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Preface

This volume contains a collection of papers devoted to modern aspects in the
study of partial differential equations. A number of them stem from plenary and
invited session lectures presented at the 7th International ISAAC Congress which
was held at Imperial College London in the period 13-18 July 2009. ISAAC is the
International Society for Analysis, its Applications, and Computation, and it is
already a tradition that its biannual congresses include a wide selection of sessions
devoted to the analysis of partial differential equations. Motivated by this tradition
and as an instrument to further strengthen the PDE community within ISAAC an
interest group ‘Partial Differential Equations’ (IGPDE) was founded during the
congress. The editors of this volume took this as one of the incentives to publish
this collection of papers. It is aimed at a broad audience, beginners as well as
specialists, and intended as a presentation of a wide range of topics addressed in
contemporary research in the field.

Papers associated to the plenary lectures given by L. Boutet de Monvel,
V. Kokilashvili and B.-W. Schulze appear in this volume. In addition we collected
selected papers from PDE-related sessions and further contributions on closely
related topics. Altogether, this volume touches upon several aspects of ordinary
and partial differential equations, such as boundary value problems, maximum and
extremum principles, wave, Schrodinger and parabolic equations, applications to
elasticity and thermoelasticity, and further numerical aspects.

A second special collection of papers presented at the congress and devoted to
the analysis of evolutionary partial differential equations has appeared as a special
volume of Rendiconti dell’Istituto di Matematica dell’Universita di Trieste, edited
by D. Del Santo, F. Hirosawa and M. Reissig.

Last, but not least, it is our pleasure to thank F. Bucci, I. Lasiecka,
V. Smyshlyaev and Y. Kurylev for all the editorial work they undertook for papers
arising from their sessions. They are mentioned as communicators in this volume.

Michael Ruzhansky and Jens Wirth
London, August 2010
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Toeplitz Operators and
Asymptotic Equivariant Index

L. Boutet de Monvel

Abstract. This is an account of a lecture given at the 7th ISAAC Congress,
where I described a joint work with E. Leichtnam, X. Tang and A. Weinstein
giving a proof of the Atiyah-Weinstein index formula. This concerns the index
of an operator closely related to Toeplitz operators, for which analogues of the
Atiyah-Singer index formula do not make sense. Instead we used an equivari-
ant asymptotic index formula, which does; it is an outgrowth of Atiyah and
Singers theory of equivariant index for transversally elliptic pseudodifferential
operators.

Mathematics Subject Classification (2000). 19L47; 32A25; 53D10; 58J40.

1. Szego projectors, Toeplitz operators

We first describe generalized Szeg6 projectors and Toeplitz operators, which gen-
eralize pseudo-differential operators on arbitrary contact manifolds. An important
case arises from complex (CR) analysis.

Let M be a compact manifold, and ¥ C T*M a symplectic subcone!.

Definition 1. A generalized Szegd projector associated to X (or X-Szegd projector)
is a self adjoint elliptic Fourier integral projector S of degree 0 (S = S* = §?),
whose complex canonical relation C is > 0, with real part the diagonal diag
(elliptic means that the principal symbol of S does not vanish on X).

Specially useful examples are

1) ¥ is the full cotangent bundle T°M, S is the identity operator.

2) M is the boundary of a strictly pseudoconvex bounded complex domain, S
is the Szegd projector (see below). More generally, M is a compact oriented
contact manifold, ¥ C T°M is the set of positive multiples of the contact
form (a generalized Szegd projector always exists, see below).

17* denotes the cotangent bundle deprived of its zero section.
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1.1. Example 1: Microlocal model

The following example was described in [6]. It is universal in the sense that any gen-
eralized Szego projector is microlocally isomorphic to it, via some elliptic Fourier
integral transformation (with dim > = 2p, dim M = p + q).

Let (z,y) = (z1,...,%p,Y1,-..,Yyy) denote the variable in RP4. Set D =
(Dj), Wlth
Dj = 0y, + |Dely; (j=1,...,9).

The D; commute; the complex involutive variety char D is defined by the
complex equations n; — i|¢|y; = 0; it is > 0, in the sense of [20, 21]. Its real part
is the symplectic manifold ¥ : {n; = y; = 0}.

The kernel of D in L? is the range of the Hermite operator H (in the sense
of [6]) defined by its partial Fourier transform:
1<l

fe LR = Hf with FHf(Ey) = (2) e 40 fg).

The orthogonal projector on ker D is S = HH™*:
g
f — (271—>—P/ ei(@—m/»f)-i-i%(lf"'y/z) (@) 2 f(x/,y’)d:c'dy’dg.
R2p+4q ™

As H, it is a Fourier integral operator, whose complex canonical relation is > 0,
with real part the graph of Id 5.2

1.2. Example 2: Holomorphic model

Let X be the boundary of a strictly pseudoconvex Stein complex manifold (with
smooth boundary); the contact form of X is the form induced by Im d¢ where ¢
is any defining function (¢ = 0,d¢ # 0 on X, ¢ < 0 inside).

E.g., if X is the unit sphere bounding the unit ball of C™, with defining func-
tion z -z — 1, the contact form is Imz - dz|x.

The Szego projector S is the orthogonal projector on the holomorphic sub-
space H = kerd, of boundary values of holomorphic functions (the fact that S
is Fourier integral operator as above was proved in [14]). The system of (pseudo)
differential operators playing the role of D is the tangential Cauchy—Riemann sys-
tem 5'},.3

Remark. A basic example of Toeplitz structure is ¥ = T°M (M a compact man-
ifold), S = Id: the Toeplitz algebra is the algebra of pseudodifferential operators
acting on the sheaf of microfunctions on M. This is in fact a special case of the
holomorphic case — Example 2.

2Fourier integral operators are described in [19]. Fourier integral operators with complex canon-
ical relation are described in [20, 21]

3at least if the dimension n is > 1 —if n = 1, S is the Hilbert projector e frzk — > frzk,
it is a pseudodifferential projector.
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1.3. Main properties
Cf. [11, 9, 10]

1) A ¥-Szegd projector S always exists. All such projectors have a unique mi-
crolocal model (via some elliptic FIO transformation) depending only on
dim, dimM.

2) Toeplitz operators defined by S are the operators on H of the form v € H —
Tp(u) = SPS(u) with P a pseudodifferential operator on M. They form an
algebra Ex (or & or £* Modulo smoothing operators, they form a sheaf
acting on pH, locally isomorphic to the sheaf of pseudodifferential operators
acting on the sheaf of microfunctions (in p variables if dim ¥ = 2p).

3) If S, 5" are two X-Szegd projectors with range H, H', S” induces a quasi iso-
morphism H — H’ (the restriction of SS’ to H is a positive (> 0) elliptic
Toeplitz operator).

More generally, if ¥ C T*M, > C T*M’ are two symplectic cones and
f X — ¥ a homogeneous symplectic isomorphism, there always exists a
Fourier integral operator F' from M to M’, inducing an “elliptic” Fredholm
map H — H' (such elliptic FIO exist, they were called “adapted” in [11, 9]).

The pair (s, pH) consisting of the sheaf of micro-Toeplitz operators (i.e.,
smoothing operators), acting on pH is well defined, up to (non unique) isomor-
phism: it only depends on the symplectic cone ¥, not on the embedding.

4) H is the set of solutions of a system (an ideal) of pseudo-differential equa-
tions described by a pseudo-differential complex Dy mimicking the 0y in the
holomorphic case (see below).

The K-theoretic element [Dx] € Kx(S*M) it defines is precisely the Bott
element, defining the Bott periodicity isomorphism K (X) — Kx (S*M).

5) All these constructions allow a compact group action.

We also use a vector bundle extension: an equivariant G-bundle is an invariant
direct factor F of a trivial G vector-bundle X x V', defined by an invariant projector
p (V a finite representation of ). The corresponding Toeplitz space (or Toeplitz
bundle) Hpg, with symbol E, is the range of an equivariant Toeplitz projector
P of degree 0 in H ® V', with symbol p. Here again Hpg is only defined up to a
Fredholm map. Equivalently, H is defined by a ‘good’ projective & module M,
i.e., the range of Toeplitz projector P’ of degree 0 in some free left-module £V:
E = Hom ¢ (M, H).

If E,F are two equivariant Toeplitz bundles, there is an obvious notion of
Toeplitz operator P : E — F, and of its principal symbol o4(P) if it is of degree d,
which is a homogeneous vector-bundle homomorphism E — F on X.

P is elliptic of degree d if its symbol is invertible; then it is a Fredholm

operator E*) — F(~9) and has an index (which does not depend on s)°.

4if M is a manifold one writes Ey; for Egx pr.
SE(S) its space of Sobolev H?® sections of E.
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1.4. Miscellaneous

Toeplitz-Fourier integral operators. The analogue of Fourier integral transfor-
mations is the following: let X, X’ be two contact manifolds, S,S’ generalized
Szegd projectors, and f : X — X’ a contact isomorphism. The pushforward
map v — u o f~' does not send H to H': we correct it as for Toeplitz opera-
tors T¢(u) = S’'(uo f~1); this behaves as an elliptic Fourier operator attached
to the contact map f. Other analogues of F.I.O attached to f are of the form
u— A'Tyu, A" a Toeplitz operator on X'.

Atiyah-Weinstein problem. The Atiyah-Weinstein problem can be described as fol-
lows: If X is a compact contact manifold, and S, S” two Szegd projectors defined by
two embeddable CR structures giving the same contact structure, then the restric-
tion of S” to H is a Fredholm operator H — H’ (S5’ induces an elliptic Toeplitz
operator on H). In this case the spaces H, H' and the index are well defined. The
Atiyah-Weinstein conjecture computes the index in terms of topological data of
the situation (topology of the holomorphic fillings of which X is the boundary).

2. Equivariant Toeplitz algebra

In the sequel we use the following notations:

G a compact Lie group, with Haar measure dg ([ dg = 1), Lie algebra g.

3 a G-symplectic cone, basis X (a compact oriented contact G-manifold).

w its symplectic form,

A the Liouville form (w = d\) (G-invariant).

3 is canonically identified with the set of positive multiples of Ax in T*X.

S a G-invariant generalized Szeg6 projector, with range H = @Ha (where «
runs over the set of irreducible representations, and H,, is the corresponding
isotypic component of H).

2.1. Equivariant trace

The G-trace and G-index were introduced by M.F. Atiyah in [4] for equivariant
pseudo-differential operators on a G-manifold. The G-trace of P is a distribution
on G, describing tr (g o P). We adapt this to Toeplitz operators.

Any v € g defines a vector field L, on X and a Toeplitz operator T, on H
(or any Toeplitz bundle E).

Definition 2. char g (characteristic set of g) denotes the closed subcone of ¥ where
all symbols of infinitesimal operators T}, & € g vanish.

The base Z of char g is the set of points of X where all Lie generators L,,v € g
are orthogonal to the Liouville form Ax. charg contains the fixed point set ¢,
whose basis is the fixed point set X because G is compact. Note that £ is always
a smooth symplectic cone and its base X a smooth contact manifold; char g and
Z may be singular.
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Let E be an equivariant Toeplitz bundle as above, E = @ E,, its the decom-
position in isotypic components. If P : E — E is a Toeplitz operator of trace class
(deg P < —n), the trace function Tr%(g) = tr (g o P) is a continuous function on
G (it is smooth if P is of degree —o0), and we have

1
TrG(g) =) 7 Pl Xas (1)

[e3
Xo is the character of a, d,, the dimension (the Fourier coefficient is itr Plg,).

The following result is an immediate adaptation of the similar result of [4]
for pseudo-differential operators.

Theorem 3. Let P : E — E be a Toeplitz operator, with P ~ 0 near charg. Then
Trg(g) = trgo P is defined as a distribution on G; P|g, is of trace class for each
a and formula (1) holds.

We have TrgQ (9) = Trg p(g) if one of the two operators is equivariant and

one ~ 0 near charg; so Tr¢ defines a trace map on the algebra of equivariant
Toeplitz operators.

Proof. This is true if P is of trace class. For the general case, we choose a bi-
invariant elliptic operator D of order m > 0 on G, e.g., the Casimir of a faithful
representation, with m = 2; it defines an invariant Toeplitz operator Dx : E — E,
elliptic outside of char g. If P ~ 0 near ¥, we can divide it repeatedly by Dx (mod.
smoothing operators) and get for any N:

P=DYQ+R (with R~0)
Then Tr% = DV Trg2 +Tr$: this is well defined as a distribution since Q is of trace
class if NV is large, and it does not depend on the choice of D, N, @, R.

The series is convergent in distribution sense, i.e., the coefficients have at
most polynomial growth with respect to the eigenvalues of D.

More generally if we have an equivariant Toeplitz complex of finite length:
(Byd): - —E; S Eipq — -

i.e., E is a finite sequence Ej, of equivariant Toeplitz bundles, d = (dy, : Ex — Eg41)
a sequence of Toeplitz operators such that d> = 0. Then for a Toeplitz operator
P:E — E, P ~ 0near char g, its equivariant supertrace Tr$ = Z(—l)kTrgk is well
defined; it vanishes if P is a supercommutator [A, B] where A, B are equivariant,
and one of them vanishes near char g.

b

2.2. Equivariant index
Let Eg,E; be two equivariant Toeplitz bundles.

Definition 4. We will say that an equivariant Toeplitz operator P : Eqg — E; is
G-elliptic (transversally elliptic in [4]) if it is elliptic on charg, i.e., the principal
symbol o(P), which is a homogeneous equivariant vector bundle homomorphism
Ey — Ej, is invertible on charg.
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If P is G-elliptic it has a G-parametrix @, i.e., @ : F — E is equivariant, and
QP ~ 1, PQ ~ lp near charg.
The G-index Ind $ is then defined as the distribution

IndG = Tr?_QP — Trf_PQ. (2)

More generally, an equivariant complex (E,d) as above is G-elliptic if the
principal symbol o(d) is exact on char g. Then there exists an equivariant Toeplitz
operator s = (sy : E, — Ei_1) such that 1—[d, s] ~ 0 near char g ([d, s] = ds+sd).
The index (Euler characteristic) is the super trace

I(?E,d) = supertr (1 — [d, s]) = Z(—l)j’I‘rﬁ_[d,s])j.
If P is G-elliptic, the restriction P, : Eg o — Ei,« is a Fredholm operator for

any irreducible representation «. Its index I, is finite (resp. more generally the
cohomology H of d|g, is finite dimensional), and we have

—1)7 ,
IndG = Z di_[a Xa (OI' Ind (Cfva,d) = Z (d—l) dlmng XOt) . (3)

2.3. Asymptotic index

The G-index Indg is obviously invariant under compact perturbation and defor-
mation, so for fixed E; it only depends on the homotopy class of the symbol o(P).
But it does depend on the choice of Szegd projectors: the Toeplitz bundles E; are
known in practice only through their symbols E;, and are only determined up to
a space of finite dimension, just as the Toeplitz spaces H.

However if E,E’ are two equivariant Toeplitz bundles with the same symbol,
there exists an equivariant elliptic Toeplitz operator U : E — E’ with quasi-inverse
V (i.e., VU ~ 1g, UV ~ 1f). This may be used to transport equivariant Toeplitz
operators from E to E': P — @Q = UPV. Then if P ~ 0 on Xy, Q@ = UPV and
VUP have the same G-trace, and since P ~ VUP, we have Tp — T € C™(G).
Thus the equivariant G-trace or index are ultimately well defined up to a smooth
function on G.

Definition 5. We define the asymptotic G-trace Trasg as the singularity of the
distribution Tr% (i.e., Tr& mod. C*(Q)).

If P ~ 0, we have TrIG; ~ 0, i.e., the sequence of Fourier coefficients is of rapid
decrease, O(c,)~" for all m, where ¢, is the eigenvalue of D¢ in the representa-
tion a.

Definition 6. If P is elliptic on char g, the asymptotic G-index Indaslcg is defined
as the singularity of IndIGg.

It can also be viewed as a virtual trace-class representation or character
> NaXa of G, mod finite representations.

It only depends on the homotopy class of the principal symbol o(A), and
since it is obviously additive we get:
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Theorem 7 (Main theorem).

1) The asymptotic index defines an additive map from K& (X —Z) to Sing (G) =
C~>/C>*(GQ) (Z C X denotes the basis of charg).

2) If u : X — X' is a contact map, then the asymptotic index map Indas
commutes with the Bott periodicity map K¢ (X — Z) — K%(X' —u(Z)).

The Bott periodicity map is described below.

K%(X — Z) denotes the equivariant K-theory of X with compact support in
X —Z,i.e., the group of stable classes of triples (E, F, u) where E, F are equivariant
G-bundles on X, u an equivariant isomorphism E — F' defined near Z, with the
usual equivalence relations ((E, F,a) ~ 0 if a is stably homotopic near Z to an
isomorphism on the whole of X).

The asymptotic index is as well defined for equivariant Toeplitz complexes,
exact on Z.

Example. Let ¥ be a symplectic cone, with free positive elliptic action of U(1),
i.e., the Toeplitz generator A = %89 is elliptic with positive symbol (this is the
situation studied in [11]). Then the algebra of invariant Toeplitz operators (mod.
C™) is a deformation star algebra, setting as “deformation parameter” h = A~L.
char g is empty and the asymptotic trace or index is always defined. The asymp-
totic trace of any element A is the series > are*? aj = tr Alm,, mod smooth
functions of 6, i.e., the sequence (ay) is known mod rapidly decreasing sequences.
It is standard knowledge that the sequence (ax) has an asymptotic expansion in
(negative) powers of k:
ay ~ Z ajkd. (4)
J<jo
In this case the asymptotic trace is as well defined by this asymptotic expan-
sion; it encodes the same thing as the residual trace, viewed as a power series of
h=k"1

Remark. For a general circle group action, with generator A = e, all simple
representations are powers of the identity representation, denoted 7', and all rep-
resentations occurring as indices can be written as formal power series with integral
coefficients:

anTk (mod. finite sums).

kEZ
In fact, using the sphere embedding below, it can be seen that the positive and
negative parts of the series are “weakly periodic”, of the form

Pi (T7 T_l )
(1 — TEk)k
for suitable polynomials Py and some integer k, i.e., both the positive and negative

parts are the Taylor series of rational functions whose poles are roots of 1; the
asymptotic index corresponds to the polar parts.
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2.4. K-theory and embedding

It is convenient (even though not technically indispensable), in particular to follow
the index in an embedding (Lemma 10), to reformulate some constructions above
in terms of sheaves of Toeplitz algebras and modules. In the C*° category £ is not
coherent and general £-module theory is not practical. We will just stick to two
useful examples.©

As above we use the following notation: for distributions, f ~ g means that
f — g is C; for operators, A ~ B (or A = B mod. C*°) means that A — B is of
degree —oo, i.e., has a smooth Schwartz kernel; if M is a manifold, T°M denotes
the cotangent bundle deprived of its zero section; it is a symplectic cone with
base the cotangent sphere S*M = T°*M /R, . As mentioned earlier, if ¥ is a G-
symplectic cone, the sheaf & of Toeplitz operators (mod C'*°) acting on pH is well
defined, with the action of G, up to isomorphism, independently of any embedding
> — T*M. The asymptotic trace TrasIGD resp. index Indasg are well defined for
a section P of & vanishing (resp. invertible) near charg. (If M is a G-manifold
and X = S*M (X = T*°M), &, identifies with the sheaf of pseudodifferential
operators acting on the sheaf pH of microfunctions on X; even in that case the
exact index problem does not make sense: a Toeplitz bundle E corresponds to a
vector bundle E on the cotangent sphere X = S* M, not necessarily the pullback
of a vector bundle on M, and E is in general at best defined up to a space of finite
dimension.)

An E-module M, corresponds to a system of Toeplitz operators, whose sheaf
of micro-solutions is Hom ¢ (M, uH); likewise a locally free complex (L,d) of &-
modules defines a Toeplitz complex (E, D) = Hom (L, H).

We will say that the £-module M is “good” if it is finitely generated, equipped
with a filtration M = (JM;, (ie., Mg = Mypq, (V| My = 0) such that the sym-
bol o(M) = My/M_; has a finite locally free resolution (as a C°°(X)-modul”).
A locally free resolution of o(M) lifts to a “good resolution” of M (i.e., locally
free and whose symbol is a resolution of o(M)).® Two resolutions of o(M) are ho-
motopic, and if o(M) has locally finite locally free resolutions it also has a global
one (because on compact X (or on the cone ¥ with compact basis) we dispose of
smooth (homogeneous) partitions of unity); this lifts to a global good resolution
of M.

Similarly we will say that a G-elliptic complex (E, d) is “good” if its symbol
is exact on char g. Note that “good” is not indispensable to define the asymptotic
index, but it is to define the K-theoretic element [(E,d)] € K¢(X — Z).

61n the proof of the Atiyah-Weinstein conjecture we need to patch together two smooth embedded
manifolds near their boundaries: this cannot be done in the real analytic category, even if things
work slightly better there.

"The symbol map identifies £ /E—1 with C°°(X); since there exist global elliptic sections of &,
gr M is completely determined by the symbol, same for the resolution.

8The converse is not true: if d is a locally free resolution of M its symbol is not necessarily a
resolution of the symbol of M — if only because filtrations must be defined to define the symbol
and can be modified rather arbitrarily.
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All this works just as well in presence of a G-action (one must choose invariant
filtrations etc.).

The asymptotic trace and index extend in an obvious manner to endomor-
phisms of good complexes or modules:

o if M = &N is free, End ¢ (M) identifies with the ring of N x N matrices with
coefficients in the opposite ring £°P, and if A = (A;;) vanishes near char g we
set Tras®(A) = 3 Tras“(4;;).

e If M is isomorphic to the range PN of a projector P in a free module N
(this does not depend on the choice of NV) and if A € Endg(M) we set
Tras®(A) = Tras®(PA).

e If (L,d) is a locally free complex and A = (Ay) is a endomorphism, vanishing
near charg, we set Tras®(A) = 3. (—1)*Tras®(A4y) (the Euler characteristic
or super trace; if A, B are endomorphisms of opposite degrees m, —m, we
have Tras®[A, B] = 0, where [A, B] = AB — (—1)™ BA is the superbracket).

e If M is a good &-module, (L,d) a good locally free resolution of M, A €
End £(M), we set Tras®(A) = Tras®(A), where A is any extension of A to
(L,d) (such an extension exists, and is unique up to homotopy, i.e., up to a
supercommutator).

e Finally if M is a locally free complex with symbol exact on char g, or a good
E-module with support outside of charg, it defines a K-theoretical element
[M] € K§(X), and its asymptotic index (the supertrace of the identity), is
the image by the index map of Theorem 7 of [M].

Remark. The equivariant trace or index are defined just as well for modules ad-
mitting a projective resolution (projective meaning direct summand of some £V,
with a projector not necessarily of degree 0). What does not work for these more
general objects is the relation to topological K-theory.

2.5. Embedding and transfer

Let 3 be a G-symplectic cone, embedded equivariantly in T'°* M with M a compact
G-manifold, and S an equivariant Szeg6 projector. As recalled in §1, the range pH
of S is the sheaf of solutions of an ideal I C &y;. The corresponding Ey/-module is
M = Ep /T it is “good”, as is obvious on the microlocal model or the holomorphic
model (for which a good resolution near ¥ is dj).

Endomorphisms of M are induced by right multiplications m +— ma where
al C I (a€|l:1I],so& =EndM° ~[I:]/I. The map which to a € [I : [
associates the Toeplitz operator T, gives an isomorphism from End g(M)°P to the
Toeplitz algebra (mod C°). (This is easily seen by successive approximations since
the symbol of T, is o(a)|s, or because, as indicated in [11], any Toeplitz operator
is also of the form Tp where P commutes with the Szegd projector.)

If P is a Toeplitz module, i.e., a left £-module supported by X, the transferred
module is M ®g P (also supported by X); it has the same solution sheaf as
P, since we have Hom (M ® P, H) = Hom (P, Hom (M, H)) and Hom (M, H) =
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H'. In this equality we can replace P by its global good resolution (i.e., replace
Hom by Rhomo), because this resolution is locally isomorphic to 9 which has no
cohomology mod C* near ¥ in degree > 0. Thus the transfer preserves asymptotic
traces and indices.

This extends obviously to the case where ¥ is embedded equivariantly in
another symplectic cone ¥ C X': the Toeplitz sheaf pH is Hom g, (M, uH'), with
M =E&/I and I C £ is the annihilator of the Szegd projector S of 3.

Theorem 8. Let X', X be two compact contact G-manifolds and f : X — X' be an
equivariant embedding. Then the K -theoretical push-forward (Bott homomorphism)
K% X - Z) — KE(X' — Z") commutes with the asymptotic G index of G-elliptic
equivariant Toeplitz operators.

Let F': & — &y be an equivariant embedding of the corresponding Toeplitz
algebras (over f), and let M be the £,-module associated with the Szegd projector
Sy, (transfer module). We have seen that transfer P — M ® P preserves the
asymptotic index.

Lemma 9. Notations being as above, the K -theoretical element (with support in X)
[M] € KS(T*M) is precisely the Bott element used to define the Bott isomorphism
KY%X) — K¢(X'); [M ® P] is the Bott image of [P].°

Proof. The transfer module M is good: it has, locally (and globally), a good
resolution. Its symbol is a locally free resolution of o(M) = C°°(X) /o (I). We may
identify a small equivariant tubular neighborhood of ¥ with the normal tangent
bundle N of ¥ in ¥’; N is a symplectic bundle; the ideal I endows it with a
compatible positive complex structure N€¢ (for which the first-order jet of elements
of o(I) are holomorphic in the fibers of N€¢). In such a neighborhood a good
symbol resolution is homotopic to the Koszul complex of N (or the symbol of 9,
in the holomorphic case): the K-theoretical element it defines is precisely the Bott
element.

Example. Let X = 52V~1 be the unit sphere of CV, H the space of holomorphic
functions (the symplectic cone ¥ can be identified with CV). Similarly X’ = C2¢~!
and H'. We can embed X’ as a subsphere of X (equivariantly if we are given
suitable unitary group actions).

We can identify H’ with the subset of functions independent of zp11, ..., zN.
The corresponding operators are the 0,,,k < j < N and the corresponding com-
plex of Toeplitz operators is the partial De Rham complex.

91f f : X — Y is a map between manifolds (or suitable spaces), the K-theoretical push-forward
is the topological translation of the Grothendieck direct image in K-theory (for algebraic or
holomorphic coherent modules). Its definition requires a spin¢ structure on the virtual normal
bundle of f (cf [11], §1.3) and this always exists canonically if X,Y are almost symplectic or
almost complex, or as here if f is an immersion whose normal tangent bundle is equipped with
a symplectic or complex structure.
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Another way of relating the two is to identify H' to H/ Z,]CVH z;H, identifying
H’ with the cohomology of the Koszul complex.

Note that we have 9, = (N + Zfr 2j05)T%,, so up to a positive factor, the
De Rham complex is the adjoint of the Koszul complex, and both define the same
K-theoretical (equivariant) element.

Remark. It is always possible to embed equivariantly a compact contact manifold
in a canonical contact sphere with linear G-action (this reduces the problem of
computing asymptotic indices to the case where the base space is a sphere — but
if G # 1 this is still complicated):

Lemma 10. Let ¥ be a G cone (with compact base), A a horizontal 1-form, homoge-
neous of degree 1 (L,A = X, paX = 0, where p is the radial vector field, generating
homotheties). Then there exists a homogeneous embedding x +— Z(x) of ¥ in a
complex representation V° of G such that A\ =Im Z.dZ

In this construction, Z is homogeneous of degree % as above. This applies
of course if ¥ is a symplectic cone, A its Liouville form (the symplectic form is
w = dX and A = pow. We first choose a smooth equivariant function ¥ = (Y}),
homogeneous of degree %, realizing an equivariant embedding of ¥ in V—{0}, where
V is a real unitary G-vector space (this always exists if the basis is compact).

Then there exists a smooth function X = (X;) homogeneous of degree %
such that A\ = 2X.dY. We can suppose X equivariant, replacing it by its mean
[ 9.X(g7'z)dg if need be. We have 2p.dY =Y (Y is of degree %) so X.Y =
poX.dY = 0. Finally we get A\ = Im Z.dZ with Z = X +iY (the coordinates
z; on V are homogeneous of degree 1 50 that the canonical form Im Z.dZ is of

2
degree 1).

3. Relative index

Let Q,Q be two strictly pseudo convex Stein domains with smooth boundaries
X, X'. Let f be a smooth contact isomorphism X — X’. Then the holomorphic
push-forward

W: wueHw S'(uof el (5)
is well defined, and is a (Toeplitz FIO) Fredholm map. The Atiyah-Weinstein
formula computes its index in terms of the geometrical data.

The original Atiyah question was: if M, M’ are two smooth manifolds, f :
S*M — S*M’ a contact isomorphism, F an elliptic FIO associated to f, then F
has an index, which should be given by a similar formula.

This reduces to the former problem since YDO on M are the same thing as
Toeplitz operators on the boundary of a small tubular neighborhood of M in a
complexification M€ (cf. [7]).10

0Except one should also take into account the homotopy class (“winding number”) of the prin-
cipal symbol.
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The main difficulty in this problem is that, with a fixed contact structure,
we are changing the CR structure, hence the Szegé projectors, and there is no
formula, using only the contact boundary data, telling how the index behaves.

To overcome this, we enlarge the spaces of holomorphic boundary values
in such a manner that the index is repeated infinitely many times and can be
interpreted as an asymptotic index, which can be handled geometrically.

3.1. Enlargement

Let © be as above, with defining function —¢ (¢ > 0, I have changed the sign).
We denote the boundary by Xq rather than X.

Q C C xQ denotes the ball [t|* < ¢. Its boundary X is strictly pseudoconvex,
provided that Log% is strictly psh. (e.g., —¢ strictly psh. on Q). We still denote
by ¥ D ¥y the symplectic cones.

The circle group U(1) acts on X: (t,z) — (e, ).

The volume element on X is dfdv (smooth, positive, invariant) with dv a
smooth positive density on 2; S denotes the Szegd projector, H its range (space
of boundary values of holomorphic functions of moderate growth near X).

D denotes the Toeplitz operator defined by %89 on H. It is self-adjoint, > 0,
equal to T;Tp, .

The expansion of a function in the Fourier decomposition

H =) H (He=ker(D-k))
k>0

is equivalent to its Taylor expansion:

= fla)t*.

H identifies with the set of holomorphic distributions on X (set of boundary
values of holomorphic functions on 2 with moderate growth at 0f2).
Note that the L? norm of a holomorphic function t* f(x) on X is

Jwre =om [ 6Hiflan

(because [t|?> = ¢ on X and the measure on X is df dv)

If we decompose S in its equivariant components S = > Sy, we get a sequence
closely related to that of Berezin (see [5, 16]).

It will be convenient to replace the Toeplitz FIO operator W by a unitary
multiple

Eo = (WW*)"2W : Hy — HJ, (6)

with the convention that (WW*)~2 vanishes on the kernel of W*; Ey is in any
case unitary mod smoothing operators and has obviously the same index as W.
We are using the norm of Hy, i.e., the L? norm of X (or of ), which is not the

1 can always be chosen so.
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L2 norm of X (it is rather related to the Sobolev H~2 norm) — but for the index
this makes no difference).
As mentioned above the Toeplitz operator corresponding to rotations is

D =t0; (: 189> .
(3

we have D = D* =T T7'; it follows that

= tC, (t* = C79,).

for an invariant Toeplitz operator C' > 0 (unique)*?

We set 7 =tC?. (7)

This is a Toeplitz operator of degree %, not an integer, but for the commu-
tation constructions below this does not matter

D=7 [D, 7| =71,[t",7] =1 (8)

7 is globally defined, a positive multiple of ¢ , 7Hj = Hj11

7 is uniquely defined by by these conditions.'3

There is a similar construction for €.

Theorem 11 (embedding). There exists an equivariant Toeplitz FI1O:
E: X — X' (with microsupport close to Xo) such that (mod C?).

1) E is unitary elliptic (mod C*°) near Xj.
2) E induces Ey on Hy (mod smoothing operators).
3) ET=7E.

Then the Ey, = H, — ]I-]Ij,C all have the same index Index Ey.

If 2) holds, F is elliptic on Xy hence G-elliptic (because here G = U(1) acts
freely, with a positive action, on the “interior” X — Xy). The last assertion follows:
we have F — 7'E), = Ej117 and since 7 is a bijection Fy, — FEjy1 (same for 7/),
Ey, Fi4+1 have same index.

The theorem replaces the relative index Index (Ey) by the G-asymptotic index
Indas (E).

121f we have a factorization D = PQ with [D, P] = P, there exists a (unique) invariant invertible
Toeplitz operator U such that P = tU,Q = U~19;. Here we have D = tCt*, so C = C* > 0
since D is > 0 and T} injective.

131n fact we need a little less than that: 7 should be globally defined over 2, and 7, : Hj, — Hy 41
should have index zero; the Hamiltonians of the real and imaginary parts of 7 should commute.
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3.2. Collar isomorphism
The geometric counterpart is: there is a (unique) equivariant homogeneous sym-
plectic isomorphism f of some equivariant neighborhood of ¥y in X to (same for
¥/} such that f|g, =1Id, and o(r)o f = o(7'), i.e., f commutes with the Hamilto-
nians of the real and imaginary parts of 7, 7/. This works because the Hamiltonians
of Re7,Im7 commute.'*

The operator statement follows from the geometric one in the usual manner.
Notice that E is at first only defined mod smoothing operators near X. We extend
it globally using any Toeplitz cut-off.

3.3. Embedding
We have mentioned that any G-contact manifold (compact) can be embedded
in a standard contact sphere with linear unitary action of G. Here we choose
embeddings more precisely.

Let X = §2N+1 c CN+! be a large sphere, with variables (T, Z).

The circle group G = U(1) acts by

(T, Z) (T, Z).

The base of char g is the diameter Z(T = 0); it is equal to the fixed point set.

Theorem 12. There exist equivariant contact embeddings F,F' of X, X’ in the
sphere S2N*L (with U(1)-action as above) such that F = F' o f near the bound-
ary Xo.

We are now reduced to the case where X, X’ sit in a large sphere S and
coincide near the fixed points. The trivial bundle of X defines, via the transfer
homomorphism, a complex A of Toeplitz operators on the large sphere X , whose
K-theoretical element in K§(S) is the equivariant Bott image. Same for X’.

The Toeplitz FIO E of Theorem 11 provides a Toeplitz isomorphism A — A’
near the boundary Xy, thus defining a G-elliptic complex on X , whose asymptotic
G-index is precisely what we want to compute.

3.4. Index
Now U(1) acts freely on S — S and U(1)\(S — S°) is the open unit ball B ¢ CV,
so the pull back is an isomorphism Ko(CV) = Z — Kg—so (S) (the generator is
the symbol of the partial De Rham complex dx, or of the Koszul complex).

We may now go back to the original situation: Q and € are complex man-
ifolds, glued together by the symplectic map fy; the result Y is not a manifold,
but the K-theoretical index is well defined: x : Keomp(Y) — Z:

Theorem 13. The relative index is x(lg — los); x is the K-theoretical character
defined by the Bott periodicity theorem; the two trivial bundles 1 — 1g/ are glued
together along the boundary to give an element of compact support.

14This would not work if we replaced T by ¢ because the Hamiltonians of Ret,Im¢ do not
commute in general.



Toeplitz Operators and Asymptotic Equivariant Index 15

The K-theoretical element defined by the complex above is the difference
element between the K-theoretical (spin®) images of Q and ' defined by Fy on
the boundary (or its extension near the boundary defined by F; any symplectic
diffeomorphism near the boundary would do as well since these are all isotopic.

This can be readily translated in terms of cohomology, using the Chern char-
acters and Todd class, as done in [12]; the Todd class appears when comparing
the Chern class of the Bott element with the Euler class used for integration along
fibers.
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Abstract. We present a survey paper on boundary value problems for analytic
and harmonic functions in weighted classes of Cauchy type integrals in a
simply connected domain not containing z = oo and having a density from
variable exponent Lebesgue spaces. It is assumed that the domain boundary
is a piecewise smooth curve. The solvability conditions are established and
solutions are constructed. The solution is found to essentially depend on the
coefficients from the boundary condition, the weight, space exponent values
at the angular points of the boundary curve and also on the angle values. The
non-Fredholmian case is investigated. An application of the obtained results
to the Neumann problem is given.
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1. Introduction

The study of boundary value problems and related boundary integral equations in
domains with intricate geometrical structure of the boundary is one of challenging
problem nowadays. The first part of the present survey deals with the Riemann—
Hilbert problem

Re [(a(t) +ib(t) @ (t)] = c(t), teT, (1)
in a domain with nonsmooth boundary and in the frame of Banach function spaces
with nonstandard growth condition. Several authors studied this problem in do-
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mains with sufficiently smooth boundaries under various assumptions with regard
to the coefficients and unknown functions (see, e.g., [18], [5] and references therein).

In this section the Riemann-Hilbert problem is considered in the following
setting: find a function ® € KP()(D;w) whose boundary values satisfy (1) a.e.
on I'. Here D is a simply connected domain not containing z = co and bounded by
a simple piecewise smooth closed curve T', and KP)(D;w) is the set of functions

D(2) = ﬁ/r ";(t_) ‘Zit , zeD, ¢eLPO(D),

when w(z) is an arbitrary function of the form

v

w(z) = H(z — tk)a’“, trel’, ap€eR.
k=1

Special properties of Banach function spaces with nonstandard growth were
singled out from the Banach space theory in the 30s of the last century. The initial
works related to this topic belong to W. Orlicz and J. Musielak. At that time these
works were of purely theoretical value, but nowadays there has arisen a necessity
to investigate these spaces as they play an essential role in mathematical models
of nonlinear elasticity and mechanics of incompressible fluids. They are also im-
portant for the investigation of various physical phenomena via variational models
(e.g., V. Zhikov’s study of Lavrentiev’s phenomena), the construction of models
of the mechanics of incompressible fluids (M. Ruzicka), also for the study of the
related integral operators and Sobolev spaces with variable exponent (H. Hudzik,
0. Kovacik and J. Rakosnik, S. Samko, L. Diening, X. Fan and D. Zhao). Research
of p(z)-Laplacian nonlinear differential equations and function spaces associated
with them that unable to describe physical events by “point variable” character-
istics, for example, in the elasticity theory of nonhomogeneous media (E. Acerbi
and G. Mingione, P. Marcelini, X. Fan, H. Zhang and others).

Let '={teC: t=2(s),0<s <!l < oo} be asimple closed rectifiable
curve with arc-length measure v(t) = s. Let CH (A1, ..., A;;v1,...,v;) be the set
of simple piecewise smooth curves I' having angular points Ay, ..., A; whose angle
values with respect to the domain D with boundary I" are equal to 7, k = 1,71,
0 < v < 2. The set of piecewise-Lyapunov curves contained in this class is denoted
by CBL(Al, ce 7Ai;V1»~ . .,Vi).

Let p be a measurable function on I' such that p : I' — (1,00). By P(I") we
denote the set of functions p(t) satisfying the conditions:

1 <p_:=essinfp(t) <esssupp(t) =:py < 0 (2)
tel tel
and there exists a constant A such that
A
Ip(t) —p(7)| £ ————, tel, Tel. (3)
—In|t — 7|

The set of functions p satisfying the conditions (2) and (3) we denote by P(T").
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A generalized Lebesgue space with variable exponent is defined via the mod-
ular

I2(f) = / FOPOdu(t)

by the norm

1 £l Lo ) =inf{)\>0: IR (%) < 1}, (4)

For a given weight function w we denote by LP()(I',w) a weighted Banach
function space of all measurable functions f : I' — C such that

[ £l oo iy = I fwllLrer(ry < o0

For such spaces see, e.g., [1], [2], [9], [11]-[14], etc.

There naturally arises the question of studying boundary value problems
of the function theory, including problem (1), too, in the classes of holomorphic
functions representable by a Cauchy type integral with a density from LP()(T, w).
The investigation of problems in this setting not only generalizes the previously
considered cases, but is more naturally, so far as also makes it possible to take into
consideration the integral behavior of the solution not only on the boundary as a
whole, but also locally, near any point of the boundary.

In [12], [7], [8], [10], [3] and other works, the boundary value problems are
studied under the assumption that the boundary values of a sought solutions
belongs to a variable exponent Lebesgue space.

In our paper [8], problem (1) was investigated in a simply connected domain
D not containing z = co and bounded by a simple piecewise-Lyapunov curve with
nonzero angles in the class K?()(D;w), i.e., in the class of analytic functions ®
representable in the form

1 1 o(t)dt .
P(z) = — ., zeD, peLPO(D), 5
0= 5 L5205 D werm) )
where w(z) is an arbitrary power function. With regard to the coefficients a(t),
b(t) it was assumed that they are piecewise-Holder and %glﬁ (a®(t) +b%(t)) > 0, and

¢ € LPO)(T,w). An analogous problem was investigated in [17] for p(t) = const.

In the present paper, the investigation of problem (1) is carried out under
the following assumptions:

i) I'is a closed piecewise-smooth curve from the class C*(Ay, ..., A;v1, ... 1),
where Aq,...,A; are all angular points of the curve I', while the values of
angles, which are internal with respect to a finite domain bounded by I', are
equal to g, 0 < v < 2;

ii) the coefficients a(t), b(t) are piecewise-continuous;
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iii) a function p(t) belongs to the class
P(T) = |J Prea(D),
e>0

where P11, (I") denotes the set of those real functions p, for which condition
(2) is fulfilled and there exists positive numbers A and e such that

- A
|ln |t1 - t2| |1+s

for arbitrary points t; and t2 on I

p(t1) — p(t2)] (6)

Let z = z(w) be the conformal mapping of the circle U = {w : |w| < 1} into
D and let w = w(z) be the inverse function.

Assume that I(7) = p(2(7)), T = w(t), ap = w(Ag).

Let

D(t,r)=TnNB(t,r), tel, r>0

where B(t,r) ={2€C: |z —t| <r}.

We remind that a curve is called the Carleson curve (regular curve), if there
exists a constant ¢y > 0 nondepending on ¢t and r, such that

vD(t,r) < cor.

In the sequel we consider the power weights of the form
n
w(t) =[] It —tl®, te €T, ti #t; when i# j.
k=1

It is well known that to solve boundary value problems for analytic and
harmonic functions boundedness in weighted spaces of the Cauchy singular integral

1
Srf(t)=— MdT

) T—t1

r
is crucial.
One basic result of our investigation is the following

Theorem A [14],[9]. Let p € P(I'). The Cauchy singular operator Sr is bounded in
Lﬁ,(')(F), if and only if T is a Carleson curve and

1 1
——— <Ok < —— k=1,2,...,n.
p(tk) P (t)

When investigating problem (1) in the case of a piecewise-smooth boundary,
we have to deal with the following problems:
1) Denote by WP() () the set of weight functions p for which the operator

T f T (TH) =20 / (Cf Qde e ferrOn), @)

i —7)p(Q)

is continuous in LP()(v) (v is a unit circle).
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As is well known, if —[((7)]7! < o < [(/(1x)] 7, € € P(y), O(1) = #7

and ¢ is a continuous real function on -, then

o) = [T = mv e (£ [ A9L) cape ®)

k=1

(see [10, Corollary 6.2]).

This result was used in investigating problem (1) when I' is a piecewise-
Lyapunov curve [8]. If however I' is a piecewise-smooth curve, then for the inves-
tigation we need to know whether the function

v

=1L ( 7 [$57) g <o <mm O

k=1

possesses the same property.

2) If X (w) is a canonical function for a piecewise-continuous function, then
we do not know whether the functions X *(7) and p(7)X (1), where p(7) is given
by equality (9), belong to the class W) ().

3) When T is a piecewise-smooth curve from C*(Ay,..., A;;vy,...,v;), and
z(ag) = Ak, where z = z(w) is the conformal mapping of the unit circle U =
{w : |w| < 1} on D, then we must know the weight properties of the function
2(1) = z(ag)-

4) We must know whether the Log-Holder condition holds for the function
£(1) = p(2(7)) on v when p(t) satisfies the Log-Hélder condition on T'.

The reasoning in [8] clearly implies that positive answers to the above four
questions make if possible to establish the validity of the results obtained there also
for the case where I is piecewise-smooth, while a(t), b(t) are piecewise-continuous.

As to questions 1) and 2), we succeeded in showing that they both have a
positive answer if p € P(T).

As to question 3), the following was clarified: if we follow the method of
investigation of the functions 2z’ and z, which is used in [4] (Ch. IIT) and apply
inclusion (8) given above, then it can be shown that

i

[T G = z(ar) e WO (v)

k=1

for 0 <y < é’(lTk)'

As to question 4), we can state that the function ¢(7) = p(z(7)) belongs
to the class P(v) if so does the function p(t) on I' € CY(Ay,..., Asvn,...,15).
The proof is obtained by a slight modification of the proof of Lemma 1 from [7]
if instead of Warshavski’s result on the derivative of the conformal mapping of a
circle onto a domain with piecewise-Lyapunov boundary we use the result from [4]
on the behavior of 2’ in the case of piecewise-smooth curves.
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2. The Riemann-Hilbert problem in the class K?()(D;w)
in the case of piecewise-smooth boundaries and
piecewise-continuous coefficients

2.1. Reducing of problem (1) to a linear conjugation problem
with an additional condition
We will use the well-known method of N. Muskhelishvili by which the Riemann—
Hilbert problem is reduced to the Riemann problem (see [18, §§ 36-43]).
Assume I' € CH(Ay,..., Aivr,... 1), 0 < v; < 2, k = 1,4, bounds the
domain D not containing z = oco. Let further t, € I', k =1, v, ap, € R and
w(z) =[]z —te)™ (10)

k=1

be an arbitrary fixed branch of analytic function in D. Denote by KP()(D;w)
the set of analytic functions in D, that are representable by equality (5). If w €
WPO(D), then the class KP()(D;w) coincides with the class KP()(I';w) (see [8,
Theorem 1)), where

Kp(.)(]:‘;w) = {‘I) : ‘I)(Z) = %mﬁ%’ e Lp(.)(]:"w)? z € D} (11)

Let, further, ¢ € LP()(T',w), a(t) and b(t) be piecewise-continuous functions
on I', with the condition gglﬂ(aQ(t+b2 (t)) > 0, and By, k = 1, \, be the discontinuity

points of the functions G(t) = —[a(t) — ib(t)] [a(t) + ib(t)] L.
Let us consider the Riemann-Hilbert problem: find a function ® € K*()(D;w)
satisfying the boundary condition (1). Let ¥(w) = ®(z(w)). Then

V(1) = ~[A(r) —iB(7)] [A(r) +iB(7)] " ¥F(r)
+20(7)[A(r) +iB(7)] ", (12)
A1) = a(z(7)),  B(1) =b(2(7)), C(r) = ¢(2(7))-
For the function F'(w), analytic outside -y, we assume
Fw), |w] <1,
fle = {F&), wl > 1.
Let us introduce the new unknown function

_J¥(w),  fw| <1,
Q(w)—{qj(%), | > 1. (13)

Then (12) takes the form
QF (1) = G(1)Q™ (1) + C1 (1),
G(r) = —[A(r) = iB(r)] [A(T) +iB(r)] ", (14)
Ci(r) = O(n)[A(r) +iB(r)] Y,
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and thereby we have to find a solution of the problem

(15)

{ Ot (1) = G(1)Q (1) + Cu(r), T€v, CrellV(y),
Qi (w) = Qw), |w|#1, Qc0) = const.

2.2. Solution of problem (15)

In Problem (15), for the time being the question in what class the function
should be sought for remains open.

Let G(B;)/G(B;) = exp2miug, k = 1,X (up € R since |G| = 1). Let
w = w(z) be the inverse function to z = z(w) and by, = w(By). The scheme of our
investigation will be as follows.

Step I. Write G in the form G(7) = X 7(7)[X ~(7)] 7!, where

X (w) = r(w) X; (w H ri(w
(16)
— bk , |w| <1,
L —by) ‘, lw| > 1,
1 1 s
Cexp M}, C' = const,
Y T—w )
L In Gy (7)1 dr
2m . T—w '
A
Here Gi(r) = T[[rf(n)re(7)]7'G(r) is a continuous function and s =
k=1

ind Gl (’7’)
Step II. Rewrite the boundary condition from (15) in the form
Qf(r) _ 9 ()

B Ci(7)
X)) X-(n)  Xt(r)

Step III. Construct a rational function Q(w) with zeros and poles on +, such
that the function F(w) = Q(w)Q(w)[X (w)]~! belongs to K*C)(v; p), where £(7) =
p(2(7)) and p(7) is a power function from W*()(y). For this construction, the
numbers oy, v, ug together must satisfy a certain condition (see condition (21)
below).

To construct Q(w), we proceed as follows.

Let

T = {Tk DT = w(tk)},

A= {ak Lag = w(Ak)}7 B = {bk : bk = w(Bk)}. (18)
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These sets may have common sets. Let us enumerate the points of the set TUAUB
as follows:

wy =T =01 =b1,...,w, =T, = a, = by,

Wy+1 = Tp+1 = Qpt1y -+ Wydr = Tptr = Qputr,

Wydr41 = Tptr+1 = but1s -+ o, Wptr+q = Tutr+q = Dutgs

Wygr+g+1 = Qutr+1 = bputgt1, -+, Wpr+g+p = Qutrtp = butqtp, (19)
Wptr+q+p+1 = Tptr+q+1s - - s Wptr4q+p+m = Tutr+g+m,

Wptr+q+p+m+1 = Qutr+p+ls -« o Wptr+g+p+m+n = Qutr4ptn,
Wytr+gtptmtnt1 = Outqiptis- - s Wutrtgtptmtnts = Optptats-

Thus we have j = p+r+q+p+m+n+ s points wg.

Let

Vet oy tuk, k= 1,1,
g+ Py, k=pt L,
g + Ug—r, k=p+r+1,u+r+aq,

Ok = Z?;:;j"’uk—r, k=p+r+qg+1Lp+r+q+p, (20)
k—p; k=p+r+q+p+Lputr+qg+p+m,
% k= p+r+q+p+m+1, p+r+q+p+m—+n,
Uk—r—m—ms k=p+r+q+p+m+n+1, p+r+q+p+m+n+s.

For the real number z we write x = [z] + {2}, where 0 < {z} < 1.

Assume
1
{0} # T(wn) (21)
Assume
1
Ve = [5k], if {5k} < T
¢ (iu’“) k=T, (22)
Yk = [5k] + 1, lf {5k} > m,
Then
! ) ! k=14 23
—m< k—’Yk<m7 =17 (23)
Let
J
Q(w) = [ (w = we)™. (24)

k=1
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3. Main result

Let:
1) D be an internal domain bounded by a curve I' € CY(Ay, ..., A1, ..., 1),
0< Vk <2
2) pe P(L);
3) w(z) = [] (2 —tr)™, —ﬁ <ag < p(t Y

k=1
4) af(t), b(t) be piecewise-continuous real functions with the condition inf(a?(t)+
b%(t)) > 0 such that the function G(t) = —[a(t) — ib(t)][a(t) + ib(t)]~* has
discontinuity points By, G(B,, )/G(B;) = exp 2miuy, uy, € R;
5) c(t)w(t) € LPO(T).
Theorem 1. Let
i) the points Tk, aj, by be enumerated according to (19); the numbers &y be
defined by equalities (20) and {6y} # m, and the integer numbers -y be
chosen according to (22);
i) Q(w) be the rational function defined by equality (24), and >y be its order at
the point w = oo;
iii) the functions r(w) and X1(w) be defined by equalities (16), (17) and therefore
X1 have order (—311) at infinity.
Assume that » = s + 3¢1. Then:

a) if % < 0, then for problem (1) to be solvable in the class KP©)(D;w) it is
necessary and suﬂ%ciem‘ that the conditions

7)Q(7) kg _ i
/X+ )—i—zb(())]TdT_O’ k=0, (25)
would be fulfilled. Thus there exists a unique solution
Do(2) = Qw(z)) = Qe(w(2)) = % (Qe(w(2) + (L)« (w(2))) , (26)
where
)Q(T) dr
Qew) = 27?2 / X+(r 7)) +ib(z(7)] T—w’ @7)

b) if 32 > 0, then pmblem ( ) is solvable uncondztionally and all its solutions are
gen by the equality

B(2) = Po(2) + X (w(2)Q ™ (w(2)) P (w(2)), (28)
where P,.(w) is an arbitrary polynomial P, (w) = Y. hpw® whose coefficients
k=0
satisfy the condition

B = Ay, k=0, A= (=1°J]w ™
k=1
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3. Some particular cases

3.1. The Riemann-Hilbert problem with Holder coefficients a(t), b(t) in the class
KPO)(T;w) for w € WPON(T)

In this case there are no points b, and — (t ) < ap < ,(t . Only the points 7, and

aj may coincide; to simplify numeration (19) it is assumed that wy = 71, ..., Wy, =
Tmy Wm+1 = A1y ..oy Wm4n = Any Wm4n+1 = Tm+1 = An+41y- -y Wm4n+r = Tm+r —
Gpir. Accordingly, 61 = -+ = 6, = 0, Sppgr = ;(kTTkl)7 k= 1,1, mintk =
Oy kVntk + ;(’Xi‘:kl), k =1,r. Therefore vy =y = - -+ = 3, = 0,
0 if v < ,
Vm+k = P (A’“) k=1,n,
1 if Vk>p(Ak),
YmAn+k = (29)
[a Uptk + ook 1] 1f{a v + Ptk 1}<
nERTRAER T D (@) ERTRAR T P an ) p(A +8)
[an—i-kl/n—i-k + g?;k+k)] +1 if {an+kVn+k + g?;f+k)} > P (A )’
k=1,r.

The latter numbers can be considered in more detail: let 8 = vp4ntk, @ €

{0ns1,. . angr}, v E {Vn+17 oy Ungr ks £ = p(Anyr) = anyr), v :p/(An+k) =
U(antr) and v=av+ L= Then (29) takes the form

5:{@1 if {v}<%,
W +1 if {v}>F.

Since —% <a< %, 1‘};” < —% and 2@;” > %, it is sufficient to consider

the following possible cases:
i) 1“<o<< i) -2 <a < 5%

iii) <a<1+£ ”, iv) L2 <o < 222
Case 1) We have —1 < v < 0. If v = 0, then [v] = {v} = 0 and therefore 3 = 0.
If -1 <v<0 then o] = -1, {v} =l+v=av+YL +1=av+%+} >
(—4$)v+%+ % = # and therefore = —1+1 = 0.
Case ii) We have 0 < v < . Hence [v] = 0, {v} = v =av+ 22 < 242l = L
thus g = 0.

Case iii) We have & <v < 1,ie., [v] =0, {v} =v =arv+ %L > L and therefore
B=w+1=1

Case iv) We have 1 < v < 2—4 (< 2).Ifv = 1, then [v] = 1, {v} = 0, and therefore
B=1.1Ifv>1, then [v] =1, {v} =v—-1=av+ 2t - 1<2£U+U771_1:el_"
Therefore 8 = [v] = 1.
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Thus
1 ¢ _
oo i Lo v o,
v v (30)
o l—v 20 — v
f=1 if —<a< .
v v

Equalities (30) can be written in the form

. Y4

g=0 if 0<U<1+a£’

¢ <v < 2
1+l 1+aof’

B=1 if

By virtue of (30), it follows from (24) that Q(7) is a polynomial and its order
is equal to

sy = N{wy, : v, > £(wy)}

) L(ag) 20(ay)
+N{Tk:ak.m<yk<m} (31)

where NV (F) denotes the number of elements of a set F.
Thus we derive the following

Proposition 2. If problem (1) is considered in the class KP)(T;w), w € WPO(T)
and a(t), b(t) belong to the Holder class, the number s« in Theorem 1 is calculated
by equality (31).

3.2. The Dirichlet problem in the class Re KP()(T'; w)

In what follows, the set of functions u(z) =Re¢(z) where ¢ € K?()(T;w) is denoted
by ReK?()(T,w). Let a(t) = 1, b(t) = 0, w is defined by (5), w € WPO(T),
¢ € LPO)(T;w). Then by virtue of Theorem 1 we have K?()(D;w) = KP()(T;w).
Problem (1) is posed as follows: find a function ¢ € KP()(I';w) that satisfies the
condition Re ¢ (t) = ¢(t) a.e. on I, i.e., we deal with the Dirichlet problem: find
a function u for which

Au=0, u=Re¢, ¢ec K'O(;w), 4
ut(t)=c(t), tel, cw(t)e LPO). (32)

Then r(w) =1,

—i, |w| <1,
X1<w>:{, |

i, Jw|>1

(we need this to have (X1).(w) = X1(w)). Thus »; = 0, i. e. 3¢ = 35, where 3 is
calculated by formula (31) and therefore s > 0.
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3.3. The Dirichlet problem in the class Re KP()(T'; w) for w = 1
In that case, , X7 and sr; are calculated as in the previous case. From condition
(21) we obtain v # p(Ax), k = 1,4. The order s of Q(w) at infinity is equal to
the number of angular points for which v > p(Ay).

Let us find the solution when i =1, v > p(A;) = ¢(a1) and ¢(t) = 0.

From (28) we have

w — wq w — wq

_ho + hiw
iy 7

U(w) = wy = w(Ay),

where the coefficient hy = is1 with s1 € R (this fact follows from equality (c0) =
Q(00) = 2(¥(0) + ¥(0))). From the equality

B = Ahseg, k=03 A= (=1°[]w,™
k=1
we have hg = —Ahy, where A = —w% (see (23)). Hence hy = g—i = isqwy and
therefore
b(w) = i 151wy + 1S1Ww N w + wq s €R.
w — w1 w — w1

Thus for v > p(A4;) the problem

Au=0, ueReKP(T), peP(l), TeClCL(Av),
ut(t)=0, tel,

has a solution

w
=351 R
u(z) = s1 Re "

depending on one real parameter.
If v < p(A;), then the problem has only a trivial solution.

Remark 3. In [7] the Dirichlet problem was investigated in the Smirnov class
el,P(')(D) = {u U= R,e(b7 ¢ & El’p()(D)}
where
E0O(D) = {¢; ¢ € EY(D), ¢+ ¢ Lw(F)}

and assumed that I' is an arbitrary piecewise-Lyapunov curve.
It is clear, that e''?()(D) = ReK?()(T) and, therefore, the results of this
subsection are contained in Theorem 3 from [7].
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3.4. The Neumann problem

Define a harmonic function v = Re ®, where ® is an analytic function such that
@’ € KPU)(D), which satisfies the condition

(%Z) (t)=f@), feL’(D),

a.e.on I'.
Let
~ 1 d
KPO(T;w) = {<1> L B(2) = _/ plr) dr +const, ¢ e LP(D,w), z¢€ D}.
2m Jp t—2

Following [18, pp. 243-248], we come to the problem in the class K?O)(D)
Re [ie 20t (t)] = f(t), ¥ =7, (33)

where ¢ is the angle formed by the tangent to I' at the point ¢ and the abscissa
axis. Here the sets of points {ax} and {b} coincide, while the set {7} is empty.

P (Ak)
It is not difficult to verify that this is equivalent to the condition v # p'(Ag).
For problem (33) to be solvable it is necessary that f(¢) would be orthogonal to

solutions of the class K*'()(D) of the problem
Ft =~

Furthermore, uy, = 1—vy and thus condition (21) takes the form {”’*—_1} * m.

(which is the conjugate problem to the Riemann problem corresponding to problem
(33)). It has »(p’) + 1 solutions, where

2(p') = N{Ag : vp > p'(Ar)}
(see [8, Subsection 7]).
Thus we have the following statement:

If 0 < v, <2,y # p'(Ar), then for the posed Neumann problem to
be solvable it is necessary that »(p') + 1 conditions would be fulfilled. If
these conditions are fulfilled, then the problem has solutions depending
on x(p)+1 = N{Ay : vi, > p(Ak)}+1 arbitrary constants. To find them
we proceed as follows: using the formulas from Theorem 1, we find @',
then integrate it and separate the real part.

4. Non-Fredholm case

In the assumptions we have considered above, problem (1) has turned out to
be Fredholmian in the sense that the homogeneous problem has a finite number
of linearly independent solutions, while the set of functions ¢(t), for which it is
solvable, is closed in LP()(I'; w).

Let us now consider the case where condition (21) is violated at individual
points wy and assume that a(t), b(t) are piecewise-Holder functions.
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Let 1
O, } = ———. 34
i} = g (34)
In that case, we choose integer numbers 7, such that we have
1
Op, — Vb, = ———— . 35
b T (35)

Then it is not difficult to verify that all possible solutions of the considered
problem lie in the set of functions given by equality (26) (for ¢ < 0) and by equality
(28) (for 3 > 0). In order that the functions defined by these equalities would
indeed be solutions, it is necessary and sufficient that their boundary functions
would belong to the class LP()(v; p). This is equivalent to the requirement that
the function

X+ 7))Q(7) dr
(M)t /X+ N+ ey T b (9

would belong to the class LP()(v; p), where

p(7) ~ w(=(7))r(7)|2 (1) T /Q(r) (37)

(see [8, equality (25)]). Under our assumptions we have

J
H (T —wg) ﬁk, Br =0k — VK, DBr; = (won) (38)
Thus it is requlred that the condition
p(t)(M.)(t) € L) (7) (39)
or, which is same, the conditions
W)l ()] c(=(1)Q(7) dr
" / X aGE) + ) =t < L0

be fulfilled.
Since in the case of piecewise-Holder coefficients we have X ¥ (t) ~ r(¢), the
latter condition can be written in the form

1

w(z(®)r(b) ()] ™ / c(z(1))w(z(7))|2' (1) "D Q(7) dr
Q(t) v w(z(T)) ¢ :

where
9(7) = e(z(1))w(=(M)]2' (1) 77 (al2(r)) + ib(=(1) " € LO(y).  (41)

Assume that
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Finally, we have

Lemma 4. For problem (1) to be solvable it is necessary and sufficient that the
function Tg would belong to the class L*C)(v), where p is given by equality (38),
and g by equality (41).

Under assumptions (34)—(35) this condition is not fulfilled for all ¢ €
LPO)(T;w); otherwise the Cauchy operator S, would turn out to be continuous
in L‘C)(v; p), where p is given by equality (38), which is impossible because con-
dition —ﬁ <v< ﬁ is violated.

We naturally pose the problem of indicating wide subclasses of a function
g € LPC)(y), for which Tg € L*C)(y).

If p(t) = p = const > 1, then one of such possible classes is a family of those
functions g, for which

g(r)n|r =7, | € L'O(y)

(see [4, p. 163]).
If on T" there is a point ¢y, for which §(wg) = m (wo = w(tp)) and also
pto) =p = rtréilpp(t), then, using the condition

g(T)In|T —wo| € LV (5) (43)

we have Tg € L‘C)(v) (see [6]).
As a result of the above consideration we come to

Theorem 5. If a(t), b(t) are piecewise-Holder functions and the conditions of
Theorem 1, except condition (21), are fulfilled, then for problem (1) to be solvable
it is necessary and sufficient that, in addition to conditions (25) (for » < 0), the
conditions

(M.) € L (v; p)
would be fulfilled, where M. is the function given by equality (36), and p by equal-
ity (38).

If p(t) attains a minimum at the point to, at which condition (21) is violated

(i.e., 6(wo) = 77—, wo = w(to)) and if c(t) is such a function that the function g

constructed byz;r(luci;)r;s of it according to formula (41) satisfies condition (43), then
for this function c(t), problem (1) is solvable.
Remark 6. Condition (43) is equivalent to the condition
c(tw(t) Infw(t) - w(to)] € LPV(T),
and if ' € OVF(Ay, ..., Avr, ... 1v:), 0 < v < 2, then to the condition

c(t)w(t) In |t — to] € LPO(D).
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5. Generalization of Vekua’s integral representations of
holomorphic functions

In many boundary value problems of function theory and mathematical physics the
boundary conditions contain not only the sought function, but also its derivatives
up to certain order. Therefore it is useful to have formulas giving an integral rep-
resentation of this holomorphic function. One form of such representations, quite
convenient for applications, was proposed by I. Vekua ([16], [17]). N. Muskhe-
lishvili expounded them in his book, where they are called 1. Vekua’s integral
representations (see [18, pp. 224-232]).

Theorem [I. Vekua]. Let DT be a finite domain bounded by a simple closed Lya-
punov curve I' and ®(z) be a holomorphic function in DY, whose derivative of or-
der m is continuous in DT and the boundary belong to the Hélder class H. Then,
assuming that the origin is in DT, the function ® is representable for m = 0 as

@(z):/r¢(t)dt+z‘d (44)

I

and for m >1 as

B(>) :/Fga(t) (1- ;)m_lln (1-3) ds—i—/rga(t)ds—i—id, (45)

where @(t) is a real function from the class H, and d is a real constant; p(t) and
d are defined uniquely with respect to ®(z).

Subsequently, B. Khvedelidze [5] gave a generalization of this theorem to the
case where a derivative of order m of the function ®(z) is representable in D by
a Cauchy type integral with a density from the Lebesgue space LP(I';w), where
p>1 and

- 1 1 P
wt)= |1t —te]*, thel, ——<ar<—, p=——. (46)
,g p P p—1
In that case, ¢ belongs to LP(T;w).

I. Vekua used these representations for investigating quite a general boundary
value problem, namely, the Riemann—Hilbert—Poincaré problem.

Definition 7. If m > 0 is an integer number, then we denote by K %(') (T; w) the set

,m

of functions ® holomorphic in D for which ®™)(z) € Kf)(')(]f‘;w). It is assumed
that ®©)(z) = ®(z) and thus Kg(g(]f‘;w) = K%(')(F;w).
Theorem 8. Let

i) I' be a curve of the class C%ﬁ(Al,...,Ai;ul,...,ui), 0< v <2, k=1,i

and p € 75(F) orT' € CBf(Al,...,Ai;yl,...,yi), 0<uy, <2, k=1,iand
p € P(I);
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i) w be a power function of form (46);

iii) the point z = 0 lie in D¥; z = 2(w) be a conformal mapping of the circle
U onto the domain D~ = CDT; 2(0) = co and w = w(z) be its inverse
mapping. Let a, = w(Ag), k = 1,4, 7x = w(tx), k = 1,n, and the points of
the set {a1,...,a;} U{m,..., 7} be numbered so that

Wp =01 = T1ye--, Wy = Gy = Ty,
Wp+1 = Qpt1s - - Wpdp = Qptp,
wN+P+1 = TMJ’_]_, e ,wu+p+M = Tp,-‘r]W

and

ard+ s k=1, k=T A =2-,

O0n = oy + vk — 1, k=p+1u+p,
Ak—p, k=p+p+1lu+p+ M,

where U(T) = p(2(7)), || = 1;
iv) e K2 (Tiw).
If
1

Gy A k=T, j=nti—p-= M, O(r) =T
{k}#é’(wk)’ yJs J n+e—p=p+p+M, (T>

then there exist a real function ¢ € LPC)(T;w) and a real constant d such
that the representations (1) and (2) are valid.

The function ¢ and the constant d are defined in a unique manner.
Representations (1) and (2) are valid in the following particular cases:

I. a) T is a smooth curve and p € P(T') or ' is a Lyapunov curve and p € P(I');
b) w is a weight function of form (46).

IL. a) T'is a curve of the class C1(Ay, ..., A1, ...,1;) and p € P(D) or Iis a curve
of the class CVF(Ay, ..., Ai;vr,...,v;) and p € P(I') (in both cases 0 < v < 2,
k=1,i);

b) w(t) =1,

c) {;’(’“Xkl) + v — 1} #+ m.

The problem of representation of holomorphic functions in terms of new as-
sumptions reduces to the investigation of the Riemann—Hilbert problem in the
class K %(;)(F; w). In Section 2 this problem is solved in the class K g(')(F; w) when
D is a bounded domain with the boundary I'. The case of an unbounded domain
can be easily investigated by reducing it to the considered one.
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6. The Riemann—-Hilbert—Poincaré problem
in the class Kp() (T w)

I. Vekua applied the representations (1), (2) to the investigation of the Riemann—
Hilbert—Poincaré problem

m

Z( ROLIGIT / H(t,7)0® (7 >dr)] — (1), (47)

k=0

Re

where ay, Hy, f are the given functions of Holder’s class, I' is a Lyapunov curve
bounding the finite domain D™, and the sought function ® has a continuous de-
rivative of order m in D+ and with boundary values from H ([19], [20]). In [5]
this problem is considered when ay(t) are continuous and ®(")(z) is representable
by a Cauchy type integral with a density from LP(T;w), where p > 1 and w is a
power function.

Here we assume that for p, I' and w the conditions of Theorem 3 are ful-
filled. We want to solve problem (47) in the class Kg(jr)'m(lﬂ;w), therefore it is
assumed that f € LP(O)(T;w). Since ®(™) ¢ Kp( )(F w) C EY(DT), the functions
PO (2) = ®(2), ®'(2),..., 8™ D(2) are continuous in D+ and absolutely contin-
uous on I' with respect to the arc abscissa. Thus it is natural to assume that in
condition (47) the coefficients ay(t), k = 0,m — I, belong to LP()(T';w). As to the
coefficient a,, (t), we should assume that it is bounded. However this is not enough.
Following [17], [18], [20], we reduce the problem to a singular integral equation in
the class LPC )(I‘ w), which is investigated in various conditions depending on the
assumptions made for p, ' and w ([3], [9]). It is assumed for simplicity that a,,(t)
is piecewise-continuous on I' and inf |a, (¢)| > 0.

So, let I' be a curve of the class 011)+(A1, o A, 1), 0 < 1 < 2, w be
the power function (46), the coefficients ag, a1, . . ., a1 belong to LPO)(T;w), p €
75(I‘), am € C(él, .. ,EA) (i.e., an, is piecewise-continuous on I' with discontinuity
points Ek), and the operators

HkSDZ/Hk(to,t)SD(t) dt, toel,
r

be compact in LPO)(T;w).
It is required to find a function ® € K} ) (T w) for which equality (47)

holds a.e. on I'. Note that the compactness of the operators Hy, is provided, for
instance, by the fulfillment of the conditions

A
Hy(to, V)| < ———5» k=0,m,
Helto O < 1o, o "
where A, A € [0,1), are constants and s(to,t) is the length of the smallest of two
arcs connecting the points to and ¢ on T' (see [11]).

Following [18, p. 233] this problem will sometimes be called Problem V.




Boundary Value Problems 35

Since under the above assumptions the conditions of Theorem 3 are fulfilled,
the sought solution @ is representable by equality (1) for m = 0 and by equality
(2) for m > 1.

Assuming first that m > 1, we calculate the derivatives of the function ®
given by equality (2) and substitute them into (47). Thus we obtain (see [18,
pp. 234-235]) that the function ¢ satisfies the condition

N = A(to)p(to) + /F N(to, t)g(t) ds = f(to) — do(to), (48)
where
Alto) = Re [(=1)™(m — 1)lmity™"tham(to)] . (49)
o(to) = Re [iao(to) —l—z’/rho(to,t) ds] ,

m

N(to.t) =Y Relai(to)Ni(to, t1)Ni(t1, 1) ds1]
=0
+ Re [(—=1)"(m — 1)mihp, (to, )t ™1 ],

No(to, ) = (1 - %)m_ll <1 - %) L1, Nt 1) = SR m = DY

tm=1(t —to)
m—Il—1
Nifto, 1) = (~1y I =) s m—1) (1 _ %0)

x(ln(l——)—i—%-ﬁ- +Ll> I=1,m-1.

It is evident that

No =N +To,

where
N = Alta)oltn) + 22 [ 2O, (50
B(to) = L (—1)’”( — 1)l [té "t am (to) +tham(to)] ; (51)
Ty = ; ; Re [al (to)Ni(to,t) /Hl (to, t1)Ni(tq, )dsl} (t)ds
/Re m — D)wiH, (to, t)t' ™ | o(t) ds.

Moreover, (49) implies that the function A(to) can be written in the form

1 — S
—(=1)™(m — V)i [ty " tham(to) — té‘mtgam(to)] . (52)

Alto) = 5
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By virtue of our assumptions about T', the coefficients ag(tp),. - ., @m-1(to) and
operators Hy, and using the above-mentioned result from [11] it is not difficult to
establish that the operator 7" is compact in LPO)(T;w).

The operator

(V'g)(t) = A(Dg(t) + [ Ntor )g(s0) dsy
r
considered in the space L) (T';w~1) is the conjugate operator to N. We prove that
the operator N is Noetherian in L?' () (I';w) and we calculate the index indN = .

Theorem 9. Let the conditions of Theorem 3 be fulfilled. Then for Problem V to be
solvable in the class Kg(;)m(l";w) it 1s mecessary and sufficient that for some real

d the function f(to) = f(to) — do(to) should satisfy the conditions

/F Flto)gi(s0) dso, k =To77,

where g1, ...,9n are linearly independent solutions from the class Lp/(')(]f‘;w_l)
of the equation N'g = 0, where N’ is the adjoint operator to the operator N.

In order that Problem V has a solution, for any right-hand part f it is nec-
essary and sufficient that n’ =0 orn’ =1 and in the latter case the solution g of
the equation N'g = 0 must satisfy the condition

(9,0) = /Fg(to)(f(to)dso £ 0.

In both cases the homogeneous problem has » + 1 linearly independent solutions
(where ¢ > —1).

If these conditions are misobserved, then: if (gx, o) = 0 for any k = 1,1/, then
the homogeneous problem has » +n' linearly independent solutions, and if among
the numbers (gi, o) there is at least one nonzero number, then it has » +n' + 1
solutions.

If o(t) = 0, then problem (47) is solvable for any right-hand part f(to) if and
only if n’ = 0; in that case the homogeneous problem has »+1 linearly independent
solutions.

7. The Poincaré problem

We will consider this problem formulated as follows:
Find, in the domain DT, a harmonic function u from the set

egf,l(F;w) = {u cu=Re®, &€ Kf)(zl(l";w)} ,

for which a.e. on I" we have

ou ou

als) 5o+ B(s) e+ () = (5) (53)
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Ou
L on
is normal derivative. It is assumed that p € P(I'), I € CY(Ay,..., Ai;v1, ..., 1),
0 < v <2, k=1,4; a and 3 belong to Holder’s class, while v and f belong to
LPO)(T; w).
Let
a(t) = —a(s)sind(s) + B(s) cos¥(s), b(t) = als)cos¥(s) + B(s) sind(s),
where ¥(s) is the angle formed between the tangent to ' at the point ¢(s) and the
axis of abscissa. Then condition (30) takes the form
ou ou

a(t) p + b(t) a_y +v()u=f(t), teTl,

Here a(s), B(s), v(s), f(s) are the real functions given on I, s is an arc abscissa,

which can be rewritten as

Re [(a(to) + ib(t0))®’ (to) + v(to) 2 (to)] = f(to), to€T.

Using representation (2), for m = 1 we obtain the equality

Ny =Re [—m'%(a(to) + ib(to))] ©(to)
+/FRe {’y(to)lne (1 - t?()) _ alto) + iblto) p(t)ds = f(to).

t—to

Let us assume that (a? + b%) > 0 (or, which is the same, o + 3% > 0).
Assume that )

n = o [arg(a(t) +i6(t)]r, (54)
where [f]r denotes an increment of the function f(¢) when the point ¢ performs
one-time movement along the curve I'. In that case the index of the operator N is
calculated by the equality s = s + 51, where s = 2n and

o =N{ A A ¢ il we > p(an) (55)
a4 p(Ak) 2p(Ayg)
*N{t’“ = T a(An S ST akp(Am}

(recall that Ay are the angular points of I' and «j are power exponents from
weight (46)).

Theorem 10. For the Poincaré problem to have a solution in the class e%(;) (T w)

for any right-hand part f(t) it is necessary and sufficient that the equation

N'g = Re { il la(to) + ib(to)] } g(to)
—I—/FRe{’y(to)lne (1 - %) + %ﬁj(t)}g(t) ds=0

would not have nonzero solutions in the class Lp/(')(I‘;w_l).
When this condition is fulfilled, the problem has s + 1 linearly independent
solutions, where » = 2n + .
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Edge-degenerate Operators
at Conical Exits to Infinity

B.-Wolfgang Schulze

Abstract. We develop elements of a calculus of pseudo-differential operators
on an infinite cylinder B~ := R x B 3 (t,-) where the cross section B is
a compact manifold with smooth edge Y. The space B~ is regarded as a
manifold with edge Y~ with conical exits to infinity ¢ — 400. The amplitude
functions are families of operators in the edge algebra on B depending on
parameters (t, 7, (), # 0. We impose a special degenerate behaviour for [¢t| —
0o, motivated by the structure of principal edge symbols of the next higher
corner calculus, consisting of operators on an infinite singular cone with base
B and axial variable ¢. In this framework we study ellipticity and parametrices.
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Keywords. Edge pseudo-differential operators, conical exits to infinity,
parameter-dependent symbols, ellipticity and parametrices.

Introduction

This investigation is motivated by the task to understand the structure of para-
metrices of elliptic operators on a corner manifold M in terms of the symbolic
structure adapted to the nature of the underlying singular space M. A topological
space M (under some reasonable assumptions on the topology, e.g., paracompact,
etc.) belongs to the category My, of manifolds with singularities of order & € N\ {0}
if there is a subspace si(M) € My (where 0 indicates the category of C'*° man-
ifolds), such that M \ sx(M) € 9My_1, and si(M) contains a neighbourhood V'
which has the structure of a (locally trivial) X“-bundle over s (M) for

X2 =Ry x X/({0} x X) for some X € M;_;.

In addition for any transition function €2 x X A Q) x X2 between different triv-
ialisations of V' (where ©,Q C R? correspond to charts on si(M), ¢ = dim s (M))
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we have a restriction to an 9%;_1-isomorphism
Ax X" - Qx XN XN =R, x X, (0.1)

which is asked to be extendible to an 91, _;-isomorphism Qx (Rx X) — Qx (Rx X).
In particular, 9% is the category of manifolds with edge-singularities s1 (M) € My,
and those for dims;(M) = 0 form the subcategory of manifolds with conical
singularities.

Let Diff”(-) denote the space of differential operators of order v € N with
smooth coefficients (in local coordinates) on the respective smooth manifold in
parentheses. For v = 0 this space has the meaning of C*°(-).

From M € My and M \ si(M) € M1 we find an sp_1 (M) := sp_1(M \
sp(M)) € Mg such that (M \ sp(M)) \ sg—1(M) € My_2, and so on. By iterating
this process we obtain a disjoint decomposition

M =s,(M)Usi_1(M)U---Us1(M)Uso(M) (0.2)

of M into strata s; (M) of different dimensions, in fact, dim s;(M) < dim s;_1 (M),
j=1,..., k. We call sg(M) the main stratum of M, and set dim M := dim sq(M).
Now on a singular manifold M € 9, we define spaces of differential operators
in an iterative manner. The space Diﬁ’é‘eg(M ) is defined to be the set of all A €
Diff}j (M \ sk(M)) which are
(i) in the case ¢ = dim si(M) > 0, close to sx(M) in the splitting of variables
(t,x,2) € Ry x X x Q of the form

A=t 3" a0t 2)(—td;) (tD.) (0.3)
Jtlal<p
for coefficients a; o(t,z) € C®(Ry x Q,Diff‘dtg(jﬂal)(X)),
(i) in the case ¢ = dim s, (M) = 0, close to si(M) in the splitting of variables
(t,x) € Ry x X of the form

A=tr i a;(t)(—tdy), (0.4)
=0
for coefficients a;(t) € C*(R, Diff‘d‘;gj(X)).
Let us briefly recall from [22] the idea of formulating a principal symbolic hierarchy
o(A) == {oo(A),01(A),...,0x(A)} (0.5)

of operators A € Diff}j (M), also defined in an iterative manner. For M € My
we define 0y (A) as the homogeneous principal symbol of A in the standard sense,
an invariantly defined function in C*°(T*so(M) \ 0), (positively) homogeneous
of order p in the fibre variables. Since A € Diffgcg(M ) for M € My, for general
k € N, induces an operator A|s sy € Diff(so(M)) we define o0(A) := 00(Also(ar))
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for every k. More generally, an A € Diﬂ’gcg(M ), M € My, induces an operator

Alars, () € Diff (M \ s (M)). Assuming by induction that we already defined

a(Alanse(an)) = {00(Al s, (a)) 01 (Al an\sy ()5 - - - k=1 (Alans, ()}, (0.6)
for £ > 0 we set

o(A) = {o(Ala\se(an)s ok (A) } (0.7)
for
or(A)(z,) =t Y a;a(0,2)(—t0;) (1()* when dim s, (M) >0, (0.8)
Jtlel<p

(2,0) € T*s,(M)\ 0, and

"
or(A)(z,v) = Zaj (0)v? when dim sy (M) = 0, (0.9)
=0
v € C. Both (0.8) and (0.9) are operator-valued, namely, with values in Diffj_ (X")
for dim sx(M) > 0 and Diff}j_ (X) for dim s,(M) = 0. As such they first define
families of mappings

ar(A)(2,€) : C*(s0(X")) = C*(s0(X")), (0.10)

and

or(A)(z,v) : C®(s0(X)) — C(s0(X)), (0.11)
respectively. In the context of ellipticity the spaces in (0.10) and (0.11) should be
replaced by suitable weighted Sobolev spaces over so(X”) and so(X), respectively.
In addition the complex variable v is to be restricted to a suitable weight line

I'g:={veC:Rev=p} (0.12)

for some real 8. We do not discuss such questions here but focus on some new
effects on the mapping properties of o1(A)(z,¢) over X" for ¢ — oo in the case
k = 2. Compared with k£ = 1 which corresponds to the situation of edge symbols
on a manifold with smooth edge, from k = 2 on there appear new structures that
are connected with the interpretation of X” as a singular manifold with conical
exit to co. What concerns the behaviour of o2(A)(z, () for t — 0 we refer to the
article [17]. Therefore, in order to simplify some formulations we consider the case
X=:=R x X rather than X" for X € 9.

1. Edge-degenerate operators

1.1. Conical exits for smooth cross section

In the singular analysis there are many reasons to study operators on manifolds
with conical exit to infinity. For instance, if X is a smooth compact manifold and

A=r7t 3" asalry)(=r0, Y (tD,)" (1.1)

Jt+lal<p
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an edge-degenerate differential operator on an open stretched wedge Ry x X x5
(r,2,y), with coefficients a; o (r,y) € C® (R4 x Q, Diff*~*leD (X)), the homoge-
neous principal edge symbol is a family of operators on X" =R, x X

a1 (A)y,m) =r" Y a;a0,y) (=10, ) (rn)* (1.2)

Jtlel<p
parametrised by (y,n) € T*Q\ 0,
o1(A)(y,n) : K=V (X") — K7m71(XD), (1.3)
for the Kegel spaces
K7 (X7) = w(r R (X7) + (1= w(r) Higne (X 7). (1.4)

Here w(r) is a cut off function on the half-axis (throughout this paper a cut off
function means any element of C$°(Ry) that is equal to 1 in a neighbourhood
of 0). The space H*7(X") for s € N is the defined to be the set of all u(r,z) €
=AY L2 (X M) graz, n = dim X, such that (r9,) Dlu € r="/?>*7L2(X") for every
D! € Diff(X) and j,l € N,j +1 < s. For —s € N we can define H*7(X") via
duality with respect to the scalar product of
H0,0(X/\) _ ,,,,—n/?LQ(X/\)

and then for arbitrary s by complex interpolation (cf. also [11] concerning inter-
polation properties of spaces on a cone). The space HE . (X") for X = S™ (the
unit sphere in RL™™) may be defined by {u|x~ : u € H{ (R x X), (1 —w(|#]) €
H*(R:™))} where RLT™\ {0} is identified with R x X via polar coordinates R\
{0} = Ry xS™ & — (r,x). It is now easy to pass to arbitrary X by identifying U”
with a conical set in RL"\ {0} via a diffeomorphism x; : U — Uj for a correspond-
ing open U; C 8", forming x(U") := {# € RL™™\ {0} : Z/|Z| € x1(U)} and then
pulling back H*(R;™™)|, () to U”. What concerns local coordinates in U without
loss of generality we may identify U with the set {(1,z) € Ry \ {0} : x € By} for
the open unit ball By in R? (in this case we write & = (zg,21,...,2n) = (2o, 2)).
Then the transformation (r,z) — (r,rx) gives us a difffeomorphism U”" — T to an
open conical subset of R;Jrn \ {0} where r in the first component is interpreted as
xo. Then u € HE  (X") is equivalent to u € Hf (R x X)|x~ together with the
property

(1 —w(r))p(x)u(r,re) € HS(R™™) (1.5)
for every coordinate neighbourhood U on X identified with B; C R™, any cut-off
function w, and ¢ € C§°(B1). Recall that

(kau)(r, ) == ATV 24\ 2), A € Ry, (1.6)
defines a strongly continuous group of isomorphisms
Ky KPY(XN) — K27 (XY (1.7)

for every s,v € R, and homogeneity of o1 (A4)(y,n) means
a1(A)(y, An) = Mraor(A)(y,n)ry " A € Ry (1.8)
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The ellipticity of operators (1.1) is a condition on the pair of principal symbols
(00(A),01(A)). For 09(A) we ask non-vanishing on T*(X” x Q) \ 0 and close to
the edge

oo(A)(r,z,y,p,§,m) # 0 for (p,&,n) #0, up to r =0 (1.9)

where

50(14)(7“, T, Y, P, 3 77) = TMUO(A)(T7 T, Y, r_lpa g, 70_177)' (110)
The condition on o1(A) as an operator-valued symbolic component should be the
bijectivity of (1.3) for some prescribed weight v, and for all (y,n) € T*Q\ 0. This
may happen, indeed, as a special case. The ellipticity in general, already stud-
ied in [18] (and after that in different monographs and applications) admits to
pose extra edge conditions, provided that a natural topological obstruction van-
ishes (which is automatically satisfied when (1.3) itself is bijective). In this case,
we ask the bijectivity of a corresponding 2 x 2 family of block matrix operators
with 01(A) in the upper left corner and other entries of finite rank. The latter
property has the consequence that the upper left corner is a family of Fredholm
operators. It turns out that from the operator algebra aspect there is no essen-
tial difference between the case of bijectivity of o1(A) or its Fredholm property,
provided that the above-mentioned topological condition is satisfied. Therefore,
we consider the Fredholm property and ask the existence of a parametrix within
a pseudo-differential calculus. It is known from the theory developed in [19], or
[20] that a certain (y,n)-dependent version of cone algebra over X" just contains
the parametrices. In particular, for r — oo we need what is called the pseudo-
differential calculus on a manifold with conical exit to oo in the corresponding
parameter-dependent form. We do not repeat this material here but only note
that the task is partly embedded into the analysis of edge symbols. We need anal-
ogous constructions later on for the case that X is replaced by a manifold with
edge, and then we have to employ the edge symbols anyway.

1.2. Edge symbols and wedge spaces

Edge symbols in our terminology are specific operator-valued symbols over 2 x RY,
where the open set {2 C R? represents local coordinates on the edge Y. In this
section we recall a few necessary notions from this context. A Hilbert space H is
said to be endowed with a group action k = {kx}rer, if & is a strongly continuous
group of isomorphisms k) : H — H, and kykyx = kan for every A\, N € Ry.
Similarly, if E is a Fréchet space, written as a projective limit for Hilbert spaces
EJ continuously embedded in E° for all j where E° is endowed with a group
action x that induces a group action x|g; in E7 for every j, then we say that s is
a group action in E. Now if H and H are Hilbert spaces with group action x and
K, respectively, we have spaces of operator-valued symbols

SH(Q x R%G H,H) C C®(Q x R, L(H, H)) (1.11)
for any open set 2 C RP, and p € R, defined by the system of symbolic estimates

173D D aly, m) Yl o iy < ¢ )~ (1.12)
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for all @« € NP, 5 € N? and (y,n) € K x R?, for all K cC 9, for constants
c = c(a, 3, K) > 0. For instance, if an a(,)(y,n) € C (2 x (R9\ {0}), L(H, H)) is
(“twisted”) homogeneous in the sense

a (Y, An) = MExa (y,n)/ﬁxl, e Ry, (1.13)
and x € C*(R?) an excision function (i.e., = 0 close to 0 and = 1 off some other
neighbourhood of 0), then x(n)a, (y,n) € S*(QxR%; H, H). Classical symbols are
defined in terms of asymptotic expansions into symbols of the form xa(,—;),j €
N, for arbitrary a(,_;) that are homogeneous of order y — j. The corresponding
subspace of (1.11) is denoted by

SH(Q x R% H, H).
If a consideration is valid for classical and general symbols we write as subscript

“(cl)”. Analogous notation is used for pairs of Fréchet spaces E, E with group
action. In this case a(y,n) € Séﬁ)l)(Q x RY; E, E) means that for every k € N there

is an | = (k) € N such that a(y,n) € Sélcl (Q x Re; BYR) | BF),

Another crucial notion for our exposition are wedge spaces modelled on spaces
with group action. For a Hilbert space H with group action x the corresponding
“abstract” wedge space W*(RY, H) is defined to be the completion of S(RY, H)

with respect to the norm
ullws e, my = ||<77>SH<_7,1>71(77)HL2(R;,H)- (1.14)
In the case of a Fréchet space E' = projlim;cy EJ space with with group action
x we simply set W?*(RY, ) := proj lim, .y W?*(RY, E7). Examples for spaces with
group action are
KXY with  ryu(r, z) == XD 24 (A, 2)

for n = dim X. Examples for operator-valued symbols are edge symbols, furnished
by edge-degenerate pseudo-differential families

p(r,y, p,n) = B(r,y,rp,rn) for p(r,y, 5, 1) € Liy(X, R;5) (1.15)
and associated operator families
h(r,y,z,n) = h(r,y, z,mn) for h(r,y, z,7) € C(Ry x Q, M5(X;RY)).  (1.16)

Here L!}(X :R") is the space of classical parameter-dependent pseudo-differential
operators of order y (with parameters in R!) over the C> manifold X. Moreover,
MU5(X;R?) is the subspace of all h(z,n) € A(C, LY} (X;R?)) such that h(8-+ip,n) €
L (X;RE9) for every § € R, uniformly in compact 3-intervals, where A(U, E)
for an open set U C C and a Fréchet space E means the space of holomorphic
functions on U with values in E. Given any f(r,z) € C>°(Ry, L5 (X;T'y j5_5)) for
I's := {2z € C: Rez = 3} for any real 8 where the parameter in I';/_5 > z is
interpreted as Im z, we can form the weighted Mellin pseudo-differential operator

opyy (f // (r/r"\V/2=0%0 f (1 1/2 — & + ip)u(r’)dr' /r'dp (1.17)
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for dp := (2m)~tdp, first on C§°(Ry,C°°(X)), and later on extended to larger
distribution spaces.

In the following we assume that the operator functions p and h in (1.15) and
(1.16), respectively, are connected via a Mellin quantisation, namely, the relation

Op, (p)(y:m) = op3; "/ (h)(y,m) mod C(Q, L™ (X3 RY)), (1.18)
as operator families C§°(X") — C(X").
For any ¢ € C*(R,) we set
on(r) := @(r[n]) for any fixed [n] € C*=(R?), [n] > 0, [n] = [n| when |y > 1.
(1.19)
Moreover, for ¢, ¢’ € C*(R) we write
=<y ifp=1 onsuppe. (1.20)
Now let w,w’,w” be cut-off functions with w” < w < w’, and form the operator
families
ant(y,n) = r~Fwgopa; "2 (h) (y. n)wl, (1.21)
and
ay(y,n) == 1" xy0p,.(p) (v, M)x, for x :=1—w,x" :==1-w". (1.22)
Let € and € be cut-off functions. Then we have
elan (y,m) + ay(y,m)}e € SHQX REGLSY(XN), LTHI7H(XN)) (1.23)
for every s € R. Other examples of operator-valued symbols are families
aOP, (Pint) (Y, n)o’ € SH(Q x RI K5 (X7), K37H°0(X 7)) (1.24)

for any 0,0’ € C§°(R4),s,7 € R, and ping(r,y, p,n) € C®(Ry x Q, L (X, R7)).
Both (1.23) and (1.24) belong to the amplitude functions of the edge algebra.
Other ingredients are what we call smoothing Mellin and Green symbols. We
content ourselves here with a minimal asymptotic information of the edge calculus
that could be encoded by the latter symbols. For the definition of Green operators
we set ST(X”) := projlimycy(r) VKN (X"). By a Green symbol of the edge
calculus of order v associated with the weight data (7,d) € R? we understand a
symbol

g(y,m) € [ SH(Q x REK7(XM), 84(X7) (1.25)
seR
for some € = ¢(g) > 0, such that
9" () € () S4(Q x RIS T0(X7), 8T7H(XM). (1.26)
seR

The “*” in (1.26) means the (y,n)-wise formal adjoint with respect to the non-
degenerate sesquilinear pairings

KoM XN x K277 (X") = C
induced by (.,.)xo0(xn) : Cg%(X") x C5°(X") — C.
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In order to define smoothing Mellin symbols of the edge calculus we first con-
sider an f(y, z) € C*(Qy, L™°°(X; T (n41)/2—+)). Then for any two cut-off func-
tions w,w’ the operator family

m(y,n) = wyr " opa; () ()l (1.27)

belongs to S/ (Q x R, L7 (X"),ST~#(X")) for every s € R. For our calculus we
impose a minimal “asymptotic” information on f, namely f € C*°(£,, M,Y_OO(X))
where M7 (X)) = ..o M7 (X)e, and

Mo>(X)e ={f(2)€eA((n+1)/2—v—e<Rez< (n+1)/2—v+e¢), f(B+ip)
€ L™°(X;T'g) forevery (n+1)/2—y—e<fB<(n+1)/2—7+e,

uniformly in compact subintervals}.
(1.28)

We are now in the position to formulate the spaces of edge amplitude functions with
respect to the weight data g := (v, —pu) for a weight v € R and a weight shift u €
R. The latter comes from the order of operators in the context of ellipticity. First
let Ry, - (Q2xRY, g) denote the set of all m(y,n)+g(y,n) where m(y, n) is as (1.27)
for an arbitrary f(y,z) € C>(€,, M7°>°(X)), and an arbitrary Green symbol of
order p associated with the weight data (v, — p). Moreover, let R (Q x R?, g)
denote the subspace of Green symbols (i.e., for vanishing m).

Definition 1.1. By R*(Q2 x R?,g) for g := (v,7 — 1) we denote the space of all
operator functions of the form

a(y7 77) = ahol(y7 77) + aint(y7 77) + m(y7 77) + g(y7 77) (129)
where
anol(y,1) = e{anr(y,n) + ay(y,n)}e (1.30)
for some cut-off functions e, €', cf. (1.23),
Aing (y7 77) = Uopr (pint)(y7 77)0/ (131)

for some o, 0" € C5°(Ry), cf. (1.24), and m(y,n) + g(y,n) € Ry, (2 x R?, g).

Let us now briefly recall the principal symbolic structure of the operators
A = Op,(a),a € R*(2 x RY, g). First observe that A € LE (X" x Q); thus there
is the homogeneous principal symbol as a function over T*X” x Q\ 0, namely,
oo(A)(r,z,y, p,&,n). Here x refers to local coordinates on X, and og(A) is (posi-
tively) homogeneous of order p in (p, &, n) # 0. We also observe the reduced symbol
Go(A)(r,z,y, p, &,m) = 1rH0o(A)(r, 2, y,7 "1 p, & r~1n) which is smooth up to r = 0.
In addition we have the so-called homogeneous principal edge symbol which is a
family of operators

o1(A)(y,m) : K=V (X") — K7m71(X) (1.32)
defined for (y,n) € T*Q \ 0 and homogeneous in the sense
a1(A)(y, An) = Mraor(A)(y, kY’ (1.33)
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for all A € Ry. For A = Op,(a),a € R*(Q2 x RY,g), we set o1(A)(y,n) =
o1(a)(y,n) where

o1(a)(y,n) := o1(an)(y,n) + o1(m)(y,n) + o1(g)(y,n).

The summands are as follows. For any ¢ € C®(Ry) we set p,((1) = @(r[n]).
Then

o1 (anor) (Y, 1) == " {wpmopds ™2 (ho) (s M), + X1a 0P, (p0) (v, M)X[y } (1.34)
for
hO(T7 Y, z, 77) = B(Ov Y, z, TT])? pO(Tv Y, Ps T]) = ﬁ(07 y,rp, TT])

Moreover,

o1(m)(y,n) = r P wiopa; (AWl 01(9)(wan) = g ym)  (1.35)

with g(,)(y,n) being the (twisted) homogeneous principal part of the classical
symbol g.

Summing up, for edge amplitude functions a(y,n) € R*(Q x RY,g),g :=
(7,7 — u), we formulated the principal symbolic hierarchy

o(a) := (o¢(a),o1(a)). (1.36)

Setting for the moment ¢0°(a) := o(a) we define the subspace R*~*(Q x R?, g) of
all a € RH(Q x RY,g) such that ¢°(a) = 0. In R*~1(Q x R?, g) we have again a
two-component principal symbolic hierarchy o~!(-). Inductively we define

RFITHQ x RY,g) forg=(y,7v—p),j €N,
by {a € R*7(Q x RY,g) : 0/ (a) = 0}.

Remark 1.2. There is an equivalent way of defining the symbol spaces of Definition
1.1 which employs a result of [7]. The space R™ (2 x RY, g) for g := (vy,y—pu),m =
u— 74,7 € Nis equal to the space of all operator functions of the form

(l(y, 77) = ahol(y7 77) + aint(y7 77) + m(y7 77) + g(y7 77) (137)
where
anol(y,n) := r_mwop'](/[_nﬂ(h)(y, n)w', (1.38)

for arbitrary cut-off functions w(r),«’(r), and h(r,y,z,n) = h(r,y, z,rn) for an
h(r,y, 2, i) € C(Ry x Q, MZ(X;RY)), moreover, aini(y,1) = 00D, (pint) (¥, n)o”
for any 0,0’ € C5°(Ry),s,v € R, and pine(r,y, p,n) € C®(Ry x Q, LT (X, RY)),
and m(y,n) + 9(y,n) € Ry, (2 xR, g).
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1.3. The parameter-dependent edge calculus

Let B be a compact manifold with smooth edge Y. Recall from the general defini-
tions of the Introduction we have B\'Y € 9y, and every point on Y has a neigh-
bourhood V with the structure of a trivial cone bundle over V NY with fibre X2,
This admits local variables in V'\ Y of the form (r, z,y) € Ry x X x € for some open
set (3 C RY. We often take y € R? as local coordinates on V' NY. Since we assume B
to be compact there are finitely many such neighbourhoods Vi, ..., Vxy such that
Viny,...,VyNY form an open covering of Y. Let ¢1,...,pn be a subordinate
partition of unity, and 91, ..., 1 n be another system of functions ¢; € Cg°(V;NY)
such that ¢; < 9; forall j = 1,..., N, cf. the notation (1.20). The amplitude func-
tions a(y,n) of Definition 1.1 also make sense in the variant a(y,n, \) where n € RY
is formally replaced by (1, A) € R%* for some [ € N. In other words we have the
spaces R™(Q) x Rt g) for g := (7,7 — p),u —m € N, and the corresponding
subspaces Ry}, o and R#. The above-mentioned symbols now depend also on the
parameters \. Based on a system of charts on B and a subordinate partition of
unity we have weighted spaces H®7(B) consisting of all v € H{ _(B\Y) that
are locally near Y in the splitting of variables (r,z,y) € X" x R? modelled on
W3(RZ, K57 (X")). (In the transition maps close to the edge we assume, for sim-
plicity, independence of r for small r.) Let L~°°(B, g) defined to be the set of all
C € Nyer L(H>Y(B), H*Y~#(B)) that induce continuous operators

O H(B) — H=715(B), C* « B F4(B) — H*7+(B)

for all s € R and some ¢ = ¢(C) > 0. The “«” in the latter relation means the
formal adjoint with respect to the non-degenerate sesquilinear pairings

H*'(B) x H*(B) — C

induced by (.,.) goo(p) : C§°(B\Y)xCg°(B\Y) — C. Moreover, let L~>°(B, g; R)
= S(R, L=>(B, g)).

Definition 1.3. The space L™ (B, g;R!) for g := (7,7 — p), u —m € N, is defined
to be the set of all operator families

N
AN =Y 65 {x;wOp, (a;)(Nw' b + Aine(A) + C(A) (1.39)

Jj=1

for arbitrary a;(y,n, \) € R™(RYx R+ g), singular charts x; : V;\Y — X" xRY,
cut-off functions w, w’, moreover, Ayt (A) € L™ (B\Y;R!) the distributional kernel
of which is compactly supported in (B\Y) x (B\Y), and C(\) € L~=(B, g; R").

Other elements of the edge calculus without parameters are valid in analogous
form also in the parameter-dependent case. In particular, we have a correspond-
ing parameter-dependent principal symbolic structure. From now on we more or
less freely use the tools of the parameter-dependent edge calculus, in particular
continuity properties in edge spaces, and the behaviour of edge operators under
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compositions and formal adjoints. Details may be found in a number of systematic
monographs, especially, in [5], [20], [11], or [8].

Ellipticity of elements A € L™ (B, g;R!) for g := (v,v— i), p —m € N, refers
to the case m = p.
1.4. Norm growth estimates

In (abstract) edge spaces W*(R?, H) for some Hilbert space with group action
k = {kxr}rer, we can define parameter-dependent norms. Let

WX(R?, H)
denote the space W*(R?, H) equipped with the family of norms

s = { [ 15l <n>|\%1dn}” ; (1.40)

Clearly (1.40) is equivalent to ||u/|yys e,z = { [(n) Hn ()|3,dn} 2 for every
fixed A.

Proposition 1.4. Let a(n, \) € S*(R? x (R'\{0}); H, H). Then Op, (a)(N), regarded
as a family of continuous operators

Op,(a)(A) : Wi(RY, H) — W5 (R?, H), (1.41)
s € R, for any v > p satisfies the estimate
HOPy(a)()‘)HL(w;(Rq,H),W;—"(Rqﬁ)) < C<)‘>max{u’u_y} (1.42)

for some ¢ > 0, independent of .
Proof. We have

10p, (@) Nullye v (za i) = /<n>2(s_”)III%@fA)a(n,A)ﬁ(n)II%dn (1.43)
Using the symbolic estimate

H'%an,,\)a’(m )‘)"Wn)\) H/;(H,g) < C<77, )\>”
it follows that (1.43) can be estimated by

J @™m0 A 5y )

< csupycra )2 (1.0 [ )18 )y (1.44)
< eI [l e o,y
This yields the asserted continuity together with the estimate (1.42). O

Proposition 1.5. The operator M, of multiplication by a function ¢ € S(RY)
induces continuous operators My, : W5 (RY, H) — W5 (RY, H) for every s € R,
and we have | Myl cows (e, m)) < c(g) for some A-independent constant c(y) that
tends to zero as ¢ — 0 in S(RY).



52 B.-W. Schulze

Proof. We apply Peetre’s inequality
(m* < (n— &)l (1.45)

and the estimate
1oy ey e < eln = (1.46)
for some M € R, depending on the group &. First we have

Ml iy = [0y F o)) B
Setting

mln\) = 1)y [ (F ) = O Ful€)de]n
it follows that

[Mellws e,y = llm(n, A)llz2@e)- (1.47)
From (1.45) and (1.46) we obtain

m(n,N) = || [ty ol - Oa(e)deln
= 1[0 e 0 — Oy )
< [0 ey 201 — 7€) e (1.48)
< [t = 91N g - 50— €)1 ) K Ly Ol
<cap [tn= "IN g il i) d

for ¢, = supgega (€)V|@(€)] < oo. Now we choose N large enough, set h(¢) :=
(n — EYMHISI=N (&) == ||(€)°k Fie /\>u( )|z, and apply Young’s inequality. Then

lm(n, Ml L2 ey < ccpllh* gllL2®a)

(1.49)
< cepllhllr@ay gl L2 ey = c(@)llullws ®a, )

for c(p) = ccpllhl| L1 (ra).- O

Corollary 1.6. Let a(y,n,\) € S*(RY x R x (R'\ {0}); H, H) be a symbol that
is independent of y for large |y|. Then Op(a)(N) induces a family of continuous

operators (1.41), and we have the estimate (1.42) for a constant ¢ > 0, independent
of \.

For purposes below we formulate a parameter-dependent variant of a version of
the Calderén-Vaillancourt Theorem for operators with operator-valued symbols in
the set-up with group actions. To this end we fix Hilbert spaces H and H with
group actions k = {ks}ser. and &k = {Ks}secr, , respectively. Recall that there are

constants & and M such that Fsll 2y < ¢max(d,01)M for all 6 € Ry.



Edge-degenerate Operators at Conical Exits to Infinity 53

Theorem 1.7. Let a(y,n,A) € C°(RY x RY x (RL\ {0}), L(H, H)), and assume

m(a)(N) = Sup(y,n)eRQ‘l,agA,ﬂgB||’~€<_7,{)\>{D2Dga(y7777)‘)}KM,)\)”L(H,I?) <0
(1.50)

for A:==(M+1,...,M+1),B:= (1,...,1). Then Op(a)()\) induces continuous
operators

Op(a)(\) : WR(RY, H) — WY (R, H) (1.51)
and we have HOP(G)()‘)||L(W§(Rq,H),W§(Rq,ﬁ)) < cm(a)(\) for all X € R'\ 0 and a
constant ¢ > 0 independent of a and \.
Theorem 1.7 can be proved in a similar manner as a corresponding result of the
article of Seiler [23] who extended a proof of the Calderén-Vaillancourt theorem
of Hwang [10] from the scalar case to the case of operator-valued symbols with
group action. An inspection of the details shows that we may admit a dependence
on parameters as assumed in the theorem.

Corollary 1.8. Let a(y,n,A) € C°(RY x R} x (RL\ {0}), L(H, H)), and let

1571 ADE DEa(y, 1, N b ooty < ot 1,0 (1.52)
Jor all (y,n,A) € RZ x RY x (RA\{0}), [\ > & >0, for all a, 3 as in Theorem 1.7
for constants cq,3 = ca,p(e) > 0. Then
10p(@) Ml £owo (ra, 1y, we (ra, 1)) < c(N) (1.53)
for all X € R\ {0}, |\ > ¢ for a constant ¢ = c(g) > 0.

Theorem 1.9. Let a(y,n,\) € R™(R? x R? x R!, g) for g = (v,7 — pu),pp—m € N,
and m < v, and assume that a is independent of y for large |y|. Then we have

1OP(@) (M| £ws (Ra ko7 (x2)), W5 = (R o - (x 7)) S e(ymatmm=yt - (1.54)

for all X\ € R!, for a constant ¢ > 0. In the case = v =0 it follows that
10P(@) (M)l £ows (Raxco v (x4)), W5 (Ra ko (x4 < (N, (1.55)
for all X € R,

A result about the growth of operator norms between spaces with norms
without parameters can also be deduced.

Theorem 1.10. Let a(y,n, \) € R™(R? x R? x R!, g) for g = (y,y —pu),p—m € N,
and m < v, and assume that a is independent of y for large |y|. Then we have

[0D(@) (M)l 20w (R ks (xA)) s = (R s —var—nn(x A )y < c{A)maxtmm=vI+M (] 56)

for all X € R!, for a certain constants ¢ > 0, and M = M (s,v) > 0. In the case
uw=v=0and s =~y =0 we have

10D(a) (M)l cowo (ra,rc0.0(x 7)), wo R o0 (xr))) < ¢{A)™, (1.57)
for all A € R,
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After the above considerations the proof is straightforward and left to the
reader. Another useful norm growth result for parameter-dependent edge operators
is the following theorem.

Theorem 1.11. Let g := (v,v — p); for every s',s” € R and every N € N there
exists an m with  —m € N such that for every A(\) € L™ (B, g;R?)

LA £z By, mre - (myy < €A (1.58)

for all X € R! and some constant ¢ > 0. Moreover, for every A(\) € L™(B, g;R!)
and s',s" € R with s’ —m > s there exists an L € R such that

FA 2 arer (11 2= )y < €AV (1.59)
or a S and some constant ¢ > 0.
for all X\ € R! and 0

The proof is simple as well and dropped here.

2. Operators on singular manifolds with conical exits

2.1. Edge operator-valued amplitude functions

We establish spaces of parameter-dependent edge operators over B~ := R x B for
a compact manifold B with smooth edge Y. First we fix weight data g = (y,v—p)
and an m < v such that y —m € N, and an exit order v € R in the variable ¢t € R.

Definition 2.1. We define
5™ (g) = {a(t, [tlr, [11¢) - a(t, 7,¢) € (R, L™(B,g: R} (2.1)

Let us first observe that Op,(a)(¢) induces a continuous operator

Op,(a)(¢) : C5°(R, H>7(B)) — C=(R, H*""™""*(B)) (22)
for every s € R and ¢ # 0. The proof is straightforward. We will show below that
Op;(a)(¢) : SR, H>(B)) — S(R, H*"™77#(B)) (2.3)

is continuous for every s € R and ¢ # 0.
Remark 2.2. We have 8™ (g) D S™¥(g) for v/ > v.

Proposition 2.3.
(i) ¢(t) € S7(R), a(t,7,¢) € S™*(g) implies p(t)a(t, T, ()
€ 8™t (g). Moreover, a(t,7,() € S™¥(g),b(t,7,¢) € S™"(§) for g =
‘(:Yv'y_,uv ®~)7 g = (;?a;y_lav 6) Y= 7_,&7 implies (ab)(t77-7 C) € Sm,+m, U+U(g
g) forgog= (7.7 — (n+ i), 0).
(ii) For every a(t,7,() € S™¥(g) we have
dja € 8™V !(g), 0ka € S™TH T (g), 0¢a € STl Hol(g)

for every k,l € N, a € N,
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Proof. (i) is evident. For (ii) for simplicity we assume ¢ = 1 and compute
dealt, [t]r, [t]C) = ((0¢ + [t]'m07 + [t]'COp)a) (¢, [t), [t]C)

where [t]’ := &4[t]. Since 7a(t,7,¢), Ca(t,7,() € SV(R,LmH(B,g;R?Ed)), and
dza,0za € S”(R, L™= 1(B,g; R %)), we obtain

dealt, [t]r, [t10) = (9 + ([8)' /D E)70z + (18] /L)) [E1¢O¢)a) (¢, [t [£]¢) € S™ .
It follows that 0la € S™¥~!(g) for all | € N. Moreover, we have 0.a(t, [t]T, [t]¢) =

-a)(t, [t], which gives us d,a € S™ 1Tl and, by iteration, 9%a €
t)(9za)(t, [t]r, [t hich gi %) Sm—Liv+l ' and, by iteration, OF
Sm—kiv+k In a similar manner we can argue for the n-derivatives. O

Proposition 2.4. Let 1, p2 € C°(R) be strictly positive functions such that ¢;(t) =
|t| for [t| > ¢; for some ¢; >0, j =2. Then we have

5™ (g) = {alt, 1 ()7, 02(1)C) = alt, 7,0) € S”(R, L™ (B, g RI%)) .

Proof. We can write a(r,p1(r)e, w2(r)n) = a(r,¥1(r)[rle, ¢2(r)[rln) for ¢;(r) €
C*(R), ¥;(r) =1 for |r| > ¢ for some ¢ > 0, j = 2. Then it suffices to verify that

a(r,1(r)g, ¥2(r)i) € S*(R, Lig)) (X; Ré?%q)); however, this is straightforward. O
Proposition 2.5. a(r,0,n) €S™¥(g) implies a(Mt,0,() €S™¥(g) for every AeR4.

Proof. Tt is evident that a(t,7,¢) € S”(R,Lm(B,g;R;'Ed)) implies a(\t, 7,() €
SY(R, Lm(B,g;Rl‘Ed)). Therefore, it suffices to show a(t, [\t]7, [At]¢) € S™¥(g).
Let us write a(t, [At]7, [At]C) = alt, oa(t)[t]T, o (t)[t]C) for wa(t) := [At]/[t]. We
have @y (r) = A for |t| > ¢ for a constant ¢ > 0, i.e., pa(t) — A € C§°(R). Thus
there is an r-excision function x(t) (i.e., x € C>*(R), x(¢t) = 0 for [t| < co,
x(t) = 1 for |t| > ¢, for certain 0 < ¢g < ¢1) such that x(¢)a(t, [Mt]7, [M]() =
x(t)a(t, [t] 7, [t]AC), and this function certainly belongs to S™"(g). It remains to
characterise (1 — x(t))a(t, ox(t)[t]T, pA()[t]¢) which vanishes for [¢[ < co, and a
simple calculation shows (1 — x(¢))a(t, ox(t)7, pa(t)C) € C§°(R, Lm(B,g;RlEd)),

which is contained in S"~>°(g). O
Lemma 2.6. For every a(t,T,() and b(t,7,¢) as in Proposition 2.3(i) we have
(07aDyb)(t,7,¢) = clt, 7, () € ST (g o g).
Proof. The assertion is a direct consequence of Proposition 2.3. O
Proposition 2.7. Let ;(t,7,() € S*(R, L*7(B,g;R't%)), j € N, be an arbitrary
sequence, p,v € R fired, and assume that the asymptotic types in the involved
Green symbols are independent of j. Then there is an a(t,7,¢) € S”(R, L*(B, g;
R*9)) such that a — Zj‘\;o a; € S*(R, L~ WN+U(B g R*4)) for every N € N,
and @ is unique modS” (R, L=°(B, g; R1*%)).
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Proof. The proof is similar to the standard one on asymptotic summation of sym-
bols. We can find an asymptotic sum as a convergent series Y2 x((7,¢)/¢;)a; (t,

7,¢) for some excision function y in R4, with a sequence ¢; > 0, ¢; — 0o as j —
oo so fast, that ZJ N X((7 C)/Cj) (r,7,¢) converges in S¥(R, L™~ N+1)(B g
R*4)) for every N. O

2.2. Compositions

Our next objective is to study compositions Op,(a)(¢)Op,(b)(¢) for a(t,7,¢) €
S™*(g),b(t,7,¢) € S™¥(g) for fixed ¢ # 0.

Theorem 2.8. For every fixed ¢ # 0 we have

Op;(a)(€)Op,(b)(¢) = Opy(a#b)(¢), (2.4)
a#b(t,7,¢) = [[e~a(t, T + 0, )b(t + 7,7, ()drdo,
a#b(t,7,¢) = Zk, a(t,7,¢)DEb(t, 7,0) + rn(t, 7,0, (2.5)
for
mtr0 =57 [ ] -6 @¥ay, (26)

7+ 0o, g)d@}(DiV L0)(t + 7, 7, C)drdo.

Proof. Theorem 2.8 is formally of the same structure as the composition result
in Kumano-go’s formalism. The only point is to verify that the involved oscilla-
tory integrals make sense, i.e., that the standard regularising process gives rise to
convergent integrals. We shall see the details when we characterise the remainder
term according to the following Lemma 2.9. O

Lemma 2.9. Let a(t,7,{) € S™¥(g),b(t,7,() € S™¥(g), respectively, with the
weight data as in Lemma 2.6. Then for every s',s" € R, and I,J, A, k,I,n € N
there is an N € N such that

|D;DID&ry(t,, C)IIE(HS,,Hﬂ(B)’HSw,“(B)) < elr)y Rl ™ (2.7)

forall (t,7) €R%, || >e>0,4,5€N,acNL0<i<I,0<j<J|al <A, for
some c=c(s',s", I, J A k,I,n,N, ¢) > 0.
Proof. For abbreviation we set

[ - ”5’,5” = H,/;(Hs/~v+ﬂ(B),H5”W*M(B))7

| - ||s',50 = - Hc(Hs’erﬂ(B),st(B))a | - Hso,s“ = HL(HSO”Y(B),HS”W—“(B))'
Moreover, let

an+1(t [t + [t)00, [110) := (07" a)(t. 7 + b0, C),
l~)N+1(t +r[t+r]n [t +7]C) = (D,fV'Hb) (t+r,7,0).
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Then

(b7, C) = %//6_"9{/0 (1= 0)anos (2.8)
(t, [t]T + [t]0o, [t]C)dG}BNH(t + 7, [t +7]7, [t + r]¢)drdo.

Since by 41(t,7,¢) takes values in L™ (B, §) it can be interpreted as an operator
function with values in L(H*"7#(B), H¥ ~™7(B)). Similarly ay.1(t,7,¢) takes
values in L™~ (N+1)(B, g) ie., in L(H® ~™7(B), H* ~m=m+(N+1)7=1(B)), for any
given s’. Thus, when also s” is prescribed we take N so large that s’ —m — m +
(N+1)>s".
By virtue of Proposition 2.3(ii) we have
Z;N+1(t,7~',5) c Sﬁz;ﬂ—(N—i—l)(g)’ ant1 (t,%,f) c Sm—(N-i-l);u—i—(N—i—l)(g)7

and it follows that

b +1(8, 7, O)llsr,s0 < (@)~ N7, ()P (2.9)
for some B > 0. Moreover, for every M > 0 the number N can be chosen so large
that

” (ag&N+1)(t7 7, 5)”80,8” < C<t>y+(N+1) <7~—7 5>_JW_G (210)

for every G and all ¢, 7, 5 . Those properties alone, regardless of the concrete nature
of the operator functions (here belonging to the parameter-dependent edge calcu-
lus), will imply the desired estimates (2.7). The regularised oscillatory integral
(2.8) has the form

1
mt.r.0) = 5 [[ -0 -0 [ 1 -0)"

an+1(t, [t]T + [t]0o, [t]C)d9}5N+1(t +r, [t + 7], [t +7]Q)drdo

for sufficiently large L, K. For simplicity we assume that  is a one-dimensional
variable. For | < L,k < K we have

2lan (L, [t + [t100, [t]10) = (0% an+1) (¢, [t + [100, []O)([0)*,  (2.11)

PRbn 1 (t+ 1, [t + 77, [t +7]0) = (0% + (10, [t + ) + (CO, [t + 7])*F) (2.12)
bn41)(t + 7, [t +7]7, [t +7]0) + R

where R denotes several mixed derivatives of a similar (‘better’) behaviour. The
estimates concerning R are left to the reader. From (2.10), (2.11) we obtain

102 a1 (8, [8)7 + [8100, [L1C) 150,57 < e TN+ ([t + [t00, [1)¢) 2 ([1]0)*,
(2.13)
and (2.9), (2.12) yield

102by 1 (t+ 7, [t +7]7, [t + 7105750 < clt 4+ Nt o]r, [t 470 P (2.14)
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where we take N so large that 7 — (IV 4+ 1) <0, and
1(02% bvs1) (¢ + 7 [t + 717, [+ 71O (T [t + 71 |7 50 (2.15)
< et + )" N[t 4 7l [+ 71O o, [t + )P,

(02D 1) (8 + 7, [t + 717, [t + 71O (GOt + 111550 (2.16)
<t 4+ Y= NEOE 4 o], [+ OB 2R |Con [t + 7] 1E.

The above-mentioned mixed derivatives admit similar estimates (even better ones;
so we content ourselves with (2.13), (2.14), (2.15), (2.16)). Let us now establish
an estimate for ||rn (¢, 7, ()||s,s». First we have

I (7, )l < // / 1) 72E (1~ 82)E (o) 2K (1 — 82)5 (1 — 0)Nan 4

(t, [t]7 + [t]00, [t]O)bN 11 (t + 7, [t + 7]7, [t + 7]C)|| o o dOdrd.
The operator norm under the integral can be estimated by expressions of the kind
Ii= () ()7 D (1) 720 (0) "2 (17 + [#)0, [1]C) M2 ([£)0)
([t + oD [E+rIOP L+ [+ [+ 710 25 (7] + 1CD* 10, [t + 71>,

I <L, k<K, plus terms from R of a similar character, containing several mixed
derivatives. Peetre’s inequality gives us

<t>v+(N+1)<t_|_7,>f/—(N+l) < <t>l/+l7<,r,>|ﬁ—(N+l)\
<

Moreover, we have ([t]7 + [t]00, [t]¢) 2 ([t]0)* < c([t]¢) 2 [t]* < c for fixed ¢ # 0,
and

([t + rlm [t +710) 2 (7] + ) [0n [t + 7] **
S 0 i e S O B (114 R | L S

using |0.[t+7]|?* < ¢, [t4+7]72F < cforallt,r € R, and || < ¢(n) for every n € R%.
This yields

I< ety ()P =HDlr) =25 (o) M ([t]r + [8160, [t10) M ([t + r]m, [t +71C) P

Writing M = M’ + M" for suitable M’, M" > 0, B < M", to be fixed later on,
we have

([t + [0, [t10) ™ = ([t]r + [H0e, [L1O)™ ([t)r + [t16e, (1)
< e{[t10) M ([ [0 M ([H100) ™ < e([f10) M ([ M (o)™
Here we applied once again Peetre’s inequality which gives us also
([t + 77, [t +710)7 < el +r]m) B[t + r]¢)°
since B > 0. It follows that
I < ety () P=(NEDIZ2E ([ MI=M ) =2 [116,0) M ([t + 7]7) P

()~ ([t + 11O P (o
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A straightforward consideration gives us
(r) "Bt + )P P < e
for all r,t, 7, which yields
T < c(t) 7 ) P=INEDIZER2B (O B=M (1) B (0) =5 ([1]00)

Finally, using (o)~ 2(t)"2([t]00)? < c for all 0 < # < 1 and all ¢, o we obtain for
€| >e>0

I< C<t>u+ﬂ+23 <T‘>|D_(N+l)‘—2L+QB<Q>_2K+B<[t]T>B_M” <[t]<>_M
forallt,r e R, 7,0 € R, 0 <8 < 1. Choosing K, L sufficiently large it follows that
v (8,7, Qllsr o < et H7H2E=M () B=MT () =M,

using ([t]7)B~M" < e(r)B=M" for B— M" < 0. We have ([{]¢)™M < c[t] "M (¢)~M
for |¢| > e > 0.

Now B is fixed, but M, M" can be chosen independently as large as necessary.
Therefore, we proved that for every s’,s” € R and k,l,n € N there is an N € N
such that

I (t, 7, Ollsrs < ()~ ~HO ™
for all (t,7) € R?, |¢| > & > 0, for some ¢ = ¢(g) > 0. In an analogous manner we
can show that

IDiDLr N (8,7, )l < elr) = (1) 7HE) ™
for all i, j € N and all (t,7) € R?, || # 0, for constants ¢ = c(e,i,5) > 0. O

Remark 2.10. Analogously as (2.4) we can study the composition

Op,(a)(¢)Op;(b)(¢) = Op,(a#b)(¢, <)

where in this case
(a#b)(t,7,¢,C) = Zm a(t,7,¢)Db(t, 7,¢) + ra(t, 7, ¢, C)

for every N € N. The remainder is of analogous form as that in Lemma 2.9.

Lemma 2.11. For every s',s"” € R, I, J, A, k,l,n € N there exists an N € N such
that

||DiDiD?D?TN(t: 7, 5)||£(H5’n1+ﬂ(B)}HS”W1*M(B)) < C<T>_k<t>_l<<>_n<é>3

for all (t,7) € R2,[¢],[¢| > e >0,i,j EN,a,B e NI =<i < T,0< j < J,|al,|8] <
A, for some constant ¢ = ¢(s', ", 1, J, A k,l,n,N,e) >0 and some B > 0.

The proof follows by a simple modification of the proof Lemma 2.9.

Proposition 2.12. Let g = (v, — 1,0),m,v € R,y —m € N. Then for every
s’ € R and I,J, A k,I,n € N there exists an N € N such that a(t,7,() €
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Sm=(N+1sv(g) implies
LI o —k jp\—1 -n
|D;DID&ry(t,, C)||£(Hs,W(B)}HS,,W_“(B)) < ()R (2.17)

forall (t,7) €R%, (| >e>0,4,7€N,acNL0<i<I,0<j<J|al <A, for
some ¢ =c(s', 8", I, J, A k,I,n,N, &) > 0.

Proposition 2.12 can be proved in a similar manner as Lemma 2.9.

Theorem 2.13. Let a(t,7,() € S™¥(g); then for every ¢ € R\ {0} the operator
Op(a)(€) extends to a continuous operator (2.3) for every s € R.

Proof. Theorem 2.13 can be obtained in a similar manner as Theorem 2.8. We
only have employed a special case of when the second factor in (2.4) is only the
multiplication by a function in S”(RR;); then the conclusions to obtain Lemma 2.9
do not employ the continuity of (2.3) but only (2.2). O

Note that the composition in Theorem 2.8 refers to the continuity of operators
in Schwartz spaces which makes the composition formally possible.

2.3. Edge calculus up to infinity

Definition 2.14. We define L™ (B>, g;R?\ {0}) for g = (7,7 — 1, 0), . —m € N,
to be space of all

A(¢) = Op,(a)(C) + C(0),
¢ € R4\ {0}, for arbitrary a(t,7,¢) € S™¥(g), O(¢) € L=°~>(B= g; R\ {0}).
Here L=%=>°(B=,g:R%\ {0}) is the space of all operator families

CQu(t) = [ ettt Out)at (2.18)
R

for kernels ¢(t,#',¢) € S(RE\ {0}, S(R x R, L™>°(B, g)).
Remark 2.15. It can be verified that the space

L% (B=, g; R\ {0}) (2.19)
coincides with ;o Lr=3¥(B=,g; R\ {0}) for any fixed v € R. Moreover, every
C € L=7°(B=,g;R?\ {0}) can be represented in the form C(¢) = Op,(c)((),
ct,T,¢) = &(t, [t]r, [t]¢) for a &(t,7,¢) € S™°%¥(g). Here we may take v = —oo.
Theorem 2.16. A(¢) € L™ (B=,g;R?\ {0}), B({) € L™?(B=,g);R?\ {0}) for
g = (777 - :u7@); g = (’?7’? - :&’7@)? Y= ’3/ - [L, implies

A(QB(¢) € L™ (B>, g o g; R\ {0}).
For A(C) = Op(a)(¢) + C(¢), B(C) = Op(b)(¢) + D(C) for a(t,7,¢) € 8™ (g),
b(t,T,¢) € S™¥(g) it follows that
A(QB(¢) = Op(e)(¢) mod L™>%"(B=, g o ;R\ {0})

for a c(t,7,¢) eS™T MVt (gog). In particular, A() L™~ (B> g;R%\ {0}) or
B(Q)eL™>7>(B=, g R\ {0}) implies A(C)B(¢) €L~ (B=,gogR*\ {0}).
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Proof. Let us first assume A = Op(a),B = A = Op(b). Theorem 2.8 gives us
AB = Op(en) + Op(ry) for en(t,7,¢) = Z,{LO 1/k 0Fa(t, 7, () DFb(t, 7,¢) €
Smtmivt?(g o g), of. Lemma 2.6, with 7y as in (2.6). The symbols a® (t,7,¢) =
oFa(t,T,Q), by (t,7,C) :=DFb(t,7,¢), have the form a® (t, [t]r, [t]¢) and Z)(k) (t, [t]T,
[t]¢) for corresponding a® (t,7,() € SYTH(L™*(B,g; R'*?)), and B(k) (t,7,¢) €
S”_’“(Lm(B,g;R“d)), respectively. By virtue of Proposition 2.7 we have an as-
ymptotic sum p(t,7,0) ~ 3 e oa™ (t,7,0)be) (t,7,¢) in the space S (R, L™+™(B,

g o g;R*%)). In particular, we have

B(t,7,.0) = 3 a® (1,7, Obgy (1,7, 0) € S”(R, L™= N+ (B, g o g RITY)).
Setting p(t, 7, ¢) = p(t, [t]7, [t]¢) it follows that

N
Op(a)Op(b) = Op(p) — Op(p — >_ a®bg) + Op(ry)

k=0
for every N € N. A similar identity holds on the level of amplitude functions.
From (2.5) it follows that aftb =p—p+ Z,ICVZO a(k)b(k) + ry, and we see that —p +
Z,{LO a(’“)b(k) +ry = [ is independent of N. By virtue of Lemma 2.9 and Proposi-
tion 2.12 the function I(¢, 7, ) satisfies the estimates (2.7) for every pair (s, s”) and
all 4, j, . Such an [ can be represented by a kernel ¢(¢,¢, () as in the second part
of Definition 2.14, such that Op,(1(¢)) = C(({). It follows altogether Op(a)Op(b) €
Lmtmiv+?(B= gog;R?\ {0}). From the above norm growth characterisations of
L7°%7°° we can also easily deduce the second part of Theorem 2.16. O

Let us define the formal adjoint A*(¢) an operator family A(¢) € L™ (B>, g;

R\ {0}) by
(A(Q)u,0) 2w, mr00(5)) = (1 A*()0) 2R 1003

for all u,v € S(R, H>°°(B)). Then for A(¢) = Op,(a)(¢) + C(Q), a(t,7,¢) =
a(t, [t)r,t[¢]) € S™¥(g), C(¢) € L===°(B= g;R%\ {0}) we obtain

A7(¢) = Op,(a™)(¢) + C*(C)

for a*(t',7,¢) = a® (', [t']7,[t']¢) with (*) indicating the pointwise formal ad-
joint in the edge calculus over B and a*(t', 7, () being treated as a right symbol.
Moreover, if the smoothing operator is given in the form (2.18), then

CH (Ot = /]R O (1, Cu(t)dt

where ¢*) means the pointwise formal adjoint in the space of smoothing operators
over B.
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Theorem 2.17. A(¢) € L™¥(B=,g; R4\ {0}) for g = (7,7 — i, ©) implies A*(¢) €
L™v(B=,g" R\ {0}) for g* = (=7 +u, —v,0). In particular, A(¢) = Opy(a)(C),
a(t,t,¢) € S™¥(g), entails

A*(¢) = Op(a™)(¢) mod L_OC;_OO(BX,g*;Rd\{O}), for an a*(¢,7,¢) € S™¥(g").

The proof is straightforward and left to the reader.

2.4. Ellipticity

Definition 2.18. An element A(¢) € L4V (B=,g; R4\ {0}) for g = (7,7 — 1, ©) is
called elliptic if in a representation

A(¢) = Op,(a)(¢) mod L™>(B=,g;R"\ {0})

for an a(t,7,() € S#¥(g) there is an element b(t,7,() € S™H~¥(g™!) for g~ ! =
(v — i,7,0), such that 1 — ba € S~10(g;), 1 — ab € S710(g,.) for g; := (7,7, 0),
g =(v— 17— 10).

Remark 2.19. Let A(¢) € L“”(B“ g, R4\ {0}), B(¢) € LA7(B=,g; R4\ {0})
forg = (v,v — 1,0), & = (3,9 — [1,0), be elliptic, where v = 4 — i. Then
A(C)B(¢) € Lrths ”"”’(B“ go g,Rd \ {0}) is also elliptic.

Theorem 2.20. Let A(¢) € L#Y(B=,g; R4\ {0}) for g = (v,v — p1,©) be elliptic.
Then there exists a parametriz B(¢) € L=#~V(B=,g LR\ {0}) in the sense

1— B(Q)A(C) € L™>%7>°(B=, g;; R4\ {0}),
1— A(C)B(¢) € L™7°(B=, g,:R*\ {0})

(¢f. the notation in Definition 2.18).

Proof. Let us construct a B(¢) such that 1 — B(¢)A(({) has the asserted property.
The construction from the right is similar; the a standard algebraic argument
shows that both operators coincide modulo L~°%~°°. From Definition 2.18 we
have ¢ := 1 —ba € S™1%(g;) for a corresponding symbol b. From now on the proof
is straightforward after the prepared tools. We represent bffa by an asymptotic sum
p € S%Y(g;) modulo a smoothing family (cf. also the proof of Theorem 2.16). It
follows that p =1 — d for a d € S™1%(g;). By a formal Neumann series argument
we find an f € S71%(g;) such that Op(1 — f)Op(p) = Op((1 — f)ip) = 1 modulo
L~°%7°°, This allows us to set B := Op(1 — f)tb. O

Remark 2.21. Let A(¢) € LMY (B>, g; R\ {0}) be elliptic, and let B(¢), B(() €
L=#77(B=,g 1 R%\ {0}) be two parametrices of A(¢). Then we have B(() =
B(¢) mod L=2—%°(B= g~1: R\ {0}). Moreover, also B(¢)+C(¢) for any C(¢) €
L=~ (B=g~1;R?\ {0}) is a parametrix of A(().
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Abstract. The first boundary problem gi—f; — 22715 = f (z,y) is considered in the

domain D = {(z,y): 0<x <p, 0<y<I}. Uniqueness of the solution is
proven with the method of energy integral. The Green function is constructed
for the first boundary value problem, through which the explicit solution of
the problem is obtained.
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1. Introduction

The third-order equation with multiple characteristics
Pu 0%u
L(U)Z%—a—yg:f(%y) (1.1)

was considered for the first time in [1-4]. Then it has appeared in [5—6] where
various boundary problems were studied using the method of potentials.
We note that the equation (1.1) is conjugate to the equation

which is the linear part (for v = 0) of the so-called VT-equation (Viscous Transonic
equation)

v
Ugze + Uyy — ;uy = Uy Ugy -

For v = 1, the VT-equation expresses an axi-symmetric flow, and for v = 0, it
expresses a plane parallel flow [7-8].
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In [9] the fundamental solution of the equation (1.1) is constructed expressed
by the degenerate hypergeometric function in the form

1
Uz,y;6&m) =ly—nl® f(t), —oo<t< oo,

. (1.2)
Vi(z,y;€6,m) = ly —nl® ¢ (1), t <0,
here

2v/2 14 36T (1/3) (1 4 )

=200 (2,27 ), o(t)= L2t (=, =7 ),
=220 (Gogir) . e =L (1

4 _

r= o=t P el
ly —n[®

where U(a,b; ), ®(a,b;z) are degenerate hypergeometric functions (see [10]).

Using estimates of degenerate hypergeometric functions estimates of the fun-
damental solutions are obtained when the argument approaches infinity. For the
function U(x,y; &, n), the estimate:

h+k 1—(—1)k 1 3 k
| < Cunly = a5 o = g] ~ HESA IR0V
as
r—§
3|
ly —nl®
holds, where Cyp — const, k,h =0,1,2,... are constants.

For V(z,y;&,n), there are analogue estimates for (z — &) |y — 0|~ 5 o0

In [11, 12] some boundary problems for equation (1.1) are studied in a rect-
angular domain. In these papers the solution is attained by the Fourier method
and, for this, zeros at y = 0 and y = [ were required. In this work the Green
function is constructed for the first boundary problem and through it the explicit
solution is obtained.

2. Statement of the problem

In the domain D = {(x,y) : 0 <z <p, 0 <y <} we consider the equation (1.1)
where p > 0, [ > 0 are constant numbers.

The function w(z,y) satisfying the equation (1.1) in D and belonging to the
class C2:2 (D) N CLY (D) is said to be a regular solution of equation (1.1).

Problem A. Find a regular solution of the equation (1.1) satisfying in D the bound-
ary conditions
U($,O) =¢1 (1’), U($al):<ﬂ2 ('1:)’ (21)

where

ei(z) € Cl0,p] ,i=1,2, ;(y)eC[0,l], j=T1,3,f(z,y) € Cls (D).
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Besides, the compatibility conditions
©1(0) =1 (0), @1 (p) =12(0), ¢1 (p) =13(0), ¢2(0)=11(0),
P2 (P)=1/)2 (Z)v 9012 (p)zl/)s (Z)7 f(l‘,O):f(iﬁ,l) =0.

are satisfied.

3. Uniqueness of the solution
Theorem 1. Problem A cannot have more than one solution.

Proof. Let Problem A have two solutions, say ui(x, y) and us(z,y). Then u(x,y) =
ui(z,y) —ua(z, y) satisfies the equation uyz, — ty, = 0 and homogenous boundary
conditions. We will prove that u(z,y) = 0 in D. Consider the identity

9 L o 9 2 _
p (uum - §uI) ~ oy (uuy) + u; = 0. (3.1)

Integrating identity (3.1) over the domain D and considering homogenous bound-
ary condition, we obtain

l
1
5/@62 (O,y)der//u;‘) (2,y) dzdy = 0
D

0

Hence uy(z,y) = 0, that is u(z,y) = ¢ (z). From u (z,0) = 0, we get ¢ (z) = 0,
then u(z,y) = 0. O

4. Existence of the solution

Let us move prove existence of the solution for Problem A. We consider the con-
jugated differential operators
*

83 82 83 82
a8 oY oo o
There is the identity:

B
L[] —L* [p] = %€ (pvee — petbe + peeh) —

where ¢, 1 are sufficiently smooth functions.
Integrating this identity over the domain D, we obtain

[ et -vr acan = [[ 8% (e — petbe + pects) dedy
D D

0
(9_77 (‘Pwn - 90771/})

~ [] 5= (v~ envrdsan (41)
D



68 Y.P. Apakov

Now we take the fundamental solution U (z, y; £, n) of equation Ugpe—tyy = 0,
as the function ¢. As the function of (£,7) U(x,y;&,n) satisfies

L*[U] = —Ugge = Upy =0
at (z,y) # (§,7m). As the function ¢, we take any regular solution w(£,7) of the

equation Ugzys — Uyy = f(x,y). Observing that U, (z,y;&,n) has a singularity at
y =0, we divide the domain D into two domains: D = liH(l) (Dj U D3) where
£—

D ={(&mn): 0<&<p, 0<n<y—e},
D;={(n): 0<&{<p, ,y+e<n<l}.

Then the identity (4.1) gets the form

// Uz, y;&m) f(&n) dédn
D

P y—e
. 0
= slil&_ / %€ (Uuge — Ugug + Ugeu)dEdn
0
p P
+ 61_1)151+/ / (9_§ (Uuge — Ugug + Ugew)dédn
0 y+e
P y—e A
_ sl—i>%l+ / / an (Uuy — Uyu) dfdn— hm / / o (Uuyy, — Uyu) dédn
0 0 0 y-‘rs
y—¢

= lim (Uuge — Ugue + Ugeu) |£ Od’r]+ hm / UU&—U&U&—FU&UH

e—0+
0 y—i—a

p p
. —
= dim [ (Uuy = Uy) ) 4t de— tim [ (U, = Ug) )g:y L de

0 0
l

Y
/(UU& — Ugue + Uggu) |£ 0d77—|— / (UU,& — Ugue + Uggu) |§j8d77
0

Y

— lim [ [U(z,y;&y —¢e)uy (& y—¢) = U(z,y;8,0) uy, (£0)] d§

+ lim Uy (z,y;&,y —e)u(&,y —e) — Uy (2,y;§,0) u (§,0)] d€
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p

- EEI(I)l-i- [U (:f,y,f,l) Un (571) - U(%?Jv&?J + 6) Un (fay + 6)] d€
0

+ lim [ [Uy(z,y:§, D) u (&) = Uy (z,y: 6,y +e)u(§,y+€)] dg

£—>0+

1
/ Uuge — Ugug + Ugeu) |g
0

(@, 53 & D uy (§1) = U (2, 5€,0) uy (€, 0)] dE

O\"s

+ [Un (z,5;6, D) u (& 1) = Uy (2,4;:€,0)u (€, 0)] d§

S—

P
+ i (U ey — ey — ) de
0

P
- 11%1+ Un ($7y,§7y+5)u(f»y+5)df
E—
0
Simplifying this expression, we obtain

/ / U,y €,0) (6, 1) ded
D
l

= / [Uuee — Ugue + Ueeul |i—hdn
0
P

—/U(w,y;ﬁ,n)un(&nﬂziédﬁ
0
p

+ / U, (2 y: € m)u(, m)[1=hde

0

P
+€£%+/Un (!E,y;f,y—é‘)u(f,y—g)dg
0

p
-t Uy @gy o uEy+ e
0

69



70 Y.P. Apakov

Considering Theorem 3 in [13], we obtain from (4.2)

[ veyensien dean
D

l
= /(UU& — Ugug + Ugeu) |$=hdn
0

p p
~ [Uts&munenlizhds + [ Uy ysmut mlizide - 2u(s.p).
0 0
Hence, we have finally
l P
2u(z,y) = /(UUss — Ugug + Ugeu) |;Zhdn — / (U — Uyu) [1=odé
0 0

- // Uz,y; §,n)f (& n) d&dn. (4.3)
D

Let now W (z,y,&,n) be any regular solution of the equation L*[u] = 0, and
u(z, y) be any regular solution of the equation Ugps —uyy = f(2,y). Then assuming
in (4.1) ¢ = W(z,y;:§,m), ¥ = (&, n), we have

P

l
0= / (Wuge — Weug + Weeu) [$0dn — / (W — Wiyu) [1=hde
0 0

- // W (z,y; € n) f(& n) dsdn; (4.4)
D

p

l
2u(e,y) = [ (Gues — Geue + Geeu) [EZhn — [ (Guy — Gy [0
0 0

- // G(z,y;€,m)f(§,m) dsdn. (4.5)
D

where
Gla,y;&m) = Uz, y:&,m) — Wz, y:§,m).
Now we construct the function G(z,y;&,n) which for (z,y) must have the
following properties: as a function of (z,y) # (£,7)

L[G] =0,
G(z,0;,m) = G(z,1;¢,m) =0, (4.6)
G(0,y;&,m) = G(p,y;§,m) = Gz(p,y;€,m) =0,
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as a function of (§,7) :
L*[G] =0,
G(z,y;€,0) = G(z,y;€,1) =0, (4.7)
G(z,y;0,n) = G(z,y;p,n) = Ge(x,y;0,n) = 0.

For this purpose we solve the following auxiliary problem.

Problem A;. Find the reqular solution of the equation (1.1) satisfying the boundary
conditions:

w(z,0) =0, wu(z,l)=0, 0<z<p, (4.8)
u(0,y) = u(p,y) =uy(p,y) =0, 0<y<l

We will seek the solution of the stated problem in the form of (see [14])

ZXk sin —y (4.10)

The function f(z,y) can be decomposed with respect to the particular system

™
{sin -V of trigonometric functions as

Z Jr(x)sin —y (4.11)
where

fe(z) = f(z,y)sin kTWydy-

~| o
O\N

Substituting (4.10), (4.11) into (1.1), we obtain

oo

Z (X' (x) + X Xk () — fr(z)) sin kTy =0

k=0
To find the function Xy (z), we obtain the following problem
{ LIXy] = X}"(2) + N X (@) = fi(x)
Xi(0) = Xi(p) = Xi(p) = 0

k2
= ()

We look for the solution of problem (4.12). Using the method of constructing
Green’s function [15] which has following characteristic properties:

(4.12)

where
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1. Gg(z,€) is continuous and has continuous derivatives for 0 < x < p;
2. Its second-order derivative with respect to x has a jump discontinuity at
x = & being equal to 1, i.e.,

02G(z,€) ~ PGi(=,§)

0x? Ox2

z=£+0 z=£—0

3. In each of the intervals 0 < x < € and £ < z < p, the following function
Gp(z,€), considered as a function of z, is the solution of the equation

%G
L[Gk] = W: + )\in =0.

4. The following G(0,€) = Gr(p, &) = Gre(p,€) = 0.

We construct the Green function. So linearly independent solutions of the
equation
X'+ X Xp =0

have the form
A 3 A 3
X;=e M X, = e cos — ez, X3= €2 Tsin — A\ Z.
We represent the Green function to be sought in the form

3 3
are T 4 age%k”” COS — AT + age%ki sin i)\km, 0<z<¢
(@, &) = ¥ ¥
A AL
bre~ M 4+ hoe 3T cos 7)\;@:10 + bgeTk”” sin 7)\]@1}, E<x<p
(4.13)

where a1, as, as, by, ba, by are yet unknown functions of &.

Using Properties 1) and 2) of the Green function and substituting ¢ (§) =
bi(&) — ax(§), k = 1,2,3, we obtain the system of linear equations for finding the
function ¢k (€) :

creME 4 CQCAT’CE cos ?)\kf + 036%5 sin ?)\kf =0,
—016_)""5 + cze/\Tkﬁ cos (?)\kf + g) + 036%6 sin (?Akf + g) =0,

3 2 3 2 1
cre™ M€ 4 cpeFE cos (gkkf + %) + 636%5 sin (%—)\kf + %) =13

The determinant of this system is equal to the value of the Wronskian
W (X1, Xo, X3) at the point x = &, therefore it is different from zero and is equal
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3V3

to 5 Calculating A.,, i = 1,2, 3, we find:
“pegn [ V3 il
=2 e S R
a(§) = ;o () =— )
3N2 3N2
26_%5 cos ﬁ)\kf + il
2 6

Next, we use Property 4) of Green’s function. In our case, these relations will take
the form

1 . 3
b1 + by = Yl (eA’CE — 2@_%E sin (g)\kf + %)) ,
k

A 3 Ak 3
ble_)\kp 4 bQSTkP cos 7)\kp + b367kp sin TMP =0,

3 3

. 3 . 3
—bre P 4 bze%p cos (%)\kp + E) + bge%p sin (g)\kp + z) =0.

Because X7 (0), Xo (1), X4 (1), are linearly independent the determinant of this
system is different from zero:

A= ? <€/\kp 9= Frgin (?)\kp—k %)) # 0.

Calculating Ay, , i = 1,2,3, we find

‘ 3
M€ _ 96~ Fégin (%)\kf + %)

3)\% 1 — 2e~3MPgin ﬁ)\kp + il
2 6
92e=3Mp [ Mré — 26— FEin ﬁ)\kf + 2 ) sin ﬁ)\kp +Z
2 6 2 6
ba =

‘ 3 ’
37 (1 — 273 MP gip <£Akp + 3))
2 6
: 3 3
2e~ 2 kP (ez/\’c5 — 2¢~F€sin (%Akf + %)) cos (%Akp—i— %)

3)\% (1 — 2e~3MP gin (?)\kp + %))

by =
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Taking into account that ax (§) = b (§) —cx (£), k =1,2,3, we find ag, k = 1,2, 3:

3
26— (3P=€) gip (g)\kp + %) —2e” F Ssin (?Akf + %)

a] = ’
3
3)\% 1 — 2e~3MPgin £)\kp + T
2 6
9¢~ M (376 gin <§)\kp + %) — 2~ #F€sin (?)\kf + %)
as = —a; = — 9
3)% 1 — 2e=3 P gin ﬁ)\kp + T
2 6
2= (3P=€) ¢og ﬁ)\kp + T\ —2e=F¢cos ﬁ)\kf + T
2 6 2 6
az =

3\ (1 — 2e” 5N sin (?Akp + %))

de= B3+ gin ?)\k (p—¢)

3N2 (1 — 27 PMP gin (?Akp - %))

Substituting the obtained values into (4.13), we obtain the function Gy (z,§) in
the form:

+

Gr(z, &) = {26_)"‘(2’”““ ) sin <§)\kp + %) (4.14a)

_9e~ F e+ gipy (?)\kﬁ + %)

3
1 9e—F(E—o) gip l%m (E—2)+ =

3
4 fe— EBrre—T) gy l%m (- f)] sin ?Akx} ’
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Gy (x,8) = % {—26_%(2$+£) sin (?)\kf + %) (4.14b)

+ €—>\Ic (z—=¢)

sin (?Akf + %) } ,
§<z<p

A =3\ (1 — 2”2 MP gin (?Akp-i- %)) .

It is easy to verify that the function determined by formula (4.14) possesses all the
properties formulated for the Green function. Thus the Green function has been
constructed, hence, the solution of the problem A; has the form

— 2~ M(3P—6-%) gip l§)\k (p—2z)+ %

e

+ e~ FBrHE—e) i [?)\k (p—x)+

where

P

Xy (z) = / Gy (2.€) fi (£)d, (4.15)

0

Then by the formula (4.10), taking into account (4.15), the solution of prob-
lem A; becomes the form

u(e) =Y [Gr@Of ©dgsin Ty = [ Gu e sin T fde
k=17 0 k=1
(4.16)
If the function u(z, y) and its derivations tyqs, Uy, converge uniformly in D, then
the function u(z,y) gives the solution of problem A;. We estimate the function
(4.16) as:

>
Il
—

p oo
uo) <| [ 3Gl €sin T fu € de (4.17)
0

< [Slcu ol
0

Under the assumptions stated above, the following inequality [16] is valid for the
function f(x,y) :

sin WTky‘ |fx (&) d€ < /Z|Gk (2, )] fx (&) dE.
o k=1

O] < T

since fi (&) are the Fourier coefficients of f(x,y) in the segment (0,1).

My = const > 0,
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Taking this into account, (4.17) can be rewritten as:

p

Ju (z, )| < EOO |G (2, ) [ fx ()] dE < EOO —12 |G (2,8)[dE. (4.18)
k
o k=1 k=1

Estimating G, (z, &), we find from (4.14):

10 e~ 3P 9 o= 3Ak61
3 N2 +§e o Use<E 0<h<i-g,
i
|Gk‘(1‘7£)| g 8 7Akp 1 e—%kk52 5
2 + = s E<a <l 0<d <z,
3 3 N

or
10 e=2MP 2= 3A0 y
G (2,6 < — + 2 = Mok~ 5. (4.19)
3 A2 3 A2

Then we obtain from (4.18)
[ ()] < Mk~

Hence the series (4.16) converges uniformly. Next we show that the series of the
derivatives gy, converges uniformly. We have

3 Boo o3 B oo
DD [S s G e = [ NG fe () e, (420)
0 k=1 0 k=1

3 e [
T < [ e @l in @l < an [ 3 g5 Mo o] de
0 k=1 0 k=1

(4.21)
hence,

10 2
P‘in ($,f)| < g)\ke_%)\kp + g/\ke_%/\k(s < M5/€%
and we have from (4.21)

Pu(z,y)
ox3

We obtain that the series (4.20) converges uniformly. Since

QPu(z,y)  u(x,y)

< Mgk™3, M; = const >0, i=1,6.

oy 0x3
2u
the uniform convergence of the derivatives 92 is also proven.
Y

That is, it is possible to differentiate the series (4.16) term by term, what
is necessary to satisfy the equation (1.1). Change of the order of summation and
integration is always valid, since the series under the integral (4.16) converges with
respect to &.
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Replacing fi(€) with their values in the solution (4.16), we obtain the final
solution of the auxiliary problem A; in the form

w(e,) = [ G, sin T2 fi(6) de

1

Tt —

b
Il

I
NE

~I o

£
Il
-

1
Gy (z /f &, m) sin —r]sm —ydndf
0

ZGk x,€) sin —T] sin —kydﬁdn

Ot — v TT—x

G (x,&y,m) f(&n)dEdn

O O _ O —
\

where

G (z,&,y,1) =7 ;Gk x,&) sin Tkn sin Tky (4.22)

It is easy to be sure that the function G (z, €, y, n) satisfies all the conditions
of the problems (4.6) and (4.7).

The function (4.22) is the Green function of the first boundary problem for
the domain D. Convergence of the series (4.22) follows from the estimate (4.17)
for the function Gy (z,€) at @ # £. Taking the boundary conditions (4.6), (4.7)
for the function G (z,¢,y,n) and the boundary conditions (2.2), (3.1) into account
from (4.4) the solution of problem A is attained in the explicit form:

2u (x,y) :/Gss (z,y,p,m) Y2 (n) dn—/Gss (z,9,0,m) 1 (n) dn
0 l 0 ,

- [ G+ [ Gy Do (©)dg
0 0

- / Gy (2,5.€,0) 1 (€) de— / / G (w.y. ) f (6,m) dedy.  (4.23)
0 D

Eventually we have gained the solution in explicit form. Thereby we have proved
the following result.

Theorem 2. Let ¢; (z) € C[0,p], i = 1,2, ¢, (y) € C[0,1], j = 1,3, f(z,y) €
0335 (E) , and the condition of convergence is valid. Then the solution of problem
A has the form (4.23) where the Green function G (x,€,y,n) is determined by the
formula (4.22).
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On Stability and Trace Regularity of Solutions
to Reissner-Mindlin-Timoshenko Equations

George Avalos and Daniel Toundykov

Commumnicated by F. Bucci and I. Lasiecka

Abstract. Uniform stability of Reissner-Mindlin-Timoshenko (RMT) plates is
addressed. Similarly to waves, Kirchhoff plates, and elastodynamics, boundary
stabilization of the RMT model relies on an observability inequality, which
in turn necessitates the derivation of certain trace regularity estimates. The
exponential stability of RMT plates has been quoted for many years, yet, to
the best of our knowledge, a detailed analysis of a requisite trace regularity
result does not appear to exist in the literature. The purpose of this note is
to provide such details.
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ing, Neumann feedback, stability, trace regularity.

1. Introduction

In the past few years there has been an increased interest in Reissner-Mindlin-
Timoshenko (RMT) plate equations, inasmuch as they provide a more accurate
description of flexural vibrations of thin elastic plates (vis-a-vis Kirchhoff plate
models). In addition to a large body of results on applications of the finite element
method to this system — a topic beyond the scope of this article — a number of
new analytic developments have emerged.

For modeling and variational framework see the articles by R. Paroni, P.
Podio-Guidugli, and G. Tomassetti [PPGT06, PPGTO07]; M. Pedersen [Ped07c,
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Ped08]; V. Rensburg, L. Zietsman and Merve [vRZvdM09]. Coupled PDE dynam-
ics was discussed by C. Giorgi and M. Naso [GN06] (RMT with thermal effects),
and M. Grobbelaar [Dal06, Dal08] (coupling with acoustic and thermal dynamics).

I. Chueshov and I. Lasiecka studied global exponential attractor for the sys-
tem with full interior damping [CLO6]. Boundary controllability of RMT plates
was addressed by M. Pedersen in [Ped07a, Ped07b]; C. Giorgi, F. Vegni [GV07]
proved uniform stability of a viscoelastic model with exponentially decaying mem-
ory kernels.

The focus of the discussion below will be on the uniform stability of the RMT
system subject to boundary feedback controls. In this area the known results are
somewhat less comprehensive. S. Fernandez and D. Hugo [FS09] proved (strong)
non-exponential stability, when boundary feedbacks act only on the filament angles
of the state vector. Uniform stability of a (3D) structural acoustics model with an
interface on an RMT plate is treated in an upcoming paper by the authors [AT10].

While an analytic approach to exponential stability of linear RMT plates was
presented by J. Lagnese back in 1980s [Lag89], we do not believe there exists in the
literature a comprehensive analysis of the necessary trace estimates arising in the
general problem of boundary stabilization for this model. The associated challenges
can be circumvented by imposing additional geometric constraints on the shape
of the domain. Thus, the observability result established in [Ped07b] requires the
domain to be star-shaped; likewise [FS09] deals with a rectangular boundary. The
result in [Lag89] does not explicitly place geometrical conditions on the boundary
where the feedback is active, however, it omits the discussion of the necessary
trace estimates (for example, [Lag89, equation (3.38)] involves well-defined traces
of the solutions and cannot be justified by quoting Korn’s inequality). The key
role played by trace regularity in this context was first noted by I. Lasiecka and
R. Triggiani in [LT92] for wave equations; analogous conclusions for plates and
linear elasticity were later made by M.A. Horn [Hor98al; in a more recent paper
M. Grobbelaar [Dal06] remarked on the importance of trace regularity estimates
for RMT plates. The goal of this note is to address this aspect which, as far as we
are aware, has been missing from the literature to date.

1.1. Role of geometry and trace regularity in stabilization of PDE’s

Boundary observability of hyperbolic PDE systems is intrinsically linked with the
geometric configuration of the underlying physical domain. This phenomenon was
first rigorously exhibited for wave equations in the seminal paper by C. Bardos,
G. Lebeau and J. Rauch [BLR92], which proved that observability of finite-energy
solutions necessarily requires all rays of geometric optics within the domain to
interact with the controlled boundary. For a comprehensive overview of geometric
aspects of control theory see R. Gulliver, I. Lasiecka, W. Littman, R. Triggiani
[GLLTO04].

However, when considering the construction of such “reverse” inequalities
for second-order hyperbolic PDE’s, even Neumann feedbacks acting on the entire
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boundary require some form of geometrical restrictions. In fact, dating from the
earliest boundary controllability studies, which focused on the wave equation, the
analysis relied on the star-shaped property of the underlying domain. In the course
of invoking a so-called multiplier method, the key to obtaining the necessary esti-
mates was in finding a smooth vector field h(x) whose Hessian was strictly positive
definite in the interior of the domain, while on the boundary () - v(z) > 0, with
v denoting the outward unit normal field. A sufficient geometric assumption would
be for the domain to be star-shaped with respect to some fixed interior point xg.
Sufficiency of this condition for control and observation was first conjectured by J.
Quinn and D. Russell in [QR77], and subsequently established in the work of G.
Chen [CheT79]; the corresponding vector field is radial and given by h(z) = z — x¢.
Existence of fields with similar properties was applied by J. Lagnese to study
uniform stability of elasticity systems, [Lag83] and thin plates [Lag89].

One would, however, expect that full boundary damping of Neumann type —
for instance on a wave equation:

wy(z,t) — Aw(z,t) =0, reQCR” te(0,7)
ow (1.1)
8—V(x,t) +w(x,t) = —g(we(x,t)), el :=0Q, te(0,T),

— would not necessitate any geometric restrictions, and, at least for a suitable feed-
back map g, would suffice to exponentially stabilize the system. However, the proof
of stability in this situation requires showing that Neumann feedback also “con-
trols” the tangential derivatives on the boundary — a conjecture whose argument
has historically been a highly nontrivial challenge and which became the primary
reason why the star-shaped condition was being employed even for full boundary
dissipation. The fact that indeed no restrictions are actually necessary was first
discovered by I. Lasiecka and R. Triggiani [LT92]. The proof required microlocal
analysis and regularity theory for elliptic PDE’s. Essentially the theorem showed
that the normal component and the velocity feedback of the solution to (1.1) also
offered control on tangential derivatives of the solution on the boundary:

T—X\ 2 T
[ e [ (
A Q 0 Q

(where l.o.t. represents “lower-order terms” which essentially correspond to semi-
norms of w in spaces that compactly embed into the finite-energy space H! x L?).
A need for an inequality of this type arises whenever boundary stabilization of a
hyperbolic system is considered, however, because of relatively canonical appear-
ance of the microlocal quantities involved, the proof of (1.2) does not immediately
carry over to other types of PDE’s, especially when a system is comprised of sev-
eral coupled equations. An extension of the estimate (1.2) to linear elasticity was
first carried out by M. Horn [Hor98al; for an excellent overview of boundary trace
regularity and its connection to stability see also another paper by that author
[Hor98b]. For another proof and some additional details on this result for elasto-
dynamics see [AT09].

o ou
or ov

2
+ w?) dxdt + l.o.t.(w), (1.2)
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Extensions to Kirchhoff plates were developed by I. Lasiecka and R. Triggiani
in [LT93, LT00]; a substantially more challenging analog for shells was later treated
by them in [LT02]. To this date, however, no versions of this argument have been
available for RMT plates.

1.2. Goals and challenges

The necessity of (1.2)-type inequality for stabilization of plates was pointed out in
[Hor98b], and for the RMT model in particular, by M. Grobbelaar in [Dal06]. The
difficulty in attempting to follow the program outlined in [LT92] is that the system
now consists of three 2nd-order coupled hyperbolic equations which entails special
algebraic considerations: namely, the connection between the “damped” co-normal
derivative (associated to the divergence-form elliptic part of the system) and the
tangential gradient on the boundary must be addressed; a similar challenge is
known to arise in the case of the system of dynamic elasticity. The corresponding
inequality for the RMT plate is presented in Theorem 3.1; it constitutes the main
result of this paper and is a key technical step to the proof of the exponential
stability of the associated linear system, as presented in Theorem 2.1.

2. Reissner-Mindlin-Timoshenko (RMT) plate

The RMT equations were introduced by Reissner [Rei45] and Mindlin [Min51].
The origins of the model go back to the theory of flexural vibrations of elastic
beams: it had been long known that the classical Euler-Bernoulli (EB) equations
offer limited accuracy when it comes to vibrations of higher modes; the EB model
is also inapplicable when the cross-sectional dimension of the beam is comparable
to the wave-length of flexural motions. Rayleigh [RS45] (first published in 1877—
1878) attempted to correct the error by taking into account the effect of rotatory
inertia. Subsequently Timoshenko (e.g., see the 1921 and 1937 papers in [Tim53])
included the effect of shear deformations. The RMT system is a 2-dimensional
analog of the Timoshenko beam.

Unlike the classical Kirchhoff plate theory, the hypotheses underlying the
RMT equations do not assert that the filaments of the plate remain perpendicular
to the deformed mid-surface, and shear and rotatory inertia are taken into account.
For a summary of equations see, for instance, [Lag89, Ch. 3]. The state vector of
the plate is given by a vector [u, 1), @], where u is the deflection of the plate’s mid-
surface occupying domain € C R?, and 1, ¢ are rotation angles of the filaments
of the plate.

Let the parameters p and h stand respectively for the (constant) mass density
of the plate and its thickness; « is the shear modulus, 3: the modulus of flexural
rigidity, and 0 < p < 1. Functions f1, fa, f3 represent generic forcing terms. The
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RMT equations read:

0%u )
(P’UW —a le[w + Uy, ¢+Uy] =fi (2.1)
iy 2 [0] o [ e+ e - (Y +¢m)] [ww] _ [fQ]
<ﬁ> ot? |:¢] f div L(l—u)(i/’y +y¢z) l“/’a:‘id)y o ¢+uy - EI

The div operator in the second equation denotes the divergence applied to each
row vector (or divergence of the column vectors). The initial data for this system
belongs to the following finite energy space:

{{u<o>,w<o>,¢<o>}, {ut<o>,¢t<o>,¢t(o>}} e = Q)P x LX)

Let us introduce a more compact notation:

u f1 ph
U= o], F=|p|, M= [ ph?,/m}, ¢ = L(1—p)
¢ f3
ot + uy) a(d + uy) 0
S =5(U) = | Btz + pdy) BOu(y +¢2)|, L=Q(U):= |a(d+us)
BCu(Yy + ¢z)  B(pthe + dy) (¢ + uy)
Then a generic RMT system with a Neumann boundary data can be written as
MUy —divS+Q=F in Qr:=Qx(0,7T) (2.2)
{U(0),U:(0)} = {Uo, Us } € # (2.3)
Sv+KU=-G in Yp:=0Ix(0,T); I':=09Q, (2.4)

for a symmetric positive definite matrix K. Here Sv stands for the regular matrix-
vector multiplication (i.e., the column vector whose entries are the dot-products
of v with the row-vectors of S).

The energy functional for the above system is equivalent (via a version of
Korn’s inequality) to the squared norm of the solution {U,U;} on 42, and is
given by [AT10]:

E(t) = E(U(t), U(1))

ph3 ph3
=5 (Ph||ut(t)||2L2(Q) + ﬁWt(@HQLZ(Q) + ﬁ“d)t(t)“%?(ﬂ)
« «
+ §||1/’(t) + ug ()20 + §||¢(t) +uy (|72 (0 (2.5)

4 D (100 00y + 20080, 000+ 164 ) )

PO 4y 1) + 60 0220

Well-posedness of (2.2)-(2.4) for linear boundary feedbacks follows the standard
semigroup theory assuming the source F has a suitable structure; in fact, the

_|_



84 G. Avalos and D. Toundykov

argument extends to non-linear boundary feedbacks via the theory of m-accretive
operators. The reader is referred to [AT10] for details.

Consider a simplified version of this model with F = 0 and with a linear
dissipative. Then the following uniform stability result holds:

Theorem 2.1 (Exponential stability of the linear model). Let F = 0 and G =
G(Uy) for a positive definite 3 x 3 matriz G. Then the system (2.2)~(2.4) is expo-
nentially stable, in the sense that there exists T > 0 (dependent on the diameter
of Q), v >0, and C(E(0)), the latter dependent only the initial energy, such that
E(t) <C(E0)e " forallt >T.

As was mentioned above, the known versions of this result omit some de-
tails of the necessary trace estimates. The complete argument can be found in
the upcoming paper by the authors [AT10], which, in addition, addresses a more
general setting of coupled wave and plate dynamics, with fully nonlinear feed-
backs restricted to portions of the boundary. The argument uses weighted multi-
pliers based on non-radial fields, and relies on the aforementioned trace regularity
estimates, which show that the co-normal derivative and the velocity feedback
uniformly control the gradient of the solution on the boundary.

3. Trace regularity of solutions to RMT equations

The following inequality is one of the key arguments leading to the proof the
uniform boundary stability of (2.2)—(2.4); e.g., as stated in Theorem 2.1 for the
linear version of the system.

Theorem 3.1 (Trace estimates for the RMT plate). Let {U, U;} be a solution to
(2.2). Then for any T > 0, 6 > 0 and positive X\ < T/2, there exists a constant
Cr a5 such that

T—X T
/ /|VU|2dxdt§CT,A,5/ /(|SV|2+|U,5|2) dar dt
A r 0 I

2
F ANy gy

+ CT7)\,5l.0.t.

2
Lot = l.O.t.(U,Ut) = ||UH[H1/2+5(QT)]3 =+ ||Ut||[2H—1/2+5(QT)}3 + |U|[2L2(ET)]3'
For any € > 0, Lo.t. satisfies
T T
CT7)\,5l.0.t. S 5/ g(t)dt + CT,A,(XE/ |U|[2L2(Q)]3 (31)
0 0

In addition,
M[Uanuy;wqu/}y; (]Sm, ¢y]t = [S v, Vu - T, Vlf) t T, V(b : T]t7 (32)
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where T(x) = {11(x), 72(x)}, v € T is a smooth tangential frame on T' and

ar; Qg 0 0 0 0
0 0 pri Bouvy Bouve Puin

M= | o Pwe B fown b det M = const = af®c, >0
- ? - - H :
0

T1 T2 0 0 0
0 0 T1 T2 0 0
0 0 0 0 1 T2 (33)

Remark 3.2 (Regularity of solutions). To derive the result of Theorem 3.1 one
needs the trace of the gradient of a solution to be well defined on the boundary;
in particular, it is convenient to assume that the solutions are strong (or, more
generally, at least possess the regularity {U,U;} € [H?/?T5(Q)]® x [HY(Q)]?).
However, that does not prevent one from utilizing this result when investigating
stability of weak solutions. In fact, it is a standard procedure in the multiplier
method to carry out all the calculations for smooth initial data, and then extend
only the very final estimate to all weak solutions by density. All that is needed for
stability analysis of weak solutions is that the RHS of the estimate in Theorem
3.1 depends solely on the finite-energy norms and on the boundary data.

The rest of the paper is devoted to the proof of Theorem 3.1. The argument
follows the pioneering strategy of I. Lasiecka and R. Triggiani [LT92], and em-
ploys special technical arguments similar to the ones invoked for elastodynamics
in [Hor98a, AT09].

Pick Z on the boundary I'. Let O be a small open neighborhood of Z; apply a
smooth cutoff that localizes U to O N 2. Then using a change of coordinates pass
to a locally equivalent elliptic system on a half-space (see, e.g., [Hor03, Sect. 6.4]).
Define

Q=R xR,
Q=R xQ, X :=R;x{x=0,y€R}.

Subsequently we will suppress multiplicity when indicating norms, i.e., H*(Q) will
stand for [H*(Q)]? etc. Use notation

19 19 19

De=ige Dvi=5gy Dr=ig
to write the equations in general form as
P(z,y, Dz, Dy, D)U = F in Q (3.4a)
B(0.y, D, DU, = G in X (3.4b)
where
P(x7y7DI7Dy7Dt) = —k(w,y)Df + A(x,y, Dg, Dy) (3.5)

with k(z,y) being is a strictly positive definite diagonal matrix, and A: a strongly
elliptic (3 x 3 matrix) operator of order 2. Under a Fourier-Laplace transform
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(except in the normal direction) substitute
D,~¢& Dy—n Di—T1=0—1iy (y>0), v={-1,0}.

The entries of the corresponding principal (3 x 3 matrix) symbol Symb[A] of the
operator A are homogeneous second-order polynomials in £ and 7. Since A is
strongly elliptic, there exists ag > 0 such that

R Symbl[A] > ag(|n|* + |€%])1d. (3.6)

Henceforth we shall restrict the analysis to 0,7 > 0 since the proof in the other
quadrants is analogous. For a constant ¢y > 0, to be defined in a moment, split
the quadrant into three regions as illustrated in Figure 1:

R :={{n,0} :|o] < colnl}
R :={{n,0} : coln| < o] < 2colnl} (3.7)
Ry, ={{n, 0} : |o] > 2co|n|}.

n
A o] = coln

Rer |lo| = 2¢oln]

R

> O

FIGURE 1. Decomposition of the frequency domain into elliptic (R.),
and non-elliptic regions, the latter consisting of the hyperbolic (2’ ) and
the “transitional” (PRy,.) sectors.

In order to use the solution U of the original system (2.2) in the local version
(3.4), we must restrict it in time. For 0 < A < T'/2 let 0(t) € C§°(R) be such that
1 teln, T — A
0(t)=<0 teR\[0,7]
a C'° function with range ]0,1[ elsewhere.

In addition, define an “elliptic cutoff,” namely an operator X (z,y;t) with a ho-
mogeneous symbol of order 0 in the class S° (Rf’my), given by a C* function which

satisfies
1 infR.
) = . 3.8
x(o,m) {o n R, (3.8)

Apply these cutoffs sequentially:

P(X0U) = [P,X]0U+ X[P,0]U + X0F
{ B(X6U) = [B,X]0U + X0G
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Define

U:=0U, F:=0F, G = 0G,

then supp XU is restricted to a compact set Q x [\,7 — A € Q = Ry x R, x R,
with boundary 3 = R; x Ry, and the system reads:

(PX)U = [P,X]ﬁ—Xk(x,y)(G”U+29’Ut>+XF in Q,

(BX)U = [B,X|U+XG in X

(3.9)

3.1. Elliptic region R,

Due to the strong ellipticity property (3.6) of A it is possible to choose ¢g > 0
from (3.7) sufficiently small, so that in R.:

1
R Symb[P](z,y; &,m,7) > 3R Symb[A](z,y; &, 7).

Moreover, the pair {A, B} satisfies the L-condition (the Shapiro-Lopatinskii con-
dition, see, e.g., [WRL95, Sect. 9.3]) as follows from the unique solvability of the
associated elliptic problem { AU = 0, BU = 0}, via, for instance, the Lax-Milgram
Theorem. Consequently, PX is also strongly elliptic, and BX is elliptic with re-
spect to PX.

Taking into account that X belongs to the operator class OPS&O(E), the
standard elliptic estimate holds (see, for example, [LM68, P. 188, Theorem 7.4]):

X0 grss2q) + 10l (s
S ||[7’,X]U||H—%+a(q)

, (3.10)
+ 116U ]|

+ HeﬂU”H*%*é(Q) ntg) T I¥ - ges

+ 118, X]U| 123 + G L2 ();

where here and henceforth, the notation a(s) < b(s) will indicate a < Cb(s) for
some constant C' independent of s. In (3.10) since we have measured the 3/2 frac-
tional power of the elliptic operator, then the interior norms cannot be identified
with spaces in the Sobolev scale and must account for the distance of points to
the boundary. In order to replace these norms with regular Sobolev norms we have
increased the order of terms in the interior by adding ¢ > 0.

Q)

Adjust the elliptic estimate (3.10) appealing to the following facts:

e Operator B can be decomposed as 8% + Bian where Bian € OPSll,O(Z]). Since
X is a 0-order tangential operator, then

(B, X] = [Bian, X] € OPSY,

which follows from the asymptotic representation of composition operators,
see, e.g., [Tay81, Theorem 4.4, p. 46].
e Similarly [P, X] € OPS] .
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Ultimately arrive at:
1051z (3.11)
S HUHH1/2+5(Q) + 1 Ul g-17245(q) + Ull2(z) + [1Fllg-1/245(q) + |Gl 22()-
3.2. Hyperbolic region R},

Now, according to the frequency domain decomposition (3.7)
Inlco < lo]. (3.12)
Hence it suffices to estimate VU on the boundary via U,; and the tangential
derivatives aiUv for they are likewise dominated by the velocity component in the
hyperbolic sector. Let v = {v1,10}, 7 = {71, 72} = {12,141}, and matrix M, as
n (3.3), be such that
M(VU) = M[um7uy7w$7wy7 ¢m7 ¢y]t = [SV7 Vu - T, VQ/} © T, V(ZS : T]t'
Direct calculation shows:
avy  avs 0 0 0 0
0 0 P o Bows Pun

-~ 0 0  Puve peor Bewr Bra | o
det M = det n ™ 0 0 0 0 =afc, >0
0 0 T1 T2 0 0
0 0 0 0 T1 T2

since ¢, 1= %(1 — p) and p < 1. Therefore, it is possible to find a constant C' > 0
so that . . 3
V(1 - X)0|<C (\3[(1 ~ X)U] v + |0, (1 - X)U|) .
(

Note that the commutator of the tangential operators 9, and (1 — X) has order
zero, hence we may commute them modulo lower-order terms; in addition let us
bound the tangential derivatives by velocity via (3.12):

+ H (1-X)0,

I9(1 = X)Ollaq)  |S10 - X)0)w

) + | U] 22(z)-
(3.13)

‘ ’ L2(% L2(Z
3.3. Combined estimates

Put together (3.11) and (3.13); after squaring and adjusting the constants get
IVU[Z2(s) S IX U7y + 11 = X)U| 72

2
S O/248 () + 10312450y + U122z

~ ~ 2
U e + IS10 = )0 v e + |1 - )0

L2(Z)
HF(F-1/205(q) + Gl T -
Next, we readily have the bound

1811 = X) 0] wlam) S (IS VI + 1013, ) -
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Since the time-direction is tangential in a collar of the boundary, interpolation
gives
HUtHiﬁl/zM(Q) = ||UH§{1/2+5(Q) < C|[U|72q) + €l Ullin g

which confirms (locally) the estimate on lower-order norms of velocity within (3.1).

Expressing G via Sv (up to lower-order terms) leads to the result of Theorem
3.1 in local coordinates, which is equivalent to the original statement, up to a
perturbation by L2-norms of U and its derivatives of non-principal order (below
the H!(Q2) level). The bound (3.1) on the lower-order terms l.o.t. readily follows
via space-time interpolation, Sobolev embeddings, and the fact that the [H!(£2)]3
norm of U is controlled by the energy £(t). O
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Linearization of a Coupled System of
Nonlinear Elasticity and Viscous Fluid

Lorena Bociu and Jean-Paul Zolésio

Communicated by F. Bucct and I. Lasiecka

Abstract. We model the coupled system formed by an incompressible fluid
and a nonlinear elastic body. We work with large displacement, small deforma-
tion elasticity (or St. Venant elasticity), which makes the problem very inter-
esting from the physical point of view. The elastic body is three-dimensional
Q € R?, and thus it can not be reduced to its boundary T' (like in the case
of a membrane or a shell). In this paper, we study the static problem, and in
view of the stability analysis we derive the linearization of the system, which
turns out to be different from the usual coupling of classical linear models.
New extra terms (for example those involving the boundary curvatures) play
an important role in the final linearized system around some equilibrium.

Mathematics Subject Classification (2000). 76D03, 35Q30, 35Q35.

Keywords. Nonlinear elasticity, Navier-Stokes, potential fluid, linearization,
coupled system.

1. Introduction

1.1. The problem and the model

The problem we address is the interaction between an incompressible, viscous
fluid and a 3-d nonlinear elastic body. The interaction takes place on the common
boundary (interface) and is realized via suitable transmission boundary conditions.
We consider the steady regime associated with this coupling, which contrary to
common belief, is more subtle than the dynamical one (since in real life, evolution
is more plausible than equilibrium).

The research of Lorena Bociu was supported by the National Science Foundation under Interna-
tional Research Fellowship OISE-0802187 .
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We assume existence of the steady state fluid-structure interaction ([23]), and
in view of the stability analysis, our goal is to derive the linearization of the system.
We accomplish this by perturbing the steady regime by a parameter of variation
s, and then computing the derivatives with respect to s (shape derivatives). In the
end, we obtain the linearization of the coupled fluid-structure problem around rest.
While there are many models pertaining to this problem (i.e., coupling of linear
elasticity and fluid), the one that we obtain after linearization is quite different and
reveals new features, including the presence of the curvature terms on the common
boundary. Thus the boundary and its curvatures play a key role in the analysis and
can not be neglected. This is particularly important when the boundary oscillates,
sending the mean curvature to “infinity”. Modelling of this geometrical aspect is
critical for a correct physical interpretation of the fluid-structure interaction.

1.2. Notation

For the rest of the paper, we use the repeated index convention for summation
whenever the same Latin index appears twice, and the following notation:

e (Df(a))ij = 0;fi(a) € M? is the gradient matrix at a € X of any vector field
f:(fi)IXCRgﬁRS.
o div f(a) = 0;f; € R is the divergence of f : X CR3> - R?® at a € X.
e DivT(a) = 0;T;;e; € R? is the divergence of any second-order tensor field
T:(Tij):XCRSHMg at a € X.
Since we ignore the distinction between covariant and contravariant components,
we will identify the set of all second-order tensors with the set M3 of all square
matrices of order three.

e A* = transpose of A, for any A € M3,
e A.B =tr(A*B) € R is the matrix inner product in M?>.
o Cof(A) = det(A)A™* is the cofactor matrix of any invertible matrix A € M?.

o do(x) = :;fyw ly—al 20

, Q=10
QeR".
o bo(x) = do(z) — doc (), Vo € R™ is the oriented distance function from z to
Q, for any Q2 C R".

is the distance function from a point = to

1.3. PDE model

In what follows, we describe the model under consideration. Let D € R? be a
bounded domain. We assume that D is comprised of two open domains D = QUQC
and has smooth boundary 0D =T" UT;, U Ty (see the figure on top of the next
page).

The elastic body occupies domain Q with sufficiently smooth boundary T'UT",
and is described by a nonlinear elastic equation in terms of the displacement
u. We work with large displacement, small deformation elasticity (or St. Venant
elasticity [11]), which makes the problem difficult from the mathematical point
of view, and very interesting from the physical point of view. The elastic body
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is three-dimensional Q € R3, and thus it can not be reduced to its boundary I'
(like in the case of a membrane or a shell). The fluid occupies domain Q¢ with
boundary I' U 'y, U I'gyt, and is described by a Navier-Stokes equation in terms
of the velocity of the fluid w and the pressure p. v > 0 represents the viscosity
of the fluid. The fluid sticks to the boundary I', and thus we are dealing with a
homogeneous boundary condition [see (1.1)]. The interaction takes place on the
common boundary I' and is realized via suitable transmission boundary conditions:
we require continuity of both the velocities (the velocity of the fluid and the velocity
of the boundary) and the normal stress tensors across the interface I'. We assume
that there is a flux f coming into D through TI'y,, that will determine the velocity
of the fluid w.

The PDE model for the fluid-structure interaction defined by the variables
(w,p,u) is given by

—v AW + Dww + Vp =0 Q°
divw =0 Q¢
—DivT =0 Q
v (1.1)
w =10 I
T.n=pii—e(w)n r
u=0 I
where 2¢(ws) = Dws + Dw? and 7 : Q — S? is the Cauchy stress tensor given by:
1
T=(+==D¢-Z (D)) oyt 1.2
(qeepg Do S w) - (Do) ) o (1:2)

where ¢ = I + u is the deformation of the reference configuration O € R?® —
R3, o(u) = %(Du* + Du + Du*Du) is the Green-St Venant strain tensor, and
S(o(w)) = A(tro(u))! 4+ 2po(u) defines the second Piola-Kirchhoff stress tensor,
with A and p being the Lamé constants of the material. For a detailed explanation
on the nonlinear elastic component of the coupled system and formula (1.2), please
see Appendix A.



96 L. Bociu and J.-P. Zolésio

With (1.1), we associate the following boundary conditions on T, and Toyt.
Let ¢(x) be a given, smooth function defined on T, such that

c(x) =0 on Iy, (13)
w.nip, = c(x) on Tiy,.
Then it follows that
0= divw dr = / w.Nin dlin —|—/ W.Nout Al out- (1.4)
Qe Tin Tout

At this point, we choose o € R verifying

{05 = W.Nout O 1_\outa (1 5)

fFout o dlout = — fl“m c(z) dlyy.

The model has a variety of applications in naval and aerospace engineering,
as well as cell biology and biomedical engineering. One specific example of the
above-mentioned model is a 3D tube with elastic walls through which a fluid is
flowing, and is very important in the study of arterial diseases (the tube represents
the artery, the elastic body is the wall of the artery and the fluid is the blood).

We model the fluid by a Navier-Stokes equation due to the specific application
we have in mind, i.e., the blood flow in an artery. Nevertheless, there are a variety
of other applications for the model considered where the fluids have low viscosity
or satisfy the Darcy law. These are the cases of potential fluid (incompressible
and irrotational fluid, i.e., v = V¢, where v is the velocity of the fluid and ¢, the
velocity potential of the fluid, satisfies the Laplace equation A¢ = 0) coupled with
nonlinear elasticity.

We will study the problem in both cases, first for potential fluid, and then for
the Navier-Stokes flow. The two problems are quite different from the mathemati-
cal point of view: in the case of potential fluid, we deal with a Neumann boundary
condition (which corresponds to skidding at the boundary), while in the case of
a Navier-Stokes fluid, we work with a homogeneous Dirichlet boundary condition
(corresponding to the sticking property on the boundary, due to viscosity).

1.4. Special case: Potential fluid

We work with an incompressible and irrotational fluid, i.e., v = V¢, where v is
the velocity of the fluid and ¢ (the velocity potential of the fluid) satisfies the
Laplace equation A¢ = 0 (due to the incompressibility condition which translates
into V- u = 0). If p represents the pressure of the fluid and v the viscosity, then
the flow is described by the following Navier-Stokes equation

—vAv + Dv.w + Vp = pg (1.6)

where p is the density, and ¢ is the gravitational acceleration. Due to the fluid
being irrotational (vorticity curl v = 0), the convective acceleration reduces to
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Dy = V( ) and thus (1.6) becomes

1
VIVl +p — pgrs) = 0.

This provides us with the formula for the pressure p of the fluid:
1
p=po+ 5 V6I* — pga. (17)

1.5. Parameter of variation s

We perturb the steady regime presented above by assuming that the flux entering
the domain D is dependent on a variation parameter s, i.e., ¢(z) is a given, smooth
function defined on T, such that for some constant a > 0,

c(z) =0 on Ol'iy, (1.8)
ws.nin = (a+ s)e(z) on Tyy,.
Then it follows that
0 :/ divwgdax :/ We.NindLin +/ We.Nout AL out - (1.9)
Q¢ Tin Tout

For any s > 0, we choose a, € R verifying

Qs = Ws.Nout OIL Fou‘w (1 10)
fl‘out as dlous = —(a + 8) fI‘;n c(x) dlyy, for all s> 0. ’

If the elastic body occupies a reference configuration @ € R? with smooth
boundary & UT”, then, when subjected to applied forces, it occupies a deformed
configuration Q = ¢,(0), with smooth boundary I'y U T (where I is fixed).
The deformation map in this case is dependant on the parameter s: ¢, : O —
R3, but nevertheless is smooth enough, injective, and orientation-preserving. The
displacement us : O — R3 becomes u;, = @, — I, where I is the identity map
I: O — R3. Similarly, for the fluid present in the system, the velocity and pressure
are now functions of s: wg, and ps, and thus we have the following coupled system

for the interaction:

—v AWy + Dws.ws + Vps = 0 Q¢

divws =0 Qe

—Div7, =0 Qg

ws =0 r, (1.11)
Tsns = psils — €(ws).Ms T,

u=0 I’

fl‘out as dlouy = —(a + s) fl“m c(x) dly,, for all s >0,
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with
clx) =0 on Oy,
ws.nin = (a+ s)e(z) on Ty, (1.12)
W Nout = Qs on Doy,

Wherg ns is the unit outer normal vector along Ty, 2¢(ws) = Dws + Dw?, and
T, : Qs — S? is the Cauchy stress tensor (associated to s), given by

T, - (mms S(o(us)) - (Dpa)*) o0 (1.13)

In the particular case of potential fluid, recall that the pressure is given by
ps =po+ 3 Vos||? — pgxs, and thus (1.11) becomes:

Ags =0 Qe
—DivZ; =0 Qs

Voo ne=0 r, i)
T,.ns = (po + 5[ Vs|® — pgs)ns I

u=20 T’

Jr.., @ dloue = —(a+35) [ c(z) dlin, forall s>0

where ¢(x) is a given, smooth function defined on I'y, such that for some a > 0,

=0 8]-—\iru
c[(ix) on (1.15)
Fm0s = (a+s)c(xz) on Ti,.
Since we have that
. s s
0= div(Ves)dx = dl'in dl out, 1.16
Q¢ IV( (ZS ) ! [‘in 8nin * Tout anout ¢ ( )
then, for any s > 0, we choose as € R verifying
_ 9¢s
®s = Fpoe O8 Lout, (1.17)
Jr.. @ dlowy = —(a+3s) [ c(z) dlin, forall s> 0.

2. Main results

Our first two results are for the particular case of potential fluid, meaning the
speed of the fluid v derives from a harmonic potential in Q¢ i.e., vs = Vs We
first obtained the linearization of the coupled fluid-structure problem around some
steady regime, then around fluid at rest (¢ = 0).

Let ¢/ = %(ﬁs o and v/ = %us be the shape derivatives of (¢, u).

s=0
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Theorem 2.1 (Linearization of the coupled potential fluid-structure system around
steady regime). In system (1.14), for s = 0, we assume that the speed of the fluid
v 15 steady, but not zero. With the following notation

®=q,
U=uo(l+u)"", and
1
p=po+ §|VF¢|2 + pgrs,

we obtain the following linearized system (around steady flow) for the fluid-struc-
ture coupling (®,U):
AP =0 in Q°
0

%i’ = —divp((U,n)Vr¢ ) on T
Div(T) =0 in Q
T'n =[T — pl].(DfUn + D?*bq.Ur) + (Vr®, Vre) i
+ ((n, D*¢.V¢) + pgns)({U,n)ii + (U,n) Divp T on T (2.1)

with the boundary conditions

0

%{) =c(x) on T,
9 Jr. e(x)dl
. Lout,
on Joar e

where T' and T are given by (3.15) and (1.2), respectively.

Theorem 2.1 shows that the linearized model is different from the usual cou-
pling of linear models. More specifically, we note the presence of the curvatures of
the common boundary I'. The same phenomenon will be observed for the linearized
models in the case of potential fluid-structure system around “rest” (Theorem 2.2),
as well as in the case of Navier-Stokes-elastic structure (Theorem 2.3).

Theorem 2.2 (Linearization of the coupled potential fluid-structure system around
rest). This is the particular situation for (1.14) when, considering a = 0, then at
s = 0 the forcing condition on Ty, is zero and thus ¢ = 0. Nevertheless, some
pressure term remains (p = po + pgxs), and thus the linearization of the system
becomes

AP =0 in Q°
0
%@:0 on I’

Div(T)) =0 in Q
T'.n =T — pI].(D;U.n + D?*bq.Ur)
+ pgns(U,n)7 + (U,n)Divp T on T (2.2)

with the same notation and the same boundary conditions on Ty, and Toyt as in
Theorem 2.1.
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Below we present the result that describes the linearization of the Navier-
: : _ 0 _ 0 _ 0
Stokes fluid-elastic structure. Let w’ = g-wj |s:0, P = 5:ps }3:07 and u' = F-us |S:0
be the shape derivatives of (w, p,u).

Theorem 2.3 (Linearization around rest for the coupling viscous fluid-elastic struc-
ture). In system (1.11), we assume that a = 0, so that at s = 0, we get the “rest”
system with W = 0. Then we obtain the following linearized model around fluid at
rest:

—Aw' + Vp' =0 Qe
divw =0 Qe
w =0 T
—Div(T") =0 Q

T'n= T —ew))n+ (Vp,n)y(Umn)i

+(pl — T)(D:U.n + D?o.Ur) — (U,n) Divp(T) T
w' niy = ¢(x) Lin
W Moyt = — fI‘;n c(x) dr'/ fl‘out dar Tout

where, as before, U =u'o (I +u)~', and T' and T are given by (3.15) and (1.2),
respectively.

Note here again that the coupling that we obtain is more complicated than
just the coupling of the linear problems in the variables (u/,w’,p’). Indeed, the
boundary curvatures play an important role in the analysis of the coupled fluid-
structure interaction. These terms can not be neglected, since when the boundary
has oscillations, the mean curvature H is not bounded.

3. Preliminaries

3.1. The moving boundary I',

Recall that the deformation map ¢ maps the reference boundary S to I'. Similarly,
the deformation ¢s maps S to I';.

At this point it is convenient to introduce the map T :  — Q, that builds
the moving boundary I's:

T, = @s0p " (3.1)
and the speed V (s, -) associated with the flow mapping T&:
9 0
Vis,) = (g 1) 0Tt = gresowl (3.2)

This means that T5(V) : X — a(s), where 2(s) satisfies the following differential

equation
%x =V(s,1(s))
{i(O) _y (3.3)

which is equivalent to 2(s) = X —|—/ V (t, (t))dt.
0
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3.2. Transport of scalar operators
0
Let v/ = a—u5|5:0. Then from (3.2) we have
s
d d d
L=V oT= T = —tslsmo0 9™ =u o (u+ 1)~ = V(0),
Moreover, from [15], we have the following identities:

%DTS(X) = DV (s,To(X))DT,(X), DTo(X)=1

d d -1 —
= —-DT.| =DV(0) and —-(DT.)"'| =-DV(0).

% det DT,(X) = tr DV (s, Ts(X)) det DT,(X) = div V (s, Ty (X)) det DT, (X),

d
— DT
= 75 det( 5)

= divV().

Now let E be a C! vector field defined over D. Then we have the following
proposition, proved in Appendix B.

Proposition 3.1.
(div E) o T = det(DT)~" div(det(DT) (DT) '.(EoT)). (3.4)
Similarly, we can prove the following proposition:
Proposition 3.2. For any ¢ € H' (D), we have the following identity:
A¢oT = det(DT)~* div(det(DT)(DT) " (DT) *V(p o T)). (3.5)
These identities will be used later in the proofs of our theorems.

3.3. Transport of vector operators

Let 7 be a N x N matrix function defined on D. We consider the vector Divergence
operator Div7 being defined as the vector whose ith component is the (scalar)
divergence of the vector composed of the ith line of the matrix 7:

- 0
(DiV T)l = le('Z;) = Zj:17--->N 8_1‘J
From the previous section we obtain that
((DivT)oT); = (DivT);oT = det(DT)~" div(det(DT) (DT)"'.(T;.) o T ).

It turns out that (7;.) o T" is the ith column vector of the matrix 7* o T so that
(DT)~.(T;,) o T is the ith column of the matrix (DT)~!.7*o T, and thus the ith
line of the matrix (DT)~1.7 o T. Therefore, using Proposition 3.1, we obtain the
following identity:

T ;-

Proposition 3.3.
(DivT) o T = det(DT)~! Div(det(DT) (DT)"'.(T o T)). (3.6)
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3.4. Boundary change of variable

Let I' = 92 be a C! manifold. Then there exists a covering of open subsets 2 C
U, 0;, and charts ¢; : O; — B (the open unit ball in R™) such that ¢;(I'NO;) C
By = {z = (2/,0) € B} and ¢;(2N ;) C By = {z = (2/,2) € Bs.t. 2> 0 }.
We use the notation x = (2/,z,) for a point (z1,...,2,) € R", where 2/ =
(x1,...,2n—1). Let r; be a partition of unity for the family of open sets {O;}",,
ie, r, € C(0;), 0<r; <1,and X" r; =1 in a neighborhood of the boundary
[. For any f € L'(I") we have

/fdrzzg';l/ rif dT
T I'no;

= Z;’;l/ rioc; t foc; b ||cof(D(c;t))en || da’
Bo
Recall that for any square matrix A, the cofactor matrix is
1
detA

Since we have that D(c; ') = (Dc;)*oc; ', then we obtain the following identity:

*

cof(A) = (detA)A™* = cof(A™!)

l(D(c; ) = ol (D))o " = ( g (D) ) o

It can be easily verified that if 7" is a smooth enough transformation we have,

with ¥ = T(I),
/ fds = / foT wdl
T(T) r

where w = ||cof(DT).n|| = |det(DT)|||(DT)~*.n||, and n is the unitary normal
field on I'.

Moreover, we have the following lemma ([15]):
Lemma 3.1. If the mapping s — Ts(V) is in C*([0,7]; C¥(D,R")), then

DT *n

T isan CY([0,7];CM(D)
IDTsnl|

s—ngoly =

where n and ng are the outward normal fields respectively to Q and Qg, on T’ and
T's. Moreover, its derivative is given by:

d
d—(ns oTs) =(DV -ng,ns) o TsnsoTs — DV* o Tsng o Ts.
s

3.5. The volume evolution

Now we shall consider the volume evolution of the domain Qs = (I + us) o (I +
u)"H(Q) = Ts(Q), which we can also write as Qs = ¢s(0) = (I +us)(O). We have
the following general result (proved in Appendix C):
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Lemma 3.2. For any integer N, let D C RN andu € WP (D, RN) withr > N/p
then det(I + Du) € W™ HP(D) and let © C D be an open domain with Lipschitz
continuous boundary ¥ = 00O, then we get

(I +uw)(©) = O] + / (4, Myns)d,

where |©| = [g dx, while the Matriz M, is given by:
1 1
M, :/ det(I +tDu) (I + tDu)™"dt :/ cof[ (I + tDu) ]dt.
0 0

3.6. Shape derivatives

Assume that the transformation Ts(V') is the flow mapping of a Lipschitz-contin-
uous vector field V (s, x). Then we get

Vo e T,w(s,z) = det(DTs(V)) [[(DTs(V)) ™" .n||
and

Vo eT, %w(swﬂszo = H(z)(V(0,2),n(x)),

where H is the mean curvature of I', H = Tr(D?%bq)|r = (Abg)|r and v =
(V(0,2),n(x)) is the so-called normal speed of the moving boundary T';.

3.7. Existence results for the material derivatives

Recall that O is the reference domain whose boundary is S and let O° be its
complement. The mapping I 4 u, is invertible from O onto 2, as soon as det(I +
Dug) > 0 over O. We extend the functions defined on €2 to the whole domain D
as follows. Since the domain O is assumed smooth enough, it is known that there
exists a continuous prolongation (or extension) mapping

P e L(H™0),H™(D)), s.t.¥¢e€ H™(O), P.glo = ¢.

Then any element @5 € H™({) can be extended to D by considering the
continuous extension operator

Py @, = (P.(Ps0 (I +us))o (I +us)™t
We transport the harmonic problem whose solution is ¢s € H'(Qy). Let
0% = ¢s o (I +uy) € HY(O).
From Proposition 3.2 we know that
div( A(s).V$*) =0 in O° (3.7)

where
A(s) = det(I + Duy) (I + Dug) ™ .(I + Dug)™*.

Moreover, we have the following boundary condition

(ng, A(s).V¢®) = 0 on S. (3.8)
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Concerning the elastic boundary condition on I'y, we have:
1
Tyng = 5|vp5<;ss|2 + f on Iy, (3.9)

where the forcing term f may be due to the gravity acceleration and can take the
form f(x) = pgxs in R3. A change of variables gives

1 e 75
Tso(I+us)mso(l+us) = m<A(S)-V¢ ,Vo©) + f o(I+us) on S.
(3.10)
The stress tensor is the matrix
1 *
where
1
S0 (us)) = Ch .. [5 (Dus + D*uy + DuS.D*uS>] . (3.12)

Using Proposition 3.1, we have the following:
ngo (I +us) = (I + Dus) *.V(ba, o (I + us) ).

Equations (3.7), (3.8), (3.9), (3.10), and (3.11) above form a system that we can
rewrite as

F(s, (us,6%)) =0,
when the mapping
F [0, s1[x (H*(O,RYN) x H*(O)
— HHO,RYN) x HYHO) x HY2(S,RY) x H~1/%(S)

verifies the Implicit Function theorem assumptions so that the derivative v’ :=
Dg|s—o exists in HY(O, RY) and also 2¢°|,—¢ exists in H(O, R).

3.8. Material derivatives

3.8.1. Displacement derivative. We consider the mapping T = (I +us)o (I +u)~*
which maps Q onto s and I" onto I's. Classically, we introduced the material
derivatives of any element ¢ € H1(£),) as being the derivative (in H'(2)-norm)

. d
¢ = £(¢s o Ts)|s:0'

Concerning the elastic displacement, us is defined on the reference set O so we
consider the element
ﬂs = Us © (I + Us)_lv
defined on €2,. Then the material derivative for this element is
d

{Z = E(ﬂs OTs)|s:0~
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and we have
s 0Ty =ugo (I +u)"t,

which gives us

0= (d%(ﬁsls—o)) o(l+u) ™t =do(l+u)t

3.8.2. Stress derivative. The transported stress tensor is 7, o Ts. Recall that Ts =
s 0@t where o5 = I + ug, and that V(s) = %TS oT = %(ps oyl

The stress tensor 7; o T is the matrix

Tso0Ts = ( (I + Dug).X(o(us)).(I + D*us)) o(I+u)™' (3.13)

det(I + Dus)
where
1
Y(o(us)) = Cx p-- {5 (Dus + D*ugs + Dus.D*us>] . (3.14)
In (3.14) we assumed the four entries elasticity tensor to be governed by the Lamé

coefficients A and p.
Taking derivative w.r.t s in (3.13), we obtain:

9 - div(u’) )
({%TS ’ Ts} s—o> ol tu) =~ det(I + Du) (I 4+ Du).Cx y--(0(w)).(I + D*u)
* mu"’ Du).Cy ..(0").(I + D*u)
+ M(I + Du).Cy y..(0(u)).D* (u')
where
o = %(D(u/) + D*(u') + D(U’).D*u+ DuD*(u’)>
Now we let

T = [27‘5 oTy }
Js I

=T + DT.(W o(I+u)™t)
where D is a three entries tensor, representing the gradient of the matrix 7. Its

contraction with the vector (v’ o (I +u)™!) gives the matrix D7 .(u' o (I +u)™1).
Then we have

T (- dtd(jifl’)u) (I + Du).Cx (o (w)).(I + D*u)) o (I )"
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1

+ (mp(u/)'c/\vu"(a(un'(l + D*u)) o (I + u)—l

+ (m(u Du).CM..(cr’).(IjLD*u)) o (I+u)"

+ (m(l+DU)~C>\,;L~-(CT(U)).D*(U’)> o (I +u)t

— DT.(v o (I +u)™t). (3.15)

This expression is difficult to handle. Nevertheless, in the most “popular” frame-
work (which consists in considering u = 0), it simplifies to the following expression:

T =C,..(0') — DT.(u))
Since u = 0, we have 7 = 0 and thus D7 = 0. Moreover,
o' =1/2(Du’ + D*u').

Therefore
T = C)\”u..(D’U,/ + D*’U,/)
T =XTrDu'I + p(Du' + D*u')
=ATrDu'I + 2uo’, 20" =Du + D*u'. (3.16)
4. Proofs

The expression of 7’ in terms of u’ that we obtained above (3.15) will be needed
in the proofs of all the theorems. Unfortunately, we can not make use of the nicer
expression (3.16), since, even though we linearize the system around rest (i.e., the
velocity of the fluid is w = 0), the elastic displacement u can not be zero (due to
the fluid’s pressure effect).

4.1. Proof of Theorem 2.1

The first step in the proof of the theorem is to write the variational form associated
with system (1.14):

Apy =0 Q5

—Div7, =0 Q

Vs -ns =0 1 Iy (4.1)
Tons = (po + 5| Vs||* — pgs)ns I,

u=0 I’

fl‘out as dlouy = —(a + s) fl“m c(z) dly,, forall s >0

VU € HY(D), VR € H*(D,R?), we have that

1
/ T..DRdx +/ (Vos, VU)da = / {po + §|V¢S|2 + pgxg,} (ng, R)dDs.
Qs Q Is
(4.2)

c
s
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0
Our goal is to compute the s derivatives (at s = 0). Let ¢/ = £¢S|S:0,

0
T = a’]ﬂs:g, and v = (V(0),n) on I'. Recall that ny = Vbg, is the unit outer

d
normal to Qg, and H = Abg is the mean curvature of I'. Let n’ = —(Vbq, )|s=o
s

Taking derivative with respect to s at s = 0 in (4.2), we obtain:

/T’..DRd:c + /T.DRvdF+/ (V¢ , V) dx — /(VQS,V\P}vdF
Q N € I

:/F{(V¢’,V¢>}(n,R>dF+/F {po+ %|V¢>|2+pgw3} (n', R)dr

0 1 5
+/F an {po + <§|V¢| +PQ$3) (ng,R)} vdl’
1
—|—/ H (pg + §|V¢|2 + pgxg) (Vbg, R)vdr. (4.3)
r

Choosing ¥ (respectively R) with compact support in Q¢ (respectively in )
and using the following integration by parts formula

/ T' DRdz — — / (Di(T"), R)dz + / (T, R)dl
Q Q r

we recover the following equations for (¢, 7’) on Q¢ and .
—~A¢' =0 in Q°
—Div(T') =0 in Q.

Now we are concerned with the boundary conditions. We first note that

%{ (po+ %Ivﬂél2 +pgas ) (Vbo, R) } (4.4)
<n, v{ (o + 51V0P +pgx3)<VbQ,R>}>

((n, D*¢.V) + pgns)(n, R) + (po + %|V¢|2 + pg !L‘3) (n, D?*bq.R+ D*R.n).

Due to the fact that D?bg is symmetric and that D?bg.n = V(5|Vbg|?) = 0,
we have that the term

(n, D?bo.R) = (D?bg.n, R) = 0. (4.5)

Therefore, concerning the boundary conditions, and taking ¥ € H'(D) and
R =0, we obtain:

0
%(b/ = diVF(’UVF(b). (46)

In addition, choosing ¥ = 0 and R € H'(D, RN) with DR.n = 0 on I, we
obtain:

(n, D*R.n) = (DR.n, n) = 0. (4.7)
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Combining (4.4) with (4.5) and (4.7), we obtain the following identity:

% {(po + %|V¢>|2 + pgws) <VbQ7R>}

= (<TL, D2¢V¢> + pgns )<n7R> (4'8>

Finally, using (4.8) in (4.3), we obtain the following variational problem at
the boundary:
VR € H'(T,R")

/F (T'n, R) dT" + /F (T.DR)vdr

=/<V¢/7V¢> <n,R>dF+/ {po+l|V¢l2+pgaz3}<n’,R>dr
r T 2
+ [, D0:90) + pgna) . Rywar
r

1
+/ H (Po + §|V¢|2 + ,09$3> (Vbg, R) vdl'. (4.9)
r
Now we have to perform a tangential by part integration in the term:

/(T..DR)vdF:/ T'MiRivdP:/(?;_,VRi)vdF.
r r Ox; r

But as for all i we have a%Ri =0, then

0
VR; =VrR;, + —R; n=VrR;,
on

and

/(T.DR)vdF . /(ﬂ,,VpRi)vdF
I r

= —/ divpr(v7T;,) R; d].“—l—/vH(Ti.n,Ri} dr
r

r
= / (Divp(vT), R) dr, + / vH(T ., R)dT. (4.10)
r r

Combining (4.9) with (4.10), we obtain the following boundary condition for
the stress function 7/: VR € HY(I', RM):

/ (T"n, RYdD = / (Dive(vT), R)dl + / (V! V) (n, R) dT
r I r
o RER

+/ ((n, D*$.V$) + pgnz)(n, R)vdr.
r
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Therefore, on I' we obtain:
- 1
T'.n=Divp(vT) + (V¢', Vo) 7l + {po + §|V¢|2 —|—pgx3} 7

+ ((n, D*¢.V¢) + pgnz)vii. (4.11)

We know that
DiVF (’UT) = DiVF +T.VFU. (412)
Moreover, we have the following calculus of the tangent vector n’: From [19],
[15], we know that in some neighborhood U of ¥ = Ug<s<s, {s} x 95 the oriented
distance function solves the convection equation
0
0s
where pr, = Id — bq, Vbq, is the projection mapping onto I';.
Then we obtain that

ba, + Vb, .V(s)opr, =0

n' = %(ngs)szo = <82b9 )S_O = (V(=Vbq,.V(s)opr,) )s=o
= — (D%q,.V(s) opr, )s=0 = ( D*(V(s) opr,).Vba, )s—o
= — D’bq(x).V(0,2) — DiV(0,z).n(z) =—Vro(z), (4.13)
where we recall that v(z) = (V(0,2),n(z)) on I' is the normal speed of the bound-

ary.

Combining (4.11) with (4.12) and (4.13), we obtain the following new expres-
sion on the boundary I":

1
T'n= TNrv + <VF¢/,VF¢> n— {po + §|VF¢|2 + pgxg} V1o

+ ((n, D*¢.V¢) + pgns)vii+vDivp T (4.14)
1
= [T— {pg—|—§|Vp¢|2—|—pg$3}I} Vrv + (Vr¢',Vre)i
+ ({n, D*¢.N¢) + pgnz)vii+vDivp T (4.15)

Here we want to point out that the term Vywv contains the mean curvature
of the boundary T'. More specifically, recall that V(0) = «’ o (I +u)~!, and thus

v=(uo(I+u)" n). (4.16)
Therefore, we have the following expression for Vpv:

Vv = Vr({(u o (I +u)"'),n)) = Di(u' o (I +u)")n + D?bg.(u' o (I +u)™H)r

(4.17)
where D?bg, is the symmetrical matrix whose eigenvalues are the main curvatures
A1 and Ay, and whose trace is Tr(D?bg) = H, the mean curvature of the boundary.
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Now combining (4.15) with (4.16) and (4.17), we obtain:
1
T'n= [T - {pg + §|Vp¢|2 + pgxg} I] (Di(w o (I +u)™Y)m
+ DQbQ.('U;/ o (I + u)_l)p)

+(Vrd', Vro) it + ((n, D*.V¢) + pgnz)(u’ o (I +u)~", n)it
+ (W o (I +u)™*, n) Divp 7. (4.18)

We assume that the fluid speed v is steady, but not zero. We are in the case
where the flow is irrotational, so that v derives from a harmonic potential in Q°,
that is vs = V¢,. From (4.18), with the following notation

1
®=¢, U=wo(l+u)', and p=py+5|Vré]’+ pgas,

we obtain the following linearized system for the fluid-structure coupling (®,u'):

A(P =0 n QC
0 .
a_nq» = —divp((U,n)Vr¢ ) on I'
Div(7') =0 in Q

T'.n =[T — pI].(D;U.n + D?*bq.Ur) + (Vr®, Vo) i
+ ((n, D?*¢.V¢) + pgns {U,n)ii + (U,n)Divp 7T on T (4.19)

with the boundary conditions

0

a—n<I> = ¢(x) on Iy
d Jr,, c(@)dl’

—d = - 1_\ou )
on fFout a " ¢

where 7" and T are given by (3.15) and (1.2), respectively.

Our linearized system (4.19) does recover the linear equations for (®,77)
on ) and €. Nevertheless, we can see that the boundary conditions are quite
complicated. First off, there is a double coupling on the boundary I'. Then, we
clearly see the presence of the curvatures on the common interface I'.

4.2. Proof of Theorem 2.2

The proof follows immediately after the proof of Theorem 2.1. Now we are in the
situation when, considering a = 0, then at s = 0 the forcing condition on I'y, is
zero and thus ¢ = 0. Nevertheless, some pressure term remains (p = pg + pg x3),
and thus the linearized fluid-structure problem is

A® =0 in Q°

0

%'I':O on I'
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Div(7')=0 in Q
T'.n =[T — pI].(DiU.n + D?*bo.Ur)

+ pgns(U,n)ii+ (U,nyDivp T on T (4.20)

where notation and the boundary conditions are the same as in the proof of The-
orem 2.1.

4.3. Proof of Theorem 2.3

Now we are concerned with the Navier-Stokes flow-elastic structure interaction
(1.11):

—v AWy + Dws.ws + Vps = 0 Q¢
divws =0 Q¢
—Div7Z, =0 Qg
ws =0 Iy
Tsns = psits — €(ws). M I's
u=0 I’
Jr.. @s dlouwt = —(a+35) [ c(z) dlin, forall s>0

where ng is the unit outer normal vector along I'y, 2e(w,) = Dw,s + Dw?, and

Ts : Qs — S? is the Cauchy stress tensor (associated to s), given by
1
Ts:( Vo, - So(u, ~VS*) -1, 4.21
e Ve S (Ve o (1.21)
We start by writing the variational form associated with system (1.11). Since
ws € HYD;R?), with divws = 0, V0, € H(Q5R3), with divs = 0, and VR €
HY(D,R?), we have

/ (TS..DR)dx—i—/ (v Dws..DO, + (Dws.ws,95>)d:ﬁ+/ div(D*0s.ws)dx
Q. Qe Q

c
s

_ /F ({ poiis — e(ws).i, }, R)dT. (4.22)

Regarding 05, we have 0, = (DTs.0) o T 1, V0 € HE(Q°) N H?(Q°), with divd =0
on Q°and # =0on .

The fluid pressure p; is given by the Neumann problem obtained from system
(1.11):

Lemma 4.1. p; is solution to the following Neumann problem:
—Aps = div( Dws.wg ) in QS
02 0?
a—nsps = —H, divp, ws + <a—ngws,ns> = <8—n§ws’ns> on Iy
where Hy = Abqg is the mean curvature of I's.
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In the next step, we have to compute the s derivatives (at s = 0). Let w’ =

! 1o} ’ 1o}
07 p = mps 07 and v’ = Eus

55 Ws - . represent the shape derivatives.

S= S=

First, note that the boundary integral turns into a volume integral:

/ ({psiis — €(ws).Ms }, RYydl's = —/ div(psR — e(ws).R) dx
r, Q

and thus taking derivative w.r.t. s in at s = 0, we obtain:
0
3% [, (e e, myar
63 T, a0

= —/Cdiv(p’R — e(w’).R)dac—i—/Fdiv(pR —e(w).R)vdl

_ /F{<p’R ()R, n) + div(pR — e(w).R) v} dr. (4.23)

Now we take the s derivative of the weak formulation (4.22) and using (4.23) and
the fact that ) = 0 at s = 0, we obtain:

/Q (T'.DR)dz + /F (T.DR)vdr

+ / (v Dw'..DO + (Dw'.w + Dw.w', 0)) dx — / (v Dw..DO + (Dw.w,8)) vdl
e r

+ / (v Dw..DO' + (Dw.w, ') + div(D*0".w)) dz — / div(D*0.w)v dl’
¢ r

= /{(p’R —e(w').R,n) + div(pR — e(w).R)v}dF+/D9.nw' dr (4.24)
r r

where ¢/ = 26,

I [(DT5.0) o T 1

= DV(0) — D6.V(0).

_ 0
s=0 Bs s=0

Recalling the by part integration formula:

/Q (T'..DR)dx = — /Q (Div(T"), R)dx + /F (T'.n, R)dI',

and taking 6 (respectively R) with compact support in Q€ (respectively in Q), we
obtain the following linearized equations:
—vAw + Dw'.w+ Dww' + Vp =0 in Q°
—Div(7T') =0 in Q.
Regarding the terms involving 6’ that appear in the Q¢-integrals in (4.24),

they all show up in combination with w. Since we will linearize the system near
“rest”, we will consider the fluid velocity w = 0. Hence, all these terms will dis-

appear. The same will happen with the boundary integral / div(D*6.w)v dT.

r
Nevertheless, we want to point out that when linearizing around w # 0, all the
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terms mentioned above can not be neglected, since they will bring extra terms in
the linearized equations.

Now we look at the boundary integrals. Since w = 0 on I', then we have

/(T'.n,R)dF + /(T.DR)’UCZF—/Z/<DU/.TL,9> - /VDu;..DQ vdl
r r r r

= /F{(p’n —e(w')n, R) + div(pR — e(w).R)v }dr.
Now

/div(pR —¢e(w).R)vdl' = — /((pR —¢(w).R), Vpu)dl'
r r

-i-/F H{pR —e(w).R,n)v dl’

+ /(D(pR —¢e(w).R).n,n)v dr.
r
Choosing R such that DR.n = 0, we obtain the following identity:

(D(pR).n,n) = p(DR.n,n) + ((Vp.R*).n,n) = %p (R,n).

Concerning the last term we have
(D(e(w).R).n,n) = 0; (e(w)jrRi ) nin;
= Oie(w); kRr nin; + €(w);r nin;0; Ry
= O;ie(w); kRr nin; + e(w)jrn; (DR.n)
[which by the previous choice of R simplifies to:]

0
= die(w)j e Bi ning = o -e(w)jx (Rn")jk

= <§—ne(w)n, R> = ((De(w).n).n, R).
Finally, the boundary integrals give:

/F<T’.n,R>d1“ + /F(T..DR)vdP

—/Fu<Dw'.n,0>— /Fqu..DH vdF—l—/FDﬁ.nw'dF
= [ T = cw . B + [ HR - cw)Ronyo v

- [1tor —wnsev mars [((2p 1 2w m)o

Moreover, using the fact that

/(T..DR)vdF = —/ ((Divp(vT), R) + vH(T.n, R))dr,
N N
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we obtain the following equations on the boundary:

T'n= I —-cw))n+(pl —e(w)).Vrv+ (%p I- %e(w)) nv—Divp(vT)

and
!

w' = —Dw.nv. (4.26)

We assume now that a = 0 so that at s = 0, and we get the “rest” system
with @ = 0. Nevertheless, there is still pressure p in the fluid (since the fluid
has density p > 0). Since v = ' o (I + u)~'.n, using the previously introduced
U =u'o(I+u)"!, we obtain the following boundary condition:

T'n= (p'I —e(w')).n+ (Vp,n)itv 4+ pVrv — Divp(vT) (4.27)
= (' I —e(w')).n+ (Vp,n)itv + pVpv — vDivp(T) — T Vv
= (p' I —e(w')).n+ (Vp,n)itv + (pI — T).(DiU.n + D?bq.Ur) — vDivp(T)

where we recall that Tr(D?bg) = H, the mean curvature of I'. Thus at this point
we note clearly the presence of the mean curvature on the interface.

The linearized Navier-Stokes equation whose w’, p’ is solution, when w = 0
becomes the linear Stokes system. Therefore, we obtain the following linearization
around “rest”:

—Aw' + Vp' =0 Qe
divw =0 Q°
w =0 r
—Div(T’) =0 Q
T'n= Q1 —ew))n+ (Vp,n)(U,n)i+ (pI —T)(DpU.n + D?bo.Ur)

— (U, n)Divp(T) r
w' iy = ¢(x) Iy
W' nous = — [ c(x) dT/ [ dl Cout

(4.28)

where, as before, 7/ and 7 are given by (3.15) and (1.2), respectively.

Again, just as in the case of potential fluid-structure coupling, we note that
the linearization of the system turns out to be quite different from the usual
coupling of classical linear modelings and it shows that the common boundary
I’ (and implicitly the mean curvature of the boundary) plays a key role in the
analysis of the coupling.
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Appendix A. Nonlinear, 3D elasticity

At rest, the elastic body occupies a reference configuration O € R3, where O is a
bounded, open, connected set in R? with sufficiently smooth boundary SUI”. When
subjected to applied forces, the elastic body occupies a deformed configuration
Q = p(0), with smooth boundary I' U T’ (where I" is fixed). The deformation
of the reference configurations is given by the map ¢ : O — R?, that is smooth
enough, injective (except possibly on the boundary of the set @), and orientation-
preserving (i.e., det Dp(z) > 0, for all z € O).

Together with the deformation ¢, we introduce the displacement u : O — R3,
defined as usual as ¢ = I + u, where I denotes the identity map I : O — R3.

It is well known that a body occupying a deformed configuration ©Q, and
subjected to zero applied body forces in its interior €2 and to applied surface forces
on the boundary I'; is in static equilibrium if the fundamental stress principle of
Euler and Cauchy is satisfied:

{—DiszO in Q

B (A.1)
Tn¥=¢g¥ onl

where ¢g¥ represents the density of the applied surface force, n¥ is the unit outer
normal vector along I', and the tensor 7 is the Cauchy stress tensor. The above
equilibrium equations over Q are equivalent to the equilibrium equations over the
reference configuration O:

(A.2)

—DivP =0 inO
Pn=g onS

where n denotes the unit outer normal vector along S, gda = g¥da?, and P : O —
M? is the Piola transform of the Cauchy stress tensor field, defined by

P(z) =T (x?)CoftVT () = det(Dp(x))T (x¥)(Dyp)~". (A.3)

From the constitutive equations, we have that P(x) = Dy(x)X(o(u(z))),
where ¥ defines the second Piola-Kirchhoff stress tensor. In terms of the displace-
ment u, X is given by

Y(o(u)) = Atro(u))I + 2uo(u) (A4)
where A and p are the Lamé constants of the material, and the Green-St. Venant
strain tensor o(u) is given by

1
o(u) = §(Du* + Du + Du*Du). (A.5)
Therefore equations (A.2) can be rewritten as

—div[(I + Du)%(0(u)] =0 in O
{(I + Du)X(o(u))n =g on S. (A.6)

The advantage of the equilibrium equations over the reference configuration
(A.2) or (A.6) over (A.1) is the fact that they are written in terms of the Lagrange



116 L. Bociu and J.-P. Zolésio

variable = that is attached to the reference configuration, instead of the Fuler
variable 2% = ¢(x), which is precisely one of the unknowns.

Nevertheless, we want to stress the fact that equations (A.1) play a critical
role when dealing with elastic body-fluid systems, where the coupling is taking
place on the boundary interface between the two media. This interface is precisely
the boundary I' of the deformed configuration of the elastic body €2 and thus the
coupling requires the continuity of the velocities and the normal stress tensors
across I'. Therefore, we need a relationship between the Cauchy stress tensor 7
and the strain tensor o(u), that will provide us with the correct matching of the
two dynamics on the common interface.

Recalling the relations between P, 7, and X(u) we obtain that

7= (mm (o) - (Dg)) o (A7)

Appendix B. Proof of Proposition 3.1

Proof. Let ¢ € CX (D). Using the change of variable y = T'(x) (or z = S(y)), we
obtain:

/(divE)oT(x) o(x) da:z/ div E(y) ¢ 0 S(y) det(DS)(y) dy
D D
_ /D (E(y), V(60 S(y) det(DS)(y))) dy

== [ (B, V(60 5()) det(DS)w)) + 60 () V(detDS)w)) dy
[Using the identity V(¢ 0 S) = (DS)*.(V¢) o S, we obtain]

=~ [ (B). (DS)".(V9) 0 S det(DS)w) + 60 S(1) V(det(DS)(w)) ) d
[Transposing of the matrix DS*, we can rewrite as follows:]

=~ [ {det(DS)w) DS.Ew). (V) o )

+(V(det(DS)(y)) E(y), ¢ © S(y)) }dy
[Performing the change of variable y = T'(x), we obtain:]

= - / {{det(DT) det(DS) o TDS o T.E o T, V)
D

4 (det(DT)(V det(DS)) o T E o T, 6) }dx.

[As (DS)oT = (DT)™' = det(DS)oT = det((DS)oT) = det((DT)" ') =
(det DT )~!. Then we have:]

= —/{((DT)‘l.EoT,ng)+(det(DT)(Vdet(DS))oTEoT,gb)}dx.
D
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[Using the fact that (Vdet(DS)) o T = (DT) *.V(det(DS)oT) =

. 1 _ 1 s -
(DT)™*.V <det DT) = ~[@et DT)? (DT)~*.V(det DT'), we obtain:]

_ / ((DT)".E o T, V) — (det(DT)~" (DT)~*.V(det DT).E o T, ¢) }da:
D
:/{div((DT)—l.EoT) +det(DT)~Y((DT)~*.V(det DT), E o T) }pda
D
:/{div((DT)—l.EoT) +det(DT)~*(V(det DT), (DT) " .E o T)}¢dx
D

- / det(DT)~"{det(DT) div((DT)" .E o T)
D

+(V(det DT), (DT)"".E o T)}pdz.
[lior any scalar function a and any vector function A we have div(a A) =
a div A+ (Va, A)gs. Therefore we have that
det(DT) div((DT) . EoT) + (V(det DT),(DT) *.EoT)
= div(det(DT) (DT)"".EoT),

which gives us the desired conclusion:]

= / det(DT)~" div(det(DT) (DT) " .EoT) ¢da. O
D

Appendix C. Proof of Lemma 3.2

Proof. Let Fy = I + tu. Then its speed flow is W (t,.) = (%Ft) oF ' =wuoFh
Moreover we have ([15, 29]):

%det D(F,) = (div W (#)) o F; det D(F}),
and then )
det(I+Du)=1+/ (div W () o Fr det D(F))dt. (1)
0

Using (C.1) and (3.4), we obtain:

|(I+u)(@)|:/®det(1+Du)dx
_lo| + /01 </®(divW(t))oFt detD(Ft)dx> dt
=10| + /01 (/@div( det D(F}) D(F,) ' W (t) o F; )dx) dt
=|0] + /01 (/E< det D(F;) D(F,)" Y. W (t) o F}, ny) dE) dt
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_lo| + /01 (/E< w, det D(F) D(Fy)~*.ns) dZ) dt

— el + /Z<u (/01 det D(Ft)D(Ft)_*dt> .nz> is. 0
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Abstract. The present paper is base on a talk given by one of the authors
to the 7th International ISAAC Congress held in London, UK, in 2009. A
few years ago the authors have introduced a strategy to prove global in time
existence and uniqueness results for semilinear integrodifferential inverse prob-
lems. Here we discuss the strategies used to treat some problems related to the
identification of convolution memory kernels in semilinear integrodifferential
models. Moreover, we explain the novelty with respect to some of the existing
methods with respect to our strategy whose main ideas are contained in the
paper [F. Colombo, D. Guidetti, A global in time existence and uniqueness
result for a semilinear integrodifferential parabolic inverse problem in Sobolev
Spaces, Math. Models Methods Appl. Sci., 17 (2007), 1-29]. Convolution ker-
nels are important to take into account memory effects, but in the case of the
heat equation they are also used to make the speed of propagation of the heat
finite. Among the models we discuss in this paper we mention: Phase-field
models with memory, the heat equation with memory, a model in the theory
of combustion, the beam equation with memory and a model arising in the
theory of nuclear reactors.

Mathematics Subject Classification (2000). Primary 35R30; Secondary 45K05.

Keywords. Global in time existence and uniqueness results, phase-field model,
nuclear reactor model, beam equation, strongly damped wave equation with
memory.

1. Introduction and notation

The literature related to inverse problems is very wide. Recent contributions can
be found in the books [2, 3, 19, 20, 27, 28, 32, 33, 34] which we mention without
claim of completeness. Such books treats different aspects of inverse problems.



122 F. Colombo and D. Guidetti

In recent years the theory of phase-field models with memory has had interesting
developments also from the inverse problems point of view, we refer for example to
[6, 7, 14] and the literature therein for more details. Inverse problems are in general
ill-posed problems and to obtain just uniqueness of a solution to a given inverse
problem can be considered a good result. To obtain global in time existence and
uniqueness of a solution is in general the most difficult part of the problem. The aim
of this paper is to discuss a strategy, introduced for the first time by the authors in
2007, which allows us to prove global in time existence and uniqueness results for
a class of semilinear integrodifferential models. Such strategy was applied to the
heat equation with memory in the paper [16], then we have applied such method to
several models in [8, 9, 10, 11, 13, 15]. Let us begin by considering the classification
of the nonlinearities we are able to study with our method. Let us consider the
inverse problem related to the heat equation with memory in its semilinear version.

Problem 1. Determine u : [0,7] x Q@ — R, and h : [0,T] — R, satisfying

o Dyu(t,x) = Au(t,z) + [ h(t — s)Au(s, z) ds + F(u(t, )),

o u(0,2) =up(z), =€,

e D u(t x) 0, (t,z)€0,T]x9Q,

o [od(x)ult,z)dx =g(t), Vtel0,T],
where F' is a given nonlinear function of the unknown u and wug, ¢, g are given
data.

The additional restriction on u given by [, ¢(z)u(t, z) dx = g(t) is necessary
to determine both w and h, otherwise there would be no possibilities to make to
problem well-posed. Since both A and u are unknown, in the evolution equation,
we have two types of nonlinearities: the first one is of convolution type, the integral
fo (t — s)Au(s,x) ds contains such nonlinearity, while the second one is in the
term F'(u). In the case F is independent of u or when F'(u) is a linear function of u,
we have only a nonlinearity of convolution type. In this case the problem becomes
easier to treat because there is a well-known strategy to face such problem. The
difficulties are only technical.

In this paper we will discuss the following case:

e Strategy I, inverse problems with a non linearity of convolution type: global
in time results.

e The strategy II, inverse problems with two non linearities: local in time re-
sults.

e The strategy III, inverse problems with two non linearities: global in time
results.

Notations. If X and Y are Banach spaces, we indicate by £(X,Y) the class of
linear continuous mappings from X to Y. We simply write £(X) in case X =Y.
We shall usually indicate by || - ||y the norm in the Banach space Y. In general, if
y € Y, we shall write |ly|| instead of ||y||y when no confusion arises.

If A is a densely defined linear operator on X and X’ is the dual space, we shall
indicate by A’ the dual operator of A.
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We denote by RT the set of positive real numbers, € is an open subset of
R"™, lying on one side of its boundary 0f2, which is a submanifold of R™ of class at
least C'. We denote by v(x) the unit vector normal to 9 in z, pointing outside
Q, and by D, the normal derivative. If s € Ny, p € [1, +oo], W*P(Q) is the usual
Sobolev space.
If s€Z,s>2and ( is an open subset of R, with smooth boundary, we set
WP Q) :={feW*P(Q): D, f =0},
Win(Q) :={feW>?(Q):D,f =D,Af =0}.
The Besov spaces are denoted by B;q(Q) fors >0,1<p<+4ocandl<qg<+o00
(see [36]).
The symbol (-, )9, denotes the real interpolation functor (0<é<1, 1 <p<+o00).
Let p € [1,4+00), T € RT, m € Ny and X be a Banach space.
If f e W™P(0,T; X), (see [1]) we set

m—1 .
£ llwm.ro,1;x) = ijo 1FD O+ £ ™| o 0,7:)-

Let X be a Banach space and let A be a linear operator whose domain D(A) is
contained in X. For the sake of brevity we define the Banach space

X(T.p) = W' (0,T;X)N L*(0,T; D(A)),
where T' € RT, p € [1,+oc]. If u € X (T, p) we set

lull x(1.p) = llullwreo,rx) + lullLeo,r;Da))-

In the sequel we will denote by a A b the number min{a, b}, where a,b € R.
Let h € LY(0,T) and f : (0,7) — X, where X is a Banach space. We define the
convolution

(h+ F)(t) = / Wt - $)1(s)ds,

whenever the integral has a meaning. We conclude this section by recalling some
interesting papers on inverse problems [5, 12, 18, 23, 24, 25, 26, 30].

2. Some strategies to treat integrodifferential inverse problems
2.1. Strategy I, inverse problems with a non linearity of convolution type: global
in time results

Let us consider the abstract formulation of the heat problem relating it to a Banach
space X and let us suppose that A is the infinitesimal generator of an analytic
semigroup in X.
Problem 2. Determine u : [0,7] — X and h : [0,T] — R, satisfying

o u/(t) = Au(t) + [y h(t — s)Au(s) ds + F(t),

e u(0) = up,

o D(u(t)) =g(t), Vtel0,T],
where ® denotes a bounded linear functional on X and wug, F, g are given data.
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The method to solve the problem is well known and can be formulated in the
following steps.

(1) We consider an abstract formulation of the inverse problem.

(2) We choose a functional setting and we select the related optimal regularity
theorem for the linearized version of the problem.

(3) We prove that the abstract version of the problem is equivalent to a suitable
fixed point system.

(4) The fixed point system contains integral operators, we have to estimate them
in the weighted spaces we are considering. The exponential weight e?, o €
R*, t € [0,T] is usually used.

(5) By the Contraction Principle we get existence and uniqueness of a solution
to our inverse problem.

(6) We apply the abstract results to the concrete problem.

2.2. The strategy II, inverse problems with two non linearities:
local in time results

In this case we follow the same strategy but here we cannot use weighted spaces.
The problem we consider is as follows.

Problem 3. Determine u : [0,7] — X and h : [0,T] — R, satisfying

o u/(t) = Au(t) + [y h(t — s)Au(s) ds + F(u(t)),

e u(0) = up,

o D(uft)) =g(t), Vtel0,T7],
where ® denotes a bounded linear functional on X and ug, g are given data and
F' is a non linear function of w.

The reason for which we cannot use weighted spaces is due to the fact that
the nonlinear term F(u) cannot be suitably estimated when we introduce some
weights in the function spaces we are considering. So condition (4), in strategy I,
has to be replaced by

(4’) The fixed point system contains integral operators, we have to estimate them
in the spaces we are considering.

With strategy II we can prove local in time existence and uniqueness results and
also global in time uniqueness results. The unsolved problem remains the global
existence of a solution. To get global in time existence and uniqueness it is nec-
essary to modify the strategy and make assumptions on the nonlinear term F'(u)
as follows. For the strategy in the case of local results see [31] and for the use of
weighted spaces see [17].

2.3. The strategy III, inverse problems with two non linearities:
global in time results

The main ideas to solve the Problem 3 in this case is to prove that there exists
a local in time solution of the inverse problem in Sobolev spaces without weights.
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We linearize the convolution term and we find a priori estimates for v and for the
convolution kernel A. We can split the strategy in three main steps.

Step 1: We prove local in time existence and uniqueness.

(a) We use the Sobolev spaces W2P(0,T; X).

(b) Find a suitable equivalent fixed point system.

(¢) The fixed point system contains integral operators, we have to estimate them
in the Sobolev spaces we have chosen.

(d) We apply the Contraction Principle to prove that there exists a unique local
in time solution. Thanks to the equivalence theorem previously obtained we
get existence and uniqueness of the solution to our inverse problem which is
local in time.

(e) We prove a global in time uniqueness result without any condition on F'(u).

Step 2: We linearize the convolution term: fg h(t — s)Au(s) ds.

(f) We linearize the convolution term thanks to the local in time existence and
uniqueness theorem.
We observe that a unique solution (i, h) exists in [0,7] for some 7 > 0.
Set v(t) := u'(t), v.(t) = v(r +t) and h,(t) = h(r + t) and consider, for
0 <t < 7 the splitting

/T+t W+t — s)Av(s)ds = h, x AD(t) + h * Av,(t) + F(t),
0

where the symbol # stands for the convolution. F(t) is a given data and
depends on the known functions (4, h).

Step 3: A priori estimates with the condition F,(u) bounded.
The above way of rewriting the convolution term allows us to avoid the weighted
spaces that have a bad behavior when we deal with the non linearity F'(u).

(g) We deduce the a priori estimates for v, () and h,(¢) for 0 < t < 7 assuming
that F, is a bounded function.
(h) In a finite number of steps we extend the solution to the interval [0, T).

Remark 2.1 (An open problem associated to strategy III). The nonlinearity F'(u) =
u(z,t) — u3(x,t) appears in several models we are interested in finding global in
time existence and uniqueness results for

ug(z,t) = Au(x, t) + /0 h(t — 8)Au(z, s)ds + u(z,t) — u®(x,t) (2.1)

with the additional restriction on u in integral form with the associated suitable
initial-boundary conditions. For the inverse problem we make the following con-
siderations.

e The term u(x,t) — u®(x,t) it is monotone and it is suitable to find a priori
estimates for the direct problem.



126 F. Colombo and D. Guidetti

e If we fix u, and we try to solve the evolution equation (2.1) with respect to
h we have to observe that the term fg h(t — s)Au(x, s)ds gives a Volterra
equation of the first kind. That is we have to face a Ill-posed problem.

e If we differentiate with respect to time the evolution equation we obtain a
Volterra equation of the second kind for the unknown h, since the derivative
of the convolution term gives:

h(t)Aug + /Ot h(t — s)Au'(z, s)ds.

So we get a well-posed problem for h, but the nonlinear terms becomes
o (x,t) — 3u?(z, ) (z, ).

The problem in that the differentiation with respect to time spoils the mono-
tonicity of the nonlinear term u(z,t) — u3(x,t) and so we are not able to find
the a priori estimates for the unknowns u and h.

2.4. The results of Strategy II applied to a phase-field model with memory

Here we present a phase-field model with memory studied in [14] which has been
solved in Sobolev spaces. For a different phase-field model with memory studied
in Holder spaces see [6, 7] and the literature therein.

Let © be an open bounded set in R? with sufficiently regular boundary 92
occupied by an isotropic, rigid and homogeneous heat conductor. We consider only
small variations of the absolute temperature and its gradient. The material which
exhibit phase transitions, due to the temperature variations, are described by two
state variables: the absolute temperature © and the phase-field y at each point
x € Qand t € [0,T] for T > 0, where y takes approximately value —1 in the
liquid and +1 in the solid. In our model we prefer to work with the temperature
variational field 0 defined by:

0 -0,

O,

where O, is the reference temperature at which the transition occurs. The energy
balance equation is

0:

(2.2)

de+V-J=F, (2.3)

where e is the internal energy, J is the heat flux and F is the external heat supply.
Taking into account a linearized version of the Coleman—Gurtin theory, we assume
the constitutive equations:

e(t,x) = e. + c,0.0(t, x) + /0 a(s)0(t — s)ds + O A(x(t, x)), (2.4)

J=—kVi(t,z) — /t b(s)VO(t — s) ds, (2.5)
0

where a and b account for the memory effects, e, ¢, and k are the internal energy
at equilibrium, the specific heat and the conductivity, respectively. Moreover, A is
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a suitable regular given function. By (2.3), (2.4) and (2.5) we get

Oy (ec +,00(t, z) + fot a(s)0(t — s)ds + O:A(x(t, x)))

(2.6)
V. (we(m) + [ b(s)VO(t — 5) ds) = F(t,z), te[0,T), z€Q.
We couple the evolution equation (2.6) with the Cahn—Hilliard type equation which
rules the phase evolution

edix(t, ) = A[=Ax(t, 2) + x> (t, 2) +7' (x(t,2) = N ()0, 2)], te[0,T], €,
(2.7)
where 7 is a smooth given function and € > 0 is a parameter. We will assume
that A and ~ are linear functions of their arguments. Associated to the evolution
equations we will consider also the initial and the Neumann boundary conditions to
be introduced just below. As we have already observed, the kernels a¢ and b cannot
be measured directly and the physical observable that can be easily measured
is the temperature, so a and b have to be indirectly determined by additional
measurements on f made on suitable parts of the material.
We consider additional measurements on the temperature which can be repre-
sented as

®,(0)(¢) ::/Q¢j(ac)9(t,x)dx:gj(t), vel0,T], j=1.2  (28)

where ¢; : @ — R are given compact support functions depending on the type
thermometer used for the additional measurements on 6 and g; : [0,7] — R,
j =1,2, represent the result of the additional measurements on #. We have given
two conditions because we have to identify the two unknown kernels a and b.

With the above notations we can give the definition of the inverse problem
we are investigating in the sequel.

Problem 4. Let p € (1,+00). Determine 0, x, a, b, and k with

0 € W>P(0,7; LP(Q)) N WHP(0, 7 WP (Q)), (2.9)
x € W3P(0,7; LP(Q)) N WLP(0, 7; WHP(Q)), (2.10)
aceWhP(0,7), belLP0,7), keRT, (2.11)

satisfying the system

D:(0+ A +ax0)(t,x) — AlkO(t, z) + b * 0](t, z)

= f(t,x), (t,z)€[0,7] xQ,

eDix(t,x) = A[-Ax + o(x) — M) (t,x), (t,z) €[0,7] x Q,
D,0(t,x") = D,x(t,x') = D, Ax(t,z') =0, (t,2') € [0,7] x 09,
9(0756) = 90(.%), X(07x> = X0($)7 x € Q,

q)j[e(t)] = gj(t)v JjE {172}7 le [077—]7

under suitable regularity and compatibility conditions on the data.

(2.12)
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We have set, for simplicity:

o(x) = x* =7 (x)-

The main result related to the inverse Problem 4 states that under suitable
regularity and compatibility conditions on the data there exists a unique local in
time solution in the Sobolev setting. More precisely, let us introduce the set of
conditions:

(C1) Q is an open bounded subset of R", lying on one side of its boundary 992,
which is a submanifold of R™ of class C*;

(C2) NeR, e € RT;

(C3) pe(1l,400), n €N, n < 4p;

(C4) ¢ € O°°( )i

(C5) xo € WEH(Q);

(C6) 6 € WP (Q);

(C7) for some T' e RT, f € Wl”’(O T L”(Q))

(C8) for j € {1,2}, u € LP(Q), fQ ¢j(x)u(z)de, with ¢; € L (Q);

(C9) for j € {1,2},9; € W2’p(0 T)

(C10) vo := e A[=Axo + ¢(x0) — Mo] € (LP(Q), W5E(Q)1-1/p.;

(C ) X_l = @2[90]@1[A90] — (1)1[90](1)2[A90] 7é 0

(C12) koR: X[®1[00]{®=2[f(0) — Avo] — g5(0)} — P2[6o]{P1[f(0) — Avo] — g1(0)}]
€ ;

(C13) @;(0o) = g;(0), j € {1,2};

(C14) wg := f(0) — Avg — agbtl + koA90 € (LP(Q), WP ()):— 1/p.ps

(C15) IcéoJr:: X[{@2[f(0) — Avo] — g5(0)}@1[0o] — {P1[f(0) — Avo] — g1 (0)}2[00]] €

The main result that is obtained by strategy II is the following.

Theorem 2.2. Assume that the assumptions (C1)—(C15) are satisfied. Then there
exists T € (0,T] such that the system (2.12) has a unique solution (0,x,a,b, k)
satisfying the conditions (2.9)—(2.11).

3. The results originally obtained by Strategy 111

Here we state the main results for the heat equation with memory in its abstract
version.

Problem 5 (The Inverse Abstract Problem (IAP)). Determine 7 € (0,7] and
o uc W2P(0,7; X)NWLP(0,7; D(A)),
o he LP(0,7),
satisfying the system
o u'(t) = Au(t) + h* Bu(t) + f(u(t)) + G(t), te (0,7)
e u(0) = uyp,

o O(u)=g(t), te(0,7).
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The set of regularity and compatibility conditions on the data in order to get
a well-posed problem are as follows. Let p € (1, 4+00).
(H1) D(A) =Y — X, D(A) is dense in X and there exist C > 0 and 6 € [0, 1),
such that, Yu € D(A),

—0
lully < Cllull i lullpa)-

(H2) A is the infinitesimal generator of an analytic semigroup in X

(H3) B e L(D(A),X).

(H4) up € D(A).

(H5) ® € X"

(H6) f € CHY,X) and f' : Y — L(Y,X) is Lipschitz continuous in bounded

subsets of Y.

(HT) G € Wh(0,T; X).
(H8) vg := Aug + f(ug) + G(0) € (X, D(A))l—l/p,p-
(H9) ®(Bug) # 0.
(H10) g € W2P(0,T) with ®(ug) = g(0) and ®(vo) = ¢'(0).

(H11) f7:Y — L(Y, X) is bounded, with f" Fréchet derivative of f.

Theorem 3.1. (Local in time existence) Let the assumptions (H1)—(H10) hold.
Then there exists T € (0,T], depending on the data, such that Problem 5 has a
solution (u,h) € [W2P(0,7; X) N WLP(0,7; D(A))] x LP(0,7).

Theorem 3.2. (Global in time uniqueness) Let the assumptions (H1)-(H10) hold.
Then, if T € (0,T], and Problem 5 has two solutions (uj, h;) € [W2P(0,7;X) N
WLP(0,7; D(A))] x LP(0,7) (5 € {1,2}), then u; = ugy and hy = hs.

Theorem 3.3. (Global in time existence and uniqueness) Let the assumptions
(H1)-(H11) hold. Let T > 0. Then Problem 5 has a unique solution (u,h) €
(W2P(0,T; X)NWLP(0,T; D(A))] x LP(0,T).

We point out that the global in time existence and uniqueness result has been
obtained in the abstract setting and it is not based on a maximum principle that
in most of the concrete cases does not hold.

3.1. An application of the abstract results to the heat equation with memory
Problem 6. Determine 7 € (0,T] and u € WP(0, 7; LP(Q)) N WP (0, 7; W2P())
and h € LP(0, 1), satisfying the system
Ou(t, ) = Au(t,z) + h* Au(t,z) + f(u(t,z)) + G(t, ),
u(0,2) = up(x), € Q,
Dl,u(t x)—O tE(O T), x© € 99,
= [, o(x)u(t,z)de = g(t).

Under the followmg conditions on the data:

(3.1)

(h1) Q is an open bounded subset of R™, lying on one side of its boundary 042,
which is a submanifold of R” of class C?;
(h2) p € (1,400), n € N, with n < 2p;
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g € W2P(0,T) With D(up) = ¢(0), ®(vo) = ¢'(0);
(Aug) == [, d(x)Aug(z)dz # 0;

G € WHP(0,T; LP(Q));

(h10) f, is bounded.

(h3)
=
(h6) vo := Aug + f(uo) + G(0) € (LP(Q), Wé’p(ﬂ))l—l/mﬁ
(h7)
(h8) @
)

Theorem 3.4. (Local in time existence) Let (h1)-(h9) hold. Then there exists
7 € (0,T], depending on the data, s.t. the Inverse Problem 6 has a solution
u € W2P(0,7; LP(Q)) N WLP(0,7; W2P(Q)), h e LP(0,7).

Theorem 3.5. (Global in time uniqueness) Let the assumptions (hl)—(h9) hold.
Then, if 7 € (0,T], and the Inverse Problem 6 has two solutions

uj € W>P(0,7; LP(Q)) nWHP(0, s W2P(Q)), (5 € {1,2})

hj € LP(0,1), (j e{1,2})

then w; =wug and hy = hs.
Theorem 3.6. (Global in time existence and uniqueness) Let the assumptions (hl)—
(h10) hold. Assume thatp > 1. Let T > 0. Then the Inverse Problem 6 has a unique
solution u € W2P(0,T; LP(Q)) N WLP(0, T; W2P(Q)), he LP(0,T).
3.2. An application of the abstract results to a parabolic problem of order 2m

Our main results are proved in an abstract setting so that they can be applied to
the more general case of operators of order 2m that contains as a particular case
the heat conduction problem for m = 1.

Problem 7. (The inverse problem for operators of order 2m) Let T' > 0. Determine
€ (0,7] and
u € W2P(0,7; LP(Q)) N WLP(0, 7; W2mP(Q)),  he LP(0,7), (3.2)
satisfying the system
Owu(t, ) = A(x, Oz )u(t, z) + h * B(x, 05 )u(t, )
+-7:((8§U(t7 x))\a|§2m,—l) + G(t7 $)7
u(0,2) =wuo(x), € Q,
Bj(z,0;)u(t,z) =0, 1<j<m, te(0,7), z €0,

with the additional information on u:
- /Q bw)ult, z)dz = g(t). (3.4)

We solve the inverse problem under the following conditions on the data:

(K1) m,n € N, Q is an open bounded subset of R", lying on one side of its
boundary 02, which is a submanifold of R™ of class C?™.
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(K2) A(x,0,) is a strongly elliptic operator of order 2m, with coefficients in
C(Q), for j =1,...,m, Bj(x,0d,) is a linear differential operator of order
m; < 2m — 1, with coefficients in C*™~"(98), {B;(z,0;) : 1 < j < m}
is a normal system of boundary operators in the sense of [35], Definition
3.7.1, the operator A(z, d,) with vanishing boundary conditions B;(x, 0;)
(1 <j <m) has Arg(\) = 6 as a ray of minimal growth of the resolvent in
the sense of [35], Definition 3.8.1 for all § € [—7/2,7/2].

(K3) p e (1,400), with n < p, 2m(1 — 1/p) #mj+1/p Vj=1,.

(K4) ug € W;"W( ) i={ue W2mP(Q): Bj(z,0,)u=0 Vj= 1 }.

(K5) 6 € 1 (9).

(K6) F € C*(RN(™) with N(m) indicating the cardinality of {a € NJ : |a| <

2m —1}, and we denote by (ya)‘a|§2m_1 a general element of RN ™). more-
over, its first-order derivatives are Lipschitz continuous on the bounded
subsets of RN (™),

(K7) G € WhP(0,T; LP(Q)).

(K8) vo := A(,8:)uo + F((08u0)aj<om—1) + G(0) € B P(Q), where

BGTYPQ) = v e B TYP(Q) - Bi(e,d,)u =0, Vi =1,...,m
mj +1/p<2m(1—1/p)}.
(K9) g € W2P(0,T) with ®(ug) = g(0) and ®(vg) = ¢'(0).
(K10) B(z,d,) is a linear differential operator of order not exceeding 2m, with
coefficients in C(€2).
(K11) ®(B(x,0z)u0) = [ ¢(x)B(x, 0z )uo(z)dx # 0.
(K12) VF is bounded in RN (™),

Theorem 3.7. (Local in time existence) Let the assumptions (K1)—(K11) hold.
Then there exists T € (0,T], depending on the data, such that Problem 7 has a
solution (u,h) € [W2P(0,7; LP()) N WEP(0, 7; W2™P(Q))] x LP(0, 7).

Theorem 3.8. (Global in time uniqueness) Let the assumptions (K1)-(K11) hold.
Then, if T € (0,T], and Problem 7 has two solutions (uj, h;) € [W?P(0,7; LP(2))N
Wlp(O T W2mp(Q))] x LP(0,7) (j € {1,2}), then u; = up and hy = ha.

Theorem 3.9. (Global in time existence and uniqueness) Let the assumptions
(K1)—~(K12) hold. Let T > 0. Then Problem 7 has a unique solution (u,h) €
[W22(0, T LP(Q)) N WHP(0, T; W2m2(Q))] x LP(0,T).

4. Some models to which Strategy III applies

4.1. The strongly damped wave equation with memory

For the proofs of the results, presented here and related to strongly damped wave
equation with memory see [8]. For the identification of the memory kernel in
the strongly damped wave equation where the additional restriction on the state
variable u is given by a flux condition see the paper [13].
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The model and the physical problem. Let ) be an open bounded set in R"™,
n=1,2,3and T > 0. For (¢t,x) € [0,T] x Q we consider the initial and boundary
value problem for a semilinear strongly damped wave equation

ug(t, ) = Aug(t, 2) + Ault, ) + fot h(t — s)Au(s, x)ds
+f(u(t,x), Vu(t,z)) + G(t, z),

u(0,z) = up(x), x€Q, (4.1)
w(0,2) = ug(x), z€9Q,

Dyu(t,z) =0, (t,x)€[0,T] x 99,

where D, denotes the outward unit normal derivative in 92 and we suppose that
the boundary 0f2 is sufficiently smooth in the sense that will be clarified in the
sequel. The functions f and G are given. In the case Q C R™ with n = 1,2 system
(4.1) rules the transversal vibration of a homogeneous string and the longitudinal
vibrations of a homogeneous bar, respectively. The term —Aw(t,z) takes into
account the so-called strong damping due to viscous effects and indicates that the
stress is proportional ont only to the strain, but also to the strain rates as in the
linearized Kelvin-Voigt material.

The convolution kernel h accounts for memory effects as usual. The fun-
damental point, when dealing with memory effects, is that the kernel h cannot
be considered a known function, since there are no ways to measure it directly.
What we do is to reconstruct h by additional measurements u, taken on a suitable
subset of the body 2. We suppose that such additional information on w can be
represented in integral form as

/Qd)(x)u(t, x)dr = g(t), Vtel0,T], (4.2)

where ¢ and g are given functions representing the type of device used to measure u
and the results of the measurements, respectively. The inverse problem we consider
in its more general form is the following.

Problem 8. Determine v : [0, 7] x 2 — R and the convolution kernel i : [0,T] —
R satisfying (4.1) and (4.2), given the initial values ug(z) and uq(z).

Definition 4.1. (The inverse problem for the damped wave equation with memory
in Sobolev spaces) Let T' > 0. Determine 7 € (0,7 and

u: W3P(0, 75 LP(2)) N W2P(0, 73 W2P(Q)), h e L?(0,71),
satisfying the system (4.1)—(4.2).
We solve the inverse problem under the following conditions on the data:

(K1) € is an open bounded subset of R™, lying on one side of its boundary 052,
which is a submanifold of R™ of class C? (in the physical case n = 1,2, 3).

¢ e LP(Q).
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(K6) G € Wo(0,T; LP(Q))

(K7) vy := Auy + Aug + f(ug, Vug) + G(0,) € Bf),(;, 1/p)(Q), where

B21-1/0) ) — Byy P (%) if p <3,
PP {ve B, YP(Q): Du=0} ifp>3.

(K8) [, ¢Aupdx # 0.
(K9) g € W3»(0,T) with [, puodz = g(0) and [, pvida = ¢/(0).
(K10) f'is globally bounded.

Theorem 4.2. (Local in time existence) Let the assumptions (K1)—(K9) hold. Then
there exists T € (0,T], depending on the data, such that the inverse problem given
by Definition 4.1 has a solution (u, h) € [W3P(0,7; LP())NW?2P (0, 7; W2P(Q))] x
Lr(0, 7).

Theorem 4.3. (Global in time uniqueness) Let the assumptions (K1)-(K9) hold.
Then, if T € (0,T], and the inverse problem given by Definition 4.1 has two solu-
tions

(uj, hy) € [W3P(0,7; LP(Q)) N W>P(0,7; W>P(Q))] x LP(0,7) (j € {1,2}),
then uy = us and hy = ho.

Theorem 4.4. (Global in time existence and uniqueness) Let the assumptions (K1)—
(H10) hold. Let T > 0. Then the inverse problem given by Definition 4.1 has a
unique solution (u,h) € [W3P(0,T; LP(2)) N WP(0,T; W2P(Q))] x LP(0,T).

4.2. A nuclear reactor model

For the proofs of the results presented here see [10]. For the nuclear reactor models
see for example [4] and [29]. Let ¢t € [0,T], for T > 0, x € 2 where € is an
open bounded set representing the nuclear reactor. In the sequel we indicate the
boundary of 2 by 99Q2. We denote by u the deviation of the temperature from the
equilibrium, W is the logarithm of the total reactor power.

Definition 4.5. (The inverse problem in Sobolev spaces) Let T > 0. Determine
€ (0,7] and

u € W2P(0,7; LP(Q)) N WLP(0, 7 W2P(Q)), W e W3P(0,7), he LP(0,7),

(4.3)
satisfying system
dru(t, r) = Au(t, ) + h* Au(t,z) +n(z)(e¥? — 1),
u(0,2) =uo(x), € Q,
Dl,u(t x) =0, tE(O T), x € 0L,
"(t) = — [ alx)u(t, z)dz, (4.4)
( ) =W,

[y d(@)u(t, z)de = g(t).
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Definition 4.6. (The linearized version of the inverse problem in Sobolev spaces)
Let T > 0. Determine

u € W2P(0,T; LP(Q)) N WP(0, T; W3P(Q)), We W3P(0,T), he LP(0,T),
(4.5)
satisfying system (4.4) where the term n(z)(e”V® — 1) is replaced by n(z)W(t).

=~

Let us assume the following conditions (for the physical case take n = 3).

(h1) Q is an open bounded subset of R™, lying on one side of its boundary 02,
which is a submanifold of R™ of class C2.

) pe (l,400),n €N, with n < p, p # 3.

) Wo €R,  upg € WEP(Q).

4) p€ LV (Q), acLV(Q), nelL(Q).

h5) f € C*(R) and f’ is Lipschitz continuous in bounded subsets of R.

)

)

8)

(h2
(
i
(h6) vo == Aug + nf(Wy) € 32“ /P ().
(
(b
(b

h3

p p B
h7) g € Wva(O T) with fQ ug(z)dzr = ¢(0) and fQ o(x)vo (z)dx = ¢/ (0).
Jo &(2) Aug ( )dx £ 0.
9) 1 globally bounded.

We recall that for 6 € (0,1) we have the interpolation result (see [36])

(LP(Q), WE(Q)e,p = BoU 5P ()

p,p,B

_ { Boy () ifp <3,

)

{ve ng_l/p)(Q) :D,u=0} ifp>3.

Theorem 4.7. (Local in time existence in the case of Definition 4.5) Let the as-
sumptions (h1)—(h8) hold. Then there exists T € (0,T], depending on the data,
such that the inverse problem given by Definition 4.5 has a solution (u, W,h) €
(W2P(0,7; LP(Q)) N WEP(0, 7; W2P(Q))] x W3P(0,7) x LP(0, 7).

Theorem 4.8. (Global in time uniqueness in the case of Definition 4.5) Let the
assumptions (h1)—(h8) hold. Then, if T € (0,T], and the inverse problem given by
Definition 4.5 has two solutions

(uj, Wj, hj) € [WP(0,7; LP(Q)) N WHP(0, 73 WP (Q))] x W*P(0,7) x LP(0,7)
for j € {1,2}, then uy = uz, Wy = Wh, and hy = hs.

In the case we consider the linearized version of the inverse problem in Defi-
nition 4.6, instead of position (P6) we have to assume

nf (W) :=n(x)V(t).

Theorem 4.9. (Global in time existence and uniqueness in the case of Definition
4.6) Let the assumptions (h1)-(h9) hold. Let T > 0. Then the inverse problem
given by Definition 4.6 has a unique solution (u,W,h) € [W?2P(0,T;LP(Q)) N
WLhe(0,T; W2P(Q))] x W3P(0,T) x LP(0,T).
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5. The beam equation with memory

We conclude this overview of models with the beam equation with memory, the
proofs of the following results are in the paper [15]. For non parabolic models see
also [21] and [22].

Definition 5.1. (The inverse problem for the beam equation) Let T' > 0. Determine
7€ (0,T] and

(U, h) € [C*([0,T]; L*(2)) N C([0, T); H2(2)) N C([0, T); HY(2))] x L1(0,T)
satisfying the system

Up(t, ) + A2U (t, ) — AU(t,x) = fo (t — s)AU (s, )ds
+F(t,x,U(t,x), D, U(t,x), D2U(t,x)), (t,x)€ (O,T) x Q,

Ult,x) = go(t,x), (t,z)€[0,T] x 09,

D,U(t,z) = q1(t,x), (t,z) €[0,T] x 99, (5.1)
U(0,z) =Uy(x), x€Q,

Ut(o x) U(z), z€eq,

Joo@)U(t,x)de = G(t), te]l0,T].

We will indicate with v the trace operator in 9€2. We study the problem in
Definition 5.1 under the following assumptions.

(K1) Q is an open bounded subset of R", with n < 3, lying on one side of its
boundary 052, which is a submanifold of R™ of class C°.

(K2) We indicate with (£, z, u, p, ¢) the generic element of [0, T] x xR xR™ x R,
We assume that F' € C1([0,T] x QxR x R" x R”Q); moreover, the first-order
derivatives are Lipschitz continuous with respect to u,p and ¢, uniformly
in bounded subsets of [0, 7] x © x R x R" x R™".

(K3) Uy € H**=(Q), Uy € H**2(Q), for some ¢ € RT.

(K4) For some ¢ € RT:

go € W10, T, HZ (09)) N W5 +=1(0, T; L2(99)),

g1 € W0, T H3 (09)) N WEH1(0, T; L2(69)).
(K5) Compatibility conditions on go, g1, Uy and Uy:
PyUO = gO(O7 ')7 DUUO = 91(07 ')7 in aQ?
’YUl = Dtgo(O, .), DVUl = Dtgl(O, ) in 89
¢ € HE(Q).
Jo #(x) AUy (x)dx # 0.
G e W3H0,T).
f d(2)Up(z)dx = G fQ z)dr = G'(0 fQ x)dz = G"(0),
with

(K6)
(K7)
(K8)
(K9)
Vo := =AUy + AUy + F(0, Uy, DUy, D2Up).

(K10) The first-order derivatives of F' are uniformly bounded in [0,7] x Q x R x
2
R™ x R™ .
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We shall prove the following results:

Theorem 5.2. (Local in time existence) Let assumptions (K1)—(K9) hold. Then
there exists T € (0,T], depending on the data, such that the problem in Definition
5.1 has a solution

(U, h) € [C*([0, 7]; L2()) N C ([0, 7); H*(Q)) N C([0,7); HH(2))] x L'(0, 7).

Theorem 5.3. (Global in time uniqueness) Let assumptions (K1)—(K9) hold. Then,
if 7 € (0,T], and the problem in Definition 5.1 has two solutions

(Uj, ;) € [C2([0,7); L2()) N CH ([0, 7]; H2 (@) N C([0, 7]; H(Q)] x L (0, 7),
(7 €{1,2}), then Uy = Uz and hy = hs.

Theorem 5.4. (Global in time existence and uniqueness) Let assumptions (K1)—
(K10) hold. Then the problem in Definition 5.1 has a unique solution

(U, h) € [C2([0, T); LA(Q)) N CX([0, T); HA(Q)) N C((0,T]; HY(R))] x L0, T).
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Abstract. In this paper we consider linear operators of the form L + Al be-
tween suitable functions spaces, when 0 is an eigenvalue of L with constant
associated eigenfunctions. We introduce a new notion of “quasi”-uniform max-
imum principle, named k-uniform maximum principle, which holds for A be-
longing to certain neighborhoods of 0 depending on k& € R™. Our approach
actually also covers the case of a “quasi”-uniform antimaximum principle, and
is based on an L> — L? estimate. As an application, we prove some gener-
alization of known results for elliptic Neumann problems and new results for
parabolic problems with time-periodic boundary conditions.
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Keywords. Maximum principle, antimaximum principle, k-uniform maximum
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1. Introduction and abstract setting

In the recent paper [6], Campos, Mawhin and Ortega showed a very general maxi-
mum and antimaximum principle for linear differential equations whose prototypes
were given by linear ODE’s with periodic boundary conditions and the linear
damped wave equation (or telegraph equation) in one spatial dimension with dou-
ble periodic boundary conditions. In that paper the abstract setting relies on a
L> — L' estimate for solution-datum of the form

|l Loy < M| fllz1 (),
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which is common and natural for ODE’s and for the wave equation in 1D. On the
other hand, for the classical theory of elliptic problems like
Au+ du = f(z) in Q, (11)
Bu=0 on 0,
where € is a bounded domain of RN, N > 1, and B denotes Dirichlet or Neumann
boundary conditions, a more natural setting would be an L? — L? estimate of the
form
ullz2(0) < M| fllz2(0),
since data belonging to L' are not the good ones to perform a standard variational
approach (we refer to [3] for a well-established theory for this case). In this clas-
sical framework many results have been established for problem (1.1), the typical
mazximum principle sounding as:

(MP): if A < Ay, the first eigenvalue of —A under the corresponding boundary
condition, then for any f > 0 the associated solution u is nonposi-
tive in Q.

On the other hand, a related stronger version, namely the strong mazximum prin-
ciple, holds:
(SMP): if in addition f # 0, then w is strictly negative in .
However, it is now well known that jumping after \; changes the situation a lot: in-
deed, Clément and Peletier in [7] were the first to show the following antimazimum
principle:
(AMP): for any f > 0in LP(2), p > N, there exists 6 = §(f) > 0 such that if u
solves (1.1) with A € (A1, A1 + ) under Dirichlet or Neumann boundary
conditions, then v > 0 in Q.

They also showed that under Neumann boundary conditions it is possible to take &
independent of f, thus showing a uniform antimazimum principle (UAMP), only
when N = 1. Refinements of the (UAMP) are established for higher-order ODE’s
with periodic boundary conditions in [5], for general second-order PDE’s with
Neumann or Robin boundary conditions in [16] (where it is proved that (UAMP)
holds only if N = 1), in [8], [9], [18] for polyharmonic operators in low dimensions
(essentially for all those dimensions for which the natural Sobolev space containing
weak solutions are embedded in C%(Q)), while in [25] it is showed that the condition
p > N in [7] is sharp for the validity of an antimaximum principle when L = A
under Dirichlet boundary conditions, in the sense that requiring a right-hand side
f € L%(Q) forces to assume N = 1.

On the other hand, the result of [6] seems to be much more general, since the
authors show that it is possible to state maximum and antimaximum principles in
a unitary way. Roughly speaking, having in mind Neumann boundary conditions,
so that \; = 0, they start with the following definition of maximum principle,
which is actually formulated therein for data f belonging to L'(€2), but which we
rephrase here for functions in L?().
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Definition 1.1. Given A € R\ {0}, we say that the operator L + AI satisfies a
mazimum principle if for every f € L?(€2) the equation

Lu+ X u=f, wué&Dom(L)cCC® (1.2)

has a unique solution with Au > 0 for any f > 0. Moreover, the maximum principle
is said to be strong if Au(z) > 0 for any x € Q whenever f > 0 and f(z) > 0in a
subset of 2 with positive measure.

Thus it is clear that the authors are actually dealing with a “classical” max-
imum principle when A < A\; = 0 and with a “classical” antimaximum principle
when A > 0; more precisely, we remark that for A > 0 their definition includes a
(UAMP) tout court.

Without going into the detailed description of L, but thinking for instance of
Lu as v” with Neumann boundary conditions, the main result in [6] is the following

Theorem 1.2 ([6]). There exist A\_ and Ay such that
—0 <AL <0< Ay £ 400

and L+ NI has a mazimum principle if and only if A € [A_,0)U (0, Ay]. Moreover
the mazimum principle is strong if X € (A_-,0) U (0, Ay).

As already said, an L™ — L' estimate is the main ingredient of their proofs;
for this reason, having in mind weak solutions to (1.1), this setting is natural for
all those problems in which L' is contained in the dual of the Sobolev space where
weak solutions are sought. In this context, the easy problem

{?ﬂuj—g\u f in Q, (1.3)
5= on 01,
where Q is a bounded domain of R? or R?, cannot be handled by Theorem 1.2
if f € L?(2), which is the most reasonable assumption since L*(Q) C (H(2))’,
while L1(Q) ¢ (H'(Q)); indeed, we remark that the inclusion L'(Q) C (H}(Q))
actually holds only in dimension 1, and this fact was used in [6] to consider (1.3)
for N =1 as a special case of polyharmonic problems.

On the other hand, classical regularity results for elliptic PDE’s guarantee
that if f € L?(Q) and € is a bit regular, say of class C? just for simplicity, then the
corresponding solution u of (1.3) with A\ # 0 belongs to H?(Q2), and there exists
C = C(£2) > 0 such that

lullm2(0) < Cllfll2 ), (1.4)
for example see [4, Theorem IX.26]. By Morrey’s Theorem, if N = 1,2,3, then
H?(Q) — C%%(Q), so that (1.4) implies

[ullco) < Ml fllz2(0)

where, of course, |lu|coq) = maxg |u| = ||u| £ (q).
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Our purpose is to combine the spirit of all the results cited so far showing
that, although a (UAMP) cannot hold, in higher dimensions a “quasi-(UAMP)”
does, in the sense of Definition 1.3 below.

In order to make our setting precise, we start describing the abstract frame-
work we are working within. By Q we denote a bounded domain of R™ endowed
with a positive and finite measure u, and we write LP(Q2) := LP(Q, ), p € [1, o0].
Given f € L?(Q) and k > 0, we define

L:={feLl*Q) :F=0}, C:=CQ)NL,
and
Fro={feL?() : ”JEHL?(Q) <Kl fllzr)}-

It is clear that any f € L?(Q) belongs to a suitable F; and to F; for any ¢ > k,
and that UpFy, C L'(Q) with strict inclusion.

We now consider a linear operator L : Dom(L) C C°(Q) — L?(f) satisfying
the following properties:

Ker(L) = {constant functions}, Im(L) =L, (1.5)

(1.6)

the problem Lu = f has a unique solution @ € C
and 3M = M (L) > 0 such that ||iil|coy < M| fllr2(0)-

We remark that these requirements are the natural extensions to our setting
of the assumptions made in [6]. Therefore, having in mind Definition 1.1, we give
the following

Definition 1.3. Given A € R\ {0}, we say that the operator L + Al satisfies a
k-uniform mazimum principle (k-(UMP) for short) if for every f € Fj equation
(1.2) has a unique solution with Au > 0 for any f > 0. We say that a strong
k-(UMP) holds if Au(x) > 0 for any « €  whenever f > 0 and f(z) > 0 in a
subset of 2 with positive measure.

Remark 1.4. As in the case of Definition 1.1, the case A < 0 corresponds to
a classical maximum principle, while the case A > 0 states the validity of an
antimaximum principle, which is “almost” uniform due to the fact that f € Fj
and not to the whole of L?((2).

In view of the cited results stating that for the Laplace operator with Neu-
mann conditions a (UAMP) can hold only in dimension 1, we want to prove that a
k-(UMP) does hold also in some higher dimensions. In this context, we believe that
our result, stated in Theorem 1.5, can shed new light in the general understanding
of the matter.
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In particular, our result concerns the existence of a neighborhood U of 0 such

that
UN\{0} Cc{NeR : L+ M satisfies a k-(UMP)}.

Thus, having in mind a “quasi”’-uniform (AMP) for L, we can conclude that there
exists 6 = §(k) > 0 such that for any A € (0,9) and for any f € Fy, f > 0, the
solution of (1.2) is nonnegative, at least if N = 1,2, 3, in contrast to the validity of
the (UAMP) for problem (1.1), which can hold only if N = 1, as already remarked
in [7].

More precisely, our abstract result is the following.

Theorem 1.5. Assume that (1.5) and (1.6) hold and fix k > 0. Then there exists
A = A(k) > 0 such that L + A\ has a k-(UMP) if X\ € [=A, A]. Moreover a strong
k-(UMP) holds if A € (—A, A)\ {0}.

We remark that in this way we can extend the result about an antimaximum
principle for the Laplace operator to higher dimensions, say N = 2,3, also in a
quasi-uniform way, being impossible to extend it in a uniform way by the cited
results. Indeed, although in [25] it is shown that the condition p > n is sharp (being
f € LP(Q)) and that one cannot have 6(f) to be bounded away from 0 uniformly for
all positive f, we can prove that in Fj, there is the desired uniformity. In some sense,
it seems that the validity of (UAMP) is strongly related to the fact that L' # L?!

On the other hand, we must also underline the fact that if solutions exist
in the right Sobolev space, independently of the Lebesgue spaces containing f,
standard maximum principle can be proved also for inhomogeneous inequalities,
possibly set on Riemannian manifolds (see the recent [2], [20], [21]), and also when
everything is settled in anisotropic Sobolev and Lebesgue spaces with variable
exponent ([11]).

Final Remark. In [6] the authors could prove a complete characterization of the
set of N’s for which the (UAMP) holds (see the “if and only if” part in Theo-
rem 1.2); thus our Theorem 1.5 is not a complete generalization of their Theorem
1.2. However, we believe that this is a first step for further improvements in our
setting, which seems more natural to face the maximum (or antimaximum) prin-
ciple for PDE’s.

2. Proof of Theorem 1.5

In this section we want to extend the technique and the spirit of [6] to our functional
setting.

We start recalling that the resolvent of L is the operator Ry : L*(Q) — C°(Q)
which is the inverse of L + AI, whenever it exists. Moreover, we introduce the
operator Ry : £ — C defined by

i=Rof < Lu=f,

which is well defined by assumption (1.6).
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The first lemma we prove gives a condition that ensures the existence of the
resolvent of L.

Lemma 2.1. There exists A1 > 0 such that for all A € [—A1, A1]\ {0} the resolvent
Ry : L3(Q) — C%(Q) of L is well defined. Moreover, there exists C > 0 such that
if f €L and X € [—A1, A1)\ {0} then

IBAfllco) < Cllfllrz@)s

where C = and M is the constant appearing in (1.6).

- M
1-A1||Rolle_¢

Here ||R0||é—>é denotes the norm of the restriction of the operator Ry from C
to C, which is well defined, since C C L.

Proof. Rewrite (1.2) as the system

{La+xa =7,

i = f. @1)

Applying Ry, the first equation in (2.1) can be rewritten as
(I +ARo)i = Rof. (2.2)
Now, if [A[|| Rol|¢_¢ < 1, then T+ ARy is invertible from C to C (note that Rof € C)
and (2.2) is solved by
i = (I +\Ro)"‘Rof.
In conclusion, Ryf = (I + )\1:20)_1]:20];4— ;

1
7> Thus for all A such that |[A| < Aj, one has,

N Rolle_e
from the triangle inequality, (2.2) and (1.6),

Now, take Ay € (0

@l oo () — Arll Rollg_elliill Lo ) < Nliill o) — Al Rollg_ellill oo o)
< (I + ARo)il L=(o) = IR0 fll =0
= ||l @) < M| fll22(0)-
The thesis follows. O

Note that the proof above provides the estimate

1
A < — .
[ Rolle_e
Once proved that Ry exists, we can prove the following essential result about
maximum and antimaximum principles when the data belong to F.

Lemma 2.2. Take k > 0; then there exists Ao := Aa(k) € (0,A1] such that for
all X € [—Aa, Ao] \ {0} the operator L + AI has a k-(UMP). Moreover, a strong
k-(UMP) holds if A € (—As, As) \ {0}
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Proof. If f € Fr, f >0, then f = #ﬂ)”‘f”[ll(g). Thus, using the second equation
in (2.1), one has
M= ARA(f + f) = ARA(f) + F = ARA(f) + ﬁﬂfﬂy(m
1
()
By the previous lemma it results that if A € [=A1, A1] \ {0}, then

M -
————|fllz2c)
L= A Rollg_e

2 £l (@) — MRl (0 -

1
> —— v — 1A
> H(Q>||f||L @ — Al

1 M
> [ — — N —— ) [l
(mm 1—A1||Roc;c~> @

The thesis follows taking

1— A1||Rollg_e
A2 = min{Al, —1HROHC_>C }

M () O

Proof of Theorem 1.5. Fixed k > 0, by Lemma 2.2 the theorem is proved simply
taking A = Ay (k). O

3. Applications

In this section we present three differential problems where Theorem 1.5 can be
applied. The first two examples are almost straightforward, after the considerations
made in Section 1, and consist in extending to higher dimensions the uniform
maximum principle proved in [6] for elliptic operators, of course under our version
of k-(UMP).

The third application requires some additional calculations, but we think it
is an interesting one: in fact, in the last example we consider some classes of time-
periodic parabolic problems, which have raised a growing interest in the last years,
especially in their nonlinear versions, mainly for the large number of biological
applications they describe (see [1], [12], [13], [15], [19], [23], and also [14] and [22]
for other cases), and for which a general approach for the validity of a uniform
maximum (or antimaximum) principle seemed to miss so far.

On the other hand, we prove the validity of a k-(UMP) only in dimension 1,
which seems to follow coherently the previous results (see Remark 3.4).

3.1. Laplace operator

Let us consider the classical Neumann problem

{Aqu)\uf in Q,

gu —0 on 99,

(3.1)
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where ) is a smooth bounded domain of RV, N € {1,2,3}, and f € L%(Q). Then it
is well known that problem (3.1) with A = 0 has a solution if and only if [, f = 0.
On the other hand, setting L = A, it is clear that Ker(L) = {constant functions}
and that A\ = 0. In addition, it is evident that the problem

{Lu =f inQ,
g—jj =0 on 01,
has a unique solution
u € H*(Q)NHH(Q) — C°(Q) (3.2)

satisfying the additional condition fQu = 0, that is u € C, according to the
notations introduced in Section 1. Moreover, as already remarked at the beginning,
by classical regularity theory, there exists M > 0 such that ull 720y < MHfHLz(Q).
Hence, by (3.2), all the abstract requirements (1.5) and (1.6) for L are fulfilled,
where the underlying measure y is simply Lebesgue’s measure in €.

Applying Theorem 1.5 we immediately get the following

Proposition 3.1. Let N € {1,2,3}; for any k > 0 there exists A = A(k) > 0 such
that if X € [=A,0) U (0,A], then A + X under homogeneous Neumann boundary
conditions has a k-(UMP). Moreover, a strong k-(UMP) holds if A € (—A,0) U
(0,A).

In [6] it was already proved that this result was valid for N = 1, also giving
a complete characterization of the values of A’s for which the result holds true.
However, the authors underlined the fact that they could not prove it for N > 1,
so that they were naturally turned to consider polyharmonic operators in low
dimensions. We consider the same operators in the following section.

3.2. Polyharmonic operator

Let us now consider a classical elliptic Neumann problem in presence of an m-
polyharmonic operator, m € N, in a smooth bounded domain © of RV, N ¢
{1,...,4m — 1},

A"y + du=f in Q,
ou __ OAu _ AT Ty (33)
{E_ D) —T—O OnaQ,

so that Ker(L) = {constant functions}, with L = A™, and as already remarked
in [6], the assumption (1.5) for L is satisfied. Moreover, by elliptic regularity the
weak solution u € H™() of (3.3) actually belongs to H*™({) and is such that
the estimate || @] g2m ) < MHfHL2(Q) holds for a suitable constant M. Since N <
dm — 1, H*™(Q) — C°(Q), so that also assumption (1.6) holds. Theorem 1.5
can be immediately applied, thus extending the result showed in [6] when N <
2m — 1 to higher dimensions. As in the previous case, in [6] there was a complete
characterization of the \’s, while here we give only a sufficient condition for the
validity of the k-(UMP):
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Proposition 3.2. Let m € N and N € {1,2,...,4m — 1}; for any k > 0 there exists
A = A(k) > 0 such that if A € [=A,0)U (0, A], then A™ + AI under homogeneous
Neumann boundary conditions has a k-(UMP). Moreover, a strong k-(UMP) holds
if e (—=A,0)U(0,A).

3.3. Periodic parabolic problems

In this last part we consider the following parabolic problem:

Ut — QUgy + Au=f in Q x (0, 00),
uy =0 on 90 x (0, 0), (3.4)
u(0) = u(T).

Here 2 is a bounded interval of R, a > 0, T > 0, A € R and f € L*(Q7), where

we have put Qr =  x (0,7) for shortness. Using the notation of Section 1, we
set Lu := u; — atiy, with

D(L)={ue H'(0,T; H*(Q)) : uz =0 on 99 for a.e. t € (0,T)}.
As usual, we define weak solutions of (3.4) as functions v € L?(0,T; H*(Q))

such that g
—/uvdx—l—a/ugﬂvggdx—i—)\/uvdx:/fvd:lc (3.5)
dt Jo Q Q Q

for a.e. t in (0,T) and for all v € H*(£2). Moreover u has to satisfy u(0) = u(T).

First, let us note that by parabolic regularity, any solution of (3.4) actually
belongs to C([0,T]; H*()) (this is an obvious consequence of [4, Theorem X.11]
applied to time-periodic solutions of Neumann problems). This fact lets us prove
that Ker(L) = {constant functions}: indeed, if u is a solution of

Ut — Qg =0 in O x (0, 00),
Uy =0 on 99 x (0, 00), (3.6)
u(0) = u(T),

integrating over (0,7 the related equality given by (3.5) with A = f = 0 and
v = u, gives

T
0:/ i/u2dxdt+a/ |Um|2d$dt:/[u2(T)—u2(O)] dx—|—/ |Um|2d1‘dt,
o dt Jo or 0 i

from which we get that u is a constant by the periodicity condition.
Moreover, we now prove that f € Im(L) if and only if

feﬁz{feLQ(QT): fdxdtzO}.

QT

Indeed, if f € Im(L) and u is the related solution, integrating over (0,7 the
definition of weak solution with v = 1, gives

Td
/ —/udxdtz fdxdt,
0 dt ¢ Qr
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and by periodicity this implies fQT f =0, so that Im(L) C L. Viceversa, let
f €L cCL?*Qr)C (L*0,T); HL(2))'; then, by [27, Theorem 32.D] there exists a
weak solution u € L%(0,T; HY(2)) of
Ut — Qg = [ in O x (0, 00),
Uy =0 on 09 x (0, 00), (3.7)
u(0) = u(T),
and thus Im(L) = L.

Any other solution of (3.7) is found adding a constant to w, since their dif-
ference solves (3.6); thus there exists a unique solution

weC = {UECO(@) :/ vdxdtzO}.
Qr

Moreover, by parabolic regularity, we get that @ € C°([0,T]; H*(£2)). In ad-
dition, the following estimate holds:

@]l Lo, 7:m1 2y < CLNAO) | m () + 1 fll 2@y } (3.8)
for a universal constant C' = C'(«, T, ?). We remark that this is again an adapta-
tion of classical estimates to solutions of periodic problems, for example, see [24,
Theorem 8.13].

We are not able to apply Theorem 1.5 to any problem of the form (3.4). Thus,
at this point we assume to deal with data («, T, 2) such that the related constant
C(a, T,Q) appearing in (3.8) is strictly less than 1, i.e.,

C=0C(a,T,9) < 1. (3.9)
We remark that condition (3.9) can be satisfied if, for example, « is sufficiently

large.
Thus from (3.8) we easily get

. C
1@l £os (0,151 (02)) < m”f”LZ(QT)' (3.10)
By Poincaré-Wirtinger inequality (see [4, Chapter VIII]) we know that
[a(®)][ @) < VIQUa@ar @) Vi,
so that (3.10) implies

. Cy/|Q
fillmon < DA £l 00

. . . /19
thus (1.6) is satisfied with M = ==

Without other assumptions we can now apply Theorem 1.5 to problem (3.4)
to get:

Theorem 3.3. Assume (3.9), fix k > 0 and set Lu := uy — qty,.. Then there exists
A = A(k) > 0 such that L+ A\ has a k-(UMP) if A € [=A,0) U (0, A]. Moreover
a strong k-(UMP) holds if A € (—A,0) U (0, A).
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Remark 3.4. To our best knowledge, there are not many results concerning (UMP)
or (UAMP) for parabolic problems like (3.4). For example, we quote [10], where
the authors prove a result which resembles an antimaximum principle but for
certain Cauchy problems with homogeneous Dirichlet boundary conditions. Their
result, however, is different in nature from ours, since they show what we could
call a kind of eventual antimaximum principle, in the sense that they prove that
solutions of Cauchy-Dirichlet problems are positive for large times, also when the
datum is negative.

We are aware of the recent paper [17], where the authors consider a periodic
parabolic problem under both homogeneous Dirichlet or Neumann conditions, and
they show an (AMP) also in presence of a weight. On the other hand, if N = 1,
they assume that the right-hand side of the parabolic equation belongs to LP with
p > 3, and in addition their result is not uniform. On the contrary, with our
approach we can handle the case f € L? and we can prove a k-(UMP), so that
certain uniformity for the validity of a maximum or antimaximum principle with
data in L? is guaranteed, although with some restrictions on the coefficient o and
on the interval €.

Of course, a result analogous to Theorem 3.3 can be proved if —A in di-
mension 1 is replaced in a higher dimension N by a polyharmonic operator with
the natural Neumann boundary conditions, provided that N is so small that the
associated spatial Sobolev space is embedded in the space of continuous functions;
thus one can consider the following problem:

up+a(=A"™u+ = f in  x (0, 00),
g—:ﬁ:%:...:aAgIJ_luzo OnaQX(O’OO)’
u(0) = u(T),

where all the assumptions made above for m = 1 are obviously generalized accord-
ing to the new setting, and in particular N < 2m — 1, so that C°([0, T]; H™(Q2)) C
C°(Qr). The details are left to the reader.
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Steady-state Solutions for
a General Brusselator System

Marius Ghergu

Abstract. We study the steady-state solutions associated with a general Brus-
selator system in a smooth and bounded domain. Various existence and non-
existence results are obtained in terms of parameters.
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1. Introduction

The Brusselator model was introduced in 1968 by Prigogine and Lefever [11] as a
model for an autocatalytic oscillating chemical reaction. It consists of the following
four intermediate reaction steps

A— X, B+X —->Y+D, 2X +Y — 3X, X - FE.

The global reaction is A + B — D + E and corresponds to the transformation
of input products A and B into output products D and E. After some scaling
and change of variables, the mathematical model corresponding to the Brusselator
system is

u—diAu=a— (b+Du+u*v inQx(0,00),

vy — daAv = bu — u?v in Q x (0,00),

subject to homogeneous Neumann boundary conditions. Here Q@ ¢ RN (N > 1) is
a smooth and bounded domain, the unknowns u, u represent the concentration of
the intermediate reactants X and Y having the diffusion rates di,ds > 0, and a,
b > 0 are fixed concentrations.

Turing [12] suggested that under certain conditions, chemicals can react and
diffuse in such a way to produce steady-state heterogeneous spatial patterns of
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chemical or morphogen concentrations. He showed that a system of two react-
ing and diffusing chemicals could give rise to spatial patterns from initial near-
homogeneity. The idea behind Turing’s model is the so-called diffusion-driven in-
stability and consists of the existence of a low-range diffusing activator and a
wide-range diffusing inhibitor. The activator production is inhibited by the pres-
ence of inhibitors and enhanced by the presence of the activator while the inhibitor
is not self-enhancing, that is, its production is not linked to the presence of other
inhibitors, but to the presence of activators.

Lately, many Turing-type models described by coupled systems of reaction-
diffusion equations have been used for generating patterns in both organic and
inorganic systems.

In this work we shall consider the following elliptic system

—diAu=a— b+ Du+ulv in Q,

a— dgA(;) = bu — uPv in Q, (1.1)
a—z = G_Z = on 0f).

The case p = 2 corresponds to the steady-state of the Brusselator system. This
case was studied in [1] and [10] by using the scaling

U=u/a, V =av/b, A=1/da, 0 =dy/ds.

Here we consider a more general nonlinearity of power type u?, p > 0. First, it is
easy to check that (u,v) = (a,ba'~P) is a constant solution of (1.1). We shall see
that if 0 < p < 1 then this is the only solution of (1.1). In turn, when p > 1 the
existence of a non-constant solution to (1.1) is more delicate. It depends on all
parameters a, b, d; and ds involved in (1.1).

In this work, unlike the approach in [4] (see also [5]), we shall keep the initial
parameters a, b, d1, ds, p unaltered as this better emphasizes their influence in the
qualitative study of (1.1).

One of the novelties in the present work is that we provide upper and lower
bounds for positive solutions to (1.1) and thus we obtain various existence, non-
existence, and regularity results without any restriction on the dimension N > 1
of the domain. This is a common difficulty when dealing with steady-state for
reaction-diffusion systems (see for instance [2, 3, 10]). In case of Sel’kov model
this restriction on N and on other parameters related to it has been removed by
Lieberman [6]. Also the result in [6, Theorem 4.1] applies to Brusselator system but
here we provide precise bounds by means of a simple argument. As a consequence,
we derive uniform bounds for some range of parameters b, d; or ds. Throughout
this paper we denote by 0 = pup < 1 < po < -+ < p, < --- the eigenvalues of
—A in Q with homogeneous Neumann boundary condition. For any k& > 0 we also
denote by m(ug) the multiplicity of pu.
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2. A priori estimates

Basic to our subsequent analysis is the following result which is due to Lou and
Ni (see [7, Lemma 2.1]).

Lemma 2.1. Let g € C*(Q x R).
1. If w € C?(Q) N CYQ) satisfies
Aw + g(z,w) >0 in Q, g—wgo on 09,
n
and w(zrg) = maxgw, then g(zo, w(xo)) > 0.
2. If w € C%(Q) N CYQ) satisfies
Aw + g(z,w) <0 in Q, g—wzo on 0N,
n

and w(zg) = mingw, then g(xo, w(zo)) < 0.
We are now in a position to state our main result in this section.

Theorem 2.2 (pointwise estimates). Assume 1 < p < co. Then, any non-constant
solution (u,v) of (1.1) satisfies

p—1
bilguga—i—%(bzl) mn €, (2.1)

_111-p p—1
b[a+‘%’(b‘;1)p] <v<b<b—;1) in Q. (2.2)

Proof. Consider first a minimum point x¢ € Q of u. By Lemma 2.1(ii) it follows
a— (b+ Du(xg) + u(xo)Pv(z) <0
which implies u(xo) > a/(b+ 1). Hence

a
P —— in Q. 2.

Uz in (2.3)
At maximum point of v we have bu — uPv > 0, that is, v < bu'~P. By virtue of

(2.3) we deduce

b+1\""
v§b< il ) in Q. (2.4)
a
Let w = dyju + dav. Adding the first two relations in (1.1) we have
—Aw=a—u in Q, 6—w:00n8§2.
v

Let now z; € Q be a maximum point of w. According to Lemma 2.1(i) we have
a —u(x1) > 0, that is, u(z1) < a. By virtue of (2.4), for all z € Q we have

b4+1\"" ,
diu(z) < w(x) <w(xr) < dra+ dad — in Q.
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This yields

1!
u§a+@<b+ ) in €. (2.5)
dg a

We have proved that u satisfies (2.1). Again by Lemma 2.1(ii), at minimum points
of v we have bu —uPv < 0, which yields v > bu!~P. Combining this inequality with
(2.5) we obtain the first estimate in (2.2). This concludes our proof. O

Theorem 2.3. Let a,b,D1,Ds > 0 be fized. There exist two positive constants
C1,C5 > 0 depending on a,b, D1, Dy such that for all

di > Dy, 0<dz < Do,
any solution (u,v) of (1.1) satisfies
Ci <u,v<Cy in Q.
From the estimates (2.1)—(2.2) in Theorem 2.3 we derive the following:

Theorem 2.4. Assume that p > 1 and let a,b, D1, Dy > 0 be fixed. Then, there
ezist two positive constants Cy,Cs > 0 depending on a,b, D1, Do such that for all

di > Dy, 0<dz < Do,
any solution (u,v) of (1.1) satisfies
Ci <u,v<Cy in Q.
Furthermore, by standard elliptic arguments and Theorem 2.4 we now obtain:

Theorem 2.5. Assumep > 1 and let a,b, D1, Do > 0 be fized. Then, for any positive
integer k > 1 there exists a constant

C = C(a,b,Dl,Dg,k,N,Q) >0

such that for all
dlZD17 0<d2§D27

any solution (u,v) of (1.1) satisfies
lull ermy + Ivller@y < C.
In particular, any solution of (1.1) belongs to C*(Q) x O ().

We now consider energy estimates for non-constant solutions to (1.1) in the
case p > 1. We have the following result.

Theorem 2.6 (energy estimates). Assume p > 1. Then, any non-constant solution
(u,v) of system (1.1) satisfies
2
(1) (M1d2)2 < ||quL2(Q) < (@)2
2(,uld1)2 + 2H1d1 +1 ||V’U||2L2(Q) ~— \d; ’

by (b+1\"7
.. 2 < abv~asg .
(11) HVU‘HL2(9) = (2d1)2 ( a ) |Q|,
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-1
9 ab® (b+1\"
< = —= Q.
(i) [Vl < 3o (22) 19

Proof. (i) Remark first that if (u,v) is a solution of (1.1), then, integrating the
two equations in (1.1) over © and adding them up we have

/ u(z)dr = alQ|. (2.6)
Q
Adding the two equations in system (1.1) we obtain

—A(dyu+dyv)=a—u in Q. (2.7)

We next multiply with « in (2.7) and integrate over 2. We find

/QV(dlu—i—dgv)Vv:/Qu(a—u):—/Q(u—a)2.

dl/ |Vu|2+d2/Vqu:—/(u—a)2,
Q Q Q

dQ/QVqu:—/Q(u—a)Q—dl/Q|Vu|2. (2.8)

Using (2.8) we now compute

og/ |V(d1u+dw)|2:d%/ |Vu|2+2d1d2/ vuw+d§/ |Vol|?
Q Q Q Q

:-d%/ |vu|2—2d1/(u—a)2+d§/ Vo2,
Q Q Q

In particular this implies

d;/|vm2—d3/|vw2zo,
Q Q

which proves the second part of the inequality in (i). For the first part, we multiply
with diu + dsv in (2.7) and obtain

/|V(d1u+d2v)|2:/(a—u)(dlu—l—dgv)
Q Q

:—dl/Q(u—a)Q—dg/Q(u—a)(v—z’))

Combining the last equality with (2.8) we obtain

dg/Q|Vv|2:dl/ﬂ(u—a)Q—dg/ﬂ(u—a)(v—f))—i—d%/Q|Vu|2 (2.9)

Note that

This yields

SO

2
—do(u—a)(v —7) < i(u— 0)2 + 2P, _ gy
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On the other hand, by Poincaré’s inequality we have

1
/u—a <—/|Vu|2 /v—@)QS—/|VU|2.
M1 Ja

Using these two inequalities in (2.9) we find

2 2 2 2 1 2 d%ﬂl —\2
d; | |Vl <di | |[Vul*+ |d1 + — (u —a) + (v —10)
Q Q 2p 2 Ja
<d%/|Vu|2+—<d1+—)/|V > 4 /(v—@)2
Q M1

d%/ i < i )/ i
Vo= < [ d] + + Vu

Jo IVul® (p1d2)?
fQ |V’U|2 - 2(,&1(11)2 + 2u1d; + 1 ’
This finishes the proof of (i).
(iii) Using the inequality (2.1) we have

(p—1)/2
v < (b+1) w2, in Q.
a

Hence

which yields

Next, we multiply the second equation of (1.1) with v and integrate over 2. We

find
dg/ |Vv|2:b/uv—/upv2
Q Q Q
(p—1)/2
b<b+1> /u(p+1)/2v_/upv2
a Q Q
(p—1)/2 1/2 1/2
1
() L) (L) = e
a Q Q Q
(p—1)/2 1/2
:b(b+ 1) a1/2|Q|1/2 (/ ’U,p’UQ) _/upUQ.
a Q Q

In particular, the right-hand side of the above inequality is non-negative, so

p—1
/upv2§ab2 <b+1> |
e} a
ab®> (b+1\"!
dQ‘/Q|V’U|2 S T ( o ) |Q|

Now, (ii) follows from (iii) since

d2 ab?ds b+ 1\
2 22 2 < 2 (2= Q.
J v < [ v —<2d1>2< a ) 1

IN

IN

and
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3. Nonexistence results

3.1. Case 0 < p <1

Theorem 3.1. Assume that 0 < p < 1. Then, (u,v) = (a,bal_p) s the unique
solution of system (1.1).

Proof. Let (u,v) be a classical solution of (1.1). Let also x; (resp. 22) be a maxi-
mum point of u (resp. v) and x5 (resp. 24) be a minimum point of u (resp. v) in

). Using Lemma 2.1(i) in the first equation of (1.1) we have
(b+ Du(z1) < a+ u(z1)’v(z1). (3.1)
Now, Lemma 2.1(i) applied to the second equation in (1.1) yields
bu(zs) > u(za)Pv(xs),
that is, v(z2) < bu(xa)!~P. Therefore
v(ry) < v(wa) < bu(ze)' ™ < bu(z)' 7. (3.2)
Therefore (3.1) and (3.2) imply (b4 1)u(z1) < a + bu(zy), that is,
u<u(ry)<a inQ (3.3)

On the other hand, Lemma 2.1(ii) applied to the second equation of (1.1) leads us
to v(wy) > bu(xs)'~P. Further we have

v(xs) > v(xyg) > bu(zs) 7P > bu(zs)' 7. (3.4)
Next, Lemma 2.1(ii) applied to the first equation in (1.1) yields
(b+ Du(zs) > a+ u(xs) "Po(zs) > a + bu(xs),

which implies

u>u(zs) >a in Q. (3.5)
Now (3.3) and (3.5) produce u = a in  and by (1.1) we also have v = ba'~P. This
ends the proof. O

3.2. Casep >1

Theorem 3.2. (i) Let a,b,dy > 0 be fized. There exists D = D(a,b,ds) > 0 such
that system (1.1) has no non-constant solutions for all dy > D.

(ii) Let a,dy,ds > 0 be fized. There exists B = B(a,dy1,dz) > 0 such that system
(1.1) has no non-constant solutions for all 0 < b < B.

Proof. We first prove the following useful result.

Lemma 3.3. Let a,b,dy > 0 be fized and let {5,,} C (0,00) be such that 6, — oo
as n — 00. If (un,vy,) is a solution of (1.1) with dy = d,, then

(tn,vp) — (a,ba'"P) in C?(Q) x C%(Q) as n — . (3.6)



160 M. Ghergu

Proof. By Theorem 2.5 the sequence {(un,v,)} is bounded in C3(Q2) x C3(Q).
Hence, passing to a subsequence if necessary, { (u,, v,)} converges in C?(Q)x C?(Q)
to some (u,v) € C?*(Q) x C?*(Q). We divide by §,, in the corresponding equation
to u, and then we pass to the limit with n — co. We obtain that (u,v) satisfies

—Au =0 in €,
—doAv =bu —uPv in Q, (3.7)
8_u = @ =0 on Jf).
dv  Jv

Also, uy, and u satisfy (2.6). Now, the first equation in (3.7) together with du/0v =
0 on 09 implies that u is constant. Combining this fact with (2.6) it follows that
u = a. Thus, from (3.7), v satisfies

—doAv = ab — aPv in Q, @ =0 on 0N.
v

Multiplying the above equality with ab—aPv and then integrating over {2 we obtain
d
0< —2/ |V (ab — aPv)|?dx = — / (ab — aPv)*dz < 0.
ar Jo Q
Hence v = a'Pb and the proof follows. O

We first introduce the function spaces
H2(Q) = {w € W23(Q) : 2—1: = 0}, Li(Q) = {w € L*(Q): /Qw = 0}.
Thus, letting w = u — a, by (2.6) and the standard elliptic regularity, system
(1.1) is equivalent to
—Aw=6[a— (b+1)(w+a)+ (w+a)’v] inQ,
—daAv =b(w+a) — (w + a)Pv in Q, (3.8)
weH2(Q)NLA(Q), ve HX(N),
where § = 1/d;. Define
F R x (H(Q) N LE(Q)) x Hi(Q) — L(Q) x L*(%),
by
Aw+dPla— (b+1)(w+a) + (w+ a)Pv)

f(67 w’ IU) = )
daAv 4+ b(w + a) — (w + a)Pv
where P : L*(Q) — L3(Q) is the projection operator from L?(2) onto LZ(Q),
namely,

1
Pz)==z— —/ z(z)dz, for all z € L*(Q).
€] Jo

Now (3.8) is equivalent to
F(6,w,v) = 0. (3.9)
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Indeed, if F(d,w,v) = 0, then
doAv +b(w +a) — (w+ a)Pv=0in Q, v e H2(Q).
It is easy to see that the above relations imply
b(w+ a) — (w+ a)Pv € L3(Q).
Since w € L3(12), this yields
a— (b+1)(w+a)+ (w+ a)Pv € L§(Q),
so that
Pla— 0+ 1) (w+a)+ (w+a)’v)=a— (b+1)(w+a) + (w+ a)Pv.

Therefore (3.8) is satisfied.

With the same method as in the proof of Lemma 3.3 we have that the equation
F(0,w,v) = 0 has the unique solution (w,v) = (0,ba’*~P). Next it is easy to see
that

D,y F(0,0,ba’"P) = (H(Q) N L§(Q)) x Hi () — L5(2) x L*(%),

. A 0
D(w}v)}_(o, O, ba p) = .

is given by

b(1 —p) doA —aP

Thus Dy, F(0,0,ba'"?) is invertible and we are in the frame of the Implicit
Function Theorem. It follows that there exists dp, 7 > 0 such that (0,0,ba’~?) is
the unique solution of

F(S,w,v) =0 in [0, 60] x By (0,ba' "),

where B,.(0,ba'~P) denotes the open ball in (H2(2) N L3(2)) x H2() centered at
(0,ba'~P) and having the radius r > 0.

Let now {4, } be a sequence of positive real numbers such that é,, — oo as
n — oo and let (uy,,v,) be an arbitrary solution of (1.1) for a,b,ds fixed and
dy = 6, Letting w,, = u, — a, it follows that

f((si,wn,vn> =0.

According to Lemma 3.3 we have
(Wn,vn) — (0,6a’7?)  in C*(Q) x C*(Q) as n — oo.
This means that for n > 1 large enough there holds

(%,wn,vn> € (0,80) x B,.(0,ba'"P)

which yields (wp,v,) = (0,ba'~P). Hence, for di = 1/4, small enough, system
(1.1) has only the constant solution (a,ba'~?). The proof of (ii) is similar. O
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4. Existence results

Throughout this section we will assume that p > 1 and we derive the existence of
at least one non-constant solution to system (1.1). Let us introduce the space
— —~ Ou Ov
X=qw= C'Q) x C'(Q): — = — =0 on 0N 4.1
{v=wwec@mxom - -oma} @y
and decompose

X — @Xk; (4.2)

k>0

where X}, denotes the eigenspace corresponding to uy, k > 0. Also, let
Xt ={w=(u,v) € X: u,v>0in Q}
and write the system (1.1) in the form

—Aw = G(w), weXT, (4.3)

Gw) = ( %(a—(b—i—l)u—i—upv) )

dl—z(bu — uPv)

where

It is more convenient to write (4.3) in the form
F(w)=0, weXT, (4.4)
where
Fw)=w—-(I-8)7"(G(w)+w), weX". (4.5)
Let wo = (a,ba'~P) be the uniform steady-state solution of (1.1). Then

VF(wo) =T— (1 —-A)"I+ A),

where
b(p—1)—1 a?
d d
A= VG(wo) = boml) e
T ds Tda
If VF(wyg) is invertible, by [8, Theorem 2.8.1] the index of F at wy is given by
index(F,wo) = (—1)7, (4.6)

where v denotes the number of the negative eigenvalues of V.F(wyg). On the other
hand, using the decomposition (4.2) we have that X; is an invariant space under
VF(wo) and £ € R is an eigenvalue of VF(wp) in X, if and only if £ is an
eigenvalue of (u; + 1)1 (u;I — A). Therefore, VF(wy) is invertible if and only if
for any ¢ > 0 the matrix (u;I — A) is invertible.

Let us define

H(a,b,dy,d2, ) = det(ul — A). (4.7)
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Then, if (1;I — A) is invertible for any ¢ > 0, with the same arguments as in [9]

we have
v = > mlp). (4.8)

i>0,
H(a,b,d1,d2,11:)<0

A straightforward computation yields

H(aab7dlvd27u) = :u2 - <

bp—D-1 ) o
dyaP ds didy

b(p—1) > <1+\/%>2, (4.9)

then the equation H(p) = 0 has two positive solutions p*(a, b, dy,ds) given by

If

1
Ni (CL, b7 dlv dQ) = 5 (9(@, b7 dl7 d2) + \/G(aa b7 d17 d2)2 - 4ap/(d1d2) )7
where
bp—1)—-1 a
diaP do '
With the same method as in [9] (see also [4, 10]) we have the following result.

9(0’7 ba d17 d?) =

Theorem 4.1. Assume that condition (4.9) holds and there exist i > j > 0 such
that

(i) i <ptla,bodi,dz) < pir and pij < p=(a,b,di,da) < pjr;
(i) Dhejys mlur) is odd.
Then (1.1) has at least one non-constant solution.

Proof. The proof uses some topological degree arguments. By Theorem 3.2(i) we
can fix D > dy such that

(a) system (1.1) with diffusion coefficients D and ds has no non-constant solu-
tions;
(b) H(a,b,D,ds,p) >0 for all u > 0.
Further, by Proposition 2.4 one can find C7,Cs > 0 depending on a, b, dy, ds such
that for any d > dy, any solution (u,v) of (1.1) with diffusion coefficients d and ds
satisfies
Cy <u,v<Cy in Q.

Set
M ={(u,v) € C(Q) x C(Q) : C1 < u,v < Cq in O},
and define
U:0,1] x M —C(Q2) x C(Q),
by

u+ (%—l—%)(a—(b—i—l)u—i—u%)

(tw) = (~A+ 1)
v+ é(bu — uPv)
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Tt is easy to see that solving (1.1) is equivalent to find a fixed point of U(1,-) in M.
Further, from the definition of M and Proposition 2.4, we have that W(¢, ) has no
fixed points in OM for all 0 < ¢ < 1. Therefore, the Leray-Schauder topological
degree deg(I — ¥(t,-), M,0) is well defined.

Using (4.5) we have I — ¥(1,-) = F. Thus, if (1.1) has no other solutions
except the constant one wy, then by (4.6) and (4.8) we have

deg(I— W(1,-), M, 0) = index(F, wo) = (—1)Zk=str ™) = _1_ (4.10)

On the other hand, from the invariance of the Leray-Schauder degree at the ho-
motopy we deduce

deg(I—U(1,-), M,0) = deg(I—T(0,-), M,0). (4.11)

Remark that by our choice of D, we have that wy is the only fixed point of (0, -).
Furthermore by (b) above we have

deg(I — (0,-), M, 0) = index(I — ¥(-,0), wy) = 1. (4.12)
Now, from (4.10)—(4.12) we reach a contradiction. Therefore, there exists a
non-constant solution of (1.1). This ends the proof. O

Corollary 4.2. Let a,b,dy > 0 be fized. Assume that
bp—1)>1 (4.13)

and all the eigenvalues p; have odd multiplicity. Then, there exists a sequence of
intervals {(kn, K,)} with 0 < k, < K,, < kp—1 — 0 (as n — o0) such that the
steady-state system (1.1) has at least one non-constant solution for all

dy € Un>l(kn7 Kn)

Proof. In view of (4.13), condition (4.9) holds for small values of d; > 0. Also for
a,b,ds > 0 fixed we have

ap
dQ(b(p - 1) - 1)
pt(a,b,di,dy) — oo asd; — 0.

u(a,b,dy,ds) — as d; — 0.

Therefore we can find a sequence of intervals {(k,, K,)}, such that

Z m(p;) is odd (4.14)
>0,
;).7(a,b,d17d2)<,ui<H+(a,b,d1,d2)

for all dy €, (kn,K ). Therefore, conditions (i)-(ii) in Theorem 4.1 are fulfilled.
B O

Corollary 4.3. Let a,b,dy > 0 be fized. Assume that (4.13) holds and

Z m(u;) is odd. (4.15)
>0,
O<py < M=t
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Then there exists D > 0 such that the steady-state system (1.1) has at least one
non-constant solution for any de > D.

Proof. By virtue of (4.13), for any ds > 0 large enough condition (4.9) holds. Also
for any a, b, d; fixed we have

0 < p (a,b,dy,dy) < ut(a,b,dy,ds) < b(p—d$
and 1
pw(a,b,dy,dy) — 0, pt(a,b,di,dy) — % as dy — oo0.
Therefore, for dy > 0 large, condition (4.15) implies (i)—(ii) in Theorem 4.1. This
concludes the proof. O

The next result provides existence of non-constant solutions to system (1.1)
with respect to parameter b.

Corollary 4.4. Let a,dy,ds > 0 be fized. Assume that all the eigenvalues p; have
odd multiplicity. Then, there exists a sequence of intervals {(by, By)} with 0 <
by, < By, < bpt1 — 00 (as n — o0) such that the steady-state system (1.1) has at
least one non-constant solution for all b € Uy>1(by, By).

Proof. We proceed similarly. Since p > 1, for large values of b condition (4.9) is
fulfilled. Also for a,dy,ds > 0 fixed we have

pw(a,b,dy,d2) — 0, pt(a,b,di,dy) — o0 asb— oc.
Hence, we can find a sequence of non-overlapping intervals {(b,,, By,)} such that
b, — 00 as n — oo and (4.14) holds for all b € |J,,~ (bn, Bn)- O
Our last result in this section concerns the existence of non-constant solutions
with respect to the parameter a.
Corollary 4.5. Assume that b(p —1) > 1 and
Z m(u;) is odd. (4.16)

>0,
0< i< %

Then there exists A > 0 such that the steady-state system (1.1) has at least one
non-constant solution for any 0 < a < A.

Proof. It is easy to see that (4.9) holds for small values of @ > 0. As before

bp—1)—-1
0< /'L_(a7b7d17d2) < N+(avb7d17d2) < %
1
and
bp—1)—1
:u_(avb7dlad2)_)07 /J’+(a7b7d17d2)_)% as a — 0.
1

Therefore, for a > 0 small, condition (4.16) implies (i)—(ii) in Theorem 4.1. This
ends the proof. O
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Ordinary Differential Equations with
Distributions as Coefficients in the Sense of
the Theory of New Generalized Functions

Uladzimir U. Hrusheuski

Abstract. We consider nonautonomous differential equations with distribu-
tions as coefficients. Such equations are ill posed from the mathematical point
of view since they contain a product of distributions. There are several ap-
proaches to formalize that sort of problems, however in general all these ap-
proaches lead to different solutions. In the paper the theory of new generalized
functions is used. Such approach, on the one hand, makes possible to encom-
pass the solutions in the sense of traditional approaches, and on the other
hand it permits to formalize wider classes of equations. We use modification
of Lazakovich’s algebra of generalized random processes [12] and the notion of
generalized differential dj,. It allows us to get associated solutions of regular-
ized problems which cannot be obtained by using another constructions.

Mathematics Subject Classification (2000). Primary 46F30, 34A37; Secondary
34A36.

Keywords. Algebra of new generalized functions; Differential equations with
distributions; Differential equations with generalized coefficients; Associated
solutions.

1. Introduction

In the middle of the XXth century the development of mathematical theory was
significantly stimulated by physics necessity. New problems required to consider
differential equations with singularities in their right-hand sides. And the appear-
ance of distribution theory became well-timed event to overcome such problems.
The fact that the space of locally integrable functions is embedded into D’(R)
made it possible to investigate, for example, differential equations of the form

i(t) = f(t, 2(t))L(t), (L.1)
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where L is a distributional derivative of function L of bounded variation. Simul-
taneously, the solution in the sense of distribution theory is in accord with classic
one if last one exists. But the usage of methods of distribution theory is limited
due to Schwartz impossibility result concerning multiplication of distributions.

There are a lot of approaches to formalize an ordinary differential equation
with distributional coefficients. They can be classified as follows.

The first approach [1, 2, 14, 15] is carried out in the framework of distribution
theory and based on the fact that C°°(R) is everywhere dense in D’(R). In this case
the product of distributions uv is defined as the limit of sequence u,v, in D'(R),
where u,, — u, v, — v in D'(R), u,,v, € C®(R). Since the existence and the
value of the limit depends on the choice of sequences u,,, v,, the disadvantage of
this approach is impossibility to define the product for all pairs of u and v. Let, for
example, u,(x) = v, () = a(x)cos(nzx), where a(x) € C*°(R). Then u,, = v, — 0
in D'(R), but u,v, = u? — @ in D'(R).

According to the second approach [5, 19], the differential equation (1.1) is
interpreted as the integral one

£(t) = w0 + / £(s,2(5))dL(s), (12)
[0,t]

where integral is understood in some sense. Due to Carathéodory theory solution
of equation (1.1) exists if the coefficient L is a distributional derivative of abso-
lutely continuous function L. Therefore the interpretation of differential equation
as integral one is a natural idea. It should be emphasized however, that the values
of jumps of solution z(t) depend on the values of subintegral function f in the
points of discontinuity of function L. Let consider the Cauchy problem

z(t) = (t—a()d(t—1), x(0)=xo, (1.3)

where §(+) is delta function. The solution of (1.3) is understood as the solution of
the following integral equation with Lebesgue-Stieltjes integral

x(t) = xo + / (s —x(st))dH(s — 1), (1.4)
[0,¢]

where H(-) = 1jg400)(-) is Heaviside function. Then the functions x;(t) = xo +
=20 H(t — 1) and za(t) = 20 + (1 — 20)H(t — 1) are solutions of (1.3).

In the framework of the third approach [22] the solution of equation (1.1) is
defined as the limit of solutions of classical equations which are approximations of
initial equation. Consider (1.3) and the sequence of approximate equations &, (t) =
(t — @, (t))H,(t), n € N with initial data z,(0) = xo, where the sequence of
continuous functions H,(t) = H(t — 1), t ¢ (1—1,1) converges to H(t — 1)
point-by-point. Since the sequence of solutions

an(t) =t —e T [ _g +/ oHn(9) Jg
0.¢]
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converges, the limit

1-— -1
z(t) =1t — e~ H(-1) <_$0 +/ eH(S—l)d3> =20+ H(t — 1)( wo)(e )
[O’t] e

is a solution of problem (1.3). It is worth emphasizing that in general case exis-
tence and the value of the limit z(¢) depend on approximation of distributional
coefficient.

Generally speaking, different approaches applied to one and the same equa-
tion lead to different solutions.

The theory of new generalized function became a base to form a unique ap-
proach to formalize differential equations with distributional coefficients. Accord-
ing to this approach the initial equation is carried over to associative differential
algebra by the regularization procedure. And the solution of (1.1) is defined as
associated solution of regularized equation.

Since every distribution is associated with a number of new generalized func-
tions, different ways of interpretation of initial problem as equation in new gen-
eralized functions lead to different associated solutions. In particular, it allows
to encompass solutions in the sense of traditional approaches and also get new
definitions of solution. Thus, the theory of new generalized functions theoretically
grounds the possibility of existence of several different approaches. Simultaneously,
it boils down the question about the choice of the most preferable approach to the
question about the choice of new generalized function associated with given dis-
tribution. This choice has to be based on the refinement of the physical problem
since the initial equation does not carry any information about it.

It should be noted that it is much easier to prove the existence of solution of
regularized equation than to find function which associates this solution. The aim
of the present paper is to find associated solutions of regularized one-dimensional
nonautonomous differential equation of the form (1.1). We will use algebra G
which is modification of Lazakovich’s algebra of generalized random processes’
and the notion of generalized differential d;, [12]. Tt allows us to get associated
solutions of regularized problems which cannot be obtained by using another con-
structions. Another variants of algebras of new generalized functions can be found
in [4, 18, 20, 6].

Let us note that problem (1.1) was investigated in algebra G mostly in the
case of Lipschitz continuous function f. Thus, the autonomous one-dimensional
equation of the form (1.1) was considered in [11], [21]. The necessary and sufficient
conditions which shows when associated solution of regularized autonomous one-
dimensional equation can be interpreted as ordinary function was presented in [3].
The autonomous one-dimensional equation of the form (1.1) in which function f
has finite number of points of discontinuity was considered in [16, 17].

1Lazakovich’s definition of generalized random process uses the notion of Egorov’s new general-
ized function.
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The paper is divided into four parts. The construction of algebra G and other
preliminaries are given in part 2. In part 3 the equation (1.1) is considered when
function f is Lipschitz continuous and L has bounded variation on 7. The case
of discontinuous function f and continuous function of bounded variation L is
considered in part 4. And part 5 is devoted to investigation of problem (1.1) with
discontinuous function f and piecewise constant function L.

2. Algebra of new generalized functions

Let us recall main notions from [6]. Define the set G(R) of new generalized func-
tions as quotient algebra G(R)/J(R), where G(R) = {{f.} | f. € C®(R),n € N}
and J(R) = {{fu} € G(R) | Ing : ful) =0, n.> no}.

Define also extended real line R as quotient algebra R/I, where R = {{y,} 1|
yn €R, neNyand I = {{y,} € R | Ing : yn = 0, n > ng}. The elements of R
are called generalized real numbers and denoted by ¥ = [{yn}], ¥ or [{yn}]. The
product of generalized numbers § = [{yn}] b = [{b,}] is defined as generalized
number [{y,b,}]. Note, that R is not a field (for example, generalized number
[{#}] + 0 is not a convertible), also R C R. Fix a € R and select in R the
following subsets

TeR | V{t,}et: ogtnga,neN},

S

{heR| Whn} €h: by >0, n €N, lim hy _o}
~ 1
{ €H|V{hn}€h:hn=0<ﬁ>,n—>oo},
I:{heHw{hn}eE;l:o(hn),n—»oo}.
n

Let § = [{yn}] € R, f = [{fa}] € G(R). Consider algebra G(R) of new
generalized functions of the form f(y) = [{fn(yn)}]- Note, that algebra G(R) is
similar to Lazakovich’s algebra of generalized random processes [12].

Assume f(7), 9(y) € G(R ), Y € R. Define the composition (f o §)(7) € G(R)
and the product (f§)(7) € G(R) as new generalized functions [{fn(gn(yn))}],
{(fugn) (yn)}] respectively:

Let y = [{y}] € R, h € H. Introduce the notion of generalized differential

& f@) = {fay + hn) = fa(y)}] € G(R).
The generalized differential d; f f(7) is called an I-generalized (S-generalized) and
is denoted by dfﬁf( ) (dfgf(v), ifhel (hes).

Algebras of new generalized functions G(T) and G(T x R) are constructed
in an analogous way.
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Consider in D =T x R, T'=[0,a] C R the Cauchy problem

{ @(t) = f(t,z(t)L(t),

#(0) — 20 (2.1)

where L is a distributional derivative of function L : T — R of bounded variation.
Throughout this paper it is supposed that function L is right-continuous, u;, i € N
— the points of discontinuity of L and L(0) = 0.

Put in correspondence to the problem (2.1) an equation in differentials

GX () = F(EX (D) diL (),

- - (2.2)
X ‘[6,13) () = Xo,
which can be written in representatives’ form
{ Xn(t+hn) — Xn(t) = fult, Xn(t)[Ln(t + hn) — L (t)], 23)
Xn(®)ljo,n,) = Xno(t), t €T,

where

fultoz) = (F % pu)(t2) = / F(E+ 1+ 5)pa(l, s)dlds,

o]

La(t) = (L*7,)(t) = /[ L+ 9P
0,5
pn, P, — standard d-sequences, i.e., p,(l,s) = n?p(nl,ns), p,(s) = np(ns), p €
C>=(R?), p >0, supp p(l,s) C[0,1)%, [ p(l,s)dlds =1; p € C=(R), p>0

[0,1]2
supp p(s) € [0,1], [ B(s)ds = 1.
[0,1]
Let t be an arbitrary fixed point from segment 7. Then ¢ can be represented
in the form ¢t = 7 + m¢h,, where 7 € [0, h,), my € N. Let ty = 7% + khy,. It is
easy to show that solution of system (2.3) one can write in the form

me—1

Xn(t) = Xno(7e) + Z S (i, X (tr)) [Ln (t+1) — Ln (1))
k=0

We will use the following notations throughout this paper: AL(u;) = L(u;) —
L(pi=), LUt) = 3 AL(ui), Le(t) = L(t) = LU(t), AL} = Ln(tr+1) — Ln(ts),
ni<t

me—1
AL* = L((k+1)h,) — L(kh,,), C — absolute constant. Instead of symbol > we

k=0
will write symbol >".

Definition 2.1. The element X of topological space €2 is called an associated so-
lution of equation in differentials (2.2), if there exist the representatives { f,,} and
{L,} for which the solution X,, of problem (2.3) converges to X in topology of
space ).
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Remark 2.2. Replacing in (2.2) symbol d; by di (d?), one can define also I-
associated (S-associated) solution of equation in differentials (2.2).

Due to approach under study, we will understand an associated solution of
problem (2.2) as solution of Cauchy problem (2.1).

The following result which is similar to analogous result from [13] gives nec-
essary and sufficient condition for existence and uniqueness of solution of problem
(2.2).

Theorem 2.3. The equation (2.2) has unique solution if and only if for any repre-
sentatives {frn}, {Ln}, {Xno}, {hn} following conditions hold
Xno(t) € C[0, hn), (2.4)
1

. !
lim (%Xno (hn — 5) — L X0 (5)

T (2.5)
— L (fa (3, X0 (8)) (L (5 + hn) — Ln, (s>>>) —0, 1=0,1,...

3. The case of the continuous function f and the arbitrary
function L of bounded variation

The following theorems show that associated solution of problem (2.2) considerably
depends on the connection between n and h,,. It is known [21], that if a convolution
of L with standard d-sequence is taken as a representative of new generalized
function L, the associated solution of problem (2.2) exists only in two cases —
either h,, =0 (%) or 2 =o(h,), n — oo.

Lemma 3.1. [11] Let for any n the following inequality holds

Znyt SA+Y A+ Bily,
k=1 k=1

where A, Ay, Bk, Zy, — some positive constants, k € {1,...,n}. Then

n - B
Zn+1 < <A+2Ak> 61@21 ’“.

k=1
Theorem 3.2. Suppose function [ is bounded and satisfies to Lipschitz condition
with respect to both wvariables, function L has bounded variation on T and the
following condition holds

Vi:= sup |Xno(t) — 29| — O. (3.1)

n n—oo
te[0,hy)

hp—0

Then for any t € T X,,(t) — X (t) as n — 00, hy, — 0, L = o(hy,), where X, (t) -
solution of problem (2.3), X (t) — solution of equation

X(t)z:z:0+/f(s,X(s—))dL(s). (3.2)

[0,¢]
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Remark 3.3. Tt is known [8] that there is a unique solution of equation (3.2) on T
under conditions of the theorem (3.2).

Proof. The equation (3.2) is equivalent to equation

X(0) = w0+ [ Fs, KDL+ 3 o, X (i) AL ).

[0,] i<t

Since the function L has bounded variation on 7', it follows that

Z |AL(p;)| = Varier L(t) = Var,er L(t) — Varyer L6(t) < Varyer L(t) < +oo0.

=1

Consequently, for any € > 0 there is N, € N such, that > |JAL(u;)| <e.

i=N+1
Then
N 00
i=1 i=N+1
‘We have
| Xn(t) — X (8)]
= nO Tt +an tk7 tk))ALk
a0 = [ s XEALs) = 3 i, X ()~ AL )

[0.4] pist
< V|t X (t0) = F (b, Xa(ti)))
+ D (F (s Xn(tn)) — f(tr, X (t))ALE
Yty X (1)) (LG, (b)) — ) = >t X (1)) (L (trsn) — L(t5))
+ Zf(tk,xak))(v(tm)—LC(tk»— / £(5, X (5))dL(s)

[7e.t]

)+ s X ) - 2300

4 / F(s, X (5))dL<(s

[0,7¢]

- Z f :ul? ALd Mz

i <t

V%LZD

Let V,, = sup Varie[y,] L(t). Then by using definition of f,,, Lips-
|u—v|§2hn+%
chitz continuity of f and its boundedness, boundedness of variation of function L
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it is easy to show the following estimates

C
Di<—, D <O | Xa(tk) — X (te)| |ALE|,

1
Thus, we have
1
|Xn(t) = X(t)| < VL+C (hn + ot Vn)

+COY [ Xa(te) = X (t)| | Lnltisr) = La(ti)]

Employing a lemma (3.1) to last inequality we immediately obtain the in-
equality

1

The function |L¢|(t) = Var,g[o4 L°(s) is uniformly continuous on 7'. There-
fore V,, — 0 as n — oo. Tending n — oo, h,, — 0, % = o(hy) and € — 0 we come
to the end of the proof. O

Theorem 3.4. Suppose that all conditions from the previous theorem and conditions
(2.4), (2.5) hold. Then I-associated solution of the problem (2.2) is a solution of
equation (3.2).

Proof. The truth of the theorem follows from the definition of I-associated solution
and theorems (2.3) and (3.2). O

Remark 3.5. Tt is obvious, that [-associated solution of the regularized problem
(1.3) coincides with solution in the sense of the papers [5, 19].

Theorem 3.6. Suppose function f is bounded and satisfies to Lipschitz condition
with respect to both wariables, function L has bounded variation on T and the
condition (3.1) holds. Then for anyt € T X,(t) — X(t) as n — oo, h, — 0,
hn =0 (L), where X, (t) is a solution of the problem (2.3), X (t) is a solution of
the equation

X(t) =z + / f(s,X(s))dL (s)

[0,] (3.3)
+ Z (AL (i) f(ppis ) X (pi—=), 1) — X (pi—)),

i <t

where p(z,z,u) is the solution of auziliary integral equation

o(z,x,u) =z + / 2(p(z, 2, 8))ds. (3.4)

[0,u]
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Remark 3.7. Due to classical theorems of the theory of differential equations there
is a unique solution of integral equation (3.4) on 7.

Remark 3.8. The equation (3.3) can be boiled down to equation of the form (3.2)
but with another subintegral function. Therefore there is a unique solution of
equation (3.3) on 7.

Proof. We have

Xalt) - X (1)
< | Xao(m) — 0] ‘an b X)) (LS (1) — L (1))
/ f(s, X (s))dL (s ‘Z (i, X () (L (trg1) — LE(tk))
[0,
- Z (AL(pa) f (i )s X (=), 1) = X (pi—))

< V}L+D1 + Ds.

By using representation L(t) = L=N (t) + L>™(t), definition of f,,, Lipschitz
continuity of f and its boundedness, boundedness of variation of function L it can
be shown the following inequalities

D1<C( + Vo) + C D [ Xn(tr) — X ()] LS (trgr) — L (1]

L=V

D2<C’( + hpn + hy +6+V)+C’Z|X t;,) — (1),

i <t
where ¢, is such an index, that t;, < p; — L <t 1.
Employing a lemma (3.1) to inequality
| Xn(t) — ()|<V1+C< + hon + hy, —|—6+V>

+ O X (te) = X (tr)] LG (trar) — LE (1)
+ Z |X7l(tji) - X(tj'i)| |ALSN(M1)| )

we obtain the estimate

1
Tending n — oo, h, — 0, h, = 0(%) and € — 0 we come to the end of the
proof. O

Theorem 3.9. Suppose that all conditions from the previous theorem and conditions
(2.4), (2.5) hold. Then S-associated solution of the problem (2.2) is a solution of
equation (3.3).
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Proof. The truth of the theorem follows from the definition of S-associated solution
and theorems (2.3) and (3.6). O

Ezample. Let us consider the equation (1.3). The function ¢(f(¢,x) = t—x,z0,y) =
(zo — 1)e™¥ + 1 is a solution of the equation (3.4). Then the function X (t) = zo+
H(t - 1)% is a S-associated solution of the regularized problem (1.3).
Note, that X () coincides with solution in the sense of the monograph [22].

Ezample. The solutions of the equation (1.3) in the sense of the papers [1, 2, 14, 15]
can be obtained as associated solutions of corresponding equation (2.2) if sequences
P, Py, Of another type are taken.

4. The case of the discontinuous function f and
the continuous function L

The function f is required to satisfy the following main assumptions throughout
next sections:
(I) f is bounded by constant M, the set of points of discontinuity has the form
{(t,.’L’) | T = w(t)7 Y e Cl(T>}7
(IT) f is continuable from any domain of continuity to one’s boundary and satisfies

Lipschitz condition with respect to both variables in any domain of continuity.
Let

t,xr), x t),

P { f(t2), @ # $(1)

lim f(t,2%), o — @, 2* > (1), = = (1),

B o f(t,x), €T 7é ¢(t)a
fota)= { lim f(t,2%), % — @z, 2* <(t), = P(1).

Theorem 4.1. Suppose the condition (3.1) and the following conditions hold

(I) function L is continuous and there is a constant v > 0 such that for any
to > t1, t1,ta € T the inequality L(to) — L(t1) > ~y(ta — t1) holds,

(IT) function f satisfies main assumptions and boundary condition f~(t,4(t)) >
%, o) < —%, t €T, where K = max [ (t)] .

Then for any t € T X, (t) — X (t) as n — o0, hy, — 0, where X,,(t) is a solution
of problem (2.3), X (t) is a solution of equation

X(0) =a0+ [ u(s)d(s) (4.1)

[0.¢]
where u(t) € F(t,x(t)) for almost all t € T in the sense of measure v|r| (V|r
is a measure, generated by function |L|(t) = Varsep . L(s)) and F(t,z) is the
least convex closed set which contains the limiting values of function f(t,xz*), as

¥ — oz, xF £ ().
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Remark 4.2. Tt is known [9, 10] that there is a unique solution of equation (4.1)
on T under conditions of the theorem (4.1).

Proof. Let U(Ry) = {z | |z — (¢(t) — )| < Rn}. By using induction on k we
have that the inclusion X, (tx~) € Uy}, (Ry), which is true for some £* and large
enough n, implies inclusion X,,(tx) € U (R,), which is true for all £ > k* and
same n, if R, = % + % + MV, + Kh,.

It is worth emphasizing that the similar assertion is also true for functional
sequence X, (t): X,,(0) = o,

X, (1) = Xy (k) 4 nk(L(t) — L(khy)), t € (khn, (k + 1)hy),

where ung € F(khpn, X, (khy)).
We have

X (t) — X(8)] < | Xn(t) — Xn(t —7)
= My + H, + H;.

+[Xutt =) = Ku0)] + [ Xal)) - X(0)

It is shown in [9] that X, (t) — X(t), where X (t) is a solution of equation
(4.1). It is easy to see that Hy = |upm, (L(t) — L(mihy,))| < CV,,. Let us consider
several cases to get the estimate for H;.

It is supposed that xo # ¢(0). Let k1 € {0,...,m; — 1} be such index that

Xn(tr) € UL (Ry,) for any k < ky (k € {0,...,m¢}), but X, (g, 41) € UtZIH(Rn).
Let ko € {0,...,m; — 1} be such index that X,,(kh,) ¢ Uy, (Ry) for any k <
ko (k € {0,...,me}), but X ((k2 + D) € UL, 1y (Ra).
Case Al. Suppose indexes k; and ko are defined both. Then for any k > k;
the inclusion X,,(tx) € U/} (R,) holds. In particular, it implies inclusion X, (t) €
Up(Ry). Similarly, for any & > ko the inclusion X, (kh,) € Uy, (R,) holds and,
in particular, we have X,,(t — 1) € U - (Rn).

Then

Hy < |Xn(t) — (gp(t) - %)‘ + | Xt — ) — (so(t —7) — %)'

(- 2)- (- ) o b

Case A2. Suppose the indexes k1 and ks are not defined both. Then the negations
of definitions of indexes k1 and ko imply that for any k € {0,...,m; — 1} the
points (tx, X, (tx)) and (khy, X, (kh,)) belong to the same domain of continuity
of function f and X, (t) & UP (Rn), Xn(khn) ¢ Uf, (Rn).

By using Lipschitz continuity of f we obtain the following inequality

| X, (1) — X(t—Tt)|<V1+C< + hy +V>

+OY |Xulti) = Kulkh)|[ALE].
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Employing a lemma (3.1) we have

1

Let €, denotes the right-hand side of this inequality.
Case A3. Suppose that only one of the indexes ki, ko is defined. Let it be the
index k. Then for any k € {0,...,m; —1} X, (khy) ¢ Uiy, (Ry). By using an
induction on k it is easy to show that
S 1

= 1

Xn(t—1¢) — t—7) — — Xn((k1+ 1hy) — kv + Dhy,) — — |)|.
(0= 7= (0= )= 5 )| < Rl + D) = (tlr 100 = 5
Note, that the final estimate from case A2 is true for expression

PR IAES AT

<

Xo((k1 + D) — (so«kl +1)ha) — i)'

" on
(o0 57) - (=70 5,) < = (w0 - 5.
X 1

+ | X0 ((k1 + 1)hy) — Xn(tkl-&-l)’ + ’Xn(tk1+1) - <¢((k1 + Dhy) — %N

(o0 50) = (et=m - 5 )| 0 (54 han ot ) 4 2

Tending n — oo, h, — 0 we come to the end of the proof. The proof boils
down to the case Al if suppose that zo = ¥(0). O

Theorem 4.3. Suppose that all conditions from the previous theorem and conditions
(2.4), (2.5) hold. Then the associated solution of the problem (2.2) is a solution of
equation (4.1).

Proof. The truth of the theorem follows from the definition of associated solution
and theorems (2.3) and (4.1). O

Remark 4.4. Tt is should be noted that if L(¢) = ¢ then the methods of the
theory of differential equations with discontinuous right-hand parts are applicable
to equation (2.1) also (see [7]). In this case the associated solution of the regularized
problem (1.1) coincides with solution in the sense of Filippov definition. Moreover,
it is a solution whose trajectory is called sliding motion. Let us pay attention that
sliding motion is a main mode of operation of systems with varying structure.

Ezample. Let us consider the equation i(t) = —3sgn(x + > —2t), t € [0,2],
z(0) = 21. Suppose that

Cf =st42i teo,d), [ =3, teod),
X(t)_{ , ] “(t)_{ 2(1 1), t;[%,ﬂ.
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Then the integral equality (4.1) holds. Moreover, the inclusion 2(1 —t) € [-2,1],
t € [4,2] implies the inclusion

-3, t€0,1),

[-3,3], te[3,2], t€[0,2].

u(t) € Ft, X () = {

5. The case of the discontinuous functions f and L

During investigation of equation (2.1) with continuous function f it was noted that
if a convolution of function L with standard d-sequence is taken as a representative
of new generalized function L, the associated solution of problem (2.2) exists only
in two cases — either % = o(hy) or h,, =0 (%), n — oo. Therefore it is natural to
investigate the associated solutions of regularized equation (2.1) with discontinuous
functions f and L namely in this cases.

The function L is required to be piecewise constant function with finite num-

ber of points of discontinuity p;, ¢ € {1,...,ne} throughout this section.

Theorem 5.1. Suppose that L is a piecewise constant and nondecreasing (nonin-
creasing) function, f is a nondecreasing (nonincreasing) with respect to variable
x and nonincreasing with respect to variable t function, which satisfies main as-
sumptions. Moreover, suppose that the condition (3.1) holds and inequality

Xno (8) > z0 + Khy Yt €0, hn)

is true for large enough n. Then

[ 1% - x(0lat 0
T

asn — 00, hy — 0, L =o(hy), where X,,(t) is a solution of problem (2.3), X(t)
is a solution of equation

X(t) =m0+ Y fF (i, X (1i—)) AL (). (5.1)
i<t
Proof. Let us consider the set

ma+1

TZzTﬂ( 1T [ui—%—i—khn,uiﬁ-khn])

k=0
for any i € {1,...no} and n € N. Due to relation & = o(h,,) the union of sets

in T is disjoint. It is obviously that v7(|JT) — 0 as n — oo (vr is a Lebesgue
i

measure on 7).
We will use an induction on the points of discontinuity of function L. Suppose
that X, (¢) converges to X (t) in L1[0, u;] and there is a numerical sequence N, such



180 U.U. Hrusheuski

that inequality

X(pi=) + Khn < Xp(t;,) < X (=) + Ny, V€ [, i)\ JT5 (5.2)

holds for large enough n. Let us show that similar assertion is true for i + 1. Note,
that the basis of induction will hold if set up A}, = V1.
Since the inequality
| X () — X (2)]
= [Xn(ty) + fultys, Xn(t;, )AL (1) — X (ni—) = f* (i X (=) AL (i) |
< | Xn(ts) = X (i )| + [AL(ua)| [ fat5, X (t5)) = FF (i, X (1))

implies the uniform convergence X, (t) to X (¢) on t € [u;, pi+1)\ U7, we have
i

/|Xn<t>—x<t>|dt= / X0 (1) — X ()] dt

[pispeita] [pismit)\U T
+ X () — X(8)] dt — 0
[Hispit1) N (LZJ Tﬁ)

as n — oo. Consequently, X, () converges to X (¢) in L1[0, ti+1].

Let \it!l = sup | X0 (t) — X (gir1—)|- Then the truth of inequality
te€ i pit1)\ U T}

X (piv1=) + Khn < X(tj,,) < X(papr—=) + A7 V€ [y, i)\ J T

(2

follows from the definition of the set | J 7} and monotony of function f. g

Theorem 5.2. Suppose that all conditions from the previous theorem and conditions
(2.4), (2.5) hold. Then the I -associated solution of the problem (2.2) is a solution
of equation (5.1).

Proof. The truth of the theorem follows from the definition of I-associated solution
and theorems (2.3) and (5.1). O

Theorem 5.3. Suppose that L is a piecewise constant and nonincreasing (nonde-
creasing) function, f is a nondecreasing (nonincreasing) with respect to variable
x and nonincreasing with respect to variable t function, which satisfies main as-
sumptions. Moreover, suppose that the condition (3.1) holds and inequality

1
Xao(t) € w0 = — = Khy Yt € [0,hy)
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is true for large enough n. Then

/|X (t)|dt — 0

as n — 00, hy, — 0, = = o(hy,), where X, (t) is a solution of problem (2.3), X (t)
is a solution of equation

t) =m0+ Z I (i, X (=) AL(pa). (5.3)

Proof. The proof of this theorem is similar to the proof of the theorem (5.1). O

Theorem 5.4. Suppose that all conditions from the previous theorem and conditions
(2.4), (2.5) hold. Then the I~ -associated solution of the problem (2.2) is a solution
of equation (5.3).

Proof. The truth of the theorem follows from the definition of I-associated solution
and theorems (2.3) and (5.3). O

Theorem 5.5. Suppose that the condition (3.1) holds, L is a piecewise constant
function, f satisfies to main assumptions and in any point p;, i € {1,...,n0} one
of the following conditions holds

(D F~ (i (i) > 0, fH (i 0(pi)) < 0, AL(p;) > 0,
(D) = (i (pa)) < 0, fF(piyp(pi)) > 0, AL(pi) <0,
(ID) f~ (pas (i) > 0, fF (piyth(pi)) > 0,

(IV) 7 (i (i) < 0, fF (i (i) < 0

Then for any t € T X,,(t) — X(t) as n — 00, hy — 0, hy, = 0(2), where X, (t)
is a solution of the problem (2.3), X (t) is a solution of the equation

() =20+ Y_ (2i(1) — ¢:(0)). (5.4)

i <t

Here, p;(2) is a solution of the auziliary integral equation
oi(2) = X (=) + AL (u2) / wi(s)ds, i€ {l,... mo} (5.5)
[0,2]

and function u;(t) satisfies to the inclusion u;(s) € F(u;, ¢i(s)) for almost all
5 € [0,1] in the sense of Lebesgue measure v|gq) on [0, 1].

Remark 5.6. It is known [7], that there is a unique solution of equation (5.5) on
T under conditions of the theorem (5.5).
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Proof. Tt follows from (2.1) that X,,(¢t) — X (¢) for any ¢t € [0, u1). Moreover, it
is a uniform convergence on [0, 41 — &] for some £ > 0. Take, for example, £ :=

2 min(pi11 — p1;). Then 2 < € for large enough n. Consequently, X, (t) = X,,0(7:)

for any t € [0,u1 — & and  sup | X,(t) — X(t)] = sup |Xno(t) — 20| — 0

te[0,p1—¢] te[0,hn)

as n — 00, h, — 0. Simultaneously, for fixed ¢ € [0, 1) and large enough n the

inequality ¢ < p; — £ holds. Then X, (t) = Xy0(7) and X,,(t) — X(t) as n — oo

due to (2.1).

We will use an induction on points of discontinuity of function L to prove the
assertion of the theorem. Suppose that condition (I) holds in pu;, X, (t) — X(¢t)
for any t € [u;—1, ;) and the convergence is uniform on [p;—1,u; — &]. Let us
show that X, (t) — X (¢) for any ¢ € [, pi+1) and the convergence is uniform on
[1is pig1 — €]

Let X (pi—) > ¥(p:) (the case when X (u;—) < t(u;) is considered similarly).
Then there are only four variants for ¢;(1).

(A1) ¢;(1) < 4(pi). This inequality corresponds to the case when solution of
the equation (5.5) goes through the point of discontinuity ¢ (u;) of function
fuis ).

(A2) p;i(1) = (). The equality corresponds to the case when solution of the
equation (5.5) comes into the point of discontinuity v (p;) of function f(u;,-).

(A3) ¥(;) < @i(1) < X(u;—). The inequality corresponds to the case when solu-
tion of the equation (5.5) does not reach the point of discontinuity ¢ (u;) of
function f(u;,-).

(A4) ¢;(1) > X (u;—). In this case the solution of the equation (5.5) goes away
from the point of discontinuity 1 (u;) of function f(u;,-).

Case Al. The inequality ¢;(1) < 1(u;) is not accord with condition (I) (see [7],
p. 42).
Case A2. Since function L is piecewise constant, it follows that

an tlw )ALk
o Zu, <t Zp+1 Ji'H’ (tjz+l)) (Ln(tji—i-l-i-l) - Ln(tjl—i-l)),

where p =W (n

hﬂ) ,W(y) is an integer part of y.

Let
Vo i=max |Ly(tji41) — La(tj4)l, Vii=  sup  [X,(t) — X(t)].
2 tepi—1,p:—E]
Note, that V — 0 as n — oo since h,, (l)

By using definition of f,,, Lipschitz cont1nu1ty of f and its boundedness,
boundedness of variation of function L and induction on [, we have that 3N :
Yn>N 3Filn):Vi>1, 1€{0,...,p+ 2} the following estimate holds

. ) 1
X (t5101) — ()] < C (Vn b 4 V4 o+ 5) .
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In particular, we have
~ ) 1
| X0 (t); +p+2) — Y(pi)| < C (Vn +nhn + V5 + hy + E) .

Hence, for any t € [u;, ptit1)
| Xn (1) = X (1)] < [Xn (8) = X(pi—) — (@i(1) — 9i(0))]

~ . 1

Tending n — oo, hy, — 0, h,, =0 (%) we come to the end of the proof.

In the cases A3 and A4 the sets {(t, X,, ()|t € (wi—hn—2, i}, {(t, 0i(2))|z €
[0,1], ¢ € (pts—hn— L, p5]} are subsets of the same domain of continuity of function
f where it satisfies Lipschitz condition. Therefore the proof boils down to the proof
of the theorem (3.6) in both cases.

Suppose now that condition (III) holds in p; instead of (I). Let X (u;—) >
(p;) (the case when X (u;—) < t(u;) is considered similarly). Then there are the
same four variants for o;(1). Moreover, the proofs are kept in the Cases A2, A3,
A4.Tf (1) < (i), it can be established the estimate

1 ~ .
Xa(t) — X(0)] = [Xa(t) — 0:(1)] < C (nh T vz) b€ [ pis),

but with another constant C' than above.

If the condition (II) (condition (IV)) holds in yu; then for functions fi(t,z) =
—f(t,x) and Ly (t) = —L(t) the condition (I) (condition (III)) holds. It boils down
these cases to already considered ones. 0

Remark 5.7. In contrast to I and II, conditions
(M F~ (i () <0, f5(pir (i) > 0, AL(pi) > 0,
(D" = (i (i) > 0, (piy (i) < 0, AL(pi) <0
and condition

S (i (i) fH (i 0 (i) = 0

do not guarantee the uniqueness of solution of equation (5.5).

Ezxample. Let f(pi,,x) = sign(x), X (pi,—) =0 = ¥ (1i,), AL(pi,) = 1. Then the
set of solutions of equation (5.5) one can present in the form

1 _ 0, tE[O,da 2 o 0, t€[07d,
X<(t>‘{t—<,te(<,1], Xf(t)_{—wc,te(c,l], sl

Theorem 5.8. Suppose that all conditions from the previous theorem and conditions
(2.4), (2.5) hold. Then the S-associated solution of the problem (2.2) is a solution
of equation (5.4).

Proof. The truth of the theorem follows from the definition of S-associated solution
and theorems (2.3) and (5.5). O
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Ezample. Consider the equation #(t) = (1 — 2sgn(x — cost))d(t — %), t € [0, 7],
2(0) = 3. Then the functions Xs(t) = 3, X[ (t) = 5§ — H(t — %), and X (t) =
% + 3H(t — %) are S-, -, I™-associated solutions respectively. It is should be
noted that the usage an inclusion in the equality (5.5) is essential. Let 1 be the
solution of integral equation

1(2) = X (1) + AL (1) / £ (101 (s))ds,
[0,2]

which can be rewritten due to given equation in the form

o1(2) = % + / (1 ~ 25gn <g01(5) - %)) ds. (5.6)

[0,2]

Tt is easy to see that equation (5.6) does not have any solutions on [0, 1].
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Abstract. In this paper we give a boundary condition on the Newton(volume)
potential for a bounded domain €2 and find its eigenvalues and eigenfunctions
for the 2-disk and the 3-ball. We also extend these results in different direc-
tions.
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1. Introduction

The Newton potential is an operator in vector calculus that acts as the inverse to
the negative Laplacian, on functions that are smooth and decay rapidly enough at
infinity. As such, it is a fundamental object of study in potential theory.

In the statement of the law of gravitation given by I. Newton [1] (1687) the
only forces considered are the forces of mutual attraction acting upon two material
particles of small size or two material points. After first partial achievements by
Newton and others, studies carried out by J.L. Lagrange (1773), A. Legendre
(1784-1794) and P.S. Laplace (1782-1799) became of major importance. Lagrange
[2] has established that a field of gravitational forces, as it is called now, is a
potential field and has introduced a function which was later called by G. Green
(1828) a potential function and by C.F. Gauss (1840) — just a potential.

Already Gauss [3] and his contemporaries discovered that the method of po-
tentials can be applied not only to solve problems in the theory of gravitation
but, in general, to solve a wide range of problems in mathematical physics, in
particular in electrostatics and magnetism. The principal boundary value prob-
lems were defined, such as the Dirichlet problem and the Neumann problem, the
electrostatic problem of the static distribution of charges on conductors or the
Robin problem. To solve the above-mentioned problems in the case of domains
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with sufficiently smooth boundaries certain types of potentials turned out to be
efficient, i.e., special classes of parameter-dependent integrals such as the Newton
potential of distributed mass, single-layer and double-layer potentials, logarithmic
potentials (n = 2), Green potentials, [4]-[9] etc.

In a bounded simply connected domain €2, in the n-dimensional Euclidean
space R"(n > 1), with sufficiently smooth boundary S, consider the following
integral

uu»:%*fs/QAx—wf@m% (L1)
Q
where
g2(r —y) = —s=Infr —y|,
=)= 7 g)ﬁx—m%ﬁ n>3

is a fundamental solution of the negative Laplace equation, i.e., —A,e,(x —y) =

n

>, Penlry) _ §(z — y) and § is the delta function, o,, = 2% is the surface

&Ef F(%)
area of the unit sphere in R”, T is the gamma-function, |z—y| = [Sr_, (x5 —yx)?)?
is the distance between two points x = (21,...,2,) and y = (y1,...,y,) in R™.

The following three integrals, which depend on x as a parameter,

wwzf%@—wﬂw@, (12)

Q

wwzf%@—wMW@” (1.3)
S

W) = [ )is,, (1.4
S

are called the volume potential, the single-layer potential and the double-layer
potential, respectively. The functions f(y), u(y) and p(y) are called the densities
of the corresponding potentials; hereafter they are assumed to be absolutely inte-
grable over € or S, respectively. For n = 3 (and sometimes for n > 3) the integrals
(1.1), (1.2) and (1.3) are called the Newton potential and the Newton single- and
double-layer potentials; for n = 2 they are called logarithmic mass, single-layer or
double-layer potentials, respectively.

First, we discuss some properties of potentials (1.2)—(1.4) as we need. Let f(y)
be of class C%(2) N C1(S). Then the Newton potential and its first derivatives are
continuous everywhere on R"; moreover, they can be calculated by differentiation
under the integral sign, i.e., u € C*(R™). Further,

lim u()
|x| =00 Ep ({E)

— M:Lﬂww (1.5)
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The second derivatives are continuous everywhere outside S, but they have a
discontinuity when passing across the surface S; moreover, in €2 they satisfy the
Poisson equation
—Au(z) = f(z),z € Q, (1.6)
and in R™\Q — the Laplace equation Au = 0, x € R™\Q2. The above-mentioned
properties characterize the Newton potential (1.2).
Let u € C'(S). The single-layer potential V(z) is a harmonic function when
x € €); moreover,

lim =M, M = ds,, 1.7
in particular, lim‘w‘_)oo V(z) = 0 for n > 3, but lim;_ V(2) = 0 when n = 2
if and only if [, s H(y)dS, = 0. A single-layer potential is continuous everywhere

on R", V € C(R"™), moreover, V(z) and its tangential derivatives are continuous
when passing across the surface S. The normal derivative of a single-layer potential
has a discontinuity when passing across the surface S:

.
(;Z) - %,u(w) + a(;ff), zes, (1.8)
(;‘;) - —%,u(w) + 8;5;”), zes, (1.9)

where ( 88 V)+ and ( z) are the limit values of the normal derivative from € and
R™\Q, respectlvely7 ie.,

+ /
(8‘/) lim V@) zeS, (1.10)

8nm x’'—z,x’ €N 8nm
oV \ " . oV (&)
= 1 1.11
(871@) T’ —x mlp/GIR"\Q 871@ ’ re S7 ( )

BV(E) denotes the so-called direct value of the normal derivative of a single-layer
potentlal calculated over the surface 9, i.e.,

S

8nm 8nz

It is a continuous function of the points € .S, and the kernel %an(x —y) has a
weak singularity on S,

const

—ep(r —y) xz,y € 8. (1.13)

=y
These properties characterize single-layer potential (1.3).

Let p € C*(S). The double-layer potential W (zx) is a harmonic function for
x; moreover,

hm onlz|" W (z) = M, M:/p(y)dSy. (1.14)
S

|z]—
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When passing across the surface S the double-layer potential has a discontinuity
(whence its name):

1 1
W (z) = —§p—|— W(z), W (x)= 37 + W(x), ze€Ss, (1.15)
where W (z) and W~ (z) are the limit values of the double-layer potential from
Q and R™\Q, respectively, that is,
Wh(x)= i W(z"), W~ (z) = li W (z"). 1.1
@ =, dm )W @ = lm V@) (1.16)
W(z) when =z € S denotes the so-called direct value of the double-layer
potential calculated over the surface S, that is,

W(x) = /S Mp(y)d&,, xes. (1.17)

ony

It is a continuous function of the points 2 € S, and the kernel %%(x —y) has a
weak singularity on S,

const

9
ony

The tangential derivatives of a double-layer potential also have a discontinuity

when passing across the surface S, but the normal derivative mg;(f) retains its
value when passing across S:
oW (x)\" (oW (x)\
—_ =—) , es. 1.19
( ong ) ong * ( )

These properties characterize double-layer potential (1.4).
Below, certain properties of potentials under weaker restrictions on the den-
sities and the surface are given.

— If f € L1(2), then u(z) is a harmonic function for z € R™\Q and u(z) is
summable on €.

~If f € Ly,1 < p <%, then u € Ly(R"), 5 +
f€Ly(Q),p> %, then u e C(R").

~If f e Ly(Q),1 <p <n,thenuec W (R"),1<q< absif f € Lp(Q),p > n,
then u € C*(R™).

— If f € Ly(Q), then the generalized second derivatives of u(x) exist, they are
also of class Lo(€2) and are expressed by singular integrals:

0%u 1 0?
=20 @) + [ G- ) W)y

axiaxj o

1 _ _np_ .
5= 1,1 < q < (n_2p),1f

(1.20)
ij=1,...,n,

where 6;; = 1 for i = j, §;; =0 for i # j; if f € L,(Q2),1 < p < 400, then all

generalized derivatives % also exist and belong to L,(R").
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- If f e L,(Q),1 <p < 400, then u(x) is a generalized solution of the Poisson

equation —Au = f(z),z € Q. If f € CO(Q) and S € CT 0 < a < 1,

then u € C2) in Q.

Let S € C1®,0 < a < 1, let D be a closed bounded domain such that QUS C

DCDCR"IfpeLythenV e Ly,(D), Ve Ly(S), 5 € L,(D),p = 1,2,

i=1,...,n. If the density is bounded and summable, then V € C(® for all

A€ (0,1).

~Ifpe COME) 0 < o<1, then Ve CHinQ If pe CO(S), then
W e 0 in Q.

~Ifpe 0l (S)and S € Ck+Le) 0 < o < 1, I, k integers, 0 < | < k, then
Vel in Q. If p e C)(S), and S € C*+12) 0 < o < 1, 1, k integers,
0<1<k+1,then We Ol in Q.

For potentials and their derivatives extended by continuity on S the above-de-
scribed properties of smoothness are also valid under the corresponding smoothness
conditions on the density and the surface S ([4]-[9] etc.).

In this paper, compared to all earlier works discussed above, we follow an
entirely different approach in potential theory and we extend several results, con-
cerning the Newton potential.

The paper is organized as follows. In Section 2 we give a boundary condition
on the Newton potential. In Section 3 a boundary condition on polyharmonic
volume potential is given. In Section 4 we find eigenvalues and eigenfunctions of
the Newton potential (1.1) in an explicit form for a ball. In Section 5 some its
applications are shown.

2. A boundary condition on the Newton (volume) potential

Theorem 2.1. For any function f € Lao(2), the Newton potential (1.1) satisfies the
boundary condition

_ul@) /gn(x _ y)au(y) ds, + / Mu(y)dSy =0, ze€S (21)
S

2 ony ony
s

Conversely, if a function u € W3(Q) satisfies (1.6) and boundary condition (2.1),

then it determines the Newton potential (1.1), where 32 denotes the outer normal
Y

derivative on the boundary.

Proof of Theorem 2.1. First, we assume that u € C?(2) N C1(Q2). A direct calcu-
lation shows that, for any = € 2, we have

w@) =enx f=— [ en(z—y)Ayuly)dy
/

[ (-5 EEE ) )as, — [ et = vputinay
5 Q

ony ony
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n+ | (85" = uy) - B o) )as,

ony ony
5

where a_ =n 3y1 + -« 4 ny, fracddy, is the normal derivative and nq,...,n,
are the components of the unit normal. This implies

I(z) = / (Mu(y) —~ a“—(y)gn(x — y))dSy =0, zeQ (22
S

ony ony

Since Agen (v —y) = 0and A, 66”(95 Y — 0 for  # y, it follows that A, I, (z) = 0.

Applying properties of the double layer potential and single-layer potential
o (2.2) with x — S, we obtain

I.(z) = _ule) +/ (wu(y) _ %uly) enlx — y))dSy =0,z€eS. (23)
5

2 ony ony

Since I, () is a solution of the homogeneous Laplace equation for z € Q, it follows
from the uniqueness of a solution to the Dirichlet problem that the identity I, (x) =
0,2 € Q is equivalent to (2.3), i.e., Iu(z)|zes = 0 is a boundary condition for the
Newton potential (1.1). Next, it is easy to show by passing to the limit that relation
(2.3) remains valid for all u € WZ(Q). Thus, the Newton potential (1.1) satisfies
boundary condition (2.3).

Conversely, if a function u; € W2(Q) satisfies the equation —Au; = f and
boundary condition (2.3), then it coincides with the Newton potential (1.1).

Indeed, if this is not so, then the function v = u — u; € WZ(Q2), where
u = ey, * f(z) is the Newton potential, satisfies the homogeneous equation Av = 0
and the homogeneous condition

I,(z) = _u(x) +/ (Mv(y) _ oY) en(a — y)) dSy, =0,z€S. (24)
S

2 on, on,,

As above, applying the Green formula to v € W$ (), we see that

/an(w —y)Ayv(y)dy = v(z) + / (Mv(y) - 857(5) en(@ — y)>d5y
Q

ony

=v(x) + I,(x) =0, Ve e Q.

Passing to the limit as z — .S, we obtain

o() u(2_x) +S/ (aangfby— y)v(y) B m(y)an(x _y)>d5y

ony

- U(x)|m65 + Iv(x)|m€S =0. (25)

Condition (2.3) implies I, (z)|zecs = 0; therefore, it follows from (2.5) that
v(z) =0 for any x € S. By virtue of the uniqueness of a solution to the Dirichlet
problem for the Laplace equation, we have v(z) = u(x) —uy(z) = 0 for any = € €,
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i.e., u1 = u, uy coincides with the Newton potential. This completes the proof of
Theorem 2.1. [l

Remark 2.2. It follows from Theorem 2.1 that the kernel of the Newton potential
(1.1), i.e., fundamental solution of the Laplace equation &, (x — y) is the Green
function for boundary value problem (1.6), (2.1) in 2.

Ezample. (Theorem 2.1 for ODE) Consider the one-dimensional Newton potential
(n=1)

u(z) = %/0 o — | f(8)dt

in = (0,1). This function satisfies the one-dimensional Poisson equation v (z) =
f(z). Integrating by part, we obtain

u(z) = %[— /0 "o — (1)t — / (t — 2)u” (8)dH]

= u(z) — ZEU/(()) + /(1) B —u/(1) + u(0) + u(l)
2 2

Therefore, self-adjoint boundary conditions for the one-dimensional Newton po-
tential are u/(0)4u'(1) = 0, —u/(1)4+u(0)+u(1) = 0; hence if we solve the equation
u”(x) = f(x) with these boundary conditions in Q = (0, 1), then we find unique
solutions of this problem in the form (the Newton potential)

u(z) = %/0 | — t| f(t)dt.

3. Boundary conditions on the polyharmonic volume potential

On a bounded simply connected domain §2, in the n-dimensional Euclidean space
R"™(n > 1), with sufficiently smooth boundary S, consider the polyharmonic vol-
ume potential

(@) = e £ = [ el = ) )y, (31)
Q
where
Emm = dm |z — y>" " for n-odd and 2m < n, n-even,
Emm = dmnlz —y*" " In |z -y for 2m > n, n-even,

is a fundamental solution of the polyharmonic equation, i.e.,

(—A) " emn(z —y) =z —y), m=1,2,..., (3.2)
here
Ao = L TG
T (m = 1)12m=12m —n)(2(m —1) —n)...(2—n) 2mgz
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Tt is easy to show that the polyharmonic potential (3.1) satisfies the inhomogeneous
polyharmonic equation

(=) u(z) = f(2). (3-3)

The following theorem is valid.

Theorem 3.1. For any function f € Lo(RY), the polyharmonic volume potential
(3.1) satisfies boundary conditions

1 .
- 5(-Au()
m—i—1
B o , .
+ 8— —Ay)" ! Tem—in(z —y)(=Ay) (—Ay) u(y)dSy
j=0 "y
m—i—1
o B _ .
/ P i = )5 (<A, (<A, uly)dS, =0 (34)
j=0 S v

fori=0,m—1, x € S. Conversely, if a function u € WZ™(S2) satisfies (3.3) and
boundary condztzon (3.4), then it determines the polyharmonic volume potential
(3.1), where W denotes the outer normal derivative on the boundary.

Proof of Theorem 3.1. First, we assume that u € C?*™(Q) N C?*™~1(Q). A direct
calculation shows that, for any = € €2, we have

u(z) =emmn* f

/5777, n(l‘ - y)(—Ay)mU(y)dy
Q
/ Wemm (@ —y)(=Ay)" u(y)dy
Q
n / (9€m,gily_ y) (—Ay)m_lu(y))dSy
S

— /em,n(x — y)ai(—Ay)m_lu(y)dSy
5

Ty
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+f Oemnl® Z8) (_ A ym-ty(y))as,

ony

Q

e )
S

- [Ea) e y)a%<—Ay>m—3u<y>dSy
/ .

+/a(_A”)Z’Z:($ y)( A)™ 2u(y))dsS,
S

- [amate - y)a%wy)m—?u(y)dsy
/ .

+ [l M a gy,
S

_/Em,n(x_y>a;zy( Ay)m_lu(y)dsy
S

pr ony
m—1 8
=3 A e = D (B, uly)dS,,
— Ny
j=0 S
where
0 1o} T 0
g — ity
any ! ayl ayn
is the normal derivative and nqy,...,n, are the components of the unit normal.
This implies
m—1 :
I(-A )m_l_Jam,n(in — )
D (- gV uly)as, (35)
j=0 S Y
m—1
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Hereafter

is denoted by Ip(u(z)). It is easy to see
(—Az)"Io(u(z)) =0,  z€Q. (3.6)

Applying properties of the double-layer potential and the single-layer potential to
(3.5) with  — S, we obtain that

m—1 m 1—j Tz )
To(u(x)) vy A E Y s, putyas,
Jj=0 S "y

S / (A" ey o — ) (— A Yuly)dS, =0,  (3.7)

j=0 S

is a boundary condition for the polyharmonic potential (3.1).
Now we find other boundary conditions for the polyharmonic potential (3.1),
consider

(=A™ (=Ay) u(z) = f(x),i=0,m — 1. (3.8)
As above, a direct calculation shows that, for any x € Q, we have

(—Am)lu(l‘) = Em—in * f
_ / Emin(® = 1) (—Ay)" " (— Ay u(y)dy
/ Vem i (@ — y) (=A™ L (= A uly)dy
Q
R N A O

ony

S
- / Emin (5 — Y) o (=A™ (= Ay ) u(y)dS,
S

- / (—Ay)emin(w — 4)(=Dy) ™2 (= A iu(y)dy
Q
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+ [ MBI (52, (s,

ony
S
- [Ca)eminte - y)%(—Am-f—?(—Ay)iu(y)dSy
S
s [ Lol 2D p i s,

ony

9 —i— i
= [ emcinle =4 o ()" (A, ()i,
Yy
S

(_Ay)?)gm—i,n(x - y)(_Ay)m_i_g(_Ay)iu(y)dy

{0\

© [l s,
S

on,,
_ /(—A )2emin(T — y)%(—Ay)m_i_g(_Ay)iu(y)dSy
/5 Egn;"( 9 (AR A uly)dS,
_ / (2B e in(z — y)ai%(—Ay)m_i_Q(—Ay)iu(y)dSy
5
+/M4é"—W(_Ay)m—i—l(—Ay)iu(y)dSy
_ / e in(z — y>a%<_Ay>m—i—l(—Ayfu(y)dSy
5
= (=A,)'u(z)
+_—0 5/ a(_A)m i_l;im_i’n(x_y>(—Ay>j(—Ay>iu<y>dSy
—mitl/(—Ay)m_i_l_jgm—i,n(x . y)%(—Ay)j(_Ay)iu(y>dSy»
J=0g

where €,,,—i (2 — y) is a fundamental solution of (—A,)™7, i.e.,

(—Am)m_iam_i,n(x —y) =d(x —y), 1=0,m— 1.
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This implies

m—i—1

A ym—i—1—j A — , ;
S /a( A,) Em—in( y)(_Ay)J(_Ayyu(y)dSy
Jj=0 7%

ony

m—i—1
=Y AT e = ) (<A (-8, ()8, =0 (39)

j=0 S
for all z € Q). Hereafter

m—i—1

mei=l—jo (g — , ,
> / = 2220 - ),
j=0

ony

m—i—1
=Y AT e e D) (A, (-8, u(y)as,
S

§=0
is denoted by I; (u(x)). It is easy to see
(—A:)" ' Li(u(z)) = 0,z € Q. (3.10)

Applying properties of the double layer potential to (3.9) with  — S, we obtain

1 .
I(u(z)) = 5 (-0 u(z)
m—1—1 .
8 m 1_1_]5717,—1' n\T — j i
by (AR el A e, utyas,
j=0 S v
m—i—1 9
=3 A e e~ ) (<A, (-4, uly)dS,
j=0 S Y
=0, x€8,i=0,m_1 (3.11)

Next, it is easy to show by passing to the limit that relation (3.11) remains valid
for all w € WZ™(Q). Thus, the polyharmonic potential potential (3.1) satisfies
boundary condition (3.4).

Conversely, if a function u; € W™ (Q) satisfies the equation —Auy(z) = f(x)
and boundary condition (3.4), then it coincides with the polyharmonic potential
(3.1). Indeed, if this is not so, then the function v = u — u; € W§™(Q2), where
U = €m.n * f is the Newton potential, satisfies the homogeneous equation

(—A;)"v =0, (3.12)
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and homogeneous boundary conditions

Li(v(2)) = =5 (=As)"v(z)
S A=Ay ez —y) j i
+ - : (=Ay) (=Ay) v(y)dSy
= :q/ ony 4
— i:_ /(—Ay)m_i_l_jam,n@ _y)%(_Ay)j(_Ay)iv(y)dSy
=0 g Y
=0, x€8,i=0,m—1. (3.13)

As above, applying the Green formula to v € W™ (), we see that

0= / Em—in(® = ) (=2, (<A, )v(y)dy

Q
m—i—1 i
i A=A, e, W (x—y i
= A+ 3 [ AR e B i, (s,
J=0 g Y
m—1—1 . a
=Y AT e = ) (B, A, V()
j=0 S v
= (—A)"v(z) + Li(v(z)), r€Qi=0,m—1, (3.14)
and
(—A) () = —Ii(v(x)), i=0,m—1l,zeb. (3.15)
By virtue of the uniqueness of a solution to the problem
(—=A,)"v =0, (3.16)
with boundary conditions
(—A) ()| res =0,i =0,m — 1, (3.17)

we have v(z) = u(z) —ui(x) =0 for any x € Q, i.e., u; = u, uy coincides with the
polyharmonic potential. O

Remark 3.2. It follows from Theorem 3.1 that the kernel of the polyharmonic vol-
ume potential (3.1), i.e., fundamental solution of polyharmonic equation &, ,(z —
y), is the Green function for the boundary value problem (3.3)—(3.4).

Ezample. (Theorem 3.1 for ODE) Consider the one-dimensional biharmonic po-
tential (n = 1,m = 2)

we) =15 [ et
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in © = (—1,1). This function satisfies the one-dimensional biharmonic equation
u™(z) = f(x). As above (see Example 1.1), integrating by part implies

ux:i— wx_ 3,1V -~ ' —3ulV

@ =5l [ =0t Ot [ @ —opul B

Sl P (1) 4 3+ 1% (<1) + 6(e + D (1) + 6u(~1)

(= 1P (1) 4 (e — 1% (1) 4 6 — D' (1) + 6u(1)
=0, xreQ=(-1,1).

It follows

u///( ) ///(1

u///( ) ///(1

) =
)
u///( 1) + ///(1)
)
t

= u(a) +

0,

+u" (1) +u"(1) =0,
+ 2% (—1) — (1
u"(=1) — " (1) + 3(u" (-

It is equivalent to

(=) +u"(1) =0,

Y1) =" (1) + U (=1) + (1) =0,

"(=1) =" (1) + 4/ (=1) +u/(1) = 0,

u’(=1) + 4" (1) + 3(u/(=1) — v/ (1)) + 3(u(=1) + u(1)) = 0.

Therefore, the one-dimensional biharmonic volume potential satisfies these bound-
ary conditions, i.e., if we solve the equation u®(z) = f(z) with these boundary
conditions in = (—1,1), then we find a unique solution of this problem in the
form (the one-dimensional biharmonic potential)

1
uw:g[ywﬁmw

4. Spectral problems for the Newton potential

n

S £ =

First, for example, consider the one-dimensional spectral problem for the Newton
potential in Q = (0,1)

a»:—xllgx—ywwm% (4.1)

According to the example in Section 2, it is equivalent to
u'(x) = —u(x), (4.2)
u'(0) + /(1) =0, (4.3)

—u(1) +u(0) + u(1) = 0.
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We search solution of problem (4.2)—(4.4) in the form

u(x) = Cy cos V Az + Cosin Vz. (4.5)
Putting in (4.3) and (4.4), we obtain
Cysin VA — Co(1 + cos VA) = 0, (4.6)

C1(1 + cos VA — VAsin VA) 4 Ca(sin VA + VA cos VA) = 0. (4.7)
Let sinv/A = 0 then we get from (4.6)—(4.7) Cy = 0 and cosvA = —1. Thus,
we obtain eigenvalues and eigenfunctions corresponding to each eigenvalue in the
following form
Mg = (2k — 1)%7%, (4.8)
uy = Cy cos(2k — 1),
k=0+1,+2 ...
Now consider when sinv/A # 0 then we have from (4.6) C; = Cg%.
Putting this in (4.7) gives

Cs[(1 4 cos VA)(1 + cos VA — VAsin vVA) + sin vV A(sin VA + VA cos VA)] = 0.

A direct calculation shows that, for z; the roots of equation cot z = zj, we have
eigenvalues and eigenfunctions corresponding to each eigenvalue in the following
form
Ao = 427, (4.10)
ugp = Cq cos2zpx + Cysin 2z, (4.11)
k =0,4+1,42,.... Thus, we solved the one-dimensional spectral problem for the
Newton potential in (0,1), i.e., we found eigenvalues and eigenfunctions for the
Newton potential (4.1) in (0, 1).
According to Theorem 2.1, we can easily solve the following boundary value
problem

—Au(z) = f(z), (4.12)
_@ - /6”(”3 —Y) 8575?:)‘1511 + / %ny_y)uw)dé’y =0, x€S8, (413)
s s

in any bounded domain 2 € R", so it is not similar to the principal boundary value
problems, such as the Dirichlet problem, Neumann problem or Robin problem (it is
difficult to find the Green function and to solve in any bounded domain €2 for these
problems). Therefore, authors think computing eigenvalues and eigenfunctions of
the boundary value problem (4.12)—(4.13) is an interesting problem.

Let consider the spectral problem on eigenvalues and eigenfunctions of the
Newton potential in the 2-disk Q = {z : |z| < §} C R? with boundary S = {x :
|z] =6} C R?

u(z) = —)\/Q —%lnpc — ylu(y)dy. (4.14)
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It is equivalent to the spectral problem

—Au(z) = Au(z), (4.15)
Cu(x) | Ou(y) / dea(z —y) _
5 /EQ(!E y) an, dsSy + “on, u(y)dS, =0, z€S, (4.16)
5
where e3(z — y) = —5= In|2 — y|. The following theorem is valid.

Theorem 4.1. The eigenvalues Ay of the two-dimensional Newton potential in the
2-disk are given by

112
Mj =, k=01, =12, (4.17)
where ,u( ) _the are the roots of the transcendental equation
k (k) k k
RI) + B (D ) = T () =0, k=12, (418)

Jo() 4+ i (1) (T (1) = S (1)) = 0.
The eigenfunctions corresponding to each eigenvalue Ay, form a complete orthog-
onal system and can be represented in the form
= k() 2™, (4.19)
in which the Jy are the Bessel functions and (r,¢) are polar coordinates.

Proof of Theorem 4.1. Applying the Fourier method to (4.15) and setting u(r, ¢) =
R(r)®(¢), we obtain the two one-dimensional boundary value problems
—®" = @, ®(p) = (p + 2m), (4.20)
r(rR) +(\r? — )R =0, |R(0)] < 0. (4.21)
The eigenvalues and the eigenfunctions of problem (4.20) (which are trigonometric
functions) are easy to calculate:

1 .
wr =k, Op(p) = Ee“@, E=0,1,.... (4.22)

Passing to the polar coordinate system, we rewrite the boundary condition (4.16)
in the form

1 2m
w0:0) ¢ L 5102521 — cos(w — o)) 242 (” v)
1 2”68111((524—,02 —2(5,000S(1/J—<p)))
4 dp
Using this condltlon and the formula fo In(1 — cos)dyp = —27In 2, f In(1 —
cos ) eV drp = , k#0, f 1)dy = 0 and performing direct calculations,
we obtain

ER(r) + 7R, (r)|p=s =0, k=1,2,..., Ro(r) — rInrRy(r)|,—s = 0. (4.24)

|p SCW)
(4.23)

|p:5u(67 w)dw =0.
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Thus, we have the following self-adjoint problem with respect to Ry (r):
r(rRy) + (M? — k) Ry = 0, | Ry (0)] < oo, (4.25)

ERi(r) + rRy(r)lr=s =0, k#0, Ro(r) —rInrRy(r)|r=s = 0.  (4.26)

Note that the solution Ry = Ji(v/Ar) of problem (4.25), (4.26) has a complete
orthogonal system in Lo(r,0,0) (see for example [5]), where the Ay, are found
from the transcendental equation

(®)
RIS + e (e (1) = T (1) = 0,k = 1,2, (4.27)

Thus, the ,ug-k) = \/Ar;0 are the roots of Eq. (4.27).
Therefore, the eigenfunctions ug; = Jk(,ugk) L)e’k¢, form a complete orthog-
onal system in Ly(2), and hence, problem (4.15), (4.16) has no other eigenvalues

and eigenfunctions. O

Now, consider the problem on the eigenvalues of the Newton potential in the
3-ball Q = {x : |x| < §} C R® with boundary S = {x : |z| =} C R3.

Theorem 4.2. The eigenvalues \;; of the three-dimensional Newton potential in
the ball are given by
[ (_l“'%)]Q

J
Aj =

=, I=01...,5=12.., (4.28)

5 are the roots of the transcendental equation
(1+3) H(-H%) (1+3) (+3)
@+ 1)y ) + B Uy ) = Ty ) =0 (a29)

The eigenfunctions corresponding to each eigenvalue \ij, form a complete orthog-
onal system and can be represented in the form

where the ,ug»H

ukg = Jip 1 (V)Y " (@, 0), (4.30)
where
Y, (p,0) = P/"(cos ) cosmp, m=0,1,...,1,
Y™ (p,0) = P (cosO) sin jm|p,  m=—1,...,—I
forl=0,1,... are spherical functions, the P/ the associated Legendre polynomials

and (r,0, @) are the spherical coordinates.

Proof of Theorem 4.2. According to Theorem 2.1, the spectral problem on the
eigenvalues of the Newton potential in the 3-ball Q = {x : |z| < §} C R3,

uw) = = [ ealo = y)uts)dy, (431)
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is equivalent to the following spectral problem

—Aug(z) = Mpug(z), x € Q, (4.32)
_u(@) _ o 2u) / Oz3(x —y) _
: / este —y) g Las, + [ F=Buy)as, =0, ves (1
5 5
where e3(x —y) = - yr-

This problem is convenient for solving in spherical coordinates, i.e.,
21 =rsinfcosp,re = rsinfsin g, rs = rcosb,
with 0 <7 <6,0<0 <7m,0<¢<2m, and
y1 = psind cosy, ys = psindsiny, y3 = rcos v,

for 0 < p < 0,0 <9 <m0 <1 <27 In these coordinates the problem (4.32)—
(4.33) for the function u(r, 0, ) := u(r sin f cos p, r sin O sin @, r cos #), becomes

10 ,0u 19 (. 0 1 9%
2o ) rzsmm(““%> Fanteapr - (4:34)
Qu(p,,1)

| s ddd) (4.35)

1 T 2m p
u(r,0,p) + —/ /
(1:0:¢) 4 \/p2 — 2rp\I/ + 172 dp
2m
47T/ / ap VP2 —2rp\I’+r2

the latter for r = §, where ¥ = sinf cospsind costy + sinfsin psind sin +
cos 6 cos ). To a boundary condition at r = 9, it is necessary to add also a boundary
condition at r = 0. This condition consists that function u, obviously, should be
bounded and 27-periodic corresponding ¢, i.e.,

[u(0,6, )| < oo, u(6,0,¢) = u(d,0,p + 2m). (4.36)

According to the general scheme Fourier method for eigenfunctions of the problem
(4.35)—(4.36), we search in the form of product R(r)Y (6, ¢).

Separating variables, for functions Y and R we obtain boundary value prob-
lems:

w(p, 8, )| pmsdddip = 0,

1 oY 1 0%y
0 (s )y —— T Ly =0 vec®(s), (437
72 Sinﬁ% (sm ) r2sin? 9 02 a (%) (4.37)

(r*®) + (\r? — )R =0, [R(0)] < o0, (4.38)

L / / 2” P RY(.Y)
2n W 9p
2m 1
Y@ dddy = 0,7 =36 (439
27?/ / 8p\/m s U)|p=sdVdi) r (4.39)

As p=1(+1),l=0,1,..., the problem (4.38) has solutions and these solutions
are spherical functions ¥;™,m =0,+£1,...,%l.

R(r)Y (0 | psddde)
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Now we use the following expansions [4]

1—2y\1/+y2 ZPl Whv <1, (4.40)

1
|lp=s = Zpk k+1’
Vp?=2rp¥ +1? \/1 2T\IJ+52 k=0 0

0 1 o ok
5 - 1) PL(¥)——
I a2 o Z V) s = Dk + DA 5

k=0
where P} is the Legendre polynomlal. Then the following lemma is valid.

Lemma 4.3 ([5]).

/ " Vi, )" Yi(0, ) Pe(W)didp = S (4.41)

where oy, =0 for k 3& loie =1 for k=1.

Using the previous discussions we can present (4.39) in the following form:

26 o,
— =0. 4.42
R(O) + o5 R(6) =0 (4.42)
Putting ;1 = /R in the equation (4.38), we obtain the Bessel equation
PR 4R 4+ (r? — (1 + ) )Ry =0. (4.43)
So we get the solution of the equation (4.38)
1
R(r) = WJH%(\/X?«). (4.44)
To satisfy to a boundary condition (4.42), we have
ul“
I+1 I+3
Jip1 (1 2)4—H_1J' 1 (1 2) =0.

It follows from properties of the Bessel function

+3)

M I+3 I+3
L (S ) = T ) =00 (4.45)

2

where ,u %) = /N0, l,j = 1,2,..., are positive roots of the equation (4.45).
Thus, we find

(204 1)y 1 (1} () 4

Ukjm = Jl+ L (/)Y (9, 0),
1=0,1,...,j=1,2,..., m=0,£1,..., %l (4.46)
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as corresponding eigenvalues and eigenfunctions of the boundary value problem
(4.32), (4.33). Therefore, the eigenfunctions {u;,} form a complete orthogonal
system in Lo(£2), and hence, problem (4.32), (4.33) has no other eigenvalues and
eigenfunctions. This proves Theorem 4.2. 0

Remark 4.4. It follows from the asymptotics of the roots of Eqs. (4.18) and (4.29)
that the eigenvalues of problems (4.15), (4.16) and (4.32), (4.33) have the same
asymptotics as those of the Dirichlet problem for the Poisson operator.

5. Some applications

5.1. On an inhomogeneous boundary condition of the Newton potential

In a bounded simply connected domain €2, in the n-dimensional Euclidean space
R"™ (n > 1), with sufficiently smooth boundary S, consider the following Poisson
equation

—Au(z) = f(z), x €, (5.1)

with an inhomogeneous boundary condition

_@—/En(w—y)agrg?j)dsy—i—/%ﬂy_y)u(wdsy = q(), z€S, (5.2)
s s

where f € Ly(2) and g(x) € WQ% (S) are given functions.
Theorem 5.1. A unique solution of problem (5.1)~(5.2) in W2(Q) is

e) = [ cule =)y - 9G@.y) ds,. (5.3)

s Ony

where G(x,y) is the Green function of the Dirichlet problem for the Laplace oper-
ator, 1.e.,

—AG(Z‘,y) = 6(33 - y)7 G(%Z/Mmes = 0.

Proof of Theorem 5.1. If u(z) is a solution of problem (5.1)—(5.2) in W2(f2), then
it is easy to show that it is unique.
Let u(z) be sum of two functions

u(z) = uy(z) + ua(z), (5.4)
where
w(@) =& f = [ cula =)o)y, (55)
is the Newton (volume) potential and

ug () = u(x) — up(x). (5.6)
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According to Theorem 2.1, the Newton potential u;(z) satisfies the following
boundary condition

90 oo Zias, + [ 2Ly yas, — ). ze s, 651
S S

Since the Newton potential u(x) is a solution of the Poisson equation (5.1) in 2,
—Aus(z) =0, x € . (5.8)

Using the above, we get

_ul=) /an(x _ 28 yg o / enle = 9) ),
S

2 ony ony
s

—-28 e s+ [ 2L is, o) (59)
S S

for all z € S. As us(x) is a harmonic function in €, the boundary condition (5.9)
is equivalent to

uz(x) = q(z), x € S. (5.10)
Solving (5.8) with the Dirichlet boundary condition (5.10), we obtain
0G (z,
ug(x) = — Ly)q(y)dSy, x € Q. (5.11)
s Ony
Finally, we get
0G (x,
u(e) = i@ +uae) = [ eae-)fay- [ S gis, wen (.12
Q S Ny
O

5.2. A problem outside a ball

Now, consider the following problem.

Problem 5.2. In R3\Qs, Qs = {x : |z| < §} C R3, solve the Helmholtz equation
Au(z) + k*u(z) = 0, (5.13)

with boundary conditions
u(x) du(y) / den(r —y)
_ _ o(x — = , , (.14
5~ [ oo - Las, + 5o u(y)dS, = alx), €S, (5.14)
s s

and Sommerfield radiation conditions

1 ou 1
u=0—]), — —dku=o0o— ), | — oo. 5.15
(m) ol] (m) = (5:15)
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As shown in [5] for the Dirichlet problem, this problem has a unique solu-
tion. This problem is convenient for solving in spherical coordinates. Therefore,
to construct the desired solution, we use the following decompositions in spherical
coordinates

u(r,0,¢) = Z Z Rim (r ,9), (5.16)

=0 m=—1

00 l
:Z Z al7nYlm(97<P)- (517)

=0 m=—1

Rewriting (5.14) in spherical coordinates,we obtain

TR o S S TR
o 4m \/p2 — 27"p‘~If +r2 p

2
471'// 80\//) —27'p\I/—|—7‘2
=q(0,¢)

|p:5 dddy

u(p, 0, 9)| =gy
(5.18)

for r = 0, where ¥ = sin 6 cos o sin ¥ cos ¢+ sin 6 sin @ sin ¥ sin 1+ cos 0 cos ¥. From
(5.16) and (5.18),we get

0o l

Z Z Rim (5)Ylm (97 ‘P)

=0 m=—1
l

lm, 62 o
+ZZ / / v/ p? —21"p‘11+7"2

=0 m=—1

lp=aY)™ (9, ) dddy

> ! 27
§le / 0
- T or SV (0, 1) d0dip
;m;l 2m 0 0 8/) p —27"p\;[j+7n2|p )
o0 l
= Z Z CLl'm,)/lm(o, QO) (519)
=0 m=-—1

As above, from (5.19) we obtain
(41 + 3) Ry (r) + R}, (P) =5 = apm.- (5.20)

Thus, unknown coefficients of the decomposition (5.16) should satisfy

r

(4l + 3) lm, + = §R <k2 - M) §qun = 07 (521)
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With the boundary condition (5.20) and the radiation condition

1 0 1
uzO(—), —u—zkzu—o< ), r — 00. (5.22)
r or r
Without the boundary conditions, the general solution to equation (5.21) is
_ 4 g 2 (2
Rim (r) = \/FHl+%(k7“) + \/FHH%(]W) (5.23)

where H is the Hankel function. Now consider the following asymptotic formulas

2
H(l) — z(w——y)__
v (@) =/ — +0(z™2),
HP) (@) = || e~ 59-% 4 O~ H).
Y T

Using these asymptotic of the Hankel functions, it is easy to understand that only

function c_\/lFHl(i)l (kr) satisfies the condition (5.22), it means co = 0.
2

Putting c2 = 0 and

le

\/galm

(41 + 3)Hl(i)% (k6) + 5Hl’<+11 (k6)

(it is found from (5.20)) in (5.16), we obtain the desired solution in the form

-y Z \[ Pl O (5.24)
T 4107 Alm 5 .
par e (41 + 3 Hlﬁl (/«5) + §Hl’<+1§ (ko)

Remark 5.3. The Problem 5.2 is similarly considered outside a circle.
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differential operators, connected with those equations are obtained.
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1. Introduction

It is known that in the process of proving the uniqueness and the stability of solu-
tions of boundary value problems for elliptic, parabolic and mixed type equations,
the extremum principle (EP) plays an essential role (e.g., [1, 2, 3]). Establishment
of an EP for mixed elliptic-hyperbolic and parabolic-hyperbolic type equations
is based on the EP for hyperbolic equations. In some principal cases, an EP for
the hyperbolic type equations was established by a method of Agmon-Nirenberg-
Protter [4]. Note also works by O.M. Jokhadze [5], M. Usanetashvili [6], where an
EP for some classes of second-order elliptic and parabolic systems was studied.
Also using an integral representation of a solution of the Darboux problem, an EP
for some hyperbolic equations can be established. In this work an EP for the class
of equations

(=) gy — Uyy + )\2(—y)mu =0, (1.1)

is established by the aforementioned method. In equation (1.1), A is a real or
complex number and m > 0.
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Let Q be a finite simply-connected domain of half-plane y < 0, bounded by
characteristics

N 2 m42 I 2 m+2
AC :¢=0— ——(—y) = = BC :n= — (—y) =z =
C:§=x m+2( Y) a, BC:n x+m+2( Y) b

of the equation (1.1) and by segment AB = {(z,y) : y = 0,a < x < b}, where
a < b.

To obtain an EP for equation (1.1) in the domain €, one needs a represen-
tation of a solution of the Darboux problem for equation (1.1), which vanishes
on one of its characteristics. From the results of the work [7] it follows that the
unique solution of the Darboux problem for equation (1.1), satisfying conditions
ulze = 0 or u|ge = 0, at m > 0, respectively has a form

£ _
u(z,y) =(n— 5)1‘”/ Jﬁ[z;[i Vt)((i__?)(ﬂ_;t)]f(t)dt, (1.2)

a

b _
) =2 -9 [ LBVEZOC g, )

where 7(z) = u(,0), 8 = m/(2m +4), v = T(1 = A)/[NBTA — 28)],
Js(2) = T(s + 1)(2/2)7*Js(2), and J4(z) is Bessel’s function of the first kind,
of order s [8]; I'(2) is Euler’s Gamma-function [9].

Assuming that 7(x) has a bounded first-order derivative in (a,b), passing to
the limit at 5 — 0 (m — 0) from (1.2) and (1.3), we can obtain a formula for
solution of the Darboux problem for equation (1.1) at m = 0, i.e., the telegraph
equation

Uy — Uy + Nu = 0, (1.4)

satisfying conditions u| ;& = 0 or u|gs = 0, respectively. We rewrite (1.2) in the
form

a

=l +lx+13 (1.5)

to get these formulas.
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First we consider /1. Replacing variables by the formula t = a 4 (£ — a)z and
taking an integral representation of Gauss’ hypergeometric function F(a,b,c; z)
into account, and also using autotransformer formula [9], we find

_ r'(t—p) E—a A E-a i
I = T+ BT —25) (77—@> F(ﬁ,25,1+6,n_a> &). (1.6)

Considering an identity

Jo-1(2) = J(2) = =[*/4B(B + 1) T p11(2), (1.7)

we have

2 _ _\1-28 i _
=~ [ = 0= 0T [WE—Tw - 1) 70

a

(1.8)
Since 7(x) has a first-order bounded derivative, then
75 PWE=D0—1)] r0) - m(©)| = (¢ - o),
from where it follows that
9
__ra-p (€-170@)
b= i | g ()

Substituting (1.6), (1.8), (1.9) into (1.5) and passing to the limit at 3 — 0,
considering T'(1) = T'(2) = 1, ﬂlirgl_ol“(ﬁ) — 400, F(0,0,1;2) = 1, we obtain a

solution of equation (1.4), satisfying condition |45 =0:

&
2
u(eg) = 7€) = T~ [rOTOWE= DT olar. (110)

a

Analogously, from (1.3) at § — 40 we get a formula for the solution of
equation (1.4), satisfying condition u|z& = 0:

b
u(eg) =10 = L= ¢ [rOTWE—OE-mlde. (1)

Upon considering equation (1.4) and formulas (1.10), (1.11) by €2, we imply
a domain, bounded by lines x +y = a, x —y = b, y = 0, and also £ = z + v,
n=z-—y.
At m > 0 from (1.2) it follows [7] that
lim uy (2,y) = %0Ca; ()], (1.12)

y—0
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where 9 = (m + 2)2°T(8 +1/2) /T (-5 + 1/2),

ORI = gz [ o= P TN — ey
%/u PO T e N — O)r(B)d. (1.13)
Similarly, using formulas (1.3), (1.10) and (1.11) one can prove that equalities
Ly iy (2, y) = 710Gy (@), (1.14)
lim uy (2,9) = Ca; (@), (1.15)
limy wy (2,y) = COM ()] (1.16)

are true, where

1y [ =
COA[7(z)] = sign(z — s) {T/(SC) + 5)\2 /T(t)Jl[)\(x - t)]dt} . (1.17)
Here we must note that C%* [7(z)] and CL*[7(x)] are operators, introduced
and studied in [7]; moreover there it was proved that éinb CPA1(x)] = COXMr(x)].

From (1.13) it follows that CL0[r(z)] = D! %%[r(z)], where D! 25[r(z)] is a
fractional differential operator [8].
Besides, using the equality (1.7) and

T 5lz) = =[2/2B + 1) T p41(2), (1.18)
it is not difficult to determine that
_ 2 Tl — )28 _
Cilro] = (41) o) = (g2 + ) [ Sigg TN — olroe,

a

-1
where (Al7%02 is an inverse operator of [8, pp. 530-533
a+

€T

AP f () = /

a

(x_t>_2ﬂ7 Mz — )] f()dt
T =27 —s[A(@ — )] f(t)dt.

Nevertheless, in [5, pp. 32-36] it was also proved that, if g(a) = 0, g(x) €
Ca,b], o > 1 — 23, then integral equation

x

/ ( — )T sz — O] (@)dt = g(x)

a

has a unique solution of the form f(z) = T~1(1 — 28)CLA g(2)].
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It is known that Zaremba-Giraud’s principle for uniformly elliptic equations
[9, 10] determines the sign of the normal derivative of the solution for this equation
in the boundary points of the considered domain, where the solution achieves its
positive maximum (negative minimum).

If we determine the sign of C¥:*[7(x)] on the point # = z, on which the
function 7(z) = u(z,0) achieves its positive maximum (negative minimum), then
by using (1.12), (1.14), (1.15) and (1.16), the sign of ;ii%uy(xo,y), will be known.

This fact is an analogy of Zarembo-Giraud’s principle for equation (1.1) in the
domain €. Therefore in this work, along with the establishment of an EP for
equation (1.1), a similar result is obtained for the operator C¥;*, when k = 0 or
k=1and s=aors=hb.
Upon installing an EP for equation (1.1) and for operators CX;*| we can use
the equalities
—+o0

/ [2(z + 1)]5_16_0(%+2)75_1 {c\/z(z + 1)} dz=DB(3,1-28), ¢>0, (1.19)

0

+

o0

[2(z + 1)]_%6_0(%_‘—2)71 {c\/z(z + 1)} dz = %(1 —e7%), ¢>0, (1.20)

o

x

at+y—1 _ 0—1 _—cz7 _ atd+y—1 C¥+’}/, 0
/z (x—2)°" eI (cz)dz=2x I‘{ SN } (1.21)
0
1
Xo Fy(y + 30 +v;2yv+ 1, a4 0+ v; —2cx), x,Red, Re(a + 6) > 0,
N = x2P-1 1
/ Zzﬂ—2€—cz1ﬁ_1(cz)dz = mlFl (ﬂ — 3 20; —2096) ,c>0, >0, (1.22)

which can be proved using formulas 6, 8 and 1, 2 in pages 309 and 305 of handbook
[13], respectively. Here I,(z) = I'(s + 1)(2/2)"*Is(z), and I,(z) is a modified
Bessel function of the order s [8]; B(«,d) is Euler’s beta-function [7]; 1 Fi(«a; 0; 2),
oFy(a, 8;7,0; z) are generalized hypergeometric functions [7]

RICTEESY ((i;)): jz_r;’ 2F2(007,0:2) 3 %%,

where (a), = a(a+1) - (e +n — 1) is Pohgammer’s symbol [7].

n=0 n=0

2. Extremum principle for the class of equations (1.1)

Theorem 2.1. Let u(x,y) be a non-trivial and continuous in Q solution of equation
(1.1) at m > 0, X € R, vanishing on AC' (or on BC). Then, the function |u(z,y)|
attains its mazximum in € on AB.
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Proof. Consider, for example, case u|;= = 0. In this case function u(z,y) has
a form (1.2). We make up a difference |u(zo,0)| — |u(z,y)] = Li(x,y), where
zo € (a,b], (z,y) € Q\ AB and investigate it. By virtue of (1.2) and designation
u(x,0) = 7(z) we have

Ly(z,y) = |7(z0)| —v(n — &'

13 _
t)Jg—1[A/ (€ —t)r]—t
= e dt‘ @1)

Replacing variables by formula t = £ — (n — £)z in the integral of (2.1), we
have

Ly(z,y) > |7 (o)
(€—a)/(n—¢€)
— / ’T[g_(n_g)Z]jﬁq [)\(77—5) Z(Z‘f'l)H[Z(z—i—l)]ﬁ—le'

0

a

Using an equality, obtained from (1.19) at ¢ = 0:

+oo
/ [2(z + 1))~ tdz = B(3,1 - 20), (2.2)
0
the last inequality we can rewrite in the form
+oo
Lapzfra)] [ eGP (2.3)
(E—a)/(n—£)

(§—a)/(n=¢)
v [ i@l [rle- - 0alTos -9 VEETD] Jale+ DI
0
Since u(x,y) #Z 0 in Q, then u(z,0) = 7(x) # 0 on [a,b] (in the opposite
case from (1.2) it follows that u(z,y) = 0 in Q). Therefore I[nai)}]<|7'(t)| > 0. Let

max |7(t)| = |7(20)|. Then, by virtue of A € R and [J3_1(Az)| < 1, the inequality

r(@o)l = |7l = (0 = ©21Tg1 M= OVEE+ D[ 20, (w,y) e DVAB. (24)
is true.
Besides, for the remainder of convergent positive integral, (2.2)
+00
[2(z+ 1))tz >0, (2,y) € Q\AB (2.5)
(§—a)/(n—¢)
is valid. Taking into account inequalities (2.4), (2.5) and |7(xo)| > 0, v > 0, from

(2.3) we found that L (z,y) > 0, (z,y) € Q\AB, hence the statement of Theorem
2.1 follows. O
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The case u|zs = 0, can be proved similarly, but only using formula (1.3)
instead of (1.2).

Theorem 2.2. Let u(z,y) be a non-trivial and continuous in Q solution of (1.1) at
m > 0, i\ € R, vanishing on AC. Then, if the mazimum (minimum) in Q of the
function e~ Ney(x,y) is positive (negative), then it is achieved on AB.

Proof. As X is a pure imaginary number, according formula (1.2) and J,(iz) =
1(|z|), the function u(x,y) has the form

e
u(z,y) =(n - &'’ / T(tﬂﬁ;ﬂ?g(n(ﬁ ;)]tl)_(g — N, (2.6)

Compose a difference e~ **0u(z,0) — e”M*u(z,y) = Lao(z,y), where
xo € (a,b], (z,y) € Q\AB, and investigate it.

Introducing the designation T'(x) = e~I**7(x) and taking (2.6) into account,
we get

& —
La(o.) = Tlan) = 1(y - 12 [ T2 EVIE IO =0) gy

Replacing the variables t = £ — (n — &)z in the integral, we have
La(z,y) = T(z0)

a

(€-a)/(n-€) , B
A [ =8 vz(z+1)
- / T[E — (n — €)zle” N9 G+2) [ LG+ 1P ]dz'
0

Using equality, obtained from (1.19) at ¢ = |A|(n — &), the function Lo(z,y)
can be rewritten in the form

o0 T
To-1 [N — VG +1)]
_ —IM(n—€)(3+2)
La(z,y) =T (x0) / € 2 [z(z + 1)]1-P dz
(—a)/(n=¢)
(—a)/(n=¢)

7 / (T (x0) — T[€ — (n — €)2]} e M= (3+2)
0

xTs_1 [|A|(n Oz + 1)} [2(z + 1)]°~Ld=. (2.7)
Suppose that max e~ *Zu(x,y) > 0. Then the inequality r[nzﬁ(T(t) > 0 holds.
Q a,

Otherwise, from (2.6) it follows that e =My (2, 3) <0, (z,y) € Q, which is impos-
sible.

Let r[nz?](T(t) = T'(z¢). Then an inequality

T(xo) = T[E = (n—=£)2] 20, V(z,y) €O (2.8)
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is true. Besides, using the remainder of convergent positive integral (1.19) we get

N e~ N=8)(5+2) Tp— [|)\|(7I -\ z2(z+ 1)}
[2(z+ D]

dz >0,
(6—a)/(n—¢)
Y(z,y) € Q\AB. (2.9)
By virtue of inequalities (2.8), (2.9) and T'(z9) > 0, v > 0, from (2.7) it
follows that La(x,y) > 0, (z,y) € Q\AB, hence the statement of Theorem 2.2
follows. In the case min e“/\“u(x, y) < 0, Theorem 2 can be proved similarly. [
Q

Theorem 2.3. Let u(z,y) be a non-trivial and continuous in Q solution of (1.1) at
m > 0, i\ € R, vanishing on BC. Then, if the mazimum (minimum) in Q of the
function eMu(x,y) is positive (negative), then it is achicved on AB.

The proof of Theorem (1.3) can be obtained in a similar way using formula
(1.3) instead of (1.2).

Theorem 2.4. Let u(z,y) be a non-trivial and continuous i@solutiono_f(l.l) at
m >0, A=A +1ida, M2 #0, A1, A2 € R, vanishing on AC (or on BC'). Then
the mazimum in Q of the function e~ M*|u(z,y)| [ep“ﬂu(x,y)” will be achieved
on AB.

Proof. We consider, for example, case u(z,y)|55 = 0. In this case function u(z, y)
is determined by formula (1.3). We make up the difference

6|)\‘$0|u(1‘070)| - el)“f|u(1‘7y)| = L3(1‘7y)7 ZTo € (a’7b]7 (1‘7y) € ﬁ\E

Using formula (1.3) and the designation u(z,0) = 7(x) we get
b
Jg 1 )\\/ t—¢& t—
Ls(w,y) = eN|7(x0)| — y(n — €)' 72 el / [f)(t_,r])]l B }
n

Replacing variables by the formula ¢t = n + (n — §)z in the integral and
introducing designation T'(z) = eN*7(z), we have

(b—m)/(n=¢)
Ls(z,y) = |T(zo)| -7 / Tl + (n— €)7]

0

x e~ MO-9G+9T, | {)\(77 OVl + 1)} [2(z + 1))~ 1dz|.

Using equality (1.19), from the last equality we obtain
Ls(z,y) = [T'(zo)|y
400
<[ RGPt MO IT, L [ - Va6 D) de
(b=m)/(n—8)
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b—n)/(n—£)

(
#r [ R 0P e MO (i) Ty VA D)
0

[T+ = 2751 [\ — OV + D) | e, (2.10)

It is evident that by virtue of u(x,y) #Z 0 in Q, the inequality 7(x) # 0,
x € [a,b] is valid. Therefore r[n%)](|T(x)| > 0. Let I[nz?))](|T(x)| = |T(z0)|. Then it is

not difficult to verify that, for V(z,y) € Q\ AB, the inequality
IT(@0) To—1 [N = ) VG +1)]
T+ - 92T50 P - OVEEFD] |20 21

is true. Moreover,_usin_g the remainder of convergent positive integral (1.19) we
obtain, V(z,y) € Q\ AB,
+00
[2(z + 1)]P~Le~ M= G+2T,_, [|)\|(77 — Oz + 1)} dz > 0. (2.12)
(b—=m)/(n—8)

Taking |T'(zo)| > 0,7 > 0 into account and inequalities (2.11), (2.12), from
(2.10) we obtain that Ls(z,y) > 0, V(z,y) € Q \ AB, hence the statement of
Theorem 2.4 follows. O

Theorem 2.4 can be proved similarly in the case u|;7 = 0.

Theorem 2.5. Let u(z,y) be a non-trivial and continuous in Q solution of the
problem (1.4) at A\ € R, vanishing on AC (or on BC). Then the mazimum in Q
of the function e~ M= |u(z,y)| [eM*|u(x,y)|] is achieved on AB.

Proof. We consider the case u(x,y)|5z = 0. Then the function u(z,y) has the
form (1.10). We make up the difference e=M%0|u(zq, 0)| —e~MN?|u(z, y)| = La(z, y),
where z € (a,b], (x,y) € Q\AB. Introducing the designation e~**u(x, 0) = T'(x)
and taking (1.10) into account, we obtain

5 &
Lala) = [T(ao)| = [T(€N ~ S (n-€) [ TN T, W00 .

From here we have

1
Lafa.9) > [T(a0) ~T(@) e~ 2(—y) [lroee=m7 [\/E=am=0]|a.
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Transforming the right-hand side of this inequality, we rewrite it in the form

La(x,y) > |T(x0)|Ls(z, y)e ™Y + [T (z0)| — [T(€)[] (2.13)
¢
2
+ 5w [ {Ieo - [r07: pWE= D0 0] [} Near,
where Ls(z,y) = e MY — 1 + |A|(—y)[elMe=8) — 1]/2.
Since u(x,y) # 0 in Q, then u(z,0) = 7(z) # 0 on [a,b]. Therefore

max e IA1® 0)| = max |T' >0
axe u(z, a x .
) lu(z,0)| ) T ()]

Let r[n%))]( |T(z)| = |T(20)|. Then for ¥(z,y) € Q\AB inequalities

T(wo)| =T 20, [T(o)| - [T0T: WE-DH-D]| 20 (2.14)

are true.
Substituting in Ls(x,y) an expansion of the function e~*¥ in series, we have
1 1 1
— _ ZelMe=8) o = o — PP L ST
o) = () { o070+ 34t SNl o
Hence it follows that
L5(x,y) Z 07 V(li,y) € Q\Ea (215)

moreover at A # 0 strict inequality is fulfilled.
Taking inequalities (2.14), (2.15) and |T'(zo)| > 0, into account from (2.13)
we find that Ly(x,y) >0, ¥(z,y) € Q\AB. Theorem 2.5 is proved. O

Using formula (1.11), one can prove Theorem 2.5 in the case u|z5 = 0.

Theorem 2.6. Let u(x,y) be a non-trivial and continuous in Q solution of the
equation (1.4) at i\ € R, vanishing on AC. Then if the maximum (minimum) of
the function e~ MN*u(z,y) in Q is positive (negative), then it is achieved on AB.

Proof. Since i\ € R and J(iz) = I1(|z|), then according to formula (1.10), func-
tion u(x,y) has the form

9 9
u(e) = (@) - By [ronNVET DT -0l 216)

a

We make up the difference e~ 1MN%oy (2, 0) — e~ M*u(2,y) = Lg(x, y), where
zo € (a,b], (z,y) € Q\AB.

Introducing designation e~y (z,0) = T'(z) and using formula (2.16), we
obtain

1
Lo(e,y) = Tiwo) - 7@ + BEy [ 7= T3/ 0~ et

a
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Replacing the variables t = £ — (n — £)z, and taking I(z) = (2/2)11(z) into
account, from the last equality we have

(6=a)/(n=€)
Lafay) = Tlao) ~TOM + My [ Tle— ()2
0
x [2(z + 1)) 2 PO=OGHI L [N (1 — €)y/2(2 + 1)]d=.
Performing some evaluations in the right side of this equality, we find
Le(w,y) = [T(x0) — T(&))eN? 4+ T(wo) L (x, y) (2.17)
(§—a)/(n—=¢)
N [ () - Tl - (- 93]}
0

x [2(z + 1)] "2 NO=OGH |\ |(n — €)V/2(z + 1)]dz,

where
Ly(w,y) =1 -l
(§—a)/(n=£)
Fy [ e DR MO L g - ) VG T Dl
0

Assume that max e~ M7y (x,y) > 0. Then inequality r[na?](T(x) > 0 is valid.
Q a,

Let r[nang(x) = T(x0). Then inequalities

T(zo) =T(€) >0, T(xo) =TE—(n—&)21 >0, V(r,y)cQ\AB (2.18)
are true.
Using equality (1.20), one can easily prove that

+oo
Lr(z,9) = |\ (~y) / [2(z+1)] " 2 NO=OGHI L [|\[(n—€)y/2(2 + 1)]dz >0,
(E—a)/(n=E)

moreover at A # 0 strict inequality is fulfilled.
Taking this and inequalities (2.18), T'(z¢) > 0, from (2.17) we obtain that
L¢(z,y) > 0, (z,y) € @\ AB. Theorem 2.6 is proved. O

—[Al=

The case min e |u(z,y)| < 0 can be proved similarly.
Q

The following theorems are also valid.

Theorem 2.7. Let u(z,y) be a non-triial and continuous solution of the equation
(1.4) in 2 at i) € R, vanishing on BC. Then if the mazimum (minimum) of the
function eMTu(x,y) in Q is positive (negative), then it is achieved on AB.
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Theorem 2.8. Let u(z,y) be a non-trivial and continuous solution of the equation
(1.4) in Q at A = A1 +1iX2, M1A2 # 0, A Ay € R, vanishing on AC' (or on BC). Then
the mazimum of function e~ M=|u(z, y)| [eM®|u(z, y)|] in Q is achieved on AB.

We omit a proof since it can be done as in Theorems 2.4 and 2.6.

3. Extremum principle for the operator C**

Before establishing of an EP for operators C1:*, we change it to a more convenient
form for further investigation.
We rewrite CL,» in the form

Cilr(@)] = ﬁ% WT@)& (3.1)

Asign(x

+W+—1/Ix 12T g1 [Ma — t)]7(t)dt + Lg(z,y),

where

Le(o0) = gy | 2 B =y

By virtue of equality (1.7),

)\2

T | 1T 1 T e — o (ar

Ls(z,y) =

Differentiating and taking formula (1.18) into account, we have

A2(1 + 23)sign(z

Lswy) = =BG or 25 /|$—t| T T[Nz — )7 (t)dt
A S1gn 9 /\Q(x o t)Q
- W/' — BWJBHP\( —t)]7(t)dt.

Applying formula (1.7) to the function J g 2[A(x —t)], we find

N(L+28)sign@—s) [\ e
43(8 + 1)I'(28) /' T g A — )] (t)dt (3.2)

S

Lg(l‘,y) =

A2sign(x

o / &t {TolMa — 0] ~ Tosa A — 0]} 7(2)d.
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Substituting (3.2) into (3.1), we find

1 d [ TsaMe = 0))r()
Cu' ()] = T(2) %/ - |1x BT
A2 Slgn

1+2ﬁ /'x_ﬂ%JB[ (x — t)]r(t)dt. (3.3)

Theorem 3.1. Let A € R, 7(x) € C®[a,b], a > 1-23 and r[?z%)}]( |7(x)| = |7(x0)] >
0, xo € (a,b). Then, if T(x9) > 0 (< 0), then the inequalities

Cor(@)]la=ay > 0 (<0), O [r(@)]la=sy > 0 (< 0) (3.4)
are true.

Proof. Consider the operator CL;» in the form (3.3) and rewrite it in the form

CAr(2)] = lim 1 _d /wr(t)dt

TR dw | (-2
PE .
e g (TR OV ML)

Differentiating in (3.5) and using formula (1.18), we have
L(26)Ca; [r(x)]

Tr—e€

= lim{625_175_1(/\6)7'($ —¢e)—(1-2P) / (x — )P 2T 5 1Mz — t)]r(t)dt}.

e—0
a

Adding and subtracting expression (1 — 28)7(x) [ (v — t)*/~2dt, from here we

a

have
D(28)Co [r(2)] = g%{ﬁQﬁ_l[jﬁ—l(Ae)T(x —€) —7(x)] + %
e = e I L

Since 7(x) € C(®®)[a,b] and X € R is fixed, then equalities
IT(x) — 7(x — €)Jg_1(Ae)| = €*O(1),
[7(z) = 7(t) Jp—1 Mz — 1)]| = (z = )*O(1)

are true.
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By virtue of these equalities and o > 1 — 2, there exists a limit in (3.6) and
the equality

— 7)1 Mz — 1)]

(@ 1)228 dat

FEACHA (@) = r(o)(e — @ + (1 - 29) [ 12

a

(3.7)

is valid.

In (3.7) we set = xg. Then, if 7(z¢) > 0 (< 0), then 7(z0) —7(t)J s_1[A(z0 —
t)] > 0 (< 0) is true. If we consider this and 7(x¢) > 0 (< 0), then from (3.7)
there follows the first inequality of (3.4). The second inequality can be proved
similarly. O

Remark 3.2. In the work [7] when conditions of Theorem 3.1 and the condition
0 > || are fulfilled, the validity of inequalities

CoMe T(@)][o=ao >0 (< 0),  Cp e " 7(2)]lomao >0 (< 0)
is proved.

Theorem 3.3. Let i\ € R, T(x) € Ca,b], a > 1—23 and I[naé)](T(x) =

T(x9) >0 I{niﬁT(x) =T(x0) < 0|, zo € (a,b). Then the inequalities

CIMeMT(2)]]1—sy > 0 (< 0), CoMe Mo T (@)]|omsy > 0 (< 0)  (3.8)
are true.

Proof. Considering i\ € R, Jg_1(iz) = I5_1(|z|) and a form (3.3) of the operator
CLA as in (3.5), we have

axr ?
r—e

reaC T = lind £ [ (@ - 0P T e - Dl T

[ (=T \(x — t)]a'“T(t)dt}.

a

After differentiating and applying formula (1.18), we get

L2B)C [N T ()] = 1213){625_175—1(|A|6)6A'(E_E)T(x —) (3.9)

~(-20) [ o= 0P TG - e Tt

a
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Integrating by parts and using equality (1.18), it is not difficult to verify that

r—e

(1-28) / (2 — 1202 T[N (@ — 1))t (3.10)

- e2ﬂ-1e“'<$-6>75_1<|x|e> (2~ ) NI A (@ — a)]

N p2e-t {NE 7 3@ — 0]~ Tooa 6@ — 1) b e,
23

Con31der1ng (3.10), we can rewrite the expression (3.9) in the form

L(28)Ca M e (2)] (3.11)

= liné{62ﬁ_175_1(|)\|6)6|>\(m_e) [T(x—¢€)—T(x)]

+1-20) [ (@ =2 (@)~ TOToalA e — )P

a

Tr—e€

+ T(z)(z — )P~ teNT s 1 |\(z — a)] + +T(z) / (z —t)?0~1

X [|/\|75_1[|/\|(x—t)] 55\ = OTslA @ — 1] ] Mtdt}.
[

Hence passing to a limit at € — 0 and taking T'(z) € C(*[a,b],a0 > 1 — 26
into account, we have
T (20)C3 M e T ()] (3.12)
=(1-2p) /(w — 1) 2T () = T(O)|T g1 [N (& — t)]el*at

T T<x>{<x a1 N T, [\ — a)]
+ [w—vp [Mﬁﬁ_lwx — ] - 5P — DTl - t>]] eklfdt}.

Using formula (1.21) one can easily show that

/(x 201N, [N (2 — 1))t (3.13)

a

1 1
_ %(x —a)?PeNe, Ry [ﬂ —5:26:20 = 1,26+ 1; ~2|A|(z - a)] :
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x

/(x — )PP TSN (z — t)]dt (3.14)
! 28+1 |\ |z 1
— 1+2ﬁ(x_a) PP B+ 5324268 -2 (w — ) |-
Considering equality [7]

_ 1
e *lg_1(z) =1F1 (6—5;26—1;—2z), z>0

and using expansions of functions 1 F} and oF5 into series, by a comparison of
coefficients at equal degrees of z, it is not difficult to verify that

e *T5_1(2) + % o F (5 . % 26;26 — 1,26 + 1; —22) (3.15)
2

z 1 1

- F —24208;, -2z | =1F; — =208, -22 ).
2&(14’26)1 1<6+25 + 67 Z) 1 1(6 27 67 Z)

On the base of equalities (3.13), (3.14), (3.15), from (3.12) it follows that

L(28)e” M Ci e T (@)

—(1-29) | TR, [ o — s

+T@ﬂx—@%-am[ﬁ—§ﬂ@—mMu—a>. (3.16)

Let maxp,p T'(z) = T(xg) > 0 [mingy T(z) = T(x0) <0], z0 € (a,b).
Then T'(z9) — T'(t) > 0 (< 0) for V¢ € [a,b]. Besides from (1.22) it follows that
L1 [B = §:20; 2| M|(z0 — a)] > 0.

By virtue of the fact that T'(x9) >0 (< 0), 1 —23 >0, I5_1[|\|(z —t)] > 0,
from (3.16) at = x( follows the first inequality of (3.8). The second part of the
inequality (3.8) can be proved analogously. O

Remark 3.4. In the work [5], the inequality (3.8) is proved by fulfilling conditions
of the Theorem 3.3 and |A| < 1/(b— a).

Remark 3.5. The equality (3.16) can be obtained by formula (2.6). In fact, intro-
ducing designation T'(z) = e~**7(z) in (2.6), we have

1_w64AaieA“T@ﬂﬂJM €0 1)
[ETED

From here, differentiating by y and passing to a limit at y — 0, and according
to (1.12), we have

e Mru(z,y) = y(n—¢) dt. (3.17)

a

lim 2[e_l)“””u(x,y)] = yoe~MTCLANT T (2)]. (3.18)
y—0 Jy
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Further, taking Js-1(iz) = Ig_1(|z|) into account at i\ € R and replacing

the variables t = & — (n — &)z, from (3.17) we get
(§—a)/(n=¢)
oAz, / (1 — &)2][2(2 + 1))P~Le~ MG +2)
0
% To 1IN (n — /20 T D)= (3.19)

We assume the expression
e~ Mry(z,0) — e Moy (2, y)
00—y

Using equality (1.19) and the designation T'(z) = e~ **u(x,0), one can
rewrite the expression Lg(x,y) in the form

= Lo(z,y). (3.20)

+oo
Lo(wy) =7(-u) @) [ [ele+ D le MOt
(§=a)/(n—=8)
xTyor [An = Ve +1)] dz
(§=a)/(n=8)
b [ T@ =Tl - el s+ 1)
0
x e Mm-9G+9T | [|)\|(n SN 1)] dz. (3.21)

Replacing variables by formula t = £ — (n — )z in the integrals of (3.21) and
substituting it into (3.20), and also passing to a limit at y — 0, we have

o
N N e DY
Lim a9 ™" u(z, y)] (3:22)

=249 { @) o) + [ TN T e - et

a

where
—+oo

Lio(z) = / (z + )22~ M5 [\ |( + 1)) dt.

—a

Comparing (3.18) and (3.22), we get
L(28)e” i e T (@) (3.23)
= (1= 20)T@)Laole) + (1 = 2) [ TESEeNOT, 4 o — ).

a
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Calculating integral Lip(x) by the formula (1.22) and substituting it into
(3.23) we obtain the equality (3.16).

Theorem 3.6. Let A = A1 + tha, Mid2 # 0, A, A2 € R T(x) € CONa,b],
a>1-20, and the function T(x)— is conjugate to function T'(z). Then, inequal-
ities

Re { gg; CLA [e/\le(x)]} o > 0, (3.24)
Re { Eg;q}f [e-MIT(x)” > 0 (3.25)

are true if max |T'(x)| = |T(xo)| > 0, zo € (a,b).

[a,b

Proof. Assume in (3.5) that 7(z) = eM*T'(x) and differentiating, we have

L(26)CLA MM (2)] = lim {625_175_1()\6)e|)‘(w_e)T(x —¢) (3.26)

—(1-28) / (x — )P 2T 51 [Ma — t)]eMtT(t)dt}.

a

Adding and deducting the expression

(1=2B)T(2) lim | (= )**To_1[|A|(@ — 1)) dt

a

and taking equality (3.10) into account, from equality (3.26), we get

L(26)Ca [T ()] (3.27)

e—0

= lim {ezﬁ—lew—f) [Ts-1(INe)T(x — €) — Tg—1(|\€)T ()]

+(1-25) / (& = 072 [T(2) T[N (x — )] = T(t) T -1 [Mx — )] edt

+ T (@) — 0PN Tp (o)
+7() [l = 07 Tl = 0] 55 IARG — 0T - 0] e,

a
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Passing to a limit at € — 0 and considering T'(z) € C(*®[a,b], a > 1 — 28,
and equalities (3.13), (3.14), (3.15), from (3.27) we have

rE@)e MM T ()]
~(1-29) / (T@) T[N — 8)] = T T 1 Mo — ]} M) (5 — 129241

+T(z)(z — )’ "L FL[B — 1/2;283; —2|\|(z — a)].

From here it follows that

s e { i)

P IT@)Ts-1 [N (@ = 0] = Re g T (0T s A = 0]
=(1- 2ﬁ)a/ = t){2 = }ew( ) dt
+ |T(z)|(z — )P~ 1 [B —1/2;28; —2|\|(z — a)]. (3.28)

Let r[nr%}]( |T(x)| = |T(z0)| > 0, o € (a,b). Then for V¢ € [a,b] the inequality

TG0 T-1 (Ao 0] = Re { X TOTpa Moo — 0] 20 (320

is true.
If considering inequality (3.29) and

|T(£L’0)| > 0, F(?ﬂ) > 0, 1F1[ﬂ — 1/2; 2ﬁ; —2|)\|(£L'0 — CL)] > 0,

then from equality (3.28) in the point & = x( follows inequality (3.24). O

Inequality (3.25) can be proved analogously.

For completeness of information we mention an EP for operators C%* and
ng’ﬁ)‘, which was established in [5].
Theorem 3.7. Let A\ € R and T(x) € Cla,b] N C'(a,b). Then, at T(z¢) > 0 (< 0)
the inequality
Cg;ck[el)\‘mT(x”h:xo >0 (£0),

Cp T (@) la=zy 20 (£ 0)
is true if I[nez)](|T(x)| =T (x0)|, zo € (a,b).

(3.30)

Theorem 3.8. Let i\ € R and T(z) € Cla,b] N C*(a,b). Then inequality (3.30) is
true if I[naé}](T(x) =T(x09) >0 [r[nig]lT(x) = T(x) < 0], 20 € (a,b).

’ a’7
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Theorem 3.9. Let A\ = \; +i)a, Mid2 # 0, A\, A2 € R; T'(x) € Cla,b] N CL(0,1).
Then the inequalities

Re { Eg;cgg {e/\lgET(x)]} o 0, (3.31)
Re { éé&c}jﬁ [e-MIT(x)” =0 (3.32)

are true if I{n&})}}(|T(x)| = |T(z0)| > 0,20 € (a,b).

Remark 3.10. If in Theorems 3.7, 3.8 and 3.9 A # 0, then in (3.30), (3.31) and
(3.32) strict inequalities are valid.

Remark 3.11. The extremum principle for the expression
O e =N p ()T (x)]

can be established by a similar method when k =0 or £ = 1, and p(x) is a given
function.
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Numerical Investigations of Tangled Flows
in a Channel of Constant and Variable Section
at Presence of Recirculation Zone

S. Khodjiev

Abstract. In the present work results of numerical investigations of tangled
coaxial flows in a channel of constant and variable section are given. For de-
scription of the flow full non-stationary two-dimensional equations of Navier-
Stokes are used and numerically solved by non-explicit difference scheme,
based on linearization finite-difference analogies of original differential equa-
tions and next approximate factorization of stabilizing finite-difference op-
erators. Relation of initial parameters of mixed flows, velocity, temperature,
pressure and altitude of cross-section in entrance, at which might happen
zones of recirculation are showed, moreover optimal tangle of extension of the
channel at which zones of revocable flows is defined.

Keywords. Inner flows; recirculation; Navier-Stokes; turbulence.

1. Conditional definitions and abbreviations

a, b are constants in form of channel; b(x) is conditional width of the area of
the displacement; C), C,, are specific thermal capacity under constant pressure to
the volume; E is full specific energy; K,, K, are constants for condensation of
accounting net on axis x,y; fo is half-altitude of the entry section of the channel;
L is length of the channel; N, IV, are quantity of points of the coordinates z,y; n
is derivation by normal; P is pressure; Prp is Prandtl’s turbulence number; R is
universal gas constant; R; is half-width of entry of the central active stream; T is
temperature; t is time; u, v are components of the velocity along x,y; « is tangle
of the extension of channel; 7, £ are transformation of coordinates; C' is constant
of turbulence; p is dynamic coefficient of turbulent viscosity; p is density; lower
indexes: x is partial derivation %; y partial derivation 8—87/; i, 7 are numbers of rated
points along the axes z,y; 1 are parameters of wall streams; 2 are parameters of
central streams; upper indexes: ’ is characterized a dimensionless.
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2. Introduction

Problems of turbulent displacement of tangled gas flows in channels of constant and
variable cutest is interesting by their wide applications to the creation of mixing
and heating device, cameras of combustion of the different energy installation.
Especially, little-studied area of parameters is interesting, when as a result of
mixing and spreading of tangled flows in the channel, zones of recirculation are
formed.

Experimental investigations of conditions of the existence and dimensions of
recirculation zones at mixing of tangled flows were done in works [1-4]. In these
works, experimental investigations is ended by consideration in cases of bigger re-
lation of areas of cross-sections in the entry of channels [1-3], organized attempt
of the generalization of the geometric sizes of the zones of recirculation and distri-
bution concentration on axis of the current of tangled coaxial flows in channel of
the constant section moreover area of the cross-sections flow at the input compa-
rable [4].

3. Formulation of a problem

Suppose, tangled flows with their gas dynamic parameters enter from coaxial noz-
zles in channel of constant and variable section, i.e., in the entry of channel there
are two flows, characterizing by the velocity us, temperature T3, pressure P; (wall
stream) and by velocity us, temperature Th, pressure P5 (central active stream),
altitude R;.

Form of the channel is given as f(x) = ax + b (Fig. 1).

A o e o e S i

FIGURE 1. The Channel at the input.
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For the description of the given flow we use the following main admissions:
flow is viscous, two-dimensional, planar; gravity power is absent; heat losses occur
due to heat-conduction, i.e., by Fourier’s law; Boussinesq’s assumption, which
says apparent turbulent shift voltages are connected with average deformation
through appearing (efficient) scalar turbulent viscosity is used; apparent turbulent
heat currents are connected with turbulent numbers of Prandtl, moreover channel
of constant and variable section is symmetric. In this case one can restrict by
consideration of the current in the field of between axis of the symmetries and
one of the wall of the channel. Such current can be described mathematically by
means of full system of the equations of the Navier-Stokes [5, 8].

We make some transformations, before giving the system of the Navier-Stokes
equations.

We choose as a scalar of length, velocity, time, temperature and pressure fj,
fo/u2, u3/R and pau3 respectively. Choosing as a scalars for physical properties
of gas, its coeflicients of a transfer as a density, specific heat capacity, viscosity:
p2, R, pafous we get relation between dimensionless with dimensional as follows:

N E  _ P _ 1 7 t
o YT T u () puz P ez’ M T o fous L
. p = T Cp — C, — L = flz) — Ry
=— T=—- Cp= ; Oy = s L= —f(x)=—F=; Ri=—(.
P P2 le P Rm, Rm, fO f( ) fO ! fO
(3.1)
Considered domain transform to the quadratic by the following transforma-
tion: _
€z Y
§==, N=Z=" 3.2
T @ 2

Known that stream is characterized by big gradient of gas dynamic param-
eters in a domain near the wall, therefore it is useful to make transformation of
coordinates, which allows condense accounting points near the wall of physical
plain saving constant step in accounting plain. As an example for this kind of
transformation we use
Fly) = In[l1+ Ky(e —1)n]

v= Inl+Ky(e—1)]°

Graduated assignation of input parameters requires condensation of account-
ing points in the entrance of the channel. For this aim we introduce analytic func-
tions, transforming condensation of accounting set of the entrance of the channel

In[l + Ky(e — 1)¢]
plr) =1- :
In[l+ Kq(e —1)]
Using transformations (3.1)—(3.4), the system of the Navier-Stokes equations we

can represent in divergent form [5, 6].
Equation of the continuity

(3.3)

(3.4)

o 10 o
5/ Fvpar + 5o fEpu+ a—y%(pv + Qpu) =0 (3.5)
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Equation of the motion along the axe x

1 0
nySpru +7 fF (pu® + P) + a9 — @a(puv + Qpu® + P))

104 19 2 10 4
T Q - A T _zQ .
= 123/ Foee et Lo { T g }“LLay“{” T3 } (3.6)

9 1.1 2 1
+8_yf F oap {(59 +1 uy—|—§va .
Equation of the motion along the axe y

1 o
nySDwPU +7 fFupuv * oy — 2 (pv* + P + Qpuv)

1 0 10 10
L28 ——fFye, Mvm+zaﬂ(uy+gvy)+za_yﬂ

9 1 2 4 1
+8_yf F, gpg:uKQ +§ vy+§Quy .

Equation of the energy

[—%um + va} (3.7)

10 0
nyq:mE + 7 —fF,(E+p)u+ a—%((E + P)v + Q(E + P)u)
1 0 1 4 Cp
:ﬁ%.ny@w M(U%+§uum I2 TT)
10 2 4 Cp
+ I %2 (vuy — guvy + Quuy, + gQuuy + P—TTQTy>
10 2 4 C (3.8)
+ Za_yﬂ [uvw — gvuw + Quo, + gﬂuux + P—;QTw:|
o 4. 4 4
+ a_yf 'F, 1<pmu[<92 + g) vvy + (592 + 1) Uty
2 Cp
+ (O +1)—T, + Q(uvy + vuy) |-
Prp 3
Equation of condition
P =pT
f! (3.9)

1
E = pC,T + §p(u2 +0?),Q = —777.

Effective turbulent viscous is represented via the sum of laminar and turbu-
lent viscous in the form of

0
p1 = const TO472 4 Cpb?(z)| 2=

5 (3.10)
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4. Method of solving

System of equations (3.5)—(3.9) with relation (3.10) is numerically solved by inex-
plicit difference-scheme, based on linearization of finite-difference analogy of ini-
tial differential equations and next approximate factorization of stabilizing finite-
difference operators [5-6].

Boundary conditions for the system of equations (3.5)—(3.10) are formulated
as follows: on the wall of the channel conditions of sticking and non-elapse, dis-
tribution of temperatures (or assumption of adiabatic wall) are used, also on an
axe of the channel we put condition of symmetry. In the entrance of the channel
(z = 0) gas dynamic parameters wall and central flows are given and in the “exit”
we put weak conditions.

As a initial conditions (¢t = 0) we use homogeneous in transverse direction of
gas dynamic parameter’s field, moreover transverse component of the velocity we
take as a zero. In every variant on the wall condition for P in the form OP/0n = 0
is putted. Constancy of P supposed to be not in transverse to the whole border
layer, but only in across of layer with thickness adjoining to the wall. This method
gives a possibility to obtain stable numerical solution for the flow in non-isolate
border layer and for the flow with isolation of stream [7].

Serial accounting of investigations was done at constant steps of the account-
ing set Naxx Ny = 31 x41 or by refinement 21 x 31 with coefficients of condensation
K, = —0.4701 and K, = 1.2644, corresponding to the uniform step in the entrance
of the channel at N, =41, and in the domain, near of the wall N, = 51.

5. Numerical results

As a base object of the investigation we choose the channel (similarly to the work
[3]) with geometric characteristics: D = 188mm (fy = 94mm half-altitude), L =
1.4m In calculations we suppose that all two streams of the air: heat capacity at
constant pressure and heat capacity at constant volume are constant, and Prp =
Pr = 0.7 (variant number 24 with conditions of slide on the wall). Variants of
calculations are given in Table 1, in last column of which were putted symbol “+”
which means that in an initial part of the channel there are recirculation zones.
Variants 28-43 for extending channels with angle of extension o = 6° (L/ fo = 10)
and o = 11° (L/fo = 5).

From the analysis of obtained results follow:

At minor relations of initial values of velocities (u2/u1 = 0.022, u1 = 6.9m/s)
and equal initial values of temperature (T5/T; = 1), pressure (P»/P; = 1), also at
large values of ug/uy (u2/u; = 45.072) at small length of channel (5.319) in entry
part one can see full stop of tangled flow by creation of recirculation zones, and
longitude occupies 20 percent of channel cross-cutting.

At minor relations of initial values of velocities (uz/u; = 0.022) and high
temperature (To/Ty = 2.333; P»/P; = 1) of passive stream (stream with slow
velocity) recirculation zone is not observed in channel with constant cutting, and
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Ne uy [y B f Lify /0 B/R
1 00222 0.5 14,8936 1 1 o+
2 0.0965 0.5 14.8938 1 1 -
3 450725 0.5 53191 1 1 +
4 45,0725 0.5 14,8936 1 1 -
3 10,3667 .26 14 8936 1 1 -
] 14706 0,26 14,8936 1 1 -
7 00222 026 14, 8936 23333 1 -
g 0.0222 0.5 14.8936 23333 1 -
9 0.0222 0.5 5.3191 04286 1 +
10 | 724638 026 53191 2333 1 +
11 72,4638 0,26 533191 0.6 1 +
12 | 724638 0.26 14,8936 0.6 i -
13 450725 0.5 14,8938 23333 1 +
14 | 450725 0.5 5.3191 04286 1 4
15 450725 026 14.8938 23333 1 +
16 10,3667 0,26 14.8938 06000 1 -
L7 72,4638 0.5 14,8936 1 2 +
18 T2 A638 0.5 14 8936 2333 2 -
19 72,4638 0.5 14,8935 1 4 -
20 | 724638 0.5 14, 8936 2333 4 +
21 0.02222 026 14,8936 1 3 -
22 0.02222 0.5 14.8936 1 2 -
23 002222 026 14,8936 16666 2 -
24 | 002222 0.5 14,8936 1 1 -
25 450725 026 14.8938 1 2 +
26 | 450725 0.5 14,8936 04286 2 +
27 | 450725 0.5 14.8936 1.6666 2 o
28 44 4285 0.3 10 1 1 -
29 | 44,4285 0.26 10 1 1 -
30 T1.428 026 10 1 1 -
31 44 4285 0,26 5 1 1 -
32 | 44.4285 0.5 5 1 1 -
33 160775 026 10 1 1 -
34 160775 0.5 10 1 1 E
35 1.60775 0.5 5 1 1 -
36 160775 0,26 5 1 1 -
37 45072 026 5 1.6666 1 -
38 45,072 0.5 5 1.6666 1 -
39 [ 714285 0,26 5 1.6666 1 -
40 T1.4285 0.5 5 16000 1 -
41 45072 0.5 10 1.0000 2 -
42 (45072 0,26 10 10000 2 4
43 45072 0.5 10 23333 2 +

Table 1
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at large relation of initial velocities (ug/uy = 45.072; variant 13) recirculation zone
occupies 25 percent of entry section of channel when active stream (stream with
strong velocity) in entry of channel occupies twice less area than entry section
(variant 15), and its longitude in entry part occupies about 50 percent of cross-
section. In this case in entry part of channel fast decrease of velocity, increase
of pressure, temperature were observed. Later these parameters will be equal.
Moreover, recirculation zones in wider diapason changing of relations of initial
velocities 10.36 < us/uy < 72.46, but at minor relations of temperature To /T =
0.6 of tangled flow in long channels L/ fy = 14 are not observed.

Recirculation zone is not observed at uncounted regimes of tangled flows
(P,/P; = 2) and at minor relations of initial velocity (us/u1 = 0.022), tempera-
tures (1 < Ty/T7 < 1.666) on axe of entry part of channel of constant cross. At
enough large relations of initial velocities of tangled flows (us/u; = 72.46), pres-
sure (Po/ Py = 4) and temperatures (1 < To/T7 < 2.333) lead to the faster growth
of axial values of lengthwise velocity in entry crossing of channel, and at deviation
from the crossing of channel to the faster fall (Fig. 2, where cross distribution of

y

0,5

F1GURE 2. Distribution of cross velocity in various section
of channel and along the axe of channel (u*): No
19; No 20.

lengthwise velocity in various distances from the entry section and from the axial
changing along the channel: continuous lines belong to variant 19, and dotted lines
to 20).

Big recirculation zone observed at unrated (P./P; = 2), mixture of sub and
supersonic tangled flows in entry part of domain (u; = 6.9 m/s; us = 311 m/s,
variant 25) occupying 60 percent of cross-section and riches up to half of area of
the channel when active stream occupies 1/4 part of area of entry part of channel
(see Fig. 3).
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=

x=1

u

FiGURE 3. Distribution of cross velocity in various sec-
tions of channel at w; = 6,9 m/s; uy =
311 m/s; Po/Py = 2 (variant 25).

Some cross distribution of pressure in various distances from the entry section
of channel (variant 27), when active stream has high pressure. In first sections of
channel cross changing of pressure is harmonic.

Special interest lies on less studied domain where role of index of channel’s
extension to the processes of mixing tangled flows is considered.
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Abstract. In the case of clamped thermoelastic systems with interior point
control defined on a bounded domain 2, the critical case is n = dim 2 = 2.
Indeed, an optimal interior regularity theory was obtained in [Triggiani, Dis-
crete Contin. Dyn. Syst., 2007] for n = 1 and n = 3. However, in this reference,
an ‘e-loss’ of interior regularity has occurred due to a peculiar pathology: the
incompatibility of the B.C. of the spaces Hy / (Q) and Hgé %(Q). This problem
for n = 2 was rectified in [Triggiani, J. Differential Equations, 2008]: this
establishes the sought-after interior regularity of the thermoelastic problem
through a technical analysis based on sharp boundary (trace) regularity theory
of Kirchhoff and wave equations. As an additional bonus, a sharp boundary
regularity of the elastic displacement is also obtained. In the present paper,
we revisit that problem using a technique developed by these authors to cir-
cumvent the pathology of the incompatible boundary conditions. This yields
a more direct proof of the optimal interior regularity (but not of the boundary
regularity).
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1. Introduction, orientation, model

1.1. The pathology of the critical case n = 2

The present paper is a successor to [32]. This work dealt with a thermoelastic
system defined on a bounded domain 2 C R™, n = 2, subject to the action of inte-
rior point control exercised in the elastic equation and satisfying clamped /Dirichlet
boundary conditions (see system (1.1a~d) below. Paper [32] succeeded in providing
an optimal interior regularity for this model, after an original ‘e-loss’ of regularity
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which was suffered in [31]. In the process, [32] obtained also a new sharp bound-
ary regularity result for the elastic displacement. In the cases n = 1,3, optimal
interior regularity results — from the control space to the state space — were ob-
tained in the prior work [31]. The case of n = 2 is critical, in the sense that its
analysis encounters a subtle technical difficulty due to the incompatibility of the
boundary conditions, yet within the same topological level, between the Sobolev
space H(;% (Q) and the Sobolev space H(;%O(Q)7 so that H()%O(Q)gHO% (€2), with a finer
topology [24, p. 66]. This is the pathology that caused the ‘c-loss’ of regularity
in [31], in the case n = 2. To circumvent this technical obstacle and secure the
optimal interior regularity also in the case n = 2, a radically new approach was
pursued in [32]. It replaces the interior — interior strategy of [31] with a technical
boundary — interior strategy. The latter consists of obtaining interior regularity
results through an analysis that proceeds from the boundary: it involves both the
wave equation (at an interpolated level with respect to the theory of [16]) as well as
Kirchhoff plate equations [12, 13, 17, 25]. In addition, [32] uses pseudo-differential
analysis. It slashes the equations by two pseudo-differential operators: one in the
time-derivative, and one in the space variables that are tangential to the boundary
I' = 99Q). Though technical and extensive, this approach has an additional advan-
tage: as a bonus, it provides — besides the sought-after optimal interior regularity,
the original objective — also a sharp boundary regularity of Awl|s, w being the
elastic displacement. The latter result does not follow from the optimal interior
regularity for w via trace theory, see (1.11d) below, and hence is a new, additional
sharp boundary regularity result. It should be noted that all these difficulties are
tied to the clamped boundary conditions which are a pathological case [21]. They
do not occur in the case of hinged boundary conditions [30].

A 2-dimensional thermoelastic plate with clamped boundary conditions and
subject to interior point control — the model of the present paper — is an ideal wall
of a structural acoustic chamber, subject to piezo-ceramic control action, for the
purpose of noise reduction [1, 2, 3, 6, 15, 22, 4, 5] to quote a few references.

1.2. Orientation in the new approach

The present paper revisits the optimal regularity theory of [32] for the thermoe-
lastic plate with interior point control and clamped boundary conditions, in the
critical case n = 2. It then provides a new interior — interior proof to obtain
optimal interior regularity results in this case, thus matching [32]. The novel proof
is inspired by an idea (or trick) that was introduced in [23] to circumvent (in
the greater complexity of a structural acoustic model with thermoelastic wall) a
technical difficulty akin to that more specifically described in Remarks 2.2 and 2.3
below. To be sure, implementation of this idea encounters, however, some serious
technical difficulties of its own, of a different nature: some of which — dealing with
the identification of D(A2) in (3.16) below and with the subsequent formula (3.17)
— have been resolved in [21, Lemma 4.2, p. 466]; and others of which — dealing with
the delicate interpolation result (3.27) below — were resolved in [23, Proposition
3.1b, Eq. (3.33)]. Putting all these ingredients together provides the new proof,
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which re-establishes the optimal interior regularity results of [32]. Being, in its own
way, an interior — interior proof, it cannot recover the sharp boundary regularity
result on Aw|y obtained in [32].

1.3. The model. A canonical thermoelastic point control problem with
clamped/Dirichlet boundary conditions

Let 2 be an open bounded domain in R", n = 1,2,3, with sufficiently smooth
boundary T" for n = 2,3. On 2, we consider the following thermoelastic problem
in the unknown {w(t,z),0(t, z)}:

wyy — YAwy + Aw + Af = Su in (0,7 x Q= Q; (1.1a)

Ht — A — Awt =0 in Q, (llb)

w(0, -) = wo; we(0, -) =wy; (0, ) =0y in (1.1c)

wly = 0; gw =0; 0y =0 on (0,T]xT =%, (1.1d)
ov |,

with homogeneous clamped/Dirichlet B.C., under the influence of the scalar point
control term u € Lo(0,T), which acts through the Dirac distribution ¢ concen-
trated at the origin, assumed to be an interior point of Q. In (1.1a) the constant
v is taken to be positive: v > 0 throughout the paper. In this case, the free sys-
tem (u = 0) generates a s.c. thermoelastic contraction semigroup (Proposition 1.3
below). Further information is available in [9, 10, 31]. To express the results be-
low, we need to introduce the following setting [20], [28], [29], [31]: the positive
self-adjoint operator B (norm equivalence):
Bf =—Afi  D(B)= HA(Q) N HL(9);

1.2
B, =(I+~B); D(B)=D(B})=H(Q), -

as well as the elastic operator, still positive self-adjoint,

of
Af = A?f, A) = Q) : = =0¢. .
=arp o= {rem@: o= —of.
We recall that, with equivalent norms [29]
3\ 3 2 _ 3 8f
puh=m@nm@={remw: =5 —ok
T

D(A?) = H}(Q); D(AT) = Hy(Q) = D(B?); (1.4D)

D(A}) = [D(A}), D(AY)], = [HE(Q), HY ()5 = Hy ()
C [D(B), D(B})]; = D(BY) = D(B]) = H () (1.5)
D(A%) = [D(A%), La(Q)]y = [H(Q), L2()] wo)

= Hy, () = D(BY) = D(B)),
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see [24] for these Sobolev spaces. We note that by (1.2), (1.4) we have (properly)

D(A2) C D(B); hence BA™% € L(L1(9)), while

1.7
Az B~ is an unbounded operator on L (€2), (1.72)

L(FE) being the Banach space of bounded operators on a Banach space E. Similarly,
by (1.5) we have

D(A%) C D(B%); hence BTA™% € £(Ly(R)), while

1.7b
AR B~% is an unbounded operator on Lo (). ( )

In both cases, (1.7a) and (1.7b), the topological level of D(Az) and D(B), as
well as of D(AF) and D(B1), is the same, but subtle differences in the boundary
conditions occur.

Remark 1.1. The fact that under the clamped B.C. (1.3), the operator BA~2 and
B1A™F¥ are not isomorphisms on Ly(f), as noted in (1.7), is a major technical
difference over the hinged case of [30], and are responsible for additional tech-
nical difficulties. In fact, they are precisely these differences of the B.C. between
D(AF) = HO%O(Q) and D(B1) = HO% (€2) that are responsible for causing the pathol-
ogy and the technical difficulties described in the Orientation. Refining the infor-
mation of (1.7a) by adjointness, we recall that [21, Proposition 2.3, p. 453]:

ATEB,g € Ly(Q) <= g € Lo(Q),
where the space .Z/Q(Q) can be characterized in a few ways:

1
(i) Either as the dual space of D(AZ) with respect to space D(B7) as a pivot
space, endowed with the norm

1712, 5 = (B £ BE Doy = (T +7B)S. st

1

3)
(21, Eqn. (2.29), p.452], as in (1.14) below;

(ii) or else as (isometric to) the factor space L2(€2)/H where

H=1{hecLy(Q):(1—-7A)h=0in H?(Q)} =N(1 —-~A)

[21, Section 2.4, p. 456].

An additional property is noted in (3.17) below and is critically used in the
arguments of Section 3. This fact permits the refinement in [21, Section 4.4, p.
473] of the interior regularity in [30] of the purely elastic problem (2.1a-b-c) for
n = 3, to yield, ultimately, wy € Lg(O,T;ig(Q)), as in (1.9d) below, for the
corresponding thermoelastic problem (1.1a-b-c) for n = 3. 0
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1.4. Regularity results
Paper [31] showed the following results.
Theorem 1.1 ([31]). With reference to problem (1.1) with v > 0 and zero initial
conditions: wy = wy = Oy = 0, we have the following regularity result. Let
u € Ly(0,T). (1.8)
Then, continuously, where € > 0 is arbitrary and for any p, 1 < p < co:
(i) forn=dimQ = 3,

w e C(0,T; D(A2) = H3(Q); (1.9a)

w; € C([0, T];D(AT) = D(B?) = H}(Q)); (1.9b)

6 € L,(0,T;D(B?) = H Q) nC([0,T);D(B>~) = HL"*(Q));  (1.9¢)

Wiy € Ly(0,T; Loy(Q)); (1.9d)
(ii) forn=dimQ =1,

w e C([0,T); D(AT) = H*(Q) N HE(Q)); (1.10a)

w; € C([0,T); D(A?) = HE(Q)); (1.10D)

0 € C([0,T);D(B) = H*(Q) N Hi(Q)); (1.10c)

wyy € Ly(0,T;D(B?) = HL(Q)). (1.10d)

As already stated in the Orientation, the results of Theorem 1.1 for n = 3
and n = 1 are optimal. The optimal result for n = 2 was proven in [32]:

Theorem 1.2 ([32]). Let n = dimQ = 2 and assume (1.8) for the corresponding
problem (1.1). Then, continuously, the following interior reqularity holds true:

w € C([O,T],D(A%) = H%(Q) a HS(Q)), (111a)
0%( 2)); (1.11b)
0 € L,(0.T;D(BY) = H (@) N C([0, T D(BI~%)

0%

3

w, € C([0,T): D(A%) =

(), 1<p<oo. (1.11c)

Theorem 1.3 ([32]). Assume the hypotheses of Theorem 1.2. Then, still continu-
ously in u € Ly(0,T), the following boundary regularity of the elastic component
holds true:

AU}|E S LQ(O,T7L2(F)) = LQ(Z) (111(21)

The boundary regularity (1.11d) does not follow from (1.11a) via trace theory.
It is a new, additional regularity result.

Remark 1.2. Theorem 1.1 for n = 3, n = 1, as well as Theorem 1.2 for n = 2,

show consistency in the following sense. The position variable w gains in regularity

“% in terms of fractional power of A,” while decreasing the dimension from n =
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3ton = 2 ton = 1. The same occurs for the velocity variable w;, which —

moreover — is consistently “% less regular in terms of fractional power of A” than

the corresponding regularity of w for n = 3,2, 1. O

The goal of the present paper is to give a more direct proof of the interior regularity
(1.11a~c) of Theorem 1.2. This proof, however, will not cover Theorem 1.3.

1.5. Further preliminaries

For future discussion, we need further preliminary background from [31], [28], [29].
By (1.2), (1.3), we may rewrite (1.1) abstractly first as

{ (I +vB)wy + Aw — BO = du; (1.12a)
075 + Bo + Bwt = 0; (112b)

next, as the first-order equation

§ = —Ayy + Bu, y(0) = [wo,wn, 5] € Vi y(t) = [w(t), wi(t),6(t));  (1.13a)

0 I 0 0

—Ay=|-Bj'A 0 BI'B; Bu= | B;'6u | ; (1.13b)
0 -B -B 0

D(A,) = D(A%) x D(A?) x D(B); (1.13¢)

Y, = D(A}) x D(BZ) x La(Q);

1.14
By =1+vB; (v1,72) = (I +vyB)r1,22)1,(0)- (1.14)

DB
The space Y, is the natural energy space for problem (1.1a-d).

Below, in Section 3, equation (3.5), we shall also need the following domains
of fractional power of A.:

D(A3) = [D(A,), Y ]1_s = D(A3TH) x D(ATT1) x D(B®), 0<s<1, (1.15)
obtained from (1.14) for D(A,) and (1.15) for Y, via

1

{ [D(A%),D(A%))1_y = D(A*5); [D(A?),D(AT)]1_s = D(ATTH);

(1.16)
[D(B), La(Q)]1-s = D(B?).

and [19, p. 5], via the Lumer-Phillips theorem, or a corollary thereof [26, pp. 14-15],
one may readily show the following known well-posedness result [20].

Proposition 1.4. The operator —A., in (1.13) is the infinitesimal generator of a
s.c. semigroup of contractions e~** on the space Y, defined by (1.14), as well as
on D(A3), 0 <s < 1.

We conclude this section with a standard regularity result for the self-adjoint,
analytic semigroup e 5%, to be invoked repeatedly in the sequel [17, Prop. 0.1, p. 4]:
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the map

t
f—>/ e BT f(7)dr : continuous
0

L5(0,T; Ly()) — Lo (0, T3 D(B)) N C([0, T); D(B*)). (1.17)
L,(0,T;Ly(2)) — L,(0,T;D(B)) for all 1 < p < oo; (1.18)
Loo(0,T; La(2)) — C([0,T); D(B*~)), for all 0 < e < % (1.19)

In (1.17), the case p = 2 is shown by Laplace transform [14, Appendix]; the
case 1 < p < oo in (1.18) is much harder [8]; see also [11, p. 112]. Finally, (1.19)
follows by convolution of an Li-function B'~¢e~B? with an L.-function f [27,
p. 26, p. 29].

2. Proof of Theorem 1.2: Preliminaries

Henceforth, we shall focus on the case n = 2 only. Thus, when invoking results
from [31], we shall confine only to the case n = 2.

2.1. The auxiliary - and h-problems

First, as in [31], following [7], we introduce the uncoupled Kirchhoff problem cor-
responding to (1.1) with zero I.C.:

Yoy — YAYy + A% = du in (0,T] x Q = Q; (2.1a)
¥(0, ) =0, ¥(0,-) =0 in (2.1b)
Py = 0; g—zl/j § =0 in (0,7] xI'=X. (2.1c)

Regarding the sharp (optimal) regularity of problem (2.1), we then invoke [28,
Theorem 3.1, p. 410] and obtain that:
for n = dim Q = 2, and for v € L3(0,T) as in (1.8), then, continuously:

W€ C([0,T]; D(AS) = H? (Q) N HE(Q)); (2.2a)
i € O([0,T); D(A%) = H(Q)) € C(0, T D(BY) = HF (Q));  (2.2b)
By € Lo (0, T [D(A%)]/); (2.2¢)

Next, with ¢, provided by problem (2.1), and hence satisfying (2.2b) (n = 2),
continuously in u € L2(0,T), we next consider the uncoupled heat problem corre-
sponding to (1.1) with zero I.C.:

hi — Ah — AvY; =0 in Q; (2.3a)
h(0,-)=0 in Q; or hy = —Bh — By; (2.3b)
hls =0 in 3. (2.3¢)
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where Ay is rewritten as — By, since ¥|s; = 0 by (2.1c¢). Its solution is

h(t) = — /0 B By, (1) (2.4)
- tB%e-B“—T)B%z/;t(T)dT e L,(0,T;D(BY) = HE ()

0 NC([0,T); D(Bi~9)), n=2 (2.5a)

ha(t) € Ly(0, T3 [D(BH)]' = [Hgy (), (2.5b)

for any € > 0, and for all 1 < p < oo. The regularity in (2.5a) follows from
the general regularity result (1.18) and (1.19) via Biy, = (BTA %)Asy; €
C([0,T7; La(2)) C Ly(0,T5La(2)) (n = 2), see (2.2b) and (1.7b). The case for
n = 2 is not using v; in an optimal way. See Remark 2.1 below.

Remark 2.1. For n = 2, the regularity in (2.5a) appears to be optimal, even
though we only used ¢ € C([0,T]; D(B?) HO% (Q)) rather than the slightly
sharper 1, € C([0,T]; D(A%) = HO%O(Q)), given by (2.2b). For n = 2, the desirable
regularity h € L, (0, T; D(A%) = HO%O(Q)) appears to be false. This subtle difference
on the boundary conditions between HO% (Q) and HO%O(Q) had the negative impact

in the semigroup approach of [31] by forcing the use of (1.16) for s = 3 — € — that

is, (1.18) — and a consequent loss of “¢,” in the regularity of {z,z;, ¢} below in
(2.10), hence of {w,w;} for n = 2. Instead, if it were true that

he L0, T:D(A) = HE(Q)), 1 <p < oo, n=2, (2.5¢)
we would be allowed to use (1.15) for s = 1, in (2.10). But (2.5¢) is not true.

2.2. The reduced {z, q}-problem
Setting new variables as in [30, Eqn. (2.12)], [31, Eqn. (2.9)]

z=w-—1; q=0-—h, (2.6)

we likewise readily find from (1.1), (2.1), (2.3) that {z,q} solves the following
thermoelastic problem

2 — YAz + A%z 4+ Ag = —Ah in @ (2.7a)
G —Aqg— Az =0 in Q; (2.7b)
Z(O, ) =0; zt(07 ) =0; q(07 ) =0 in Q; (27C)
2|l = 0; oz =0; ¢z =0 in Y, (2.7d)

vy
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with the term —Ah = Bh known via problem (2.3). Recall the operator A, in
(1.14): the abstract version of problem (2.7) is (with By = (I +vB)):

z z 0
I+~B + Az —Bq = Bbh; d
( vB)zs z q or Sz | =—Ay | 2|+ B-1Bh
qt+Bgq+ Bz = 0, dt K
q q 0
(2.8)
The solution {z, 2, ¢} of problem (2.8) with zero I.C.is
z(t) . 0
2 | = / e | B-1Bh(r) | dr, (2.9)
0
q(t) 0

where we seek to show well-posedness and regularity of (2.9).

Remark 2.2. (the ‘e—’ loss in regularity.) For the case n = 2, [31, Eqn. (2.14)]
obtained, with € > 0 arbitrary, and recalling (1.18) and (1.15) for s = 1 —e:

2(t)
a(t) | € C(0,T;D(A; )

q(t)
D(AR1) = H5<(Q) N HZ(Q) (2.10a)
= C |07 | DA =H; () =DBI5) | |.n=2 (210b)
D(B2~¢) = HL7*(Q) (2.10¢)

Indeed, (2.10) follows from (2.9), and Proposition 1.4, via the (critical) fact that
by (2.5a) (n = 2), we have a fortiori

B'Bh e Ly(0,T;D(Bi~%) = D(AS™1)), n=2, (2.10d)
and thus, by (1.18), with 1 < p < oo, B,;lB = %I — B;l
0
B-1Bh | € L(0,T; D(A3 %)), n=2. (2.11)
0

Moreover, e®+! restricts to a s.c. semigroup on D(A3). Then, (2.11) yields (2.10),
via Proposition 1.2.

Remark 2.3. We note that, in the above argument after [31], in the case n = 2,

the loss of € > 0 suffered in (2.11) was incurred in order to force B! Bh into the

second component space of the domain of the ‘largest’ fractional power of A, see
3 3

(1.16). Since D(A3) = Hg,(Q) S D(B1) = H (Q) = Hz(Q) N HY(Q), see (1.5),

with a strictly finer topology [24, Thm. 11.7, p. 66], then the vector [0, B; ' Bh,0] ¢
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D(Aé), see (1.16), or (1.18); while, instead, [0, B; ' Bh,0] € D(Aé_e), Ve >0, see
(1.18).

This obstacle was resolved in [32] by using a radically different, technical
boundary — interior approach. In the present paper, we overcome this difficulty
by a new strategy which is introduced in the next section. It is a novel interior —
interior strategy.

3. New strategy for the proof of the main theorem 1.2

From now on, the proof is quite different from that of [31], or [32]: the first led
to optimal results for n = 1, n = 3, but incurred in a loss of € > 0 for n = 2
(Remark 2.3 and Remark 2.1). The second obtained the required optimal regularity
of the {z, ¢}-problem by using a radically different, technical boundary — interior
approach. In the present paper, we use the trick displayed in (3.11), (3.12) which
requires the new regularity result (3.13). Establishing (3.13) is a delicate issue
which, in turn, requires the peculiar interpolation result (3.27), whose proof is
given in the Appendix.

Step 1. We start with equation (2.9) above:

z(t) . 0
z(t) | = / e A (t=T) B!'Bh(r) | dr, (3.1)
q(t) i 0

where B;lB acts ‘like’ the identity. By the regularity in (2.5a),

BI'Bh, h e Ly(0,T; D(BY) = HE () (3.2)
and as such
B L(0,T; D(AY) = Hih(©) (3.3)
and, as explained in Remark 2.1, herein lies the obstacle. We want to show that
z(t)
a(t) | € C(0, T D(a})) (3.4)
q(t)
where by (1.15) with s = 1
D(AZ) = D(A%) x D(A%) x D(B?) (3.5)

but (3.3) does not allow us to claim (3.4) directly from (3.1) and (3.5).



An Interior Regularity Proof for Thermoelastic Plate 253

Step 2. Instead, we will use a trick developed in [23] in which we will return to
—A, given by (1.13):

0 1 0
—A, = —B;lA 0 B;lB (3.6)
0 -B -—-B
and verify that
0 0 1 0 —A71BA()
B;lBh(-) = —B;lA 0 B;lB 0 (3.7)
0 0 -B -B 0
or
0 A=IBh(")
—1 —
AT | B 'Bh(:) | = 0 (3.8)
0 0
note that
A"'Bh = A"5(A"5BT)Bih (3.9)

A"'Bh € L,(0,T; D(A%)) (3.10)
We can rewrite (3.1) as

z(t) . 0
A | = / Aye =41 | B21BR(r) | dr (3.11)

q(t) i 0

. A~'Bh(T)
= /0 Ay B (=) 0 dr (3.12)

0

where application of (3.8) allows us to go from (3.11) to (3.12) and the term
A~'Bh € L,(0,T; D(A%)) by (3.10). The question is: to which domain of fractional
power D(A") does the vector on the right-hand side of (3.12) belong? We shall show
below that

A~1Bh(r) A~'Bh(7)
0 € L,(0,T;D(A%)), or AZ 0 € Ly(0,T;Y,)
0 0

(3.13)
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so that using (3.13) in (3.12) we obtain
z(t) . A~'Bh(T)
A | 2 | = / e~Aa (- 0 dr (3.14)
q(t) i 0

=C([0,T];Y5) (3.15)
as desired. Thus, (3.15) proves (3.4), as soon as we establish (3.13).

Step 3 (Proof of (3.13)). To do so, we need first to show that
DAZ) = A"HE x Yo x Vs (3.16)
where ), V3 are some (not specified) spaces and with [21, eq. (4.11)]
ATYHE = D(ATBITA) 2 A L (Q) (3.17)
where, as in [21, eqns. (2.5), (2.6), p. 448] and also at the end of Section 1.2:
H={he Ly Q) t(1=yA)h=0in H*(Q)} =N {(1—~7A)}  (3.18)
={f e L) : (fi ),y =0, YVheH} (3.19)
Lg( ) =H+H" orthogonal sum;  Lo(Q) =2 Ly(Q)/H. (3.20)

Step 3(i) (Proof of (3.16)): We calculate via (3.6)

0 T
AA, |z | = —-B> A 0 B;lB T (3.21)
—-B T3
T2
= —B,;lA 0 B,;lB —B;lel + B;leg (3.22)
0 -B —-B —Bxzy — Bxs
We display only the term of interest, that is, z1. We require that
T —B;lAml + B;leg,
A2 @ | = € D(A%) x D(BI) x Ly(Q) = Y, (3.23)
x5 BB;lel + -
or
AFBI Az € Ly(Q). (3.24)
The (3.24) implies via (3.17) that
w1 € D(ATBI1A) = AT, (3.25)

and (3.16) is proved.
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Step 3(ii): Equation (1.15) with s = 1 gives that
D(A,) = D(A%) x D(A%) x D(B). (3.26)

Step 3(iil) (Interpolation between (3.16) and (3.26)): First, Proposition 3.1b of [23,
eqn. (3.33)] gives the following interpolation result:
—1a,1 3 o z
AT "H",D(A%)| = D(AF) (3.27)

2

whose proof is provided in the Appendix. By interpolation between (3.16) and
(3.26), we then obtain via (3.27):

[D(A2),D(A,)]; = D(A}) = D(AF) x Vs x V. (3.28)
Finally, (3.10) then implies that
A~'Bh(T)
0 € L,(0, T; D(A2)) (3.29)

0

and (3.13) is proved. This completes the proof of (3.14), hence of Theorem 1.2,

recalling (1.15) for s = 3.

Appendix A: Proof of (3.27)

Proposition A.1. [Proposition 3.1b of [23]] The following interpolation result holds
true:

[A*HL,D(A%)] = D(AF). (A.1)

1
2

To prove the interpolation result (A.1), we shall seek to fall into the setting
of [24, Section 14.3, p. 96-98]. This is an interpolation result between subspaces;
that is, between spaces subject to additional constraints. To this end, let (we use
the notation of [24, Section 14.3]):

X=DA)cCd, X=H-=XCU, §=A4, (A.2)
so that we may equivalently rewrite A~1H* as
AT MHE = (X)sxr={z € X :6x € X}
={z €D(A): Az € H*}. (A.3)
Similarly, we set

Y = D(A}) = o, y:[D(A%)}’zjzzxp, S—A, SeL(®T), (Ad)
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so that & € £(X; X)NL(Y;Y) as well and we may equivalently rewrite D(AT) as
DAY =(V)sy={yeY: dye}
3 1.7
= {y eD(AY): Aye [D(Azt)} } (A.5)

In (A.4), (A.5), [ -] denotes duality with respect to La(€2) as a pivot space. Then,
our original object [A_%HJ',D(A%)}
(A.3) and (A.4) as

s accordingly equivalently rewritten via

2

{A‘%HL, D(AS )} L= (X)sx, (V)sy)

. (A.6)
Finally, to verify the remaining assumption in [24, Eqn. (14.23)(iii)], we take G =
A7l y e X+ Y =[D(A7)]', and r = 0. We can now appeal to [24, Theorem 14.3
p. 97] to get

a9 D] = 0l = () - 7

But from (A.2) and (A.4), we compute
- [D(A),D(A%)} — D(A%). (A8)

1

2

[X,Y]

1
2

as desired. Via (A.7) and (A.8), our sought after conclusion (A.1) will be estab-
lished, as soon as we verify that the required constraint

6 (1X.Y]y) €[,V (A.9)

is automatically satisfied. Via (A.8) and § = A, X = HL and Y = [D(A%)] in
(A.2),(A.4), we re-write the terms in (A.9) explicitly as

5 ([X, Y]%) — AD(A}) = [D(AY)]"; (A.10)

/
: 1 . (A.11)

2 2

@,V = [HE DAY ], = [Dat), 0t ]

where in the last step we have invoked the duality result [24, Theorem 6.2, p.
29]. In conclusion, via (A.10) and (A.11), verifying the validity of statement (A.9)
means establishing that

[D(A

ool
~—
—_
N
9
—~

b
ST
:—/
—
X
|7
[

(A.12)

where (H+)" denotes duality with respect to the La()-topology. In turn (A.12)
is equivalent to

[D(ad), ()| e Dad) = [pad), @)

2 2

: (A.13)

which is plainly true. Thus, the required condition (A.9) has been verified. In
conclusion, (A.7), (A.8), (A.9) cumulatively establish the validity of (A.1).
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Abstract. We study reachability problems for a class of partial integro-differ-
ential equations arising in viscoelasticity theory. Our approach is based on
the Hilbert Uniqueness Method and nonharmonic analysis techniques.
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1. Introduction

In this work we study reachability problems for the following partial integro-
differential equations

t
uge(t, ) — Au(t, z) + ﬁ/ e 1) Au(s,x)ds =0, te (0,T), z€Q, (1.1)
0

where A denotes the Laplace operator in an open ball Q of radius R in RY (N > 2)
and 0 < 8 < 1. The solution u of (1.1) is subject to null initial data

u(0,z) = ut(0,2) =0, e, (1.2)
and boundary conditions
u(t,z) = g(t, ) tel0,T], z € o, (1.3)

where 02 denotes the boundary of €.

If we consider g as a control function, our reachability problem consists in
proving the existence of g € L((0,T) x 9€) such that a weak solution of equation
(1.1), subject to boundary conditions (1.3), moves from the null state to a given
one in finite control time. To be more precise, we adopt the same definition of
reachability problems for systems with memory given by several authors in the
literature, see for example [17, 6, 7, 11, 13, 14, 20, 21]. Indeed, we mean the
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following: given T' > 0, up € L*(Q) and u; € H-1(Q), find g € L3((0,T) x Q)
such that the weak solution v € C([0,T7], L2(2)) N C*([0, T], H=1(Q2)) of problem
(1.1)—(1.3) verifies the final conditions

u(T, z) = up(x), u(T,x) =ui(x), z€f. (1.4)

Our goal is to achieve such result without any smallness assumption on the convo-
lution kernel, as suggested by J.-L. Lions in [17, p. 258]. Moreover, due to the finite
speed of propagation, we expect that the controllability time 7" will be sufficiently
large. Indeed, we will find that 7" > 2, see Theorem 7.1. The one-dimensional case
N =1 has been studied in [18, 19].

As it is well known, a common way for studying exact controllability problems
is the so-called Hilbert Uniqueness Method, see [10, 15, 16, 17]. We will apply this
method to equation (1.1). The HUM method is based on a “uniqueness theorem”
for the adjoint problem. To prove such uniqueness theorem we employ some typical
techniques of nonharmonic analysis, see [26]. This approach relies on Fourier series
development for the solution of the adjoint problem, that exhibits an expansion
of type (6.4) below. In this framework Ingham type estimates (see [5]) play an
important role. Indeed, if we apply to functions (6.4) inverse and direct inequalities
obtained in [18, 19] (see Theorems 3.1 and 3.2) then we are able to prove our
reachability result.

To sum up, our approach is based on nonharmonic analysis, in particular on
Ingham type estimates, which could be of interest in themselves. However, our
methodology brings about some restrictions on the convolution kernel. We refer to
[22] for exact boundary controllability for the Gurtin-Pipkin heat equation with
more general kernels. That first-order equation leads to a second-order problem
similar to ours, but with only one reachability condition on the final data. In
our approach, we are able to handle both conditions: on state and on speed. In
addition, we also obtain a sharp estimate for the controllability time, which is not
present in [22] due to the more general setting.

Exponential kernels arise in linear viscoelasticity theory, such as in the ana-
lysis of Maxwell fluids or Poynting-Thomson solids, see, e.g., [23, 25]. For other
references in viscoelasticity theory see the seminal papers of Dafermos [1, 2] and
[24, 12].

Other papers related to our problem are [3, 14, 27, 28], where the approach
is not of Ingham type.

The plan of our paper is the following. In Section 2 we give some preliminary
results. In Section 3 we recall Ingham type theorems. In Section 4 we describe the
HUM method. In Section 5 we recall some known facts concerning the eigenfunc-
tions of the Laplace operator in a ball. In Section 6 we show that the solution of
the adjoint problem can be written as a Fourier series. Finally, in Section 7 we
give our reachability result.
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2. Preliminaries

For any T € (0, 0), we denote by L(0, T)) the usual spaces of measurable functions
u: (0,T) — R such that one has

T
flull1 i=/ lu(t)] dt < oo .
0

We denote by Li (0,00) the space of functions belonging to L'(0,7") for any
T € (0,00).

Classical results for integral equations (see, e.g., [4, Theorem 2.3.5]) ensure
that, for any kernel k € L{ (0,00) and any v € L. (0,00), the problem

u(t) — kxu(t) = v(t), t>0, (2.1)

admits a unique solution u € Llloc(O, 00). In particular, there is a unique solution
ok € L1 (0,00) of

loc
on(t) — k% ou(t) = k(t),  t>0. (2.2)

Such a solution is called the resolvent kernel of k. Furthermore, the solution u of
(2.1) is given by the variation of constants formula

u(t) = v(t) + or * v(t), t>0, (2.3)

where gj, is the resolvent kernel of k. We recall the following result, see, e.g., [19,
Lemma 2.1].

Lemma 2.1. Given k € L}, (0,00) andv € L'(0,T), T > 0, a functionu € L*(0,T)
s a solution of

T
u(t) —/t k(s — Ou(s)ds = v(t)  ae. te(0,T),
if and only if
T
u(t) = v(t) —I—/t or(s —t)v(s) ds ae. te(0,7),

where gy, is the resolvent kernel of k.

Let Q be an open ball Q of radius R in RY (N > 2). In the following we
consider L?(2) and H}(Q) endowed with the standard norms

Jull? = [ @ de. ulfye = [ [Va(@)P de.

and H~1(Q) is endowed with the dual norm of || - | 2 (-
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3. Ingham type theorems

In [19, Theorems 1.1 and 1.2] Ingham type inverse and direct inequalities have
been proved. In this section we recall those results, presented them in a slight
different formulation.

In the following two theorems we consider functions of the type
e . .
t— Z (Rner"t + C,etnt 4 Cne_“*’"t) t>0

with r,, R, € R and w,, , C,, € C such that the sequences {r,}, {Sw,} are bounded
and

i|Rn|2<+OO, i|Cn|2<+oo.
n=1 n=1

Theorem 3.1. Let {wy, tnen and {1, tnen be sequences of pairwise distinct numbers
such that ry, # iwy, for any n,m € N. Assume

lim mf(%wnﬂ Rwp) =v>0,

n— oo
lim QSw, = a, rn < —Swy, VYn>n,
n—oo
Rl < SICL Vnzn', R <ulCul Vn<al,

for somen’ €N, « €R, u >0 and v > 1/2. Then, for any T > 2w/~ we have

/T‘i et 4 Chetnt + T, e_“"" Z|C’ 1%, (3.1)

where ¢1(T') is a positive constant.

Theorem 3.2. Assume

lim inf(Rwp+1 — Rwp) =5 >0,

n—oo

lim Sw, = «a,
n—oo

|R|7| |l/|C| Vn>n, |Ry| < p|Cnl Vn<n,

for somen’ €N, « € R, up >0 and v > 1/2. Then, for any T > w/v we have

/T ’i et 4 Chetnt + T, e_“"" Z |C|?, (3.2)

where co(T') is a positive constant.
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4. Hilbert Uniqueness Method

To render the paper self-contained, in this section we describe the Hilbert Unique-
ness Method.
To begin, we consider the integro-differential equation

ug(t, ) — Au(t) + /Ot k(t — s)Au(s,z)ds =0 te(0,7), z€Q, (4.1)

where k € L] (0, 00), with null initial conditions
u(0,2) = ut(0,2) =0 e, (4.2)
and boundary conditions
u(t,z) = g(t, x) te(0,T), x€00. (4.3)

For a reachability problem we mean the following: given 7' > 0, ug € L?*(Q2) and
u; € H=Y(Q), find g € L2((0,T) x 99Q) such that the weak solution u of problem
(4.1)-(4.3) verifies the final conditions

u(T,x) = up(x), us(Ty ) = up (). (4.4)

To explain how we can solve a reachability problem by the HUM method, we
proceed as follows.

Given zg € C°(2) and z; € C(2), we introduce the adjoint equation of
(4.1), that is

T
zi(t, ) — Az(t, x) —i—/t k(s —t)Az(s,z)ds =0 te 0, 7], ze€Q, (4.5)

2(t,x) =0 tel0,T] xe€dQ, (4.6)
with final data
2(T,+) = 2o, z(T,) = z1. (4.7)

The above problem is well posed, see, e.g., [23].
If we denote by v the outward unit normal vector to 9 and 9,z(t, z) the
normal derivative of z, we consider the problem

t
o (t,z) — DNp(t, x) +/ k(t — s)Ap(s,x)ds =0 tel0,T], ze€Q,
0

T
o(t,x) = 0,2(t,x) — / k(s —t)0,z(s,z)ds t€[0,T] z€d,
t

¢(0,-) = ¢(0,-) = 0. (4.8)

It can be proved as in the non integral case that non homogeneous problem
(4.8) admits a unique solution . Then, we can define the linear operator

U(z0,21) = (=u(T,),0(T, ), (20,21) € CF(Q) x CF(Q) . (4.9)
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Let (£0,&1) € C°(Q) x C°(Q) and & the solution of

& (t,x) — AE(L,x) + /tT k(s —t)A&(s,x)ds =0 tel0, 7], =€,

E(t,x) =0 tel0,T] xedQ,

T, ) =&, & T,)=&. (4.10)
We prove that

(W (20, 21), (0, &1))

/ /89 (t,x) 8§tx /tTks_t l,gsgc)ds) dxdt . (4.11)

Indeed, multiplying the equation in (4.8) by £(¢,z) and integrating on [0,7] x
we have

/OT/QSDtt(t,x)f(t,x) dx dt — /()T/Qﬁsﬁ(t,w)ﬁ(t,x) do dt

T t
—|—/ / / k(t — s)Ap(s,z) ds &(t,x) dx dt = 0.
o JaJo
If we take into account that

T T T
/0 /0 k(t — s)Ap(s,x) ds E(t,x) dt :/0 A(p(s,x)/s k(t —s) &(t, ) dt ds

and integrate by parts twice both respect to ¢ and respect to x, then we have

| e@aeme) do— [ o(t.a)(.a) da
/ / (t,x) &t (t,x) — A&(t, z) + / k(s — t)Af(s,x)ds) dx dt

N /0 /8 (. m)0,E(t,2) da di
_/OT/QQ ot ) /tT k(s — 1)0,&(s, x)ds dwdt = 0.

Since ¢ is the solution of (4.10), we have that (4.11) holds.
Now, taking (&g, &1) = (20, 21) in (4.11), we have

(U (z0, 21), (20, 21)) //
o0

So, we can introduce the semi-norm

20, 21l := //
1519}

for any (zo,21) € C°(02) x C°(Q).

/ ks—t@zsx)ds’ dxdt. (4.12)

/2
/ k(s —t)0yz(s x)ds‘ dxdt) (4.13)
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In view of Lemma 2.1 || - || ¢ is a norm if and only if the following uniqueness
theorem holds.

Theorem 4.1. If z is the solution of problem (4.5)—(4.7) such that
Opz(t,x) =0, Y(t,z) € [0,T] x 09,
then
2(t,x) =0 Y(t,z) € [0, T] x §2.
If Theorem 4.1 holds true, then we can define the Hilbert space F' as the
completion of C°(2) x C(Q) for the norm (4.13). Moreover, the operator W

extends uniquely to a continuous operator, denoted again by ¥, from F' to the
dual space F’ in such a way that ¥ : F' — F’ is an isomorphism.

In conclusion, if we prove a uniqueness result as Theorem 4.1 and
F = H}(Q) x L*(Q),
then we can solve the reachability problem (4.1)—(4.4).

5. The eigenfunctions of the Laplace operator in a ball

In this section we first recall some basic facts regarding Bessel type functions (see,
e.g., [9]), which will be useful to treat the eigenfunctions of the Laplace operator
in a ball.

Let us introduce the Bessel functions of any real order p by the formula

ad (—l)j x\ pt27
JIp(x) =§m<§> x>0, (5.1)

where I' is the gamma function.

Lemma 5.1. Let p be a nonnegative real number. The following equality holds for
every positive real number c:

1
2 [ sl (enf dr = IR + (@ =)0 (5.2

As for the location of the zeros of the Bessel functions, the following result
holds.

Proposition 5.2.

(a) For any given real number p, the positive zeros of Jp(x) are simple and they
form an infinite strictly increasing sequence {\,} tending to infinity.

(b) The difference sequence {An+1 — An} converges to .

(c) The sequence {N\,+1—An} is strictly decreasing if |p| > 1/2, strictly increasing
if Ip| < 1/2 and constant if p = £1/2.
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We may assume without loss of generality that 2 is the unit ball of RY: the
general case then follows easily by a linear change of variables. We shall consider
the case N > 2. Let us also recall that the spherical harmonics of order m € N are
the restrictions to the unit sphere 92 of the homogeneous polynomials of order m.

Lemma 5.3. The spherical harmonics of order m € N form a finite-dimensional
subspace Sy, in L2(8Q). These subspaces are mutually orthogonal and their linear
hull is dense in L*(09).

By using hyperspherical coordinates (p,0) with 0 < p < 1 and 6 € 99, we
can describe the eigenfunctions of the Laplace operator.

Proposition 5.4. The eigenfunctions of —/\ with the homogeneous Dirichlet bound-
ary condition are the functions

Eni(p,0) = p' "% J,,_ 142 (Amip) Hm (0) , (5-3)

where m € NU{0}, k € N, H,, € S,,, and for each m we denote by { Ak }ren the
strictly increasing sequence of positive zeros of the Bessel function Jm_H_%(x).

The corresponding eigenvalue of the eigenfunction Epn(p,0) is A2 .

6. Fourier series of the solution

Let Q be the unit ball of RY, N > 2 and T > 0. For any vg € HJ(f) and
v € L2(Q) there exists a unique weak solution v belonging to C(|
CH([0,T]; L*(Q)) of equation

=

|

&
2
D)

t
vee(t, ) —Av(t,x)—i—ﬁ/ e =) Ay(s, x)ds = 0, te (0,7), =€, (6.1)
0

verifying the Dirichlet boundary condition
v(t,z) =0 te(0,T), ze€0Q, (6.2)
and the initial conditions
v(0,) =g, v(0,-) = vy . (6.3)

If we expand the initial data vy and v; according to the eigenfunctions F,,; of —A
with the homogeneous Dirichlet boundary condition, see (5.3), then we obtain the
expressions

w00 = 33 kB0, eolsey = 323 02N Bk,

m=0 k=1 m=0 k=1

o S i Ek(0,0), el = 30 S 2l Bl

m=0 k=1 m=0 k=1
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Repeating an analogous procedure to that followed in [19, Section 6], we can write
the solution of problem (6.1)—(6.3) as the Fourier series,

t pv Z Z m,kermkt + Cn kelwmkt + C lenkt) mk(ﬂ), 0) ) (64)
m=0 k=1

for any t € [0,7],0 < p <1 and 6 € 99Q. In the above formula r,,,x , Rmr € R and
Wk , Cmk € C are defined by

kaZﬂ—n—ﬁ(ﬂ)\z_:) +O<)\3 )7 (6.5)

kB = kB + Yk + O(%) 1
L (72 + 382 — )5 + 05 ) Ame
o= 5 (300} Osgg) 15 - M2 o)

mk

Rmk =

amk)\mk + ’Ymk(_ —n) + ami(B — 77) + 04ka<>\2 k) + ’}/mko(ﬁ)
2+ 36° ~ 20m+ O —i[2n = 39w + O (55|
- Z|:(')/mk — Ok B+ mp) Ak + amk0< ) + 7”1160( nk” (6.8)
2)2, + 332 —2ﬂn+0(m) —i[@n—%) mk +O< )]

Moreover, there exist some constants ¢; ,ce > 0 such that, for any m € NU {0}
and sufficiently large k, one has

¢ (0412111@)\12111@ + %2nk> <Nk Cri]® < 2 (0412111@)\12111@ + %2111@) . (6.9)

ka =

7. A reachability result

In this section we will show our reachability result.

Theorem 7.1. Let n > 33/2. For any T > 2, up € L*(Q) and u1 € H™Y(Q)
there exists g € L*((0,T) x 9Q) such that the weak solution w € C([0,T], L?(Q2)) N
CY([0,T], HX()) of problem
t
g (t, ) — Au(t, z) + ﬁ/ e 1) Au(s,z)ds =0, te(0,T), z€Q,
0

u(0,2) = u(0,2) =0, x €,
u(t,z) = g(t,z), te (0, 7), =€, (7.1)
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verifies the final conditions
u(T, z) = up(x), w(T,z) =ui(z), x€Q. (7.2)

Proof. To prove our claim, we apply the HUM method described in Section 4.
First, we consider the adjoint equation of (7.1), that is

T
zue(t, ) — Az(t,x) + B/ e 1Nz (s,x)ds =0, te(0,T), zeQ, (7.3)
t

with the Dirichlet boundary condition
2(t,x) =0 te(0,7), ze€df, (7.4)

and final data

2(T,) = 2o, 2(T,-) = 21, (7.5)
where 29 € H}(Q) and 21 € L?(Q). It is easy to verify that the backward problem
(7.3)—(7.5) is equivalent to a Cauchy problem of the type (6.1)—(6.3) with v(¢,z) =
z(T' —t, z). Therefore, we can apply the conclusions of the previous section to write
the solution z(¢,x) of the adjoint problem as a Fourier series. Indeed, we expand
the final data zp and z; according to the eigenfunctions FE,,; of —A with the
homogeneous Dirichlet boundary condition: by using hyperspherical coordinates
(p,0) with 0 < p <1 and 6 € 99, we have

:ZZamkEmk(pﬁ), ||ZO||H1(Q) Zzamk)‘mk“EmkH (7.6)

m=0 k=1 m=0 k=1
=SS vkBur(p0), a1l = 30 S Rl Bl (17)
m=0 k=1 m=0 k=1
with )
1Bkl = [ o Ol dp [, (0)F a0, (7.8)

Therefore z can be written as in formula (6.4), that is

t P50 Z Z R kermk(T_t)+ka€iwmk(T_t)+ka€_im(T_t))Emk(p7 9)7
m=0 k=1
te0,T], 0<p<1l, 6e€0Q, (7.9)
where 7k s Rink s Wik , Cmk are given by formulas (6.5)—(6.8) respectively. Keeping
in mind that, for any m € NU {0}, A\, are zeros of the Bessel function Jm_1+%,
it follows that

dy2(t,1,0) = ZZ)\MJ igx (Amk) Roge™™ T=D H, (6) (7.10)

m=0 k=1

- Z Z)\ka’ gy Q) (Conpee ™m0 4 O™ @i =) H, (9)
m=0 k=1
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Since the spherical harmonics of different order are orthogonal in L2(9Q) (see
Lemma 5.3) we have

/ |0,2(t,1,0)|2d0
2

_ Z 'Z)\mkj/ 1+N Ooe) (Runoe™ (T8 - Oy ioomi (T=) | T o= i@ (T—1))
m=0 k=1

| Hn(0)[2d8),
o9

whence, integrating from 0 to 7', we get

T
//|8Vz(t,1,0)|2d9dt
o

. - 2
/ Z /\ka -1+ (/\mk)(Rmkermkt + kaew’"kt + kae_w’"kt) dt

/ |H,. (0)?d6. (7.11)
o0

Now, we observe that in view of (6.7) one gets

Rwm k+1 — Rwmk = A k+1 — Amk + g (77— —ﬁ) (/\mk Amjlk—i-l) —|—O(/\3 ) )

Taking into account the behavior of zeros of Bessel functions (see Proposition 5.2)
and the assumption n > 3(3/2, the numbers wmk, rmk, ka 1+N()\mk)Rmk,

Amid! Y (Amk )Crg verify the conditions of Theorems 3.1 and 3.2. So for any
m e NU {O} we can apply those theorems to the function

Z )\ka/ -1+ N )\mk)(RmkeTMkt + kaeiwmkt + C—mke_imt) .
Indeed, thanks to inequalities (3.1) and (3.2), for any T' > 2 we have
T)Zkik|cmk| 7y s Q)2
. - 2
/ ’ Z )\ka 1+ mk)(Rmkermkt + kaelw"”ct + kae_lwmkt) dt

< eo(T) Z)‘?nﬂcmﬂ |J/ —14 i) -
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y (7.11), in view of the above inequalities we get

ZZA WOk P1 ),y Qi) P [ |Hon(8)[2d6

m=0 k=1 o0
T
g/ / |0, 2(t,1,0)|%d6 dt
0 o0
1) 30 S NoslCot PV oy M) [ (Ho(@)Pd0, (112
m=0 k=1

and hence Theorem 4.1 holds true. In addition, by (5.2), we have

1
|J»:n_1+%()‘mk)|2 = 2/0 p|Jm—1+%()‘mkp)|2 dp?

so in view of (7.12) and (7.8), we obtain

)5 S A2l ok 2 Bl ? < / / 10,2(¢,1,0)7do d (7.13)
m=0 k=1
ZZ)‘ k|ka| ||EmkH2

m=0 k=1

Eventually, by (7.6), (7.7) and estimates (6.9) we have that

T
er(T) (|20l )+l %) < / /8 10,2(4,1,0) a8 di < eo(T) (20l Hlal).
whence it follows that the space F introduced at the end of Section 4 is
Hy(Q) x L*(Q).

Since the operator ¥ defined in (4.9) is an isomorphism from H{(Q) x L?(Q) to
H71(Q) x L*(Q), if we take ug € L*(Q) and uy € H~1(Q), then there exists a
unique (29,21) € HE(Q) x L?(Q) such that ¥(zg,21) = (—u1,up). Denoted by z
the weak solution of problem (7.3)—(7.5) with data zp and z; and by u the weak
solution of

t

uy(t, z) — Au(t, z) + 6/ e ") Au(s,z)ds =0, te(0,T), €,

0
u(0,z) = u (0,2) =0, x €,

T
u(t,z) = dyz(t,x) — ﬁ/ e 1699, 2(s,x)ds, te (0,T), z€dQ,

t
thanks to the definition of ¥ we have that u verifies the final conditions
u(T,x) = up(z), w(T,z) =ui(z), x€q.

So, our proof is complete. O
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The Schrodinger Flow in a Compact Manifold:
High-frequency Dynamics and Dispersion

Fabricio Macia

Communicated by V. Smyshlyaev

Abstract. We discuss various aspects of the dynamics of the Schrodinger flow
on a compact Riemannian manifold that are related to the behavior of high-
frequency solutions. In particular we show that dispersive (Strichartz) esti-
mates fail on manifolds whose geodesic flow is periodic (thus generalizing a
well-known result for spheres proved via zonal spherical harmonics). We also
address the issue of the validity of observability estimates. We show that the
geometric control condition is necessary in manifolds with periodic geodesic
flow and we give a new, geometric, proof of a result of Jaffard on the observ-
ability for the Schrédinger flow on the two-torus. All our proofs are based on
the study of the structure of semiclassical (Wigner) measures corresponding
to solutions to the Schrédinger equation.

Mathematics Subject Classification (2000). Primary 35Q40; Secondary 58J40.

Keywords. Schrédinger equation, Zoll manifolds, semiclassical measures, dis-
persive (Strichartz) estimates, observability estimates.

1. Introduction

Let (M, g) be a compact, smooth Riemannian manifold. The Schrodinger flow
on (M, g) associates to an initial datum uy € L? (M) the solution u (¢,-) to the

Schrédinger equation:
{ i0u (t, ) + Agu (t,z) =0, (t,z) e R x M,
u|t:0 = Uup.

(1.1)

Above, A, denotes the Laplace-Beltrami operator corresponding to (M, g). Since
M is compact, the spectrum of —A, consists of eigenvalues 0 = \g < A\; < Ag...

This research has been supported by grants MTM2007-61755 (MEC) and Santander-Complutense
34/07-15844.
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that tend to infinity. We shall denote by (¢, ),,cy an orthonormal basis of L? (M)
consisting of eigenfunctions —A,ty, = A2y, . One has u (t,-) = e ug and the
following spectral representation holds:

Ay = Z e n) U, provided ug = Z o (An) ¥x, - (1.2)
neN neN
Two direct consequences may be extracted from this formula. First, that the dy-
namics of the Schrédinger flow is almost-periodic; second, that the L? (M )-norm is
conserved by e?*?=. Note that both these properties hold regardless of the specific
geometry of (M, g).
Another dynamical feature of ¢®+ that is not so easily interpreted from
(1.2) is its dispersive character. The high-frequency modes of a solution to the
Schrédinger equation travel at a higher speed than their low-frequency counter-
parts.! This results in a regularizing effect on the singularities of the initial datum,
which is usually quantified through dispersive estimates (also known as Strichartz
estimates) of the type:

HeitAzuoHLP([O,l]xM) <(C HUOHHS(M) . (1.3)

Such an estimate is known to hold for M = R? when p = pg (d) := 2(2+d) /d
and s = 0. For a general d-dimensional compact manifold M, Burq, Gérard and
Tzvetkov [3] have shown that (1.3) also holds for p = pg(d) but with s = 1/p
(which is half the exponent given by the Sobolev embedding theorem).

This value of s is not optimal in general; in fact, the infimum s (p, M) of the
values s for which (1.3) holds is a quantity that depends heavily on the specific
geometry of the manifold M considered. For instance, when M is the flat torus
T¢, Bourgain has shown [2] that s (po (d),T?) = 0 for d = 1,2 (although the
estimate is actually false for s = 0), and it holds for d = 1, p = 4, s = 0 as
shown by Zygmund [32]. When (M, ¢) has periodic geodesic flow, (1.3) holds for
p=4,s>d/4—1/2and d > 3 (s > 1/8 if d = 2), which is again smaller than 1/p.
Moreover, these values are optimal on standard spheres S¢; these results are proved
in [3]. These considerations can be interpreted as the fact that the dispersive effect
for the Schrodinger flow is stronger on tori than on spheres.

The validity of dispersive estimates is closely related to the high-frequency
behavior of the solutions to (1.1). This behavior is tested on highly oscillatory
o e . h 2 .
sequences of initial data, i.e., sequences (uo) whose L? (M)-norm is concentrated
on frequencies localized towards infinity as h — 0F. Typical examples of such
initial data are (strictly) h-oscillating sequences (uo) which are of the form:

ul = Z o (An) ¥, for some b > a > 0, (1.4)
a/h<VAL<b/h

1However, this is readily seen when M is the Euclidean space equipped with the standard metric.
The solution issued from a plane-wave initial datum e*'® is precisely 615‘(z’t§), which travels at
velocity &.
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or those of W.K.B. type, uf (z) := %@/ for some Sy € C> (M). For small h,
the behavior of e™?=ylt turns out to be related to the dynamics of the geodesic
flow of (M, g). In particular, up to times ¢ of the order of h, the classical W.K.B.
method gives a very precise description of the structure of these solutions in terms
of propagation along geodesics of M ; however, it fails to describe the global in time
evolution. A simpler, although more general, approach consists in understanding
the limiting behavior as h — 0T of the position densities:

ny, (t) == |eim“ug|2

This object is physically relevant, in the context of the quantum-classical corre-
spondence principle, as it describes the asymptotic behavior of the position prob-
ability density of a free quantum particle propagating in M. If (ug) is bounded in
L? (M), the measures nj, are bounded in L> (R; M, (M)), where M (M) stands
for the set of positive Radon measures on M. Therefore it has at least a weak-x
accumulation point v € L (R; M4 (M)); these are sometimes called quantum
limits or defect measures.

It can be shown (see for instance [24]) that the support of v is a union of
geodesics of M. The precise structure of the set of such accumulation points de-
pends heavily on the particular dynamical properties of the geodesic flow of M.
When it is completely integrable, some results have been obtained in [24, 25] by
identifying the structure of the set of semiclassical (or Wigner) measures corre-
sponding to (e"“+uf}). These are obtained as limits of some microlocal lifts to
T*M of the densities ny, (t), known as Wigner distributions (a systematic presen-
tation is given in [15, 23, 16, 17, 4], see also Section 2 for precise definitions).?
In Section 3 we shall present a new approach to the structure result of [25] for
semiclassical measures on the flat torus T¢.

The knowledge of the structure of the set of quantum limits in M can be
used to show the failure of dispersive estimates (1.3) in the case s = 0. This is due
to the fact that whenever (1.3) holds one has nj, € LP/? ([0, 1] x M), and the same
holds for any quantum limit v. In particular, since p/2 > 1, (1.3) implies that
any quantum limit must be absolutely continuous with respect to the Riemannian
measure in M. If one is able to produce a sequence of initial data (ug) that gives
a quantum limit which has a nontrivial singular component then no dispersive
estimate may hold for e***+ in M. We shall apply this strategy to prove, in Section
4, the following result.

Theorem 1.1. Let (M, g) be a manifold with periodic geodesic flow. Then the dis-
persive estimate
HeltAzuoHLP([O,l]XM) S CHUOHLz(AI) (1.5)

fails for every p > 2.

2We refer the reader to [7, 31] for a comparison between the semiclassical measure and the
W.K.B. approaches.
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As was pointed out by the referee, the failure of the dispersive estimate in
this setting can also be obtained combining the optimality of the analogue of the
Strichartz estimates for spectral projectors proved by Sogge (see [30], Corollary
5.1.2) together with the precise spectral results for the Laplacian on manifolds
with periodic geodesic flow by Duistermaat-Guillemin [10] and Colin de Verdiére
[8]. This strategy allows to show that estimate (1.5) fails even if the L?-norm is
replaced by a Sobolev norm H® with s < §(p), where

d—1 (1 1 : 2(d+1)
S =) 2 (5‘5) if 2 <p< ==,

T 11 1 2(d+1)
d<§—5> -3 ifp> =,
denotes Sogge’s exponent.

Note that the approach we used to prove Theorem 1.1 cannot be used to
disprove the dispersive estimate in the case of the flat torus T? and 2 < p < 4 =
po (2) and s = 0, since every quantum limit is absolutely continuous with respect
to the Lebesgue measure in that case (see [25] for a proof). This suggests that an
eventual failure of the dispersive estimate in this case must be realised by a more
subtle mechanism.

The third and final aspect of the dynamics of the Schrédinger flow we want to
discuss here is related to a quantitative version of the unique continuation property
known as observability. Take T' > 0 and an open set U C M; the Schrodinger flow
etAe s said to satisfy the observability property for T and U whenever a constant
C = Cr,y > 0 exists such that

T
, 2
HuoHiz(M) SC/O /U|6”A“”uo ($)| dxdt (1.6)

for every initial datum ug € L? (M). Note that the fact that an estimate like (1.6)
holds implies that whenever two solutions to the Schrodinger equation are close to
each other in L2 ((0,T) x U)-norm they must be globally close. In particular, two
solutions that coincide in (0,7") x U must be identical. The observability property
is relevant in Control Theory [22], and Inverse Problems [18].

A sufficient condition for (1.6) to hold was found by Lebeau [20] (see also
[9]). Tt is the following.

There exists Ly > 0 such that every geodesic

of (M,g) of length smaller than L intersects U. (1.7)

However, this condition is not necessary in general, as follows from the works of
Jaffard [19] or Burq and Zworski [6]. Nevertheless, we shall show in Section 4 that
(1.7) is equivalent to (1.6) when (M, g) has periodic geodesic flow.

Theorem 1.2. Let (M, g) be a compact manifold with periodic geodesic flow. If the
observability estimate (1.6) holds for some T > 0 and some open set U C M then
U must satisfy (1.7). As a consequence, (1.6) and (1.7) are equivalent.
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The proof of this result will again be based on the high-frequency properties
of the Schrodinger flow; and in particular on the analysis of the set of semiclassical
measures on M. Note that the role of semiclassical measures in the context of
observability estimates was first noticed by Lebeau [21]. As mentioned before,
condition (1.7) is not in general necessary for (1.6) to hold. For instance, when
M = T?, the two-dimensional standard torus equipped with the flat metric, Jaffard
[19] proved the following result (see also [5, 27] for related results for eigenfunctions
of the Laplacian).

Theorem 1.3. Let (M, g) = (']T2,ﬂat). Given any T > 0 and any open set U C T2
there exist a constant C' > 0 such that the observability estimate (1.6) holds.

The original proof of this result is based on results on pseudo-periodic func-
tions due to Kahane. In Section 4 we shall give a new proof of this result which is
completely microlocal and relies on the structure result for semiclassical measures
for the Schrodinger flow on the torus presented in [25].

2. Semiclassical measures and the Schrodinger flow

Semiclassical measures are a very convenient tool in the high-frequency analysis
of a sequence (u”) bounded in L? (M). These objects are a microlocal version
of the well-known defect measures, that describe the local concentration of the
L? (M)-norm of (u”). Assume that (u”) is bounded in L? (M); then the sequence
of densities

np = |uh|2 dm
is bounded in L' (M) (here dm stands for the measure on M induced by the
Riemannian metric g). Helly’s theorem then ensures that, up to extraction of a
subsequence, (ny,) weakly converges, as h — 0T, to a finite, positive Radon measure
v € M, (M) which is usually called a defect measure for (uh) The support of v
describes the regions on which the “energy” of (uh) concentrates. For instance, if

u is supported in some local chart and given by a concentration profile:
1 T — Zo
parz? (T) 2.1)
then one has v (x) = HpHig(M) 8 (z — xg). On the other hand, if u” is oscillating,

written in a coordinate chart as:
p () eifo/me, (22)

then v (z) = |p (2)|® dm, whatever the value of &. The inability of defect measures
to distinguish between different directions of oscillation turns out to be a serious
difficulty when dealing with solutions to wave-type equations. For instance, sup-
pose M = R? equipped with the standard metric, and take uf to be of the form
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ihtA

(2.2). A direct computation gives that the solution e*“<y! of the semiclassical

Schrédinger equation issued from ul} satisfies:
; 2 ; 2
o () () = [0 @) = [ p ( — 1260)|

Therefore the densities ny, (ht) weakly converge, as h — 07, to the defect measure
ve () := |p (z — £2&)|* dx which does depend on &. In particular, the defect mea-
sure of the initial data 1o = |p|? dz does not determine uniquely that corresponding
to the evolution, since the latter depends explicitly on &p.

This motivates the introduction of an object that takes into account the
nature of the oscillations. The Wigner distribution wy, of the function u” achieves
this. Given a test function a € C2° (T*M) on the cotangent bundle of M, we
defined the action of wy, against a as:

(wp, a) = (opy, (a) uh|uh)L2(M),
where opy, (a) denotes the semiclassical pseudodifferential operator of symbol a
obtained by Weyl’s quantization rule.> When M is the Euclidean space equipped
with the standard metric, opy,(a) is defined by the formula:

Tty i(w—y)€, g, _9€
opy, (a /Rd /Rd ( h§) (y)e dy(zﬂ)

This definition extends to a manifold by applying it locally, in a coordinate chart,
and then assembling it by means of a partition of unity. This expression for wy,
defines it as an element of D’ (T* M), the set of distributions on T* M. The Wigner
distribution is actually a lift of the densities n;, to phase-space T*M for, if ¢ €
C*> (M) one has op;, (¢) = ¢, the operator defined by multiplication by ¢, and
therefore,

(wh, @) = (0u"[u?) g2 ar) = /M o

When M = R?, we may identify T*M = R} x R{. If ¢ € C2° (R?) only depends
of ¢ then op,, (¢) = ¢ (hD,) is the Fourier multiplier of symbol . Hence,

whod = [ ¢(© ?(%)%

this shows that the projection of wj, on the variable £ measures the concentration
of the L? (R%)-norm of the h-rescaled Fourier transform of u". The fact that the

limits of Wigner distributions are positive measures is non-trivial, and was proved
by Gérard [15] and Lions and Paul [23].

Theorem 2.1. Let (uh) be a bounded sequence in L?(M). Then there exists a
subsequence (which we do not relabel) and a finite positive Radon measure p €
My (T*M) such that

h—p, as h — 0" in D' (T*M).

3The books [11, 26] are clear and recent introductions to semiclassical microlocal analysis, we
refer the reader to them for background and precise definitions on pseudodifferential operators.
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In this situation we say that p is the semiclassical measure of the sequence
(u"). If in addition, (u") is h-oscillating, that is:

— 2
lim sup Z ’uh()\n)
h—0*t

VAL>R/h

then the defect measure v of (uh) is obtained by projecting its semiclassical mea-

sure p on the &-component:
| wwdg =via).
M

The additional variable allows to keep track of the directions of oscillation.

A direct computation gives that the semiclassical measure of the oscillating
sequence (2.2) is |p (z)|* dzd (€ — &), therefore keeping track of the direction of
oscillation &y. A particularly interesting example is that of a wave-packet or co-
herent state. It is defined as a sequence (uh) in L? (M), supported in local chart
that is written in coordinates as:

L LT =20\ igo/ha
Wﬂ( \/E )6 o/ (23)

for some p € C* (M). The semiclassical measure of this sequence is

lol172(ar) 8 (= 0) 6 (€ — &o)
For a more detailed account on these issues, we refer the reader to the survey
articles [4, 17], and the concise presentation of [16].
Let us now turn to the analysis of semiclassical measures for sequences of so-
lutions to the Schrédinger equation. Let (uf) be a bounded, h-oscillating sequence
in L? (M). We define the time-dependent Wigner distributions:

(wp, (t) ,a) := (opy, (a) eim‘”u0|e”A Uo)L2(M) a€CX(T*M). (2.4)

The following result was proved in [24].

— 0, as R — o0,

Theorem 2.2. With the above notations and hypotheses, the following holds. There

e:z:z'sts a subsequence, which we do not relabel, and a positive measure p €
®© (R; My (T*M)) such that:

lim /(b (wp, (t),a)dt = /RXT*MQS(t)a(x,f) e (dx, d€) dt, (2.5)

h—0t

for every ¢ € L' (R), a € C (T*M). Moreover, for all ¢ € C* (M),

tm [ o) e @] @) dmit= [ o(0)p (@) (dd)
h—0% Jrx M RxT*M (26)

and for almost every t € R, the measure i, is invariant by the geodesic flow ¢
of (M, g):

/ a (9 (x,€)) e (da,d§) = / a(x,&) pg (da,d§),  for every s € R. (2.7)
*M

*M
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Note that the convergence in (2.5) is precisely the convergence in the weak-x
topology in L (R; D’ (T*M)). One cannot expect pointwise convergence of the
distributions wy, (¢) for every t € R, since as shown in (2.7) the limit measure
becomes instantaneously invariant by the geodesic flow. However, if one considers
instead the solutions to the semiclassical Schrodinger equation, which corresponds
to taking limits of (wp, (ht)), the convergence is locally uniform in ¢, and the limiting
measure p; is computed through g by transport along the geodesic flow ¢f, see
[15, 23, 17].

3. Manifolds with completely integrable geodesic flow

In order to gain further insight on the structure of the set of semiclassical measures
obtained as a limit (2.5) we must make additional hypotheses on the dynamics of
the geodesic flow ¢¢ of the manifold under consideration. Here we shall deal with
manifolds with completely integrable geodesic flow; in particular, we shall focus on
two particular classes of geometries: manifolds with periodic geodesic flow (also
known as Zoll manifolds, see the book [1] for a comprehensive discussion on this
dynamical hypothesis) and the flat torus (which is a model case for completely
integrable geodesic flows).

In the first case we have an explicit formula for the semiclassical measure
in terms of that of the initial data ug. In [24], the following is proved.

Theorem 3.1. Let (M, g) be a manifold with periodic geodesic flow. Let (ug) be as in
Theorem 2.2; suppose that (2.5) holds and that wy, (0) converges to a semiclassical
measure po. If po ({§ = 0}) = 0 then, for a.e. t €R and a € CX° (T*M) we have:

/ a (2. €) e (de, dE) = / (a) (2, €) o (e, dE) (3.1)
* M * M

where (a) denotes the average of a along the geodesic flow:

T
@ @& = Jim £ [ atef (0.)ar

Note that, in particular, p; is constant for a.e. t € R. When (M, g) = (Td, ﬂat)
the situation is rather different, and the structure of pu; is considerably more in-
volved. In order to get some insight on the form of the limits of wy, (t) start with
noticing that Egorov’s theorem (see [11, 26]) is an identity when dealing with the
Weyl quantization rule on the torus:

e op, (a) ¢ = op, (a0 afit).

Hence, in view of (2.4), for ¢ € L' (R) and a € C° (T*T?) one has:

o ® (0.0 it = (w, 0. @})
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where

@) @09 = [ ¢@a(e+jec)a (3.2)

Let us introduce some notation. Denote by W the set whose elements are straight
lines in Z? \ {0} passing through the origin. We have a disjoint union

7' = | | wu{o}.
weWw
Given a € C2° (T*T%) we have a Fourier series decomposition:
eik-w

a(@,§) =Y akvr(x),  vp(x):= )

keZa

Now, denote by a, the orthogonal projection of a into the set of functions in
L? (’]I‘d) whose Fourier modes lie in w, i.e.,

ay =Y (k).
kEw

Taking now (3.2) into account we find that:

(au)y (@,6) = b, (:c,f, 57”) :
with

by o (x,€,0) = /Rgo(t) a, (x + tov,, £) dt,

where v, denotes a unit vector in the direction w. Therefore, testing wy, (0) against
(aw>Z amounts to performing a blow-up of wy, (0) in the direction v,,. This type
of object has been already studied in the literature (in the context of Euclidean
space) under the name of two-microlocal semiclassical measures. We refer the
reader to the works of Fermanian-Kammerer [13, 12], Fermanian-Kammerer and
Gérard [14], Miller [28], and Nier [29]. Following [25] one shows that, given w € W
there exists a positive measure p% (w,-) on

I, ={¢eR : k-£=0forkew}

taking values in the set of trace-class operators £! (L2 ('yw)) on the space of square-
summable functions defined on any geodesic 7, in the direction w such that:

lim <wh 0),b (:c,f,f.hyw)> ztr/ b(s,&, Dy) p% (w,d€)
I,

h—0*t

where b € C° (T*Td X ]R) is a functions whose non-zero Fourier modes in x cor-
responds to frequencies in w. Note that in this case,

b(fE,g,O’) :Z)(z-l/w,&a)



284 F. Macia

where b € C2° (7, x R? x R) is the restriction of b (-, £, ) to 4, For every £ € L,

the pseudodifferential operator 5(s,§,DS) is a compact operator in L?(q,). A
straightforward computation then gives:

im (w(0), (@) = [0 [ actOuk@dgm 63

h—0t

where a,, (-, £) denotes the operator of multiplication in L? (v,,) by the restriction of
ay (-, &) 1o Yw, and the trace-class operator-valued measures ;1% (w, ) are defined as
the solutions to the initial-value problem for a density-matrix Schrodinger equation
on L2 (vy,):

{ lidyily (w,€) = [~02, iy (w,€)] (3.4)

/J}R (wa 6) |t:0 = /1492 (wa 6) .

The right-hand side of (3.3) can be written as

Lo [, oo o,

where p,, is a signed measure on I,, whose projection on x is absolutely continuous
with respect to the Lebesgue measure and whose non-zero Fourier modes lie in w.
The measure pl, is obtained as the extension to T¢ x I, of the density defined on
Yo X I, by formula (3.3), see [25] (the sum in w of these two-microlocal measures
was called there the resonant semiclassical measure of (ufy)). Therefore, we recover
the main result [25].

Theorem 3.2. Let (M,g) = (']I‘d,ﬂat), suppose (ug) satisfies the hypotheses of
Theorem 2.2 and that wy, (0) — po as h — 0F. Then, for a.e. t € R we have:

pe= Y pltdr ® 1,
wew
where

o (€) = (2m)~" /

Ho (dy7 €) )
Td

and the p', are defined by the above construction. In particular, they are signed
measures concentrated on T® x I, their non-zero Fourier modes in x are in the
line w and its projection on the x-component is absolutely continuous with respect
to the Lebesgue measure. Moreover, each of the measures

po, +dr @ i1,

18 mnon-negative.
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Let us stress that the measures p!, are not determined by the semiclassical
measures of the initial data po. In [24, 25] examples of sequences (uf) and (v}))
are given having the same semiclassical measure o but such that their respective
time-dependent measures pf, differ. In fact, a sufficient condition to have p!, = 0

is that

i Do) =0

for every x € C2° (R) (see [25]).
Note also that the term ) pl, is concentrated on the set

Q:={¢eR?: ¢ k=0 for some k € Z*\ {0}}

of resonant frequencies. When the measure po of the initial data does not charge
this set then the measure p; equals dz ® ig. This is an analogue in this context of
the averaging formula (3.1).

When o ({{=0}) = 0 and d = 2, it is proved in [25] that in fact the
whole measure fRd e (-, d€) is absolutely continuous with respect to the Lebesgue
measure. This is in stark contrast with the situation on Zoll manifolds, where
the semiclassical measures p; may be singular with respect to the Riemannian
measure. This can again be interpreted as the fact that the dispersive effect is
much stronger on the torus than on manifolds with periodic geodesic flow.

4. Dispersion and observability for the Schrodinger flow
Let us now turn to the proof of the main results of this article.

Proof of Theorem 1.1. Take (z9,&y) € T*M with & # 0 and let (ug) be a wave-
packet type sequence of initial data, as defined in (2.3) with HUSLHLz(M) = 1. Then

we have that wy (0) — 6 (x —20) 6 (§,—&0) as h — 0T. The averaging formula
(3.1) in Theorem 3.1 then gives, for every a € C° (T*M):
1

lim (wh (t) ,CL> dt = / a (iEa 5) 6'\/ (dx7 df) )

h—0+ 0 * M
where 6, is the Dirac mass supported on =, the geodesic in T*M issued from
(20, &0). Identity (2.6) then gives:

Jim /0 1 /M<p(x) |10 2 dbde = /M<p(x) 5., (dz), (4.1)

h—0+
where vps stands for the projection of v onto M. Since d,, is singular with respect

to the Riemannian measure, we conclude that no dispersive estimate may hold for
p>2. 0

Proof of Theorem 1.2. Suppose that the open set U C M does not satisfy the
geometric condition (1.7). Therefore, there exists a geodesic vas in M that does not
intersect U. Let « denote the lift of v to T*M. Let (x0,&o) € v and consider the

wave-packet sequence (ug) centered at that point and satisfying Hu%” L2y = 1.
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Reasoning as in the preceding proof, we find that (4.1) holds. In particular, if
p € C°° (M) is supported in a neighborhood of U that does not intersect ya; we

have: .
li ithe k| dtde = 0.
Jim, /0 /Mso(w) |e" e ug|” dtda

Since HuSHB(M) = 1 we conclude that no constant C' > 0 exists such that estimate
(1.6) holds. O

Proof of Theorem 1.3. Before proving Jaffard’s result Theorem 1.3, we recall that
the semiclassical reduction argument in [20] (which combines a Littlewood-Payley
decomposition with a unique continuation results for eigenfunctions of the Lapla-
cian) reduces the proof of an observability estimate (1.6) for any function in L? (M)
to establishing it for strictly oscillating sequences of initial data. This, in turn, is
equivalent to establishing the following fact.

Let (ul) be a strictly h-oscillating sequence (i.e., verifying (1.4)) such that

lim / / |8yl ()| dadt = 0. (4.2)
h—0+

=0.

Then
,}i%ﬂ ||“8HL2(T2)

This equivalence is a straightforward consequence of the closed graph theo-
rem. Let € L™ (R;M. (T*T?)) denote the semiclassical measure (in the sense of
(2.5)) associated to (possibly a subsequence of) (A=
(ug) has a semiclassical measure po. Our goal is to show that, assuming (1.4)), w
can conclude that (4.2) implies that py = 0. Start with noticing that (4.2) implies
that for every ¢ € C ('11‘2) supported in U we have:

// 2) e (d, d) dit

As shown in Theorem 3.2 the measure p can be written as:

= Zpi—kdz@%
weWw

) Suppose moreover that

and p!, + dz ® Tig] 7, > 0. Moreover, the Fourier coefficients of p!, lie in w.
Since (ufy) is strictly oscillating we have 1o ({¢ = 0}) = 0. Therefore, setting
Q =, ew Lo we have

o = Z Ao 1, + 7o ae
weWw

Since all the measures yuf, := pt, + do ® fig| 1, are positive, we can write, for a.e.
t € R,
=Dyl +dr @l
weW
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in the sense of weak convergence of measures. Now, if ¢ € C (TQ) is supported in
U, the above remarks imply:

0_2/ /UXI 2) it (da d§)dt+Tuo(Q)/<p(x)dx.

weWw U

Since ¢ is arbitrary we conclude, since p is positive:

Tio (Q°) = ﬁm (T? x Q°) =0, (4.3)

and, for every t € [0,T],
pt (U x I,) = 0.

To conclude that pg = 0 it remains to show that g does not charge the set 2 of
resonant frequencies. By construction, [ I3 pt is invariant by translations along di-
rections in I,,. Therefore, u!, (U, x I,,) =0, where U, := {x + s :x € U, & € I,}.
Let u% denote a resonant Wigner measure correspondlng to (uo) as defined by
(3.3). Let v, be the geodesic in T? through the origin in the direction w. Define
mt € L1 (L2 ('yw)) as the Hermitian, positive operators that solve the density-
matrix Schrodinger equation:

ioyml, = [-0Z,ml] .,  ml|imo=p% (v, 1.). (4.4)

With our preceding notations, we have m!, = % (w, ). Let J,, := U, N+, denote
by 1, the characteristic function of J, in 7,; note that 1y, () = 1, (z - v,),
where v, is a unit vector in w. Let A1, denote the operator on L? (7,,) acting by
multiplication by 1, . Then, Theorem 3.2 shows that

s
(2m)

rm) = [k (dnde) 4 i (1)
UuxIy,

= [ tdrde) — U [ (L)~ (2m) e (L)
Uy, X1,

Therefore tr (Ay, mt) + |Us| {%(Iw) — (27T)—2tr,u% (Iw)} =0 for t € [0,T];

unique continuation for (4.4) then implies
trml, + U] [ (L) = (2m) 72 tr e (1)] =0,

for every t € R. Finally, notice that 7ig (I,) > (27) > tr u% (I,) ([25], Proposition
8). We conclude that trm!, = 0 and, consequently, pf, (T? x I,) = tr u% (I,) =
trm? = 0 as well. Therefore, we have shown that 1(T? x ) = 0, combining this
with (4.3) we conclude that pp = 0 as we wanted to prove. O
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Optimality of the Asymptotic Behavior
of the Energy for Wave Models

Michael Reissig

Abstract. In the present paper we study the behavior of different energies to
wave equations with a propagation speed which depends on a shape function
and an oscillating function. Our goal is to describe how far we are away
from a generalized energy conservation law. We shall explain by an instability
argument in which sense our results are sharp. Finally, we study possible
interactions of oscillations in coefficients and describe lower bounds for the
blow-up rate of the energy for ¢ — oco.
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1. Introduction
Let us consider the strictly hyperbolic Cauchy problem
D?u — b2 (t)D2u = 0, u(0,2) = ug(z), Diu(0, ) = ui(x) (1.1)

under the assumption 0 < by < b(t) < b;. In general one cannot expect the
conservation of wave energy. But if we assume for the oscillating behavior of b

) (1)] < Cu(1+1)7" for k = 1,2, (1.2)

then the so-called generalized energy conservation holds, that is, the condition
CoE(u;0) < E(u;t) < C1E(u;0) holds for the wave energy (see [12]). In [6] and
[7] it was shown that one can get some benefit of higher regularity of b, namely
be C™orbe C™ orbfrom a Gevrey space, if one assumes a so-called stabilization
condition. In this way the conditions (1.2) can be weakened for k = 1,2. In [2] one
can find an example of a coefficient b = b(t) which oscillating behavior does not
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allow boundedness of the wave energy for t — oo. This hints to a blow-up behavior
of the energy for t — oco. Finally, the paper [9] is devoted to the Cauchy problem

Du— N2 ()b*(t)D2u = 0, u(0,z) = ug(z), Deu(0,x) = uy () (1.3)

with an increasing shape function A = A\(t). By using C™ regularity of the coeffi-
cient and the idea of stabilization the goal is to prove the two-sided estimate

C() S ﬁE)\(U;t) S Cl, (14)

where the constants Cy and C7 depend on the data and where
1
Ea(ut) = 5 /()\Q(t)|Dwu(t7x)|2 + Deuft, ) ). (1.5)
R

The goals of the paper are the following;:

e We are interested in the blow-up behavior of energies to solutions to (1.3),
we shall describe the blow-up rate and make a proposal to prove optimality
of the blow-up rate.

e We will explain the interaction of oscillations between coefficients a = a(t)
and b = b(t) on the blow-up rate of the energy by the aid of the Cauchy
problem

D?u+ 2X\(t)a(t) D2 ,u — N2 ()b*(t) D2u = 0, u(0,2) = ug(x), Dsu(0,z) = up(z).

The content of the paper is as follows: In Sections 2 and 3 we derive upper bounds
for the growth of different energies. In Section 2 we assume data (ug,u1) € H(R)x
L?*(R). In Section 3 we assume data (ug,u1) € H'(R) x L?*(R). The necessary
steps for a hyperbolic WKB analysis in the phase space are explained. In Section
4 we study the optimality of our approach. First we discuss in which sense do we
understand optimality. All is reduced to the estimate of the fundamental solution in
the phase space. An instability argument and an effective estimate for the elastic
energy yield optimality. The considerations in Section 4 base on [5]. Finally, in
Section 5 we explain possible results for the interaction of oscillations. Here, the
description of the interplay between Ljapunov and energy function is the main
tool. The considerations in Section 5 generalize those ones from [§].

2. Asymptotic behavior of the energy

We are interested in the Cauchy problem
D?u — N2 (t)b*(t)D?u = 0, u(0,x) = uo(x), Dyu(0,z) = uy (). (2.1)

For the shape function A = A(t) we assume the following conditions:
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(A1)  A0) >0, N(t) > 0 for t € [0,00) together with the estimates

A2(t) A(t)\*

"(t) ~ k < 7 =

N(t) Ok |IDEA(E)| < A(t)( (t)) for k =2, (2.2)
t+ —S(t) is strict increasing with a positive C' and for large t. (2.3)

Here A(t) =1+ fo s)ds is a primitive of \(t).
For the oscillating function b = b(t) we assume the following conditions:
(A2) 0<bg<b(t) <by forte[0,00) together with the estimates

\DFb(t)| < (%u(t))k for k=1,2. (2.4)
Here v = v(t), t € [0,00), is a positive and monotonously increasing continuous
function which measures the oscillating behavior of b(¢). In this paper we assume

(A3) v(t) SlogA(t) for large t, that is, we exclude very fast oscillations. More-
over, v = v(t) = f(A(¢)). Here the function f = f(r) fulfils |f/(r)] < %
on an interval [rg, 00).

Theorem 2.1. Assume the conditions (A1) to (A3). Then the solution to (2.1) for
data up € H*(R) and uy € L*(R) satisfies

Ex(uit) < Coexp(Cru(®)A®) (ol 3 + lur|22). (2.5)
The positive constants Cy and Cy are independent of the data and of t € [0, 00).
Proof. The proof bases on a precise WKB-analysis for the solutions to
D2 — A2(OBA(1)E% = 0, 0(0,€) = ito(€), Dyo(0,€) = i (€). (2.6)

Definition 2.2. We divide the extended phase space {(¢,&) € [0,00) x R¢} into the
pseudo-differential zone

Zpa(N) ={(t,€) : AQR)[¢] < N},
the middle zone
Zmia(N) = {(t,£) : N < A@®)[¢] < Nv(t)},
and the hyperbolic zone
Znyp(N) = {(t,€) : Nv(t) < A(t)IE]}-

We define the function t(l = t(l (I€]) as the solution of A(¢)[(] = N and the

function t?) = t?)(|§|) as the solution of A(t)|¢| = Nv(t). Due to (A3) the second
function is well defined.
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Lemma 2.3. Let us assume (Al) and (A2). Then for all t € [O,tél)] the following
estimates hold for the solution to (2.6):

A€ S 100091+ S D06,
D] S 310091+ Drof0. )

Proof. Introducing V (¢, €) := (A(t)|¢|v, Dywv)T we transform (2.6) into the following
system

We are interested to estimate for ¢ € [O,tg)] the entries Ex = Ep(t,s,€), k,1
1, 2, of the fundamental solution to D; — A, that is, the solution to

E(t,s,&) = A(t,§)E(t, s,8), E(s,s,&) =1.

We obtain the following system of integral equations:

En(t.0,6) = % G / B (5,0, )ds
Egl(t 0 f —Z|f|/ Ell(s 0 f)

Ea(t,0,€) = il¢[A(t) / Ea(s,0,6)ds

Ea(1,0,€) —1+z|£|/ () E1a(s,0,€)ds

Setting the equation for E7; into the equation for Fs; we have

B (£,0,€) = % /0 () (s)ds — €] /0 t ( /0 t N2(8)02 (s)ds) Ex (0,0, €)df

Using the monotonicity of A and the definition of the pseudo-differential zone the
last integral equation for F5; allows the estimate

|E21(¢,0,8) < Col§[A[)A(E) < CoA(?).
Using this estimate in the integral equation for Ej; implies
[E11(t,0,8)] < CoA(t).

The integral equation for Foo gives the estimate |Faa(t,0,€)| < Cp. Using this
estimate in the integral equation for F1o brings |F12(t,0, )| < CotA(t)[€|. Summa-
rizing we have shown, here we need again the definition of the pseudo-differential
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zone,
A@)IElv(t, O < A®)IE](v(0,€)] + £ Dew(0, £)1)
S 2091+ T DR .6
[Deo(t, €)| < A@)[EN[0(0, )] + [Drv(0, )
A( )1 ;
< R 1091+ 1D (0.0
This completes the proof. 0

In the following we use C, Cy and C; as universal constants.

Lemma 2.4. Let us assume (Al) to (A3). Then for all t € [tél),tf)] the following
estimate holds for the solution to (2.6):

At W
AWIElo(t,€)] + | Dio(t, )] S exp<clu<t>>m(| 0(0,6)] + ¢V 1D (0,€)]).
¢

Proof. Introducing V (¢, €) := (A(t)|¢|v, Dyv)T we transform (2.6) into the following

system
Dy (1)
D,V = AV = A AN
AB @) 0
In the following statement we give a representation of the fundamental solution to
the last system.

Lemma 2.5. The solution to the system

E(t,s,§) = At §E®R,s,§), E(s,s,8) =1,

is given by the matrizant representation

Bse) =145 [ Aoy [ At [ A, €ty - di
;/ 1/5 ) / o)ty - diy

From Lemma 2.5 we conclude the following estimate for the fundamental solution:
t
B0 < exp ([ 140, ©)lds) for it € (1.4
t
g

The monotonic behavior of A and (A2) imply [|A(t, )| < A)|¢] + 2. Conse-

A
W )

quently, we have for t € [tf the estimate

At
1B, 1, 6)] < exp (01 (1og ﬁ + Nu(t))) < exp (Chu(t)).

Finally, V'(¢,¢) = E(t, t(l OV (t(l ¢) and Lemma 2.3 yield the desired estimates.
O
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Remark 2.6. In the pseudo-differential zone and in the middle zone we have to take
into consideration the properties of the shape function (besides 0 < by < b(t) <
b1) for the derivation of energy estimates. The middle zone is, in general, larger
than the pseudo-differential zone. So, through the zone definition the influence
of the function describing the oscillations is given. Moreover, we learn that the
assumption uy € H' is important. If we would only assume ug € H!, then the
energy inequality becomes worse (see Section 3).

Lemma 2.7. Let us assume (A1) to (A3). Then for all t € [t?),oo) the following
estimate holds for the solution to (2.6) :

A@)[Ellv(t, O] + [Div(t, €)]
Alt)

JAE)

Proof. Introducing V (t,£) := (A(t)b(t)|€|v, Dyv)T we transform (2.6) into the fol-
lowing system

Dt Db(t
DV - 0 MOy _ [ FHt 5 0 )y
A(t) 0 0

S exp(Cry(t)) (A el &)1 + 1D (e, ©)1).

b(t)[¢] 0

1 1
-1 1
the first step of diagonalization

DBl 0 DA DY (1 1Y,
D%-( 0 A()b(1) €] >V0_§< o) )(1 1 )VO—O'

To understand the philosophy of the second step of diagonalization we use the
following symbol classes in the hyperbolic zone.

Choosing M1 = ) and V = M~'Vj we get the following system after

Definition 2.8. We define the following classes of symbols in the hyperbolic zone
Znyp(N):
Sna{mi,ma,ms} = {a(t, €) € C'(Znyp(N)) -
At)v(t) >m3+k
A(t)
for all k¥ <[ and for all multi-indices a}.

|DEDga(t, €)] < Cralel™ ey

Defining the matrices
—A(t)b(t)|¢] 0 1 /DA(t)  Dib(t) 1 1
Dy = By = ——
’ ( 0 Ab)El )0 2 ( NORRO ) 11 )
then after the first step of diagonalization we obtain D,V — Do Vo + BoVy = 0 with

Dy € Sy2{1,1,0} and By € Sy.1{0,0,1}. During the second step of diagonaliza-
tion we need the following rules of the classes of symbols:
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o Sy{mi,ma,ms} C Sni{m1 +k,ma+ k,ms — k} for k> 0;

e if ¢ € SN,l{ml,mg,mg} and b € SN,l{kl,kQ,k:g}, then ab € SNJ{ml +
ki,mo + ko,ms + k3};

e if a € Sy {m1,ma,mz}, then DFa € Sy ;_r{mi,ma,ms + k} for all k <1,
and Dga € Sn.{m1 — |al,ma, mg} for all multi-indices «;

o if a(t,&) € Sno{—1,—1,2}, then |ftt(z> ,€)ds| < Cv t(2)) for all (¢,€) €

Znyp(IN). To prove this we need (A3), the decreasing behavior of X A(t) together
with the definition of the hyperbolic zone.
Now let us explain the second step of diagonalization. Here we follow the procedure
of the asymptotic theory of ordinary differential equations. Namely, we look for
a matrix Nj(t,&) having the representation Ni(t,&) := I + N (¢, €). To define
N® we need BO .= By, FO .= diagB(O) and the characteristic roots 7, :=
(—=D)FX()b(1)|€|, k = 1,2. Then we define
0
N .= B() qF#T, N(1 =0
qr Ty — )
BW .= (D, — DO + Bo)(I + NW) — (I + NOY(D; — Dy + FO).

According to the properties of symbols we have N(1) Sni{-1,—1,1} and FO) ¢
Sn.1{0,0,1}. For B we obtain the relation
BW = By + [NW Do} — FO + D,NO 4 BypND - NO RO,

The construction principle implies that the sum of the first three terms vanishes,
hence BMY) e Sno{—1,—1,2}. Finally, let us define

Ry = N7 ((Dy — Do + Bo)(I + NW) — (I + NWY(D; — Do + F)).
But this means R = Nl_lB(l) € Sn,0{—1,—1,2}. From the construction we have
N® € Sy {~1,-1,1}. Due to the deﬁnition of symbols this means |Nq(ﬁ)| < %

Consequently, for N large enough || N1 —I|| < % in Zyy, (V) implies the invertibility
of N1

Setting Vy(t, &) =: Ni(t,&)Vi(t, &) we obtain from the above construction the
system D;V; — DoVq + diagBoV1 + R1Vp = 0. We shall study this system for
t e [t?),oo). The goal is to estimate the fundamental solution E = E(t,tf),f).
We find the fundamental solution in the form E(t, s,§) = Fa(t, s,&)Q(t, s,£). Here
E5 is the fundamental solution to Dy — Dy 4 diagBy, that is,

ES(t,5,6) = exp —zf A(T)b(T)|€|dT —|—ft 82>\/\((TT))d ft %blz(:))d )
ES(t,5,6) = exp Zf AT |§|d7’—|—f75 62/\/\((:)d +ft 6217127- )
E{M(t,s,6) = ESV(t, 5,5) = 0.
Then @ satisfies
DiQ + Ex(s, t,§)Ru(t,§) Ea(t, 5,§)Q = 0, Q(s,s,8) = I.
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From the representation of E5 we conclude

||E2(57 t, g)Rl (t7 f)E2 (tv 5, g)” 5 HRl (t7 f)”

The matrizant representation yields

IQ(t. 5.0 < exp ([ I17a(r.€)dr) < exp(Car(s))

Summarizing the following estimate holds for the fundamental solution:

(D)
At)

|B@t )] < Coexp (Crt?))

Taking account of
%(t7£):E(t7t(2)7£) (t(2)7§)7V0:N1V17V:M_1‘/07
we get, finally,

[V (t,€)] < Coexp cut<2>

| t

At )
At

These inequalities give the estimates we wanted to prove.

v, e).

< Cpexp (Cl u(t))

O

Remark 2.9. In the hyperbolic zone we have to take account of the oscillating
behavior of the coefficient, too. For the desired estimate the assumption ug € H'!

is of importance.

From Lemmas 2.3, 2.4 and 2.7 we immediately derive the following statement:

Corollary 2.10. Let us assume (A1) to (A3). Then the solution to (2.6) satisfies

the following estimates:
AWl vt )] + [Dro 2, 6)|
< Go(§100. 01+ HIDw0.9)). e DA)
Dl [o(t. )] + [Dro(t,6)]
SC’oeXp(ClV(t)))\(t—%)))O 0,91+t 1Dw(0,0)]), t € (1,1,
At)

)‘(t>|§| ‘U(t7 §)| + |Dtv(t7 §>|

(1)
A(t) A( t
< Gy exp(Caw(t) L (|v<o,s>|+t§”|Dw(o,§>|) tel

\//\ £y A

(2
te,

00).
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The desired statement follows immediately from Corollary 2.10 together with

the estimate A
tA(E
m < CV ().

Here we use the assumptions (2.2) and (2.3) from (A1). This completes the proof
of Theorem 2.1. O

Remark 2.11. The statement of Theorem 2.1 was proved in the case v(t) = 0, that
is, for very slow oscillations in [9]. There one can also find an estimate of the energy
to below, both together yield a result about generalized energy conservation.

3. Parameter dependent Cauchy problems

The goal of this section is to derive another energy estimate for a parameter
dependent family of Cauchy problems. Now we assume only ug € H' and u; € L2
We consider with tg € [0,00) the family of Cauchy problems

DZu — N2 (1)b*(t)D2u = 0, u(to,z) = uo(z), Diu(te, ) = ui(z). (3.1)
Defining Ay, (t) := At + o), v, (t) := v(t + t9) and the energy
1
Briuit)i= 5 [ (A8 @IDsu(t. o) + Dot 2) ) da, (3.2)
R

our goal is to prove the following statement.

Theorem 3.1. Assume the conditions (Al) to (A3). Then the solution to (3.1) for
data up € H*(R) and uy € L*(R) satisfies
A (1)
Ex i, (ust) < Coexp(Criy, (t)))\Q—(O)E)"tD (u;0). (3.3)
to

The positive constants Cy and Cy are independent of the data and of tg,t € [0, 00).
Proof. The proof follows the lines of the proof to Theorem 2.1. Instead of (3.1) we
study

Diu— X, (t)by, (t)D2u =0, u(0,z) = uo(z), Dyu(0,z) = ui(z). (3.4)
We define two zones
Zpa(N) :=A{(t,€) € [0,00) x R : Ay, (1) [¢] < Nwyo ()},
Znyp(N) :={(t,€) € [0,00) x Rz Ay, (1) [€] = Nwio (1)},
where Ay (t) := 1+ fg Aty (s)ds and N is a positive large constant.

In the pseudo-differential zone Z,q(N) we define the micro-energy V'(t,¢) :=
(Ao (0)[€|v, Dev)T and transform

Div— X\, ()b, ()&% = 0
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to the following system of first order:

_ 0 )‘to (t)|£| Dt)‘to (t> 10
mv_<AM@%@M|O)V+_EET<o o)V

Then we can follow the proof to Lemma 2.4 and obtain the estimate

V(9] < Cox g e Cuviy )V (0.6). (35)

In the hyperbolic zone Zy,,(N) we carry out again a diagonalization procedure
consisting of two steps. Defining the micro-energy V (¢,€) := (g, (t)by, (t)|&]v, Dyv) T
we obtain the following system of first order:

_ (0 A®bi B)IE] DAy (Dbio () (10
D= ( At (0)bey ()]0 )V+ 2 ()b (1) ( 00 )V'

Then we can follow the proof of Lemma 2.7. There are no new essential difficulties,
if we take into consideration that A(t + tp) > As (t) and the assumption (A2) is
satisfied for by, (¢) with constants which are independent of #y. In the hyperbolic
zone Zyyp(N) we obtain the estimate

)‘to (t>
/\to (tﬁ)

where the constants Cp and C; are independent of ¢y and t¢(tg) is defined by
Ay (te)|€] = Nuv(te). From (3.5) and (3.6) we conclude

Ao () [[[0(E, €)] + [ Div(t, )]

[V (#, 6 < Coexp(Cruy, (1)) [V (te, O, (3.6)

Ao (t
< Coexp(Cuy (0) 3225 (M OIEI0, )]+ 1D0(0,6))
0
with constants Cj and Cy which are independent of ¢y € [0, 00). The last inequality
implies the statement which we wanted to prove. 0

4. In which sense do we have optimality?

In this section we want to discuss the question if the energy estimate from Theorem
3.1 is optimal. Here we follow the discussion from [5]. First we have to develop a
strategy which yields an understanding of optimality. For this reason we use the
estimate of the elastic energy from Theorem 3.1.

Corollary 4.1. Assume the conditions (A1) to (A3). Then the solution to (3.1) for
data up € H*(R) and uy = 0 satisfies

[ D2ut, )|[2 < Coexp(Crw, ()| Daulto, )| L2 (4.1)

The positive constants Cy and Cy are independent of the data and of tg,t € [0, 00).
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Instead of (3.1) let us consider the family of Cauchy problems
D?u — N2 ()b (t)D2u = 0, u(to, x) = ug.x (), Dyu(to,z) = 0. (4.2)
Our goal is to apply an instability argument.
Theorem 4.2. Let us consider the family of Cauchy problems (4.2). Let b = b(t)
be a non-constant, 1-periodic, positive and smooth function which is constant in a
neighborhood of t = 0. Then there exist a function X\ which satisfies (A1), a family
of coefficients {by(t)}r which satisfies (A2) with constants Cy and Cy which are
independent of k and with a function v = v(t) = f(A(t)) satisfying (A3), and,
finally, a family of data {uox} € H*(R) which are prescribed for t = tl(:) such that
the following estimate for the elastic energy holds:
|Dau(ty?, )| = Coexp(Crw(t) [ Dauty ) 1o

Here {t,(gl)}k and {t,(f)}k are two sequences which tend to infinity. The constants
Coy and Cy are independent of k.
Proof. The proof generalizes ideas from [3]. We divide it into several steps.
Step 1: Sequences of parameters and intervals
We use sequences of parameters
(C1)  {tu}r, {th}r, {ti}x and {dx}x tending to oo,
(C2)  {hi}r and {pg}r with the property hipr — oo for k — oc.
Finally we need three sequences of intervals
o {Ii}ti, {I;}x and {I}/}x, which are defined as follows:
L= [- S0+ 2] =4 -S4+ 5.

I = {t;’ %’“ tk—i—p;}, =ty — pr-

The intervals Iy, I}, I;/ should belong to [0, 00). For this reason we assume
(C3) pr< %tk for k — oo.

t% =t + Pk,

Step 2: Construction of a family of coefficients
We choose a monotonous increasing function p € C*°(R) with

0, re(—o0,—3]
w={ L0

and define the family of coefficients {ay = ay(¢)}x with ar, = A\?(¢)b3(t) as follows:

A2(1), te [0,00)\ (I} UL ULY);
5kb2(hk(t — tk)) t e I;

0= 0 5)) (). s
5:b(0)24 (t tk)+A2()(1—u(tp§5)), tell.

Here b = b(t) is a non-constant, 1-periodic, smooth and positive function which is
constant in a small neighborhood of ¢ = 0. To guarantee that the coefficients are
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in C?(R), that means in particular, that they are C? if we transfer from I, to I,
and I}/ we assume

h
(C4) kTp’“ eN.

Step 3: Choice of parameters

We choose the sequences {py }r, {0k i and {hy} as follows:
Alte) EAA(Z“:) w(t)],

here € > 0 is small. Then the conditions (C1), (C2) and (C4) are satisfied if {tx}

tends to infinity. The condition (C3) is satisfied if we assume

A(tr)

Alty)

, O = )\Q(tk), hp =2

pr=¢

(C5) = O(ty) for k — oo.

Step 4: Estimates for by
To explain corresponding properties to {bx }x we assume
(Ce) do < inf Lkz < sup Lkz
k /\(tk + §pk) k /\(tk + §pk)
with positive constants dy and d; .
Condition (C6) implies

0<byp < inf bp(t) < sup br(t) < b < oo,
tG[0,00) tG[0,00)

<d

where the constants by and b; are independent of k. It remains to prove the fol-
lowing inequalities on the set I;, U I} U I}
A(t) At) 2
b (1)) < Co L y(t), |bl(t)] < (—t)
|k( >|— OA(t)U( )7 |k( )|—CO A(t)y() ’
where the constants Cy are independent of k.

We have to study by, = bx(t) on the interval [ty — 3 pk, tx + 3 px). The relation

% ~ % follows from (2.2), \/8; ~ A(tx) gives the choice of parameters. From

(C6) it follows A(t) ~ A(tx) on [tk — 2pk, tr + 2pi]. Now we show A(t) ~ A(ty) on
the interval [t, t; + 3px]. We have to prove this equivalence only for t = tj, + 3py.
On the one hand A(t;) < A(t), on the other hand we have with (C6)

A(t):/ot)\(s)ds+1: " A)ds + [ A)ds 1

0 ty

-

(tx
Alty)
Finally, we show v(t;) ~ v(t) on the interval [t;, —3 pk, tx]. To prove this equivalence
we assume

~—

S A + A1) g0 S M)+ M) i S Alte).

)\(t) A(tk
(©7) A(t) A(tx)

~—

< C forall te [ty — %pk,tk].

>~
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The monotonicity of v implies v(¢) < v(tx). The relation v(t;) ~ v(t) we obtain
from the assumption v(t) = f(A(t)) with | f/(r)| < C'L. Hence, v/(t) = f (A(E)A(t)
gives [/ (t)| < Cig) It remains to prove v(ty) ~ v(t) only for t = tp — 3pr. We

lv(te)| < |U(tk — épk)| + ’V(tk — %pk) — V(tk)|
< Jw (i~ 3o+ [V (B G on) |

Together with (C7) we have

<C.

Consequently, v(t,) < vty — 2pr), v(te) S v(t) on [ty — 2pk,tx], respectively.
We did not prove A(t) ~ A(t) on the interval [ty — 3px, tx] and v(tx) ~ v(t) on
[ty tr + %pk]. On these intervals we use the monotonic behavior of the functions
v and 1. Summarizing we estimate as follows:

Atr) A1) ()
0" S 1) S Fv®

if we use the equivalences and the monotonic behavior.

Now we are able to estimate the derivatives of by. From

b (t) = \/ kb(h(t +hk \/ Sb’ (hi(t
the above estimates and the choice of parameters 1mp1y

Altk)
A(tr)

1b},(£)] < Co (A((i’;; + j;((?;))u(tk)) < Co%u(t) on I

with a constant Cy which is independent of k. For the second derivative we obtain

At) At) V2 AW )
7 < 2 <
bl (8)] < Co (A(t)hk + hk> <Gy ((A(t)) V(t) + (A(t)z/(t))
A )

< 7

~ CO(A(t) l/(t)) on Ik,
where Cj is independent of k. On the other both intervals I;, and I}/ we proceed
in a similar way. As a conclusion we obtain on the set I, U I;, U I}/

(1) < oo%ua), (1) < co(%u@))?

where the constant Cj is independent of k.

|07 (1)] < Co (R (t — tr))] + i |6 (e (t — tr))],
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Step 5: Choice of data and estimates

Let x = x(r) € [0,1] be from C§°(R), where y = 1 for |r| < 1 and x = 0 for
|r| > 2. We choose for large k the following data:

- . hk xr _
ug k(x) = exp (z\/—a_kxo)((m), upk(x) =0 for all z € R,

where

za:%%§~A@mwmr%

here ¢ will be chosen later. The elastic energy of the data wugj is estimated as
follows:

2 hy 1 2 5
. 9 < - .
HaIuO,k( )HL (R) = CO( /_§k + Q(tk)Pk> v (tk)Pk

<y 2 tk)Pk.

(\/— A(tk)lz/( ))2” (
) it holds

%)u(tk)\/za_k.

Taking account of m = o(j—g_k

900,012 @) < Co

Step 6: Cauchy problems on Iy,
We study the following Cauchy problems on Ij:
gy — Opb? (hi(t — t))tge = 0, u(ty,x) = uo,kx (), u(ty,x) =0.

Later we are interested in the unique solution ur = wug(tx + %’“,m) on the set
{]z] < Px}. The solution on this set will be influenced by the data on the set
{lz] < P, + p’“‘Q/E}. From pi/8; = O(A(ty)) and P, = A(tg)(v(tr)) ™! we know
that we need the knowledge about the data on the set {|z| < O(v(tx)Px)}. On
this set the initial data wugj has the representation ug ,(r) = exp (zj—g—kmf) The

change of variables s = hy(t — t1), v(s,z) := u(t,x) transfers the above Cauchy
problems into

Ok
hQ

h h
b2( >’wa =0, U(O,;L') = u07’€(x>7 US(Ov"L‘) =0, se [_ k2pk’ kakL

/USS

where we assume for the data w ;, the representation ug (x) = exp (

\/—k §) Then
there exists a uniquely determined solution uy = wu(s,z) in the form ug(s,z) =
uo,k(x)w(s), where w = w(s) solves the Cauchy problem

h h
w” () 4+ €202 (s)w(s) = 0, w(0) =1, w'(0) =0, s € [_ kTpk’ ’“Tpk}
Step 7: A lemma from Floquet theory

To derive an estimate for uy = ug(tx + &, ) on the set {|x| < P} we apply the
following lemma.
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Lemma 4.3. Let w = w(t) be a solution to
wi + E20*(Hw =0, w(0) =1, w(0) = 0.

Here &2 is from an instability interval for the function b = b(t) which we suppose
to be non-constant, 1-periodic, positive and smooth. Then the solution w = w(t)
satisfies the asymptotic relation |w(M)| ~ |po|™ with |po| > 1 for all sufficiently
large M € N.

The statement of Lemma 4.3 follows from the following basic lemma of Flo-
quet theory.

Lemma 4.4. ([4], [11]) Let the coefficient b = b(t) be a non-constant, 1-periodic,
positive and smooth function. Then there exists a positive \g := &2 such that the
fundamental matric X = X (t,t9) to the system

X = ( (1) _Aog(t)Q >X, X (to, to) = ( (1) (1) )

has the following property:
The matriz X (1,0) has the eigenvalues po and pg = with || > 1.

The application of Lemma 4.3 yields for {|z| < Py} after backward transfor-
mation

ug (tk + %,x) = exp (z\l/l—g_km@w(%), ug(tg, ©) = exp <i5—§_kx§)w(0),
with
)
Step 8: Verification

We choose tl(:) =ty and tl(f) =t + 5. The two sequences {t,(:)}k and {t,(f)}k tend
to infinity. It holds the estimate

||8 Uk tk )

hi
||L2(R) (| Oz tk ) HLZ({\wKPk}) = 0(\/—5—1) P

This estimate is derived as in Step 5. Moreover, we know from Step 5
hi Y
< C()( ) t Py.
5PV
Setting a = log |uo| > 0, o] > 1 and from hgﬂ ~ u(t,(:)) it follows

|,u0|kahk ~ exp (a u(t,&l))).

Combining both estimates we conclude

> Cyexp (C’lu t(l) )H@ ug( t;c , |

Hamuk(t](cl)v ! HLz(R)

[CRTCS

’.)HLZ(R |L2(R

The constants Cy and C are independent of k. This completes the proof to The-
orem 4.2. O
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4.1. How to interpret optimality?

We choose the sequences {t,(:)}k := {tr}r and {t,(f)}k = {tp + & }1. We consider
the Cauchy problem (4.2) with u; = 0. Then from Corollary 4.1 and from Theorem
4.2 we conclude the estimates

||8$’U,k(t§€2), .)HLQ(R) < Cpexp (Cll/(2tk -+ %)) Hamuk(tg), ')||L2(R)7

0t )l 2y > Coexp (Cav(te) 10wty )l 2wy
If we assume the condition
(C8) v(t) ~ v (3t) for large t,

then we obtain the following statement after using the condition (C3) and the
assumptions for v.

Corollary 4.5. The estimate of the elastic energy from Corollary 4.1 is sharp under
the assumption (C8).

4.2. Examples

Let us finally give some examples which satisfy the conditions from Theorem 4.2
and the condition v(t) ~ v(3t) for all large ¢.

Ezample. (potential growth of \)
Let us choose A(£) = (1 + )}, 1 > 0, and v(t) = log™ ¢, n > 1, for large t. Here
log™ means the n times application of log. Then A and v satisfy (A1) and (A3).
In this case we choose t;, := 2F, pp := 273§ := 2% and hy, = 247 F[v(2¥)].
Here [v(2")] is the integer part of v(2¥). There are no difficulties to show that the
conditions (C1) to (C7) are satisfied. To show (C8) we use the induction principle
and derive
log!™(3t)
m —= 2

=1foralln > 0.
t—oo log["}t

Ezample. (exponential growth of \)

Let us choose A(t) = expt and v(t) = log!™ expt, n > 1, for large t. Then A and v
satisfy (A1) and (A3). In this case we choose tj := k, p := 1, di := exp(2k) and
hy, := 2[v(2%)]. There are no difficulties to show that the conditions (C1) to (C7)
are satisfied. To show (C8) we use the argument from the previous example.

Ezample. (super-exponential growth of \)

Let us choose A(t) = expl™t, m > 2, and v(t) = log!™ expl™ ¢ for large ¢. Here
exp!”™ means the m times application of exp. Then A and v satisfy (A1) and (A3).
In this case we choose t; := k and pg, dp and hy with e = 1 as it is proposed
in Step 3 of the proof to Theorem 4.2. There are no difficulties to show that the
conditions (C1) to (C5) are satisfied. The condition (C5) is even better, namely,
[;E;’j; = o(ty) for k — oo. To show (C8) we use the assumption n > m and apply
the argument from the previous examples. It remains to discuss the conditions
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(C6) and (CT7). These conditions follow from the equivalences A(t) ~ A(t;) and
A(t) ~ A(ty) on the interval [ty, ty 4 5=]. Here we use

1
explm=H(ty,) explm=2l(ty) - - - expl? (t1,) explt (tx)”

1 P_k> _ [H]( ”—k) 1) 1-1) (%)
exp (tk—i— 5 exp expkexp? ) <exp"(k)exp ()

Py =

_ 1
< expl!l (k) expl—1] (exp[l—11(1)>

~ expll(k) = expll(t},) for I € N and I < m.

5. Interaction of oscillations
In this section we study instead of (2.1) the Cauchy problem

{ D2u A4 2X\(t)b(t) D2 u — N2(t)a® (t) D2u = 0,

u(0,z) = uo(x), Diu(0,z) = ui(x). (5-1)

The oscillating functions a = a(t) and b = b(t) satisfy the assumption

(Ad) O0<ag<a(t) <a,0<by <bt) <b fort € [0,00) together with the
estimates

\DEFa(t)| + [DFb(t)| < (%u(t))k for k =1,2. (5.2)
This condition implies the strict hyperbolicity of (5.1). Moreover, the characteristic
roots to the strict hyperbolic operators from (2.1) and (5.1) have the same prop-
erties, that is, the influence of the shape function and the oscillating functions on
the characteristic roots is the same. Nevertheless, there is a big difference coming
from interactions of the oscillating functions a(t) and b(t). To explain this differ-
ence is the goal of this section. For this reason we are interested in the following
two cases:

Case 1: The shape function A(t) = (14t), I > 0. The function v(t) = log" ™ A(t),
n € N, for large ¢. Both functions satisfy (A1) and (A3).

Then from the proof of Theorem 2.1 we conclude the following statement for
the fundamental solution F = E(t,s,£) to the system (which is related to (2.6)
and the estimate of its fundamental solution gives energy estimates to (2.1))

St AWl
DtV == A(t) V
( ABa* (D)l 0

Corollary 5.1. Under the assumptions (Al) to (A3) it holds
IE(#,0,8)] < CoA(t) exp(Crv(2)).




308 M. Reissig

If we assume (A4), then possible interactions of oscillations may lead to the
following result for the fundamental solution E = E(t, s,£) to the system

Lo OIS
b= ( MDDl A0 ) "
This system is related to
Div + 2X(1)b(t)¢Dyw — N2 (t)a?(1)E*v = 0,
{ v(0,€) = to(§), D (0,8) = w1(§),

and estimates for the fundamental solution explain a possible behavior of the
energy of solutions to (5.1).

(5.3)

Theorem 5.2. There exist coefficients a(t) and b(t) satisfying (A4) and a sequence
{t;}; which tends to infinity such that

|E(t;,0,8)|| = Coexp (Crlog A(t;)v(t;)) for all j > jo(€).

Case 2: The shape function A(t) = A’(t) with A(t) = exp!™ ¢. The function v(t) =
(log A(t))", v € [0, 1], for large ¢t. Both functions satisfy (A1) and (A3).

Similar to Corollary 5.1 we have the following statement:

Corollary 5.3. Under the assumptions (A1) to (A3) it holds for the fundamental
solution E = E(t,s,€) to the system

St AWl
V= 0
v <A<t>25<t>|s| o )"

the estimate
IE(t,0,€)| < Cor(t) exp (C1(log A()), 7 € [0, 1], for large t.
On the other hand we are able to show the following result:

Theorem 5.4. There exist coefficients a(t) and b(t) satisfying (A4) and a sequence
{t;}; which tends to infinity such that

1E(t;,0,€)] > Coexp (Ci(log A(t;))" ) for all j > jo(€).
5.1. Proof of Theorem 5.2
We divide the proof into several steps.

Step 1: Consideration in the pseudo-differential zone

Let us devote to (5.3). In the pseudo-differential zone Z,q(N) = {(¢,€) € [0, 00) X
R : A(t)|¢] < Nv(t)} we define the micro-energy V (¢, &) := (A(t)|¢|v, Dyv)T. Then
following the proof to Lemma 2.5 we get

|E(t,0,8)|| < Coexp(Nv(t))A(t) for all t € [0, te]. (5.4)



Optimality of Energy Behavior 309

Step 2: Diagonalization and elliptic transformation

Now we explain the WKB analysis in the hyperbolic zone Zyy,(N) = {(¢,€) €
[0,00) x R: A(t)[¢| > Nv(t)}. First we use the transformation

w(t, &) := exp <z§ /t A(s)b(s)ds) v(t, ).
0
Then the equation from (5.3) is transformed to
Diw — N (t)(b°(t) + a®(1))&w — Dy(A(t)b(t))éw = 0.
Setting ¢2(t) := b%(t) + a?(t) we define the micro-energy
W(t, &) == (A\(t)c(t)éw, Dyw)T.

Then we obtain
Dy (A(t)e(t))
0 meg) (—mﬁr-o
DWW = ( W+ b/ w.
A(t)e(t)€ 0 W 0
We apply two steps of the diagonalization procedure which was introduced in the
proof to Lemma 2.7. After the first step of diagonalization we have
1 0 Dy(A(t)e®) (1 0
DWW, = A(t)e(t Wi+ ———— W
=g (O Jwis ZEOGOL (L0 Y,
L1 ( D (A(t)b(1)) D (A(t)(c(t) + b(2))) )W1~
2A(t)e(t) \ De(A(t)(c(t) = b(t))) —Dy(A(£)b(t))
Introducing 74 (¢,&) = £A(t)c(t)E + % the last system can be written in
the following form: D;W; — Dy(t,§)W71 — B(t)W; = 0 with the matrices

DW£%=(u%® 1@0)’

B(t) = 1 ( Dy (A(t)b(1)) Dt(A(t)(C(t)er(t))))
T2M(0)e(t) \ Di(A@)(e(t) = b(t))  —De(A)b(1)) :

After the second step of diagonalization procedure we obtain the following system

DWW — Do(t,§)W2 — @(t)W2 — Ba(t,§)W2 = 0,

where
1 Di(A(t)b(t)) 0
®(t) = D) ( 0 —D(A(t)b(t)) ) ’
I1Bs(t,€)] < ﬁ(%u(”y

for all (¢,€) € Znyp(N). Finally, we carry out an elliptic transformation by the
aid of

M(t,€) = exp ( /t c’(s)d8> ( exp ( [y im4(s,€)ds) 0 ) |

te c(s) 0 exp (fti iT_(s,&)ds)
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After setting W3 := M3Ws we conclude

where

Step 3: Ljapunov via energy function
We define the Ljapunov function S = S(¢,&) and the energy function £ = E(t,£)
by

S(t,€) == =A(0)*|y1 (8, ©)> + M) [ya2(t, &),

B(t,€) = A1)y (t, €)1 + A1) [y2(t, ),

where Y = (y1,y2)7. The new vector-function Y arises from the transformation

t 9(s,§)ds).

te

_ [ et9 0 _
Y(t,§) = ( 0 o(t, &) ) Ws(t, &), ©O(t,¢&) = exp(

If we assume
(C9) |08 <C, [0(t,) | < O forall (t,£) € Znyp(N),

then we conclude with this auxiliary function

2 Ab(H)
aty_)\/(t)(l 0>Y_< ) 1+ 6 0)) 9)1/

9, (A(D)b(t
2B\ 01 0 REEONON

_ LA
-Qr=0, IR0l < 5 (3 ®) -

Now we estimate the Ljapunov function via the energy function. It holds

2N (%)
O

— 2)\(t)28%(y1,

OS =

N(t)
NOk&
oo i
N(t) A(A@)b(1))
S ( CONE

_|_

+0) 7 + Qurt + Qrala )

[\

( L (A(D)b(1))
2c(H)A(t)

t
(())b((t))) +0)75 + Qar + Qoo )

+0+1Ql)E.

~—
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If we assume for the function
(C10) ((t.€) = GRA2 +0(8.6) + Q1€ <
then the last inequality implies immediately
N(t) O (A(1)b(t))
OS> S — 0
$2335 5~ ey +0+1Q1)8

As a consequence we may conclude

N (s Os(\(s)b(s
s6.6) 2 stte e ([ (3305 - 2 -0 - Il)as).
This allows to estimate the Ljapunov function in Zyy,(N).
Step 4: Choice of coefficients
We define the sequence {t;}; with t; = exp (]1 J) It is clear that t; — oo for
j — oo. If we define the sequence {d;}; with d; := “=3=1  then d; ~ QW

We define the coefficients a = a(t) and b = b(t) from C’°° [1,00) in the following
way:

t S1
a t) Z/ / Xj(SQ)dSQdSl +1 for te [tj_l,tj],

b(t) = a(t —d;) for t e [tj—1+d;,t;],
" | monotone decreasing for t € [t;_1,t; 1 + d;].

They have the following behavior:

1 on [tj_l,tj_l + dj],
alt) = monotone increasing on [t;—1 +d;, t;—1 + 2d;],
' 2 on [tj_1 +2dj,tj-1 + 3d;],
monotone decreasing on [t;_1 + 3d;,t;],
monotone decreasing on [t;_1,t;—1 + d;],
b(t) = 1 on [tj 1+dj,ti— 1—|—2d]
' monotone increasing on [t;—1 + 2d;,t;—1 + 3d;],
2 on [tj—1 +3d;,t;].

The functions x; = x;(t) are defined as follows:

0 for

32d_3( (tj_l —|—dj)) for

—32d 3( (tj—1 + 3d;)) for o1+ d],t] 1+ 1dj],
32dj ( (j_1+2dj)) for 1+ d],t 1+2d]

[] 17] l+d]
€t
{
x;(t) = 0 for tet;— 1+2 tj_ 1+3d]
et
et
et

1+dj,t 1+ d]

—32d ( (tj—1 +3d;)) for j—1+ 3dj,tj 1+ 2 d i,
32d ( (tj_l + %d]» for -1 + tj—1 + d ]
—32d ( (tj_l + 4dj)) for -1 + J]




312 M. Reissig

Then straightforward calculations imply

max |a'(t)> = max |b'(t)]* <d7?
teftj—1,t;] teftj—1,t;] J

max |a” ()= max [b'(t)] <d73.
te[tj_l,tj]| )l te[tj_l,tj]| )| < d;

There exist positive constants gy and ¢; independent of j such that

tj—1+d; b’(s) tj—1+d; b/( ) 2+\/5
ds = — log( )
ti—1 C(S) ti—1 \V4 1 + b 1 + \/5

t;_1+3d; y tj—1+3d; y 24922
/ (S)ds = / 7(3) ds = log ( il \/_> =:qp
t]‘_1+2d]’ C(S) t]’_1+2dj 4 + b(3)2 1 + \/5

= —q1,

with g9 < q1.
Step 5: Definition of 6 and assumptions (C9) and (C10).

We can find a positive real number §y such that pg := ‘5(’(]# € (0,1). We define
with a large jo a sequence {p;(€)};>j, by

K Y 1 .\° L (Y b(s)N(s) | o
p;i (&) = log"tHs) ds + — — ds + —.
0= o L, G e g e
On the one hand we have with the definition of ¢;

N
/tj_1 @ )\(8) ds < /t]»_l a )\(8) ds ~ (1ogtj 1Ogtj_1)

< 300 for > jo(do).

~

On the other hand by taking into account of the definition of Zyy, (V) it holds

K /tj Lo ) )2 K 1 1] 2
_— — log s) ds < ———(t; —t;_ —log ti_
G)E] ( ) s < st~ b0 (55 1)

KC

| > KCd; /1 2

< ———(t; —t;_1)(—=log" T ¢;) < I (= log e,

< st~ -0 (5 1) < s (5 o)
KC | > Koo

< t:(log+ e, —log"tle ) < 22 log" M A(¢
N G 1) = T A ()
K

STC< Lo for > jo(do).

Hence, |p;(€)] < po for all large j > jo. We introduce the notation ¢(t) := bc/(t) and
as usual the non-negative part [¢(¢)]+ and the non-positive part [¢(t)]— of ¢(t). We
have f b s)ds = qo — q1 < 0. Let us define the function 6(t, ) in the following

way:

0(t.€) == —([a(®))+ + p;(©)la(t)]-) - WL)H(% log("+ ! t>2 _ N )

for t € [tj_l,tj].
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Then we may use

t; t
/ o(t,€)dt = 0, ‘/ 9(3,§)ds‘ <8 for telt;1,t)).
tj—1

tj—1
Therefore we obtain exp(—2dp) < [0(¢,£)| < exp(2dp). Thus, the assumption (C9)
is satisfied. Finally, we may conclude with A(t) ~ A(t;) on the interval [t;_1,t;]
and with K sufficiently large

dtﬂs(1—m@»MwLw—igé(%bgquQ
< (1-p)lg(®))- <o0.

This gives (C10).
Step 6: Verification

For large t € [tj_1,t;] we conclude
t

—((s,8)ds = q1(1 = po)(j — jo(E))-

te

As a consequence we obtain

5.9 = Stte e [ 350

ds) exp(Cq1(1 —po)(j — jo(£)))-

Taking into consideration
j ~ (logt;)(logm™ ™ t;), jo(€) ~ (logte)(log™ 1 t)
we conclude
S(t;,£) > S(te, &) exp (C(log t;)(log" 1 ¢;) — C(logt¢)(log" ! ts)) :

We define S(t¢,€) in such a way that it coincides with E(te,§). Then the last
inequality yields

E(t;,€) > Bte, €) exp (Cllogt;)(log" ) 1;) — Clog te) (log!" V1))
After backward transformation we get
[V (t5,€)] = |V (te, )| exp (Cllog ;) 10g" 1 ) — Cllog te) (log!" ! 1))
Then we solve the backward Cauchy problem in Z,q(N) and obtain from (5.4)
V(0,€)] < Cexp (N(log" k) ) [V (te, €)1
Summarizing we have proved
|E(t;,0,8)| > Coexp (Cl(logtj)(log["+1] tj)> for all j > jo(€).

In this estimate it is allowed to choose j — co. So, the desired estimate of Theorem
5.2 is proved.
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5.2. Proof of Theorem 5.4
We define the sequence {t;}; implicitly by

1

A(tj) = exp(j7+T).
We have )
t =logl™ ! j7, d; = 7t —ti-1):

Consequently,

o~ (0B~ 775 log" 7 j57) . g 741
~ (log™ =2 j747) (log™ = j757) - (log j 7+1),
for large j and j € ( —1,4). On the other hand

Alty)

A (log A(t;))" = (exp[m_l] )t exp™~2 tj---expt;
J

~ j(logj7T) - (log™ =3 j5+1) (log™ =2 j7+1).

This shows, that the definition of {t;}; and the construction of ¢ = a(t) and
b = b(t) as in Step 4 of the previous proof give the desired oscillating behavior. So
we can follow all the steps as in the proof to Theorem 5.2. As a consequence we
conclude

Alt))

(5.9 > S(te.6) (517

for all large ¢;. Taking into consideration A(t;) = o(exp(C/(log A(t;))?*!)) the same
approach as in Case 1 implies the desired estimate to below from Theorem 5.4.

3
) exp (C(log A(t;))" ™" — C(log A(te))" ™)

Remark 5.5. To produce slower oscillations we define {t;}; in the following way
(c.f. with Case 1):

. 1 .
A(tj) = exp (] m) for large 7.
In this way we may understand the interaction of oscillations for shape functions
increasing not slower than exponential growth and with oscillations which are very
close to very slow oscillations.

6. Concluding remark

The recent papers [1] and [13] are devoted to energy estimates (even to LP — L4
decay estimates) for solutions to strictly hyperbolic systems. To understand the
new effects coming from systems itself it would be interesting to generalize the
results from [10] to the long time behavior of energies to 2 by 2 hyperbolic systems
by using the results of this paper.
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Abstract. We consider systems consisting of an initial-boundary value prob-
lem for second-order quasilinear parabolic equation and an initial value prob-
lem for first-order ordinary differential equation where both equations contain
functional dependence on the unknown functions.
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1. Introduction

In this paper we shall consider initial-boundary value problems for the system

Dyu — Z Djla;(t, z,u(t, x), Du(t, =) + g(w(t, z))Dw(t, z); u, w)] (L1)

+ ao(t, z, u(t, ), Du(t, z) + g(w(t, z) Dw(t, x)); u,w) = G,
Dyw = F(t,z;u,w) in Qr = (0,T) x Q C R™™ T € (0,00) (1.2)
where Dy = £, D; = 5=, D = (D1, Dy, ..., Dy), the functions
a; : Qr x R™ 5 LP1(0,T; Vi) x LP*(Qr) — R

(with a closed linear subspace V4 of the Sobolev space W1P1(Q), 2 < p; < o0)
satisfy conditions which are generalizations of the usual conditions for quasilinear
parabolic differential equations, considered by using the theory of monotone type
operators (see, e.g., [3], [7], [14], [16]) but the equation (1.1) is not uniformly
parabolic in the sense, analogous to the linear case (see also [13]). Further,

F:Qp x LP(0,T;V1) x LP*(Qr) — R

This work was supported by the Hungarian National Foundation for Scientific Research under
grant OTKA T 049819.
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satisfies a Lipschitz condition. It will be proved existence of weak solutions in Q7.
In the first part of the paper the case g = 0 will be considered and in the second
part the general case will be considered.

Such problems with g = 0 arise, e.g., when considering diffusion and transport
in porous media with variable porosity, see [4], [8]. In [8] J.D. Logan, M.R. Petersen,
T.S. Shores considered and numerically studied a nonlinear system, consisting of
a parabolic, an elliptic and an ODE which describes reaction-mineralogy-porosity
changes in porous media. System (1.1), (1.2) with g = 0 is the particular case when
the pressure is assumed to be constant. This case was studied in [12] when a; satisfy
modified (in some sense more special) conditions, by using different arguments.

The case of general g was motivated by non-Fickian diffusion in viscoelas-
tic polymers and by spread of morphogens (see [9], [10], [11]). In [2], [5] similar
degenerate systems of parabolic differential equations were considered without
functional dependence. This general case is studied also in [15], by using different
method, if certain modified conditions are satisfied. The modified conditions are in
some sense weaker and in some sense stronger than the assumptions in the present
paper. Here Schauder’s fixed point theorem is applied while in [15] the existence
theorem on pseudomonotone operators is directly applied.

2. Case g =0

Let Q C R™ be a bounded domain having the uniform C*! regularity property (see
[1]) and p; > 2 be real numbers (i = 1,2). Denote by W1?1(Q) the usual Sobolev
space of real-valued functions with the norm

Jull = [ | (pu + |u|m>} o

Let V1 € WHP1(Q) be a closed linear subspace containing C§°(€2). Denote by
LP(0,T; V) the Banach space of the set of measurable functions w : (0,7) — V4
such that [|u||{, is integrable and define the norm by

T
Il vy = | el

For the sake of brevity we denote LP1(0,7; V1) by X{. The dual space of X7 is
L®(0,T; V) where 1/p1 +1/¢1 = 1 and V{* is the dual space of V7 (see, e.g., [7],
[14], [16]). Further, let X7 = XT x LP2(Qr).

On functions a; we assume:
(A1) The functions a; : Q7 x R"*! x X7 — R satisfy the Carathéodory conditions
for arbitrary fixed (u,w) € X7 (i =0,1,...,n).
(Ag) There exist 0 < § <1 and bounded (nonlinear) operators
g1+ L7 (0, T; WI=0P(Q) x L7(Qr) — R,
ki : LPY(0,T; W01 (Q)) x LP*(Qr) — L (Qr)
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such that k; is continuous,
lai(t, 2, Go, G u, w)]
< g1, w)[[Gol" 7+ [T + (R (w, w)l(t, @), i=0,1,...,n
for a.e. (t,z) € Qr, each ((p,¢) € R"™! and (u,w) € X} where we use the
notations
leja =L (0, T; WP (), X[ = X1T,5 x LP*(Qr).

n

(A3) Z[ai(t7x7 C(),C;U,UJ) - ai(t»%@ag*;%w)](@ - Cz*)

=0
2 ga(u, w)[[Co — G " +1C =[], 1€ (0,T]

where
C2

> 2 (2.1)
T (w1

gQ(“v ’LU)

with some constants co >0, 0 < o* < p; — 1.

(A4) There exists a nonlinear operator ks : XI — L(Qr) such that

n

> ailt @, o, Gusw)Gi = galu, w)[[Gol™ + 1¢P] = [kz (u, w)] (¢, 2)

i=0
for a.e. (t,x) € Qr, all ({o,¢) € R"*L, (u,w) € X and

I, )@y < e (1l w)l%er +1) (22)

with some nonnegative constant o < p; — o™*.
(As) If (ug, wr) — (u,w) in XI then for i =0,1,...,n, a.e. (t,z) € Qr, all ((o,()
in R7*!
ai(t,fﬁ, CO;C;ukawk) - ai(tvxa Co,C;’LL,UJ),
for a subsequence.
Example. Conditions (A1)—(As) are satisfied if, e.g.,
al(t7 1‘7 CO’ C; u’ w) = b(Hl(u)7 H2(w))<l|<|p1_27 IZ: - 17 27 crt n?
aO(t7 z, 4-07 Ca u, U)) = b(Hl (u)7 HQ(’UJ))C() |Co|p1_2 + bO(FO(u)7 Go(w))

and b, by are continuous functions, satisfying with some positive constants cs, c4

C3
b(#1,05) > ———— where 0 < 0* < p1 — 1,
(1 2)f1+|(91’92)|0 where U < o P1

|b0(91,92)| §C4|(91,92)|/\ where 0 < A\ <p1—1—0'*.
Finally,
Hy: LP (0, T; WP (Q)) — C(Qr),  Fo: LP'(0,T; WoP1(Q)) — LP (Qr),
H, : LP*(Qr) — C(Q71), Go : LP*(Qr) — L (Q7)
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are continuous linear operators. (See [13].) If o* = 0 and b is bounded, H;, Hs
may be such as Fy, Gy, respectively.

Now we formulate assumptions on F : Q7 x X7 — R.
(F1) For each fixed (u,w) € X7, F(;;u,w) € LP*(Qr).
(F

o) F satisfies the following (global) Lipschitz condition: there exists a constant
K such that for each t € (0,7], (u,w), (u*,w*) € XT we have

1 G w) = F Gt w) [ g < K [l =l + o= w72 ,]
Definition. We define operator A : X7 — (X{)* by
T
(Al w),o) = [ (A w)0), w0
0
:/ {Zn 1ai(t,x,u(t,x),Du(t,x);u,w)Div
Qr =

+ ao(t, z, u(t, x), Du(t, x); u, w)v}dtdm,

(u,w) € XT, v € X where the brackets (-,-), [-,-] mean the dualities in spaces
Ve Vs (XT)*, X, respectively.

Theorem 2.1. Assume (A1)—(As) and (F1), (F2). Then for any G € (X{)*, ug €
L3(Q) and wy € LP2(Q) there existsu € X1, w € LP*(Qr) such that Dyu € (X])*,
Dyw € LP2 (QT),

D+ A(u,w) =G,  u(0) = ug, (2.3)
Dyw = F(t,z;u,w) for a.e. (t,z) € Qr, w(0) = wo. (2.4)
Before the proof of this theorem we prove two lemmas. Define (with fixed

(u,w) € XT) the operator A, ,, : Xi — (X{)* by

{Zn a;(t, z,a(t,z), Du(t, z); u, w)D;v

i=1
+ ao(t,x,ﬁ(t,x),Dﬁ(t,x);u,w)v}dtdw,
a,v € X{.

Lemma 2.2. Assume (A1)—(As). Then for arbitrary (u,w) € XI, G € (X{)*,
ug € L2(Q) there exists a unique solution i € X{ of

Dyt + Aw(@) = G, @(0) = up. (2.5)

If (ug,wy,) is a bounded sequence in XTI then for the sequence (1) of solutions of
(2.5) with (u,w) = (ug, wr) we have: (Uy) is bounded in Xi, (Dity) is bounded
in (XI)*. Further, if (ug, wy) — (u,w) in X7 then (i) — @ in X{.
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Proof. By (A1)-(A4) operator A, ., : X§ — (XI)* is bounded, demicontinuous,
strictly monotone and coercive (see [3], [7], [14] or [16]), thus for any fixed (u,w) €
X7 there exists a unique solution @ € X7 of (2.5).

Further, if (uj, wy) is a bounded sequence in X the by (A4) we have for the
solution @y, of (2.5) (by p1 > 2, W1P1(Q) is continuously imbedded into L?(Q)):
T

(G = [ ((Detir) (@), () {dt + [Auy wy (Ur), Tr] (2.6)

S—

—_

1
> (T )H2L2(Q) - _”’U'OH%?(Q)

[\)

C2
+ — |l —C< ug, W) ||% +1>.
1+H(uk7 )||o’ H HxT 3 ||( )ng"

Since
G, @] < (|Gl (x| x7,

p1 > 2, we obtain from (2.6) the boundedness of (@) in X{ if (ug,wy) is bounded
in X} Thus by (As), (2.5), (D+t) is bounded in (X{)*.
Finally, if (ug,wy) — (u,w) in X! then by (2.5) one obtains

Dyt + Auy, oy, (W) = Dyt + Ay ()
thus
(A (W) = Ay (@), Uk — 1]
= —[Dy(t — @), — @) + [Auw (@), — Ay w, (0), g — 4,
hence by (As), [Di(ay — @), a, — a] > 0,
1+ e w15

lax — all%er < - [Auw (@) = Auy oy (@), a —a] - (2.7)

< const|| Ay, (@) — Auyuy (a)H(XlT)* ([ — 71HX1T
and by (Ajs), (Az) and Vitali’s theorem
klgrolo [ Au,w (@) = Auy w), (a)”(XlT)* =0,

for a subsequence. Consequently, it holds for the original sequence, too. (Assuming
that it is not true, one gets a contradiction.) Thus inequality (2.7) and p; > 2 imply
that (@) — @ in X{. O

Lemma 2.3. Let (F1), (F2) be satisfied and assume that
(i) — @ in LP1(0, T; W=0P1(Q)).
Further, with a given wo € LP?(Q) define the sequence (wy) by
¢
(t,) = wo(e) + [ Plriasin, b
0
k=1,2,..., wo(t,z) =wo(x).

(2.8)
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Then (wy) — @ in LP2(Qr) and W satisfies

w(t, z) = wo(x / F(r,z,;4,w)dr a.e. in Q. (2.9)

The solution w of (2.9) is unique. Further, if (u}) — u* in LP1(0,T} Wi=or1(Q))
then for the solution W = w} of (2.9) with & = u} we have (w}) — w* in LP*(Qr)

J
where w*is the solution of (2.9) with @ = u*.
Proof. By (2.8) and (Fz)
_ - - _ ~ ~ P2
[Wj1 — W1 [P? = | / [F(7, 25 Uj41,105) — F (7, 23 g1, Dy ) AT
0
t
<t / |F (7, z; Ujg1, W) — F(T, 5 U1, Wi ) P2 dT,
0

hence

- - P2 ~ ~ ~ ~
/|wj+1—wk+1|p2dxﬁf”/ |F(7, 5 g1, 05) — F(7, @3 pgqr, W) [P drda
Q

t

< K9 [Jligen — |+ 1y — x|
> J+1 k+1 Xf(g J k LP2(Qy) | *

/ |1I)j+1 — 1Dk+1|p2dtdl‘

Qi

t p2 - t p2 -
<K\ [l -l b [ - @l g
0 ’ 0

f_lt - _ _
< KTB 2 [l = G By, + 05— @l Baq |

Further,

/ |1I)j+2 — 1I)k+2 |p2dtdl‘

Qi

¢ b2 ~ ¢ b2 ~
<K / taz||U 1o — 'U;k;_l,_QHI;?{ 5dt + / t2 || Wjp1 — Wht1 Hiﬁ?z(@t)dt
0 ’ 0

L_lf ~ ~
< KT — G2 — P
= 2 HUJ+2 Uk+2 HXEE
__1t - . -
+KT% / KTH7 5 (g = e, + 15 — @l )| dt
S KT‘IQ —Huj_,_g ’l]]g.t,_QHI;(z%«é

f B - ~
+K? (T> ap 11— ealln, + 15 = 04l g,
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By induction we obtain (with some constant ¢)

fl1
~l+1 ~ ~
/Qt |@j4m — Wy [P didz < Z " m||“j+m+1—l ~ Ukrmi1-l¥r
. 1
+m m“w] Wkl 72 (- (2.10)

In a similar way, one estimates ||wy || £ (q,): by (2.8)

| (t, ) P> < pa [tz; /t |F (7, 2; g, Wr—1) [P dT + |wo ()|
0
and by (F1), (F2)
IF G iy @)1
< ok [l |+ el )| + P2l F 50,002, g -
Consequently,
/Q ot )2 < pREEE (el + ka7 g,| +C*

where the constant C*is independent of k, ¢,z thus for all £ € (0, T] we have

t t
- P2 _q - - ~
[ lanritds < KT [ [l e [l g, de| +C°F
t
By using induction, one obtains
k - fl+1

B Prdtde <3 ¢ [lansail2 1] 2.11

/Qf|wk| dtde < 3384y (Mol + (2.11)

which implies the boundedness of [|@k||Lr2(Qr) since [|@k+1-i[ x7, is bounded.

Therefore, by (2.10) () is a Cauchy sequence in LP?(Qr) thus there exists
w € LP2(Qr) such that @ — @ in LP?(Qr). From (2.8) and (F3) we obtain (2.9)
as k — oo. The uniqueness of the solution of (2.9) follows from (F3) in a standard
way: similarly to the proof of (2.10), one obtains for the solutions 1, ws of (2.9):

im+1

/ |’lU]_ _ w2|P2dtdx < ~m+lmH1I)1 — 11)2”1[)12;72(627,)
which implies w1 = ws a.e.

Finally, if (u}) — u* in X[5 then for the (unique) solutions w = w} and
W = w* of (2.9) with @ = u}, & = u*, respectively, we have according to (2.10)

t-‘r
~l
/ W] — w* [P dbd < Z HTI)” Fma1— — W
&
e o — w2
" T e @ny
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which implies
1. *_ * =
jggo |w}; —w*||Lr2(@r) =0

since by (2.11) (w}) is bounded in LP?(Qr). O

Proof of Theorem 2.1. According to Lemma 2.2, for arbitrary (u,w) € X/ there
exists a unique solution @ € X{ of

Dyt 4 Ay (@) = G, @(0) = uo. (2.12)

Further, by Lemma 2.3, for arbitrary wy € LP?(Q) there exists a unique solution
w e LP? (QT) of

w(t,x) = wo(x) + /0 F(r,z,;u,w)dr. (2.13)

Define mapping ® : X! — X! by ®(u,w) = (4, w) where @, are solutions of
(2.12) and (2.13).

According to Lemmas 2.2, 2.3 the mapping ¢ is continuous. Further, ¢ is
compact. Because, if (uy, wy) is bounded in Xg then, by Lemma 2.2, the sequence
(@x,) of solutions of (2.12) with (u,w) = (ug,w) is bounded in X{ and (D, )is
bounded in (X{)*. Since W1=9P1(Q) is compactly imbedded in W11 (), there is
a subsequence (ay, ) of (@) which is convergent in X1T75 (see, e.g., [7], [14]). Thus by
Lemma 2.3 (1, ) is convergent in LP2(Qr), whence (7, , Wy, ) is convergent in X7 .

Finally, we show that there is a closed ball By in Xg such that ®(Bg) C Bg.
Assume that

[[(w, )| 7 < (2.14)
Then by inequality (2.6) we obtain for the solution @ of (2.12)
C2 ~ o
HUOHLz(Q + Gl (x7)- |l xz > WHM 1;(1; - 03||(u7w)||X5T,
X(S
thus
- 1 o
sz il — NGl ey Nl — 5ol oy < esr” ifr > 1,

ie.,

i 2 |G H(x )* U+1 9 o>

u| xT 2710* || le 1 = Cc3T7 2||u0||L2(Q) rr -~ 1.

Consequently, if

* = _1
-~ ;—1 4TU p1-1 4 p1—1 Ui
||UHX1T 2 ”GH(p)l(%")* ? = HG”(XIT)*g rPi—1

then (for sufficiently large )

1/p1
: ~ 464 o4o*
la ‘XT4 o+ <ear?, de, HUHX1T < <g> rorL
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Thus

c* o+o0*
-1 p
Further, by using an estimate, analogous to (2.11), we obtain that, assuming (2.14),
for the solution w of (2.13) we have by (2.15)

} <1.  (215)

|| vr < |||l vr < const r” where p = max
X7 X7 P

@ Lr2 (@) < const 7. (2.16)
Since p < 1, from (2.15), (2.16) we obtain that for sufficiently large R,
[(w, w)l[xr < R implies || ®(u, w)|[xr = [|(@ @)|[xr < R.
Thus Schauder’s fixed point theorem implies that ® has a fixed point (u,w) € X[
D (u,w) = (u, w).
Consequently, u € X{ and (u,w) € XT satisfies (2.3), (2.4). O

Remark. If some Lipschitz conditions are satisfied with respect to the “functional
variables” u,w in a;, one can prove uniqueness of the solution.

3. Case g #0

Now we shall consider equations (1.1), (1.2) with a bounded, continuous function
g. This problem will be transformed to the case g = 0, considered in Section 1,
with p=p1 =p2 > 2. Let f = [g.
Define
XT = LP(0,T; W'P(Q)) x LP(0,T; WhP(2))

and operator A : X7 — (XT)* for (u,w) € XT, v e XTI by
T
(Al )] = [ (A w)0), oo
0

= / {Z a;(t, z,u(t,x), Du(t,z) + g(w(t,x))Dw(t, x); u, w)Div} dtdx

i=1

—|—/ ao(t, z,u(t, z), Du(t, z) + g(w(t, z)) Dw(t, z); u, w)vdtdz.
Qr

Further, assume
(F3) F has the form

F(t,x;u,w) = Fi(t,z, [h(w)](t, x), w(t, z))

where F7 is continuously differentiable with respect to the last three variables,
the partial derivatives are bounded and either h(u) = u or

h: LP(Qr) — LP(0,T; WhP(Q))
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is a continuous linear operator such that h(u) € LP(0,T;C(Q)) for all u €
L?(Qr). Further, there exists ¢y > 0 such that

Fi(t,z,Co,m)n < 0if |n] > co. (3.1)
Remark. In the second case h(u) may have, e.g., the form
(h(w)](t,z) = [ H(t,z,7,&)u(r, §)drdg

Qt
(with a “sufficiently good” function H).

Theorem 3.1. Assume that (A1)—(As) and (F1)—(F3) are satisfied with p1 = pa =
p>2,q =q, 0 =1, 0" < p—2 such that for the operators g1, k1, g2, ko in
(A2)—(Ay) we have

g1 (u, w)? < const ga(u,w), ki(u,w)? < const ko (u,w).
Further, g is a bounded, continuous function. Then foNr any G € (XI)*, up €
L2(Q), wy € L>®(Q) N WLP(Q) there exists (u,w) € XT such that u + f(w) €
Lr(0, 15 V1),

D e (XI)*, Dww e LP(Qr),

D+ A(u,w) =G,  u(0) = ug, (3.2)
Dyw = F(t,z;u,w) for a.e. (t,z) € Qr, w(0) = wo. (3.3)
Proof. Instead of u introduce the new unknown function u by
a(t,x) = u(t,z) + f(w(t,z)) (where f = /g) (3.4)
By using the formulas
Dyii = Dyu + f'(w)Dyw, Di = Du+ f'(w)Dw (3.5)

we obtain that (u,w) € X7 is a solution of (3.2), (3.3) if and only if (@, w) € X7
satisfies

Dyii + A, w) = G, (0) = ug + f(wo(x)), (3.6)

Dyw = F(t,z;0 — f(w),w), w(0)=uwp (3.7)

:/Q {Z a;(t,z,u(t,x) — f(w(t,x)), Du(t,x); a0 — f(w),w)Div}dtdac

i=1

+ [ Aao(t, 20— f(w), Dis i — f(w),w) — f'(w)F(t, 20 — f(w), w)} vdtda.
Qr
First we show that by Theorem 2.1 there is a solution (%, w) € X7 of (3.6),
7) (such that Dyw € LP(Qr)). Then we prove that w € LP(0,T; W1P(Q)), hence
w .

( T
) € XT and thus with v = @ — f(w), (u,w) satisfies (3.2), (3.3)

3.
(@,



On Singular Systems 327

Since wy € L>(Q), by assumption (3.1), a solution of (3.3) satisfies
[wll Lo (@r) < max {{JwollL=(0), co} = Co.
Let ¢ € C§°(R) such that ¥(n) = 1 for |n| < & and define function f1 by f1(n) =
fm)w(n). Then f; is bounded and consider (3.2), (3.3) with f; instead of f.
Since a; satisfy (A1)-(A;) with 6 = 1, f1, f{ are bounded and continuous,
functions a@; (defining operator A with f1, instead of f)
ai(t,x,Co, C;u,w) = a;(t,z, o — fr(w(t,z)),;a — fi(w),w), i=1,...,n
&0(t7 xz, COa Ca ﬂﬂ w) = ao(tv €z, CO - fl(w(t7 '1:))7 C? u— fl(w)7 'UJ)
satisfy (A1)—(As), too.

Clearly, (A1)—(As), (As) are satisfied. Now we show that (A4) is satisfied,

too. By using the assumptions of our theorem and Young’s inequality, we obtain
for any € > 0

Zaz t x, CO?C?U ’lU)C

=0
Zal(t z,Co _fl( ( ))7C§ﬁ_fl(w)7w>gi+f{(w)F(t7$?ﬁ_fl(w)7w>C0

0
(@ = fi(w), w)(l¢o = frlw(t, x)) [ + (] = [k2(@ = fi(w), w)](t, )
+ao(t, z, G — fi(w(t, x)), ¢t — fi(w), w) f1(w(t, z))
+ fl(w)F(t,z; 0 — f1(w),w)o
> Ga (@, w)[|Co[” + |C7] = k2 (@, w)](t, )
—e{gi(@— fi(w),w)(Go"" + I¢IP7) + k(@ — fr(w)](t,2)}* = Ci(e)
—ean(0@) — () w)iol? — o) LA L) !
where ga, ko satisfy inequalities which are analogous to (2.1), (2.2), respectively

(because f; is bounded) and C(g), Ca(e) are constants, depending on e. Since by
(F3)

[F1(E, 2, h(w) = h(fi(w)), w)|" < const [|h(a) — h(fi(w))|* + [w]|? + [F1(E,2,0,0)[7],

we obtain

w)|? dtdx

/ |F1(t, @, h(@) = h(f1(w)),
or  92(h(@) = h(f(w)), w)e/»

*

(R
< const/ |h(@)|?dtdx - [/ |12|pdtda:] + const
Qr Qr

*

_P_4 o
< const ||| z;gg;’)—l + const
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where
*

p oF _pto x
p—1 p—1 p—1

pto”
p—17

Consequently, choosing sufficiently small € > 0, we obtain (A4) for functions a;.
Further, it is easy to show that function F', defined by

F(t,z;0,w) = F(t,z;u— fi(w),w) = Fy(t, 2, h(d) — h(f1(w)),w)

satisfies (F1), (F2) because f] is bounded. Thus, by Theorem 2.1 there is a solution
(@, w) € XT of (3.6), (3.7) with f1, instead of f, since f(wg) € L>=(Q). As

because 0* < p — 2, thus max { a} < p—o* where o is the constant in (Ay).

|wl Lo (0r) < Co,
(u,w) satisfies (3.6), (3.7) with f, too.
Now we show that w € LP(0,T; W1?(Q)). According to (3.7)
Dyw(t, z) = Fi(t, 2, [h(@)](t, x) — [b(f(w)](t, ), w(t, z)), w(0)=wo (3.8)

Since @ € LP(0,T; V1), there exists a sequence of functions ; € C%1([0,T] x Q)
(i.e., continuously differentiable functions with respect to x) which converges to @
in LP(0,T;V4). Further, by wg € WHP(Q) there is a sequence of functions wo; €
C1(Q) such that (we;) — wo in WHP(Q).

In the case when h(u) = u, denote by ®(¢,z,£, A) the solution of the Cauchy
problem

wl:F]_(t,fE,)\_f(UJ[),UJl), wl(0)=§
Then
wy(t, ) = O(t, z, wor(x), W (t, z))
satisfies
t
wilt,) = wa(e) + [ Fi(raarz) - f(ulra), ot )dr
0
By the assumption on function F} and the differentiability of the characteristic
function ® we obtain that w; is continuously differentiable with respect to x and
O, wi(t, ) = Oy, (L, x,wor (x), U (t, x))
+03®(t, z, wor(x), U (t, )0z, wor (x) + 04 P(t, x, wor (), W (t, x))0p, W (t, x).
Further,
y(t) = 83(1)(t7 z, 67 )‘)77 + 84(1)(t7 z, 9\)(
is a solution of the Cauchy problem for the following linear differential equation:
y(t) = awz-lTl (t,.’IJ, A= f(wl)7wl)y(t> + 8,\F1(t,$c, A= f(wl)7wl)C7 (39>

y(0) = 1.
Since the last three partial derivatives of F} and the derivative of f are bounded,
by using the formula for the solution of (3.9), it is easy to show that 93P, 9, P are
bounded. One obtains similarly that d,,® is bounded, too.
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Since wg; — wo in WHP(Q) and (@) — @ in LP(0,T;V7), by Vitali’s theorem
we obtain from the above formulas that the sequences (0.,w;) are convergent
in LP(Qr). On the other hand, according to Lemma 2.3, (w;) — w in LP(Qr).
Therefore, w € LP(0,T; W1P(Q)).

If the second assumption is satisfied on h(u) in (F3), then denote by
&J(t, x,&, A) the solution of the Cauchy problem

wl:Fl(tyxykawl% 'UJl(O):§

Then the solution of (3.8) with @ = @;, wy = wo;:

wi(t, ) = S(t, &, wou(x), [h(@)](t, ) — h[f (w)](t, )
and w; € LP(0,T;C(Q)) since
B wi(t, ) = Ou, ®(t, 2, wou (@), [A(@)] (¢, ) — h[f (wi)](¢,2))

+850(t, @, wou (), [(@))(t, &) — hf (w))(t, )0z, wor ()

+ 04®(t, z, wor (), [h(W)](t, )

— hlf (w)](t, 2)){ 0 h (W) (8, ) — O, [P(f (wr))](¢, )}
and by (F3), 0, ®, 03®, 04® derivatives are bounded. (See the case h(u) = u.) Since
(wo1) — wo in WHP(Q), (@) — @ in LP(0,T;V}), and by Lemma 2.3 (w;) — w

in L?(Qr), by (F3) we obtain, similarly to the case h(u) = u, that the sequence
(0, wy) is convergent in LP(Qr). Thus w € LP(0,T; WP (Q)). O
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Boundary-value Problems for a Class of
Third-order Composite Type Equations

0O.S. Zikirov

Abstract. In the paper, we study boundary-value problems with the normal
derivative for a class of third-order composite type equation with Laplace op-
erator in the main part. We prove the theorems of the existence and unique-
ness of classical solution for considered problems. The proof is based on an
energy inequality and Fredholm type integral equations.
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1. Introduction

One of the most widely known method for investigation of boundary value prob-
lems is the method of potentials (Green function). It allows to reduce investigation
of a boundary value problems for partial differential equations investigation of the
corresponding integral equation. It should be noted, this method is applicable
not only for stationary problems, but also for problems of the evolutionary form,
i.e., initial-boundary and nonlocal problems. It is sufficient to recall the classical
method of the Green function to solving boundary value problems for second-order
elliptic type equations [1].

However, at the present time this method does not lose its significance and
it is widely applied in solving boundary value problems for nonclassical partial
differential equations.

The present paper is devoted to the studying of boundary value problems
with the normal derivative for the composite type mixed equation of third order

(a% + ﬁ(%) (E(y)uzz + uyy) + Lu = f(x,y), (1.1)
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where o and 3 are given real numbers, moreover o + 32 # 0, L is the linear
second-order differential operator of the form
Lu = a(x, Y)uze + 2b(2, Y) Uy + (T, y)Uyy L
+ a1 (z, y)ug + bi(z, y)uy + c1(z, y)u. (12)

The coefficients and right side of equation (1.1) are given real functions.

The correct statement of boundary value problems for (1.1) depends on the
sign and values of coefficients « and 8. Equations in the form of (1.1) generalize
the wide class of composite type equations.

For example, if a =1, § =0 and a =0, § = 1, but Lu = 0, then we obtain
equations, investigated in works [6], [14] and others.

Investigation of boundary-value problems are interesting on theoretical point
of view. Also there are a number of the non-local boundary conditions for evolu-
tion problems that have various applications in chemical engineering, thermoelas-
ticity, underground water flow and population dynamics and etc.: see for example
[4] or [8].

We remark that equation (1.1) often is called the composite type equa-
tion. Boundary-value problems for equations of third order with local and non-
local boundary conditions are investigated by L.A. Bougoffa [2], A. Bouziani
[3], V.V. Daynyak and V.I. Korzyuk [5], T.D. Dzhuraev [6], T.D. Dzhuraev and
O.S. Zikirov [7], A.M. Nakhushev [13], M.S. Salakhitdinov [14], O.S. Zikirov [15]
and many references therein.

2. Formulation of the problem and the uniqueness of the solution

In this section, we formulate correct boundary value problems for a composite
type linear equation and prove theorems of uniqueness for the solution of stated
problems using the method of energetic identities.

Let k(y) (k(y) > 0) be a continuous function in the simply connected domain
D bounded by the segment AB[A(0,0)B(1,0)] of the axe x and by the smooth
curve o which lies in the half-plane y > 0 with endpoints on the axe z at the
points A and B.

Consider in the domain D the composite type third-order equation

(00 + 50 ) (0t + ) + L= S0, (2.1)
where a and /3 are given real numbers, moreover o + 3% # 0, L is the second-order
linear differential operator of the form (1.2).

Coefficients and the right side of equation (2.1) are given real functions.

Concerning the curve o, we suppose in addition, it intersects each straight
line z = const only at the one point.

Divide the curve o on two parts o1 and o2 in the following way:

or={(z,y) €01 axy + Py, >0}, 02 =0\oy, (2.2)

where z,, = cos(n, ), y, = cos(n,y), and n is the exterior normal to the o.
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Definition 1. Any classic solution of equation (2.1) called as a solution of this
equation, i.e., a function u(z,y), possessing in the domain D continuous partial
derivatives up to the third-order inclusively and converting the equation into an
identity.

Problem A’;ﬂ. To find a classic solution u(z,y) of equation (2.1) in the domain

D, continuous with its derivatives in the closed domain D, and satisfying to the
following boundary conditions:

a) in case of 0 < s < +o00, the conditions
a

u(x,y)|a =pi(x,y), (x,y) € 03 u(x,y)}AB =7(x),0<z<1, (2.3)

du(z,y) du(z,y)
T‘g@ :@2(x7y)7 (.’L’,y) € 09; Ty|AB:V($)7 O<z<l1 (2.4)
hold:

b) in case of § = 0, conditions (2.3) and the first condition of (2.4) hold;
¢) in case of o = 0, conditions (2.3) hold in one time with the second condition
of (2.4) or with the condition

du(z,y),
T|g’_(p3(x7y)7 (l‘,y) co,

here ¢1(x,y), p2(z,9), ws(x,y), 7(x), v(z) are given functions, moreover

p1(A4) = 7(0), 1(B) = 7(1).

One can show, the case of a8 < 0 in the problem AZLB is reduced with the
help of exchange © =1 — & or y = 1 — 1 to the case of a3 > 0.

Therefore, without any loss of generality, suppose a > 0, 5 > 0.

Assumption 1. We assume that

a(z,y), b(x,y), c(x,y) e C'(D);
ar(x,y), bi(z,y) € C(D); ci(x,y) € C(D);

and
9*a(z,y) 9b(z,y) & c(z,y)
— 7K — 7K — 7K .
022 =V Tazay - oz =
day (1‘, y) 8b1($’ y)
— T — T )
9r = oy @

Assumption 2. For all (x,y) € D and all £, € D, we assume that

1) a(z, y)€ + 2b(z, y)&n + c(z, y)n* > c6(£2 + n?);
2) Qpg + 2bgy + Cyy — @1z — b1y +2¢1 < —c7 < 0.

In Assumptions 1, 2 and in the rest of the paper, we assume that ¢;, (j =
1,...,7) are positive constants.

In this paper, we prove the existence and uniqueness of a classical solution
of the problem A% ;.
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Theorem 2.1. Let Assumptions 1, 2 be fulfilled. Then classical solution of the
Problem A’;B s unique.

Proof. Let us show that the homogeneous Problem A% ;

p1(x,y) = pa(z,y) = 7(2) = v(z) =0 (2.5)
has only trivial solution. We prove this fact on the base of energetic identities.
Multiplying (2.1) by u and integrating the obtained relation by parts in D, we

have
// 9 4 82 (k(y)e + uyy)dud +// Ludzdy = 0 (2.6)
ulom oy Y)Uza + Uyy)drdy uLudxdy = 0. .
D D

Transform the integrands in the following way

0 0 d 0
u (a% + ﬂﬁ_y) k() Uz + uyy] = (aa + ﬁa_y) [uk(y)uza + uttyy]

—1[( 5~ O ) — )+ (o — 5k ) <2uiuy>];

ula(z, Y) ey + 26(2, Y)tay + (T, Y)tyy]
B)

0 1
= {auum + buu, — 5(% + by)uﬂ 4+ =

1
e ; [buum + cuuy — §(bm + cy)u2]

0
1 1
_ Ka — §ﬁk’(y))ui + 2bugu, + cuj)] + §(am + 2byy + cyy)us
and

ulay (z, y)ue + b1 (z, y)uy + c1(z,y)ul
170 0 1
=5 [%(MUF + a_y(blu)2] - §(a1x + by — 2c1)u.
Applying the Green formula to integral (2.6) and taking homogeneous bound-
ary conditions into account, we obtain

1

o+AB
// {( alx,y) — —ﬁk (y )) u? + 2b(z, y)uguy, + c(m,y)uﬂ dxdy
1 2
~5 (zz + 2bgy + Cyy — a1z — b1y + 2¢1)u"dzdy = 0, (2.7)

Since u(z,y) = 0 on the boundary of the domain D, we have du/ds = 0 on
0 + AB and, therefore on the boundary o + AB of the domain D the following
equalities hold u, = UpTyn, Uy = UnYn.
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By virtue of equalities z,, = ys, yn = —s, considering homogeneous bound-
ary conditions, from (2.7) we have

/ (k)2 + 2@ + Byn)ds
// K alzy) = ‘5"“ (v )) uZ + 2b(w, y)uauy + (@, y)u | dedy

1
~5 //(am + 2bgy + Cyy — Q1z — b1y + 2cl)u2dxdy =0, (2.8)

Hence, by conditions of Theorem 2.1, we conclude u(z,y) = 0 in D. O

Remark 1. Uniqueness of the solution of the Problem A 5 for the cases b) and c)
can be proved analogously.

3. Existence of the solution for the Problem A’;ﬁ

In this section, we prove existence of a classic solution for the problem A’; 5 stated
in the previous section. For a solution of the Problem AZ 5> 1t is valid the following

Theorem 3.1. Let all conditions of Theorem 2.1 hold and

2b(x,y) = ga(x,y) + %c(x,y), al(x’y) = bl(x7y)'

R

If functions p1'(x,y), p2(z,y), 7 (x), and v(x) satisfy to the Holder condition,
then a solution of the Problem A’;ﬂ exists.

Proof. We prove Theorem 3.1 for the case a). Let k(y) =1, Yy € D.

1°. Denote by w(s) unknown values of the normal derivative of the function
u(z,y) on oy.

Set
aug + fuy, = v(z,y), (3.1)
then, equation (2.1) will have the form
Au+ Az, y)ug + Bz, y)uy + C(x,y)u = —c1(z, y)u. (3.2)

Here A(z,y), B(x,y), and C(z,y) are known function, and also
Alz,y), B(x,y), Clz,y) € C'(D)

and, furthermore, C(z,y) <0, ¥(z,y) € D.
Taking (2.3)—(2.4) into account for the function v(z,y), we obtain the follow-
ing boundary conditions

U($7y)|g = H(5)7 ’U(l‘,y)’AB = /\(1‘)7 (33)
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where
B {w(S)(awn + Byn) + 1 (s)(az’(s) + By (s)), s € o,
M=\ als)an + Bym) + (90 (5)+ B(5), 5 € o
Az) =ar'(z) + pr(z), 0<z<1.
The regular solution of equation (3.2), satisfying to conditions (3.3), is rep-
resented in the form of [6]

v(x,y) = /[%(w,% s) + Ko(z,y; 5) + Koo(x, y; s)] u(s)ds (3.4)

o

- // [G(x,y; &)+ P(x,y;&n)} (& mu(§, n)dédn + (z, y).
D

Where

G(z,y:&,n) = %lnl(x -+ (y—n)? +9(z,y;: &)

is the Green function of the Dirichlet problem for the Laplace equation, g(x, y; &, 1)
is a regular part of the Green function;

oz, v 8 /Gwyﬁn[ (€ m;5) /Kfnf ") (f’,n’;S)df’dn’]dé“dn;
Koo(z,y;s —27r/// Gz, y; &2 m &)
X {K &n'ss) +/ K(&,m; €0 K(fl,m;S)dfldm]df'dn’dfdn;
D
P(w,y;f,n)=/ G(w,y;f,n)[K(f,n;ﬁ’,n’)+Fz(wi,n;§’,n’)
D

+ /L[ Do(&,m; &,m)K (&0 &, nl)dfldn1:| dgdn;

878 oG* o0G*
is)=A —~—+B = -
0G(z,y; &, 0G(z,y; &,
K(z,y:€.1) = A@,ww L B(x’y)%
. OG(z,y;s
+C(z,y)G(x,y;¢,m); G = %;

Tao(x,y; &, m) is the resolvent of the kernel
Ko(z,y;€,m) = //K(ﬂc,y;ﬁ,n)K(i,n;&’,n’)df’dn’;
D

®(x,y) is the known function.
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By virtue of the condition u(z,y) = p11(x,y), (x,y) € o1, from (3.2) we find

Yy
U(J"?y) = % / ’U(JI - %y + %t7t>dt + 9011(1‘7y)7 (35)
f(Bz—ay)

here

Y11\, Y), T,y) € o1,
p1(z,y) = (@5), {@9)
S012($7y>7 (5573/) € o9,

f(Bx —ay) = [aﬂ —2a(fz — ay)

b
2(a? 4 5?)
+ By a2 — 4(Bx — ay)? + 4(Bx — ay)].

Substituting (3.4) into (3.5), after some transformations we obtain the inte-
gral equation of the second kind with respect to the function u(z,y):

uey)+ 1 [ [ K& ma@nuenundsn = Fag).  (30)
D

Here
Ko €)= = 3= | 50— O+ (=) Il = € + = 0]+ r(oion)
Pl = 5= [{ s lon ) - 66
(o = €+ (5 = 0 + 7o) fu(s)ds + W)
r(z,y; §n) = % /y g—i(ﬂﬁ - %y + %t,t; f,n>dt,
f(Bz—ay)

Uy (x,y) is a known continuous function, depending on the Green’s function and
coefficients of equation (2.1) and the functions 1 (z,y), p2(z,y), 7(x) and v(zx).

Conditions of Theorem 3.1 imposed on given functions allow to assert that
F(z,y) € CY(D), and the kernel of the integral equation (3.6) are continuous,
moreover first derivatives have singularities not more than logarithmic ones.

Since the solution of the problem Al ; is unique and by virtue of the Fredholm
alternative, can conclude that equation (3.6) has the unique solution in the class
Cl(D).
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Let T'(x, y; £,m) be the resolvent of the kernel K(x,y; &, n). Then a solution of
equation (3.6) can be represented in the form of

1 a? , ,
u(e.y) = o= / { sl - 8¢ o) (3.7

Iz — & + (y — 2|+ Ray; 8)}u(8)d8 (),

where

R(z,y:5) = r(2,:9) // (o) g o (9) - € o)

xIn|(& — &2+ (m —n)?| + (&, m; 8)}d§1d771;

Uy (2, y) = Vi(z,y) + % //F(I,y;&n)%(ﬁ,n)dﬁdn-
D

Formula (3.7) contains as the function p(s) the function w(s), which is un-
known. To define it, it is necessary to pass to the limit turning points (z,y) to
the point lying on the arc ;. Then we obtain for the unknown function w(s) the
integral equation of the first kind with the logarithmic singularity in the kernel

1 o?

ﬁm / {ln |s — so| + R(s, 80)] wi(s)ds = g(so), (3.8)

o1

where

wi(s) = [an'(s) — BE (s)lw(s);
37 [ Inls = sol + Ris,so)ln' (9o (s) + o ())ds

o

_ % /[ln s — so| + R(s, 50)]p2(s) [’ (s) 4 1 (s)]ds — Wa(s0).

o2

9(s0) = ¢1(s0) —

By virtue or properties of the Green function, one can easily to be sure that
the function R(s,so) and its first derivatives are continuous. The right side g(so)
is continuously differentiable function, and ¢’(so) satisfies to the Holder condition.

2°. Here we give the proof of theorem on existence of the solution of an
integral equation of the first kind with the logarithmic singularity in the kernel

!
/ln |s — solwi(s)ds = g(s0), so € o, (3.9)
0

where [ is arc length of the curve o.
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The following statement is valid for equation (3.9).

Theorem 3.2. If g(so) € C N (a), then the solution of the integral equation (3.9)
exists in the class wi(s) € CON (), 0 < X\ < 1, and it is given by the formula

w. (50) = \/ l—s
o 72\/50 l—so s — So

g(s)ds

l
1
72 /s0(l — s0) (Inl — 21n2) 0/ sy —s)

here CN (0) and CON (o) are spaces of functions given on o and satisfying to
the Hélder condition.

(3.10)

Proof. Differentiating (3.9), we obtain the singular integral equation
!

/ we(s)ds ds = g1'(s0), (3.11)

S — 8o
0
the general solution of which has the form (see, for example, [8])

wa(50) = — = VS=8) s e — S (31
\/Tso $— 8o s0(l — s0)

Choose the particular solutlon of equation (3.11) which is also a solution for
equation (3.9), (i.e., we choose C).

Equation (3.9) has the solution up to a constant [9], and to select the unique
solution, one need to know the value of the integral from the function w,(s) on
the segment [0, ].

Multiplying for this (3.9) by [so(l — s0)]~'/? and integrating on the segment
[0,1], we obtain

(So)dSo

In|s — so| w«(s
/\/801—80/ | 0| ( \/801—80

Then, changing the order of integration in the left 51de of the last equality (see,
for example, [12]), we obtain the equality

)ds =

l

l
Infs —so| so| g(s)ds
/w*(s)ds m J 73(1 = (3.13)

By virtue of the known relation [9], we have
!
In |s — s

0 V' s0(l = so)

dsop = m(lnl —21n2).
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Then (3.13) takes the form
l

l
B g(s)ds
/w*(s)ds i = 21112 / S (3.14)
0

0

Following to [10], [11], one can easily to see, the function w.(so), defining by
equality (3.10), belongs to the class C(OV (), 0 < A < 1. O

Consider now equation (3.8). Rewrite it, dividing the kernel of the equation
on the singular and regular parts, in the form of

5t

/1n|s — So| wx(8)ds = g1(s0), so € 01, (3.15)
0
where l
2 2 ;
g1(s0) = Wg(so) — /R(s,so)w*(s)als7 (3.16)

0
and [y is arc length of the curve o7.

By condition of Theorem 3.2 and condition (3.14), converting the principal
part of integral equation (3.8), we obtain the integral equation of the second kind

in the form of

M
Ms150) Wik (8)ds = ga(s0), (3.17)
s(li — s)

where

Wi (8) = \/s(ll — ) w(8);

(5,5 / VEL =9 OREs) e ] [ _REs) d¢;
0 7T2 — 5 Os 11111 —2In2 f(ll - f) ’
0

2(a? 2 lh— 1

@+ ) / =3 o o) 1.
uyes S — 8o 11111—21112,/3([1—3)

As it was shown in [9], [12], one can apply to integral equation (3.17) with

M (s, s0)

Vs(lh —s)
Since integral equation (3.17) is equivalent to the problem Al 3, a solution of
(3.17) exists by virtue of Theorem 3.1. O

92(80) = -

the kernel the Fredholm alternative on solvability.

Hence, existence of a solution for the problem A}, 5 for equation (2.1) is proved
for the case of k(y) = 1.

Remark 2. For cases b) and ¢) Theorem 3.2 is proved without requirement of the
condition (3.10).
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Remark 3. Solvability of the problem A® 5 in a general case and the cases such as
k(y) = y™ and k(y) = sign(y)|y|™, m > 0 require an independent investigation.

References

[1] Bitsadze A.V. Some classes of partial differential equations. Nauka, Moscow. 1981
(in Russian).

[2] Bougoffa L. A third-order nonlocal problem with nonlocal conditions.//Internat. J.
Math. and Math. Sci. 34(28), 1501-1507. 2004.

[3] Bouziani A. On the solvability of a nonlocal problem arising in dynamics of moisture
transfer.//Georgian Math. J. 10(4), 607-627. 2003.

[4] Brekhovskikh L.M., Goncharov V.V. Introduction to the continuum mechanics.
Nauka, Moskow. 1982 (in Russian).

[5] Daynyak V.V., Korzyuk V.I. Problem of the Dirichlet type for linear differential
equation of the third order.// Differens. uravneniya. 23(5), 867-872. 1987.

[6] Dzhuraev T.D. Boundary value problems for the mized and mized-composite type
equations. Fan, Tashkent, 1979 (in Russian).

[7] Dzhuraev T.D., Zikirov O.S. On some problems for a partial third order differential
equation //Uzbek math. journal, 3, 13-25. 2006.

[8] Gabov S.A., Sveshnikov A.G. Linear problems of non-stationary inner waves. Nauka,
Moscow. 1990 (in Russian).

[9] Gakhov F.D. Boundary value problems. Nauka, Moscow. 1977 (in Russian).

[10] Guseinov E.A., Ilinskiy A.S. The integral equations of the first kind with logarithmic
singularity in the kernel and their using in the problems of the diffraction by thin
screen.// J. Vich. Math. and Math. Phys. 27(7), 1050-1057. 1987.

[11] Hapayev M.M. The numerical inversions of some integral equations.// Differens.
uravneniya. 17(7), 1328-1339. 1981.

[12] Muskheleshvili I.N. Singular integral equations. Nauka, Moscow. 1968 (in Russian).

[13] Nakhushev A.M. Problems with Displacements for Partial Differential Equations.
Nauka, Moskow. 2006 (in Russian).

[14] Salakhitdinov M.S. Equation of mized-composite type. Fan, Tashkent. 1974 (in Rus-
sian).

[15] Zikirov O.S. On boundary-value problem for hyperbolic-type equation of the third
order.//Lietuvos Matematikos Rinkinys. 47(4), 591-603. 2007.

O.S. Zikirov

Faculty of Mechanics and Mathematics
National University of Uzbekistan
VUZgorodok

Tashkent, 100174, Uzbekistan

e-mail: zikirov@yandex.ru


mailto:zikirov@yandex.ru

Operator Theory:
Advances and Applications, Vol. 216, 343-367
(© 2011 Springer Basel AG

Shape-morphic Metric, Geodesic Stability

Jean-Paul Zolésio

Commumnicated by F. Bucci and I. Lasiecka

Abstract. We extend the Courant metric in shape analysis to the non smooth
family of measurable sets with some Sobolev regularity (this class contains
the bounded perimeter sets). The one-to-one flow transformations are replaced
by the tube connection concept and the compactness leading to existence for
shortest path relays on some BV like perimeter boundedness. This Sobolev
perimeter turns to be shape differentiable (in the classical sense, see [4]) so it
leads to Sobolev curvature. We derive some stability property for the shortest
path achieving the metric. In order to be optimally connected, two such sets
can have completely different topologies. We define for each € > 0 a complete
pseudo metric in the sense that the triangle axiom is reached up to a multi-
plicative factor 2°. With € = 0 we get a metric but we loose some stability
properties.

Mathematics Subject Classification (2000). 49Kxx; 51Kxx.

Keywords. Moving domain, topological change, shape metric, Euler equation.

1. Introduction

1.1. Shape and set metrics

The Courant metric developed by A.M. Micheletti [19] for smooth domains and
extended in [11] to more general setting is obtained as an infimum on all trans-
formations T" which are decomposable in T'= (I + hy) o (I + ha)o---o (I + hy),
the infimum being taken on all hy and all k. This metric extends for families of
submanifolds and geodesic theory can be done using the Fulerian approach devel-
oped in [11], [31]. In doing so it appears that the Courant metric can be directly
formulated in Eulerian framework. As far as we consider only families of measur-
able subsets in D C R™ (1), the transformation 7 is then relazed by the convection

I The analysis could be done without any change in a smooth manifold M C RN by considering
Vector fields tangent to M



344 J.-P. Zolésio

problem (1.1). Then as we escape to any flow mapping we are able to enlarge the
study to families of sets with possible different topologies. We replace the notion
of transformation by connecting tubes and the geodesic will be an optimal tube,
solution to a variational problem whose vector field V is a solution to the Euler
equation. In doing so we also have a non stochastic variational approach for the
solution of the Euler equation with some surface tension like term at the boundary
of the tube connected to the initial-final condition.

1.2. Tube analysis

We consider a bounded smooth domain D C RY™. We designate by yq (or (g, or
simply ¢) the characteristic function of a measurable subset & C D C RY. We
consider an admissible family B? () of measurable subsets with given measure a
(see 2.2). For any pair (£9,€;) in this family we consider the set of connecting
tubes ((t,x) = ((t,x)* € C°([0,1], L}(D)) such that ((i,z) = (o, (z),i = 0,1,
and verifying Vt € I, [, ((t,x)dz = a, where I = [0,1] will designate the time
interval (the final time could be any 7 > 0, then we choose 7 = 1). The Eulerian
approach consists in considering the connecting tubes ¢ as solutions to the weak
convection (1.1) associated to a free divergence speed vector field V' (?): being given
Q;, i = 0,1 subsets in D C RN with meas(Q;) = a > 0,

C=C g+ YV =0, i) =xn, i=12. (1.1)

For any such V' the problem (1.1) may have no solution or several solutions, so
the product space tool (see [24]) is to consider the closed non conver non empty
connecting set:

T(Q0, 1) = {(¢, V) € C°(I, L*(D)) x L?;,, verifying (1.1) }, (1.2)
where

L, ={V e L*(I,L*(D,RY)), divV =0, V.n. =0 on 9D }
1.3. Group like structure

As we have no flow mapping associated with the vector field V' (nor a.e. flow, as we
don’t assume any BV property on V'), we nevertheless obtain obvious transitions
and inverse elements as follows:

1.3.1. Transition: let (¢, V1) € T,(Q0,QY), (¢3,V?) € T,.(Q0Q%), then the
piecewise defined element

(C), V(1) = (¢'(2t),2V(2t)), 0<t<1/2,
=(C*(2t—1),2V?*(2t - 1)), 1/2<t<1 (1.3)
is an element of T? (g, 22).
1.3.2. Inverse: The “backward” element

(CT®),2V=(#) = (('(1—1),= V(1 1) € T, ) (1.4)

21t obviously extends to divV € L2(I x D).
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1.3.3. “Algebra”: Being given a connecting tube and a smooth vector field
Z(s,t,x), where s is interpreted as a small perturbation parameter, using its
flow mapping we construct a “s-perturbed connecting tube”. More precisely let
Z(s,t,z) be a smooth free divergence vector field, Z € C(I x I,Cg5,,, (D, RY)),
verifying
Z(s,0,z) =Z(s,1,2) =0 in D.

Then for all tubes ({, V) € T(Q0, 1) we get a “s — Z perturbed connecting tube”
(see Theorem 5.4 bellow)

(¢, V*) € T(Q, ), (1.5)
where
¢*=(oT(Z)™,
and 5
Ve =[ D(Ts(Z2)).V(t) + D(TS(Z))*E(TS(Z)) JoTy(Z)~".

Remark: the reverse perturbation analysis works for smooth tubes and is not
obviously compatible with the connecting concept. We used it for control issues
involving moving boundaries in [28], [32], [33]... Let

Ve E:=w\(D,RY)n L, (D).

Let (¢, V) € T, (2% Q') and let V* be a perturbation of the vector field V, V¢ € E,
for example V® = V + sW. Then there exists a smooth “transverse” vector field
Z(s,t,z) such that, denoting Z%(s,z) = Z(s,t, ),

Vt,s €I, To(ZV)oTi(V) =Ty(V?).

Moreover the field Z(t, z) := Z(0,t, ) is solution to the following evolution prob-
lem 5

Z(0)=0, &24— Z,V]=Ww
where the Lie bracket is [Z,V] = DZV — DV.Z

1.4. The shape morphic metric

We shall consider several energy functionals E(V, () associated with several pa-
rameters p, €, h, r. The basic idea to derive a metric is to consider p = 1,e¢ = 0.
Two main difficulties arose: for existence of geodesics (i.e., compactness results)
we need p > 1 so we shall deal with pseudo-metric with complete pseudo metric
space or simply metric space (with or without existence of geodesic). Also the
perimeter term must be replaced by a time capacity term 03 , in order to obtain
the first metric axiom as any perimeter term never vanishes (for a given volume
of the set). The candidate for the morphic metric is then in the form

d(QO7 Ql) = INF(QV)GT(QO,QQ F(C7 V)7

where F includes an additive regularizing term which is a surface tension like term
classically needed in order to make use of the parabolic compactness of tubes:

F(C V)= Ee,p(C,V) + o oh,r(o-
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And, withe>0,p>1,a >0, 5 > 0,

B, = | 1 (f <a<(t,x>+ﬁ>|v<t,x>|”dx)(l+e)/pdt.

In order to derive existence results we shall minimize with respect to (¢, V') in some
subset T,.(Qg, 1) of T(Qo, 21). From necessary condition, the extrema solve the
Euler incompressible flow (at € = 0,p = 2):

a>0,03>0, %((a@—i—ﬁ) V) + D((aC+B) V).V +VP = o Hy,. (16)

Where P is a pressure term associated with the free divergence of the vector field
V', 0 € R is a surface tension-like coefficient while ﬁh,r is a new curvature concept:
we introduce the Sobolev perimeter Py, -(€2;) associated with the H"(D)) norm of
¢(t,.); its shape gradient will furnish the Sobolev curvature P_'Ihm. The advantage
of this Sobolev perimeter is that it turns to be shape differentiable under smooth
transverse fields perturbations (s and enables us to define the Sobolev curvature for
any domain in this new class of Sobolev sets, so that I:'Ihyr is the Sobolev curvature
of the interface associated with the Sobolev perimeter P, ({(¢). These elements
are introduced bellow. Notice that with the choice of the parameters « =0, 3 =1,
equation (1.6) is the classical Euler equation for incompressible fluids but with non
initial (or final) conditions but with the only condition that the solution V' will
convect (o, onto (o, at final time.

The tube approach was introduced in [23], [24] for connecting two given do-
mains whose characteristic functions has some “Sobolev smoothness”: ¢; € H"(D),
for given r such that 0 < r < 1/2 (this includes the usual finite perimeter sets).

2. Tube variational principle

For measurable subset Q C I x D C RN*1 we shall write (g for the characteristic
function and denote by €4, a.e.t € I, the measurable subset in D (defined up to
a subset with zero measure) such that (g(¢,.) = xq,. We say that @ is a tube
when we have some continuity, ¢ € C°(I, L' (D)), more precisely we will consider
Eulerian description for the tube and introduce a minimal regularity on the speed
vector field V, V' € LY. in order to insure this continuity. This continuity enables
us to consider connecting tubes: being given two measurable subsets in D, a tube @
connects Qo and  if we have ((i) = xq,, ¢ = 0, 1. We shall consider a framework
such that the set T(€, ;) is non empty. For functional F' the optimal solution
(¢, V) will solve a classical Euler equation for incompressible fluid which will not
simplify to a Hamilton-Jacobi equation: the field V' will not derive from a potential
as its curl will not be zero. Indeed the new curvature term that we shall introduce
will lead to a generalized curvature term on the boundary of the connecting tube
which, in dimension N = 3, generates a curl term in the equation.

We adopt the convention that for = 0 the space H" (D)) stands for the Ba-
nach space BV (D), so that for 0 < r < 1/2, H"(D) c L'(D, RV), with continuous
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and compact inclusion mapping. Notice that from the Luigi Ambrosio’s results (see
for example [9]), the convection problem is uniquely solved under L!(I, BV (D))
like assumption on the field V. This extra regularity on the vector field V' would
make the set T(V,Q0,Q1) = {C s.t. ((,V) € T(Qop, Q1) } reduced to a single ele-
ment but would imply some viscosity modelling (e.g., some Navier-Stokes like flow
in Eulerian view point). Here we escape to any renormalization benefit, so the
solution ¢ may be non unique but the regularity ¢ = ¢ € L'(0,1, H" (D)) will be
derived from the variational principle itself (see also [29], [24], [23]).

2.1. Speed vector fields
With 1 < p < 0o, we introduce

Lh ={V e L’(IxD,RY) st. divV =0, Vinp=0}.

Proposition 2.1. Let V € L. and ¢ = (? € L>=(I x D) be solution to
%C + V(.V =0,
then ¢ € C°(I, LY(D)).
Proof. The convection equation implies that: ¢; = div( —¢V ) € W=11(D)), then
¢e (1, w=HN(D)).
And as ¢ = (2, the L'(D) continuity derives from the following
Lemma 2.2. Let ( = (? € L'(I x D)NC%(I,D/'(D)), then ¢ € C°(1, L*(D)).
Proof of the lemma. As
16t +5) = CB)lLr(py = ISt +5) = COIIZ2 () »

then it is enough to show that ¢ € C°(I, L?(D)). We begin by establishing the
weak L%(D) continuity: for any element f € L?(D), consider

/ (C(t+ 8)(@) — (1) (@) f(w)de = / (C(t+ 5,2) — ((t.2) $(a)dz
D

D
+/ €t +s,2) — ¢t 2) (f(z) — d(x))da.
D

Let be given r > 0, by the choice of ¢ € D(D) (using here the density of D(D) in
L?(D)), we have

/D (€t + 5,2) — () (F () — O(a))de

<9 /D (@) - $(a)ldz <r.

So we derive the continuity for the weak L?(D) topology. To reach the strong
topology it sufficient now to consider the continuity of the mapping

t—>/D |C(t7x)|2dx=/DC(t,m)dx=((C(t),l))Lz(D).
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This continuity property enables us to define the connecting concept. Being
given two measurable subsets (defined up to a zero measure subset)

Q; C D,meas(§;) =a, i=0,1,
we consider the family of connecting tubes

T} (0, ) = {(¢,V) € L'(I,H" (D)) x L

div?

verifying (1.1), ¢(i) = xq,, 1 =0,1}.

2.2. Non empty family of connecting tubes

In order to handle non empty tubes, we consider a given measurable subset {2 C
D, meas(2) = a, and its connected family

BP(Q) ={wcC D st 3 V)eC(I, LY (D) NLY(I,H" (D)) x Lk, , sit. ¢ =(?

G+ VeV =0, ((0)=xq, and x, =((1)}. (2.1)

It is important to notice that if € C, defined below at (3.1), the continuously
moving domain € such that xq, = ((t,.) is in C, for almost every t, but not
necessary for ¢t = 1, so that the family B, (£2) is not a subfamily of C,. Moreover
as V € LA | the moving connecting domain verifies meas(Q;) = [, ¢ pCt,x)dr =
a > 0 a.e.t, so it is not empty at a.e. time.

By construction we have:

Theorem 2.3. For any pair of sets Q; € B,.(Q),i = 0,1, the connecting tube
T, (Qo, Q1) is non empty.

Proof. Let (¢*, V') € T,(Q,Q7), then the piecewise defined element
@), V() = ("(1—2t),-2V°(1-2t)), 0<t<1/2,
=(¢'(2t—1),2VI(2t—-1)), 1/2<t<1 (2.2)

is an element of T? (g, ).

3. Subsets in D with bounded Sobolev perimeter

We consider families of measurable subsets in D with perimeter-like properties: let
r € [0,1/2[ and denote by C, the family of measurable subsets in D with given
measure a, 0 < a < meas(D), defined as follows:
i) for r=0,Co={QC D s.t. xqo € BV(D), meas(?) =a }
ii) for 0 < r < 1/2, as we know from [11] that {¢ = (?> € BV(D)} C H"(D), we
can relax the space BV (D) by H" (D), then we set:

C, = {g =¢? e H'(D), /DC(:E)dx =a } . (3.1)
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Theorem 3.1. For 0 < r < 1/2, C,. is weakly closed in H"(D) and any bounded
part is relatively compact in C,. for any r', 0 < v’ <r <1/2.

Forr =0, Cq is weakly closed in BV (D) and any bounded part is relatively
compact in L'(D).

For given h > 0 we introduce

2 _
DxDA{|z—y|<h} h |z — y|N+2r

< [[¢allz- (- (3:2)
With Q¢ = D\ Q we get:

|z —y[? 1
|Q‘10C h,r = 2// (1 — d{Edy
() QxQen{|z—y|<h} h? |z — y|NF+2r

3.1. Sobolev perimeter

In order to define the Sobolev perimeter we first consider the smooth domain
situation: if the boundary I' = 92 is a C? manifold then with j2(z) = 1+2H + 22K
(where H and K are the mean and Gauss curvature of the surface I', we assume
N = 3), we get

0
ocir =2 / ( / (ij () { /
T —h By (z4T= (z) )NQe

LD 0 e

T () —y|N+2r

Assuming now that h is small enough compare to the curvatures we locally ap-
proximate in the ball By (z) the piece of boundary I' N B(x 4+ T, (x)) by a linear
space. The term

1—|T.(z) —y*/R* T
mina,) = | A
Bu(a+Te(a))nee 1 T:(2) — 9]
is no more depending on the point € I' so that we set
1— 2 2 h2 +
minz) = [ Syt
Bh(0+T.(0))ne (2 +y2)? +y7)N/2+r

dy.

We set o
M(h) = 2/ m(h, z)dz.
—h
Then we get

Rhoctne) = M) [ dT(@) + o), b0,
r
Necessarily, as ||(o||mar(p) < oo, this term as a finite limit but this limit is zero:

Proposition 3.2. 1Qioc(h,ry — 0, h— 0.
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Proof. With Ej, = {|z — y| < h},meas(Ep) — 0 and (g, ' < F with

|¢a(z) — Ca(y)]
F:WGU(DXD).

3.2. Asymptotic analysis when h — 0
Proposition 3.3. For any r, 0 < r < 1/2, there exists a constant a(r) such that

M(h) /W' =a(r) +o(1), h—0 (3.3)

Proof for N = 2. We get:

Vi N
m(h7z):2/ du(/
0 0

X [1—((z+0)? +u?) /B2 ((z +v)? + u?)~N/2+7) dv)

0 N N e
M(h)z?/ dz{/ du(/
—h 0 0

X [ = (2 + v)2 + u?) /W (2 +v)2 + u2>‘““)d“) }

with Z =1/hz, we get

M(R) = 2h /_°1 iz /ﬁ o /ﬁ

0 0

x (1= ((hZ +v)2 +u?)/h2)* ((hZ + )2 + u2>‘““)d“) }

With U = 1/h u we get

M(h) :2h2/0 dZ{/mdU</hm

-1 0 0

x [ = ((hZ +v)? + h2U?) /R T (hZ + v)? + h? U2)‘(1+T)dv> }

With V =1/h v we get

- o [

-1 0 0

<= (Z+V?+ U (Z+ V) + UQ)_(“”’)dV) }

Notice that as 0 < r < 1/2 we have pp = 1 — 2r > 0 and we consider

M(h)/h'™2 = a(r) +o(1), (3.4)
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where the main part a(r) is independent on h, h — 0, is given by:

oy = [Car{ [T ([T
x[1—=((Z+V2+UNT(Z+ V) + UQ)‘(HT)dV) }

3.2.1. Perimeter. We set

1

Py (Q2) = 2a(r) Wi 1QN10c(h,r)- (3.5)

And ¢ being the characteristic function of {2 we shall also denote this perimeter
as being P, ().

Proposition 3.4. For allr, 0 <r < 1/2, and any open set Q C D with C? boundary
', T' C D the following asymptotic holds:

Py () — dr, h— 0.
rnD

3.3. Perimeter estimate

For r = 0 we have

ICelBv(p) = 9] + |VCQ|M1(D rv) < [D[+ Pp(Q).
Let 0<r<1/2, h>0,consider pn(r) = (1 —r2/h?)*, so that

PrrC) = i | /Q P sy (36)

we have

Proposition 3.5. V(r,p), 0 <r < 1/2,

16allfirpy < D] + (V2/W)¥ D + a(r)h' = Pup(Q). (3.7
Proof. Notice that
_ [9€: ) ¢(y)]

Moreover
¢(=) = <)l
¢ . Q) + // dzdy
L e Y

1¢(=) = cw)l
p
= //{w oy oy

1¢(=) — <)l
H r dxdy.
h, //{w JI<h/vE} |z —y |N+Zr ray
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As pp(r) > 1/2 for r < h/v/2 we get

< (V2/h)N*T|D)? + // |x_y|N+2rdxdy.

That is
SOy < (V2/R)YFTIDP + [Qfi0c(hr-

3.4. Sobolev mean curvature Hy, ,.(¢)
When ¢ € BV(D) the perimeter in D is given by

PD(Q) = HVCHMl(D,RN)'

For a given smooth vector field Z the perimeter P(€2;) of the perturbed domain
05 = T5(Z)(Q) is not differentiable with respect to s. When the boundary T is a
smooth manifold then it is differentiable and we have:

aQPD(Qs){s:O} :/ Abg < Z(O),TL > dI'.

s r

Where H = Abg is the mean curvature of I', so that H7 appears as the shape
gradient of the perimeter (for smooth domains). In the general situation (for non
smooth domains), the BV perimeter being not shape differentiable, we introduced
the h-Sobolev perimeter which is shape differentiable, its shape gradient will be
the h-Sobolev curvature. We first analyse the h-Sobolev-perimeter shape deriv-
ative; this term turns to be always differentiable with respect to the transverse
perturbations as follows: let us consider some “small” parameter s (perturbation
parameter) and any smooth vector field, Z(s, x), Z € C°(]0, so[, D(D, RY)) such
that div, Z(s,.) = 0. As usual we designate by Ts(Z) its flow mapping and con-
sider the Sobolev perimeter of the s-perturbed set:

Ph,r(CQ OTS(Z)_l)

! [1 - |T.(2)(z) — Tu(Z) (y) |/ R+
a(,r-)hl—Qr /QXQC ||Ts(z)($) — TS(Z)(y)HN-F?T dxdy.

So that, with ¢* = (a0 Ts(Z)™" = {1, (z)(), we have:

0 s . 1
%Ph,r(g )s:O = -2 Q(T)h1_2r (38)

_ _ 2 /1214 _ _
axee [z =yl llz =yll" e —yll

1 —y
- Z Z(y >d;vdy :
/ancm{|m_y|<h} ||x—y|N+2r< h2 (x) = Z(y) ]

As ||z — y|| < h in the previous integrals we have:

1Z2(x) = ZWIl < RIDZ|| e (p,pr2y-

=2
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Then there exists a measure ﬁh,T(C) such that
~ 0
Hy,, ) Z)==PFPur # s=0-
Hnr(¢), Z) s hr (€ )s=0
3.4.1. Smooth domains. If { = (g the set {2 being a smooth domain with boundary

I' then the measure IjIh,T(C) is supported by the tubular neighbourhood of the
boundary:

Uh(aQ) = UEGGQB([E’ h)
Moreover,
Lemma 3.6. for allr < 1/2 and smooth “transverse field” Z, we have the following
convergence

/ (Hp, . (¢7), Z)do —>/ H°@?.Zdl do, as h — 0.
0 0 I'e

Indeed .
dl® = / dr’ +/ H7°.Zdl'° do.
s r 0o Jre
Also .
Prrtey = Partc) + | (0, (¢7), 2)dor
0
And
P, (C%) — dl®, as h —0
FS
and also

P, (€) —>/dF, as h — 0.
r

3.5. Time capacity term

An evident candidate for the surface tension like term 6y, ,. would be fol Py, - (C(t))dt.
This term would perfectly be transversely shape differentiable and will lead as well
to existence result for the minimization then to existence of solution to the Euler
equation (4.4) but will not furnish a metric as it is never zero. Then the idea

is to replace it by some term in the form fol %Ph,r(g(t))dt but as V' is a non
smooth vector field (conversely to the transverse fields Z) the time derivative of
the Sobolev perimeter does not exists. For any tube

e LP(I,H"(D))
form (3.2) we have

Prr(C(1) < a(r) KT [[C) [ () (3.9)
So that Py .(¢(.)) € LP(I). We consider the closed convex set,

Ky Q) = {v e WHP(I), v(i) > 0,i=0,1, (3.10)

1 1
/a&Wﬁs/wmmwzaﬁw»wnﬂmmmﬁ
0 0
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1
07 () = INFexr )}/0 W ()P dt. (3.11)

Obviously the convex set K} (() is never empty as the constraint is only on the
mean value. As

/01 v(t)dt = v(0) + /01(1 — 0/ (1)t < v(0) + (/01 |y/(t)|pdt)1/p
/olphm@(t))dt < /01 u(t) dt < v (/ (i |pdt) "

From (3.7) we have:

then

Proposition 3.7. Vv € K} ((),
1
| ol ey e < 10 + (V27 ¥ P (3.12)

P (C0)) + Prr(C (/ /(¢ Ipdt)l/p]

a(r)h!=2r

4. Shape-morphing pseudo-metric on B?(£2)

The scaling parameter h > 0 and the Sobolev weight r, 0 < r < 1/2 being fixed in
this analysis, the metric associated to p > 1 and € > 0 is

% (Q0, Q1) (4.1)
1 (1+€)/p
= INF{(C,V)ETf(Qo,Ql)} A (/D(a + ﬁC)HV(t? :,C)dew) dt. + 0%,7“(()

Theorem 4.1. Forp>1,¢>0,0 <7 <1/2, .d} is a e-quasi metric on BL(Q):
V(Qo, Ql, Ql) S Bf(Q)?’,

di:i(Qo, Ql) =0 Zﬁ QO = Ql, dz’;(ﬂo, Ql) = di:i(Ql, Qo)
dy’ (20, 2) < 2°(dj7 (R0, ) + di7 (1, ) ).
Notice that with p > 1, dﬁ’,g is a metric on B(Q).

Theorem 4.2. Letp >1,¢>0,, 0 <r < 1/2, equipped with d}*. the family BE(Q)
is a complete quasi-metric space. Moreover the geodesic (C, V) between to elements
Q;, 1= 0,1 solves the following Euler problem: there exist some “pressure” term
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P € D/(D) and some surface tension o € R such that, the Sobolev curvature
measure Hy, , = Hy, -(¢) being defined previously,

)
5° T VeV =10 €(0) = xa,, ¢(1) = xa, (4.2)
divV =0, ¢=¢2 (4.3)

%( (aC+BVIP2V) + D((aC + B)|VIPT2V).V + VP = 0 Hy,. (44)

4.1. This Euler equation does not reduce to Hamilton-Jacobi equation

(for some scalar potential)
It is an important point that the right-hand sides in the previous euler flow equa-
tion is not curl free, so it does not derives from a potential and the geodesic field
V' does not reduces to a gradient term as in a incompressible perfect fluid. Indeed
the support of curl V' is included in the boundary of the moving set €); In the very
simple situation of B(D) = BV (D) and I'; is a smooth surface we would get

1
(curl(Hy, ,.), Z) = (Hp, ., curl Z) = / Hing.curl Z(t) dU¢(x)dt
0

Iy
= /1 Ht din‘t (nt X Z(t)) dFt(LC)dt = — /1/ (VFth X ’I’Lt)Z(t) dFt(x)dt
0 JI'y 0 JI':

And v; being the trace operator on the manifold I';:
curl p(t) = ¢, .(Vr, Hy X ny).

Which is zero if and only if the surface I'; has a constant mean curvature. Still
assuming the interface I'; to be a smooth manifold we would get the restrictions
of V' to the open domains €2; and Qf as gradients so that would be in the following
form: V = xq,Vé1(t) + (1 — xa,)V¢2(t). This morphic metric can be handled nu-
merically. In this direction we developed several Galerkin approach based on level
set parametrization for the moving domain, see [20], [23]. In several experiment
the geodesic turns to be numerically stable [12], [13].

In Theorem 4.2 the real parameter ¢ can be a priori chose, o > 0 by simply
choosing ¢}, = fol Py, (¢(t))dt. The minimum is reached and any minimizer ¢
solves the Euler equation with,the chosen term o but it fails to be a metric (or a
quasi metric), see [22].

5. Proofs

The proof of Theorem 4.1 is similar the ones in [20], [23]. We concentrate on the
proof of Theorem 4.2.

5.1. Existence for minimizer

We shall make use of the following compactness result, see [30], [14], [24].
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5.1.1. Compactness result.
Theorem 5.1. Let p > 1 and 0 < r < 1/2. Consider a sequence ¢, € C,., bounded
in L'(I,H" (D)) together with 2, bounded in LP(I, W=11(D)). Then there exists
a subsequence and an element ¢ € C,. N LY(I, B.(D)) n WHi(I, W=tY(D)) C
CO(I,LY(D)) such that ¢, strongly converges to ¢ in L*(I,LY(D)) with £¢ €
LP(I, M*(D, R)) verifying

I[< 1 (1,117 (pyy < Hminf [|Cal|Lr (7,17 (D))

and
LP(I,LL 1'1(D)) > Amimn n ZP(L[/I/ 1'1(D))'

Moreover we defined the r-perimeters as being:

Bo(C(#) = IVaC®)llarr (p,r7),

r>0. PurC) = [ [ pulle = uIC) = CoNl/le — ]V dady
DxD
then:
((t,x) = 3(t,x), ae.(t,x) € I x D and {( € C°(I, L*(D)) imply that the
mapping:
tel — Py, (C(t) is Ls.c. (5.1)

5.1.2. Existence of minimizing tube.

Proposition 5.2. Let ¢, € C,. be strongly convergent to ¢ in L'(I x D) and weakly
convergent in L*>(I, H"(D)). Then

/Phr dt<hm1nf/ Py (Ca(t))dt

‘We have

1 1
| Prstconar= [ 1¢o e
1
—/ // F(z,y)dzdydt.
0 {(z,y)eDXD,|z—y|>h}

The second term, correcting term, is continuous while the first one, being the
square of a Hilbert norm, is Ls.c.

Proposition 5.3. The mapping ¢ — 0}, .(C) from LP(I, H" (D)) in R is weakly lower
semicontinuous.

Let ¢,, be a weakly convergent sequence to (, for each n let v, be a minimizing
element in the closed convex set K ((,), it remains bounded in W1P(I) and we still
denote by v, a weakly subsequence converging to v in this linear space. From (3.12)
the sequence ¢, remain bounded in L?(I, H"(D)) and %Cn remains bounded in
LP(I,W~11(D)) and then, from Theorem 5.1, is strongly converges in L(I x D)
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to some element ¢ = ¢? € C([0,1], L*(D)) and is also weakly converging to that
element in L2(I, H"(D)) then, from Proposition 5.2, in the limit we get v € K ().

We consider a minimizing sequence ((,, V;,) € T(Q0, Q1) .there exists subse-
quences such that V,, — V, weakly in LP(I x D) and ¢,, — ¢ strongly in L*(I x D).
Effectively as ((,)r = div( —(, Vi ), we have p > 1 and from previous estimate,
with the notation B, (D) = H"(D) for 0 <r < 1/2 or = BV (D) for r =0, we get

[[Callzr D)y < M1, [[(Ca)ellLer,w-11(Dy) < Ma.

The conclusion derives from the compactness result. From this strong L' conver-
gence we derive that (? = (. We consider the weak formulation for the convection
problem (1.1):

Vg € CM(Ix D, RV), (0,.) =0,

1
/ / Ca( =th¢ = V.V, )dxdt = — [ (0,x)dx
0 D o}

in which we can pass to the limit and we conclude that (¢, V) € T(€Qq,21). More-
over the element (¢, V') is classically a minimizer as the two terms are weakly lower
semi continuous respectively for each weak topologies, as we have

/OI/DC(t7x)|V(t,x)|pdxdt:/Ol/D C(t,2) V (¢, z)[Pdwdt.

Cn Vi weakly converges in LP(I x D) to ¢V

Indeed, for any ¢ € LP" (I x D) we have |¢ (¢, — )P < (I x D) while
b (Calt,z) — C(t,x)) — 0, a.e.(t,z), so that ¢ ¢, — ¢ strongly in LP" (I x D).
Now as V,, weakly converges to V' we get

//¢V§ndxdt—>/ / ¢ Vdadt;

so that V,, ¢,, weakly converges in LP(I x D) to V (.

And

5.2. Convergence of Cauchy sequence

Consider a sequence of domains 2, € B(Q) such that d}}.(2,,Q2¢) — 0 as p,q —
co. We consider dj;\ (Q, Q) < d}0 (9, Qny) + d15 (D, ) < M = 2d}77 (2, Qg )
(For any ng large enough and n > ng.) To begin with we obtain the existence of
a minimizing elements (,, V,,) in T,-(Q,,) and v, € K((,) which are uniformly
bounded by M.

As v,(0) = Ph,(¢q), we have v, bounded in W?(0,1) c C°([0,1]), then
G(Cn) < M; and then from (37), (312) we get ||<n||L;D(I7W7‘,p(D)) < M.

Then we have converging subsequences, still denoted (,, V,,, v, to some el-
ement (,V,v asn — oo. And as ¢ = ¢% € C([0,1], LY(D)) N L%(0,1, H"(D)) we
set ((1) = (., where the measurable subset Q. € B(Q) is defined up to a zero
measure subset in D and verify meas(Qs) = a.
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5.3. Stability of geodesics

We consider now the perturbed set Q° = T¢(Q2) and, for all s, 0 < s < s*, the
minimizing elements (*, V*® v* associated with the distance d’,';’; (©°,91). We have
dp (2%, ) < dp(Q°,Q) + dp (2, ); the first term is uniformly bounded as
s — 0 from the smoothness of the vector field Z (and the possible use of its
flow mapping Ts(Z) for estimating this term). Then as previously we derive the

convergence of (*, V?® v® to respective elements ¢, V,v. As previously we get v €
K(¢) and (¢, V) € T,(2,€4) being a minimizer for the distance dj. (€2, Q).

5.4. The Euler equation

5.4.1. Transverse field. Transverse field action preserving tubes and transverse
tube analysis has been developed in [28], [29], [30], [32], [33], [14], in connection
with optimization and optimal control in non cylindrical evolution problem (time-
depending domain and geometry).

Let us consider a perturbation parameter s > 0 and any smooth horizontal
non autonomous vector field over RVF! (s being the evolution parameter for a
dynamic in RV+1)

Z(s, t,x) = (0, z(s, t,z)) € Ry x RN, div, z(s,t,.) = 0.

Such that
Z(s, 0,2) = Z(s, 1,2) =0 (5.2)

5.5. Transverse perturbed tube
For any element (¢,V) € T(Qo,1), we consider the perturbed tube (%, V'*)
where

¢(t,z) = CoTs(Z)(x) ™",

and
Ve = 0n@ )" ( vein@ T - 2@@™).  63)

Notice that (D[Ts(Z)~1])~! = D(Ts(Z))oTs(Z)~!, so that

VA (t,2)o.(2) = DIT(Z).V (1) + D(TL(Z)" 2 (T.(2).

From classical calculus, see [4], [21], [10], [11], [5], using the strong flow map-
ping Ts(Z) we get the following stability result for the connecting family:

Theorem 5.4. Let be given z € C°([0, s1] x [0, 1],CY(D, RN)), 2(s,t).n = 0, on
dD and Q2 a measurable subset in D. Consider any pair Q, i = 0,1 in B(£),
then, with Z = (0, z), we have:

Y(¢, V) € T(Qo, 1), the elements (5, V*) defined at (5.3) verifies: ((*,V?®) €
T(Q0, 1)
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Remarks
1) this stability property does not require the function ¢ to be a characteristic
function. This property still hold true for example for probability measures.
2) As V € H{, the moving domain verifies meas(Q;) = [}, {(t,z)dz = a and
the s-perturbed moving domain € such that xo: = ((t)oTs(Z(t))~" (or
equivalently QF = T4(Z(t))(Q:) ), verifies meas(€2f) = a > 0 if divy z(s,t,.) =
0in D.

5.6. Euler equation solved by the minimizer

In order to analyse the necessary conditions associated with any minimizer of
EP over the set T(0,$21) we introduce transverse transformations of the tube.
Without any loss of generality and in order to simplify the calculus we consider
here the specific quadratic situation:

5.6.1. Transverse derivative, quadratic case (p = 2). Assume that div, Z! = 0,
then

[ @etto) + ) WetaP o= [ (adta) +5) V(0T (Z) @) da.
D D
So that the optimality of the element (¢, V) writes:
1/s (E(¢°, V®oTs) — E(¢, V) ) = 0.
Now the following quotient has a strong limit in L?(I x D):

sl —
Vools -V _ i[VSoTs(Zt)]szo

s ds
:d% (D(T5(ZH™ Y=L V() — %(Ts(zt)‘l)oTs(Zt)
s=0

= dii [(D(TS(Zt)oTS(Zt)_1.< V() — E(Ts(zt)‘l)oTs(Zt)ﬂ

= %Z(t) + DZ(t).V(t) € L*(I x D,R"M).

Where we always denote Z(t)(xz) = Z(t,x) := Z'(0,z) (that is at s = 0). Indeed
we know that if V was smoother, say V € L?(H*(£2)) we would have:

0

E[VS]SZO =7y +[Z(t),V(t)] := Hy.Z.
Where the Lie bracket is [Z,V] = DZ.V — DV.Z, so we would get the previous
expression for the derivative of VSoTs(Z!), as (V*0Ts)s = (V*)s+DV*.DZ(t). This
analysis in strong form is used in the non cylindrical shape analysis (or dynamical
domains analysis) in several previous works, see for example [3], [6], [33], [7], [8].
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5.6.2. Quadratic term E2? (p = 2). As

| [ ac )1V = (a+ Vs dodt
1
— [ [ (ac+myveor - WP)/s duds
0 D
- /0 /D ((aC + B) (V30T + V) (VooT, — V) /s dadt

— 2 /OI/D((aQHLm V. (%Z(t) + DZ(t).V(t)) dxdt
0

=-2< S ((aC+B)V) + div((e +B)V).V), Z >pxp

where, as divV =0,
div( (el + B) V). V)i = “D((al + B) V).V7;

=0;((a¢+p) ViV; ) € WHH(D) = 9;( (a + ) Vi) V.
5.6.3. Transverse field preserving time mean value of the perimeter.

Proposition 5.5.
vZ(0,t,x) € C([0,1], Wy (D)), s.t.,

1
/ (Hp,r(094)), Z(0,1))M(D, 5Ny xCo(D,RN) At =0
0

3s* >0, 3Z(s,t,2) € C([0,5"[,C(10, 1], Wy (D))
such that, with QY = Ty(Z(t))(%),

1
VS, 0<s< S*, / <Hh7r(aQé), Z(S»M(D,RN)XCC(D}RN) dt = 0.
0

Where we denote by Z(t) the mapping (s,x) — Z(s,t,x) whose flow mapping
builds the perturbed tube (°;

Then for any such Z we have
Vs, Kp (¢%) =K}, (C),

then we get

0
—60P (¢®)=0.
83 hm(C ) 0

5.6.4. Transverse derivative for Hﬁ,w As the convex constraint K in the definition
of 7 is so simple we can easily verify that this term is itself differentiable in the
direction of any smooth transverse vector field Z. Let us consider the function

1
vo(t) =6 t(1 —t), verifying / vo(t)dt = 1, 15(0) = (1) = 0.
0
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With a(s) = [} P(C*(t)) dt we have

0 (%) _Inf{/ WPt | / Nt > a )}
0 ,(") =Inf{ / WP | / (1) — also®)dt > o}.

Setting w(s,t) = v(t) — a(s)vo(t), we get
/0 w(t)dt > 0}

1
o ¢ =i { |

the convex constraint is not depending on the parameter s then it is classical that
this minimum (uniquely achieved on the convex set) is differentiable with respect
to the parameter s, and at s = 0, for example with p = 2, we get

1
e Clo= [ (G 0.0+ a00)) a0 ar

Then

%w(s, ) + a(s)v)(t)|P dt

Where w* = v* — a(0)vy is the optimal solution while

a(0) = % ; Ph,r(csns:o:/O (Hy, (D), Z(0,t))dt.

So that

1
SO (Moo =0 [ (0. 20, rangleat,
0

02 = /815 0)

1
= 5P C(1) =6 P (C0) + 12 [ v (.

where

And similarly we would get the expression for o).

5.6.5. Variational solution to incompressible Euler-convection problem. We have

Theorem 5.6. Let Q be any given element in B. Then any minimizer ((, V') to the
functional E? over the family of tubes T(2, Q1) solves the following problem:

d
5 T VeV =0 €(0) = xa,, C(1) = xau (5.4)
divV =0, ¢=¢? (5.5)

P s.t. Q((auﬁ) V) + D((al+B)V).V +VP = H,,.  (56)



362 J.-P. Zolésio

Remark, see [25], equation (5.6) writes
15} _
(aC + ) <§V + DV.V) + VP =1/2H,,. (5.7)

More generally we have:
Theorem 5.7. Let Q be any given element in B. Then any minimizer ((, V) to the
functional EP over the family of tubes T(Qo, Q1) solves the following problem:
0
divV =0, ¢=¢2 (5.9)

TP 5.t (¢ DIIVIPZV) + D((a¢ +A)IVIF2 V).V + VP = 1/pH,.
(5.10)

5.6.6. h-perimeter in E. In the interesting case where H"(D) = H"(D) we con-
sider, for any given “small” h > 0 the L'(I) norm of the perimeter:

1 ) —
= [ ([ ottt O oy} a0

So that it is enough to chose the surface tension term in the form o p;,(¢). This
term turns to be always differentiable with respect to the transverse perturbations
as follows:

Ph,r (COTS(Z)_l)

=[] i@ - L@ e S dedvet

So that a.e. ¢t in I we have

) (5.12)

_ oy 8@ — €W, 2y Z{tx) - Z(ty),
= [ enlllr ol [ (et PR ey

/ C(z) = ¢
s e = o) S 2(0,0) - 2oy

As ||z — y|| < h in the previous integrals we have:
Z(t,x) = Z(t,y) = DZ(t,x) + 6(t)(y — x))-(y — )
there exists a measure }_'Ihm(F(t)) supported by
Ap(¥) = Uo<i<t {t} x (Uzean, B(x, h) )
such that

~ B
<Hh,rv Z> = %Ph,r(cs(t))s:(%

In some sense, when h — 0, the measure converges to the mean curvature of the
moving boundary I';.
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5.7. s-transverse derivative
¢ being a tube and Z(s, t, z) being a smooth horizontal vector field (i.e., Z(s, t,x) =
(0, Z(s,t,z)) € RN*'), we consider the derivative of the capacity term 6} (¢*)
where (*(t) = ((t)oTs(Z(t))~! is the transversely s-perturbed tube. The important
point is that the (h,r)-perimeter of this tube (*® is not differentiable with respect
to t as the vector field V' is not smooth but it will be differentiable with respect to
the perturbation parameter s as the vector field Z, as a “test” function, is smooth.
An important point is that Z(s,0,z) = 0 and Z(s,1,2) = 0 are independent
on s so that the inequalities in the convex definition are not perturbed by the
parameter s (as Py (C(7)) = P (%), i =0,1). We consider

a®(t) = |9 oc(h,r)s

L2000 T 26.))
-/ /Dw 7w D)) = Tz e 1) = G

And then a®(7) is 1ndependent on s;i=1,2,a%(i) = P ().
At s = 0 we have:

S T2, 1)@) = T 25, 1D Domo = (2L, Z() — 20,

So that we get

%{/Olasdt} :/ [//Dw{wh|x—y|><|$ o 2() - Z(y)>

- y Z(x)— 2y
pa(lz y"<|x— e >}
~ M dxdy} dt

|z — y|Nre

_ / (o (09), 2(0,1)) dt
0

6. Asymptotic analysis

An important issue is the asymptotic analysis when o+ 3 — 0, see [20]. For p =1
the vector field just appears through the speed boundary element:
v(t) = (V(t),n¢) on 98, so that

1
9, :// lo(t, 2| dTy () dt
Moy Jo Jo

ot
So that the metric takes the following intrinsic form: the Eulerian vector field is
no more necessary (in the limit it would solve, formally, some eikonal equation).
We simply consider the set of characteristic functions

C={¢=CelLl'(IxD)}, C'=CnC’I, LY (D)) (6.1)
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the family of connecting tubes
TO(Qle) = {C € CO s.t. C(Z) = XQ>» i=0,1 } (62)

Considering the Banach space of bounded measure M (D) we set

p>1, CP = { ¢ €C sit. %g € LP(I,Ml(D))} , (6.3)
that is

CP = CNLP(I,BV (D)) c C°I,LY(D)) (6.4)
p>1, CP= { ¢eC st %g € LP(I,Ml(D))}. (6.5)

Corollary 6.1. Let p > 1, then

1 a P
(00 ) = Inf(ceon crmmn ) | |50 (6.6)
0 M1(D)

18 a quasi metric. When p =1, dy is a metric.

In level set representation, let Q; = {x € D, ¢;(x) > 0 } then the moving
domain € is search in the form , = {x € D, ¢(¢t,z) > 0 } for some smooth
function ¢ verifying the connection property: ¢(i,2) = ¢;(x), i = 1,2 and it turns
that

0 _
-/ So(t, )| 1V6(t,2)]|HdT(z).
M1 (D) {zeD, ¢(t,z)=t}

0
— (¢
5 <)
Using an “ad hoc” Galerkin approximation we obtain geodesic connecting domains
with different topologies.

6.1. Conclusion: the morphic metric extends to images

We derived several complete quasi metrics associated with small parameters, € > 0
associated to the triangle inequality verified up to the factor 2¢, and (h,r) associ-
ated to the local scaling when describing the curvature of the moving boundary in
the geodesics. With e = 0 and the Soblev analysis replaced by the usual BV space
we got a metric but not a complete metric space.

An extension of that morphic metric is for monochromatic images. This topic
is developed in a forthcoming paper and we describe it formally. The basic idea
is to comnsider the previous morphic metric on each level set of the image u. More
precisely

Let u € L'(D) we consider the monotone rearrangement

u” (t) = meas({y € Ds.t.u(y) <t })
and
B € L¥(D), () = u# (ule)) = meas({y € Ds.t.uly) < u() })

That is:

#OU.

Bl = u
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There exists a monotone function u* : [0, |D|] — R, such that
u=u"o 3.

The morphic image distance consists in considering separately the two functions
and set

1
d(u',u?) :==Inf g vyer(s1,52) / [[V(#®)[|P dt ) / 18] Bv (p)dt
0

+ 1(uh)* = (@) ||z (m)-
The main property is that
Bipra) = Pru-
We shall always denote by 3 a function defined on D, verifying 8 = 3, so that
0 < 8 < |D| = meas(D). And we denote by ©(D) the non convex set of such
functions:
O(D)={3e€L*(D),0<3<|D|, B=70p }

The set ©(D) has the following stability property: if 8 € ©(D) then o T} €
O(D) for any flow mapping T; of any free divergence vector field V' on D, more
precisely:

Lemma 6.2. Let divV (t) =0 then
BuoTy(V)) = B(u) o Ty(V), BluoTy(V)™?) = B(u) o Ty(V)

6.1.1. B3-tube analysis. We designate by [, (or B, or simply () the function
associated with u € L'(D).

The Fulerian approach consists in considering the connecting (-tubes
(B(t),V(t)) as solutions to the weak convection (6.7) associated to a free diver-
gence speed vector field V. Then we can repeat the previous analysis with couples
(8,V) verifying

0
ﬁ[ﬁ] =0, &ﬂ + VBV =0, 0= 5[ui] i =1,2. (6.7)

Such a solution £(t) is continuous from I in L?(D) equipped with its weak topology.

The analysis of the steps of §(¢) is an important issue. They are enumerable
and we show that if ([, have no step (a function f € LY(D) has a step r if
meas({x € D s.t. f(r) =1t })=0), then for all ¢ € I, 5(¢) has none too. The mor-
phic part of the image analysis relies on the morphic metric on the elements (3}
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