

∂x
+ ik

)3

−
(

1
2
∂

∂x
− ik

)3

= −2ik3 +
3
2
ik

∂2

∂x2
, (40)(

1
2
∂

∂x
+ ik

)4

−
(

1
2
∂

∂x
− ik

)4

= −4ik3 ∂

∂x
+ ik

∂3

∂x3
. (41)

When can one obtain an equation for the standard Wigner distribution? If
we integrate both sides of any of the above equations for Z, then the equation can
be transformed into an equation for W if the operators do not depend on ω. We
do not discuss the details as to when that can be done in general but we now give
a number of examples.

Take, for example, Eq. (34) and let us assume that all b’s are zero except for
b1; we let b1 = b. By integrating both sides with respect to ω we have

N∑
k=0

ak

[(
1
2
∂

∂x
+ ik

)k

+
(

1
2
∂

∂x
− ik

)k
]
Wu (42)

= b

∫ [(
1
2
∂

∂t
+ iω

)1

+
(

1
2
∂

∂t
− iω

)1
]
Zudω = b

∫ [
∂

∂t

]
Zudω (43)

and therefore
N∑

n=0

an

[(
1
2
∂

∂x
+ ik

)n

+
(

1
2
∂

∂x
− ik

)n]
Wu = b

∂Wu

∂t
. (44)

This worked because both sides resulted in operators independent of ω. There is
one further case which is of particular interest. Taking b1 to be pure complex,
setting b1 = ib′, and taking the minus sign in Eq. (33) one obtains

N∑
n=0

an

[(
1
2
∂

∂x
+ ik

)n

−
(

1
2
∂

∂x
− ik

)n]
Wu = ib′

∂

∂t
Wu. (45)

It is of interest to write down the case where we go up to third order in
the left-hand side but with a0 = 0. Corresponding to Eq. (45) and Eq. (46) we



242 L. Cohen

respectively have[
a1

∂

∂x
+ a2

(
1
2
∂2

∂x2
− 2k2

)
+ a3(

1
4
∂3

∂x3
− 3k2 ∂

∂x
)
]
Wu = b

∂

∂t
Wu, (46)[

2ka1 + 2a2k
∂

∂x
+ a3

(
−2k3 +

3
2
k
∂2

∂x2

)]
Wu = b′

∂

∂t
Wu, (47)

which can be rewritten as follows,[
−2k2a2 +

(
a1 − 3k2a3

) ∂

∂x
+
a2

2
∂2

∂x2
+
a3

4
∂3

∂x3

]
Wu = b

∂

∂t
Wu, (48)[

2ka1 + 2a2k
∂

∂x
+ a3

(
−2k3 +

3
2
k
∂2

∂x2

)]
Wu = b′

∂

∂t
Wu. (49)

Quantum-like case. There is one more special case which is of interest and that
is when a0(x, t) is a function of x only. Also, take b1 = ib′ and set a0(x) = V (x).
The resulting equation is

V

(
x− 1

2i
∂

∂k

)
− V ∗

(
x+

1
2i

∂

∂k

)
+

N∑
n=1

an

[(
1
2
∂

∂x
+ ik

)n

−
(

1
2
∂

∂x
− ik

)n]
Wu

= ib′
∂

∂t
Wu (50)

which up to a3 gives[
i

{
V ∗

(
x+

1
2i

∂

∂k

)
− V

(
x− 1

2i
∂

∂k

)}
+ 2ka1

+ 2a2k
∂

∂x
+ a3

(
−2k3 +

3
2
k
∂2

∂x2

)]
Wu = b′

∂

∂t
Wu. (51)

Furthermore, for the standard quantum case where V is real, a1 = 0 and a2 = −1
one obtains[

i

{
V ∗

(
x+

1
2i

∂

∂k

)
− V

(
x− 1

2i
∂

∂k

)}
− 2k

∂

∂x

]
Wu =

∂

∂t
Wu. (52)

This equation was previously derived by Wigner and Moyal [13, 10].

2.1. Examples

2.1.1. Schrödinger Free Particle Equation. The Schrödinger equation for a free
particle is

i
∂ψ

∂t
= −a∂

2ψ

∂x2
. (53)

Using Eq. (47) and taking b′ = 1 and a1 = −a one gets
∂Wψ

∂t
= −2kaWψ (54)

a result first obtained by Wigner. The solution of this equation is

Wψ(x, k, t) = Wψ(x− 2akt, k, 0). (55)
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2.1.2. Diffusion Equation with Drift. Consider the diffusion equation with drift,

∂u

∂t
= −c∂u

∂x
+D

∂2u

∂x2
. (56)

We could take the drift term to be zero because the solution with drift can easily
be obtained from the solution without drift by letting x → x − ct in the solution
without drift. Nonetheless we prefer to study directly Eq. (56). Using Eq. (48)
with a1 = −c, a2 = D, and b1 = 1 we have that the respective Wigner equation
of motion is

∂Wu

∂t
= −c∂Wu

∂x
+
D

2
∂2Wu

∂x2
− 2Dk2Wu. (57)

The general solution is

Wu(x, k, t) =
1√

2πDt
e−2Dk2t

∫
exp

[
− (x′ − x+ ct)2

2Dt

]
Wu(x′, k, 0)dx′. (58)

2.1.3. Modified Diffusion Equation. We consider

∂u

∂t
= −c∂u

∂x
+ iE

∂2u

∂x2
+D

∂2u

∂x2
. (59)

It involves both wave-like behavior and attenuation: the second term on the right
gives wave-like motion and the third term gives attenuation. To obtain the Wigner
distribution we use Eq. (48) to obtain

∂Wu

∂t
= −(c+ 2kE)

∂Wu

∂x
+
D

2
∂2Wu

∂x2
− 2Dk2Wu. (60)

2.1.4. Linearized KdV Equation. The equation is

∂u

∂t
= −∂u

∂x
+ β

∂3u

∂x3
(61)

and using Eq. (48) we have that[
−(α+ 3βk2)

∂

∂x
+
β

4
∂3

∂x3

]
Wu =

∂

∂t
Wu. (62)

3. Phase-Space Approximation

The concept of modes, dispersion relation, group velocity, and related concepts
arose from the study of partial differential equations whose solutions exhibit wave-
like behavior. In particular, most of the historical development has concentrated
on the constant coefficient case,

N∑
n=0

an
∂nu

∂tn
=

M∑
n=0

bn
∂nu

∂xn
. (63)

While the free space wave equation was derived by Euler and d’Alembert in the
middle of the 18th century, the general approach, the concept of modes, dispersion
relations, and the solution by Fourier methods were developed in the late 19th
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century by Rayleigh and Kelvin, who devised the fundamental ideas and also
found approximations. Eq. (63) may be solved by the classical Fourier method by
substituting eikx−iωt into Eq. (63) to give [12, 11, 9]

N∑
n=0

an(−iω)n =
M∑

n=0

bn(ik)n (64)

which is an algebraic equation between k and ω. One can now solve for k in terms
of ω or ω in terms of k, and which is done depends on the type of initial conditions.
Generally speaking, there are two types of initial conditions corresponding to two
distinct physical situations. First, is when u(x, 0) is given and the second is when
we are given u(0, t). An example of the first case is plucking a string and letting it
go at time zero. Examples of the second case are sonar, radar, speech production,
and fiber optics, because in those cases we produce a signal as a function of time
and the place of production, x, is fixed. Here we mostly consider the first case and
as is standard we write 3

ω = ω(k). (65)

This is called the dispersion relation and there can be many solutions and each
solution is called a mode. The solution for each mode is [12, 11]

u(x, t) =
1√
2π

∫
S(k, 0) e−iω(k)t+ikx dk (66)

where S(k, 0) is the initial spatial spectrum, obtained from the initial pulse by way
of

S(k, 0) =
1√
2π

∫
u(x, 0) e−ikx dx. (67)

If we define
S(k, t) = S(k, 0) e−iω(k)t, (68)

then u(x, t) and S(k, t) form Fourier transform pairs for any t,

u(x, t) =
1√
2π

∫
S(k, t) eikx dk, (69)

S(k, t) =
1√
2π

∫
u(x, t) e−ikx dx. (70)

In general ω is complex and we write

ω = ωR + iωI . (71)

A central idea is the concept of group velocity defined as the derivative of the real
part of ω

v(k) = ω′R(k). (72)

3The ω defined here should not be confused with the ω used in Section 2..
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3.1. Wigner Distribution Approximation

As mentioned in the introduction the standard approximation method is the sta-
tionary phase approximation [12, 11]. Recently, Loughlin and Cohen have obtained
a phase space approximation which is an improvement in that it approaches the
stationary phase approximate for large distances and times but is also accurate for
small distances and times [7, 8]. The approximation is for the Wigner distribution,
and we call it Wa(x, k, t). The approximation is

Wa(x, k, t) = e2ωI(k)tW (x− v(k)t, k, 0) ≈W (x, k, t) (73)

where Wa(x, k, t) is the approximate Wigner distribution at time t and W (x, k, 0)
is the exact Wigner distribution at time zero. The approximation is easy to apply
since one just substitutes x − v(k)t for x in the initial Wigner distribution and
multiplies by e2ωI(k)t. It has been shown that this is a good approximation and
moreover it is very revealing. It shows that each phase space point evolves (ap-
proximately) with constant velocity given by the group velocity. It also explicitly
shows damping and it is clear that for ωI(k) ≤ 0 we have decay and for ωI(k) > 0
we have exponential growth.

A further approximation, Wa2(x, k, t), is

Wa2(x, k, t) =

√
1

π|ω(2)
I (k)|t

e2ωI(k)t

∫
W (x′, k, 0) exp

[
− (x− x′ − v(k)t)2

|ω(2)
I (k)|t

]
dx′

(74)
where it has been assumed that ω(2)

I (k) < 0. We mention that this approximation
reverts to the first approximation when |ω(2)

I (k)|t is very small. That is the case
since

lim
|ω(2)

I (k)|t→0

√
1

π|ω(2)
I (k)|t

e2ωI(k)t exp

[
− (x− x′ − vg(k)t)

2

|ω(2)
I (k)|t

]
→ δ(x− x′ − v(k)t)

(75)
in which case

Wa2(x, k, t) → e2ωI(k)tW (x− x′ − v(k)t, k, 0) = Wa(x, k, t). (76)

The main aim of this paper is to attempt to understand these approxima-
tions from the point of view of the phase space differential equations described
in Section 2. Toward that end we now consider what differential equations these
approximations satisfy. Subsequently we derive the exact differential equations for
a mode.

3.2. Differential Equations for the Approximations

For the first approximation given by Eq. (73) we have
∂Wa

∂t
= 2ωI(k)Wa − v(k)e2ωIt ∂

∂x
W (x − v(k)t, k, 0), (77)

∂Wa

∂x
= e2ωIt ∂

∂x
W (x− v(k)t, k, 0). (78)
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Substituting ∂Wa

∂x from Eq. (78) into Eq. (77) one obtains

∂Wa

∂t
= 2ωI(k)Wa − v(k)

∂Wa

∂x
. (79)

For the second approximation, Eq. (74), the same approach leads to

∂Wa2

∂t
= 2ωIWa2 − v(k)

∂Wa2

∂x
+
|ω(2)

I (k)|
4

∂2Wa2

∂x2
. (80)

3.3. Examples

3.3.1. Schrödinger Free Particle Equation. The equation is

∂ψ

∂t
= ia

∂2ψ

∂x2
(81)

and it is readily verified that the dispersion relation is

ω = ak2 (82)

and

ωR = ak2; v(k) = 2ak; ωI = 0; ω
(2)
I (k) = 0. (83)

The first approximation then yields

Wa(x, k, t) ≈W (x− 2akt, k, 0) (84)

and the differential equation is

∂Wa

∂t
= −2ak

∂Wa

∂x
. (85)

The second approximation gives the same answer. This is expected since for this
case the first approximation gives the exact answer.

3.3.2. Diffusion Equation with Drift. The equation is

∂u

∂t
= −c∂u

∂x
+D

∂2u

∂x2
(86)

which gives

ω = ck − iDk2 (87)

and

ωR = ck; v(k) = c; ωI = −Dk2; ω
(2)
I (k) = −2D. (88)
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3.3.3. Modified Diffusion Equation with Drift. We consider the equation

∂u

∂t
= −c∂u

∂x
+ iE

∂2u

∂x2
+D

∂2u

∂x2
(89)

which gives the dispersion relation

ω = ck + Ek2 − iDk2 (90)

and hence

ωR = ck + Ek2; v(k) = c+ 2Ek; ωI = −Dk2; ω
(2)
I (k) = −2D. (91)

The first approximation gives

Wa(x, k, t) ≈ e−Dk2tW (x− ct− 2Ekt, k, 0) (92)

and the second gives

Wa2(x, k, t) ≈
√

1
2πDt

e−Dk2t

∫
W (x′, k, 0) exp

[
− (x− x′ − (c+ 2Ek)t)2

2Dt

]
dx′.

(93)
The corresponding differential equations, respectively, are

∂Wa

∂t
= −2Dk2Wa − (c+ 2Ek)

∂Wa

∂x
, (94)

and
∂Wa2

∂t
= −2Dk2Wa2 − (c+ 2Ek)

∂Wa2

∂x
+
D

2
∂2Wa2

∂x2
. (95)

3.3.4. Linearized KdV Equation. The equation is

∂u

∂t
= −α∂u

∂x
+ β

∂3u

∂x3
(96)

and the dispersion relation is then

ω = αk + βk3 (97)

and hence

ωR = αk + βk3; v(k) = α+ 3βk2; ωI = 0; ω
(2)
I (k) = 0.

Therefore
Wa(x, k, t) ≈W (x− (α+ 3βk2)t, k, 0) (98)

and
∂Wa

∂t
= −(α+ 3βk2)

∂Wa

∂x
. (99)

Note that if we compare this with the exact equation for this case, then what
the approximation does is leave out the third derivative term.
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4. Exact Differential Equation for a Mode

We now obtain the differential equation satisfied by a mode. Differentiating Eq.
(66) with respect to time and multiplying by i we have

i
∂

∂t
u(x, t) =

1√
2π

∫
ω(k)S(k, 0) e−iω(k)t eikx dk. (100)

This is an integral equation, but it can be converted to a differential equation of
infinite order,

i
∂

∂t
u(x, t) = ω

(
1
i

∂

∂x

)
u(x, t). (101)

Also, one can readily obtain the differential equation for the spatial spectrum,
S(k, t),

i
∂

∂t
S(k, t) = ω(k)S(k, t). (102)

Any number of methods can be used to derive the Wigner distribution correspond-
ing to Eq. (101). The result is

i
∂

∂t
W (x, k, t) =

[
ω

(
k +

1
2i

∂

∂x

)
− ω∗

(
k − 1

2i
∂

∂x

)]
W (x, k, t).

In terms of real and imaginary parts we write

i
∂

∂t
W (x, k, t) =

[
ωR

(
k +

1
2i

∂

∂x

)
− ωR

(
k − 1

2i
∂

∂x

)]
W (x, k, t)

+ i

[
ωI

(
k +

1
2i

∂

∂x

)
+ ωI

(
k − 1

2i
∂

∂x

)]
W (x, k, t). (103)

We now expand ωR and ωI in a Taylor series, which after some manipulation
results in

∂

∂t
W (x, k, t) =

[ ∞∑
n=0

ω
(2n+1)
R (k)
(2n+ 1)!

(−1)n+1

22n

(
∂

∂x

)2n+1

+
∞∑

n=0

ω
(2n)
I (k)
(2n)!

(−1)n

22n−1

(
∂

∂x

)2n
]
W. (104)

If we keep terms up to third order in the derivatives with respect to x we have

∂

∂t
W (x, k, t) ∼

[
2ωI(k)− v(k)

(
∂

∂x

)
− 1

4
ω

(2)
I (k)

∂2

∂x2

+
1
24
ω

(3)
R (k)

(
∂

∂x

)3

. . .

]
W (x, k, t). (105)
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5. Comparison of Exact and Approximate Wigner Distributions

For clarity we repeat the first and second differential equation for the two approx-
imations, respectively,

∂Wa

∂t
= 2ωI(k)Wa − v(k)

∂Wa

∂x
, (106)

∂Wa2

∂t
= 2ωIWa2 − v(k)

∂Wa2

∂x
+
|ω(2)

I (k)|
4

∂2Wa2

∂x2
. (107)

Since we consider cases where ω(2)
I (k) ≤ 0, we write the exact equation for a mode,

Eq. (105), as

∂

∂t
W (x, k, t) =

[
2ωI(k)− v(k)

∂

∂x
.+

1
4
|ω(2)

I (k)| ∂
2

∂x2
+

1
24
ω

(3)
R (k)

(
∂

∂x

)3

. . .

]
W.

(108)
Notice that the first approximation equation can be obtained from the second
and the exact one by neglecting derivatives above the first. Similarly, the second
approximation can be obtained from the exact equation by neglecting derivatives
above the second. Also, for each of the examples considered this behavior is the
case. Although we have not given a proof it seems that successive approximations
are obtained to a given order by simply neglecting higher derivatives. We are cur-
rently investigating these methods for the more general case where the coefficients
of the differential equation are functions of space and time, that is, Eq. (26).

References

[1] L. Cohen, Time-frequency distributions - A Review, Proc. IEEE, 77 (1989), 941–981.

[2] L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1995.

[3] L. Galleani and L. Cohen, The Wigner distribution for classical systems, Phys. Lett.
A 302 (2002), 149–155.

[4] L. Galleani and L. Cohen, Direct time-frequency characterization of linear systems
governed by differential Equations, Signal Processing Lett. 11 (2004), 721–724.

[5] L. Galleani and L. Cohen, Time-frequency Wigner distribution approach To differ-
ential equations, in Nonlinear Signal and Image Processing: Theory, Methods, and
Applications, Editors: K. Barner and G. Arce, CRC Press, 2003.

[6] P. Loughlin, Special issue on applications of time-frequency analysis, Proc. IEEE 84
(9), 1996.

[7] P. Loughlin and L. Cohen, A Wigner approximation method for wave propagation,
J. Acoust. Soc. Amer. 118 (3) (2005), 1268–1271.

[8] P. Loughlin and L. Cohen, Local properties of dispersive pulses, J. Modern Optics
49 (14/15) (2002), 2645–2655.

[9] P. H. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, 1968.

[10] J. E. Moyal, Quantum mechanics as a statistical Theory, Proc. Camb. Phil. Soc., 45
(1949), 99–124.



250 L. Cohen

[11] I. Tolstoy and C. Clay, Ocean Acoustics: Theory and Experiment in Underwater
Sound, AIP, 1987.

[12] G. Whitham, Linear and Nonlinear Waves, J. Wiley and Sons, 1974.

[13] E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys.
Rev. 40 (1932), 749–759.

Leon Cohen
Department of Physics and Astronomy
City University of New York
Hunter College
695 Park Ave.
New York, NY 10021
USA
e-mail: leon.cohen@hunter.cuny.edu



Operator Theory:
Advances and Applications, Vol. 205, 251–268
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Two-Window Spectrograms and Their
Integrals

Paolo Boggiatto, Giuseppe De Donno and Alessandro Oliaro

Abstract. We analyze in this paper some basic properties of two-window spec-
trograms, introduced in a previous work. This is achieved by the analysis of
their kernel, in view of their immersion in the Cohen class of time-frequency
representations. Further we introduce weighted averages of two-window spec-
trograms depending on varying window functions. We show that these new
integrated representations improve some features of both the classical Ri-
haczek representation and the two-window spectrogram which in turns can
be viewed as limit cases of them.
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Keywords. Time-frequency representation, Rihaczek representation, two-
window spectrogram.

1. Introduction

The need of visualizing how the energy of a signal is spread in the time-frequency
plane has led in the literature to the definition of a considerable amount of time-
frequency representations. Generally they are sesquilinear forms Q : L2(Rd) ×
L2(Rd) → L2(R2d), where, given a signal f , the function Q(f, f)(x, ω), or for
short Q(f)(x, ω), plays a role of energy density. It corresponds to the density of
mass in classical mechanics or to the probability distribution in statistics, with
the important difference that in signal theory there is not a univocal choice of
which representation has to be used, each having advantages and disadvantages.
The situation is of remarkable importance in time-frequency analysis and is well
illustrated in a number works, see for example [4], [5], [6], [7], [9], [11], [12], [13]
for detailed presentations of these topics.

The most basic considerations in order to construct a time-frequency rep-
resentation are those which lie behind the definition of the Rihaczek represen-
tation. Let us consider the model case of a signal f(x) having a frequency ω0

in the time interval [a, b], i.e., let f(x) = χ[a,b]Θ(x), where Θ(x) is one of the
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functions sin(2πω0x), cos(2πω0x), or e2πiω0x, and χ[a,b](x) is the characteristic
function of the interval [a, b]. Then f(x) will be different from the null function on
[a, b] and f̂(ω) will be different from the null function on a neighborhood of ω0.
It follows trivially that Q(x, ω) = f(x)f̂(ω) is a function on the time-frequency
plane which is different from the null function on a neighborhood of the segment
{ω = ω0, x ∈ [a, b]} and is (substantially) zero elsewhere. Intertwining the variables
by a multiplication with a complex exponential will guarantee that the marginal
conditions are satisfied (see, e.g., [3], [5] and Section 2), yielding the classical Ri-
haczek representation

R(f)(x, ω) = e−2πixωf(x)f̂ (ω). (1.1)

As we shall show in Section 3, though very simple in its construction and
showing a good behavior in the model case of the signal above, this representation
presents however very disturbing interference patterns as soon as it is applied on
multi-component signals, i.e., practically all real signals.

A different approach leads to the definition of the two-window spectrogram
Spφ,ψ. It is based on the Gabor transform

Vφ(f)(x, ω) =
∫

Rd

e−2πitωf(t)φ(t− x) dt (1.2)

where, before taking the Fourier transform, the signal f is “cut” by a multiplication
with time translations of the window function φ(x), which in the most generality
can be supposed to be a tempered distribution (see, e.g., [5], [10], [13] and [17]
for a general setting on groups). The two window spectrogram, presented in [2]–[3]
(called there generalized spectrogram) is defined by

Spφ,ψ(f)(x,w) = Spφ,ψ(f, f)(x,w) = Vφf(x,w)Vψf(x,w). (1.3)

Of course for φ = ψ it reduces to the classical spectrogram

Spφ(f)(x, ω) = |Vφ(f)(x, ω)|2. (1.4)

In the case of the two-window spectrogram the problem of the interference
is very reduced but this is “paid” in terms of the support property which is not
anymore satisfied (see Section 2).

A third very important representation is the Wigner distribution (see, e.g.,
[8], [16]) defined as

Wig(f)(x, ω) = Wig(f, f)(x, ω) =
∫

Rd

e−2πitωf(x+ t/2)f(x− t/2)dt. (1.5)

Besides the relevance it has in itself, it is the basis of the Cohen class (see Section
2) whose general properties will be widely used in this paper.

Given two representations, a usual way to construct better representations
is to take the average of them. Quite informally speaking, if both representations
signalize the presence of true frequencies accompanied with some undesirable “ar-
tifacts”, then the result will in general yield even better indication where the true
frequencies are present and show some reduced and more spread artifacts.
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Starting from this idea, similarly to the construction presented in [1] for
Wigner functions, we introduce in this paper a new type of representation, where
we substitute a simple average of two time-frequency forms with a weighted integral
over a path of parameterized representations.

More precisely we consider the case of parameterized windows φλ and ψλ,
where we let one window approach a constant function and the other one the Dirac
distribution δ, as λ goes to +∞. This improves the behavior with respect to the
support property which is not satisfied by spectrograms, but at the same time it
increases the interferences phenomena. For φ and ψ fixed window functions, if not
differently specified, we shall take

φλ(x) = λd/2φ(
√
λx), ψλ(x) = ψ(x/

√
λ), (1.6)

so that ‖φλ‖L1 = ‖φ‖L1 for every λ.
We consider then weighted integrals of these forms, i.e., a representation of

the type

Sθ
φ,ψ =

∫ +∞

1

θ(λ) Spφλ,ψλ
dλ, (1.7)

where θ(λ) is a fixed real function integrable on [1,+∞].
We shall call integrated spectrograms the representations Sθ

φ,ψ in (1.7). The
choice of the function θ(λ) clearly determines for which values of the parameter
λ the corresponding two-window spectrograms should have more “weight” in the
representation. A priori any choice of θ(λ) leads to a well-defined representation,
however in Section 5 we show that for a suitable choice of θ(λ) conservation of
energy is satisfied by Sθ

φ,ψ. Further we shall show that both the classical Rihaczek
representation and the two-window spectrogram Spφ,ψ can be viewed as limit cases
of (1.7) when θ(λ) pointwise approaches specific limit functions.

On the other hand the representations Sθ
φ,ψ show, for many intermediate

choices of θ, a better behavior both with respect to the Rihaczek and the two-
window spectrogram, reducing almost to null the interferences phenomena of the
Rihaczek and improving the support localization of the spectrogram, the behavior
is also showed to be better than a simple average of the Rihaczek and spectrogram
representations.

For different types of integrated representation based on the Wigner function
instead of spectrograms and for their relations with pseudo-differential operators
see [1], for numerical implementations and applications, in particular to seismic
waves, see [14].

The paper is organized as follows. We begin in Section 2 by considering the
two-window spectrogram Spφ,ψ as a member of the Cohen class and deduce from its
Cohen kernel some basic properties such as reality, marginals, energy conservation
and support property. We also obtain a result of approximation of Cohen class
representations with L2 kernels by finite sums of two-window spectrograms.

In Section 3 we study the integrated spectrogram (1.7) and we motivate
our definition by testing, for a specific choice of θ(λ), the behavior of Sθ

φ,ψ on
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a standard signal, comparing the result with that of the Rihaczek and the two-
window spectrogram as well as the average of them.

A precise functional setting in which the integrated spectrogram acts as
bounded sesquilinear map is developed in Section 4, where a version of the uncer-
tainty principle for this representation is also obtained.

In Section 5, after we have showed that the integrated spectrogram belongs to
the Cohen class, we study some of its basic properties using results from Section 2.
We conclude then showing that, as mentioned above, the Rihaczek representation
and the two-window spectrogram are limit cases of the integrated spectrogram.

2. Two-Window Spectrogram and Cohen Kernel

The purpose of this section is to study some of the basic properties of the two-
window spectrogram from its expression as an element of the Cohen class. This
is a very general class of time-frequency representations, introduced by L. Co-
hen, see [5], and widely studied since the 1970s. It can be defined as the set of
representations of the form

C(f) = σ ∗Wig(f) (2.1)

where, in our context, σ will be supposed to be a tempered distribution in S ′(R2d)
and will be called Cohen kernel. The wide possibility of choice of the Cohen kernel
permits to cover most time-frequency representations.

The following relationship between the Wigner distribution and the two win-
dow spectrogram holds (see [2]):

Spφ,ψ(f, g)(x,w) = Wig(ψ̃, φ̃) ∗Wig(f, g)(x,w), (2.2)

where φ̃(s) := φ(−s) and ψ̃(s) := ψ(−s). Equality (2.2), valid in suitable functional
settings, for example when f, g, φ, ψ ∈ S(Rd), gives us the expression of the two-
window spectrogram as an element of the Cohen class, where we have as Cohen
kernel σ = Wig(ψ̃, φ̃).

As showed in [5], Chapter 9, many of the more basic properties of a rep-
resentation can be deduced from corresponding properties of the inverse Fourier
transform F−1(σ) of the Cohen kernel. It will therefore useful to have an explicit
expression for it in the case of the two-window spectrogram.

Proposition 1. The two-window spectrogram can be written as

Spφ,ψ(f, g)(x,w) = σ ∗Wig(f, g)(x,w), (2.3)

where
F−1(σ)(u, t) = A(ψ̃, φ̃)(u, t) (2.4)

and A(ψ̃, φ̃)(u, t) is the ambiguity function (see [5]) defined as

A(ψ̃, φ̃)(u, t) =
∫

Rd

e2πiuxψ̃(x+ t/2)φ̃(x− t/2)dx.
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Proof. The assertion follows immediately from (2.2) as we have

σ(x, ω) = Wig(ψ̃, φ̃)(x, ω) = Ft→ω(ψ̃(x+ t/2)φ̃(x− t/2)) �

We recall now some of the most basic “desirable” properties of a time-
frequency representation; for detailed discussion of these properties, see, for exam-
ple, [4], [11].

Definiton 2 (Marginals). A time-frequency representation Q is said to satisfy the
Marginal distributions condition if for every f ∈ L2(Rd):∫

Rd Q(f)(x, ω)dx = |f̂(ω)|2 and
∫

Rd Q(f)(x, ω)dω = |f(x)|2.
Definiton 3 (Support property). Let H(supp f) be the convex hull of supp f and
H(supp f̂) that of supp f̂ . Let Πx and Πω be the orthogonal projections on the
first and the second factors in Rd

x ×Rd
ω respectively. A representation Q is said to

enjoy the “support property” if Πxsupp Q(f) ⊆ H(supp f) and Πωsupp Q(f) ⊆
H(supp f̂).

Definiton 4 (Energy conservation). A time-frequency representation Q is said to
satisfy conservation of energy if for f ∈ L2(Rd):

‖Q(f)‖L2(R2d) = ‖f‖2
L2(Rd).

We recall now how these properties are related to the Cohen kernel of a
representation, see [5] for references.

Proposition 5. The following holds for a generic representation Q = σ ∗ Wig in
the Cohen class:

a) The time marginal condition is satisfied if and only if F−1(σ)(u, 0) = 1.
b) The frequency marginal condition is satisfied if and only if F−1(σ)(0, t) = 1.
c) The conservation of energy is satisfied if and only if F−1(σ)(0, 0) = 1.

d) The representation is real if and only if ˜(F−1(σ)) = F−1(σ).

We pass now to examine the consequences that the previous general proper-
ties have in the special case of the two-window spectrogram.

Proposition 6. The two-window spectrogram Spφ,ψ(f, g)(x,w) satisfies the time
marginal condition if and only if ψφ = δ.

Proof. From Propositions 1 and 5 (a) the thesis holds if and only if

1 =
∫

Rd

e2πiuxψ̃(x)φ̃(x) dx = F−1(ψ̃φ̃)

which means ψ̃φ̃ = δ, i.e., ψφ = δ. �

Proposition 7. The two-window spectrogram Spφ,ψ(f, g)(x,w) satisfies the fre-

quency marginal conditions if and only if ψ̂φ̂ = δ.
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Proof. From Propositions 1 and 5 (b) the thesis holds if and only if

1 =
∫

Rd

ψ̃(x+ t/2)φ̃(x− t/2)dx =
∫

Rd

ψ̃(y)φ̃(y − t) dy = ψ̃ ∗ φ

which means ˆ̃ψφ̂ = δ, i.e., ψ̂φ̂ = δ. �

Proposition 8. The two-window spectrogram Spφ,ψ(f, g)(x,w) satisfies conserva-
tion of energy if and only if (ψ, φ) = 1.

Proof. From Propositions 1 and 5 (c) the thesis holds if and only if

1 =
∫

Rd

ψ̃(x)φ̃(x) dx = (ψ̃, φ̃) = (ψ, φ). �

Proposition 9. The two-window spectrogram Spφ,ψ(f, g)(x,w) is real if and only if
ψ = Cφ for some C ∈ R.

Proof. From Propositions 1 and 5 (d) the thesis holds if and only if

A(ψ̃, φ̃)(u, t) = A(φ̃, ψ̃)(u, t),

which means

F−1
t→ω

(
ψ̃(x+ t/2)φ̃(x− t/2)− φ̃(x+ t/2)ψ̃(x− t/2)

)
(x, ω) = 0

for every (x, ω) ∈ R2d. As the Fourier transform is a bijection on S′(R2d), this is
equivalent, after a change of variables in R2d, to the condition

ψ(X)φ(Y ) = φ(X)ψ(Y ) (2.5)

for every (X,Y ) ∈ R2d. Suppose now that ψ, ψ are in S(Rd), and set for example
Y = Y0 with φ(Yo) �= 0 (such a Y0 exists as φ can not be identically null), then
(2.5) implies

ψ(X) = Cφ(X)

for a suitable complex constant C �= 0 and for all X ∈ Rd. Substituting in (2.5)
we have

Cφ(X)φ(Y ) = φ(X)Cφ(Y ) (2.6)

which implies that C is real, so that is must be ψ = Cφ. �

An Lp functional frame for the two-window spectrograms was studied in [3]
(see Theorem 4.1). For completeness we recall here the result.

Proposition 10. Let us fix pj , p
′
j, qj ∈ [1,∞], j = 1, 2, with 1

pj
+ 1

p′
j

= 1 and

qj ≥ max{pj, p
′
j}. If f ∈ Lp1 , φ ∈ Lp′

1 , g ∈ Lp2 , ψ ∈ Lp′
2 and p = q1q2

q1+q2
, then the

following estimate for the two-window spectrogram holds:∫ ∫
R2d

|VψgVφf(x, ω)|p dxdw ≤ (
2∏

j=1

QjPj)dp(‖f‖p1‖g‖p2‖φ‖p′
1
‖ψ‖p′

2
)p
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where

Qj = q
− 1

qj

j (qj − 2)
2−qj
2qj

Pj = (pj − 1)
1−pj
2pj p

1
qj

j (qj(pj − 1)− pj)
qj(pj−1)−pj

2pjqj (qj − pj)
qj−pj
2pjqj . (2.7)

A natural question concerning two-window spectrograms is to define in some
sense “how large” this subclass of the Cohen class is. In view of (2.1) and (2.2)
this is equivalent to a characterization of the range in S′(R2d) of the Wigner
representations, which is a difficult question that we do not address here in its
generality. We remark however that some interesting informations can easily be
obtained from well-known facts about the range of the Wigner representation.
Namely, if Q = F ∗ Wig is a representation in the Cohen class with kernel F ∈
L2(R2d), then Q is not a (possibly two-window) spectrogram in the following cases:

– F is not continuous
– F does not vanish at infinity
– F is positive but is not a translation and/or dilation of a gaussian.

These assertions are actually immediate consequences of the fact that, for f, g ∈
L2(Rd), Wig(f, g) is a continuous function vanishing at infinity and, from Hudson
Theorem (see [8], [15]), it is positive only on generalized gaussians and in this case
is itself a translated/dilated gaussian.

Instead of trying to detect explicitly which representations in the Cohen class
are expressible as spectrograms, we consider next the problem of the approximation
of Cohen representations through spectrograms. We show that finite sums of two-
window spectrograms with L2(Rd) windows are dense in the space of Cohen class
representationsQ = F ∗Wig with kernel F ∈ L2(R2d). More precisely we formulate
the result as follows.

Proposition 11. Let Q = F ∗Wig be a representation in the Cohen class with kernel
F ∈ L2(R2d) and suppose that 1/p−1/q = 1/2 with p, q ∈ [1,+∞]. Then for every
ε > 0 there exist a finite number of functions hj , kj ∈ L2(Rd), j = 1, . . . , N such
that

‖Q(f, g)−
N∑

j=1

Sphj ,kj
(f, g)‖Lq(R2d) < ε (2.8)

for all f, g ∈ S′(Rd) such that ‖Wig(f, g)‖Lp ≤ 1.

Proof. First of all let us observe that, using Young’s inequality, the condition on
p and q implies

‖Q(f, g)‖Lq(R2d) ≤ ‖F‖L2(R2d)‖Wig(f, g)‖Lp(R2d)

and also from Young’s inequality, for every couple of functions h, k ∈ L2(Rd), we
have

‖Sph,k(f, g)‖Lq(R2d) = ‖Wig(f, g) ∗Wig(k̃, h̃)‖Lq(R2d)

≤ ‖Wig(f, g)‖Lp(R2d)‖Wig(k̃, h̃)‖L2(R2d), (2.9)
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which means that, under our hypothesis, the left-hand side of (2.8) is well defined.
Let h, k be in L2(Rd) and observe that the Wigner representation can be

decomposed in the following way:

Wig(h, k)(x, ω) = F2(T (h⊗ k))(x, ω) (2.10)

where

h⊗ k(x, t) = h(x)k(t),

T : F (x, t) ∈ L2(R2d) −→ TF (x, t) = F (x+ t/2, x− t/2) ∈ L2(R2d),

F2 = partial Fourier transform with respect to t of functions F (x, t) ∈ L2(R2d).

Suppose now that F ∈ L2(R2d). As T and F2 are isometries of L2(R2d), then
T−1F−1

2 F ∈ L2(R2d).
By the density in L2(R2d) of finite sums of tensor products (hj ⊗ kj)(x, t) =

hj(x)kj(t) with hj, kj ∈ L2(Rd), we have that for every ε > 0 there exists a finite
sum

N∑
j=1

hj ⊗ kj , hj , kj ∈ L2(Rd),

such that

‖T−1F−1
2 F −

N∑
j=1

hj ⊗ kj‖L2(R2d) ≤ ε.

Using the fact that T and F2 are isometries of L2(R2d) it follows that

‖F −
N∑

j=1

Wig(hj , kj)‖L2(R2d) = ‖F −
N∑

j=1

F2T (hj ⊗ kj)‖L2(R2d)

= ‖F −F2T
( N∑

j=1

hj ⊗ kj

)
‖L2(R2d) = ‖T−1F−1

2 F −
N∑

j=1

hj ⊗ kj‖L2(R2d) ≤ ε.

(2.11)

Thus F can be approximated in L2(R2d) by finite sums of Wigner functions.
Let us consider now the representation Q = F ∗Wig applied to signals f, g

such that ‖Wig(f, g)‖Lp(Rd) ≤ 1 with 1/p− 1/q = 1/2. From (2.11) and Young’s
inequality, we have

‖Q(f, g)−
N∑

j=1

Spk̃j ,h̃j
(f, g)‖Lq(R2d)

= ‖F ∗Wig(f, g)−
N∑

j=1

Wig(f, g) ∗Wig(hj , kj)‖Lq(R2d)

= ‖Wig(f, g) ∗
(
F −

N∑
j=1

Wig(hj , kj)
)
‖Lq(R2d) (2.12)
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= ‖Wig(f, g)‖Lp(R2d) ‖F −
N∑

j=1

Wig(hj , kj)‖L2(R2d)

≤ ε ‖Wig(f, g)‖Lp(R2d) ≤ ε

which proves the thesis. �
The previous result shows that Q(f, g) can be arbitrarily well approximated

in the Lq(R2d) norm by finite sums of two-window spectrograms with L2(Rd)
windows, uniformly with respect to the signals f, g such that ‖Wig(f, g)‖Lp(R2d)

is bounded, where 1/p − 1/q = 1/2. The most significant case of the previous
property is clearly the case p = 2, q = ∞, for which we reformulate the result in
a specific corollary.

Corollary 12. Let Q = F ∗ Wig be a representation in the Cohen class with
kernel F ∈ L2(R2d). Then Q(f, g) can be uniformly approximated on R2d by a
finite sum of two-window spectrograms

∑N
j=1 Sphj ,kj

(f, g) with arbitrary small
error, where hj , kj ∈ L2(R2d), j = 1, . . . , N , are independent of f, g such that
‖f‖L2(Rd), ‖g‖L2(Rd) ≤ 1.

Proof. We recall that from the well-known Moyal formula the Wigner representa-
tion defines a bounded map

Wig : L2(Rd)× L2(Rd) −→ L2(R2d). (2.13)

We have therefore that ‖f‖L2(Rd), ‖g‖L2(Rd) ≤ 1 implies that the hypothesis of
Proposition 11 are satisfied with p = 2, q = +∞. The thesis follows then as
particular case of Proposition 11. �
Remark 13. From the proof of Proposition 11 we have incidentally showed that
the Wigner representation as map between L2 spaces of type (2.13) has range with
dense span. This fact, relying on the density of the span of tensor products, as well
as Proposition 11, turn out to be a specific property of two-window spectrograms,
which does not hold for the usual (one-window) spectrograms.

3. Integrated Spectrogram: Motivations

The basic idea underlying our definition of the integrated spectrogram introduced
in (1.7) is to construct a family of representations which should be intermediate
between the two-window spectrogram and the Rihaczek representation, improving
in some sense both of them. As briefly mentioned in the introduction, spectrograms
do not satisfy the support property (see Definition 3).

Actually for the two-window spectrogram, though arbitrary good localization
both with respect to time and frequency can be obtain, a “spreading effect” can
not be avoided, as expressed by the following property (see [2]):

Proposition 14. Let Πx and Πω be projections as in Definition 3, then
i) Πx

(
supp Spφ,ψ(f)

) ⊂ (supp f + supp φ) ∩ (supp f + supp ψ);
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ii) Πω

(
supp Spφ,ψ(f)

) ⊂ (supp f̂ + supp φ̂) ∩ (supp f̂ + supp ψ̂).

Also for the integrated spectrogram the support property does not hold,
however its behavior with respect to this feature turns up to be quite better than
that of the spectrogram. In Section 5 we shall make these assertion precise by
proving a specific property on the support of the integrated spectrogram.

On the other hand the Rihaczek representation clearly satisfies the support
property (Definition 3) but shows remarkable interference patterns even for simple
signals. Although the interference behavior of a representation is not easily quan-
tified in terms of mathematical theorems, it can however be well recognized by
testing the representation on standard signals. Consider a fixed signal containing
the frequency ω = 2 in the time interval [−6,−2] and the frequency ω = 3 in
the time interval [2, 6], more precisely let f(x) = e4πixχ[−6,−2](x) + e6πixχ[2,6](x),
where χE(x) is the characteristic function of the set E. Figure 2 shows the spec-
trogram Spφ(f), with gaussian window φ(x) = e−πx2

, whereas Figure 1 shows the
Rihaczek representations R(f). As we can see, the figures confirm the different
behavior that we have described above.

Figure 1. Figure 2.
Rihaczek representation R(f) Two-window spectrogram Spφ,ψ(f)

A slightly better result can be obtained by taking the average 1/2(Spφ(f)+R(f))
of the two representations, which is a practice of common use in the applications.
However, in this case, as in many others, the improvement is not really appreciable
and the interferences are only slightly reduced, as Figure 3 shows.

Figure 4 shows finally the application to the same signal of the integrated

spectrogram Sθ
φ,φ(f), with θ(λ) = χ[1,80](λ)

80

√
1+λ2

λ2 and φ as in (1.6) (the choice
of θ(λ) and φ will be justified in Section 5). As we can see, the interference ar-
tifacts practically disappear, and at the same time one obtains a level of the
time-frequency localization which considerably improves that of the spectrogram
and almost equals that of the Rihaczek representation.
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Figure 3. Average 1
2 (Spφ,ψ(f) +R(f))

Figure 4. Integrated spectrogram Sθ
φ,ψ

The pictures of this section are obtained with Matlab R2006a. In Figure 4
the integral over λ contained in the integrated spectrogram has been approximated
with 80 steps.

4. Boundedness of the Integrated Spectrogram

In the next part of the paper we analyze some properties of the integrated spec-
trogram. In this section we consider its boundedness in the frame of Lp spaces and
we prove a corresponding uncertainty principle. The following lemma is a simple
computation that will be useful later on.

Lemma 15. Let us suppose that φ ∈ Lr1(Rd), ψ ∈ Lr2(Rd), λ > 1. We define
φλ(t) = λd/2φ(

√
λt) and ψλ(t) = ψ

(
1√
λ
t
)
. Then we have

‖φλ‖Lr1(Rd) = λd/2λ
− d

2r1 ‖φ‖Lr1(Rd), ‖ψλ‖Lr2(Rd) = λ
d

2r2 ‖ψ‖Lr2(Rd).
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We then have the following continuity result of the integrated spectrogram.

Theorem 16. Let us consider φλ and ψλ as in Lemma 15. We fix p1, p2 with 1 ≤
p1, p2 ≤ +∞, and p of the form p = q1q2

q1+q2
, where q1, q2 satisfy qj ≥ max{pj, p

′
j}

for j = 1, 2; p′j is as usual the conjugate of pj, i.e., 1
pj

+ 1
p′

j
= 1. We suppose

moreover that the function θ satisfies∫ +∞

1

∣∣∣λd/2θ(λ)
∣∣∣ λ d

2p′
2
− d

2p′
1 dλ < +∞. (4.1)

Then for every φ ∈ Lp′
1(Rd) and ψ ∈ Lp′

2(Rd), Sφ,ψ is a bounded operator on
Lp1(Rd)× Lp2(Rd) and for all (f, g) ∈ Lp1(Rd)× Lp2(Rd) we have

‖Sθ
φ,ψ(f, g)‖Lp(R2d) ≤ C‖f‖Lp1(Rd)‖g‖Lp2(Rd)‖φ‖Lp′

1(Rd)
‖ψ‖

Lp′
2(Rd)

, (4.2)

with

C = (Q1P1Q2P2)d

∫ +∞

1

∣∣∣λd/2θ(λ)
∣∣∣λ d

2p′
2
− d

2p′
1 dλ; (4.3)

the constants Qj and Pj, for j = 1, 2, depend only on pj and qj and are of the
form

Qj = q
− j

qj

j (qj − 2)
2−qj
2qj ,

Pj = (pj − 1)
1−pj
2pj p

1
qj

j

(
qj(pj − 1)− pj

) qj(pj−1)−pj
2pjqj (qj − pj)

qj−pj
2pjqj .

Proof. By definition of integrated spectrogram we obtain∥∥Sθ
φ,ψ(f, g)

∥∥
Lp ≤

∫ +∞

1

|θ(λ)| ‖Spφλ,ψλ
(f, g)‖Lp dλ,

and since φλ ∈ Lp′
1 , ψλ ∈ Lp′

2 for every λ ≥ 1, we can apply the boundedness
result of Proposition 10 for the two-window spectrogram, obtaining∥∥Sθ

φ,ψ(f, g)
∥∥

Lp ≤ (Q1P1Q2P2)d

∫ +∞

1

|θ(λ)| ‖f‖Lp1‖g‖Lp2‖φλ‖Lp′
1
‖ψλ‖Lp′

2
dλ.

We then get the conclusion by applying Lemma 15 with r1 = p′1 and r2 = p′2. �
From the previous theorem we can obtain a corresponding uncertainty prin-

ciple for the integrated spectrogram.

Theorem 17. Let us suppose that f ∈ Lp1(Rd), g ∈ Lp2(Rd), φ ∈ Lp′
1(Rd), ψ ∈

Lp′
2(Rd) and that (4.1) is satisfied. Let U ⊂ R2d and ε ≥ 0 satisfy∫

U

|Sθ
φ,ψ(f, g)| dx dω > (1− ε)‖f‖Lp1‖g‖Lp2‖φ‖Lp′

1
‖ψ‖

Lp′
2
. (4.4)

Then

μ(U) >
(

1− ε

Q1P1Q2P2

) p
p−1

(∫ +∞

1

∣∣∣λd/2θ(λ)
∣∣∣ λ d

2p′
2
− d

2p′
1 dλ

) 1−p
p

for every p satisfying the hypotheses of Theorem 16, where μ(U) is the Lebesgue
measure of U and Qj, Pj are the constants defined in Theorem 16.
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Proof. We can limit ourselves to the case when U has finite measure, otherwise the
conclusion is trivial. In this case, by the Hölder inequality we have immediately∫

U

|Sθ
φ,ψ(f, g)| dx dω ≤ ‖Sθ

φ,ψ(f, g)‖Lp(U)‖1‖Lp′(U) ≤ ‖Sθ
φ,ψ(f, g)‖Lp(R2d)

(
μ(U)

) 1
p′

for every p ≥ 1. We can then choose p satisfying the hypotheses of Theorem 16,
and from (4.4), (4.2) we get

(1− ε)‖f‖Lp1‖g‖Lp2‖φ‖
Lp′

1
‖ψ‖

Lp′
2
<

∫
U

|Sθ
φ,ψ(f, g)| dx dω

≤ C
(
μ(U)

) 1
p′ ‖f‖Lp1‖g‖Lp2‖φ‖

Lp′
1
‖ψ‖

Lp′
2
,

where C is given by (4.3). Since p′ = p
p−1 we have μ(U) >

(
1−ε
C

) p
p−1 and so by

(4.3) we obtain the desired estimate. �

5. Basic Properties of the Integrated Spectrogram

In this section we analyze some properties of the integrated spectrogram (1.7),
starting from a result on its support. As already mentioned in Section 3 the
two-window spectrogram Spφ,ψ(f) does not satisfy the support property, but we
anyway have a control on the orthogonal projections of supp Spφ,ψ(f) on the x
and ω-axes. We can prove for the integrated spectrogram an analogous result.
In the next proposition the functions φλ, ψλ are not necessarily of the form
φλ(x) = λd/2φ(

√
λx), ψλ = ψ

(
1√
λ
x
)

for fixed φ, ψ, as before, but can be two
arbitrary families of windows depending on λ; with abuse of notation we shall call
again Sθ

φ,ψ the corresponding integrated spectrogram.

Proposition 18. Fix φλ, ψλ, f ∈ S(Rd), and θ in such a way that the integrated
spectrogram Sθ

φ,ψ(f) = Sθ
φ,ψ(f, f) is well defined.

(i) Let Bf ⊂ Rd be a closed set satisfying
(
supp f + supp φλ

) ∩ (
supp f +

supp ψλ

) ⊂ Bf for almost every λ ∈ supp θ. Then we have

Πx

(
supp Sθ

φ,ψ(f)
) ⊂ Bf .

(ii) Let Cf ⊂ Rd be a closed set satisfying
(
supp f̂ + supp φ̂λ

) ∩ (
supp f̂ +

supp ψ̂λ

) ⊂ Cf for almost every λ ∈ supp θ. Then we have

Πω

(
supp Sθ

φ,ψ(f)
) ⊂ Cf .

Proof. Regarding (i) we observe that, from Proposition 14, we obtain

Πx

(
supp Spφλ,ψλ

(f)
) ⊂ (

supp f + supp φλ

)∩(supp f + supp ψλ

)
. (5.1)

Let us fix now x̃ /∈ Bf ; then there exists a neighborhood Ux̃ of x̃ such that Ux̃ has
empty intersection with Bf , and so by hypothesis Ux̃ has empty intersection with(
supp f + supp φλ

) ∩ (
supp f + supp ψλ

)
for almost every λ ∈ supp θ. By (5.1)

we obtain that (Ux̃×Rd
ω)∩ supp Spφλ,ψλ

(f) is empty for almost every λ ∈ supp θ,
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which means that Spφλ,ψλ
(f)(x, ω) ≡ 0 for (x, ω) ∈ Ux̃ ×Rd

ω and for almost every
λ ∈ supp θ. This implies that in the set Ux̃ × Rd

ω

Sθ
φ,ψ(f)(x, ω) ≡ 0,

and then in particular x̃ /∈ Πx

(
supp Sθ

φ,ψ(f)
)
, which proves (i). Concerning (ii) it

follows from the inclusion

Πω

(
supp Spφλ,ψλ

(f)
) ⊂ (

supp f̂ + supp ψ̂λ

) ∩ (
supp f̂ + supp φ̂λ

)
and the same arguments as above. �

We want now to study other properties of the integrated spectrogram, sim-
ilarly to the case of the two-window spectrogram analyzed in Section 2. To this
aim, from now on we shall fix a particular form of the windows φλ and ψλ: indeed,
as pointed out in the introduction, the idea is to parameterize the windows in such
a way that one window tends to the Dirac δ distribution and the other one tends
to the function identically 1 when λ→ +∞, in such a way that we shall obtain a
‘path’ described by Spφλ,ψλ

(f, g) from spectrogram to Rihaczek. From now on we
fix φ(t) = ψ(t) = e−πt2 , and

φλ(t) = λd/2e−πλt2 , ψλ(t) = φ̂λ(t) = e−π 1
λ t2 . (5.2)

At first we want to show that the integrated spectrogram Sθ
φ,φ belongs to the

Cohen class, and we give an explicit expression of its Cohen kernel. To this aim,
we shall fix the functions f and g in the Schwartz space S(Rd) (we can anyway
extend the result to more general signals by standard density arguments).

Proposition 19. Let f, g ∈ S(Rd), φλ, ψλ as in (5.2) and θ ∈ L1([1,+∞]). Then

Sθ
φ,φ(f, g) = σ ∗Wig(f, g),

where the inverse Fourier transform of the Cohen kernel σ is given by

F−1(σ)(u, t) =
∫ +∞

1

θ(λ)
(

λ2

1 + λ2

)d/2

e
−π λ

1+λ2 (u2+t2)
e
−πi 1−λ2

1+λ2 ut
dλ. (5.3)

Proof. From (2.2) we have that

Sθ
φ,φ(f, g) =

∫ +∞

1

θ(λ)Spφλ,ψλ
(f, g) dλ

=
∫ +∞

1

θ(λ)Wig(ψ̃λ, φ̃λ) ∗Wig(f, g) dλ

=
(∫ +∞

1

θ(λ)Wig(ψ̃λ, φ̃λ) dλ
)
∗Wig(f, g),

where the convolution is in the (x, ω)-variables. Then the inverse Fourier transform
of the Cohen kernel of the integrated spectrogram is given by

F−1(σ) = F−1

(∫ +∞

1

θ(λ)Wig(ψ̃λ, φ̃λ) dλ
)
.
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Since F−1 acts in the (x, ω)-variables, by interchanging the order of integration
and using Proposition 1 we obtain

F−1(σ)(u, t) =
∫ +∞

1

θ(λ)A(ψ̃λ, φ̃λ)(u, t) dλ. (5.4)

We need then to compute the ambiguity function of the windows (5.2). We have:

A(ψ̃λ, φ̃λ)(u, t) =
∫
e2πiuxψ̃(x+ t/2)φ̃(x− t/2)dx

= λd/2

∫
e2πiuxe−π 1

λ (x+ t
2 )2e−πλ(x− t

2 )2 dx

= λd/2e−π 1+λ2
4λ t2

∫
e2πiuxe−π( 1+λ2

λ x2+ 1−λ2
λ xt) dx.

By the change of variables x =
√

λ
1+λ2 y − 1−λ2

2(1+λ2) t we get

A(ψ̃λ, φ̃λ)(u, t) = λd/2

(
λ

1 + λ2

)d/2

e−π 1+λ2
4λ t2e

π (1−λ2)2

4λ(1+λ2)
t2

e
−2πiu 1−λ2

2(1+λ2)
t

·
∫
e
2πiu

√
λ

1+λ2 y
e−πy2

dy

=
(

λ2

1 + λ2

)d/2

e
−π λ

1+λ2 t2
e
−π λ

1+λ2 u2

e
−πi 1−λ2

1+λ2 ut
.

Now by this last equality and (5.4) we have (5.3). We observe that F−1(σ) ∈
L∞(R2d), since∣∣F−1(σ)(u, t)

∣∣ ≤ ∫ +∞

1

|θ(λ)|
∣∣∣A(ψ̃λ, φ̃λ)(u, t)

∣∣∣ dλ ≤ ∫ +∞

1

|θ(λ)| dλ = ‖θ‖L1 <∞.

Then F−1(σ) ∈ S ′(R2d), and so σ ∈ S′(R2d), which ensures us that Sθ
φ,φ(f, g) is a

well defined element of the Cohen class. �

We want to use now the explicit expression of the inverse Fourier transform
of the kernel of Sθ

φ,φ in order to understand if marginal conditions, conservation
of energy, and reality of the representation are satisfied.

Proposition 20. Let us consider the integrated spectrogram with windows φλ and
ψλ as in (5.2).

(i) Sθ
φ,φ(f, g) does not satisfy the marginals, for any choice of the function θ.

(ii) Sθ
φ,φ(f, g) satisfies the conservation of energy for every function θ such that∫ +∞

1

θ(λ)
(

λ2

1 + λ2

)d/2

dλ = 1.

(iii) Sθ
φ,φ(f, g) is not real.
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Proof. (i) We know from Proposition 5 that the time marginal condition is sat-
isfied if and only if F−1(σ)(u, 0) = 1; from Proposition 19 we get

F−1(σ)(u, 0) =
∫ +∞

1

θ(λ)
(

λ2

1 + λ2

)d/2

e
−π λ

1+λ2 u2

dλ,

that cannot be independent of the u-variable, for any choice of the func-
tion θ(λ) (not identically zero). In the same way we can prove that the fre-
quency marginal condition is not fulfilled, since it is satisfied if and only if
F−1(σ)(0, t) = 1.

(ii) Concerning the conservation of the energy, we know from Proposition 5 that
it is satisfied if and only if F−1(σ)(0, 0) = 1, and since

F−1(σ)(0, 0) =
∫ +∞

1

θ(λ)
(

λ2

1 + λ2

)d/2

dλ

the conclusion holds.
(iii) As in the previous cases, the fact that a representation is real can be deduced

directly from the inverse Fourier transform of its kernel. From Proposition 5
we have to check if F−1(σ)(u, t) = F−1(σ)(−u,−t), which is in general not
true, as we can deduce from (5.3). �

Remark 21. A simple example of a class of functions θ for which the corresponding
Integrated spectrogram satisfies the conservation of energy is given by

θM (λ) =
1

M − 1

(
λ2

1 + λ2

)−d/2

χ[1,M ](λ) (5.5)

for every M > 1, where χ[a,b] is the characteristic function of the interval [a, b].

We consider now the integrated spectrogram with windows as in (5.2) and
function θM as in (5.5), in such a way that we have representations satisfying the
conservation of the energy. We want to show that for M between 1 and +∞ the
corresponding SθM

φ,φ(f, g) describes a path between the classical spectrogram and
the Rihaczek, which can therefore be seen as limit cases of integrated spectrograms.

Proposition 22. Let us fix the windows φλ, ψλ as in (5.2), and θM (λ) as in (5.5).
Then the integrated spectrogram SθM

φ,φ(f, g) satisfies the conservation of the energy
and moreover, for every f, g ∈ S(Rd) we have:

(i) SθM

φ,φ(f, g)(x, ω) → Spφ(f, g)(x, ω) for every (x, ω) ∈ R2d as M → 1 (where

φ(t) = 2d/4e−πt2);
(ii) SθM

φ,φ(f, g)(x, ω) → R(f, g)(x, ω) for every (x, ω) ∈ R2d as M → +∞.

Proof. We already mentioned that SθM

φ,φ(f, g) satisfies the conservation of the en-
ergy in Remark 21, the proof is a straightforward computation. Let σM be the
Cohen kernel of SθM

φ,φ. We have then

SθM

φ,φ(f, g)(x, ω) = σM ∗Wig(f, g) = F
(
F−1(σM )A(f, g)

)
, (5.6)
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where A(f, g) is the ambiguity function. From (5.3) and (5.5) we have that

F−1(σM )(u, t) =
1

M − 1

∫ M

1

e
−π λ

1+λ2 (u2+t2)
e
−πi 1−λ2

1+λ2 ut
dλ,

and then∣∣F−1(σM )A(f, g)
∣∣ ≤ 1

M − 1

∫ M

1

e
−π λ

1+λ2 (u2+t2)
dλ |A(f, g)| ≤ |A(f, g)| ,

for every M > 1. Taking the limits for M → 1 and for M → ∞ in (5.6), since
A(f, g) ∈ S(R2d) ↪→ L1(R2d), by the Dominated Convergence Theorem we can
interchange the limits with the Fourier transform. This means that in order to get
(i) and (ii) it is enough to prove the convergence of the inverse Fourier transform
of the corresponding kernels. The conclusion then follows immediately from De
L’Hospital’s rule and the fundamental theorem of calculus. For every (x, ω) ∈ R2d

we have indeed

lim
M→1

F−1(σM ) = lim
M→1

e
−π M

1+M2 (u2+t2)
e
−πi 1−M2

1+M2 ut = e−
π
2 (u2+t2),

which coincides with the inverse Fourier transform of the Cohen kernel σ of
Spφ(f, g), since from Proposition 1 we have

F−1(σ)(u, t) = A(φ̃, φ̃)(u, t) = 2d/2

∫
e2πiuxe−π(x+ t

2 )2e−π(x− t
2 )2 dx = e−

π
2 (u2+t2).

Concerning (ii), we obtain in the same way

lim
M→+∞

F−1(σM ) = lim
M→+∞

e
−π M

1+M2 (u2+t2)
e
−πi 1−M2

1+M2 ut = eπiut,

that is the inverse Fourier transform of the Cohen kernel of the Rihaczek repre-
sentation, see [1]. The proof is then complete. �
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[11] A. J.E. M. Janssen, Positivity and spread of bilinear time-frequency distributions,
in: Theory and Applications in Signal Processing, Editors: W. Mecklenbräuker and
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Time-Time Distributions for Discrete
Wavelet Transforms

C. R. Pinnegar, H. Khosravani and P. Federico

Abstract. The short-time Fourier transform has an easily defined time-domain
counterpart: a set of windowed time series, each one corresponding to a specific
window position. Considered collectively, these constitute a time-time distri-
bution, since the window position gives a second time variable. Multiresolution
time-time distributions can also be defined. The only such distribution that
has been investigated thus far, the TT-transform, is the time-domain counter-
part of a continuous wavelet transform. In this short paper, we describe a new
method of calculating time-time distributions for discrete wavelet transforms,
and present two examples.

Mathematics Subject Classification (2000). Primary 65T60; Secondary 47G30.

Keywords. Short-time Fourier transform, time-time distribution, TT-trans-
form, wavelet transform.

1. Introduction

Time-time distributions [7, 8] are the time-domain counterparts of time-frequency
distributions [1]. Perhaps the simplest example of a time-time distribution is the
counterpart of the discrete short-time Fourier transform (STFT). This is obtained
by applying an inverse discrete Fourier transform to both sides of the discrete
STFT definition [4],

Vgf [τ, k] =
N−1∑
t=0

f [t] g[t− τ ] e−2πikt/N , (1)

resulting in the equivalent expression

f [t] g[t− τ ] =
N/2−1∑

k=−N/2

Vgf [τ, k] e2πikt/N . (2)
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In (1) and (2), f is a function of discrete time t, Vgf is its discrete STFT,
k denotes frequency, N is the number of samples in f , and g[t− τ ] is a positive
window that has appreciable amplitude only near t = τ . When considered at all
τ , the LHS of (2) gives a suite of windowed time series that can be plotted as
a two-dimensional function of τ and t, as in Fig. 1a; thus the term “time-time
distribution”.
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Figure 1. A test time series (an epileptiform EEG recording),
plotted next to the time-time distributions obtained from it us-
ing (a) the STFT, (b) the S-transform, (c) the Haar wavelet
transform, and (d) the Daubechies-3 wavelet transform. Since the
last three examples are obtained from multiresolution/multiscale
transforms, they exhibit stronger concentration of higher frequen-
cies near t = τ . In this and subsequent figures, the original time
series is plotted as white on grey.

In (1), the same g[t− τ ] acts on all the frequencies that make up f [t], so both
high and low frequencies have identical tapers away from t = τ . Multiresolution
transforms, which localize different frequencies around t = τ in different ways, can
also yield time-time distributions. These are more complicated than (2), because
they can exhibit differential concentration of different frequencies around t = τ .
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An example is the TT-transform [7], whose definition is

TTf [τ, t] =
N/2−1∑

k=−N/2

Sf [τ, k] e2πikt/N . (3)

In (3), Sf is the discrete S-transform [9] of f , a multiresolution transform that is
the discrete Fourier transform pair of TTf ,

Sf [τ, k] =
N−1∑
t=0

f [t]
{ |k|√

2πN
e

−k2[t−τ]2

2N2

}
e−2πikt/N . (4)

Comparing (1) with (4), we can see that the S-transform is similar to an
STFT, but with a scalable window that becomes narrower at higher frequen-
cies, reminiscent of wavelets. In fact the S-transform is closely associated with
the Morlet continuous wavelet transform [3]. The frequency scaling of the S-
transform window causes TTf to concentrate higher frequencies more strongly
around t = τ than lower frequencies. An example of this is shown in Fig. 1b. Note
that f [t] g[t− τ ] and TTf play similar roles in (2) and (3). In the same way that
columns of f [t] g[t − τ ] through specific values of τ give windowed time series
that describe how the discrete STFT “perceives” f , the columns of TTf give local
time series (the discrete Fourier transform pairs of local spectra) that give some
idea of how f is perceived by the discrete S-transform at any particular τ . Several
additional properties of the TT-transform, including the inverse formula

f [t] =
N−1∑
τ=0

TTf [τ, t], (5)

are described in more detail in [6, 7, 8].
To date, time-time counterparts of discrete wavelet transforms (DWTs) have

not been defined. In this short note, we describe a simple way of doing this, and
present two examples. These new distributions provide insight into how time series
are perceived by DWTs.

2. Time-Time Distribution for the Discrete Wavelet Transform

Suppose that Ψj [t] is a discrete wavelet frame (see [5] for a detailed description),
where j is a combined time-scale index. Then the wavelet coefficients of f [t], de-
noted Cfj , are obtained from

Cfj =
N−1∑
t=0

f [t] Ψ∗j [t], (6)

where the asterisk denotes complex conjugation. The inverse operation of (6) is

f [t] =
J−1∑
j=0

Cfj Φj [t], (7)
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where the Φj [t] are the J members of the dual frame; these are defined so that

N−1∑
t=0

Φj[t] Ψ∗m[t] = δj,m, (8)

where δj,m denotes the Kronecker delta.
We now define a set of functions Xj[t], each of which will eventually be

associated with the Φj[t] that has the same j value. The Xj [t] are required to
satisfy

N−1∑
t=0

Xj[t] = 1. (9)

Renaming the summation variable of (9) to τ , and including (9) in (7), gives

f [t] =
J−1∑
j=0

Cfj Φj [t]
N−1∑
τ=0

Xj [τ ]. (10)

Rearranging the order of summation, we obtain an expression that is very similar
to (5),

f [t] =
N−1∑
τ=0

TTDf [τ, t], (11)

where TTDf is our new time-time distribution,

TTDf [τ, t] =
J−1∑
j=0

Cfj Φj [t] Xj [τ ]. (12)

It then remains to define an appropriate Xj . In doing so we need to bear
in mind that each Xj determines which local time series of TTDf [τ, t] contain
contributions from Φj [t]. One simple approach is to reason that, for any given
point τ0 on the τ -axis, the local time series TTDf [τ0, t] should be a superposition
only of the Φj [t] whose corresponding Ψj [t] contain τ0 within their support. Since,
in (6), the wavelet coefficients are obtained from the inner product of h[t] and
Ψj[t] without any other weighting function being involved, we define Xj [t] to be
an equal partition of unity over the support of Ψj[t], via

Xj[t] = 1/Nj, t ∈ sup{Ψj[t]},
= 0, t /∈ sup{Ψj[t]}, (13)

where Nj is the number of samples in sup{Ψj [t]}.
Two examples of TTDf are shown in Figs. 1c–d, one for the Haar wavelet

transform (N = 256, level 7), and the other for the Daubechies-3 wavelet trans-
form (N = 256, level 5). The Haar time-time distribution shows most clearly
how the Xj function distributes wavelet amplitude across the time-time plane; the
Daubechies-3 time-time distribution has an appearance intermediate between the
Haar example and the TT-transform in Fig. 1b.
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Figure 2. (Black lines) Local time series, each obtained from
the corresponding distribution in Fig. 1 at τ = 127. (White lines)
The original time series from Fig. 1, for comparison. In subplots
(b–d) the increased concentration of higher frequencies around
t = τ is evident. In each subplot, the amplitudes of the local time
series have been multiplied by 40, to facilitate comparison with
the original time series. In this and subsequent figures, all time
series derived from the TT-transform are plotted as black on grey,
while the original time series (from which the TT-transform was
obtained) is plotted as white on grey.

In Figs. 2a–d, four local time series, obtained from Figs. 1a–d at τ = 127,
are compared with the original time series (for clarity, the amplitudes of the local
time series have been multiplied by 40). The increased concentration of higher
frequencies near t = τ can be seen in Figs. 2b–d, but not in Fig. 2a because all
frequencies have the same taper in the discrete STFT. Note that, in Fig. 2c, the
local time series of the Haar wavelet has zero value at t ≥ 128, since the frame
members that contain t = 127 in their support have zero amplitude at t ≥ 128.
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Currently, time-time distributions are essentially a solution looking for a
problem; the only application to date appears in [2]. They may yet prove use-
ful, though, because some unusual filters can be designed by modifying (11). Two
examples, both obtained using the TTDf from Fig. 1c, are shown below. In the
first example (Fig. 3a) the filtered time series f̃ has been calculated from

f̃a[t] =
N−1∑
τ=0

TTDf [τ, t] H(t− τ), (14)

where H is the Heaviside step function, here defined as

H(x) = 1, x ≥ 0,

= 0, x < 0. (15)

This sets TTDf to zero at t < τ . Fig. 3a also shows the resulting f̃a[t], along with
f [t] for comparison. It is difficult to judge whether this result has any physical
significance, but, in a sense, (14) gives the leading or “anticausal” part of the time
series.

A more interesting example is Fig. 3b, for which all the negative values of
TTDf have been set to zero, via

f̃b[t] =
N−1∑
τ=0

TTDf [τ, t] H(TTDf [τ, t]). (16)

The resulting “positive time series” f̃b is different from the positive part of f ,
because the stronger concentration of high frequencies close to t = τ allows some
high-frequency peaks whose maximum values are slightly negative on f to have
positive-valued peaks on TTDf , and thereby on f̃b. This is particularly noticeable
at t < 60.

3. Conclusions

We have presented a definition of time-time distributions for discrete wavelet trans-
forms. These distributions give a quantitative time-domain description of how
DWTs localize the scale content of a time series around specific points in time.
The broader utility and faster computational time of the DWT over the previously
defined S-transform and TT-transform may open new avenues for applications of
time-time techniques.

Appendix: MATLAB Algorithm

The following algorithm (which requires the MATLAB Wavelet Toolbox) produces
time-time distributions similar to those shown in Figs. 1c,d:



Time-Time Distributions 275

Time (τ)

(a)

 

 

64 128 192 256
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0
0

64

128

192

Amplitude

T
im

e 
(t

)

Time (τ)

(b)

 

 

64 128 192 256
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0
0

64

128

192

Amplitude

T
im

e 
(t

)

Figure 3. A test time series (white lines), plotted next to the
time-time distributions that are obtained from its Haar wavelet
transform by (a) setting the amplitude to zero at t < τ , (b) setting
all negative amplitudes to zero. The filtered time series that are
obtained by substituting these time-time distributions in place of
TTDf in (11) are also shown (black lines).

N=length(f); wave=’db3’;
dwtmode(’zpd’); maxlev=5;
[Cf Cinfo]=wavedec(f,maxlev,wave);
ind=sort([1; cumsum(Cinfo(1:end-1)); ...

cumsum(Cinfo(1:end-2))+1]);
X=zeros(N); phi=X; TT_Df=X;
for wscale=1:length(ind)/2;
for j=ind(2*wscale-1):ind(2*wscale);
phi(:,j)=waverec([zeros(j-1,1); 1; ...
zeros(length(Cf)-j,1)], ...
Cinfo,wave);

X(j,:)=(phi(:,j)~=0).’;
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X(j,:)=X(j,:)/sum(X(j,:));
TT_Df=TT_Df+Cf(j)*phi(:,j)*X(j,:);

end
end

In the program, f is a 256x1 input vector that must be predefined, ’db3’
denotes the Daubechies-3 DWT, and Cf(j), X(j,:), phi(:,j) and TT_Df denote
Cfj , Xj[t], Φj [t] and TTDf . To obtain the Haar result, ’db3’ must be replaced
with ’db1’ and maxlev set equal to 7. The reader can verify that sum(TT_Df,2)
is equal to f, as in equation (5). The modified versions of TTDf from Fig. 3 are
obtained from TT_Df.*tril(ones(N)) and TT_Df.*(TT_Df>=0).
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The Stockwell Transform in Studying the
Dynamics of Brain Functions

Cheng Liu, William Gaetz and Hongmei Zhu

Abstract. The dynamics of brain functional activities make time-frequency
analysis a powerful tool in revealing its neuronal mechanisms. In this paper,
we extend the definition of several widely used measures in spectral analysis,
including the power spectral density function, coherence function and phase-
locking value, from the classic Fourier domain to the time-frequency plane
using the Stockwell transform. The comparisons between the Stockwell-based
measures and the Morlet wavelet-based measures are addressed from both
theoretical and numerical perspectives. The Stockwell approach has advan-
tages over the Morlet wavelet approach in terms of easy interpretation and fast
computation. A magnetoencephalography study using the Stockwell analysis
reveals interesting temporal interaction between contralateral and ipsilateral
motor cortices under the multi-source interference task.

Mathematics Subject Classification (2000). Primary 62M15, 65R10, 92C55;
Secondary 42C40, 47G10.

Keywords. Stockwell transforms, Morlet wavelet transforms, power density
function, coherence function, phase-locking value, dynamics of brain func-
tions.

1. Introduction

Brain activities are characterized by multiple oscillators from different frequency
bands [4], thus making spectral analysis a popular tool for non-invasively investi-
gating the mechanism of brain functions [23]. Widely used measures, such as the
power spectral density function, coherence function and phase-locking value, are
traditionally defined through the Fourier transform, which relies on the assump-
tion that signals are stationary (i.e., their spectral characteristics do not change
over time) [1, 19]. However, brain functional activities are dynamic and transient,
especially those associating with cognitive and behavioral events. This implies
that non-stationarity is the rule rather than the exception in neural information
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processing. Therefore, temporal information missed by Fourier analysis must be
addressed in order to understand brain functionality.

Two well-developed integral transforms providing good solutions for the non-
stationarity problem are the Gabor transform and the wavelet transform. The Ga-
bor transform Vgs of a signal s ∈ L2(R) provides a time-frequency representation
of s by applying the Fourier transform to the signal localized by a Gaussian win-
dow g that translates over time. The Gabor transform is mathematically defined
as

(Vgs)(τ, f) =
∫ ∞

−∞
e−2πitfg(t− τ)s(t)dt, τ, f ∈ R, (1)

where g represents the complex conjugate of g. The Gabor transform is known as a
special class of the short-time Fourier transform with a Gaussian window. A more
in-depth discussion about the Gabor transform can be found in Chapter 3 of [13].
Time-frequency analysis based on the Gabor transform is intuitive, but limited by
the fixed time and frequency resolution.

The wavelet transform overcomes such limitation with its multi-resolution
characteristic [7]. The wavelet transform projects a signal on a family of wavelets
obtained by scaling and shifting a mother wavelet ψ. More precisely, the wavelet
transform of a signal s is defined as

(Wψs)(τ, α) =
1√|α|

∫ ∞

−∞
ψ

(
t− τ

α

)
s(t)dt, τ ∈ R, α ∈ R \ {0}. (2)

The multi-resolution analysis provided by the wavelet transform gives a more
accurate assessment of the local features of a signal. With different choices of
mother wavelets, the wavelet transform exhibits various features and is versatile
for different applications. For the time-frequency analysis, the wavelet transform
with a Morlet mother wavelet is plausible in terms of the intimate relation between
the scaling variable and Fourier frequency. More specifically, the complex Morlet
mother wavelet [12] is given by

ϕν0(t) =
1√
2π

e2πiν0te−
t2
2 , (3)

where ν0 is a non-dimensional frequency. The scaling variable α can be easily
mapped to a Fourier frequency f by f = ν0

α . Because the Morlet wavelet trans-
form (MWT) is a multi-resolution representation and has the scale factors that
can be directly converted to Fourier frequencies, it has become more popular in
various applications. As a consequence, commonly used measures in brain func-
tionality studies were extended from the Fourier domain to the time-frequency
plane through the MWT. Thus, there is an increasing interest in applying the
MWT to process brain signals in neuroscience [16,17,22]. Nevertheless, the complex
mathematics behind the MWT may create some obstacles for applied researchers.
Moreover, studies of brain functionality often involve intensive computations. Due
to the lack of fast algorithms, the MWT is therefore limited in use for practical
applications.
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The search for optimal data representations leads to new developments in
time-frequency analysis and results in new integral transforms combining the mer-
its of the Gabor transform and the wavelet transform. As a hybrid of the Gabor
transform and wavelet transform, the Stockwell transform (ST) proposed in 1996
by geophysicists [27] uses frequency-dependent Gaussian window width to provide
a multi-resolution time-frequency representation of a signal. The ST has gained
popularity in the signal processing community because of its easy interpretation
and fast computation [11, 24, 28].

As a result of the intimate relation to the Fourier framework, measures in
brain functionality studies can be straightforwardly extended to the time-frequency
plane using the ST. Although the MWT extension and the ST extension produce
similar measures, the Stockwell approach is more suitable for analyzing real brain
signals because of its easy interpretation and fast computation. This paper aims
to address this issue from both theoretical and numerical perspectives. The rela-
tionship between the ST and the MWT is reviewed in Section 2. In Section 3, we
present three commonly used measures in the study of brain functions: the power
spectral density function, the coherence function and the phase-locking value. We
then redefine these measures in the time-frequency plane using the ST. The simi-
larities between the Stockwell approach and Morlet wavelet approach will be dis-
cussed. In Section 4.1, we compare the performance of the Stockwell approach
to that of the Morlet wavelet approach using numerical simulations. An applica-
tion of the Stockwell approach to the magnetoencephalography (MEG) signals is
presented in Section 4.2.

2. The Stockwell Transform and the Morlet Wavelet Transform

Let s ∈ L2(R). Then, the Stockwell transform Ss is defined as an integral operator

(Ss)(τ, f) =
|f |√
2π

∫ ∞

−∞
e−

(τ−t)2f2

2 e−2πiτfs(t)dt, τ, f ∈ R. (4)

With a nonzero frequency f , the ST can be equivalently expressed in the Fourier
domain

(Ss)(τ, f) = e−2πifτ

∫ ∞

−∞
e2πiταe

− 2π2(α−f)2

f2 ŝ(α)dα, (5)

where ŝ is the Fourier spectrum of s. The width of the Gaussian window in (5)
is scaled according to the inverse of frequency f . Hence, the ST provides better
frequency resolutions at low frequencies and better time resolutions at high fre-
quencies, analogous to the wavelet transform. Equation (5) also indicates that the

ST can be considered as the Fourier multiplier F−1e
− 2π2(.−f)2

f2 F followed by a
modulation. Thus, the ST can be implemented efficiently using the fast Fourier
transform.
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As pointed out by [10], the ST is closely related to the MWT with the non-
dimensional frequency ν0 = 1, namely,

(Ss)(τ, f) =
√
fe2πiτf (Wϕs)

(
τ,

1
f

)
. (6)

We can see that the scaling variable α in the MWT is exactly the reciprocal of the
Fourier frequency f and the ST is the MWT represented in the time-frequency
plane with an amplitude dilation and a phase modulation.

3. Statistical Measurements in Brain Functionality Studies

3.1. Power Spectral Density

Since brain activities are characterized by multiple oscillators from different fre-
quency bands, it is crucial to identify the spectral information of brain signals
in order to understand its underlying mechanisms. One fundamental measure in
spectral analysis is the power spectral density function. Given a time series x,
the classic Fourier-based definition of a power spectral density function can be
expressed as

(Px)(f) = E{|x̂(f)|2}, (7)

where E{·} is the expectation operator. The definition is only valid with stationary
time series whose spectral characteristics do not change over time [23]. To study
the dynamics of brain activities, non-stationarity must be addressed.

The extension of the power spectral density function with the wavelet trans-
form introduced in [17] leads to a time-scale distribution

(WPψx)(τ, α) = E{|(Wψx)(τ, α)|2}. (8)

Here, we propose to extend the definition of the power spectral density function
directly to the time-frequency domain using the ST

(SPx)(τ, f) = E{|(Sx)(τ, f)|2}. (9)

From (6), we can easily see that these two power density functions are closely
related, i.e.,

(SPx)(τ, f) = |f | · (WPϕx)(τ,
1
f

) (10)

or
1
|f | · (SPx)(τ, f) = (WPϕx)(τ,

1
f

). (11)

Theoretically, the Stockwell power density function is the Morlet wavelet power
density function transformed in the time-frequency plane and multiplied by a
dilation term |f |. The term 1

|f | in (11), however, indicates that the Morlet wavelet
power density function magnifies the low frequency components and suppresses the
high frequency components. At very low frequencies, 1

|f | may also cause numerical
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instability. These artifacts, as illustrated later in Section 4.1, may cause ambiguity
in interpretation of the Morlet wavelet power density function.

In practice, the expectation operator in above definitions can be estimated
either by convolving these measures with a smoothing temporal window for a single
trial signal, or by averaging these quantities across trials for event-related signals.
The former assumes that the signal is locally stationary and the latter assumes
cross-trial stationarity in the signal.

3.2. Coherence Function

Cognitive processing depends not only on the activities of local neuronal assembly,
but also on the dynamic communication between different assemblies of neurons
[22]. To study the interaction of two time series, the coherence function is often
used. It is classically defined through the Fourier transform, namely,

(Cxy)(f) =
|E{x̂(f) · ŷ(f)}|2
(Px)(f) · (Py)(f)

. (12)

The Schwartz inequality guarantees that (Cxy)(f) takes values between 0 and
1. The coherence function measures the linear relationship between any two time
series in the frequency domain. More specifically, when noise is absent, (Cxy)(f) =
1 for two linear dependent time series x(t) and y(t) and (Cxy)(f) = 0 if the
time series are completely independent. The magnitude of the coherence function,
representing the strength of the linear correlation between time series, is often used
to describe functional connectivity between two brain areas in neuroscience [20].

The extension of the coherence function to the time-frequency plane can
be easily done by substituting the frequency representation with a joint time-
frequency representation. Note that the Stockwell coherence and Morlet wavelet
coherence defined in that fashion lead to an equivalent quantity

(SCxy)(τ, f) =
|E{(Sx)(τ, f) · (Sy)(τ, f)}|2
(SPx)(τ, f) · (SPy)(τ, f)

= (WCϕxy)(τ,
1
f

). (13)

These time-varying coherence functions can reveal the dynamics of the interaction
between different brain areas. Therefore, it is very useful to provide insight about
the mechanisms of brain functional activities.

3.3. Phase-Locking Value

The coherence function measures the linear correlation that is affected by changes
in both the amplitude and the phase of two time series. It has been reported re-
cently that the instantaneous phase of brain oscillation is associated with particu-
lar neuronal firing patterns and high temporal precision of neuronal activity [26].
Therefore, new measures of interrelationships based on the phase synchronization
of signals have been proposed. Among those measures, the phase-locking value
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(PLV) attracts increasing interests in studying brain functional connectivity due
to its intuition and easy computation [18, 19, 21].

The PLV is a statistical quantity bounded between 0 and 1, which is subject
to fluctuations when randomness is introduced in the signals. It can be defined in
the time-scale domain using a complex wavelet transform

(WPLVψxy)(τ, α) =

∣∣∣∣∣E
{

(Wψy)(τ, α) · (Wψx)(τ, α)
|(Wψy)(τ, α)| · |(Wψx)(τ, α)|

}∣∣∣∣∣ . (14)

The term inside the expectation operator is actually the instantaneous phase dif-
ference of the wavelet representations between two time series, i.e.,

(Wψy)(τ, α) · (Wψx)(τ, α)
|(Wψy)(τ, α)| · |(Wψx)(τ, α)| = ei[(φWψy)(τ,α)−(φWψx)(τ,α)]. (15)

where (φWψx)(τ, α) is the instantaneous phase of the wavelet transform of time
series x. The PLV measures the inter-trial variability of this phase difference at
time τ and scale α. If the phase difference does not vary much across the trials,
the PLV is close to 1; it is close to zero otherwise.

The extension of the PLV using the ST can be easily done by

(SPLV xy)(τ, f) =

∣∣∣∣∣E
{

(Sy)(τ, f) · (Sx)(τ, f)
|(Sy)(τ, f)| · |(Sx)(τ, f)|

}∣∣∣∣∣ . (16)

The phase relation between the ST and the MWT, derived from (6), can be written
as

(φSs)(τ, f) = 2πτf + (φWϕs)(τ,
1
f

) (17)

where (φSs)(τ, f) and (φWϕs)(τ, 1
f ) are the phases of the Stockwell and Morlet

wavelet representations at time τ and frequency f , respectively. This leads to
another equivalent quantity between the Stockwell approach and Morelet wavelet
approach:

(SPLV xy)(τ, f) =
∣∣∣E {

ei[(φSy)(τ,f)−(φSx)(τ,f)]
}∣∣∣

=
∣∣∣E {

ei[(φWϕy)(τ, 1
f )−(φWϕx)(τ, 1

f )]
}∣∣∣

= (WPLVϕxy)(τ,
1
f

). (18)

3.4. Remarks

The benefits of the ST over other representations are naturally carried over in
defining these Stockwell-based measures in brain functionality studies. Particu-
larly, the interpretation of statistical measures in real applications requires tests
of significance. One commonly used technique for significance tests is the non-
parametric bootstrap method [9], where the significance level is determined by
a bootstrap procedure that involves creating re-samples of the data set by ran-
dom rearrangements of the trial order independently for each recording site. In
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Figure 1. The mean value of a) time series x and c) time se-
ries y, and b) and d) their corresponding power spectral density
functions, respectively.

general, a large number of bootstrap samples need to be considered in order to
obtain a proper estimation of distribution. Since the statistical quantities have to
be calculated for each re-sample, bootstrap significant tests for transform-based
measures require intensive computation. Fortunately, a fast computational scheme
is available for the ST, making the use of the Stockwell approach more practical
for applications.

4. Simulations and Applications

4.1. Simulations

We construct two non-stationary time series by combining two simple linear sys-
tems with different temporal occurrence. During 0–0.5 s, System 1

x(t) = 0.6x(t− 1)− 0.2y(t− 2)− 0.4x(t− 3) + ε1(t)

y(t) = −0.5y(t− 1) + 0.6y(t− 3) + ε2(t) (19)

occurs and during 0.5–1 s, System 2

x(t) = −0.5x(t− 1)− 0.3y(t− 2) + 0.6x(t− 3) + ε3(t)

y(t) = 0.8y(t− 1) + 0.6y(t− 2)− 0.7y(t− 3) + ε4(t) (20)
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Figure 2. Contour plots of Morlet wavelet power density func-
tions of a) time series x and b) time series y, and c) and d) Stock-
well power density functions of time series x and y, respectively.

appears. Here the εi(t) are zero-mean uncorrelated white noise with identical vari-
ances. Both systems indicate that x is linearly dependent on y.

Fifty trials of simulated data were generated by Monte Carlo simulations with
sample rate 1024 Hz and duration 1 s. Figure 1 shows the time representations
of the mean value of time series x and y, and their corresponding power spectral
density functions. Time series x has two significant peaks occurred within the
frequency ranges 100–150 Hz and 350–400 Hz. And time series y has two significant
frequency peaks: one is within the frequency range 50–100 Hz and the other within
350–400 Hz. Due to its linear dependence to y, time series x has also one subtle
frequency peak appears within the frequency range 50–100 Hz. Hence significant
coherence between x and y is expected to be in the frequency ranges 50–100 Hz
and 350–400 Hz. As stated before, the Fourier-based approach does not provide
temporal information, meaning it cannot tell when these frequency components
occur.

Figure 2 displays the power density functions of x and y in the time-frequency
plane based on the MWT and the ST, respectively. To make them comparable,
the normalized power densities are shown in the figure. The non-stationarity char-
acteristics of the times series are clearly shown by both approaches: x contains
mostly a high frequency (350–400 Hz) component during the first half second and
a low frequency (100-150 Hz) component during the second half second, while y
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Figure 3. Contour plots of the interaction between simulated
data x and y: a) coherence and b) phase-locking value based on
the Morlet wavelet transform, and c) coherence and d) phase-
locking value based on the Stockwell transform.

contains a low frequency (50–100 Hz) component for the first half second and a
high frequency (350–400 Hz) component for the second half second.

As expected, because of the dependence of x on y, the Stockwell power density
function of x shows a low-amplitude component of high frequency (350–400 Hz)
during 0–0.5 s and also a low-amplitude component of low frequency (50–100 Hz)
during 0.5–1 s. As shown in Figure 2 a), however, the subtle high frequency (350–
400 Hz) component of x during 0–0.5 s (indicated by the dashed arrow in Figure 2
c)) is invisible in its Morlet wavelet power density. In addition, there exists strong
artifacts at low frequencies (< 20 Hz) in the Morlet wavelet power densities for
both x and y, as indicated by the solid arrows in Figures 2 a) and 2 b). These can
be explained by the term 1

|f | in (11) in the Morlet wavelet power density, which
may magnify the low frequency components, suppress high frequency components,
and cause numerical instability due to possible division by very small numbers.
The bias towards the low frequencies can be further confirmed by comparing the
amplitude of the low frequency components of the Fourier power density to that
of the Morlet wavelet power density.

The dynamic interaction between x and y is studied through the time-
frequency coherence and PLV. As shown in Figure 3, both the Morlet wavelet
approach and Stockwell approach reveal the interaction of x and y peaked at the
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Figure 4. An illustration of the multi-source interference task.

frequency range 350–400 Hz during 0–0.5s and at the frequency range 50–100 Hz
during 0.5–1 s. As discussed in Section 3, there is no theoretical difference between
these two approaches in defining coherence and PLV. The numerical results also
confirm this relation. Generally speaking, the Stockwell-based measures appear
more smooth compared to the Morlet wavelet-based measures. This is because
the ST is calculated directly in the time-frequency plane, but for the MWT, the
scaling variable must be converted to a Fourier frequency by taking its recip-
rocal. Additionally, the availability of fast algorithms makes the computation of
Stockwell-based measures much faster than the Morlet wavelet approach. The for-
mer approach only takes a quarter of the time to compute compared to the latter.
Note that the implementations in this paper are done in MATLAB R2007a. The
ST is implemented based on (5) and the continuous wavelet transform is calculated
using the wavelet toolbox in MATLAB.

4.2. An Application in Magnetoencephalography

Now, we apply the Stockwell approach to study the activities of motor cortices
when subjects performed the Multi-Source Interference Task (MSIT) [2] using their
right hands. The MSIT combines multiple dimensions of cognitive interference
in a single task, which can be used to investigate mental or behavioral diseases
such as Attention Deficit Hyperactivity Disorder (ADHD) in clinical studies [3].
See Figure 4 for details of the MSIT. Fifty interference trials were recorded for
two right-handed participants (SB and DM, represented by their initials). One
hundred fifty-one channel whole-head MEG (sample rate = 625Hz) was recorded
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Figure 5. Subject SB: contour plots of the Stockwell power den-
sity of a) MIc and b) MIi, c) the Stockwell coherence and d) the
Stockwell phase-locking value.

continuously for 400 seconds. Time zero is represented as a press of the button. The
signals at contralateral and ipsilateral motor cortices (MIc and MIi) were extracted
using the beamformer technique [5] and filtered with a low pass filter (1–30 Hz).
Several preprocessing steps have been applied to the data, including temporal
normalization to give the data equal weight and ensemble mean subtraction to
remove first order non-stationarity [8].

For each subject, we calculate the power density function, coherence func-
tion and PLV based on the ST with the preprocessed data −1–1.5 s. We also
investigate the statistical significance of coherence and PLV quantities using the
bootstrap method with 500 re-samples and significance level α = 0.01. Since the
Stockwell time-frequency representation often contains artifacts at the two ends of
a time series due to circular Fourier spectrum shifting in the implementation, we
investigate the Stockwell coherence and PLV only during the time period −0.6–0
s. Another reason we are particularly interested in this period is that the reaction
time of those two subjects is approximately 0.6 s, which suggests that subjects are
processing their cognitive tasks within the time interval.

The results for subjects SB and DM are presented in Figure 5 and Figure
6, respectively. The Stockwell power density functions show the activities of these
two motor cortices around 10 Hz and 20 Hz. The former is known as mu wave,
which appears to be associated with the motor cortex, and the latter is another



288 C. Liu, W. Gaetz and H. Zhu

Time (s)

F
re

qu
en

cy
 (

H
z)

a) Stockwell Power Density of MIc

 

 

−1 −0.5 0 0.5 1 1.5
0

5

10

15

20

25

0.2

0.4

0.6

0.8

Time (s)

F
re

qu
en

cy
 (

H
z)

b) Stockwell Power Density of MIi

 

 

−1 −0.5 0 0.5 1 1.5
0

5

10

15

20

25

0.2

0.4

0.6

0.8

Time (s)

F
re

qu
en

cy
 (

H
z)

c) Stockwell Coherence

 

 

−0.5 −0.4 −0.3 −0.2 −0.1

5

10

15

20

25

0

0.1

0.2

0.3

0.4

Time (s)

F
re

qu
en

cy
 (

H
z)

d). Stockwell Phase−Locking Value

 

 

−0.5 −0.4 −0.3 −0.2 −0.1

5

10

15

20

25

0.1

0.2

0.3

0.4

Figure 6. Subject DM: contour plots of the Stockwell power
density of a) MIc and b) MIi, c) the Stockwell coherence and d)
the Stockwell phase-locking value.

important brain rhythm called beta rhythm. It has been discovered that during
movements, the motor cortex exhibits a pronounced decrease of beta amplitudes
whereas a strong beta power rebound occurs when movements are stopped. Such
beta rebounds can also be observed by our results. See [4] for details for brain
rhythms.

The Stockwell coherence and PLV indicate the functional connection between
the MIc and MIi under the MIST. Figure 5 and Figure 6 show that the signifi-
cant connection happens mainly around frequency bands of 10–14 Hz and 25 Hz.
For the 10–14 Hz frequency band, our results is consistent with the results found
in [25], where activities of MIi and predominantly cortico-cortical coupling around
8–12 Hz has been observed under the unimanual auditorily paced finger-tapping
task. The connection around 25 Hz in this experiment is new and needs to be fur-
ther investigated. The PLV measure are generally consistent with the coherence
measure. However, since the PLV measures the connection due to phase synchro-
nization only, the PLV shows less frequency coupling than the coherence function
does. This phenomenon is correctly reflected by our results in Figure 5 and Figure
6.

The common limitation of studying brain signals is the unavailability of large
amounts of data. Statistical measurements with few samples may combine with
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artifacts. In order to improve accuracy, grand average results among more subjects
need to be studied and will be further considered in the future.

5. Conclusions

In this paper, we have introduced the Stockwell-based approach to study the dy-
namics of brain functions, including revealing the brain activities by the power
density function and investigating the functional interaction among different brain
cortices by the coherence function and phase-locking value. Due to the intimate
connection with the MWT, the comparison between these MWT and Stockwell
approaches have been presented. The advantages of using ST can be seen from
its easy interpretation, fast computation and better energy distribution. We have
demonstrated the performance of the ST-based approach using a real MEG study,
which shows significant functional connections between contralateral and ipsilat-
eral motor cortices under the MSIT. In conclusion, the Stockwell approach is
an intuitive, straightforward non-parametric tool to study the dynamics of non-
stationary signals.

In addition, it is of interest to investigate the use of the variants of the
Stockwell transforms in spectral analysis. For example, the recently developed
modified Stockwell transforms [14, 15] define a family of the Stockwell transforms
parametrized by s, where 1 < s < ∞. When s = 1, the modified Stockwell
transform is the classic Stockwell transform. By choosing a specific value for s,
the modified Stockwell transforms modulate frequencies in such a way that the
spectral information are highlighted at lower frequencies and compressed at higher
frequencies. Hence, the modified Stockwell transforms may be useful to study the
low frequency brain activities.
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Birkhäuser, 2009, 275–285.

[15] Q. Guo and M. W. Wong, Modified Stockwell Transforms, Memorie della Accademia
delle Scienze di Torino, Classe di Scienze, Fische, Matemiche e Naturali, Serie V 32,
2008.

[16] K. Keissar, L. R. Davrath and S. Akselrod, Time-Frequency Wavelet Transform
Coherence of cardio-respiratory signals during exercise, Computers in Cardiology 33
(2006), 733-736.

[17] J. P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M. Le Van Quyen, J. Martinerie and
F. Varela, Estimating the time-course of coherence between single-trial brain signals:
an introduction to wavelet coherence, Neurophysiol. Clin 62 (3) (2002), 157–174.

[18] J. P. Lachaux, E. Rodriguez, M. Le Van Quyen, A. Lutz, J. Martinerie and F.J.
Varela, Studying single-trials of phase synchronous activity in the brain, Int. J.
Bifur. Chaos 10 (2000), 2429–2439.

[19] J. P. Lachaux, E. Rodriguez, J. Martinerie and F. J. Varela, Measuring phase syn-
chrony in brain signals, Hum. Brain Map. 8 (4) (1999), 194–208.

[20] L. Lee, M. H. Lee and A. Mechelli, The functional brain connectivity workshop:
report and commentary, Comput. Neural Syst. 14 (2003), R5–R15.

[21] M. Le Van Quyen, J. Foucher, J. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie and
F. J. Varela, Comparison of Hilbert transform and wavelet methods for the analysis
of neuronal synchrony, J. Neuroscience Methods 111 (2) (2001), 83–98.

[22] X. Li, X. Yao, J. Fox and J. G. Jefferys, Interaction dynamics of neuronal oscillations
analysed using wavelet transforms, J. Neuroscience Methods 160 (1) (2007), 178–185.

[23] S. Marple, Digital Spectra Analysis with Applications, Prentice-Hall, 1987.



Studying the Dynamics of Brain Functions 291

[24] C. R. Pinnegar, Polalization analysis and polarization filtering of three component
signals with the time-frequency S-transform, in Geophys. J. Int. 165 (2) (2006), 596–
606.

[25] B. Polloka and et al., The cerebral oscillatory network associated with auditorily
paced finger movements, NeuroImage 24 (3) (2005), 646–655.

[26] P. Sauseng and W. Klimesch, What does phase information of oscillatory brain
activity tell us about cognitive processes?, Neuroscience Biobehavioral Rev. 32 (5)
(2008), 1001–1013.

[27] R. G. Stockwell, L. Mansinha and R. P. Lowe, Localization of the complex spectrum:
the S transform, IEEE Trans Signal Proc. 44 (4) (1996), 998–1001.

[28] H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G. S. Mayer, A. G. Law, L.
Mansinha and J. R. Mitchell, A new local multiscale Fourier analysis for MRI, in
Med. Phys. 30 (2003), 1134–1141.

Cheng Liu
Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto, Ontario, M3J 1P3
Canada
e-mail: chengliu@yorku.ca

William Gaetz
Department of Medical Imaging
University of Toronto
27 King’s College Circle
Toronto, Ontario, M5S 1A1
Canada
e-mail: bill.gaetz@gmail.com

Hongmei Zhu
Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto, Ontario, M3J 1P3
Canada
e-mail: hmzhu@yorku.ca


	Title page 
	Copyright  Page 
	Table of Contents

	Preface
	Boundary Value Problems with the 
Transmission Property
	1. Introduction
	2. Interior and Boundary Symbols for Differential Operators
	3. Inverses of Boundary Symbols
	4. Pseudo-Differential Boundary Value Problems
	5. Ellipticity of Boundary Value Problems
	6. The Anti-Transmission Property
	References

	Spectral Invariance of SG Pseudo-Differential Operators on Lp(Rn)
	1. SG Pseudo-Differential Operators
	2. L2 Spectral Invariance
	3. Lp Spectral Invariance
	References

	Edge-Degenerate Families of Pseudo-D ifferential Operators on an 
Infinite Cylinder
	1. Introduction
	2. A New Class of Operator-Valued Symbols
	2.1. Edge-Degenerate Families on a Smooth Compact Manifold
	2.2. Continuity in Schwartz Spaces
	2.3. Leibniz Products and Remainder Estimates

	3. Parameter-Dependent Operators on an Infinite Cylinder
	3.1. Weighted Cylindrical Spaces
	3.2. Elements of the Calculus

	References

	Global Regularity and Stability in S-Spaces for 
Classes of Degenerate Shubin Operators
	1. Introduction
	2. FIO Reduction of Wt
	3. Perturbations of Tensor Products of Harmonic Oscillators
	4. Applications
	References

	Weyl’s Lemma and Converse Mean Value for 
Dunkl Operators
	1. Introduction
	2. Weyl’s Lemma for the Dunkl Laplacian
	3. Application: Converse Mean Value
	References

	Dirichlet Problems for Inhomogeneous Complex Mixed-Partial Differential Equations of Higher Order in the Unit Disc: New View
	1. Introduction
	2. Decompositions of Functions
	3. Higher-Order Pompeiu Operators
	4. Higher-Order Poisson Kernels and Homogeneous Equations
	5. Inhomogeneous Equations
	References

	Dirichlet Problems for the Generalized 
n-Poisson Equation
	1. Introduction
	2. Preliminaries
	3. Review of Polyharmonic Green Functions and Dirichlet Problems for the n-Poisson Equation
	4. A Class of Integral Operators Related to Dirichlet Problems
	4.1. Properties of the Operators Gk,lm,nf

	5. Dirichlet Problem for the Generalized Higher-Order Poisson Equation
	References

	Schwarz, Riemann, Riemann–Hilbert Problems and Their Connections in Polydomains
	1. Introduction
	2. The Schwarz Problem
	2.1. The Formulation of the Problem for C2
	2.2. The Problem Formulations for Cn
	2.3. The Schwarz Problem for Polydomains
	2.4. Well-Posed Formulation of the Schwarz Problem
	2.4.1. Plane Case

	2.4.2. Higher-Dimensional Space

	2.5. The Schwarz Problem Without Solvability Conditions
	2.6. A Necessary and Sufficient Condition for the Boundary Values of Holomorphic Functions on the Torus Domains

	3. The Riemann Problem
	3.1. The Plemelj–Sokhotkzi Formula
	3.2. The Formulation of the Riemann Problem
	3.3. The Homogeneous Riemann Problem
	3.4. The Inhomogeneous Riemann Problem

	4. The Riemann–Hilbert Problem
	4.1. The Well-Posed Formulation of the Riemann–Hilbert Problem for Polydomains
	4.2. Solution of the Problem

	5. The Connection
	References

	Lp-Boundedness of Multilinear Pseudo-Differential Operators
	1. Introduction
	2. Multilinear Rihaczek Transforms and Multilinear Pseudo-Differential Operators
	3. The Moyal Identity and L2-Boundedness
	4. Lp-Boundedness, 1 ≤ p ≤ 2
	5. Multilinear Wigner Transforms and Multilinear Weyl Transforms
	6. A Basic Connection
	7. Lp-Boundedness, 1 ≤ p < ∞
	References

	A Trace Formula for Nuclear Operators on Lp
	1. Introduction
	2. A Characterization of Nuclear Operators on Lp(μ), 1 ≤ p < ∞
	3. Calculus of the Trace on Lp(μ)
	References

	Products of Two-Wavelet Multipliers 
and Their Traces
	1. Introduction
	2. The Main Results
	3. Trace Class Norm Inequalities for Two-Wavelet Multipliers
	4. The Generalized Landau–Pollak–Slepian Operator
	References

	Pseudo-Differential Operators on Z
	1. Introduction
	2. Hilbert–Schmidt Operators
	3. Lp-Boundedness and Lp-Compactness, 1 ≤ p < ∞
	4. Almost Diagonalization
	References

	Pseudo-Differential Operators with Symbols 
in Modulation Spaces
	1. Introduction
	2. Preliminaries
	3. Pseudo-Differential Operators with Symbols in Modulation Spaces
	References

	Phase-Space Differential Equations for Modes
	1. Introduction
	1.1. What is Phase Space?
	1.2. Differential Equations and Phase-Space Distributions
	1.3. Wave Equations, Modes, Group Velocity, the Stationary Phase  Approximation and the Phase-Space Approximation


	2. Transforming Differential Equations into Phase Space
	2.1. Examples
	2.1.1. Schr¨odinger Free Particle Equation

	2.1.2. Diffusion Equation with Drift
	2.1.3. Modified Diffusion Equation

	2.1.4. Linearized KdV Equation


	3. Phase-Space Approximation
	3.1. Wigner Distribution Approximation
	3.2. Differential Equations for the Approximations
	3.3. Examples
	3.3.1. Schr¨odinger Free Particle Equation

	3.3.2. Diffusion Equation with Drift
	3.3.3. Modified Diffusion Equation with Drift
	3.3.4. Linearized KdV Equation



	4. Exact Differential Equation for a Mode
	5. Comparison of Exact and Approximate Wigner Distributions
	References

	Two-Window Spectrograms and Their 
Integrals
	1. Introduction
	2. Two-Window Spectrogram and Cohen Kernel
	3. Integrated Spectrogram: Motivations
	4. Boundedness of the Integrated Spectrogram
	5. Basic Properties of the Integrated Spectrogram
	References

	Time-Time Distributions for Discrete Wavelet Transforms
	1. Introduction
	2. Time-Time Distribution for the Discrete Wavelet Transform
	3. Conclusions
	References

	The Stockwell Transform in Studying the 
Dynamics of Brain Functions
	1. Introduction
	2. The Stockwell Transform and the Morlet Wavelet Transform
	3. Statistical Measurements in Brain Functionality Studies
	3.1. Power Spectral Density
	3.2. Coherence Function
	3.3. Phase-Locking Value
	3.4. Remarks

	4. Simulations and Applications
	4.1. Simulations
	4.2. An Application in Magnetoencephalography
 

	5. Conclusions
	References




